1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * netdev_get_by_flags_rcu - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @tracker: tracking object for the acquired reference 1273 * @if_flags: IFF_* values 1274 * @mask: bitmask of bits in if_flags to check 1275 * 1276 * Search for any interface with the given flags. 1277 * 1278 * Context: rcu_read_lock() must be held. 1279 * Returns: NULL if a device is not found or a pointer to the device. 1280 */ 1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1282 unsigned short if_flags, unsigned short mask) 1283 { 1284 struct net_device *dev; 1285 1286 for_each_netdev_rcu(net, dev) { 1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1288 netdev_hold(dev, tracker, GFP_ATOMIC); 1289 return dev; 1290 } 1291 } 1292 1293 return NULL; 1294 } 1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1296 1297 /** 1298 * dev_valid_name - check if name is okay for network device 1299 * @name: name string 1300 * 1301 * Network device names need to be valid file names to 1302 * allow sysfs to work. We also disallow any kind of 1303 * whitespace. 1304 */ 1305 bool dev_valid_name(const char *name) 1306 { 1307 if (*name == '\0') 1308 return false; 1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1310 return false; 1311 if (!strcmp(name, ".") || !strcmp(name, "..")) 1312 return false; 1313 1314 while (*name) { 1315 if (*name == '/' || *name == ':' || isspace(*name)) 1316 return false; 1317 name++; 1318 } 1319 return true; 1320 } 1321 EXPORT_SYMBOL(dev_valid_name); 1322 1323 /** 1324 * __dev_alloc_name - allocate a name for a device 1325 * @net: network namespace to allocate the device name in 1326 * @name: name format string 1327 * @res: result name string 1328 * 1329 * Passed a format string - eg "lt%d" it will try and find a suitable 1330 * id. It scans list of devices to build up a free map, then chooses 1331 * the first empty slot. The caller must hold the dev_base or rtnl lock 1332 * while allocating the name and adding the device in order to avoid 1333 * duplicates. 1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1335 * Returns the number of the unit assigned or a negative errno code. 1336 */ 1337 1338 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1339 { 1340 int i = 0; 1341 const char *p; 1342 const int max_netdevices = 8*PAGE_SIZE; 1343 unsigned long *inuse; 1344 struct net_device *d; 1345 char buf[IFNAMSIZ]; 1346 1347 /* Verify the string as this thing may have come from the user. 1348 * There must be one "%d" and no other "%" characters. 1349 */ 1350 p = strchr(name, '%'); 1351 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1352 return -EINVAL; 1353 1354 /* Use one page as a bit array of possible slots */ 1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1356 if (!inuse) 1357 return -ENOMEM; 1358 1359 for_each_netdev(net, d) { 1360 struct netdev_name_node *name_node; 1361 1362 netdev_for_each_altname(d, name_node) { 1363 if (!sscanf(name_node->name, name, &i)) 1364 continue; 1365 if (i < 0 || i >= max_netdevices) 1366 continue; 1367 1368 /* avoid cases where sscanf is not exact inverse of printf */ 1369 snprintf(buf, IFNAMSIZ, name, i); 1370 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1371 __set_bit(i, inuse); 1372 } 1373 if (!sscanf(d->name, name, &i)) 1374 continue; 1375 if (i < 0 || i >= max_netdevices) 1376 continue; 1377 1378 /* avoid cases where sscanf is not exact inverse of printf */ 1379 snprintf(buf, IFNAMSIZ, name, i); 1380 if (!strncmp(buf, d->name, IFNAMSIZ)) 1381 __set_bit(i, inuse); 1382 } 1383 1384 i = find_first_zero_bit(inuse, max_netdevices); 1385 bitmap_free(inuse); 1386 if (i == max_netdevices) 1387 return -ENFILE; 1388 1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1390 strscpy(buf, name, IFNAMSIZ); 1391 snprintf(res, IFNAMSIZ, buf, i); 1392 return i; 1393 } 1394 1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1397 const char *want_name, char *out_name, 1398 int dup_errno) 1399 { 1400 if (!dev_valid_name(want_name)) 1401 return -EINVAL; 1402 1403 if (strchr(want_name, '%')) 1404 return __dev_alloc_name(net, want_name, out_name); 1405 1406 if (netdev_name_in_use(net, want_name)) 1407 return -dup_errno; 1408 if (out_name != want_name) 1409 strscpy(out_name, want_name, IFNAMSIZ); 1410 return 0; 1411 } 1412 1413 /** 1414 * dev_alloc_name - allocate a name for a device 1415 * @dev: device 1416 * @name: name format string 1417 * 1418 * Passed a format string - eg "lt%d" it will try and find a suitable 1419 * id. It scans list of devices to build up a free map, then chooses 1420 * the first empty slot. The caller must hold the dev_base or rtnl lock 1421 * while allocating the name and adding the device in order to avoid 1422 * duplicates. 1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1424 * Returns the number of the unit assigned or a negative errno code. 1425 */ 1426 1427 int dev_alloc_name(struct net_device *dev, const char *name) 1428 { 1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1430 } 1431 EXPORT_SYMBOL(dev_alloc_name); 1432 1433 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1434 const char *name) 1435 { 1436 int ret; 1437 1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1439 return ret < 0 ? ret : 0; 1440 } 1441 1442 int netif_change_name(struct net_device *dev, const char *newname) 1443 { 1444 struct net *net = dev_net(dev); 1445 unsigned char old_assign_type; 1446 char oldname[IFNAMSIZ]; 1447 int err = 0; 1448 int ret; 1449 1450 ASSERT_RTNL_NET(net); 1451 1452 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1453 return 0; 1454 1455 memcpy(oldname, dev->name, IFNAMSIZ); 1456 1457 write_seqlock_bh(&netdev_rename_lock); 1458 err = dev_get_valid_name(net, dev, newname); 1459 write_sequnlock_bh(&netdev_rename_lock); 1460 1461 if (err < 0) 1462 return err; 1463 1464 if (oldname[0] && !strchr(oldname, '%')) 1465 netdev_info(dev, "renamed from %s%s\n", oldname, 1466 dev->flags & IFF_UP ? " (while UP)" : ""); 1467 1468 old_assign_type = dev->name_assign_type; 1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1470 1471 rollback: 1472 ret = device_rename(&dev->dev, dev->name); 1473 if (ret) { 1474 write_seqlock_bh(&netdev_rename_lock); 1475 memcpy(dev->name, oldname, IFNAMSIZ); 1476 write_sequnlock_bh(&netdev_rename_lock); 1477 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1478 return ret; 1479 } 1480 1481 netdev_adjacent_rename_links(dev, oldname); 1482 1483 netdev_name_node_del(dev->name_node); 1484 1485 synchronize_net(); 1486 1487 netdev_name_node_add(net, dev->name_node); 1488 1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1490 ret = notifier_to_errno(ret); 1491 1492 if (ret) { 1493 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1494 if (err >= 0) { 1495 err = ret; 1496 write_seqlock_bh(&netdev_rename_lock); 1497 memcpy(dev->name, oldname, IFNAMSIZ); 1498 write_sequnlock_bh(&netdev_rename_lock); 1499 memcpy(oldname, newname, IFNAMSIZ); 1500 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1501 old_assign_type = NET_NAME_RENAMED; 1502 goto rollback; 1503 } else { 1504 netdev_err(dev, "name change rollback failed: %d\n", 1505 ret); 1506 } 1507 } 1508 1509 return err; 1510 } 1511 1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1513 { 1514 struct dev_ifalias *new_alias = NULL; 1515 1516 if (len >= IFALIASZ) 1517 return -EINVAL; 1518 1519 if (len) { 1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1521 if (!new_alias) 1522 return -ENOMEM; 1523 1524 memcpy(new_alias->ifalias, alias, len); 1525 new_alias->ifalias[len] = 0; 1526 } 1527 1528 mutex_lock(&ifalias_mutex); 1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1530 mutex_is_locked(&ifalias_mutex)); 1531 mutex_unlock(&ifalias_mutex); 1532 1533 if (new_alias) 1534 kfree_rcu(new_alias, rcuhead); 1535 1536 return len; 1537 } 1538 1539 /** 1540 * dev_get_alias - get ifalias of a device 1541 * @dev: device 1542 * @name: buffer to store name of ifalias 1543 * @len: size of buffer 1544 * 1545 * get ifalias for a device. Caller must make sure dev cannot go 1546 * away, e.g. rcu read lock or own a reference count to device. 1547 */ 1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1549 { 1550 const struct dev_ifalias *alias; 1551 int ret = 0; 1552 1553 rcu_read_lock(); 1554 alias = rcu_dereference(dev->ifalias); 1555 if (alias) 1556 ret = snprintf(name, len, "%s", alias->ifalias); 1557 rcu_read_unlock(); 1558 1559 return ret; 1560 } 1561 1562 /** 1563 * netdev_features_change - device changes features 1564 * @dev: device to cause notification 1565 * 1566 * Called to indicate a device has changed features. 1567 */ 1568 void netdev_features_change(struct net_device *dev) 1569 { 1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1571 } 1572 EXPORT_SYMBOL(netdev_features_change); 1573 1574 void netif_state_change(struct net_device *dev) 1575 { 1576 netdev_ops_assert_locked_or_invisible(dev); 1577 1578 if (dev->flags & IFF_UP) { 1579 struct netdev_notifier_change_info change_info = { 1580 .info.dev = dev, 1581 }; 1582 1583 call_netdevice_notifiers_info(NETDEV_CHANGE, 1584 &change_info.info); 1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1586 } 1587 } 1588 1589 /** 1590 * __netdev_notify_peers - notify network peers about existence of @dev, 1591 * to be called when rtnl lock is already held. 1592 * @dev: network device 1593 * 1594 * Generate traffic such that interested network peers are aware of 1595 * @dev, such as by generating a gratuitous ARP. This may be used when 1596 * a device wants to inform the rest of the network about some sort of 1597 * reconfiguration such as a failover event or virtual machine 1598 * migration. 1599 */ 1600 void __netdev_notify_peers(struct net_device *dev) 1601 { 1602 ASSERT_RTNL(); 1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1605 } 1606 EXPORT_SYMBOL(__netdev_notify_peers); 1607 1608 /** 1609 * netdev_notify_peers - notify network peers about existence of @dev 1610 * @dev: network device 1611 * 1612 * Generate traffic such that interested network peers are aware of 1613 * @dev, such as by generating a gratuitous ARP. This may be used when 1614 * a device wants to inform the rest of the network about some sort of 1615 * reconfiguration such as a failover event or virtual machine 1616 * migration. 1617 */ 1618 void netdev_notify_peers(struct net_device *dev) 1619 { 1620 rtnl_lock(); 1621 __netdev_notify_peers(dev); 1622 rtnl_unlock(); 1623 } 1624 EXPORT_SYMBOL(netdev_notify_peers); 1625 1626 static int napi_threaded_poll(void *data); 1627 1628 static int napi_kthread_create(struct napi_struct *n) 1629 { 1630 int err = 0; 1631 1632 /* Create and wake up the kthread once to put it in 1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1634 * warning and work with loadavg. 1635 */ 1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1637 n->dev->name, n->napi_id); 1638 if (IS_ERR(n->thread)) { 1639 err = PTR_ERR(n->thread); 1640 pr_err("kthread_run failed with err %d\n", err); 1641 n->thread = NULL; 1642 } 1643 1644 return err; 1645 } 1646 1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1648 { 1649 const struct net_device_ops *ops = dev->netdev_ops; 1650 int ret; 1651 1652 ASSERT_RTNL(); 1653 dev_addr_check(dev); 1654 1655 if (!netif_device_present(dev)) { 1656 /* may be detached because parent is runtime-suspended */ 1657 if (dev->dev.parent) 1658 pm_runtime_resume(dev->dev.parent); 1659 if (!netif_device_present(dev)) 1660 return -ENODEV; 1661 } 1662 1663 /* Block netpoll from trying to do any rx path servicing. 1664 * If we don't do this there is a chance ndo_poll_controller 1665 * or ndo_poll may be running while we open the device 1666 */ 1667 netpoll_poll_disable(dev); 1668 1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1670 ret = notifier_to_errno(ret); 1671 if (ret) 1672 return ret; 1673 1674 set_bit(__LINK_STATE_START, &dev->state); 1675 1676 netdev_ops_assert_locked(dev); 1677 1678 if (ops->ndo_validate_addr) 1679 ret = ops->ndo_validate_addr(dev); 1680 1681 if (!ret && ops->ndo_open) 1682 ret = ops->ndo_open(dev); 1683 1684 netpoll_poll_enable(dev); 1685 1686 if (ret) 1687 clear_bit(__LINK_STATE_START, &dev->state); 1688 else { 1689 netif_set_up(dev, true); 1690 dev_set_rx_mode(dev); 1691 dev_activate(dev); 1692 add_device_randomness(dev->dev_addr, dev->addr_len); 1693 } 1694 1695 return ret; 1696 } 1697 1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1699 { 1700 int ret; 1701 1702 if (dev->flags & IFF_UP) 1703 return 0; 1704 1705 ret = __dev_open(dev, extack); 1706 if (ret < 0) 1707 return ret; 1708 1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1710 call_netdevice_notifiers(NETDEV_UP, dev); 1711 1712 return ret; 1713 } 1714 1715 static void __dev_close_many(struct list_head *head) 1716 { 1717 struct net_device *dev; 1718 1719 ASSERT_RTNL(); 1720 might_sleep(); 1721 1722 list_for_each_entry(dev, head, close_list) { 1723 /* Temporarily disable netpoll until the interface is down */ 1724 netpoll_poll_disable(dev); 1725 1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1727 1728 clear_bit(__LINK_STATE_START, &dev->state); 1729 1730 /* Synchronize to scheduled poll. We cannot touch poll list, it 1731 * can be even on different cpu. So just clear netif_running(). 1732 * 1733 * dev->stop() will invoke napi_disable() on all of it's 1734 * napi_struct instances on this device. 1735 */ 1736 smp_mb__after_atomic(); /* Commit netif_running(). */ 1737 } 1738 1739 dev_deactivate_many(head); 1740 1741 list_for_each_entry(dev, head, close_list) { 1742 const struct net_device_ops *ops = dev->netdev_ops; 1743 1744 /* 1745 * Call the device specific close. This cannot fail. 1746 * Only if device is UP 1747 * 1748 * We allow it to be called even after a DETACH hot-plug 1749 * event. 1750 */ 1751 1752 netdev_ops_assert_locked(dev); 1753 1754 if (ops->ndo_stop) 1755 ops->ndo_stop(dev); 1756 1757 netif_set_up(dev, false); 1758 netpoll_poll_enable(dev); 1759 } 1760 } 1761 1762 static void __dev_close(struct net_device *dev) 1763 { 1764 LIST_HEAD(single); 1765 1766 list_add(&dev->close_list, &single); 1767 __dev_close_many(&single); 1768 list_del(&single); 1769 } 1770 1771 void netif_close_many(struct list_head *head, bool unlink) 1772 { 1773 struct net_device *dev, *tmp; 1774 1775 /* Remove the devices that don't need to be closed */ 1776 list_for_each_entry_safe(dev, tmp, head, close_list) 1777 if (!(dev->flags & IFF_UP)) 1778 list_del_init(&dev->close_list); 1779 1780 __dev_close_many(head); 1781 1782 list_for_each_entry_safe(dev, tmp, head, close_list) { 1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1784 call_netdevice_notifiers(NETDEV_DOWN, dev); 1785 if (unlink) 1786 list_del_init(&dev->close_list); 1787 } 1788 } 1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1790 1791 void netif_close(struct net_device *dev) 1792 { 1793 if (dev->flags & IFF_UP) { 1794 LIST_HEAD(single); 1795 1796 list_add(&dev->close_list, &single); 1797 netif_close_many(&single, true); 1798 list_del(&single); 1799 } 1800 } 1801 EXPORT_SYMBOL(netif_close); 1802 1803 void netif_disable_lro(struct net_device *dev) 1804 { 1805 struct net_device *lower_dev; 1806 struct list_head *iter; 1807 1808 dev->wanted_features &= ~NETIF_F_LRO; 1809 netdev_update_features(dev); 1810 1811 if (unlikely(dev->features & NETIF_F_LRO)) 1812 netdev_WARN(dev, "failed to disable LRO!\n"); 1813 1814 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1815 netdev_lock_ops(lower_dev); 1816 netif_disable_lro(lower_dev); 1817 netdev_unlock_ops(lower_dev); 1818 } 1819 } 1820 EXPORT_IPV6_MOD(netif_disable_lro); 1821 1822 /** 1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1824 * @dev: device 1825 * 1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1827 * called under RTNL. This is needed if Generic XDP is installed on 1828 * the device. 1829 */ 1830 static void dev_disable_gro_hw(struct net_device *dev) 1831 { 1832 dev->wanted_features &= ~NETIF_F_GRO_HW; 1833 netdev_update_features(dev); 1834 1835 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1836 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1837 } 1838 1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1840 { 1841 #define N(val) \ 1842 case NETDEV_##val: \ 1843 return "NETDEV_" __stringify(val); 1844 switch (cmd) { 1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1856 N(XDP_FEAT_CHANGE) 1857 } 1858 #undef N 1859 return "UNKNOWN_NETDEV_EVENT"; 1860 } 1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1862 1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1864 struct net_device *dev) 1865 { 1866 struct netdev_notifier_info info = { 1867 .dev = dev, 1868 }; 1869 1870 return nb->notifier_call(nb, val, &info); 1871 } 1872 1873 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1874 struct net_device *dev) 1875 { 1876 int err; 1877 1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1879 err = notifier_to_errno(err); 1880 if (err) 1881 return err; 1882 1883 if (!(dev->flags & IFF_UP)) 1884 return 0; 1885 1886 call_netdevice_notifier(nb, NETDEV_UP, dev); 1887 return 0; 1888 } 1889 1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1891 struct net_device *dev) 1892 { 1893 if (dev->flags & IFF_UP) { 1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1895 dev); 1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1897 } 1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1899 } 1900 1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1902 struct net *net) 1903 { 1904 struct net_device *dev; 1905 int err; 1906 1907 for_each_netdev(net, dev) { 1908 netdev_lock_ops(dev); 1909 err = call_netdevice_register_notifiers(nb, dev); 1910 netdev_unlock_ops(dev); 1911 if (err) 1912 goto rollback; 1913 } 1914 return 0; 1915 1916 rollback: 1917 for_each_netdev_continue_reverse(net, dev) 1918 call_netdevice_unregister_notifiers(nb, dev); 1919 return err; 1920 } 1921 1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1923 struct net *net) 1924 { 1925 struct net_device *dev; 1926 1927 for_each_netdev(net, dev) 1928 call_netdevice_unregister_notifiers(nb, dev); 1929 } 1930 1931 static int dev_boot_phase = 1; 1932 1933 /** 1934 * register_netdevice_notifier - register a network notifier block 1935 * @nb: notifier 1936 * 1937 * Register a notifier to be called when network device events occur. 1938 * The notifier passed is linked into the kernel structures and must 1939 * not be reused until it has been unregistered. A negative errno code 1940 * is returned on a failure. 1941 * 1942 * When registered all registration and up events are replayed 1943 * to the new notifier to allow device to have a race free 1944 * view of the network device list. 1945 */ 1946 1947 int register_netdevice_notifier(struct notifier_block *nb) 1948 { 1949 struct net *net; 1950 int err; 1951 1952 /* Close race with setup_net() and cleanup_net() */ 1953 down_write(&pernet_ops_rwsem); 1954 1955 /* When RTNL is removed, we need protection for netdev_chain. */ 1956 rtnl_lock(); 1957 1958 err = raw_notifier_chain_register(&netdev_chain, nb); 1959 if (err) 1960 goto unlock; 1961 if (dev_boot_phase) 1962 goto unlock; 1963 for_each_net(net) { 1964 __rtnl_net_lock(net); 1965 err = call_netdevice_register_net_notifiers(nb, net); 1966 __rtnl_net_unlock(net); 1967 if (err) 1968 goto rollback; 1969 } 1970 1971 unlock: 1972 rtnl_unlock(); 1973 up_write(&pernet_ops_rwsem); 1974 return err; 1975 1976 rollback: 1977 for_each_net_continue_reverse(net) { 1978 __rtnl_net_lock(net); 1979 call_netdevice_unregister_net_notifiers(nb, net); 1980 __rtnl_net_unlock(net); 1981 } 1982 1983 raw_notifier_chain_unregister(&netdev_chain, nb); 1984 goto unlock; 1985 } 1986 EXPORT_SYMBOL(register_netdevice_notifier); 1987 1988 /** 1989 * unregister_netdevice_notifier - unregister a network notifier block 1990 * @nb: notifier 1991 * 1992 * Unregister a notifier previously registered by 1993 * register_netdevice_notifier(). The notifier is unlinked into the 1994 * kernel structures and may then be reused. A negative errno code 1995 * is returned on a failure. 1996 * 1997 * After unregistering unregister and down device events are synthesized 1998 * for all devices on the device list to the removed notifier to remove 1999 * the need for special case cleanup code. 2000 */ 2001 2002 int unregister_netdevice_notifier(struct notifier_block *nb) 2003 { 2004 struct net *net; 2005 int err; 2006 2007 /* Close race with setup_net() and cleanup_net() */ 2008 down_write(&pernet_ops_rwsem); 2009 rtnl_lock(); 2010 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2011 if (err) 2012 goto unlock; 2013 2014 for_each_net(net) { 2015 __rtnl_net_lock(net); 2016 call_netdevice_unregister_net_notifiers(nb, net); 2017 __rtnl_net_unlock(net); 2018 } 2019 2020 unlock: 2021 rtnl_unlock(); 2022 up_write(&pernet_ops_rwsem); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(unregister_netdevice_notifier); 2026 2027 static int __register_netdevice_notifier_net(struct net *net, 2028 struct notifier_block *nb, 2029 bool ignore_call_fail) 2030 { 2031 int err; 2032 2033 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2034 if (err) 2035 return err; 2036 if (dev_boot_phase) 2037 return 0; 2038 2039 err = call_netdevice_register_net_notifiers(nb, net); 2040 if (err && !ignore_call_fail) 2041 goto chain_unregister; 2042 2043 return 0; 2044 2045 chain_unregister: 2046 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2047 return err; 2048 } 2049 2050 static int __unregister_netdevice_notifier_net(struct net *net, 2051 struct notifier_block *nb) 2052 { 2053 int err; 2054 2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2056 if (err) 2057 return err; 2058 2059 call_netdevice_unregister_net_notifiers(nb, net); 2060 return 0; 2061 } 2062 2063 /** 2064 * register_netdevice_notifier_net - register a per-netns network notifier block 2065 * @net: network namespace 2066 * @nb: notifier 2067 * 2068 * Register a notifier to be called when network device events occur. 2069 * The notifier passed is linked into the kernel structures and must 2070 * not be reused until it has been unregistered. A negative errno code 2071 * is returned on a failure. 2072 * 2073 * When registered all registration and up events are replayed 2074 * to the new notifier to allow device to have a race free 2075 * view of the network device list. 2076 */ 2077 2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2079 { 2080 int err; 2081 2082 rtnl_net_lock(net); 2083 err = __register_netdevice_notifier_net(net, nb, false); 2084 rtnl_net_unlock(net); 2085 2086 return err; 2087 } 2088 EXPORT_SYMBOL(register_netdevice_notifier_net); 2089 2090 /** 2091 * unregister_netdevice_notifier_net - unregister a per-netns 2092 * network notifier block 2093 * @net: network namespace 2094 * @nb: notifier 2095 * 2096 * Unregister a notifier previously registered by 2097 * register_netdevice_notifier_net(). The notifier is unlinked from the 2098 * kernel structures and may then be reused. A negative errno code 2099 * is returned on a failure. 2100 * 2101 * After unregistering unregister and down device events are synthesized 2102 * for all devices on the device list to the removed notifier to remove 2103 * the need for special case cleanup code. 2104 */ 2105 2106 int unregister_netdevice_notifier_net(struct net *net, 2107 struct notifier_block *nb) 2108 { 2109 int err; 2110 2111 rtnl_net_lock(net); 2112 err = __unregister_netdevice_notifier_net(net, nb); 2113 rtnl_net_unlock(net); 2114 2115 return err; 2116 } 2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2118 2119 static void __move_netdevice_notifier_net(struct net *src_net, 2120 struct net *dst_net, 2121 struct notifier_block *nb) 2122 { 2123 __unregister_netdevice_notifier_net(src_net, nb); 2124 __register_netdevice_notifier_net(dst_net, nb, true); 2125 } 2126 2127 static void rtnl_net_dev_lock(struct net_device *dev) 2128 { 2129 bool again; 2130 2131 do { 2132 struct net *net; 2133 2134 again = false; 2135 2136 /* netns might be being dismantled. */ 2137 rcu_read_lock(); 2138 net = dev_net_rcu(dev); 2139 net_passive_inc(net); 2140 rcu_read_unlock(); 2141 2142 rtnl_net_lock(net); 2143 2144 #ifdef CONFIG_NET_NS 2145 /* dev might have been moved to another netns. */ 2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2147 rtnl_net_unlock(net); 2148 net_passive_dec(net); 2149 again = true; 2150 } 2151 #endif 2152 } while (again); 2153 } 2154 2155 static void rtnl_net_dev_unlock(struct net_device *dev) 2156 { 2157 struct net *net = dev_net(dev); 2158 2159 rtnl_net_unlock(net); 2160 net_passive_dec(net); 2161 } 2162 2163 int register_netdevice_notifier_dev_net(struct net_device *dev, 2164 struct notifier_block *nb, 2165 struct netdev_net_notifier *nn) 2166 { 2167 int err; 2168 2169 rtnl_net_dev_lock(dev); 2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2171 if (!err) { 2172 nn->nb = nb; 2173 list_add(&nn->list, &dev->net_notifier_list); 2174 } 2175 rtnl_net_dev_unlock(dev); 2176 2177 return err; 2178 } 2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2180 2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2182 struct notifier_block *nb, 2183 struct netdev_net_notifier *nn) 2184 { 2185 int err; 2186 2187 rtnl_net_dev_lock(dev); 2188 list_del(&nn->list); 2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2190 rtnl_net_dev_unlock(dev); 2191 2192 return err; 2193 } 2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2195 2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2197 struct net *net) 2198 { 2199 struct netdev_net_notifier *nn; 2200 2201 list_for_each_entry(nn, &dev->net_notifier_list, list) 2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2203 } 2204 2205 /** 2206 * call_netdevice_notifiers_info - call all network notifier blocks 2207 * @val: value passed unmodified to notifier function 2208 * @info: notifier information data 2209 * 2210 * Call all network notifier blocks. Parameters and return value 2211 * are as for raw_notifier_call_chain(). 2212 */ 2213 2214 int call_netdevice_notifiers_info(unsigned long val, 2215 struct netdev_notifier_info *info) 2216 { 2217 struct net *net = dev_net(info->dev); 2218 int ret; 2219 2220 ASSERT_RTNL(); 2221 2222 /* Run per-netns notifier block chain first, then run the global one. 2223 * Hopefully, one day, the global one is going to be removed after 2224 * all notifier block registrators get converted to be per-netns. 2225 */ 2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2227 if (ret & NOTIFY_STOP_MASK) 2228 return ret; 2229 return raw_notifier_call_chain(&netdev_chain, val, info); 2230 } 2231 2232 /** 2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2234 * for and rollback on error 2235 * @val_up: value passed unmodified to notifier function 2236 * @val_down: value passed unmodified to the notifier function when 2237 * recovering from an error on @val_up 2238 * @info: notifier information data 2239 * 2240 * Call all per-netns network notifier blocks, but not notifier blocks on 2241 * the global notifier chain. Parameters and return value are as for 2242 * raw_notifier_call_chain_robust(). 2243 */ 2244 2245 static int 2246 call_netdevice_notifiers_info_robust(unsigned long val_up, 2247 unsigned long val_down, 2248 struct netdev_notifier_info *info) 2249 { 2250 struct net *net = dev_net(info->dev); 2251 2252 ASSERT_RTNL(); 2253 2254 return raw_notifier_call_chain_robust(&net->netdev_chain, 2255 val_up, val_down, info); 2256 } 2257 2258 static int call_netdevice_notifiers_extack(unsigned long val, 2259 struct net_device *dev, 2260 struct netlink_ext_ack *extack) 2261 { 2262 struct netdev_notifier_info info = { 2263 .dev = dev, 2264 .extack = extack, 2265 }; 2266 2267 return call_netdevice_notifiers_info(val, &info); 2268 } 2269 2270 /** 2271 * call_netdevice_notifiers - call all network notifier blocks 2272 * @val: value passed unmodified to notifier function 2273 * @dev: net_device pointer passed unmodified to notifier function 2274 * 2275 * Call all network notifier blocks. Parameters and return value 2276 * are as for raw_notifier_call_chain(). 2277 */ 2278 2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2280 { 2281 return call_netdevice_notifiers_extack(val, dev, NULL); 2282 } 2283 EXPORT_SYMBOL(call_netdevice_notifiers); 2284 2285 /** 2286 * call_netdevice_notifiers_mtu - call all network notifier blocks 2287 * @val: value passed unmodified to notifier function 2288 * @dev: net_device pointer passed unmodified to notifier function 2289 * @arg: additional u32 argument passed to the notifier function 2290 * 2291 * Call all network notifier blocks. Parameters and return value 2292 * are as for raw_notifier_call_chain(). 2293 */ 2294 static int call_netdevice_notifiers_mtu(unsigned long val, 2295 struct net_device *dev, u32 arg) 2296 { 2297 struct netdev_notifier_info_ext info = { 2298 .info.dev = dev, 2299 .ext.mtu = arg, 2300 }; 2301 2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2303 2304 return call_netdevice_notifiers_info(val, &info.info); 2305 } 2306 2307 #ifdef CONFIG_NET_INGRESS 2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2309 2310 void net_inc_ingress_queue(void) 2311 { 2312 static_branch_inc(&ingress_needed_key); 2313 } 2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2315 2316 void net_dec_ingress_queue(void) 2317 { 2318 static_branch_dec(&ingress_needed_key); 2319 } 2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2321 #endif 2322 2323 #ifdef CONFIG_NET_EGRESS 2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2325 2326 void net_inc_egress_queue(void) 2327 { 2328 static_branch_inc(&egress_needed_key); 2329 } 2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2331 2332 void net_dec_egress_queue(void) 2333 { 2334 static_branch_dec(&egress_needed_key); 2335 } 2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2337 #endif 2338 2339 #ifdef CONFIG_NET_CLS_ACT 2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2341 EXPORT_SYMBOL(tcf_sw_enabled_key); 2342 #endif 2343 2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2345 EXPORT_SYMBOL(netstamp_needed_key); 2346 #ifdef CONFIG_JUMP_LABEL 2347 static atomic_t netstamp_needed_deferred; 2348 static atomic_t netstamp_wanted; 2349 static void netstamp_clear(struct work_struct *work) 2350 { 2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2352 int wanted; 2353 2354 wanted = atomic_add_return(deferred, &netstamp_wanted); 2355 if (wanted > 0) 2356 static_branch_enable(&netstamp_needed_key); 2357 else 2358 static_branch_disable(&netstamp_needed_key); 2359 } 2360 static DECLARE_WORK(netstamp_work, netstamp_clear); 2361 #endif 2362 2363 void net_enable_timestamp(void) 2364 { 2365 #ifdef CONFIG_JUMP_LABEL 2366 int wanted = atomic_read(&netstamp_wanted); 2367 2368 while (wanted > 0) { 2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2370 return; 2371 } 2372 atomic_inc(&netstamp_needed_deferred); 2373 schedule_work(&netstamp_work); 2374 #else 2375 static_branch_inc(&netstamp_needed_key); 2376 #endif 2377 } 2378 EXPORT_SYMBOL(net_enable_timestamp); 2379 2380 void net_disable_timestamp(void) 2381 { 2382 #ifdef CONFIG_JUMP_LABEL 2383 int wanted = atomic_read(&netstamp_wanted); 2384 2385 while (wanted > 1) { 2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2387 return; 2388 } 2389 atomic_dec(&netstamp_needed_deferred); 2390 schedule_work(&netstamp_work); 2391 #else 2392 static_branch_dec(&netstamp_needed_key); 2393 #endif 2394 } 2395 EXPORT_SYMBOL(net_disable_timestamp); 2396 2397 static inline void net_timestamp_set(struct sk_buff *skb) 2398 { 2399 skb->tstamp = 0; 2400 skb->tstamp_type = SKB_CLOCK_REALTIME; 2401 if (static_branch_unlikely(&netstamp_needed_key)) 2402 skb->tstamp = ktime_get_real(); 2403 } 2404 2405 #define net_timestamp_check(COND, SKB) \ 2406 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2407 if ((COND) && !(SKB)->tstamp) \ 2408 (SKB)->tstamp = ktime_get_real(); \ 2409 } \ 2410 2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2412 { 2413 return __is_skb_forwardable(dev, skb, true); 2414 } 2415 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2416 2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2418 bool check_mtu) 2419 { 2420 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2421 2422 if (likely(!ret)) { 2423 skb->protocol = eth_type_trans(skb, dev); 2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2425 } 2426 2427 return ret; 2428 } 2429 2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2431 { 2432 return __dev_forward_skb2(dev, skb, true); 2433 } 2434 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2435 2436 /** 2437 * dev_forward_skb - loopback an skb to another netif 2438 * 2439 * @dev: destination network device 2440 * @skb: buffer to forward 2441 * 2442 * return values: 2443 * NET_RX_SUCCESS (no congestion) 2444 * NET_RX_DROP (packet was dropped, but freed) 2445 * 2446 * dev_forward_skb can be used for injecting an skb from the 2447 * start_xmit function of one device into the receive queue 2448 * of another device. 2449 * 2450 * The receiving device may be in another namespace, so 2451 * we have to clear all information in the skb that could 2452 * impact namespace isolation. 2453 */ 2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2455 { 2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2457 } 2458 EXPORT_SYMBOL_GPL(dev_forward_skb); 2459 2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2463 } 2464 2465 static inline int deliver_skb(struct sk_buff *skb, 2466 struct packet_type *pt_prev, 2467 struct net_device *orig_dev) 2468 { 2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2470 return -ENOMEM; 2471 refcount_inc(&skb->users); 2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2473 } 2474 2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2476 struct packet_type **pt, 2477 struct net_device *orig_dev, 2478 __be16 type, 2479 struct list_head *ptype_list) 2480 { 2481 struct packet_type *ptype, *pt_prev = *pt; 2482 2483 list_for_each_entry_rcu(ptype, ptype_list, list) { 2484 if (ptype->type != type) 2485 continue; 2486 if (pt_prev) 2487 deliver_skb(skb, pt_prev, orig_dev); 2488 pt_prev = ptype; 2489 } 2490 *pt = pt_prev; 2491 } 2492 2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2494 { 2495 if (!ptype->af_packet_priv || !skb->sk) 2496 return false; 2497 2498 if (ptype->id_match) 2499 return ptype->id_match(ptype, skb->sk); 2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 /** 2507 * dev_nit_active_rcu - return true if any network interface taps are in use 2508 * 2509 * The caller must hold the RCU lock 2510 * 2511 * @dev: network device to check for the presence of taps 2512 */ 2513 bool dev_nit_active_rcu(const struct net_device *dev) 2514 { 2515 /* Callers may hold either RCU or RCU BH lock */ 2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2517 2518 return !list_empty(&dev_net(dev)->ptype_all) || 2519 !list_empty(&dev->ptype_all); 2520 } 2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2522 2523 /* 2524 * Support routine. Sends outgoing frames to any network 2525 * taps currently in use. 2526 */ 2527 2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2529 { 2530 struct packet_type *ptype, *pt_prev = NULL; 2531 struct list_head *ptype_list; 2532 struct sk_buff *skb2 = NULL; 2533 2534 rcu_read_lock(); 2535 ptype_list = &dev_net_rcu(dev)->ptype_all; 2536 again: 2537 list_for_each_entry_rcu(ptype, ptype_list, list) { 2538 if (READ_ONCE(ptype->ignore_outgoing)) 2539 continue; 2540 2541 /* Never send packets back to the socket 2542 * they originated from - MvS (miquels@drinkel.ow.org) 2543 */ 2544 if (skb_loop_sk(ptype, skb)) 2545 continue; 2546 2547 if (pt_prev) { 2548 deliver_skb(skb2, pt_prev, skb->dev); 2549 pt_prev = ptype; 2550 continue; 2551 } 2552 2553 /* need to clone skb, done only once */ 2554 skb2 = skb_clone(skb, GFP_ATOMIC); 2555 if (!skb2) 2556 goto out_unlock; 2557 2558 net_timestamp_set(skb2); 2559 2560 /* skb->nh should be correctly 2561 * set by sender, so that the second statement is 2562 * just protection against buggy protocols. 2563 */ 2564 skb_reset_mac_header(skb2); 2565 2566 if (skb_network_header(skb2) < skb2->data || 2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2569 ntohs(skb2->protocol), 2570 dev->name); 2571 skb_reset_network_header(skb2); 2572 } 2573 2574 skb2->transport_header = skb2->network_header; 2575 skb2->pkt_type = PACKET_OUTGOING; 2576 pt_prev = ptype; 2577 } 2578 2579 if (ptype_list != &dev->ptype_all) { 2580 ptype_list = &dev->ptype_all; 2581 goto again; 2582 } 2583 out_unlock: 2584 if (pt_prev) { 2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2587 else 2588 kfree_skb(skb2); 2589 } 2590 rcu_read_unlock(); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2593 2594 /** 2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2596 * @dev: Network device 2597 * @txq: number of queues available 2598 * 2599 * If real_num_tx_queues is changed the tc mappings may no longer be 2600 * valid. To resolve this verify the tc mapping remains valid and if 2601 * not NULL the mapping. With no priorities mapping to this 2602 * offset/count pair it will no longer be used. In the worst case TC0 2603 * is invalid nothing can be done so disable priority mappings. If is 2604 * expected that drivers will fix this mapping if they can before 2605 * calling netif_set_real_num_tx_queues. 2606 */ 2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2608 { 2609 int i; 2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2611 2612 /* If TC0 is invalidated disable TC mapping */ 2613 if (tc->offset + tc->count > txq) { 2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2615 dev->num_tc = 0; 2616 return; 2617 } 2618 2619 /* Invalidated prio to tc mappings set to TC0 */ 2620 for (i = 1; i < TC_BITMASK + 1; i++) { 2621 int q = netdev_get_prio_tc_map(dev, i); 2622 2623 tc = &dev->tc_to_txq[q]; 2624 if (tc->offset + tc->count > txq) { 2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2626 i, q); 2627 netdev_set_prio_tc_map(dev, i, 0); 2628 } 2629 } 2630 } 2631 2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2633 { 2634 if (dev->num_tc) { 2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2636 int i; 2637 2638 /* walk through the TCs and see if it falls into any of them */ 2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2640 if ((txq - tc->offset) < tc->count) 2641 return i; 2642 } 2643 2644 /* didn't find it, just return -1 to indicate no match */ 2645 return -1; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_txq_to_tc); 2651 2652 #ifdef CONFIG_XPS 2653 static struct static_key xps_needed __read_mostly; 2654 static struct static_key xps_rxqs_needed __read_mostly; 2655 static DEFINE_MUTEX(xps_map_mutex); 2656 #define xmap_dereference(P) \ 2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2658 2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2660 struct xps_dev_maps *old_maps, int tci, u16 index) 2661 { 2662 struct xps_map *map = NULL; 2663 int pos; 2664 2665 map = xmap_dereference(dev_maps->attr_map[tci]); 2666 if (!map) 2667 return false; 2668 2669 for (pos = map->len; pos--;) { 2670 if (map->queues[pos] != index) 2671 continue; 2672 2673 if (map->len > 1) { 2674 map->queues[pos] = map->queues[--map->len]; 2675 break; 2676 } 2677 2678 if (old_maps) 2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2681 kfree_rcu(map, rcu); 2682 return false; 2683 } 2684 2685 return true; 2686 } 2687 2688 static bool remove_xps_queue_cpu(struct net_device *dev, 2689 struct xps_dev_maps *dev_maps, 2690 int cpu, u16 offset, u16 count) 2691 { 2692 int num_tc = dev_maps->num_tc; 2693 bool active = false; 2694 int tci; 2695 2696 for (tci = cpu * num_tc; num_tc--; tci++) { 2697 int i, j; 2698 2699 for (i = count, j = offset; i--; j++) { 2700 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2701 break; 2702 } 2703 2704 active |= i < 0; 2705 } 2706 2707 return active; 2708 } 2709 2710 static void reset_xps_maps(struct net_device *dev, 2711 struct xps_dev_maps *dev_maps, 2712 enum xps_map_type type) 2713 { 2714 static_key_slow_dec_cpuslocked(&xps_needed); 2715 if (type == XPS_RXQS) 2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2717 2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2719 2720 kfree_rcu(dev_maps, rcu); 2721 } 2722 2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2724 u16 offset, u16 count) 2725 { 2726 struct xps_dev_maps *dev_maps; 2727 bool active = false; 2728 int i, j; 2729 2730 dev_maps = xmap_dereference(dev->xps_maps[type]); 2731 if (!dev_maps) 2732 return; 2733 2734 for (j = 0; j < dev_maps->nr_ids; j++) 2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2736 if (!active) 2737 reset_xps_maps(dev, dev_maps, type); 2738 2739 if (type == XPS_CPUS) { 2740 for (i = offset + (count - 1); count--; i--) 2741 netdev_queue_numa_node_write( 2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2743 } 2744 } 2745 2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2747 u16 count) 2748 { 2749 if (!static_key_false(&xps_needed)) 2750 return; 2751 2752 cpus_read_lock(); 2753 mutex_lock(&xps_map_mutex); 2754 2755 if (static_key_false(&xps_rxqs_needed)) 2756 clean_xps_maps(dev, XPS_RXQS, offset, count); 2757 2758 clean_xps_maps(dev, XPS_CPUS, offset, count); 2759 2760 mutex_unlock(&xps_map_mutex); 2761 cpus_read_unlock(); 2762 } 2763 2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2765 { 2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2767 } 2768 2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2770 u16 index, bool is_rxqs_map) 2771 { 2772 struct xps_map *new_map; 2773 int alloc_len = XPS_MIN_MAP_ALLOC; 2774 int i, pos; 2775 2776 for (pos = 0; map && pos < map->len; pos++) { 2777 if (map->queues[pos] != index) 2778 continue; 2779 return map; 2780 } 2781 2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2783 if (map) { 2784 if (pos < map->alloc_len) 2785 return map; 2786 2787 alloc_len = map->alloc_len * 2; 2788 } 2789 2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2791 * map 2792 */ 2793 if (is_rxqs_map) 2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2795 else 2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2797 cpu_to_node(attr_index)); 2798 if (!new_map) 2799 return NULL; 2800 2801 for (i = 0; i < pos; i++) 2802 new_map->queues[i] = map->queues[i]; 2803 new_map->alloc_len = alloc_len; 2804 new_map->len = pos; 2805 2806 return new_map; 2807 } 2808 2809 /* Copy xps maps at a given index */ 2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2811 struct xps_dev_maps *new_dev_maps, int index, 2812 int tc, bool skip_tc) 2813 { 2814 int i, tci = index * dev_maps->num_tc; 2815 struct xps_map *map; 2816 2817 /* copy maps belonging to foreign traffic classes */ 2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2819 if (i == tc && skip_tc) 2820 continue; 2821 2822 /* fill in the new device map from the old device map */ 2823 map = xmap_dereference(dev_maps->attr_map[tci]); 2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2825 } 2826 } 2827 2828 /* Must be called under cpus_read_lock */ 2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2830 u16 index, enum xps_map_type type) 2831 { 2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2833 const unsigned long *online_mask = NULL; 2834 bool active = false, copy = false; 2835 int i, j, tci, numa_node_id = -2; 2836 int maps_sz, num_tc = 1, tc = 0; 2837 struct xps_map *map, *new_map; 2838 unsigned int nr_ids; 2839 2840 WARN_ON_ONCE(index >= dev->num_tx_queues); 2841 2842 if (dev->num_tc) { 2843 /* Do not allow XPS on subordinate device directly */ 2844 num_tc = dev->num_tc; 2845 if (num_tc < 0) 2846 return -EINVAL; 2847 2848 /* If queue belongs to subordinate dev use its map */ 2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2850 2851 tc = netdev_txq_to_tc(dev, index); 2852 if (tc < 0) 2853 return -EINVAL; 2854 } 2855 2856 mutex_lock(&xps_map_mutex); 2857 2858 dev_maps = xmap_dereference(dev->xps_maps[type]); 2859 if (type == XPS_RXQS) { 2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2861 nr_ids = dev->num_rx_queues; 2862 } else { 2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2864 if (num_possible_cpus() > 1) 2865 online_mask = cpumask_bits(cpu_online_mask); 2866 nr_ids = nr_cpu_ids; 2867 } 2868 2869 if (maps_sz < L1_CACHE_BYTES) 2870 maps_sz = L1_CACHE_BYTES; 2871 2872 /* The old dev_maps could be larger or smaller than the one we're 2873 * setting up now, as dev->num_tc or nr_ids could have been updated in 2874 * between. We could try to be smart, but let's be safe instead and only 2875 * copy foreign traffic classes if the two map sizes match. 