1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * __dev_get_by_flags - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @if_flags: IFF_* values 1273 * @mask: bitmask of bits in if_flags to check 1274 * 1275 * Search for any interface with the given flags. Returns NULL if a device 1276 * is not found or a pointer to the device. Must be called inside 1277 * rtnl_lock(), and result refcount is unchanged. 1278 */ 1279 1280 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1281 unsigned short mask) 1282 { 1283 struct net_device *dev, *ret; 1284 1285 ASSERT_RTNL(); 1286 1287 ret = NULL; 1288 for_each_netdev(net, dev) { 1289 if (((dev->flags ^ if_flags) & mask) == 0) { 1290 ret = dev; 1291 break; 1292 } 1293 } 1294 return ret; 1295 } 1296 EXPORT_SYMBOL(__dev_get_by_flags); 1297 1298 /** 1299 * dev_valid_name - check if name is okay for network device 1300 * @name: name string 1301 * 1302 * Network device names need to be valid file names to 1303 * allow sysfs to work. We also disallow any kind of 1304 * whitespace. 1305 */ 1306 bool dev_valid_name(const char *name) 1307 { 1308 if (*name == '\0') 1309 return false; 1310 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1311 return false; 1312 if (!strcmp(name, ".") || !strcmp(name, "..")) 1313 return false; 1314 1315 while (*name) { 1316 if (*name == '/' || *name == ':' || isspace(*name)) 1317 return false; 1318 name++; 1319 } 1320 return true; 1321 } 1322 EXPORT_SYMBOL(dev_valid_name); 1323 1324 /** 1325 * __dev_alloc_name - allocate a name for a device 1326 * @net: network namespace to allocate the device name in 1327 * @name: name format string 1328 * @res: result name string 1329 * 1330 * Passed a format string - eg "lt%d" it will try and find a suitable 1331 * id. It scans list of devices to build up a free map, then chooses 1332 * the first empty slot. The caller must hold the dev_base or rtnl lock 1333 * while allocating the name and adding the device in order to avoid 1334 * duplicates. 1335 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1336 * Returns the number of the unit assigned or a negative errno code. 1337 */ 1338 1339 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1340 { 1341 int i = 0; 1342 const char *p; 1343 const int max_netdevices = 8*PAGE_SIZE; 1344 unsigned long *inuse; 1345 struct net_device *d; 1346 char buf[IFNAMSIZ]; 1347 1348 /* Verify the string as this thing may have come from the user. 1349 * There must be one "%d" and no other "%" characters. 1350 */ 1351 p = strchr(name, '%'); 1352 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1353 return -EINVAL; 1354 1355 /* Use one page as a bit array of possible slots */ 1356 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1357 if (!inuse) 1358 return -ENOMEM; 1359 1360 for_each_netdev(net, d) { 1361 struct netdev_name_node *name_node; 1362 1363 netdev_for_each_altname(d, name_node) { 1364 if (!sscanf(name_node->name, name, &i)) 1365 continue; 1366 if (i < 0 || i >= max_netdevices) 1367 continue; 1368 1369 /* avoid cases where sscanf is not exact inverse of printf */ 1370 snprintf(buf, IFNAMSIZ, name, i); 1371 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1372 __set_bit(i, inuse); 1373 } 1374 if (!sscanf(d->name, name, &i)) 1375 continue; 1376 if (i < 0 || i >= max_netdevices) 1377 continue; 1378 1379 /* avoid cases where sscanf is not exact inverse of printf */ 1380 snprintf(buf, IFNAMSIZ, name, i); 1381 if (!strncmp(buf, d->name, IFNAMSIZ)) 1382 __set_bit(i, inuse); 1383 } 1384 1385 i = find_first_zero_bit(inuse, max_netdevices); 1386 bitmap_free(inuse); 1387 if (i == max_netdevices) 1388 return -ENFILE; 1389 1390 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1391 strscpy(buf, name, IFNAMSIZ); 1392 snprintf(res, IFNAMSIZ, buf, i); 1393 return i; 1394 } 1395 1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1398 const char *want_name, char *out_name, 1399 int dup_errno) 1400 { 1401 if (!dev_valid_name(want_name)) 1402 return -EINVAL; 1403 1404 if (strchr(want_name, '%')) 1405 return __dev_alloc_name(net, want_name, out_name); 1406 1407 if (netdev_name_in_use(net, want_name)) 1408 return -dup_errno; 1409 if (out_name != want_name) 1410 strscpy(out_name, want_name, IFNAMSIZ); 1411 return 0; 1412 } 1413 1414 /** 1415 * dev_alloc_name - allocate a name for a device 1416 * @dev: device 1417 * @name: name format string 1418 * 1419 * Passed a format string - eg "lt%d" it will try and find a suitable 1420 * id. It scans list of devices to build up a free map, then chooses 1421 * the first empty slot. The caller must hold the dev_base or rtnl lock 1422 * while allocating the name and adding the device in order to avoid 1423 * duplicates. 1424 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1425 * Returns the number of the unit assigned or a negative errno code. 1426 */ 1427 1428 int dev_alloc_name(struct net_device *dev, const char *name) 1429 { 1430 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1431 } 1432 EXPORT_SYMBOL(dev_alloc_name); 1433 1434 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1435 const char *name) 1436 { 1437 int ret; 1438 1439 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1440 return ret < 0 ? ret : 0; 1441 } 1442 1443 int netif_change_name(struct net_device *dev, const char *newname) 1444 { 1445 struct net *net = dev_net(dev); 1446 unsigned char old_assign_type; 1447 char oldname[IFNAMSIZ]; 1448 int err = 0; 1449 int ret; 1450 1451 ASSERT_RTNL_NET(net); 1452 1453 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1454 return 0; 1455 1456 memcpy(oldname, dev->name, IFNAMSIZ); 1457 1458 write_seqlock_bh(&netdev_rename_lock); 1459 err = dev_get_valid_name(net, dev, newname); 1460 write_sequnlock_bh(&netdev_rename_lock); 1461 1462 if (err < 0) 1463 return err; 1464 1465 if (oldname[0] && !strchr(oldname, '%')) 1466 netdev_info(dev, "renamed from %s%s\n", oldname, 1467 dev->flags & IFF_UP ? " (while UP)" : ""); 1468 1469 old_assign_type = dev->name_assign_type; 1470 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1471 1472 rollback: 1473 ret = device_rename(&dev->dev, dev->name); 1474 if (ret) { 1475 write_seqlock_bh(&netdev_rename_lock); 1476 memcpy(dev->name, oldname, IFNAMSIZ); 1477 write_sequnlock_bh(&netdev_rename_lock); 1478 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1479 return ret; 1480 } 1481 1482 netdev_adjacent_rename_links(dev, oldname); 1483 1484 netdev_name_node_del(dev->name_node); 1485 1486 synchronize_net(); 1487 1488 netdev_name_node_add(net, dev->name_node); 1489 1490 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1491 ret = notifier_to_errno(ret); 1492 1493 if (ret) { 1494 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1495 if (err >= 0) { 1496 err = ret; 1497 write_seqlock_bh(&netdev_rename_lock); 1498 memcpy(dev->name, oldname, IFNAMSIZ); 1499 write_sequnlock_bh(&netdev_rename_lock); 1500 memcpy(oldname, newname, IFNAMSIZ); 1501 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1502 old_assign_type = NET_NAME_RENAMED; 1503 goto rollback; 1504 } else { 1505 netdev_err(dev, "name change rollback failed: %d\n", 1506 ret); 1507 } 1508 } 1509 1510 return err; 1511 } 1512 1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1514 { 1515 struct dev_ifalias *new_alias = NULL; 1516 1517 if (len >= IFALIASZ) 1518 return -EINVAL; 1519 1520 if (len) { 1521 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1522 if (!new_alias) 1523 return -ENOMEM; 1524 1525 memcpy(new_alias->ifalias, alias, len); 1526 new_alias->ifalias[len] = 0; 1527 } 1528 1529 mutex_lock(&ifalias_mutex); 1530 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1531 mutex_is_locked(&ifalias_mutex)); 1532 mutex_unlock(&ifalias_mutex); 1533 1534 if (new_alias) 1535 kfree_rcu(new_alias, rcuhead); 1536 1537 return len; 1538 } 1539 1540 /** 1541 * dev_get_alias - get ifalias of a device 1542 * @dev: device 1543 * @name: buffer to store name of ifalias 1544 * @len: size of buffer 1545 * 1546 * get ifalias for a device. Caller must make sure dev cannot go 1547 * away, e.g. rcu read lock or own a reference count to device. 1548 */ 1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1550 { 1551 const struct dev_ifalias *alias; 1552 int ret = 0; 1553 1554 rcu_read_lock(); 1555 alias = rcu_dereference(dev->ifalias); 1556 if (alias) 1557 ret = snprintf(name, len, "%s", alias->ifalias); 1558 rcu_read_unlock(); 1559 1560 return ret; 1561 } 1562 1563 /** 1564 * netdev_features_change - device changes features 1565 * @dev: device to cause notification 1566 * 1567 * Called to indicate a device has changed features. 1568 */ 1569 void netdev_features_change(struct net_device *dev) 1570 { 1571 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1572 } 1573 EXPORT_SYMBOL(netdev_features_change); 1574 1575 void netif_state_change(struct net_device *dev) 1576 { 1577 netdev_ops_assert_locked_or_invisible(dev); 1578 1579 if (dev->flags & IFF_UP) { 1580 struct netdev_notifier_change_info change_info = { 1581 .info.dev = dev, 1582 }; 1583 1584 call_netdevice_notifiers_info(NETDEV_CHANGE, 1585 &change_info.info); 1586 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1587 } 1588 } 1589 1590 /** 1591 * __netdev_notify_peers - notify network peers about existence of @dev, 1592 * to be called when rtnl lock is already held. 1593 * @dev: network device 1594 * 1595 * Generate traffic such that interested network peers are aware of 1596 * @dev, such as by generating a gratuitous ARP. This may be used when 1597 * a device wants to inform the rest of the network about some sort of 1598 * reconfiguration such as a failover event or virtual machine 1599 * migration. 1600 */ 1601 void __netdev_notify_peers(struct net_device *dev) 1602 { 1603 ASSERT_RTNL(); 1604 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1605 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1606 } 1607 EXPORT_SYMBOL(__netdev_notify_peers); 1608 1609 /** 1610 * netdev_notify_peers - notify network peers about existence of @dev 1611 * @dev: network device 1612 * 1613 * Generate traffic such that interested network peers are aware of 1614 * @dev, such as by generating a gratuitous ARP. This may be used when 1615 * a device wants to inform the rest of the network about some sort of 1616 * reconfiguration such as a failover event or virtual machine 1617 * migration. 1618 */ 1619 void netdev_notify_peers(struct net_device *dev) 1620 { 1621 rtnl_lock(); 1622 __netdev_notify_peers(dev); 1623 rtnl_unlock(); 1624 } 1625 EXPORT_SYMBOL(netdev_notify_peers); 1626 1627 static int napi_threaded_poll(void *data); 1628 1629 static int napi_kthread_create(struct napi_struct *n) 1630 { 1631 int err = 0; 1632 1633 /* Create and wake up the kthread once to put it in 1634 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1635 * warning and work with loadavg. 1636 */ 1637 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1638 n->dev->name, n->napi_id); 1639 if (IS_ERR(n->thread)) { 1640 err = PTR_ERR(n->thread); 1641 pr_err("kthread_run failed with err %d\n", err); 1642 n->thread = NULL; 1643 } 1644 1645 return err; 1646 } 1647 1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1649 { 1650 const struct net_device_ops *ops = dev->netdev_ops; 1651 int ret; 1652 1653 ASSERT_RTNL(); 1654 dev_addr_check(dev); 1655 1656 if (!netif_device_present(dev)) { 1657 /* may be detached because parent is runtime-suspended */ 1658 if (dev->dev.parent) 1659 pm_runtime_resume(dev->dev.parent); 1660 if (!netif_device_present(dev)) 1661 return -ENODEV; 1662 } 1663 1664 /* Block netpoll from trying to do any rx path servicing. 1665 * If we don't do this there is a chance ndo_poll_controller 1666 * or ndo_poll may be running while we open the device 1667 */ 1668 netpoll_poll_disable(dev); 1669 1670 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1671 ret = notifier_to_errno(ret); 1672 if (ret) 1673 return ret; 1674 1675 set_bit(__LINK_STATE_START, &dev->state); 1676 1677 netdev_ops_assert_locked(dev); 1678 1679 if (ops->ndo_validate_addr) 1680 ret = ops->ndo_validate_addr(dev); 1681 1682 if (!ret && ops->ndo_open) 1683 ret = ops->ndo_open(dev); 1684 1685 netpoll_poll_enable(dev); 1686 1687 if (ret) 1688 clear_bit(__LINK_STATE_START, &dev->state); 1689 else { 1690 netif_set_up(dev, true); 1691 dev_set_rx_mode(dev); 1692 dev_activate(dev); 1693 add_device_randomness(dev->dev_addr, dev->addr_len); 1694 } 1695 1696 return ret; 1697 } 1698 1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1700 { 1701 int ret; 1702 1703 if (dev->flags & IFF_UP) 1704 return 0; 1705 1706 ret = __dev_open(dev, extack); 1707 if (ret < 0) 1708 return ret; 1709 1710 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1711 call_netdevice_notifiers(NETDEV_UP, dev); 1712 1713 return ret; 1714 } 1715 1716 static void __dev_close_many(struct list_head *head) 1717 { 1718 struct net_device *dev; 1719 1720 ASSERT_RTNL(); 1721 might_sleep(); 1722 1723 list_for_each_entry(dev, head, close_list) { 1724 /* Temporarily disable netpoll until the interface is down */ 1725 netpoll_poll_disable(dev); 1726 1727 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1728 1729 clear_bit(__LINK_STATE_START, &dev->state); 1730 1731 /* Synchronize to scheduled poll. We cannot touch poll list, it 1732 * can be even on different cpu. So just clear netif_running(). 1733 * 1734 * dev->stop() will invoke napi_disable() on all of it's 1735 * napi_struct instances on this device. 1736 */ 1737 smp_mb__after_atomic(); /* Commit netif_running(). */ 1738 } 1739 1740 dev_deactivate_many(head); 1741 1742 list_for_each_entry(dev, head, close_list) { 1743 const struct net_device_ops *ops = dev->netdev_ops; 1744 1745 /* 1746 * Call the device specific close. This cannot fail. 1747 * Only if device is UP 1748 * 1749 * We allow it to be called even after a DETACH hot-plug 1750 * event. 1751 */ 1752 1753 netdev_ops_assert_locked(dev); 1754 1755 if (ops->ndo_stop) 1756 ops->ndo_stop(dev); 1757 1758 netif_set_up(dev, false); 1759 netpoll_poll_enable(dev); 1760 } 1761 } 1762 1763 static void __dev_close(struct net_device *dev) 1764 { 1765 LIST_HEAD(single); 1766 1767 list_add(&dev->close_list, &single); 1768 __dev_close_many(&single); 1769 list_del(&single); 1770 } 1771 1772 void dev_close_many(struct list_head *head, bool unlink) 1773 { 1774 struct net_device *dev, *tmp; 1775 1776 /* Remove the devices that don't need to be closed */ 1777 list_for_each_entry_safe(dev, tmp, head, close_list) 1778 if (!(dev->flags & IFF_UP)) 1779 list_del_init(&dev->close_list); 1780 1781 __dev_close_many(head); 1782 1783 list_for_each_entry_safe(dev, tmp, head, close_list) { 1784 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1785 call_netdevice_notifiers(NETDEV_DOWN, dev); 1786 if (unlink) 1787 list_del_init(&dev->close_list); 1788 } 1789 } 1790 EXPORT_SYMBOL(dev_close_many); 1791 1792 void netif_close(struct net_device *dev) 1793 { 1794 if (dev->flags & IFF_UP) { 1795 LIST_HEAD(single); 1796 1797 list_add(&dev->close_list, &single); 1798 dev_close_many(&single, true); 1799 list_del(&single); 1800 } 1801 } 1802 EXPORT_SYMBOL(netif_close); 1803 1804 void netif_disable_lro(struct net_device *dev) 1805 { 1806 struct net_device *lower_dev; 1807 struct list_head *iter; 1808 1809 dev->wanted_features &= ~NETIF_F_LRO; 1810 netdev_update_features(dev); 1811 1812 if (unlikely(dev->features & NETIF_F_LRO)) 1813 netdev_WARN(dev, "failed to disable LRO!\n"); 1814 1815 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1816 netdev_lock_ops(lower_dev); 1817 netif_disable_lro(lower_dev); 1818 netdev_unlock_ops(lower_dev); 1819 } 1820 } 1821 EXPORT_IPV6_MOD(netif_disable_lro); 1822 1823 /** 1824 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1825 * @dev: device 1826 * 1827 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1828 * called under RTNL. This is needed if Generic XDP is installed on 1829 * the device. 1830 */ 1831 static void dev_disable_gro_hw(struct net_device *dev) 1832 { 1833 dev->wanted_features &= ~NETIF_F_GRO_HW; 1834 netdev_update_features(dev); 1835 1836 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1837 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1838 } 1839 1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1841 { 1842 #define N(val) \ 1843 case NETDEV_##val: \ 1844 return "NETDEV_" __stringify(val); 1845 switch (cmd) { 1846 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1847 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1848 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1849 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1850 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1851 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1852 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1853 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1854 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1855 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1856 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1857 N(XDP_FEAT_CHANGE) 1858 } 1859 #undef N 1860 return "UNKNOWN_NETDEV_EVENT"; 1861 } 1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1863 1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1865 struct net_device *dev) 1866 { 1867 struct netdev_notifier_info info = { 1868 .dev = dev, 1869 }; 1870 1871 return nb->notifier_call(nb, val, &info); 1872 } 1873 1874 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1875 struct net_device *dev) 1876 { 1877 int err; 1878 1879 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1880 err = notifier_to_errno(err); 1881 if (err) 1882 return err; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return 0; 1886 1887 call_netdevice_notifier(nb, NETDEV_UP, dev); 1888 return 0; 1889 } 1890 1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1892 struct net_device *dev) 1893 { 1894 if (dev->flags & IFF_UP) { 1895 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1896 dev); 1897 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1898 } 1899 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1900 } 1901 1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1903 struct net *net) 1904 { 1905 struct net_device *dev; 1906 int err; 1907 1908 for_each_netdev(net, dev) { 1909 netdev_lock_ops(dev); 1910 err = call_netdevice_register_notifiers(nb, dev); 1911 netdev_unlock_ops(dev); 1912 if (err) 1913 goto rollback; 1914 } 1915 return 0; 1916 1917 rollback: 1918 for_each_netdev_continue_reverse(net, dev) 1919 call_netdevice_unregister_notifiers(nb, dev); 1920 return err; 1921 } 1922 1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1924 struct net *net) 1925 { 1926 struct net_device *dev; 1927 1928 for_each_netdev(net, dev) 1929 call_netdevice_unregister_notifiers(nb, dev); 1930 } 1931 1932 static int dev_boot_phase = 1; 1933 1934 /** 1935 * register_netdevice_notifier - register a network notifier block 1936 * @nb: notifier 1937 * 1938 * Register a notifier to be called when network device events occur. 1939 * The notifier passed is linked into the kernel structures and must 1940 * not be reused until it has been unregistered. A negative errno code 1941 * is returned on a failure. 1942 * 1943 * When registered all registration and up events are replayed 1944 * to the new notifier to allow device to have a race free 1945 * view of the network device list. 1946 */ 1947 1948 int register_netdevice_notifier(struct notifier_block *nb) 1949 { 1950 struct net *net; 1951 int err; 1952 1953 /* Close race with setup_net() and cleanup_net() */ 1954 down_write(&pernet_ops_rwsem); 1955 1956 /* When RTNL is removed, we need protection for netdev_chain. */ 1957 rtnl_lock(); 1958 1959 err = raw_notifier_chain_register(&netdev_chain, nb); 1960 if (err) 1961 goto unlock; 1962 if (dev_boot_phase) 1963 goto unlock; 1964 for_each_net(net) { 1965 __rtnl_net_lock(net); 1966 err = call_netdevice_register_net_notifiers(nb, net); 1967 __rtnl_net_unlock(net); 1968 if (err) 1969 goto rollback; 1970 } 1971 1972 unlock: 1973 rtnl_unlock(); 1974 up_write(&pernet_ops_rwsem); 1975 return err; 1976 1977 rollback: 1978 for_each_net_continue_reverse(net) { 1979 __rtnl_net_lock(net); 1980 call_netdevice_unregister_net_notifiers(nb, net); 1981 __rtnl_net_unlock(net); 1982 } 1983 1984 raw_notifier_chain_unregister(&netdev_chain, nb); 1985 goto unlock; 1986 } 1987 EXPORT_SYMBOL(register_netdevice_notifier); 1988 1989 /** 1990 * unregister_netdevice_notifier - unregister a network notifier block 1991 * @nb: notifier 1992 * 1993 * Unregister a notifier previously registered by 1994 * register_netdevice_notifier(). The notifier is unlinked into the 1995 * kernel structures and may then be reused. A negative errno code 1996 * is returned on a failure. 1997 * 1998 * After unregistering unregister and down device events are synthesized 1999 * for all devices on the device list to the removed notifier to remove 2000 * the need for special case cleanup code. 2001 */ 2002 2003 int unregister_netdevice_notifier(struct notifier_block *nb) 2004 { 2005 struct net *net; 2006 int err; 2007 2008 /* Close race with setup_net() and cleanup_net() */ 2009 down_write(&pernet_ops_rwsem); 2010 rtnl_lock(); 2011 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2012 if (err) 2013 goto unlock; 2014 2015 for_each_net(net) { 2016 __rtnl_net_lock(net); 2017 call_netdevice_unregister_net_notifiers(nb, net); 2018 __rtnl_net_unlock(net); 2019 } 2020 2021 unlock: 2022 rtnl_unlock(); 2023 up_write(&pernet_ops_rwsem); 2024 return err; 2025 } 2026 EXPORT_SYMBOL(unregister_netdevice_notifier); 2027 2028 static int __register_netdevice_notifier_net(struct net *net, 2029 struct notifier_block *nb, 2030 bool ignore_call_fail) 2031 { 2032 int err; 2033 2034 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2035 if (err) 2036 return err; 2037 if (dev_boot_phase) 2038 return 0; 2039 2040 err = call_netdevice_register_net_notifiers(nb, net); 2041 if (err && !ignore_call_fail) 2042 goto chain_unregister; 2043 2044 return 0; 2045 2046 chain_unregister: 2047 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2048 return err; 2049 } 2050 2051 static int __unregister_netdevice_notifier_net(struct net *net, 2052 struct notifier_block *nb) 2053 { 2054 int err; 2055 2056 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2057 if (err) 2058 return err; 2059 2060 call_netdevice_unregister_net_notifiers(nb, net); 2061 return 0; 2062 } 2063 2064 /** 2065 * register_netdevice_notifier_net - register a per-netns network notifier block 2066 * @net: network namespace 2067 * @nb: notifier 2068 * 2069 * Register a notifier to be called when network device events occur. 2070 * The notifier passed is linked into the kernel structures and must 2071 * not be reused until it has been unregistered. A negative errno code 2072 * is returned on a failure. 2073 * 2074 * When registered all registration and up events are replayed 2075 * to the new notifier to allow device to have a race free 2076 * view of the network device list. 2077 */ 2078 2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2080 { 2081 int err; 2082 2083 rtnl_net_lock(net); 2084 err = __register_netdevice_notifier_net(net, nb, false); 2085 rtnl_net_unlock(net); 2086 2087 return err; 2088 } 2089 EXPORT_SYMBOL(register_netdevice_notifier_net); 2090 2091 /** 2092 * unregister_netdevice_notifier_net - unregister a per-netns 2093 * network notifier block 2094 * @net: network namespace 2095 * @nb: notifier 2096 * 2097 * Unregister a notifier previously registered by 2098 * register_netdevice_notifier_net(). The notifier is unlinked from the 2099 * kernel structures and may then be reused. A negative errno code 2100 * is returned on a failure. 2101 * 2102 * After unregistering unregister and down device events are synthesized 2103 * for all devices on the device list to the removed notifier to remove 2104 * the need for special case cleanup code. 2105 */ 2106 2107 int unregister_netdevice_notifier_net(struct net *net, 2108 struct notifier_block *nb) 2109 { 2110 int err; 2111 2112 rtnl_net_lock(net); 2113 err = __unregister_netdevice_notifier_net(net, nb); 2114 rtnl_net_unlock(net); 2115 2116 return err; 2117 } 2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2119 2120 static void __move_netdevice_notifier_net(struct net *src_net, 2121 struct net *dst_net, 2122 struct notifier_block *nb) 2123 { 2124 __unregister_netdevice_notifier_net(src_net, nb); 2125 __register_netdevice_notifier_net(dst_net, nb, true); 2126 } 2127 2128 static void rtnl_net_dev_lock(struct net_device *dev) 2129 { 2130 bool again; 2131 2132 do { 2133 struct net *net; 2134 2135 again = false; 2136 2137 /* netns might be being dismantled. */ 2138 rcu_read_lock(); 2139 net = dev_net_rcu(dev); 2140 net_passive_inc(net); 2141 rcu_read_unlock(); 2142 2143 rtnl_net_lock(net); 2144 2145 #ifdef CONFIG_NET_NS 2146 /* dev might have been moved to another netns. */ 2147 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2148 rtnl_net_unlock(net); 2149 net_passive_dec(net); 2150 again = true; 2151 } 2152 #endif 2153 } while (again); 2154 } 2155 2156 static void rtnl_net_dev_unlock(struct net_device *dev) 2157 { 2158 struct net *net = dev_net(dev); 2159 2160 rtnl_net_unlock(net); 2161 net_passive_dec(net); 2162 } 2163 2164 int register_netdevice_notifier_dev_net(struct net_device *dev, 2165 struct notifier_block *nb, 2166 struct netdev_net_notifier *nn) 2167 { 2168 int err; 2169 2170 rtnl_net_dev_lock(dev); 2171 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2172 if (!err) { 2173 nn->nb = nb; 2174 list_add(&nn->list, &dev->net_notifier_list); 2175 } 2176 rtnl_net_dev_unlock(dev); 2177 2178 return err; 2179 } 2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2181 2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2183 struct notifier_block *nb, 2184 struct netdev_net_notifier *nn) 2185 { 2186 int err; 2187 2188 rtnl_net_dev_lock(dev); 2189 list_del(&nn->list); 2190 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2191 rtnl_net_dev_unlock(dev); 2192 2193 return err; 2194 } 2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2196 2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2198 struct net *net) 2199 { 2200 struct netdev_net_notifier *nn; 2201 2202 list_for_each_entry(nn, &dev->net_notifier_list, list) 2203 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2204 } 2205 2206 /** 2207 * call_netdevice_notifiers_info - call all network notifier blocks 2208 * @val: value passed unmodified to notifier function 2209 * @info: notifier information data 2210 * 2211 * Call all network notifier blocks. Parameters and return value 2212 * are as for raw_notifier_call_chain(). 2213 */ 2214 2215 int call_netdevice_notifiers_info(unsigned long val, 2216 struct netdev_notifier_info *info) 2217 { 2218 struct net *net = dev_net(info->dev); 2219 int ret; 2220 2221 ASSERT_RTNL(); 2222 2223 /* Run per-netns notifier block chain first, then run the global one. 2224 * Hopefully, one day, the global one is going to be removed after 2225 * all notifier block registrators get converted to be per-netns. 2226 */ 2227 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2228 if (ret & NOTIFY_STOP_MASK) 2229 return ret; 2230 return raw_notifier_call_chain(&netdev_chain, val, info); 2231 } 2232 2233 /** 2234 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2235 * for and rollback on error 2236 * @val_up: value passed unmodified to notifier function 2237 * @val_down: value passed unmodified to the notifier function when 2238 * recovering from an error on @val_up 2239 * @info: notifier information data 2240 * 2241 * Call all per-netns network notifier blocks, but not notifier blocks on 2242 * the global notifier chain. Parameters and return value are as for 2243 * raw_notifier_call_chain_robust(). 2244 */ 2245 2246 static int 2247 call_netdevice_notifiers_info_robust(unsigned long val_up, 2248 unsigned long val_down, 2249 struct netdev_notifier_info *info) 2250 { 2251 struct net *net = dev_net(info->dev); 2252 2253 ASSERT_RTNL(); 2254 2255 return raw_notifier_call_chain_robust(&net->netdev_chain, 2256 val_up, val_down, info); 2257 } 2258 2259 static int call_netdevice_notifiers_extack(unsigned long val, 2260 struct net_device *dev, 2261 struct netlink_ext_ack *extack) 2262 { 2263 struct netdev_notifier_info info = { 2264 .dev = dev, 2265 .extack = extack, 2266 }; 2267 2268 return call_netdevice_notifiers_info(val, &info); 2269 } 2270 2271 /** 2272 * call_netdevice_notifiers - call all network notifier blocks 2273 * @val: value passed unmodified to notifier function 2274 * @dev: net_device pointer passed unmodified to notifier function 2275 * 2276 * Call all network notifier blocks. Parameters and return value 2277 * are as for raw_notifier_call_chain(). 2278 */ 2279 2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2281 { 2282 return call_netdevice_notifiers_extack(val, dev, NULL); 2283 } 2284 EXPORT_SYMBOL(call_netdevice_notifiers); 2285 2286 /** 2287 * call_netdevice_notifiers_mtu - call all network notifier blocks 2288 * @val: value passed unmodified to notifier function 2289 * @dev: net_device pointer passed unmodified to notifier function 2290 * @arg: additional u32 argument passed to the notifier function 2291 * 2292 * Call all network notifier blocks. Parameters and return value 2293 * are as for raw_notifier_call_chain(). 2294 */ 2295 static int call_netdevice_notifiers_mtu(unsigned long val, 2296 struct net_device *dev, u32 arg) 2297 { 2298 struct netdev_notifier_info_ext info = { 2299 .info.dev = dev, 2300 .ext.mtu = arg, 2301 }; 2302 2303 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2304 2305 return call_netdevice_notifiers_info(val, &info.info); 2306 } 2307 2308 #ifdef CONFIG_NET_INGRESS 2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2310 2311 void net_inc_ingress_queue(void) 2312 { 2313 static_branch_inc(&ingress_needed_key); 2314 } 2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2316 2317 void net_dec_ingress_queue(void) 2318 { 2319 static_branch_dec(&ingress_needed_key); 2320 } 2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2322 #endif 2323 2324 #ifdef CONFIG_NET_EGRESS 2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2326 2327 void net_inc_egress_queue(void) 2328 { 2329 static_branch_inc(&egress_needed_key); 2330 } 2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2332 2333 void net_dec_egress_queue(void) 2334 { 2335 static_branch_dec(&egress_needed_key); 2336 } 2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2338 #endif 2339 2340 #ifdef CONFIG_NET_CLS_ACT 2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2342 EXPORT_SYMBOL(tcf_sw_enabled_key); 2343 #endif 2344 2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2346 EXPORT_SYMBOL(netstamp_needed_key); 2347 #ifdef CONFIG_JUMP_LABEL 2348 static atomic_t netstamp_needed_deferred; 2349 static atomic_t netstamp_wanted; 2350 static void netstamp_clear(struct work_struct *work) 2351 { 2352 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2353 int wanted; 2354 2355 wanted = atomic_add_return(deferred, &netstamp_wanted); 2356 if (wanted > 0) 2357 static_branch_enable(&netstamp_needed_key); 2358 else 2359 static_branch_disable(&netstamp_needed_key); 2360 } 2361 static DECLARE_WORK(netstamp_work, netstamp_clear); 2362 #endif 2363 2364 void net_enable_timestamp(void) 2365 { 2366 #ifdef CONFIG_JUMP_LABEL 2367 int wanted = atomic_read(&netstamp_wanted); 2368 2369 while (wanted > 0) { 2370 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2371 return; 2372 } 2373 atomic_inc(&netstamp_needed_deferred); 2374 schedule_work(&netstamp_work); 2375 #else 2376 static_branch_inc(&netstamp_needed_key); 2377 #endif 2378 } 2379 EXPORT_SYMBOL(net_enable_timestamp); 2380 2381 void net_disable_timestamp(void) 2382 { 2383 #ifdef CONFIG_JUMP_LABEL 2384 int wanted = atomic_read(&netstamp_wanted); 2385 2386 while (wanted > 1) { 2387 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2388 return; 2389 } 2390 atomic_dec(&netstamp_needed_deferred); 2391 schedule_work(&netstamp_work); 2392 #else 2393 static_branch_dec(&netstamp_needed_key); 2394 #endif 2395 } 2396 EXPORT_SYMBOL(net_disable_timestamp); 2397 2398 static inline void net_timestamp_set(struct sk_buff *skb) 2399 { 2400 skb->tstamp = 0; 2401 skb->tstamp_type = SKB_CLOCK_REALTIME; 2402 if (static_branch_unlikely(&netstamp_needed_key)) 2403 skb->tstamp = ktime_get_real(); 2404 } 2405 2406 #define net_timestamp_check(COND, SKB) \ 2407 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2408 if ((COND) && !(SKB)->tstamp) \ 2409 (SKB)->tstamp = ktime_get_real(); \ 2410 } \ 2411 2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2413 { 2414 return __is_skb_forwardable(dev, skb, true); 2415 } 2416 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2417 2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2419 bool check_mtu) 2420 { 2421 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2422 2423 if (likely(!ret)) { 2424 skb->protocol = eth_type_trans(skb, dev); 2425 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2426 } 2427 2428 return ret; 2429 } 2430 2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2432 { 2433 return __dev_forward_skb2(dev, skb, true); 2434 } 2435 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2436 2437 /** 2438 * dev_forward_skb - loopback an skb to another netif 2439 * 2440 * @dev: destination network device 2441 * @skb: buffer to forward 2442 * 2443 * return values: 2444 * NET_RX_SUCCESS (no congestion) 2445 * NET_RX_DROP (packet was dropped, but freed) 2446 * 2447 * dev_forward_skb can be used for injecting an skb from the 2448 * start_xmit function of one device into the receive queue 2449 * of another device. 2450 * 2451 * The receiving device may be in another namespace, so 2452 * we have to clear all information in the skb that could 2453 * impact namespace isolation. 2454 */ 2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2456 { 2457 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2458 } 2459 EXPORT_SYMBOL_GPL(dev_forward_skb); 2460 2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2462 { 2463 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2464 } 2465 2466 static inline int deliver_skb(struct sk_buff *skb, 2467 struct packet_type *pt_prev, 2468 struct net_device *orig_dev) 2469 { 2470 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2471 return -ENOMEM; 2472 refcount_inc(&skb->users); 2473 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2474 } 2475 2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2477 struct packet_type **pt, 2478 struct net_device *orig_dev, 2479 __be16 type, 2480 struct list_head *ptype_list) 2481 { 2482 struct packet_type *ptype, *pt_prev = *pt; 2483 2484 list_for_each_entry_rcu(ptype, ptype_list, list) { 2485 if (ptype->type != type) 2486 continue; 2487 if (pt_prev) 2488 deliver_skb(skb, pt_prev, orig_dev); 2489 pt_prev = ptype; 2490 } 2491 *pt = pt_prev; 2492 } 2493 2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2495 { 2496 if (!ptype->af_packet_priv || !skb->sk) 2497 return false; 2498 2499 if (ptype->id_match) 2500 return ptype->id_match(ptype, skb->sk); 2501 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2502 return true; 2503 2504 return false; 2505 } 2506 2507 /** 2508 * dev_nit_active_rcu - return true if any network interface taps are in use 2509 * 2510 * The caller must hold the RCU lock 2511 * 2512 * @dev: network device to check for the presence of taps 2513 */ 2514 bool dev_nit_active_rcu(const struct net_device *dev) 2515 { 2516 /* Callers may hold either RCU or RCU BH lock */ 2517 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2518 2519 return !list_empty(&dev_net(dev)->ptype_all) || 2520 !list_empty(&dev->ptype_all); 2521 } 2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2523 2524 /* 2525 * Support routine. Sends outgoing frames to any network 2526 * taps currently in use. 2527 */ 2528 2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2530 { 2531 struct packet_type *ptype, *pt_prev = NULL; 2532 struct list_head *ptype_list; 2533 struct sk_buff *skb2 = NULL; 2534 2535 rcu_read_lock(); 2536 ptype_list = &dev_net_rcu(dev)->ptype_all; 2537 again: 2538 list_for_each_entry_rcu(ptype, ptype_list, list) { 2539 if (READ_ONCE(ptype->ignore_outgoing)) 2540 continue; 2541 2542 /* Never send packets back to the socket 2543 * they originated from - MvS (miquels@drinkel.ow.org) 2544 */ 2545 if (skb_loop_sk(ptype, skb)) 2546 continue; 2547 2548 if (pt_prev) { 2549 deliver_skb(skb2, pt_prev, skb->dev); 2550 pt_prev = ptype; 2551 continue; 2552 } 2553 2554 /* need to clone skb, done only once */ 2555 skb2 = skb_clone(skb, GFP_ATOMIC); 2556 if (!skb2) 2557 goto out_unlock; 2558 2559 net_timestamp_set(skb2); 2560 2561 /* skb->nh should be correctly 2562 * set by sender, so that the second statement is 2563 * just protection against buggy protocols. 2564 */ 2565 skb_reset_mac_header(skb2); 2566 2567 if (skb_network_header(skb2) < skb2->data || 2568 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2569 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2570 ntohs(skb2->protocol), 2571 dev->name); 2572 skb_reset_network_header(skb2); 2573 } 2574 2575 skb2->transport_header = skb2->network_header; 2576 skb2->pkt_type = PACKET_OUTGOING; 2577 pt_prev = ptype; 2578 } 2579 2580 if (ptype_list != &dev->ptype_all) { 2581 ptype_list = &dev->ptype_all; 2582 goto again; 2583 } 2584 out_unlock: 2585 if (pt_prev) { 2586 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2587 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2588 else 2589 kfree_skb(skb2); 2590 } 2591 rcu_read_unlock(); 2592 } 2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2594 2595 /** 2596 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2597 * @dev: Network device 2598 * @txq: number of queues available 2599 * 2600 * If real_num_tx_queues is changed the tc mappings may no longer be 2601 * valid. To resolve this verify the tc mapping remains valid and if 2602 * not NULL the mapping. With no priorities mapping to this 2603 * offset/count pair it will no longer be used. In the worst case TC0 2604 * is invalid nothing can be done so disable priority mappings. If is 2605 * expected that drivers will fix this mapping if they can before 2606 * calling netif_set_real_num_tx_queues. 