1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 135 #include "net-sysfs.h" 136 137 /* Instead of increasing this, you should create a hash table. */ 138 #define MAX_GRO_SKBS 8 139 140 /* This should be increased if a protocol with a bigger head is added. */ 141 #define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143 /* 144 * The list of packet types we will receive (as opposed to discard) 145 * and the routines to invoke. 146 * 147 * Why 16. Because with 16 the only overlap we get on a hash of the 148 * low nibble of the protocol value is RARP/SNAP/X.25. 149 * 150 * NOTE: That is no longer true with the addition of VLAN tags. Not 151 * sure which should go first, but I bet it won't make much 152 * difference if we are running VLANs. The good news is that 153 * this protocol won't be in the list unless compiled in, so 154 * the average user (w/out VLANs) will not be adversely affected. 155 * --BLG 156 * 157 * 0800 IP 158 * 8100 802.1Q VLAN 159 * 0001 802.3 160 * 0002 AX.25 161 * 0004 802.2 162 * 8035 RARP 163 * 0005 SNAP 164 * 0805 X.25 165 * 0806 ARP 166 * 8137 IPX 167 * 0009 Localtalk 168 * 86DD IPv6 169 */ 170 171 #define PTYPE_HASH_SIZE (16) 172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 173 174 static DEFINE_SPINLOCK(ptype_lock); 175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 176 static struct list_head ptype_all __read_mostly; /* Taps */ 177 178 /* 179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 180 * semaphore. 181 * 182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 183 * 184 * Writers must hold the rtnl semaphore while they loop through the 185 * dev_base_head list, and hold dev_base_lock for writing when they do the 186 * actual updates. This allows pure readers to access the list even 187 * while a writer is preparing to update it. 188 * 189 * To put it another way, dev_base_lock is held for writing only to 190 * protect against pure readers; the rtnl semaphore provides the 191 * protection against other writers. 192 * 193 * See, for example usages, register_netdevice() and 194 * unregister_netdevice(), which must be called with the rtnl 195 * semaphore held. 196 */ 197 DEFINE_RWLOCK(dev_base_lock); 198 EXPORT_SYMBOL(dev_base_lock); 199 200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201 { 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209 } 210 211 static inline void rps_lock(struct softnet_data *sd) 212 { 213 #ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215 #endif 216 } 217 218 static inline void rps_unlock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 /* Device list insertion */ 226 static int list_netdevice(struct net_device *dev) 227 { 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 return 0; 239 } 240 241 /* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244 static void unlist_netdevice(struct net_device *dev) 245 { 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 } 255 256 /* 257 * Our notifier list 258 */ 259 260 static RAW_NOTIFIER_HEAD(netdev_chain); 261 262 /* 263 * Device drivers call our routines to queue packets here. We empty the 264 * queue in the local softnet handler. 265 */ 266 267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 268 EXPORT_PER_CPU_SYMBOL(softnet_data); 269 270 #ifdef CONFIG_LOCKDEP 271 /* 272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 273 * according to dev->type 274 */ 275 static const unsigned short netdev_lock_type[] = 276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 291 ARPHRD_VOID, ARPHRD_NONE}; 292 293 static const char *const netdev_lock_name[] = 294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 309 "_xmit_VOID", "_xmit_NONE"}; 310 311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315 { 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323 } 324 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333 } 334 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 #else 345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347 { 348 } 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 } 352 #endif 353 354 /******************************************************************************* 355 356 Protocol management and registration routines 357 358 *******************************************************************************/ 359 360 /* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376 /** 377 * dev_add_pack - add packet handler 378 * @pt: packet type declaration 379 * 380 * Add a protocol handler to the networking stack. The passed &packet_type 381 * is linked into kernel lists and may not be freed until it has been 382 * removed from the kernel lists. 383 * 384 * This call does not sleep therefore it can not 385 * guarantee all CPU's that are in middle of receiving packets 386 * will see the new packet type (until the next received packet). 387 */ 388 389 void dev_add_pack(struct packet_type *pt) 390 { 391 int hash; 392 393 spin_lock_bh(&ptype_lock); 394 if (pt->type == htons(ETH_P_ALL)) 395 list_add_rcu(&pt->list, &ptype_all); 396 else { 397 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 398 list_add_rcu(&pt->list, &ptype_base[hash]); 399 } 400 spin_unlock_bh(&ptype_lock); 401 } 402 EXPORT_SYMBOL(dev_add_pack); 403 404 /** 405 * __dev_remove_pack - remove packet handler 406 * @pt: packet type declaration 407 * 408 * Remove a protocol handler that was previously added to the kernel 409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 410 * from the kernel lists and can be freed or reused once this function 411 * returns. 412 * 413 * The packet type might still be in use by receivers 414 * and must not be freed until after all the CPU's have gone 415 * through a quiescent state. 