xref: /linux/net/core/dev.c (revision 127ef6274a682d8ce88fd9e6614c0b30c7f8ef34)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 	spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226 
227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 	spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233 
234 /* Device list insertion */
235 static int list_netdevice(struct net_device *dev)
236 {
237 	struct net *net = dev_net(dev);
238 
239 	ASSERT_RTNL();
240 
241 	write_lock_bh(&dev_base_lock);
242 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 	hlist_add_head_rcu(&dev->index_hlist,
245 			   dev_index_hash(net, dev->ifindex));
246 	write_unlock_bh(&dev_base_lock);
247 
248 	dev_base_seq_inc(net);
249 
250 	return 0;
251 }
252 
253 /* Device list removal
254  * caller must respect a RCU grace period before freeing/reusing dev
255  */
256 static void unlist_netdevice(struct net_device *dev)
257 {
258 	ASSERT_RTNL();
259 
260 	/* Unlink dev from the device chain */
261 	write_lock_bh(&dev_base_lock);
262 	list_del_rcu(&dev->dev_list);
263 	hlist_del_rcu(&dev->name_hlist);
264 	hlist_del_rcu(&dev->index_hlist);
265 	write_unlock_bh(&dev_base_lock);
266 
267 	dev_base_seq_inc(dev_net(dev));
268 }
269 
270 /*
271  *	Our notifier list
272  */
273 
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275 
276 /*
277  *	Device drivers call our routines to queue packets here. We empty the
278  *	queue in the local softnet handler.
279  */
280 
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283 
284 #ifdef CONFIG_LOCKDEP
285 /*
286  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287  * according to dev->type
288  */
289 static const unsigned short netdev_lock_type[] =
290 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 	 ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 	 "_xmit_VOID", "_xmit_NONE"};
324 
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 
328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 {
330 	int i;
331 
332 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 		if (netdev_lock_type[i] == dev_type)
334 			return i;
335 	/* the last key is used by default */
336 	return ARRAY_SIZE(netdev_lock_type) - 1;
337 }
338 
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 						 unsigned short dev_type)
341 {
342 	int i;
343 
344 	i = netdev_lock_pos(dev_type);
345 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 				   netdev_lock_name[i]);
347 }
348 
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 	int i;
352 
353 	i = netdev_lock_pos(dev->type);
354 	lockdep_set_class_and_name(&dev->addr_list_lock,
355 				   &netdev_addr_lock_key[i],
356 				   netdev_lock_name[i]);
357 }
358 #else
359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 						 unsigned short dev_type)
361 {
362 }
363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 {
365 }
366 #endif
367 
368 /*******************************************************************************
369 
370 		Protocol management and registration routines
371 
372 *******************************************************************************/
373 
374 /*
375  *	Add a protocol ID to the list. Now that the input handler is
376  *	smarter we can dispense with all the messy stuff that used to be
377  *	here.
378  *
379  *	BEWARE!!! Protocol handlers, mangling input packets,
380  *	MUST BE last in hash buckets and checking protocol handlers
381  *	MUST start from promiscuous ptype_all chain in net_bh.
382  *	It is true now, do not change it.
383  *	Explanation follows: if protocol handler, mangling packet, will
384  *	be the first on list, it is not able to sense, that packet
385  *	is cloned and should be copied-on-write, so that it will
386  *	change it and subsequent readers will get broken packet.
387  *							--ANK (980803)
388  */
389 
390 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 {
392 	if (pt->type == htons(ETH_P_ALL))
393 		return &ptype_all;
394 	else
395 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397 
398 /**
399  *	dev_add_pack - add packet handler
400  *	@pt: packet type declaration
401  *
402  *	Add a protocol handler to the networking stack. The passed &packet_type
403  *	is linked into kernel lists and may not be freed until it has been
404  *	removed from the kernel lists.
405  *
406  *	This call does not sleep therefore it can not
407  *	guarantee all CPU's that are in middle of receiving packets
408  *	will see the new packet type (until the next received packet).
409  */
410 
411 void dev_add_pack(struct packet_type *pt)
412 {
413 	struct list_head *head = ptype_head(pt);
414 
415 	spin_lock(&ptype_lock);
416 	list_add_rcu(&pt->list, head);
417 	spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420 
421 /**
422  *	__dev_remove_pack	 - remove packet handler
423  *	@pt: packet type declaration
424  *
425  *	Remove a protocol handler that was previously added to the kernel
426  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
427  *	from the kernel lists and can be freed or reused once this function
428  *	returns.
429  *
430  *      The packet type might still be in use by receivers
431  *	and must not be freed until after all the CPU's have gone
432  *	through a quiescent state.
433  */
434 void __dev_remove_pack(struct packet_type *pt)
435 {
436 	struct list_head *head = ptype_head(pt);
437 	struct packet_type *pt1;
438 
439 	spin_lock(&ptype_lock);
440 
441 	list_for_each_entry(pt1, head, list) {
442 		if (pt == pt1) {
443 			list_del_rcu(&pt->list);
444 			goto out;
445 		}
446 	}
447 
448 	pr_warn("dev_remove_pack: %p not found\n", pt);
449 out:
450 	spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453 
454 /**
455  *	dev_remove_pack	 - remove packet handler
456  *	@pt: packet type declaration
457  *
458  *	Remove a protocol handler that was previously added to the kernel
459  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
460  *	from the kernel lists and can be freed or reused once this function
461  *	returns.
462  *
463  *	This call sleeps to guarantee that no CPU is looking at the packet
464  *	type after return.
465  */
466 void dev_remove_pack(struct packet_type *pt)
467 {
468 	__dev_remove_pack(pt);
469 
470 	synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473 
474 /******************************************************************************
475 
476 		      Device Boot-time Settings Routines
477 
478 *******************************************************************************/
479 
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482 
483 /**
484  *	netdev_boot_setup_add	- add new setup entry
485  *	@name: name of the device
486  *	@map: configured settings for the device
487  *
488  *	Adds new setup entry to the dev_boot_setup list.  The function
489  *	returns 0 on error and 1 on success.  This is a generic routine to
490  *	all netdevices.
491  */
492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 	struct netdev_boot_setup *s;
495 	int i;
496 
497 	s = dev_boot_setup;
498 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 			memset(s[i].name, 0, sizeof(s[i].name));
501 			strlcpy(s[i].name, name, IFNAMSIZ);
502 			memcpy(&s[i].map, map, sizeof(s[i].map));
503 			break;
504 		}
505 	}
506 
507 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509 
510 /**
511  *	netdev_boot_setup_check	- check boot time settings
512  *	@dev: the netdevice
513  *
514  * 	Check boot time settings for the device.
515  *	The found settings are set for the device to be used
516  *	later in the device probing.
517  *	Returns 0 if no settings found, 1 if they are.
518  */
519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 	struct netdev_boot_setup *s = dev_boot_setup;
522 	int i;
523 
524 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 		    !strcmp(dev->name, s[i].name)) {
527 			dev->irq 	= s[i].map.irq;
528 			dev->base_addr 	= s[i].map.base_addr;
529 			dev->mem_start 	= s[i].map.mem_start;
530 			dev->mem_end 	= s[i].map.mem_end;
531 			return 1;
532 		}
533 	}
534 	return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537 
538 
539 /**
540  *	netdev_boot_base	- get address from boot time settings
541  *	@prefix: prefix for network device
542  *	@unit: id for network device
543  *
544  * 	Check boot time settings for the base address of device.
545  *	The found settings are set for the device to be used
546  *	later in the device probing.
547  *	Returns 0 if no settings found.
548  */
549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 	const struct netdev_boot_setup *s = dev_boot_setup;
552 	char name[IFNAMSIZ];
553 	int i;
554 
555 	sprintf(name, "%s%d", prefix, unit);
556 
557 	/*
558 	 * If device already registered then return base of 1
559 	 * to indicate not to probe for this interface
560 	 */
561 	if (__dev_get_by_name(&init_net, name))
562 		return 1;
563 
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 		if (!strcmp(name, s[i].name))
566 			return s[i].map.base_addr;
567 	return 0;
568 }
569 
570 /*
571  * Saves at boot time configured settings for any netdevice.
572  */
573 int __init netdev_boot_setup(char *str)
574 {
575 	int ints[5];
576 	struct ifmap map;
577 
578 	str = get_options(str, ARRAY_SIZE(ints), ints);
579 	if (!str || !*str)
580 		return 0;
581 
582 	/* Save settings */
583 	memset(&map, 0, sizeof(map));
584 	if (ints[0] > 0)
585 		map.irq = ints[1];
586 	if (ints[0] > 1)
587 		map.base_addr = ints[2];
588 	if (ints[0] > 2)
589 		map.mem_start = ints[3];
590 	if (ints[0] > 3)
591 		map.mem_end = ints[4];
592 
593 	/* Add new entry to the list */
594 	return netdev_boot_setup_add(str, &map);
595 }
596 
597 __setup("netdev=", netdev_boot_setup);
598 
599 /*******************************************************************************
600 
601 			    Device Interface Subroutines
602 
603 *******************************************************************************/
604 
605 /**
606  *	__dev_get_by_name	- find a device by its name
607  *	@net: the applicable net namespace
608  *	@name: name to find
609  *
610  *	Find an interface by name. Must be called under RTNL semaphore
611  *	or @dev_base_lock. If the name is found a pointer to the device
612  *	is returned. If the name is not found then %NULL is returned. The
613  *	reference counters are not incremented so the caller must be
614  *	careful with locks.
615  */
616 
617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 {
619 	struct hlist_node *p;
620 	struct net_device *dev;
621 	struct hlist_head *head = dev_name_hash(net, name);
622 
623 	hlist_for_each_entry(dev, p, head, name_hlist)
624 		if (!strncmp(dev->name, name, IFNAMSIZ))
625 			return dev;
626 
627 	return NULL;
628 }
629 EXPORT_SYMBOL(__dev_get_by_name);
630 
631 /**
632  *	dev_get_by_name_rcu	- find a device by its name
633  *	@net: the applicable net namespace
634  *	@name: name to find
635  *
636  *	Find an interface by name.
637  *	If the name is found a pointer to the device is returned.
638  * 	If the name is not found then %NULL is returned.
639  *	The reference counters are not incremented so the caller must be
640  *	careful with locks. The caller must hold RCU lock.
641  */
642 
643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 {
645 	struct hlist_node *p;
646 	struct net_device *dev;
647 	struct hlist_head *head = dev_name_hash(net, name);
648 
649 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 		if (!strncmp(dev->name, name, IFNAMSIZ))
651 			return dev;
652 
653 	return NULL;
654 }
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
656 
657 /**
658  *	dev_get_by_name		- find a device by its name
659  *	@net: the applicable net namespace
660  *	@name: name to find
661  *
662  *	Find an interface by name. This can be called from any
663  *	context and does its own locking. The returned handle has
664  *	the usage count incremented and the caller must use dev_put() to
665  *	release it when it is no longer needed. %NULL is returned if no
666  *	matching device is found.
667  */
668 
669 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 {
671 	struct net_device *dev;
672 
673 	rcu_read_lock();
674 	dev = dev_get_by_name_rcu(net, name);
675 	if (dev)
676 		dev_hold(dev);
677 	rcu_read_unlock();
678 	return dev;
679 }
680 EXPORT_SYMBOL(dev_get_by_name);
681 
682 /**
683  *	__dev_get_by_index - find a device by its ifindex
684  *	@net: the applicable net namespace
685  *	@ifindex: index of device
686  *
687  *	Search for an interface by index. Returns %NULL if the device
688  *	is not found or a pointer to the device. The device has not
689  *	had its reference counter increased so the caller must be careful
690  *	about locking. The caller must hold either the RTNL semaphore
691  *	or @dev_base_lock.
692  */
693 
694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 {
696 	struct hlist_node *p;
697 	struct net_device *dev;
698 	struct hlist_head *head = dev_index_hash(net, ifindex);
699 
700 	hlist_for_each_entry(dev, p, head, index_hlist)
701 		if (dev->ifindex == ifindex)
702 			return dev;
703 
704 	return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_index);
707 
708 /**
709  *	dev_get_by_index_rcu - find a device by its ifindex
710  *	@net: the applicable net namespace
711  *	@ifindex: index of device
712  *
713  *	Search for an interface by index. Returns %NULL if the device
714  *	is not found or a pointer to the device. The device has not
715  *	had its reference counter increased so the caller must be careful
716  *	about locking. The caller must hold RCU lock.
717  */
718 
719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 {
721 	struct hlist_node *p;
722 	struct net_device *dev;
723 	struct hlist_head *head = dev_index_hash(net, ifindex);
724 
725 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 		if (dev->ifindex == ifindex)
727 			return dev;
728 
729 	return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
732 
733 
734 /**
735  *	dev_get_by_index - find a device by its ifindex
736  *	@net: the applicable net namespace
737  *	@ifindex: index of device
738  *
739  *	Search for an interface by index. Returns NULL if the device
740  *	is not found or a pointer to the device. The device returned has
741  *	had a reference added and the pointer is safe until the user calls
742  *	dev_put to indicate they have finished with it.
743  */
744 
745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 {
747 	struct net_device *dev;
748 
749 	rcu_read_lock();
750 	dev = dev_get_by_index_rcu(net, ifindex);
751 	if (dev)
752 		dev_hold(dev);
753 	rcu_read_unlock();
754 	return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_index);
757 
758 /**
759  *	dev_getbyhwaddr_rcu - find a device by its hardware address
760  *	@net: the applicable net namespace
761  *	@type: media type of device
762  *	@ha: hardware address
763  *
764  *	Search for an interface by MAC address. Returns NULL if the device
765  *	is not found or a pointer to the device.
766  *	The caller must hold RCU or RTNL.
767  *	The returned device has not had its ref count increased
768  *	and the caller must therefore be careful about locking
769  *
770  */
771 
772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 				       const char *ha)
774 {
775 	struct net_device *dev;
776 
777 	for_each_netdev_rcu(net, dev)
778 		if (dev->type == type &&
779 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785 
786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 	struct net_device *dev;
789 
790 	ASSERT_RTNL();
791 	for_each_netdev(net, dev)
792 		if (dev->type == type)
793 			return dev;
794 
795 	return NULL;
796 }
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798 
799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 {
801 	struct net_device *dev, *ret = NULL;
802 
803 	rcu_read_lock();
804 	for_each_netdev_rcu(net, dev)
805 		if (dev->type == type) {
806 			dev_hold(dev);
807 			ret = dev;
808 			break;
809 		}
810 	rcu_read_unlock();
811 	return ret;
812 }
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814 
815 /**
816  *	dev_get_by_flags_rcu - find any device with given flags
817  *	@net: the applicable net namespace
818  *	@if_flags: IFF_* values
819  *	@mask: bitmask of bits in if_flags to check
820  *
821  *	Search for any interface with the given flags. Returns NULL if a device
822  *	is not found or a pointer to the device. Must be called inside
823  *	rcu_read_lock(), and result refcount is unchanged.
824  */
825 
826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 				    unsigned short mask)
828 {
829 	struct net_device *dev, *ret;
830 
831 	ret = NULL;
832 	for_each_netdev_rcu(net, dev) {
833 		if (((dev->flags ^ if_flags) & mask) == 0) {
834 			ret = dev;
835 			break;
836 		}
837 	}
838 	return ret;
839 }
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841 
842 /**
843  *	dev_valid_name - check if name is okay for network device
844  *	@name: name string
845  *
846  *	Network device names need to be valid file names to
847  *	to allow sysfs to work.  We also disallow any kind of
848  *	whitespace.
849  */
850 bool dev_valid_name(const char *name)
851 {
852 	if (*name == '\0')
853 		return false;
854 	if (strlen(name) >= IFNAMSIZ)
855 		return false;
856 	if (!strcmp(name, ".") || !strcmp(name, ".."))
857 		return false;
858 
859 	while (*name) {
860 		if (*name == '/' || isspace(*name))
861 			return false;
862 		name++;
863 	}
864 	return true;
865 }
866 EXPORT_SYMBOL(dev_valid_name);
867 
868 /**
869  *	__dev_alloc_name - allocate a name for a device
870  *	@net: network namespace to allocate the device name in
871  *	@name: name format string
872  *	@buf:  scratch buffer and result name string
873  *
874  *	Passed a format string - eg "lt%d" it will try and find a suitable
875  *	id. It scans list of devices to build up a free map, then chooses
876  *	the first empty slot. The caller must hold the dev_base or rtnl lock
877  *	while allocating the name and adding the device in order to avoid
878  *	duplicates.
879  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880  *	Returns the number of the unit assigned or a negative errno code.
881  */
882 
883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 {
885 	int i = 0;
886 	const char *p;
887 	const int max_netdevices = 8*PAGE_SIZE;
888 	unsigned long *inuse;
889 	struct net_device *d;
890 
891 	p = strnchr(name, IFNAMSIZ-1, '%');
892 	if (p) {
893 		/*
894 		 * Verify the string as this thing may have come from
895 		 * the user.  There must be either one "%d" and no other "%"
896 		 * characters.
897 		 */
898 		if (p[1] != 'd' || strchr(p + 2, '%'))
899 			return -EINVAL;
900 
901 		/* Use one page as a bit array of possible slots */
902 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 		if (!inuse)
904 			return -ENOMEM;
905 
906 		for_each_netdev(net, d) {
907 			if (!sscanf(d->name, name, &i))
908 				continue;
909 			if (i < 0 || i >= max_netdevices)
910 				continue;
911 
912 			/*  avoid cases where sscanf is not exact inverse of printf */
913 			snprintf(buf, IFNAMSIZ, name, i);
914 			if (!strncmp(buf, d->name, IFNAMSIZ))
915 				set_bit(i, inuse);
916 		}
917 
918 		i = find_first_zero_bit(inuse, max_netdevices);
919 		free_page((unsigned long) inuse);
920 	}
921 
922 	if (buf != name)
923 		snprintf(buf, IFNAMSIZ, name, i);
924 	if (!__dev_get_by_name(net, buf))
925 		return i;
926 
927 	/* It is possible to run out of possible slots
928 	 * when the name is long and there isn't enough space left
929 	 * for the digits, or if all bits are used.
930 	 */
931 	return -ENFILE;
932 }
933 
934 /**
935  *	dev_alloc_name - allocate a name for a device
936  *	@dev: device
937  *	@name: name format string
938  *
939  *	Passed a format string - eg "lt%d" it will try and find a suitable
940  *	id. It scans list of devices to build up a free map, then chooses
941  *	the first empty slot. The caller must hold the dev_base or rtnl lock
942  *	while allocating the name and adding the device in order to avoid
943  *	duplicates.
944  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945  *	Returns the number of the unit assigned or a negative errno code.
946  */
947 
948 int dev_alloc_name(struct net_device *dev, const char *name)
949 {
950 	char buf[IFNAMSIZ];
951 	struct net *net;
952 	int ret;
953 
954 	BUG_ON(!dev_net(dev));
955 	net = dev_net(dev);
956 	ret = __dev_alloc_name(net, name, buf);
957 	if (ret >= 0)
958 		strlcpy(dev->name, buf, IFNAMSIZ);
959 	return ret;
960 }
961 EXPORT_SYMBOL(dev_alloc_name);
962 
963 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 {
965 	struct net *net;
966 
967 	BUG_ON(!dev_net(dev));
968 	net = dev_net(dev);
969 
970 	if (!dev_valid_name(name))
971 		return -EINVAL;
972 
973 	if (strchr(name, '%'))
974 		return dev_alloc_name(dev, name);
975 	else if (__dev_get_by_name(net, name))
976 		return -EEXIST;
977 	else if (dev->name != name)
978 		strlcpy(dev->name, name, IFNAMSIZ);
979 
980 	return 0;
981 }
982 
983 /**
984  *	dev_change_name - change name of a device
985  *	@dev: device
986  *	@newname: name (or format string) must be at least IFNAMSIZ
987  *
988  *	Change name of a device, can pass format strings "eth%d".
989  *	for wildcarding.
990  */
991 int dev_change_name(struct net_device *dev, const char *newname)
992 {
993 	char oldname[IFNAMSIZ];
994 	int err = 0;
995 	int ret;
996 	struct net *net;
997 
998 	ASSERT_RTNL();
999 	BUG_ON(!dev_net(dev));
1000 
1001 	net = dev_net(dev);
1002 	if (dev->flags & IFF_UP)
1003 		return -EBUSY;
1004 
1005 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 		return 0;
1007 
1008 	memcpy(oldname, dev->name, IFNAMSIZ);
1009 
1010 	err = dev_get_valid_name(dev, newname);
1011 	if (err < 0)
1012 		return err;
1013 
1014 rollback:
1015 	ret = device_rename(&dev->dev, dev->name);
1016 	if (ret) {
1017 		memcpy(dev->name, oldname, IFNAMSIZ);
1018 		return ret;
1019 	}
1020 
1021 	write_lock_bh(&dev_base_lock);
1022 	hlist_del_rcu(&dev->name_hlist);
1023 	write_unlock_bh(&dev_base_lock);
1024 
1025 	synchronize_rcu();
1026 
1027 	write_lock_bh(&dev_base_lock);
1028 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 	write_unlock_bh(&dev_base_lock);
1030 
1031 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 	ret = notifier_to_errno(ret);
1033 
1034 	if (ret) {
1035 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1036 		if (err >= 0) {
1037 			err = ret;
1038 			memcpy(dev->name, oldname, IFNAMSIZ);
1039 			goto rollback;
1040 		} else {
1041 			pr_err("%s: name change rollback failed: %d\n",
1042 			       dev->name, ret);
1043 		}
1044 	}
1045 
1046 	return err;
1047 }
1048 
1049 /**
1050  *	dev_set_alias - change ifalias of a device
1051  *	@dev: device
1052  *	@alias: name up to IFALIASZ
1053  *	@len: limit of bytes to copy from info
1054  *
1055  *	Set ifalias for a device,
1056  */
1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 {
1059 	ASSERT_RTNL();
1060 
1061 	if (len >= IFALIASZ)
1062 		return -EINVAL;
1063 
1064 	if (!len) {
1065 		if (dev->ifalias) {
1066 			kfree(dev->ifalias);
1067 			dev->ifalias = NULL;
1068 		}
1069 		return 0;
1070 	}
1071 
1072 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1073 	if (!dev->ifalias)
1074 		return -ENOMEM;
1075 
1076 	strlcpy(dev->ifalias, alias, len+1);
1077 	return len;
1078 }
1079 
1080 
1081 /**
1082  *	netdev_features_change - device changes features
1083  *	@dev: device to cause notification
1084  *
1085  *	Called to indicate a device has changed features.
1086  */
1087 void netdev_features_change(struct net_device *dev)
1088 {
1089 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_features_change);
1092 
1093 /**
1094  *	netdev_state_change - device changes state
1095  *	@dev: device to cause notification
1096  *
1097  *	Called to indicate a device has changed state. This function calls
1098  *	the notifier chains for netdev_chain and sends a NEWLINK message
1099  *	to the routing socket.
1100  */
1101 void netdev_state_change(struct net_device *dev)
1102 {
1103 	if (dev->flags & IFF_UP) {
1104 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1105 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1106 	}
1107 }
1108 EXPORT_SYMBOL(netdev_state_change);
1109 
1110 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1111 {
1112 	return call_netdevice_notifiers(event, dev);
1113 }
1114 EXPORT_SYMBOL(netdev_bonding_change);
1115 
1116 /**
1117  *	dev_load 	- load a network module
1118  *	@net: the applicable net namespace
1119  *	@name: name of interface
1120  *
1121  *	If a network interface is not present and the process has suitable
1122  *	privileges this function loads the module. If module loading is not
1123  *	available in this kernel then it becomes a nop.