2607 */ 2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2609 { 2610 int i; 2611 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2612 2613 /* If TC0 is invalidated disable TC mapping */ 2614 if (tc->offset + tc->count > txq) { 2615 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2616 dev->num_tc = 0; 2617 return; 2618 } 2619 2620 /* Invalidated prio to tc mappings set to TC0 */ 2621 for (i = 1; i < TC_BITMASK + 1; i++) { 2622 int q = netdev_get_prio_tc_map(dev, i); 2623 2624 tc = &dev->tc_to_txq[q]; 2625 if (tc->offset + tc->count > txq) { 2626 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2627 i, q); 2628 netdev_set_prio_tc_map(dev, i, 0); 2629 } 2630 } 2631 } 2632 2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2634 { 2635 if (dev->num_tc) { 2636 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2637 int i; 2638 2639 /* walk through the TCs and see if it falls into any of them */ 2640 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2641 if ((txq - tc->offset) < tc->count) 2642 return i; 2643 } 2644 2645 /* didn't find it, just return -1 to indicate no match */ 2646 return -1; 2647 } 2648 2649 return 0; 2650 } 2651 EXPORT_SYMBOL(netdev_txq_to_tc); 2652 2653 #ifdef CONFIG_XPS 2654 static struct static_key xps_needed __read_mostly; 2655 static struct static_key xps_rxqs_needed __read_mostly; 2656 static DEFINE_MUTEX(xps_map_mutex); 2657 #define xmap_dereference(P) \ 2658 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2659 2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2661 struct xps_dev_maps *old_maps, int tci, u16 index) 2662 { 2663 struct xps_map *map = NULL; 2664 int pos; 2665 2666 map = xmap_dereference(dev_maps->attr_map[tci]); 2667 if (!map) 2668 return false; 2669 2670 for (pos = map->len; pos--;) { 2671 if (map->queues[pos] != index) 2672 continue; 2673 2674 if (map->len > 1) { 2675 map->queues[pos] = map->queues[--map->len]; 2676 break; 2677 } 2678 2679 if (old_maps) 2680 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2681 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2682 kfree_rcu(map, rcu); 2683 return false; 2684 } 2685 2686 return true; 2687 } 2688 2689 static bool remove_xps_queue_cpu(struct net_device *dev, 2690 struct xps_dev_maps *dev_maps, 2691 int cpu, u16 offset, u16 count) 2692 { 2693 int num_tc = dev_maps->num_tc; 2694 bool active = false; 2695 int tci; 2696 2697 for (tci = cpu * num_tc; num_tc--; tci++) { 2698 int i, j; 2699 2700 for (i = count, j = offset; i--; j++) { 2701 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2702 break; 2703 } 2704 2705 active |= i < 0; 2706 } 2707 2708 return active; 2709 } 2710 2711 static void reset_xps_maps(struct net_device *dev, 2712 struct xps_dev_maps *dev_maps, 2713 enum xps_map_type type) 2714 { 2715 static_key_slow_dec_cpuslocked(&xps_needed); 2716 if (type == XPS_RXQS) 2717 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2718 2719 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2720 2721 kfree_rcu(dev_maps, rcu); 2722 } 2723 2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2725 u16 offset, u16 count) 2726 { 2727 struct xps_dev_maps *dev_maps; 2728 bool active = false; 2729 int i, j; 2730 2731 dev_maps = xmap_dereference(dev->xps_maps[type]); 2732 if (!dev_maps) 2733 return; 2734 2735 for (j = 0; j < dev_maps->nr_ids; j++) 2736 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2737 if (!active) 2738 reset_xps_maps(dev, dev_maps, type); 2739 2740 if (type == XPS_CPUS) { 2741 for (i = offset + (count - 1); count--; i--) 2742 netdev_queue_numa_node_write( 2743 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2744 } 2745 } 2746 2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2748 u16 count) 2749 { 2750 if (!static_key_false(&xps_needed)) 2751 return; 2752 2753 cpus_read_lock(); 2754 mutex_lock(&xps_map_mutex); 2755 2756 if (static_key_false(&xps_rxqs_needed)) 2757 clean_xps_maps(dev, XPS_RXQS, offset, count); 2758 2759 clean_xps_maps(dev, XPS_CPUS, offset, count); 2760 2761 mutex_unlock(&xps_map_mutex); 2762 cpus_read_unlock(); 2763 } 2764 2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2766 { 2767 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2768 } 2769 2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2771 u16 index, bool is_rxqs_map) 2772 { 2773 struct xps_map *new_map; 2774 int alloc_len = XPS_MIN_MAP_ALLOC; 2775 int i, pos; 2776 2777 for (pos = 0; map && pos < map->len; pos++) { 2778 if (map->queues[pos] != index) 2779 continue; 2780 return map; 2781 } 2782 2783 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2784 if (map) { 2785 if (pos < map->alloc_len) 2786 return map; 2787 2788 alloc_len = map->alloc_len * 2; 2789 } 2790 2791 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2792 * map 2793 */ 2794 if (is_rxqs_map) 2795 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2796 else 2797 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2798 cpu_to_node(attr_index)); 2799 if (!new_map) 2800 return NULL; 2801 2802 for (i = 0; i < pos; i++) 2803 new_map->queues[i] = map->queues[i]; 2804 new_map->alloc_len = alloc_len; 2805 new_map->len = pos; 2806 2807 return new_map; 2808 } 2809 2810 /* Copy xps maps at a given index */ 2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2812 struct xps_dev_maps *new_dev_maps, int index, 2813 int tc, bool skip_tc) 2814 { 2815 int i, tci = index * dev_maps->num_tc; 2816 struct xps_map *map; 2817 2818 /* copy maps belonging to foreign traffic classes */ 2819 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2820 if (i == tc && skip_tc) 2821 continue; 2822 2823 /* fill in the new device map from the old device map */ 2824 map = xmap_dereference(dev_maps->attr_map[tci]); 2825 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2826 } 2827 } 2828 2829 /* Must be called under cpus_read_lock */ 2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2831 u16 index, enum xps_map_type type) 2832 { 2833 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2834 const unsigned long *online_mask = NULL; 2835 bool active = false, copy = false; 2836 int i, j, tci, numa_node_id = -2; 2837 int maps_sz, num_tc = 1, tc = 0; 2838 struct xps_map *map, *new_map; 2839 unsigned int nr_ids; 2840 2841 WARN_ON_ONCE(index >= dev->num_tx_queues); 2842 2843 if (dev->num_tc) { 2844 /* Do not allow XPS on subordinate device directly */ 2845 num_tc = dev->num_tc; 2846 if (num_tc < 0) 2847 return -EINVAL; 2848 2849 /* If queue belongs to subordinate dev use its map */ 2850 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2851 2852 tc = netdev_txq_to_tc(dev, index); 2853 if (tc < 0) 2854 return -EINVAL; 2855 } 2856 2857 mutex_lock(&xps_map_mutex); 2858 2859 dev_maps = xmap_dereference(dev->xps_maps[type]); 2860 if (type == XPS_RXQS) { 2861 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2862 nr_ids = dev->num_rx_queues; 2863 } else { 2864 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2865 if (num_possible_cpus() > 1) 2866 online_mask = cpumask_bits(cpu_online_mask); 2867 nr_ids = nr_cpu_ids; 2868 } 2869 2870 if (maps_sz < L1_CACHE_BYTES) 2871 maps_sz = L1_CACHE_BYTES; 2872 2873 /* The old dev_maps could be larger or smaller than the one we're 2874 * setting up now, as dev->num_tc or nr_ids could have been updated in 2875 * between. We could try to be smart, but let's be safe instead and only 2876 * copy foreign traffic classes if the two map sizes match. 2877 */ 2878 if (dev_maps && 2879 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2880 copy = true; 2881 2882 /* allocate memory for queue storage */ 2883 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2884 j < nr_ids;) { 2885 if (!new_dev_maps) { 2886 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2887 if (!new_dev_maps) { 2888 mutex_unlock(&xps_map_mutex); 2889 return -ENOMEM; 2890 } 2891 2892 new_dev_maps->nr_ids = nr_ids; 2893 new_dev_maps->num_tc = num_tc; 2894 } 2895 2896 tci = j * num_tc + tc; 2897 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2898 2899 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2900 if (!map) 2901 goto error; 2902 2903 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2904 } 2905 2906 if (!new_dev_maps) 2907 goto out_no_new_maps; 2908 2909 if (!dev_maps) { 2910 /* Increment static keys at most once per type */ 2911 static_key_slow_inc_cpuslocked(&xps_needed); 2912 if (type == XPS_RXQS) 2913 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2914 } 2915 2916 for (j = 0; j < nr_ids; j++) { 2917 bool skip_tc = false; 2918 2919 tci = j * num_tc + tc; 2920 if (netif_attr_test_mask(j, mask, nr_ids) && 2921 netif_attr_test_online(j, online_mask, nr_ids)) { 2922 /* add tx-queue to CPU/rx-queue maps */ 2923 int pos = 0; 2924 2925 skip_tc = true; 2926 2927 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2928 while ((pos < map->len) && (map->queues[pos] != index)) 2929 pos++; 2930 2931 if (pos == map->len) 2932 map->queues[map->len++] = index; 2933 #ifdef CONFIG_NUMA 2934 if (type == XPS_CPUS) { 2935 if (numa_node_id == -2) 2936 numa_node_id = cpu_to_node(j); 2937 else if (numa_node_id != cpu_to_node(j)) 2938 numa_node_id = -1; 2939 } 2940 #endif 2941 } 2942 2943 if (copy) 2944 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2945 skip_tc); 2946 } 2947 2948 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2949 2950 /* Cleanup old maps */ 2951 if (!dev_maps) 2952 goto out_no_old_maps; 2953 2954 for (j = 0; j < dev_maps->nr_ids; j++) { 2955 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2956 map = xmap_dereference(dev_maps->attr_map[tci]); 2957 if (!map) 2958 continue; 2959 2960 if (copy) { 2961 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2962 if (map == new_map) 2963 continue; 2964 } 2965 2966 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2967 kfree_rcu(map, rcu); 2968 } 2969 } 2970 2971 old_dev_maps = dev_maps; 2972 2973 out_no_old_maps: 2974 dev_maps = new_dev_maps; 2975 active = true; 2976 2977 out_no_new_maps: 2978 if (type == XPS_CPUS) 2979 /* update Tx queue numa node */ 2980 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2981 (numa_node_id >= 0) ? 2982 numa_node_id : NUMA_NO_NODE); 2983 2984 if (!dev_maps) 2985 goto out_no_maps; 2986 2987 /* removes tx-queue from unused CPUs/rx-queues */ 2988 for (j = 0; j < dev_maps->nr_ids; j++) { 2989 tci = j * dev_maps->num_tc; 2990 2991 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2992 if (i == tc && 2993 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2994 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2995 continue; 2996 2997 active |= remove_xps_queue(dev_maps, 2998 copy ? old_dev_maps : NULL, 2999 tci, index); 3000 } 3001 } 3002 3003 if (old_dev_maps) 3004 kfree_rcu(old_dev_maps, rcu); 3005 3006 /* free map if not active */ 3007 if (!active) 3008 reset_xps_maps(dev, dev_maps, type); 3009 3010 out_no_maps: 3011 mutex_unlock(&xps_map_mutex); 3012 3013 return 0; 3014 error: 3015 /* remove any maps that we added */ 3016 for (j = 0; j < nr_ids; j++) { 3017 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3018 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3019 map = copy ? 3020 xmap_dereference(dev_maps->attr_map[tci]) : 3021 NULL; 3022 if (new_map && new_map != map) 3023 kfree(new_map); 3024 } 3025 } 3026 3027 mutex_unlock(&xps_map_mutex); 3028 3029 kfree(new_dev_maps); 3030 return -ENOMEM; 3031 } 3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3033 3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3035 u16 index) 3036 { 3037 int ret; 3038 3039 cpus_read_lock(); 3040 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3041 cpus_read_unlock(); 3042 3043 return ret; 3044 } 3045 EXPORT_SYMBOL(netif_set_xps_queue); 3046 3047 #endif 3048 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3049 { 3050 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3051 3052 /* Unbind any subordinate channels */ 3053 while (txq-- != &dev->_tx[0]) { 3054 if (txq->sb_dev) 3055 netdev_unbind_sb_channel(dev, txq->sb_dev); 3056 } 3057 } 3058 3059 void netdev_reset_tc(struct net_device *dev) 3060 { 3061 #ifdef CONFIG_XPS 3062 netif_reset_xps_queues_gt(dev, 0); 3063 #endif 3064 netdev_unbind_all_sb_channels(dev); 3065 3066 /* Reset TC configuration of device */ 3067 dev->num_tc = 0; 3068 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3069 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3070 } 3071 EXPORT_SYMBOL(netdev_reset_tc); 3072 3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3074 { 3075 if (tc >= dev->num_tc) 3076 return -EINVAL; 3077 3078 #ifdef CONFIG_XPS 3079 netif_reset_xps_queues(dev, offset, count); 3080 #endif 3081 dev->tc_to_txq[tc].count = count; 3082 dev->tc_to_txq[tc].offset = offset; 3083 return 0; 3084 } 3085 EXPORT_SYMBOL(netdev_set_tc_queue); 3086 3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3088 { 3089 if (num_tc > TC_MAX_QUEUE) 3090 return -EINVAL; 3091 3092 #ifdef CONFIG_XPS 3093 netif_reset_xps_queues_gt(dev, 0); 3094 #endif 3095 netdev_unbind_all_sb_channels(dev); 3096 3097 dev->num_tc = num_tc; 3098 return 0; 3099 } 3100 EXPORT_SYMBOL(netdev_set_num_tc); 3101 3102 void netdev_unbind_sb_channel(struct net_device *dev, 3103 struct net_device *sb_dev) 3104 { 3105 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3106 3107 #ifdef CONFIG_XPS 3108 netif_reset_xps_queues_gt(sb_dev, 0); 3109 #endif 3110 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3111 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3112 3113 while (txq-- != &dev->_tx[0]) { 3114 if (txq->sb_dev == sb_dev) 3115 txq->sb_dev = NULL; 3116 } 3117 } 3118 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3119 3120 int netdev_bind_sb_channel_queue(struct net_device *dev, 3121 struct net_device *sb_dev, 3122 u8 tc, u16 count, u16 offset) 3123 { 3124 /* Make certain the sb_dev and dev are already configured */ 3125 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3126 return -EINVAL; 3127 3128 /* We cannot hand out queues we don't have */ 3129 if ((offset + count) > dev->real_num_tx_queues) 3130 return -EINVAL; 3131 3132 /* Record the mapping */ 3133 sb_dev->tc_to_txq[tc].count = count; 3134 sb_dev->tc_to_txq[tc].offset = offset; 3135 3136 /* Provide a way for Tx queue to find the tc_to_txq map or 3137 * XPS map for itself. 3138 */ 3139 while (count--) 3140 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3141 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3145 3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3147 { 3148 /* Do not use a multiqueue device to represent a subordinate channel */ 3149 if (netif_is_multiqueue(dev)) 3150 return -ENODEV; 3151 3152 /* We allow channels 1 - 32767 to be used for subordinate channels. 3153 * Channel 0 is meant to be "native" mode and used only to represent 3154 * the main root device. We allow writing 0 to reset the device back 3155 * to normal mode after being used as a subordinate channel. 3156 */ 3157 if (channel > S16_MAX) 3158 return -EINVAL; 3159 3160 dev->num_tc = -channel; 3161 3162 return 0; 3163 } 3164 EXPORT_SYMBOL(netdev_set_sb_channel); 3165 3166 /* 3167 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3168 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3169 */ 3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3171 { 3172 bool disabling; 3173 int rc; 3174 3175 disabling = txq < dev->real_num_tx_queues; 3176 3177 if (txq < 1 || txq > dev->num_tx_queues) 3178 return -EINVAL; 3179 3180 if (dev->reg_state == NETREG_REGISTERED || 3181 dev->reg_state == NETREG_UNREGISTERING) { 3182 ASSERT_RTNL(); 3183 netdev_ops_assert_locked(dev); 3184 3185 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3186 txq); 3187 if (rc) 3188 return rc; 3189 3190 if (dev->num_tc) 3191 netif_setup_tc(dev, txq); 3192 3193 net_shaper_set_real_num_tx_queues(dev, txq); 3194 3195 dev_qdisc_change_real_num_tx(dev, txq); 3196 3197 dev->real_num_tx_queues = txq; 3198 3199 if (disabling) { 3200 synchronize_net(); 3201 qdisc_reset_all_tx_gt(dev, txq); 3202 #ifdef CONFIG_XPS 3203 netif_reset_xps_queues_gt(dev, txq); 3204 #endif 3205 } 3206 } else { 3207 dev->real_num_tx_queues = txq; 3208 } 3209 3210 return 0; 3211 } 3212 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3213 3214 /** 3215 * netif_set_real_num_rx_queues - set actual number of RX queues used 3216 * @dev: Network device 3217 * @rxq: Actual number of RX queues 3218 * 3219 * This must be called either with the rtnl_lock held or before 3220 * registration of the net device. Returns 0 on success, or a 3221 * negative error code. If called before registration, it always 3222 * succeeds. 3223 */ 3224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3225 { 3226 int rc; 3227 3228 if (rxq < 1 || rxq > dev->num_rx_queues) 3229 return -EINVAL; 3230 3231 if (dev->reg_state == NETREG_REGISTERED) { 3232 ASSERT_RTNL(); 3233 netdev_ops_assert_locked(dev); 3234 3235 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3236 rxq); 3237 if (rc) 3238 return rc; 3239 } 3240 3241 dev->real_num_rx_queues = rxq; 3242 return 0; 3243 } 3244 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3245 3246 /** 3247 * netif_set_real_num_queues - set actual number of RX and TX queues used 3248 * @dev: Network device 3249 * @txq: Actual number of TX queues 3250 * @rxq: Actual number of RX queues 3251 * 3252 * Set the real number of both TX and RX queues. 3253 * Does nothing if the number of queues is already correct. 3254 */ 3255 int netif_set_real_num_queues(struct net_device *dev, 3256 unsigned int txq, unsigned int rxq) 3257 { 3258 unsigned int old_rxq = dev->real_num_rx_queues; 3259 int err; 3260 3261 if (txq < 1 || txq > dev->num_tx_queues || 3262 rxq < 1 || rxq > dev->num_rx_queues) 3263 return -EINVAL; 3264 3265 /* Start from increases, so the error path only does decreases - 3266 * decreases can't fail. 3267 */ 3268 if (rxq > dev->real_num_rx_queues) { 3269 err = netif_set_real_num_rx_queues(dev, rxq); 3270 if (err) 3271 return err; 3272 } 3273 if (txq > dev->real_num_tx_queues) { 3274 err = netif_set_real_num_tx_queues(dev, txq); 3275 if (err) 3276 goto undo_rx; 3277 } 3278 if (rxq < dev->real_num_rx_queues) 3279 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3280 if (txq < dev->real_num_tx_queues) 3281 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3282 3283 return 0; 3284 undo_rx: 3285 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3286 return err; 3287 } 3288 EXPORT_SYMBOL(netif_set_real_num_queues); 3289 3290 /** 3291 * netif_set_tso_max_size() - set the max size of TSO frames supported 3292 * @dev: netdev to update 3293 * @size: max skb->len of a TSO frame 3294 * 3295 * Set the limit on the size of TSO super-frames the device can handle. 3296 * Unless explicitly set the stack will assume the value of 3297 * %GSO_LEGACY_MAX_SIZE. 3298 */ 3299 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3300 { 3301 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3302 if (size < READ_ONCE(dev->gso_max_size)) 3303 netif_set_gso_max_size(dev, size); 3304 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3305 netif_set_gso_ipv4_max_size(dev, size); 3306 } 3307 EXPORT_SYMBOL(netif_set_tso_max_size); 3308 3309 /** 3310 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3311 * @dev: netdev to update 3312 * @segs: max number of TCP segments 3313 * 3314 * Set the limit on the number of TCP segments the device can generate from 3315 * a single TSO super-frame. 3316 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3317 */ 3318 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3319 { 3320 dev->tso_max_segs = segs; 3321 if (segs < READ_ONCE(dev->gso_max_segs)) 3322 netif_set_gso_max_segs(dev, segs); 3323 } 3324 EXPORT_SYMBOL(netif_set_tso_max_segs); 3325 3326 /** 3327 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3328 * @to: netdev to update 3329 * @from: netdev from which to copy the limits 3330 */ 3331 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3332 { 3333 netif_set_tso_max_size(to, from->tso_max_size); 3334 netif_set_tso_max_segs(to, from->tso_max_segs); 3335 } 3336 EXPORT_SYMBOL(netif_inherit_tso_max); 3337 3338 /** 3339 * netif_get_num_default_rss_queues - default number of RSS queues 3340 * 3341 * Default value is the number of physical cores if there are only 1 or 2, or 3342 * divided by 2 if there are more. 3343 */ 3344 int netif_get_num_default_rss_queues(void) 3345 { 3346 cpumask_var_t cpus; 3347 int cpu, count = 0; 3348 3349 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3350 return 1; 3351 3352 cpumask_copy(cpus, cpu_online_mask); 3353 for_each_cpu(cpu, cpus) { 3354 ++count; 3355 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3356 } 3357 free_cpumask_var(cpus); 3358 3359 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3360 } 3361 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3362 3363 static void __netif_reschedule(struct Qdisc *q) 3364 { 3365 struct softnet_data *sd; 3366 unsigned long flags; 3367 3368 local_irq_save(flags); 3369 sd = this_cpu_ptr(&softnet_data); 3370 q->next_sched = NULL; 3371 *sd->output_queue_tailp = q; 3372 sd->output_queue_tailp = &q->next_sched; 3373 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3374 local_irq_restore(flags); 3375 } 3376 3377 void __netif_schedule(struct Qdisc *q) 3378 { 3379 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3380 __netif_reschedule(q); 3381 } 3382 EXPORT_SYMBOL(__netif_schedule); 3383 3384 struct dev_kfree_skb_cb { 3385 enum skb_drop_reason reason; 3386 }; 3387 3388 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3389 { 3390 return (struct dev_kfree_skb_cb *)skb->cb; 3391 } 3392 3393 void netif_schedule_queue(struct netdev_queue *txq) 3394 { 3395 rcu_read_lock(); 3396 if (!netif_xmit_stopped(txq)) { 3397 struct Qdisc *q = rcu_dereference(txq->qdisc); 3398 3399 __netif_schedule(q); 3400 } 3401 rcu_read_unlock(); 3402 } 3403 EXPORT_SYMBOL(netif_schedule_queue); 3404 3405 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3406 { 3407 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3408 struct Qdisc *q; 3409 3410 rcu_read_lock(); 3411 q = rcu_dereference(dev_queue->qdisc); 3412 __netif_schedule(q); 3413 rcu_read_unlock(); 3414 } 3415 } 3416 EXPORT_SYMBOL(netif_tx_wake_queue); 3417 3418 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3419 { 3420 unsigned long flags; 3421 3422 if (unlikely(!skb)) 3423 return; 3424 3425 if (likely(refcount_read(&skb->users) == 1)) { 3426 smp_rmb(); 3427 refcount_set(&skb->users, 0); 3428 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3429 return; 3430 } 3431 get_kfree_skb_cb(skb)->reason = reason; 3432 local_irq_save(flags); 3433 skb->next = __this_cpu_read(softnet_data.completion_queue); 3434 __this_cpu_write(softnet_data.completion_queue, skb); 3435 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3436 local_irq_restore(flags); 3437 } 3438 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3439 3440 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3441 { 3442 if (in_hardirq() || irqs_disabled()) 3443 dev_kfree_skb_irq_reason(skb, reason); 3444 else 3445 kfree_skb_reason(skb, reason); 3446 } 3447 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3448 3449 3450 /** 3451 * netif_device_detach - mark device as removed 3452 * @dev: network device 3453 * 3454 * Mark device as removed from system and therefore no longer available. 3455 */ 3456 void netif_device_detach(struct net_device *dev) 3457 { 3458 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3459 netif_running(dev)) { 3460 netif_tx_stop_all_queues(dev); 3461 } 3462 } 3463 EXPORT_SYMBOL(netif_device_detach); 3464 3465 /** 3466 * netif_device_attach - mark device as attached 3467 * @dev: network device 3468 * 3469 * Mark device as attached from system and restart if needed. 3470 */ 3471 void netif_device_attach(struct net_device *dev) 3472 { 3473 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3474 netif_running(dev)) { 3475 netif_tx_wake_all_queues(dev); 3476 netdev_watchdog_up(dev); 3477 } 3478 } 3479 EXPORT_SYMBOL(netif_device_attach); 3480 3481 /* 3482 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3483 * to be used as a distribution range. 3484 */ 3485 static u16 skb_tx_hash(const struct net_device *dev, 3486 const struct net_device *sb_dev, 3487 struct sk_buff *skb) 3488 { 3489 u32 hash; 3490 u16 qoffset = 0; 3491 u16 qcount = dev->real_num_tx_queues; 3492 3493 if (dev->num_tc) { 3494 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3495 3496 qoffset = sb_dev->tc_to_txq[tc].offset; 3497 qcount = sb_dev->tc_to_txq[tc].count; 3498 if (unlikely(!qcount)) { 3499 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3500 sb_dev->name, qoffset, tc); 3501 qoffset = 0; 3502 qcount = dev->real_num_tx_queues; 3503 } 3504 } 3505 3506 if (skb_rx_queue_recorded(skb)) { 3507 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3508 hash = skb_get_rx_queue(skb); 3509 if (hash >= qoffset) 3510 hash -= qoffset; 3511 while (unlikely(hash >= qcount)) 3512 hash -= qcount; 3513 return hash + qoffset; 3514 } 3515 3516 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3517 } 3518 3519 void skb_warn_bad_offload(const struct sk_buff *skb) 3520 { 3521 static const netdev_features_t null_features; 3522 struct net_device *dev = skb->dev; 3523 const char *name = ""; 3524 3525 if (!net_ratelimit()) 3526 return; 3527 3528 if (dev) { 3529 if (dev->dev.parent) 3530 name = dev_driver_string(dev->dev.parent); 3531 else 3532 name = netdev_name(dev); 3533 } 3534 skb_dump(KERN_WARNING, skb, false); 3535 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3536 name, dev ? &dev->features : &null_features, 3537 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3538 } 3539 3540 /* 3541 * Invalidate hardware checksum when packet is to be mangled, and 3542 * complete checksum manually on outgoing path. 3543 */ 3544 int skb_checksum_help(struct sk_buff *skb) 3545 { 3546 __wsum csum; 3547 int ret = 0, offset; 3548 3549 if (skb->ip_summed == CHECKSUM_COMPLETE) 3550 goto out_set_summed; 3551 3552 if (unlikely(skb_is_gso(skb))) { 3553 skb_warn_bad_offload(skb); 3554 return -EINVAL; 3555 } 3556 3557 if (!skb_frags_readable(skb)) { 3558 return -EFAULT; 3559 } 3560 3561 /* Before computing a checksum, we should make sure no frag could 3562 * be modified by an external entity : checksum could be wrong. 3563 */ 3564 if (skb_has_shared_frag(skb)) { 3565 ret = __skb_linearize(skb); 3566 if (ret) 3567 goto out; 3568 } 3569 3570 offset = skb_checksum_start_offset(skb); 3571 ret = -EINVAL; 3572 if (unlikely(offset >= skb_headlen(skb))) { 3573 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3574 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3575 offset, skb_headlen(skb)); 3576 goto out; 3577 } 3578 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3579 3580 offset += skb->csum_offset; 3581 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3582 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3583 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3584 offset + sizeof(__sum16), skb_headlen(skb)); 3585 goto out; 3586 } 3587 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3588 if (ret) 3589 goto out; 3590 3591 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3592 out_set_summed: 3593 skb->ip_summed = CHECKSUM_NONE; 3594 out: 3595 return ret; 3596 } 3597 EXPORT_SYMBOL(skb_checksum_help); 3598 3599 #ifdef CONFIG_NET_CRC32C 3600 int skb_crc32c_csum_help(struct sk_buff *skb) 3601 { 3602 u32 crc; 3603 int ret = 0, offset, start; 3604 3605 if (skb->ip_summed != CHECKSUM_PARTIAL) 3606 goto out; 3607 3608 if (unlikely(skb_is_gso(skb))) 3609 goto out; 3610 3611 /* Before computing a checksum, we should make sure no frag could 3612 * be modified by an external entity : checksum could be wrong. 3613 */ 3614 if (unlikely(skb_has_shared_frag(skb))) { 3615 ret = __skb_linearize(skb); 3616 if (ret) 3617 goto out; 3618 } 3619 start = skb_checksum_start_offset(skb); 3620 offset = start + offsetof(struct sctphdr, checksum); 3621 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3622 ret = -EINVAL; 3623 goto out; 3624 } 3625 3626 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3627 if (ret) 3628 goto out; 3629 3630 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3631 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3632 skb_reset_csum_not_inet(skb); 3633 out: 3634 return ret; 3635 } 3636 EXPORT_SYMBOL(skb_crc32c_csum_help); 3637 #endif /* CONFIG_NET_CRC32C */ 3638 3639 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3640 { 3641 __be16 type = skb->protocol; 3642 3643 /* Tunnel gso handlers can set protocol to ethernet. */ 3644 if (type == htons(ETH_P_TEB)) { 3645 struct ethhdr *eth; 3646 3647 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3648 return 0; 3649 3650 eth = (struct ethhdr *)skb->data; 3651 type = eth->h_proto; 3652 } 3653 3654 return vlan_get_protocol_and_depth(skb, type, depth); 3655 } 3656 3657 3658 /* Take action when hardware reception checksum errors are detected. */ 3659 #ifdef CONFIG_BUG 3660 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3661 { 3662 netdev_err(dev, "hw csum failure\n"); 3663 skb_dump(KERN_ERR, skb, true); 3664 dump_stack(); 3665 } 3666 3667 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3668 { 3669 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3670 } 3671 EXPORT_SYMBOL(netdev_rx_csum_fault); 3672 #endif 3673 3674 /* XXX: check that highmem exists at all on the given machine. */ 3675 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3676 { 3677 #ifdef CONFIG_HIGHMEM 3678 int i; 3679 3680 if (!(dev->features & NETIF_F_HIGHDMA)) { 3681 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3682 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3683 struct page *page = skb_frag_page(frag); 3684 3685 if (page && PageHighMem(page)) 3686 return 1; 3687 } 3688 } 3689 #endif 3690 return 0; 3691 } 3692 3693 /* If MPLS offload request, verify we are testing hardware MPLS features 3694 * instead of standard features for the netdev. 3695 */ 3696 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3697 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3698 netdev_features_t features, 3699 __be16 type) 3700 { 3701 if (eth_p_mpls(type)) 3702 features &= skb->dev->mpls_features; 3703 3704 return features; 3705 } 3706 #else 3707 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3708 netdev_features_t features, 3709 __be16 type) 3710 { 3711 return features; 3712 } 3713 #endif 3714 3715 static netdev_features_t harmonize_features(struct sk_buff *skb, 3716 netdev_features_t features) 3717 { 3718 __be16 type; 3719 3720 type = skb_network_protocol(skb, NULL); 3721 features = net_mpls_features(skb, features, type); 3722 3723 if (skb->ip_summed != CHECKSUM_NONE && 3724 !can_checksum_protocol(features, type)) { 3725 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3726 } 3727 if (illegal_highdma(skb->dev, skb)) 3728 features &= ~NETIF_F_SG; 3729 3730 return features; 3731 } 3732 3733 netdev_features_t passthru_features_check(struct sk_buff *skb, 3734 struct net_device *dev, 3735 netdev_features_t features) 3736 { 3737 return features; 3738 } 3739 EXPORT_SYMBOL(passthru_features_check); 3740 3741 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3742 struct net_device *dev, 3743 netdev_features_t features) 3744 { 3745 return vlan_features_check(skb, features); 3746 } 3747 3748 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3749 struct net_device *dev, 3750 netdev_features_t features) 3751 { 3752 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3753 3754 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3755 return features & ~NETIF_F_GSO_MASK; 3756 3757 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3758 return features & ~NETIF_F_GSO_MASK; 3759 3760 if (!skb_shinfo(skb)->gso_type) { 3761 skb_warn_bad_offload(skb); 3762 return features & ~NETIF_F_GSO_MASK; 3763 } 3764 3765 /* Support for GSO partial features requires software 3766 * intervention before we can actually process the packets 3767 * so we need to strip support for any partial features now 3768 * and we can pull them back in after we have partially 3769 * segmented the frame. 3770 */ 3771 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3772 features &= ~dev->gso_partial_features; 3773 3774 /* Make sure to clear the IPv4 ID mangling feature if the 3775 * IPv4 header has the potential to be fragmented. 3776 */ 3777 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3778 struct iphdr *iph = skb->encapsulation ? 3779 inner_ip_hdr(skb) : ip_hdr(skb); 3780 3781 if (!(iph->frag_off & htons(IP_DF))) 3782 features &= ~NETIF_F_TSO_MANGLEID; 3783 } 3784 3785 return features; 3786 } 3787 3788 netdev_features_t netif_skb_features(struct sk_buff *skb) 3789 { 3790 struct net_device *dev = skb->dev; 3791 netdev_features_t features = dev->features; 3792 3793 if (skb_is_gso(skb)) 3794 features = gso_features_check(skb, dev, features); 3795 3796 /* If encapsulation offload request, verify we are testing 3797 * hardware encapsulation features instead of standard 3798 * features for the netdev 3799 */ 3800 if (skb->encapsulation) 3801 features &= dev->hw_enc_features; 3802 3803 if (skb_vlan_tagged(skb)) 3804 features = netdev_intersect_features(features, 3805 dev->vlan_features | 3806 NETIF_F_HW_VLAN_CTAG_TX | 3807 NETIF_F_HW_VLAN_STAG_TX); 3808 3809 if (dev->netdev_ops->ndo_features_check) 3810 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3811 features); 3812 else 3813 features &= dflt_features_check(skb, dev, features); 3814 3815 return harmonize_features(skb, features); 3816 } 3817 EXPORT_SYMBOL(netif_skb_features); 3818 3819 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3820 struct netdev_queue *txq, bool more) 3821 { 3822 unsigned int len; 3823 int rc; 3824 3825 if (dev_nit_active_rcu(dev)) 3826 dev_queue_xmit_nit(skb, dev); 3827 3828 len = skb->len; 3829 trace_net_dev_start_xmit(skb, dev); 3830 rc = netdev_start_xmit(skb, dev, txq, more); 3831 trace_net_dev_xmit(skb, rc, dev, len); 3832 3833 return rc; 3834 } 3835 3836 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3837 struct netdev_queue *txq, int *ret) 3838 { 3839 struct sk_buff *skb = first; 3840 int rc = NETDEV_TX_OK; 3841 3842 while (skb) { 3843 struct sk_buff *next = skb->next; 3844 3845 skb_mark_not_on_list(skb); 3846 rc = xmit_one(skb, dev, txq, next != NULL); 3847 if (unlikely(!dev_xmit_complete(rc))) { 3848 skb->next = next; 3849 goto out; 3850 } 3851 3852 skb = next; 3853 if (netif_tx_queue_stopped(txq) && skb) { 3854 rc = NETDEV_TX_BUSY; 3855 break; 3856 } 3857 } 3858 3859 out: 3860 *ret = rc; 3861 return skb; 3862 } 3863 3864 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3865 netdev_features_t features) 3866 { 3867 if (skb_vlan_tag_present(skb) && 3868 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3869 skb = __vlan_hwaccel_push_inside(skb); 3870 return skb; 3871 } 3872 3873 int skb_csum_hwoffload_help(struct sk_buff *skb, 3874 const netdev_features_t features) 3875 { 3876 if (unlikely(skb_csum_is_sctp(skb))) 3877 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3878 skb_crc32c_csum_help(skb); 3879 3880 if (features & NETIF_F_HW_CSUM) 3881 return 0; 3882 3883 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3884 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3885 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3886 !ipv6_has_hopopt_jumbo(skb)) 3887 goto sw_checksum; 3888 3889 switch (skb->csum_offset) { 3890 case offsetof(struct tcphdr, check): 3891 case offsetof(struct udphdr, check): 3892 return 0; 3893 } 3894 } 3895 3896 sw_checksum: 3897 return skb_checksum_help(skb); 3898 } 3899 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3900 3901 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3902 struct net_device *dev) 3903 { 3904 struct skb_shared_info *shinfo; 3905 struct net_iov *niov; 3906 3907 if (likely(skb_frags_readable(skb))) 3908 goto out; 3909 3910 if (!dev->netmem_tx) 3911 goto out_free; 3912 3913 shinfo = skb_shinfo(skb); 3914 3915 if (shinfo->nr_frags > 0) { 3916 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3917 if (net_is_devmem_iov(niov) && 3918 net_devmem_iov_binding(niov)->dev != dev) 3919 goto out_free; 3920 } 3921 3922 out: 3923 return skb; 3924 3925 out_free: 3926 kfree_skb(skb); 3927 return NULL; 3928 } 3929 3930 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3931 { 3932 netdev_features_t features; 3933 3934 skb = validate_xmit_unreadable_skb(skb, dev); 3935 if (unlikely(!skb)) 3936 goto out_null; 3937 3938 features = netif_skb_features(skb); 3939 skb = validate_xmit_vlan(skb, features); 3940 if (unlikely(!skb)) 3941 goto out_null; 3942 3943 skb = sk_validate_xmit_skb(skb, dev); 3944 if (unlikely(!skb)) 3945 goto out_null; 3946 3947 if (netif_needs_gso(skb, features)) { 3948 struct sk_buff *segs; 3949 3950 segs = skb_gso_segment(skb, features); 3951 if (IS_ERR(segs)) { 3952 goto out_kfree_skb; 3953 } else if (segs) { 3954 consume_skb(skb); 3955 skb = segs; 3956 } 3957 } else { 3958 if (skb_needs_linearize(skb, features) && 3959 __skb_linearize(skb)) 3960 goto out_kfree_skb; 3961 3962 /* If packet is not checksummed and device does not 3963 * support checksumming for this protocol, complete 3964 * checksumming here. 3965 */ 3966 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3967 if (skb->encapsulation) 3968 skb_set_inner_transport_header(skb, 3969 skb_checksum_start_offset(skb)); 3970 else 3971 skb_set_transport_header(skb, 3972 skb_checksum_start_offset(skb)); 3973 if (skb_csum_hwoffload_help(skb, features)) 3974 goto out_kfree_skb; 3975 } 3976 } 3977 3978 skb = validate_xmit_xfrm(skb, features, again); 3979 3980 return skb; 3981 3982 out_kfree_skb: 3983 kfree_skb(skb); 3984 out_null: 3985 dev_core_stats_tx_dropped_inc(dev); 3986 return NULL; 3987 } 3988 3989 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3990 { 3991 struct sk_buff *next, *head = NULL, *tail; 3992 3993 for (; skb != NULL; skb = next) { 3994 next = skb->next; 3995 skb_mark_not_on_list(skb); 3996 3997 /* in case skb won't be segmented, point to itself */ 3998 skb->prev = skb; 3999 4000 skb = validate_xmit_skb(skb, dev, again); 4001 if (!skb) 4002 continue; 4003 4004 if (!head) 4005 head = skb; 4006 else 4007 tail->next = skb; 4008 /* If skb was segmented, skb->prev points to 4009 * the last segment. If not, it still contains skb. 4010 */ 4011 tail = skb->prev; 4012 } 4013 return head; 4014 } 4015 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4016 4017 static void qdisc_pkt_len_init(struct sk_buff *skb) 4018 { 4019 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4020 4021 qdisc_skb_cb(skb)->pkt_len = skb->len; 4022 4023 /* To get more precise estimation of bytes sent on wire, 4024 * we add to pkt_len the headers size of all segments 4025 */ 4026 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4027 u16 gso_segs = shinfo->gso_segs; 4028 unsigned int hdr_len; 4029 4030 /* mac layer + network layer */ 4031 hdr_len = skb_transport_offset(skb); 4032 4033 /* + transport layer */ 4034 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4035 const struct tcphdr *th; 4036 struct tcphdr _tcphdr; 4037 4038 th = skb_header_pointer(skb, hdr_len, 4039 sizeof(_tcphdr), &_tcphdr); 4040 if (likely(th)) 4041 hdr_len += __tcp_hdrlen(th); 4042 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4043 struct udphdr _udphdr; 4044 4045 if (skb_header_pointer(skb, hdr_len, 4046 sizeof(_udphdr), &_udphdr)) 4047 hdr_len += sizeof(struct udphdr); 4048 } 4049 4050 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4051 int payload = skb->len - hdr_len; 4052 4053 /* Malicious packet. */ 4054 if (payload <= 0) 4055 return; 4056 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4057 } 4058 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4059 } 4060 } 4061 4062 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4063 struct sk_buff **to_free, 4064 struct netdev_queue *txq) 4065 { 4066 int rc; 4067 4068 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4069 if (rc == NET_XMIT_SUCCESS) 4070 trace_qdisc_enqueue(q, txq, skb); 4071 return rc; 4072 } 4073 4074 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4075 struct net_device *dev, 4076 struct netdev_queue *txq) 4077 { 4078 spinlock_t *root_lock = qdisc_lock(q); 4079 struct sk_buff *to_free = NULL; 4080 bool contended; 4081 int rc; 4082 4083 qdisc_calculate_pkt_len(skb, q); 4084 4085 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4086 4087 if (q->flags & TCQ_F_NOLOCK) { 4088 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4089 qdisc_run_begin(q)) { 4090 /* Retest nolock_qdisc_is_empty() within the protection 4091 * of q->seqlock to protect from racing with requeuing. 4092 */ 4093 if (unlikely(!nolock_qdisc_is_empty(q))) { 4094 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4095 __qdisc_run(q); 4096 qdisc_run_end(q); 4097 4098 goto no_lock_out; 4099 } 4100 4101 qdisc_bstats_cpu_update(q, skb); 4102 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4103 !nolock_qdisc_is_empty(q)) 4104 __qdisc_run(q); 4105 4106 qdisc_run_end(q); 4107 return NET_XMIT_SUCCESS; 4108 } 4109 4110 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4111 qdisc_run(q); 4112 4113 no_lock_out: 4114 if (unlikely(to_free)) 4115 kfree_skb_list_reason(to_free, 4116 tcf_get_drop_reason(to_free)); 4117 return rc; 4118 } 4119 4120 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4121 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4122 return NET_XMIT_DROP; 4123 } 4124 /* 4125 * Heuristic to force contended enqueues to serialize on a 4126 * separate lock before trying to get qdisc main lock. 4127 * This permits qdisc->running owner to get the lock more 4128 * often and dequeue packets faster. 4129 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4130 * and then other tasks will only enqueue packets. The packets will be 4131 * sent after the qdisc owner is scheduled again. To prevent this 4132 * scenario the task always serialize on the lock. 4133 */ 4134 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4135 if (unlikely(contended)) 4136 spin_lock(&q->busylock); 4137 4138 spin_lock(root_lock); 4139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4140 __qdisc_drop(skb, &to_free); 4141 rc = NET_XMIT_DROP; 4142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4143 qdisc_run_begin(q)) { 4144 /* 4145 * This is a work-conserving queue; there are no old skbs 4146 * waiting to be sent out; and the qdisc is not running - 4147 * xmit the skb directly. 