416 */ 417 void __dev_remove_pack(struct packet_type *pt) 418 { 419 struct list_head *head; 420 struct packet_type *pt1; 421 422 spin_lock_bh(&ptype_lock); 423 424 if (pt->type == htons(ETH_P_ALL)) 425 head = &ptype_all; 426 else 427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437 out: 438 spin_unlock_bh(&ptype_lock); 439 } 440 EXPORT_SYMBOL(__dev_remove_pack); 441 442 /** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454 void dev_remove_pack(struct packet_type *pt) 455 { 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459 } 460 EXPORT_SYMBOL(dev_remove_pack); 461 462 /****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466 *******************************************************************************/ 467 468 /* Boot time configuration table */ 469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471 /** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480 static int netdev_boot_setup_add(char *name, struct ifmap *map) 481 { 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496 } 497 498 /** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507 int netdev_boot_setup_check(struct net_device *dev) 508 { 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523 } 524 EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527 /** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537 unsigned long netdev_boot_base(const char *prefix, int unit) 538 { 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556 } 557 558 /* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561 int __init netdev_boot_setup(char *str) 562 { 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583 } 584 585 __setup("netdev=", netdev_boot_setup); 586 587 /******************************************************************************* 588 589 Device Interface Subroutines 590 591 *******************************************************************************/ 592 593 /** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605 struct net_device *__dev_get_by_name(struct net *net, const char *name) 606 { 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616 } 617 EXPORT_SYMBOL(__dev_get_by_name); 618 619 /** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632 { 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642 } 643 EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645 /** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657 struct net_device *dev_get_by_name(struct net *net, const char *name) 658 { 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667 } 668 EXPORT_SYMBOL(dev_get_by_name); 669 670 /** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683 { 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(__dev_get_by_index); 695 696 /** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708 { 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718 } 719 EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722 /** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733 struct net_device *dev_get_by_index(struct net *net, int ifindex) 734 { 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743 } 744 EXPORT_SYMBOL(dev_get_by_index); 745 746 /** 747 * dev_getbyhwaddr - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. The caller must hold the 754 * rtnl semaphore. The returned device has not had its ref count increased 755 * and the caller must therefore be careful about locking 756 * 757 * BUGS: 758 * If the API was consistent this would be __dev_get_by_hwaddr 759 */ 760 761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 762 { 763 struct net_device *dev; 764 765 ASSERT_RTNL(); 766 767 for_each_netdev(net, dev) 768 if (dev->type == type && 769 !memcmp(dev->dev_addr, ha, dev->addr_len)) 770 return dev; 771 772 return NULL; 773 } 774 EXPORT_SYMBOL(dev_getbyhwaddr); 775 776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 777 { 778 struct net_device *dev; 779 780 ASSERT_RTNL(); 781 for_each_netdev(net, dev) 782 if (dev->type == type) 783 return dev; 784 785 return NULL; 786 } 787 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 788 789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 790 { 791 struct net_device *dev, *ret = NULL; 792 793 rcu_read_lock(); 794 for_each_netdev_rcu(net, dev) 795 if (dev->type == type) { 796 dev_hold(dev); 797 ret = dev; 798 break; 799 } 800 rcu_read_unlock(); 801 return ret; 802 } 803 EXPORT_SYMBOL(dev_getfirstbyhwtype); 804 805 /** 806 * dev_get_by_flags_rcu - find any device with given flags 807 * @net: the applicable net namespace 808 * @if_flags: IFF_* values 809 * @mask: bitmask of bits in if_flags to check 810 * 811 * Search for any interface with the given flags. Returns NULL if a device 812 * is not found or a pointer to the device. Must be called inside 813 * rcu_read_lock(), and result refcount is unchanged. 814 */ 815 816 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 817 unsigned short mask) 818 { 819 struct net_device *dev, *ret; 820 821 ret = NULL; 822 for_each_netdev_rcu(net, dev) { 823 if (((dev->flags ^ if_flags) & mask) == 0) { 824 ret = dev; 825 break; 826 } 827 } 828 return ret; 829 } 830 EXPORT_SYMBOL(dev_get_by_flags_rcu); 831 832 /** 833 * dev_valid_name - check if name is okay for network device 834 * @name: name string 835 * 836 * Network device names need to be valid file names to 837 * to allow sysfs to work. We also disallow any kind of 838 * whitespace. 839 */ 840 int dev_valid_name(const char *name) 841 { 842 if (*name == '\0') 843 return 0; 844 if (strlen(name) >= IFNAMSIZ) 845 return 0; 846 if (!strcmp(name, ".") || !strcmp(name, "..")) 847 return 0; 848 849 while (*name) { 850 if (*name == '/' || isspace(*name)) 851 return 0; 852 name++; 853 } 854 return 1; 855 } 856 EXPORT_SYMBOL(dev_valid_name); 857 858 /** 859 * __dev_alloc_name - allocate a name for a device 860 * @net: network namespace to allocate the device name in 861 * @name: name format string 862 * @buf: scratch buffer and result name string 863 * 864 * Passed a format string - eg "lt%d" it will try and find a suitable 865 * id. It scans list of devices to build up a free map, then chooses 866 * the first empty slot. The caller must hold the dev_base or rtnl lock 867 * while allocating the name and adding the device in order to avoid 868 * duplicates. 