xref: /linux/net/core/dev.c (revision 10accd2e6890b57db8e717e9aee91b791f90fe14)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144 
145 #include "net-sysfs.h"
146 
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct net_device *dev,
162 					 struct netdev_notifier_info *info);
163 
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185 
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188 
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 
192 static seqcount_t devnet_rename_seq;
193 
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 	while (++net->dev_base_seq == 0);
197 }
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 
239 	dev_base_seq_inc(net);
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 
256 	dev_base_seq_inc(dev_net(dev));
257 }
258 
259 /*
260  *	Our notifier list
261  */
262 
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264 
265 /*
266  *	Device drivers call our routines to queue packets here. We empty the
267  *	queue in the local softnet handler.
268  */
269 
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 
295 static const char *const netdev_lock_name[] =
296 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 	else
382 		return pt->dev ? &pt->dev->ptype_specific :
383 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385 
386 /**
387  *	dev_add_pack - add packet handler
388  *	@pt: packet type declaration
389  *
390  *	Add a protocol handler to the networking stack. The passed &packet_type
391  *	is linked into kernel lists and may not be freed until it has been
392  *	removed from the kernel lists.
393  *
394  *	This call does not sleep therefore it can not
395  *	guarantee all CPU's that are in middle of receiving packets
396  *	will see the new packet type (until the next received packet).
397  */
398 
399 void dev_add_pack(struct packet_type *pt)
400 {
401 	struct list_head *head = ptype_head(pt);
402 
403 	spin_lock(&ptype_lock);
404 	list_add_rcu(&pt->list, head);
405 	spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408 
409 /**
410  *	__dev_remove_pack	 - remove packet handler
411  *	@pt: packet type declaration
412  *
413  *	Remove a protocol handler that was previously added to the kernel
414  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *	from the kernel lists and can be freed or reused once this function
416  *	returns.
417  *
418  *      The packet type might still be in use by receivers
419  *	and must not be freed until after all the CPU's have gone
420  *	through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 	struct list_head *head = ptype_head(pt);
425 	struct packet_type *pt1;
426 
427 	spin_lock(&ptype_lock);
428 
429 	list_for_each_entry(pt1, head, list) {
430 		if (pt == pt1) {
431 			list_del_rcu(&pt->list);
432 			goto out;
433 		}
434 	}
435 
436 	pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 	spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441 
442 /**
443  *	dev_remove_pack	 - remove packet handler
444  *	@pt: packet type declaration
445  *
446  *	Remove a protocol handler that was previously added to the kernel
447  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *	from the kernel lists and can be freed or reused once this function
449  *	returns.
450  *
451  *	This call sleeps to guarantee that no CPU is looking at the packet
452  *	type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 	__dev_remove_pack(pt);
457 
458 	synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461 
462 
463 /**
464  *	dev_add_offload - register offload handlers
465  *	@po: protocol offload declaration
466  *
467  *	Add protocol offload handlers to the networking stack. The passed
468  *	&proto_offload is linked into kernel lists and may not be freed until
469  *	it has been removed from the kernel lists.
470  *
471  *	This call does not sleep therefore it can not
472  *	guarantee all CPU's that are in middle of receiving packets
473  *	will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 	struct packet_offload *elem;
478 
479 	spin_lock(&offload_lock);
480 	list_for_each_entry(elem, &offload_base, list) {
481 		if (po->priority < elem->priority)
482 			break;
483 	}
484 	list_add_rcu(&po->list, elem->list.prev);
485 	spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488 
489 /**
490  *	__dev_remove_offload	 - remove offload handler
491  *	@po: packet offload declaration
492  *
493  *	Remove a protocol offload handler that was previously added to the
494  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *	is removed from the kernel lists and can be freed or reused once this
496  *	function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *	and must not be freed until after all the CPU's have gone
500  *	through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 	struct list_head *head = &offload_base;
505 	struct packet_offload *po1;
506 
507 	spin_lock(&offload_lock);
508 
509 	list_for_each_entry(po1, head, list) {
510 		if (po == po1) {
511 			list_del_rcu(&po->list);
512 			goto out;
513 		}
514 	}
515 
516 	pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 	spin_unlock(&offload_lock);
519 }
520 
521 /**
522  *	dev_remove_offload	 - remove packet offload handler
523  *	@po: packet offload declaration
524  *
525  *	Remove a packet offload handler that was previously added to the kernel
526  *	offload handlers by dev_add_offload(). The passed &offload_type is
527  *	removed from the kernel lists and can be freed or reused once this
528  *	function returns.
529  *
530  *	This call sleeps to guarantee that no CPU is looking at the packet
531  *	type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 	__dev_remove_offload(po);
536 
537 	synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540 
541 /******************************************************************************
542 
543 		      Device Boot-time Settings Routines
544 
545 *******************************************************************************/
546 
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549 
550 /**
551  *	netdev_boot_setup_add	- add new setup entry
552  *	@name: name of the device
553  *	@map: configured settings for the device
554  *
555  *	Adds new setup entry to the dev_boot_setup list.  The function
556  *	returns 0 on error and 1 on success.  This is a generic routine to
557  *	all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 	struct netdev_boot_setup *s;
562 	int i;
563 
564 	s = dev_boot_setup;
565 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 			memset(s[i].name, 0, sizeof(s[i].name));
568 			strlcpy(s[i].name, name, IFNAMSIZ);
569 			memcpy(&s[i].map, map, sizeof(s[i].map));
570 			break;
571 		}
572 	}
573 
574 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576 
577 /**
578  *	netdev_boot_setup_check	- check boot time settings
579  *	@dev: the netdevice
580  *
581  * 	Check boot time settings for the device.
582  *	The found settings are set for the device to be used
583  *	later in the device probing.
584  *	Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 	struct netdev_boot_setup *s = dev_boot_setup;
589 	int i;
590 
591 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 		    !strcmp(dev->name, s[i].name)) {
594 			dev->irq 	= s[i].map.irq;
595 			dev->base_addr 	= s[i].map.base_addr;
596 			dev->mem_start 	= s[i].map.mem_start;
597 			dev->mem_end 	= s[i].map.mem_end;
598 			return 1;
599 		}
600 	}
601 	return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604 
605 
606 /**
607  *	netdev_boot_base	- get address from boot time settings
608  *	@prefix: prefix for network device
609  *	@unit: id for network device
610  *
611  * 	Check boot time settings for the base address of device.
612  *	The found settings are set for the device to be used
613  *	later in the device probing.
614  *	Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 	const struct netdev_boot_setup *s = dev_boot_setup;
619 	char name[IFNAMSIZ];
620 	int i;
621 
622 	sprintf(name, "%s%d", prefix, unit);
623 
624 	/*
625 	 * If device already registered then return base of 1
626 	 * to indicate not to probe for this interface
627 	 */
628 	if (__dev_get_by_name(&init_net, name))
629 		return 1;
630 
631 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 		if (!strcmp(name, s[i].name))
633 			return s[i].map.base_addr;
634 	return 0;
635 }
636 
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642 	int ints[5];
643 	struct ifmap map;
644 
645 	str = get_options(str, ARRAY_SIZE(ints), ints);
646 	if (!str || !*str)
647 		return 0;
648 
649 	/* Save settings */
650 	memset(&map, 0, sizeof(map));
651 	if (ints[0] > 0)
652 		map.irq = ints[1];
653 	if (ints[0] > 1)
654 		map.base_addr = ints[2];
655 	if (ints[0] > 2)
656 		map.mem_start = ints[3];
657 	if (ints[0] > 3)
658 		map.mem_end = ints[4];
659 
660 	/* Add new entry to the list */
661 	return netdev_boot_setup_add(str, &map);
662 }
663 
664 __setup("netdev=", netdev_boot_setup);
665 
666 /*******************************************************************************
667 
668 			    Device Interface Subroutines
669 
670 *******************************************************************************/
671 
672 /**
673  *	dev_get_iflink	- get 'iflink' value of a interface
674  *	@dev: targeted interface
675  *
676  *	Indicates the ifindex the interface is linked to.
677  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679 
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 		return dev->netdev_ops->ndo_get_iflink(dev);
684 
685 	return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688 
689 /**
690  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *	@dev: targeted interface
692  *	@skb: The packet.
693  *
694  *	For better visibility of tunnel traffic OVS needs to retrieve
695  *	egress tunnel information for a packet. Following API allows
696  *	user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 	struct ip_tunnel_info *info;
701 
702 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703 		return -EINVAL;
704 
705 	info = skb_tunnel_info_unclone(skb);
706 	if (!info)
707 		return -ENOMEM;
708 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 		return -EINVAL;
710 
711 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714 
715 /**
716  *	__dev_get_by_name	- find a device by its name
717  *	@net: the applicable net namespace
718  *	@name: name to find
719  *
720  *	Find an interface by name. Must be called under RTNL semaphore
721  *	or @dev_base_lock. If the name is found a pointer to the device
722  *	is returned. If the name is not found then %NULL is returned. The
723  *	reference counters are not incremented so the caller must be
724  *	careful with locks.
725  */
726 
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 	struct net_device *dev;
730 	struct hlist_head *head = dev_name_hash(net, name);
731 
732 	hlist_for_each_entry(dev, head, name_hlist)
733 		if (!strncmp(dev->name, name, IFNAMSIZ))
734 			return dev;
735 
736 	return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  *	dev_get_by_name_rcu	- find a device by its name
742  *	@net: the applicable net namespace
743  *	@name: name to find
744  *
745  *	Find an interface by name.
746  *	If the name is found a pointer to the device is returned.
747  * 	If the name is not found then %NULL is returned.
748  *	The reference counters are not incremented so the caller must be
749  *	careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct net_device *dev;
755 	struct hlist_head *head = dev_name_hash(net, name);
756 
757 	hlist_for_each_entry_rcu(dev, head, name_hlist)
758 		if (!strncmp(dev->name, name, IFNAMSIZ))
759 			return dev;
760 
761 	return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764 
765 /**
766  *	dev_get_by_name		- find a device by its name
767  *	@net: the applicable net namespace
768  *	@name: name to find
769  *
770  *	Find an interface by name. This can be called from any
771  *	context and does its own locking. The returned handle has
772  *	the usage count incremented and the caller must use dev_put() to
773  *	release it when it is no longer needed. %NULL is returned if no
774  *	matching device is found.
775  */
776 
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 	struct net_device *dev;
780 
781 	rcu_read_lock();
782 	dev = dev_get_by_name_rcu(net, name);
783 	if (dev)
784 		dev_hold(dev);
785 	rcu_read_unlock();
786 	return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789 
790 /**
791  *	__dev_get_by_index - find a device by its ifindex
792  *	@net: the applicable net namespace
793  *	@ifindex: index of device
794  *
795  *	Search for an interface by index. Returns %NULL if the device
796  *	is not found or a pointer to the device. The device has not
797  *	had its reference counter increased so the caller must be careful
798  *	about locking. The caller must hold either the RTNL semaphore
799  *	or @dev_base_lock.
800  */
801 
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 	struct net_device *dev;
805 	struct hlist_head *head = dev_index_hash(net, ifindex);
806 
807 	hlist_for_each_entry(dev, head, index_hlist)
808 		if (dev->ifindex == ifindex)
809 			return dev;
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814 
815 /**
816  *	dev_get_by_index_rcu - find a device by its ifindex
817  *	@net: the applicable net namespace
818  *	@ifindex: index of device
819  *
820  *	Search for an interface by index. Returns %NULL if the device
821  *	is not found or a pointer to the device. The device has not
822  *	had its reference counter increased so the caller must be careful
823  *	about locking. The caller must hold RCU lock.
824  */
825 
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 	struct net_device *dev;
829 	struct hlist_head *head = dev_index_hash(net, ifindex);
830 
831 	hlist_for_each_entry_rcu(dev, head, index_hlist)
832 		if (dev->ifindex == ifindex)
833 			return dev;
834 
835 	return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838 
839 
840 /**
841  *	dev_get_by_index - find a device by its ifindex
842  *	@net: the applicable net namespace
843  *	@ifindex: index of device
844  *
845  *	Search for an interface by index. Returns NULL if the device
846  *	is not found or a pointer to the device. The device returned has
847  *	had a reference added and the pointer is safe until the user calls
848  *	dev_put to indicate they have finished with it.
849  */
850 
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 	struct net_device *dev;
854 
855 	rcu_read_lock();
856 	dev = dev_get_by_index_rcu(net, ifindex);
857 	if (dev)
858 		dev_hold(dev);
859 	rcu_read_unlock();
860 	return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863 
864 /**
865  *	netdev_get_name - get a netdevice name, knowing its ifindex.
866  *	@net: network namespace
867  *	@name: a pointer to the buffer where the name will be stored.
868  *	@ifindex: the ifindex of the interface to get the name from.
869  *
870  *	The use of raw_seqcount_begin() and cond_resched() before
871  *	retrying is required as we want to give the writers a chance
872  *	to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 	struct net_device *dev;
877 	unsigned int seq;
878 
879 retry:
880 	seq = raw_seqcount_begin(&devnet_rename_seq);
881 	rcu_read_lock();
882 	dev = dev_get_by_index_rcu(net, ifindex);
883 	if (!dev) {
884 		rcu_read_unlock();
885 		return -ENODEV;
886 	}
887 
888 	strcpy(name, dev->name);
889 	rcu_read_unlock();
890 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 		cond_resched();
892 		goto retry;
893 	}
894 
895 	return 0;
896 }
897 
898 /**
899  *	dev_getbyhwaddr_rcu - find a device by its hardware address
900  *	@net: the applicable net namespace
901  *	@type: media type of device
902  *	@ha: hardware address
903  *
904  *	Search for an interface by MAC address. Returns NULL if the device
905  *	is not found or a pointer to the device.
906  *	The caller must hold RCU or RTNL.
907  *	The returned device has not had its ref count increased
908  *	and the caller must therefore be careful about locking
909  *
910  */
911 
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 				       const char *ha)
914 {
915 	struct net_device *dev;
916 
917 	for_each_netdev_rcu(net, dev)
918 		if (dev->type == type &&
919 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
920 			return dev;
921 
922 	return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925 
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 	struct net_device *dev;
929 
930 	ASSERT_RTNL();
931 	for_each_netdev(net, dev)
932 		if (dev->type == type)
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938 
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 	struct net_device *dev, *ret = NULL;
942 
943 	rcu_read_lock();
944 	for_each_netdev_rcu(net, dev)
945 		if (dev->type == type) {
946 			dev_hold(dev);
947 			ret = dev;
948 			break;
949 		}
950 	rcu_read_unlock();
951 	return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954 
955 /**
956  *	__dev_get_by_flags - find any device with given flags
957  *	@net: the applicable net namespace
958  *	@if_flags: IFF_* values
959  *	@mask: bitmask of bits in if_flags to check
960  *
961  *	Search for any interface with the given flags. Returns NULL if a device
962  *	is not found or a pointer to the device. Must be called inside
963  *	rtnl_lock(), and result refcount is unchanged.
964  */
965 
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 				      unsigned short mask)
968 {
969 	struct net_device *dev, *ret;
970 
971 	ASSERT_RTNL();
972 
973 	ret = NULL;
974 	for_each_netdev(net, dev) {
975 		if (((dev->flags ^ if_flags) & mask) == 0) {
976 			ret = dev;
977 			break;
978 		}
979 	}
980 	return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983 
984 /**
985  *	dev_valid_name - check if name is okay for network device
986  *	@name: name string
987  *
988  *	Network device names need to be valid file names to
989  *	to allow sysfs to work.  We also disallow any kind of
990  *	whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994 	if (*name == '\0')
995 		return false;
996 	if (strlen(name) >= IFNAMSIZ)
997 		return false;
998 	if (!strcmp(name, ".") || !strcmp(name, ".."))
999 		return false;
1000 
1001 	while (*name) {
1002 		if (*name == '/' || *name == ':' || isspace(*name))
1003 			return false;
1004 		name++;
1005 	}
1006 	return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009 
1010 /**
1011  *	__dev_alloc_name - allocate a name for a device
1012  *	@net: network namespace to allocate the device name in
1013  *	@name: name format string
1014  *	@buf:  scratch buffer and result name string
1015  *
1016  *	Passed a format string - eg "lt%d" it will try and find a suitable
1017  *	id. It scans list of devices to build up a free map, then chooses
1018  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *	while allocating the name and adding the device in order to avoid
1020  *	duplicates.
1021  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *	Returns the number of the unit assigned or a negative errno code.
1023  */
1024 
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 	int i = 0;
1028 	const char *p;
1029 	const int max_netdevices = 8*PAGE_SIZE;
1030 	unsigned long *inuse;
1031 	struct net_device *d;
1032 
1033 	p = strnchr(name, IFNAMSIZ-1, '%');
1034 	if (p) {
1035 		/*
1036 		 * Verify the string as this thing may have come from
1037 		 * the user.  There must be either one "%d" and no other "%"
1038 		 * characters.
1039 		 */
1040 		if (p[1] != 'd' || strchr(p + 2, '%'))
1041 			return -EINVAL;
1042 
1043 		/* Use one page as a bit array of possible slots */
1044 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 		if (!inuse)
1046 			return -ENOMEM;
1047 
1048 		for_each_netdev(net, d) {
1049 			if (!sscanf(d->name, name, &i))
1050 				continue;
1051 			if (i < 0 || i >= max_netdevices)
1052 				continue;
1053 
1054 			/*  avoid cases where sscanf is not exact inverse of printf */
1055 			snprintf(buf, IFNAMSIZ, name, i);
1056 			if (!strncmp(buf, d->name, IFNAMSIZ))
1057 				set_bit(i, inuse);
1058 		}
1059 
1060 		i = find_first_zero_bit(inuse, max_netdevices);
1061 		free_page((unsigned long) inuse);
1062 	}
1063 
1064 	if (buf != name)
1065 		snprintf(buf, IFNAMSIZ, name, i);
1066 	if (!__dev_get_by_name(net, buf))
1067 		return i;
1068 
1069 	/* It is possible to run out of possible slots
1070 	 * when the name is long and there isn't enough space left
1071 	 * for the digits, or if all bits are used.
1072 	 */
1073 	return -ENFILE;
1074 }
1075 
1076 /**
1077  *	dev_alloc_name - allocate a name for a device
1078  *	@dev: device
1079  *	@name: name format string
1080  *
1081  *	Passed a format string - eg "lt%d" it will try and find a suitable
1082  *	id. It scans list of devices to build up a free map, then chooses
1083  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *	while allocating the name and adding the device in order to avoid
1085  *	duplicates.
1086  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *	Returns the number of the unit assigned or a negative errno code.
1088  */
1089 
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 	char buf[IFNAMSIZ];
1093 	struct net *net;
1094 	int ret;
1095 
1096 	BUG_ON(!dev_net(dev));
1097 	net = dev_net(dev);
1098 	ret = __dev_alloc_name(net, name, buf);
1099 	if (ret >= 0)
1100 		strlcpy(dev->name, buf, IFNAMSIZ);
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104 
1105 static int dev_alloc_name_ns(struct net *net,
1106 			     struct net_device *dev,
1107 			     const char *name)
1108 {
1109 	char buf[IFNAMSIZ];
1110 	int ret;
1111 
1112 	ret = __dev_alloc_name(net, name, buf);
1113 	if (ret >= 0)
1114 		strlcpy(dev->name, buf, IFNAMSIZ);
1115 	return ret;
1116 }
1117 
1118 static int dev_get_valid_name(struct net *net,
1119 			      struct net_device *dev,
1120 			      const char *name)
1121 {
1122 	BUG_ON(!net);
1123 
1124 	if (!dev_valid_name(name))
1125 		return -EINVAL;
1126 
1127 	if (strchr(name, '%'))
1128 		return dev_alloc_name_ns(net, dev, name);
1129 	else if (__dev_get_by_name(net, name))
1130 		return -EEXIST;
1131 	else if (dev->name != name)
1132 		strlcpy(dev->name, name, IFNAMSIZ);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  *	dev_change_name - change name of a device
1139  *	@dev: device
1140  *	@newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *	Change name of a device, can pass format strings "eth%d".
1143  *	for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 	unsigned char old_assign_type;
1148 	char oldname[IFNAMSIZ];
1149 	int err = 0;
1150 	int ret;
1151 	struct net *net;
1152 
1153 	ASSERT_RTNL();
1154 	BUG_ON(!dev_net(dev));
1155 
1156 	net = dev_net(dev);
1157 	if (dev->flags & IFF_UP)
1158 		return -EBUSY;
1159 
1160 	write_seqcount_begin(&devnet_rename_seq);
1161 
1162 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 		write_seqcount_end(&devnet_rename_seq);
1164 		return 0;
1165 	}
1166 
1167 	memcpy(oldname, dev->name, IFNAMSIZ);
1168 
1169 	err = dev_get_valid_name(net, dev, newname);
1170 	if (err < 0) {
1171 		write_seqcount_end(&devnet_rename_seq);
1172 		return err;
1173 	}
1174 
1175 	if (oldname[0] && !strchr(oldname, '%'))
1176 		netdev_info(dev, "renamed from %s\n", oldname);
1177 
1178 	old_assign_type = dev->name_assign_type;
1179 	dev->name_assign_type = NET_NAME_RENAMED;
1180 
1181 rollback:
1182 	ret = device_rename(&dev->dev, dev->name);
1183 	if (ret) {
1184 		memcpy(dev->name, oldname, IFNAMSIZ);
1185 		dev->name_assign_type = old_assign_type;
1186 		write_seqcount_end(&devnet_rename_seq);
1187 		return ret;
1188 	}
1189 
1190 	write_seqcount_end(&devnet_rename_seq);
1191 
1192 	netdev_adjacent_rename_links(dev, oldname);
1193 
1194 	write_lock_bh(&dev_base_lock);
1195 	hlist_del_rcu(&dev->name_hlist);
1196 	write_unlock_bh(&dev_base_lock);
1197 
1198 	synchronize_rcu();
1199 
1200 	write_lock_bh(&dev_base_lock);
1201 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 	write_unlock_bh(&dev_base_lock);
1203 
1204 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 	ret = notifier_to_errno(ret);
1206 
1207 	if (ret) {
1208 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1209 		if (err >= 0) {
1210 			err = ret;
1211 			write_seqcount_begin(&devnet_rename_seq);
1212 			memcpy(dev->name, oldname, IFNAMSIZ);
1213 			memcpy(oldname, newname, IFNAMSIZ);
1214 			dev->name_assign_type = old_assign_type;
1215 			old_assign_type = NET_NAME_RENAMED;
1216 			goto rollback;
1217 		} else {
1218 			pr_err("%s: name change rollback failed: %d\n",
1219 			       dev->name, ret);
1220 		}
1221 	}
1222 
1223 	return err;
1224 }
1225 
1226 /**
1227  *	dev_set_alias - change ifalias of a device
1228  *	@dev: device
1229  *	@alias: name up to IFALIASZ
1230  *	@len: limit of bytes to copy from info
1231  *
1232  *	Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 	char *new_ifalias;
1237 
1238 	ASSERT_RTNL();
1239 
1240 	if (len >= IFALIASZ)
1241 		return -EINVAL;
1242 
1243 	if (!len) {
1244 		kfree(dev->ifalias);
1245 		dev->ifalias = NULL;
1246 		return 0;
1247 	}
1248 
1249 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 	if (!new_ifalias)
1251 		return -ENOMEM;
1252 	dev->ifalias = new_ifalias;
1253 
1254 	strlcpy(dev->ifalias, alias, len+1);
1255 	return len;
1256 }
1257 
1258 
1259 /**
1260  *	netdev_features_change - device changes features
1261  *	@dev: device to cause notification
1262  *
1263  *	Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270 
1271 /**
1272  *	netdev_state_change - device changes state
1273  *	@dev: device to cause notification
1274  *
1275  *	Called to indicate a device has changed state. This function calls
1276  *	the notifier chains for netdev_chain and sends a NEWLINK message
1277  *	to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 	if (dev->flags & IFF_UP) {
1282 		struct netdev_notifier_change_info change_info;
1283 
1284 		change_info.flags_changed = 0;
1285 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 					      &change_info.info);
1287 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 	}
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291 
1292 /**
1293  * 	netdev_notify_peers - notify network peers about existence of @dev
1294  * 	@dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 	rtnl_lock();
1305 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 	rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309 
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 	const struct net_device_ops *ops = dev->netdev_ops;
1313 	int ret;
1314 
1315 	ASSERT_RTNL();
1316 
1317 	if (!netif_device_present(dev))
1318 		return -ENODEV;
1319 
1320 	/* Block netpoll from trying to do any rx path servicing.
1321 	 * If we don't do this there is a chance ndo_poll_controller
1322 	 * or ndo_poll may be running while we open the device
1323 	 */
1324 	netpoll_poll_disable(dev);
1325 
1326 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 	ret = notifier_to_errno(ret);
1328 	if (ret)
1329 		return ret;
1330 
1331 	set_bit(__LINK_STATE_START, &dev->state);
1332 
1333 	if (ops->ndo_validate_addr)
1334 		ret = ops->ndo_validate_addr(dev);
1335 
1336 	if (!ret && ops->ndo_open)
1337 		ret = ops->ndo_open(dev);
1338 
1339 	netpoll_poll_enable(dev);
1340 
1341 	if (ret)
1342 		clear_bit(__LINK_STATE_START, &dev->state);
1343 	else {
1344 		dev->flags |= IFF_UP;
1345 		dev_set_rx_mode(dev);
1346 		dev_activate(dev);
1347 		add_device_randomness(dev->dev_addr, dev->addr_len);
1348 	}
1349 
1350 	return ret;
1351 }
1352 
1353 /**
1354  *	dev_open	- prepare an interface for use.
1355  *	@dev:	device to open
1356  *
1357  *	Takes a device from down to up state. The device's private open
1358  *	function is invoked and then the multicast lists are loaded. Finally
1359  *	the device is moved into the up state and a %NETDEV_UP message is
1360  *	sent to the netdev notifier chain.
1361  *
1362  *	Calling this function on an active interface is a nop. On a failure
1363  *	a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367 	int ret;
1368 
1369 	if (dev->flags & IFF_UP)
1370 		return 0;
1371 
1372 	ret = __dev_open(dev);
1373 	if (ret < 0)
1374 		return ret;
1375 
1376 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 	call_netdevice_notifiers(NETDEV_UP, dev);
1378 
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382 
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 	struct net_device *dev;
1386 
1387 	ASSERT_RTNL();
1388 	might_sleep();
1389 
1390 	list_for_each_entry(dev, head, close_list) {
1391 		/* Temporarily disable netpoll until the interface is down */
1392 		netpoll_poll_disable(dev);
1393 
1394 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395 
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 
1398 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1399 		 * can be even on different cpu. So just clear netif_running().
1400 		 *
1401 		 * dev->stop() will invoke napi_disable() on all of it's
1402 		 * napi_struct instances on this device.
1403 		 */
1404 		smp_mb__after_atomic(); /* Commit netif_running(). */
1405 	}
1406 
1407 	dev_deactivate_many(head);
1408 
1409 	list_for_each_entry(dev, head, close_list) {
1410 		const struct net_device_ops *ops = dev->netdev_ops;
1411 
1412 		/*
1413 		 *	Call the device specific close. This cannot fail.
1414 		 *	Only if device is UP
1415 		 *
1416 		 *	We allow it to be called even after a DETACH hot-plug
1417 		 *	event.
1418 		 */
1419 		if (ops->ndo_stop)
1420 			ops->ndo_stop(dev);
1421 
1422 		dev->flags &= ~IFF_UP;
1423 		netpoll_poll_enable(dev);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 	int retval;
1432 	LIST_HEAD(single);
1433 
1434 	list_add(&dev->close_list, &single);
1435 	retval = __dev_close_many(&single);
1436 	list_del(&single);
1437 
1438 	return retval;
1439 }
1440 
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 	struct net_device *dev, *tmp;
1444 
1445 	/* Remove the devices that don't need to be closed */
1446 	list_for_each_entry_safe(dev, tmp, head, close_list)
1447 		if (!(dev->flags & IFF_UP))
1448 			list_del_init(&dev->close_list);
1449 
1450 	__dev_close_many(head);
1451 
1452 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 		if (unlink)
1456 			list_del_init(&dev->close_list);
1457 	}
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462 
1463 /**
1464  *	dev_close - shutdown an interface.
