1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_lock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 static inline void rps_unlock(struct softnet_data *sd) 228 { 229 #ifdef CONFIG_RPS 230 spin_unlock(&sd->input_pkt_queue.lock); 231 #endif 232 } 233 234 /* Device list insertion */ 235 static int list_netdevice(struct net_device *dev) 236 { 237 struct net *net = dev_net(dev); 238 239 ASSERT_RTNL(); 240 241 write_lock_bh(&dev_base_lock); 242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 244 hlist_add_head_rcu(&dev->index_hlist, 245 dev_index_hash(net, dev->ifindex)); 246 write_unlock_bh(&dev_base_lock); 247 248 dev_base_seq_inc(net); 249 250 return 0; 251 } 252 253 /* Device list removal 254 * caller must respect a RCU grace period before freeing/reusing dev 255 */ 256 static void unlist_netdevice(struct net_device *dev) 257 { 258 ASSERT_RTNL(); 259 260 /* Unlink dev from the device chain */ 261 write_lock_bh(&dev_base_lock); 262 list_del_rcu(&dev->dev_list); 263 hlist_del_rcu(&dev->name_hlist); 264 hlist_del_rcu(&dev->index_hlist); 265 write_unlock_bh(&dev_base_lock); 266 267 dev_base_seq_inc(dev_net(dev)); 268 } 269 270 /* 271 * Our notifier list 272 */ 273 274 static RAW_NOTIFIER_HEAD(netdev_chain); 275 276 /* 277 * Device drivers call our routines to queue packets here. We empty the 278 * queue in the local softnet handler. 279 */ 280 281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 282 EXPORT_PER_CPU_SYMBOL(softnet_data); 283 284 #ifdef CONFIG_LOCKDEP 285 /* 286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 287 * according to dev->type 288 */ 289 static const unsigned short netdev_lock_type[] = 290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 305 ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 323 "_xmit_VOID", "_xmit_NONE"}; 324 325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 327 328 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 329 { 330 int i; 331 332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 333 if (netdev_lock_type[i] == dev_type) 334 return i; 335 /* the last key is used by default */ 336 return ARRAY_SIZE(netdev_lock_type) - 1; 337 } 338 339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 340 unsigned short dev_type) 341 { 342 int i; 343 344 i = netdev_lock_pos(dev_type); 345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 346 netdev_lock_name[i]); 347 } 348 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 int i; 352 353 i = netdev_lock_pos(dev->type); 354 lockdep_set_class_and_name(&dev->addr_list_lock, 355 &netdev_addr_lock_key[i], 356 netdev_lock_name[i]); 357 } 358 #else 359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 360 unsigned short dev_type) 361 { 362 } 363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 364 { 365 } 366 #endif 367 368 /******************************************************************************* 369 370 Protocol management and registration routines 371 372 *******************************************************************************/ 373 374 /* 375 * Add a protocol ID to the list. Now that the input handler is 376 * smarter we can dispense with all the messy stuff that used to be 377 * here. 378 * 379 * BEWARE!!! Protocol handlers, mangling input packets, 380 * MUST BE last in hash buckets and checking protocol handlers 381 * MUST start from promiscuous ptype_all chain in net_bh. 382 * It is true now, do not change it. 383 * Explanation follows: if protocol handler, mangling packet, will 384 * be the first on list, it is not able to sense, that packet 385 * is cloned and should be copied-on-write, so that it will 386 * change it and subsequent readers will get broken packet. 387 * --ANK (980803) 388 */ 389 390 static inline struct list_head *ptype_head(const struct packet_type *pt) 391 { 392 if (pt->type == htons(ETH_P_ALL)) 393 return &ptype_all; 394 else 395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 396 } 397 398 /** 399 * dev_add_pack - add packet handler 400 * @pt: packet type declaration 401 * 402 * Add a protocol handler to the networking stack. The passed &packet_type 403 * is linked into kernel lists and may not be freed until it has been 404 * removed from the kernel lists. 405 * 406 * This call does not sleep therefore it can not 407 * guarantee all CPU's that are in middle of receiving packets 408 * will see the new packet type (until the next received packet). 409 */ 410 411 void dev_add_pack(struct packet_type *pt) 412 { 413 struct list_head *head = ptype_head(pt); 414 415 spin_lock(&ptype_lock); 416 list_add_rcu(&pt->list, head); 417 spin_unlock(&ptype_lock); 418 } 419 EXPORT_SYMBOL(dev_add_pack); 420 421 /** 422 * __dev_remove_pack - remove packet handler 423 * @pt: packet type declaration 424 * 425 * Remove a protocol handler that was previously added to the kernel 426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 427 * from the kernel lists and can be freed or reused once this function 428 * returns. 429 * 430 * The packet type might still be in use by receivers 431 * and must not be freed until after all the CPU's have gone 432 * through a quiescent state. 433 */ 434 void __dev_remove_pack(struct packet_type *pt) 435 { 436 struct list_head *head = ptype_head(pt); 437 struct packet_type *pt1; 438 439 spin_lock(&ptype_lock); 440 441 list_for_each_entry(pt1, head, list) { 442 if (pt == pt1) { 443 list_del_rcu(&pt->list); 444 goto out; 445 } 446 } 447 448 pr_warn("dev_remove_pack: %p not found\n", pt); 449 out: 450 spin_unlock(&ptype_lock); 451 } 452 EXPORT_SYMBOL(__dev_remove_pack); 453 454 /** 455 * dev_remove_pack - remove packet handler 456 * @pt: packet type declaration 457 * 458 * Remove a protocol handler that was previously added to the kernel 459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 460 * from the kernel lists and can be freed or reused once this function 461 * returns. 462 * 463 * This call sleeps to guarantee that no CPU is looking at the packet 464 * type after return. 465 */ 466 void dev_remove_pack(struct packet_type *pt) 467 { 468 __dev_remove_pack(pt); 469 470 synchronize_net(); 471 } 472 EXPORT_SYMBOL(dev_remove_pack); 473 474 /****************************************************************************** 475 476 Device Boot-time Settings Routines 477 478 *******************************************************************************/ 479 480 /* Boot time configuration table */ 481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 482 483 /** 484 * netdev_boot_setup_add - add new setup entry 485 * @name: name of the device 486 * @map: configured settings for the device 487 * 488 * Adds new setup entry to the dev_boot_setup list. The function 489 * returns 0 on error and 1 on success. This is a generic routine to 490 * all netdevices. 491 */ 492 static int netdev_boot_setup_add(char *name, struct ifmap *map) 493 { 494 struct netdev_boot_setup *s; 495 int i; 496 497 s = dev_boot_setup; 498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 500 memset(s[i].name, 0, sizeof(s[i].name)); 501 strlcpy(s[i].name, name, IFNAMSIZ); 502 memcpy(&s[i].map, map, sizeof(s[i].map)); 503 break; 504 } 505 } 506 507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 508 } 509 510 /** 511 * netdev_boot_setup_check - check boot time settings 512 * @dev: the netdevice 513 * 514 * Check boot time settings for the device. 515 * The found settings are set for the device to be used 516 * later in the device probing. 517 * Returns 0 if no settings found, 1 if they are. 518 */ 519 int netdev_boot_setup_check(struct net_device *dev) 520 { 521 struct netdev_boot_setup *s = dev_boot_setup; 522 int i; 523 524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 526 !strcmp(dev->name, s[i].name)) { 527 dev->irq = s[i].map.irq; 528 dev->base_addr = s[i].map.base_addr; 529 dev->mem_start = s[i].map.mem_start; 530 dev->mem_end = s[i].map.mem_end; 531 return 1; 532 } 533 } 534 return 0; 535 } 536 EXPORT_SYMBOL(netdev_boot_setup_check); 537 538 539 /** 540 * netdev_boot_base - get address from boot time settings 541 * @prefix: prefix for network device 542 * @unit: id for network device 543 * 544 * Check boot time settings for the base address of device. 545 * The found settings are set for the device to be used 546 * later in the device probing. 547 * Returns 0 if no settings found. 548 */ 549 unsigned long netdev_boot_base(const char *prefix, int unit) 550 { 551 const struct netdev_boot_setup *s = dev_boot_setup; 552 char name[IFNAMSIZ]; 553 int i; 554 555 sprintf(name, "%s%d", prefix, unit); 556 557 /* 558 * If device already registered then return base of 1 559 * to indicate not to probe for this interface 560 */ 561 if (__dev_get_by_name(&init_net, name)) 562 return 1; 563 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 565 if (!strcmp(name, s[i].name)) 566 return s[i].map.base_addr; 567 return 0; 568 } 569 570 /* 571 * Saves at boot time configured settings for any netdevice. 572 */ 573 int __init netdev_boot_setup(char *str) 574 { 575 int ints[5]; 576 struct ifmap map; 577 578 str = get_options(str, ARRAY_SIZE(ints), ints); 579 if (!str || !*str) 580 return 0; 581 582 /* Save settings */ 583 memset(&map, 0, sizeof(map)); 584 if (ints[0] > 0) 585 map.irq = ints[1]; 586 if (ints[0] > 1) 587 map.base_addr = ints[2]; 588 if (ints[0] > 2) 589 map.mem_start = ints[3]; 590 if (ints[0] > 3) 591 map.mem_end = ints[4]; 592 593 /* Add new entry to the list */ 594 return netdev_boot_setup_add(str, &map); 595 } 596 597 __setup("netdev=", netdev_boot_setup); 598 599 /******************************************************************************* 600 601 Device Interface Subroutines 602 603 *******************************************************************************/ 604 605 /** 606 * __dev_get_by_name - find a device by its name 607 * @net: the applicable net namespace 608 * @name: name to find 609 * 610 * Find an interface by name. Must be called under RTNL semaphore 611 * or @dev_base_lock. If the name is found a pointer to the device 612 * is returned. If the name is not found then %NULL is returned. The 613 * reference counters are not incremented so the caller must be 614 * careful with locks. 615 */ 616 617 struct net_device *__dev_get_by_name(struct net *net, const char *name) 618 { 619 struct hlist_node *p; 620 struct net_device *dev; 621 struct hlist_head *head = dev_name_hash(net, name); 622 623 hlist_for_each_entry(dev, p, head, name_hlist) 624 if (!strncmp(dev->name, name, IFNAMSIZ)) 625 return dev; 626 627 return NULL; 628 } 629 EXPORT_SYMBOL(__dev_get_by_name); 630 631 /** 632 * dev_get_by_name_rcu - find a device by its name 633 * @net: the applicable net namespace 634 * @name: name to find 635 * 636 * Find an interface by name. 637 * If the name is found a pointer to the device is returned. 638 * If the name is not found then %NULL is returned. 639 * The reference counters are not incremented so the caller must be 640 * careful with locks. The caller must hold RCU lock. 641 */ 642 643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 644 { 645 struct hlist_node *p; 646 struct net_device *dev; 647 struct hlist_head *head = dev_name_hash(net, name); 648 649 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 650 if (!strncmp(dev->name, name, IFNAMSIZ)) 651 return dev; 652 653 return NULL; 654 } 655 EXPORT_SYMBOL(dev_get_by_name_rcu); 656 657 /** 658 * dev_get_by_name - find a device by its name 659 * @net: the applicable net namespace 660 * @name: name to find 661 * 662 * Find an interface by name. This can be called from any 663 * context and does its own locking. The returned handle has 664 * the usage count incremented and the caller must use dev_put() to 665 * release it when it is no longer needed. %NULL is returned if no 666 * matching device is found. 667 */ 668 669 struct net_device *dev_get_by_name(struct net *net, const char *name) 670 { 671 struct net_device *dev; 672 673 rcu_read_lock(); 674 dev = dev_get_by_name_rcu(net, name); 675 if (dev) 676 dev_hold(dev); 677 rcu_read_unlock(); 678 return dev; 679 } 680 EXPORT_SYMBOL(dev_get_by_name); 681 682 /** 683 * __dev_get_by_index - find a device by its ifindex 684 * @net: the applicable net namespace 685 * @ifindex: index of device 686 * 687 * Search for an interface by index. Returns %NULL if the device 688 * is not found or a pointer to the device. The device has not 689 * had its reference counter increased so the caller must be careful 690 * about locking. The caller must hold either the RTNL semaphore 691 * or @dev_base_lock. 692 */ 693 694 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 695 { 696 struct hlist_node *p; 697 struct net_device *dev; 698 struct hlist_head *head = dev_index_hash(net, ifindex); 699 700 hlist_for_each_entry(dev, p, head, index_hlist) 701 if (dev->ifindex == ifindex) 702 return dev; 703 704 return NULL; 705 } 706 EXPORT_SYMBOL(__dev_get_by_index); 707 708 /** 709 * dev_get_by_index_rcu - find a device by its ifindex 710 * @net: the applicable net namespace 711 * @ifindex: index of device 712 * 713 * Search for an interface by index. Returns %NULL if the device 714 * is not found or a pointer to the device. The device has not 715 * had its reference counter increased so the caller must be careful 716 * about locking. The caller must hold RCU lock. 717 */ 718 719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 720 { 721 struct hlist_node *p; 722 struct net_device *dev; 723 struct hlist_head *head = dev_index_hash(net, ifindex); 724 725 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 726 if (dev->ifindex == ifindex) 727 return dev; 728 729 return NULL; 730 } 731 EXPORT_SYMBOL(dev_get_by_index_rcu); 732 733 734 /** 735 * dev_get_by_index - find a device by its ifindex 736 * @net: the applicable net namespace 737 * @ifindex: index of device 738 * 739 * Search for an interface by index. Returns NULL if the device 740 * is not found or a pointer to the device. The device returned has 741 * had a reference added and the pointer is safe until the user calls 742 * dev_put to indicate they have finished with it. 743 */ 744 745 struct net_device *dev_get_by_index(struct net *net, int ifindex) 746 { 747 struct net_device *dev; 748 749 rcu_read_lock(); 750 dev = dev_get_by_index_rcu(net, ifindex); 751 if (dev) 752 dev_hold(dev); 753 rcu_read_unlock(); 754 return dev; 755 } 756 EXPORT_SYMBOL(dev_get_by_index); 757 758 /** 759 * dev_getbyhwaddr_rcu - find a device by its hardware address 760 * @net: the applicable net namespace 761 * @type: media type of device 762 * @ha: hardware address 763 * 764 * Search for an interface by MAC address. Returns NULL if the device 765 * is not found or a pointer to the device. 766 * The caller must hold RCU or RTNL. 767 * The returned device has not had its ref count increased 768 * and the caller must therefore be careful about locking 769 * 770 */ 771 772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 773 const char *ha) 774 { 775 struct net_device *dev; 776 777 for_each_netdev_rcu(net, dev) 778 if (dev->type == type && 779 !memcmp(dev->dev_addr, ha, dev->addr_len)) 780 return dev; 781 782 return NULL; 783 } 784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 785 786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 787 { 788 struct net_device *dev; 789 790 ASSERT_RTNL(); 791 for_each_netdev(net, dev) 792 if (dev->type == type) 793 return dev; 794 795 return NULL; 796 } 797 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 798 799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 800 { 801 struct net_device *dev, *ret = NULL; 802 803 rcu_read_lock(); 804 for_each_netdev_rcu(net, dev) 805 if (dev->type == type) { 806 dev_hold(dev); 807 ret = dev; 808 break; 809 } 810 rcu_read_unlock(); 811 return ret; 812 } 813 EXPORT_SYMBOL(dev_getfirstbyhwtype); 814 815 /** 816 * dev_get_by_flags_rcu - find any device with given flags 817 * @net: the applicable net namespace 818 * @if_flags: IFF_* values 819 * @mask: bitmask of bits in if_flags to check 820 * 821 * Search for any interface with the given flags. Returns NULL if a device 822 * is not found or a pointer to the device. Must be called inside 823 * rcu_read_lock(), and result refcount is unchanged. 824 */ 825 826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 827 unsigned short mask) 828 { 829 struct net_device *dev, *ret; 830 831 ret = NULL; 832 for_each_netdev_rcu(net, dev) { 833 if (((dev->flags ^ if_flags) & mask) == 0) { 834 ret = dev; 835 break; 836 } 837 } 838 return ret; 839 } 840 EXPORT_SYMBOL(dev_get_by_flags_rcu); 841 842 /** 843 * dev_valid_name - check if name is okay for network device 844 * @name: name string 845 * 846 * Network device names need to be valid file names to 847 * to allow sysfs to work. We also disallow any kind of 848 * whitespace. 849 */ 850 bool dev_valid_name(const char *name) 851 { 852 if (*name == '\0') 853 return false; 854 if (strlen(name) >= IFNAMSIZ) 855 return false; 856 if (!strcmp(name, ".") || !strcmp(name, "..")) 857 return false; 858 859 while (*name) { 860 if (*name == '/' || isspace(*name)) 861 return false; 862 name++; 863 } 864 return true; 865 } 866 EXPORT_SYMBOL(dev_valid_name); 867 868 /** 869 * __dev_alloc_name - allocate a name for a device 870 * @net: network namespace to allocate the device name in 871 * @name: name format string 872 * @buf: scratch buffer and result name string 873 * 874 * Passed a format string - eg "lt%d" it will try and find a suitable 875 * id. It scans list of devices to build up a free map, then chooses 876 * the first empty slot. The caller must hold the dev_base or rtnl lock 877 * while allocating the name and adding the device in order to avoid 878 * duplicates. 879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 880 * Returns the number of the unit assigned or a negative errno code. 881 */ 882 883 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 884 { 885 int i = 0; 886 const char *p; 887 const int max_netdevices = 8*PAGE_SIZE; 888 unsigned long *inuse; 889 struct net_device *d; 890 891 p = strnchr(name, IFNAMSIZ-1, '%'); 892 if (p) { 893 /* 894 * Verify the string as this thing may have come from 895 * the user. There must be either one "%d" and no other "%" 896 * characters. 897 */ 898 if (p[1] != 'd' || strchr(p + 2, '%')) 899 return -EINVAL; 900 901 /* Use one page as a bit array of possible slots */ 902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 903 if (!inuse) 904 return -ENOMEM; 905 906 for_each_netdev(net, d) { 907 if (!sscanf(d->name, name, &i)) 908 continue; 909 if (i < 0 || i >= max_netdevices) 910 continue; 911 912 /* avoid cases where sscanf is not exact inverse of printf */ 913 snprintf(buf, IFNAMSIZ, name, i); 914 if (!strncmp(buf, d->name, IFNAMSIZ)) 915 set_bit(i, inuse); 916 } 917 918 i = find_first_zero_bit(inuse, max_netdevices); 919 free_page((unsigned long) inuse); 920 } 921 922 if (buf != name) 923 snprintf(buf, IFNAMSIZ, name, i); 924 if (!__dev_get_by_name(net, buf)) 925 return i; 926 927 /* It is possible to run out of possible slots 928 * when the name is long and there isn't enough space left 929 * for the digits, or if all bits are used. 930 */ 931 return -ENFILE; 932 } 933 934 /** 935 * dev_alloc_name - allocate a name for a device 936 * @dev: device 937 * @name: name format string 938 * 939 * Passed a format string - eg "lt%d" it will try and find a suitable 940 * id. It scans list of devices to build up a free map, then chooses 941 * the first empty slot. The caller must hold the dev_base or rtnl lock 942 * while allocating the name and adding the device in order to avoid 943 * duplicates. 944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 945 * Returns the number of the unit assigned or a negative errno code. 946 */ 947 948 int dev_alloc_name(struct net_device *dev, const char *name) 949 { 950 char buf[IFNAMSIZ]; 951 struct net *net; 952 int ret; 953 954 BUG_ON(!dev_net(dev)); 955 net = dev_net(dev); 956 ret = __dev_alloc_name(net, name, buf); 957 if (ret >= 0) 958 strlcpy(dev->name, buf, IFNAMSIZ); 959 return ret; 960 } 961 EXPORT_SYMBOL(dev_alloc_name); 962 963 static int dev_get_valid_name(struct net_device *dev, const char *name) 964 { 965 struct net *net; 966 967 BUG_ON(!dev_net(dev)); 968 net = dev_net(dev); 969 970 if (!dev_valid_name(name)) 971 return -EINVAL; 972 973 if (strchr(name, '%')) 974 return dev_alloc_name(dev, name); 975 else if (__dev_get_by_name(net, name)) 976 return -EEXIST; 977 else if (dev->name != name) 978 strlcpy(dev->name, name, IFNAMSIZ); 979 980 return 0; 981 } 982 983 /** 984 * dev_change_name - change name of a device 985 * @dev: device 986 * @newname: name (or format string) must be at least IFNAMSIZ 987 * 988 * Change name of a device, can pass format strings "eth%d". 989 * for wildcarding. 