xref: /linux/net/core/dev.c (revision 0a087bf232c35dbec3769c4402ca737995d7b734)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 						       const char *name)
233 {
234 	struct netdev_name_node *name_node;
235 
236 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 	if (!name_node)
238 		return NULL;
239 	INIT_HLIST_NODE(&name_node->hlist);
240 	name_node->dev = dev;
241 	name_node->name = name;
242 	return name_node;
243 }
244 
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248 	struct netdev_name_node *name_node;
249 
250 	name_node = netdev_name_node_alloc(dev, dev->name);
251 	if (!name_node)
252 		return NULL;
253 	INIT_LIST_HEAD(&name_node->list);
254 	return name_node;
255 }
256 
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259 	kfree(name_node);
260 }
261 
262 static void netdev_name_node_add(struct net *net,
263 				 struct netdev_name_node *name_node)
264 {
265 	hlist_add_head_rcu(&name_node->hlist,
266 			   dev_name_hash(net, name_node->name));
267 }
268 
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271 	hlist_del_rcu(&name_node->hlist);
272 }
273 
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 							const char *name)
276 {
277 	struct hlist_head *head = dev_name_hash(net, name);
278 	struct netdev_name_node *name_node;
279 
280 	hlist_for_each_entry(name_node, head, hlist)
281 		if (!strcmp(name_node->name, name))
282 			return name_node;
283 	return NULL;
284 }
285 
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 							    const char *name)
288 {
289 	struct hlist_head *head = dev_name_hash(net, name);
290 	struct netdev_name_node *name_node;
291 
292 	hlist_for_each_entry_rcu(name_node, head, hlist)
293 		if (!strcmp(name_node->name, name))
294 			return name_node;
295 	return NULL;
296 }
297 
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300 	struct netdev_name_node *name_node;
301 	struct net *net = dev_net(dev);
302 
303 	name_node = netdev_name_node_lookup(net, name);
304 	if (name_node)
305 		return -EEXIST;
306 	name_node = netdev_name_node_alloc(dev, name);
307 	if (!name_node)
308 		return -ENOMEM;
309 	netdev_name_node_add(net, name_node);
310 	/* The node that holds dev->name acts as a head of per-device list. */
311 	list_add_tail(&name_node->list, &dev->name_node->list);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316 
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319 	list_del(&name_node->list);
320 	netdev_name_node_del(name_node);
321 	kfree(name_node->name);
322 	netdev_name_node_free(name_node);
323 }
324 
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (!name_node)
332 		return -ENOENT;
333 	/* lookup might have found our primary name or a name belonging
334 	 * to another device.
335 	 */
336 	if (name_node == dev->name_node || name_node->dev != dev)
337 		return -EINVAL;
338 
339 	__netdev_name_node_alt_destroy(name_node);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344 
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347 	struct netdev_name_node *name_node, *tmp;
348 
349 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 		__netdev_name_node_alt_destroy(name_node);
351 }
352 
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	ASSERT_RTNL();
359 
360 	write_lock_bh(&dev_base_lock);
361 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 	netdev_name_node_add(net, dev->name_node);
363 	hlist_add_head_rcu(&dev->index_hlist,
364 			   dev_index_hash(net, dev->ifindex));
365 	write_unlock_bh(&dev_base_lock);
366 
367 	dev_base_seq_inc(net);
368 }
369 
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375 	ASSERT_RTNL();
376 
377 	/* Unlink dev from the device chain */
378 	write_lock_bh(&dev_base_lock);
379 	list_del_rcu(&dev->dev_list);
380 	netdev_name_node_del(dev->name_node);
381 	hlist_del_rcu(&dev->index_hlist);
382 	write_unlock_bh(&dev_base_lock);
383 
384 	dev_base_seq_inc(dev_net(dev));
385 }
386 
387 /*
388  *	Our notifier list
389  */
390 
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392 
393 /*
394  *	Device drivers call our routines to queue packets here. We empty the
395  *	queue in the local softnet handler.
396  */
397 
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400 
401 /*******************************************************************************
402  *
403  *		Protocol management and registration routines
404  *
405  *******************************************************************************/
406 
407 
408 /*
409  *	Add a protocol ID to the list. Now that the input handler is
410  *	smarter we can dispense with all the messy stuff that used to be
411  *	here.
412  *
413  *	BEWARE!!! Protocol handlers, mangling input packets,
414  *	MUST BE last in hash buckets and checking protocol handlers
415  *	MUST start from promiscuous ptype_all chain in net_bh.
416  *	It is true now, do not change it.
417  *	Explanation follows: if protocol handler, mangling packet, will
418  *	be the first on list, it is not able to sense, that packet
419  *	is cloned and should be copied-on-write, so that it will
420  *	change it and subsequent readers will get broken packet.
421  *							--ANK (980803)
422  */
423 
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426 	if (pt->type == htons(ETH_P_ALL))
427 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428 	else
429 		return pt->dev ? &pt->dev->ptype_specific :
430 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432 
433 /**
434  *	dev_add_pack - add packet handler
435  *	@pt: packet type declaration
436  *
437  *	Add a protocol handler to the networking stack. The passed &packet_type
438  *	is linked into kernel lists and may not be freed until it has been
439  *	removed from the kernel lists.
440  *
441  *	This call does not sleep therefore it can not
442  *	guarantee all CPU's that are in middle of receiving packets
443  *	will see the new packet type (until the next received packet).
444  */
445 
446 void dev_add_pack(struct packet_type *pt)
447 {
448 	struct list_head *head = ptype_head(pt);
449 
450 	spin_lock(&ptype_lock);
451 	list_add_rcu(&pt->list, head);
452 	spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455 
456 /**
457  *	__dev_remove_pack	 - remove packet handler
458  *	@pt: packet type declaration
459  *
460  *	Remove a protocol handler that was previously added to the kernel
461  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *	from the kernel lists and can be freed or reused once this function
463  *	returns.
464  *
465  *      The packet type might still be in use by receivers
466  *	and must not be freed until after all the CPU's have gone
467  *	through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471 	struct list_head *head = ptype_head(pt);
472 	struct packet_type *pt1;
473 
474 	spin_lock(&ptype_lock);
475 
476 	list_for_each_entry(pt1, head, list) {
477 		if (pt == pt1) {
478 			list_del_rcu(&pt->list);
479 			goto out;
480 		}
481 	}
482 
483 	pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485 	spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488 
489 /**
490  *	dev_remove_pack	 - remove packet handler
491  *	@pt: packet type declaration
492  *
493  *	Remove a protocol handler that was previously added to the kernel
494  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *	from the kernel lists and can be freed or reused once this function
496  *	returns.
497  *
498  *	This call sleeps to guarantee that no CPU is looking at the packet
499  *	type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503 	__dev_remove_pack(pt);
504 
505 	synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508 
509 
510 /**
511  *	dev_add_offload - register offload handlers
512  *	@po: protocol offload declaration
513  *
514  *	Add protocol offload handlers to the networking stack. The passed
515  *	&proto_offload is linked into kernel lists and may not be freed until
516  *	it has been removed from the kernel lists.
517  *
518  *	This call does not sleep therefore it can not
519  *	guarantee all CPU's that are in middle of receiving packets
520  *	will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524 	struct packet_offload *elem;
525 
526 	spin_lock(&offload_lock);
527 	list_for_each_entry(elem, &offload_base, list) {
528 		if (po->priority < elem->priority)
529 			break;
530 	}
531 	list_add_rcu(&po->list, elem->list.prev);
532 	spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535 
536 /**
537  *	__dev_remove_offload	 - remove offload handler
538  *	@po: packet offload declaration
539  *
540  *	Remove a protocol offload handler that was previously added to the
541  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *	is removed from the kernel lists and can be freed or reused once this
543  *	function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *	and must not be freed until after all the CPU's have gone
547  *	through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551 	struct list_head *head = &offload_base;
552 	struct packet_offload *po1;
553 
554 	spin_lock(&offload_lock);
555 
556 	list_for_each_entry(po1, head, list) {
557 		if (po == po1) {
558 			list_del_rcu(&po->list);
559 			goto out;
560 		}
561 	}
562 
563 	pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565 	spin_unlock(&offload_lock);
566 }
567 
568 /**
569  *	dev_remove_offload	 - remove packet offload handler
570  *	@po: packet offload declaration
571  *
572  *	Remove a packet offload handler that was previously added to the kernel
573  *	offload handlers by dev_add_offload(). The passed &offload_type is
574  *	removed from the kernel lists and can be freed or reused once this
575  *	function returns.
576  *
577  *	This call sleeps to guarantee that no CPU is looking at the packet
578  *	type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582 	__dev_remove_offload(po);
583 
584 	synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587 
588 /******************************************************************************
589  *
590  *		      Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593 
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596 
597 /**
598  *	netdev_boot_setup_add	- add new setup entry
599  *	@name: name of the device
600  *	@map: configured settings for the device
601  *
602  *	Adds new setup entry to the dev_boot_setup list.  The function
603  *	returns 0 on error and 1 on success.  This is a generic routine to
604  *	all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608 	struct netdev_boot_setup *s;
609 	int i;
610 
611 	s = dev_boot_setup;
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 			memset(s[i].name, 0, sizeof(s[i].name));
615 			strlcpy(s[i].name, name, IFNAMSIZ);
616 			memcpy(&s[i].map, map, sizeof(s[i].map));
617 			break;
618 		}
619 	}
620 
621 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623 
624 /**
625  * netdev_boot_setup_check	- check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635 	struct netdev_boot_setup *s = dev_boot_setup;
636 	int i;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640 		    !strcmp(dev->name, s[i].name)) {
641 			dev->irq = s[i].map.irq;
642 			dev->base_addr = s[i].map.base_addr;
643 			dev->mem_start = s[i].map.mem_start;
644 			dev->mem_end = s[i].map.mem_end;
645 			return 1;
646 		}
647 	}
648 	return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651 
652 
653 /**
654  * netdev_boot_base	- get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665 	const struct netdev_boot_setup *s = dev_boot_setup;
666 	char name[IFNAMSIZ];
667 	int i;
668 
669 	sprintf(name, "%s%d", prefix, unit);
670 
671 	/*
672 	 * If device already registered then return base of 1
673 	 * to indicate not to probe for this interface
674 	 */
675 	if (__dev_get_by_name(&init_net, name))
676 		return 1;
677 
678 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 		if (!strcmp(name, s[i].name))
680 			return s[i].map.base_addr;
681 	return 0;
682 }
683 
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689 	int ints[5];
690 	struct ifmap map;
691 
692 	str = get_options(str, ARRAY_SIZE(ints), ints);
693 	if (!str || !*str)
694 		return 0;
695 
696 	/* Save settings */
697 	memset(&map, 0, sizeof(map));
698 	if (ints[0] > 0)
699 		map.irq = ints[1];
700 	if (ints[0] > 1)
701 		map.base_addr = ints[2];
702 	if (ints[0] > 2)
703 		map.mem_start = ints[3];
704 	if (ints[0] > 3)
705 		map.mem_end = ints[4];
706 
707 	/* Add new entry to the list */
708 	return netdev_boot_setup_add(str, &map);
709 }
710 
711 __setup("netdev=", netdev_boot_setup);
712 
713 /*******************************************************************************
714  *
715  *			    Device Interface Subroutines
716  *
717  *******************************************************************************/
718 
719 /**
720  *	dev_get_iflink	- get 'iflink' value of a interface
721  *	@dev: targeted interface
722  *
723  *	Indicates the ifindex the interface is linked to.
724  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726 
727 int dev_get_iflink(const struct net_device *dev)
728 {
729 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 		return dev->netdev_ops->ndo_get_iflink(dev);
731 
732 	return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735 
736 /**
737  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *	@dev: targeted interface
739  *	@skb: The packet.
740  *
741  *	For better visibility of tunnel traffic OVS needs to retrieve
742  *	egress tunnel information for a packet. Following API allows
743  *	user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747 	struct ip_tunnel_info *info;
748 
749 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750 		return -EINVAL;
751 
752 	info = skb_tunnel_info_unclone(skb);
753 	if (!info)
754 		return -ENOMEM;
755 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 		return -EINVAL;
757 
758 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761 
762 /**
763  *	__dev_get_by_name	- find a device by its name
764  *	@net: the applicable net namespace
765  *	@name: name to find
766  *
767  *	Find an interface by name. Must be called under RTNL semaphore
768  *	or @dev_base_lock. If the name is found a pointer to the device
769  *	is returned. If the name is not found then %NULL is returned. The
770  *	reference counters are not incremented so the caller must be
771  *	careful with locks.
772  */
773 
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776 	struct netdev_name_node *node_name;
777 
778 	node_name = netdev_name_node_lookup(net, name);
779 	return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782 
783 /**
784  * dev_get_by_name_rcu	- find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797 	struct netdev_name_node *node_name;
798 
799 	node_name = netdev_name_node_lookup_rcu(net, name);
800 	return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803 
804 /**
805  *	dev_get_by_name		- find a device by its name
806  *	@net: the applicable net namespace
807  *	@name: name to find
808  *
809  *	Find an interface by name. This can be called from any
810  *	context and does its own locking. The returned handle has
811  *	the usage count incremented and the caller must use dev_put() to
812  *	release it when it is no longer needed. %NULL is returned if no
813  *	matching device is found.
814  */
815 
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	dev = dev_get_by_name_rcu(net, name);
822 	if (dev)
823 		dev_hold(dev);
824 	rcu_read_unlock();
825 	return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828 
829 /**
830  *	__dev_get_by_index - find a device by its ifindex
831  *	@net: the applicable net namespace
832  *	@ifindex: index of device
833  *
834  *	Search for an interface by index. Returns %NULL if the device
835  *	is not found or a pointer to the device. The device has not
836  *	had its reference counter increased so the caller must be careful
837  *	about locking. The caller must hold either the RTNL semaphore
838  *	or @dev_base_lock.
839  */
840 
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843 	struct net_device *dev;
844 	struct hlist_head *head = dev_index_hash(net, ifindex);
845 
846 	hlist_for_each_entry(dev, head, index_hlist)
847 		if (dev->ifindex == ifindex)
848 			return dev;
849 
850 	return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853 
854 /**
855  *	dev_get_by_index_rcu - find a device by its ifindex
856  *	@net: the applicable net namespace
857  *	@ifindex: index of device
858  *
859  *	Search for an interface by index. Returns %NULL if the device
860  *	is not found or a pointer to the device. The device has not
861  *	had its reference counter increased so the caller must be careful
862  *	about locking. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867 	struct net_device *dev;
868 	struct hlist_head *head = dev_index_hash(net, ifindex);
869 
870 	hlist_for_each_entry_rcu(dev, head, index_hlist)
871 		if (dev->ifindex == ifindex)
872 			return dev;
873 
874 	return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877 
878 
879 /**
880  *	dev_get_by_index - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *
884  *	Search for an interface by index. Returns NULL if the device
885  *	is not found or a pointer to the device. The device returned has
886  *	had a reference added and the pointer is safe until the user calls
887  *	dev_put to indicate they have finished with it.
888  */
889 
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892 	struct net_device *dev;
893 
894 	rcu_read_lock();
895 	dev = dev_get_by_index_rcu(net, ifindex);
896 	if (dev)
897 		dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  *
934  *	The use of raw_seqcount_begin() and cond_resched() before
935  *	retrying is required as we want to give the writers a chance
936  *	to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940 	struct net_device *dev;
941 	unsigned int seq;
942 
943 retry:
944 	seq = raw_seqcount_begin(&devnet_rename_seq);
945 	rcu_read_lock();
946 	dev = dev_get_by_index_rcu(net, ifindex);
947 	if (!dev) {
948 		rcu_read_unlock();
949 		return -ENODEV;
950 	}
951 
952 	strcpy(name, dev->name);
953 	rcu_read_unlock();
954 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 		cond_resched();
956 		goto retry;
957 	}
958 
959 	return 0;
960 }
961 
962 /**
963  *	dev_getbyhwaddr_rcu - find a device by its hardware address
964  *	@net: the applicable net namespace
965  *	@type: media type of device
966  *	@ha: hardware address
967  *
968  *	Search for an interface by MAC address. Returns NULL if the device
969  *	is not found or a pointer to the device.
970  *	The caller must hold RCU or RTNL.
971  *	The returned device has not had its ref count increased
972  *	and the caller must therefore be careful about locking
973  *
974  */
975 
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 				       const char *ha)
978 {
979 	struct net_device *dev;
980 
981 	for_each_netdev_rcu(net, dev)
982 		if (dev->type == type &&
983 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
984 			return dev;
985 
986 	return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989 
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992 	struct net_device *dev;
993 
994 	ASSERT_RTNL();
995 	for_each_netdev(net, dev)
996 		if (dev->type == type)
997 			return dev;
998 
999 	return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002 
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005 	struct net_device *dev, *ret = NULL;
1006 
1007 	rcu_read_lock();
1008 	for_each_netdev_rcu(net, dev)
1009 		if (dev->type == type) {
1010 			dev_hold(dev);
1011 			ret = dev;
1012 			break;
1013 		}
1014 	rcu_read_unlock();
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018 
1019 /**
1020  *	__dev_get_by_flags - find any device with given flags
1021  *	@net: the applicable net namespace
1022  *	@if_flags: IFF_* values
1023  *	@mask: bitmask of bits in if_flags to check
1024  *
1025  *	Search for any interface with the given flags. Returns NULL if a device
1026  *	is not found or a pointer to the device. Must be called inside
1027  *	rtnl_lock(), and result refcount is unchanged.
1028  */
1029 
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 				      unsigned short mask)
1032 {
1033 	struct net_device *dev, *ret;
1034 
1035 	ASSERT_RTNL();
1036 
1037 	ret = NULL;
1038 	for_each_netdev(net, dev) {
1039 		if (((dev->flags ^ if_flags) & mask) == 0) {
1040 			ret = dev;
1041 			break;
1042 		}
1043 	}
1044 	return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047 
1048 /**
1049  *	dev_valid_name - check if name is okay for network device
1050  *	@name: name string
1051  *
1052  *	Network device names need to be valid file names to
1053  *	to allow sysfs to work.  We also disallow any kind of
1054  *	whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058 	if (*name == '\0')
1059 		return false;
1060 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061 		return false;
1062 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1063 		return false;
1064 
1065 	while (*name) {
1066 		if (*name == '/' || *name == ':' || isspace(*name))
1067 			return false;
1068 		name++;
1069 	}
1070 	return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073 
1074 /**
1075  *	__dev_alloc_name - allocate a name for a device
1076  *	@net: network namespace to allocate the device name in
1077  *	@name: name format string
1078  *	@buf:  scratch buffer and result name string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091 	int i = 0;
1092 	const char *p;
1093 	const int max_netdevices = 8*PAGE_SIZE;
1094 	unsigned long *inuse;
1095 	struct net_device *d;
1096 
1097 	if (!dev_valid_name(name))
1098 		return -EINVAL;
1099 
1100 	p = strchr(name, '%');
1101 	if (p) {
1102 		/*
1103 		 * Verify the string as this thing may have come from
1104 		 * the user.  There must be either one "%d" and no other "%"
1105 		 * characters.
1106 		 */
1107 		if (p[1] != 'd' || strchr(p + 2, '%'))
1108 			return -EINVAL;
1109 
1110 		/* Use one page as a bit array of possible slots */
1111 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112 		if (!inuse)
1113 			return -ENOMEM;
1114 
1115 		for_each_netdev(net, d) {
1116 			if (!sscanf(d->name, name, &i))
1117 				continue;
1118 			if (i < 0 || i >= max_netdevices)
1119 				continue;
1120 
1121 			/*  avoid cases where sscanf is not exact inverse of printf */
1122 			snprintf(buf, IFNAMSIZ, name, i);
1123 			if (!strncmp(buf, d->name, IFNAMSIZ))
1124 				set_bit(i, inuse);
1125 		}
1126 
1127 		i = find_first_zero_bit(inuse, max_netdevices);
1128 		free_page((unsigned long) inuse);
1129 	}
1130 
1131 	snprintf(buf, IFNAMSIZ, name, i);
1132 	if (!__dev_get_by_name(net, buf))
1133 		return i;
1134 
1135 	/* It is possible to run out of possible slots
1136 	 * when the name is long and there isn't enough space left
1137 	 * for the digits, or if all bits are used.
1138 	 */
1139 	return -ENFILE;
1140 }
1141 
1142 static int dev_alloc_name_ns(struct net *net,
1143 			     struct net_device *dev,
1144 			     const char *name)
1145 {
1146 	char buf[IFNAMSIZ];
1147 	int ret;
1148 
1149 	BUG_ON(!net);
1150 	ret = __dev_alloc_name(net, name, buf);
1151 	if (ret >= 0)
1152 		strlcpy(dev->name, buf, IFNAMSIZ);
1153 	return ret;
1154 }
1155 
1156 /**
1157  *	dev_alloc_name - allocate a name for a device
1158  *	@dev: device
1159  *	@name: name format string
1160  *
1161  *	Passed a format string - eg "lt%d" it will try and find a suitable
1162  *	id. It scans list of devices to build up a free map, then chooses
1163  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *	while allocating the name and adding the device in order to avoid
1165  *	duplicates.
1166  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *	Returns the number of the unit assigned or a negative errno code.
1168  */
1169 
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175 
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 			      const char *name)
1178 {
1179 	BUG_ON(!net);
1180 
1181 	if (!dev_valid_name(name))
1182 		return -EINVAL;
1183 
1184 	if (strchr(name, '%'))
1185 		return dev_alloc_name_ns(net, dev, name);
1186 	else if (__dev_get_by_name(net, name))
1187 		return -EEXIST;
1188 	else if (dev->name != name)
1189 		strlcpy(dev->name, name, IFNAMSIZ);
1190 
1191 	return 0;
1192 }
1193 
1194 /**
1195  *	dev_change_name - change name of a device
1196  *	@dev: device
1197  *	@newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *	Change name of a device, can pass format strings "eth%d".
1200  *	for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204 	unsigned char old_assign_type;
1205 	char oldname[IFNAMSIZ];
1206 	int err = 0;
1207 	int ret;
1208 	struct net *net;
1209 
1210 	ASSERT_RTNL();
1211 	BUG_ON(!dev_net(dev));
1212 
1213 	net = dev_net(dev);
1214 
1215 	/* Some auto-enslaved devices e.g. failover slaves are
1216 	 * special, as userspace might rename the device after
1217 	 * the interface had been brought up and running since
1218 	 * the point kernel initiated auto-enslavement. Allow
1219 	 * live name change even when these slave devices are
1220 	 * up and running.
1221 	 *
1222 	 * Typically, users of these auto-enslaving devices
1223 	 * don't actually care about slave name change, as
1224 	 * they are supposed to operate on master interface
1225 	 * directly.
1226 	 */
1227 	if (dev->flags & IFF_UP &&
1228 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229 		return -EBUSY;
1230 
1231 	write_seqcount_begin(&devnet_rename_seq);
1232 
1233 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234 		write_seqcount_end(&devnet_rename_seq);
1235 		return 0;
1236 	}
1237 
1238 	memcpy(oldname, dev->name, IFNAMSIZ);
1239 
1240 	err = dev_get_valid_name(net, dev, newname);
1241 	if (err < 0) {
1242 		write_seqcount_end(&devnet_rename_seq);
1243 		return err;
1244 	}
1245 
1246 	if (oldname[0] && !strchr(oldname, '%'))
1247 		netdev_info(dev, "renamed from %s\n", oldname);
1248 
1249 	old_assign_type = dev->name_assign_type;
1250 	dev->name_assign_type = NET_NAME_RENAMED;
1251 
1252 rollback:
1253 	ret = device_rename(&dev->dev, dev->name);
1254 	if (ret) {
1255 		memcpy(dev->name, oldname, IFNAMSIZ);
1256 		dev->name_assign_type = old_assign_type;
1257 		write_seqcount_end(&devnet_rename_seq);
1258 		return ret;
1259 	}
1260 
1261 	write_seqcount_end(&devnet_rename_seq);
1262 
1263 	netdev_adjacent_rename_links(dev, oldname);
1264 
1265 	write_lock_bh(&dev_base_lock);
1266 	netdev_name_node_del(dev->name_node);
1267 	write_unlock_bh(&dev_base_lock);
1268 
1269 	synchronize_rcu();
1270 
1271 	write_lock_bh(&dev_base_lock);
1272 	netdev_name_node_add(net, dev->name_node);
1273 	write_unlock_bh(&dev_base_lock);
1274 
1275 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276 	ret = notifier_to_errno(ret);
1277 
1278 	if (ret) {
1279 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1280 		if (err >= 0) {
1281 			err = ret;
1282 			write_seqcount_begin(&devnet_rename_seq);
1283 			memcpy(dev->name, oldname, IFNAMSIZ);
1284 			memcpy(oldname, newname, IFNAMSIZ);
1285 			dev->name_assign_type = old_assign_type;
1286 			old_assign_type = NET_NAME_RENAMED;
1287 			goto rollback;
1288 		} else {
1289 			pr_err("%s: name change rollback failed: %d\n",
1290 			       dev->name, ret);
1291 		}
1292 	}
1293 
1294 	return err;
1295 }
1296 
1297 /**
1298  *	dev_set_alias - change ifalias of a device
1299  *	@dev: device
1300  *	@alias: name up to IFALIASZ
1301  *	@len: limit of bytes to copy from info
1302  *
1303  *	Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307 	struct dev_ifalias *new_alias = NULL;
1308 
1309 	if (len >= IFALIASZ)
1310 		return -EINVAL;
1311 
1312 	if (len) {
1313 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 		if (!new_alias)
1315 			return -ENOMEM;
1316 
1317 		memcpy(new_alias->ifalias, alias, len);
1318 		new_alias->ifalias[len] = 0;
1319 	}
1320 
1321 	mutex_lock(&ifalias_mutex);
1322 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 					mutex_is_locked(&ifalias_mutex));
1324 	mutex_unlock(&ifalias_mutex);
1325 
1326 	if (new_alias)
1327 		kfree_rcu(new_alias, rcuhead);
1328 
1329 	return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332 
1333 /**
1334  *	dev_get_alias - get ifalias of a device
1335  *	@dev: device
1336  *	@name: buffer to store name of ifalias
1337  *	@len: size of buffer
1338  *
1339  *	get ifalias for a device.  Caller must make sure dev cannot go
1340  *	away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344 	const struct dev_ifalias *alias;
1345 	int ret = 0;
1346 
1347 	rcu_read_lock();
1348 	alias = rcu_dereference(dev->ifalias);
1349 	if (alias)
1350 		ret = snprintf(name, len, "%s", alias->ifalias);
1351 	rcu_read_unlock();
1352 
1353 	return ret;
1354 }
1355 
1356 /**
1357  *	netdev_features_change - device changes features
1358  *	@dev: device to cause notification
1359  *
1360  *	Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367 
1368 /**
1369  *	netdev_state_change - device changes state
1370  *	@dev: device to cause notification
1371  *
1372  *	Called to indicate a device has changed state. This function calls
1373  *	the notifier chains for netdev_chain and sends a NEWLINK message
1374  *	to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378 	if (dev->flags & IFF_UP) {
1379 		struct netdev_notifier_change_info change_info = {
1380 			.info.dev = dev,
1381 		};
1382 
1383 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1384 					      &change_info.info);
1385 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386 	}
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389 
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402 	rtnl_lock();
1403 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405 	rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408 
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411 	const struct net_device_ops *ops = dev->netdev_ops;
1412 	int ret;
1413 
1414 	ASSERT_RTNL();
1415 
1416 	if (!netif_device_present(dev))
1417 		return -ENODEV;
1418 
1419 	/* Block netpoll from trying to do any rx path servicing.
1420 	 * If we don't do this there is a chance ndo_poll_controller
1421 	 * or ndo_poll may be running while we open the device
1422 	 */
1423 	netpoll_poll_disable(dev);
1424 
1425 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426 	ret = notifier_to_errno(ret);
1427 	if (ret)
1428 		return ret;
1429 
1430 	set_bit(__LINK_STATE_START, &dev->state);
1431 
1432 	if (ops->ndo_validate_addr)
1433 		ret = ops->ndo_validate_addr(dev);
1434 
1435 	if (!ret && ops->ndo_open)
1436 		ret = ops->ndo_open(dev);
1437 
1438 	netpoll_poll_enable(dev);
1439 
1440 	if (ret)
1441 		clear_bit(__LINK_STATE_START, &dev->state);
1442 	else {
1443 		dev->flags |= IFF_UP;
1444 		dev_set_rx_mode(dev);
1445 		dev_activate(dev);
1446 		add_device_randomness(dev->dev_addr, dev->addr_len);
1447 	}
1448 
1449 	return ret;
1450 }
1451 
1452 /**
1453  *	dev_open	- prepare an interface for use.
1454  *	@dev: device to open
1455  *	@extack: netlink extended ack
1456  *
1457  *	Takes a device from down to up state. The device's private open
1458  *	function is invoked and then the multicast lists are loaded. Finally
1459  *	the device is moved into the up state and a %NETDEV_UP message is
1460  *	sent to the netdev notifier chain.
1461  *
1462  *	Calling this function on an active interface is a nop. On a failure
1463  *	a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467 	int ret;
1468 
1469 	if (dev->flags & IFF_UP)
1470 		return 0;
1471 
1472 	ret = __dev_open(dev, extack);
1473 	if (ret < 0)
1474 		return ret;
1475 
1476 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477 	call_netdevice_notifiers(NETDEV_UP, dev);
1478 
1479 	return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482 
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485 	struct net_device *dev;
1486 
1487 	ASSERT_RTNL();
1488 	might_sleep();
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		/* Temporarily disable netpoll until the interface is down */
1492 		netpoll_poll_disable(dev);
1493 
1494 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495 
1496 		clear_bit(__LINK_STATE_START, &dev->state);
1497 
1498 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1499 		 * can be even on different cpu. So just clear netif_running().
1500 		 *
1501 		 * dev->stop() will invoke napi_disable() on all of it's
1502 		 * napi_struct instances on this device.
1503 		 */
1504 		smp_mb__after_atomic(); /* Commit netif_running(). */
1505 	}
1506 
1507 	dev_deactivate_many(head);
1508 
1509 	list_for_each_entry(dev, head, close_list) {
1510 		const struct net_device_ops *ops = dev->netdev_ops;
1511 
1512 		/*
1513 		 *	Call the device specific close. This cannot fail.
1514 		 *	Only if device is UP
1515 		 *
1516 		 *	We allow it to be called even after a DETACH hot-plug
1517 		 *	event.
1518 		 */
1519 		if (ops->ndo_stop)
1520 			ops->ndo_stop(dev);
1521 
1522 		dev->flags &= ~IFF_UP;
1523 		netpoll_poll_enable(dev);
1524 	}
1525 }
1526 
1527 static void __dev_close(struct net_device *dev)
1528 {
1529 	LIST_HEAD(single);
1530 
1531 	list_add(&dev->close_list, &single);
1532 	__dev_close_many(&single);
1533 	list_del(&single);
1534 }
1535 
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538 	struct net_device *dev, *tmp;
1539 
1540 	/* Remove the devices that don't need to be closed */
1541 	list_for_each_entry_safe(dev, tmp, head, close_list)
1542 		if (!(dev->flags & IFF_UP))
1543 			list_del_init(&dev->close_list);
1544 
1545 	__dev_close_many(head);
1546 
1547 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1548 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1550 		if (unlink)
1551 			list_del_init(&dev->close_list);
1552 	}
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555 
1556 /**
1557  *	dev_close - shutdown an interface.
1558  *	@dev: device to shutdown
1559  *
1560  *	This function moves an active device into down state. A
1561  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *	chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567 	if (dev->flags & IFF_UP) {
1568 		LIST_HEAD(single);
1569 
1570 		list_add(&dev->close_list, &single);
1571 		dev_close_many(&single, true);
1572 		list_del(&single);
1573 	}
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576 
1577 
1578 /**
1579  *	dev_disable_lro - disable Large Receive Offload on a device
1580  *	@dev: device
1581  *
1582  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *	called under RTNL.  This is needed if received packets may be
1584  *	forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588 	struct net_device *lower_dev;
1589 	struct list_head *iter;
1590 
1591 	dev->wanted_features &= ~NETIF_F_LRO;
1592 	netdev_update_features(dev);
1593 
1594 	if (unlikely(dev->features & NETIF_F_LRO))
1595 		netdev_WARN(dev, "failed to disable LRO!\n");
1596 
1597 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 		dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601 
1602 /**
1603  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *	@dev: device
1605  *
1606  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *	called under RTNL.  This is needed if Generic XDP is installed on
1608  *	the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 	netdev_update_features(dev);
1614 
1615 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618 
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val) 						\
1622 	case NETDEV_##val:				\
1623 		return "NETDEV_" __stringify(val);
1624 	switch (cmd) {
1625 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634 	N(PRE_CHANGEADDR)
1635 	}
1636 #undef N
1637 	return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640 
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 				   struct net_device *dev)
1643 {
1644 	struct netdev_notifier_info info = {
1645 		.dev = dev,
1646 	};
1647 
1648 	return nb->notifier_call(nb, val, &info);
1649 }
1650 
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 					     struct net_device *dev)
1653 {
1654 	int err;
1655 
1656 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 	err = notifier_to_errno(err);
1658 	if (err)
1659 		return err;
1660 
1661 	if (!(dev->flags & IFF_UP))
1662 		return 0;
1663 
1664 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 	return 0;
1666 }
1667 
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 						struct net_device *dev)
1670 {
1671 	if (dev->flags & IFF_UP) {
1672 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 					dev);
1674 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 	}
1676 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678 
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 						 struct net *net)
1681 {
1682 	struct net_device *dev;
1683 	int err;
1684 
1685 	for_each_netdev(net, dev) {
1686 		err = call_netdevice_register_notifiers(nb, dev);
1687 		if (err)
1688 			goto rollback;
1689 	}
1690 	return 0;
1691 
1692 rollback:
1693 	for_each_netdev_continue_reverse(net, dev)
1694 		call_netdevice_unregister_notifiers(nb, dev);
1695 	return err;
1696 }
1697 
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 						    struct net *net)
1700 {
1701 	struct net_device *dev;
1702 
1703 	for_each_netdev(net, dev)
1704 		call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706 
1707 static int dev_boot_phase = 1;
1708 
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722 
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725 	struct net *net;
1726 	int err;
1727 
1728 	/* Close race with setup_net() and cleanup_net() */
1729 	down_write(&pernet_ops_rwsem);
1730 	rtnl_lock();
1731 	err = raw_notifier_chain_register(&netdev_chain, nb);
1732 	if (err)
1733 		goto unlock;
1734 	if (dev_boot_phase)
1735 		goto unlock;
1736 	for_each_net(net) {
1737 		err = call_netdevice_register_net_notifiers(nb, net);
1738 		if (err)
1739 			goto rollback;
1740 	}
1741 
1742 unlock:
1743 	rtnl_unlock();
1744 	up_write(&pernet_ops_rwsem);
1745 	return err;
1746 
1747 rollback:
1748 	for_each_net_continue_reverse(net)
1749 		call_netdevice_unregister_net_notifiers(nb, net);
1750 
1751 	raw_notifier_chain_unregister(&netdev_chain, nb);
1752 	goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755 
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769 
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772 	struct net *net;
1773 	int err;
1774 
1775 	/* Close race with setup_net() and cleanup_net() */
1776 	down_write(&pernet_ops_rwsem);
1777 	rtnl_lock();
1778 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779 	if (err)
1780 		goto unlock;
1781 
1782 	for_each_net(net)
1783 		call_netdevice_unregister_net_notifiers(nb, net);
1784 
1785 unlock:
1786 	rtnl_unlock();
1787 	up_write(&pernet_ops_rwsem);
1788 	return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791 
1792 static int __register_netdevice_notifier_net(struct net *net,
1793 					     struct notifier_block *nb,
1794 					     bool ignore_call_fail)
1795 {
1796 	int err;
1797 
1798 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 	if (err)
1800 		return err;
1801 	if (dev_boot_phase)
1802 		return 0;
1803 
1804 	err = call_netdevice_register_net_notifiers(nb, net);
1805 	if (err && !ignore_call_fail)
1806 		goto chain_unregister;
1807 
1808 	return 0;
1809 
1810 chain_unregister:
1811 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 	return err;
1813 }
1814 
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816 					       struct notifier_block *nb)
1817 {
1818 	int err;
1819 
1820 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 	if (err)
1822 		return err;
1823 
1824 	call_netdevice_unregister_net_notifiers(nb, net);
1825 	return 0;
1826 }
1827 
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842 
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845 	int err;
1846 
1847 	rtnl_lock();
1848 	err = __register_netdevice_notifier_net(net, nb, false);
1849 	rtnl_unlock();
1850 	return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853 
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869 
1870 int unregister_netdevice_notifier_net(struct net *net,
1871 				      struct notifier_block *nb)
1872 {
1873 	int err;
1874 
1875 	rtnl_lock();
1876 	err = __unregister_netdevice_notifier_net(net, nb);
1877 	rtnl_unlock();
1878 	return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881 
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 					struct notifier_block *nb,
1884 					struct netdev_net_notifier *nn)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 	if (!err) {
1891 		nn->nb = nb;
1892 		list_add(&nn->list, &dev->net_notifier_list);
1893 	}
1894 	rtnl_unlock();
1895 	return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898 
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 					  struct notifier_block *nb,
1901 					  struct netdev_net_notifier *nn)
1902 {
1903 	int err;
1904 
1905 	rtnl_lock();
1906 	list_del(&nn->list);
1907 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 	rtnl_unlock();
1909 	return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912 
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 					     struct net *net)
1915 {
1916 	struct netdev_net_notifier *nn;
1917 
1918 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 		__register_netdevice_notifier_net(net, nn->nb, true);
1921 	}
1922 }
1923 
1924 /**
1925  *	call_netdevice_notifiers_info - call all network notifier blocks
1926  *	@val: value passed unmodified to notifier function
1927  *	@info: notifier information data
1928  *
1929  *	Call all network notifier blocks.  Parameters and return value
1930  *	are as for raw_notifier_call_chain().
