1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 130 #include "net-sysfs.h" 131 132 /* Instead of increasing this, you should create a hash table. */ 133 #define MAX_GRO_SKBS 8 134 135 /* This should be increased if a protocol with a bigger head is added. */ 136 #define GRO_MAX_HEAD (MAX_HEADER + 128) 137 138 /* 139 * The list of packet types we will receive (as opposed to discard) 140 * and the routines to invoke. 141 * 142 * Why 16. Because with 16 the only overlap we get on a hash of the 143 * low nibble of the protocol value is RARP/SNAP/X.25. 144 * 145 * NOTE: That is no longer true with the addition of VLAN tags. Not 146 * sure which should go first, but I bet it won't make much 147 * difference if we are running VLANs. The good news is that 148 * this protocol won't be in the list unless compiled in, so 149 * the average user (w/out VLANs) will not be adversely affected. 150 * --BLG 151 * 152 * 0800 IP 153 * 8100 802.1Q VLAN 154 * 0001 802.3 155 * 0002 AX.25 156 * 0004 802.2 157 * 8035 RARP 158 * 0005 SNAP 159 * 0805 X.25 160 * 0806 ARP 161 * 8137 IPX 162 * 0009 Localtalk 163 * 86DD IPv6 164 */ 165 166 #define PTYPE_HASH_SIZE (16) 167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 168 169 static DEFINE_SPINLOCK(ptype_lock); 170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 171 static struct list_head ptype_all __read_mostly; /* Taps */ 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 DEFINE_RWLOCK(dev_base_lock); 193 194 EXPORT_SYMBOL(dev_base_lock); 195 196 #define NETDEV_HASHBITS 8 197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208 } 209 210 /* Device list insertion */ 211 static int list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223 } 224 225 /* Device list removal */ 226 static void unlist_netdevice(struct net_device *dev) 227 { 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236 } 237 238 /* 239 * Our notifier list 240 */ 241 242 static RAW_NOTIFIER_HEAD(netdev_chain); 243 244 /* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249 DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 251 #ifdef CONFIG_LOCKDEP 252 /* 253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 254 * according to dev->type 255 */ 256 static const unsigned short netdev_lock_type[] = 257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE}; 272 273 static const char *netdev_lock_name[] = 274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"}; 289 290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 293 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 294 { 295 int i; 296 297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 298 if (netdev_lock_type[i] == dev_type) 299 return i; 300 /* the last key is used by default */ 301 return ARRAY_SIZE(netdev_lock_type) - 1; 302 } 303 304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 305 unsigned short dev_type) 306 { 307 int i; 308 309 i = netdev_lock_pos(dev_type); 310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 311 netdev_lock_name[i]); 312 } 313 314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 315 { 316 int i; 317 318 i = netdev_lock_pos(dev->type); 319 lockdep_set_class_and_name(&dev->addr_list_lock, 320 &netdev_addr_lock_key[i], 321 netdev_lock_name[i]); 322 } 323 #else 324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326 { 327 } 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 } 331 #endif 332 333 /******************************************************************************* 334 335 Protocol management and registration routines 336 337 *******************************************************************************/ 338 339 /* 340 * Add a protocol ID to the list. Now that the input handler is 341 * smarter we can dispense with all the messy stuff that used to be 342 * here. 343 * 344 * BEWARE!!! Protocol handlers, mangling input packets, 345 * MUST BE last in hash buckets and checking protocol handlers 346 * MUST start from promiscuous ptype_all chain in net_bh. 347 * It is true now, do not change it. 348 * Explanation follows: if protocol handler, mangling packet, will 349 * be the first on list, it is not able to sense, that packet 350 * is cloned and should be copied-on-write, so that it will 351 * change it and subsequent readers will get broken packet. 352 * --ANK (980803) 353 */ 354 355 /** 356 * dev_add_pack - add packet handler 357 * @pt: packet type declaration 358 * 359 * Add a protocol handler to the networking stack. The passed &packet_type 360 * is linked into kernel lists and may not be freed until it has been 361 * removed from the kernel lists. 362 * 363 * This call does not sleep therefore it can not 364 * guarantee all CPU's that are in middle of receiving packets 365 * will see the new packet type (until the next received packet). 366 */ 367 368 void dev_add_pack(struct packet_type *pt) 369 { 370 int hash; 371 372 spin_lock_bh(&ptype_lock); 373 if (pt->type == htons(ETH_P_ALL)) 374 list_add_rcu(&pt->list, &ptype_all); 375 else { 376 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 377 list_add_rcu(&pt->list, &ptype_base[hash]); 378 } 379 spin_unlock_bh(&ptype_lock); 380 } 381 382 /** 383 * __dev_remove_pack - remove packet handler 384 * @pt: packet type declaration 385 * 386 * Remove a protocol handler that was previously added to the kernel 387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 388 * from the kernel lists and can be freed or reused once this function 389 * returns. 390 * 391 * The packet type might still be in use by receivers 392 * and must not be freed until after all the CPU's have gone 393 * through a quiescent state. 394 */ 395 void __dev_remove_pack(struct packet_type *pt) 396 { 397 struct list_head *head; 398 struct packet_type *pt1; 399 400 spin_lock_bh(&ptype_lock); 401 402 if (pt->type == htons(ETH_P_ALL)) 403 head = &ptype_all; 404 else 405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 415 out: 416 spin_unlock_bh(&ptype_lock); 417 } 418 /** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430 void dev_remove_pack(struct packet_type *pt) 431 { 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435 } 436 437 /****************************************************************************** 438 439 Device Boot-time Settings Routines 440 441 *******************************************************************************/ 442 443 /* Boot time configuration table */ 444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 445 446 /** 447 * netdev_boot_setup_add - add new setup entry 448 * @name: name of the device 449 * @map: configured settings for the device 450 * 451 * Adds new setup entry to the dev_boot_setup list. The function 452 * returns 0 on error and 1 on success. This is a generic routine to 453 * all netdevices. 454 */ 455 static int netdev_boot_setup_add(char *name, struct ifmap *map) 456 { 457 struct netdev_boot_setup *s; 458 int i; 459 460 s = dev_boot_setup; 461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 463 memset(s[i].name, 0, sizeof(s[i].name)); 464 strlcpy(s[i].name, name, IFNAMSIZ); 465 memcpy(&s[i].map, map, sizeof(s[i].map)); 466 break; 467 } 468 } 469 470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 471 } 472 473 /** 474 * netdev_boot_setup_check - check boot time settings 475 * @dev: the netdevice 476 * 477 * Check boot time settings for the device. 478 * The found settings are set for the device to be used 479 * later in the device probing. 480 * Returns 0 if no settings found, 1 if they are. 481 */ 482 int netdev_boot_setup_check(struct net_device *dev) 483 { 484 struct netdev_boot_setup *s = dev_boot_setup; 485 int i; 486 487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 489 !strcmp(dev->name, s[i].name)) { 490 dev->irq = s[i].map.irq; 491 dev->base_addr = s[i].map.base_addr; 492 dev->mem_start = s[i].map.mem_start; 493 dev->mem_end = s[i].map.mem_end; 494 return 1; 495 } 496 } 497 return 0; 498 } 499 500 501 /** 502 * netdev_boot_base - get address from boot time settings 503 * @prefix: prefix for network device 504 * @unit: id for network device 505 * 506 * Check boot time settings for the base address of device. 507 * The found settings are set for the device to be used 508 * later in the device probing. 509 * Returns 0 if no settings found. 510 */ 511 unsigned long netdev_boot_base(const char *prefix, int unit) 512 { 513 const struct netdev_boot_setup *s = dev_boot_setup; 514 char name[IFNAMSIZ]; 515 int i; 516 517 sprintf(name, "%s%d", prefix, unit); 518 519 /* 520 * If device already registered then return base of 1 521 * to indicate not to probe for this interface 522 */ 523 if (__dev_get_by_name(&init_net, name)) 524 return 1; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 527 if (!strcmp(name, s[i].name)) 528 return s[i].map.base_addr; 529 return 0; 530 } 531 532 /* 533 * Saves at boot time configured settings for any netdevice. 534 */ 535 int __init netdev_boot_setup(char *str) 536 { 537 int ints[5]; 538 struct ifmap map; 539 540 str = get_options(str, ARRAY_SIZE(ints), ints); 541 if (!str || !*str) 542 return 0; 543 544 /* Save settings */ 545 memset(&map, 0, sizeof(map)); 546 if (ints[0] > 0) 547 map.irq = ints[1]; 548 if (ints[0] > 1) 549 map.base_addr = ints[2]; 550 if (ints[0] > 2) 551 map.mem_start = ints[3]; 552 if (ints[0] > 3) 553 map.mem_end = ints[4]; 554 555 /* Add new entry to the list */ 556 return netdev_boot_setup_add(str, &map); 557 } 558 559 __setup("netdev=", netdev_boot_setup); 560 561 /******************************************************************************* 562 563 Device Interface Subroutines 564 565 *******************************************************************************/ 566 567 /** 568 * __dev_get_by_name - find a device by its name 569 * @net: the applicable net namespace 570 * @name: name to find 571 * 572 * Find an interface by name. Must be called under RTNL semaphore 573 * or @dev_base_lock. If the name is found a pointer to the device 574 * is returned. If the name is not found then %NULL is returned. The 575 * reference counters are not incremented so the caller must be 576 * careful with locks. 577 */ 578 579 struct net_device *__dev_get_by_name(struct net *net, const char *name) 580 { 581 struct hlist_node *p; 582 583 hlist_for_each(p, dev_name_hash(net, name)) { 584 struct net_device *dev 585 = hlist_entry(p, struct net_device, name_hlist); 586 if (!strncmp(dev->name, name, IFNAMSIZ)) 587 return dev; 588 } 589 return NULL; 590 } 591 592 /** 593 * dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. This can be called from any 598 * context and does its own locking. The returned handle has 599 * the usage count incremented and the caller must use dev_put() to 600 * release it when it is no longer needed. %NULL is returned if no 601 * matching device is found. 602 */ 603 604 struct net_device *dev_get_by_name(struct net *net, const char *name) 605 { 606 struct net_device *dev; 607 608 read_lock(&dev_base_lock); 609 dev = __dev_get_by_name(net, name); 610 if (dev) 611 dev_hold(dev); 612 read_unlock(&dev_base_lock); 613 return dev; 614 } 615 616 /** 617 * __dev_get_by_index - find a device by its ifindex 618 * @net: the applicable net namespace 619 * @ifindex: index of device 620 * 621 * Search for an interface by index. Returns %NULL if the device 622 * is not found or a pointer to the device. The device has not 623 * had its reference counter increased so the caller must be careful 624 * about locking. The caller must hold either the RTNL semaphore 625 * or @dev_base_lock. 626 */ 627 628 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 629 { 630 struct hlist_node *p; 631 632 hlist_for_each(p, dev_index_hash(net, ifindex)) { 633 struct net_device *dev 634 = hlist_entry(p, struct net_device, index_hlist); 635 if (dev->ifindex == ifindex) 636 return dev; 637 } 638 return NULL; 639 } 640 641 642 /** 643 * dev_get_by_index - find a device by its ifindex 644 * @net: the applicable net namespace 645 * @ifindex: index of device 646 * 647 * Search for an interface by index. Returns NULL if the device 648 * is not found or a pointer to the device. The device returned has 649 * had a reference added and the pointer is safe until the user calls 650 * dev_put to indicate they have finished with it. 651 */ 652 653 struct net_device *dev_get_by_index(struct net *net, int ifindex) 654 { 655 struct net_device *dev; 656 657 read_lock(&dev_base_lock); 658 dev = __dev_get_by_index(net, ifindex); 659 if (dev) 660 dev_hold(dev); 661 read_unlock(&dev_base_lock); 662 return dev; 663 } 664 665 /** 666 * dev_getbyhwaddr - find a device by its hardware address 667 * @net: the applicable net namespace 668 * @type: media type of device 669 * @ha: hardware address 670 * 671 * Search for an interface by MAC address. Returns NULL if the device 672 * is not found or a pointer to the device. The caller must hold the 673 * rtnl semaphore. The returned device has not had its ref count increased 674 * and the caller must therefore be careful about locking 675 * 676 * BUGS: 677 * If the API was consistent this would be __dev_get_by_hwaddr 678 */ 679 680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 681 { 682 struct net_device *dev; 683 684 ASSERT_RTNL(); 685 686 for_each_netdev(net, dev) 687 if (dev->type == type && 688 !memcmp(dev->dev_addr, ha, dev->addr_len)) 689 return dev; 690 691 return NULL; 692 } 693 694 EXPORT_SYMBOL(dev_getbyhwaddr); 695 696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 697 { 698 struct net_device *dev; 699 700 ASSERT_RTNL(); 701 for_each_netdev(net, dev) 702 if (dev->type == type) 703 return dev; 704 705 return NULL; 706 } 707 708 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 709 710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 711 { 712 struct net_device *dev; 713 714 rtnl_lock(); 715 dev = __dev_getfirstbyhwtype(net, type); 716 if (dev) 717 dev_hold(dev); 718 rtnl_unlock(); 719 return dev; 720 } 721 722 EXPORT_SYMBOL(dev_getfirstbyhwtype); 723 724 /** 725 * dev_get_by_flags - find any device with given flags 726 * @net: the applicable net namespace 727 * @if_flags: IFF_* values 728 * @mask: bitmask of bits in if_flags to check 729 * 730 * Search for any interface with the given flags. Returns NULL if a device 731 * is not found or a pointer to the device. The device returned has 732 * had a reference added and the pointer is safe until the user calls 733 * dev_put to indicate they have finished with it. 734 */ 735 736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 737 { 738 struct net_device *dev, *ret; 739 740 ret = NULL; 741 read_lock(&dev_base_lock); 742 for_each_netdev(net, dev) { 743 if (((dev->flags ^ if_flags) & mask) == 0) { 744 dev_hold(dev); 745 ret = dev; 746 break; 747 } 748 } 749 read_unlock(&dev_base_lock); 750 return ret; 751 } 752 753 /** 754 * dev_valid_name - check if name is okay for network device 755 * @name: name string 756 * 757 * Network device names need to be valid file names to 758 * to allow sysfs to work. We also disallow any kind of 759 * whitespace. 760 */ 761 int dev_valid_name(const char *name) 762 { 763 if (*name == '\0') 764 return 0; 765 if (strlen(name) >= IFNAMSIZ) 766 return 0; 767 if (!strcmp(name, ".") || !strcmp(name, "..")) 768 return 0; 769 770 while (*name) { 771 if (*name == '/' || isspace(*name)) 772 return 0; 773 name++; 774 } 775 return 1; 776 } 777 778 /** 779 * __dev_alloc_name - allocate a name for a device 780 * @net: network namespace to allocate the device name in 781 * @name: name format string 782 * @buf: scratch buffer and result name string 783 * 784 * Passed a format string - eg "lt%d" it will try and find a suitable 785 * id. It scans list of devices to build up a free map, then chooses 786 * the first empty slot. The caller must hold the dev_base or rtnl lock 787 * while allocating the name and adding the device in order to avoid 788 * duplicates. 789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 790 * Returns the number of the unit assigned or a negative errno code. 791 */ 792 793 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 794 { 795 int i = 0; 796 const char *p; 797 const int max_netdevices = 8*PAGE_SIZE; 798 unsigned long *inuse; 799 struct net_device *d; 800 801 p = strnchr(name, IFNAMSIZ-1, '%'); 802 if (p) { 803 /* 804 * Verify the string as this thing may have come from 805 * the user. There must be either one "%d" and no other "%" 806 * characters. 807 */ 808 if (p[1] != 'd' || strchr(p + 2, '%')) 809 return -EINVAL; 810 811 /* Use one page as a bit array of possible slots */ 812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 813 if (!inuse) 814 return -ENOMEM; 815 816 for_each_netdev(net, d) { 817 if (!sscanf(d->name, name, &i)) 818 continue; 819 if (i < 0 || i >= max_netdevices) 820 continue; 821 822 /* avoid cases where sscanf is not exact inverse of printf */ 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!strncmp(buf, d->name, IFNAMSIZ)) 825 set_bit(i, inuse); 826 } 827 828 i = find_first_zero_bit(inuse, max_netdevices); 829 free_page((unsigned long) inuse); 830 } 831 832 snprintf(buf, IFNAMSIZ, name, i); 833 if (!