869 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 870 * Returns the number of the unit assigned or a negative errno code. 871 */ 872 873 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 874 { 875 int i = 0; 876 const char *p; 877 const int max_netdevices = 8*PAGE_SIZE; 878 unsigned long *inuse; 879 struct net_device *d; 880 881 p = strnchr(name, IFNAMSIZ-1, '%'); 882 if (p) { 883 /* 884 * Verify the string as this thing may have come from 885 * the user. There must be either one "%d" and no other "%" 886 * characters. 887 */ 888 if (p[1] != 'd' || strchr(p + 2, '%')) 889 return -EINVAL; 890 891 /* Use one page as a bit array of possible slots */ 892 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 893 if (!inuse) 894 return -ENOMEM; 895 896 for_each_netdev(net, d) { 897 if (!sscanf(d->name, name, &i)) 898 continue; 899 if (i < 0 || i >= max_netdevices) 900 continue; 901 902 /* avoid cases where sscanf is not exact inverse of printf */ 903 snprintf(buf, IFNAMSIZ, name, i); 904 if (!strncmp(buf, d->name, IFNAMSIZ)) 905 set_bit(i, inuse); 906 } 907 908 i = find_first_zero_bit(inuse, max_netdevices); 909 free_page((unsigned long) inuse); 910 } 911 912 if (buf != name) 913 snprintf(buf, IFNAMSIZ, name, i); 914 if (!__dev_get_by_name(net, buf)) 915 return i; 916 917 /* It is possible to run out of possible slots 918 * when the name is long and there isn't enough space left 919 * for the digits, or if all bits are used. 920 */ 921 return -ENFILE; 922 } 923 924 /** 925 * dev_alloc_name - allocate a name for a device 926 * @dev: device 927 * @name: name format string 928 * 929 * Passed a format string - eg "lt%d" it will try and find a suitable 930 * id. It scans list of devices to build up a free map, then chooses 931 * the first empty slot. The caller must hold the dev_base or rtnl lock 932 * while allocating the name and adding the device in order to avoid 933 * duplicates. 934 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 935 * Returns the number of the unit assigned or a negative errno code. 936 */ 937 938 int dev_alloc_name(struct net_device *dev, const char *name) 939 { 940 char buf[IFNAMSIZ]; 941 struct net *net; 942 int ret; 943 944 BUG_ON(!dev_net(dev)); 945 net = dev_net(dev); 946 ret = __dev_alloc_name(net, name, buf); 947 if (ret >= 0) 948 strlcpy(dev->name, buf, IFNAMSIZ); 949 return ret; 950 } 951 EXPORT_SYMBOL(dev_alloc_name); 952 953 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 954 { 955 struct net *net; 956 957 BUG_ON(!dev_net(dev)); 958 net = dev_net(dev); 959 960 if (!dev_valid_name(name)) 961 return -EINVAL; 962 963 if (fmt && strchr(name, '%')) 964 return dev_alloc_name(dev, name); 965 else if (__dev_get_by_name(net, name)) 966 return -EEXIST; 967 else if (dev->name != name) 968 strlcpy(dev->name, name, IFNAMSIZ); 969 970 return 0; 971 } 972 973 /** 974 * dev_change_name - change name of a device 975 * @dev: device 976 * @newname: name (or format string) must be at least IFNAMSIZ 977 * 978 * Change name of a device, can pass format strings "eth%d". 979 * for wildcarding. 980 */ 981 int dev_change_name(struct net_device *dev, const char *newname) 982 { 983 char oldname[IFNAMSIZ]; 984 int err = 0; 985 int ret; 986 struct net *net; 987 988 ASSERT_RTNL(); 989 BUG_ON(!dev_net(dev)); 990 991 net = dev_net(dev); 992 if (dev->flags & IFF_UP) 993 return -EBUSY; 994 995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 996 return 0; 997 998 memcpy(oldname, dev->name, IFNAMSIZ); 999 1000 err = dev_get_valid_name(dev, newname, 1); 1001 if (err < 0) 1002 return err; 1003 1004 rollback: 1005 ret = device_rename(&dev->dev, dev->name); 1006 if (ret) { 1007 memcpy(dev->name, oldname, IFNAMSIZ); 1008 return ret; 1009 } 1010 1011 write_lock_bh(&dev_base_lock); 1012 hlist_del(&dev->name_hlist); 1013 write_unlock_bh(&dev_base_lock); 1014 1015 synchronize_rcu(); 1016 1017 write_lock_bh(&dev_base_lock); 1018 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1019 write_unlock_bh(&dev_base_lock); 1020 1021 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1022 ret = notifier_to_errno(ret); 1023 1024 if (ret) { 1025 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1026 if (err >= 0) { 1027 err = ret; 1028 memcpy(dev->name, oldname, IFNAMSIZ); 1029 goto rollback; 1030 } else { 1031 printk(KERN_ERR 1032 "%s: name change rollback failed: %d.\n", 1033 dev->name, ret); 1034 } 1035 } 1036 1037 return err; 1038 } 1039 1040 /** 1041 * dev_set_alias - change ifalias of a device 1042 * @dev: device 1043 * @alias: name up to IFALIASZ 1044 * @len: limit of bytes to copy from info 1045 * 1046 * Set ifalias for a device, 1047 */ 1048 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1049 { 1050 ASSERT_RTNL(); 1051 1052 if (len >= IFALIASZ) 1053 return -EINVAL; 1054 1055 if (!len) { 1056 if (dev->ifalias) { 1057 kfree(dev->ifalias); 1058 dev->ifalias = NULL; 1059 } 1060 return 0; 1061 } 1062 1063 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1064 if (!dev->ifalias) 1065 return -ENOMEM; 1066 1067 strlcpy(dev->ifalias, alias, len+1); 1068 return len; 1069 } 1070 1071 1072 /** 1073 * netdev_features_change - device changes features 1074 * @dev: device to cause notification 1075 * 1076 * Called to indicate a device has changed features. 1077 */ 1078 void netdev_features_change(struct net_device *dev) 1079 { 1080 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1081 } 1082 EXPORT_SYMBOL(netdev_features_change); 1083 1084 /** 1085 * netdev_state_change - device changes state 1086 * @dev: device to cause notification 1087 * 1088 * Called to indicate a device has changed state. This function calls 1089 * the notifier chains for netdev_chain and sends a NEWLINK message 1090 * to the routing socket. 