1931  */
1932 
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934 					 struct netdev_notifier_info *info)
1935 {
1936 	struct net *net = dev_net(info->dev);
1937 	int ret;
1938 
1939 	ASSERT_RTNL();
1940 
1941 	/* Run per-netns notifier block chain first, then run the global one.
1942 	 * Hopefully, one day, the global one is going to be removed after
1943 	 * all notifier block registrators get converted to be per-netns.
1944 	 */
1945 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 	if (ret & NOTIFY_STOP_MASK)
1947 		return ret;
1948 	return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950 
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952 					   struct net_device *dev,
1953 					   struct netlink_ext_ack *extack)
1954 {
1955 	struct netdev_notifier_info info = {
1956 		.dev = dev,
1957 		.extack = extack,
1958 	};
1959 
1960 	return call_netdevice_notifiers_info(val, &info);
1961 }
1962 
1963 /**
1964  *	call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *	Call all network notifier blocks.  Parameters and return value
1969  *	are as for raw_notifier_call_chain().
1970  */
1971 
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974 	return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977 
1978 /**
1979  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@dev: net_device pointer passed unmodified to notifier function
1982  *	@arg: additional u32 argument passed to the notifier function
1983  *
1984  *	Call all network notifier blocks.  Parameters and return value
1985  *	are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988 					struct net_device *dev, u32 arg)
1989 {
1990 	struct netdev_notifier_info_ext info = {
1991 		.info.dev = dev,
1992 		.ext.mtu = arg,
1993 	};
1994 
1995 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996 
1997 	return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999 
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002 
2003 void net_inc_ingress_queue(void)
2004 {
2005 	static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008 
2009 void net_dec_ingress_queue(void)
2010 {
2011 	static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015 
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018 
2019 void net_inc_egress_queue(void)
2020 {
2021 	static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024 
2025 void net_dec_egress_queue(void)
2026 {
2027 	static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031 
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039 	int wanted;
2040 
2041 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 	if (wanted > 0)
2043 		static_branch_enable(&netstamp_needed_key);
2044 	else
2045 		static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049 
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053 	int wanted;
2054 
2055 	while (1) {
2056 		wanted = atomic_read(&netstamp_wanted);
2057 		if (wanted <= 0)
2058 			break;
2059 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 			return;
2061 	}
2062 	atomic_inc(&netstamp_needed_deferred);
2063 	schedule_work(&netstamp_work);
2064 #else
2065 	static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069 
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073 	int wanted;
2074 
2075 	while (1) {
2076 		wanted = atomic_read(&netstamp_wanted);
2077 		if (wanted <= 1)
2078 			break;
2079 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 			return;
2081 	}
2082 	atomic_dec(&netstamp_needed_deferred);
2083 	schedule_work(&netstamp_work);
2084 #else
2085 	static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089 
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092 	skb->tstamp = 0;
2093 	if (static_branch_unlikely(&netstamp_needed_key))
2094 		__net_timestamp(skb);
2095 }
2096 
2097 #define net_timestamp_check(COND, SKB)				\
2098 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2099 		if ((COND) && !(SKB)->tstamp)			\
2100 			__net_timestamp(SKB);			\
2101 	}							\
2102 
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105 	unsigned int len;
2106 
2107 	if (!(dev->flags & IFF_UP))
2108 		return false;
2109 
2110 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 	if (skb->len <= len)
2112 		return true;
2113 
2114 	/* if TSO is enabled, we don't care about the length as the packet
2115 	 * could be forwarded without being segmented before
2116 	 */
2117 	if (skb_is_gso(skb))
2118 		return true;
2119 
2120 	return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123 
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126 	int ret = ____dev_forward_skb(dev, skb);
2127 
2128 	if (likely(!ret)) {
2129 		skb->protocol = eth_type_trans(skb, dev);
2130 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 	}
2132 
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136 
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *	NET_RX_SUCCESS	(no congestion)
2145  *	NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160 
2161 static inline int deliver_skb(struct sk_buff *skb,
2162 			      struct packet_type *pt_prev,
2163 			      struct net_device *orig_dev)
2164 {
2165 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166 		return -ENOMEM;
2167 	refcount_inc(&skb->users);
2168 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170 
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 					  struct packet_type **pt,
2173 					  struct net_device *orig_dev,
2174 					  __be16 type,
2175 					  struct list_head *ptype_list)
2176 {
2177 	struct packet_type *ptype, *pt_prev = *pt;
2178 
2179 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 		if (ptype->type != type)
2181 			continue;
2182 		if (pt_prev)
2183 			deliver_skb(skb, pt_prev, orig_dev);
2184 		pt_prev = ptype;
2185 	}
2186 	*pt = pt_prev;
2187 }
2188 
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191 	if (!ptype->af_packet_priv || !skb->sk)
2192 		return false;
2193 
2194 	if (ptype->id_match)
2195 		return ptype->id_match(ptype, skb->sk);
2196 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 		return true;
2198 
2199 	return false;
2200 }
2201 
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212 
2213 /*
2214  *	Support routine. Sends outgoing frames to any network
2215  *	taps currently in use.
2216  */
2217 
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220 	struct packet_type *ptype;
2221 	struct sk_buff *skb2 = NULL;
2222 	struct packet_type *pt_prev = NULL;
2223 	struct list_head *ptype_list = &ptype_all;
2224 
2225 	rcu_read_lock();
2226 again:
2227 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2228 		if (ptype->ignore_outgoing)
2229 			continue;
2230 
2231 		/* Never send packets back to the socket
2232 		 * they originated from - MvS (miquels@drinkel.ow.org)
2233 		 */
2234 		if (skb_loop_sk(ptype, skb))
2235 			continue;
2236 
2237 		if (pt_prev) {
2238 			deliver_skb(skb2, pt_prev, skb->dev);
2239 			pt_prev = ptype;
2240 			continue;
2241 		}
2242 
2243 		/* need to clone skb, done only once */
2244 		skb2 = skb_clone(skb, GFP_ATOMIC);
2245 		if (!skb2)
2246 			goto out_unlock;
2247 
2248 		net_timestamp_set(skb2);
2249 
2250 		/* skb->nh should be correctly
2251 		 * set by sender, so that the second statement is
2252 		 * just protection against buggy protocols.
2253 		 */
2254 		skb_reset_mac_header(skb2);
2255 
2256 		if (skb_network_header(skb2) < skb2->data ||
2257 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 					     ntohs(skb2->protocol),
2260 					     dev->name);
2261 			skb_reset_network_header(skb2);
2262 		}
2263 
2264 		skb2->transport_header = skb2->network_header;
2265 		skb2->pkt_type = PACKET_OUTGOING;
2266 		pt_prev = ptype;
2267 	}
2268 
2269 	if (ptype_list == &ptype_all) {
2270 		ptype_list = &dev->ptype_all;
2271 		goto again;
2272 	}
2273 out_unlock:
2274 	if (pt_prev) {
2275 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 		else
2278 			kfree_skb(skb2);
2279 	}
2280 	rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283 
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299 	int i;
2300 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301 
2302 	/* If TC0 is invalidated disable TC mapping */
2303 	if (tc->offset + tc->count > txq) {
2304 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305 		dev->num_tc = 0;
2306 		return;
2307 	}
2308 
2309 	/* Invalidated prio to tc mappings set to TC0 */
2310 	for (i = 1; i < TC_BITMASK + 1; i++) {
2311 		int q = netdev_get_prio_tc_map(dev, i);
2312 
2313 		tc = &dev->tc_to_txq[q];
2314 		if (tc->offset + tc->count > txq) {
2315 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 				i, q);
2317 			netdev_set_prio_tc_map(dev, i, 0);
2318 		}
2319 	}
2320 }
2321 
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324 	if (dev->num_tc) {
2325 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 		int i;
2327 
2328 		/* walk through the TCs and see if it falls into any of them */
2329 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 			if ((txq - tc->offset) < tc->count)
2331 				return i;
2332 		}
2333 
2334 		/* didn't find it, just return -1 to indicate no match */
2335 		return -1;
2336 	}
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341 
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)		\
2349 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350 
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 			     int tci, u16 index)
2353 {
2354 	struct xps_map *map = NULL;
2355 	int pos;
2356 
2357 	if (dev_maps)
2358 		map = xmap_dereference(dev_maps->attr_map[tci]);
2359 	if (!map)
2360 		return false;
2361 
2362 	for (pos = map->len; pos--;) {
2363 		if (map->queues[pos] != index)
2364 			continue;
2365 
2366 		if (map->len > 1) {
2367 			map->queues[pos] = map->queues[--map->len];
2368 			break;
2369 		}
2370 
2371 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372 		kfree_rcu(map, rcu);
2373 		return false;
2374 	}
2375 
2376 	return true;
2377 }
2378 
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380 				 struct xps_dev_maps *dev_maps,
2381 				 int cpu, u16 offset, u16 count)
2382 {
2383 	int num_tc = dev->num_tc ? : 1;
2384 	bool active = false;
2385 	int tci;
2386 
2387 	for (tci = cpu * num_tc; num_tc--; tci++) {
2388 		int i, j;
2389 
2390 		for (i = count, j = offset; i--; j++) {
2391 			if (!remove_xps_queue(dev_maps, tci, j))
2392 				break;
2393 		}
2394 
2395 		active |= i < 0;
2396 	}
2397 
2398 	return active;
2399 }
2400 
2401 static void reset_xps_maps(struct net_device *dev,
2402 			   struct xps_dev_maps *dev_maps,
2403 			   bool is_rxqs_map)
2404 {
2405 	if (is_rxqs_map) {
2406 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 	} else {
2409 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 	}
2411 	static_key_slow_dec_cpuslocked(&xps_needed);
2412 	kfree_rcu(dev_maps, rcu);
2413 }
2414 
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 			   u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419 	bool active = false;
2420 	int i, j;
2421 
2422 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 	     j < nr_ids;)
2424 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 					       count);
2426 	if (!active)
2427 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428 
2429 	if (!is_rxqs_map) {
2430 		for (i = offset + (count - 1); count--; i--) {
2431 			netdev_queue_numa_node_write(
2432 				netdev_get_tx_queue(dev, i),
2433 				NUMA_NO_NODE);
2434 		}
2435 	}
2436 }
2437 
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 				   u16 count)
2440 {
2441 	const unsigned long *possible_mask = NULL;
2442 	struct xps_dev_maps *dev_maps;
2443 	unsigned int nr_ids;
2444 
2445 	if (!static_key_false(&xps_needed))
2446 		return;
2447 
2448 	cpus_read_lock();
2449 	mutex_lock(&xps_map_mutex);
2450 
2451 	if (static_key_false(&xps_rxqs_needed)) {
2452 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 		if (dev_maps) {
2454 			nr_ids = dev->num_rx_queues;
2455 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 				       offset, count, true);
2457 		}
2458 	}
2459 
2460 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 	if (!dev_maps)
2462 		goto out_no_maps;
2463 
2464 	if (num_possible_cpus() > 1)
2465 		possible_mask = cpumask_bits(cpu_possible_mask);
2466 	nr_ids = nr_cpu_ids;
2467 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 		       false);
2469 
2470 out_no_maps:
2471 	mutex_unlock(&xps_map_mutex);
2472 	cpus_read_unlock();
2473 }
2474 
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479 
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 				      u16 index, bool is_rxqs_map)
2482 {
2483 	struct xps_map *new_map;
2484 	int alloc_len = XPS_MIN_MAP_ALLOC;
2485 	int i, pos;
2486 
2487 	for (pos = 0; map && pos < map->len; pos++) {
2488 		if (map->queues[pos] != index)
2489 			continue;
2490 		return map;
2491 	}
2492 
2493 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494 	if (map) {
2495 		if (pos < map->alloc_len)
2496 			return map;
2497 
2498 		alloc_len = map->alloc_len * 2;
2499 	}
2500 
2501 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 	 *  map
2503 	 */
2504 	if (is_rxqs_map)
2505 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 	else
2507 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 				       cpu_to_node(attr_index));
2509 	if (!new_map)
2510 		return NULL;
2511 
2512 	for (i = 0; i < pos; i++)
2513 		new_map->queues[i] = map->queues[i];
2514 	new_map->alloc_len = alloc_len;
2515 	new_map->len = pos;
2516 
2517 	return new_map;
2518 }
2519 
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 			  u16 index, bool is_rxqs_map)
2523 {
2524 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526 	int i, j, tci, numa_node_id = -2;
2527 	int maps_sz, num_tc = 1, tc = 0;
2528 	struct xps_map *map, *new_map;
2529 	bool active = false;
2530 	unsigned int nr_ids;
2531 
2532 	if (dev->num_tc) {
2533 		/* Do not allow XPS on subordinate device directly */
2534 		num_tc = dev->num_tc;
2535 		if (num_tc < 0)
2536 			return -EINVAL;
2537 
2538 		/* If queue belongs to subordinate dev use its map */
2539 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540 
2541 		tc = netdev_txq_to_tc(dev, index);
2542 		if (tc < 0)
2543 			return -EINVAL;
2544 	}
2545 
2546 	mutex_lock(&xps_map_mutex);
2547 	if (is_rxqs_map) {
2548 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 		nr_ids = dev->num_rx_queues;
2551 	} else {
2552 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 		if (num_possible_cpus() > 1) {
2554 			online_mask = cpumask_bits(cpu_online_mask);
2555 			possible_mask = cpumask_bits(cpu_possible_mask);
2556 		}
2557 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 		nr_ids = nr_cpu_ids;
2559 	}
2560 
2561 	if (maps_sz < L1_CACHE_BYTES)
2562 		maps_sz = L1_CACHE_BYTES;
2563 
2564 	/* allocate memory for queue storage */
2565 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 	     j < nr_ids;) {
2567 		if (!new_dev_maps)
2568 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569 		if (!new_dev_maps) {
2570 			mutex_unlock(&xps_map_mutex);
2571 			return -ENOMEM;
2572 		}
2573 
2574 		tci = j * num_tc + tc;
2575 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576 				 NULL;
2577 
2578 		map = expand_xps_map(map, j, index, is_rxqs_map);
2579 		if (!map)
2580 			goto error;
2581 
2582 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583 	}
2584 
2585 	if (!new_dev_maps)
2586 		goto out_no_new_maps;
2587 
2588 	if (!dev_maps) {
2589 		/* Increment static keys at most once per type */
2590 		static_key_slow_inc_cpuslocked(&xps_needed);
2591 		if (is_rxqs_map)
2592 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 	}
2594 
2595 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 	     j < nr_ids;) {
2597 		/* copy maps belonging to foreign traffic classes */
2598 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599 			/* fill in the new device map from the old device map */
2600 			map = xmap_dereference(dev_maps->attr_map[tci]);
2601 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602 		}
2603 
2604 		/* We need to explicitly update tci as prevous loop
2605 		 * could break out early if dev_maps is NULL.
2606 		 */
2607 		tci = j * num_tc + tc;
2608 
2609 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2611 			/* add tx-queue to CPU/rx-queue maps */
2612 			int pos = 0;
2613 
2614 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615 			while ((pos < map->len) && (map->queues[pos] != index))
2616 				pos++;
2617 
2618 			if (pos == map->len)
2619 				map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621 			if (!is_rxqs_map) {
2622 				if (numa_node_id == -2)
2623 					numa_node_id = cpu_to_node(j);
2624 				else if (numa_node_id != cpu_to_node(j))
2625 					numa_node_id = -1;
2626 			}
2627 #endif
2628 		} else if (dev_maps) {
2629 			/* fill in the new device map from the old device map */
2630 			map = xmap_dereference(dev_maps->attr_map[tci]);
2631 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632 		}
2633 
2634 		/* copy maps belonging to foreign traffic classes */
2635 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 			/* fill in the new device map from the old device map */
2637 			map = xmap_dereference(dev_maps->attr_map[tci]);
2638 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639 		}
2640 	}
2641 
2642 	if (is_rxqs_map)
2643 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 	else
2645 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646 
2647 	/* Cleanup old maps */
2648 	if (!dev_maps)
2649 		goto out_no_old_maps;
2650 
2651 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 	     j < nr_ids;) {
2653 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 			map = xmap_dereference(dev_maps->attr_map[tci]);
2656 			if (map && map != new_map)
2657 				kfree_rcu(map, rcu);
2658 		}
2659 	}
2660 
2661 	kfree_rcu(dev_maps, rcu);
2662 
2663 out_no_old_maps:
2664 	dev_maps = new_dev_maps;
2665 	active = true;
2666 
2667 out_no_new_maps:
2668 	if (!is_rxqs_map) {
2669 		/* update Tx queue numa node */
2670 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 					     (numa_node_id >= 0) ?
2672 					     numa_node_id : NUMA_NO_NODE);
2673 	}
2674 
2675 	if (!dev_maps)
2676 		goto out_no_maps;
2677 
2678 	/* removes tx-queue from unused CPUs/rx-queues */
2679 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 	     j < nr_ids;) {
2681 		for (i = tc, tci = j * num_tc; i--; tci++)
2682 			active |= remove_xps_queue(dev_maps, tci, index);
2683 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 		    !netif_attr_test_online(j, online_mask, nr_ids))
2685 			active |= remove_xps_queue(dev_maps, tci, index);
2686 		for (i = num_tc - tc, tci++; --i; tci++)
2687 			active |= remove_xps_queue(dev_maps, tci, index);
2688 	}
2689 
2690 	/* free map if not active */
2691 	if (!active)
2692 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693 
2694 out_no_maps:
2695 	mutex_unlock(&xps_map_mutex);
2696 
2697 	return 0;
2698 error:
2699 	/* remove any maps that we added */
2700 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 	     j < nr_ids;) {
2702 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704 			map = dev_maps ?
2705 			      xmap_dereference(dev_maps->attr_map[tci]) :
2706 			      NULL;
2707 			if (new_map && new_map != map)
2708 				kfree(new_map);
2709 		}
2710 	}
2711 
2712 	mutex_unlock(&xps_map_mutex);
2713 
2714 	kfree(new_dev_maps);
2715 	return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718 
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 			u16 index)
2721 {
2722 	int ret;
2723 
2724 	cpus_read_lock();
2725 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 	cpus_read_unlock();
2727 
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731 
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736 
2737 	/* Unbind any subordinate channels */
2738 	while (txq-- != &dev->_tx[0]) {
2739 		if (txq->sb_dev)
2740 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 	}
2742 }
2743 
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747 	netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749 	netdev_unbind_all_sb_channels(dev);
2750 
2751 	/* Reset TC configuration of device */
2752 	dev->num_tc = 0;
2753 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757 
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760 	if (tc >= dev->num_tc)
2761 		return -EINVAL;
2762 
2763 #ifdef CONFIG_XPS
2764 	netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766 	dev->tc_to_txq[tc].count = count;
2767 	dev->tc_to_txq[tc].offset = offset;
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771 
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774 	if (num_tc > TC_MAX_QUEUE)
2775 		return -EINVAL;
2776 
2777 #ifdef CONFIG_XPS
2778 	netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780 	netdev_unbind_all_sb_channels(dev);
2781 
2782 	dev->num_tc = num_tc;
2783 	return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786 
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788 			      struct net_device *sb_dev)
2789 {
2790 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791 
2792 #ifdef CONFIG_XPS
2793 	netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797 
2798 	while (txq-- != &dev->_tx[0]) {
2799 		if (txq->sb_dev == sb_dev)
2800 			txq->sb_dev = NULL;
2801 	}
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804 
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 				 struct net_device *sb_dev,
2807 				 u8 tc, u16 count, u16 offset)
2808 {
2809 	/* Make certain the sb_dev and dev are already configured */
2810 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 		return -EINVAL;
2812 
2813 	/* We cannot hand out queues we don't have */
2814 	if ((offset + count) > dev->real_num_tx_queues)
2815 		return -EINVAL;
2816 
2817 	/* Record the mapping */
2818 	sb_dev->tc_to_txq[tc].count = count;
2819 	sb_dev->tc_to_txq[tc].offset = offset;
2820 
2821 	/* Provide a way for Tx queue to find the tc_to_txq map or
2822 	 * XPS map for itself.
2823 	 */
2824 	while (count--)
2825 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830 
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833 	/* Do not use a multiqueue device to represent a subordinate channel */
2834 	if (netif_is_multiqueue(dev))
2835 		return -ENODEV;
2836 
2837 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2838 	 * Channel 0 is meant to be "native" mode and used only to represent
2839 	 * the main root device. We allow writing 0 to reset the device back
2840 	 * to normal mode after being used as a subordinate channel.
2841 	 */
2842 	if (channel > S16_MAX)
2843 		return -EINVAL;
2844 
2845 	dev->num_tc = -channel;
2846 
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850 
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857 	bool disabling;
2858 	int rc;
2859 
2860 	disabling = txq < dev->real_num_tx_queues;
2861 
2862 	if (txq < 1 || txq > dev->num_tx_queues)
2863 		return -EINVAL;
2864 
2865 	if (dev->reg_state == NETREG_REGISTERED ||
2866 	    dev->reg_state == NETREG_UNREGISTERING) {
2867 		ASSERT_RTNL();
2868 
2869 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 						  txq);
2871 		if (rc)
2872 			return rc;
2873 
2874 		if (dev->num_tc)
2875 			netif_setup_tc(dev, txq);
2876 
2877 		dev->real_num_tx_queues = txq;
2878 
2879 		if (disabling) {
2880 			synchronize_net();
2881 			qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883 			netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885 		}
2886 	} else {
2887 		dev->real_num_tx_queues = txq;
2888 	}
2889 
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893 
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *	@dev: Network device
2898  *	@rxq: Actual number of RX queues
2899  *
2900  *	This must be called either with the rtnl_lock held or before
2901  *	registration of the net device.  Returns 0 on success, or a
2902  *	negative error code.  If called before registration, it always
2903  *	succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907 	int rc;
2908 
2909 	if (rxq < 1 || rxq > dev->num_rx_queues)
2910 		return -EINVAL;
2911 
2912 	if (dev->reg_state == NETREG_REGISTERED) {
2913 		ASSERT_RTNL();
2914 
2915 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 						  rxq);
2917 		if (rc)
2918 			return rc;
2919 	}
2920 
2921 	dev->real_num_rx_queues = rxq;
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926 
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935 	return is_kdump_kernel() ?
2936 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939 
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942 	struct softnet_data *sd;
2943 	unsigned long flags;
2944 
2945 	local_irq_save(flags);
2946 	sd = this_cpu_ptr(&softnet_data);
2947 	q->next_sched = NULL;
2948 	*sd->output_queue_tailp = q;
2949 	sd->output_queue_tailp = &q->next_sched;
2950 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 	local_irq_restore(flags);
2952 }
2953 
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 		__netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960 
2961 struct dev_kfree_skb_cb {
2962 	enum skb_free_reason reason;
2963 };
2964 
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967 	return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969 
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972 	rcu_read_lock();
2973 	if (!netif_xmit_stopped(txq)) {
2974 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2975 
2976 		__netif_schedule(q);
2977 	}
2978 	rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981 
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 		struct Qdisc *q;
2986 
2987 		rcu_read_lock();
2988 		q = rcu_dereference(dev_queue->qdisc);
2989 		__netif_schedule(q);
2990 		rcu_read_unlock();
2991 	}
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994 
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997 	unsigned long flags;
2998 
2999 	if (unlikely(!skb))
3000 		return;
3001 
3002 	if (likely(refcount_read(&skb->users) == 1)) {
3003 		smp_rmb();
3004 		refcount_set(&skb->users, 0);
3005 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3006 		return;
3007 	}
3008 	get_kfree_skb_cb(skb)->reason = reason;
3009 	local_irq_save(flags);
3010 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 	__this_cpu_write(softnet_data.completion_queue, skb);
3012 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 	local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016 
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019 	if (in_irq() || irqs_disabled())
3020 		__dev_kfree_skb_irq(skb, reason);
3021 	else
3022 		dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025 
3026 
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 	    netif_running(dev)) {
3037 		netif_tx_stop_all_queues(dev);
3038 	}
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041 
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 	    netif_running(dev)) {
3052 		netif_tx_wake_all_queues(dev);
3053 		__netdev_watchdog_up(dev);
3054 	}
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057 
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063 		       const struct net_device *sb_dev,
3064 		       struct sk_buff *skb)
3065 {
3066 	u32 hash;
3067 	u16 qoffset = 0;
3068 	u16 qcount = dev->real_num_tx_queues;
3069 
3070 	if (dev->num_tc) {
3071 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072 
3073 		qoffset = sb_dev->tc_to_txq[tc].offset;
3074 		qcount = sb_dev->tc_to_txq[tc].count;
3075 	}
3076 
3077 	if (skb_rx_queue_recorded(skb)) {
3078 		hash = skb_get_rx_queue(skb);
3079 		while (unlikely(hash >= qcount))
3080 			hash -= qcount;
3081 		return hash + qoffset;
3082 	}
3083 
3084 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3085 }
3086 
3087 static void skb_warn_bad_offload(const struct sk_buff *skb)
3088 {
3089 	static const netdev_features_t null_features;
3090 	struct net_device *dev = skb->dev;
3091 	const char *name = "";
3092 
3093 	if (!net_ratelimit())
3094 		return;
3095 
3096 	if (dev) {
3097 		if (dev->dev.parent)
3098 			name = dev_driver_string(dev->dev.parent);
3099 		else
3100 			name = netdev_name(dev);
3101 	}
3102 	skb_dump(KERN_WARNING, skb, false);
3103 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3104 	     name, dev ? &dev->features : &null_features,
3105 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3106 }
3107 
3108 /*
3109  * Invalidate hardware checksum when packet is to be mangled, and
3110  * complete checksum manually on outgoing path.
3111  */
3112 int skb_checksum_help(struct sk_buff *skb)
3113 {
3114 	__wsum csum;
3115 	int ret = 0, offset;
3116 
3117 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3118 		goto out_set_summed;
3119 
3120 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3121 		skb_warn_bad_offload(skb);
3122 		return -EINVAL;
3123 	}
3124 
3125 	/* Before computing a checksum, we should make sure no frag could
3126 	 * be modified by an external entity : checksum could be wrong.
3127 	 */
3128 	if (skb_has_shared_frag(skb)) {
3129 		ret = __skb_linearize(skb);
3130 		if (ret)
3131 			goto out;
3132 	}
3133 
3134 	offset = skb_checksum_start_offset(skb);
3135 	BUG_ON(offset >= skb_headlen(skb));
3136 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3137 
3138 	offset += skb->csum_offset;
3139 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3140 
3141 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3142 	if (ret)
3143 		goto out;
3144 
3145 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3146 out_set_summed:
3147 	skb->ip_summed = CHECKSUM_NONE;
3148 out:
3149 	return ret;
3150 }
3151 EXPORT_SYMBOL(skb_checksum_help);
3152 
3153 int skb_crc32c_csum_help(struct sk_buff *skb)
3154 {
3155 	__le32 crc32c_csum;
3156 	int ret = 0, offset, start;
3157 
3158 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3159 		goto out;
3160 
3161 	if (unlikely(skb_is_gso(skb)))
3162 		goto out;
3163 
3164 	/* Before computing a checksum, we should make sure no frag could
3165 	 * be modified by an external entity : checksum could be wrong.
3166 	 */
3167 	if (unlikely(skb_has_shared_frag(skb))) {
3168 		ret = __skb_linearize(skb);
3169 		if (ret)
3170 			goto out;
3171 	}
3172 	start = skb_checksum_start_offset(skb);
3173 	offset = start + offsetof(struct sctphdr, checksum);
3174 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3175 		ret = -EINVAL;
3176 		goto out;
3177 	}
3178 
3179 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3180 	if (ret)
3181 		goto out;
3182 
3183 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3184 						  skb->len - start, ~(__u32)0,
3185 						  crc32c_csum_stub));
3186 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3187 	skb->ip_summed = CHECKSUM_NONE;
3188 	skb->csum_not_inet = 0;
3189 out:
3190 	return ret;
3191 }
3192 
3193 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3194 {
3195 	__be16 type = skb->protocol;
3196 
3197 	/* Tunnel gso handlers can set protocol to ethernet. */
3198 	if (type == htons(ETH_P_TEB)) {
3199 		struct ethhdr *eth;
3200 
3201 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3202 			return 0;
3203 
3204 		eth = (struct ethhdr *)skb->data;
3205 		type = eth->h_proto;
3206 	}
3207 
3208 	return __vlan_get_protocol(skb, type, depth);
3209 }
3210 
3211 /**
3212  *	skb_mac_gso_segment - mac layer segmentation handler.
3213  *	@skb: buffer to segment
3214  *	@features: features for the output path (see dev->features)
3215  */
3216 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3217 				    netdev_features_t features)
3218 {
3219 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3220 	struct packet_offload *ptype;
3221 	int vlan_depth = skb->mac_len;
3222 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3223 
3224 	if (unlikely(!type))
3225 		return ERR_PTR(-EINVAL);
3226 
3227 	__skb_pull(skb, vlan_depth);
3228 
3229 	rcu_read_lock();
3230 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3231 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3232 			segs = ptype->callbacks.gso_segment(skb, features);
3233 			break;
3234 		}
3235 	}
3236 	rcu_read_unlock();
3237 
3238 	__skb_push(skb, skb->data - skb_mac_header(skb));
3239 
3240 	return segs;
3241 }
3242 EXPORT_SYMBOL(skb_mac_gso_segment);
3243 
3244 
3245 /* openvswitch calls this on rx path, so we need a different check.
3246  */
3247 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3248 {
3249 	if (tx_path)
3250 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3251 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3252 
3253 	return skb->ip_summed == CHECKSUM_NONE;
3254 }
3255 
3256 /**
3257  *	__skb_gso_segment - Perform segmentation on skb.
3258  *	@skb: buffer to segment
3259  *	@features: features for the output path (see dev->features)
3260  *	@tx_path: whether it is called in TX path
3261  *
3262  *	This function segments the given skb and returns a list of segments.
3263  *
3264  *	It may return NULL if the skb requires no segmentation.  This is
3265  *	only possible when GSO is used for verifying header integrity.
3266  *
3267  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3268  */
3269 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3270 				  netdev_features_t features, bool tx_path)
3271 {
3272 	struct sk_buff *segs;
3273 
3274 	if (unlikely(skb_needs_check(skb, tx_path))) {
3275 		int err;
3276 
3277 		/* We're going to init ->check field in TCP or UDP header */
3278 		err = skb_cow_head(skb, 0);
3279 		if (err < 0)
3280 			return ERR_PTR(err);
3281 	}
3282 
3283 	/* Only report GSO partial support if it will enable us to
3284 	 * support segmentation on this frame without needing additional
3285 	 * work.
3286 	 */
3287 	if (features & NETIF_F_GSO_PARTIAL) {
3288 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3289 		struct net_device *dev = skb->dev;
3290 
3291 		partial_features |= dev->features & dev->gso_partial_features;
3292 		if (!skb_gso_ok(skb, features | partial_features))
3293 			features &= ~NETIF_F_GSO_PARTIAL;
3294 	}
3295 
3296 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3297 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3298 
3299 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3300 	SKB_GSO_CB(skb)->encap_level = 0;
3301 
3302 	skb_reset_mac_header(skb);
3303 	skb_reset_mac_len(skb);
3304 
3305 	segs = skb_mac_gso_segment(skb, features);
3306 
3307 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3308 		skb_warn_bad_offload(skb);
3309 
3310 	return segs;
3311 }
3312 EXPORT_SYMBOL(__skb_gso_segment);
3313 
3314 /* Take action when hardware reception checksum errors are detected. */
3315 #ifdef CONFIG_BUG
3316 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3317 {
3318 	if (net_ratelimit()) {
3319 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3320 		skb_dump(KERN_ERR, skb, true);
3321 		dump_stack();
3322 	}
3323 }
3324 EXPORT_SYMBOL(netdev_rx_csum_fault);
3325 #endif
3326 
3327 /* XXX: check that highmem exists at all on the given machine. */
3328 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3329 {
3330 #ifdef CONFIG_HIGHMEM
3331 	int i;
3332 
3333 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3334 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3335 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3336 
3337 			if (PageHighMem(skb_frag_page(frag)))
3338 				return 1;
3339 		}
3340 	}
3341 #endif
3342 	return 0;
3343 }
3344 
3345 /* If MPLS offload request, verify we are testing hardware MPLS features
3346  * instead of standard features for the netdev.
3347  */
3348 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3349 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3350 					   netdev_features_t features,
3351 					   __be16 type)
3352 {
3353 	if (eth_p_mpls(type))
3354 		features &= skb->dev->mpls_features;
3355 
3356 	return features;
3357 }
3358 #else
3359 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3360 					   netdev_features_t features,
3361 					   __be16 type)
3362 {
3363 	return features;
3364 }
3365 #endif
3366 
3367 static netdev_features_t harmonize_features(struct sk_buff *skb,
3368 	netdev_features_t features)
3369 {
3370 	int tmp;
3371 	__be16 type;
3372 
3373 	type = skb_network_protocol(skb, &tmp);
3374 	features = net_mpls_features(skb, features, type);
3375 
3376 	if (skb->ip_summed != CHECKSUM_NONE &&
3377 	    !can_checksum_protocol(features, type)) {
3378 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3379 	}
3380 	if (illegal_highdma(skb->dev, skb))
3381 		features &= ~NETIF_F_SG;
3382 
3383 	return features;
3384 }
3385 
3386 netdev_features_t passthru_features_check(struct sk_buff *skb,
3387 					  struct net_device *dev,
3388 					  netdev_features_t features)
3389 {
3390 	return features;
3391 }
3392 EXPORT_SYMBOL(passthru_features_check);
3393 
3394 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3395 					     struct net_device *dev,
3396 					     netdev_features_t features)
3397 {
3398 	return vlan_features_check(skb, features);
3399 }
3400 
3401 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3402 					    struct net_device *dev,
3403 					    netdev_features_t features)
3404 {
3405 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3406 
3407 	if (gso_segs > dev->gso_max_segs)
3408 		return features & ~NETIF_F_GSO_MASK;
3409 
3410 	/* Support for GSO partial features requires software
3411 	 * intervention before we can actually process the packets
3412 	 * so we need to strip support for any partial features now
3413 	 * and we can pull them back in after we have partially
3414 	 * segmented the frame.
