1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static DEFINE_SPINLOCK(offload_lock); 180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 181 static struct list_head ptype_all __read_mostly; /* Taps */ 182 static struct list_head offload_base __read_mostly; 183 184 /* 185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 186 * semaphore. 187 * 188 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 189 * 190 * Writers must hold the rtnl semaphore while they loop through the 191 * dev_base_head list, and hold dev_base_lock for writing when they do the 192 * actual updates. This allows pure readers to access the list even 193 * while a writer is preparing to update it. 194 * 195 * To put it another way, dev_base_lock is held for writing only to 196 * protect against pure readers; the rtnl semaphore provides the 197 * protection against other writers. 198 * 199 * See, for example usages, register_netdevice() and 200 * unregister_netdevice(), which must be called with the rtnl 201 * semaphore held. 202 */ 203 DEFINE_RWLOCK(dev_base_lock); 204 EXPORT_SYMBOL(dev_base_lock); 205 206 DEFINE_SEQLOCK(devnet_rename_seq); 207 208 static inline void dev_base_seq_inc(struct net *net) 209 { 210 while (++net->dev_base_seq == 0); 211 } 212 213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 214 { 215 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 216 217 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 218 } 219 220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 221 { 222 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 223 } 224 225 static inline void rps_lock(struct softnet_data *sd) 226 { 227 #ifdef CONFIG_RPS 228 spin_lock(&sd->input_pkt_queue.lock); 229 #endif 230 } 231 232 static inline void rps_unlock(struct softnet_data *sd) 233 { 234 #ifdef CONFIG_RPS 235 spin_unlock(&sd->input_pkt_queue.lock); 236 #endif 237 } 238 239 /* Device list insertion */ 240 static int list_netdevice(struct net_device *dev) 241 { 242 struct net *net = dev_net(dev); 243 244 ASSERT_RTNL(); 245 246 write_lock_bh(&dev_base_lock); 247 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 248 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 249 hlist_add_head_rcu(&dev->index_hlist, 250 dev_index_hash(net, dev->ifindex)); 251 write_unlock_bh(&dev_base_lock); 252 253 dev_base_seq_inc(net); 254 255 return 0; 256 } 257 258 /* Device list removal 259 * caller must respect a RCU grace period before freeing/reusing dev 260 */ 261 static void unlist_netdevice(struct net_device *dev) 262 { 263 ASSERT_RTNL(); 264 265 /* Unlink dev from the device chain */ 266 write_lock_bh(&dev_base_lock); 267 list_del_rcu(&dev->dev_list); 268 hlist_del_rcu(&dev->name_hlist); 269 hlist_del_rcu(&dev->index_hlist); 270 write_unlock_bh(&dev_base_lock); 271 272 dev_base_seq_inc(dev_net(dev)); 273 } 274 275 /* 276 * Our notifier list 277 */ 278 279 static RAW_NOTIFIER_HEAD(netdev_chain); 280 281 /* 282 * Device drivers call our routines to queue packets here. We empty the 283 * queue in the local softnet handler. 284 */ 285 286 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 287 EXPORT_PER_CPU_SYMBOL(softnet_data); 288 289 #ifdef CONFIG_LOCKDEP 290 /* 291 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 292 * according to dev->type 293 */ 294 static const unsigned short netdev_lock_type[] = 295 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 296 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 297 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 298 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 299 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 300 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 301 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 302 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 303 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 304 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 305 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 306 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 307 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 308 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 309 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 310 311 static const char *const netdev_lock_name[] = 312 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 313 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 314 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 315 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 316 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 317 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 318 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 319 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 320 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 321 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 322 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 323 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 324 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 325 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 326 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 327 328 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 329 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 330 331 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 332 { 333 int i; 334 335 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 336 if (netdev_lock_type[i] == dev_type) 337 return i; 338 /* the last key is used by default */ 339 return ARRAY_SIZE(netdev_lock_type) - 1; 340 } 341 342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 343 unsigned short dev_type) 344 { 345 int i; 346 347 i = netdev_lock_pos(dev_type); 348 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 353 { 354 int i; 355 356 i = netdev_lock_pos(dev->type); 357 lockdep_set_class_and_name(&dev->addr_list_lock, 358 &netdev_addr_lock_key[i], 359 netdev_lock_name[i]); 360 } 361 #else 362 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 363 unsigned short dev_type) 364 { 365 } 366 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 367 { 368 } 369 #endif 370 371 /******************************************************************************* 372 373 Protocol management and registration routines 374 375 *******************************************************************************/ 376 377 /* 378 * Add a protocol ID to the list. Now that the input handler is 379 * smarter we can dispense with all the messy stuff that used to be 380 * here. 381 * 382 * BEWARE!!! Protocol handlers, mangling input packets, 383 * MUST BE last in hash buckets and checking protocol handlers 384 * MUST start from promiscuous ptype_all chain in net_bh. 385 * It is true now, do not change it. 386 * Explanation follows: if protocol handler, mangling packet, will 387 * be the first on list, it is not able to sense, that packet 388 * is cloned and should be copied-on-write, so that it will 389 * change it and subsequent readers will get broken packet. 390 * --ANK (980803) 391 */ 392 393 static inline struct list_head *ptype_head(const struct packet_type *pt) 394 { 395 if (pt->type == htons(ETH_P_ALL)) 396 return &ptype_all; 397 else 398 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 399 } 400 401 /** 402 * dev_add_pack - add packet handler 403 * @pt: packet type declaration 404 * 405 * Add a protocol handler to the networking stack. The passed &packet_type 406 * is linked into kernel lists and may not be freed until it has been 407 * removed from the kernel lists. 408 * 409 * This call does not sleep therefore it can not 410 * guarantee all CPU's that are in middle of receiving packets 411 * will see the new packet type (until the next received packet). 412 */ 413 414 void dev_add_pack(struct packet_type *pt) 415 { 416 struct list_head *head = ptype_head(pt); 417 418 spin_lock(&ptype_lock); 419 list_add_rcu(&pt->list, head); 420 spin_unlock(&ptype_lock); 421 } 422 EXPORT_SYMBOL(dev_add_pack); 423 424 /** 425 * __dev_remove_pack - remove packet handler 426 * @pt: packet type declaration 427 * 428 * Remove a protocol handler that was previously added to the kernel 429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 430 * from the kernel lists and can be freed or reused once this function 431 * returns. 432 * 433 * The packet type might still be in use by receivers 434 * and must not be freed until after all the CPU's have gone 435 * through a quiescent state. 436 */ 437 void __dev_remove_pack(struct packet_type *pt) 438 { 439 struct list_head *head = ptype_head(pt); 440 struct packet_type *pt1; 441 442 spin_lock(&ptype_lock); 443 444 list_for_each_entry(pt1, head, list) { 445 if (pt == pt1) { 446 list_del_rcu(&pt->list); 447 goto out; 448 } 449 } 450 451 pr_warn("dev_remove_pack: %p not found\n", pt); 452 out: 453 spin_unlock(&ptype_lock); 454 } 455 EXPORT_SYMBOL(__dev_remove_pack); 456 457 /** 458 * dev_remove_pack - remove packet handler 459 * @pt: packet type declaration 460 * 461 * Remove a protocol handler that was previously added to the kernel 462 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 463 * from the kernel lists and can be freed or reused once this function 464 * returns. 465 * 466 * This call sleeps to guarantee that no CPU is looking at the packet 467 * type after return. 468 */ 469 void dev_remove_pack(struct packet_type *pt) 470 { 471 __dev_remove_pack(pt); 472 473 synchronize_net(); 474 } 475 EXPORT_SYMBOL(dev_remove_pack); 476 477 478 /** 479 * dev_add_offload - register offload handlers 480 * @po: protocol offload declaration 481 * 482 * Add protocol offload handlers to the networking stack. The passed 483 * &proto_offload is linked into kernel lists and may not be freed until 484 * it has been removed from the kernel lists. 485 * 486 * This call does not sleep therefore it can not 487 * guarantee all CPU's that are in middle of receiving packets 488 * will see the new offload handlers (until the next received packet). 489 */ 490 void dev_add_offload(struct packet_offload *po) 491 { 492 struct list_head *head = &offload_base; 493 494 spin_lock(&offload_lock); 495 list_add_rcu(&po->list, head); 496 spin_unlock(&offload_lock); 497 } 498 EXPORT_SYMBOL(dev_add_offload); 499 500 /** 501 * __dev_remove_offload - remove offload handler 502 * @po: packet offload declaration 503 * 504 * Remove a protocol offload handler that was previously added to the 505 * kernel offload handlers by dev_add_offload(). The passed &offload_type 506 * is removed from the kernel lists and can be freed or reused once this 507 * function returns. 508 * 509 * The packet type might still be in use by receivers 510 * and must not be freed until after all the CPU's have gone 511 * through a quiescent state. 512 */ 513 void __dev_remove_offload(struct packet_offload *po) 514 { 515 struct list_head *head = &offload_base; 516 struct packet_offload *po1; 517 518 spin_lock(&offload_lock); 519 520 list_for_each_entry(po1, head, list) { 521 if (po == po1) { 522 list_del_rcu(&po->list); 523 goto out; 524 } 525 } 526 527 pr_warn("dev_remove_offload: %p not found\n", po); 528 out: 529 spin_unlock(&offload_lock); 530 } 531 EXPORT_SYMBOL(__dev_remove_offload); 532 533 /** 534 * dev_remove_offload - remove packet offload handler 535 * @po: packet offload declaration 536 * 537 * Remove a packet offload handler that was previously added to the kernel 538 * offload handlers by dev_add_offload(). The passed &offload_type is 539 * removed from the kernel lists and can be freed or reused once this 540 * function returns. 541 * 542 * This call sleeps to guarantee that no CPU is looking at the packet 543 * type after return. 544 */ 545 void dev_remove_offload(struct packet_offload *po) 546 { 547 __dev_remove_offload(po); 548 549 synchronize_net(); 550 } 551 EXPORT_SYMBOL(dev_remove_offload); 552 553 /****************************************************************************** 554 555 Device Boot-time Settings Routines 556 557 *******************************************************************************/ 558 559 /* Boot time configuration table */ 560 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 561 562 /** 563 * netdev_boot_setup_add - add new setup entry 564 * @name: name of the device 565 * @map: configured settings for the device 566 * 567 * Adds new setup entry to the dev_boot_setup list. The function 568 * returns 0 on error and 1 on success. This is a generic routine to 569 * all netdevices. 570 */ 571 static int netdev_boot_setup_add(char *name, struct ifmap *map) 572 { 573 struct netdev_boot_setup *s; 574 int i; 575 576 s = dev_boot_setup; 577 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 578 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 579 memset(s[i].name, 0, sizeof(s[i].name)); 580 strlcpy(s[i].name, name, IFNAMSIZ); 581 memcpy(&s[i].map, map, sizeof(s[i].map)); 582 break; 583 } 584 } 585 586 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 587 } 588 589 /** 590 * netdev_boot_setup_check - check boot time settings 591 * @dev: the netdevice 592 * 593 * Check boot time settings for the device. 594 * The found settings are set for the device to be used 595 * later in the device probing. 596 * Returns 0 if no settings found, 1 if they are. 597 */ 598 int netdev_boot_setup_check(struct net_device *dev) 599 { 600 struct netdev_boot_setup *s = dev_boot_setup; 601 int i; 602 603 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 604 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 605 !strcmp(dev->name, s[i].name)) { 606 dev->irq = s[i].map.irq; 607 dev->base_addr = s[i].map.base_addr; 608 dev->mem_start = s[i].map.mem_start; 609 dev->mem_end = s[i].map.mem_end; 610 return 1; 611 } 612 } 613 return 0; 614 } 615 EXPORT_SYMBOL(netdev_boot_setup_check); 616 617 618 /** 619 * netdev_boot_base - get address from boot time settings 620 * @prefix: prefix for network device 621 * @unit: id for network device 622 * 623 * Check boot time settings for the base address of device. 624 * The found settings are set for the device to be used 625 * later in the device probing. 626 * Returns 0 if no settings found. 627 */ 628 unsigned long netdev_boot_base(const char *prefix, int unit) 629 { 630 const struct netdev_boot_setup *s = dev_boot_setup; 631 char name[IFNAMSIZ]; 632 int i; 633 634 sprintf(name, "%s%d", prefix, unit); 635 636 /* 637 * If device already registered then return base of 1 638 * to indicate not to probe for this interface 639 */ 640 if (__dev_get_by_name(&init_net, name)) 641 return 1; 642 643 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 644 if (!strcmp(name, s[i].name)) 645 return s[i].map.base_addr; 646 return 0; 647 } 648 649 /* 650 * Saves at boot time configured settings for any netdevice. 651 */ 652 int __init netdev_boot_setup(char *str) 653 { 654 int ints[5]; 655 struct ifmap map; 656 657 str = get_options(str, ARRAY_SIZE(ints), ints); 658 if (!str || !*str) 659 return 0; 660 661 /* Save settings */ 662 memset(&map, 0, sizeof(map)); 663 if (ints[0] > 0) 664 map.irq = ints[1]; 665 if (ints[0] > 1) 666 map.base_addr = ints[2]; 667 if (ints[0] > 2) 668 map.mem_start = ints[3]; 669 if (ints[0] > 3) 670 map.mem_end = ints[4]; 671 672 /* Add new entry to the list */ 673 return netdev_boot_setup_add(str, &map); 674 } 675 676 __setup("netdev=", netdev_boot_setup); 677 678 /******************************************************************************* 679 680 Device Interface Subroutines 681 682 *******************************************************************************/ 683 684 /** 685 * __dev_get_by_name - find a device by its name 686 * @net: the applicable net namespace 687 * @name: name to find 688 * 689 * Find an interface by name. Must be called under RTNL semaphore 690 * or @dev_base_lock. If the name is found a pointer to the device 691 * is returned. If the name is not found then %NULL is returned. The 692 * reference counters are not incremented so the caller must be 693 * careful with locks. 694 */ 695 696 struct net_device *__dev_get_by_name(struct net *net, const char *name) 697 { 698 struct hlist_node *p; 699 struct net_device *dev; 700 struct hlist_head *head = dev_name_hash(net, name); 701 702 hlist_for_each_entry(dev, p, head, name_hlist) 703 if (!strncmp(dev->name, name, IFNAMSIZ)) 704 return dev; 705 706 return NULL; 707 } 708 EXPORT_SYMBOL(__dev_get_by_name); 709 710 /** 711 * dev_get_by_name_rcu - find a device by its name 712 * @net: the applicable net namespace 713 * @name: name to find 714 * 715 * Find an interface by name. 716 * If the name is found a pointer to the device is returned. 717 * If the name is not found then %NULL is returned. 718 * The reference counters are not incremented so the caller must be 719 * careful with locks. The caller must hold RCU lock. 720 */ 721 722 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 723 { 724 struct hlist_node *p; 725 struct net_device *dev; 726 struct hlist_head *head = dev_name_hash(net, name); 727 728 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 729 if (!strncmp(dev->name, name, IFNAMSIZ)) 730 return dev; 731 732 return NULL; 733 } 734 EXPORT_SYMBOL(dev_get_by_name_rcu); 735 736 /** 737 * dev_get_by_name - find a device by its name 738 * @net: the applicable net namespace 739 * @name: name to find 740 * 741 * Find an interface by name. This can be called from any 742 * context and does its own locking. The returned handle has 743 * the usage count incremented and the caller must use dev_put() to 744 * release it when it is no longer needed. %NULL is returned if no 745 * matching device is found. 746 */ 747 748 struct net_device *dev_get_by_name(struct net *net, const char *name) 749 { 750 struct net_device *dev; 751 752 rcu_read_lock(); 753 dev = dev_get_by_name_rcu(net, name); 754 if (dev) 755 dev_hold(dev); 756 rcu_read_unlock(); 757 return dev; 758 } 759 EXPORT_SYMBOL(dev_get_by_name); 760 761 /** 762 * __dev_get_by_index - find a device by its ifindex 763 * @net: the applicable net namespace 764 * @ifindex: index of device 765 * 766 * Search for an interface by index. Returns %NULL if the device 767 * is not found or a pointer to the device. The device has not 768 * had its reference counter increased so the caller must be careful 769 * about locking. The caller must hold either the RTNL semaphore 770 * or @dev_base_lock. 771 */ 772 773 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 774 { 775 struct hlist_node *p; 776 struct net_device *dev; 777 struct hlist_head *head = dev_index_hash(net, ifindex); 778 779 hlist_for_each_entry(dev, p, head, index_hlist) 780 if (dev->ifindex == ifindex) 781 return dev; 782 783 return NULL; 784 } 785 EXPORT_SYMBOL(__dev_get_by_index); 786 787 /** 788 * dev_get_by_index_rcu - find a device by its ifindex 789 * @net: the applicable net namespace 790 * @ifindex: index of device 791 * 792 * Search for an interface by index. Returns %NULL if the device 793 * is not found or a pointer to the device. The device has not 794 * had its reference counter increased so the caller must be careful 795 * about locking. The caller must hold RCU lock. 796 */ 797 798 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 799 { 800 struct hlist_node *p; 801 struct net_device *dev; 802 struct hlist_head *head = dev_index_hash(net, ifindex); 803 804 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 805 if (dev->ifindex == ifindex) 806 return dev; 807 808 return NULL; 809 } 810 EXPORT_SYMBOL(dev_get_by_index_rcu); 811 812 813 /** 814 * dev_get_by_index - find a device by its ifindex 815 * @net: the applicable net namespace 816 * @ifindex: index of device 817 * 818 * Search for an interface by index. Returns NULL if the device 819 * is not found or a pointer to the device. The device returned has 820 * had a reference added and the pointer is safe until the user calls 821 * dev_put to indicate they have finished with it. 822 */ 823 824 struct net_device *dev_get_by_index(struct net *net, int ifindex) 825 { 826 struct net_device *dev; 827 828 rcu_read_lock(); 829 dev = dev_get_by_index_rcu(net, ifindex); 830 if (dev) 831 dev_hold(dev); 832 rcu_read_unlock(); 833 return dev; 834 } 835 EXPORT_SYMBOL(dev_get_by_index); 836 837 /** 838 * dev_getbyhwaddr_rcu - find a device by its hardware address 839 * @net: the applicable net namespace 840 * @type: media type of device 841 * @ha: hardware address 842 * 843 * Search for an interface by MAC address. Returns NULL if the device 844 * is not found or a pointer to the device. 845 * The caller must hold RCU or RTNL. 846 * The returned device has not had its ref count increased 847 * and the caller must therefore be careful about locking 848 * 849 */ 850 851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 852 const char *ha) 853 { 854 struct net_device *dev; 855 856 for_each_netdev_rcu(net, dev) 857 if (dev->type == type && 858 !memcmp(dev->dev_addr, ha, dev->addr_len)) 859 return dev; 860 861 return NULL; 862 } 863 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 864 865 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 866 { 867 struct net_device *dev; 868 869 ASSERT_RTNL(); 870 for_each_netdev(net, dev) 871 if (dev->type == type) 872 return dev; 873 874 return NULL; 875 } 876 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 877 878 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 879 { 880 struct net_device *dev, *ret = NULL; 881 882 rcu_read_lock(); 883 for_each_netdev_rcu(net, dev) 884 if (dev->type == type) { 885 dev_hold(dev); 886 ret = dev; 887 break; 888 } 889 rcu_read_unlock(); 890 return ret; 891 } 892 EXPORT_SYMBOL(dev_getfirstbyhwtype); 893 894 /** 895 * dev_get_by_flags_rcu - find any device with given flags 896 * @net: the applicable net namespace 897 * @if_flags: IFF_* values 898 * @mask: bitmask of bits in if_flags to check 899 * 900 * Search for any interface with the given flags. Returns NULL if a device 901 * is not found or a pointer to the device. Must be called inside 902 * rcu_read_lock(), and result refcount is unchanged. 903 */ 904 905 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 906 unsigned short mask) 907 { 908 struct net_device *dev, *ret; 909 910 ret = NULL; 911 for_each_netdev_rcu(net, dev) { 912 if (((dev->flags ^ if_flags) & mask) == 0) { 913 ret = dev; 914 break; 915 } 916 } 917 return ret; 918 } 919 EXPORT_SYMBOL(dev_get_by_flags_rcu); 920 921 /** 922 * dev_valid_name - check if name is okay for network device 923 * @name: name string 924 * 925 * Network device names need to be valid file names to 926 * to allow sysfs to work. We also disallow any kind of 927 * whitespace. 928 */ 929 bool dev_valid_name(const char *name) 930 { 931 if (*name == '\0') 932 return false; 933 if (strlen(name) >= IFNAMSIZ) 934 return false; 935 if (!strcmp(name, ".") || !strcmp(name, "..")) 936 return false; 937 938 while (*name) { 939 if (*name == '/' || isspace(*name)) 940 return false; 941 name++; 942 } 943 return true; 944 } 945 EXPORT_SYMBOL(dev_valid_name); 946 947 /** 948 * __dev_alloc_name - allocate a name for a device 949 * @net: network namespace to allocate the device name in 950 * @name: name format string 951 * @buf: scratch buffer and result name string 952 * 953 * Passed a format string - eg "lt%d" it will try and find a suitable 954 * id. It scans list of devices to build up a free map, then chooses 955 * the first empty slot. The caller must hold the dev_base or rtnl lock 956 * while allocating the name and adding the device in order to avoid 957 * duplicates. 