1124  */
1125 
1126 void dev_load(struct net *net, const char *name)
1127 {
1128 	struct net_device *dev;
1129 	int no_module;
1130 
1131 	rcu_read_lock();
1132 	dev = dev_get_by_name_rcu(net, name);
1133 	rcu_read_unlock();
1134 
1135 	no_module = !dev;
1136 	if (no_module && capable(CAP_NET_ADMIN))
1137 		no_module = request_module("netdev-%s", name);
1138 	if (no_module && capable(CAP_SYS_MODULE)) {
1139 		if (!request_module("%s", name))
1140 			pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1141 			       name);
1142 	}
1143 }
1144 EXPORT_SYMBOL(dev_load);
1145 
1146 static int __dev_open(struct net_device *dev)
1147 {
1148 	const struct net_device_ops *ops = dev->netdev_ops;
1149 	int ret;
1150 
1151 	ASSERT_RTNL();
1152 
1153 	if (!netif_device_present(dev))
1154 		return -ENODEV;
1155 
1156 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 	ret = notifier_to_errno(ret);
1158 	if (ret)
1159 		return ret;
1160 
1161 	set_bit(__LINK_STATE_START, &dev->state);
1162 
1163 	if (ops->ndo_validate_addr)
1164 		ret = ops->ndo_validate_addr(dev);
1165 
1166 	if (!ret && ops->ndo_open)
1167 		ret = ops->ndo_open(dev);
1168 
1169 	if (ret)
1170 		clear_bit(__LINK_STATE_START, &dev->state);
1171 	else {
1172 		dev->flags |= IFF_UP;
1173 		net_dmaengine_get();
1174 		dev_set_rx_mode(dev);
1175 		dev_activate(dev);
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 /**
1182  *	dev_open	- prepare an interface for use.
1183  *	@dev:	device to open
1184  *
1185  *	Takes a device from down to up state. The device's private open
1186  *	function is invoked and then the multicast lists are loaded. Finally
1187  *	the device is moved into the up state and a %NETDEV_UP message is
1188  *	sent to the netdev notifier chain.
1189  *
1190  *	Calling this function on an active interface is a nop. On a failure
1191  *	a negative errno code is returned.
1192  */
1193 int dev_open(struct net_device *dev)
1194 {
1195 	int ret;
1196 
1197 	if (dev->flags & IFF_UP)
1198 		return 0;
1199 
1200 	ret = __dev_open(dev);
1201 	if (ret < 0)
1202 		return ret;
1203 
1204 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 	call_netdevice_notifiers(NETDEV_UP, dev);
1206 
1207 	return ret;
1208 }
1209 EXPORT_SYMBOL(dev_open);
1210 
1211 static int __dev_close_many(struct list_head *head)
1212 {
1213 	struct net_device *dev;
1214 
1215 	ASSERT_RTNL();
1216 	might_sleep();
1217 
1218 	list_for_each_entry(dev, head, unreg_list) {
1219 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220 
1221 		clear_bit(__LINK_STATE_START, &dev->state);
1222 
1223 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1224 		 * can be even on different cpu. So just clear netif_running().
1225 		 *
1226 		 * dev->stop() will invoke napi_disable() on all of it's
1227 		 * napi_struct instances on this device.
1228 		 */
1229 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 	}
1231 
1232 	dev_deactivate_many(head);
1233 
1234 	list_for_each_entry(dev, head, unreg_list) {
1235 		const struct net_device_ops *ops = dev->netdev_ops;
1236 
1237 		/*
1238 		 *	Call the device specific close. This cannot fail.
1239 		 *	Only if device is UP
1240 		 *
1241 		 *	We allow it to be called even after a DETACH hot-plug
1242 		 *	event.
1243 		 */
1244 		if (ops->ndo_stop)
1245 			ops->ndo_stop(dev);
1246 
1247 		dev->flags &= ~IFF_UP;
1248 		net_dmaengine_put();
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int __dev_close(struct net_device *dev)
1255 {
1256 	int retval;
1257 	LIST_HEAD(single);
1258 
1259 	list_add(&dev->unreg_list, &single);
1260 	retval = __dev_close_many(&single);
1261 	list_del(&single);
1262 	return retval;
1263 }
1264 
1265 static int dev_close_many(struct list_head *head)
1266 {
1267 	struct net_device *dev, *tmp;
1268 	LIST_HEAD(tmp_list);
1269 
1270 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 		if (!(dev->flags & IFF_UP))
1272 			list_move(&dev->unreg_list, &tmp_list);
1273 
1274 	__dev_close_many(head);
1275 
1276 	list_for_each_entry(dev, head, unreg_list) {
1277 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 	}
1280 
1281 	/* rollback_registered_many needs the complete original list */
1282 	list_splice(&tmp_list, head);
1283 	return 0;
1284 }
1285 
1286 /**
1287  *	dev_close - shutdown an interface.
1288  *	@dev: device to shutdown
1289  *
1290  *	This function moves an active device into down state. A
1291  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293  *	chain.
1294  */
1295 int dev_close(struct net_device *dev)
1296 {
1297 	if (dev->flags & IFF_UP) {
1298 		LIST_HEAD(single);
1299 
1300 		list_add(&dev->unreg_list, &single);
1301 		dev_close_many(&single);
1302 		list_del(&single);
1303 	}
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307 
1308 
1309 /**
1310  *	dev_disable_lro - disable Large Receive Offload on a device
1311  *	@dev: device
1312  *
1313  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1314  *	called under RTNL.  This is needed if received packets may be
1315  *	forwarded to another interface.
1316  */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 	/*
1320 	 * If we're trying to disable lro on a vlan device
1321 	 * use the underlying physical device instead
1322 	 */
1323 	if (is_vlan_dev(dev))
1324 		dev = vlan_dev_real_dev(dev);
1325 
1326 	dev->wanted_features &= ~NETIF_F_LRO;
1327 	netdev_update_features(dev);
1328 
1329 	if (unlikely(dev->features & NETIF_F_LRO))
1330 		netdev_WARN(dev, "failed to disable LRO!\n");
1331 }
1332 EXPORT_SYMBOL(dev_disable_lro);
1333 
1334 
1335 static int dev_boot_phase = 1;
1336 
1337 /**
1338  *	register_netdevice_notifier - register a network notifier block
1339  *	@nb: notifier
1340  *
1341  *	Register a notifier to be called when network device events occur.
1342  *	The notifier passed is linked into the kernel structures and must
1343  *	not be reused until it has been unregistered. A negative errno code
1344  *	is returned on a failure.
1345  *
1346  * 	When registered all registration and up events are replayed
1347  *	to the new notifier to allow device to have a race free
1348  *	view of the network device list.
1349  */
1350 
1351 int register_netdevice_notifier(struct notifier_block *nb)
1352 {
1353 	struct net_device *dev;
1354 	struct net_device *last;
1355 	struct net *net;
1356 	int err;
1357 
1358 	rtnl_lock();
1359 	err = raw_notifier_chain_register(&netdev_chain, nb);
1360 	if (err)
1361 		goto unlock;
1362 	if (dev_boot_phase)
1363 		goto unlock;
1364 	for_each_net(net) {
1365 		for_each_netdev(net, dev) {
1366 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 			err = notifier_to_errno(err);
1368 			if (err)
1369 				goto rollback;
1370 
1371 			if (!(dev->flags & IFF_UP))
1372 				continue;
1373 
1374 			nb->notifier_call(nb, NETDEV_UP, dev);
1375 		}
1376 	}
1377 
1378 unlock:
1379 	rtnl_unlock();
1380 	return err;
1381 
1382 rollback:
1383 	last = dev;
1384 	for_each_net(net) {
1385 		for_each_netdev(net, dev) {
1386 			if (dev == last)
1387 				goto outroll;
1388 
1389 			if (dev->flags & IFF_UP) {
1390 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1392 			}
1393 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1395 		}
1396 	}
1397 
1398 outroll:
1399 	raw_notifier_chain_unregister(&netdev_chain, nb);
1400 	goto unlock;
1401 }
1402 EXPORT_SYMBOL(register_netdevice_notifier);
1403 
1404 /**
1405  *	unregister_netdevice_notifier - unregister a network notifier block
1406  *	@nb: notifier
1407  *
1408  *	Unregister a notifier previously registered by
1409  *	register_netdevice_notifier(). The notifier is unlinked into the
1410  *	kernel structures and may then be reused. A negative errno code
1411  *	is returned on a failure.
1412  */
1413 
1414 int unregister_netdevice_notifier(struct notifier_block *nb)
1415 {
1416 	int err;
1417 
1418 	rtnl_lock();
1419 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1420 	rtnl_unlock();
1421 	return err;
1422 }
1423 EXPORT_SYMBOL(unregister_netdevice_notifier);
1424 
1425 /**
1426  *	call_netdevice_notifiers - call all network notifier blocks
1427  *      @val: value passed unmodified to notifier function
1428  *      @dev: net_device pointer passed unmodified to notifier function
1429  *
1430  *	Call all network notifier blocks.  Parameters and return value
1431  *	are as for raw_notifier_call_chain().
1432  */
1433 
1434 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1435 {
1436 	ASSERT_RTNL();
1437 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1438 }
1439 EXPORT_SYMBOL(call_netdevice_notifiers);
1440 
1441 static struct static_key netstamp_needed __read_mostly;
1442 #ifdef HAVE_JUMP_LABEL
1443 /* We are not allowed to call static_key_slow_dec() from irq context
1444  * If net_disable_timestamp() is called from irq context, defer the
1445  * static_key_slow_dec() calls.
1446  */
1447 static atomic_t netstamp_needed_deferred;
1448 #endif
1449 
1450 void net_enable_timestamp(void)
1451 {
1452 #ifdef HAVE_JUMP_LABEL
1453 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1454 
1455 	if (deferred) {
1456 		while (--deferred)
1457 			static_key_slow_dec(&netstamp_needed);
1458 		return;
1459 	}
1460 #endif
1461 	WARN_ON(in_interrupt());
1462 	static_key_slow_inc(&netstamp_needed);
1463 }
1464 EXPORT_SYMBOL(net_enable_timestamp);
1465 
1466 void net_disable_timestamp(void)
1467 {
1468 #ifdef HAVE_JUMP_LABEL
1469 	if (in_interrupt()) {
1470 		atomic_inc(&netstamp_needed_deferred);
1471 		return;
1472 	}
1473 #endif
1474 	static_key_slow_dec(&netstamp_needed);
1475 }
1476 EXPORT_SYMBOL(net_disable_timestamp);
1477 
1478 static inline void net_timestamp_set(struct sk_buff *skb)
1479 {
1480 	skb->tstamp.tv64 = 0;
1481 	if (static_key_false(&netstamp_needed))
1482 		__net_timestamp(skb);
1483 }
1484 
1485 #define net_timestamp_check(COND, SKB)			\
1486 	if (static_key_false(&netstamp_needed)) {		\
1487 		if ((COND) && !(SKB)->tstamp.tv64)	\
1488 			__net_timestamp(SKB);		\
1489 	}						\
1490 
1491 static int net_hwtstamp_validate(struct ifreq *ifr)
1492 {
1493 	struct hwtstamp_config cfg;
1494 	enum hwtstamp_tx_types tx_type;
1495 	enum hwtstamp_rx_filters rx_filter;
1496 	int tx_type_valid = 0;
1497 	int rx_filter_valid = 0;
1498 
1499 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1500 		return -EFAULT;
1501 
1502 	if (cfg.flags) /* reserved for future extensions */
1503 		return -EINVAL;
1504 
1505 	tx_type = cfg.tx_type;
1506 	rx_filter = cfg.rx_filter;
1507 
1508 	switch (tx_type) {
1509 	case HWTSTAMP_TX_OFF:
1510 	case HWTSTAMP_TX_ON:
1511 	case HWTSTAMP_TX_ONESTEP_SYNC:
1512 		tx_type_valid = 1;
1513 		break;
1514 	}
1515 
1516 	switch (rx_filter) {
1517 	case HWTSTAMP_FILTER_NONE:
1518 	case HWTSTAMP_FILTER_ALL:
1519 	case HWTSTAMP_FILTER_SOME:
1520 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1521 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1522 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1523 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1524 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1525 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1526 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1527 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1528 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1529 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1530 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1531 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1532 		rx_filter_valid = 1;
1533 		break;
1534 	}
1535 
1536 	if (!tx_type_valid || !rx_filter_valid)
1537 		return -ERANGE;
1538 
1539 	return 0;
1540 }
1541 
1542 static inline bool is_skb_forwardable(struct net_device *dev,
1543 				      struct sk_buff *skb)
1544 {
1545 	unsigned int len;
1546 
1547 	if (!(dev->flags & IFF_UP))
1548 		return false;
1549 
1550 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1551 	if (skb->len <= len)
1552 		return true;
1553 
1554 	/* if TSO is enabled, we don't care about the length as the packet
1555 	 * could be forwarded without being segmented before
1556 	 */
1557 	if (skb_is_gso(skb))
1558 		return true;
1559 
1560 	return false;
1561 }
1562 
1563 /**
1564  * dev_forward_skb - loopback an skb to another netif
1565  *
1566  * @dev: destination network device
1567  * @skb: buffer to forward
1568  *
1569  * return values:
1570  *	NET_RX_SUCCESS	(no congestion)
1571  *	NET_RX_DROP     (packet was dropped, but freed)
1572  *
1573  * dev_forward_skb can be used for injecting an skb from the
1574  * start_xmit function of one device into the receive queue
1575  * of another device.
1576  *
1577  * The receiving device may be in another namespace, so
1578  * we have to clear all information in the skb that could
1579  * impact namespace isolation.
1580  */
1581 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1582 {
1583 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1584 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1585 			atomic_long_inc(&dev->rx_dropped);
1586 			kfree_skb(skb);
1587 			return NET_RX_DROP;
1588 		}
1589 	}
1590 
1591 	skb_orphan(skb);
1592 	nf_reset(skb);
1593 
1594 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1595 		atomic_long_inc(&dev->rx_dropped);
1596 		kfree_skb(skb);
1597 		return NET_RX_DROP;
1598 	}
1599 	skb->skb_iif = 0;
1600 	skb_set_dev(skb, dev);
1601 	skb->tstamp.tv64 = 0;
1602 	skb->pkt_type = PACKET_HOST;
1603 	skb->protocol = eth_type_trans(skb, dev);
1604 	return netif_rx(skb);
1605 }
1606 EXPORT_SYMBOL_GPL(dev_forward_skb);
1607 
1608 static inline int deliver_skb(struct sk_buff *skb,
1609 			      struct packet_type *pt_prev,
1610 			      struct net_device *orig_dev)
1611 {
1612 	atomic_inc(&skb->users);
1613 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1614 }
1615 
1616 /*
1617  *	Support routine. Sends outgoing frames to any network
1618  *	taps currently in use.
1619  */
1620 
1621 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1622 {
1623 	struct packet_type *ptype;
1624 	struct sk_buff *skb2 = NULL;
1625 	struct packet_type *pt_prev = NULL;
1626 
1627 	rcu_read_lock();
1628 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1629 		/* Never send packets back to the socket
1630 		 * they originated from - MvS (miquels@drinkel.ow.org)
1631 		 */
1632 		if ((ptype->dev == dev || !ptype->dev) &&
1633 		    (ptype->af_packet_priv == NULL ||
1634 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1635 			if (pt_prev) {
1636 				deliver_skb(skb2, pt_prev, skb->dev);
1637 				pt_prev = ptype;
1638 				continue;
1639 			}
1640 
1641 			skb2 = skb_clone(skb, GFP_ATOMIC);
1642 			if (!skb2)
1643 				break;
1644 
1645 			net_timestamp_set(skb2);
1646 
1647 			/* skb->nh should be correctly
1648 			   set by sender, so that the second statement is
1649 			   just protection against buggy protocols.
1650 			 */
1651 			skb_reset_mac_header(skb2);
1652 
1653 			if (skb_network_header(skb2) < skb2->data ||
1654 			    skb2->network_header > skb2->tail) {
1655 				if (net_ratelimit())
1656 					pr_crit("protocol %04x is buggy, dev %s\n",
1657 						ntohs(skb2->protocol),
1658 						dev->name);
1659 				skb_reset_network_header(skb2);
1660 			}
1661 
1662 			skb2->transport_header = skb2->network_header;
1663 			skb2->pkt_type = PACKET_OUTGOING;
1664 			pt_prev = ptype;
1665 		}
1666 	}
1667 	if (pt_prev)
1668 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1669 	rcu_read_unlock();
1670 }
1671 
1672 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1673  * @dev: Network device
1674  * @txq: number of queues available
1675  *
1676  * If real_num_tx_queues is changed the tc mappings may no longer be
1677  * valid. To resolve this verify the tc mapping remains valid and if
1678  * not NULL the mapping. With no priorities mapping to this
1679  * offset/count pair it will no longer be used. In the worst case TC0
1680  * is invalid nothing can be done so disable priority mappings. If is
1681  * expected that drivers will fix this mapping if they can before
1682  * calling netif_set_real_num_tx_queues.
1683  */
1684 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1685 {
1686 	int i;
1687 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1688 
1689 	/* If TC0 is invalidated disable TC mapping */
1690 	if (tc->offset + tc->count > txq) {
1691 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1692 		dev->num_tc = 0;
1693 		return;
1694 	}
1695 
1696 	/* Invalidated prio to tc mappings set to TC0 */
1697 	for (i = 1; i < TC_BITMASK + 1; i++) {
1698 		int q = netdev_get_prio_tc_map(dev, i);
1699 
1700 		tc = &dev->tc_to_txq[q];
1701 		if (tc->offset + tc->count > txq) {
1702 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1703 				i, q);
1704 			netdev_set_prio_tc_map(dev, i, 0);
1705 		}
1706 	}
1707 }
1708 
1709 /*
1710  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1711  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1712  */
1713 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1714 {
1715 	int rc;
1716 
1717 	if (txq < 1 || txq > dev->num_tx_queues)
1718 		return -EINVAL;
1719 
1720 	if (dev->reg_state == NETREG_REGISTERED ||
1721 	    dev->reg_state == NETREG_UNREGISTERING) {
1722 		ASSERT_RTNL();
1723 
1724 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1725 						  txq);
1726 		if (rc)
1727 			return rc;
1728 
1729 		if (dev->num_tc)
1730 			netif_setup_tc(dev, txq);
1731 
1732 		if (txq < dev->real_num_tx_queues)
1733 			qdisc_reset_all_tx_gt(dev, txq);
1734 	}
1735 
1736 	dev->real_num_tx_queues = txq;
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1740 
1741 #ifdef CONFIG_RPS
1742 /**
1743  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1744  *	@dev: Network device
1745  *	@rxq: Actual number of RX queues
1746  *
1747  *	This must be called either with the rtnl_lock held or before
1748  *	registration of the net device.  Returns 0 on success, or a
1749  *	negative error code.  If called before registration, it always
1750  *	succeeds.
1751  */
1752 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1753 {
1754 	int rc;
1755 
1756 	if (rxq < 1 || rxq > dev->num_rx_queues)
1757 		return -EINVAL;
1758 
1759 	if (dev->reg_state == NETREG_REGISTERED) {
1760 		ASSERT_RTNL();
1761 
1762 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1763 						  rxq);
1764 		if (rc)
1765 			return rc;
1766 	}
1767 
1768 	dev->real_num_rx_queues = rxq;
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1772 #endif
1773 
1774 static inline void __netif_reschedule(struct Qdisc *q)
1775 {
1776 	struct softnet_data *sd;
1777 	unsigned long flags;
1778 
1779 	local_irq_save(flags);
1780 	sd = &__get_cpu_var(softnet_data);
1781 	q->next_sched = NULL;
1782 	*sd->output_queue_tailp = q;
1783 	sd->output_queue_tailp = &q->next_sched;
1784 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1785 	local_irq_restore(flags);
1786 }
1787 
1788 void __netif_schedule(struct Qdisc *q)
1789 {
1790 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1791 		__netif_reschedule(q);
1792 }
1793 EXPORT_SYMBOL(__netif_schedule);
1794 
1795 void dev_kfree_skb_irq(struct sk_buff *skb)
1796 {
1797 	if (atomic_dec_and_test(&skb->users)) {
1798 		struct softnet_data *sd;
1799 		unsigned long flags;
1800 
1801 		local_irq_save(flags);
1802 		sd = &__get_cpu_var(softnet_data);
1803 		skb->next = sd->completion_queue;
1804 		sd->completion_queue = skb;
1805 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1806 		local_irq_restore(flags);
1807 	}
1808 }
1809 EXPORT_SYMBOL(dev_kfree_skb_irq);
1810 
1811 void dev_kfree_skb_any(struct sk_buff *skb)
1812 {
1813 	if (in_irq() || irqs_disabled())
1814 		dev_kfree_skb_irq(skb);
1815 	else
1816 		dev_kfree_skb(skb);
1817 }
1818 EXPORT_SYMBOL(dev_kfree_skb_any);
1819 
1820 
1821 /**
1822  * netif_device_detach - mark device as removed
1823  * @dev: network device
1824  *
1825  * Mark device as removed from system and therefore no longer available.
1826  */
1827 void netif_device_detach(struct net_device *dev)
1828 {
1829 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1830 	    netif_running(dev)) {
1831 		netif_tx_stop_all_queues(dev);
1832 	}
1833 }
1834 EXPORT_SYMBOL(netif_device_detach);
1835 
1836 /**
1837  * netif_device_attach - mark device as attached
1838  * @dev: network device
1839  *
1840  * Mark device as attached from system and restart if needed.
1841  */
1842 void netif_device_attach(struct net_device *dev)
1843 {
1844 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1845 	    netif_running(dev)) {
1846 		netif_tx_wake_all_queues(dev);
1847 		__netdev_watchdog_up(dev);
1848 	}
1849 }
1850 EXPORT_SYMBOL(netif_device_attach);
1851 
1852 /**
1853  * skb_dev_set -- assign a new device to a buffer
1854  * @skb: buffer for the new device
1855  * @dev: network device
1856  *
1857  * If an skb is owned by a device already, we have to reset
1858  * all data private to the namespace a device belongs to
1859  * before assigning it a new device.
1860  */
1861 #ifdef CONFIG_NET_NS
1862 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1863 {
1864 	skb_dst_drop(skb);
1865 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1866 		secpath_reset(skb);
1867 		nf_reset(skb);
1868 		skb_init_secmark(skb);
1869 		skb->mark = 0;
1870 		skb->priority = 0;
1871 		skb->nf_trace = 0;
1872 		skb->ipvs_property = 0;
1873 #ifdef CONFIG_NET_SCHED
1874 		skb->tc_index = 0;
1875 #endif
1876 	}
1877 	skb->dev = dev;
1878 }
1879 EXPORT_SYMBOL(skb_set_dev);
1880 #endif /* CONFIG_NET_NS */
1881 
1882 static void skb_warn_bad_offload(const struct sk_buff *skb)
1883 {
1884 	static const netdev_features_t null_features = 0;
1885 	struct net_device *dev = skb->dev;
1886 	const char *driver = "";
1887 
1888 	if (dev && dev->dev.parent)
1889 		driver = dev_driver_string(dev->dev.parent);
1890 
1891 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1892 	     "gso_type=%d ip_summed=%d\n",
1893 	     driver, dev ? &dev->features : &null_features,
1894 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1895 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1896 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1897 }
1898 
1899 /*
1900  * Invalidate hardware checksum when packet is to be mangled, and
1901  * complete checksum manually on outgoing path.
1902  */
1903 int skb_checksum_help(struct sk_buff *skb)
1904 {
1905 	__wsum csum;
1906 	int ret = 0, offset;
1907 
1908 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1909 		goto out_set_summed;
1910 
1911 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1912 		skb_warn_bad_offload(skb);
1913 		return -EINVAL;
1914 	}
1915 
1916 	offset = skb_checksum_start_offset(skb);
1917 	BUG_ON(offset >= skb_headlen(skb));
1918 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1919 
1920 	offset += skb->csum_offset;
1921 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1922 
1923 	if (skb_cloned(skb) &&
1924 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1925 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1926 		if (ret)
1927 			goto out;
1928 	}
1929 
1930 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1931 out_set_summed:
1932 	skb->ip_summed = CHECKSUM_NONE;
1933 out:
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL(skb_checksum_help);
1937 
1938 /**
1939  *	skb_gso_segment - Perform segmentation on skb.