2876 */ 2877 if (dev_maps && 2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2879 copy = true; 2880 2881 /* allocate memory for queue storage */ 2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2883 j < nr_ids;) { 2884 if (!new_dev_maps) { 2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2886 if (!new_dev_maps) { 2887 mutex_unlock(&xps_map_mutex); 2888 return -ENOMEM; 2889 } 2890 2891 new_dev_maps->nr_ids = nr_ids; 2892 new_dev_maps->num_tc = num_tc; 2893 } 2894 2895 tci = j * num_tc + tc; 2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2897 2898 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2899 if (!map) 2900 goto error; 2901 2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2903 } 2904 2905 if (!new_dev_maps) 2906 goto out_no_new_maps; 2907 2908 if (!dev_maps) { 2909 /* Increment static keys at most once per type */ 2910 static_key_slow_inc_cpuslocked(&xps_needed); 2911 if (type == XPS_RXQS) 2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2913 } 2914 2915 for (j = 0; j < nr_ids; j++) { 2916 bool skip_tc = false; 2917 2918 tci = j * num_tc + tc; 2919 if (netif_attr_test_mask(j, mask, nr_ids) && 2920 netif_attr_test_online(j, online_mask, nr_ids)) { 2921 /* add tx-queue to CPU/rx-queue maps */ 2922 int pos = 0; 2923 2924 skip_tc = true; 2925 2926 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2927 while ((pos < map->len) && (map->queues[pos] != index)) 2928 pos++; 2929 2930 if (pos == map->len) 2931 map->queues[map->len++] = index; 2932 #ifdef CONFIG_NUMA 2933 if (type == XPS_CPUS) { 2934 if (numa_node_id == -2) 2935 numa_node_id = cpu_to_node(j); 2936 else if (numa_node_id != cpu_to_node(j)) 2937 numa_node_id = -1; 2938 } 2939 #endif 2940 } 2941 2942 if (copy) 2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2944 skip_tc); 2945 } 2946 2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2948 2949 /* Cleanup old maps */ 2950 if (!dev_maps) 2951 goto out_no_old_maps; 2952 2953 for (j = 0; j < dev_maps->nr_ids; j++) { 2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2955 map = xmap_dereference(dev_maps->attr_map[tci]); 2956 if (!map) 2957 continue; 2958 2959 if (copy) { 2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2961 if (map == new_map) 2962 continue; 2963 } 2964 2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2966 kfree_rcu(map, rcu); 2967 } 2968 } 2969 2970 old_dev_maps = dev_maps; 2971 2972 out_no_old_maps: 2973 dev_maps = new_dev_maps; 2974 active = true; 2975 2976 out_no_new_maps: 2977 if (type == XPS_CPUS) 2978 /* update Tx queue numa node */ 2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2980 (numa_node_id >= 0) ? 2981 numa_node_id : NUMA_NO_NODE); 2982 2983 if (!dev_maps) 2984 goto out_no_maps; 2985 2986 /* removes tx-queue from unused CPUs/rx-queues */ 2987 for (j = 0; j < dev_maps->nr_ids; j++) { 2988 tci = j * dev_maps->num_tc; 2989 2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2991 if (i == tc && 2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2994 continue; 2995 2996 active |= remove_xps_queue(dev_maps, 2997 copy ? old_dev_maps : NULL, 2998 tci, index); 2999 } 3000 } 3001 3002 if (old_dev_maps) 3003 kfree_rcu(old_dev_maps, rcu); 3004 3005 /* free map if not active */ 3006 if (!active) 3007 reset_xps_maps(dev, dev_maps, type); 3008 3009 out_no_maps: 3010 mutex_unlock(&xps_map_mutex); 3011 3012 return 0; 3013 error: 3014 /* remove any maps that we added */ 3015 for (j = 0; j < nr_ids; j++) { 3016 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3018 map = copy ? 3019 xmap_dereference(dev_maps->attr_map[tci]) : 3020 NULL; 3021 if (new_map && new_map != map) 3022 kfree(new_map); 3023 } 3024 } 3025 3026 mutex_unlock(&xps_map_mutex); 3027 3028 kfree(new_dev_maps); 3029 return -ENOMEM; 3030 } 3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3032 3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3034 u16 index) 3035 { 3036 int ret; 3037 3038 cpus_read_lock(); 3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3040 cpus_read_unlock(); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL(netif_set_xps_queue); 3045 3046 #endif 3047 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3048 { 3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3050 3051 /* Unbind any subordinate channels */ 3052 while (txq-- != &dev->_tx[0]) { 3053 if (txq->sb_dev) 3054 netdev_unbind_sb_channel(dev, txq->sb_dev); 3055 } 3056 } 3057 3058 void netdev_reset_tc(struct net_device *dev) 3059 { 3060 #ifdef CONFIG_XPS 3061 netif_reset_xps_queues_gt(dev, 0); 3062 #endif 3063 netdev_unbind_all_sb_channels(dev); 3064 3065 /* Reset TC configuration of device */ 3066 dev->num_tc = 0; 3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3069 } 3070 EXPORT_SYMBOL(netdev_reset_tc); 3071 3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3073 { 3074 if (tc >= dev->num_tc) 3075 return -EINVAL; 3076 3077 #ifdef CONFIG_XPS 3078 netif_reset_xps_queues(dev, offset, count); 3079 #endif 3080 dev->tc_to_txq[tc].count = count; 3081 dev->tc_to_txq[tc].offset = offset; 3082 return 0; 3083 } 3084 EXPORT_SYMBOL(netdev_set_tc_queue); 3085 3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3087 { 3088 if (num_tc > TC_MAX_QUEUE) 3089 return -EINVAL; 3090 3091 #ifdef CONFIG_XPS 3092 netif_reset_xps_queues_gt(dev, 0); 3093 #endif 3094 netdev_unbind_all_sb_channels(dev); 3095 3096 dev->num_tc = num_tc; 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(netdev_set_num_tc); 3100 3101 void netdev_unbind_sb_channel(struct net_device *dev, 3102 struct net_device *sb_dev) 3103 { 3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3105 3106 #ifdef CONFIG_XPS 3107 netif_reset_xps_queues_gt(sb_dev, 0); 3108 #endif 3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3111 3112 while (txq-- != &dev->_tx[0]) { 3113 if (txq->sb_dev == sb_dev) 3114 txq->sb_dev = NULL; 3115 } 3116 } 3117 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3118 3119 int netdev_bind_sb_channel_queue(struct net_device *dev, 3120 struct net_device *sb_dev, 3121 u8 tc, u16 count, u16 offset) 3122 { 3123 /* Make certain the sb_dev and dev are already configured */ 3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3125 return -EINVAL; 3126 3127 /* We cannot hand out queues we don't have */ 3128 if ((offset + count) > dev->real_num_tx_queues) 3129 return -EINVAL; 3130 3131 /* Record the mapping */ 3132 sb_dev->tc_to_txq[tc].count = count; 3133 sb_dev->tc_to_txq[tc].offset = offset; 3134 3135 /* Provide a way for Tx queue to find the tc_to_txq map or 3136 * XPS map for itself. 3137 */ 3138 while (count--) 3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3144 3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3146 { 3147 /* Do not use a multiqueue device to represent a subordinate channel */ 3148 if (netif_is_multiqueue(dev)) 3149 return -ENODEV; 3150 3151 /* We allow channels 1 - 32767 to be used for subordinate channels. 3152 * Channel 0 is meant to be "native" mode and used only to represent 3153 * the main root device. We allow writing 0 to reset the device back 3154 * to normal mode after being used as a subordinate channel. 3155 */ 3156 if (channel > S16_MAX) 3157 return -EINVAL; 3158 3159 dev->num_tc = -channel; 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL(netdev_set_sb_channel); 3164 3165 /* 3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3168 */ 3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3170 { 3171 bool disabling; 3172 int rc; 3173 3174 disabling = txq < dev->real_num_tx_queues; 3175 3176 if (txq < 1 || txq > dev->num_tx_queues) 3177 return -EINVAL; 3178 3179 if (dev->reg_state == NETREG_REGISTERED || 3180 dev->reg_state == NETREG_UNREGISTERING) { 3181 netdev_ops_assert_locked(dev); 3182 3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3184 txq); 3185 if (rc) 3186 return rc; 3187 3188 if (dev->num_tc) 3189 netif_setup_tc(dev, txq); 3190 3191 net_shaper_set_real_num_tx_queues(dev, txq); 3192 3193 dev_qdisc_change_real_num_tx(dev, txq); 3194 3195 dev->real_num_tx_queues = txq; 3196 3197 if (disabling) { 3198 synchronize_net(); 3199 qdisc_reset_all_tx_gt(dev, txq); 3200 #ifdef CONFIG_XPS 3201 netif_reset_xps_queues_gt(dev, txq); 3202 #endif 3203 } 3204 } else { 3205 dev->real_num_tx_queues = txq; 3206 } 3207 3208 return 0; 3209 } 3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3211 3212 /** 3213 * netif_set_real_num_rx_queues - set actual number of RX queues used 3214 * @dev: Network device 3215 * @rxq: Actual number of RX queues 3216 * 3217 * This must be called either with the rtnl_lock held or before 3218 * registration of the net device. Returns 0 on success, or a 3219 * negative error code. If called before registration, it always 3220 * succeeds. 3221 */ 3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3223 { 3224 int rc; 3225 3226 if (rxq < 1 || rxq > dev->num_rx_queues) 3227 return -EINVAL; 3228 3229 if (dev->reg_state == NETREG_REGISTERED) { 3230 netdev_ops_assert_locked(dev); 3231 3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3233 rxq); 3234 if (rc) 3235 return rc; 3236 } 3237 3238 dev->real_num_rx_queues = rxq; 3239 return 0; 3240 } 3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3242 3243 /** 3244 * netif_set_real_num_queues - set actual number of RX and TX queues used 3245 * @dev: Network device 3246 * @txq: Actual number of TX queues 3247 * @rxq: Actual number of RX queues 3248 * 3249 * Set the real number of both TX and RX queues. 3250 * Does nothing if the number of queues is already correct. 3251 */ 3252 int netif_set_real_num_queues(struct net_device *dev, 3253 unsigned int txq, unsigned int rxq) 3254 { 3255 unsigned int old_rxq = dev->real_num_rx_queues; 3256 int err; 3257 3258 if (txq < 1 || txq > dev->num_tx_queues || 3259 rxq < 1 || rxq > dev->num_rx_queues) 3260 return -EINVAL; 3261 3262 /* Start from increases, so the error path only does decreases - 3263 * decreases can't fail. 3264 */ 3265 if (rxq > dev->real_num_rx_queues) { 3266 err = netif_set_real_num_rx_queues(dev, rxq); 3267 if (err) 3268 return err; 3269 } 3270 if (txq > dev->real_num_tx_queues) { 3271 err = netif_set_real_num_tx_queues(dev, txq); 3272 if (err) 3273 goto undo_rx; 3274 } 3275 if (rxq < dev->real_num_rx_queues) 3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3277 if (txq < dev->real_num_tx_queues) 3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3279 3280 return 0; 3281 undo_rx: 3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3283 return err; 3284 } 3285 EXPORT_SYMBOL(netif_set_real_num_queues); 3286 3287 /** 3288 * netif_set_tso_max_size() - set the max size of TSO frames supported 3289 * @dev: netdev to update 3290 * @size: max skb->len of a TSO frame 3291 * 3292 * Set the limit on the size of TSO super-frames the device can handle. 3293 * Unless explicitly set the stack will assume the value of 3294 * %GSO_LEGACY_MAX_SIZE. 3295 */ 3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3297 { 3298 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3299 if (size < READ_ONCE(dev->gso_max_size)) 3300 netif_set_gso_max_size(dev, size); 3301 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3302 netif_set_gso_ipv4_max_size(dev, size); 3303 } 3304 EXPORT_SYMBOL(netif_set_tso_max_size); 3305 3306 /** 3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3308 * @dev: netdev to update 3309 * @segs: max number of TCP segments 3310 * 3311 * Set the limit on the number of TCP segments the device can generate from 3312 * a single TSO super-frame. 3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3314 */ 3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3316 { 3317 dev->tso_max_segs = segs; 3318 if (segs < READ_ONCE(dev->gso_max_segs)) 3319 netif_set_gso_max_segs(dev, segs); 3320 } 3321 EXPORT_SYMBOL(netif_set_tso_max_segs); 3322 3323 /** 3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3325 * @to: netdev to update 3326 * @from: netdev from which to copy the limits 3327 */ 3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3329 { 3330 netif_set_tso_max_size(to, from->tso_max_size); 3331 netif_set_tso_max_segs(to, from->tso_max_segs); 3332 } 3333 EXPORT_SYMBOL(netif_inherit_tso_max); 3334 3335 /** 3336 * netif_get_num_default_rss_queues - default number of RSS queues 3337 * 3338 * Default value is the number of physical cores if there are only 1 or 2, or 3339 * divided by 2 if there are more. 3340 */ 3341 int netif_get_num_default_rss_queues(void) 3342 { 3343 cpumask_var_t cpus; 3344 int cpu, count = 0; 3345 3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3347 return 1; 3348 3349 cpumask_copy(cpus, cpu_online_mask); 3350 for_each_cpu(cpu, cpus) { 3351 ++count; 3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3353 } 3354 free_cpumask_var(cpus); 3355 3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3357 } 3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3359 3360 static void __netif_reschedule(struct Qdisc *q) 3361 { 3362 struct softnet_data *sd; 3363 unsigned long flags; 3364 3365 local_irq_save(flags); 3366 sd = this_cpu_ptr(&softnet_data); 3367 q->next_sched = NULL; 3368 *sd->output_queue_tailp = q; 3369 sd->output_queue_tailp = &q->next_sched; 3370 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3371 local_irq_restore(flags); 3372 } 3373 3374 void __netif_schedule(struct Qdisc *q) 3375 { 3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3377 __netif_reschedule(q); 3378 } 3379 EXPORT_SYMBOL(__netif_schedule); 3380 3381 struct dev_kfree_skb_cb { 3382 enum skb_drop_reason reason; 3383 }; 3384 3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3386 { 3387 return (struct dev_kfree_skb_cb *)skb->cb; 3388 } 3389 3390 void netif_schedule_queue(struct netdev_queue *txq) 3391 { 3392 rcu_read_lock(); 3393 if (!netif_xmit_stopped(txq)) { 3394 struct Qdisc *q = rcu_dereference(txq->qdisc); 3395 3396 __netif_schedule(q); 3397 } 3398 rcu_read_unlock(); 3399 } 3400 EXPORT_SYMBOL(netif_schedule_queue); 3401 3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3403 { 3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3405 struct Qdisc *q; 3406 3407 rcu_read_lock(); 3408 q = rcu_dereference(dev_queue->qdisc); 3409 __netif_schedule(q); 3410 rcu_read_unlock(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netif_tx_wake_queue); 3414 3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3416 { 3417 unsigned long flags; 3418 3419 if (unlikely(!skb)) 3420 return; 3421 3422 if (likely(refcount_read(&skb->users) == 1)) { 3423 smp_rmb(); 3424 refcount_set(&skb->users, 0); 3425 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3426 return; 3427 } 3428 get_kfree_skb_cb(skb)->reason = reason; 3429 local_irq_save(flags); 3430 skb->next = __this_cpu_read(softnet_data.completion_queue); 3431 __this_cpu_write(softnet_data.completion_queue, skb); 3432 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3433 local_irq_restore(flags); 3434 } 3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3436 3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3438 { 3439 if (in_hardirq() || irqs_disabled()) 3440 dev_kfree_skb_irq_reason(skb, reason); 3441 else 3442 kfree_skb_reason(skb, reason); 3443 } 3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3445 3446 3447 /** 3448 * netif_device_detach - mark device as removed 3449 * @dev: network device 3450 * 3451 * Mark device as removed from system and therefore no longer available. 3452 */ 3453 void netif_device_detach(struct net_device *dev) 3454 { 3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3456 netif_running(dev)) { 3457 netif_tx_stop_all_queues(dev); 3458 } 3459 } 3460 EXPORT_SYMBOL(netif_device_detach); 3461 3462 /** 3463 * netif_device_attach - mark device as attached 3464 * @dev: network device 3465 * 3466 * Mark device as attached from system and restart if needed. 3467 */ 3468 void netif_device_attach(struct net_device *dev) 3469 { 3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3471 netif_running(dev)) { 3472 netif_tx_wake_all_queues(dev); 3473 netdev_watchdog_up(dev); 3474 } 3475 } 3476 EXPORT_SYMBOL(netif_device_attach); 3477 3478 /* 3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3480 * to be used as a distribution range. 3481 */ 3482 static u16 skb_tx_hash(const struct net_device *dev, 3483 const struct net_device *sb_dev, 3484 struct sk_buff *skb) 3485 { 3486 u32 hash; 3487 u16 qoffset = 0; 3488 u16 qcount = dev->real_num_tx_queues; 3489 3490 if (dev->num_tc) { 3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3492 3493 qoffset = sb_dev->tc_to_txq[tc].offset; 3494 qcount = sb_dev->tc_to_txq[tc].count; 3495 if (unlikely(!qcount)) { 3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3497 sb_dev->name, qoffset, tc); 3498 qoffset = 0; 3499 qcount = dev->real_num_tx_queues; 3500 } 3501 } 3502 3503 if (skb_rx_queue_recorded(skb)) { 3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3505 hash = skb_get_rx_queue(skb); 3506 if (hash >= qoffset) 3507 hash -= qoffset; 3508 while (unlikely(hash >= qcount)) 3509 hash -= qcount; 3510 return hash + qoffset; 3511 } 3512 3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3514 } 3515 3516 void skb_warn_bad_offload(const struct sk_buff *skb) 3517 { 3518 static const netdev_features_t null_features; 3519 struct net_device *dev = skb->dev; 3520 const char *name = ""; 3521 3522 if (!net_ratelimit()) 3523 return; 3524 3525 if (dev) { 3526 if (dev->dev.parent) 3527 name = dev_driver_string(dev->dev.parent); 3528 else 3529 name = netdev_name(dev); 3530 } 3531 skb_dump(KERN_WARNING, skb, false); 3532 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3533 name, dev ? &dev->features : &null_features, 3534 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3535 } 3536 3537 /* 3538 * Invalidate hardware checksum when packet is to be mangled, and 3539 * complete checksum manually on outgoing path. 3540 */ 3541 int skb_checksum_help(struct sk_buff *skb) 3542 { 3543 __wsum csum; 3544 int ret = 0, offset; 3545 3546 if (skb->ip_summed == CHECKSUM_COMPLETE) 3547 goto out_set_summed; 3548 3549 if (unlikely(skb_is_gso(skb))) { 3550 skb_warn_bad_offload(skb); 3551 return -EINVAL; 3552 } 3553 3554 if (!skb_frags_readable(skb)) { 3555 return -EFAULT; 3556 } 3557 3558 /* Before computing a checksum, we should make sure no frag could 3559 * be modified by an external entity : checksum could be wrong. 3560 */ 3561 if (skb_has_shared_frag(skb)) { 3562 ret = __skb_linearize(skb); 3563 if (ret) 3564 goto out; 3565 } 3566 3567 offset = skb_checksum_start_offset(skb); 3568 ret = -EINVAL; 3569 if (unlikely(offset >= skb_headlen(skb))) { 3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3572 offset, skb_headlen(skb)); 3573 goto out; 3574 } 3575 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3576 3577 offset += skb->csum_offset; 3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3581 offset + sizeof(__sum16), skb_headlen(skb)); 3582 goto out; 3583 } 3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3585 if (ret) 3586 goto out; 3587 3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3589 out_set_summed: 3590 skb->ip_summed = CHECKSUM_NONE; 3591 out: 3592 return ret; 3593 } 3594 EXPORT_SYMBOL(skb_checksum_help); 3595 3596 #ifdef CONFIG_NET_CRC32C 3597 int skb_crc32c_csum_help(struct sk_buff *skb) 3598 { 3599 u32 crc; 3600 int ret = 0, offset, start; 3601 3602 if (skb->ip_summed != CHECKSUM_PARTIAL) 3603 goto out; 3604 3605 if (unlikely(skb_is_gso(skb))) 3606 goto out; 3607 3608 /* Before computing a checksum, we should make sure no frag could 3609 * be modified by an external entity : checksum could be wrong. 3610 */ 3611 if (unlikely(skb_has_shared_frag(skb))) { 3612 ret = __skb_linearize(skb); 3613 if (ret) 3614 goto out; 3615 } 3616 start = skb_checksum_start_offset(skb); 3617 offset = start + offsetof(struct sctphdr, checksum); 3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3619 ret = -EINVAL; 3620 goto out; 3621 } 3622 3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3624 if (ret) 3625 goto out; 3626 3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3629 skb_reset_csum_not_inet(skb); 3630 out: 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(skb_crc32c_csum_help); 3634 #endif /* CONFIG_NET_CRC32C */ 3635 3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3637 { 3638 __be16 type = skb->protocol; 3639 3640 /* Tunnel gso handlers can set protocol to ethernet. */ 3641 if (type == htons(ETH_P_TEB)) { 3642 struct ethhdr *eth; 3643 3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3645 return 0; 3646 3647 eth = (struct ethhdr *)skb->data; 3648 type = eth->h_proto; 3649 } 3650 3651 return vlan_get_protocol_and_depth(skb, type, depth); 3652 } 3653 3654 3655 /* Take action when hardware reception checksum errors are detected. */ 3656 #ifdef CONFIG_BUG 3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3658 { 3659 netdev_err(dev, "hw csum failure\n"); 3660 skb_dump(KERN_ERR, skb, true); 3661 dump_stack(); 3662 } 3663 3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3665 { 3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3667 } 3668 EXPORT_SYMBOL(netdev_rx_csum_fault); 3669 #endif 3670 3671 /* XXX: check that highmem exists at all on the given machine. */ 3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3673 { 3674 #ifdef CONFIG_HIGHMEM 3675 int i; 3676 3677 if (!(dev->features & NETIF_F_HIGHDMA)) { 3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3680 struct page *page = skb_frag_page(frag); 3681 3682 if (page && PageHighMem(page)) 3683 return 1; 3684 } 3685 } 3686 #endif 3687 return 0; 3688 } 3689 3690 /* If MPLS offload request, verify we are testing hardware MPLS features 3691 * instead of standard features for the netdev. 3692 */ 3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3694 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3695 netdev_features_t features, 3696 __be16 type) 3697 { 3698 if (eth_p_mpls(type)) 3699 features &= skb->dev->mpls_features; 3700 3701 return features; 3702 } 3703 #else 3704 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3705 netdev_features_t features, 3706 __be16 type) 3707 { 3708 return features; 3709 } 3710 #endif 3711 3712 static netdev_features_t harmonize_features(struct sk_buff *skb, 3713 netdev_features_t features) 3714 { 3715 __be16 type; 3716 3717 type = skb_network_protocol(skb, NULL); 3718 features = net_mpls_features(skb, features, type); 3719 3720 if (skb->ip_summed != CHECKSUM_NONE && 3721 !can_checksum_protocol(features, type)) { 3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3723 } 3724 if (illegal_highdma(skb->dev, skb)) 3725 features &= ~NETIF_F_SG; 3726 3727 return features; 3728 } 3729 3730 netdev_features_t passthru_features_check(struct sk_buff *skb, 3731 struct net_device *dev, 3732 netdev_features_t features) 3733 { 3734 return features; 3735 } 3736 EXPORT_SYMBOL(passthru_features_check); 3737 3738 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3739 struct net_device *dev, 3740 netdev_features_t features) 3741 { 3742 return vlan_features_check(skb, features); 3743 } 3744 3745 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3746 struct net_device *dev, 3747 netdev_features_t features) 3748 { 3749 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3750 3751 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3752 return features & ~NETIF_F_GSO_MASK; 3753 3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3755 return features & ~NETIF_F_GSO_MASK; 3756 3757 if (!skb_shinfo(skb)->gso_type) { 3758 skb_warn_bad_offload(skb); 3759 return features & ~NETIF_F_GSO_MASK; 3760 } 3761 3762 /* Support for GSO partial features requires software 3763 * intervention before we can actually process the packets 3764 * so we need to strip support for any partial features now 3765 * and we can pull them back in after we have partially 3766 * segmented the frame. 3767 */ 3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3769 features &= ~dev->gso_partial_features; 3770 3771 /* Make sure to clear the IPv4 ID mangling feature if the 3772 * IPv4 header has the potential to be fragmented. 3773 */ 3774 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3775 struct iphdr *iph = skb->encapsulation ? 3776 inner_ip_hdr(skb) : ip_hdr(skb); 3777 3778 if (!(iph->frag_off & htons(IP_DF))) 3779 features &= ~NETIF_F_TSO_MANGLEID; 3780 } 3781 3782 return features; 3783 } 3784 3785 netdev_features_t netif_skb_features(struct sk_buff *skb) 3786 { 3787 struct net_device *dev = skb->dev; 3788 netdev_features_t features = dev->features; 3789 3790 if (skb_is_gso(skb)) 3791 features = gso_features_check(skb, dev, features); 3792 3793 /* If encapsulation offload request, verify we are testing 3794 * hardware encapsulation features instead of standard 3795 * features for the netdev 3796 */ 3797 if (skb->encapsulation) 3798 features &= dev->hw_enc_features; 3799 3800 if (skb_vlan_tagged(skb)) 3801 features = netdev_intersect_features(features, 3802 dev->vlan_features | 3803 NETIF_F_HW_VLAN_CTAG_TX | 3804 NETIF_F_HW_VLAN_STAG_TX); 3805 3806 if (dev->netdev_ops->ndo_features_check) 3807 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3808 features); 3809 else 3810 features &= dflt_features_check(skb, dev, features); 3811 3812 return harmonize_features(skb, features); 3813 } 3814 EXPORT_SYMBOL(netif_skb_features); 3815 3816 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3817 struct netdev_queue *txq, bool more) 3818 { 3819 unsigned int len; 3820 int rc; 3821 3822 if (dev_nit_active_rcu(dev)) 3823 dev_queue_xmit_nit(skb, dev); 3824 3825 len = skb->len; 3826 trace_net_dev_start_xmit(skb, dev); 3827 rc = netdev_start_xmit(skb, dev, txq, more); 3828 trace_net_dev_xmit(skb, rc, dev, len); 3829 3830 return rc; 3831 } 3832 3833 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3834 struct netdev_queue *txq, int *ret) 3835 { 3836 struct sk_buff *skb = first; 3837 int rc = NETDEV_TX_OK; 3838 3839 while (skb) { 3840 struct sk_buff *next = skb->next; 3841 3842 skb_mark_not_on_list(skb); 3843 rc = xmit_one(skb, dev, txq, next != NULL); 3844 if (unlikely(!dev_xmit_complete(rc))) { 3845 skb->next = next; 3846 goto out; 3847 } 3848 3849 skb = next; 3850 if (netif_tx_queue_stopped(txq) && skb) { 3851 rc = NETDEV_TX_BUSY; 3852 break; 3853 } 3854 } 3855 3856 out: 3857 *ret = rc; 3858 return skb; 3859 } 3860 3861 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3862 netdev_features_t features) 3863 { 3864 if (skb_vlan_tag_present(skb) && 3865 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3866 skb = __vlan_hwaccel_push_inside(skb); 3867 return skb; 3868 } 3869 3870 int skb_csum_hwoffload_help(struct sk_buff *skb, 3871 const netdev_features_t features) 3872 { 3873 if (unlikely(skb_csum_is_sctp(skb))) 3874 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3875 skb_crc32c_csum_help(skb); 3876 3877 if (features & NETIF_F_HW_CSUM) 3878 return 0; 3879 3880 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3881 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3882 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3883 !ipv6_has_hopopt_jumbo(skb)) 3884 goto sw_checksum; 3885 3886 switch (skb->csum_offset) { 3887 case offsetof(struct tcphdr, check): 3888 case offsetof(struct udphdr, check): 3889 return 0; 3890 } 3891 } 3892 3893 sw_checksum: 3894 return skb_checksum_help(skb); 3895 } 3896 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3897 3898 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3899 struct net_device *dev) 3900 { 3901 struct skb_shared_info *shinfo; 3902 struct net_iov *niov; 3903 3904 if (likely(skb_frags_readable(skb))) 3905 goto out; 3906 3907 if (!dev->netmem_tx) 3908 goto out_free; 3909 3910 shinfo = skb_shinfo(skb); 3911 3912 if (shinfo->nr_frags > 0) { 3913 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3914 if (net_is_devmem_iov(niov) && 3915 net_devmem_iov_binding(niov)->dev != dev) 3916 goto out_free; 3917 } 3918 3919 out: 3920 return skb; 3921 3922 out_free: 3923 kfree_skb(skb); 3924 return NULL; 3925 } 3926 3927 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3928 { 3929 netdev_features_t features; 3930 3931 skb = validate_xmit_unreadable_skb(skb, dev); 3932 if (unlikely(!skb)) 3933 goto out_null; 3934 3935 features = netif_skb_features(skb); 3936 skb = validate_xmit_vlan(skb, features); 3937 if (unlikely(!skb)) 3938 goto out_null; 3939 3940 skb = sk_validate_xmit_skb(skb, dev); 3941 if (unlikely(!skb)) 3942 goto out_null; 3943 3944 if (netif_needs_gso(skb, features)) { 3945 struct sk_buff *segs; 3946 3947 segs = skb_gso_segment(skb, features); 3948 if (IS_ERR(segs)) { 3949 goto out_kfree_skb; 3950 } else if (segs) { 3951 consume_skb(skb); 3952 skb = segs; 3953 } 3954 } else { 3955 if (skb_needs_linearize(skb, features) && 3956 __skb_linearize(skb)) 3957 goto out_kfree_skb; 3958 3959 /* If packet is not checksummed and device does not 3960 * support checksumming for this protocol, complete 3961 * checksumming here. 3962 */ 3963 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3964 if (skb->encapsulation) 3965 skb_set_inner_transport_header(skb, 3966 skb_checksum_start_offset(skb)); 3967 else 3968 skb_set_transport_header(skb, 3969 skb_checksum_start_offset(skb)); 3970 if (skb_csum_hwoffload_help(skb, features)) 3971 goto out_kfree_skb; 3972 } 3973 } 3974 3975 skb = validate_xmit_xfrm(skb, features, again); 3976 3977 return skb; 3978 3979 out_kfree_skb: 3980 kfree_skb(skb); 3981 out_null: 3982 dev_core_stats_tx_dropped_inc(dev); 3983 return NULL; 3984 } 3985 3986 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3987 { 3988 struct sk_buff *next, *head = NULL, *tail; 3989 3990 for (; skb != NULL; skb = next) { 3991 next = skb->next; 3992 skb_mark_not_on_list(skb); 3993 3994 /* in case skb won't be segmented, point to itself */ 3995 skb->prev = skb; 3996 3997 skb = validate_xmit_skb(skb, dev, again); 3998 if (!skb) 3999 continue; 4000 4001 if (!head) 4002 head = skb; 4003 else 4004 tail->next = skb; 4005 /* If skb was segmented, skb->prev points to 4006 * the last segment. If not, it still contains skb. 4007 */ 4008 tail = skb->prev; 4009 } 4010 return head; 4011 } 4012 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4013 4014 static void qdisc_pkt_len_init(struct sk_buff *skb) 4015 { 4016 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4017 4018 qdisc_skb_cb(skb)->pkt_len = skb->len; 4019 4020 /* To get more precise estimation of bytes sent on wire, 4021 * we add to pkt_len the headers size of all segments 4022 */ 4023 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4024 u16 gso_segs = shinfo->gso_segs; 4025 unsigned int hdr_len; 4026 4027 /* mac layer + network layer */ 4028 if (!skb->encapsulation) 4029 hdr_len = skb_transport_offset(skb); 4030 else 4031 hdr_len = skb_inner_transport_offset(skb); 4032 4033 /* + transport layer */ 4034 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4035 const struct tcphdr *th; 4036 struct tcphdr _tcphdr; 4037 4038 th = skb_header_pointer(skb, hdr_len, 4039 sizeof(_tcphdr), &_tcphdr); 4040 if (likely(th)) 4041 hdr_len += __tcp_hdrlen(th); 4042 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4043 struct udphdr _udphdr; 4044 4045 if (skb_header_pointer(skb, hdr_len, 4046 sizeof(_udphdr), &_udphdr)) 4047 hdr_len += sizeof(struct udphdr); 4048 } 4049 4050 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4051 int payload = skb->len - hdr_len; 4052 4053 /* Malicious packet. */ 4054 if (payload <= 0) 4055 return; 4056 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4057 } 4058 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4059 } 4060 } 4061 4062 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4063 struct sk_buff **to_free, 4064 struct netdev_queue *txq) 4065 { 4066 int rc; 4067 4068 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4069 if (rc == NET_XMIT_SUCCESS) 4070 trace_qdisc_enqueue(q, txq, skb); 4071 return rc; 4072 } 4073 4074 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4075 struct net_device *dev, 4076 struct netdev_queue *txq) 4077 { 4078 spinlock_t *root_lock = qdisc_lock(q); 4079 struct sk_buff *to_free = NULL; 4080 bool contended; 4081 int rc; 4082 4083 qdisc_calculate_pkt_len(skb, q); 4084 4085 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4086 4087 if (q->flags & TCQ_F_NOLOCK) { 4088 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4089 qdisc_run_begin(q)) { 4090 /* Retest nolock_qdisc_is_empty() within the protection 4091 * of q->seqlock to protect from racing with requeuing. 4092 */ 4093 if (unlikely(!nolock_qdisc_is_empty(q))) { 4094 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4095 __qdisc_run(q); 4096 qdisc_run_end(q); 4097 4098 goto no_lock_out; 4099 } 4100 4101 qdisc_bstats_cpu_update(q, skb); 4102 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4103 !nolock_qdisc_is_empty(q)) 4104 __qdisc_run(q); 4105 4106 qdisc_run_end(q); 4107 return NET_XMIT_SUCCESS; 4108 } 4109 4110 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4111 qdisc_run(q); 4112 4113 no_lock_out: 4114 if (unlikely(to_free)) 4115 kfree_skb_list_reason(to_free, 4116 tcf_get_drop_reason(to_free)); 4117 return rc; 4118 } 4119 4120 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4121 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4122 return NET_XMIT_DROP; 4123 } 4124 /* 4125 * Heuristic to force contended enqueues to serialize on a 4126 * separate lock before trying to get qdisc main lock. 4127 * This permits qdisc->running owner to get the lock more 4128 * often and dequeue packets faster. 4129 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4130 * and then other tasks will only enqueue packets. The packets will be 4131 * sent after the qdisc owner is scheduled again. To prevent this 4132 * scenario the task always serialize on the lock. 4133 */ 4134 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4135 if (unlikely(contended)) 4136 spin_lock(&q->busylock); 4137 4138 spin_lock(root_lock); 4139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4140 __qdisc_drop(skb, &to_free); 4141 rc = NET_XMIT_DROP; 4142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4143 qdisc_run_begin(q)) { 4144 /* 4145 * This is a work-conserving queue; there are no old skbs 4146 * waiting to be sent out; and the qdisc is not running - 4147 * xmit the skb directly. 4148 */ 4149 4150 qdisc_bstats_update(q, skb); 4151 4152 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4153 if (unlikely(contended)) { 4154 spin_unlock(&q->busylock); 4155 contended = false; 4156 } 4157 __qdisc_run(q); 4158 } 4159 4160 qdisc_run_end(q); 4161 rc = NET_XMIT_SUCCESS; 4162 } else { 4163 WRITE_ONCE(q->owner, smp_processor_id()); 4164 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4165 WRITE_ONCE(q->owner, -1); 4166 if (qdisc_run_begin(q)) { 4167 if (unlikely(contended)) { 4168 spin_unlock(&q->busylock); 4169 contended = false; 4170 } 4171 __qdisc_run(q); 4172 qdisc_run_end(q); 4173 } 4174 } 4175 spin_unlock(root_lock); 4176 if (unlikely(to_free)) 4177 kfree_skb_list_reason(to_free, 4178 tcf_get_drop_reason(to_free)); 4179 if (unlikely(contended)) 4180 spin_unlock(&q->busylock); 4181 return rc; 4182 } 4183 4184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4185 static void skb_update_prio(struct sk_buff *skb) 4186 { 4187 const struct netprio_map *map; 4188 const struct sock *sk; 4189 unsigned int prioidx; 4190 4191 if (skb->priority) 4192 return; 4193 map = rcu_dereference_bh(skb->dev->priomap); 4194 if (!map) 4195 return; 4196 sk = skb_to_full_sk(skb); 4197 if (!sk) 4198 return; 4199 4200 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4201 4202 if (prioidx < map->priomap_len) 4203 skb->priority = map->priomap[prioidx]; 4204 } 4205 #else 4206 #define skb_update_prio(skb) 4207 #endif 4208 4209 /** 4210 * dev_loopback_xmit - loop back @skb 4211 * @net: network namespace this loopback is happening in 4212 * @sk: sk needed to be a netfilter okfn 4213 * @skb: buffer to transmit 4214 */ 4215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4216 { 4217 skb_reset_mac_header(skb); 4218 __skb_pull(skb, skb_network_offset(skb)); 4219 skb->pkt_type = PACKET_LOOPBACK; 4220 if (skb->ip_summed == CHECKSUM_NONE) 4221 skb->ip_summed = CHECKSUM_UNNECESSARY; 4222 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4223 skb_dst_force(skb); 4224 netif_rx(skb); 4225 return 0; 4226 } 4227 EXPORT_SYMBOL(dev_loopback_xmit); 4228 4229 #ifdef CONFIG_NET_EGRESS 4230 static struct netdev_queue * 4231 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4232 { 4233 int qm = skb_get_queue_mapping(skb); 4234 4235 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4236 } 4237 4238 #ifndef CONFIG_PREEMPT_RT 4239 static bool netdev_xmit_txqueue_skipped(void) 4240 { 4241 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4242 } 4243 4244 void netdev_xmit_skip_txqueue(bool skip) 4245 { 4246 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4247 } 4248 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4249 4250 #else 4251 static bool netdev_xmit_txqueue_skipped(void) 4252 { 4253 return current->net_xmit.skip_txqueue; 4254 } 4255 4256 void netdev_xmit_skip_txqueue(bool skip) 4257 { 4258 current->net_xmit.skip_txqueue = skip; 4259 } 4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4261 #endif 4262 #endif /* CONFIG_NET_EGRESS */ 4263 4264 #ifdef CONFIG_NET_XGRESS 4265 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4266 enum skb_drop_reason *drop_reason) 4267 { 4268 int ret = TC_ACT_UNSPEC; 4269 #ifdef CONFIG_NET_CLS_ACT 4270 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4271 struct tcf_result res; 4272 4273 if (!miniq) 4274 return ret; 4275 4276 /* Global bypass */ 4277 if (!static_branch_likely(&tcf_sw_enabled_key)) 4278 return ret; 4279 4280 /* Block-wise bypass */ 4281 if (tcf_block_bypass_sw(miniq->block)) 4282 return ret; 4283 4284 tc_skb_cb(skb)->mru = 0; 4285 tc_skb_cb(skb)->post_ct = false; 4286 tcf_set_drop_reason(skb, *drop_reason); 4287 4288 mini_qdisc_bstats_cpu_update(miniq, skb); 4289 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4290 /* Only tcf related quirks below. */ 4291 switch (ret) { 4292 case TC_ACT_SHOT: 4293 *drop_reason = tcf_get_drop_reason(skb); 4294 mini_qdisc_qstats_cpu_drop(miniq); 4295 break; 4296 case TC_ACT_OK: 4297 case TC_ACT_RECLASSIFY: 4298 skb->tc_index = TC_H_MIN(res.classid); 4299 break; 4300 } 4301 #endif /* CONFIG_NET_CLS_ACT */ 4302 return ret; 4303 } 4304 4305 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4306 4307 void tcx_inc(void) 4308 { 4309 static_branch_inc(&tcx_needed_key); 4310 } 4311 4312 void tcx_dec(void) 4313 { 4314 static_branch_dec(&tcx_needed_key); 4315 } 4316 4317 static __always_inline enum tcx_action_base 4318 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4319 const bool needs_mac) 4320 { 4321 const struct bpf_mprog_fp *fp; 4322 const struct bpf_prog *prog; 4323 int ret = TCX_NEXT; 4324 4325 if (needs_mac) 4326 __skb_push(skb, skb->mac_len); 4327 bpf_mprog_foreach_prog(entry, fp, prog) { 4328 bpf_compute_data_pointers(skb); 4329 ret = bpf_prog_run(prog, skb); 4330 if (ret != TCX_NEXT) 4331 break; 4332 } 4333 if (needs_mac) 4334 __skb_pull(skb, skb->mac_len); 4335 return tcx_action_code(skb, ret); 4336 } 4337 4338 static __always_inline struct sk_buff * 4339 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4340 struct net_device *orig_dev, bool *another) 4341 { 4342 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4343 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4344 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4345 int sch_ret; 4346 4347 if (!entry) 4348 return skb; 4349 4350 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4351 if (*pt_prev) { 4352 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4353 *pt_prev = NULL; 4354 } 4355 4356 qdisc_skb_cb(skb)->pkt_len = skb->len; 4357 tcx_set_ingress(skb, true); 4358 4359 if (static_branch_unlikely(&tcx_needed_key)) { 4360 sch_ret = tcx_run(entry, skb, true); 4361 if (sch_ret != TC_ACT_UNSPEC) 4362 goto ingress_verdict; 4363 } 4364 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4365 ingress_verdict: 4366 switch (sch_ret) { 4367 case TC_ACT_REDIRECT: 4368 /* skb_mac_header check was done by BPF, so we can safely 4369 * push the L2 header back before redirecting to another 4370 * netdev. 