990 */ 991 int dev_change_name(struct net_device *dev, const char *newname) 992 { 993 char oldname[IFNAMSIZ]; 994 int err = 0; 995 int ret; 996 struct net *net; 997 998 ASSERT_RTNL(); 999 BUG_ON(!dev_net(dev)); 1000 1001 net = dev_net(dev); 1002 if (dev->flags & IFF_UP) 1003 return -EBUSY; 1004 1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1006 return 0; 1007 1008 memcpy(oldname, dev->name, IFNAMSIZ); 1009 1010 err = dev_get_valid_name(dev, newname); 1011 if (err < 0) 1012 return err; 1013 1014 rollback: 1015 ret = device_rename(&dev->dev, dev->name); 1016 if (ret) { 1017 memcpy(dev->name, oldname, IFNAMSIZ); 1018 return ret; 1019 } 1020 1021 write_lock_bh(&dev_base_lock); 1022 hlist_del_rcu(&dev->name_hlist); 1023 write_unlock_bh(&dev_base_lock); 1024 1025 synchronize_rcu(); 1026 1027 write_lock_bh(&dev_base_lock); 1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1029 write_unlock_bh(&dev_base_lock); 1030 1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1032 ret = notifier_to_errno(ret); 1033 1034 if (ret) { 1035 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1036 if (err >= 0) { 1037 err = ret; 1038 memcpy(dev->name, oldname, IFNAMSIZ); 1039 goto rollback; 1040 } else { 1041 pr_err("%s: name change rollback failed: %d\n", 1042 dev->name, ret); 1043 } 1044 } 1045 1046 return err; 1047 } 1048 1049 /** 1050 * dev_set_alias - change ifalias of a device 1051 * @dev: device 1052 * @alias: name up to IFALIASZ 1053 * @len: limit of bytes to copy from info 1054 * 1055 * Set ifalias for a device, 1056 */ 1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1058 { 1059 ASSERT_RTNL(); 1060 1061 if (len >= IFALIASZ) 1062 return -EINVAL; 1063 1064 if (!len) { 1065 if (dev->ifalias) { 1066 kfree(dev->ifalias); 1067 dev->ifalias = NULL; 1068 } 1069 return 0; 1070 } 1071 1072 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1073 if (!dev->ifalias) 1074 return -ENOMEM; 1075 1076 strlcpy(dev->ifalias, alias, len+1); 1077 return len; 1078 } 1079 1080 1081 /** 1082 * netdev_features_change - device changes features 1083 * @dev: device to cause notification 1084 * 1085 * Called to indicate a device has changed features. 1086 */ 1087 void netdev_features_change(struct net_device *dev) 1088 { 1089 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1090 } 1091 EXPORT_SYMBOL(netdev_features_change); 1092 1093 /** 1094 * netdev_state_change - device changes state 1095 * @dev: device to cause notification 1096 * 1097 * Called to indicate a device has changed state. This function calls 1098 * the notifier chains for netdev_chain and sends a NEWLINK message 1099 * to the routing socket. 1100 */ 1101 void netdev_state_change(struct net_device *dev) 1102 { 1103 if (dev->flags & IFF_UP) { 1104 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1105 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1106 } 1107 } 1108 EXPORT_SYMBOL(netdev_state_change); 1109 1110 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1111 { 1112 return call_netdevice_notifiers(event, dev); 1113 } 1114 EXPORT_SYMBOL(netdev_bonding_change); 1115 1116 /** 1117 * dev_load - load a network module 1118 * @net: the applicable net namespace 1119 * @name: name of interface 1120 * 1121 * If a network interface is not present and the process has suitable 1122 * privileges this function loads the module. If module loading is not 1123 * available in this kernel then it becomes a nop. 1124 */ 1125 1126 void dev_load(struct net *net, const char *name) 1127 { 1128 struct net_device *dev; 1129 int no_module; 1130 1131 rcu_read_lock(); 1132 dev = dev_get_by_name_rcu(net, name); 1133 rcu_read_unlock(); 1134 1135 no_module = !dev; 1136 if (no_module && capable(CAP_NET_ADMIN)) 1137 no_module = request_module("netdev-%s", name); 1138 if (no_module && capable(CAP_SYS_MODULE)) { 1139 if (!request_module("%s", name)) 1140 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1141 name); 1142 } 1143 } 1144 EXPORT_SYMBOL(dev_load); 1145 1146 static int __dev_open(struct net_device *dev) 1147 { 1148 const struct net_device_ops *ops = dev->netdev_ops; 1149 int ret; 1150 1151 ASSERT_RTNL(); 1152 1153 if (!netif_device_present(dev)) 1154 return -ENODEV; 1155 1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1157 ret = notifier_to_errno(ret); 1158 if (ret) 1159 return ret; 1160 1161 set_bit(__LINK_STATE_START, &dev->state); 1162 1163 if (ops->ndo_validate_addr) 1164 ret = ops->ndo_validate_addr(dev); 1165 1166 if (!ret && ops->ndo_open) 1167 ret = ops->ndo_open(dev); 1168 1169 if (ret) 1170 clear_bit(__LINK_STATE_START, &dev->state); 1171 else { 1172 dev->flags |= IFF_UP; 1173 net_dmaengine_get(); 1174 dev_set_rx_mode(dev); 1175 dev_activate(dev); 1176 } 1177 1178 return ret; 1179 } 1180 1181 /** 1182 * dev_open - prepare an interface for use. 1183 * @dev: device to open 1184 * 1185 * Takes a device from down to up state. The device's private open 1186 * function is invoked and then the multicast lists are loaded. Finally 1187 * the device is moved into the up state and a %NETDEV_UP message is 1188 * sent to the netdev notifier chain. 1189 * 1190 * Calling this function on an active interface is a nop. On a failure 1191 * a negative errno code is returned. 1192 */ 1193 int dev_open(struct net_device *dev) 1194 { 1195 int ret; 1196 1197 if (dev->flags & IFF_UP) 1198 return 0; 1199 1200 ret = __dev_open(dev); 1201 if (ret < 0) 1202 return ret; 1203 1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1205 call_netdevice_notifiers(NETDEV_UP, dev); 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(dev_open); 1210 1211 static int __dev_close_many(struct list_head *head) 1212 { 1213 struct net_device *dev; 1214 1215 ASSERT_RTNL(); 1216 might_sleep(); 1217 1218 list_for_each_entry(dev, head, unreg_list) { 1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1220 1221 clear_bit(__LINK_STATE_START, &dev->state); 1222 1223 /* Synchronize to scheduled poll. We cannot touch poll list, it 1224 * can be even on different cpu. So just clear netif_running(). 1225 * 1226 * dev->stop() will invoke napi_disable() on all of it's 1227 * napi_struct instances on this device. 1228 */ 1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1230 } 1231 1232 dev_deactivate_many(head); 1233 1234 list_for_each_entry(dev, head, unreg_list) { 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 /* 1238 * Call the device specific close. This cannot fail. 1239 * Only if device is UP 1240 * 1241 * We allow it to be called even after a DETACH hot-plug 1242 * event. 1243 */ 1244 if (ops->ndo_stop) 1245 ops->ndo_stop(dev); 1246 1247 dev->flags &= ~IFF_UP; 1248 net_dmaengine_put(); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int __dev_close(struct net_device *dev) 1255 { 1256 int retval; 1257 LIST_HEAD(single); 1258 1259 list_add(&dev->unreg_list, &single); 1260 retval = __dev_close_many(&single); 1261 list_del(&single); 1262 return retval; 1263 } 1264 1265 static int dev_close_many(struct list_head *head) 1266 { 1267 struct net_device *dev, *tmp; 1268 LIST_HEAD(tmp_list); 1269 1270 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1271 if (!(dev->flags & IFF_UP)) 1272 list_move(&dev->unreg_list, &tmp_list); 1273 1274 __dev_close_many(head); 1275 1276 list_for_each_entry(dev, head, unreg_list) { 1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1278 call_netdevice_notifiers(NETDEV_DOWN, dev); 1279 } 1280 1281 /* rollback_registered_many needs the complete original list */ 1282 list_splice(&tmp_list, head); 1283 return 0; 1284 } 1285 1286 /** 1287 * dev_close - shutdown an interface. 1288 * @dev: device to shutdown 1289 * 1290 * This function moves an active device into down state. A 1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1293 * chain. 1294 */ 1295 int dev_close(struct net_device *dev) 1296 { 1297 if (dev->flags & IFF_UP) { 1298 LIST_HEAD(single); 1299 1300 list_add(&dev->unreg_list, &single); 1301 dev_close_many(&single); 1302 list_del(&single); 1303 } 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(dev_close); 1307 1308 1309 /** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317 void dev_disable_lro(struct net_device *dev) 1318 { 1319 /* 1320 * If we're trying to disable lro on a vlan device 1321 * use the underlying physical device instead 1322 */ 1323 if (is_vlan_dev(dev)) 1324 dev = vlan_dev_real_dev(dev); 1325 1326 dev->wanted_features &= ~NETIF_F_LRO; 1327 netdev_update_features(dev); 1328 1329 if (unlikely(dev->features & NETIF_F_LRO)) 1330 netdev_WARN(dev, "failed to disable LRO!\n"); 1331 } 1332 EXPORT_SYMBOL(dev_disable_lro); 1333 1334 1335 static int dev_boot_phase = 1; 1336 1337 /** 1338 * register_netdevice_notifier - register a network notifier block 1339 * @nb: notifier 1340 * 1341 * Register a notifier to be called when network device events occur. 1342 * The notifier passed is linked into the kernel structures and must 1343 * not be reused until it has been unregistered. A negative errno code 1344 * is returned on a failure. 1345 * 1346 * When registered all registration and up events are replayed 1347 * to the new notifier to allow device to have a race free 1348 * view of the network device list. 1349 */ 1350 1351 int register_netdevice_notifier(struct notifier_block *nb) 1352 { 1353 struct net_device *dev; 1354 struct net_device *last; 1355 struct net *net; 1356 int err; 1357 1358 rtnl_lock(); 1359 err = raw_notifier_chain_register(&netdev_chain, nb); 1360 if (err) 1361 goto unlock; 1362 if (dev_boot_phase) 1363 goto unlock; 1364 for_each_net(net) { 1365 for_each_netdev(net, dev) { 1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1367 err = notifier_to_errno(err); 1368 if (err) 1369 goto rollback; 1370 1371 if (!(dev->flags & IFF_UP)) 1372 continue; 1373 1374 nb->notifier_call(nb, NETDEV_UP, dev); 1375 } 1376 } 1377 1378 unlock: 1379 rtnl_unlock(); 1380 return err; 1381 1382 rollback: 1383 last = dev; 1384 for_each_net(net) { 1385 for_each_netdev(net, dev) { 1386 if (dev == last) 1387 goto outroll; 1388 1389 if (dev->flags & IFF_UP) { 1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1391 nb->notifier_call(nb, NETDEV_DOWN, dev); 1392 } 1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1395 } 1396 } 1397 1398 outroll: 1399 raw_notifier_chain_unregister(&netdev_chain, nb); 1400 goto unlock; 1401 } 1402 EXPORT_SYMBOL(register_netdevice_notifier); 1403 1404 /** 1405 * unregister_netdevice_notifier - unregister a network notifier block 1406 * @nb: notifier 1407 * 1408 * Unregister a notifier previously registered by 1409 * register_netdevice_notifier(). The notifier is unlinked into the 1410 * kernel structures and may then be reused. A negative errno code 1411 * is returned on a failure. 1412 */ 1413 1414 int unregister_netdevice_notifier(struct notifier_block *nb) 1415 { 1416 int err; 1417 1418 rtnl_lock(); 1419 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1420 rtnl_unlock(); 1421 return err; 1422 } 1423 EXPORT_SYMBOL(unregister_netdevice_notifier); 1424 1425 /** 1426 * call_netdevice_notifiers - call all network notifier blocks 1427 * @val: value passed unmodified to notifier function 1428 * @dev: net_device pointer passed unmodified to notifier function 1429 * 1430 * Call all network notifier blocks. Parameters and return value 1431 * are as for raw_notifier_call_chain(). 1432 */ 1433 1434 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1435 { 1436 ASSERT_RTNL(); 1437 return raw_notifier_call_chain(&netdev_chain, val, dev); 1438 } 1439 EXPORT_SYMBOL(call_netdevice_notifiers); 1440 1441 static struct static_key netstamp_needed __read_mostly; 1442 #ifdef HAVE_JUMP_LABEL 1443 /* We are not allowed to call static_key_slow_dec() from irq context 1444 * If net_disable_timestamp() is called from irq context, defer the 1445 * static_key_slow_dec() calls. 1446 */ 1447 static atomic_t netstamp_needed_deferred; 1448 #endif 1449 1450 void net_enable_timestamp(void) 1451 { 1452 #ifdef HAVE_JUMP_LABEL 1453 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1454 1455 if (deferred) { 1456 while (--deferred) 1457 static_key_slow_dec(&netstamp_needed); 1458 return; 1459 } 1460 #endif 1461 WARN_ON(in_interrupt()); 1462 static_key_slow_inc(&netstamp_needed); 1463 } 1464 EXPORT_SYMBOL(net_enable_timestamp); 1465 1466 void net_disable_timestamp(void) 1467 { 1468 #ifdef HAVE_JUMP_LABEL 1469 if (in_interrupt()) { 1470 atomic_inc(&netstamp_needed_deferred); 1471 return; 1472 } 1473 #endif 1474 static_key_slow_dec(&netstamp_needed); 1475 } 1476 EXPORT_SYMBOL(net_disable_timestamp); 1477 1478 static inline void net_timestamp_set(struct sk_buff *skb) 1479 { 1480 skb->tstamp.tv64 = 0; 1481 if (static_key_false(&netstamp_needed)) 1482 __net_timestamp(skb); 1483 } 1484 1485 #define net_timestamp_check(COND, SKB) \ 1486 if (static_key_false(&netstamp_needed)) { \ 1487 if ((COND) && !(SKB)->tstamp.tv64) \ 1488 __net_timestamp(SKB); \ 1489 } \ 1490 1491 static int net_hwtstamp_validate(struct ifreq *ifr) 1492 { 1493 struct hwtstamp_config cfg; 1494 enum hwtstamp_tx_types tx_type; 1495 enum hwtstamp_rx_filters rx_filter; 1496 int tx_type_valid = 0; 1497 int rx_filter_valid = 0; 1498 1499 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1500 return -EFAULT; 1501 1502 if (cfg.flags) /* reserved for future extensions */ 1503 return -EINVAL; 1504 1505 tx_type = cfg.tx_type; 1506 rx_filter = cfg.rx_filter; 1507 1508 switch (tx_type) { 1509 case HWTSTAMP_TX_OFF: 1510 case HWTSTAMP_TX_ON: 1511 case HWTSTAMP_TX_ONESTEP_SYNC: 1512 tx_type_valid = 1; 1513 break; 1514 } 1515 1516 switch (rx_filter) { 1517 case HWTSTAMP_FILTER_NONE: 1518 case HWTSTAMP_FILTER_ALL: 1519 case HWTSTAMP_FILTER_SOME: 1520 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1521 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1522 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1523 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1524 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1525 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1526 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1527 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1528 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1529 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1530 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1531 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1532 rx_filter_valid = 1; 1533 break; 1534 } 1535 1536 if (!tx_type_valid || !rx_filter_valid) 1537 return -ERANGE; 1538 1539 return 0; 1540 } 1541 1542 static inline bool is_skb_forwardable(struct net_device *dev, 1543 struct sk_buff *skb) 1544 { 1545 unsigned int len; 1546 1547 if (!(dev->flags & IFF_UP)) 1548 return false; 1549 1550 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1551 if (skb->len <= len) 1552 return true; 1553 1554 /* if TSO is enabled, we don't care about the length as the packet 1555 * could be forwarded without being segmented before 1556 */ 1557 if (skb_is_gso(skb)) 1558 return true; 1559 1560 return false; 1561 } 1562 1563 /** 1564 * dev_forward_skb - loopback an skb to another netif 1565 * 1566 * @dev: destination network device 1567 * @skb: buffer to forward 1568 * 1569 * return values: 1570 * NET_RX_SUCCESS (no congestion) 1571 * NET_RX_DROP (packet was dropped, but freed) 1572 * 1573 * dev_forward_skb can be used for injecting an skb from the 1574 * start_xmit function of one device into the receive queue 1575 * of another device. 1576 * 1577 * The receiving device may be in another namespace, so 1578 * we have to clear all information in the skb that could 1579 * impact namespace isolation. 1580 */ 1581 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1582 { 1583 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1584 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1585 atomic_long_inc(&dev->rx_dropped); 1586 kfree_skb(skb); 1587 return NET_RX_DROP; 1588 } 1589 } 1590 1591 skb_orphan(skb); 1592 nf_reset(skb); 1593 1594 if (unlikely(!is_skb_forwardable(dev, skb))) { 1595 atomic_long_inc(&dev->rx_dropped); 1596 kfree_skb(skb); 1597 return NET_RX_DROP; 1598 } 1599 skb->skb_iif = 0; 1600 skb_set_dev(skb, dev); 1601 skb->tstamp.tv64 = 0; 1602 skb->pkt_type = PACKET_HOST; 1603 skb->protocol = eth_type_trans(skb, dev); 1604 return netif_rx(skb); 1605 } 1606 EXPORT_SYMBOL_GPL(dev_forward_skb); 1607 1608 static inline int deliver_skb(struct sk_buff *skb, 1609 struct packet_type *pt_prev, 1610 struct net_device *orig_dev) 1611 { 1612 atomic_inc(&skb->users); 1613 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1614 } 1615 1616 /* 1617 * Support routine. Sends outgoing frames to any network 1618 * taps currently in use. 1619 */ 1620 1621 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1622 { 1623 struct packet_type *ptype; 1624 struct sk_buff *skb2 = NULL; 1625 struct packet_type *pt_prev = NULL; 1626 1627 rcu_read_lock(); 1628 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1629 /* Never send packets back to the socket 1630 * they originated from - MvS (miquels@drinkel.ow.org) 1631 */ 1632 if ((ptype->dev == dev || !ptype->dev) && 1633 (ptype->af_packet_priv == NULL || 1634 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1635 if (pt_prev) { 1636 deliver_skb(skb2, pt_prev, skb->dev); 1637 pt_prev = ptype; 1638 continue; 1639 } 1640 1641 skb2 = skb_clone(skb, GFP_ATOMIC); 1642 if (!skb2) 1643 break; 1644 1645 net_timestamp_set(skb2); 1646 1647 /* skb->nh should be correctly 1648 set by sender, so that the second statement is 1649 just protection against buggy protocols. 1650 */ 1651 skb_reset_mac_header(skb2); 1652 1653 if (skb_network_header(skb2) < skb2->data || 1654 skb2->network_header > skb2->tail) { 1655 if (net_ratelimit()) 1656 pr_crit("protocol %04x is buggy, dev %s\n", 1657 ntohs(skb2->protocol), 1658 dev->name); 1659 skb_reset_network_header(skb2); 1660 } 1661 1662 skb2->transport_header = skb2->network_header; 1663 skb2->pkt_type = PACKET_OUTGOING; 1664 pt_prev = ptype; 1665 } 1666 } 1667 if (pt_prev) 1668 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1669 rcu_read_unlock(); 1670 } 1671 1672 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1673 * @dev: Network device 1674 * @txq: number of queues available 1675 * 1676 * If real_num_tx_queues is changed the tc mappings may no longer be 1677 * valid. To resolve this verify the tc mapping remains valid and if 1678 * not NULL the mapping. With no priorities mapping to this 1679 * offset/count pair it will no longer be used. In the worst case TC0 1680 * is invalid nothing can be done so disable priority mappings. If is 1681 * expected that drivers will fix this mapping if they can before 1682 * calling netif_set_real_num_tx_queues. 1683 */ 1684 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1685 { 1686 int i; 1687 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1688 1689 /* If TC0 is invalidated disable TC mapping */ 1690 if (tc->offset + tc->count > txq) { 1691 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1692 dev->num_tc = 0; 1693 return; 1694 } 1695 1696 /* Invalidated prio to tc mappings set to TC0 */ 1697 for (i = 1; i < TC_BITMASK + 1; i++) { 1698 int q = netdev_get_prio_tc_map(dev, i); 1699 1700 tc = &dev->tc_to_txq[q]; 1701 if (tc->offset + tc->count > txq) { 1702 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1703 i, q); 1704 netdev_set_prio_tc_map(dev, i, 0); 1705 } 1706 } 1707 } 1708 1709 /* 1710 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1711 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1712 */ 1713 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1714 { 1715 int rc; 1716 1717 if (txq < 1 || txq > dev->num_tx_queues) 1718 return -EINVAL; 1719 1720 if (dev->reg_state == NETREG_REGISTERED || 1721 dev->reg_state == NETREG_UNREGISTERING) { 1722 ASSERT_RTNL(); 1723 1724 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1725 txq); 1726 if (rc) 1727 return rc; 1728 1729 if (dev->num_tc) 1730 netif_setup_tc(dev, txq); 1731 1732 if (txq < dev->real_num_tx_queues) 1733 qdisc_reset_all_tx_gt(dev, txq); 1734 } 1735 1736 dev->real_num_tx_queues = txq; 1737 return 0; 1738 } 1739 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1740 1741 #ifdef CONFIG_RPS 1742 /** 1743 * netif_set_real_num_rx_queues - set actual number of RX queues used 1744 * @dev: Network device 1745 * @rxq: Actual number of RX queues 1746 * 1747 * This must be called either with the rtnl_lock held or before 1748 * registration of the net device. Returns 0 on success, or a 1749 * negative error code. If called before registration, it always 1750 * succeeds. 1751 */ 1752 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1753 { 1754 int rc; 1755 1756 if (rxq < 1 || rxq > dev->num_rx_queues) 1757 return -EINVAL; 1758 1759 if (dev->reg_state == NETREG_REGISTERED) { 1760 ASSERT_RTNL(); 1761 1762 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1763 rxq); 1764 if (rc) 1765 return rc; 1766 } 1767 1768 dev->real_num_rx_queues = rxq; 1769 return 0; 1770 } 1771 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1772 #endif 1773 1774 static inline void __netif_reschedule(struct Qdisc *q) 1775 { 1776 struct softnet_data *sd; 1777 unsigned long flags; 1778 1779 local_irq_save(flags); 1780 sd = &__get_cpu_var(softnet_data); 1781 q->next_sched = NULL; 1782 *sd->output_queue_tailp = q; 1783 sd->output_queue_tailp = &q->next_sched; 1784 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1785 local_irq_restore(flags); 1786 } 1787 1788 void __netif_schedule(struct Qdisc *q) 1789 { 1790 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1791 __netif_reschedule(q); 1792 } 1793 EXPORT_SYMBOL(__netif_schedule); 1794 1795 void dev_kfree_skb_irq(struct sk_buff *skb) 1796 { 1797 if (atomic_dec_and_test(&skb->users)) { 1798 struct softnet_data *sd; 1799 unsigned long flags; 1800 1801 local_irq_save(flags); 1802 sd = &__get_cpu_var(softnet_data); 1803 skb->next = sd->completion_queue; 1804 sd->completion_queue = skb; 1805 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1806 local_irq_restore(flags); 1807 } 1808 } 1809 EXPORT_SYMBOL(dev_kfree_skb_irq); 1810 1811 void dev_kfree_skb_any(struct sk_buff *skb) 1812 { 1813 if (in_irq() || irqs_disabled()) 1814 dev_kfree_skb_irq(skb); 1815 else 1816 dev_kfree_skb(skb); 1817 } 1818 EXPORT_SYMBOL(dev_kfree_skb_any); 1819 1820 1821 /** 1822 * netif_device_detach - mark device as removed 1823 * @dev: network device 1824 * 1825 * Mark device as removed from system and therefore no longer available. 