1465  *	@dev: device to shutdown
1466  *
1467  *	This function moves an active device into down state. A
1468  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *	chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474 	if (dev->flags & IFF_UP) {
1475 		LIST_HEAD(single);
1476 
1477 		list_add(&dev->close_list, &single);
1478 		dev_close_many(&single, true);
1479 		list_del(&single);
1480 	}
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484 
1485 
1486 /**
1487  *	dev_disable_lro - disable Large Receive Offload on a device
1488  *	@dev: device
1489  *
1490  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *	called under RTNL.  This is needed if received packets may be
1492  *	forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 	struct net_device *lower_dev;
1497 	struct list_head *iter;
1498 
1499 	dev->wanted_features &= ~NETIF_F_LRO;
1500 	netdev_update_features(dev);
1501 
1502 	if (unlikely(dev->features & NETIF_F_LRO))
1503 		netdev_WARN(dev, "failed to disable LRO!\n");
1504 
1505 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 		dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509 
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 				   struct net_device *dev)
1512 {
1513 	struct netdev_notifier_info info;
1514 
1515 	netdev_notifier_info_init(&info, dev);
1516 	return nb->notifier_call(nb, val, &info);
1517 }
1518 
1519 static int dev_boot_phase = 1;
1520 
1521 /**
1522  *	register_netdevice_notifier - register a network notifier block
1523  *	@nb: notifier
1524  *
1525  *	Register a notifier to be called when network device events occur.
1526  *	The notifier passed is linked into the kernel structures and must
1527  *	not be reused until it has been unregistered. A negative errno code
1528  *	is returned on a failure.
1529  *
1530  * 	When registered all registration and up events are replayed
1531  *	to the new notifier to allow device to have a race free
1532  *	view of the network device list.
1533  */
1534 
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 	struct net_device *dev;
1538 	struct net_device *last;
1539 	struct net *net;
1540 	int err;
1541 
1542 	rtnl_lock();
1543 	err = raw_notifier_chain_register(&netdev_chain, nb);
1544 	if (err)
1545 		goto unlock;
1546 	if (dev_boot_phase)
1547 		goto unlock;
1548 	for_each_net(net) {
1549 		for_each_netdev(net, dev) {
1550 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 			err = notifier_to_errno(err);
1552 			if (err)
1553 				goto rollback;
1554 
1555 			if (!(dev->flags & IFF_UP))
1556 				continue;
1557 
1558 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 		}
1560 	}
1561 
1562 unlock:
1563 	rtnl_unlock();
1564 	return err;
1565 
1566 rollback:
1567 	last = dev;
1568 	for_each_net(net) {
1569 		for_each_netdev(net, dev) {
1570 			if (dev == last)
1571 				goto outroll;
1572 
1573 			if (dev->flags & IFF_UP) {
1574 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 							dev);
1576 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 			}
1578 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 		}
1580 	}
1581 
1582 outroll:
1583 	raw_notifier_chain_unregister(&netdev_chain, nb);
1584 	goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587 
1588 /**
1589  *	unregister_netdevice_notifier - unregister a network notifier block
1590  *	@nb: notifier
1591  *
1592  *	Unregister a notifier previously registered by
1593  *	register_netdevice_notifier(). The notifier is unlinked into the
1594  *	kernel structures and may then be reused. A negative errno code
1595  *	is returned on a failure.
1596  *
1597  * 	After unregistering unregister and down device events are synthesized
1598  *	for all devices on the device list to the removed notifier to remove
1599  *	the need for special case cleanup code.
1600  */
1601 
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 	struct net_device *dev;
1605 	struct net *net;
1606 	int err;
1607 
1608 	rtnl_lock();
1609 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 	if (err)
1611 		goto unlock;
1612 
1613 	for_each_net(net) {
1614 		for_each_netdev(net, dev) {
1615 			if (dev->flags & IFF_UP) {
1616 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 							dev);
1618 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 			}
1620 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 		}
1622 	}
1623 unlock:
1624 	rtnl_unlock();
1625 	return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628 
1629 /**
1630  *	call_netdevice_notifiers_info - call all network notifier blocks
1631  *	@val: value passed unmodified to notifier function
1632  *	@dev: net_device pointer passed unmodified to notifier function
1633  *	@info: notifier information data
1634  *
1635  *	Call all network notifier blocks.  Parameters and return value
1636  *	are as for raw_notifier_call_chain().
1637  */
1638 
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 					 struct net_device *dev,
1641 					 struct netdev_notifier_info *info)
1642 {
1643 	ASSERT_RTNL();
1644 	netdev_notifier_info_init(info, dev);
1645 	return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647 
1648 /**
1649  *	call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *	Call all network notifier blocks.  Parameters and return value
1654  *	are as for raw_notifier_call_chain().
1655  */
1656 
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 	struct netdev_notifier_info info;
1660 
1661 	return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664 
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667 
1668 void net_inc_ingress_queue(void)
1669 {
1670 	static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673 
1674 void net_dec_ingress_queue(void)
1675 {
1676 	static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680 
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683 
1684 void net_inc_egress_queue(void)
1685 {
1686 	static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689 
1690 void net_dec_egress_queue(void)
1691 {
1692 	static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696 
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705 
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710 
1711 	if (deferred) {
1712 		while (--deferred)
1713 			static_key_slow_dec(&netstamp_needed);
1714 		return;
1715 	}
1716 #endif
1717 	static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720 
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 	if (in_interrupt()) {
1725 		atomic_inc(&netstamp_needed_deferred);
1726 		return;
1727 	}
1728 #endif
1729 	static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732 
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 	skb->tstamp.tv64 = 0;
1736 	if (static_key_false(&netstamp_needed))
1737 		__net_timestamp(skb);
1738 }
1739 
1740 #define net_timestamp_check(COND, SKB)			\
1741 	if (static_key_false(&netstamp_needed)) {		\
1742 		if ((COND) && !(SKB)->tstamp.tv64)	\
1743 			__net_timestamp(SKB);		\
1744 	}						\
1745 
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 	unsigned int len;
1749 
1750 	if (!(dev->flags & IFF_UP))
1751 		return false;
1752 
1753 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 	if (skb->len <= len)
1755 		return true;
1756 
1757 	/* if TSO is enabled, we don't care about the length as the packet
1758 	 * could be forwarded without being segmented before
1759 	 */
1760 	if (skb_is_gso(skb))
1761 		return true;
1762 
1763 	return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766 
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 	    unlikely(!is_skb_forwardable(dev, skb))) {
1771 		atomic_long_inc(&dev->rx_dropped);
1772 		kfree_skb(skb);
1773 		return NET_RX_DROP;
1774 	}
1775 
1776 	skb_scrub_packet(skb, true);
1777 	skb->priority = 0;
1778 	skb->protocol = eth_type_trans(skb, dev);
1779 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784 
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *	NET_RX_SUCCESS	(no congestion)
1793  *	NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808 
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 			      struct packet_type *pt_prev,
1811 			      struct net_device *orig_dev)
1812 {
1813 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 		return -ENOMEM;
1815 	atomic_inc(&skb->users);
1816 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818 
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 					  struct packet_type **pt,
1821 					  struct net_device *orig_dev,
1822 					  __be16 type,
1823 					  struct list_head *ptype_list)
1824 {
1825 	struct packet_type *ptype, *pt_prev = *pt;
1826 
1827 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 		if (ptype->type != type)
1829 			continue;
1830 		if (pt_prev)
1831 			deliver_skb(skb, pt_prev, orig_dev);
1832 		pt_prev = ptype;
1833 	}
1834 	*pt = pt_prev;
1835 }
1836 
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 	if (!ptype->af_packet_priv || !skb->sk)
1840 		return false;
1841 
1842 	if (ptype->id_match)
1843 		return ptype->id_match(ptype, skb->sk);
1844 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 		return true;
1846 
1847 	return false;
1848 }
1849 
1850 /*
1851  *	Support routine. Sends outgoing frames to any network
1852  *	taps currently in use.
1853  */
1854 
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 	struct packet_type *ptype;
1858 	struct sk_buff *skb2 = NULL;
1859 	struct packet_type *pt_prev = NULL;
1860 	struct list_head *ptype_list = &ptype_all;
1861 
1862 	rcu_read_lock();
1863 again:
1864 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 		/* Never send packets back to the socket
1866 		 * they originated from - MvS (miquels@drinkel.ow.org)
1867 		 */
1868 		if (skb_loop_sk(ptype, skb))
1869 			continue;
1870 
1871 		if (pt_prev) {
1872 			deliver_skb(skb2, pt_prev, skb->dev);
1873 			pt_prev = ptype;
1874 			continue;
1875 		}
1876 
1877 		/* need to clone skb, done only once */
1878 		skb2 = skb_clone(skb, GFP_ATOMIC);
1879 		if (!skb2)
1880 			goto out_unlock;
1881 
1882 		net_timestamp_set(skb2);
1883 
1884 		/* skb->nh should be correctly
1885 		 * set by sender, so that the second statement is
1886 		 * just protection against buggy protocols.
1887 		 */
1888 		skb_reset_mac_header(skb2);
1889 
1890 		if (skb_network_header(skb2) < skb2->data ||
1891 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 					     ntohs(skb2->protocol),
1894 					     dev->name);
1895 			skb_reset_network_header(skb2);
1896 		}
1897 
1898 		skb2->transport_header = skb2->network_header;
1899 		skb2->pkt_type = PACKET_OUTGOING;
1900 		pt_prev = ptype;
1901 	}
1902 
1903 	if (ptype_list == &ptype_all) {
1904 		ptype_list = &dev->ptype_all;
1905 		goto again;
1906 	}
1907 out_unlock:
1908 	if (pt_prev)
1909 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 	rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913 
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 	int i;
1930 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931 
1932 	/* If TC0 is invalidated disable TC mapping */
1933 	if (tc->offset + tc->count > txq) {
1934 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 		dev->num_tc = 0;
1936 		return;
1937 	}
1938 
1939 	/* Invalidated prio to tc mappings set to TC0 */
1940 	for (i = 1; i < TC_BITMASK + 1; i++) {
1941 		int q = netdev_get_prio_tc_map(dev, i);
1942 
1943 		tc = &dev->tc_to_txq[q];
1944 		if (tc->offset + tc->count > txq) {
1945 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 				i, q);
1947 			netdev_set_prio_tc_map(dev, i, 0);
1948 		}
1949 	}
1950 }
1951 
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)		\
1955 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956 
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 					int cpu, u16 index)
1959 {
1960 	struct xps_map *map = NULL;
1961 	int pos;
1962 
1963 	if (dev_maps)
1964 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965 
1966 	for (pos = 0; map && pos < map->len; pos++) {
1967 		if (map->queues[pos] == index) {
1968 			if (map->len > 1) {
1969 				map->queues[pos] = map->queues[--map->len];
1970 			} else {
1971 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 				kfree_rcu(map, rcu);
1973 				map = NULL;
1974 			}
1975 			break;
1976 		}
1977 	}
1978 
1979 	return map;
1980 }
1981 
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 	struct xps_dev_maps *dev_maps;
1985 	int cpu, i;
1986 	bool active = false;
1987 
1988 	mutex_lock(&xps_map_mutex);
1989 	dev_maps = xmap_dereference(dev->xps_maps);
1990 
1991 	if (!dev_maps)
1992 		goto out_no_maps;
1993 
1994 	for_each_possible_cpu(cpu) {
1995 		for (i = index; i < dev->num_tx_queues; i++) {
1996 			if (!remove_xps_queue(dev_maps, cpu, i))
1997 				break;
1998 		}
1999 		if (i == dev->num_tx_queues)
2000 			active = true;
2001 	}
2002 
2003 	if (!active) {
2004 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 		kfree_rcu(dev_maps, rcu);
2006 	}
2007 
2008 	for (i = index; i < dev->num_tx_queues; i++)
2009 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 					     NUMA_NO_NODE);
2011 
2012 out_no_maps:
2013 	mutex_unlock(&xps_map_mutex);
2014 }
2015 
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 				      int cpu, u16 index)
2018 {
2019 	struct xps_map *new_map;
2020 	int alloc_len = XPS_MIN_MAP_ALLOC;
2021 	int i, pos;
2022 
2023 	for (pos = 0; map && pos < map->len; pos++) {
2024 		if (map->queues[pos] != index)
2025 			continue;
2026 		return map;
2027 	}
2028 
2029 	/* Need to add queue to this CPU's existing map */
2030 	if (map) {
2031 		if (pos < map->alloc_len)
2032 			return map;
2033 
2034 		alloc_len = map->alloc_len * 2;
2035 	}
2036 
2037 	/* Need to allocate new map to store queue on this CPU's map */
2038 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 			       cpu_to_node(cpu));
2040 	if (!new_map)
2041 		return NULL;
2042 
2043 	for (i = 0; i < pos; i++)
2044 		new_map->queues[i] = map->queues[i];
2045 	new_map->alloc_len = alloc_len;
2046 	new_map->len = pos;
2047 
2048 	return new_map;
2049 }
2050 
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 			u16 index)
2053 {
2054 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 	struct xps_map *map, *new_map;
2056 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 	int cpu, numa_node_id = -2;
2058 	bool active = false;
2059 
2060 	mutex_lock(&xps_map_mutex);
2061 
2062 	dev_maps = xmap_dereference(dev->xps_maps);
2063 
2064 	/* allocate memory for queue storage */
2065 	for_each_online_cpu(cpu) {
2066 		if (!cpumask_test_cpu(cpu, mask))
2067 			continue;
2068 
2069 		if (!new_dev_maps)
2070 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 		if (!new_dev_maps) {
2072 			mutex_unlock(&xps_map_mutex);
2073 			return -ENOMEM;
2074 		}
2075 
2076 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 				 NULL;
2078 
2079 		map = expand_xps_map(map, cpu, index);
2080 		if (!map)
2081 			goto error;
2082 
2083 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 	}
2085 
2086 	if (!new_dev_maps)
2087 		goto out_no_new_maps;
2088 
2089 	for_each_possible_cpu(cpu) {
2090 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 			/* add queue to CPU maps */
2092 			int pos = 0;
2093 
2094 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 			while ((pos < map->len) && (map->queues[pos] != index))
2096 				pos++;
2097 
2098 			if (pos == map->len)
2099 				map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 			if (numa_node_id == -2)
2102 				numa_node_id = cpu_to_node(cpu);
2103 			else if (numa_node_id != cpu_to_node(cpu))
2104 				numa_node_id = -1;
2105 #endif
2106 		} else if (dev_maps) {
2107 			/* fill in the new device map from the old device map */
2108 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 		}
2111 
2112 	}
2113 
2114 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115 
2116 	/* Cleanup old maps */
2117 	if (dev_maps) {
2118 		for_each_possible_cpu(cpu) {
2119 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 			if (map && map != new_map)
2122 				kfree_rcu(map, rcu);
2123 		}
2124 
2125 		kfree_rcu(dev_maps, rcu);
2126 	}
2127 
2128 	dev_maps = new_dev_maps;
2129 	active = true;
2130 
2131 out_no_new_maps:
2132 	/* update Tx queue numa node */
2133 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 				     (numa_node_id >= 0) ? numa_node_id :
2135 				     NUMA_NO_NODE);
2136 
2137 	if (!dev_maps)
2138 		goto out_no_maps;
2139 
2140 	/* removes queue from unused CPUs */
2141 	for_each_possible_cpu(cpu) {
2142 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 			continue;
2144 
2145 		if (remove_xps_queue(dev_maps, cpu, index))
2146 			active = true;
2147 	}
2148 
2149 	/* free map if not active */
2150 	if (!active) {
2151 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 		kfree_rcu(dev_maps, rcu);
2153 	}
2154 
2155 out_no_maps:
2156 	mutex_unlock(&xps_map_mutex);
2157 
2158 	return 0;
2159 error:
2160 	/* remove any maps that we added */
2161 	for_each_possible_cpu(cpu) {
2162 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 				 NULL;
2165 		if (new_map && new_map != map)
2166 			kfree(new_map);
2167 	}
2168 
2169 	mutex_unlock(&xps_map_mutex);
2170 
2171 	kfree(new_dev_maps);
2172 	return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175 
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 	int rc;
2184 
2185 	if (txq < 1 || txq > dev->num_tx_queues)
2186 		return -EINVAL;
2187 
2188 	if (dev->reg_state == NETREG_REGISTERED ||
2189 	    dev->reg_state == NETREG_UNREGISTERING) {
2190 		ASSERT_RTNL();
2191 
2192 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 						  txq);
2194 		if (rc)
2195 			return rc;
2196 
2197 		if (dev->num_tc)
2198 			netif_setup_tc(dev, txq);
2199 
2200 		if (txq < dev->real_num_tx_queues) {
2201 			qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 			netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 		}
2206 	}
2207 
2208 	dev->real_num_tx_queues = txq;
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212 
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *	@dev: Network device
2217  *	@rxq: Actual number of RX queues
2218  *
2219  *	This must be called either with the rtnl_lock held or before
2220  *	registration of the net device.  Returns 0 on success, or a
2221  *	negative error code.  If called before registration, it always
2222  *	succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 	int rc;
2227 
2228 	if (rxq < 1 || rxq > dev->num_rx_queues)
2229 		return -EINVAL;
2230 
2231 	if (dev->reg_state == NETREG_REGISTERED) {
2232 		ASSERT_RTNL();
2233 
2234 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 						  rxq);
2236 		if (rc)
2237 			return rc;
2238 	}
2239 
2240 	dev->real_num_rx_queues = rxq;
2241 	return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245 
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 	return is_kdump_kernel() ?
2255 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258 
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 	struct softnet_data *sd;
2262 	unsigned long flags;
2263 
2264 	local_irq_save(flags);
2265 	sd = this_cpu_ptr(&softnet_data);
2266 	q->next_sched = NULL;
2267 	*sd->output_queue_tailp = q;
2268 	sd->output_queue_tailp = &q->next_sched;
2269 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 	local_irq_restore(flags);
2271 }
2272 
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 		__netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279 
2280 struct dev_kfree_skb_cb {
2281 	enum skb_free_reason reason;
2282 };
2283 
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 	return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288 
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 	rcu_read_lock();
2292 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2294 
2295 		__netif_schedule(q);
2296 	}
2297 	rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300 
2301 /**
2302  *	netif_wake_subqueue - allow sending packets on subqueue
2303  *	@dev: network device
2304  *	@queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311 
2312 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 		struct Qdisc *q;
2314 
2315 		rcu_read_lock();
2316 		q = rcu_dereference(txq->qdisc);
2317 		__netif_schedule(q);
2318 		rcu_read_unlock();
2319 	}
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322 
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 		struct Qdisc *q;
2327 
2328 		rcu_read_lock();
2329 		q = rcu_dereference(dev_queue->qdisc);
2330 		__netif_schedule(q);
2331 		rcu_read_unlock();
2332 	}
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335 
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 	unsigned long flags;
2339 
2340 	if (likely(atomic_read(&skb->users) == 1)) {
2341 		smp_rmb();
2342 		atomic_set(&skb->users, 0);
2343 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 		return;
2345 	}
2346 	get_kfree_skb_cb(skb)->reason = reason;
2347 	local_irq_save(flags);
2348 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 	__this_cpu_write(softnet_data.completion_queue, skb);
2350 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 	local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354 
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 	if (in_irq() || irqs_disabled())
2358 		__dev_kfree_skb_irq(skb, reason);
2359 	else
2360 		dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363 
2364 
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 	    netif_running(dev)) {
2375 		netif_tx_stop_all_queues(dev);
2376 	}
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379 
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 	    netif_running(dev)) {
2390 		netif_tx_wake_all_queues(dev);
2391 		__netdev_watchdog_up(dev);
2392 	}
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395 
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 		  unsigned int num_tx_queues)
2402 {
2403 	u32 hash;
2404 	u16 qoffset = 0;
2405 	u16 qcount = num_tx_queues;
2406 
2407 	if (skb_rx_queue_recorded(skb)) {
2408 		hash = skb_get_rx_queue(skb);
2409 		while (unlikely(hash >= num_tx_queues))
2410 			hash -= num_tx_queues;
2411 		return hash;
2412 	}
2413 
2414 	if (dev->num_tc) {
2415 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 		qoffset = dev->tc_to_txq[tc].offset;
2417 		qcount = dev->tc_to_txq[tc].count;
2418 	}
2419 
2420 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423 
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 	static const netdev_features_t null_features;
2427 	struct net_device *dev = skb->dev;
2428 	const char *name = "";
2429 
2430 	if (!net_ratelimit())
2431 		return;
2432 
2433 	if (dev) {
2434 		if (dev->dev.parent)
2435 			name = dev_driver_string(dev->dev.parent);
2436 		else
2437 			name = netdev_name(dev);
2438 	}
2439 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 	     "gso_type=%d ip_summed=%d\n",
2441 	     name, dev ? &dev->features : &null_features,
2442 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446 
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 	__wsum csum;
2454 	int ret = 0, offset;
2455 
2456 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 		goto out_set_summed;
2458 
2459 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 		skb_warn_bad_offload(skb);
2461 		return -EINVAL;
2462 	}
2463 
2464 	/* Before computing a checksum, we should make sure no frag could
2465 	 * be modified by an external entity : checksum could be wrong.
2466 	 */
2467 	if (skb_has_shared_frag(skb)) {
2468 		ret = __skb_linearize(skb);
2469 		if (ret)
2470 			goto out;
2471 	}
2472 
2473 	offset = skb_checksum_start_offset(skb);
2474 	BUG_ON(offset >= skb_headlen(skb));
2475 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476 
2477 	offset += skb->csum_offset;
2478 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479 
2480 	if (skb_cloned(skb) &&
2481 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 		if (ret)
2484 			goto out;
2485 	}
2486 
2487 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 	skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 	return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494 
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *	      encpasulated. That is it is checksum for the transport header
2504  *	      in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *	      call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *	   the device (a driver may still need to check for additional
2511  *	   restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *	   skb_checksum_help was called to resolve checksum for non-GSO
2514  *	   packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 			    const struct skb_csum_offl_spec *spec,
2518 			    bool *csum_encapped,
2519 			    bool csum_help)
2520 {
2521 	struct iphdr *iph;
2522 	struct ipv6hdr *ipv6;
2523 	void *nhdr;
2524 	int protocol;
2525 	u8 ip_proto;
2526 
2527 	if (skb->protocol == htons(ETH_P_8021Q) ||
2528 	    skb->protocol == htons(ETH_P_8021AD)) {
2529 		if (!spec->vlan_okay)
2530 			goto need_help;
2531 	}
2532 
2533 	/* We check whether the checksum refers to a transport layer checksum in
2534 	 * the outermost header or an encapsulated transport layer checksum that
2535 	 * corresponds to the inner headers of the skb. If the checksum is for
2536 	 * something else in the packet we need help.
2537 	 */
2538 	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 		/* Non-encapsulated checksum */
2540 		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 		nhdr = skb_network_header(skb);
2542 		*csum_encapped = false;
2543 		if (spec->no_not_encapped)
2544 			goto need_help;
2545 	} else if (skb->encapsulation && spec->encap_okay &&
2546 		   skb_checksum_start_offset(skb) ==
2547 		   skb_inner_transport_offset(skb)) {
2548 		/* Encapsulated checksum */
2549 		*csum_encapped = true;
2550 		switch (skb->inner_protocol_type) {
2551 		case ENCAP_TYPE_ETHER:
2552 			protocol = eproto_to_ipproto(skb->inner_protocol);
2553 			break;
2554 		case ENCAP_TYPE_IPPROTO:
2555 			protocol = skb->inner_protocol;
2556 			break;
2557 		}
2558 		nhdr = skb_inner_network_header(skb);
2559 	} else {
2560 		goto need_help;
2561 	}
2562 
2563 	switch (protocol) {
2564 	case IPPROTO_IP:
2565 		if (!spec->ipv4_okay)
2566 			goto need_help;
2567 		iph = nhdr;
2568 		ip_proto = iph->protocol;
2569 		if (iph->ihl != 5 && !spec->ip_options_okay)
2570 			goto need_help;
2571 		break;
2572 	case IPPROTO_IPV6:
2573 		if (!spec->ipv6_okay)
2574 			goto need_help;
2575 		if (spec->no_encapped_ipv6 && *csum_encapped)
2576 			goto need_help;
2577 		ipv6 = nhdr;
2578 		nhdr += sizeof(*ipv6);
2579 		ip_proto = ipv6->nexthdr;
2580 		break;
2581 	default:
2582 		goto need_help;
2583 	}
2584 
2585 ip_proto_again:
2586 	switch (ip_proto) {
2587 	case IPPROTO_TCP:
2588 		if (!spec->tcp_okay ||
2589 		    skb->csum_offset != offsetof(struct tcphdr, check))
2590 			goto need_help;
2591 		break;
2592 	case IPPROTO_UDP:
2593 		if (!spec->udp_okay ||
2594 		    skb->csum_offset != offsetof(struct udphdr, check))
2595 			goto need_help;
2596 		break;
2597 	case IPPROTO_SCTP:
2598 		if (!spec->sctp_okay ||
2599 		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 			goto cant_help;
2601 		break;
2602 	case NEXTHDR_HOP:
2603 	case NEXTHDR_ROUTING:
2604 	case NEXTHDR_DEST: {
2605 		u8 *opthdr = nhdr;
2606 
2607 		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 			goto need_help;
2609 
2610 		ip_proto = opthdr[0];
2611 		nhdr += (opthdr[1] + 1) << 3;
2612 
2613 		goto ip_proto_again;
2614 	}
2615 	default:
2616 		goto need_help;
2617 	}
2618 
2619 	/* Passed the tests for offloading checksum */
2620 	return true;
2621 
2622 need_help:
2623 	if (csum_help && !skb_shinfo(skb)->gso_size)
2624 		skb_checksum_help(skb);
2625 cant_help:
2626 	return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629 
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 	__be16 type = skb->protocol;
2633 
2634 	/* Tunnel gso handlers can set protocol to ethernet. */
2635 	if (type == htons(ETH_P_TEB)) {
2636 		struct ethhdr *eth;
2637 
2638 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 			return 0;
2640 
2641 		eth = (struct ethhdr *)skb_mac_header(skb);
2642 		type = eth->h_proto;
2643 	}
2644 
2645 	return __vlan_get_protocol(skb, type, depth);
2646 }
2647 
2648 /**
2649  *	skb_mac_gso_segment - mac layer segmentation handler.
2650  *	@skb: buffer to segment
2651  *	@features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 				    netdev_features_t features)
2655 {
2656 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 	struct packet_offload *ptype;
2658 	int vlan_depth = skb->mac_len;
2659 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2660 
2661 	if (unlikely(!type))
2662 		return ERR_PTR(-EINVAL);
2663 
2664 	__skb_pull(skb, vlan_depth);
2665 
2666 	rcu_read_lock();
2667 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 			segs = ptype->callbacks.gso_segment(skb, features);
2670 			break;
2671 		}
2672 	}
2673 	rcu_read_unlock();
2674 
2675 	__skb_push(skb, skb->data - skb_mac_header(skb));
2676 
2677 	return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680 
2681 
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 	if (tx_path)
2687 		return skb->ip_summed != CHECKSUM_PARTIAL;
2688 	else
2689 		return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691 
2692 /**
2693  *	__skb_gso_segment - Perform segmentation on skb.
2694  *	@skb: buffer to segment
2695  *	@features: features for the output path (see dev->features)
2696  *	@tx_path: whether it is called in TX path
2697  *
2698  *	This function segments the given skb and returns a list of segments.
2699  *
2700  *	It may return NULL if the skb requires no segmentation.  This is
2701  *	only possible when GSO is used for verifying header integrity.