4148 */ 4149 4150 qdisc_bstats_update(q, skb); 4151 4152 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4153 if (unlikely(contended)) { 4154 spin_unlock(&q->busylock); 4155 contended = false; 4156 } 4157 __qdisc_run(q); 4158 } 4159 4160 qdisc_run_end(q); 4161 rc = NET_XMIT_SUCCESS; 4162 } else { 4163 WRITE_ONCE(q->owner, smp_processor_id()); 4164 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4165 WRITE_ONCE(q->owner, -1); 4166 if (qdisc_run_begin(q)) { 4167 if (unlikely(contended)) { 4168 spin_unlock(&q->busylock); 4169 contended = false; 4170 } 4171 __qdisc_run(q); 4172 qdisc_run_end(q); 4173 } 4174 } 4175 spin_unlock(root_lock); 4176 if (unlikely(to_free)) 4177 kfree_skb_list_reason(to_free, 4178 tcf_get_drop_reason(to_free)); 4179 if (unlikely(contended)) 4180 spin_unlock(&q->busylock); 4181 return rc; 4182 } 4183 4184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4185 static void skb_update_prio(struct sk_buff *skb) 4186 { 4187 const struct netprio_map *map; 4188 const struct sock *sk; 4189 unsigned int prioidx; 4190 4191 if (skb->priority) 4192 return; 4193 map = rcu_dereference_bh(skb->dev->priomap); 4194 if (!map) 4195 return; 4196 sk = skb_to_full_sk(skb); 4197 if (!sk) 4198 return; 4199 4200 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4201 4202 if (prioidx < map->priomap_len) 4203 skb->priority = map->priomap[prioidx]; 4204 } 4205 #else 4206 #define skb_update_prio(skb) 4207 #endif 4208 4209 /** 4210 * dev_loopback_xmit - loop back @skb 4211 * @net: network namespace this loopback is happening in 4212 * @sk: sk needed to be a netfilter okfn 4213 * @skb: buffer to transmit 4214 */ 4215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4216 { 4217 skb_reset_mac_header(skb); 4218 __skb_pull(skb, skb_network_offset(skb)); 4219 skb->pkt_type = PACKET_LOOPBACK; 4220 if (skb->ip_summed == CHECKSUM_NONE) 4221 skb->ip_summed = CHECKSUM_UNNECESSARY; 4222 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4223 skb_dst_force(skb); 4224 netif_rx(skb); 4225 return 0; 4226 } 4227 EXPORT_SYMBOL(dev_loopback_xmit); 4228 4229 #ifdef CONFIG_NET_EGRESS 4230 static struct netdev_queue * 4231 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4232 { 4233 int qm = skb_get_queue_mapping(skb); 4234 4235 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4236 } 4237 4238 #ifndef CONFIG_PREEMPT_RT 4239 static bool netdev_xmit_txqueue_skipped(void) 4240 { 4241 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4242 } 4243 4244 void netdev_xmit_skip_txqueue(bool skip) 4245 { 4246 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4247 } 4248 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4249 4250 #else 4251 static bool netdev_xmit_txqueue_skipped(void) 4252 { 4253 return current->net_xmit.skip_txqueue; 4254 } 4255 4256 void netdev_xmit_skip_txqueue(bool skip) 4257 { 4258 current->net_xmit.skip_txqueue = skip; 4259 } 4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4261 #endif 4262 #endif /* CONFIG_NET_EGRESS */ 4263 4264 #ifdef CONFIG_NET_XGRESS 4265 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4266 enum skb_drop_reason *drop_reason) 4267 { 4268 int ret = TC_ACT_UNSPEC; 4269 #ifdef CONFIG_NET_CLS_ACT 4270 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4271 struct tcf_result res; 4272 4273 if (!miniq) 4274 return ret; 4275 4276 /* Global bypass */ 4277 if (!static_branch_likely(&tcf_sw_enabled_key)) 4278 return ret; 4279 4280 /* Block-wise bypass */ 4281 if (tcf_block_bypass_sw(miniq->block)) 4282 return ret; 4283 4284 tc_skb_cb(skb)->mru = 0; 4285 tc_skb_cb(skb)->post_ct = false; 4286 tcf_set_drop_reason(skb, *drop_reason); 4287 4288 mini_qdisc_bstats_cpu_update(miniq, skb); 4289 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4290 /* Only tcf related quirks below. */ 4291 switch (ret) { 4292 case TC_ACT_SHOT: 4293 *drop_reason = tcf_get_drop_reason(skb); 4294 mini_qdisc_qstats_cpu_drop(miniq); 4295 break; 4296 case TC_ACT_OK: 4297 case TC_ACT_RECLASSIFY: 4298 skb->tc_index = TC_H_MIN(res.classid); 4299 break; 4300 } 4301 #endif /* CONFIG_NET_CLS_ACT */ 4302 return ret; 4303 } 4304 4305 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4306 4307 void tcx_inc(void) 4308 { 4309 static_branch_inc(&tcx_needed_key); 4310 } 4311 4312 void tcx_dec(void) 4313 { 4314 static_branch_dec(&tcx_needed_key); 4315 } 4316 4317 static __always_inline enum tcx_action_base 4318 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4319 const bool needs_mac) 4320 { 4321 const struct bpf_mprog_fp *fp; 4322 const struct bpf_prog *prog; 4323 int ret = TCX_NEXT; 4324 4325 if (needs_mac) 4326 __skb_push(skb, skb->mac_len); 4327 bpf_mprog_foreach_prog(entry, fp, prog) { 4328 bpf_compute_data_pointers(skb); 4329 ret = bpf_prog_run(prog, skb); 4330 if (ret != TCX_NEXT) 4331 break; 4332 } 4333 if (needs_mac) 4334 __skb_pull(skb, skb->mac_len); 4335 return tcx_action_code(skb, ret); 4336 } 4337 4338 static __always_inline struct sk_buff * 4339 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4340 struct net_device *orig_dev, bool *another) 4341 { 4342 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4343 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4344 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4345 int sch_ret; 4346 4347 if (!entry) 4348 return skb; 4349 4350 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4351 if (*pt_prev) { 4352 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4353 *pt_prev = NULL; 4354 } 4355 4356 qdisc_skb_cb(skb)->pkt_len = skb->len; 4357 tcx_set_ingress(skb, true); 4358 4359 if (static_branch_unlikely(&tcx_needed_key)) { 4360 sch_ret = tcx_run(entry, skb, true); 4361 if (sch_ret != TC_ACT_UNSPEC) 4362 goto ingress_verdict; 4363 } 4364 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4365 ingress_verdict: 4366 switch (sch_ret) { 4367 case TC_ACT_REDIRECT: 4368 /* skb_mac_header check was done by BPF, so we can safely 4369 * push the L2 header back before redirecting to another 4370 * netdev. 4371 */ 4372 __skb_push(skb, skb->mac_len); 4373 if (skb_do_redirect(skb) == -EAGAIN) { 4374 __skb_pull(skb, skb->mac_len); 4375 *another = true; 4376 break; 4377 } 4378 *ret = NET_RX_SUCCESS; 4379 bpf_net_ctx_clear(bpf_net_ctx); 4380 return NULL; 4381 case TC_ACT_SHOT: 4382 kfree_skb_reason(skb, drop_reason); 4383 *ret = NET_RX_DROP; 4384 bpf_net_ctx_clear(bpf_net_ctx); 4385 return NULL; 4386 /* used by tc_run */ 4387 case TC_ACT_STOLEN: 4388 case TC_ACT_QUEUED: 4389 case TC_ACT_TRAP: 4390 consume_skb(skb); 4391 fallthrough; 4392 case TC_ACT_CONSUMED: 4393 *ret = NET_RX_SUCCESS; 4394 bpf_net_ctx_clear(bpf_net_ctx); 4395 return NULL; 4396 } 4397 bpf_net_ctx_clear(bpf_net_ctx); 4398 4399 return skb; 4400 } 4401 4402 static __always_inline struct sk_buff * 4403 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4404 { 4405 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4406 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4407 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4408 int sch_ret; 4409 4410 if (!entry) 4411 return skb; 4412 4413 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4414 4415 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4416 * already set by the caller. 4417 */ 4418 if (static_branch_unlikely(&tcx_needed_key)) { 4419 sch_ret = tcx_run(entry, skb, false); 4420 if (sch_ret != TC_ACT_UNSPEC) 4421 goto egress_verdict; 4422 } 4423 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4424 egress_verdict: 4425 switch (sch_ret) { 4426 case TC_ACT_REDIRECT: 4427 /* No need to push/pop skb's mac_header here on egress! */ 4428 skb_do_redirect(skb); 4429 *ret = NET_XMIT_SUCCESS; 4430 bpf_net_ctx_clear(bpf_net_ctx); 4431 return NULL; 4432 case TC_ACT_SHOT: 4433 kfree_skb_reason(skb, drop_reason); 4434 *ret = NET_XMIT_DROP; 4435 bpf_net_ctx_clear(bpf_net_ctx); 4436 return NULL; 4437 /* used by tc_run */ 4438 case TC_ACT_STOLEN: 4439 case TC_ACT_QUEUED: 4440 case TC_ACT_TRAP: 4441 consume_skb(skb); 4442 fallthrough; 4443 case TC_ACT_CONSUMED: 4444 *ret = NET_XMIT_SUCCESS; 4445 bpf_net_ctx_clear(bpf_net_ctx); 4446 return NULL; 4447 } 4448 bpf_net_ctx_clear(bpf_net_ctx); 4449 4450 return skb; 4451 } 4452 #else 4453 static __always_inline struct sk_buff * 4454 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4455 struct net_device *orig_dev, bool *another) 4456 { 4457 return skb; 4458 } 4459 4460 static __always_inline struct sk_buff * 4461 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4462 { 4463 return skb; 4464 } 4465 #endif /* CONFIG_NET_XGRESS */ 4466 4467 #ifdef CONFIG_XPS 4468 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4469 struct xps_dev_maps *dev_maps, unsigned int tci) 4470 { 4471 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4472 struct xps_map *map; 4473 int queue_index = -1; 4474 4475 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4476 return queue_index; 4477 4478 tci *= dev_maps->num_tc; 4479 tci += tc; 4480 4481 map = rcu_dereference(dev_maps->attr_map[tci]); 4482 if (map) { 4483 if (map->len == 1) 4484 queue_index = map->queues[0]; 4485 else 4486 queue_index = map->queues[reciprocal_scale( 4487 skb_get_hash(skb), map->len)]; 4488 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4489 queue_index = -1; 4490 } 4491 return queue_index; 4492 } 4493 #endif 4494 4495 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4496 struct sk_buff *skb) 4497 { 4498 #ifdef CONFIG_XPS 4499 struct xps_dev_maps *dev_maps; 4500 struct sock *sk = skb->sk; 4501 int queue_index = -1; 4502 4503 if (!static_key_false(&xps_needed)) 4504 return -1; 4505 4506 rcu_read_lock(); 4507 if (!static_key_false(&xps_rxqs_needed)) 4508 goto get_cpus_map; 4509 4510 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4511 if (dev_maps) { 4512 int tci = sk_rx_queue_get(sk); 4513 4514 if (tci >= 0) 4515 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4516 tci); 4517 } 4518 4519 get_cpus_map: 4520 if (queue_index < 0) { 4521 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4522 if (dev_maps) { 4523 unsigned int tci = skb->sender_cpu - 1; 4524 4525 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4526 tci); 4527 } 4528 } 4529 rcu_read_unlock(); 4530 4531 return queue_index; 4532 #else 4533 return -1; 4534 #endif 4535 } 4536 4537 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4538 struct net_device *sb_dev) 4539 { 4540 return 0; 4541 } 4542 EXPORT_SYMBOL(dev_pick_tx_zero); 4543 4544 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4545 struct net_device *sb_dev) 4546 { 4547 struct sock *sk = skb->sk; 4548 int queue_index = sk_tx_queue_get(sk); 4549 4550 sb_dev = sb_dev ? : dev; 4551 4552 if (queue_index < 0 || skb->ooo_okay || 4553 queue_index >= dev->real_num_tx_queues) { 4554 int new_index = get_xps_queue(dev, sb_dev, skb); 4555 4556 if (new_index < 0) 4557 new_index = skb_tx_hash(dev, sb_dev, skb); 4558 4559 if (queue_index != new_index && sk && 4560 sk_fullsock(sk) && 4561 rcu_access_pointer(sk->sk_dst_cache)) 4562 sk_tx_queue_set(sk, new_index); 4563 4564 queue_index = new_index; 4565 } 4566 4567 return queue_index; 4568 } 4569 EXPORT_SYMBOL(netdev_pick_tx); 4570 4571 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4572 struct sk_buff *skb, 4573 struct net_device *sb_dev) 4574 { 4575 int queue_index = 0; 4576 4577 #ifdef CONFIG_XPS 4578 u32 sender_cpu = skb->sender_cpu - 1; 4579 4580 if (sender_cpu >= (u32)NR_CPUS) 4581 skb->sender_cpu = raw_smp_processor_id() + 1; 4582 #endif 4583 4584 if (dev->real_num_tx_queues != 1) { 4585 const struct net_device_ops *ops = dev->netdev_ops; 4586 4587 if (ops->ndo_select_queue) 4588 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4589 else 4590 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4591 4592 queue_index = netdev_cap_txqueue(dev, queue_index); 4593 } 4594 4595 skb_set_queue_mapping(skb, queue_index); 4596 return netdev_get_tx_queue(dev, queue_index); 4597 } 4598 4599 /** 4600 * __dev_queue_xmit() - transmit a buffer 4601 * @skb: buffer to transmit 4602 * @sb_dev: suboordinate device used for L2 forwarding offload 4603 * 4604 * Queue a buffer for transmission to a network device. The caller must 4605 * have set the device and priority and built the buffer before calling 4606 * this function. The function can be called from an interrupt. 4607 * 4608 * When calling this method, interrupts MUST be enabled. This is because 4609 * the BH enable code must have IRQs enabled so that it will not deadlock. 4610 * 4611 * Regardless of the return value, the skb is consumed, so it is currently 4612 * difficult to retry a send to this method. (You can bump the ref count 4613 * before sending to hold a reference for retry if you are careful.) 4614 * 4615 * Return: 4616 * * 0 - buffer successfully transmitted 4617 * * positive qdisc return code - NET_XMIT_DROP etc. 4618 * * negative errno - other errors 4619 */ 4620 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4621 { 4622 struct net_device *dev = skb->dev; 4623 struct netdev_queue *txq = NULL; 4624 struct Qdisc *q; 4625 int rc = -ENOMEM; 4626 bool again = false; 4627 4628 skb_reset_mac_header(skb); 4629 skb_assert_len(skb); 4630 4631 if (unlikely(skb_shinfo(skb)->tx_flags & 4632 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4633 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4634 4635 /* Disable soft irqs for various locks below. Also 4636 * stops preemption for RCU. 4637 */ 4638 rcu_read_lock_bh(); 4639 4640 skb_update_prio(skb); 4641 4642 qdisc_pkt_len_init(skb); 4643 tcx_set_ingress(skb, false); 4644 #ifdef CONFIG_NET_EGRESS 4645 if (static_branch_unlikely(&egress_needed_key)) { 4646 if (nf_hook_egress_active()) { 4647 skb = nf_hook_egress(skb, &rc, dev); 4648 if (!skb) 4649 goto out; 4650 } 4651 4652 netdev_xmit_skip_txqueue(false); 4653 4654 nf_skip_egress(skb, true); 4655 skb = sch_handle_egress(skb, &rc, dev); 4656 if (!skb) 4657 goto out; 4658 nf_skip_egress(skb, false); 4659 4660 if (netdev_xmit_txqueue_skipped()) 4661 txq = netdev_tx_queue_mapping(dev, skb); 4662 } 4663 #endif 4664 /* If device/qdisc don't need skb->dst, release it right now while 4665 * its hot in this cpu cache. 4666 */ 4667 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4668 skb_dst_drop(skb); 4669 else 4670 skb_dst_force(skb); 4671 4672 if (!txq) 4673 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4674 4675 q = rcu_dereference_bh(txq->qdisc); 4676 4677 trace_net_dev_queue(skb); 4678 if (q->enqueue) { 4679 rc = __dev_xmit_skb(skb, q, dev, txq); 4680 goto out; 4681 } 4682 4683 /* The device has no queue. Common case for software devices: 4684 * loopback, all the sorts of tunnels... 4685 4686 * Really, it is unlikely that netif_tx_lock protection is necessary 4687 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4688 * counters.) 4689 * However, it is possible, that they rely on protection 4690 * made by us here. 4691 4692 * Check this and shot the lock. It is not prone from deadlocks. 4693 *Either shot noqueue qdisc, it is even simpler 8) 4694 */ 4695 if (dev->flags & IFF_UP) { 4696 int cpu = smp_processor_id(); /* ok because BHs are off */ 4697 4698 /* Other cpus might concurrently change txq->xmit_lock_owner 4699 * to -1 or to their cpu id, but not to our id. 4700 */ 4701 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4702 if (dev_xmit_recursion()) 4703 goto recursion_alert; 4704 4705 skb = validate_xmit_skb(skb, dev, &again); 4706 if (!skb) 4707 goto out; 4708 4709 HARD_TX_LOCK(dev, txq, cpu); 4710 4711 if (!netif_xmit_stopped(txq)) { 4712 dev_xmit_recursion_inc(); 4713 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4714 dev_xmit_recursion_dec(); 4715 if (dev_xmit_complete(rc)) { 4716 HARD_TX_UNLOCK(dev, txq); 4717 goto out; 4718 } 4719 } 4720 HARD_TX_UNLOCK(dev, txq); 4721 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4722 dev->name); 4723 } else { 4724 /* Recursion is detected! It is possible, 4725 * unfortunately 4726 */ 4727 recursion_alert: 4728 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4729 dev->name); 4730 } 4731 } 4732 4733 rc = -ENETDOWN; 4734 rcu_read_unlock_bh(); 4735 4736 dev_core_stats_tx_dropped_inc(dev); 4737 kfree_skb_list(skb); 4738 return rc; 4739 out: 4740 rcu_read_unlock_bh(); 4741 return rc; 4742 } 4743 EXPORT_SYMBOL(__dev_queue_xmit); 4744 4745 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4746 { 4747 struct net_device *dev = skb->dev; 4748 struct sk_buff *orig_skb = skb; 4749 struct netdev_queue *txq; 4750 int ret = NETDEV_TX_BUSY; 4751 bool again = false; 4752 4753 if (unlikely(!netif_running(dev) || 4754 !netif_carrier_ok(dev))) 4755 goto drop; 4756 4757 skb = validate_xmit_skb_list(skb, dev, &again); 4758 if (skb != orig_skb) 4759 goto drop; 4760 4761 skb_set_queue_mapping(skb, queue_id); 4762 txq = skb_get_tx_queue(dev, skb); 4763 4764 local_bh_disable(); 4765 4766 dev_xmit_recursion_inc(); 4767 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4768 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4769 ret = netdev_start_xmit(skb, dev, txq, false); 4770 HARD_TX_UNLOCK(dev, txq); 4771 dev_xmit_recursion_dec(); 4772 4773 local_bh_enable(); 4774 return ret; 4775 drop: 4776 dev_core_stats_tx_dropped_inc(dev); 4777 kfree_skb_list(skb); 4778 return NET_XMIT_DROP; 4779 } 4780 EXPORT_SYMBOL(__dev_direct_xmit); 4781 4782 /************************************************************************* 4783 * Receiver routines 4784 *************************************************************************/ 4785 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4786 4787 int weight_p __read_mostly = 64; /* old backlog weight */ 4788 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4789 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4790 4791 /* Called with irq disabled */ 4792 static inline void ____napi_schedule(struct softnet_data *sd, 4793 struct napi_struct *napi) 4794 { 4795 struct task_struct *thread; 4796 4797 lockdep_assert_irqs_disabled(); 4798 4799 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4800 /* Paired with smp_mb__before_atomic() in 4801 * napi_enable()/dev_set_threaded(). 4802 * Use READ_ONCE() to guarantee a complete 4803 * read on napi->thread. Only call 4804 * wake_up_process() when it's not NULL. 4805 */ 4806 thread = READ_ONCE(napi->thread); 4807 if (thread) { 4808 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4809 goto use_local_napi; 4810 4811 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4812 wake_up_process(thread); 4813 return; 4814 } 4815 } 4816 4817 use_local_napi: 4818 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4819 list_add_tail(&napi->poll_list, &sd->poll_list); 4820 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4821 /* If not called from net_rx_action() 4822 * we have to raise NET_RX_SOFTIRQ. 4823 */ 4824 if (!sd->in_net_rx_action) 4825 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4826 } 4827 4828 #ifdef CONFIG_RPS 4829 4830 struct static_key_false rps_needed __read_mostly; 4831 EXPORT_SYMBOL(rps_needed); 4832 struct static_key_false rfs_needed __read_mostly; 4833 EXPORT_SYMBOL(rfs_needed); 4834 4835 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4836 { 4837 return hash_32(hash, flow_table->log); 4838 } 4839 4840 static struct rps_dev_flow * 4841 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4842 struct rps_dev_flow *rflow, u16 next_cpu) 4843 { 4844 if (next_cpu < nr_cpu_ids) { 4845 u32 head; 4846 #ifdef CONFIG_RFS_ACCEL 4847 struct netdev_rx_queue *rxqueue; 4848 struct rps_dev_flow_table *flow_table; 4849 struct rps_dev_flow *old_rflow; 4850 u16 rxq_index; 4851 u32 flow_id; 4852 int rc; 4853 4854 /* Should we steer this flow to a different hardware queue? */ 4855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4856 !(dev->features & NETIF_F_NTUPLE)) 4857 goto out; 4858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4859 if (rxq_index == skb_get_rx_queue(skb)) 4860 goto out; 4861 4862 rxqueue = dev->_rx + rxq_index; 4863 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4864 if (!flow_table) 4865 goto out; 4866 flow_id = rfs_slot(skb_get_hash(skb), flow_table); 4867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4868 rxq_index, flow_id); 4869 if (rc < 0) 4870 goto out; 4871 old_rflow = rflow; 4872 rflow = &flow_table->flows[flow_id]; 4873 WRITE_ONCE(rflow->filter, rc); 4874 if (old_rflow->filter == rc) 4875 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4876 out: 4877 #endif 4878 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4879 rps_input_queue_tail_save(&rflow->last_qtail, head); 4880 } 4881 4882 WRITE_ONCE(rflow->cpu, next_cpu); 4883 return rflow; 4884 } 4885 4886 /* 4887 * get_rps_cpu is called from netif_receive_skb and returns the target 4888 * CPU from the RPS map of the receiving queue for a given skb. 4889 * rcu_read_lock must be held on entry. 4890 */ 4891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4892 struct rps_dev_flow **rflowp) 4893 { 4894 const struct rps_sock_flow_table *sock_flow_table; 4895 struct netdev_rx_queue *rxqueue = dev->_rx; 4896 struct rps_dev_flow_table *flow_table; 4897 struct rps_map *map; 4898 int cpu = -1; 4899 u32 tcpu; 4900 u32 hash; 4901 4902 if (skb_rx_queue_recorded(skb)) { 4903 u16 index = skb_get_rx_queue(skb); 4904 4905 if (unlikely(index >= dev->real_num_rx_queues)) { 4906 WARN_ONCE(dev->real_num_rx_queues > 1, 4907 "%s received packet on queue %u, but number " 4908 "of RX queues is %u\n", 4909 dev->name, index, dev->real_num_rx_queues); 4910 goto done; 4911 } 4912 rxqueue += index; 4913 } 4914 4915 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4916 4917 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4918 map = rcu_dereference(rxqueue->rps_map); 4919 if (!flow_table && !map) 4920 goto done; 4921 4922 skb_reset_network_header(skb); 4923 hash = skb_get_hash(skb); 4924 if (!hash) 4925 goto done; 4926 4927 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4928 if (flow_table && sock_flow_table) { 4929 struct rps_dev_flow *rflow; 4930 u32 next_cpu; 4931 u32 ident; 4932 4933 /* First check into global flow table if there is a match. 4934 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4935 */ 4936 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4937 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4938 goto try_rps; 4939 4940 next_cpu = ident & net_hotdata.rps_cpu_mask; 4941 4942 /* OK, now we know there is a match, 4943 * we can look at the local (per receive queue) flow table 4944 */ 4945 rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; 4946 tcpu = rflow->cpu; 4947 4948 /* 4949 * If the desired CPU (where last recvmsg was done) is 4950 * different from current CPU (one in the rx-queue flow 4951 * table entry), switch if one of the following holds: 4952 * - Current CPU is unset (>= nr_cpu_ids). 4953 * - Current CPU is offline. 4954 * - The current CPU's queue tail has advanced beyond the 4955 * last packet that was enqueued using this table entry. 4956 * This guarantees that all previous packets for the flow 4957 * have been dequeued, thus preserving in order delivery. 4958 */ 4959 if (unlikely(tcpu != next_cpu) && 4960 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4961 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4962 rflow->last_qtail)) >= 0)) { 4963 tcpu = next_cpu; 4964 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4965 } 4966 4967 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4968 *rflowp = rflow; 4969 cpu = tcpu; 4970 goto done; 4971 } 4972 } 4973 4974 try_rps: 4975 4976 if (map) { 4977 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4978 if (cpu_online(tcpu)) { 4979 cpu = tcpu; 4980 goto done; 4981 } 4982 } 4983 4984 done: 4985 return cpu; 4986 } 4987 4988 #ifdef CONFIG_RFS_ACCEL 4989 4990 /** 4991 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4992 * @dev: Device on which the filter was set 4993 * @rxq_index: RX queue index 4994 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4995 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4996 * 4997 * Drivers that implement ndo_rx_flow_steer() should periodically call 4998 * this function for each installed filter and remove the filters for 4999 * which it returns %true. 5000 */ 5001 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5002 u32 flow_id, u16 filter_id) 5003 { 5004 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5005 struct rps_dev_flow_table *flow_table; 5006 struct rps_dev_flow *rflow; 5007 bool expire = true; 5008 unsigned int cpu; 5009 5010 rcu_read_lock(); 5011 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5012 if (flow_table && flow_id < (1UL << flow_table->log)) { 5013 rflow = &flow_table->flows[flow_id]; 5014 cpu = READ_ONCE(rflow->cpu); 5015 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 5016 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 5017 READ_ONCE(rflow->last_qtail)) < 5018 (int)(10 << flow_table->log))) 5019 expire = false; 5020 } 5021 rcu_read_unlock(); 5022 return expire; 5023 } 5024 EXPORT_SYMBOL(rps_may_expire_flow); 5025 5026 #endif /* CONFIG_RFS_ACCEL */ 5027 5028 /* Called from hardirq (IPI) context */ 5029 static void rps_trigger_softirq(void *data) 5030 { 5031 struct softnet_data *sd = data; 5032 5033 ____napi_schedule(sd, &sd->backlog); 5034 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5035 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5036 } 5037 5038 #endif /* CONFIG_RPS */ 5039 5040 /* Called from hardirq (IPI) context */ 5041 static void trigger_rx_softirq(void *data) 5042 { 5043 struct softnet_data *sd = data; 5044 5045 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5046 smp_store_release(&sd->defer_ipi_scheduled, 0); 5047 } 5048 5049 /* 5050 * After we queued a packet into sd->input_pkt_queue, 5051 * we need to make sure this queue is serviced soon. 5052 * 5053 * - If this is another cpu queue, link it to our rps_ipi_list, 5054 * and make sure we will process rps_ipi_list from net_rx_action(). 5055 * 5056 * - If this is our own queue, NAPI schedule our backlog. 5057 * Note that this also raises NET_RX_SOFTIRQ. 5058 */ 5059 static void napi_schedule_rps(struct softnet_data *sd) 5060 { 5061 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5062 5063 #ifdef CONFIG_RPS 5064 if (sd != mysd) { 5065 if (use_backlog_threads()) { 5066 __napi_schedule_irqoff(&sd->backlog); 5067 return; 5068 } 5069 5070 sd->rps_ipi_next = mysd->rps_ipi_list; 5071 mysd->rps_ipi_list = sd; 5072 5073 /* If not called from net_rx_action() or napi_threaded_poll() 5074 * we have to raise NET_RX_SOFTIRQ. 5075 */ 5076 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5077 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5078 return; 5079 } 5080 #endif /* CONFIG_RPS */ 5081 __napi_schedule_irqoff(&mysd->backlog); 5082 } 5083 5084 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5085 { 5086 unsigned long flags; 5087 5088 if (use_backlog_threads()) { 5089 backlog_lock_irq_save(sd, &flags); 5090 5091 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5092 __napi_schedule_irqoff(&sd->backlog); 5093 5094 backlog_unlock_irq_restore(sd, &flags); 5095 5096 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5097 smp_call_function_single_async(cpu, &sd->defer_csd); 5098 } 5099 } 5100 5101 #ifdef CONFIG_NET_FLOW_LIMIT 5102 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5103 #endif 5104 5105 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5106 { 5107 #ifdef CONFIG_NET_FLOW_LIMIT 5108 struct sd_flow_limit *fl; 5109 struct softnet_data *sd; 5110 unsigned int old_flow, new_flow; 5111 5112 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5113 return false; 5114 5115 sd = this_cpu_ptr(&softnet_data); 5116 5117 rcu_read_lock(); 5118 fl = rcu_dereference(sd->flow_limit); 5119 if (fl) { 5120 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5121 old_flow = fl->history[fl->history_head]; 5122 fl->history[fl->history_head] = new_flow; 5123 5124 fl->history_head++; 5125 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5126 5127 if (likely(fl->buckets[old_flow])) 5128 fl->buckets[old_flow]--; 5129 5130 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5131 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5132 WRITE_ONCE(fl->count, fl->count + 1); 5133 rcu_read_unlock(); 5134 return true; 5135 } 5136 } 5137 rcu_read_unlock(); 5138 #endif 5139 return false; 5140 } 5141 5142 /* 5143 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5144 * queue (may be a remote CPU queue). 5145 */ 5146 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5147 unsigned int *qtail) 5148 { 5149 enum skb_drop_reason reason; 5150 struct softnet_data *sd; 5151 unsigned long flags; 5152 unsigned int qlen; 5153 int max_backlog; 5154 u32 tail; 5155 5156 reason = SKB_DROP_REASON_DEV_READY; 5157 if (!netif_running(skb->dev)) 5158 goto bad_dev; 5159 5160 reason = SKB_DROP_REASON_CPU_BACKLOG; 5161 sd = &per_cpu(softnet_data, cpu); 5162 5163 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5164 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5165 if (unlikely(qlen > max_backlog)) 5166 goto cpu_backlog_drop; 5167 backlog_lock_irq_save(sd, &flags); 5168 qlen = skb_queue_len(&sd->input_pkt_queue); 5169 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5170 if (!qlen) { 5171 /* Schedule NAPI for backlog device. We can use 5172 * non atomic operation as we own the queue lock. 5173 */ 5174 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5175 &sd->backlog.state)) 5176 napi_schedule_rps(sd); 5177 } 5178 __skb_queue_tail(&sd->input_pkt_queue, skb); 5179 tail = rps_input_queue_tail_incr(sd); 5180 backlog_unlock_irq_restore(sd, &flags); 5181 5182 /* save the tail outside of the critical section */ 5183 rps_input_queue_tail_save(qtail, tail); 5184 return NET_RX_SUCCESS; 5185 } 5186 5187 backlog_unlock_irq_restore(sd, &flags); 5188 5189 cpu_backlog_drop: 5190 atomic_inc(&sd->dropped); 5191 bad_dev: 5192 dev_core_stats_rx_dropped_inc(skb->dev); 5193 kfree_skb_reason(skb, reason); 5194 return NET_RX_DROP; 5195 } 5196 5197 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5198 { 5199 struct net_device *dev = skb->dev; 5200 struct netdev_rx_queue *rxqueue; 5201 5202 rxqueue = dev->_rx; 5203 5204 if (skb_rx_queue_recorded(skb)) { 5205 u16 index = skb_get_rx_queue(skb); 5206 5207 if (unlikely(index >= dev->real_num_rx_queues)) { 5208 WARN_ONCE(dev->real_num_rx_queues > 1, 5209 "%s received packet on queue %u, but number " 5210 "of RX queues is %u\n", 5211 dev->name, index, dev->real_num_rx_queues); 5212 5213 return rxqueue; /* Return first rxqueue */ 5214 } 5215 rxqueue += index; 5216 } 5217 return rxqueue; 5218 } 5219 5220 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5221 const struct bpf_prog *xdp_prog) 5222 { 5223 void *orig_data, *orig_data_end, *hard_start; 5224 struct netdev_rx_queue *rxqueue; 5225 bool orig_bcast, orig_host; 5226 u32 mac_len, frame_sz; 5227 __be16 orig_eth_type; 5228 struct ethhdr *eth; 5229 u32 metalen, act; 5230 int off; 5231 5232 /* The XDP program wants to see the packet starting at the MAC 5233 * header. 5234 */ 5235 mac_len = skb->data - skb_mac_header(skb); 5236 hard_start = skb->data - skb_headroom(skb); 5237 5238 /* SKB "head" area always have tailroom for skb_shared_info */ 5239 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5240 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5241 5242 rxqueue = netif_get_rxqueue(skb); 5243 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5244 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5245 skb_headlen(skb) + mac_len, true); 5246 if (skb_is_nonlinear(skb)) { 5247 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5248 xdp_buff_set_frags_flag(xdp); 5249 } else { 5250 xdp_buff_clear_frags_flag(xdp); 5251 } 5252 5253 orig_data_end = xdp->data_end; 5254 orig_data = xdp->data; 5255 eth = (struct ethhdr *)xdp->data; 5256 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5257 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5258 orig_eth_type = eth->h_proto; 5259 5260 act = bpf_prog_run_xdp(xdp_prog, xdp); 5261 5262 /* check if bpf_xdp_adjust_head was used */ 5263 off = xdp->data - orig_data; 5264 if (off) { 5265 if (off > 0) 5266 __skb_pull(skb, off); 5267 else if (off < 0) 5268 __skb_push(skb, -off); 5269 5270 skb->mac_header += off; 5271 skb_reset_network_header(skb); 5272 } 5273 5274 /* check if bpf_xdp_adjust_tail was used */ 5275 off = xdp->data_end - orig_data_end; 5276 if (off != 0) { 5277 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5278 skb->len += off; /* positive on grow, negative on shrink */ 5279 } 5280 5281 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5282 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5283 */ 5284 if (xdp_buff_has_frags(xdp)) 5285 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5286 else 5287 skb->data_len = 0; 5288 5289 /* check if XDP changed eth hdr such SKB needs update */ 5290 eth = (struct ethhdr *)xdp->data; 5291 if ((orig_eth_type != eth->h_proto) || 5292 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5293 skb->dev->dev_addr)) || 5294 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5295 __skb_push(skb, ETH_HLEN); 5296 skb->pkt_type = PACKET_HOST; 5297 skb->protocol = eth_type_trans(skb, skb->dev); 5298 } 5299 5300 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5301 * before calling us again on redirect path. We do not call do_redirect 5302 * as we leave that up to the caller. 5303 * 5304 * Caller is responsible for managing lifetime of skb (i.e. calling 5305 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5306 */ 5307 switch (act) { 5308 case XDP_REDIRECT: 5309 case XDP_TX: 5310 __skb_push(skb, mac_len); 5311 break; 5312 case XDP_PASS: 5313 metalen = xdp->data - xdp->data_meta; 5314 if (metalen) 5315 skb_metadata_set(skb, metalen); 5316 break; 5317 } 5318 5319 return act; 5320 } 5321 5322 static int 5323 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5324 { 5325 struct sk_buff *skb = *pskb; 5326 int err, hroom, troom; 5327 5328 local_lock_nested_bh(&system_page_pool.bh_lock); 5329 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5330 local_unlock_nested_bh(&system_page_pool.bh_lock); 5331 if (!err) 5332 return 0; 5333 5334 /* In case we have to go down the path and also linearize, 5335 * then lets do the pskb_expand_head() work just once here. 5336 */ 5337 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5338 troom = skb->tail + skb->data_len - skb->end; 5339 err = pskb_expand_head(skb, 5340 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5341 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5342 if (err) 5343 return err; 5344 5345 return skb_linearize(skb); 5346 } 5347 5348 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5349 struct xdp_buff *xdp, 5350 const struct bpf_prog *xdp_prog) 5351 { 5352 struct sk_buff *skb = *pskb; 5353 u32 mac_len, act = XDP_DROP; 5354 5355 /* Reinjected packets coming from act_mirred or similar should 5356 * not get XDP generic processing. 5357 */ 5358 if (skb_is_redirected(skb)) 5359 return XDP_PASS; 5360 5361 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5362 * bytes. This is the guarantee that also native XDP provides, 5363 * thus we need to do it here as well. 5364 */ 5365 mac_len = skb->data - skb_mac_header(skb); 5366 __skb_push(skb, mac_len); 5367 5368 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5369 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5370 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5371 goto do_drop; 5372 } 5373 5374 __skb_pull(*pskb, mac_len); 5375 5376 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5377 switch (act) { 5378 case XDP_REDIRECT: 5379 case XDP_TX: 5380 case XDP_PASS: 5381 break; 5382 default: 5383 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5384 fallthrough; 5385 case XDP_ABORTED: 5386 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5387 fallthrough; 5388 case XDP_DROP: 5389 do_drop: 5390 kfree_skb(*pskb); 5391 break; 5392 } 5393 5394 return act; 5395 } 5396 5397 /* When doing generic XDP we have to bypass the qdisc layer and the 5398 * network taps in order to match in-driver-XDP behavior. This also means 5399 * that XDP packets are able to starve other packets going through a qdisc, 5400 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5401 * queues, so they do not have this starvation issue. 5402 */ 5403 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5404 { 5405 struct net_device *dev = skb->dev; 5406 struct netdev_queue *txq; 5407 bool free_skb = true; 5408 int cpu, rc; 5409 5410 txq = netdev_core_pick_tx(dev, skb, NULL); 5411 cpu = smp_processor_id(); 5412 HARD_TX_LOCK(dev, txq, cpu); 5413 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5414 rc = netdev_start_xmit(skb, dev, txq, 0); 5415 if (dev_xmit_complete(rc)) 5416 free_skb = false; 5417 } 5418 HARD_TX_UNLOCK(dev, txq); 5419 if (free_skb) { 5420 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5421 dev_core_stats_tx_dropped_inc(dev); 5422 kfree_skb(skb); 5423 } 5424 } 5425 5426 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5427 5428 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5429 { 5430 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5431 5432 if (xdp_prog) { 5433 struct xdp_buff xdp; 5434 u32 act; 5435 int err; 5436 5437 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5438 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5439 if (act != XDP_PASS) { 5440 switch (act) { 5441 case XDP_REDIRECT: 5442 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5443 &xdp, xdp_prog); 5444 if (err) 5445 goto out_redir; 5446 break; 5447 case XDP_TX: 5448 generic_xdp_tx(*pskb, xdp_prog); 5449 break; 5450 } 5451 bpf_net_ctx_clear(bpf_net_ctx); 5452 return XDP_DROP; 5453 } 5454 bpf_net_ctx_clear(bpf_net_ctx); 5455 } 5456 return XDP_PASS; 5457 out_redir: 5458 bpf_net_ctx_clear(bpf_net_ctx); 5459 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5460 return XDP_DROP; 5461 } 5462 EXPORT_SYMBOL_GPL(do_xdp_generic); 5463 5464 static int netif_rx_internal(struct sk_buff *skb) 5465 { 5466 int ret; 5467 5468 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5469 5470 trace_netif_rx(skb); 5471 5472 #ifdef CONFIG_RPS 5473 if (static_branch_unlikely(&rps_needed)) { 5474 struct rps_dev_flow voidflow, *rflow = &voidflow; 5475 int cpu; 5476 5477 rcu_read_lock(); 5478 5479 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5480 if (cpu < 0) 5481 cpu = smp_processor_id(); 5482 5483 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5484 5485 rcu_read_unlock(); 5486 } else 5487 #endif 5488 { 5489 unsigned int qtail; 5490 5491 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5492 } 5493 return ret; 5494 } 5495 5496 /** 5497 * __netif_rx - Slightly optimized version of netif_rx 5498 * @skb: buffer to post 5499 * 5500 * This behaves as netif_rx except that it does not disable bottom halves. 5501 * As a result this function may only be invoked from the interrupt context 5502 * (either hard or soft interrupt). 5503 */ 5504 int __netif_rx(struct sk_buff *skb) 5505 { 5506 int ret; 5507 5508 lockdep_assert_once(hardirq_count() | softirq_count()); 5509 5510 trace_netif_rx_entry(skb); 5511 ret = netif_rx_internal(skb); 5512 trace_netif_rx_exit(ret); 5513 return ret; 5514 } 5515 EXPORT_SYMBOL(__netif_rx); 5516 5517 /** 5518 * netif_rx - post buffer to the network code 5519 * @skb: buffer to post 5520 * 5521 * This function receives a packet from a device driver and queues it for 5522 * the upper (protocol) levels to process via the backlog NAPI device. It 5523 * always succeeds. The buffer may be dropped during processing for 5524 * congestion control or by the protocol layers. 5525 * The network buffer is passed via the backlog NAPI device. Modern NIC 5526 * driver should use NAPI and GRO. 5527 * This function can used from interrupt and from process context. The 5528 * caller from process context must not disable interrupts before invoking 5529 * this function. 5530 * 5531 * return values: 5532 * NET_RX_SUCCESS (no congestion) 5533 * NET_RX_DROP (packet was dropped) 5534 * 5535 */ 5536 int netif_rx(struct sk_buff *skb) 5537 { 5538 bool need_bh_off = !(hardirq_count() | softirq_count()); 5539 int ret; 5540 5541 if (need_bh_off) 5542 local_bh_disable(); 5543 trace_netif_rx_entry(skb); 5544 ret = netif_rx_internal(skb); 5545 trace_netif_rx_exit(ret); 5546 if (need_bh_off) 5547 local_bh_enable(); 5548 return ret; 5549 } 5550 EXPORT_SYMBOL(netif_rx); 5551 5552 static __latent_entropy void net_tx_action(void) 5553 { 5554 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5555 5556 if (sd->completion_queue) { 5557 struct sk_buff *clist; 5558 5559 local_irq_disable(); 5560 clist = sd->completion_queue; 5561 sd->completion_queue = NULL; 5562 local_irq_enable(); 5563 5564 while (clist) { 5565 struct sk_buff *skb = clist; 5566 5567 clist = clist->next; 5568 5569 WARN_ON(refcount_read(&skb->users)); 5570 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5571 trace_consume_skb(skb, net_tx_action); 5572 else 5573 trace_kfree_skb(skb, net_tx_action, 5574 get_kfree_skb_cb(skb)->reason, NULL); 5575 5576 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5577 __kfree_skb(skb); 5578 else 5579 __napi_kfree_skb(skb, 5580 get_kfree_skb_cb(skb)->reason); 5581 } 5582 } 5583 5584 if (sd->output_queue) { 5585 struct Qdisc *head; 5586 5587 local_irq_disable(); 5588 head = sd->output_queue; 5589 sd->output_queue = NULL; 5590 sd->output_queue_tailp = &sd->output_queue; 5591 local_irq_enable(); 5592 5593 rcu_read_lock(); 5594 5595 while (head) { 5596 struct Qdisc *q = head; 5597 spinlock_t *root_lock = NULL; 5598 5599 head = head->next_sched; 5600 5601 /* We need to make sure head->next_sched is read 5602 * before clearing __QDISC_STATE_SCHED 5603 */ 5604 smp_mb__before_atomic(); 5605 5606 if (!(q->flags & TCQ_F_NOLOCK)) { 5607 root_lock = qdisc_lock(q); 5608 spin_lock(root_lock); 5609 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5610 &q->state))) { 5611 /* There is a synchronize_net() between 5612 * STATE_DEACTIVATED flag being set and 5613 * qdisc_reset()/some_qdisc_is_busy() in 5614 * dev_deactivate(), so we can safely bail out 5615 * early here to avoid data race between 5616 * qdisc_deactivate() and some_qdisc_is_busy() 5617 * for lockless qdisc. 5618 */ 5619 clear_bit(__QDISC_STATE_SCHED, &q->state); 5620 continue; 5621 } 5622 5623 clear_bit(__QDISC_STATE_SCHED, &q->state); 5624 qdisc_run(q); 5625 if (root_lock) 5626 spin_unlock(root_lock); 5627 } 5628 5629 rcu_read_unlock(); 5630 } 5631 5632 xfrm_dev_backlog(sd); 5633 } 5634 5635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5636 /* This hook is defined here for ATM LANE */ 5637 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5638 unsigned char *addr) __read_mostly; 5639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5640 #endif 5641 5642 /** 5643 * netdev_is_rx_handler_busy - check if receive handler is registered 5644 * @dev: device to check 5645 * 5646 * Check if a receive handler is already registered for a given device. 5647 * Return true if there one. 5648 * 5649 * The caller must hold the rtnl_mutex. 5650 */ 5651 bool netdev_is_rx_handler_busy(struct net_device *dev) 5652 { 5653 ASSERT_RTNL(); 5654 return dev && rtnl_dereference(dev->rx_handler); 5655 } 5656 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5657 5658 /** 5659 * netdev_rx_handler_register - register receive handler 5660 * @dev: device to register a handler for 5661 * @rx_handler: receive handler to register 5662 * @rx_handler_data: data pointer that is used by rx handler 5663 * 5664 * Register a receive handler for a device. This handler will then be 5665 * called from __netif_receive_skb. A negative errno code is returned 5666 * on a failure. 5667 * 5668 * The caller must hold the rtnl_mutex. 5669 * 5670 * For a general description of rx_handler, see enum rx_handler_result. 