__dev_get_by_name(net, buf)) 834 return i; 835 836 /* It is possible to run out of possible slots 837 * when the name is long and there isn't enough space left 838 * for the digits, or if all bits are used. 839 */ 840 return -ENFILE; 841 } 842 843 /** 844 * dev_alloc_name - allocate a name for a device 845 * @dev: device 846 * @name: name format string 847 * 848 * Passed a format string - eg "lt%d" it will try and find a suitable 849 * id. It scans list of devices to build up a free map, then chooses 850 * the first empty slot. The caller must hold the dev_base or rtnl lock 851 * while allocating the name and adding the device in order to avoid 852 * duplicates. 853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 854 * Returns the number of the unit assigned or a negative errno code. 855 */ 856 857 int dev_alloc_name(struct net_device *dev, const char *name) 858 { 859 char buf[IFNAMSIZ]; 860 struct net *net; 861 int ret; 862 863 BUG_ON(!dev_net(dev)); 864 net = dev_net(dev); 865 ret = __dev_alloc_name(net, name, buf); 866 if (ret >= 0) 867 strlcpy(dev->name, buf, IFNAMSIZ); 868 return ret; 869 } 870 871 872 /** 873 * dev_change_name - change name of a device 874 * @dev: device 875 * @newname: name (or format string) must be at least IFNAMSIZ 876 * 877 * Change name of a device, can pass format strings "eth%d". 878 * for wildcarding. 879 */ 880 int dev_change_name(struct net_device *dev, const char *newname) 881 { 882 char oldname[IFNAMSIZ]; 883 int err = 0; 884 int ret; 885 struct net *net; 886 887 ASSERT_RTNL(); 888 BUG_ON(!dev_net(dev)); 889 890 net = dev_net(dev); 891 if (dev->flags & IFF_UP) 892 return -EBUSY; 893 894 if (!dev_valid_name(newname)) 895 return -EINVAL; 896 897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 898 return 0; 899 900 memcpy(oldname, dev->name, IFNAMSIZ); 901 902 if (strchr(newname, '%')) { 903 err = dev_alloc_name(dev, newname); 904 if (err < 0) 905 return err; 906 } 907 else if (__dev_get_by_name(net, newname)) 908 return -EEXIST; 909 else 910 strlcpy(dev->name, newname, IFNAMSIZ); 911 912 rollback: 913 /* For now only devices in the initial network namespace 914 * are in sysfs. 915 */ 916 if (net == &init_net) { 917 ret = device_rename(&dev->dev, dev->name); 918 if (ret) { 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 return ret; 921 } 922 } 923 924 write_lock_bh(&dev_base_lock); 925 hlist_del(&dev->name_hlist); 926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 927 write_unlock_bh(&dev_base_lock); 928 929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 930 ret = notifier_to_errno(ret); 931 932 if (ret) { 933 if (err) { 934 printk(KERN_ERR 935 "%s: name change rollback failed: %d.\n", 936 dev->name, ret); 937 } else { 938 err = ret; 939 memcpy(dev->name, oldname, IFNAMSIZ); 940 goto rollback; 941 } 942 } 943 944 return err; 945 } 946 947 /** 948 * dev_set_alias - change ifalias of a device 949 * @dev: device 950 * @alias: name up to IFALIASZ 951 * @len: limit of bytes to copy from info 952 * 953 * Set ifalias for a device, 954 */ 955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 956 { 957 ASSERT_RTNL(); 958 959 if (len >= IFALIASZ) 960 return -EINVAL; 961 962 if (!len) { 963 if (dev->ifalias) { 964 kfree(dev->ifalias); 965 dev->ifalias = NULL; 966 } 967 return 0; 968 } 969 970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 971 if (!dev->ifalias) 972 return -ENOMEM; 973 974 strlcpy(dev->ifalias, alias, len+1); 975 return len; 976 } 977 978 979 /** 980 * netdev_features_change - device changes features 981 * @dev: device to cause notification 982 * 983 * Called to indicate a device has changed features. 984 */ 985 void netdev_features_change(struct net_device *dev) 986 { 987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 988 } 989 EXPORT_SYMBOL(netdev_features_change); 990 991 /** 992 * netdev_state_change - device changes state 993 * @dev: device to cause notification 994 * 995 * Called to indicate a device has changed state. This function calls 996 * the notifier chains for netdev_chain and sends a NEWLINK message 997 * to the routing socket. 998 */ 999 void netdev_state_change(struct net_device *dev) 1000 { 1001 if (dev->flags & IFF_UP) { 1002 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1004 } 1005 } 1006 1007 void netdev_bonding_change(struct net_device *dev) 1008 { 1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1010 } 1011 EXPORT_SYMBOL(netdev_bonding_change); 1012 1013 /** 1014 * dev_load - load a network module 1015 * @net: the applicable net namespace 1016 * @name: name of interface 1017 * 1018 * If a network interface is not present and the process has suitable 1019 * privileges this function loads the module. If module loading is not 1020 * available in this kernel then it becomes a nop. 1021 */ 1022 1023 void dev_load(struct net *net, const char *name) 1024 { 1025 struct net_device *dev; 1026 1027 read_lock(&dev_base_lock); 1028 dev = __dev_get_by_name(net, name); 1029 read_unlock(&dev_base_lock); 1030 1031 if (!dev && capable(CAP_SYS_MODULE)) 1032 request_module("%s", name); 1033 } 1034 1035 /** 1036 * dev_open - prepare an interface for use. 1037 * @dev: device to open 1038 * 1039 * Takes a device from down to up state. The device's private open 1040 * function is invoked and then the multicast lists are loaded. Finally 1041 * the device is moved into the up state and a %NETDEV_UP message is 1042 * sent to the netdev notifier chain. 1043 * 1044 * Calling this function on an active interface is a nop. On a failure 1045 * a negative errno code is returned. 1046 */ 1047 int dev_open(struct net_device *dev) 1048 { 1049 const struct net_device_ops *ops = dev->netdev_ops; 1050 int ret = 0; 1051 1052 ASSERT_RTNL(); 1053 1054 /* 1055 * Is it already up? 1056 */ 1057 1058 if (dev->flags & IFF_UP) 1059 return 0; 1060 1061 /* 1062 * Is it even present? 1063 */ 1064 if (!netif_device_present(dev)) 1065 return -ENODEV; 1066 1067 /* 1068 * Call device private open method 1069 */ 1070 set_bit(__LINK_STATE_START, &dev->state); 1071 1072 if (ops->ndo_validate_addr) 1073 ret = ops->ndo_validate_addr(dev); 1074 1075 if (!ret && ops->ndo_open) 1076 ret = ops->ndo_open(dev); 1077 1078 /* 1079 * If it went open OK then: 1080 */ 1081 1082 if (ret) 1083 clear_bit(__LINK_STATE_START, &dev->state); 1084 else { 1085 /* 1086 * Set the flags. 1087 */ 1088 dev->flags |= IFF_UP; 1089 1090 /* 1091 * Enable NET_DMA 1092 */ 1093 net_dmaengine_get(); 1094 1095 /* 1096 * Initialize multicasting status 1097 */ 1098 dev_set_rx_mode(dev); 1099 1100 /* 1101 * Wakeup transmit queue engine 1102 */ 1103 dev_activate(dev); 1104 1105 /* 1106 * ... and announce new interface. 1107 */ 1108 call_netdevice_notifiers(NETDEV_UP, dev); 1109 } 1110 1111 return ret; 1112 } 1113 1114 /** 1115 * dev_close - shutdown an interface. 1116 * @dev: device to shutdown 1117 * 1118 * This function moves an active device into down state. A 1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1121 * chain. 1122 */ 1123 int dev_close(struct net_device *dev) 1124 { 1125 const struct net_device_ops *ops = dev->netdev_ops; 1126 ASSERT_RTNL(); 1127 1128 might_sleep(); 1129 1130 if (!(dev->flags & IFF_UP)) 1131 return 0; 1132 1133 /* 1134 * Tell people we are going down, so that they can 1135 * prepare to death, when device is still operating. 1136 */ 1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1138 1139 clear_bit(__LINK_STATE_START, &dev->state); 1140 1141 /* Synchronize to scheduled poll. We cannot touch poll list, 1142 * it can be even on different cpu. So just clear netif_running(). 1143 * 1144 * dev->stop() will invoke napi_disable() on all of it's 1145 * napi_struct instances on this device. 1146 */ 1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1148 1149 dev_deactivate(dev); 1150 1151 /* 1152 * Call the device specific close. This cannot fail. 1153 * Only if device is UP 1154 * 1155 * We allow it to be called even after a DETACH hot-plug 1156 * event. 1157 */ 1158 if (ops->ndo_stop) 1159 ops->ndo_stop(dev); 1160 1161 /* 1162 * Device is now down. 1163 */ 1164 1165 dev->flags &= ~IFF_UP; 1166 1167 /* 1168 * Tell people we are down 1169 */ 1170 call_netdevice_notifiers(NETDEV_DOWN, dev); 1171 1172 /* 1173 * Shutdown NET_DMA 1174 */ 1175 net_dmaengine_put(); 1176 1177 return 0; 1178 } 1179 1180 1181 /** 1182 * dev_disable_lro - disable Large Receive Offload on a device 1183 * @dev: device 1184 * 1185 * Disable Large Receive Offload (LRO) on a net device. Must be 1186 * called under RTNL. This is needed if received packets may be 1187 * forwarded to another interface. 1188 */ 1189 void dev_disable_lro(struct net_device *dev) 1190 { 1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1192 dev->ethtool_ops->set_flags) { 1193 u32 flags = dev->ethtool_ops->get_flags(dev); 1194 if (flags & ETH_FLAG_LRO) { 1195 flags &= ~ETH_FLAG_LRO; 1196 dev->ethtool_ops->set_flags(dev, flags); 1197 } 1198 } 1199 WARN_ON(dev->features & NETIF_F_LRO); 1200 } 1201 EXPORT_SYMBOL(dev_disable_lro); 1202 1203 1204 static int dev_boot_phase = 1; 1205 1206 /* 1207 * Device change register/unregister. These are not inline or static 1208 * as we export them to the world. 1209 */ 1210 1211 /** 1212 * register_netdevice_notifier - register a network notifier block 1213 * @nb: notifier 1214 * 1215 * Register a notifier to be called when network device events occur. 1216 * The notifier passed is linked into the kernel structures and must 1217 * not be reused until it has been unregistered. A negative errno code 1218 * is returned on a failure. 1219 * 1220 * When registered all registration and up events are replayed 1221 * to the new notifier to allow device to have a race free 1222 * view of the network device list. 1223 */ 1224 1225 int register_netdevice_notifier(struct notifier_block *nb) 1226 { 1227 struct net_device *dev; 1228 struct net_device *last; 1229 struct net *net; 1230 int err; 1231 1232 rtnl_lock(); 1233 err = raw_notifier_chain_register(&netdev_chain, nb); 1234 if (err) 1235 goto unlock; 1236 if (dev_boot_phase) 1237 goto unlock; 1238 for_each_net(net) { 1239 for_each_netdev(net, dev) { 1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1241 err = notifier_to_errno(err); 1242 if (err) 1243 goto rollback; 1244 1245 if (!(dev->flags & IFF_UP)) 1246 continue; 1247 1248 nb->notifier_call(nb, NETDEV_UP, dev); 1249 } 1250 } 1251 1252 unlock: 1253 rtnl_unlock(); 1254 return err; 1255 1256 rollback: 1257 last = dev; 1258 for_each_net(net) { 1259 for_each_netdev(net, dev) { 1260 if (dev == last) 1261 break; 1262 1263 if (dev->flags & IFF_UP) { 1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1265 nb->notifier_call(nb, NETDEV_DOWN, dev); 1266 } 1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1268 } 1269 } 1270 1271 raw_notifier_chain_unregister(&netdev_chain, nb); 1272 goto unlock; 1273 } 1274 1275 /** 1276 * unregister_netdevice_notifier - unregister a network notifier block 1277 * @nb: notifier 1278 * 1279 * Unregister a notifier previously registered by 1280 * register_netdevice_notifier(). The notifier is unlinked into the 1281 * kernel structures and may then be reused. A negative errno code 1282 * is returned on a failure. 1283 */ 1284 1285 int unregister_netdevice_notifier(struct notifier_block *nb) 1286 { 1287 int err; 1288 1289 rtnl_lock(); 1290 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1291 rtnl_unlock(); 1292 return err; 1293 } 1294 1295 /** 1296 * call_netdevice_notifiers - call all network notifier blocks 1297 * @val: value passed unmodified to notifier function 1298 * @dev: net_device pointer passed unmodified to notifier function 1299 * 1300 * Call all network notifier blocks. Parameters and return value 1301 * are as for raw_notifier_call_chain(). 1302 */ 1303 1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1305 { 1306 return raw_notifier_call_chain(&netdev_chain, val, dev); 1307 } 1308 1309 /* When > 0 there are consumers of rx skb time stamps */ 1310 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1311 1312 void net_enable_timestamp(void) 1313 { 1314 atomic_inc(&netstamp_needed); 1315 } 1316 1317 void net_disable_timestamp(void) 1318 { 1319 atomic_dec(&netstamp_needed); 1320 } 1321 1322 static inline void net_timestamp(struct sk_buff *skb) 1323 { 1324 if (atomic_read(&netstamp_needed)) 1325 __net_timestamp(skb); 1326 else 1327 skb->tstamp.tv64 = 0; 1328 } 1329 1330 /* 1331 * Support routine. Sends outgoing frames to any network 1332 * taps currently in use. 1333 */ 1334 1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1336 { 1337 struct packet_type *ptype; 1338 1339 net_timestamp(skb); 1340 1341 rcu_read_lock(); 1342 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1343 /* Never send packets back to the socket 1344 * they originated from - MvS (miquels@drinkel.ow.org) 1345 */ 1346 if ((ptype->dev == dev || !ptype->dev) && 1347 (ptype->af_packet_priv == NULL || 1348 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1350 if (!skb2) 1351 break; 1352 1353 /* skb->nh should be correctly 1354 set by sender, so that the second statement is 1355 just protection against buggy protocols. 1356 */ 1357 skb_reset_mac_header(skb2); 1358 1359 if (skb_network_header(skb2) < skb2->data || 1360 skb2->network_header > skb2->tail) { 1361 if (net_ratelimit()) 1362 printk(KERN_CRIT "protocol %04x is " 1363 "buggy, dev %s\n", 1364 skb2->protocol, dev->name); 1365 skb_reset_network_header(skb2); 1366 } 1367 1368 skb2->transport_header = skb2->network_header; 1369 skb2->pkt_type = PACKET_OUTGOING; 1370 ptype->func(skb2, skb->dev, ptype, skb->dev); 1371 } 1372 } 1373 rcu_read_unlock(); 1374 } 1375 1376 1377 static inline void __netif_reschedule(struct Qdisc *q) 1378 { 1379 struct softnet_data *sd; 1380 unsigned long flags; 1381 1382 local_irq_save(flags); 1383 sd = &__get_cpu_var(softnet_data); 1384 q->next_sched = sd->output_queue; 1385 sd->output_queue = q; 1386 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1387 local_irq_restore(flags); 1388 } 1389 1390 void __netif_schedule(struct Qdisc *q) 1391 { 1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1393 __netif_reschedule(q); 1394 } 1395 EXPORT_SYMBOL(__netif_schedule); 1396 1397 void dev_kfree_skb_irq(struct sk_buff *skb) 1398 { 1399 if (atomic_dec_and_test(&skb->users)) { 1400 struct softnet_data *sd; 1401 unsigned long flags; 1402 1403 local_irq_save(flags); 1404 sd = &__get_cpu_var(softnet_data); 1405 skb->next = sd->completion_queue; 1406 sd->completion_queue = skb; 1407 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1408 local_irq_restore(flags); 1409 } 1410 } 1411 EXPORT_SYMBOL(dev_kfree_skb_irq); 1412 1413 void dev_kfree_skb_any(struct sk_buff *skb) 1414 { 1415 if (in_irq() || irqs_disabled()) 1416 dev_kfree_skb_irq(skb); 1417 else 1418 dev_kfree_skb(skb); 1419 } 1420 EXPORT_SYMBOL(dev_kfree_skb_any); 1421 1422 1423 /** 1424 * netif_device_detach - mark device as removed 1425 * @dev: network device 1426 * 1427 * Mark device as removed from system and therefore no longer available. 1428 */ 1429 void netif_device_detach(struct net_device *dev) 1430 { 1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1432 netif_running(dev)) { 1433 netif_stop_queue(dev); 1434 } 1435 } 1436 EXPORT_SYMBOL(netif_device_detach); 1437 1438 /** 1439 * netif_device_attach - mark device as attached 1440 * @dev: network device 1441 * 1442 * Mark device as attached from system and restart if needed. 1443 */ 1444 void netif_device_attach(struct net_device *dev) 1445 { 1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1447 netif_running(dev)) { 1448 netif_wake_queue(dev); 1449 __netdev_watchdog_up(dev); 1450 } 1451 } 1452 EXPORT_SYMBOL(netif_device_attach); 1453 1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1455 { 1456 return ((features & NETIF_F_GEN_CSUM) || 1457 ((features & NETIF_F_IP_CSUM) && 1458 protocol == htons(ETH_P_IP)) || 1459 ((features & NETIF_F_IPV6_CSUM) && 1460 protocol == htons(ETH_P_IPV6))); 1461 } 1462 1463 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1464 { 1465 if (can_checksum_protocol(dev->features, skb->protocol)) 1466 return true; 1467 1468 if (skb->protocol == htons(ETH_P_8021Q)) { 1469 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1470 if (can_checksum_protocol(dev->features & dev->vlan_features, 1471 veh->h_vlan_encapsulated_proto)) 1472 return true; 1473 } 1474 1475 return false; 1476 } 1477 1478 /* 1479 * Invalidate hardware checksum when packet is to be mangled, and 1480 * complete checksum manually on outgoing path. 1481 */ 1482 int skb_checksum_help(struct sk_buff *skb) 1483 { 1484 __wsum csum; 1485 int ret = 0, offset; 1486 1487 if (skb->ip_summed == CHECKSUM_COMPLETE) 1488 goto out_set_summed; 1489 1490 if (unlikely(skb_shinfo(skb)->gso_size)) { 1491 /* Let GSO fix up the checksum. */ 1492 goto out_set_summed; 1493 } 1494 1495 offset = skb->csum_start - skb_headroom(skb); 1496 BUG_ON(offset >= skb_headlen(skb)); 1497 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1498 1499 offset += skb->csum_offset; 1500 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1501 1502 if (skb_cloned(skb) && 1503 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1504 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1505 if (ret) 1506 goto out; 1507 } 1508 1509 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1510 out_set_summed: 1511 skb->ip_summed = CHECKSUM_NONE; 1512 out: 1513 return ret; 1514 } 1515 1516 /** 1517 * skb_gso_segment - Perform segmentation on skb. 1518 * @skb: buffer to segment 1519 * @features: features for the output path (see dev->features) 1520 * 1521 * This function segments the given skb and returns a list of segments. 