1826 */ 1827 void netif_device_detach(struct net_device *dev) 1828 { 1829 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1830 netif_running(dev)) { 1831 netif_tx_stop_all_queues(dev); 1832 } 1833 } 1834 EXPORT_SYMBOL(netif_device_detach); 1835 1836 /** 1837 * netif_device_attach - mark device as attached 1838 * @dev: network device 1839 * 1840 * Mark device as attached from system and restart if needed. 1841 */ 1842 void netif_device_attach(struct net_device *dev) 1843 { 1844 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1845 netif_running(dev)) { 1846 netif_tx_wake_all_queues(dev); 1847 __netdev_watchdog_up(dev); 1848 } 1849 } 1850 EXPORT_SYMBOL(netif_device_attach); 1851 1852 /** 1853 * skb_dev_set -- assign a new device to a buffer 1854 * @skb: buffer for the new device 1855 * @dev: network device 1856 * 1857 * If an skb is owned by a device already, we have to reset 1858 * all data private to the namespace a device belongs to 1859 * before assigning it a new device. 1860 */ 1861 #ifdef CONFIG_NET_NS 1862 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1863 { 1864 skb_dst_drop(skb); 1865 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1866 secpath_reset(skb); 1867 nf_reset(skb); 1868 skb_init_secmark(skb); 1869 skb->mark = 0; 1870 skb->priority = 0; 1871 skb->nf_trace = 0; 1872 skb->ipvs_property = 0; 1873 #ifdef CONFIG_NET_SCHED 1874 skb->tc_index = 0; 1875 #endif 1876 } 1877 skb->dev = dev; 1878 } 1879 EXPORT_SYMBOL(skb_set_dev); 1880 #endif /* CONFIG_NET_NS */ 1881 1882 static void skb_warn_bad_offload(const struct sk_buff *skb) 1883 { 1884 static const netdev_features_t null_features = 0; 1885 struct net_device *dev = skb->dev; 1886 const char *driver = ""; 1887 1888 if (dev && dev->dev.parent) 1889 driver = dev_driver_string(dev->dev.parent); 1890 1891 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1892 "gso_type=%d ip_summed=%d\n", 1893 driver, dev ? &dev->features : &null_features, 1894 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1895 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1896 skb_shinfo(skb)->gso_type, skb->ip_summed); 1897 } 1898 1899 /* 1900 * Invalidate hardware checksum when packet is to be mangled, and 1901 * complete checksum manually on outgoing path. 1902 */ 1903 int skb_checksum_help(struct sk_buff *skb) 1904 { 1905 __wsum csum; 1906 int ret = 0, offset; 1907 1908 if (skb->ip_summed == CHECKSUM_COMPLETE) 1909 goto out_set_summed; 1910 1911 if (unlikely(skb_shinfo(skb)->gso_size)) { 1912 skb_warn_bad_offload(skb); 1913 return -EINVAL; 1914 } 1915 1916 offset = skb_checksum_start_offset(skb); 1917 BUG_ON(offset >= skb_headlen(skb)); 1918 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1919 1920 offset += skb->csum_offset; 1921 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1922 1923 if (skb_cloned(skb) && 1924 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1925 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1926 if (ret) 1927 goto out; 1928 } 1929 1930 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1931 out_set_summed: 1932 skb->ip_summed = CHECKSUM_NONE; 1933 out: 1934 return ret; 1935 } 1936 EXPORT_SYMBOL(skb_checksum_help); 1937 1938 /** 1939 * skb_gso_segment - Perform segmentation on skb. 1940 * @skb: buffer to segment 1941 * @features: features for the output path (see dev->features) 1942 * 1943 * This function segments the given skb and returns a list of segments. 1944 * 1945 * It may return NULL if the skb requires no segmentation. This is 1946 * only possible when GSO is used for verifying header integrity. 1947 */ 1948 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1949 netdev_features_t features) 1950 { 1951 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1952 struct packet_type *ptype; 1953 __be16 type = skb->protocol; 1954 int vlan_depth = ETH_HLEN; 1955 int err; 1956 1957 while (type == htons(ETH_P_8021Q)) { 1958 struct vlan_hdr *vh; 1959 1960 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1961 return ERR_PTR(-EINVAL); 1962 1963 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1964 type = vh->h_vlan_encapsulated_proto; 1965 vlan_depth += VLAN_HLEN; 1966 } 1967 1968 skb_reset_mac_header(skb); 1969 skb->mac_len = skb->network_header - skb->mac_header; 1970 __skb_pull(skb, skb->mac_len); 1971 1972 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1973 skb_warn_bad_offload(skb); 1974 1975 if (skb_header_cloned(skb) && 1976 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1977 return ERR_PTR(err); 1978 } 1979 1980 rcu_read_lock(); 1981 list_for_each_entry_rcu(ptype, 1982 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1983 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1984 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1985 err = ptype->gso_send_check(skb); 1986 segs = ERR_PTR(err); 1987 if (err || skb_gso_ok(skb, features)) 1988 break; 1989 __skb_push(skb, (skb->data - 1990 skb_network_header(skb))); 1991 } 1992 segs = ptype->gso_segment(skb, features); 1993 break; 1994 } 1995 } 1996 rcu_read_unlock(); 1997 1998 __skb_push(skb, skb->data - skb_mac_header(skb)); 1999 2000 return segs; 2001 } 2002 EXPORT_SYMBOL(skb_gso_segment); 2003 2004 /* Take action when hardware reception checksum errors are detected. */ 2005 #ifdef CONFIG_BUG 2006 void netdev_rx_csum_fault(struct net_device *dev) 2007 { 2008 if (net_ratelimit()) { 2009 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2010 dump_stack(); 2011 } 2012 } 2013 EXPORT_SYMBOL(netdev_rx_csum_fault); 2014 #endif 2015 2016 /* Actually, we should eliminate this check as soon as we know, that: 2017 * 1. IOMMU is present and allows to map all the memory. 2018 * 2. No high memory really exists on this machine. 2019 */ 2020 2021 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2022 { 2023 #ifdef CONFIG_HIGHMEM 2024 int i; 2025 if (!(dev->features & NETIF_F_HIGHDMA)) { 2026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2027 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2028 if (PageHighMem(skb_frag_page(frag))) 2029 return 1; 2030 } 2031 } 2032 2033 if (PCI_DMA_BUS_IS_PHYS) { 2034 struct device *pdev = dev->dev.parent; 2035 2036 if (!pdev) 2037 return 0; 2038 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2039 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2040 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2041 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2042 return 1; 2043 } 2044 } 2045 #endif 2046 return 0; 2047 } 2048 2049 struct dev_gso_cb { 2050 void (*destructor)(struct sk_buff *skb); 2051 }; 2052 2053 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2054 2055 static void dev_gso_skb_destructor(struct sk_buff *skb) 2056 { 2057 struct dev_gso_cb *cb; 2058 2059 do { 2060 struct sk_buff *nskb = skb->next; 2061 2062 skb->next = nskb->next; 2063 nskb->next = NULL; 2064 kfree_skb(nskb); 2065 } while (skb->next); 2066 2067 cb = DEV_GSO_CB(skb); 2068 if (cb->destructor) 2069 cb->destructor(skb); 2070 } 2071 2072 /** 2073 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2074 * @skb: buffer to segment 2075 * @features: device features as applicable to this skb 2076 * 2077 * This function segments the given skb and stores the list of segments 2078 * in skb->next. 2079 */ 2080 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2081 { 2082 struct sk_buff *segs; 2083 2084 segs = skb_gso_segment(skb, features); 2085 2086 /* Verifying header integrity only. */ 2087 if (!segs) 2088 return 0; 2089 2090 if (IS_ERR(segs)) 2091 return PTR_ERR(segs); 2092 2093 skb->next = segs; 2094 DEV_GSO_CB(skb)->destructor = skb->destructor; 2095 skb->destructor = dev_gso_skb_destructor; 2096 2097 return 0; 2098 } 2099 2100 /* 2101 * Try to orphan skb early, right before transmission by the device. 2102 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2103 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2104 */ 2105 static inline void skb_orphan_try(struct sk_buff *skb) 2106 { 2107 struct sock *sk = skb->sk; 2108 2109 if (sk && !skb_shinfo(skb)->tx_flags) { 2110 /* skb_tx_hash() wont be able to get sk. 2111 * We copy sk_hash into skb->rxhash 2112 */ 2113 if (!skb->rxhash) 2114 skb->rxhash = sk->sk_hash; 2115 skb_orphan(skb); 2116 } 2117 } 2118 2119 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2120 { 2121 return ((features & NETIF_F_GEN_CSUM) || 2122 ((features & NETIF_F_V4_CSUM) && 2123 protocol == htons(ETH_P_IP)) || 2124 ((features & NETIF_F_V6_CSUM) && 2125 protocol == htons(ETH_P_IPV6)) || 2126 ((features & NETIF_F_FCOE_CRC) && 2127 protocol == htons(ETH_P_FCOE))); 2128 } 2129 2130 static netdev_features_t harmonize_features(struct sk_buff *skb, 2131 __be16 protocol, netdev_features_t features) 2132 { 2133 if (!can_checksum_protocol(features, protocol)) { 2134 features &= ~NETIF_F_ALL_CSUM; 2135 features &= ~NETIF_F_SG; 2136 } else if (illegal_highdma(skb->dev, skb)) { 2137 features &= ~NETIF_F_SG; 2138 } 2139 2140 return features; 2141 } 2142 2143 netdev_features_t netif_skb_features(struct sk_buff *skb) 2144 { 2145 __be16 protocol = skb->protocol; 2146 netdev_features_t features = skb->dev->features; 2147 2148 if (protocol == htons(ETH_P_8021Q)) { 2149 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2150 protocol = veh->h_vlan_encapsulated_proto; 2151 } else if (!vlan_tx_tag_present(skb)) { 2152 return harmonize_features(skb, protocol, features); 2153 } 2154 2155 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2156 2157 if (protocol != htons(ETH_P_8021Q)) { 2158 return harmonize_features(skb, protocol, features); 2159 } else { 2160 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2161 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2162 return harmonize_features(skb, protocol, features); 2163 } 2164 } 2165 EXPORT_SYMBOL(netif_skb_features); 2166 2167 /* 2168 * Returns true if either: 2169 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2170 * 2. skb is fragmented and the device does not support SG, or if 2171 * at least one of fragments is in highmem and device does not 2172 * support DMA from it. 2173 */ 2174 static inline int skb_needs_linearize(struct sk_buff *skb, 2175 int features) 2176 { 2177 return skb_is_nonlinear(skb) && 2178 ((skb_has_frag_list(skb) && 2179 !(features & NETIF_F_FRAGLIST)) || 2180 (skb_shinfo(skb)->nr_frags && 2181 !(features & NETIF_F_SG))); 2182 } 2183 2184 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2185 struct netdev_queue *txq) 2186 { 2187 const struct net_device_ops *ops = dev->netdev_ops; 2188 int rc = NETDEV_TX_OK; 2189 unsigned int skb_len; 2190 2191 if (likely(!skb->next)) { 2192 netdev_features_t features; 2193 2194 /* 2195 * If device doesn't need skb->dst, release it right now while 2196 * its hot in this cpu cache 2197 */ 2198 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2199 skb_dst_drop(skb); 2200 2201 if (!list_empty(&ptype_all)) 2202 dev_queue_xmit_nit(skb, dev); 2203 2204 skb_orphan_try(skb); 2205 2206 features = netif_skb_features(skb); 2207 2208 if (vlan_tx_tag_present(skb) && 2209 !(features & NETIF_F_HW_VLAN_TX)) { 2210 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2211 if (unlikely(!skb)) 2212 goto out; 2213 2214 skb->vlan_tci = 0; 2215 } 2216 2217 if (netif_needs_gso(skb, features)) { 2218 if (unlikely(dev_gso_segment(skb, features))) 2219 goto out_kfree_skb; 2220 if (skb->next) 2221 goto gso; 2222 } else { 2223 if (skb_needs_linearize(skb, features) && 2224 __skb_linearize(skb)) 2225 goto out_kfree_skb; 2226 2227 /* If packet is not checksummed and device does not 2228 * support checksumming for this protocol, complete 2229 * checksumming here. 2230 */ 2231 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2232 skb_set_transport_header(skb, 2233 skb_checksum_start_offset(skb)); 2234 if (!(features & NETIF_F_ALL_CSUM) && 2235 skb_checksum_help(skb)) 2236 goto out_kfree_skb; 2237 } 2238 } 2239 2240 skb_len = skb->len; 2241 rc = ops->ndo_start_xmit(skb, dev); 2242 trace_net_dev_xmit(skb, rc, dev, skb_len); 2243 if (rc == NETDEV_TX_OK) 2244 txq_trans_update(txq); 2245 return rc; 2246 } 2247 2248 gso: 2249 do { 2250 struct sk_buff *nskb = skb->next; 2251 2252 skb->next = nskb->next; 2253 nskb->next = NULL; 2254 2255 /* 2256 * If device doesn't need nskb->dst, release it right now while 2257 * its hot in this cpu cache 2258 */ 2259 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2260 skb_dst_drop(nskb); 2261 2262 skb_len = nskb->len; 2263 rc = ops->ndo_start_xmit(nskb, dev); 2264 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2265 if (unlikely(rc != NETDEV_TX_OK)) { 2266 if (rc & ~NETDEV_TX_MASK) 2267 goto out_kfree_gso_skb; 2268 nskb->next = skb->next; 2269 skb->next = nskb; 2270 return rc; 2271 } 2272 txq_trans_update(txq); 2273 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2274 return NETDEV_TX_BUSY; 2275 } while (skb->next); 2276 2277 out_kfree_gso_skb: 2278 if (likely(skb->next == NULL)) 2279 skb->destructor = DEV_GSO_CB(skb)->destructor; 2280 out_kfree_skb: 2281 kfree_skb(skb); 2282 out: 2283 return rc; 2284 } 2285 2286 static u32 hashrnd __read_mostly; 2287 2288 /* 2289 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2290 * to be used as a distribution range. 2291 */ 2292 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2293 unsigned int num_tx_queues) 2294 { 2295 u32 hash; 2296 u16 qoffset = 0; 2297 u16 qcount = num_tx_queues; 2298 2299 if (skb_rx_queue_recorded(skb)) { 2300 hash = skb_get_rx_queue(skb); 2301 while (unlikely(hash >= num_tx_queues)) 2302 hash -= num_tx_queues; 2303 return hash; 2304 } 2305 2306 if (dev->num_tc) { 2307 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2308 qoffset = dev->tc_to_txq[tc].offset; 2309 qcount = dev->tc_to_txq[tc].count; 2310 } 2311 2312 if (skb->sk && skb->sk->sk_hash) 2313 hash = skb->sk->sk_hash; 2314 else 2315 hash = (__force u16) skb->protocol ^ skb->rxhash; 2316 hash = jhash_1word(hash, hashrnd); 2317 2318 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2319 } 2320 EXPORT_SYMBOL(__skb_tx_hash); 2321 2322 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2323 { 2324 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2325 if (net_ratelimit()) { 2326 pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n", 2327 dev->name, queue_index, 2328 dev->real_num_tx_queues); 2329 } 2330 return 0; 2331 } 2332 return queue_index; 2333 } 2334 2335 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2336 { 2337 #ifdef CONFIG_XPS 2338 struct xps_dev_maps *dev_maps; 2339 struct xps_map *map; 2340 int queue_index = -1; 2341 2342 rcu_read_lock(); 2343 dev_maps = rcu_dereference(dev->xps_maps); 2344 if (dev_maps) { 2345 map = rcu_dereference( 2346 dev_maps->cpu_map[raw_smp_processor_id()]); 2347 if (map) { 2348 if (map->len == 1) 2349 queue_index = map->queues[0]; 2350 else { 2351 u32 hash; 2352 if (skb->sk && skb->sk->sk_hash) 2353 hash = skb->sk->sk_hash; 2354 else 2355 hash = (__force u16) skb->protocol ^ 2356 skb->rxhash; 2357 hash = jhash_1word(hash, hashrnd); 2358 queue_index = map->queues[ 2359 ((u64)hash * map->len) >> 32]; 2360 } 2361 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2362 queue_index = -1; 2363 } 2364 } 2365 rcu_read_unlock(); 2366 2367 return queue_index; 2368 #else 2369 return -1; 2370 #endif 2371 } 2372 2373 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2374 struct sk_buff *skb) 2375 { 2376 int queue_index; 2377 const struct net_device_ops *ops = dev->netdev_ops; 2378 2379 if (dev->real_num_tx_queues == 1) 2380 queue_index = 0; 2381 else if (ops->ndo_select_queue) { 2382 queue_index = ops->ndo_select_queue(dev, skb); 2383 queue_index = dev_cap_txqueue(dev, queue_index); 2384 } else { 2385 struct sock *sk = skb->sk; 2386 queue_index = sk_tx_queue_get(sk); 2387 2388 if (queue_index < 0 || skb->ooo_okay || 2389 queue_index >= dev->real_num_tx_queues) { 2390 int old_index = queue_index; 2391 2392 queue_index = get_xps_queue(dev, skb); 2393 if (queue_index < 0) 2394 queue_index = skb_tx_hash(dev, skb); 2395 2396 if (queue_index != old_index && sk) { 2397 struct dst_entry *dst = 2398 rcu_dereference_check(sk->sk_dst_cache, 1); 2399 2400 if (dst && skb_dst(skb) == dst) 2401 sk_tx_queue_set(sk, queue_index); 2402 } 2403 } 2404 } 2405 2406 skb_set_queue_mapping(skb, queue_index); 2407 return netdev_get_tx_queue(dev, queue_index); 2408 } 2409 2410 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2411 struct net_device *dev, 2412 struct netdev_queue *txq) 2413 { 2414 spinlock_t *root_lock = qdisc_lock(q); 2415 bool contended; 2416 int rc; 2417 2418 qdisc_skb_cb(skb)->pkt_len = skb->len; 2419 qdisc_calculate_pkt_len(skb, q); 2420 /* 2421 * Heuristic to force contended enqueues to serialize on a 2422 * separate lock before trying to get qdisc main lock. 2423 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2424 * and dequeue packets faster. 2425 */ 2426 contended = qdisc_is_running(q); 2427 if (unlikely(contended)) 2428 spin_lock(&q->busylock); 2429 2430 spin_lock(root_lock); 2431 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2432 kfree_skb(skb); 2433 rc = NET_XMIT_DROP; 2434 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2435 qdisc_run_begin(q)) { 2436 /* 2437 * This is a work-conserving queue; there are no old skbs 2438 * waiting to be sent out; and the qdisc is not running - 2439 * xmit the skb directly. 2440 */ 2441 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2442 skb_dst_force(skb); 2443 2444 qdisc_bstats_update(q, skb); 2445 2446 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2447 if (unlikely(contended)) { 2448 spin_unlock(&q->busylock); 2449 contended = false; 2450 } 2451 __qdisc_run(q); 2452 } else 2453 qdisc_run_end(q); 2454 2455 rc = NET_XMIT_SUCCESS; 2456 } else { 2457 skb_dst_force(skb); 2458 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2459 if (qdisc_run_begin(q)) { 2460 if (unlikely(contended)) { 2461 spin_unlock(&q->busylock); 2462 contended = false; 2463 } 2464 __qdisc_run(q); 2465 } 2466 } 2467 spin_unlock(root_lock); 2468 if (unlikely(contended)) 2469 spin_unlock(&q->busylock); 2470 return rc; 2471 } 2472 2473 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2474 static void skb_update_prio(struct sk_buff *skb) 2475 { 2476 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2477 2478 if ((!skb->priority) && (skb->sk) && map) 2479 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2480 } 2481 #else 2482 #define skb_update_prio(skb) 2483 #endif 2484 2485 static DEFINE_PER_CPU(int, xmit_recursion); 2486 #define RECURSION_LIMIT 10 2487 2488 /** 2489 * dev_queue_xmit - transmit a buffer 2490 * @skb: buffer to transmit 2491 * 2492 * Queue a buffer for transmission to a network device. The caller must 2493 * have set the device and priority and built the buffer before calling 2494 * this function. The function can be called from an interrupt. 2495 * 2496 * A negative errno code is returned on a failure. A success does not 2497 * guarantee the frame will be transmitted as it may be dropped due 2498 * to congestion or traffic shaping. 2499 * 2500 * ----------------------------------------------------------------------------------- 2501 * I notice this method can also return errors from the queue disciplines, 2502 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2503 * be positive. 2504 * 2505 * Regardless of the return value, the skb is consumed, so it is currently 2506 * difficult to retry a send to this method. (You can bump the ref count 2507 * before sending to hold a reference for retry if you are careful.) 2508 * 2509 * When calling this method, interrupts MUST be enabled. This is because 2510 * the BH enable code must have IRQs enabled so that it will not deadlock. 2511 * --BLG 2512 */ 2513 int dev_queue_xmit(struct sk_buff *skb) 2514 { 2515 struct net_device *dev = skb->dev; 2516 struct netdev_queue *txq; 2517 struct Qdisc *q; 2518 int rc = -ENOMEM; 2519 2520 /* Disable soft irqs for various locks below. Also 2521 * stops preemption for RCU. 2522 */ 2523 rcu_read_lock_bh(); 2524 2525 skb_update_prio(skb); 2526 2527 txq = dev_pick_tx(dev, skb); 2528 q = rcu_dereference_bh(txq->qdisc); 2529 2530 #ifdef CONFIG_NET_CLS_ACT 2531 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2532 #endif 2533 trace_net_dev_queue(skb); 2534 if (q->enqueue) { 2535 rc = __dev_xmit_skb(skb, q, dev, txq); 2536 goto out; 2537 } 2538 2539 /* The device has no queue. Common case for software devices: 2540 loopback, all the sorts of tunnels... 2541 2542 Really, it is unlikely that netif_tx_lock protection is necessary 2543 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2544 counters.) 2545 However, it is possible, that they rely on protection 2546 made by us here. 2547 2548 Check this and shot the lock. It is not prone from deadlocks. 2549 Either shot noqueue qdisc, it is even simpler 8) 2550 */ 2551 if (dev->flags & IFF_UP) { 2552 int cpu = smp_processor_id(); /* ok because BHs are off */ 2553 2554 if (txq->xmit_lock_owner != cpu) { 2555 2556 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2557 goto recursion_alert; 2558 2559 HARD_TX_LOCK(dev, txq, cpu); 2560 2561 if (!netif_xmit_stopped(txq)) { 2562 __this_cpu_inc(xmit_recursion); 2563 rc = dev_hard_start_xmit(skb, dev, txq); 2564 __this_cpu_dec(xmit_recursion); 2565 if (dev_xmit_complete(rc)) { 2566 HARD_TX_UNLOCK(dev, txq); 2567 goto out; 2568 } 2569 } 2570 HARD_TX_UNLOCK(dev, txq); 2571 if (net_ratelimit()) 2572 pr_crit("Virtual device %s asks to queue packet!\n", 2573 dev->name); 2574 } else { 2575 /* Recursion is detected! It is possible, 2576 * unfortunately 2577 */ 2578 recursion_alert: 2579 if (net_ratelimit()) 2580 pr_crit("Dead loop on virtual device %s, fix it urgently!