xref: /linux/net/core/dev.c (revision 108fc82596e3b66b819df9d28c1ebbc9ab5de14c)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 	struct net *net;
965 
966 	BUG_ON(!dev_net(dev));
967 	net = dev_net(dev);
968 
969 	if (!dev_valid_name(name))
970 		return -EINVAL;
971 
972 	if (strchr(name, '%'))
973 		return dev_alloc_name(dev, name);
974 	else if (__dev_get_by_name(net, name))
975 		return -EEXIST;
976 	else if (dev->name != name)
977 		strlcpy(dev->name, name, IFNAMSIZ);
978 
979 	return 0;
980 }
981 
982 /**
983  *	dev_change_name - change name of a device
984  *	@dev: device
985  *	@newname: name (or format string) must be at least IFNAMSIZ
986  *
987  *	Change name of a device, can pass format strings "eth%d".
988  *	for wildcarding.
989  */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 	char oldname[IFNAMSIZ];
993 	int err = 0;
994 	int ret;
995 	struct net *net;
996 
997 	ASSERT_RTNL();
998 	BUG_ON(!dev_net(dev));
999 
1000 	net = dev_net(dev);
1001 	if (dev->flags & IFF_UP)
1002 		return -EBUSY;
1003 
1004 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 		return 0;
1006 
1007 	memcpy(oldname, dev->name, IFNAMSIZ);
1008 
1009 	err = dev_get_valid_name(dev, newname);
1010 	if (err < 0)
1011 		return err;
1012 
1013 rollback:
1014 	ret = device_rename(&dev->dev, dev->name);
1015 	if (ret) {
1016 		memcpy(dev->name, oldname, IFNAMSIZ);
1017 		return ret;
1018 	}
1019 
1020 	write_lock_bh(&dev_base_lock);
1021 	hlist_del_rcu(&dev->name_hlist);
1022 	write_unlock_bh(&dev_base_lock);
1023 
1024 	synchronize_rcu();
1025 
1026 	write_lock_bh(&dev_base_lock);
1027 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 	write_unlock_bh(&dev_base_lock);
1029 
1030 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 	ret = notifier_to_errno(ret);
1032 
1033 	if (ret) {
1034 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1035 		if (err >= 0) {
1036 			err = ret;
1037 			memcpy(dev->name, oldname, IFNAMSIZ);
1038 			goto rollback;
1039 		} else {
1040 			pr_err("%s: name change rollback failed: %d\n",
1041 			       dev->name, ret);
1042 		}
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /**
1049  *	dev_set_alias - change ifalias of a device
1050  *	@dev: device
1051  *	@alias: name up to IFALIASZ
1052  *	@len: limit of bytes to copy from info
1053  *
1054  *	Set ifalias for a device,
1055  */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 	char *new_ifalias;
1059 
1060 	ASSERT_RTNL();
1061 
1062 	if (len >= IFALIASZ)
1063 		return -EINVAL;
1064 
1065 	if (!len) {
1066 		if (dev->ifalias) {
1067 			kfree(dev->ifalias);
1068 			dev->ifalias = NULL;
1069 		}
1070 		return 0;
1071 	}
1072 
1073 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 	if (!new_ifalias)
1075 		return -ENOMEM;
1076 	dev->ifalias = new_ifalias;
1077 
1078 	strlcpy(dev->ifalias, alias, len+1);
1079 	return len;
1080 }
1081 
1082 
1083 /**
1084  *	netdev_features_change - device changes features
1085  *	@dev: device to cause notification
1086  *
1087  *	Called to indicate a device has changed features.
1088  */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094 
1095 /**
1096  *	netdev_state_change - device changes state
1097  *	@dev: device to cause notification
1098  *
1099  *	Called to indicate a device has changed state. This function calls
1100  *	the notifier chains for netdev_chain and sends a NEWLINK message
1101  *	to the routing socket.
1102  */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 	if (dev->flags & IFF_UP) {
1106 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 	}
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111 
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 {
1114 	return call_netdevice_notifiers(event, dev);
1115 }
1116 EXPORT_SYMBOL(netdev_bonding_change);
1117 
1118 /**
1119  *	dev_load 	- load a network module
1120  *	@net: the applicable net namespace
1121  *	@name: name of interface
1122  *
1123  *	If a network interface is not present and the process has suitable
1124  *	privileges this function loads the module. If module loading is not
1125  *	available in this kernel then it becomes a nop.
1126  */
1127 
1128 void dev_load(struct net *net, const char *name)
1129 {
1130 	struct net_device *dev;
1131 	int no_module;
1132 
1133 	rcu_read_lock();
1134 	dev = dev_get_by_name_rcu(net, name);
1135 	rcu_read_unlock();
1136 
1137 	no_module = !dev;
1138 	if (no_module && capable(CAP_NET_ADMIN))
1139 		no_module = request_module("netdev-%s", name);
1140 	if (no_module && capable(CAP_SYS_MODULE)) {
1141 		if (!request_module("%s", name))
1142 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143 				name);
1144 	}
1145 }
1146 EXPORT_SYMBOL(dev_load);
1147 
1148 static int __dev_open(struct net_device *dev)
1149 {
1150 	const struct net_device_ops *ops = dev->netdev_ops;
1151 	int ret;
1152 
1153 	ASSERT_RTNL();
1154 
1155 	if (!netif_device_present(dev))
1156 		return -ENODEV;
1157 
1158 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 	ret = notifier_to_errno(ret);
1160 	if (ret)
1161 		return ret;
1162 
1163 	set_bit(__LINK_STATE_START, &dev->state);
1164 
1165 	if (ops->ndo_validate_addr)
1166 		ret = ops->ndo_validate_addr(dev);
1167 
1168 	if (!ret && ops->ndo_open)
1169 		ret = ops->ndo_open(dev);
1170 
1171 	if (ret)
1172 		clear_bit(__LINK_STATE_START, &dev->state);
1173 	else {
1174 		dev->flags |= IFF_UP;
1175 		net_dmaengine_get();
1176 		dev_set_rx_mode(dev);
1177 		dev_activate(dev);
1178 		add_device_randomness(dev->dev_addr, dev->addr_len);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  *	dev_open	- prepare an interface for use.
1186  *	@dev:	device to open
1187  *
1188  *	Takes a device from down to up state. The device's private open
1189  *	function is invoked and then the multicast lists are loaded. Finally
1190  *	the device is moved into the up state and a %NETDEV_UP message is
1191  *	sent to the netdev notifier chain.
1192  *
1193  *	Calling this function on an active interface is a nop. On a failure
1194  *	a negative errno code is returned.
1195  */
1196 int dev_open(struct net_device *dev)
1197 {
1198 	int ret;
1199 
1200 	if (dev->flags & IFF_UP)
1201 		return 0;
1202 
1203 	ret = __dev_open(dev);
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 	call_netdevice_notifiers(NETDEV_UP, dev);
1209 
1210 	return ret;
1211 }
1212 EXPORT_SYMBOL(dev_open);
1213 
1214 static int __dev_close_many(struct list_head *head)
1215 {
1216 	struct net_device *dev;
1217 
1218 	ASSERT_RTNL();
1219 	might_sleep();
1220 
1221 	list_for_each_entry(dev, head, unreg_list) {
1222 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223 
1224 		clear_bit(__LINK_STATE_START, &dev->state);
1225 
1226 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1227 		 * can be even on different cpu. So just clear netif_running().
1228 		 *
1229 		 * dev->stop() will invoke napi_disable() on all of it's
1230 		 * napi_struct instances on this device.
1231 		 */
1232 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 	}
1234 
1235 	dev_deactivate_many(head);
1236 
1237 	list_for_each_entry(dev, head, unreg_list) {
1238 		const struct net_device_ops *ops = dev->netdev_ops;
1239 
1240 		/*
1241 		 *	Call the device specific close. This cannot fail.
1242 		 *	Only if device is UP
1243 		 *
1244 		 *	We allow it to be called even after a DETACH hot-plug
1245 		 *	event.
1246 		 */
1247 		if (ops->ndo_stop)
1248 			ops->ndo_stop(dev);
1249 
1250 		dev->flags &= ~IFF_UP;
1251 		net_dmaengine_put();
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int __dev_close(struct net_device *dev)
1258 {
1259 	int retval;
1260 	LIST_HEAD(single);
1261 
1262 	list_add(&dev->unreg_list, &single);
1263 	retval = __dev_close_many(&single);
1264 	list_del(&single);
1265 	return retval;
1266 }
1267 
1268 static int dev_close_many(struct list_head *head)
1269 {
1270 	struct net_device *dev, *tmp;
1271 	LIST_HEAD(tmp_list);
1272 
1273 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 		if (!(dev->flags & IFF_UP))
1275 			list_move(&dev->unreg_list, &tmp_list);
1276 
1277 	__dev_close_many(head);
1278 
1279 	list_for_each_entry(dev, head, unreg_list) {
1280 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 	}
1283 
1284 	/* rollback_registered_many needs the complete original list */
1285 	list_splice(&tmp_list, head);
1286 	return 0;
1287 }
1288 
1289 /**
1290  *	dev_close - shutdown an interface.
1291  *	@dev: device to shutdown
1292  *
1293  *	This function moves an active device into down state. A
1294  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296  *	chain.
1297  */
1298 int dev_close(struct net_device *dev)
1299 {
1300 	if (dev->flags & IFF_UP) {
1301 		LIST_HEAD(single);
1302 
1303 		list_add(&dev->unreg_list, &single);
1304 		dev_close_many(&single);
1305 		list_del(&single);
1306 	}
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(dev_close);
1310 
1311 
1312 /**
1313  *	dev_disable_lro - disable Large Receive Offload on a device
1314  *	@dev: device
1315  *
1316  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1317  *	called under RTNL.  This is needed if received packets may be
1318  *	forwarded to another interface.
1319  */
1320 void dev_disable_lro(struct net_device *dev)
1321 {
1322 	/*
1323 	 * If we're trying to disable lro on a vlan device
1324 	 * use the underlying physical device instead
1325 	 */
1326 	if (is_vlan_dev(dev))
1327 		dev = vlan_dev_real_dev(dev);
1328 
1329 	dev->wanted_features &= ~NETIF_F_LRO;
1330 	netdev_update_features(dev);
1331 
1332 	if (unlikely(dev->features & NETIF_F_LRO))
1333 		netdev_WARN(dev, "failed to disable LRO!\n");
1334 }
1335 EXPORT_SYMBOL(dev_disable_lro);
1336 
1337 
1338 static int dev_boot_phase = 1;
1339 
1340 /**
1341  *	register_netdevice_notifier - register a network notifier block
1342  *	@nb: notifier
1343  *
1344  *	Register a notifier to be called when network device events occur.
1345  *	The notifier passed is linked into the kernel structures and must
1346  *	not be reused until it has been unregistered. A negative errno code
1347  *	is returned on a failure.
1348  *
1349  * 	When registered all registration and up events are replayed
1350  *	to the new notifier to allow device to have a race free
1351  *	view of the network device list.
1352  */
1353 
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 	struct net_device *dev;
1357 	struct net_device *last;
1358 	struct net *net;
1359 	int err;
1360 
1361 	rtnl_lock();
1362 	err = raw_notifier_chain_register(&netdev_chain, nb);
1363 	if (err)
1364 		goto unlock;
1365 	if (dev_boot_phase)
1366 		goto unlock;
1367 	for_each_net(net) {
1368 		for_each_netdev(net, dev) {
1369 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 			err = notifier_to_errno(err);
1371 			if (err)
1372 				goto rollback;
1373 
1374 			if (!(dev->flags & IFF_UP))
1375 				continue;
1376 
1377 			nb->notifier_call(nb, NETDEV_UP, dev);
1378 		}
1379 	}
1380 
1381 unlock:
1382 	rtnl_unlock();
1383 	return err;
1384 
1385 rollback:
1386 	last = dev;
1387 	for_each_net(net) {
1388 		for_each_netdev(net, dev) {
1389 			if (dev == last)
1390 				goto outroll;
1391 
1392 			if (dev->flags & IFF_UP) {
1393 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 			}
1396 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 		}
1399 	}
1400 
1401 outroll:
1402 	raw_notifier_chain_unregister(&netdev_chain, nb);
1403 	goto unlock;
1404 }
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1406 
1407 /**
1408  *	unregister_netdevice_notifier - unregister a network notifier block
1409  *	@nb: notifier
1410  *
1411  *	Unregister a notifier previously registered by
1412  *	register_netdevice_notifier(). The notifier is unlinked into the
1413  *	kernel structures and may then be reused. A negative errno code
1414  *	is returned on a failure.
1415  *
1416  * 	After unregistering unregister and down device events are synthesized
1417  *	for all devices on the device list to the removed notifier to remove
1418  *	the need for special case cleanup code.
1419  */
1420 
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1422 {
1423 	struct net_device *dev;
1424 	struct net *net;
1425 	int err;
1426 
1427 	rtnl_lock();
1428 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 	if (err)
1430 		goto unlock;
1431 
1432 	for_each_net(net) {
1433 		for_each_netdev(net, dev) {
1434 			if (dev->flags & IFF_UP) {
1435 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1437 			}
1438 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1440 		}
1441 	}
1442 unlock:
1443 	rtnl_unlock();
1444 	return err;
1445 }
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1447 
1448 /**
1449  *	call_netdevice_notifiers - call all network notifier blocks
1450  *      @val: value passed unmodified to notifier function
1451  *      @dev: net_device pointer passed unmodified to notifier function
1452  *
1453  *	Call all network notifier blocks.  Parameters and return value
1454  *	are as for raw_notifier_call_chain().
1455  */
1456 
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1458 {
1459 	ASSERT_RTNL();
1460 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1461 }
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1463 
1464 static struct static_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call static_key_slow_dec() from irq context
1467  * If net_disable_timestamp() is called from irq context, defer the
1468  * static_key_slow_dec() calls.
1469  */
1470 static atomic_t netstamp_needed_deferred;
1471 #endif
1472 
1473 void net_enable_timestamp(void)
1474 {
1475 #ifdef HAVE_JUMP_LABEL
1476 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477 
1478 	if (deferred) {
1479 		while (--deferred)
1480 			static_key_slow_dec(&netstamp_needed);
1481 		return;
1482 	}
1483 #endif
1484 	WARN_ON(in_interrupt());
1485 	static_key_slow_inc(&netstamp_needed);
1486 }
1487 EXPORT_SYMBOL(net_enable_timestamp);
1488 
1489 void net_disable_timestamp(void)
1490 {
1491 #ifdef HAVE_JUMP_LABEL
1492 	if (in_interrupt()) {
1493 		atomic_inc(&netstamp_needed_deferred);
1494 		return;
1495 	}
1496 #endif
1497 	static_key_slow_dec(&netstamp_needed);
1498 }
1499 EXPORT_SYMBOL(net_disable_timestamp);
1500 
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1502 {
1503 	skb->tstamp.tv64 = 0;
1504 	if (static_key_false(&netstamp_needed))
1505 		__net_timestamp(skb);
1506 }
1507 
1508 #define net_timestamp_check(COND, SKB)			\
1509 	if (static_key_false(&netstamp_needed)) {		\
1510 		if ((COND) && !(SKB)->tstamp.tv64)	\
1511 			__net_timestamp(SKB);		\
1512 	}						\
1513 
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1515 {
1516 	struct hwtstamp_config cfg;
1517 	enum hwtstamp_tx_types tx_type;
1518 	enum hwtstamp_rx_filters rx_filter;
1519 	int tx_type_valid = 0;
1520 	int rx_filter_valid = 0;
1521 
1522 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 		return -EFAULT;
1524 
1525 	if (cfg.flags) /* reserved for future extensions */
1526 		return -EINVAL;
1527 
1528 	tx_type = cfg.tx_type;
1529 	rx_filter = cfg.rx_filter;
1530 
1531 	switch (tx_type) {
1532 	case HWTSTAMP_TX_OFF:
1533 	case HWTSTAMP_TX_ON:
1534 	case HWTSTAMP_TX_ONESTEP_SYNC:
1535 		tx_type_valid = 1;
1536 		break;
1537 	}
1538 
1539 	switch (rx_filter) {
1540 	case HWTSTAMP_FILTER_NONE:
1541 	case HWTSTAMP_FILTER_ALL:
1542 	case HWTSTAMP_FILTER_SOME:
1543 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 		rx_filter_valid = 1;
1556 		break;
1557 	}
1558 
1559 	if (!tx_type_valid || !rx_filter_valid)
1560 		return -ERANGE;
1561 
1562 	return 0;
1563 }
1564 
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 				      struct sk_buff *skb)
1567 {
1568 	unsigned int len;
1569 
1570 	if (!(dev->flags & IFF_UP))
1571 		return false;
1572 
1573 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 	if (skb->len <= len)
1575 		return true;
1576 
1577 	/* if TSO is enabled, we don't care about the length as the packet
1578 	 * could be forwarded without being segmented before
1579 	 */
1580 	if (skb_is_gso(skb))
1581 		return true;
1582 
1583 	return false;
1584 }
1585 
1586 /**
1587  * dev_forward_skb - loopback an skb to another netif
1588  *
1589  * @dev: destination network device
1590  * @skb: buffer to forward
1591  *
1592  * return values:
1593  *	NET_RX_SUCCESS	(no congestion)
1594  *	NET_RX_DROP     (packet was dropped, but freed)
1595  *
1596  * dev_forward_skb can be used for injecting an skb from the
1597  * start_xmit function of one device into the receive queue
1598  * of another device.
1599  *
1600  * The receiving device may be in another namespace, so
1601  * we have to clear all information in the skb that could
1602  * impact namespace isolation.
1603  */
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605 {
1606 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 			atomic_long_inc(&dev->rx_dropped);
1609 			kfree_skb(skb);
1610 			return NET_RX_DROP;
1611 		}
1612 	}
1613 
1614 	skb_orphan(skb);
1615 	nf_reset(skb);
1616 
1617 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 		atomic_long_inc(&dev->rx_dropped);
1619 		kfree_skb(skb);
1620 		return NET_RX_DROP;
1621 	}
1622 	skb->skb_iif = 0;
1623 	skb->dev = dev;
1624 	skb_dst_drop(skb);
1625 	skb->tstamp.tv64 = 0;
1626 	skb->pkt_type = PACKET_HOST;
1627 	skb->protocol = eth_type_trans(skb, dev);
1628 	skb->mark = 0;
1629 	secpath_reset(skb);
1630 	nf_reset(skb);
1631 	return netif_rx(skb);
1632 }
1633 EXPORT_SYMBOL_GPL(dev_forward_skb);
1634 
1635 static inline int deliver_skb(struct sk_buff *skb,
1636 			      struct packet_type *pt_prev,
1637 			      struct net_device *orig_dev)
1638 {
1639 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1640 		return -ENOMEM;
1641 	atomic_inc(&skb->users);
1642 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1643 }
1644 
1645 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1646 {
1647 	if (ptype->af_packet_priv == NULL)
1648 		return false;
1649 
1650 	if (ptype->id_match)
1651 		return ptype->id_match(ptype, skb->sk);
1652 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1653 		return true;
1654 
1655 	return false;
1656 }
1657 
1658 /*
1659  *	Support routine. Sends outgoing frames to any network
1660  *	taps currently in use.
1661  */
1662 
1663 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1664 {
1665 	struct packet_type *ptype;
1666 	struct sk_buff *skb2 = NULL;
1667 	struct packet_type *pt_prev = NULL;
1668 
1669 	rcu_read_lock();
1670 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1671 		/* Never send packets back to the socket
1672 		 * they originated from - MvS (miquels@drinkel.ow.org)
1673 		 */
1674 		if ((ptype->dev == dev || !ptype->dev) &&
1675 		    (!skb_loop_sk(ptype, skb))) {
1676 			if (pt_prev) {
1677 				deliver_skb(skb2, pt_prev, skb->dev);
1678 				pt_prev = ptype;
1679 				continue;
1680 			}
1681 
1682 			skb2 = skb_clone(skb, GFP_ATOMIC);
1683 			if (!skb2)
1684 				break;
1685 
1686 			net_timestamp_set(skb2);
1687 
1688 			/* skb->nh should be correctly
1689 			   set by sender, so that the second statement is
1690 			   just protection against buggy protocols.
1691 			 */
1692 			skb_reset_mac_header(skb2);
1693 
1694 			if (skb_network_header(skb2) < skb2->data ||
1695 			    skb2->network_header > skb2->tail) {
1696 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1697 						     ntohs(skb2->protocol),
1698 						     dev->name);
1699 				skb_reset_network_header(skb2);
1700 			}
1701 
1702 			skb2->transport_header = skb2->network_header;
1703 			skb2->pkt_type = PACKET_OUTGOING;
1704 			pt_prev = ptype;
1705 		}
1706 	}
1707 	if (pt_prev)
1708 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1709 	rcu_read_unlock();
1710 }
1711 
1712 /**
1713  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1714  * @dev: Network device
1715  * @txq: number of queues available
1716  *
1717  * If real_num_tx_queues is changed the tc mappings may no longer be
1718  * valid. To resolve this verify the tc mapping remains valid and if
1719  * not NULL the mapping. With no priorities mapping to this
1720  * offset/count pair it will no longer be used. In the worst case TC0
1721  * is invalid nothing can be done so disable priority mappings. If is
1722  * expected that drivers will fix this mapping if they can before
1723  * calling netif_set_real_num_tx_queues.