1091 */ 1092 void netdev_state_change(struct net_device *dev) 1093 { 1094 if (dev->flags & IFF_UP) { 1095 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1096 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1097 } 1098 } 1099 EXPORT_SYMBOL(netdev_state_change); 1100 1101 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1102 { 1103 return call_netdevice_notifiers(event, dev); 1104 } 1105 EXPORT_SYMBOL(netdev_bonding_change); 1106 1107 /** 1108 * dev_load - load a network module 1109 * @net: the applicable net namespace 1110 * @name: name of interface 1111 * 1112 * If a network interface is not present and the process has suitable 1113 * privileges this function loads the module. If module loading is not 1114 * available in this kernel then it becomes a nop. 1115 */ 1116 1117 void dev_load(struct net *net, const char *name) 1118 { 1119 struct net_device *dev; 1120 1121 rcu_read_lock(); 1122 dev = dev_get_by_name_rcu(net, name); 1123 rcu_read_unlock(); 1124 1125 if (!dev && capable(CAP_NET_ADMIN)) 1126 request_module("%s", name); 1127 } 1128 EXPORT_SYMBOL(dev_load); 1129 1130 static int __dev_open(struct net_device *dev) 1131 { 1132 const struct net_device_ops *ops = dev->netdev_ops; 1133 int ret; 1134 1135 ASSERT_RTNL(); 1136 1137 /* 1138 * Is it even present? 1139 */ 1140 if (!netif_device_present(dev)) 1141 return -ENODEV; 1142 1143 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1144 ret = notifier_to_errno(ret); 1145 if (ret) 1146 return ret; 1147 1148 /* 1149 * Call device private open method 1150 */ 1151 set_bit(__LINK_STATE_START, &dev->state); 1152 1153 if (ops->ndo_validate_addr) 1154 ret = ops->ndo_validate_addr(dev); 1155 1156 if (!ret && ops->ndo_open) 1157 ret = ops->ndo_open(dev); 1158 1159 /* 1160 * If it went open OK then: 1161 */ 1162 1163 if (ret) 1164 clear_bit(__LINK_STATE_START, &dev->state); 1165 else { 1166 /* 1167 * Set the flags. 1168 */ 1169 dev->flags |= IFF_UP; 1170 1171 /* 1172 * Enable NET_DMA 1173 */ 1174 net_dmaengine_get(); 1175 1176 /* 1177 * Initialize multicasting status 1178 */ 1179 dev_set_rx_mode(dev); 1180 1181 /* 1182 * Wakeup transmit queue engine 1183 */ 1184 dev_activate(dev); 1185 } 1186 1187 return ret; 1188 } 1189 1190 /** 1191 * dev_open - prepare an interface for use. 1192 * @dev: device to open 1193 * 1194 * Takes a device from down to up state. The device's private open 1195 * function is invoked and then the multicast lists are loaded. Finally 1196 * the device is moved into the up state and a %NETDEV_UP message is 1197 * sent to the netdev notifier chain. 1198 * 1199 * Calling this function on an active interface is a nop. On a failure 1200 * a negative errno code is returned. 1201 */ 1202 int dev_open(struct net_device *dev) 1203 { 1204 int ret; 1205 1206 /* 1207 * Is it already up? 1208 */ 1209 if (dev->flags & IFF_UP) 1210 return 0; 1211 1212 /* 1213 * Open device 1214 */ 1215 ret = __dev_open(dev); 1216 if (ret < 0) 1217 return ret; 1218 1219 /* 1220 * ... and announce new interface. 1221 */ 1222 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1223 call_netdevice_notifiers(NETDEV_UP, dev); 1224 1225 return ret; 1226 } 1227 EXPORT_SYMBOL(dev_open); 1228 1229 static int __dev_close(struct net_device *dev) 1230 { 1231 const struct net_device_ops *ops = dev->netdev_ops; 1232 1233 ASSERT_RTNL(); 1234 might_sleep(); 1235 1236 /* 1237 * Tell people we are going down, so that they can 1238 * prepare to death, when device is still operating. 1239 */ 1240 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1241 1242 clear_bit(__LINK_STATE_START, &dev->state); 1243 1244 /* Synchronize to scheduled poll. We cannot touch poll list, 1245 * it can be even on different cpu. So just clear netif_running(). 1246 * 1247 * dev->stop() will invoke napi_disable() on all of it's 1248 * napi_struct instances on this device. 1249 */ 1250 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1251 1252 dev_deactivate(dev); 1253 1254 /* 1255 * Call the device specific close. This cannot fail. 1256 * Only if device is UP 1257 * 1258 * We allow it to be called even after a DETACH hot-plug 1259 * event. 1260 */ 1261 if (ops->ndo_stop) 1262 ops->ndo_stop(dev); 1263 1264 /* 1265 * Device is now down. 1266 */ 1267 1268 dev->flags &= ~IFF_UP; 1269 1270 /* 1271 * Shutdown NET_DMA 1272 */ 1273 net_dmaengine_put(); 1274 1275 return 0; 1276 } 1277 1278 /** 1279 * dev_close - shutdown an interface. 1280 * @dev: device to shutdown 1281 * 1282 * This function moves an active device into down state. A 1283 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1284 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1285 * chain. 1286 */ 1287 int dev_close(struct net_device *dev) 1288 { 1289 if (!(dev->flags & IFF_UP)) 1290 return 0; 1291 1292 __dev_close(dev); 1293 1294 /* 1295 * Tell people we are down 1296 */ 1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1298 call_netdevice_notifiers(NETDEV_DOWN, dev); 1299 1300 return 0; 1301 } 1302 EXPORT_SYMBOL(dev_close); 1303 1304 1305 /** 1306 * dev_disable_lro - disable Large Receive Offload on a device 1307 * @dev: device 1308 * 1309 * Disable Large Receive Offload (LRO) on a net device. Must be 1310 * called under RTNL. This is needed if received packets may be 1311 * forwarded to another interface. 1312 */ 1313 void dev_disable_lro(struct net_device *dev) 1314 { 1315 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1316 dev->ethtool_ops->set_flags) { 1317 u32 flags = dev->ethtool_ops->get_flags(dev); 1318 if (flags & ETH_FLAG_LRO) { 1319 flags &= ~ETH_FLAG_LRO; 1320 dev->ethtool_ops->set_flags(dev, flags); 1321 } 1322 } 1323 WARN_ON(dev->features & NETIF_F_LRO); 1324 } 1325 EXPORT_SYMBOL(dev_disable_lro); 1326 1327 1328 static int dev_boot_phase = 1; 1329 1330 /* 1331 * Device change register/unregister. These are not inline or static 1332 * as we export them to the world. 