958 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 959 * Returns the number of the unit assigned or a negative errno code. 960 */ 961 962 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 963 { 964 int i = 0; 965 const char *p; 966 const int max_netdevices = 8*PAGE_SIZE; 967 unsigned long *inuse; 968 struct net_device *d; 969 970 p = strnchr(name, IFNAMSIZ-1, '%'); 971 if (p) { 972 /* 973 * Verify the string as this thing may have come from 974 * the user. There must be either one "%d" and no other "%" 975 * characters. 976 */ 977 if (p[1] != 'd' || strchr(p + 2, '%')) 978 return -EINVAL; 979 980 /* Use one page as a bit array of possible slots */ 981 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 982 if (!inuse) 983 return -ENOMEM; 984 985 for_each_netdev(net, d) { 986 if (!sscanf(d->name, name, &i)) 987 continue; 988 if (i < 0 || i >= max_netdevices) 989 continue; 990 991 /* avoid cases where sscanf is not exact inverse of printf */ 992 snprintf(buf, IFNAMSIZ, name, i); 993 if (!strncmp(buf, d->name, IFNAMSIZ)) 994 set_bit(i, inuse); 995 } 996 997 i = find_first_zero_bit(inuse, max_netdevices); 998 free_page((unsigned long) inuse); 999 } 1000 1001 if (buf != name) 1002 snprintf(buf, IFNAMSIZ, name, i); 1003 if (!__dev_get_by_name(net, buf)) 1004 return i; 1005 1006 /* It is possible to run out of possible slots 1007 * when the name is long and there isn't enough space left 1008 * for the digits, or if all bits are used. 1009 */ 1010 return -ENFILE; 1011 } 1012 1013 /** 1014 * dev_alloc_name - allocate a name for a device 1015 * @dev: device 1016 * @name: name format string 1017 * 1018 * Passed a format string - eg "lt%d" it will try and find a suitable 1019 * id. It scans list of devices to build up a free map, then chooses 1020 * the first empty slot. The caller must hold the dev_base or rtnl lock 1021 * while allocating the name and adding the device in order to avoid 1022 * duplicates. 1023 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1024 * Returns the number of the unit assigned or a negative errno code. 1025 */ 1026 1027 int dev_alloc_name(struct net_device *dev, const char *name) 1028 { 1029 char buf[IFNAMSIZ]; 1030 struct net *net; 1031 int ret; 1032 1033 BUG_ON(!dev_net(dev)); 1034 net = dev_net(dev); 1035 ret = __dev_alloc_name(net, name, buf); 1036 if (ret >= 0) 1037 strlcpy(dev->name, buf, IFNAMSIZ); 1038 return ret; 1039 } 1040 EXPORT_SYMBOL(dev_alloc_name); 1041 1042 static int dev_alloc_name_ns(struct net *net, 1043 struct net_device *dev, 1044 const char *name) 1045 { 1046 char buf[IFNAMSIZ]; 1047 int ret; 1048 1049 ret = __dev_alloc_name(net, name, buf); 1050 if (ret >= 0) 1051 strlcpy(dev->name, buf, IFNAMSIZ); 1052 return ret; 1053 } 1054 1055 static int dev_get_valid_name(struct net *net, 1056 struct net_device *dev, 1057 const char *name) 1058 { 1059 BUG_ON(!net); 1060 1061 if (!dev_valid_name(name)) 1062 return -EINVAL; 1063 1064 if (strchr(name, '%')) 1065 return dev_alloc_name_ns(net, dev, name); 1066 else if (__dev_get_by_name(net, name)) 1067 return -EEXIST; 1068 else if (dev->name != name) 1069 strlcpy(dev->name, name, IFNAMSIZ); 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * dev_change_name - change name of a device 1076 * @dev: device 1077 * @newname: name (or format string) must be at least IFNAMSIZ 1078 * 1079 * Change name of a device, can pass format strings "eth%d". 1080 * for wildcarding. 1081 */ 1082 int dev_change_name(struct net_device *dev, const char *newname) 1083 { 1084 char oldname[IFNAMSIZ]; 1085 int err = 0; 1086 int ret; 1087 struct net *net; 1088 1089 ASSERT_RTNL(); 1090 BUG_ON(!dev_net(dev)); 1091 1092 net = dev_net(dev); 1093 if (dev->flags & IFF_UP) 1094 return -EBUSY; 1095 1096 write_seqlock(&devnet_rename_seq); 1097 1098 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1099 write_sequnlock(&devnet_rename_seq); 1100 return 0; 1101 } 1102 1103 memcpy(oldname, dev->name, IFNAMSIZ); 1104 1105 err = dev_get_valid_name(net, dev, newname); 1106 if (err < 0) { 1107 write_sequnlock(&devnet_rename_seq); 1108 return err; 1109 } 1110 1111 rollback: 1112 ret = device_rename(&dev->dev, dev->name); 1113 if (ret) { 1114 memcpy(dev->name, oldname, IFNAMSIZ); 1115 write_sequnlock(&devnet_rename_seq); 1116 return ret; 1117 } 1118 1119 write_sequnlock(&devnet_rename_seq); 1120 1121 write_lock_bh(&dev_base_lock); 1122 hlist_del_rcu(&dev->name_hlist); 1123 write_unlock_bh(&dev_base_lock); 1124 1125 synchronize_rcu(); 1126 1127 write_lock_bh(&dev_base_lock); 1128 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1129 write_unlock_bh(&dev_base_lock); 1130 1131 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1132 ret = notifier_to_errno(ret); 1133 1134 if (ret) { 1135 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1136 if (err >= 0) { 1137 err = ret; 1138 write_seqlock(&devnet_rename_seq); 1139 memcpy(dev->name, oldname, IFNAMSIZ); 1140 goto rollback; 1141 } else { 1142 pr_err("%s: name change rollback failed: %d\n", 1143 dev->name, ret); 1144 } 1145 } 1146 1147 return err; 1148 } 1149 1150 /** 1151 * dev_set_alias - change ifalias of a device 1152 * @dev: device 1153 * @alias: name up to IFALIASZ 1154 * @len: limit of bytes to copy from info 1155 * 1156 * Set ifalias for a device, 1157 */ 1158 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1159 { 1160 char *new_ifalias; 1161 1162 ASSERT_RTNL(); 1163 1164 if (len >= IFALIASZ) 1165 return -EINVAL; 1166 1167 if (!len) { 1168 kfree(dev->ifalias); 1169 dev->ifalias = NULL; 1170 return 0; 1171 } 1172 1173 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1174 if (!new_ifalias) 1175 return -ENOMEM; 1176 dev->ifalias = new_ifalias; 1177 1178 strlcpy(dev->ifalias, alias, len+1); 1179 return len; 1180 } 1181 1182 1183 /** 1184 * netdev_features_change - device changes features 1185 * @dev: device to cause notification 1186 * 1187 * Called to indicate a device has changed features. 1188 */ 1189 void netdev_features_change(struct net_device *dev) 1190 { 1191 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1192 } 1193 EXPORT_SYMBOL(netdev_features_change); 1194 1195 /** 1196 * netdev_state_change - device changes state 1197 * @dev: device to cause notification 1198 * 1199 * Called to indicate a device has changed state. This function calls 1200 * the notifier chains for netdev_chain and sends a NEWLINK message 1201 * to the routing socket. 1202 */ 1203 void netdev_state_change(struct net_device *dev) 1204 { 1205 if (dev->flags & IFF_UP) { 1206 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1208 } 1209 } 1210 EXPORT_SYMBOL(netdev_state_change); 1211 1212 /** 1213 * netdev_notify_peers - notify network peers about existence of @dev 1214 * @dev: network device 1215 * 1216 * Generate traffic such that interested network peers are aware of 1217 * @dev, such as by generating a gratuitous ARP. This may be used when 1218 * a device wants to inform the rest of the network about some sort of 1219 * reconfiguration such as a failover event or virtual machine 1220 * migration. 1221 */ 1222 void netdev_notify_peers(struct net_device *dev) 1223 { 1224 rtnl_lock(); 1225 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1226 rtnl_unlock(); 1227 } 1228 EXPORT_SYMBOL(netdev_notify_peers); 1229 1230 /** 1231 * dev_load - load a network module 1232 * @net: the applicable net namespace 1233 * @name: name of interface 1234 * 1235 * If a network interface is not present and the process has suitable 1236 * privileges this function loads the module. If module loading is not 1237 * available in this kernel then it becomes a nop. 1238 */ 1239 1240 void dev_load(struct net *net, const char *name) 1241 { 1242 struct net_device *dev; 1243 int no_module; 1244 1245 rcu_read_lock(); 1246 dev = dev_get_by_name_rcu(net, name); 1247 rcu_read_unlock(); 1248 1249 no_module = !dev; 1250 if (no_module && capable(CAP_NET_ADMIN)) 1251 no_module = request_module("netdev-%s", name); 1252 if (no_module && capable(CAP_SYS_MODULE)) { 1253 if (!request_module("%s", name)) 1254 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1255 name); 1256 } 1257 } 1258 EXPORT_SYMBOL(dev_load); 1259 1260 static int __dev_open(struct net_device *dev) 1261 { 1262 const struct net_device_ops *ops = dev->netdev_ops; 1263 int ret; 1264 1265 ASSERT_RTNL(); 1266 1267 if (!netif_device_present(dev)) 1268 return -ENODEV; 1269 1270 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1271 ret = notifier_to_errno(ret); 1272 if (ret) 1273 return ret; 1274 1275 set_bit(__LINK_STATE_START, &dev->state); 1276 1277 if (ops->ndo_validate_addr) 1278 ret = ops->ndo_validate_addr(dev); 1279 1280 if (!ret && ops->ndo_open) 1281 ret = ops->ndo_open(dev); 1282 1283 if (ret) 1284 clear_bit(__LINK_STATE_START, &dev->state); 1285 else { 1286 dev->flags |= IFF_UP; 1287 net_dmaengine_get(); 1288 dev_set_rx_mode(dev); 1289 dev_activate(dev); 1290 add_device_randomness(dev->dev_addr, dev->addr_len); 1291 } 1292 1293 return ret; 1294 } 1295 1296 /** 1297 * dev_open - prepare an interface for use. 1298 * @dev: device to open 1299 * 1300 * Takes a device from down to up state. The device's private open 1301 * function is invoked and then the multicast lists are loaded. Finally 1302 * the device is moved into the up state and a %NETDEV_UP message is 1303 * sent to the netdev notifier chain. 1304 * 1305 * Calling this function on an active interface is a nop. On a failure 1306 * a negative errno code is returned. 1307 */ 1308 int dev_open(struct net_device *dev) 1309 { 1310 int ret; 1311 1312 if (dev->flags & IFF_UP) 1313 return 0; 1314 1315 ret = __dev_open(dev); 1316 if (ret < 0) 1317 return ret; 1318 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1320 call_netdevice_notifiers(NETDEV_UP, dev); 1321 1322 return ret; 1323 } 1324 EXPORT_SYMBOL(dev_open); 1325 1326 static int __dev_close_many(struct list_head *head) 1327 { 1328 struct net_device *dev; 1329 1330 ASSERT_RTNL(); 1331 might_sleep(); 1332 1333 list_for_each_entry(dev, head, unreg_list) { 1334 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1335 1336 clear_bit(__LINK_STATE_START, &dev->state); 1337 1338 /* Synchronize to scheduled poll. We cannot touch poll list, it 1339 * can be even on different cpu. So just clear netif_running(). 1340 * 1341 * dev->stop() will invoke napi_disable() on all of it's 1342 * napi_struct instances on this device. 1343 */ 1344 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1345 } 1346 1347 dev_deactivate_many(head); 1348 1349 list_for_each_entry(dev, head, unreg_list) { 1350 const struct net_device_ops *ops = dev->netdev_ops; 1351 1352 /* 1353 * Call the device specific close. This cannot fail. 1354 * Only if device is UP 1355 * 1356 * We allow it to be called even after a DETACH hot-plug 1357 * event. 1358 */ 1359 if (ops->ndo_stop) 1360 ops->ndo_stop(dev); 1361 1362 dev->flags &= ~IFF_UP; 1363 net_dmaengine_put(); 1364 } 1365 1366 return 0; 1367 } 1368 1369 static int __dev_close(struct net_device *dev) 1370 { 1371 int retval; 1372 LIST_HEAD(single); 1373 1374 list_add(&dev->unreg_list, &single); 1375 retval = __dev_close_many(&single); 1376 list_del(&single); 1377 return retval; 1378 } 1379 1380 static int dev_close_many(struct list_head *head) 1381 { 1382 struct net_device *dev, *tmp; 1383 LIST_HEAD(tmp_list); 1384 1385 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1386 if (!(dev->flags & IFF_UP)) 1387 list_move(&dev->unreg_list, &tmp_list); 1388 1389 __dev_close_many(head); 1390 1391 list_for_each_entry(dev, head, unreg_list) { 1392 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1393 call_netdevice_notifiers(NETDEV_DOWN, dev); 1394 } 1395 1396 /* rollback_registered_many needs the complete original list */ 1397 list_splice(&tmp_list, head); 1398 return 0; 1399 } 1400 1401 /** 1402 * dev_close - shutdown an interface. 1403 * @dev: device to shutdown 1404 * 1405 * This function moves an active device into down state. A 1406 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1407 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1408 * chain. 1409 */ 1410 int dev_close(struct net_device *dev) 1411 { 1412 if (dev->flags & IFF_UP) { 1413 LIST_HEAD(single); 1414 1415 list_add(&dev->unreg_list, &single); 1416 dev_close_many(&single); 1417 list_del(&single); 1418 } 1419 return 0; 1420 } 1421 EXPORT_SYMBOL(dev_close); 1422 1423 1424 /** 1425 * dev_disable_lro - disable Large Receive Offload on a device 1426 * @dev: device 1427 * 1428 * Disable Large Receive Offload (LRO) on a net device. Must be 1429 * called under RTNL. This is needed if received packets may be 1430 * forwarded to another interface. 1431 */ 1432 void dev_disable_lro(struct net_device *dev) 1433 { 1434 /* 1435 * If we're trying to disable lro on a vlan device 1436 * use the underlying physical device instead 1437 */ 1438 if (is_vlan_dev(dev)) 1439 dev = vlan_dev_real_dev(dev); 1440 1441 dev->wanted_features &= ~NETIF_F_LRO; 1442 netdev_update_features(dev); 1443 1444 if (unlikely(dev->features & NETIF_F_LRO)) 1445 netdev_WARN(dev, "failed to disable LRO!\n"); 1446 } 1447 EXPORT_SYMBOL(dev_disable_lro); 1448 1449 1450 static int dev_boot_phase = 1; 1451 1452 /** 1453 * register_netdevice_notifier - register a network notifier block 1454 * @nb: notifier 1455 * 1456 * Register a notifier to be called when network device events occur. 1457 * The notifier passed is linked into the kernel structures and must 1458 * not be reused until it has been unregistered. A negative errno code 1459 * is returned on a failure. 1460 * 1461 * When registered all registration and up events are replayed 1462 * to the new notifier to allow device to have a race free 1463 * view of the network device list. 1464 */ 1465 1466 int register_netdevice_notifier(struct notifier_block *nb) 1467 { 1468 struct net_device *dev; 1469 struct net_device *last; 1470 struct net *net; 1471 int err; 1472 1473 rtnl_lock(); 1474 err = raw_notifier_chain_register(&netdev_chain, nb); 1475 if (err) 1476 goto unlock; 1477 if (dev_boot_phase) 1478 goto unlock; 1479 for_each_net(net) { 1480 for_each_netdev(net, dev) { 1481 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1482 err = notifier_to_errno(err); 1483 if (err) 1484 goto rollback; 1485 1486 if (!(dev->flags & IFF_UP)) 1487 continue; 1488 1489 nb->notifier_call(nb, NETDEV_UP, dev); 1490 } 1491 } 1492 1493 unlock: 1494 rtnl_unlock(); 1495 return err; 1496 1497 rollback: 1498 last = dev; 1499 for_each_net(net) { 1500 for_each_netdev(net, dev) { 1501 if (dev == last) 1502 goto outroll; 1503 1504 if (dev->flags & IFF_UP) { 1505 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1506 nb->notifier_call(nb, NETDEV_DOWN, dev); 1507 } 1508 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1509 } 1510 } 1511 1512 outroll: 1513 raw_notifier_chain_unregister(&netdev_chain, nb); 1514 goto unlock; 1515 } 1516 EXPORT_SYMBOL(register_netdevice_notifier); 1517 1518 /** 1519 * unregister_netdevice_notifier - unregister a network notifier block 1520 * @nb: notifier 1521 * 1522 * Unregister a notifier previously registered by 1523 * register_netdevice_notifier(). The notifier is unlinked into the 1524 * kernel structures and may then be reused. A negative errno code 1525 * is returned on a failure. 1526 * 1527 * After unregistering unregister and down device events are synthesized 1528 * for all devices on the device list to the removed notifier to remove 1529 * the need for special case cleanup code. 1530 */ 1531 1532 int unregister_netdevice_notifier(struct notifier_block *nb) 1533 { 1534 struct net_device *dev; 1535 struct net *net; 1536 int err; 1537 1538 rtnl_lock(); 1539 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1540 if (err) 1541 goto unlock; 1542 1543 for_each_net(net) { 1544 for_each_netdev(net, dev) { 1545 if (dev->flags & IFF_UP) { 1546 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1547 nb->notifier_call(nb, NETDEV_DOWN, dev); 1548 } 1549 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1550 } 1551 } 1552 unlock: 1553 rtnl_unlock(); 1554 return err; 1555 } 1556 EXPORT_SYMBOL(unregister_netdevice_notifier); 1557 1558 /** 1559 * call_netdevice_notifiers - call all network notifier blocks 1560 * @val: value passed unmodified to notifier function 1561 * @dev: net_device pointer passed unmodified to notifier function 1562 * 1563 * Call all network notifier blocks. Parameters and return value 1564 * are as for raw_notifier_call_chain(). 1565 */ 1566 1567 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1568 { 1569 ASSERT_RTNL(); 1570 return raw_notifier_call_chain(&netdev_chain, val, dev); 1571 } 1572 EXPORT_SYMBOL(call_netdevice_notifiers); 1573 1574 static struct static_key netstamp_needed __read_mostly; 1575 #ifdef HAVE_JUMP_LABEL 1576 /* We are not allowed to call static_key_slow_dec() from irq context 1577 * If net_disable_timestamp() is called from irq context, defer the 1578 * static_key_slow_dec() calls. 1579 */ 1580 static atomic_t netstamp_needed_deferred; 1581 #endif 1582 1583 void net_enable_timestamp(void) 1584 { 1585 #ifdef HAVE_JUMP_LABEL 1586 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1587 1588 if (deferred) { 1589 while (--deferred) 1590 static_key_slow_dec(&netstamp_needed); 1591 return; 1592 } 1593 #endif 1594 WARN_ON(in_interrupt()); 1595 static_key_slow_inc(&netstamp_needed); 1596 } 1597 EXPORT_SYMBOL(net_enable_timestamp); 1598 1599 void net_disable_timestamp(void) 1600 { 1601 #ifdef HAVE_JUMP_LABEL 1602 if (in_interrupt()) { 1603 atomic_inc(&netstamp_needed_deferred); 1604 return; 1605 } 1606 #endif 1607 static_key_slow_dec(&netstamp_needed); 1608 } 1609 EXPORT_SYMBOL(net_disable_timestamp); 1610 1611 static inline void net_timestamp_set(struct sk_buff *skb) 1612 { 1613 skb->tstamp.tv64 = 0; 1614 if (static_key_false(&netstamp_needed)) 1615 __net_timestamp(skb); 1616 } 1617 1618 #define net_timestamp_check(COND, SKB) \ 1619 if (static_key_false(&netstamp_needed)) { \ 1620 if ((COND) && !(SKB)->tstamp.tv64) \ 1621 __net_timestamp(SKB); \ 1622 } \ 1623 1624 static int net_hwtstamp_validate(struct ifreq *ifr) 1625 { 1626 struct hwtstamp_config cfg; 1627 enum hwtstamp_tx_types tx_type; 1628 enum hwtstamp_rx_filters rx_filter; 1629 int tx_type_valid = 0; 1630 int rx_filter_valid = 0; 1631 1632 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1633 return -EFAULT; 1634 1635 if (cfg.flags) /* reserved for future extensions */ 1636 return -EINVAL; 1637 1638 tx_type = cfg.tx_type; 1639 rx_filter = cfg.rx_filter; 1640 1641 switch (tx_type) { 1642 case HWTSTAMP_TX_OFF: 1643 case HWTSTAMP_TX_ON: 1644 case HWTSTAMP_TX_ONESTEP_SYNC: 1645 tx_type_valid = 1; 1646 break; 1647 } 1648 1649 switch (rx_filter) { 1650 case HWTSTAMP_FILTER_NONE: 1651 case HWTSTAMP_FILTER_ALL: 1652 case HWTSTAMP_FILTER_SOME: 1653 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1654 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1655 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1656 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1657 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1658 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1659 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1660 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1661 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1662 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1663 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1664 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1665 rx_filter_valid = 1; 1666 break; 1667 } 1668 1669 if (!tx_type_valid || !rx_filter_valid) 1670 return -ERANGE; 1671 1672 return 0; 1673 } 1674 1675 static inline bool is_skb_forwardable(struct net_device *dev, 1676 struct sk_buff *skb) 1677 { 1678 unsigned int len; 1679 1680 if (!(dev->flags & IFF_UP)) 1681 return false; 1682 1683 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1684 if (skb->len <= len) 1685 return true; 1686 1687 /* if TSO is enabled, we don't care about the length as the packet 1688 * could be forwarded without being segmented before 1689 */ 1690 if (skb_is_gso(skb)) 1691 return true; 1692 1693 return false; 1694 } 1695 1696 /** 1697 * dev_forward_skb - loopback an skb to another netif 1698 * 1699 * @dev: destination network device 1700 * @skb: buffer to forward 1701 * 1702 * return values: 1703 * NET_RX_SUCCESS (no congestion) 1704 * NET_RX_DROP (packet was dropped, but freed) 1705 * 1706 * dev_forward_skb can be used for injecting an skb from the 1707 * start_xmit function of one device into the receive queue 1708 * of another device. 1709 * 1710 * The receiving device may be in another namespace, so 1711 * we have to clear all information in the skb that could 1712 * impact namespace isolation. 1713 */ 1714 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1715 { 1716 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1717 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1718 atomic_long_inc(&dev->rx_dropped); 1719 kfree_skb(skb); 1720 return NET_RX_DROP; 1721 } 1722 } 1723 1724 skb_orphan(skb); 1725 nf_reset(skb); 1726 1727 if (unlikely(!is_skb_forwardable(dev, skb))) { 1728 atomic_long_inc(&dev->rx_dropped); 1729 kfree_skb(skb); 1730 return NET_RX_DROP; 1731 } 1732 skb->skb_iif = 0; 1733 skb->dev = dev; 1734 skb_dst_drop(skb); 1735 skb->tstamp.tv64 = 0; 1736 skb->pkt_type = PACKET_HOST; 1737 skb->protocol = eth_type_trans(skb, dev); 1738 skb->mark = 0; 1739 secpath_reset(skb); 1740 nf_reset(skb); 1741 return netif_rx(skb); 1742 } 1743 EXPORT_SYMBOL_GPL(dev_forward_skb); 1744 1745 static inline int deliver_skb(struct sk_buff *skb, 1746 struct packet_type *pt_prev, 1747 struct net_device *orig_dev) 1748 { 1749 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1750 return -ENOMEM; 1751 atomic_inc(&skb->users); 1752 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1753 } 1754 1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1756 { 1757 if (!ptype->af_packet_priv || !skb->sk) 1758 return false; 1759 1760 if (ptype->id_match) 1761 return ptype->id_match(ptype, skb->sk); 1762 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1763 return true; 1764 1765 return false; 1766 } 1767 1768 /* 1769 * Support routine. Sends outgoing frames to any network 1770 * taps currently in use. 1771 */ 1772 1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1774 { 1775 struct packet_type *ptype; 1776 struct sk_buff *skb2 = NULL; 1777 struct packet_type *pt_prev = NULL; 1778 1779 rcu_read_lock(); 1780 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1781 /* Never send packets back to the socket 1782 * they originated from - MvS (miquels@drinkel.ow.org) 1783 */ 1784 if ((ptype->dev == dev || !ptype->dev) && 1785 (!skb_loop_sk(ptype, skb))) { 1786 if (pt_prev) { 1787 deliver_skb(skb2, pt_prev, skb->dev); 1788 pt_prev = ptype; 1789 continue; 1790 } 1791 1792 skb2 = skb_clone(skb, GFP_ATOMIC); 1793 if (!skb2) 1794 break; 1795 1796 net_timestamp_set(skb2); 1797 1798 /* skb->nh should be correctly 1799 set by sender, so that the second statement is 1800 just protection against buggy protocols. 