1724  */
1725 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1726 {
1727 	int i;
1728 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1729 
1730 	/* If TC0 is invalidated disable TC mapping */
1731 	if (tc->offset + tc->count > txq) {
1732 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1733 		dev->num_tc = 0;
1734 		return;
1735 	}
1736 
1737 	/* Invalidated prio to tc mappings set to TC0 */
1738 	for (i = 1; i < TC_BITMASK + 1; i++) {
1739 		int q = netdev_get_prio_tc_map(dev, i);
1740 
1741 		tc = &dev->tc_to_txq[q];
1742 		if (tc->offset + tc->count > txq) {
1743 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1744 				i, q);
1745 			netdev_set_prio_tc_map(dev, i, 0);
1746 		}
1747 	}
1748 }
1749 
1750 /*
1751  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1752  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1753  */
1754 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1755 {
1756 	int rc;
1757 
1758 	if (txq < 1 || txq > dev->num_tx_queues)
1759 		return -EINVAL;
1760 
1761 	if (dev->reg_state == NETREG_REGISTERED ||
1762 	    dev->reg_state == NETREG_UNREGISTERING) {
1763 		ASSERT_RTNL();
1764 
1765 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1766 						  txq);
1767 		if (rc)
1768 			return rc;
1769 
1770 		if (dev->num_tc)
1771 			netif_setup_tc(dev, txq);
1772 
1773 		if (txq < dev->real_num_tx_queues)
1774 			qdisc_reset_all_tx_gt(dev, txq);
1775 	}
1776 
1777 	dev->real_num_tx_queues = txq;
1778 	return 0;
1779 }
1780 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1781 
1782 #ifdef CONFIG_RPS
1783 /**
1784  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1785  *	@dev: Network device
1786  *	@rxq: Actual number of RX queues
1787  *
1788  *	This must be called either with the rtnl_lock held or before
1789  *	registration of the net device.  Returns 0 on success, or a
1790  *	negative error code.  If called before registration, it always
1791  *	succeeds.
1792  */
1793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1794 {
1795 	int rc;
1796 
1797 	if (rxq < 1 || rxq > dev->num_rx_queues)
1798 		return -EINVAL;
1799 
1800 	if (dev->reg_state == NETREG_REGISTERED) {
1801 		ASSERT_RTNL();
1802 
1803 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1804 						  rxq);
1805 		if (rc)
1806 			return rc;
1807 	}
1808 
1809 	dev->real_num_rx_queues = rxq;
1810 	return 0;
1811 }
1812 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1813 #endif
1814 
1815 /**
1816  * netif_get_num_default_rss_queues - default number of RSS queues
1817  *
1818  * This routine should set an upper limit on the number of RSS queues
1819  * used by default by multiqueue devices.
1820  */
1821 int netif_get_num_default_rss_queues(void)
1822 {
1823 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1824 }
1825 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1826 
1827 static inline void __netif_reschedule(struct Qdisc *q)
1828 {
1829 	struct softnet_data *sd;
1830 	unsigned long flags;
1831 
1832 	local_irq_save(flags);
1833 	sd = &__get_cpu_var(softnet_data);
1834 	q->next_sched = NULL;
1835 	*sd->output_queue_tailp = q;
1836 	sd->output_queue_tailp = &q->next_sched;
1837 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1838 	local_irq_restore(flags);
1839 }
1840 
1841 void __netif_schedule(struct Qdisc *q)
1842 {
1843 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1844 		__netif_reschedule(q);
1845 }
1846 EXPORT_SYMBOL(__netif_schedule);
1847 
1848 void dev_kfree_skb_irq(struct sk_buff *skb)
1849 {
1850 	if (atomic_dec_and_test(&skb->users)) {
1851 		struct softnet_data *sd;
1852 		unsigned long flags;
1853 
1854 		local_irq_save(flags);
1855 		sd = &__get_cpu_var(softnet_data);
1856 		skb->next = sd->completion_queue;
1857 		sd->completion_queue = skb;
1858 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1859 		local_irq_restore(flags);
1860 	}
1861 }
1862 EXPORT_SYMBOL(dev_kfree_skb_irq);
1863 
1864 void dev_kfree_skb_any(struct sk_buff *skb)
1865 {
1866 	if (in_irq() || irqs_disabled())
1867 		dev_kfree_skb_irq(skb);
1868 	else
1869 		dev_kfree_skb(skb);
1870 }
1871 EXPORT_SYMBOL(dev_kfree_skb_any);
1872 
1873 
1874 /**
1875  * netif_device_detach - mark device as removed
1876  * @dev: network device
1877  *
1878  * Mark device as removed from system and therefore no longer available.
1879  */
1880 void netif_device_detach(struct net_device *dev)
1881 {
1882 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 	    netif_running(dev)) {
1884 		netif_tx_stop_all_queues(dev);
1885 	}
1886 }
1887 EXPORT_SYMBOL(netif_device_detach);
1888 
1889 /**
1890  * netif_device_attach - mark device as attached
1891  * @dev: network device
1892  *
1893  * Mark device as attached from system and restart if needed.
1894  */
1895 void netif_device_attach(struct net_device *dev)
1896 {
1897 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1898 	    netif_running(dev)) {
1899 		netif_tx_wake_all_queues(dev);
1900 		__netdev_watchdog_up(dev);
1901 	}
1902 }
1903 EXPORT_SYMBOL(netif_device_attach);
1904 
1905 static void skb_warn_bad_offload(const struct sk_buff *skb)
1906 {
1907 	static const netdev_features_t null_features = 0;
1908 	struct net_device *dev = skb->dev;
1909 	const char *driver = "";
1910 
1911 	if (dev && dev->dev.parent)
1912 		driver = dev_driver_string(dev->dev.parent);
1913 
1914 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1915 	     "gso_type=%d ip_summed=%d\n",
1916 	     driver, dev ? &dev->features : &null_features,
1917 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1918 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1919 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1920 }
1921 
1922 /*
1923  * Invalidate hardware checksum when packet is to be mangled, and
1924  * complete checksum manually on outgoing path.
1925  */
1926 int skb_checksum_help(struct sk_buff *skb)
1927 {
1928 	__wsum csum;
1929 	int ret = 0, offset;
1930 
1931 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1932 		goto out_set_summed;
1933 
1934 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1935 		skb_warn_bad_offload(skb);
1936 		return -EINVAL;
1937 	}
1938 
1939 	offset = skb_checksum_start_offset(skb);
1940 	BUG_ON(offset >= skb_headlen(skb));
1941 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1942 
1943 	offset += skb->csum_offset;
1944 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1945 
1946 	if (skb_cloned(skb) &&
1947 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1948 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1949 		if (ret)
1950 			goto out;
1951 	}
1952 
1953 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1954 out_set_summed:
1955 	skb->ip_summed = CHECKSUM_NONE;
1956 out:
1957 	return ret;
1958 }
1959 EXPORT_SYMBOL(skb_checksum_help);
1960 
1961 /**
1962  *	skb_gso_segment - Perform segmentation on skb.
1963  *	@skb: buffer to segment
1964  *	@features: features for the output path (see dev->features)
1965  *
1966  *	This function segments the given skb and returns a list of segments.
1967  *
1968  *	It may return NULL if the skb requires no segmentation.  This is
1969  *	only possible when GSO is used for verifying header integrity.
1970  */
1971 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1972 	netdev_features_t features)
1973 {
1974 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1975 	struct packet_type *ptype;
1976 	__be16 type = skb->protocol;
1977 	int vlan_depth = ETH_HLEN;
1978 	int err;
1979 
1980 	while (type == htons(ETH_P_8021Q)) {
1981 		struct vlan_hdr *vh;
1982 
1983 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1984 			return ERR_PTR(-EINVAL);
1985 
1986 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1987 		type = vh->h_vlan_encapsulated_proto;
1988 		vlan_depth += VLAN_HLEN;
1989 	}
1990 
1991 	skb_reset_mac_header(skb);
1992 	skb->mac_len = skb->network_header - skb->mac_header;
1993 	__skb_pull(skb, skb->mac_len);
1994 
1995 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1996 		skb_warn_bad_offload(skb);
1997 
1998 		if (skb_header_cloned(skb) &&
1999 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2000 			return ERR_PTR(err);
2001 	}
2002 
2003 	rcu_read_lock();
2004 	list_for_each_entry_rcu(ptype,
2005 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2006 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2007 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2008 				err = ptype->gso_send_check(skb);
2009 				segs = ERR_PTR(err);
2010 				if (err || skb_gso_ok(skb, features))
2011 					break;
2012 				__skb_push(skb, (skb->data -
2013 						 skb_network_header(skb)));
2014 			}
2015 			segs = ptype->gso_segment(skb, features);
2016 			break;
2017 		}
2018 	}
2019 	rcu_read_unlock();
2020 
2021 	__skb_push(skb, skb->data - skb_mac_header(skb));
2022 
2023 	return segs;
2024 }
2025 EXPORT_SYMBOL(skb_gso_segment);
2026 
2027 /* Take action when hardware reception checksum errors are detected. */
2028 #ifdef CONFIG_BUG
2029 void netdev_rx_csum_fault(struct net_device *dev)
2030 {
2031 	if (net_ratelimit()) {
2032 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2033 		dump_stack();
2034 	}
2035 }
2036 EXPORT_SYMBOL(netdev_rx_csum_fault);
2037 #endif
2038 
2039 /* Actually, we should eliminate this check as soon as we know, that:
2040  * 1. IOMMU is present and allows to map all the memory.
2041  * 2. No high memory really exists on this machine.
2042  */
2043 
2044 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2045 {
2046 #ifdef CONFIG_HIGHMEM
2047 	int i;
2048 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2049 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 			if (PageHighMem(skb_frag_page(frag)))
2052 				return 1;
2053 		}
2054 	}
2055 
2056 	if (PCI_DMA_BUS_IS_PHYS) {
2057 		struct device *pdev = dev->dev.parent;
2058 
2059 		if (!pdev)
2060 			return 0;
2061 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2062 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2063 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2064 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2065 				return 1;
2066 		}
2067 	}
2068 #endif
2069 	return 0;
2070 }
2071 
2072 struct dev_gso_cb {
2073 	void (*destructor)(struct sk_buff *skb);
2074 };
2075 
2076 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2077 
2078 static void dev_gso_skb_destructor(struct sk_buff *skb)
2079 {
2080 	struct dev_gso_cb *cb;
2081 
2082 	do {
2083 		struct sk_buff *nskb = skb->next;
2084 
2085 		skb->next = nskb->next;
2086 		nskb->next = NULL;
2087 		kfree_skb(nskb);
2088 	} while (skb->next);
2089 
2090 	cb = DEV_GSO_CB(skb);
2091 	if (cb->destructor)
2092 		cb->destructor(skb);
2093 }
2094 
2095 /**
2096  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2097  *	@skb: buffer to segment
2098  *	@features: device features as applicable to this skb
2099  *
2100  *	This function segments the given skb and stores the list of segments
2101  *	in skb->next.
2102  */
2103 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2104 {
2105 	struct sk_buff *segs;
2106 
2107 	segs = skb_gso_segment(skb, features);
2108 
2109 	/* Verifying header integrity only. */
2110 	if (!segs)
2111 		return 0;
2112 
2113 	if (IS_ERR(segs))
2114 		return PTR_ERR(segs);
2115 
2116 	skb->next = segs;
2117 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2118 	skb->destructor = dev_gso_skb_destructor;
2119 
2120 	return 0;
2121 }
2122 
2123 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2124 {
2125 	return ((features & NETIF_F_GEN_CSUM) ||
2126 		((features & NETIF_F_V4_CSUM) &&
2127 		 protocol == htons(ETH_P_IP)) ||
2128 		((features & NETIF_F_V6_CSUM) &&
2129 		 protocol == htons(ETH_P_IPV6)) ||
2130 		((features & NETIF_F_FCOE_CRC) &&
2131 		 protocol == htons(ETH_P_FCOE)));
2132 }
2133 
2134 static netdev_features_t harmonize_features(struct sk_buff *skb,
2135 	__be16 protocol, netdev_features_t features)
2136 {
2137 	if (!can_checksum_protocol(features, protocol)) {
2138 		features &= ~NETIF_F_ALL_CSUM;
2139 		features &= ~NETIF_F_SG;
2140 	} else if (illegal_highdma(skb->dev, skb)) {
2141 		features &= ~NETIF_F_SG;
2142 	}
2143 
2144 	return features;
2145 }
2146 
2147 netdev_features_t netif_skb_features(struct sk_buff *skb)
2148 {
2149 	__be16 protocol = skb->protocol;
2150 	netdev_features_t features = skb->dev->features;
2151 
2152 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2153 		features &= ~NETIF_F_GSO_MASK;
2154 
2155 	if (protocol == htons(ETH_P_8021Q)) {
2156 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2157 		protocol = veh->h_vlan_encapsulated_proto;
2158 	} else if (!vlan_tx_tag_present(skb)) {
2159 		return harmonize_features(skb, protocol, features);
2160 	}
2161 
2162 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2163 
2164 	if (protocol != htons(ETH_P_8021Q)) {
2165 		return harmonize_features(skb, protocol, features);
2166 	} else {
2167 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2168 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2169 		return harmonize_features(skb, protocol, features);
2170 	}
2171 }
2172 EXPORT_SYMBOL(netif_skb_features);
2173 
2174 /*
2175  * Returns true if either:
2176  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2177  *	2. skb is fragmented and the device does not support SG, or if
2178  *	   at least one of fragments is in highmem and device does not
2179  *	   support DMA from it.
2180  */
2181 static inline int skb_needs_linearize(struct sk_buff *skb,
2182 				      int features)
2183 {
2184 	return skb_is_nonlinear(skb) &&
2185 			((skb_has_frag_list(skb) &&
2186 				!(features & NETIF_F_FRAGLIST)) ||
2187 			(skb_shinfo(skb)->nr_frags &&
2188 				!(features & NETIF_F_SG)));
2189 }
2190 
2191 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2192 			struct netdev_queue *txq)
2193 {
2194 	const struct net_device_ops *ops = dev->netdev_ops;
2195 	int rc = NETDEV_TX_OK;
2196 	unsigned int skb_len;
2197 
2198 	if (likely(!skb->next)) {
2199 		netdev_features_t features;
2200 
2201 		/*
2202 		 * If device doesn't need skb->dst, release it right now while
2203 		 * its hot in this cpu cache
2204 		 */
2205 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2206 			skb_dst_drop(skb);
2207 
2208 		if (!list_empty(&ptype_all))
2209 			dev_queue_xmit_nit(skb, dev);
2210 
2211 		features = netif_skb_features(skb);
2212 
2213 		if (vlan_tx_tag_present(skb) &&
2214 		    !(features & NETIF_F_HW_VLAN_TX)) {
2215 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2216 			if (unlikely(!skb))
2217 				goto out;
2218 
2219 			skb->vlan_tci = 0;
2220 		}
2221 
2222 		if (netif_needs_gso(skb, features)) {
2223 			if (unlikely(dev_gso_segment(skb, features)))
2224 				goto out_kfree_skb;
2225 			if (skb->next)
2226 				goto gso;
2227 		} else {
2228 			if (skb_needs_linearize(skb, features) &&
2229 			    __skb_linearize(skb))
2230 				goto out_kfree_skb;
2231 
2232 			/* If packet is not checksummed and device does not
2233 			 * support checksumming for this protocol, complete
2234 			 * checksumming here.
2235 			 */
2236 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2237 				skb_set_transport_header(skb,
2238 					skb_checksum_start_offset(skb));
2239 				if (!(features & NETIF_F_ALL_CSUM) &&
2240 				     skb_checksum_help(skb))
2241 					goto out_kfree_skb;
2242 			}
2243 		}
2244 
2245 		skb_len = skb->len;
2246 		rc = ops->ndo_start_xmit(skb, dev);
2247 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2248 		if (rc == NETDEV_TX_OK)
2249 			txq_trans_update(txq);
2250 		return rc;
2251 	}
2252 
2253 gso:
2254 	do {
2255 		struct sk_buff *nskb = skb->next;
2256 
2257 		skb->next = nskb->next;
2258 		nskb->next = NULL;
2259 
2260 		/*
2261 		 * If device doesn't need nskb->dst, release it right now while
2262 		 * its hot in this cpu cache
2263 		 */
2264 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2265 			skb_dst_drop(nskb);
2266 
2267 		skb_len = nskb->len;
2268 		rc = ops->ndo_start_xmit(nskb, dev);
2269 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2270 		if (unlikely(rc != NETDEV_TX_OK)) {
2271 			if (rc & ~NETDEV_TX_MASK)
2272 				goto out_kfree_gso_skb;
2273 			nskb->next = skb->next;
2274 			skb->next = nskb;
2275 			return rc;
2276 		}
2277 		txq_trans_update(txq);
2278 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2279 			return NETDEV_TX_BUSY;
2280 	} while (skb->next);
2281 
2282 out_kfree_gso_skb:
2283 	if (likely(skb->next == NULL))
2284 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2285 out_kfree_skb:
2286 	kfree_skb(skb);
2287 out:
2288 	return rc;
2289 }
2290 
2291 static u32 hashrnd __read_mostly;
2292 
2293 /*
2294  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2295  * to be used as a distribution range.
2296  */
2297 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2298 		  unsigned int num_tx_queues)
2299 {
2300 	u32 hash;
2301 	u16 qoffset = 0;
2302 	u16 qcount = num_tx_queues;
2303 
2304 	if (skb_rx_queue_recorded(skb)) {
2305 		hash = skb_get_rx_queue(skb);
2306 		while (unlikely(hash >= num_tx_queues))
2307 			hash -= num_tx_queues;
2308 		return hash;
2309 	}
2310 
2311 	if (dev->num_tc) {
2312 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2313 		qoffset = dev->tc_to_txq[tc].offset;
2314 		qcount = dev->tc_to_txq[tc].count;
2315 	}
2316 
2317 	if (skb->sk && skb->sk->sk_hash)
2318 		hash = skb->sk->sk_hash;
2319 	else
2320 		hash = (__force u16) skb->protocol;
2321 	hash = jhash_1word(hash, hashrnd);
2322 
2323 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2324 }
2325 EXPORT_SYMBOL(__skb_tx_hash);
2326 
2327 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2328 {
2329 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2330 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2331 				     dev->name, queue_index,
2332 				     dev->real_num_tx_queues);
2333 		return 0;
2334 	}
2335 	return queue_index;
2336 }
2337 
2338 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2339 {
2340 #ifdef CONFIG_XPS
2341 	struct xps_dev_maps *dev_maps;
2342 	struct xps_map *map;
2343 	int queue_index = -1;
2344 
2345 	rcu_read_lock();
2346 	dev_maps = rcu_dereference(dev->xps_maps);
2347 	if (dev_maps) {
2348 		map = rcu_dereference(
2349 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2350 		if (map) {
2351 			if (map->len == 1)
2352 				queue_index = map->queues[0];
2353 			else {
2354 				u32 hash;
2355 				if (skb->sk && skb->sk->sk_hash)
2356 					hash = skb->sk->sk_hash;
2357 				else
2358 					hash = (__force u16) skb->protocol ^
2359 					    skb->rxhash;
2360 				hash = jhash_1word(hash, hashrnd);
2361 				queue_index = map->queues[
2362 				    ((u64)hash * map->len) >> 32];
2363 			}
2364 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2365 				queue_index = -1;
2366 		}
2367 	}
2368 	rcu_read_unlock();
2369 
2370 	return queue_index;
2371 #else
2372 	return -1;
2373 #endif
2374 }
2375 
2376 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2377 					struct sk_buff *skb)
2378 {
2379 	int queue_index;
2380 	const struct net_device_ops *ops = dev->netdev_ops;
2381 
2382 	if (dev->real_num_tx_queues == 1)
2383 		queue_index = 0;
2384 	else if (ops->ndo_select_queue) {
2385 		queue_index = ops->ndo_select_queue(dev, skb);
2386 		queue_index = dev_cap_txqueue(dev, queue_index);
2387 	} else {
2388 		struct sock *sk = skb->sk;
2389 		queue_index = sk_tx_queue_get(sk);
2390 
2391 		if (queue_index < 0 || skb->ooo_okay ||
2392 		    queue_index >= dev->real_num_tx_queues) {
2393 			int old_index = queue_index;
2394 
2395 			queue_index = get_xps_queue(dev, skb);
2396 			if (queue_index < 0)
2397 				queue_index = skb_tx_hash(dev, skb);
2398 
2399 			if (queue_index != old_index && sk) {
2400 				struct dst_entry *dst =
2401 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2402 
2403 				if (dst && skb_dst(skb) == dst)
2404 					sk_tx_queue_set(sk, queue_index);
2405 			}
2406 		}
2407 	}
2408 
2409 	skb_set_queue_mapping(skb, queue_index);
2410 	return netdev_get_tx_queue(dev, queue_index);
2411 }
2412 
2413 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2414 				 struct net_device *dev,
2415 				 struct netdev_queue *txq)
2416 {
2417 	spinlock_t *root_lock = qdisc_lock(q);
2418 	bool contended;
2419 	int rc;
2420 
2421 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2422 	qdisc_calculate_pkt_len(skb, q);
2423 	/*
2424 	 * Heuristic to force contended enqueues to serialize on a
2425 	 * separate lock before trying to get qdisc main lock.
2426 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2427 	 * and dequeue packets faster.
2428 	 */
2429 	contended = qdisc_is_running(q);
2430 	if (unlikely(contended))
2431 		spin_lock(&q->busylock);
2432 
2433 	spin_lock(root_lock);
2434 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2435 		kfree_skb(skb);
2436 		rc = NET_XMIT_DROP;
2437 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2438 		   qdisc_run_begin(q)) {
2439 		/*
2440 		 * This is a work-conserving queue; there are no old skbs
2441 		 * waiting to be sent out; and the qdisc is not running -
2442 		 * xmit the skb directly.