\n", 2581 dev->name); 2582 } 2583 } 2584 2585 rc = -ENETDOWN; 2586 rcu_read_unlock_bh(); 2587 2588 kfree_skb(skb); 2589 return rc; 2590 out: 2591 rcu_read_unlock_bh(); 2592 return rc; 2593 } 2594 EXPORT_SYMBOL(dev_queue_xmit); 2595 2596 2597 /*======================================================================= 2598 Receiver routines 2599 =======================================================================*/ 2600 2601 int netdev_max_backlog __read_mostly = 1000; 2602 int netdev_tstamp_prequeue __read_mostly = 1; 2603 int netdev_budget __read_mostly = 300; 2604 int weight_p __read_mostly = 64; /* old backlog weight */ 2605 2606 /* Called with irq disabled */ 2607 static inline void ____napi_schedule(struct softnet_data *sd, 2608 struct napi_struct *napi) 2609 { 2610 list_add_tail(&napi->poll_list, &sd->poll_list); 2611 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2612 } 2613 2614 /* 2615 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2616 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2617 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2618 * if hash is a canonical 4-tuple hash over transport ports. 2619 */ 2620 void __skb_get_rxhash(struct sk_buff *skb) 2621 { 2622 struct flow_keys keys; 2623 u32 hash; 2624 2625 if (!skb_flow_dissect(skb, &keys)) 2626 return; 2627 2628 if (keys.ports) { 2629 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2630 swap(keys.port16[0], keys.port16[1]); 2631 skb->l4_rxhash = 1; 2632 } 2633 2634 /* get a consistent hash (same value on both flow directions) */ 2635 if ((__force u32)keys.dst < (__force u32)keys.src) 2636 swap(keys.dst, keys.src); 2637 2638 hash = jhash_3words((__force u32)keys.dst, 2639 (__force u32)keys.src, 2640 (__force u32)keys.ports, hashrnd); 2641 if (!hash) 2642 hash = 1; 2643 2644 skb->rxhash = hash; 2645 } 2646 EXPORT_SYMBOL(__skb_get_rxhash); 2647 2648 #ifdef CONFIG_RPS 2649 2650 /* One global table that all flow-based protocols share. */ 2651 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2652 EXPORT_SYMBOL(rps_sock_flow_table); 2653 2654 struct static_key rps_needed __read_mostly; 2655 2656 static struct rps_dev_flow * 2657 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2658 struct rps_dev_flow *rflow, u16 next_cpu) 2659 { 2660 if (next_cpu != RPS_NO_CPU) { 2661 #ifdef CONFIG_RFS_ACCEL 2662 struct netdev_rx_queue *rxqueue; 2663 struct rps_dev_flow_table *flow_table; 2664 struct rps_dev_flow *old_rflow; 2665 u32 flow_id; 2666 u16 rxq_index; 2667 int rc; 2668 2669 /* Should we steer this flow to a different hardware queue? */ 2670 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2671 !(dev->features & NETIF_F_NTUPLE)) 2672 goto out; 2673 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2674 if (rxq_index == skb_get_rx_queue(skb)) 2675 goto out; 2676 2677 rxqueue = dev->_rx + rxq_index; 2678 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2679 if (!flow_table) 2680 goto out; 2681 flow_id = skb->rxhash & flow_table->mask; 2682 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2683 rxq_index, flow_id); 2684 if (rc < 0) 2685 goto out; 2686 old_rflow = rflow; 2687 rflow = &flow_table->flows[flow_id]; 2688 rflow->filter = rc; 2689 if (old_rflow->filter == rflow->filter) 2690 old_rflow->filter = RPS_NO_FILTER; 2691 out: 2692 #endif 2693 rflow->last_qtail = 2694 per_cpu(softnet_data, next_cpu).input_queue_head; 2695 } 2696 2697 rflow->cpu = next_cpu; 2698 return rflow; 2699 } 2700 2701 /* 2702 * get_rps_cpu is called from netif_receive_skb and returns the target 2703 * CPU from the RPS map of the receiving queue for a given skb. 2704 * rcu_read_lock must be held on entry. 2705 */ 2706 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2707 struct rps_dev_flow **rflowp) 2708 { 2709 struct netdev_rx_queue *rxqueue; 2710 struct rps_map *map; 2711 struct rps_dev_flow_table *flow_table; 2712 struct rps_sock_flow_table *sock_flow_table; 2713 int cpu = -1; 2714 u16 tcpu; 2715 2716 if (skb_rx_queue_recorded(skb)) { 2717 u16 index = skb_get_rx_queue(skb); 2718 if (unlikely(index >= dev->real_num_rx_queues)) { 2719 WARN_ONCE(dev->real_num_rx_queues > 1, 2720 "%s received packet on queue %u, but number " 2721 "of RX queues is %u\n", 2722 dev->name, index, dev->real_num_rx_queues); 2723 goto done; 2724 } 2725 rxqueue = dev->_rx + index; 2726 } else 2727 rxqueue = dev->_rx; 2728 2729 map = rcu_dereference(rxqueue->rps_map); 2730 if (map) { 2731 if (map->len == 1 && 2732 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2733 tcpu = map->cpus[0]; 2734 if (cpu_online(tcpu)) 2735 cpu = tcpu; 2736 goto done; 2737 } 2738 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2739 goto done; 2740 } 2741 2742 skb_reset_network_header(skb); 2743 if (!skb_get_rxhash(skb)) 2744 goto done; 2745 2746 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2747 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2748 if (flow_table && sock_flow_table) { 2749 u16 next_cpu; 2750 struct rps_dev_flow *rflow; 2751 2752 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2753 tcpu = rflow->cpu; 2754 2755 next_cpu = sock_flow_table->ents[skb->rxhash & 2756 sock_flow_table->mask]; 2757 2758 /* 2759 * If the desired CPU (where last recvmsg was done) is 2760 * different from current CPU (one in the rx-queue flow 2761 * table entry), switch if one of the following holds: 2762 * - Current CPU is unset (equal to RPS_NO_CPU). 2763 * - Current CPU is offline. 2764 * - The current CPU's queue tail has advanced beyond the 2765 * last packet that was enqueued using this table entry. 2766 * This guarantees that all previous packets for the flow 2767 * have been dequeued, thus preserving in order delivery. 2768 */ 2769 if (unlikely(tcpu != next_cpu) && 2770 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2771 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2772 rflow->last_qtail)) >= 0)) 2773 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2774 2775 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2776 *rflowp = rflow; 2777 cpu = tcpu; 2778 goto done; 2779 } 2780 } 2781 2782 if (map) { 2783 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2784 2785 if (cpu_online(tcpu)) { 2786 cpu = tcpu; 2787 goto done; 2788 } 2789 } 2790 2791 done: 2792 return cpu; 2793 } 2794 2795 #ifdef CONFIG_RFS_ACCEL 2796 2797 /** 2798 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2799 * @dev: Device on which the filter was set 2800 * @rxq_index: RX queue index 2801 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2802 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2803 * 2804 * Drivers that implement ndo_rx_flow_steer() should periodically call 2805 * this function for each installed filter and remove the filters for 2806 * which it returns %true. 2807 */ 2808 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2809 u32 flow_id, u16 filter_id) 2810 { 2811 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2812 struct rps_dev_flow_table *flow_table; 2813 struct rps_dev_flow *rflow; 2814 bool expire = true; 2815 int cpu; 2816 2817 rcu_read_lock(); 2818 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2819 if (flow_table && flow_id <= flow_table->mask) { 2820 rflow = &flow_table->flows[flow_id]; 2821 cpu = ACCESS_ONCE(rflow->cpu); 2822 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2823 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2824 rflow->last_qtail) < 2825 (int)(10 * flow_table->mask))) 2826 expire = false; 2827 } 2828 rcu_read_unlock(); 2829 return expire; 2830 } 2831 EXPORT_SYMBOL(rps_may_expire_flow); 2832 2833 #endif /* CONFIG_RFS_ACCEL */ 2834 2835 /* Called from hardirq (IPI) context */ 2836 static void rps_trigger_softirq(void *data) 2837 { 2838 struct softnet_data *sd = data; 2839 2840 ____napi_schedule(sd, &sd->backlog); 2841 sd->received_rps++; 2842 } 2843 2844 #endif /* CONFIG_RPS */ 2845 2846 /* 2847 * Check if this softnet_data structure is another cpu one 2848 * If yes, queue it to our IPI list and return 1 2849 * If no, return 0 2850 */ 2851 static int rps_ipi_queued(struct softnet_data *sd) 2852 { 2853 #ifdef CONFIG_RPS 2854 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2855 2856 if (sd != mysd) { 2857 sd->rps_ipi_next = mysd->rps_ipi_list; 2858 mysd->rps_ipi_list = sd; 2859 2860 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2861 return 1; 2862 } 2863 #endif /* CONFIG_RPS */ 2864 return 0; 2865 } 2866 2867 /* 2868 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2869 * queue (may be a remote CPU queue). 2870 */ 2871 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2872 unsigned int *qtail) 2873 { 2874 struct softnet_data *sd; 2875 unsigned long flags; 2876 2877 sd = &per_cpu(softnet_data, cpu); 2878 2879 local_irq_save(flags); 2880 2881 rps_lock(sd); 2882 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2883 if (skb_queue_len(&sd->input_pkt_queue)) { 2884 enqueue: 2885 __skb_queue_tail(&sd->input_pkt_queue, skb); 2886 input_queue_tail_incr_save(sd, qtail); 2887 rps_unlock(sd); 2888 local_irq_restore(flags); 2889 return NET_RX_SUCCESS; 2890 } 2891 2892 /* Schedule NAPI for backlog device 2893 * We can use non atomic operation since we own the queue lock 2894 */ 2895 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2896 if (!rps_ipi_queued(sd)) 2897 ____napi_schedule(sd, &sd->backlog); 2898 } 2899 goto enqueue; 2900 } 2901 2902 sd->dropped++; 2903 rps_unlock(sd); 2904 2905 local_irq_restore(flags); 2906 2907 atomic_long_inc(&skb->dev->rx_dropped); 2908 kfree_skb(skb); 2909 return NET_RX_DROP; 2910 } 2911 2912 /** 2913 * netif_rx - post buffer to the network code 2914 * @skb: buffer to post 2915 * 2916 * This function receives a packet from a device driver and queues it for 2917 * the upper (protocol) levels to process. It always succeeds. The buffer 2918 * may be dropped during processing for congestion control or by the 2919 * protocol layers. 2920 * 2921 * return values: 2922 * NET_RX_SUCCESS (no congestion) 2923 * NET_RX_DROP (packet was dropped) 2924 * 2925 */ 2926 2927 int netif_rx(struct sk_buff *skb) 2928 { 2929 int ret; 2930 2931 /* if netpoll wants it, pretend we never saw it */ 2932 if (netpoll_rx(skb)) 2933 return NET_RX_DROP; 2934 2935 net_timestamp_check(netdev_tstamp_prequeue, skb); 2936 2937 trace_netif_rx(skb); 2938 #ifdef CONFIG_RPS 2939 if (static_key_false(&rps_needed)) { 2940 struct rps_dev_flow voidflow, *rflow = &voidflow; 2941 int cpu; 2942 2943 preempt_disable(); 2944 rcu_read_lock(); 2945 2946 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2947 if (cpu < 0) 2948 cpu = smp_processor_id(); 2949 2950 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2951 2952 rcu_read_unlock(); 2953 preempt_enable(); 2954 } else 2955 #endif 2956 { 2957 unsigned int qtail; 2958 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2959 put_cpu(); 2960 } 2961 return ret; 2962 } 2963 EXPORT_SYMBOL(netif_rx); 2964 2965 int netif_rx_ni(struct sk_buff *skb) 2966 { 2967 int err; 2968 2969 preempt_disable(); 2970 err = netif_rx(skb); 2971 if (local_softirq_pending()) 2972 do_softirq(); 2973 preempt_enable(); 2974 2975 return err; 2976 } 2977 EXPORT_SYMBOL(netif_rx_ni); 2978 2979 static void net_tx_action(struct softirq_action *h) 2980 { 2981 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2982 2983 if (sd->completion_queue) { 2984 struct sk_buff *clist; 2985 2986 local_irq_disable(); 2987 clist = sd->completion_queue; 2988 sd->completion_queue = NULL; 2989 local_irq_enable(); 2990 2991 while (clist) { 2992 struct sk_buff *skb = clist; 2993 clist = clist->next; 2994 2995 WARN_ON(atomic_read(&skb->users)); 2996 trace_kfree_skb(skb, net_tx_action); 2997 __kfree_skb(skb); 2998 } 2999 } 3000 3001 if (sd->output_queue) { 3002 struct Qdisc *head; 3003 3004 local_irq_disable(); 3005 head = sd->output_queue; 3006 sd->output_queue = NULL; 3007 sd->output_queue_tailp = &sd->output_queue; 3008 local_irq_enable(); 3009 3010 while (head) { 3011 struct Qdisc *q = head; 3012 spinlock_t *root_lock; 3013 3014 head = head->next_sched; 3015 3016 root_lock = qdisc_lock(q); 3017 if (spin_trylock(root_lock)) { 3018 smp_mb__before_clear_bit(); 3019 clear_bit(__QDISC_STATE_SCHED, 3020 &q->state); 3021 qdisc_run(q); 3022 spin_unlock(root_lock); 3023 } else { 3024 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3025 &q->state)) { 3026 __netif_reschedule(q); 3027 } else { 3028 smp_mb__before_clear_bit(); 3029 clear_bit(__QDISC_STATE_SCHED, 3030 &q->state); 3031 } 3032 } 3033 } 3034 } 3035 } 3036 3037 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3038 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3039 /* This hook is defined here for ATM LANE */ 3040 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3041 unsigned char *addr) __read_mostly; 3042 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3043 #endif 3044 3045 #ifdef CONFIG_NET_CLS_ACT 3046 /* TODO: Maybe we should just force sch_ingress to be compiled in 3047 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3048 * a compare and 2 stores extra right now if we dont have it on 3049 * but have CONFIG_NET_CLS_ACT 3050 * NOTE: This doesn't stop any functionality; if you dont have 3051 * the ingress scheduler, you just can't add policies on ingress. 3052 * 3053 */ 3054 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3055 { 3056 struct net_device *dev = skb->dev; 3057 u32 ttl = G_TC_RTTL(skb->tc_verd); 3058 int result = TC_ACT_OK; 3059 struct Qdisc *q; 3060 3061 if (unlikely(MAX_RED_LOOP < ttl++)) { 3062 if (net_ratelimit()) 3063 pr_warn("Redir loop detected Dropping packet (%d->%d)\n", 3064 skb->skb_iif, dev->ifindex); 3065 return TC_ACT_SHOT; 3066 } 3067 3068 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3069 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3070 3071 q = rxq->qdisc; 3072 if (q != &noop_qdisc) { 3073 spin_lock(qdisc_lock(q)); 3074 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3075 result = qdisc_enqueue_root(skb, q); 3076 spin_unlock(qdisc_lock(q)); 3077 } 3078 3079 return result; 3080 } 3081 3082 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3083 struct packet_type **pt_prev, 3084 int *ret, struct net_device *orig_dev) 3085 { 3086 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3087 3088 if (!rxq || rxq->qdisc == &noop_qdisc) 3089 goto out; 3090 3091 if (*pt_prev) { 3092 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3093 *pt_prev = NULL; 3094 } 3095 3096 switch (ing_filter(skb, rxq)) { 3097 case TC_ACT_SHOT: 3098 case TC_ACT_STOLEN: 3099 kfree_skb(skb); 3100 return NULL; 3101 } 3102 3103 out: 3104 skb->tc_verd = 0; 3105 return skb; 3106 } 3107 #endif 3108 3109 /** 3110 * netdev_rx_handler_register - register receive handler 3111 * @dev: device to register a handler for 3112 * @rx_handler: receive handler to register 3113 * @rx_handler_data: data pointer that is used by rx handler 3114 * 3115 * Register a receive hander for a device. This handler will then be 3116 * called from __netif_receive_skb. A negative errno code is returned 3117 * on a failure. 3118 * 3119 * The caller must hold the rtnl_mutex. 3120 * 3121 * For a general description of rx_handler, see enum rx_handler_result. 3122 */ 3123 int netdev_rx_handler_register(struct net_device *dev, 3124 rx_handler_func_t *rx_handler, 3125 void *rx_handler_data) 3126 { 3127 ASSERT_RTNL(); 3128 3129 if (dev->rx_handler) 3130 return -EBUSY; 3131 3132 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3133 rcu_assign_pointer(dev->rx_handler, rx_handler); 3134 3135 return 0; 3136 } 3137 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3138 3139 /** 3140 * netdev_rx_handler_unregister - unregister receive handler 3141 * @dev: device to unregister a handler from 3142 * 3143 * Unregister a receive hander from a device. 3144 * 3145 * The caller must hold the rtnl_mutex. 3146 */ 3147 void netdev_rx_handler_unregister(struct net_device *dev) 3148 { 3149 3150 ASSERT_RTNL(); 3151 RCU_INIT_POINTER(dev->rx_handler, NULL); 3152 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3153 } 3154 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3155 3156 static int __netif_receive_skb(struct sk_buff *skb) 3157 { 3158 struct packet_type *ptype, *pt_prev; 3159 rx_handler_func_t *rx_handler; 3160 struct net_device *orig_dev; 3161 struct net_device *null_or_dev; 3162 bool deliver_exact = false; 3163 int ret = NET_RX_DROP; 3164 __be16 type; 3165 3166 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3167 3168 trace_netif_receive_skb(skb); 3169 3170 /* if we've gotten here through NAPI, check netpoll */ 3171 if (netpoll_receive_skb(skb)) 3172 return NET_RX_DROP; 3173 3174 if (!skb->skb_iif) 3175 skb->skb_iif = skb->dev->ifindex; 3176 orig_dev = skb->dev; 3177 3178 skb_reset_network_header(skb); 3179 skb_reset_transport_header(skb); 3180 skb_reset_mac_len(skb); 3181 3182 pt_prev = NULL; 3183 3184 rcu_read_lock(); 3185 3186 another_round: 3187 3188 __this_cpu_inc(softnet_data.processed); 3189 3190 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3191 skb = vlan_untag(skb); 3192 if (unlikely(!skb)) 3193 goto out; 3194 } 3195 3196 #ifdef CONFIG_NET_CLS_ACT 3197 if (skb->tc_verd & TC_NCLS) { 3198 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3199 goto ncls; 3200 } 3201 #endif 3202 3203 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3204 if (!ptype->dev || ptype->dev == skb->dev) { 3205 if (pt_prev) 3206 ret = deliver_skb(skb, pt_prev, orig_dev); 3207 pt_prev = ptype; 3208 } 3209 } 3210 3211 #ifdef CONFIG_NET_CLS_ACT 3212 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3213 if (!skb) 3214 goto out; 3215 ncls: 3216 #endif 3217 3218 rx_handler = rcu_dereference(skb->dev->rx_handler); 3219 if (vlan_tx_tag_present(skb)) { 3220 if (pt_prev) { 3221 ret = deliver_skb(skb, pt_prev, orig_dev); 3222 pt_prev = NULL; 3223 } 3224 if (vlan_do_receive(&skb, !rx_handler)) 3225 goto another_round; 3226 else if (unlikely(!skb)) 3227 goto out; 3228 } 3229 3230 if (rx_handler) { 3231 if (pt_prev) { 3232 ret = deliver_skb(skb, pt_prev, orig_dev); 3233 pt_prev = NULL; 3234 } 3235 switch (rx_handler(&skb)) { 3236 case RX_HANDLER_CONSUMED: 3237 goto out; 3238 case RX_HANDLER_ANOTHER: 3239 goto another_round; 3240 case RX_HANDLER_EXACT: 3241 deliver_exact = true; 3242 case RX_HANDLER_PASS: 3243 break; 3244 default: 3245 BUG(); 3246 } 3247 } 3248 3249 /* deliver only exact match when indicated */ 3250 null_or_dev = deliver_exact ? skb->dev : NULL; 3251 3252 type = skb->protocol; 3253 list_for_each_entry_rcu(ptype, 3254 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3255 if (ptype->type == type && 3256 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3257 ptype->dev == orig_dev)) { 3258 if (pt_prev) 3259 ret = deliver_skb(skb, pt_prev, orig_dev); 3260 pt_prev = ptype; 3261 } 3262 } 3263 3264 if (pt_prev) { 3265 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3266 } else { 3267 atomic_long_inc(&skb->dev->rx_dropped); 3268 kfree_skb(skb); 3269 /* Jamal, now you will not able to escape explaining 3270 * me how you were going to use this. :-) 3271 */ 3272 ret = NET_RX_DROP; 3273 } 3274 3275 out: 3276 rcu_read_unlock(); 3277 return ret; 3278 } 3279 3280 /** 3281 * netif_receive_skb - process receive buffer from network 3282 * @skb: buffer to process 3283 * 3284 * netif_receive_skb() is the main receive data processing function. 3285 * It always succeeds. The buffer may be dropped during processing 3286 * for congestion control or by the protocol layers. 3287 * 3288 * This function may only be called from softirq context and interrupts 3289 * should be enabled. 3290 * 3291 * Return values (usually ignored): 3292 * NET_RX_SUCCESS: no congestion 3293 * NET_RX_DROP: packet was dropped 3294 */ 3295 int netif_receive_skb(struct sk_buff *skb) 3296 { 3297 net_timestamp_check(netdev_tstamp_prequeue, skb); 3298 3299 if (skb_defer_rx_timestamp(skb)) 3300 return NET_RX_SUCCESS; 3301 3302 #ifdef CONFIG_RPS 3303 if (static_key_false(&rps_needed)) { 3304 struct rps_dev_flow voidflow, *rflow = &voidflow; 3305 int cpu, ret; 3306 3307 rcu_read_lock(); 3308 3309 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3310 3311 if (cpu >= 0) { 3312 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3313 rcu_read_unlock(); 3314 return ret; 3315 } 3316 rcu_read_unlock(); 3317 } 3318 #endif 3319 return __netif_receive_skb(skb); 3320 } 3321 EXPORT_SYMBOL(netif_receive_skb); 3322 3323 /* Network device is going away, flush any packets still pending 3324 * Called with irqs disabled. 