1333 */ 1334 1335 /** 1336 * register_netdevice_notifier - register a network notifier block 1337 * @nb: notifier 1338 * 1339 * Register a notifier to be called when network device events occur. 1340 * The notifier passed is linked into the kernel structures and must 1341 * not be reused until it has been unregistered. A negative errno code 1342 * is returned on a failure. 1343 * 1344 * When registered all registration and up events are replayed 1345 * to the new notifier to allow device to have a race free 1346 * view of the network device list. 1347 */ 1348 1349 int register_netdevice_notifier(struct notifier_block *nb) 1350 { 1351 struct net_device *dev; 1352 struct net_device *last; 1353 struct net *net; 1354 int err; 1355 1356 rtnl_lock(); 1357 err = raw_notifier_chain_register(&netdev_chain, nb); 1358 if (err) 1359 goto unlock; 1360 if (dev_boot_phase) 1361 goto unlock; 1362 for_each_net(net) { 1363 for_each_netdev(net, dev) { 1364 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1365 err = notifier_to_errno(err); 1366 if (err) 1367 goto rollback; 1368 1369 if (!(dev->flags & IFF_UP)) 1370 continue; 1371 1372 nb->notifier_call(nb, NETDEV_UP, dev); 1373 } 1374 } 1375 1376 unlock: 1377 rtnl_unlock(); 1378 return err; 1379 1380 rollback: 1381 last = dev; 1382 for_each_net(net) { 1383 for_each_netdev(net, dev) { 1384 if (dev == last) 1385 break; 1386 1387 if (dev->flags & IFF_UP) { 1388 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1389 nb->notifier_call(nb, NETDEV_DOWN, dev); 1390 } 1391 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1392 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1393 } 1394 } 1395 1396 raw_notifier_chain_unregister(&netdev_chain, nb); 1397 goto unlock; 1398 } 1399 EXPORT_SYMBOL(register_netdevice_notifier); 1400 1401 /** 1402 * unregister_netdevice_notifier - unregister a network notifier block 1403 * @nb: notifier 1404 * 1405 * Unregister a notifier previously registered by 1406 * register_netdevice_notifier(). The notifier is unlinked into the 1407 * kernel structures and may then be reused. A negative errno code 1408 * is returned on a failure. 1409 */ 1410 1411 int unregister_netdevice_notifier(struct notifier_block *nb) 1412 { 1413 int err; 1414 1415 rtnl_lock(); 1416 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1417 rtnl_unlock(); 1418 return err; 1419 } 1420 EXPORT_SYMBOL(unregister_netdevice_notifier); 1421 1422 /** 1423 * call_netdevice_notifiers - call all network notifier blocks 1424 * @val: value passed unmodified to notifier function 1425 * @dev: net_device pointer passed unmodified to notifier function 1426 * 1427 * Call all network notifier blocks. Parameters and return value 1428 * are as for raw_notifier_call_chain(). 1429 */ 1430 1431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1432 { 1433 ASSERT_RTNL(); 1434 return raw_notifier_call_chain(&netdev_chain, val, dev); 1435 } 1436 1437 /* When > 0 there are consumers of rx skb time stamps */ 1438 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1439 1440 void net_enable_timestamp(void) 1441 { 1442 atomic_inc(&netstamp_needed); 1443 } 1444 EXPORT_SYMBOL(net_enable_timestamp); 1445 1446 void net_disable_timestamp(void) 1447 { 1448 atomic_dec(&netstamp_needed); 1449 } 1450 EXPORT_SYMBOL(net_disable_timestamp); 1451 1452 static inline void net_timestamp_set(struct sk_buff *skb) 1453 { 1454 if (atomic_read(&netstamp_needed)) 1455 __net_timestamp(skb); 1456 else 1457 skb->tstamp.tv64 = 0; 1458 } 1459 1460 static inline void net_timestamp_check(struct sk_buff *skb) 1461 { 1462 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1463 __net_timestamp(skb); 1464 } 1465 1466 /** 1467 * dev_forward_skb - loopback an skb to another netif 1468 * 1469 * @dev: destination network device 1470 * @skb: buffer to forward 1471 * 1472 * return values: 1473 * NET_RX_SUCCESS (no congestion) 1474 * NET_RX_DROP (packet was dropped, but freed) 1475 * 1476 * dev_forward_skb can be used for injecting an skb from the 1477 * start_xmit function of one device into the receive queue 1478 * of another device. 1479 * 1480 * The receiving device may be in another namespace, so 1481 * we have to clear all information in the skb that could 1482 * impact namespace isolation. 1483 */ 1484 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1485 { 1486 skb_orphan(skb); 1487 nf_reset(skb); 1488 1489 if (!(dev->flags & IFF_UP) || 1490 (skb->len > (dev->mtu + dev->hard_header_len))) { 1491 kfree_skb(skb); 1492 return NET_RX_DROP; 1493 } 1494 skb_set_dev(skb, dev); 1495 skb->tstamp.tv64 = 0; 1496 skb->pkt_type = PACKET_HOST; 1497 skb->protocol = eth_type_trans(skb, dev); 1498 return netif_rx(skb); 1499 } 1500 EXPORT_SYMBOL_GPL(dev_forward_skb); 1501 1502 /* 1503 * Support routine. Sends outgoing frames to any network 1504 * taps currently in use. 1505 */ 1506 1507 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1508 { 1509 struct packet_type *ptype; 1510 1511 #ifdef CONFIG_NET_CLS_ACT 1512 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1513 net_timestamp_set(skb); 1514 #else 1515 net_timestamp_set(skb); 1516 #endif 1517 1518 rcu_read_lock(); 1519 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1520 /* Never send packets back to the socket 1521 * they originated from - MvS (miquels@drinkel.ow.org) 1522 */ 1523 if ((ptype->dev == dev || !ptype->dev) && 1524 (ptype->af_packet_priv == NULL || 1525 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1526 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1527 if (!skb2) 1528 break; 1529 1530 /* skb->nh should be correctly 1531 set by sender, so that the second statement is 1532 just protection against buggy protocols. 