1801 */ 1802 skb_reset_mac_header(skb2); 1803 1804 if (skb_network_header(skb2) < skb2->data || 1805 skb2->network_header > skb2->tail) { 1806 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1807 ntohs(skb2->protocol), 1808 dev->name); 1809 skb_reset_network_header(skb2); 1810 } 1811 1812 skb2->transport_header = skb2->network_header; 1813 skb2->pkt_type = PACKET_OUTGOING; 1814 pt_prev = ptype; 1815 } 1816 } 1817 if (pt_prev) 1818 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1819 rcu_read_unlock(); 1820 } 1821 1822 /** 1823 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1824 * @dev: Network device 1825 * @txq: number of queues available 1826 * 1827 * If real_num_tx_queues is changed the tc mappings may no longer be 1828 * valid. To resolve this verify the tc mapping remains valid and if 1829 * not NULL the mapping. With no priorities mapping to this 1830 * offset/count pair it will no longer be used. In the worst case TC0 1831 * is invalid nothing can be done so disable priority mappings. If is 1832 * expected that drivers will fix this mapping if they can before 1833 * calling netif_set_real_num_tx_queues. 1834 */ 1835 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1836 { 1837 int i; 1838 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1839 1840 /* If TC0 is invalidated disable TC mapping */ 1841 if (tc->offset + tc->count > txq) { 1842 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1843 dev->num_tc = 0; 1844 return; 1845 } 1846 1847 /* Invalidated prio to tc mappings set to TC0 */ 1848 for (i = 1; i < TC_BITMASK + 1; i++) { 1849 int q = netdev_get_prio_tc_map(dev, i); 1850 1851 tc = &dev->tc_to_txq[q]; 1852 if (tc->offset + tc->count > txq) { 1853 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1854 i, q); 1855 netdev_set_prio_tc_map(dev, i, 0); 1856 } 1857 } 1858 } 1859 1860 /* 1861 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1862 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1863 */ 1864 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1865 { 1866 int rc; 1867 1868 if (txq < 1 || txq > dev->num_tx_queues) 1869 return -EINVAL; 1870 1871 if (dev->reg_state == NETREG_REGISTERED || 1872 dev->reg_state == NETREG_UNREGISTERING) { 1873 ASSERT_RTNL(); 1874 1875 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1876 txq); 1877 if (rc) 1878 return rc; 1879 1880 if (dev->num_tc) 1881 netif_setup_tc(dev, txq); 1882 1883 if (txq < dev->real_num_tx_queues) 1884 qdisc_reset_all_tx_gt(dev, txq); 1885 } 1886 1887 dev->real_num_tx_queues = txq; 1888 return 0; 1889 } 1890 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1891 1892 #ifdef CONFIG_RPS 1893 /** 1894 * netif_set_real_num_rx_queues - set actual number of RX queues used 1895 * @dev: Network device 1896 * @rxq: Actual number of RX queues 1897 * 1898 * This must be called either with the rtnl_lock held or before 1899 * registration of the net device. Returns 0 on success, or a 1900 * negative error code. If called before registration, it always 1901 * succeeds. 1902 */ 1903 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1904 { 1905 int rc; 1906 1907 if (rxq < 1 || rxq > dev->num_rx_queues) 1908 return -EINVAL; 1909 1910 if (dev->reg_state == NETREG_REGISTERED) { 1911 ASSERT_RTNL(); 1912 1913 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1914 rxq); 1915 if (rc) 1916 return rc; 1917 } 1918 1919 dev->real_num_rx_queues = rxq; 1920 return 0; 1921 } 1922 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1923 #endif 1924 1925 /** 1926 * netif_get_num_default_rss_queues - default number of RSS queues 1927 * 1928 * This routine should set an upper limit on the number of RSS queues 1929 * used by default by multiqueue devices. 1930 */ 1931 int netif_get_num_default_rss_queues(void) 1932 { 1933 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 1934 } 1935 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 1936 1937 static inline void __netif_reschedule(struct Qdisc *q) 1938 { 1939 struct softnet_data *sd; 1940 unsigned long flags; 1941 1942 local_irq_save(flags); 1943 sd = &__get_cpu_var(softnet_data); 1944 q->next_sched = NULL; 1945 *sd->output_queue_tailp = q; 1946 sd->output_queue_tailp = &q->next_sched; 1947 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1948 local_irq_restore(flags); 1949 } 1950 1951 void __netif_schedule(struct Qdisc *q) 1952 { 1953 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1954 __netif_reschedule(q); 1955 } 1956 EXPORT_SYMBOL(__netif_schedule); 1957 1958 void dev_kfree_skb_irq(struct sk_buff *skb) 1959 { 1960 if (atomic_dec_and_test(&skb->users)) { 1961 struct softnet_data *sd; 1962 unsigned long flags; 1963 1964 local_irq_save(flags); 1965 sd = &__get_cpu_var(softnet_data); 1966 skb->next = sd->completion_queue; 1967 sd->completion_queue = skb; 1968 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1969 local_irq_restore(flags); 1970 } 1971 } 1972 EXPORT_SYMBOL(dev_kfree_skb_irq); 1973 1974 void dev_kfree_skb_any(struct sk_buff *skb) 1975 { 1976 if (in_irq() || irqs_disabled()) 1977 dev_kfree_skb_irq(skb); 1978 else 1979 dev_kfree_skb(skb); 1980 } 1981 EXPORT_SYMBOL(dev_kfree_skb_any); 1982 1983 1984 /** 1985 * netif_device_detach - mark device as removed 1986 * @dev: network device 1987 * 1988 * Mark device as removed from system and therefore no longer available. 1989 */ 1990 void netif_device_detach(struct net_device *dev) 1991 { 1992 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1993 netif_running(dev)) { 1994 netif_tx_stop_all_queues(dev); 1995 } 1996 } 1997 EXPORT_SYMBOL(netif_device_detach); 1998 1999 /** 2000 * netif_device_attach - mark device as attached 2001 * @dev: network device 2002 * 2003 * Mark device as attached from system and restart if needed. 2004 */ 2005 void netif_device_attach(struct net_device *dev) 2006 { 2007 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2008 netif_running(dev)) { 2009 netif_tx_wake_all_queues(dev); 2010 __netdev_watchdog_up(dev); 2011 } 2012 } 2013 EXPORT_SYMBOL(netif_device_attach); 2014 2015 static void skb_warn_bad_offload(const struct sk_buff *skb) 2016 { 2017 static const netdev_features_t null_features = 0; 2018 struct net_device *dev = skb->dev; 2019 const char *driver = ""; 2020 2021 if (dev && dev->dev.parent) 2022 driver = dev_driver_string(dev->dev.parent); 2023 2024 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2025 "gso_type=%d ip_summed=%d\n", 2026 driver, dev ? &dev->features : &null_features, 2027 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2028 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2029 skb_shinfo(skb)->gso_type, skb->ip_summed); 2030 } 2031 2032 /* 2033 * Invalidate hardware checksum when packet is to be mangled, and 2034 * complete checksum manually on outgoing path. 2035 */ 2036 int skb_checksum_help(struct sk_buff *skb) 2037 { 2038 __wsum csum; 2039 int ret = 0, offset; 2040 2041 if (skb->ip_summed == CHECKSUM_COMPLETE) 2042 goto out_set_summed; 2043 2044 if (unlikely(skb_shinfo(skb)->gso_size)) { 2045 skb_warn_bad_offload(skb); 2046 return -EINVAL; 2047 } 2048 2049 offset = skb_checksum_start_offset(skb); 2050 BUG_ON(offset >= skb_headlen(skb)); 2051 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2052 2053 offset += skb->csum_offset; 2054 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2055 2056 if (skb_cloned(skb) && 2057 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2058 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2059 if (ret) 2060 goto out; 2061 } 2062 2063 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2064 out_set_summed: 2065 skb->ip_summed = CHECKSUM_NONE; 2066 out: 2067 return ret; 2068 } 2069 EXPORT_SYMBOL(skb_checksum_help); 2070 2071 /** 2072 * skb_gso_segment - Perform segmentation on skb. 2073 * @skb: buffer to segment 2074 * @features: features for the output path (see dev->features) 2075 * 2076 * This function segments the given skb and returns a list of segments. 2077 * 2078 * It may return NULL if the skb requires no segmentation. This is 2079 * only possible when GSO is used for verifying header integrity. 2080 */ 2081 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2082 netdev_features_t features) 2083 { 2084 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2085 struct packet_offload *ptype; 2086 __be16 type = skb->protocol; 2087 int vlan_depth = ETH_HLEN; 2088 int err; 2089 2090 while (type == htons(ETH_P_8021Q)) { 2091 struct vlan_hdr *vh; 2092 2093 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2094 return ERR_PTR(-EINVAL); 2095 2096 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2097 type = vh->h_vlan_encapsulated_proto; 2098 vlan_depth += VLAN_HLEN; 2099 } 2100 2101 skb_reset_mac_header(skb); 2102 skb->mac_len = skb->network_header - skb->mac_header; 2103 __skb_pull(skb, skb->mac_len); 2104 2105 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2106 skb_warn_bad_offload(skb); 2107 2108 if (skb_header_cloned(skb) && 2109 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2110 return ERR_PTR(err); 2111 } 2112 2113 rcu_read_lock(); 2114 list_for_each_entry_rcu(ptype, &offload_base, list) { 2115 if (ptype->type == type && ptype->callbacks.gso_segment) { 2116 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2117 err = ptype->callbacks.gso_send_check(skb); 2118 segs = ERR_PTR(err); 2119 if (err || skb_gso_ok(skb, features)) 2120 break; 2121 __skb_push(skb, (skb->data - 2122 skb_network_header(skb))); 2123 } 2124 segs = ptype->callbacks.gso_segment(skb, features); 2125 break; 2126 } 2127 } 2128 rcu_read_unlock(); 2129 2130 __skb_push(skb, skb->data - skb_mac_header(skb)); 2131 2132 return segs; 2133 } 2134 EXPORT_SYMBOL(skb_gso_segment); 2135 2136 /* Take action when hardware reception checksum errors are detected. */ 2137 #ifdef CONFIG_BUG 2138 void netdev_rx_csum_fault(struct net_device *dev) 2139 { 2140 if (net_ratelimit()) { 2141 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2142 dump_stack(); 2143 } 2144 } 2145 EXPORT_SYMBOL(netdev_rx_csum_fault); 2146 #endif 2147 2148 /* Actually, we should eliminate this check as soon as we know, that: 2149 * 1. IOMMU is present and allows to map all the memory. 2150 * 2. No high memory really exists on this machine. 2151 */ 2152 2153 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2154 { 2155 #ifdef CONFIG_HIGHMEM 2156 int i; 2157 if (!(dev->features & NETIF_F_HIGHDMA)) { 2158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2159 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2160 if (PageHighMem(skb_frag_page(frag))) 2161 return 1; 2162 } 2163 } 2164 2165 if (PCI_DMA_BUS_IS_PHYS) { 2166 struct device *pdev = dev->dev.parent; 2167 2168 if (!pdev) 2169 return 0; 2170 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2171 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2172 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2173 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2174 return 1; 2175 } 2176 } 2177 #endif 2178 return 0; 2179 } 2180 2181 struct dev_gso_cb { 2182 void (*destructor)(struct sk_buff *skb); 2183 }; 2184 2185 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2186 2187 static void dev_gso_skb_destructor(struct sk_buff *skb) 2188 { 2189 struct dev_gso_cb *cb; 2190 2191 do { 2192 struct sk_buff *nskb = skb->next; 2193 2194 skb->next = nskb->next; 2195 nskb->next = NULL; 2196 kfree_skb(nskb); 2197 } while (skb->next); 2198 2199 cb = DEV_GSO_CB(skb); 2200 if (cb->destructor) 2201 cb->destructor(skb); 2202 } 2203 2204 /** 2205 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2206 * @skb: buffer to segment 2207 * @features: device features as applicable to this skb 2208 * 2209 * This function segments the given skb and stores the list of segments 2210 * in skb->next. 2211 */ 2212 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2213 { 2214 struct sk_buff *segs; 2215 2216 segs = skb_gso_segment(skb, features); 2217 2218 /* Verifying header integrity only. */ 2219 if (!segs) 2220 return 0; 2221 2222 if (IS_ERR(segs)) 2223 return PTR_ERR(segs); 2224 2225 skb->next = segs; 2226 DEV_GSO_CB(skb)->destructor = skb->destructor; 2227 skb->destructor = dev_gso_skb_destructor; 2228 2229 return 0; 2230 } 2231 2232 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2233 { 2234 return ((features & NETIF_F_GEN_CSUM) || 2235 ((features & NETIF_F_V4_CSUM) && 2236 protocol == htons(ETH_P_IP)) || 2237 ((features & NETIF_F_V6_CSUM) && 2238 protocol == htons(ETH_P_IPV6)) || 2239 ((features & NETIF_F_FCOE_CRC) && 2240 protocol == htons(ETH_P_FCOE))); 2241 } 2242 2243 static netdev_features_t harmonize_features(struct sk_buff *skb, 2244 __be16 protocol, netdev_features_t features) 2245 { 2246 if (skb->ip_summed != CHECKSUM_NONE && 2247 !can_checksum_protocol(features, protocol)) { 2248 features &= ~NETIF_F_ALL_CSUM; 2249 features &= ~NETIF_F_SG; 2250 } else if (illegal_highdma(skb->dev, skb)) { 2251 features &= ~NETIF_F_SG; 2252 } 2253 2254 return features; 2255 } 2256 2257 netdev_features_t netif_skb_features(struct sk_buff *skb) 2258 { 2259 __be16 protocol = skb->protocol; 2260 netdev_features_t features = skb->dev->features; 2261 2262 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2263 features &= ~NETIF_F_GSO_MASK; 2264 2265 if (protocol == htons(ETH_P_8021Q)) { 2266 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2267 protocol = veh->h_vlan_encapsulated_proto; 2268 } else if (!vlan_tx_tag_present(skb)) { 2269 return harmonize_features(skb, protocol, features); 2270 } 2271 2272 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2273 2274 if (protocol != htons(ETH_P_8021Q)) { 2275 return harmonize_features(skb, protocol, features); 2276 } else { 2277 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2278 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2279 return harmonize_features(skb, protocol, features); 2280 } 2281 } 2282 EXPORT_SYMBOL(netif_skb_features); 2283 2284 /* 2285 * Returns true if either: 2286 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2287 * 2. skb is fragmented and the device does not support SG. 2288 */ 2289 static inline int skb_needs_linearize(struct sk_buff *skb, 2290 int features) 2291 { 2292 return skb_is_nonlinear(skb) && 2293 ((skb_has_frag_list(skb) && 2294 !(features & NETIF_F_FRAGLIST)) || 2295 (skb_shinfo(skb)->nr_frags && 2296 !(features & NETIF_F_SG))); 2297 } 2298 2299 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2300 struct netdev_queue *txq) 2301 { 2302 const struct net_device_ops *ops = dev->netdev_ops; 2303 int rc = NETDEV_TX_OK; 2304 unsigned int skb_len; 2305 2306 if (likely(!skb->next)) { 2307 netdev_features_t features; 2308 2309 /* 2310 * If device doesn't need skb->dst, release it right now while 2311 * its hot in this cpu cache 2312 */ 2313 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2314 skb_dst_drop(skb); 2315 2316 features = netif_skb_features(skb); 2317 2318 if (vlan_tx_tag_present(skb) && 2319 !(features & NETIF_F_HW_VLAN_TX)) { 2320 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2321 if (unlikely(!skb)) 2322 goto out; 2323 2324 skb->vlan_tci = 0; 2325 } 2326 2327 /* If encapsulation offload request, verify we are testing 2328 * hardware encapsulation features instead of standard 2329 * features for the netdev 2330 */ 2331 if (skb->encapsulation) 2332 features &= dev->hw_enc_features; 2333 2334 if (netif_needs_gso(skb, features)) { 2335 if (unlikely(dev_gso_segment(skb, features))) 2336 goto out_kfree_skb; 2337 if (skb->next) 2338 goto gso; 2339 } else { 2340 if (skb_needs_linearize(skb, features) && 2341 __skb_linearize(skb)) 2342 goto out_kfree_skb; 2343 2344 /* If packet is not checksummed and device does not 2345 * support checksumming for this protocol, complete 2346 * checksumming here. 2347 */ 2348 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2349 if (skb->encapsulation) 2350 skb_set_inner_transport_header(skb, 2351 skb_checksum_start_offset(skb)); 2352 else 2353 skb_set_transport_header(skb, 2354 skb_checksum_start_offset(skb)); 2355 if (!(features & NETIF_F_ALL_CSUM) && 2356 skb_checksum_help(skb)) 2357 goto out_kfree_skb; 2358 } 2359 } 2360 2361 if (!list_empty(&ptype_all)) 2362 dev_queue_xmit_nit(skb, dev); 2363 2364 skb_len = skb->len; 2365 rc = ops->ndo_start_xmit(skb, dev); 2366 trace_net_dev_xmit(skb, rc, dev, skb_len); 2367 if (rc == NETDEV_TX_OK) 2368 txq_trans_update(txq); 2369 return rc; 2370 } 2371 2372 gso: 2373 do { 2374 struct sk_buff *nskb = skb->next; 2375 2376 skb->next = nskb->next; 2377 nskb->next = NULL; 2378 2379 /* 2380 * If device doesn't need nskb->dst, release it right now while 2381 * its hot in this cpu cache 2382 */ 2383 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2384 skb_dst_drop(nskb); 2385 2386 if (!list_empty(&ptype_all)) 2387 dev_queue_xmit_nit(nskb, dev); 2388 2389 skb_len = nskb->len; 2390 rc = ops->ndo_start_xmit(nskb, dev); 2391 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2392 if (unlikely(rc != NETDEV_TX_OK)) { 2393 if (rc & ~NETDEV_TX_MASK) 2394 goto out_kfree_gso_skb; 2395 nskb->next = skb->next; 2396 skb->next = nskb; 2397 return rc; 2398 } 2399 txq_trans_update(txq); 2400 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2401 return NETDEV_TX_BUSY; 2402 } while (skb->next); 2403 2404 out_kfree_gso_skb: 2405 if (likely(skb->next == NULL)) 2406 skb->destructor = DEV_GSO_CB(skb)->destructor; 2407 out_kfree_skb: 2408 kfree_skb(skb); 2409 out: 2410 return rc; 2411 } 2412 2413 static u32 hashrnd __read_mostly; 2414 2415 /* 2416 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2417 * to be used as a distribution range. 2418 */ 2419 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2420 unsigned int num_tx_queues) 2421 { 2422 u32 hash; 2423 u16 qoffset = 0; 2424 u16 qcount = num_tx_queues; 2425 2426 if (skb_rx_queue_recorded(skb)) { 2427 hash = skb_get_rx_queue(skb); 2428 while (unlikely(hash >= num_tx_queues)) 2429 hash -= num_tx_queues; 2430 return hash; 2431 } 2432 2433 if (dev->num_tc) { 2434 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2435 qoffset = dev->tc_to_txq[tc].offset; 2436 qcount = dev->tc_to_txq[tc].count; 2437 } 2438 2439 if (skb->sk && skb->sk->sk_hash) 2440 hash = skb->sk->sk_hash; 2441 else 2442 hash = (__force u16) skb->protocol; 2443 hash = jhash_1word(hash, hashrnd); 2444 2445 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2446 } 2447 EXPORT_SYMBOL(__skb_tx_hash); 2448 2449 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2450 { 2451 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2452 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2453 dev->name, queue_index, 2454 dev->real_num_tx_queues); 2455 return 0; 2456 } 2457 return queue_index; 2458 } 2459 2460 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 #ifdef CONFIG_XPS 2463 struct xps_dev_maps *dev_maps; 2464 struct xps_map *map; 2465 int queue_index = -1; 2466 2467 rcu_read_lock(); 2468 dev_maps = rcu_dereference(dev->xps_maps); 2469 if (dev_maps) { 2470 map = rcu_dereference( 2471 dev_maps->cpu_map[raw_smp_processor_id()]); 2472 if (map) { 2473 if (map->len == 1) 2474 queue_index = map->queues[0]; 2475 else { 2476 u32 hash; 2477 if (skb->sk && skb->sk->sk_hash) 2478 hash = skb->sk->sk_hash; 2479 else 2480 hash = (__force u16) skb->protocol ^ 2481 skb->rxhash; 2482 hash = jhash_1word(hash, hashrnd); 2483 queue_index = map->queues[ 2484 ((u64)hash * map->len) >> 32]; 2485 } 2486 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2487 queue_index = -1; 2488 } 2489 } 2490 rcu_read_unlock(); 2491 2492 return queue_index; 2493 #else 2494 return -1; 2495 #endif 2496 } 2497 2498 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2499 struct sk_buff *skb) 2500 { 2501 int queue_index; 2502 const struct net_device_ops *ops = dev->netdev_ops; 2503 2504 if (dev->real_num_tx_queues == 1) 2505 queue_index = 0; 2506 else if (ops->ndo_select_queue) { 2507 queue_index = ops->ndo_select_queue(dev, skb); 2508 queue_index = dev_cap_txqueue(dev, queue_index); 2509 } else { 2510 struct sock *sk = skb->sk; 2511 queue_index = sk_tx_queue_get(sk); 2512 2513 if (queue_index < 0 || skb->ooo_okay || 2514 queue_index >= dev->real_num_tx_queues) { 2515 int old_index = queue_index; 2516 2517 queue_index = get_xps_queue(dev, skb); 2518 if (queue_index < 0) 2519 queue_index = skb_tx_hash(dev, skb); 2520 2521 if (queue_index != old_index && sk) { 2522 struct dst_entry *dst = 2523 rcu_dereference_check(sk->sk_dst_cache, 1); 2524 2525 if (dst && skb_dst(skb) == dst) 2526 sk_tx_queue_set(sk, queue_index); 2527 } 2528 } 2529 } 2530 2531 skb_set_queue_mapping(skb, queue_index); 2532 return netdev_get_tx_queue(dev, queue_index); 2533 } 2534 2535 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2536 struct net_device *dev, 2537 struct netdev_queue *txq) 2538 { 2539 spinlock_t *root_lock = qdisc_lock(q); 2540 bool contended; 2541 int rc; 2542 2543 qdisc_skb_cb(skb)->pkt_len = skb->len; 2544 qdisc_calculate_pkt_len(skb, q); 2545 /* 2546 * Heuristic to force contended enqueues to serialize on a 2547 * separate lock before trying to get qdisc main lock. 2548 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2549 * and dequeue packets faster. 2550 */ 2551 contended = qdisc_is_running(q); 2552 if (unlikely(contended)) 2553 spin_lock(&q->busylock); 2554 2555 spin_lock(root_lock); 2556 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2557 kfree_skb(skb); 2558 rc = NET_XMIT_DROP; 2559 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2560 qdisc_run_begin(q)) { 2561 /* 2562 * This is a work-conserving queue; there are no old skbs 2563 * waiting to be sent out; and the qdisc is not running - 2564 * xmit the skb directly. 2565 */ 2566 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2567 skb_dst_force(skb); 2568 2569 qdisc_bstats_update(q, skb); 2570 2571 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2572 if (unlikely(contended)) { 2573 spin_unlock(&q->busylock); 2574 contended = false; 2575 } 2576 __qdisc_run(q); 2577 } else 2578 qdisc_run_end(q); 2579 2580 rc = NET_XMIT_SUCCESS; 2581 } else { 2582 skb_dst_force(skb); 2583 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2584 if (qdisc_run_begin(q)) { 2585 if (unlikely(contended)) { 2586 spin_unlock(&q->busylock); 2587 contended = false; 2588 } 2589 __qdisc_run(q); 2590 } 2591 } 2592 spin_unlock(root_lock); 2593 if (unlikely(contended)) 2594 spin_unlock(&q->busylock); 2595 return rc; 2596 } 2597 2598 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2599 static void skb_update_prio(struct sk_buff *skb) 2600 { 2601 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2602 2603 if (!skb->priority && skb->sk && map) { 2604 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2605 2606 if (prioidx < map->priomap_len) 2607 skb->priority = map->priomap[prioidx]; 2608 } 2609 } 2610 #else 2611 #define skb_update_prio(skb) 2612 #endif 2613 2614 static DEFINE_PER_CPU(int, xmit_recursion); 2615 #define RECURSION_LIMIT 10 2616 2617 /** 2618 * dev_loopback_xmit - loop back @skb 2619 * @skb: buffer to transmit 2620 */ 2621 int dev_loopback_xmit(struct sk_buff *skb) 2622 { 2623 skb_reset_mac_header(skb); 2624 __skb_pull(skb, skb_network_offset(skb)); 2625 skb->pkt_type = PACKET_LOOPBACK; 2626 skb->ip_summed = CHECKSUM_UNNECESSARY; 2627 WARN_ON(!skb_dst(skb)); 2628 skb_dst_force(skb); 2629 netif_rx_ni(skb); 2630 return 0; 2631 } 2632 EXPORT_SYMBOL(dev_loopback_xmit); 2633 2634 /** 2635 * dev_queue_xmit - transmit a buffer 2636 * @skb: buffer to transmit 2637 * 2638 * Queue a buffer for transmission to a network device. The caller must 2639 * have set the device and priority and built the buffer before calling 2640 * this function. The function can be called from an interrupt. 