2702  *
2703  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 				  netdev_features_t features, bool tx_path)
2707 {
2708 	if (unlikely(skb_needs_check(skb, tx_path))) {
2709 		int err;
2710 
2711 		skb_warn_bad_offload(skb);
2712 
2713 		err = skb_cow_head(skb, 0);
2714 		if (err < 0)
2715 			return ERR_PTR(err);
2716 	}
2717 
2718 	/* Only report GSO partial support if it will enable us to
2719 	 * support segmentation on this frame without needing additional
2720 	 * work.
2721 	 */
2722 	if (features & NETIF_F_GSO_PARTIAL) {
2723 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 		struct net_device *dev = skb->dev;
2725 
2726 		partial_features |= dev->features & dev->gso_partial_features;
2727 		if (!skb_gso_ok(skb, features | partial_features))
2728 			features &= ~NETIF_F_GSO_PARTIAL;
2729 	}
2730 
2731 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733 
2734 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 	SKB_GSO_CB(skb)->encap_level = 0;
2736 
2737 	skb_reset_mac_header(skb);
2738 	skb_reset_mac_len(skb);
2739 
2740 	return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743 
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 	if (net_ratelimit()) {
2749 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 		dump_stack();
2751 	}
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755 
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760 
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 	int i;
2765 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 			if (PageHighMem(skb_frag_page(frag)))
2769 				return 1;
2770 		}
2771 	}
2772 
2773 	if (PCI_DMA_BUS_IS_PHYS) {
2774 		struct device *pdev = dev->dev.parent;
2775 
2776 		if (!pdev)
2777 			return 0;
2778 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 				return 1;
2783 		}
2784 	}
2785 #endif
2786 	return 0;
2787 }
2788 
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 					   netdev_features_t features,
2795 					   __be16 type)
2796 {
2797 	if (eth_p_mpls(type))
2798 		features &= skb->dev->mpls_features;
2799 
2800 	return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 					   netdev_features_t features,
2805 					   __be16 type)
2806 {
2807 	return features;
2808 }
2809 #endif
2810 
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 	netdev_features_t features)
2813 {
2814 	int tmp;
2815 	__be16 type;
2816 
2817 	type = skb_network_protocol(skb, &tmp);
2818 	features = net_mpls_features(skb, features, type);
2819 
2820 	if (skb->ip_summed != CHECKSUM_NONE &&
2821 	    !can_checksum_protocol(features, type)) {
2822 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 	} else if (illegal_highdma(skb->dev, skb)) {
2824 		features &= ~NETIF_F_SG;
2825 	}
2826 
2827 	return features;
2828 }
2829 
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 					  struct net_device *dev,
2832 					  netdev_features_t features)
2833 {
2834 	return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837 
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 					     struct net_device *dev,
2840 					     netdev_features_t features)
2841 {
2842 	return vlan_features_check(skb, features);
2843 }
2844 
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 					    struct net_device *dev,
2847 					    netdev_features_t features)
2848 {
2849 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850 
2851 	if (gso_segs > dev->gso_max_segs)
2852 		return features & ~NETIF_F_GSO_MASK;
2853 
2854 	/* Support for GSO partial features requires software
2855 	 * intervention before we can actually process the packets
2856 	 * so we need to strip support for any partial features now
2857 	 * and we can pull them back in after we have partially
2858 	 * segmented the frame.
2859 	 */
2860 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 		features &= ~dev->gso_partial_features;
2862 
2863 	/* Make sure to clear the IPv4 ID mangling feature if the
2864 	 * IPv4 header has the potential to be fragmented.
2865 	 */
2866 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 		struct iphdr *iph = skb->encapsulation ?
2868 				    inner_ip_hdr(skb) : ip_hdr(skb);
2869 
2870 		if (!(iph->frag_off & htons(IP_DF)))
2871 			features &= ~NETIF_F_TSO_MANGLEID;
2872 	}
2873 
2874 	return features;
2875 }
2876 
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 	struct net_device *dev = skb->dev;
2880 	netdev_features_t features = dev->features;
2881 
2882 	if (skb_is_gso(skb))
2883 		features = gso_features_check(skb, dev, features);
2884 
2885 	/* If encapsulation offload request, verify we are testing
2886 	 * hardware encapsulation features instead of standard
2887 	 * features for the netdev
2888 	 */
2889 	if (skb->encapsulation)
2890 		features &= dev->hw_enc_features;
2891 
2892 	if (skb_vlan_tagged(skb))
2893 		features = netdev_intersect_features(features,
2894 						     dev->vlan_features |
2895 						     NETIF_F_HW_VLAN_CTAG_TX |
2896 						     NETIF_F_HW_VLAN_STAG_TX);
2897 
2898 	if (dev->netdev_ops->ndo_features_check)
2899 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 								features);
2901 	else
2902 		features &= dflt_features_check(skb, dev, features);
2903 
2904 	return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907 
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 		    struct netdev_queue *txq, bool more)
2910 {
2911 	unsigned int len;
2912 	int rc;
2913 
2914 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 		dev_queue_xmit_nit(skb, dev);
2916 
2917 	len = skb->len;
2918 	trace_net_dev_start_xmit(skb, dev);
2919 	rc = netdev_start_xmit(skb, dev, txq, more);
2920 	trace_net_dev_xmit(skb, rc, dev, len);
2921 
2922 	return rc;
2923 }
2924 
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 				    struct netdev_queue *txq, int *ret)
2927 {
2928 	struct sk_buff *skb = first;
2929 	int rc = NETDEV_TX_OK;
2930 
2931 	while (skb) {
2932 		struct sk_buff *next = skb->next;
2933 
2934 		skb->next = NULL;
2935 		rc = xmit_one(skb, dev, txq, next != NULL);
2936 		if (unlikely(!dev_xmit_complete(rc))) {
2937 			skb->next = next;
2938 			goto out;
2939 		}
2940 
2941 		skb = next;
2942 		if (netif_xmit_stopped(txq) && skb) {
2943 			rc = NETDEV_TX_BUSY;
2944 			break;
2945 		}
2946 	}
2947 
2948 out:
2949 	*ret = rc;
2950 	return skb;
2951 }
2952 
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 					  netdev_features_t features)
2955 {
2956 	if (skb_vlan_tag_present(skb) &&
2957 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 		skb = __vlan_hwaccel_push_inside(skb);
2959 	return skb;
2960 }
2961 
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 	netdev_features_t features;
2965 
2966 	features = netif_skb_features(skb);
2967 	skb = validate_xmit_vlan(skb, features);
2968 	if (unlikely(!skb))
2969 		goto out_null;
2970 
2971 	if (netif_needs_gso(skb, features)) {
2972 		struct sk_buff *segs;
2973 
2974 		segs = skb_gso_segment(skb, features);
2975 		if (IS_ERR(segs)) {
2976 			goto out_kfree_skb;
2977 		} else if (segs) {
2978 			consume_skb(skb);
2979 			skb = segs;
2980 		}
2981 	} else {
2982 		if (skb_needs_linearize(skb, features) &&
2983 		    __skb_linearize(skb))
2984 			goto out_kfree_skb;
2985 
2986 		/* If packet is not checksummed and device does not
2987 		 * support checksumming for this protocol, complete
2988 		 * checksumming here.
2989 		 */
2990 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 			if (skb->encapsulation)
2992 				skb_set_inner_transport_header(skb,
2993 							       skb_checksum_start_offset(skb));
2994 			else
2995 				skb_set_transport_header(skb,
2996 							 skb_checksum_start_offset(skb));
2997 			if (!(features & NETIF_F_CSUM_MASK) &&
2998 			    skb_checksum_help(skb))
2999 				goto out_kfree_skb;
3000 		}
3001 	}
3002 
3003 	return skb;
3004 
3005 out_kfree_skb:
3006 	kfree_skb(skb);
3007 out_null:
3008 	atomic_long_inc(&dev->tx_dropped);
3009 	return NULL;
3010 }
3011 
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 	struct sk_buff *next, *head = NULL, *tail;
3015 
3016 	for (; skb != NULL; skb = next) {
3017 		next = skb->next;
3018 		skb->next = NULL;
3019 
3020 		/* in case skb wont be segmented, point to itself */
3021 		skb->prev = skb;
3022 
3023 		skb = validate_xmit_skb(skb, dev);
3024 		if (!skb)
3025 			continue;
3026 
3027 		if (!head)
3028 			head = skb;
3029 		else
3030 			tail->next = skb;
3031 		/* If skb was segmented, skb->prev points to
3032 		 * the last segment. If not, it still contains skb.
3033 		 */
3034 		tail = skb->prev;
3035 	}
3036 	return head;
3037 }
3038 
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042 
3043 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3044 
3045 	/* To get more precise estimation of bytes sent on wire,
3046 	 * we add to pkt_len the headers size of all segments
3047 	 */
3048 	if (shinfo->gso_size)  {
3049 		unsigned int hdr_len;
3050 		u16 gso_segs = shinfo->gso_segs;
3051 
3052 		/* mac layer + network layer */
3053 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054 
3055 		/* + transport layer */
3056 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 			hdr_len += tcp_hdrlen(skb);
3058 		else
3059 			hdr_len += sizeof(struct udphdr);
3060 
3061 		if (shinfo->gso_type & SKB_GSO_DODGY)
3062 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 						shinfo->gso_size);
3064 
3065 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066 	}
3067 }
3068 
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 				 struct net_device *dev,
3071 				 struct netdev_queue *txq)
3072 {
3073 	spinlock_t *root_lock = qdisc_lock(q);
3074 	struct sk_buff *to_free = NULL;
3075 	bool contended;
3076 	int rc;
3077 
3078 	qdisc_calculate_pkt_len(skb, q);
3079 	/*
3080 	 * Heuristic to force contended enqueues to serialize on a
3081 	 * separate lock before trying to get qdisc main lock.
3082 	 * This permits qdisc->running owner to get the lock more
3083 	 * often and dequeue packets faster.
3084 	 */
3085 	contended = qdisc_is_running(q);
3086 	if (unlikely(contended))
3087 		spin_lock(&q->busylock);
3088 
3089 	spin_lock(root_lock);
3090 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091 		__qdisc_drop(skb, &to_free);
3092 		rc = NET_XMIT_DROP;
3093 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094 		   qdisc_run_begin(q)) {
3095 		/*
3096 		 * This is a work-conserving queue; there are no old skbs
3097 		 * waiting to be sent out; and the qdisc is not running -
3098 		 * xmit the skb directly.
3099 		 */
3100 
3101 		qdisc_bstats_update(q, skb);
3102 
3103 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104 			if (unlikely(contended)) {
3105 				spin_unlock(&q->busylock);
3106 				contended = false;
3107 			}
3108 			__qdisc_run(q);
3109 		} else
3110 			qdisc_run_end(q);
3111 
3112 		rc = NET_XMIT_SUCCESS;
3113 	} else {
3114 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115 		if (qdisc_run_begin(q)) {
3116 			if (unlikely(contended)) {
3117 				spin_unlock(&q->busylock);
3118 				contended = false;
3119 			}
3120 			__qdisc_run(q);
3121 		}
3122 	}
3123 	spin_unlock(root_lock);
3124 	if (unlikely(to_free))
3125 		kfree_skb_list(to_free);
3126 	if (unlikely(contended))
3127 		spin_unlock(&q->busylock);
3128 	return rc;
3129 }
3130 
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135 
3136 	if (!skb->priority && skb->sk && map) {
3137 		unsigned int prioidx =
3138 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139 
3140 		if (prioidx < map->priomap_len)
3141 			skb->priority = map->priomap[prioidx];
3142 	}
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147 
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150 
3151 /**
3152  *	dev_loopback_xmit - loop back @skb
3153  *	@net: network namespace this loopback is happening in
3154  *	@sk:  sk needed to be a netfilter okfn
3155  *	@skb: buffer to transmit
3156  */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159 	skb_reset_mac_header(skb);
3160 	__skb_pull(skb, skb_network_offset(skb));
3161 	skb->pkt_type = PACKET_LOOPBACK;
3162 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 	WARN_ON(!skb_dst(skb));
3164 	skb_dst_force(skb);
3165 	netif_rx_ni(skb);
3166 	return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169 
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 	struct tcf_result cl_res;
3176 
3177 	if (!cl)
3178 		return skb;
3179 
3180 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 	 * earlier by the caller.
3182 	 */
3183 	qdisc_bstats_cpu_update(cl->q, skb);
3184 
3185 	switch (tc_classify(skb, cl, &cl_res, false)) {
3186 	case TC_ACT_OK:
3187 	case TC_ACT_RECLASSIFY:
3188 		skb->tc_index = TC_H_MIN(cl_res.classid);
3189 		break;
3190 	case TC_ACT_SHOT:
3191 		qdisc_qstats_cpu_drop(cl->q);
3192 		*ret = NET_XMIT_DROP;
3193 		kfree_skb(skb);
3194 		return NULL;
3195 	case TC_ACT_STOLEN:
3196 	case TC_ACT_QUEUED:
3197 		*ret = NET_XMIT_SUCCESS;
3198 		consume_skb(skb);
3199 		return NULL;
3200 	case TC_ACT_REDIRECT:
3201 		/* No need to push/pop skb's mac_header here on egress! */
3202 		skb_do_redirect(skb);
3203 		*ret = NET_XMIT_SUCCESS;
3204 		return NULL;
3205 	default:
3206 		break;
3207 	}
3208 
3209 	return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212 
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216 	struct xps_dev_maps *dev_maps;
3217 	struct xps_map *map;
3218 	int queue_index = -1;
3219 
3220 	rcu_read_lock();
3221 	dev_maps = rcu_dereference(dev->xps_maps);
3222 	if (dev_maps) {
3223 		map = rcu_dereference(
3224 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 		if (map) {
3226 			if (map->len == 1)
3227 				queue_index = map->queues[0];
3228 			else
3229 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 									   map->len)];
3231 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 				queue_index = -1;
3233 		}
3234 	}
3235 	rcu_read_unlock();
3236 
3237 	return queue_index;
3238 #else
3239 	return -1;
3240 #endif
3241 }
3242 
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245 	struct sock *sk = skb->sk;
3246 	int queue_index = sk_tx_queue_get(sk);
3247 
3248 	if (queue_index < 0 || skb->ooo_okay ||
3249 	    queue_index >= dev->real_num_tx_queues) {
3250 		int new_index = get_xps_queue(dev, skb);
3251 		if (new_index < 0)
3252 			new_index = skb_tx_hash(dev, skb);
3253 
3254 		if (queue_index != new_index && sk &&
3255 		    sk_fullsock(sk) &&
3256 		    rcu_access_pointer(sk->sk_dst_cache))
3257 			sk_tx_queue_set(sk, new_index);
3258 
3259 		queue_index = new_index;
3260 	}
3261 
3262 	return queue_index;
3263 }
3264 
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 				    struct sk_buff *skb,
3267 				    void *accel_priv)
3268 {
3269 	int queue_index = 0;
3270 
3271 #ifdef CONFIG_XPS
3272 	u32 sender_cpu = skb->sender_cpu - 1;
3273 
3274 	if (sender_cpu >= (u32)NR_CPUS)
3275 		skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277 
3278 	if (dev->real_num_tx_queues != 1) {
3279 		const struct net_device_ops *ops = dev->netdev_ops;
3280 		if (ops->ndo_select_queue)
3281 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 							    __netdev_pick_tx);
3283 		else
3284 			queue_index = __netdev_pick_tx(dev, skb);
3285 
3286 		if (!accel_priv)
3287 			queue_index = netdev_cap_txqueue(dev, queue_index);
3288 	}
3289 
3290 	skb_set_queue_mapping(skb, queue_index);
3291 	return netdev_get_tx_queue(dev, queue_index);
3292 }
3293 
3294 /**
3295  *	__dev_queue_xmit - transmit a buffer
3296  *	@skb: buffer to transmit
3297  *	@accel_priv: private data used for L2 forwarding offload
3298  *
3299  *	Queue a buffer for transmission to a network device. The caller must
3300  *	have set the device and priority and built the buffer before calling
3301  *	this function. The function can be called from an interrupt.
3302  *
3303  *	A negative errno code is returned on a failure. A success does not
3304  *	guarantee the frame will be transmitted as it may be dropped due
3305  *	to congestion or traffic shaping.
3306  *
3307  * -----------------------------------------------------------------------------------
3308  *      I notice this method can also return errors from the queue disciplines,
3309  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3310  *      be positive.
3311  *
3312  *      Regardless of the return value, the skb is consumed, so it is currently
3313  *      difficult to retry a send to this method.  (You can bump the ref count
3314  *      before sending to hold a reference for retry if you are careful.)
3315  *
3316  *      When calling this method, interrupts MUST be enabled.  This is because
3317  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3318  *          --BLG
3319  */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322 	struct net_device *dev = skb->dev;
3323 	struct netdev_queue *txq;
3324 	struct Qdisc *q;
3325 	int rc = -ENOMEM;
3326 
3327 	skb_reset_mac_header(skb);
3328 
3329 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331 
3332 	/* Disable soft irqs for various locks below. Also
3333 	 * stops preemption for RCU.
3334 	 */
3335 	rcu_read_lock_bh();
3336 
3337 	skb_update_prio(skb);
3338 
3339 	qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343 	if (static_key_false(&egress_needed)) {
3344 		skb = sch_handle_egress(skb, &rc, dev);
3345 		if (!skb)
3346 			goto out;
3347 	}
3348 # endif
3349 #endif
3350 	/* If device/qdisc don't need skb->dst, release it right now while
3351 	 * its hot in this cpu cache.
3352 	 */
3353 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 		skb_dst_drop(skb);
3355 	else
3356 		skb_dst_force(skb);
3357 
3358 #ifdef CONFIG_NET_SWITCHDEV
3359 	/* Don't forward if offload device already forwarded */
3360 	if (skb->offload_fwd_mark &&
3361 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3362 		consume_skb(skb);
3363 		rc = NET_XMIT_SUCCESS;
3364 		goto out;
3365 	}
3366 #endif
3367 
3368 	txq = netdev_pick_tx(dev, skb, accel_priv);
3369 	q = rcu_dereference_bh(txq->qdisc);
3370 
3371 	trace_net_dev_queue(skb);
3372 	if (q->enqueue) {
3373 		rc = __dev_xmit_skb(skb, q, dev, txq);
3374 		goto out;
3375 	}
3376 
3377 	/* The device has no queue. Common case for software devices:
3378 	   loopback, all the sorts of tunnels...
3379 
3380 	   Really, it is unlikely that netif_tx_lock protection is necessary
3381 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3382 	   counters.)
3383 	   However, it is possible, that they rely on protection
3384 	   made by us here.
3385 
3386 	   Check this and shot the lock. It is not prone from deadlocks.
3387 	   Either shot noqueue qdisc, it is even simpler 8)
3388 	 */
3389 	if (dev->flags & IFF_UP) {
3390 		int cpu = smp_processor_id(); /* ok because BHs are off */
3391 
3392 		if (txq->xmit_lock_owner != cpu) {
3393 			if (unlikely(__this_cpu_read(xmit_recursion) >
3394 				     XMIT_RECURSION_LIMIT))
3395 				goto recursion_alert;
3396 
3397 			skb = validate_xmit_skb(skb, dev);
3398 			if (!skb)
3399 				goto out;
3400 
3401 			HARD_TX_LOCK(dev, txq, cpu);
3402 
3403 			if (!netif_xmit_stopped(txq)) {
3404 				__this_cpu_inc(xmit_recursion);
3405 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3406 				__this_cpu_dec(xmit_recursion);
3407 				if (dev_xmit_complete(rc)) {
3408 					HARD_TX_UNLOCK(dev, txq);
3409 					goto out;
3410 				}
3411 			}
3412 			HARD_TX_UNLOCK(dev, txq);
3413 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3414 					     dev->name);
3415 		} else {
3416 			/* Recursion is detected! It is possible,
3417 			 * unfortunately
3418 			 */
3419 recursion_alert:
3420 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3421 					     dev->name);
3422 		}
3423 	}
3424 
3425 	rc = -ENETDOWN;
3426 	rcu_read_unlock_bh();
3427 
3428 	atomic_long_inc(&dev->tx_dropped);
3429 	kfree_skb_list(skb);
3430 	return rc;
3431 out:
3432 	rcu_read_unlock_bh();
3433 	return rc;
3434 }
3435 
3436 int dev_queue_xmit(struct sk_buff *skb)
3437 {
3438 	return __dev_queue_xmit(skb, NULL);
3439 }
3440 EXPORT_SYMBOL(dev_queue_xmit);
3441 
3442 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3443 {
3444 	return __dev_queue_xmit(skb, accel_priv);
3445 }
3446 EXPORT_SYMBOL(dev_queue_xmit_accel);
3447 
3448 
3449 /*=======================================================================
3450 			Receiver routines
3451   =======================================================================*/
3452 
3453 int netdev_max_backlog __read_mostly = 1000;
3454 EXPORT_SYMBOL(netdev_max_backlog);
3455 
3456 int netdev_tstamp_prequeue __read_mostly = 1;
3457 int netdev_budget __read_mostly = 300;
3458 int weight_p __read_mostly = 64;            /* old backlog weight */
3459 
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462 				     struct napi_struct *napi)
3463 {
3464 	list_add_tail(&napi->poll_list, &sd->poll_list);
3465 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466 }
3467 
3468 #ifdef CONFIG_RPS
3469 
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3475 
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478 
3479 static struct rps_dev_flow *
3480 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3481 	    struct rps_dev_flow *rflow, u16 next_cpu)
3482 {
3483 	if (next_cpu < nr_cpu_ids) {
3484 #ifdef CONFIG_RFS_ACCEL
3485 		struct netdev_rx_queue *rxqueue;
3486 		struct rps_dev_flow_table *flow_table;
3487 		struct rps_dev_flow *old_rflow;
3488 		u32 flow_id;
3489 		u16 rxq_index;
3490 		int rc;
3491 
3492 		/* Should we steer this flow to a different hardware queue? */
3493 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3494 		    !(dev->features & NETIF_F_NTUPLE))
3495 			goto out;
3496 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3497 		if (rxq_index == skb_get_rx_queue(skb))
3498 			goto out;
3499 
3500 		rxqueue = dev->_rx + rxq_index;
3501 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502 		if (!flow_table)
3503 			goto out;
3504 		flow_id = skb_get_hash(skb) & flow_table->mask;
3505 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3506 							rxq_index, flow_id);
3507 		if (rc < 0)
3508 			goto out;
3509 		old_rflow = rflow;
3510 		rflow = &flow_table->flows[flow_id];
3511 		rflow->filter = rc;
3512 		if (old_rflow->filter == rflow->filter)
3513 			old_rflow->filter = RPS_NO_FILTER;
3514 	out:
3515 #endif
3516 		rflow->last_qtail =
3517 			per_cpu(softnet_data, next_cpu).input_queue_head;
3518 	}
3519 
3520 	rflow->cpu = next_cpu;
3521 	return rflow;
3522 }
3523 
3524 /*
3525  * get_rps_cpu is called from netif_receive_skb and returns the target
3526  * CPU from the RPS map of the receiving queue for a given skb.
3527  * rcu_read_lock must be held on entry.
3528  */
3529 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3530 		       struct rps_dev_flow **rflowp)
3531 {
3532 	const struct rps_sock_flow_table *sock_flow_table;
3533 	struct netdev_rx_queue *rxqueue = dev->_rx;
3534 	struct rps_dev_flow_table *flow_table;
3535 	struct rps_map *map;
3536 	int cpu = -1;
3537 	u32 tcpu;
3538 	u32 hash;
3539 
3540 	if (skb_rx_queue_recorded(skb)) {
3541 		u16 index = skb_get_rx_queue(skb);
3542 
3543 		if (unlikely(index >= dev->real_num_rx_queues)) {
3544 			WARN_ONCE(dev->real_num_rx_queues > 1,
3545 				  "%s received packet on queue %u, but number "
3546 				  "of RX queues is %u\n",
3547 				  dev->name, index, dev->real_num_rx_queues);
3548 			goto done;
3549 		}
3550 		rxqueue += index;
3551 	}
3552 
3553 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3554 
3555 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3556 	map = rcu_dereference(rxqueue->rps_map);
3557 	if (!flow_table && !map)
3558 		goto done;
3559 
3560 	skb_reset_network_header(skb);
3561 	hash = skb_get_hash(skb);
3562 	if (!hash)
3563 		goto done;
3564 
3565 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3566 	if (flow_table && sock_flow_table) {
3567 		struct rps_dev_flow *rflow;
3568 		u32 next_cpu;
3569 		u32 ident;
3570 
3571 		/* First check into global flow table if there is a match */
3572 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3573 		if ((ident ^ hash) & ~rps_cpu_mask)
3574 			goto try_rps;
3575 
3576 		next_cpu = ident & rps_cpu_mask;
3577 
3578 		/* OK, now we know there is a match,
3579 		 * we can look at the local (per receive queue) flow table
3580 		 */
3581 		rflow = &flow_table->flows[hash & flow_table->mask];
3582 		tcpu = rflow->cpu;
3583 
3584 		/*
3585 		 * If the desired CPU (where last recvmsg was done) is
3586 		 * different from current CPU (one in the rx-queue flow
3587 		 * table entry), switch if one of the following holds:
3588 		 *   - Current CPU is unset (>= nr_cpu_ids).
3589 		 *   - Current CPU is offline.
3590 		 *   - The current CPU's queue tail has advanced beyond the
3591 		 *     last packet that was enqueued using this table entry.
3592 		 *     This guarantees that all previous packets for the flow
3593 		 *     have been dequeued, thus preserving in order delivery.
3594 		 */
3595 		if (unlikely(tcpu != next_cpu) &&
3596 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3597 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3598 		      rflow->last_qtail)) >= 0)) {
3599 			tcpu = next_cpu;
3600 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3601 		}
3602 
3603 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3604 			*rflowp = rflow;
3605 			cpu = tcpu;
3606 			goto done;
3607 		}
3608 	}
3609 
3610 try_rps:
3611 
3612 	if (map) {
3613 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3614 		if (cpu_online(tcpu)) {
3615 			cpu = tcpu;
3616 			goto done;
3617 		}
3618 	}
3619 
3620 done:
3621 	return cpu;
3622 }
3623 
3624 #ifdef CONFIG_RFS_ACCEL
3625 
3626 /**
3627  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3628  * @dev: Device on which the filter was set
3629  * @rxq_index: RX queue index
3630  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3631  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3632  *
3633  * Drivers that implement ndo_rx_flow_steer() should periodically call
3634  * this function for each installed filter and remove the filters for
3635  * which it returns %true.
3636  */
3637 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3638 			 u32 flow_id, u16 filter_id)
3639 {
3640 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3641 	struct rps_dev_flow_table *flow_table;
3642 	struct rps_dev_flow *rflow;
3643 	bool expire = true;
3644 	unsigned int cpu;
3645 
3646 	rcu_read_lock();
3647 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3648 	if (flow_table && flow_id <= flow_table->mask) {
3649 		rflow = &flow_table->flows[flow_id];
3650 		cpu = ACCESS_ONCE(rflow->cpu);
3651 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3652 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3653 			   rflow->last_qtail) <
3654 		     (int)(10 * flow_table->mask)))
3655 			expire = false;
3656 	}
3657 	rcu_read_unlock();
3658 	return expire;
3659 }
3660 EXPORT_SYMBOL(rps_may_expire_flow);
3661 
3662 #endif /* CONFIG_RFS_ACCEL */
3663 
3664 /* Called from hardirq (IPI) context */
3665 static void rps_trigger_softirq(void *data)
3666 {
3667 	struct softnet_data *sd = data;
3668 
3669 	____napi_schedule(sd, &sd->backlog);
3670 	sd->received_rps++;
3671 }
3672 
3673 #endif /* CONFIG_RPS */
3674 
3675 /*
3676  * Check if this softnet_data structure is another cpu one
3677  * If yes, queue it to our IPI list and return 1
3678  * If no, return 0
3679  */
3680 static int rps_ipi_queued(struct softnet_data *sd)
3681 {
3682 #ifdef CONFIG_RPS
3683 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3684 
3685 	if (sd != mysd) {
3686 		sd->rps_ipi_next = mysd->rps_ipi_list;
3687 		mysd->rps_ipi_list = sd;
3688 
3689 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3690 		return 1;
3691 	}
3692 #endif /* CONFIG_RPS */
3693 	return 0;
3694 }
3695 
3696 #ifdef CONFIG_NET_FLOW_LIMIT
3697 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3698 #endif
3699 
3700 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3701 {
3702 #ifdef CONFIG_NET_FLOW_LIMIT
3703 	struct sd_flow_limit *fl;
3704 	struct softnet_data *sd;
3705 	unsigned int old_flow, new_flow;
3706 
3707 	if (qlen < (netdev_max_backlog >> 1))
3708 		return false;
3709 
3710 	sd = this_cpu_ptr(&softnet_data);
3711 
3712 	rcu_read_lock();
3713 	fl = rcu_dereference(sd->flow_limit);
3714 	if (fl) {
3715 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3716 		old_flow = fl->history[fl->history_head];
3717 		fl->history[fl->history_head] = new_flow;
3718 
3719 		fl->history_head++;
3720 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3721 
3722 		if (likely(fl->buckets[old_flow]))
3723 			fl->buckets[old_flow]--;
3724 
3725 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3726 			fl->count++;
3727 			rcu_read_unlock();
3728 			return true;
3729 		}
3730 	}
3731 	rcu_read_unlock();
3732 #endif
3733 	return false;
3734 }
3735 
3736 /*
3737  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3738  * queue (may be a remote CPU queue).