1940  *	@skb: buffer to segment
1941  *	@features: features for the output path (see dev->features)
1942  *
1943  *	This function segments the given skb and returns a list of segments.
1944  *
1945  *	It may return NULL if the skb requires no segmentation.  This is
1946  *	only possible when GSO is used for verifying header integrity.
1947  */
1948 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1949 	netdev_features_t features)
1950 {
1951 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1952 	struct packet_type *ptype;
1953 	__be16 type = skb->protocol;
1954 	int vlan_depth = ETH_HLEN;
1955 	int err;
1956 
1957 	while (type == htons(ETH_P_8021Q)) {
1958 		struct vlan_hdr *vh;
1959 
1960 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1961 			return ERR_PTR(-EINVAL);
1962 
1963 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1964 		type = vh->h_vlan_encapsulated_proto;
1965 		vlan_depth += VLAN_HLEN;
1966 	}
1967 
1968 	skb_reset_mac_header(skb);
1969 	skb->mac_len = skb->network_header - skb->mac_header;
1970 	__skb_pull(skb, skb->mac_len);
1971 
1972 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1973 		skb_warn_bad_offload(skb);
1974 
1975 		if (skb_header_cloned(skb) &&
1976 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1977 			return ERR_PTR(err);
1978 	}
1979 
1980 	rcu_read_lock();
1981 	list_for_each_entry_rcu(ptype,
1982 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1983 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1984 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1985 				err = ptype->gso_send_check(skb);
1986 				segs = ERR_PTR(err);
1987 				if (err || skb_gso_ok(skb, features))
1988 					break;
1989 				__skb_push(skb, (skb->data -
1990 						 skb_network_header(skb)));
1991 			}
1992 			segs = ptype->gso_segment(skb, features);
1993 			break;
1994 		}
1995 	}
1996 	rcu_read_unlock();
1997 
1998 	__skb_push(skb, skb->data - skb_mac_header(skb));
1999 
2000 	return segs;
2001 }
2002 EXPORT_SYMBOL(skb_gso_segment);
2003 
2004 /* Take action when hardware reception checksum errors are detected. */
2005 #ifdef CONFIG_BUG
2006 void netdev_rx_csum_fault(struct net_device *dev)
2007 {
2008 	if (net_ratelimit()) {
2009 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2010 		dump_stack();
2011 	}
2012 }
2013 EXPORT_SYMBOL(netdev_rx_csum_fault);
2014 #endif
2015 
2016 /* Actually, we should eliminate this check as soon as we know, that:
2017  * 1. IOMMU is present and allows to map all the memory.
2018  * 2. No high memory really exists on this machine.
2019  */
2020 
2021 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2022 {
2023 #ifdef CONFIG_HIGHMEM
2024 	int i;
2025 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2026 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2027 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2028 			if (PageHighMem(skb_frag_page(frag)))
2029 				return 1;
2030 		}
2031 	}
2032 
2033 	if (PCI_DMA_BUS_IS_PHYS) {
2034 		struct device *pdev = dev->dev.parent;
2035 
2036 		if (!pdev)
2037 			return 0;
2038 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2039 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2040 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2041 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2042 				return 1;
2043 		}
2044 	}
2045 #endif
2046 	return 0;
2047 }
2048 
2049 struct dev_gso_cb {
2050 	void (*destructor)(struct sk_buff *skb);
2051 };
2052 
2053 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2054 
2055 static void dev_gso_skb_destructor(struct sk_buff *skb)
2056 {
2057 	struct dev_gso_cb *cb;
2058 
2059 	do {
2060 		struct sk_buff *nskb = skb->next;
2061 
2062 		skb->next = nskb->next;
2063 		nskb->next = NULL;
2064 		kfree_skb(nskb);
2065 	} while (skb->next);
2066 
2067 	cb = DEV_GSO_CB(skb);
2068 	if (cb->destructor)
2069 		cb->destructor(skb);
2070 }
2071 
2072 /**
2073  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2074  *	@skb: buffer to segment
2075  *	@features: device features as applicable to this skb
2076  *
2077  *	This function segments the given skb and stores the list of segments
2078  *	in skb->next.
2079  */
2080 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2081 {
2082 	struct sk_buff *segs;
2083 
2084 	segs = skb_gso_segment(skb, features);
2085 
2086 	/* Verifying header integrity only. */
2087 	if (!segs)
2088 		return 0;
2089 
2090 	if (IS_ERR(segs))
2091 		return PTR_ERR(segs);
2092 
2093 	skb->next = segs;
2094 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2095 	skb->destructor = dev_gso_skb_destructor;
2096 
2097 	return 0;
2098 }
2099 
2100 /*
2101  * Try to orphan skb early, right before transmission by the device.
2102  * We cannot orphan skb if tx timestamp is requested or the sk-reference
2103  * is needed on driver level for other reasons, e.g. see net/can/raw.c
2104  */
2105 static inline void skb_orphan_try(struct sk_buff *skb)
2106 {
2107 	struct sock *sk = skb->sk;
2108 
2109 	if (sk && !skb_shinfo(skb)->tx_flags) {
2110 		/* skb_tx_hash() wont be able to get sk.
2111 		 * We copy sk_hash into skb->rxhash
2112 		 */
2113 		if (!skb->rxhash)
2114 			skb->rxhash = sk->sk_hash;
2115 		skb_orphan(skb);
2116 	}
2117 }
2118 
2119 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2120 {
2121 	return ((features & NETIF_F_GEN_CSUM) ||
2122 		((features & NETIF_F_V4_CSUM) &&
2123 		 protocol == htons(ETH_P_IP)) ||
2124 		((features & NETIF_F_V6_CSUM) &&
2125 		 protocol == htons(ETH_P_IPV6)) ||
2126 		((features & NETIF_F_FCOE_CRC) &&
2127 		 protocol == htons(ETH_P_FCOE)));
2128 }
2129 
2130 static netdev_features_t harmonize_features(struct sk_buff *skb,
2131 	__be16 protocol, netdev_features_t features)
2132 {
2133 	if (!can_checksum_protocol(features, protocol)) {
2134 		features &= ~NETIF_F_ALL_CSUM;
2135 		features &= ~NETIF_F_SG;
2136 	} else if (illegal_highdma(skb->dev, skb)) {
2137 		features &= ~NETIF_F_SG;
2138 	}
2139 
2140 	return features;
2141 }
2142 
2143 netdev_features_t netif_skb_features(struct sk_buff *skb)
2144 {
2145 	__be16 protocol = skb->protocol;
2146 	netdev_features_t features = skb->dev->features;
2147 
2148 	if (protocol == htons(ETH_P_8021Q)) {
2149 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2150 		protocol = veh->h_vlan_encapsulated_proto;
2151 	} else if (!vlan_tx_tag_present(skb)) {
2152 		return harmonize_features(skb, protocol, features);
2153 	}
2154 
2155 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2156 
2157 	if (protocol != htons(ETH_P_8021Q)) {
2158 		return harmonize_features(skb, protocol, features);
2159 	} else {
2160 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2161 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2162 		return harmonize_features(skb, protocol, features);
2163 	}
2164 }
2165 EXPORT_SYMBOL(netif_skb_features);
2166 
2167 /*
2168  * Returns true if either:
2169  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2170  *	2. skb is fragmented and the device does not support SG, or if
2171  *	   at least one of fragments is in highmem and device does not
2172  *	   support DMA from it.
2173  */
2174 static inline int skb_needs_linearize(struct sk_buff *skb,
2175 				      int features)
2176 {
2177 	return skb_is_nonlinear(skb) &&
2178 			((skb_has_frag_list(skb) &&
2179 				!(features & NETIF_F_FRAGLIST)) ||
2180 			(skb_shinfo(skb)->nr_frags &&
2181 				!(features & NETIF_F_SG)));
2182 }
2183 
2184 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2185 			struct netdev_queue *txq)
2186 {
2187 	const struct net_device_ops *ops = dev->netdev_ops;
2188 	int rc = NETDEV_TX_OK;
2189 	unsigned int skb_len;
2190 
2191 	if (likely(!skb->next)) {
2192 		netdev_features_t features;
2193 
2194 		/*
2195 		 * If device doesn't need skb->dst, release it right now while
2196 		 * its hot in this cpu cache
2197 		 */
2198 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2199 			skb_dst_drop(skb);
2200 
2201 		if (!list_empty(&ptype_all))
2202 			dev_queue_xmit_nit(skb, dev);
2203 
2204 		skb_orphan_try(skb);
2205 
2206 		features = netif_skb_features(skb);
2207 
2208 		if (vlan_tx_tag_present(skb) &&
2209 		    !(features & NETIF_F_HW_VLAN_TX)) {
2210 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2211 			if (unlikely(!skb))
2212 				goto out;
2213 
2214 			skb->vlan_tci = 0;
2215 		}
2216 
2217 		if (netif_needs_gso(skb, features)) {
2218 			if (unlikely(dev_gso_segment(skb, features)))
2219 				goto out_kfree_skb;
2220 			if (skb->next)
2221 				goto gso;
2222 		} else {
2223 			if (skb_needs_linearize(skb, features) &&
2224 			    __skb_linearize(skb))
2225 				goto out_kfree_skb;
2226 
2227 			/* If packet is not checksummed and device does not
2228 			 * support checksumming for this protocol, complete
2229 			 * checksumming here.
2230 			 */
2231 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2232 				skb_set_transport_header(skb,
2233 					skb_checksum_start_offset(skb));
2234 				if (!(features & NETIF_F_ALL_CSUM) &&
2235 				     skb_checksum_help(skb))
2236 					goto out_kfree_skb;
2237 			}
2238 		}
2239 
2240 		skb_len = skb->len;
2241 		rc = ops->ndo_start_xmit(skb, dev);
2242 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2243 		if (rc == NETDEV_TX_OK)
2244 			txq_trans_update(txq);
2245 		return rc;
2246 	}
2247 
2248 gso:
2249 	do {
2250 		struct sk_buff *nskb = skb->next;
2251 
2252 		skb->next = nskb->next;
2253 		nskb->next = NULL;
2254 
2255 		/*
2256 		 * If device doesn't need nskb->dst, release it right now while
2257 		 * its hot in this cpu cache
2258 		 */
2259 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2260 			skb_dst_drop(nskb);
2261 
2262 		skb_len = nskb->len;
2263 		rc = ops->ndo_start_xmit(nskb, dev);
2264 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2265 		if (unlikely(rc != NETDEV_TX_OK)) {
2266 			if (rc & ~NETDEV_TX_MASK)
2267 				goto out_kfree_gso_skb;
2268 			nskb->next = skb->next;
2269 			skb->next = nskb;
2270 			return rc;
2271 		}
2272 		txq_trans_update(txq);
2273 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2274 			return NETDEV_TX_BUSY;
2275 	} while (skb->next);
2276 
2277 out_kfree_gso_skb:
2278 	if (likely(skb->next == NULL))
2279 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2280 out_kfree_skb:
2281 	kfree_skb(skb);
2282 out:
2283 	return rc;
2284 }
2285 
2286 static u32 hashrnd __read_mostly;
2287 
2288 /*
2289  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2290  * to be used as a distribution range.
2291  */
2292 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2293 		  unsigned int num_tx_queues)
2294 {
2295 	u32 hash;
2296 	u16 qoffset = 0;
2297 	u16 qcount = num_tx_queues;
2298 
2299 	if (skb_rx_queue_recorded(skb)) {
2300 		hash = skb_get_rx_queue(skb);
2301 		while (unlikely(hash >= num_tx_queues))
2302 			hash -= num_tx_queues;
2303 		return hash;
2304 	}
2305 
2306 	if (dev->num_tc) {
2307 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2308 		qoffset = dev->tc_to_txq[tc].offset;
2309 		qcount = dev->tc_to_txq[tc].count;
2310 	}
2311 
2312 	if (skb->sk && skb->sk->sk_hash)
2313 		hash = skb->sk->sk_hash;
2314 	else
2315 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2316 	hash = jhash_1word(hash, hashrnd);
2317 
2318 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2319 }
2320 EXPORT_SYMBOL(__skb_tx_hash);
2321 
2322 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2323 {
2324 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2325 		if (net_ratelimit()) {
2326 			pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2327 				dev->name, queue_index,
2328 				dev->real_num_tx_queues);
2329 		}
2330 		return 0;
2331 	}
2332 	return queue_index;
2333 }
2334 
2335 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2336 {
2337 #ifdef CONFIG_XPS
2338 	struct xps_dev_maps *dev_maps;
2339 	struct xps_map *map;
2340 	int queue_index = -1;
2341 
2342 	rcu_read_lock();
2343 	dev_maps = rcu_dereference(dev->xps_maps);
2344 	if (dev_maps) {
2345 		map = rcu_dereference(
2346 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2347 		if (map) {
2348 			if (map->len == 1)
2349 				queue_index = map->queues[0];
2350 			else {
2351 				u32 hash;
2352 				if (skb->sk && skb->sk->sk_hash)
2353 					hash = skb->sk->sk_hash;
2354 				else
2355 					hash = (__force u16) skb->protocol ^
2356 					    skb->rxhash;
2357 				hash = jhash_1word(hash, hashrnd);
2358 				queue_index = map->queues[
2359 				    ((u64)hash * map->len) >> 32];
2360 			}
2361 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2362 				queue_index = -1;
2363 		}
2364 	}
2365 	rcu_read_unlock();
2366 
2367 	return queue_index;
2368 #else
2369 	return -1;
2370 #endif
2371 }
2372 
2373 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2374 					struct sk_buff *skb)
2375 {
2376 	int queue_index;
2377 	const struct net_device_ops *ops = dev->netdev_ops;
2378 
2379 	if (dev->real_num_tx_queues == 1)
2380 		queue_index = 0;
2381 	else if (ops->ndo_select_queue) {
2382 		queue_index = ops->ndo_select_queue(dev, skb);
2383 		queue_index = dev_cap_txqueue(dev, queue_index);
2384 	} else {
2385 		struct sock *sk = skb->sk;
2386 		queue_index = sk_tx_queue_get(sk);
2387 
2388 		if (queue_index < 0 || skb->ooo_okay ||
2389 		    queue_index >= dev->real_num_tx_queues) {
2390 			int old_index = queue_index;
2391 
2392 			queue_index = get_xps_queue(dev, skb);
2393 			if (queue_index < 0)
2394 				queue_index = skb_tx_hash(dev, skb);
2395 
2396 			if (queue_index != old_index && sk) {
2397 				struct dst_entry *dst =
2398 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2399 
2400 				if (dst && skb_dst(skb) == dst)
2401 					sk_tx_queue_set(sk, queue_index);
2402 			}
2403 		}
2404 	}
2405 
2406 	skb_set_queue_mapping(skb, queue_index);
2407 	return netdev_get_tx_queue(dev, queue_index);
2408 }
2409 
2410 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2411 				 struct net_device *dev,
2412 				 struct netdev_queue *txq)
2413 {
2414 	spinlock_t *root_lock = qdisc_lock(q);
2415 	bool contended;
2416 	int rc;
2417 
2418 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2419 	qdisc_calculate_pkt_len(skb, q);
2420 	/*
2421 	 * Heuristic to force contended enqueues to serialize on a
2422 	 * separate lock before trying to get qdisc main lock.
2423 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2424 	 * and dequeue packets faster.
2425 	 */
2426 	contended = qdisc_is_running(q);
2427 	if (unlikely(contended))
2428 		spin_lock(&q->busylock);
2429 
2430 	spin_lock(root_lock);
2431 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2432 		kfree_skb(skb);
2433 		rc = NET_XMIT_DROP;
2434 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2435 		   qdisc_run_begin(q)) {
2436 		/*
2437 		 * This is a work-conserving queue; there are no old skbs
2438 		 * waiting to be sent out; and the qdisc is not running -
2439 		 * xmit the skb directly.
2440 		 */
2441 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2442 			skb_dst_force(skb);
2443 
2444 		qdisc_bstats_update(q, skb);
2445 
2446 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2447 			if (unlikely(contended)) {
2448 				spin_unlock(&q->busylock);
2449 				contended = false;
2450 			}
2451 			__qdisc_run(q);
2452 		} else
2453 			qdisc_run_end(q);
2454 
2455 		rc = NET_XMIT_SUCCESS;
2456 	} else {
2457 		skb_dst_force(skb);
2458 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2459 		if (qdisc_run_begin(q)) {
2460 			if (unlikely(contended)) {
2461 				spin_unlock(&q->busylock);
2462 				contended = false;
2463 			}
2464 			__qdisc_run(q);
2465 		}
2466 	}
2467 	spin_unlock(root_lock);
2468 	if (unlikely(contended))
2469 		spin_unlock(&q->busylock);
2470 	return rc;
2471 }
2472 
2473 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2474 static void skb_update_prio(struct sk_buff *skb)
2475 {
2476 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2477 
2478 	if ((!skb->priority) && (skb->sk) && map)
2479 		skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2480 }
2481 #else
2482 #define skb_update_prio(skb)
2483 #endif
2484 
2485 static DEFINE_PER_CPU(int, xmit_recursion);
2486 #define RECURSION_LIMIT 10
2487 
2488 /**
2489  *	dev_queue_xmit - transmit a buffer
2490  *	@skb: buffer to transmit
2491  *
2492  *	Queue a buffer for transmission to a network device. The caller must
2493  *	have set the device and priority and built the buffer before calling
2494  *	this function. The function can be called from an interrupt.
2495  *
2496  *	A negative errno code is returned on a failure. A success does not
2497  *	guarantee the frame will be transmitted as it may be dropped due
2498  *	to congestion or traffic shaping.
2499  *
2500  * -----------------------------------------------------------------------------------
2501  *      I notice this method can also return errors from the queue disciplines,
2502  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2503  *      be positive.
2504  *
2505  *      Regardless of the return value, the skb is consumed, so it is currently
2506  *      difficult to retry a send to this method.  (You can bump the ref count
2507  *      before sending to hold a reference for retry if you are careful.)
2508  *
2509  *      When calling this method, interrupts MUST be enabled.  This is because
2510  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2511  *          --BLG
2512  */
2513 int dev_queue_xmit(struct sk_buff *skb)
2514 {
2515 	struct net_device *dev = skb->dev;
2516 	struct netdev_queue *txq;
2517 	struct Qdisc *q;
2518 	int rc = -ENOMEM;
2519 
2520 	/* Disable soft irqs for various locks below. Also
2521 	 * stops preemption for RCU.
2522 	 */
2523 	rcu_read_lock_bh();
2524 
2525 	skb_update_prio(skb);
2526 
2527 	txq = dev_pick_tx(dev, skb);
2528 	q = rcu_dereference_bh(txq->qdisc);
2529 
2530 #ifdef CONFIG_NET_CLS_ACT
2531 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2532 #endif
2533 	trace_net_dev_queue(skb);
2534 	if (q->enqueue) {
2535 		rc = __dev_xmit_skb(skb, q, dev, txq);
2536 		goto out;
2537 	}
2538 
2539 	/* The device has no queue. Common case for software devices:
2540 	   loopback, all the sorts of tunnels...
2541 
2542 	   Really, it is unlikely that netif_tx_lock protection is necessary
2543 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2544 	   counters.)
2545 	   However, it is possible, that they rely on protection
2546 	   made by us here.
2547 
2548 	   Check this and shot the lock. It is not prone from deadlocks.
2549 	   Either shot noqueue qdisc, it is even simpler 8)
2550 	 */
2551 	if (dev->flags & IFF_UP) {
2552 		int cpu = smp_processor_id(); /* ok because BHs are off */
2553 
2554 		if (txq->xmit_lock_owner != cpu) {
2555 
2556 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2557 				goto recursion_alert;
2558 
2559 			HARD_TX_LOCK(dev, txq, cpu);
2560 
2561 			if (!netif_xmit_stopped(txq)) {
2562 				__this_cpu_inc(xmit_recursion);
2563 				rc = dev_hard_start_xmit(skb, dev, txq);
2564 				__this_cpu_dec(xmit_recursion);
2565 				if (dev_xmit_complete(rc)) {
2566 					HARD_TX_UNLOCK(dev, txq);
2567 					goto out;
2568 				}
2569 			}
2570 			HARD_TX_UNLOCK(dev, txq);
2571 			if (net_ratelimit())
2572 				pr_crit("Virtual device %s asks to queue packet!\n",
2573 					dev->name);
2574 		} else {
2575 			/* Recursion is detected! It is possible,
2576 			 * unfortunately
2577 			 */
2578 recursion_alert:
2579 			if (net_ratelimit())
2580 				pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2581 					dev->name);
2582 		}
2583 	}
2584 
2585 	rc = -ENETDOWN;
2586 	rcu_read_unlock_bh();
2587 
2588 	kfree_skb(skb);
2589 	return rc;
2590 out:
2591 	rcu_read_unlock_bh();
2592 	return rc;
2593 }
2594 EXPORT_SYMBOL(dev_queue_xmit);
2595 
2596 
2597 /*=======================================================================
2598 			Receiver routines
2599   =======================================================================*/
2600 
2601 int netdev_max_backlog __read_mostly = 1000;
2602 int netdev_tstamp_prequeue __read_mostly = 1;
2603 int netdev_budget __read_mostly = 300;
2604 int weight_p __read_mostly = 64;            /* old backlog weight */
2605 
2606 /* Called with irq disabled */
2607 static inline void ____napi_schedule(struct softnet_data *sd,
2608 				     struct napi_struct *napi)
2609 {
2610 	list_add_tail(&napi->poll_list, &sd->poll_list);
2611 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2612 }
2613 
2614 /*
2615  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2616  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2617  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2618  * if hash is a canonical 4-tuple hash over transport ports.
2619  */
2620 void __skb_get_rxhash(struct sk_buff *skb)
2621 {
2622 	struct flow_keys keys;
2623 	u32 hash;
2624 
2625 	if (!skb_flow_dissect(skb, &keys))
2626 		return;
2627 
2628 	if (keys.ports) {
2629 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2630 			swap(keys.port16[0], keys.port16[1]);
2631 		skb->l4_rxhash = 1;
2632 	}
2633 
2634 	/* get a consistent hash (same value on both flow directions) */
2635 	if ((__force u32)keys.dst < (__force u32)keys.src)
2636 		swap(keys.dst, keys.src);
2637 
2638 	hash = jhash_3words((__force u32)keys.dst,
2639 			    (__force u32)keys.src,
2640 			    (__force u32)keys.ports, hashrnd);
2641 	if (!hash)
2642 		hash = 1;
2643 
2644 	skb->rxhash = hash;
2645 }
2646 EXPORT_SYMBOL(__skb_get_rxhash);
2647 
2648 #ifdef CONFIG_RPS
2649 
2650 /* One global table that all flow-based protocols share. */
2651 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2652 EXPORT_SYMBOL(rps_sock_flow_table);
2653 
2654 struct static_key rps_needed __read_mostly;
2655 
2656 static struct rps_dev_flow *
2657 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2658 	    struct rps_dev_flow *rflow, u16 next_cpu)
2659 {
2660 	if (next_cpu != RPS_NO_CPU) {
2661 #ifdef CONFIG_RFS_ACCEL
2662 		struct netdev_rx_queue *rxqueue;
2663 		struct rps_dev_flow_table *flow_table;
2664 		struct rps_dev_flow *old_rflow;
2665 		u32 flow_id;
2666 		u16 rxq_index;
2667 		int rc;
2668 
2669 		/* Should we steer this flow to a different hardware queue? */
2670 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2671 		    !(dev->features & NETIF_F_NTUPLE))
2672 			goto out;
2673 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2674 		if (rxq_index == skb_get_rx_queue(skb))
2675 			goto out;
2676 
2677 		rxqueue = dev->_rx + rxq_index;
2678 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2679 		if (!flow_table)
2680 			goto out;
2681 		flow_id = skb->rxhash & flow_table->mask;
2682 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2683 							rxq_index, flow_id);
2684 		if (rc < 0)
2685 			goto out;
2686 		old_rflow = rflow;
2687 		rflow = &flow_table->flows[flow_id];
2688 		rflow->filter = rc;
2689 		if (old_rflow->filter == rflow->filter)
2690 			old_rflow->filter = RPS_NO_FILTER;
2691 	out:
2692 #endif
2693 		rflow->last_qtail =
2694 			per_cpu(softnet_data, next_cpu).input_queue_head;
2695 	}
2696 
2697 	rflow->cpu = next_cpu;
2698 	return rflow;
2699 }
2700 
2701 /*
2702  * get_rps_cpu is called from netif_receive_skb and returns the target
2703  * CPU from the RPS map of the receiving queue for a given skb.