5671 */ 5672 int netdev_rx_handler_register(struct net_device *dev, 5673 rx_handler_func_t *rx_handler, 5674 void *rx_handler_data) 5675 { 5676 if (netdev_is_rx_handler_busy(dev)) 5677 return -EBUSY; 5678 5679 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5680 return -EINVAL; 5681 5682 /* Note: rx_handler_data must be set before rx_handler */ 5683 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5684 rcu_assign_pointer(dev->rx_handler, rx_handler); 5685 5686 return 0; 5687 } 5688 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5689 5690 /** 5691 * netdev_rx_handler_unregister - unregister receive handler 5692 * @dev: device to unregister a handler from 5693 * 5694 * Unregister a receive handler from a device. 5695 * 5696 * The caller must hold the rtnl_mutex. 5697 */ 5698 void netdev_rx_handler_unregister(struct net_device *dev) 5699 { 5700 5701 ASSERT_RTNL(); 5702 RCU_INIT_POINTER(dev->rx_handler, NULL); 5703 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5704 * section has a guarantee to see a non NULL rx_handler_data 5705 * as well. 5706 */ 5707 synchronize_net(); 5708 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5709 } 5710 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5711 5712 /* 5713 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5714 * the special handling of PFMEMALLOC skbs. 5715 */ 5716 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5717 { 5718 switch (skb->protocol) { 5719 case htons(ETH_P_ARP): 5720 case htons(ETH_P_IP): 5721 case htons(ETH_P_IPV6): 5722 case htons(ETH_P_8021Q): 5723 case htons(ETH_P_8021AD): 5724 return true; 5725 default: 5726 return false; 5727 } 5728 } 5729 5730 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5731 int *ret, struct net_device *orig_dev) 5732 { 5733 if (nf_hook_ingress_active(skb)) { 5734 int ingress_retval; 5735 5736 if (*pt_prev) { 5737 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5738 *pt_prev = NULL; 5739 } 5740 5741 rcu_read_lock(); 5742 ingress_retval = nf_hook_ingress(skb); 5743 rcu_read_unlock(); 5744 return ingress_retval; 5745 } 5746 return 0; 5747 } 5748 5749 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5750 struct packet_type **ppt_prev) 5751 { 5752 struct packet_type *ptype, *pt_prev; 5753 rx_handler_func_t *rx_handler; 5754 struct sk_buff *skb = *pskb; 5755 struct net_device *orig_dev; 5756 bool deliver_exact = false; 5757 int ret = NET_RX_DROP; 5758 __be16 type; 5759 5760 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5761 5762 trace_netif_receive_skb(skb); 5763 5764 orig_dev = skb->dev; 5765 5766 skb_reset_network_header(skb); 5767 #if !defined(CONFIG_DEBUG_NET) 5768 /* We plan to no longer reset the transport header here. 5769 * Give some time to fuzzers and dev build to catch bugs 5770 * in network stacks. 5771 */ 5772 if (!skb_transport_header_was_set(skb)) 5773 skb_reset_transport_header(skb); 5774 #endif 5775 skb_reset_mac_len(skb); 5776 5777 pt_prev = NULL; 5778 5779 another_round: 5780 skb->skb_iif = skb->dev->ifindex; 5781 5782 __this_cpu_inc(softnet_data.processed); 5783 5784 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5785 int ret2; 5786 5787 migrate_disable(); 5788 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5789 &skb); 5790 migrate_enable(); 5791 5792 if (ret2 != XDP_PASS) { 5793 ret = NET_RX_DROP; 5794 goto out; 5795 } 5796 } 5797 5798 if (eth_type_vlan(skb->protocol)) { 5799 skb = skb_vlan_untag(skb); 5800 if (unlikely(!skb)) 5801 goto out; 5802 } 5803 5804 if (skb_skip_tc_classify(skb)) 5805 goto skip_classify; 5806 5807 if (pfmemalloc) 5808 goto skip_taps; 5809 5810 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5811 list) { 5812 if (pt_prev) 5813 ret = deliver_skb(skb, pt_prev, orig_dev); 5814 pt_prev = ptype; 5815 } 5816 5817 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5818 if (pt_prev) 5819 ret = deliver_skb(skb, pt_prev, orig_dev); 5820 pt_prev = ptype; 5821 } 5822 5823 skip_taps: 5824 #ifdef CONFIG_NET_INGRESS 5825 if (static_branch_unlikely(&ingress_needed_key)) { 5826 bool another = false; 5827 5828 nf_skip_egress(skb, true); 5829 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5830 &another); 5831 if (another) 5832 goto another_round; 5833 if (!skb) 5834 goto out; 5835 5836 nf_skip_egress(skb, false); 5837 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5838 goto out; 5839 } 5840 #endif 5841 skb_reset_redirect(skb); 5842 skip_classify: 5843 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5844 goto drop; 5845 5846 if (skb_vlan_tag_present(skb)) { 5847 if (pt_prev) { 5848 ret = deliver_skb(skb, pt_prev, orig_dev); 5849 pt_prev = NULL; 5850 } 5851 if (vlan_do_receive(&skb)) 5852 goto another_round; 5853 else if (unlikely(!skb)) 5854 goto out; 5855 } 5856 5857 rx_handler = rcu_dereference(skb->dev->rx_handler); 5858 if (rx_handler) { 5859 if (pt_prev) { 5860 ret = deliver_skb(skb, pt_prev, orig_dev); 5861 pt_prev = NULL; 5862 } 5863 switch (rx_handler(&skb)) { 5864 case RX_HANDLER_CONSUMED: 5865 ret = NET_RX_SUCCESS; 5866 goto out; 5867 case RX_HANDLER_ANOTHER: 5868 goto another_round; 5869 case RX_HANDLER_EXACT: 5870 deliver_exact = true; 5871 break; 5872 case RX_HANDLER_PASS: 5873 break; 5874 default: 5875 BUG(); 5876 } 5877 } 5878 5879 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5880 check_vlan_id: 5881 if (skb_vlan_tag_get_id(skb)) { 5882 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5883 * find vlan device. 5884 */ 5885 skb->pkt_type = PACKET_OTHERHOST; 5886 } else if (eth_type_vlan(skb->protocol)) { 5887 /* Outer header is 802.1P with vlan 0, inner header is 5888 * 802.1Q or 802.1AD and vlan_do_receive() above could 5889 * not find vlan dev for vlan id 0. 5890 */ 5891 __vlan_hwaccel_clear_tag(skb); 5892 skb = skb_vlan_untag(skb); 5893 if (unlikely(!skb)) 5894 goto out; 5895 if (vlan_do_receive(&skb)) 5896 /* After stripping off 802.1P header with vlan 0 5897 * vlan dev is found for inner header. 5898 */ 5899 goto another_round; 5900 else if (unlikely(!skb)) 5901 goto out; 5902 else 5903 /* We have stripped outer 802.1P vlan 0 header. 5904 * But could not find vlan dev. 5905 * check again for vlan id to set OTHERHOST. 5906 */ 5907 goto check_vlan_id; 5908 } 5909 /* Note: we might in the future use prio bits 5910 * and set skb->priority like in vlan_do_receive() 5911 * For the time being, just ignore Priority Code Point 5912 */ 5913 __vlan_hwaccel_clear_tag(skb); 5914 } 5915 5916 type = skb->protocol; 5917 5918 /* deliver only exact match when indicated */ 5919 if (likely(!deliver_exact)) { 5920 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5921 &ptype_base[ntohs(type) & 5922 PTYPE_HASH_MASK]); 5923 5924 /* orig_dev and skb->dev could belong to different netns; 5925 * Even in such case we need to traverse only the list 5926 * coming from skb->dev, as the ptype owner (packet socket) 5927 * will use dev_net(skb->dev) to do namespace filtering. 5928 */ 5929 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5930 &dev_net_rcu(skb->dev)->ptype_specific); 5931 } 5932 5933 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5934 &orig_dev->ptype_specific); 5935 5936 if (unlikely(skb->dev != orig_dev)) { 5937 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5938 &skb->dev->ptype_specific); 5939 } 5940 5941 if (pt_prev) { 5942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5943 goto drop; 5944 *ppt_prev = pt_prev; 5945 } else { 5946 drop: 5947 if (!deliver_exact) 5948 dev_core_stats_rx_dropped_inc(skb->dev); 5949 else 5950 dev_core_stats_rx_nohandler_inc(skb->dev); 5951 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5952 /* Jamal, now you will not able to escape explaining 5953 * me how you were going to use this. :-) 5954 */ 5955 ret = NET_RX_DROP; 5956 } 5957 5958 out: 5959 /* The invariant here is that if *ppt_prev is not NULL 5960 * then skb should also be non-NULL. 5961 * 5962 * Apparently *ppt_prev assignment above holds this invariant due to 5963 * skb dereferencing near it. 5964 */ 5965 *pskb = skb; 5966 return ret; 5967 } 5968 5969 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5970 { 5971 struct net_device *orig_dev = skb->dev; 5972 struct packet_type *pt_prev = NULL; 5973 int ret; 5974 5975 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5976 if (pt_prev) 5977 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5978 skb->dev, pt_prev, orig_dev); 5979 return ret; 5980 } 5981 5982 /** 5983 * netif_receive_skb_core - special purpose version of netif_receive_skb 5984 * @skb: buffer to process 5985 * 5986 * More direct receive version of netif_receive_skb(). It should 5987 * only be used by callers that have a need to skip RPS and Generic XDP. 5988 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5989 * 5990 * This function may only be called from softirq context and interrupts 5991 * should be enabled. 5992 * 5993 * Return values (usually ignored): 5994 * NET_RX_SUCCESS: no congestion 5995 * NET_RX_DROP: packet was dropped 5996 */ 5997 int netif_receive_skb_core(struct sk_buff *skb) 5998 { 5999 int ret; 6000 6001 rcu_read_lock(); 6002 ret = __netif_receive_skb_one_core(skb, false); 6003 rcu_read_unlock(); 6004 6005 return ret; 6006 } 6007 EXPORT_SYMBOL(netif_receive_skb_core); 6008 6009 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6010 struct packet_type *pt_prev, 6011 struct net_device *orig_dev) 6012 { 6013 struct sk_buff *skb, *next; 6014 6015 if (!pt_prev) 6016 return; 6017 if (list_empty(head)) 6018 return; 6019 if (pt_prev->list_func != NULL) 6020 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6021 ip_list_rcv, head, pt_prev, orig_dev); 6022 else 6023 list_for_each_entry_safe(skb, next, head, list) { 6024 skb_list_del_init(skb); 6025 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6026 } 6027 } 6028 6029 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6030 { 6031 /* Fast-path assumptions: 6032 * - There is no RX handler. 6033 * - Only one packet_type matches. 6034 * If either of these fails, we will end up doing some per-packet 6035 * processing in-line, then handling the 'last ptype' for the whole 6036 * sublist. This can't cause out-of-order delivery to any single ptype, 6037 * because the 'last ptype' must be constant across the sublist, and all 6038 * other ptypes are handled per-packet. 6039 */ 6040 /* Current (common) ptype of sublist */ 6041 struct packet_type *pt_curr = NULL; 6042 /* Current (common) orig_dev of sublist */ 6043 struct net_device *od_curr = NULL; 6044 struct sk_buff *skb, *next; 6045 LIST_HEAD(sublist); 6046 6047 list_for_each_entry_safe(skb, next, head, list) { 6048 struct net_device *orig_dev = skb->dev; 6049 struct packet_type *pt_prev = NULL; 6050 6051 skb_list_del_init(skb); 6052 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6053 if (!pt_prev) 6054 continue; 6055 if (pt_curr != pt_prev || od_curr != orig_dev) { 6056 /* dispatch old sublist */ 6057 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6058 /* start new sublist */ 6059 INIT_LIST_HEAD(&sublist); 6060 pt_curr = pt_prev; 6061 od_curr = orig_dev; 6062 } 6063 list_add_tail(&skb->list, &sublist); 6064 } 6065 6066 /* dispatch final sublist */ 6067 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6068 } 6069 6070 static int __netif_receive_skb(struct sk_buff *skb) 6071 { 6072 int ret; 6073 6074 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6075 unsigned int noreclaim_flag; 6076 6077 /* 6078 * PFMEMALLOC skbs are special, they should 6079 * - be delivered to SOCK_MEMALLOC sockets only 6080 * - stay away from userspace 6081 * - have bounded memory usage 6082 * 6083 * Use PF_MEMALLOC as this saves us from propagating the allocation 6084 * context down to all allocation sites. 6085 */ 6086 noreclaim_flag = memalloc_noreclaim_save(); 6087 ret = __netif_receive_skb_one_core(skb, true); 6088 memalloc_noreclaim_restore(noreclaim_flag); 6089 } else 6090 ret = __netif_receive_skb_one_core(skb, false); 6091 6092 return ret; 6093 } 6094 6095 static void __netif_receive_skb_list(struct list_head *head) 6096 { 6097 unsigned long noreclaim_flag = 0; 6098 struct sk_buff *skb, *next; 6099 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6100 6101 list_for_each_entry_safe(skb, next, head, list) { 6102 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6103 struct list_head sublist; 6104 6105 /* Handle the previous sublist */ 6106 list_cut_before(&sublist, head, &skb->list); 6107 if (!list_empty(&sublist)) 6108 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6109 pfmemalloc = !pfmemalloc; 6110 /* See comments in __netif_receive_skb */ 6111 if (pfmemalloc) 6112 noreclaim_flag = memalloc_noreclaim_save(); 6113 else 6114 memalloc_noreclaim_restore(noreclaim_flag); 6115 } 6116 } 6117 /* Handle the remaining sublist */ 6118 if (!list_empty(head)) 6119 __netif_receive_skb_list_core(head, pfmemalloc); 6120 /* Restore pflags */ 6121 if (pfmemalloc) 6122 memalloc_noreclaim_restore(noreclaim_flag); 6123 } 6124 6125 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6126 { 6127 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6128 struct bpf_prog *new = xdp->prog; 6129 int ret = 0; 6130 6131 switch (xdp->command) { 6132 case XDP_SETUP_PROG: 6133 rcu_assign_pointer(dev->xdp_prog, new); 6134 if (old) 6135 bpf_prog_put(old); 6136 6137 if (old && !new) { 6138 static_branch_dec(&generic_xdp_needed_key); 6139 } else if (new && !old) { 6140 static_branch_inc(&generic_xdp_needed_key); 6141 netif_disable_lro(dev); 6142 dev_disable_gro_hw(dev); 6143 } 6144 break; 6145 6146 default: 6147 ret = -EINVAL; 6148 break; 6149 } 6150 6151 return ret; 6152 } 6153 6154 static int netif_receive_skb_internal(struct sk_buff *skb) 6155 { 6156 int ret; 6157 6158 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6159 6160 if (skb_defer_rx_timestamp(skb)) 6161 return NET_RX_SUCCESS; 6162 6163 rcu_read_lock(); 6164 #ifdef CONFIG_RPS 6165 if (static_branch_unlikely(&rps_needed)) { 6166 struct rps_dev_flow voidflow, *rflow = &voidflow; 6167 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6168 6169 if (cpu >= 0) { 6170 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6171 rcu_read_unlock(); 6172 return ret; 6173 } 6174 } 6175 #endif 6176 ret = __netif_receive_skb(skb); 6177 rcu_read_unlock(); 6178 return ret; 6179 } 6180 6181 void netif_receive_skb_list_internal(struct list_head *head) 6182 { 6183 struct sk_buff *skb, *next; 6184 LIST_HEAD(sublist); 6185 6186 list_for_each_entry_safe(skb, next, head, list) { 6187 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6188 skb); 6189 skb_list_del_init(skb); 6190 if (!skb_defer_rx_timestamp(skb)) 6191 list_add_tail(&skb->list, &sublist); 6192 } 6193 list_splice_init(&sublist, head); 6194 6195 rcu_read_lock(); 6196 #ifdef CONFIG_RPS 6197 if (static_branch_unlikely(&rps_needed)) { 6198 list_for_each_entry_safe(skb, next, head, list) { 6199 struct rps_dev_flow voidflow, *rflow = &voidflow; 6200 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6201 6202 if (cpu >= 0) { 6203 /* Will be handled, remove from list */ 6204 skb_list_del_init(skb); 6205 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6206 } 6207 } 6208 } 6209 #endif 6210 __netif_receive_skb_list(head); 6211 rcu_read_unlock(); 6212 } 6213 6214 /** 6215 * netif_receive_skb - process receive buffer from network 6216 * @skb: buffer to process 6217 * 6218 * netif_receive_skb() is the main receive data processing function. 6219 * It always succeeds. The buffer may be dropped during processing 6220 * for congestion control or by the protocol layers. 6221 * 6222 * This function may only be called from softirq context and interrupts 6223 * should be enabled. 6224 * 6225 * Return values (usually ignored): 6226 * NET_RX_SUCCESS: no congestion 6227 * NET_RX_DROP: packet was dropped 6228 */ 6229 int netif_receive_skb(struct sk_buff *skb) 6230 { 6231 int ret; 6232 6233 trace_netif_receive_skb_entry(skb); 6234 6235 ret = netif_receive_skb_internal(skb); 6236 trace_netif_receive_skb_exit(ret); 6237 6238 return ret; 6239 } 6240 EXPORT_SYMBOL(netif_receive_skb); 6241 6242 /** 6243 * netif_receive_skb_list - process many receive buffers from network 6244 * @head: list of skbs to process. 6245 * 6246 * Since return value of netif_receive_skb() is normally ignored, and 6247 * wouldn't be meaningful for a list, this function returns void. 6248 * 6249 * This function may only be called from softirq context and interrupts 6250 * should be enabled. 6251 */ 6252 void netif_receive_skb_list(struct list_head *head) 6253 { 6254 struct sk_buff *skb; 6255 6256 if (list_empty(head)) 6257 return; 6258 if (trace_netif_receive_skb_list_entry_enabled()) { 6259 list_for_each_entry(skb, head, list) 6260 trace_netif_receive_skb_list_entry(skb); 6261 } 6262 netif_receive_skb_list_internal(head); 6263 trace_netif_receive_skb_list_exit(0); 6264 } 6265 EXPORT_SYMBOL(netif_receive_skb_list); 6266 6267 /* Network device is going away, flush any packets still pending */ 6268 static void flush_backlog(struct work_struct *work) 6269 { 6270 struct sk_buff *skb, *tmp; 6271 struct sk_buff_head list; 6272 struct softnet_data *sd; 6273 6274 __skb_queue_head_init(&list); 6275 local_bh_disable(); 6276 sd = this_cpu_ptr(&softnet_data); 6277 6278 backlog_lock_irq_disable(sd); 6279 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6280 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6281 __skb_unlink(skb, &sd->input_pkt_queue); 6282 __skb_queue_tail(&list, skb); 6283 rps_input_queue_head_incr(sd); 6284 } 6285 } 6286 backlog_unlock_irq_enable(sd); 6287 6288 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6289 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6290 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6291 __skb_unlink(skb, &sd->process_queue); 6292 __skb_queue_tail(&list, skb); 6293 rps_input_queue_head_incr(sd); 6294 } 6295 } 6296 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6297 local_bh_enable(); 6298 6299 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6300 } 6301 6302 static bool flush_required(int cpu) 6303 { 6304 #if IS_ENABLED(CONFIG_RPS) 6305 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6306 bool do_flush; 6307 6308 backlog_lock_irq_disable(sd); 6309 6310 /* as insertion into process_queue happens with the rps lock held, 6311 * process_queue access may race only with dequeue 6312 */ 6313 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6314 !skb_queue_empty_lockless(&sd->process_queue); 6315 backlog_unlock_irq_enable(sd); 6316 6317 return do_flush; 6318 #endif 6319 /* without RPS we can't safely check input_pkt_queue: during a 6320 * concurrent remote skb_queue_splice() we can detect as empty both 6321 * input_pkt_queue and process_queue even if the latter could end-up 6322 * containing a lot of packets. 6323 */ 6324 return true; 6325 } 6326 6327 struct flush_backlogs { 6328 cpumask_t flush_cpus; 6329 struct work_struct w[]; 6330 }; 6331 6332 static struct flush_backlogs *flush_backlogs_alloc(void) 6333 { 6334 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6335 GFP_KERNEL); 6336 } 6337 6338 static struct flush_backlogs *flush_backlogs_fallback; 6339 static DEFINE_MUTEX(flush_backlogs_mutex); 6340 6341 static void flush_all_backlogs(void) 6342 { 6343 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6344 unsigned int cpu; 6345 6346 if (!ptr) { 6347 mutex_lock(&flush_backlogs_mutex); 6348 ptr = flush_backlogs_fallback; 6349 } 6350 cpumask_clear(&ptr->flush_cpus); 6351 6352 cpus_read_lock(); 6353 6354 for_each_online_cpu(cpu) { 6355 if (flush_required(cpu)) { 6356 INIT_WORK(&ptr->w[cpu], flush_backlog); 6357 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6358 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6359 } 6360 } 6361 6362 /* we can have in flight packet[s] on the cpus we are not flushing, 6363 * synchronize_net() in unregister_netdevice_many() will take care of 6364 * them. 6365 */ 6366 for_each_cpu(cpu, &ptr->flush_cpus) 6367 flush_work(&ptr->w[cpu]); 6368 6369 cpus_read_unlock(); 6370 6371 if (ptr != flush_backlogs_fallback) 6372 kfree(ptr); 6373 else 6374 mutex_unlock(&flush_backlogs_mutex); 6375 } 6376 6377 static void net_rps_send_ipi(struct softnet_data *remsd) 6378 { 6379 #ifdef CONFIG_RPS 6380 while (remsd) { 6381 struct softnet_data *next = remsd->rps_ipi_next; 6382 6383 if (cpu_online(remsd->cpu)) 6384 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6385 remsd = next; 6386 } 6387 #endif 6388 } 6389 6390 /* 6391 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6392 * Note: called with local irq disabled, but exits with local irq enabled. 6393 */ 6394 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6395 { 6396 #ifdef CONFIG_RPS 6397 struct softnet_data *remsd = sd->rps_ipi_list; 6398 6399 if (!use_backlog_threads() && remsd) { 6400 sd->rps_ipi_list = NULL; 6401 6402 local_irq_enable(); 6403 6404 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6405 net_rps_send_ipi(remsd); 6406 } else 6407 #endif 6408 local_irq_enable(); 6409 } 6410 6411 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6412 { 6413 #ifdef CONFIG_RPS 6414 return !use_backlog_threads() && sd->rps_ipi_list; 6415 #else 6416 return false; 6417 #endif 6418 } 6419 6420 static int process_backlog(struct napi_struct *napi, int quota) 6421 { 6422 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6423 bool again = true; 6424 int work = 0; 6425 6426 /* Check if we have pending ipi, its better to send them now, 6427 * not waiting net_rx_action() end. 6428 */ 6429 if (sd_has_rps_ipi_waiting(sd)) { 6430 local_irq_disable(); 6431 net_rps_action_and_irq_enable(sd); 6432 } 6433 6434 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6435 while (again) { 6436 struct sk_buff *skb; 6437 6438 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6439 while ((skb = __skb_dequeue(&sd->process_queue))) { 6440 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6441 rcu_read_lock(); 6442 __netif_receive_skb(skb); 6443 rcu_read_unlock(); 6444 if (++work >= quota) { 6445 rps_input_queue_head_add(sd, work); 6446 return work; 6447 } 6448 6449 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6450 } 6451 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6452 6453 backlog_lock_irq_disable(sd); 6454 if (skb_queue_empty(&sd->input_pkt_queue)) { 6455 /* 6456 * Inline a custom version of __napi_complete(). 6457 * only current cpu owns and manipulates this napi, 6458 * and NAPI_STATE_SCHED is the only possible flag set 6459 * on backlog. 6460 * We can use a plain write instead of clear_bit(), 6461 * and we dont need an smp_mb() memory barrier. 6462 */ 6463 napi->state &= NAPIF_STATE_THREADED; 6464 again = false; 6465 } else { 6466 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6467 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6468 &sd->process_queue); 6469 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6470 } 6471 backlog_unlock_irq_enable(sd); 6472 } 6473 6474 if (work) 6475 rps_input_queue_head_add(sd, work); 6476 return work; 6477 } 6478 6479 /** 6480 * __napi_schedule - schedule for receive 6481 * @n: entry to schedule 6482 * 6483 * The entry's receive function will be scheduled to run. 6484 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6485 */ 6486 void __napi_schedule(struct napi_struct *n) 6487 { 6488 unsigned long flags; 6489 6490 local_irq_save(flags); 6491 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6492 local_irq_restore(flags); 6493 } 6494 EXPORT_SYMBOL(__napi_schedule); 6495 6496 /** 6497 * napi_schedule_prep - check if napi can be scheduled 6498 * @n: napi context 6499 * 6500 * Test if NAPI routine is already running, and if not mark 6501 * it as running. This is used as a condition variable to 6502 * insure only one NAPI poll instance runs. We also make 6503 * sure there is no pending NAPI disable. 6504 */ 6505 bool napi_schedule_prep(struct napi_struct *n) 6506 { 6507 unsigned long new, val = READ_ONCE(n->state); 6508 6509 do { 6510 if (unlikely(val & NAPIF_STATE_DISABLE)) 6511 return false; 6512 new = val | NAPIF_STATE_SCHED; 6513 6514 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6515 * This was suggested by Alexander Duyck, as compiler 6516 * emits better code than : 6517 * if (val & NAPIF_STATE_SCHED) 6518 * new |= NAPIF_STATE_MISSED; 6519 */ 6520 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6521 NAPIF_STATE_MISSED; 6522 } while (!try_cmpxchg(&n->state, &val, new)); 6523 6524 return !(val & NAPIF_STATE_SCHED); 6525 } 6526 EXPORT_SYMBOL(napi_schedule_prep); 6527 6528 /** 6529 * __napi_schedule_irqoff - schedule for receive 6530 * @n: entry to schedule 6531 * 6532 * Variant of __napi_schedule() assuming hard irqs are masked. 6533 * 6534 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6535 * because the interrupt disabled assumption might not be true 6536 * due to force-threaded interrupts and spinlock substitution. 6537 */ 6538 void __napi_schedule_irqoff(struct napi_struct *n) 6539 { 6540 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6541 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6542 else 6543 __napi_schedule(n); 6544 } 6545 EXPORT_SYMBOL(__napi_schedule_irqoff); 6546 6547 bool napi_complete_done(struct napi_struct *n, int work_done) 6548 { 6549 unsigned long flags, val, new, timeout = 0; 6550 bool ret = true; 6551 6552 /* 6553 * 1) Don't let napi dequeue from the cpu poll list 6554 * just in case its running on a different cpu. 6555 * 2) If we are busy polling, do nothing here, we have 6556 * the guarantee we will be called later. 6557 */ 6558 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6559 NAPIF_STATE_IN_BUSY_POLL))) 6560 return false; 6561 6562 if (work_done) { 6563 if (n->gro.bitmask) 6564 timeout = napi_get_gro_flush_timeout(n); 6565 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6566 } 6567 if (n->defer_hard_irqs_count > 0) { 6568 n->defer_hard_irqs_count--; 6569 timeout = napi_get_gro_flush_timeout(n); 6570 if (timeout) 6571 ret = false; 6572 } 6573 6574 /* 6575 * When the NAPI instance uses a timeout and keeps postponing 6576 * it, we need to bound somehow the time packets are kept in 6577 * the GRO layer. 6578 */ 6579 gro_flush(&n->gro, !!timeout); 6580 gro_normal_list(&n->gro); 6581 6582 if (unlikely(!list_empty(&n->poll_list))) { 6583 /* If n->poll_list is not empty, we need to mask irqs */ 6584 local_irq_save(flags); 6585 list_del_init(&n->poll_list); 6586 local_irq_restore(flags); 6587 } 6588 WRITE_ONCE(n->list_owner, -1); 6589 6590 val = READ_ONCE(n->state); 6591 do { 6592 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6593 6594 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6595 NAPIF_STATE_SCHED_THREADED | 6596 NAPIF_STATE_PREFER_BUSY_POLL); 6597 6598 /* If STATE_MISSED was set, leave STATE_SCHED set, 6599 * because we will call napi->poll() one more time. 6600 * This C code was suggested by Alexander Duyck to help gcc. 6601 */ 6602 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6603 NAPIF_STATE_SCHED; 6604 } while (!try_cmpxchg(&n->state, &val, new)); 6605 6606 if (unlikely(val & NAPIF_STATE_MISSED)) { 6607 __napi_schedule(n); 6608 return false; 6609 } 6610 6611 if (timeout) 6612 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6613 HRTIMER_MODE_REL_PINNED); 6614 return ret; 6615 } 6616 EXPORT_SYMBOL(napi_complete_done); 6617 6618 static void skb_defer_free_flush(struct softnet_data *sd) 6619 { 6620 struct sk_buff *skb, *next; 6621 6622 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6623 if (!READ_ONCE(sd->defer_list)) 6624 return; 6625 6626 spin_lock(&sd->defer_lock); 6627 skb = sd->defer_list; 6628 sd->defer_list = NULL; 6629 sd->defer_count = 0; 6630 spin_unlock(&sd->defer_lock); 6631 6632 while (skb != NULL) { 6633 next = skb->next; 6634 napi_consume_skb(skb, 1); 6635 skb = next; 6636 } 6637 } 6638 6639 #if defined(CONFIG_NET_RX_BUSY_POLL) 6640 6641 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6642 { 6643 if (!skip_schedule) { 6644 gro_normal_list(&napi->gro); 6645 __napi_schedule(napi); 6646 return; 6647 } 6648 6649 /* Flush too old packets. If HZ < 1000, flush all packets */ 6650 gro_flush(&napi->gro, HZ >= 1000); 6651 gro_normal_list(&napi->gro); 6652 6653 clear_bit(NAPI_STATE_SCHED, &napi->state); 6654 } 6655 6656 enum { 6657 NAPI_F_PREFER_BUSY_POLL = 1, 6658 NAPI_F_END_ON_RESCHED = 2, 6659 }; 6660 6661 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6662 unsigned flags, u16 budget) 6663 { 6664 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6665 bool skip_schedule = false; 6666 unsigned long timeout; 6667 int rc; 6668 6669 /* Busy polling means there is a high chance device driver hard irq 6670 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6671 * set in napi_schedule_prep(). 6672 * Since we are about to call napi->poll() once more, we can safely 6673 * clear NAPI_STATE_MISSED. 6674 * 6675 * Note: x86 could use a single "lock and ..." instruction 6676 * to perform these two clear_bit() 6677 */ 6678 clear_bit(NAPI_STATE_MISSED, &napi->state); 6679 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6680 6681 local_bh_disable(); 6682 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6683 6684 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6685 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6686 timeout = napi_get_gro_flush_timeout(napi); 6687 if (napi->defer_hard_irqs_count && timeout) { 6688 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6689 skip_schedule = true; 6690 } 6691 } 6692 6693 /* All we really want here is to re-enable device interrupts. 6694 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6695 */ 6696 rc = napi->poll(napi, budget); 6697 /* We can't gro_normal_list() here, because napi->poll() might have 6698 * rearmed the napi (napi_complete_done()) in which case it could 6699 * already be running on another CPU. 6700 */ 6701 trace_napi_poll(napi, rc, budget); 6702 netpoll_poll_unlock(have_poll_lock); 6703 if (rc == budget) 6704 __busy_poll_stop(napi, skip_schedule); 6705 bpf_net_ctx_clear(bpf_net_ctx); 6706 local_bh_enable(); 6707 } 6708 6709 static void __napi_busy_loop(unsigned int napi_id, 6710 bool (*loop_end)(void *, unsigned long), 6711 void *loop_end_arg, unsigned flags, u16 budget) 6712 { 6713 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6714 int (*napi_poll)(struct napi_struct *napi, int budget); 6715 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6716 void *have_poll_lock = NULL; 6717 struct napi_struct *napi; 6718 6719 WARN_ON_ONCE(!rcu_read_lock_held()); 6720 6721 restart: 6722 napi_poll = NULL; 6723 6724 napi = napi_by_id(napi_id); 6725 if (!napi) 6726 return; 6727 6728 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6729 preempt_disable(); 6730 for (;;) { 6731 int work = 0; 6732 6733 local_bh_disable(); 6734 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6735 if (!napi_poll) { 6736 unsigned long val = READ_ONCE(napi->state); 6737 6738 /* If multiple threads are competing for this napi, 6739 * we avoid dirtying napi->state as much as we can. 6740 */ 6741 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6742 NAPIF_STATE_IN_BUSY_POLL)) { 6743 if (flags & NAPI_F_PREFER_BUSY_POLL) 6744 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6745 goto count; 6746 } 6747 if (cmpxchg(&napi->state, val, 6748 val | NAPIF_STATE_IN_BUSY_POLL | 6749 NAPIF_STATE_SCHED) != val) { 6750 if (flags & NAPI_F_PREFER_BUSY_POLL) 6751 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6752 goto count; 6753 } 6754 have_poll_lock = netpoll_poll_lock(napi); 6755 napi_poll = napi->poll; 6756 } 6757 work = napi_poll(napi, budget); 6758 trace_napi_poll(napi, work, budget); 6759 gro_normal_list(&napi->gro); 6760 count: 6761 if (work > 0) 6762 __NET_ADD_STATS(dev_net(napi->dev), 6763 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6764 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6765 bpf_net_ctx_clear(bpf_net_ctx); 6766 local_bh_enable(); 6767 6768 if (!loop_end || loop_end(loop_end_arg, start_time)) 6769 break; 6770 6771 if (unlikely(need_resched())) { 6772 if (flags & NAPI_F_END_ON_RESCHED) 6773 break; 6774 if (napi_poll) 6775 busy_poll_stop(napi, have_poll_lock, flags, budget); 6776 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6777 preempt_enable(); 6778 rcu_read_unlock(); 6779 cond_resched(); 6780 rcu_read_lock(); 6781 if (loop_end(loop_end_arg, start_time)) 6782 return; 6783 goto restart; 6784 } 6785 cpu_relax(); 6786 } 6787 if (napi_poll) 6788 busy_poll_stop(napi, have_poll_lock, flags, budget); 6789 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6790 preempt_enable(); 6791 } 6792 6793 void napi_busy_loop_rcu(unsigned int napi_id, 6794 bool (*loop_end)(void *, unsigned long), 6795 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6796 { 6797 unsigned flags = NAPI_F_END_ON_RESCHED; 6798 6799 if (prefer_busy_poll) 6800 flags |= NAPI_F_PREFER_BUSY_POLL; 6801 6802 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6803 } 6804 6805 void napi_busy_loop(unsigned int napi_id, 6806 bool (*loop_end)(void *, unsigned long), 6807 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6808 { 6809 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6810 6811 rcu_read_lock(); 6812 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6813 rcu_read_unlock(); 6814 } 6815 EXPORT_SYMBOL(napi_busy_loop); 6816 6817 void napi_suspend_irqs(unsigned int napi_id) 6818 { 6819 struct napi_struct *napi; 6820 6821 rcu_read_lock(); 6822 napi = napi_by_id(napi_id); 6823 if (napi) { 6824 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6825 6826 if (timeout) 6827 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6828 HRTIMER_MODE_REL_PINNED); 6829 } 6830 rcu_read_unlock(); 6831 } 6832 6833 void napi_resume_irqs(unsigned int napi_id) 6834 { 6835 struct napi_struct *napi; 6836 6837 rcu_read_lock(); 6838 napi = napi_by_id(napi_id); 6839 if (napi) { 6840 /* If irq_suspend_timeout is set to 0 between the call to 6841 * napi_suspend_irqs and now, the original value still 6842 * determines the safety timeout as intended and napi_watchdog 6843 * will resume irq processing. 6844 */ 6845 if (napi_get_irq_suspend_timeout(napi)) { 6846 local_bh_disable(); 6847 napi_schedule(napi); 6848 local_bh_enable(); 6849 } 6850 } 6851 rcu_read_unlock(); 6852 } 6853 6854 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6855 6856 static void __napi_hash_add_with_id(struct napi_struct *napi, 6857 unsigned int napi_id) 6858 { 6859 napi->gro.cached_napi_id = napi_id; 6860 6861 WRITE_ONCE(napi->napi_id, napi_id); 6862 hlist_add_head_rcu(&napi->napi_hash_node, 6863 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6864 } 6865 6866 static void napi_hash_add_with_id(struct napi_struct *napi, 6867 unsigned int napi_id) 6868 { 6869 unsigned long flags; 6870 6871 spin_lock_irqsave(&napi_hash_lock, flags); 6872 WARN_ON_ONCE(napi_by_id(napi_id)); 6873 __napi_hash_add_with_id(napi, napi_id); 6874 spin_unlock_irqrestore(&napi_hash_lock, flags); 6875 } 6876 6877 static void napi_hash_add(struct napi_struct *napi) 6878 { 6879 unsigned long flags; 6880 6881 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6882 return; 6883 6884 spin_lock_irqsave(&napi_hash_lock, flags); 6885 6886 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6887 do { 6888 if (unlikely(!napi_id_valid(++napi_gen_id))) 6889 napi_gen_id = MIN_NAPI_ID; 6890 } while (napi_by_id(napi_gen_id)); 6891 6892 __napi_hash_add_with_id(napi, napi_gen_id); 6893 6894 spin_unlock_irqrestore(&napi_hash_lock, flags); 6895 } 6896 6897 /* Warning : caller is responsible to make sure rcu grace period 6898 * is respected before freeing memory containing @napi 6899 */ 6900 static void napi_hash_del(struct napi_struct *napi) 6901 { 6902 unsigned long flags; 6903 6904 spin_lock_irqsave(&napi_hash_lock, flags); 6905 6906 hlist_del_init_rcu(&napi->napi_hash_node); 6907 6908 spin_unlock_irqrestore(&napi_hash_lock, flags); 6909 } 6910 6911 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6912 { 6913 struct napi_struct *napi; 6914 6915 napi = container_of(timer, struct napi_struct, timer); 6916 6917 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6918 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6919 */ 6920 if (!napi_disable_pending(napi) && 6921 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6922 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6923 __napi_schedule_irqoff(napi); 6924 } 6925 6926 return HRTIMER_NORESTART; 6927 } 6928 6929 int dev_set_threaded(struct net_device *dev, bool threaded) 6930 { 6931 struct napi_struct *napi; 6932 int err = 0; 6933 6934 netdev_assert_locked_or_invisible(dev); 6935 6936 if (dev->threaded == threaded) 6937 return 0; 6938 6939 if (threaded) { 6940 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6941 if (!napi->thread) { 6942 err = napi_kthread_create(napi); 6943 if (err) { 6944 threaded = false; 6945 break; 6946 } 6947 } 6948 } 6949 } 6950 6951 WRITE_ONCE(dev->threaded, threaded); 6952 6953 /* Make sure kthread is created before THREADED bit 6954 * is set. 6955 */ 6956 smp_mb__before_atomic(); 6957 6958 /* Setting/unsetting threaded mode on a napi might not immediately 6959 * take effect, if the current napi instance is actively being 6960 * polled. In this case, the switch between threaded mode and 6961 * softirq mode will happen in the next round of napi_schedule(). 6962 * This should not cause hiccups/stalls to the live traffic. 6963 */ 6964 list_for_each_entry(napi, &dev->napi_list, dev_list) 6965 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6966 6967 return err; 6968 } 6969 EXPORT_SYMBOL(dev_set_threaded); 6970 6971 /** 6972 * netif_queue_set_napi - Associate queue with the napi 6973 * @dev: device to which NAPI and queue belong 6974 * @queue_index: Index of queue 6975 * @type: queue type as RX or TX 6976 * @napi: NAPI context, pass NULL to clear previously set NAPI 6977 * 6978 * Set queue with its corresponding napi context. This should be done after 6979 * registering the NAPI handler for the queue-vector and the queues have been 6980 * mapped to the corresponding interrupt vector. 6981 */ 6982 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6983 enum netdev_queue_type type, struct napi_struct *napi) 6984 { 6985 struct netdev_rx_queue *rxq; 6986 struct netdev_queue *txq; 6987 6988 if (WARN_ON_ONCE(napi && !napi->dev)) 6989 return; 6990 netdev_ops_assert_locked_or_invisible(dev); 6991 6992 switch (type) { 6993 case NETDEV_QUEUE_TYPE_RX: 6994 rxq = __netif_get_rx_queue(dev, queue_index); 6995 rxq->napi = napi; 6996 return; 6997 case NETDEV_QUEUE_TYPE_TX: 6998 txq = netdev_get_tx_queue(dev, queue_index); 6999 txq->napi = napi; 7000 return; 7001 default: 7002 return; 7003 } 7004 } 7005 EXPORT_SYMBOL(netif_queue_set_napi); 7006 7007 static void 7008 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7009 const cpumask_t *mask) 7010 { 7011 struct napi_struct *napi = 7012 container_of(notify, struct napi_struct, notify); 7013 #ifdef CONFIG_RFS_ACCEL 7014 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7015 int err; 7016 #endif 7017 7018 if (napi->config && napi->dev->irq_affinity_auto) 7019 cpumask_copy(&napi->config->affinity_mask, mask); 7020 7021 #ifdef CONFIG_RFS_ACCEL 7022 if (napi->dev->rx_cpu_rmap_auto) { 7023 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7024 if (err) 7025 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7026 err); 7027 } 7028 #endif 7029 } 7030 7031 #ifdef CONFIG_RFS_ACCEL 7032 static void netif_napi_affinity_release(struct kref *ref) 7033 { 7034 struct napi_struct *napi = 7035 container_of(ref, struct napi_struct, notify.kref); 7036 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7037 7038 netdev_assert_locked(napi->dev); 7039 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7040 &napi->state)); 7041 7042 if (!napi->dev->rx_cpu_rmap_auto) 7043 return; 7044 rmap->obj[napi->napi_rmap_idx] = NULL; 7045 napi->napi_rmap_idx = -1; 7046 cpu_rmap_put(rmap); 7047 } 7048 7049 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7050 { 7051 if (dev->rx_cpu_rmap_auto) 7052 return 0; 7053 7054 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7055 if (!dev->rx_cpu_rmap) 7056 return -ENOMEM; 7057 7058 dev->rx_cpu_rmap_auto = true; 7059 return 0; 7060 } 7061 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7062 7063 static void netif_del_cpu_rmap(struct net_device *dev) 7064 { 7065 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7066 7067 if (!dev->rx_cpu_rmap_auto) 7068 return; 7069 7070 /* Free the rmap */ 7071 cpu_rmap_put(rmap); 7072 dev->rx_cpu_rmap = NULL; 7073 dev->rx_cpu_rmap_auto = false; 7074 } 7075 7076 #else 7077 static void netif_napi_affinity_release(struct kref *ref) 7078 { 7079 } 7080 7081 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7082 { 7083 return 0; 7084 } 7085 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7086 7087 static void netif_del_cpu_rmap(struct net_device *dev) 7088 { 7089 } 7090 #endif 7091 7092 void netif_set_affinity_auto(struct net_device *dev) 7093 { 7094 unsigned int i, maxqs, numa; 7095 7096 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7097 numa = dev_to_node(&dev->dev); 7098 7099 for (i = 0; i < maxqs; i++) 7100 cpumask_set_cpu(cpumask_local_spread(i, numa), 7101 &dev->napi_config[i].affinity_mask); 7102 7103 dev->irq_affinity_auto = true; 7104 } 7105 EXPORT_SYMBOL(netif_set_affinity_auto); 7106 7107 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7108 { 7109 int rc; 7110 7111 netdev_assert_locked_or_invisible(napi->dev); 7112 7113 if (napi->irq == irq) 7114 return; 7115 7116 /* Remove existing resources */ 7117 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7118 irq_set_affinity_notifier(napi->irq, NULL); 7119 7120 napi->irq = irq; 7121 if (irq < 0 || 7122 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7123 return; 7124 7125 /* Abort for buggy drivers */ 7126 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7127 return; 7128 7129 #ifdef CONFIG_RFS_ACCEL 7130 if (napi->dev->rx_cpu_rmap_auto) { 7131 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7132 if (rc < 0) 7133 return; 7134 7135 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7136 napi->napi_rmap_idx = rc; 7137 } 7138 #endif 7139 7140 /* Use core IRQ notifier */ 7141 napi->notify.notify = netif_napi_irq_notify; 7142 napi->notify.release = netif_napi_affinity_release; 7143 rc = irq_set_affinity_notifier(irq, &napi->notify); 7144 if (rc) { 7145 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7146 rc); 7147 goto put_rmap; 7148 } 7149 7150 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7151 return; 7152 7153 put_rmap: 7154 #ifdef CONFIG_RFS_ACCEL 7155 if (napi->dev->rx_cpu_rmap_auto) { 7156 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7157 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7158 napi->napi_rmap_idx = -1; 7159 } 7160 #endif 7161 napi->notify.notify = NULL; 7162 napi->notify.release = NULL; 7163 } 7164 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7165 7166 static void napi_restore_config(struct napi_struct *n) 7167 { 7168 n->defer_hard_irqs = n->config->defer_hard_irqs; 7169 n->gro_flush_timeout = n->config->gro_flush_timeout; 7170 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7171 7172 if (n->dev->irq_affinity_auto && 7173 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7174 irq_set_affinity(n->irq, &n->config->affinity_mask); 7175 7176 /* a NAPI ID might be stored in the config, if so use it. if not, use 7177 * napi_hash_add to generate one for us. 7178 */ 7179 if (n->config->napi_id) { 7180 napi_hash_add_with_id(n, n->config->napi_id); 7181 } else { 7182 napi_hash_add(n); 7183 n->config->napi_id = n->napi_id; 7184 } 7185 } 7186 7187 static void napi_save_config(struct napi_struct *n) 7188 { 7189 n->config->defer_hard_irqs = n->defer_hard_irqs; 7190 n->config->gro_flush_timeout = n->gro_flush_timeout; 7191 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7192 napi_hash_del(n); 7193 } 7194 7195 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7196 * inherit an existing ID try to insert it at the right position. 