1533 */ 1534 skb_reset_mac_header(skb2); 1535 1536 if (skb_network_header(skb2) < skb2->data || 1537 skb2->network_header > skb2->tail) { 1538 if (net_ratelimit()) 1539 printk(KERN_CRIT "protocol %04x is " 1540 "buggy, dev %s\n", 1541 ntohs(skb2->protocol), 1542 dev->name); 1543 skb_reset_network_header(skb2); 1544 } 1545 1546 skb2->transport_header = skb2->network_header; 1547 skb2->pkt_type = PACKET_OUTGOING; 1548 ptype->func(skb2, skb->dev, ptype, skb->dev); 1549 } 1550 } 1551 rcu_read_unlock(); 1552 } 1553 1554 /* 1555 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1556 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1557 */ 1558 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1559 { 1560 unsigned int real_num = dev->real_num_tx_queues; 1561 1562 if (unlikely(txq > dev->num_tx_queues)) 1563 ; 1564 else if (txq > real_num) 1565 dev->real_num_tx_queues = txq; 1566 else if (txq < real_num) { 1567 dev->real_num_tx_queues = txq; 1568 qdisc_reset_all_tx_gt(dev, txq); 1569 } 1570 } 1571 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1572 1573 static inline void __netif_reschedule(struct Qdisc *q) 1574 { 1575 struct softnet_data *sd; 1576 unsigned long flags; 1577 1578 local_irq_save(flags); 1579 sd = &__get_cpu_var(softnet_data); 1580 q->next_sched = NULL; 1581 *sd->output_queue_tailp = q; 1582 sd->output_queue_tailp = &q->next_sched; 1583 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1584 local_irq_restore(flags); 1585 } 1586 1587 void __netif_schedule(struct Qdisc *q) 1588 { 1589 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1590 __netif_reschedule(q); 1591 } 1592 EXPORT_SYMBOL(__netif_schedule); 1593 1594 void dev_kfree_skb_irq(struct sk_buff *skb) 1595 { 1596 if (atomic_dec_and_test(&skb->users)) { 1597 struct softnet_data *sd; 1598 unsigned long flags; 1599 1600 local_irq_save(flags); 1601 sd = &__get_cpu_var(softnet_data); 1602 skb->next = sd->completion_queue; 1603 sd->completion_queue = skb; 1604 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1605 local_irq_restore(flags); 1606 } 1607 } 1608 EXPORT_SYMBOL(dev_kfree_skb_irq); 1609 1610 void dev_kfree_skb_any(struct sk_buff *skb) 1611 { 1612 if (in_irq() || irqs_disabled()) 1613 dev_kfree_skb_irq(skb); 1614 else 1615 dev_kfree_skb(skb); 1616 } 1617 EXPORT_SYMBOL(dev_kfree_skb_any); 1618 1619 1620 /** 1621 * netif_device_detach - mark device as removed 1622 * @dev: network device 1623 * 1624 * Mark device as removed from system and therefore no longer available. 1625 */ 1626 void netif_device_detach(struct net_device *dev) 1627 { 1628 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1629 netif_running(dev)) { 1630 netif_tx_stop_all_queues(dev); 1631 } 1632 } 1633 EXPORT_SYMBOL(netif_device_detach); 1634 1635 /** 1636 * netif_device_attach - mark device as attached 1637 * @dev: network device 1638 * 1639 * Mark device as attached from system and restart if needed. 1640 */ 1641 void netif_device_attach(struct net_device *dev) 1642 { 1643 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1644 netif_running(dev)) { 1645 netif_tx_wake_all_queues(dev); 1646 __netdev_watchdog_up(dev); 1647 } 1648 } 1649 EXPORT_SYMBOL(netif_device_attach); 1650 1651 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1652 { 1653 return ((features & NETIF_F_GEN_CSUM) || 1654 ((features & NETIF_F_IP_CSUM) && 1655 protocol == htons(ETH_P_IP)) || 1656 ((features & NETIF_F_IPV6_CSUM) && 1657 protocol == htons(ETH_P_IPV6)) || 1658 ((features & NETIF_F_FCOE_CRC) && 1659 protocol == htons(ETH_P_FCOE))); 1660 } 1661 1662 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1663 { 1664 if (can_checksum_protocol(dev->features, skb->protocol)) 1665 return true; 1666 1667 if (skb->protocol == htons(ETH_P_8021Q)) { 1668 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1669 if (can_checksum_protocol(dev->features & dev->vlan_features, 1670 veh->h_vlan_encapsulated_proto)) 1671 return true; 1672 } 1673 1674 return false; 1675 } 1676 1677 /** 1678 * skb_dev_set -- assign a new device to a buffer 1679 * @skb: buffer for the new device 1680 * @dev: network device 1681 * 1682 * If an skb is owned by a device already, we have to reset 1683 * all data private to the namespace a device belongs to 1684 * before assigning it a new device. 1685 */ 1686 #ifdef CONFIG_NET_NS 1687 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1688 { 1689 skb_dst_drop(skb); 1690 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1691 secpath_reset(skb); 1692 nf_reset(skb); 1693 skb_init_secmark(skb); 1694 skb->mark = 0; 1695 skb->priority = 0; 1696 skb->nf_trace = 0; 1697 skb->ipvs_property = 0; 1698 #ifdef CONFIG_NET_SCHED 1699 skb->tc_index = 0; 1700 #endif 1701 } 1702 skb->dev = dev; 1703 } 1704 EXPORT_SYMBOL(skb_set_dev); 1705 #endif /* CONFIG_NET_NS */ 1706 1707 /* 1708 * Invalidate hardware checksum when packet is to be mangled, and 1709 * complete checksum manually on outgoing path. 1710 */ 1711 int skb_checksum_help(struct sk_buff *skb) 1712 { 1713 __wsum csum; 1714 int ret = 0, offset; 1715 1716 if (skb->ip_summed == CHECKSUM_COMPLETE) 1717 goto out_set_summed; 1718 1719 if (unlikely(skb_shinfo(skb)->gso_size)) { 1720 /* Let GSO fix up the checksum. */ 1721 goto out_set_summed; 1722 } 1723 1724 offset = skb->csum_start - skb_headroom(skb); 1725 BUG_ON(offset >= skb_headlen(skb)); 1726 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1727 1728 offset += skb->csum_offset; 1729 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1730 1731 if (skb_cloned(skb) && 1732 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1733 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1734 if (ret) 1735 goto out; 1736 } 1737 1738 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1739 out_set_summed: 1740 skb->ip_summed = CHECKSUM_NONE; 1741 out: 1742 return ret; 1743 } 1744 EXPORT_SYMBOL(skb_checksum_help); 1745 1746 /** 1747 * skb_gso_segment - Perform segmentation on skb. 1748 * @skb: buffer to segment 1749 * @features: features for the output path (see dev->features) 1750 * 1751 * This function segments the given skb and returns a list of segments. 