2443 		 */
2444 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2445 			skb_dst_force(skb);
2446 
2447 		qdisc_bstats_update(q, skb);
2448 
2449 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2450 			if (unlikely(contended)) {
2451 				spin_unlock(&q->busylock);
2452 				contended = false;
2453 			}
2454 			__qdisc_run(q);
2455 		} else
2456 			qdisc_run_end(q);
2457 
2458 		rc = NET_XMIT_SUCCESS;
2459 	} else {
2460 		skb_dst_force(skb);
2461 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2462 		if (qdisc_run_begin(q)) {
2463 			if (unlikely(contended)) {
2464 				spin_unlock(&q->busylock);
2465 				contended = false;
2466 			}
2467 			__qdisc_run(q);
2468 		}
2469 	}
2470 	spin_unlock(root_lock);
2471 	if (unlikely(contended))
2472 		spin_unlock(&q->busylock);
2473 	return rc;
2474 }
2475 
2476 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2477 static void skb_update_prio(struct sk_buff *skb)
2478 {
2479 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2480 
2481 	if (!skb->priority && skb->sk && map) {
2482 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2483 
2484 		if (prioidx < map->priomap_len)
2485 			skb->priority = map->priomap[prioidx];
2486 	}
2487 }
2488 #else
2489 #define skb_update_prio(skb)
2490 #endif
2491 
2492 static DEFINE_PER_CPU(int, xmit_recursion);
2493 #define RECURSION_LIMIT 10
2494 
2495 /**
2496  *	dev_loopback_xmit - loop back @skb
2497  *	@skb: buffer to transmit
2498  */
2499 int dev_loopback_xmit(struct sk_buff *skb)
2500 {
2501 	skb_reset_mac_header(skb);
2502 	__skb_pull(skb, skb_network_offset(skb));
2503 	skb->pkt_type = PACKET_LOOPBACK;
2504 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2505 	WARN_ON(!skb_dst(skb));
2506 	skb_dst_force(skb);
2507 	netif_rx_ni(skb);
2508 	return 0;
2509 }
2510 EXPORT_SYMBOL(dev_loopback_xmit);
2511 
2512 /**
2513  *	dev_queue_xmit - transmit a buffer
2514  *	@skb: buffer to transmit
2515  *
2516  *	Queue a buffer for transmission to a network device. The caller must
2517  *	have set the device and priority and built the buffer before calling
2518  *	this function. The function can be called from an interrupt.
2519  *
2520  *	A negative errno code is returned on a failure. A success does not
2521  *	guarantee the frame will be transmitted as it may be dropped due
2522  *	to congestion or traffic shaping.
2523  *
2524  * -----------------------------------------------------------------------------------
2525  *      I notice this method can also return errors from the queue disciplines,
2526  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2527  *      be positive.
2528  *
2529  *      Regardless of the return value, the skb is consumed, so it is currently
2530  *      difficult to retry a send to this method.  (You can bump the ref count
2531  *      before sending to hold a reference for retry if you are careful.)
2532  *
2533  *      When calling this method, interrupts MUST be enabled.  This is because
2534  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2535  *          --BLG
2536  */
2537 int dev_queue_xmit(struct sk_buff *skb)
2538 {
2539 	struct net_device *dev = skb->dev;
2540 	struct netdev_queue *txq;
2541 	struct Qdisc *q;
2542 	int rc = -ENOMEM;
2543 
2544 	/* Disable soft irqs for various locks below. Also
2545 	 * stops preemption for RCU.
2546 	 */
2547 	rcu_read_lock_bh();
2548 
2549 	skb_update_prio(skb);
2550 
2551 	txq = dev_pick_tx(dev, skb);
2552 	q = rcu_dereference_bh(txq->qdisc);
2553 
2554 #ifdef CONFIG_NET_CLS_ACT
2555 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2556 #endif
2557 	trace_net_dev_queue(skb);
2558 	if (q->enqueue) {
2559 		rc = __dev_xmit_skb(skb, q, dev, txq);
2560 		goto out;
2561 	}
2562 
2563 	/* The device has no queue. Common case for software devices:
2564 	   loopback, all the sorts of tunnels...
2565 
2566 	   Really, it is unlikely that netif_tx_lock protection is necessary
2567 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2568 	   counters.)
2569 	   However, it is possible, that they rely on protection
2570 	   made by us here.
2571 
2572 	   Check this and shot the lock. It is not prone from deadlocks.
2573 	   Either shot noqueue qdisc, it is even simpler 8)
2574 	 */
2575 	if (dev->flags & IFF_UP) {
2576 		int cpu = smp_processor_id(); /* ok because BHs are off */
2577 
2578 		if (txq->xmit_lock_owner != cpu) {
2579 
2580 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2581 				goto recursion_alert;
2582 
2583 			HARD_TX_LOCK(dev, txq, cpu);
2584 
2585 			if (!netif_xmit_stopped(txq)) {
2586 				__this_cpu_inc(xmit_recursion);
2587 				rc = dev_hard_start_xmit(skb, dev, txq);
2588 				__this_cpu_dec(xmit_recursion);
2589 				if (dev_xmit_complete(rc)) {
2590 					HARD_TX_UNLOCK(dev, txq);
2591 					goto out;
2592 				}
2593 			}
2594 			HARD_TX_UNLOCK(dev, txq);
2595 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2596 					     dev->name);
2597 		} else {
2598 			/* Recursion is detected! It is possible,
2599 			 * unfortunately
2600 			 */
2601 recursion_alert:
2602 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2603 					     dev->name);
2604 		}
2605 	}
2606 
2607 	rc = -ENETDOWN;
2608 	rcu_read_unlock_bh();
2609 
2610 	kfree_skb(skb);
2611 	return rc;
2612 out:
2613 	rcu_read_unlock_bh();
2614 	return rc;
2615 }
2616 EXPORT_SYMBOL(dev_queue_xmit);
2617 
2618 
2619 /*=======================================================================
2620 			Receiver routines
2621   =======================================================================*/
2622 
2623 int netdev_max_backlog __read_mostly = 1000;
2624 int netdev_tstamp_prequeue __read_mostly = 1;
2625 int netdev_budget __read_mostly = 300;
2626 int weight_p __read_mostly = 64;            /* old backlog weight */
2627 
2628 /* Called with irq disabled */
2629 static inline void ____napi_schedule(struct softnet_data *sd,
2630 				     struct napi_struct *napi)
2631 {
2632 	list_add_tail(&napi->poll_list, &sd->poll_list);
2633 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2634 }
2635 
2636 /*
2637  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2638  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2639  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2640  * if hash is a canonical 4-tuple hash over transport ports.
2641  */
2642 void __skb_get_rxhash(struct sk_buff *skb)
2643 {
2644 	struct flow_keys keys;
2645 	u32 hash;
2646 
2647 	if (!skb_flow_dissect(skb, &keys))
2648 		return;
2649 
2650 	if (keys.ports)
2651 		skb->l4_rxhash = 1;
2652 
2653 	/* get a consistent hash (same value on both flow directions) */
2654 	if (((__force u32)keys.dst < (__force u32)keys.src) ||
2655 	    (((__force u32)keys.dst == (__force u32)keys.src) &&
2656 	     ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2657 		swap(keys.dst, keys.src);
2658 		swap(keys.port16[0], keys.port16[1]);
2659 	}
2660 
2661 	hash = jhash_3words((__force u32)keys.dst,
2662 			    (__force u32)keys.src,
2663 			    (__force u32)keys.ports, hashrnd);
2664 	if (!hash)
2665 		hash = 1;
2666 
2667 	skb->rxhash = hash;
2668 }
2669 EXPORT_SYMBOL(__skb_get_rxhash);
2670 
2671 #ifdef CONFIG_RPS
2672 
2673 /* One global table that all flow-based protocols share. */
2674 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2675 EXPORT_SYMBOL(rps_sock_flow_table);
2676 
2677 struct static_key rps_needed __read_mostly;
2678 
2679 static struct rps_dev_flow *
2680 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2681 	    struct rps_dev_flow *rflow, u16 next_cpu)
2682 {
2683 	if (next_cpu != RPS_NO_CPU) {
2684 #ifdef CONFIG_RFS_ACCEL
2685 		struct netdev_rx_queue *rxqueue;
2686 		struct rps_dev_flow_table *flow_table;
2687 		struct rps_dev_flow *old_rflow;
2688 		u32 flow_id;
2689 		u16 rxq_index;
2690 		int rc;
2691 
2692 		/* Should we steer this flow to a different hardware queue? */
2693 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2694 		    !(dev->features & NETIF_F_NTUPLE))
2695 			goto out;
2696 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2697 		if (rxq_index == skb_get_rx_queue(skb))
2698 			goto out;
2699 
2700 		rxqueue = dev->_rx + rxq_index;
2701 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2702 		if (!flow_table)
2703 			goto out;
2704 		flow_id = skb->rxhash & flow_table->mask;
2705 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2706 							rxq_index, flow_id);
2707 		if (rc < 0)
2708 			goto out;
2709 		old_rflow = rflow;
2710 		rflow = &flow_table->flows[flow_id];
2711 		rflow->filter = rc;
2712 		if (old_rflow->filter == rflow->filter)
2713 			old_rflow->filter = RPS_NO_FILTER;
2714 	out:
2715 #endif
2716 		rflow->last_qtail =
2717 			per_cpu(softnet_data, next_cpu).input_queue_head;
2718 	}
2719 
2720 	rflow->cpu = next_cpu;
2721 	return rflow;
2722 }
2723 
2724 /*
2725  * get_rps_cpu is called from netif_receive_skb and returns the target
2726  * CPU from the RPS map of the receiving queue for a given skb.
2727  * rcu_read_lock must be held on entry.
2728  */
2729 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2730 		       struct rps_dev_flow **rflowp)
2731 {
2732 	struct netdev_rx_queue *rxqueue;
2733 	struct rps_map *map;
2734 	struct rps_dev_flow_table *flow_table;
2735 	struct rps_sock_flow_table *sock_flow_table;
2736 	int cpu = -1;
2737 	u16 tcpu;
2738 
2739 	if (skb_rx_queue_recorded(skb)) {
2740 		u16 index = skb_get_rx_queue(skb);
2741 		if (unlikely(index >= dev->real_num_rx_queues)) {
2742 			WARN_ONCE(dev->real_num_rx_queues > 1,
2743 				  "%s received packet on queue %u, but number "
2744 				  "of RX queues is %u\n",
2745 				  dev->name, index, dev->real_num_rx_queues);
2746 			goto done;
2747 		}
2748 		rxqueue = dev->_rx + index;
2749 	} else
2750 		rxqueue = dev->_rx;
2751 
2752 	map = rcu_dereference(rxqueue->rps_map);
2753 	if (map) {
2754 		if (map->len == 1 &&
2755 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2756 			tcpu = map->cpus[0];
2757 			if (cpu_online(tcpu))
2758 				cpu = tcpu;
2759 			goto done;
2760 		}
2761 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2762 		goto done;
2763 	}
2764 
2765 	skb_reset_network_header(skb);
2766 	if (!skb_get_rxhash(skb))
2767 		goto done;
2768 
2769 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2770 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2771 	if (flow_table && sock_flow_table) {
2772 		u16 next_cpu;
2773 		struct rps_dev_flow *rflow;
2774 
2775 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2776 		tcpu = rflow->cpu;
2777 
2778 		next_cpu = sock_flow_table->ents[skb->rxhash &
2779 		    sock_flow_table->mask];
2780 
2781 		/*
2782 		 * If the desired CPU (where last recvmsg was done) is
2783 		 * different from current CPU (one in the rx-queue flow
2784 		 * table entry), switch if one of the following holds:
2785 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2786 		 *   - Current CPU is offline.
2787 		 *   - The current CPU's queue tail has advanced beyond the
2788 		 *     last packet that was enqueued using this table entry.
2789 		 *     This guarantees that all previous packets for the flow
2790 		 *     have been dequeued, thus preserving in order delivery.
2791 		 */
2792 		if (unlikely(tcpu != next_cpu) &&
2793 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2794 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2795 		      rflow->last_qtail)) >= 0))
2796 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2797 
2798 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2799 			*rflowp = rflow;
2800 			cpu = tcpu;
2801 			goto done;
2802 		}
2803 	}
2804 
2805 	if (map) {
2806 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2807 
2808 		if (cpu_online(tcpu)) {
2809 			cpu = tcpu;
2810 			goto done;
2811 		}
2812 	}
2813 
2814 done:
2815 	return cpu;
2816 }
2817 
2818 #ifdef CONFIG_RFS_ACCEL
2819 
2820 /**
2821  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2822  * @dev: Device on which the filter was set
2823  * @rxq_index: RX queue index
2824  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2825  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2826  *
2827  * Drivers that implement ndo_rx_flow_steer() should periodically call
2828  * this function for each installed filter and remove the filters for
2829  * which it returns %true.
2830  */
2831 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2832 			 u32 flow_id, u16 filter_id)
2833 {
2834 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2835 	struct rps_dev_flow_table *flow_table;
2836 	struct rps_dev_flow *rflow;
2837 	bool expire = true;
2838 	int cpu;
2839 
2840 	rcu_read_lock();
2841 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2842 	if (flow_table && flow_id <= flow_table->mask) {
2843 		rflow = &flow_table->flows[flow_id];
2844 		cpu = ACCESS_ONCE(rflow->cpu);
2845 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2846 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2847 			   rflow->last_qtail) <
2848 		     (int)(10 * flow_table->mask)))
2849 			expire = false;
2850 	}
2851 	rcu_read_unlock();
2852 	return expire;
2853 }
2854 EXPORT_SYMBOL(rps_may_expire_flow);
2855 
2856 #endif /* CONFIG_RFS_ACCEL */
2857 
2858 /* Called from hardirq (IPI) context */
2859 static void rps_trigger_softirq(void *data)
2860 {
2861 	struct softnet_data *sd = data;
2862 
2863 	____napi_schedule(sd, &sd->backlog);
2864 	sd->received_rps++;
2865 }
2866 
2867 #endif /* CONFIG_RPS */
2868 
2869 /*
2870  * Check if this softnet_data structure is another cpu one
2871  * If yes, queue it to our IPI list and return 1
2872  * If no, return 0
2873  */
2874 static int rps_ipi_queued(struct softnet_data *sd)
2875 {
2876 #ifdef CONFIG_RPS
2877 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2878 
2879 	if (sd != mysd) {
2880 		sd->rps_ipi_next = mysd->rps_ipi_list;
2881 		mysd->rps_ipi_list = sd;
2882 
2883 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2884 		return 1;
2885 	}
2886 #endif /* CONFIG_RPS */
2887 	return 0;
2888 }
2889 
2890 /*
2891  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2892  * queue (may be a remote CPU queue).
2893  */
2894 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2895 			      unsigned int *qtail)
2896 {
2897 	struct softnet_data *sd;
2898 	unsigned long flags;
2899 
2900 	sd = &per_cpu(softnet_data, cpu);
2901 
2902 	local_irq_save(flags);
2903 
2904 	rps_lock(sd);
2905 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2906 		if (skb_queue_len(&sd->input_pkt_queue)) {
2907 enqueue:
2908 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2909 			input_queue_tail_incr_save(sd, qtail);
2910 			rps_unlock(sd);
2911 			local_irq_restore(flags);
2912 			return NET_RX_SUCCESS;
2913 		}
2914 
2915 		/* Schedule NAPI for backlog device
2916 		 * We can use non atomic operation since we own the queue lock
2917 		 */
2918 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2919 			if (!rps_ipi_queued(sd))
2920 				____napi_schedule(sd, &sd->backlog);
2921 		}
2922 		goto enqueue;
2923 	}
2924 
2925 	sd->dropped++;
2926 	rps_unlock(sd);
2927 
2928 	local_irq_restore(flags);
2929 
2930 	atomic_long_inc(&skb->dev->rx_dropped);
2931 	kfree_skb(skb);
2932 	return NET_RX_DROP;
2933 }
2934 
2935 /**
2936  *	netif_rx	-	post buffer to the network code
2937  *	@skb: buffer to post
2938  *
2939  *	This function receives a packet from a device driver and queues it for
2940  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2941  *	may be dropped during processing for congestion control or by the
2942  *	protocol layers.
2943  *
2944  *	return values:
2945  *	NET_RX_SUCCESS	(no congestion)
2946  *	NET_RX_DROP     (packet was dropped)
2947  *
2948  */
2949 
2950 int netif_rx(struct sk_buff *skb)
2951 {
2952 	int ret;
2953 
2954 	/* if netpoll wants it, pretend we never saw it */
2955 	if (netpoll_rx(skb))
2956 		return NET_RX_DROP;
2957 
2958 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2959 
2960 	trace_netif_rx(skb);
2961 #ifdef CONFIG_RPS
2962 	if (static_key_false(&rps_needed)) {
2963 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2964 		int cpu;
2965 
2966 		preempt_disable();
2967 		rcu_read_lock();
2968 
2969 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2970 		if (cpu < 0)
2971 			cpu = smp_processor_id();
2972 
2973 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2974 
2975 		rcu_read_unlock();
2976 		preempt_enable();
2977 	} else
2978 #endif
2979 	{
2980 		unsigned int qtail;
2981 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2982 		put_cpu();
2983 	}
2984 	return ret;
2985 }
2986 EXPORT_SYMBOL(netif_rx);
2987 
2988 int netif_rx_ni(struct sk_buff *skb)
2989 {
2990 	int err;
2991 
2992 	preempt_disable();
2993 	err = netif_rx(skb);
2994 	if (local_softirq_pending())
2995 		do_softirq();
2996 	preempt_enable();
2997 
2998 	return err;
2999 }
3000 EXPORT_SYMBOL(netif_rx_ni);
3001 
3002 static void net_tx_action(struct softirq_action *h)
3003 {
3004 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3005 
3006 	if (sd->completion_queue) {
3007 		struct sk_buff *clist;
3008 
3009 		local_irq_disable();
3010 		clist = sd->completion_queue;
3011 		sd->completion_queue = NULL;
3012 		local_irq_enable();
3013 
3014 		while (clist) {
3015 			struct sk_buff *skb = clist;
3016 			clist = clist->next;
3017 
3018 			WARN_ON(atomic_read(&skb->users));
3019 			trace_kfree_skb(skb, net_tx_action);
3020 			__kfree_skb(skb);
3021 		}
3022 	}
3023 
3024 	if (sd->output_queue) {
3025 		struct Qdisc *head;
3026 
3027 		local_irq_disable();
3028 		head = sd->output_queue;
3029 		sd->output_queue = NULL;
3030 		sd->output_queue_tailp = &sd->output_queue;
3031 		local_irq_enable();
3032 
3033 		while (head) {
3034 			struct Qdisc *q = head;
3035 			spinlock_t *root_lock;
3036 
3037 			head = head->next_sched;
3038 
3039 			root_lock = qdisc_lock(q);
3040 			if (spin_trylock(root_lock)) {
3041 				smp_mb__before_clear_bit();
3042 				clear_bit(__QDISC_STATE_SCHED,
3043 					  &q->state);
3044 				qdisc_run(q);
3045 				spin_unlock(root_lock);
3046 			} else {
3047 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3048 					      &q->state)) {
3049 					__netif_reschedule(q);
3050 				} else {
3051 					smp_mb__before_clear_bit();
3052 					clear_bit(__QDISC_STATE_SCHED,
3053 						  &q->state);
3054 				}
3055 			}
3056 		}
3057 	}
3058 }
3059 
3060 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3061     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3062 /* This hook is defined here for ATM LANE */
3063 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3064 			     unsigned char *addr) __read_mostly;
3065 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3066 #endif
3067 
3068 #ifdef CONFIG_NET_CLS_ACT
3069 /* TODO: Maybe we should just force sch_ingress to be compiled in
3070  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3071  * a compare and 2 stores extra right now if we dont have it on
3072  * but have CONFIG_NET_CLS_ACT
3073  * NOTE: This doesn't stop any functionality; if you dont have
3074  * the ingress scheduler, you just can't add policies on ingress.
3075  *
3076  */
3077 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3078 {
3079 	struct net_device *dev = skb->dev;
3080 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3081 	int result = TC_ACT_OK;
3082 	struct Qdisc *q;
3083 
3084 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3085 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3086 				     skb->skb_iif, dev->ifindex);
3087 		return TC_ACT_SHOT;
3088 	}
3089 
3090 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3091 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3092 
3093 	q = rxq->qdisc;
3094 	if (q != &noop_qdisc) {
3095 		spin_lock(qdisc_lock(q));
3096 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3097 			result = qdisc_enqueue_root(skb, q);
3098 		spin_unlock(qdisc_lock(q));
3099 	}
3100 
3101 	return result;
3102 }
3103 
3104 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3105 					 struct packet_type **pt_prev,
3106 					 int *ret, struct net_device *orig_dev)
3107 {
3108 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3109 
3110 	if (!rxq || rxq->qdisc == &noop_qdisc)
3111 		goto out;
3112 
3113 	if (*pt_prev) {
3114 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3115 		*pt_prev = NULL;
3116 	}
3117 
3118 	switch (ing_filter(skb, rxq)) {
3119 	case TC_ACT_SHOT:
3120 	case TC_ACT_STOLEN:
3121 		kfree_skb(skb);
3122 		return NULL;
3123 	}
3124 
3125 out:
3126 	skb->tc_verd = 0;
3127 	return skb;
3128 }
3129 #endif
3130 
3131 /**
3132  *	netdev_rx_handler_register - register receive handler
3133  *	@dev: device to register a handler for
3134  *	@rx_handler: receive handler to register
3135  *	@rx_handler_data: data pointer that is used by rx handler
3136  *
3137  *	Register a receive hander for a device. This handler will then be
3138  *	called from __netif_receive_skb. A negative errno code is returned
3139  *	on a failure.
3140  *
3141  *	The caller must hold the rtnl_mutex.
3142  *
3143  *	For a general description of rx_handler, see enum rx_handler_result.