2704  * rcu_read_lock must be held on entry.
2705  */
2706 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 		       struct rps_dev_flow **rflowp)
2708 {
2709 	struct netdev_rx_queue *rxqueue;
2710 	struct rps_map *map;
2711 	struct rps_dev_flow_table *flow_table;
2712 	struct rps_sock_flow_table *sock_flow_table;
2713 	int cpu = -1;
2714 	u16 tcpu;
2715 
2716 	if (skb_rx_queue_recorded(skb)) {
2717 		u16 index = skb_get_rx_queue(skb);
2718 		if (unlikely(index >= dev->real_num_rx_queues)) {
2719 			WARN_ONCE(dev->real_num_rx_queues > 1,
2720 				  "%s received packet on queue %u, but number "
2721 				  "of RX queues is %u\n",
2722 				  dev->name, index, dev->real_num_rx_queues);
2723 			goto done;
2724 		}
2725 		rxqueue = dev->_rx + index;
2726 	} else
2727 		rxqueue = dev->_rx;
2728 
2729 	map = rcu_dereference(rxqueue->rps_map);
2730 	if (map) {
2731 		if (map->len == 1 &&
2732 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2733 			tcpu = map->cpus[0];
2734 			if (cpu_online(tcpu))
2735 				cpu = tcpu;
2736 			goto done;
2737 		}
2738 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2739 		goto done;
2740 	}
2741 
2742 	skb_reset_network_header(skb);
2743 	if (!skb_get_rxhash(skb))
2744 		goto done;
2745 
2746 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2747 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2748 	if (flow_table && sock_flow_table) {
2749 		u16 next_cpu;
2750 		struct rps_dev_flow *rflow;
2751 
2752 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2753 		tcpu = rflow->cpu;
2754 
2755 		next_cpu = sock_flow_table->ents[skb->rxhash &
2756 		    sock_flow_table->mask];
2757 
2758 		/*
2759 		 * If the desired CPU (where last recvmsg was done) is
2760 		 * different from current CPU (one in the rx-queue flow
2761 		 * table entry), switch if one of the following holds:
2762 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2763 		 *   - Current CPU is offline.
2764 		 *   - The current CPU's queue tail has advanced beyond the
2765 		 *     last packet that was enqueued using this table entry.
2766 		 *     This guarantees that all previous packets for the flow
2767 		 *     have been dequeued, thus preserving in order delivery.
2768 		 */
2769 		if (unlikely(tcpu != next_cpu) &&
2770 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2771 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2772 		      rflow->last_qtail)) >= 0))
2773 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2774 
2775 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2776 			*rflowp = rflow;
2777 			cpu = tcpu;
2778 			goto done;
2779 		}
2780 	}
2781 
2782 	if (map) {
2783 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2784 
2785 		if (cpu_online(tcpu)) {
2786 			cpu = tcpu;
2787 			goto done;
2788 		}
2789 	}
2790 
2791 done:
2792 	return cpu;
2793 }
2794 
2795 #ifdef CONFIG_RFS_ACCEL
2796 
2797 /**
2798  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2799  * @dev: Device on which the filter was set
2800  * @rxq_index: RX queue index
2801  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2802  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2803  *
2804  * Drivers that implement ndo_rx_flow_steer() should periodically call
2805  * this function for each installed filter and remove the filters for
2806  * which it returns %true.
2807  */
2808 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2809 			 u32 flow_id, u16 filter_id)
2810 {
2811 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2812 	struct rps_dev_flow_table *flow_table;
2813 	struct rps_dev_flow *rflow;
2814 	bool expire = true;
2815 	int cpu;
2816 
2817 	rcu_read_lock();
2818 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2819 	if (flow_table && flow_id <= flow_table->mask) {
2820 		rflow = &flow_table->flows[flow_id];
2821 		cpu = ACCESS_ONCE(rflow->cpu);
2822 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2823 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2824 			   rflow->last_qtail) <
2825 		     (int)(10 * flow_table->mask)))
2826 			expire = false;
2827 	}
2828 	rcu_read_unlock();
2829 	return expire;
2830 }
2831 EXPORT_SYMBOL(rps_may_expire_flow);
2832 
2833 #endif /* CONFIG_RFS_ACCEL */
2834 
2835 /* Called from hardirq (IPI) context */
2836 static void rps_trigger_softirq(void *data)
2837 {
2838 	struct softnet_data *sd = data;
2839 
2840 	____napi_schedule(sd, &sd->backlog);
2841 	sd->received_rps++;
2842 }
2843 
2844 #endif /* CONFIG_RPS */
2845 
2846 /*
2847  * Check if this softnet_data structure is another cpu one
2848  * If yes, queue it to our IPI list and return 1
2849  * If no, return 0
2850  */
2851 static int rps_ipi_queued(struct softnet_data *sd)
2852 {
2853 #ifdef CONFIG_RPS
2854 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2855 
2856 	if (sd != mysd) {
2857 		sd->rps_ipi_next = mysd->rps_ipi_list;
2858 		mysd->rps_ipi_list = sd;
2859 
2860 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2861 		return 1;
2862 	}
2863 #endif /* CONFIG_RPS */
2864 	return 0;
2865 }
2866 
2867 /*
2868  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2869  * queue (may be a remote CPU queue).
2870  */
2871 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2872 			      unsigned int *qtail)
2873 {
2874 	struct softnet_data *sd;
2875 	unsigned long flags;
2876 
2877 	sd = &per_cpu(softnet_data, cpu);
2878 
2879 	local_irq_save(flags);
2880 
2881 	rps_lock(sd);
2882 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2883 		if (skb_queue_len(&sd->input_pkt_queue)) {
2884 enqueue:
2885 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2886 			input_queue_tail_incr_save(sd, qtail);
2887 			rps_unlock(sd);
2888 			local_irq_restore(flags);
2889 			return NET_RX_SUCCESS;
2890 		}
2891 
2892 		/* Schedule NAPI for backlog device
2893 		 * We can use non atomic operation since we own the queue lock
2894 		 */
2895 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2896 			if (!rps_ipi_queued(sd))
2897 				____napi_schedule(sd, &sd->backlog);
2898 		}
2899 		goto enqueue;
2900 	}
2901 
2902 	sd->dropped++;
2903 	rps_unlock(sd);
2904 
2905 	local_irq_restore(flags);
2906 
2907 	atomic_long_inc(&skb->dev->rx_dropped);
2908 	kfree_skb(skb);
2909 	return NET_RX_DROP;
2910 }
2911 
2912 /**
2913  *	netif_rx	-	post buffer to the network code
2914  *	@skb: buffer to post
2915  *
2916  *	This function receives a packet from a device driver and queues it for
2917  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2918  *	may be dropped during processing for congestion control or by the
2919  *	protocol layers.
2920  *
2921  *	return values:
2922  *	NET_RX_SUCCESS	(no congestion)
2923  *	NET_RX_DROP     (packet was dropped)
2924  *
2925  */
2926 
2927 int netif_rx(struct sk_buff *skb)
2928 {
2929 	int ret;
2930 
2931 	/* if netpoll wants it, pretend we never saw it */
2932 	if (netpoll_rx(skb))
2933 		return NET_RX_DROP;
2934 
2935 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2936 
2937 	trace_netif_rx(skb);
2938 #ifdef CONFIG_RPS
2939 	if (static_key_false(&rps_needed)) {
2940 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2941 		int cpu;
2942 
2943 		preempt_disable();
2944 		rcu_read_lock();
2945 
2946 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2947 		if (cpu < 0)
2948 			cpu = smp_processor_id();
2949 
2950 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2951 
2952 		rcu_read_unlock();
2953 		preempt_enable();
2954 	} else
2955 #endif
2956 	{
2957 		unsigned int qtail;
2958 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2959 		put_cpu();
2960 	}
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL(netif_rx);
2964 
2965 int netif_rx_ni(struct sk_buff *skb)
2966 {
2967 	int err;
2968 
2969 	preempt_disable();
2970 	err = netif_rx(skb);
2971 	if (local_softirq_pending())
2972 		do_softirq();
2973 	preempt_enable();
2974 
2975 	return err;
2976 }
2977 EXPORT_SYMBOL(netif_rx_ni);
2978 
2979 static void net_tx_action(struct softirq_action *h)
2980 {
2981 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2982 
2983 	if (sd->completion_queue) {
2984 		struct sk_buff *clist;
2985 
2986 		local_irq_disable();
2987 		clist = sd->completion_queue;
2988 		sd->completion_queue = NULL;
2989 		local_irq_enable();
2990 
2991 		while (clist) {
2992 			struct sk_buff *skb = clist;
2993 			clist = clist->next;
2994 
2995 			WARN_ON(atomic_read(&skb->users));
2996 			trace_kfree_skb(skb, net_tx_action);
2997 			__kfree_skb(skb);
2998 		}
2999 	}
3000 
3001 	if (sd->output_queue) {
3002 		struct Qdisc *head;
3003 
3004 		local_irq_disable();
3005 		head = sd->output_queue;
3006 		sd->output_queue = NULL;
3007 		sd->output_queue_tailp = &sd->output_queue;
3008 		local_irq_enable();
3009 
3010 		while (head) {
3011 			struct Qdisc *q = head;
3012 			spinlock_t *root_lock;
3013 
3014 			head = head->next_sched;
3015 
3016 			root_lock = qdisc_lock(q);
3017 			if (spin_trylock(root_lock)) {
3018 				smp_mb__before_clear_bit();
3019 				clear_bit(__QDISC_STATE_SCHED,
3020 					  &q->state);
3021 				qdisc_run(q);
3022 				spin_unlock(root_lock);
3023 			} else {
3024 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3025 					      &q->state)) {
3026 					__netif_reschedule(q);
3027 				} else {
3028 					smp_mb__before_clear_bit();
3029 					clear_bit(__QDISC_STATE_SCHED,
3030 						  &q->state);
3031 				}
3032 			}
3033 		}
3034 	}
3035 }
3036 
3037 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3038     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3039 /* This hook is defined here for ATM LANE */
3040 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3041 			     unsigned char *addr) __read_mostly;
3042 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3043 #endif
3044 
3045 #ifdef CONFIG_NET_CLS_ACT
3046 /* TODO: Maybe we should just force sch_ingress to be compiled in
3047  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3048  * a compare and 2 stores extra right now if we dont have it on
3049  * but have CONFIG_NET_CLS_ACT
3050  * NOTE: This doesn't stop any functionality; if you dont have
3051  * the ingress scheduler, you just can't add policies on ingress.
3052  *
3053  */
3054 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3055 {
3056 	struct net_device *dev = skb->dev;
3057 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3058 	int result = TC_ACT_OK;
3059 	struct Qdisc *q;
3060 
3061 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3062 		if (net_ratelimit())
3063 			pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3064 				skb->skb_iif, dev->ifindex);
3065 		return TC_ACT_SHOT;
3066 	}
3067 
3068 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3069 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3070 
3071 	q = rxq->qdisc;
3072 	if (q != &noop_qdisc) {
3073 		spin_lock(qdisc_lock(q));
3074 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3075 			result = qdisc_enqueue_root(skb, q);
3076 		spin_unlock(qdisc_lock(q));
3077 	}
3078 
3079 	return result;
3080 }
3081 
3082 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3083 					 struct packet_type **pt_prev,
3084 					 int *ret, struct net_device *orig_dev)
3085 {
3086 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3087 
3088 	if (!rxq || rxq->qdisc == &noop_qdisc)
3089 		goto out;
3090 
3091 	if (*pt_prev) {
3092 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3093 		*pt_prev = NULL;
3094 	}
3095 
3096 	switch (ing_filter(skb, rxq)) {
3097 	case TC_ACT_SHOT:
3098 	case TC_ACT_STOLEN:
3099 		kfree_skb(skb);
3100 		return NULL;
3101 	}
3102 
3103 out:
3104 	skb->tc_verd = 0;
3105 	return skb;
3106 }
3107 #endif
3108 
3109 /**
3110  *	netdev_rx_handler_register - register receive handler
3111  *	@dev: device to register a handler for
3112  *	@rx_handler: receive handler to register
3113  *	@rx_handler_data: data pointer that is used by rx handler
3114  *
3115  *	Register a receive hander for a device. This handler will then be
3116  *	called from __netif_receive_skb. A negative errno code is returned
3117  *	on a failure.
3118  *
3119  *	The caller must hold the rtnl_mutex.
3120  *
3121  *	For a general description of rx_handler, see enum rx_handler_result.
3122  */
3123 int netdev_rx_handler_register(struct net_device *dev,
3124 			       rx_handler_func_t *rx_handler,
3125 			       void *rx_handler_data)
3126 {
3127 	ASSERT_RTNL();
3128 
3129 	if (dev->rx_handler)
3130 		return -EBUSY;
3131 
3132 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3133 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3134 
3135 	return 0;
3136 }
3137 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3138 
3139 /**
3140  *	netdev_rx_handler_unregister - unregister receive handler
3141  *	@dev: device to unregister a handler from
3142  *
3143  *	Unregister a receive hander from a device.
3144  *
3145  *	The caller must hold the rtnl_mutex.
3146  */
3147 void netdev_rx_handler_unregister(struct net_device *dev)
3148 {
3149 
3150 	ASSERT_RTNL();
3151 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3152 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3153 }
3154 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3155 
3156 static int __netif_receive_skb(struct sk_buff *skb)
3157 {
3158 	struct packet_type *ptype, *pt_prev;
3159 	rx_handler_func_t *rx_handler;
3160 	struct net_device *orig_dev;
3161 	struct net_device *null_or_dev;
3162 	bool deliver_exact = false;
3163 	int ret = NET_RX_DROP;
3164 	__be16 type;
3165 
3166 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3167 
3168 	trace_netif_receive_skb(skb);
3169 
3170 	/* if we've gotten here through NAPI, check netpoll */
3171 	if (netpoll_receive_skb(skb))
3172 		return NET_RX_DROP;
3173 
3174 	if (!skb->skb_iif)
3175 		skb->skb_iif = skb->dev->ifindex;
3176 	orig_dev = skb->dev;
3177 
3178 	skb_reset_network_header(skb);
3179 	skb_reset_transport_header(skb);
3180 	skb_reset_mac_len(skb);
3181 
3182 	pt_prev = NULL;
3183 
3184 	rcu_read_lock();
3185 
3186 another_round:
3187 
3188 	__this_cpu_inc(softnet_data.processed);
3189 
3190 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3191 		skb = vlan_untag(skb);
3192 		if (unlikely(!skb))
3193 			goto out;
3194 	}
3195 
3196 #ifdef CONFIG_NET_CLS_ACT
3197 	if (skb->tc_verd & TC_NCLS) {
3198 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3199 		goto ncls;
3200 	}
3201 #endif
3202 
3203 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3204 		if (!ptype->dev || ptype->dev == skb->dev) {
3205 			if (pt_prev)
3206 				ret = deliver_skb(skb, pt_prev, orig_dev);
3207 			pt_prev = ptype;
3208 		}
3209 	}
3210 
3211 #ifdef CONFIG_NET_CLS_ACT
3212 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3213 	if (!skb)
3214 		goto out;
3215 ncls:
3216 #endif
3217 
3218 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3219 	if (vlan_tx_tag_present(skb)) {
3220 		if (pt_prev) {
3221 			ret = deliver_skb(skb, pt_prev, orig_dev);
3222 			pt_prev = NULL;
3223 		}
3224 		if (vlan_do_receive(&skb, !rx_handler))
3225 			goto another_round;
3226 		else if (unlikely(!skb))
3227 			goto out;
3228 	}
3229 
3230 	if (rx_handler) {
3231 		if (pt_prev) {
3232 			ret = deliver_skb(skb, pt_prev, orig_dev);
3233 			pt_prev = NULL;
3234 		}
3235 		switch (rx_handler(&skb)) {
3236 		case RX_HANDLER_CONSUMED:
3237 			goto out;
3238 		case RX_HANDLER_ANOTHER:
3239 			goto another_round;
3240 		case RX_HANDLER_EXACT:
3241 			deliver_exact = true;
3242 		case RX_HANDLER_PASS:
3243 			break;
3244 		default:
3245 			BUG();
3246 		}
3247 	}
3248 
3249 	/* deliver only exact match when indicated */
3250 	null_or_dev = deliver_exact ? skb->dev : NULL;
3251 
3252 	type = skb->protocol;
3253 	list_for_each_entry_rcu(ptype,
3254 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3255 		if (ptype->type == type &&
3256 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3257 		     ptype->dev == orig_dev)) {
3258 			if (pt_prev)
3259 				ret = deliver_skb(skb, pt_prev, orig_dev);
3260 			pt_prev = ptype;
3261 		}
3262 	}
3263 
3264 	if (pt_prev) {
3265 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3266 	} else {
3267 		atomic_long_inc(&skb->dev->rx_dropped);
3268 		kfree_skb(skb);
3269 		/* Jamal, now you will not able to escape explaining
3270 		 * me how you were going to use this. :-)
3271 		 */
3272 		ret = NET_RX_DROP;
3273 	}
3274 
3275 out:
3276 	rcu_read_unlock();
3277 	return ret;
3278 }
3279 
3280 /**
3281  *	netif_receive_skb - process receive buffer from network
3282  *	@skb: buffer to process
3283  *
3284  *	netif_receive_skb() is the main receive data processing function.
3285  *	It always succeeds. The buffer may be dropped during processing
3286  *	for congestion control or by the protocol layers.
3287  *
3288  *	This function may only be called from softirq context and interrupts
3289  *	should be enabled.
3290  *
3291  *	Return values (usually ignored):
3292  *	NET_RX_SUCCESS: no congestion
3293  *	NET_RX_DROP: packet was dropped
3294  */
3295 int netif_receive_skb(struct sk_buff *skb)
3296 {
3297 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3298 
3299 	if (skb_defer_rx_timestamp(skb))
3300 		return NET_RX_SUCCESS;
3301 
3302 #ifdef CONFIG_RPS
3303 	if (static_key_false(&rps_needed)) {
3304 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3305 		int cpu, ret;
3306 
3307 		rcu_read_lock();
3308 
3309 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3310 
3311 		if (cpu >= 0) {
3312 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3313 			rcu_read_unlock();
3314 			return ret;
3315 		}
3316 		rcu_read_unlock();
3317 	}
3318 #endif
3319 	return __netif_receive_skb(skb);
3320 }
3321 EXPORT_SYMBOL(netif_receive_skb);
3322 
3323 /* Network device is going away, flush any packets still pending
3324  * Called with irqs disabled.
3325  */
3326 static void flush_backlog(void *arg)
3327 {
3328 	struct net_device *dev = arg;
3329 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3330 	struct sk_buff *skb, *tmp;
3331 
3332 	rps_lock(sd);
3333 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3334 		if (skb->dev == dev) {
3335 			__skb_unlink(skb, &sd->input_pkt_queue);
3336 			kfree_skb(skb);
3337 			input_queue_head_incr(sd);
3338 		}
3339 	}
3340 	rps_unlock(sd);
3341 
3342 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3343 		if (skb->dev == dev) {
3344 			__skb_unlink(skb, &sd->process_queue);
3345 			kfree_skb(skb);
3346 			input_queue_head_incr(sd);
3347 		}
3348 	}
3349 }
3350 
3351 static int napi_gro_complete(struct sk_buff *skb)
3352 {
3353 	struct packet_type *ptype;
3354 	__be16 type = skb->protocol;
3355 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3356 	int err = -ENOENT;
3357 
3358 	if (NAPI_GRO_CB(skb)->count == 1) {
3359 		skb_shinfo(skb)->gso_size = 0;
3360 		goto out;
3361 	}
3362 
3363 	rcu_read_lock();
3364 	list_for_each_entry_rcu(ptype, head, list) {
3365 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3366 			continue;
3367 
3368 		err = ptype->gro_complete(skb);
3369 		break;
3370 	}
3371 	rcu_read_unlock();
3372 
3373 	if (err) {
3374 		WARN_ON(&ptype->list == head);
3375 		kfree_skb(skb);
3376 		return NET_RX_SUCCESS;
3377 	}
3378 
3379 out:
3380 	return netif_receive_skb(skb);
3381 }
3382 
3383 inline void napi_gro_flush(struct napi_struct *napi)
3384 {
3385 	struct sk_buff *skb, *next;
3386 
3387 	for (skb = napi->gro_list; skb; skb = next) {
3388 		next = skb->next;
3389 		skb->next = NULL;
3390 		napi_gro_complete(skb);
3391 	}
3392 
3393 	napi->gro_count = 0;
3394 	napi->gro_list = NULL;
3395 }
3396 EXPORT_SYMBOL(napi_gro_flush);
3397 
3398 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3399 {
3400 	struct sk_buff **pp = NULL;
3401 	struct packet_type *ptype;
3402 	__be16 type = skb->protocol;
3403 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3404 	int same_flow;
3405 	int mac_len;
3406 	enum gro_result ret;
3407 
3408 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3409 		goto normal;
3410 
3411 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3412 		goto normal;
3413 
3414 	rcu_read_lock();
3415 	list_for_each_entry_rcu(ptype, head, list) {
3416 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3417 			continue;
3418 
3419 		skb_set_network_header(skb, skb_gro_offset(skb));
3420 		mac_len = skb->network_header - skb->mac_header;
3421 		skb->mac_len = mac_len;
3422 		NAPI_GRO_CB(skb)->same_flow = 0;
3423 		NAPI_GRO_CB(skb)->flush = 0;
3424 		NAPI_GRO_CB(skb)->free = 0;
3425 
3426 		pp = ptype->gro_receive(&napi->gro_list, skb);
3427 		break;
3428 	}
3429 	rcu_read_unlock();
3430 
3431 	if (&ptype->list == head)
3432 		goto normal;
3433 
3434 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3435 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3436 
3437 	if (pp) {
3438 		struct sk_buff *nskb = *pp;
3439 
3440 		*pp = nskb->next;
3441 		nskb->next = NULL;
3442 		napi_gro_complete(nskb);
3443 		napi->gro_count--;
3444 	}
3445 
3446 	if (same_flow)
3447 		goto ok;
3448 
3449 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3450 		goto normal;
3451 
3452 	napi->gro_count++;
3453 	NAPI_GRO_CB(skb)->count = 1;
3454 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3455 	skb->next = napi->gro_list;
3456 	napi->gro_list = skb;
3457 	ret = GRO_HELD;
3458 
3459 pull:
3460 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3461 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3462 
3463 		BUG_ON(skb->end - skb->tail < grow);
3464 
3465 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3466 
3467 		skb->tail += grow;
3468 		skb->data_len -= grow;
3469 
3470 		skb_shinfo(skb)->frags[0].page_offset += grow;
3471 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3472 
3473 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3474 			skb_frag_unref(skb, 0);
3475 			memmove(skb_shinfo(skb)->frags,
3476 				skb_shinfo(skb)->frags + 1,
3477 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3478 		}
3479 	}
3480 
3481 ok:
3482 	return ret;
3483 
3484 normal:
3485 	ret = GRO_NORMAL;
3486 	goto pull;
3487 }
3488 EXPORT_SYMBOL(dev_gro_receive);
3489 
3490 static inline gro_result_t
3491 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3492 {
3493 	struct sk_buff *p;
3494 	unsigned int maclen = skb->dev->hard_header_len;
3495 
3496 	for (p = napi->gro_list; p; p = p->next) {
3497 		unsigned long diffs;
3498 
3499 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3500 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3501 		if (maclen == ETH_HLEN)
3502 			diffs |= compare_ether_header(skb_mac_header(p),
3503 						      skb_gro_mac_header(skb));
3504 		else if (!diffs)
3505 			diffs = memcmp(skb_mac_header(p),
3506 				       skb_gro_mac_header(skb),
3507 				       maclen);
3508 		NAPI_GRO_CB(p)->same_flow = !diffs;
3509 		NAPI_GRO_CB(p)->flush = 0;
3510 	}
3511 
3512 	return dev_gro_receive(napi, skb);
3513 }
3514 
3515 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3516 {
3517 	switch (ret) {
3518 	case GRO_NORMAL:
3519 		if (netif_receive_skb(skb))
3520 			ret = GRO_DROP;
3521 		break;
3522 
3523 	case GRO_DROP:
3524 	case GRO_MERGED_FREE:
3525 		kfree_skb(skb);
3526 		break;
3527 
3528 	case GRO_HELD:
3529 	case GRO_MERGED:
3530 		break;
3531 	}
3532 
3533 	return ret;
3534 }
3535 EXPORT_SYMBOL(napi_skb_finish);
3536 
3537 void skb_gro_reset_offset(struct sk_buff *skb)
3538 {
3539 	NAPI_GRO_CB(skb)->data_offset = 0;
3540 	NAPI_GRO_CB(skb)->frag0 = NULL;
3541 	NAPI_GRO_CB(skb)->frag0_len = 0;
3542 
3543 	if (skb->mac_header == skb->tail &&
3544 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3545 		NAPI_GRO_CB(skb)->frag0 =
3546 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3547 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3548 	}
3549 }
3550 EXPORT_SYMBOL(skb_gro_reset_offset);
3551 
3552 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3553 {
3554 	skb_gro_reset_offset(skb);
3555 
3556 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3557 }
3558 EXPORT_SYMBOL(napi_gro_receive);
3559 
3560 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3561 {
3562 	__skb_pull(skb, skb_headlen(skb));
3563 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3564 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3565 	skb->vlan_tci = 0;
3566 	skb->dev = napi->dev;
3567 	skb->skb_iif = 0;
3568 
3569 	napi->skb = skb;
3570 }
3571 
3572 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3573 {
3574 	struct sk_buff *skb = napi->skb;
3575 
3576 	if (!skb) {
3577 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3578 		if (skb)
3579 			napi->skb = skb;
3580 	}
3581 	return skb;
3582 }
3583 EXPORT_SYMBOL(napi_get_frags);
3584 
3585 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3586 			       gro_result_t ret)
3587 {
3588 	switch (ret) {
3589 	case GRO_NORMAL:
3590 	case GRO_HELD:
3591 		skb->protocol = eth_type_trans(skb, skb->dev);
3592 
3593 		if (ret == GRO_HELD)
3594 			skb_gro_pull(skb, -ETH_HLEN);
3595 		else if (netif_receive_skb(skb))
3596 			ret = GRO_DROP;
3597 		break;
3598 
3599 	case GRO_DROP:
3600 	case GRO_MERGED_FREE:
3601 		napi_reuse_skb(napi, skb);
3602 		break;
3603 
3604 	case GRO_MERGED:
3605 		break;
3606 	}
3607 
3608 	return ret;
3609 }
3610 EXPORT_SYMBOL(napi_frags_finish);
3611 
3612 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3613 {
3614 	struct sk_buff *skb = napi->skb;
3615 	struct ethhdr *eth;
3616 	unsigned int hlen;
3617 	unsigned int off;
3618 
3619 	napi->skb = NULL;
3620 
3621 	skb_reset_mac_header(skb);
3622 	skb_gro_reset_offset(skb);
3623 
3624 	off = skb_gro_offset(skb);
3625 	hlen = off + sizeof(*eth);
3626 	eth = skb_gro_header_fast(skb, off);
3627 	if (skb_gro_header_hard(skb, hlen)) {
3628 		eth = skb_gro_header_slow(skb, hlen, off);
3629 		if (unlikely(!eth)) {
3630 			napi_reuse_skb(napi, skb);
3631 			skb = NULL;
3632 			goto out;
3633 		}
3634 	}
3635 
3636 	skb_gro_pull(skb, sizeof(*eth));
3637 
3638 	/*
3639 	 * This works because the only protocols we care about don't require
3640 	 * special handling.  We'll fix it up properly at the end.