1522 * 1523 * It may return NULL if the skb requires no segmentation. This is 1524 * only possible when GSO is used for verifying header integrity. 1525 */ 1526 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1527 { 1528 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1529 struct packet_type *ptype; 1530 __be16 type = skb->protocol; 1531 int err; 1532 1533 skb_reset_mac_header(skb); 1534 skb->mac_len = skb->network_header - skb->mac_header; 1535 __skb_pull(skb, skb->mac_len); 1536 1537 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1538 struct net_device *dev = skb->dev; 1539 struct ethtool_drvinfo info = {}; 1540 1541 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1542 dev->ethtool_ops->get_drvinfo(dev, &info); 1543 1544 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1545 "ip_summed=%d", 1546 info.driver, dev ? dev->features : 0L, 1547 skb->sk ? skb->sk->sk_route_caps : 0L, 1548 skb->len, skb->data_len, skb->ip_summed); 1549 1550 if (skb_header_cloned(skb) && 1551 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1552 return ERR_PTR(err); 1553 } 1554 1555 rcu_read_lock(); 1556 list_for_each_entry_rcu(ptype, 1557 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1558 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1559 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1560 err = ptype->gso_send_check(skb); 1561 segs = ERR_PTR(err); 1562 if (err || skb_gso_ok(skb, features)) 1563 break; 1564 __skb_push(skb, (skb->data - 1565 skb_network_header(skb))); 1566 } 1567 segs = ptype->gso_segment(skb, features); 1568 break; 1569 } 1570 } 1571 rcu_read_unlock(); 1572 1573 __skb_push(skb, skb->data - skb_mac_header(skb)); 1574 1575 return segs; 1576 } 1577 1578 EXPORT_SYMBOL(skb_gso_segment); 1579 1580 /* Take action when hardware reception checksum errors are detected. */ 1581 #ifdef CONFIG_BUG 1582 void netdev_rx_csum_fault(struct net_device *dev) 1583 { 1584 if (net_ratelimit()) { 1585 printk(KERN_ERR "%s: hw csum failure.\n", 1586 dev ? dev->name : "<unknown>"); 1587 dump_stack(); 1588 } 1589 } 1590 EXPORT_SYMBOL(netdev_rx_csum_fault); 1591 #endif 1592 1593 /* Actually, we should eliminate this check as soon as we know, that: 1594 * 1. IOMMU is present and allows to map all the memory. 1595 * 2. No high memory really exists on this machine. 1596 */ 1597 1598 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1599 { 1600 #ifdef CONFIG_HIGHMEM 1601 int i; 1602 1603 if (dev->features & NETIF_F_HIGHDMA) 1604 return 0; 1605 1606 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1607 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1608 return 1; 1609 1610 #endif 1611 return 0; 1612 } 1613 1614 struct dev_gso_cb { 1615 void (*destructor)(struct sk_buff *skb); 1616 }; 1617 1618 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1619 1620 static void dev_gso_skb_destructor(struct sk_buff *skb) 1621 { 1622 struct dev_gso_cb *cb; 1623 1624 do { 1625 struct sk_buff *nskb = skb->next; 1626 1627 skb->next = nskb->next; 1628 nskb->next = NULL; 1629 kfree_skb(nskb); 1630 } while (skb->next); 1631 1632 cb = DEV_GSO_CB(skb); 1633 if (cb->destructor) 1634 cb->destructor(skb); 1635 } 1636 1637 /** 1638 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1639 * @skb: buffer to segment 1640 * 1641 * This function segments the given skb and stores the list of segments 1642 * in skb->next. 1643 */ 1644 static int dev_gso_segment(struct sk_buff *skb) 1645 { 1646 struct net_device *dev = skb->dev; 1647 struct sk_buff *segs; 1648 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1649 NETIF_F_SG : 0); 1650 1651 segs = skb_gso_segment(skb, features); 1652 1653 /* Verifying header integrity only. */ 1654 if (!segs) 1655 return 0; 1656 1657 if (IS_ERR(segs)) 1658 return PTR_ERR(segs); 1659 1660 skb->next = segs; 1661 DEV_GSO_CB(skb)->destructor = skb->destructor; 1662 skb->destructor = dev_gso_skb_destructor; 1663 1664 return 0; 1665 } 1666 1667 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1668 struct netdev_queue *txq) 1669 { 1670 const struct net_device_ops *ops = dev->netdev_ops; 1671 1672 prefetch(&dev->netdev_ops->ndo_start_xmit); 1673 if (likely(!skb->next)) { 1674 if (!list_empty(&ptype_all)) 1675 dev_queue_xmit_nit(skb, dev); 1676 1677 if (netif_needs_gso(dev, skb)) { 1678 if (unlikely(dev_gso_segment(skb))) 1679 goto out_kfree_skb; 1680 if (skb->next) 1681 goto gso; 1682 } 1683 1684 return ops->ndo_start_xmit(skb, dev); 1685 } 1686 1687 gso: 1688 do { 1689 struct sk_buff *nskb = skb->next; 1690 int rc; 1691 1692 skb->next = nskb->next; 1693 nskb->next = NULL; 1694 rc = ops->ndo_start_xmit(nskb, dev); 1695 if (unlikely(rc)) { 1696 nskb->next = skb->next; 1697 skb->next = nskb; 1698 return rc; 1699 } 1700 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1701 return NETDEV_TX_BUSY; 1702 } while (skb->next); 1703 1704 skb->destructor = DEV_GSO_CB(skb)->destructor; 1705 1706 out_kfree_skb: 1707 kfree_skb(skb); 1708 return 0; 1709 } 1710 1711 static u32 simple_tx_hashrnd; 1712 static int simple_tx_hashrnd_initialized = 0; 1713 1714 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1715 { 1716 u32 addr1, addr2, ports; 1717 u32 hash, ihl; 1718 u8 ip_proto = 0; 1719 1720 if (unlikely(!simple_tx_hashrnd_initialized)) { 1721 get_random_bytes(&simple_tx_hashrnd, 4); 1722 simple_tx_hashrnd_initialized = 1; 1723 } 1724 1725 switch (skb->protocol) { 1726 case htons(ETH_P_IP): 1727 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET))) 1728 ip_proto = ip_hdr(skb)->protocol; 1729 addr1 = ip_hdr(skb)->saddr; 1730 addr2 = ip_hdr(skb)->daddr; 1731 ihl = ip_hdr(skb)->ihl; 1732 break; 1733 case htons(ETH_P_IPV6): 1734 ip_proto = ipv6_hdr(skb)->nexthdr; 1735 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1736 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1737 ihl = (40 >> 2); 1738 break; 1739 default: 1740 return 0; 1741 } 1742 1743 1744 switch (ip_proto) { 1745 case IPPROTO_TCP: 1746 case IPPROTO_UDP: 1747 case IPPROTO_DCCP: 1748 case IPPROTO_ESP: 1749 case IPPROTO_AH: 1750 case IPPROTO_SCTP: 1751 case IPPROTO_UDPLITE: 1752 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1753 break; 1754 1755 default: 1756 ports = 0; 1757 break; 1758 } 1759 1760 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1761 1762 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1763 } 1764 1765 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1766 struct sk_buff *skb) 1767 { 1768 const struct net_device_ops *ops = dev->netdev_ops; 1769 u16 queue_index = 0; 1770 1771 if (ops->ndo_select_queue) 1772 queue_index = ops->ndo_select_queue(dev, skb); 1773 else if (dev->real_num_tx_queues > 1) 1774 queue_index = simple_tx_hash(dev, skb); 1775 1776 skb_set_queue_mapping(skb, queue_index); 1777 return netdev_get_tx_queue(dev, queue_index); 1778 } 1779 1780 /** 1781 * dev_queue_xmit - transmit a buffer 1782 * @skb: buffer to transmit 1783 * 1784 * Queue a buffer for transmission to a network device. The caller must 1785 * have set the device and priority and built the buffer before calling 1786 * this function. The function can be called from an interrupt. 1787 * 1788 * A negative errno code is returned on a failure. A success does not 1789 * guarantee the frame will be transmitted as it may be dropped due 1790 * to congestion or traffic shaping. 1791 * 1792 * ----------------------------------------------------------------------------------- 1793 * I notice this method can also return errors from the queue disciplines, 1794 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1795 * be positive. 1796 * 1797 * Regardless of the return value, the skb is consumed, so it is currently 1798 * difficult to retry a send to this method. (You can bump the ref count 1799 * before sending to hold a reference for retry if you are careful.) 1800 * 1801 * When calling this method, interrupts MUST be enabled. This is because 1802 * the BH enable code must have IRQs enabled so that it will not deadlock. 1803 * --BLG 1804 */ 1805 int dev_queue_xmit(struct sk_buff *skb) 1806 { 1807 struct net_device *dev = skb->dev; 1808 struct netdev_queue *txq; 1809 struct Qdisc *q; 1810 int rc = -ENOMEM; 1811 1812 /* GSO will handle the following emulations directly. */ 1813 if (netif_needs_gso(dev, skb)) 1814 goto gso; 1815 1816 if (skb_shinfo(skb)->frag_list && 1817 !(dev->features & NETIF_F_FRAGLIST) && 1818 __skb_linearize(skb)) 1819 goto out_kfree_skb; 1820 1821 /* Fragmented skb is linearized if device does not support SG, 1822 * or if at least one of fragments is in highmem and device 1823 * does not support DMA from it. 1824 */ 1825 if (skb_shinfo(skb)->nr_frags && 1826 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1827 __skb_linearize(skb)) 1828 goto out_kfree_skb; 1829 1830 /* If packet is not checksummed and device does not support 1831 * checksumming for this protocol, complete checksumming here. 1832 */ 1833 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1834 skb_set_transport_header(skb, skb->csum_start - 1835 skb_headroom(skb)); 1836 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1837 goto out_kfree_skb; 1838 } 1839 1840 gso: 1841 /* Disable soft irqs for various locks below. Also 1842 * stops preemption for RCU. 1843 */ 1844 rcu_read_lock_bh(); 1845 1846 txq = dev_pick_tx(dev, skb); 1847 q = rcu_dereference(txq->qdisc); 1848 1849 #ifdef CONFIG_NET_CLS_ACT 1850 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1851 #endif 1852 if (q->enqueue) { 1853 spinlock_t *root_lock = qdisc_lock(q); 1854 1855 spin_lock(root_lock); 1856 1857 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1858 kfree_skb(skb); 1859 rc = NET_XMIT_DROP; 1860 } else { 1861 rc = qdisc_enqueue_root(skb, q); 1862 qdisc_run(q); 1863 } 1864 spin_unlock(root_lock); 1865 1866 goto out; 1867 } 1868 1869 /* The device has no queue. Common case for software devices: 1870 loopback, all the sorts of tunnels... 1871 1872 Really, it is unlikely that netif_tx_lock protection is necessary 1873 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1874 counters.) 1875 However, it is possible, that they rely on protection 1876 made by us here. 1877 1878 Check this and shot the lock. It is not prone from deadlocks. 1879 Either shot noqueue qdisc, it is even simpler 8) 1880 */ 1881 if (dev->flags & IFF_UP) { 1882 int cpu = smp_processor_id(); /* ok because BHs are off */ 1883 1884 if (txq->xmit_lock_owner != cpu) { 1885 1886 HARD_TX_LOCK(dev, txq, cpu); 1887 1888 if (!netif_tx_queue_stopped(txq)) { 1889 rc = 0; 1890 if (!dev_hard_start_xmit(skb, dev, txq)) { 1891 HARD_TX_UNLOCK(dev, txq); 1892 goto out; 1893 } 1894 } 1895 HARD_TX_UNLOCK(dev, txq); 1896 if (net_ratelimit()) 1897 printk(KERN_CRIT "Virtual device %s asks to " 1898 "queue packet!\n", dev->name); 1899 } else { 1900 /* Recursion is detected! It is possible, 1901 * unfortunately */ 1902 if (net_ratelimit()) 1903 printk(KERN_CRIT "Dead loop on virtual device " 1904 "%s, fix it urgently!\n", dev->name); 1905 } 1906 } 1907 1908 rc = -ENETDOWN; 1909 rcu_read_unlock_bh(); 1910 1911 out_kfree_skb: 1912 kfree_skb(skb); 1913 return rc; 1914 out: 1915 rcu_read_unlock_bh(); 1916 return rc; 1917 } 1918 1919 1920 /*======================================================================= 1921 Receiver routines 1922 =======================================================================*/ 1923 1924 int netdev_max_backlog __read_mostly = 1000; 1925 int netdev_budget __read_mostly = 300; 1926 int weight_p __read_mostly = 64; /* old backlog weight */ 1927 1928 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1929 1930 1931 /** 1932 * netif_rx - post buffer to the network code 1933 * @skb: buffer to post 1934 * 1935 * This function receives a packet from a device driver and queues it for 1936 * the upper (protocol) levels to process. It always succeeds. The buffer 1937 * may be dropped during processing for congestion control or by the 1938 * protocol layers. 1939 * 1940 * return values: 1941 * NET_RX_SUCCESS (no congestion) 1942 * NET_RX_DROP (packet was dropped) 1943 * 1944 */ 1945 1946 int netif_rx(struct sk_buff *skb) 1947 { 1948 struct softnet_data *queue; 1949 unsigned long flags; 1950 1951 /* if netpoll wants it, pretend we never saw it */ 1952 if (netpoll_rx(skb)) 1953 return NET_RX_DROP; 1954 1955 if (!skb->tstamp.tv64) 1956 net_timestamp(skb); 1957 1958 /* 1959 * The code is rearranged so that the path is the most 1960 * short when CPU is congested, but is still operating. 1961 */ 1962 local_irq_save(flags); 1963 queue = &__get_cpu_var(softnet_data); 1964 1965 __get_cpu_var(netdev_rx_stat).total++; 1966 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1967 if (queue->input_pkt_queue.qlen) { 1968 enqueue: 1969 __skb_queue_tail(&queue->input_pkt_queue, skb); 1970 local_irq_restore(flags); 1971 return NET_RX_SUCCESS; 1972 } 1973 1974 napi_schedule(&queue->backlog); 1975 goto enqueue; 1976 } 1977 1978 __get_cpu_var(netdev_rx_stat).dropped++; 1979 local_irq_restore(flags); 1980 1981 kfree_skb(skb); 1982 return NET_RX_DROP; 1983 } 1984 1985 int netif_rx_ni(struct sk_buff *skb) 1986 { 1987 int err; 1988 1989 preempt_disable(); 1990 err = netif_rx(skb); 1991 if (local_softirq_pending()) 1992 do_softirq(); 1993 preempt_enable(); 1994 1995 return err; 1996 } 1997 1998 EXPORT_SYMBOL(netif_rx_ni); 1999 2000 static void net_tx_action(struct softirq_action *h) 2001 { 2002 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2003 2004 if (sd->completion_queue) { 2005 struct sk_buff *clist; 2006 2007 local_irq_disable(); 2008 clist = sd->completion_queue; 2009 sd->completion_queue = NULL; 2010 local_irq_enable(); 2011 2012 while (clist) { 2013 struct sk_buff *skb = clist; 2014 clist = clist->next; 2015 2016 WARN_ON(atomic_read(&skb->users)); 2017 __kfree_skb(skb); 2018 } 2019 } 2020 2021 if (sd->output_queue) { 2022 struct Qdisc *head; 2023 2024 local_irq_disable(); 2025 head = sd->output_queue; 2026 sd->output_queue = NULL; 2027 local_irq_enable(); 2028 2029 while (head) { 2030 struct Qdisc *q = head; 2031 spinlock_t *root_lock; 2032 2033 head = head->next_sched; 2034 2035 root_lock = qdisc_lock(q); 2036 if (spin_trylock(root_lock)) { 2037 smp_mb__before_clear_bit(); 2038 clear_bit(__QDISC_STATE_SCHED, 2039 &q->state); 2040 qdisc_run(q); 2041 spin_unlock(root_lock); 2042 } else { 2043 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2044 &q->state)) { 2045 __netif_reschedule(q); 2046 } else { 2047 smp_mb__before_clear_bit(); 2048 clear_bit(__QDISC_STATE_SCHED, 2049 &q->state); 2050 } 2051 } 2052 } 2053 } 2054 } 2055 2056 static inline int deliver_skb(struct sk_buff *skb, 2057 struct packet_type *pt_prev, 2058 struct net_device *orig_dev) 2059 { 2060 atomic_inc(&skb->users); 2061 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2062 } 2063 2064 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2065 /* These hooks defined here for ATM */ 2066 struct net_bridge; 2067 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2068 unsigned char *addr); 2069 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2070 2071 /* 2072 * If bridge module is loaded call bridging hook. 2073 * returns NULL if packet was consumed. 2074 */ 2075 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2076 struct sk_buff *skb) __read_mostly; 2077 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2078 struct packet_type **pt_prev, int *ret, 2079 struct net_device *orig_dev) 2080 { 2081 struct net_bridge_port *port; 2082 2083 if (skb->pkt_type == PACKET_LOOPBACK || 2084 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2085 return skb; 2086 2087 if (*pt_prev) { 2088 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2089 *pt_prev = NULL; 2090 } 2091 2092 return br_handle_frame_hook(port, skb); 2093 } 2094 #else 2095 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2096 #endif 2097 2098 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2099 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2100 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2101 2102 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2103 struct packet_type **pt_prev, 2104 int *ret, 2105 struct net_device *orig_dev) 2106 { 2107 if (skb->dev->macvlan_port == NULL) 2108 return skb; 2109 2110 if (*pt_prev) { 2111 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2112 *pt_prev = NULL; 2113 } 2114 return macvlan_handle_frame_hook(skb); 2115 } 2116 #else 2117 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2118 #endif 2119 2120 #ifdef CONFIG_NET_CLS_ACT 2121 /* TODO: Maybe we should just force sch_ingress to be compiled in 2122 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2123 * a compare and 2 stores extra right now if we dont have it on 2124 * but have CONFIG_NET_CLS_ACT 2125 * NOTE: This doesnt stop any functionality; if you dont have 2126 * the ingress scheduler, you just cant add policies on ingress. 