3415 	 */
3416 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3417 		features &= ~dev->gso_partial_features;
3418 
3419 	/* Make sure to clear the IPv4 ID mangling feature if the
3420 	 * IPv4 header has the potential to be fragmented.
3421 	 */
3422 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3423 		struct iphdr *iph = skb->encapsulation ?
3424 				    inner_ip_hdr(skb) : ip_hdr(skb);
3425 
3426 		if (!(iph->frag_off & htons(IP_DF)))
3427 			features &= ~NETIF_F_TSO_MANGLEID;
3428 	}
3429 
3430 	return features;
3431 }
3432 
3433 netdev_features_t netif_skb_features(struct sk_buff *skb)
3434 {
3435 	struct net_device *dev = skb->dev;
3436 	netdev_features_t features = dev->features;
3437 
3438 	if (skb_is_gso(skb))
3439 		features = gso_features_check(skb, dev, features);
3440 
3441 	/* If encapsulation offload request, verify we are testing
3442 	 * hardware encapsulation features instead of standard
3443 	 * features for the netdev
3444 	 */
3445 	if (skb->encapsulation)
3446 		features &= dev->hw_enc_features;
3447 
3448 	if (skb_vlan_tagged(skb))
3449 		features = netdev_intersect_features(features,
3450 						     dev->vlan_features |
3451 						     NETIF_F_HW_VLAN_CTAG_TX |
3452 						     NETIF_F_HW_VLAN_STAG_TX);
3453 
3454 	if (dev->netdev_ops->ndo_features_check)
3455 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3456 								features);
3457 	else
3458 		features &= dflt_features_check(skb, dev, features);
3459 
3460 	return harmonize_features(skb, features);
3461 }
3462 EXPORT_SYMBOL(netif_skb_features);
3463 
3464 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3465 		    struct netdev_queue *txq, bool more)
3466 {
3467 	unsigned int len;
3468 	int rc;
3469 
3470 	if (dev_nit_active(dev))
3471 		dev_queue_xmit_nit(skb, dev);
3472 
3473 	len = skb->len;
3474 	trace_net_dev_start_xmit(skb, dev);
3475 	rc = netdev_start_xmit(skb, dev, txq, more);
3476 	trace_net_dev_xmit(skb, rc, dev, len);
3477 
3478 	return rc;
3479 }
3480 
3481 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3482 				    struct netdev_queue *txq, int *ret)
3483 {
3484 	struct sk_buff *skb = first;
3485 	int rc = NETDEV_TX_OK;
3486 
3487 	while (skb) {
3488 		struct sk_buff *next = skb->next;
3489 
3490 		skb_mark_not_on_list(skb);
3491 		rc = xmit_one(skb, dev, txq, next != NULL);
3492 		if (unlikely(!dev_xmit_complete(rc))) {
3493 			skb->next = next;
3494 			goto out;
3495 		}
3496 
3497 		skb = next;
3498 		if (netif_tx_queue_stopped(txq) && skb) {
3499 			rc = NETDEV_TX_BUSY;
3500 			break;
3501 		}
3502 	}
3503 
3504 out:
3505 	*ret = rc;
3506 	return skb;
3507 }
3508 
3509 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3510 					  netdev_features_t features)
3511 {
3512 	if (skb_vlan_tag_present(skb) &&
3513 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3514 		skb = __vlan_hwaccel_push_inside(skb);
3515 	return skb;
3516 }
3517 
3518 int skb_csum_hwoffload_help(struct sk_buff *skb,
3519 			    const netdev_features_t features)
3520 {
3521 	if (unlikely(skb->csum_not_inet))
3522 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3523 			skb_crc32c_csum_help(skb);
3524 
3525 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3526 }
3527 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3528 
3529 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3530 {
3531 	netdev_features_t features;
3532 
3533 	features = netif_skb_features(skb);
3534 	skb = validate_xmit_vlan(skb, features);
3535 	if (unlikely(!skb))
3536 		goto out_null;
3537 
3538 	skb = sk_validate_xmit_skb(skb, dev);
3539 	if (unlikely(!skb))
3540 		goto out_null;
3541 
3542 	if (netif_needs_gso(skb, features)) {
3543 		struct sk_buff *segs;
3544 
3545 		segs = skb_gso_segment(skb, features);
3546 		if (IS_ERR(segs)) {
3547 			goto out_kfree_skb;
3548 		} else if (segs) {
3549 			consume_skb(skb);
3550 			skb = segs;
3551 		}
3552 	} else {
3553 		if (skb_needs_linearize(skb, features) &&
3554 		    __skb_linearize(skb))
3555 			goto out_kfree_skb;
3556 
3557 		/* If packet is not checksummed and device does not
3558 		 * support checksumming for this protocol, complete
3559 		 * checksumming here.
3560 		 */
3561 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3562 			if (skb->encapsulation)
3563 				skb_set_inner_transport_header(skb,
3564 							       skb_checksum_start_offset(skb));
3565 			else
3566 				skb_set_transport_header(skb,
3567 							 skb_checksum_start_offset(skb));
3568 			if (skb_csum_hwoffload_help(skb, features))
3569 				goto out_kfree_skb;
3570 		}
3571 	}
3572 
3573 	skb = validate_xmit_xfrm(skb, features, again);
3574 
3575 	return skb;
3576 
3577 out_kfree_skb:
3578 	kfree_skb(skb);
3579 out_null:
3580 	atomic_long_inc(&dev->tx_dropped);
3581 	return NULL;
3582 }
3583 
3584 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3585 {
3586 	struct sk_buff *next, *head = NULL, *tail;
3587 
3588 	for (; skb != NULL; skb = next) {
3589 		next = skb->next;
3590 		skb_mark_not_on_list(skb);
3591 
3592 		/* in case skb wont be segmented, point to itself */
3593 		skb->prev = skb;
3594 
3595 		skb = validate_xmit_skb(skb, dev, again);
3596 		if (!skb)
3597 			continue;
3598 
3599 		if (!head)
3600 			head = skb;
3601 		else
3602 			tail->next = skb;
3603 		/* If skb was segmented, skb->prev points to
3604 		 * the last segment. If not, it still contains skb.
3605 		 */
3606 		tail = skb->prev;
3607 	}
3608 	return head;
3609 }
3610 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3611 
3612 static void qdisc_pkt_len_init(struct sk_buff *skb)
3613 {
3614 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3615 
3616 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3617 
3618 	/* To get more precise estimation of bytes sent on wire,
3619 	 * we add to pkt_len the headers size of all segments
3620 	 */
3621 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3622 		unsigned int hdr_len;
3623 		u16 gso_segs = shinfo->gso_segs;
3624 
3625 		/* mac layer + network layer */
3626 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3627 
3628 		/* + transport layer */
3629 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3630 			const struct tcphdr *th;
3631 			struct tcphdr _tcphdr;
3632 
3633 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3634 						sizeof(_tcphdr), &_tcphdr);
3635 			if (likely(th))
3636 				hdr_len += __tcp_hdrlen(th);
3637 		} else {
3638 			struct udphdr _udphdr;
3639 
3640 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3641 					       sizeof(_udphdr), &_udphdr))
3642 				hdr_len += sizeof(struct udphdr);
3643 		}
3644 
3645 		if (shinfo->gso_type & SKB_GSO_DODGY)
3646 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3647 						shinfo->gso_size);
3648 
3649 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3650 	}
3651 }
3652 
3653 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3654 				 struct net_device *dev,
3655 				 struct netdev_queue *txq)
3656 {
3657 	spinlock_t *root_lock = qdisc_lock(q);
3658 	struct sk_buff *to_free = NULL;
3659 	bool contended;
3660 	int rc;
3661 
3662 	qdisc_calculate_pkt_len(skb, q);
3663 
3664 	if (q->flags & TCQ_F_NOLOCK) {
3665 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3666 		qdisc_run(q);
3667 
3668 		if (unlikely(to_free))
3669 			kfree_skb_list(to_free);
3670 		return rc;
3671 	}
3672 
3673 	/*
3674 	 * Heuristic to force contended enqueues to serialize on a
3675 	 * separate lock before trying to get qdisc main lock.
3676 	 * This permits qdisc->running owner to get the lock more
3677 	 * often and dequeue packets faster.
3678 	 */
3679 	contended = qdisc_is_running(q);
3680 	if (unlikely(contended))
3681 		spin_lock(&q->busylock);
3682 
3683 	spin_lock(root_lock);
3684 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3685 		__qdisc_drop(skb, &to_free);
3686 		rc = NET_XMIT_DROP;
3687 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3688 		   qdisc_run_begin(q)) {
3689 		/*
3690 		 * This is a work-conserving queue; there are no old skbs
3691 		 * waiting to be sent out; and the qdisc is not running -
3692 		 * xmit the skb directly.
3693 		 */
3694 
3695 		qdisc_bstats_update(q, skb);
3696 
3697 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3698 			if (unlikely(contended)) {
3699 				spin_unlock(&q->busylock);
3700 				contended = false;
3701 			}
3702 			__qdisc_run(q);
3703 		}
3704 
3705 		qdisc_run_end(q);
3706 		rc = NET_XMIT_SUCCESS;
3707 	} else {
3708 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3709 		if (qdisc_run_begin(q)) {
3710 			if (unlikely(contended)) {
3711 				spin_unlock(&q->busylock);
3712 				contended = false;
3713 			}
3714 			__qdisc_run(q);
3715 			qdisc_run_end(q);
3716 		}
3717 	}
3718 	spin_unlock(root_lock);
3719 	if (unlikely(to_free))
3720 		kfree_skb_list(to_free);
3721 	if (unlikely(contended))
3722 		spin_unlock(&q->busylock);
3723 	return rc;
3724 }
3725 
3726 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3727 static void skb_update_prio(struct sk_buff *skb)
3728 {
3729 	const struct netprio_map *map;
3730 	const struct sock *sk;
3731 	unsigned int prioidx;
3732 
3733 	if (skb->priority)
3734 		return;
3735 	map = rcu_dereference_bh(skb->dev->priomap);
3736 	if (!map)
3737 		return;
3738 	sk = skb_to_full_sk(skb);
3739 	if (!sk)
3740 		return;
3741 
3742 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3743 
3744 	if (prioidx < map->priomap_len)
3745 		skb->priority = map->priomap[prioidx];
3746 }
3747 #else
3748 #define skb_update_prio(skb)
3749 #endif
3750 
3751 /**
3752  *	dev_loopback_xmit - loop back @skb
3753  *	@net: network namespace this loopback is happening in
3754  *	@sk:  sk needed to be a netfilter okfn
3755  *	@skb: buffer to transmit
3756  */
3757 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3758 {
3759 	skb_reset_mac_header(skb);
3760 	__skb_pull(skb, skb_network_offset(skb));
3761 	skb->pkt_type = PACKET_LOOPBACK;
3762 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3763 	WARN_ON(!skb_dst(skb));
3764 	skb_dst_force(skb);
3765 	netif_rx_ni(skb);
3766 	return 0;
3767 }
3768 EXPORT_SYMBOL(dev_loopback_xmit);
3769 
3770 #ifdef CONFIG_NET_EGRESS
3771 static struct sk_buff *
3772 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3773 {
3774 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3775 	struct tcf_result cl_res;
3776 
3777 	if (!miniq)
3778 		return skb;
3779 
3780 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3781 	mini_qdisc_bstats_cpu_update(miniq, skb);
3782 
3783 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3784 	case TC_ACT_OK:
3785 	case TC_ACT_RECLASSIFY:
3786 		skb->tc_index = TC_H_MIN(cl_res.classid);
3787 		break;
3788 	case TC_ACT_SHOT:
3789 		mini_qdisc_qstats_cpu_drop(miniq);
3790 		*ret = NET_XMIT_DROP;
3791 		kfree_skb(skb);
3792 		return NULL;
3793 	case TC_ACT_STOLEN:
3794 	case TC_ACT_QUEUED:
3795 	case TC_ACT_TRAP:
3796 		*ret = NET_XMIT_SUCCESS;
3797 		consume_skb(skb);
3798 		return NULL;
3799 	case TC_ACT_REDIRECT:
3800 		/* No need to push/pop skb's mac_header here on egress! */
3801 		skb_do_redirect(skb);
3802 		*ret = NET_XMIT_SUCCESS;
3803 		return NULL;
3804 	default:
3805 		break;
3806 	}
3807 
3808 	return skb;
3809 }
3810 #endif /* CONFIG_NET_EGRESS */
3811 
3812 #ifdef CONFIG_XPS
3813 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3814 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3815 {
3816 	struct xps_map *map;
3817 	int queue_index = -1;
3818 
3819 	if (dev->num_tc) {
3820 		tci *= dev->num_tc;
3821 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3822 	}
3823 
3824 	map = rcu_dereference(dev_maps->attr_map[tci]);
3825 	if (map) {
3826 		if (map->len == 1)
3827 			queue_index = map->queues[0];
3828 		else
3829 			queue_index = map->queues[reciprocal_scale(
3830 						skb_get_hash(skb), map->len)];
3831 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3832 			queue_index = -1;
3833 	}
3834 	return queue_index;
3835 }
3836 #endif
3837 
3838 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3839 			 struct sk_buff *skb)
3840 {
3841 #ifdef CONFIG_XPS
3842 	struct xps_dev_maps *dev_maps;
3843 	struct sock *sk = skb->sk;
3844 	int queue_index = -1;
3845 
3846 	if (!static_key_false(&xps_needed))
3847 		return -1;
3848 
3849 	rcu_read_lock();
3850 	if (!static_key_false(&xps_rxqs_needed))
3851 		goto get_cpus_map;
3852 
3853 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3854 	if (dev_maps) {
3855 		int tci = sk_rx_queue_get(sk);
3856 
3857 		if (tci >= 0 && tci < dev->num_rx_queues)
3858 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3859 							  tci);
3860 	}
3861 
3862 get_cpus_map:
3863 	if (queue_index < 0) {
3864 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3865 		if (dev_maps) {
3866 			unsigned int tci = skb->sender_cpu - 1;
3867 
3868 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3869 							  tci);
3870 		}
3871 	}
3872 	rcu_read_unlock();
3873 
3874 	return queue_index;
3875 #else
3876 	return -1;
3877 #endif
3878 }
3879 
3880 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3881 		     struct net_device *sb_dev)
3882 {
3883 	return 0;
3884 }
3885 EXPORT_SYMBOL(dev_pick_tx_zero);
3886 
3887 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3888 		       struct net_device *sb_dev)
3889 {
3890 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3891 }
3892 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3893 
3894 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3895 		     struct net_device *sb_dev)
3896 {
3897 	struct sock *sk = skb->sk;
3898 	int queue_index = sk_tx_queue_get(sk);
3899 
3900 	sb_dev = sb_dev ? : dev;
3901 
3902 	if (queue_index < 0 || skb->ooo_okay ||
3903 	    queue_index >= dev->real_num_tx_queues) {
3904 		int new_index = get_xps_queue(dev, sb_dev, skb);
3905 
3906 		if (new_index < 0)
3907 			new_index = skb_tx_hash(dev, sb_dev, skb);
3908 
3909 		if (queue_index != new_index && sk &&
3910 		    sk_fullsock(sk) &&
3911 		    rcu_access_pointer(sk->sk_dst_cache))
3912 			sk_tx_queue_set(sk, new_index);
3913 
3914 		queue_index = new_index;
3915 	}
3916 
3917 	return queue_index;
3918 }
3919 EXPORT_SYMBOL(netdev_pick_tx);
3920 
3921 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3922 					 struct sk_buff *skb,
3923 					 struct net_device *sb_dev)
3924 {
3925 	int queue_index = 0;
3926 
3927 #ifdef CONFIG_XPS
3928 	u32 sender_cpu = skb->sender_cpu - 1;
3929 
3930 	if (sender_cpu >= (u32)NR_CPUS)
3931 		skb->sender_cpu = raw_smp_processor_id() + 1;
3932 #endif
3933 
3934 	if (dev->real_num_tx_queues != 1) {
3935 		const struct net_device_ops *ops = dev->netdev_ops;
3936 
3937 		if (ops->ndo_select_queue)
3938 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3939 		else
3940 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3941 
3942 		queue_index = netdev_cap_txqueue(dev, queue_index);
3943 	}
3944 
3945 	skb_set_queue_mapping(skb, queue_index);
3946 	return netdev_get_tx_queue(dev, queue_index);
3947 }
3948 
3949 /**
3950  *	__dev_queue_xmit - transmit a buffer
3951  *	@skb: buffer to transmit
3952  *	@sb_dev: suboordinate device used for L2 forwarding offload
3953  *
3954  *	Queue a buffer for transmission to a network device. The caller must
3955  *	have set the device and priority and built the buffer before calling
3956  *	this function. The function can be called from an interrupt.
3957  *
3958  *	A negative errno code is returned on a failure. A success does not
3959  *	guarantee the frame will be transmitted as it may be dropped due
3960  *	to congestion or traffic shaping.
3961  *
3962  * -----------------------------------------------------------------------------------
3963  *      I notice this method can also return errors from the queue disciplines,
3964  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3965  *      be positive.
3966  *
3967  *      Regardless of the return value, the skb is consumed, so it is currently
3968  *      difficult to retry a send to this method.  (You can bump the ref count
3969  *      before sending to hold a reference for retry if you are careful.)
3970  *
3971  *      When calling this method, interrupts MUST be enabled.  This is because
3972  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3973  *          --BLG
3974  */
3975 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3976 {
3977 	struct net_device *dev = skb->dev;
3978 	struct netdev_queue *txq;
3979 	struct Qdisc *q;
3980 	int rc = -ENOMEM;
3981 	bool again = false;
3982 
3983 	skb_reset_mac_header(skb);
3984 
3985 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3986 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3987 
3988 	/* Disable soft irqs for various locks below. Also
3989 	 * stops preemption for RCU.
3990 	 */
3991 	rcu_read_lock_bh();
3992 
3993 	skb_update_prio(skb);
3994 
3995 	qdisc_pkt_len_init(skb);
3996 #ifdef CONFIG_NET_CLS_ACT
3997 	skb->tc_at_ingress = 0;
3998 # ifdef CONFIG_NET_EGRESS
3999 	if (static_branch_unlikely(&egress_needed_key)) {
4000 		skb = sch_handle_egress(skb, &rc, dev);
4001 		if (!skb)
4002 			goto out;
4003 	}
4004 # endif
4005 #endif
4006 	/* If device/qdisc don't need skb->dst, release it right now while
4007 	 * its hot in this cpu cache.
4008 	 */
4009 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4010 		skb_dst_drop(skb);
4011 	else
4012 		skb_dst_force(skb);
4013 
4014 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4015 	q = rcu_dereference_bh(txq->qdisc);
4016 
4017 	trace_net_dev_queue(skb);
4018 	if (q->enqueue) {
4019 		rc = __dev_xmit_skb(skb, q, dev, txq);
4020 		goto out;
4021 	}
4022 
4023 	/* The device has no queue. Common case for software devices:
4024 	 * loopback, all the sorts of tunnels...
4025 
4026 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4027 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4028 	 * counters.)
4029 	 * However, it is possible, that they rely on protection
4030 	 * made by us here.
4031 
4032 	 * Check this and shot the lock. It is not prone from deadlocks.
4033 	 *Either shot noqueue qdisc, it is even simpler 8)
4034 	 */
4035 	if (dev->flags & IFF_UP) {
4036 		int cpu = smp_processor_id(); /* ok because BHs are off */
4037 
4038 		if (txq->xmit_lock_owner != cpu) {
4039 			if (dev_xmit_recursion())
4040 				goto recursion_alert;
4041 
4042 			skb = validate_xmit_skb(skb, dev, &again);
4043 			if (!skb)
4044 				goto out;
4045 
4046 			HARD_TX_LOCK(dev, txq, cpu);
4047 
4048 			if (!netif_xmit_stopped(txq)) {
4049 				dev_xmit_recursion_inc();
4050 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4051 				dev_xmit_recursion_dec();
4052 				if (dev_xmit_complete(rc)) {
4053 					HARD_TX_UNLOCK(dev, txq);
4054 					goto out;
4055 				}
4056 			}
4057 			HARD_TX_UNLOCK(dev, txq);
4058 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4059 					     dev->name);
4060 		} else {
4061 			/* Recursion is detected! It is possible,
4062 			 * unfortunately
4063 			 */
4064 recursion_alert:
4065 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4066 					     dev->name);
4067 		}
4068 	}
4069 
4070 	rc = -ENETDOWN;
4071 	rcu_read_unlock_bh();
4072 
4073 	atomic_long_inc(&dev->tx_dropped);
4074 	kfree_skb_list(skb);
4075 	return rc;
4076 out:
4077 	rcu_read_unlock_bh();
4078 	return rc;
4079 }
4080 
4081 int dev_queue_xmit(struct sk_buff *skb)
4082 {
4083 	return __dev_queue_xmit(skb, NULL);
4084 }
4085 EXPORT_SYMBOL(dev_queue_xmit);
4086 
4087 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4088 {
4089 	return __dev_queue_xmit(skb, sb_dev);
4090 }
4091 EXPORT_SYMBOL(dev_queue_xmit_accel);
4092 
4093 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4094 {
4095 	struct net_device *dev = skb->dev;
4096 	struct sk_buff *orig_skb = skb;
4097 	struct netdev_queue *txq;
4098 	int ret = NETDEV_TX_BUSY;
4099 	bool again = false;
4100 
4101 	if (unlikely(!netif_running(dev) ||
4102 		     !netif_carrier_ok(dev)))
4103 		goto drop;
4104 
4105 	skb = validate_xmit_skb_list(skb, dev, &again);
4106 	if (skb != orig_skb)
4107 		goto drop;
4108 
4109 	skb_set_queue_mapping(skb, queue_id);
4110 	txq = skb_get_tx_queue(dev, skb);
4111 
4112 	local_bh_disable();
4113 
4114 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4115 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4116 		ret = netdev_start_xmit(skb, dev, txq, false);
4117 	HARD_TX_UNLOCK(dev, txq);
4118 
4119 	local_bh_enable();
4120 
4121 	if (!dev_xmit_complete(ret))
4122 		kfree_skb(skb);
4123 
4124 	return ret;
4125 drop:
4126 	atomic_long_inc(&dev->tx_dropped);
4127 	kfree_skb_list(skb);
4128 	return NET_XMIT_DROP;
4129 }
4130 EXPORT_SYMBOL(dev_direct_xmit);
4131 
4132 /*************************************************************************
4133  *			Receiver routines
4134  *************************************************************************/
4135 
4136 int netdev_max_backlog __read_mostly = 1000;
4137 EXPORT_SYMBOL(netdev_max_backlog);
4138 
4139 int netdev_tstamp_prequeue __read_mostly = 1;
4140 int netdev_budget __read_mostly = 300;
4141 unsigned int __read_mostly netdev_budget_usecs = 2000;
4142 int weight_p __read_mostly = 64;           /* old backlog weight */
4143 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4144 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4145 int dev_rx_weight __read_mostly = 64;
4146 int dev_tx_weight __read_mostly = 64;
4147 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4148 int gro_normal_batch __read_mostly = 8;
4149 
4150 /* Called with irq disabled */
4151 static inline void ____napi_schedule(struct softnet_data *sd,
4152 				     struct napi_struct *napi)
4153 {
4154 	list_add_tail(&napi->poll_list, &sd->poll_list);
4155 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4156 }
4157 
4158 #ifdef CONFIG_RPS
4159 
4160 /* One global table that all flow-based protocols share. */
4161 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4162 EXPORT_SYMBOL(rps_sock_flow_table);
4163 u32 rps_cpu_mask __read_mostly;
4164 EXPORT_SYMBOL(rps_cpu_mask);
4165 
4166 struct static_key_false rps_needed __read_mostly;
4167 EXPORT_SYMBOL(rps_needed);
4168 struct static_key_false rfs_needed __read_mostly;
4169 EXPORT_SYMBOL(rfs_needed);
4170 
4171 static struct rps_dev_flow *
4172 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4173 	    struct rps_dev_flow *rflow, u16 next_cpu)
4174 {
4175 	if (next_cpu < nr_cpu_ids) {
4176 #ifdef CONFIG_RFS_ACCEL
4177 		struct netdev_rx_queue *rxqueue;
4178 		struct rps_dev_flow_table *flow_table;
4179 		struct rps_dev_flow *old_rflow;
4180 		u32 flow_id;
4181 		u16 rxq_index;
4182 		int rc;
4183 
4184 		/* Should we steer this flow to a different hardware queue? */
4185 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4186 		    !(dev->features & NETIF_F_NTUPLE))
4187 			goto out;
4188 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4189 		if (rxq_index == skb_get_rx_queue(skb))
4190 			goto out;
4191 
4192 		rxqueue = dev->_rx + rxq_index;
4193 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4194 		if (!flow_table)
4195 			goto out;
4196 		flow_id = skb_get_hash(skb) & flow_table->mask;
4197 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4198 							rxq_index, flow_id);
4199 		if (rc < 0)
4200 			goto out;
4201 		old_rflow = rflow;
4202 		rflow = &flow_table->flows[flow_id];
4203 		rflow->filter = rc;
4204 		if (old_rflow->filter == rflow->filter)
4205 			old_rflow->filter = RPS_NO_FILTER;
4206 	out:
4207 #endif
4208 		rflow->last_qtail =
4209 			per_cpu(softnet_data, next_cpu).input_queue_head;
4210 	}
4211 
4212 	rflow->cpu = next_cpu;
4213 	return rflow;
4214 }
4215 
4216 /*
4217  * get_rps_cpu is called from netif_receive_skb and returns the target
4218  * CPU from the RPS map of the receiving queue for a given skb.
4219  * rcu_read_lock must be held on entry.
4220  */
4221 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4222 		       struct rps_dev_flow **rflowp)
4223 {
4224 	const struct rps_sock_flow_table *sock_flow_table;
4225 	struct netdev_rx_queue *rxqueue = dev->_rx;
4226 	struct rps_dev_flow_table *flow_table;
4227 	struct rps_map *map;
4228 	int cpu = -1;
4229 	u32 tcpu;
4230 	u32 hash;
4231 
4232 	if (skb_rx_queue_recorded(skb)) {
4233 		u16 index = skb_get_rx_queue(skb);
4234 
4235 		if (unlikely(index >= dev->real_num_rx_queues)) {
4236 			WARN_ONCE(dev->real_num_rx_queues > 1,
4237 				  "%s received packet on queue %u, but number "
4238 				  "of RX queues is %u\n",
4239 				  dev->name, index, dev->real_num_rx_queues);
4240 			goto done;
4241 		}
4242 		rxqueue += index;
4243 	}
4244 
4245 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4246 
4247 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4248 	map = rcu_dereference(rxqueue->rps_map);
4249 	if (!flow_table && !map)
4250 		goto done;
4251 
4252 	skb_reset_network_header(skb);
4253 	hash = skb_get_hash(skb);
4254 	if (!hash)
4255 		goto done;
4256 
4257 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4258 	if (flow_table && sock_flow_table) {
4259 		struct rps_dev_flow *rflow;
4260 		u32 next_cpu;
4261 		u32 ident;
4262 
4263 		/* First check into global flow table if there is a match */
4264 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4265 		if ((ident ^ hash) & ~rps_cpu_mask)
4266 			goto try_rps;
4267 
4268 		next_cpu = ident & rps_cpu_mask;
4269 
4270 		/* OK, now we know there is a match,
4271 		 * we can look at the local (per receive queue) flow table
4272 		 */
4273 		rflow = &flow_table->flows[hash & flow_table->mask];
4274 		tcpu = rflow->cpu;
4275 
4276 		/*
4277 		 * If the desired CPU (where last recvmsg was done) is
4278 		 * different from current CPU (one in the rx-queue flow
4279 		 * table entry), switch if one of the following holds:
4280 		 *   - Current CPU is unset (>= nr_cpu_ids).
4281 		 *   - Current CPU is offline.
4282 		 *   - The current CPU's queue tail has advanced beyond the
4283 		 *     last packet that was enqueued using this table entry.
4284 		 *     This guarantees that all previous packets for the flow
4285 		 *     have been dequeued, thus preserving in order delivery.
4286 		 */
4287 		if (unlikely(tcpu != next_cpu) &&
4288 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4289 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4290 		      rflow->last_qtail)) >= 0)) {
4291 			tcpu = next_cpu;
4292 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4293 		}
4294 
4295 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4296 			*rflowp = rflow;
4297 			cpu = tcpu;
4298 			goto done;
4299 		}
4300 	}
4301 
4302 try_rps:
4303 
4304 	if (map) {
4305 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4306 		if (cpu_online(tcpu)) {
4307 			cpu = tcpu;
4308 			goto done;
4309 		}
4310 	}
4311 
4312 done:
4313 	return cpu;
4314 }
4315 
4316 #ifdef CONFIG_RFS_ACCEL
4317 
4318 /**
4319  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4320  * @dev: Device on which the filter was set
4321  * @rxq_index: RX queue index
4322  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4323  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4324  *
4325  * Drivers that implement ndo_rx_flow_steer() should periodically call
4326  * this function for each installed filter and remove the filters for
4327  * which it returns %true.
4328  */
4329 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4330 			 u32 flow_id, u16 filter_id)
4331 {
4332 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4333 	struct rps_dev_flow_table *flow_table;
4334 	struct rps_dev_flow *rflow;
4335 	bool expire = true;
4336 	unsigned int cpu;
4337 
4338 	rcu_read_lock();
4339 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4340 	if (flow_table && flow_id <= flow_table->mask) {
4341 		rflow = &flow_table->flows[flow_id];
4342 		cpu = READ_ONCE(rflow->cpu);
4343 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4344 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4345 			   rflow->last_qtail) <
4346 		     (int)(10 * flow_table->mask)))
4347 			expire = false;
4348 	}
4349 	rcu_read_unlock();
4350 	return expire;
4351 }
4352 EXPORT_SYMBOL(rps_may_expire_flow);
4353 
4354 #endif /* CONFIG_RFS_ACCEL */
4355 
4356 /* Called from hardirq (IPI) context */
4357 static void rps_trigger_softirq(void *data)
4358 {
4359 	struct softnet_data *sd = data;
4360 
4361 	____napi_schedule(sd, &sd->backlog);
4362 	sd->received_rps++;
4363 }
4364 
4365 #endif /* CONFIG_RPS */
4366 
4367 /*
4368  * Check if this softnet_data structure is another cpu one
4369  * If yes, queue it to our IPI list and return 1
4370  * If no, return 0
4371  */
4372 static int rps_ipi_queued(struct softnet_data *sd)
4373 {
4374 #ifdef CONFIG_RPS
4375 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4376 
4377 	if (sd != mysd) {
4378 		sd->rps_ipi_next = mysd->rps_ipi_list;
4379 		mysd->rps_ipi_list = sd;
4380 
4381 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4382 		return 1;
4383 	}
4384 #endif /* CONFIG_RPS */
4385 	return 0;
4386 }
4387 
4388 #ifdef CONFIG_NET_FLOW_LIMIT
4389 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4390 #endif
4391 
4392 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4393 {
4394 #ifdef CONFIG_NET_FLOW_LIMIT
4395 	struct sd_flow_limit *fl;
4396 	struct softnet_data *sd;
4397 	unsigned int old_flow, new_flow;
4398 
4399 	if (qlen < (netdev_max_backlog >> 1))
4400 		return false;
4401 
4402 	sd = this_cpu_ptr(&softnet_data);
4403 
4404 	rcu_read_lock();
4405 	fl = rcu_dereference(sd->flow_limit);
4406 	if (fl) {
4407 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4408 		old_flow = fl->history[fl->history_head];
4409 		fl->history[fl->history_head] = new_flow;
4410 
4411 		fl->history_head++;
4412 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4413 
4414 		if (likely(fl->buckets[old_flow]))
4415 			fl->buckets[old_flow]--;
4416 
4417 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4418 			fl->count++;
4419 			rcu_read_unlock();
4420 			return true;
4421 		}
4422 	}
4423 	rcu_read_unlock();
4424 #endif
4425 	return false;
4426 }
4427 
4428 /*
4429  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4430  * queue (may be a remote CPU queue).
4431  */
4432 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4433 			      unsigned int *qtail)
4434 {
4435 	struct softnet_data *sd;
4436 	unsigned long flags;
4437 	unsigned int qlen;
4438 
4439 	sd = &per_cpu(softnet_data, cpu);
4440 
4441 	local_irq_save(flags);
4442 
4443 	rps_lock(sd);
4444 	if (!netif_running(skb->dev))
4445 		goto drop;
4446 	qlen = skb_queue_len(&sd->input_pkt_queue);
4447 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4448 		if (qlen) {
4449 enqueue:
4450 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4451 			input_queue_tail_incr_save(sd, qtail);
4452 			rps_unlock(sd);
4453 			local_irq_restore(flags);
4454 			return NET_RX_SUCCESS;
4455 		}
4456 
4457 		/* Schedule NAPI for backlog device
4458 		 * We can use non atomic operation since we own the queue lock
4459 		 */
4460 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4461 			if (!rps_ipi_queued(sd))
4462 				____napi_schedule(sd, &sd->backlog);
4463 		}
4464 		goto enqueue;
4465 	}
4466 
4467 drop:
4468 	sd->dropped++;
4469 	rps_unlock(sd);
4470 
4471 	local_irq_restore(flags);
4472 
4473 	atomic_long_inc(&skb->dev->rx_dropped);
4474 	kfree_skb(skb);
4475 	return NET_RX_DROP;
4476 }
4477 
4478 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4479 {
4480 	struct net_device *dev = skb->dev;
4481 	struct netdev_rx_queue *rxqueue;
4482 
4483 	rxqueue = dev->_rx;
4484 
4485 	if (skb_rx_queue_recorded(skb)) {
4486 		u16 index = skb_get_rx_queue(skb);
4487 
4488 		if (unlikely(index >= dev->real_num_rx_queues)) {
4489 			WARN_ONCE(dev->real_num_rx_queues > 1,
4490 				  "%s received packet on queue %u, but number "
4491 				  "of RX queues is %u\n",
4492 				  dev->name, index, dev->real_num_rx_queues);
4493 
4494 			return rxqueue; /* Return first rxqueue */
4495 		}
4496 		rxqueue += index;
4497 	}
4498 	return rxqueue;
4499 }
4500 
4501 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4502 				     struct xdp_buff *xdp,
4503 				     struct bpf_prog *xdp_prog)
4504 {
4505 	struct netdev_rx_queue *rxqueue;
4506 	void *orig_data, *orig_data_end;
4507 	u32 metalen, act = XDP_DROP;
4508 	__be16 orig_eth_type;
4509 	struct ethhdr *eth;
4510 	bool orig_bcast;
4511 	int hlen, off;
4512 	u32 mac_len;
4513 
4514 	/* Reinjected packets coming from act_mirred or similar should
4515 	 * not get XDP generic processing.
4516 	 */
4517 	if (skb_is_tc_redirected(skb))
4518 		return XDP_PASS;
4519 
4520 	/* XDP packets must be linear and must have sufficient headroom
4521 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4522 	 * native XDP provides, thus we need to do it here as well.
4523 	 */
4524 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4525 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4526 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4527 		int troom = skb->tail + skb->data_len - skb->end;
4528 
4529 		/* In case we have to go down the path and also linearize,
4530 		 * then lets do the pskb_expand_head() work just once here.
4531 		 */
4532 		if (pskb_expand_head(skb,
4533 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4534 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4535 			goto do_drop;
4536 		if (skb_linearize(skb))
4537 			goto do_drop;
4538 	}
4539 
4540 	/* The XDP program wants to see the packet starting at the MAC
4541 	 * header.