4371 */ 4372 __skb_push(skb, skb->mac_len); 4373 if (skb_do_redirect(skb) == -EAGAIN) { 4374 __skb_pull(skb, skb->mac_len); 4375 *another = true; 4376 break; 4377 } 4378 *ret = NET_RX_SUCCESS; 4379 bpf_net_ctx_clear(bpf_net_ctx); 4380 return NULL; 4381 case TC_ACT_SHOT: 4382 kfree_skb_reason(skb, drop_reason); 4383 *ret = NET_RX_DROP; 4384 bpf_net_ctx_clear(bpf_net_ctx); 4385 return NULL; 4386 /* used by tc_run */ 4387 case TC_ACT_STOLEN: 4388 case TC_ACT_QUEUED: 4389 case TC_ACT_TRAP: 4390 consume_skb(skb); 4391 fallthrough; 4392 case TC_ACT_CONSUMED: 4393 *ret = NET_RX_SUCCESS; 4394 bpf_net_ctx_clear(bpf_net_ctx); 4395 return NULL; 4396 } 4397 bpf_net_ctx_clear(bpf_net_ctx); 4398 4399 return skb; 4400 } 4401 4402 static __always_inline struct sk_buff * 4403 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4404 { 4405 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4406 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4407 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4408 int sch_ret; 4409 4410 if (!entry) 4411 return skb; 4412 4413 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4414 4415 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4416 * already set by the caller. 4417 */ 4418 if (static_branch_unlikely(&tcx_needed_key)) { 4419 sch_ret = tcx_run(entry, skb, false); 4420 if (sch_ret != TC_ACT_UNSPEC) 4421 goto egress_verdict; 4422 } 4423 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4424 egress_verdict: 4425 switch (sch_ret) { 4426 case TC_ACT_REDIRECT: 4427 /* No need to push/pop skb's mac_header here on egress! */ 4428 skb_do_redirect(skb); 4429 *ret = NET_XMIT_SUCCESS; 4430 bpf_net_ctx_clear(bpf_net_ctx); 4431 return NULL; 4432 case TC_ACT_SHOT: 4433 kfree_skb_reason(skb, drop_reason); 4434 *ret = NET_XMIT_DROP; 4435 bpf_net_ctx_clear(bpf_net_ctx); 4436 return NULL; 4437 /* used by tc_run */ 4438 case TC_ACT_STOLEN: 4439 case TC_ACT_QUEUED: 4440 case TC_ACT_TRAP: 4441 consume_skb(skb); 4442 fallthrough; 4443 case TC_ACT_CONSUMED: 4444 *ret = NET_XMIT_SUCCESS; 4445 bpf_net_ctx_clear(bpf_net_ctx); 4446 return NULL; 4447 } 4448 bpf_net_ctx_clear(bpf_net_ctx); 4449 4450 return skb; 4451 } 4452 #else 4453 static __always_inline struct sk_buff * 4454 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4455 struct net_device *orig_dev, bool *another) 4456 { 4457 return skb; 4458 } 4459 4460 static __always_inline struct sk_buff * 4461 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4462 { 4463 return skb; 4464 } 4465 #endif /* CONFIG_NET_XGRESS */ 4466 4467 #ifdef CONFIG_XPS 4468 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4469 struct xps_dev_maps *dev_maps, unsigned int tci) 4470 { 4471 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4472 struct xps_map *map; 4473 int queue_index = -1; 4474 4475 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4476 return queue_index; 4477 4478 tci *= dev_maps->num_tc; 4479 tci += tc; 4480 4481 map = rcu_dereference(dev_maps->attr_map[tci]); 4482 if (map) { 4483 if (map->len == 1) 4484 queue_index = map->queues[0]; 4485 else 4486 queue_index = map->queues[reciprocal_scale( 4487 skb_get_hash(skb), map->len)]; 4488 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4489 queue_index = -1; 4490 } 4491 return queue_index; 4492 } 4493 #endif 4494 4495 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4496 struct sk_buff *skb) 4497 { 4498 #ifdef CONFIG_XPS 4499 struct xps_dev_maps *dev_maps; 4500 struct sock *sk = skb->sk; 4501 int queue_index = -1; 4502 4503 if (!static_key_false(&xps_needed)) 4504 return -1; 4505 4506 rcu_read_lock(); 4507 if (!static_key_false(&xps_rxqs_needed)) 4508 goto get_cpus_map; 4509 4510 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4511 if (dev_maps) { 4512 int tci = sk_rx_queue_get(sk); 4513 4514 if (tci >= 0) 4515 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4516 tci); 4517 } 4518 4519 get_cpus_map: 4520 if (queue_index < 0) { 4521 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4522 if (dev_maps) { 4523 unsigned int tci = skb->sender_cpu - 1; 4524 4525 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4526 tci); 4527 } 4528 } 4529 rcu_read_unlock(); 4530 4531 return queue_index; 4532 #else 4533 return -1; 4534 #endif 4535 } 4536 4537 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4538 struct net_device *sb_dev) 4539 { 4540 return 0; 4541 } 4542 EXPORT_SYMBOL(dev_pick_tx_zero); 4543 4544 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4545 struct net_device *sb_dev) 4546 { 4547 struct sock *sk = skb->sk; 4548 int queue_index = sk_tx_queue_get(sk); 4549 4550 sb_dev = sb_dev ? : dev; 4551 4552 if (queue_index < 0 || skb->ooo_okay || 4553 queue_index >= dev->real_num_tx_queues) { 4554 int new_index = get_xps_queue(dev, sb_dev, skb); 4555 4556 if (new_index < 0) 4557 new_index = skb_tx_hash(dev, sb_dev, skb); 4558 4559 if (queue_index != new_index && sk && 4560 sk_fullsock(sk) && 4561 rcu_access_pointer(sk->sk_dst_cache)) 4562 sk_tx_queue_set(sk, new_index); 4563 4564 queue_index = new_index; 4565 } 4566 4567 return queue_index; 4568 } 4569 EXPORT_SYMBOL(netdev_pick_tx); 4570 4571 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4572 struct sk_buff *skb, 4573 struct net_device *sb_dev) 4574 { 4575 int queue_index = 0; 4576 4577 #ifdef CONFIG_XPS 4578 u32 sender_cpu = skb->sender_cpu - 1; 4579 4580 if (sender_cpu >= (u32)NR_CPUS) 4581 skb->sender_cpu = raw_smp_processor_id() + 1; 4582 #endif 4583 4584 if (dev->real_num_tx_queues != 1) { 4585 const struct net_device_ops *ops = dev->netdev_ops; 4586 4587 if (ops->ndo_select_queue) 4588 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4589 else 4590 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4591 4592 queue_index = netdev_cap_txqueue(dev, queue_index); 4593 } 4594 4595 skb_set_queue_mapping(skb, queue_index); 4596 return netdev_get_tx_queue(dev, queue_index); 4597 } 4598 4599 /** 4600 * __dev_queue_xmit() - transmit a buffer 4601 * @skb: buffer to transmit 4602 * @sb_dev: suboordinate device used for L2 forwarding offload 4603 * 4604 * Queue a buffer for transmission to a network device. The caller must 4605 * have set the device and priority and built the buffer before calling 4606 * this function. The function can be called from an interrupt. 4607 * 4608 * When calling this method, interrupts MUST be enabled. This is because 4609 * the BH enable code must have IRQs enabled so that it will not deadlock. 4610 * 4611 * Regardless of the return value, the skb is consumed, so it is currently 4612 * difficult to retry a send to this method. (You can bump the ref count 4613 * before sending to hold a reference for retry if you are careful.) 4614 * 4615 * Return: 4616 * * 0 - buffer successfully transmitted 4617 * * positive qdisc return code - NET_XMIT_DROP etc. 4618 * * negative errno - other errors 4619 */ 4620 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4621 { 4622 struct net_device *dev = skb->dev; 4623 struct netdev_queue *txq = NULL; 4624 struct Qdisc *q; 4625 int rc = -ENOMEM; 4626 bool again = false; 4627 4628 skb_reset_mac_header(skb); 4629 skb_assert_len(skb); 4630 4631 if (unlikely(skb_shinfo(skb)->tx_flags & 4632 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4633 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4634 4635 /* Disable soft irqs for various locks below. Also 4636 * stops preemption for RCU. 4637 */ 4638 rcu_read_lock_bh(); 4639 4640 skb_update_prio(skb); 4641 4642 qdisc_pkt_len_init(skb); 4643 tcx_set_ingress(skb, false); 4644 #ifdef CONFIG_NET_EGRESS 4645 if (static_branch_unlikely(&egress_needed_key)) { 4646 if (nf_hook_egress_active()) { 4647 skb = nf_hook_egress(skb, &rc, dev); 4648 if (!skb) 4649 goto out; 4650 } 4651 4652 netdev_xmit_skip_txqueue(false); 4653 4654 nf_skip_egress(skb, true); 4655 skb = sch_handle_egress(skb, &rc, dev); 4656 if (!skb) 4657 goto out; 4658 nf_skip_egress(skb, false); 4659 4660 if (netdev_xmit_txqueue_skipped()) 4661 txq = netdev_tx_queue_mapping(dev, skb); 4662 } 4663 #endif 4664 /* If device/qdisc don't need skb->dst, release it right now while 4665 * its hot in this cpu cache. 4666 */ 4667 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4668 skb_dst_drop(skb); 4669 else 4670 skb_dst_force(skb); 4671 4672 if (!txq) 4673 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4674 4675 q = rcu_dereference_bh(txq->qdisc); 4676 4677 trace_net_dev_queue(skb); 4678 if (q->enqueue) { 4679 rc = __dev_xmit_skb(skb, q, dev, txq); 4680 goto out; 4681 } 4682 4683 /* The device has no queue. Common case for software devices: 4684 * loopback, all the sorts of tunnels... 4685 4686 * Really, it is unlikely that netif_tx_lock protection is necessary 4687 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4688 * counters.) 4689 * However, it is possible, that they rely on protection 4690 * made by us here. 4691 4692 * Check this and shot the lock. It is not prone from deadlocks. 4693 *Either shot noqueue qdisc, it is even simpler 8) 4694 */ 4695 if (dev->flags & IFF_UP) { 4696 int cpu = smp_processor_id(); /* ok because BHs are off */ 4697 4698 /* Other cpus might concurrently change txq->xmit_lock_owner 4699 * to -1 or to their cpu id, but not to our id. 4700 */ 4701 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4702 if (dev_xmit_recursion()) 4703 goto recursion_alert; 4704 4705 skb = validate_xmit_skb(skb, dev, &again); 4706 if (!skb) 4707 goto out; 4708 4709 HARD_TX_LOCK(dev, txq, cpu); 4710 4711 if (!netif_xmit_stopped(txq)) { 4712 dev_xmit_recursion_inc(); 4713 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4714 dev_xmit_recursion_dec(); 4715 if (dev_xmit_complete(rc)) { 4716 HARD_TX_UNLOCK(dev, txq); 4717 goto out; 4718 } 4719 } 4720 HARD_TX_UNLOCK(dev, txq); 4721 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4722 dev->name); 4723 } else { 4724 /* Recursion is detected! It is possible, 4725 * unfortunately 4726 */ 4727 recursion_alert: 4728 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4729 dev->name); 4730 } 4731 } 4732 4733 rc = -ENETDOWN; 4734 rcu_read_unlock_bh(); 4735 4736 dev_core_stats_tx_dropped_inc(dev); 4737 kfree_skb_list(skb); 4738 return rc; 4739 out: 4740 rcu_read_unlock_bh(); 4741 return rc; 4742 } 4743 EXPORT_SYMBOL(__dev_queue_xmit); 4744 4745 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4746 { 4747 struct net_device *dev = skb->dev; 4748 struct sk_buff *orig_skb = skb; 4749 struct netdev_queue *txq; 4750 int ret = NETDEV_TX_BUSY; 4751 bool again = false; 4752 4753 if (unlikely(!netif_running(dev) || 4754 !netif_carrier_ok(dev))) 4755 goto drop; 4756 4757 skb = validate_xmit_skb_list(skb, dev, &again); 4758 if (skb != orig_skb) 4759 goto drop; 4760 4761 skb_set_queue_mapping(skb, queue_id); 4762 txq = skb_get_tx_queue(dev, skb); 4763 4764 local_bh_disable(); 4765 4766 dev_xmit_recursion_inc(); 4767 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4768 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4769 ret = netdev_start_xmit(skb, dev, txq, false); 4770 HARD_TX_UNLOCK(dev, txq); 4771 dev_xmit_recursion_dec(); 4772 4773 local_bh_enable(); 4774 return ret; 4775 drop: 4776 dev_core_stats_tx_dropped_inc(dev); 4777 kfree_skb_list(skb); 4778 return NET_XMIT_DROP; 4779 } 4780 EXPORT_SYMBOL(__dev_direct_xmit); 4781 4782 /************************************************************************* 4783 * Receiver routines 4784 *************************************************************************/ 4785 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4786 4787 int weight_p __read_mostly = 64; /* old backlog weight */ 4788 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4789 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4790 4791 /* Called with irq disabled */ 4792 static inline void ____napi_schedule(struct softnet_data *sd, 4793 struct napi_struct *napi) 4794 { 4795 struct task_struct *thread; 4796 4797 lockdep_assert_irqs_disabled(); 4798 4799 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4800 /* Paired with smp_mb__before_atomic() in 4801 * napi_enable()/netif_set_threaded(). 4802 * Use READ_ONCE() to guarantee a complete 4803 * read on napi->thread. Only call 4804 * wake_up_process() when it's not NULL. 4805 */ 4806 thread = READ_ONCE(napi->thread); 4807 if (thread) { 4808 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4809 goto use_local_napi; 4810 4811 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4812 wake_up_process(thread); 4813 return; 4814 } 4815 } 4816 4817 use_local_napi: 4818 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4819 list_add_tail(&napi->poll_list, &sd->poll_list); 4820 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4821 /* If not called from net_rx_action() 4822 * we have to raise NET_RX_SOFTIRQ. 4823 */ 4824 if (!sd->in_net_rx_action) 4825 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4826 } 4827 4828 #ifdef CONFIG_RPS 4829 4830 struct static_key_false rps_needed __read_mostly; 4831 EXPORT_SYMBOL(rps_needed); 4832 struct static_key_false rfs_needed __read_mostly; 4833 EXPORT_SYMBOL(rfs_needed); 4834 4835 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4836 { 4837 return hash_32(hash, flow_table->log); 4838 } 4839 4840 static struct rps_dev_flow * 4841 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4842 struct rps_dev_flow *rflow, u16 next_cpu) 4843 { 4844 if (next_cpu < nr_cpu_ids) { 4845 u32 head; 4846 #ifdef CONFIG_RFS_ACCEL 4847 struct netdev_rx_queue *rxqueue; 4848 struct rps_dev_flow_table *flow_table; 4849 struct rps_dev_flow *old_rflow; 4850 u16 rxq_index; 4851 u32 flow_id; 4852 int rc; 4853 4854 /* Should we steer this flow to a different hardware queue? */ 4855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4856 !(dev->features & NETIF_F_NTUPLE)) 4857 goto out; 4858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4859 if (rxq_index == skb_get_rx_queue(skb)) 4860 goto out; 4861 4862 rxqueue = dev->_rx + rxq_index; 4863 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4864 if (!flow_table) 4865 goto out; 4866 flow_id = rfs_slot(skb_get_hash(skb), flow_table); 4867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4868 rxq_index, flow_id); 4869 if (rc < 0) 4870 goto out; 4871 old_rflow = rflow; 4872 rflow = &flow_table->flows[flow_id]; 4873 WRITE_ONCE(rflow->filter, rc); 4874 if (old_rflow->filter == rc) 4875 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4876 out: 4877 #endif 4878 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4879 rps_input_queue_tail_save(&rflow->last_qtail, head); 4880 } 4881 4882 WRITE_ONCE(rflow->cpu, next_cpu); 4883 return rflow; 4884 } 4885 4886 /* 4887 * get_rps_cpu is called from netif_receive_skb and returns the target 4888 * CPU from the RPS map of the receiving queue for a given skb. 4889 * rcu_read_lock must be held on entry. 4890 */ 4891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4892 struct rps_dev_flow **rflowp) 4893 { 4894 const struct rps_sock_flow_table *sock_flow_table; 4895 struct netdev_rx_queue *rxqueue = dev->_rx; 4896 struct rps_dev_flow_table *flow_table; 4897 struct rps_map *map; 4898 int cpu = -1; 4899 u32 tcpu; 4900 u32 hash; 4901 4902 if (skb_rx_queue_recorded(skb)) { 4903 u16 index = skb_get_rx_queue(skb); 4904 4905 if (unlikely(index >= dev->real_num_rx_queues)) { 4906 WARN_ONCE(dev->real_num_rx_queues > 1, 4907 "%s received packet on queue %u, but number " 4908 "of RX queues is %u\n", 4909 dev->name, index, dev->real_num_rx_queues); 4910 goto done; 4911 } 4912 rxqueue += index; 4913 } 4914 4915 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4916 4917 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4918 map = rcu_dereference(rxqueue->rps_map); 4919 if (!flow_table && !map) 4920 goto done; 4921 4922 skb_reset_network_header(skb); 4923 hash = skb_get_hash(skb); 4924 if (!hash) 4925 goto done; 4926 4927 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4928 if (flow_table && sock_flow_table) { 4929 struct rps_dev_flow *rflow; 4930 u32 next_cpu; 4931 u32 ident; 4932 4933 /* First check into global flow table if there is a match. 4934 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4935 */ 4936 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4937 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4938 goto try_rps; 4939 4940 next_cpu = ident & net_hotdata.rps_cpu_mask; 4941 4942 /* OK, now we know there is a match, 4943 * we can look at the local (per receive queue) flow table 4944 */ 4945 rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; 4946 tcpu = rflow->cpu; 4947 4948 /* 4949 * If the desired CPU (where last recvmsg was done) is 4950 * different from current CPU (one in the rx-queue flow 4951 * table entry), switch if one of the following holds: 4952 * - Current CPU is unset (>= nr_cpu_ids). 4953 * - Current CPU is offline. 4954 * - The current CPU's queue tail has advanced beyond the 4955 * last packet that was enqueued using this table entry. 4956 * This guarantees that all previous packets for the flow 4957 * have been dequeued, thus preserving in order delivery. 4958 */ 4959 if (unlikely(tcpu != next_cpu) && 4960 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4961 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4962 rflow->last_qtail)) >= 0)) { 4963 tcpu = next_cpu; 4964 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4965 } 4966 4967 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4968 *rflowp = rflow; 4969 cpu = tcpu; 4970 goto done; 4971 } 4972 } 4973 4974 try_rps: 4975 4976 if (map) { 4977 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4978 if (cpu_online(tcpu)) { 4979 cpu = tcpu; 4980 goto done; 4981 } 4982 } 4983 4984 done: 4985 return cpu; 4986 } 4987 4988 #ifdef CONFIG_RFS_ACCEL 4989 4990 /** 4991 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4992 * @dev: Device on which the filter was set 4993 * @rxq_index: RX queue index 4994 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4995 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4996 * 4997 * Drivers that implement ndo_rx_flow_steer() should periodically call 4998 * this function for each installed filter and remove the filters for 4999 * which it returns %true. 5000 */ 5001 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5002 u32 flow_id, u16 filter_id) 5003 { 5004 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5005 struct rps_dev_flow_table *flow_table; 5006 struct rps_dev_flow *rflow; 5007 bool expire = true; 5008 unsigned int cpu; 5009 5010 rcu_read_lock(); 5011 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5012 if (flow_table && flow_id < (1UL << flow_table->log)) { 5013 rflow = &flow_table->flows[flow_id]; 5014 cpu = READ_ONCE(rflow->cpu); 5015 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 5016 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 5017 READ_ONCE(rflow->last_qtail)) < 5018 (int)(10 << flow_table->log))) 5019 expire = false; 5020 } 5021 rcu_read_unlock(); 5022 return expire; 5023 } 5024 EXPORT_SYMBOL(rps_may_expire_flow); 5025 5026 #endif /* CONFIG_RFS_ACCEL */ 5027 5028 /* Called from hardirq (IPI) context */ 5029 static void rps_trigger_softirq(void *data) 5030 { 5031 struct softnet_data *sd = data; 5032 5033 ____napi_schedule(sd, &sd->backlog); 5034 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5035 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5036 } 5037 5038 #endif /* CONFIG_RPS */ 5039 5040 /* Called from hardirq (IPI) context */ 5041 static void trigger_rx_softirq(void *data) 5042 { 5043 struct softnet_data *sd = data; 5044 5045 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5046 smp_store_release(&sd->defer_ipi_scheduled, 0); 5047 } 5048 5049 /* 5050 * After we queued a packet into sd->input_pkt_queue, 5051 * we need to make sure this queue is serviced soon. 5052 * 5053 * - If this is another cpu queue, link it to our rps_ipi_list, 5054 * and make sure we will process rps_ipi_list from net_rx_action(). 5055 * 5056 * - If this is our own queue, NAPI schedule our backlog. 5057 * Note that this also raises NET_RX_SOFTIRQ. 5058 */ 5059 static void napi_schedule_rps(struct softnet_data *sd) 5060 { 5061 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5062 5063 #ifdef CONFIG_RPS 5064 if (sd != mysd) { 5065 if (use_backlog_threads()) { 5066 __napi_schedule_irqoff(&sd->backlog); 5067 return; 5068 } 5069 5070 sd->rps_ipi_next = mysd->rps_ipi_list; 5071 mysd->rps_ipi_list = sd; 5072 5073 /* If not called from net_rx_action() or napi_threaded_poll() 5074 * we have to raise NET_RX_SOFTIRQ. 5075 */ 5076 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5077 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5078 return; 5079 } 5080 #endif /* CONFIG_RPS */ 5081 __napi_schedule_irqoff(&mysd->backlog); 5082 } 5083 5084 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5085 { 5086 unsigned long flags; 5087 5088 if (use_backlog_threads()) { 5089 backlog_lock_irq_save(sd, &flags); 5090 5091 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5092 __napi_schedule_irqoff(&sd->backlog); 5093 5094 backlog_unlock_irq_restore(sd, &flags); 5095 5096 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5097 smp_call_function_single_async(cpu, &sd->defer_csd); 5098 } 5099 } 5100 5101 #ifdef CONFIG_NET_FLOW_LIMIT 5102 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5103 #endif 5104 5105 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5106 { 5107 #ifdef CONFIG_NET_FLOW_LIMIT 5108 struct sd_flow_limit *fl; 5109 struct softnet_data *sd; 5110 unsigned int old_flow, new_flow; 5111 5112 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5113 return false; 5114 5115 sd = this_cpu_ptr(&softnet_data); 5116 5117 rcu_read_lock(); 5118 fl = rcu_dereference(sd->flow_limit); 5119 if (fl) { 5120 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5121 old_flow = fl->history[fl->history_head]; 5122 fl->history[fl->history_head] = new_flow; 5123 5124 fl->history_head++; 5125 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5126 5127 if (likely(fl->buckets[old_flow])) 5128 fl->buckets[old_flow]--; 5129 5130 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5131 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5132 WRITE_ONCE(fl->count, fl->count + 1); 5133 rcu_read_unlock(); 5134 return true; 5135 } 5136 } 5137 rcu_read_unlock(); 5138 #endif 5139 return false; 5140 } 5141 5142 /* 5143 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5144 * queue (may be a remote CPU queue). 5145 */ 5146 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5147 unsigned int *qtail) 5148 { 5149 enum skb_drop_reason reason; 5150 struct softnet_data *sd; 5151 unsigned long flags; 5152 unsigned int qlen; 5153 int max_backlog; 5154 u32 tail; 5155 5156 reason = SKB_DROP_REASON_DEV_READY; 5157 if (!netif_running(skb->dev)) 5158 goto bad_dev; 5159 5160 reason = SKB_DROP_REASON_CPU_BACKLOG; 5161 sd = &per_cpu(softnet_data, cpu); 5162 5163 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5164 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5165 if (unlikely(qlen > max_backlog)) 5166 goto cpu_backlog_drop; 5167 backlog_lock_irq_save(sd, &flags); 5168 qlen = skb_queue_len(&sd->input_pkt_queue); 5169 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5170 if (!qlen) { 5171 /* Schedule NAPI for backlog device. We can use 5172 * non atomic operation as we own the queue lock. 5173 */ 5174 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5175 &sd->backlog.state)) 5176 napi_schedule_rps(sd); 5177 } 5178 __skb_queue_tail(&sd->input_pkt_queue, skb); 5179 tail = rps_input_queue_tail_incr(sd); 5180 backlog_unlock_irq_restore(sd, &flags); 5181 5182 /* save the tail outside of the critical section */ 5183 rps_input_queue_tail_save(qtail, tail); 5184 return NET_RX_SUCCESS; 5185 } 5186 5187 backlog_unlock_irq_restore(sd, &flags); 5188 5189 cpu_backlog_drop: 5190 atomic_inc(&sd->dropped); 5191 bad_dev: 5192 dev_core_stats_rx_dropped_inc(skb->dev); 5193 kfree_skb_reason(skb, reason); 5194 return NET_RX_DROP; 5195 } 5196 5197 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5198 { 5199 struct net_device *dev = skb->dev; 5200 struct netdev_rx_queue *rxqueue; 5201 5202 rxqueue = dev->_rx; 5203 5204 if (skb_rx_queue_recorded(skb)) { 5205 u16 index = skb_get_rx_queue(skb); 5206 5207 if (unlikely(index >= dev->real_num_rx_queues)) { 5208 WARN_ONCE(dev->real_num_rx_queues > 1, 5209 "%s received packet on queue %u, but number " 5210 "of RX queues is %u\n", 5211 dev->name, index, dev->real_num_rx_queues); 5212 5213 return rxqueue; /* Return first rxqueue */ 5214 } 5215 rxqueue += index; 5216 } 5217 return rxqueue; 5218 } 5219 5220 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5221 const struct bpf_prog *xdp_prog) 5222 { 5223 void *orig_data, *orig_data_end, *hard_start; 5224 struct netdev_rx_queue *rxqueue; 5225 bool orig_bcast, orig_host; 5226 u32 mac_len, frame_sz; 5227 __be16 orig_eth_type; 5228 struct ethhdr *eth; 5229 u32 metalen, act; 5230 int off; 5231 5232 /* The XDP program wants to see the packet starting at the MAC 5233 * header. 5234 */ 5235 mac_len = skb->data - skb_mac_header(skb); 5236 hard_start = skb->data - skb_headroom(skb); 5237 5238 /* SKB "head" area always have tailroom for skb_shared_info */ 5239 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5240 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5241 5242 rxqueue = netif_get_rxqueue(skb); 5243 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5244 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5245 skb_headlen(skb) + mac_len, true); 5246 if (skb_is_nonlinear(skb)) { 5247 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5248 xdp_buff_set_frags_flag(xdp); 5249 } else { 5250 xdp_buff_clear_frags_flag(xdp); 5251 } 5252 5253 orig_data_end = xdp->data_end; 5254 orig_data = xdp->data; 5255 eth = (struct ethhdr *)xdp->data; 5256 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5257 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5258 orig_eth_type = eth->h_proto; 5259 5260 act = bpf_prog_run_xdp(xdp_prog, xdp); 5261 5262 /* check if bpf_xdp_adjust_head was used */ 5263 off = xdp->data - orig_data; 5264 if (off) { 5265 if (off > 0) 5266 __skb_pull(skb, off); 5267 else if (off < 0) 5268 __skb_push(skb, -off); 5269 5270 skb->mac_header += off; 5271 skb_reset_network_header(skb); 5272 } 5273 5274 /* check if bpf_xdp_adjust_tail was used */ 5275 off = xdp->data_end - orig_data_end; 5276 if (off != 0) { 5277 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5278 skb->len += off; /* positive on grow, negative on shrink */ 5279 } 5280 5281 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5282 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5283 */ 5284 if (xdp_buff_has_frags(xdp)) 5285 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5286 else 5287 skb->data_len = 0; 5288 5289 /* check if XDP changed eth hdr such SKB needs update */ 5290 eth = (struct ethhdr *)xdp->data; 5291 if ((orig_eth_type != eth->h_proto) || 5292 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5293 skb->dev->dev_addr)) || 5294 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5295 __skb_push(skb, ETH_HLEN); 5296 skb->pkt_type = PACKET_HOST; 5297 skb->protocol = eth_type_trans(skb, skb->dev); 5298 } 5299 5300 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5301 * before calling us again on redirect path. We do not call do_redirect 5302 * as we leave that up to the caller. 5303 * 5304 * Caller is responsible for managing lifetime of skb (i.e. calling 5305 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5306 */ 5307 switch (act) { 5308 case XDP_REDIRECT: 5309 case XDP_TX: 5310 __skb_push(skb, mac_len); 5311 break; 5312 case XDP_PASS: 5313 metalen = xdp->data - xdp->data_meta; 5314 if (metalen) 5315 skb_metadata_set(skb, metalen); 5316 break; 5317 } 5318 5319 return act; 5320 } 5321 5322 static int 5323 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5324 { 5325 struct sk_buff *skb = *pskb; 5326 int err, hroom, troom; 5327 5328 local_lock_nested_bh(&system_page_pool.bh_lock); 5329 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5330 local_unlock_nested_bh(&system_page_pool.bh_lock); 5331 if (!err) 5332 return 0; 5333 5334 /* In case we have to go down the path and also linearize, 5335 * then lets do the pskb_expand_head() work just once here. 5336 */ 5337 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5338 troom = skb->tail + skb->data_len - skb->end; 5339 err = pskb_expand_head(skb, 5340 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5341 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5342 if (err) 5343 return err; 5344 5345 return skb_linearize(skb); 5346 } 5347 5348 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5349 struct xdp_buff *xdp, 5350 const struct bpf_prog *xdp_prog) 5351 { 5352 struct sk_buff *skb = *pskb; 5353 u32 mac_len, act = XDP_DROP; 5354 5355 /* Reinjected packets coming from act_mirred or similar should 5356 * not get XDP generic processing. 5357 */ 5358 if (skb_is_redirected(skb)) 5359 return XDP_PASS; 5360 5361 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5362 * bytes. This is the guarantee that also native XDP provides, 5363 * thus we need to do it here as well. 5364 */ 5365 mac_len = skb->data - skb_mac_header(skb); 5366 __skb_push(skb, mac_len); 5367 5368 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5369 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5370 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5371 goto do_drop; 5372 } 5373 5374 __skb_pull(*pskb, mac_len); 5375 5376 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5377 switch (act) { 5378 case XDP_REDIRECT: 5379 case XDP_TX: 5380 case XDP_PASS: 5381 break; 5382 default: 5383 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5384 fallthrough; 5385 case XDP_ABORTED: 5386 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5387 fallthrough; 5388 case XDP_DROP: 5389 do_drop: 5390 kfree_skb(*pskb); 5391 break; 5392 } 5393 5394 return act; 5395 } 5396 5397 /* When doing generic XDP we have to bypass the qdisc layer and the 5398 * network taps in order to match in-driver-XDP behavior. This also means 5399 * that XDP packets are able to starve other packets going through a qdisc, 5400 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5401 * queues, so they do not have this starvation issue. 5402 */ 5403 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5404 { 5405 struct net_device *dev = skb->dev; 5406 struct netdev_queue *txq; 5407 bool free_skb = true; 5408 int cpu, rc; 5409 5410 txq = netdev_core_pick_tx(dev, skb, NULL); 5411 cpu = smp_processor_id(); 5412 HARD_TX_LOCK(dev, txq, cpu); 5413 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5414 rc = netdev_start_xmit(skb, dev, txq, 0); 5415 if (dev_xmit_complete(rc)) 5416 free_skb = false; 5417 } 5418 HARD_TX_UNLOCK(dev, txq); 5419 if (free_skb) { 5420 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5421 dev_core_stats_tx_dropped_inc(dev); 5422 kfree_skb(skb); 5423 } 5424 } 5425 5426 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5427 5428 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5429 { 5430 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5431 5432 if (xdp_prog) { 5433 struct xdp_buff xdp; 5434 u32 act; 5435 int err; 5436 5437 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5438 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5439 if (act != XDP_PASS) { 5440 switch (act) { 5441 case XDP_REDIRECT: 5442 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5443 &xdp, xdp_prog); 5444 if (err) 5445 goto out_redir; 5446 break; 5447 case XDP_TX: 5448 generic_xdp_tx(*pskb, xdp_prog); 5449 break; 5450 } 5451 bpf_net_ctx_clear(bpf_net_ctx); 5452 return XDP_DROP; 5453 } 5454 bpf_net_ctx_clear(bpf_net_ctx); 5455 } 5456 return XDP_PASS; 5457 out_redir: 5458 bpf_net_ctx_clear(bpf_net_ctx); 5459 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5460 return XDP_DROP; 5461 } 5462 EXPORT_SYMBOL_GPL(do_xdp_generic); 5463 5464 static int netif_rx_internal(struct sk_buff *skb) 5465 { 5466 int ret; 5467 5468 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5469 5470 trace_netif_rx(skb); 5471 5472 #ifdef CONFIG_RPS 5473 if (static_branch_unlikely(&rps_needed)) { 5474 struct rps_dev_flow voidflow, *rflow = &voidflow; 5475 int cpu; 5476 5477 rcu_read_lock(); 5478 5479 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5480 if (cpu < 0) 5481 cpu = smp_processor_id(); 5482 5483 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5484 5485 rcu_read_unlock(); 5486 } else 5487 #endif 5488 { 5489 unsigned int qtail; 5490 5491 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5492 } 5493 return ret; 5494 } 5495 5496 /** 5497 * __netif_rx - Slightly optimized version of netif_rx 5498 * @skb: buffer to post 5499 * 5500 * This behaves as netif_rx except that it does not disable bottom halves. 5501 * As a result this function may only be invoked from the interrupt context 5502 * (either hard or soft interrupt). 5503 */ 5504 int __netif_rx(struct sk_buff *skb) 5505 { 5506 int ret; 5507 5508 lockdep_assert_once(hardirq_count() | softirq_count()); 5509 5510 trace_netif_rx_entry(skb); 5511 ret = netif_rx_internal(skb); 5512 trace_netif_rx_exit(ret); 5513 return ret; 5514 } 5515 EXPORT_SYMBOL(__netif_rx); 5516 5517 /** 5518 * netif_rx - post buffer to the network code 5519 * @skb: buffer to post 5520 * 5521 * This function receives a packet from a device driver and queues it for 5522 * the upper (protocol) levels to process via the backlog NAPI device. It 5523 * always succeeds. The buffer may be dropped during processing for 5524 * congestion control or by the protocol layers. 5525 * The network buffer is passed via the backlog NAPI device. Modern NIC 5526 * driver should use NAPI and GRO. 5527 * This function can used from interrupt and from process context. The 5528 * caller from process context must not disable interrupts before invoking 5529 * this function. 5530 * 5531 * return values: 5532 * NET_RX_SUCCESS (no congestion) 5533 * NET_RX_DROP (packet was dropped) 5534 * 5535 */ 5536 int netif_rx(struct sk_buff *skb) 5537 { 5538 bool need_bh_off = !(hardirq_count() | softirq_count()); 5539 int ret; 5540 5541 if (need_bh_off) 5542 local_bh_disable(); 5543 trace_netif_rx_entry(skb); 5544 ret = netif_rx_internal(skb); 5545 trace_netif_rx_exit(ret); 5546 if (need_bh_off) 5547 local_bh_enable(); 5548 return ret; 5549 } 5550 EXPORT_SYMBOL(netif_rx); 5551 5552 static __latent_entropy void net_tx_action(void) 5553 { 5554 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5555 5556 if (sd->completion_queue) { 5557 struct sk_buff *clist; 5558 5559 local_irq_disable(); 5560 clist = sd->completion_queue; 5561 sd->completion_queue = NULL; 5562 local_irq_enable(); 5563 5564 while (clist) { 5565 struct sk_buff *skb = clist; 5566 5567 clist = clist->next; 5568 5569 WARN_ON(refcount_read(&skb->users)); 5570 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5571 trace_consume_skb(skb, net_tx_action); 5572 else 5573 trace_kfree_skb(skb, net_tx_action, 5574 get_kfree_skb_cb(skb)->reason, NULL); 5575 5576 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5577 __kfree_skb(skb); 5578 else 5579 __napi_kfree_skb(skb, 5580 get_kfree_skb_cb(skb)->reason); 5581 } 5582 } 5583 5584 if (sd->output_queue) { 5585 struct Qdisc *head; 5586 5587 local_irq_disable(); 5588 head = sd->output_queue; 5589 sd->output_queue = NULL; 5590 sd->output_queue_tailp = &sd->output_queue; 5591 local_irq_enable(); 5592 5593 rcu_read_lock(); 5594 5595 while (head) { 5596 struct Qdisc *q = head; 5597 spinlock_t *root_lock = NULL; 5598 5599 head = head->next_sched; 5600 5601 /* We need to make sure head->next_sched is read 5602 * before clearing __QDISC_STATE_SCHED 5603 */ 5604 smp_mb__before_atomic(); 5605 5606 if (!(q->flags & TCQ_F_NOLOCK)) { 5607 root_lock = qdisc_lock(q); 5608 spin_lock(root_lock); 5609 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5610 &q->state))) { 5611 /* There is a synchronize_net() between 5612 * STATE_DEACTIVATED flag being set and 5613 * qdisc_reset()/some_qdisc_is_busy() in 5614 * dev_deactivate(), so we can safely bail out 5615 * early here to avoid data race between 5616 * qdisc_deactivate() and some_qdisc_is_busy() 5617 * for lockless qdisc. 5618 */ 5619 clear_bit(__QDISC_STATE_SCHED, &q->state); 5620 continue; 5621 } 5622 5623 clear_bit(__QDISC_STATE_SCHED, &q->state); 5624 qdisc_run(q); 5625 if (root_lock) 5626 spin_unlock(root_lock); 5627 } 5628 5629 rcu_read_unlock(); 5630 } 5631 5632 xfrm_dev_backlog(sd); 5633 } 5634 5635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5636 /* This hook is defined here for ATM LANE */ 5637 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5638 unsigned char *addr) __read_mostly; 5639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5640 #endif 5641 5642 /** 5643 * netdev_is_rx_handler_busy - check if receive handler is registered 5644 * @dev: device to check 5645 * 5646 * Check if a receive handler is already registered for a given device. 5647 * Return true if there one. 5648 * 5649 * The caller must hold the rtnl_mutex. 5650 */ 5651 bool netdev_is_rx_handler_busy(struct net_device *dev) 5652 { 5653 ASSERT_RTNL(); 5654 return dev && rtnl_dereference(dev->rx_handler); 5655 } 5656 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5657 5658 /** 5659 * netdev_rx_handler_register - register receive handler 5660 * @dev: device to register a handler for 5661 * @rx_handler: receive handler to register 5662 * @rx_handler_data: data pointer that is used by rx handler 5663 * 5664 * Register a receive handler for a device. This handler will then be 5665 * called from __netif_receive_skb. A negative errno code is returned 5666 * on a failure. 5667 * 5668 * The caller must hold the rtnl_mutex. 5669 * 5670 * For a general description of rx_handler, see enum rx_handler_result. 5671 */ 5672 int netdev_rx_handler_register(struct net_device *dev, 5673 rx_handler_func_t *rx_handler, 5674 void *rx_handler_data) 5675 { 5676 if (netdev_is_rx_handler_busy(dev)) 5677 return -EBUSY; 5678 5679 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5680 return -EINVAL; 5681 5682 /* Note: rx_handler_data must be set before rx_handler */ 5683 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5684 rcu_assign_pointer(dev->rx_handler, rx_handler); 5685 5686 return 0; 5687 } 5688 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5689 5690 /** 5691 * netdev_rx_handler_unregister - unregister receive handler 5692 * @dev: device to unregister a handler from 5693 * 5694 * Unregister a receive handler from a device. 5695 * 5696 * The caller must hold the rtnl_mutex. 5697 */ 5698 void netdev_rx_handler_unregister(struct net_device *dev) 5699 { 5700 5701 ASSERT_RTNL(); 5702 RCU_INIT_POINTER(dev->rx_handler, NULL); 5703 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5704 * section has a guarantee to see a non NULL rx_handler_data 5705 * as well. 5706 */ 5707 synchronize_net(); 5708 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5709 } 5710 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5711 5712 /* 5713 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5714 * the special handling of PFMEMALLOC skbs. 5715 */ 5716 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5717 { 5718 switch (skb->protocol) { 5719 case htons(ETH_P_ARP): 5720 case htons(ETH_P_IP): 5721 case htons(ETH_P_IPV6): 5722 case htons(ETH_P_8021Q): 5723 case htons(ETH_P_8021AD): 5724 return true; 5725 default: 5726 return false; 5727 } 5728 } 5729 5730 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5731 int *ret, struct net_device *orig_dev) 5732 { 5733 if (nf_hook_ingress_active(skb)) { 5734 int ingress_retval; 5735 5736 if (*pt_prev) { 5737 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5738 *pt_prev = NULL; 5739 } 5740 5741 rcu_read_lock(); 5742 ingress_retval = nf_hook_ingress(skb); 5743 rcu_read_unlock(); 5744 return ingress_retval; 5745 } 5746 return 0; 5747 } 5748 5749 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5750 struct packet_type **ppt_prev) 5751 { 5752 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5753 struct packet_type *ptype, *pt_prev; 5754 rx_handler_func_t *rx_handler; 5755 struct sk_buff *skb = *pskb; 5756 struct net_device *orig_dev; 5757 bool deliver_exact = false; 5758 int ret = NET_RX_DROP; 5759 __be16 type; 5760 5761 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5762 5763 trace_netif_receive_skb(skb); 5764 5765 orig_dev = skb->dev; 5766 5767 skb_reset_network_header(skb); 5768 #if !defined(CONFIG_DEBUG_NET) 5769 /* We plan to no longer reset the transport header here. 5770 * Give some time to fuzzers and dev build to catch bugs 5771 * in network stacks. 