2641 * 2642 * A negative errno code is returned on a failure. A success does not 2643 * guarantee the frame will be transmitted as it may be dropped due 2644 * to congestion or traffic shaping. 2645 * 2646 * ----------------------------------------------------------------------------------- 2647 * I notice this method can also return errors from the queue disciplines, 2648 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2649 * be positive. 2650 * 2651 * Regardless of the return value, the skb is consumed, so it is currently 2652 * difficult to retry a send to this method. (You can bump the ref count 2653 * before sending to hold a reference for retry if you are careful.) 2654 * 2655 * When calling this method, interrupts MUST be enabled. This is because 2656 * the BH enable code must have IRQs enabled so that it will not deadlock. 2657 * --BLG 2658 */ 2659 int dev_queue_xmit(struct sk_buff *skb) 2660 { 2661 struct net_device *dev = skb->dev; 2662 struct netdev_queue *txq; 2663 struct Qdisc *q; 2664 int rc = -ENOMEM; 2665 2666 /* Disable soft irqs for various locks below. Also 2667 * stops preemption for RCU. 2668 */ 2669 rcu_read_lock_bh(); 2670 2671 skb_update_prio(skb); 2672 2673 txq = netdev_pick_tx(dev, skb); 2674 q = rcu_dereference_bh(txq->qdisc); 2675 2676 #ifdef CONFIG_NET_CLS_ACT 2677 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2678 #endif 2679 trace_net_dev_queue(skb); 2680 if (q->enqueue) { 2681 rc = __dev_xmit_skb(skb, q, dev, txq); 2682 goto out; 2683 } 2684 2685 /* The device has no queue. Common case for software devices: 2686 loopback, all the sorts of tunnels... 2687 2688 Really, it is unlikely that netif_tx_lock protection is necessary 2689 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2690 counters.) 2691 However, it is possible, that they rely on protection 2692 made by us here. 2693 2694 Check this and shot the lock. It is not prone from deadlocks. 2695 Either shot noqueue qdisc, it is even simpler 8) 2696 */ 2697 if (dev->flags & IFF_UP) { 2698 int cpu = smp_processor_id(); /* ok because BHs are off */ 2699 2700 if (txq->xmit_lock_owner != cpu) { 2701 2702 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2703 goto recursion_alert; 2704 2705 HARD_TX_LOCK(dev, txq, cpu); 2706 2707 if (!netif_xmit_stopped(txq)) { 2708 __this_cpu_inc(xmit_recursion); 2709 rc = dev_hard_start_xmit(skb, dev, txq); 2710 __this_cpu_dec(xmit_recursion); 2711 if (dev_xmit_complete(rc)) { 2712 HARD_TX_UNLOCK(dev, txq); 2713 goto out; 2714 } 2715 } 2716 HARD_TX_UNLOCK(dev, txq); 2717 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2718 dev->name); 2719 } else { 2720 /* Recursion is detected! It is possible, 2721 * unfortunately 2722 */ 2723 recursion_alert: 2724 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2725 dev->name); 2726 } 2727 } 2728 2729 rc = -ENETDOWN; 2730 rcu_read_unlock_bh(); 2731 2732 kfree_skb(skb); 2733 return rc; 2734 out: 2735 rcu_read_unlock_bh(); 2736 return rc; 2737 } 2738 EXPORT_SYMBOL(dev_queue_xmit); 2739 2740 2741 /*======================================================================= 2742 Receiver routines 2743 =======================================================================*/ 2744 2745 int netdev_max_backlog __read_mostly = 1000; 2746 EXPORT_SYMBOL(netdev_max_backlog); 2747 2748 int netdev_tstamp_prequeue __read_mostly = 1; 2749 int netdev_budget __read_mostly = 300; 2750 int weight_p __read_mostly = 64; /* old backlog weight */ 2751 2752 /* Called with irq disabled */ 2753 static inline void ____napi_schedule(struct softnet_data *sd, 2754 struct napi_struct *napi) 2755 { 2756 list_add_tail(&napi->poll_list, &sd->poll_list); 2757 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2758 } 2759 2760 /* 2761 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2762 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2763 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2764 * if hash is a canonical 4-tuple hash over transport ports. 2765 */ 2766 void __skb_get_rxhash(struct sk_buff *skb) 2767 { 2768 struct flow_keys keys; 2769 u32 hash; 2770 2771 if (!skb_flow_dissect(skb, &keys)) 2772 return; 2773 2774 if (keys.ports) 2775 skb->l4_rxhash = 1; 2776 2777 /* get a consistent hash (same value on both flow directions) */ 2778 if (((__force u32)keys.dst < (__force u32)keys.src) || 2779 (((__force u32)keys.dst == (__force u32)keys.src) && 2780 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) { 2781 swap(keys.dst, keys.src); 2782 swap(keys.port16[0], keys.port16[1]); 2783 } 2784 2785 hash = jhash_3words((__force u32)keys.dst, 2786 (__force u32)keys.src, 2787 (__force u32)keys.ports, hashrnd); 2788 if (!hash) 2789 hash = 1; 2790 2791 skb->rxhash = hash; 2792 } 2793 EXPORT_SYMBOL(__skb_get_rxhash); 2794 2795 #ifdef CONFIG_RPS 2796 2797 /* One global table that all flow-based protocols share. */ 2798 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2799 EXPORT_SYMBOL(rps_sock_flow_table); 2800 2801 struct static_key rps_needed __read_mostly; 2802 2803 static struct rps_dev_flow * 2804 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2805 struct rps_dev_flow *rflow, u16 next_cpu) 2806 { 2807 if (next_cpu != RPS_NO_CPU) { 2808 #ifdef CONFIG_RFS_ACCEL 2809 struct netdev_rx_queue *rxqueue; 2810 struct rps_dev_flow_table *flow_table; 2811 struct rps_dev_flow *old_rflow; 2812 u32 flow_id; 2813 u16 rxq_index; 2814 int rc; 2815 2816 /* Should we steer this flow to a different hardware queue? */ 2817 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2818 !(dev->features & NETIF_F_NTUPLE)) 2819 goto out; 2820 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2821 if (rxq_index == skb_get_rx_queue(skb)) 2822 goto out; 2823 2824 rxqueue = dev->_rx + rxq_index; 2825 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2826 if (!flow_table) 2827 goto out; 2828 flow_id = skb->rxhash & flow_table->mask; 2829 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2830 rxq_index, flow_id); 2831 if (rc < 0) 2832 goto out; 2833 old_rflow = rflow; 2834 rflow = &flow_table->flows[flow_id]; 2835 rflow->filter = rc; 2836 if (old_rflow->filter == rflow->filter) 2837 old_rflow->filter = RPS_NO_FILTER; 2838 out: 2839 #endif 2840 rflow->last_qtail = 2841 per_cpu(softnet_data, next_cpu).input_queue_head; 2842 } 2843 2844 rflow->cpu = next_cpu; 2845 return rflow; 2846 } 2847 2848 /* 2849 * get_rps_cpu is called from netif_receive_skb and returns the target 2850 * CPU from the RPS map of the receiving queue for a given skb. 2851 * rcu_read_lock must be held on entry. 2852 */ 2853 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2854 struct rps_dev_flow **rflowp) 2855 { 2856 struct netdev_rx_queue *rxqueue; 2857 struct rps_map *map; 2858 struct rps_dev_flow_table *flow_table; 2859 struct rps_sock_flow_table *sock_flow_table; 2860 int cpu = -1; 2861 u16 tcpu; 2862 2863 if (skb_rx_queue_recorded(skb)) { 2864 u16 index = skb_get_rx_queue(skb); 2865 if (unlikely(index >= dev->real_num_rx_queues)) { 2866 WARN_ONCE(dev->real_num_rx_queues > 1, 2867 "%s received packet on queue %u, but number " 2868 "of RX queues is %u\n", 2869 dev->name, index, dev->real_num_rx_queues); 2870 goto done; 2871 } 2872 rxqueue = dev->_rx + index; 2873 } else 2874 rxqueue = dev->_rx; 2875 2876 map = rcu_dereference(rxqueue->rps_map); 2877 if (map) { 2878 if (map->len == 1 && 2879 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2880 tcpu = map->cpus[0]; 2881 if (cpu_online(tcpu)) 2882 cpu = tcpu; 2883 goto done; 2884 } 2885 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2886 goto done; 2887 } 2888 2889 skb_reset_network_header(skb); 2890 if (!skb_get_rxhash(skb)) 2891 goto done; 2892 2893 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2894 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2895 if (flow_table && sock_flow_table) { 2896 u16 next_cpu; 2897 struct rps_dev_flow *rflow; 2898 2899 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2900 tcpu = rflow->cpu; 2901 2902 next_cpu = sock_flow_table->ents[skb->rxhash & 2903 sock_flow_table->mask]; 2904 2905 /* 2906 * If the desired CPU (where last recvmsg was done) is 2907 * different from current CPU (one in the rx-queue flow 2908 * table entry), switch if one of the following holds: 2909 * - Current CPU is unset (equal to RPS_NO_CPU). 2910 * - Current CPU is offline. 2911 * - The current CPU's queue tail has advanced beyond the 2912 * last packet that was enqueued using this table entry. 2913 * This guarantees that all previous packets for the flow 2914 * have been dequeued, thus preserving in order delivery. 2915 */ 2916 if (unlikely(tcpu != next_cpu) && 2917 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2918 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2919 rflow->last_qtail)) >= 0)) { 2920 tcpu = next_cpu; 2921 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2922 } 2923 2924 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2925 *rflowp = rflow; 2926 cpu = tcpu; 2927 goto done; 2928 } 2929 } 2930 2931 if (map) { 2932 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2933 2934 if (cpu_online(tcpu)) { 2935 cpu = tcpu; 2936 goto done; 2937 } 2938 } 2939 2940 done: 2941 return cpu; 2942 } 2943 2944 #ifdef CONFIG_RFS_ACCEL 2945 2946 /** 2947 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2948 * @dev: Device on which the filter was set 2949 * @rxq_index: RX queue index 2950 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2951 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2952 * 2953 * Drivers that implement ndo_rx_flow_steer() should periodically call 2954 * this function for each installed filter and remove the filters for 2955 * which it returns %true. 2956 */ 2957 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2958 u32 flow_id, u16 filter_id) 2959 { 2960 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2961 struct rps_dev_flow_table *flow_table; 2962 struct rps_dev_flow *rflow; 2963 bool expire = true; 2964 int cpu; 2965 2966 rcu_read_lock(); 2967 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2968 if (flow_table && flow_id <= flow_table->mask) { 2969 rflow = &flow_table->flows[flow_id]; 2970 cpu = ACCESS_ONCE(rflow->cpu); 2971 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2972 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2973 rflow->last_qtail) < 2974 (int)(10 * flow_table->mask))) 2975 expire = false; 2976 } 2977 rcu_read_unlock(); 2978 return expire; 2979 } 2980 EXPORT_SYMBOL(rps_may_expire_flow); 2981 2982 #endif /* CONFIG_RFS_ACCEL */ 2983 2984 /* Called from hardirq (IPI) context */ 2985 static void rps_trigger_softirq(void *data) 2986 { 2987 struct softnet_data *sd = data; 2988 2989 ____napi_schedule(sd, &sd->backlog); 2990 sd->received_rps++; 2991 } 2992 2993 #endif /* CONFIG_RPS */ 2994 2995 /* 2996 * Check if this softnet_data structure is another cpu one 2997 * If yes, queue it to our IPI list and return 1 2998 * If no, return 0 2999 */ 3000 static int rps_ipi_queued(struct softnet_data *sd) 3001 { 3002 #ifdef CONFIG_RPS 3003 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3004 3005 if (sd != mysd) { 3006 sd->rps_ipi_next = mysd->rps_ipi_list; 3007 mysd->rps_ipi_list = sd; 3008 3009 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3010 return 1; 3011 } 3012 #endif /* CONFIG_RPS */ 3013 return 0; 3014 } 3015 3016 /* 3017 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3018 * queue (may be a remote CPU queue). 3019 */ 3020 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3021 unsigned int *qtail) 3022 { 3023 struct softnet_data *sd; 3024 unsigned long flags; 3025 3026 sd = &per_cpu(softnet_data, cpu); 3027 3028 local_irq_save(flags); 3029 3030 rps_lock(sd); 3031 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 3032 if (skb_queue_len(&sd->input_pkt_queue)) { 3033 enqueue: 3034 __skb_queue_tail(&sd->input_pkt_queue, skb); 3035 input_queue_tail_incr_save(sd, qtail); 3036 rps_unlock(sd); 3037 local_irq_restore(flags); 3038 return NET_RX_SUCCESS; 3039 } 3040 3041 /* Schedule NAPI for backlog device 3042 * We can use non atomic operation since we own the queue lock 3043 */ 3044 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3045 if (!rps_ipi_queued(sd)) 3046 ____napi_schedule(sd, &sd->backlog); 3047 } 3048 goto enqueue; 3049 } 3050 3051 sd->dropped++; 3052 rps_unlock(sd); 3053 3054 local_irq_restore(flags); 3055 3056 atomic_long_inc(&skb->dev->rx_dropped); 3057 kfree_skb(skb); 3058 return NET_RX_DROP; 3059 } 3060 3061 /** 3062 * netif_rx - post buffer to the network code 3063 * @skb: buffer to post 3064 * 3065 * This function receives a packet from a device driver and queues it for 3066 * the upper (protocol) levels to process. It always succeeds. The buffer 3067 * may be dropped during processing for congestion control or by the 3068 * protocol layers. 3069 * 3070 * return values: 3071 * NET_RX_SUCCESS (no congestion) 3072 * NET_RX_DROP (packet was dropped) 3073 * 3074 */ 3075 3076 int netif_rx(struct sk_buff *skb) 3077 { 3078 int ret; 3079 3080 /* if netpoll wants it, pretend we never saw it */ 3081 if (netpoll_rx(skb)) 3082 return NET_RX_DROP; 3083 3084 net_timestamp_check(netdev_tstamp_prequeue, skb); 3085 3086 trace_netif_rx(skb); 3087 #ifdef CONFIG_RPS 3088 if (static_key_false(&rps_needed)) { 3089 struct rps_dev_flow voidflow, *rflow = &voidflow; 3090 int cpu; 3091 3092 preempt_disable(); 3093 rcu_read_lock(); 3094 3095 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3096 if (cpu < 0) 3097 cpu = smp_processor_id(); 3098 3099 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3100 3101 rcu_read_unlock(); 3102 preempt_enable(); 3103 } else 3104 #endif 3105 { 3106 unsigned int qtail; 3107 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3108 put_cpu(); 3109 } 3110 return ret; 3111 } 3112 EXPORT_SYMBOL(netif_rx); 3113 3114 int netif_rx_ni(struct sk_buff *skb) 3115 { 3116 int err; 3117 3118 preempt_disable(); 3119 err = netif_rx(skb); 3120 if (local_softirq_pending()) 3121 do_softirq(); 3122 preempt_enable(); 3123 3124 return err; 3125 } 3126 EXPORT_SYMBOL(netif_rx_ni); 3127 3128 static void net_tx_action(struct softirq_action *h) 3129 { 3130 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3131 3132 if (sd->completion_queue) { 3133 struct sk_buff *clist; 3134 3135 local_irq_disable(); 3136 clist = sd->completion_queue; 3137 sd->completion_queue = NULL; 3138 local_irq_enable(); 3139 3140 while (clist) { 3141 struct sk_buff *skb = clist; 3142 clist = clist->next; 3143 3144 WARN_ON(atomic_read(&skb->users)); 3145 trace_kfree_skb(skb, net_tx_action); 3146 __kfree_skb(skb); 3147 } 3148 } 3149 3150 if (sd->output_queue) { 3151 struct Qdisc *head; 3152 3153 local_irq_disable(); 3154 head = sd->output_queue; 3155 sd->output_queue = NULL; 3156 sd->output_queue_tailp = &sd->output_queue; 3157 local_irq_enable(); 3158 3159 while (head) { 3160 struct Qdisc *q = head; 3161 spinlock_t *root_lock; 3162 3163 head = head->next_sched; 3164 3165 root_lock = qdisc_lock(q); 3166 if (spin_trylock(root_lock)) { 3167 smp_mb__before_clear_bit(); 3168 clear_bit(__QDISC_STATE_SCHED, 3169 &q->state); 3170 qdisc_run(q); 3171 spin_unlock(root_lock); 3172 } else { 3173 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3174 &q->state)) { 3175 __netif_reschedule(q); 3176 } else { 3177 smp_mb__before_clear_bit(); 3178 clear_bit(__QDISC_STATE_SCHED, 3179 &q->state); 3180 } 3181 } 3182 } 3183 } 3184 } 3185 3186 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3187 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3188 /* This hook is defined here for ATM LANE */ 3189 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3190 unsigned char *addr) __read_mostly; 3191 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3192 #endif 3193 3194 #ifdef CONFIG_NET_CLS_ACT 3195 /* TODO: Maybe we should just force sch_ingress to be compiled in 3196 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3197 * a compare and 2 stores extra right now if we dont have it on 3198 * but have CONFIG_NET_CLS_ACT 3199 * NOTE: This doesn't stop any functionality; if you dont have 3200 * the ingress scheduler, you just can't add policies on ingress. 3201 * 3202 */ 3203 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3204 { 3205 struct net_device *dev = skb->dev; 3206 u32 ttl = G_TC_RTTL(skb->tc_verd); 3207 int result = TC_ACT_OK; 3208 struct Qdisc *q; 3209 3210 if (unlikely(MAX_RED_LOOP < ttl++)) { 3211 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3212 skb->skb_iif, dev->ifindex); 3213 return TC_ACT_SHOT; 3214 } 3215 3216 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3217 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3218 3219 q = rxq->qdisc; 3220 if (q != &noop_qdisc) { 3221 spin_lock(qdisc_lock(q)); 3222 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3223 result = qdisc_enqueue_root(skb, q); 3224 spin_unlock(qdisc_lock(q)); 3225 } 3226 3227 return result; 3228 } 3229 3230 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3231 struct packet_type **pt_prev, 3232 int *ret, struct net_device *orig_dev) 3233 { 3234 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3235 3236 if (!rxq || rxq->qdisc == &noop_qdisc) 3237 goto out; 3238 3239 if (*pt_prev) { 3240 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3241 *pt_prev = NULL; 3242 } 3243 3244 switch (ing_filter(skb, rxq)) { 3245 case TC_ACT_SHOT: 3246 case TC_ACT_STOLEN: 3247 kfree_skb(skb); 3248 return NULL; 3249 } 3250 3251 out: 3252 skb->tc_verd = 0; 3253 return skb; 3254 } 3255 #endif 3256 3257 /** 3258 * netdev_rx_handler_register - register receive handler 3259 * @dev: device to register a handler for 3260 * @rx_handler: receive handler to register 3261 * @rx_handler_data: data pointer that is used by rx handler 3262 * 3263 * Register a receive hander for a device. This handler will then be 3264 * called from __netif_receive_skb. A negative errno code is returned 3265 * on a failure. 3266 * 3267 * The caller must hold the rtnl_mutex. 3268 * 3269 * For a general description of rx_handler, see enum rx_handler_result. 3270 */ 3271 int netdev_rx_handler_register(struct net_device *dev, 3272 rx_handler_func_t *rx_handler, 3273 void *rx_handler_data) 3274 { 3275 ASSERT_RTNL(); 3276 3277 if (dev->rx_handler) 3278 return -EBUSY; 3279 3280 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3281 rcu_assign_pointer(dev->rx_handler, rx_handler); 3282 3283 return 0; 3284 } 3285 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3286 3287 /** 3288 * netdev_rx_handler_unregister - unregister receive handler 3289 * @dev: device to unregister a handler from 3290 * 3291 * Unregister a receive hander from a device. 3292 * 3293 * The caller must hold the rtnl_mutex. 3294 */ 3295 void netdev_rx_handler_unregister(struct net_device *dev) 3296 { 3297 3298 ASSERT_RTNL(); 3299 RCU_INIT_POINTER(dev->rx_handler, NULL); 3300 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3301 } 3302 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3303 3304 /* 3305 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3306 * the special handling of PFMEMALLOC skbs. 3307 */ 3308 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3309 { 3310 switch (skb->protocol) { 3311 case __constant_htons(ETH_P_ARP): 3312 case __constant_htons(ETH_P_IP): 3313 case __constant_htons(ETH_P_IPV6): 3314 case __constant_htons(ETH_P_8021Q): 3315 return true; 3316 default: 3317 return false; 3318 } 3319 } 3320 3321 static int __netif_receive_skb(struct sk_buff *skb) 3322 { 3323 struct packet_type *ptype, *pt_prev; 3324 rx_handler_func_t *rx_handler; 3325 struct net_device *orig_dev; 3326 struct net_device *null_or_dev; 3327 bool deliver_exact = false; 3328 int ret = NET_RX_DROP; 3329 __be16 type; 3330 unsigned long pflags = current->flags; 3331 3332 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3333 3334 trace_netif_receive_skb(skb); 3335 3336 /* 3337 * PFMEMALLOC skbs are special, they should 3338 * - be delivered to SOCK_MEMALLOC sockets only 3339 * - stay away from userspace 3340 * - have bounded memory usage 3341 * 3342 * Use PF_MEMALLOC as this saves us from propagating the allocation 3343 * context down to all allocation sites. 3344 */ 3345 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3346 current->flags |= PF_MEMALLOC; 3347 3348 /* if we've gotten here through NAPI, check netpoll */ 3349 if (netpoll_receive_skb(skb)) 3350 goto out; 3351 3352 orig_dev = skb->dev; 3353 3354 skb_reset_network_header(skb); 3355 skb_reset_transport_header(skb); 3356 skb_reset_mac_len(skb); 3357 3358 pt_prev = NULL; 3359 3360 rcu_read_lock(); 3361 3362 another_round: 3363 skb->skb_iif = skb->dev->ifindex; 3364 3365 __this_cpu_inc(softnet_data.processed); 3366 3367 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3368 skb = vlan_untag(skb); 3369 if (unlikely(!skb)) 3370 goto unlock; 3371 } 3372 3373 #ifdef CONFIG_NET_CLS_ACT 3374 if (skb->tc_verd & TC_NCLS) { 3375 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3376 goto ncls; 3377 } 3378 #endif 3379 3380 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3381 goto skip_taps; 3382 3383 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3384 if (!ptype->dev || ptype->dev == skb->dev) { 3385 if (pt_prev) 3386 ret = deliver_skb(skb, pt_prev, orig_dev); 3387 pt_prev = ptype; 3388 } 3389 } 3390 3391 skip_taps: 3392 #ifdef CONFIG_NET_CLS_ACT 3393 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3394 if (!skb) 3395 goto unlock; 3396 ncls: 3397 #endif 3398 3399 if (sk_memalloc_socks() && skb_pfmemalloc(skb) 3400 && !skb_pfmemalloc_protocol(skb)) 3401 goto drop; 3402 3403 if (vlan_tx_tag_present(skb)) { 3404 if (pt_prev) { 3405 ret = deliver_skb(skb, pt_prev, orig_dev); 3406 pt_prev = NULL; 3407 } 3408 if (vlan_do_receive(&skb)) 3409 goto another_round; 3410 else if (unlikely(!skb)) 3411 goto unlock; 3412 } 3413 3414 rx_handler = rcu_dereference(skb->dev->rx_handler); 3415 if (rx_handler) { 3416 if (pt_prev) { 3417 ret = deliver_skb(skb, pt_prev, orig_dev); 3418 pt_prev = NULL; 3419 } 3420 switch (rx_handler(&skb)) { 3421 case RX_HANDLER_CONSUMED: 3422 goto unlock; 3423 case RX_HANDLER_ANOTHER: 3424 goto another_round; 3425 case RX_HANDLER_EXACT: 3426 deliver_exact = true; 3427 case RX_HANDLER_PASS: 3428 break; 3429 default: 3430 BUG(); 3431 } 3432 } 3433 3434 if (vlan_tx_nonzero_tag_present(skb)) 3435 skb->pkt_type = PACKET_OTHERHOST; 3436 3437 /* deliver only exact match when indicated */ 3438 null_or_dev = deliver_exact ? skb->dev : NULL; 3439 3440 type = skb->protocol; 3441 list_for_each_entry_rcu(ptype, 3442 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3443 if (ptype->type == type && 3444 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3445 ptype->dev == orig_dev)) { 3446 if (pt_prev) 3447 ret = deliver_skb(skb, pt_prev, orig_dev); 3448 pt_prev = ptype; 3449 } 3450 } 3451 3452 if (pt_prev) { 3453 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3454 goto drop; 3455 else 3456 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3457 } else { 3458 drop: 3459 atomic_long_inc(&skb->dev->rx_dropped); 3460 kfree_skb(skb); 3461 /* Jamal, now you will not able to escape explaining 3462 * me how you were going to use this. :-) 3463 */ 3464 ret = NET_RX_DROP; 3465 } 3466 3467 unlock: 3468 rcu_read_unlock(); 3469 out: 3470 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3471 return ret; 3472 } 3473 3474 /** 3475 * netif_receive_skb - process receive buffer from network 3476 * @skb: buffer to process 3477 * 3478 * netif_receive_skb() is the main receive data processing function. 