3641 	 */
3642 	skb->protocol = eth->h_proto;
3643 
3644 out:
3645 	return skb;
3646 }
3647 EXPORT_SYMBOL(napi_frags_skb);
3648 
3649 gro_result_t napi_gro_frags(struct napi_struct *napi)
3650 {
3651 	struct sk_buff *skb = napi_frags_skb(napi);
3652 
3653 	if (!skb)
3654 		return GRO_DROP;
3655 
3656 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3657 }
3658 EXPORT_SYMBOL(napi_gro_frags);
3659 
3660 /*
3661  * net_rps_action sends any pending IPI's for rps.
3662  * Note: called with local irq disabled, but exits with local irq enabled.
3663  */
3664 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3665 {
3666 #ifdef CONFIG_RPS
3667 	struct softnet_data *remsd = sd->rps_ipi_list;
3668 
3669 	if (remsd) {
3670 		sd->rps_ipi_list = NULL;
3671 
3672 		local_irq_enable();
3673 
3674 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3675 		while (remsd) {
3676 			struct softnet_data *next = remsd->rps_ipi_next;
3677 
3678 			if (cpu_online(remsd->cpu))
3679 				__smp_call_function_single(remsd->cpu,
3680 							   &remsd->csd, 0);
3681 			remsd = next;
3682 		}
3683 	} else
3684 #endif
3685 		local_irq_enable();
3686 }
3687 
3688 static int process_backlog(struct napi_struct *napi, int quota)
3689 {
3690 	int work = 0;
3691 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3692 
3693 #ifdef CONFIG_RPS
3694 	/* Check if we have pending ipi, its better to send them now,
3695 	 * not waiting net_rx_action() end.
3696 	 */
3697 	if (sd->rps_ipi_list) {
3698 		local_irq_disable();
3699 		net_rps_action_and_irq_enable(sd);
3700 	}
3701 #endif
3702 	napi->weight = weight_p;
3703 	local_irq_disable();
3704 	while (work < quota) {
3705 		struct sk_buff *skb;
3706 		unsigned int qlen;
3707 
3708 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3709 			local_irq_enable();
3710 			__netif_receive_skb(skb);
3711 			local_irq_disable();
3712 			input_queue_head_incr(sd);
3713 			if (++work >= quota) {
3714 				local_irq_enable();
3715 				return work;
3716 			}
3717 		}
3718 
3719 		rps_lock(sd);
3720 		qlen = skb_queue_len(&sd->input_pkt_queue);
3721 		if (qlen)
3722 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3723 						   &sd->process_queue);
3724 
3725 		if (qlen < quota - work) {
3726 			/*
3727 			 * Inline a custom version of __napi_complete().
3728 			 * only current cpu owns and manipulates this napi,
3729 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3730 			 * we can use a plain write instead of clear_bit(),
3731 			 * and we dont need an smp_mb() memory barrier.
3732 			 */
3733 			list_del(&napi->poll_list);
3734 			napi->state = 0;
3735 
3736 			quota = work + qlen;
3737 		}
3738 		rps_unlock(sd);
3739 	}
3740 	local_irq_enable();
3741 
3742 	return work;
3743 }
3744 
3745 /**
3746  * __napi_schedule - schedule for receive
3747  * @n: entry to schedule
3748  *
3749  * The entry's receive function will be scheduled to run
3750  */
3751 void __napi_schedule(struct napi_struct *n)
3752 {
3753 	unsigned long flags;
3754 
3755 	local_irq_save(flags);
3756 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3757 	local_irq_restore(flags);
3758 }
3759 EXPORT_SYMBOL(__napi_schedule);
3760 
3761 void __napi_complete(struct napi_struct *n)
3762 {
3763 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3764 	BUG_ON(n->gro_list);
3765 
3766 	list_del(&n->poll_list);
3767 	smp_mb__before_clear_bit();
3768 	clear_bit(NAPI_STATE_SCHED, &n->state);
3769 }
3770 EXPORT_SYMBOL(__napi_complete);
3771 
3772 void napi_complete(struct napi_struct *n)
3773 {
3774 	unsigned long flags;
3775 
3776 	/*
3777 	 * don't let napi dequeue from the cpu poll list
3778 	 * just in case its running on a different cpu
3779 	 */
3780 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3781 		return;
3782 
3783 	napi_gro_flush(n);
3784 	local_irq_save(flags);
3785 	__napi_complete(n);
3786 	local_irq_restore(flags);
3787 }
3788 EXPORT_SYMBOL(napi_complete);
3789 
3790 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3791 		    int (*poll)(struct napi_struct *, int), int weight)
3792 {
3793 	INIT_LIST_HEAD(&napi->poll_list);
3794 	napi->gro_count = 0;
3795 	napi->gro_list = NULL;
3796 	napi->skb = NULL;
3797 	napi->poll = poll;
3798 	napi->weight = weight;
3799 	list_add(&napi->dev_list, &dev->napi_list);
3800 	napi->dev = dev;
3801 #ifdef CONFIG_NETPOLL
3802 	spin_lock_init(&napi->poll_lock);
3803 	napi->poll_owner = -1;
3804 #endif
3805 	set_bit(NAPI_STATE_SCHED, &napi->state);
3806 }
3807 EXPORT_SYMBOL(netif_napi_add);
3808 
3809 void netif_napi_del(struct napi_struct *napi)
3810 {
3811 	struct sk_buff *skb, *next;
3812 
3813 	list_del_init(&napi->dev_list);
3814 	napi_free_frags(napi);
3815 
3816 	for (skb = napi->gro_list; skb; skb = next) {
3817 		next = skb->next;
3818 		skb->next = NULL;
3819 		kfree_skb(skb);
3820 	}
3821 
3822 	napi->gro_list = NULL;
3823 	napi->gro_count = 0;
3824 }
3825 EXPORT_SYMBOL(netif_napi_del);
3826 
3827 static void net_rx_action(struct softirq_action *h)
3828 {
3829 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3830 	unsigned long time_limit = jiffies + 2;
3831 	int budget = netdev_budget;
3832 	void *have;
3833 
3834 	local_irq_disable();
3835 
3836 	while (!list_empty(&sd->poll_list)) {
3837 		struct napi_struct *n;
3838 		int work, weight;
3839 
3840 		/* If softirq window is exhuasted then punt.
3841 		 * Allow this to run for 2 jiffies since which will allow
3842 		 * an average latency of 1.5/HZ.
3843 		 */
3844 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3845 			goto softnet_break;
3846 
3847 		local_irq_enable();
3848 
3849 		/* Even though interrupts have been re-enabled, this
3850 		 * access is safe because interrupts can only add new
3851 		 * entries to the tail of this list, and only ->poll()
3852 		 * calls can remove this head entry from the list.
3853 		 */
3854 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3855 
3856 		have = netpoll_poll_lock(n);
3857 
3858 		weight = n->weight;
3859 
3860 		/* This NAPI_STATE_SCHED test is for avoiding a race
3861 		 * with netpoll's poll_napi().  Only the entity which
3862 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3863 		 * actually make the ->poll() call.  Therefore we avoid
3864 		 * accidentally calling ->poll() when NAPI is not scheduled.
3865 		 */
3866 		work = 0;
3867 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3868 			work = n->poll(n, weight);
3869 			trace_napi_poll(n);
3870 		}
3871 
3872 		WARN_ON_ONCE(work > weight);
3873 
3874 		budget -= work;
3875 
3876 		local_irq_disable();
3877 
3878 		/* Drivers must not modify the NAPI state if they
3879 		 * consume the entire weight.  In such cases this code
3880 		 * still "owns" the NAPI instance and therefore can
3881 		 * move the instance around on the list at-will.
3882 		 */
3883 		if (unlikely(work == weight)) {
3884 			if (unlikely(napi_disable_pending(n))) {
3885 				local_irq_enable();
3886 				napi_complete(n);
3887 				local_irq_disable();
3888 			} else
3889 				list_move_tail(&n->poll_list, &sd->poll_list);
3890 		}
3891 
3892 		netpoll_poll_unlock(have);
3893 	}
3894 out:
3895 	net_rps_action_and_irq_enable(sd);
3896 
3897 #ifdef CONFIG_NET_DMA
3898 	/*
3899 	 * There may not be any more sk_buffs coming right now, so push
3900 	 * any pending DMA copies to hardware
3901 	 */
3902 	dma_issue_pending_all();
3903 #endif
3904 
3905 	return;
3906 
3907 softnet_break:
3908 	sd->time_squeeze++;
3909 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3910 	goto out;
3911 }
3912 
3913 static gifconf_func_t *gifconf_list[NPROTO];
3914 
3915 /**
3916  *	register_gifconf	-	register a SIOCGIF handler
3917  *	@family: Address family
3918  *	@gifconf: Function handler
3919  *
3920  *	Register protocol dependent address dumping routines. The handler
3921  *	that is passed must not be freed or reused until it has been replaced
3922  *	by another handler.
3923  */
3924 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3925 {
3926 	if (family >= NPROTO)
3927 		return -EINVAL;
3928 	gifconf_list[family] = gifconf;
3929 	return 0;
3930 }
3931 EXPORT_SYMBOL(register_gifconf);
3932 
3933 
3934 /*
3935  *	Map an interface index to its name (SIOCGIFNAME)
3936  */
3937 
3938 /*
3939  *	We need this ioctl for efficient implementation of the
3940  *	if_indextoname() function required by the IPv6 API.  Without
3941  *	it, we would have to search all the interfaces to find a
3942  *	match.  --pb
3943  */
3944 
3945 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3946 {
3947 	struct net_device *dev;
3948 	struct ifreq ifr;
3949 
3950 	/*
3951 	 *	Fetch the caller's info block.
3952 	 */
3953 
3954 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3955 		return -EFAULT;
3956 
3957 	rcu_read_lock();
3958 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3959 	if (!dev) {
3960 		rcu_read_unlock();
3961 		return -ENODEV;
3962 	}
3963 
3964 	strcpy(ifr.ifr_name, dev->name);
3965 	rcu_read_unlock();
3966 
3967 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3968 		return -EFAULT;
3969 	return 0;
3970 }
3971 
3972 /*
3973  *	Perform a SIOCGIFCONF call. This structure will change
3974  *	size eventually, and there is nothing I can do about it.
3975  *	Thus we will need a 'compatibility mode'.
3976  */
3977 
3978 static int dev_ifconf(struct net *net, char __user *arg)
3979 {
3980 	struct ifconf ifc;
3981 	struct net_device *dev;
3982 	char __user *pos;
3983 	int len;
3984 	int total;
3985 	int i;
3986 
3987 	/*
3988 	 *	Fetch the caller's info block.
3989 	 */
3990 
3991 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3992 		return -EFAULT;
3993 
3994 	pos = ifc.ifc_buf;
3995 	len = ifc.ifc_len;
3996 
3997 	/*
3998 	 *	Loop over the interfaces, and write an info block for each.
3999 	 */
4000 
4001 	total = 0;
4002 	for_each_netdev(net, dev) {
4003 		for (i = 0; i < NPROTO; i++) {
4004 			if (gifconf_list[i]) {
4005 				int done;
4006 				if (!pos)
4007 					done = gifconf_list[i](dev, NULL, 0);
4008 				else
4009 					done = gifconf_list[i](dev, pos + total,
4010 							       len - total);
4011 				if (done < 0)
4012 					return -EFAULT;
4013 				total += done;
4014 			}
4015 		}
4016 	}
4017 
4018 	/*
4019 	 *	All done.  Write the updated control block back to the caller.
4020 	 */
4021 	ifc.ifc_len = total;
4022 
4023 	/*
4024 	 * 	Both BSD and Solaris return 0 here, so we do too.
4025 	 */
4026 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4027 }
4028 
4029 #ifdef CONFIG_PROC_FS
4030 
4031 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4032 
4033 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4034 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4035 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4036 
4037 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4038 {
4039 	struct net *net = seq_file_net(seq);
4040 	struct net_device *dev;
4041 	struct hlist_node *p;
4042 	struct hlist_head *h;
4043 	unsigned int count = 0, offset = get_offset(*pos);
4044 
4045 	h = &net->dev_name_head[get_bucket(*pos)];
4046 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4047 		if (++count == offset)
4048 			return dev;
4049 	}
4050 
4051 	return NULL;
4052 }
4053 
4054 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4055 {
4056 	struct net_device *dev;
4057 	unsigned int bucket;
4058 
4059 	do {
4060 		dev = dev_from_same_bucket(seq, pos);
4061 		if (dev)
4062 			return dev;
4063 
4064 		bucket = get_bucket(*pos) + 1;
4065 		*pos = set_bucket_offset(bucket, 1);
4066 	} while (bucket < NETDEV_HASHENTRIES);
4067 
4068 	return NULL;
4069 }
4070 
4071 /*
4072  *	This is invoked by the /proc filesystem handler to display a device
4073  *	in detail.
4074  */
4075 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4076 	__acquires(RCU)
4077 {
4078 	rcu_read_lock();
4079 	if (!*pos)
4080 		return SEQ_START_TOKEN;
4081 
4082 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4083 		return NULL;
4084 
4085 	return dev_from_bucket(seq, pos);
4086 }
4087 
4088 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4089 {
4090 	++*pos;
4091 	return dev_from_bucket(seq, pos);
4092 }
4093 
4094 void dev_seq_stop(struct seq_file *seq, void *v)
4095 	__releases(RCU)
4096 {
4097 	rcu_read_unlock();
4098 }
4099 
4100 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4101 {
4102 	struct rtnl_link_stats64 temp;
4103 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4104 
4105 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4106 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4107 		   dev->name, stats->rx_bytes, stats->rx_packets,
4108 		   stats->rx_errors,
4109 		   stats->rx_dropped + stats->rx_missed_errors,
4110 		   stats->rx_fifo_errors,
4111 		   stats->rx_length_errors + stats->rx_over_errors +
4112 		    stats->rx_crc_errors + stats->rx_frame_errors,
4113 		   stats->rx_compressed, stats->multicast,
4114 		   stats->tx_bytes, stats->tx_packets,
4115 		   stats->tx_errors, stats->tx_dropped,
4116 		   stats->tx_fifo_errors, stats->collisions,
4117 		   stats->tx_carrier_errors +
4118 		    stats->tx_aborted_errors +
4119 		    stats->tx_window_errors +
4120 		    stats->tx_heartbeat_errors,
4121 		   stats->tx_compressed);
4122 }
4123 
4124 /*
4125  *	Called from the PROCfs module. This now uses the new arbitrary sized
4126  *	/proc/net interface to create /proc/net/dev
4127  */
4128 static int dev_seq_show(struct seq_file *seq, void *v)
4129 {
4130 	if (v == SEQ_START_TOKEN)
4131 		seq_puts(seq, "Inter-|   Receive                            "
4132 			      "                    |  Transmit\n"
4133 			      " face |bytes    packets errs drop fifo frame "
4134 			      "compressed multicast|bytes    packets errs "
4135 			      "drop fifo colls carrier compressed\n");
4136 	else
4137 		dev_seq_printf_stats(seq, v);
4138 	return 0;
4139 }
4140 
4141 static struct softnet_data *softnet_get_online(loff_t *pos)
4142 {
4143 	struct softnet_data *sd = NULL;
4144 
4145 	while (*pos < nr_cpu_ids)
4146 		if (cpu_online(*pos)) {
4147 			sd = &per_cpu(softnet_data, *pos);
4148 			break;
4149 		} else
4150 			++*pos;
4151 	return sd;
4152 }
4153 
4154 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4155 {
4156 	return softnet_get_online(pos);
4157 }
4158 
4159 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4160 {
4161 	++*pos;
4162 	return softnet_get_online(pos);
4163 }
4164 
4165 static void softnet_seq_stop(struct seq_file *seq, void *v)
4166 {
4167 }
4168 
4169 static int softnet_seq_show(struct seq_file *seq, void *v)
4170 {
4171 	struct softnet_data *sd = v;
4172 
4173 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4174 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4175 		   0, 0, 0, 0, /* was fastroute */
4176 		   sd->cpu_collision, sd->received_rps);
4177 	return 0;
4178 }
4179 
4180 static const struct seq_operations dev_seq_ops = {
4181 	.start = dev_seq_start,
4182 	.next  = dev_seq_next,
4183 	.stop  = dev_seq_stop,
4184 	.show  = dev_seq_show,
4185 };
4186 
4187 static int dev_seq_open(struct inode *inode, struct file *file)
4188 {
4189 	return seq_open_net(inode, file, &dev_seq_ops,
4190 			    sizeof(struct seq_net_private));
4191 }
4192 
4193 static const struct file_operations dev_seq_fops = {
4194 	.owner	 = THIS_MODULE,
4195 	.open    = dev_seq_open,
4196 	.read    = seq_read,
4197 	.llseek  = seq_lseek,
4198 	.release = seq_release_net,
4199 };
4200 
4201 static const struct seq_operations softnet_seq_ops = {
4202 	.start = softnet_seq_start,
4203 	.next  = softnet_seq_next,
4204 	.stop  = softnet_seq_stop,
4205 	.show  = softnet_seq_show,
4206 };
4207 
4208 static int softnet_seq_open(struct inode *inode, struct file *file)
4209 {
4210 	return seq_open(file, &softnet_seq_ops);
4211 }
4212 
4213 static const struct file_operations softnet_seq_fops = {
4214 	.owner	 = THIS_MODULE,
4215 	.open    = softnet_seq_open,
4216 	.read    = seq_read,
4217 	.llseek  = seq_lseek,
4218 	.release = seq_release,
4219 };
4220 
4221 static void *ptype_get_idx(loff_t pos)
4222 {
4223 	struct packet_type *pt = NULL;
4224 	loff_t i = 0;
4225 	int t;
4226 
4227 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4228 		if (i == pos)
4229 			return pt;
4230 		++i;
4231 	}
4232 
4233 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4234 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4235 			if (i == pos)
4236 				return pt;
4237 			++i;
4238 		}
4239 	}
4240 	return NULL;
4241 }
4242 
4243 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4244 	__acquires(RCU)
4245 {
4246 	rcu_read_lock();
4247 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4248 }
4249 
4250 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4251 {
4252 	struct packet_type *pt;
4253 	struct list_head *nxt;
4254 	int hash;
4255 
4256 	++*pos;
4257 	if (v == SEQ_START_TOKEN)
4258 		return ptype_get_idx(0);
4259 
4260 	pt = v;
4261 	nxt = pt->list.next;
4262 	if (pt->type == htons(ETH_P_ALL)) {
4263 		if (nxt != &ptype_all)
4264 			goto found;
4265 		hash = 0;
4266 		nxt = ptype_base[0].next;
4267 	} else
4268 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4269 
4270 	while (nxt == &ptype_base[hash]) {
4271 		if (++hash >= PTYPE_HASH_SIZE)
4272 			return NULL;
4273 		nxt = ptype_base[hash].next;
4274 	}
4275 found:
4276 	return list_entry(nxt, struct packet_type, list);
4277 }
4278 
4279 static void ptype_seq_stop(struct seq_file *seq, void *v)
4280 	__releases(RCU)
4281 {
4282 	rcu_read_unlock();
4283 }
4284 
4285 static int ptype_seq_show(struct seq_file *seq, void *v)
4286 {
4287 	struct packet_type *pt = v;
4288 
4289 	if (v == SEQ_START_TOKEN)
4290 		seq_puts(seq, "Type Device      Function\n");
4291 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4292 		if (pt->type == htons(ETH_P_ALL))
4293 			seq_puts(seq, "ALL ");
4294 		else
4295 			seq_printf(seq, "%04x", ntohs(pt->type));
4296 
4297 		seq_printf(seq, " %-8s %pF\n",
4298 			   pt->dev ? pt->dev->name : "", pt->func);
4299 	}
4300 
4301 	return 0;
4302 }
4303 
4304 static const struct seq_operations ptype_seq_ops = {
4305 	.start = ptype_seq_start,
4306 	.next  = ptype_seq_next,
4307 	.stop  = ptype_seq_stop,
4308 	.show  = ptype_seq_show,
4309 };
4310 
4311 static int ptype_seq_open(struct inode *inode, struct file *file)
4312 {
4313 	return seq_open_net(inode, file, &ptype_seq_ops,
4314 			sizeof(struct seq_net_private));
4315 }
4316 
4317 static const struct file_operations ptype_seq_fops = {
4318 	.owner	 = THIS_MODULE,
4319 	.open    = ptype_seq_open,
4320 	.read    = seq_read,
4321 	.llseek  = seq_lseek,
4322 	.release = seq_release_net,
4323 };
4324 
4325 
4326 static int __net_init dev_proc_net_init(struct net *net)
4327 {
4328 	int rc = -ENOMEM;
4329 
4330 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4331 		goto out;
4332 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4333 		goto out_dev;
4334 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4335 		goto out_softnet;
4336 
4337 	if (wext_proc_init(net))
4338 		goto out_ptype;
4339 	rc = 0;
4340 out:
4341 	return rc;
4342 out_ptype:
4343 	proc_net_remove(net, "ptype");
4344 out_softnet:
4345 	proc_net_remove(net, "softnet_stat");
4346 out_dev:
4347 	proc_net_remove(net, "dev");
4348 	goto out;
4349 }
4350 
4351 static void __net_exit dev_proc_net_exit(struct net *net)
4352 {
4353 	wext_proc_exit(net);
4354 
4355 	proc_net_remove(net, "ptype");
4356 	proc_net_remove(net, "softnet_stat");
4357 	proc_net_remove(net, "dev");
4358 }
4359 
4360 static struct pernet_operations __net_initdata dev_proc_ops = {
4361 	.init = dev_proc_net_init,
4362 	.exit = dev_proc_net_exit,
4363 };
4364 
4365 static int __init dev_proc_init(void)
4366 {
4367 	return register_pernet_subsys(&dev_proc_ops);
4368 }
4369 #else
4370 #define dev_proc_init() 0
4371 #endif	/* CONFIG_PROC_FS */
4372 
4373 
4374 /**
4375  *	netdev_set_master	-	set up master pointer
4376  *	@slave: slave device
4377  *	@master: new master device
4378  *
4379  *	Changes the master device of the slave. Pass %NULL to break the
4380  *	bonding. The caller must hold the RTNL semaphore. On a failure
4381  *	a negative errno code is returned. On success the reference counts
4382  *	are adjusted and the function returns zero.