7197 */ 7198 static void 7199 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7200 { 7201 unsigned int new_id, pos_id; 7202 struct list_head *higher; 7203 struct napi_struct *pos; 7204 7205 new_id = UINT_MAX; 7206 if (napi->config && napi->config->napi_id) 7207 new_id = napi->config->napi_id; 7208 7209 higher = &dev->napi_list; 7210 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7211 if (napi_id_valid(pos->napi_id)) 7212 pos_id = pos->napi_id; 7213 else if (pos->config) 7214 pos_id = pos->config->napi_id; 7215 else 7216 pos_id = UINT_MAX; 7217 7218 if (pos_id <= new_id) 7219 break; 7220 higher = &pos->dev_list; 7221 } 7222 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7223 } 7224 7225 /* Double check that napi_get_frags() allocates skbs with 7226 * skb->head being backed by slab, not a page fragment. 7227 * This is to make sure bug fixed in 3226b158e67c 7228 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7229 * does not accidentally come back. 7230 */ 7231 static void napi_get_frags_check(struct napi_struct *napi) 7232 { 7233 struct sk_buff *skb; 7234 7235 local_bh_disable(); 7236 skb = napi_get_frags(napi); 7237 WARN_ON_ONCE(skb && skb->head_frag); 7238 napi_free_frags(napi); 7239 local_bh_enable(); 7240 } 7241 7242 void netif_napi_add_weight_locked(struct net_device *dev, 7243 struct napi_struct *napi, 7244 int (*poll)(struct napi_struct *, int), 7245 int weight) 7246 { 7247 netdev_assert_locked(dev); 7248 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7249 return; 7250 7251 INIT_LIST_HEAD(&napi->poll_list); 7252 INIT_HLIST_NODE(&napi->napi_hash_node); 7253 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7254 gro_init(&napi->gro); 7255 napi->skb = NULL; 7256 napi->poll = poll; 7257 if (weight > NAPI_POLL_WEIGHT) 7258 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7259 weight); 7260 napi->weight = weight; 7261 napi->dev = dev; 7262 #ifdef CONFIG_NETPOLL 7263 napi->poll_owner = -1; 7264 #endif 7265 napi->list_owner = -1; 7266 set_bit(NAPI_STATE_SCHED, &napi->state); 7267 set_bit(NAPI_STATE_NPSVC, &napi->state); 7268 netif_napi_dev_list_add(dev, napi); 7269 7270 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7271 * configuration will be loaded in napi_enable 7272 */ 7273 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7274 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7275 7276 napi_get_frags_check(napi); 7277 /* Create kthread for this napi if dev->threaded is set. 7278 * Clear dev->threaded if kthread creation failed so that 7279 * threaded mode will not be enabled in napi_enable(). 7280 */ 7281 if (dev->threaded && napi_kthread_create(napi)) 7282 dev->threaded = false; 7283 netif_napi_set_irq_locked(napi, -1); 7284 } 7285 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7286 7287 void napi_disable_locked(struct napi_struct *n) 7288 { 7289 unsigned long val, new; 7290 7291 might_sleep(); 7292 netdev_assert_locked(n->dev); 7293 7294 set_bit(NAPI_STATE_DISABLE, &n->state); 7295 7296 val = READ_ONCE(n->state); 7297 do { 7298 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7299 usleep_range(20, 200); 7300 val = READ_ONCE(n->state); 7301 } 7302 7303 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7304 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7305 } while (!try_cmpxchg(&n->state, &val, new)); 7306 7307 hrtimer_cancel(&n->timer); 7308 7309 if (n->config) 7310 napi_save_config(n); 7311 else 7312 napi_hash_del(n); 7313 7314 clear_bit(NAPI_STATE_DISABLE, &n->state); 7315 } 7316 EXPORT_SYMBOL(napi_disable_locked); 7317 7318 /** 7319 * napi_disable() - prevent NAPI from scheduling 7320 * @n: NAPI context 7321 * 7322 * Stop NAPI from being scheduled on this context. 7323 * Waits till any outstanding processing completes. 7324 * Takes netdev_lock() for associated net_device. 7325 */ 7326 void napi_disable(struct napi_struct *n) 7327 { 7328 netdev_lock(n->dev); 7329 napi_disable_locked(n); 7330 netdev_unlock(n->dev); 7331 } 7332 EXPORT_SYMBOL(napi_disable); 7333 7334 void napi_enable_locked(struct napi_struct *n) 7335 { 7336 unsigned long new, val = READ_ONCE(n->state); 7337 7338 if (n->config) 7339 napi_restore_config(n); 7340 else 7341 napi_hash_add(n); 7342 7343 do { 7344 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7345 7346 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7347 if (n->dev->threaded && n->thread) 7348 new |= NAPIF_STATE_THREADED; 7349 } while (!try_cmpxchg(&n->state, &val, new)); 7350 } 7351 EXPORT_SYMBOL(napi_enable_locked); 7352 7353 /** 7354 * napi_enable() - enable NAPI scheduling 7355 * @n: NAPI context 7356 * 7357 * Enable scheduling of a NAPI instance. 7358 * Must be paired with napi_disable(). 7359 * Takes netdev_lock() for associated net_device. 7360 */ 7361 void napi_enable(struct napi_struct *n) 7362 { 7363 netdev_lock(n->dev); 7364 napi_enable_locked(n); 7365 netdev_unlock(n->dev); 7366 } 7367 EXPORT_SYMBOL(napi_enable); 7368 7369 /* Must be called in process context */ 7370 void __netif_napi_del_locked(struct napi_struct *napi) 7371 { 7372 netdev_assert_locked(napi->dev); 7373 7374 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7375 return; 7376 7377 /* Make sure NAPI is disabled (or was never enabled). */ 7378 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7379 7380 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7381 irq_set_affinity_notifier(napi->irq, NULL); 7382 7383 if (napi->config) { 7384 napi->index = -1; 7385 napi->config = NULL; 7386 } 7387 7388 list_del_rcu(&napi->dev_list); 7389 napi_free_frags(napi); 7390 7391 gro_cleanup(&napi->gro); 7392 7393 if (napi->thread) { 7394 kthread_stop(napi->thread); 7395 napi->thread = NULL; 7396 } 7397 } 7398 EXPORT_SYMBOL(__netif_napi_del_locked); 7399 7400 static int __napi_poll(struct napi_struct *n, bool *repoll) 7401 { 7402 int work, weight; 7403 7404 weight = n->weight; 7405 7406 /* This NAPI_STATE_SCHED test is for avoiding a race 7407 * with netpoll's poll_napi(). Only the entity which 7408 * obtains the lock and sees NAPI_STATE_SCHED set will 7409 * actually make the ->poll() call. Therefore we avoid 7410 * accidentally calling ->poll() when NAPI is not scheduled. 7411 */ 7412 work = 0; 7413 if (napi_is_scheduled(n)) { 7414 work = n->poll(n, weight); 7415 trace_napi_poll(n, work, weight); 7416 7417 xdp_do_check_flushed(n); 7418 } 7419 7420 if (unlikely(work > weight)) 7421 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7422 n->poll, work, weight); 7423 7424 if (likely(work < weight)) 7425 return work; 7426 7427 /* Drivers must not modify the NAPI state if they 7428 * consume the entire weight. In such cases this code 7429 * still "owns" the NAPI instance and therefore can 7430 * move the instance around on the list at-will. 7431 */ 7432 if (unlikely(napi_disable_pending(n))) { 7433 napi_complete(n); 7434 return work; 7435 } 7436 7437 /* The NAPI context has more processing work, but busy-polling 7438 * is preferred. Exit early. 7439 */ 7440 if (napi_prefer_busy_poll(n)) { 7441 if (napi_complete_done(n, work)) { 7442 /* If timeout is not set, we need to make sure 7443 * that the NAPI is re-scheduled. 7444 */ 7445 napi_schedule(n); 7446 } 7447 return work; 7448 } 7449 7450 /* Flush too old packets. If HZ < 1000, flush all packets */ 7451 gro_flush(&n->gro, HZ >= 1000); 7452 gro_normal_list(&n->gro); 7453 7454 /* Some drivers may have called napi_schedule 7455 * prior to exhausting their budget. 7456 */ 7457 if (unlikely(!list_empty(&n->poll_list))) { 7458 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7459 n->dev ? n->dev->name : "backlog"); 7460 return work; 7461 } 7462 7463 *repoll = true; 7464 7465 return work; 7466 } 7467 7468 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7469 { 7470 bool do_repoll = false; 7471 void *have; 7472 int work; 7473 7474 list_del_init(&n->poll_list); 7475 7476 have = netpoll_poll_lock(n); 7477 7478 work = __napi_poll(n, &do_repoll); 7479 7480 if (do_repoll) { 7481 #if defined(CONFIG_DEBUG_NET) 7482 if (unlikely(!napi_is_scheduled(n))) 7483 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7484 n->dev->name, n->poll); 7485 #endif 7486 list_add_tail(&n->poll_list, repoll); 7487 } 7488 netpoll_poll_unlock(have); 7489 7490 return work; 7491 } 7492 7493 static int napi_thread_wait(struct napi_struct *napi) 7494 { 7495 set_current_state(TASK_INTERRUPTIBLE); 7496 7497 while (!kthread_should_stop()) { 7498 /* Testing SCHED_THREADED bit here to make sure the current 7499 * kthread owns this napi and could poll on this napi. 7500 * Testing SCHED bit is not enough because SCHED bit might be 7501 * set by some other busy poll thread or by napi_disable(). 7502 */ 7503 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7504 WARN_ON(!list_empty(&napi->poll_list)); 7505 __set_current_state(TASK_RUNNING); 7506 return 0; 7507 } 7508 7509 schedule(); 7510 set_current_state(TASK_INTERRUPTIBLE); 7511 } 7512 __set_current_state(TASK_RUNNING); 7513 7514 return -1; 7515 } 7516 7517 static void napi_threaded_poll_loop(struct napi_struct *napi) 7518 { 7519 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7520 struct softnet_data *sd; 7521 unsigned long last_qs = jiffies; 7522 7523 for (;;) { 7524 bool repoll = false; 7525 void *have; 7526 7527 local_bh_disable(); 7528 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7529 7530 sd = this_cpu_ptr(&softnet_data); 7531 sd->in_napi_threaded_poll = true; 7532 7533 have = netpoll_poll_lock(napi); 7534 __napi_poll(napi, &repoll); 7535 netpoll_poll_unlock(have); 7536 7537 sd->in_napi_threaded_poll = false; 7538 barrier(); 7539 7540 if (sd_has_rps_ipi_waiting(sd)) { 7541 local_irq_disable(); 7542 net_rps_action_and_irq_enable(sd); 7543 } 7544 skb_defer_free_flush(sd); 7545 bpf_net_ctx_clear(bpf_net_ctx); 7546 local_bh_enable(); 7547 7548 if (!repoll) 7549 break; 7550 7551 rcu_softirq_qs_periodic(last_qs); 7552 cond_resched(); 7553 } 7554 } 7555 7556 static int napi_threaded_poll(void *data) 7557 { 7558 struct napi_struct *napi = data; 7559 7560 while (!napi_thread_wait(napi)) 7561 napi_threaded_poll_loop(napi); 7562 7563 return 0; 7564 } 7565 7566 static __latent_entropy void net_rx_action(void) 7567 { 7568 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7569 unsigned long time_limit = jiffies + 7570 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7571 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7572 int budget = READ_ONCE(net_hotdata.netdev_budget); 7573 LIST_HEAD(list); 7574 LIST_HEAD(repoll); 7575 7576 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7577 start: 7578 sd->in_net_rx_action = true; 7579 local_irq_disable(); 7580 list_splice_init(&sd->poll_list, &list); 7581 local_irq_enable(); 7582 7583 for (;;) { 7584 struct napi_struct *n; 7585 7586 skb_defer_free_flush(sd); 7587 7588 if (list_empty(&list)) { 7589 if (list_empty(&repoll)) { 7590 sd->in_net_rx_action = false; 7591 barrier(); 7592 /* We need to check if ____napi_schedule() 7593 * had refilled poll_list while 7594 * sd->in_net_rx_action was true. 7595 */ 7596 if (!list_empty(&sd->poll_list)) 7597 goto start; 7598 if (!sd_has_rps_ipi_waiting(sd)) 7599 goto end; 7600 } 7601 break; 7602 } 7603 7604 n = list_first_entry(&list, struct napi_struct, poll_list); 7605 budget -= napi_poll(n, &repoll); 7606 7607 /* If softirq window is exhausted then punt. 7608 * Allow this to run for 2 jiffies since which will allow 7609 * an average latency of 1.5/HZ. 7610 */ 7611 if (unlikely(budget <= 0 || 7612 time_after_eq(jiffies, time_limit))) { 7613 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7614 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7615 break; 7616 } 7617 } 7618 7619 local_irq_disable(); 7620 7621 list_splice_tail_init(&sd->poll_list, &list); 7622 list_splice_tail(&repoll, &list); 7623 list_splice(&list, &sd->poll_list); 7624 if (!list_empty(&sd->poll_list)) 7625 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7626 else 7627 sd->in_net_rx_action = false; 7628 7629 net_rps_action_and_irq_enable(sd); 7630 end: 7631 bpf_net_ctx_clear(bpf_net_ctx); 7632 } 7633 7634 struct netdev_adjacent { 7635 struct net_device *dev; 7636 netdevice_tracker dev_tracker; 7637 7638 /* upper master flag, there can only be one master device per list */ 7639 bool master; 7640 7641 /* lookup ignore flag */ 7642 bool ignore; 7643 7644 /* counter for the number of times this device was added to us */ 7645 u16 ref_nr; 7646 7647 /* private field for the users */ 7648 void *private; 7649 7650 struct list_head list; 7651 struct rcu_head rcu; 7652 }; 7653 7654 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7655 struct list_head *adj_list) 7656 { 7657 struct netdev_adjacent *adj; 7658 7659 list_for_each_entry(adj, adj_list, list) { 7660 if (adj->dev == adj_dev) 7661 return adj; 7662 } 7663 return NULL; 7664 } 7665 7666 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7667 struct netdev_nested_priv *priv) 7668 { 7669 struct net_device *dev = (struct net_device *)priv->data; 7670 7671 return upper_dev == dev; 7672 } 7673 7674 /** 7675 * netdev_has_upper_dev - Check if device is linked to an upper device 7676 * @dev: device 7677 * @upper_dev: upper device to check 7678 * 7679 * Find out if a device is linked to specified upper device and return true 7680 * in case it is. Note that this checks only immediate upper device, 7681 * not through a complete stack of devices. The caller must hold the RTNL lock. 7682 */ 7683 bool netdev_has_upper_dev(struct net_device *dev, 7684 struct net_device *upper_dev) 7685 { 7686 struct netdev_nested_priv priv = { 7687 .data = (void *)upper_dev, 7688 }; 7689 7690 ASSERT_RTNL(); 7691 7692 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7693 &priv); 7694 } 7695 EXPORT_SYMBOL(netdev_has_upper_dev); 7696 7697 /** 7698 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7699 * @dev: device 7700 * @upper_dev: upper device to check 7701 * 7702 * Find out if a device is linked to specified upper device and return true 7703 * in case it is. Note that this checks the entire upper device chain. 7704 * The caller must hold rcu lock. 7705 */ 7706 7707 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7708 struct net_device *upper_dev) 7709 { 7710 struct netdev_nested_priv priv = { 7711 .data = (void *)upper_dev, 7712 }; 7713 7714 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7715 &priv); 7716 } 7717 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7718 7719 /** 7720 * netdev_has_any_upper_dev - Check if device is linked to some device 7721 * @dev: device 7722 * 7723 * Find out if a device is linked to an upper device and return true in case 7724 * it is. The caller must hold the RTNL lock. 7725 */ 7726 bool netdev_has_any_upper_dev(struct net_device *dev) 7727 { 7728 ASSERT_RTNL(); 7729 7730 return !list_empty(&dev->adj_list.upper); 7731 } 7732 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7733 7734 /** 7735 * netdev_master_upper_dev_get - Get master upper device 7736 * @dev: device 7737 * 7738 * Find a master upper device and return pointer to it or NULL in case 7739 * it's not there. The caller must hold the RTNL lock. 7740 */ 7741 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7742 { 7743 struct netdev_adjacent *upper; 7744 7745 ASSERT_RTNL(); 7746 7747 if (list_empty(&dev->adj_list.upper)) 7748 return NULL; 7749 7750 upper = list_first_entry(&dev->adj_list.upper, 7751 struct netdev_adjacent, list); 7752 if (likely(upper->master)) 7753 return upper->dev; 7754 return NULL; 7755 } 7756 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7757 7758 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7759 { 7760 struct netdev_adjacent *upper; 7761 7762 ASSERT_RTNL(); 7763 7764 if (list_empty(&dev->adj_list.upper)) 7765 return NULL; 7766 7767 upper = list_first_entry(&dev->adj_list.upper, 7768 struct netdev_adjacent, list); 7769 if (likely(upper->master) && !upper->ignore) 7770 return upper->dev; 7771 return NULL; 7772 } 7773 7774 /** 7775 * netdev_has_any_lower_dev - Check if device is linked to some device 7776 * @dev: device 7777 * 7778 * Find out if a device is linked to a lower device and return true in case 7779 * it is. The caller must hold the RTNL lock. 7780 */ 7781 static bool netdev_has_any_lower_dev(struct net_device *dev) 7782 { 7783 ASSERT_RTNL(); 7784 7785 return !list_empty(&dev->adj_list.lower); 7786 } 7787 7788 void *netdev_adjacent_get_private(struct list_head *adj_list) 7789 { 7790 struct netdev_adjacent *adj; 7791 7792 adj = list_entry(adj_list, struct netdev_adjacent, list); 7793 7794 return adj->private; 7795 } 7796 EXPORT_SYMBOL(netdev_adjacent_get_private); 7797 7798 /** 7799 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7800 * @dev: device 7801 * @iter: list_head ** of the current position 7802 * 7803 * Gets the next device from the dev's upper list, starting from iter 7804 * position. The caller must hold RCU read lock. 7805 */ 7806 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7807 struct list_head **iter) 7808 { 7809 struct netdev_adjacent *upper; 7810 7811 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7812 7813 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7814 7815 if (&upper->list == &dev->adj_list.upper) 7816 return NULL; 7817 7818 *iter = &upper->list; 7819 7820 return upper->dev; 7821 } 7822 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7823 7824 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7825 struct list_head **iter, 7826 bool *ignore) 7827 { 7828 struct netdev_adjacent *upper; 7829 7830 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7831 7832 if (&upper->list == &dev->adj_list.upper) 7833 return NULL; 7834 7835 *iter = &upper->list; 7836 *ignore = upper->ignore; 7837 7838 return upper->dev; 7839 } 7840 7841 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7842 struct list_head **iter) 7843 { 7844 struct netdev_adjacent *upper; 7845 7846 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7847 7848 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7849 7850 if (&upper->list == &dev->adj_list.upper) 7851 return NULL; 7852 7853 *iter = &upper->list; 7854 7855 return upper->dev; 7856 } 7857 7858 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7859 int (*fn)(struct net_device *dev, 7860 struct netdev_nested_priv *priv), 7861 struct netdev_nested_priv *priv) 7862 { 7863 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7864 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7865 int ret, cur = 0; 7866 bool ignore; 7867 7868 now = dev; 7869 iter = &dev->adj_list.upper; 7870 7871 while (1) { 7872 if (now != dev) { 7873 ret = fn(now, priv); 7874 if (ret) 7875 return ret; 7876 } 7877 7878 next = NULL; 7879 while (1) { 7880 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7881 if (!udev) 7882 break; 7883 if (ignore) 7884 continue; 7885 7886 next = udev; 7887 niter = &udev->adj_list.upper; 7888 dev_stack[cur] = now; 7889 iter_stack[cur++] = iter; 7890 break; 7891 } 7892 7893 if (!next) { 7894 if (!cur) 7895 return 0; 7896 next = dev_stack[--cur]; 7897 niter = iter_stack[cur]; 7898 } 7899 7900 now = next; 7901 iter = niter; 7902 } 7903 7904 return 0; 7905 } 7906 7907 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7908 int (*fn)(struct net_device *dev, 7909 struct netdev_nested_priv *priv), 7910 struct netdev_nested_priv *priv) 7911 { 7912 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7913 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7914 int ret, cur = 0; 7915 7916 now = dev; 7917 iter = &dev->adj_list.upper; 7918 7919 while (1) { 7920 if (now != dev) { 7921 ret = fn(now, priv); 7922 if (ret) 7923 return ret; 7924 } 7925 7926 next = NULL; 7927 while (1) { 7928 udev = netdev_next_upper_dev_rcu(now, &iter); 7929 if (!udev) 7930 break; 7931 7932 next = udev; 7933 niter = &udev->adj_list.upper; 7934 dev_stack[cur] = now; 7935 iter_stack[cur++] = iter; 7936 break; 7937 } 7938 7939 if (!next) { 7940 if (!cur) 7941 return 0; 7942 next = dev_stack[--cur]; 7943 niter = iter_stack[cur]; 7944 } 7945 7946 now = next; 7947 iter = niter; 7948 } 7949 7950 return 0; 7951 } 7952 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7953 7954 static bool __netdev_has_upper_dev(struct net_device *dev, 7955 struct net_device *upper_dev) 7956 { 7957 struct netdev_nested_priv priv = { 7958 .flags = 0, 7959 .data = (void *)upper_dev, 7960 }; 7961 7962 ASSERT_RTNL(); 7963 7964 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7965 &priv); 7966 } 7967 7968 /** 7969 * netdev_lower_get_next_private - Get the next ->private from the 7970 * lower neighbour list 7971 * @dev: device 7972 * @iter: list_head ** of the current position 7973 * 7974 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7975 * list, starting from iter position. The caller must hold either hold the 7976 * RTNL lock or its own locking that guarantees that the neighbour lower 7977 * list will remain unchanged. 7978 */ 7979 void *netdev_lower_get_next_private(struct net_device *dev, 7980 struct list_head **iter) 7981 { 7982 struct netdev_adjacent *lower; 7983 7984 lower = list_entry(*iter, struct netdev_adjacent, list); 7985 7986 if (&lower->list == &dev->adj_list.lower) 7987 return NULL; 7988 7989 *iter = lower->list.next; 7990 7991 return lower->private; 7992 } 7993 EXPORT_SYMBOL(netdev_lower_get_next_private); 7994 7995 /** 7996 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7997 * lower neighbour list, RCU 7998 * variant 7999 * @dev: device 8000 * @iter: list_head ** of the current position 8001 * 8002 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8003 * list, starting from iter position. The caller must hold RCU read lock. 8004 */ 8005 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8006 struct list_head **iter) 8007 { 8008 struct netdev_adjacent *lower; 8009 8010 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8011 8012 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8013 8014 if (&lower->list == &dev->adj_list.lower) 8015 return NULL; 8016 8017 *iter = &lower->list; 8018 8019 return lower->private; 8020 } 8021 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8022 8023 /** 8024 * netdev_lower_get_next - Get the next device from the lower neighbour 8025 * list 8026 * @dev: device 8027 * @iter: list_head ** of the current position 8028 * 8029 * Gets the next netdev_adjacent from the dev's lower neighbour 8030 * list, starting from iter position. The caller must hold RTNL lock or 8031 * its own locking that guarantees that the neighbour lower 8032 * list will remain unchanged. 8033 */ 8034 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8035 { 8036 struct netdev_adjacent *lower; 8037 8038 lower = list_entry(*iter, struct netdev_adjacent, list); 8039 8040 if (&lower->list == &dev->adj_list.lower) 8041 return NULL; 8042 8043 *iter = lower->list.next; 8044 8045 return lower->dev; 8046 } 8047 EXPORT_SYMBOL(netdev_lower_get_next); 8048 8049 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8050 struct list_head **iter) 8051 { 8052 struct netdev_adjacent *lower; 8053 8054 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8055 8056 if (&lower->list == &dev->adj_list.lower) 8057 return NULL; 8058 8059 *iter = &lower->list; 8060 8061 return lower->dev; 8062 } 8063 8064 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8065 struct list_head **iter, 8066 bool *ignore) 8067 { 8068 struct netdev_adjacent *lower; 8069 8070 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8071 8072 if (&lower->list == &dev->adj_list.lower) 8073 return NULL; 8074 8075 *iter = &lower->list; 8076 *ignore = lower->ignore; 8077 8078 return lower->dev; 8079 } 8080 8081 int netdev_walk_all_lower_dev(struct net_device *dev, 8082 int (*fn)(struct net_device *dev, 8083 struct netdev_nested_priv *priv), 8084 struct netdev_nested_priv *priv) 8085 { 8086 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8087 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8088 int ret, cur = 0; 8089 8090 now = dev; 8091 iter = &dev->adj_list.lower; 8092 8093 while (1) { 8094 if (now != dev) { 8095 ret = fn(now, priv); 8096 if (ret) 8097 return ret; 8098 } 8099 8100 next = NULL; 8101 while (1) { 8102 ldev = netdev_next_lower_dev(now, &iter); 8103 if (!ldev) 8104 break; 8105 8106 next = ldev; 8107 niter = &ldev->adj_list.lower; 8108 dev_stack[cur] = now; 8109 iter_stack[cur++] = iter; 8110 break; 8111 } 8112 8113 if (!next) { 8114 if (!cur) 8115 return 0; 8116 next = dev_stack[--cur]; 8117 niter = iter_stack[cur]; 8118 } 8119 8120 now = next; 8121 iter = niter; 8122 } 8123 8124 return 0; 8125 } 8126 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8127 8128 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8129 int (*fn)(struct net_device *dev, 8130 struct netdev_nested_priv *priv), 8131 struct netdev_nested_priv *priv) 8132 { 8133 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8134 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8135 int ret, cur = 0; 8136 bool ignore; 8137 8138 now = dev; 8139 iter = &dev->adj_list.lower; 8140 8141 while (1) { 8142 if (now != dev) { 8143 ret = fn(now, priv); 8144 if (ret) 8145 return ret; 8146 } 8147 8148 next = NULL; 8149 while (1) { 8150 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8151 if (!ldev) 8152 break; 8153 if (ignore) 8154 continue; 8155 8156 next = ldev; 8157 niter = &ldev->adj_list.lower; 8158 dev_stack[cur] = now; 8159 iter_stack[cur++] = iter; 8160 break; 8161 } 8162 8163 if (!next) { 8164 if (!cur) 8165 return 0; 8166 next = dev_stack[--cur]; 8167 niter = iter_stack[cur]; 8168 } 8169 8170 now = next; 8171 iter = niter; 8172 } 8173 8174 return 0; 8175 } 8176 8177 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8178 struct list_head **iter) 8179 { 8180 struct netdev_adjacent *lower; 8181 8182 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8183 if (&lower->list == &dev->adj_list.lower) 8184 return NULL; 8185 8186 *iter = &lower->list; 8187 8188 return lower->dev; 8189 } 8190 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8191 8192 static u8 __netdev_upper_depth(struct net_device *dev) 8193 { 8194 struct net_device *udev; 8195 struct list_head *iter; 8196 u8 max_depth = 0; 8197 bool ignore; 8198 8199 for (iter = &dev->adj_list.upper, 8200 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8201 udev; 8202 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8203 if (ignore) 8204 continue; 8205 if (max_depth < udev->upper_level) 8206 max_depth = udev->upper_level; 8207 } 8208 8209 return max_depth; 8210 } 8211 8212 static u8 __netdev_lower_depth(struct net_device *dev) 8213 { 8214 struct net_device *ldev; 8215 struct list_head *iter; 8216 u8 max_depth = 0; 8217 bool ignore; 8218 8219 for (iter = &dev->adj_list.lower, 8220 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8221 ldev; 8222 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8223 if (ignore) 8224 continue; 8225 if (max_depth < ldev->lower_level) 8226 max_depth = ldev->lower_level; 8227 } 8228 8229 return max_depth; 8230 } 8231 8232 static int __netdev_update_upper_level(struct net_device *dev, 8233 struct netdev_nested_priv *__unused) 8234 { 8235 dev->upper_level = __netdev_upper_depth(dev) + 1; 8236 return 0; 8237 } 8238 8239 #ifdef CONFIG_LOCKDEP 8240 static LIST_HEAD(net_unlink_list); 8241 8242 static void net_unlink_todo(struct net_device *dev) 8243 { 8244 if (list_empty(&dev->unlink_list)) 8245 list_add_tail(&dev->unlink_list, &net_unlink_list); 8246 } 8247 #endif 8248 8249 static int __netdev_update_lower_level(struct net_device *dev, 8250 struct netdev_nested_priv *priv) 8251 { 8252 dev->lower_level = __netdev_lower_depth(dev) + 1; 8253 8254 #ifdef CONFIG_LOCKDEP 8255 if (!priv) 8256 return 0; 8257 8258 if (priv->flags & NESTED_SYNC_IMM) 8259 dev->nested_level = dev->lower_level - 1; 8260 if (priv->flags & NESTED_SYNC_TODO) 8261 net_unlink_todo(dev); 8262 #endif 8263 return 0; 8264 } 8265 8266 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8267 int (*fn)(struct net_device *dev, 8268 struct netdev_nested_priv *priv), 8269 struct netdev_nested_priv *priv) 8270 { 8271 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8272 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8273 int ret, cur = 0; 8274 8275 now = dev; 8276 iter = &dev->adj_list.lower; 8277 8278 while (1) { 8279 if (now != dev) { 8280 ret = fn(now, priv); 8281 if (ret) 8282 return ret; 8283 } 8284 8285 next = NULL; 8286 while (1) { 8287 ldev = netdev_next_lower_dev_rcu(now, &iter); 8288 if (!ldev) 8289 break; 8290 8291 next = ldev; 8292 niter = &ldev->adj_list.lower; 8293 dev_stack[cur] = now; 8294 iter_stack[cur++] = iter; 8295 break; 8296 } 8297 8298 if (!next) { 8299 if (!cur) 8300 return 0; 8301 next = dev_stack[--cur]; 8302 niter = iter_stack[cur]; 8303 } 8304 8305 now = next; 8306 iter = niter; 8307 } 8308 8309 return 0; 8310 } 8311 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8312 8313 /** 8314 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8315 * lower neighbour list, RCU 8316 * variant 8317 * @dev: device 8318 * 8319 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8320 * list. The caller must hold RCU read lock. 8321 */ 8322 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8323 { 8324 struct netdev_adjacent *lower; 8325 8326 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8327 struct netdev_adjacent, list); 8328 if (lower) 8329 return lower->private; 8330 return NULL; 8331 } 8332 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8333 8334 /** 8335 * netdev_master_upper_dev_get_rcu - Get master upper device 8336 * @dev: device 8337 * 8338 * Find a master upper device and return pointer to it or NULL in case 8339 * it's not there. The caller must hold the RCU read lock. 8340 */ 8341 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8342 { 8343 struct netdev_adjacent *upper; 8344 8345 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8346 struct netdev_adjacent, list); 8347 if (upper && likely(upper->master)) 8348 return upper->dev; 8349 return NULL; 8350 } 8351 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8352 8353 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8354 struct net_device *adj_dev, 8355 struct list_head *dev_list) 8356 { 8357 char linkname[IFNAMSIZ+7]; 8358 8359 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8360 "upper_%s" : "lower_%s", adj_dev->name); 8361 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8362 linkname); 8363 } 8364 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8365 char *name, 8366 struct list_head *dev_list) 8367 { 8368 char linkname[IFNAMSIZ+7]; 8369 8370 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8371 "upper_%s" : "lower_%s", name); 8372 sysfs_remove_link(&(dev->dev.kobj), linkname); 8373 } 8374 8375 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8376 struct net_device *adj_dev, 8377 struct list_head *dev_list) 8378 { 8379 return (dev_list == &dev->adj_list.upper || 8380 dev_list == &dev->adj_list.lower) && 8381 net_eq(dev_net(dev), dev_net(adj_dev)); 8382 } 8383 8384 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8385 struct net_device *adj_dev, 8386 struct list_head *dev_list, 8387 void *private, bool master) 8388 { 8389 struct netdev_adjacent *adj; 8390 int ret; 8391 8392 adj = __netdev_find_adj(adj_dev, dev_list); 8393 8394 if (adj) { 8395 adj->ref_nr += 1; 8396 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8397 dev->name, adj_dev->name, adj->ref_nr); 8398 8399 return 0; 8400 } 8401 8402 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8403 if (!adj) 8404 return -ENOMEM; 8405 8406 adj->dev = adj_dev; 8407 adj->master = master; 8408 adj->ref_nr = 1; 8409 adj->private = private; 8410 adj->ignore = false; 8411 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8412 8413 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8414 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8415 8416 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8417 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8418 if (ret) 8419 goto free_adj; 8420 } 8421 8422 /* Ensure that master link is always the first item in list. */ 8423 if (master) { 8424 ret = sysfs_create_link(&(dev->dev.kobj), 8425 &(adj_dev->dev.kobj), "master"); 8426 if (ret) 8427 goto remove_symlinks; 8428 8429 list_add_rcu(&adj->list, dev_list); 8430 } else { 8431 list_add_tail_rcu(&adj->list, dev_list); 8432 } 8433 8434 return 0; 8435 8436 remove_symlinks: 8437 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8438 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8439 free_adj: 8440 netdev_put(adj_dev, &adj->dev_tracker); 8441 kfree(adj); 8442 8443 return ret; 8444 } 8445 8446 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8447 struct net_device *adj_dev, 8448 u16 ref_nr, 8449 struct list_head *dev_list) 8450 { 8451 struct netdev_adjacent *adj; 8452 8453 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8454 dev->name, adj_dev->name, ref_nr); 8455 8456 adj = __netdev_find_adj(adj_dev, dev_list); 8457 8458 if (!adj) { 8459 pr_err("Adjacency does not exist for device %s from %s\n", 8460 dev->name, adj_dev->name); 8461 WARN_ON(1); 8462 return; 8463 } 8464 8465 if (adj->ref_nr > ref_nr) { 8466 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8467 dev->name, adj_dev->name, ref_nr, 8468 adj->ref_nr - ref_nr); 8469 adj->ref_nr -= ref_nr; 8470 return; 8471 } 8472 8473 if (adj->master) 8474 sysfs_remove_link(&(dev->dev.kobj), "master"); 8475 8476 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8477 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8478 8479 list_del_rcu(&adj->list); 8480 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8481 adj_dev->name, dev->name, adj_dev->name); 8482 netdev_put(adj_dev, &adj->dev_tracker); 8483 kfree_rcu(adj, rcu); 8484 } 8485 8486 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8487 struct net_device *upper_dev, 8488 struct list_head *up_list, 8489 struct list_head *down_list, 8490 void *private, bool master) 8491 { 8492 int ret; 8493 8494 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8495 private, master); 8496 if (ret) 8497 return ret; 8498 8499 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8500 private, false); 8501 if (ret) { 8502 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8503 return ret; 8504 } 8505 8506 return 0; 8507 } 8508 8509 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8510 struct net_device *upper_dev, 8511 u16 ref_nr, 8512 struct list_head *up_list, 8513 struct list_head *down_list) 8514 { 8515 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8516 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8517 } 8518 8519 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8520 struct net_device *upper_dev, 8521 void *private, bool master) 8522 { 8523 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8524 &dev->adj_list.upper, 8525 &upper_dev->adj_list.lower, 8526 private, master); 8527 } 8528 8529 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8530 struct net_device *upper_dev) 8531 { 8532 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8533 &dev->adj_list.upper, 8534 &upper_dev->adj_list.lower); 8535 } 8536 8537 static int __netdev_upper_dev_link(struct net_device *dev, 8538 struct net_device *upper_dev, bool master, 8539 void *upper_priv, void *upper_info, 8540 struct netdev_nested_priv *priv, 8541 struct netlink_ext_ack *extack) 8542 { 8543 struct netdev_notifier_changeupper_info changeupper_info = { 8544 .info = { 8545 .dev = dev, 8546 .extack = extack, 8547 }, 8548 .upper_dev = upper_dev, 8549 .master = master, 8550 .linking = true, 8551 .upper_info = upper_info, 8552 }; 8553 struct net_device *master_dev; 8554 int ret = 0; 8555 8556 ASSERT_RTNL(); 8557 8558 if (dev == upper_dev) 8559 return -EBUSY; 8560 8561 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8562 if (__netdev_has_upper_dev(upper_dev, dev)) 8563 return -EBUSY; 8564 8565 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8566 return -EMLINK; 8567 8568 if (!master) { 8569 if (__netdev_has_upper_dev(dev, upper_dev)) 8570 return -EEXIST; 8571 } else { 8572 master_dev = __netdev_master_upper_dev_get(dev); 8573 if (master_dev) 8574 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8575 } 8576 8577 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8578 &changeupper_info.info); 8579 ret = notifier_to_errno(ret); 8580 if (ret) 8581 return ret; 8582 8583 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8584 master); 8585 if (ret) 8586 return ret; 8587 8588 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8589 &changeupper_info.info); 8590 ret = notifier_to_errno(ret); 8591 if (ret) 8592 goto rollback; 8593 8594 __netdev_update_upper_level(dev, NULL); 8595 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8596 8597 __netdev_update_lower_level(upper_dev, priv); 8598 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8599 priv); 8600 8601 return 0; 8602 8603 rollback: 8604 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8605 8606 return ret; 8607 } 8608 8609 /** 8610 * netdev_upper_dev_link - Add a link to the upper device 8611 * @dev: device 8612 * @upper_dev: new upper device 8613 * @extack: netlink extended ack 8614 * 8615 * Adds a link to device which is upper to this one. The caller must hold 8616 * the RTNL lock. On a failure a negative errno code is returned. 