4542 	 */
4543 	mac_len = skb->data - skb_mac_header(skb);
4544 	hlen = skb_headlen(skb) + mac_len;
4545 	xdp->data = skb->data - mac_len;
4546 	xdp->data_meta = xdp->data;
4547 	xdp->data_end = xdp->data + hlen;
4548 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4549 	orig_data_end = xdp->data_end;
4550 	orig_data = xdp->data;
4551 	eth = (struct ethhdr *)xdp->data;
4552 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4553 	orig_eth_type = eth->h_proto;
4554 
4555 	rxqueue = netif_get_rxqueue(skb);
4556 	xdp->rxq = &rxqueue->xdp_rxq;
4557 
4558 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4559 
4560 	/* check if bpf_xdp_adjust_head was used */
4561 	off = xdp->data - orig_data;
4562 	if (off) {
4563 		if (off > 0)
4564 			__skb_pull(skb, off);
4565 		else if (off < 0)
4566 			__skb_push(skb, -off);
4567 
4568 		skb->mac_header += off;
4569 		skb_reset_network_header(skb);
4570 	}
4571 
4572 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4573 	 * pckt.
4574 	 */
4575 	off = orig_data_end - xdp->data_end;
4576 	if (off != 0) {
4577 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4578 		skb->len -= off;
4579 
4580 	}
4581 
4582 	/* check if XDP changed eth hdr such SKB needs update */
4583 	eth = (struct ethhdr *)xdp->data;
4584 	if ((orig_eth_type != eth->h_proto) ||
4585 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4586 		__skb_push(skb, ETH_HLEN);
4587 		skb->protocol = eth_type_trans(skb, skb->dev);
4588 	}
4589 
4590 	switch (act) {
4591 	case XDP_REDIRECT:
4592 	case XDP_TX:
4593 		__skb_push(skb, mac_len);
4594 		break;
4595 	case XDP_PASS:
4596 		metalen = xdp->data - xdp->data_meta;
4597 		if (metalen)
4598 			skb_metadata_set(skb, metalen);
4599 		break;
4600 	default:
4601 		bpf_warn_invalid_xdp_action(act);
4602 		/* fall through */
4603 	case XDP_ABORTED:
4604 		trace_xdp_exception(skb->dev, xdp_prog, act);
4605 		/* fall through */
4606 	case XDP_DROP:
4607 	do_drop:
4608 		kfree_skb(skb);
4609 		break;
4610 	}
4611 
4612 	return act;
4613 }
4614 
4615 /* When doing generic XDP we have to bypass the qdisc layer and the
4616  * network taps in order to match in-driver-XDP behavior.
4617  */
4618 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4619 {
4620 	struct net_device *dev = skb->dev;
4621 	struct netdev_queue *txq;
4622 	bool free_skb = true;
4623 	int cpu, rc;
4624 
4625 	txq = netdev_core_pick_tx(dev, skb, NULL);
4626 	cpu = smp_processor_id();
4627 	HARD_TX_LOCK(dev, txq, cpu);
4628 	if (!netif_xmit_stopped(txq)) {
4629 		rc = netdev_start_xmit(skb, dev, txq, 0);
4630 		if (dev_xmit_complete(rc))
4631 			free_skb = false;
4632 	}
4633 	HARD_TX_UNLOCK(dev, txq);
4634 	if (free_skb) {
4635 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4636 		kfree_skb(skb);
4637 	}
4638 }
4639 
4640 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4641 
4642 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4643 {
4644 	if (xdp_prog) {
4645 		struct xdp_buff xdp;
4646 		u32 act;
4647 		int err;
4648 
4649 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4650 		if (act != XDP_PASS) {
4651 			switch (act) {
4652 			case XDP_REDIRECT:
4653 				err = xdp_do_generic_redirect(skb->dev, skb,
4654 							      &xdp, xdp_prog);
4655 				if (err)
4656 					goto out_redir;
4657 				break;
4658 			case XDP_TX:
4659 				generic_xdp_tx(skb, xdp_prog);
4660 				break;
4661 			}
4662 			return XDP_DROP;
4663 		}
4664 	}
4665 	return XDP_PASS;
4666 out_redir:
4667 	kfree_skb(skb);
4668 	return XDP_DROP;
4669 }
4670 EXPORT_SYMBOL_GPL(do_xdp_generic);
4671 
4672 static int netif_rx_internal(struct sk_buff *skb)
4673 {
4674 	int ret;
4675 
4676 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4677 
4678 	trace_netif_rx(skb);
4679 
4680 #ifdef CONFIG_RPS
4681 	if (static_branch_unlikely(&rps_needed)) {
4682 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4683 		int cpu;
4684 
4685 		preempt_disable();
4686 		rcu_read_lock();
4687 
4688 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4689 		if (cpu < 0)
4690 			cpu = smp_processor_id();
4691 
4692 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4693 
4694 		rcu_read_unlock();
4695 		preempt_enable();
4696 	} else
4697 #endif
4698 	{
4699 		unsigned int qtail;
4700 
4701 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4702 		put_cpu();
4703 	}
4704 	return ret;
4705 }
4706 
4707 /**
4708  *	netif_rx	-	post buffer to the network code
4709  *	@skb: buffer to post
4710  *
4711  *	This function receives a packet from a device driver and queues it for
4712  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4713  *	may be dropped during processing for congestion control or by the
4714  *	protocol layers.
4715  *
4716  *	return values:
4717  *	NET_RX_SUCCESS	(no congestion)
4718  *	NET_RX_DROP     (packet was dropped)
4719  *
4720  */
4721 
4722 int netif_rx(struct sk_buff *skb)
4723 {
4724 	int ret;
4725 
4726 	trace_netif_rx_entry(skb);
4727 
4728 	ret = netif_rx_internal(skb);
4729 	trace_netif_rx_exit(ret);
4730 
4731 	return ret;
4732 }
4733 EXPORT_SYMBOL(netif_rx);
4734 
4735 int netif_rx_ni(struct sk_buff *skb)
4736 {
4737 	int err;
4738 
4739 	trace_netif_rx_ni_entry(skb);
4740 
4741 	preempt_disable();
4742 	err = netif_rx_internal(skb);
4743 	if (local_softirq_pending())
4744 		do_softirq();
4745 	preempt_enable();
4746 	trace_netif_rx_ni_exit(err);
4747 
4748 	return err;
4749 }
4750 EXPORT_SYMBOL(netif_rx_ni);
4751 
4752 static __latent_entropy void net_tx_action(struct softirq_action *h)
4753 {
4754 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4755 
4756 	if (sd->completion_queue) {
4757 		struct sk_buff *clist;
4758 
4759 		local_irq_disable();
4760 		clist = sd->completion_queue;
4761 		sd->completion_queue = NULL;
4762 		local_irq_enable();
4763 
4764 		while (clist) {
4765 			struct sk_buff *skb = clist;
4766 
4767 			clist = clist->next;
4768 
4769 			WARN_ON(refcount_read(&skb->users));
4770 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4771 				trace_consume_skb(skb);
4772 			else
4773 				trace_kfree_skb(skb, net_tx_action);
4774 
4775 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4776 				__kfree_skb(skb);
4777 			else
4778 				__kfree_skb_defer(skb);
4779 		}
4780 
4781 		__kfree_skb_flush();
4782 	}
4783 
4784 	if (sd->output_queue) {
4785 		struct Qdisc *head;
4786 
4787 		local_irq_disable();
4788 		head = sd->output_queue;
4789 		sd->output_queue = NULL;
4790 		sd->output_queue_tailp = &sd->output_queue;
4791 		local_irq_enable();
4792 
4793 		while (head) {
4794 			struct Qdisc *q = head;
4795 			spinlock_t *root_lock = NULL;
4796 
4797 			head = head->next_sched;
4798 
4799 			if (!(q->flags & TCQ_F_NOLOCK)) {
4800 				root_lock = qdisc_lock(q);
4801 				spin_lock(root_lock);
4802 			}
4803 			/* We need to make sure head->next_sched is read
4804 			 * before clearing __QDISC_STATE_SCHED
4805 			 */
4806 			smp_mb__before_atomic();
4807 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4808 			qdisc_run(q);
4809 			if (root_lock)
4810 				spin_unlock(root_lock);
4811 		}
4812 	}
4813 
4814 	xfrm_dev_backlog(sd);
4815 }
4816 
4817 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4818 /* This hook is defined here for ATM LANE */
4819 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4820 			     unsigned char *addr) __read_mostly;
4821 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4822 #endif
4823 
4824 static inline struct sk_buff *
4825 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4826 		   struct net_device *orig_dev)
4827 {
4828 #ifdef CONFIG_NET_CLS_ACT
4829 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4830 	struct tcf_result cl_res;
4831 
4832 	/* If there's at least one ingress present somewhere (so
4833 	 * we get here via enabled static key), remaining devices
4834 	 * that are not configured with an ingress qdisc will bail
4835 	 * out here.
4836 	 */
4837 	if (!miniq)
4838 		return skb;
4839 
4840 	if (*pt_prev) {
4841 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4842 		*pt_prev = NULL;
4843 	}
4844 
4845 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4846 	skb->tc_at_ingress = 1;
4847 	mini_qdisc_bstats_cpu_update(miniq, skb);
4848 
4849 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4850 	case TC_ACT_OK:
4851 	case TC_ACT_RECLASSIFY:
4852 		skb->tc_index = TC_H_MIN(cl_res.classid);
4853 		break;
4854 	case TC_ACT_SHOT:
4855 		mini_qdisc_qstats_cpu_drop(miniq);
4856 		kfree_skb(skb);
4857 		return NULL;
4858 	case TC_ACT_STOLEN:
4859 	case TC_ACT_QUEUED:
4860 	case TC_ACT_TRAP:
4861 		consume_skb(skb);
4862 		return NULL;
4863 	case TC_ACT_REDIRECT:
4864 		/* skb_mac_header check was done by cls/act_bpf, so
4865 		 * we can safely push the L2 header back before
4866 		 * redirecting to another netdev
4867 		 */
4868 		__skb_push(skb, skb->mac_len);
4869 		skb_do_redirect(skb);
4870 		return NULL;
4871 	case TC_ACT_CONSUMED:
4872 		return NULL;
4873 	default:
4874 		break;
4875 	}
4876 #endif /* CONFIG_NET_CLS_ACT */
4877 	return skb;
4878 }
4879 
4880 /**
4881  *	netdev_is_rx_handler_busy - check if receive handler is registered
4882  *	@dev: device to check
4883  *
4884  *	Check if a receive handler is already registered for a given device.
4885  *	Return true if there one.
4886  *
4887  *	The caller must hold the rtnl_mutex.
4888  */
4889 bool netdev_is_rx_handler_busy(struct net_device *dev)
4890 {
4891 	ASSERT_RTNL();
4892 	return dev && rtnl_dereference(dev->rx_handler);
4893 }
4894 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4895 
4896 /**
4897  *	netdev_rx_handler_register - register receive handler
4898  *	@dev: device to register a handler for
4899  *	@rx_handler: receive handler to register
4900  *	@rx_handler_data: data pointer that is used by rx handler
4901  *
4902  *	Register a receive handler for a device. This handler will then be
4903  *	called from __netif_receive_skb. A negative errno code is returned
4904  *	on a failure.
4905  *
4906  *	The caller must hold the rtnl_mutex.
4907  *
4908  *	For a general description of rx_handler, see enum rx_handler_result.
4909  */
4910 int netdev_rx_handler_register(struct net_device *dev,
4911 			       rx_handler_func_t *rx_handler,
4912 			       void *rx_handler_data)
4913 {
4914 	if (netdev_is_rx_handler_busy(dev))
4915 		return -EBUSY;
4916 
4917 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4918 		return -EINVAL;
4919 
4920 	/* Note: rx_handler_data must be set before rx_handler */
4921 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4922 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4923 
4924 	return 0;
4925 }
4926 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4927 
4928 /**
4929  *	netdev_rx_handler_unregister - unregister receive handler
4930  *	@dev: device to unregister a handler from
4931  *
4932  *	Unregister a receive handler from a device.
4933  *
4934  *	The caller must hold the rtnl_mutex.
4935  */
4936 void netdev_rx_handler_unregister(struct net_device *dev)
4937 {
4938 
4939 	ASSERT_RTNL();
4940 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4941 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4942 	 * section has a guarantee to see a non NULL rx_handler_data
4943 	 * as well.
4944 	 */
4945 	synchronize_net();
4946 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4947 }
4948 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4949 
4950 /*
4951  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4952  * the special handling of PFMEMALLOC skbs.
4953  */
4954 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4955 {
4956 	switch (skb->protocol) {
4957 	case htons(ETH_P_ARP):
4958 	case htons(ETH_P_IP):
4959 	case htons(ETH_P_IPV6):
4960 	case htons(ETH_P_8021Q):
4961 	case htons(ETH_P_8021AD):
4962 		return true;
4963 	default:
4964 		return false;
4965 	}
4966 }
4967 
4968 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4969 			     int *ret, struct net_device *orig_dev)
4970 {
4971 	if (nf_hook_ingress_active(skb)) {
4972 		int ingress_retval;
4973 
4974 		if (*pt_prev) {
4975 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4976 			*pt_prev = NULL;
4977 		}
4978 
4979 		rcu_read_lock();
4980 		ingress_retval = nf_hook_ingress(skb);
4981 		rcu_read_unlock();
4982 		return ingress_retval;
4983 	}
4984 	return 0;
4985 }
4986 
4987 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4988 				    struct packet_type **ppt_prev)
4989 {
4990 	struct packet_type *ptype, *pt_prev;
4991 	rx_handler_func_t *rx_handler;
4992 	struct net_device *orig_dev;
4993 	bool deliver_exact = false;
4994 	int ret = NET_RX_DROP;
4995 	__be16 type;
4996 
4997 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4998 
4999 	trace_netif_receive_skb(skb);
5000 
5001 	orig_dev = skb->dev;
5002 
5003 	skb_reset_network_header(skb);
5004 	if (!skb_transport_header_was_set(skb))
5005 		skb_reset_transport_header(skb);
5006 	skb_reset_mac_len(skb);
5007 
5008 	pt_prev = NULL;
5009 
5010 another_round:
5011 	skb->skb_iif = skb->dev->ifindex;
5012 
5013 	__this_cpu_inc(softnet_data.processed);
5014 
5015 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5016 		int ret2;
5017 
5018 		preempt_disable();
5019 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5020 		preempt_enable();
5021 
5022 		if (ret2 != XDP_PASS)
5023 			return NET_RX_DROP;
5024 		skb_reset_mac_len(skb);
5025 	}
5026 
5027 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5028 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5029 		skb = skb_vlan_untag(skb);
5030 		if (unlikely(!skb))
5031 			goto out;
5032 	}
5033 
5034 	if (skb_skip_tc_classify(skb))
5035 		goto skip_classify;
5036 
5037 	if (pfmemalloc)
5038 		goto skip_taps;
5039 
5040 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5041 		if (pt_prev)
5042 			ret = deliver_skb(skb, pt_prev, orig_dev);
5043 		pt_prev = ptype;
5044 	}
5045 
5046 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5047 		if (pt_prev)
5048 			ret = deliver_skb(skb, pt_prev, orig_dev);
5049 		pt_prev = ptype;
5050 	}
5051 
5052 skip_taps:
5053 #ifdef CONFIG_NET_INGRESS
5054 	if (static_branch_unlikely(&ingress_needed_key)) {
5055 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5056 		if (!skb)
5057 			goto out;
5058 
5059 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5060 			goto out;
5061 	}
5062 #endif
5063 	skb_reset_tc(skb);
5064 skip_classify:
5065 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5066 		goto drop;
5067 
5068 	if (skb_vlan_tag_present(skb)) {
5069 		if (pt_prev) {
5070 			ret = deliver_skb(skb, pt_prev, orig_dev);
5071 			pt_prev = NULL;
5072 		}
5073 		if (vlan_do_receive(&skb))
5074 			goto another_round;
5075 		else if (unlikely(!skb))
5076 			goto out;
5077 	}
5078 
5079 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5080 	if (rx_handler) {
5081 		if (pt_prev) {
5082 			ret = deliver_skb(skb, pt_prev, orig_dev);
5083 			pt_prev = NULL;
5084 		}
5085 		switch (rx_handler(&skb)) {
5086 		case RX_HANDLER_CONSUMED:
5087 			ret = NET_RX_SUCCESS;
5088 			goto out;
5089 		case RX_HANDLER_ANOTHER:
5090 			goto another_round;
5091 		case RX_HANDLER_EXACT:
5092 			deliver_exact = true;
5093 		case RX_HANDLER_PASS:
5094 			break;
5095 		default:
5096 			BUG();
5097 		}
5098 	}
5099 
5100 	if (unlikely(skb_vlan_tag_present(skb))) {
5101 check_vlan_id:
5102 		if (skb_vlan_tag_get_id(skb)) {
5103 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5104 			 * find vlan device.
5105 			 */
5106 			skb->pkt_type = PACKET_OTHERHOST;
5107 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5108 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5109 			/* Outer header is 802.1P with vlan 0, inner header is
5110 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5111 			 * not find vlan dev for vlan id 0.
5112 			 */
5113 			__vlan_hwaccel_clear_tag(skb);
5114 			skb = skb_vlan_untag(skb);
5115 			if (unlikely(!skb))
5116 				goto out;
5117 			if (vlan_do_receive(&skb))
5118 				/* After stripping off 802.1P header with vlan 0
5119 				 * vlan dev is found for inner header.
5120 				 */
5121 				goto another_round;
5122 			else if (unlikely(!skb))
5123 				goto out;
5124 			else
5125 				/* We have stripped outer 802.1P vlan 0 header.
5126 				 * But could not find vlan dev.
5127 				 * check again for vlan id to set OTHERHOST.
5128 				 */
5129 				goto check_vlan_id;
5130 		}
5131 		/* Note: we might in the future use prio bits
5132 		 * and set skb->priority like in vlan_do_receive()
5133 		 * For the time being, just ignore Priority Code Point
5134 		 */
5135 		__vlan_hwaccel_clear_tag(skb);
5136 	}
5137 
5138 	type = skb->protocol;
5139 
5140 	/* deliver only exact match when indicated */
5141 	if (likely(!deliver_exact)) {
5142 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5143 				       &ptype_base[ntohs(type) &
5144 						   PTYPE_HASH_MASK]);
5145 	}
5146 
5147 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5148 			       &orig_dev->ptype_specific);
5149 
5150 	if (unlikely(skb->dev != orig_dev)) {
5151 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5152 				       &skb->dev->ptype_specific);
5153 	}
5154 
5155 	if (pt_prev) {
5156 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5157 			goto drop;
5158 		*ppt_prev = pt_prev;
5159 	} else {
5160 drop:
5161 		if (!deliver_exact)
5162 			atomic_long_inc(&skb->dev->rx_dropped);
5163 		else
5164 			atomic_long_inc(&skb->dev->rx_nohandler);
5165 		kfree_skb(skb);
5166 		/* Jamal, now you will not able to escape explaining
5167 		 * me how you were going to use this. :-)
5168 		 */
5169 		ret = NET_RX_DROP;
5170 	}
5171 
5172 out:
5173 	return ret;
5174 }
5175 
5176 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5177 {
5178 	struct net_device *orig_dev = skb->dev;
5179 	struct packet_type *pt_prev = NULL;
5180 	int ret;
5181 
5182 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5183 	if (pt_prev)
5184 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5185 					 skb->dev, pt_prev, orig_dev);
5186 	return ret;
5187 }
5188 
5189 /**
5190  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5191  *	@skb: buffer to process
5192  *
5193  *	More direct receive version of netif_receive_skb().  It should
5194  *	only be used by callers that have a need to skip RPS and Generic XDP.
5195  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5196  *
5197  *	This function may only be called from softirq context and interrupts
5198  *	should be enabled.
5199  *
5200  *	Return values (usually ignored):
5201  *	NET_RX_SUCCESS: no congestion
5202  *	NET_RX_DROP: packet was dropped
5203  */
5204 int netif_receive_skb_core(struct sk_buff *skb)
5205 {
5206 	int ret;
5207 
5208 	rcu_read_lock();
5209 	ret = __netif_receive_skb_one_core(skb, false);
5210 	rcu_read_unlock();
5211 
5212 	return ret;
5213 }
5214 EXPORT_SYMBOL(netif_receive_skb_core);
5215 
5216 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5217 						  struct packet_type *pt_prev,
5218 						  struct net_device *orig_dev)
5219 {
5220 	struct sk_buff *skb, *next;
5221 
5222 	if (!pt_prev)
5223 		return;
5224 	if (list_empty(head))
5225 		return;
5226 	if (pt_prev->list_func != NULL)
5227 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5228 				   ip_list_rcv, head, pt_prev, orig_dev);
5229 	else
5230 		list_for_each_entry_safe(skb, next, head, list) {
5231 			skb_list_del_init(skb);
5232 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5233 		}
5234 }
5235 
5236 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5237 {
5238 	/* Fast-path assumptions:
5239 	 * - There is no RX handler.
5240 	 * - Only one packet_type matches.
5241 	 * If either of these fails, we will end up doing some per-packet
5242 	 * processing in-line, then handling the 'last ptype' for the whole
5243 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5244 	 * because the 'last ptype' must be constant across the sublist, and all
5245 	 * other ptypes are handled per-packet.
5246 	 */
5247 	/* Current (common) ptype of sublist */
5248 	struct packet_type *pt_curr = NULL;
5249 	/* Current (common) orig_dev of sublist */
5250 	struct net_device *od_curr = NULL;
5251 	struct list_head sublist;
5252 	struct sk_buff *skb, *next;
5253 
5254 	INIT_LIST_HEAD(&sublist);
5255 	list_for_each_entry_safe(skb, next, head, list) {
5256 		struct net_device *orig_dev = skb->dev;
5257 		struct packet_type *pt_prev = NULL;
5258 
5259 		skb_list_del_init(skb);
5260 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5261 		if (!pt_prev)
5262 			continue;
5263 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5264 			/* dispatch old sublist */
5265 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5266 			/* start new sublist */
5267 			INIT_LIST_HEAD(&sublist);
5268 			pt_curr = pt_prev;
5269 			od_curr = orig_dev;
5270 		}
5271 		list_add_tail(&skb->list, &sublist);
5272 	}
5273 
5274 	/* dispatch final sublist */
5275 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5276 }
5277 
5278 static int __netif_receive_skb(struct sk_buff *skb)
5279 {
5280 	int ret;
5281 
5282 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5283 		unsigned int noreclaim_flag;
5284 
5285 		/*
5286 		 * PFMEMALLOC skbs are special, they should
5287 		 * - be delivered to SOCK_MEMALLOC sockets only
5288 		 * - stay away from userspace
5289 		 * - have bounded memory usage
5290 		 *
5291 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5292 		 * context down to all allocation sites.
5293 		 */
5294 		noreclaim_flag = memalloc_noreclaim_save();
5295 		ret = __netif_receive_skb_one_core(skb, true);
5296 		memalloc_noreclaim_restore(noreclaim_flag);
5297 	} else
5298 		ret = __netif_receive_skb_one_core(skb, false);
5299 
5300 	return ret;
5301 }
5302 
5303 static void __netif_receive_skb_list(struct list_head *head)
5304 {
5305 	unsigned long noreclaim_flag = 0;
5306 	struct sk_buff *skb, *next;
5307 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5308 
5309 	list_for_each_entry_safe(skb, next, head, list) {
5310 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5311 			struct list_head sublist;
5312 
5313 			/* Handle the previous sublist */
5314 			list_cut_before(&sublist, head, &skb->list);
5315 			if (!list_empty(&sublist))
5316 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5317 			pfmemalloc = !pfmemalloc;
5318 			/* See comments in __netif_receive_skb */
5319 			if (pfmemalloc)
5320 				noreclaim_flag = memalloc_noreclaim_save();
5321 			else
5322 				memalloc_noreclaim_restore(noreclaim_flag);
5323 		}
5324 	}
5325 	/* Handle the remaining sublist */
5326 	if (!list_empty(head))
5327 		__netif_receive_skb_list_core(head, pfmemalloc);
5328 	/* Restore pflags */
5329 	if (pfmemalloc)
5330 		memalloc_noreclaim_restore(noreclaim_flag);
5331 }
5332 
5333 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5334 {
5335 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5336 	struct bpf_prog *new = xdp->prog;
5337 	int ret = 0;
5338 
5339 	switch (xdp->command) {
5340 	case XDP_SETUP_PROG:
5341 		rcu_assign_pointer(dev->xdp_prog, new);
5342 		if (old)
5343 			bpf_prog_put(old);
5344 
5345 		if (old && !new) {
5346 			static_branch_dec(&generic_xdp_needed_key);
5347 		} else if (new && !old) {
5348 			static_branch_inc(&generic_xdp_needed_key);
5349 			dev_disable_lro(dev);
5350 			dev_disable_gro_hw(dev);
5351 		}
5352 		break;
5353 
5354 	case XDP_QUERY_PROG:
5355 		xdp->prog_id = old ? old->aux->id : 0;
5356 		break;
5357 
5358 	default:
5359 		ret = -EINVAL;
5360 		break;
5361 	}
5362 
5363 	return ret;
5364 }
5365 
5366 static int netif_receive_skb_internal(struct sk_buff *skb)
5367 {
5368 	int ret;
5369 
5370 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5371 
5372 	if (skb_defer_rx_timestamp(skb))
5373 		return NET_RX_SUCCESS;
5374 
5375 	rcu_read_lock();
5376 #ifdef CONFIG_RPS
5377 	if (static_branch_unlikely(&rps_needed)) {
5378 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5379 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5380 
5381 		if (cpu >= 0) {
5382 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5383 			rcu_read_unlock();
5384 			return ret;
5385 		}
5386 	}
5387 #endif
5388 	ret = __netif_receive_skb(skb);
5389 	rcu_read_unlock();
5390 	return ret;
5391 }
5392 
5393 static void netif_receive_skb_list_internal(struct list_head *head)
5394 {
5395 	struct sk_buff *skb, *next;
5396 	struct list_head sublist;
5397 
5398 	INIT_LIST_HEAD(&sublist);
5399 	list_for_each_entry_safe(skb, next, head, list) {
5400 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5401 		skb_list_del_init(skb);
5402 		if (!skb_defer_rx_timestamp(skb))
5403 			list_add_tail(&skb->list, &sublist);
5404 	}
5405 	list_splice_init(&sublist, head);
5406 
5407 	rcu_read_lock();
5408 #ifdef CONFIG_RPS
5409 	if (static_branch_unlikely(&rps_needed)) {
5410 		list_for_each_entry_safe(skb, next, head, list) {
5411 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5412 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5413 
5414 			if (cpu >= 0) {
5415 				/* Will be handled, remove from list */
5416 				skb_list_del_init(skb);
5417 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5418 			}
5419 		}
5420 	}
5421 #endif
5422 	__netif_receive_skb_list(head);
5423 	rcu_read_unlock();
5424 }
5425 
5426 /**
5427  *	netif_receive_skb - process receive buffer from network
5428  *	@skb: buffer to process
5429  *
5430  *	netif_receive_skb() is the main receive data processing function.
5431  *	It always succeeds. The buffer may be dropped during processing
5432  *	for congestion control or by the protocol layers.
5433  *
5434  *	This function may only be called from softirq context and interrupts
5435  *	should be enabled.
5436  *
5437  *	Return values (usually ignored):
5438  *	NET_RX_SUCCESS: no congestion
5439  *	NET_RX_DROP: packet was dropped
5440  */
5441 int netif_receive_skb(struct sk_buff *skb)
5442 {
5443 	int ret;
5444 
5445 	trace_netif_receive_skb_entry(skb);
5446 
5447 	ret = netif_receive_skb_internal(skb);
5448 	trace_netif_receive_skb_exit(ret);
5449 
5450 	return ret;
5451 }
5452 EXPORT_SYMBOL(netif_receive_skb);
5453 
5454 /**
5455  *	netif_receive_skb_list - process many receive buffers from network
5456  *	@head: list of skbs to process.
5457  *
5458  *	Since return value of netif_receive_skb() is normally ignored, and
5459  *	wouldn't be meaningful for a list, this function returns void.
5460  *
5461  *	This function may only be called from softirq context and interrupts
5462  *	should be enabled.
5463  */
5464 void netif_receive_skb_list(struct list_head *head)
5465 {
5466 	struct sk_buff *skb;
5467 
5468 	if (list_empty(head))
5469 		return;
5470 	if (trace_netif_receive_skb_list_entry_enabled()) {
5471 		list_for_each_entry(skb, head, list)
5472 			trace_netif_receive_skb_list_entry(skb);
5473 	}
5474 	netif_receive_skb_list_internal(head);
5475 	trace_netif_receive_skb_list_exit(0);
5476 }
5477 EXPORT_SYMBOL(netif_receive_skb_list);
5478 
5479 DEFINE_PER_CPU(struct work_struct, flush_works);
5480 
5481 /* Network device is going away, flush any packets still pending */
5482 static void flush_backlog(struct work_struct *work)
5483 {
5484 	struct sk_buff *skb, *tmp;
5485 	struct softnet_data *sd;
5486 
5487 	local_bh_disable();
5488 	sd = this_cpu_ptr(&softnet_data);
5489 
5490 	local_irq_disable();
5491 	rps_lock(sd);
5492 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5493 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5494 			__skb_unlink(skb, &sd->input_pkt_queue);
5495 			kfree_skb(skb);
5496 			input_queue_head_incr(sd);
5497 		}
5498 	}
5499 	rps_unlock(sd);
5500 	local_irq_enable();
5501 
5502 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5503 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5504 			__skb_unlink(skb, &sd->process_queue);
5505 			kfree_skb(skb);
5506 			input_queue_head_incr(sd);
5507 		}
5508 	}
5509 	local_bh_enable();
5510 }
5511 
5512 static void flush_all_backlogs(void)
5513 {
5514 	unsigned int cpu;
5515 
5516 	get_online_cpus();
5517 
5518 	for_each_online_cpu(cpu)
5519 		queue_work_on(cpu, system_highpri_wq,
5520 			      per_cpu_ptr(&flush_works, cpu));
5521 
5522 	for_each_online_cpu(cpu)
5523 		flush_work(per_cpu_ptr(&flush_works, cpu));
5524 
5525 	put_online_cpus();
5526 }
5527 
5528 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5529 static void gro_normal_list(struct napi_struct *napi)
5530 {
5531 	if (!napi->rx_count)
5532 		return;
5533 	netif_receive_skb_list_internal(&napi->rx_list);
5534 	INIT_LIST_HEAD(&napi->rx_list);
5535 	napi->rx_count = 0;
5536 }
5537 
5538 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5539  * pass the whole batch up to the stack.
5540  */
5541 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5542 {
5543 	list_add_tail(&skb->list, &napi->rx_list);
5544 	if (++napi->rx_count >= gro_normal_batch)
5545 		gro_normal_list(napi);
5546 }
5547 
5548 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5549 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5550 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5551 {
5552 	struct packet_offload *ptype;
5553 	__be16 type = skb->protocol;
5554 	struct list_head *head = &offload_base;
5555 	int err = -ENOENT;
5556 
5557 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5558 
5559 	if (NAPI_GRO_CB(skb)->count == 1) {
5560 		skb_shinfo(skb)->gso_size = 0;
5561 		goto out;
5562 	}
5563 
5564 	rcu_read_lock();
5565 	list_for_each_entry_rcu(ptype, head, list) {
5566 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5567 			continue;
5568 
5569 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5570 					 ipv6_gro_complete, inet_gro_complete,
5571 					 skb, 0);
5572 		break;
5573 	}
5574 	rcu_read_unlock();
5575 
5576 	if (err) {
5577 		WARN_ON(&ptype->list == head);
5578 		kfree_skb(skb);
5579 		return NET_RX_SUCCESS;
5580 	}
5581 
5582 out:
5583 	gro_normal_one(napi, skb);
5584 	return NET_RX_SUCCESS;
5585 }
5586 
5587 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5588 				   bool flush_old)
5589 {
5590 	struct list_head *head = &napi->gro_hash[index].list;
5591 	struct sk_buff *skb, *p;
5592 
5593 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5594 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5595 			return;
5596 		skb_list_del_init(skb);
5597 		napi_gro_complete(napi, skb);
5598 		napi->gro_hash[index].count--;
5599 	}
5600 
5601 	if (!napi->gro_hash[index].count)
5602 		__clear_bit(index, &napi->gro_bitmask);
5603 }
5604 
5605 /* napi->gro_hash[].list contains packets ordered by age.
5606  * youngest packets at the head of it.
5607  * Complete skbs in reverse order to reduce latencies.
5608  */
5609 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5610 {
5611 	unsigned long bitmask = napi->gro_bitmask;
5612 	unsigned int i, base = ~0U;
5613 
5614 	while ((i = ffs(bitmask)) != 0) {
5615 		bitmask >>= i;
5616 		base += i;
5617 		__napi_gro_flush_chain(napi, base, flush_old);
5618 	}
5619 }
5620 EXPORT_SYMBOL(napi_gro_flush);
5621 
5622 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5623 					  struct sk_buff *skb)
5624 {
5625 	unsigned int maclen = skb->dev->hard_header_len;
5626 	u32 hash = skb_get_hash_raw(skb);
5627 	struct list_head *head;
5628 	struct sk_buff *p;
5629 
5630 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5631 	list_for_each_entry(p, head, list) {
5632 		unsigned long diffs;
5633 
5634 		NAPI_GRO_CB(p)->flush = 0;
5635 
5636 		if (hash != skb_get_hash_raw(p)) {
5637 			NAPI_GRO_CB(p)->same_flow = 0;
5638 			continue;
5639 		}
5640 
5641 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5642 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5643 		if (skb_vlan_tag_present(p))
5644 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5645 		diffs |= skb_metadata_dst_cmp(p, skb);
5646 		diffs |= skb_metadata_differs(p, skb);
5647 		if (maclen == ETH_HLEN)
5648 			diffs |= compare_ether_header(skb_mac_header(p),
5649 						      skb_mac_header(skb));
5650 		else if (!diffs)
5651 			diffs = memcmp(skb_mac_header(p),
5652 				       skb_mac_header(skb),
5653 				       maclen);
5654 		NAPI_GRO_CB(p)->same_flow = !diffs;
5655 	}
5656 
5657 	return head;
5658 }
5659 
5660 static void skb_gro_reset_offset(struct sk_buff *skb)
5661 {
5662 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5663 	const skb_frag_t *frag0 = &pinfo->frags[0];
5664 
5665 	NAPI_GRO_CB(skb)->data_offset = 0;
5666 	NAPI_GRO_CB(skb)->frag0 = NULL;
5667 	NAPI_GRO_CB(skb)->frag0_len = 0;
5668 
5669 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5670 	    !PageHighMem(skb_frag_page(frag0))) {
5671 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5672 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5673 						    skb_frag_size(frag0),
5674 						    skb->end - skb->tail);
5675 	}
5676 }
5677 
5678 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5679 {
5680 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5681 
5682 	BUG_ON(skb->end - skb->tail < grow);
5683 
5684 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5685 
5686 	skb->data_len -= grow;
5687 	skb->tail += grow;
5688 
5689 	skb_frag_off_add(&pinfo->frags[0], grow);
5690 	skb_frag_size_sub(&pinfo->frags[0], grow);
5691 
5692 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5693 		skb_frag_unref(skb, 0);
5694 		memmove(pinfo->frags, pinfo->frags + 1,
5695 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5696 	}
5697 }
5698 
5699 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5700 {
5701 	struct sk_buff *oldest;
5702 
5703 	oldest = list_last_entry(head, struct sk_buff, list);
5704 
5705 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5706 	 * impossible.
5707 	 */
5708 	if (WARN_ON_ONCE(!oldest))
5709 		return;
5710 
5711 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5712 	 * SKB to the chain.