3325 */ 3326 static void flush_backlog(void *arg) 3327 { 3328 struct net_device *dev = arg; 3329 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3330 struct sk_buff *skb, *tmp; 3331 3332 rps_lock(sd); 3333 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3334 if (skb->dev == dev) { 3335 __skb_unlink(skb, &sd->input_pkt_queue); 3336 kfree_skb(skb); 3337 input_queue_head_incr(sd); 3338 } 3339 } 3340 rps_unlock(sd); 3341 3342 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3343 if (skb->dev == dev) { 3344 __skb_unlink(skb, &sd->process_queue); 3345 kfree_skb(skb); 3346 input_queue_head_incr(sd); 3347 } 3348 } 3349 } 3350 3351 static int napi_gro_complete(struct sk_buff *skb) 3352 { 3353 struct packet_type *ptype; 3354 __be16 type = skb->protocol; 3355 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3356 int err = -ENOENT; 3357 3358 if (NAPI_GRO_CB(skb)->count == 1) { 3359 skb_shinfo(skb)->gso_size = 0; 3360 goto out; 3361 } 3362 3363 rcu_read_lock(); 3364 list_for_each_entry_rcu(ptype, head, list) { 3365 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3366 continue; 3367 3368 err = ptype->gro_complete(skb); 3369 break; 3370 } 3371 rcu_read_unlock(); 3372 3373 if (err) { 3374 WARN_ON(&ptype->list == head); 3375 kfree_skb(skb); 3376 return NET_RX_SUCCESS; 3377 } 3378 3379 out: 3380 return netif_receive_skb(skb); 3381 } 3382 3383 inline void napi_gro_flush(struct napi_struct *napi) 3384 { 3385 struct sk_buff *skb, *next; 3386 3387 for (skb = napi->gro_list; skb; skb = next) { 3388 next = skb->next; 3389 skb->next = NULL; 3390 napi_gro_complete(skb); 3391 } 3392 3393 napi->gro_count = 0; 3394 napi->gro_list = NULL; 3395 } 3396 EXPORT_SYMBOL(napi_gro_flush); 3397 3398 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3399 { 3400 struct sk_buff **pp = NULL; 3401 struct packet_type *ptype; 3402 __be16 type = skb->protocol; 3403 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3404 int same_flow; 3405 int mac_len; 3406 enum gro_result ret; 3407 3408 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3409 goto normal; 3410 3411 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3412 goto normal; 3413 3414 rcu_read_lock(); 3415 list_for_each_entry_rcu(ptype, head, list) { 3416 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3417 continue; 3418 3419 skb_set_network_header(skb, skb_gro_offset(skb)); 3420 mac_len = skb->network_header - skb->mac_header; 3421 skb->mac_len = mac_len; 3422 NAPI_GRO_CB(skb)->same_flow = 0; 3423 NAPI_GRO_CB(skb)->flush = 0; 3424 NAPI_GRO_CB(skb)->free = 0; 3425 3426 pp = ptype->gro_receive(&napi->gro_list, skb); 3427 break; 3428 } 3429 rcu_read_unlock(); 3430 3431 if (&ptype->list == head) 3432 goto normal; 3433 3434 same_flow = NAPI_GRO_CB(skb)->same_flow; 3435 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3436 3437 if (pp) { 3438 struct sk_buff *nskb = *pp; 3439 3440 *pp = nskb->next; 3441 nskb->next = NULL; 3442 napi_gro_complete(nskb); 3443 napi->gro_count--; 3444 } 3445 3446 if (same_flow) 3447 goto ok; 3448 3449 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3450 goto normal; 3451 3452 napi->gro_count++; 3453 NAPI_GRO_CB(skb)->count = 1; 3454 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3455 skb->next = napi->gro_list; 3456 napi->gro_list = skb; 3457 ret = GRO_HELD; 3458 3459 pull: 3460 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3461 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3462 3463 BUG_ON(skb->end - skb->tail < grow); 3464 3465 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3466 3467 skb->tail += grow; 3468 skb->data_len -= grow; 3469 3470 skb_shinfo(skb)->frags[0].page_offset += grow; 3471 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3472 3473 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3474 skb_frag_unref(skb, 0); 3475 memmove(skb_shinfo(skb)->frags, 3476 skb_shinfo(skb)->frags + 1, 3477 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3478 } 3479 } 3480 3481 ok: 3482 return ret; 3483 3484 normal: 3485 ret = GRO_NORMAL; 3486 goto pull; 3487 } 3488 EXPORT_SYMBOL(dev_gro_receive); 3489 3490 static inline gro_result_t 3491 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3492 { 3493 struct sk_buff *p; 3494 unsigned int maclen = skb->dev->hard_header_len; 3495 3496 for (p = napi->gro_list; p; p = p->next) { 3497 unsigned long diffs; 3498 3499 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3500 diffs |= p->vlan_tci ^ skb->vlan_tci; 3501 if (maclen == ETH_HLEN) 3502 diffs |= compare_ether_header(skb_mac_header(p), 3503 skb_gro_mac_header(skb)); 3504 else if (!diffs) 3505 diffs = memcmp(skb_mac_header(p), 3506 skb_gro_mac_header(skb), 3507 maclen); 3508 NAPI_GRO_CB(p)->same_flow = !diffs; 3509 NAPI_GRO_CB(p)->flush = 0; 3510 } 3511 3512 return dev_gro_receive(napi, skb); 3513 } 3514 3515 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3516 { 3517 switch (ret) { 3518 case GRO_NORMAL: 3519 if (netif_receive_skb(skb)) 3520 ret = GRO_DROP; 3521 break; 3522 3523 case GRO_DROP: 3524 case GRO_MERGED_FREE: 3525 kfree_skb(skb); 3526 break; 3527 3528 case GRO_HELD: 3529 case GRO_MERGED: 3530 break; 3531 } 3532 3533 return ret; 3534 } 3535 EXPORT_SYMBOL(napi_skb_finish); 3536 3537 void skb_gro_reset_offset(struct sk_buff *skb) 3538 { 3539 NAPI_GRO_CB(skb)->data_offset = 0; 3540 NAPI_GRO_CB(skb)->frag0 = NULL; 3541 NAPI_GRO_CB(skb)->frag0_len = 0; 3542 3543 if (skb->mac_header == skb->tail && 3544 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3545 NAPI_GRO_CB(skb)->frag0 = 3546 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3547 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3548 } 3549 } 3550 EXPORT_SYMBOL(skb_gro_reset_offset); 3551 3552 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3553 { 3554 skb_gro_reset_offset(skb); 3555 3556 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3557 } 3558 EXPORT_SYMBOL(napi_gro_receive); 3559 3560 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3561 { 3562 __skb_pull(skb, skb_headlen(skb)); 3563 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3564 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3565 skb->vlan_tci = 0; 3566 skb->dev = napi->dev; 3567 skb->skb_iif = 0; 3568 3569 napi->skb = skb; 3570 } 3571 3572 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3573 { 3574 struct sk_buff *skb = napi->skb; 3575 3576 if (!skb) { 3577 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3578 if (skb) 3579 napi->skb = skb; 3580 } 3581 return skb; 3582 } 3583 EXPORT_SYMBOL(napi_get_frags); 3584 3585 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3586 gro_result_t ret) 3587 { 3588 switch (ret) { 3589 case GRO_NORMAL: 3590 case GRO_HELD: 3591 skb->protocol = eth_type_trans(skb, skb->dev); 3592 3593 if (ret == GRO_HELD) 3594 skb_gro_pull(skb, -ETH_HLEN); 3595 else if (netif_receive_skb(skb)) 3596 ret = GRO_DROP; 3597 break; 3598 3599 case GRO_DROP: 3600 case GRO_MERGED_FREE: 3601 napi_reuse_skb(napi, skb); 3602 break; 3603 3604 case GRO_MERGED: 3605 break; 3606 } 3607 3608 return ret; 3609 } 3610 EXPORT_SYMBOL(napi_frags_finish); 3611 3612 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3613 { 3614 struct sk_buff *skb = napi->skb; 3615 struct ethhdr *eth; 3616 unsigned int hlen; 3617 unsigned int off; 3618 3619 napi->skb = NULL; 3620 3621 skb_reset_mac_header(skb); 3622 skb_gro_reset_offset(skb); 3623 3624 off = skb_gro_offset(skb); 3625 hlen = off + sizeof(*eth); 3626 eth = skb_gro_header_fast(skb, off); 3627 if (skb_gro_header_hard(skb, hlen)) { 3628 eth = skb_gro_header_slow(skb, hlen, off); 3629 if (unlikely(!eth)) { 3630 napi_reuse_skb(napi, skb); 3631 skb = NULL; 3632 goto out; 3633 } 3634 } 3635 3636 skb_gro_pull(skb, sizeof(*eth)); 3637 3638 /* 3639 * This works because the only protocols we care about don't require 3640 * special handling. We'll fix it up properly at the end. 3641 */ 3642 skb->protocol = eth->h_proto; 3643 3644 out: 3645 return skb; 3646 } 3647 EXPORT_SYMBOL(napi_frags_skb); 3648 3649 gro_result_t napi_gro_frags(struct napi_struct *napi) 3650 { 3651 struct sk_buff *skb = napi_frags_skb(napi); 3652 3653 if (!skb) 3654 return GRO_DROP; 3655 3656 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3657 } 3658 EXPORT_SYMBOL(napi_gro_frags); 3659 3660 /* 3661 * net_rps_action sends any pending IPI's for rps. 3662 * Note: called with local irq disabled, but exits with local irq enabled. 3663 */ 3664 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3665 { 3666 #ifdef CONFIG_RPS 3667 struct softnet_data *remsd = sd->rps_ipi_list; 3668 3669 if (remsd) { 3670 sd->rps_ipi_list = NULL; 3671 3672 local_irq_enable(); 3673 3674 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3675 while (remsd) { 3676 struct softnet_data *next = remsd->rps_ipi_next; 3677 3678 if (cpu_online(remsd->cpu)) 3679 __smp_call_function_single(remsd->cpu, 3680 &remsd->csd, 0); 3681 remsd = next; 3682 } 3683 } else 3684 #endif 3685 local_irq_enable(); 3686 } 3687 3688 static int process_backlog(struct napi_struct *napi, int quota) 3689 { 3690 int work = 0; 3691 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3692 3693 #ifdef CONFIG_RPS 3694 /* Check if we have pending ipi, its better to send them now, 3695 * not waiting net_rx_action() end. 3696 */ 3697 if (sd->rps_ipi_list) { 3698 local_irq_disable(); 3699 net_rps_action_and_irq_enable(sd); 3700 } 3701 #endif 3702 napi->weight = weight_p; 3703 local_irq_disable(); 3704 while (work < quota) { 3705 struct sk_buff *skb; 3706 unsigned int qlen; 3707 3708 while ((skb = __skb_dequeue(&sd->process_queue))) { 3709 local_irq_enable(); 3710 __netif_receive_skb(skb); 3711 local_irq_disable(); 3712 input_queue_head_incr(sd); 3713 if (++work >= quota) { 3714 local_irq_enable(); 3715 return work; 3716 } 3717 } 3718 3719 rps_lock(sd); 3720 qlen = skb_queue_len(&sd->input_pkt_queue); 3721 if (qlen) 3722 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3723 &sd->process_queue); 3724 3725 if (qlen < quota - work) { 3726 /* 3727 * Inline a custom version of __napi_complete(). 3728 * only current cpu owns and manipulates this napi, 3729 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3730 * we can use a plain write instead of clear_bit(), 3731 * and we dont need an smp_mb() memory barrier. 3732 */ 3733 list_del(&napi->poll_list); 3734 napi->state = 0; 3735 3736 quota = work + qlen; 3737 } 3738 rps_unlock(sd); 3739 } 3740 local_irq_enable(); 3741 3742 return work; 3743 } 3744 3745 /** 3746 * __napi_schedule - schedule for receive 3747 * @n: entry to schedule 3748 * 3749 * The entry's receive function will be scheduled to run 3750 */ 3751 void __napi_schedule(struct napi_struct *n) 3752 { 3753 unsigned long flags; 3754 3755 local_irq_save(flags); 3756 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3757 local_irq_restore(flags); 3758 } 3759 EXPORT_SYMBOL(__napi_schedule); 3760 3761 void __napi_complete(struct napi_struct *n) 3762 { 3763 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3764 BUG_ON(n->gro_list); 3765 3766 list_del(&n->poll_list); 3767 smp_mb__before_clear_bit(); 3768 clear_bit(NAPI_STATE_SCHED, &n->state); 3769 } 3770 EXPORT_SYMBOL(__napi_complete); 3771 3772 void napi_complete(struct napi_struct *n) 3773 { 3774 unsigned long flags; 3775 3776 /* 3777 * don't let napi dequeue from the cpu poll list 3778 * just in case its running on a different cpu 3779 */ 3780 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3781 return; 3782 3783 napi_gro_flush(n); 3784 local_irq_save(flags); 3785 __napi_complete(n); 3786 local_irq_restore(flags); 3787 } 3788 EXPORT_SYMBOL(napi_complete); 3789 3790 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3791 int (*poll)(struct napi_struct *, int), int weight) 3792 { 3793 INIT_LIST_HEAD(&napi->poll_list); 3794 napi->gro_count = 0; 3795 napi->gro_list = NULL; 3796 napi->skb = NULL; 3797 napi->poll = poll; 3798 napi->weight = weight; 3799 list_add(&napi->dev_list, &dev->napi_list); 3800 napi->dev = dev; 3801 #ifdef CONFIG_NETPOLL 3802 spin_lock_init(&napi->poll_lock); 3803 napi->poll_owner = -1; 3804 #endif 3805 set_bit(NAPI_STATE_SCHED, &napi->state); 3806 } 3807 EXPORT_SYMBOL(netif_napi_add); 3808 3809 void netif_napi_del(struct napi_struct *napi) 3810 { 3811 struct sk_buff *skb, *next; 3812 3813 list_del_init(&napi->dev_list); 3814 napi_free_frags(napi); 3815 3816 for (skb = napi->gro_list; skb; skb = next) { 3817 next = skb->next; 3818 skb->next = NULL; 3819 kfree_skb(skb); 3820 } 3821 3822 napi->gro_list = NULL; 3823 napi->gro_count = 0; 3824 } 3825 EXPORT_SYMBOL(netif_napi_del); 3826 3827 static void net_rx_action(struct softirq_action *h) 3828 { 3829 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3830 unsigned long time_limit = jiffies + 2; 3831 int budget = netdev_budget; 3832 void *have; 3833 3834 local_irq_disable(); 3835 3836 while (!list_empty(&sd->poll_list)) { 3837 struct napi_struct *n; 3838 int work, weight; 3839 3840 /* If softirq window is exhuasted then punt. 3841 * Allow this to run for 2 jiffies since which will allow 3842 * an average latency of 1.5/HZ. 3843 */ 3844 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3845 goto softnet_break; 3846 3847 local_irq_enable(); 3848 3849 /* Even though interrupts have been re-enabled, this 3850 * access is safe because interrupts can only add new 3851 * entries to the tail of this list, and only ->poll() 3852 * calls can remove this head entry from the list. 3853 */ 3854 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3855 3856 have = netpoll_poll_lock(n); 3857 3858 weight = n->weight; 3859 3860 /* This NAPI_STATE_SCHED test is for avoiding a race 3861 * with netpoll's poll_napi(). Only the entity which 3862 * obtains the lock and sees NAPI_STATE_SCHED set will 3863 * actually make the ->poll() call. Therefore we avoid 3864 * accidentally calling ->poll() when NAPI is not scheduled. 3865 */ 3866 work = 0; 3867 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3868 work = n->poll(n, weight); 3869 trace_napi_poll(n); 3870 } 3871 3872 WARN_ON_ONCE(work > weight); 3873 3874 budget -= work; 3875 3876 local_irq_disable(); 3877 3878 /* Drivers must not modify the NAPI state if they 3879 * consume the entire weight. In such cases this code 3880 * still "owns" the NAPI instance and therefore can 3881 * move the instance around on the list at-will. 3882 */ 3883 if (unlikely(work == weight)) { 3884 if (unlikely(napi_disable_pending(n))) { 3885 local_irq_enable(); 3886 napi_complete(n); 3887 local_irq_disable(); 3888 } else 3889 list_move_tail(&n->poll_list, &sd->poll_list); 3890 } 3891 3892 netpoll_poll_unlock(have); 3893 } 3894 out: 3895 net_rps_action_and_irq_enable(sd); 3896 3897 #ifdef CONFIG_NET_DMA 3898 /* 3899 * There may not be any more sk_buffs coming right now, so push 3900 * any pending DMA copies to hardware 3901 */ 3902 dma_issue_pending_all(); 3903 #endif 3904 3905 return; 3906 3907 softnet_break: 3908 sd->time_squeeze++; 3909 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3910 goto out; 3911 } 3912 3913 static gifconf_func_t *gifconf_list[NPROTO]; 3914 3915 /** 3916 * register_gifconf - register a SIOCGIF handler 3917 * @family: Address family 3918 * @gifconf: Function handler 3919 * 3920 * Register protocol dependent address dumping routines. The handler 3921 * that is passed must not be freed or reused until it has been replaced 3922 * by another handler. 3923 */ 3924 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3925 { 3926 if (family >= NPROTO) 3927 return -EINVAL; 3928 gifconf_list[family] = gifconf; 3929 return 0; 3930 } 3931 EXPORT_SYMBOL(register_gifconf); 3932 3933 3934 /* 3935 * Map an interface index to its name (SIOCGIFNAME) 3936 */ 3937 3938 /* 3939 * We need this ioctl for efficient implementation of the 3940 * if_indextoname() function required by the IPv6 API. Without 3941 * it, we would have to search all the interfaces to find a 3942 * match. --pb 3943 */ 3944 3945 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3946 { 3947 struct net_device *dev; 3948 struct ifreq ifr; 3949 3950 /* 3951 * Fetch the caller's info block. 3952 */ 3953 3954 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3955 return -EFAULT; 3956 3957 rcu_read_lock(); 3958 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3959 if (!dev) { 3960 rcu_read_unlock(); 3961 return -ENODEV; 3962 } 3963 3964 strcpy(ifr.ifr_name, dev->name); 3965 rcu_read_unlock(); 3966 3967 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3968 return -EFAULT; 3969 return 0; 3970 } 3971 3972 /* 3973 * Perform a SIOCGIFCONF call. This structure will change 3974 * size eventually, and there is nothing I can do about it. 3975 * Thus we will need a 'compatibility mode'. 3976 */ 3977 3978 static int dev_ifconf(struct net *net, char __user *arg) 3979 { 3980 struct ifconf ifc; 3981 struct net_device *dev; 3982 char __user *pos; 3983 int len; 3984 int total; 3985 int i; 3986 3987 /* 3988 * Fetch the caller's info block. 3989 */ 3990 3991 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3992 return -EFAULT; 3993 3994 pos = ifc.ifc_buf; 3995 len = ifc.ifc_len; 3996 3997 /* 3998 * Loop over the interfaces, and write an info block for each. 3999 */ 4000 4001 total = 0; 4002 for_each_netdev(net, dev) { 4003 for (i = 0; i < NPROTO; i++) { 4004 if (gifconf_list[i]) { 4005 int done; 4006 if (!pos) 4007 done = gifconf_list[i](dev, NULL, 0); 4008 else 4009 done = gifconf_list[i](dev, pos + total, 4010 len - total); 4011 if (done < 0) 4012 return -EFAULT; 4013 total += done; 4014 } 4015 } 4016 } 4017 4018 /* 4019 * All done. Write the updated control block back to the caller. 4020 */ 4021 ifc.ifc_len = total; 4022 4023 /* 4024 * Both BSD and Solaris return 0 here, so we do too. 4025 */ 4026 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4027 } 4028 4029 #ifdef CONFIG_PROC_FS 4030 4031 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4032 4033 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4034 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4035 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4036 4037 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4038 { 4039 struct net *net = seq_file_net(seq); 4040 struct net_device *dev; 4041 struct hlist_node *p; 4042 struct hlist_head *h; 4043 unsigned int count = 0, offset = get_offset(*pos); 4044 4045 h = &net->dev_name_head[get_bucket(*pos)]; 4046 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4047 if (++count == offset) 4048 return dev; 4049 } 4050 4051 return NULL; 4052 } 4053 4054 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4055 { 4056 struct net_device *dev; 4057 unsigned int bucket; 4058 4059 do { 4060 dev = dev_from_same_bucket(seq, pos); 4061 if (dev) 4062 return dev; 4063 4064 bucket = get_bucket(*pos) + 1; 4065 *pos = set_bucket_offset(bucket, 1); 4066 } while (bucket < NETDEV_HASHENTRIES); 4067 4068 return NULL; 4069 } 4070 4071 /* 4072 * This is invoked by the /proc filesystem handler to display a device 4073 * in detail. 4074 */ 4075 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4076 __acquires(RCU) 4077 { 4078 rcu_read_lock(); 4079 if (!*pos) 4080 return SEQ_START_TOKEN; 4081 4082 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4083 return NULL; 4084 4085 return dev_from_bucket(seq, pos); 4086 } 4087 4088 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4089 { 4090 ++*pos; 4091 return dev_from_bucket(seq, pos); 4092 } 4093 4094 void dev_seq_stop(struct seq_file *seq, void *v) 4095 __releases(RCU) 4096 { 4097 rcu_read_unlock(); 4098 } 4099 4100 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4101 { 4102 struct rtnl_link_stats64 temp; 4103 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4104 4105 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4106 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4107 dev->name, stats->rx_bytes, stats->rx_packets, 4108 stats->rx_errors, 4109 stats->rx_dropped + stats->rx_missed_errors, 4110 stats->rx_fifo_errors, 4111 stats->rx_length_errors + stats->rx_over_errors + 4112 stats->rx_crc_errors + stats->rx_frame_errors, 4113 stats->rx_compressed, stats->multicast, 4114 stats->tx_bytes, stats->tx_packets, 4115 stats->tx_errors, stats->tx_dropped, 4116 stats->tx_fifo_errors, stats->collisions, 4117 stats->tx_carrier_errors + 4118 stats->tx_aborted_errors + 4119 stats->tx_window_errors + 4120 stats->tx_heartbeat_errors, 4121 stats->tx_compressed); 4122 } 4123 4124 /* 4125 * Called from the PROCfs module. This now uses the new arbitrary sized 4126 * /proc/net interface to create /proc/net/dev 4127 */ 4128 static int dev_seq_show(struct seq_file *seq, void *v) 4129 { 4130 if (v == SEQ_START_TOKEN) 4131 seq_puts(seq, "Inter-| Receive " 4132 " | Transmit\n" 4133 " face |bytes packets errs drop fifo frame " 4134 "compressed multicast|bytes packets errs " 4135 "drop fifo colls carrier compressed\n"); 4136 else 4137 dev_seq_printf_stats(seq, v); 4138 return 0; 4139 } 4140 4141 static struct softnet_data *softnet_get_online(loff_t *pos) 4142 { 4143 struct softnet_data *sd = NULL; 4144 4145 while (*pos < nr_cpu_ids) 4146 if (cpu_online(*pos)) { 4147 sd = &per_cpu(softnet_data, *pos); 4148 break; 4149 } else 4150 ++*pos; 4151 return sd; 4152 } 4153 4154 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4155 { 4156 return softnet_get_online(pos); 4157 } 4158 4159 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4160 { 4161 ++*pos; 4162 return softnet_get_online(pos); 4163 } 4164 4165 static void softnet_seq_stop(struct seq_file *seq, void *v) 4166 { 4167 } 4168 4169 static int softnet_seq_show(struct seq_file *seq, void *v) 4170 { 4171 struct softnet_data *sd = v; 4172 4173 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4174 sd->processed, sd->dropped, sd->time_squeeze, 0, 4175 0, 0, 0, 0, /* was fastroute */ 4176 sd->cpu_collision, sd->received_rps); 4177 return 0; 4178 } 4179 4180 static const struct seq_operations dev_seq_ops = { 4181 .start = dev_seq_start, 4182 .next = dev_seq_next, 4183 .stop = dev_seq_stop, 4184 .show = dev_seq_show, 4185 }; 4186 4187 static int dev_seq_open(struct inode *inode, struct file *file) 4188 { 4189 return seq_open_net(inode, file, &dev_seq_ops, 4190 sizeof(struct seq_net_private)); 4191 } 4192 4193 static const struct file_operations dev_seq_fops = { 4194 .owner = THIS_MODULE, 4195 .open = dev_seq_open, 4196 .read = seq_read, 4197 .llseek = seq_lseek, 4198 .release = seq_release_net, 4199 }; 4200 4201 static const struct seq_operations softnet_seq_ops = { 4202 .start = softnet_seq_start, 4203 .next = softnet_seq_next, 4204 .stop = softnet_seq_stop, 4205 .show = softnet_seq_show, 4206 }; 4207 4208 static int softnet_seq_open(struct inode *inode, struct file *file) 4209 { 4210 return seq_open(file, &softnet_seq_ops); 4211 } 4212 4213 static const struct file_operations softnet_seq_fops = { 4214 .owner = THIS_MODULE, 4215 .open = softnet_seq_open, 4216 .read = seq_read, 4217 .llseek = seq_lseek, 4218 .release = seq_release, 4219 }; 4220 4221 static void *ptype_get_idx(loff_t pos) 4222 { 4223 struct packet_type *pt = NULL; 4224 loff_t i = 0; 4225 int t; 4226 4227 list_for_each_entry_rcu(pt, &ptype_all, list) { 4228 if (i == pos) 4229 return pt; 4230 ++i; 4231 } 4232 4233 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4234 