1752 * 1753 * It may return NULL if the skb requires no segmentation. This is 1754 * only possible when GSO is used for verifying header integrity. 1755 */ 1756 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1757 { 1758 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1759 struct packet_type *ptype; 1760 __be16 type = skb->protocol; 1761 int err; 1762 1763 skb_reset_mac_header(skb); 1764 skb->mac_len = skb->network_header - skb->mac_header; 1765 __skb_pull(skb, skb->mac_len); 1766 1767 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1768 struct net_device *dev = skb->dev; 1769 struct ethtool_drvinfo info = {}; 1770 1771 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1772 dev->ethtool_ops->get_drvinfo(dev, &info); 1773 1774 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1775 "ip_summed=%d", 1776 info.driver, dev ? dev->features : 0L, 1777 skb->sk ? skb->sk->sk_route_caps : 0L, 1778 skb->len, skb->data_len, skb->ip_summed); 1779 1780 if (skb_header_cloned(skb) && 1781 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1782 return ERR_PTR(err); 1783 } 1784 1785 rcu_read_lock(); 1786 list_for_each_entry_rcu(ptype, 1787 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1788 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1789 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1790 err = ptype->gso_send_check(skb); 1791 segs = ERR_PTR(err); 1792 if (err || skb_gso_ok(skb, features)) 1793 break; 1794 __skb_push(skb, (skb->data - 1795 skb_network_header(skb))); 1796 } 1797 segs = ptype->gso_segment(skb, features); 1798 break; 1799 } 1800 } 1801 rcu_read_unlock(); 1802 1803 __skb_push(skb, skb->data - skb_mac_header(skb)); 1804 1805 return segs; 1806 } 1807 EXPORT_SYMBOL(skb_gso_segment); 1808 1809 /* Take action when hardware reception checksum errors are detected. */ 1810 #ifdef CONFIG_BUG 1811 void netdev_rx_csum_fault(struct net_device *dev) 1812 { 1813 if (net_ratelimit()) { 1814 printk(KERN_ERR "%s: hw csum failure.\n", 1815 dev ? dev->name : "<unknown>"); 1816 dump_stack(); 1817 } 1818 } 1819 EXPORT_SYMBOL(netdev_rx_csum_fault); 1820 #endif 1821 1822 /* Actually, we should eliminate this check as soon as we know, that: 1823 * 1. IOMMU is present and allows to map all the memory. 1824 * 2. No high memory really exists on this machine. 1825 */ 1826 1827 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1828 { 1829 #ifdef CONFIG_HIGHMEM 1830 int i; 1831 if (!(dev->features & NETIF_F_HIGHDMA)) { 1832 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1833 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1834 return 1; 1835 } 1836 1837 if (PCI_DMA_BUS_IS_PHYS) { 1838 struct device *pdev = dev->dev.parent; 1839 1840 if (!pdev) 1841 return 0; 1842 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1843 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1844 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1845 return 1; 1846 } 1847 } 1848 #endif 1849 return 0; 1850 } 1851 1852 struct dev_gso_cb { 1853 void (*destructor)(struct sk_buff *skb); 1854 }; 1855 1856 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1857 1858 static void dev_gso_skb_destructor(struct sk_buff *skb) 1859 { 1860 struct dev_gso_cb *cb; 1861 1862 do { 1863 struct sk_buff *nskb = skb->next; 1864 1865 skb->next = nskb->next; 1866 nskb->next = NULL; 1867 kfree_skb(nskb); 1868 } while (skb->next); 1869 1870 cb = DEV_GSO_CB(skb); 1871 if (cb->destructor) 1872 cb->destructor(skb); 1873 } 1874 1875 /** 1876 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1877 * @skb: buffer to segment 1878 * 1879 * This function segments the given skb and stores the list of segments 1880 * in skb->next. 1881 */ 1882 static int dev_gso_segment(struct sk_buff *skb) 1883 { 1884 struct net_device *dev = skb->dev; 1885 struct sk_buff *segs; 1886 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1887 NETIF_F_SG : 0); 1888 1889 segs = skb_gso_segment(skb, features); 1890 1891 /* Verifying header integrity only. */ 1892 if (!segs) 1893 return 0; 1894 1895 if (IS_ERR(segs)) 1896 return PTR_ERR(segs); 1897 1898 skb->next = segs; 1899 DEV_GSO_CB(skb)->destructor = skb->destructor; 1900 skb->destructor = dev_gso_skb_destructor; 1901 1902 return 0; 1903 } 1904 1905 /* 1906 * Try to orphan skb early, right before transmission by the device. 1907 * We cannot orphan skb if tx timestamp is requested, since 1908 * drivers need to call skb_tstamp_tx() to send the timestamp. 1909 */ 1910 static inline void skb_orphan_try(struct sk_buff *skb) 1911 { 1912 struct sock *sk = skb->sk; 1913 1914 if (sk && !skb_tx(skb)->flags) { 1915 /* skb_tx_hash() wont be able to get sk. 1916 * We copy sk_hash into skb->rxhash 1917 */ 1918 if (!skb->rxhash) 1919 skb->rxhash = sk->sk_hash; 1920 skb_orphan(skb); 1921 } 1922 } 1923 1924 /* 1925 * Returns true if either: 1926 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 1927 * 2. skb is fragmented and the device does not support SG, or if 1928 * at least one of fragments is in highmem and device does not 1929 * support DMA from it. 1930 */ 1931 static inline int skb_needs_linearize(struct sk_buff *skb, 1932 struct net_device *dev) 1933 { 1934 return skb_is_nonlinear(skb) && 1935 ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 1936 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 1937 illegal_highdma(dev, skb)))); 1938 } 1939 1940 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1941 struct netdev_queue *txq) 1942 { 1943 const struct net_device_ops *ops = dev->netdev_ops; 1944 int rc = NETDEV_TX_OK; 1945 1946 if (likely(!skb->next)) { 1947 if (!list_empty(&ptype_all)) 1948 dev_queue_xmit_nit(skb, dev); 1949 1950 /* 1951 * If device doesnt need