3479 * It always succeeds. The buffer may be dropped during processing 3480 * for congestion control or by the protocol layers. 3481 * 3482 * This function may only be called from softirq context and interrupts 3483 * should be enabled. 3484 * 3485 * Return values (usually ignored): 3486 * NET_RX_SUCCESS: no congestion 3487 * NET_RX_DROP: packet was dropped 3488 */ 3489 int netif_receive_skb(struct sk_buff *skb) 3490 { 3491 net_timestamp_check(netdev_tstamp_prequeue, skb); 3492 3493 if (skb_defer_rx_timestamp(skb)) 3494 return NET_RX_SUCCESS; 3495 3496 #ifdef CONFIG_RPS 3497 if (static_key_false(&rps_needed)) { 3498 struct rps_dev_flow voidflow, *rflow = &voidflow; 3499 int cpu, ret; 3500 3501 rcu_read_lock(); 3502 3503 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3504 3505 if (cpu >= 0) { 3506 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3507 rcu_read_unlock(); 3508 return ret; 3509 } 3510 rcu_read_unlock(); 3511 } 3512 #endif 3513 return __netif_receive_skb(skb); 3514 } 3515 EXPORT_SYMBOL(netif_receive_skb); 3516 3517 /* Network device is going away, flush any packets still pending 3518 * Called with irqs disabled. 3519 */ 3520 static void flush_backlog(void *arg) 3521 { 3522 struct net_device *dev = arg; 3523 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3524 struct sk_buff *skb, *tmp; 3525 3526 rps_lock(sd); 3527 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3528 if (skb->dev == dev) { 3529 __skb_unlink(skb, &sd->input_pkt_queue); 3530 kfree_skb(skb); 3531 input_queue_head_incr(sd); 3532 } 3533 } 3534 rps_unlock(sd); 3535 3536 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3537 if (skb->dev == dev) { 3538 __skb_unlink(skb, &sd->process_queue); 3539 kfree_skb(skb); 3540 input_queue_head_incr(sd); 3541 } 3542 } 3543 } 3544 3545 static int napi_gro_complete(struct sk_buff *skb) 3546 { 3547 struct packet_offload *ptype; 3548 __be16 type = skb->protocol; 3549 struct list_head *head = &offload_base; 3550 int err = -ENOENT; 3551 3552 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3553 3554 if (NAPI_GRO_CB(skb)->count == 1) { 3555 skb_shinfo(skb)->gso_size = 0; 3556 goto out; 3557 } 3558 3559 rcu_read_lock(); 3560 list_for_each_entry_rcu(ptype, head, list) { 3561 if (ptype->type != type || !ptype->callbacks.gro_complete) 3562 continue; 3563 3564 err = ptype->callbacks.gro_complete(skb); 3565 break; 3566 } 3567 rcu_read_unlock(); 3568 3569 if (err) { 3570 WARN_ON(&ptype->list == head); 3571 kfree_skb(skb); 3572 return NET_RX_SUCCESS; 3573 } 3574 3575 out: 3576 return netif_receive_skb(skb); 3577 } 3578 3579 /* napi->gro_list contains packets ordered by age. 3580 * youngest packets at the head of it. 3581 * Complete skbs in reverse order to reduce latencies. 3582 */ 3583 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3584 { 3585 struct sk_buff *skb, *prev = NULL; 3586 3587 /* scan list and build reverse chain */ 3588 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3589 skb->prev = prev; 3590 prev = skb; 3591 } 3592 3593 for (skb = prev; skb; skb = prev) { 3594 skb->next = NULL; 3595 3596 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3597 return; 3598 3599 prev = skb->prev; 3600 napi_gro_complete(skb); 3601 napi->gro_count--; 3602 } 3603 3604 napi->gro_list = NULL; 3605 } 3606 EXPORT_SYMBOL(napi_gro_flush); 3607 3608 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3609 { 3610 struct sk_buff *p; 3611 unsigned int maclen = skb->dev->hard_header_len; 3612 3613 for (p = napi->gro_list; p; p = p->next) { 3614 unsigned long diffs; 3615 3616 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3617 diffs |= p->vlan_tci ^ skb->vlan_tci; 3618 if (maclen == ETH_HLEN) 3619 diffs |= compare_ether_header(skb_mac_header(p), 3620 skb_gro_mac_header(skb)); 3621 else if (!diffs) 3622 diffs = memcmp(skb_mac_header(p), 3623 skb_gro_mac_header(skb), 3624 maclen); 3625 NAPI_GRO_CB(p)->same_flow = !diffs; 3626 NAPI_GRO_CB(p)->flush = 0; 3627 } 3628 } 3629 3630 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3631 { 3632 struct sk_buff **pp = NULL; 3633 struct packet_offload *ptype; 3634 __be16 type = skb->protocol; 3635 struct list_head *head = &offload_base; 3636 int same_flow; 3637 int mac_len; 3638 enum gro_result ret; 3639 3640 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3641 goto normal; 3642 3643 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3644 goto normal; 3645 3646 gro_list_prepare(napi, skb); 3647 3648 rcu_read_lock(); 3649 list_for_each_entry_rcu(ptype, head, list) { 3650 if (ptype->type != type || !ptype->callbacks.gro_receive) 3651 continue; 3652 3653 skb_set_network_header(skb, skb_gro_offset(skb)); 3654 mac_len = skb->network_header - skb->mac_header; 3655 skb->mac_len = mac_len; 3656 NAPI_GRO_CB(skb)->same_flow = 0; 3657 NAPI_GRO_CB(skb)->flush = 0; 3658 NAPI_GRO_CB(skb)->free = 0; 3659 3660 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3661 break; 3662 } 3663 rcu_read_unlock(); 3664 3665 if (&ptype->list == head) 3666 goto normal; 3667 3668 same_flow = NAPI_GRO_CB(skb)->same_flow; 3669 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3670 3671 if (pp) { 3672 struct sk_buff *nskb = *pp; 3673 3674 *pp = nskb->next; 3675 nskb->next = NULL; 3676 napi_gro_complete(nskb); 3677 napi->gro_count--; 3678 } 3679 3680 if (same_flow) 3681 goto ok; 3682 3683 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3684 goto normal; 3685 3686 napi->gro_count++; 3687 NAPI_GRO_CB(skb)->count = 1; 3688 NAPI_GRO_CB(skb)->age = jiffies; 3689 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3690 skb->next = napi->gro_list; 3691 napi->gro_list = skb; 3692 ret = GRO_HELD; 3693 3694 pull: 3695 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3696 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3697 3698 BUG_ON(skb->end - skb->tail < grow); 3699 3700 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3701 3702 skb->tail += grow; 3703 skb->data_len -= grow; 3704 3705 skb_shinfo(skb)->frags[0].page_offset += grow; 3706 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3707 3708 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3709 skb_frag_unref(skb, 0); 3710 memmove(skb_shinfo(skb)->frags, 3711 skb_shinfo(skb)->frags + 1, 3712 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3713 } 3714 } 3715 3716 ok: 3717 return ret; 3718 3719 normal: 3720 ret = GRO_NORMAL; 3721 goto pull; 3722 } 3723 3724 3725 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3726 { 3727 switch (ret) { 3728 case GRO_NORMAL: 3729 if (netif_receive_skb(skb)) 3730 ret = GRO_DROP; 3731 break; 3732 3733 case GRO_DROP: 3734 kfree_skb(skb); 3735 break; 3736 3737 case GRO_MERGED_FREE: 3738 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3739 kmem_cache_free(skbuff_head_cache, skb); 3740 else 3741 __kfree_skb(skb); 3742 break; 3743 3744 case GRO_HELD: 3745 case GRO_MERGED: 3746 break; 3747 } 3748 3749 return ret; 3750 } 3751 3752 static void skb_gro_reset_offset(struct sk_buff *skb) 3753 { 3754 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3755 const skb_frag_t *frag0 = &pinfo->frags[0]; 3756 3757 NAPI_GRO_CB(skb)->data_offset = 0; 3758 NAPI_GRO_CB(skb)->frag0 = NULL; 3759 NAPI_GRO_CB(skb)->frag0_len = 0; 3760 3761 if (skb->mac_header == skb->tail && 3762 pinfo->nr_frags && 3763 !PageHighMem(skb_frag_page(frag0))) { 3764 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3765 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3766 } 3767 } 3768 3769 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3770 { 3771 skb_gro_reset_offset(skb); 3772 3773 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3774 } 3775 EXPORT_SYMBOL(napi_gro_receive); 3776 3777 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3778 { 3779 __skb_pull(skb, skb_headlen(skb)); 3780 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3781 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3782 skb->vlan_tci = 0; 3783 skb->dev = napi->dev; 3784 skb->skb_iif = 0; 3785 3786 napi->skb = skb; 3787 } 3788 3789 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3790 { 3791 struct sk_buff *skb = napi->skb; 3792 3793 if (!skb) { 3794 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3795 if (skb) 3796 napi->skb = skb; 3797 } 3798 return skb; 3799 } 3800 EXPORT_SYMBOL(napi_get_frags); 3801 3802 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3803 gro_result_t ret) 3804 { 3805 switch (ret) { 3806 case GRO_NORMAL: 3807 case GRO_HELD: 3808 skb->protocol = eth_type_trans(skb, skb->dev); 3809 3810 if (ret == GRO_HELD) 3811 skb_gro_pull(skb, -ETH_HLEN); 3812 else if (netif_receive_skb(skb)) 3813 ret = GRO_DROP; 3814 break; 3815 3816 case GRO_DROP: 3817 case GRO_MERGED_FREE: 3818 napi_reuse_skb(napi, skb); 3819 break; 3820 3821 case GRO_MERGED: 3822 break; 3823 } 3824 3825 return ret; 3826 } 3827 3828 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3829 { 3830 struct sk_buff *skb = napi->skb; 3831 struct ethhdr *eth; 3832 unsigned int hlen; 3833 unsigned int off; 3834 3835 napi->skb = NULL; 3836 3837 skb_reset_mac_header(skb); 3838 skb_gro_reset_offset(skb); 3839 3840 off = skb_gro_offset(skb); 3841 hlen = off + sizeof(*eth); 3842 eth = skb_gro_header_fast(skb, off); 3843 if (skb_gro_header_hard(skb, hlen)) { 3844 eth = skb_gro_header_slow(skb, hlen, off); 3845 if (unlikely(!eth)) { 3846 napi_reuse_skb(napi, skb); 3847 skb = NULL; 3848 goto out; 3849 } 3850 } 3851 3852 skb_gro_pull(skb, sizeof(*eth)); 3853 3854 /* 3855 * This works because the only protocols we care about don't require 3856 * special handling. We'll fix it up properly at the end. 3857 */ 3858 skb->protocol = eth->h_proto; 3859 3860 out: 3861 return skb; 3862 } 3863 3864 gro_result_t napi_gro_frags(struct napi_struct *napi) 3865 { 3866 struct sk_buff *skb = napi_frags_skb(napi); 3867 3868 if (!skb) 3869 return GRO_DROP; 3870 3871 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 3872 } 3873 EXPORT_SYMBOL(napi_gro_frags); 3874 3875 /* 3876 * net_rps_action sends any pending IPI's for rps. 3877 * Note: called with local irq disabled, but exits with local irq enabled. 3878 */ 3879 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3880 { 3881 #ifdef CONFIG_RPS 3882 struct softnet_data *remsd = sd->rps_ipi_list; 3883 3884 if (remsd) { 3885 sd->rps_ipi_list = NULL; 3886 3887 local_irq_enable(); 3888 3889 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3890 while (remsd) { 3891 struct softnet_data *next = remsd->rps_ipi_next; 3892 3893 if (cpu_online(remsd->cpu)) 3894 __smp_call_function_single(remsd->cpu, 3895 &remsd->csd, 0); 3896 remsd = next; 3897 } 3898 } else 3899 #endif 3900 local_irq_enable(); 3901 } 3902 3903 static int process_backlog(struct napi_struct *napi, int quota) 3904 { 3905 int work = 0; 3906 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3907 3908 #ifdef CONFIG_RPS 3909 /* Check if we have pending ipi, its better to send them now, 3910 * not waiting net_rx_action() end. 3911 */ 3912 if (sd->rps_ipi_list) { 3913 local_irq_disable(); 3914 net_rps_action_and_irq_enable(sd); 3915 } 3916 #endif 3917 napi->weight = weight_p; 3918 local_irq_disable(); 3919 while (work < quota) { 3920 struct sk_buff *skb; 3921 unsigned int qlen; 3922 3923 while ((skb = __skb_dequeue(&sd->process_queue))) { 3924 local_irq_enable(); 3925 __netif_receive_skb(skb); 3926 local_irq_disable(); 3927 input_queue_head_incr(sd); 3928 if (++work >= quota) { 3929 local_irq_enable(); 3930 return work; 3931 } 3932 } 3933 3934 rps_lock(sd); 3935 qlen = skb_queue_len(&sd->input_pkt_queue); 3936 if (qlen) 3937 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3938 &sd->process_queue); 3939 3940 if (qlen < quota - work) { 3941 /* 3942 * Inline a custom version of __napi_complete(). 3943 * only current cpu owns and manipulates this napi, 3944 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3945 * we can use a plain write instead of clear_bit(), 3946 * and we dont need an smp_mb() memory barrier. 3947 */ 3948 list_del(&napi->poll_list); 3949 napi->state = 0; 3950 3951 quota = work + qlen; 3952 } 3953 rps_unlock(sd); 3954 } 3955 local_irq_enable(); 3956 3957 return work; 3958 } 3959 3960 /** 3961 * __napi_schedule - schedule for receive 3962 * @n: entry to schedule 3963 * 3964 * The entry's receive function will be scheduled to run 3965 */ 3966 void __napi_schedule(struct napi_struct *n) 3967 { 3968 unsigned long flags; 3969 3970 local_irq_save(flags); 3971 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3972 local_irq_restore(flags); 3973 } 3974 EXPORT_SYMBOL(__napi_schedule); 3975 3976 void __napi_complete(struct napi_struct *n) 3977 { 3978 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3979 BUG_ON(n->gro_list); 3980 3981 list_del(&n->poll_list); 3982 smp_mb__before_clear_bit(); 3983 clear_bit(NAPI_STATE_SCHED, &n->state); 3984 } 3985 EXPORT_SYMBOL(__napi_complete); 3986 3987 void napi_complete(struct napi_struct *n) 3988 { 3989 unsigned long flags; 3990 3991 /* 3992 * don't let napi dequeue from the cpu poll list 3993 * just in case its running on a different cpu 3994 */ 3995 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3996 return; 3997 3998 napi_gro_flush(n, false); 3999 local_irq_save(flags); 4000 __napi_complete(n); 4001 local_irq_restore(flags); 4002 } 4003 EXPORT_SYMBOL(napi_complete); 4004 4005 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4006 int (*poll)(struct napi_struct *, int), int weight) 4007 { 4008 INIT_LIST_HEAD(&napi->poll_list); 4009 napi->gro_count = 0; 4010 napi->gro_list = NULL; 4011 napi->skb = NULL; 4012 napi->poll = poll; 4013 napi->weight = weight; 4014 list_add(&napi->dev_list, &dev->napi_list); 4015 napi->dev = dev; 4016 #ifdef CONFIG_NETPOLL 4017 spin_lock_init(&napi->poll_lock); 4018 napi->poll_owner = -1; 4019 #endif 4020 set_bit(NAPI_STATE_SCHED, &napi->state); 4021 } 4022 EXPORT_SYMBOL(netif_napi_add); 4023 4024 void netif_napi_del(struct napi_struct *napi) 4025 { 4026 struct sk_buff *skb, *next; 4027 4028 list_del_init(&napi->dev_list); 4029 napi_free_frags(napi); 4030 4031 for (skb = napi->gro_list; skb; skb = next) { 4032 next = skb->next; 4033 skb->next = NULL; 4034 kfree_skb(skb); 4035 } 4036 4037 napi->gro_list = NULL; 4038 napi->gro_count = 0; 4039 } 4040 EXPORT_SYMBOL(netif_napi_del); 4041 4042 static void net_rx_action(struct softirq_action *h) 4043 { 4044 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4045 unsigned long time_limit = jiffies + 2; 4046 int budget = netdev_budget; 4047 void *have; 4048 4049 local_irq_disable(); 4050 4051 while (!list_empty(&sd->poll_list)) { 4052 struct napi_struct *n; 4053 int work, weight; 4054 4055 /* If softirq window is exhuasted then punt. 4056 * Allow this to run for 2 jiffies since which will allow 4057 * an average latency of 1.5/HZ. 4058 */ 4059 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 4060 goto softnet_break; 4061 4062 local_irq_enable(); 4063 4064 /* Even though interrupts have been re-enabled, this 4065 * access is safe because interrupts can only add new 4066 * entries to the tail of this list, and only ->poll() 4067 * calls can remove this head entry from the list. 4068 */ 4069 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4070 4071 have = netpoll_poll_lock(n); 4072 4073 weight = n->weight; 4074 4075 /* This NAPI_STATE_SCHED test is for avoiding a race 4076 * with netpoll's poll_napi(). Only the entity which 4077 * obtains the lock and sees NAPI_STATE_SCHED set will 4078 * actually make the ->poll() call. Therefore we avoid 4079 * accidentally calling ->poll() when NAPI is not scheduled. 4080 */ 4081 work = 0; 4082 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4083 work = n->poll(n, weight); 4084 trace_napi_poll(n); 4085 } 4086 4087 WARN_ON_ONCE(work > weight); 4088 4089 budget -= work; 4090 4091 local_irq_disable(); 4092 4093 /* Drivers must not modify the NAPI state if they 4094 * consume the entire weight. In such cases this code 4095 * still "owns" the NAPI instance and therefore can 4096 * move the instance around on the list at-will. 4097 */ 4098 if (unlikely(work == weight)) { 4099 if (unlikely(napi_disable_pending(n))) { 4100 local_irq_enable(); 4101 napi_complete(n); 4102 local_irq_disable(); 4103 } else { 4104 if (n->gro_list) { 4105 /* flush too old packets 4106 * If HZ < 1000, flush all packets. 4107 */ 4108 local_irq_enable(); 4109 napi_gro_flush(n, HZ >= 1000); 4110 local_irq_disable(); 4111 } 4112 list_move_tail(&n->poll_list, &sd->poll_list); 4113 } 4114 } 4115 4116 netpoll_poll_unlock(have); 4117 } 4118 out: 4119 net_rps_action_and_irq_enable(sd); 4120 4121 #ifdef CONFIG_NET_DMA 4122 /* 4123 * There may not be any more sk_buffs coming right now, so push 4124 * any pending DMA copies to hardware 4125 */ 4126 dma_issue_pending_all(); 4127 #endif 4128 4129 return; 4130 4131 softnet_break: 4132 sd->time_squeeze++; 4133 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4134 goto out; 4135 } 4136 4137 static gifconf_func_t *gifconf_list[NPROTO]; 4138 4139 /** 4140 * register_gifconf - register a SIOCGIF handler 4141 * @family: Address family 4142 * @gifconf: Function handler 4143 * 4144 * Register protocol dependent address dumping routines. The handler 4145 * that is passed must not be freed or reused until it has been replaced 4146 * by another handler. 4147 */ 4148 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 4149 { 4150 if (family >= NPROTO) 4151 return -EINVAL; 4152 gifconf_list[family] = gifconf; 4153 return 0; 4154 } 4155 EXPORT_SYMBOL(register_gifconf); 4156 4157 4158 /* 4159 * Map an interface index to its name (SIOCGIFNAME) 4160 */ 4161 4162 /* 4163 * We need this ioctl for efficient implementation of the 4164 * if_indextoname() function required by the IPv6 API. Without 4165 * it, we would have to search all the interfaces to find a 4166 * match. --pb 4167 */ 4168 4169 static int dev_ifname(struct net *net, struct ifreq __user *arg) 4170 { 4171 struct net_device *dev; 4172 struct ifreq ifr; 4173 unsigned seq; 4174 4175 /* 4176 * Fetch the caller's info block. 4177 */ 4178 4179 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4180 return -EFAULT; 4181 4182 retry: 4183 seq = read_seqbegin(&devnet_rename_seq); 4184 rcu_read_lock(); 4185 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4186 if (!dev) { 4187 rcu_read_unlock(); 4188 return -ENODEV; 4189 } 4190 4191 strcpy(ifr.ifr_name, dev->name); 4192 rcu_read_unlock(); 4193 if (read_seqretry(&devnet_rename_seq, seq)) 4194 goto retry; 4195 4196 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4197 return -EFAULT; 4198 return 0; 4199 } 4200 4201 /* 4202 * Perform a SIOCGIFCONF call. This structure will change 4203 * size eventually, and there is nothing I can do about it. 4204 * Thus we will need a 'compatibility mode'. 4205 */ 4206 4207 static int dev_ifconf(struct net *net, char __user *arg) 4208 { 4209 struct ifconf ifc; 4210 struct net_device *dev; 4211 char __user *pos; 4212 int len; 4213 int total; 4214 int i; 4215 4216 /* 4217 * Fetch the caller's info block. 4218 */ 4219 4220 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4221 return -EFAULT; 4222 4223 pos = ifc.ifc_buf; 4224 len = ifc.ifc_len; 4225 4226 /* 4227 * Loop over the interfaces, and write an info block for each. 4228 */ 4229 4230 total = 0; 4231 for_each_netdev(net, dev) { 4232 for (i = 0; i < NPROTO; i++) { 4233 if (gifconf_list[i]) { 4234 int done; 4235 if (!pos) 4236 done = gifconf_list[i](dev, NULL, 0); 4237 else 4238 done = gifconf_list[i](dev, pos + total, 4239 len - total); 4240 if (done < 0) 4241 return -EFAULT; 4242 total += done; 4243 } 4244 } 4245 } 4246 4247 /* 4248 * All done. Write the updated control block back to the caller. 4249 */ 4250 ifc.ifc_len = total; 4251 4252 /* 4253 * Both BSD and Solaris return 0 here, so we do too. 4254 */ 4255 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4256 } 4257 4258 #ifdef CONFIG_PROC_FS 4259 4260 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4261 4262 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4263 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4264 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4265 4266 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4267 { 4268 struct net *net = seq_file_net(seq); 4269 struct net_device *dev; 4270 struct hlist_node *p; 4271 struct hlist_head *h; 4272 unsigned int count = 0, offset = get_offset(*pos); 4273 4274 h = &net->dev_name_head[get_bucket(*pos)]; 4275 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4276 if (++count == offset) 4277 return dev; 4278 } 4279 4280 return NULL; 4281 } 4282 4283 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4284 { 4285 struct net_device *dev; 4286 unsigned int bucket; 4287 4288 do { 4289 dev = dev_from_same_bucket(seq, pos); 4290 if (dev) 4291 return dev; 4292 4293 bucket = get_bucket(*pos) + 1; 4294 *pos = set_bucket_offset(bucket, 1); 4295 } while (bucket < NETDEV_HASHENTRIES); 4296 4297 return NULL; 4298 } 4299 4300 /* 4301 * This is invoked by the /proc filesystem handler to display a device 4302 * in detail. 4303 */ 4304 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4305 __acquires(RCU) 4306 { 4307 rcu_read_lock(); 4308 if (!