5772 */ 5773 if (!skb_transport_header_was_set(skb)) 5774 skb_reset_transport_header(skb); 5775 #endif 5776 skb_reset_mac_len(skb); 5777 5778 pt_prev = NULL; 5779 5780 another_round: 5781 skb->skb_iif = skb->dev->ifindex; 5782 5783 __this_cpu_inc(softnet_data.processed); 5784 5785 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5786 int ret2; 5787 5788 migrate_disable(); 5789 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5790 &skb); 5791 migrate_enable(); 5792 5793 if (ret2 != XDP_PASS) { 5794 ret = NET_RX_DROP; 5795 goto out; 5796 } 5797 } 5798 5799 if (eth_type_vlan(skb->protocol)) { 5800 skb = skb_vlan_untag(skb); 5801 if (unlikely(!skb)) 5802 goto out; 5803 } 5804 5805 if (skb_skip_tc_classify(skb)) 5806 goto skip_classify; 5807 5808 if (pfmemalloc) 5809 goto skip_taps; 5810 5811 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5812 list) { 5813 if (pt_prev) 5814 ret = deliver_skb(skb, pt_prev, orig_dev); 5815 pt_prev = ptype; 5816 } 5817 5818 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5819 if (pt_prev) 5820 ret = deliver_skb(skb, pt_prev, orig_dev); 5821 pt_prev = ptype; 5822 } 5823 5824 skip_taps: 5825 #ifdef CONFIG_NET_INGRESS 5826 if (static_branch_unlikely(&ingress_needed_key)) { 5827 bool another = false; 5828 5829 nf_skip_egress(skb, true); 5830 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5831 &another); 5832 if (another) 5833 goto another_round; 5834 if (!skb) 5835 goto out; 5836 5837 nf_skip_egress(skb, false); 5838 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5839 goto out; 5840 } 5841 #endif 5842 skb_reset_redirect(skb); 5843 skip_classify: 5844 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 5845 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 5846 goto drop; 5847 } 5848 5849 if (skb_vlan_tag_present(skb)) { 5850 if (pt_prev) { 5851 ret = deliver_skb(skb, pt_prev, orig_dev); 5852 pt_prev = NULL; 5853 } 5854 if (vlan_do_receive(&skb)) 5855 goto another_round; 5856 else if (unlikely(!skb)) 5857 goto out; 5858 } 5859 5860 rx_handler = rcu_dereference(skb->dev->rx_handler); 5861 if (rx_handler) { 5862 if (pt_prev) { 5863 ret = deliver_skb(skb, pt_prev, orig_dev); 5864 pt_prev = NULL; 5865 } 5866 switch (rx_handler(&skb)) { 5867 case RX_HANDLER_CONSUMED: 5868 ret = NET_RX_SUCCESS; 5869 goto out; 5870 case RX_HANDLER_ANOTHER: 5871 goto another_round; 5872 case RX_HANDLER_EXACT: 5873 deliver_exact = true; 5874 break; 5875 case RX_HANDLER_PASS: 5876 break; 5877 default: 5878 BUG(); 5879 } 5880 } 5881 5882 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5883 check_vlan_id: 5884 if (skb_vlan_tag_get_id(skb)) { 5885 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5886 * find vlan device. 5887 */ 5888 skb->pkt_type = PACKET_OTHERHOST; 5889 } else if (eth_type_vlan(skb->protocol)) { 5890 /* Outer header is 802.1P with vlan 0, inner header is 5891 * 802.1Q or 802.1AD and vlan_do_receive() above could 5892 * not find vlan dev for vlan id 0. 5893 */ 5894 __vlan_hwaccel_clear_tag(skb); 5895 skb = skb_vlan_untag(skb); 5896 if (unlikely(!skb)) 5897 goto out; 5898 if (vlan_do_receive(&skb)) 5899 /* After stripping off 802.1P header with vlan 0 5900 * vlan dev is found for inner header. 5901 */ 5902 goto another_round; 5903 else if (unlikely(!skb)) 5904 goto out; 5905 else 5906 /* We have stripped outer 802.1P vlan 0 header. 5907 * But could not find vlan dev. 5908 * check again for vlan id to set OTHERHOST. 5909 */ 5910 goto check_vlan_id; 5911 } 5912 /* Note: we might in the future use prio bits 5913 * and set skb->priority like in vlan_do_receive() 5914 * For the time being, just ignore Priority Code Point 5915 */ 5916 __vlan_hwaccel_clear_tag(skb); 5917 } 5918 5919 type = skb->protocol; 5920 5921 /* deliver only exact match when indicated */ 5922 if (likely(!deliver_exact)) { 5923 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5924 &ptype_base[ntohs(type) & 5925 PTYPE_HASH_MASK]); 5926 5927 /* orig_dev and skb->dev could belong to different netns; 5928 * Even in such case we need to traverse only the list 5929 * coming from skb->dev, as the ptype owner (packet socket) 5930 * will use dev_net(skb->dev) to do namespace filtering. 5931 */ 5932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5933 &dev_net_rcu(skb->dev)->ptype_specific); 5934 } 5935 5936 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5937 &orig_dev->ptype_specific); 5938 5939 if (unlikely(skb->dev != orig_dev)) { 5940 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5941 &skb->dev->ptype_specific); 5942 } 5943 5944 if (pt_prev) { 5945 *ppt_prev = pt_prev; 5946 } else { 5947 drop: 5948 if (!deliver_exact) 5949 dev_core_stats_rx_dropped_inc(skb->dev); 5950 else 5951 dev_core_stats_rx_nohandler_inc(skb->dev); 5952 5953 kfree_skb_reason(skb, drop_reason); 5954 /* Jamal, now you will not able to escape explaining 5955 * me how you were going to use this. :-) 5956 */ 5957 ret = NET_RX_DROP; 5958 } 5959 5960 out: 5961 /* The invariant here is that if *ppt_prev is not NULL 5962 * then skb should also be non-NULL. 5963 * 5964 * Apparently *ppt_prev assignment above holds this invariant due to 5965 * skb dereferencing near it. 5966 */ 5967 *pskb = skb; 5968 return ret; 5969 } 5970 5971 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5972 { 5973 struct net_device *orig_dev = skb->dev; 5974 struct packet_type *pt_prev = NULL; 5975 int ret; 5976 5977 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5978 if (pt_prev) 5979 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5980 skb->dev, pt_prev, orig_dev); 5981 return ret; 5982 } 5983 5984 /** 5985 * netif_receive_skb_core - special purpose version of netif_receive_skb 5986 * @skb: buffer to process 5987 * 5988 * More direct receive version of netif_receive_skb(). It should 5989 * only be used by callers that have a need to skip RPS and Generic XDP. 5990 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5991 * 5992 * This function may only be called from softirq context and interrupts 5993 * should be enabled. 5994 * 5995 * Return values (usually ignored): 5996 * NET_RX_SUCCESS: no congestion 5997 * NET_RX_DROP: packet was dropped 5998 */ 5999 int netif_receive_skb_core(struct sk_buff *skb) 6000 { 6001 int ret; 6002 6003 rcu_read_lock(); 6004 ret = __netif_receive_skb_one_core(skb, false); 6005 rcu_read_unlock(); 6006 6007 return ret; 6008 } 6009 EXPORT_SYMBOL(netif_receive_skb_core); 6010 6011 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6012 struct packet_type *pt_prev, 6013 struct net_device *orig_dev) 6014 { 6015 struct sk_buff *skb, *next; 6016 6017 if (!pt_prev) 6018 return; 6019 if (list_empty(head)) 6020 return; 6021 if (pt_prev->list_func != NULL) 6022 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6023 ip_list_rcv, head, pt_prev, orig_dev); 6024 else 6025 list_for_each_entry_safe(skb, next, head, list) { 6026 skb_list_del_init(skb); 6027 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6028 } 6029 } 6030 6031 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6032 { 6033 /* Fast-path assumptions: 6034 * - There is no RX handler. 6035 * - Only one packet_type matches. 6036 * If either of these fails, we will end up doing some per-packet 6037 * processing in-line, then handling the 'last ptype' for the whole 6038 * sublist. This can't cause out-of-order delivery to any single ptype, 6039 * because the 'last ptype' must be constant across the sublist, and all 6040 * other ptypes are handled per-packet. 6041 */ 6042 /* Current (common) ptype of sublist */ 6043 struct packet_type *pt_curr = NULL; 6044 /* Current (common) orig_dev of sublist */ 6045 struct net_device *od_curr = NULL; 6046 struct sk_buff *skb, *next; 6047 LIST_HEAD(sublist); 6048 6049 list_for_each_entry_safe(skb, next, head, list) { 6050 struct net_device *orig_dev = skb->dev; 6051 struct packet_type *pt_prev = NULL; 6052 6053 skb_list_del_init(skb); 6054 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6055 if (!pt_prev) 6056 continue; 6057 if (pt_curr != pt_prev || od_curr != orig_dev) { 6058 /* dispatch old sublist */ 6059 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6060 /* start new sublist */ 6061 INIT_LIST_HEAD(&sublist); 6062 pt_curr = pt_prev; 6063 od_curr = orig_dev; 6064 } 6065 list_add_tail(&skb->list, &sublist); 6066 } 6067 6068 /* dispatch final sublist */ 6069 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6070 } 6071 6072 static int __netif_receive_skb(struct sk_buff *skb) 6073 { 6074 int ret; 6075 6076 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6077 unsigned int noreclaim_flag; 6078 6079 /* 6080 * PFMEMALLOC skbs are special, they should 6081 * - be delivered to SOCK_MEMALLOC sockets only 6082 * - stay away from userspace 6083 * - have bounded memory usage 6084 * 6085 * Use PF_MEMALLOC as this saves us from propagating the allocation 6086 * context down to all allocation sites. 6087 */ 6088 noreclaim_flag = memalloc_noreclaim_save(); 6089 ret = __netif_receive_skb_one_core(skb, true); 6090 memalloc_noreclaim_restore(noreclaim_flag); 6091 } else 6092 ret = __netif_receive_skb_one_core(skb, false); 6093 6094 return ret; 6095 } 6096 6097 static void __netif_receive_skb_list(struct list_head *head) 6098 { 6099 unsigned long noreclaim_flag = 0; 6100 struct sk_buff *skb, *next; 6101 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6102 6103 list_for_each_entry_safe(skb, next, head, list) { 6104 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6105 struct list_head sublist; 6106 6107 /* Handle the previous sublist */ 6108 list_cut_before(&sublist, head, &skb->list); 6109 if (!list_empty(&sublist)) 6110 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6111 pfmemalloc = !pfmemalloc; 6112 /* See comments in __netif_receive_skb */ 6113 if (pfmemalloc) 6114 noreclaim_flag = memalloc_noreclaim_save(); 6115 else 6116 memalloc_noreclaim_restore(noreclaim_flag); 6117 } 6118 } 6119 /* Handle the remaining sublist */ 6120 if (!list_empty(head)) 6121 __netif_receive_skb_list_core(head, pfmemalloc); 6122 /* Restore pflags */ 6123 if (pfmemalloc) 6124 memalloc_noreclaim_restore(noreclaim_flag); 6125 } 6126 6127 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6128 { 6129 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6130 struct bpf_prog *new = xdp->prog; 6131 int ret = 0; 6132 6133 switch (xdp->command) { 6134 case XDP_SETUP_PROG: 6135 rcu_assign_pointer(dev->xdp_prog, new); 6136 if (old) 6137 bpf_prog_put(old); 6138 6139 if (old && !new) { 6140 static_branch_dec(&generic_xdp_needed_key); 6141 } else if (new && !old) { 6142 static_branch_inc(&generic_xdp_needed_key); 6143 netif_disable_lro(dev); 6144 dev_disable_gro_hw(dev); 6145 } 6146 break; 6147 6148 default: 6149 ret = -EINVAL; 6150 break; 6151 } 6152 6153 return ret; 6154 } 6155 6156 static int netif_receive_skb_internal(struct sk_buff *skb) 6157 { 6158 int ret; 6159 6160 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6161 6162 if (skb_defer_rx_timestamp(skb)) 6163 return NET_RX_SUCCESS; 6164 6165 rcu_read_lock(); 6166 #ifdef CONFIG_RPS 6167 if (static_branch_unlikely(&rps_needed)) { 6168 struct rps_dev_flow voidflow, *rflow = &voidflow; 6169 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6170 6171 if (cpu >= 0) { 6172 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6173 rcu_read_unlock(); 6174 return ret; 6175 } 6176 } 6177 #endif 6178 ret = __netif_receive_skb(skb); 6179 rcu_read_unlock(); 6180 return ret; 6181 } 6182 6183 void netif_receive_skb_list_internal(struct list_head *head) 6184 { 6185 struct sk_buff *skb, *next; 6186 LIST_HEAD(sublist); 6187 6188 list_for_each_entry_safe(skb, next, head, list) { 6189 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6190 skb); 6191 skb_list_del_init(skb); 6192 if (!skb_defer_rx_timestamp(skb)) 6193 list_add_tail(&skb->list, &sublist); 6194 } 6195 list_splice_init(&sublist, head); 6196 6197 rcu_read_lock(); 6198 #ifdef CONFIG_RPS 6199 if (static_branch_unlikely(&rps_needed)) { 6200 list_for_each_entry_safe(skb, next, head, list) { 6201 struct rps_dev_flow voidflow, *rflow = &voidflow; 6202 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6203 6204 if (cpu >= 0) { 6205 /* Will be handled, remove from list */ 6206 skb_list_del_init(skb); 6207 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6208 } 6209 } 6210 } 6211 #endif 6212 __netif_receive_skb_list(head); 6213 rcu_read_unlock(); 6214 } 6215 6216 /** 6217 * netif_receive_skb - process receive buffer from network 6218 * @skb: buffer to process 6219 * 6220 * netif_receive_skb() is the main receive data processing function. 6221 * It always succeeds. The buffer may be dropped during processing 6222 * for congestion control or by the protocol layers. 6223 * 6224 * This function may only be called from softirq context and interrupts 6225 * should be enabled. 6226 * 6227 * Return values (usually ignored): 6228 * NET_RX_SUCCESS: no congestion 6229 * NET_RX_DROP: packet was dropped 6230 */ 6231 int netif_receive_skb(struct sk_buff *skb) 6232 { 6233 int ret; 6234 6235 trace_netif_receive_skb_entry(skb); 6236 6237 ret = netif_receive_skb_internal(skb); 6238 trace_netif_receive_skb_exit(ret); 6239 6240 return ret; 6241 } 6242 EXPORT_SYMBOL(netif_receive_skb); 6243 6244 /** 6245 * netif_receive_skb_list - process many receive buffers from network 6246 * @head: list of skbs to process. 6247 * 6248 * Since return value of netif_receive_skb() is normally ignored, and 6249 * wouldn't be meaningful for a list, this function returns void. 6250 * 6251 * This function may only be called from softirq context and interrupts 6252 * should be enabled. 6253 */ 6254 void netif_receive_skb_list(struct list_head *head) 6255 { 6256 struct sk_buff *skb; 6257 6258 if (list_empty(head)) 6259 return; 6260 if (trace_netif_receive_skb_list_entry_enabled()) { 6261 list_for_each_entry(skb, head, list) 6262 trace_netif_receive_skb_list_entry(skb); 6263 } 6264 netif_receive_skb_list_internal(head); 6265 trace_netif_receive_skb_list_exit(0); 6266 } 6267 EXPORT_SYMBOL(netif_receive_skb_list); 6268 6269 /* Network device is going away, flush any packets still pending */ 6270 static void flush_backlog(struct work_struct *work) 6271 { 6272 struct sk_buff *skb, *tmp; 6273 struct sk_buff_head list; 6274 struct softnet_data *sd; 6275 6276 __skb_queue_head_init(&list); 6277 local_bh_disable(); 6278 sd = this_cpu_ptr(&softnet_data); 6279 6280 backlog_lock_irq_disable(sd); 6281 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6282 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6283 __skb_unlink(skb, &sd->input_pkt_queue); 6284 __skb_queue_tail(&list, skb); 6285 rps_input_queue_head_incr(sd); 6286 } 6287 } 6288 backlog_unlock_irq_enable(sd); 6289 6290 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6291 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6292 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6293 __skb_unlink(skb, &sd->process_queue); 6294 __skb_queue_tail(&list, skb); 6295 rps_input_queue_head_incr(sd); 6296 } 6297 } 6298 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6299 local_bh_enable(); 6300 6301 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6302 } 6303 6304 static bool flush_required(int cpu) 6305 { 6306 #if IS_ENABLED(CONFIG_RPS) 6307 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6308 bool do_flush; 6309 6310 backlog_lock_irq_disable(sd); 6311 6312 /* as insertion into process_queue happens with the rps lock held, 6313 * process_queue access may race only with dequeue 6314 */ 6315 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6316 !skb_queue_empty_lockless(&sd->process_queue); 6317 backlog_unlock_irq_enable(sd); 6318 6319 return do_flush; 6320 #endif 6321 /* without RPS we can't safely check input_pkt_queue: during a 6322 * concurrent remote skb_queue_splice() we can detect as empty both 6323 * input_pkt_queue and process_queue even if the latter could end-up 6324 * containing a lot of packets. 6325 */ 6326 return true; 6327 } 6328 6329 struct flush_backlogs { 6330 cpumask_t flush_cpus; 6331 struct work_struct w[]; 6332 }; 6333 6334 static struct flush_backlogs *flush_backlogs_alloc(void) 6335 { 6336 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6337 GFP_KERNEL); 6338 } 6339 6340 static struct flush_backlogs *flush_backlogs_fallback; 6341 static DEFINE_MUTEX(flush_backlogs_mutex); 6342 6343 static void flush_all_backlogs(void) 6344 { 6345 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6346 unsigned int cpu; 6347 6348 if (!ptr) { 6349 mutex_lock(&flush_backlogs_mutex); 6350 ptr = flush_backlogs_fallback; 6351 } 6352 cpumask_clear(&ptr->flush_cpus); 6353 6354 cpus_read_lock(); 6355 6356 for_each_online_cpu(cpu) { 6357 if (flush_required(cpu)) { 6358 INIT_WORK(&ptr->w[cpu], flush_backlog); 6359 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6360 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6361 } 6362 } 6363 6364 /* we can have in flight packet[s] on the cpus we are not flushing, 6365 * synchronize_net() in unregister_netdevice_many() will take care of 6366 * them. 6367 */ 6368 for_each_cpu(cpu, &ptr->flush_cpus) 6369 flush_work(&ptr->w[cpu]); 6370 6371 cpus_read_unlock(); 6372 6373 if (ptr != flush_backlogs_fallback) 6374 kfree(ptr); 6375 else 6376 mutex_unlock(&flush_backlogs_mutex); 6377 } 6378 6379 static void net_rps_send_ipi(struct softnet_data *remsd) 6380 { 6381 #ifdef CONFIG_RPS 6382 while (remsd) { 6383 struct softnet_data *next = remsd->rps_ipi_next; 6384 6385 if (cpu_online(remsd->cpu)) 6386 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6387 remsd = next; 6388 } 6389 #endif 6390 } 6391 6392 /* 6393 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6394 * Note: called with local irq disabled, but exits with local irq enabled. 6395 */ 6396 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6397 { 6398 #ifdef CONFIG_RPS 6399 struct softnet_data *remsd = sd->rps_ipi_list; 6400 6401 if (!use_backlog_threads() && remsd) { 6402 sd->rps_ipi_list = NULL; 6403 6404 local_irq_enable(); 6405 6406 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6407 net_rps_send_ipi(remsd); 6408 } else 6409 #endif 6410 local_irq_enable(); 6411 } 6412 6413 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6414 { 6415 #ifdef CONFIG_RPS 6416 return !use_backlog_threads() && sd->rps_ipi_list; 6417 #else 6418 return false; 6419 #endif 6420 } 6421 6422 static int process_backlog(struct napi_struct *napi, int quota) 6423 { 6424 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6425 bool again = true; 6426 int work = 0; 6427 6428 /* Check if we have pending ipi, its better to send them now, 6429 * not waiting net_rx_action() end. 6430 */ 6431 if (sd_has_rps_ipi_waiting(sd)) { 6432 local_irq_disable(); 6433 net_rps_action_and_irq_enable(sd); 6434 } 6435 6436 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6437 while (again) { 6438 struct sk_buff *skb; 6439 6440 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6441 while ((skb = __skb_dequeue(&sd->process_queue))) { 6442 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6443 rcu_read_lock(); 6444 __netif_receive_skb(skb); 6445 rcu_read_unlock(); 6446 if (++work >= quota) { 6447 rps_input_queue_head_add(sd, work); 6448 return work; 6449 } 6450 6451 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6452 } 6453 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6454 6455 backlog_lock_irq_disable(sd); 6456 if (skb_queue_empty(&sd->input_pkt_queue)) { 6457 /* 6458 * Inline a custom version of __napi_complete(). 6459 * only current cpu owns and manipulates this napi, 6460 * and NAPI_STATE_SCHED is the only possible flag set 6461 * on backlog. 6462 * We can use a plain write instead of clear_bit(), 6463 * and we dont need an smp_mb() memory barrier. 6464 */ 6465 napi->state &= NAPIF_STATE_THREADED; 6466 again = false; 6467 } else { 6468 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6469 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6470 &sd->process_queue); 6471 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6472 } 6473 backlog_unlock_irq_enable(sd); 6474 } 6475 6476 if (work) 6477 rps_input_queue_head_add(sd, work); 6478 return work; 6479 } 6480 6481 /** 6482 * __napi_schedule - schedule for receive 6483 * @n: entry to schedule 6484 * 6485 * The entry's receive function will be scheduled to run. 6486 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6487 */ 6488 void __napi_schedule(struct napi_struct *n) 6489 { 6490 unsigned long flags; 6491 6492 local_irq_save(flags); 6493 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6494 local_irq_restore(flags); 6495 } 6496 EXPORT_SYMBOL(__napi_schedule); 6497 6498 /** 6499 * napi_schedule_prep - check if napi can be scheduled 6500 * @n: napi context 6501 * 6502 * Test if NAPI routine is already running, and if not mark 6503 * it as running. This is used as a condition variable to 6504 * insure only one NAPI poll instance runs. We also make 6505 * sure there is no pending NAPI disable. 6506 */ 6507 bool napi_schedule_prep(struct napi_struct *n) 6508 { 6509 unsigned long new, val = READ_ONCE(n->state); 6510 6511 do { 6512 if (unlikely(val & NAPIF_STATE_DISABLE)) 6513 return false; 6514 new = val | NAPIF_STATE_SCHED; 6515 6516 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6517 * This was suggested by Alexander Duyck, as compiler 6518 * emits better code than : 6519 * if (val & NAPIF_STATE_SCHED) 6520 * new |= NAPIF_STATE_MISSED; 6521 */ 6522 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6523 NAPIF_STATE_MISSED; 6524 } while (!try_cmpxchg(&n->state, &val, new)); 6525 6526 return !(val & NAPIF_STATE_SCHED); 6527 } 6528 EXPORT_SYMBOL(napi_schedule_prep); 6529 6530 /** 6531 * __napi_schedule_irqoff - schedule for receive 6532 * @n: entry to schedule 6533 * 6534 * Variant of __napi_schedule() assuming hard irqs are masked. 6535 * 6536 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6537 * because the interrupt disabled assumption might not be true 6538 * due to force-threaded interrupts and spinlock substitution. 6539 */ 6540 void __napi_schedule_irqoff(struct napi_struct *n) 6541 { 6542 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6543 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6544 else 6545 __napi_schedule(n); 6546 } 6547 EXPORT_SYMBOL(__napi_schedule_irqoff); 6548 6549 bool napi_complete_done(struct napi_struct *n, int work_done) 6550 { 6551 unsigned long flags, val, new, timeout = 0; 6552 bool ret = true; 6553 6554 /* 6555 * 1) Don't let napi dequeue from the cpu poll list 6556 * just in case its running on a different cpu. 6557 * 2) If we are busy polling, do nothing here, we have 6558 * the guarantee we will be called later. 6559 */ 6560 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6561 NAPIF_STATE_IN_BUSY_POLL))) 6562 return false; 6563 6564 if (work_done) { 6565 if (n->gro.bitmask) 6566 timeout = napi_get_gro_flush_timeout(n); 6567 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6568 } 6569 if (n->defer_hard_irqs_count > 0) { 6570 n->defer_hard_irqs_count--; 6571 timeout = napi_get_gro_flush_timeout(n); 6572 if (timeout) 6573 ret = false; 6574 } 6575 6576 /* 6577 * When the NAPI instance uses a timeout and keeps postponing 6578 * it, we need to bound somehow the time packets are kept in 6579 * the GRO layer. 6580 */ 6581 gro_flush_normal(&n->gro, !!timeout); 6582 6583 if (unlikely(!list_empty(&n->poll_list))) { 6584 /* If n->poll_list is not empty, we need to mask irqs */ 6585 local_irq_save(flags); 6586 list_del_init(&n->poll_list); 6587 local_irq_restore(flags); 6588 } 6589 WRITE_ONCE(n->list_owner, -1); 6590 6591 val = READ_ONCE(n->state); 6592 do { 6593 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6594 6595 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6596 NAPIF_STATE_SCHED_THREADED | 6597 NAPIF_STATE_PREFER_BUSY_POLL); 6598 6599 /* If STATE_MISSED was set, leave STATE_SCHED set, 6600 * because we will call napi->poll() one more time. 6601 * This C code was suggested by Alexander Duyck to help gcc. 6602 */ 6603 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6604 NAPIF_STATE_SCHED; 6605 } while (!try_cmpxchg(&n->state, &val, new)); 6606 6607 if (unlikely(val & NAPIF_STATE_MISSED)) { 6608 __napi_schedule(n); 6609 return false; 6610 } 6611 6612 if (timeout) 6613 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6614 HRTIMER_MODE_REL_PINNED); 6615 return ret; 6616 } 6617 EXPORT_SYMBOL(napi_complete_done); 6618 6619 static void skb_defer_free_flush(struct softnet_data *sd) 6620 { 6621 struct sk_buff *skb, *next; 6622 6623 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6624 if (!READ_ONCE(sd->defer_list)) 6625 return; 6626 6627 spin_lock(&sd->defer_lock); 6628 skb = sd->defer_list; 6629 sd->defer_list = NULL; 6630 sd->defer_count = 0; 6631 spin_unlock(&sd->defer_lock); 6632 6633 while (skb != NULL) { 6634 next = skb->next; 6635 napi_consume_skb(skb, 1); 6636 skb = next; 6637 } 6638 } 6639 6640 #if defined(CONFIG_NET_RX_BUSY_POLL) 6641 6642 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6643 { 6644 if (!skip_schedule) { 6645 gro_normal_list(&napi->gro); 6646 __napi_schedule(napi); 6647 return; 6648 } 6649 6650 /* Flush too old packets. If HZ < 1000, flush all packets */ 6651 gro_flush_normal(&napi->gro, HZ >= 1000); 6652 6653 clear_bit(NAPI_STATE_SCHED, &napi->state); 6654 } 6655 6656 enum { 6657 NAPI_F_PREFER_BUSY_POLL = 1, 6658 NAPI_F_END_ON_RESCHED = 2, 6659 }; 6660 6661 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6662 unsigned flags, u16 budget) 6663 { 6664 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6665 bool skip_schedule = false; 6666 unsigned long timeout; 6667 int rc; 6668 6669 /* Busy polling means there is a high chance device driver hard irq 6670 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6671 * set in napi_schedule_prep(). 6672 * Since we are about to call napi->poll() once more, we can safely 6673 * clear NAPI_STATE_MISSED. 6674 * 6675 * Note: x86 could use a single "lock and ..." instruction 6676 * to perform these two clear_bit() 6677 */ 6678 clear_bit(NAPI_STATE_MISSED, &napi->state); 6679 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6680 6681 local_bh_disable(); 6682 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6683 6684 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6685 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6686 timeout = napi_get_gro_flush_timeout(napi); 6687 if (napi->defer_hard_irqs_count && timeout) { 6688 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6689 skip_schedule = true; 6690 } 6691 } 6692 6693 /* All we really want here is to re-enable device interrupts. 6694 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6695 */ 6696 rc = napi->poll(napi, budget); 6697 /* We can't gro_normal_list() here, because napi->poll() might have 6698 * rearmed the napi (napi_complete_done()) in which case it could 6699 * already be running on another CPU. 6700 */ 6701 trace_napi_poll(napi, rc, budget); 6702 netpoll_poll_unlock(have_poll_lock); 6703 if (rc == budget) 6704 __busy_poll_stop(napi, skip_schedule); 6705 bpf_net_ctx_clear(bpf_net_ctx); 6706 local_bh_enable(); 6707 } 6708 6709 static void __napi_busy_loop(unsigned int napi_id, 6710 bool (*loop_end)(void *, unsigned long), 6711 void *loop_end_arg, unsigned flags, u16 budget) 6712 { 6713 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6714 int (*napi_poll)(struct napi_struct *napi, int budget); 6715 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6716 void *have_poll_lock = NULL; 6717 struct napi_struct *napi; 6718 6719 WARN_ON_ONCE(!rcu_read_lock_held()); 6720 6721 restart: 6722 napi_poll = NULL; 6723 6724 napi = napi_by_id(napi_id); 6725 if (!napi) 6726 return; 6727 6728 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6729 preempt_disable(); 6730 for (;;) { 6731 int work = 0; 6732 6733 local_bh_disable(); 6734 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6735 if (!napi_poll) { 6736 unsigned long val = READ_ONCE(napi->state); 6737 6738 /* If multiple threads are competing for this napi, 6739 * we avoid dirtying napi->state as much as we can. 6740 */ 6741 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6742 NAPIF_STATE_IN_BUSY_POLL)) { 6743 if (flags & NAPI_F_PREFER_BUSY_POLL) 6744 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6745 goto count; 6746 } 6747 if (cmpxchg(&napi->state, val, 6748 val | NAPIF_STATE_IN_BUSY_POLL | 6749 NAPIF_STATE_SCHED) != val) { 6750 if (flags & NAPI_F_PREFER_BUSY_POLL) 6751 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6752 goto count; 6753 } 6754 have_poll_lock = netpoll_poll_lock(napi); 6755 napi_poll = napi->poll; 6756 } 6757 work = napi_poll(napi, budget); 6758 trace_napi_poll(napi, work, budget); 6759 gro_normal_list(&napi->gro); 6760 count: 6761 if (work > 0) 6762 __NET_ADD_STATS(dev_net(napi->dev), 6763 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6764 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6765 bpf_net_ctx_clear(bpf_net_ctx); 6766 local_bh_enable(); 6767 6768 if (!loop_end || loop_end(loop_end_arg, start_time)) 6769 break; 6770 6771 if (unlikely(need_resched())) { 6772 if (flags & NAPI_F_END_ON_RESCHED) 6773 break; 6774 if (napi_poll) 6775 busy_poll_stop(napi, have_poll_lock, flags, budget); 6776 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6777 preempt_enable(); 6778 rcu_read_unlock(); 6779 cond_resched(); 6780 rcu_read_lock(); 6781 if (loop_end(loop_end_arg, start_time)) 6782 return; 6783 goto restart; 6784 } 6785 cpu_relax(); 6786 } 6787 if (napi_poll) 6788 busy_poll_stop(napi, have_poll_lock, flags, budget); 6789 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6790 preempt_enable(); 6791 } 6792 6793 void napi_busy_loop_rcu(unsigned int napi_id, 6794 bool (*loop_end)(void *, unsigned long), 6795 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6796 { 6797 unsigned flags = NAPI_F_END_ON_RESCHED; 6798 6799 if (prefer_busy_poll) 6800 flags |= NAPI_F_PREFER_BUSY_POLL; 6801 6802 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6803 } 6804 6805 void napi_busy_loop(unsigned int napi_id, 6806 bool (*loop_end)(void *, unsigned long), 6807 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6808 { 6809 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6810 6811 rcu_read_lock(); 6812 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6813 rcu_read_unlock(); 6814 } 6815 EXPORT_SYMBOL(napi_busy_loop); 6816 6817 void napi_suspend_irqs(unsigned int napi_id) 6818 { 6819 struct napi_struct *napi; 6820 6821 rcu_read_lock(); 6822 napi = napi_by_id(napi_id); 6823 if (napi) { 6824 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6825 6826 if (timeout) 6827 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6828 HRTIMER_MODE_REL_PINNED); 6829 } 6830 rcu_read_unlock(); 6831 } 6832 6833 void napi_resume_irqs(unsigned int napi_id) 6834 { 6835 struct napi_struct *napi; 6836 6837 rcu_read_lock(); 6838 napi = napi_by_id(napi_id); 6839 if (napi) { 6840 /* If irq_suspend_timeout is set to 0 between the call to 6841 * napi_suspend_irqs and now, the original value still 6842 * determines the safety timeout as intended and napi_watchdog 6843 * will resume irq processing. 6844 */ 6845 if (napi_get_irq_suspend_timeout(napi)) { 6846 local_bh_disable(); 6847 napi_schedule(napi); 6848 local_bh_enable(); 6849 } 6850 } 6851 rcu_read_unlock(); 6852 } 6853 6854 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6855 6856 static void __napi_hash_add_with_id(struct napi_struct *napi, 6857 unsigned int napi_id) 6858 { 6859 napi->gro.cached_napi_id = napi_id; 6860 6861 WRITE_ONCE(napi->napi_id, napi_id); 6862 hlist_add_head_rcu(&napi->napi_hash_node, 6863 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6864 } 6865 6866 static void napi_hash_add_with_id(struct napi_struct *napi, 6867 unsigned int napi_id) 6868 { 6869 unsigned long flags; 6870 6871 spin_lock_irqsave(&napi_hash_lock, flags); 6872 WARN_ON_ONCE(napi_by_id(napi_id)); 6873 __napi_hash_add_with_id(napi, napi_id); 6874 spin_unlock_irqrestore(&napi_hash_lock, flags); 6875 } 6876 6877 static void napi_hash_add(struct napi_struct *napi) 6878 { 6879 unsigned long flags; 6880 6881 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6882 return; 6883 6884 spin_lock_irqsave(&napi_hash_lock, flags); 6885 6886 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6887 do { 6888 if (unlikely(!napi_id_valid(++napi_gen_id))) 6889 napi_gen_id = MIN_NAPI_ID; 6890 } while (napi_by_id(napi_gen_id)); 6891 6892 __napi_hash_add_with_id(napi, napi_gen_id); 6893 6894 spin_unlock_irqrestore(&napi_hash_lock, flags); 6895 } 6896 6897 /* Warning : caller is responsible to make sure rcu grace period 6898 * is respected before freeing memory containing @napi 6899 */ 6900 static void napi_hash_del(struct napi_struct *napi) 6901 { 6902 unsigned long flags; 6903 6904 spin_lock_irqsave(&napi_hash_lock, flags); 6905 6906 hlist_del_init_rcu(&napi->napi_hash_node); 6907 6908 spin_unlock_irqrestore(&napi_hash_lock, flags); 6909 } 6910 6911 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6912 { 6913 struct napi_struct *napi; 6914 6915 napi = container_of(timer, struct napi_struct, timer); 6916 6917 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6918 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6919 */ 6920 if (!napi_disable_pending(napi) && 6921 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6922 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6923 __napi_schedule_irqoff(napi); 6924 } 6925 6926 return HRTIMER_NORESTART; 6927 } 6928 6929 static void napi_stop_kthread(struct napi_struct *napi) 6930 { 6931 unsigned long val, new; 6932 6933 /* Wait until the napi STATE_THREADED is unset. */ 6934 while (true) { 6935 val = READ_ONCE(napi->state); 6936 6937 /* If napi kthread own this napi or the napi is idle, 6938 * STATE_THREADED can be unset here. 6939 */ 6940 if ((val & NAPIF_STATE_SCHED_THREADED) || 6941 !(val & NAPIF_STATE_SCHED)) { 6942 new = val & (~NAPIF_STATE_THREADED); 6943 } else { 6944 msleep(20); 6945 continue; 6946 } 6947 6948 if (try_cmpxchg(&napi->state, &val, new)) 6949 break; 6950 } 6951 6952 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 6953 * the kthread. 6954 */ 6955 while (true) { 6956 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state)) 6957 break; 6958 6959 msleep(20); 6960 } 6961 6962 kthread_stop(napi->thread); 6963 napi->thread = NULL; 6964 } 6965 6966 int napi_set_threaded(struct napi_struct *napi, 6967 enum netdev_napi_threaded threaded) 6968 { 6969 if (threaded) { 6970 if (!napi->thread) { 6971 int err = napi_kthread_create(napi); 6972 6973 if (err) 6974 return err; 6975 } 6976 } 6977 6978 if (napi->config) 6979 napi->config->threaded = threaded; 6980 6981 /* Setting/unsetting threaded mode on a napi might not immediately 6982 * take effect, if the current napi instance is actively being 6983 * polled. In this case, the switch between threaded mode and 6984 * softirq mode will happen in the next round of napi_schedule(). 6985 * This should not cause hiccups/stalls to the live traffic. 6986 */ 6987 if (!threaded && napi->thread) { 6988 napi_stop_kthread(napi); 6989 } else { 6990 /* Make sure kthread is created before THREADED bit is set. */ 6991 smp_mb__before_atomic(); 6992 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6993 } 6994 6995 return 0; 6996 } 6997 6998 int netif_set_threaded(struct net_device *dev, 6999 enum netdev_napi_threaded threaded) 7000 { 7001 struct napi_struct *napi; 7002 int i, err = 0; 7003 7004 netdev_assert_locked_or_invisible(dev); 7005 7006 if (threaded) { 7007 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7008 if (!napi->thread) { 7009 err = napi_kthread_create(napi); 7010 if (err) { 7011 threaded = NETDEV_NAPI_THREADED_DISABLED; 7012 break; 7013 } 7014 } 7015 } 7016 } 7017 7018 WRITE_ONCE(dev->threaded, threaded); 7019 7020 /* The error should not occur as the kthreads are already created. */ 7021 list_for_each_entry(napi, &dev->napi_list, dev_list) 7022 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7023 7024 /* Override the config for all NAPIs even if currently not listed */ 7025 for (i = 0; i < dev->num_napi_configs; i++) 7026 dev->napi_config[i].threaded = threaded; 7027 7028 return err; 7029 } 7030 7031 /** 7032 * netif_threaded_enable() - enable threaded NAPIs 7033 * @dev: net_device instance 7034 * 7035 * Enable threaded mode for the NAPI instances of the device. This may be useful 7036 * for devices where multiple NAPI instances get scheduled by a single 7037 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7038 * than the core where IRQ is mapped. 7039 * 7040 * This function should be called before @dev is registered. 7041 */ 7042 void netif_threaded_enable(struct net_device *dev) 7043 { 7044 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7045 } 7046 EXPORT_SYMBOL(netif_threaded_enable); 7047 7048 /** 7049 * netif_queue_set_napi - Associate queue with the napi 7050 * @dev: device to which NAPI and queue belong 7051 * @queue_index: Index of queue 7052 * @type: queue type as RX or TX 7053 * @napi: NAPI context, pass NULL to clear previously set NAPI 7054 * 7055 * Set queue with its corresponding napi context. This should be done after 7056 * registering the NAPI handler for the queue-vector and the queues have been 7057 * mapped to the corresponding interrupt vector. 7058 */ 7059 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7060 enum netdev_queue_type type, struct napi_struct *napi) 7061 { 7062 struct netdev_rx_queue *rxq; 7063 struct netdev_queue *txq; 7064 7065 if (WARN_ON_ONCE(napi && !napi->dev)) 7066 return; 7067 netdev_ops_assert_locked_or_invisible(dev); 7068 7069 switch (type) { 7070 case NETDEV_QUEUE_TYPE_RX: 7071 rxq = __netif_get_rx_queue(dev, queue_index); 7072 rxq->napi = napi; 7073 return; 7074 case NETDEV_QUEUE_TYPE_TX: 7075 txq = netdev_get_tx_queue(dev, queue_index); 7076 txq->napi = napi; 7077 return; 7078 default: 7079 return; 7080 } 7081 } 7082 EXPORT_SYMBOL(netif_queue_set_napi); 7083 7084 static void 7085 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7086 const cpumask_t *mask) 7087 { 7088 struct napi_struct *napi = 7089 container_of(notify, struct napi_struct, notify); 7090 #ifdef CONFIG_RFS_ACCEL 7091 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7092 int err; 7093 #endif 7094 7095 if (napi->config && napi->dev->irq_affinity_auto) 7096 cpumask_copy(&napi->config->affinity_mask, mask); 7097 7098 #ifdef CONFIG_RFS_ACCEL 7099 if (napi->dev->rx_cpu_rmap_auto) { 7100 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7101 if (err) 7102 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7103 err); 7104 } 7105 #endif 7106 } 7107 7108 #ifdef CONFIG_RFS_ACCEL 7109 static void netif_napi_affinity_release(struct kref *ref) 7110 { 7111 struct napi_struct *napi = 7112 container_of(ref, struct napi_struct, notify.kref); 7113 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7114 7115 netdev_assert_locked(napi->dev); 7116 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7117 &napi->state)); 7118 7119 if (!napi->dev->rx_cpu_rmap_auto) 7120 return; 7121 rmap->obj[napi->napi_rmap_idx] = NULL; 7122 napi->napi_rmap_idx = -1; 7123 cpu_rmap_put(rmap); 7124 } 7125 7126 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7127 { 7128 if (dev->rx_cpu_rmap_auto) 7129 return 0; 7130 7131 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7132 if (!dev->rx_cpu_rmap) 7133 return -ENOMEM; 7134 7135 dev->rx_cpu_rmap_auto = true; 7136 return 0; 7137 } 7138 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7139 7140 static void netif_del_cpu_rmap(struct net_device *dev) 7141 { 7142 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7143 7144 if (!dev->rx_cpu_rmap_auto) 7145 return; 7146 7147 /* Free the rmap */ 7148 cpu_rmap_put(rmap); 7149 dev->rx_cpu_rmap = NULL; 7150 dev->rx_cpu_rmap_auto = false; 7151 } 7152 7153 #else 7154 static void netif_napi_affinity_release(struct kref *ref) 7155 { 7156 } 7157 7158 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7159 { 7160 return 0; 7161 } 7162 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7163 7164 static void netif_del_cpu_rmap(struct net_device *dev) 7165 { 7166 } 7167 #endif 7168 7169 void netif_set_affinity_auto(struct net_device *dev) 7170 { 7171 unsigned int i, maxqs, numa; 7172 7173 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7174 numa = dev_to_node(&dev->dev); 7175 7176 for (i = 0; i < maxqs; i++) 7177 cpumask_set_cpu(cpumask_local_spread(i, numa), 7178 &dev->napi_config[i].affinity_mask); 7179 7180 dev->irq_affinity_auto = true; 7181 } 7182 EXPORT_SYMBOL(netif_set_affinity_auto); 7183 7184 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7185 { 7186 int rc; 7187 7188 netdev_assert_locked_or_invisible(napi->dev); 7189 7190 if (napi->irq == irq) 7191 return; 7192 7193 /* Remove existing resources */ 7194 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7195 irq_set_affinity_notifier(napi->irq, NULL); 7196 7197 napi->irq = irq; 7198 if (irq < 0 || 7199 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7200 return; 7201 7202 /* Abort for buggy drivers */ 7203 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7204 return; 7205 7206 #ifdef CONFIG_RFS_ACCEL 7207 if (napi->dev->rx_cpu_rmap_auto) { 7208 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7209 if (rc < 0) 7210 return; 7211 7212 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7213 napi->napi_rmap_idx = rc; 7214 } 7215 #endif 7216 7217 /* Use core IRQ notifier */ 7218 napi->notify.notify = netif_napi_irq_notify; 7219 napi->notify.release = netif_napi_affinity_release; 7220 rc = irq_set_affinity_notifier(irq, &napi->notify); 7221 if (rc) { 7222 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7223 rc); 7224 goto put_rmap; 7225 } 7226 7227 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7228 return; 7229 7230 put_rmap: 7231 #ifdef CONFIG_RFS_ACCEL 7232 if (napi->dev->rx_cpu_rmap_auto) { 7233 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7234 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7235 napi->napi_rmap_idx = -1; 7236 } 7237 #endif 7238 napi->notify.notify = NULL; 7239 napi->notify.release = NULL; 7240 } 7241 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7242 7243 static void napi_restore_config(struct napi_struct *n) 7244 { 7245 n->defer_hard_irqs = n->config->defer_hard_irqs; 7246 n->gro_flush_timeout = n->config->gro_flush_timeout; 7247 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7248 7249 if (n->dev->irq_affinity_auto && 7250 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7251 irq_set_affinity(n->irq, &n->config->affinity_mask); 7252 7253 /* a NAPI ID might be stored in the config, if so use it. if not, use 7254 * napi_hash_add to generate one for us. 7255 */ 7256 if (n->config->napi_id) { 7257 napi_hash_add_with_id(n, n->config->napi_id); 7258 } else { 7259 napi_hash_add(n); 7260 n->config->napi_id = n->napi_id; 7261 } 7262 7263 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7264 } 7265 7266 static void napi_save_config(struct napi_struct *n) 7267 { 7268 n->config->defer_hard_irqs = n->defer_hard_irqs; 7269 n->config->gro_flush_timeout = n->gro_flush_timeout; 7270 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7271 napi_hash_del(n); 7272 } 7273 7274 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7275 * inherit an existing ID try to insert it at the right position. 