2127 * 2128 */ 2129 static int ing_filter(struct sk_buff *skb) 2130 { 2131 struct net_device *dev = skb->dev; 2132 u32 ttl = G_TC_RTTL(skb->tc_verd); 2133 struct netdev_queue *rxq; 2134 int result = TC_ACT_OK; 2135 struct Qdisc *q; 2136 2137 if (MAX_RED_LOOP < ttl++) { 2138 printk(KERN_WARNING 2139 "Redir loop detected Dropping packet (%d->%d)\n", 2140 skb->iif, dev->ifindex); 2141 return TC_ACT_SHOT; 2142 } 2143 2144 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2145 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2146 2147 rxq = &dev->rx_queue; 2148 2149 q = rxq->qdisc; 2150 if (q != &noop_qdisc) { 2151 spin_lock(qdisc_lock(q)); 2152 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2153 result = qdisc_enqueue_root(skb, q); 2154 spin_unlock(qdisc_lock(q)); 2155 } 2156 2157 return result; 2158 } 2159 2160 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2161 struct packet_type **pt_prev, 2162 int *ret, struct net_device *orig_dev) 2163 { 2164 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2165 goto out; 2166 2167 if (*pt_prev) { 2168 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2169 *pt_prev = NULL; 2170 } else { 2171 /* Huh? Why does turning on AF_PACKET affect this? */ 2172 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2173 } 2174 2175 switch (ing_filter(skb)) { 2176 case TC_ACT_SHOT: 2177 case TC_ACT_STOLEN: 2178 kfree_skb(skb); 2179 return NULL; 2180 } 2181 2182 out: 2183 skb->tc_verd = 0; 2184 return skb; 2185 } 2186 #endif 2187 2188 /* 2189 * netif_nit_deliver - deliver received packets to network taps 2190 * @skb: buffer 2191 * 2192 * This function is used to deliver incoming packets to network 2193 * taps. It should be used when the normal netif_receive_skb path 2194 * is bypassed, for example because of VLAN acceleration. 2195 */ 2196 void netif_nit_deliver(struct sk_buff *skb) 2197 { 2198 struct packet_type *ptype; 2199 2200 if (list_empty(&ptype_all)) 2201 return; 2202 2203 skb_reset_network_header(skb); 2204 skb_reset_transport_header(skb); 2205 skb->mac_len = skb->network_header - skb->mac_header; 2206 2207 rcu_read_lock(); 2208 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2209 if (!ptype->dev || ptype->dev == skb->dev) 2210 deliver_skb(skb, ptype, skb->dev); 2211 } 2212 rcu_read_unlock(); 2213 } 2214 2215 /** 2216 * netif_receive_skb - process receive buffer from network 2217 * @skb: buffer to process 2218 * 2219 * netif_receive_skb() is the main receive data processing function. 2220 * It always succeeds. The buffer may be dropped during processing 2221 * for congestion control or by the protocol layers. 2222 * 2223 * This function may only be called from softirq context and interrupts 2224 * should be enabled. 2225 * 2226 * Return values (usually ignored): 2227 * NET_RX_SUCCESS: no congestion 2228 * NET_RX_DROP: packet was dropped 2229 */ 2230 int netif_receive_skb(struct sk_buff *skb) 2231 { 2232 struct packet_type *ptype, *pt_prev; 2233 struct net_device *orig_dev; 2234 struct net_device *null_or_orig; 2235 int ret = NET_RX_DROP; 2236 __be16 type; 2237 2238 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2239 return NET_RX_SUCCESS; 2240 2241 /* if we've gotten here through NAPI, check netpoll */ 2242 if (netpoll_receive_skb(skb)) 2243 return NET_RX_DROP; 2244 2245 if (!skb->tstamp.tv64) 2246 net_timestamp(skb); 2247 2248 if (!skb->iif) 2249 skb->iif = skb->dev->ifindex; 2250 2251 null_or_orig = NULL; 2252 orig_dev = skb->dev; 2253 if (orig_dev->master) { 2254 if (skb_bond_should_drop(skb)) 2255 null_or_orig = orig_dev; /* deliver only exact match */ 2256 else 2257 skb->dev = orig_dev->master; 2258 } 2259 2260 __get_cpu_var(netdev_rx_stat).total++; 2261 2262 skb_reset_network_header(skb); 2263 skb_reset_transport_header(skb); 2264 skb->mac_len = skb->network_header - skb->mac_header; 2265 2266 pt_prev = NULL; 2267 2268 rcu_read_lock(); 2269 2270 #ifdef CONFIG_NET_CLS_ACT 2271 if (skb->tc_verd & TC_NCLS) { 2272 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2273 goto ncls; 2274 } 2275 #endif 2276 2277 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2278 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2279 ptype->dev == orig_dev) { 2280 if (pt_prev) 2281 ret = deliver_skb(skb, pt_prev, orig_dev); 2282 pt_prev = ptype; 2283 } 2284 } 2285 2286 #ifdef CONFIG_NET_CLS_ACT 2287 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2288 if (!skb) 2289 goto out; 2290 ncls: 2291 #endif 2292 2293 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2294 if (!skb) 2295 goto out; 2296 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2297 if (!skb) 2298 goto out; 2299 2300 type = skb->protocol; 2301 list_for_each_entry_rcu(ptype, 2302 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2303 if (ptype->type == type && 2304 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2305 ptype->dev == orig_dev)) { 2306 if (pt_prev) 2307 ret = deliver_skb(skb, pt_prev, orig_dev); 2308 pt_prev = ptype; 2309 } 2310 } 2311 2312 if (pt_prev) { 2313 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2314 } else { 2315 kfree_skb(skb); 2316 /* Jamal, now you will not able to escape explaining 2317 * me how you were going to use this. :-) 2318 */ 2319 ret = NET_RX_DROP; 2320 } 2321 2322 out: 2323 rcu_read_unlock(); 2324 return ret; 2325 } 2326 2327 /* Network device is going away, flush any packets still pending */ 2328 static void flush_backlog(void *arg) 2329 { 2330 struct net_device *dev = arg; 2331 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2332 struct sk_buff *skb, *tmp; 2333 2334 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2335 if (skb->dev == dev) { 2336 __skb_unlink(skb, &queue->input_pkt_queue); 2337 kfree_skb(skb); 2338 } 2339 } 2340 2341 static int napi_gro_complete(struct sk_buff *skb) 2342 { 2343 struct packet_type *ptype; 2344 __be16 type = skb->protocol; 2345 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2346 int err = -ENOENT; 2347 2348 if (NAPI_GRO_CB(skb)->count == 1) 2349 goto out; 2350 2351 rcu_read_lock(); 2352 list_for_each_entry_rcu(ptype, head, list) { 2353 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2354 continue; 2355 2356 err = ptype->gro_complete(skb); 2357 break; 2358 } 2359 rcu_read_unlock(); 2360 2361 if (err) { 2362 WARN_ON(&ptype->list == head); 2363 kfree_skb(skb); 2364 return NET_RX_SUCCESS; 2365 } 2366 2367 out: 2368 skb_shinfo(skb)->gso_size = 0; 2369 __skb_push(skb, -skb_network_offset(skb)); 2370 return netif_receive_skb(skb); 2371 } 2372 2373 void napi_gro_flush(struct napi_struct *napi) 2374 { 2375 struct sk_buff *skb, *next; 2376 2377 for (skb = napi->gro_list; skb; skb = next) { 2378 next = skb->next; 2379 skb->next = NULL; 2380 napi_gro_complete(skb); 2381 } 2382 2383 napi->gro_list = NULL; 2384 } 2385 EXPORT_SYMBOL(napi_gro_flush); 2386 2387 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2388 { 2389 struct sk_buff **pp = NULL; 2390 struct packet_type *ptype; 2391 __be16 type = skb->protocol; 2392 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2393 int count = 0; 2394 int same_flow; 2395 int mac_len; 2396 int free; 2397 2398 if (!(skb->dev->features & NETIF_F_GRO)) 2399 goto normal; 2400 2401 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list) 2402 goto normal; 2403 2404 rcu_read_lock(); 2405 list_for_each_entry_rcu(ptype, head, list) { 2406 struct sk_buff *p; 2407 2408 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2409 continue; 2410 2411 skb_reset_network_header(skb); 2412 mac_len = skb->network_header - skb->mac_header; 2413 skb->mac_len = mac_len; 2414 NAPI_GRO_CB(skb)->same_flow = 0; 2415 NAPI_GRO_CB(skb)->flush = 0; 2416 NAPI_GRO_CB(skb)->free = 0; 2417 2418 for (p = napi->gro_list; p; p = p->next) { 2419 count++; 2420 2421 if (!NAPI_GRO_CB(p)->same_flow) 2422 continue; 2423 2424 if (p->mac_len != mac_len || 2425 memcmp(skb_mac_header(p), skb_mac_header(skb), 2426 mac_len)) 2427 NAPI_GRO_CB(p)->same_flow = 0; 2428 } 2429 2430 pp = ptype->gro_receive(&napi->gro_list, skb); 2431 break; 2432 } 2433 rcu_read_unlock(); 2434 2435 if (&ptype->list == head) 2436 goto normal; 2437 2438 same_flow = NAPI_GRO_CB(skb)->same_flow; 2439 free = NAPI_GRO_CB(skb)->free; 2440 2441 if (pp) { 2442 struct sk_buff *nskb = *pp; 2443 2444 *pp = nskb->next; 2445 nskb->next = NULL; 2446 napi_gro_complete(nskb); 2447 count--; 2448 } 2449 2450 if (same_flow) 2451 goto ok; 2452 2453 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) { 2454 __skb_push(skb, -skb_network_offset(skb)); 2455 goto normal; 2456 } 2457 2458 NAPI_GRO_CB(skb)->count = 1; 2459 skb_shinfo(skb)->gso_size = skb->len; 2460 skb->next = napi->gro_list; 2461 napi->gro_list = skb; 2462 2463 ok: 2464 return free; 2465 2466 normal: 2467 return -1; 2468 } 2469 EXPORT_SYMBOL(dev_gro_receive); 2470 2471 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2472 { 2473 struct sk_buff *p; 2474 2475 for (p = napi->gro_list; p; p = p->next) { 2476 NAPI_GRO_CB(p)->same_flow = 1; 2477 NAPI_GRO_CB(p)->flush = 0; 2478 } 2479 2480 return dev_gro_receive(napi, skb); 2481 } 2482 2483 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2484 { 2485 if (netpoll_receive_skb(skb)) 2486 return NET_RX_DROP; 2487 2488 switch (__napi_gro_receive(napi, skb)) { 2489 case -1: 2490 return netif_receive_skb(skb); 2491 2492 case 1: 2493 kfree_skb(skb); 2494 break; 2495 } 2496 2497 return NET_RX_SUCCESS; 2498 } 2499 EXPORT_SYMBOL(napi_gro_receive); 2500 2501 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2502 { 2503 __skb_pull(skb, skb_headlen(skb)); 2504 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2505 2506 napi->skb = skb; 2507 } 2508 EXPORT_SYMBOL(napi_reuse_skb); 2509 2510 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi, 2511 struct napi_gro_fraginfo *info) 2512 { 2513 struct net_device *dev = napi->dev; 2514 struct sk_buff *skb = napi->skb; 2515 2516 napi->skb = NULL; 2517 2518 if (!skb) { 2519 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2520 if (!skb) 2521 goto out; 2522 2523 skb_reserve(skb, NET_IP_ALIGN); 2524 } 2525 2526 BUG_ON(info->nr_frags > MAX_SKB_FRAGS); 2527 skb_shinfo(skb)->nr_frags = info->nr_frags; 2528 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags)); 2529 2530 skb->data_len = info->len; 2531 skb->len += info->len; 2532 skb->truesize += info->len; 2533 2534 if (!pskb_may_pull(skb, ETH_HLEN)) { 2535 napi_reuse_skb(napi, skb); 2536 skb = NULL; 2537 goto out; 2538 } 2539 2540 skb->protocol = eth_type_trans(skb, dev); 2541 2542 skb->ip_summed = info->ip_summed; 2543 skb->csum = info->csum; 2544 2545 out: 2546 return skb; 2547 } 2548 EXPORT_SYMBOL(napi_fraginfo_skb); 2549 2550 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info) 2551 { 2552 struct sk_buff *skb = napi_fraginfo_skb(napi, info); 2553 int err = NET_RX_DROP; 2554 2555 if (!skb) 2556 goto out; 2557 2558 if (netpoll_receive_skb(skb)) 2559 goto out; 2560 2561 err = NET_RX_SUCCESS; 2562 2563 switch (__napi_gro_receive(napi, skb)) { 2564 case -1: 2565 return netif_receive_skb(skb); 2566 2567 case 0: 2568 goto out; 2569 } 2570 2571 napi_reuse_skb(napi, skb); 2572 2573 out: 2574 return err; 2575 } 2576 EXPORT_SYMBOL(napi_gro_frags); 2577 2578 static int process_backlog(struct napi_struct *napi, int quota) 2579 { 2580 int work = 0; 2581 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2582 unsigned long start_time = jiffies; 2583 2584 napi->weight = weight_p; 2585 do { 2586 struct sk_buff *skb; 2587 2588 local_irq_disable(); 2589 skb = __skb_dequeue(&queue->input_pkt_queue); 2590 if (!skb) { 2591 local_irq_enable(); 2592 napi_complete(napi); 2593 goto out; 2594 } 2595 local_irq_enable(); 2596 2597 napi_gro_receive(napi, skb); 2598 } while (++work < quota && jiffies == start_time); 2599 2600 napi_gro_flush(napi); 2601 2602 out: 2603 return work; 2604 } 2605 2606 /** 2607 * __napi_schedule - schedule for receive 2608 * @n: entry to schedule 2609 * 2610 * The entry's receive function will be scheduled to run 2611 */ 2612 void __napi_schedule(struct napi_struct *n) 2613 { 2614 unsigned long flags; 2615 2616 local_irq_save(flags); 2617 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2618 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2619 local_irq_restore(flags); 2620 } 2621 EXPORT_SYMBOL(__napi_schedule); 2622 2623 void __napi_complete(struct napi_struct *n) 2624 { 2625 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2626 BUG_ON(n->gro_list); 2627 2628 list_del(&n->poll_list); 2629 smp_mb__before_clear_bit(); 2630 clear_bit(NAPI_STATE_SCHED, &n->state); 2631 } 2632 EXPORT_SYMBOL(__napi_complete); 2633 2634 void napi_complete(struct napi_struct *n) 2635 { 2636 unsigned long flags; 2637 2638 /* 2639 * don't let napi dequeue from the cpu poll list 2640 * just in case its running on a different cpu 2641 */ 2642 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2643 return; 2644 2645 napi_gro_flush(n); 2646 local_irq_save(flags); 2647 __napi_complete(n); 2648 local_irq_restore(flags); 2649 } 2650 EXPORT_SYMBOL(napi_complete); 2651 2652 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2653 int (*poll)(struct napi_struct *, int), int weight) 2654 { 2655 INIT_LIST_HEAD(&napi->poll_list); 2656 napi->gro_list = NULL; 2657 napi->skb = NULL; 2658 napi->poll = poll; 2659 napi->weight = weight; 2660 list_add(&napi->dev_list, &dev->napi_list); 2661 napi->dev = dev; 2662 #ifdef CONFIG_NETPOLL 2663 spin_lock_init(&napi->poll_lock); 2664 napi->poll_owner = -1; 2665 #endif 2666 set_bit(NAPI_STATE_SCHED, &napi->state); 2667 } 2668 EXPORT_SYMBOL(netif_napi_add); 2669 2670 void netif_napi_del(struct napi_struct *napi) 2671 { 2672 struct sk_buff *skb, *next; 2673 2674 list_del_init(&napi->dev_list); 2675 kfree_skb(napi->skb); 2676 2677 for (skb = napi->gro_list; skb; skb = next) { 2678 next = skb->next; 2679 skb->next = NULL; 2680 kfree_skb(skb); 2681 } 2682 2683 napi->gro_list = NULL; 2684 } 2685 EXPORT_SYMBOL(netif_napi_del); 2686 2687 2688 static void net_rx_action(struct softirq_action *h) 2689 { 2690 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2691 unsigned long time_limit = jiffies + 2; 2692 int budget = netdev_budget; 2693 void *have; 2694 2695 local_irq_disable(); 2696 2697 while (!list_empty(list)) { 2698 struct napi_struct *n; 2699 int work, weight; 2700 2701 /* If softirq window is exhuasted then punt. 2702 * Allow this to run for 2 jiffies since which will allow 2703 * an average latency of 1.5/HZ. 2704 */ 2705 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2706 goto softnet_break; 2707 2708 local_irq_enable(); 2709 2710 /* Even though interrupts have been re-enabled, this 2711 * access is safe because interrupts can only add new 2712 * entries to the tail of this list, and only ->poll() 2713 * calls can remove this head entry from the list. 2714 */ 2715 n = list_entry(list->next, struct napi_struct, poll_list); 2716 2717 have = netpoll_poll_lock(n); 2718 2719 weight = n->weight; 2720 2721 /* This NAPI_STATE_SCHED test is for avoiding a race 2722 * with netpoll's poll_napi(). Only the entity which 2723 * obtains the lock and sees NAPI_STATE_SCHED set will 2724 * actually make the ->poll() call. Therefore we avoid 2725 * accidently calling ->poll() when NAPI is not scheduled. 2726 */ 2727 work = 0; 2728 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2729 work = n->poll(n, weight); 2730 2731 WARN_ON_ONCE(work > weight); 2732 2733 budget -= work; 2734 2735 local_irq_disable(); 2736 2737 /* Drivers must not modify the NAPI state if they 2738 * consume the entire weight. In such cases this code 2739 * still "owns" the NAPI instance and therefore can 2740 * move the instance around on the list at-will. 2741 */ 2742 if (unlikely(work == weight)) { 2743 if (unlikely(napi_disable_pending(n))) 2744 __napi_complete(n); 2745 else 2746 list_move_tail(&n->poll_list, list); 2747 } 2748 2749 netpoll_poll_unlock(have); 2750 } 2751 out: 2752 local_irq_enable(); 2753 2754 #ifdef CONFIG_NET_DMA 2755 /* 2756 * There may not be any more sk_buffs coming right now, so push 2757 * any pending DMA copies to hardware 2758 */ 2759 dma_issue_pending_all(); 2760 #endif 2761 2762 return; 2763 2764 softnet_break: 2765 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2766 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2767 goto out; 2768 } 2769 2770 static gifconf_func_t * gifconf_list [NPROTO]; 2771 2772 /** 2773 * register_gifconf - register a SIOCGIF handler 2774 * @family: Address family 2775 * @gifconf: Function handler 2776 * 2777 * Register protocol dependent address dumping routines. The handler 2778 * that is passed must not be freed or reused until it has been replaced 2779 * by another handler. 