3739  */
3740 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3741 			      unsigned int *qtail)
3742 {
3743 	struct softnet_data *sd;
3744 	unsigned long flags;
3745 	unsigned int qlen;
3746 
3747 	sd = &per_cpu(softnet_data, cpu);
3748 
3749 	local_irq_save(flags);
3750 
3751 	rps_lock(sd);
3752 	if (!netif_running(skb->dev))
3753 		goto drop;
3754 	qlen = skb_queue_len(&sd->input_pkt_queue);
3755 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3756 		if (qlen) {
3757 enqueue:
3758 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3759 			input_queue_tail_incr_save(sd, qtail);
3760 			rps_unlock(sd);
3761 			local_irq_restore(flags);
3762 			return NET_RX_SUCCESS;
3763 		}
3764 
3765 		/* Schedule NAPI for backlog device
3766 		 * We can use non atomic operation since we own the queue lock
3767 		 */
3768 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3769 			if (!rps_ipi_queued(sd))
3770 				____napi_schedule(sd, &sd->backlog);
3771 		}
3772 		goto enqueue;
3773 	}
3774 
3775 drop:
3776 	sd->dropped++;
3777 	rps_unlock(sd);
3778 
3779 	local_irq_restore(flags);
3780 
3781 	atomic_long_inc(&skb->dev->rx_dropped);
3782 	kfree_skb(skb);
3783 	return NET_RX_DROP;
3784 }
3785 
3786 static int netif_rx_internal(struct sk_buff *skb)
3787 {
3788 	int ret;
3789 
3790 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3791 
3792 	trace_netif_rx(skb);
3793 #ifdef CONFIG_RPS
3794 	if (static_key_false(&rps_needed)) {
3795 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3796 		int cpu;
3797 
3798 		preempt_disable();
3799 		rcu_read_lock();
3800 
3801 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3802 		if (cpu < 0)
3803 			cpu = smp_processor_id();
3804 
3805 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3806 
3807 		rcu_read_unlock();
3808 		preempt_enable();
3809 	} else
3810 #endif
3811 	{
3812 		unsigned int qtail;
3813 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3814 		put_cpu();
3815 	}
3816 	return ret;
3817 }
3818 
3819 /**
3820  *	netif_rx	-	post buffer to the network code
3821  *	@skb: buffer to post
3822  *
3823  *	This function receives a packet from a device driver and queues it for
3824  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3825  *	may be dropped during processing for congestion control or by the
3826  *	protocol layers.
3827  *
3828  *	return values:
3829  *	NET_RX_SUCCESS	(no congestion)
3830  *	NET_RX_DROP     (packet was dropped)
3831  *
3832  */
3833 
3834 int netif_rx(struct sk_buff *skb)
3835 {
3836 	trace_netif_rx_entry(skb);
3837 
3838 	return netif_rx_internal(skb);
3839 }
3840 EXPORT_SYMBOL(netif_rx);
3841 
3842 int netif_rx_ni(struct sk_buff *skb)
3843 {
3844 	int err;
3845 
3846 	trace_netif_rx_ni_entry(skb);
3847 
3848 	preempt_disable();
3849 	err = netif_rx_internal(skb);
3850 	if (local_softirq_pending())
3851 		do_softirq();
3852 	preempt_enable();
3853 
3854 	return err;
3855 }
3856 EXPORT_SYMBOL(netif_rx_ni);
3857 
3858 static void net_tx_action(struct softirq_action *h)
3859 {
3860 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3861 
3862 	if (sd->completion_queue) {
3863 		struct sk_buff *clist;
3864 
3865 		local_irq_disable();
3866 		clist = sd->completion_queue;
3867 		sd->completion_queue = NULL;
3868 		local_irq_enable();
3869 
3870 		while (clist) {
3871 			struct sk_buff *skb = clist;
3872 			clist = clist->next;
3873 
3874 			WARN_ON(atomic_read(&skb->users));
3875 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3876 				trace_consume_skb(skb);
3877 			else
3878 				trace_kfree_skb(skb, net_tx_action);
3879 
3880 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3881 				__kfree_skb(skb);
3882 			else
3883 				__kfree_skb_defer(skb);
3884 		}
3885 
3886 		__kfree_skb_flush();
3887 	}
3888 
3889 	if (sd->output_queue) {
3890 		struct Qdisc *head;
3891 
3892 		local_irq_disable();
3893 		head = sd->output_queue;
3894 		sd->output_queue = NULL;
3895 		sd->output_queue_tailp = &sd->output_queue;
3896 		local_irq_enable();
3897 
3898 		while (head) {
3899 			struct Qdisc *q = head;
3900 			spinlock_t *root_lock;
3901 
3902 			head = head->next_sched;
3903 
3904 			root_lock = qdisc_lock(q);
3905 			spin_lock(root_lock);
3906 			/* We need to make sure head->next_sched is read
3907 			 * before clearing __QDISC_STATE_SCHED
3908 			 */
3909 			smp_mb__before_atomic();
3910 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3911 			qdisc_run(q);
3912 			spin_unlock(root_lock);
3913 		}
3914 	}
3915 }
3916 
3917 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3918     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3919 /* This hook is defined here for ATM LANE */
3920 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3921 			     unsigned char *addr) __read_mostly;
3922 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3923 #endif
3924 
3925 static inline struct sk_buff *
3926 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3927 		   struct net_device *orig_dev)
3928 {
3929 #ifdef CONFIG_NET_CLS_ACT
3930 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3931 	struct tcf_result cl_res;
3932 
3933 	/* If there's at least one ingress present somewhere (so
3934 	 * we get here via enabled static key), remaining devices
3935 	 * that are not configured with an ingress qdisc will bail
3936 	 * out here.
3937 	 */
3938 	if (!cl)
3939 		return skb;
3940 	if (*pt_prev) {
3941 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3942 		*pt_prev = NULL;
3943 	}
3944 
3945 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3946 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3947 	qdisc_bstats_cpu_update(cl->q, skb);
3948 
3949 	switch (tc_classify(skb, cl, &cl_res, false)) {
3950 	case TC_ACT_OK:
3951 	case TC_ACT_RECLASSIFY:
3952 		skb->tc_index = TC_H_MIN(cl_res.classid);
3953 		break;
3954 	case TC_ACT_SHOT:
3955 		qdisc_qstats_cpu_drop(cl->q);
3956 		kfree_skb(skb);
3957 		return NULL;
3958 	case TC_ACT_STOLEN:
3959 	case TC_ACT_QUEUED:
3960 		consume_skb(skb);
3961 		return NULL;
3962 	case TC_ACT_REDIRECT:
3963 		/* skb_mac_header check was done by cls/act_bpf, so
3964 		 * we can safely push the L2 header back before
3965 		 * redirecting to another netdev
3966 		 */
3967 		__skb_push(skb, skb->mac_len);
3968 		skb_do_redirect(skb);
3969 		return NULL;
3970 	default:
3971 		break;
3972 	}
3973 #endif /* CONFIG_NET_CLS_ACT */
3974 	return skb;
3975 }
3976 
3977 /**
3978  *	netdev_rx_handler_register - register receive handler
3979  *	@dev: device to register a handler for
3980  *	@rx_handler: receive handler to register
3981  *	@rx_handler_data: data pointer that is used by rx handler
3982  *
3983  *	Register a receive handler for a device. This handler will then be
3984  *	called from __netif_receive_skb. A negative errno code is returned
3985  *	on a failure.
3986  *
3987  *	The caller must hold the rtnl_mutex.
3988  *
3989  *	For a general description of rx_handler, see enum rx_handler_result.
3990  */
3991 int netdev_rx_handler_register(struct net_device *dev,
3992 			       rx_handler_func_t *rx_handler,
3993 			       void *rx_handler_data)
3994 {
3995 	ASSERT_RTNL();
3996 
3997 	if (dev->rx_handler)
3998 		return -EBUSY;
3999 
4000 	/* Note: rx_handler_data must be set before rx_handler */
4001 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4002 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4003 
4004 	return 0;
4005 }
4006 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4007 
4008 /**
4009  *	netdev_rx_handler_unregister - unregister receive handler
4010  *	@dev: device to unregister a handler from
4011  *
4012  *	Unregister a receive handler from a device.
4013  *
4014  *	The caller must hold the rtnl_mutex.
4015  */
4016 void netdev_rx_handler_unregister(struct net_device *dev)
4017 {
4018 
4019 	ASSERT_RTNL();
4020 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4021 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4022 	 * section has a guarantee to see a non NULL rx_handler_data
4023 	 * as well.
4024 	 */
4025 	synchronize_net();
4026 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4027 }
4028 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4029 
4030 /*
4031  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4032  * the special handling of PFMEMALLOC skbs.
4033  */
4034 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4035 {
4036 	switch (skb->protocol) {
4037 	case htons(ETH_P_ARP):
4038 	case htons(ETH_P_IP):
4039 	case htons(ETH_P_IPV6):
4040 	case htons(ETH_P_8021Q):
4041 	case htons(ETH_P_8021AD):
4042 		return true;
4043 	default:
4044 		return false;
4045 	}
4046 }
4047 
4048 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4049 			     int *ret, struct net_device *orig_dev)
4050 {
4051 #ifdef CONFIG_NETFILTER_INGRESS
4052 	if (nf_hook_ingress_active(skb)) {
4053 		if (*pt_prev) {
4054 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4055 			*pt_prev = NULL;
4056 		}
4057 
4058 		return nf_hook_ingress(skb);
4059 	}
4060 #endif /* CONFIG_NETFILTER_INGRESS */
4061 	return 0;
4062 }
4063 
4064 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4065 {
4066 	struct packet_type *ptype, *pt_prev;
4067 	rx_handler_func_t *rx_handler;
4068 	struct net_device *orig_dev;
4069 	bool deliver_exact = false;
4070 	int ret = NET_RX_DROP;
4071 	__be16 type;
4072 
4073 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4074 
4075 	trace_netif_receive_skb(skb);
4076 
4077 	orig_dev = skb->dev;
4078 
4079 	skb_reset_network_header(skb);
4080 	if (!skb_transport_header_was_set(skb))
4081 		skb_reset_transport_header(skb);
4082 	skb_reset_mac_len(skb);
4083 
4084 	pt_prev = NULL;
4085 
4086 another_round:
4087 	skb->skb_iif = skb->dev->ifindex;
4088 
4089 	__this_cpu_inc(softnet_data.processed);
4090 
4091 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4092 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4093 		skb = skb_vlan_untag(skb);
4094 		if (unlikely(!skb))
4095 			goto out;
4096 	}
4097 
4098 #ifdef CONFIG_NET_CLS_ACT
4099 	if (skb->tc_verd & TC_NCLS) {
4100 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4101 		goto ncls;
4102 	}
4103 #endif
4104 
4105 	if (pfmemalloc)
4106 		goto skip_taps;
4107 
4108 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4109 		if (pt_prev)
4110 			ret = deliver_skb(skb, pt_prev, orig_dev);
4111 		pt_prev = ptype;
4112 	}
4113 
4114 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4115 		if (pt_prev)
4116 			ret = deliver_skb(skb, pt_prev, orig_dev);
4117 		pt_prev = ptype;
4118 	}
4119 
4120 skip_taps:
4121 #ifdef CONFIG_NET_INGRESS
4122 	if (static_key_false(&ingress_needed)) {
4123 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4124 		if (!skb)
4125 			goto out;
4126 
4127 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4128 			goto out;
4129 	}
4130 #endif
4131 #ifdef CONFIG_NET_CLS_ACT
4132 	skb->tc_verd = 0;
4133 ncls:
4134 #endif
4135 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4136 		goto drop;
4137 
4138 	if (skb_vlan_tag_present(skb)) {
4139 		if (pt_prev) {
4140 			ret = deliver_skb(skb, pt_prev, orig_dev);
4141 			pt_prev = NULL;
4142 		}
4143 		if (vlan_do_receive(&skb))
4144 			goto another_round;
4145 		else if (unlikely(!skb))
4146 			goto out;
4147 	}
4148 
4149 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4150 	if (rx_handler) {
4151 		if (pt_prev) {
4152 			ret = deliver_skb(skb, pt_prev, orig_dev);
4153 			pt_prev = NULL;
4154 		}
4155 		switch (rx_handler(&skb)) {
4156 		case RX_HANDLER_CONSUMED:
4157 			ret = NET_RX_SUCCESS;
4158 			goto out;
4159 		case RX_HANDLER_ANOTHER:
4160 			goto another_round;
4161 		case RX_HANDLER_EXACT:
4162 			deliver_exact = true;
4163 		case RX_HANDLER_PASS:
4164 			break;
4165 		default:
4166 			BUG();
4167 		}
4168 	}
4169 
4170 	if (unlikely(skb_vlan_tag_present(skb))) {
4171 		if (skb_vlan_tag_get_id(skb))
4172 			skb->pkt_type = PACKET_OTHERHOST;
4173 		/* Note: we might in the future use prio bits
4174 		 * and set skb->priority like in vlan_do_receive()
4175 		 * For the time being, just ignore Priority Code Point
4176 		 */
4177 		skb->vlan_tci = 0;
4178 	}
4179 
4180 	type = skb->protocol;
4181 
4182 	/* deliver only exact match when indicated */
4183 	if (likely(!deliver_exact)) {
4184 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4185 				       &ptype_base[ntohs(type) &
4186 						   PTYPE_HASH_MASK]);
4187 	}
4188 
4189 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 			       &orig_dev->ptype_specific);
4191 
4192 	if (unlikely(skb->dev != orig_dev)) {
4193 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 				       &skb->dev->ptype_specific);
4195 	}
4196 
4197 	if (pt_prev) {
4198 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4199 			goto drop;
4200 		else
4201 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4202 	} else {
4203 drop:
4204 		if (!deliver_exact)
4205 			atomic_long_inc(&skb->dev->rx_dropped);
4206 		else
4207 			atomic_long_inc(&skb->dev->rx_nohandler);
4208 		kfree_skb(skb);
4209 		/* Jamal, now you will not able to escape explaining
4210 		 * me how you were going to use this. :-)
4211 		 */
4212 		ret = NET_RX_DROP;
4213 	}
4214 
4215 out:
4216 	return ret;
4217 }
4218 
4219 static int __netif_receive_skb(struct sk_buff *skb)
4220 {
4221 	int ret;
4222 
4223 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4224 		unsigned long pflags = current->flags;
4225 
4226 		/*
4227 		 * PFMEMALLOC skbs are special, they should
4228 		 * - be delivered to SOCK_MEMALLOC sockets only
4229 		 * - stay away from userspace
4230 		 * - have bounded memory usage
4231 		 *
4232 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4233 		 * context down to all allocation sites.
4234 		 */
4235 		current->flags |= PF_MEMALLOC;
4236 		ret = __netif_receive_skb_core(skb, true);
4237 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4238 	} else
4239 		ret = __netif_receive_skb_core(skb, false);
4240 
4241 	return ret;
4242 }
4243 
4244 static int netif_receive_skb_internal(struct sk_buff *skb)
4245 {
4246 	int ret;
4247 
4248 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4249 
4250 	if (skb_defer_rx_timestamp(skb))
4251 		return NET_RX_SUCCESS;
4252 
4253 	rcu_read_lock();
4254 
4255 #ifdef CONFIG_RPS
4256 	if (static_key_false(&rps_needed)) {
4257 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4258 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4259 
4260 		if (cpu >= 0) {
4261 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4262 			rcu_read_unlock();
4263 			return ret;
4264 		}
4265 	}
4266 #endif
4267 	ret = __netif_receive_skb(skb);
4268 	rcu_read_unlock();
4269 	return ret;
4270 }
4271 
4272 /**
4273  *	netif_receive_skb - process receive buffer from network
4274  *	@skb: buffer to process
4275  *
4276  *	netif_receive_skb() is the main receive data processing function.
4277  *	It always succeeds. The buffer may be dropped during processing
4278  *	for congestion control or by the protocol layers.
4279  *
4280  *	This function may only be called from softirq context and interrupts
4281  *	should be enabled.
4282  *
4283  *	Return values (usually ignored):
4284  *	NET_RX_SUCCESS: no congestion
4285  *	NET_RX_DROP: packet was dropped
4286  */
4287 int netif_receive_skb(struct sk_buff *skb)
4288 {
4289 	trace_netif_receive_skb_entry(skb);
4290 
4291 	return netif_receive_skb_internal(skb);
4292 }
4293 EXPORT_SYMBOL(netif_receive_skb);
4294 
4295 /* Network device is going away, flush any packets still pending
4296  * Called with irqs disabled.
4297  */
4298 static void flush_backlog(void *arg)
4299 {
4300 	struct net_device *dev = arg;
4301 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4302 	struct sk_buff *skb, *tmp;
4303 
4304 	rps_lock(sd);
4305 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4306 		if (skb->dev == dev) {
4307 			__skb_unlink(skb, &sd->input_pkt_queue);
4308 			kfree_skb(skb);
4309 			input_queue_head_incr(sd);
4310 		}
4311 	}
4312 	rps_unlock(sd);
4313 
4314 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4315 		if (skb->dev == dev) {
4316 			__skb_unlink(skb, &sd->process_queue);
4317 			kfree_skb(skb);
4318 			input_queue_head_incr(sd);
4319 		}
4320 	}
4321 }
4322 
4323 static int napi_gro_complete(struct sk_buff *skb)
4324 {
4325 	struct packet_offload *ptype;
4326 	__be16 type = skb->protocol;
4327 	struct list_head *head = &offload_base;
4328 	int err = -ENOENT;
4329 
4330 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4331 
4332 	if (NAPI_GRO_CB(skb)->count == 1) {
4333 		skb_shinfo(skb)->gso_size = 0;
4334 		goto out;
4335 	}
4336 
4337 	rcu_read_lock();
4338 	list_for_each_entry_rcu(ptype, head, list) {
4339 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4340 			continue;
4341 
4342 		err = ptype->callbacks.gro_complete(skb, 0);
4343 		break;
4344 	}
4345 	rcu_read_unlock();
4346 
4347 	if (err) {
4348 		WARN_ON(&ptype->list == head);
4349 		kfree_skb(skb);
4350 		return NET_RX_SUCCESS;
4351 	}
4352 
4353 out:
4354 	return netif_receive_skb_internal(skb);
4355 }
4356 
4357 /* napi->gro_list contains packets ordered by age.
4358  * youngest packets at the head of it.
4359  * Complete skbs in reverse order to reduce latencies.
4360  */
4361 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4362 {
4363 	struct sk_buff *skb, *prev = NULL;
4364 
4365 	/* scan list and build reverse chain */
4366 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4367 		skb->prev = prev;
4368 		prev = skb;
4369 	}
4370 
4371 	for (skb = prev; skb; skb = prev) {
4372 		skb->next = NULL;
4373 
4374 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4375 			return;
4376 
4377 		prev = skb->prev;
4378 		napi_gro_complete(skb);
4379 		napi->gro_count--;
4380 	}
4381 
4382 	napi->gro_list = NULL;
4383 }
4384 EXPORT_SYMBOL(napi_gro_flush);
4385 
4386 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4387 {
4388 	struct sk_buff *p;
4389 	unsigned int maclen = skb->dev->hard_header_len;
4390 	u32 hash = skb_get_hash_raw(skb);
4391 
4392 	for (p = napi->gro_list; p; p = p->next) {
4393 		unsigned long diffs;
4394 
4395 		NAPI_GRO_CB(p)->flush = 0;
4396 
4397 		if (hash != skb_get_hash_raw(p)) {
4398 			NAPI_GRO_CB(p)->same_flow = 0;
4399 			continue;
4400 		}
4401 
4402 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4403 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4404 		diffs |= skb_metadata_dst_cmp(p, skb);
4405 		if (maclen == ETH_HLEN)
4406 			diffs |= compare_ether_header(skb_mac_header(p),
4407 						      skb_mac_header(skb));
4408 		else if (!diffs)
4409 			diffs = memcmp(skb_mac_header(p),
4410 				       skb_mac_header(skb),
4411 				       maclen);
4412 		NAPI_GRO_CB(p)->same_flow = !diffs;
4413 	}
4414 }
4415 
4416 static void skb_gro_reset_offset(struct sk_buff *skb)
4417 {
4418 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4419 	const skb_frag_t *frag0 = &pinfo->frags[0];
4420 
4421 	NAPI_GRO_CB(skb)->data_offset = 0;
4422 	NAPI_GRO_CB(skb)->frag0 = NULL;
4423 	NAPI_GRO_CB(skb)->frag0_len = 0;
4424 
4425 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4426 	    pinfo->nr_frags &&
4427 	    !PageHighMem(skb_frag_page(frag0))) {
4428 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4429 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4430 	}
4431 }
4432 
4433 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4434 {
4435 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4436 
4437 	BUG_ON(skb->end - skb->tail < grow);
4438 
4439 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4440 
4441 	skb->data_len -= grow;
4442 	skb->tail += grow;
4443 
4444 	pinfo->frags[0].page_offset += grow;
4445 	skb_frag_size_sub(&pinfo->frags[0], grow);
4446 
4447 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4448 		skb_frag_unref(skb, 0);
4449 		memmove(pinfo->frags, pinfo->frags + 1,
4450 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4451 	}
4452 }
4453 
4454 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4455 {
4456 	struct sk_buff **pp = NULL;
4457 	struct packet_offload *ptype;
4458 	__be16 type = skb->protocol;
4459 	struct list_head *head = &offload_base;
4460 	int same_flow;
4461 	enum gro_result ret;
4462 	int grow;
4463 
4464 	if (!(skb->dev->features & NETIF_F_GRO))
4465 		goto normal;
4466 
4467 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4468 		goto normal;
4469 
4470 	gro_list_prepare(napi, skb);
4471 
4472 	rcu_read_lock();
4473 	list_for_each_entry_rcu(ptype, head, list) {
4474 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4475 			continue;
4476 
4477 		skb_set_network_header(skb, skb_gro_offset(skb));
4478 		skb_reset_mac_len(skb);
4479 		NAPI_GRO_CB(skb)->same_flow = 0;
4480 		NAPI_GRO_CB(skb)->flush = 0;
4481 		NAPI_GRO_CB(skb)->free = 0;
4482 		NAPI_GRO_CB(skb)->encap_mark = 0;
4483 		NAPI_GRO_CB(skb)->is_fou = 0;
4484 		NAPI_GRO_CB(skb)->is_atomic = 1;
4485 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4486 
4487 		/* Setup for GRO checksum validation */
4488 		switch (skb->ip_summed) {
4489 		case CHECKSUM_COMPLETE:
4490 			NAPI_GRO_CB(skb)->csum = skb->csum;
4491 			NAPI_GRO_CB(skb)->csum_valid = 1;
4492 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4493 			break;
4494 		case CHECKSUM_UNNECESSARY:
4495 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4496 			NAPI_GRO_CB(skb)->csum_valid = 0;
4497 			break;
4498 		default:
4499 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4500 			NAPI_GRO_CB(skb)->csum_valid = 0;
4501 		}
4502 
4503 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4504 		break;
4505 	}
4506 	rcu_read_unlock();
4507 
4508 	if (&ptype->list == head)
4509 		goto normal;
4510 
4511 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4512 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4513 
4514 	if (pp) {
4515 		struct sk_buff *nskb = *pp;
4516 
4517 		*pp = nskb->next;
4518 		nskb->next = NULL;
4519 		napi_gro_complete(nskb);
4520 		napi->gro_count--;
4521 	}
4522 
4523 	if (same_flow)
4524 		goto ok;
4525 
4526 	if (NAPI_GRO_CB(skb)->flush)
4527 		goto normal;
4528 
4529 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4530 		struct sk_buff *nskb = napi->gro_list;
4531 
4532 		/* locate the end of the list to select the 'oldest' flow */
4533 		while (nskb->next) {
4534 			pp = &nskb->next;
4535 			nskb = *pp;
4536 		}
4537 		*pp = NULL;
4538 		nskb->next = NULL;
4539 		napi_gro_complete(nskb);
4540 	} else {
4541 		napi->gro_count++;
4542 	}
4543 	NAPI_GRO_CB(skb)->count = 1;
4544 	NAPI_GRO_CB(skb)->age = jiffies;
4545 	NAPI_GRO_CB(skb)->last = skb;
4546 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4547 	skb->next = napi->gro_list;
4548 	napi->gro_list = skb;
4549 	ret = GRO_HELD;
4550 
4551 pull:
4552 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4553 	if (grow > 0)
4554 		gro_pull_from_frag0(skb, grow);
4555 ok:
4556 	return ret;
4557 
4558 normal:
4559 	ret = GRO_NORMAL;
4560 	goto pull;
4561 }
4562 
4563 struct packet_offload *gro_find_receive_by_type(__be16 type)
4564 {
4565 	struct list_head *offload_head = &offload_base;
4566 	struct packet_offload *ptype;
4567 
4568 	list_for_each_entry_rcu(ptype, offload_head, list) {
4569 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4570 			continue;
4571 		return ptype;
4572 	}
4573 	return NULL;
4574 }
4575 EXPORT_SYMBOL(gro_find_receive_by_type);
4576 
4577 struct packet_offload *gro_find_complete_by_type(__be16 type)
4578 {
4579 	struct list_head *offload_head = &offload_base;
4580 	struct packet_offload *ptype;
4581 
4582 	list_for_each_entry_rcu(ptype, offload_head, list) {
4583 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4584 			continue;
4585 		return ptype;
4586 	}
4587 	return NULL;
4588 }
4589 EXPORT_SYMBOL(gro_find_complete_by_type);
4590 
4591 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4592 {
4593 	switch (ret) {
4594 	case GRO_NORMAL:
4595 		if (netif_receive_skb_internal(skb))
4596 			ret = GRO_DROP;
4597 		break;
4598 
4599 	case GRO_DROP:
4600 		kfree_skb(skb);
4601 		break;
4602 
4603 	case GRO_MERGED_FREE:
4604 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4605 			skb_dst_drop(skb);
4606 			kmem_cache_free(skbuff_head_cache, skb);
4607 		} else {
4608 			__kfree_skb(skb);
4609 		}
4610 		break;
4611 
4612 	case GRO_HELD:
4613 	case GRO_MERGED:
4614 		break;
4615 	}
4616 
4617 	return ret;
4618 }
4619 
4620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4621 {
4622 	skb_mark_napi_id(skb, napi);
4623 	trace_napi_gro_receive_entry(skb);
4624 
4625 	skb_gro_reset_offset(skb);
4626 
4627 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4628 }
4629 EXPORT_SYMBOL(napi_gro_receive);
4630 
4631 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4632 {
4633 	if (unlikely(skb->pfmemalloc)) {
4634 		consume_skb(skb);
4635 		return;
4636 	}
4637 	__skb_pull(skb, skb_headlen(skb));
4638 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4639 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4640 	skb->vlan_tci = 0;
4641 	skb->dev = napi->dev;
4642 	skb->skb_iif = 0;
4643 	skb->encapsulation = 0;
4644 	skb_shinfo(skb)->gso_type = 0;
4645 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4646 
4647 	napi->skb = skb;
4648 }
4649 
4650 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4651 {
4652 	struct sk_buff *skb = napi->skb;
4653 
4654 	if (!skb) {
4655 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4656 		if (skb) {
4657 			napi->skb = skb;
4658 			skb_mark_napi_id(skb, napi);
4659 		}
4660 	}
4661 	return skb;
4662 }
4663 EXPORT_SYMBOL(napi_get_frags);
4664 
4665 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4666 				      struct sk_buff *skb,
4667 				      gro_result_t ret)
4668 {
4669 	switch (ret) {
4670 	case GRO_NORMAL:
4671 	case GRO_HELD:
4672 		__skb_push(skb, ETH_HLEN);
4673 		skb->protocol = eth_type_trans(skb, skb->dev);
4674 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4675 			ret = GRO_DROP;
4676 		break;
4677 
4678 	case GRO_DROP:
4679 	case GRO_MERGED_FREE:
4680 		napi_reuse_skb(napi, skb);
4681 		break;
4682 
4683 	case GRO_MERGED:
4684 		break;
4685 	}
4686 
4687 	return ret;
4688 }
4689 
4690 /* Upper GRO stack assumes network header starts at gro_offset=0
4691  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4692  * We copy ethernet header into skb->data to have a common layout.