5713 	 */
5714 	skb_list_del_init(oldest);
5715 	napi_gro_complete(napi, oldest);
5716 }
5717 
5718 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5719 							   struct sk_buff *));
5720 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5721 							   struct sk_buff *));
5722 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5723 {
5724 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5725 	struct list_head *head = &offload_base;
5726 	struct packet_offload *ptype;
5727 	__be16 type = skb->protocol;
5728 	struct list_head *gro_head;
5729 	struct sk_buff *pp = NULL;
5730 	enum gro_result ret;
5731 	int same_flow;
5732 	int grow;
5733 
5734 	if (netif_elide_gro(skb->dev))
5735 		goto normal;
5736 
5737 	gro_head = gro_list_prepare(napi, skb);
5738 
5739 	rcu_read_lock();
5740 	list_for_each_entry_rcu(ptype, head, list) {
5741 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5742 			continue;
5743 
5744 		skb_set_network_header(skb, skb_gro_offset(skb));
5745 		skb_reset_mac_len(skb);
5746 		NAPI_GRO_CB(skb)->same_flow = 0;
5747 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5748 		NAPI_GRO_CB(skb)->free = 0;
5749 		NAPI_GRO_CB(skb)->encap_mark = 0;
5750 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5751 		NAPI_GRO_CB(skb)->is_fou = 0;
5752 		NAPI_GRO_CB(skb)->is_atomic = 1;
5753 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5754 
5755 		/* Setup for GRO checksum validation */
5756 		switch (skb->ip_summed) {
5757 		case CHECKSUM_COMPLETE:
5758 			NAPI_GRO_CB(skb)->csum = skb->csum;
5759 			NAPI_GRO_CB(skb)->csum_valid = 1;
5760 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5761 			break;
5762 		case CHECKSUM_UNNECESSARY:
5763 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5764 			NAPI_GRO_CB(skb)->csum_valid = 0;
5765 			break;
5766 		default:
5767 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5768 			NAPI_GRO_CB(skb)->csum_valid = 0;
5769 		}
5770 
5771 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5772 					ipv6_gro_receive, inet_gro_receive,
5773 					gro_head, skb);
5774 		break;
5775 	}
5776 	rcu_read_unlock();
5777 
5778 	if (&ptype->list == head)
5779 		goto normal;
5780 
5781 	if (PTR_ERR(pp) == -EINPROGRESS) {
5782 		ret = GRO_CONSUMED;
5783 		goto ok;
5784 	}
5785 
5786 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5787 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5788 
5789 	if (pp) {
5790 		skb_list_del_init(pp);
5791 		napi_gro_complete(napi, pp);
5792 		napi->gro_hash[hash].count--;
5793 	}
5794 
5795 	if (same_flow)
5796 		goto ok;
5797 
5798 	if (NAPI_GRO_CB(skb)->flush)
5799 		goto normal;
5800 
5801 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5802 		gro_flush_oldest(napi, gro_head);
5803 	} else {
5804 		napi->gro_hash[hash].count++;
5805 	}
5806 	NAPI_GRO_CB(skb)->count = 1;
5807 	NAPI_GRO_CB(skb)->age = jiffies;
5808 	NAPI_GRO_CB(skb)->last = skb;
5809 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5810 	list_add(&skb->list, gro_head);
5811 	ret = GRO_HELD;
5812 
5813 pull:
5814 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5815 	if (grow > 0)
5816 		gro_pull_from_frag0(skb, grow);
5817 ok:
5818 	if (napi->gro_hash[hash].count) {
5819 		if (!test_bit(hash, &napi->gro_bitmask))
5820 			__set_bit(hash, &napi->gro_bitmask);
5821 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5822 		__clear_bit(hash, &napi->gro_bitmask);
5823 	}
5824 
5825 	return ret;
5826 
5827 normal:
5828 	ret = GRO_NORMAL;
5829 	goto pull;
5830 }
5831 
5832 struct packet_offload *gro_find_receive_by_type(__be16 type)
5833 {
5834 	struct list_head *offload_head = &offload_base;
5835 	struct packet_offload *ptype;
5836 
5837 	list_for_each_entry_rcu(ptype, offload_head, list) {
5838 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5839 			continue;
5840 		return ptype;
5841 	}
5842 	return NULL;
5843 }
5844 EXPORT_SYMBOL(gro_find_receive_by_type);
5845 
5846 struct packet_offload *gro_find_complete_by_type(__be16 type)
5847 {
5848 	struct list_head *offload_head = &offload_base;
5849 	struct packet_offload *ptype;
5850 
5851 	list_for_each_entry_rcu(ptype, offload_head, list) {
5852 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5853 			continue;
5854 		return ptype;
5855 	}
5856 	return NULL;
5857 }
5858 EXPORT_SYMBOL(gro_find_complete_by_type);
5859 
5860 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5861 {
5862 	skb_dst_drop(skb);
5863 	skb_ext_put(skb);
5864 	kmem_cache_free(skbuff_head_cache, skb);
5865 }
5866 
5867 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5868 				    struct sk_buff *skb,
5869 				    gro_result_t ret)
5870 {
5871 	switch (ret) {
5872 	case GRO_NORMAL:
5873 		gro_normal_one(napi, skb);
5874 		break;
5875 
5876 	case GRO_DROP:
5877 		kfree_skb(skb);
5878 		break;
5879 
5880 	case GRO_MERGED_FREE:
5881 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5882 			napi_skb_free_stolen_head(skb);
5883 		else
5884 			__kfree_skb(skb);
5885 		break;
5886 
5887 	case GRO_HELD:
5888 	case GRO_MERGED:
5889 	case GRO_CONSUMED:
5890 		break;
5891 	}
5892 
5893 	return ret;
5894 }
5895 
5896 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5897 {
5898 	gro_result_t ret;
5899 
5900 	skb_mark_napi_id(skb, napi);
5901 	trace_napi_gro_receive_entry(skb);
5902 
5903 	skb_gro_reset_offset(skb);
5904 
5905 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5906 	trace_napi_gro_receive_exit(ret);
5907 
5908 	return ret;
5909 }
5910 EXPORT_SYMBOL(napi_gro_receive);
5911 
5912 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5913 {
5914 	if (unlikely(skb->pfmemalloc)) {
5915 		consume_skb(skb);
5916 		return;
5917 	}
5918 	__skb_pull(skb, skb_headlen(skb));
5919 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5920 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5921 	__vlan_hwaccel_clear_tag(skb);
5922 	skb->dev = napi->dev;
5923 	skb->skb_iif = 0;
5924 
5925 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5926 	skb->pkt_type = PACKET_HOST;
5927 
5928 	skb->encapsulation = 0;
5929 	skb_shinfo(skb)->gso_type = 0;
5930 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5931 	skb_ext_reset(skb);
5932 
5933 	napi->skb = skb;
5934 }
5935 
5936 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5937 {
5938 	struct sk_buff *skb = napi->skb;
5939 
5940 	if (!skb) {
5941 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5942 		if (skb) {
5943 			napi->skb = skb;
5944 			skb_mark_napi_id(skb, napi);
5945 		}
5946 	}
5947 	return skb;
5948 }
5949 EXPORT_SYMBOL(napi_get_frags);
5950 
5951 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5952 				      struct sk_buff *skb,
5953 				      gro_result_t ret)
5954 {
5955 	switch (ret) {
5956 	case GRO_NORMAL:
5957 	case GRO_HELD:
5958 		__skb_push(skb, ETH_HLEN);
5959 		skb->protocol = eth_type_trans(skb, skb->dev);
5960 		if (ret == GRO_NORMAL)
5961 			gro_normal_one(napi, skb);
5962 		break;
5963 
5964 	case GRO_DROP:
5965 		napi_reuse_skb(napi, skb);
5966 		break;
5967 
5968 	case GRO_MERGED_FREE:
5969 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5970 			napi_skb_free_stolen_head(skb);
5971 		else
5972 			napi_reuse_skb(napi, skb);
5973 		break;
5974 
5975 	case GRO_MERGED:
5976 	case GRO_CONSUMED:
5977 		break;
5978 	}
5979 
5980 	return ret;
5981 }
5982 
5983 /* Upper GRO stack assumes network header starts at gro_offset=0
5984  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5985  * We copy ethernet header into skb->data to have a common layout.
5986  */
5987 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5988 {
5989 	struct sk_buff *skb = napi->skb;
5990 	const struct ethhdr *eth;
5991 	unsigned int hlen = sizeof(*eth);
5992 
5993 	napi->skb = NULL;
5994 
5995 	skb_reset_mac_header(skb);
5996 	skb_gro_reset_offset(skb);
5997 
5998 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5999 		eth = skb_gro_header_slow(skb, hlen, 0);
6000 		if (unlikely(!eth)) {
6001 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6002 					     __func__, napi->dev->name);
6003 			napi_reuse_skb(napi, skb);
6004 			return NULL;
6005 		}
6006 	} else {
6007 		eth = (const struct ethhdr *)skb->data;
6008 		gro_pull_from_frag0(skb, hlen);
6009 		NAPI_GRO_CB(skb)->frag0 += hlen;
6010 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6011 	}
6012 	__skb_pull(skb, hlen);
6013 
6014 	/*
6015 	 * This works because the only protocols we care about don't require
6016 	 * special handling.
6017 	 * We'll fix it up properly in napi_frags_finish()
6018 	 */
6019 	skb->protocol = eth->h_proto;
6020 
6021 	return skb;
6022 }
6023 
6024 gro_result_t napi_gro_frags(struct napi_struct *napi)
6025 {
6026 	gro_result_t ret;
6027 	struct sk_buff *skb = napi_frags_skb(napi);
6028 
6029 	if (!skb)
6030 		return GRO_DROP;
6031 
6032 	trace_napi_gro_frags_entry(skb);
6033 
6034 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6035 	trace_napi_gro_frags_exit(ret);
6036 
6037 	return ret;
6038 }
6039 EXPORT_SYMBOL(napi_gro_frags);
6040 
6041 /* Compute the checksum from gro_offset and return the folded value
6042  * after adding in any pseudo checksum.
6043  */
6044 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6045 {
6046 	__wsum wsum;
6047 	__sum16 sum;
6048 
6049 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6050 
6051 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6052 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6053 	/* See comments in __skb_checksum_complete(). */
6054 	if (likely(!sum)) {
6055 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6056 		    !skb->csum_complete_sw)
6057 			netdev_rx_csum_fault(skb->dev, skb);
6058 	}
6059 
6060 	NAPI_GRO_CB(skb)->csum = wsum;
6061 	NAPI_GRO_CB(skb)->csum_valid = 1;
6062 
6063 	return sum;
6064 }
6065 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6066 
6067 static void net_rps_send_ipi(struct softnet_data *remsd)
6068 {
6069 #ifdef CONFIG_RPS
6070 	while (remsd) {
6071 		struct softnet_data *next = remsd->rps_ipi_next;
6072 
6073 		if (cpu_online(remsd->cpu))
6074 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6075 		remsd = next;
6076 	}
6077 #endif
6078 }
6079 
6080 /*
6081  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6082  * Note: called with local irq disabled, but exits with local irq enabled.
6083  */
6084 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6085 {
6086 #ifdef CONFIG_RPS
6087 	struct softnet_data *remsd = sd->rps_ipi_list;
6088 
6089 	if (remsd) {
6090 		sd->rps_ipi_list = NULL;
6091 
6092 		local_irq_enable();
6093 
6094 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6095 		net_rps_send_ipi(remsd);
6096 	} else
6097 #endif
6098 		local_irq_enable();
6099 }
6100 
6101 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6102 {
6103 #ifdef CONFIG_RPS
6104 	return sd->rps_ipi_list != NULL;
6105 #else
6106 	return false;
6107 #endif
6108 }
6109 
6110 static int process_backlog(struct napi_struct *napi, int quota)
6111 {
6112 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6113 	bool again = true;
6114 	int work = 0;
6115 
6116 	/* Check if we have pending ipi, its better to send them now,
6117 	 * not waiting net_rx_action() end.
6118 	 */
6119 	if (sd_has_rps_ipi_waiting(sd)) {
6120 		local_irq_disable();
6121 		net_rps_action_and_irq_enable(sd);
6122 	}
6123 
6124 	napi->weight = dev_rx_weight;
6125 	while (again) {
6126 		struct sk_buff *skb;
6127 
6128 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6129 			rcu_read_lock();
6130 			__netif_receive_skb(skb);
6131 			rcu_read_unlock();
6132 			input_queue_head_incr(sd);
6133 			if (++work >= quota)
6134 				return work;
6135 
6136 		}
6137 
6138 		local_irq_disable();
6139 		rps_lock(sd);
6140 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6141 			/*
6142 			 * Inline a custom version of __napi_complete().
6143 			 * only current cpu owns and manipulates this napi,
6144 			 * and NAPI_STATE_SCHED is the only possible flag set
6145 			 * on backlog.
6146 			 * We can use a plain write instead of clear_bit(),
6147 			 * and we dont need an smp_mb() memory barrier.
6148 			 */
6149 			napi->state = 0;
6150 			again = false;
6151 		} else {
6152 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6153 						   &sd->process_queue);
6154 		}
6155 		rps_unlock(sd);
6156 		local_irq_enable();
6157 	}
6158 
6159 	return work;
6160 }
6161 
6162 /**
6163  * __napi_schedule - schedule for receive
6164  * @n: entry to schedule
6165  *
6166  * The entry's receive function will be scheduled to run.
6167  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6168  */
6169 void __napi_schedule(struct napi_struct *n)
6170 {
6171 	unsigned long flags;
6172 
6173 	local_irq_save(flags);
6174 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6175 	local_irq_restore(flags);
6176 }
6177 EXPORT_SYMBOL(__napi_schedule);
6178 
6179 /**
6180  *	napi_schedule_prep - check if napi can be scheduled
6181  *	@n: napi context
6182  *
6183  * Test if NAPI routine is already running, and if not mark
6184  * it as running.  This is used as a condition variable
6185  * insure only one NAPI poll instance runs.  We also make
6186  * sure there is no pending NAPI disable.
6187  */
6188 bool napi_schedule_prep(struct napi_struct *n)
6189 {
6190 	unsigned long val, new;
6191 
6192 	do {
6193 		val = READ_ONCE(n->state);
6194 		if (unlikely(val & NAPIF_STATE_DISABLE))
6195 			return false;
6196 		new = val | NAPIF_STATE_SCHED;
6197 
6198 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6199 		 * This was suggested by Alexander Duyck, as compiler
6200 		 * emits better code than :
6201 		 * if (val & NAPIF_STATE_SCHED)
6202 		 *     new |= NAPIF_STATE_MISSED;
6203 		 */
6204 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6205 						   NAPIF_STATE_MISSED;
6206 	} while (cmpxchg(&n->state, val, new) != val);
6207 
6208 	return !(val & NAPIF_STATE_SCHED);
6209 }
6210 EXPORT_SYMBOL(napi_schedule_prep);
6211 
6212 /**
6213  * __napi_schedule_irqoff - schedule for receive
6214  * @n: entry to schedule
6215  *
6216  * Variant of __napi_schedule() assuming hard irqs are masked
6217  */
6218 void __napi_schedule_irqoff(struct napi_struct *n)
6219 {
6220 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6221 }
6222 EXPORT_SYMBOL(__napi_schedule_irqoff);
6223 
6224 bool napi_complete_done(struct napi_struct *n, int work_done)
6225 {
6226 	unsigned long flags, val, new;
6227 
6228 	/*
6229 	 * 1) Don't let napi dequeue from the cpu poll list
6230 	 *    just in case its running on a different cpu.
6231 	 * 2) If we are busy polling, do nothing here, we have
6232 	 *    the guarantee we will be called later.
6233 	 */
6234 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6235 				 NAPIF_STATE_IN_BUSY_POLL)))
6236 		return false;
6237 
6238 	if (n->gro_bitmask) {
6239 		unsigned long timeout = 0;
6240 
6241 		if (work_done)
6242 			timeout = n->dev->gro_flush_timeout;
6243 
6244 		/* When the NAPI instance uses a timeout and keeps postponing
6245 		 * it, we need to bound somehow the time packets are kept in
6246 		 * the GRO layer
6247 		 */
6248 		napi_gro_flush(n, !!timeout);
6249 		if (timeout)
6250 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6251 				      HRTIMER_MODE_REL_PINNED);
6252 	}
6253 
6254 	gro_normal_list(n);
6255 
6256 	if (unlikely(!list_empty(&n->poll_list))) {
6257 		/* If n->poll_list is not empty, we need to mask irqs */
6258 		local_irq_save(flags);
6259 		list_del_init(&n->poll_list);
6260 		local_irq_restore(flags);
6261 	}
6262 
6263 	do {
6264 		val = READ_ONCE(n->state);
6265 
6266 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6267 
6268 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6269 
6270 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6271 		 * because we will call napi->poll() one more time.
6272 		 * This C code was suggested by Alexander Duyck to help gcc.
6273 		 */
6274 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6275 						    NAPIF_STATE_SCHED;
6276 	} while (cmpxchg(&n->state, val, new) != val);
6277 
6278 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6279 		__napi_schedule(n);
6280 		return false;
6281 	}
6282 
6283 	return true;
6284 }
6285 EXPORT_SYMBOL(napi_complete_done);
6286 
6287 /* must be called under rcu_read_lock(), as we dont take a reference */
6288 static struct napi_struct *napi_by_id(unsigned int napi_id)
6289 {
6290 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6291 	struct napi_struct *napi;
6292 
6293 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6294 		if (napi->napi_id == napi_id)
6295 			return napi;
6296 
6297 	return NULL;
6298 }
6299 
6300 #if defined(CONFIG_NET_RX_BUSY_POLL)
6301 
6302 #define BUSY_POLL_BUDGET 8
6303 
6304 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6305 {
6306 	int rc;
6307 
6308 	/* Busy polling means there is a high chance device driver hard irq
6309 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6310 	 * set in napi_schedule_prep().
6311 	 * Since we are about to call napi->poll() once more, we can safely
6312 	 * clear NAPI_STATE_MISSED.
6313 	 *
6314 	 * Note: x86 could use a single "lock and ..." instruction
6315 	 * to perform these two clear_bit()
6316 	 */
6317 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6318 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6319 
6320 	local_bh_disable();
6321 
6322 	/* All we really want here is to re-enable device interrupts.
6323 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6324 	 */
6325 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6326 	/* We can't gro_normal_list() here, because napi->poll() might have
6327 	 * rearmed the napi (napi_complete_done()) in which case it could
6328 	 * already be running on another CPU.
6329 	 */
6330 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6331 	netpoll_poll_unlock(have_poll_lock);
6332 	if (rc == BUSY_POLL_BUDGET) {
6333 		/* As the whole budget was spent, we still own the napi so can
6334 		 * safely handle the rx_list.
6335 		 */
6336 		gro_normal_list(napi);
6337 		__napi_schedule(napi);
6338 	}
6339 	local_bh_enable();
6340 }
6341 
6342 void napi_busy_loop(unsigned int napi_id,
6343 		    bool (*loop_end)(void *, unsigned long),
6344 		    void *loop_end_arg)
6345 {
6346 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6347 	int (*napi_poll)(struct napi_struct *napi, int budget);
6348 	void *have_poll_lock = NULL;
6349 	struct napi_struct *napi;
6350 
6351 restart:
6352 	napi_poll = NULL;
6353 
6354 	rcu_read_lock();
6355 
6356 	napi = napi_by_id(napi_id);
6357 	if (!napi)
6358 		goto out;
6359 
6360 	preempt_disable();
6361 	for (;;) {
6362 		int work = 0;
6363 
6364 		local_bh_disable();
6365 		if (!napi_poll) {
6366 			unsigned long val = READ_ONCE(napi->state);
6367 
6368 			/* If multiple threads are competing for this napi,
6369 			 * we avoid dirtying napi->state as much as we can.
6370 			 */
6371 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6372 				   NAPIF_STATE_IN_BUSY_POLL))
6373 				goto count;
6374 			if (cmpxchg(&napi->state, val,
6375 				    val | NAPIF_STATE_IN_BUSY_POLL |
6376 					  NAPIF_STATE_SCHED) != val)
6377 				goto count;
6378 			have_poll_lock = netpoll_poll_lock(napi);
6379 			napi_poll = napi->poll;
6380 		}
6381 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6382 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6383 		gro_normal_list(napi);
6384 count:
6385 		if (work > 0)
6386 			__NET_ADD_STATS(dev_net(napi->dev),
6387 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6388 		local_bh_enable();
6389 
6390 		if (!loop_end || loop_end(loop_end_arg, start_time))
6391 			break;
6392 
6393 		if (unlikely(need_resched())) {
6394 			if (napi_poll)
6395 				busy_poll_stop(napi, have_poll_lock);
6396 			preempt_enable();
6397 			rcu_read_unlock();
6398 			cond_resched();
6399 			if (loop_end(loop_end_arg, start_time))
6400 				return;
6401 			goto restart;
6402 		}
6403 		cpu_relax();
6404 	}
6405 	if (napi_poll)
6406 		busy_poll_stop(napi, have_poll_lock);
6407 	preempt_enable();
6408 out:
6409 	rcu_read_unlock();
6410 }
6411 EXPORT_SYMBOL(napi_busy_loop);
6412 
6413 #endif /* CONFIG_NET_RX_BUSY_POLL */
6414 
6415 static void napi_hash_add(struct napi_struct *napi)
6416 {
6417 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6418 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6419 		return;
6420 
6421 	spin_lock(&napi_hash_lock);
6422 
6423 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6424 	do {
6425 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6426 			napi_gen_id = MIN_NAPI_ID;
6427 	} while (napi_by_id(napi_gen_id));
6428 	napi->napi_id = napi_gen_id;
6429 
6430 	hlist_add_head_rcu(&napi->napi_hash_node,
6431 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6432 
6433 	spin_unlock(&napi_hash_lock);
6434 }
6435 
6436 /* Warning : caller is responsible to make sure rcu grace period
6437  * is respected before freeing memory containing @napi
6438  */
6439 bool napi_hash_del(struct napi_struct *napi)
6440 {
6441 	bool rcu_sync_needed = false;
6442 
6443 	spin_lock(&napi_hash_lock);
6444 
6445 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6446 		rcu_sync_needed = true;
6447 		hlist_del_rcu(&napi->napi_hash_node);
6448 	}
6449 	spin_unlock(&napi_hash_lock);
6450 	return rcu_sync_needed;
6451 }
6452 EXPORT_SYMBOL_GPL(napi_hash_del);
6453 
6454 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6455 {
6456 	struct napi_struct *napi;
6457 
6458 	napi = container_of(timer, struct napi_struct, timer);
6459 
6460 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6461 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6462 	 */
6463 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6464 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6465 		__napi_schedule_irqoff(napi);
6466 
6467 	return HRTIMER_NORESTART;
6468 }
6469 
6470 static void init_gro_hash(struct napi_struct *napi)
6471 {
6472 	int i;
6473 
6474 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6475 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6476 		napi->gro_hash[i].count = 0;
6477 	}
6478 	napi->gro_bitmask = 0;
6479 }
6480 
6481 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6482 		    int (*poll)(struct napi_struct *, int), int weight)
6483 {
6484 	INIT_LIST_HEAD(&napi->poll_list);
6485 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6486 	napi->timer.function = napi_watchdog;
6487 	init_gro_hash(napi);
6488 	napi->skb = NULL;
6489 	INIT_LIST_HEAD(&napi->rx_list);
6490 	napi->rx_count = 0;
6491 	napi->poll = poll;
6492 	if (weight > NAPI_POLL_WEIGHT)
6493 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6494 				weight);
6495 	napi->weight = weight;
6496 	list_add(&napi->dev_list, &dev->napi_list);
6497 	napi->dev = dev;
6498 #ifdef CONFIG_NETPOLL
6499 	napi->poll_owner = -1;
6500 #endif
6501 	set_bit(NAPI_STATE_SCHED, &napi->state);
6502 	napi_hash_add(napi);
6503 }
6504 EXPORT_SYMBOL(netif_napi_add);
6505 
6506 void napi_disable(struct napi_struct *n)
6507 {
6508 	might_sleep();
6509 	set_bit(NAPI_STATE_DISABLE, &n->state);
6510 
6511 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6512 		msleep(1);
6513 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6514 		msleep(1);
6515 
6516 	hrtimer_cancel(&n->timer);
6517 
6518 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6519 }
6520 EXPORT_SYMBOL(napi_disable);
6521 
6522 static void flush_gro_hash(struct napi_struct *napi)
6523 {
6524 	int i;
6525 
6526 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6527 		struct sk_buff *skb, *n;
6528 
6529 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6530 			kfree_skb(skb);
6531 		napi->gro_hash[i].count = 0;
6532 	}
6533 }
6534 
6535 /* Must be called in process context */
6536 void netif_napi_del(struct napi_struct *napi)
6537 {
6538 	might_sleep();
6539 	if (napi_hash_del(napi))
6540 		synchronize_net();
6541 	list_del_init(&napi->dev_list);
6542 	napi_free_frags(napi);
6543 
6544 	flush_gro_hash(napi);
6545 	napi->gro_bitmask = 0;
6546 }
6547 EXPORT_SYMBOL(netif_napi_del);
6548 
6549 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6550 {
6551 	void *have;
6552 	int work, weight;
6553 
6554 	list_del_init(&n->poll_list);
6555 
6556 	have = netpoll_poll_lock(n);
6557 
6558 	weight = n->weight;
6559 
6560 	/* This NAPI_STATE_SCHED test is for avoiding a race
6561 	 * with netpoll's poll_napi().  Only the entity which
6562 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6563 	 * actually make the ->poll() call.  Therefore we avoid
6564 	 * accidentally calling ->poll() when NAPI is not scheduled.
6565 	 */
6566 	work = 0;
6567 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6568 		work = n->poll(n, weight);
6569 		trace_napi_poll(n, work, weight);
6570 	}
6571 
6572 	WARN_ON_ONCE(work > weight);
6573 
6574 	if (likely(work < weight))
6575 		goto out_unlock;
6576 
6577 	/* Drivers must not modify the NAPI state if they
6578 	 * consume the entire weight.  In such cases this code
6579 	 * still "owns" the NAPI instance and therefore can
6580 	 * move the instance around on the list at-will.
6581 	 */
6582 	if (unlikely(napi_disable_pending(n))) {
6583 		napi_complete(n);
6584 		goto out_unlock;
6585 	}
6586 
6587 	if (n->gro_bitmask) {
6588 		/* flush too old packets
6589 		 * If HZ < 1000, flush all packets.
6590 		 */
6591 		napi_gro_flush(n, HZ >= 1000);
6592 	}
6593 
6594 	gro_normal_list(n);
6595 
6596 	/* Some drivers may have called napi_schedule
6597 	 * prior to exhausting their budget.
6598 	 */
6599 	if (unlikely(!list_empty(&n->poll_list))) {
6600 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6601 			     n->dev ? n->dev->name : "backlog");
6602 		goto out_unlock;
6603 	}
6604 
6605 	list_add_tail(&n->poll_list, repoll);
6606 
6607 out_unlock:
6608 	netpoll_poll_unlock(have);
6609 
6610 	return work;
6611 }
6612 
6613 static __latent_entropy void net_rx_action(struct softirq_action *h)
6614 {
6615 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6616 	unsigned long time_limit = jiffies +
6617 		usecs_to_jiffies(netdev_budget_usecs);
6618 	int budget = netdev_budget;
6619 	LIST_HEAD(list);
6620 	LIST_HEAD(repoll);
6621 
6622 	local_irq_disable();
6623 	list_splice_init(&sd->poll_list, &list);
6624 	local_irq_enable();
6625 
6626 	for (;;) {
6627 		struct napi_struct *n;
6628 
6629 		if (list_empty(&list)) {
6630 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6631 				goto out;
6632 			break;
6633 		}
6634 
6635 		n = list_first_entry(&list, struct napi_struct, poll_list);
6636 		budget -= napi_poll(n, &repoll);
6637 
6638 		/* If softirq window is exhausted then punt.
6639 		 * Allow this to run for 2 jiffies since which will allow
6640 		 * an average latency of 1.5/HZ.
6641 		 */
6642 		if (unlikely(budget <= 0 ||
6643 			     time_after_eq(jiffies, time_limit))) {
6644 			sd->time_squeeze++;
6645 			break;
6646 		}
6647 	}
6648 
6649 	local_irq_disable();
6650 
6651 	list_splice_tail_init(&sd->poll_list, &list);
6652 	list_splice_tail(&repoll, &list);
6653 	list_splice(&list, &sd->poll_list);
6654 	if (!list_empty(&sd->poll_list))
6655 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6656 
6657 	net_rps_action_and_irq_enable(sd);
6658 out:
6659 	__kfree_skb_flush();
6660 }
6661 
6662 struct netdev_adjacent {
6663 	struct net_device *dev;
6664 
6665 	/* upper master flag, there can only be one master device per list */
6666 	bool master;
6667 
6668 	/* lookup ignore flag */
6669 	bool ignore;
6670 
6671 	/* counter for the number of times this device was added to us */
6672 	u16 ref_nr;
6673 
6674 	/* private field for the users */
6675 	void *private;
6676 
6677 	struct list_head list;
6678 	struct rcu_head rcu;
6679 };
6680 
6681 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6682 						 struct list_head *adj_list)
6683 {
6684 	struct netdev_adjacent *adj;
6685 
6686 	list_for_each_entry(adj, adj_list, list) {
6687 		if (adj->dev == adj_dev)
6688 			return adj;
6689 	}
6690 	return NULL;
6691 }
6692 
6693 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6694 {
6695 	struct net_device *dev = data;
6696 
6697 	return upper_dev == dev;
6698 }
6699 
6700 /**
6701  * netdev_has_upper_dev - Check if device is linked to an upper device
6702  * @dev: device
6703  * @upper_dev: upper device to check
6704  *
6705  * Find out if a device is linked to specified upper device and return true
6706  * in case it is. Note that this checks only immediate upper device,
6707  * not through a complete stack of devices. The caller must hold the RTNL lock.
6708  */
6709 bool netdev_has_upper_dev(struct net_device *dev,
6710 			  struct net_device *upper_dev)
6711 {
6712 	ASSERT_RTNL();
6713 
6714 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6715 					     upper_dev);
6716 }
6717 EXPORT_SYMBOL(netdev_has_upper_dev);
6718 
6719 /**
6720  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6721  * @dev: device
6722  * @upper_dev: upper device to check
6723  *
6724  * Find out if a device is linked to specified upper device and return true
6725  * in case it is. Note that this checks the entire upper device chain.
6726  * The caller must hold rcu lock.
6727  */
6728 
6729 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6730 				  struct net_device *upper_dev)
6731 {
6732 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6733 					       upper_dev);
6734 }
6735 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6736 
6737 /**
6738  * netdev_has_any_upper_dev - Check if device is linked to some device
6739  * @dev: device
6740  *
6741  * Find out if a device is linked to an upper device and return true in case
6742  * it is. The caller must hold the RTNL lock.
6743  */
6744 bool netdev_has_any_upper_dev(struct net_device *dev)
6745 {
6746 	ASSERT_RTNL();
6747 
6748 	return !list_empty(&dev->adj_list.upper);
6749 }
6750 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6751 
6752 /**
6753  * netdev_master_upper_dev_get - Get master upper device
6754  * @dev: device
6755  *
6756  * Find a master upper device and return pointer to it or NULL in case
6757  * it's not there. The caller must hold the RTNL lock.
6758  */
6759 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6760 {
6761 	struct netdev_adjacent *upper;
6762 
6763 	ASSERT_RTNL();
6764 
6765 	if (list_empty(&dev->adj_list.upper))
6766 		return NULL;
6767 
6768 	upper = list_first_entry(&dev->adj_list.upper,
6769 				 struct netdev_adjacent, list);
6770 	if (likely(upper->master))
6771 		return upper->dev;
6772 	return NULL;
6773 }
6774 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6775 
6776 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6777 {
6778 	struct netdev_adjacent *upper;
6779 
6780 	ASSERT_RTNL();
6781 
6782 	if (list_empty(&dev->adj_list.upper))
6783 		return NULL;
6784 
6785 	upper = list_first_entry(&dev->adj_list.upper,
6786 				 struct netdev_adjacent, list);
6787 	if (likely(upper->master) && !upper->ignore)
6788 		return upper->dev;
6789 	return NULL;
6790 }
6791 
6792 /**
6793  * netdev_has_any_lower_dev - Check if device is linked to some device
6794  * @dev: device
6795  *
6796  * Find out if a device is linked to a lower device and return true in case
6797  * it is. The caller must hold the RTNL lock.
6798  */
6799 static bool netdev_has_any_lower_dev(struct net_device *dev)
6800 {
6801 	ASSERT_RTNL();
6802 
6803 	return !list_empty(&dev->adj_list.lower);
6804 }
6805 
6806 void *netdev_adjacent_get_private(struct list_head *adj_list)
6807 {
6808 	struct netdev_adjacent *adj;
6809 
6810 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6811 
6812 	return adj->private;
6813 }
6814 EXPORT_SYMBOL(netdev_adjacent_get_private);
6815 
6816 /**
6817  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6818  * @dev: device
6819  * @iter: list_head ** of the current position
6820  *
6821  * Gets the next device from the dev's upper list, starting from iter
6822  * position. The caller must hold RCU read lock.
6823  */
6824 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6825 						 struct list_head **iter)
6826 {
6827 	struct netdev_adjacent *upper;
6828 
6829 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6830 
6831 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6832 
6833 	if (&upper->list == &dev->adj_list.upper)
6834 		return NULL;
6835 
6836 	*iter = &upper->list;
6837 
6838 	return upper->dev;
6839 }
6840 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6841 
6842 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6843 						  struct list_head **iter,
6844 						  bool *ignore)
6845 {
6846 	struct netdev_adjacent *upper;
6847 
6848 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6849 
6850 	if (&upper->list == &dev->adj_list.upper)
6851 		return NULL;
6852 
6853 	*iter = &upper->list;
6854 	*ignore = upper->ignore;
6855 
6856 	return upper->dev;
6857 }
6858 
6859 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6860 						    struct list_head **iter)
6861 {
6862 	struct netdev_adjacent *upper;
6863 
6864 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6865 
6866 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6867 
6868 	if (&upper->list == &dev->adj_list.upper)
6869 		return NULL;
6870 
6871 	*iter = &upper->list;
6872 
6873 	return upper->dev;
6874 }
6875 
6876 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6877 				       int (*fn)(struct net_device *dev,
6878 						 void *data),
6879 				       void *data)
6880 {
6881 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6882 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6883 	int ret, cur = 0;
6884 	bool ignore;
6885 
6886 	now = dev;
6887 	iter = &dev->adj_list.upper;
6888 
6889 	while (1) {
6890 		if (now != dev) {
6891 			ret = fn(now, data);
6892 			if (ret)
6893 				return ret;
6894 		}
6895 
6896 		next = NULL;
6897 		while (1) {
6898 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6899 			if (!udev)
6900 				break;
6901 			if (ignore)
6902 				continue;
6903 
6904 			next = udev;
6905 			niter = &udev->adj_list.upper;
6906 			dev_stack[cur] = now;
6907 			iter_stack[cur++] = iter;
6908 			break;
6909 		}
6910 
6911 		if (!next) {
6912 			if (!cur)
6913 				return 0;
6914 			next = dev_stack[--cur];
6915 			niter = iter_stack[cur];
6916 		}
6917 
6918 		now = next;
6919 		iter = niter;
6920 	}
6921 
6922 	return 0;
6923 }
6924 
6925 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6926 				  int (*fn)(struct net_device *dev,
6927 					    void *data),
6928 				  void *data)
6929 {
6930 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6931 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6932 	int ret, cur = 0;
6933 
6934 	now = dev;
6935 	iter = &dev->adj_list.upper;
6936 
6937 	while (1) {
6938 		if (now != dev) {
6939 			ret = fn(now, data);
6940 			if (ret)
6941 				return ret;
6942 		}
6943 
6944 		next = NULL;
6945 		while (1) {
6946 			udev = netdev_next_upper_dev_rcu(now, &iter);
6947 			if (!udev)
6948 				break;
6949 
6950 			next = udev;
6951 			niter = &udev->adj_list.upper;
6952 			dev_stack[cur] = now;
6953 			iter_stack[cur++] = iter;
6954 			break;
6955 		}
6956 
6957 		if (!next) {
6958 			if (!cur)
6959 				return 0;
6960 			next = dev_stack[--cur];
6961 			niter = iter_stack[cur];
6962 		}
6963 
6964 		now = next;
6965 		iter = niter;
6966 	}
6967 
6968 	return 0;
6969 }
6970 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6971 
6972 static bool __netdev_has_upper_dev(struct net_device *dev,
6973 				   struct net_device *upper_dev)
6974 {
6975 	ASSERT_RTNL();
6976 
6977 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6978 					   upper_dev);
6979 }
6980 
6981 /**
6982  * netdev_lower_get_next_private - Get the next ->private from the
6983  *				   lower neighbour list
6984  * @dev: device
6985  * @iter: list_head ** of the current position
6986  *
6987  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6988  * list, starting from iter position. The caller must hold either hold the
6989  * RTNL lock or its own locking that guarantees that the neighbour lower
6990  * list will remain unchanged.