*pos) 4309 return SEQ_START_TOKEN; 4310 4311 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4312 return NULL; 4313 4314 return dev_from_bucket(seq, pos); 4315 } 4316 4317 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4318 { 4319 ++*pos; 4320 return dev_from_bucket(seq, pos); 4321 } 4322 4323 void dev_seq_stop(struct seq_file *seq, void *v) 4324 __releases(RCU) 4325 { 4326 rcu_read_unlock(); 4327 } 4328 4329 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4330 { 4331 struct rtnl_link_stats64 temp; 4332 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4333 4334 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4335 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4336 dev->name, stats->rx_bytes, stats->rx_packets, 4337 stats->rx_errors, 4338 stats->rx_dropped + stats->rx_missed_errors, 4339 stats->rx_fifo_errors, 4340 stats->rx_length_errors + stats->rx_over_errors + 4341 stats->rx_crc_errors + stats->rx_frame_errors, 4342 stats->rx_compressed, stats->multicast, 4343 stats->tx_bytes, stats->tx_packets, 4344 stats->tx_errors, stats->tx_dropped, 4345 stats->tx_fifo_errors, stats->collisions, 4346 stats->tx_carrier_errors + 4347 stats->tx_aborted_errors + 4348 stats->tx_window_errors + 4349 stats->tx_heartbeat_errors, 4350 stats->tx_compressed); 4351 } 4352 4353 /* 4354 * Called from the PROCfs module. This now uses the new arbitrary sized 4355 * /proc/net interface to create /proc/net/dev 4356 */ 4357 static int dev_seq_show(struct seq_file *seq, void *v) 4358 { 4359 if (v == SEQ_START_TOKEN) 4360 seq_puts(seq, "Inter-| Receive " 4361 " | Transmit\n" 4362 " face |bytes packets errs drop fifo frame " 4363 "compressed multicast|bytes packets errs " 4364 "drop fifo colls carrier compressed\n"); 4365 else 4366 dev_seq_printf_stats(seq, v); 4367 return 0; 4368 } 4369 4370 static struct softnet_data *softnet_get_online(loff_t *pos) 4371 { 4372 struct softnet_data *sd = NULL; 4373 4374 while (*pos < nr_cpu_ids) 4375 if (cpu_online(*pos)) { 4376 sd = &per_cpu(softnet_data, *pos); 4377 break; 4378 } else 4379 ++*pos; 4380 return sd; 4381 } 4382 4383 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4384 { 4385 return softnet_get_online(pos); 4386 } 4387 4388 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4389 { 4390 ++*pos; 4391 return softnet_get_online(pos); 4392 } 4393 4394 static void softnet_seq_stop(struct seq_file *seq, void *v) 4395 { 4396 } 4397 4398 static int softnet_seq_show(struct seq_file *seq, void *v) 4399 { 4400 struct softnet_data *sd = v; 4401 4402 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4403 sd->processed, sd->dropped, sd->time_squeeze, 0, 4404 0, 0, 0, 0, /* was fastroute */ 4405 sd->cpu_collision, sd->received_rps); 4406 return 0; 4407 } 4408 4409 static const struct seq_operations dev_seq_ops = { 4410 .start = dev_seq_start, 4411 .next = dev_seq_next, 4412 .stop = dev_seq_stop, 4413 .show = dev_seq_show, 4414 }; 4415 4416 static int dev_seq_open(struct inode *inode, struct file *file) 4417 { 4418 return seq_open_net(inode, file, &dev_seq_ops, 4419 sizeof(struct seq_net_private)); 4420 } 4421 4422 static const struct file_operations dev_seq_fops = { 4423 .owner = THIS_MODULE, 4424 .open = dev_seq_open, 4425 .read = seq_read, 4426 .llseek = seq_lseek, 4427 .release = seq_release_net, 4428 }; 4429 4430 static const struct seq_operations softnet_seq_ops = { 4431 .start = softnet_seq_start, 4432 .next = softnet_seq_next, 4433 .stop = softnet_seq_stop, 4434 .show = softnet_seq_show, 4435 }; 4436 4437 static int softnet_seq_open(struct inode *inode, struct file *file) 4438 { 4439 return seq_open(file, &softnet_seq_ops); 4440 } 4441 4442 static const struct file_operations softnet_seq_fops = { 4443 .owner = THIS_MODULE, 4444 .open = softnet_seq_open, 4445 .read = seq_read, 4446 .llseek = seq_lseek, 4447 .release = seq_release, 4448 }; 4449 4450 static void *ptype_get_idx(loff_t pos) 4451 { 4452 struct packet_type *pt = NULL; 4453 loff_t i = 0; 4454 int t; 4455 4456 list_for_each_entry_rcu(pt, &ptype_all, list) { 4457 if (i == pos) 4458 return pt; 4459 ++i; 4460 } 4461 4462 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4463 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4464 if (i == pos) 4465 return pt; 4466 ++i; 4467 } 4468 } 4469 return NULL; 4470 } 4471 4472 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4473 __acquires(RCU) 4474 { 4475 rcu_read_lock(); 4476 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4477 } 4478 4479 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4480 { 4481 struct packet_type *pt; 4482 struct list_head *nxt; 4483 int hash; 4484 4485 ++*pos; 4486 if (v == SEQ_START_TOKEN) 4487 return ptype_get_idx(0); 4488 4489 pt = v; 4490 nxt = pt->list.next; 4491 if (pt->type == htons(ETH_P_ALL)) { 4492 if (nxt != &ptype_all) 4493 goto found; 4494 hash = 0; 4495 nxt = ptype_base[0].next; 4496 } else 4497 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4498 4499 while (nxt == &ptype_base[hash]) { 4500 if (++hash >= PTYPE_HASH_SIZE) 4501 return NULL; 4502 nxt = ptype_base[hash].next; 4503 } 4504 found: 4505 return list_entry(nxt, struct packet_type, list); 4506 } 4507 4508 static void ptype_seq_stop(struct seq_file *seq, void *v) 4509 __releases(RCU) 4510 { 4511 rcu_read_unlock(); 4512 } 4513 4514 static int ptype_seq_show(struct seq_file *seq, void *v) 4515 { 4516 struct packet_type *pt = v; 4517 4518 if (v == SEQ_START_TOKEN) 4519 seq_puts(seq, "Type Device Function\n"); 4520 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4521 if (pt->type == htons(ETH_P_ALL)) 4522 seq_puts(seq, "ALL "); 4523 else 4524 seq_printf(seq, "%04x", ntohs(pt->type)); 4525 4526 seq_printf(seq, " %-8s %pF\n", 4527 pt->dev ? pt->dev->name : "", pt->func); 4528 } 4529 4530 return 0; 4531 } 4532 4533 static const struct seq_operations ptype_seq_ops = { 4534 .start = ptype_seq_start, 4535 .next = ptype_seq_next, 4536 .stop = ptype_seq_stop, 4537 .show = ptype_seq_show, 4538 }; 4539 4540 static int ptype_seq_open(struct inode *inode, struct file *file) 4541 { 4542 return seq_open_net(inode, file, &ptype_seq_ops, 4543 sizeof(struct seq_net_private)); 4544 } 4545 4546 static const struct file_operations ptype_seq_fops = { 4547 .owner = THIS_MODULE, 4548 .open = ptype_seq_open, 4549 .read = seq_read, 4550 .llseek = seq_lseek, 4551 .release = seq_release_net, 4552 }; 4553 4554 4555 static int __net_init dev_proc_net_init(struct net *net) 4556 { 4557 int rc = -ENOMEM; 4558 4559 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4560 goto out; 4561 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4562 goto out_dev; 4563 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4564 goto out_softnet; 4565 4566 if (wext_proc_init(net)) 4567 goto out_ptype; 4568 rc = 0; 4569 out: 4570 return rc; 4571 out_ptype: 4572 proc_net_remove(net, "ptype"); 4573 out_softnet: 4574 proc_net_remove(net, "softnet_stat"); 4575 out_dev: 4576 proc_net_remove(net, "dev"); 4577 goto out; 4578 } 4579 4580 static void __net_exit dev_proc_net_exit(struct net *net) 4581 { 4582 wext_proc_exit(net); 4583 4584 proc_net_remove(net, "ptype"); 4585 proc_net_remove(net, "softnet_stat"); 4586 proc_net_remove(net, "dev"); 4587 } 4588 4589 static struct pernet_operations __net_initdata dev_proc_ops = { 4590 .init = dev_proc_net_init, 4591 .exit = dev_proc_net_exit, 4592 }; 4593 4594 static int __init dev_proc_init(void) 4595 { 4596 return register_pernet_subsys(&dev_proc_ops); 4597 } 4598 #else 4599 #define dev_proc_init() 0 4600 #endif /* CONFIG_PROC_FS */ 4601 4602 4603 /** 4604 * netdev_set_master - set up master pointer 4605 * @slave: slave device 4606 * @master: new master device 4607 * 4608 * Changes the master device of the slave. Pass %NULL to break the 4609 * bonding. The caller must hold the RTNL semaphore. On a failure 4610 * a negative errno code is returned. On success the reference counts 4611 * are adjusted and the function returns zero. 4612 */ 4613 int netdev_set_master(struct net_device *slave, struct net_device *master) 4614 { 4615 struct net_device *old = slave->master; 4616 4617 ASSERT_RTNL(); 4618 4619 if (master) { 4620 if (old) 4621 return -EBUSY; 4622 dev_hold(master); 4623 } 4624 4625 slave->master = master; 4626 4627 if (old) 4628 dev_put(old); 4629 return 0; 4630 } 4631 EXPORT_SYMBOL(netdev_set_master); 4632 4633 /** 4634 * netdev_set_bond_master - set up bonding master/slave pair 4635 * @slave: slave device 4636 * @master: new master device 4637 * 4638 * Changes the master device of the slave. Pass %NULL to break the 4639 * bonding. The caller must hold the RTNL semaphore. On a failure 4640 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4641 * to the routing socket and the function returns zero. 4642 */ 4643 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4644 { 4645 int err; 4646 4647 ASSERT_RTNL(); 4648 4649 err = netdev_set_master(slave, master); 4650 if (err) 4651 return err; 4652 if (master) 4653 slave->flags |= IFF_SLAVE; 4654 else 4655 slave->flags &= ~IFF_SLAVE; 4656 4657 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4658 return 0; 4659 } 4660 EXPORT_SYMBOL(netdev_set_bond_master); 4661 4662 static void dev_change_rx_flags(struct net_device *dev, int flags) 4663 { 4664 const struct net_device_ops *ops = dev->netdev_ops; 4665 4666 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4667 ops->ndo_change_rx_flags(dev, flags); 4668 } 4669 4670 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4671 { 4672 unsigned int old_flags = dev->flags; 4673 kuid_t uid; 4674 kgid_t gid; 4675 4676 ASSERT_RTNL(); 4677 4678 dev->flags |= IFF_PROMISC; 4679 dev->promiscuity += inc; 4680 if (dev->promiscuity == 0) { 4681 /* 4682 * Avoid overflow. 4683 * If inc causes overflow, untouch promisc and return error. 4684 */ 4685 if (inc < 0) 4686 dev->flags &= ~IFF_PROMISC; 4687 else { 4688 dev->promiscuity -= inc; 4689 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4690 dev->name); 4691 return -EOVERFLOW; 4692 } 4693 } 4694 if (dev->flags != old_flags) { 4695 pr_info("device %s %s promiscuous mode\n", 4696 dev->name, 4697 dev->flags & IFF_PROMISC ? "entered" : "left"); 4698 if (audit_enabled) { 4699 current_uid_gid(&uid, &gid); 4700 audit_log(current->audit_context, GFP_ATOMIC, 4701 AUDIT_ANOM_PROMISCUOUS, 4702 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4703 dev->name, (dev->flags & IFF_PROMISC), 4704 (old_flags & IFF_PROMISC), 4705 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4706 from_kuid(&init_user_ns, uid), 4707 from_kgid(&init_user_ns, gid), 4708 audit_get_sessionid(current)); 4709 } 4710 4711 dev_change_rx_flags(dev, IFF_PROMISC); 4712 } 4713 return 0; 4714 } 4715 4716 /** 4717 * dev_set_promiscuity - update promiscuity count on a device 4718 * @dev: device 4719 * @inc: modifier 4720 * 4721 * Add or remove promiscuity from a device. While the count in the device 4722 * remains above zero the interface remains promiscuous. Once it hits zero 4723 * the device reverts back to normal filtering operation. A negative inc 4724 * value is used to drop promiscuity on the device. 4725 * Return 0 if successful or a negative errno code on error. 4726 */ 4727 int dev_set_promiscuity(struct net_device *dev, int inc) 4728 { 4729 unsigned int old_flags = dev->flags; 4730 int err; 4731 4732 err = __dev_set_promiscuity(dev, inc); 4733 if (err < 0) 4734 return err; 4735 if (dev->flags != old_flags) 4736 dev_set_rx_mode(dev); 4737 return err; 4738 } 4739 EXPORT_SYMBOL(dev_set_promiscuity); 4740 4741 /** 4742 * dev_set_allmulti - update allmulti count on a device 4743 * @dev: device 4744 * @inc: modifier 4745 * 4746 * Add or remove reception of all multicast frames to a device. While the 4747 * count in the device remains above zero the interface remains listening 4748 * to all interfaces. Once it hits zero the device reverts back to normal 4749 * filtering operation. A negative @inc value is used to drop the counter 4750 * when releasing a resource needing all multicasts. 4751 * Return 0 if successful or a negative errno code on error. 4752 */ 4753 4754 int dev_set_allmulti(struct net_device *dev, int inc) 4755 { 4756 unsigned int old_flags = dev->flags; 4757 4758 ASSERT_RTNL(); 4759 4760 dev->flags |= IFF_ALLMULTI; 4761 dev->allmulti += inc; 4762 if (dev->allmulti == 0) { 4763 /* 4764 * Avoid overflow. 4765 * If inc causes overflow, untouch allmulti and return error. 4766 */ 4767 if (inc < 0) 4768 dev->flags &= ~IFF_ALLMULTI; 4769 else { 4770 dev->allmulti -= inc; 4771 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4772 dev->name); 4773 return -EOVERFLOW; 4774 } 4775 } 4776 if (dev->flags ^ old_flags) { 4777 dev_change_rx_flags(dev, IFF_ALLMULTI); 4778 dev_set_rx_mode(dev); 4779 } 4780 return 0; 4781 } 4782 EXPORT_SYMBOL(dev_set_allmulti); 4783 4784 /* 4785 * Upload unicast and multicast address lists to device and 4786 * configure RX filtering. When the device doesn't support unicast 4787 * filtering it is put in promiscuous mode while unicast addresses 4788 * are present. 4789 */ 4790 void __dev_set_rx_mode(struct net_device *dev) 4791 { 4792 const struct net_device_ops *ops = dev->netdev_ops; 4793 4794 /* dev_open will call this function so the list will stay sane. */ 4795 if (!(dev->flags&IFF_UP)) 4796 return; 4797 4798 if (!netif_device_present(dev)) 4799 return; 4800 4801 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4802 /* Unicast addresses changes may only happen under the rtnl, 4803 * therefore calling __dev_set_promiscuity here is safe. 4804 */ 4805 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4806 __dev_set_promiscuity(dev, 1); 4807 dev->uc_promisc = true; 4808 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4809 __dev_set_promiscuity(dev, -1); 4810 dev->uc_promisc = false; 4811 } 4812 } 4813 4814 if (ops->ndo_set_rx_mode) 4815 ops->ndo_set_rx_mode(dev); 4816 } 4817 4818 void dev_set_rx_mode(struct net_device *dev) 4819 { 4820 netif_addr_lock_bh(dev); 4821 __dev_set_rx_mode(dev); 4822 netif_addr_unlock_bh(dev); 4823 } 4824 4825 /** 4826 * dev_get_flags - get flags reported to userspace 4827 * @dev: device 4828 * 4829 * Get the combination of flag bits exported through APIs to userspace. 4830 */ 4831 unsigned int dev_get_flags(const struct net_device *dev) 4832 { 4833 unsigned int flags; 4834 4835 flags = (dev->flags & ~(IFF_PROMISC | 4836 IFF_ALLMULTI | 4837 IFF_RUNNING | 4838 IFF_LOWER_UP | 4839 IFF_DORMANT)) | 4840 (dev->gflags & (IFF_PROMISC | 4841 IFF_ALLMULTI)); 4842 4843 if (netif_running(dev)) { 4844 if (netif_oper_up(dev)) 4845 flags |= IFF_RUNNING; 4846 if (netif_carrier_ok(dev)) 4847 flags |= IFF_LOWER_UP; 4848 if (netif_dormant(dev)) 4849 flags |= IFF_DORMANT; 4850 } 4851 4852 return flags; 4853 } 4854 EXPORT_SYMBOL(dev_get_flags); 4855 4856 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4857 { 4858 unsigned int old_flags = dev->flags; 4859 int ret; 4860 4861 ASSERT_RTNL(); 4862 4863 /* 4864 * Set the flags on our device. 4865 */ 4866 4867 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4868 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4869 IFF_AUTOMEDIA)) | 4870 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4871 IFF_ALLMULTI)); 4872 4873 /* 4874 * Load in the correct multicast list now the flags have changed. 4875 */ 4876 4877 if ((old_flags ^ flags) & IFF_MULTICAST) 4878 dev_change_rx_flags(dev, IFF_MULTICAST); 4879 4880 dev_set_rx_mode(dev); 4881 4882 /* 4883 * Have we downed the interface. We handle IFF_UP ourselves 4884 * according to user attempts to set it, rather than blindly 4885 * setting it. 4886 */ 4887 4888 ret = 0; 4889 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4890 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4891 4892 if (!ret) 4893 dev_set_rx_mode(dev); 4894 } 4895 4896 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4897 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4898 4899 dev->gflags ^= IFF_PROMISC; 4900 dev_set_promiscuity(dev, inc); 4901 } 4902 4903 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4904 is important. Some (broken) drivers set IFF_PROMISC, when 4905 IFF_ALLMULTI is requested not asking us and not reporting. 4906 */ 4907 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4908 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4909 4910 dev->gflags ^= IFF_ALLMULTI; 4911 dev_set_allmulti(dev, inc); 4912 } 4913 4914 return ret; 4915 } 4916 4917 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4918 { 4919 unsigned int changes = dev->flags ^ old_flags; 4920 4921 if (changes & IFF_UP) { 4922 if (dev->flags & IFF_UP) 4923 call_netdevice_notifiers(NETDEV_UP, dev); 4924 else 4925 call_netdevice_notifiers(NETDEV_DOWN, dev); 4926 } 4927 4928 if (dev->flags & IFF_UP && 4929 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4930 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4931 } 4932 4933 /** 4934 * dev_change_flags - change device settings 4935 * @dev: device 4936 * @flags: device state flags 4937 * 4938 * Change settings on device based state flags. The flags are 4939 * in the userspace exported format. 4940 */ 4941 int dev_change_flags(struct net_device *dev, unsigned int flags) 4942 { 4943 int ret; 4944 unsigned int changes, old_flags = dev->flags; 4945 4946 ret = __dev_change_flags(dev, flags); 4947 if (ret < 0) 4948 return ret; 4949 4950 changes = old_flags ^ dev->flags; 4951 if (changes) 4952 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4953 4954 __dev_notify_flags(dev, old_flags); 4955 return ret; 4956 } 4957 EXPORT_SYMBOL(dev_change_flags); 4958 4959 /** 4960 * dev_set_mtu - Change maximum transfer unit 4961 * @dev: device 4962 * @new_mtu: new transfer unit 4963 * 4964 * Change the maximum transfer size of the network device. 4965 */ 4966 int dev_set_mtu(struct net_device *dev, int new_mtu) 4967 { 4968 const struct net_device_ops *ops = dev->netdev_ops; 4969 int err; 4970 4971 if (new_mtu == dev->mtu) 4972 return 0; 4973 4974 /* MTU must be positive. */ 4975 if (new_mtu < 0) 4976 return -EINVAL; 4977 4978 if (!netif_device_present(dev)) 4979 return -ENODEV; 4980 4981 err = 0; 4982 if (ops->ndo_change_mtu) 4983 err = ops->ndo_change_mtu(dev, new_mtu); 4984 else 4985 dev->mtu = new_mtu; 4986 4987 if (!err) 4988 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4989 return err; 4990 } 4991 EXPORT_SYMBOL(dev_set_mtu); 4992 4993 /** 4994 * dev_set_group - Change group this device belongs to 4995 * @dev: device 4996 * @new_group: group this device should belong to 4997 */ 4998 void dev_set_group(struct net_device *dev, int new_group) 4999 { 5000 dev->group = new_group; 5001 } 5002 EXPORT_SYMBOL(dev_set_group); 5003 5004 /** 5005 * dev_set_mac_address - Change Media Access Control Address 5006 * @dev: device 5007 * @sa: new address 5008 * 5009 * Change the hardware (MAC) address of the device 5010 */ 5011 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5012 { 5013 const struct net_device_ops *ops = dev->netdev_ops; 5014 int err; 5015 5016 if (!ops->ndo_set_mac_address) 5017 return -EOPNOTSUPP; 5018 if (sa->sa_family != dev->type) 5019 return -EINVAL; 5020 if (!netif_device_present(dev)) 5021 return -ENODEV; 5022 err = ops->ndo_set_mac_address(dev, sa); 5023 if (!err) 5024 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5025 add_device_randomness(dev->dev_addr, dev->addr_len); 5026 return err; 5027 } 5028 EXPORT_SYMBOL(dev_set_mac_address); 5029 5030 /* 5031 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 5032 */ 5033 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 5034 { 5035 int err; 5036 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 5037 5038 if (!dev) 5039 return -ENODEV; 5040 5041 switch (cmd) { 5042 case SIOCGIFFLAGS: /* Get interface flags */ 5043 ifr->ifr_flags = (short) dev_get_flags(dev); 5044 return 0; 5045 5046 case SIOCGIFMETRIC: /* Get the metric on the interface 5047 (currently unused) */ 5048 ifr->ifr_metric = 0; 5049 return 0; 5050 5051 case SIOCGIFMTU: /* Get the MTU of a device */ 5052 ifr->ifr_mtu = dev->mtu; 5053 return 0; 5054 5055 case SIOCGIFHWADDR: 5056 if (!dev->addr_len) 5057 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 5058 else 5059 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 5060 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 5061 ifr->ifr_hwaddr.sa_family = dev->type; 5062 return 0; 5063 5064 case SIOCGIFSLAVE: 5065 err = -EINVAL; 5066 break; 5067 5068 case SIOCGIFMAP: 5069 ifr->ifr_map.mem_start = dev->mem_start; 5070 ifr->ifr_map.mem_end = dev->mem_end; 5071 ifr->ifr_map.base_addr = dev->base_addr; 5072 ifr->ifr_map.irq = dev->irq; 5073 ifr->ifr_map.dma = dev->dma; 5074 ifr->ifr_map.port = dev->if_port; 5075 return 0; 5076 5077 case SIOCGIFINDEX: 5078 ifr->ifr_ifindex = dev->ifindex; 5079 return 0; 5080 5081 case SIOCGIFTXQLEN: 5082 ifr->ifr_qlen = dev->tx_queue_len; 5083 return 0; 5084 5085 default: 5086 /* dev_ioctl() should ensure this case 5087 * is never reached 5088 */ 5089 WARN_ON(1); 5090 err = -ENOTTY; 5091 break; 5092 5093 } 5094 return err; 5095 } 5096 5097 /* 5098 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 5099 */ 5100 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 5101 { 5102 int err; 5103 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 5104 const struct net_device_ops *ops; 5105 5106 if (!dev) 5107 return -ENODEV; 5108 5109 ops = dev->netdev_ops; 5110 5111 switch (cmd) { 5112 case SIOCSIFFLAGS: /* Set interface flags */ 5113 return dev_change_flags(dev, ifr->ifr_flags); 5114 5115 case SIOCSIFMETRIC: /* Set the metric on the interface 5116 (currently unused) */ 5117 return -EOPNOTSUPP; 5118 5119 case SIOCSIFMTU: /* Set the MTU of a device */ 5120 return dev_set_mtu(dev, ifr->ifr_mtu); 5121 5122 case SIOCSIFHWADDR: 5123 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 5124 5125 case SIOCSIFHWBROADCAST: 5126 if (ifr->ifr_hwaddr.sa_family != dev->type) 5127 return -EINVAL; 5128 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 5129 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 5130 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5131 return 0; 5132 5133 case SIOCSIFMAP: 5134 if (ops->ndo_set_config) { 5135 if (!netif_device_present(dev)) 5136 return -ENODEV; 5137 return ops->ndo_set_config(dev, &ifr->ifr_map); 5138 } 5139 return -EOPNOTSUPP; 5140 5141 case SIOCADDMULTI: 5142 if (!ops->ndo_set_rx_mode || 5143 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5144 return -EINVAL; 5145 if (!netif_device_present(dev)) 5146 return -ENODEV; 5147 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 5148 5149 case SIOCDELMULTI: 5150 if (!ops->ndo_set_rx_mode || 5151 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5152 return -EINVAL; 5153 if (!netif_device_present(dev)) 5154 return -ENODEV; 5155 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 5156 5157 case SIOCSIFTXQLEN: 5158 if (ifr->ifr_qlen < 0) 5159 return -EINVAL; 5160 dev->tx_queue_len = ifr->ifr_qlen; 5161 return 0; 5162 5163 case SIOCSIFNAME: 5164 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 5165 return dev_change_name(dev, ifr->ifr_newname); 5166 5167 case SIOCSHWTSTAMP: 5168 err = net_hwtstamp_validate(ifr); 5169 if (err) 5170 return err; 5171 /* fall through */ 5172 5173 /* 5174 * Unknown or private ioctl 5175 */ 5176 default: 5177 if ((cmd >= SIOCDEVPRIVATE && 5178 cmd <= SIOCDEVPRIVATE + 15) || 5179 cmd == SIOCBONDENSLAVE || 5180 cmd == SIOCBONDRELEASE || 5181 cmd == SIOCBONDSETHWADDR || 5182 cmd == SIOCBONDSLAVEINFOQUERY || 5183 cmd == SIOCBONDINFOQUERY || 5184 cmd == SIOCBONDCHANGEACTIVE || 5185 cmd == SIOCGMIIPHY || 5186 cmd == SIOCGMIIREG || 5187 cmd == SIOCSMIIREG || 5188 cmd == SIOCBRADDIF || 5189 cmd == SIOCBRDELIF || 5190 cmd == SIOCSHWTSTAMP || 5191 cmd == SIOCWANDEV) { 5192 err = -EOPNOTSUPP; 5193 if (ops->ndo_do_ioctl) { 5194 if (netif_device_present(dev)) 5195 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5196 else 5197 err = -ENODEV; 5198 } 5199 } else 5200 err = -EINVAL; 5201 5202 } 5203 return err; 5204 } 5205 5206 /* 5207 * This function handles all "interface"-type I/O control requests. The actual 5208 * 'doing' part of this is dev_ifsioc above. 