3144  */
3145 int netdev_rx_handler_register(struct net_device *dev,
3146 			       rx_handler_func_t *rx_handler,
3147 			       void *rx_handler_data)
3148 {
3149 	ASSERT_RTNL();
3150 
3151 	if (dev->rx_handler)
3152 		return -EBUSY;
3153 
3154 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3155 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3156 
3157 	return 0;
3158 }
3159 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3160 
3161 /**
3162  *	netdev_rx_handler_unregister - unregister receive handler
3163  *	@dev: device to unregister a handler from
3164  *
3165  *	Unregister a receive hander from a device.
3166  *
3167  *	The caller must hold the rtnl_mutex.
3168  */
3169 void netdev_rx_handler_unregister(struct net_device *dev)
3170 {
3171 
3172 	ASSERT_RTNL();
3173 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3174 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3175 }
3176 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3177 
3178 /*
3179  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3180  * the special handling of PFMEMALLOC skbs.
3181  */
3182 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3183 {
3184 	switch (skb->protocol) {
3185 	case __constant_htons(ETH_P_ARP):
3186 	case __constant_htons(ETH_P_IP):
3187 	case __constant_htons(ETH_P_IPV6):
3188 	case __constant_htons(ETH_P_8021Q):
3189 		return true;
3190 	default:
3191 		return false;
3192 	}
3193 }
3194 
3195 static int __netif_receive_skb(struct sk_buff *skb)
3196 {
3197 	struct packet_type *ptype, *pt_prev;
3198 	rx_handler_func_t *rx_handler;
3199 	struct net_device *orig_dev;
3200 	struct net_device *null_or_dev;
3201 	bool deliver_exact = false;
3202 	int ret = NET_RX_DROP;
3203 	__be16 type;
3204 	unsigned long pflags = current->flags;
3205 
3206 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3207 
3208 	trace_netif_receive_skb(skb);
3209 
3210 	/*
3211 	 * PFMEMALLOC skbs are special, they should
3212 	 * - be delivered to SOCK_MEMALLOC sockets only
3213 	 * - stay away from userspace
3214 	 * - have bounded memory usage
3215 	 *
3216 	 * Use PF_MEMALLOC as this saves us from propagating the allocation
3217 	 * context down to all allocation sites.
3218 	 */
3219 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3220 		current->flags |= PF_MEMALLOC;
3221 
3222 	/* if we've gotten here through NAPI, check netpoll */
3223 	if (netpoll_receive_skb(skb))
3224 		goto out;
3225 
3226 	orig_dev = skb->dev;
3227 
3228 	skb_reset_network_header(skb);
3229 	skb_reset_transport_header(skb);
3230 	skb_reset_mac_len(skb);
3231 
3232 	pt_prev = NULL;
3233 
3234 	rcu_read_lock();
3235 
3236 another_round:
3237 	skb->skb_iif = skb->dev->ifindex;
3238 
3239 	__this_cpu_inc(softnet_data.processed);
3240 
3241 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3242 		skb = vlan_untag(skb);
3243 		if (unlikely(!skb))
3244 			goto unlock;
3245 	}
3246 
3247 #ifdef CONFIG_NET_CLS_ACT
3248 	if (skb->tc_verd & TC_NCLS) {
3249 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3250 		goto ncls;
3251 	}
3252 #endif
3253 
3254 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3255 		goto skip_taps;
3256 
3257 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3258 		if (!ptype->dev || ptype->dev == skb->dev) {
3259 			if (pt_prev)
3260 				ret = deliver_skb(skb, pt_prev, orig_dev);
3261 			pt_prev = ptype;
3262 		}
3263 	}
3264 
3265 skip_taps:
3266 #ifdef CONFIG_NET_CLS_ACT
3267 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3268 	if (!skb)
3269 		goto unlock;
3270 ncls:
3271 #endif
3272 
3273 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3274 				&& !skb_pfmemalloc_protocol(skb))
3275 		goto drop;
3276 
3277 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3278 	if (vlan_tx_tag_present(skb)) {
3279 		if (pt_prev) {
3280 			ret = deliver_skb(skb, pt_prev, orig_dev);
3281 			pt_prev = NULL;
3282 		}
3283 		if (vlan_do_receive(&skb, !rx_handler))
3284 			goto another_round;
3285 		else if (unlikely(!skb))
3286 			goto unlock;
3287 	}
3288 
3289 	if (rx_handler) {
3290 		if (pt_prev) {
3291 			ret = deliver_skb(skb, pt_prev, orig_dev);
3292 			pt_prev = NULL;
3293 		}
3294 		switch (rx_handler(&skb)) {
3295 		case RX_HANDLER_CONSUMED:
3296 			goto unlock;
3297 		case RX_HANDLER_ANOTHER:
3298 			goto another_round;
3299 		case RX_HANDLER_EXACT:
3300 			deliver_exact = true;
3301 		case RX_HANDLER_PASS:
3302 			break;
3303 		default:
3304 			BUG();
3305 		}
3306 	}
3307 
3308 	/* deliver only exact match when indicated */
3309 	null_or_dev = deliver_exact ? skb->dev : NULL;
3310 
3311 	type = skb->protocol;
3312 	list_for_each_entry_rcu(ptype,
3313 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3314 		if (ptype->type == type &&
3315 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3316 		     ptype->dev == orig_dev)) {
3317 			if (pt_prev)
3318 				ret = deliver_skb(skb, pt_prev, orig_dev);
3319 			pt_prev = ptype;
3320 		}
3321 	}
3322 
3323 	if (pt_prev) {
3324 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3325 			ret = -ENOMEM;
3326 		else
3327 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3328 	} else {
3329 drop:
3330 		atomic_long_inc(&skb->dev->rx_dropped);
3331 		kfree_skb(skb);
3332 		/* Jamal, now you will not able to escape explaining
3333 		 * me how you were going to use this. :-)
3334 		 */
3335 		ret = NET_RX_DROP;
3336 	}
3337 
3338 unlock:
3339 	rcu_read_unlock();
3340 out:
3341 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
3342 	return ret;
3343 }
3344 
3345 /**
3346  *	netif_receive_skb - process receive buffer from network
3347  *	@skb: buffer to process
3348  *
3349  *	netif_receive_skb() is the main receive data processing function.
3350  *	It always succeeds. The buffer may be dropped during processing
3351  *	for congestion control or by the protocol layers.
3352  *
3353  *	This function may only be called from softirq context and interrupts
3354  *	should be enabled.
3355  *
3356  *	Return values (usually ignored):
3357  *	NET_RX_SUCCESS: no congestion
3358  *	NET_RX_DROP: packet was dropped
3359  */
3360 int netif_receive_skb(struct sk_buff *skb)
3361 {
3362 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3363 
3364 	if (skb_defer_rx_timestamp(skb))
3365 		return NET_RX_SUCCESS;
3366 
3367 #ifdef CONFIG_RPS
3368 	if (static_key_false(&rps_needed)) {
3369 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3370 		int cpu, ret;
3371 
3372 		rcu_read_lock();
3373 
3374 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3375 
3376 		if (cpu >= 0) {
3377 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3378 			rcu_read_unlock();
3379 			return ret;
3380 		}
3381 		rcu_read_unlock();
3382 	}
3383 #endif
3384 	return __netif_receive_skb(skb);
3385 }
3386 EXPORT_SYMBOL(netif_receive_skb);
3387 
3388 /* Network device is going away, flush any packets still pending
3389  * Called with irqs disabled.
3390  */
3391 static void flush_backlog(void *arg)
3392 {
3393 	struct net_device *dev = arg;
3394 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3395 	struct sk_buff *skb, *tmp;
3396 
3397 	rps_lock(sd);
3398 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3399 		if (skb->dev == dev) {
3400 			__skb_unlink(skb, &sd->input_pkt_queue);
3401 			kfree_skb(skb);
3402 			input_queue_head_incr(sd);
3403 		}
3404 	}
3405 	rps_unlock(sd);
3406 
3407 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3408 		if (skb->dev == dev) {
3409 			__skb_unlink(skb, &sd->process_queue);
3410 			kfree_skb(skb);
3411 			input_queue_head_incr(sd);
3412 		}
3413 	}
3414 }
3415 
3416 static int napi_gro_complete(struct sk_buff *skb)
3417 {
3418 	struct packet_type *ptype;
3419 	__be16 type = skb->protocol;
3420 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3421 	int err = -ENOENT;
3422 
3423 	if (NAPI_GRO_CB(skb)->count == 1) {
3424 		skb_shinfo(skb)->gso_size = 0;
3425 		goto out;
3426 	}
3427 
3428 	rcu_read_lock();
3429 	list_for_each_entry_rcu(ptype, head, list) {
3430 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3431 			continue;
3432 
3433 		err = ptype->gro_complete(skb);
3434 		break;
3435 	}
3436 	rcu_read_unlock();
3437 
3438 	if (err) {
3439 		WARN_ON(&ptype->list == head);
3440 		kfree_skb(skb);
3441 		return NET_RX_SUCCESS;
3442 	}
3443 
3444 out:
3445 	return netif_receive_skb(skb);
3446 }
3447 
3448 inline void napi_gro_flush(struct napi_struct *napi)
3449 {
3450 	struct sk_buff *skb, *next;
3451 
3452 	for (skb = napi->gro_list; skb; skb = next) {
3453 		next = skb->next;
3454 		skb->next = NULL;
3455 		napi_gro_complete(skb);
3456 	}
3457 
3458 	napi->gro_count = 0;
3459 	napi->gro_list = NULL;
3460 }
3461 EXPORT_SYMBOL(napi_gro_flush);
3462 
3463 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3464 {
3465 	struct sk_buff **pp = NULL;
3466 	struct packet_type *ptype;
3467 	__be16 type = skb->protocol;
3468 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3469 	int same_flow;
3470 	int mac_len;
3471 	enum gro_result ret;
3472 
3473 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3474 		goto normal;
3475 
3476 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3477 		goto normal;
3478 
3479 	rcu_read_lock();
3480 	list_for_each_entry_rcu(ptype, head, list) {
3481 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3482 			continue;
3483 
3484 		skb_set_network_header(skb, skb_gro_offset(skb));
3485 		mac_len = skb->network_header - skb->mac_header;
3486 		skb->mac_len = mac_len;
3487 		NAPI_GRO_CB(skb)->same_flow = 0;
3488 		NAPI_GRO_CB(skb)->flush = 0;
3489 		NAPI_GRO_CB(skb)->free = 0;
3490 
3491 		pp = ptype->gro_receive(&napi->gro_list, skb);
3492 		break;
3493 	}
3494 	rcu_read_unlock();
3495 
3496 	if (&ptype->list == head)
3497 		goto normal;
3498 
3499 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3500 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3501 
3502 	if (pp) {
3503 		struct sk_buff *nskb = *pp;
3504 
3505 		*pp = nskb->next;
3506 		nskb->next = NULL;
3507 		napi_gro_complete(nskb);
3508 		napi->gro_count--;
3509 	}
3510 
3511 	if (same_flow)
3512 		goto ok;
3513 
3514 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3515 		goto normal;
3516 
3517 	napi->gro_count++;
3518 	NAPI_GRO_CB(skb)->count = 1;
3519 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3520 	skb->next = napi->gro_list;
3521 	napi->gro_list = skb;
3522 	ret = GRO_HELD;
3523 
3524 pull:
3525 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3526 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3527 
3528 		BUG_ON(skb->end - skb->tail < grow);
3529 
3530 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3531 
3532 		skb->tail += grow;
3533 		skb->data_len -= grow;
3534 
3535 		skb_shinfo(skb)->frags[0].page_offset += grow;
3536 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3537 
3538 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3539 			skb_frag_unref(skb, 0);
3540 			memmove(skb_shinfo(skb)->frags,
3541 				skb_shinfo(skb)->frags + 1,
3542 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3543 		}
3544 	}
3545 
3546 ok:
3547 	return ret;
3548 
3549 normal:
3550 	ret = GRO_NORMAL;
3551 	goto pull;
3552 }
3553 EXPORT_SYMBOL(dev_gro_receive);
3554 
3555 static inline gro_result_t
3556 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3557 {
3558 	struct sk_buff *p;
3559 	unsigned int maclen = skb->dev->hard_header_len;
3560 
3561 	for (p = napi->gro_list; p; p = p->next) {
3562 		unsigned long diffs;
3563 
3564 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3565 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3566 		if (maclen == ETH_HLEN)
3567 			diffs |= compare_ether_header(skb_mac_header(p),
3568 						      skb_gro_mac_header(skb));
3569 		else if (!diffs)
3570 			diffs = memcmp(skb_mac_header(p),
3571 				       skb_gro_mac_header(skb),
3572 				       maclen);
3573 		NAPI_GRO_CB(p)->same_flow = !diffs;
3574 		NAPI_GRO_CB(p)->flush = 0;
3575 	}
3576 
3577 	return dev_gro_receive(napi, skb);
3578 }
3579 
3580 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3581 {
3582 	switch (ret) {
3583 	case GRO_NORMAL:
3584 		if (netif_receive_skb(skb))
3585 			ret = GRO_DROP;
3586 		break;
3587 
3588 	case GRO_DROP:
3589 		kfree_skb(skb);
3590 		break;
3591 
3592 	case GRO_MERGED_FREE:
3593 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3594 			kmem_cache_free(skbuff_head_cache, skb);
3595 		else
3596 			__kfree_skb(skb);
3597 		break;
3598 
3599 	case GRO_HELD:
3600 	case GRO_MERGED:
3601 		break;
3602 	}
3603 
3604 	return ret;
3605 }
3606 EXPORT_SYMBOL(napi_skb_finish);
3607 
3608 void skb_gro_reset_offset(struct sk_buff *skb)
3609 {
3610 	NAPI_GRO_CB(skb)->data_offset = 0;
3611 	NAPI_GRO_CB(skb)->frag0 = NULL;
3612 	NAPI_GRO_CB(skb)->frag0_len = 0;
3613 
3614 	if (skb->mac_header == skb->tail &&
3615 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3616 		NAPI_GRO_CB(skb)->frag0 =
3617 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3618 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3619 	}
3620 }
3621 EXPORT_SYMBOL(skb_gro_reset_offset);
3622 
3623 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3624 {
3625 	skb_gro_reset_offset(skb);
3626 
3627 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3628 }
3629 EXPORT_SYMBOL(napi_gro_receive);
3630 
3631 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3632 {
3633 	__skb_pull(skb, skb_headlen(skb));
3634 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3635 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3636 	skb->vlan_tci = 0;
3637 	skb->dev = napi->dev;
3638 	skb->skb_iif = 0;
3639 
3640 	napi->skb = skb;
3641 }
3642 
3643 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3644 {
3645 	struct sk_buff *skb = napi->skb;
3646 
3647 	if (!skb) {
3648 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3649 		if (skb)
3650 			napi->skb = skb;
3651 	}
3652 	return skb;
3653 }
3654 EXPORT_SYMBOL(napi_get_frags);
3655 
3656 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3657 			       gro_result_t ret)
3658 {
3659 	switch (ret) {
3660 	case GRO_NORMAL:
3661 	case GRO_HELD:
3662 		skb->protocol = eth_type_trans(skb, skb->dev);
3663 
3664 		if (ret == GRO_HELD)
3665 			skb_gro_pull(skb, -ETH_HLEN);
3666 		else if (netif_receive_skb(skb))
3667 			ret = GRO_DROP;
3668 		break;
3669 
3670 	case GRO_DROP:
3671 	case GRO_MERGED_FREE:
3672 		napi_reuse_skb(napi, skb);
3673 		break;
3674 
3675 	case GRO_MERGED:
3676 		break;
3677 	}
3678 
3679 	return ret;
3680 }
3681 EXPORT_SYMBOL(napi_frags_finish);
3682 
3683 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3684 {
3685 	struct sk_buff *skb = napi->skb;
3686 	struct ethhdr *eth;
3687 	unsigned int hlen;
3688 	unsigned int off;
3689 
3690 	napi->skb = NULL;
3691 
3692 	skb_reset_mac_header(skb);
3693 	skb_gro_reset_offset(skb);
3694 
3695 	off = skb_gro_offset(skb);
3696 	hlen = off + sizeof(*eth);
3697 	eth = skb_gro_header_fast(skb, off);
3698 	if (skb_gro_header_hard(skb, hlen)) {
3699 		eth = skb_gro_header_slow(skb, hlen, off);
3700 		if (unlikely(!eth)) {
3701 			napi_reuse_skb(napi, skb);
3702 			skb = NULL;
3703 			goto out;
3704 		}
3705 	}
3706 
3707 	skb_gro_pull(skb, sizeof(*eth));
3708 
3709 	/*
3710 	 * This works because the only protocols we care about don't require
3711 	 * special handling.  We'll fix it up properly at the end.
3712 	 */
3713 	skb->protocol = eth->h_proto;
3714 
3715 out:
3716 	return skb;
3717 }
3718 
3719 gro_result_t napi_gro_frags(struct napi_struct *napi)
3720 {
3721 	struct sk_buff *skb = napi_frags_skb(napi);
3722 
3723 	if (!skb)
3724 		return GRO_DROP;
3725 
3726 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3727 }
3728 EXPORT_SYMBOL(napi_gro_frags);
3729 
3730 /*
3731  * net_rps_action sends any pending IPI's for rps.
3732  * Note: called with local irq disabled, but exits with local irq enabled.
3733  */
3734 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3735 {
3736 #ifdef CONFIG_RPS
3737 	struct softnet_data *remsd = sd->rps_ipi_list;
3738 
3739 	if (remsd) {
3740 		sd->rps_ipi_list = NULL;
3741 
3742 		local_irq_enable();
3743 
3744 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3745 		while (remsd) {
3746 			struct softnet_data *next = remsd->rps_ipi_next;
3747 
3748 			if (cpu_online(remsd->cpu))
3749 				__smp_call_function_single(remsd->cpu,
3750 							   &remsd->csd, 0);
3751 			remsd = next;
3752 		}
3753 	} else
3754 #endif
3755 		local_irq_enable();
3756 }
3757 
3758 static int process_backlog(struct napi_struct *napi, int quota)
3759 {
3760 	int work = 0;
3761 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3762 
3763 #ifdef CONFIG_RPS
3764 	/* Check if we have pending ipi, its better to send them now,
3765 	 * not waiting net_rx_action() end.
3766 	 */
3767 	if (sd->rps_ipi_list) {
3768 		local_irq_disable();
3769 		net_rps_action_and_irq_enable(sd);
3770 	}
3771 #endif
3772 	napi->weight = weight_p;
3773 	local_irq_disable();
3774 	while (work < quota) {
3775 		struct sk_buff *skb;
3776 		unsigned int qlen;
3777 
3778 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3779 			local_irq_enable();
3780 			__netif_receive_skb(skb);
3781 			local_irq_disable();
3782 			input_queue_head_incr(sd);
3783 			if (++work >= quota) {
3784 				local_irq_enable();
3785 				return work;
3786 			}
3787 		}
3788 
3789 		rps_lock(sd);
3790 		qlen = skb_queue_len(&sd->input_pkt_queue);
3791 		if (qlen)
3792 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3793 						   &sd->process_queue);
3794 
3795 		if (qlen < quota - work) {
3796 			/*
3797 			 * Inline a custom version of __napi_complete().
3798 			 * only current cpu owns and manipulates this napi,
3799 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3800 			 * we can use a plain write instead of clear_bit(),
3801 			 * and we dont need an smp_mb() memory barrier.
3802 			 */
3803 			list_del(&napi->poll_list);
3804 			napi->state = 0;
3805 
3806 			quota = work + qlen;
3807 		}
3808 		rps_unlock(sd);
3809 	}
3810 	local_irq_enable();
3811 
3812 	return work;
3813 }
3814 
3815 /**
3816  * __napi_schedule - schedule for receive
3817  * @n: entry to schedule
3818  *
3819  * The entry's receive function will be scheduled to run
3820  */
3821 void __napi_schedule(struct napi_struct *n)
3822 {
3823 	unsigned long flags;
3824 
3825 	local_irq_save(flags);
3826 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3827 	local_irq_restore(flags);
3828 }
3829 EXPORT_SYMBOL(__napi_schedule);
3830 
3831 void __napi_complete(struct napi_struct *n)
3832 {
3833 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3834 	BUG_ON(n->gro_list);
3835 
3836 	list_del(&n->poll_list);
3837 	smp_mb__before_clear_bit();
3838 	clear_bit(NAPI_STATE_SCHED, &n->state);
3839 }
3840 EXPORT_SYMBOL(__napi_complete);
3841 
3842 void napi_complete(struct napi_struct *n)
3843 {
3844 	unsigned long flags;
3845 
3846 	/*
3847 	 * don't let napi dequeue from the cpu poll list
3848 	 * just in case its running on a different cpu
3849 	 */
3850 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3851 		return;
3852 
3853 	napi_gro_flush(n);
3854 	local_irq_save(flags);
3855 	__napi_complete(n);
3856 	local_irq_restore(flags);
3857 }
3858 EXPORT_SYMBOL(napi_complete);
3859 
3860 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3861 		    int (*poll)(struct napi_struct *, int), int weight)
3862 {
3863 	INIT_LIST_HEAD(&napi->poll_list);
3864 	napi->gro_count = 0;
3865 	napi->gro_list = NULL;
3866 	napi->skb = NULL;
3867 	napi->poll = poll;
3868 	napi->weight = weight;
3869 	list_add(&napi->dev_list, &dev->napi_list);
3870 	napi->dev = dev;
3871 #ifdef CONFIG_NETPOLL
3872 	spin_lock_init(&napi->poll_lock);
3873 	napi->poll_owner = -1;
3874 #endif
3875 	set_bit(NAPI_STATE_SCHED, &napi->state);
3876 }
3877 EXPORT_SYMBOL(netif_napi_add);
3878 
3879 void netif_napi_del(struct napi_struct *napi)
3880 {
3881 	struct sk_buff *skb, *next;
3882 
3883 	list_del_init(&napi->dev_list);
3884 	napi_free_frags(napi);
3885 
3886 	for (skb = napi->gro_list; skb; skb = next) {
3887 		next = skb->next;
3888 		skb->next = NULL;
3889 		kfree_skb(skb);
3890 	}
3891 
3892 	napi->gro_list = NULL;
3893 	napi->gro_count = 0;
3894 }
3895 EXPORT_SYMBOL(netif_napi_del);
3896 
3897 static void net_rx_action(struct softirq_action *h)
3898 {
3899 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3900 	unsigned long time_limit = jiffies + 2;
3901 	int budget = netdev_budget;
3902 	void *have;
3903 
3904 	local_irq_disable();
3905 
3906 	while (!list_empty(&sd->poll_list)) {
3907 		struct napi_struct *n;
3908 		int work, weight;
3909 
3910 		/* If softirq window is exhuasted then punt.