6991  */
6992 void *netdev_lower_get_next_private(struct net_device *dev,
6993 				    struct list_head **iter)
6994 {
6995 	struct netdev_adjacent *lower;
6996 
6997 	lower = list_entry(*iter, struct netdev_adjacent, list);
6998 
6999 	if (&lower->list == &dev->adj_list.lower)
7000 		return NULL;
7001 
7002 	*iter = lower->list.next;
7003 
7004 	return lower->private;
7005 }
7006 EXPORT_SYMBOL(netdev_lower_get_next_private);
7007 
7008 /**
7009  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7010  *				       lower neighbour list, RCU
7011  *				       variant
7012  * @dev: device
7013  * @iter: list_head ** of the current position
7014  *
7015  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7016  * list, starting from iter position. The caller must hold RCU read lock.
7017  */
7018 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7019 					struct list_head **iter)
7020 {
7021 	struct netdev_adjacent *lower;
7022 
7023 	WARN_ON_ONCE(!rcu_read_lock_held());
7024 
7025 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7026 
7027 	if (&lower->list == &dev->adj_list.lower)
7028 		return NULL;
7029 
7030 	*iter = &lower->list;
7031 
7032 	return lower->private;
7033 }
7034 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7035 
7036 /**
7037  * netdev_lower_get_next - Get the next device from the lower neighbour
7038  *                         list
7039  * @dev: device
7040  * @iter: list_head ** of the current position
7041  *
7042  * Gets the next netdev_adjacent from the dev's lower neighbour
7043  * list, starting from iter position. The caller must hold RTNL lock or
7044  * its own locking that guarantees that the neighbour lower
7045  * list will remain unchanged.
7046  */
7047 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7048 {
7049 	struct netdev_adjacent *lower;
7050 
7051 	lower = list_entry(*iter, struct netdev_adjacent, list);
7052 
7053 	if (&lower->list == &dev->adj_list.lower)
7054 		return NULL;
7055 
7056 	*iter = lower->list.next;
7057 
7058 	return lower->dev;
7059 }
7060 EXPORT_SYMBOL(netdev_lower_get_next);
7061 
7062 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7063 						struct list_head **iter)
7064 {
7065 	struct netdev_adjacent *lower;
7066 
7067 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7068 
7069 	if (&lower->list == &dev->adj_list.lower)
7070 		return NULL;
7071 
7072 	*iter = &lower->list;
7073 
7074 	return lower->dev;
7075 }
7076 
7077 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7078 						  struct list_head **iter,
7079 						  bool *ignore)
7080 {
7081 	struct netdev_adjacent *lower;
7082 
7083 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7084 
7085 	if (&lower->list == &dev->adj_list.lower)
7086 		return NULL;
7087 
7088 	*iter = &lower->list;
7089 	*ignore = lower->ignore;
7090 
7091 	return lower->dev;
7092 }
7093 
7094 int netdev_walk_all_lower_dev(struct net_device *dev,
7095 			      int (*fn)(struct net_device *dev,
7096 					void *data),
7097 			      void *data)
7098 {
7099 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7100 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7101 	int ret, cur = 0;
7102 
7103 	now = dev;
7104 	iter = &dev->adj_list.lower;
7105 
7106 	while (1) {
7107 		if (now != dev) {
7108 			ret = fn(now, data);
7109 			if (ret)
7110 				return ret;
7111 		}
7112 
7113 		next = NULL;
7114 		while (1) {
7115 			ldev = netdev_next_lower_dev(now, &iter);
7116 			if (!ldev)
7117 				break;
7118 
7119 			next = ldev;
7120 			niter = &ldev->adj_list.lower;
7121 			dev_stack[cur] = now;
7122 			iter_stack[cur++] = iter;
7123 			break;
7124 		}
7125 
7126 		if (!next) {
7127 			if (!cur)
7128 				return 0;
7129 			next = dev_stack[--cur];
7130 			niter = iter_stack[cur];
7131 		}
7132 
7133 		now = next;
7134 		iter = niter;
7135 	}
7136 
7137 	return 0;
7138 }
7139 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7140 
7141 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7142 				       int (*fn)(struct net_device *dev,
7143 						 void *data),
7144 				       void *data)
7145 {
7146 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7147 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7148 	int ret, cur = 0;
7149 	bool ignore;
7150 
7151 	now = dev;
7152 	iter = &dev->adj_list.lower;
7153 
7154 	while (1) {
7155 		if (now != dev) {
7156 			ret = fn(now, data);
7157 			if (ret)
7158 				return ret;
7159 		}
7160 
7161 		next = NULL;
7162 		while (1) {
7163 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7164 			if (!ldev)
7165 				break;
7166 			if (ignore)
7167 				continue;
7168 
7169 			next = ldev;
7170 			niter = &ldev->adj_list.lower;
7171 			dev_stack[cur] = now;
7172 			iter_stack[cur++] = iter;
7173 			break;
7174 		}
7175 
7176 		if (!next) {
7177 			if (!cur)
7178 				return 0;
7179 			next = dev_stack[--cur];
7180 			niter = iter_stack[cur];
7181 		}
7182 
7183 		now = next;
7184 		iter = niter;
7185 	}
7186 
7187 	return 0;
7188 }
7189 
7190 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7191 					     struct list_head **iter)
7192 {
7193 	struct netdev_adjacent *lower;
7194 
7195 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7196 	if (&lower->list == &dev->adj_list.lower)
7197 		return NULL;
7198 
7199 	*iter = &lower->list;
7200 
7201 	return lower->dev;
7202 }
7203 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7204 
7205 static u8 __netdev_upper_depth(struct net_device *dev)
7206 {
7207 	struct net_device *udev;
7208 	struct list_head *iter;
7209 	u8 max_depth = 0;
7210 	bool ignore;
7211 
7212 	for (iter = &dev->adj_list.upper,
7213 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7214 	     udev;
7215 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7216 		if (ignore)
7217 			continue;
7218 		if (max_depth < udev->upper_level)
7219 			max_depth = udev->upper_level;
7220 	}
7221 
7222 	return max_depth;
7223 }
7224 
7225 static u8 __netdev_lower_depth(struct net_device *dev)
7226 {
7227 	struct net_device *ldev;
7228 	struct list_head *iter;
7229 	u8 max_depth = 0;
7230 	bool ignore;
7231 
7232 	for (iter = &dev->adj_list.lower,
7233 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7234 	     ldev;
7235 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7236 		if (ignore)
7237 			continue;
7238 		if (max_depth < ldev->lower_level)
7239 			max_depth = ldev->lower_level;
7240 	}
7241 
7242 	return max_depth;
7243 }
7244 
7245 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7246 {
7247 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7248 	return 0;
7249 }
7250 
7251 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7252 {
7253 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7254 	return 0;
7255 }
7256 
7257 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7258 				  int (*fn)(struct net_device *dev,
7259 					    void *data),
7260 				  void *data)
7261 {
7262 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7263 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7264 	int ret, cur = 0;
7265 
7266 	now = dev;
7267 	iter = &dev->adj_list.lower;
7268 
7269 	while (1) {
7270 		if (now != dev) {
7271 			ret = fn(now, data);
7272 			if (ret)
7273 				return ret;
7274 		}
7275 
7276 		next = NULL;
7277 		while (1) {
7278 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7279 			if (!ldev)
7280 				break;
7281 
7282 			next = ldev;
7283 			niter = &ldev->adj_list.lower;
7284 			dev_stack[cur] = now;
7285 			iter_stack[cur++] = iter;
7286 			break;
7287 		}
7288 
7289 		if (!next) {
7290 			if (!cur)
7291 				return 0;
7292 			next = dev_stack[--cur];
7293 			niter = iter_stack[cur];
7294 		}
7295 
7296 		now = next;
7297 		iter = niter;
7298 	}
7299 
7300 	return 0;
7301 }
7302 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7303 
7304 /**
7305  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7306  *				       lower neighbour list, RCU
7307  *				       variant
7308  * @dev: device
7309  *
7310  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7311  * list. The caller must hold RCU read lock.
7312  */
7313 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7314 {
7315 	struct netdev_adjacent *lower;
7316 
7317 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7318 			struct netdev_adjacent, list);
7319 	if (lower)
7320 		return lower->private;
7321 	return NULL;
7322 }
7323 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7324 
7325 /**
7326  * netdev_master_upper_dev_get_rcu - Get master upper device
7327  * @dev: device
7328  *
7329  * Find a master upper device and return pointer to it or NULL in case
7330  * it's not there. The caller must hold the RCU read lock.
7331  */
7332 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7333 {
7334 	struct netdev_adjacent *upper;
7335 
7336 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7337 				       struct netdev_adjacent, list);
7338 	if (upper && likely(upper->master))
7339 		return upper->dev;
7340 	return NULL;
7341 }
7342 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7343 
7344 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7345 			      struct net_device *adj_dev,
7346 			      struct list_head *dev_list)
7347 {
7348 	char linkname[IFNAMSIZ+7];
7349 
7350 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7351 		"upper_%s" : "lower_%s", adj_dev->name);
7352 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7353 				 linkname);
7354 }
7355 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7356 			       char *name,
7357 			       struct list_head *dev_list)
7358 {
7359 	char linkname[IFNAMSIZ+7];
7360 
7361 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7362 		"upper_%s" : "lower_%s", name);
7363 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7364 }
7365 
7366 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7367 						 struct net_device *adj_dev,
7368 						 struct list_head *dev_list)
7369 {
7370 	return (dev_list == &dev->adj_list.upper ||
7371 		dev_list == &dev->adj_list.lower) &&
7372 		net_eq(dev_net(dev), dev_net(adj_dev));
7373 }
7374 
7375 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7376 					struct net_device *adj_dev,
7377 					struct list_head *dev_list,
7378 					void *private, bool master)
7379 {
7380 	struct netdev_adjacent *adj;
7381 	int ret;
7382 
7383 	adj = __netdev_find_adj(adj_dev, dev_list);
7384 
7385 	if (adj) {
7386 		adj->ref_nr += 1;
7387 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7388 			 dev->name, adj_dev->name, adj->ref_nr);
7389 
7390 		return 0;
7391 	}
7392 
7393 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7394 	if (!adj)
7395 		return -ENOMEM;
7396 
7397 	adj->dev = adj_dev;
7398 	adj->master = master;
7399 	adj->ref_nr = 1;
7400 	adj->private = private;
7401 	adj->ignore = false;
7402 	dev_hold(adj_dev);
7403 
7404 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7405 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7406 
7407 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7408 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7409 		if (ret)
7410 			goto free_adj;
7411 	}
7412 
7413 	/* Ensure that master link is always the first item in list. */
7414 	if (master) {
7415 		ret = sysfs_create_link(&(dev->dev.kobj),
7416 					&(adj_dev->dev.kobj), "master");
7417 		if (ret)
7418 			goto remove_symlinks;
7419 
7420 		list_add_rcu(&adj->list, dev_list);
7421 	} else {
7422 		list_add_tail_rcu(&adj->list, dev_list);
7423 	}
7424 
7425 	return 0;
7426 
7427 remove_symlinks:
7428 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7429 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7430 free_adj:
7431 	kfree(adj);
7432 	dev_put(adj_dev);
7433 
7434 	return ret;
7435 }
7436 
7437 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7438 					 struct net_device *adj_dev,
7439 					 u16 ref_nr,
7440 					 struct list_head *dev_list)
7441 {
7442 	struct netdev_adjacent *adj;
7443 
7444 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7445 		 dev->name, adj_dev->name, ref_nr);
7446 
7447 	adj = __netdev_find_adj(adj_dev, dev_list);
7448 
7449 	if (!adj) {
7450 		pr_err("Adjacency does not exist for device %s from %s\n",
7451 		       dev->name, adj_dev->name);
7452 		WARN_ON(1);
7453 		return;
7454 	}
7455 
7456 	if (adj->ref_nr > ref_nr) {
7457 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7458 			 dev->name, adj_dev->name, ref_nr,
7459 			 adj->ref_nr - ref_nr);
7460 		adj->ref_nr -= ref_nr;
7461 		return;
7462 	}
7463 
7464 	if (adj->master)
7465 		sysfs_remove_link(&(dev->dev.kobj), "master");
7466 
7467 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7468 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7469 
7470 	list_del_rcu(&adj->list);
7471 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7472 		 adj_dev->name, dev->name, adj_dev->name);
7473 	dev_put(adj_dev);
7474 	kfree_rcu(adj, rcu);
7475 }
7476 
7477 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7478 					    struct net_device *upper_dev,
7479 					    struct list_head *up_list,
7480 					    struct list_head *down_list,
7481 					    void *private, bool master)
7482 {
7483 	int ret;
7484 
7485 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7486 					   private, master);
7487 	if (ret)
7488 		return ret;
7489 
7490 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7491 					   private, false);
7492 	if (ret) {
7493 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7494 		return ret;
7495 	}
7496 
7497 	return 0;
7498 }
7499 
7500 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7501 					       struct net_device *upper_dev,
7502 					       u16 ref_nr,
7503 					       struct list_head *up_list,
7504 					       struct list_head *down_list)
7505 {
7506 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7507 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7508 }
7509 
7510 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7511 						struct net_device *upper_dev,
7512 						void *private, bool master)
7513 {
7514 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7515 						&dev->adj_list.upper,
7516 						&upper_dev->adj_list.lower,
7517 						private, master);
7518 }
7519 
7520 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7521 						   struct net_device *upper_dev)
7522 {
7523 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7524 					   &dev->adj_list.upper,
7525 					   &upper_dev->adj_list.lower);
7526 }
7527 
7528 static int __netdev_upper_dev_link(struct net_device *dev,
7529 				   struct net_device *upper_dev, bool master,
7530 				   void *upper_priv, void *upper_info,
7531 				   struct netlink_ext_ack *extack)
7532 {
7533 	struct netdev_notifier_changeupper_info changeupper_info = {
7534 		.info = {
7535 			.dev = dev,
7536 			.extack = extack,
7537 		},
7538 		.upper_dev = upper_dev,
7539 		.master = master,
7540 		.linking = true,
7541 		.upper_info = upper_info,
7542 	};
7543 	struct net_device *master_dev;
7544 	int ret = 0;
7545 
7546 	ASSERT_RTNL();
7547 
7548 	if (dev == upper_dev)
7549 		return -EBUSY;
7550 
7551 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7552 	if (__netdev_has_upper_dev(upper_dev, dev))
7553 		return -EBUSY;
7554 
7555 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7556 		return -EMLINK;
7557 
7558 	if (!master) {
7559 		if (__netdev_has_upper_dev(dev, upper_dev))
7560 			return -EEXIST;
7561 	} else {
7562 		master_dev = __netdev_master_upper_dev_get(dev);
7563 		if (master_dev)
7564 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7565 	}
7566 
7567 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7568 					    &changeupper_info.info);
7569 	ret = notifier_to_errno(ret);
7570 	if (ret)
7571 		return ret;
7572 
7573 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7574 						   master);
7575 	if (ret)
7576 		return ret;
7577 
7578 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7579 					    &changeupper_info.info);
7580 	ret = notifier_to_errno(ret);
7581 	if (ret)
7582 		goto rollback;
7583 
7584 	__netdev_update_upper_level(dev, NULL);
7585 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7586 
7587 	__netdev_update_lower_level(upper_dev, NULL);
7588 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7589 				    NULL);
7590 
7591 	return 0;
7592 
7593 rollback:
7594 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7595 
7596 	return ret;
7597 }
7598 
7599 /**
7600  * netdev_upper_dev_link - Add a link to the upper device
7601  * @dev: device
7602  * @upper_dev: new upper device
7603  * @extack: netlink extended ack
7604  *
7605  * Adds a link to device which is upper to this one. The caller must hold
7606  * the RTNL lock. On a failure a negative errno code is returned.
7607  * On success the reference counts are adjusted and the function
7608  * returns zero.
7609  */
7610 int netdev_upper_dev_link(struct net_device *dev,
7611 			  struct net_device *upper_dev,
7612 			  struct netlink_ext_ack *extack)
7613 {
7614 	return __netdev_upper_dev_link(dev, upper_dev, false,
7615 				       NULL, NULL, extack);
7616 }
7617 EXPORT_SYMBOL(netdev_upper_dev_link);
7618 
7619 /**
7620  * netdev_master_upper_dev_link - Add a master link to the upper device
7621  * @dev: device
7622  * @upper_dev: new upper device
7623  * @upper_priv: upper device private
7624  * @upper_info: upper info to be passed down via notifier
7625  * @extack: netlink extended ack
7626  *
7627  * Adds a link to device which is upper to this one. In this case, only
7628  * one master upper device can be linked, although other non-master devices
7629  * might be linked as well. The caller must hold the RTNL lock.
7630  * On a failure a negative errno code is returned. On success the reference
7631  * counts are adjusted and the function returns zero.
7632  */
7633 int netdev_master_upper_dev_link(struct net_device *dev,
7634 				 struct net_device *upper_dev,
7635 				 void *upper_priv, void *upper_info,
7636 				 struct netlink_ext_ack *extack)
7637 {
7638 	return __netdev_upper_dev_link(dev, upper_dev, true,
7639 				       upper_priv, upper_info, extack);
7640 }
7641 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7642 
7643 /**
7644  * netdev_upper_dev_unlink - Removes a link to upper device
7645  * @dev: device
7646  * @upper_dev: new upper device
7647  *
7648  * Removes a link to device which is upper to this one. The caller must hold
7649  * the RTNL lock.
7650  */
7651 void netdev_upper_dev_unlink(struct net_device *dev,
7652 			     struct net_device *upper_dev)
7653 {
7654 	struct netdev_notifier_changeupper_info changeupper_info = {
7655 		.info = {
7656 			.dev = dev,
7657 		},
7658 		.upper_dev = upper_dev,
7659 		.linking = false,
7660 	};
7661 
7662 	ASSERT_RTNL();
7663 
7664 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7665 
7666 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7667 				      &changeupper_info.info);
7668 
7669 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7670 
7671 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7672 				      &changeupper_info.info);
7673 
7674 	__netdev_update_upper_level(dev, NULL);
7675 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7676 
7677 	__netdev_update_lower_level(upper_dev, NULL);
7678 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7679 				    NULL);
7680 }
7681 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7682 
7683 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7684 				      struct net_device *lower_dev,
7685 				      bool val)
7686 {
7687 	struct netdev_adjacent *adj;
7688 
7689 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7690 	if (adj)
7691 		adj->ignore = val;
7692 
7693 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7694 	if (adj)
7695 		adj->ignore = val;
7696 }
7697 
7698 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7699 					struct net_device *lower_dev)
7700 {
7701 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7702 }
7703 
7704 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7705 				       struct net_device *lower_dev)
7706 {
7707 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7708 }
7709 
7710 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7711 				   struct net_device *new_dev,
7712 				   struct net_device *dev,
7713 				   struct netlink_ext_ack *extack)
7714 {
7715 	int err;
7716 
7717 	if (!new_dev)
7718 		return 0;
7719 
7720 	if (old_dev && new_dev != old_dev)
7721 		netdev_adjacent_dev_disable(dev, old_dev);
7722 
7723 	err = netdev_upper_dev_link(new_dev, dev, extack);
7724 	if (err) {
7725 		if (old_dev && new_dev != old_dev)
7726 			netdev_adjacent_dev_enable(dev, old_dev);
7727 		return err;
7728 	}
7729 
7730 	return 0;
7731 }
7732 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7733 
7734 void netdev_adjacent_change_commit(struct net_device *old_dev,
7735 				   struct net_device *new_dev,
7736 				   struct net_device *dev)
7737 {
7738 	if (!new_dev || !old_dev)
7739 		return;
7740 
7741 	if (new_dev == old_dev)
7742 		return;
7743 
7744 	netdev_adjacent_dev_enable(dev, old_dev);
7745 	netdev_upper_dev_unlink(old_dev, dev);
7746 }
7747 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7748 
7749 void netdev_adjacent_change_abort(struct net_device *old_dev,
7750 				  struct net_device *new_dev,
7751 				  struct net_device *dev)
7752 {
7753 	if (!new_dev)
7754 		return;
7755 
7756 	if (old_dev && new_dev != old_dev)
7757 		netdev_adjacent_dev_enable(dev, old_dev);
7758 
7759 	netdev_upper_dev_unlink(new_dev, dev);
7760 }
7761 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7762 
7763 /**
7764  * netdev_bonding_info_change - Dispatch event about slave change
7765  * @dev: device
7766  * @bonding_info: info to dispatch
7767  *
7768  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7769  * The caller must hold the RTNL lock.
7770  */
7771 void netdev_bonding_info_change(struct net_device *dev,
7772 				struct netdev_bonding_info *bonding_info)
7773 {
7774 	struct netdev_notifier_bonding_info info = {
7775 		.info.dev = dev,
7776 	};
7777 
7778 	memcpy(&info.bonding_info, bonding_info,
7779 	       sizeof(struct netdev_bonding_info));
7780 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7781 				      &info.info);
7782 }
7783 EXPORT_SYMBOL(netdev_bonding_info_change);
7784 
7785 static void netdev_adjacent_add_links(struct net_device *dev)
7786 {
7787 	struct netdev_adjacent *iter;
7788 
7789 	struct net *net = dev_net(dev);
7790 
7791 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7792 		if (!net_eq(net, dev_net(iter->dev)))
7793 			continue;
7794 		netdev_adjacent_sysfs_add(iter->dev, dev,
7795 					  &iter->dev->adj_list.lower);
7796 		netdev_adjacent_sysfs_add(dev, iter->dev,
7797 					  &dev->adj_list.upper);
7798 	}
7799 
7800 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7801 		if (!net_eq(net, dev_net(iter->dev)))
7802 			continue;
7803 		netdev_adjacent_sysfs_add(iter->dev, dev,
7804 					  &iter->dev->adj_list.upper);
7805 		netdev_adjacent_sysfs_add(dev, iter->dev,
7806 					  &dev->adj_list.lower);
7807 	}
7808 }
7809 
7810 static void netdev_adjacent_del_links(struct net_device *dev)
7811 {
7812 	struct netdev_adjacent *iter;
7813 
7814 	struct net *net = dev_net(dev);
7815 
7816 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7817 		if (!net_eq(net, dev_net(iter->dev)))
7818 			continue;
7819 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7820 					  &iter->dev->adj_list.lower);
7821 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7822 					  &dev->adj_list.upper);
7823 	}
7824 
7825 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7826 		if (!net_eq(net, dev_net(iter->dev)))
7827 			continue;
7828 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7829 					  &iter->dev->adj_list.upper);
7830 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7831 					  &dev->adj_list.lower);
7832 	}
7833 }
7834 
7835 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7836 {
7837 	struct netdev_adjacent *iter;
7838 
7839 	struct net *net = dev_net(dev);
7840 
7841 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7842 		if (!net_eq(net, dev_net(iter->dev)))
7843 			continue;
7844 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7845 					  &iter->dev->adj_list.lower);
7846 		netdev_adjacent_sysfs_add(iter->dev, dev,
7847 					  &iter->dev->adj_list.lower);
7848 	}
7849 
7850 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7851 		if (!net_eq(net, dev_net(iter->dev)))
7852 			continue;
7853 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7854 					  &iter->dev->adj_list.upper);
7855 		netdev_adjacent_sysfs_add(iter->dev, dev,
7856 					  &iter->dev->adj_list.upper);
7857 	}
7858 }
7859 
7860 void *netdev_lower_dev_get_private(struct net_device *dev,
7861 				   struct net_device *lower_dev)
7862 {
7863 	struct netdev_adjacent *lower;
7864 
7865 	if (!lower_dev)
7866 		return NULL;
7867 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7868 	if (!lower)
7869 		return NULL;
7870 
7871 	return lower->private;
7872 }
7873 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7874 
7875 
7876 /**
7877  * netdev_lower_change - Dispatch event about lower device state change
7878  * @lower_dev: device
7879  * @lower_state_info: state to dispatch
7880  *
7881  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7882  * The caller must hold the RTNL lock.
7883  */
7884 void netdev_lower_state_changed(struct net_device *lower_dev,
7885 				void *lower_state_info)
7886 {
7887 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7888 		.info.dev = lower_dev,
7889 	};
7890 
7891 	ASSERT_RTNL();
7892 	changelowerstate_info.lower_state_info = lower_state_info;
7893 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7894 				      &changelowerstate_info.info);
7895 }
7896 EXPORT_SYMBOL(netdev_lower_state_changed);
7897 
7898 static void dev_change_rx_flags(struct net_device *dev, int flags)
7899 {
7900 	const struct net_device_ops *ops = dev->netdev_ops;
7901 
7902 	if (ops->ndo_change_rx_flags)
7903 		ops->ndo_change_rx_flags(dev, flags);
7904 }
7905 
7906 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7907 {
7908 	unsigned int old_flags = dev->flags;
7909 	kuid_t uid;
7910 	kgid_t gid;
7911 
7912 	ASSERT_RTNL();
7913 
7914 	dev->flags |= IFF_PROMISC;
7915 	dev->promiscuity += inc;
7916 	if (dev->promiscuity == 0) {
7917 		/*
7918 		 * Avoid overflow.
7919 		 * If inc causes overflow, untouch promisc and return error.
7920 		 */
7921 		if (inc < 0)
7922 			dev->flags &= ~IFF_PROMISC;
7923 		else {
7924 			dev->promiscuity -= inc;
7925 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7926 				dev->name);
7927 			return -EOVERFLOW;
7928 		}
7929 	}
7930 	if (dev->flags != old_flags) {
7931 		pr_info("device %s %s promiscuous mode\n",
7932 			dev->name,
7933 			dev->flags & IFF_PROMISC ? "entered" : "left");
7934 		if (audit_enabled) {
7935 			current_uid_gid(&uid, &gid);
7936 			audit_log(audit_context(), GFP_ATOMIC,
7937 				  AUDIT_ANOM_PROMISCUOUS,
7938 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7939 				  dev->name, (dev->flags & IFF_PROMISC),
7940 				  (old_flags & IFF_PROMISC),
7941 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7942 				  from_kuid(&init_user_ns, uid),
7943 				  from_kgid(&init_user_ns, gid),
7944 				  audit_get_sessionid(current));
7945 		}
7946 
7947 		dev_change_rx_flags(dev, IFF_PROMISC);
7948 	}
7949 	if (notify)
7950 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7951 	return 0;
7952 }
7953 
7954 /**
7955  *	dev_set_promiscuity	- update promiscuity count on a device
7956  *	@dev: device
7957  *	@inc: modifier
7958  *
7959  *	Add or remove promiscuity from a device. While the count in the device
7960  *	remains above zero the interface remains promiscuous. Once it hits zero
7961  *	the device reverts back to normal filtering operation. A negative inc
7962  *	value is used to drop promiscuity on the device.
7963  *	Return 0 if successful or a negative errno code on error.
7964  */
7965 int dev_set_promiscuity(struct net_device *dev, int inc)
7966 {
7967 	unsigned int old_flags = dev->flags;
7968 	int err;
7969 
7970 	err = __dev_set_promiscuity(dev, inc, true);
7971 	if (err < 0)
7972 		return err;
7973 	if (dev->flags != old_flags)
7974 		dev_set_rx_mode(dev);
7975 	return err;
7976 }
7977 EXPORT_SYMBOL(dev_set_promiscuity);
7978 
7979 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7980 {
7981 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7982 
7983 	ASSERT_RTNL();
7984 
7985 	dev->flags |= IFF_ALLMULTI;
7986 	dev->allmulti += inc;
7987 	if (dev->allmulti == 0) {
7988 		/*
7989 		 * Avoid overflow.
7990 		 * If inc causes overflow, untouch allmulti and return error.
7991 		 */
7992 		if (inc < 0)
7993 			dev->flags &= ~IFF_ALLMULTI;
7994 		else {
7995 			dev->allmulti -= inc;
7996 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7997 				dev->name);
7998 			return -EOVERFLOW;
7999 		}
8000 	}
8001 	if (dev->flags ^ old_flags) {
8002 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8003 		dev_set_rx_mode(dev);
8004 		if (notify)
8005 			__dev_notify_flags(dev, old_flags,
8006 					   dev->gflags ^ old_gflags);
8007 	}
8008 	return 0;
8009 }
8010 
8011 /**
8012  *	dev_set_allmulti	- update allmulti count on a device
8013  *	@dev: device
8014  *	@inc: modifier
8015  *
8016  *	Add or remove reception of all multicast frames to a device. While the
8017  *	count in the device remains above zero the interface remains listening
8018  *	to all interfaces. Once it hits zero the device reverts back to normal
8019  *	filtering operation. A negative @inc value is used to drop the counter
8020  *	when releasing a resource needing all multicasts.
8021  *	Return 0 if successful or a negative errno code on error.
8022  */
8023 
8024 int dev_set_allmulti(struct net_device *dev, int inc)
8025 {
8026 	return __dev_set_allmulti(dev, inc, true);
8027 }
8028 EXPORT_SYMBOL(dev_set_allmulti);
8029 
8030 /*
8031  *	Upload unicast and multicast address lists to device and
8032  *	configure RX filtering. When the device doesn't support unicast
8033  *	filtering it is put in promiscuous mode while unicast addresses
8034  *	are present.
8035  */
8036 void __dev_set_rx_mode(struct net_device *dev)
8037 {
8038 	const struct net_device_ops *ops = dev->netdev_ops;
8039 
8040 	/* dev_open will call this function so the list will stay sane. */
8041 	if (!(dev->flags&IFF_UP))
8042 		return;
8043 
8044 	if (!netif_device_present(dev))
8045 		return;
8046 
8047 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8048 		/* Unicast addresses changes may only happen under the rtnl,
8049 		 * therefore calling __dev_set_promiscuity here is safe.
8050 		 */
8051 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8052 			__dev_set_promiscuity(dev, 1, false);
8053 			dev->uc_promisc = true;
8054 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8055 			__dev_set_promiscuity(dev, -1, false);
8056 			dev->uc_promisc = false;
8057 		}
8058 	}
8059 
8060 	if (ops->ndo_set_rx_mode)
8061 		ops->ndo_set_rx_mode(dev);
8062 }
8063 
8064 void dev_set_rx_mode(struct net_device *dev)
8065 {
8066 	netif_addr_lock_bh(dev);
8067 	__dev_set_rx_mode(dev);
8068 	netif_addr_unlock_bh(dev);
8069 }
8070 
8071 /**
8072  *	dev_get_flags - get flags reported to userspace
8073  *	@dev: device
8074  *
8075  *	Get the combination of flag bits exported through APIs to userspace.
8076  */
8077 unsigned int dev_get_flags(const struct net_device *dev)
8078 {
8079 	unsigned int flags;
8080 
8081 	flags = (dev->flags & ~(IFF_PROMISC |
8082 				IFF_ALLMULTI |
8083 				IFF_RUNNING |
8084 				IFF_LOWER_UP |
8085 				IFF_DORMANT)) |
8086 		(dev->gflags & (IFF_PROMISC |
8087 				IFF_ALLMULTI));
8088 
8089 	if (netif_running(dev)) {
8090 		if (netif_oper_up(dev))
8091 			flags |= IFF_RUNNING;
8092 		if (netif_carrier_ok(dev))
8093 			flags |= IFF_LOWER_UP;
8094 		if (netif_dormant(dev))
8095 			flags |= IFF_DORMANT;
8096 	}
8097 
8098 	return flags;
8099 }
8100 EXPORT_SYMBOL(dev_get_flags);
8101 
8102 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8103 		       struct netlink_ext_ack *extack)
8104 {
8105 	unsigned int old_flags = dev->flags;
8106 	int ret;
8107 
8108 	ASSERT_RTNL();
8109 
8110 	/*
8111 	 *	Set the flags on our device.
8112 	 */
8113 
8114 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8115 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8116 			       IFF_AUTOMEDIA)) |
8117 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8118 				    IFF_ALLMULTI));
8119 
8120 	/*
8121 	 *	Load in the correct multicast list now the flags have changed.
8122 	 */
8123 
8124 	if ((old_flags ^ flags) & IFF_MULTICAST)
8125 		dev_change_rx_flags(dev, IFF_MULTICAST);
8126 
8127 	dev_set_rx_mode(dev);
8128 
8129 	/*
8130 	 *	Have we downed the interface. We handle IFF_UP ourselves
8131 	 *	according to user attempts to set it, rather than blindly
8132 	 *	setting it.
8133 	 */
8134 
8135 	ret = 0;
8136 	if ((old_flags ^ flags) & IFF_UP) {
8137 		if (old_flags & IFF_UP)
8138 			__dev_close(dev);
8139 		else
8140 			ret = __dev_open(dev, extack);
8141 	}
8142 
8143 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8144 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8145 		unsigned int old_flags = dev->flags;
8146 
8147 		dev->gflags ^= IFF_PROMISC;
8148 
8149 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8150 			if (dev->flags != old_flags)
8151 				dev_set_rx_mode(dev);
8152 	}
8153 
8154 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8155 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8156 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8157 	 */
8158 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8159 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8160 
8161 		dev->gflags ^= IFF_ALLMULTI;
8162 		__dev_set_allmulti(dev, inc, false);
8163 	}
8164 
8165 	return ret;
8166 }
8167 
8168 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8169 			unsigned int gchanges)
8170 {
8171 	unsigned int changes = dev->flags ^ old_flags;
8172 
8173 	if (gchanges)
8174 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8175 
8176 	if (changes & IFF_UP) {
8177 		if (dev->flags & IFF_UP)
8178 			call_netdevice_notifiers(NETDEV_UP, dev);
8179 		else
8180 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8181 	}
8182 
8183 	if (dev->flags & IFF_UP &&
8184 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8185 		struct netdev_notifier_change_info change_info = {
8186 			.info = {
8187 				.dev = dev,
8188 			},
8189 			.flags_changed = changes,
8190 		};
8191 
8192 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8193 	}
8194 }
8195 
8196 /**
8197  *	dev_change_flags - change device settings
8198  *	@dev: device
8199  *	@flags: device state flags
8200  *	@extack: netlink extended ack
8201  *
8202  *	Change settings on device based state flags. The flags are
8203  *	in the userspace exported format.
8204  */
8205 int dev_change_flags(struct net_device *dev, unsigned int flags,
8206 		     struct netlink_ext_ack *extack)
8207 {
8208 	int ret;
8209 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8210 
8211 	ret = __dev_change_flags(dev, flags, extack);
8212 	if (ret < 0)
8213 		return ret;
8214 
8215 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8216 	__dev_notify_flags(dev, old_flags, changes);
8217 	return ret;
8218 }
8219 EXPORT_SYMBOL(dev_change_flags);
8220 
8221 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8222 {
8223 	const struct net_device_ops *ops = dev->netdev_ops;
8224 
8225 	if (ops->ndo_change_mtu)
8226 		return ops->ndo_change_mtu(dev, new_mtu);
8227 
8228 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8229 	WRITE_ONCE(dev->mtu, new_mtu);
8230 	return 0;
8231 }
8232 EXPORT_SYMBOL(__dev_set_mtu);
8233 
8234 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8235 		     struct netlink_ext_ack *extack)
8236 {
8237 	/* MTU must be positive, and in range */
8238 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8239 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8240 		return -EINVAL;
8241 	}
8242 
8243 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8244 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8245 		return -EINVAL;
8246 	}
8247 	return 0;
8248 }
8249 
8250 /**
8251  *	dev_set_mtu_ext - Change maximum transfer unit
8252  *	@dev: device
8253  *	@new_mtu: new transfer unit
8254  *	@extack: netlink extended ack
8255  *
8256  *	Change the maximum transfer size of the network device.