8617 * On success the reference counts are adjusted and the function 8618 * returns zero. 8619 */ 8620 int netdev_upper_dev_link(struct net_device *dev, 8621 struct net_device *upper_dev, 8622 struct netlink_ext_ack *extack) 8623 { 8624 struct netdev_nested_priv priv = { 8625 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8626 .data = NULL, 8627 }; 8628 8629 return __netdev_upper_dev_link(dev, upper_dev, false, 8630 NULL, NULL, &priv, extack); 8631 } 8632 EXPORT_SYMBOL(netdev_upper_dev_link); 8633 8634 /** 8635 * netdev_master_upper_dev_link - Add a master link to the upper device 8636 * @dev: device 8637 * @upper_dev: new upper device 8638 * @upper_priv: upper device private 8639 * @upper_info: upper info to be passed down via notifier 8640 * @extack: netlink extended ack 8641 * 8642 * Adds a link to device which is upper to this one. In this case, only 8643 * one master upper device can be linked, although other non-master devices 8644 * might be linked as well. The caller must hold the RTNL lock. 8645 * On a failure a negative errno code is returned. On success the reference 8646 * counts are adjusted and the function returns zero. 8647 */ 8648 int netdev_master_upper_dev_link(struct net_device *dev, 8649 struct net_device *upper_dev, 8650 void *upper_priv, void *upper_info, 8651 struct netlink_ext_ack *extack) 8652 { 8653 struct netdev_nested_priv priv = { 8654 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8655 .data = NULL, 8656 }; 8657 8658 return __netdev_upper_dev_link(dev, upper_dev, true, 8659 upper_priv, upper_info, &priv, extack); 8660 } 8661 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8662 8663 static void __netdev_upper_dev_unlink(struct net_device *dev, 8664 struct net_device *upper_dev, 8665 struct netdev_nested_priv *priv) 8666 { 8667 struct netdev_notifier_changeupper_info changeupper_info = { 8668 .info = { 8669 .dev = dev, 8670 }, 8671 .upper_dev = upper_dev, 8672 .linking = false, 8673 }; 8674 8675 ASSERT_RTNL(); 8676 8677 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8678 8679 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8680 &changeupper_info.info); 8681 8682 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8683 8684 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8685 &changeupper_info.info); 8686 8687 __netdev_update_upper_level(dev, NULL); 8688 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8689 8690 __netdev_update_lower_level(upper_dev, priv); 8691 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8692 priv); 8693 } 8694 8695 /** 8696 * netdev_upper_dev_unlink - Removes a link to upper device 8697 * @dev: device 8698 * @upper_dev: new upper device 8699 * 8700 * Removes a link to device which is upper to this one. The caller must hold 8701 * the RTNL lock. 8702 */ 8703 void netdev_upper_dev_unlink(struct net_device *dev, 8704 struct net_device *upper_dev) 8705 { 8706 struct netdev_nested_priv priv = { 8707 .flags = NESTED_SYNC_TODO, 8708 .data = NULL, 8709 }; 8710 8711 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8712 } 8713 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8714 8715 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8716 struct net_device *lower_dev, 8717 bool val) 8718 { 8719 struct netdev_adjacent *adj; 8720 8721 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8722 if (adj) 8723 adj->ignore = val; 8724 8725 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8726 if (adj) 8727 adj->ignore = val; 8728 } 8729 8730 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8731 struct net_device *lower_dev) 8732 { 8733 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8734 } 8735 8736 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8737 struct net_device *lower_dev) 8738 { 8739 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8740 } 8741 8742 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8743 struct net_device *new_dev, 8744 struct net_device *dev, 8745 struct netlink_ext_ack *extack) 8746 { 8747 struct netdev_nested_priv priv = { 8748 .flags = 0, 8749 .data = NULL, 8750 }; 8751 int err; 8752 8753 if (!new_dev) 8754 return 0; 8755 8756 if (old_dev && new_dev != old_dev) 8757 netdev_adjacent_dev_disable(dev, old_dev); 8758 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8759 extack); 8760 if (err) { 8761 if (old_dev && new_dev != old_dev) 8762 netdev_adjacent_dev_enable(dev, old_dev); 8763 return err; 8764 } 8765 8766 return 0; 8767 } 8768 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8769 8770 void netdev_adjacent_change_commit(struct net_device *old_dev, 8771 struct net_device *new_dev, 8772 struct net_device *dev) 8773 { 8774 struct netdev_nested_priv priv = { 8775 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8776 .data = NULL, 8777 }; 8778 8779 if (!new_dev || !old_dev) 8780 return; 8781 8782 if (new_dev == old_dev) 8783 return; 8784 8785 netdev_adjacent_dev_enable(dev, old_dev); 8786 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8787 } 8788 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8789 8790 void netdev_adjacent_change_abort(struct net_device *old_dev, 8791 struct net_device *new_dev, 8792 struct net_device *dev) 8793 { 8794 struct netdev_nested_priv priv = { 8795 .flags = 0, 8796 .data = NULL, 8797 }; 8798 8799 if (!new_dev) 8800 return; 8801 8802 if (old_dev && new_dev != old_dev) 8803 netdev_adjacent_dev_enable(dev, old_dev); 8804 8805 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8806 } 8807 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8808 8809 /** 8810 * netdev_bonding_info_change - Dispatch event about slave change 8811 * @dev: device 8812 * @bonding_info: info to dispatch 8813 * 8814 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8815 * The caller must hold the RTNL lock. 8816 */ 8817 void netdev_bonding_info_change(struct net_device *dev, 8818 struct netdev_bonding_info *bonding_info) 8819 { 8820 struct netdev_notifier_bonding_info info = { 8821 .info.dev = dev, 8822 }; 8823 8824 memcpy(&info.bonding_info, bonding_info, 8825 sizeof(struct netdev_bonding_info)); 8826 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8827 &info.info); 8828 } 8829 EXPORT_SYMBOL(netdev_bonding_info_change); 8830 8831 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8832 struct netlink_ext_ack *extack) 8833 { 8834 struct netdev_notifier_offload_xstats_info info = { 8835 .info.dev = dev, 8836 .info.extack = extack, 8837 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8838 }; 8839 int err; 8840 int rc; 8841 8842 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8843 GFP_KERNEL); 8844 if (!dev->offload_xstats_l3) 8845 return -ENOMEM; 8846 8847 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8848 NETDEV_OFFLOAD_XSTATS_DISABLE, 8849 &info.info); 8850 err = notifier_to_errno(rc); 8851 if (err) 8852 goto free_stats; 8853 8854 return 0; 8855 8856 free_stats: 8857 kfree(dev->offload_xstats_l3); 8858 dev->offload_xstats_l3 = NULL; 8859 return err; 8860 } 8861 8862 int netdev_offload_xstats_enable(struct net_device *dev, 8863 enum netdev_offload_xstats_type type, 8864 struct netlink_ext_ack *extack) 8865 { 8866 ASSERT_RTNL(); 8867 8868 if (netdev_offload_xstats_enabled(dev, type)) 8869 return -EALREADY; 8870 8871 switch (type) { 8872 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8873 return netdev_offload_xstats_enable_l3(dev, extack); 8874 } 8875 8876 WARN_ON(1); 8877 return -EINVAL; 8878 } 8879 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8880 8881 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8882 { 8883 struct netdev_notifier_offload_xstats_info info = { 8884 .info.dev = dev, 8885 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8886 }; 8887 8888 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8889 &info.info); 8890 kfree(dev->offload_xstats_l3); 8891 dev->offload_xstats_l3 = NULL; 8892 } 8893 8894 int netdev_offload_xstats_disable(struct net_device *dev, 8895 enum netdev_offload_xstats_type type) 8896 { 8897 ASSERT_RTNL(); 8898 8899 if (!netdev_offload_xstats_enabled(dev, type)) 8900 return -EALREADY; 8901 8902 switch (type) { 8903 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8904 netdev_offload_xstats_disable_l3(dev); 8905 return 0; 8906 } 8907 8908 WARN_ON(1); 8909 return -EINVAL; 8910 } 8911 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8912 8913 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8914 { 8915 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8916 } 8917 8918 static struct rtnl_hw_stats64 * 8919 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8920 enum netdev_offload_xstats_type type) 8921 { 8922 switch (type) { 8923 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8924 return dev->offload_xstats_l3; 8925 } 8926 8927 WARN_ON(1); 8928 return NULL; 8929 } 8930 8931 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8932 enum netdev_offload_xstats_type type) 8933 { 8934 ASSERT_RTNL(); 8935 8936 return netdev_offload_xstats_get_ptr(dev, type); 8937 } 8938 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8939 8940 struct netdev_notifier_offload_xstats_ru { 8941 bool used; 8942 }; 8943 8944 struct netdev_notifier_offload_xstats_rd { 8945 struct rtnl_hw_stats64 stats; 8946 bool used; 8947 }; 8948 8949 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8950 const struct rtnl_hw_stats64 *src) 8951 { 8952 dest->rx_packets += src->rx_packets; 8953 dest->tx_packets += src->tx_packets; 8954 dest->rx_bytes += src->rx_bytes; 8955 dest->tx_bytes += src->tx_bytes; 8956 dest->rx_errors += src->rx_errors; 8957 dest->tx_errors += src->tx_errors; 8958 dest->rx_dropped += src->rx_dropped; 8959 dest->tx_dropped += src->tx_dropped; 8960 dest->multicast += src->multicast; 8961 } 8962 8963 static int netdev_offload_xstats_get_used(struct net_device *dev, 8964 enum netdev_offload_xstats_type type, 8965 bool *p_used, 8966 struct netlink_ext_ack *extack) 8967 { 8968 struct netdev_notifier_offload_xstats_ru report_used = {}; 8969 struct netdev_notifier_offload_xstats_info info = { 8970 .info.dev = dev, 8971 .info.extack = extack, 8972 .type = type, 8973 .report_used = &report_used, 8974 }; 8975 int rc; 8976 8977 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8978 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8979 &info.info); 8980 *p_used = report_used.used; 8981 return notifier_to_errno(rc); 8982 } 8983 8984 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8985 enum netdev_offload_xstats_type type, 8986 struct rtnl_hw_stats64 *p_stats, 8987 bool *p_used, 8988 struct netlink_ext_ack *extack) 8989 { 8990 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8991 struct netdev_notifier_offload_xstats_info info = { 8992 .info.dev = dev, 8993 .info.extack = extack, 8994 .type = type, 8995 .report_delta = &report_delta, 8996 }; 8997 struct rtnl_hw_stats64 *stats; 8998 int rc; 8999 9000 stats = netdev_offload_xstats_get_ptr(dev, type); 9001 if (WARN_ON(!stats)) 9002 return -EINVAL; 9003 9004 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9005 &info.info); 9006 9007 /* Cache whatever we got, even if there was an error, otherwise the 9008 * successful stats retrievals would get lost. 9009 */ 9010 netdev_hw_stats64_add(stats, &report_delta.stats); 9011 9012 if (p_stats) 9013 *p_stats = *stats; 9014 *p_used = report_delta.used; 9015 9016 return notifier_to_errno(rc); 9017 } 9018 9019 int netdev_offload_xstats_get(struct net_device *dev, 9020 enum netdev_offload_xstats_type type, 9021 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9022 struct netlink_ext_ack *extack) 9023 { 9024 ASSERT_RTNL(); 9025 9026 if (p_stats) 9027 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9028 p_used, extack); 9029 else 9030 return netdev_offload_xstats_get_used(dev, type, p_used, 9031 extack); 9032 } 9033 EXPORT_SYMBOL(netdev_offload_xstats_get); 9034 9035 void 9036 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9037 const struct rtnl_hw_stats64 *stats) 9038 { 9039 report_delta->used = true; 9040 netdev_hw_stats64_add(&report_delta->stats, stats); 9041 } 9042 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9043 9044 void 9045 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9046 { 9047 report_used->used = true; 9048 } 9049 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9050 9051 void netdev_offload_xstats_push_delta(struct net_device *dev, 9052 enum netdev_offload_xstats_type type, 9053 const struct rtnl_hw_stats64 *p_stats) 9054 { 9055 struct rtnl_hw_stats64 *stats; 9056 9057 ASSERT_RTNL(); 9058 9059 stats = netdev_offload_xstats_get_ptr(dev, type); 9060 if (WARN_ON(!stats)) 9061 return; 9062 9063 netdev_hw_stats64_add(stats, p_stats); 9064 } 9065 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9066 9067 /** 9068 * netdev_get_xmit_slave - Get the xmit slave of master device 9069 * @dev: device 9070 * @skb: The packet 9071 * @all_slaves: assume all the slaves are active 9072 * 9073 * The reference counters are not incremented so the caller must be 9074 * careful with locks. The caller must hold RCU lock. 9075 * %NULL is returned if no slave is found. 9076 */ 9077 9078 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9079 struct sk_buff *skb, 9080 bool all_slaves) 9081 { 9082 const struct net_device_ops *ops = dev->netdev_ops; 9083 9084 if (!ops->ndo_get_xmit_slave) 9085 return NULL; 9086 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9087 } 9088 EXPORT_SYMBOL(netdev_get_xmit_slave); 9089 9090 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9091 struct sock *sk) 9092 { 9093 const struct net_device_ops *ops = dev->netdev_ops; 9094 9095 if (!ops->ndo_sk_get_lower_dev) 9096 return NULL; 9097 return ops->ndo_sk_get_lower_dev(dev, sk); 9098 } 9099 9100 /** 9101 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9102 * @dev: device 9103 * @sk: the socket 9104 * 9105 * %NULL is returned if no lower device is found. 9106 */ 9107 9108 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9109 struct sock *sk) 9110 { 9111 struct net_device *lower; 9112 9113 lower = netdev_sk_get_lower_dev(dev, sk); 9114 while (lower) { 9115 dev = lower; 9116 lower = netdev_sk_get_lower_dev(dev, sk); 9117 } 9118 9119 return dev; 9120 } 9121 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9122 9123 static void netdev_adjacent_add_links(struct net_device *dev) 9124 { 9125 struct netdev_adjacent *iter; 9126 9127 struct net *net = dev_net(dev); 9128 9129 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9130 if (!net_eq(net, dev_net(iter->dev))) 9131 continue; 9132 netdev_adjacent_sysfs_add(iter->dev, dev, 9133 &iter->dev->adj_list.lower); 9134 netdev_adjacent_sysfs_add(dev, iter->dev, 9135 &dev->adj_list.upper); 9136 } 9137 9138 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9139 if (!net_eq(net, dev_net(iter->dev))) 9140 continue; 9141 netdev_adjacent_sysfs_add(iter->dev, dev, 9142 &iter->dev->adj_list.upper); 9143 netdev_adjacent_sysfs_add(dev, iter->dev, 9144 &dev->adj_list.lower); 9145 } 9146 } 9147 9148 static void netdev_adjacent_del_links(struct net_device *dev) 9149 { 9150 struct netdev_adjacent *iter; 9151 9152 struct net *net = dev_net(dev); 9153 9154 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9155 if (!net_eq(net, dev_net(iter->dev))) 9156 continue; 9157 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9158 &iter->dev->adj_list.lower); 9159 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9160 &dev->adj_list.upper); 9161 } 9162 9163 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9164 if (!net_eq(net, dev_net(iter->dev))) 9165 continue; 9166 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9167 &iter->dev->adj_list.upper); 9168 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9169 &dev->adj_list.lower); 9170 } 9171 } 9172 9173 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9174 { 9175 struct netdev_adjacent *iter; 9176 9177 struct net *net = dev_net(dev); 9178 9179 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9180 if (!net_eq(net, dev_net(iter->dev))) 9181 continue; 9182 netdev_adjacent_sysfs_del(iter->dev, oldname, 9183 &iter->dev->adj_list.lower); 9184 netdev_adjacent_sysfs_add(iter->dev, dev, 9185 &iter->dev->adj_list.lower); 9186 } 9187 9188 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9189 if (!net_eq(net, dev_net(iter->dev))) 9190 continue; 9191 netdev_adjacent_sysfs_del(iter->dev, oldname, 9192 &iter->dev->adj_list.upper); 9193 netdev_adjacent_sysfs_add(iter->dev, dev, 9194 &iter->dev->adj_list.upper); 9195 } 9196 } 9197 9198 void *netdev_lower_dev_get_private(struct net_device *dev, 9199 struct net_device *lower_dev) 9200 { 9201 struct netdev_adjacent *lower; 9202 9203 if (!lower_dev) 9204 return NULL; 9205 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9206 if (!lower) 9207 return NULL; 9208 9209 return lower->private; 9210 } 9211 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9212 9213 9214 /** 9215 * netdev_lower_state_changed - Dispatch event about lower device state change 9216 * @lower_dev: device 9217 * @lower_state_info: state to dispatch 9218 * 9219 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9220 * The caller must hold the RTNL lock. 9221 */ 9222 void netdev_lower_state_changed(struct net_device *lower_dev, 9223 void *lower_state_info) 9224 { 9225 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9226 .info.dev = lower_dev, 9227 }; 9228 9229 ASSERT_RTNL(); 9230 changelowerstate_info.lower_state_info = lower_state_info; 9231 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9232 &changelowerstate_info.info); 9233 } 9234 EXPORT_SYMBOL(netdev_lower_state_changed); 9235 9236 static void dev_change_rx_flags(struct net_device *dev, int flags) 9237 { 9238 const struct net_device_ops *ops = dev->netdev_ops; 9239 9240 if (ops->ndo_change_rx_flags) 9241 ops->ndo_change_rx_flags(dev, flags); 9242 } 9243 9244 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9245 { 9246 unsigned int old_flags = dev->flags; 9247 unsigned int promiscuity, flags; 9248 kuid_t uid; 9249 kgid_t gid; 9250 9251 ASSERT_RTNL(); 9252 9253 promiscuity = dev->promiscuity + inc; 9254 if (promiscuity == 0) { 9255 /* 9256 * Avoid overflow. 9257 * If inc causes overflow, untouch promisc and return error. 9258 */ 9259 if (unlikely(inc > 0)) { 9260 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9261 return -EOVERFLOW; 9262 } 9263 flags = old_flags & ~IFF_PROMISC; 9264 } else { 9265 flags = old_flags | IFF_PROMISC; 9266 } 9267 WRITE_ONCE(dev->promiscuity, promiscuity); 9268 if (flags != old_flags) { 9269 WRITE_ONCE(dev->flags, flags); 9270 netdev_info(dev, "%s promiscuous mode\n", 9271 dev->flags & IFF_PROMISC ? "entered" : "left"); 9272 if (audit_enabled) { 9273 current_uid_gid(&uid, &gid); 9274 audit_log(audit_context(), GFP_ATOMIC, 9275 AUDIT_ANOM_PROMISCUOUS, 9276 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9277 dev->name, (dev->flags & IFF_PROMISC), 9278 (old_flags & IFF_PROMISC), 9279 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9280 from_kuid(&init_user_ns, uid), 9281 from_kgid(&init_user_ns, gid), 9282 audit_get_sessionid(current)); 9283 } 9284 9285 dev_change_rx_flags(dev, IFF_PROMISC); 9286 } 9287 if (notify) { 9288 /* The ops lock is only required to ensure consistent locking 9289 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9290 * called without the lock, even for devices that are ops 9291 * locked, such as in `dev_uc_sync_multiple` when using 9292 * bonding or teaming. 9293 */ 9294 netdev_ops_assert_locked(dev); 9295 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9296 } 9297 return 0; 9298 } 9299 9300 int netif_set_promiscuity(struct net_device *dev, int inc) 9301 { 9302 unsigned int old_flags = dev->flags; 9303 int err; 9304 9305 err = __dev_set_promiscuity(dev, inc, true); 9306 if (err < 0) 9307 return err; 9308 if (dev->flags != old_flags) 9309 dev_set_rx_mode(dev); 9310 return err; 9311 } 9312 9313 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9314 { 9315 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9316 unsigned int allmulti, flags; 9317 9318 ASSERT_RTNL(); 9319 9320 allmulti = dev->allmulti + inc; 9321 if (allmulti == 0) { 9322 /* 9323 * Avoid overflow. 9324 * If inc causes overflow, untouch allmulti and return error. 9325 */ 9326 if (unlikely(inc > 0)) { 9327 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9328 return -EOVERFLOW; 9329 } 9330 flags = old_flags & ~IFF_ALLMULTI; 9331 } else { 9332 flags = old_flags | IFF_ALLMULTI; 9333 } 9334 WRITE_ONCE(dev->allmulti, allmulti); 9335 if (flags != old_flags) { 9336 WRITE_ONCE(dev->flags, flags); 9337 netdev_info(dev, "%s allmulticast mode\n", 9338 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9339 dev_change_rx_flags(dev, IFF_ALLMULTI); 9340 dev_set_rx_mode(dev); 9341 if (notify) 9342 __dev_notify_flags(dev, old_flags, 9343 dev->gflags ^ old_gflags, 0, NULL); 9344 } 9345 return 0; 9346 } 9347 9348 /* 9349 * Upload unicast and multicast address lists to device and 9350 * configure RX filtering. When the device doesn't support unicast 9351 * filtering it is put in promiscuous mode while unicast addresses 9352 * are present. 9353 */ 9354 void __dev_set_rx_mode(struct net_device *dev) 9355 { 9356 const struct net_device_ops *ops = dev->netdev_ops; 9357 9358 /* dev_open will call this function so the list will stay sane. */ 9359 if (!(dev->flags&IFF_UP)) 9360 return; 9361 9362 if (!netif_device_present(dev)) 9363 return; 9364 9365 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9366 /* Unicast addresses changes may only happen under the rtnl, 9367 * therefore calling __dev_set_promiscuity here is safe. 9368 */ 9369 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9370 __dev_set_promiscuity(dev, 1, false); 9371 dev->uc_promisc = true; 9372 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9373 __dev_set_promiscuity(dev, -1, false); 9374 dev->uc_promisc = false; 9375 } 9376 } 9377 9378 if (ops->ndo_set_rx_mode) 9379 ops->ndo_set_rx_mode(dev); 9380 } 9381 9382 void dev_set_rx_mode(struct net_device *dev) 9383 { 9384 netif_addr_lock_bh(dev); 9385 __dev_set_rx_mode(dev); 9386 netif_addr_unlock_bh(dev); 9387 } 9388 9389 /** 9390 * dev_get_flags - get flags reported to userspace 9391 * @dev: device 9392 * 9393 * Get the combination of flag bits exported through APIs to userspace. 9394 */ 9395 unsigned int dev_get_flags(const struct net_device *dev) 9396 { 9397 unsigned int flags; 9398 9399 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9400 IFF_ALLMULTI | 9401 IFF_RUNNING | 9402 IFF_LOWER_UP | 9403 IFF_DORMANT)) | 9404 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9405 IFF_ALLMULTI)); 9406 9407 if (netif_running(dev)) { 9408 if (netif_oper_up(dev)) 9409 flags |= IFF_RUNNING; 9410 if (netif_carrier_ok(dev)) 9411 flags |= IFF_LOWER_UP; 9412 if (netif_dormant(dev)) 9413 flags |= IFF_DORMANT; 9414 } 9415 9416 return flags; 9417 } 9418 EXPORT_SYMBOL(dev_get_flags); 9419 9420 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9421 struct netlink_ext_ack *extack) 9422 { 9423 unsigned int old_flags = dev->flags; 9424 int ret; 9425 9426 ASSERT_RTNL(); 9427 9428 /* 9429 * Set the flags on our device. 9430 */ 9431 9432 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9433 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9434 IFF_AUTOMEDIA)) | 9435 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9436 IFF_ALLMULTI)); 9437 9438 /* 9439 * Load in the correct multicast list now the flags have changed. 9440 */ 9441 9442 if ((old_flags ^ flags) & IFF_MULTICAST) 9443 dev_change_rx_flags(dev, IFF_MULTICAST); 9444 9445 dev_set_rx_mode(dev); 9446 9447 /* 9448 * Have we downed the interface. We handle IFF_UP ourselves 9449 * according to user attempts to set it, rather than blindly 9450 * setting it. 9451 */ 9452 9453 ret = 0; 9454 if ((old_flags ^ flags) & IFF_UP) { 9455 if (old_flags & IFF_UP) 9456 __dev_close(dev); 9457 else 9458 ret = __dev_open(dev, extack); 9459 } 9460 9461 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9462 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9463 old_flags = dev->flags; 9464 9465 dev->gflags ^= IFF_PROMISC; 9466 9467 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9468 if (dev->flags != old_flags) 9469 dev_set_rx_mode(dev); 9470 } 9471 9472 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9473 * is important. Some (broken) drivers set IFF_PROMISC, when 9474 * IFF_ALLMULTI is requested not asking us and not reporting. 9475 */ 9476 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9477 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9478 9479 dev->gflags ^= IFF_ALLMULTI; 9480 netif_set_allmulti(dev, inc, false); 9481 } 9482 9483 return ret; 9484 } 9485 9486 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9487 unsigned int gchanges, u32 portid, 9488 const struct nlmsghdr *nlh) 9489 { 9490 unsigned int changes = dev->flags ^ old_flags; 9491 9492 if (gchanges) 9493 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9494 9495 if (changes & IFF_UP) { 9496 if (dev->flags & IFF_UP) 9497 call_netdevice_notifiers(NETDEV_UP, dev); 9498 else 9499 call_netdevice_notifiers(NETDEV_DOWN, dev); 9500 } 9501 9502 if (dev->flags & IFF_UP && 9503 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9504 struct netdev_notifier_change_info change_info = { 9505 .info = { 9506 .dev = dev, 9507 }, 9508 .flags_changed = changes, 9509 }; 9510 9511 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9512 } 9513 } 9514 9515 int netif_change_flags(struct net_device *dev, unsigned int flags, 9516 struct netlink_ext_ack *extack) 9517 { 9518 int ret; 9519 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9520 9521 ret = __dev_change_flags(dev, flags, extack); 9522 if (ret < 0) 9523 return ret; 9524 9525 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9526 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9527 return ret; 9528 } 9529 9530 int __dev_set_mtu(struct net_device *dev, int new_mtu) 9531 { 9532 const struct net_device_ops *ops = dev->netdev_ops; 9533 9534 if (ops->ndo_change_mtu) 9535 return ops->ndo_change_mtu(dev, new_mtu); 9536 9537 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9538 WRITE_ONCE(dev->mtu, new_mtu); 9539 return 0; 9540 } 9541 EXPORT_SYMBOL(__dev_set_mtu); 9542 9543 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9544 struct netlink_ext_ack *extack) 9545 { 9546 /* MTU must be positive, and in range */ 9547 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9548 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9549 return -EINVAL; 9550 } 9551 9552 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9553 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9554 return -EINVAL; 9555 } 9556 return 0; 9557 } 9558 9559 /** 9560 * netif_set_mtu_ext - Change maximum transfer unit 9561 * @dev: device 9562 * @new_mtu: new transfer unit 9563 * @extack: netlink extended ack 9564 * 9565 * Change the maximum transfer size of the network device. 9566 */ 9567 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9568 struct netlink_ext_ack *extack) 9569 { 9570 int err, orig_mtu; 9571 9572 if (new_mtu == dev->mtu) 9573 return 0; 9574 9575 err = dev_validate_mtu(dev, new_mtu, extack); 9576 if (err) 9577 return err; 9578 9579 if (!netif_device_present(dev)) 9580 return -ENODEV; 9581 9582 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9583 err = notifier_to_errno(err); 9584 if (err) 9585 return err; 9586 9587 orig_mtu = dev->mtu; 9588 err = __dev_set_mtu(dev, new_mtu); 9589 9590 if (!err) { 9591 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9592 orig_mtu); 9593 err = notifier_to_errno(err); 9594 if (err) { 9595 /* setting mtu back and notifying everyone again, 9596 * so that they have a chance to revert changes. 9597 */ 9598 __dev_set_mtu(dev, orig_mtu); 9599 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9600 new_mtu); 9601 } 9602 } 9603 return err; 9604 } 9605 9606 int netif_set_mtu(struct net_device *dev, int new_mtu) 9607 { 9608 struct netlink_ext_ack extack; 9609 int err; 9610 9611 memset(&extack, 0, sizeof(extack)); 9612 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9613 if (err && extack._msg) 9614 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9615 return err; 9616 } 9617 EXPORT_SYMBOL(netif_set_mtu); 9618 9619 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9620 { 9621 unsigned int orig_len = dev->tx_queue_len; 9622 int res; 9623 9624 if (new_len != (unsigned int)new_len) 9625 return -ERANGE; 9626 9627 if (new_len != orig_len) { 9628 WRITE_ONCE(dev->tx_queue_len, new_len); 9629 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9630 res = notifier_to_errno(res); 9631 if (res) 9632 goto err_rollback; 9633 res = dev_qdisc_change_tx_queue_len(dev); 9634 if (res) 9635 goto err_rollback; 9636 } 9637 9638 return 0; 9639 9640 err_rollback: 9641 netdev_err(dev, "refused to change device tx_queue_len\n"); 9642 WRITE_ONCE(dev->tx_queue_len, orig_len); 9643 return res; 9644 } 9645 9646 void netif_set_group(struct net_device *dev, int new_group) 9647 { 9648 dev->group = new_group; 9649 } 9650 9651 /** 9652 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9653 * @dev: device 9654 * @addr: new address 9655 * @extack: netlink extended ack 9656 */ 9657 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9658 struct netlink_ext_ack *extack) 9659 { 9660 struct netdev_notifier_pre_changeaddr_info info = { 9661 .info.dev = dev, 9662 .info.extack = extack, 9663 .dev_addr = addr, 9664 }; 9665 int rc; 9666 9667 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9668 return notifier_to_errno(rc); 9669 } 9670 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9671 9672 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9673 struct netlink_ext_ack *extack) 9674 { 9675 const struct net_device_ops *ops = dev->netdev_ops; 9676 int err; 9677 9678 if (!ops->ndo_set_mac_address) 9679 return -EOPNOTSUPP; 9680 if (ss->ss_family != dev->type) 9681 return -EINVAL; 9682 if (!netif_device_present(dev)) 9683 return -ENODEV; 9684 err = dev_pre_changeaddr_notify(dev, ss->__data, extack); 9685 if (err) 9686 return err; 9687 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9688 err = ops->ndo_set_mac_address(dev, ss); 9689 if (err) 9690 return err; 9691 } 9692 dev->addr_assign_type = NET_ADDR_SET; 9693 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9694 add_device_randomness(dev->dev_addr, dev->addr_len); 9695 return 0; 9696 } 9697 9698 DECLARE_RWSEM(dev_addr_sem); 9699 9700 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9701 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9702 { 9703 size_t size = sizeof(sa->sa_data_min); 9704 struct net_device *dev; 9705 int ret = 0; 9706 9707 down_read(&dev_addr_sem); 9708 rcu_read_lock(); 9709 9710 dev = dev_get_by_name_rcu(net, dev_name); 9711 if (!dev) { 9712 ret = -ENODEV; 9713 goto unlock; 9714 } 9715 if (!dev->addr_len) 9716 memset(sa->sa_data, 0, size); 9717 else 9718 memcpy(sa->sa_data, dev->dev_addr, 9719 min_t(size_t, size, dev->addr_len)); 9720 sa->sa_family = dev->type; 9721 9722 unlock: 9723 rcu_read_unlock(); 9724 up_read(&dev_addr_sem); 9725 return ret; 9726 } 9727 EXPORT_SYMBOL(dev_get_mac_address); 9728 9729 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9730 { 9731 const struct net_device_ops *ops = dev->netdev_ops; 9732 9733 if (!ops->ndo_change_carrier) 9734 return -EOPNOTSUPP; 9735 if (!netif_device_present(dev)) 9736 return -ENODEV; 9737 return ops->ndo_change_carrier(dev, new_carrier); 9738 } 9739 9740 /** 9741 * dev_get_phys_port_id - Get device physical port ID 9742 * @dev: device 9743 * @ppid: port ID 9744 * 9745 * Get device physical port ID 9746 */ 9747 int dev_get_phys_port_id(struct net_device *dev, 9748 struct netdev_phys_item_id *ppid) 9749 { 9750 const struct net_device_ops *ops = dev->netdev_ops; 9751 9752 if (!ops->ndo_get_phys_port_id) 9753 return -EOPNOTSUPP; 9754 return ops->ndo_get_phys_port_id(dev, ppid); 9755 } 9756 9757 /** 9758 * dev_get_phys_port_name - Get device physical port name 9759 * @dev: device 9760 * @name: port name 9761 * @len: limit of bytes to copy to name 9762 * 9763 * Get device physical port name 9764 */ 9765 int dev_get_phys_port_name(struct net_device *dev, 9766 char *name, size_t len) 9767 { 9768 const struct net_device_ops *ops = dev->netdev_ops; 9769 int err; 9770 9771 if (ops->ndo_get_phys_port_name) { 9772 err = ops->ndo_get_phys_port_name(dev, name, len); 9773 if (err != -EOPNOTSUPP) 9774 return err; 9775 } 9776 return devlink_compat_phys_port_name_get(dev, name, len); 9777 } 9778 9779 /** 9780 * dev_get_port_parent_id - Get the device's port parent identifier 9781 * @dev: network device 9782 * @ppid: pointer to a storage for the port's parent identifier 9783 * @recurse: allow/disallow recursion to lower devices 9784 * 9785 * Get the devices's port parent identifier 9786 */ 9787 int dev_get_port_parent_id(struct net_device *dev, 9788 struct netdev_phys_item_id *ppid, 9789 bool recurse) 9790 { 9791 const struct net_device_ops *ops = dev->netdev_ops; 9792 struct netdev_phys_item_id first = { }; 9793 struct net_device *lower_dev; 9794 struct list_head *iter; 9795 int err; 9796 9797 if (ops->ndo_get_port_parent_id) { 9798 err = ops->ndo_get_port_parent_id(dev, ppid); 9799 if (err != -EOPNOTSUPP) 9800 return err; 9801 } 9802 9803 err = devlink_compat_switch_id_get(dev, ppid); 9804 if (!recurse || err != -EOPNOTSUPP) 9805 return err; 9806 9807 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9808 err = dev_get_port_parent_id(lower_dev, ppid, true); 9809 if (err) 9810 break; 9811 if (!first.id_len) 9812 first = *ppid; 9813 else if (memcmp(&first, ppid, sizeof(*ppid))) 9814 return -EOPNOTSUPP; 9815 } 9816 9817 return err; 9818 } 9819 EXPORT_SYMBOL(dev_get_port_parent_id); 9820 9821 /** 9822 * netdev_port_same_parent_id - Indicate if two network devices have 9823 * the same port parent identifier 9824 * @a: first network device 9825 * @b: second network device 9826 */ 9827 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9828 { 9829 struct netdev_phys_item_id a_id = { }; 9830 struct netdev_phys_item_id b_id = { }; 9831 9832 if (dev_get_port_parent_id(a, &a_id, true) || 9833 dev_get_port_parent_id(b, &b_id, true)) 9834 return false; 9835 9836 return netdev_phys_item_id_same(&a_id, &b_id); 9837 } 9838 EXPORT_SYMBOL(netdev_port_same_parent_id); 9839 9840 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9841 { 9842 if (!dev->change_proto_down) 9843 return -EOPNOTSUPP; 9844 if (!netif_device_present(dev)) 9845 return -ENODEV; 9846 if (proto_down) 9847 netif_carrier_off(dev); 9848 else 9849 netif_carrier_on(dev); 9850 WRITE_ONCE(dev->proto_down, proto_down); 9851 return 0; 9852 } 9853 9854 /** 9855 * netdev_change_proto_down_reason_locked - proto down reason 9856 * 9857 * @dev: device 9858 * @mask: proto down mask 9859 * @value: proto down value 9860 */ 9861 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9862 unsigned long mask, u32 value) 9863 { 9864 u32 proto_down_reason; 9865 int b; 9866 9867 if (!mask) { 9868 proto_down_reason = value; 9869 } else { 9870 proto_down_reason = dev->proto_down_reason; 9871 for_each_set_bit(b, &mask, 32) { 9872 if (value & (1 << b)) 9873 proto_down_reason |= BIT(b); 9874 else 9875 proto_down_reason &= ~BIT(b); 9876 } 9877 } 9878 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9879 } 9880 9881 struct bpf_xdp_link { 9882 struct bpf_link link; 9883 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9884 int flags; 9885 }; 9886 9887 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9888 { 9889 if (flags & XDP_FLAGS_HW_MODE) 9890 return XDP_MODE_HW; 9891 if (flags & XDP_FLAGS_DRV_MODE) 9892 return XDP_MODE_DRV; 9893 if (flags & XDP_FLAGS_SKB_MODE) 9894 return XDP_MODE_SKB; 9895 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9896 } 9897 9898 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9899 { 9900 switch (mode) { 9901 case XDP_MODE_SKB: 9902 return generic_xdp_install; 9903 case XDP_MODE_DRV: 9904 case XDP_MODE_HW: 9905 return dev->netdev_ops->ndo_bpf; 9906 default: 9907 return NULL; 9908 } 9909 } 9910 9911 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9912 enum bpf_xdp_mode mode) 9913 { 9914 return dev->xdp_state[mode].link; 9915 } 9916 9917 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9918 enum bpf_xdp_mode mode) 9919 { 9920 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9921 9922 if (link) 9923 return link->link.prog; 9924 return dev->xdp_state[mode].prog; 9925 } 9926 9927 u8 dev_xdp_prog_count(struct net_device *dev) 9928 { 9929 u8 count = 0; 9930 int i; 9931 9932 for (i = 0; i < __MAX_XDP_MODE; i++) 9933 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9934 count++; 9935 return count; 9936 } 9937 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9938 9939 u8 dev_xdp_sb_prog_count(struct net_device *dev) 9940 { 9941 u8 count = 0; 9942 int i; 9943 9944 for (i = 0; i < __MAX_XDP_MODE; i++) 9945 if (dev->xdp_state[i].prog && 9946 !dev->xdp_state[i].prog->aux->xdp_has_frags) 9947 count++; 9948 return count; 9949 } 9950 9951 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9952 { 9953 if (!dev->netdev_ops->ndo_bpf) 9954 return -EOPNOTSUPP; 9955 9956 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 9957 bpf->command == XDP_SETUP_PROG && 9958 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 9959 NL_SET_ERR_MSG(bpf->extack, 9960 "unable to propagate XDP to device using tcp-data-split"); 9961 return -EBUSY; 9962 } 9963 9964 if (dev_get_min_mp_channel_count(dev)) { 9965 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 9966 return -EBUSY; 9967 } 9968 9969 return dev->netdev_ops->ndo_bpf(dev, bpf); 9970 } 9971 9972 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9973 { 9974 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9975 9976 return prog ? prog->aux->id : 0; 9977 } 9978 9979 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9980 struct bpf_xdp_link *link) 9981 { 9982 dev->xdp_state[mode].link = link; 9983 dev->xdp_state[mode].prog = NULL; 9984 } 9985 9986 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9987 struct bpf_prog *prog) 9988 { 9989 dev->xdp_state[mode].link = NULL; 9990 dev->xdp_state[mode].prog = prog; 9991 } 9992 9993 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9994 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9995 u32 flags, struct bpf_prog *prog) 9996 { 9997 struct netdev_bpf xdp; 9998 int err; 9999 10000 netdev_ops_assert_locked(dev); 10001 10002 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10003 prog && !prog->aux->xdp_has_frags) { 10004 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10005 return -EBUSY; 10006 } 10007 10008 if (dev_get_min_mp_channel_count(dev)) { 10009 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10010 return -EBUSY; 10011 } 10012 10013 memset(&xdp, 0, sizeof(xdp)); 10014 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10015 xdp.extack = extack; 10016 xdp.flags = flags; 10017 xdp.prog = prog; 10018 10019 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10020 * "moved" into driver), so they don't increment it on their own, but 10021 * they do decrement refcnt when program is detached or replaced. 