3911 		 * Allow this to run for 2 jiffies since which will allow
3912 		 * an average latency of 1.5/HZ.
3913 		 */
3914 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3915 			goto softnet_break;
3916 
3917 		local_irq_enable();
3918 
3919 		/* Even though interrupts have been re-enabled, this
3920 		 * access is safe because interrupts can only add new
3921 		 * entries to the tail of this list, and only ->poll()
3922 		 * calls can remove this head entry from the list.
3923 		 */
3924 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3925 
3926 		have = netpoll_poll_lock(n);
3927 
3928 		weight = n->weight;
3929 
3930 		/* This NAPI_STATE_SCHED test is for avoiding a race
3931 		 * with netpoll's poll_napi().  Only the entity which
3932 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3933 		 * actually make the ->poll() call.  Therefore we avoid
3934 		 * accidentally calling ->poll() when NAPI is not scheduled.
3935 		 */
3936 		work = 0;
3937 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3938 			work = n->poll(n, weight);
3939 			trace_napi_poll(n);
3940 		}
3941 
3942 		WARN_ON_ONCE(work > weight);
3943 
3944 		budget -= work;
3945 
3946 		local_irq_disable();
3947 
3948 		/* Drivers must not modify the NAPI state if they
3949 		 * consume the entire weight.  In such cases this code
3950 		 * still "owns" the NAPI instance and therefore can
3951 		 * move the instance around on the list at-will.
3952 		 */
3953 		if (unlikely(work == weight)) {
3954 			if (unlikely(napi_disable_pending(n))) {
3955 				local_irq_enable();
3956 				napi_complete(n);
3957 				local_irq_disable();
3958 			} else
3959 				list_move_tail(&n->poll_list, &sd->poll_list);
3960 		}
3961 
3962 		netpoll_poll_unlock(have);
3963 	}
3964 out:
3965 	net_rps_action_and_irq_enable(sd);
3966 
3967 #ifdef CONFIG_NET_DMA
3968 	/*
3969 	 * There may not be any more sk_buffs coming right now, so push
3970 	 * any pending DMA copies to hardware
3971 	 */
3972 	dma_issue_pending_all();
3973 #endif
3974 
3975 	return;
3976 
3977 softnet_break:
3978 	sd->time_squeeze++;
3979 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3980 	goto out;
3981 }
3982 
3983 static gifconf_func_t *gifconf_list[NPROTO];
3984 
3985 /**
3986  *	register_gifconf	-	register a SIOCGIF handler
3987  *	@family: Address family
3988  *	@gifconf: Function handler
3989  *
3990  *	Register protocol dependent address dumping routines. The handler
3991  *	that is passed must not be freed or reused until it has been replaced
3992  *	by another handler.
3993  */
3994 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3995 {
3996 	if (family >= NPROTO)
3997 		return -EINVAL;
3998 	gifconf_list[family] = gifconf;
3999 	return 0;
4000 }
4001 EXPORT_SYMBOL(register_gifconf);
4002 
4003 
4004 /*
4005  *	Map an interface index to its name (SIOCGIFNAME)
4006  */
4007 
4008 /*
4009  *	We need this ioctl for efficient implementation of the
4010  *	if_indextoname() function required by the IPv6 API.  Without
4011  *	it, we would have to search all the interfaces to find a
4012  *	match.  --pb
4013  */
4014 
4015 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4016 {
4017 	struct net_device *dev;
4018 	struct ifreq ifr;
4019 
4020 	/*
4021 	 *	Fetch the caller's info block.
4022 	 */
4023 
4024 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4025 		return -EFAULT;
4026 
4027 	rcu_read_lock();
4028 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4029 	if (!dev) {
4030 		rcu_read_unlock();
4031 		return -ENODEV;
4032 	}
4033 
4034 	strcpy(ifr.ifr_name, dev->name);
4035 	rcu_read_unlock();
4036 
4037 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4038 		return -EFAULT;
4039 	return 0;
4040 }
4041 
4042 /*
4043  *	Perform a SIOCGIFCONF call. This structure will change
4044  *	size eventually, and there is nothing I can do about it.
4045  *	Thus we will need a 'compatibility mode'.
4046  */
4047 
4048 static int dev_ifconf(struct net *net, char __user *arg)
4049 {
4050 	struct ifconf ifc;
4051 	struct net_device *dev;
4052 	char __user *pos;
4053 	int len;
4054 	int total;
4055 	int i;
4056 
4057 	/*
4058 	 *	Fetch the caller's info block.
4059 	 */
4060 
4061 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4062 		return -EFAULT;
4063 
4064 	pos = ifc.ifc_buf;
4065 	len = ifc.ifc_len;
4066 
4067 	/*
4068 	 *	Loop over the interfaces, and write an info block for each.
4069 	 */
4070 
4071 	total = 0;
4072 	for_each_netdev(net, dev) {
4073 		for (i = 0; i < NPROTO; i++) {
4074 			if (gifconf_list[i]) {
4075 				int done;
4076 				if (!pos)
4077 					done = gifconf_list[i](dev, NULL, 0);
4078 				else
4079 					done = gifconf_list[i](dev, pos + total,
4080 							       len - total);
4081 				if (done < 0)
4082 					return -EFAULT;
4083 				total += done;
4084 			}
4085 		}
4086 	}
4087 
4088 	/*
4089 	 *	All done.  Write the updated control block back to the caller.
4090 	 */
4091 	ifc.ifc_len = total;
4092 
4093 	/*
4094 	 * 	Both BSD and Solaris return 0 here, so we do too.
4095 	 */
4096 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4097 }
4098 
4099 #ifdef CONFIG_PROC_FS
4100 
4101 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4102 
4103 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4104 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4105 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4106 
4107 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4108 {
4109 	struct net *net = seq_file_net(seq);
4110 	struct net_device *dev;
4111 	struct hlist_node *p;
4112 	struct hlist_head *h;
4113 	unsigned int count = 0, offset = get_offset(*pos);
4114 
4115 	h = &net->dev_name_head[get_bucket(*pos)];
4116 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4117 		if (++count == offset)
4118 			return dev;
4119 	}
4120 
4121 	return NULL;
4122 }
4123 
4124 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4125 {
4126 	struct net_device *dev;
4127 	unsigned int bucket;
4128 
4129 	do {
4130 		dev = dev_from_same_bucket(seq, pos);
4131 		if (dev)
4132 			return dev;
4133 
4134 		bucket = get_bucket(*pos) + 1;
4135 		*pos = set_bucket_offset(bucket, 1);
4136 	} while (bucket < NETDEV_HASHENTRIES);
4137 
4138 	return NULL;
4139 }
4140 
4141 /*
4142  *	This is invoked by the /proc filesystem handler to display a device
4143  *	in detail.
4144  */
4145 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4146 	__acquires(RCU)
4147 {
4148 	rcu_read_lock();
4149 	if (!*pos)
4150 		return SEQ_START_TOKEN;
4151 
4152 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4153 		return NULL;
4154 
4155 	return dev_from_bucket(seq, pos);
4156 }
4157 
4158 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4159 {
4160 	++*pos;
4161 	return dev_from_bucket(seq, pos);
4162 }
4163 
4164 void dev_seq_stop(struct seq_file *seq, void *v)
4165 	__releases(RCU)
4166 {
4167 	rcu_read_unlock();
4168 }
4169 
4170 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4171 {
4172 	struct rtnl_link_stats64 temp;
4173 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4174 
4175 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4176 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4177 		   dev->name, stats->rx_bytes, stats->rx_packets,
4178 		   stats->rx_errors,
4179 		   stats->rx_dropped + stats->rx_missed_errors,
4180 		   stats->rx_fifo_errors,
4181 		   stats->rx_length_errors + stats->rx_over_errors +
4182 		    stats->rx_crc_errors + stats->rx_frame_errors,
4183 		   stats->rx_compressed, stats->multicast,
4184 		   stats->tx_bytes, stats->tx_packets,
4185 		   stats->tx_errors, stats->tx_dropped,
4186 		   stats->tx_fifo_errors, stats->collisions,
4187 		   stats->tx_carrier_errors +
4188 		    stats->tx_aborted_errors +
4189 		    stats->tx_window_errors +
4190 		    stats->tx_heartbeat_errors,
4191 		   stats->tx_compressed);
4192 }
4193 
4194 /*
4195  *	Called from the PROCfs module. This now uses the new arbitrary sized
4196  *	/proc/net interface to create /proc/net/dev
4197  */
4198 static int dev_seq_show(struct seq_file *seq, void *v)
4199 {
4200 	if (v == SEQ_START_TOKEN)
4201 		seq_puts(seq, "Inter-|   Receive                            "
4202 			      "                    |  Transmit\n"
4203 			      " face |bytes    packets errs drop fifo frame "
4204 			      "compressed multicast|bytes    packets errs "
4205 			      "drop fifo colls carrier compressed\n");
4206 	else
4207 		dev_seq_printf_stats(seq, v);
4208 	return 0;
4209 }
4210 
4211 static struct softnet_data *softnet_get_online(loff_t *pos)
4212 {
4213 	struct softnet_data *sd = NULL;
4214 
4215 	while (*pos < nr_cpu_ids)
4216 		if (cpu_online(*pos)) {
4217 			sd = &per_cpu(softnet_data, *pos);
4218 			break;
4219 		} else
4220 			++*pos;
4221 	return sd;
4222 }
4223 
4224 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4225 {
4226 	return softnet_get_online(pos);
4227 }
4228 
4229 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4230 {
4231 	++*pos;
4232 	return softnet_get_online(pos);
4233 }
4234 
4235 static void softnet_seq_stop(struct seq_file *seq, void *v)
4236 {
4237 }
4238 
4239 static int softnet_seq_show(struct seq_file *seq, void *v)
4240 {
4241 	struct softnet_data *sd = v;
4242 
4243 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4244 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4245 		   0, 0, 0, 0, /* was fastroute */
4246 		   sd->cpu_collision, sd->received_rps);
4247 	return 0;
4248 }
4249 
4250 static const struct seq_operations dev_seq_ops = {
4251 	.start = dev_seq_start,
4252 	.next  = dev_seq_next,
4253 	.stop  = dev_seq_stop,
4254 	.show  = dev_seq_show,
4255 };
4256 
4257 static int dev_seq_open(struct inode *inode, struct file *file)
4258 {
4259 	return seq_open_net(inode, file, &dev_seq_ops,
4260 			    sizeof(struct seq_net_private));
4261 }
4262 
4263 static const struct file_operations dev_seq_fops = {
4264 	.owner	 = THIS_MODULE,
4265 	.open    = dev_seq_open,
4266 	.read    = seq_read,
4267 	.llseek  = seq_lseek,
4268 	.release = seq_release_net,
4269 };
4270 
4271 static const struct seq_operations softnet_seq_ops = {
4272 	.start = softnet_seq_start,
4273 	.next  = softnet_seq_next,
4274 	.stop  = softnet_seq_stop,
4275 	.show  = softnet_seq_show,
4276 };
4277 
4278 static int softnet_seq_open(struct inode *inode, struct file *file)
4279 {
4280 	return seq_open(file, &softnet_seq_ops);
4281 }
4282 
4283 static const struct file_operations softnet_seq_fops = {
4284 	.owner	 = THIS_MODULE,
4285 	.open    = softnet_seq_open,
4286 	.read    = seq_read,
4287 	.llseek  = seq_lseek,
4288 	.release = seq_release,
4289 };
4290 
4291 static void *ptype_get_idx(loff_t pos)
4292 {
4293 	struct packet_type *pt = NULL;
4294 	loff_t i = 0;
4295 	int t;
4296 
4297 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4298 		if (i == pos)
4299 			return pt;
4300 		++i;
4301 	}
4302 
4303 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4304 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4305 			if (i == pos)
4306 				return pt;
4307 			++i;
4308 		}
4309 	}
4310 	return NULL;
4311 }
4312 
4313 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4314 	__acquires(RCU)
4315 {
4316 	rcu_read_lock();
4317 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4318 }
4319 
4320 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4321 {
4322 	struct packet_type *pt;
4323 	struct list_head *nxt;
4324 	int hash;
4325 
4326 	++*pos;
4327 	if (v == SEQ_START_TOKEN)
4328 		return ptype_get_idx(0);
4329 
4330 	pt = v;
4331 	nxt = pt->list.next;
4332 	if (pt->type == htons(ETH_P_ALL)) {
4333 		if (nxt != &ptype_all)
4334 			goto found;
4335 		hash = 0;
4336 		nxt = ptype_base[0].next;
4337 	} else
4338 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4339 
4340 	while (nxt == &ptype_base[hash]) {
4341 		if (++hash >= PTYPE_HASH_SIZE)
4342 			return NULL;
4343 		nxt = ptype_base[hash].next;
4344 	}
4345 found:
4346 	return list_entry(nxt, struct packet_type, list);
4347 }
4348 
4349 static void ptype_seq_stop(struct seq_file *seq, void *v)
4350 	__releases(RCU)
4351 {
4352 	rcu_read_unlock();
4353 }
4354 
4355 static int ptype_seq_show(struct seq_file *seq, void *v)
4356 {
4357 	struct packet_type *pt = v;
4358 
4359 	if (v == SEQ_START_TOKEN)
4360 		seq_puts(seq, "Type Device      Function\n");
4361 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4362 		if (pt->type == htons(ETH_P_ALL))
4363 			seq_puts(seq, "ALL ");
4364 		else
4365 			seq_printf(seq, "%04x", ntohs(pt->type));
4366 
4367 		seq_printf(seq, " %-8s %pF\n",
4368 			   pt->dev ? pt->dev->name : "", pt->func);
4369 	}
4370 
4371 	return 0;
4372 }
4373 
4374 static const struct seq_operations ptype_seq_ops = {
4375 	.start = ptype_seq_start,
4376 	.next  = ptype_seq_next,
4377 	.stop  = ptype_seq_stop,
4378 	.show  = ptype_seq_show,
4379 };
4380 
4381 static int ptype_seq_open(struct inode *inode, struct file *file)
4382 {
4383 	return seq_open_net(inode, file, &ptype_seq_ops,
4384 			sizeof(struct seq_net_private));
4385 }
4386 
4387 static const struct file_operations ptype_seq_fops = {
4388 	.owner	 = THIS_MODULE,
4389 	.open    = ptype_seq_open,
4390 	.read    = seq_read,
4391 	.llseek  = seq_lseek,
4392 	.release = seq_release_net,
4393 };
4394 
4395 
4396 static int __net_init dev_proc_net_init(struct net *net)
4397 {
4398 	int rc = -ENOMEM;
4399 
4400 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4401 		goto out;
4402 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4403 		goto out_dev;
4404 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4405 		goto out_softnet;
4406 
4407 	if (wext_proc_init(net))
4408 		goto out_ptype;
4409 	rc = 0;
4410 out:
4411 	return rc;
4412 out_ptype:
4413 	proc_net_remove(net, "ptype");
4414 out_softnet:
4415 	proc_net_remove(net, "softnet_stat");
4416 out_dev:
4417 	proc_net_remove(net, "dev");
4418 	goto out;
4419 }
4420 
4421 static void __net_exit dev_proc_net_exit(struct net *net)
4422 {
4423 	wext_proc_exit(net);
4424 
4425 	proc_net_remove(net, "ptype");
4426 	proc_net_remove(net, "softnet_stat");
4427 	proc_net_remove(net, "dev");
4428 }
4429 
4430 static struct pernet_operations __net_initdata dev_proc_ops = {
4431 	.init = dev_proc_net_init,
4432 	.exit = dev_proc_net_exit,
4433 };
4434 
4435 static int __init dev_proc_init(void)
4436 {
4437 	return register_pernet_subsys(&dev_proc_ops);
4438 }
4439 #else
4440 #define dev_proc_init() 0
4441 #endif	/* CONFIG_PROC_FS */
4442 
4443 
4444 /**
4445  *	netdev_set_master	-	set up master pointer
4446  *	@slave: slave device
4447  *	@master: new master device
4448  *
4449  *	Changes the master device of the slave. Pass %NULL to break the
4450  *	bonding. The caller must hold the RTNL semaphore. On a failure
4451  *	a negative errno code is returned. On success the reference counts
4452  *	are adjusted and the function returns zero.
4453  */
4454 int netdev_set_master(struct net_device *slave, struct net_device *master)
4455 {
4456 	struct net_device *old = slave->master;
4457 
4458 	ASSERT_RTNL();
4459 
4460 	if (master) {
4461 		if (old)
4462 			return -EBUSY;
4463 		dev_hold(master);
4464 	}
4465 
4466 	slave->master = master;
4467 
4468 	if (old)
4469 		dev_put(old);
4470 	return 0;
4471 }
4472 EXPORT_SYMBOL(netdev_set_master);
4473 
4474 /**
4475  *	netdev_set_bond_master	-	set up bonding master/slave pair
4476  *	@slave: slave device
4477  *	@master: new master device
4478  *
4479  *	Changes the master device of the slave. Pass %NULL to break the
4480  *	bonding. The caller must hold the RTNL semaphore. On a failure
4481  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4482  *	to the routing socket and the function returns zero.
4483  */
4484 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4485 {
4486 	int err;
4487 
4488 	ASSERT_RTNL();
4489 
4490 	err = netdev_set_master(slave, master);
4491 	if (err)
4492 		return err;
4493 	if (master)
4494 		slave->flags |= IFF_SLAVE;
4495 	else
4496 		slave->flags &= ~IFF_SLAVE;
4497 
4498 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4499 	return 0;
4500 }
4501 EXPORT_SYMBOL(netdev_set_bond_master);
4502 
4503 static void dev_change_rx_flags(struct net_device *dev, int flags)
4504 {
4505 	const struct net_device_ops *ops = dev->netdev_ops;
4506 
4507 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4508 		ops->ndo_change_rx_flags(dev, flags);
4509 }
4510 
4511 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4512 {
4513 	unsigned int old_flags = dev->flags;
4514 	uid_t uid;
4515 	gid_t gid;
4516 
4517 	ASSERT_RTNL();
4518 
4519 	dev->flags |= IFF_PROMISC;
4520 	dev->promiscuity += inc;
4521 	if (dev->promiscuity == 0) {
4522 		/*
4523 		 * Avoid overflow.
4524 		 * If inc causes overflow, untouch promisc and return error.
4525 		 */
4526 		if (inc < 0)
4527 			dev->flags &= ~IFF_PROMISC;
4528 		else {
4529 			dev->promiscuity -= inc;
4530 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4531 				dev->name);
4532 			return -EOVERFLOW;
4533 		}
4534 	}
4535 	if (dev->flags != old_flags) {
4536 		pr_info("device %s %s promiscuous mode\n",
4537 			dev->name,
4538 			dev->flags & IFF_PROMISC ? "entered" : "left");
4539 		if (audit_enabled) {
4540 			current_uid_gid(&uid, &gid);
4541 			audit_log(current->audit_context, GFP_ATOMIC,
4542 				AUDIT_ANOM_PROMISCUOUS,
4543 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4544 				dev->name, (dev->flags & IFF_PROMISC),
4545 				(old_flags & IFF_PROMISC),
4546 				audit_get_loginuid(current),
4547 				uid, gid,
4548 				audit_get_sessionid(current));
4549 		}
4550 
4551 		dev_change_rx_flags(dev, IFF_PROMISC);
4552 	}
4553 	return 0;
4554 }
4555 
4556 /**
4557  *	dev_set_promiscuity	- update promiscuity count on a device
4558  *	@dev: device
4559  *	@inc: modifier
4560  *
4561  *	Add or remove promiscuity from a device. While the count in the device
4562  *	remains above zero the interface remains promiscuous. Once it hits zero
4563  *	the device reverts back to normal filtering operation. A negative inc
4564  *	value is used to drop promiscuity on the device.
4565  *	Return 0 if successful or a negative errno code on error.
4566  */
4567 int dev_set_promiscuity(struct net_device *dev, int inc)
4568 {
4569 	unsigned int old_flags = dev->flags;
4570 	int err;
4571 
4572 	err = __dev_set_promiscuity(dev, inc);
4573 	if (err < 0)
4574 		return err;
4575 	if (dev->flags != old_flags)
4576 		dev_set_rx_mode(dev);
4577 	return err;
4578 }
4579 EXPORT_SYMBOL(dev_set_promiscuity);
4580 
4581 /**
4582  *	dev_set_allmulti	- update allmulti count on a device
4583  *	@dev: device
4584  *	@inc: modifier
4585  *
4586  *	Add or remove reception of all multicast frames to a device. While the
4587  *	count in the device remains above zero the interface remains listening
4588  *	to all interfaces. Once it hits zero the device reverts back to normal
4589  *	filtering operation. A negative @inc value is used to drop the counter
4590  *	when releasing a resource needing all multicasts.