5209 */ 5210 5211 /** 5212 * dev_ioctl - network device ioctl 5213 * @net: the applicable net namespace 5214 * @cmd: command to issue 5215 * @arg: pointer to a struct ifreq in user space 5216 * 5217 * Issue ioctl functions to devices. This is normally called by the 5218 * user space syscall interfaces but can sometimes be useful for 5219 * other purposes. The return value is the return from the syscall if 5220 * positive or a negative errno code on error. 5221 */ 5222 5223 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5224 { 5225 struct ifreq ifr; 5226 int ret; 5227 char *colon; 5228 5229 /* One special case: SIOCGIFCONF takes ifconf argument 5230 and requires shared lock, because it sleeps writing 5231 to user space. 5232 */ 5233 5234 if (cmd == SIOCGIFCONF) { 5235 rtnl_lock(); 5236 ret = dev_ifconf(net, (char __user *) arg); 5237 rtnl_unlock(); 5238 return ret; 5239 } 5240 if (cmd == SIOCGIFNAME) 5241 return dev_ifname(net, (struct ifreq __user *)arg); 5242 5243 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5244 return -EFAULT; 5245 5246 ifr.ifr_name[IFNAMSIZ-1] = 0; 5247 5248 colon = strchr(ifr.ifr_name, ':'); 5249 if (colon) 5250 *colon = 0; 5251 5252 /* 5253 * See which interface the caller is talking about. 5254 */ 5255 5256 switch (cmd) { 5257 /* 5258 * These ioctl calls: 5259 * - can be done by all. 5260 * - atomic and do not require locking. 5261 * - return a value 5262 */ 5263 case SIOCGIFFLAGS: 5264 case SIOCGIFMETRIC: 5265 case SIOCGIFMTU: 5266 case SIOCGIFHWADDR: 5267 case SIOCGIFSLAVE: 5268 case SIOCGIFMAP: 5269 case SIOCGIFINDEX: 5270 case SIOCGIFTXQLEN: 5271 dev_load(net, ifr.ifr_name); 5272 rcu_read_lock(); 5273 ret = dev_ifsioc_locked(net, &ifr, cmd); 5274 rcu_read_unlock(); 5275 if (!ret) { 5276 if (colon) 5277 *colon = ':'; 5278 if (copy_to_user(arg, &ifr, 5279 sizeof(struct ifreq))) 5280 ret = -EFAULT; 5281 } 5282 return ret; 5283 5284 case SIOCETHTOOL: 5285 dev_load(net, ifr.ifr_name); 5286 rtnl_lock(); 5287 ret = dev_ethtool(net, &ifr); 5288 rtnl_unlock(); 5289 if (!ret) { 5290 if (colon) 5291 *colon = ':'; 5292 if (copy_to_user(arg, &ifr, 5293 sizeof(struct ifreq))) 5294 ret = -EFAULT; 5295 } 5296 return ret; 5297 5298 /* 5299 * These ioctl calls: 5300 * - require superuser power. 5301 * - require strict serialization. 5302 * - return a value 5303 */ 5304 case SIOCGMIIPHY: 5305 case SIOCGMIIREG: 5306 case SIOCSIFNAME: 5307 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 5308 return -EPERM; 5309 dev_load(net, ifr.ifr_name); 5310 rtnl_lock(); 5311 ret = dev_ifsioc(net, &ifr, cmd); 5312 rtnl_unlock(); 5313 if (!ret) { 5314 if (colon) 5315 *colon = ':'; 5316 if (copy_to_user(arg, &ifr, 5317 sizeof(struct ifreq))) 5318 ret = -EFAULT; 5319 } 5320 return ret; 5321 5322 /* 5323 * These ioctl calls: 5324 * - require superuser power. 5325 * - require strict serialization. 5326 * - do not return a value 5327 */ 5328 case SIOCSIFMAP: 5329 case SIOCSIFTXQLEN: 5330 if (!capable(CAP_NET_ADMIN)) 5331 return -EPERM; 5332 /* fall through */ 5333 /* 5334 * These ioctl calls: 5335 * - require local superuser power. 5336 * - require strict serialization. 5337 * - do not return a value 5338 */ 5339 case SIOCSIFFLAGS: 5340 case SIOCSIFMETRIC: 5341 case SIOCSIFMTU: 5342 case SIOCSIFHWADDR: 5343 case SIOCSIFSLAVE: 5344 case SIOCADDMULTI: 5345 case SIOCDELMULTI: 5346 case SIOCSIFHWBROADCAST: 5347 case SIOCSMIIREG: 5348 case SIOCBONDENSLAVE: 5349 case SIOCBONDRELEASE: 5350 case SIOCBONDSETHWADDR: 5351 case SIOCBONDCHANGEACTIVE: 5352 case SIOCBRADDIF: 5353 case SIOCBRDELIF: 5354 case SIOCSHWTSTAMP: 5355 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 5356 return -EPERM; 5357 /* fall through */ 5358 case SIOCBONDSLAVEINFOQUERY: 5359 case SIOCBONDINFOQUERY: 5360 dev_load(net, ifr.ifr_name); 5361 rtnl_lock(); 5362 ret = dev_ifsioc(net, &ifr, cmd); 5363 rtnl_unlock(); 5364 return ret; 5365 5366 case SIOCGIFMEM: 5367 /* Get the per device memory space. We can add this but 5368 * currently do not support it */ 5369 case SIOCSIFMEM: 5370 /* Set the per device memory buffer space. 5371 * Not applicable in our case */ 5372 case SIOCSIFLINK: 5373 return -ENOTTY; 5374 5375 /* 5376 * Unknown or private ioctl. 5377 */ 5378 default: 5379 if (cmd == SIOCWANDEV || 5380 (cmd >= SIOCDEVPRIVATE && 5381 cmd <= SIOCDEVPRIVATE + 15)) { 5382 dev_load(net, ifr.ifr_name); 5383 rtnl_lock(); 5384 ret = dev_ifsioc(net, &ifr, cmd); 5385 rtnl_unlock(); 5386 if (!ret && copy_to_user(arg, &ifr, 5387 sizeof(struct ifreq))) 5388 ret = -EFAULT; 5389 return ret; 5390 } 5391 /* Take care of Wireless Extensions */ 5392 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5393 return wext_handle_ioctl(net, &ifr, cmd, arg); 5394 return -ENOTTY; 5395 } 5396 } 5397 5398 5399 /** 5400 * dev_new_index - allocate an ifindex 5401 * @net: the applicable net namespace 5402 * 5403 * Returns a suitable unique value for a new device interface 5404 * number. The caller must hold the rtnl semaphore or the 5405 * dev_base_lock to be sure it remains unique. 5406 */ 5407 static int dev_new_index(struct net *net) 5408 { 5409 int ifindex = net->ifindex; 5410 for (;;) { 5411 if (++ifindex <= 0) 5412 ifindex = 1; 5413 if (!__dev_get_by_index(net, ifindex)) 5414 return net->ifindex = ifindex; 5415 } 5416 } 5417 5418 /* Delayed registration/unregisteration */ 5419 static LIST_HEAD(net_todo_list); 5420 5421 static void net_set_todo(struct net_device *dev) 5422 { 5423 list_add_tail(&dev->todo_list, &net_todo_list); 5424 } 5425 5426 static void rollback_registered_many(struct list_head *head) 5427 { 5428 struct net_device *dev, *tmp; 5429 5430 BUG_ON(dev_boot_phase); 5431 ASSERT_RTNL(); 5432 5433 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5434 /* Some devices call without registering 5435 * for initialization unwind. Remove those 5436 * devices and proceed with the remaining. 5437 */ 5438 if (dev->reg_state == NETREG_UNINITIALIZED) { 5439 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5440 dev->name, dev); 5441 5442 WARN_ON(1); 5443 list_del(&dev->unreg_list); 5444 continue; 5445 } 5446 dev->dismantle = true; 5447 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5448 } 5449 5450 /* If device is running, close it first. */ 5451 dev_close_many(head); 5452 5453 list_for_each_entry(dev, head, unreg_list) { 5454 /* And unlink it from device chain. */ 5455 unlist_netdevice(dev); 5456 5457 dev->reg_state = NETREG_UNREGISTERING; 5458 } 5459 5460 synchronize_net(); 5461 5462 list_for_each_entry(dev, head, unreg_list) { 5463 /* Shutdown queueing discipline. */ 5464 dev_shutdown(dev); 5465 5466 5467 /* Notify protocols, that we are about to destroy 5468 this device. They should clean all the things. 5469 */ 5470 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5471 5472 if (!dev->rtnl_link_ops || 5473 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5474 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5475 5476 /* 5477 * Flush the unicast and multicast chains 5478 */ 5479 dev_uc_flush(dev); 5480 dev_mc_flush(dev); 5481 5482 if (dev->netdev_ops->ndo_uninit) 5483 dev->netdev_ops->ndo_uninit(dev); 5484 5485 /* Notifier chain MUST detach us from master device. */ 5486 WARN_ON(dev->master); 5487 5488 /* Remove entries from kobject tree */ 5489 netdev_unregister_kobject(dev); 5490 } 5491 5492 synchronize_net(); 5493 5494 list_for_each_entry(dev, head, unreg_list) 5495 dev_put(dev); 5496 } 5497 5498 static void rollback_registered(struct net_device *dev) 5499 { 5500 LIST_HEAD(single); 5501 5502 list_add(&dev->unreg_list, &single); 5503 rollback_registered_many(&single); 5504 list_del(&single); 5505 } 5506 5507 static netdev_features_t netdev_fix_features(struct net_device *dev, 5508 netdev_features_t features) 5509 { 5510 /* Fix illegal checksum combinations */ 5511 if ((features & NETIF_F_HW_CSUM) && 5512 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5513 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5514 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5515 } 5516 5517 /* Fix illegal SG+CSUM combinations. */ 5518 if ((features & NETIF_F_SG) && 5519 !(features & NETIF_F_ALL_CSUM)) { 5520 netdev_dbg(dev, 5521 "Dropping NETIF_F_SG since no checksum feature.\n"); 5522 features &= ~NETIF_F_SG; 5523 } 5524 5525 /* TSO requires that SG is present as well. */ 5526 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5527 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5528 features &= ~NETIF_F_ALL_TSO; 5529 } 5530 5531 /* TSO ECN requires that TSO is present as well. */ 5532 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5533 features &= ~NETIF_F_TSO_ECN; 5534 5535 /* Software GSO depends on SG. */ 5536 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5537 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5538 features &= ~NETIF_F_GSO; 5539 } 5540 5541 /* UFO needs SG and checksumming */ 5542 if (features & NETIF_F_UFO) { 5543 /* maybe split UFO into V4 and V6? */ 5544 if (!((features & NETIF_F_GEN_CSUM) || 5545 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5546 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5547 netdev_dbg(dev, 5548 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5549 features &= ~NETIF_F_UFO; 5550 } 5551 5552 if (!(features & NETIF_F_SG)) { 5553 netdev_dbg(dev, 5554 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5555 features &= ~NETIF_F_UFO; 5556 } 5557 } 5558 5559 return features; 5560 } 5561 5562 int __netdev_update_features(struct net_device *dev) 5563 { 5564 netdev_features_t features; 5565 int err = 0; 5566 5567 ASSERT_RTNL(); 5568 5569 features = netdev_get_wanted_features(dev); 5570 5571 if (dev->netdev_ops->ndo_fix_features) 5572 features = dev->netdev_ops->ndo_fix_features(dev, features); 5573 5574 /* driver might be less strict about feature dependencies */ 5575 features = netdev_fix_features(dev, features); 5576 5577 if (dev->features == features) 5578 return 0; 5579 5580 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5581 &dev->features, &features); 5582 5583 if (dev->netdev_ops->ndo_set_features) 5584 err = dev->netdev_ops->ndo_set_features(dev, features); 5585 5586 if (unlikely(err < 0)) { 5587 netdev_err(dev, 5588 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5589 err, &features, &dev->features); 5590 return -1; 5591 } 5592 5593 if (!err) 5594 dev->features = features; 5595 5596 return 1; 5597 } 5598 5599 /** 5600 * netdev_update_features - recalculate device features 5601 * @dev: the device to check 5602 * 5603 * Recalculate dev->features set and send notifications if it 5604 * has changed. Should be called after driver or hardware dependent 5605 * conditions might have changed that influence the features. 5606 */ 5607 void netdev_update_features(struct net_device *dev) 5608 { 5609 if (__netdev_update_features(dev)) 5610 netdev_features_change(dev); 5611 } 5612 EXPORT_SYMBOL(netdev_update_features); 5613 5614 /** 5615 * netdev_change_features - recalculate device features 5616 * @dev: the device to check 5617 * 5618 * Recalculate dev->features set and send notifications even 5619 * if they have not changed. Should be called instead of 5620 * netdev_update_features() if also dev->vlan_features might 5621 * have changed to allow the changes to be propagated to stacked 5622 * VLAN devices. 5623 */ 5624 void netdev_change_features(struct net_device *dev) 5625 { 5626 __netdev_update_features(dev); 5627 netdev_features_change(dev); 5628 } 5629 EXPORT_SYMBOL(netdev_change_features); 5630 5631 /** 5632 * netif_stacked_transfer_operstate - transfer operstate 5633 * @rootdev: the root or lower level device to transfer state from 5634 * @dev: the device to transfer operstate to 5635 * 5636 * Transfer operational state from root to device. This is normally 5637 * called when a stacking relationship exists between the root 5638 * device and the device(a leaf device). 5639 */ 5640 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5641 struct net_device *dev) 5642 { 5643 if (rootdev->operstate == IF_OPER_DORMANT) 5644 netif_dormant_on(dev); 5645 else 5646 netif_dormant_off(dev); 5647 5648 if (netif_carrier_ok(rootdev)) { 5649 if (!netif_carrier_ok(dev)) 5650 netif_carrier_on(dev); 5651 } else { 5652 if (netif_carrier_ok(dev)) 5653 netif_carrier_off(dev); 5654 } 5655 } 5656 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5657 5658 #ifdef CONFIG_RPS 5659 static int netif_alloc_rx_queues(struct net_device *dev) 5660 { 5661 unsigned int i, count = dev->num_rx_queues; 5662 struct netdev_rx_queue *rx; 5663 5664 BUG_ON(count < 1); 5665 5666 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5667 if (!rx) { 5668 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5669 return -ENOMEM; 5670 } 5671 dev->_rx = rx; 5672 5673 for (i = 0; i < count; i++) 5674 rx[i].dev = dev; 5675 return 0; 5676 } 5677 #endif 5678 5679 static void netdev_init_one_queue(struct net_device *dev, 5680 struct netdev_queue *queue, void *_unused) 5681 { 5682 /* Initialize queue lock */ 5683 spin_lock_init(&queue->_xmit_lock); 5684 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5685 queue->xmit_lock_owner = -1; 5686 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5687 queue->dev = dev; 5688 #ifdef CONFIG_BQL 5689 dql_init(&queue->dql, HZ); 5690 #endif 5691 } 5692 5693 static int netif_alloc_netdev_queues(struct net_device *dev) 5694 { 5695 unsigned int count = dev->num_tx_queues; 5696 struct netdev_queue *tx; 5697 5698 BUG_ON(count < 1); 5699 5700 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5701 if (!tx) { 5702 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5703 return -ENOMEM; 5704 } 5705 dev->_tx = tx; 5706 5707 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5708 spin_lock_init(&dev->tx_global_lock); 5709 5710 return 0; 5711 } 5712 5713 /** 5714 * register_netdevice - register a network device 5715 * @dev: device to register 5716 * 5717 * Take a completed network device structure and add it to the kernel 5718 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5719 * chain. 0 is returned on success. A negative errno code is returned 5720 * on a failure to set up the device, or if the name is a duplicate. 5721 * 5722 * Callers must hold the rtnl semaphore. You may want 5723 * register_netdev() instead of this. 5724 * 5725 * BUGS: 5726 * The locking appears insufficient to guarantee two parallel registers 5727 * will not get the same name. 5728 */ 5729 5730 int register_netdevice(struct net_device *dev) 5731 { 5732 int ret; 5733 struct net *net = dev_net(dev); 5734 5735 BUG_ON(dev_boot_phase); 5736 ASSERT_RTNL(); 5737 5738 might_sleep(); 5739 5740 /* When net_device's are persistent, this will be fatal. */ 5741 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5742 BUG_ON(!net); 5743 5744 spin_lock_init(&dev->addr_list_lock); 5745 netdev_set_addr_lockdep_class(dev); 5746 5747 dev->iflink = -1; 5748 5749 ret = dev_get_valid_name(net, dev, dev->name); 5750 if (ret < 0) 5751 goto out; 5752 5753 /* Init, if this function is available */ 5754 if (dev->netdev_ops->ndo_init) { 5755 ret = dev->netdev_ops->ndo_init(dev); 5756 if (ret) { 5757 if (ret > 0) 5758 ret = -EIO; 5759 goto out; 5760 } 5761 } 5762 5763 ret = -EBUSY; 5764 if (!dev->ifindex) 5765 dev->ifindex = dev_new_index(net); 5766 else if (__dev_get_by_index(net, dev->ifindex)) 5767 goto err_uninit; 5768 5769 if (dev->iflink == -1) 5770 dev->iflink = dev->ifindex; 5771 5772 /* Transfer changeable features to wanted_features and enable 5773 * software offloads (GSO and GRO). 5774 */ 5775 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5776 dev->features |= NETIF_F_SOFT_FEATURES; 5777 dev->wanted_features = dev->features & dev->hw_features; 5778 5779 /* Turn on no cache copy if HW is doing checksum */ 5780 if (!(dev->flags & IFF_LOOPBACK)) { 5781 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5782 if (dev->features & NETIF_F_ALL_CSUM) { 5783 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5784 dev->features |= NETIF_F_NOCACHE_COPY; 5785 } 5786 } 5787 5788 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5789 */ 5790 dev->vlan_features |= NETIF_F_HIGHDMA; 5791 5792 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5793 ret = notifier_to_errno(ret); 5794 if (ret) 5795 goto err_uninit; 5796 5797 ret = netdev_register_kobject(dev); 5798 if (ret) 5799 goto err_uninit; 5800 dev->reg_state = NETREG_REGISTERED; 5801 5802 __netdev_update_features(dev); 5803 5804 /* 5805 * Default initial state at registry is that the 5806 * device is present. 5807 */ 5808 5809 set_bit(__LINK_STATE_PRESENT, &dev->state); 5810 5811 linkwatch_init_dev(dev); 5812 5813 dev_init_scheduler(dev); 5814 dev_hold(dev); 5815 list_netdevice(dev); 5816 add_device_randomness(dev->dev_addr, dev->addr_len); 5817 5818 /* Notify protocols, that a new device appeared. */ 5819 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5820 ret = notifier_to_errno(ret); 5821 if (ret) { 5822 rollback_registered(dev); 5823 dev->reg_state = NETREG_UNREGISTERED; 5824 } 5825 /* 5826 * Prevent userspace races by waiting until the network 5827 * device is fully setup before sending notifications. 5828 */ 5829 if (!dev->rtnl_link_ops || 5830 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5831 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5832 5833 out: 5834 return ret; 5835 5836 err_uninit: 5837 if (dev->netdev_ops->ndo_uninit) 5838 dev->netdev_ops->ndo_uninit(dev); 5839 goto out; 5840 } 5841 EXPORT_SYMBOL(register_netdevice); 5842 5843 /** 5844 * init_dummy_netdev - init a dummy network device for NAPI 5845 * @dev: device to init 5846 * 5847 * This takes a network device structure and initialize the minimum 5848 * amount of fields so it can be used to schedule NAPI polls without 5849 * registering a full blown interface. This is to be used by drivers 5850 * that need to tie several hardware interfaces to a single NAPI 5851 * poll scheduler due to HW limitations. 5852 */ 5853 int init_dummy_netdev(struct net_device *dev) 5854 { 5855 /* Clear everything. Note we don't initialize spinlocks 5856 * are they aren't supposed to be taken by any of the 5857 * NAPI code and this dummy netdev is supposed to be 5858 * only ever used for NAPI polls 5859 */ 5860 memset(dev, 0, sizeof(struct net_device)); 5861 5862 /* make sure we BUG if trying to hit standard 5863 * register/unregister code path 5864 */ 5865 dev->reg_state = NETREG_DUMMY; 5866 5867 /* NAPI wants this */ 5868 INIT_LIST_HEAD(&dev->napi_list); 5869 5870 /* a dummy interface is started by default */ 5871 set_bit(__LINK_STATE_PRESENT, &dev->state); 5872 set_bit(__LINK_STATE_START, &dev->state); 5873 5874 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5875 * because users of this 'device' dont need to change 5876 * its refcount. 5877 */ 5878 5879 return 0; 5880 } 5881 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5882 5883 5884 /** 5885 * register_netdev - register a network device 5886 * @dev: device to register 5887 * 5888 * Take a completed network device structure and add it to the kernel 5889 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5890 * chain. 0 is returned on success. A negative errno code is returned 5891 * on a failure to set up the device, or if the name is a duplicate. 5892 * 5893 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5894 * and expands the device name if you passed a format string to 5895 * alloc_netdev. 5896 */ 5897 int register_netdev(struct net_device *dev) 5898 { 5899 int err; 5900 5901 rtnl_lock(); 5902 err = register_netdevice(dev); 5903 rtnl_unlock(); 5904 return err; 5905 } 5906 EXPORT_SYMBOL(register_netdev); 5907 5908 int netdev_refcnt_read(const struct net_device *dev) 5909 { 5910 int i, refcnt = 0; 5911 5912 for_each_possible_cpu(i) 5913 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5914 return refcnt; 5915 } 5916 EXPORT_SYMBOL(netdev_refcnt_read); 5917 5918 /** 5919 * netdev_wait_allrefs - wait until all references are gone. 5920 * @dev: target net_device 5921 * 5922 * This is called when unregistering network devices. 5923 * 5924 * Any protocol or device that holds a reference should register 5925 * for netdevice notification, and cleanup and put back the 5926 * reference if they receive an UNREGISTER event. 5927 * We can get stuck here if buggy protocols don't correctly 5928 * call dev_put. 5929 */ 5930 static void netdev_wait_allrefs(struct net_device *dev) 5931 { 5932 unsigned long rebroadcast_time, warning_time; 5933 int refcnt; 5934 5935 linkwatch_forget_dev(dev); 5936 5937 rebroadcast_time = warning_time = jiffies; 5938 refcnt = netdev_refcnt_read(dev); 5939 5940 while (refcnt != 0) { 5941 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5942 rtnl_lock(); 5943 5944 /* Rebroadcast unregister notification */ 5945 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5946 5947 __rtnl_unlock(); 5948 rcu_barrier(); 5949 rtnl_lock(); 5950 5951 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5952 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5953 &dev->state)) { 5954 /* We must not have linkwatch events 5955 * pending on unregister. If this 5956 * happens, we simply run the queue 5957 * unscheduled, resulting in a noop 5958 * for this device. 5959 */ 5960 linkwatch_run_queue(); 5961 } 5962 5963 __rtnl_unlock(); 5964 5965 rebroadcast_time = jiffies; 5966 } 5967 5968 msleep(250); 5969 5970 refcnt = netdev_refcnt_read(dev); 5971 5972 if (time_after(jiffies, warning_time + 10 * HZ)) { 5973 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5974 dev->name, refcnt); 5975 warning_time = jiffies; 5976 } 5977 } 5978 } 5979 5980 /* The sequence is: 5981 * 5982 * rtnl_lock(); 5983 * ... 5984 * register_netdevice(x1); 5985 * register_netdevice(x2); 5986 * ... 5987 * unregister_netdevice(y1); 5988 * unregister_netdevice(y2); 5989 * ... 5990 * rtnl_unlock(); 5991 * free_netdev(y1); 5992 * free_netdev(y2); 5993 * 5994 * We are invoked by rtnl_unlock(). 5995 * This allows us to deal with problems: 5996 * 1) We can delete sysfs objects which invoke hotplug 5997 * without deadlocking with linkwatch via keventd. 5998 * 2) Since we run with the RTNL semaphore not held, we can sleep 5999 * safely in order to wait for the netdev refcnt to drop to zero. 6000 * 6001 * We must not return until all unregister events added during 6002 * the interval the lock was held have been completed. 6003 */ 6004 void netdev_run_todo(void) 6005 { 6006 struct list_head list; 6007 6008 /* Snapshot list, allow later requests */ 6009 list_replace_init(&net_todo_list, &list); 6010 6011 __rtnl_unlock(); 6012 6013 6014 /* Wait for rcu callbacks to finish before next phase */ 6015 if (!list_empty(&list)) 6016 rcu_barrier(); 6017 6018 while (!list_empty(&list)) { 6019 struct net_device *dev 6020 = list_first_entry(&list, struct net_device, todo_list); 6021 list_del(&dev->todo_list); 6022 6023 rtnl_lock(); 6024 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6025 __rtnl_unlock(); 6026 6027 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6028 pr_err("network todo '%s' but state %d\n", 6029 dev->name, dev->reg_state); 6030 dump_stack(); 6031 continue; 6032 } 6033 6034 dev->reg_state = NETREG_UNREGISTERED; 6035 6036 on_each_cpu(flush_backlog, dev, 1); 6037 6038 netdev_wait_allrefs(dev); 6039 6040 /* paranoia */ 6041 BUG_ON(netdev_refcnt_read(dev)); 6042 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6043 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6044 WARN_ON(dev->dn_ptr); 6045 6046 if (dev->destructor) 6047 dev->destructor(dev); 6048 6049 /* Free network device */ 6050 kobject_put(&dev->dev.kobj); 6051 } 6052 } 6053 6054 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6055 * fields in the same order, with only the type differing. 