7276 */ 7277 static void 7278 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7279 { 7280 unsigned int new_id, pos_id; 7281 struct list_head *higher; 7282 struct napi_struct *pos; 7283 7284 new_id = UINT_MAX; 7285 if (napi->config && napi->config->napi_id) 7286 new_id = napi->config->napi_id; 7287 7288 higher = &dev->napi_list; 7289 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7290 if (napi_id_valid(pos->napi_id)) 7291 pos_id = pos->napi_id; 7292 else if (pos->config) 7293 pos_id = pos->config->napi_id; 7294 else 7295 pos_id = UINT_MAX; 7296 7297 if (pos_id <= new_id) 7298 break; 7299 higher = &pos->dev_list; 7300 } 7301 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7302 } 7303 7304 /* Double check that napi_get_frags() allocates skbs with 7305 * skb->head being backed by slab, not a page fragment. 7306 * This is to make sure bug fixed in 3226b158e67c 7307 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7308 * does not accidentally come back. 7309 */ 7310 static void napi_get_frags_check(struct napi_struct *napi) 7311 { 7312 struct sk_buff *skb; 7313 7314 local_bh_disable(); 7315 skb = napi_get_frags(napi); 7316 WARN_ON_ONCE(skb && skb->head_frag); 7317 napi_free_frags(napi); 7318 local_bh_enable(); 7319 } 7320 7321 void netif_napi_add_weight_locked(struct net_device *dev, 7322 struct napi_struct *napi, 7323 int (*poll)(struct napi_struct *, int), 7324 int weight) 7325 { 7326 netdev_assert_locked(dev); 7327 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7328 return; 7329 7330 INIT_LIST_HEAD(&napi->poll_list); 7331 INIT_HLIST_NODE(&napi->napi_hash_node); 7332 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7333 gro_init(&napi->gro); 7334 napi->skb = NULL; 7335 napi->poll = poll; 7336 if (weight > NAPI_POLL_WEIGHT) 7337 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7338 weight); 7339 napi->weight = weight; 7340 napi->dev = dev; 7341 #ifdef CONFIG_NETPOLL 7342 napi->poll_owner = -1; 7343 #endif 7344 napi->list_owner = -1; 7345 set_bit(NAPI_STATE_SCHED, &napi->state); 7346 set_bit(NAPI_STATE_NPSVC, &napi->state); 7347 netif_napi_dev_list_add(dev, napi); 7348 7349 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7350 * configuration will be loaded in napi_enable 7351 */ 7352 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7353 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7354 7355 napi_get_frags_check(napi); 7356 /* Create kthread for this napi if dev->threaded is set. 7357 * Clear dev->threaded if kthread creation failed so that 7358 * threaded mode will not be enabled in napi_enable(). 7359 */ 7360 if (napi_get_threaded_config(dev, napi)) 7361 if (napi_kthread_create(napi)) 7362 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7363 netif_napi_set_irq_locked(napi, -1); 7364 } 7365 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7366 7367 void napi_disable_locked(struct napi_struct *n) 7368 { 7369 unsigned long val, new; 7370 7371 might_sleep(); 7372 netdev_assert_locked(n->dev); 7373 7374 set_bit(NAPI_STATE_DISABLE, &n->state); 7375 7376 val = READ_ONCE(n->state); 7377 do { 7378 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7379 usleep_range(20, 200); 7380 val = READ_ONCE(n->state); 7381 } 7382 7383 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7384 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7385 } while (!try_cmpxchg(&n->state, &val, new)); 7386 7387 hrtimer_cancel(&n->timer); 7388 7389 if (n->config) 7390 napi_save_config(n); 7391 else 7392 napi_hash_del(n); 7393 7394 clear_bit(NAPI_STATE_DISABLE, &n->state); 7395 } 7396 EXPORT_SYMBOL(napi_disable_locked); 7397 7398 /** 7399 * napi_disable() - prevent NAPI from scheduling 7400 * @n: NAPI context 7401 * 7402 * Stop NAPI from being scheduled on this context. 7403 * Waits till any outstanding processing completes. 7404 * Takes netdev_lock() for associated net_device. 7405 */ 7406 void napi_disable(struct napi_struct *n) 7407 { 7408 netdev_lock(n->dev); 7409 napi_disable_locked(n); 7410 netdev_unlock(n->dev); 7411 } 7412 EXPORT_SYMBOL(napi_disable); 7413 7414 void napi_enable_locked(struct napi_struct *n) 7415 { 7416 unsigned long new, val = READ_ONCE(n->state); 7417 7418 if (n->config) 7419 napi_restore_config(n); 7420 else 7421 napi_hash_add(n); 7422 7423 do { 7424 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7425 7426 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7427 if (n->dev->threaded && n->thread) 7428 new |= NAPIF_STATE_THREADED; 7429 } while (!try_cmpxchg(&n->state, &val, new)); 7430 } 7431 EXPORT_SYMBOL(napi_enable_locked); 7432 7433 /** 7434 * napi_enable() - enable NAPI scheduling 7435 * @n: NAPI context 7436 * 7437 * Enable scheduling of a NAPI instance. 7438 * Must be paired with napi_disable(). 7439 * Takes netdev_lock() for associated net_device. 7440 */ 7441 void napi_enable(struct napi_struct *n) 7442 { 7443 netdev_lock(n->dev); 7444 napi_enable_locked(n); 7445 netdev_unlock(n->dev); 7446 } 7447 EXPORT_SYMBOL(napi_enable); 7448 7449 /* Must be called in process context */ 7450 void __netif_napi_del_locked(struct napi_struct *napi) 7451 { 7452 netdev_assert_locked(napi->dev); 7453 7454 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7455 return; 7456 7457 /* Make sure NAPI is disabled (or was never enabled). */ 7458 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7459 7460 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7461 irq_set_affinity_notifier(napi->irq, NULL); 7462 7463 if (napi->config) { 7464 napi->index = -1; 7465 napi->config = NULL; 7466 } 7467 7468 list_del_rcu(&napi->dev_list); 7469 napi_free_frags(napi); 7470 7471 gro_cleanup(&napi->gro); 7472 7473 if (napi->thread) { 7474 kthread_stop(napi->thread); 7475 napi->thread = NULL; 7476 } 7477 } 7478 EXPORT_SYMBOL(__netif_napi_del_locked); 7479 7480 static int __napi_poll(struct napi_struct *n, bool *repoll) 7481 { 7482 int work, weight; 7483 7484 weight = n->weight; 7485 7486 /* This NAPI_STATE_SCHED test is for avoiding a race 7487 * with netpoll's poll_napi(). Only the entity which 7488 * obtains the lock and sees NAPI_STATE_SCHED set will 7489 * actually make the ->poll() call. Therefore we avoid 7490 * accidentally calling ->poll() when NAPI is not scheduled. 7491 */ 7492 work = 0; 7493 if (napi_is_scheduled(n)) { 7494 work = n->poll(n, weight); 7495 trace_napi_poll(n, work, weight); 7496 7497 xdp_do_check_flushed(n); 7498 } 7499 7500 if (unlikely(work > weight)) 7501 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7502 n->poll, work, weight); 7503 7504 if (likely(work < weight)) 7505 return work; 7506 7507 /* Drivers must not modify the NAPI state if they 7508 * consume the entire weight. In such cases this code 7509 * still "owns" the NAPI instance and therefore can 7510 * move the instance around on the list at-will. 7511 */ 7512 if (unlikely(napi_disable_pending(n))) { 7513 napi_complete(n); 7514 return work; 7515 } 7516 7517 /* The NAPI context has more processing work, but busy-polling 7518 * is preferred. Exit early. 7519 */ 7520 if (napi_prefer_busy_poll(n)) { 7521 if (napi_complete_done(n, work)) { 7522 /* If timeout is not set, we need to make sure 7523 * that the NAPI is re-scheduled. 7524 */ 7525 napi_schedule(n); 7526 } 7527 return work; 7528 } 7529 7530 /* Flush too old packets. If HZ < 1000, flush all packets */ 7531 gro_flush_normal(&n->gro, HZ >= 1000); 7532 7533 /* Some drivers may have called napi_schedule 7534 * prior to exhausting their budget. 7535 */ 7536 if (unlikely(!list_empty(&n->poll_list))) { 7537 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7538 n->dev ? n->dev->name : "backlog"); 7539 return work; 7540 } 7541 7542 *repoll = true; 7543 7544 return work; 7545 } 7546 7547 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7548 { 7549 bool do_repoll = false; 7550 void *have; 7551 int work; 7552 7553 list_del_init(&n->poll_list); 7554 7555 have = netpoll_poll_lock(n); 7556 7557 work = __napi_poll(n, &do_repoll); 7558 7559 if (do_repoll) { 7560 #if defined(CONFIG_DEBUG_NET) 7561 if (unlikely(!napi_is_scheduled(n))) 7562 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7563 n->dev->name, n->poll); 7564 #endif 7565 list_add_tail(&n->poll_list, repoll); 7566 } 7567 netpoll_poll_unlock(have); 7568 7569 return work; 7570 } 7571 7572 static int napi_thread_wait(struct napi_struct *napi) 7573 { 7574 set_current_state(TASK_INTERRUPTIBLE); 7575 7576 while (!kthread_should_stop()) { 7577 /* Testing SCHED_THREADED bit here to make sure the current 7578 * kthread owns this napi and could poll on this napi. 7579 * Testing SCHED bit is not enough because SCHED bit might be 7580 * set by some other busy poll thread or by napi_disable(). 7581 */ 7582 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7583 WARN_ON(!list_empty(&napi->poll_list)); 7584 __set_current_state(TASK_RUNNING); 7585 return 0; 7586 } 7587 7588 schedule(); 7589 set_current_state(TASK_INTERRUPTIBLE); 7590 } 7591 __set_current_state(TASK_RUNNING); 7592 7593 return -1; 7594 } 7595 7596 static void napi_threaded_poll_loop(struct napi_struct *napi) 7597 { 7598 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7599 struct softnet_data *sd; 7600 unsigned long last_qs = jiffies; 7601 7602 for (;;) { 7603 bool repoll = false; 7604 void *have; 7605 7606 local_bh_disable(); 7607 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7608 7609 sd = this_cpu_ptr(&softnet_data); 7610 sd->in_napi_threaded_poll = true; 7611 7612 have = netpoll_poll_lock(napi); 7613 __napi_poll(napi, &repoll); 7614 netpoll_poll_unlock(have); 7615 7616 sd->in_napi_threaded_poll = false; 7617 barrier(); 7618 7619 if (sd_has_rps_ipi_waiting(sd)) { 7620 local_irq_disable(); 7621 net_rps_action_and_irq_enable(sd); 7622 } 7623 skb_defer_free_flush(sd); 7624 bpf_net_ctx_clear(bpf_net_ctx); 7625 local_bh_enable(); 7626 7627 if (!repoll) 7628 break; 7629 7630 rcu_softirq_qs_periodic(last_qs); 7631 cond_resched(); 7632 } 7633 } 7634 7635 static int napi_threaded_poll(void *data) 7636 { 7637 struct napi_struct *napi = data; 7638 7639 while (!napi_thread_wait(napi)) 7640 napi_threaded_poll_loop(napi); 7641 7642 return 0; 7643 } 7644 7645 static __latent_entropy void net_rx_action(void) 7646 { 7647 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7648 unsigned long time_limit = jiffies + 7649 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7650 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7651 int budget = READ_ONCE(net_hotdata.netdev_budget); 7652 LIST_HEAD(list); 7653 LIST_HEAD(repoll); 7654 7655 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7656 start: 7657 sd->in_net_rx_action = true; 7658 local_irq_disable(); 7659 list_splice_init(&sd->poll_list, &list); 7660 local_irq_enable(); 7661 7662 for (;;) { 7663 struct napi_struct *n; 7664 7665 skb_defer_free_flush(sd); 7666 7667 if (list_empty(&list)) { 7668 if (list_empty(&repoll)) { 7669 sd->in_net_rx_action = false; 7670 barrier(); 7671 /* We need to check if ____napi_schedule() 7672 * had refilled poll_list while 7673 * sd->in_net_rx_action was true. 7674 */ 7675 if (!list_empty(&sd->poll_list)) 7676 goto start; 7677 if (!sd_has_rps_ipi_waiting(sd)) 7678 goto end; 7679 } 7680 break; 7681 } 7682 7683 n = list_first_entry(&list, struct napi_struct, poll_list); 7684 budget -= napi_poll(n, &repoll); 7685 7686 /* If softirq window is exhausted then punt. 7687 * Allow this to run for 2 jiffies since which will allow 7688 * an average latency of 1.5/HZ. 7689 */ 7690 if (unlikely(budget <= 0 || 7691 time_after_eq(jiffies, time_limit))) { 7692 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7693 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7694 break; 7695 } 7696 } 7697 7698 local_irq_disable(); 7699 7700 list_splice_tail_init(&sd->poll_list, &list); 7701 list_splice_tail(&repoll, &list); 7702 list_splice(&list, &sd->poll_list); 7703 if (!list_empty(&sd->poll_list)) 7704 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7705 else 7706 sd->in_net_rx_action = false; 7707 7708 net_rps_action_and_irq_enable(sd); 7709 end: 7710 bpf_net_ctx_clear(bpf_net_ctx); 7711 } 7712 7713 struct netdev_adjacent { 7714 struct net_device *dev; 7715 netdevice_tracker dev_tracker; 7716 7717 /* upper master flag, there can only be one master device per list */ 7718 bool master; 7719 7720 /* lookup ignore flag */ 7721 bool ignore; 7722 7723 /* counter for the number of times this device was added to us */ 7724 u16 ref_nr; 7725 7726 /* private field for the users */ 7727 void *private; 7728 7729 struct list_head list; 7730 struct rcu_head rcu; 7731 }; 7732 7733 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7734 struct list_head *adj_list) 7735 { 7736 struct netdev_adjacent *adj; 7737 7738 list_for_each_entry(adj, adj_list, list) { 7739 if (adj->dev == adj_dev) 7740 return adj; 7741 } 7742 return NULL; 7743 } 7744 7745 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7746 struct netdev_nested_priv *priv) 7747 { 7748 struct net_device *dev = (struct net_device *)priv->data; 7749 7750 return upper_dev == dev; 7751 } 7752 7753 /** 7754 * netdev_has_upper_dev - Check if device is linked to an upper device 7755 * @dev: device 7756 * @upper_dev: upper device to check 7757 * 7758 * Find out if a device is linked to specified upper device and return true 7759 * in case it is. Note that this checks only immediate upper device, 7760 * not through a complete stack of devices. The caller must hold the RTNL lock. 7761 */ 7762 bool netdev_has_upper_dev(struct net_device *dev, 7763 struct net_device *upper_dev) 7764 { 7765 struct netdev_nested_priv priv = { 7766 .data = (void *)upper_dev, 7767 }; 7768 7769 ASSERT_RTNL(); 7770 7771 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7772 &priv); 7773 } 7774 EXPORT_SYMBOL(netdev_has_upper_dev); 7775 7776 /** 7777 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7778 * @dev: device 7779 * @upper_dev: upper device to check 7780 * 7781 * Find out if a device is linked to specified upper device and return true 7782 * in case it is. Note that this checks the entire upper device chain. 7783 * The caller must hold rcu lock. 7784 */ 7785 7786 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7787 struct net_device *upper_dev) 7788 { 7789 struct netdev_nested_priv priv = { 7790 .data = (void *)upper_dev, 7791 }; 7792 7793 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7794 &priv); 7795 } 7796 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7797 7798 /** 7799 * netdev_has_any_upper_dev - Check if device is linked to some device 7800 * @dev: device 7801 * 7802 * Find out if a device is linked to an upper device and return true in case 7803 * it is. The caller must hold the RTNL lock. 7804 */ 7805 bool netdev_has_any_upper_dev(struct net_device *dev) 7806 { 7807 ASSERT_RTNL(); 7808 7809 return !list_empty(&dev->adj_list.upper); 7810 } 7811 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7812 7813 /** 7814 * netdev_master_upper_dev_get - Get master upper device 7815 * @dev: device 7816 * 7817 * Find a master upper device and return pointer to it or NULL in case 7818 * it's not there. The caller must hold the RTNL lock. 7819 */ 7820 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7821 { 7822 struct netdev_adjacent *upper; 7823 7824 ASSERT_RTNL(); 7825 7826 if (list_empty(&dev->adj_list.upper)) 7827 return NULL; 7828 7829 upper = list_first_entry(&dev->adj_list.upper, 7830 struct netdev_adjacent, list); 7831 if (likely(upper->master)) 7832 return upper->dev; 7833 return NULL; 7834 } 7835 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7836 7837 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7838 { 7839 struct netdev_adjacent *upper; 7840 7841 ASSERT_RTNL(); 7842 7843 if (list_empty(&dev->adj_list.upper)) 7844 return NULL; 7845 7846 upper = list_first_entry(&dev->adj_list.upper, 7847 struct netdev_adjacent, list); 7848 if (likely(upper->master) && !upper->ignore) 7849 return upper->dev; 7850 return NULL; 7851 } 7852 7853 /** 7854 * netdev_has_any_lower_dev - Check if device is linked to some device 7855 * @dev: device 7856 * 7857 * Find out if a device is linked to a lower device and return true in case 7858 * it is. The caller must hold the RTNL lock. 7859 */ 7860 static bool netdev_has_any_lower_dev(struct net_device *dev) 7861 { 7862 ASSERT_RTNL(); 7863 7864 return !list_empty(&dev->adj_list.lower); 7865 } 7866 7867 void *netdev_adjacent_get_private(struct list_head *adj_list) 7868 { 7869 struct netdev_adjacent *adj; 7870 7871 adj = list_entry(adj_list, struct netdev_adjacent, list); 7872 7873 return adj->private; 7874 } 7875 EXPORT_SYMBOL(netdev_adjacent_get_private); 7876 7877 /** 7878 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7879 * @dev: device 7880 * @iter: list_head ** of the current position 7881 * 7882 * Gets the next device from the dev's upper list, starting from iter 7883 * position. The caller must hold RCU read lock. 7884 */ 7885 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7886 struct list_head **iter) 7887 { 7888 struct netdev_adjacent *upper; 7889 7890 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7891 7892 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7893 7894 if (&upper->list == &dev->adj_list.upper) 7895 return NULL; 7896 7897 *iter = &upper->list; 7898 7899 return upper->dev; 7900 } 7901 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7902 7903 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7904 struct list_head **iter, 7905 bool *ignore) 7906 { 7907 struct netdev_adjacent *upper; 7908 7909 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7910 7911 if (&upper->list == &dev->adj_list.upper) 7912 return NULL; 7913 7914 *iter = &upper->list; 7915 *ignore = upper->ignore; 7916 7917 return upper->dev; 7918 } 7919 7920 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7921 struct list_head **iter) 7922 { 7923 struct netdev_adjacent *upper; 7924 7925 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7926 7927 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7928 7929 if (&upper->list == &dev->adj_list.upper) 7930 return NULL; 7931 7932 *iter = &upper->list; 7933 7934 return upper->dev; 7935 } 7936 7937 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7938 int (*fn)(struct net_device *dev, 7939 struct netdev_nested_priv *priv), 7940 struct netdev_nested_priv *priv) 7941 { 7942 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7943 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7944 int ret, cur = 0; 7945 bool ignore; 7946 7947 now = dev; 7948 iter = &dev->adj_list.upper; 7949 7950 while (1) { 7951 if (now != dev) { 7952 ret = fn(now, priv); 7953 if (ret) 7954 return ret; 7955 } 7956 7957 next = NULL; 7958 while (1) { 7959 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7960 if (!udev) 7961 break; 7962 if (ignore) 7963 continue; 7964 7965 next = udev; 7966 niter = &udev->adj_list.upper; 7967 dev_stack[cur] = now; 7968 iter_stack[cur++] = iter; 7969 break; 7970 } 7971 7972 if (!next) { 7973 if (!cur) 7974 return 0; 7975 next = dev_stack[--cur]; 7976 niter = iter_stack[cur]; 7977 } 7978 7979 now = next; 7980 iter = niter; 7981 } 7982 7983 return 0; 7984 } 7985 7986 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7987 int (*fn)(struct net_device *dev, 7988 struct netdev_nested_priv *priv), 7989 struct netdev_nested_priv *priv) 7990 { 7991 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7992 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7993 int ret, cur = 0; 7994 7995 now = dev; 7996 iter = &dev->adj_list.upper; 7997 7998 while (1) { 7999 if (now != dev) { 8000 ret = fn(now, priv); 8001 if (ret) 8002 return ret; 8003 } 8004 8005 next = NULL; 8006 while (1) { 8007 udev = netdev_next_upper_dev_rcu(now, &iter); 8008 if (!udev) 8009 break; 8010 8011 next = udev; 8012 niter = &udev->adj_list.upper; 8013 dev_stack[cur] = now; 8014 iter_stack[cur++] = iter; 8015 break; 8016 } 8017 8018 if (!next) { 8019 if (!cur) 8020 return 0; 8021 next = dev_stack[--cur]; 8022 niter = iter_stack[cur]; 8023 } 8024 8025 now = next; 8026 iter = niter; 8027 } 8028 8029 return 0; 8030 } 8031 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8032 8033 static bool __netdev_has_upper_dev(struct net_device *dev, 8034 struct net_device *upper_dev) 8035 { 8036 struct netdev_nested_priv priv = { 8037 .flags = 0, 8038 .data = (void *)upper_dev, 8039 }; 8040 8041 ASSERT_RTNL(); 8042 8043 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8044 &priv); 8045 } 8046 8047 /** 8048 * netdev_lower_get_next_private - Get the next ->private from the 8049 * lower neighbour list 8050 * @dev: device 8051 * @iter: list_head ** of the current position 8052 * 8053 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8054 * list, starting from iter position. The caller must hold either hold the 8055 * RTNL lock or its own locking that guarantees that the neighbour lower 8056 * list will remain unchanged. 8057 */ 8058 void *netdev_lower_get_next_private(struct net_device *dev, 8059 struct list_head **iter) 8060 { 8061 struct netdev_adjacent *lower; 8062 8063 lower = list_entry(*iter, struct netdev_adjacent, list); 8064 8065 if (&lower->list == &dev->adj_list.lower) 8066 return NULL; 8067 8068 *iter = lower->list.next; 8069 8070 return lower->private; 8071 } 8072 EXPORT_SYMBOL(netdev_lower_get_next_private); 8073 8074 /** 8075 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8076 * lower neighbour list, RCU 8077 * variant 8078 * @dev: device 8079 * @iter: list_head ** of the current position 8080 * 8081 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8082 * list, starting from iter position. The caller must hold RCU read lock. 8083 */ 8084 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8085 struct list_head **iter) 8086 { 8087 struct netdev_adjacent *lower; 8088 8089 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8090 8091 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8092 8093 if (&lower->list == &dev->adj_list.lower) 8094 return NULL; 8095 8096 *iter = &lower->list; 8097 8098 return lower->private; 8099 } 8100 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8101 8102 /** 8103 * netdev_lower_get_next - Get the next device from the lower neighbour 8104 * list 8105 * @dev: device 8106 * @iter: list_head ** of the current position 8107 * 8108 * Gets the next netdev_adjacent from the dev's lower neighbour 8109 * list, starting from iter position. The caller must hold RTNL lock or 8110 * its own locking that guarantees that the neighbour lower 8111 * list will remain unchanged. 8112 */ 8113 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8114 { 8115 struct netdev_adjacent *lower; 8116 8117 lower = list_entry(*iter, struct netdev_adjacent, list); 8118 8119 if (&lower->list == &dev->adj_list.lower) 8120 return NULL; 8121 8122 *iter = lower->list.next; 8123 8124 return lower->dev; 8125 } 8126 EXPORT_SYMBOL(netdev_lower_get_next); 8127 8128 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8129 struct list_head **iter) 8130 { 8131 struct netdev_adjacent *lower; 8132 8133 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8134 8135 if (&lower->list == &dev->adj_list.lower) 8136 return NULL; 8137 8138 *iter = &lower->list; 8139 8140 return lower->dev; 8141 } 8142 8143 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8144 struct list_head **iter, 8145 bool *ignore) 8146 { 8147 struct netdev_adjacent *lower; 8148 8149 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8150 8151 if (&lower->list == &dev->adj_list.lower) 8152 return NULL; 8153 8154 *iter = &lower->list; 8155 *ignore = lower->ignore; 8156 8157 return lower->dev; 8158 } 8159 8160 int netdev_walk_all_lower_dev(struct net_device *dev, 8161 int (*fn)(struct net_device *dev, 8162 struct netdev_nested_priv *priv), 8163 struct netdev_nested_priv *priv) 8164 { 8165 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8166 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8167 int ret, cur = 0; 8168 8169 now = dev; 8170 iter = &dev->adj_list.lower; 8171 8172 while (1) { 8173 if (now != dev) { 8174 ret = fn(now, priv); 8175 if (ret) 8176 return ret; 8177 } 8178 8179 next = NULL; 8180 while (1) { 8181 ldev = netdev_next_lower_dev(now, &iter); 8182 if (!ldev) 8183 break; 8184 8185 next = ldev; 8186 niter = &ldev->adj_list.lower; 8187 dev_stack[cur] = now; 8188 iter_stack[cur++] = iter; 8189 break; 8190 } 8191 8192 if (!next) { 8193 if (!cur) 8194 return 0; 8195 next = dev_stack[--cur]; 8196 niter = iter_stack[cur]; 8197 } 8198 8199 now = next; 8200 iter = niter; 8201 } 8202 8203 return 0; 8204 } 8205 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8206 8207 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8208 int (*fn)(struct net_device *dev, 8209 struct netdev_nested_priv *priv), 8210 struct netdev_nested_priv *priv) 8211 { 8212 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8213 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8214 int ret, cur = 0; 8215 bool ignore; 8216 8217 now = dev; 8218 iter = &dev->adj_list.lower; 8219 8220 while (1) { 8221 if (now != dev) { 8222 ret = fn(now, priv); 8223 if (ret) 8224 return ret; 8225 } 8226 8227 next = NULL; 8228 while (1) { 8229 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8230 if (!ldev) 8231 break; 8232 if (ignore) 8233 continue; 8234 8235 next = ldev; 8236 niter = &ldev->adj_list.lower; 8237 dev_stack[cur] = now; 8238 iter_stack[cur++] = iter; 8239 break; 8240 } 8241 8242 if (!next) { 8243 if (!cur) 8244 return 0; 8245 next = dev_stack[--cur]; 8246 niter = iter_stack[cur]; 8247 } 8248 8249 now = next; 8250 iter = niter; 8251 } 8252 8253 return 0; 8254 } 8255 8256 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8257 struct list_head **iter) 8258 { 8259 struct netdev_adjacent *lower; 8260 8261 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8262 if (&lower->list == &dev->adj_list.lower) 8263 return NULL; 8264 8265 *iter = &lower->list; 8266 8267 return lower->dev; 8268 } 8269 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8270 8271 static u8 __netdev_upper_depth(struct net_device *dev) 8272 { 8273 struct net_device *udev; 8274 struct list_head *iter; 8275 u8 max_depth = 0; 8276 bool ignore; 8277 8278 for (iter = &dev->adj_list.upper, 8279 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8280 udev; 8281 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8282 if (ignore) 8283 continue; 8284 if (max_depth < udev->upper_level) 8285 max_depth = udev->upper_level; 8286 } 8287 8288 return max_depth; 8289 } 8290 8291 static u8 __netdev_lower_depth(struct net_device *dev) 8292 { 8293 struct net_device *ldev; 8294 struct list_head *iter; 8295 u8 max_depth = 0; 8296 bool ignore; 8297 8298 for (iter = &dev->adj_list.lower, 8299 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8300 ldev; 8301 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8302 if (ignore) 8303 continue; 8304 if (max_depth < ldev->lower_level) 8305 max_depth = ldev->lower_level; 8306 } 8307 8308 return max_depth; 8309 } 8310 8311 static int __netdev_update_upper_level(struct net_device *dev, 8312 struct netdev_nested_priv *__unused) 8313 { 8314 dev->upper_level = __netdev_upper_depth(dev) + 1; 8315 return 0; 8316 } 8317 8318 #ifdef CONFIG_LOCKDEP 8319 static LIST_HEAD(net_unlink_list); 8320 8321 static void net_unlink_todo(struct net_device *dev) 8322 { 8323 if (list_empty(&dev->unlink_list)) 8324 list_add_tail(&dev->unlink_list, &net_unlink_list); 8325 } 8326 #endif 8327 8328 static int __netdev_update_lower_level(struct net_device *dev, 8329 struct netdev_nested_priv *priv) 8330 { 8331 dev->lower_level = __netdev_lower_depth(dev) + 1; 8332 8333 #ifdef CONFIG_LOCKDEP 8334 if (!priv) 8335 return 0; 8336 8337 if (priv->flags & NESTED_SYNC_IMM) 8338 dev->nested_level = dev->lower_level - 1; 8339 if (priv->flags & NESTED_SYNC_TODO) 8340 net_unlink_todo(dev); 8341 #endif 8342 return 0; 8343 } 8344 8345 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8346 int (*fn)(struct net_device *dev, 8347 struct netdev_nested_priv *priv), 8348 struct netdev_nested_priv *priv) 8349 { 8350 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8351 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8352 int ret, cur = 0; 8353 8354 now = dev; 8355 iter = &dev->adj_list.lower; 8356 8357 while (1) { 8358 if (now != dev) { 8359 ret = fn(now, priv); 8360 if (ret) 8361 return ret; 8362 } 8363 8364 next = NULL; 8365 while (1) { 8366 ldev = netdev_next_lower_dev_rcu(now, &iter); 8367 if (!ldev) 8368 break; 8369 8370 next = ldev; 8371 niter = &ldev->adj_list.lower; 8372 dev_stack[cur] = now; 8373 iter_stack[cur++] = iter; 8374 break; 8375 } 8376 8377 if (!next) { 8378 if (!cur) 8379 return 0; 8380 next = dev_stack[--cur]; 8381 niter = iter_stack[cur]; 8382 } 8383 8384 now = next; 8385 iter = niter; 8386 } 8387 8388 return 0; 8389 } 8390 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8391 8392 /** 8393 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8394 * lower neighbour list, RCU 8395 * variant 8396 * @dev: device 8397 * 8398 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8399 * list. The caller must hold RCU read lock. 8400 */ 8401 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8402 { 8403 struct netdev_adjacent *lower; 8404 8405 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8406 struct netdev_adjacent, list); 8407 if (lower) 8408 return lower->private; 8409 return NULL; 8410 } 8411 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8412 8413 /** 8414 * netdev_master_upper_dev_get_rcu - Get master upper device 8415 * @dev: device 8416 * 8417 * Find a master upper device and return pointer to it or NULL in case 8418 * it's not there. The caller must hold the RCU read lock. 8419 */ 8420 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8421 { 8422 struct netdev_adjacent *upper; 8423 8424 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8425 struct netdev_adjacent, list); 8426 if (upper && likely(upper->master)) 8427 return upper->dev; 8428 return NULL; 8429 } 8430 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8431 8432 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8433 struct net_device *adj_dev, 8434 struct list_head *dev_list) 8435 { 8436 char linkname[IFNAMSIZ+7]; 8437 8438 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8439 "upper_%s" : "lower_%s", adj_dev->name); 8440 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8441 linkname); 8442 } 8443 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8444 char *name, 8445 struct list_head *dev_list) 8446 { 8447 char linkname[IFNAMSIZ+7]; 8448 8449 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8450 "upper_%s" : "lower_%s", name); 8451 sysfs_remove_link(&(dev->dev.kobj), linkname); 8452 } 8453 8454 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8455 struct net_device *adj_dev, 8456 struct list_head *dev_list) 8457 { 8458 return (dev_list == &dev->adj_list.upper || 8459 dev_list == &dev->adj_list.lower) && 8460 net_eq(dev_net(dev), dev_net(adj_dev)); 8461 } 8462 8463 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8464 struct net_device *adj_dev, 8465 struct list_head *dev_list, 8466 void *private, bool master) 8467 { 8468 struct netdev_adjacent *adj; 8469 int ret; 8470 8471 adj = __netdev_find_adj(adj_dev, dev_list); 8472 8473 if (adj) { 8474 adj->ref_nr += 1; 8475 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8476 dev->name, adj_dev->name, adj->ref_nr); 8477 8478 return 0; 8479 } 8480 8481 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8482 if (!adj) 8483 return -ENOMEM; 8484 8485 adj->dev = adj_dev; 8486 adj->master = master; 8487 adj->ref_nr = 1; 8488 adj->private = private; 8489 adj->ignore = false; 8490 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8491 8492 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8493 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8494 8495 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8496 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8497 if (ret) 8498 goto free_adj; 8499 } 8500 8501 /* Ensure that master link is always the first item in list. */ 8502 if (master) { 8503 ret = sysfs_create_link(&(dev->dev.kobj), 8504 &(adj_dev->dev.kobj), "master"); 8505 if (ret) 8506 goto remove_symlinks; 8507 8508 list_add_rcu(&adj->list, dev_list); 8509 } else { 8510 list_add_tail_rcu(&adj->list, dev_list); 8511 } 8512 8513 return 0; 8514 8515 remove_symlinks: 8516 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8517 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8518 free_adj: 8519 netdev_put(adj_dev, &adj->dev_tracker); 8520 kfree(adj); 8521 8522 return ret; 8523 } 8524 8525 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8526 struct net_device *adj_dev, 8527 u16 ref_nr, 8528 struct list_head *dev_list) 8529 { 8530 struct netdev_adjacent *adj; 8531 8532 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8533 dev->name, adj_dev->name, ref_nr); 8534 8535 adj = __netdev_find_adj(adj_dev, dev_list); 8536 8537 if (!adj) { 8538 pr_err("Adjacency does not exist for device %s from %s\n", 8539 dev->name, adj_dev->name); 8540 WARN_ON(1); 8541 return; 8542 } 8543 8544 if (adj->ref_nr > ref_nr) { 8545 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8546 dev->name, adj_dev->name, ref_nr, 8547 adj->ref_nr - ref_nr); 8548 adj->ref_nr -= ref_nr; 8549 return; 8550 } 8551 8552 if (adj->master) 8553 sysfs_remove_link(&(dev->dev.kobj), "master"); 8554 8555 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8556 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8557 8558 list_del_rcu(&adj->list); 8559 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8560 adj_dev->name, dev->name, adj_dev->name); 8561 netdev_put(adj_dev, &adj->dev_tracker); 8562 kfree_rcu(adj, rcu); 8563 } 8564 8565 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8566 struct net_device *upper_dev, 8567 struct list_head *up_list, 8568 struct list_head *down_list, 8569 void *private, bool master) 8570 { 8571 int ret; 8572 8573 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8574 private, master); 8575 if (ret) 8576 return ret; 8577 8578 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8579 private, false); 8580 if (ret) { 8581 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8582 return ret; 8583 } 8584 8585 return 0; 8586 } 8587 8588 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8589 struct net_device *upper_dev, 8590 u16 ref_nr, 8591 struct list_head *up_list, 8592 struct list_head *down_list) 8593 { 8594 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8595 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8596 } 8597 8598 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8599 struct net_device *upper_dev, 8600 void *private, bool master) 8601 { 8602 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8603 &dev->adj_list.upper, 8604 &upper_dev->adj_list.lower, 8605 private, master); 8606 } 8607 8608 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8609 struct net_device *upper_dev) 8610 { 8611 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8612 &dev->adj_list.upper, 8613 &upper_dev->adj_list.lower); 8614 } 8615 8616 static int __netdev_upper_dev_link(struct net_device *dev, 8617 struct net_device *upper_dev, bool master, 8618 void *upper_priv, void *upper_info, 8619 struct netdev_nested_priv *priv, 8620 struct netlink_ext_ack *extack) 8621 { 8622 struct netdev_notifier_changeupper_info changeupper_info = { 8623 .info = { 8624 .dev = dev, 8625 .extack = extack, 8626 }, 8627 .upper_dev = upper_dev, 8628 .master = master, 8629 .linking = true, 8630 .upper_info = upper_info, 8631 }; 8632 struct net_device *master_dev; 8633 int ret = 0; 8634 8635 ASSERT_RTNL(); 8636 8637 if (dev == upper_dev) 8638 return -EBUSY; 8639 8640 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8641 if (__netdev_has_upper_dev(upper_dev, dev)) 8642 return -EBUSY; 8643 8644 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8645 return -EMLINK; 8646 8647 if (!master) { 8648 if (__netdev_has_upper_dev(dev, upper_dev)) 8649 return -EEXIST; 8650 } else { 8651 master_dev = __netdev_master_upper_dev_get(dev); 8652 if (master_dev) 8653 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8654 } 8655 8656 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8657 &changeupper_info.info); 8658 ret = notifier_to_errno(ret); 8659 if (ret) 8660 return ret; 8661 8662 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8663 master); 8664 if (ret) 8665 return ret; 8666 8667 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8668 &changeupper_info.info); 8669 ret = notifier_to_errno(ret); 8670 if (ret) 8671 goto rollback; 8672 8673 __netdev_update_upper_level(dev, NULL); 8674 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8675 8676 __netdev_update_lower_level(upper_dev, priv); 8677 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8678 priv); 8679 8680 return 0; 8681 8682 rollback: 8683 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8684 8685 return ret; 8686 } 8687 8688 /** 8689 * netdev_upper_dev_link - Add a link to the upper device 8690 * @dev: device 8691 * @upper_dev: new upper device 8692 * @extack: netlink extended ack 8693 * 8694 * Adds a link to device which is upper to this one. The caller must hold 8695 * the RTNL lock. On a failure a negative errno code is returned. 