4693  */
4694 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4695 {
4696 	struct sk_buff *skb = napi->skb;
4697 	const struct ethhdr *eth;
4698 	unsigned int hlen = sizeof(*eth);
4699 
4700 	napi->skb = NULL;
4701 
4702 	skb_reset_mac_header(skb);
4703 	skb_gro_reset_offset(skb);
4704 
4705 	eth = skb_gro_header_fast(skb, 0);
4706 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4707 		eth = skb_gro_header_slow(skb, hlen, 0);
4708 		if (unlikely(!eth)) {
4709 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4710 					     __func__, napi->dev->name);
4711 			napi_reuse_skb(napi, skb);
4712 			return NULL;
4713 		}
4714 	} else {
4715 		gro_pull_from_frag0(skb, hlen);
4716 		NAPI_GRO_CB(skb)->frag0 += hlen;
4717 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4718 	}
4719 	__skb_pull(skb, hlen);
4720 
4721 	/*
4722 	 * This works because the only protocols we care about don't require
4723 	 * special handling.
4724 	 * We'll fix it up properly in napi_frags_finish()
4725 	 */
4726 	skb->protocol = eth->h_proto;
4727 
4728 	return skb;
4729 }
4730 
4731 gro_result_t napi_gro_frags(struct napi_struct *napi)
4732 {
4733 	struct sk_buff *skb = napi_frags_skb(napi);
4734 
4735 	if (!skb)
4736 		return GRO_DROP;
4737 
4738 	trace_napi_gro_frags_entry(skb);
4739 
4740 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4741 }
4742 EXPORT_SYMBOL(napi_gro_frags);
4743 
4744 /* Compute the checksum from gro_offset and return the folded value
4745  * after adding in any pseudo checksum.
4746  */
4747 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4748 {
4749 	__wsum wsum;
4750 	__sum16 sum;
4751 
4752 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4753 
4754 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4755 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4756 	if (likely(!sum)) {
4757 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4758 		    !skb->csum_complete_sw)
4759 			netdev_rx_csum_fault(skb->dev);
4760 	}
4761 
4762 	NAPI_GRO_CB(skb)->csum = wsum;
4763 	NAPI_GRO_CB(skb)->csum_valid = 1;
4764 
4765 	return sum;
4766 }
4767 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4768 
4769 /*
4770  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4771  * Note: called with local irq disabled, but exits with local irq enabled.
4772  */
4773 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4774 {
4775 #ifdef CONFIG_RPS
4776 	struct softnet_data *remsd = sd->rps_ipi_list;
4777 
4778 	if (remsd) {
4779 		sd->rps_ipi_list = NULL;
4780 
4781 		local_irq_enable();
4782 
4783 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4784 		while (remsd) {
4785 			struct softnet_data *next = remsd->rps_ipi_next;
4786 
4787 			if (cpu_online(remsd->cpu))
4788 				smp_call_function_single_async(remsd->cpu,
4789 							   &remsd->csd);
4790 			remsd = next;
4791 		}
4792 	} else
4793 #endif
4794 		local_irq_enable();
4795 }
4796 
4797 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4798 {
4799 #ifdef CONFIG_RPS
4800 	return sd->rps_ipi_list != NULL;
4801 #else
4802 	return false;
4803 #endif
4804 }
4805 
4806 static int process_backlog(struct napi_struct *napi, int quota)
4807 {
4808 	int work = 0;
4809 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4810 
4811 	/* Check if we have pending ipi, its better to send them now,
4812 	 * not waiting net_rx_action() end.
4813 	 */
4814 	if (sd_has_rps_ipi_waiting(sd)) {
4815 		local_irq_disable();
4816 		net_rps_action_and_irq_enable(sd);
4817 	}
4818 
4819 	napi->weight = weight_p;
4820 	local_irq_disable();
4821 	while (1) {
4822 		struct sk_buff *skb;
4823 
4824 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4825 			rcu_read_lock();
4826 			local_irq_enable();
4827 			__netif_receive_skb(skb);
4828 			rcu_read_unlock();
4829 			local_irq_disable();
4830 			input_queue_head_incr(sd);
4831 			if (++work >= quota) {
4832 				local_irq_enable();
4833 				return work;
4834 			}
4835 		}
4836 
4837 		rps_lock(sd);
4838 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4839 			/*
4840 			 * Inline a custom version of __napi_complete().
4841 			 * only current cpu owns and manipulates this napi,
4842 			 * and NAPI_STATE_SCHED is the only possible flag set
4843 			 * on backlog.
4844 			 * We can use a plain write instead of clear_bit(),
4845 			 * and we dont need an smp_mb() memory barrier.
4846 			 */
4847 			napi->state = 0;
4848 			rps_unlock(sd);
4849 
4850 			break;
4851 		}
4852 
4853 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4854 					   &sd->process_queue);
4855 		rps_unlock(sd);
4856 	}
4857 	local_irq_enable();
4858 
4859 	return work;
4860 }
4861 
4862 /**
4863  * __napi_schedule - schedule for receive
4864  * @n: entry to schedule
4865  *
4866  * The entry's receive function will be scheduled to run.
4867  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4868  */
4869 void __napi_schedule(struct napi_struct *n)
4870 {
4871 	unsigned long flags;
4872 
4873 	local_irq_save(flags);
4874 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4875 	local_irq_restore(flags);
4876 }
4877 EXPORT_SYMBOL(__napi_schedule);
4878 
4879 /**
4880  * __napi_schedule_irqoff - schedule for receive
4881  * @n: entry to schedule
4882  *
4883  * Variant of __napi_schedule() assuming hard irqs are masked
4884  */
4885 void __napi_schedule_irqoff(struct napi_struct *n)
4886 {
4887 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4888 }
4889 EXPORT_SYMBOL(__napi_schedule_irqoff);
4890 
4891 void __napi_complete(struct napi_struct *n)
4892 {
4893 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4894 
4895 	list_del_init(&n->poll_list);
4896 	smp_mb__before_atomic();
4897 	clear_bit(NAPI_STATE_SCHED, &n->state);
4898 }
4899 EXPORT_SYMBOL(__napi_complete);
4900 
4901 void napi_complete_done(struct napi_struct *n, int work_done)
4902 {
4903 	unsigned long flags;
4904 
4905 	/*
4906 	 * don't let napi dequeue from the cpu poll list
4907 	 * just in case its running on a different cpu
4908 	 */
4909 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4910 		return;
4911 
4912 	if (n->gro_list) {
4913 		unsigned long timeout = 0;
4914 
4915 		if (work_done)
4916 			timeout = n->dev->gro_flush_timeout;
4917 
4918 		if (timeout)
4919 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4920 				      HRTIMER_MODE_REL_PINNED);
4921 		else
4922 			napi_gro_flush(n, false);
4923 	}
4924 	if (likely(list_empty(&n->poll_list))) {
4925 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4926 	} else {
4927 		/* If n->poll_list is not empty, we need to mask irqs */
4928 		local_irq_save(flags);
4929 		__napi_complete(n);
4930 		local_irq_restore(flags);
4931 	}
4932 }
4933 EXPORT_SYMBOL(napi_complete_done);
4934 
4935 /* must be called under rcu_read_lock(), as we dont take a reference */
4936 static struct napi_struct *napi_by_id(unsigned int napi_id)
4937 {
4938 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4939 	struct napi_struct *napi;
4940 
4941 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4942 		if (napi->napi_id == napi_id)
4943 			return napi;
4944 
4945 	return NULL;
4946 }
4947 
4948 #if defined(CONFIG_NET_RX_BUSY_POLL)
4949 #define BUSY_POLL_BUDGET 8
4950 bool sk_busy_loop(struct sock *sk, int nonblock)
4951 {
4952 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4953 	int (*busy_poll)(struct napi_struct *dev);
4954 	struct napi_struct *napi;
4955 	int rc = false;
4956 
4957 	rcu_read_lock();
4958 
4959 	napi = napi_by_id(sk->sk_napi_id);
4960 	if (!napi)
4961 		goto out;
4962 
4963 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4964 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4965 
4966 	do {
4967 		rc = 0;
4968 		local_bh_disable();
4969 		if (busy_poll) {
4970 			rc = busy_poll(napi);
4971 		} else if (napi_schedule_prep(napi)) {
4972 			void *have = netpoll_poll_lock(napi);
4973 
4974 			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4975 				rc = napi->poll(napi, BUSY_POLL_BUDGET);
4976 				trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4977 				if (rc == BUSY_POLL_BUDGET) {
4978 					napi_complete_done(napi, rc);
4979 					napi_schedule(napi);
4980 				}
4981 			}
4982 			netpoll_poll_unlock(have);
4983 		}
4984 		if (rc > 0)
4985 			__NET_ADD_STATS(sock_net(sk),
4986 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4987 		local_bh_enable();
4988 
4989 		if (rc == LL_FLUSH_FAILED)
4990 			break; /* permanent failure */
4991 
4992 		cpu_relax();
4993 	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4994 		 !need_resched() && !busy_loop_timeout(end_time));
4995 
4996 	rc = !skb_queue_empty(&sk->sk_receive_queue);
4997 out:
4998 	rcu_read_unlock();
4999 	return rc;
5000 }
5001 EXPORT_SYMBOL(sk_busy_loop);
5002 
5003 #endif /* CONFIG_NET_RX_BUSY_POLL */
5004 
5005 void napi_hash_add(struct napi_struct *napi)
5006 {
5007 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5008 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5009 		return;
5010 
5011 	spin_lock(&napi_hash_lock);
5012 
5013 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5014 	do {
5015 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5016 			napi_gen_id = NR_CPUS + 1;
5017 	} while (napi_by_id(napi_gen_id));
5018 	napi->napi_id = napi_gen_id;
5019 
5020 	hlist_add_head_rcu(&napi->napi_hash_node,
5021 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5022 
5023 	spin_unlock(&napi_hash_lock);
5024 }
5025 EXPORT_SYMBOL_GPL(napi_hash_add);
5026 
5027 /* Warning : caller is responsible to make sure rcu grace period
5028  * is respected before freeing memory containing @napi
5029  */
5030 bool napi_hash_del(struct napi_struct *napi)
5031 {
5032 	bool rcu_sync_needed = false;
5033 
5034 	spin_lock(&napi_hash_lock);
5035 
5036 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5037 		rcu_sync_needed = true;
5038 		hlist_del_rcu(&napi->napi_hash_node);
5039 	}
5040 	spin_unlock(&napi_hash_lock);
5041 	return rcu_sync_needed;
5042 }
5043 EXPORT_SYMBOL_GPL(napi_hash_del);
5044 
5045 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5046 {
5047 	struct napi_struct *napi;
5048 
5049 	napi = container_of(timer, struct napi_struct, timer);
5050 	if (napi->gro_list)
5051 		napi_schedule(napi);
5052 
5053 	return HRTIMER_NORESTART;
5054 }
5055 
5056 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5057 		    int (*poll)(struct napi_struct *, int), int weight)
5058 {
5059 	INIT_LIST_HEAD(&napi->poll_list);
5060 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5061 	napi->timer.function = napi_watchdog;
5062 	napi->gro_count = 0;
5063 	napi->gro_list = NULL;
5064 	napi->skb = NULL;
5065 	napi->poll = poll;
5066 	if (weight > NAPI_POLL_WEIGHT)
5067 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5068 			    weight, dev->name);
5069 	napi->weight = weight;
5070 	list_add(&napi->dev_list, &dev->napi_list);
5071 	napi->dev = dev;
5072 #ifdef CONFIG_NETPOLL
5073 	spin_lock_init(&napi->poll_lock);
5074 	napi->poll_owner = -1;
5075 #endif
5076 	set_bit(NAPI_STATE_SCHED, &napi->state);
5077 	napi_hash_add(napi);
5078 }
5079 EXPORT_SYMBOL(netif_napi_add);
5080 
5081 void napi_disable(struct napi_struct *n)
5082 {
5083 	might_sleep();
5084 	set_bit(NAPI_STATE_DISABLE, &n->state);
5085 
5086 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5087 		msleep(1);
5088 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5089 		msleep(1);
5090 
5091 	hrtimer_cancel(&n->timer);
5092 
5093 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5094 }
5095 EXPORT_SYMBOL(napi_disable);
5096 
5097 /* Must be called in process context */
5098 void netif_napi_del(struct napi_struct *napi)
5099 {
5100 	might_sleep();
5101 	if (napi_hash_del(napi))
5102 		synchronize_net();
5103 	list_del_init(&napi->dev_list);
5104 	napi_free_frags(napi);
5105 
5106 	kfree_skb_list(napi->gro_list);
5107 	napi->gro_list = NULL;
5108 	napi->gro_count = 0;
5109 }
5110 EXPORT_SYMBOL(netif_napi_del);
5111 
5112 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5113 {
5114 	void *have;
5115 	int work, weight;
5116 
5117 	list_del_init(&n->poll_list);
5118 
5119 	have = netpoll_poll_lock(n);
5120 
5121 	weight = n->weight;
5122 
5123 	/* This NAPI_STATE_SCHED test is for avoiding a race
5124 	 * with netpoll's poll_napi().  Only the entity which
5125 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5126 	 * actually make the ->poll() call.  Therefore we avoid
5127 	 * accidentally calling ->poll() when NAPI is not scheduled.
5128 	 */
5129 	work = 0;
5130 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5131 		work = n->poll(n, weight);
5132 		trace_napi_poll(n, work, weight);
5133 	}
5134 
5135 	WARN_ON_ONCE(work > weight);
5136 
5137 	if (likely(work < weight))
5138 		goto out_unlock;
5139 
5140 	/* Drivers must not modify the NAPI state if they
5141 	 * consume the entire weight.  In such cases this code
5142 	 * still "owns" the NAPI instance and therefore can
5143 	 * move the instance around on the list at-will.
5144 	 */
5145 	if (unlikely(napi_disable_pending(n))) {
5146 		napi_complete(n);
5147 		goto out_unlock;
5148 	}
5149 
5150 	if (n->gro_list) {
5151 		/* flush too old packets
5152 		 * If HZ < 1000, flush all packets.
5153 		 */
5154 		napi_gro_flush(n, HZ >= 1000);
5155 	}
5156 
5157 	/* Some drivers may have called napi_schedule
5158 	 * prior to exhausting their budget.
5159 	 */
5160 	if (unlikely(!list_empty(&n->poll_list))) {
5161 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5162 			     n->dev ? n->dev->name : "backlog");
5163 		goto out_unlock;
5164 	}
5165 
5166 	list_add_tail(&n->poll_list, repoll);
5167 
5168 out_unlock:
5169 	netpoll_poll_unlock(have);
5170 
5171 	return work;
5172 }
5173 
5174 static void net_rx_action(struct softirq_action *h)
5175 {
5176 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5177 	unsigned long time_limit = jiffies + 2;
5178 	int budget = netdev_budget;
5179 	LIST_HEAD(list);
5180 	LIST_HEAD(repoll);
5181 
5182 	local_irq_disable();
5183 	list_splice_init(&sd->poll_list, &list);
5184 	local_irq_enable();
5185 
5186 	for (;;) {
5187 		struct napi_struct *n;
5188 
5189 		if (list_empty(&list)) {
5190 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5191 				return;
5192 			break;
5193 		}
5194 
5195 		n = list_first_entry(&list, struct napi_struct, poll_list);
5196 		budget -= napi_poll(n, &repoll);
5197 
5198 		/* If softirq window is exhausted then punt.
5199 		 * Allow this to run for 2 jiffies since which will allow
5200 		 * an average latency of 1.5/HZ.
5201 		 */
5202 		if (unlikely(budget <= 0 ||
5203 			     time_after_eq(jiffies, time_limit))) {
5204 			sd->time_squeeze++;
5205 			break;
5206 		}
5207 	}
5208 
5209 	__kfree_skb_flush();
5210 	local_irq_disable();
5211 
5212 	list_splice_tail_init(&sd->poll_list, &list);
5213 	list_splice_tail(&repoll, &list);
5214 	list_splice(&list, &sd->poll_list);
5215 	if (!list_empty(&sd->poll_list))
5216 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5217 
5218 	net_rps_action_and_irq_enable(sd);
5219 }
5220 
5221 struct netdev_adjacent {
5222 	struct net_device *dev;
5223 
5224 	/* upper master flag, there can only be one master device per list */
5225 	bool master;
5226 
5227 	/* counter for the number of times this device was added to us */
5228 	u16 ref_nr;
5229 
5230 	/* private field for the users */
5231 	void *private;
5232 
5233 	struct list_head list;
5234 	struct rcu_head rcu;
5235 };
5236 
5237 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5238 						 struct list_head *adj_list)
5239 {
5240 	struct netdev_adjacent *adj;
5241 
5242 	list_for_each_entry(adj, adj_list, list) {
5243 		if (adj->dev == adj_dev)
5244 			return adj;
5245 	}
5246 	return NULL;
5247 }
5248 
5249 /**
5250  * netdev_has_upper_dev - Check if device is linked to an upper device
5251  * @dev: device
5252  * @upper_dev: upper device to check
5253  *
5254  * Find out if a device is linked to specified upper device and return true
5255  * in case it is. Note that this checks only immediate upper device,
5256  * not through a complete stack of devices. The caller must hold the RTNL lock.
5257  */
5258 bool netdev_has_upper_dev(struct net_device *dev,
5259 			  struct net_device *upper_dev)
5260 {
5261 	ASSERT_RTNL();
5262 
5263 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5264 }
5265 EXPORT_SYMBOL(netdev_has_upper_dev);
5266 
5267 /**
5268  * netdev_has_any_upper_dev - Check if device is linked to some device
5269  * @dev: device
5270  *
5271  * Find out if a device is linked to an upper device and return true in case
5272  * it is. The caller must hold the RTNL lock.
5273  */
5274 static bool netdev_has_any_upper_dev(struct net_device *dev)
5275 {
5276 	ASSERT_RTNL();
5277 
5278 	return !list_empty(&dev->all_adj_list.upper);
5279 }
5280 
5281 /**
5282  * netdev_master_upper_dev_get - Get master upper device
5283  * @dev: device
5284  *
5285  * Find a master upper device and return pointer to it or NULL in case
5286  * it's not there. The caller must hold the RTNL lock.
5287  */
5288 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5289 {
5290 	struct netdev_adjacent *upper;
5291 
5292 	ASSERT_RTNL();
5293 
5294 	if (list_empty(&dev->adj_list.upper))
5295 		return NULL;
5296 
5297 	upper = list_first_entry(&dev->adj_list.upper,
5298 				 struct netdev_adjacent, list);
5299 	if (likely(upper->master))
5300 		return upper->dev;
5301 	return NULL;
5302 }
5303 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5304 
5305 void *netdev_adjacent_get_private(struct list_head *adj_list)
5306 {
5307 	struct netdev_adjacent *adj;
5308 
5309 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5310 
5311 	return adj->private;
5312 }
5313 EXPORT_SYMBOL(netdev_adjacent_get_private);
5314 
5315 /**
5316  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5317  * @dev: device
5318  * @iter: list_head ** of the current position
5319  *
5320  * Gets the next device from the dev's upper list, starting from iter
5321  * position. The caller must hold RCU read lock.
5322  */
5323 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5324 						 struct list_head **iter)
5325 {
5326 	struct netdev_adjacent *upper;
5327 
5328 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5329 
5330 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5331 
5332 	if (&upper->list == &dev->adj_list.upper)
5333 		return NULL;
5334 
5335 	*iter = &upper->list;
5336 
5337 	return upper->dev;
5338 }
5339 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5340 
5341 /**
5342  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5343  * @dev: device
5344  * @iter: list_head ** of the current position
5345  *
5346  * Gets the next device from the dev's upper list, starting from iter
5347  * position. The caller must hold RCU read lock.
5348  */
5349 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5350 						     struct list_head **iter)
5351 {
5352 	struct netdev_adjacent *upper;
5353 
5354 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5355 
5356 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5357 
5358 	if (&upper->list == &dev->all_adj_list.upper)
5359 		return NULL;
5360 
5361 	*iter = &upper->list;
5362 
5363 	return upper->dev;
5364 }
5365 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5366 
5367 /**
5368  * netdev_lower_get_next_private - Get the next ->private from the
5369  *				   lower neighbour list
5370  * @dev: device
5371  * @iter: list_head ** of the current position
5372  *
5373  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5374  * list, starting from iter position. The caller must hold either hold the
5375  * RTNL lock or its own locking that guarantees that the neighbour lower
5376  * list will remain unchanged.
5377  */
5378 void *netdev_lower_get_next_private(struct net_device *dev,
5379 				    struct list_head **iter)
5380 {
5381 	struct netdev_adjacent *lower;
5382 
5383 	lower = list_entry(*iter, struct netdev_adjacent, list);
5384 
5385 	if (&lower->list == &dev->adj_list.lower)
5386 		return NULL;
5387 
5388 	*iter = lower->list.next;
5389 
5390 	return lower->private;
5391 }
5392 EXPORT_SYMBOL(netdev_lower_get_next_private);
5393 
5394 /**
5395  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5396  *				       lower neighbour list, RCU
5397  *				       variant
5398  * @dev: device
5399  * @iter: list_head ** of the current position
5400  *
5401  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5402  * list, starting from iter position. The caller must hold RCU read lock.
5403  */
5404 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5405 					struct list_head **iter)
5406 {
5407 	struct netdev_adjacent *lower;
5408 
5409 	WARN_ON_ONCE(!rcu_read_lock_held());
5410 
5411 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5412 
5413 	if (&lower->list == &dev->adj_list.lower)
5414 		return NULL;
5415 
5416 	*iter = &lower->list;
5417 
5418 	return lower->private;
5419 }
5420 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5421 
5422 /**
5423  * netdev_lower_get_next - Get the next device from the lower neighbour
5424  *                         list
5425  * @dev: device
5426  * @iter: list_head ** of the current position
5427  *
5428  * Gets the next netdev_adjacent from the dev's lower neighbour
5429  * list, starting from iter position. The caller must hold RTNL lock or
5430  * its own locking that guarantees that the neighbour lower
5431  * list will remain unchanged.
5432  */
5433 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5434 {
5435 	struct netdev_adjacent *lower;
5436 
5437 	lower = list_entry(*iter, struct netdev_adjacent, list);
5438 
5439 	if (&lower->list == &dev->adj_list.lower)
5440 		return NULL;
5441 
5442 	*iter = lower->list.next;
5443 
5444 	return lower->dev;
5445 }
5446 EXPORT_SYMBOL(netdev_lower_get_next);
5447 
5448 /**
5449  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5450  * @dev: device
5451  * @iter: list_head ** of the current position
5452  *
5453  * Gets the next netdev_adjacent from the dev's all lower neighbour
5454  * list, starting from iter position. The caller must hold RTNL lock or
5455  * its own locking that guarantees that the neighbour all lower
5456  * list will remain unchanged.
5457  */
5458 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5459 {
5460 	struct netdev_adjacent *lower;
5461 
5462 	lower = list_entry(*iter, struct netdev_adjacent, list);
5463 
5464 	if (&lower->list == &dev->all_adj_list.lower)
5465 		return NULL;
5466 
5467 	*iter = lower->list.next;
5468 
5469 	return lower->dev;
5470 }
5471 EXPORT_SYMBOL(netdev_all_lower_get_next);
5472 
5473 /**
5474  * netdev_all_lower_get_next_rcu - Get the next device from all
5475  *				   lower neighbour list, RCU variant
5476  * @dev: device
5477  * @iter: list_head ** of the current position
5478  *
5479  * Gets the next netdev_adjacent from the dev's all lower neighbour
5480  * list, starting from iter position. The caller must hold RCU read lock.
5481  */
5482 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5483 						 struct list_head **iter)
5484 {
5485 	struct netdev_adjacent *lower;
5486 
5487 	lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5488 				       struct netdev_adjacent, list);
5489 
5490 	return lower ? lower->dev : NULL;
5491 }
5492 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5493 
5494 /**
5495  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5496  *				       lower neighbour list, RCU
5497  *				       variant
5498  * @dev: device
5499  *
5500  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5501  * list. The caller must hold RCU read lock.
5502  */
5503 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5504 {
5505 	struct netdev_adjacent *lower;
5506 
5507 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5508 			struct netdev_adjacent, list);
5509 	if (lower)
5510 		return lower->private;
5511 	return NULL;
5512 }
5513 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5514 
5515 /**
5516  * netdev_master_upper_dev_get_rcu - Get master upper device
5517  * @dev: device
5518  *
5519  * Find a master upper device and return pointer to it or NULL in case
5520  * it's not there. The caller must hold the RCU read lock.