8257  */
8258 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8259 		    struct netlink_ext_ack *extack)
8260 {
8261 	int err, orig_mtu;
8262 
8263 	if (new_mtu == dev->mtu)
8264 		return 0;
8265 
8266 	err = dev_validate_mtu(dev, new_mtu, extack);
8267 	if (err)
8268 		return err;
8269 
8270 	if (!netif_device_present(dev))
8271 		return -ENODEV;
8272 
8273 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8274 	err = notifier_to_errno(err);
8275 	if (err)
8276 		return err;
8277 
8278 	orig_mtu = dev->mtu;
8279 	err = __dev_set_mtu(dev, new_mtu);
8280 
8281 	if (!err) {
8282 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8283 						   orig_mtu);
8284 		err = notifier_to_errno(err);
8285 		if (err) {
8286 			/* setting mtu back and notifying everyone again,
8287 			 * so that they have a chance to revert changes.
8288 			 */
8289 			__dev_set_mtu(dev, orig_mtu);
8290 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8291 						     new_mtu);
8292 		}
8293 	}
8294 	return err;
8295 }
8296 
8297 int dev_set_mtu(struct net_device *dev, int new_mtu)
8298 {
8299 	struct netlink_ext_ack extack;
8300 	int err;
8301 
8302 	memset(&extack, 0, sizeof(extack));
8303 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8304 	if (err && extack._msg)
8305 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8306 	return err;
8307 }
8308 EXPORT_SYMBOL(dev_set_mtu);
8309 
8310 /**
8311  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8312  *	@dev: device
8313  *	@new_len: new tx queue length
8314  */
8315 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8316 {
8317 	unsigned int orig_len = dev->tx_queue_len;
8318 	int res;
8319 
8320 	if (new_len != (unsigned int)new_len)
8321 		return -ERANGE;
8322 
8323 	if (new_len != orig_len) {
8324 		dev->tx_queue_len = new_len;
8325 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8326 		res = notifier_to_errno(res);
8327 		if (res)
8328 			goto err_rollback;
8329 		res = dev_qdisc_change_tx_queue_len(dev);
8330 		if (res)
8331 			goto err_rollback;
8332 	}
8333 
8334 	return 0;
8335 
8336 err_rollback:
8337 	netdev_err(dev, "refused to change device tx_queue_len\n");
8338 	dev->tx_queue_len = orig_len;
8339 	return res;
8340 }
8341 
8342 /**
8343  *	dev_set_group - Change group this device belongs to
8344  *	@dev: device
8345  *	@new_group: group this device should belong to
8346  */
8347 void dev_set_group(struct net_device *dev, int new_group)
8348 {
8349 	dev->group = new_group;
8350 }
8351 EXPORT_SYMBOL(dev_set_group);
8352 
8353 /**
8354  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8355  *	@dev: device
8356  *	@addr: new address
8357  *	@extack: netlink extended ack
8358  */
8359 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8360 			      struct netlink_ext_ack *extack)
8361 {
8362 	struct netdev_notifier_pre_changeaddr_info info = {
8363 		.info.dev = dev,
8364 		.info.extack = extack,
8365 		.dev_addr = addr,
8366 	};
8367 	int rc;
8368 
8369 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8370 	return notifier_to_errno(rc);
8371 }
8372 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8373 
8374 /**
8375  *	dev_set_mac_address - Change Media Access Control Address
8376  *	@dev: device
8377  *	@sa: new address
8378  *	@extack: netlink extended ack
8379  *
8380  *	Change the hardware (MAC) address of the device
8381  */
8382 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8383 			struct netlink_ext_ack *extack)
8384 {
8385 	const struct net_device_ops *ops = dev->netdev_ops;
8386 	int err;
8387 
8388 	if (!ops->ndo_set_mac_address)
8389 		return -EOPNOTSUPP;
8390 	if (sa->sa_family != dev->type)
8391 		return -EINVAL;
8392 	if (!netif_device_present(dev))
8393 		return -ENODEV;
8394 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8395 	if (err)
8396 		return err;
8397 	err = ops->ndo_set_mac_address(dev, sa);
8398 	if (err)
8399 		return err;
8400 	dev->addr_assign_type = NET_ADDR_SET;
8401 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8402 	add_device_randomness(dev->dev_addr, dev->addr_len);
8403 	return 0;
8404 }
8405 EXPORT_SYMBOL(dev_set_mac_address);
8406 
8407 /**
8408  *	dev_change_carrier - Change device carrier
8409  *	@dev: device
8410  *	@new_carrier: new value
8411  *
8412  *	Change device carrier
8413  */
8414 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8415 {
8416 	const struct net_device_ops *ops = dev->netdev_ops;
8417 
8418 	if (!ops->ndo_change_carrier)
8419 		return -EOPNOTSUPP;
8420 	if (!netif_device_present(dev))
8421 		return -ENODEV;
8422 	return ops->ndo_change_carrier(dev, new_carrier);
8423 }
8424 EXPORT_SYMBOL(dev_change_carrier);
8425 
8426 /**
8427  *	dev_get_phys_port_id - Get device physical port ID
8428  *	@dev: device
8429  *	@ppid: port ID
8430  *
8431  *	Get device physical port ID
8432  */
8433 int dev_get_phys_port_id(struct net_device *dev,
8434 			 struct netdev_phys_item_id *ppid)
8435 {
8436 	const struct net_device_ops *ops = dev->netdev_ops;
8437 
8438 	if (!ops->ndo_get_phys_port_id)
8439 		return -EOPNOTSUPP;
8440 	return ops->ndo_get_phys_port_id(dev, ppid);
8441 }
8442 EXPORT_SYMBOL(dev_get_phys_port_id);
8443 
8444 /**
8445  *	dev_get_phys_port_name - Get device physical port name
8446  *	@dev: device
8447  *	@name: port name
8448  *	@len: limit of bytes to copy to name
8449  *
8450  *	Get device physical port name
8451  */
8452 int dev_get_phys_port_name(struct net_device *dev,
8453 			   char *name, size_t len)
8454 {
8455 	const struct net_device_ops *ops = dev->netdev_ops;
8456 	int err;
8457 
8458 	if (ops->ndo_get_phys_port_name) {
8459 		err = ops->ndo_get_phys_port_name(dev, name, len);
8460 		if (err != -EOPNOTSUPP)
8461 			return err;
8462 	}
8463 	return devlink_compat_phys_port_name_get(dev, name, len);
8464 }
8465 EXPORT_SYMBOL(dev_get_phys_port_name);
8466 
8467 /**
8468  *	dev_get_port_parent_id - Get the device's port parent identifier
8469  *	@dev: network device
8470  *	@ppid: pointer to a storage for the port's parent identifier
8471  *	@recurse: allow/disallow recursion to lower devices
8472  *
8473  *	Get the devices's port parent identifier
8474  */
8475 int dev_get_port_parent_id(struct net_device *dev,
8476 			   struct netdev_phys_item_id *ppid,
8477 			   bool recurse)
8478 {
8479 	const struct net_device_ops *ops = dev->netdev_ops;
8480 	struct netdev_phys_item_id first = { };
8481 	struct net_device *lower_dev;
8482 	struct list_head *iter;
8483 	int err;
8484 
8485 	if (ops->ndo_get_port_parent_id) {
8486 		err = ops->ndo_get_port_parent_id(dev, ppid);
8487 		if (err != -EOPNOTSUPP)
8488 			return err;
8489 	}
8490 
8491 	err = devlink_compat_switch_id_get(dev, ppid);
8492 	if (!err || err != -EOPNOTSUPP)
8493 		return err;
8494 
8495 	if (!recurse)
8496 		return -EOPNOTSUPP;
8497 
8498 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8499 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8500 		if (err)
8501 			break;
8502 		if (!first.id_len)
8503 			first = *ppid;
8504 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8505 			return -ENODATA;
8506 	}
8507 
8508 	return err;
8509 }
8510 EXPORT_SYMBOL(dev_get_port_parent_id);
8511 
8512 /**
8513  *	netdev_port_same_parent_id - Indicate if two network devices have
8514  *	the same port parent identifier
8515  *	@a: first network device
8516  *	@b: second network device
8517  */
8518 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8519 {
8520 	struct netdev_phys_item_id a_id = { };
8521 	struct netdev_phys_item_id b_id = { };
8522 
8523 	if (dev_get_port_parent_id(a, &a_id, true) ||
8524 	    dev_get_port_parent_id(b, &b_id, true))
8525 		return false;
8526 
8527 	return netdev_phys_item_id_same(&a_id, &b_id);
8528 }
8529 EXPORT_SYMBOL(netdev_port_same_parent_id);
8530 
8531 /**
8532  *	dev_change_proto_down - update protocol port state information
8533  *	@dev: device
8534  *	@proto_down: new value
8535  *
8536  *	This info can be used by switch drivers to set the phys state of the
8537  *	port.
8538  */
8539 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8540 {
8541 	const struct net_device_ops *ops = dev->netdev_ops;
8542 
8543 	if (!ops->ndo_change_proto_down)
8544 		return -EOPNOTSUPP;
8545 	if (!netif_device_present(dev))
8546 		return -ENODEV;
8547 	return ops->ndo_change_proto_down(dev, proto_down);
8548 }
8549 EXPORT_SYMBOL(dev_change_proto_down);
8550 
8551 /**
8552  *	dev_change_proto_down_generic - generic implementation for
8553  * 	ndo_change_proto_down that sets carrier according to
8554  * 	proto_down.
8555  *
8556  *	@dev: device
8557  *	@proto_down: new value
8558  */
8559 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8560 {
8561 	if (proto_down)
8562 		netif_carrier_off(dev);
8563 	else
8564 		netif_carrier_on(dev);
8565 	dev->proto_down = proto_down;
8566 	return 0;
8567 }
8568 EXPORT_SYMBOL(dev_change_proto_down_generic);
8569 
8570 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8571 		    enum bpf_netdev_command cmd)
8572 {
8573 	struct netdev_bpf xdp;
8574 
8575 	if (!bpf_op)
8576 		return 0;
8577 
8578 	memset(&xdp, 0, sizeof(xdp));
8579 	xdp.command = cmd;
8580 
8581 	/* Query must always succeed. */
8582 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8583 
8584 	return xdp.prog_id;
8585 }
8586 
8587 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8588 			   struct netlink_ext_ack *extack, u32 flags,
8589 			   struct bpf_prog *prog)
8590 {
8591 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8592 	struct bpf_prog *prev_prog = NULL;
8593 	struct netdev_bpf xdp;
8594 	int err;
8595 
8596 	if (non_hw) {
8597 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8598 							   XDP_QUERY_PROG));
8599 		if (IS_ERR(prev_prog))
8600 			prev_prog = NULL;
8601 	}
8602 
8603 	memset(&xdp, 0, sizeof(xdp));
8604 	if (flags & XDP_FLAGS_HW_MODE)
8605 		xdp.command = XDP_SETUP_PROG_HW;
8606 	else
8607 		xdp.command = XDP_SETUP_PROG;
8608 	xdp.extack = extack;
8609 	xdp.flags = flags;
8610 	xdp.prog = prog;
8611 
8612 	err = bpf_op(dev, &xdp);
8613 	if (!err && non_hw)
8614 		bpf_prog_change_xdp(prev_prog, prog);
8615 
8616 	if (prev_prog)
8617 		bpf_prog_put(prev_prog);
8618 
8619 	return err;
8620 }
8621 
8622 static void dev_xdp_uninstall(struct net_device *dev)
8623 {
8624 	struct netdev_bpf xdp;
8625 	bpf_op_t ndo_bpf;
8626 
8627 	/* Remove generic XDP */
8628 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8629 
8630 	/* Remove from the driver */
8631 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8632 	if (!ndo_bpf)
8633 		return;
8634 
8635 	memset(&xdp, 0, sizeof(xdp));
8636 	xdp.command = XDP_QUERY_PROG;
8637 	WARN_ON(ndo_bpf(dev, &xdp));
8638 	if (xdp.prog_id)
8639 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8640 					NULL));
8641 
8642 	/* Remove HW offload */
8643 	memset(&xdp, 0, sizeof(xdp));
8644 	xdp.command = XDP_QUERY_PROG_HW;
8645 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8646 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8647 					NULL));
8648 }
8649 
8650 /**
8651  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8652  *	@dev: device
8653  *	@extack: netlink extended ack
8654  *	@fd: new program fd or negative value to clear
8655  *	@flags: xdp-related flags
8656  *
8657  *	Set or clear a bpf program for a device
8658  */
8659 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8660 		      int fd, u32 flags)
8661 {
8662 	const struct net_device_ops *ops = dev->netdev_ops;
8663 	enum bpf_netdev_command query;
8664 	struct bpf_prog *prog = NULL;
8665 	bpf_op_t bpf_op, bpf_chk;
8666 	bool offload;
8667 	int err;
8668 
8669 	ASSERT_RTNL();
8670 
8671 	offload = flags & XDP_FLAGS_HW_MODE;
8672 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8673 
8674 	bpf_op = bpf_chk = ops->ndo_bpf;
8675 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8676 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8677 		return -EOPNOTSUPP;
8678 	}
8679 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8680 		bpf_op = generic_xdp_install;
8681 	if (bpf_op == bpf_chk)
8682 		bpf_chk = generic_xdp_install;
8683 
8684 	if (fd >= 0) {
8685 		u32 prog_id;
8686 
8687 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8688 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8689 			return -EEXIST;
8690 		}
8691 
8692 		prog_id = __dev_xdp_query(dev, bpf_op, query);
8693 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8694 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8695 			return -EBUSY;
8696 		}
8697 
8698 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8699 					     bpf_op == ops->ndo_bpf);
8700 		if (IS_ERR(prog))
8701 			return PTR_ERR(prog);
8702 
8703 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8704 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8705 			bpf_prog_put(prog);
8706 			return -EINVAL;
8707 		}
8708 
8709 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8710 		if (prog->aux->id && prog->aux->id == prog_id) {
8711 			bpf_prog_put(prog);
8712 			return 0;
8713 		}
8714 	} else {
8715 		if (!__dev_xdp_query(dev, bpf_op, query))
8716 			return 0;
8717 	}
8718 
8719 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8720 	if (err < 0 && prog)
8721 		bpf_prog_put(prog);
8722 
8723 	return err;
8724 }
8725 
8726 /**
8727  *	dev_new_index	-	allocate an ifindex
8728  *	@net: the applicable net namespace
8729  *
8730  *	Returns a suitable unique value for a new device interface
8731  *	number.  The caller must hold the rtnl semaphore or the
8732  *	dev_base_lock to be sure it remains unique.
8733  */
8734 static int dev_new_index(struct net *net)
8735 {
8736 	int ifindex = net->ifindex;
8737 
8738 	for (;;) {
8739 		if (++ifindex <= 0)
8740 			ifindex = 1;
8741 		if (!__dev_get_by_index(net, ifindex))
8742 			return net->ifindex = ifindex;
8743 	}
8744 }
8745 
8746 /* Delayed registration/unregisteration */
8747 static LIST_HEAD(net_todo_list);
8748 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8749 
8750 static void net_set_todo(struct net_device *dev)
8751 {
8752 	list_add_tail(&dev->todo_list, &net_todo_list);
8753 	dev_net(dev)->dev_unreg_count++;
8754 }
8755 
8756 static void rollback_registered_many(struct list_head *head)
8757 {
8758 	struct net_device *dev, *tmp;
8759 	LIST_HEAD(close_head);
8760 
8761 	BUG_ON(dev_boot_phase);
8762 	ASSERT_RTNL();
8763 
8764 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8765 		/* Some devices call without registering
8766 		 * for initialization unwind. Remove those
8767 		 * devices and proceed with the remaining.
8768 		 */
8769 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8770 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8771 				 dev->name, dev);
8772 
8773 			WARN_ON(1);
8774 			list_del(&dev->unreg_list);
8775 			continue;
8776 		}
8777 		dev->dismantle = true;
8778 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8779 	}
8780 
8781 	/* If device is running, close it first. */
8782 	list_for_each_entry(dev, head, unreg_list)
8783 		list_add_tail(&dev->close_list, &close_head);
8784 	dev_close_many(&close_head, true);
8785 
8786 	list_for_each_entry(dev, head, unreg_list) {
8787 		/* And unlink it from device chain. */
8788 		unlist_netdevice(dev);
8789 
8790 		dev->reg_state = NETREG_UNREGISTERING;
8791 	}
8792 	flush_all_backlogs();
8793 
8794 	synchronize_net();
8795 
8796 	list_for_each_entry(dev, head, unreg_list) {
8797 		struct sk_buff *skb = NULL;
8798 
8799 		/* Shutdown queueing discipline. */
8800 		dev_shutdown(dev);
8801 
8802 		dev_xdp_uninstall(dev);
8803 
8804 		/* Notify protocols, that we are about to destroy
8805 		 * this device. They should clean all the things.
8806 		 */
8807 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8808 
8809 		if (!dev->rtnl_link_ops ||
8810 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8811 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8812 						     GFP_KERNEL, NULL, 0);
8813 
8814 		/*
8815 		 *	Flush the unicast and multicast chains
8816 		 */
8817 		dev_uc_flush(dev);
8818 		dev_mc_flush(dev);
8819 
8820 		netdev_name_node_alt_flush(dev);
8821 		netdev_name_node_free(dev->name_node);
8822 
8823 		if (dev->netdev_ops->ndo_uninit)
8824 			dev->netdev_ops->ndo_uninit(dev);
8825 
8826 		if (skb)
8827 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8828 
8829 		/* Notifier chain MUST detach us all upper devices. */
8830 		WARN_ON(netdev_has_any_upper_dev(dev));
8831 		WARN_ON(netdev_has_any_lower_dev(dev));
8832 
8833 		/* Remove entries from kobject tree */
8834 		netdev_unregister_kobject(dev);
8835 #ifdef CONFIG_XPS
8836 		/* Remove XPS queueing entries */
8837 		netif_reset_xps_queues_gt(dev, 0);
8838 #endif
8839 	}
8840 
8841 	synchronize_net();
8842 
8843 	list_for_each_entry(dev, head, unreg_list)
8844 		dev_put(dev);
8845 }
8846 
8847 static void rollback_registered(struct net_device *dev)
8848 {
8849 	LIST_HEAD(single);
8850 
8851 	list_add(&dev->unreg_list, &single);
8852 	rollback_registered_many(&single);
8853 	list_del(&single);
8854 }
8855 
8856 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8857 	struct net_device *upper, netdev_features_t features)
8858 {
8859 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8860 	netdev_features_t feature;
8861 	int feature_bit;
8862 
8863 	for_each_netdev_feature(upper_disables, feature_bit) {
8864 		feature = __NETIF_F_BIT(feature_bit);
8865 		if (!(upper->wanted_features & feature)
8866 		    && (features & feature)) {
8867 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8868 				   &feature, upper->name);
8869 			features &= ~feature;
8870 		}
8871 	}
8872 
8873 	return features;
8874 }
8875 
8876 static void netdev_sync_lower_features(struct net_device *upper,
8877 	struct net_device *lower, netdev_features_t features)
8878 {
8879 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8880 	netdev_features_t feature;
8881 	int feature_bit;
8882 
8883 	for_each_netdev_feature(upper_disables, feature_bit) {
8884 		feature = __NETIF_F_BIT(feature_bit);
8885 		if (!(features & feature) && (lower->features & feature)) {
8886 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8887 				   &feature, lower->name);
8888 			lower->wanted_features &= ~feature;
8889 			netdev_update_features(lower);
8890 
8891 			if (unlikely(lower->features & feature))
8892 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8893 					    &feature, lower->name);
8894 		}
8895 	}
8896 }
8897 
8898 static netdev_features_t netdev_fix_features(struct net_device *dev,
8899 	netdev_features_t features)
8900 {
8901 	/* Fix illegal checksum combinations */
8902 	if ((features & NETIF_F_HW_CSUM) &&
8903 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8904 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8905 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8906 	}
8907 
8908 	/* TSO requires that SG is present as well. */
8909 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8910 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8911 		features &= ~NETIF_F_ALL_TSO;
8912 	}
8913 
8914 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8915 					!(features & NETIF_F_IP_CSUM)) {
8916 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8917 		features &= ~NETIF_F_TSO;
8918 		features &= ~NETIF_F_TSO_ECN;
8919 	}
8920 
8921 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8922 					 !(features & NETIF_F_IPV6_CSUM)) {
8923 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8924 		features &= ~NETIF_F_TSO6;
8925 	}
8926 
8927 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8928 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8929 		features &= ~NETIF_F_TSO_MANGLEID;
8930 
8931 	/* TSO ECN requires that TSO is present as well. */
8932 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8933 		features &= ~NETIF_F_TSO_ECN;
8934 
8935 	/* Software GSO depends on SG. */
8936 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8937 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8938 		features &= ~NETIF_F_GSO;
8939 	}
8940 
8941 	/* GSO partial features require GSO partial be set */
8942 	if ((features & dev->gso_partial_features) &&
8943 	    !(features & NETIF_F_GSO_PARTIAL)) {
8944 		netdev_dbg(dev,
8945 			   "Dropping partially supported GSO features since no GSO partial.\n");
8946 		features &= ~dev->gso_partial_features;
8947 	}
8948 
8949 	if (!(features & NETIF_F_RXCSUM)) {
8950 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8951 		 * successfully merged by hardware must also have the
8952 		 * checksum verified by hardware.  If the user does not
8953 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8954 		 */
8955 		if (features & NETIF_F_GRO_HW) {
8956 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8957 			features &= ~NETIF_F_GRO_HW;
8958 		}
8959 	}
8960 
8961 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8962 	if (features & NETIF_F_RXFCS) {
8963 		if (features & NETIF_F_LRO) {
8964 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8965 			features &= ~NETIF_F_LRO;
8966 		}
8967 
8968 		if (features & NETIF_F_GRO_HW) {
8969 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8970 			features &= ~NETIF_F_GRO_HW;
8971 		}
8972 	}
8973 
8974 	return features;
8975 }
8976 
8977 int __netdev_update_features(struct net_device *dev)
8978 {
8979 	struct net_device *upper, *lower;
8980 	netdev_features_t features;
8981 	struct list_head *iter;
8982 	int err = -1;
8983 
8984 	ASSERT_RTNL();
8985 
8986 	features = netdev_get_wanted_features(dev);
8987 
8988 	if (dev->netdev_ops->ndo_fix_features)
8989 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8990 
8991 	/* driver might be less strict about feature dependencies */
8992 	features = netdev_fix_features(dev, features);
8993 
8994 	/* some features can't be enabled if they're off an an upper device */
8995 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8996 		features = netdev_sync_upper_features(dev, upper, features);
8997 
8998 	if (dev->features == features)
8999 		goto sync_lower;
9000 
9001 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9002 		&dev->features, &features);
9003 
9004 	if (dev->netdev_ops->ndo_set_features)
9005 		err = dev->netdev_ops->ndo_set_features(dev, features);
9006 	else
9007 		err = 0;
9008 
9009 	if (unlikely(err < 0)) {
9010 		netdev_err(dev,
9011 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9012 			err, &features, &dev->features);
9013 		/* return non-0 since some features might have changed and
9014 		 * it's better to fire a spurious notification than miss it
9015 		 */
9016 		return -1;
9017 	}
9018 
9019 sync_lower:
9020 	/* some features must be disabled on lower devices when disabled
9021 	 * on an upper device (think: bonding master or bridge)
9022 	 */
9023 	netdev_for_each_lower_dev(dev, lower, iter)
9024 		netdev_sync_lower_features(dev, lower, features);
9025 
9026 	if (!err) {
9027 		netdev_features_t diff = features ^ dev->features;
9028 
9029 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9030 			/* udp_tunnel_{get,drop}_rx_info both need
9031 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9032 			 * device, or they won't do anything.
9033 			 * Thus we need to update dev->features
9034 			 * *before* calling udp_tunnel_get_rx_info,
9035 			 * but *after* calling udp_tunnel_drop_rx_info.
9036 			 */
9037 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9038 				dev->features = features;
9039 				udp_tunnel_get_rx_info(dev);
9040 			} else {
9041 				udp_tunnel_drop_rx_info(dev);
9042 			}
9043 		}
9044 
9045 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9046 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9047 				dev->features = features;
9048 				err |= vlan_get_rx_ctag_filter_info(dev);
9049 			} else {
9050 				vlan_drop_rx_ctag_filter_info(dev);
9051 			}
9052 		}
9053 
9054 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9055 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9056 				dev->features = features;
9057 				err |= vlan_get_rx_stag_filter_info(dev);
9058 			} else {
9059 				vlan_drop_rx_stag_filter_info(dev);
9060 			}
9061 		}
9062 
9063 		dev->features = features;
9064 	}
9065 
9066 	return err < 0 ? 0 : 1;
9067 }
9068 
9069 /**
9070  *	netdev_update_features - recalculate device features
9071  *	@dev: the device to check
9072  *
9073  *	Recalculate dev->features set and send notifications if it
9074  *	has changed. Should be called after driver or hardware dependent
9075  *	conditions might have changed that influence the features.
9076  */
9077 void netdev_update_features(struct net_device *dev)
9078 {
9079 	if (__netdev_update_features(dev))
9080 		netdev_features_change(dev);
9081 }
9082 EXPORT_SYMBOL(netdev_update_features);
9083 
9084 /**
9085  *	netdev_change_features - recalculate device features
9086  *	@dev: the device to check
9087  *
9088  *	Recalculate dev->features set and send notifications even
9089  *	if they have not changed. Should be called instead of
9090  *	netdev_update_features() if also dev->vlan_features might
9091  *	have changed to allow the changes to be propagated to stacked
9092  *	VLAN devices.
9093  */
9094 void netdev_change_features(struct net_device *dev)
9095 {
9096 	__netdev_update_features(dev);
9097 	netdev_features_change(dev);
9098 }
9099 EXPORT_SYMBOL(netdev_change_features);
9100 
9101 /**
9102  *	netif_stacked_transfer_operstate -	transfer operstate
9103  *	@rootdev: the root or lower level device to transfer state from
9104  *	@dev: the device to transfer operstate to
9105  *
9106  *	Transfer operational state from root to device. This is normally
9107  *	called when a stacking relationship exists between the root
9108  *	device and the device(a leaf device).
9109  */
9110 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9111 					struct net_device *dev)
9112 {
9113 	if (rootdev->operstate == IF_OPER_DORMANT)
9114 		netif_dormant_on(dev);
9115 	else
9116 		netif_dormant_off(dev);
9117 
9118 	if (netif_carrier_ok(rootdev))
9119 		netif_carrier_on(dev);
9120 	else
9121 		netif_carrier_off(dev);
9122 }
9123 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9124 
9125 static int netif_alloc_rx_queues(struct net_device *dev)
9126 {
9127 	unsigned int i, count = dev->num_rx_queues;
9128 	struct netdev_rx_queue *rx;
9129 	size_t sz = count * sizeof(*rx);
9130 	int err = 0;
9131 
9132 	BUG_ON(count < 1);
9133 
9134 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9135 	if (!rx)
9136 		return -ENOMEM;
9137 
9138 	dev->_rx = rx;
9139 
9140 	for (i = 0; i < count; i++) {
9141 		rx[i].dev = dev;
9142 
9143 		/* XDP RX-queue setup */
9144 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9145 		if (err < 0)
9146 			goto err_rxq_info;
9147 	}
9148 	return 0;
9149 
9150 err_rxq_info:
9151 	/* Rollback successful reg's and free other resources */
9152 	while (i--)
9153 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9154 	kvfree(dev->_rx);
9155 	dev->_rx = NULL;
9156 	return err;
9157 }
9158 
9159 static void netif_free_rx_queues(struct net_device *dev)
9160 {
9161 	unsigned int i, count = dev->num_rx_queues;
9162 
9163 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9164 	if (!dev->_rx)
9165 		return;
9166 
9167 	for (i = 0; i < count; i++)
9168 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9169 
9170 	kvfree(dev->_rx);
9171 }
9172 
9173 static void netdev_init_one_queue(struct net_device *dev,
9174 				  struct netdev_queue *queue, void *_unused)
9175 {
9176 	/* Initialize queue lock */
9177 	spin_lock_init(&queue->_xmit_lock);
9178 	lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9179 	queue->xmit_lock_owner = -1;
9180 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9181 	queue->dev = dev;
9182 #ifdef CONFIG_BQL
9183 	dql_init(&queue->dql, HZ);
9184 #endif
9185 }
9186 
9187 static void netif_free_tx_queues(struct net_device *dev)
9188 {
9189 	kvfree(dev->_tx);
9190 }
9191 
9192 static int netif_alloc_netdev_queues(struct net_device *dev)
9193 {
9194 	unsigned int count = dev->num_tx_queues;
9195 	struct netdev_queue *tx;
9196 	size_t sz = count * sizeof(*tx);
9197 
9198 	if (count < 1 || count > 0xffff)
9199 		return -EINVAL;
9200 
9201 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9202 	if (!tx)
9203 		return -ENOMEM;
9204 
9205 	dev->_tx = tx;
9206 
9207 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9208 	spin_lock_init(&dev->tx_global_lock);
9209 
9210 	return 0;
9211 }
9212 
9213 void netif_tx_stop_all_queues(struct net_device *dev)
9214 {
9215 	unsigned int i;
9216 
9217 	for (i = 0; i < dev->num_tx_queues; i++) {
9218 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9219 
9220 		netif_tx_stop_queue(txq);
9221 	}
9222 }
9223 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9224 
9225 static void netdev_register_lockdep_key(struct net_device *dev)
9226 {
9227 	lockdep_register_key(&dev->qdisc_tx_busylock_key);
9228 	lockdep_register_key(&dev->qdisc_running_key);
9229 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
9230 	lockdep_register_key(&dev->addr_list_lock_key);
9231 }
9232 
9233 static void netdev_unregister_lockdep_key(struct net_device *dev)
9234 {
9235 	lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9236 	lockdep_unregister_key(&dev->qdisc_running_key);
9237 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9238 	lockdep_unregister_key(&dev->addr_list_lock_key);
9239 }
9240 
9241 void netdev_update_lockdep_key(struct net_device *dev)
9242 {
9243 	lockdep_unregister_key(&dev->addr_list_lock_key);
9244 	lockdep_register_key(&dev->addr_list_lock_key);
9245 
9246 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9247 }
9248 EXPORT_SYMBOL(netdev_update_lockdep_key);
9249 
9250 /**
9251  *	register_netdevice	- register a network device
9252  *	@dev: device to register
9253  *
9254  *	Take a completed network device structure and add it to the kernel
9255  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9256  *	chain. 0 is returned on success. A negative errno code is returned
9257  *	on a failure to set up the device, or if the name is a duplicate.
9258  *
9259  *	Callers must hold the rtnl semaphore. You may want
9260  *	register_netdev() instead of this.
9261  *
9262  *	BUGS:
9263  *	The locking appears insufficient to guarantee two parallel registers
9264  *	will not get the same name.
9265  */
9266 
9267 int register_netdevice(struct net_device *dev)
9268 {
9269 	int ret;
9270 	struct net *net = dev_net(dev);
9271 
9272 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9273 		     NETDEV_FEATURE_COUNT);
9274 	BUG_ON(dev_boot_phase);
9275 	ASSERT_RTNL();
9276 
9277 	might_sleep();
9278 
9279 	/* When net_device's are persistent, this will be fatal. */
9280 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9281 	BUG_ON(!net);
9282 
9283 	spin_lock_init(&dev->addr_list_lock);
9284 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9285 
9286 	ret = dev_get_valid_name(net, dev, dev->name);
9287 	if (ret < 0)
9288 		goto out;
9289 
9290 	ret = -ENOMEM;
9291 	dev->name_node = netdev_name_node_head_alloc(dev);
9292 	if (!dev->name_node)
9293 		goto out;
9294 
9295 	/* Init, if this function is available */
9296 	if (dev->netdev_ops->ndo_init) {
9297 		ret = dev->netdev_ops->ndo_init(dev);
9298 		if (ret) {
9299 			if (ret > 0)
9300 				ret = -EIO;
9301 			goto err_free_name;
9302 		}
9303 	}
9304 
9305 	if (((dev->hw_features | dev->features) &
9306 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9307 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9308 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9309 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9310 		ret = -EINVAL;
9311 		goto err_uninit;
9312 	}
9313 
9314 	ret = -EBUSY;
9315 	if (!dev->ifindex)
9316 		dev->ifindex = dev_new_index(net);
9317 	else if (__dev_get_by_index(net, dev->ifindex))
9318 		goto err_uninit;
9319 
9320 	/* Transfer changeable features to wanted_features and enable
9321 	 * software offloads (GSO and GRO).
9322 	 */
9323 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9324 	dev->features |= NETIF_F_SOFT_FEATURES;
9325 
9326 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9327 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9328 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9329 	}
9330 
9331 	dev->wanted_features = dev->features & dev->hw_features;
9332 
9333 	if (!(dev->flags & IFF_LOOPBACK))
9334 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9335 
9336 	/* If IPv4 TCP segmentation offload is supported we should also
9337 	 * allow the device to enable segmenting the frame with the option
9338 	 * of ignoring a static IP ID value.  This doesn't enable the
9339 	 * feature itself but allows the user to enable it later.
9340 	 */
9341 	if (dev->hw_features & NETIF_F_TSO)
9342 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9343 	if (dev->vlan_features & NETIF_F_TSO)
9344 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9345 	if (dev->mpls_features & NETIF_F_TSO)
9346 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9347 	if (dev->hw_enc_features & NETIF_F_TSO)
9348 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9349 
9350 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9351 	 */
9352 	dev->vlan_features |= NETIF_F_HIGHDMA;
9353 
9354 	/* Make NETIF_F_SG inheritable to tunnel devices.
9355 	 */
9356 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9357 
9358 	/* Make NETIF_F_SG inheritable to MPLS.
9359 	 */
9360 	dev->mpls_features |= NETIF_F_SG;
9361 
9362 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9363 	ret = notifier_to_errno(ret);
9364 	if (ret)
9365 		goto err_uninit;
9366 
9367 	ret = netdev_register_kobject(dev);
9368 	if (ret) {
9369 		dev->reg_state = NETREG_UNREGISTERED;
9370 		goto err_uninit;
9371 	}
9372 	dev->reg_state = NETREG_REGISTERED;
9373 
9374 	__netdev_update_features(dev);
9375 
9376 	/*
9377 	 *	Default initial state at registry is that the
9378 	 *	device is present.
9379 	 */
9380 
9381 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9382 
9383 	linkwatch_init_dev(dev);
9384 
9385 	dev_init_scheduler(dev);
9386 	dev_hold(dev);
9387 	list_netdevice(dev);
9388 	add_device_randomness(dev->dev_addr, dev->addr_len);
9389 
9390 	/* If the device has permanent device address, driver should
9391 	 * set dev_addr and also addr_assign_type should be set to
9392 	 * NET_ADDR_PERM (default value).
9393 	 */
9394 	if (dev->addr_assign_type == NET_ADDR_PERM)
9395 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9396 
9397 	/* Notify protocols, that a new device appeared. */
9398 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9399 	ret = notifier_to_errno(ret);
9400 	if (ret) {
9401 		rollback_registered(dev);
9402 		rcu_barrier();
9403 
9404 		dev->reg_state = NETREG_UNREGISTERED;
9405 	}
9406 	/*
9407 	 *	Prevent userspace races by waiting until the network
9408 	 *	device is fully setup before sending notifications.