10022 * Given net_device also owns link/prog, we need to bump refcnt here 10023 * to prevent drivers from underflowing it. 10024 */ 10025 if (prog) 10026 bpf_prog_inc(prog); 10027 err = bpf_op(dev, &xdp); 10028 if (err) { 10029 if (prog) 10030 bpf_prog_put(prog); 10031 return err; 10032 } 10033 10034 if (mode != XDP_MODE_HW) 10035 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10036 10037 return 0; 10038 } 10039 10040 static void dev_xdp_uninstall(struct net_device *dev) 10041 { 10042 struct bpf_xdp_link *link; 10043 struct bpf_prog *prog; 10044 enum bpf_xdp_mode mode; 10045 bpf_op_t bpf_op; 10046 10047 ASSERT_RTNL(); 10048 10049 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10050 prog = dev_xdp_prog(dev, mode); 10051 if (!prog) 10052 continue; 10053 10054 bpf_op = dev_xdp_bpf_op(dev, mode); 10055 if (!bpf_op) 10056 continue; 10057 10058 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10059 10060 /* auto-detach link from net device */ 10061 link = dev_xdp_link(dev, mode); 10062 if (link) 10063 link->dev = NULL; 10064 else 10065 bpf_prog_put(prog); 10066 10067 dev_xdp_set_link(dev, mode, NULL); 10068 } 10069 } 10070 10071 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10072 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10073 struct bpf_prog *old_prog, u32 flags) 10074 { 10075 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10076 struct bpf_prog *cur_prog; 10077 struct net_device *upper; 10078 struct list_head *iter; 10079 enum bpf_xdp_mode mode; 10080 bpf_op_t bpf_op; 10081 int err; 10082 10083 ASSERT_RTNL(); 10084 10085 /* either link or prog attachment, never both */ 10086 if (link && (new_prog || old_prog)) 10087 return -EINVAL; 10088 /* link supports only XDP mode flags */ 10089 if (link && (flags & ~XDP_FLAGS_MODES)) { 10090 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10091 return -EINVAL; 10092 } 10093 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10094 if (num_modes > 1) { 10095 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10096 return -EINVAL; 10097 } 10098 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10099 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10100 NL_SET_ERR_MSG(extack, 10101 "More than one program loaded, unset mode is ambiguous"); 10102 return -EINVAL; 10103 } 10104 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10105 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10106 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10107 return -EINVAL; 10108 } 10109 10110 mode = dev_xdp_mode(dev, flags); 10111 /* can't replace attached link */ 10112 if (dev_xdp_link(dev, mode)) { 10113 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10114 return -EBUSY; 10115 } 10116 10117 /* don't allow if an upper device already has a program */ 10118 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10119 if (dev_xdp_prog_count(upper) > 0) { 10120 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10121 return -EEXIST; 10122 } 10123 } 10124 10125 cur_prog = dev_xdp_prog(dev, mode); 10126 /* can't replace attached prog with link */ 10127 if (link && cur_prog) { 10128 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10129 return -EBUSY; 10130 } 10131 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10132 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10133 return -EEXIST; 10134 } 10135 10136 /* put effective new program into new_prog */ 10137 if (link) 10138 new_prog = link->link.prog; 10139 10140 if (new_prog) { 10141 bool offload = mode == XDP_MODE_HW; 10142 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10143 ? XDP_MODE_DRV : XDP_MODE_SKB; 10144 10145 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10146 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10147 return -EBUSY; 10148 } 10149 if (!offload && dev_xdp_prog(dev, other_mode)) { 10150 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10151 return -EEXIST; 10152 } 10153 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10154 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10155 return -EINVAL; 10156 } 10157 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10158 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10159 return -EINVAL; 10160 } 10161 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10162 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10163 return -EINVAL; 10164 } 10165 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10166 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10167 return -EINVAL; 10168 } 10169 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10170 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10171 return -EINVAL; 10172 } 10173 } 10174 10175 /* don't call drivers if the effective program didn't change */ 10176 if (new_prog != cur_prog) { 10177 bpf_op = dev_xdp_bpf_op(dev, mode); 10178 if (!bpf_op) { 10179 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10180 return -EOPNOTSUPP; 10181 } 10182 10183 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10184 if (err) 10185 return err; 10186 } 10187 10188 if (link) 10189 dev_xdp_set_link(dev, mode, link); 10190 else 10191 dev_xdp_set_prog(dev, mode, new_prog); 10192 if (cur_prog) 10193 bpf_prog_put(cur_prog); 10194 10195 return 0; 10196 } 10197 10198 static int dev_xdp_attach_link(struct net_device *dev, 10199 struct netlink_ext_ack *extack, 10200 struct bpf_xdp_link *link) 10201 { 10202 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10203 } 10204 10205 static int dev_xdp_detach_link(struct net_device *dev, 10206 struct netlink_ext_ack *extack, 10207 struct bpf_xdp_link *link) 10208 { 10209 enum bpf_xdp_mode mode; 10210 bpf_op_t bpf_op; 10211 10212 ASSERT_RTNL(); 10213 10214 mode = dev_xdp_mode(dev, link->flags); 10215 if (dev_xdp_link(dev, mode) != link) 10216 return -EINVAL; 10217 10218 bpf_op = dev_xdp_bpf_op(dev, mode); 10219 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10220 dev_xdp_set_link(dev, mode, NULL); 10221 return 0; 10222 } 10223 10224 static void bpf_xdp_link_release(struct bpf_link *link) 10225 { 10226 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10227 10228 rtnl_lock(); 10229 10230 /* if racing with net_device's tear down, xdp_link->dev might be 10231 * already NULL, in which case link was already auto-detached 10232 */ 10233 if (xdp_link->dev) { 10234 netdev_lock_ops(xdp_link->dev); 10235 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10236 netdev_unlock_ops(xdp_link->dev); 10237 xdp_link->dev = NULL; 10238 } 10239 10240 rtnl_unlock(); 10241 } 10242 10243 static int bpf_xdp_link_detach(struct bpf_link *link) 10244 { 10245 bpf_xdp_link_release(link); 10246 return 0; 10247 } 10248 10249 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10250 { 10251 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10252 10253 kfree(xdp_link); 10254 } 10255 10256 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10257 struct seq_file *seq) 10258 { 10259 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10260 u32 ifindex = 0; 10261 10262 rtnl_lock(); 10263 if (xdp_link->dev) 10264 ifindex = xdp_link->dev->ifindex; 10265 rtnl_unlock(); 10266 10267 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10268 } 10269 10270 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10271 struct bpf_link_info *info) 10272 { 10273 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10274 u32 ifindex = 0; 10275 10276 rtnl_lock(); 10277 if (xdp_link->dev) 10278 ifindex = xdp_link->dev->ifindex; 10279 rtnl_unlock(); 10280 10281 info->xdp.ifindex = ifindex; 10282 return 0; 10283 } 10284 10285 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10286 struct bpf_prog *old_prog) 10287 { 10288 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10289 enum bpf_xdp_mode mode; 10290 bpf_op_t bpf_op; 10291 int err = 0; 10292 10293 rtnl_lock(); 10294 10295 /* link might have been auto-released already, so fail */ 10296 if (!xdp_link->dev) { 10297 err = -ENOLINK; 10298 goto out_unlock; 10299 } 10300 10301 if (old_prog && link->prog != old_prog) { 10302 err = -EPERM; 10303 goto out_unlock; 10304 } 10305 old_prog = link->prog; 10306 if (old_prog->type != new_prog->type || 10307 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10308 err = -EINVAL; 10309 goto out_unlock; 10310 } 10311 10312 if (old_prog == new_prog) { 10313 /* no-op, don't disturb drivers */ 10314 bpf_prog_put(new_prog); 10315 goto out_unlock; 10316 } 10317 10318 netdev_lock_ops(xdp_link->dev); 10319 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10320 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10321 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10322 xdp_link->flags, new_prog); 10323 netdev_unlock_ops(xdp_link->dev); 10324 if (err) 10325 goto out_unlock; 10326 10327 old_prog = xchg(&link->prog, new_prog); 10328 bpf_prog_put(old_prog); 10329 10330 out_unlock: 10331 rtnl_unlock(); 10332 return err; 10333 } 10334 10335 static const struct bpf_link_ops bpf_xdp_link_lops = { 10336 .release = bpf_xdp_link_release, 10337 .dealloc = bpf_xdp_link_dealloc, 10338 .detach = bpf_xdp_link_detach, 10339 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10340 .fill_link_info = bpf_xdp_link_fill_link_info, 10341 .update_prog = bpf_xdp_link_update, 10342 }; 10343 10344 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10345 { 10346 struct net *net = current->nsproxy->net_ns; 10347 struct bpf_link_primer link_primer; 10348 struct netlink_ext_ack extack = {}; 10349 struct bpf_xdp_link *link; 10350 struct net_device *dev; 10351 int err, fd; 10352 10353 rtnl_lock(); 10354 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10355 if (!dev) { 10356 rtnl_unlock(); 10357 return -EINVAL; 10358 } 10359 10360 link = kzalloc(sizeof(*link), GFP_USER); 10361 if (!link) { 10362 err = -ENOMEM; 10363 goto unlock; 10364 } 10365 10366 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 10367 link->dev = dev; 10368 link->flags = attr->link_create.flags; 10369 10370 err = bpf_link_prime(&link->link, &link_primer); 10371 if (err) { 10372 kfree(link); 10373 goto unlock; 10374 } 10375 10376 netdev_lock_ops(dev); 10377 err = dev_xdp_attach_link(dev, &extack, link); 10378 netdev_unlock_ops(dev); 10379 rtnl_unlock(); 10380 10381 if (err) { 10382 link->dev = NULL; 10383 bpf_link_cleanup(&link_primer); 10384 trace_bpf_xdp_link_attach_failed(extack._msg); 10385 goto out_put_dev; 10386 } 10387 10388 fd = bpf_link_settle(&link_primer); 10389 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10390 dev_put(dev); 10391 return fd; 10392 10393 unlock: 10394 rtnl_unlock(); 10395 10396 out_put_dev: 10397 dev_put(dev); 10398 return err; 10399 } 10400 10401 /** 10402 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10403 * @dev: device 10404 * @extack: netlink extended ack 10405 * @fd: new program fd or negative value to clear 10406 * @expected_fd: old program fd that userspace expects to replace or clear 10407 * @flags: xdp-related flags 10408 * 10409 * Set or clear a bpf program for a device 10410 */ 10411 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10412 int fd, int expected_fd, u32 flags) 10413 { 10414 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10415 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10416 int err; 10417 10418 ASSERT_RTNL(); 10419 10420 if (fd >= 0) { 10421 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10422 mode != XDP_MODE_SKB); 10423 if (IS_ERR(new_prog)) 10424 return PTR_ERR(new_prog); 10425 } 10426 10427 if (expected_fd >= 0) { 10428 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10429 mode != XDP_MODE_SKB); 10430 if (IS_ERR(old_prog)) { 10431 err = PTR_ERR(old_prog); 10432 old_prog = NULL; 10433 goto err_out; 10434 } 10435 } 10436 10437 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10438 10439 err_out: 10440 if (err && new_prog) 10441 bpf_prog_put(new_prog); 10442 if (old_prog) 10443 bpf_prog_put(old_prog); 10444 return err; 10445 } 10446 10447 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10448 { 10449 int i; 10450 10451 netdev_ops_assert_locked(dev); 10452 10453 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10454 if (dev->_rx[i].mp_params.mp_priv) 10455 /* The channel count is the idx plus 1. */ 10456 return i + 1; 10457 10458 return 0; 10459 } 10460 10461 /** 10462 * dev_index_reserve() - allocate an ifindex in a namespace 10463 * @net: the applicable net namespace 10464 * @ifindex: requested ifindex, pass %0 to get one allocated 10465 * 10466 * Allocate a ifindex for a new device. Caller must either use the ifindex 10467 * to store the device (via list_netdevice()) or call dev_index_release() 10468 * to give the index up. 10469 * 10470 * Return: a suitable unique value for a new device interface number or -errno. 10471 */ 10472 static int dev_index_reserve(struct net *net, u32 ifindex) 10473 { 10474 int err; 10475 10476 if (ifindex > INT_MAX) { 10477 DEBUG_NET_WARN_ON_ONCE(1); 10478 return -EINVAL; 10479 } 10480 10481 if (!ifindex) 10482 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10483 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10484 else 10485 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10486 if (err < 0) 10487 return err; 10488 10489 return ifindex; 10490 } 10491 10492 static void dev_index_release(struct net *net, int ifindex) 10493 { 10494 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10495 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10496 } 10497 10498 static bool from_cleanup_net(void) 10499 { 10500 #ifdef CONFIG_NET_NS 10501 return current == cleanup_net_task; 10502 #else 10503 return false; 10504 #endif 10505 } 10506 10507 /* Delayed registration/unregisteration */ 10508 LIST_HEAD(net_todo_list); 10509 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10510 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10511 10512 static void net_set_todo(struct net_device *dev) 10513 { 10514 list_add_tail(&dev->todo_list, &net_todo_list); 10515 } 10516 10517 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10518 struct net_device *upper, netdev_features_t features) 10519 { 10520 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10521 netdev_features_t feature; 10522 int feature_bit; 10523 10524 for_each_netdev_feature(upper_disables, feature_bit) { 10525 feature = __NETIF_F_BIT(feature_bit); 10526 if (!(upper->wanted_features & feature) 10527 && (features & feature)) { 10528 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10529 &feature, upper->name); 10530 features &= ~feature; 10531 } 10532 } 10533 10534 return features; 10535 } 10536 10537 static void netdev_sync_lower_features(struct net_device *upper, 10538 struct net_device *lower, netdev_features_t features) 10539 { 10540 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10541 netdev_features_t feature; 10542 int feature_bit; 10543 10544 for_each_netdev_feature(upper_disables, feature_bit) { 10545 feature = __NETIF_F_BIT(feature_bit); 10546 if (!(features & feature) && (lower->features & feature)) { 10547 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10548 &feature, lower->name); 10549 netdev_lock_ops(lower); 10550 lower->wanted_features &= ~feature; 10551 __netdev_update_features(lower); 10552 10553 if (unlikely(lower->features & feature)) 10554 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10555 &feature, lower->name); 10556 else 10557 netdev_features_change(lower); 10558 netdev_unlock_ops(lower); 10559 } 10560 } 10561 } 10562 10563 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10564 { 10565 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10566 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10567 bool hw_csum = features & NETIF_F_HW_CSUM; 10568 10569 return ip_csum || hw_csum; 10570 } 10571 10572 static netdev_features_t netdev_fix_features(struct net_device *dev, 10573 netdev_features_t features) 10574 { 10575 /* Fix illegal checksum combinations */ 10576 if ((features & NETIF_F_HW_CSUM) && 10577 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10578 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10579 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10580 } 10581 10582 /* TSO requires that SG is present as well. */ 10583 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10584 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10585 features &= ~NETIF_F_ALL_TSO; 10586 } 10587 10588 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10589 !(features & NETIF_F_IP_CSUM)) { 10590 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10591 features &= ~NETIF_F_TSO; 10592 features &= ~NETIF_F_TSO_ECN; 10593 } 10594 10595 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10596 !(features & NETIF_F_IPV6_CSUM)) { 10597 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10598 features &= ~NETIF_F_TSO6; 10599 } 10600 10601 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10602 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10603 features &= ~NETIF_F_TSO_MANGLEID; 10604 10605 /* TSO ECN requires that TSO is present as well. */ 10606 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10607 features &= ~NETIF_F_TSO_ECN; 10608 10609 /* Software GSO depends on SG. */ 10610 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10611 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10612 features &= ~NETIF_F_GSO; 10613 } 10614 10615 /* GSO partial features require GSO partial be set */ 10616 if ((features & dev->gso_partial_features) && 10617 !(features & NETIF_F_GSO_PARTIAL)) { 10618 netdev_dbg(dev, 10619 "Dropping partially supported GSO features since no GSO partial.\n"); 10620 features &= ~dev->gso_partial_features; 10621 } 10622 10623 if (!(features & NETIF_F_RXCSUM)) { 10624 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10625 * successfully merged by hardware must also have the 10626 * checksum verified by hardware. If the user does not 10627 * want to enable RXCSUM, logically, we should disable GRO_HW. 10628 */ 10629 if (features & NETIF_F_GRO_HW) { 10630 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10631 features &= ~NETIF_F_GRO_HW; 10632 } 10633 } 10634 10635 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10636 if (features & NETIF_F_RXFCS) { 10637 if (features & NETIF_F_LRO) { 10638 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10639 features &= ~NETIF_F_LRO; 10640 } 10641 10642 if (features & NETIF_F_GRO_HW) { 10643 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10644 features &= ~NETIF_F_GRO_HW; 10645 } 10646 } 10647 10648 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10649 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10650 features &= ~NETIF_F_LRO; 10651 } 10652 10653 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10654 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10655 features &= ~NETIF_F_HW_TLS_TX; 10656 } 10657 10658 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10659 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10660 features &= ~NETIF_F_HW_TLS_RX; 10661 } 10662 10663 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10664 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10665 features &= ~NETIF_F_GSO_UDP_L4; 10666 } 10667 10668 return features; 10669 } 10670 10671 int __netdev_update_features(struct net_device *dev) 10672 { 10673 struct net_device *upper, *lower; 10674 netdev_features_t features; 10675 struct list_head *iter; 10676 int err = -1; 10677 10678 ASSERT_RTNL(); 10679 netdev_ops_assert_locked(dev); 10680 10681 features = netdev_get_wanted_features(dev); 10682 10683 if (dev->netdev_ops->ndo_fix_features) 10684 features = dev->netdev_ops->ndo_fix_features(dev, features); 10685 10686 /* driver might be less strict about feature dependencies */ 10687 features = netdev_fix_features(dev, features); 10688 10689 /* some features can't be enabled if they're off on an upper device */ 10690 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10691 features = netdev_sync_upper_features(dev, upper, features); 10692 10693 if (dev->features == features) 10694 goto sync_lower; 10695 10696 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10697 &dev->features, &features); 10698 10699 if (dev->netdev_ops->ndo_set_features) 10700 err = dev->netdev_ops->ndo_set_features(dev, features); 10701 else 10702 err = 0; 10703 10704 if (unlikely(err < 0)) { 10705 netdev_err(dev, 10706 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10707 err, &features, &dev->features); 10708 /* return non-0 since some features might have changed and 10709 * it's better to fire a spurious notification than miss it 10710 */ 10711 return -1; 10712 } 10713 10714 sync_lower: 10715 /* some features must be disabled on lower devices when disabled 10716 * on an upper device (think: bonding master or bridge) 10717 */ 10718 netdev_for_each_lower_dev(dev, lower, iter) 10719 netdev_sync_lower_features(dev, lower, features); 10720 10721 if (!err) { 10722 netdev_features_t diff = features ^ dev->features; 10723 10724 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10725 /* udp_tunnel_{get,drop}_rx_info both need 10726 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10727 * device, or they won't do anything. 10728 * Thus we need to update dev->features 10729 * *before* calling udp_tunnel_get_rx_info, 10730 * but *after* calling udp_tunnel_drop_rx_info. 10731 */ 10732 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10733 dev->features = features; 10734 udp_tunnel_get_rx_info(dev); 10735 } else { 10736 udp_tunnel_drop_rx_info(dev); 10737 } 10738 } 10739 10740 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10741 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10742 dev->features = features; 10743 err |= vlan_get_rx_ctag_filter_info(dev); 10744 } else { 10745 vlan_drop_rx_ctag_filter_info(dev); 10746 } 10747 } 10748 10749 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10750 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10751 dev->features = features; 10752 err |= vlan_get_rx_stag_filter_info(dev); 10753 } else { 10754 vlan_drop_rx_stag_filter_info(dev); 10755 } 10756 } 10757 10758 dev->features = features; 10759 } 10760 10761 return err < 0 ? 0 : 1; 10762 } 10763 10764 /** 10765 * netdev_update_features - recalculate device features 10766 * @dev: the device to check 10767 * 10768 * Recalculate dev->features set and send notifications if it 10769 * has changed. Should be called after driver or hardware dependent 10770 * conditions might have changed that influence the features. 10771 */ 10772 void netdev_update_features(struct net_device *dev) 10773 { 10774 if (__netdev_update_features(dev)) 10775 netdev_features_change(dev); 10776 } 10777 EXPORT_SYMBOL(netdev_update_features); 10778 10779 /** 10780 * netdev_change_features - recalculate device features 10781 * @dev: the device to check 10782 * 10783 * Recalculate dev->features set and send notifications even 10784 * if they have not changed. Should be called instead of 10785 * netdev_update_features() if also dev->vlan_features might 10786 * have changed to allow the changes to be propagated to stacked 10787 * VLAN devices. 10788 */ 10789 void netdev_change_features(struct net_device *dev) 10790 { 10791 __netdev_update_features(dev); 10792 netdev_features_change(dev); 10793 } 10794 EXPORT_SYMBOL(netdev_change_features); 10795 10796 /** 10797 * netif_stacked_transfer_operstate - transfer operstate 10798 * @rootdev: the root or lower level device to transfer state from 10799 * @dev: the device to transfer operstate to 10800 * 10801 * Transfer operational state from root to device. This is normally 10802 * called when a stacking relationship exists between the root 10803 * device and the device(a leaf device). 10804 */ 10805 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10806 struct net_device *dev) 10807 { 10808 if (rootdev->operstate == IF_OPER_DORMANT) 10809 netif_dormant_on(dev); 10810 else 10811 netif_dormant_off(dev); 10812 10813 if (rootdev->operstate == IF_OPER_TESTING) 10814 netif_testing_on(dev); 10815 else 10816 netif_testing_off(dev); 10817 10818 if (netif_carrier_ok(rootdev)) 10819 netif_carrier_on(dev); 10820 else 10821 netif_carrier_off(dev); 10822 } 10823 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10824 10825 static int netif_alloc_rx_queues(struct net_device *dev) 10826 { 10827 unsigned int i, count = dev->num_rx_queues; 10828 struct netdev_rx_queue *rx; 10829 size_t sz = count * sizeof(*rx); 10830 int err = 0; 10831 10832 BUG_ON(count < 1); 10833 10834 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10835 if (!rx) 10836 return -ENOMEM; 10837 10838 dev->_rx = rx; 10839 10840 for (i = 0; i < count; i++) { 10841 rx[i].dev = dev; 10842 10843 /* XDP RX-queue setup */ 10844 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10845 if (err < 0) 10846 goto err_rxq_info; 10847 } 10848 return 0; 10849 10850 err_rxq_info: 10851 /* Rollback successful reg's and free other resources */ 10852 while (i--) 10853 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10854 kvfree(dev->_rx); 10855 dev->_rx = NULL; 10856 return err; 10857 } 10858 10859 static void netif_free_rx_queues(struct net_device *dev) 10860 { 10861 unsigned int i, count = dev->num_rx_queues; 10862 10863 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10864 if (!dev->_rx) 10865 return; 10866 10867 for (i = 0; i < count; i++) 10868 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10869 10870 kvfree(dev->_rx); 10871 } 10872 10873 static void netdev_init_one_queue(struct net_device *dev, 10874 struct netdev_queue *queue, void *_unused) 10875 { 10876 /* Initialize queue lock */ 10877 spin_lock_init(&queue->_xmit_lock); 10878 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10879 queue->xmit_lock_owner = -1; 10880 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10881 queue->dev = dev; 10882 #ifdef CONFIG_BQL 10883 dql_init(&queue->dql, HZ); 10884 #endif 10885 } 10886 10887 static void netif_free_tx_queues(struct net_device *dev) 10888 { 10889 kvfree(dev->_tx); 10890 } 10891 10892 static int netif_alloc_netdev_queues(struct net_device *dev) 10893 { 10894 unsigned int count = dev->num_tx_queues; 10895 struct netdev_queue *tx; 10896 size_t sz = count * sizeof(*tx); 10897 10898 if (count < 1 || count > 0xffff) 10899 return -EINVAL; 10900 10901 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10902 if (!tx) 10903 return -ENOMEM; 10904 10905 dev->_tx = tx; 10906 10907 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10908 spin_lock_init(&dev->tx_global_lock); 10909 10910 return 0; 10911 } 10912 10913 void netif_tx_stop_all_queues(struct net_device *dev) 10914 { 10915 unsigned int i; 10916 10917 for (i = 0; i < dev->num_tx_queues; i++) { 10918 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10919 10920 netif_tx_stop_queue(txq); 10921 } 10922 } 10923 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10924 10925 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10926 { 10927 void __percpu *v; 10928 10929 /* Drivers implementing ndo_get_peer_dev must support tstat 10930 * accounting, so that skb_do_redirect() can bump the dev's 10931 * RX stats upon network namespace switch. 10932 */ 10933 if (dev->netdev_ops->ndo_get_peer_dev && 10934 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10935 return -EOPNOTSUPP; 10936 10937 switch (dev->pcpu_stat_type) { 10938 case NETDEV_PCPU_STAT_NONE: 10939 return 0; 10940 case NETDEV_PCPU_STAT_LSTATS: 10941 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10942 break; 10943 case NETDEV_PCPU_STAT_TSTATS: 10944 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10945 break; 10946 case NETDEV_PCPU_STAT_DSTATS: 10947 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10948 break; 10949 default: 10950 return -EINVAL; 10951 } 10952 10953 return v ? 0 : -ENOMEM; 10954 } 10955 10956 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10957 { 10958 switch (dev->pcpu_stat_type) { 10959 case NETDEV_PCPU_STAT_NONE: 10960 return; 10961 case NETDEV_PCPU_STAT_LSTATS: 10962 free_percpu(dev->lstats); 10963 break; 10964 case NETDEV_PCPU_STAT_TSTATS: 10965 free_percpu(dev->tstats); 10966 break; 10967 case NETDEV_PCPU_STAT_DSTATS: 10968 free_percpu(dev->dstats); 10969 break; 10970 } 10971 } 10972 10973 static void netdev_free_phy_link_topology(struct net_device *dev) 10974 { 10975 struct phy_link_topology *topo = dev->link_topo; 10976 10977 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 10978 xa_destroy(&topo->phys); 10979 kfree(topo); 10980 dev->link_topo = NULL; 10981 } 10982 } 10983 10984 /** 10985 * register_netdevice() - register a network device 10986 * @dev: device to register 10987 * 10988 * Take a prepared network device structure and make it externally accessible. 10989 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10990 * Callers must hold the rtnl lock - you may want register_netdev() 10991 * instead of this. 10992 */ 10993 int register_netdevice(struct net_device *dev) 10994 { 10995 int ret; 10996 struct net *net = dev_net(dev); 10997 10998 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10999 NETDEV_FEATURE_COUNT); 11000 BUG_ON(dev_boot_phase); 11001 ASSERT_RTNL(); 11002 11003 might_sleep(); 11004 11005 /* When net_device's are persistent, this will be fatal. */ 11006 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11007 BUG_ON(!net); 11008 11009 ret = ethtool_check_ops(dev->ethtool_ops); 11010 if (ret) 11011 return ret; 11012 11013 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11014 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11015 mutex_init(&dev->ethtool->rss_lock); 11016 11017 spin_lock_init(&dev->addr_list_lock); 11018 netdev_set_addr_lockdep_class(dev); 11019 11020 ret = dev_get_valid_name(net, dev, dev->name); 11021 if (ret < 0) 11022 goto out; 11023 11024 ret = -ENOMEM; 11025 dev->name_node = netdev_name_node_head_alloc(dev); 11026 if (!dev->name_node) 11027 goto out; 11028 11029 /* Init, if this function is available */ 11030 if (dev->netdev_ops->ndo_init) { 11031 ret = dev->netdev_ops->ndo_init(dev); 11032 if (ret) { 11033 if (ret > 0) 11034 ret = -EIO; 11035 goto err_free_name; 11036 } 11037 } 11038 11039 if (((dev->hw_features | dev->features) & 11040 NETIF_F_HW_VLAN_CTAG_FILTER) && 11041 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11042 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11043 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11044 ret = -EINVAL; 11045 goto err_uninit; 11046 } 11047 11048 ret = netdev_do_alloc_pcpu_stats(dev); 11049 if (ret) 11050 goto err_uninit; 11051 11052 ret = dev_index_reserve(net, dev->ifindex); 11053 if (ret < 0) 11054 goto err_free_pcpu; 11055 dev->ifindex = ret; 11056 11057 /* Transfer changeable features to wanted_features and enable 11058 * software offloads (GSO and GRO). 11059 */ 11060 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11061 dev->features |= NETIF_F_SOFT_FEATURES; 11062 11063 if (dev->udp_tunnel_nic_info) { 11064 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11065 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11066 } 11067 11068 dev->wanted_features = dev->features & dev->hw_features; 11069 11070 if (!(dev->flags & IFF_LOOPBACK)) 11071 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11072 11073 /* If IPv4 TCP segmentation offload is supported we should also 11074 * allow the device to enable segmenting the frame with the option 11075 * of ignoring a static IP ID value. This doesn't enable the 11076 * feature itself but allows the user to enable it later. 11077 */ 11078 if (dev->hw_features & NETIF_F_TSO) 11079 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11080 if (dev->vlan_features & NETIF_F_TSO) 11081 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11082 if (dev->mpls_features & NETIF_F_TSO) 11083 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11084 if (dev->hw_enc_features & NETIF_F_TSO) 11085 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11086 11087 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11088 */ 11089 dev->vlan_features |= NETIF_F_HIGHDMA; 11090 11091 /* Make NETIF_F_SG inheritable to tunnel devices. 11092 */ 11093 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11094 11095 /* Make NETIF_F_SG inheritable to MPLS. 11096 */ 11097 dev->mpls_features |= NETIF_F_SG; 11098 11099 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11100 ret = notifier_to_errno(ret); 11101 if (ret) 11102 goto err_ifindex_release; 11103 11104 ret = netdev_register_kobject(dev); 11105 11106 netdev_lock(dev); 11107 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11108 netdev_unlock(dev); 11109 11110 if (ret) 11111 goto err_uninit_notify; 11112 11113 netdev_lock_ops(dev); 11114 __netdev_update_features(dev); 11115 netdev_unlock_ops(dev); 11116 11117 /* 11118 * Default initial state at registry is that the 11119 * device is present. 11120 */ 11121 11122 set_bit(__LINK_STATE_PRESENT, &dev->state); 11123 11124 linkwatch_init_dev(dev); 11125 11126 dev_init_scheduler(dev); 11127 11128 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11129 list_netdevice(dev); 11130 11131 add_device_randomness(dev->dev_addr, dev->addr_len); 11132 11133 /* If the device has permanent device address, driver should 11134 * set dev_addr and also addr_assign_type should be set to 11135 * NET_ADDR_PERM (default value). 11136 */ 11137 if (dev->addr_assign_type == NET_ADDR_PERM) 11138 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11139 11140 /* Notify protocols, that a new device appeared. */ 11141 netdev_lock_ops(dev); 11142 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11143 netdev_unlock_ops(dev); 11144 ret = notifier_to_errno(ret); 11145 if (ret) { 11146 /* Expect explicit free_netdev() on failure */ 11147 dev->needs_free_netdev = false; 11148 unregister_netdevice_queue(dev, NULL); 11149 goto out; 11150 } 11151 /* 11152 * Prevent userspace races by waiting until the network 11153 * device is fully setup before sending notifications. 11154 */ 11155 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11156 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11157 11158 out: 11159 return ret; 11160 11161 err_uninit_notify: 11162 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11163 err_ifindex_release: 11164 dev_index_release(net, dev->ifindex); 11165 err_free_pcpu: 11166 netdev_do_free_pcpu_stats(dev); 11167 err_uninit: 11168 if (dev->netdev_ops->ndo_uninit) 11169 dev->netdev_ops->ndo_uninit(dev); 11170 if (dev->priv_destructor) 11171 dev->priv_destructor(dev); 11172 err_free_name: 11173 netdev_name_node_free(dev->name_node); 11174 goto out; 11175 } 11176 EXPORT_SYMBOL(register_netdevice); 11177 11178 /* Initialize the core of a dummy net device. 11179 * The setup steps dummy netdevs need which normal netdevs get by going 11180 * through register_netdevice(). 11181 */ 11182 static void init_dummy_netdev(struct net_device *dev) 11183 { 11184 /* make sure we BUG if trying to hit standard 11185 * register/unregister code path 11186 */ 11187 dev->reg_state = NETREG_DUMMY; 11188 11189 /* a dummy interface is started by default */ 11190 set_bit(__LINK_STATE_PRESENT, &dev->state); 11191 set_bit(__LINK_STATE_START, &dev->state); 11192 11193 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11194 * because users of this 'device' dont need to change 11195 * its refcount. 11196 */ 11197 } 11198 11199 /** 11200 * register_netdev - register a network device 11201 * @dev: device to register 11202 * 11203 * Take a completed network device structure and add it to the kernel 11204 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11205 * chain. 0 is returned on success. A negative errno code is returned 11206 * on a failure to set up the device, or if the name is a duplicate. 11207 * 11208 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11209 * and expands the device name if you passed a format string to 11210 * alloc_netdev. 11211 */ 11212 int register_netdev(struct net_device *dev) 11213 { 11214 struct net *net = dev_net(dev); 11215 int err; 11216 11217 if (rtnl_net_lock_killable(net)) 11218 return -EINTR; 11219 11220 err = register_netdevice(dev); 11221 11222 rtnl_net_unlock(net); 11223 11224 return err; 11225 } 11226 EXPORT_SYMBOL(register_netdev); 11227 11228 int netdev_refcnt_read(const struct net_device *dev) 11229 { 11230 #ifdef CONFIG_PCPU_DEV_REFCNT 11231 int i, refcnt = 0; 11232 11233 for_each_possible_cpu(i) 11234 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11235 return refcnt; 11236 #else 11237 return refcount_read(&dev->dev_refcnt); 11238 #endif 11239 } 11240 EXPORT_SYMBOL(netdev_refcnt_read); 11241 11242 int netdev_unregister_timeout_secs __read_mostly = 10; 11243 11244 #define WAIT_REFS_MIN_MSECS 1 11245 #define WAIT_REFS_MAX_MSECS 250 11246 /** 11247 * netdev_wait_allrefs_any - wait until all references are gone. 11248 * @list: list of net_devices to wait on 11249 * 11250 * This is called when unregistering network devices. 11251 * 11252 * Any protocol or device that holds a reference should register 11253 * for netdevice notification, and cleanup and put back the 11254 * reference if they receive an UNREGISTER event. 11255 * We can get stuck here if buggy protocols don't correctly 11256 * call dev_put. 11257 */ 11258 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11259 { 11260 unsigned long rebroadcast_time, warning_time; 11261 struct net_device *dev; 11262 int wait = 0; 11263 11264 rebroadcast_time = warning_time = jiffies; 11265 11266 list_for_each_entry(dev, list, todo_list) 11267 if (netdev_refcnt_read(dev) == 1) 11268 return dev; 11269 11270 while (true) { 11271 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11272 rtnl_lock(); 11273 11274 /* Rebroadcast unregister notification */ 11275 list_for_each_entry(dev, list, todo_list) 11276 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11277 11278 __rtnl_unlock(); 11279 rcu_barrier(); 11280 rtnl_lock(); 11281 11282 list_for_each_entry(dev, list, todo_list) 11283 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11284 &dev->state)) { 11285 /* We must not have linkwatch events 11286 * pending on unregister. If this 11287 * happens, we simply run the queue 11288 * unscheduled, resulting in a noop 11289 * for this device. 11290 */ 11291 linkwatch_run_queue(); 11292 break; 11293 } 11294 11295 __rtnl_unlock(); 11296 11297 rebroadcast_time = jiffies; 11298 } 11299 11300 rcu_barrier(); 11301 11302 if (!wait) { 11303 wait = WAIT_REFS_MIN_MSECS; 11304 } else { 11305 msleep(wait); 11306 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11307 } 11308 11309 list_for_each_entry(dev, list, todo_list) 11310 if (netdev_refcnt_read(dev) == 1) 11311 return dev; 11312 11313 if (time_after(jiffies, warning_time + 11314 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11315 list_for_each_entry(dev, list, todo_list) { 11316 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11317 dev->name, netdev_refcnt_read(dev)); 11318 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11319 } 11320 11321 warning_time = jiffies; 11322 } 11323 } 11324 } 11325 11326 /* The sequence is: 11327 * 11328 * rtnl_lock(); 11329 * ... 11330 * register_netdevice(x1); 11331 * register_netdevice(x2); 11332 * ... 11333 * unregister_netdevice(y1); 11334 * unregister_netdevice(y2); 11335 * ... 11336 * rtnl_unlock(); 11337 * free_netdev(y1); 11338 * free_netdev(y2); 11339 * 11340 * We are invoked by rtnl_unlock(). 11341 * This allows us to deal with problems: 11342 * 1) We can delete sysfs objects which invoke hotplug 11343 * without deadlocking with linkwatch via keventd. 11344 * 2) Since we run with the RTNL semaphore not held, we can sleep 11345 * safely in order to wait for the netdev refcnt to drop to zero. 11346 * 11347 * We must not return until all unregister events added during 11348 * the interval the lock was held have been completed. 11349 */ 11350 void netdev_run_todo(void) 11351 { 11352 struct net_device *dev, *tmp; 11353 struct list_head list; 11354 int cnt; 11355 #ifdef CONFIG_LOCKDEP 11356 struct list_head unlink_list; 11357 11358 list_replace_init(&net_unlink_list, &unlink_list); 11359 11360 while (!list_empty(&unlink_list)) { 11361 dev = list_first_entry(&unlink_list, struct net_device, 11362 unlink_list); 11363 list_del_init(&dev->unlink_list); 11364 dev->nested_level = dev->lower_level - 1; 11365 } 11366 #endif 11367 11368 /* Snapshot list, allow later requests */ 11369 list_replace_init(&net_todo_list, &list); 11370 11371 __rtnl_unlock(); 11372 11373 /* Wait for rcu callbacks to finish before next phase */ 11374 if (!list_empty(&list)) 11375 rcu_barrier(); 11376 11377 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11378 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11379 netdev_WARN(dev, "run_todo but not unregistering\n"); 11380 list_del(&dev->todo_list); 11381 continue; 11382 } 11383 11384 netdev_lock(dev); 11385 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11386 netdev_unlock(dev); 11387 linkwatch_sync_dev(dev); 11388 } 11389 11390 cnt = 0; 11391 while (!list_empty(&list)) { 11392 dev = netdev_wait_allrefs_any(&list); 11393 list_del(&dev->todo_list); 11394 11395 /* paranoia */ 11396 BUG_ON(netdev_refcnt_read(dev) != 1); 11397 BUG_ON(!list_empty(&dev->ptype_all)); 11398 BUG_ON(!list_empty(&dev->ptype_specific)); 11399 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11400 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11401 11402 netdev_do_free_pcpu_stats(dev); 11403 if (dev->priv_destructor) 11404 dev->priv_destructor(dev); 11405 if (dev->needs_free_netdev) 11406 free_netdev(dev); 11407 11408 cnt++; 11409 11410 /* Free network device */ 11411 kobject_put(&dev->dev.kobj); 11412 } 11413 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11414 wake_up(&netdev_unregistering_wq); 11415 } 11416 11417 /* Collate per-cpu network dstats statistics 11418 * 11419 * Read per-cpu network statistics from dev->dstats and populate the related 11420 * fields in @s. 11421 */ 11422 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11423 const struct pcpu_dstats __percpu *dstats) 11424 { 11425 int cpu; 11426 11427 for_each_possible_cpu(cpu) { 11428 u64 rx_packets, rx_bytes, rx_drops; 11429 u64 tx_packets, tx_bytes, tx_drops; 11430 const struct pcpu_dstats *stats; 11431 unsigned int start; 11432 11433 stats = per_cpu_ptr(dstats, cpu); 11434 do { 11435 start = u64_stats_fetch_begin(&stats->syncp); 11436 rx_packets = u64_stats_read(&stats->rx_packets); 11437 rx_bytes = u64_stats_read(&stats->rx_bytes); 11438 rx_drops = u64_stats_read(&stats->rx_drops); 11439 tx_packets = u64_stats_read(&stats->tx_packets); 11440 tx_bytes = u64_stats_read(&stats->tx_bytes); 11441 tx_drops = u64_stats_read(&stats->tx_drops); 11442 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11443 11444 s->rx_packets += rx_packets; 11445 s->rx_bytes += rx_bytes; 11446 s->rx_dropped += rx_drops; 11447 s->tx_packets += tx_packets; 11448 s->tx_bytes += tx_bytes; 11449 s->tx_dropped += tx_drops; 11450 } 11451 } 11452 11453 /* ndo_get_stats64 implementation for dtstats-based accounting. 11454 * 11455 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11456 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11457 */ 11458 static void dev_get_dstats64(const struct net_device *dev, 11459 struct rtnl_link_stats64 *s) 11460 { 11461 netdev_stats_to_stats64(s, &dev->stats); 11462 dev_fetch_dstats(s, dev->dstats); 11463 } 11464 11465 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11466 * all the same fields in the same order as net_device_stats, with only 11467 * the type differing, but rtnl_link_stats64 may have additional fields 11468 * at the end for newer counters. 11469 */ 11470 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11471 const struct net_device_stats *netdev_stats) 11472 { 11473 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11474 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11475 u64 *dst = (u64 *)stats64; 11476 11477 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11478 for (i = 0; i < n; i++) 11479 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11480 /* zero out counters that only exist in rtnl_link_stats64 */ 11481 memset((char *)stats64 + n * sizeof(u64), 0, 11482 sizeof(*stats64) - n * sizeof(u64)); 11483 } 11484 EXPORT_SYMBOL(netdev_stats_to_stats64); 11485 11486 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11487 struct net_device *dev) 11488 { 11489 struct net_device_core_stats __percpu *p; 11490 11491 p = alloc_percpu_gfp(struct net_device_core_stats, 11492 GFP_ATOMIC | __GFP_NOWARN); 11493 11494 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11495 free_percpu(p); 11496 11497 /* This READ_ONCE() pairs with the cmpxchg() above */ 11498 return READ_ONCE(dev->core_stats); 11499 } 11500 11501 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11502 { 11503 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11504 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11505 unsigned long __percpu *field; 11506 11507 if (unlikely(!p)) { 11508 p = netdev_core_stats_alloc(dev); 11509 if (!p) 11510 return; 11511 } 11512 11513 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11514 this_cpu_inc(*field); 11515 } 11516 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11517 11518 /** 11519 * dev_get_stats - get network device statistics 11520 * @dev: device to get statistics from 11521 * @storage: place to store stats 11522 * 11523 * Get network statistics from device. Return @storage. 