5521  */
5522 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5523 {
5524 	struct netdev_adjacent *upper;
5525 
5526 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5527 				       struct netdev_adjacent, list);
5528 	if (upper && likely(upper->master))
5529 		return upper->dev;
5530 	return NULL;
5531 }
5532 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5533 
5534 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5535 			      struct net_device *adj_dev,
5536 			      struct list_head *dev_list)
5537 {
5538 	char linkname[IFNAMSIZ+7];
5539 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5540 		"upper_%s" : "lower_%s", adj_dev->name);
5541 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5542 				 linkname);
5543 }
5544 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5545 			       char *name,
5546 			       struct list_head *dev_list)
5547 {
5548 	char linkname[IFNAMSIZ+7];
5549 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5550 		"upper_%s" : "lower_%s", name);
5551 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5552 }
5553 
5554 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5555 						 struct net_device *adj_dev,
5556 						 struct list_head *dev_list)
5557 {
5558 	return (dev_list == &dev->adj_list.upper ||
5559 		dev_list == &dev->adj_list.lower) &&
5560 		net_eq(dev_net(dev), dev_net(adj_dev));
5561 }
5562 
5563 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5564 					struct net_device *adj_dev,
5565 					struct list_head *dev_list,
5566 					void *private, bool master)
5567 {
5568 	struct netdev_adjacent *adj;
5569 	int ret;
5570 
5571 	adj = __netdev_find_adj(adj_dev, dev_list);
5572 
5573 	if (adj) {
5574 		adj->ref_nr++;
5575 		return 0;
5576 	}
5577 
5578 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5579 	if (!adj)
5580 		return -ENOMEM;
5581 
5582 	adj->dev = adj_dev;
5583 	adj->master = master;
5584 	adj->ref_nr = 1;
5585 	adj->private = private;
5586 	dev_hold(adj_dev);
5587 
5588 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5589 		 adj_dev->name, dev->name, adj_dev->name);
5590 
5591 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5592 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5593 		if (ret)
5594 			goto free_adj;
5595 	}
5596 
5597 	/* Ensure that master link is always the first item in list. */
5598 	if (master) {
5599 		ret = sysfs_create_link(&(dev->dev.kobj),
5600 					&(adj_dev->dev.kobj), "master");
5601 		if (ret)
5602 			goto remove_symlinks;
5603 
5604 		list_add_rcu(&adj->list, dev_list);
5605 	} else {
5606 		list_add_tail_rcu(&adj->list, dev_list);
5607 	}
5608 
5609 	return 0;
5610 
5611 remove_symlinks:
5612 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5613 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5614 free_adj:
5615 	kfree(adj);
5616 	dev_put(adj_dev);
5617 
5618 	return ret;
5619 }
5620 
5621 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5622 					 struct net_device *adj_dev,
5623 					 struct list_head *dev_list)
5624 {
5625 	struct netdev_adjacent *adj;
5626 
5627 	adj = __netdev_find_adj(adj_dev, dev_list);
5628 
5629 	if (!adj) {
5630 		pr_err("tried to remove device %s from %s\n",
5631 		       dev->name, adj_dev->name);
5632 		BUG();
5633 	}
5634 
5635 	if (adj->ref_nr > 1) {
5636 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5637 			 adj->ref_nr-1);
5638 		adj->ref_nr--;
5639 		return;
5640 	}
5641 
5642 	if (adj->master)
5643 		sysfs_remove_link(&(dev->dev.kobj), "master");
5644 
5645 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5646 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5647 
5648 	list_del_rcu(&adj->list);
5649 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5650 		 adj_dev->name, dev->name, adj_dev->name);
5651 	dev_put(adj_dev);
5652 	kfree_rcu(adj, rcu);
5653 }
5654 
5655 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5656 					    struct net_device *upper_dev,
5657 					    struct list_head *up_list,
5658 					    struct list_head *down_list,
5659 					    void *private, bool master)
5660 {
5661 	int ret;
5662 
5663 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5664 					   master);
5665 	if (ret)
5666 		return ret;
5667 
5668 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5669 					   false);
5670 	if (ret) {
5671 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5672 		return ret;
5673 	}
5674 
5675 	return 0;
5676 }
5677 
5678 static int __netdev_adjacent_dev_link(struct net_device *dev,
5679 				      struct net_device *upper_dev)
5680 {
5681 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5682 						&dev->all_adj_list.upper,
5683 						&upper_dev->all_adj_list.lower,
5684 						NULL, false);
5685 }
5686 
5687 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5688 					       struct net_device *upper_dev,
5689 					       struct list_head *up_list,
5690 					       struct list_head *down_list)
5691 {
5692 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5693 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5694 }
5695 
5696 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5697 					 struct net_device *upper_dev)
5698 {
5699 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5700 					   &dev->all_adj_list.upper,
5701 					   &upper_dev->all_adj_list.lower);
5702 }
5703 
5704 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5705 						struct net_device *upper_dev,
5706 						void *private, bool master)
5707 {
5708 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5709 
5710 	if (ret)
5711 		return ret;
5712 
5713 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5714 					       &dev->adj_list.upper,
5715 					       &upper_dev->adj_list.lower,
5716 					       private, master);
5717 	if (ret) {
5718 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5719 		return ret;
5720 	}
5721 
5722 	return 0;
5723 }
5724 
5725 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5726 						   struct net_device *upper_dev)
5727 {
5728 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5729 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5730 					   &dev->adj_list.upper,
5731 					   &upper_dev->adj_list.lower);
5732 }
5733 
5734 static int __netdev_upper_dev_link(struct net_device *dev,
5735 				   struct net_device *upper_dev, bool master,
5736 				   void *upper_priv, void *upper_info)
5737 {
5738 	struct netdev_notifier_changeupper_info changeupper_info;
5739 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5740 	int ret = 0;
5741 
5742 	ASSERT_RTNL();
5743 
5744 	if (dev == upper_dev)
5745 		return -EBUSY;
5746 
5747 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5748 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5749 		return -EBUSY;
5750 
5751 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5752 		return -EEXIST;
5753 
5754 	if (master && netdev_master_upper_dev_get(dev))
5755 		return -EBUSY;
5756 
5757 	changeupper_info.upper_dev = upper_dev;
5758 	changeupper_info.master = master;
5759 	changeupper_info.linking = true;
5760 	changeupper_info.upper_info = upper_info;
5761 
5762 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5763 					    &changeupper_info.info);
5764 	ret = notifier_to_errno(ret);
5765 	if (ret)
5766 		return ret;
5767 
5768 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5769 						   master);
5770 	if (ret)
5771 		return ret;
5772 
5773 	/* Now that we linked these devs, make all the upper_dev's
5774 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5775 	 * versa, and don't forget the devices itself. All of these
5776 	 * links are non-neighbours.
5777 	 */
5778 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5779 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5780 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5781 				 i->dev->name, j->dev->name);
5782 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5783 			if (ret)
5784 				goto rollback_mesh;
5785 		}
5786 	}
5787 
5788 	/* add dev to every upper_dev's upper device */
5789 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5790 		pr_debug("linking %s's upper device %s with %s\n",
5791 			 upper_dev->name, i->dev->name, dev->name);
5792 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5793 		if (ret)
5794 			goto rollback_upper_mesh;
5795 	}
5796 
5797 	/* add upper_dev to every dev's lower device */
5798 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5799 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5800 			 i->dev->name, upper_dev->name);
5801 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5802 		if (ret)
5803 			goto rollback_lower_mesh;
5804 	}
5805 
5806 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5807 					    &changeupper_info.info);
5808 	ret = notifier_to_errno(ret);
5809 	if (ret)
5810 		goto rollback_lower_mesh;
5811 
5812 	return 0;
5813 
5814 rollback_lower_mesh:
5815 	to_i = i;
5816 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5817 		if (i == to_i)
5818 			break;
5819 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5820 	}
5821 
5822 	i = NULL;
5823 
5824 rollback_upper_mesh:
5825 	to_i = i;
5826 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5827 		if (i == to_i)
5828 			break;
5829 		__netdev_adjacent_dev_unlink(dev, i->dev);
5830 	}
5831 
5832 	i = j = NULL;
5833 
5834 rollback_mesh:
5835 	to_i = i;
5836 	to_j = j;
5837 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5839 			if (i == to_i && j == to_j)
5840 				break;
5841 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5842 		}
5843 		if (i == to_i)
5844 			break;
5845 	}
5846 
5847 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5848 
5849 	return ret;
5850 }
5851 
5852 /**
5853  * netdev_upper_dev_link - Add a link to the upper device
5854  * @dev: device
5855  * @upper_dev: new upper device
5856  *
5857  * Adds a link to device which is upper to this one. The caller must hold
5858  * the RTNL lock. On a failure a negative errno code is returned.
5859  * On success the reference counts are adjusted and the function
5860  * returns zero.
5861  */
5862 int netdev_upper_dev_link(struct net_device *dev,
5863 			  struct net_device *upper_dev)
5864 {
5865 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5866 }
5867 EXPORT_SYMBOL(netdev_upper_dev_link);
5868 
5869 /**
5870  * netdev_master_upper_dev_link - Add a master link to the upper device
5871  * @dev: device
5872  * @upper_dev: new upper device
5873  * @upper_priv: upper device private
5874  * @upper_info: upper info to be passed down via notifier
5875  *
5876  * Adds a link to device which is upper to this one. In this case, only
5877  * one master upper device can be linked, although other non-master devices
5878  * might be linked as well. The caller must hold the RTNL lock.
5879  * On a failure a negative errno code is returned. On success the reference
5880  * counts are adjusted and the function returns zero.
5881  */
5882 int netdev_master_upper_dev_link(struct net_device *dev,
5883 				 struct net_device *upper_dev,
5884 				 void *upper_priv, void *upper_info)
5885 {
5886 	return __netdev_upper_dev_link(dev, upper_dev, true,
5887 				       upper_priv, upper_info);
5888 }
5889 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5890 
5891 /**
5892  * netdev_upper_dev_unlink - Removes a link to upper device
5893  * @dev: device
5894  * @upper_dev: new upper device
5895  *
5896  * Removes a link to device which is upper to this one. The caller must hold
5897  * the RTNL lock.
5898  */
5899 void netdev_upper_dev_unlink(struct net_device *dev,
5900 			     struct net_device *upper_dev)
5901 {
5902 	struct netdev_notifier_changeupper_info changeupper_info;
5903 	struct netdev_adjacent *i, *j;
5904 	ASSERT_RTNL();
5905 
5906 	changeupper_info.upper_dev = upper_dev;
5907 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5908 	changeupper_info.linking = false;
5909 
5910 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5911 				      &changeupper_info.info);
5912 
5913 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5914 
5915 	/* Here is the tricky part. We must remove all dev's lower
5916 	 * devices from all upper_dev's upper devices and vice
5917 	 * versa, to maintain the graph relationship.
5918 	 */
5919 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5920 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5921 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5922 
5923 	/* remove also the devices itself from lower/upper device
5924 	 * list
5925 	 */
5926 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5927 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5928 
5929 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5930 		__netdev_adjacent_dev_unlink(dev, i->dev);
5931 
5932 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5933 				      &changeupper_info.info);
5934 }
5935 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5936 
5937 /**
5938  * netdev_bonding_info_change - Dispatch event about slave change
5939  * @dev: device
5940  * @bonding_info: info to dispatch
5941  *
5942  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5943  * The caller must hold the RTNL lock.
5944  */
5945 void netdev_bonding_info_change(struct net_device *dev,
5946 				struct netdev_bonding_info *bonding_info)
5947 {
5948 	struct netdev_notifier_bonding_info	info;
5949 
5950 	memcpy(&info.bonding_info, bonding_info,
5951 	       sizeof(struct netdev_bonding_info));
5952 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5953 				      &info.info);
5954 }
5955 EXPORT_SYMBOL(netdev_bonding_info_change);
5956 
5957 static void netdev_adjacent_add_links(struct net_device *dev)
5958 {
5959 	struct netdev_adjacent *iter;
5960 
5961 	struct net *net = dev_net(dev);
5962 
5963 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5964 		if (!net_eq(net, dev_net(iter->dev)))
5965 			continue;
5966 		netdev_adjacent_sysfs_add(iter->dev, dev,
5967 					  &iter->dev->adj_list.lower);
5968 		netdev_adjacent_sysfs_add(dev, iter->dev,
5969 					  &dev->adj_list.upper);
5970 	}
5971 
5972 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5973 		if (!net_eq(net, dev_net(iter->dev)))
5974 			continue;
5975 		netdev_adjacent_sysfs_add(iter->dev, dev,
5976 					  &iter->dev->adj_list.upper);
5977 		netdev_adjacent_sysfs_add(dev, iter->dev,
5978 					  &dev->adj_list.lower);
5979 	}
5980 }
5981 
5982 static void netdev_adjacent_del_links(struct net_device *dev)
5983 {
5984 	struct netdev_adjacent *iter;
5985 
5986 	struct net *net = dev_net(dev);
5987 
5988 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5989 		if (!net_eq(net, dev_net(iter->dev)))
5990 			continue;
5991 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5992 					  &iter->dev->adj_list.lower);
5993 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5994 					  &dev->adj_list.upper);
5995 	}
5996 
5997 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5998 		if (!net_eq(net, dev_net(iter->dev)))
5999 			continue;
6000 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6001 					  &iter->dev->adj_list.upper);
6002 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6003 					  &dev->adj_list.lower);
6004 	}
6005 }
6006 
6007 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6008 {
6009 	struct netdev_adjacent *iter;
6010 
6011 	struct net *net = dev_net(dev);
6012 
6013 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6014 		if (!net_eq(net, dev_net(iter->dev)))
6015 			continue;
6016 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6017 					  &iter->dev->adj_list.lower);
6018 		netdev_adjacent_sysfs_add(iter->dev, dev,
6019 					  &iter->dev->adj_list.lower);
6020 	}
6021 
6022 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6023 		if (!net_eq(net, dev_net(iter->dev)))
6024 			continue;
6025 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6026 					  &iter->dev->adj_list.upper);
6027 		netdev_adjacent_sysfs_add(iter->dev, dev,
6028 					  &iter->dev->adj_list.upper);
6029 	}
6030 }
6031 
6032 void *netdev_lower_dev_get_private(struct net_device *dev,
6033 				   struct net_device *lower_dev)
6034 {
6035 	struct netdev_adjacent *lower;
6036 
6037 	if (!lower_dev)
6038 		return NULL;
6039 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6040 	if (!lower)
6041 		return NULL;
6042 
6043 	return lower->private;
6044 }
6045 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6046 
6047 
6048 int dev_get_nest_level(struct net_device *dev,
6049 		       bool (*type_check)(const struct net_device *dev))
6050 {
6051 	struct net_device *lower = NULL;
6052 	struct list_head *iter;
6053 	int max_nest = -1;
6054 	int nest;
6055 
6056 	ASSERT_RTNL();
6057 
6058 	netdev_for_each_lower_dev(dev, lower, iter) {
6059 		nest = dev_get_nest_level(lower, type_check);
6060 		if (max_nest < nest)
6061 			max_nest = nest;
6062 	}
6063 
6064 	if (type_check(dev))
6065 		max_nest++;
6066 
6067 	return max_nest;
6068 }
6069 EXPORT_SYMBOL(dev_get_nest_level);
6070 
6071 /**
6072  * netdev_lower_change - Dispatch event about lower device state change
6073  * @lower_dev: device
6074  * @lower_state_info: state to dispatch
6075  *
6076  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6077  * The caller must hold the RTNL lock.
6078  */
6079 void netdev_lower_state_changed(struct net_device *lower_dev,
6080 				void *lower_state_info)
6081 {
6082 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6083 
6084 	ASSERT_RTNL();
6085 	changelowerstate_info.lower_state_info = lower_state_info;
6086 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6087 				      &changelowerstate_info.info);
6088 }
6089 EXPORT_SYMBOL(netdev_lower_state_changed);
6090 
6091 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6092 					   struct neighbour *n)
6093 {
6094 	struct net_device *lower_dev, *stop_dev;
6095 	struct list_head *iter;
6096 	int err;
6097 
6098 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6099 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6100 			continue;
6101 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6102 		if (err) {
6103 			stop_dev = lower_dev;
6104 			goto rollback;
6105 		}
6106 	}
6107 	return 0;
6108 
6109 rollback:
6110 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6111 		if (lower_dev == stop_dev)
6112 			break;
6113 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6114 			continue;
6115 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6116 	}
6117 	return err;
6118 }
6119 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6120 
6121 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6122 					  struct neighbour *n)
6123 {
6124 	struct net_device *lower_dev;
6125 	struct list_head *iter;
6126 
6127 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6128 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6129 			continue;
6130 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6131 	}
6132 }
6133 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6134 
6135 static void dev_change_rx_flags(struct net_device *dev, int flags)
6136 {
6137 	const struct net_device_ops *ops = dev->netdev_ops;
6138 
6139 	if (ops->ndo_change_rx_flags)
6140 		ops->ndo_change_rx_flags(dev, flags);
6141 }
6142 
6143 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6144 {
6145 	unsigned int old_flags = dev->flags;
6146 	kuid_t uid;
6147 	kgid_t gid;
6148 
6149 	ASSERT_RTNL();
6150 
6151 	dev->flags |= IFF_PROMISC;
6152 	dev->promiscuity += inc;
6153 	if (dev->promiscuity == 0) {
6154 		/*
6155 		 * Avoid overflow.
6156 		 * If inc causes overflow, untouch promisc and return error.
6157 		 */
6158 		if (inc < 0)
6159 			dev->flags &= ~IFF_PROMISC;
6160 		else {
6161 			dev->promiscuity -= inc;
6162 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6163 				dev->name);
6164 			return -EOVERFLOW;
6165 		}
6166 	}
6167 	if (dev->flags != old_flags) {
6168 		pr_info("device %s %s promiscuous mode\n",
6169 			dev->name,
6170 			dev->flags & IFF_PROMISC ? "entered" : "left");
6171 		if (audit_enabled) {
6172 			current_uid_gid(&uid, &gid);
6173 			audit_log(current->audit_context, GFP_ATOMIC,
6174 				AUDIT_ANOM_PROMISCUOUS,
6175 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6176 				dev->name, (dev->flags & IFF_PROMISC),
6177 				(old_flags & IFF_PROMISC),
6178 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6179 				from_kuid(&init_user_ns, uid),
6180 				from_kgid(&init_user_ns, gid),
6181 				audit_get_sessionid(current));
6182 		}
6183 
6184 		dev_change_rx_flags(dev, IFF_PROMISC);
6185 	}
6186 	if (notify)
6187 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6188 	return 0;
6189 }
6190 
6191 /**
6192  *	dev_set_promiscuity	- update promiscuity count on a device
6193  *	@dev: device
6194  *	@inc: modifier
6195  *
6196  *	Add or remove promiscuity from a device. While the count in the device
6197  *	remains above zero the interface remains promiscuous. Once it hits zero
6198  *	the device reverts back to normal filtering operation. A negative inc
6199  *	value is used to drop promiscuity on the device.
6200  *	Return 0 if successful or a negative errno code on error.
6201  */
6202 int dev_set_promiscuity(struct net_device *dev, int inc)
6203 {
6204 	unsigned int old_flags = dev->flags;
6205 	int err;
6206 
6207 	err = __dev_set_promiscuity(dev, inc, true);
6208 	if (err < 0)
6209 		return err;
6210 	if (dev->flags != old_flags)
6211 		dev_set_rx_mode(dev);
6212 	return err;
6213 }
6214 EXPORT_SYMBOL(dev_set_promiscuity);
6215 
6216 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6217 {
6218 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6219 
6220 	ASSERT_RTNL();
6221 
6222 	dev->flags |= IFF_ALLMULTI;
6223 	dev->allmulti += inc;
6224 	if (dev->allmulti == 0) {
6225 		/*
6226 		 * Avoid overflow.
6227 		 * If inc causes overflow, untouch allmulti and return error.
6228 		 */
6229 		if (inc < 0)
6230 			dev->flags &= ~IFF_ALLMULTI;
6231 		else {
6232 			dev->allmulti -= inc;
6233 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6234 				dev->name);
6235 			return -EOVERFLOW;
6236 		}
6237 	}
6238 	if (dev->flags ^ old_flags) {
6239 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6240 		dev_set_rx_mode(dev);
6241 		if (notify)
6242 			__dev_notify_flags(dev, old_flags,
6243 					   dev->gflags ^ old_gflags);
6244 	}
6245 	return 0;
6246 }
6247 
6248 /**
6249  *	dev_set_allmulti	- update allmulti count on a device
6250  *	@dev: device
6251  *	@inc: modifier
6252  *
6253  *	Add or remove reception of all multicast frames to a device. While the
6254  *	count in the device remains above zero the interface remains listening
6255  *	to all interfaces. Once it hits zero the device reverts back to normal
6256  *	filtering operation. A negative @inc value is used to drop the counter
6257  *	when releasing a resource needing all multicasts.
6258  *	Return 0 if successful or a negative errno code on error.
6259  */
6260 
6261 int dev_set_allmulti(struct net_device *dev, int inc)
6262 {
6263 	return __dev_set_allmulti(dev, inc, true);
6264 }
6265 EXPORT_SYMBOL(dev_set_allmulti);
6266 
6267 /*
6268  *	Upload unicast and multicast address lists to device and
6269  *	configure RX filtering. When the device doesn't support unicast
6270  *	filtering it is put in promiscuous mode while unicast addresses
6271  *	are present.
6272  */
6273 void __dev_set_rx_mode(struct net_device *dev)
6274 {
6275 	const struct net_device_ops *ops = dev->netdev_ops;
6276 
6277 	/* dev_open will call this function so the list will stay sane. */
6278 	if (!(dev->flags&IFF_UP))
6279 		return;
6280 
6281 	if (!netif_device_present(dev))
6282 		return;
6283 
6284 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6285 		/* Unicast addresses changes may only happen under the rtnl,
6286 		 * therefore calling __dev_set_promiscuity here is safe.
6287 		 */
6288 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6289 			__dev_set_promiscuity(dev, 1, false);
6290 			dev->uc_promisc = true;
6291 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6292 			__dev_set_promiscuity(dev, -1, false);
6293 			dev->uc_promisc = false;
6294 		}
6295 	}
6296 
6297 	if (ops->ndo_set_rx_mode)
6298 		ops->ndo_set_rx_mode(dev);
6299 }
6300 
6301 void dev_set_rx_mode(struct net_device *dev)
6302 {
6303 	netif_addr_lock_bh(dev);
6304 	__dev_set_rx_mode(dev);
6305 	netif_addr_unlock_bh(dev);
6306 }
6307 
6308 /**
6309  *	dev_get_flags - get flags reported to userspace
6310  *	@dev: device
6311  *
6312  *	Get the combination of flag bits exported through APIs to userspace.
6313  */
6314 unsigned int dev_get_flags(const struct net_device *dev)
6315 {
6316 	unsigned int flags;
6317 
6318 	flags = (dev->flags & ~(IFF_PROMISC |
6319 				IFF_ALLMULTI |
6320 				IFF_RUNNING |
6321 				IFF_LOWER_UP |
6322 				IFF_DORMANT)) |
6323 		(dev->gflags & (IFF_PROMISC |
6324 				IFF_ALLMULTI));
6325 
6326 	if (netif_running(dev)) {
6327 		if (netif_oper_up(dev))
6328 			flags |= IFF_RUNNING;
6329 		if (netif_carrier_ok(dev))
6330 			flags |= IFF_LOWER_UP;
6331 		if (netif_dormant(dev))
6332 			flags |= IFF_DORMANT;
6333 	}
6334 
6335 	return flags;
6336 }
6337 EXPORT_SYMBOL(dev_get_flags);
6338 
6339 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6340 {
6341 	unsigned int old_flags = dev->flags;
6342 	int ret;
6343 
6344 	ASSERT_RTNL();
6345 
6346 	/*
6347 	 *	Set the flags on our device.
6348 	 */
6349 
6350 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6351 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6352 			       IFF_AUTOMEDIA)) |
6353 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6354 				    IFF_ALLMULTI));
6355 
6356 	/*
6357 	 *	Load in the correct multicast list now the flags have changed.
6358 	 */
6359 
6360 	if ((old_flags ^ flags) & IFF_MULTICAST)
6361 		dev_change_rx_flags(dev, IFF_MULTICAST);
6362 
6363 	dev_set_rx_mode(dev);
6364 
6365 	/*
6366 	 *	Have we downed the interface. We handle IFF_UP ourselves
6367 	 *	according to user attempts to set it, rather than blindly
6368 	 *	setting it.
6369 	 */
6370 
6371 	ret = 0;
6372 	if ((old_flags ^ flags) & IFF_UP)
6373 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6374 
6375 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6376 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6377 		unsigned int old_flags = dev->flags;
6378 
6379 		dev->gflags ^= IFF_PROMISC;
6380 
6381 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6382 			if (dev->flags != old_flags)
6383 				dev_set_rx_mode(dev);
6384 	}
6385 
6386 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6387 	   is important. Some (broken) drivers set IFF_PROMISC, when
6388 	   IFF_ALLMULTI is requested not asking us and not reporting.
6389 	 */
6390 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6391 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6392 
6393 		dev->gflags ^= IFF_ALLMULTI;
6394 		__dev_set_allmulti(dev, inc, false);
6395 	}
6396 
6397 	return ret;
6398 }
6399 
6400 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6401 			unsigned int gchanges)
6402 {
6403 	unsigned int changes = dev->flags ^ old_flags;
6404 
6405 	if (gchanges)
6406 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6407 
6408 	if (changes & IFF_UP) {
6409 		if (dev->flags & IFF_UP)
6410 			call_netdevice_notifiers(NETDEV_UP, dev);
6411 		else
6412 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6413 	}
6414 
6415 	if (dev->flags & IFF_UP &&
6416 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6417 		struct netdev_notifier_change_info change_info;
6418 
6419 		change_info.flags_changed = changes;
6420 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6421 					      &change_info.info);
6422 	}
6423 }
6424 
6425 /**
6426  *	dev_change_flags - change device settings
6427  *	@dev: device
6428  *	@flags: device state flags
6429  *
6430  *	Change settings on device based state flags. The flags are
6431  *	in the userspace exported format.
6432  */
6433 int dev_change_flags(struct net_device *dev, unsigned int flags)
6434 {
6435 	int ret;
6436 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6437 
6438 	ret = __dev_change_flags(dev, flags);
6439 	if (ret < 0)
6440 		return ret;
6441 
6442 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6443 	__dev_notify_flags(dev, old_flags, changes);
6444 	return ret;
6445 }
6446 EXPORT_SYMBOL(dev_change_flags);
6447 
6448 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6449 {
6450 	const struct net_device_ops *ops = dev->netdev_ops;
6451 
6452 	if (ops->ndo_change_mtu)
6453 		return ops->ndo_change_mtu(dev, new_mtu);
6454 
6455 	dev->mtu = new_mtu;
6456 	return 0;
6457 }
6458 
6459 /**
6460  *	dev_set_mtu - Change maximum transfer unit
6461  *	@dev: device
6462  *	@new_mtu: new transfer unit
6463  *
6464  *	Change the maximum transfer size of the network device.
6465  */
6466 int dev_set_mtu(struct net_device *dev, int new_mtu)
6467 {
6468 	int err, orig_mtu;
6469 
6470 	if (new_mtu == dev->mtu)
6471 		return 0;
6472 
6473 	/*	MTU must be positive.	 */
6474 	if (new_mtu < 0)
6475 		return -EINVAL;
6476 
6477 	if (!netif_device_present(dev))
6478 		return -ENODEV;
6479 
6480 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6481 	err = notifier_to_errno(err);
6482 	if (err)
6483 		return err;
6484 
6485 	orig_mtu = dev->mtu;
6486 	err = __dev_set_mtu(dev, new_mtu);
6487 
6488 	if (!err) {
6489 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6490 		err = notifier_to_errno(err);
6491 		if (err) {
6492 			/* setting mtu back and notifying everyone again,
6493 			 * so that they have a chance to revert changes.
6494 			 */
6495 			__dev_set_mtu(dev, orig_mtu);
6496 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6497 		}
6498 	}
6499 	return err;
6500 }
6501 EXPORT_SYMBOL(dev_set_mtu);
6502 
6503 /**
6504  *	dev_set_group - Change group this device belongs to
6505  *	@dev: device
6506  *	@new_group: group this device should belong to
6507  */
6508 void dev_set_group(struct net_device *dev, int new_group)
6509 {
6510 	dev->group = new_group;
6511 }
6512 EXPORT_SYMBOL(dev_set_group);
6513 
6514 /**
6515  *	dev_set_mac_address - Change Media Access Control Address
6516  *	@dev: device
6517  *	@sa: new address
6518  *
6519  *	Change the hardware (MAC) address of the device
6520  */
6521 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6522 {
6523 	const struct net_device_ops *ops = dev->netdev_ops;
6524 	int err;
6525 
6526 	if (!ops->ndo_set_mac_address)
6527 		return -EOPNOTSUPP;
6528 	if (sa->sa_family != dev->type)
6529 		return -EINVAL;
6530 	if (!netif_device_present(dev))
6531 		return -ENODEV;
6532 	err = ops->ndo_set_mac_address(dev, sa);
6533 	if (err)
6534 		return err;
6535 	dev->addr_assign_type = NET_ADDR_SET;
6536 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6537 	add_device_randomness(dev->dev_addr, dev->addr_len);
6538 	return 0;
6539 }
6540 EXPORT_SYMBOL(dev_set_mac_address);
6541 
6542 /**
6543  *	dev_change_carrier - Change device carrier
6544  *	@dev: device
6545  *	@new_carrier: new value
6546  *
6547  *	Change device carrier
6548  */
6549 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6550 {
6551 	const struct net_device_ops *ops = dev->netdev_ops;
6552 
6553 	if (!ops->ndo_change_carrier)
6554 		return -EOPNOTSUPP;
6555 	if (!netif_device_present(dev))
6556 		return -ENODEV;
6557 	return ops->ndo_change_carrier(dev, new_carrier);
6558 }
6559 EXPORT_SYMBOL(dev_change_carrier);
6560 
6561 /**
6562  *	dev_get_phys_port_id - Get device physical port ID
6563  *	@dev: device
6564  *	@ppid: port ID
6565  *
6566  *	Get device physical port ID
6567  */
6568 int dev_get_phys_port_id(struct net_device *dev,
6569 			 struct netdev_phys_item_id *ppid)
6570 {
6571 	const struct net_device_ops *ops = dev->netdev_ops;
6572 
6573 	if (!ops->ndo_get_phys_port_id)
6574 		return -EOPNOTSUPP;
6575 	return ops->ndo_get_phys_port_id(dev, ppid);
6576 }
6577 EXPORT_SYMBOL(dev_get_phys_port_id);
6578 
6579 /**
6580  *	dev_get_phys_port_name - Get device physical port name
6581  *	@dev: device
6582  *	@name: port name
6583  *	@len: limit of bytes to copy to name
6584  *
6585  *	Get device physical port name
6586  */
6587 int dev_get_phys_port_name(struct net_device *dev,
6588 			   char *name, size_t len)
6589 {
6590 	const struct net_device_ops *ops = dev->netdev_ops;
6591 
6592 	if (!ops->ndo_get_phys_port_name)
6593 		return -EOPNOTSUPP;
6594 	return ops->ndo_get_phys_port_name(dev, name, len);
6595 }
6596 EXPORT_SYMBOL(dev_get_phys_port_name);
6597 
6598 /**
6599  *	dev_change_proto_down - update protocol port state information
6600  *	@dev: device
6601  *	@proto_down: new value
6602  *
6603  *	This info can be used by switch drivers to set the phys state of the
6604  *	port.