2780 */ 2781 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2782 { 2783 if (family >= NPROTO) 2784 return -EINVAL; 2785 gifconf_list[family] = gifconf; 2786 return 0; 2787 } 2788 2789 2790 /* 2791 * Map an interface index to its name (SIOCGIFNAME) 2792 */ 2793 2794 /* 2795 * We need this ioctl for efficient implementation of the 2796 * if_indextoname() function required by the IPv6 API. Without 2797 * it, we would have to search all the interfaces to find a 2798 * match. --pb 2799 */ 2800 2801 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2802 { 2803 struct net_device *dev; 2804 struct ifreq ifr; 2805 2806 /* 2807 * Fetch the caller's info block. 2808 */ 2809 2810 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2811 return -EFAULT; 2812 2813 read_lock(&dev_base_lock); 2814 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2815 if (!dev) { 2816 read_unlock(&dev_base_lock); 2817 return -ENODEV; 2818 } 2819 2820 strcpy(ifr.ifr_name, dev->name); 2821 read_unlock(&dev_base_lock); 2822 2823 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2824 return -EFAULT; 2825 return 0; 2826 } 2827 2828 /* 2829 * Perform a SIOCGIFCONF call. This structure will change 2830 * size eventually, and there is nothing I can do about it. 2831 * Thus we will need a 'compatibility mode'. 2832 */ 2833 2834 static int dev_ifconf(struct net *net, char __user *arg) 2835 { 2836 struct ifconf ifc; 2837 struct net_device *dev; 2838 char __user *pos; 2839 int len; 2840 int total; 2841 int i; 2842 2843 /* 2844 * Fetch the caller's info block. 2845 */ 2846 2847 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2848 return -EFAULT; 2849 2850 pos = ifc.ifc_buf; 2851 len = ifc.ifc_len; 2852 2853 /* 2854 * Loop over the interfaces, and write an info block for each. 2855 */ 2856 2857 total = 0; 2858 for_each_netdev(net, dev) { 2859 for (i = 0; i < NPROTO; i++) { 2860 if (gifconf_list[i]) { 2861 int done; 2862 if (!pos) 2863 done = gifconf_list[i](dev, NULL, 0); 2864 else 2865 done = gifconf_list[i](dev, pos + total, 2866 len - total); 2867 if (done < 0) 2868 return -EFAULT; 2869 total += done; 2870 } 2871 } 2872 } 2873 2874 /* 2875 * All done. Write the updated control block back to the caller. 2876 */ 2877 ifc.ifc_len = total; 2878 2879 /* 2880 * Both BSD and Solaris return 0 here, so we do too. 2881 */ 2882 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2883 } 2884 2885 #ifdef CONFIG_PROC_FS 2886 /* 2887 * This is invoked by the /proc filesystem handler to display a device 2888 * in detail. 2889 */ 2890 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2891 __acquires(dev_base_lock) 2892 { 2893 struct net *net = seq_file_net(seq); 2894 loff_t off; 2895 struct net_device *dev; 2896 2897 read_lock(&dev_base_lock); 2898 if (!*pos) 2899 return SEQ_START_TOKEN; 2900 2901 off = 1; 2902 for_each_netdev(net, dev) 2903 if (off++ == *pos) 2904 return dev; 2905 2906 return NULL; 2907 } 2908 2909 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2910 { 2911 struct net *net = seq_file_net(seq); 2912 ++*pos; 2913 return v == SEQ_START_TOKEN ? 2914 first_net_device(net) : next_net_device((struct net_device *)v); 2915 } 2916 2917 void dev_seq_stop(struct seq_file *seq, void *v) 2918 __releases(dev_base_lock) 2919 { 2920 read_unlock(&dev_base_lock); 2921 } 2922 2923 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2924 { 2925 const struct net_device_stats *stats = dev_get_stats(dev); 2926 2927 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2928 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2929 dev->name, stats->rx_bytes, stats->rx_packets, 2930 stats->rx_errors, 2931 stats->rx_dropped + stats->rx_missed_errors, 2932 stats->rx_fifo_errors, 2933 stats->rx_length_errors + stats->rx_over_errors + 2934 stats->rx_crc_errors + stats->rx_frame_errors, 2935 stats->rx_compressed, stats->multicast, 2936 stats->tx_bytes, stats->tx_packets, 2937 stats->tx_errors, stats->tx_dropped, 2938 stats->tx_fifo_errors, stats->collisions, 2939 stats->tx_carrier_errors + 2940 stats->tx_aborted_errors + 2941 stats->tx_window_errors + 2942 stats->tx_heartbeat_errors, 2943 stats->tx_compressed); 2944 } 2945 2946 /* 2947 * Called from the PROCfs module. This now uses the new arbitrary sized 2948 * /proc/net interface to create /proc/net/dev 2949 */ 2950 static int dev_seq_show(struct seq_file *seq, void *v) 2951 { 2952 if (v == SEQ_START_TOKEN) 2953 seq_puts(seq, "Inter-| Receive " 2954 " | Transmit\n" 2955 " face |bytes packets errs drop fifo frame " 2956 "compressed multicast|bytes packets errs " 2957 "drop fifo colls carrier compressed\n"); 2958 else 2959 dev_seq_printf_stats(seq, v); 2960 return 0; 2961 } 2962 2963 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2964 { 2965 struct netif_rx_stats *rc = NULL; 2966 2967 while (*pos < nr_cpu_ids) 2968 if (cpu_online(*pos)) { 2969 rc = &per_cpu(netdev_rx_stat, *pos); 2970 break; 2971 } else 2972 ++*pos; 2973 return rc; 2974 } 2975 2976 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2977 { 2978 return softnet_get_online(pos); 2979 } 2980 2981 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2982 { 2983 ++*pos; 2984 return softnet_get_online(pos); 2985 } 2986 2987 static void softnet_seq_stop(struct seq_file *seq, void *v) 2988 { 2989 } 2990 2991 static int softnet_seq_show(struct seq_file *seq, void *v) 2992 { 2993 struct netif_rx_stats *s = v; 2994 2995 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2996 s->total, s->dropped, s->time_squeeze, 0, 2997 0, 0, 0, 0, /* was fastroute */ 2998 s->cpu_collision ); 2999 return 0; 3000 } 3001 3002 static const struct seq_operations dev_seq_ops = { 3003 .start = dev_seq_start, 3004 .next = dev_seq_next, 3005 .stop = dev_seq_stop, 3006 .show = dev_seq_show, 3007 }; 3008 3009 static int dev_seq_open(struct inode *inode, struct file *file) 3010 { 3011 return seq_open_net(inode, file, &dev_seq_ops, 3012 sizeof(struct seq_net_private)); 3013 } 3014 3015 static const struct file_operations dev_seq_fops = { 3016 .owner = THIS_MODULE, 3017 .open = dev_seq_open, 3018 .read = seq_read, 3019 .llseek = seq_lseek, 3020 .release = seq_release_net, 3021 }; 3022 3023 static const struct seq_operations softnet_seq_ops = { 3024 .start = softnet_seq_start, 3025 .next = softnet_seq_next, 3026 .stop = softnet_seq_stop, 3027 .show = softnet_seq_show, 3028 }; 3029 3030 static int softnet_seq_open(struct inode *inode, struct file *file) 3031 { 3032 return seq_open(file, &softnet_seq_ops); 3033 } 3034 3035 static const struct file_operations softnet_seq_fops = { 3036 .owner = THIS_MODULE, 3037 .open = softnet_seq_open, 3038 .read = seq_read, 3039 .llseek = seq_lseek, 3040 .release = seq_release, 3041 }; 3042 3043 static void *ptype_get_idx(loff_t pos) 3044 { 3045 struct packet_type *pt = NULL; 3046 loff_t i = 0; 3047 int t; 3048 3049 list_for_each_entry_rcu(pt, &ptype_all, list) { 3050 if (i == pos) 3051 return pt; 3052 ++i; 3053 } 3054 3055 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3056 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3057 if (i == pos) 3058 return pt; 3059 ++i; 3060 } 3061 } 3062 return NULL; 3063 } 3064 3065 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3066 __acquires(RCU) 3067 { 3068 rcu_read_lock(); 3069 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3070 } 3071 3072 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3073 { 3074 struct packet_type *pt; 3075 struct list_head *nxt; 3076 int hash; 3077 3078 ++*pos; 3079 if (v == SEQ_START_TOKEN) 3080 return ptype_get_idx(0); 3081 3082 pt = v; 3083 nxt = pt->list.next; 3084 if (pt->type == htons(ETH_P_ALL)) { 3085 if (nxt != &ptype_all) 3086 goto found; 3087 hash = 0; 3088 nxt = ptype_base[0].next; 3089 } else 3090 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3091 3092 while (nxt == &ptype_base[hash]) { 3093 if (++hash >= PTYPE_HASH_SIZE) 3094 return NULL; 3095 nxt = ptype_base[hash].next; 3096 } 3097 found: 3098 return list_entry(nxt, struct packet_type, list); 3099 } 3100 3101 static void ptype_seq_stop(struct seq_file *seq, void *v) 3102 __releases(RCU) 3103 { 3104 rcu_read_unlock(); 3105 } 3106 3107 static int ptype_seq_show(struct seq_file *seq, void *v) 3108 { 3109 struct packet_type *pt = v; 3110 3111 if (v == SEQ_START_TOKEN) 3112 seq_puts(seq, "Type Device Function\n"); 3113 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3114 if (pt->type == htons(ETH_P_ALL)) 3115 seq_puts(seq, "ALL "); 3116 else 3117 seq_printf(seq, "%04x", ntohs(pt->type)); 3118 3119 seq_printf(seq, " %-8s %pF\n", 3120 pt->dev ? pt->dev->name : "", pt->func); 3121 } 3122 3123 return 0; 3124 } 3125 3126 static const struct seq_operations ptype_seq_ops = { 3127 .start = ptype_seq_start, 3128 .next = ptype_seq_next, 3129 .stop = ptype_seq_stop, 3130 .show = ptype_seq_show, 3131 }; 3132 3133 static int ptype_seq_open(struct inode *inode, struct file *file) 3134 { 3135 return seq_open_net(inode, file, &ptype_seq_ops, 3136 sizeof(struct seq_net_private)); 3137 } 3138 3139 static const struct file_operations ptype_seq_fops = { 3140 .owner = THIS_MODULE, 3141 .open = ptype_seq_open, 3142 .read = seq_read, 3143 .llseek = seq_lseek, 3144 .release = seq_release_net, 3145 }; 3146 3147 3148 static int __net_init dev_proc_net_init(struct net *net) 3149 { 3150 int rc = -ENOMEM; 3151 3152 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3153 goto out; 3154 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3155 goto out_dev; 3156 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3157 goto out_softnet; 3158 3159 if (wext_proc_init(net)) 3160 goto out_ptype; 3161 rc = 0; 3162 out: 3163 return rc; 3164 out_ptype: 3165 proc_net_remove(net, "ptype"); 3166 out_softnet: 3167 proc_net_remove(net, "softnet_stat"); 3168 out_dev: 3169 proc_net_remove(net, "dev"); 3170 goto out; 3171 } 3172 3173 static void __net_exit dev_proc_net_exit(struct net *net) 3174 { 3175 wext_proc_exit(net); 3176 3177 proc_net_remove(net, "ptype"); 3178 proc_net_remove(net, "softnet_stat"); 3179 proc_net_remove(net, "dev"); 3180 } 3181 3182 static struct pernet_operations __net_initdata dev_proc_ops = { 3183 .init = dev_proc_net_init, 3184 .exit = dev_proc_net_exit, 3185 }; 3186 3187 static int __init dev_proc_init(void) 3188 { 3189 return register_pernet_subsys(&dev_proc_ops); 3190 } 3191 #else 3192 #define dev_proc_init() 0 3193 #endif /* CONFIG_PROC_FS */ 3194 3195 3196 /** 3197 * netdev_set_master - set up master/slave pair 3198 * @slave: slave device 3199 * @master: new master device 3200 * 3201 * Changes the master device of the slave. Pass %NULL to break the 3202 * bonding. The caller must hold the RTNL semaphore. On a failure 3203 * a negative errno code is returned. On success the reference counts 3204 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3205 * function returns zero. 3206 */ 3207 int netdev_set_master(struct net_device *slave, struct net_device *master) 3208 { 3209 struct net_device *old = slave->master; 3210 3211 ASSERT_RTNL(); 3212 3213 if (master) { 3214 if (old) 3215 return -EBUSY; 3216 dev_hold(master); 3217 } 3218 3219 slave->master = master; 3220 3221 synchronize_net(); 3222 3223 if (old) 3224 dev_put(old); 3225 3226 if (master) 3227 slave->flags |= IFF_SLAVE; 3228 else 3229 slave->flags &= ~IFF_SLAVE; 3230 3231 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3232 return 0; 3233 } 3234 3235 static void dev_change_rx_flags(struct net_device *dev, int flags) 3236 { 3237 const struct net_device_ops *ops = dev->netdev_ops; 3238 3239 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3240 ops->ndo_change_rx_flags(dev, flags); 3241 } 3242 3243 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3244 { 3245 unsigned short old_flags = dev->flags; 3246 uid_t uid; 3247 gid_t gid; 3248 3249 ASSERT_RTNL(); 3250 3251 dev->flags |= IFF_PROMISC; 3252 dev->promiscuity += inc; 3253 if (dev->promiscuity == 0) { 3254 /* 3255 * Avoid overflow. 3256 * If inc causes overflow, untouch promisc and return error. 3257 */ 3258 if (inc < 0) 3259 dev->flags &= ~IFF_PROMISC; 3260 else { 3261 dev->promiscuity -= inc; 3262 printk(KERN_WARNING "%s: promiscuity touches roof, " 3263 "set promiscuity failed, promiscuity feature " 3264 "of device might be broken.\n", dev->name); 3265 return -EOVERFLOW; 3266 } 3267 } 3268 if (dev->flags != old_flags) { 3269 printk(KERN_INFO "device %s %s promiscuous mode\n", 3270 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3271 "left"); 3272 if (audit_enabled) { 3273 current_uid_gid(&uid, &gid); 3274 audit_log(current->audit_context, GFP_ATOMIC, 3275 AUDIT_ANOM_PROMISCUOUS, 3276 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3277 dev->name, (dev->flags & IFF_PROMISC), 3278 (old_flags & IFF_PROMISC), 3279 audit_get_loginuid(current), 3280 uid, gid, 3281 audit_get_sessionid(current)); 3282 } 3283 3284 dev_change_rx_flags(dev, IFF_PROMISC); 3285 } 3286 return 0; 3287 } 3288 3289 /** 3290 * dev_set_promiscuity - update promiscuity count on a device 3291 * @dev: device 3292 * @inc: modifier 3293 * 3294 * Add or remove promiscuity from a device. While the count in the device 3295 * remains above zero the interface remains promiscuous. Once it hits zero 3296 * the device reverts back to normal filtering operation. A negative inc 3297 * value is used to drop promiscuity on the device. 3298 * Return 0 if successful or a negative errno code on error. 3299 */ 3300 int dev_set_promiscuity(struct net_device *dev, int inc) 3301 { 3302 unsigned short old_flags = dev->flags; 3303 int err; 3304 3305 err = __dev_set_promiscuity(dev, inc); 3306 if (err < 0) 3307 return err; 3308 if (dev->flags != old_flags) 3309 dev_set_rx_mode(dev); 3310 return err; 3311 } 3312 3313 /** 3314 * dev_set_allmulti - update allmulti count on a device 3315 * @dev: device 3316 * @inc: modifier 3317 * 3318 * Add or remove reception of all multicast frames to a device. While the 3319 * count in the device remains above zero the interface remains listening 3320 * to all interfaces. Once it hits zero the device reverts back to normal 3321 * filtering operation. A negative @inc value is used to drop the counter 3322 * when releasing a resource needing all multicasts. 3323 * Return 0 if successful or a negative errno code on error. 3324 */ 3325 3326 int dev_set_allmulti(struct net_device *dev, int inc) 3327 { 3328 unsigned short old_flags = dev->flags; 3329 3330 ASSERT_RTNL(); 3331 3332 dev->flags |= IFF_ALLMULTI; 3333 dev->allmulti += inc; 3334 if (dev->allmulti == 0) { 3335 /* 3336 * Avoid overflow. 3337 * If inc causes overflow, untouch allmulti and return error. 3338 */ 3339 if (inc < 0) 3340 dev->flags &= ~IFF_ALLMULTI; 3341 else { 3342 dev->allmulti -= inc; 3343 printk(KERN_WARNING "%s: allmulti touches roof, " 3344 "set allmulti failed, allmulti feature of " 3345 "device might be broken.\n", dev->name); 3346 return -EOVERFLOW; 3347 } 3348 } 3349 if (dev->flags ^ old_flags) { 3350 dev_change_rx_flags(dev, IFF_ALLMULTI); 3351 dev_set_rx_mode(dev); 3352 } 3353 return 0; 3354 } 3355 3356 /* 3357 * Upload unicast and multicast address lists to device and 3358 * configure RX filtering. When the device doesn't support unicast 3359 * filtering it is put in promiscuous mode while unicast addresses 3360 * are present. 3361 */ 3362 void __dev_set_rx_mode(struct net_device *dev) 3363 { 3364 const struct net_device_ops *ops = dev->netdev_ops; 3365 3366 /* dev_open will call this function so the list will stay sane. */ 3367 if (!(dev->flags&IFF_UP)) 3368 return; 3369 3370 if (!netif_device_present(dev)) 3371 return; 3372 3373 if (ops->ndo_set_rx_mode) 3374 ops->ndo_set_rx_mode(dev); 3375 else { 3376 /* Unicast addresses changes may only happen under the rtnl, 3377 * therefore calling __dev_set_promiscuity here is safe. 3378 */ 3379 if (dev->uc_count > 0 && !dev->uc_promisc) { 3380 __dev_set_promiscuity(dev, 1); 3381 dev->uc_promisc = 1; 3382 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3383 __dev_set_promiscuity(dev, -1); 3384 dev->uc_promisc = 0; 3385 } 3386 3387 if (ops->ndo_set_multicast_list) 3388 ops->ndo_set_multicast_list(dev); 3389 } 3390 } 3391 3392 void dev_set_rx_mode(struct net_device *dev) 3393 { 3394 netif_addr_lock_bh(dev); 3395 __dev_set_rx_mode(dev); 3396 netif_addr_unlock_bh(dev); 3397 } 3398 3399 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3400 void *addr, int alen, int glbl) 3401 { 3402 struct dev_addr_list *da; 3403 3404 for (; (da = *list) != NULL; list = &da->next) { 3405 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3406 alen == da->da_addrlen) { 3407 if (glbl) { 3408 int old_glbl = da->da_gusers; 3409 da->da_gusers = 0; 3410 if (old_glbl == 0) 3411 break; 3412 } 3413 if (--da->da_users) 3414 return 0; 3415 3416 *list = da->next; 3417 kfree(da); 3418 (*count)--; 3419 return 0; 3420 } 3421 } 3422 return -ENOENT; 3423 } 3424 3425 int __dev_addr_add(struct dev_addr_list **list, int *count, 3426 void *addr, int alen, int glbl) 3427 { 3428 struct dev_addr_list *da; 3429 3430 for (da = *list; da != NULL; da = da->next) { 3431 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3432 da->da_addrlen == alen) { 3433 if (glbl) { 3434 int old_glbl = da->da_gusers; 3435 da->da_gusers = 1; 3436 if (old_glbl) 3437 return 0; 3438 } 3439 da->da_users++; 3440 return 0; 3441 } 3442 } 3443 3444 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3445 if (da == NULL) 3446 return -ENOMEM; 3447 memcpy(da->da_addr, addr, alen); 3448 da->da_addrlen = alen; 3449 da->da_users = 1; 3450 da->da_gusers = glbl ? 