11524 * The device driver may provide its own method by setting 11525 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11526 * otherwise the internal statistics structure is used. 11527 */ 11528 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11529 struct rtnl_link_stats64 *storage) 11530 { 11531 const struct net_device_ops *ops = dev->netdev_ops; 11532 const struct net_device_core_stats __percpu *p; 11533 11534 /* 11535 * IPv{4,6} and udp tunnels share common stat helpers and use 11536 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11537 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11538 */ 11539 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11540 offsetof(struct pcpu_dstats, rx_bytes)); 11541 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11542 offsetof(struct pcpu_dstats, rx_packets)); 11543 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11544 offsetof(struct pcpu_dstats, tx_bytes)); 11545 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11546 offsetof(struct pcpu_dstats, tx_packets)); 11547 11548 if (ops->ndo_get_stats64) { 11549 memset(storage, 0, sizeof(*storage)); 11550 ops->ndo_get_stats64(dev, storage); 11551 } else if (ops->ndo_get_stats) { 11552 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11553 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11554 dev_get_tstats64(dev, storage); 11555 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11556 dev_get_dstats64(dev, storage); 11557 } else { 11558 netdev_stats_to_stats64(storage, &dev->stats); 11559 } 11560 11561 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11562 p = READ_ONCE(dev->core_stats); 11563 if (p) { 11564 const struct net_device_core_stats *core_stats; 11565 int i; 11566 11567 for_each_possible_cpu(i) { 11568 core_stats = per_cpu_ptr(p, i); 11569 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11570 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11571 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11572 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11573 } 11574 } 11575 return storage; 11576 } 11577 EXPORT_SYMBOL(dev_get_stats); 11578 11579 /** 11580 * dev_fetch_sw_netstats - get per-cpu network device statistics 11581 * @s: place to store stats 11582 * @netstats: per-cpu network stats to read from 11583 * 11584 * Read per-cpu network statistics and populate the related fields in @s. 11585 */ 11586 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11587 const struct pcpu_sw_netstats __percpu *netstats) 11588 { 11589 int cpu; 11590 11591 for_each_possible_cpu(cpu) { 11592 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11593 const struct pcpu_sw_netstats *stats; 11594 unsigned int start; 11595 11596 stats = per_cpu_ptr(netstats, cpu); 11597 do { 11598 start = u64_stats_fetch_begin(&stats->syncp); 11599 rx_packets = u64_stats_read(&stats->rx_packets); 11600 rx_bytes = u64_stats_read(&stats->rx_bytes); 11601 tx_packets = u64_stats_read(&stats->tx_packets); 11602 tx_bytes = u64_stats_read(&stats->tx_bytes); 11603 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11604 11605 s->rx_packets += rx_packets; 11606 s->rx_bytes += rx_bytes; 11607 s->tx_packets += tx_packets; 11608 s->tx_bytes += tx_bytes; 11609 } 11610 } 11611 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11612 11613 /** 11614 * dev_get_tstats64 - ndo_get_stats64 implementation 11615 * @dev: device to get statistics from 11616 * @s: place to store stats 11617 * 11618 * Populate @s from dev->stats and dev->tstats. Can be used as 11619 * ndo_get_stats64() callback. 11620 */ 11621 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11622 { 11623 netdev_stats_to_stats64(s, &dev->stats); 11624 dev_fetch_sw_netstats(s, dev->tstats); 11625 } 11626 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11627 11628 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11629 { 11630 struct netdev_queue *queue = dev_ingress_queue(dev); 11631 11632 #ifdef CONFIG_NET_CLS_ACT 11633 if (queue) 11634 return queue; 11635 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11636 if (!queue) 11637 return NULL; 11638 netdev_init_one_queue(dev, queue, NULL); 11639 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11640 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11641 rcu_assign_pointer(dev->ingress_queue, queue); 11642 #endif 11643 return queue; 11644 } 11645 11646 static const struct ethtool_ops default_ethtool_ops; 11647 11648 void netdev_set_default_ethtool_ops(struct net_device *dev, 11649 const struct ethtool_ops *ops) 11650 { 11651 if (dev->ethtool_ops == &default_ethtool_ops) 11652 dev->ethtool_ops = ops; 11653 } 11654 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11655 11656 /** 11657 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11658 * @dev: netdev to enable the IRQ coalescing on 11659 * 11660 * Sets a conservative default for SW IRQ coalescing. Users can use 11661 * sysfs attributes to override the default values. 11662 */ 11663 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11664 { 11665 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11666 11667 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11668 netdev_set_gro_flush_timeout(dev, 20000); 11669 netdev_set_defer_hard_irqs(dev, 1); 11670 } 11671 } 11672 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11673 11674 /** 11675 * alloc_netdev_mqs - allocate network device 11676 * @sizeof_priv: size of private data to allocate space for 11677 * @name: device name format string 11678 * @name_assign_type: origin of device name 11679 * @setup: callback to initialize device 11680 * @txqs: the number of TX subqueues to allocate 11681 * @rxqs: the number of RX subqueues to allocate 11682 * 11683 * Allocates a struct net_device with private data area for driver use 11684 * and performs basic initialization. Also allocates subqueue structs 11685 * for each queue on the device. 11686 */ 11687 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11688 unsigned char name_assign_type, 11689 void (*setup)(struct net_device *), 11690 unsigned int txqs, unsigned int rxqs) 11691 { 11692 struct net_device *dev; 11693 size_t napi_config_sz; 11694 unsigned int maxqs; 11695 11696 BUG_ON(strlen(name) >= sizeof(dev->name)); 11697 11698 if (txqs < 1) { 11699 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11700 return NULL; 11701 } 11702 11703 if (rxqs < 1) { 11704 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11705 return NULL; 11706 } 11707 11708 maxqs = max(txqs, rxqs); 11709 11710 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11711 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11712 if (!dev) 11713 return NULL; 11714 11715 dev->priv_len = sizeof_priv; 11716 11717 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11718 #ifdef CONFIG_PCPU_DEV_REFCNT 11719 dev->pcpu_refcnt = alloc_percpu(int); 11720 if (!dev->pcpu_refcnt) 11721 goto free_dev; 11722 __dev_hold(dev); 11723 #else 11724 refcount_set(&dev->dev_refcnt, 1); 11725 #endif 11726 11727 if (dev_addr_init(dev)) 11728 goto free_pcpu; 11729 11730 dev_mc_init(dev); 11731 dev_uc_init(dev); 11732 11733 dev_net_set(dev, &init_net); 11734 11735 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11736 dev->xdp_zc_max_segs = 1; 11737 dev->gso_max_segs = GSO_MAX_SEGS; 11738 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11739 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11740 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11741 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11742 dev->tso_max_segs = TSO_MAX_SEGS; 11743 dev->upper_level = 1; 11744 dev->lower_level = 1; 11745 #ifdef CONFIG_LOCKDEP 11746 dev->nested_level = 0; 11747 INIT_LIST_HEAD(&dev->unlink_list); 11748 #endif 11749 11750 INIT_LIST_HEAD(&dev->napi_list); 11751 INIT_LIST_HEAD(&dev->unreg_list); 11752 INIT_LIST_HEAD(&dev->close_list); 11753 INIT_LIST_HEAD(&dev->link_watch_list); 11754 INIT_LIST_HEAD(&dev->adj_list.upper); 11755 INIT_LIST_HEAD(&dev->adj_list.lower); 11756 INIT_LIST_HEAD(&dev->ptype_all); 11757 INIT_LIST_HEAD(&dev->ptype_specific); 11758 INIT_LIST_HEAD(&dev->net_notifier_list); 11759 #ifdef CONFIG_NET_SCHED 11760 hash_init(dev->qdisc_hash); 11761 #endif 11762 11763 mutex_init(&dev->lock); 11764 11765 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11766 setup(dev); 11767 11768 if (!dev->tx_queue_len) { 11769 dev->priv_flags |= IFF_NO_QUEUE; 11770 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11771 } 11772 11773 dev->num_tx_queues = txqs; 11774 dev->real_num_tx_queues = txqs; 11775 if (netif_alloc_netdev_queues(dev)) 11776 goto free_all; 11777 11778 dev->num_rx_queues = rxqs; 11779 dev->real_num_rx_queues = rxqs; 11780 if (netif_alloc_rx_queues(dev)) 11781 goto free_all; 11782 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11783 if (!dev->ethtool) 11784 goto free_all; 11785 11786 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11787 if (!dev->cfg) 11788 goto free_all; 11789 dev->cfg_pending = dev->cfg; 11790 11791 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11792 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11793 if (!dev->napi_config) 11794 goto free_all; 11795 11796 strscpy(dev->name, name); 11797 dev->name_assign_type = name_assign_type; 11798 dev->group = INIT_NETDEV_GROUP; 11799 if (!dev->ethtool_ops) 11800 dev->ethtool_ops = &default_ethtool_ops; 11801 11802 nf_hook_netdev_init(dev); 11803 11804 return dev; 11805 11806 free_all: 11807 free_netdev(dev); 11808 return NULL; 11809 11810 free_pcpu: 11811 #ifdef CONFIG_PCPU_DEV_REFCNT 11812 free_percpu(dev->pcpu_refcnt); 11813 free_dev: 11814 #endif 11815 kvfree(dev); 11816 return NULL; 11817 } 11818 EXPORT_SYMBOL(alloc_netdev_mqs); 11819 11820 static void netdev_napi_exit(struct net_device *dev) 11821 { 11822 if (!list_empty(&dev->napi_list)) { 11823 struct napi_struct *p, *n; 11824 11825 netdev_lock(dev); 11826 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11827 __netif_napi_del_locked(p); 11828 netdev_unlock(dev); 11829 11830 synchronize_net(); 11831 } 11832 11833 kvfree(dev->napi_config); 11834 } 11835 11836 /** 11837 * free_netdev - free network device 11838 * @dev: device 11839 * 11840 * This function does the last stage of destroying an allocated device 11841 * interface. The reference to the device object is released. If this 11842 * is the last reference then it will be freed.Must be called in process 11843 * context. 11844 */ 11845 void free_netdev(struct net_device *dev) 11846 { 11847 might_sleep(); 11848 11849 /* When called immediately after register_netdevice() failed the unwind 11850 * handling may still be dismantling the device. Handle that case by 11851 * deferring the free. 11852 */ 11853 if (dev->reg_state == NETREG_UNREGISTERING) { 11854 ASSERT_RTNL(); 11855 dev->needs_free_netdev = true; 11856 return; 11857 } 11858 11859 WARN_ON(dev->cfg != dev->cfg_pending); 11860 kfree(dev->cfg); 11861 kfree(dev->ethtool); 11862 netif_free_tx_queues(dev); 11863 netif_free_rx_queues(dev); 11864 11865 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11866 11867 /* Flush device addresses */ 11868 dev_addr_flush(dev); 11869 11870 netdev_napi_exit(dev); 11871 11872 netif_del_cpu_rmap(dev); 11873 11874 ref_tracker_dir_exit(&dev->refcnt_tracker); 11875 #ifdef CONFIG_PCPU_DEV_REFCNT 11876 free_percpu(dev->pcpu_refcnt); 11877 dev->pcpu_refcnt = NULL; 11878 #endif 11879 free_percpu(dev->core_stats); 11880 dev->core_stats = NULL; 11881 free_percpu(dev->xdp_bulkq); 11882 dev->xdp_bulkq = NULL; 11883 11884 netdev_free_phy_link_topology(dev); 11885 11886 mutex_destroy(&dev->lock); 11887 11888 /* Compatibility with error handling in drivers */ 11889 if (dev->reg_state == NETREG_UNINITIALIZED || 11890 dev->reg_state == NETREG_DUMMY) { 11891 kvfree(dev); 11892 return; 11893 } 11894 11895 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11896 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11897 11898 /* will free via device release */ 11899 put_device(&dev->dev); 11900 } 11901 EXPORT_SYMBOL(free_netdev); 11902 11903 /** 11904 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11905 * @sizeof_priv: size of private data to allocate space for 11906 * 11907 * Return: the allocated net_device on success, NULL otherwise 11908 */ 11909 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11910 { 11911 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11912 init_dummy_netdev); 11913 } 11914 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11915 11916 /** 11917 * synchronize_net - Synchronize with packet receive processing 11918 * 11919 * Wait for packets currently being received to be done. 11920 * Does not block later packets from starting. 11921 */ 11922 void synchronize_net(void) 11923 { 11924 might_sleep(); 11925 if (from_cleanup_net() || rtnl_is_locked()) 11926 synchronize_rcu_expedited(); 11927 else 11928 synchronize_rcu(); 11929 } 11930 EXPORT_SYMBOL(synchronize_net); 11931 11932 static void netdev_rss_contexts_free(struct net_device *dev) 11933 { 11934 struct ethtool_rxfh_context *ctx; 11935 unsigned long context; 11936 11937 mutex_lock(&dev->ethtool->rss_lock); 11938 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11939 struct ethtool_rxfh_param rxfh; 11940 11941 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11942 rxfh.key = ethtool_rxfh_context_key(ctx); 11943 rxfh.hfunc = ctx->hfunc; 11944 rxfh.input_xfrm = ctx->input_xfrm; 11945 rxfh.rss_context = context; 11946 rxfh.rss_delete = true; 11947 11948 xa_erase(&dev->ethtool->rss_ctx, context); 11949 if (dev->ethtool_ops->create_rxfh_context) 11950 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11951 context, NULL); 11952 else 11953 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11954 kfree(ctx); 11955 } 11956 xa_destroy(&dev->ethtool->rss_ctx); 11957 mutex_unlock(&dev->ethtool->rss_lock); 11958 } 11959 11960 /** 11961 * unregister_netdevice_queue - remove device from the kernel 11962 * @dev: device 11963 * @head: list 11964 * 11965 * This function shuts down a device interface and removes it 11966 * from the kernel tables. 11967 * If head not NULL, device is queued to be unregistered later. 11968 * 11969 * Callers must hold the rtnl semaphore. You may want 11970 * unregister_netdev() instead of this. 11971 */ 11972 11973 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11974 { 11975 ASSERT_RTNL(); 11976 11977 if (head) { 11978 list_move_tail(&dev->unreg_list, head); 11979 } else { 11980 LIST_HEAD(single); 11981 11982 list_add(&dev->unreg_list, &single); 11983 unregister_netdevice_many(&single); 11984 } 11985 } 11986 EXPORT_SYMBOL(unregister_netdevice_queue); 11987 11988 static void dev_memory_provider_uninstall(struct net_device *dev) 11989 { 11990 unsigned int i; 11991 11992 for (i = 0; i < dev->real_num_rx_queues; i++) { 11993 struct netdev_rx_queue *rxq = &dev->_rx[i]; 11994 struct pp_memory_provider_params *p = &rxq->mp_params; 11995 11996 if (p->mp_ops && p->mp_ops->uninstall) 11997 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 11998 } 11999 } 12000 12001 void unregister_netdevice_many_notify(struct list_head *head, 12002 u32 portid, const struct nlmsghdr *nlh) 12003 { 12004 struct net_device *dev, *tmp; 12005 LIST_HEAD(close_head); 12006 int cnt = 0; 12007 12008 BUG_ON(dev_boot_phase); 12009 ASSERT_RTNL(); 12010 12011 if (list_empty(head)) 12012 return; 12013 12014 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12015 /* Some devices call without registering 12016 * for initialization unwind. Remove those 12017 * devices and proceed with the remaining. 12018 */ 12019 if (dev->reg_state == NETREG_UNINITIALIZED) { 12020 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12021 dev->name, dev); 12022 12023 WARN_ON(1); 12024 list_del(&dev->unreg_list); 12025 continue; 12026 } 12027 dev->dismantle = true; 12028 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12029 } 12030 12031 /* If device is running, close it first. Start with ops locked... */ 12032 list_for_each_entry(dev, head, unreg_list) { 12033 if (netdev_need_ops_lock(dev)) { 12034 list_add_tail(&dev->close_list, &close_head); 12035 netdev_lock(dev); 12036 } 12037 } 12038 dev_close_many(&close_head, true); 12039 /* ... now unlock them and go over the rest. */ 12040 list_for_each_entry(dev, head, unreg_list) { 12041 if (netdev_need_ops_lock(dev)) 12042 netdev_unlock(dev); 12043 else 12044 list_add_tail(&dev->close_list, &close_head); 12045 } 12046 dev_close_many(&close_head, true); 12047 12048 list_for_each_entry(dev, head, unreg_list) { 12049 /* And unlink it from device chain. */ 12050 unlist_netdevice(dev); 12051 netdev_lock(dev); 12052 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12053 netdev_unlock(dev); 12054 } 12055 flush_all_backlogs(); 12056 12057 synchronize_net(); 12058 12059 list_for_each_entry(dev, head, unreg_list) { 12060 struct sk_buff *skb = NULL; 12061 12062 /* Shutdown queueing discipline. */ 12063 netdev_lock_ops(dev); 12064 dev_shutdown(dev); 12065 dev_tcx_uninstall(dev); 12066 dev_xdp_uninstall(dev); 12067 dev_memory_provider_uninstall(dev); 12068 netdev_unlock_ops(dev); 12069 bpf_dev_bound_netdev_unregister(dev); 12070 12071 netdev_offload_xstats_disable_all(dev); 12072 12073 /* Notify protocols, that we are about to destroy 12074 * this device. They should clean all the things. 12075 */ 12076 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12077 12078 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12079 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12080 GFP_KERNEL, NULL, 0, 12081 portid, nlh); 12082 12083 /* 12084 * Flush the unicast and multicast chains 12085 */ 12086 dev_uc_flush(dev); 12087 dev_mc_flush(dev); 12088 12089 netdev_name_node_alt_flush(dev); 12090 netdev_name_node_free(dev->name_node); 12091 12092 netdev_rss_contexts_free(dev); 12093 12094 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12095 12096 if (dev->netdev_ops->ndo_uninit) 12097 dev->netdev_ops->ndo_uninit(dev); 12098 12099 mutex_destroy(&dev->ethtool->rss_lock); 12100 12101 net_shaper_flush_netdev(dev); 12102 12103 if (skb) 12104 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12105 12106 /* Notifier chain MUST detach us all upper devices. */ 12107 WARN_ON(netdev_has_any_upper_dev(dev)); 12108 WARN_ON(netdev_has_any_lower_dev(dev)); 12109 12110 /* Remove entries from kobject tree */ 12111 netdev_unregister_kobject(dev); 12112 #ifdef CONFIG_XPS 12113 /* Remove XPS queueing entries */ 12114 netif_reset_xps_queues_gt(dev, 0); 12115 #endif 12116 } 12117 12118 synchronize_net(); 12119 12120 list_for_each_entry(dev, head, unreg_list) { 12121 netdev_put(dev, &dev->dev_registered_tracker); 12122 net_set_todo(dev); 12123 cnt++; 12124 } 12125 atomic_add(cnt, &dev_unreg_count); 12126 12127 list_del(head); 12128 } 12129 12130 /** 12131 * unregister_netdevice_many - unregister many devices 12132 * @head: list of devices 12133 * 12134 * Note: As most callers use a stack allocated list_head, 12135 * we force a list_del() to make sure stack won't be corrupted later. 12136 */ 12137 void unregister_netdevice_many(struct list_head *head) 12138 { 12139 unregister_netdevice_many_notify(head, 0, NULL); 12140 } 12141 EXPORT_SYMBOL(unregister_netdevice_many); 12142 12143 /** 12144 * unregister_netdev - remove device from the kernel 12145 * @dev: device 12146 * 12147 * This function shuts down a device interface and removes it 12148 * from the kernel tables. 12149 * 12150 * This is just a wrapper for unregister_netdevice that takes 12151 * the rtnl semaphore. In general you want to use this and not 12152 * unregister_netdevice. 12153 */ 12154 void unregister_netdev(struct net_device *dev) 12155 { 12156 rtnl_net_dev_lock(dev); 12157 unregister_netdevice(dev); 12158 rtnl_net_dev_unlock(dev); 12159 } 12160 EXPORT_SYMBOL(unregister_netdev); 12161 12162 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12163 const char *pat, int new_ifindex, 12164 struct netlink_ext_ack *extack) 12165 { 12166 struct netdev_name_node *name_node; 12167 struct net *net_old = dev_net(dev); 12168 char new_name[IFNAMSIZ] = {}; 12169 int err, new_nsid; 12170 12171 ASSERT_RTNL(); 12172 12173 /* Don't allow namespace local devices to be moved. */ 12174 err = -EINVAL; 12175 if (dev->netns_immutable) { 12176 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12177 goto out; 12178 } 12179 12180 /* Ensure the device has been registered */ 12181 if (dev->reg_state != NETREG_REGISTERED) { 12182 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12183 goto out; 12184 } 12185 12186 /* Get out if there is nothing todo */ 12187 err = 0; 12188 if (net_eq(net_old, net)) 12189 goto out; 12190 12191 /* Pick the destination device name, and ensure 12192 * we can use it in the destination network namespace. 12193 */ 12194 err = -EEXIST; 12195 if (netdev_name_in_use(net, dev->name)) { 12196 /* We get here if we can't use the current device name */ 12197 if (!pat) { 12198 NL_SET_ERR_MSG(extack, 12199 "An interface with the same name exists in the target netns"); 12200 goto out; 12201 } 12202 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12203 if (err < 0) { 12204 NL_SET_ERR_MSG_FMT(extack, 12205 "Unable to use '%s' for the new interface name in the target netns", 12206 pat); 12207 goto out; 12208 } 12209 } 12210 /* Check that none of the altnames conflicts. */ 12211 err = -EEXIST; 12212 netdev_for_each_altname(dev, name_node) { 12213 if (netdev_name_in_use(net, name_node->name)) { 12214 NL_SET_ERR_MSG_FMT(extack, 12215 "An interface with the altname %s exists in the target netns", 12216 name_node->name); 12217 goto out; 12218 } 12219 } 12220 12221 /* Check that new_ifindex isn't used yet. */ 12222 if (new_ifindex) { 12223 err = dev_index_reserve(net, new_ifindex); 12224 if (err < 0) { 12225 NL_SET_ERR_MSG_FMT(extack, 12226 "The ifindex %d is not available in the target netns", 12227 new_ifindex); 12228 goto out; 12229 } 12230 } else { 12231 /* If there is an ifindex conflict assign a new one */ 12232 err = dev_index_reserve(net, dev->ifindex); 12233 if (err == -EBUSY) 12234 err = dev_index_reserve(net, 0); 12235 if (err < 0) { 12236 NL_SET_ERR_MSG(extack, 12237 "Unable to allocate a new ifindex in the target netns"); 12238 goto out; 12239 } 12240 new_ifindex = err; 12241 } 12242 12243 /* 12244 * And now a mini version of register_netdevice unregister_netdevice. 12245 */ 12246 12247 netdev_lock_ops(dev); 12248 /* If device is running close it first. */ 12249 netif_close(dev); 12250 /* And unlink it from device chain */ 12251 unlist_netdevice(dev); 12252 12253 if (!netdev_need_ops_lock(dev)) 12254 netdev_lock(dev); 12255 dev->moving_ns = true; 12256 netdev_unlock(dev); 12257 12258 synchronize_net(); 12259 12260 /* Shutdown queueing discipline. */ 12261 netdev_lock_ops(dev); 12262 dev_shutdown(dev); 12263 netdev_unlock_ops(dev); 12264 12265 /* Notify protocols, that we are about to destroy 12266 * this device. They should clean all the things. 12267 * 12268 * Note that dev->reg_state stays at NETREG_REGISTERED. 12269 * This is wanted because this way 8021q and macvlan know 12270 * the device is just moving and can keep their slaves up. 12271 */ 12272 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12273 rcu_barrier(); 12274 12275 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12276 12277 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12278 new_ifindex); 12279 12280 /* 12281 * Flush the unicast and multicast chains 12282 */ 12283 dev_uc_flush(dev); 12284 dev_mc_flush(dev); 12285 12286 /* Send a netdev-removed uevent to the old namespace */ 12287 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12288 netdev_adjacent_del_links(dev); 12289 12290 /* Move per-net netdevice notifiers that are following the netdevice */ 12291 move_netdevice_notifiers_dev_net(dev, net); 12292 12293 /* Actually switch the network namespace */ 12294 netdev_lock(dev); 12295 dev_net_set(dev, net); 12296 netdev_unlock(dev); 12297 dev->ifindex = new_ifindex; 12298 12299 if (new_name[0]) { 12300 /* Rename the netdev to prepared name */ 12301 write_seqlock_bh(&netdev_rename_lock); 12302 strscpy(dev->name, new_name, IFNAMSIZ); 12303 write_sequnlock_bh(&netdev_rename_lock); 12304 } 12305 12306 /* Fixup kobjects */ 12307 dev_set_uevent_suppress(&dev->dev, 1); 12308 err = device_rename(&dev->dev, dev->name); 12309 dev_set_uevent_suppress(&dev->dev, 0); 12310 WARN_ON(err); 12311 12312 /* Send a netdev-add uevent to the new namespace */ 12313 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12314 netdev_adjacent_add_links(dev); 12315 12316 /* Adapt owner in case owning user namespace of target network 12317 * namespace is different from the original one. 12318 */ 12319 err = netdev_change_owner(dev, net_old, net); 12320 WARN_ON(err); 12321 12322 netdev_lock(dev); 12323 dev->moving_ns = false; 12324 if (!netdev_need_ops_lock(dev)) 12325 netdev_unlock(dev); 12326 12327 /* Add the device back in the hashes */ 12328 list_netdevice(dev); 12329 /* Notify protocols, that a new device appeared. */ 12330 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12331 netdev_unlock_ops(dev); 12332 12333 /* 12334 * Prevent userspace races by waiting until the network 12335 * device is fully setup before sending notifications. 12336 */ 12337 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12338 12339 synchronize_net(); 12340 err = 0; 12341 out: 12342 return err; 12343 } 12344 12345 static int dev_cpu_dead(unsigned int oldcpu) 12346 { 12347 struct sk_buff **list_skb; 12348 struct sk_buff *skb; 12349 unsigned int cpu; 12350 struct softnet_data *sd, *oldsd, *remsd = NULL; 12351 12352 local_irq_disable(); 12353 cpu = smp_processor_id(); 12354 sd = &per_cpu(softnet_data, cpu); 12355 oldsd = &per_cpu(softnet_data, oldcpu); 12356 12357 /* Find end of our completion_queue. */ 12358 list_skb = &sd->completion_queue; 12359 while (*list_skb) 12360 list_skb = &(*list_skb)->next; 12361 /* Append completion queue from offline CPU. */ 12362 *list_skb = oldsd->completion_queue; 12363 oldsd->completion_queue = NULL; 12364 12365 /* Append output queue from offline CPU. */ 12366 if (oldsd->output_queue) { 12367 *sd->output_queue_tailp = oldsd->output_queue; 12368 sd->output_queue_tailp = oldsd->output_queue_tailp; 12369 oldsd->output_queue = NULL; 12370 oldsd->output_queue_tailp = &oldsd->output_queue; 12371 } 12372 /* Append NAPI poll list from offline CPU, with one exception : 12373 * process_backlog() must be called by cpu owning percpu backlog. 12374 * We properly handle process_queue & input_pkt_queue later. 12375 */ 12376 while (!list_empty(&oldsd->poll_list)) { 12377 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12378 struct napi_struct, 12379 poll_list); 12380 12381 list_del_init(&napi->poll_list); 12382 if (napi->poll == process_backlog) 12383 napi->state &= NAPIF_STATE_THREADED; 12384 else 12385 ____napi_schedule(sd, napi); 12386 } 12387 12388 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12389 local_irq_enable(); 12390 12391 if (!use_backlog_threads()) { 12392 #ifdef CONFIG_RPS 12393 remsd = oldsd->rps_ipi_list; 12394 oldsd->rps_ipi_list = NULL; 12395 #endif 12396 /* send out pending IPI's on offline CPU */ 12397 net_rps_send_ipi(remsd); 12398 } 12399 12400 /* Process offline CPU's input_pkt_queue */ 12401 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12402 netif_rx(skb); 12403 rps_input_queue_head_incr(oldsd); 12404 } 12405 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12406 netif_rx(skb); 12407 rps_input_queue_head_incr(oldsd); 12408 } 12409 12410 return 0; 12411 } 12412 12413 /** 12414 * netdev_increment_features - increment feature set by one 12415 * @all: current feature set 12416 * @one: new feature set 12417 * @mask: mask feature set 12418 * 12419 * Computes a new feature set after adding a device with feature set 12420 * @one to the master device with current feature set @all. Will not 12421 * enable anything that is off in @mask. Returns the new feature set. 12422 */ 12423 netdev_features_t netdev_increment_features(netdev_features_t all, 12424 netdev_features_t one, netdev_features_t mask) 12425 { 12426 if (mask & NETIF_F_HW_CSUM) 12427 mask |= NETIF_F_CSUM_MASK; 12428 mask |= NETIF_F_VLAN_CHALLENGED; 12429 12430 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12431 all &= one | ~NETIF_F_ALL_FOR_ALL; 12432 12433 /* If one device supports hw checksumming, set for all. */ 12434 if (all & NETIF_F_HW_CSUM) 12435 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12436 12437 return all; 12438 } 12439 EXPORT_SYMBOL(netdev_increment_features); 12440 12441 static struct hlist_head * __net_init netdev_create_hash(void) 12442 { 12443 int i; 12444 struct hlist_head *hash; 12445 12446 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12447 if (hash != NULL) 12448 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12449 INIT_HLIST_HEAD(&hash[i]); 12450 12451 return hash; 12452 } 12453 12454 /* Initialize per network namespace state */ 12455 static int __net_init netdev_init(struct net *net) 12456 { 12457 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12458 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12459 12460 INIT_LIST_HEAD(&net->dev_base_head); 12461 12462 net->dev_name_head = netdev_create_hash(); 12463 if (net->dev_name_head == NULL) 12464 goto err_name; 12465 12466 net->dev_index_head = netdev_create_hash(); 12467 if (net->dev_index_head == NULL) 12468 goto err_idx; 12469 12470 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12471 12472 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12473 12474 return 0; 12475 12476 err_idx: 12477 kfree(net->dev_name_head); 12478 err_name: 12479 return -ENOMEM; 12480 } 12481 12482 /** 12483 * netdev_drivername - network driver for the device 12484 * @dev: network device 12485 * 12486 * Determine network driver for device. 12487 */ 12488 const char *netdev_drivername(const struct net_device *dev) 12489 { 12490 const struct device_driver *driver; 12491 const struct device *parent; 12492 const char *empty = ""; 12493 12494 parent = dev->dev.parent; 12495 if (!parent) 12496 return empty; 12497 12498 driver = parent->driver; 12499 if (driver && driver->name) 12500 return driver->name; 12501 return empty; 12502 } 12503 12504 static void __netdev_printk(const char *level, const struct net_device *dev, 12505 struct va_format *vaf) 12506 { 12507 if (dev && dev->dev.parent) { 12508 dev_printk_emit(level[1] - '0', 12509 dev->dev.parent, 12510 "%s %s %s%s: %pV", 12511 dev_driver_string(dev->dev.parent), 12512 dev_name(dev->dev.parent), 12513 netdev_name(dev), netdev_reg_state(dev), 12514 vaf); 12515 } else if (dev) { 12516 printk("%s%s%s: %pV", 12517 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12518 } else { 12519 printk("%s(NULL net_device): %pV", level, vaf); 12520 } 12521 } 12522 12523 void netdev_printk(const char *level, const struct net_device *dev, 12524 const char *format, ...) 12525 { 12526 struct va_format vaf; 12527 va_list args; 12528 12529 va_start(args, format); 12530 12531 vaf.fmt = format; 12532 vaf.va = &args; 12533 12534 __netdev_printk(level, dev, &vaf); 12535 12536 va_end(args); 12537 } 12538 EXPORT_SYMBOL(netdev_printk); 12539 12540 #define define_netdev_printk_level(func, level) \ 12541 void func(const struct net_device *dev, const char *fmt, ...) \ 12542 { \ 12543 struct va_format vaf; \ 12544 va_list args; \ 12545 \ 12546 va_start(args, fmt); \ 12547 \ 12548 vaf.fmt = fmt; \ 12549 vaf.va = &args; \ 12550 \ 12551 __netdev_printk(level, dev, &vaf); \ 12552 \ 12553 va_end(args); \ 12554 } \ 12555 EXPORT_SYMBOL(func); 12556 12557 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12558 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12559 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12560 define_netdev_printk_level(netdev_err, KERN_ERR); 12561 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12562 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12563 define_netdev_printk_level(netdev_info, KERN_INFO); 12564 12565 static void __net_exit netdev_exit(struct net *net) 12566 { 12567 kfree(net->dev_name_head); 12568 kfree(net->dev_index_head); 12569 xa_destroy(&net->dev_by_index); 12570 if (net != &init_net) 12571 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12572 } 12573 12574 static struct pernet_operations __net_initdata netdev_net_ops = { 12575 .init = netdev_init, 12576 .exit = netdev_exit, 12577 }; 12578 12579 static void __net_exit default_device_exit_net(struct net *net) 12580 { 12581 struct netdev_name_node *name_node, *tmp; 12582 struct net_device *dev, *aux; 12583 /* 12584 * Push all migratable network devices back to the 12585 * initial network namespace 12586 */ 12587 ASSERT_RTNL(); 12588 for_each_netdev_safe(net, dev, aux) { 12589 int err; 12590 char fb_name[IFNAMSIZ]; 12591 12592 /* Ignore unmoveable devices (i.e. loopback) */ 12593 if (dev->netns_immutable) 12594 continue; 12595 12596 /* Leave virtual devices for the generic cleanup */ 12597 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12598 continue; 12599 12600 /* Push remaining network devices to init_net */ 12601 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12602 if (netdev_name_in_use(&init_net, fb_name)) 12603 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12604 12605 netdev_for_each_altname_safe(dev, name_node, tmp) 12606 if (netdev_name_in_use(&init_net, name_node->name)) 12607 __netdev_name_node_alt_destroy(name_node); 12608 12609 err = dev_change_net_namespace(dev, &init_net, fb_name); 12610 if (err) { 12611 pr_emerg("%s: failed to move %s to init_net: %d\n", 12612 __func__, dev->name, err); 12613 BUG(); 12614 } 12615 } 12616 } 12617 12618 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12619 { 12620 /* At exit all network devices most be removed from a network 12621 * namespace. Do this in the reverse order of registration. 12622 * Do this across as many network namespaces as possible to 12623 * improve batching efficiency. 12624 */ 12625 struct net_device *dev; 12626 struct net *net; 12627 LIST_HEAD(dev_kill_list); 12628 12629 rtnl_lock(); 12630 list_for_each_entry(net, net_list, exit_list) { 12631 default_device_exit_net(net); 12632 cond_resched(); 12633 } 12634 12635 list_for_each_entry(net, net_list, exit_list) { 12636 for_each_netdev_reverse(net, dev) { 12637 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12638 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12639 else 12640 unregister_netdevice_queue(dev, &dev_kill_list); 12641 } 12642 } 12643 unregister_netdevice_many(&dev_kill_list); 12644 rtnl_unlock(); 12645 } 12646 12647 static struct pernet_operations __net_initdata default_device_ops = { 12648 .exit_batch = default_device_exit_batch, 12649 }; 12650 12651 static void __init net_dev_struct_check(void) 12652 { 12653 /* TX read-mostly hotpath */ 12654 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12655 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12656 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12657 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12658 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12659 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12660 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12661 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12662 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12663 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12664 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12665 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12666 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12667 #ifdef CONFIG_XPS 12668 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12669 #endif 12670 #ifdef CONFIG_NETFILTER_EGRESS 12671 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12672 #endif 12673 #ifdef CONFIG_NET_XGRESS 12674 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12675 #endif 12676 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12677 12678 /* TXRX read-mostly hotpath */ 12679 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12680 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12681 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12682 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12683 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12684 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12685 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12686 12687 /* RX read-mostly hotpath */ 12688 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12689 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12690 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12691 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12692 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12693 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12694 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12695 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12696 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12697 #ifdef CONFIG_NETPOLL 12698 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12699 #endif 12700 #ifdef CONFIG_NET_XGRESS 12701 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12702 #endif 12703 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12704 } 12705 12706 /* 12707 * Initialize the DEV module. At boot time this walks the device list and 12708 * unhooks any devices that fail to initialise (normally hardware not 12709 * present) and leaves us with a valid list of present and active devices. 12710 * 12711 */ 12712 12713 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12714 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12715 12716 static int net_page_pool_create(int cpuid) 12717 { 12718 #if IS_ENABLED(CONFIG_PAGE_POOL) 12719 struct page_pool_params page_pool_params = { 12720 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12721 .flags = PP_FLAG_SYSTEM_POOL, 12722 .nid = cpu_to_mem(cpuid), 12723 }; 12724 struct page_pool *pp_ptr; 12725 int err; 12726 12727 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12728 if (IS_ERR(pp_ptr)) 12729 return -ENOMEM; 12730 12731 err = xdp_reg_page_pool(pp_ptr); 12732 if (err) { 12733 page_pool_destroy(pp_ptr); 12734 return err; 12735 } 12736 12737 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12738 #endif 12739 return 0; 12740 } 12741 12742 static int backlog_napi_should_run(unsigned int cpu) 12743 { 12744 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12745 struct napi_struct *napi = &sd->backlog; 12746 12747 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12748 } 12749 12750 static void run_backlog_napi(unsigned int cpu) 12751 { 12752 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12753 12754 napi_threaded_poll_loop(&sd->backlog); 12755 } 12756 12757 static void backlog_napi_setup(unsigned int cpu) 12758 { 12759 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12760 struct napi_struct *napi = &sd->backlog; 12761 12762 napi->thread = this_cpu_read(backlog_napi); 12763 set_bit(NAPI_STATE_THREADED, &napi->state); 12764 } 12765 12766 static struct smp_hotplug_thread backlog_threads = { 12767 .store = &backlog_napi, 12768 .thread_should_run = backlog_napi_should_run, 12769 .thread_fn = run_backlog_napi, 12770 .thread_comm = "backlog_napi/%u", 12771 .setup = backlog_napi_setup, 12772 }; 12773 12774 /* 12775 * This is called single threaded during boot, so no need 12776 * to take the rtnl semaphore. 12777 */ 12778 static int __init net_dev_init(void) 12779 { 12780 int i, rc = -ENOMEM; 12781 12782 BUG_ON(!dev_boot_phase); 12783 12784 net_dev_struct_check(); 12785 12786 if (dev_proc_init()) 12787 goto out; 12788 12789 if (netdev_kobject_init()) 12790 goto out; 12791 12792 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12793 INIT_LIST_HEAD(&ptype_base[i]); 12794 12795 if (register_pernet_subsys(&netdev_net_ops)) 12796 goto out; 12797 12798 /* 12799 * Initialise the packet receive queues. 12800 */ 12801 12802 flush_backlogs_fallback = flush_backlogs_alloc(); 12803 if (!flush_backlogs_fallback) 12804 goto out; 12805 12806 for_each_possible_cpu(i) { 12807 struct softnet_data *sd = &per_cpu(softnet_data, i); 12808 12809 skb_queue_head_init(&sd->input_pkt_queue); 12810 skb_queue_head_init(&sd->process_queue); 12811 #ifdef CONFIG_XFRM_OFFLOAD 12812 skb_queue_head_init(&sd->xfrm_backlog); 12813 #endif 12814 INIT_LIST_HEAD(&sd->poll_list); 12815 sd->output_queue_tailp = &sd->output_queue; 12816 #ifdef CONFIG_RPS 12817 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12818 sd->cpu = i; 12819 #endif 12820 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12821 spin_lock_init(&sd->defer_lock); 12822 12823 gro_init(&sd->backlog.gro); 12824 sd->backlog.poll = process_backlog; 12825 sd->backlog.weight = weight_p; 12826 INIT_LIST_HEAD(&sd->backlog.poll_list); 12827 12828 if (net_page_pool_create(i)) 12829 goto out; 12830 } 12831 if (use_backlog_threads()) 12832 smpboot_register_percpu_thread(&backlog_threads); 12833 12834 dev_boot_phase = 0; 12835 12836 /* The loopback device is special if any other network devices 12837 * is present in a network namespace the loopback device must 12838 * be present. Since we now dynamically allocate and free the 12839 * loopback device ensure this invariant is maintained by 12840 * keeping the loopback device as the first device on the 12841 * list of network devices. Ensuring the loopback devices 12842 * is the first device that appears and the last network device 12843 * that disappears. 12844 */ 12845 if (register_pernet_device(&loopback_net_ops)) 12846 goto out; 12847 12848 if (register_pernet_device(&default_device_ops)) 12849 goto out; 12850 12851 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12852 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12853 12854 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12855 NULL, dev_cpu_dead); 12856 WARN_ON(rc < 0); 12857 rc = 0; 12858 12859 /* avoid static key IPIs to isolated CPUs */ 12860 if (housekeeping_enabled(HK_TYPE_MISC)) 12861 net_enable_timestamp(); 12862 out: 12863 if (rc < 0) { 12864 for_each_possible_cpu(i) { 12865 struct page_pool *pp_ptr; 12866 12867 pp_ptr = per_cpu(system_page_pool.pool, i); 12868 if (!pp_ptr) 12869 continue; 12870 12871 xdp_unreg_page_pool(pp_ptr); 12872 page_pool_destroy(pp_ptr); 12873 per_cpu(system_page_pool.pool, i) = NULL; 12874 } 12875 } 12876 12877 return rc; 12878 } 12879 12880 subsys_initcall(net_dev_init); 12881