8696 * On success the reference counts are adjusted and the function 8697 * returns zero. 8698 */ 8699 int netdev_upper_dev_link(struct net_device *dev, 8700 struct net_device *upper_dev, 8701 struct netlink_ext_ack *extack) 8702 { 8703 struct netdev_nested_priv priv = { 8704 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8705 .data = NULL, 8706 }; 8707 8708 return __netdev_upper_dev_link(dev, upper_dev, false, 8709 NULL, NULL, &priv, extack); 8710 } 8711 EXPORT_SYMBOL(netdev_upper_dev_link); 8712 8713 /** 8714 * netdev_master_upper_dev_link - Add a master link to the upper device 8715 * @dev: device 8716 * @upper_dev: new upper device 8717 * @upper_priv: upper device private 8718 * @upper_info: upper info to be passed down via notifier 8719 * @extack: netlink extended ack 8720 * 8721 * Adds a link to device which is upper to this one. In this case, only 8722 * one master upper device can be linked, although other non-master devices 8723 * might be linked as well. The caller must hold the RTNL lock. 8724 * On a failure a negative errno code is returned. On success the reference 8725 * counts are adjusted and the function returns zero. 8726 */ 8727 int netdev_master_upper_dev_link(struct net_device *dev, 8728 struct net_device *upper_dev, 8729 void *upper_priv, void *upper_info, 8730 struct netlink_ext_ack *extack) 8731 { 8732 struct netdev_nested_priv priv = { 8733 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8734 .data = NULL, 8735 }; 8736 8737 return __netdev_upper_dev_link(dev, upper_dev, true, 8738 upper_priv, upper_info, &priv, extack); 8739 } 8740 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8741 8742 static void __netdev_upper_dev_unlink(struct net_device *dev, 8743 struct net_device *upper_dev, 8744 struct netdev_nested_priv *priv) 8745 { 8746 struct netdev_notifier_changeupper_info changeupper_info = { 8747 .info = { 8748 .dev = dev, 8749 }, 8750 .upper_dev = upper_dev, 8751 .linking = false, 8752 }; 8753 8754 ASSERT_RTNL(); 8755 8756 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8757 8758 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8759 &changeupper_info.info); 8760 8761 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8762 8763 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8764 &changeupper_info.info); 8765 8766 __netdev_update_upper_level(dev, NULL); 8767 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8768 8769 __netdev_update_lower_level(upper_dev, priv); 8770 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8771 priv); 8772 } 8773 8774 /** 8775 * netdev_upper_dev_unlink - Removes a link to upper device 8776 * @dev: device 8777 * @upper_dev: new upper device 8778 * 8779 * Removes a link to device which is upper to this one. The caller must hold 8780 * the RTNL lock. 8781 */ 8782 void netdev_upper_dev_unlink(struct net_device *dev, 8783 struct net_device *upper_dev) 8784 { 8785 struct netdev_nested_priv priv = { 8786 .flags = NESTED_SYNC_TODO, 8787 .data = NULL, 8788 }; 8789 8790 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8791 } 8792 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8793 8794 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8795 struct net_device *lower_dev, 8796 bool val) 8797 { 8798 struct netdev_adjacent *adj; 8799 8800 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8801 if (adj) 8802 adj->ignore = val; 8803 8804 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8805 if (adj) 8806 adj->ignore = val; 8807 } 8808 8809 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8810 struct net_device *lower_dev) 8811 { 8812 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8813 } 8814 8815 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8816 struct net_device *lower_dev) 8817 { 8818 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8819 } 8820 8821 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8822 struct net_device *new_dev, 8823 struct net_device *dev, 8824 struct netlink_ext_ack *extack) 8825 { 8826 struct netdev_nested_priv priv = { 8827 .flags = 0, 8828 .data = NULL, 8829 }; 8830 int err; 8831 8832 if (!new_dev) 8833 return 0; 8834 8835 if (old_dev && new_dev != old_dev) 8836 netdev_adjacent_dev_disable(dev, old_dev); 8837 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8838 extack); 8839 if (err) { 8840 if (old_dev && new_dev != old_dev) 8841 netdev_adjacent_dev_enable(dev, old_dev); 8842 return err; 8843 } 8844 8845 return 0; 8846 } 8847 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8848 8849 void netdev_adjacent_change_commit(struct net_device *old_dev, 8850 struct net_device *new_dev, 8851 struct net_device *dev) 8852 { 8853 struct netdev_nested_priv priv = { 8854 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8855 .data = NULL, 8856 }; 8857 8858 if (!new_dev || !old_dev) 8859 return; 8860 8861 if (new_dev == old_dev) 8862 return; 8863 8864 netdev_adjacent_dev_enable(dev, old_dev); 8865 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8866 } 8867 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8868 8869 void netdev_adjacent_change_abort(struct net_device *old_dev, 8870 struct net_device *new_dev, 8871 struct net_device *dev) 8872 { 8873 struct netdev_nested_priv priv = { 8874 .flags = 0, 8875 .data = NULL, 8876 }; 8877 8878 if (!new_dev) 8879 return; 8880 8881 if (old_dev && new_dev != old_dev) 8882 netdev_adjacent_dev_enable(dev, old_dev); 8883 8884 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8885 } 8886 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8887 8888 /** 8889 * netdev_bonding_info_change - Dispatch event about slave change 8890 * @dev: device 8891 * @bonding_info: info to dispatch 8892 * 8893 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8894 * The caller must hold the RTNL lock. 8895 */ 8896 void netdev_bonding_info_change(struct net_device *dev, 8897 struct netdev_bonding_info *bonding_info) 8898 { 8899 struct netdev_notifier_bonding_info info = { 8900 .info.dev = dev, 8901 }; 8902 8903 memcpy(&info.bonding_info, bonding_info, 8904 sizeof(struct netdev_bonding_info)); 8905 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8906 &info.info); 8907 } 8908 EXPORT_SYMBOL(netdev_bonding_info_change); 8909 8910 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8911 struct netlink_ext_ack *extack) 8912 { 8913 struct netdev_notifier_offload_xstats_info info = { 8914 .info.dev = dev, 8915 .info.extack = extack, 8916 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8917 }; 8918 int err; 8919 int rc; 8920 8921 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8922 GFP_KERNEL); 8923 if (!dev->offload_xstats_l3) 8924 return -ENOMEM; 8925 8926 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8927 NETDEV_OFFLOAD_XSTATS_DISABLE, 8928 &info.info); 8929 err = notifier_to_errno(rc); 8930 if (err) 8931 goto free_stats; 8932 8933 return 0; 8934 8935 free_stats: 8936 kfree(dev->offload_xstats_l3); 8937 dev->offload_xstats_l3 = NULL; 8938 return err; 8939 } 8940 8941 int netdev_offload_xstats_enable(struct net_device *dev, 8942 enum netdev_offload_xstats_type type, 8943 struct netlink_ext_ack *extack) 8944 { 8945 ASSERT_RTNL(); 8946 8947 if (netdev_offload_xstats_enabled(dev, type)) 8948 return -EALREADY; 8949 8950 switch (type) { 8951 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8952 return netdev_offload_xstats_enable_l3(dev, extack); 8953 } 8954 8955 WARN_ON(1); 8956 return -EINVAL; 8957 } 8958 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8959 8960 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8961 { 8962 struct netdev_notifier_offload_xstats_info info = { 8963 .info.dev = dev, 8964 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8965 }; 8966 8967 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8968 &info.info); 8969 kfree(dev->offload_xstats_l3); 8970 dev->offload_xstats_l3 = NULL; 8971 } 8972 8973 int netdev_offload_xstats_disable(struct net_device *dev, 8974 enum netdev_offload_xstats_type type) 8975 { 8976 ASSERT_RTNL(); 8977 8978 if (!netdev_offload_xstats_enabled(dev, type)) 8979 return -EALREADY; 8980 8981 switch (type) { 8982 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8983 netdev_offload_xstats_disable_l3(dev); 8984 return 0; 8985 } 8986 8987 WARN_ON(1); 8988 return -EINVAL; 8989 } 8990 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8991 8992 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8993 { 8994 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8995 } 8996 8997 static struct rtnl_hw_stats64 * 8998 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8999 enum netdev_offload_xstats_type type) 9000 { 9001 switch (type) { 9002 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9003 return dev->offload_xstats_l3; 9004 } 9005 9006 WARN_ON(1); 9007 return NULL; 9008 } 9009 9010 bool netdev_offload_xstats_enabled(const struct net_device *dev, 9011 enum netdev_offload_xstats_type type) 9012 { 9013 ASSERT_RTNL(); 9014 9015 return netdev_offload_xstats_get_ptr(dev, type); 9016 } 9017 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9018 9019 struct netdev_notifier_offload_xstats_ru { 9020 bool used; 9021 }; 9022 9023 struct netdev_notifier_offload_xstats_rd { 9024 struct rtnl_hw_stats64 stats; 9025 bool used; 9026 }; 9027 9028 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9029 const struct rtnl_hw_stats64 *src) 9030 { 9031 dest->rx_packets += src->rx_packets; 9032 dest->tx_packets += src->tx_packets; 9033 dest->rx_bytes += src->rx_bytes; 9034 dest->tx_bytes += src->tx_bytes; 9035 dest->rx_errors += src->rx_errors; 9036 dest->tx_errors += src->tx_errors; 9037 dest->rx_dropped += src->rx_dropped; 9038 dest->tx_dropped += src->tx_dropped; 9039 dest->multicast += src->multicast; 9040 } 9041 9042 static int netdev_offload_xstats_get_used(struct net_device *dev, 9043 enum netdev_offload_xstats_type type, 9044 bool *p_used, 9045 struct netlink_ext_ack *extack) 9046 { 9047 struct netdev_notifier_offload_xstats_ru report_used = {}; 9048 struct netdev_notifier_offload_xstats_info info = { 9049 .info.dev = dev, 9050 .info.extack = extack, 9051 .type = type, 9052 .report_used = &report_used, 9053 }; 9054 int rc; 9055 9056 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9057 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9058 &info.info); 9059 *p_used = report_used.used; 9060 return notifier_to_errno(rc); 9061 } 9062 9063 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9064 enum netdev_offload_xstats_type type, 9065 struct rtnl_hw_stats64 *p_stats, 9066 bool *p_used, 9067 struct netlink_ext_ack *extack) 9068 { 9069 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9070 struct netdev_notifier_offload_xstats_info info = { 9071 .info.dev = dev, 9072 .info.extack = extack, 9073 .type = type, 9074 .report_delta = &report_delta, 9075 }; 9076 struct rtnl_hw_stats64 *stats; 9077 int rc; 9078 9079 stats = netdev_offload_xstats_get_ptr(dev, type); 9080 if (WARN_ON(!stats)) 9081 return -EINVAL; 9082 9083 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9084 &info.info); 9085 9086 /* Cache whatever we got, even if there was an error, otherwise the 9087 * successful stats retrievals would get lost. 9088 */ 9089 netdev_hw_stats64_add(stats, &report_delta.stats); 9090 9091 if (p_stats) 9092 *p_stats = *stats; 9093 *p_used = report_delta.used; 9094 9095 return notifier_to_errno(rc); 9096 } 9097 9098 int netdev_offload_xstats_get(struct net_device *dev, 9099 enum netdev_offload_xstats_type type, 9100 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9101 struct netlink_ext_ack *extack) 9102 { 9103 ASSERT_RTNL(); 9104 9105 if (p_stats) 9106 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9107 p_used, extack); 9108 else 9109 return netdev_offload_xstats_get_used(dev, type, p_used, 9110 extack); 9111 } 9112 EXPORT_SYMBOL(netdev_offload_xstats_get); 9113 9114 void 9115 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9116 const struct rtnl_hw_stats64 *stats) 9117 { 9118 report_delta->used = true; 9119 netdev_hw_stats64_add(&report_delta->stats, stats); 9120 } 9121 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9122 9123 void 9124 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9125 { 9126 report_used->used = true; 9127 } 9128 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9129 9130 void netdev_offload_xstats_push_delta(struct net_device *dev, 9131 enum netdev_offload_xstats_type type, 9132 const struct rtnl_hw_stats64 *p_stats) 9133 { 9134 struct rtnl_hw_stats64 *stats; 9135 9136 ASSERT_RTNL(); 9137 9138 stats = netdev_offload_xstats_get_ptr(dev, type); 9139 if (WARN_ON(!stats)) 9140 return; 9141 9142 netdev_hw_stats64_add(stats, p_stats); 9143 } 9144 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9145 9146 /** 9147 * netdev_get_xmit_slave - Get the xmit slave of master device 9148 * @dev: device 9149 * @skb: The packet 9150 * @all_slaves: assume all the slaves are active 9151 * 9152 * The reference counters are not incremented so the caller must be 9153 * careful with locks. The caller must hold RCU lock. 9154 * %NULL is returned if no slave is found. 9155 */ 9156 9157 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9158 struct sk_buff *skb, 9159 bool all_slaves) 9160 { 9161 const struct net_device_ops *ops = dev->netdev_ops; 9162 9163 if (!ops->ndo_get_xmit_slave) 9164 return NULL; 9165 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9166 } 9167 EXPORT_SYMBOL(netdev_get_xmit_slave); 9168 9169 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9170 struct sock *sk) 9171 { 9172 const struct net_device_ops *ops = dev->netdev_ops; 9173 9174 if (!ops->ndo_sk_get_lower_dev) 9175 return NULL; 9176 return ops->ndo_sk_get_lower_dev(dev, sk); 9177 } 9178 9179 /** 9180 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9181 * @dev: device 9182 * @sk: the socket 9183 * 9184 * %NULL is returned if no lower device is found. 9185 */ 9186 9187 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9188 struct sock *sk) 9189 { 9190 struct net_device *lower; 9191 9192 lower = netdev_sk_get_lower_dev(dev, sk); 9193 while (lower) { 9194 dev = lower; 9195 lower = netdev_sk_get_lower_dev(dev, sk); 9196 } 9197 9198 return dev; 9199 } 9200 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9201 9202 static void netdev_adjacent_add_links(struct net_device *dev) 9203 { 9204 struct netdev_adjacent *iter; 9205 9206 struct net *net = dev_net(dev); 9207 9208 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9209 if (!net_eq(net, dev_net(iter->dev))) 9210 continue; 9211 netdev_adjacent_sysfs_add(iter->dev, dev, 9212 &iter->dev->adj_list.lower); 9213 netdev_adjacent_sysfs_add(dev, iter->dev, 9214 &dev->adj_list.upper); 9215 } 9216 9217 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9218 if (!net_eq(net, dev_net(iter->dev))) 9219 continue; 9220 netdev_adjacent_sysfs_add(iter->dev, dev, 9221 &iter->dev->adj_list.upper); 9222 netdev_adjacent_sysfs_add(dev, iter->dev, 9223 &dev->adj_list.lower); 9224 } 9225 } 9226 9227 static void netdev_adjacent_del_links(struct net_device *dev) 9228 { 9229 struct netdev_adjacent *iter; 9230 9231 struct net *net = dev_net(dev); 9232 9233 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9234 if (!net_eq(net, dev_net(iter->dev))) 9235 continue; 9236 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9237 &iter->dev->adj_list.lower); 9238 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9239 &dev->adj_list.upper); 9240 } 9241 9242 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9243 if (!net_eq(net, dev_net(iter->dev))) 9244 continue; 9245 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9246 &iter->dev->adj_list.upper); 9247 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9248 &dev->adj_list.lower); 9249 } 9250 } 9251 9252 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9253 { 9254 struct netdev_adjacent *iter; 9255 9256 struct net *net = dev_net(dev); 9257 9258 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9259 if (!net_eq(net, dev_net(iter->dev))) 9260 continue; 9261 netdev_adjacent_sysfs_del(iter->dev, oldname, 9262 &iter->dev->adj_list.lower); 9263 netdev_adjacent_sysfs_add(iter->dev, dev, 9264 &iter->dev->adj_list.lower); 9265 } 9266 9267 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9268 if (!net_eq(net, dev_net(iter->dev))) 9269 continue; 9270 netdev_adjacent_sysfs_del(iter->dev, oldname, 9271 &iter->dev->adj_list.upper); 9272 netdev_adjacent_sysfs_add(iter->dev, dev, 9273 &iter->dev->adj_list.upper); 9274 } 9275 } 9276 9277 void *netdev_lower_dev_get_private(struct net_device *dev, 9278 struct net_device *lower_dev) 9279 { 9280 struct netdev_adjacent *lower; 9281 9282 if (!lower_dev) 9283 return NULL; 9284 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9285 if (!lower) 9286 return NULL; 9287 9288 return lower->private; 9289 } 9290 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9291 9292 9293 /** 9294 * netdev_lower_state_changed - Dispatch event about lower device state change 9295 * @lower_dev: device 9296 * @lower_state_info: state to dispatch 9297 * 9298 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9299 * The caller must hold the RTNL lock. 9300 */ 9301 void netdev_lower_state_changed(struct net_device *lower_dev, 9302 void *lower_state_info) 9303 { 9304 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9305 .info.dev = lower_dev, 9306 }; 9307 9308 ASSERT_RTNL(); 9309 changelowerstate_info.lower_state_info = lower_state_info; 9310 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9311 &changelowerstate_info.info); 9312 } 9313 EXPORT_SYMBOL(netdev_lower_state_changed); 9314 9315 static void dev_change_rx_flags(struct net_device *dev, int flags) 9316 { 9317 const struct net_device_ops *ops = dev->netdev_ops; 9318 9319 if (ops->ndo_change_rx_flags) 9320 ops->ndo_change_rx_flags(dev, flags); 9321 } 9322 9323 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9324 { 9325 unsigned int old_flags = dev->flags; 9326 unsigned int promiscuity, flags; 9327 kuid_t uid; 9328 kgid_t gid; 9329 9330 ASSERT_RTNL(); 9331 9332 promiscuity = dev->promiscuity + inc; 9333 if (promiscuity == 0) { 9334 /* 9335 * Avoid overflow. 9336 * If inc causes overflow, untouch promisc and return error. 9337 */ 9338 if (unlikely(inc > 0)) { 9339 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9340 return -EOVERFLOW; 9341 } 9342 flags = old_flags & ~IFF_PROMISC; 9343 } else { 9344 flags = old_flags | IFF_PROMISC; 9345 } 9346 WRITE_ONCE(dev->promiscuity, promiscuity); 9347 if (flags != old_flags) { 9348 WRITE_ONCE(dev->flags, flags); 9349 netdev_info(dev, "%s promiscuous mode\n", 9350 dev->flags & IFF_PROMISC ? "entered" : "left"); 9351 if (audit_enabled) { 9352 current_uid_gid(&uid, &gid); 9353 audit_log(audit_context(), GFP_ATOMIC, 9354 AUDIT_ANOM_PROMISCUOUS, 9355 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9356 dev->name, (dev->flags & IFF_PROMISC), 9357 (old_flags & IFF_PROMISC), 9358 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9359 from_kuid(&init_user_ns, uid), 9360 from_kgid(&init_user_ns, gid), 9361 audit_get_sessionid(current)); 9362 } 9363 9364 dev_change_rx_flags(dev, IFF_PROMISC); 9365 } 9366 if (notify) { 9367 /* The ops lock is only required to ensure consistent locking 9368 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9369 * called without the lock, even for devices that are ops 9370 * locked, such as in `dev_uc_sync_multiple` when using 9371 * bonding or teaming. 9372 */ 9373 netdev_ops_assert_locked(dev); 9374 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9375 } 9376 return 0; 9377 } 9378 9379 int netif_set_promiscuity(struct net_device *dev, int inc) 9380 { 9381 unsigned int old_flags = dev->flags; 9382 int err; 9383 9384 err = __dev_set_promiscuity(dev, inc, true); 9385 if (err < 0) 9386 return err; 9387 if (dev->flags != old_flags) 9388 dev_set_rx_mode(dev); 9389 return err; 9390 } 9391 9392 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9393 { 9394 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9395 unsigned int allmulti, flags; 9396 9397 ASSERT_RTNL(); 9398 9399 allmulti = dev->allmulti + inc; 9400 if (allmulti == 0) { 9401 /* 9402 * Avoid overflow. 9403 * If inc causes overflow, untouch allmulti and return error. 9404 */ 9405 if (unlikely(inc > 0)) { 9406 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9407 return -EOVERFLOW; 9408 } 9409 flags = old_flags & ~IFF_ALLMULTI; 9410 } else { 9411 flags = old_flags | IFF_ALLMULTI; 9412 } 9413 WRITE_ONCE(dev->allmulti, allmulti); 9414 if (flags != old_flags) { 9415 WRITE_ONCE(dev->flags, flags); 9416 netdev_info(dev, "%s allmulticast mode\n", 9417 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9418 dev_change_rx_flags(dev, IFF_ALLMULTI); 9419 dev_set_rx_mode(dev); 9420 if (notify) 9421 __dev_notify_flags(dev, old_flags, 9422 dev->gflags ^ old_gflags, 0, NULL); 9423 } 9424 return 0; 9425 } 9426 9427 /* 9428 * Upload unicast and multicast address lists to device and 9429 * configure RX filtering. When the device doesn't support unicast 9430 * filtering it is put in promiscuous mode while unicast addresses 9431 * are present. 9432 */ 9433 void __dev_set_rx_mode(struct net_device *dev) 9434 { 9435 const struct net_device_ops *ops = dev->netdev_ops; 9436 9437 /* dev_open will call this function so the list will stay sane. */ 9438 if (!(dev->flags&IFF_UP)) 9439 return; 9440 9441 if (!netif_device_present(dev)) 9442 return; 9443 9444 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9445 /* Unicast addresses changes may only happen under the rtnl, 9446 * therefore calling __dev_set_promiscuity here is safe. 9447 */ 9448 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9449 __dev_set_promiscuity(dev, 1, false); 9450 dev->uc_promisc = true; 9451 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9452 __dev_set_promiscuity(dev, -1, false); 9453 dev->uc_promisc = false; 9454 } 9455 } 9456 9457 if (ops->ndo_set_rx_mode) 9458 ops->ndo_set_rx_mode(dev); 9459 } 9460 9461 void dev_set_rx_mode(struct net_device *dev) 9462 { 9463 netif_addr_lock_bh(dev); 9464 __dev_set_rx_mode(dev); 9465 netif_addr_unlock_bh(dev); 9466 } 9467 9468 /** 9469 * netif_get_flags() - get flags reported to userspace 9470 * @dev: device 9471 * 9472 * Get the combination of flag bits exported through APIs to userspace. 9473 */ 9474 unsigned int netif_get_flags(const struct net_device *dev) 9475 { 9476 unsigned int flags; 9477 9478 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9479 IFF_ALLMULTI | 9480 IFF_RUNNING | 9481 IFF_LOWER_UP | 9482 IFF_DORMANT)) | 9483 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9484 IFF_ALLMULTI)); 9485 9486 if (netif_running(dev)) { 9487 if (netif_oper_up(dev)) 9488 flags |= IFF_RUNNING; 9489 if (netif_carrier_ok(dev)) 9490 flags |= IFF_LOWER_UP; 9491 if (netif_dormant(dev)) 9492 flags |= IFF_DORMANT; 9493 } 9494 9495 return flags; 9496 } 9497 EXPORT_SYMBOL(netif_get_flags); 9498 9499 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9500 struct netlink_ext_ack *extack) 9501 { 9502 unsigned int old_flags = dev->flags; 9503 int ret; 9504 9505 ASSERT_RTNL(); 9506 9507 /* 9508 * Set the flags on our device. 9509 */ 9510 9511 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9512 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9513 IFF_AUTOMEDIA)) | 9514 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9515 IFF_ALLMULTI)); 9516 9517 /* 9518 * Load in the correct multicast list now the flags have changed. 9519 */ 9520 9521 if ((old_flags ^ flags) & IFF_MULTICAST) 9522 dev_change_rx_flags(dev, IFF_MULTICAST); 9523 9524 dev_set_rx_mode(dev); 9525 9526 /* 9527 * Have we downed the interface. We handle IFF_UP ourselves 9528 * according to user attempts to set it, rather than blindly 9529 * setting it. 9530 */ 9531 9532 ret = 0; 9533 if ((old_flags ^ flags) & IFF_UP) { 9534 if (old_flags & IFF_UP) 9535 __dev_close(dev); 9536 else 9537 ret = __dev_open(dev, extack); 9538 } 9539 9540 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9541 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9542 old_flags = dev->flags; 9543 9544 dev->gflags ^= IFF_PROMISC; 9545 9546 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9547 if (dev->flags != old_flags) 9548 dev_set_rx_mode(dev); 9549 } 9550 9551 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9552 * is important. Some (broken) drivers set IFF_PROMISC, when 9553 * IFF_ALLMULTI is requested not asking us and not reporting. 9554 */ 9555 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9556 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9557 9558 dev->gflags ^= IFF_ALLMULTI; 9559 netif_set_allmulti(dev, inc, false); 9560 } 9561 9562 return ret; 9563 } 9564 9565 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9566 unsigned int gchanges, u32 portid, 9567 const struct nlmsghdr *nlh) 9568 { 9569 unsigned int changes = dev->flags ^ old_flags; 9570 9571 if (gchanges) 9572 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9573 9574 if (changes & IFF_UP) { 9575 if (dev->flags & IFF_UP) 9576 call_netdevice_notifiers(NETDEV_UP, dev); 9577 else 9578 call_netdevice_notifiers(NETDEV_DOWN, dev); 9579 } 9580 9581 if (dev->flags & IFF_UP && 9582 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9583 struct netdev_notifier_change_info change_info = { 9584 .info = { 9585 .dev = dev, 9586 }, 9587 .flags_changed = changes, 9588 }; 9589 9590 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9591 } 9592 } 9593 9594 int netif_change_flags(struct net_device *dev, unsigned int flags, 9595 struct netlink_ext_ack *extack) 9596 { 9597 int ret; 9598 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9599 9600 ret = __dev_change_flags(dev, flags, extack); 9601 if (ret < 0) 9602 return ret; 9603 9604 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9605 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9606 return ret; 9607 } 9608 9609 int __netif_set_mtu(struct net_device *dev, int new_mtu) 9610 { 9611 const struct net_device_ops *ops = dev->netdev_ops; 9612 9613 if (ops->ndo_change_mtu) 9614 return ops->ndo_change_mtu(dev, new_mtu); 9615 9616 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9617 WRITE_ONCE(dev->mtu, new_mtu); 9618 return 0; 9619 } 9620 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9621 9622 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9623 struct netlink_ext_ack *extack) 9624 { 9625 /* MTU must be positive, and in range */ 9626 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9627 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9628 return -EINVAL; 9629 } 9630 9631 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9632 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9633 return -EINVAL; 9634 } 9635 return 0; 9636 } 9637 9638 /** 9639 * netif_set_mtu_ext() - Change maximum transfer unit 9640 * @dev: device 9641 * @new_mtu: new transfer unit 9642 * @extack: netlink extended ack 9643 * 9644 * Change the maximum transfer size of the network device. 9645 * 9646 * Return: 0 on success, -errno on failure. 9647 */ 9648 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9649 struct netlink_ext_ack *extack) 9650 { 9651 int err, orig_mtu; 9652 9653 netdev_ops_assert_locked(dev); 9654 9655 if (new_mtu == dev->mtu) 9656 return 0; 9657 9658 err = dev_validate_mtu(dev, new_mtu, extack); 9659 if (err) 9660 return err; 9661 9662 if (!netif_device_present(dev)) 9663 return -ENODEV; 9664 9665 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9666 err = notifier_to_errno(err); 9667 if (err) 9668 return err; 9669 9670 orig_mtu = dev->mtu; 9671 err = __netif_set_mtu(dev, new_mtu); 9672 9673 if (!err) { 9674 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9675 orig_mtu); 9676 err = notifier_to_errno(err); 9677 if (err) { 9678 /* setting mtu back and notifying everyone again, 9679 * so that they have a chance to revert changes. 9680 */ 9681 __netif_set_mtu(dev, orig_mtu); 9682 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9683 new_mtu); 9684 } 9685 } 9686 return err; 9687 } 9688 9689 int netif_set_mtu(struct net_device *dev, int new_mtu) 9690 { 9691 struct netlink_ext_ack extack; 9692 int err; 9693 9694 memset(&extack, 0, sizeof(extack)); 9695 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9696 if (err && extack._msg) 9697 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9698 return err; 9699 } 9700 EXPORT_SYMBOL(netif_set_mtu); 9701 9702 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9703 { 9704 unsigned int orig_len = dev->tx_queue_len; 9705 int res; 9706 9707 if (new_len != (unsigned int)new_len) 9708 return -ERANGE; 9709 9710 if (new_len != orig_len) { 9711 WRITE_ONCE(dev->tx_queue_len, new_len); 9712 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9713 res = notifier_to_errno(res); 9714 if (res) 9715 goto err_rollback; 9716 res = dev_qdisc_change_tx_queue_len(dev); 9717 if (res) 9718 goto err_rollback; 9719 } 9720 9721 return 0; 9722 9723 err_rollback: 9724 netdev_err(dev, "refused to change device tx_queue_len\n"); 9725 WRITE_ONCE(dev->tx_queue_len, orig_len); 9726 return res; 9727 } 9728 9729 void netif_set_group(struct net_device *dev, int new_group) 9730 { 9731 dev->group = new_group; 9732 } 9733 9734 /** 9735 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9736 * @dev: device 9737 * @addr: new address 9738 * @extack: netlink extended ack 9739 * 9740 * Return: 0 on success, -errno on failure. 9741 */ 9742 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9743 struct netlink_ext_ack *extack) 9744 { 9745 struct netdev_notifier_pre_changeaddr_info info = { 9746 .info.dev = dev, 9747 .info.extack = extack, 9748 .dev_addr = addr, 9749 }; 9750 int rc; 9751 9752 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9753 return notifier_to_errno(rc); 9754 } 9755 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9756 9757 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9758 struct netlink_ext_ack *extack) 9759 { 9760 const struct net_device_ops *ops = dev->netdev_ops; 9761 int err; 9762 9763 if (!ops->ndo_set_mac_address) 9764 return -EOPNOTSUPP; 9765 if (ss->ss_family != dev->type) 9766 return -EINVAL; 9767 if (!netif_device_present(dev)) 9768 return -ENODEV; 9769 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9770 if (err) 9771 return err; 9772 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9773 err = ops->ndo_set_mac_address(dev, ss); 9774 if (err) 9775 return err; 9776 } 9777 dev->addr_assign_type = NET_ADDR_SET; 9778 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9779 add_device_randomness(dev->dev_addr, dev->addr_len); 9780 return 0; 9781 } 9782 9783 DECLARE_RWSEM(dev_addr_sem); 9784 9785 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9786 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9787 { 9788 size_t size = sizeof(sa->sa_data_min); 9789 struct net_device *dev; 9790 int ret = 0; 9791 9792 down_read(&dev_addr_sem); 9793 rcu_read_lock(); 9794 9795 dev = dev_get_by_name_rcu(net, dev_name); 9796 if (!dev) { 9797 ret = -ENODEV; 9798 goto unlock; 9799 } 9800 if (!dev->addr_len) 9801 memset(sa->sa_data, 0, size); 9802 else 9803 memcpy(sa->sa_data, dev->dev_addr, 9804 min_t(size_t, size, dev->addr_len)); 9805 sa->sa_family = dev->type; 9806 9807 unlock: 9808 rcu_read_unlock(); 9809 up_read(&dev_addr_sem); 9810 return ret; 9811 } 9812 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 9813 9814 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9815 { 9816 const struct net_device_ops *ops = dev->netdev_ops; 9817 9818 if (!ops->ndo_change_carrier) 9819 return -EOPNOTSUPP; 9820 if (!netif_device_present(dev)) 9821 return -ENODEV; 9822 return ops->ndo_change_carrier(dev, new_carrier); 9823 } 9824 9825 /** 9826 * dev_get_phys_port_id - Get device physical port ID 9827 * @dev: device 9828 * @ppid: port ID 9829 * 9830 * Get device physical port ID 9831 */ 9832 int dev_get_phys_port_id(struct net_device *dev, 9833 struct netdev_phys_item_id *ppid) 9834 { 9835 const struct net_device_ops *ops = dev->netdev_ops; 9836 9837 if (!ops->ndo_get_phys_port_id) 9838 return -EOPNOTSUPP; 9839 return ops->ndo_get_phys_port_id(dev, ppid); 9840 } 9841 9842 /** 9843 * dev_get_phys_port_name - Get device physical port name 9844 * @dev: device 9845 * @name: port name 9846 * @len: limit of bytes to copy to name 9847 * 9848 * Get device physical port name 9849 */ 9850 int dev_get_phys_port_name(struct net_device *dev, 9851 char *name, size_t len) 9852 { 9853 const struct net_device_ops *ops = dev->netdev_ops; 9854 int err; 9855 9856 if (ops->ndo_get_phys_port_name) { 9857 err = ops->ndo_get_phys_port_name(dev, name, len); 9858 if (err != -EOPNOTSUPP) 9859 return err; 9860 } 9861 return devlink_compat_phys_port_name_get(dev, name, len); 9862 } 9863 9864 /** 9865 * netif_get_port_parent_id() - Get the device's port parent identifier 9866 * @dev: network device 9867 * @ppid: pointer to a storage for the port's parent identifier 9868 * @recurse: allow/disallow recursion to lower devices 9869 * 9870 * Get the devices's port parent identifier. 9871 * 9872 * Return: 0 on success, -errno on failure. 9873 */ 9874 int netif_get_port_parent_id(struct net_device *dev, 9875 struct netdev_phys_item_id *ppid, bool recurse) 9876 { 9877 const struct net_device_ops *ops = dev->netdev_ops; 9878 struct netdev_phys_item_id first = { }; 9879 struct net_device *lower_dev; 9880 struct list_head *iter; 9881 int err; 9882 9883 if (ops->ndo_get_port_parent_id) { 9884 err = ops->ndo_get_port_parent_id(dev, ppid); 9885 if (err != -EOPNOTSUPP) 9886 return err; 9887 } 9888 9889 err = devlink_compat_switch_id_get(dev, ppid); 9890 if (!recurse || err != -EOPNOTSUPP) 9891 return err; 9892 9893 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9894 err = netif_get_port_parent_id(lower_dev, ppid, true); 9895 if (err) 9896 break; 9897 if (!first.id_len) 9898 first = *ppid; 9899 else if (memcmp(&first, ppid, sizeof(*ppid))) 9900 return -EOPNOTSUPP; 9901 } 9902 9903 return err; 9904 } 9905 EXPORT_SYMBOL(netif_get_port_parent_id); 9906 9907 /** 9908 * netdev_port_same_parent_id - Indicate if two network devices have 9909 * the same port parent identifier 9910 * @a: first network device 9911 * @b: second network device 9912 */ 9913 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9914 { 9915 struct netdev_phys_item_id a_id = { }; 9916 struct netdev_phys_item_id b_id = { }; 9917 9918 if (netif_get_port_parent_id(a, &a_id, true) || 9919 netif_get_port_parent_id(b, &b_id, true)) 9920 return false; 9921 9922 return netdev_phys_item_id_same(&a_id, &b_id); 9923 } 9924 EXPORT_SYMBOL(netdev_port_same_parent_id); 9925 9926 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9927 { 9928 if (!dev->change_proto_down) 9929 return -EOPNOTSUPP; 9930 if (!netif_device_present(dev)) 9931 return -ENODEV; 9932 if (proto_down) 9933 netif_carrier_off(dev); 9934 else 9935 netif_carrier_on(dev); 9936 WRITE_ONCE(dev->proto_down, proto_down); 9937 return 0; 9938 } 9939 9940 /** 9941 * netdev_change_proto_down_reason_locked - proto down reason 9942 * 9943 * @dev: device 9944 * @mask: proto down mask 9945 * @value: proto down value 9946 */ 9947 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9948 unsigned long mask, u32 value) 9949 { 9950 u32 proto_down_reason; 9951 int b; 9952 9953 if (!mask) { 9954 proto_down_reason = value; 9955 } else { 9956 proto_down_reason = dev->proto_down_reason; 9957 for_each_set_bit(b, &mask, 32) { 9958 if (value & (1 << b)) 9959 proto_down_reason |= BIT(b); 9960 else 9961 proto_down_reason &= ~BIT(b); 9962 } 9963 } 9964 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9965 } 9966 9967 struct bpf_xdp_link { 9968 struct bpf_link link; 9969 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9970 int flags; 9971 }; 9972 9973 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9974 { 9975 if (flags & XDP_FLAGS_HW_MODE) 9976 return XDP_MODE_HW; 9977 if (flags & XDP_FLAGS_DRV_MODE) 9978 return XDP_MODE_DRV; 9979 if (flags & XDP_FLAGS_SKB_MODE) 9980 return XDP_MODE_SKB; 9981 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9982 } 9983 9984 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9985 { 9986 switch (mode) { 9987 case XDP_MODE_SKB: 9988 return generic_xdp_install; 9989 case XDP_MODE_DRV: 9990 case XDP_MODE_HW: 9991 return dev->netdev_ops->ndo_bpf; 9992 default: 9993 return NULL; 9994 } 9995 } 9996 9997 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9998 enum bpf_xdp_mode mode) 9999 { 10000 return dev->xdp_state[mode].link; 10001 } 10002 10003 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10004 enum bpf_xdp_mode mode) 10005 { 10006 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10007 10008 if (link) 10009 return link->link.prog; 10010 return dev->xdp_state[mode].prog; 10011 } 10012 10013 u8 dev_xdp_prog_count(struct net_device *dev) 10014 { 10015 u8 count = 0; 10016 int i; 10017 10018 for (i = 0; i < __MAX_XDP_MODE; i++) 10019 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10020 count++; 10021 return count; 10022 } 10023 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10024 10025 u8 dev_xdp_sb_prog_count(struct net_device *dev) 10026 { 10027 u8 count = 0; 10028 int i; 10029 10030 for (i = 0; i < __MAX_XDP_MODE; i++) 10031 if (dev->xdp_state[i].prog && 10032 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10033 count++; 10034 return count; 10035 } 10036 10037 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10038 { 10039 if (!dev->netdev_ops->ndo_bpf) 10040 return -EOPNOTSUPP; 10041 10042 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10043 bpf->command == XDP_SETUP_PROG && 10044 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10045 NL_SET_ERR_MSG(bpf->extack, 10046 "unable to propagate XDP to device using tcp-data-split"); 10047 return -EBUSY; 10048 } 10049 10050 if (dev_get_min_mp_channel_count(dev)) { 10051 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10052 return -EBUSY; 10053 } 10054 10055 return dev->netdev_ops->ndo_bpf(dev, bpf); 10056 } 10057 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10058 10059 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10060 { 10061 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10062 10063 return prog ? prog->aux->id : 0; 10064 } 10065 10066 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10067 struct bpf_xdp_link *link) 10068 { 10069 dev->xdp_state[mode].link = link; 10070 dev->xdp_state[mode].prog = NULL; 10071 } 10072 10073 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10074 struct bpf_prog *prog) 10075 { 10076 dev->xdp_state[mode].link = NULL; 10077 dev->xdp_state[mode].prog = prog; 10078 } 10079 10080 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10081 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10082 u32 flags, struct bpf_prog *prog) 10083 { 10084 struct netdev_bpf xdp; 10085 int err; 10086 10087 netdev_ops_assert_locked(dev); 10088 10089 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10090 prog && !prog->aux->xdp_has_frags) { 10091 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10092 return -EBUSY; 10093 } 10094 10095 if (dev_get_min_mp_channel_count(dev)) { 10096 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10097 return -EBUSY; 10098 } 10099 10100 memset(&xdp, 0, sizeof(xdp)); 10101 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10102 xdp.extack = extack; 10103 xdp.flags = flags; 10104 xdp.prog = prog; 10105 10106 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10107 * "moved" into driver), so they don't increment it on their own, but 10108 * they do decrement refcnt when program is detached or replaced. 