6056 */ 6057 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6058 const struct net_device_stats *netdev_stats) 6059 { 6060 #if BITS_PER_LONG == 64 6061 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6062 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6063 #else 6064 size_t i, n = sizeof(*stats64) / sizeof(u64); 6065 const unsigned long *src = (const unsigned long *)netdev_stats; 6066 u64 *dst = (u64 *)stats64; 6067 6068 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6069 sizeof(*stats64) / sizeof(u64)); 6070 for (i = 0; i < n; i++) 6071 dst[i] = src[i]; 6072 #endif 6073 } 6074 EXPORT_SYMBOL(netdev_stats_to_stats64); 6075 6076 /** 6077 * dev_get_stats - get network device statistics 6078 * @dev: device to get statistics from 6079 * @storage: place to store stats 6080 * 6081 * Get network statistics from device. Return @storage. 6082 * The device driver may provide its own method by setting 6083 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6084 * otherwise the internal statistics structure is used. 6085 */ 6086 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6087 struct rtnl_link_stats64 *storage) 6088 { 6089 const struct net_device_ops *ops = dev->netdev_ops; 6090 6091 if (ops->ndo_get_stats64) { 6092 memset(storage, 0, sizeof(*storage)); 6093 ops->ndo_get_stats64(dev, storage); 6094 } else if (ops->ndo_get_stats) { 6095 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6096 } else { 6097 netdev_stats_to_stats64(storage, &dev->stats); 6098 } 6099 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6100 return storage; 6101 } 6102 EXPORT_SYMBOL(dev_get_stats); 6103 6104 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6105 { 6106 struct netdev_queue *queue = dev_ingress_queue(dev); 6107 6108 #ifdef CONFIG_NET_CLS_ACT 6109 if (queue) 6110 return queue; 6111 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6112 if (!queue) 6113 return NULL; 6114 netdev_init_one_queue(dev, queue, NULL); 6115 queue->qdisc = &noop_qdisc; 6116 queue->qdisc_sleeping = &noop_qdisc; 6117 rcu_assign_pointer(dev->ingress_queue, queue); 6118 #endif 6119 return queue; 6120 } 6121 6122 static const struct ethtool_ops default_ethtool_ops; 6123 6124 /** 6125 * alloc_netdev_mqs - allocate network device 6126 * @sizeof_priv: size of private data to allocate space for 6127 * @name: device name format string 6128 * @setup: callback to initialize device 6129 * @txqs: the number of TX subqueues to allocate 6130 * @rxqs: the number of RX subqueues to allocate 6131 * 6132 * Allocates a struct net_device with private data area for driver use 6133 * and performs basic initialization. Also allocates subquue structs 6134 * for each queue on the device. 6135 */ 6136 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6137 void (*setup)(struct net_device *), 6138 unsigned int txqs, unsigned int rxqs) 6139 { 6140 struct net_device *dev; 6141 size_t alloc_size; 6142 struct net_device *p; 6143 6144 BUG_ON(strlen(name) >= sizeof(dev->name)); 6145 6146 if (txqs < 1) { 6147 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6148 return NULL; 6149 } 6150 6151 #ifdef CONFIG_RPS 6152 if (rxqs < 1) { 6153 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6154 return NULL; 6155 } 6156 #endif 6157 6158 alloc_size = sizeof(struct net_device); 6159 if (sizeof_priv) { 6160 /* ensure 32-byte alignment of private area */ 6161 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6162 alloc_size += sizeof_priv; 6163 } 6164 /* ensure 32-byte alignment of whole construct */ 6165 alloc_size += NETDEV_ALIGN - 1; 6166 6167 p = kzalloc(alloc_size, GFP_KERNEL); 6168 if (!p) { 6169 pr_err("alloc_netdev: Unable to allocate device\n"); 6170 return NULL; 6171 } 6172 6173 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6174 dev->padded = (char *)dev - (char *)p; 6175 6176 dev->pcpu_refcnt = alloc_percpu(int); 6177 if (!dev->pcpu_refcnt) 6178 goto free_p; 6179 6180 if (dev_addr_init(dev)) 6181 goto free_pcpu; 6182 6183 dev_mc_init(dev); 6184 dev_uc_init(dev); 6185 6186 dev_net_set(dev, &init_net); 6187 6188 dev->gso_max_size = GSO_MAX_SIZE; 6189 dev->gso_max_segs = GSO_MAX_SEGS; 6190 6191 INIT_LIST_HEAD(&dev->napi_list); 6192 INIT_LIST_HEAD(&dev->unreg_list); 6193 INIT_LIST_HEAD(&dev->link_watch_list); 6194 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6195 setup(dev); 6196 6197 dev->num_tx_queues = txqs; 6198 dev->real_num_tx_queues = txqs; 6199 if (netif_alloc_netdev_queues(dev)) 6200 goto free_all; 6201 6202 #ifdef CONFIG_RPS 6203 dev->num_rx_queues = rxqs; 6204 dev->real_num_rx_queues = rxqs; 6205 if (netif_alloc_rx_queues(dev)) 6206 goto free_all; 6207 #endif 6208 6209 strcpy(dev->name, name); 6210 dev->group = INIT_NETDEV_GROUP; 6211 if (!dev->ethtool_ops) 6212 dev->ethtool_ops = &default_ethtool_ops; 6213 return dev; 6214 6215 free_all: 6216 free_netdev(dev); 6217 return NULL; 6218 6219 free_pcpu: 6220 free_percpu(dev->pcpu_refcnt); 6221 kfree(dev->_tx); 6222 #ifdef CONFIG_RPS 6223 kfree(dev->_rx); 6224 #endif 6225 6226 free_p: 6227 kfree(p); 6228 return NULL; 6229 } 6230 EXPORT_SYMBOL(alloc_netdev_mqs); 6231 6232 /** 6233 * free_netdev - free network device 6234 * @dev: device 6235 * 6236 * This function does the last stage of destroying an allocated device 6237 * interface. The reference to the device object is released. 6238 * If this is the last reference then it will be freed. 6239 */ 6240 void free_netdev(struct net_device *dev) 6241 { 6242 struct napi_struct *p, *n; 6243 6244 release_net(dev_net(dev)); 6245 6246 kfree(dev->_tx); 6247 #ifdef CONFIG_RPS 6248 kfree(dev->_rx); 6249 #endif 6250 6251 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6252 6253 /* Flush device addresses */ 6254 dev_addr_flush(dev); 6255 6256 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6257 netif_napi_del(p); 6258 6259 free_percpu(dev->pcpu_refcnt); 6260 dev->pcpu_refcnt = NULL; 6261 6262 /* Compatibility with error handling in drivers */ 6263 if (dev->reg_state == NETREG_UNINITIALIZED) { 6264 kfree((char *)dev - dev->padded); 6265 return; 6266 } 6267 6268 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6269 dev->reg_state = NETREG_RELEASED; 6270 6271 /* will free via device release */ 6272 put_device(&dev->dev); 6273 } 6274 EXPORT_SYMBOL(free_netdev); 6275 6276 /** 6277 * synchronize_net - Synchronize with packet receive processing 6278 * 6279 * Wait for packets currently being received to be done. 6280 * Does not block later packets from starting. 6281 */ 6282 void synchronize_net(void) 6283 { 6284 might_sleep(); 6285 if (rtnl_is_locked()) 6286 synchronize_rcu_expedited(); 6287 else 6288 synchronize_rcu(); 6289 } 6290 EXPORT_SYMBOL(synchronize_net); 6291 6292 /** 6293 * unregister_netdevice_queue - remove device from the kernel 6294 * @dev: device 6295 * @head: list 6296 * 6297 * This function shuts down a device interface and removes it 6298 * from the kernel tables. 6299 * If head not NULL, device is queued to be unregistered later. 6300 * 6301 * Callers must hold the rtnl semaphore. You may want 6302 * unregister_netdev() instead of this. 6303 */ 6304 6305 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6306 { 6307 ASSERT_RTNL(); 6308 6309 if (head) { 6310 list_move_tail(&dev->unreg_list, head); 6311 } else { 6312 rollback_registered(dev); 6313 /* Finish processing unregister after unlock */ 6314 net_set_todo(dev); 6315 } 6316 } 6317 EXPORT_SYMBOL(unregister_netdevice_queue); 6318 6319 /** 6320 * unregister_netdevice_many - unregister many devices 6321 * @head: list of devices 6322 */ 6323 void unregister_netdevice_many(struct list_head *head) 6324 { 6325 struct net_device *dev; 6326 6327 if (!list_empty(head)) { 6328 rollback_registered_many(head); 6329 list_for_each_entry(dev, head, unreg_list) 6330 net_set_todo(dev); 6331 } 6332 } 6333 EXPORT_SYMBOL(unregister_netdevice_many); 6334 6335 /** 6336 * unregister_netdev - remove device from the kernel 6337 * @dev: device 6338 * 6339 * This function shuts down a device interface and removes it 6340 * from the kernel tables. 6341 * 6342 * This is just a wrapper for unregister_netdevice that takes 6343 * the rtnl semaphore. In general you want to use this and not 6344 * unregister_netdevice. 6345 */ 6346 void unregister_netdev(struct net_device *dev) 6347 { 6348 rtnl_lock(); 6349 unregister_netdevice(dev); 6350 rtnl_unlock(); 6351 } 6352 EXPORT_SYMBOL(unregister_netdev); 6353 6354 /** 6355 * dev_change_net_namespace - move device to different nethost namespace 6356 * @dev: device 6357 * @net: network namespace 6358 * @pat: If not NULL name pattern to try if the current device name 6359 * is already taken in the destination network namespace. 6360 * 6361 * This function shuts down a device interface and moves it 6362 * to a new network namespace. On success 0 is returned, on 6363 * a failure a netagive errno code is returned. 6364 * 6365 * Callers must hold the rtnl semaphore. 6366 */ 6367 6368 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6369 { 6370 int err; 6371 6372 ASSERT_RTNL(); 6373 6374 /* Don't allow namespace local devices to be moved. */ 6375 err = -EINVAL; 6376 if (dev->features & NETIF_F_NETNS_LOCAL) 6377 goto out; 6378 6379 /* Ensure the device has been registrered */ 6380 if (dev->reg_state != NETREG_REGISTERED) 6381 goto out; 6382 6383 /* Get out if there is nothing todo */ 6384 err = 0; 6385 if (net_eq(dev_net(dev), net)) 6386 goto out; 6387 6388 /* Pick the destination device name, and ensure 6389 * we can use it in the destination network namespace. 6390 */ 6391 err = -EEXIST; 6392 if (__dev_get_by_name(net, dev->name)) { 6393 /* We get here if we can't use the current device name */ 6394 if (!pat) 6395 goto out; 6396 if (dev_get_valid_name(net, dev, pat) < 0) 6397 goto out; 6398 } 6399 6400 /* 6401 * And now a mini version of register_netdevice unregister_netdevice. 6402 */ 6403 6404 /* If device is running close it first. */ 6405 dev_close(dev); 6406 6407 /* And unlink it from device chain */ 6408 err = -ENODEV; 6409 unlist_netdevice(dev); 6410 6411 synchronize_net(); 6412 6413 /* Shutdown queueing discipline. */ 6414 dev_shutdown(dev); 6415 6416 /* Notify protocols, that we are about to destroy 6417 this device. They should clean all the things. 6418 6419 Note that dev->reg_state stays at NETREG_REGISTERED. 6420 This is wanted because this way 8021q and macvlan know 6421 the device is just moving and can keep their slaves up. 6422 */ 6423 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6424 rcu_barrier(); 6425 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6426 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6427 6428 /* 6429 * Flush the unicast and multicast chains 6430 */ 6431 dev_uc_flush(dev); 6432 dev_mc_flush(dev); 6433 6434 /* Send a netdev-removed uevent to the old namespace */ 6435 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6436 6437 /* Actually switch the network namespace */ 6438 dev_net_set(dev, net); 6439 6440 /* If there is an ifindex conflict assign a new one */ 6441 if (__dev_get_by_index(net, dev->ifindex)) { 6442 int iflink = (dev->iflink == dev->ifindex); 6443 dev->ifindex = dev_new_index(net); 6444 if (iflink) 6445 dev->iflink = dev->ifindex; 6446 } 6447 6448 /* Send a netdev-add uevent to the new namespace */ 6449 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6450 6451 /* Fixup kobjects */ 6452 err = device_rename(&dev->dev, dev->name); 6453 WARN_ON(err); 6454 6455 /* Add the device back in the hashes */ 6456 list_netdevice(dev); 6457 6458 /* Notify protocols, that a new device appeared. */ 6459 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6460 6461 /* 6462 * Prevent userspace races by waiting until the network 6463 * device is fully setup before sending notifications. 6464 */ 6465 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6466 6467 synchronize_net(); 6468 err = 0; 6469 out: 6470 return err; 6471 } 6472 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6473 6474 static int dev_cpu_callback(struct notifier_block *nfb, 6475 unsigned long action, 6476 void *ocpu) 6477 { 6478 struct sk_buff **list_skb; 6479 struct sk_buff *skb; 6480 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6481 struct softnet_data *sd, *oldsd; 6482 6483 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6484 return NOTIFY_OK; 6485 6486 local_irq_disable(); 6487 cpu = smp_processor_id(); 6488 sd = &per_cpu(softnet_data, cpu); 6489 oldsd = &per_cpu(softnet_data, oldcpu); 6490 6491 /* Find end of our completion_queue. */ 6492 list_skb = &sd->completion_queue; 6493 while (*list_skb) 6494 list_skb = &(*list_skb)->next; 6495 /* Append completion queue from offline CPU. */ 6496 *list_skb = oldsd->completion_queue; 6497 oldsd->completion_queue = NULL; 6498 6499 /* Append output queue from offline CPU. */ 6500 if (oldsd->output_queue) { 6501 *sd->output_queue_tailp = oldsd->output_queue; 6502 sd->output_queue_tailp = oldsd->output_queue_tailp; 6503 oldsd->output_queue = NULL; 6504 oldsd->output_queue_tailp = &oldsd->output_queue; 6505 } 6506 /* Append NAPI poll list from offline CPU. */ 6507 if (!list_empty(&oldsd->poll_list)) { 6508 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6509 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6510 } 6511 6512 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6513 local_irq_enable(); 6514 6515 /* Process offline CPU's input_pkt_queue */ 6516 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6517 netif_rx(skb); 6518 input_queue_head_incr(oldsd); 6519 } 6520 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6521 netif_rx(skb); 6522 input_queue_head_incr(oldsd); 6523 } 6524 6525 return NOTIFY_OK; 6526 } 6527 6528 6529 /** 6530 * netdev_increment_features - increment feature set by one 6531 * @all: current feature set 6532 * @one: new feature set 6533 * @mask: mask feature set 6534 * 6535 * Computes a new feature set after adding a device with feature set 6536 * @one to the master device with current feature set @all. Will not 6537 * enable anything that is off in @mask. Returns the new feature set. 6538 */ 6539 netdev_features_t netdev_increment_features(netdev_features_t all, 6540 netdev_features_t one, netdev_features_t mask) 6541 { 6542 if (mask & NETIF_F_GEN_CSUM) 6543 mask |= NETIF_F_ALL_CSUM; 6544 mask |= NETIF_F_VLAN_CHALLENGED; 6545 6546 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6547 all &= one | ~NETIF_F_ALL_FOR_ALL; 6548 6549 /* If one device supports hw checksumming, set for all. */ 6550 if (all & NETIF_F_GEN_CSUM) 6551 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6552 6553 return all; 6554 } 6555 EXPORT_SYMBOL(netdev_increment_features); 6556 6557 static struct hlist_head *netdev_create_hash(void) 6558 { 6559 int i; 6560 struct hlist_head *hash; 6561 6562 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6563 if (hash != NULL) 6564 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6565 INIT_HLIST_HEAD(&hash[i]); 6566 6567 return hash; 6568 } 6569 6570 /* Initialize per network namespace state */ 6571 static int __net_init netdev_init(struct net *net) 6572 { 6573 if (net != &init_net) 6574 INIT_LIST_HEAD(&net->dev_base_head); 6575 6576 net->dev_name_head = netdev_create_hash(); 6577 if (net->dev_name_head == NULL) 6578 goto err_name; 6579 6580 net->dev_index_head = netdev_create_hash(); 6581 if (net->dev_index_head == NULL) 6582 goto err_idx; 6583 6584 return 0; 6585 6586 err_idx: 6587 kfree(net->dev_name_head); 6588 err_name: 6589 return -ENOMEM; 6590 } 6591 6592 /** 6593 * netdev_drivername - network driver for the device 6594 * @dev: network device 6595 * 6596 * Determine network driver for device. 6597 */ 6598 const char *netdev_drivername(const struct net_device *dev) 6599 { 6600 const struct device_driver *driver; 6601 const struct device *parent; 6602 const char *empty = ""; 6603 6604 parent = dev->dev.parent; 6605 if (!parent) 6606 return empty; 6607 6608 driver = parent->driver; 6609 if (driver && driver->name) 6610 return driver->name; 6611 return empty; 6612 } 6613 6614 static int __netdev_printk(const char *level, const struct net_device *dev, 6615 struct va_format *vaf) 6616 { 6617 int r; 6618 6619 if (dev && dev->dev.parent) { 6620 r = dev_printk_emit(level[1] - '0', 6621 dev->dev.parent, 6622 "%s %s %s: %pV", 6623 dev_driver_string(dev->dev.parent), 6624 dev_name(dev->dev.parent), 6625 netdev_name(dev), vaf); 6626 } else if (dev) { 6627 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6628 } else { 6629 r = printk("%s(NULL net_device): %pV", level, vaf); 6630 } 6631 6632 return r; 6633 } 6634 6635 int netdev_printk(const char *level, const struct net_device *dev, 6636 const char *format, ...) 6637 { 6638 struct va_format vaf; 6639 va_list args; 6640 int r; 6641 6642 va_start(args, format); 6643 6644 vaf.fmt = format; 6645 vaf.va = &args; 6646 6647 r = __netdev_printk(level, dev, &vaf); 6648 6649 va_end(args); 6650 6651 return r; 6652 } 6653 EXPORT_SYMBOL(netdev_printk); 6654 6655 #define define_netdev_printk_level(func, level) \ 6656 int func(const struct net_device *dev, const char *fmt, ...) \ 6657 { \ 6658 int r; \ 6659 struct va_format vaf; \ 6660 va_list args; \ 6661 \ 6662 va_start(args, fmt); \ 6663 \ 6664 vaf.fmt = fmt; \ 6665 vaf.va = &args; \ 6666 \ 6667 r = __netdev_printk(level, dev, &vaf); \ 6668 \ 6669 va_end(args); \ 6670 \ 6671 return r; \ 6672 } \ 6673 EXPORT_SYMBOL(func); 6674 6675 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6676 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6677 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6678 define_netdev_printk_level(netdev_err, KERN_ERR); 6679 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6680 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6681 define_netdev_printk_level(netdev_info, KERN_INFO); 6682 6683 static void __net_exit netdev_exit(struct net *net) 6684 { 6685 kfree(net->dev_name_head); 6686 kfree(net->dev_index_head); 6687 } 6688 6689 static struct pernet_operations __net_initdata netdev_net_ops = { 6690 .init = netdev_init, 6691 .exit = netdev_exit, 6692 }; 6693 6694 static void __net_exit default_device_exit(struct net *net) 6695 { 6696 struct net_device *dev, *aux; 6697 /* 6698 * Push all migratable network devices back to the 6699 * initial network namespace 6700 */ 6701 rtnl_lock(); 6702 for_each_netdev_safe(net, dev, aux) { 6703 int err; 6704 char fb_name[IFNAMSIZ]; 6705 6706 /* Ignore unmoveable devices (i.e. loopback) */ 6707 if (dev->features & NETIF_F_NETNS_LOCAL) 6708 continue; 6709 6710 /* Leave virtual devices for the generic cleanup */ 6711 if (dev->rtnl_link_ops) 6712 continue; 6713 6714 /* Push remaining network devices to init_net */ 6715 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6716 err = dev_change_net_namespace(dev, &init_net, fb_name); 6717 if (err) { 6718 pr_emerg("%s: failed to move %s to init_net: %d\n", 6719 __func__, dev->name, err); 6720 BUG(); 6721 } 6722 } 6723 rtnl_unlock(); 6724 } 6725 6726 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6727 { 6728 /* At exit all network devices most be removed from a network 6729 * namespace. Do this in the reverse order of registration. 6730 * Do this across as many network namespaces as possible to 6731 * improve batching efficiency. 6732 */ 6733 struct net_device *dev; 6734 struct net *net; 6735 LIST_HEAD(dev_kill_list); 6736 6737 rtnl_lock(); 6738 list_for_each_entry(net, net_list, exit_list) { 6739 for_each_netdev_reverse(net, dev) { 6740 if (dev->rtnl_link_ops) 6741 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6742 else 6743 unregister_netdevice_queue(dev, &dev_kill_list); 6744 } 6745 } 6746 unregister_netdevice_many(&dev_kill_list); 6747 list_del(&dev_kill_list); 6748 rtnl_unlock(); 6749 } 6750 6751 static struct pernet_operations __net_initdata default_device_ops = { 6752 .exit = default_device_exit, 6753 .exit_batch = default_device_exit_batch, 6754 }; 6755 6756 /* 6757 * Initialize the DEV module. At boot time this walks the device list and 6758 * unhooks any devices that fail to initialise (normally hardware not 6759 * present) and leaves us with a valid list of present and active devices. 6760 * 6761 */ 6762 6763 /* 6764 * This is called single threaded during boot, so no need 6765 * to take the rtnl semaphore. 6766 */ 6767 static int __init net_dev_init(void) 6768 { 6769 int i, rc = -ENOMEM; 6770 6771 BUG_ON(!dev_boot_phase); 6772 6773 if (dev_proc_init()) 6774 goto out; 6775 6776 if (netdev_kobject_init()) 6777 goto out; 6778 6779 INIT_LIST_HEAD(&ptype_all); 6780 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6781 INIT_LIST_HEAD(&ptype_base[i]); 6782 6783 INIT_LIST_HEAD(&offload_base); 6784 6785 if (register_pernet_subsys(&netdev_net_ops)) 6786 goto out; 6787 6788 /* 6789 * Initialise the packet receive queues. 6790 */ 6791 6792 for_each_possible_cpu(i) { 6793 struct softnet_data *sd = &per_cpu(softnet_data, i); 6794 6795 memset(sd, 0, sizeof(*sd)); 6796 skb_queue_head_init(&sd->input_pkt_queue); 6797 skb_queue_head_init(&sd->process_queue); 6798 sd->completion_queue = NULL; 6799 INIT_LIST_HEAD(&sd->poll_list); 6800 sd->output_queue = NULL; 6801 sd->output_queue_tailp = &sd->output_queue; 6802 #ifdef CONFIG_RPS 6803 sd->csd.func = rps_trigger_softirq; 6804 sd->csd.info = sd; 6805 sd->csd.flags = 0; 6806 sd->cpu = i; 6807 #endif 6808 6809 sd->backlog.poll = process_backlog; 6810 sd->backlog.weight = weight_p; 6811 sd->backlog.gro_list = NULL; 6812 sd->backlog.gro_count = 0; 6813 } 6814 6815 dev_boot_phase = 0; 6816 6817 /* The loopback device is special if any other network devices 6818 * is present in a network namespace the loopback device must 6819 * be present. Since we now dynamically allocate and free the 6820 * loopback device ensure this invariant is maintained by 6821 * keeping the loopback device as the first device on the 6822 * list of network devices. Ensuring the loopback devices 6823 * is the first device that appears and the last network device 6824 * that disappears. 6825 */ 6826 if (register_pernet_device(&loopback_net_ops)) 6827 goto out; 6828 6829 if (register_pernet_device(&default_device_ops)) 6830 goto out; 6831 6832 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6833 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6834 6835 hotcpu_notifier(dev_cpu_callback, 0); 6836 dst_init(); 6837 dev_mcast_init(); 6838 rc = 0; 6839 out: 6840 return rc; 6841 } 6842 6843 subsys_initcall(net_dev_init); 6844 6845 static int __init initialize_hashrnd(void) 6846 { 6847 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6848 return 0; 6849 } 6850 6851 late_initcall_sync(initialize_hashrnd); 6852 6853