6605  */
6606 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6607 {
6608 	const struct net_device_ops *ops = dev->netdev_ops;
6609 
6610 	if (!ops->ndo_change_proto_down)
6611 		return -EOPNOTSUPP;
6612 	if (!netif_device_present(dev))
6613 		return -ENODEV;
6614 	return ops->ndo_change_proto_down(dev, proto_down);
6615 }
6616 EXPORT_SYMBOL(dev_change_proto_down);
6617 
6618 /**
6619  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6620  *	@dev: device
6621  *	@fd: new program fd or negative value to clear
6622  *
6623  *	Set or clear a bpf program for a device
6624  */
6625 int dev_change_xdp_fd(struct net_device *dev, int fd)
6626 {
6627 	const struct net_device_ops *ops = dev->netdev_ops;
6628 	struct bpf_prog *prog = NULL;
6629 	struct netdev_xdp xdp = {};
6630 	int err;
6631 
6632 	if (!ops->ndo_xdp)
6633 		return -EOPNOTSUPP;
6634 	if (fd >= 0) {
6635 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6636 		if (IS_ERR(prog))
6637 			return PTR_ERR(prog);
6638 	}
6639 
6640 	xdp.command = XDP_SETUP_PROG;
6641 	xdp.prog = prog;
6642 	err = ops->ndo_xdp(dev, &xdp);
6643 	if (err < 0 && prog)
6644 		bpf_prog_put(prog);
6645 
6646 	return err;
6647 }
6648 EXPORT_SYMBOL(dev_change_xdp_fd);
6649 
6650 /**
6651  *	dev_new_index	-	allocate an ifindex
6652  *	@net: the applicable net namespace
6653  *
6654  *	Returns a suitable unique value for a new device interface
6655  *	number.  The caller must hold the rtnl semaphore or the
6656  *	dev_base_lock to be sure it remains unique.
6657  */
6658 static int dev_new_index(struct net *net)
6659 {
6660 	int ifindex = net->ifindex;
6661 	for (;;) {
6662 		if (++ifindex <= 0)
6663 			ifindex = 1;
6664 		if (!__dev_get_by_index(net, ifindex))
6665 			return net->ifindex = ifindex;
6666 	}
6667 }
6668 
6669 /* Delayed registration/unregisteration */
6670 static LIST_HEAD(net_todo_list);
6671 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6672 
6673 static void net_set_todo(struct net_device *dev)
6674 {
6675 	list_add_tail(&dev->todo_list, &net_todo_list);
6676 	dev_net(dev)->dev_unreg_count++;
6677 }
6678 
6679 static void rollback_registered_many(struct list_head *head)
6680 {
6681 	struct net_device *dev, *tmp;
6682 	LIST_HEAD(close_head);
6683 
6684 	BUG_ON(dev_boot_phase);
6685 	ASSERT_RTNL();
6686 
6687 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6688 		/* Some devices call without registering
6689 		 * for initialization unwind. Remove those
6690 		 * devices and proceed with the remaining.
6691 		 */
6692 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6693 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6694 				 dev->name, dev);
6695 
6696 			WARN_ON(1);
6697 			list_del(&dev->unreg_list);
6698 			continue;
6699 		}
6700 		dev->dismantle = true;
6701 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6702 	}
6703 
6704 	/* If device is running, close it first. */
6705 	list_for_each_entry(dev, head, unreg_list)
6706 		list_add_tail(&dev->close_list, &close_head);
6707 	dev_close_many(&close_head, true);
6708 
6709 	list_for_each_entry(dev, head, unreg_list) {
6710 		/* And unlink it from device chain. */
6711 		unlist_netdevice(dev);
6712 
6713 		dev->reg_state = NETREG_UNREGISTERING;
6714 		on_each_cpu(flush_backlog, dev, 1);
6715 	}
6716 
6717 	synchronize_net();
6718 
6719 	list_for_each_entry(dev, head, unreg_list) {
6720 		struct sk_buff *skb = NULL;
6721 
6722 		/* Shutdown queueing discipline. */
6723 		dev_shutdown(dev);
6724 
6725 
6726 		/* Notify protocols, that we are about to destroy
6727 		   this device. They should clean all the things.
6728 		*/
6729 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6730 
6731 		if (!dev->rtnl_link_ops ||
6732 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6733 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6734 						     GFP_KERNEL);
6735 
6736 		/*
6737 		 *	Flush the unicast and multicast chains
6738 		 */
6739 		dev_uc_flush(dev);
6740 		dev_mc_flush(dev);
6741 
6742 		if (dev->netdev_ops->ndo_uninit)
6743 			dev->netdev_ops->ndo_uninit(dev);
6744 
6745 		if (skb)
6746 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6747 
6748 		/* Notifier chain MUST detach us all upper devices. */
6749 		WARN_ON(netdev_has_any_upper_dev(dev));
6750 
6751 		/* Remove entries from kobject tree */
6752 		netdev_unregister_kobject(dev);
6753 #ifdef CONFIG_XPS
6754 		/* Remove XPS queueing entries */
6755 		netif_reset_xps_queues_gt(dev, 0);
6756 #endif
6757 	}
6758 
6759 	synchronize_net();
6760 
6761 	list_for_each_entry(dev, head, unreg_list)
6762 		dev_put(dev);
6763 }
6764 
6765 static void rollback_registered(struct net_device *dev)
6766 {
6767 	LIST_HEAD(single);
6768 
6769 	list_add(&dev->unreg_list, &single);
6770 	rollback_registered_many(&single);
6771 	list_del(&single);
6772 }
6773 
6774 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6775 	struct net_device *upper, netdev_features_t features)
6776 {
6777 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6778 	netdev_features_t feature;
6779 	int feature_bit;
6780 
6781 	for_each_netdev_feature(&upper_disables, feature_bit) {
6782 		feature = __NETIF_F_BIT(feature_bit);
6783 		if (!(upper->wanted_features & feature)
6784 		    && (features & feature)) {
6785 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6786 				   &feature, upper->name);
6787 			features &= ~feature;
6788 		}
6789 	}
6790 
6791 	return features;
6792 }
6793 
6794 static void netdev_sync_lower_features(struct net_device *upper,
6795 	struct net_device *lower, netdev_features_t features)
6796 {
6797 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6798 	netdev_features_t feature;
6799 	int feature_bit;
6800 
6801 	for_each_netdev_feature(&upper_disables, feature_bit) {
6802 		feature = __NETIF_F_BIT(feature_bit);
6803 		if (!(features & feature) && (lower->features & feature)) {
6804 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6805 				   &feature, lower->name);
6806 			lower->wanted_features &= ~feature;
6807 			netdev_update_features(lower);
6808 
6809 			if (unlikely(lower->features & feature))
6810 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6811 					    &feature, lower->name);
6812 		}
6813 	}
6814 }
6815 
6816 static netdev_features_t netdev_fix_features(struct net_device *dev,
6817 	netdev_features_t features)
6818 {
6819 	/* Fix illegal checksum combinations */
6820 	if ((features & NETIF_F_HW_CSUM) &&
6821 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6822 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6823 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6824 	}
6825 
6826 	/* TSO requires that SG is present as well. */
6827 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6828 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6829 		features &= ~NETIF_F_ALL_TSO;
6830 	}
6831 
6832 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6833 					!(features & NETIF_F_IP_CSUM)) {
6834 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6835 		features &= ~NETIF_F_TSO;
6836 		features &= ~NETIF_F_TSO_ECN;
6837 	}
6838 
6839 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6840 					 !(features & NETIF_F_IPV6_CSUM)) {
6841 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6842 		features &= ~NETIF_F_TSO6;
6843 	}
6844 
6845 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6846 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6847 		features &= ~NETIF_F_TSO_MANGLEID;
6848 
6849 	/* TSO ECN requires that TSO is present as well. */
6850 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6851 		features &= ~NETIF_F_TSO_ECN;
6852 
6853 	/* Software GSO depends on SG. */
6854 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6855 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6856 		features &= ~NETIF_F_GSO;
6857 	}
6858 
6859 	/* UFO needs SG and checksumming */
6860 	if (features & NETIF_F_UFO) {
6861 		/* maybe split UFO into V4 and V6? */
6862 		if (!(features & NETIF_F_HW_CSUM) &&
6863 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6864 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6865 			netdev_dbg(dev,
6866 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6867 			features &= ~NETIF_F_UFO;
6868 		}
6869 
6870 		if (!(features & NETIF_F_SG)) {
6871 			netdev_dbg(dev,
6872 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6873 			features &= ~NETIF_F_UFO;
6874 		}
6875 	}
6876 
6877 	/* GSO partial features require GSO partial be set */
6878 	if ((features & dev->gso_partial_features) &&
6879 	    !(features & NETIF_F_GSO_PARTIAL)) {
6880 		netdev_dbg(dev,
6881 			   "Dropping partially supported GSO features since no GSO partial.\n");
6882 		features &= ~dev->gso_partial_features;
6883 	}
6884 
6885 #ifdef CONFIG_NET_RX_BUSY_POLL
6886 	if (dev->netdev_ops->ndo_busy_poll)
6887 		features |= NETIF_F_BUSY_POLL;
6888 	else
6889 #endif
6890 		features &= ~NETIF_F_BUSY_POLL;
6891 
6892 	return features;
6893 }
6894 
6895 int __netdev_update_features(struct net_device *dev)
6896 {
6897 	struct net_device *upper, *lower;
6898 	netdev_features_t features;
6899 	struct list_head *iter;
6900 	int err = -1;
6901 
6902 	ASSERT_RTNL();
6903 
6904 	features = netdev_get_wanted_features(dev);
6905 
6906 	if (dev->netdev_ops->ndo_fix_features)
6907 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6908 
6909 	/* driver might be less strict about feature dependencies */
6910 	features = netdev_fix_features(dev, features);
6911 
6912 	/* some features can't be enabled if they're off an an upper device */
6913 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6914 		features = netdev_sync_upper_features(dev, upper, features);
6915 
6916 	if (dev->features == features)
6917 		goto sync_lower;
6918 
6919 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6920 		&dev->features, &features);
6921 
6922 	if (dev->netdev_ops->ndo_set_features)
6923 		err = dev->netdev_ops->ndo_set_features(dev, features);
6924 	else
6925 		err = 0;
6926 
6927 	if (unlikely(err < 0)) {
6928 		netdev_err(dev,
6929 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6930 			err, &features, &dev->features);
6931 		/* return non-0 since some features might have changed and
6932 		 * it's better to fire a spurious notification than miss it
6933 		 */
6934 		return -1;
6935 	}
6936 
6937 sync_lower:
6938 	/* some features must be disabled on lower devices when disabled
6939 	 * on an upper device (think: bonding master or bridge)
6940 	 */
6941 	netdev_for_each_lower_dev(dev, lower, iter)
6942 		netdev_sync_lower_features(dev, lower, features);
6943 
6944 	if (!err)
6945 		dev->features = features;
6946 
6947 	return err < 0 ? 0 : 1;
6948 }
6949 
6950 /**
6951  *	netdev_update_features - recalculate device features
6952  *	@dev: the device to check
6953  *
6954  *	Recalculate dev->features set and send notifications if it
6955  *	has changed. Should be called after driver or hardware dependent
6956  *	conditions might have changed that influence the features.
6957  */
6958 void netdev_update_features(struct net_device *dev)
6959 {
6960 	if (__netdev_update_features(dev))
6961 		netdev_features_change(dev);
6962 }
6963 EXPORT_SYMBOL(netdev_update_features);
6964 
6965 /**
6966  *	netdev_change_features - recalculate device features
6967  *	@dev: the device to check
6968  *
6969  *	Recalculate dev->features set and send notifications even
6970  *	if they have not changed. Should be called instead of
6971  *	netdev_update_features() if also dev->vlan_features might
6972  *	have changed to allow the changes to be propagated to stacked
6973  *	VLAN devices.
6974  */
6975 void netdev_change_features(struct net_device *dev)
6976 {
6977 	__netdev_update_features(dev);
6978 	netdev_features_change(dev);
6979 }
6980 EXPORT_SYMBOL(netdev_change_features);
6981 
6982 /**
6983  *	netif_stacked_transfer_operstate -	transfer operstate
6984  *	@rootdev: the root or lower level device to transfer state from
6985  *	@dev: the device to transfer operstate to
6986  *
6987  *	Transfer operational state from root to device. This is normally
6988  *	called when a stacking relationship exists between the root
6989  *	device and the device(a leaf device).
6990  */
6991 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6992 					struct net_device *dev)
6993 {
6994 	if (rootdev->operstate == IF_OPER_DORMANT)
6995 		netif_dormant_on(dev);
6996 	else
6997 		netif_dormant_off(dev);
6998 
6999 	if (netif_carrier_ok(rootdev)) {
7000 		if (!netif_carrier_ok(dev))
7001 			netif_carrier_on(dev);
7002 	} else {
7003 		if (netif_carrier_ok(dev))
7004 			netif_carrier_off(dev);
7005 	}
7006 }
7007 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7008 
7009 #ifdef CONFIG_SYSFS
7010 static int netif_alloc_rx_queues(struct net_device *dev)
7011 {
7012 	unsigned int i, count = dev->num_rx_queues;
7013 	struct netdev_rx_queue *rx;
7014 	size_t sz = count * sizeof(*rx);
7015 
7016 	BUG_ON(count < 1);
7017 
7018 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7019 	if (!rx) {
7020 		rx = vzalloc(sz);
7021 		if (!rx)
7022 			return -ENOMEM;
7023 	}
7024 	dev->_rx = rx;
7025 
7026 	for (i = 0; i < count; i++)
7027 		rx[i].dev = dev;
7028 	return 0;
7029 }
7030 #endif
7031 
7032 static void netdev_init_one_queue(struct net_device *dev,
7033 				  struct netdev_queue *queue, void *_unused)
7034 {
7035 	/* Initialize queue lock */
7036 	spin_lock_init(&queue->_xmit_lock);
7037 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7038 	queue->xmit_lock_owner = -1;
7039 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7040 	queue->dev = dev;
7041 #ifdef CONFIG_BQL
7042 	dql_init(&queue->dql, HZ);
7043 #endif
7044 }
7045 
7046 static void netif_free_tx_queues(struct net_device *dev)
7047 {
7048 	kvfree(dev->_tx);
7049 }
7050 
7051 static int netif_alloc_netdev_queues(struct net_device *dev)
7052 {
7053 	unsigned int count = dev->num_tx_queues;
7054 	struct netdev_queue *tx;
7055 	size_t sz = count * sizeof(*tx);
7056 
7057 	if (count < 1 || count > 0xffff)
7058 		return -EINVAL;
7059 
7060 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7061 	if (!tx) {
7062 		tx = vzalloc(sz);
7063 		if (!tx)
7064 			return -ENOMEM;
7065 	}
7066 	dev->_tx = tx;
7067 
7068 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7069 	spin_lock_init(&dev->tx_global_lock);
7070 
7071 	return 0;
7072 }
7073 
7074 void netif_tx_stop_all_queues(struct net_device *dev)
7075 {
7076 	unsigned int i;
7077 
7078 	for (i = 0; i < dev->num_tx_queues; i++) {
7079 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7080 		netif_tx_stop_queue(txq);
7081 	}
7082 }
7083 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7084 
7085 /**
7086  *	register_netdevice	- register a network device
7087  *	@dev: device to register
7088  *
7089  *	Take a completed network device structure and add it to the kernel
7090  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7091  *	chain. 0 is returned on success. A negative errno code is returned
7092  *	on a failure to set up the device, or if the name is a duplicate.
7093  *
7094  *	Callers must hold the rtnl semaphore. You may want
7095  *	register_netdev() instead of this.
7096  *
7097  *	BUGS:
7098  *	The locking appears insufficient to guarantee two parallel registers
7099  *	will not get the same name.
7100  */
7101 
7102 int register_netdevice(struct net_device *dev)
7103 {
7104 	int ret;
7105 	struct net *net = dev_net(dev);
7106 
7107 	BUG_ON(dev_boot_phase);
7108 	ASSERT_RTNL();
7109 
7110 	might_sleep();
7111 
7112 	/* When net_device's are persistent, this will be fatal. */
7113 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7114 	BUG_ON(!net);
7115 
7116 	spin_lock_init(&dev->addr_list_lock);
7117 	netdev_set_addr_lockdep_class(dev);
7118 
7119 	ret = dev_get_valid_name(net, dev, dev->name);
7120 	if (ret < 0)
7121 		goto out;
7122 
7123 	/* Init, if this function is available */
7124 	if (dev->netdev_ops->ndo_init) {
7125 		ret = dev->netdev_ops->ndo_init(dev);
7126 		if (ret) {
7127 			if (ret > 0)
7128 				ret = -EIO;
7129 			goto out;
7130 		}
7131 	}
7132 
7133 	if (((dev->hw_features | dev->features) &
7134 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7135 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7136 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7137 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7138 		ret = -EINVAL;
7139 		goto err_uninit;
7140 	}
7141 
7142 	ret = -EBUSY;
7143 	if (!dev->ifindex)
7144 		dev->ifindex = dev_new_index(net);
7145 	else if (__dev_get_by_index(net, dev->ifindex))
7146 		goto err_uninit;
7147 
7148 	/* Transfer changeable features to wanted_features and enable
7149 	 * software offloads (GSO and GRO).
7150 	 */
7151 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7152 	dev->features |= NETIF_F_SOFT_FEATURES;
7153 	dev->wanted_features = dev->features & dev->hw_features;
7154 
7155 	if (!(dev->flags & IFF_LOOPBACK))
7156 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7157 
7158 	/* If IPv4 TCP segmentation offload is supported we should also
7159 	 * allow the device to enable segmenting the frame with the option
7160 	 * of ignoring a static IP ID value.  This doesn't enable the
7161 	 * feature itself but allows the user to enable it later.
7162 	 */
7163 	if (dev->hw_features & NETIF_F_TSO)
7164 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7165 	if (dev->vlan_features & NETIF_F_TSO)
7166 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7167 	if (dev->mpls_features & NETIF_F_TSO)
7168 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7169 	if (dev->hw_enc_features & NETIF_F_TSO)
7170 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7171 
7172 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7173 	 */
7174 	dev->vlan_features |= NETIF_F_HIGHDMA;
7175 
7176 	/* Make NETIF_F_SG inheritable to tunnel devices.
7177 	 */
7178 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7179 
7180 	/* Make NETIF_F_SG inheritable to MPLS.
7181 	 */
7182 	dev->mpls_features |= NETIF_F_SG;
7183 
7184 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7185 	ret = notifier_to_errno(ret);
7186 	if (ret)
7187 		goto err_uninit;
7188 
7189 	ret = netdev_register_kobject(dev);
7190 	if (ret)
7191 		goto err_uninit;
7192 	dev->reg_state = NETREG_REGISTERED;
7193 
7194 	__netdev_update_features(dev);
7195 
7196 	/*
7197 	 *	Default initial state at registry is that the
7198 	 *	device is present.
7199 	 */
7200 
7201 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7202 
7203 	linkwatch_init_dev(dev);
7204 
7205 	dev_init_scheduler(dev);
7206 	dev_hold(dev);
7207 	list_netdevice(dev);
7208 	add_device_randomness(dev->dev_addr, dev->addr_len);
7209 
7210 	/* If the device has permanent device address, driver should
7211 	 * set dev_addr and also addr_assign_type should be set to
7212 	 * NET_ADDR_PERM (default value).
7213 	 */
7214 	if (dev->addr_assign_type == NET_ADDR_PERM)
7215 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7216 
7217 	/* Notify protocols, that a new device appeared. */
7218 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7219 	ret = notifier_to_errno(ret);
7220 	if (ret) {
7221 		rollback_registered(dev);
7222 		dev->reg_state = NETREG_UNREGISTERED;
7223 	}
7224 	/*
7225 	 *	Prevent userspace races by waiting until the network
7226 	 *	device is fully setup before sending notifications.
7227 	 */
7228 	if (!dev->rtnl_link_ops ||
7229 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7230 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7231 
7232 out:
7233 	return ret;
7234 
7235 err_uninit:
7236 	if (dev->netdev_ops->ndo_uninit)
7237 		dev->netdev_ops->ndo_uninit(dev);
7238 	goto out;
7239 }
7240 EXPORT_SYMBOL(register_netdevice);
7241 
7242 /**
7243  *	init_dummy_netdev	- init a dummy network device for NAPI
7244  *	@dev: device to init
7245  *
7246  *	This takes a network device structure and initialize the minimum
7247  *	amount of fields so it can be used to schedule NAPI polls without
7248  *	registering a full blown interface. This is to be used by drivers
7249  *	that need to tie several hardware interfaces to a single NAPI
7250  *	poll scheduler due to HW limitations.
7251  */
7252 int init_dummy_netdev(struct net_device *dev)
7253 {
7254 	/* Clear everything. Note we don't initialize spinlocks
7255 	 * are they aren't supposed to be taken by any of the
7256 	 * NAPI code and this dummy netdev is supposed to be
7257 	 * only ever used for NAPI polls
7258 	 */
7259 	memset(dev, 0, sizeof(struct net_device));
7260 
7261 	/* make sure we BUG if trying to hit standard
7262 	 * register/unregister code path
7263 	 */
7264 	dev->reg_state = NETREG_DUMMY;
7265 
7266 	/* NAPI wants this */
7267 	INIT_LIST_HEAD(&dev->napi_list);
7268 
7269 	/* a dummy interface is started by default */
7270 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7271 	set_bit(__LINK_STATE_START, &dev->state);
7272 
7273 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7274 	 * because users of this 'device' dont need to change
7275 	 * its refcount.
7276 	 */
7277 
7278 	return 0;
7279 }
7280 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7281 
7282 
7283 /**
7284  *	register_netdev	- register a network device
7285  *	@dev: device to register
7286  *
7287  *	Take a completed network device structure and add it to the kernel
7288  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7289  *	chain. 0 is returned on success. A negative errno code is returned
7290  *	on a failure to set up the device, or if the name is a duplicate.
7291  *
7292  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7293  *	and expands the device name if you passed a format string to
7294  *	alloc_netdev.
7295  */
7296 int register_netdev(struct net_device *dev)
7297 {
7298 	int err;
7299 
7300 	rtnl_lock();
7301 	err = register_netdevice(dev);
7302 	rtnl_unlock();
7303 	return err;
7304 }
7305 EXPORT_SYMBOL(register_netdev);
7306 
7307 int netdev_refcnt_read(const struct net_device *dev)
7308 {
7309 	int i, refcnt = 0;
7310 
7311 	for_each_possible_cpu(i)
7312 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7313 	return refcnt;
7314 }
7315 EXPORT_SYMBOL(netdev_refcnt_read);
7316 
7317 /**
7318  * netdev_wait_allrefs - wait until all references are gone.
7319  * @dev: target net_device
7320  *
7321  * This is called when unregistering network devices.
7322  *
7323  * Any protocol or device that holds a reference should register
7324  * for netdevice notification, and cleanup and put back the
7325  * reference if they receive an UNREGISTER event.
7326  * We can get stuck here if buggy protocols don't correctly
7327  * call dev_put.
7328  */
7329 static void netdev_wait_allrefs(struct net_device *dev)
7330 {
7331 	unsigned long rebroadcast_time, warning_time;
7332 	int refcnt;
7333 
7334 	linkwatch_forget_dev(dev);
7335 
7336 	rebroadcast_time = warning_time = jiffies;
7337 	refcnt = netdev_refcnt_read(dev);
7338 
7339 	while (refcnt != 0) {
7340 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7341 			rtnl_lock();
7342 
7343 			/* Rebroadcast unregister notification */
7344 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7345 
7346 			__rtnl_unlock();
7347 			rcu_barrier();
7348 			rtnl_lock();
7349 
7350 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7351 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7352 				     &dev->state)) {
7353 				/* We must not have linkwatch events
7354 				 * pending on unregister. If this
7355 				 * happens, we simply run the queue
7356 				 * unscheduled, resulting in a noop
7357 				 * for this device.
7358 				 */
7359 				linkwatch_run_queue();
7360 			}
7361 
7362 			__rtnl_unlock();
7363 
7364 			rebroadcast_time = jiffies;
7365 		}
7366 
7367 		msleep(250);
7368 
7369 		refcnt = netdev_refcnt_read(dev);
7370 
7371 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7372 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7373 				 dev->name, refcnt);
7374 			warning_time = jiffies;
7375 		}
7376 	}
7377 }
7378 
7379 /* The sequence is:
7380  *
7381  *	rtnl_lock();
7382  *	...
7383  *	register_netdevice(x1);
7384  *	register_netdevice(x2);
7385  *	...
7386  *	unregister_netdevice(y1);
7387  *	unregister_netdevice(y2);
7388  *      ...
7389  *	rtnl_unlock();
7390  *	free_netdev(y1);
7391  *	free_netdev(y2);
7392  *
7393  * We are invoked by rtnl_unlock().
7394  * This allows us to deal with problems:
7395  * 1) We can delete sysfs objects which invoke hotplug
7396  *    without deadlocking with linkwatch via keventd.
7397  * 2) Since we run with the RTNL semaphore not held, we can sleep
7398  *    safely in order to wait for the netdev refcnt to drop to zero.
7399  *
7400  * We must not return until all unregister events added during
7401  * the interval the lock was held have been completed.
7402  */
7403 void netdev_run_todo(void)
7404 {
7405 	struct list_head list;
7406 
7407 	/* Snapshot list, allow later requests */
7408 	list_replace_init(&net_todo_list, &list);
7409 
7410 	__rtnl_unlock();
7411 
7412 
7413 	/* Wait for rcu callbacks to finish before next phase */
7414 	if (!list_empty(&list))
7415 		rcu_barrier();
7416 
7417 	while (!list_empty(&list)) {
7418 		struct net_device *dev
7419 			= list_first_entry(&list, struct net_device, todo_list);
7420 		list_del(&dev->todo_list);
7421 
7422 		rtnl_lock();
7423 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7424 		__rtnl_unlock();
7425 
7426 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7427 			pr_err("network todo '%s' but state %d\n",
7428 			       dev->name, dev->reg_state);
7429 			dump_stack();
7430 			continue;
7431 		}
7432 
7433 		dev->reg_state = NETREG_UNREGISTERED;
7434 
7435 		netdev_wait_allrefs(dev);
7436 
7437 		/* paranoia */
7438 		BUG_ON(netdev_refcnt_read(dev));
7439 		BUG_ON(!list_empty(&dev->ptype_all));
7440 		BUG_ON(!list_empty(&dev->ptype_specific));
7441 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7442 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7443 		WARN_ON(dev->dn_ptr);
7444 
7445 		if (dev->destructor)
7446 			dev->destructor(dev);
7447 
7448 		/* Report a network device has been unregistered */
7449 		rtnl_lock();
7450 		dev_net(dev)->dev_unreg_count--;
7451 		__rtnl_unlock();
7452 		wake_up(&netdev_unregistering_wq);
7453 
7454 		/* Free network device */
7455 		kobject_put(&dev->dev.kobj);
7456 	}
7457 }
7458 
7459 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7460  * all the same fields in the same order as net_device_stats, with only
7461  * the type differing, but rtnl_link_stats64 may have additional fields
7462  * at the end for newer counters.