4591  *	Return 0 if successful or a negative errno code on error.
4592  */
4593 
4594 int dev_set_allmulti(struct net_device *dev, int inc)
4595 {
4596 	unsigned int old_flags = dev->flags;
4597 
4598 	ASSERT_RTNL();
4599 
4600 	dev->flags |= IFF_ALLMULTI;
4601 	dev->allmulti += inc;
4602 	if (dev->allmulti == 0) {
4603 		/*
4604 		 * Avoid overflow.
4605 		 * If inc causes overflow, untouch allmulti and return error.
4606 		 */
4607 		if (inc < 0)
4608 			dev->flags &= ~IFF_ALLMULTI;
4609 		else {
4610 			dev->allmulti -= inc;
4611 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4612 				dev->name);
4613 			return -EOVERFLOW;
4614 		}
4615 	}
4616 	if (dev->flags ^ old_flags) {
4617 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4618 		dev_set_rx_mode(dev);
4619 	}
4620 	return 0;
4621 }
4622 EXPORT_SYMBOL(dev_set_allmulti);
4623 
4624 /*
4625  *	Upload unicast and multicast address lists to device and
4626  *	configure RX filtering. When the device doesn't support unicast
4627  *	filtering it is put in promiscuous mode while unicast addresses
4628  *	are present.
4629  */
4630 void __dev_set_rx_mode(struct net_device *dev)
4631 {
4632 	const struct net_device_ops *ops = dev->netdev_ops;
4633 
4634 	/* dev_open will call this function so the list will stay sane. */
4635 	if (!(dev->flags&IFF_UP))
4636 		return;
4637 
4638 	if (!netif_device_present(dev))
4639 		return;
4640 
4641 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4642 		/* Unicast addresses changes may only happen under the rtnl,
4643 		 * therefore calling __dev_set_promiscuity here is safe.
4644 		 */
4645 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4646 			__dev_set_promiscuity(dev, 1);
4647 			dev->uc_promisc = true;
4648 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4649 			__dev_set_promiscuity(dev, -1);
4650 			dev->uc_promisc = false;
4651 		}
4652 	}
4653 
4654 	if (ops->ndo_set_rx_mode)
4655 		ops->ndo_set_rx_mode(dev);
4656 }
4657 
4658 void dev_set_rx_mode(struct net_device *dev)
4659 {
4660 	netif_addr_lock_bh(dev);
4661 	__dev_set_rx_mode(dev);
4662 	netif_addr_unlock_bh(dev);
4663 }
4664 
4665 /**
4666  *	dev_get_flags - get flags reported to userspace
4667  *	@dev: device
4668  *
4669  *	Get the combination of flag bits exported through APIs to userspace.
4670  */
4671 unsigned int dev_get_flags(const struct net_device *dev)
4672 {
4673 	unsigned int flags;
4674 
4675 	flags = (dev->flags & ~(IFF_PROMISC |
4676 				IFF_ALLMULTI |
4677 				IFF_RUNNING |
4678 				IFF_LOWER_UP |
4679 				IFF_DORMANT)) |
4680 		(dev->gflags & (IFF_PROMISC |
4681 				IFF_ALLMULTI));
4682 
4683 	if (netif_running(dev)) {
4684 		if (netif_oper_up(dev))
4685 			flags |= IFF_RUNNING;
4686 		if (netif_carrier_ok(dev))
4687 			flags |= IFF_LOWER_UP;
4688 		if (netif_dormant(dev))
4689 			flags |= IFF_DORMANT;
4690 	}
4691 
4692 	return flags;
4693 }
4694 EXPORT_SYMBOL(dev_get_flags);
4695 
4696 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4697 {
4698 	unsigned int old_flags = dev->flags;
4699 	int ret;
4700 
4701 	ASSERT_RTNL();
4702 
4703 	/*
4704 	 *	Set the flags on our device.
4705 	 */
4706 
4707 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4708 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4709 			       IFF_AUTOMEDIA)) |
4710 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4711 				    IFF_ALLMULTI));
4712 
4713 	/*
4714 	 *	Load in the correct multicast list now the flags have changed.
4715 	 */
4716 
4717 	if ((old_flags ^ flags) & IFF_MULTICAST)
4718 		dev_change_rx_flags(dev, IFF_MULTICAST);
4719 
4720 	dev_set_rx_mode(dev);
4721 
4722 	/*
4723 	 *	Have we downed the interface. We handle IFF_UP ourselves
4724 	 *	according to user attempts to set it, rather than blindly
4725 	 *	setting it.
4726 	 */
4727 
4728 	ret = 0;
4729 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4730 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4731 
4732 		if (!ret)
4733 			dev_set_rx_mode(dev);
4734 	}
4735 
4736 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4737 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4738 
4739 		dev->gflags ^= IFF_PROMISC;
4740 		dev_set_promiscuity(dev, inc);
4741 	}
4742 
4743 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4744 	   is important. Some (broken) drivers set IFF_PROMISC, when
4745 	   IFF_ALLMULTI is requested not asking us and not reporting.
4746 	 */
4747 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4748 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4749 
4750 		dev->gflags ^= IFF_ALLMULTI;
4751 		dev_set_allmulti(dev, inc);
4752 	}
4753 
4754 	return ret;
4755 }
4756 
4757 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4758 {
4759 	unsigned int changes = dev->flags ^ old_flags;
4760 
4761 	if (changes & IFF_UP) {
4762 		if (dev->flags & IFF_UP)
4763 			call_netdevice_notifiers(NETDEV_UP, dev);
4764 		else
4765 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4766 	}
4767 
4768 	if (dev->flags & IFF_UP &&
4769 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4770 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4771 }
4772 
4773 /**
4774  *	dev_change_flags - change device settings
4775  *	@dev: device
4776  *	@flags: device state flags
4777  *
4778  *	Change settings on device based state flags. The flags are
4779  *	in the userspace exported format.
4780  */
4781 int dev_change_flags(struct net_device *dev, unsigned int flags)
4782 {
4783 	int ret;
4784 	unsigned int changes, old_flags = dev->flags;
4785 
4786 	ret = __dev_change_flags(dev, flags);
4787 	if (ret < 0)
4788 		return ret;
4789 
4790 	changes = old_flags ^ dev->flags;
4791 	if (changes)
4792 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4793 
4794 	__dev_notify_flags(dev, old_flags);
4795 	return ret;
4796 }
4797 EXPORT_SYMBOL(dev_change_flags);
4798 
4799 /**
4800  *	dev_set_mtu - Change maximum transfer unit
4801  *	@dev: device
4802  *	@new_mtu: new transfer unit
4803  *
4804  *	Change the maximum transfer size of the network device.
4805  */
4806 int dev_set_mtu(struct net_device *dev, int new_mtu)
4807 {
4808 	const struct net_device_ops *ops = dev->netdev_ops;
4809 	int err;
4810 
4811 	if (new_mtu == dev->mtu)
4812 		return 0;
4813 
4814 	/*	MTU must be positive.	 */
4815 	if (new_mtu < 0)
4816 		return -EINVAL;
4817 
4818 	if (!netif_device_present(dev))
4819 		return -ENODEV;
4820 
4821 	err = 0;
4822 	if (ops->ndo_change_mtu)
4823 		err = ops->ndo_change_mtu(dev, new_mtu);
4824 	else
4825 		dev->mtu = new_mtu;
4826 
4827 	if (!err && dev->flags & IFF_UP)
4828 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4829 	return err;
4830 }
4831 EXPORT_SYMBOL(dev_set_mtu);
4832 
4833 /**
4834  *	dev_set_group - Change group this device belongs to
4835  *	@dev: device
4836  *	@new_group: group this device should belong to
4837  */
4838 void dev_set_group(struct net_device *dev, int new_group)
4839 {
4840 	dev->group = new_group;
4841 }
4842 EXPORT_SYMBOL(dev_set_group);
4843 
4844 /**
4845  *	dev_set_mac_address - Change Media Access Control Address
4846  *	@dev: device
4847  *	@sa: new address
4848  *
4849  *	Change the hardware (MAC) address of the device
4850  */
4851 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4852 {
4853 	const struct net_device_ops *ops = dev->netdev_ops;
4854 	int err;
4855 
4856 	if (!ops->ndo_set_mac_address)
4857 		return -EOPNOTSUPP;
4858 	if (sa->sa_family != dev->type)
4859 		return -EINVAL;
4860 	if (!netif_device_present(dev))
4861 		return -ENODEV;
4862 	err = ops->ndo_set_mac_address(dev, sa);
4863 	if (!err)
4864 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4865 	add_device_randomness(dev->dev_addr, dev->addr_len);
4866 	return err;
4867 }
4868 EXPORT_SYMBOL(dev_set_mac_address);
4869 
4870 /*
4871  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4872  */
4873 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4874 {
4875 	int err;
4876 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4877 
4878 	if (!dev)
4879 		return -ENODEV;
4880 
4881 	switch (cmd) {
4882 	case SIOCGIFFLAGS:	/* Get interface flags */
4883 		ifr->ifr_flags = (short) dev_get_flags(dev);
4884 		return 0;
4885 
4886 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4887 				   (currently unused) */
4888 		ifr->ifr_metric = 0;
4889 		return 0;
4890 
4891 	case SIOCGIFMTU:	/* Get the MTU of a device */
4892 		ifr->ifr_mtu = dev->mtu;
4893 		return 0;
4894 
4895 	case SIOCGIFHWADDR:
4896 		if (!dev->addr_len)
4897 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4898 		else
4899 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4900 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4901 		ifr->ifr_hwaddr.sa_family = dev->type;
4902 		return 0;
4903 
4904 	case SIOCGIFSLAVE:
4905 		err = -EINVAL;
4906 		break;
4907 
4908 	case SIOCGIFMAP:
4909 		ifr->ifr_map.mem_start = dev->mem_start;
4910 		ifr->ifr_map.mem_end   = dev->mem_end;
4911 		ifr->ifr_map.base_addr = dev->base_addr;
4912 		ifr->ifr_map.irq       = dev->irq;
4913 		ifr->ifr_map.dma       = dev->dma;
4914 		ifr->ifr_map.port      = dev->if_port;
4915 		return 0;
4916 
4917 	case SIOCGIFINDEX:
4918 		ifr->ifr_ifindex = dev->ifindex;
4919 		return 0;
4920 
4921 	case SIOCGIFTXQLEN:
4922 		ifr->ifr_qlen = dev->tx_queue_len;
4923 		return 0;
4924 
4925 	default:
4926 		/* dev_ioctl() should ensure this case
4927 		 * is never reached
4928 		 */
4929 		WARN_ON(1);
4930 		err = -ENOTTY;
4931 		break;
4932 
4933 	}
4934 	return err;
4935 }
4936 
4937 /*
4938  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4939  */
4940 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4941 {
4942 	int err;
4943 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4944 	const struct net_device_ops *ops;
4945 
4946 	if (!dev)
4947 		return -ENODEV;
4948 
4949 	ops = dev->netdev_ops;
4950 
4951 	switch (cmd) {
4952 	case SIOCSIFFLAGS:	/* Set interface flags */
4953 		return dev_change_flags(dev, ifr->ifr_flags);
4954 
4955 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4956 				   (currently unused) */
4957 		return -EOPNOTSUPP;
4958 
4959 	case SIOCSIFMTU:	/* Set the MTU of a device */
4960 		return dev_set_mtu(dev, ifr->ifr_mtu);
4961 
4962 	case SIOCSIFHWADDR:
4963 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4964 
4965 	case SIOCSIFHWBROADCAST:
4966 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4967 			return -EINVAL;
4968 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4969 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4970 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4971 		return 0;
4972 
4973 	case SIOCSIFMAP:
4974 		if (ops->ndo_set_config) {
4975 			if (!netif_device_present(dev))
4976 				return -ENODEV;
4977 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4978 		}
4979 		return -EOPNOTSUPP;
4980 
4981 	case SIOCADDMULTI:
4982 		if (!ops->ndo_set_rx_mode ||
4983 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4984 			return -EINVAL;
4985 		if (!netif_device_present(dev))
4986 			return -ENODEV;
4987 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4988 
4989 	case SIOCDELMULTI:
4990 		if (!ops->ndo_set_rx_mode ||
4991 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4992 			return -EINVAL;
4993 		if (!netif_device_present(dev))
4994 			return -ENODEV;
4995 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4996 
4997 	case SIOCSIFTXQLEN:
4998 		if (ifr->ifr_qlen < 0)
4999 			return -EINVAL;
5000 		dev->tx_queue_len = ifr->ifr_qlen;
5001 		return 0;
5002 
5003 	case SIOCSIFNAME:
5004 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5005 		return dev_change_name(dev, ifr->ifr_newname);
5006 
5007 	case SIOCSHWTSTAMP:
5008 		err = net_hwtstamp_validate(ifr);
5009 		if (err)
5010 			return err;
5011 		/* fall through */
5012 
5013 	/*
5014 	 *	Unknown or private ioctl
5015 	 */
5016 	default:
5017 		if ((cmd >= SIOCDEVPRIVATE &&
5018 		    cmd <= SIOCDEVPRIVATE + 15) ||
5019 		    cmd == SIOCBONDENSLAVE ||
5020 		    cmd == SIOCBONDRELEASE ||
5021 		    cmd == SIOCBONDSETHWADDR ||
5022 		    cmd == SIOCBONDSLAVEINFOQUERY ||
5023 		    cmd == SIOCBONDINFOQUERY ||
5024 		    cmd == SIOCBONDCHANGEACTIVE ||
5025 		    cmd == SIOCGMIIPHY ||
5026 		    cmd == SIOCGMIIREG ||
5027 		    cmd == SIOCSMIIREG ||
5028 		    cmd == SIOCBRADDIF ||
5029 		    cmd == SIOCBRDELIF ||
5030 		    cmd == SIOCSHWTSTAMP ||
5031 		    cmd == SIOCWANDEV) {
5032 			err = -EOPNOTSUPP;
5033 			if (ops->ndo_do_ioctl) {
5034 				if (netif_device_present(dev))
5035 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
5036 				else
5037 					err = -ENODEV;
5038 			}
5039 		} else
5040 			err = -EINVAL;
5041 
5042 	}
5043 	return err;
5044 }
5045 
5046 /*
5047  *	This function handles all "interface"-type I/O control requests. The actual
5048  *	'doing' part of this is dev_ifsioc above.
5049  */
5050 
5051 /**
5052  *	dev_ioctl	-	network device ioctl
5053  *	@net: the applicable net namespace
5054  *	@cmd: command to issue
5055  *	@arg: pointer to a struct ifreq in user space
5056  *
5057  *	Issue ioctl functions to devices. This is normally called by the
5058  *	user space syscall interfaces but can sometimes be useful for
5059  *	other purposes. The return value is the return from the syscall if
5060  *	positive or a negative errno code on error.
5061  */
5062 
5063 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5064 {
5065 	struct ifreq ifr;
5066 	int ret;
5067 	char *colon;
5068 
5069 	/* One special case: SIOCGIFCONF takes ifconf argument
5070 	   and requires shared lock, because it sleeps writing
5071 	   to user space.
5072 	 */
5073 
5074 	if (cmd == SIOCGIFCONF) {
5075 		rtnl_lock();
5076 		ret = dev_ifconf(net, (char __user *) arg);
5077 		rtnl_unlock();
5078 		return ret;
5079 	}
5080 	if (cmd == SIOCGIFNAME)
5081 		return dev_ifname(net, (struct ifreq __user *)arg);
5082 
5083 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5084 		return -EFAULT;
5085 
5086 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5087 
5088 	colon = strchr(ifr.ifr_name, ':');
5089 	if (colon)
5090 		*colon = 0;
5091 
5092 	/*
5093 	 *	See which interface the caller is talking about.
5094 	 */
5095 
5096 	switch (cmd) {
5097 	/*
5098 	 *	These ioctl calls:
5099 	 *	- can be done by all.
5100 	 *	- atomic and do not require locking.
5101 	 *	- return a value
5102 	 */
5103 	case SIOCGIFFLAGS:
5104 	case SIOCGIFMETRIC:
5105 	case SIOCGIFMTU:
5106 	case SIOCGIFHWADDR:
5107 	case SIOCGIFSLAVE:
5108 	case SIOCGIFMAP:
5109 	case SIOCGIFINDEX:
5110 	case SIOCGIFTXQLEN:
5111 		dev_load(net, ifr.ifr_name);
5112 		rcu_read_lock();
5113 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5114 		rcu_read_unlock();
5115 		if (!ret) {
5116 			if (colon)
5117 				*colon = ':';
5118 			if (copy_to_user(arg, &ifr,
5119 					 sizeof(struct ifreq)))
5120 				ret = -EFAULT;
5121 		}
5122 		return ret;
5123 
5124 	case SIOCETHTOOL:
5125 		dev_load(net, ifr.ifr_name);
5126 		rtnl_lock();
5127 		ret = dev_ethtool(net, &ifr);
5128 		rtnl_unlock();
5129 		if (!ret) {
5130 			if (colon)
5131 				*colon = ':';
5132 			if (copy_to_user(arg, &ifr,
5133 					 sizeof(struct ifreq)))
5134 				ret = -EFAULT;
5135 		}
5136 		return ret;
5137 
5138 	/*
5139 	 *	These ioctl calls:
5140 	 *	- require superuser power.
5141 	 *	- require strict serialization.
5142 	 *	- return a value
5143 	 */
5144 	case SIOCGMIIPHY:
5145 	case SIOCGMIIREG:
5146 	case SIOCSIFNAME:
5147 		if (!capable(CAP_NET_ADMIN))
5148 			return -EPERM;
5149 		dev_load(net, ifr.ifr_name);
5150 		rtnl_lock();
5151 		ret = dev_ifsioc(net, &ifr, cmd);
5152 		rtnl_unlock();
5153 		if (!ret) {
5154 			if (colon)
5155 				*colon = ':';
5156 			if (copy_to_user(arg, &ifr,
5157 					 sizeof(struct ifreq)))
5158 				ret = -EFAULT;
5159 		}
5160 		return ret;
5161 
5162 	/*
5163 	 *	These ioctl calls:
5164 	 *	- require superuser power.
5165 	 *	- require strict serialization.
5166 	 *	- do not return a value
5167 	 */
5168 	case SIOCSIFFLAGS:
5169 	case SIOCSIFMETRIC:
5170 	case SIOCSIFMTU:
5171 	case SIOCSIFMAP:
5172 	case SIOCSIFHWADDR:
5173 	case SIOCSIFSLAVE:
5174 	case SIOCADDMULTI:
5175 	case SIOCDELMULTI:
5176 	case SIOCSIFHWBROADCAST:
5177 	case SIOCSIFTXQLEN:
5178 	case SIOCSMIIREG:
5179 	case SIOCBONDENSLAVE:
5180 	case SIOCBONDRELEASE:
5181 	case SIOCBONDSETHWADDR:
5182 	case SIOCBONDCHANGEACTIVE:
5183 	case SIOCBRADDIF:
5184 	case SIOCBRDELIF:
5185 	case SIOCSHWTSTAMP:
5186 		if (!capable(CAP_NET_ADMIN))
5187 			return -EPERM;
5188 		/* fall through */
5189 	case SIOCBONDSLAVEINFOQUERY:
5190 	case SIOCBONDINFOQUERY:
5191 		dev_load(net, ifr.ifr_name);
5192 		rtnl_lock();
5193 		ret = dev_ifsioc(net, &ifr, cmd);
5194 		rtnl_unlock();
5195 		return ret;
5196 
5197 	case SIOCGIFMEM:
5198 		/* Get the per device memory space. We can add this but
5199 		 * currently do not support it */
5200 	case SIOCSIFMEM:
5201 		/* Set the per device memory buffer space.
5202 		 * Not applicable in our case */
5203 	case SIOCSIFLINK:
5204 		return -ENOTTY;
5205 
5206 	/*
5207 	 *	Unknown or private ioctl.
5208 	 */
5209 	default:
5210 		if (cmd == SIOCWANDEV ||
5211 		    (cmd >= SIOCDEVPRIVATE &&
5212 		     cmd <= SIOCDEVPRIVATE + 15)) {
5213 			dev_load(net, ifr.ifr_name);
5214 			rtnl_lock();
5215 			ret = dev_ifsioc(net, &ifr, cmd);
5216 			rtnl_unlock();
5217 			if (!ret && copy_to_user(arg, &ifr,
5218 						 sizeof(struct ifreq)))
5219 				ret = -EFAULT;
5220 			return ret;
5221 		}
5222 		/* Take care of Wireless Extensions */
5223 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5224 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5225 		return -ENOTTY;
5226 	}
5227 }
5228 
5229 
5230 /**
5231  *	dev_new_index	-	allocate an ifindex
5232  *	@net: the applicable net namespace
5233  *
5234  *	Returns a suitable unique value for a new device interface
5235  *	number.  The caller must hold the rtnl semaphore or the
5236  *	dev_base_lock to be sure it remains unique.
5237  */
5238 static int dev_new_index(struct net *net)
5239 {
5240 	static int ifindex;
5241 	for (;;) {
5242 		if (++ifindex <= 0)
5243 			ifindex = 1;
5244 		if (!__dev_get_by_index(net, ifindex))
5245 			return ifindex;
5246 	}
5247 }
5248 
5249 /* Delayed registration/unregisteration */
5250 static LIST_HEAD(net_todo_list);
5251 
5252 static void net_set_todo(struct net_device *dev)
5253 {
5254 	list_add_tail(&dev->todo_list, &net_todo_list);
5255 }
5256 
5257 static void rollback_registered_many(struct list_head *head)
5258 {
5259 	struct net_device *dev, *tmp;
5260 
5261 	BUG_ON(dev_boot_phase);
5262 	ASSERT_RTNL();
5263 
5264 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5265 		/* Some devices call without registering
5266 		 * for initialization unwind. Remove those
5267 		 * devices and proceed with the remaining.