1 : 0; 3451 da->next = *list; 3452 *list = da; 3453 (*count)++; 3454 return 0; 3455 } 3456 3457 /** 3458 * dev_unicast_delete - Release secondary unicast address. 3459 * @dev: device 3460 * @addr: address to delete 3461 * @alen: length of @addr 3462 * 3463 * Release reference to a secondary unicast address and remove it 3464 * from the device if the reference count drops to zero. 3465 * 3466 * The caller must hold the rtnl_mutex. 3467 */ 3468 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3469 { 3470 int err; 3471 3472 ASSERT_RTNL(); 3473 3474 netif_addr_lock_bh(dev); 3475 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3476 if (!err) 3477 __dev_set_rx_mode(dev); 3478 netif_addr_unlock_bh(dev); 3479 return err; 3480 } 3481 EXPORT_SYMBOL(dev_unicast_delete); 3482 3483 /** 3484 * dev_unicast_add - add a secondary unicast address 3485 * @dev: device 3486 * @addr: address to add 3487 * @alen: length of @addr 3488 * 3489 * Add a secondary unicast address to the device or increase 3490 * the reference count if it already exists. 3491 * 3492 * The caller must hold the rtnl_mutex. 3493 */ 3494 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3495 { 3496 int err; 3497 3498 ASSERT_RTNL(); 3499 3500 netif_addr_lock_bh(dev); 3501 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3502 if (!err) 3503 __dev_set_rx_mode(dev); 3504 netif_addr_unlock_bh(dev); 3505 return err; 3506 } 3507 EXPORT_SYMBOL(dev_unicast_add); 3508 3509 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3510 struct dev_addr_list **from, int *from_count) 3511 { 3512 struct dev_addr_list *da, *next; 3513 int err = 0; 3514 3515 da = *from; 3516 while (da != NULL) { 3517 next = da->next; 3518 if (!da->da_synced) { 3519 err = __dev_addr_add(to, to_count, 3520 da->da_addr, da->da_addrlen, 0); 3521 if (err < 0) 3522 break; 3523 da->da_synced = 1; 3524 da->da_users++; 3525 } else if (da->da_users == 1) { 3526 __dev_addr_delete(to, to_count, 3527 da->da_addr, da->da_addrlen, 0); 3528 __dev_addr_delete(from, from_count, 3529 da->da_addr, da->da_addrlen, 0); 3530 } 3531 da = next; 3532 } 3533 return err; 3534 } 3535 3536 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3537 struct dev_addr_list **from, int *from_count) 3538 { 3539 struct dev_addr_list *da, *next; 3540 3541 da = *from; 3542 while (da != NULL) { 3543 next = da->next; 3544 if (da->da_synced) { 3545 __dev_addr_delete(to, to_count, 3546 da->da_addr, da->da_addrlen, 0); 3547 da->da_synced = 0; 3548 __dev_addr_delete(from, from_count, 3549 da->da_addr, da->da_addrlen, 0); 3550 } 3551 da = next; 3552 } 3553 } 3554 3555 /** 3556 * dev_unicast_sync - Synchronize device's unicast list to another device 3557 * @to: destination device 3558 * @from: source device 3559 * 3560 * Add newly added addresses to the destination device and release 3561 * addresses that have no users left. The source device must be 3562 * locked by netif_tx_lock_bh. 3563 * 3564 * This function is intended to be called from the dev->set_rx_mode 3565 * function of layered software devices. 3566 */ 3567 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3568 { 3569 int err = 0; 3570 3571 netif_addr_lock_bh(to); 3572 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3573 &from->uc_list, &from->uc_count); 3574 if (!err) 3575 __dev_set_rx_mode(to); 3576 netif_addr_unlock_bh(to); 3577 return err; 3578 } 3579 EXPORT_SYMBOL(dev_unicast_sync); 3580 3581 /** 3582 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3583 * @to: destination device 3584 * @from: source device 3585 * 3586 * Remove all addresses that were added to the destination device by 3587 * dev_unicast_sync(). This function is intended to be called from the 3588 * dev->stop function of layered software devices. 3589 */ 3590 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3591 { 3592 netif_addr_lock_bh(from); 3593 netif_addr_lock(to); 3594 3595 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3596 &from->uc_list, &from->uc_count); 3597 __dev_set_rx_mode(to); 3598 3599 netif_addr_unlock(to); 3600 netif_addr_unlock_bh(from); 3601 } 3602 EXPORT_SYMBOL(dev_unicast_unsync); 3603 3604 static void __dev_addr_discard(struct dev_addr_list **list) 3605 { 3606 struct dev_addr_list *tmp; 3607 3608 while (*list != NULL) { 3609 tmp = *list; 3610 *list = tmp->next; 3611 if (tmp->da_users > tmp->da_gusers) 3612 printk("__dev_addr_discard: address leakage! " 3613 "da_users=%d\n", tmp->da_users); 3614 kfree(tmp); 3615 } 3616 } 3617 3618 static void dev_addr_discard(struct net_device *dev) 3619 { 3620 netif_addr_lock_bh(dev); 3621 3622 __dev_addr_discard(&dev->uc_list); 3623 dev->uc_count = 0; 3624 3625 __dev_addr_discard(&dev->mc_list); 3626 dev->mc_count = 0; 3627 3628 netif_addr_unlock_bh(dev); 3629 } 3630 3631 /** 3632 * dev_get_flags - get flags reported to userspace 3633 * @dev: device 3634 * 3635 * Get the combination of flag bits exported through APIs to userspace. 3636 */ 3637 unsigned dev_get_flags(const struct net_device *dev) 3638 { 3639 unsigned flags; 3640 3641 flags = (dev->flags & ~(IFF_PROMISC | 3642 IFF_ALLMULTI | 3643 IFF_RUNNING | 3644 IFF_LOWER_UP | 3645 IFF_DORMANT)) | 3646 (dev->gflags & (IFF_PROMISC | 3647 IFF_ALLMULTI)); 3648 3649 if (netif_running(dev)) { 3650 if (netif_oper_up(dev)) 3651 flags |= IFF_RUNNING; 3652 if (netif_carrier_ok(dev)) 3653 flags |= IFF_LOWER_UP; 3654 if (netif_dormant(dev)) 3655 flags |= IFF_DORMANT; 3656 } 3657 3658 return flags; 3659 } 3660 3661 /** 3662 * dev_change_flags - change device settings 3663 * @dev: device 3664 * @flags: device state flags 3665 * 3666 * Change settings on device based state flags. The flags are 3667 * in the userspace exported format. 3668 */ 3669 int dev_change_flags(struct net_device *dev, unsigned flags) 3670 { 3671 int ret, changes; 3672 int old_flags = dev->flags; 3673 3674 ASSERT_RTNL(); 3675 3676 /* 3677 * Set the flags on our device. 3678 */ 3679 3680 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3681 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3682 IFF_AUTOMEDIA)) | 3683 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3684 IFF_ALLMULTI)); 3685 3686 /* 3687 * Load in the correct multicast list now the flags have changed. 3688 */ 3689 3690 if ((old_flags ^ flags) & IFF_MULTICAST) 3691 dev_change_rx_flags(dev, IFF_MULTICAST); 3692 3693 dev_set_rx_mode(dev); 3694 3695 /* 3696 * Have we downed the interface. We handle IFF_UP ourselves 3697 * according to user attempts to set it, rather than blindly 3698 * setting it. 3699 */ 3700 3701 ret = 0; 3702 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3703 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3704 3705 if (!ret) 3706 dev_set_rx_mode(dev); 3707 } 3708 3709 if (dev->flags & IFF_UP && 3710 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3711 IFF_VOLATILE))) 3712 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3713 3714 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3715 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3716 dev->gflags ^= IFF_PROMISC; 3717 dev_set_promiscuity(dev, inc); 3718 } 3719 3720 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3721 is important. Some (broken) drivers set IFF_PROMISC, when 3722 IFF_ALLMULTI is requested not asking us and not reporting. 3723 */ 3724 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3725 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3726 dev->gflags ^= IFF_ALLMULTI; 3727 dev_set_allmulti(dev, inc); 3728 } 3729 3730 /* Exclude state transition flags, already notified */ 3731 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3732 if (changes) 3733 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3734 3735 return ret; 3736 } 3737 3738 /** 3739 * dev_set_mtu - Change maximum transfer unit 3740 * @dev: device 3741 * @new_mtu: new transfer unit 3742 * 3743 * Change the maximum transfer size of the network device. 3744 */ 3745 int dev_set_mtu(struct net_device *dev, int new_mtu) 3746 { 3747 const struct net_device_ops *ops = dev->netdev_ops; 3748 int err; 3749 3750 if (new_mtu == dev->mtu) 3751 return 0; 3752 3753 /* MTU must be positive. */ 3754 if (new_mtu < 0) 3755 return -EINVAL; 3756 3757 if (!netif_device_present(dev)) 3758 return -ENODEV; 3759 3760 err = 0; 3761 if (ops->ndo_change_mtu) 3762 err = ops->ndo_change_mtu(dev, new_mtu); 3763 else 3764 dev->mtu = new_mtu; 3765 3766 if (!err && dev->flags & IFF_UP) 3767 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3768 return err; 3769 } 3770 3771 /** 3772 * dev_set_mac_address - Change Media Access Control Address 3773 * @dev: device 3774 * @sa: new address 3775 * 3776 * Change the hardware (MAC) address of the device 3777 */ 3778 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3779 { 3780 const struct net_device_ops *ops = dev->netdev_ops; 3781 int err; 3782 3783 if (!ops->ndo_set_mac_address) 3784 return -EOPNOTSUPP; 3785 if (sa->sa_family != dev->type) 3786 return -EINVAL; 3787 if (!netif_device_present(dev)) 3788 return -ENODEV; 3789 err = ops->ndo_set_mac_address(dev, sa); 3790 if (!err) 3791 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3792 return err; 3793 } 3794 3795 /* 3796 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3797 */ 3798 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3799 { 3800 int err; 3801 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3802 3803 if (!dev) 3804 return -ENODEV; 3805 3806 switch (cmd) { 3807 case SIOCGIFFLAGS: /* Get interface flags */ 3808 ifr->ifr_flags = dev_get_flags(dev); 3809 return 0; 3810 3811 case SIOCGIFMETRIC: /* Get the metric on the interface 3812 (currently unused) */ 3813 ifr->ifr_metric = 0; 3814 return 0; 3815 3816 case SIOCGIFMTU: /* Get the MTU of a device */ 3817 ifr->ifr_mtu = dev->mtu; 3818 return 0; 3819 3820 case SIOCGIFHWADDR: 3821 if (!dev->addr_len) 3822 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3823 else 3824 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3825 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3826 ifr->ifr_hwaddr.sa_family = dev->type; 3827 return 0; 3828 3829 case SIOCGIFSLAVE: 3830 err = -EINVAL; 3831 break; 3832 3833 case SIOCGIFMAP: 3834 ifr->ifr_map.mem_start = dev->mem_start; 3835 ifr->ifr_map.mem_end = dev->mem_end; 3836 ifr->ifr_map.base_addr = dev->base_addr; 3837 ifr->ifr_map.irq = dev->irq; 3838 ifr->ifr_map.dma = dev->dma; 3839 ifr->ifr_map.port = dev->if_port; 3840 return 0; 3841 3842 case SIOCGIFINDEX: 3843 ifr->ifr_ifindex = dev->ifindex; 3844 return 0; 3845 3846 case SIOCGIFTXQLEN: 3847 ifr->ifr_qlen = dev->tx_queue_len; 3848 return 0; 3849 3850 default: 3851 /* dev_ioctl() should ensure this case 3852 * is never reached 3853 */ 3854 WARN_ON(1); 3855 err = -EINVAL; 3856 break; 3857 3858 } 3859 return err; 3860 } 3861 3862 /* 3863 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3864 */ 3865 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3866 { 3867 int err; 3868 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3869 const struct net_device_ops *ops; 3870 3871 if (!dev) 3872 return -ENODEV; 3873 3874 ops = dev->netdev_ops; 3875 3876 switch (cmd) { 3877 case SIOCSIFFLAGS: /* Set interface flags */ 3878 return dev_change_flags(dev, ifr->ifr_flags); 3879 3880 case SIOCSIFMETRIC: /* Set the metric on the interface 3881 (currently unused) */ 3882 return -EOPNOTSUPP; 3883 3884 case SIOCSIFMTU: /* Set the MTU of a device */ 3885 return dev_set_mtu(dev, ifr->ifr_mtu); 3886 3887 case SIOCSIFHWADDR: 3888 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3889 3890 case SIOCSIFHWBROADCAST: 3891 if (ifr->ifr_hwaddr.sa_family != dev->type) 3892 return -EINVAL; 3893 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3894 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3895 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3896 return 0; 3897 3898 case SIOCSIFMAP: 3899 if (ops->ndo_set_config) { 3900 if (!netif_device_present(dev)) 3901 return -ENODEV; 3902 return ops->ndo_set_config(dev, &ifr->ifr_map); 3903 } 3904 return -EOPNOTSUPP; 3905 3906 case SIOCADDMULTI: 3907 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3908 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3909 return -EINVAL; 3910 if (!netif_device_present(dev)) 3911 return -ENODEV; 3912 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3913 dev->addr_len, 1); 3914 3915 case SIOCDELMULTI: 3916 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3917 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3918 return -EINVAL; 3919 if (!netif_device_present(dev)) 3920 return -ENODEV; 3921 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3922 dev->addr_len, 1); 3923 3924 case SIOCSIFTXQLEN: 3925 if (ifr->ifr_qlen < 0) 3926 return -EINVAL; 3927 dev->tx_queue_len = ifr->ifr_qlen; 3928 return 0; 3929 3930 case SIOCSIFNAME: 3931 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3932 return dev_change_name(dev, ifr->ifr_newname); 3933 3934 /* 3935 * Unknown or private ioctl 3936 */ 3937 3938 default: 3939 if ((cmd >= SIOCDEVPRIVATE && 3940 cmd <= SIOCDEVPRIVATE + 15) || 3941 cmd == SIOCBONDENSLAVE || 3942 cmd == SIOCBONDRELEASE || 3943 cmd == SIOCBONDSETHWADDR || 3944 cmd == SIOCBONDSLAVEINFOQUERY || 3945 cmd == SIOCBONDINFOQUERY || 3946 cmd == SIOCBONDCHANGEACTIVE || 3947 cmd == SIOCGMIIPHY || 3948 cmd == SIOCGMIIREG || 3949 cmd == SIOCSMIIREG || 3950 cmd == SIOCBRADDIF || 3951 cmd == SIOCBRDELIF || 3952 cmd == SIOCWANDEV) { 3953 err = -EOPNOTSUPP; 3954 if (ops->ndo_do_ioctl) { 3955 if (netif_device_present(dev)) 3956 err = ops->ndo_do_ioctl(dev, ifr, cmd); 3957 else 3958 err = -ENODEV; 3959 } 3960 } else 3961 err = -EINVAL; 3962 3963 } 3964 return err; 3965 } 3966 3967 /* 3968 * This function handles all "interface"-type I/O control requests. The actual 3969 * 'doing' part of this is dev_ifsioc above. 3970 */ 3971 3972 /** 3973 * dev_ioctl - network device ioctl 3974 * @net: the applicable net namespace 3975 * @cmd: command to issue 3976 * @arg: pointer to a struct ifreq in user space 3977 * 3978 * Issue ioctl functions to devices. This is normally called by the 3979 * user space syscall interfaces but can sometimes be useful for 3980 * other purposes. The return value is the return from the syscall if 3981 * positive or a negative errno code on error. 3982 */ 3983 3984 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3985 { 3986 struct ifreq ifr; 3987 int ret; 3988 char *colon; 3989 3990 /* One special case: SIOCGIFCONF takes ifconf argument 3991 and requires shared lock, because it sleeps writing 3992 to user space. 3993 */ 3994 3995 if (cmd == SIOCGIFCONF) { 3996 rtnl_lock(); 3997 ret = dev_ifconf(net, (char __user *) arg); 3998 rtnl_unlock(); 3999 return ret; 4000 } 4001 if (cmd == SIOCGIFNAME) 4002 return dev_ifname(net, (struct ifreq __user *)arg); 4003 4004 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4005 return -EFAULT; 4006 4007 ifr.ifr_name[IFNAMSIZ-1] = 0; 4008 4009 colon = strchr(ifr.ifr_name, ':'); 4010 if (colon) 4011 *colon = 0; 4012 4013 /* 4014 * See which interface the caller is talking about. 4015 */ 4016 4017 switch (cmd) { 4018 /* 4019 * These ioctl calls: 4020 * - can be done by all. 4021 * - atomic and do not require locking. 4022 * - return a value 4023 */ 4024 case SIOCGIFFLAGS: 4025 case SIOCGIFMETRIC: 4026 case SIOCGIFMTU: 4027 case SIOCGIFHWADDR: 4028 case SIOCGIFSLAVE: 4029 case SIOCGIFMAP: 4030 case SIOCGIFINDEX: 4031 case SIOCGIFTXQLEN: 4032 dev_load(net, ifr.ifr_name); 4033 read_lock(&dev_base_lock); 4034 ret = dev_ifsioc_locked(net, &ifr, cmd); 4035 read_unlock(&dev_base_lock); 4036 if (!ret) { 4037 if (colon) 4038 *colon = ':'; 4039 if (copy_to_user(arg, &ifr, 4040 sizeof(struct ifreq))) 4041 ret = -EFAULT; 4042 } 4043 return ret; 4044 4045 case SIOCETHTOOL: 4046 dev_load(net, ifr.ifr_name); 4047 rtnl_lock(); 4048 ret = dev_ethtool(net, &ifr); 4049 rtnl_unlock(); 4050 if (!ret) { 4051 if (colon) 4052 *colon = ':'; 4053 if (copy_to_user(arg, &ifr, 4054 sizeof(struct ifreq))) 4055 ret = -EFAULT; 4056 } 4057 return ret; 4058 4059 /* 4060 * These ioctl calls: 4061 * - require superuser power. 4062 * - require strict serialization. 4063 * - return a value 4064 */ 4065 case SIOCGMIIPHY: 4066 case SIOCGMIIREG: 4067 case SIOCSIFNAME: 4068 if (!capable(CAP_NET_ADMIN)) 4069 return -EPERM; 4070 dev_load(net, ifr.ifr_name); 4071 rtnl_lock(); 4072 ret = dev_ifsioc(net, &ifr, cmd); 4073 rtnl_unlock(); 4074 if (!ret) { 4075 if (colon) 4076 *colon = ':'; 4077 if (copy_to_user(arg, &ifr, 4078 sizeof(struct ifreq))) 4079 ret = -EFAULT; 4080 } 4081 return ret; 4082 4083 /* 4084 * These ioctl calls: 4085 * - require superuser power. 4086 * - require strict serialization. 