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4235 if (i == pos) 4236 return pt; 4237 ++i; 4238 } 4239 } 4240 return NULL; 4241 } 4242 4243 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4244 __acquires(RCU) 4245 { 4246 rcu_read_lock(); 4247 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4248 } 4249 4250 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4251 { 4252 struct packet_type *pt; 4253 struct list_head *nxt; 4254 int hash; 4255 4256 ++*pos; 4257 if (v == SEQ_START_TOKEN) 4258 return ptype_get_idx(0); 4259 4260 pt = v; 4261 nxt = pt->list.next; 4262 if (pt->type == htons(ETH_P_ALL)) { 4263 if (nxt != &ptype_all) 4264 goto found; 4265 hash = 0; 4266 nxt = ptype_base[0].next; 4267 } else 4268 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4269 4270 while (nxt == &ptype_base[hash]) { 4271 if (++hash >= PTYPE_HASH_SIZE) 4272 return NULL; 4273 nxt = ptype_base[hash].next; 4274 } 4275 found: 4276 return list_entry(nxt, struct packet_type, list); 4277 } 4278 4279 static void ptype_seq_stop(struct seq_file *seq, void *v) 4280 __releases(RCU) 4281 { 4282 rcu_read_unlock(); 4283 } 4284 4285 static int ptype_seq_show(struct seq_file *seq, void *v) 4286 { 4287 struct packet_type *pt = v; 4288 4289 if (v == SEQ_START_TOKEN) 4290 seq_puts(seq, "Type Device Function\n"); 4291 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4292 if (pt->type == htons(ETH_P_ALL)) 4293 seq_puts(seq, "ALL "); 4294 else 4295 seq_printf(seq, "%04x", ntohs(pt->type)); 4296 4297 seq_printf(seq, " %-8s %pF\n", 4298 pt->dev ? pt->dev->name : "", pt->func); 4299 } 4300 4301 return 0; 4302 } 4303 4304 static const struct seq_operations ptype_seq_ops = { 4305 .start = ptype_seq_start, 4306 .next = ptype_seq_next, 4307 .stop = ptype_seq_stop, 4308 .show = ptype_seq_show, 4309 }; 4310 4311 static int ptype_seq_open(struct inode *inode, struct file *file) 4312 { 4313 return seq_open_net(inode, file, &ptype_seq_ops, 4314 sizeof(struct seq_net_private)); 4315 } 4316 4317 static const struct file_operations ptype_seq_fops = { 4318 .owner = THIS_MODULE, 4319 .open = ptype_seq_open, 4320 .read = seq_read, 4321 .llseek = seq_lseek, 4322 .release = seq_release_net, 4323 }; 4324 4325 4326 static int __net_init dev_proc_net_init(struct net *net) 4327 { 4328 int rc = -ENOMEM; 4329 4330 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4331 goto out; 4332 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4333 goto out_dev; 4334 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4335 goto out_softnet; 4336 4337 if (wext_proc_init(net)) 4338 goto out_ptype; 4339 rc = 0; 4340 out: 4341 return rc; 4342 out_ptype: 4343 proc_net_remove(net, "ptype"); 4344 out_softnet: 4345 proc_net_remove(net, "softnet_stat"); 4346 out_dev: 4347 proc_net_remove(net, "dev"); 4348 goto out; 4349 } 4350 4351 static void __net_exit dev_proc_net_exit(struct net *net) 4352 { 4353 wext_proc_exit(net); 4354 4355 proc_net_remove(net, "ptype"); 4356 proc_net_remove(net, "softnet_stat"); 4357 proc_net_remove(net, "dev"); 4358 } 4359 4360 static struct pernet_operations __net_initdata dev_proc_ops = { 4361 .init = dev_proc_net_init, 4362 .exit = dev_proc_net_exit, 4363 }; 4364 4365 static int __init dev_proc_init(void) 4366 { 4367 return register_pernet_subsys(&dev_proc_ops); 4368 } 4369 #else 4370 #define dev_proc_init() 0 4371 #endif /* CONFIG_PROC_FS */ 4372 4373 4374 /** 4375 * netdev_set_master - set up master pointer 4376 * @slave: slave device 4377 * @master: new master device 4378 * 4379 * Changes the master device of the slave. Pass %NULL to break the 4380 * bonding. The caller must hold the RTNL semaphore. On a failure 4381 * a negative errno code is returned. On success the reference counts 4382 * are adjusted and the function returns zero. 4383 */ 4384 int netdev_set_master(struct net_device *slave, struct net_device *master) 4385 { 4386 struct net_device *old = slave->master; 4387 4388 ASSERT_RTNL(); 4389 4390 if (master) { 4391 if (old) 4392 return -EBUSY; 4393 dev_hold(master); 4394 } 4395 4396 slave->master = master; 4397 4398 if (old) 4399 dev_put(old); 4400 return 0; 4401 } 4402 EXPORT_SYMBOL(netdev_set_master); 4403 4404 /** 4405 * netdev_set_bond_master - set up bonding master/slave pair 4406 * @slave: slave device 4407 * @master: new master device 4408 * 4409 * Changes the master device of the slave. Pass %NULL to break the 4410 * bonding. The caller must hold the RTNL semaphore. On a failure 4411 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4412 * to the routing socket and the function returns zero. 4413 */ 4414 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4415 { 4416 int err; 4417 4418 ASSERT_RTNL(); 4419 4420 err = netdev_set_master(slave, master); 4421 if (err) 4422 return err; 4423 if (master) 4424 slave->flags |= IFF_SLAVE; 4425 else 4426 slave->flags &= ~IFF_SLAVE; 4427 4428 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4429 return 0; 4430 } 4431 EXPORT_SYMBOL(netdev_set_bond_master); 4432 4433 static void dev_change_rx_flags(struct net_device *dev, int flags) 4434 { 4435 const struct net_device_ops *ops = dev->netdev_ops; 4436 4437 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4438 ops->ndo_change_rx_flags(dev, flags); 4439 } 4440 4441 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4442 { 4443 unsigned int old_flags = dev->flags; 4444 uid_t uid; 4445 gid_t gid; 4446 4447 ASSERT_RTNL(); 4448 4449 dev->flags |= IFF_PROMISC; 4450 dev->promiscuity += inc; 4451 if (dev->promiscuity == 0) { 4452 /* 4453 * Avoid overflow. 4454 * If inc causes overflow, untouch promisc and return error. 4455 */ 4456 if (inc < 0) 4457 dev->flags &= ~IFF_PROMISC; 4458 else { 4459 dev->promiscuity -= inc; 4460 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4461 dev->name); 4462 return -EOVERFLOW; 4463 } 4464 } 4465 if (dev->flags != old_flags) { 4466 pr_info("device %s %s promiscuous mode\n", 4467 dev->name, 4468 dev->flags & IFF_PROMISC ? "entered" : "left"); 4469 if (audit_enabled) { 4470 current_uid_gid(&uid, &gid); 4471 audit_log(current->audit_context, GFP_ATOMIC, 4472 AUDIT_ANOM_PROMISCUOUS, 4473 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4474 dev->name, (dev->flags & IFF_PROMISC), 4475 (old_flags & IFF_PROMISC), 4476 audit_get_loginuid(current), 4477 uid, gid, 4478 audit_get_sessionid(current)); 4479 } 4480 4481 dev_change_rx_flags(dev, IFF_PROMISC); 4482 } 4483 return 0; 4484 } 4485 4486 /** 4487 * dev_set_promiscuity - update promiscuity count on a device 4488 * @dev: device 4489 * @inc: modifier 4490 * 4491 * Add or remove promiscuity from a device. While the count in the device 4492 * remains above zero the interface remains promiscuous. Once it hits zero 4493 * the device reverts back to normal filtering operation. A negative inc 4494 * value is used to drop promiscuity on the device. 4495 * Return 0 if successful or a negative errno code on error. 4496 */ 4497 int dev_set_promiscuity(struct net_device *dev, int inc) 4498 { 4499 unsigned int old_flags = dev->flags; 4500 int err; 4501 4502 err = __dev_set_promiscuity(dev, inc); 4503 if (err < 0) 4504 return err; 4505 if (dev->flags != old_flags) 4506 dev_set_rx_mode(dev); 4507 return err; 4508 } 4509 EXPORT_SYMBOL(dev_set_promiscuity); 4510 4511 /** 4512 * dev_set_allmulti - update allmulti count on a device 4513 * @dev: device 4514 * @inc: modifier 4515 * 4516 * Add or remove reception of all multicast frames to a device. While the 4517 * count in the device remains above zero the interface remains listening 4518 * to all interfaces. Once it hits zero the device reverts back to normal 4519 * filtering operation. A negative @inc value is used to drop the counter 4520 * when releasing a resource needing all multicasts. 4521 * Return 0 if successful or a negative errno code on error. 4522 */ 4523 4524 int dev_set_allmulti(struct net_device *dev, int inc) 4525 { 4526 unsigned int old_flags = dev->flags; 4527 4528 ASSERT_RTNL(); 4529 4530 dev->flags |= IFF_ALLMULTI; 4531 dev->allmulti += inc; 4532 if (dev->allmulti == 0) { 4533 /* 4534 * Avoid overflow. 4535 * If inc causes overflow, untouch allmulti and return error. 4536 */ 4537 if (inc < 0) 4538 dev->flags &= ~IFF_ALLMULTI; 4539 else { 4540 dev->allmulti -= inc; 4541 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4542 dev->name); 4543 return -EOVERFLOW; 4544 } 4545 } 4546 if (dev->flags ^ old_flags) { 4547 dev_change_rx_flags(dev, IFF_ALLMULTI); 4548 dev_set_rx_mode(dev); 4549 } 4550 return 0; 4551 } 4552 EXPORT_SYMBOL(dev_set_allmulti); 4553 4554 /* 4555 * Upload unicast and multicast address lists to device and 4556 * configure RX filtering. When the device doesn't support unicast 4557 * filtering it is put in promiscuous mode while unicast addresses 4558 * are present. 4559 */ 4560 void __dev_set_rx_mode(struct net_device *dev) 4561 { 4562 const struct net_device_ops *ops = dev->netdev_ops; 4563 4564 /* dev_open will call this function so the list will stay sane. */ 4565 if (!(dev->flags&IFF_UP)) 4566 return; 4567 4568 if (!netif_device_present(dev)) 4569 return; 4570 4571 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4572 /* Unicast addresses changes may only happen under the rtnl, 4573 * therefore calling __dev_set_promiscuity here is safe. 4574 */ 4575 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4576 __dev_set_promiscuity(dev, 1); 4577 dev->uc_promisc = true; 4578 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4579 __dev_set_promiscuity(dev, -1); 4580 dev->uc_promisc = false; 4581 } 4582 } 4583 4584 if (ops->ndo_set_rx_mode) 4585 ops->ndo_set_rx_mode(dev); 4586 } 4587 4588 void dev_set_rx_mode(struct net_device *dev) 4589 { 4590 netif_addr_lock_bh(dev); 4591 __dev_set_rx_mode(dev); 4592 netif_addr_unlock_bh(dev); 4593 } 4594 4595 /** 4596 * dev_get_flags - get flags reported to userspace 4597 * @dev: device 4598 * 4599 * Get the combination of flag bits exported through APIs to userspace. 4600 */ 4601 unsigned dev_get_flags(const struct net_device *dev) 4602 { 4603 unsigned flags; 4604 4605 flags = (dev->flags & ~(IFF_PROMISC | 4606 IFF_ALLMULTI | 4607 IFF_RUNNING | 4608 IFF_LOWER_UP | 4609 IFF_DORMANT)) | 4610 (dev->gflags & (IFF_PROMISC | 4611 IFF_ALLMULTI)); 4612 4613 if (netif_running(dev)) { 4614 if (netif_oper_up(dev)) 4615 flags |= IFF_RUNNING; 4616 if (netif_carrier_ok(dev)) 4617 flags |= IFF_LOWER_UP; 4618 if (netif_dormant(dev)) 4619 flags |= IFF_DORMANT; 4620 } 4621 4622 return flags; 4623 } 4624 EXPORT_SYMBOL(dev_get_flags); 4625 4626 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4627 { 4628 unsigned int old_flags = dev->flags; 4629 int ret; 4630 4631 ASSERT_RTNL(); 4632 4633 /* 4634 * Set the flags on our device. 4635 */ 4636 4637 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4638 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4639 IFF_AUTOMEDIA)) | 4640 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4641 IFF_ALLMULTI)); 4642 4643 /* 4644 * Load in the correct multicast list now the flags have changed. 4645 */ 4646 4647 if ((old_flags ^ flags) & IFF_MULTICAST) 4648 dev_change_rx_flags(dev, IFF_MULTICAST); 4649 4650 dev_set_rx_mode(dev); 4651 4652 /* 4653 * Have we downed the interface. We handle IFF_UP ourselves 4654 * according to user attempts to set it, rather than blindly 4655 * setting it. 4656 */ 4657 4658 ret = 0; 4659 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4660 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4661 4662 if (!ret) 4663 dev_set_rx_mode(dev); 4664 } 4665 4666 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4667 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4668 4669 dev->gflags ^= IFF_PROMISC; 4670 dev_set_promiscuity(dev, inc); 4671 } 4672 4673 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4674 is important. Some (broken) drivers set IFF_PROMISC, when 4675 IFF_ALLMULTI is requested not asking us and not reporting. 4676 */ 4677 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4678 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4679 4680 dev->gflags ^= IFF_ALLMULTI; 4681 dev_set_allmulti(dev, inc); 4682 } 4683 4684 return ret; 4685 } 4686 4687 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4688 { 4689 unsigned int changes = dev->flags ^ old_flags; 4690 4691 if (changes & IFF_UP) { 4692 if (dev->flags & IFF_UP) 4693 call_netdevice_notifiers(NETDEV_UP, dev); 4694 else 4695 call_netdevice_notifiers(NETDEV_DOWN, dev); 4696 } 4697 4698 if (dev->flags & IFF_UP && 4699 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4700 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4701 } 4702 4703 /** 4704 * dev_change_flags - change device settings 4705 * @dev: device 4706 * @flags: device state flags 4707 * 4708 * Change settings on device based state flags. The flags are 4709 * in the userspace exported format. 4710 */ 4711 int dev_change_flags(struct net_device *dev, unsigned int flags) 4712 { 4713 int ret; 4714 unsigned int changes, old_flags = dev->flags; 4715 4716 ret = __dev_change_flags(dev, flags); 4717 if (ret < 0) 4718 return ret; 4719 4720 changes = old_flags ^ dev->flags; 4721 if (changes) 4722 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4723 4724 __dev_notify_flags(dev, old_flags); 4725 return ret; 4726 } 4727 EXPORT_SYMBOL(dev_change_flags); 4728 4729 /** 4730 * dev_set_mtu - Change maximum transfer unit 4731 * @dev: device 4732 * @new_mtu: new transfer unit 4733 * 4734 * Change the maximum transfer size of the network device. 4735 */ 4736 int dev_set_mtu(struct net_device *dev, int new_mtu) 4737 { 4738 const struct net_device_ops *ops = dev->netdev_ops; 4739 int err; 4740 4741 if (new_mtu == dev->mtu) 4742 return 0; 4743 4744 /* MTU must be positive. */ 4745 if (new_mtu < 0) 4746 return -EINVAL; 4747 4748 if (!netif_device_present(dev)) 4749 return -ENODEV; 4750 4751 err = 0; 4752 if (ops->ndo_change_mtu) 4753 err = ops->ndo_change_mtu(dev, new_mtu); 4754 else 4755 dev->mtu = new_mtu; 4756 4757 if (!err && dev->flags & IFF_UP) 4758 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4759 return err; 4760 } 4761 EXPORT_SYMBOL(dev_set_mtu); 4762 4763 /** 4764 * dev_set_group - Change group this device belongs to 4765 * @dev: device 4766 * @new_group: group this device should belong to 4767 */ 4768 void dev_set_group(struct net_device *dev, int new_group) 4769 { 4770 dev->group = new_group; 4771 } 4772 EXPORT_SYMBOL(dev_set_group); 4773 4774 /** 4775 * dev_set_mac_address - Change Media Access Control Address 4776 * @dev: device 4777 * @sa: new address 4778 * 4779 * Change the hardware (MAC) address of the device 4780 */ 4781 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4782 { 4783 const struct net_device_ops *ops = dev->netdev_ops; 4784 int err; 4785 4786 if (!ops->ndo_set_mac_address) 4787 return -EOPNOTSUPP; 4788 if (sa->sa_family != dev->type) 4789 return -EINVAL; 4790 if (!netif_device_present(dev)) 4791 return -ENODEV; 4792 err = ops->ndo_set_mac_address(dev, sa); 4793 if (!err) 4794 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4795 return err; 4796 } 4797 EXPORT_SYMBOL(dev_set_mac_address); 4798 4799 /* 4800 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4801 */ 4802 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4803 { 4804 int err; 4805 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4806 4807 if (!dev) 4808 return -ENODEV; 4809 4810 switch (cmd) { 4811 case SIOCGIFFLAGS: /* Get interface flags */ 4812 ifr->ifr_flags = (short) dev_get_flags(dev); 4813 return 0; 4814 4815 case SIOCGIFMETRIC: /* Get the metric on the interface 4816 (currently unused) */ 4817 ifr->ifr_metric = 0; 4818 return 0; 4819 4820 case SIOCGIFMTU: /* Get the MTU of a device */ 4821 ifr->ifr_mtu = dev->mtu; 4822 return 0; 4823 4824 case SIOCGIFHWADDR: 4825 if (!dev->addr_len) 4826 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4827 else 4828 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4829 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4830 ifr->ifr_hwaddr.sa_family = dev->type; 4831 return 0; 4832 4833 case SIOCGIFSLAVE: 4834 err = -EINVAL; 4835 break; 4836 4837 case SIOCGIFMAP: 4838 ifr->ifr_map.mem_start = dev->mem_start; 4839 ifr->ifr_map.mem_end = dev->mem_end; 4840 ifr->ifr_map.base_addr = dev->base_addr; 4841 ifr->ifr_map.irq = dev->irq; 4842 ifr->ifr_map.dma = dev->dma; 4843 ifr->ifr_map.port = dev->if_port; 4844 return 0; 4845 4846 case SIOCGIFINDEX: 4847 ifr->ifr_ifindex = dev->ifindex; 4848 return 0; 4849 4850 case SIOCGIFTXQLEN: 4851 ifr->ifr_qlen = dev->tx_queue_len; 4852 return 0; 4853 4854 default: 4855 /* dev_ioctl() should ensure this case 4856 * is never reached 4857 */ 4858 WARN_ON(1); 4859 err = -ENOTTY; 4860 break; 4861 4862 } 4863 return err; 4864 } 4865 4866 /* 4867 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4868 */ 4869 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4870 { 4871 int err; 4872 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4873 const struct net_device_ops *ops; 4874 4875 if (!dev) 4876 return -ENODEV; 4877 4878 ops = dev->netdev_ops; 4879 4880 switch (cmd) { 4881 case SIOCSIFFLAGS: /* Set interface flags */ 4882 return dev_change_flags(dev, ifr->ifr_flags); 4883 4884 case SIOCSIFMETRIC: /* Set the metric on the interface 4885 (currently unused) */ 4886 return -EOPNOTSUPP; 4887 4888 case SIOCSIFMTU: /* Set the MTU of a device */ 4889 return dev_set_mtu(dev, ifr->ifr_mtu); 4890 4891 case SIOCSIFHWADDR: 4892 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4893 4894 case SIOCSIFHWBROADCAST: 4895 if (ifr->ifr_hwaddr.sa_family != dev->type) 4896 return -EINVAL; 4897 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4898 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4899 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4900 return 0; 4901 4902 case SIOCSIFMAP: 4903 if (ops->ndo_set_config) { 4904 if (!netif_device_present(dev)) 4905 return -ENODEV; 4906 return ops->ndo_set_config(dev, &ifr->ifr_map); 4907 } 4908 return -EOPNOTSUPP; 4909 4910 case SIOCADDMULTI: 4911 if (!ops->ndo_set_rx_mode || 4912 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4913 return -EINVAL; 4914 if (!netif_device_present(dev)) 4915 return -ENODEV; 4916 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4917 4918 case SIOCDELMULTI: 4919 if (!ops->ndo_set_rx_mode || 4920 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4921 return -EINVAL; 4922 if (!netif_device_present(dev)) 4923 return -ENODEV; 4924 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4925 4926 case SIOCSIFTXQLEN: 4927 if (ifr->ifr_qlen < 0) 4928 return -EINVAL; 4929 dev->tx_queue_len = ifr->ifr_qlen; 4930 return 0; 4931 4932 case SIOCSIFNAME: 4933 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4934 return dev_change_name(dev, ifr->ifr_newname); 4935 4936 case SIOCSHWTSTAMP: 4937 err = net_hwtstamp_validate(ifr); 4938 if (err) 4939 return err; 4940 /* fall through */ 4941 4942 /* 4943 * Unknown or private ioctl 4944 */ 4945 default: 4946 if ((cmd >= SIOCDEVPRIVATE && 4947 cmd <= SIOCDEVPRIVATE + 15) || 4948 cmd == SIOCBONDENSLAVE || 4949 cmd == SIOCBONDRELEASE || 4950 cmd == SIOCBONDSETHWADDR || 4951 cmd == SIOCBONDSLAVEINFOQUERY || 4952 cmd == SIOCBONDINFOQUERY || 4953 cmd == SIOCBONDCHANGEACTIVE || 4954 cmd == SIOCGMIIPHY || 4955 cmd == SIOCGMIIREG || 4956 cmd == SIOCSMIIREG || 4957 cmd == SIOCBRADDIF || 4958 cmd == SIOCBRDELIF || 4959 cmd == SIOCSHWTSTAMP || 4960 cmd == SIOCWANDEV) { 4961 err = -EOPNOTSUPP; 4962 if (ops->ndo_do_ioctl) { 4963 if (netif_device_present(dev)) 4964 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4965 else 4966 err = -ENODEV; 4967 } 4968 } else 4969 err = -EINVAL; 4970 4971 } 4972 return err; 4973 } 4974 4975 /* 4976 * This function handles all "interface"-type I/O control requests. The actual 4977 * 'doing' part of this is dev_ifsioc above. 4978 */ 4979 4980 /** 4981 * dev_ioctl - network device ioctl 4982 * @net: the applicable net namespace 4983 * @cmd: command to issue 4984 * @arg: pointer to a struct ifreq in user space 4985 * 4986 * Issue ioctl functions to devices. This is normally called by the 4987 * user space syscall interfaces but can sometimes be useful for 4988 * other purposes. The return value is the return from the syscall if 4989 * positive or a negative errno code on error. 4990 */ 4991 4992 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4993 { 4994 struct ifreq ifr; 4995 int ret; 4996 char *colon; 4997 4998 /* One special case: SIOCGIFCONF takes ifconf argument 4999 and requires shared lock, because it sleeps writing 5000 to user space. 5001 */ 5002 5003 if (cmd == SIOCGIFCONF) { 5004 rtnl_lock(); 5005 ret = dev_ifconf(net, (char __user *) arg); 5006 rtnl_unlock(); 5007 return ret; 5008 } 5009 if (cmd == SIOCGIFNAME) 5010 return dev_ifname(net, (struct ifreq __user *)arg); 5011 5012 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5013 return -EFAULT; 5014 5015 ifr.ifr_name[IFNAMSIZ-1] = 0; 5016 5017 colon = strchr(ifr.ifr_name, ':'); 5018 if (colon) 5019 *colon = 0; 5020 5021 /* 5022 * See which interface the caller is talking about. 5023 */ 5024 5025 switch (cmd) { 5026 /* 5027 * These ioctl calls: 5028 * - can be done by all. 5029 * - atomic and do not require locking. 5030 * - return a value 5031 */ 5032 case SIOCGIFFLAGS: 5033 case SIOCGIFMETRIC: 5034 case SIOCGIFMTU: 5035 case SIOCGIFHWADDR: 5036 case SIOCGIFSLAVE: 5037 case SIOCGIFMAP: 5038 case SIOCGIFINDEX: 5039 case SIOCGIFTXQLEN: 5040 dev_load(net, ifr.ifr_name); 5041 rcu_read_lock(); 5042 ret = dev_ifsioc_locked(net, &ifr, cmd); 5043 rcu_read_unlock(); 5044 if (!ret) { 5045 if (colon) 5046 *colon = ':'; 5047 if (copy_to_user(arg, &ifr, 5048 sizeof(struct ifreq))) 5049 ret = -EFAULT; 5050 } 5051 return ret; 5052 5053 case SIOCETHTOOL: 5054 dev_load(net, ifr.ifr_name); 5055 rtnl_lock(); 5056 ret = dev_ethtool(net, &ifr); 5057 rtnl_unlock(); 5058 if (!ret) { 5059 if (colon) 5060 *colon = ':'; 5061 if (copy_to_user(arg, &ifr, 5062 sizeof(struct ifreq))) 5063 ret = -EFAULT; 5064 } 5065 return ret; 5066 5067 /* 5068 * These ioctl calls: 5069 * - require superuser power. 