4383  */
4384 int netdev_set_master(struct net_device *slave, struct net_device *master)
4385 {
4386 	struct net_device *old = slave->master;
4387 
4388 	ASSERT_RTNL();
4389 
4390 	if (master) {
4391 		if (old)
4392 			return -EBUSY;
4393 		dev_hold(master);
4394 	}
4395 
4396 	slave->master = master;
4397 
4398 	if (old)
4399 		dev_put(old);
4400 	return 0;
4401 }
4402 EXPORT_SYMBOL(netdev_set_master);
4403 
4404 /**
4405  *	netdev_set_bond_master	-	set up bonding master/slave pair
4406  *	@slave: slave device
4407  *	@master: new master device
4408  *
4409  *	Changes the master device of the slave. Pass %NULL to break the
4410  *	bonding. The caller must hold the RTNL semaphore. On a failure
4411  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4412  *	to the routing socket and the function returns zero.
4413  */
4414 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4415 {
4416 	int err;
4417 
4418 	ASSERT_RTNL();
4419 
4420 	err = netdev_set_master(slave, master);
4421 	if (err)
4422 		return err;
4423 	if (master)
4424 		slave->flags |= IFF_SLAVE;
4425 	else
4426 		slave->flags &= ~IFF_SLAVE;
4427 
4428 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4429 	return 0;
4430 }
4431 EXPORT_SYMBOL(netdev_set_bond_master);
4432 
4433 static void dev_change_rx_flags(struct net_device *dev, int flags)
4434 {
4435 	const struct net_device_ops *ops = dev->netdev_ops;
4436 
4437 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4438 		ops->ndo_change_rx_flags(dev, flags);
4439 }
4440 
4441 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4442 {
4443 	unsigned int old_flags = dev->flags;
4444 	uid_t uid;
4445 	gid_t gid;
4446 
4447 	ASSERT_RTNL();
4448 
4449 	dev->flags |= IFF_PROMISC;
4450 	dev->promiscuity += inc;
4451 	if (dev->promiscuity == 0) {
4452 		/*
4453 		 * Avoid overflow.
4454 		 * If inc causes overflow, untouch promisc and return error.
4455 		 */
4456 		if (inc < 0)
4457 			dev->flags &= ~IFF_PROMISC;
4458 		else {
4459 			dev->promiscuity -= inc;
4460 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4461 				dev->name);
4462 			return -EOVERFLOW;
4463 		}
4464 	}
4465 	if (dev->flags != old_flags) {
4466 		pr_info("device %s %s promiscuous mode\n",
4467 			dev->name,
4468 			dev->flags & IFF_PROMISC ? "entered" : "left");
4469 		if (audit_enabled) {
4470 			current_uid_gid(&uid, &gid);
4471 			audit_log(current->audit_context, GFP_ATOMIC,
4472 				AUDIT_ANOM_PROMISCUOUS,
4473 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4474 				dev->name, (dev->flags & IFF_PROMISC),
4475 				(old_flags & IFF_PROMISC),
4476 				audit_get_loginuid(current),
4477 				uid, gid,
4478 				audit_get_sessionid(current));
4479 		}
4480 
4481 		dev_change_rx_flags(dev, IFF_PROMISC);
4482 	}
4483 	return 0;
4484 }
4485 
4486 /**
4487  *	dev_set_promiscuity	- update promiscuity count on a device
4488  *	@dev: device
4489  *	@inc: modifier
4490  *
4491  *	Add or remove promiscuity from a device. While the count in the device
4492  *	remains above zero the interface remains promiscuous. Once it hits zero
4493  *	the device reverts back to normal filtering operation. A negative inc
4494  *	value is used to drop promiscuity on the device.
4495  *	Return 0 if successful or a negative errno code on error.
4496  */
4497 int dev_set_promiscuity(struct net_device *dev, int inc)
4498 {
4499 	unsigned int old_flags = dev->flags;
4500 	int err;
4501 
4502 	err = __dev_set_promiscuity(dev, inc);
4503 	if (err < 0)
4504 		return err;
4505 	if (dev->flags != old_flags)
4506 		dev_set_rx_mode(dev);
4507 	return err;
4508 }
4509 EXPORT_SYMBOL(dev_set_promiscuity);
4510 
4511 /**
4512  *	dev_set_allmulti	- update allmulti count on a device
4513  *	@dev: device
4514  *	@inc: modifier
4515  *
4516  *	Add or remove reception of all multicast frames to a device. While the
4517  *	count in the device remains above zero the interface remains listening
4518  *	to all interfaces. Once it hits zero the device reverts back to normal
4519  *	filtering operation. A negative @inc value is used to drop the counter
4520  *	when releasing a resource needing all multicasts.
4521  *	Return 0 if successful or a negative errno code on error.
4522  */
4523 
4524 int dev_set_allmulti(struct net_device *dev, int inc)
4525 {
4526 	unsigned int old_flags = dev->flags;
4527 
4528 	ASSERT_RTNL();
4529 
4530 	dev->flags |= IFF_ALLMULTI;
4531 	dev->allmulti += inc;
4532 	if (dev->allmulti == 0) {
4533 		/*
4534 		 * Avoid overflow.
4535 		 * If inc causes overflow, untouch allmulti and return error.
4536 		 */
4537 		if (inc < 0)
4538 			dev->flags &= ~IFF_ALLMULTI;
4539 		else {
4540 			dev->allmulti -= inc;
4541 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4542 				dev->name);
4543 			return -EOVERFLOW;
4544 		}
4545 	}
4546 	if (dev->flags ^ old_flags) {
4547 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4548 		dev_set_rx_mode(dev);
4549 	}
4550 	return 0;
4551 }
4552 EXPORT_SYMBOL(dev_set_allmulti);
4553 
4554 /*
4555  *	Upload unicast and multicast address lists to device and
4556  *	configure RX filtering. When the device doesn't support unicast
4557  *	filtering it is put in promiscuous mode while unicast addresses
4558  *	are present.
4559  */
4560 void __dev_set_rx_mode(struct net_device *dev)
4561 {
4562 	const struct net_device_ops *ops = dev->netdev_ops;
4563 
4564 	/* dev_open will call this function so the list will stay sane. */
4565 	if (!(dev->flags&IFF_UP))
4566 		return;
4567 
4568 	if (!netif_device_present(dev))
4569 		return;
4570 
4571 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4572 		/* Unicast addresses changes may only happen under the rtnl,
4573 		 * therefore calling __dev_set_promiscuity here is safe.
4574 		 */
4575 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4576 			__dev_set_promiscuity(dev, 1);
4577 			dev->uc_promisc = true;
4578 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4579 			__dev_set_promiscuity(dev, -1);
4580 			dev->uc_promisc = false;
4581 		}
4582 	}
4583 
4584 	if (ops->ndo_set_rx_mode)
4585 		ops->ndo_set_rx_mode(dev);
4586 }
4587 
4588 void dev_set_rx_mode(struct net_device *dev)
4589 {
4590 	netif_addr_lock_bh(dev);
4591 	__dev_set_rx_mode(dev);
4592 	netif_addr_unlock_bh(dev);
4593 }
4594 
4595 /**
4596  *	dev_get_flags - get flags reported to userspace
4597  *	@dev: device
4598  *
4599  *	Get the combination of flag bits exported through APIs to userspace.
4600  */
4601 unsigned dev_get_flags(const struct net_device *dev)
4602 {
4603 	unsigned flags;
4604 
4605 	flags = (dev->flags & ~(IFF_PROMISC |
4606 				IFF_ALLMULTI |
4607 				IFF_RUNNING |
4608 				IFF_LOWER_UP |
4609 				IFF_DORMANT)) |
4610 		(dev->gflags & (IFF_PROMISC |
4611 				IFF_ALLMULTI));
4612 
4613 	if (netif_running(dev)) {
4614 		if (netif_oper_up(dev))
4615 			flags |= IFF_RUNNING;
4616 		if (netif_carrier_ok(dev))
4617 			flags |= IFF_LOWER_UP;
4618 		if (netif_dormant(dev))
4619 			flags |= IFF_DORMANT;
4620 	}
4621 
4622 	return flags;
4623 }
4624 EXPORT_SYMBOL(dev_get_flags);
4625 
4626 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4627 {
4628 	unsigned int old_flags = dev->flags;
4629 	int ret;
4630 
4631 	ASSERT_RTNL();
4632 
4633 	/*
4634 	 *	Set the flags on our device.
4635 	 */
4636 
4637 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4638 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4639 			       IFF_AUTOMEDIA)) |
4640 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4641 				    IFF_ALLMULTI));
4642 
4643 	/*
4644 	 *	Load in the correct multicast list now the flags have changed.
4645 	 */
4646 
4647 	if ((old_flags ^ flags) & IFF_MULTICAST)
4648 		dev_change_rx_flags(dev, IFF_MULTICAST);
4649 
4650 	dev_set_rx_mode(dev);
4651 
4652 	/*
4653 	 *	Have we downed the interface. We handle IFF_UP ourselves
4654 	 *	according to user attempts to set it, rather than blindly
4655 	 *	setting it.
4656 	 */
4657 
4658 	ret = 0;
4659 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4660 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4661 
4662 		if (!ret)
4663 			dev_set_rx_mode(dev);
4664 	}
4665 
4666 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4667 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4668 
4669 		dev->gflags ^= IFF_PROMISC;
4670 		dev_set_promiscuity(dev, inc);
4671 	}
4672 
4673 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4674 	   is important. Some (broken) drivers set IFF_PROMISC, when
4675 	   IFF_ALLMULTI is requested not asking us and not reporting.
4676 	 */
4677 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4678 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4679 
4680 		dev->gflags ^= IFF_ALLMULTI;
4681 		dev_set_allmulti(dev, inc);
4682 	}
4683 
4684 	return ret;
4685 }
4686 
4687 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4688 {
4689 	unsigned int changes = dev->flags ^ old_flags;
4690 
4691 	if (changes & IFF_UP) {
4692 		if (dev->flags & IFF_UP)
4693 			call_netdevice_notifiers(NETDEV_UP, dev);
4694 		else
4695 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4696 	}
4697 
4698 	if (dev->flags & IFF_UP &&
4699 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4700 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4701 }
4702 
4703 /**
4704  *	dev_change_flags - change device settings
4705  *	@dev: device
4706  *	@flags: device state flags
4707  *
4708  *	Change settings on device based state flags. The flags are
4709  *	in the userspace exported format.
4710  */
4711 int dev_change_flags(struct net_device *dev, unsigned int flags)
4712 {
4713 	int ret;
4714 	unsigned int changes, old_flags = dev->flags;
4715 
4716 	ret = __dev_change_flags(dev, flags);
4717 	if (ret < 0)
4718 		return ret;
4719 
4720 	changes = old_flags ^ dev->flags;
4721 	if (changes)
4722 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4723 
4724 	__dev_notify_flags(dev, old_flags);
4725 	return ret;
4726 }
4727 EXPORT_SYMBOL(dev_change_flags);
4728 
4729 /**
4730  *	dev_set_mtu - Change maximum transfer unit
4731  *	@dev: device
4732  *	@new_mtu: new transfer unit
4733  *
4734  *	Change the maximum transfer size of the network device.
4735  */
4736 int dev_set_mtu(struct net_device *dev, int new_mtu)
4737 {
4738 	const struct net_device_ops *ops = dev->netdev_ops;
4739 	int err;
4740 
4741 	if (new_mtu == dev->mtu)
4742 		return 0;
4743 
4744 	/*	MTU must be positive.	 */
4745 	if (new_mtu < 0)
4746 		return -EINVAL;
4747 
4748 	if (!netif_device_present(dev))
4749 		return -ENODEV;
4750 
4751 	err = 0;
4752 	if (ops->ndo_change_mtu)
4753 		err = ops->ndo_change_mtu(dev, new_mtu);
4754 	else
4755 		dev->mtu = new_mtu;
4756 
4757 	if (!err && dev->flags & IFF_UP)
4758 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4759 	return err;
4760 }
4761 EXPORT_SYMBOL(dev_set_mtu);
4762 
4763 /**
4764  *	dev_set_group - Change group this device belongs to
4765  *	@dev: device
4766  *	@new_group: group this device should belong to
4767  */
4768 void dev_set_group(struct net_device *dev, int new_group)
4769 {
4770 	dev->group = new_group;
4771 }
4772 EXPORT_SYMBOL(dev_set_group);
4773 
4774 /**
4775  *	dev_set_mac_address - Change Media Access Control Address
4776  *	@dev: device
4777  *	@sa: new address
4778  *
4779  *	Change the hardware (MAC) address of the device
4780  */
4781 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4782 {
4783 	const struct net_device_ops *ops = dev->netdev_ops;
4784 	int err;
4785 
4786 	if (!ops->ndo_set_mac_address)
4787 		return -EOPNOTSUPP;
4788 	if (sa->sa_family != dev->type)
4789 		return -EINVAL;
4790 	if (!netif_device_present(dev))
4791 		return -ENODEV;
4792 	err = ops->ndo_set_mac_address(dev, sa);
4793 	if (!err)
4794 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4795 	return err;
4796 }
4797 EXPORT_SYMBOL(dev_set_mac_address);
4798 
4799 /*
4800  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4801  */
4802 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4803 {
4804 	int err;
4805 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4806 
4807 	if (!dev)
4808 		return -ENODEV;
4809 
4810 	switch (cmd) {
4811 	case SIOCGIFFLAGS:	/* Get interface flags */
4812 		ifr->ifr_flags = (short) dev_get_flags(dev);
4813 		return 0;
4814 
4815 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4816 				   (currently unused) */
4817 		ifr->ifr_metric = 0;
4818 		return 0;
4819 
4820 	case SIOCGIFMTU:	/* Get the MTU of a device */
4821 		ifr->ifr_mtu = dev->mtu;
4822 		return 0;
4823 
4824 	case SIOCGIFHWADDR:
4825 		if (!dev->addr_len)
4826 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4827 		else
4828 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4829 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4830 		ifr->ifr_hwaddr.sa_family = dev->type;
4831 		return 0;
4832 
4833 	case SIOCGIFSLAVE:
4834 		err = -EINVAL;
4835 		break;
4836 
4837 	case SIOCGIFMAP:
4838 		ifr->ifr_map.mem_start = dev->mem_start;
4839 		ifr->ifr_map.mem_end   = dev->mem_end;
4840 		ifr->ifr_map.base_addr = dev->base_addr;
4841 		ifr->ifr_map.irq       = dev->irq;
4842 		ifr->ifr_map.dma       = dev->dma;
4843 		ifr->ifr_map.port      = dev->if_port;
4844 		return 0;
4845 
4846 	case SIOCGIFINDEX:
4847 		ifr->ifr_ifindex = dev->ifindex;
4848 		return 0;
4849 
4850 	case SIOCGIFTXQLEN:
4851 		ifr->ifr_qlen = dev->tx_queue_len;
4852 		return 0;
4853 
4854 	default:
4855 		/* dev_ioctl() should ensure this case
4856 		 * is never reached
4857 		 */
4858 		WARN_ON(1);
4859 		err = -ENOTTY;
4860 		break;
4861 
4862 	}
4863 	return err;
4864 }
4865 
4866 /*
4867  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4868  */
4869 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4870 {
4871 	int err;
4872 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4873 	const struct net_device_ops *ops;
4874 
4875 	if (!dev)
4876 		return -ENODEV;
4877 
4878 	ops = dev->netdev_ops;
4879 
4880 	switch (cmd) {
4881 	case SIOCSIFFLAGS:	/* Set interface flags */
4882 		return dev_change_flags(dev, ifr->ifr_flags);
4883 
4884 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4885 				   (currently unused) */
4886 		return -EOPNOTSUPP;
4887 
4888 	case SIOCSIFMTU:	/* Set the MTU of a device */
4889 		return dev_set_mtu(dev, ifr->ifr_mtu);
4890 
4891 	case SIOCSIFHWADDR:
4892 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4893 
4894 	case SIOCSIFHWBROADCAST:
4895 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4896 			return -EINVAL;
4897 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4898 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4899 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4900 		return 0;
4901 
4902 	case SIOCSIFMAP:
4903 		if (ops->ndo_set_config) {
4904 			if (!netif_device_present(dev))
4905 				return -ENODEV;
4906 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4907 		}
4908 		return -EOPNOTSUPP;
4909 
4910 	case SIOCADDMULTI:
4911 		if (!ops->ndo_set_rx_mode ||
4912 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4913 			return -EINVAL;
4914 		if (!netif_device_present(dev))
4915 			return -ENODEV;
4916 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4917 
4918 	case SIOCDELMULTI:
4919 		if (!ops->ndo_set_rx_mode ||
4920 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4921 			return -EINVAL;
4922 		if (!netif_device_present(dev))
4923 			return -ENODEV;
4924 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4925 
4926 	case SIOCSIFTXQLEN:
4927 		if (ifr->ifr_qlen < 0)
4928 			return -EINVAL;
4929 		dev->tx_queue_len = ifr->ifr_qlen;
4930 		return 0;
4931 
4932 	case SIOCSIFNAME:
4933 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4934 		return dev_change_name(dev, ifr->ifr_newname);
4935 
4936 	case SIOCSHWTSTAMP:
4937 		err = net_hwtstamp_validate(ifr);
4938 		if (err)
4939 			return err;
4940 		/* fall through */
4941 
4942 	/*
4943 	 *	Unknown or private ioctl
4944 	 */
4945 	default:
4946 		if ((cmd >= SIOCDEVPRIVATE &&
4947 		    cmd <= SIOCDEVPRIVATE + 15) ||
4948 		    cmd == SIOCBONDENSLAVE ||
4949 		    cmd == SIOCBONDRELEASE ||
4950 		    cmd == SIOCBONDSETHWADDR ||
4951 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4952 		    cmd == SIOCBONDINFOQUERY ||
4953 		    cmd == SIOCBONDCHANGEACTIVE ||
4954 		    cmd == SIOCGMIIPHY ||
4955 		    cmd == SIOCGMIIREG ||
4956 		    cmd == SIOCSMIIREG ||
4957 		    cmd == SIOCBRADDIF ||
4958 		    cmd == SIOCBRDELIF ||
4959 		    cmd == SIOCSHWTSTAMP ||
4960 		    cmd == SIOCWANDEV) {
4961 			err = -EOPNOTSUPP;
4962 			if (ops->ndo_do_ioctl) {
4963 				if (netif_device_present(dev))
4964 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4965 				else
4966 					err = -ENODEV;
4967 			}
4968 		} else
4969 			err = -EINVAL;
4970 
4971 	}
4972 	return err;
4973 }
4974 
4975 /*
4976  *	This function handles all "interface"-type I/O control requests. The actual
4977  *	'doing' part of this is dev_ifsioc above.
4978  */
4979 
4980 /**
4981  *	dev_ioctl	-	network device ioctl
4982  *	@net: the applicable net namespace
4983  *	@cmd: command to issue
4984  *	@arg: pointer to a struct ifreq in user space
4985  *
4986  *	Issue ioctl functions to devices. This is normally called by the
4987  *	user space syscall interfaces but can sometimes be useful for
4988  *	other purposes. The return value is the return from the syscall if
4989  *	positive or a negative errno code on error.
4990  */
4991 
4992 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4993 {
4994 	struct ifreq ifr;
4995 	int ret;
4996 	char *colon;
4997 
4998 	/* One special case: SIOCGIFCONF takes ifconf argument
4999 	   and requires shared lock, because it sleeps writing
5000 	   to user space.
5001 	 */
5002 
5003 	if (cmd == SIOCGIFCONF) {
5004 		rtnl_lock();
5005 		ret = dev_ifconf(net, (char __user *) arg);
5006 		rtnl_unlock();
5007 		return ret;
5008 	}
5009 	if (cmd == SIOCGIFNAME)
5010 		return dev_ifname(net, (struct ifreq __user *)arg);
5011 
5012 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5013 		return -EFAULT;
5014 
5015 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5016 
5017 	colon = strchr(ifr.ifr_name, ':');
5018 	if (colon)
5019 		*colon = 0;
5020 
5021 	/*
5022 	 *	See which interface the caller is talking about.
5023 	 */
5024 
5025 	switch (cmd) {
5026 	/*
5027 	 *	These ioctl calls:
5028 	 *	- can be done by all.
5029 	 *	- atomic and do not require locking.
5030 	 *	- return a value
5031 	 */
5032 	case SIOCGIFFLAGS:
5033 	case SIOCGIFMETRIC:
5034 	case SIOCGIFMTU:
5035 	case SIOCGIFHWADDR:
5036 	case SIOCGIFSLAVE:
5037 	case SIOCGIFMAP:
5038 	case SIOCGIFINDEX:
5039 	case SIOCGIFTXQLEN:
5040 		dev_load(net, ifr.ifr_name);
5041 		rcu_read_lock();
5042 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5043 		rcu_read_unlock();
5044 		if (!ret) {
5045 			if (colon)
5046 				*colon = ':';
5047 			if (copy_to_user(arg, &ifr,
5048 					 sizeof(struct ifreq)))
5049 				ret = -EFAULT;
5050 		}
5051 		return ret;
5052 
5053 	case SIOCETHTOOL:
5054 		dev_load(net, ifr.ifr_name);
5055 		rtnl_lock();
5056 		ret = dev_ethtool(net, &ifr);
5057 		rtnl_unlock();
5058 		if (!ret) {
5059 			if (colon)
5060 				*colon = ':';
5061 			if (copy_to_user(arg, &ifr,
5062 					 sizeof(struct ifreq)))
5063 				ret = -EFAULT;
5064 		}
5065 		return ret;
5066 
5067 	/*
5068 	 *	These ioctl calls:
5069 	 *	- require superuser power.