5268 		 */
5269 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5270 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5271 				 dev->name, dev);
5272 
5273 			WARN_ON(1);
5274 			list_del(&dev->unreg_list);
5275 			continue;
5276 		}
5277 		dev->dismantle = true;
5278 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5279 	}
5280 
5281 	/* If device is running, close it first. */
5282 	dev_close_many(head);
5283 
5284 	list_for_each_entry(dev, head, unreg_list) {
5285 		/* And unlink it from device chain. */
5286 		unlist_netdevice(dev);
5287 
5288 		dev->reg_state = NETREG_UNREGISTERING;
5289 	}
5290 
5291 	synchronize_net();
5292 
5293 	list_for_each_entry(dev, head, unreg_list) {
5294 		/* Shutdown queueing discipline. */
5295 		dev_shutdown(dev);
5296 
5297 
5298 		/* Notify protocols, that we are about to destroy
5299 		   this device. They should clean all the things.
5300 		*/
5301 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5302 
5303 		if (!dev->rtnl_link_ops ||
5304 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5305 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5306 
5307 		/*
5308 		 *	Flush the unicast and multicast chains
5309 		 */
5310 		dev_uc_flush(dev);
5311 		dev_mc_flush(dev);
5312 
5313 		if (dev->netdev_ops->ndo_uninit)
5314 			dev->netdev_ops->ndo_uninit(dev);
5315 
5316 		/* Notifier chain MUST detach us from master device. */
5317 		WARN_ON(dev->master);
5318 
5319 		/* Remove entries from kobject tree */
5320 		netdev_unregister_kobject(dev);
5321 	}
5322 
5323 	/* Process any work delayed until the end of the batch */
5324 	dev = list_first_entry(head, struct net_device, unreg_list);
5325 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5326 
5327 	synchronize_net();
5328 
5329 	list_for_each_entry(dev, head, unreg_list)
5330 		dev_put(dev);
5331 }
5332 
5333 static void rollback_registered(struct net_device *dev)
5334 {
5335 	LIST_HEAD(single);
5336 
5337 	list_add(&dev->unreg_list, &single);
5338 	rollback_registered_many(&single);
5339 	list_del(&single);
5340 }
5341 
5342 static netdev_features_t netdev_fix_features(struct net_device *dev,
5343 	netdev_features_t features)
5344 {
5345 	/* Fix illegal checksum combinations */
5346 	if ((features & NETIF_F_HW_CSUM) &&
5347 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5348 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5349 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5350 	}
5351 
5352 	/* Fix illegal SG+CSUM combinations. */
5353 	if ((features & NETIF_F_SG) &&
5354 	    !(features & NETIF_F_ALL_CSUM)) {
5355 		netdev_dbg(dev,
5356 			"Dropping NETIF_F_SG since no checksum feature.\n");
5357 		features &= ~NETIF_F_SG;
5358 	}
5359 
5360 	/* TSO requires that SG is present as well. */
5361 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5362 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5363 		features &= ~NETIF_F_ALL_TSO;
5364 	}
5365 
5366 	/* TSO ECN requires that TSO is present as well. */
5367 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5368 		features &= ~NETIF_F_TSO_ECN;
5369 
5370 	/* Software GSO depends on SG. */
5371 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5372 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5373 		features &= ~NETIF_F_GSO;
5374 	}
5375 
5376 	/* UFO needs SG and checksumming */
5377 	if (features & NETIF_F_UFO) {
5378 		/* maybe split UFO into V4 and V6? */
5379 		if (!((features & NETIF_F_GEN_CSUM) ||
5380 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5381 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5382 			netdev_dbg(dev,
5383 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5384 			features &= ~NETIF_F_UFO;
5385 		}
5386 
5387 		if (!(features & NETIF_F_SG)) {
5388 			netdev_dbg(dev,
5389 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5390 			features &= ~NETIF_F_UFO;
5391 		}
5392 	}
5393 
5394 	return features;
5395 }
5396 
5397 int __netdev_update_features(struct net_device *dev)
5398 {
5399 	netdev_features_t features;
5400 	int err = 0;
5401 
5402 	ASSERT_RTNL();
5403 
5404 	features = netdev_get_wanted_features(dev);
5405 
5406 	if (dev->netdev_ops->ndo_fix_features)
5407 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5408 
5409 	/* driver might be less strict about feature dependencies */
5410 	features = netdev_fix_features(dev, features);
5411 
5412 	if (dev->features == features)
5413 		return 0;
5414 
5415 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5416 		&dev->features, &features);
5417 
5418 	if (dev->netdev_ops->ndo_set_features)
5419 		err = dev->netdev_ops->ndo_set_features(dev, features);
5420 
5421 	if (unlikely(err < 0)) {
5422 		netdev_err(dev,
5423 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5424 			err, &features, &dev->features);
5425 		return -1;
5426 	}
5427 
5428 	if (!err)
5429 		dev->features = features;
5430 
5431 	return 1;
5432 }
5433 
5434 /**
5435  *	netdev_update_features - recalculate device features
5436  *	@dev: the device to check
5437  *
5438  *	Recalculate dev->features set and send notifications if it
5439  *	has changed. Should be called after driver or hardware dependent
5440  *	conditions might have changed that influence the features.
5441  */
5442 void netdev_update_features(struct net_device *dev)
5443 {
5444 	if (__netdev_update_features(dev))
5445 		netdev_features_change(dev);
5446 }
5447 EXPORT_SYMBOL(netdev_update_features);
5448 
5449 /**
5450  *	netdev_change_features - recalculate device features
5451  *	@dev: the device to check
5452  *
5453  *	Recalculate dev->features set and send notifications even
5454  *	if they have not changed. Should be called instead of
5455  *	netdev_update_features() if also dev->vlan_features might
5456  *	have changed to allow the changes to be propagated to stacked
5457  *	VLAN devices.
5458  */
5459 void netdev_change_features(struct net_device *dev)
5460 {
5461 	__netdev_update_features(dev);
5462 	netdev_features_change(dev);
5463 }
5464 EXPORT_SYMBOL(netdev_change_features);
5465 
5466 /**
5467  *	netif_stacked_transfer_operstate -	transfer operstate
5468  *	@rootdev: the root or lower level device to transfer state from
5469  *	@dev: the device to transfer operstate to
5470  *
5471  *	Transfer operational state from root to device. This is normally
5472  *	called when a stacking relationship exists between the root
5473  *	device and the device(a leaf device).
5474  */
5475 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5476 					struct net_device *dev)
5477 {
5478 	if (rootdev->operstate == IF_OPER_DORMANT)
5479 		netif_dormant_on(dev);
5480 	else
5481 		netif_dormant_off(dev);
5482 
5483 	if (netif_carrier_ok(rootdev)) {
5484 		if (!netif_carrier_ok(dev))
5485 			netif_carrier_on(dev);
5486 	} else {
5487 		if (netif_carrier_ok(dev))
5488 			netif_carrier_off(dev);
5489 	}
5490 }
5491 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5492 
5493 #ifdef CONFIG_RPS
5494 static int netif_alloc_rx_queues(struct net_device *dev)
5495 {
5496 	unsigned int i, count = dev->num_rx_queues;
5497 	struct netdev_rx_queue *rx;
5498 
5499 	BUG_ON(count < 1);
5500 
5501 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5502 	if (!rx) {
5503 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5504 		return -ENOMEM;
5505 	}
5506 	dev->_rx = rx;
5507 
5508 	for (i = 0; i < count; i++)
5509 		rx[i].dev = dev;
5510 	return 0;
5511 }
5512 #endif
5513 
5514 static void netdev_init_one_queue(struct net_device *dev,
5515 				  struct netdev_queue *queue, void *_unused)
5516 {
5517 	/* Initialize queue lock */
5518 	spin_lock_init(&queue->_xmit_lock);
5519 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5520 	queue->xmit_lock_owner = -1;
5521 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5522 	queue->dev = dev;
5523 #ifdef CONFIG_BQL
5524 	dql_init(&queue->dql, HZ);
5525 #endif
5526 }
5527 
5528 static int netif_alloc_netdev_queues(struct net_device *dev)
5529 {
5530 	unsigned int count = dev->num_tx_queues;
5531 	struct netdev_queue *tx;
5532 
5533 	BUG_ON(count < 1);
5534 
5535 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5536 	if (!tx) {
5537 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5538 		return -ENOMEM;
5539 	}
5540 	dev->_tx = tx;
5541 
5542 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5543 	spin_lock_init(&dev->tx_global_lock);
5544 
5545 	return 0;
5546 }
5547 
5548 /**
5549  *	register_netdevice	- register a network device
5550  *	@dev: device to register
5551  *
5552  *	Take a completed network device structure and add it to the kernel
5553  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5554  *	chain. 0 is returned on success. A negative errno code is returned
5555  *	on a failure to set up the device, or if the name is a duplicate.
5556  *
5557  *	Callers must hold the rtnl semaphore. You may want
5558  *	register_netdev() instead of this.
5559  *
5560  *	BUGS:
5561  *	The locking appears insufficient to guarantee two parallel registers
5562  *	will not get the same name.
5563  */
5564 
5565 int register_netdevice(struct net_device *dev)
5566 {
5567 	int ret;
5568 	struct net *net = dev_net(dev);
5569 
5570 	BUG_ON(dev_boot_phase);
5571 	ASSERT_RTNL();
5572 
5573 	might_sleep();
5574 
5575 	/* When net_device's are persistent, this will be fatal. */
5576 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5577 	BUG_ON(!net);
5578 
5579 	spin_lock_init(&dev->addr_list_lock);
5580 	netdev_set_addr_lockdep_class(dev);
5581 
5582 	dev->iflink = -1;
5583 
5584 	ret = dev_get_valid_name(dev, dev->name);
5585 	if (ret < 0)
5586 		goto out;
5587 
5588 	/* Init, if this function is available */
5589 	if (dev->netdev_ops->ndo_init) {
5590 		ret = dev->netdev_ops->ndo_init(dev);
5591 		if (ret) {
5592 			if (ret > 0)
5593 				ret = -EIO;
5594 			goto out;
5595 		}
5596 	}
5597 
5598 	dev->ifindex = dev_new_index(net);
5599 	if (dev->iflink == -1)
5600 		dev->iflink = dev->ifindex;
5601 
5602 	/* Transfer changeable features to wanted_features and enable
5603 	 * software offloads (GSO and GRO).
5604 	 */
5605 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5606 	dev->features |= NETIF_F_SOFT_FEATURES;
5607 	dev->wanted_features = dev->features & dev->hw_features;
5608 
5609 	/* Turn on no cache copy if HW is doing checksum */
5610 	if (!(dev->flags & IFF_LOOPBACK)) {
5611 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5612 		if (dev->features & NETIF_F_ALL_CSUM) {
5613 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5614 			dev->features |= NETIF_F_NOCACHE_COPY;
5615 		}
5616 	}
5617 
5618 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5619 	 */
5620 	dev->vlan_features |= NETIF_F_HIGHDMA;
5621 
5622 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5623 	ret = notifier_to_errno(ret);
5624 	if (ret)
5625 		goto err_uninit;
5626 
5627 	ret = netdev_register_kobject(dev);
5628 	if (ret)
5629 		goto err_uninit;
5630 	dev->reg_state = NETREG_REGISTERED;
5631 
5632 	__netdev_update_features(dev);
5633 
5634 	/*
5635 	 *	Default initial state at registry is that the
5636 	 *	device is present.
5637 	 */
5638 
5639 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5640 
5641 	dev_init_scheduler(dev);
5642 	dev_hold(dev);
5643 	list_netdevice(dev);
5644 	add_device_randomness(dev->dev_addr, dev->addr_len);
5645 
5646 	/* Notify protocols, that a new device appeared. */
5647 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5648 	ret = notifier_to_errno(ret);
5649 	if (ret) {
5650 		rollback_registered(dev);
5651 		dev->reg_state = NETREG_UNREGISTERED;
5652 	}
5653 	/*
5654 	 *	Prevent userspace races by waiting until the network
5655 	 *	device is fully setup before sending notifications.
5656 	 */
5657 	if (!dev->rtnl_link_ops ||
5658 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5659 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5660 
5661 out:
5662 	return ret;
5663 
5664 err_uninit:
5665 	if (dev->netdev_ops->ndo_uninit)
5666 		dev->netdev_ops->ndo_uninit(dev);
5667 	goto out;
5668 }
5669 EXPORT_SYMBOL(register_netdevice);
5670 
5671 /**
5672  *	init_dummy_netdev	- init a dummy network device for NAPI
5673  *	@dev: device to init
5674  *
5675  *	This takes a network device structure and initialize the minimum
5676  *	amount of fields so it can be used to schedule NAPI polls without
5677  *	registering a full blown interface. This is to be used by drivers
5678  *	that need to tie several hardware interfaces to a single NAPI
5679  *	poll scheduler due to HW limitations.
5680  */
5681 int init_dummy_netdev(struct net_device *dev)
5682 {
5683 	/* Clear everything. Note we don't initialize spinlocks
5684 	 * are they aren't supposed to be taken by any of the
5685 	 * NAPI code and this dummy netdev is supposed to be
5686 	 * only ever used for NAPI polls
5687 	 */
5688 	memset(dev, 0, sizeof(struct net_device));
5689 
5690 	/* make sure we BUG if trying to hit standard
5691 	 * register/unregister code path
5692 	 */
5693 	dev->reg_state = NETREG_DUMMY;
5694 
5695 	/* NAPI wants this */
5696 	INIT_LIST_HEAD(&dev->napi_list);
5697 
5698 	/* a dummy interface is started by default */
5699 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5700 	set_bit(__LINK_STATE_START, &dev->state);
5701 
5702 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5703 	 * because users of this 'device' dont need to change
5704 	 * its refcount.
5705 	 */
5706 
5707 	return 0;
5708 }
5709 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5710 
5711 
5712 /**
5713  *	register_netdev	- register a network device
5714  *	@dev: device to register
5715  *
5716  *	Take a completed network device structure and add it to the kernel
5717  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5718  *	chain. 0 is returned on success. A negative errno code is returned
5719  *	on a failure to set up the device, or if the name is a duplicate.
5720  *
5721  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5722  *	and expands the device name if you passed a format string to
5723  *	alloc_netdev.
5724  */
5725 int register_netdev(struct net_device *dev)
5726 {
5727 	int err;
5728 
5729 	rtnl_lock();
5730 	err = register_netdevice(dev);
5731 	rtnl_unlock();
5732 	return err;
5733 }
5734 EXPORT_SYMBOL(register_netdev);
5735 
5736 int netdev_refcnt_read(const struct net_device *dev)
5737 {
5738 	int i, refcnt = 0;
5739 
5740 	for_each_possible_cpu(i)
5741 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5742 	return refcnt;
5743 }
5744 EXPORT_SYMBOL(netdev_refcnt_read);
5745 
5746 /**
5747  * netdev_wait_allrefs - wait until all references are gone.
5748  * @dev: target net_device
5749  *
5750  * This is called when unregistering network devices.
5751  *
5752  * Any protocol or device that holds a reference should register
5753  * for netdevice notification, and cleanup and put back the
5754  * reference if they receive an UNREGISTER event.
5755  * We can get stuck here if buggy protocols don't correctly
5756  * call dev_put.
5757  */
5758 static void netdev_wait_allrefs(struct net_device *dev)
5759 {
5760 	unsigned long rebroadcast_time, warning_time;
5761 	int refcnt;
5762 
5763 	linkwatch_forget_dev(dev);
5764 
5765 	rebroadcast_time = warning_time = jiffies;
5766 	refcnt = netdev_refcnt_read(dev);
5767 
5768 	while (refcnt != 0) {
5769 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5770 			rtnl_lock();
5771 
5772 			/* Rebroadcast unregister notification */
5773 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5774 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5775 			 * should have already handle it the first time */
5776 
5777 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5778 				     &dev->state)) {
5779 				/* We must not have linkwatch events
5780 				 * pending on unregister. If this
5781 				 * happens, we simply run the queue
5782 				 * unscheduled, resulting in a noop
5783 				 * for this device.
5784 				 */
5785 				linkwatch_run_queue();
5786 			}
5787 
5788 			__rtnl_unlock();
5789 
5790 			rebroadcast_time = jiffies;
5791 		}
5792 
5793 		msleep(250);
5794 
5795 		refcnt = netdev_refcnt_read(dev);
5796 
5797 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5798 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5799 				 dev->name, refcnt);
5800 			warning_time = jiffies;
5801 		}
5802 	}
5803 }
5804 
5805 /* The sequence is:
5806  *
5807  *	rtnl_lock();
5808  *	...
5809  *	register_netdevice(x1);
5810  *	register_netdevice(x2);
5811  *	...
5812  *	unregister_netdevice(y1);
5813  *	unregister_netdevice(y2);
5814  *      ...
5815  *	rtnl_unlock();
5816  *	free_netdev(y1);
5817  *	free_netdev(y2);
5818  *
5819  * We are invoked by rtnl_unlock().
5820  * This allows us to deal with problems:
5821  * 1) We can delete sysfs objects which invoke hotplug
5822  *    without deadlocking with linkwatch via keventd.
5823  * 2) Since we run with the RTNL semaphore not held, we can sleep
5824  *    safely in order to wait for the netdev refcnt to drop to zero.
5825  *
5826  * We must not return until all unregister events added during
5827  * the interval the lock was held have been completed.
5828  */
5829 void netdev_run_todo(void)
5830 {
5831 	struct list_head list;
5832 
5833 	/* Snapshot list, allow later requests */
5834 	list_replace_init(&net_todo_list, &list);
5835 
5836 	__rtnl_unlock();
5837 
5838 	/* Wait for rcu callbacks to finish before attempting to drain
5839 	 * the device list.  This usually avoids a 250ms wait.
5840 	 */
5841 	if (!list_empty(&list))
5842 		rcu_barrier();
5843 
5844 	while (!list_empty(&list)) {
5845 		struct net_device *dev
5846 			= list_first_entry(&list, struct net_device, todo_list);
5847 		list_del(&dev->todo_list);
5848 
5849 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5850 			pr_err("network todo '%s' but state %d\n",
5851 			       dev->name, dev->reg_state);
5852 			dump_stack();
5853 			continue;
5854 		}
5855 
5856 		dev->reg_state = NETREG_UNREGISTERED;
5857 
5858 		on_each_cpu(flush_backlog, dev, 1);
5859 
5860 		netdev_wait_allrefs(dev);
5861 
5862 		/* paranoia */
5863 		BUG_ON(netdev_refcnt_read(dev));
5864 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5865 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5866 		WARN_ON(dev->dn_ptr);
5867 
5868 		if (dev->destructor)
5869 			dev->destructor(dev);
5870 
5871 		/* Free network device */
5872 		kobject_put(&dev->dev.kobj);
5873 	}
5874 }
5875 
5876 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5877  * fields in the same order, with only the type differing.
5878  */
5879 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5880 			     const struct net_device_stats *netdev_stats)
5881 {
5882 #if BITS_PER_LONG == 64
5883 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5884 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5885 #else
5886 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5887 	const unsigned long *src = (const unsigned long *)netdev_stats;
5888 	u64 *dst = (u64 *)stats64;
5889 
5890 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5891 		     sizeof(*stats64) / sizeof(u64));
5892 	for (i = 0; i < n; i++)
5893 		dst[i] = src[i];
5894 #endif
5895 }
5896 EXPORT_SYMBOL(netdev_stats_to_stats64);
5897 
5898 /**
5899  *	dev_get_stats	- get network device statistics
5900  *	@dev: device to get statistics from
5901  *	@storage: place to store stats
5902  *
5903  *	Get network statistics from device. Return @storage.
5904  *	The device driver may provide its own method by setting
5905  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5906  *	otherwise the internal statistics structure is used.
5907  */
5908 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5909 					struct rtnl_link_stats64 *storage)
5910 {
5911 	const struct net_device_ops *ops = dev->netdev_ops;
5912 
5913 	if (ops->ndo_get_stats64) {
5914 		memset(storage, 0, sizeof(*storage));
5915 		ops->ndo_get_stats64(dev, storage);
5916 	} else if (ops->ndo_get_stats) {
5917 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5918 	} else {
5919 		netdev_stats_to_stats64(storage, &dev->stats);
5920 	}
5921 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5922 	return storage;
5923 }
5924 EXPORT_SYMBOL(dev_get_stats);
5925 
5926 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5927 {
5928 	struct netdev_queue *queue = dev_ingress_queue(dev);
5929 
5930 #ifdef CONFIG_NET_CLS_ACT
5931 	if (queue)
5932 		return queue;
5933 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5934 	if (!queue)
5935 		return NULL;
5936 	netdev_init_one_queue(dev, queue, NULL);
5937 	queue->qdisc = &noop_qdisc;
5938 	queue->qdisc_sleeping = &noop_qdisc;
5939 	rcu_assign_pointer(dev->ingress_queue, queue);
5940 #endif
5941 	return queue;
5942 }
5943 
5944 /**
5945  *	alloc_netdev_mqs - allocate network device
5946  *	@sizeof_priv:	size of private data to allocate space for
5947  *	@name:		device name format string
5948  *	@setup:		callback to initialize device
5949  *	@txqs:		the number of TX subqueues to allocate
5950  *	@rxqs:		the number of RX subqueues to allocate
5951  *
5952  *	Allocates a struct net_device with private data area for driver use
5953  *	and performs basic initialization.  Also allocates subquue structs
5954  *	for each queue on the device.