4087 * - do not return a value 4088 */ 4089 case SIOCSIFFLAGS: 4090 case SIOCSIFMETRIC: 4091 case SIOCSIFMTU: 4092 case SIOCSIFMAP: 4093 case SIOCSIFHWADDR: 4094 case SIOCSIFSLAVE: 4095 case SIOCADDMULTI: 4096 case SIOCDELMULTI: 4097 case SIOCSIFHWBROADCAST: 4098 case SIOCSIFTXQLEN: 4099 case SIOCSMIIREG: 4100 case SIOCBONDENSLAVE: 4101 case SIOCBONDRELEASE: 4102 case SIOCBONDSETHWADDR: 4103 case SIOCBONDCHANGEACTIVE: 4104 case SIOCBRADDIF: 4105 case SIOCBRDELIF: 4106 if (!capable(CAP_NET_ADMIN)) 4107 return -EPERM; 4108 /* fall through */ 4109 case SIOCBONDSLAVEINFOQUERY: 4110 case SIOCBONDINFOQUERY: 4111 dev_load(net, ifr.ifr_name); 4112 rtnl_lock(); 4113 ret = dev_ifsioc(net, &ifr, cmd); 4114 rtnl_unlock(); 4115 return ret; 4116 4117 case SIOCGIFMEM: 4118 /* Get the per device memory space. We can add this but 4119 * currently do not support it */ 4120 case SIOCSIFMEM: 4121 /* Set the per device memory buffer space. 4122 * Not applicable in our case */ 4123 case SIOCSIFLINK: 4124 return -EINVAL; 4125 4126 /* 4127 * Unknown or private ioctl. 4128 */ 4129 default: 4130 if (cmd == SIOCWANDEV || 4131 (cmd >= SIOCDEVPRIVATE && 4132 cmd <= SIOCDEVPRIVATE + 15)) { 4133 dev_load(net, ifr.ifr_name); 4134 rtnl_lock(); 4135 ret = dev_ifsioc(net, &ifr, cmd); 4136 rtnl_unlock(); 4137 if (!ret && copy_to_user(arg, &ifr, 4138 sizeof(struct ifreq))) 4139 ret = -EFAULT; 4140 return ret; 4141 } 4142 /* Take care of Wireless Extensions */ 4143 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4144 return wext_handle_ioctl(net, &ifr, cmd, arg); 4145 return -EINVAL; 4146 } 4147 } 4148 4149 4150 /** 4151 * dev_new_index - allocate an ifindex 4152 * @net: the applicable net namespace 4153 * 4154 * Returns a suitable unique value for a new device interface 4155 * number. The caller must hold the rtnl semaphore or the 4156 * dev_base_lock to be sure it remains unique. 4157 */ 4158 static int dev_new_index(struct net *net) 4159 { 4160 static int ifindex; 4161 for (;;) { 4162 if (++ifindex <= 0) 4163 ifindex = 1; 4164 if (!__dev_get_by_index(net, ifindex)) 4165 return ifindex; 4166 } 4167 } 4168 4169 /* Delayed registration/unregisteration */ 4170 static LIST_HEAD(net_todo_list); 4171 4172 static void net_set_todo(struct net_device *dev) 4173 { 4174 list_add_tail(&dev->todo_list, &net_todo_list); 4175 } 4176 4177 static void rollback_registered(struct net_device *dev) 4178 { 4179 BUG_ON(dev_boot_phase); 4180 ASSERT_RTNL(); 4181 4182 /* Some devices call without registering for initialization unwind. */ 4183 if (dev->reg_state == NETREG_UNINITIALIZED) { 4184 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4185 "was registered\n", dev->name, dev); 4186 4187 WARN_ON(1); 4188 return; 4189 } 4190 4191 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4192 4193 /* If device is running, close it first. */ 4194 dev_close(dev); 4195 4196 /* And unlink it from device chain. */ 4197 unlist_netdevice(dev); 4198 4199 dev->reg_state = NETREG_UNREGISTERING; 4200 4201 synchronize_net(); 4202 4203 /* Shutdown queueing discipline. */ 4204 dev_shutdown(dev); 4205 4206 4207 /* Notify protocols, that we are about to destroy 4208 this device. They should clean all the things. 4209 */ 4210 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4211 4212 /* 4213 * Flush the unicast and multicast chains 4214 */ 4215 dev_addr_discard(dev); 4216 4217 if (dev->netdev_ops->ndo_uninit) 4218 dev->netdev_ops->ndo_uninit(dev); 4219 4220 /* Notifier chain MUST detach us from master device. */ 4221 WARN_ON(dev->master); 4222 4223 /* Remove entries from kobject tree */ 4224 netdev_unregister_kobject(dev); 4225 4226 synchronize_net(); 4227 4228 dev_put(dev); 4229 } 4230 4231 static void __netdev_init_queue_locks_one(struct net_device *dev, 4232 struct netdev_queue *dev_queue, 4233 void *_unused) 4234 { 4235 spin_lock_init(&dev_queue->_xmit_lock); 4236 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4237 dev_queue->xmit_lock_owner = -1; 4238 } 4239 4240 static void netdev_init_queue_locks(struct net_device *dev) 4241 { 4242 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4243 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4244 } 4245 4246 unsigned long netdev_fix_features(unsigned long features, const char *name) 4247 { 4248 /* Fix illegal SG+CSUM combinations. */ 4249 if ((features & NETIF_F_SG) && 4250 !(features & NETIF_F_ALL_CSUM)) { 4251 if (name) 4252 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4253 "checksum feature.\n", name); 4254 features &= ~NETIF_F_SG; 4255 } 4256 4257 /* TSO requires that SG is present as well. */ 4258 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4259 if (name) 4260 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4261 "SG feature.\n", name); 4262 features &= ~NETIF_F_TSO; 4263 } 4264 4265 if (features & NETIF_F_UFO) { 4266 if (!(features & NETIF_F_GEN_CSUM)) { 4267 if (name) 4268 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4269 "since no NETIF_F_HW_CSUM feature.\n", 4270 name); 4271 features &= ~NETIF_F_UFO; 4272 } 4273 4274 if (!(features & NETIF_F_SG)) { 4275 if (name) 4276 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4277 "since no NETIF_F_SG feature.\n", name); 4278 features &= ~NETIF_F_UFO; 4279 } 4280 } 4281 4282 return features; 4283 } 4284 EXPORT_SYMBOL(netdev_fix_features); 4285 4286 /* Some devices need to (re-)set their netdev_ops inside 4287 * ->init() or similar. If that happens, we have to setup 4288 * the compat pointers again. 4289 */ 4290 void netdev_resync_ops(struct net_device *dev) 4291 { 4292 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4293 const struct net_device_ops *ops = dev->netdev_ops; 4294 4295 dev->init = ops->ndo_init; 4296 dev->uninit = ops->ndo_uninit; 4297 dev->open = ops->ndo_open; 4298 dev->change_rx_flags = ops->ndo_change_rx_flags; 4299 dev->set_rx_mode = ops->ndo_set_rx_mode; 4300 dev->set_multicast_list = ops->ndo_set_multicast_list; 4301 dev->set_mac_address = ops->ndo_set_mac_address; 4302 dev->validate_addr = ops->ndo_validate_addr; 4303 dev->do_ioctl = ops->ndo_do_ioctl; 4304 dev->set_config = ops->ndo_set_config; 4305 dev->change_mtu = ops->ndo_change_mtu; 4306 dev->neigh_setup = ops->ndo_neigh_setup; 4307 dev->tx_timeout = ops->ndo_tx_timeout; 4308 dev->get_stats = ops->ndo_get_stats; 4309 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4310 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4311 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4312 #ifdef CONFIG_NET_POLL_CONTROLLER 4313 dev->poll_controller = ops->ndo_poll_controller; 4314 #endif 4315 #endif 4316 } 4317 EXPORT_SYMBOL(netdev_resync_ops); 4318 4319 /** 4320 * register_netdevice - register a network device 4321 * @dev: device to register 4322 * 4323 * Take a completed network device structure and add it to the kernel 4324 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4325 * chain. 0 is returned on success. A negative errno code is returned 4326 * on a failure to set up the device, or if the name is a duplicate. 4327 * 4328 * Callers must hold the rtnl semaphore. You may want 4329 * register_netdev() instead of this. 4330 * 4331 * BUGS: 4332 * The locking appears insufficient to guarantee two parallel registers 4333 * will not get the same name. 4334 */ 4335 4336 int register_netdevice(struct net_device *dev) 4337 { 4338 struct hlist_head *head; 4339 struct hlist_node *p; 4340 int ret; 4341 struct net *net = dev_net(dev); 4342 4343 BUG_ON(dev_boot_phase); 4344 ASSERT_RTNL(); 4345 4346 might_sleep(); 4347 4348 /* When net_device's are persistent, this will be fatal. */ 4349 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4350 BUG_ON(!net); 4351 4352 spin_lock_init(&dev->addr_list_lock); 4353 netdev_set_addr_lockdep_class(dev); 4354 netdev_init_queue_locks(dev); 4355 4356 dev->iflink = -1; 4357 4358 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4359 /* Netdevice_ops API compatiability support. 4360 * This is temporary until all network devices are converted. 4361 */ 4362 if (dev->netdev_ops) { 4363 netdev_resync_ops(dev); 4364 } else { 4365 char drivername[64]; 4366 pr_info("%s (%s): not using net_device_ops yet\n", 4367 dev->name, netdev_drivername(dev, drivername, 64)); 4368 4369 /* This works only because net_device_ops and the 4370 compatiablity structure are the same. */ 4371 dev->netdev_ops = (void *) &(dev->init); 4372 } 4373 #endif 4374 4375 /* Init, if this function is available */ 4376 if (dev->netdev_ops->ndo_init) { 4377 ret = dev->netdev_ops->ndo_init(dev); 4378 if (ret) { 4379 if (ret > 0) 4380 ret = -EIO; 4381 goto out; 4382 } 4383 } 4384 4385 if (!dev_valid_name(dev->name)) { 4386 ret = -EINVAL; 4387 goto err_uninit; 4388 } 4389 4390 dev->ifindex = dev_new_index(net); 4391 if (dev->iflink == -1) 4392 dev->iflink = dev->ifindex; 4393 4394 /* Check for existence of name */ 4395 head = dev_name_hash(net, dev->name); 4396 hlist_for_each(p, head) { 4397 struct net_device *d 4398 = hlist_entry(p, struct net_device, name_hlist); 4399 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4400 ret = -EEXIST; 4401 goto err_uninit; 4402 } 4403 } 4404 4405 /* Fix illegal checksum combinations */ 4406 if ((dev->features & NETIF_F_HW_CSUM) && 4407 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4408 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4409 dev->name); 4410 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4411 } 4412 4413 if ((dev->features & NETIF_F_NO_CSUM) && 4414 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4415 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4416 dev->name); 4417 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4418 } 4419 4420 dev->features = netdev_fix_features(dev->features, dev->name); 4421 4422 /* Enable software GSO if SG is supported. */ 4423 if (dev->features & NETIF_F_SG) 4424 dev->features |= NETIF_F_GSO; 4425 4426 netdev_initialize_kobject(dev); 4427 ret = netdev_register_kobject(dev); 4428 if (ret) 4429 goto err_uninit; 4430 dev->reg_state = NETREG_REGISTERED; 4431 4432 /* 4433 * Default initial state at registry is that the 4434 * device is present. 4435 */ 4436 4437 set_bit(__LINK_STATE_PRESENT, &dev->state); 4438 4439 dev_init_scheduler(dev); 4440 dev_hold(dev); 4441 list_netdevice(dev); 4442 4443 /* Notify protocols, that a new device appeared. */ 4444 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4445 ret = notifier_to_errno(ret); 4446 if (ret) { 4447 rollback_registered(dev); 4448 dev->reg_state = NETREG_UNREGISTERED; 4449 } 4450 4451 out: 4452 return ret; 4453 4454 err_uninit: 4455 if (dev->netdev_ops->ndo_uninit) 4456 dev->netdev_ops->ndo_uninit(dev); 4457 goto out; 4458 } 4459 4460 /** 4461 * init_dummy_netdev - init a dummy network device for NAPI 4462 * @dev: device to init 4463 * 4464 * This takes a network device structure and initialize the minimum 4465 * amount of fields so it can be used to schedule NAPI polls without 4466 * registering a full blown interface. This is to be used by drivers 4467 * that need to tie several hardware interfaces to a single NAPI 4468 * poll scheduler due to HW limitations. 4469 */ 4470 int init_dummy_netdev(struct net_device *dev) 4471 { 4472 /* Clear everything. Note we don't initialize spinlocks 4473 * are they aren't supposed to be taken by any of the 4474 * NAPI code and this dummy netdev is supposed to be 4475 * only ever used for NAPI polls 4476 */ 4477 memset(dev, 0, sizeof(struct net_device)); 4478 4479 /* make sure we BUG if trying to hit standard 4480 * register/unregister code path 4481 */ 4482 dev->reg_state = NETREG_DUMMY; 4483 4484 /* initialize the ref count */ 4485 atomic_set(&dev->refcnt, 1); 4486 4487 /* NAPI wants this */ 4488 INIT_LIST_HEAD(&dev->napi_list); 4489 4490 /* a dummy interface is started by default */ 4491 set_bit(__LINK_STATE_PRESENT, &dev->state); 4492 set_bit(__LINK_STATE_START, &dev->state); 4493 4494 return 0; 4495 } 4496 EXPORT_SYMBOL_GPL(init_dummy_netdev); 4497 4498 4499 /** 4500 * register_netdev - register a network device 4501 * @dev: device to register 4502 * 4503 * Take a completed network device structure and add it to the kernel 4504 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4505 * chain. 0 is returned on success. A negative errno code is returned 4506 * on a failure to set up the device, or if the name is a duplicate. 4507 * 4508 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4509 * and expands the device name if you passed a format string to 4510 * alloc_netdev. 4511 */ 4512 int register_netdev(struct net_device *dev) 4513 { 4514 int err; 4515 4516 rtnl_lock(); 4517 4518 /* 4519 * If the name is a format string the caller wants us to do a 4520 * name allocation. 4521 */ 4522 if (strchr(dev->name, '%')) { 4523 err = dev_alloc_name(dev, dev->name); 4524 if (err < 0) 4525 goto out; 4526 } 4527 4528 err = register_netdevice(dev); 4529 out: 4530 rtnl_unlock(); 4531 return err; 4532 } 4533 EXPORT_SYMBOL(register_netdev); 4534 4535 /* 4536 * netdev_wait_allrefs - wait until all references are gone. 4537 * 4538 * This is called when unregistering network devices. 4539 * 4540 * Any protocol or device that holds a reference should register 4541 * for netdevice notification, and cleanup and put back the 4542 * reference if they receive an UNREGISTER event. 4543 * We can get stuck here if buggy protocols don't correctly 4544 * call dev_put. 4545 */ 4546 static void netdev_wait_allrefs(struct net_device *dev) 4547 { 4548 unsigned long rebroadcast_time, warning_time; 4549 4550 rebroadcast_time = warning_time = jiffies; 4551 while (atomic_read(&dev->refcnt) != 0) { 4552 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4553 rtnl_lock(); 4554 4555 /* Rebroadcast unregister notification */ 4556 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4557 4558 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4559 &dev->state)) { 4560 /* We must not have linkwatch events 4561 * pending on unregister. If this 4562 * happens, we simply run the queue 4563 * unscheduled, resulting in a noop 4564 * for this device. 4565 */ 4566 linkwatch_run_queue(); 4567 } 4568 4569 __rtnl_unlock(); 4570 4571 rebroadcast_time = jiffies; 4572 } 4573 4574 msleep(250); 4575 4576 if (time_after(jiffies, warning_time + 10 * HZ)) { 4577 printk(KERN_EMERG "unregister_netdevice: " 4578 "waiting for %s to become free. Usage " 4579 "count = %d\n", 4580 dev->name, atomic_read(&dev->refcnt)); 4581 warning_time = jiffies; 4582 } 4583 } 4584 } 4585 4586 /* The sequence is: 4587 * 4588 * rtnl_lock(); 4589 * ... 4590 * register_netdevice(x1); 4591 * register_netdevice(x2); 4592 * ... 4593 * unregister_netdevice(y1); 4594 * unregister_netdevice(y2); 4595 * ... 4596 * rtnl_unlock(); 4597 * free_netdev(y1); 4598 * free_netdev(y2); 4599 * 4600 * We are invoked by rtnl_unlock(). 4601 * This allows us to deal with problems: 4602 * 1) We can delete sysfs objects which invoke hotplug 4603 * without deadlocking with linkwatch via keventd. 4604 * 2) Since we run with the RTNL semaphore not held, we can sleep 4605 * safely in order to wait for the netdev refcnt to drop to zero. 4606 * 4607 * We must not return until all unregister events added during 4608 * the interval the lock was held have been completed. 4609 */ 4610 void netdev_run_todo(void) 4611 { 4612 struct list_head list; 4613 4614 /* Snapshot list, allow later requests */ 4615 list_replace_init(&net_todo_list, &list); 4616 4617 __rtnl_unlock(); 4618 4619 while (!list_empty(&list)) { 4620 struct net_device *dev 4621 = list_entry(list.next, struct net_device, todo_list); 4622 list_del(&dev->todo_list); 4623 4624 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4625 printk(KERN_ERR "network todo '%s' but state %d\n", 4626 dev->name, dev->reg_state); 4627 dump_stack(); 4628 continue; 4629 } 4630 4631 dev->reg_state = NETREG_UNREGISTERED; 4632 4633 on_each_cpu(flush_backlog, dev, 1); 4634 4635 netdev_wait_allrefs(dev); 4636 4637 /* paranoia */ 4638 BUG_ON(atomic_read(&dev->refcnt)); 4639 WARN_ON(dev->ip_ptr); 4640 WARN_ON(dev->ip6_ptr); 4641 WARN_ON(dev->dn_ptr); 4642 4643 if (dev->destructor) 4644 dev->destructor(dev); 4645 4646 /* Free network device */ 4647 kobject_put(&dev->dev.kobj); 4648 } 4649 } 4650 4651 /** 4652 * dev_get_stats - get network device statistics 4653 * @dev: device to get statistics from 4654 * 4655 * Get network statistics from device. The device driver may provide 4656 * its own method by setting dev->netdev_ops->get_stats; otherwise 4657 * the internal statistics structure is used. 4658 */ 4659 const struct net_device_stats *dev_get_stats(struct net_device *dev) 4660 { 4661 const struct net_device_ops *ops = dev->netdev_ops; 4662 4663 if (ops->ndo_get_stats) 4664 return ops->ndo_get_stats(dev); 4665 else 4666 return &dev->stats; 4667 } 4668 EXPORT_SYMBOL(dev_get_stats); 4669 4670 static void netdev_init_one_queue(struct net_device *dev, 4671 struct netdev_queue *queue, 4672 void *_unused) 4673 { 4674 queue->dev = dev; 4675 } 4676 4677 static void netdev_init_queues(struct net_device *dev) 4678 { 4679 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4680 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4681 spin_lock_init(&dev->tx_global_lock); 4682 } 4683 4684 /** 4685 * alloc_netdev_mq - allocate network device 4686 * @sizeof_priv: size of private data to allocate space for 4687 * @name: device name format string 4688 * @setup: callback to initialize device 4689 * @queue_count: the number of subqueues to allocate 4690 * 4691 * Allocates a struct net_device with private data area for driver use 4692 * and performs basic initialization. Also allocates subquue structs 4693 * for each queue on the device at the end of the netdevice. 