7463  */
7464 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7465 			     const struct net_device_stats *netdev_stats)
7466 {
7467 #if BITS_PER_LONG == 64
7468 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7469 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7470 	/* zero out counters that only exist in rtnl_link_stats64 */
7471 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7472 	       sizeof(*stats64) - sizeof(*netdev_stats));
7473 #else
7474 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7475 	const unsigned long *src = (const unsigned long *)netdev_stats;
7476 	u64 *dst = (u64 *)stats64;
7477 
7478 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7479 	for (i = 0; i < n; i++)
7480 		dst[i] = src[i];
7481 	/* zero out counters that only exist in rtnl_link_stats64 */
7482 	memset((char *)stats64 + n * sizeof(u64), 0,
7483 	       sizeof(*stats64) - n * sizeof(u64));
7484 #endif
7485 }
7486 EXPORT_SYMBOL(netdev_stats_to_stats64);
7487 
7488 /**
7489  *	dev_get_stats	- get network device statistics
7490  *	@dev: device to get statistics from
7491  *	@storage: place to store stats
7492  *
7493  *	Get network statistics from device. Return @storage.
7494  *	The device driver may provide its own method by setting
7495  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7496  *	otherwise the internal statistics structure is used.
7497  */
7498 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7499 					struct rtnl_link_stats64 *storage)
7500 {
7501 	const struct net_device_ops *ops = dev->netdev_ops;
7502 
7503 	if (ops->ndo_get_stats64) {
7504 		memset(storage, 0, sizeof(*storage));
7505 		ops->ndo_get_stats64(dev, storage);
7506 	} else if (ops->ndo_get_stats) {
7507 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7508 	} else {
7509 		netdev_stats_to_stats64(storage, &dev->stats);
7510 	}
7511 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7512 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7513 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7514 	return storage;
7515 }
7516 EXPORT_SYMBOL(dev_get_stats);
7517 
7518 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7519 {
7520 	struct netdev_queue *queue = dev_ingress_queue(dev);
7521 
7522 #ifdef CONFIG_NET_CLS_ACT
7523 	if (queue)
7524 		return queue;
7525 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7526 	if (!queue)
7527 		return NULL;
7528 	netdev_init_one_queue(dev, queue, NULL);
7529 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7530 	queue->qdisc_sleeping = &noop_qdisc;
7531 	rcu_assign_pointer(dev->ingress_queue, queue);
7532 #endif
7533 	return queue;
7534 }
7535 
7536 static const struct ethtool_ops default_ethtool_ops;
7537 
7538 void netdev_set_default_ethtool_ops(struct net_device *dev,
7539 				    const struct ethtool_ops *ops)
7540 {
7541 	if (dev->ethtool_ops == &default_ethtool_ops)
7542 		dev->ethtool_ops = ops;
7543 }
7544 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7545 
7546 void netdev_freemem(struct net_device *dev)
7547 {
7548 	char *addr = (char *)dev - dev->padded;
7549 
7550 	kvfree(addr);
7551 }
7552 
7553 /**
7554  *	alloc_netdev_mqs - allocate network device
7555  *	@sizeof_priv:		size of private data to allocate space for
7556  *	@name:			device name format string
7557  *	@name_assign_type: 	origin of device name
7558  *	@setup:			callback to initialize device
7559  *	@txqs:			the number of TX subqueues to allocate
7560  *	@rxqs:			the number of RX subqueues to allocate
7561  *
7562  *	Allocates a struct net_device with private data area for driver use
7563  *	and performs basic initialization.  Also allocates subqueue structs
7564  *	for each queue on the device.
7565  */
7566 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7567 		unsigned char name_assign_type,
7568 		void (*setup)(struct net_device *),
7569 		unsigned int txqs, unsigned int rxqs)
7570 {
7571 	struct net_device *dev;
7572 	size_t alloc_size;
7573 	struct net_device *p;
7574 
7575 	BUG_ON(strlen(name) >= sizeof(dev->name));
7576 
7577 	if (txqs < 1) {
7578 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7579 		return NULL;
7580 	}
7581 
7582 #ifdef CONFIG_SYSFS
7583 	if (rxqs < 1) {
7584 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7585 		return NULL;
7586 	}
7587 #endif
7588 
7589 	alloc_size = sizeof(struct net_device);
7590 	if (sizeof_priv) {
7591 		/* ensure 32-byte alignment of private area */
7592 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7593 		alloc_size += sizeof_priv;
7594 	}
7595 	/* ensure 32-byte alignment of whole construct */
7596 	alloc_size += NETDEV_ALIGN - 1;
7597 
7598 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7599 	if (!p)
7600 		p = vzalloc(alloc_size);
7601 	if (!p)
7602 		return NULL;
7603 
7604 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7605 	dev->padded = (char *)dev - (char *)p;
7606 
7607 	dev->pcpu_refcnt = alloc_percpu(int);
7608 	if (!dev->pcpu_refcnt)
7609 		goto free_dev;
7610 
7611 	if (dev_addr_init(dev))
7612 		goto free_pcpu;
7613 
7614 	dev_mc_init(dev);
7615 	dev_uc_init(dev);
7616 
7617 	dev_net_set(dev, &init_net);
7618 
7619 	dev->gso_max_size = GSO_MAX_SIZE;
7620 	dev->gso_max_segs = GSO_MAX_SEGS;
7621 
7622 	INIT_LIST_HEAD(&dev->napi_list);
7623 	INIT_LIST_HEAD(&dev->unreg_list);
7624 	INIT_LIST_HEAD(&dev->close_list);
7625 	INIT_LIST_HEAD(&dev->link_watch_list);
7626 	INIT_LIST_HEAD(&dev->adj_list.upper);
7627 	INIT_LIST_HEAD(&dev->adj_list.lower);
7628 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7629 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7630 	INIT_LIST_HEAD(&dev->ptype_all);
7631 	INIT_LIST_HEAD(&dev->ptype_specific);
7632 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7633 	setup(dev);
7634 
7635 	if (!dev->tx_queue_len) {
7636 		dev->priv_flags |= IFF_NO_QUEUE;
7637 		dev->tx_queue_len = 1;
7638 	}
7639 
7640 	dev->num_tx_queues = txqs;
7641 	dev->real_num_tx_queues = txqs;
7642 	if (netif_alloc_netdev_queues(dev))
7643 		goto free_all;
7644 
7645 #ifdef CONFIG_SYSFS
7646 	dev->num_rx_queues = rxqs;
7647 	dev->real_num_rx_queues = rxqs;
7648 	if (netif_alloc_rx_queues(dev))
7649 		goto free_all;
7650 #endif
7651 
7652 	strcpy(dev->name, name);
7653 	dev->name_assign_type = name_assign_type;
7654 	dev->group = INIT_NETDEV_GROUP;
7655 	if (!dev->ethtool_ops)
7656 		dev->ethtool_ops = &default_ethtool_ops;
7657 
7658 	nf_hook_ingress_init(dev);
7659 
7660 	return dev;
7661 
7662 free_all:
7663 	free_netdev(dev);
7664 	return NULL;
7665 
7666 free_pcpu:
7667 	free_percpu(dev->pcpu_refcnt);
7668 free_dev:
7669 	netdev_freemem(dev);
7670 	return NULL;
7671 }
7672 EXPORT_SYMBOL(alloc_netdev_mqs);
7673 
7674 /**
7675  *	free_netdev - free network device
7676  *	@dev: device
7677  *
7678  *	This function does the last stage of destroying an allocated device
7679  * 	interface. The reference to the device object is released.
7680  *	If this is the last reference then it will be freed.
7681  *	Must be called in process context.
7682  */
7683 void free_netdev(struct net_device *dev)
7684 {
7685 	struct napi_struct *p, *n;
7686 
7687 	might_sleep();
7688 	netif_free_tx_queues(dev);
7689 #ifdef CONFIG_SYSFS
7690 	kvfree(dev->_rx);
7691 #endif
7692 
7693 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7694 
7695 	/* Flush device addresses */
7696 	dev_addr_flush(dev);
7697 
7698 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7699 		netif_napi_del(p);
7700 
7701 	free_percpu(dev->pcpu_refcnt);
7702 	dev->pcpu_refcnt = NULL;
7703 
7704 	/*  Compatibility with error handling in drivers */
7705 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7706 		netdev_freemem(dev);
7707 		return;
7708 	}
7709 
7710 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7711 	dev->reg_state = NETREG_RELEASED;
7712 
7713 	/* will free via device release */
7714 	put_device(&dev->dev);
7715 }
7716 EXPORT_SYMBOL(free_netdev);
7717 
7718 /**
7719  *	synchronize_net -  Synchronize with packet receive processing
7720  *
7721  *	Wait for packets currently being received to be done.
7722  *	Does not block later packets from starting.
7723  */
7724 void synchronize_net(void)
7725 {
7726 	might_sleep();
7727 	if (rtnl_is_locked())
7728 		synchronize_rcu_expedited();
7729 	else
7730 		synchronize_rcu();
7731 }
7732 EXPORT_SYMBOL(synchronize_net);
7733 
7734 /**
7735  *	unregister_netdevice_queue - remove device from the kernel
7736  *	@dev: device
7737  *	@head: list
7738  *
7739  *	This function shuts down a device interface and removes it
7740  *	from the kernel tables.
7741  *	If head not NULL, device is queued to be unregistered later.
7742  *
7743  *	Callers must hold the rtnl semaphore.  You may want
7744  *	unregister_netdev() instead of this.
7745  */
7746 
7747 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7748 {
7749 	ASSERT_RTNL();
7750 
7751 	if (head) {
7752 		list_move_tail(&dev->unreg_list, head);
7753 	} else {
7754 		rollback_registered(dev);
7755 		/* Finish processing unregister after unlock */
7756 		net_set_todo(dev);
7757 	}
7758 }
7759 EXPORT_SYMBOL(unregister_netdevice_queue);
7760 
7761 /**
7762  *	unregister_netdevice_many - unregister many devices
7763  *	@head: list of devices
7764  *
7765  *  Note: As most callers use a stack allocated list_head,
7766  *  we force a list_del() to make sure stack wont be corrupted later.
7767  */
7768 void unregister_netdevice_many(struct list_head *head)
7769 {
7770 	struct net_device *dev;
7771 
7772 	if (!list_empty(head)) {
7773 		rollback_registered_many(head);
7774 		list_for_each_entry(dev, head, unreg_list)
7775 			net_set_todo(dev);
7776 		list_del(head);
7777 	}
7778 }
7779 EXPORT_SYMBOL(unregister_netdevice_many);
7780 
7781 /**
7782  *	unregister_netdev - remove device from the kernel
7783  *	@dev: device
7784  *
7785  *	This function shuts down a device interface and removes it
7786  *	from the kernel tables.
7787  *
7788  *	This is just a wrapper for unregister_netdevice that takes
7789  *	the rtnl semaphore.  In general you want to use this and not
7790  *	unregister_netdevice.
7791  */
7792 void unregister_netdev(struct net_device *dev)
7793 {
7794 	rtnl_lock();
7795 	unregister_netdevice(dev);
7796 	rtnl_unlock();
7797 }
7798 EXPORT_SYMBOL(unregister_netdev);
7799 
7800 /**
7801  *	dev_change_net_namespace - move device to different nethost namespace
7802  *	@dev: device
7803  *	@net: network namespace
7804  *	@pat: If not NULL name pattern to try if the current device name
7805  *	      is already taken in the destination network namespace.
7806  *
7807  *	This function shuts down a device interface and moves it
7808  *	to a new network namespace. On success 0 is returned, on
7809  *	a failure a netagive errno code is returned.
7810  *
7811  *	Callers must hold the rtnl semaphore.
7812  */
7813 
7814 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7815 {
7816 	int err;
7817 
7818 	ASSERT_RTNL();
7819 
7820 	/* Don't allow namespace local devices to be moved. */
7821 	err = -EINVAL;
7822 	if (dev->features & NETIF_F_NETNS_LOCAL)
7823 		goto out;
7824 
7825 	/* Ensure the device has been registrered */
7826 	if (dev->reg_state != NETREG_REGISTERED)
7827 		goto out;
7828 
7829 	/* Get out if there is nothing todo */
7830 	err = 0;
7831 	if (net_eq(dev_net(dev), net))
7832 		goto out;
7833 
7834 	/* Pick the destination device name, and ensure
7835 	 * we can use it in the destination network namespace.
7836 	 */
7837 	err = -EEXIST;
7838 	if (__dev_get_by_name(net, dev->name)) {
7839 		/* We get here if we can't use the current device name */
7840 		if (!pat)
7841 			goto out;
7842 		if (dev_get_valid_name(net, dev, pat) < 0)
7843 			goto out;
7844 	}
7845 
7846 	/*
7847 	 * And now a mini version of register_netdevice unregister_netdevice.
7848 	 */
7849 
7850 	/* If device is running close it first. */
7851 	dev_close(dev);
7852 
7853 	/* And unlink it from device chain */
7854 	err = -ENODEV;
7855 	unlist_netdevice(dev);
7856 
7857 	synchronize_net();
7858 
7859 	/* Shutdown queueing discipline. */
7860 	dev_shutdown(dev);
7861 
7862 	/* Notify protocols, that we are about to destroy
7863 	   this device. They should clean all the things.
7864 
7865 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7866 	   This is wanted because this way 8021q and macvlan know
7867 	   the device is just moving and can keep their slaves up.
7868 	*/
7869 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7870 	rcu_barrier();
7871 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7872 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7873 
7874 	/*
7875 	 *	Flush the unicast and multicast chains
7876 	 */
7877 	dev_uc_flush(dev);
7878 	dev_mc_flush(dev);
7879 
7880 	/* Send a netdev-removed uevent to the old namespace */
7881 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7882 	netdev_adjacent_del_links(dev);
7883 
7884 	/* Actually switch the network namespace */
7885 	dev_net_set(dev, net);
7886 
7887 	/* If there is an ifindex conflict assign a new one */
7888 	if (__dev_get_by_index(net, dev->ifindex))
7889 		dev->ifindex = dev_new_index(net);
7890 
7891 	/* Send a netdev-add uevent to the new namespace */
7892 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7893 	netdev_adjacent_add_links(dev);
7894 
7895 	/* Fixup kobjects */
7896 	err = device_rename(&dev->dev, dev->name);
7897 	WARN_ON(err);
7898 
7899 	/* Add the device back in the hashes */
7900 	list_netdevice(dev);
7901 
7902 	/* Notify protocols, that a new device appeared. */
7903 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7904 
7905 	/*
7906 	 *	Prevent userspace races by waiting until the network
7907 	 *	device is fully setup before sending notifications.
7908 	 */
7909 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7910 
7911 	synchronize_net();
7912 	err = 0;
7913 out:
7914 	return err;
7915 }
7916 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7917 
7918 static int dev_cpu_callback(struct notifier_block *nfb,
7919 			    unsigned long action,
7920 			    void *ocpu)
7921 {
7922 	struct sk_buff **list_skb;
7923 	struct sk_buff *skb;
7924 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7925 	struct softnet_data *sd, *oldsd;
7926 
7927 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7928 		return NOTIFY_OK;
7929 
7930 	local_irq_disable();
7931 	cpu = smp_processor_id();
7932 	sd = &per_cpu(softnet_data, cpu);
7933 	oldsd = &per_cpu(softnet_data, oldcpu);
7934 
7935 	/* Find end of our completion_queue. */
7936 	list_skb = &sd->completion_queue;
7937 	while (*list_skb)
7938 		list_skb = &(*list_skb)->next;
7939 	/* Append completion queue from offline CPU. */
7940 	*list_skb = oldsd->completion_queue;
7941 	oldsd->completion_queue = NULL;
7942 
7943 	/* Append output queue from offline CPU. */
7944 	if (oldsd->output_queue) {
7945 		*sd->output_queue_tailp = oldsd->output_queue;
7946 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7947 		oldsd->output_queue = NULL;
7948 		oldsd->output_queue_tailp = &oldsd->output_queue;
7949 	}
7950 	/* Append NAPI poll list from offline CPU, with one exception :
7951 	 * process_backlog() must be called by cpu owning percpu backlog.
7952 	 * We properly handle process_queue & input_pkt_queue later.
7953 	 */
7954 	while (!list_empty(&oldsd->poll_list)) {
7955 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7956 							    struct napi_struct,
7957 							    poll_list);
7958 
7959 		list_del_init(&napi->poll_list);
7960 		if (napi->poll == process_backlog)
7961 			napi->state = 0;
7962 		else
7963 			____napi_schedule(sd, napi);
7964 	}
7965 
7966 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7967 	local_irq_enable();
7968 
7969 	/* Process offline CPU's input_pkt_queue */
7970 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7971 		netif_rx_ni(skb);
7972 		input_queue_head_incr(oldsd);
7973 	}
7974 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7975 		netif_rx_ni(skb);
7976 		input_queue_head_incr(oldsd);
7977 	}
7978 
7979 	return NOTIFY_OK;
7980 }
7981 
7982 
7983 /**
7984  *	netdev_increment_features - increment feature set by one
7985  *	@all: current feature set
7986  *	@one: new feature set
7987  *	@mask: mask feature set
7988  *
7989  *	Computes a new feature set after adding a device with feature set
7990  *	@one to the master device with current feature set @all.  Will not
7991  *	enable anything that is off in @mask. Returns the new feature set.
7992  */
7993 netdev_features_t netdev_increment_features(netdev_features_t all,
7994 	netdev_features_t one, netdev_features_t mask)
7995 {
7996 	if (mask & NETIF_F_HW_CSUM)
7997 		mask |= NETIF_F_CSUM_MASK;
7998 	mask |= NETIF_F_VLAN_CHALLENGED;
7999 
8000 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8001 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8002 
8003 	/* If one device supports hw checksumming, set for all. */
8004 	if (all & NETIF_F_HW_CSUM)
8005 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8006 
8007 	return all;
8008 }
8009 EXPORT_SYMBOL(netdev_increment_features);
8010 
8011 static struct hlist_head * __net_init netdev_create_hash(void)
8012 {
8013 	int i;
8014 	struct hlist_head *hash;
8015 
8016 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8017 	if (hash != NULL)
8018 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8019 			INIT_HLIST_HEAD(&hash[i]);
8020 
8021 	return hash;
8022 }
8023 
8024 /* Initialize per network namespace state */
8025 static int __net_init netdev_init(struct net *net)
8026 {
8027 	if (net != &init_net)
8028 		INIT_LIST_HEAD(&net->dev_base_head);
8029 
8030 	net->dev_name_head = netdev_create_hash();
8031 	if (net->dev_name_head == NULL)
8032 		goto err_name;
8033 
8034 	net->dev_index_head = netdev_create_hash();
8035 	if (net->dev_index_head == NULL)
8036 		goto err_idx;
8037 
8038 	return 0;
8039 
8040 err_idx:
8041 	kfree(net->dev_name_head);
8042 err_name:
8043 	return -ENOMEM;
8044 }
8045 
8046 /**
8047  *	netdev_drivername - network driver for the device
8048  *	@dev: network device
8049  *
8050  *	Determine network driver for device.
8051  */
8052 const char *netdev_drivername(const struct net_device *dev)
8053 {
8054 	const struct device_driver *driver;
8055 	const struct device *parent;
8056 	const char *empty = "";
8057 
8058 	parent = dev->dev.parent;
8059 	if (!parent)
8060 		return empty;
8061 
8062 	driver = parent->driver;
8063 	if (driver && driver->name)
8064 		return driver->name;
8065 	return empty;
8066 }
8067 
8068 static void __netdev_printk(const char *level, const struct net_device *dev,
8069 			    struct va_format *vaf)
8070 {
8071 	if (dev && dev->dev.parent) {
8072 		dev_printk_emit(level[1] - '0',
8073 				dev->dev.parent,
8074 				"%s %s %s%s: %pV",
8075 				dev_driver_string(dev->dev.parent),
8076 				dev_name(dev->dev.parent),
8077 				netdev_name(dev), netdev_reg_state(dev),
8078 				vaf);
8079 	} else if (dev) {
8080 		printk("%s%s%s: %pV",
8081 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8082 	} else {
8083 		printk("%s(NULL net_device): %pV", level, vaf);
8084 	}
8085 }
8086 
8087 void netdev_printk(const char *level, const struct net_device *dev,
8088 		   const char *format, ...)
8089 {
8090 	struct va_format vaf;
8091 	va_list args;
8092 
8093 	va_start(args, format);
8094 
8095 	vaf.fmt = format;
8096 	vaf.va = &args;
8097 
8098 	__netdev_printk(level, dev, &vaf);
8099 
8100 	va_end(args);
8101 }
8102 EXPORT_SYMBOL(netdev_printk);
8103 
8104 #define define_netdev_printk_level(func, level)			\
8105 void func(const struct net_device *dev, const char *fmt, ...)	\
8106 {								\
8107 	struct va_format vaf;					\
8108 	va_list args;						\
8109 								\
8110 	va_start(args, fmt);					\
8111 								\
8112 	vaf.fmt = fmt;						\
8113 	vaf.va = &args;						\
8114 								\
8115 	__netdev_printk(level, dev, &vaf);			\
8116 								\
8117 	va_end(args);						\
8118 }								\
8119 EXPORT_SYMBOL(func);
8120 
8121 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8122 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8123 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8124 define_netdev_printk_level(netdev_err, KERN_ERR);
8125 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8126 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8127 define_netdev_printk_level(netdev_info, KERN_INFO);
8128 
8129 static void __net_exit netdev_exit(struct net *net)
8130 {
8131 	kfree(net->dev_name_head);
8132 	kfree(net->dev_index_head);
8133 }
8134 
8135 static struct pernet_operations __net_initdata netdev_net_ops = {
8136 	.init = netdev_init,
8137 	.exit = netdev_exit,
8138 };
8139 
8140 static void __net_exit default_device_exit(struct net *net)
8141 {
8142 	struct net_device *dev, *aux;
8143 	/*
8144 	 * Push all migratable network devices back to the
8145 	 * initial network namespace
8146 	 */
8147 	rtnl_lock();
8148 	for_each_netdev_safe(net, dev, aux) {
8149 		int err;
8150 		char fb_name[IFNAMSIZ];
8151 
8152 		/* Ignore unmoveable devices (i.e. loopback) */
8153 		if (dev->features & NETIF_F_NETNS_LOCAL)
8154 			continue;
8155 
8156 		/* Leave virtual devices for the generic cleanup */
8157 		if (dev->rtnl_link_ops)
8158 			continue;
8159 
8160 		/* Push remaining network devices to init_net */
8161 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8162 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8163 		if (err) {
8164 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8165 				 __func__, dev->name, err);
8166 			BUG();
8167 		}
8168 	}
8169 	rtnl_unlock();
8170 }
8171 
8172 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8173 {
8174 	/* Return with the rtnl_lock held when there are no network
8175 	 * devices unregistering in any network namespace in net_list.
8176 	 */
8177 	struct net *net;
8178 	bool unregistering;
8179 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8180 
8181 	add_wait_queue(&netdev_unregistering_wq, &wait);
8182 	for (;;) {
8183 		unregistering = false;
8184 		rtnl_lock();
8185 		list_for_each_entry(net, net_list, exit_list) {
8186 			if (net->dev_unreg_count > 0) {
8187 				unregistering = true;
8188 				break;
8189 			}
8190 		}
8191 		if (!unregistering)
8192 			break;
8193 		__rtnl_unlock();
8194 
8195 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8196 	}
8197 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8198 }
8199 
8200 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8201 {
8202 	/* At exit all network devices most be removed from a network
8203 	 * namespace.  Do this in the reverse order of registration.
8204 	 * Do this across as many network namespaces as possible to
8205 	 * improve batching efficiency.
8206 	 */
8207 	struct net_device *dev;
8208 	struct net *net;
8209 	LIST_HEAD(dev_kill_list);
8210 
8211 	/* To prevent network device cleanup code from dereferencing
8212 	 * loopback devices or network devices that have been freed
8213 	 * wait here for all pending unregistrations to complete,
8214 	 * before unregistring the loopback device and allowing the
8215 	 * network namespace be freed.
8216 	 *
8217 	 * The netdev todo list containing all network devices
8218 	 * unregistrations that happen in default_device_exit_batch
8219 	 * will run in the rtnl_unlock() at the end of
8220 	 * default_device_exit_batch.
8221 	 */
8222 	rtnl_lock_unregistering(net_list);
8223 	list_for_each_entry(net, net_list, exit_list) {
8224 		for_each_netdev_reverse(net, dev) {
8225 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8226 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8227 			else
8228 				unregister_netdevice_queue(dev, &dev_kill_list);
8229 		}
8230 	}
8231 	unregister_netdevice_many(&dev_kill_list);
8232 	rtnl_unlock();
8233 }
8234 
8235 static struct pernet_operations __net_initdata default_device_ops = {
8236 	.exit = default_device_exit,
8237 	.exit_batch = default_device_exit_batch,
8238 };
8239 
8240 /*
8241  *	Initialize the DEV module. At boot time this walks the device list and
8242  *	unhooks any devices that fail to initialise (normally hardware not
8243  *	present) and leaves us with a valid list of present and active devices.
8244  *
8245  */
8246 
8247 /*
8248  *       This is called single threaded during boot, so no need
8249  *       to take the rtnl semaphore.
8250  */
8251 static int __init net_dev_init(void)
8252 {
8253 	int i, rc = -ENOMEM;
8254 
8255 	BUG_ON(!dev_boot_phase);
8256 
8257 	if (dev_proc_init())
8258 		goto out;
8259 
8260 	if (netdev_kobject_init())
8261 		goto out;
8262 
8263 	INIT_LIST_HEAD(&ptype_all);
8264 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8265 		INIT_LIST_HEAD(&ptype_base[i]);
8266 
8267 	INIT_LIST_HEAD(&offload_base);
8268 
8269 	if (register_pernet_subsys(&netdev_net_ops))
8270 		goto out;
8271 
8272 	/*
8273 	 *	Initialise the packet receive queues.
8274 	 */
8275 
8276 	for_each_possible_cpu(i) {
8277 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8278 
8279 		skb_queue_head_init(&sd->input_pkt_queue);
8280 		skb_queue_head_init(&sd->process_queue);
8281 		INIT_LIST_HEAD(&sd->poll_list);
8282 		sd->output_queue_tailp = &sd->output_queue;
8283 #ifdef CONFIG_RPS
8284 		sd->csd.func = rps_trigger_softirq;
8285 		sd->csd.info = sd;
8286 		sd->cpu = i;
8287 #endif
8288 
8289 		sd->backlog.poll = process_backlog;
8290 		sd->backlog.weight = weight_p;
8291 	}
8292 
8293 	dev_boot_phase = 0;
8294 
8295 	/* The loopback device is special if any other network devices
8296 	 * is present in a network namespace the loopback device must
8297 	 * be present. Since we now dynamically allocate and free the
8298 	 * loopback device ensure this invariant is maintained by
8299 	 * keeping the loopback device as the first device on the
8300 	 * list of network devices.  Ensuring the loopback devices
8301 	 * is the first device that appears and the last network device
8302 	 * that disappears.
8303 	 */
8304 	if (register_pernet_device(&loopback_net_ops))
8305 		goto out;
8306 
8307 	if (register_pernet_device(&default_device_ops))
8308 		goto out;
8309 
8310 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8311 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8312 
8313 	hotcpu_notifier(dev_cpu_callback, 0);
8314 	dst_subsys_init();
8315 	rc = 0;
8316 out:
8317 	return rc;
8318 }
8319 
8320 subsys_initcall(net_dev_init);
8321