10109 * Given net_device also owns link/prog, we need to bump refcnt here 10110 * to prevent drivers from underflowing it. 10111 */ 10112 if (prog) 10113 bpf_prog_inc(prog); 10114 err = bpf_op(dev, &xdp); 10115 if (err) { 10116 if (prog) 10117 bpf_prog_put(prog); 10118 return err; 10119 } 10120 10121 if (mode != XDP_MODE_HW) 10122 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10123 10124 return 0; 10125 } 10126 10127 static void dev_xdp_uninstall(struct net_device *dev) 10128 { 10129 struct bpf_xdp_link *link; 10130 struct bpf_prog *prog; 10131 enum bpf_xdp_mode mode; 10132 bpf_op_t bpf_op; 10133 10134 ASSERT_RTNL(); 10135 10136 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10137 prog = dev_xdp_prog(dev, mode); 10138 if (!prog) 10139 continue; 10140 10141 bpf_op = dev_xdp_bpf_op(dev, mode); 10142 if (!bpf_op) 10143 continue; 10144 10145 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10146 10147 /* auto-detach link from net device */ 10148 link = dev_xdp_link(dev, mode); 10149 if (link) 10150 link->dev = NULL; 10151 else 10152 bpf_prog_put(prog); 10153 10154 dev_xdp_set_link(dev, mode, NULL); 10155 } 10156 } 10157 10158 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10159 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10160 struct bpf_prog *old_prog, u32 flags) 10161 { 10162 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10163 struct bpf_prog *cur_prog; 10164 struct net_device *upper; 10165 struct list_head *iter; 10166 enum bpf_xdp_mode mode; 10167 bpf_op_t bpf_op; 10168 int err; 10169 10170 ASSERT_RTNL(); 10171 10172 /* either link or prog attachment, never both */ 10173 if (link && (new_prog || old_prog)) 10174 return -EINVAL; 10175 /* link supports only XDP mode flags */ 10176 if (link && (flags & ~XDP_FLAGS_MODES)) { 10177 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10178 return -EINVAL; 10179 } 10180 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10181 if (num_modes > 1) { 10182 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10183 return -EINVAL; 10184 } 10185 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10186 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10187 NL_SET_ERR_MSG(extack, 10188 "More than one program loaded, unset mode is ambiguous"); 10189 return -EINVAL; 10190 } 10191 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10192 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10193 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10194 return -EINVAL; 10195 } 10196 10197 mode = dev_xdp_mode(dev, flags); 10198 /* can't replace attached link */ 10199 if (dev_xdp_link(dev, mode)) { 10200 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10201 return -EBUSY; 10202 } 10203 10204 /* don't allow if an upper device already has a program */ 10205 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10206 if (dev_xdp_prog_count(upper) > 0) { 10207 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10208 return -EEXIST; 10209 } 10210 } 10211 10212 cur_prog = dev_xdp_prog(dev, mode); 10213 /* can't replace attached prog with link */ 10214 if (link && cur_prog) { 10215 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10216 return -EBUSY; 10217 } 10218 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10219 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10220 return -EEXIST; 10221 } 10222 10223 /* put effective new program into new_prog */ 10224 if (link) 10225 new_prog = link->link.prog; 10226 10227 if (new_prog) { 10228 bool offload = mode == XDP_MODE_HW; 10229 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10230 ? XDP_MODE_DRV : XDP_MODE_SKB; 10231 10232 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10233 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10234 return -EBUSY; 10235 } 10236 if (!offload && dev_xdp_prog(dev, other_mode)) { 10237 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10238 return -EEXIST; 10239 } 10240 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10241 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10242 return -EINVAL; 10243 } 10244 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10245 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10246 return -EINVAL; 10247 } 10248 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10249 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10250 return -EINVAL; 10251 } 10252 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10253 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10254 return -EINVAL; 10255 } 10256 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10257 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10258 return -EINVAL; 10259 } 10260 } 10261 10262 /* don't call drivers if the effective program didn't change */ 10263 if (new_prog != cur_prog) { 10264 bpf_op = dev_xdp_bpf_op(dev, mode); 10265 if (!bpf_op) { 10266 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10267 return -EOPNOTSUPP; 10268 } 10269 10270 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10271 if (err) 10272 return err; 10273 } 10274 10275 if (link) 10276 dev_xdp_set_link(dev, mode, link); 10277 else 10278 dev_xdp_set_prog(dev, mode, new_prog); 10279 if (cur_prog) 10280 bpf_prog_put(cur_prog); 10281 10282 return 0; 10283 } 10284 10285 static int dev_xdp_attach_link(struct net_device *dev, 10286 struct netlink_ext_ack *extack, 10287 struct bpf_xdp_link *link) 10288 { 10289 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10290 } 10291 10292 static int dev_xdp_detach_link(struct net_device *dev, 10293 struct netlink_ext_ack *extack, 10294 struct bpf_xdp_link *link) 10295 { 10296 enum bpf_xdp_mode mode; 10297 bpf_op_t bpf_op; 10298 10299 ASSERT_RTNL(); 10300 10301 mode = dev_xdp_mode(dev, link->flags); 10302 if (dev_xdp_link(dev, mode) != link) 10303 return -EINVAL; 10304 10305 bpf_op = dev_xdp_bpf_op(dev, mode); 10306 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10307 dev_xdp_set_link(dev, mode, NULL); 10308 return 0; 10309 } 10310 10311 static void bpf_xdp_link_release(struct bpf_link *link) 10312 { 10313 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10314 10315 rtnl_lock(); 10316 10317 /* if racing with net_device's tear down, xdp_link->dev might be 10318 * already NULL, in which case link was already auto-detached 10319 */ 10320 if (xdp_link->dev) { 10321 netdev_lock_ops(xdp_link->dev); 10322 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10323 netdev_unlock_ops(xdp_link->dev); 10324 xdp_link->dev = NULL; 10325 } 10326 10327 rtnl_unlock(); 10328 } 10329 10330 static int bpf_xdp_link_detach(struct bpf_link *link) 10331 { 10332 bpf_xdp_link_release(link); 10333 return 0; 10334 } 10335 10336 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10337 { 10338 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10339 10340 kfree(xdp_link); 10341 } 10342 10343 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10344 struct seq_file *seq) 10345 { 10346 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10347 u32 ifindex = 0; 10348 10349 rtnl_lock(); 10350 if (xdp_link->dev) 10351 ifindex = xdp_link->dev->ifindex; 10352 rtnl_unlock(); 10353 10354 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10355 } 10356 10357 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10358 struct bpf_link_info *info) 10359 { 10360 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10361 u32 ifindex = 0; 10362 10363 rtnl_lock(); 10364 if (xdp_link->dev) 10365 ifindex = xdp_link->dev->ifindex; 10366 rtnl_unlock(); 10367 10368 info->xdp.ifindex = ifindex; 10369 return 0; 10370 } 10371 10372 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10373 struct bpf_prog *old_prog) 10374 { 10375 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10376 enum bpf_xdp_mode mode; 10377 bpf_op_t bpf_op; 10378 int err = 0; 10379 10380 rtnl_lock(); 10381 10382 /* link might have been auto-released already, so fail */ 10383 if (!xdp_link->dev) { 10384 err = -ENOLINK; 10385 goto out_unlock; 10386 } 10387 10388 if (old_prog && link->prog != old_prog) { 10389 err = -EPERM; 10390 goto out_unlock; 10391 } 10392 old_prog = link->prog; 10393 if (old_prog->type != new_prog->type || 10394 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10395 err = -EINVAL; 10396 goto out_unlock; 10397 } 10398 10399 if (old_prog == new_prog) { 10400 /* no-op, don't disturb drivers */ 10401 bpf_prog_put(new_prog); 10402 goto out_unlock; 10403 } 10404 10405 netdev_lock_ops(xdp_link->dev); 10406 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10407 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10408 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10409 xdp_link->flags, new_prog); 10410 netdev_unlock_ops(xdp_link->dev); 10411 if (err) 10412 goto out_unlock; 10413 10414 old_prog = xchg(&link->prog, new_prog); 10415 bpf_prog_put(old_prog); 10416 10417 out_unlock: 10418 rtnl_unlock(); 10419 return err; 10420 } 10421 10422 static const struct bpf_link_ops bpf_xdp_link_lops = { 10423 .release = bpf_xdp_link_release, 10424 .dealloc = bpf_xdp_link_dealloc, 10425 .detach = bpf_xdp_link_detach, 10426 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10427 .fill_link_info = bpf_xdp_link_fill_link_info, 10428 .update_prog = bpf_xdp_link_update, 10429 }; 10430 10431 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10432 { 10433 struct net *net = current->nsproxy->net_ns; 10434 struct bpf_link_primer link_primer; 10435 struct netlink_ext_ack extack = {}; 10436 struct bpf_xdp_link *link; 10437 struct net_device *dev; 10438 int err, fd; 10439 10440 rtnl_lock(); 10441 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10442 if (!dev) { 10443 rtnl_unlock(); 10444 return -EINVAL; 10445 } 10446 10447 link = kzalloc(sizeof(*link), GFP_USER); 10448 if (!link) { 10449 err = -ENOMEM; 10450 goto unlock; 10451 } 10452 10453 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10454 attr->link_create.attach_type); 10455 link->dev = dev; 10456 link->flags = attr->link_create.flags; 10457 10458 err = bpf_link_prime(&link->link, &link_primer); 10459 if (err) { 10460 kfree(link); 10461 goto unlock; 10462 } 10463 10464 netdev_lock_ops(dev); 10465 err = dev_xdp_attach_link(dev, &extack, link); 10466 netdev_unlock_ops(dev); 10467 rtnl_unlock(); 10468 10469 if (err) { 10470 link->dev = NULL; 10471 bpf_link_cleanup(&link_primer); 10472 trace_bpf_xdp_link_attach_failed(extack._msg); 10473 goto out_put_dev; 10474 } 10475 10476 fd = bpf_link_settle(&link_primer); 10477 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10478 dev_put(dev); 10479 return fd; 10480 10481 unlock: 10482 rtnl_unlock(); 10483 10484 out_put_dev: 10485 dev_put(dev); 10486 return err; 10487 } 10488 10489 /** 10490 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10491 * @dev: device 10492 * @extack: netlink extended ack 10493 * @fd: new program fd or negative value to clear 10494 * @expected_fd: old program fd that userspace expects to replace or clear 10495 * @flags: xdp-related flags 10496 * 10497 * Set or clear a bpf program for a device 10498 */ 10499 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10500 int fd, int expected_fd, u32 flags) 10501 { 10502 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10503 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10504 int err; 10505 10506 ASSERT_RTNL(); 10507 10508 if (fd >= 0) { 10509 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10510 mode != XDP_MODE_SKB); 10511 if (IS_ERR(new_prog)) 10512 return PTR_ERR(new_prog); 10513 } 10514 10515 if (expected_fd >= 0) { 10516 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10517 mode != XDP_MODE_SKB); 10518 if (IS_ERR(old_prog)) { 10519 err = PTR_ERR(old_prog); 10520 old_prog = NULL; 10521 goto err_out; 10522 } 10523 } 10524 10525 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10526 10527 err_out: 10528 if (err && new_prog) 10529 bpf_prog_put(new_prog); 10530 if (old_prog) 10531 bpf_prog_put(old_prog); 10532 return err; 10533 } 10534 10535 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10536 { 10537 int i; 10538 10539 netdev_ops_assert_locked(dev); 10540 10541 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10542 if (dev->_rx[i].mp_params.mp_priv) 10543 /* The channel count is the idx plus 1. */ 10544 return i + 1; 10545 10546 return 0; 10547 } 10548 10549 /** 10550 * dev_index_reserve() - allocate an ifindex in a namespace 10551 * @net: the applicable net namespace 10552 * @ifindex: requested ifindex, pass %0 to get one allocated 10553 * 10554 * Allocate a ifindex for a new device. Caller must either use the ifindex 10555 * to store the device (via list_netdevice()) or call dev_index_release() 10556 * to give the index up. 10557 * 10558 * Return: a suitable unique value for a new device interface number or -errno. 10559 */ 10560 static int dev_index_reserve(struct net *net, u32 ifindex) 10561 { 10562 int err; 10563 10564 if (ifindex > INT_MAX) { 10565 DEBUG_NET_WARN_ON_ONCE(1); 10566 return -EINVAL; 10567 } 10568 10569 if (!ifindex) 10570 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10571 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10572 else 10573 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10574 if (err < 0) 10575 return err; 10576 10577 return ifindex; 10578 } 10579 10580 static void dev_index_release(struct net *net, int ifindex) 10581 { 10582 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10583 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10584 } 10585 10586 static bool from_cleanup_net(void) 10587 { 10588 #ifdef CONFIG_NET_NS 10589 return current == READ_ONCE(cleanup_net_task); 10590 #else 10591 return false; 10592 #endif 10593 } 10594 10595 /* Delayed registration/unregisteration */ 10596 LIST_HEAD(net_todo_list); 10597 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10598 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10599 10600 static void net_set_todo(struct net_device *dev) 10601 { 10602 list_add_tail(&dev->todo_list, &net_todo_list); 10603 } 10604 10605 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10606 struct net_device *upper, netdev_features_t features) 10607 { 10608 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10609 netdev_features_t feature; 10610 int feature_bit; 10611 10612 for_each_netdev_feature(upper_disables, feature_bit) { 10613 feature = __NETIF_F_BIT(feature_bit); 10614 if (!(upper->wanted_features & feature) 10615 && (features & feature)) { 10616 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10617 &feature, upper->name); 10618 features &= ~feature; 10619 } 10620 } 10621 10622 return features; 10623 } 10624 10625 static void netdev_sync_lower_features(struct net_device *upper, 10626 struct net_device *lower, netdev_features_t features) 10627 { 10628 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10629 netdev_features_t feature; 10630 int feature_bit; 10631 10632 for_each_netdev_feature(upper_disables, feature_bit) { 10633 feature = __NETIF_F_BIT(feature_bit); 10634 if (!(features & feature) && (lower->features & feature)) { 10635 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10636 &feature, lower->name); 10637 netdev_lock_ops(lower); 10638 lower->wanted_features &= ~feature; 10639 __netdev_update_features(lower); 10640 10641 if (unlikely(lower->features & feature)) 10642 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10643 &feature, lower->name); 10644 else 10645 netdev_features_change(lower); 10646 netdev_unlock_ops(lower); 10647 } 10648 } 10649 } 10650 10651 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10652 { 10653 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10654 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10655 bool hw_csum = features & NETIF_F_HW_CSUM; 10656 10657 return ip_csum || hw_csum; 10658 } 10659 10660 static netdev_features_t netdev_fix_features(struct net_device *dev, 10661 netdev_features_t features) 10662 { 10663 /* Fix illegal checksum combinations */ 10664 if ((features & NETIF_F_HW_CSUM) && 10665 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10666 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10667 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10668 } 10669 10670 /* TSO requires that SG is present as well. */ 10671 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10672 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10673 features &= ~NETIF_F_ALL_TSO; 10674 } 10675 10676 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10677 !(features & NETIF_F_IP_CSUM)) { 10678 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10679 features &= ~NETIF_F_TSO; 10680 features &= ~NETIF_F_TSO_ECN; 10681 } 10682 10683 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10684 !(features & NETIF_F_IPV6_CSUM)) { 10685 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10686 features &= ~NETIF_F_TSO6; 10687 } 10688 10689 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10690 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10691 features &= ~NETIF_F_TSO_MANGLEID; 10692 10693 /* TSO ECN requires that TSO is present as well. */ 10694 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10695 features &= ~NETIF_F_TSO_ECN; 10696 10697 /* Software GSO depends on SG. */ 10698 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10699 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10700 features &= ~NETIF_F_GSO; 10701 } 10702 10703 /* GSO partial features require GSO partial be set */ 10704 if ((features & dev->gso_partial_features) && 10705 !(features & NETIF_F_GSO_PARTIAL)) { 10706 netdev_dbg(dev, 10707 "Dropping partially supported GSO features since no GSO partial.\n"); 10708 features &= ~dev->gso_partial_features; 10709 } 10710 10711 if (!(features & NETIF_F_RXCSUM)) { 10712 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10713 * successfully merged by hardware must also have the 10714 * checksum verified by hardware. If the user does not 10715 * want to enable RXCSUM, logically, we should disable GRO_HW. 10716 */ 10717 if (features & NETIF_F_GRO_HW) { 10718 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10719 features &= ~NETIF_F_GRO_HW; 10720 } 10721 } 10722 10723 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10724 if (features & NETIF_F_RXFCS) { 10725 if (features & NETIF_F_LRO) { 10726 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10727 features &= ~NETIF_F_LRO; 10728 } 10729 10730 if (features & NETIF_F_GRO_HW) { 10731 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10732 features &= ~NETIF_F_GRO_HW; 10733 } 10734 } 10735 10736 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10737 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10738 features &= ~NETIF_F_LRO; 10739 } 10740 10741 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10742 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10743 features &= ~NETIF_F_HW_TLS_TX; 10744 } 10745 10746 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10747 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10748 features &= ~NETIF_F_HW_TLS_RX; 10749 } 10750 10751 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10752 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10753 features &= ~NETIF_F_GSO_UDP_L4; 10754 } 10755 10756 return features; 10757 } 10758 10759 int __netdev_update_features(struct net_device *dev) 10760 { 10761 struct net_device *upper, *lower; 10762 netdev_features_t features; 10763 struct list_head *iter; 10764 int err = -1; 10765 10766 ASSERT_RTNL(); 10767 netdev_ops_assert_locked(dev); 10768 10769 features = netdev_get_wanted_features(dev); 10770 10771 if (dev->netdev_ops->ndo_fix_features) 10772 features = dev->netdev_ops->ndo_fix_features(dev, features); 10773 10774 /* driver might be less strict about feature dependencies */ 10775 features = netdev_fix_features(dev, features); 10776 10777 /* some features can't be enabled if they're off on an upper device */ 10778 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10779 features = netdev_sync_upper_features(dev, upper, features); 10780 10781 if (dev->features == features) 10782 goto sync_lower; 10783 10784 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10785 &dev->features, &features); 10786 10787 if (dev->netdev_ops->ndo_set_features) 10788 err = dev->netdev_ops->ndo_set_features(dev, features); 10789 else 10790 err = 0; 10791 10792 if (unlikely(err < 0)) { 10793 netdev_err(dev, 10794 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10795 err, &features, &dev->features); 10796 /* return non-0 since some features might have changed and 10797 * it's better to fire a spurious notification than miss it 10798 */ 10799 return -1; 10800 } 10801 10802 sync_lower: 10803 /* some features must be disabled on lower devices when disabled 10804 * on an upper device (think: bonding master or bridge) 10805 */ 10806 netdev_for_each_lower_dev(dev, lower, iter) 10807 netdev_sync_lower_features(dev, lower, features); 10808 10809 if (!err) { 10810 netdev_features_t diff = features ^ dev->features; 10811 10812 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10813 /* udp_tunnel_{get,drop}_rx_info both need 10814 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10815 * device, or they won't do anything. 10816 * Thus we need to update dev->features 10817 * *before* calling udp_tunnel_get_rx_info, 10818 * but *after* calling udp_tunnel_drop_rx_info. 10819 */ 10820 udp_tunnel_nic_lock(dev); 10821 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10822 dev->features = features; 10823 udp_tunnel_get_rx_info(dev); 10824 } else { 10825 udp_tunnel_drop_rx_info(dev); 10826 } 10827 udp_tunnel_nic_unlock(dev); 10828 } 10829 10830 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10831 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10832 dev->features = features; 10833 err |= vlan_get_rx_ctag_filter_info(dev); 10834 } else { 10835 vlan_drop_rx_ctag_filter_info(dev); 10836 } 10837 } 10838 10839 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10840 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10841 dev->features = features; 10842 err |= vlan_get_rx_stag_filter_info(dev); 10843 } else { 10844 vlan_drop_rx_stag_filter_info(dev); 10845 } 10846 } 10847 10848 dev->features = features; 10849 } 10850 10851 return err < 0 ? 0 : 1; 10852 } 10853 10854 /** 10855 * netdev_update_features - recalculate device features 10856 * @dev: the device to check 10857 * 10858 * Recalculate dev->features set and send notifications if it 10859 * has changed. Should be called after driver or hardware dependent 10860 * conditions might have changed that influence the features. 10861 */ 10862 void netdev_update_features(struct net_device *dev) 10863 { 10864 if (__netdev_update_features(dev)) 10865 netdev_features_change(dev); 10866 } 10867 EXPORT_SYMBOL(netdev_update_features); 10868 10869 /** 10870 * netdev_change_features - recalculate device features 10871 * @dev: the device to check 10872 * 10873 * Recalculate dev->features set and send notifications even 10874 * if they have not changed. Should be called instead of 10875 * netdev_update_features() if also dev->vlan_features might 10876 * have changed to allow the changes to be propagated to stacked 10877 * VLAN devices. 10878 */ 10879 void netdev_change_features(struct net_device *dev) 10880 { 10881 __netdev_update_features(dev); 10882 netdev_features_change(dev); 10883 } 10884 EXPORT_SYMBOL(netdev_change_features); 10885 10886 /** 10887 * netif_stacked_transfer_operstate - transfer operstate 10888 * @rootdev: the root or lower level device to transfer state from 10889 * @dev: the device to transfer operstate to 10890 * 10891 * Transfer operational state from root to device. This is normally 10892 * called when a stacking relationship exists between the root 10893 * device and the device(a leaf device). 10894 */ 10895 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10896 struct net_device *dev) 10897 { 10898 if (rootdev->operstate == IF_OPER_DORMANT) 10899 netif_dormant_on(dev); 10900 else 10901 netif_dormant_off(dev); 10902 10903 if (rootdev->operstate == IF_OPER_TESTING) 10904 netif_testing_on(dev); 10905 else 10906 netif_testing_off(dev); 10907 10908 if (netif_carrier_ok(rootdev)) 10909 netif_carrier_on(dev); 10910 else 10911 netif_carrier_off(dev); 10912 } 10913 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10914 10915 static int netif_alloc_rx_queues(struct net_device *dev) 10916 { 10917 unsigned int i, count = dev->num_rx_queues; 10918 struct netdev_rx_queue *rx; 10919 size_t sz = count * sizeof(*rx); 10920 int err = 0; 10921 10922 BUG_ON(count < 1); 10923 10924 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10925 if (!rx) 10926 return -ENOMEM; 10927 10928 dev->_rx = rx; 10929 10930 for (i = 0; i < count; i++) { 10931 rx[i].dev = dev; 10932 10933 /* XDP RX-queue setup */ 10934 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10935 if (err < 0) 10936 goto err_rxq_info; 10937 } 10938 return 0; 10939 10940 err_rxq_info: 10941 /* Rollback successful reg's and free other resources */ 10942 while (i--) 10943 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10944 kvfree(dev->_rx); 10945 dev->_rx = NULL; 10946 return err; 10947 } 10948 10949 static void netif_free_rx_queues(struct net_device *dev) 10950 { 10951 unsigned int i, count = dev->num_rx_queues; 10952 10953 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10954 if (!dev->_rx) 10955 return; 10956 10957 for (i = 0; i < count; i++) 10958 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10959 10960 kvfree(dev->_rx); 10961 } 10962 10963 static void netdev_init_one_queue(struct net_device *dev, 10964 struct netdev_queue *queue, void *_unused) 10965 { 10966 /* Initialize queue lock */ 10967 spin_lock_init(&queue->_xmit_lock); 10968 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10969 queue->xmit_lock_owner = -1; 10970 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10971 queue->dev = dev; 10972 #ifdef CONFIG_BQL 10973 dql_init(&queue->dql, HZ); 10974 #endif 10975 } 10976 10977 static void netif_free_tx_queues(struct net_device *dev) 10978 { 10979 kvfree(dev->_tx); 10980 } 10981 10982 static int netif_alloc_netdev_queues(struct net_device *dev) 10983 { 10984 unsigned int count = dev->num_tx_queues; 10985 struct netdev_queue *tx; 10986 size_t sz = count * sizeof(*tx); 10987 10988 if (count < 1 || count > 0xffff) 10989 return -EINVAL; 10990 10991 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10992 if (!tx) 10993 return -ENOMEM; 10994 10995 dev->_tx = tx; 10996 10997 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10998 spin_lock_init(&dev->tx_global_lock); 10999 11000 return 0; 11001 } 11002 11003 void netif_tx_stop_all_queues(struct net_device *dev) 11004 { 11005 unsigned int i; 11006 11007 for (i = 0; i < dev->num_tx_queues; i++) { 11008 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11009 11010 netif_tx_stop_queue(txq); 11011 } 11012 } 11013 EXPORT_SYMBOL(netif_tx_stop_all_queues); 11014 11015 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11016 { 11017 void __percpu *v; 11018 11019 /* Drivers implementing ndo_get_peer_dev must support tstat 11020 * accounting, so that skb_do_redirect() can bump the dev's 11021 * RX stats upon network namespace switch. 11022 */ 11023 if (dev->netdev_ops->ndo_get_peer_dev && 11024 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11025 return -EOPNOTSUPP; 11026 11027 switch (dev->pcpu_stat_type) { 11028 case NETDEV_PCPU_STAT_NONE: 11029 return 0; 11030 case NETDEV_PCPU_STAT_LSTATS: 11031 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11032 break; 11033 case NETDEV_PCPU_STAT_TSTATS: 11034 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11035 break; 11036 case NETDEV_PCPU_STAT_DSTATS: 11037 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11038 break; 11039 default: 11040 return -EINVAL; 11041 } 11042 11043 return v ? 0 : -ENOMEM; 11044 } 11045 11046 static void netdev_do_free_pcpu_stats(struct net_device *dev) 11047 { 11048 switch (dev->pcpu_stat_type) { 11049 case NETDEV_PCPU_STAT_NONE: 11050 return; 11051 case NETDEV_PCPU_STAT_LSTATS: 11052 free_percpu(dev->lstats); 11053 break; 11054 case NETDEV_PCPU_STAT_TSTATS: 11055 free_percpu(dev->tstats); 11056 break; 11057 case NETDEV_PCPU_STAT_DSTATS: 11058 free_percpu(dev->dstats); 11059 break; 11060 } 11061 } 11062 11063 static void netdev_free_phy_link_topology(struct net_device *dev) 11064 { 11065 struct phy_link_topology *topo = dev->link_topo; 11066 11067 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11068 xa_destroy(&topo->phys); 11069 kfree(topo); 11070 dev->link_topo = NULL; 11071 } 11072 } 11073 11074 /** 11075 * register_netdevice() - register a network device 11076 * @dev: device to register 11077 * 11078 * Take a prepared network device structure and make it externally accessible. 11079 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11080 * Callers must hold the rtnl lock - you may want register_netdev() 11081 * instead of this. 11082 */ 11083 int register_netdevice(struct net_device *dev) 11084 { 11085 int ret; 11086 struct net *net = dev_net(dev); 11087 11088 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11089 NETDEV_FEATURE_COUNT); 11090 BUG_ON(dev_boot_phase); 11091 ASSERT_RTNL(); 11092 11093 might_sleep(); 11094 11095 /* When net_device's are persistent, this will be fatal. */ 11096 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11097 BUG_ON(!net); 11098 11099 ret = ethtool_check_ops(dev->ethtool_ops); 11100 if (ret) 11101 return ret; 11102 11103 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11104 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11105 mutex_init(&dev->ethtool->rss_lock); 11106 11107 spin_lock_init(&dev->addr_list_lock); 11108 netdev_set_addr_lockdep_class(dev); 11109 11110 ret = dev_get_valid_name(net, dev, dev->name); 11111 if (ret < 0) 11112 goto out; 11113 11114 ret = -ENOMEM; 11115 dev->name_node = netdev_name_node_head_alloc(dev); 11116 if (!dev->name_node) 11117 goto out; 11118 11119 /* Init, if this function is available */ 11120 if (dev->netdev_ops->ndo_init) { 11121 ret = dev->netdev_ops->ndo_init(dev); 11122 if (ret) { 11123 if (ret > 0) 11124 ret = -EIO; 11125 goto err_free_name; 11126 } 11127 } 11128 11129 if (((dev->hw_features | dev->features) & 11130 NETIF_F_HW_VLAN_CTAG_FILTER) && 11131 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11132 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11133 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11134 ret = -EINVAL; 11135 goto err_uninit; 11136 } 11137 11138 ret = netdev_do_alloc_pcpu_stats(dev); 11139 if (ret) 11140 goto err_uninit; 11141 11142 ret = dev_index_reserve(net, dev->ifindex); 11143 if (ret < 0) 11144 goto err_free_pcpu; 11145 dev->ifindex = ret; 11146 11147 /* Transfer changeable features to wanted_features and enable 11148 * software offloads (GSO and GRO). 11149 */ 11150 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11151 dev->features |= NETIF_F_SOFT_FEATURES; 11152 11153 if (dev->udp_tunnel_nic_info) { 11154 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11155 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11156 } 11157 11158 dev->wanted_features = dev->features & dev->hw_features; 11159 11160 if (!(dev->flags & IFF_LOOPBACK)) 11161 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11162 11163 /* If IPv4 TCP segmentation offload is supported we should also 11164 * allow the device to enable segmenting the frame with the option 11165 * of ignoring a static IP ID value. This doesn't enable the 11166 * feature itself but allows the user to enable it later. 11167 */ 11168 if (dev->hw_features & NETIF_F_TSO) 11169 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11170 if (dev->vlan_features & NETIF_F_TSO) 11171 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11172 if (dev->mpls_features & NETIF_F_TSO) 11173 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11174 if (dev->hw_enc_features & NETIF_F_TSO) 11175 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11176 11177 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11178 */ 11179 dev->vlan_features |= NETIF_F_HIGHDMA; 11180 11181 /* Make NETIF_F_SG inheritable to tunnel devices. 11182 */ 11183 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11184 11185 /* Make NETIF_F_SG inheritable to MPLS. 11186 */ 11187 dev->mpls_features |= NETIF_F_SG; 11188 11189 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11190 ret = notifier_to_errno(ret); 11191 if (ret) 11192 goto err_ifindex_release; 11193 11194 ret = netdev_register_kobject(dev); 11195 11196 netdev_lock(dev); 11197 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11198 netdev_unlock(dev); 11199 11200 if (ret) 11201 goto err_uninit_notify; 11202 11203 netdev_lock_ops(dev); 11204 __netdev_update_features(dev); 11205 netdev_unlock_ops(dev); 11206 11207 /* 11208 * Default initial state at registry is that the 11209 * device is present. 11210 */ 11211 11212 set_bit(__LINK_STATE_PRESENT, &dev->state); 11213 11214 linkwatch_init_dev(dev); 11215 11216 dev_init_scheduler(dev); 11217 11218 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11219 list_netdevice(dev); 11220 11221 add_device_randomness(dev->dev_addr, dev->addr_len); 11222 11223 /* If the device has permanent device address, driver should 11224 * set dev_addr and also addr_assign_type should be set to 11225 * NET_ADDR_PERM (default value). 11226 */ 11227 if (dev->addr_assign_type == NET_ADDR_PERM) 11228 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11229 11230 /* Notify protocols, that a new device appeared. */ 11231 netdev_lock_ops(dev); 11232 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11233 netdev_unlock_ops(dev); 11234 ret = notifier_to_errno(ret); 11235 if (ret) { 11236 /* Expect explicit free_netdev() on failure */ 11237 dev->needs_free_netdev = false; 11238 unregister_netdevice_queue(dev, NULL); 11239 goto out; 11240 } 11241 /* 11242 * Prevent userspace races by waiting until the network 11243 * device is fully setup before sending notifications. 11244 */ 11245 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11246 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11247 11248 out: 11249 return ret; 11250 11251 err_uninit_notify: 11252 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11253 err_ifindex_release: 11254 dev_index_release(net, dev->ifindex); 11255 err_free_pcpu: 11256 netdev_do_free_pcpu_stats(dev); 11257 err_uninit: 11258 if (dev->netdev_ops->ndo_uninit) 11259 dev->netdev_ops->ndo_uninit(dev); 11260 if (dev->priv_destructor) 11261 dev->priv_destructor(dev); 11262 err_free_name: 11263 netdev_name_node_free(dev->name_node); 11264 goto out; 11265 } 11266 EXPORT_SYMBOL(register_netdevice); 11267 11268 /* Initialize the core of a dummy net device. 11269 * The setup steps dummy netdevs need which normal netdevs get by going 11270 * through register_netdevice(). 11271 */ 11272 static void init_dummy_netdev(struct net_device *dev) 11273 { 11274 /* make sure we BUG if trying to hit standard 11275 * register/unregister code path 11276 */ 11277 dev->reg_state = NETREG_DUMMY; 11278 11279 /* a dummy interface is started by default */ 11280 set_bit(__LINK_STATE_PRESENT, &dev->state); 11281 set_bit(__LINK_STATE_START, &dev->state); 11282 11283 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11284 * because users of this 'device' dont need to change 11285 * its refcount. 11286 */ 11287 } 11288 11289 /** 11290 * register_netdev - register a network device 11291 * @dev: device to register 11292 * 11293 * Take a completed network device structure and add it to the kernel 11294 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11295 * chain. 0 is returned on success. A negative errno code is returned 11296 * on a failure to set up the device, or if the name is a duplicate. 11297 * 11298 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11299 * and expands the device name if you passed a format string to 11300 * alloc_netdev. 11301 */ 11302 int register_netdev(struct net_device *dev) 11303 { 11304 struct net *net = dev_net(dev); 11305 int err; 11306 11307 if (rtnl_net_lock_killable(net)) 11308 return -EINTR; 11309 11310 err = register_netdevice(dev); 11311 11312 rtnl_net_unlock(net); 11313 11314 return err; 11315 } 11316 EXPORT_SYMBOL(register_netdev); 11317 11318 int netdev_refcnt_read(const struct net_device *dev) 11319 { 11320 #ifdef CONFIG_PCPU_DEV_REFCNT 11321 int i, refcnt = 0; 11322 11323 for_each_possible_cpu(i) 11324 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11325 return refcnt; 11326 #else 11327 return refcount_read(&dev->dev_refcnt); 11328 #endif 11329 } 11330 EXPORT_SYMBOL(netdev_refcnt_read); 11331 11332 int netdev_unregister_timeout_secs __read_mostly = 10; 11333 11334 #define WAIT_REFS_MIN_MSECS 1 11335 #define WAIT_REFS_MAX_MSECS 250 11336 /** 11337 * netdev_wait_allrefs_any - wait until all references are gone. 11338 * @list: list of net_devices to wait on 11339 * 11340 * This is called when unregistering network devices. 11341 * 11342 * Any protocol or device that holds a reference should register 11343 * for netdevice notification, and cleanup and put back the 11344 * reference if they receive an UNREGISTER event. 11345 * We can get stuck here if buggy protocols don't correctly 11346 * call dev_put. 11347 */ 11348 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11349 { 11350 unsigned long rebroadcast_time, warning_time; 11351 struct net_device *dev; 11352 int wait = 0; 11353 11354 rebroadcast_time = warning_time = jiffies; 11355 11356 list_for_each_entry(dev, list, todo_list) 11357 if (netdev_refcnt_read(dev) == 1) 11358 return dev; 11359 11360 while (true) { 11361 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11362 rtnl_lock(); 11363 11364 /* Rebroadcast unregister notification */ 11365 list_for_each_entry(dev, list, todo_list) 11366 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11367 11368 __rtnl_unlock(); 11369 rcu_barrier(); 11370 rtnl_lock(); 11371 11372 list_for_each_entry(dev, list, todo_list) 11373 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11374 &dev->state)) { 11375 /* We must not have linkwatch events 11376 * pending on unregister. If this 11377 * happens, we simply run the queue 11378 * unscheduled, resulting in a noop 11379 * for this device. 11380 */ 11381 linkwatch_run_queue(); 11382 break; 11383 } 11384 11385 __rtnl_unlock(); 11386 11387 rebroadcast_time = jiffies; 11388 } 11389 11390 rcu_barrier(); 11391 11392 if (!wait) { 11393 wait = WAIT_REFS_MIN_MSECS; 11394 } else { 11395 msleep(wait); 11396 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11397 } 11398 11399 list_for_each_entry(dev, list, todo_list) 11400 if (netdev_refcnt_read(dev) == 1) 11401 return dev; 11402 11403 if (time_after(jiffies, warning_time + 11404 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11405 list_for_each_entry(dev, list, todo_list) { 11406 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11407 dev->name, netdev_refcnt_read(dev)); 11408 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11409 } 11410 11411 warning_time = jiffies; 11412 } 11413 } 11414 } 11415 11416 /* The sequence is: 11417 * 11418 * rtnl_lock(); 11419 * ... 11420 * register_netdevice(x1); 11421 * register_netdevice(x2); 11422 * ... 11423 * unregister_netdevice(y1); 11424 * unregister_netdevice(y2); 11425 * ... 11426 * rtnl_unlock(); 11427 * free_netdev(y1); 11428 * free_netdev(y2); 11429 * 11430 * We are invoked by rtnl_unlock(). 11431 * This allows us to deal with problems: 11432 * 1) We can delete sysfs objects which invoke hotplug 11433 * without deadlocking with linkwatch via keventd. 11434 * 2) Since we run with the RTNL semaphore not held, we can sleep 11435 * safely in order to wait for the netdev refcnt to drop to zero. 11436 * 11437 * We must not return until all unregister events added during 11438 * the interval the lock was held have been completed. 11439 */ 11440 void netdev_run_todo(void) 11441 { 11442 struct net_device *dev, *tmp; 11443 struct list_head list; 11444 int cnt; 11445 #ifdef CONFIG_LOCKDEP 11446 struct list_head unlink_list; 11447 11448 list_replace_init(&net_unlink_list, &unlink_list); 11449 11450 while (!list_empty(&unlink_list)) { 11451 dev = list_first_entry(&unlink_list, struct net_device, 11452 unlink_list); 11453 list_del_init(&dev->unlink_list); 11454 dev->nested_level = dev->lower_level - 1; 11455 } 11456 #endif 11457 11458 /* Snapshot list, allow later requests */ 11459 list_replace_init(&net_todo_list, &list); 11460 11461 __rtnl_unlock(); 11462 11463 /* Wait for rcu callbacks to finish before next phase */ 11464 if (!list_empty(&list)) 11465 rcu_barrier(); 11466 11467 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11468 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11469 netdev_WARN(dev, "run_todo but not unregistering\n"); 11470 list_del(&dev->todo_list); 11471 continue; 11472 } 11473 11474 netdev_lock(dev); 11475 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11476 netdev_unlock(dev); 11477 linkwatch_sync_dev(dev); 11478 } 11479 11480 cnt = 0; 11481 while (!list_empty(&list)) { 11482 dev = netdev_wait_allrefs_any(&list); 11483 list_del(&dev->todo_list); 11484 11485 /* paranoia */ 11486 BUG_ON(netdev_refcnt_read(dev) != 1); 11487 BUG_ON(!list_empty(&dev->ptype_all)); 11488 BUG_ON(!list_empty(&dev->ptype_specific)); 11489 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11490 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11491 11492 netdev_do_free_pcpu_stats(dev); 11493 if (dev->priv_destructor) 11494 dev->priv_destructor(dev); 11495 if (dev->needs_free_netdev) 11496 free_netdev(dev); 11497 11498 cnt++; 11499 11500 /* Free network device */ 11501 kobject_put(&dev->dev.kobj); 11502 } 11503 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11504 wake_up(&netdev_unregistering_wq); 11505 } 11506 11507 /* Collate per-cpu network dstats statistics 11508 * 11509 * Read per-cpu network statistics from dev->dstats and populate the related 11510 * fields in @s. 11511 */ 11512 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11513 const struct pcpu_dstats __percpu *dstats) 11514 { 11515 int cpu; 11516 11517 for_each_possible_cpu(cpu) { 11518 u64 rx_packets, rx_bytes, rx_drops; 11519 u64 tx_packets, tx_bytes, tx_drops; 11520 const struct pcpu_dstats *stats; 11521 unsigned int start; 11522 11523 stats = per_cpu_ptr(dstats, cpu); 11524 do { 11525 start = u64_stats_fetch_begin(&stats->syncp); 11526 rx_packets = u64_stats_read(&stats->rx_packets); 11527 rx_bytes = u64_stats_read(&stats->rx_bytes); 11528 rx_drops = u64_stats_read(&stats->rx_drops); 11529 tx_packets = u64_stats_read(&stats->tx_packets); 11530 tx_bytes = u64_stats_read(&stats->tx_bytes); 11531 tx_drops = u64_stats_read(&stats->tx_drops); 11532 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11533 11534 s->rx_packets += rx_packets; 11535 s->rx_bytes += rx_bytes; 11536 s->rx_dropped += rx_drops; 11537 s->tx_packets += tx_packets; 11538 s->tx_bytes += tx_bytes; 11539 s->tx_dropped += tx_drops; 11540 } 11541 } 11542 11543 /* ndo_get_stats64 implementation for dtstats-based accounting. 11544 * 11545 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11546 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11547 */ 11548 static void dev_get_dstats64(const struct net_device *dev, 11549 struct rtnl_link_stats64 *s) 11550 { 11551 netdev_stats_to_stats64(s, &dev->stats); 11552 dev_fetch_dstats(s, dev->dstats); 11553 } 11554 11555 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11556 * all the same fields in the same order as net_device_stats, with only 11557 * the type differing, but rtnl_link_stats64 may have additional fields 11558 * at the end for newer counters. 11559 */ 11560 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11561 const struct net_device_stats *netdev_stats) 11562 { 11563 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11564 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11565 u64 *dst = (u64 *)stats64; 11566 11567 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11568 for (i = 0; i < n; i++) 11569 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11570 /* zero out counters that only exist in rtnl_link_stats64 */ 11571 memset((char *)stats64 + n * sizeof(u64), 0, 11572 sizeof(*stats64) - n * sizeof(u64)); 11573 } 11574 EXPORT_SYMBOL(netdev_stats_to_stats64); 11575 11576 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11577 struct net_device *dev) 11578 { 11579 struct net_device_core_stats __percpu *p; 11580 11581 p = alloc_percpu_gfp(struct net_device_core_stats, 11582 GFP_ATOMIC | __GFP_NOWARN); 11583 11584 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11585 free_percpu(p); 11586 11587 /* This READ_ONCE() pairs with the cmpxchg() above */ 11588 return READ_ONCE(dev->core_stats); 11589 } 11590 11591 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11592 { 11593 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11594 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11595 unsigned long __percpu *field; 11596 11597 if (unlikely(!p)) { 11598 p = netdev_core_stats_alloc(dev); 11599 if (!p) 11600 return; 11601 } 11602 11603 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11604 this_cpu_inc(*field); 11605 } 11606 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11607 11608 /** 11609 * dev_get_stats - get network device statistics 11610 * @dev: device to get statistics from 11611 * @storage: place to store stats 11612 * 11613 * Get network statistics from device. Return @storage. 