5070 	 *	- require strict serialization.
5071 	 *	- return a value
5072 	 */
5073 	case SIOCGMIIPHY:
5074 	case SIOCGMIIREG:
5075 	case SIOCSIFNAME:
5076 		if (!capable(CAP_NET_ADMIN))
5077 			return -EPERM;
5078 		dev_load(net, ifr.ifr_name);
5079 		rtnl_lock();
5080 		ret = dev_ifsioc(net, &ifr, cmd);
5081 		rtnl_unlock();
5082 		if (!ret) {
5083 			if (colon)
5084 				*colon = ':';
5085 			if (copy_to_user(arg, &ifr,
5086 					 sizeof(struct ifreq)))
5087 				ret = -EFAULT;
5088 		}
5089 		return ret;
5090 
5091 	/*
5092 	 *	These ioctl calls:
5093 	 *	- require superuser power.
5094 	 *	- require strict serialization.
5095 	 *	- do not return a value
5096 	 */
5097 	case SIOCSIFFLAGS:
5098 	case SIOCSIFMETRIC:
5099 	case SIOCSIFMTU:
5100 	case SIOCSIFMAP:
5101 	case SIOCSIFHWADDR:
5102 	case SIOCSIFSLAVE:
5103 	case SIOCADDMULTI:
5104 	case SIOCDELMULTI:
5105 	case SIOCSIFHWBROADCAST:
5106 	case SIOCSIFTXQLEN:
5107 	case SIOCSMIIREG:
5108 	case SIOCBONDENSLAVE:
5109 	case SIOCBONDRELEASE:
5110 	case SIOCBONDSETHWADDR:
5111 	case SIOCBONDCHANGEACTIVE:
5112 	case SIOCBRADDIF:
5113 	case SIOCBRDELIF:
5114 	case SIOCSHWTSTAMP:
5115 		if (!capable(CAP_NET_ADMIN))
5116 			return -EPERM;
5117 		/* fall through */
5118 	case SIOCBONDSLAVEINFOQUERY:
5119 	case SIOCBONDINFOQUERY:
5120 		dev_load(net, ifr.ifr_name);
5121 		rtnl_lock();
5122 		ret = dev_ifsioc(net, &ifr, cmd);
5123 		rtnl_unlock();
5124 		return ret;
5125 
5126 	case SIOCGIFMEM:
5127 		/* Get the per device memory space. We can add this but
5128 		 * currently do not support it */
5129 	case SIOCSIFMEM:
5130 		/* Set the per device memory buffer space.
5131 		 * Not applicable in our case */
5132 	case SIOCSIFLINK:
5133 		return -ENOTTY;
5134 
5135 	/*
5136 	 *	Unknown or private ioctl.
5137 	 */
5138 	default:
5139 		if (cmd == SIOCWANDEV ||
5140 		    (cmd >= SIOCDEVPRIVATE &&
5141 		     cmd <= SIOCDEVPRIVATE + 15)) {
5142 			dev_load(net, ifr.ifr_name);
5143 			rtnl_lock();
5144 			ret = dev_ifsioc(net, &ifr, cmd);
5145 			rtnl_unlock();
5146 			if (!ret && copy_to_user(arg, &ifr,
5147 						 sizeof(struct ifreq)))
5148 				ret = -EFAULT;
5149 			return ret;
5150 		}
5151 		/* Take care of Wireless Extensions */
5152 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5153 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5154 		return -ENOTTY;
5155 	}
5156 }
5157 
5158 
5159 /**
5160  *	dev_new_index	-	allocate an ifindex
5161  *	@net: the applicable net namespace
5162  *
5163  *	Returns a suitable unique value for a new device interface
5164  *	number.  The caller must hold the rtnl semaphore or the
5165  *	dev_base_lock to be sure it remains unique.
5166  */
5167 static int dev_new_index(struct net *net)
5168 {
5169 	static int ifindex;
5170 	for (;;) {
5171 		if (++ifindex <= 0)
5172 			ifindex = 1;
5173 		if (!__dev_get_by_index(net, ifindex))
5174 			return ifindex;
5175 	}
5176 }
5177 
5178 /* Delayed registration/unregisteration */
5179 static LIST_HEAD(net_todo_list);
5180 
5181 static void net_set_todo(struct net_device *dev)
5182 {
5183 	list_add_tail(&dev->todo_list, &net_todo_list);
5184 }
5185 
5186 static void rollback_registered_many(struct list_head *head)
5187 {
5188 	struct net_device *dev, *tmp;
5189 
5190 	BUG_ON(dev_boot_phase);
5191 	ASSERT_RTNL();
5192 
5193 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5194 		/* Some devices call without registering
5195 		 * for initialization unwind. Remove those
5196 		 * devices and proceed with the remaining.
5197 		 */
5198 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5199 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5200 				 dev->name, dev);
5201 
5202 			WARN_ON(1);
5203 			list_del(&dev->unreg_list);
5204 			continue;
5205 		}
5206 		dev->dismantle = true;
5207 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5208 	}
5209 
5210 	/* If device is running, close it first. */
5211 	dev_close_many(head);
5212 
5213 	list_for_each_entry(dev, head, unreg_list) {
5214 		/* And unlink it from device chain. */
5215 		unlist_netdevice(dev);
5216 
5217 		dev->reg_state = NETREG_UNREGISTERING;
5218 	}
5219 
5220 	synchronize_net();
5221 
5222 	list_for_each_entry(dev, head, unreg_list) {
5223 		/* Shutdown queueing discipline. */
5224 		dev_shutdown(dev);
5225 
5226 
5227 		/* Notify protocols, that we are about to destroy
5228 		   this device. They should clean all the things.
5229 		*/
5230 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5231 
5232 		if (!dev->rtnl_link_ops ||
5233 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5234 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5235 
5236 		/*
5237 		 *	Flush the unicast and multicast chains
5238 		 */
5239 		dev_uc_flush(dev);
5240 		dev_mc_flush(dev);
5241 
5242 		if (dev->netdev_ops->ndo_uninit)
5243 			dev->netdev_ops->ndo_uninit(dev);
5244 
5245 		/* Notifier chain MUST detach us from master device. */
5246 		WARN_ON(dev->master);
5247 
5248 		/* Remove entries from kobject tree */
5249 		netdev_unregister_kobject(dev);
5250 	}
5251 
5252 	/* Process any work delayed until the end of the batch */
5253 	dev = list_first_entry(head, struct net_device, unreg_list);
5254 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5255 
5256 	synchronize_net();
5257 
5258 	list_for_each_entry(dev, head, unreg_list)
5259 		dev_put(dev);
5260 }
5261 
5262 static void rollback_registered(struct net_device *dev)
5263 {
5264 	LIST_HEAD(single);
5265 
5266 	list_add(&dev->unreg_list, &single);
5267 	rollback_registered_many(&single);
5268 	list_del(&single);
5269 }
5270 
5271 static netdev_features_t netdev_fix_features(struct net_device *dev,
5272 	netdev_features_t features)
5273 {
5274 	/* Fix illegal checksum combinations */
5275 	if ((features & NETIF_F_HW_CSUM) &&
5276 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5277 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5278 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5279 	}
5280 
5281 	/* Fix illegal SG+CSUM combinations. */
5282 	if ((features & NETIF_F_SG) &&
5283 	    !(features & NETIF_F_ALL_CSUM)) {
5284 		netdev_dbg(dev,
5285 			"Dropping NETIF_F_SG since no checksum feature.\n");
5286 		features &= ~NETIF_F_SG;
5287 	}
5288 
5289 	/* TSO requires that SG is present as well. */
5290 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5291 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5292 		features &= ~NETIF_F_ALL_TSO;
5293 	}
5294 
5295 	/* TSO ECN requires that TSO is present as well. */
5296 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5297 		features &= ~NETIF_F_TSO_ECN;
5298 
5299 	/* Software GSO depends on SG. */
5300 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5301 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5302 		features &= ~NETIF_F_GSO;
5303 	}
5304 
5305 	/* UFO needs SG and checksumming */
5306 	if (features & NETIF_F_UFO) {
5307 		/* maybe split UFO into V4 and V6? */
5308 		if (!((features & NETIF_F_GEN_CSUM) ||
5309 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5310 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5311 			netdev_dbg(dev,
5312 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5313 			features &= ~NETIF_F_UFO;
5314 		}
5315 
5316 		if (!(features & NETIF_F_SG)) {
5317 			netdev_dbg(dev,
5318 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5319 			features &= ~NETIF_F_UFO;
5320 		}
5321 	}
5322 
5323 	return features;
5324 }
5325 
5326 int __netdev_update_features(struct net_device *dev)
5327 {
5328 	netdev_features_t features;
5329 	int err = 0;
5330 
5331 	ASSERT_RTNL();
5332 
5333 	features = netdev_get_wanted_features(dev);
5334 
5335 	if (dev->netdev_ops->ndo_fix_features)
5336 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5337 
5338 	/* driver might be less strict about feature dependencies */
5339 	features = netdev_fix_features(dev, features);
5340 
5341 	if (dev->features == features)
5342 		return 0;
5343 
5344 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5345 		&dev->features, &features);
5346 
5347 	if (dev->netdev_ops->ndo_set_features)
5348 		err = dev->netdev_ops->ndo_set_features(dev, features);
5349 
5350 	if (unlikely(err < 0)) {
5351 		netdev_err(dev,
5352 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5353 			err, &features, &dev->features);
5354 		return -1;
5355 	}
5356 
5357 	if (!err)
5358 		dev->features = features;
5359 
5360 	return 1;
5361 }
5362 
5363 /**
5364  *	netdev_update_features - recalculate device features
5365  *	@dev: the device to check
5366  *
5367  *	Recalculate dev->features set and send notifications if it
5368  *	has changed. Should be called after driver or hardware dependent
5369  *	conditions might have changed that influence the features.
5370  */
5371 void netdev_update_features(struct net_device *dev)
5372 {
5373 	if (__netdev_update_features(dev))
5374 		netdev_features_change(dev);
5375 }
5376 EXPORT_SYMBOL(netdev_update_features);
5377 
5378 /**
5379  *	netdev_change_features - recalculate device features
5380  *	@dev: the device to check
5381  *
5382  *	Recalculate dev->features set and send notifications even
5383  *	if they have not changed. Should be called instead of
5384  *	netdev_update_features() if also dev->vlan_features might
5385  *	have changed to allow the changes to be propagated to stacked
5386  *	VLAN devices.
5387  */
5388 void netdev_change_features(struct net_device *dev)
5389 {
5390 	__netdev_update_features(dev);
5391 	netdev_features_change(dev);
5392 }
5393 EXPORT_SYMBOL(netdev_change_features);
5394 
5395 /**
5396  *	netif_stacked_transfer_operstate -	transfer operstate
5397  *	@rootdev: the root or lower level device to transfer state from
5398  *	@dev: the device to transfer operstate to
5399  *
5400  *	Transfer operational state from root to device. This is normally
5401  *	called when a stacking relationship exists between the root
5402  *	device and the device(a leaf device).
5403  */
5404 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5405 					struct net_device *dev)
5406 {
5407 	if (rootdev->operstate == IF_OPER_DORMANT)
5408 		netif_dormant_on(dev);
5409 	else
5410 		netif_dormant_off(dev);
5411 
5412 	if (netif_carrier_ok(rootdev)) {
5413 		if (!netif_carrier_ok(dev))
5414 			netif_carrier_on(dev);
5415 	} else {
5416 		if (netif_carrier_ok(dev))
5417 			netif_carrier_off(dev);
5418 	}
5419 }
5420 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5421 
5422 #ifdef CONFIG_RPS
5423 static int netif_alloc_rx_queues(struct net_device *dev)
5424 {
5425 	unsigned int i, count = dev->num_rx_queues;
5426 	struct netdev_rx_queue *rx;
5427 
5428 	BUG_ON(count < 1);
5429 
5430 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5431 	if (!rx) {
5432 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5433 		return -ENOMEM;
5434 	}
5435 	dev->_rx = rx;
5436 
5437 	for (i = 0; i < count; i++)
5438 		rx[i].dev = dev;
5439 	return 0;
5440 }
5441 #endif
5442 
5443 static void netdev_init_one_queue(struct net_device *dev,
5444 				  struct netdev_queue *queue, void *_unused)
5445 {
5446 	/* Initialize queue lock */
5447 	spin_lock_init(&queue->_xmit_lock);
5448 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5449 	queue->xmit_lock_owner = -1;
5450 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5451 	queue->dev = dev;
5452 #ifdef CONFIG_BQL
5453 	dql_init(&queue->dql, HZ);
5454 #endif
5455 }
5456 
5457 static int netif_alloc_netdev_queues(struct net_device *dev)
5458 {
5459 	unsigned int count = dev->num_tx_queues;
5460 	struct netdev_queue *tx;
5461 
5462 	BUG_ON(count < 1);
5463 
5464 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5465 	if (!tx) {
5466 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5467 		return -ENOMEM;
5468 	}
5469 	dev->_tx = tx;
5470 
5471 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5472 	spin_lock_init(&dev->tx_global_lock);
5473 
5474 	return 0;
5475 }
5476 
5477 /**
5478  *	register_netdevice	- register a network device
5479  *	@dev: device to register
5480  *
5481  *	Take a completed network device structure and add it to the kernel
5482  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5483  *	chain. 0 is returned on success. A negative errno code is returned
5484  *	on a failure to set up the device, or if the name is a duplicate.
5485  *
5486  *	Callers must hold the rtnl semaphore. You may want
5487  *	register_netdev() instead of this.
5488  *
5489  *	BUGS:
5490  *	The locking appears insufficient to guarantee two parallel registers
5491  *	will not get the same name.
5492  */
5493 
5494 int register_netdevice(struct net_device *dev)
5495 {
5496 	int ret;
5497 	struct net *net = dev_net(dev);
5498 
5499 	BUG_ON(dev_boot_phase);
5500 	ASSERT_RTNL();
5501 
5502 	might_sleep();
5503 
5504 	/* When net_device's are persistent, this will be fatal. */
5505 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5506 	BUG_ON(!net);
5507 
5508 	spin_lock_init(&dev->addr_list_lock);
5509 	netdev_set_addr_lockdep_class(dev);
5510 
5511 	dev->iflink = -1;
5512 
5513 	ret = dev_get_valid_name(dev, dev->name);
5514 	if (ret < 0)
5515 		goto out;
5516 
5517 	/* Init, if this function is available */
5518 	if (dev->netdev_ops->ndo_init) {
5519 		ret = dev->netdev_ops->ndo_init(dev);
5520 		if (ret) {
5521 			if (ret > 0)
5522 				ret = -EIO;
5523 			goto out;
5524 		}
5525 	}
5526 
5527 	dev->ifindex = dev_new_index(net);
5528 	if (dev->iflink == -1)
5529 		dev->iflink = dev->ifindex;
5530 
5531 	/* Transfer changeable features to wanted_features and enable
5532 	 * software offloads (GSO and GRO).
5533 	 */
5534 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5535 	dev->features |= NETIF_F_SOFT_FEATURES;
5536 	dev->wanted_features = dev->features & dev->hw_features;
5537 
5538 	/* Turn on no cache copy if HW is doing checksum */
5539 	if (!(dev->flags & IFF_LOOPBACK)) {
5540 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5541 		if (dev->features & NETIF_F_ALL_CSUM) {
5542 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5543 			dev->features |= NETIF_F_NOCACHE_COPY;
5544 		}
5545 	}
5546 
5547 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5548 	 */
5549 	dev->vlan_features |= NETIF_F_HIGHDMA;
5550 
5551 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5552 	ret = notifier_to_errno(ret);
5553 	if (ret)
5554 		goto err_uninit;
5555 
5556 	ret = netdev_register_kobject(dev);
5557 	if (ret)
5558 		goto err_uninit;
5559 	dev->reg_state = NETREG_REGISTERED;
5560 
5561 	__netdev_update_features(dev);
5562 
5563 	/*
5564 	 *	Default initial state at registry is that the
5565 	 *	device is present.
5566 	 */
5567 
5568 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5569 
5570 	dev_init_scheduler(dev);
5571 	dev_hold(dev);
5572 	list_netdevice(dev);
5573 
5574 	/* Notify protocols, that a new device appeared. */
5575 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5576 	ret = notifier_to_errno(ret);
5577 	if (ret) {
5578 		rollback_registered(dev);
5579 		dev->reg_state = NETREG_UNREGISTERED;
5580 	}
5581 	/*
5582 	 *	Prevent userspace races by waiting until the network
5583 	 *	device is fully setup before sending notifications.
5584 	 */
5585 	if (!dev->rtnl_link_ops ||
5586 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5587 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5588 
5589 out:
5590 	return ret;
5591 
5592 err_uninit:
5593 	if (dev->netdev_ops->ndo_uninit)
5594 		dev->netdev_ops->ndo_uninit(dev);
5595 	goto out;
5596 }
5597 EXPORT_SYMBOL(register_netdevice);
5598 
5599 /**
5600  *	init_dummy_netdev	- init a dummy network device for NAPI
5601  *	@dev: device to init
5602  *
5603  *	This takes a network device structure and initialize the minimum
5604  *	amount of fields so it can be used to schedule NAPI polls without
5605  *	registering a full blown interface. This is to be used by drivers
5606  *	that need to tie several hardware interfaces to a single NAPI
5607  *	poll scheduler due to HW limitations.
5608  */
5609 int init_dummy_netdev(struct net_device *dev)
5610 {
5611 	/* Clear everything. Note we don't initialize spinlocks
5612 	 * are they aren't supposed to be taken by any of the
5613 	 * NAPI code and this dummy netdev is supposed to be
5614 	 * only ever used for NAPI polls
5615 	 */
5616 	memset(dev, 0, sizeof(struct net_device));
5617 
5618 	/* make sure we BUG if trying to hit standard
5619 	 * register/unregister code path
5620 	 */
5621 	dev->reg_state = NETREG_DUMMY;
5622 
5623 	/* NAPI wants this */
5624 	INIT_LIST_HEAD(&dev->napi_list);
5625 
5626 	/* a dummy interface is started by default */
5627 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5628 	set_bit(__LINK_STATE_START, &dev->state);
5629 
5630 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5631 	 * because users of this 'device' dont need to change
5632 	 * its refcount.
5633 	 */
5634 
5635 	return 0;
5636 }
5637 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5638 
5639 
5640 /**
5641  *	register_netdev	- register a network device
5642  *	@dev: device to register
5643  *
5644  *	Take a completed network device structure and add it to the kernel
5645  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5646  *	chain. 0 is returned on success. A negative errno code is returned
5647  *	on a failure to set up the device, or if the name is a duplicate.
5648  *
5649  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5650  *	and expands the device name if you passed a format string to
5651  *	alloc_netdev.
5652  */
5653 int register_netdev(struct net_device *dev)
5654 {
5655 	int err;
5656 
5657 	rtnl_lock();
5658 	err = register_netdevice(dev);
5659 	rtnl_unlock();
5660 	return err;
5661 }
5662 EXPORT_SYMBOL(register_netdev);
5663 
5664 int netdev_refcnt_read(const struct net_device *dev)
5665 {
5666 	int i, refcnt = 0;
5667 
5668 	for_each_possible_cpu(i)
5669 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5670 	return refcnt;
5671 }
5672 EXPORT_SYMBOL(netdev_refcnt_read);
5673 
5674 /*
5675  * netdev_wait_allrefs - wait until all references are gone.
5676  *
5677  * This is called when unregistering network devices.
5678  *
5679  * Any protocol or device that holds a reference should register
5680  * for netdevice notification, and cleanup and put back the
5681  * reference if they receive an UNREGISTER event.
5682  * We can get stuck here if buggy protocols don't correctly
5683  * call dev_put.
5684  */
5685 static void netdev_wait_allrefs(struct net_device *dev)
5686 {
5687 	unsigned long rebroadcast_time, warning_time;
5688 	int refcnt;
5689 
5690 	linkwatch_forget_dev(dev);
5691 
5692 	rebroadcast_time = warning_time = jiffies;
5693 	refcnt = netdev_refcnt_read(dev);
5694 
5695 	while (refcnt != 0) {
5696 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5697 			rtnl_lock();
5698 
5699 			/* Rebroadcast unregister notification */
5700 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5701 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5702 			 * should have already handle it the first time */
5703 
5704 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5705 				     &dev->state)) {
5706 				/* We must not have linkwatch events
5707 				 * pending on unregister. If this
5708 				 * happens, we simply run the queue
5709 				 * unscheduled, resulting in a noop
5710 				 * for this device.
5711 				 */
5712 				linkwatch_run_queue();
5713 			}
5714 
5715 			__rtnl_unlock();
5716 
5717 			rebroadcast_time = jiffies;
5718 		}
5719 
5720 		msleep(250);
5721 
5722 		refcnt = netdev_refcnt_read(dev);
5723 
5724 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5725 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5726 				 dev->name, refcnt);
5727 			warning_time = jiffies;
5728 		}
5729 	}
5730 }
5731 
5732 /* The sequence is:
5733  *
5734  *	rtnl_lock();
5735  *	...
5736  *	register_netdevice(x1);
5737  *	register_netdevice(x2);
5738  *	...
5739  *	unregister_netdevice(y1);
5740  *	unregister_netdevice(y2);
5741  *      ...
5742  *	rtnl_unlock();
5743  *	free_netdev(y1);
5744  *	free_netdev(y2);
5745  *
5746  * We are invoked by rtnl_unlock().
5747  * This allows us to deal with problems:
5748  * 1) We can delete sysfs objects which invoke hotplug
5749  *    without deadlocking with linkwatch via keventd.
5750  * 2) Since we run with the RTNL semaphore not held, we can sleep
5751  *    safely in order to wait for the netdev refcnt to drop to zero.
5752  *
5753  * We must not return until all unregister events added during
5754  * the interval the lock was held have been completed.
5755  */
5756 void netdev_run_todo(void)
5757 {
5758 	struct list_head list;
5759 
5760 	/* Snapshot list, allow later requests */
5761 	list_replace_init(&net_todo_list, &list);
5762 
5763 	__rtnl_unlock();
5764 
5765 	/* Wait for rcu callbacks to finish before attempting to drain
5766 	 * the device list.  This usually avoids a 250ms wait.
5767 	 */
5768 	if (!list_empty(&list))
5769 		rcu_barrier();
5770 
5771 	while (!list_empty(&list)) {
5772 		struct net_device *dev
5773 			= list_first_entry(&list, struct net_device, todo_list);
5774 		list_del(&dev->todo_list);
5775 
5776 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5777 			pr_err("network todo '%s' but state %d\n",
5778 			       dev->name, dev->reg_state);
5779 			dump_stack();
5780 			continue;
5781 		}
5782 
5783 		dev->reg_state = NETREG_UNREGISTERED;
5784 
5785 		on_each_cpu(flush_backlog, dev, 1);
5786 
5787 		netdev_wait_allrefs(dev);
5788 
5789 		/* paranoia */
5790 		BUG_ON(netdev_refcnt_read(dev));
5791 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5792 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5793 		WARN_ON(dev->dn_ptr);
5794 
5795 		if (dev->destructor)
5796 			dev->destructor(dev);
5797 
5798 		/* Free network device */
5799 		kobject_put(&dev->dev.kobj);
5800 	}
5801 }
5802 
5803 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5804  * fields in the same order, with only the type differing.