5070 * - require strict serialization. 5071 * - return a value 5072 */ 5073 case SIOCGMIIPHY: 5074 case SIOCGMIIREG: 5075 case SIOCSIFNAME: 5076 if (!capable(CAP_NET_ADMIN)) 5077 return -EPERM; 5078 dev_load(net, ifr.ifr_name); 5079 rtnl_lock(); 5080 ret = dev_ifsioc(net, &ifr, cmd); 5081 rtnl_unlock(); 5082 if (!ret) { 5083 if (colon) 5084 *colon = ':'; 5085 if (copy_to_user(arg, &ifr, 5086 sizeof(struct ifreq))) 5087 ret = -EFAULT; 5088 } 5089 return ret; 5090 5091 /* 5092 * These ioctl calls: 5093 * - require superuser power. 5094 * - require strict serialization. 5095 * - do not return a value 5096 */ 5097 case SIOCSIFFLAGS: 5098 case SIOCSIFMETRIC: 5099 case SIOCSIFMTU: 5100 case SIOCSIFMAP: 5101 case SIOCSIFHWADDR: 5102 case SIOCSIFSLAVE: 5103 case SIOCADDMULTI: 5104 case SIOCDELMULTI: 5105 case SIOCSIFHWBROADCAST: 5106 case SIOCSIFTXQLEN: 5107 case SIOCSMIIREG: 5108 case SIOCBONDENSLAVE: 5109 case SIOCBONDRELEASE: 5110 case SIOCBONDSETHWADDR: 5111 case SIOCBONDCHANGEACTIVE: 5112 case SIOCBRADDIF: 5113 case SIOCBRDELIF: 5114 case SIOCSHWTSTAMP: 5115 if (!capable(CAP_NET_ADMIN)) 5116 return -EPERM; 5117 /* fall through */ 5118 case SIOCBONDSLAVEINFOQUERY: 5119 case SIOCBONDINFOQUERY: 5120 dev_load(net, ifr.ifr_name); 5121 rtnl_lock(); 5122 ret = dev_ifsioc(net, &ifr, cmd); 5123 rtnl_unlock(); 5124 return ret; 5125 5126 case SIOCGIFMEM: 5127 /* Get the per device memory space. We can add this but 5128 * currently do not support it */ 5129 case SIOCSIFMEM: 5130 /* Set the per device memory buffer space. 5131 * Not applicable in our case */ 5132 case SIOCSIFLINK: 5133 return -ENOTTY; 5134 5135 /* 5136 * Unknown or private ioctl. 5137 */ 5138 default: 5139 if (cmd == SIOCWANDEV || 5140 (cmd >= SIOCDEVPRIVATE && 5141 cmd <= SIOCDEVPRIVATE + 15)) { 5142 dev_load(net, ifr.ifr_name); 5143 rtnl_lock(); 5144 ret = dev_ifsioc(net, &ifr, cmd); 5145 rtnl_unlock(); 5146 if (!ret && copy_to_user(arg, &ifr, 5147 sizeof(struct ifreq))) 5148 ret = -EFAULT; 5149 return ret; 5150 } 5151 /* Take care of Wireless Extensions */ 5152 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5153 return wext_handle_ioctl(net, &ifr, cmd, arg); 5154 return -ENOTTY; 5155 } 5156 } 5157 5158 5159 /** 5160 * dev_new_index - allocate an ifindex 5161 * @net: the applicable net namespace 5162 * 5163 * Returns a suitable unique value for a new device interface 5164 * number. The caller must hold the rtnl semaphore or the 5165 * dev_base_lock to be sure it remains unique. 5166 */ 5167 static int dev_new_index(struct net *net) 5168 { 5169 static int ifindex; 5170 for (;;) { 5171 if (++ifindex <= 0) 5172 ifindex = 1; 5173 if (!__dev_get_by_index(net, ifindex)) 5174 return ifindex; 5175 } 5176 } 5177 5178 /* Delayed registration/unregisteration */ 5179 static LIST_HEAD(net_todo_list); 5180 5181 static void net_set_todo(struct net_device *dev) 5182 { 5183 list_add_tail(&dev->todo_list, &net_todo_list); 5184 } 5185 5186 static void rollback_registered_many(struct list_head *head) 5187 { 5188 struct net_device *dev, *tmp; 5189 5190 BUG_ON(dev_boot_phase); 5191 ASSERT_RTNL(); 5192 5193 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5194 /* Some devices call without registering 5195 * for initialization unwind. Remove those 5196 * devices and proceed with the remaining. 5197 */ 5198 if (dev->reg_state == NETREG_UNINITIALIZED) { 5199 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5200 dev->name, dev); 5201 5202 WARN_ON(1); 5203 list_del(&dev->unreg_list); 5204 continue; 5205 } 5206 dev->dismantle = true; 5207 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5208 } 5209 5210 /* If device is running, close it first. */ 5211 dev_close_many(head); 5212 5213 list_for_each_entry(dev, head, unreg_list) { 5214 /* And unlink it from device chain. */ 5215 unlist_netdevice(dev); 5216 5217 dev->reg_state = NETREG_UNREGISTERING; 5218 } 5219 5220 synchronize_net(); 5221 5222 list_for_each_entry(dev, head, unreg_list) { 5223 /* Shutdown queueing discipline. */ 5224 dev_shutdown(dev); 5225 5226 5227 /* Notify protocols, that we are about to destroy 5228 this device. They should clean all the things. 5229 */ 5230 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5231 5232 if (!dev->rtnl_link_ops || 5233 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5234 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5235 5236 /* 5237 * Flush the unicast and multicast chains 5238 */ 5239 dev_uc_flush(dev); 5240 dev_mc_flush(dev); 5241 5242 if (dev->netdev_ops->ndo_uninit) 5243 dev->netdev_ops->ndo_uninit(dev); 5244 5245 /* Notifier chain MUST detach us from master device. */ 5246 WARN_ON(dev->master); 5247 5248 /* Remove entries from kobject tree */ 5249 netdev_unregister_kobject(dev); 5250 } 5251 5252 /* Process any work delayed until the end of the batch */ 5253 dev = list_first_entry(head, struct net_device, unreg_list); 5254 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5255 5256 synchronize_net(); 5257 5258 list_for_each_entry(dev, head, unreg_list) 5259 dev_put(dev); 5260 } 5261 5262 static void rollback_registered(struct net_device *dev) 5263 { 5264 LIST_HEAD(single); 5265 5266 list_add(&dev->unreg_list, &single); 5267 rollback_registered_many(&single); 5268 list_del(&single); 5269 } 5270 5271 static netdev_features_t netdev_fix_features(struct net_device *dev, 5272 netdev_features_t features) 5273 { 5274 /* Fix illegal checksum combinations */ 5275 if ((features & NETIF_F_HW_CSUM) && 5276 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5277 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5278 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5279 } 5280 5281 /* Fix illegal SG+CSUM combinations. */ 5282 if ((features & NETIF_F_SG) && 5283 !(features & NETIF_F_ALL_CSUM)) { 5284 netdev_dbg(dev, 5285 "Dropping NETIF_F_SG since no checksum feature.\n"); 5286 features &= ~NETIF_F_SG; 5287 } 5288 5289 /* TSO requires that SG is present as well. */ 5290 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5291 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5292 features &= ~NETIF_F_ALL_TSO; 5293 } 5294 5295 /* TSO ECN requires that TSO is present as well. */ 5296 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5297 features &= ~NETIF_F_TSO_ECN; 5298 5299 /* Software GSO depends on SG. */ 5300 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5301 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5302 features &= ~NETIF_F_GSO; 5303 } 5304 5305 /* UFO needs SG and checksumming */ 5306 if (features & NETIF_F_UFO) { 5307 /* maybe split UFO into V4 and V6? */ 5308 if (!((features & NETIF_F_GEN_CSUM) || 5309 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5310 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5311 netdev_dbg(dev, 5312 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5313 features &= ~NETIF_F_UFO; 5314 } 5315 5316 if (!(features & NETIF_F_SG)) { 5317 netdev_dbg(dev, 5318 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5319 features &= ~NETIF_F_UFO; 5320 } 5321 } 5322 5323 return features; 5324 } 5325 5326 int __netdev_update_features(struct net_device *dev) 5327 { 5328 netdev_features_t features; 5329 int err = 0; 5330 5331 ASSERT_RTNL(); 5332 5333 features = netdev_get_wanted_features(dev); 5334 5335 if (dev->netdev_ops->ndo_fix_features) 5336 features = dev->netdev_ops->ndo_fix_features(dev, features); 5337 5338 /* driver might be less strict about feature dependencies */ 5339 features = netdev_fix_features(dev, features); 5340 5341 if (dev->features == features) 5342 return 0; 5343 5344 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5345 &dev->features, &features); 5346 5347 if (dev->netdev_ops->ndo_set_features) 5348 err = dev->netdev_ops->ndo_set_features(dev, features); 5349 5350 if (unlikely(err < 0)) { 5351 netdev_err(dev, 5352 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5353 err, &features, &dev->features); 5354 return -1; 5355 } 5356 5357 if (!err) 5358 dev->features = features; 5359 5360 return 1; 5361 } 5362 5363 /** 5364 * netdev_update_features - recalculate device features 5365 * @dev: the device to check 5366 * 5367 * Recalculate dev->features set and send notifications if it 5368 * has changed. Should be called after driver or hardware dependent 5369 * conditions might have changed that influence the features. 5370 */ 5371 void netdev_update_features(struct net_device *dev) 5372 { 5373 if (__netdev_update_features(dev)) 5374 netdev_features_change(dev); 5375 } 5376 EXPORT_SYMBOL(netdev_update_features); 5377 5378 /** 5379 * netdev_change_features - recalculate device features 5380 * @dev: the device to check 5381 * 5382 * Recalculate dev->features set and send notifications even 5383 * if they have not changed. Should be called instead of 5384 * netdev_update_features() if also dev->vlan_features might 5385 * have changed to allow the changes to be propagated to stacked 5386 * VLAN devices. 5387 */ 5388 void netdev_change_features(struct net_device *dev) 5389 { 5390 __netdev_update_features(dev); 5391 netdev_features_change(dev); 5392 } 5393 EXPORT_SYMBOL(netdev_change_features); 5394 5395 /** 5396 * netif_stacked_transfer_operstate - transfer operstate 5397 * @rootdev: the root or lower level device to transfer state from 5398 * @dev: the device to transfer operstate to 5399 * 5400 * Transfer operational state from root to device. This is normally 5401 * called when a stacking relationship exists between the root 5402 * device and the device(a leaf device). 5403 */ 5404 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5405 struct net_device *dev) 5406 { 5407 if (rootdev->operstate == IF_OPER_DORMANT) 5408 netif_dormant_on(dev); 5409 else 5410 netif_dormant_off(dev); 5411 5412 if (netif_carrier_ok(rootdev)) { 5413 if (!netif_carrier_ok(dev)) 5414 netif_carrier_on(dev); 5415 } else { 5416 if (netif_carrier_ok(dev)) 5417 netif_carrier_off(dev); 5418 } 5419 } 5420 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5421 5422 #ifdef CONFIG_RPS 5423 static int netif_alloc_rx_queues(struct net_device *dev) 5424 { 5425 unsigned int i, count = dev->num_rx_queues; 5426 struct netdev_rx_queue *rx; 5427 5428 BUG_ON(count < 1); 5429 5430 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5431 if (!rx) { 5432 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5433 return -ENOMEM; 5434 } 5435 dev->_rx = rx; 5436 5437 for (i = 0; i < count; i++) 5438 rx[i].dev = dev; 5439 return 0; 5440 } 5441 #endif 5442 5443 static void netdev_init_one_queue(struct net_device *dev, 5444 struct netdev_queue *queue, void *_unused) 5445 { 5446 /* Initialize queue lock */ 5447 spin_lock_init(&queue->_xmit_lock); 5448 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5449 queue->xmit_lock_owner = -1; 5450 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5451 queue->dev = dev; 5452 #ifdef CONFIG_BQL 5453 dql_init(&queue->dql, HZ); 5454 #endif 5455 } 5456 5457 static int netif_alloc_netdev_queues(struct net_device *dev) 5458 { 5459 unsigned int count = dev->num_tx_queues; 5460 struct netdev_queue *tx; 5461 5462 BUG_ON(count < 1); 5463 5464 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5465 if (!tx) { 5466 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5467 return -ENOMEM; 5468 } 5469 dev->_tx = tx; 5470 5471 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5472 spin_lock_init(&dev->tx_global_lock); 5473 5474 return 0; 5475 } 5476 5477 /** 5478 * register_netdevice - register a network device 5479 * @dev: device to register 5480 * 5481 * Take a completed network device structure and add it to the kernel 5482 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5483 * chain. 0 is returned on success. A negative errno code is returned 5484 * on a failure to set up the device, or if the name is a duplicate. 5485 * 5486 * Callers must hold the rtnl semaphore. You may want 5487 * register_netdev() instead of this. 5488 * 5489 * BUGS: 5490 * The locking appears insufficient to guarantee two parallel registers 5491 * will not get the same name. 5492 */ 5493 5494 int register_netdevice(struct net_device *dev) 5495 { 5496 int ret; 5497 struct net *net = dev_net(dev); 5498 5499 BUG_ON(dev_boot_phase); 5500 ASSERT_RTNL(); 5501 5502 might_sleep(); 5503 5504 /* When net_device's are persistent, this will be fatal. */ 5505 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5506 BUG_ON(!net); 5507 5508 spin_lock_init(&dev->addr_list_lock); 5509 netdev_set_addr_lockdep_class(dev); 5510 5511 dev->iflink = -1; 5512 5513 ret = dev_get_valid_name(dev, dev->name); 5514 if (ret < 0) 5515 goto out; 5516 5517 /* Init, if this function is available */ 5518 if (dev->netdev_ops->ndo_init) { 5519 ret = dev->netdev_ops->ndo_init(dev); 5520 if (ret) { 5521 if (ret > 0) 5522 ret = -EIO; 5523 goto out; 5524 } 5525 } 5526 5527 dev->ifindex = dev_new_index(net); 5528 if (dev->iflink == -1) 5529 dev->iflink = dev->ifindex; 5530 5531 /* Transfer changeable features to wanted_features and enable 5532 * software offloads (GSO and GRO). 5533 */ 5534 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5535 dev->features |= NETIF_F_SOFT_FEATURES; 5536 dev->wanted_features = dev->features & dev->hw_features; 5537 5538 /* Turn on no cache copy if HW is doing checksum */ 5539 if (!(dev->flags & IFF_LOOPBACK)) { 5540 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5541 if (dev->features & NETIF_F_ALL_CSUM) { 5542 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5543 dev->features |= NETIF_F_NOCACHE_COPY; 5544 } 5545 } 5546 5547 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5548 */ 5549 dev->vlan_features |= NETIF_F_HIGHDMA; 5550 5551 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5552 ret = notifier_to_errno(ret); 5553 if (ret) 5554 goto err_uninit; 5555 5556 ret = netdev_register_kobject(dev); 5557 if (ret) 5558 goto err_uninit; 5559 dev->reg_state = NETREG_REGISTERED; 5560 5561 __netdev_update_features(dev); 5562 5563 /* 5564 * Default initial state at registry is that the 5565 * device is present. 5566 */ 5567 5568 set_bit(__LINK_STATE_PRESENT, &dev->state); 5569 5570 dev_init_scheduler(dev); 5571 dev_hold(dev); 5572 list_netdevice(dev); 5573 5574 /* Notify protocols, that a new device appeared. */ 5575 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5576 ret = notifier_to_errno(ret); 5577 if (ret) { 5578 rollback_registered(dev); 5579 dev->reg_state = NETREG_UNREGISTERED; 5580 } 5581 /* 5582 * Prevent userspace races by waiting until the network 5583 * device is fully setup before sending notifications. 5584 */ 5585 if (!dev->rtnl_link_ops || 5586 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5587 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5588 5589 out: 5590 return ret; 5591 5592 err_uninit: 5593 if (dev->netdev_ops->ndo_uninit) 5594 dev->netdev_ops->ndo_uninit(dev); 5595 goto out; 5596 } 5597 EXPORT_SYMBOL(register_netdevice); 5598 5599 /** 5600 * init_dummy_netdev - init a dummy network device for NAPI 5601 * @dev: device to init 5602 * 5603 * This takes a network device structure and initialize the minimum 5604 * amount of fields so it can be used to schedule NAPI polls without 5605 * registering a full blown interface. This is to be used by drivers 5606 * that need to tie several hardware interfaces to a single NAPI 5607 * poll scheduler due to HW limitations. 5608 */ 5609 int init_dummy_netdev(struct net_device *dev) 5610 { 5611 /* Clear everything. Note we don't initialize spinlocks 5612 * are they aren't supposed to be taken by any of the 5613 * NAPI code and this dummy netdev is supposed to be 5614 * only ever used for NAPI polls 5615 */ 5616 memset(dev, 0, sizeof(struct net_device)); 5617 5618 /* make sure we BUG if trying to hit standard 5619 * register/unregister code path 5620 */ 5621 dev->reg_state = NETREG_DUMMY; 5622 5623 /* NAPI wants this */ 5624 INIT_LIST_HEAD(&dev->napi_list); 5625 5626 /* a dummy interface is started by default */ 5627 set_bit(__LINK_STATE_PRESENT, &dev->state); 5628 set_bit(__LINK_STATE_START, &dev->state); 5629 5630 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5631 * because users of this 'device' dont need to change 5632 * its refcount. 5633 */ 5634 5635 return 0; 5636 } 5637 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5638 5639 5640 /** 5641 * register_netdev - register a network device 5642 * @dev: device to register 5643 * 5644 * Take a completed network device structure and add it to the kernel 5645 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5646 * chain. 0 is returned on success. A negative errno code is returned 5647 * on a failure to set up the device, or if the name is a duplicate. 5648 * 5649 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5650 * and expands the device name if you passed a format string to 5651 * alloc_netdev. 5652 */ 5653 int register_netdev(struct net_device *dev) 5654 { 5655 int err; 5656 5657 rtnl_lock(); 5658 err = register_netdevice(dev); 5659 rtnl_unlock(); 5660 return err; 5661 } 5662 EXPORT_SYMBOL(register_netdev); 5663 5664 int netdev_refcnt_read(const struct net_device *dev) 5665 { 5666 int i, refcnt = 0; 5667 5668 for_each_possible_cpu(i) 5669 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5670 return refcnt; 5671 } 5672 EXPORT_SYMBOL(netdev_refcnt_read); 5673 5674 /* 5675 * netdev_wait_allrefs - wait until all references are gone. 5676 * 5677 * This is called when unregistering network devices. 5678 * 5679 * Any protocol or device that holds a reference should register 5680 * for netdevice notification, and cleanup and put back the 5681 * reference if they receive an UNREGISTER event. 5682 * We can get stuck here if buggy protocols don't correctly 5683 * call dev_put. 5684 */ 5685 static void netdev_wait_allrefs(struct net_device *dev) 5686 { 5687 unsigned long rebroadcast_time, warning_time; 5688 int refcnt; 5689 5690 linkwatch_forget_dev(dev); 5691 5692 rebroadcast_time = warning_time = jiffies; 5693 refcnt = netdev_refcnt_read(dev); 5694 5695 while (refcnt != 0) { 5696 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5697 rtnl_lock(); 5698 5699 /* Rebroadcast unregister notification */ 5700 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5701 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5702 * should have already handle it the first time */ 5703 5704 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5705 &dev->state)) { 5706 /* We must not have linkwatch events 5707 * pending on unregister. If this 5708 * happens, we simply run the queue 5709 * unscheduled, resulting in a noop 5710 * for this device. 5711 */ 5712 linkwatch_run_queue(); 5713 } 5714 5715 __rtnl_unlock(); 5716 5717 rebroadcast_time = jiffies; 5718 } 5719 5720 msleep(250); 5721 5722 refcnt = netdev_refcnt_read(dev); 5723 5724 if (time_after(jiffies, warning_time + 10 * HZ)) { 5725 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5726 dev->name, refcnt); 5727 warning_time = jiffies; 5728 } 5729 } 5730 } 5731 5732 /* The sequence is: 5733 * 5734 * rtnl_lock(); 5735 * ... 5736 * register_netdevice(x1); 5737 * register_netdevice(x2); 5738 * ... 5739 * unregister_netdevice(y1); 5740 * unregister_netdevice(y2); 5741 * ... 5742 * rtnl_unlock(); 5743 * free_netdev(y1); 5744 * free_netdev(y2); 5745 * 5746 * We are invoked by rtnl_unlock(). 5747 * This allows us to deal with problems: 5748 * 1) We can delete sysfs objects which invoke hotplug 5749 * without deadlocking with linkwatch via keventd. 5750 * 2) Since we run with the RTNL semaphore not held, we can sleep 5751 * safely in order to wait for the netdev refcnt to drop to zero. 5752 * 5753 * We must not return until all unregister events added during 5754 * the interval the lock was held have been completed. 5755 */ 5756 void netdev_run_todo(void) 5757 { 5758 struct list_head list; 5759 5760 /* Snapshot list, allow later requests */ 5761 list_replace_init(&net_todo_list, &list); 5762 5763 __rtnl_unlock(); 5764 5765 /* Wait for rcu callbacks to finish before attempting to drain 5766 * the device list. This usually avoids a 250ms wait. 5767 */ 5768 if (!list_empty(&list)) 5769 rcu_barrier(); 5770 5771 while (!list_empty(&list)) { 5772 struct net_device *dev 5773 = list_first_entry(&list, struct net_device, todo_list); 5774 list_del(&dev->todo_list); 5775 5776 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5777 pr_err("network todo '%s' but state %d\n", 5778 dev->name, dev->reg_state); 5779 dump_stack(); 5780 continue; 5781 } 5782 5783 dev->reg_state = NETREG_UNREGISTERED; 5784 5785 on_each_cpu(flush_backlog, dev, 1); 5786 5787 netdev_wait_allrefs(dev); 5788 5789 /* paranoia */ 5790 BUG_ON(netdev_refcnt_read(dev)); 5791 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5792 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5793 WARN_ON(dev->dn_ptr); 5794 5795 if (dev->destructor) 5796 dev->destructor(dev); 5797 5798 /* Free network device */ 5799 kobject_put(&dev->dev.kobj); 5800 } 5801 } 5802 5803 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5804 * fields in the same order, with only the type differing. 