11614 * The device driver may provide its own method by setting 11615 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11616 * otherwise the internal statistics structure is used. 11617 */ 11618 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11619 struct rtnl_link_stats64 *storage) 11620 { 11621 const struct net_device_ops *ops = dev->netdev_ops; 11622 const struct net_device_core_stats __percpu *p; 11623 11624 /* 11625 * IPv{4,6} and udp tunnels share common stat helpers and use 11626 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11627 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11628 */ 11629 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11630 offsetof(struct pcpu_dstats, rx_bytes)); 11631 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11632 offsetof(struct pcpu_dstats, rx_packets)); 11633 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11634 offsetof(struct pcpu_dstats, tx_bytes)); 11635 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11636 offsetof(struct pcpu_dstats, tx_packets)); 11637 11638 if (ops->ndo_get_stats64) { 11639 memset(storage, 0, sizeof(*storage)); 11640 ops->ndo_get_stats64(dev, storage); 11641 } else if (ops->ndo_get_stats) { 11642 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11643 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11644 dev_get_tstats64(dev, storage); 11645 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11646 dev_get_dstats64(dev, storage); 11647 } else { 11648 netdev_stats_to_stats64(storage, &dev->stats); 11649 } 11650 11651 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11652 p = READ_ONCE(dev->core_stats); 11653 if (p) { 11654 const struct net_device_core_stats *core_stats; 11655 int i; 11656 11657 for_each_possible_cpu(i) { 11658 core_stats = per_cpu_ptr(p, i); 11659 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11660 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11661 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11662 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11663 } 11664 } 11665 return storage; 11666 } 11667 EXPORT_SYMBOL(dev_get_stats); 11668 11669 /** 11670 * dev_fetch_sw_netstats - get per-cpu network device statistics 11671 * @s: place to store stats 11672 * @netstats: per-cpu network stats to read from 11673 * 11674 * Read per-cpu network statistics and populate the related fields in @s. 11675 */ 11676 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11677 const struct pcpu_sw_netstats __percpu *netstats) 11678 { 11679 int cpu; 11680 11681 for_each_possible_cpu(cpu) { 11682 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11683 const struct pcpu_sw_netstats *stats; 11684 unsigned int start; 11685 11686 stats = per_cpu_ptr(netstats, cpu); 11687 do { 11688 start = u64_stats_fetch_begin(&stats->syncp); 11689 rx_packets = u64_stats_read(&stats->rx_packets); 11690 rx_bytes = u64_stats_read(&stats->rx_bytes); 11691 tx_packets = u64_stats_read(&stats->tx_packets); 11692 tx_bytes = u64_stats_read(&stats->tx_bytes); 11693 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11694 11695 s->rx_packets += rx_packets; 11696 s->rx_bytes += rx_bytes; 11697 s->tx_packets += tx_packets; 11698 s->tx_bytes += tx_bytes; 11699 } 11700 } 11701 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11702 11703 /** 11704 * dev_get_tstats64 - ndo_get_stats64 implementation 11705 * @dev: device to get statistics from 11706 * @s: place to store stats 11707 * 11708 * Populate @s from dev->stats and dev->tstats. Can be used as 11709 * ndo_get_stats64() callback. 11710 */ 11711 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11712 { 11713 netdev_stats_to_stats64(s, &dev->stats); 11714 dev_fetch_sw_netstats(s, dev->tstats); 11715 } 11716 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11717 11718 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11719 { 11720 struct netdev_queue *queue = dev_ingress_queue(dev); 11721 11722 #ifdef CONFIG_NET_CLS_ACT 11723 if (queue) 11724 return queue; 11725 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11726 if (!queue) 11727 return NULL; 11728 netdev_init_one_queue(dev, queue, NULL); 11729 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11730 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11731 rcu_assign_pointer(dev->ingress_queue, queue); 11732 #endif 11733 return queue; 11734 } 11735 11736 static const struct ethtool_ops default_ethtool_ops; 11737 11738 void netdev_set_default_ethtool_ops(struct net_device *dev, 11739 const struct ethtool_ops *ops) 11740 { 11741 if (dev->ethtool_ops == &default_ethtool_ops) 11742 dev->ethtool_ops = ops; 11743 } 11744 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11745 11746 /** 11747 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11748 * @dev: netdev to enable the IRQ coalescing on 11749 * 11750 * Sets a conservative default for SW IRQ coalescing. Users can use 11751 * sysfs attributes to override the default values. 11752 */ 11753 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11754 { 11755 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11756 11757 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11758 netdev_set_gro_flush_timeout(dev, 20000); 11759 netdev_set_defer_hard_irqs(dev, 1); 11760 } 11761 } 11762 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11763 11764 /** 11765 * alloc_netdev_mqs - allocate network device 11766 * @sizeof_priv: size of private data to allocate space for 11767 * @name: device name format string 11768 * @name_assign_type: origin of device name 11769 * @setup: callback to initialize device 11770 * @txqs: the number of TX subqueues to allocate 11771 * @rxqs: the number of RX subqueues to allocate 11772 * 11773 * Allocates a struct net_device with private data area for driver use 11774 * and performs basic initialization. Also allocates subqueue structs 11775 * for each queue on the device. 11776 */ 11777 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11778 unsigned char name_assign_type, 11779 void (*setup)(struct net_device *), 11780 unsigned int txqs, unsigned int rxqs) 11781 { 11782 struct net_device *dev; 11783 size_t napi_config_sz; 11784 unsigned int maxqs; 11785 11786 BUG_ON(strlen(name) >= sizeof(dev->name)); 11787 11788 if (txqs < 1) { 11789 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11790 return NULL; 11791 } 11792 11793 if (rxqs < 1) { 11794 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11795 return NULL; 11796 } 11797 11798 maxqs = max(txqs, rxqs); 11799 11800 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11801 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11802 if (!dev) 11803 return NULL; 11804 11805 dev->priv_len = sizeof_priv; 11806 11807 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11808 #ifdef CONFIG_PCPU_DEV_REFCNT 11809 dev->pcpu_refcnt = alloc_percpu(int); 11810 if (!dev->pcpu_refcnt) 11811 goto free_dev; 11812 __dev_hold(dev); 11813 #else 11814 refcount_set(&dev->dev_refcnt, 1); 11815 #endif 11816 11817 if (dev_addr_init(dev)) 11818 goto free_pcpu; 11819 11820 dev_mc_init(dev); 11821 dev_uc_init(dev); 11822 11823 dev_net_set(dev, &init_net); 11824 11825 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11826 dev->xdp_zc_max_segs = 1; 11827 dev->gso_max_segs = GSO_MAX_SEGS; 11828 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11829 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11830 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11831 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11832 dev->tso_max_segs = TSO_MAX_SEGS; 11833 dev->upper_level = 1; 11834 dev->lower_level = 1; 11835 #ifdef CONFIG_LOCKDEP 11836 dev->nested_level = 0; 11837 INIT_LIST_HEAD(&dev->unlink_list); 11838 #endif 11839 11840 INIT_LIST_HEAD(&dev->napi_list); 11841 INIT_LIST_HEAD(&dev->unreg_list); 11842 INIT_LIST_HEAD(&dev->close_list); 11843 INIT_LIST_HEAD(&dev->link_watch_list); 11844 INIT_LIST_HEAD(&dev->adj_list.upper); 11845 INIT_LIST_HEAD(&dev->adj_list.lower); 11846 INIT_LIST_HEAD(&dev->ptype_all); 11847 INIT_LIST_HEAD(&dev->ptype_specific); 11848 INIT_LIST_HEAD(&dev->net_notifier_list); 11849 #ifdef CONFIG_NET_SCHED 11850 hash_init(dev->qdisc_hash); 11851 #endif 11852 11853 mutex_init(&dev->lock); 11854 11855 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11856 setup(dev); 11857 11858 if (!dev->tx_queue_len) { 11859 dev->priv_flags |= IFF_NO_QUEUE; 11860 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11861 } 11862 11863 dev->num_tx_queues = txqs; 11864 dev->real_num_tx_queues = txqs; 11865 if (netif_alloc_netdev_queues(dev)) 11866 goto free_all; 11867 11868 dev->num_rx_queues = rxqs; 11869 dev->real_num_rx_queues = rxqs; 11870 if (netif_alloc_rx_queues(dev)) 11871 goto free_all; 11872 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11873 if (!dev->ethtool) 11874 goto free_all; 11875 11876 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11877 if (!dev->cfg) 11878 goto free_all; 11879 dev->cfg_pending = dev->cfg; 11880 11881 dev->num_napi_configs = maxqs; 11882 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11883 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11884 if (!dev->napi_config) 11885 goto free_all; 11886 11887 strscpy(dev->name, name); 11888 dev->name_assign_type = name_assign_type; 11889 dev->group = INIT_NETDEV_GROUP; 11890 if (!dev->ethtool_ops) 11891 dev->ethtool_ops = &default_ethtool_ops; 11892 11893 nf_hook_netdev_init(dev); 11894 11895 return dev; 11896 11897 free_all: 11898 free_netdev(dev); 11899 return NULL; 11900 11901 free_pcpu: 11902 #ifdef CONFIG_PCPU_DEV_REFCNT 11903 free_percpu(dev->pcpu_refcnt); 11904 free_dev: 11905 #endif 11906 kvfree(dev); 11907 return NULL; 11908 } 11909 EXPORT_SYMBOL(alloc_netdev_mqs); 11910 11911 static void netdev_napi_exit(struct net_device *dev) 11912 { 11913 if (!list_empty(&dev->napi_list)) { 11914 struct napi_struct *p, *n; 11915 11916 netdev_lock(dev); 11917 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11918 __netif_napi_del_locked(p); 11919 netdev_unlock(dev); 11920 11921 synchronize_net(); 11922 } 11923 11924 kvfree(dev->napi_config); 11925 } 11926 11927 /** 11928 * free_netdev - free network device 11929 * @dev: device 11930 * 11931 * This function does the last stage of destroying an allocated device 11932 * interface. The reference to the device object is released. If this 11933 * is the last reference then it will be freed.Must be called in process 11934 * context. 11935 */ 11936 void free_netdev(struct net_device *dev) 11937 { 11938 might_sleep(); 11939 11940 /* When called immediately after register_netdevice() failed the unwind 11941 * handling may still be dismantling the device. Handle that case by 11942 * deferring the free. 11943 */ 11944 if (dev->reg_state == NETREG_UNREGISTERING) { 11945 ASSERT_RTNL(); 11946 dev->needs_free_netdev = true; 11947 return; 11948 } 11949 11950 WARN_ON(dev->cfg != dev->cfg_pending); 11951 kfree(dev->cfg); 11952 kfree(dev->ethtool); 11953 netif_free_tx_queues(dev); 11954 netif_free_rx_queues(dev); 11955 11956 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11957 11958 /* Flush device addresses */ 11959 dev_addr_flush(dev); 11960 11961 netdev_napi_exit(dev); 11962 11963 netif_del_cpu_rmap(dev); 11964 11965 ref_tracker_dir_exit(&dev->refcnt_tracker); 11966 #ifdef CONFIG_PCPU_DEV_REFCNT 11967 free_percpu(dev->pcpu_refcnt); 11968 dev->pcpu_refcnt = NULL; 11969 #endif 11970 free_percpu(dev->core_stats); 11971 dev->core_stats = NULL; 11972 free_percpu(dev->xdp_bulkq); 11973 dev->xdp_bulkq = NULL; 11974 11975 netdev_free_phy_link_topology(dev); 11976 11977 mutex_destroy(&dev->lock); 11978 11979 /* Compatibility with error handling in drivers */ 11980 if (dev->reg_state == NETREG_UNINITIALIZED || 11981 dev->reg_state == NETREG_DUMMY) { 11982 kvfree(dev); 11983 return; 11984 } 11985 11986 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11987 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11988 11989 /* will free via device release */ 11990 put_device(&dev->dev); 11991 } 11992 EXPORT_SYMBOL(free_netdev); 11993 11994 /** 11995 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11996 * @sizeof_priv: size of private data to allocate space for 11997 * 11998 * Return: the allocated net_device on success, NULL otherwise 11999 */ 12000 struct net_device *alloc_netdev_dummy(int sizeof_priv) 12001 { 12002 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12003 init_dummy_netdev); 12004 } 12005 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12006 12007 /** 12008 * synchronize_net - Synchronize with packet receive processing 12009 * 12010 * Wait for packets currently being received to be done. 12011 * Does not block later packets from starting. 12012 */ 12013 void synchronize_net(void) 12014 { 12015 might_sleep(); 12016 if (from_cleanup_net() || rtnl_is_locked()) 12017 synchronize_rcu_expedited(); 12018 else 12019 synchronize_rcu(); 12020 } 12021 EXPORT_SYMBOL(synchronize_net); 12022 12023 static void netdev_rss_contexts_free(struct net_device *dev) 12024 { 12025 struct ethtool_rxfh_context *ctx; 12026 unsigned long context; 12027 12028 mutex_lock(&dev->ethtool->rss_lock); 12029 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12030 xa_erase(&dev->ethtool->rss_ctx, context); 12031 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12032 kfree(ctx); 12033 } 12034 xa_destroy(&dev->ethtool->rss_ctx); 12035 mutex_unlock(&dev->ethtool->rss_lock); 12036 } 12037 12038 /** 12039 * unregister_netdevice_queue - remove device from the kernel 12040 * @dev: device 12041 * @head: list 12042 * 12043 * This function shuts down a device interface and removes it 12044 * from the kernel tables. 12045 * If head not NULL, device is queued to be unregistered later. 12046 * 12047 * Callers must hold the rtnl semaphore. You may want 12048 * unregister_netdev() instead of this. 12049 */ 12050 12051 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12052 { 12053 ASSERT_RTNL(); 12054 12055 if (head) { 12056 list_move_tail(&dev->unreg_list, head); 12057 } else { 12058 LIST_HEAD(single); 12059 12060 list_add(&dev->unreg_list, &single); 12061 unregister_netdevice_many(&single); 12062 } 12063 } 12064 EXPORT_SYMBOL(unregister_netdevice_queue); 12065 12066 static void dev_memory_provider_uninstall(struct net_device *dev) 12067 { 12068 unsigned int i; 12069 12070 for (i = 0; i < dev->real_num_rx_queues; i++) { 12071 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12072 struct pp_memory_provider_params *p = &rxq->mp_params; 12073 12074 if (p->mp_ops && p->mp_ops->uninstall) 12075 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12076 } 12077 } 12078 12079 void unregister_netdevice_many_notify(struct list_head *head, 12080 u32 portid, const struct nlmsghdr *nlh) 12081 { 12082 struct net_device *dev, *tmp; 12083 LIST_HEAD(close_head); 12084 int cnt = 0; 12085 12086 BUG_ON(dev_boot_phase); 12087 ASSERT_RTNL(); 12088 12089 if (list_empty(head)) 12090 return; 12091 12092 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12093 /* Some devices call without registering 12094 * for initialization unwind. Remove those 12095 * devices and proceed with the remaining. 12096 */ 12097 if (dev->reg_state == NETREG_UNINITIALIZED) { 12098 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12099 dev->name, dev); 12100 12101 WARN_ON(1); 12102 list_del(&dev->unreg_list); 12103 continue; 12104 } 12105 dev->dismantle = true; 12106 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12107 } 12108 12109 /* If device is running, close it first. Start with ops locked... */ 12110 list_for_each_entry(dev, head, unreg_list) { 12111 if (netdev_need_ops_lock(dev)) { 12112 list_add_tail(&dev->close_list, &close_head); 12113 netdev_lock(dev); 12114 } 12115 } 12116 netif_close_many(&close_head, true); 12117 /* ... now unlock them and go over the rest. */ 12118 list_for_each_entry(dev, head, unreg_list) { 12119 if (netdev_need_ops_lock(dev)) 12120 netdev_unlock(dev); 12121 else 12122 list_add_tail(&dev->close_list, &close_head); 12123 } 12124 netif_close_many(&close_head, true); 12125 12126 list_for_each_entry(dev, head, unreg_list) { 12127 /* And unlink it from device chain. */ 12128 unlist_netdevice(dev); 12129 netdev_lock(dev); 12130 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12131 netdev_unlock(dev); 12132 } 12133 flush_all_backlogs(); 12134 12135 synchronize_net(); 12136 12137 list_for_each_entry(dev, head, unreg_list) { 12138 struct sk_buff *skb = NULL; 12139 12140 /* Shutdown queueing discipline. */ 12141 netdev_lock_ops(dev); 12142 dev_shutdown(dev); 12143 dev_tcx_uninstall(dev); 12144 dev_xdp_uninstall(dev); 12145 dev_memory_provider_uninstall(dev); 12146 netdev_unlock_ops(dev); 12147 bpf_dev_bound_netdev_unregister(dev); 12148 12149 netdev_offload_xstats_disable_all(dev); 12150 12151 /* Notify protocols, that we are about to destroy 12152 * this device. They should clean all the things. 12153 */ 12154 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12155 12156 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12157 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12158 GFP_KERNEL, NULL, 0, 12159 portid, nlh); 12160 12161 /* 12162 * Flush the unicast and multicast chains 12163 */ 12164 dev_uc_flush(dev); 12165 dev_mc_flush(dev); 12166 12167 netdev_name_node_alt_flush(dev); 12168 netdev_name_node_free(dev->name_node); 12169 12170 netdev_rss_contexts_free(dev); 12171 12172 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12173 12174 if (dev->netdev_ops->ndo_uninit) 12175 dev->netdev_ops->ndo_uninit(dev); 12176 12177 mutex_destroy(&dev->ethtool->rss_lock); 12178 12179 net_shaper_flush_netdev(dev); 12180 12181 if (skb) 12182 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12183 12184 /* Notifier chain MUST detach us all upper devices. */ 12185 WARN_ON(netdev_has_any_upper_dev(dev)); 12186 WARN_ON(netdev_has_any_lower_dev(dev)); 12187 12188 /* Remove entries from kobject tree */ 12189 netdev_unregister_kobject(dev); 12190 #ifdef CONFIG_XPS 12191 /* Remove XPS queueing entries */ 12192 netif_reset_xps_queues_gt(dev, 0); 12193 #endif 12194 } 12195 12196 synchronize_net(); 12197 12198 list_for_each_entry(dev, head, unreg_list) { 12199 netdev_put(dev, &dev->dev_registered_tracker); 12200 net_set_todo(dev); 12201 cnt++; 12202 } 12203 atomic_add(cnt, &dev_unreg_count); 12204 12205 list_del(head); 12206 } 12207 12208 /** 12209 * unregister_netdevice_many - unregister many devices 12210 * @head: list of devices 12211 * 12212 * Note: As most callers use a stack allocated list_head, 12213 * we force a list_del() to make sure stack won't be corrupted later. 12214 */ 12215 void unregister_netdevice_many(struct list_head *head) 12216 { 12217 unregister_netdevice_many_notify(head, 0, NULL); 12218 } 12219 EXPORT_SYMBOL(unregister_netdevice_many); 12220 12221 /** 12222 * unregister_netdev - remove device from the kernel 12223 * @dev: device 12224 * 12225 * This function shuts down a device interface and removes it 12226 * from the kernel tables. 12227 * 12228 * This is just a wrapper for unregister_netdevice that takes 12229 * the rtnl semaphore. In general you want to use this and not 12230 * unregister_netdevice. 12231 */ 12232 void unregister_netdev(struct net_device *dev) 12233 { 12234 rtnl_net_dev_lock(dev); 12235 unregister_netdevice(dev); 12236 rtnl_net_dev_unlock(dev); 12237 } 12238 EXPORT_SYMBOL(unregister_netdev); 12239 12240 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12241 const char *pat, int new_ifindex, 12242 struct netlink_ext_ack *extack) 12243 { 12244 struct netdev_name_node *name_node; 12245 struct net *net_old = dev_net(dev); 12246 char new_name[IFNAMSIZ] = {}; 12247 int err, new_nsid; 12248 12249 ASSERT_RTNL(); 12250 12251 /* Don't allow namespace local devices to be moved. */ 12252 err = -EINVAL; 12253 if (dev->netns_immutable) { 12254 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12255 goto out; 12256 } 12257 12258 /* Ensure the device has been registered */ 12259 if (dev->reg_state != NETREG_REGISTERED) { 12260 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12261 goto out; 12262 } 12263 12264 /* Get out if there is nothing todo */ 12265 err = 0; 12266 if (net_eq(net_old, net)) 12267 goto out; 12268 12269 /* Pick the destination device name, and ensure 12270 * we can use it in the destination network namespace. 12271 */ 12272 err = -EEXIST; 12273 if (netdev_name_in_use(net, dev->name)) { 12274 /* We get here if we can't use the current device name */ 12275 if (!pat) { 12276 NL_SET_ERR_MSG(extack, 12277 "An interface with the same name exists in the target netns"); 12278 goto out; 12279 } 12280 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12281 if (err < 0) { 12282 NL_SET_ERR_MSG_FMT(extack, 12283 "Unable to use '%s' for the new interface name in the target netns", 12284 pat); 12285 goto out; 12286 } 12287 } 12288 /* Check that none of the altnames conflicts. */ 12289 err = -EEXIST; 12290 netdev_for_each_altname(dev, name_node) { 12291 if (netdev_name_in_use(net, name_node->name)) { 12292 NL_SET_ERR_MSG_FMT(extack, 12293 "An interface with the altname %s exists in the target netns", 12294 name_node->name); 12295 goto out; 12296 } 12297 } 12298 12299 /* Check that new_ifindex isn't used yet. */ 12300 if (new_ifindex) { 12301 err = dev_index_reserve(net, new_ifindex); 12302 if (err < 0) { 12303 NL_SET_ERR_MSG_FMT(extack, 12304 "The ifindex %d is not available in the target netns", 12305 new_ifindex); 12306 goto out; 12307 } 12308 } else { 12309 /* If there is an ifindex conflict assign a new one */ 12310 err = dev_index_reserve(net, dev->ifindex); 12311 if (err == -EBUSY) 12312 err = dev_index_reserve(net, 0); 12313 if (err < 0) { 12314 NL_SET_ERR_MSG(extack, 12315 "Unable to allocate a new ifindex in the target netns"); 12316 goto out; 12317 } 12318 new_ifindex = err; 12319 } 12320 12321 /* 12322 * And now a mini version of register_netdevice unregister_netdevice. 12323 */ 12324 12325 netdev_lock_ops(dev); 12326 /* If device is running close it first. */ 12327 netif_close(dev); 12328 /* And unlink it from device chain */ 12329 unlist_netdevice(dev); 12330 12331 if (!netdev_need_ops_lock(dev)) 12332 netdev_lock(dev); 12333 dev->moving_ns = true; 12334 netdev_unlock(dev); 12335 12336 synchronize_net(); 12337 12338 /* Shutdown queueing discipline. */ 12339 netdev_lock_ops(dev); 12340 dev_shutdown(dev); 12341 netdev_unlock_ops(dev); 12342 12343 /* Notify protocols, that we are about to destroy 12344 * this device. They should clean all the things. 12345 * 12346 * Note that dev->reg_state stays at NETREG_REGISTERED. 12347 * This is wanted because this way 8021q and macvlan know 12348 * the device is just moving and can keep their slaves up. 12349 */ 12350 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12351 rcu_barrier(); 12352 12353 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12354 12355 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12356 new_ifindex); 12357 12358 /* 12359 * Flush the unicast and multicast chains 12360 */ 12361 dev_uc_flush(dev); 12362 dev_mc_flush(dev); 12363 12364 /* Send a netdev-removed uevent to the old namespace */ 12365 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12366 netdev_adjacent_del_links(dev); 12367 12368 /* Move per-net netdevice notifiers that are following the netdevice */ 12369 move_netdevice_notifiers_dev_net(dev, net); 12370 12371 /* Actually switch the network namespace */ 12372 netdev_lock(dev); 12373 dev_net_set(dev, net); 12374 netdev_unlock(dev); 12375 dev->ifindex = new_ifindex; 12376 12377 if (new_name[0]) { 12378 /* Rename the netdev to prepared name */ 12379 write_seqlock_bh(&netdev_rename_lock); 12380 strscpy(dev->name, new_name, IFNAMSIZ); 12381 write_sequnlock_bh(&netdev_rename_lock); 12382 } 12383 12384 /* Fixup kobjects */ 12385 dev_set_uevent_suppress(&dev->dev, 1); 12386 err = device_rename(&dev->dev, dev->name); 12387 dev_set_uevent_suppress(&dev->dev, 0); 12388 WARN_ON(err); 12389 12390 /* Send a netdev-add uevent to the new namespace */ 12391 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12392 netdev_adjacent_add_links(dev); 12393 12394 /* Adapt owner in case owning user namespace of target network 12395 * namespace is different from the original one. 12396 */ 12397 err = netdev_change_owner(dev, net_old, net); 12398 WARN_ON(err); 12399 12400 netdev_lock(dev); 12401 dev->moving_ns = false; 12402 if (!netdev_need_ops_lock(dev)) 12403 netdev_unlock(dev); 12404 12405 /* Add the device back in the hashes */ 12406 list_netdevice(dev); 12407 /* Notify protocols, that a new device appeared. */ 12408 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12409 netdev_unlock_ops(dev); 12410 12411 /* 12412 * Prevent userspace races by waiting until the network 12413 * device is fully setup before sending notifications. 12414 */ 12415 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12416 12417 synchronize_net(); 12418 err = 0; 12419 out: 12420 return err; 12421 } 12422 12423 static int dev_cpu_dead(unsigned int oldcpu) 12424 { 12425 struct sk_buff **list_skb; 12426 struct sk_buff *skb; 12427 unsigned int cpu; 12428 struct softnet_data *sd, *oldsd, *remsd = NULL; 12429 12430 local_irq_disable(); 12431 cpu = smp_processor_id(); 12432 sd = &per_cpu(softnet_data, cpu); 12433 oldsd = &per_cpu(softnet_data, oldcpu); 12434 12435 /* Find end of our completion_queue. */ 12436 list_skb = &sd->completion_queue; 12437 while (*list_skb) 12438 list_skb = &(*list_skb)->next; 12439 /* Append completion queue from offline CPU. */ 12440 *list_skb = oldsd->completion_queue; 12441 oldsd->completion_queue = NULL; 12442 12443 /* Append output queue from offline CPU. */ 12444 if (oldsd->output_queue) { 12445 *sd->output_queue_tailp = oldsd->output_queue; 12446 sd->output_queue_tailp = oldsd->output_queue_tailp; 12447 oldsd->output_queue = NULL; 12448 oldsd->output_queue_tailp = &oldsd->output_queue; 12449 } 12450 /* Append NAPI poll list from offline CPU, with one exception : 12451 * process_backlog() must be called by cpu owning percpu backlog. 12452 * We properly handle process_queue & input_pkt_queue later. 12453 */ 12454 while (!list_empty(&oldsd->poll_list)) { 12455 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12456 struct napi_struct, 12457 poll_list); 12458 12459 list_del_init(&napi->poll_list); 12460 if (napi->poll == process_backlog) 12461 napi->state &= NAPIF_STATE_THREADED; 12462 else 12463 ____napi_schedule(sd, napi); 12464 } 12465 12466 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12467 local_irq_enable(); 12468 12469 if (!use_backlog_threads()) { 12470 #ifdef CONFIG_RPS 12471 remsd = oldsd->rps_ipi_list; 12472 oldsd->rps_ipi_list = NULL; 12473 #endif 12474 /* send out pending IPI's on offline CPU */ 12475 net_rps_send_ipi(remsd); 12476 } 12477 12478 /* Process offline CPU's input_pkt_queue */ 12479 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12480 netif_rx(skb); 12481 rps_input_queue_head_incr(oldsd); 12482 } 12483 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12484 netif_rx(skb); 12485 rps_input_queue_head_incr(oldsd); 12486 } 12487 12488 return 0; 12489 } 12490 12491 /** 12492 * netdev_increment_features - increment feature set by one 12493 * @all: current feature set 12494 * @one: new feature set 12495 * @mask: mask feature set 12496 * 12497 * Computes a new feature set after adding a device with feature set 12498 * @one to the master device with current feature set @all. Will not 12499 * enable anything that is off in @mask. Returns the new feature set. 12500 */ 12501 netdev_features_t netdev_increment_features(netdev_features_t all, 12502 netdev_features_t one, netdev_features_t mask) 12503 { 12504 if (mask & NETIF_F_HW_CSUM) 12505 mask |= NETIF_F_CSUM_MASK; 12506 mask |= NETIF_F_VLAN_CHALLENGED; 12507 12508 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12509 all &= one | ~NETIF_F_ALL_FOR_ALL; 12510 12511 /* If one device supports hw checksumming, set for all. */ 12512 if (all & NETIF_F_HW_CSUM) 12513 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12514 12515 return all; 12516 } 12517 EXPORT_SYMBOL(netdev_increment_features); 12518 12519 static struct hlist_head * __net_init netdev_create_hash(void) 12520 { 12521 int i; 12522 struct hlist_head *hash; 12523 12524 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12525 if (hash != NULL) 12526 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12527 INIT_HLIST_HEAD(&hash[i]); 12528 12529 return hash; 12530 } 12531 12532 /* Initialize per network namespace state */ 12533 static int __net_init netdev_init(struct net *net) 12534 { 12535 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12536 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12537 12538 INIT_LIST_HEAD(&net->dev_base_head); 12539 12540 net->dev_name_head = netdev_create_hash(); 12541 if (net->dev_name_head == NULL) 12542 goto err_name; 12543 12544 net->dev_index_head = netdev_create_hash(); 12545 if (net->dev_index_head == NULL) 12546 goto err_idx; 12547 12548 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12549 12550 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12551 12552 return 0; 12553 12554 err_idx: 12555 kfree(net->dev_name_head); 12556 err_name: 12557 return -ENOMEM; 12558 } 12559 12560 /** 12561 * netdev_drivername - network driver for the device 12562 * @dev: network device 12563 * 12564 * Determine network driver for device. 12565 */ 12566 const char *netdev_drivername(const struct net_device *dev) 12567 { 12568 const struct device_driver *driver; 12569 const struct device *parent; 12570 const char *empty = ""; 12571 12572 parent = dev->dev.parent; 12573 if (!parent) 12574 return empty; 12575 12576 driver = parent->driver; 12577 if (driver && driver->name) 12578 return driver->name; 12579 return empty; 12580 } 12581 12582 static void __netdev_printk(const char *level, const struct net_device *dev, 12583 struct va_format *vaf) 12584 { 12585 if (dev && dev->dev.parent) { 12586 dev_printk_emit(level[1] - '0', 12587 dev->dev.parent, 12588 "%s %s %s%s: %pV", 12589 dev_driver_string(dev->dev.parent), 12590 dev_name(dev->dev.parent), 12591 netdev_name(dev), netdev_reg_state(dev), 12592 vaf); 12593 } else if (dev) { 12594 printk("%s%s%s: %pV", 12595 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12596 } else { 12597 printk("%s(NULL net_device): %pV", level, vaf); 12598 } 12599 } 12600 12601 void netdev_printk(const char *level, const struct net_device *dev, 12602 const char *format, ...) 12603 { 12604 struct va_format vaf; 12605 va_list args; 12606 12607 va_start(args, format); 12608 12609 vaf.fmt = format; 12610 vaf.va = &args; 12611 12612 __netdev_printk(level, dev, &vaf); 12613 12614 va_end(args); 12615 } 12616 EXPORT_SYMBOL(netdev_printk); 12617 12618 #define define_netdev_printk_level(func, level) \ 12619 void func(const struct net_device *dev, const char *fmt, ...) \ 12620 { \ 12621 struct va_format vaf; \ 12622 va_list args; \ 12623 \ 12624 va_start(args, fmt); \ 12625 \ 12626 vaf.fmt = fmt; \ 12627 vaf.va = &args; \ 12628 \ 12629 __netdev_printk(level, dev, &vaf); \ 12630 \ 12631 va_end(args); \ 12632 } \ 12633 EXPORT_SYMBOL(func); 12634 12635 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12636 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12637 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12638 define_netdev_printk_level(netdev_err, KERN_ERR); 12639 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12640 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12641 define_netdev_printk_level(netdev_info, KERN_INFO); 12642 12643 static void __net_exit netdev_exit(struct net *net) 12644 { 12645 kfree(net->dev_name_head); 12646 kfree(net->dev_index_head); 12647 xa_destroy(&net->dev_by_index); 12648 if (net != &init_net) 12649 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12650 } 12651 12652 static struct pernet_operations __net_initdata netdev_net_ops = { 12653 .init = netdev_init, 12654 .exit = netdev_exit, 12655 }; 12656 12657 static void __net_exit default_device_exit_net(struct net *net) 12658 { 12659 struct netdev_name_node *name_node, *tmp; 12660 struct net_device *dev, *aux; 12661 /* 12662 * Push all migratable network devices back to the 12663 * initial network namespace 12664 */ 12665 ASSERT_RTNL(); 12666 for_each_netdev_safe(net, dev, aux) { 12667 int err; 12668 char fb_name[IFNAMSIZ]; 12669 12670 /* Ignore unmoveable devices (i.e. loopback) */ 12671 if (dev->netns_immutable) 12672 continue; 12673 12674 /* Leave virtual devices for the generic cleanup */ 12675 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12676 continue; 12677 12678 /* Push remaining network devices to init_net */ 12679 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12680 if (netdev_name_in_use(&init_net, fb_name)) 12681 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12682 12683 netdev_for_each_altname_safe(dev, name_node, tmp) 12684 if (netdev_name_in_use(&init_net, name_node->name)) 12685 __netdev_name_node_alt_destroy(name_node); 12686 12687 err = dev_change_net_namespace(dev, &init_net, fb_name); 12688 if (err) { 12689 pr_emerg("%s: failed to move %s to init_net: %d\n", 12690 __func__, dev->name, err); 12691 BUG(); 12692 } 12693 } 12694 } 12695 12696 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12697 { 12698 /* At exit all network devices most be removed from a network 12699 * namespace. Do this in the reverse order of registration. 12700 * Do this across as many network namespaces as possible to 12701 * improve batching efficiency. 12702 */ 12703 struct net_device *dev; 12704 struct net *net; 12705 LIST_HEAD(dev_kill_list); 12706 12707 rtnl_lock(); 12708 list_for_each_entry(net, net_list, exit_list) { 12709 default_device_exit_net(net); 12710 cond_resched(); 12711 } 12712 12713 list_for_each_entry(net, net_list, exit_list) { 12714 for_each_netdev_reverse(net, dev) { 12715 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12716 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12717 else 12718 unregister_netdevice_queue(dev, &dev_kill_list); 12719 } 12720 } 12721 unregister_netdevice_many(&dev_kill_list); 12722 rtnl_unlock(); 12723 } 12724 12725 static struct pernet_operations __net_initdata default_device_ops = { 12726 .exit_batch = default_device_exit_batch, 12727 }; 12728 12729 static void __init net_dev_struct_check(void) 12730 { 12731 /* TX read-mostly hotpath */ 12732 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12733 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12734 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12735 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12736 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12737 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12738 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12739 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12740 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12741 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12742 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12743 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12744 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12745 #ifdef CONFIG_XPS 12746 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12747 #endif 12748 #ifdef CONFIG_NETFILTER_EGRESS 12749 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12750 #endif 12751 #ifdef CONFIG_NET_XGRESS 12752 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12753 #endif 12754 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12755 12756 /* TXRX read-mostly hotpath */ 12757 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12758 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12759 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12760 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12761 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12762 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12763 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12764 12765 /* RX read-mostly hotpath */ 12766 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12767 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12768 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12769 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12770 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12771 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12772 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12773 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12774 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12775 #ifdef CONFIG_NETPOLL 12776 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12777 #endif 12778 #ifdef CONFIG_NET_XGRESS 12779 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12780 #endif 12781 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12782 } 12783 12784 /* 12785 * Initialize the DEV module. At boot time this walks the device list and 12786 * unhooks any devices that fail to initialise (normally hardware not 12787 * present) and leaves us with a valid list of present and active devices. 12788 * 12789 */ 12790 12791 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12792 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12793 12794 static int net_page_pool_create(int cpuid) 12795 { 12796 #if IS_ENABLED(CONFIG_PAGE_POOL) 12797 struct page_pool_params page_pool_params = { 12798 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12799 .flags = PP_FLAG_SYSTEM_POOL, 12800 .nid = cpu_to_mem(cpuid), 12801 }; 12802 struct page_pool *pp_ptr; 12803 int err; 12804 12805 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12806 if (IS_ERR(pp_ptr)) 12807 return -ENOMEM; 12808 12809 err = xdp_reg_page_pool(pp_ptr); 12810 if (err) { 12811 page_pool_destroy(pp_ptr); 12812 return err; 12813 } 12814 12815 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12816 #endif 12817 return 0; 12818 } 12819 12820 static int backlog_napi_should_run(unsigned int cpu) 12821 { 12822 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12823 struct napi_struct *napi = &sd->backlog; 12824 12825 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12826 } 12827 12828 static void run_backlog_napi(unsigned int cpu) 12829 { 12830 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12831 12832 napi_threaded_poll_loop(&sd->backlog); 12833 } 12834 12835 static void backlog_napi_setup(unsigned int cpu) 12836 { 12837 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12838 struct napi_struct *napi = &sd->backlog; 12839 12840 napi->thread = this_cpu_read(backlog_napi); 12841 set_bit(NAPI_STATE_THREADED, &napi->state); 12842 } 12843 12844 static struct smp_hotplug_thread backlog_threads = { 12845 .store = &backlog_napi, 12846 .thread_should_run = backlog_napi_should_run, 12847 .thread_fn = run_backlog_napi, 12848 .thread_comm = "backlog_napi/%u", 12849 .setup = backlog_napi_setup, 12850 }; 12851 12852 /* 12853 * This is called single threaded during boot, so no need 12854 * to take the rtnl semaphore. 12855 */ 12856 static int __init net_dev_init(void) 12857 { 12858 int i, rc = -ENOMEM; 12859 12860 BUG_ON(!dev_boot_phase); 12861 12862 net_dev_struct_check(); 12863 12864 if (dev_proc_init()) 12865 goto out; 12866 12867 if (netdev_kobject_init()) 12868 goto out; 12869 12870 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12871 INIT_LIST_HEAD(&ptype_base[i]); 12872 12873 if (register_pernet_subsys(&netdev_net_ops)) 12874 goto out; 12875 12876 /* 12877 * Initialise the packet receive queues. 12878 */ 12879 12880 flush_backlogs_fallback = flush_backlogs_alloc(); 12881 if (!flush_backlogs_fallback) 12882 goto out; 12883 12884 for_each_possible_cpu(i) { 12885 struct softnet_data *sd = &per_cpu(softnet_data, i); 12886 12887 skb_queue_head_init(&sd->input_pkt_queue); 12888 skb_queue_head_init(&sd->process_queue); 12889 #ifdef CONFIG_XFRM_OFFLOAD 12890 skb_queue_head_init(&sd->xfrm_backlog); 12891 #endif 12892 INIT_LIST_HEAD(&sd->poll_list); 12893 sd->output_queue_tailp = &sd->output_queue; 12894 #ifdef CONFIG_RPS 12895 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12896 sd->cpu = i; 12897 #endif 12898 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12899 spin_lock_init(&sd->defer_lock); 12900 12901 gro_init(&sd->backlog.gro); 12902 sd->backlog.poll = process_backlog; 12903 sd->backlog.weight = weight_p; 12904 INIT_LIST_HEAD(&sd->backlog.poll_list); 12905 12906 if (net_page_pool_create(i)) 12907 goto out; 12908 } 12909 if (use_backlog_threads()) 12910 smpboot_register_percpu_thread(&backlog_threads); 12911 12912 dev_boot_phase = 0; 12913 12914 /* The loopback device is special if any other network devices 12915 * is present in a network namespace the loopback device must 12916 * be present. Since we now dynamically allocate and free the 12917 * loopback device ensure this invariant is maintained by 12918 * keeping the loopback device as the first device on the 12919 * list of network devices. Ensuring the loopback devices 12920 * is the first device that appears and the last network device 12921 * that disappears. 12922 */ 12923 if (register_pernet_device(&loopback_net_ops)) 12924 goto out; 12925 12926 if (register_pernet_device(&default_device_ops)) 12927 goto out; 12928 12929 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12930 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12931 12932 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12933 NULL, dev_cpu_dead); 12934 WARN_ON(rc < 0); 12935 rc = 0; 12936 12937 /* avoid static key IPIs to isolated CPUs */ 12938 if (housekeeping_enabled(HK_TYPE_MISC)) 12939 net_enable_timestamp(); 12940 out: 12941 if (rc < 0) { 12942 for_each_possible_cpu(i) { 12943 struct page_pool *pp_ptr; 12944 12945 pp_ptr = per_cpu(system_page_pool.pool, i); 12946 if (!pp_ptr) 12947 continue; 12948 12949 xdp_unreg_page_pool(pp_ptr); 12950 page_pool_destroy(pp_ptr); 12951 per_cpu(system_page_pool.pool, i) = NULL; 12952 } 12953 } 12954 12955 return rc; 12956 } 12957 12958 subsys_initcall(net_dev_init); 12959