4694 */ 4695 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4696 void (*setup)(struct net_device *), unsigned int queue_count) 4697 { 4698 struct netdev_queue *tx; 4699 struct net_device *dev; 4700 size_t alloc_size; 4701 void *p; 4702 4703 BUG_ON(strlen(name) >= sizeof(dev->name)); 4704 4705 alloc_size = sizeof(struct net_device); 4706 if (sizeof_priv) { 4707 /* ensure 32-byte alignment of private area */ 4708 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4709 alloc_size += sizeof_priv; 4710 } 4711 /* ensure 32-byte alignment of whole construct */ 4712 alloc_size += NETDEV_ALIGN_CONST; 4713 4714 p = kzalloc(alloc_size, GFP_KERNEL); 4715 if (!p) { 4716 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4717 return NULL; 4718 } 4719 4720 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4721 if (!tx) { 4722 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4723 "tx qdiscs.\n"); 4724 kfree(p); 4725 return NULL; 4726 } 4727 4728 dev = (struct net_device *) 4729 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4730 dev->padded = (char *)dev - (char *)p; 4731 dev_net_set(dev, &init_net); 4732 4733 dev->_tx = tx; 4734 dev->num_tx_queues = queue_count; 4735 dev->real_num_tx_queues = queue_count; 4736 4737 dev->gso_max_size = GSO_MAX_SIZE; 4738 4739 netdev_init_queues(dev); 4740 4741 INIT_LIST_HEAD(&dev->napi_list); 4742 setup(dev); 4743 strcpy(dev->name, name); 4744 return dev; 4745 } 4746 EXPORT_SYMBOL(alloc_netdev_mq); 4747 4748 /** 4749 * free_netdev - free network device 4750 * @dev: device 4751 * 4752 * This function does the last stage of destroying an allocated device 4753 * interface. The reference to the device object is released. 4754 * If this is the last reference then it will be freed. 4755 */ 4756 void free_netdev(struct net_device *dev) 4757 { 4758 struct napi_struct *p, *n; 4759 4760 release_net(dev_net(dev)); 4761 4762 kfree(dev->_tx); 4763 4764 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 4765 netif_napi_del(p); 4766 4767 /* Compatibility with error handling in drivers */ 4768 if (dev->reg_state == NETREG_UNINITIALIZED) { 4769 kfree((char *)dev - dev->padded); 4770 return; 4771 } 4772 4773 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4774 dev->reg_state = NETREG_RELEASED; 4775 4776 /* will free via device release */ 4777 put_device(&dev->dev); 4778 } 4779 4780 /** 4781 * synchronize_net - Synchronize with packet receive processing 4782 * 4783 * Wait for packets currently being received to be done. 4784 * Does not block later packets from starting. 4785 */ 4786 void synchronize_net(void) 4787 { 4788 might_sleep(); 4789 synchronize_rcu(); 4790 } 4791 4792 /** 4793 * unregister_netdevice - remove device from the kernel 4794 * @dev: device 4795 * 4796 * This function shuts down a device interface and removes it 4797 * from the kernel tables. 4798 * 4799 * Callers must hold the rtnl semaphore. You may want 4800 * unregister_netdev() instead of this. 4801 */ 4802 4803 void unregister_netdevice(struct net_device *dev) 4804 { 4805 ASSERT_RTNL(); 4806 4807 rollback_registered(dev); 4808 /* Finish processing unregister after unlock */ 4809 net_set_todo(dev); 4810 } 4811 4812 /** 4813 * unregister_netdev - remove device from the kernel 4814 * @dev: device 4815 * 4816 * This function shuts down a device interface and removes it 4817 * from the kernel tables. 4818 * 4819 * This is just a wrapper for unregister_netdevice that takes 4820 * the rtnl semaphore. In general you want to use this and not 4821 * unregister_netdevice. 4822 */ 4823 void unregister_netdev(struct net_device *dev) 4824 { 4825 rtnl_lock(); 4826 unregister_netdevice(dev); 4827 rtnl_unlock(); 4828 } 4829 4830 EXPORT_SYMBOL(unregister_netdev); 4831 4832 /** 4833 * dev_change_net_namespace - move device to different nethost namespace 4834 * @dev: device 4835 * @net: network namespace 4836 * @pat: If not NULL name pattern to try if the current device name 4837 * is already taken in the destination network namespace. 4838 * 4839 * This function shuts down a device interface and moves it 4840 * to a new network namespace. On success 0 is returned, on 4841 * a failure a netagive errno code is returned. 4842 * 4843 * Callers must hold the rtnl semaphore. 4844 */ 4845 4846 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4847 { 4848 char buf[IFNAMSIZ]; 4849 const char *destname; 4850 int err; 4851 4852 ASSERT_RTNL(); 4853 4854 /* Don't allow namespace local devices to be moved. */ 4855 err = -EINVAL; 4856 if (dev->features & NETIF_F_NETNS_LOCAL) 4857 goto out; 4858 4859 #ifdef CONFIG_SYSFS 4860 /* Don't allow real devices to be moved when sysfs 4861 * is enabled. 4862 */ 4863 err = -EINVAL; 4864 if (dev->dev.parent) 4865 goto out; 4866 #endif 4867 4868 /* Ensure the device has been registrered */ 4869 err = -EINVAL; 4870 if (dev->reg_state != NETREG_REGISTERED) 4871 goto out; 4872 4873 /* Get out if there is nothing todo */ 4874 err = 0; 4875 if (net_eq(dev_net(dev), net)) 4876 goto out; 4877 4878 /* Pick the destination device name, and ensure 4879 * we can use it in the destination network namespace. 4880 */ 4881 err = -EEXIST; 4882 destname = dev->name; 4883 if (__dev_get_by_name(net, destname)) { 4884 /* We get here if we can't use the current device name */ 4885 if (!pat) 4886 goto out; 4887 if (!dev_valid_name(pat)) 4888 goto out; 4889 if (strchr(pat, '%')) { 4890 if (__dev_alloc_name(net, pat, buf) < 0) 4891 goto out; 4892 destname = buf; 4893 } else 4894 destname = pat; 4895 if (__dev_get_by_name(net, destname)) 4896 goto out; 4897 } 4898 4899 /* 4900 * And now a mini version of register_netdevice unregister_netdevice. 4901 */ 4902 4903 /* If device is running close it first. */ 4904 dev_close(dev); 4905 4906 /* And unlink it from device chain */ 4907 err = -ENODEV; 4908 unlist_netdevice(dev); 4909 4910 synchronize_net(); 4911 4912 /* Shutdown queueing discipline. */ 4913 dev_shutdown(dev); 4914 4915 /* Notify protocols, that we are about to destroy 4916 this device. They should clean all the things. 4917 */ 4918 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4919 4920 /* 4921 * Flush the unicast and multicast chains 4922 */ 4923 dev_addr_discard(dev); 4924 4925 netdev_unregister_kobject(dev); 4926 4927 /* Actually switch the network namespace */ 4928 dev_net_set(dev, net); 4929 4930 /* Assign the new device name */ 4931 if (destname != dev->name) 4932 strcpy(dev->name, destname); 4933 4934 /* If there is an ifindex conflict assign a new one */ 4935 if (__dev_get_by_index(net, dev->ifindex)) { 4936 int iflink = (dev->iflink == dev->ifindex); 4937 dev->ifindex = dev_new_index(net); 4938 if (iflink) 4939 dev->iflink = dev->ifindex; 4940 } 4941 4942 /* Fixup kobjects */ 4943 err = netdev_register_kobject(dev); 4944 WARN_ON(err); 4945 4946 /* Add the device back in the hashes */ 4947 list_netdevice(dev); 4948 4949 /* Notify protocols, that a new device appeared. */ 4950 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4951 4952 synchronize_net(); 4953 err = 0; 4954 out: 4955 return err; 4956 } 4957 4958 static int dev_cpu_callback(struct notifier_block *nfb, 4959 unsigned long action, 4960 void *ocpu) 4961 { 4962 struct sk_buff **list_skb; 4963 struct Qdisc **list_net; 4964 struct sk_buff *skb; 4965 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4966 struct softnet_data *sd, *oldsd; 4967 4968 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4969 return NOTIFY_OK; 4970 4971 local_irq_disable(); 4972 cpu = smp_processor_id(); 4973 sd = &per_cpu(softnet_data, cpu); 4974 oldsd = &per_cpu(softnet_data, oldcpu); 4975 4976 /* Find end of our completion_queue. */ 4977 list_skb = &sd->completion_queue; 4978 while (*list_skb) 4979 list_skb = &(*list_skb)->next; 4980 /* Append completion queue from offline CPU. */ 4981 *list_skb = oldsd->completion_queue; 4982 oldsd->completion_queue = NULL; 4983 4984 /* Find end of our output_queue. */ 4985 list_net = &sd->output_queue; 4986 while (*list_net) 4987 list_net = &(*list_net)->next_sched; 4988 /* Append output queue from offline CPU. */ 4989 *list_net = oldsd->output_queue; 4990 oldsd->output_queue = NULL; 4991 4992 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4993 local_irq_enable(); 4994 4995 /* Process offline CPU's input_pkt_queue */ 4996 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4997 netif_rx(skb); 4998 4999 return NOTIFY_OK; 5000 } 5001 5002 5003 /** 5004 * netdev_increment_features - increment feature set by one 5005 * @all: current feature set 5006 * @one: new feature set 5007 * @mask: mask feature set 5008 * 5009 * Computes a new feature set after adding a device with feature set 5010 * @one to the master device with current feature set @all. Will not 5011 * enable anything that is off in @mask. Returns the new feature set. 5012 */ 5013 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5014 unsigned long mask) 5015 { 5016 /* If device needs checksumming, downgrade to it. */ 5017 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5018 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5019 else if (mask & NETIF_F_ALL_CSUM) { 5020 /* If one device supports v4/v6 checksumming, set for all. */ 5021 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5022 !(all & NETIF_F_GEN_CSUM)) { 5023 all &= ~NETIF_F_ALL_CSUM; 5024 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5025 } 5026 5027 /* If one device supports hw checksumming, set for all. */ 5028 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5029 all &= ~NETIF_F_ALL_CSUM; 5030 all |= NETIF_F_HW_CSUM; 5031 } 5032 } 5033 5034 one |= NETIF_F_ALL_CSUM; 5035 5036 one |= all & NETIF_F_ONE_FOR_ALL; 5037 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5038 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5039 5040 return all; 5041 } 5042 EXPORT_SYMBOL(netdev_increment_features); 5043 5044 static struct hlist_head *netdev_create_hash(void) 5045 { 5046 int i; 5047 struct hlist_head *hash; 5048 5049 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5050 if (hash != NULL) 5051 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5052 INIT_HLIST_HEAD(&hash[i]); 5053 5054 return hash; 5055 } 5056 5057 /* Initialize per network namespace state */ 5058 static int __net_init netdev_init(struct net *net) 5059 { 5060 INIT_LIST_HEAD(&net->dev_base_head); 5061 5062 net->dev_name_head = netdev_create_hash(); 5063 if (net->dev_name_head == NULL) 5064 goto err_name; 5065 5066 net->dev_index_head = netdev_create_hash(); 5067 if (net->dev_index_head == NULL) 5068 goto err_idx; 5069 5070 return 0; 5071 5072 err_idx: 5073 kfree(net->dev_name_head); 5074 err_name: 5075 return -ENOMEM; 5076 } 5077 5078 /** 5079 * netdev_drivername - network driver for the device 5080 * @dev: network device 5081 * @buffer: buffer for resulting name 5082 * @len: size of buffer 5083 * 5084 * Determine network driver for device. 5085 */ 5086 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5087 { 5088 const struct device_driver *driver; 5089 const struct device *parent; 5090 5091 if (len <= 0 || !buffer) 5092 return buffer; 5093 buffer[0] = 0; 5094 5095 parent = dev->dev.parent; 5096 5097 if (!parent) 5098 return buffer; 5099 5100 driver = parent->driver; 5101 if (driver && driver->name) 5102 strlcpy(buffer, driver->name, len); 5103 return buffer; 5104 } 5105 5106 static void __net_exit netdev_exit(struct net *net) 5107 { 5108 kfree(net->dev_name_head); 5109 kfree(net->dev_index_head); 5110 } 5111 5112 static struct pernet_operations __net_initdata netdev_net_ops = { 5113 .init = netdev_init, 5114 .exit = netdev_exit, 5115 }; 5116 5117 static void __net_exit default_device_exit(struct net *net) 5118 { 5119 struct net_device *dev; 5120 /* 5121 * Push all migratable of the network devices back to the 5122 * initial network namespace 5123 */ 5124 rtnl_lock(); 5125 restart: 5126 for_each_netdev(net, dev) { 5127 int err; 5128 char fb_name[IFNAMSIZ]; 5129 5130 /* Ignore unmoveable devices (i.e. loopback) */ 5131 if (dev->features & NETIF_F_NETNS_LOCAL) 5132 continue; 5133 5134 /* Delete virtual devices */ 5135 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5136 dev->rtnl_link_ops->dellink(dev); 5137 goto restart; 5138 } 5139 5140 /* Push remaing network devices to init_net */ 5141 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5142 err = dev_change_net_namespace(dev, &init_net, fb_name); 5143 if (err) { 5144 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5145 __func__, dev->name, err); 5146 BUG(); 5147 } 5148 goto restart; 5149 } 5150 rtnl_unlock(); 5151 } 5152 5153 static struct pernet_operations __net_initdata default_device_ops = { 5154 .exit = default_device_exit, 5155 }; 5156 5157 /* 5158 * Initialize the DEV module. At boot time this walks the device list and 5159 * unhooks any devices that fail to initialise (normally hardware not 5160 * present) and leaves us with a valid list of present and active devices. 5161 * 5162 */ 5163 5164 /* 5165 * This is called single threaded during boot, so no need 5166 * to take the rtnl semaphore. 5167 */ 5168 static int __init net_dev_init(void) 5169 { 5170 int i, rc = -ENOMEM; 5171 5172 BUG_ON(!dev_boot_phase); 5173 5174 if (dev_proc_init()) 5175 goto out; 5176 5177 if (netdev_kobject_init()) 5178 goto out; 5179 5180 INIT_LIST_HEAD(&ptype_all); 5181 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5182 INIT_LIST_HEAD(&ptype_base[i]); 5183 5184 if (register_pernet_subsys(&netdev_net_ops)) 5185 goto out; 5186 5187 /* 5188 * Initialise the packet receive queues. 5189 */ 5190 5191 for_each_possible_cpu(i) { 5192 struct softnet_data *queue; 5193 5194 queue = &per_cpu(softnet_data, i); 5195 skb_queue_head_init(&queue->input_pkt_queue); 5196 queue->completion_queue = NULL; 5197 INIT_LIST_HEAD(&queue->poll_list); 5198 5199 queue->backlog.poll = process_backlog; 5200 queue->backlog.weight = weight_p; 5201 queue->backlog.gro_list = NULL; 5202 } 5203 5204 dev_boot_phase = 0; 5205 5206 /* The loopback device is special if any other network devices 5207 * is present in a network namespace the loopback device must 5208 * be present. Since we now dynamically allocate and free the 5209 * loopback device ensure this invariant is maintained by 5210 * keeping the loopback device as the first device on the 5211 * list of network devices. Ensuring the loopback devices 5212 * is the first device that appears and the last network device 5213 * that disappears. 5214 */ 5215 if (register_pernet_device(&loopback_net_ops)) 5216 goto out; 5217 5218 if (register_pernet_device(&default_device_ops)) 5219 goto out; 5220 5221 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5222 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5223 5224 hotcpu_notifier(dev_cpu_callback, 0); 5225 dst_init(); 5226 dev_mcast_init(); 5227 rc = 0; 5228 out: 5229 return rc; 5230 } 5231 5232 subsys_initcall(net_dev_init); 5233 5234 EXPORT_SYMBOL(__dev_get_by_index); 5235 EXPORT_SYMBOL(__dev_get_by_name); 5236 EXPORT_SYMBOL(__dev_remove_pack); 5237 EXPORT_SYMBOL(dev_valid_name); 5238 EXPORT_SYMBOL(dev_add_pack); 5239 EXPORT_SYMBOL(dev_alloc_name); 5240 EXPORT_SYMBOL(dev_close); 5241 EXPORT_SYMBOL(dev_get_by_flags); 5242 EXPORT_SYMBOL(dev_get_by_index); 5243 EXPORT_SYMBOL(dev_get_by_name); 5244 EXPORT_SYMBOL(dev_open); 5245 EXPORT_SYMBOL(dev_queue_xmit); 5246 EXPORT_SYMBOL(dev_remove_pack); 5247 EXPORT_SYMBOL(dev_set_allmulti); 5248 EXPORT_SYMBOL(dev_set_promiscuity); 5249 EXPORT_SYMBOL(dev_change_flags); 5250 EXPORT_SYMBOL(dev_set_mtu); 5251 EXPORT_SYMBOL(dev_set_mac_address); 5252 EXPORT_SYMBOL(free_netdev); 5253 EXPORT_SYMBOL(netdev_boot_setup_check); 5254 EXPORT_SYMBOL(netdev_set_master); 5255 EXPORT_SYMBOL(netdev_state_change); 5256 EXPORT_SYMBOL(netif_receive_skb); 5257 EXPORT_SYMBOL(netif_rx); 5258 EXPORT_SYMBOL(register_gifconf); 5259 EXPORT_SYMBOL(register_netdevice); 5260 EXPORT_SYMBOL(register_netdevice_notifier); 5261 EXPORT_SYMBOL(skb_checksum_help); 5262 EXPORT_SYMBOL(synchronize_net); 5263 EXPORT_SYMBOL(unregister_netdevice); 5264 EXPORT_SYMBOL(unregister_netdevice_notifier); 5265 EXPORT_SYMBOL(net_enable_timestamp); 5266 EXPORT_SYMBOL(net_disable_timestamp); 5267 EXPORT_SYMBOL(dev_get_flags); 5268 5269 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5270 EXPORT_SYMBOL(br_handle_frame_hook); 5271 EXPORT_SYMBOL(br_fdb_get_hook); 5272 EXPORT_SYMBOL(br_fdb_put_hook); 5273 #endif 5274 5275 EXPORT_SYMBOL(dev_load); 5276 5277 EXPORT_PER_CPU_SYMBOL(softnet_data); 5278