9409 	 */
9410 	if (!dev->rtnl_link_ops ||
9411 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9412 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9413 
9414 out:
9415 	return ret;
9416 
9417 err_uninit:
9418 	if (dev->netdev_ops->ndo_uninit)
9419 		dev->netdev_ops->ndo_uninit(dev);
9420 	if (dev->priv_destructor)
9421 		dev->priv_destructor(dev);
9422 err_free_name:
9423 	netdev_name_node_free(dev->name_node);
9424 	goto out;
9425 }
9426 EXPORT_SYMBOL(register_netdevice);
9427 
9428 /**
9429  *	init_dummy_netdev	- init a dummy network device for NAPI
9430  *	@dev: device to init
9431  *
9432  *	This takes a network device structure and initialize the minimum
9433  *	amount of fields so it can be used to schedule NAPI polls without
9434  *	registering a full blown interface. This is to be used by drivers
9435  *	that need to tie several hardware interfaces to a single NAPI
9436  *	poll scheduler due to HW limitations.
9437  */
9438 int init_dummy_netdev(struct net_device *dev)
9439 {
9440 	/* Clear everything. Note we don't initialize spinlocks
9441 	 * are they aren't supposed to be taken by any of the
9442 	 * NAPI code and this dummy netdev is supposed to be
9443 	 * only ever used for NAPI polls
9444 	 */
9445 	memset(dev, 0, sizeof(struct net_device));
9446 
9447 	/* make sure we BUG if trying to hit standard
9448 	 * register/unregister code path
9449 	 */
9450 	dev->reg_state = NETREG_DUMMY;
9451 
9452 	/* NAPI wants this */
9453 	INIT_LIST_HEAD(&dev->napi_list);
9454 
9455 	/* a dummy interface is started by default */
9456 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9457 	set_bit(__LINK_STATE_START, &dev->state);
9458 
9459 	/* napi_busy_loop stats accounting wants this */
9460 	dev_net_set(dev, &init_net);
9461 
9462 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9463 	 * because users of this 'device' dont need to change
9464 	 * its refcount.
9465 	 */
9466 
9467 	return 0;
9468 }
9469 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9470 
9471 
9472 /**
9473  *	register_netdev	- register a network device
9474  *	@dev: device to register
9475  *
9476  *	Take a completed network device structure and add it to the kernel
9477  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9478  *	chain. 0 is returned on success. A negative errno code is returned
9479  *	on a failure to set up the device, or if the name is a duplicate.
9480  *
9481  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9482  *	and expands the device name if you passed a format string to
9483  *	alloc_netdev.
9484  */
9485 int register_netdev(struct net_device *dev)
9486 {
9487 	int err;
9488 
9489 	if (rtnl_lock_killable())
9490 		return -EINTR;
9491 	err = register_netdevice(dev);
9492 	rtnl_unlock();
9493 	return err;
9494 }
9495 EXPORT_SYMBOL(register_netdev);
9496 
9497 int netdev_refcnt_read(const struct net_device *dev)
9498 {
9499 	int i, refcnt = 0;
9500 
9501 	for_each_possible_cpu(i)
9502 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9503 	return refcnt;
9504 }
9505 EXPORT_SYMBOL(netdev_refcnt_read);
9506 
9507 /**
9508  * netdev_wait_allrefs - wait until all references are gone.
9509  * @dev: target net_device
9510  *
9511  * This is called when unregistering network devices.
9512  *
9513  * Any protocol or device that holds a reference should register
9514  * for netdevice notification, and cleanup and put back the
9515  * reference if they receive an UNREGISTER event.
9516  * We can get stuck here if buggy protocols don't correctly
9517  * call dev_put.
9518  */
9519 static void netdev_wait_allrefs(struct net_device *dev)
9520 {
9521 	unsigned long rebroadcast_time, warning_time;
9522 	int refcnt;
9523 
9524 	linkwatch_forget_dev(dev);
9525 
9526 	rebroadcast_time = warning_time = jiffies;
9527 	refcnt = netdev_refcnt_read(dev);
9528 
9529 	while (refcnt != 0) {
9530 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9531 			rtnl_lock();
9532 
9533 			/* Rebroadcast unregister notification */
9534 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9535 
9536 			__rtnl_unlock();
9537 			rcu_barrier();
9538 			rtnl_lock();
9539 
9540 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9541 				     &dev->state)) {
9542 				/* We must not have linkwatch events
9543 				 * pending on unregister. If this
9544 				 * happens, we simply run the queue
9545 				 * unscheduled, resulting in a noop
9546 				 * for this device.
9547 				 */
9548 				linkwatch_run_queue();
9549 			}
9550 
9551 			__rtnl_unlock();
9552 
9553 			rebroadcast_time = jiffies;
9554 		}
9555 
9556 		msleep(250);
9557 
9558 		refcnt = netdev_refcnt_read(dev);
9559 
9560 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9561 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9562 				 dev->name, refcnt);
9563 			warning_time = jiffies;
9564 		}
9565 	}
9566 }
9567 
9568 /* The sequence is:
9569  *
9570  *	rtnl_lock();
9571  *	...
9572  *	register_netdevice(x1);
9573  *	register_netdevice(x2);
9574  *	...
9575  *	unregister_netdevice(y1);
9576  *	unregister_netdevice(y2);
9577  *      ...
9578  *	rtnl_unlock();
9579  *	free_netdev(y1);
9580  *	free_netdev(y2);
9581  *
9582  * We are invoked by rtnl_unlock().
9583  * This allows us to deal with problems:
9584  * 1) We can delete sysfs objects which invoke hotplug
9585  *    without deadlocking with linkwatch via keventd.
9586  * 2) Since we run with the RTNL semaphore not held, we can sleep
9587  *    safely in order to wait for the netdev refcnt to drop to zero.
9588  *
9589  * We must not return until all unregister events added during
9590  * the interval the lock was held have been completed.
9591  */
9592 void netdev_run_todo(void)
9593 {
9594 	struct list_head list;
9595 
9596 	/* Snapshot list, allow later requests */
9597 	list_replace_init(&net_todo_list, &list);
9598 
9599 	__rtnl_unlock();
9600 
9601 
9602 	/* Wait for rcu callbacks to finish before next phase */
9603 	if (!list_empty(&list))
9604 		rcu_barrier();
9605 
9606 	while (!list_empty(&list)) {
9607 		struct net_device *dev
9608 			= list_first_entry(&list, struct net_device, todo_list);
9609 		list_del(&dev->todo_list);
9610 
9611 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9612 			pr_err("network todo '%s' but state %d\n",
9613 			       dev->name, dev->reg_state);
9614 			dump_stack();
9615 			continue;
9616 		}
9617 
9618 		dev->reg_state = NETREG_UNREGISTERED;
9619 
9620 		netdev_wait_allrefs(dev);
9621 
9622 		/* paranoia */
9623 		BUG_ON(netdev_refcnt_read(dev));
9624 		BUG_ON(!list_empty(&dev->ptype_all));
9625 		BUG_ON(!list_empty(&dev->ptype_specific));
9626 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9627 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9628 #if IS_ENABLED(CONFIG_DECNET)
9629 		WARN_ON(dev->dn_ptr);
9630 #endif
9631 		if (dev->priv_destructor)
9632 			dev->priv_destructor(dev);
9633 		if (dev->needs_free_netdev)
9634 			free_netdev(dev);
9635 
9636 		/* Report a network device has been unregistered */
9637 		rtnl_lock();
9638 		dev_net(dev)->dev_unreg_count--;
9639 		__rtnl_unlock();
9640 		wake_up(&netdev_unregistering_wq);
9641 
9642 		/* Free network device */
9643 		kobject_put(&dev->dev.kobj);
9644 	}
9645 }
9646 
9647 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9648  * all the same fields in the same order as net_device_stats, with only
9649  * the type differing, but rtnl_link_stats64 may have additional fields
9650  * at the end for newer counters.
9651  */
9652 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9653 			     const struct net_device_stats *netdev_stats)
9654 {
9655 #if BITS_PER_LONG == 64
9656 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9657 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9658 	/* zero out counters that only exist in rtnl_link_stats64 */
9659 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9660 	       sizeof(*stats64) - sizeof(*netdev_stats));
9661 #else
9662 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9663 	const unsigned long *src = (const unsigned long *)netdev_stats;
9664 	u64 *dst = (u64 *)stats64;
9665 
9666 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9667 	for (i = 0; i < n; i++)
9668 		dst[i] = src[i];
9669 	/* zero out counters that only exist in rtnl_link_stats64 */
9670 	memset((char *)stats64 + n * sizeof(u64), 0,
9671 	       sizeof(*stats64) - n * sizeof(u64));
9672 #endif
9673 }
9674 EXPORT_SYMBOL(netdev_stats_to_stats64);
9675 
9676 /**
9677  *	dev_get_stats	- get network device statistics
9678  *	@dev: device to get statistics from
9679  *	@storage: place to store stats
9680  *
9681  *	Get network statistics from device. Return @storage.
9682  *	The device driver may provide its own method by setting
9683  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9684  *	otherwise the internal statistics structure is used.
9685  */
9686 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9687 					struct rtnl_link_stats64 *storage)
9688 {
9689 	const struct net_device_ops *ops = dev->netdev_ops;
9690 
9691 	if (ops->ndo_get_stats64) {
9692 		memset(storage, 0, sizeof(*storage));
9693 		ops->ndo_get_stats64(dev, storage);
9694 	} else if (ops->ndo_get_stats) {
9695 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9696 	} else {
9697 		netdev_stats_to_stats64(storage, &dev->stats);
9698 	}
9699 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9700 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9701 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9702 	return storage;
9703 }
9704 EXPORT_SYMBOL(dev_get_stats);
9705 
9706 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9707 {
9708 	struct netdev_queue *queue = dev_ingress_queue(dev);
9709 
9710 #ifdef CONFIG_NET_CLS_ACT
9711 	if (queue)
9712 		return queue;
9713 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9714 	if (!queue)
9715 		return NULL;
9716 	netdev_init_one_queue(dev, queue, NULL);
9717 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9718 	queue->qdisc_sleeping = &noop_qdisc;
9719 	rcu_assign_pointer(dev->ingress_queue, queue);
9720 #endif
9721 	return queue;
9722 }
9723 
9724 static const struct ethtool_ops default_ethtool_ops;
9725 
9726 void netdev_set_default_ethtool_ops(struct net_device *dev,
9727 				    const struct ethtool_ops *ops)
9728 {
9729 	if (dev->ethtool_ops == &default_ethtool_ops)
9730 		dev->ethtool_ops = ops;
9731 }
9732 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9733 
9734 void netdev_freemem(struct net_device *dev)
9735 {
9736 	char *addr = (char *)dev - dev->padded;
9737 
9738 	kvfree(addr);
9739 }
9740 
9741 /**
9742  * alloc_netdev_mqs - allocate network device
9743  * @sizeof_priv: size of private data to allocate space for
9744  * @name: device name format string
9745  * @name_assign_type: origin of device name
9746  * @setup: callback to initialize device
9747  * @txqs: the number of TX subqueues to allocate
9748  * @rxqs: the number of RX subqueues to allocate
9749  *
9750  * Allocates a struct net_device with private data area for driver use
9751  * and performs basic initialization.  Also allocates subqueue structs
9752  * for each queue on the device.
9753  */
9754 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9755 		unsigned char name_assign_type,
9756 		void (*setup)(struct net_device *),
9757 		unsigned int txqs, unsigned int rxqs)
9758 {
9759 	struct net_device *dev;
9760 	unsigned int alloc_size;
9761 	struct net_device *p;
9762 
9763 	BUG_ON(strlen(name) >= sizeof(dev->name));
9764 
9765 	if (txqs < 1) {
9766 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9767 		return NULL;
9768 	}
9769 
9770 	if (rxqs < 1) {
9771 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9772 		return NULL;
9773 	}
9774 
9775 	alloc_size = sizeof(struct net_device);
9776 	if (sizeof_priv) {
9777 		/* ensure 32-byte alignment of private area */
9778 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9779 		alloc_size += sizeof_priv;
9780 	}
9781 	/* ensure 32-byte alignment of whole construct */
9782 	alloc_size += NETDEV_ALIGN - 1;
9783 
9784 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9785 	if (!p)
9786 		return NULL;
9787 
9788 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9789 	dev->padded = (char *)dev - (char *)p;
9790 
9791 	dev->pcpu_refcnt = alloc_percpu(int);
9792 	if (!dev->pcpu_refcnt)
9793 		goto free_dev;
9794 
9795 	if (dev_addr_init(dev))
9796 		goto free_pcpu;
9797 
9798 	dev_mc_init(dev);
9799 	dev_uc_init(dev);
9800 
9801 	dev_net_set(dev, &init_net);
9802 
9803 	netdev_register_lockdep_key(dev);
9804 
9805 	dev->gso_max_size = GSO_MAX_SIZE;
9806 	dev->gso_max_segs = GSO_MAX_SEGS;
9807 	dev->upper_level = 1;
9808 	dev->lower_level = 1;
9809 
9810 	INIT_LIST_HEAD(&dev->napi_list);
9811 	INIT_LIST_HEAD(&dev->unreg_list);
9812 	INIT_LIST_HEAD(&dev->close_list);
9813 	INIT_LIST_HEAD(&dev->link_watch_list);
9814 	INIT_LIST_HEAD(&dev->adj_list.upper);
9815 	INIT_LIST_HEAD(&dev->adj_list.lower);
9816 	INIT_LIST_HEAD(&dev->ptype_all);
9817 	INIT_LIST_HEAD(&dev->ptype_specific);
9818 	INIT_LIST_HEAD(&dev->net_notifier_list);
9819 #ifdef CONFIG_NET_SCHED
9820 	hash_init(dev->qdisc_hash);
9821 #endif
9822 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9823 	setup(dev);
9824 
9825 	if (!dev->tx_queue_len) {
9826 		dev->priv_flags |= IFF_NO_QUEUE;
9827 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9828 	}
9829 
9830 	dev->num_tx_queues = txqs;
9831 	dev->real_num_tx_queues = txqs;
9832 	if (netif_alloc_netdev_queues(dev))
9833 		goto free_all;
9834 
9835 	dev->num_rx_queues = rxqs;
9836 	dev->real_num_rx_queues = rxqs;
9837 	if (netif_alloc_rx_queues(dev))
9838 		goto free_all;
9839 
9840 	strcpy(dev->name, name);
9841 	dev->name_assign_type = name_assign_type;
9842 	dev->group = INIT_NETDEV_GROUP;
9843 	if (!dev->ethtool_ops)
9844 		dev->ethtool_ops = &default_ethtool_ops;
9845 
9846 	nf_hook_ingress_init(dev);
9847 
9848 	return dev;
9849 
9850 free_all:
9851 	free_netdev(dev);
9852 	return NULL;
9853 
9854 free_pcpu:
9855 	free_percpu(dev->pcpu_refcnt);
9856 free_dev:
9857 	netdev_freemem(dev);
9858 	return NULL;
9859 }
9860 EXPORT_SYMBOL(alloc_netdev_mqs);
9861 
9862 /**
9863  * free_netdev - free network device
9864  * @dev: device
9865  *
9866  * This function does the last stage of destroying an allocated device
9867  * interface. The reference to the device object is released. If this
9868  * is the last reference then it will be freed.Must be called in process
9869  * context.
9870  */
9871 void free_netdev(struct net_device *dev)
9872 {
9873 	struct napi_struct *p, *n;
9874 
9875 	might_sleep();
9876 	netif_free_tx_queues(dev);
9877 	netif_free_rx_queues(dev);
9878 
9879 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9880 
9881 	/* Flush device addresses */
9882 	dev_addr_flush(dev);
9883 
9884 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9885 		netif_napi_del(p);
9886 
9887 	free_percpu(dev->pcpu_refcnt);
9888 	dev->pcpu_refcnt = NULL;
9889 	free_percpu(dev->xdp_bulkq);
9890 	dev->xdp_bulkq = NULL;
9891 
9892 	netdev_unregister_lockdep_key(dev);
9893 
9894 	/*  Compatibility with error handling in drivers */
9895 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9896 		netdev_freemem(dev);
9897 		return;
9898 	}
9899 
9900 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9901 	dev->reg_state = NETREG_RELEASED;
9902 
9903 	/* will free via device release */
9904 	put_device(&dev->dev);
9905 }
9906 EXPORT_SYMBOL(free_netdev);
9907 
9908 /**
9909  *	synchronize_net -  Synchronize with packet receive processing
9910  *
9911  *	Wait for packets currently being received to be done.
9912  *	Does not block later packets from starting.
9913  */
9914 void synchronize_net(void)
9915 {
9916 	might_sleep();
9917 	if (rtnl_is_locked())
9918 		synchronize_rcu_expedited();
9919 	else
9920 		synchronize_rcu();
9921 }
9922 EXPORT_SYMBOL(synchronize_net);
9923 
9924 /**
9925  *	unregister_netdevice_queue - remove device from the kernel
9926  *	@dev: device
9927  *	@head: list
9928  *
9929  *	This function shuts down a device interface and removes it
9930  *	from the kernel tables.
9931  *	If head not NULL, device is queued to be unregistered later.
9932  *
9933  *	Callers must hold the rtnl semaphore.  You may want
9934  *	unregister_netdev() instead of this.
9935  */
9936 
9937 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9938 {
9939 	ASSERT_RTNL();
9940 
9941 	if (head) {
9942 		list_move_tail(&dev->unreg_list, head);
9943 	} else {
9944 		rollback_registered(dev);
9945 		/* Finish processing unregister after unlock */
9946 		net_set_todo(dev);
9947 	}
9948 }
9949 EXPORT_SYMBOL(unregister_netdevice_queue);
9950 
9951 /**
9952  *	unregister_netdevice_many - unregister many devices
9953  *	@head: list of devices
9954  *
9955  *  Note: As most callers use a stack allocated list_head,
9956  *  we force a list_del() to make sure stack wont be corrupted later.
9957  */
9958 void unregister_netdevice_many(struct list_head *head)
9959 {
9960 	struct net_device *dev;
9961 
9962 	if (!list_empty(head)) {
9963 		rollback_registered_many(head);
9964 		list_for_each_entry(dev, head, unreg_list)
9965 			net_set_todo(dev);
9966 		list_del(head);
9967 	}
9968 }
9969 EXPORT_SYMBOL(unregister_netdevice_many);
9970 
9971 /**
9972  *	unregister_netdev - remove device from the kernel
9973  *	@dev: device
9974  *
9975  *	This function shuts down a device interface and removes it
9976  *	from the kernel tables.
9977  *
9978  *	This is just a wrapper for unregister_netdevice that takes
9979  *	the rtnl semaphore.  In general you want to use this and not
9980  *	unregister_netdevice.
9981  */
9982 void unregister_netdev(struct net_device *dev)
9983 {
9984 	rtnl_lock();
9985 	unregister_netdevice(dev);
9986 	rtnl_unlock();
9987 }
9988 EXPORT_SYMBOL(unregister_netdev);
9989 
9990 /**
9991  *	dev_change_net_namespace - move device to different nethost namespace
9992  *	@dev: device
9993  *	@net: network namespace
9994  *	@pat: If not NULL name pattern to try if the current device name
9995  *	      is already taken in the destination network namespace.
9996  *
9997  *	This function shuts down a device interface and moves it
9998  *	to a new network namespace. On success 0 is returned, on
9999  *	a failure a netagive errno code is returned.
10000  *
10001  *	Callers must hold the rtnl semaphore.
10002  */
10003 
10004 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10005 {
10006 	int err, new_nsid, new_ifindex;
10007 
10008 	ASSERT_RTNL();
10009 
10010 	/* Don't allow namespace local devices to be moved. */
10011 	err = -EINVAL;
10012 	if (dev->features & NETIF_F_NETNS_LOCAL)
10013 		goto out;
10014 
10015 	/* Ensure the device has been registrered */
10016 	if (dev->reg_state != NETREG_REGISTERED)
10017 		goto out;
10018 
10019 	/* Get out if there is nothing todo */
10020 	err = 0;
10021 	if (net_eq(dev_net(dev), net))
10022 		goto out;
10023 
10024 	/* Pick the destination device name, and ensure
10025 	 * we can use it in the destination network namespace.
10026 	 */
10027 	err = -EEXIST;
10028 	if (__dev_get_by_name(net, dev->name)) {
10029 		/* We get here if we can't use the current device name */
10030 		if (!pat)
10031 			goto out;
10032 		err = dev_get_valid_name(net, dev, pat);
10033 		if (err < 0)
10034 			goto out;
10035 	}
10036 
10037 	/*
10038 	 * And now a mini version of register_netdevice unregister_netdevice.
10039 	 */
10040 
10041 	/* If device is running close it first. */
10042 	dev_close(dev);
10043 
10044 	/* And unlink it from device chain */
10045 	unlist_netdevice(dev);
10046 
10047 	synchronize_net();
10048 
10049 	/* Shutdown queueing discipline. */
10050 	dev_shutdown(dev);
10051 
10052 	/* Notify protocols, that we are about to destroy
10053 	 * this device. They should clean all the things.
10054 	 *
10055 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10056 	 * This is wanted because this way 8021q and macvlan know
10057 	 * the device is just moving and can keep their slaves up.
10058 	 */
10059 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10060 	rcu_barrier();
10061 
10062 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10063 	/* If there is an ifindex conflict assign a new one */
10064 	if (__dev_get_by_index(net, dev->ifindex))
10065 		new_ifindex = dev_new_index(net);
10066 	else
10067 		new_ifindex = dev->ifindex;
10068 
10069 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10070 			    new_ifindex);
10071 
10072 	/*
10073 	 *	Flush the unicast and multicast chains
10074 	 */
10075 	dev_uc_flush(dev);
10076 	dev_mc_flush(dev);
10077 
10078 	/* Send a netdev-removed uevent to the old namespace */
10079 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10080 	netdev_adjacent_del_links(dev);
10081 
10082 	/* Move per-net netdevice notifiers that are following the netdevice */
10083 	move_netdevice_notifiers_dev_net(dev, net);
10084 
10085 	/* Actually switch the network namespace */
10086 	dev_net_set(dev, net);
10087 	dev->ifindex = new_ifindex;
10088 
10089 	/* Send a netdev-add uevent to the new namespace */
10090 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10091 	netdev_adjacent_add_links(dev);
10092 
10093 	/* Fixup kobjects */
10094 	err = device_rename(&dev->dev, dev->name);
10095 	WARN_ON(err);
10096 
10097 	/* Add the device back in the hashes */
10098 	list_netdevice(dev);
10099 
10100 	/* Notify protocols, that a new device appeared. */
10101 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10102 
10103 	/*
10104 	 *	Prevent userspace races by waiting until the network
10105 	 *	device is fully setup before sending notifications.
10106 	 */
10107 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10108 
10109 	synchronize_net();
10110 	err = 0;
10111 out:
10112 	return err;
10113 }
10114 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10115 
10116 static int dev_cpu_dead(unsigned int oldcpu)
10117 {
10118 	struct sk_buff **list_skb;
10119 	struct sk_buff *skb;
10120 	unsigned int cpu;
10121 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10122 
10123 	local_irq_disable();
10124 	cpu = smp_processor_id();
10125 	sd = &per_cpu(softnet_data, cpu);
10126 	oldsd = &per_cpu(softnet_data, oldcpu);
10127 
10128 	/* Find end of our completion_queue. */
10129 	list_skb = &sd->completion_queue;
10130 	while (*list_skb)
10131 		list_skb = &(*list_skb)->next;
10132 	/* Append completion queue from offline CPU. */
10133 	*list_skb = oldsd->completion_queue;
10134 	oldsd->completion_queue = NULL;
10135 
10136 	/* Append output queue from offline CPU. */
10137 	if (oldsd->output_queue) {
10138 		*sd->output_queue_tailp = oldsd->output_queue;
10139 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10140 		oldsd->output_queue = NULL;
10141 		oldsd->output_queue_tailp = &oldsd->output_queue;
10142 	}
10143 	/* Append NAPI poll list from offline CPU, with one exception :
10144 	 * process_backlog() must be called by cpu owning percpu backlog.
10145 	 * We properly handle process_queue & input_pkt_queue later.
10146 	 */
10147 	while (!list_empty(&oldsd->poll_list)) {
10148 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10149 							    struct napi_struct,
10150 							    poll_list);
10151 
10152 		list_del_init(&napi->poll_list);
10153 		if (napi->poll == process_backlog)
10154 			napi->state = 0;
10155 		else
10156 			____napi_schedule(sd, napi);
10157 	}
10158 
10159 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10160 	local_irq_enable();
10161 
10162 #ifdef CONFIG_RPS
10163 	remsd = oldsd->rps_ipi_list;
10164 	oldsd->rps_ipi_list = NULL;
10165 #endif
10166 	/* send out pending IPI's on offline CPU */
10167 	net_rps_send_ipi(remsd);
10168 
10169 	/* Process offline CPU's input_pkt_queue */
10170 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10171 		netif_rx_ni(skb);
10172 		input_queue_head_incr(oldsd);
10173 	}
10174 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10175 		netif_rx_ni(skb);
10176 		input_queue_head_incr(oldsd);
10177 	}
10178 
10179 	return 0;
10180 }
10181 
10182 /**
10183  *	netdev_increment_features - increment feature set by one
10184  *	@all: current feature set
10185  *	@one: new feature set
10186  *	@mask: mask feature set
10187  *
10188  *	Computes a new feature set after adding a device with feature set
10189  *	@one to the master device with current feature set @all.  Will not
10190  *	enable anything that is off in @mask. Returns the new feature set.
10191  */
10192 netdev_features_t netdev_increment_features(netdev_features_t all,
10193 	netdev_features_t one, netdev_features_t mask)
10194 {
10195 	if (mask & NETIF_F_HW_CSUM)
10196 		mask |= NETIF_F_CSUM_MASK;
10197 	mask |= NETIF_F_VLAN_CHALLENGED;
10198 
10199 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10200 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10201 
10202 	/* If one device supports hw checksumming, set for all. */
10203 	if (all & NETIF_F_HW_CSUM)
10204 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10205 
10206 	return all;
10207 }
10208 EXPORT_SYMBOL(netdev_increment_features);
10209 
10210 static struct hlist_head * __net_init netdev_create_hash(void)
10211 {
10212 	int i;
10213 	struct hlist_head *hash;
10214 
10215 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10216 	if (hash != NULL)
10217 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10218 			INIT_HLIST_HEAD(&hash[i]);
10219 
10220 	return hash;
10221 }
10222 
10223 /* Initialize per network namespace state */
10224 static int __net_init netdev_init(struct net *net)
10225 {
10226 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10227 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10228 
10229 	if (net != &init_net)
10230 		INIT_LIST_HEAD(&net->dev_base_head);
10231 
10232 	net->dev_name_head = netdev_create_hash();
10233 	if (net->dev_name_head == NULL)
10234 		goto err_name;
10235 
10236 	net->dev_index_head = netdev_create_hash();
10237 	if (net->dev_index_head == NULL)
10238 		goto err_idx;
10239 
10240 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10241 
10242 	return 0;
10243 
10244 err_idx:
10245 	kfree(net->dev_name_head);
10246 err_name:
10247 	return -ENOMEM;
10248 }
10249 
10250 /**
10251  *	netdev_drivername - network driver for the device
10252  *	@dev: network device
10253  *
10254  *	Determine network driver for device.
10255  */
10256 const char *netdev_drivername(const struct net_device *dev)
10257 {
10258 	const struct device_driver *driver;
10259 	const struct device *parent;
10260 	const char *empty = "";
10261 
10262 	parent = dev->dev.parent;
10263 	if (!parent)
10264 		return empty;
10265 
10266 	driver = parent->driver;
10267 	if (driver && driver->name)
10268 		return driver->name;
10269 	return empty;
10270 }
10271 
10272 static void __netdev_printk(const char *level, const struct net_device *dev,
10273 			    struct va_format *vaf)
10274 {
10275 	if (dev && dev->dev.parent) {
10276 		dev_printk_emit(level[1] - '0',
10277 				dev->dev.parent,
10278 				"%s %s %s%s: %pV",
10279 				dev_driver_string(dev->dev.parent),
10280 				dev_name(dev->dev.parent),
10281 				netdev_name(dev), netdev_reg_state(dev),
10282 				vaf);
10283 	} else if (dev) {
10284 		printk("%s%s%s: %pV",
10285 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10286 	} else {
10287 		printk("%s(NULL net_device): %pV", level, vaf);
10288 	}
10289 }
10290 
10291 void netdev_printk(const char *level, const struct net_device *dev,
10292 		   const char *format, ...)
10293 {
10294 	struct va_format vaf;
10295 	va_list args;
10296 
10297 	va_start(args, format);
10298 
10299 	vaf.fmt = format;
10300 	vaf.va = &args;
10301 
10302 	__netdev_printk(level, dev, &vaf);
10303 
10304 	va_end(args);
10305 }
10306 EXPORT_SYMBOL(netdev_printk);
10307 
10308 #define define_netdev_printk_level(func, level)			\
10309 void func(const struct net_device *dev, const char *fmt, ...)	\
10310 {								\
10311 	struct va_format vaf;					\
10312 	va_list args;						\
10313 								\
10314 	va_start(args, fmt);					\
10315 								\
10316 	vaf.fmt = fmt;						\
10317 	vaf.va = &args;						\
10318 								\
10319 	__netdev_printk(level, dev, &vaf);			\
10320 								\
10321 	va_end(args);						\
10322 }								\
10323 EXPORT_SYMBOL(func);
10324 
10325 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10326 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10327 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10328 define_netdev_printk_level(netdev_err, KERN_ERR);
10329 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10330 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10331 define_netdev_printk_level(netdev_info, KERN_INFO);
10332 
10333 static void __net_exit netdev_exit(struct net *net)
10334 {
10335 	kfree(net->dev_name_head);
10336 	kfree(net->dev_index_head);
10337 	if (net != &init_net)
10338 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10339 }
10340 
10341 static struct pernet_operations __net_initdata netdev_net_ops = {
10342 	.init = netdev_init,
10343 	.exit = netdev_exit,
10344 };
10345 
10346 static void __net_exit default_device_exit(struct net *net)
10347 {
10348 	struct net_device *dev, *aux;
10349 	/*
10350 	 * Push all migratable network devices back to the
10351 	 * initial network namespace
10352 	 */
10353 	rtnl_lock();
10354 	for_each_netdev_safe(net, dev, aux) {
10355 		int err;
10356 		char fb_name[IFNAMSIZ];
10357 
10358 		/* Ignore unmoveable devices (i.e. loopback) */
10359 		if (dev->features & NETIF_F_NETNS_LOCAL)
10360 			continue;
10361 
10362 		/* Leave virtual devices for the generic cleanup */
10363 		if (dev->rtnl_link_ops)
10364 			continue;
10365 
10366 		/* Push remaining network devices to init_net */
10367 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10368 		if (__dev_get_by_name(&init_net, fb_name))
10369 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10370 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10371 		if (err) {
10372 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10373 				 __func__, dev->name, err);
10374 			BUG();
10375 		}
10376 	}
10377 	rtnl_unlock();
10378 }
10379 
10380 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10381 {
10382 	/* Return with the rtnl_lock held when there are no network
10383 	 * devices unregistering in any network namespace in net_list.
10384 	 */
10385 	struct net *net;
10386 	bool unregistering;
10387 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10388 
10389 	add_wait_queue(&netdev_unregistering_wq, &wait);
10390 	for (;;) {
10391 		unregistering = false;
10392 		rtnl_lock();
10393 		list_for_each_entry(net, net_list, exit_list) {
10394 			if (net->dev_unreg_count > 0) {
10395 				unregistering = true;
10396 				break;
10397 			}
10398 		}
10399 		if (!unregistering)
10400 			break;
10401 		__rtnl_unlock();
10402 
10403 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10404 	}
10405 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10406 }
10407 
10408 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10409 {
10410 	/* At exit all network devices most be removed from a network
10411 	 * namespace.  Do this in the reverse order of registration.
10412 	 * Do this across as many network namespaces as possible to
10413 	 * improve batching efficiency.
10414 	 */
10415 	struct net_device *dev;
10416 	struct net *net;
10417 	LIST_HEAD(dev_kill_list);
10418 
10419 	/* To prevent network device cleanup code from dereferencing
10420 	 * loopback devices or network devices that have been freed
10421 	 * wait here for all pending unregistrations to complete,
10422 	 * before unregistring the loopback device and allowing the
10423 	 * network namespace be freed.
10424 	 *
10425 	 * The netdev todo list containing all network devices
10426 	 * unregistrations that happen in default_device_exit_batch
10427 	 * will run in the rtnl_unlock() at the end of
10428 	 * default_device_exit_batch.
10429 	 */
10430 	rtnl_lock_unregistering(net_list);
10431 	list_for_each_entry(net, net_list, exit_list) {
10432 		for_each_netdev_reverse(net, dev) {
10433 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10434 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10435 			else
10436 				unregister_netdevice_queue(dev, &dev_kill_list);
10437 		}
10438 	}
10439 	unregister_netdevice_many(&dev_kill_list);
10440 	rtnl_unlock();
10441 }
10442 
10443 static struct pernet_operations __net_initdata default_device_ops = {
10444 	.exit = default_device_exit,
10445 	.exit_batch = default_device_exit_batch,
10446 };
10447 
10448 /*
10449  *	Initialize the DEV module. At boot time this walks the device list and
10450  *	unhooks any devices that fail to initialise (normally hardware not
10451  *	present) and leaves us with a valid list of present and active devices.
10452  *
10453  */
10454 
10455 /*
10456  *       This is called single threaded during boot, so no need
10457  *       to take the rtnl semaphore.
10458  */
10459 static int __init net_dev_init(void)
10460 {
10461 	int i, rc = -ENOMEM;
10462 
10463 	BUG_ON(!dev_boot_phase);
10464 
10465 	if (dev_proc_init())
10466 		goto out;
10467 
10468 	if (netdev_kobject_init())
10469 		goto out;
10470 
10471 	INIT_LIST_HEAD(&ptype_all);
10472 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10473 		INIT_LIST_HEAD(&ptype_base[i]);
10474 
10475 	INIT_LIST_HEAD(&offload_base);
10476 
10477 	if (register_pernet_subsys(&netdev_net_ops))
10478 		goto out;
10479 
10480 	/*
10481 	 *	Initialise the packet receive queues.
10482 	 */
10483 
10484 	for_each_possible_cpu(i) {
10485 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10486 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10487 
10488 		INIT_WORK(flush, flush_backlog);
10489 
10490 		skb_queue_head_init(&sd->input_pkt_queue);
10491 		skb_queue_head_init(&sd->process_queue);
10492 #ifdef CONFIG_XFRM_OFFLOAD
10493 		skb_queue_head_init(&sd->xfrm_backlog);
10494 #endif
10495 		INIT_LIST_HEAD(&sd->poll_list);
10496 		sd->output_queue_tailp = &sd->output_queue;
10497 #ifdef CONFIG_RPS
10498 		sd->csd.func = rps_trigger_softirq;
10499 		sd->csd.info = sd;
10500 		sd->cpu = i;
10501 #endif
10502 
10503 		init_gro_hash(&sd->backlog);
10504 		sd->backlog.poll = process_backlog;
10505 		sd->backlog.weight = weight_p;
10506 	}
10507 
10508 	dev_boot_phase = 0;
10509 
10510 	/* The loopback device is special if any other network devices
10511 	 * is present in a network namespace the loopback device must
10512 	 * be present. Since we now dynamically allocate and free the
10513 	 * loopback device ensure this invariant is maintained by
10514 	 * keeping the loopback device as the first device on the
10515 	 * list of network devices.  Ensuring the loopback devices
10516 	 * is the first device that appears and the last network device
10517 	 * that disappears.
10518 	 */
10519 	if (register_pernet_device(&loopback_net_ops))
10520 		goto out;
10521 
10522 	if (register_pernet_device(&default_device_ops))
10523 		goto out;
10524 
10525 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10526 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10527 
10528 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10529 				       NULL, dev_cpu_dead);
10530 	WARN_ON(rc < 0);
10531 	rc = 0;
10532 out:
10533 	return rc;
10534 }
10535 
10536 subsys_initcall(net_dev_init);
10537