5805  */
5806 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5807 			     const struct net_device_stats *netdev_stats)
5808 {
5809 #if BITS_PER_LONG == 64
5810 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5811 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5812 #else
5813 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5814 	const unsigned long *src = (const unsigned long *)netdev_stats;
5815 	u64 *dst = (u64 *)stats64;
5816 
5817 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5818 		     sizeof(*stats64) / sizeof(u64));
5819 	for (i = 0; i < n; i++)
5820 		dst[i] = src[i];
5821 #endif
5822 }
5823 EXPORT_SYMBOL(netdev_stats_to_stats64);
5824 
5825 /**
5826  *	dev_get_stats	- get network device statistics
5827  *	@dev: device to get statistics from
5828  *	@storage: place to store stats
5829  *
5830  *	Get network statistics from device. Return @storage.
5831  *	The device driver may provide its own method by setting
5832  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5833  *	otherwise the internal statistics structure is used.
5834  */
5835 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5836 					struct rtnl_link_stats64 *storage)
5837 {
5838 	const struct net_device_ops *ops = dev->netdev_ops;
5839 
5840 	if (ops->ndo_get_stats64) {
5841 		memset(storage, 0, sizeof(*storage));
5842 		ops->ndo_get_stats64(dev, storage);
5843 	} else if (ops->ndo_get_stats) {
5844 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5845 	} else {
5846 		netdev_stats_to_stats64(storage, &dev->stats);
5847 	}
5848 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5849 	return storage;
5850 }
5851 EXPORT_SYMBOL(dev_get_stats);
5852 
5853 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5854 {
5855 	struct netdev_queue *queue = dev_ingress_queue(dev);
5856 
5857 #ifdef CONFIG_NET_CLS_ACT
5858 	if (queue)
5859 		return queue;
5860 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5861 	if (!queue)
5862 		return NULL;
5863 	netdev_init_one_queue(dev, queue, NULL);
5864 	queue->qdisc = &noop_qdisc;
5865 	queue->qdisc_sleeping = &noop_qdisc;
5866 	rcu_assign_pointer(dev->ingress_queue, queue);
5867 #endif
5868 	return queue;
5869 }
5870 
5871 /**
5872  *	alloc_netdev_mqs - allocate network device
5873  *	@sizeof_priv:	size of private data to allocate space for
5874  *	@name:		device name format string
5875  *	@setup:		callback to initialize device
5876  *	@txqs:		the number of TX subqueues to allocate
5877  *	@rxqs:		the number of RX subqueues to allocate
5878  *
5879  *	Allocates a struct net_device with private data area for driver use
5880  *	and performs basic initialization.  Also allocates subquue structs
5881  *	for each queue on the device.
5882  */
5883 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5884 		void (*setup)(struct net_device *),
5885 		unsigned int txqs, unsigned int rxqs)
5886 {
5887 	struct net_device *dev;
5888 	size_t alloc_size;
5889 	struct net_device *p;
5890 
5891 	BUG_ON(strlen(name) >= sizeof(dev->name));
5892 
5893 	if (txqs < 1) {
5894 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5895 		return NULL;
5896 	}
5897 
5898 #ifdef CONFIG_RPS
5899 	if (rxqs < 1) {
5900 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5901 		return NULL;
5902 	}
5903 #endif
5904 
5905 	alloc_size = sizeof(struct net_device);
5906 	if (sizeof_priv) {
5907 		/* ensure 32-byte alignment of private area */
5908 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5909 		alloc_size += sizeof_priv;
5910 	}
5911 	/* ensure 32-byte alignment of whole construct */
5912 	alloc_size += NETDEV_ALIGN - 1;
5913 
5914 	p = kzalloc(alloc_size, GFP_KERNEL);
5915 	if (!p) {
5916 		pr_err("alloc_netdev: Unable to allocate device\n");
5917 		return NULL;
5918 	}
5919 
5920 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5921 	dev->padded = (char *)dev - (char *)p;
5922 
5923 	dev->pcpu_refcnt = alloc_percpu(int);
5924 	if (!dev->pcpu_refcnt)
5925 		goto free_p;
5926 
5927 	if (dev_addr_init(dev))
5928 		goto free_pcpu;
5929 
5930 	dev_mc_init(dev);
5931 	dev_uc_init(dev);
5932 
5933 	dev_net_set(dev, &init_net);
5934 
5935 	dev->gso_max_size = GSO_MAX_SIZE;
5936 
5937 	INIT_LIST_HEAD(&dev->napi_list);
5938 	INIT_LIST_HEAD(&dev->unreg_list);
5939 	INIT_LIST_HEAD(&dev->link_watch_list);
5940 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5941 	setup(dev);
5942 
5943 	dev->num_tx_queues = txqs;
5944 	dev->real_num_tx_queues = txqs;
5945 	if (netif_alloc_netdev_queues(dev))
5946 		goto free_all;
5947 
5948 #ifdef CONFIG_RPS
5949 	dev->num_rx_queues = rxqs;
5950 	dev->real_num_rx_queues = rxqs;
5951 	if (netif_alloc_rx_queues(dev))
5952 		goto free_all;
5953 #endif
5954 
5955 	strcpy(dev->name, name);
5956 	dev->group = INIT_NETDEV_GROUP;
5957 	return dev;
5958 
5959 free_all:
5960 	free_netdev(dev);
5961 	return NULL;
5962 
5963 free_pcpu:
5964 	free_percpu(dev->pcpu_refcnt);
5965 	kfree(dev->_tx);
5966 #ifdef CONFIG_RPS
5967 	kfree(dev->_rx);
5968 #endif
5969 
5970 free_p:
5971 	kfree(p);
5972 	return NULL;
5973 }
5974 EXPORT_SYMBOL(alloc_netdev_mqs);
5975 
5976 /**
5977  *	free_netdev - free network device
5978  *	@dev: device
5979  *
5980  *	This function does the last stage of destroying an allocated device
5981  * 	interface. The reference to the device object is released.
5982  *	If this is the last reference then it will be freed.
5983  */
5984 void free_netdev(struct net_device *dev)
5985 {
5986 	struct napi_struct *p, *n;
5987 
5988 	release_net(dev_net(dev));
5989 
5990 	kfree(dev->_tx);
5991 #ifdef CONFIG_RPS
5992 	kfree(dev->_rx);
5993 #endif
5994 
5995 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5996 
5997 	/* Flush device addresses */
5998 	dev_addr_flush(dev);
5999 
6000 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6001 		netif_napi_del(p);
6002 
6003 	free_percpu(dev->pcpu_refcnt);
6004 	dev->pcpu_refcnt = NULL;
6005 
6006 	/*  Compatibility with error handling in drivers */
6007 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6008 		kfree((char *)dev - dev->padded);
6009 		return;
6010 	}
6011 
6012 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6013 	dev->reg_state = NETREG_RELEASED;
6014 
6015 	/* will free via device release */
6016 	put_device(&dev->dev);
6017 }
6018 EXPORT_SYMBOL(free_netdev);
6019 
6020 /**
6021  *	synchronize_net -  Synchronize with packet receive processing
6022  *
6023  *	Wait for packets currently being received to be done.
6024  *	Does not block later packets from starting.
6025  */
6026 void synchronize_net(void)
6027 {
6028 	might_sleep();
6029 	if (rtnl_is_locked())
6030 		synchronize_rcu_expedited();
6031 	else
6032 		synchronize_rcu();
6033 }
6034 EXPORT_SYMBOL(synchronize_net);
6035 
6036 /**
6037  *	unregister_netdevice_queue - remove device from the kernel
6038  *	@dev: device
6039  *	@head: list
6040  *
6041  *	This function shuts down a device interface and removes it
6042  *	from the kernel tables.
6043  *	If head not NULL, device is queued to be unregistered later.
6044  *
6045  *	Callers must hold the rtnl semaphore.  You may want
6046  *	unregister_netdev() instead of this.
6047  */
6048 
6049 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6050 {
6051 	ASSERT_RTNL();
6052 
6053 	if (head) {
6054 		list_move_tail(&dev->unreg_list, head);
6055 	} else {
6056 		rollback_registered(dev);
6057 		/* Finish processing unregister after unlock */
6058 		net_set_todo(dev);
6059 	}
6060 }
6061 EXPORT_SYMBOL(unregister_netdevice_queue);
6062 
6063 /**
6064  *	unregister_netdevice_many - unregister many devices
6065  *	@head: list of devices
6066  */
6067 void unregister_netdevice_many(struct list_head *head)
6068 {
6069 	struct net_device *dev;
6070 
6071 	if (!list_empty(head)) {
6072 		rollback_registered_many(head);
6073 		list_for_each_entry(dev, head, unreg_list)
6074 			net_set_todo(dev);
6075 	}
6076 }
6077 EXPORT_SYMBOL(unregister_netdevice_many);
6078 
6079 /**
6080  *	unregister_netdev - remove device from the kernel
6081  *	@dev: device
6082  *
6083  *	This function shuts down a device interface and removes it
6084  *	from the kernel tables.
6085  *
6086  *	This is just a wrapper for unregister_netdevice that takes
6087  *	the rtnl semaphore.  In general you want to use this and not
6088  *	unregister_netdevice.
6089  */
6090 void unregister_netdev(struct net_device *dev)
6091 {
6092 	rtnl_lock();
6093 	unregister_netdevice(dev);
6094 	rtnl_unlock();
6095 }
6096 EXPORT_SYMBOL(unregister_netdev);
6097 
6098 /**
6099  *	dev_change_net_namespace - move device to different nethost namespace
6100  *	@dev: device
6101  *	@net: network namespace
6102  *	@pat: If not NULL name pattern to try if the current device name
6103  *	      is already taken in the destination network namespace.
6104  *
6105  *	This function shuts down a device interface and moves it
6106  *	to a new network namespace. On success 0 is returned, on
6107  *	a failure a netagive errno code is returned.
6108  *
6109  *	Callers must hold the rtnl semaphore.
6110  */
6111 
6112 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6113 {
6114 	int err;
6115 
6116 	ASSERT_RTNL();
6117 
6118 	/* Don't allow namespace local devices to be moved. */
6119 	err = -EINVAL;
6120 	if (dev->features & NETIF_F_NETNS_LOCAL)
6121 		goto out;
6122 
6123 	/* Ensure the device has been registrered */
6124 	err = -EINVAL;
6125 	if (dev->reg_state != NETREG_REGISTERED)
6126 		goto out;
6127 
6128 	/* Get out if there is nothing todo */
6129 	err = 0;
6130 	if (net_eq(dev_net(dev), net))
6131 		goto out;
6132 
6133 	/* Pick the destination device name, and ensure
6134 	 * we can use it in the destination network namespace.
6135 	 */
6136 	err = -EEXIST;
6137 	if (__dev_get_by_name(net, dev->name)) {
6138 		/* We get here if we can't use the current device name */
6139 		if (!pat)
6140 			goto out;
6141 		if (dev_get_valid_name(dev, pat) < 0)
6142 			goto out;
6143 	}
6144 
6145 	/*
6146 	 * And now a mini version of register_netdevice unregister_netdevice.
6147 	 */
6148 
6149 	/* If device is running close it first. */
6150 	dev_close(dev);
6151 
6152 	/* And unlink it from device chain */
6153 	err = -ENODEV;
6154 	unlist_netdevice(dev);
6155 
6156 	synchronize_net();
6157 
6158 	/* Shutdown queueing discipline. */
6159 	dev_shutdown(dev);
6160 
6161 	/* Notify protocols, that we are about to destroy
6162 	   this device. They should clean all the things.
6163 
6164 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6165 	   This is wanted because this way 8021q and macvlan know
6166 	   the device is just moving and can keep their slaves up.
6167 	*/
6168 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6169 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6170 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6171 
6172 	/*
6173 	 *	Flush the unicast and multicast chains
6174 	 */
6175 	dev_uc_flush(dev);
6176 	dev_mc_flush(dev);
6177 
6178 	/* Actually switch the network namespace */
6179 	dev_net_set(dev, net);
6180 
6181 	/* If there is an ifindex conflict assign a new one */
6182 	if (__dev_get_by_index(net, dev->ifindex)) {
6183 		int iflink = (dev->iflink == dev->ifindex);
6184 		dev->ifindex = dev_new_index(net);
6185 		if (iflink)
6186 			dev->iflink = dev->ifindex;
6187 	}
6188 
6189 	/* Fixup kobjects */
6190 	err = device_rename(&dev->dev, dev->name);
6191 	WARN_ON(err);
6192 
6193 	/* Add the device back in the hashes */
6194 	list_netdevice(dev);
6195 
6196 	/* Notify protocols, that a new device appeared. */
6197 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6198 
6199 	/*
6200 	 *	Prevent userspace races by waiting until the network
6201 	 *	device is fully setup before sending notifications.
6202 	 */
6203 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6204 
6205 	synchronize_net();
6206 	err = 0;
6207 out:
6208 	return err;
6209 }
6210 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6211 
6212 static int dev_cpu_callback(struct notifier_block *nfb,
6213 			    unsigned long action,
6214 			    void *ocpu)
6215 {
6216 	struct sk_buff **list_skb;
6217 	struct sk_buff *skb;
6218 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6219 	struct softnet_data *sd, *oldsd;
6220 
6221 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6222 		return NOTIFY_OK;
6223 
6224 	local_irq_disable();
6225 	cpu = smp_processor_id();
6226 	sd = &per_cpu(softnet_data, cpu);
6227 	oldsd = &per_cpu(softnet_data, oldcpu);
6228 
6229 	/* Find end of our completion_queue. */
6230 	list_skb = &sd->completion_queue;
6231 	while (*list_skb)
6232 		list_skb = &(*list_skb)->next;
6233 	/* Append completion queue from offline CPU. */
6234 	*list_skb = oldsd->completion_queue;
6235 	oldsd->completion_queue = NULL;
6236 
6237 	/* Append output queue from offline CPU. */
6238 	if (oldsd->output_queue) {
6239 		*sd->output_queue_tailp = oldsd->output_queue;
6240 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6241 		oldsd->output_queue = NULL;
6242 		oldsd->output_queue_tailp = &oldsd->output_queue;
6243 	}
6244 	/* Append NAPI poll list from offline CPU. */
6245 	if (!list_empty(&oldsd->poll_list)) {
6246 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6247 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6248 	}
6249 
6250 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6251 	local_irq_enable();
6252 
6253 	/* Process offline CPU's input_pkt_queue */
6254 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6255 		netif_rx(skb);
6256 		input_queue_head_incr(oldsd);
6257 	}
6258 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6259 		netif_rx(skb);
6260 		input_queue_head_incr(oldsd);
6261 	}
6262 
6263 	return NOTIFY_OK;
6264 }
6265 
6266 
6267 /**
6268  *	netdev_increment_features - increment feature set by one
6269  *	@all: current feature set
6270  *	@one: new feature set
6271  *	@mask: mask feature set
6272  *
6273  *	Computes a new feature set after adding a device with feature set
6274  *	@one to the master device with current feature set @all.  Will not
6275  *	enable anything that is off in @mask. Returns the new feature set.
6276  */
6277 netdev_features_t netdev_increment_features(netdev_features_t all,
6278 	netdev_features_t one, netdev_features_t mask)
6279 {
6280 	if (mask & NETIF_F_GEN_CSUM)
6281 		mask |= NETIF_F_ALL_CSUM;
6282 	mask |= NETIF_F_VLAN_CHALLENGED;
6283 
6284 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6285 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6286 
6287 	/* If one device supports hw checksumming, set for all. */
6288 	if (all & NETIF_F_GEN_CSUM)
6289 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6290 
6291 	return all;
6292 }
6293 EXPORT_SYMBOL(netdev_increment_features);
6294 
6295 static struct hlist_head *netdev_create_hash(void)
6296 {
6297 	int i;
6298 	struct hlist_head *hash;
6299 
6300 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6301 	if (hash != NULL)
6302 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6303 			INIT_HLIST_HEAD(&hash[i]);
6304 
6305 	return hash;
6306 }
6307 
6308 /* Initialize per network namespace state */
6309 static int __net_init netdev_init(struct net *net)
6310 {
6311 	INIT_LIST_HEAD(&net->dev_base_head);
6312 
6313 	net->dev_name_head = netdev_create_hash();
6314 	if (net->dev_name_head == NULL)
6315 		goto err_name;
6316 
6317 	net->dev_index_head = netdev_create_hash();
6318 	if (net->dev_index_head == NULL)
6319 		goto err_idx;
6320 
6321 	return 0;
6322 
6323 err_idx:
6324 	kfree(net->dev_name_head);
6325 err_name:
6326 	return -ENOMEM;
6327 }
6328 
6329 /**
6330  *	netdev_drivername - network driver for the device
6331  *	@dev: network device
6332  *
6333  *	Determine network driver for device.
6334  */
6335 const char *netdev_drivername(const struct net_device *dev)
6336 {
6337 	const struct device_driver *driver;
6338 	const struct device *parent;
6339 	const char *empty = "";
6340 
6341 	parent = dev->dev.parent;
6342 	if (!parent)
6343 		return empty;
6344 
6345 	driver = parent->driver;
6346 	if (driver && driver->name)
6347 		return driver->name;
6348 	return empty;
6349 }
6350 
6351 int __netdev_printk(const char *level, const struct net_device *dev,
6352 			   struct va_format *vaf)
6353 {
6354 	int r;
6355 
6356 	if (dev && dev->dev.parent)
6357 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6358 			       netdev_name(dev), vaf);
6359 	else if (dev)
6360 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6361 	else
6362 		r = printk("%s(NULL net_device): %pV", level, vaf);
6363 
6364 	return r;
6365 }
6366 EXPORT_SYMBOL(__netdev_printk);
6367 
6368 int netdev_printk(const char *level, const struct net_device *dev,
6369 		  const char *format, ...)
6370 {
6371 	struct va_format vaf;
6372 	va_list args;
6373 	int r;
6374 
6375 	va_start(args, format);
6376 
6377 	vaf.fmt = format;
6378 	vaf.va = &args;
6379 
6380 	r = __netdev_printk(level, dev, &vaf);
6381 	va_end(args);
6382 
6383 	return r;
6384 }
6385 EXPORT_SYMBOL(netdev_printk);
6386 
6387 #define define_netdev_printk_level(func, level)			\
6388 int func(const struct net_device *dev, const char *fmt, ...)	\
6389 {								\
6390 	int r;							\
6391 	struct va_format vaf;					\
6392 	va_list args;						\
6393 								\
6394 	va_start(args, fmt);					\
6395 								\
6396 	vaf.fmt = fmt;						\
6397 	vaf.va = &args;						\
6398 								\
6399 	r = __netdev_printk(level, dev, &vaf);			\
6400 	va_end(args);						\
6401 								\
6402 	return r;						\
6403 }								\
6404 EXPORT_SYMBOL(func);
6405 
6406 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6407 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6408 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6409 define_netdev_printk_level(netdev_err, KERN_ERR);
6410 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6411 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6412 define_netdev_printk_level(netdev_info, KERN_INFO);
6413 
6414 static void __net_exit netdev_exit(struct net *net)
6415 {
6416 	kfree(net->dev_name_head);
6417 	kfree(net->dev_index_head);
6418 }
6419 
6420 static struct pernet_operations __net_initdata netdev_net_ops = {
6421 	.init = netdev_init,
6422 	.exit = netdev_exit,
6423 };
6424 
6425 static void __net_exit default_device_exit(struct net *net)
6426 {
6427 	struct net_device *dev, *aux;
6428 	/*
6429 	 * Push all migratable network devices back to the
6430 	 * initial network namespace
6431 	 */
6432 	rtnl_lock();
6433 	for_each_netdev_safe(net, dev, aux) {
6434 		int err;
6435 		char fb_name[IFNAMSIZ];
6436 
6437 		/* Ignore unmoveable devices (i.e. loopback) */
6438 		if (dev->features & NETIF_F_NETNS_LOCAL)
6439 			continue;
6440 
6441 		/* Leave virtual devices for the generic cleanup */
6442 		if (dev->rtnl_link_ops)
6443 			continue;
6444 
6445 		/* Push remaining network devices to init_net */
6446 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6447 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6448 		if (err) {
6449 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6450 				 __func__, dev->name, err);
6451 			BUG();
6452 		}
6453 	}
6454 	rtnl_unlock();
6455 }
6456 
6457 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6458 {
6459 	/* At exit all network devices most be removed from a network
6460 	 * namespace.  Do this in the reverse order of registration.
6461 	 * Do this across as many network namespaces as possible to
6462 	 * improve batching efficiency.
6463 	 */
6464 	struct net_device *dev;
6465 	struct net *net;
6466 	LIST_HEAD(dev_kill_list);
6467 
6468 	rtnl_lock();
6469 	list_for_each_entry(net, net_list, exit_list) {
6470 		for_each_netdev_reverse(net, dev) {
6471 			if (dev->rtnl_link_ops)
6472 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6473 			else
6474 				unregister_netdevice_queue(dev, &dev_kill_list);
6475 		}
6476 	}
6477 	unregister_netdevice_many(&dev_kill_list);
6478 	list_del(&dev_kill_list);
6479 	rtnl_unlock();
6480 }
6481 
6482 static struct pernet_operations __net_initdata default_device_ops = {
6483 	.exit = default_device_exit,
6484 	.exit_batch = default_device_exit_batch,
6485 };
6486 
6487 /*
6488  *	Initialize the DEV module. At boot time this walks the device list and
6489  *	unhooks any devices that fail to initialise (normally hardware not
6490  *	present) and leaves us with a valid list of present and active devices.
6491  *
6492  */
6493 
6494 /*
6495  *       This is called single threaded during boot, so no need
6496  *       to take the rtnl semaphore.
6497  */
6498 static int __init net_dev_init(void)
6499 {
6500 	int i, rc = -ENOMEM;
6501 
6502 	BUG_ON(!dev_boot_phase);
6503 
6504 	if (dev_proc_init())
6505 		goto out;
6506 
6507 	if (netdev_kobject_init())
6508 		goto out;
6509 
6510 	INIT_LIST_HEAD(&ptype_all);
6511 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6512 		INIT_LIST_HEAD(&ptype_base[i]);
6513 
6514 	if (register_pernet_subsys(&netdev_net_ops))
6515 		goto out;
6516 
6517 	/*
6518 	 *	Initialise the packet receive queues.
6519 	 */
6520 
6521 	for_each_possible_cpu(i) {
6522 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6523 
6524 		memset(sd, 0, sizeof(*sd));
6525 		skb_queue_head_init(&sd->input_pkt_queue);
6526 		skb_queue_head_init(&sd->process_queue);
6527 		sd->completion_queue = NULL;
6528 		INIT_LIST_HEAD(&sd->poll_list);
6529 		sd->output_queue = NULL;
6530 		sd->output_queue_tailp = &sd->output_queue;
6531 #ifdef CONFIG_RPS
6532 		sd->csd.func = rps_trigger_softirq;
6533 		sd->csd.info = sd;
6534 		sd->csd.flags = 0;
6535 		sd->cpu = i;
6536 #endif
6537 
6538 		sd->backlog.poll = process_backlog;
6539 		sd->backlog.weight = weight_p;
6540 		sd->backlog.gro_list = NULL;
6541 		sd->backlog.gro_count = 0;
6542 	}
6543 
6544 	dev_boot_phase = 0;
6545 
6546 	/* The loopback device is special if any other network devices
6547 	 * is present in a network namespace the loopback device must
6548 	 * be present. Since we now dynamically allocate and free the
6549 	 * loopback device ensure this invariant is maintained by
6550 	 * keeping the loopback device as the first device on the
6551 	 * list of network devices.  Ensuring the loopback devices
6552 	 * is the first device that appears and the last network device
6553 	 * that disappears.
6554 	 */
6555 	if (register_pernet_device(&loopback_net_ops))
6556 		goto out;
6557 
6558 	if (register_pernet_device(&default_device_ops))
6559 		goto out;
6560 
6561 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6562 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6563 
6564 	hotcpu_notifier(dev_cpu_callback, 0);
6565 	dst_init();
6566 	dev_mcast_init();
6567 	rc = 0;
6568 out:
6569 	return rc;
6570 }
6571 
6572 subsys_initcall(net_dev_init);
6573 
6574 static int __init initialize_hashrnd(void)
6575 {
6576 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6577 	return 0;
6578 }
6579 
6580 late_initcall_sync(initialize_hashrnd);
6581 
6582