5805 */ 5806 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5807 const struct net_device_stats *netdev_stats) 5808 { 5809 #if BITS_PER_LONG == 64 5810 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5811 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5812 #else 5813 size_t i, n = sizeof(*stats64) / sizeof(u64); 5814 const unsigned long *src = (const unsigned long *)netdev_stats; 5815 u64 *dst = (u64 *)stats64; 5816 5817 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5818 sizeof(*stats64) / sizeof(u64)); 5819 for (i = 0; i < n; i++) 5820 dst[i] = src[i]; 5821 #endif 5822 } 5823 EXPORT_SYMBOL(netdev_stats_to_stats64); 5824 5825 /** 5826 * dev_get_stats - get network device statistics 5827 * @dev: device to get statistics from 5828 * @storage: place to store stats 5829 * 5830 * Get network statistics from device. Return @storage. 5831 * The device driver may provide its own method by setting 5832 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5833 * otherwise the internal statistics structure is used. 5834 */ 5835 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5836 struct rtnl_link_stats64 *storage) 5837 { 5838 const struct net_device_ops *ops = dev->netdev_ops; 5839 5840 if (ops->ndo_get_stats64) { 5841 memset(storage, 0, sizeof(*storage)); 5842 ops->ndo_get_stats64(dev, storage); 5843 } else if (ops->ndo_get_stats) { 5844 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5845 } else { 5846 netdev_stats_to_stats64(storage, &dev->stats); 5847 } 5848 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5849 return storage; 5850 } 5851 EXPORT_SYMBOL(dev_get_stats); 5852 5853 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5854 { 5855 struct netdev_queue *queue = dev_ingress_queue(dev); 5856 5857 #ifdef CONFIG_NET_CLS_ACT 5858 if (queue) 5859 return queue; 5860 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5861 if (!queue) 5862 return NULL; 5863 netdev_init_one_queue(dev, queue, NULL); 5864 queue->qdisc = &noop_qdisc; 5865 queue->qdisc_sleeping = &noop_qdisc; 5866 rcu_assign_pointer(dev->ingress_queue, queue); 5867 #endif 5868 return queue; 5869 } 5870 5871 /** 5872 * alloc_netdev_mqs - allocate network device 5873 * @sizeof_priv: size of private data to allocate space for 5874 * @name: device name format string 5875 * @setup: callback to initialize device 5876 * @txqs: the number of TX subqueues to allocate 5877 * @rxqs: the number of RX subqueues to allocate 5878 * 5879 * Allocates a struct net_device with private data area for driver use 5880 * and performs basic initialization. Also allocates subquue structs 5881 * for each queue on the device. 5882 */ 5883 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5884 void (*setup)(struct net_device *), 5885 unsigned int txqs, unsigned int rxqs) 5886 { 5887 struct net_device *dev; 5888 size_t alloc_size; 5889 struct net_device *p; 5890 5891 BUG_ON(strlen(name) >= sizeof(dev->name)); 5892 5893 if (txqs < 1) { 5894 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5895 return NULL; 5896 } 5897 5898 #ifdef CONFIG_RPS 5899 if (rxqs < 1) { 5900 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5901 return NULL; 5902 } 5903 #endif 5904 5905 alloc_size = sizeof(struct net_device); 5906 if (sizeof_priv) { 5907 /* ensure 32-byte alignment of private area */ 5908 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5909 alloc_size += sizeof_priv; 5910 } 5911 /* ensure 32-byte alignment of whole construct */ 5912 alloc_size += NETDEV_ALIGN - 1; 5913 5914 p = kzalloc(alloc_size, GFP_KERNEL); 5915 if (!p) { 5916 pr_err("alloc_netdev: Unable to allocate device\n"); 5917 return NULL; 5918 } 5919 5920 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5921 dev->padded = (char *)dev - (char *)p; 5922 5923 dev->pcpu_refcnt = alloc_percpu(int); 5924 if (!dev->pcpu_refcnt) 5925 goto free_p; 5926 5927 if (dev_addr_init(dev)) 5928 goto free_pcpu; 5929 5930 dev_mc_init(dev); 5931 dev_uc_init(dev); 5932 5933 dev_net_set(dev, &init_net); 5934 5935 dev->gso_max_size = GSO_MAX_SIZE; 5936 5937 INIT_LIST_HEAD(&dev->napi_list); 5938 INIT_LIST_HEAD(&dev->unreg_list); 5939 INIT_LIST_HEAD(&dev->link_watch_list); 5940 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5941 setup(dev); 5942 5943 dev->num_tx_queues = txqs; 5944 dev->real_num_tx_queues = txqs; 5945 if (netif_alloc_netdev_queues(dev)) 5946 goto free_all; 5947 5948 #ifdef CONFIG_RPS 5949 dev->num_rx_queues = rxqs; 5950 dev->real_num_rx_queues = rxqs; 5951 if (netif_alloc_rx_queues(dev)) 5952 goto free_all; 5953 #endif 5954 5955 strcpy(dev->name, name); 5956 dev->group = INIT_NETDEV_GROUP; 5957 return dev; 5958 5959 free_all: 5960 free_netdev(dev); 5961 return NULL; 5962 5963 free_pcpu: 5964 free_percpu(dev->pcpu_refcnt); 5965 kfree(dev->_tx); 5966 #ifdef CONFIG_RPS 5967 kfree(dev->_rx); 5968 #endif 5969 5970 free_p: 5971 kfree(p); 5972 return NULL; 5973 } 5974 EXPORT_SYMBOL(alloc_netdev_mqs); 5975 5976 /** 5977 * free_netdev - free network device 5978 * @dev: device 5979 * 5980 * This function does the last stage of destroying an allocated device 5981 * interface. The reference to the device object is released. 5982 * If this is the last reference then it will be freed. 5983 */ 5984 void free_netdev(struct net_device *dev) 5985 { 5986 struct napi_struct *p, *n; 5987 5988 release_net(dev_net(dev)); 5989 5990 kfree(dev->_tx); 5991 #ifdef CONFIG_RPS 5992 kfree(dev->_rx); 5993 #endif 5994 5995 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5996 5997 /* Flush device addresses */ 5998 dev_addr_flush(dev); 5999 6000 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6001 netif_napi_del(p); 6002 6003 free_percpu(dev->pcpu_refcnt); 6004 dev->pcpu_refcnt = NULL; 6005 6006 /* Compatibility with error handling in drivers */ 6007 if (dev->reg_state == NETREG_UNINITIALIZED) { 6008 kfree((char *)dev - dev->padded); 6009 return; 6010 } 6011 6012 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6013 dev->reg_state = NETREG_RELEASED; 6014 6015 /* will free via device release */ 6016 put_device(&dev->dev); 6017 } 6018 EXPORT_SYMBOL(free_netdev); 6019 6020 /** 6021 * synchronize_net - Synchronize with packet receive processing 6022 * 6023 * Wait for packets currently being received to be done. 6024 * Does not block later packets from starting. 6025 */ 6026 void synchronize_net(void) 6027 { 6028 might_sleep(); 6029 if (rtnl_is_locked()) 6030 synchronize_rcu_expedited(); 6031 else 6032 synchronize_rcu(); 6033 } 6034 EXPORT_SYMBOL(synchronize_net); 6035 6036 /** 6037 * unregister_netdevice_queue - remove device from the kernel 6038 * @dev: device 6039 * @head: list 6040 * 6041 * This function shuts down a device interface and removes it 6042 * from the kernel tables. 6043 * If head not NULL, device is queued to be unregistered later. 6044 * 6045 * Callers must hold the rtnl semaphore. You may want 6046 * unregister_netdev() instead of this. 6047 */ 6048 6049 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6050 { 6051 ASSERT_RTNL(); 6052 6053 if (head) { 6054 list_move_tail(&dev->unreg_list, head); 6055 } else { 6056 rollback_registered(dev); 6057 /* Finish processing unregister after unlock */ 6058 net_set_todo(dev); 6059 } 6060 } 6061 EXPORT_SYMBOL(unregister_netdevice_queue); 6062 6063 /** 6064 * unregister_netdevice_many - unregister many devices 6065 * @head: list of devices 6066 */ 6067 void unregister_netdevice_many(struct list_head *head) 6068 { 6069 struct net_device *dev; 6070 6071 if (!list_empty(head)) { 6072 rollback_registered_many(head); 6073 list_for_each_entry(dev, head, unreg_list) 6074 net_set_todo(dev); 6075 } 6076 } 6077 EXPORT_SYMBOL(unregister_netdevice_many); 6078 6079 /** 6080 * unregister_netdev - remove device from the kernel 6081 * @dev: device 6082 * 6083 * This function shuts down a device interface and removes it 6084 * from the kernel tables. 6085 * 6086 * This is just a wrapper for unregister_netdevice that takes 6087 * the rtnl semaphore. In general you want to use this and not 6088 * unregister_netdevice. 6089 */ 6090 void unregister_netdev(struct net_device *dev) 6091 { 6092 rtnl_lock(); 6093 unregister_netdevice(dev); 6094 rtnl_unlock(); 6095 } 6096 EXPORT_SYMBOL(unregister_netdev); 6097 6098 /** 6099 * dev_change_net_namespace - move device to different nethost namespace 6100 * @dev: device 6101 * @net: network namespace 6102 * @pat: If not NULL name pattern to try if the current device name 6103 * is already taken in the destination network namespace. 6104 * 6105 * This function shuts down a device interface and moves it 6106 * to a new network namespace. On success 0 is returned, on 6107 * a failure a netagive errno code is returned. 6108 * 6109 * Callers must hold the rtnl semaphore. 6110 */ 6111 6112 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6113 { 6114 int err; 6115 6116 ASSERT_RTNL(); 6117 6118 /* Don't allow namespace local devices to be moved. */ 6119 err = -EINVAL; 6120 if (dev->features & NETIF_F_NETNS_LOCAL) 6121 goto out; 6122 6123 /* Ensure the device has been registrered */ 6124 err = -EINVAL; 6125 if (dev->reg_state != NETREG_REGISTERED) 6126 goto out; 6127 6128 /* Get out if there is nothing todo */ 6129 err = 0; 6130 if (net_eq(dev_net(dev), net)) 6131 goto out; 6132 6133 /* Pick the destination device name, and ensure 6134 * we can use it in the destination network namespace. 6135 */ 6136 err = -EEXIST; 6137 if (__dev_get_by_name(net, dev->name)) { 6138 /* We get here if we can't use the current device name */ 6139 if (!pat) 6140 goto out; 6141 if (dev_get_valid_name(dev, pat) < 0) 6142 goto out; 6143 } 6144 6145 /* 6146 * And now a mini version of register_netdevice unregister_netdevice. 6147 */ 6148 6149 /* If device is running close it first. */ 6150 dev_close(dev); 6151 6152 /* And unlink it from device chain */ 6153 err = -ENODEV; 6154 unlist_netdevice(dev); 6155 6156 synchronize_net(); 6157 6158 /* Shutdown queueing discipline. */ 6159 dev_shutdown(dev); 6160 6161 /* Notify protocols, that we are about to destroy 6162 this device. They should clean all the things. 6163 6164 Note that dev->reg_state stays at NETREG_REGISTERED. 6165 This is wanted because this way 8021q and macvlan know 6166 the device is just moving and can keep their slaves up. 6167 */ 6168 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6169 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6170 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6171 6172 /* 6173 * Flush the unicast and multicast chains 6174 */ 6175 dev_uc_flush(dev); 6176 dev_mc_flush(dev); 6177 6178 /* Actually switch the network namespace */ 6179 dev_net_set(dev, net); 6180 6181 /* If there is an ifindex conflict assign a new one */ 6182 if (__dev_get_by_index(net, dev->ifindex)) { 6183 int iflink = (dev->iflink == dev->ifindex); 6184 dev->ifindex = dev_new_index(net); 6185 if (iflink) 6186 dev->iflink = dev->ifindex; 6187 } 6188 6189 /* Fixup kobjects */ 6190 err = device_rename(&dev->dev, dev->name); 6191 WARN_ON(err); 6192 6193 /* Add the device back in the hashes */ 6194 list_netdevice(dev); 6195 6196 /* Notify protocols, that a new device appeared. */ 6197 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6198 6199 /* 6200 * Prevent userspace races by waiting until the network 6201 * device is fully setup before sending notifications. 6202 */ 6203 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6204 6205 synchronize_net(); 6206 err = 0; 6207 out: 6208 return err; 6209 } 6210 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6211 6212 static int dev_cpu_callback(struct notifier_block *nfb, 6213 unsigned long action, 6214 void *ocpu) 6215 { 6216 struct sk_buff **list_skb; 6217 struct sk_buff *skb; 6218 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6219 struct softnet_data *sd, *oldsd; 6220 6221 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6222 return NOTIFY_OK; 6223 6224 local_irq_disable(); 6225 cpu = smp_processor_id(); 6226 sd = &per_cpu(softnet_data, cpu); 6227 oldsd = &per_cpu(softnet_data, oldcpu); 6228 6229 /* Find end of our completion_queue. */ 6230 list_skb = &sd->completion_queue; 6231 while (*list_skb) 6232 list_skb = &(*list_skb)->next; 6233 /* Append completion queue from offline CPU. */ 6234 *list_skb = oldsd->completion_queue; 6235 oldsd->completion_queue = NULL; 6236 6237 /* Append output queue from offline CPU. */ 6238 if (oldsd->output_queue) { 6239 *sd->output_queue_tailp = oldsd->output_queue; 6240 sd->output_queue_tailp = oldsd->output_queue_tailp; 6241 oldsd->output_queue = NULL; 6242 oldsd->output_queue_tailp = &oldsd->output_queue; 6243 } 6244 /* Append NAPI poll list from offline CPU. */ 6245 if (!list_empty(&oldsd->poll_list)) { 6246 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6247 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6248 } 6249 6250 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6251 local_irq_enable(); 6252 6253 /* Process offline CPU's input_pkt_queue */ 6254 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6255 netif_rx(skb); 6256 input_queue_head_incr(oldsd); 6257 } 6258 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6259 netif_rx(skb); 6260 input_queue_head_incr(oldsd); 6261 } 6262 6263 return NOTIFY_OK; 6264 } 6265 6266 6267 /** 6268 * netdev_increment_features - increment feature set by one 6269 * @all: current feature set 6270 * @one: new feature set 6271 * @mask: mask feature set 6272 * 6273 * Computes a new feature set after adding a device with feature set 6274 * @one to the master device with current feature set @all. Will not 6275 * enable anything that is off in @mask. Returns the new feature set. 6276 */ 6277 netdev_features_t netdev_increment_features(netdev_features_t all, 6278 netdev_features_t one, netdev_features_t mask) 6279 { 6280 if (mask & NETIF_F_GEN_CSUM) 6281 mask |= NETIF_F_ALL_CSUM; 6282 mask |= NETIF_F_VLAN_CHALLENGED; 6283 6284 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6285 all &= one | ~NETIF_F_ALL_FOR_ALL; 6286 6287 /* If one device supports hw checksumming, set for all. */ 6288 if (all & NETIF_F_GEN_CSUM) 6289 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6290 6291 return all; 6292 } 6293 EXPORT_SYMBOL(netdev_increment_features); 6294 6295 static struct hlist_head *netdev_create_hash(void) 6296 { 6297 int i; 6298 struct hlist_head *hash; 6299 6300 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6301 if (hash != NULL) 6302 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6303 INIT_HLIST_HEAD(&hash[i]); 6304 6305 return hash; 6306 } 6307 6308 /* Initialize per network namespace state */ 6309 static int __net_init netdev_init(struct net *net) 6310 { 6311 INIT_LIST_HEAD(&net->dev_base_head); 6312 6313 net->dev_name_head = netdev_create_hash(); 6314 if (net->dev_name_head == NULL) 6315 goto err_name; 6316 6317 net->dev_index_head = netdev_create_hash(); 6318 if (net->dev_index_head == NULL) 6319 goto err_idx; 6320 6321 return 0; 6322 6323 err_idx: 6324 kfree(net->dev_name_head); 6325 err_name: 6326 return -ENOMEM; 6327 } 6328 6329 /** 6330 * netdev_drivername - network driver for the device 6331 * @dev: network device 6332 * 6333 * Determine network driver for device. 6334 */ 6335 const char *netdev_drivername(const struct net_device *dev) 6336 { 6337 const struct device_driver *driver; 6338 const struct device *parent; 6339 const char *empty = ""; 6340 6341 parent = dev->dev.parent; 6342 if (!parent) 6343 return empty; 6344 6345 driver = parent->driver; 6346 if (driver && driver->name) 6347 return driver->name; 6348 return empty; 6349 } 6350 6351 int __netdev_printk(const char *level, const struct net_device *dev, 6352 struct va_format *vaf) 6353 { 6354 int r; 6355 6356 if (dev && dev->dev.parent) 6357 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6358 netdev_name(dev), vaf); 6359 else if (dev) 6360 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6361 else 6362 r = printk("%s(NULL net_device): %pV", level, vaf); 6363 6364 return r; 6365 } 6366 EXPORT_SYMBOL(__netdev_printk); 6367 6368 int netdev_printk(const char *level, const struct net_device *dev, 6369 const char *format, ...) 6370 { 6371 struct va_format vaf; 6372 va_list args; 6373 int r; 6374 6375 va_start(args, format); 6376 6377 vaf.fmt = format; 6378 vaf.va = &args; 6379 6380 r = __netdev_printk(level, dev, &vaf); 6381 va_end(args); 6382 6383 return r; 6384 } 6385 EXPORT_SYMBOL(netdev_printk); 6386 6387 #define define_netdev_printk_level(func, level) \ 6388 int func(const struct net_device *dev, const char *fmt, ...) \ 6389 { \ 6390 int r; \ 6391 struct va_format vaf; \ 6392 va_list args; \ 6393 \ 6394 va_start(args, fmt); \ 6395 \ 6396 vaf.fmt = fmt; \ 6397 vaf.va = &args; \ 6398 \ 6399 r = __netdev_printk(level, dev, &vaf); \ 6400 va_end(args); \ 6401 \ 6402 return r; \ 6403 } \ 6404 EXPORT_SYMBOL(func); 6405 6406 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6407 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6408 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6409 define_netdev_printk_level(netdev_err, KERN_ERR); 6410 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6411 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6412 define_netdev_printk_level(netdev_info, KERN_INFO); 6413 6414 static void __net_exit netdev_exit(struct net *net) 6415 { 6416 kfree(net->dev_name_head); 6417 kfree(net->dev_index_head); 6418 } 6419 6420 static struct pernet_operations __net_initdata netdev_net_ops = { 6421 .init = netdev_init, 6422 .exit = netdev_exit, 6423 }; 6424 6425 static void __net_exit default_device_exit(struct net *net) 6426 { 6427 struct net_device *dev, *aux; 6428 /* 6429 * Push all migratable network devices back to the 6430 * initial network namespace 6431 */ 6432 rtnl_lock(); 6433 for_each_netdev_safe(net, dev, aux) { 6434 int err; 6435 char fb_name[IFNAMSIZ]; 6436 6437 /* Ignore unmoveable devices (i.e. loopback) */ 6438 if (dev->features & NETIF_F_NETNS_LOCAL) 6439 continue; 6440 6441 /* Leave virtual devices for the generic cleanup */ 6442 if (dev->rtnl_link_ops) 6443 continue; 6444 6445 /* Push remaining network devices to init_net */ 6446 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6447 err = dev_change_net_namespace(dev, &init_net, fb_name); 6448 if (err) { 6449 pr_emerg("%s: failed to move %s to init_net: %d\n", 6450 __func__, dev->name, err); 6451 BUG(); 6452 } 6453 } 6454 rtnl_unlock(); 6455 } 6456 6457 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6458 { 6459 /* At exit all network devices most be removed from a network 6460 * namespace. Do this in the reverse order of registration. 6461 * Do this across as many network namespaces as possible to 6462 * improve batching efficiency. 6463 */ 6464 struct net_device *dev; 6465 struct net *net; 6466 LIST_HEAD(dev_kill_list); 6467 6468 rtnl_lock(); 6469 list_for_each_entry(net, net_list, exit_list) { 6470 for_each_netdev_reverse(net, dev) { 6471 if (dev->rtnl_link_ops) 6472 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6473 else 6474 unregister_netdevice_queue(dev, &dev_kill_list); 6475 } 6476 } 6477 unregister_netdevice_many(&dev_kill_list); 6478 list_del(&dev_kill_list); 6479 rtnl_unlock(); 6480 } 6481 6482 static struct pernet_operations __net_initdata default_device_ops = { 6483 .exit = default_device_exit, 6484 .exit_batch = default_device_exit_batch, 6485 }; 6486 6487 /* 6488 * Initialize the DEV module. At boot time this walks the device list and 6489 * unhooks any devices that fail to initialise (normally hardware not 6490 * present) and leaves us with a valid list of present and active devices. 6491 * 6492 */ 6493 6494 /* 6495 * This is called single threaded during boot, so no need 6496 * to take the rtnl semaphore. 6497 */ 6498 static int __init net_dev_init(void) 6499 { 6500 int i, rc = -ENOMEM; 6501 6502 BUG_ON(!dev_boot_phase); 6503 6504 if (dev_proc_init()) 6505 goto out; 6506 6507 if (netdev_kobject_init()) 6508 goto out; 6509 6510 INIT_LIST_HEAD(&ptype_all); 6511 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6512 INIT_LIST_HEAD(&ptype_base[i]); 6513 6514 if (register_pernet_subsys(&netdev_net_ops)) 6515 goto out; 6516 6517 /* 6518 * Initialise the packet receive queues. 6519 */ 6520 6521 for_each_possible_cpu(i) { 6522 struct softnet_data *sd = &per_cpu(softnet_data, i); 6523 6524 memset(sd, 0, sizeof(*sd)); 6525 skb_queue_head_init(&sd->input_pkt_queue); 6526 skb_queue_head_init(&sd->process_queue); 6527 sd->completion_queue = NULL; 6528 INIT_LIST_HEAD(&sd->poll_list); 6529 sd->output_queue = NULL; 6530 sd->output_queue_tailp = &sd->output_queue; 6531 #ifdef CONFIG_RPS 6532 sd->csd.func = rps_trigger_softirq; 6533 sd->csd.info = sd; 6534 sd->csd.flags = 0; 6535 sd->cpu = i; 6536 #endif 6537 6538 sd->backlog.poll = process_backlog; 6539 sd->backlog.weight = weight_p; 6540 sd->backlog.gro_list = NULL; 6541 sd->backlog.gro_count = 0; 6542 } 6543 6544 dev_boot_phase = 0; 6545 6546 /* The loopback device is special if any other network devices 6547 * is present in a network namespace the loopback device must 6548 * be present. Since we now dynamically allocate and free the 6549 * loopback device ensure this invariant is maintained by 6550 * keeping the loopback device as the first device on the 6551 * list of network devices. Ensuring the loopback devices 6552 * is the first device that appears and the last network device 6553 * that disappears. 6554 */ 6555 if (register_pernet_device(&loopback_net_ops)) 6556 goto out; 6557 6558 if (register_pernet_device(&default_device_ops)) 6559 goto out; 6560 6561 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6562 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6563 6564 hotcpu_notifier(dev_cpu_callback, 0); 6565 dst_init(); 6566 dev_mcast_init(); 6567 rc = 0; 6568 out: 6569 return rc; 6570 } 6571 6572 subsys_initcall(net_dev_init); 6573 6574 static int __init initialize_hashrnd(void) 6575 { 6576 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6577 return 0; 6578 } 6579 6580 late_initcall_sync(initialize_hashrnd); 6581 6582