5955  */
5956 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5957 		void (*setup)(struct net_device *),
5958 		unsigned int txqs, unsigned int rxqs)
5959 {
5960 	struct net_device *dev;
5961 	size_t alloc_size;
5962 	struct net_device *p;
5963 
5964 	BUG_ON(strlen(name) >= sizeof(dev->name));
5965 
5966 	if (txqs < 1) {
5967 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5968 		return NULL;
5969 	}
5970 
5971 #ifdef CONFIG_RPS
5972 	if (rxqs < 1) {
5973 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5974 		return NULL;
5975 	}
5976 #endif
5977 
5978 	alloc_size = sizeof(struct net_device);
5979 	if (sizeof_priv) {
5980 		/* ensure 32-byte alignment of private area */
5981 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5982 		alloc_size += sizeof_priv;
5983 	}
5984 	/* ensure 32-byte alignment of whole construct */
5985 	alloc_size += NETDEV_ALIGN - 1;
5986 
5987 	p = kzalloc(alloc_size, GFP_KERNEL);
5988 	if (!p) {
5989 		pr_err("alloc_netdev: Unable to allocate device\n");
5990 		return NULL;
5991 	}
5992 
5993 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5994 	dev->padded = (char *)dev - (char *)p;
5995 
5996 	dev->pcpu_refcnt = alloc_percpu(int);
5997 	if (!dev->pcpu_refcnt)
5998 		goto free_p;
5999 
6000 	if (dev_addr_init(dev))
6001 		goto free_pcpu;
6002 
6003 	dev_mc_init(dev);
6004 	dev_uc_init(dev);
6005 
6006 	dev_net_set(dev, &init_net);
6007 
6008 	dev->gso_max_size = GSO_MAX_SIZE;
6009 	dev->gso_max_segs = GSO_MAX_SEGS;
6010 
6011 	INIT_LIST_HEAD(&dev->napi_list);
6012 	INIT_LIST_HEAD(&dev->unreg_list);
6013 	INIT_LIST_HEAD(&dev->link_watch_list);
6014 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6015 	setup(dev);
6016 
6017 	dev->num_tx_queues = txqs;
6018 	dev->real_num_tx_queues = txqs;
6019 	if (netif_alloc_netdev_queues(dev))
6020 		goto free_all;
6021 
6022 #ifdef CONFIG_RPS
6023 	dev->num_rx_queues = rxqs;
6024 	dev->real_num_rx_queues = rxqs;
6025 	if (netif_alloc_rx_queues(dev))
6026 		goto free_all;
6027 #endif
6028 
6029 	strcpy(dev->name, name);
6030 	dev->group = INIT_NETDEV_GROUP;
6031 	return dev;
6032 
6033 free_all:
6034 	free_netdev(dev);
6035 	return NULL;
6036 
6037 free_pcpu:
6038 	free_percpu(dev->pcpu_refcnt);
6039 	kfree(dev->_tx);
6040 #ifdef CONFIG_RPS
6041 	kfree(dev->_rx);
6042 #endif
6043 
6044 free_p:
6045 	kfree(p);
6046 	return NULL;
6047 }
6048 EXPORT_SYMBOL(alloc_netdev_mqs);
6049 
6050 /**
6051  *	free_netdev - free network device
6052  *	@dev: device
6053  *
6054  *	This function does the last stage of destroying an allocated device
6055  * 	interface. The reference to the device object is released.
6056  *	If this is the last reference then it will be freed.
6057  */
6058 void free_netdev(struct net_device *dev)
6059 {
6060 	struct napi_struct *p, *n;
6061 
6062 	release_net(dev_net(dev));
6063 
6064 	kfree(dev->_tx);
6065 #ifdef CONFIG_RPS
6066 	kfree(dev->_rx);
6067 #endif
6068 
6069 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6070 
6071 	/* Flush device addresses */
6072 	dev_addr_flush(dev);
6073 
6074 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6075 		netif_napi_del(p);
6076 
6077 	free_percpu(dev->pcpu_refcnt);
6078 	dev->pcpu_refcnt = NULL;
6079 
6080 	/*  Compatibility with error handling in drivers */
6081 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6082 		kfree((char *)dev - dev->padded);
6083 		return;
6084 	}
6085 
6086 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6087 	dev->reg_state = NETREG_RELEASED;
6088 
6089 	/* will free via device release */
6090 	put_device(&dev->dev);
6091 }
6092 EXPORT_SYMBOL(free_netdev);
6093 
6094 /**
6095  *	synchronize_net -  Synchronize with packet receive processing
6096  *
6097  *	Wait for packets currently being received to be done.
6098  *	Does not block later packets from starting.
6099  */
6100 void synchronize_net(void)
6101 {
6102 	might_sleep();
6103 	if (rtnl_is_locked())
6104 		synchronize_rcu_expedited();
6105 	else
6106 		synchronize_rcu();
6107 }
6108 EXPORT_SYMBOL(synchronize_net);
6109 
6110 /**
6111  *	unregister_netdevice_queue - remove device from the kernel
6112  *	@dev: device
6113  *	@head: list
6114  *
6115  *	This function shuts down a device interface and removes it
6116  *	from the kernel tables.
6117  *	If head not NULL, device is queued to be unregistered later.
6118  *
6119  *	Callers must hold the rtnl semaphore.  You may want
6120  *	unregister_netdev() instead of this.
6121  */
6122 
6123 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6124 {
6125 	ASSERT_RTNL();
6126 
6127 	if (head) {
6128 		list_move_tail(&dev->unreg_list, head);
6129 	} else {
6130 		rollback_registered(dev);
6131 		/* Finish processing unregister after unlock */
6132 		net_set_todo(dev);
6133 	}
6134 }
6135 EXPORT_SYMBOL(unregister_netdevice_queue);
6136 
6137 /**
6138  *	unregister_netdevice_many - unregister many devices
6139  *	@head: list of devices
6140  */
6141 void unregister_netdevice_many(struct list_head *head)
6142 {
6143 	struct net_device *dev;
6144 
6145 	if (!list_empty(head)) {
6146 		rollback_registered_many(head);
6147 		list_for_each_entry(dev, head, unreg_list)
6148 			net_set_todo(dev);
6149 	}
6150 }
6151 EXPORT_SYMBOL(unregister_netdevice_many);
6152 
6153 /**
6154  *	unregister_netdev - remove device from the kernel
6155  *	@dev: device
6156  *
6157  *	This function shuts down a device interface and removes it
6158  *	from the kernel tables.
6159  *
6160  *	This is just a wrapper for unregister_netdevice that takes
6161  *	the rtnl semaphore.  In general you want to use this and not
6162  *	unregister_netdevice.
6163  */
6164 void unregister_netdev(struct net_device *dev)
6165 {
6166 	rtnl_lock();
6167 	unregister_netdevice(dev);
6168 	rtnl_unlock();
6169 }
6170 EXPORT_SYMBOL(unregister_netdev);
6171 
6172 /**
6173  *	dev_change_net_namespace - move device to different nethost namespace
6174  *	@dev: device
6175  *	@net: network namespace
6176  *	@pat: If not NULL name pattern to try if the current device name
6177  *	      is already taken in the destination network namespace.
6178  *
6179  *	This function shuts down a device interface and moves it
6180  *	to a new network namespace. On success 0 is returned, on
6181  *	a failure a netagive errno code is returned.
6182  *
6183  *	Callers must hold the rtnl semaphore.
6184  */
6185 
6186 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6187 {
6188 	int err;
6189 
6190 	ASSERT_RTNL();
6191 
6192 	/* Don't allow namespace local devices to be moved. */
6193 	err = -EINVAL;
6194 	if (dev->features & NETIF_F_NETNS_LOCAL)
6195 		goto out;
6196 
6197 	/* Ensure the device has been registrered */
6198 	err = -EINVAL;
6199 	if (dev->reg_state != NETREG_REGISTERED)
6200 		goto out;
6201 
6202 	/* Get out if there is nothing todo */
6203 	err = 0;
6204 	if (net_eq(dev_net(dev), net))
6205 		goto out;
6206 
6207 	/* Pick the destination device name, and ensure
6208 	 * we can use it in the destination network namespace.
6209 	 */
6210 	err = -EEXIST;
6211 	if (__dev_get_by_name(net, dev->name)) {
6212 		/* We get here if we can't use the current device name */
6213 		if (!pat)
6214 			goto out;
6215 		if (dev_get_valid_name(dev, pat) < 0)
6216 			goto out;
6217 	}
6218 
6219 	/*
6220 	 * And now a mini version of register_netdevice unregister_netdevice.
6221 	 */
6222 
6223 	/* If device is running close it first. */
6224 	dev_close(dev);
6225 
6226 	/* And unlink it from device chain */
6227 	err = -ENODEV;
6228 	unlist_netdevice(dev);
6229 
6230 	synchronize_net();
6231 
6232 	/* Shutdown queueing discipline. */
6233 	dev_shutdown(dev);
6234 
6235 	/* Notify protocols, that we are about to destroy
6236 	   this device. They should clean all the things.
6237 
6238 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6239 	   This is wanted because this way 8021q and macvlan know
6240 	   the device is just moving and can keep their slaves up.
6241 	*/
6242 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6243 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6244 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6245 
6246 	/*
6247 	 *	Flush the unicast and multicast chains
6248 	 */
6249 	dev_uc_flush(dev);
6250 	dev_mc_flush(dev);
6251 
6252 	/* Actually switch the network namespace */
6253 	dev_net_set(dev, net);
6254 
6255 	/* If there is an ifindex conflict assign a new one */
6256 	if (__dev_get_by_index(net, dev->ifindex)) {
6257 		int iflink = (dev->iflink == dev->ifindex);
6258 		dev->ifindex = dev_new_index(net);
6259 		if (iflink)
6260 			dev->iflink = dev->ifindex;
6261 	}
6262 
6263 	/* Fixup kobjects */
6264 	err = device_rename(&dev->dev, dev->name);
6265 	WARN_ON(err);
6266 
6267 	/* Add the device back in the hashes */
6268 	list_netdevice(dev);
6269 
6270 	/* Notify protocols, that a new device appeared. */
6271 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6272 
6273 	/*
6274 	 *	Prevent userspace races by waiting until the network
6275 	 *	device is fully setup before sending notifications.
6276 	 */
6277 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6278 
6279 	synchronize_net();
6280 	err = 0;
6281 out:
6282 	return err;
6283 }
6284 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6285 
6286 static int dev_cpu_callback(struct notifier_block *nfb,
6287 			    unsigned long action,
6288 			    void *ocpu)
6289 {
6290 	struct sk_buff **list_skb;
6291 	struct sk_buff *skb;
6292 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6293 	struct softnet_data *sd, *oldsd;
6294 
6295 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6296 		return NOTIFY_OK;
6297 
6298 	local_irq_disable();
6299 	cpu = smp_processor_id();
6300 	sd = &per_cpu(softnet_data, cpu);
6301 	oldsd = &per_cpu(softnet_data, oldcpu);
6302 
6303 	/* Find end of our completion_queue. */
6304 	list_skb = &sd->completion_queue;
6305 	while (*list_skb)
6306 		list_skb = &(*list_skb)->next;
6307 	/* Append completion queue from offline CPU. */
6308 	*list_skb = oldsd->completion_queue;
6309 	oldsd->completion_queue = NULL;
6310 
6311 	/* Append output queue from offline CPU. */
6312 	if (oldsd->output_queue) {
6313 		*sd->output_queue_tailp = oldsd->output_queue;
6314 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6315 		oldsd->output_queue = NULL;
6316 		oldsd->output_queue_tailp = &oldsd->output_queue;
6317 	}
6318 	/* Append NAPI poll list from offline CPU. */
6319 	if (!list_empty(&oldsd->poll_list)) {
6320 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6321 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6322 	}
6323 
6324 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6325 	local_irq_enable();
6326 
6327 	/* Process offline CPU's input_pkt_queue */
6328 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6329 		netif_rx(skb);
6330 		input_queue_head_incr(oldsd);
6331 	}
6332 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6333 		netif_rx(skb);
6334 		input_queue_head_incr(oldsd);
6335 	}
6336 
6337 	return NOTIFY_OK;
6338 }
6339 
6340 
6341 /**
6342  *	netdev_increment_features - increment feature set by one
6343  *	@all: current feature set
6344  *	@one: new feature set
6345  *	@mask: mask feature set
6346  *
6347  *	Computes a new feature set after adding a device with feature set
6348  *	@one to the master device with current feature set @all.  Will not
6349  *	enable anything that is off in @mask. Returns the new feature set.
6350  */
6351 netdev_features_t netdev_increment_features(netdev_features_t all,
6352 	netdev_features_t one, netdev_features_t mask)
6353 {
6354 	if (mask & NETIF_F_GEN_CSUM)
6355 		mask |= NETIF_F_ALL_CSUM;
6356 	mask |= NETIF_F_VLAN_CHALLENGED;
6357 
6358 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6359 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6360 
6361 	/* If one device supports hw checksumming, set for all. */
6362 	if (all & NETIF_F_GEN_CSUM)
6363 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6364 
6365 	return all;
6366 }
6367 EXPORT_SYMBOL(netdev_increment_features);
6368 
6369 static struct hlist_head *netdev_create_hash(void)
6370 {
6371 	int i;
6372 	struct hlist_head *hash;
6373 
6374 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6375 	if (hash != NULL)
6376 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6377 			INIT_HLIST_HEAD(&hash[i]);
6378 
6379 	return hash;
6380 }
6381 
6382 /* Initialize per network namespace state */
6383 static int __net_init netdev_init(struct net *net)
6384 {
6385 	if (net != &init_net)
6386 		INIT_LIST_HEAD(&net->dev_base_head);
6387 
6388 	net->dev_name_head = netdev_create_hash();
6389 	if (net->dev_name_head == NULL)
6390 		goto err_name;
6391 
6392 	net->dev_index_head = netdev_create_hash();
6393 	if (net->dev_index_head == NULL)
6394 		goto err_idx;
6395 
6396 	return 0;
6397 
6398 err_idx:
6399 	kfree(net->dev_name_head);
6400 err_name:
6401 	return -ENOMEM;
6402 }
6403 
6404 /**
6405  *	netdev_drivername - network driver for the device
6406  *	@dev: network device
6407  *
6408  *	Determine network driver for device.
6409  */
6410 const char *netdev_drivername(const struct net_device *dev)
6411 {
6412 	const struct device_driver *driver;
6413 	const struct device *parent;
6414 	const char *empty = "";
6415 
6416 	parent = dev->dev.parent;
6417 	if (!parent)
6418 		return empty;
6419 
6420 	driver = parent->driver;
6421 	if (driver && driver->name)
6422 		return driver->name;
6423 	return empty;
6424 }
6425 
6426 int __netdev_printk(const char *level, const struct net_device *dev,
6427 			   struct va_format *vaf)
6428 {
6429 	int r;
6430 
6431 	if (dev && dev->dev.parent)
6432 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6433 			       netdev_name(dev), vaf);
6434 	else if (dev)
6435 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6436 	else
6437 		r = printk("%s(NULL net_device): %pV", level, vaf);
6438 
6439 	return r;
6440 }
6441 EXPORT_SYMBOL(__netdev_printk);
6442 
6443 int netdev_printk(const char *level, const struct net_device *dev,
6444 		  const char *format, ...)
6445 {
6446 	struct va_format vaf;
6447 	va_list args;
6448 	int r;
6449 
6450 	va_start(args, format);
6451 
6452 	vaf.fmt = format;
6453 	vaf.va = &args;
6454 
6455 	r = __netdev_printk(level, dev, &vaf);
6456 	va_end(args);
6457 
6458 	return r;
6459 }
6460 EXPORT_SYMBOL(netdev_printk);
6461 
6462 #define define_netdev_printk_level(func, level)			\
6463 int func(const struct net_device *dev, const char *fmt, ...)	\
6464 {								\
6465 	int r;							\
6466 	struct va_format vaf;					\
6467 	va_list args;						\
6468 								\
6469 	va_start(args, fmt);					\
6470 								\
6471 	vaf.fmt = fmt;						\
6472 	vaf.va = &args;						\
6473 								\
6474 	r = __netdev_printk(level, dev, &vaf);			\
6475 	va_end(args);						\
6476 								\
6477 	return r;						\
6478 }								\
6479 EXPORT_SYMBOL(func);
6480 
6481 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6482 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6483 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6484 define_netdev_printk_level(netdev_err, KERN_ERR);
6485 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6486 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6487 define_netdev_printk_level(netdev_info, KERN_INFO);
6488 
6489 static void __net_exit netdev_exit(struct net *net)
6490 {
6491 	kfree(net->dev_name_head);
6492 	kfree(net->dev_index_head);
6493 }
6494 
6495 static struct pernet_operations __net_initdata netdev_net_ops = {
6496 	.init = netdev_init,
6497 	.exit = netdev_exit,
6498 };
6499 
6500 static void __net_exit default_device_exit(struct net *net)
6501 {
6502 	struct net_device *dev, *aux;
6503 	/*
6504 	 * Push all migratable network devices back to the
6505 	 * initial network namespace
6506 	 */
6507 	rtnl_lock();
6508 	for_each_netdev_safe(net, dev, aux) {
6509 		int err;
6510 		char fb_name[IFNAMSIZ];
6511 
6512 		/* Ignore unmoveable devices (i.e. loopback) */
6513 		if (dev->features & NETIF_F_NETNS_LOCAL)
6514 			continue;
6515 
6516 		/* Leave virtual devices for the generic cleanup */
6517 		if (dev->rtnl_link_ops)
6518 			continue;
6519 
6520 		/* Push remaining network devices to init_net */
6521 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6522 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6523 		if (err) {
6524 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6525 				 __func__, dev->name, err);
6526 			BUG();
6527 		}
6528 	}
6529 	rtnl_unlock();
6530 }
6531 
6532 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6533 {
6534 	/* At exit all network devices most be removed from a network
6535 	 * namespace.  Do this in the reverse order of registration.
6536 	 * Do this across as many network namespaces as possible to
6537 	 * improve batching efficiency.
6538 	 */
6539 	struct net_device *dev;
6540 	struct net *net;
6541 	LIST_HEAD(dev_kill_list);
6542 
6543 	rtnl_lock();
6544 	list_for_each_entry(net, net_list, exit_list) {
6545 		for_each_netdev_reverse(net, dev) {
6546 			if (dev->rtnl_link_ops)
6547 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6548 			else
6549 				unregister_netdevice_queue(dev, &dev_kill_list);
6550 		}
6551 	}
6552 	unregister_netdevice_many(&dev_kill_list);
6553 	list_del(&dev_kill_list);
6554 	rtnl_unlock();
6555 }
6556 
6557 static struct pernet_operations __net_initdata default_device_ops = {
6558 	.exit = default_device_exit,
6559 	.exit_batch = default_device_exit_batch,
6560 };
6561 
6562 /*
6563  *	Initialize the DEV module. At boot time this walks the device list and
6564  *	unhooks any devices that fail to initialise (normally hardware not
6565  *	present) and leaves us with a valid list of present and active devices.
6566  *
6567  */
6568 
6569 /*
6570  *       This is called single threaded during boot, so no need
6571  *       to take the rtnl semaphore.
6572  */
6573 static int __init net_dev_init(void)
6574 {
6575 	int i, rc = -ENOMEM;
6576 
6577 	BUG_ON(!dev_boot_phase);
6578 
6579 	if (dev_proc_init())
6580 		goto out;
6581 
6582 	if (netdev_kobject_init())
6583 		goto out;
6584 
6585 	INIT_LIST_HEAD(&ptype_all);
6586 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6587 		INIT_LIST_HEAD(&ptype_base[i]);
6588 
6589 	if (register_pernet_subsys(&netdev_net_ops))
6590 		goto out;
6591 
6592 	/*
6593 	 *	Initialise the packet receive queues.
6594 	 */
6595 
6596 	for_each_possible_cpu(i) {
6597 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6598 
6599 		memset(sd, 0, sizeof(*sd));
6600 		skb_queue_head_init(&sd->input_pkt_queue);
6601 		skb_queue_head_init(&sd->process_queue);
6602 		sd->completion_queue = NULL;
6603 		INIT_LIST_HEAD(&sd->poll_list);
6604 		sd->output_queue = NULL;
6605 		sd->output_queue_tailp = &sd->output_queue;
6606 #ifdef CONFIG_RPS
6607 		sd->csd.func = rps_trigger_softirq;
6608 		sd->csd.info = sd;
6609 		sd->csd.flags = 0;
6610 		sd->cpu = i;
6611 #endif
6612 
6613 		sd->backlog.poll = process_backlog;
6614 		sd->backlog.weight = weight_p;
6615 		sd->backlog.gro_list = NULL;
6616 		sd->backlog.gro_count = 0;
6617 	}
6618 
6619 	dev_boot_phase = 0;
6620 
6621 	/* The loopback device is special if any other network devices
6622 	 * is present in a network namespace the loopback device must
6623 	 * be present. Since we now dynamically allocate and free the
6624 	 * loopback device ensure this invariant is maintained by
6625 	 * keeping the loopback device as the first device on the
6626 	 * list of network devices.  Ensuring the loopback devices
6627 	 * is the first device that appears and the last network device
6628 	 * that disappears.
6629 	 */
6630 	if (register_pernet_device(&loopback_net_ops))
6631 		goto out;
6632 
6633 	if (register_pernet_device(&default_device_ops))
6634 		goto out;
6635 
6636 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6637 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6638 
6639 	hotcpu_notifier(dev_cpu_callback, 0);
6640 	dst_init();
6641 	dev_mcast_init();
6642 	rc = 0;
6643 out:
6644 	return rc;
6645 }
6646 
6647 subsys_initcall(net_dev_init);
6648 
6649 static int __init initialize_hashrnd(void)
6650 {
6651 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6652 	return 0;
6653 }
6654 
6655 late_initcall_sync(initialize_hashrnd);
6656 
6657