skb->dst, release it right now while 1952 * its hot in this cpu cache 1953 */ 1954 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1955 skb_dst_drop(skb); 1956 1957 skb_orphan_try(skb); 1958 1959 if (netif_needs_gso(dev, skb)) { 1960 if (unlikely(dev_gso_segment(skb))) 1961 goto out_kfree_skb; 1962 if (skb->next) 1963 goto gso; 1964 } else { 1965 if (skb_needs_linearize(skb, dev) && 1966 __skb_linearize(skb)) 1967 goto out_kfree_skb; 1968 1969 /* If packet is not checksummed and device does not 1970 * support checksumming for this protocol, complete 1971 * checksumming here. 1972 */ 1973 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1974 skb_set_transport_header(skb, skb->csum_start - 1975 skb_headroom(skb)); 1976 if (!dev_can_checksum(dev, skb) && 1977 skb_checksum_help(skb)) 1978 goto out_kfree_skb; 1979 } 1980 } 1981 1982 rc = ops->ndo_start_xmit(skb, dev); 1983 trace_net_dev_xmit(skb, rc); 1984 if (rc == NETDEV_TX_OK) 1985 txq_trans_update(txq); 1986 return rc; 1987 } 1988 1989 gso: 1990 do { 1991 struct sk_buff *nskb = skb->next; 1992 1993 skb->next = nskb->next; 1994 nskb->next = NULL; 1995 1996 /* 1997 * If device doesnt need nskb->dst, release it right now while 1998 * its hot in this cpu cache 1999 */ 2000 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2001 skb_dst_drop(nskb); 2002 2003 rc = ops->ndo_start_xmit(nskb, dev); 2004 trace_net_dev_xmit(nskb, rc); 2005 if (unlikely(rc != NETDEV_TX_OK)) { 2006 if (rc & ~NETDEV_TX_MASK) 2007 goto out_kfree_gso_skb; 2008 nskb->next = skb->next; 2009 skb->next = nskb; 2010 return rc; 2011 } 2012 txq_trans_update(txq); 2013 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2014 return NETDEV_TX_BUSY; 2015 } while (skb->next); 2016 2017 out_kfree_gso_skb: 2018 if (likely(skb->next == NULL)) 2019 skb->destructor = DEV_GSO_CB(skb)->destructor; 2020 out_kfree_skb: 2021 kfree_skb(skb); 2022 return rc; 2023 } 2024 2025 static u32 hashrnd __read_mostly; 2026 2027 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 2028 { 2029 u32 hash; 2030 2031 if (skb_rx_queue_recorded(skb)) { 2032 hash = skb_get_rx_queue(skb); 2033 while (unlikely(hash >= dev->real_num_tx_queues)) 2034 hash -= dev->real_num_tx_queues; 2035 return hash; 2036 } 2037 2038 if (skb->sk && skb->sk->sk_hash) 2039 hash = skb->sk->sk_hash; 2040 else 2041 hash = (__force u16) skb->protocol ^ skb->rxhash; 2042 hash = jhash_1word(hash, hashrnd); 2043 2044 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 2045 } 2046 EXPORT_SYMBOL(skb_tx_hash); 2047 2048 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2049 { 2050 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2051 if (net_ratelimit()) { 2052 pr_warning("%s selects TX queue %d, but " 2053 "real number of TX queues is %d\n", 2054 dev->name, queue_index, dev->real_num_tx_queues); 2055 } 2056 return 0; 2057 } 2058 return queue_index; 2059 } 2060 2061 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2062 struct sk_buff *skb) 2063 { 2064 int queue_index; 2065 const struct net_device_ops *ops = dev->netdev_ops; 2066 2067 if (ops->ndo_select_queue) { 2068 queue_index = ops->ndo_select_queue(dev, skb); 2069 queue_index = dev_cap_txqueue(dev, queue_index); 2070 } else { 2071 struct sock *sk = skb->sk; 2072 queue_index = sk_tx_queue_get(sk); 2073 if (queue_index < 0) { 2074 2075 queue_index = 0; 2076 if (dev->real_num_tx_queues > 1) 2077 queue_index = skb_tx_hash(dev, skb); 2078 2079 if (sk) { 2080 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1); 2081 2082 if (dst && skb_dst(skb) == dst) 2083 sk_tx_queue_set(sk, queue_index); 2084 } 2085 } 2086 } 2087 2088 skb_set_queue_mapping(skb, queue_index); 2089 return netdev_get_tx_queue(dev, queue_index); 2090 } 2091 2092 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2093 struct net_device *dev, 2094 struct netdev_queue *txq) 2095 { 2096 spinlock_t *root_lock = qdisc_lock(q); 2097 bool contended = qdisc_is_running(q); 2098 int rc; 2099 2100 /* 2101 * Heuristic to force contended enqueues to serialize on a 2102 * separate lock before trying to get qdisc main lock. 2103 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2104 * and dequeue packets faster. 2105 */ 2106 if (unlikely(contended)) 2107 spin_lock(&q->busylock); 2108 2109 spin_lock(root_lock); 2110 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2111 kfree_skb(skb); 2112 rc = NET_XMIT_DROP; 2113 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2114 qdisc_run_begin(q)) { 2115 /* 2116 * This is a work-conserving queue; there are no old skbs 2117 * waiting to be sent out; and the qdisc is not running - 2118 * xmit the skb directly. 2119 */ 2120 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2121 skb_dst_force(skb); 2122 __qdisc_update_bstats(q, skb->len); 2123 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2124 if (unlikely(contended)) { 2125 spin_unlock(&q->busylock); 2126 contended = false; 2127 } 2128 __qdisc_run(q); 2129 } else 2130 qdisc_run_end(q); 2131 2132 rc = NET_XMIT_SUCCESS; 2133 } else { 2134 skb_dst_force(skb); 2135 rc = qdisc_enqueue_root(skb, q); 2136 if (qdisc_run_begin(q)) { 2137 if (unlikely(contended)) { 2138 spin_unlock(&q->busylock); 2139 contended = false; 2140 } 2141 __qdisc_run(q); 2142 } 2143 } 2144 spin_unlock(root_lock); 2145 if (unlikely(contended)) 2146 spin_unlock(&q->busylock); 2147 return rc; 2148 } 2149 2150 /** 2151 * dev_queue_xmit - transmit a buffer 2152 * @skb: buffer to transmit 2153 * 2154 * Queue a buffer for transmission to a network device. The caller must 2155 * have set the device and priority and built the buffer before calling 2156 * this function. The function can be called from an interrupt. 2157 * 2158 * A negative errno code is returned on a failure. A success does not 2159 * guarantee the frame will be transmitted as it may be dropped due 2160 * to congestion or traffic shaping. 2161 * 2162 * ----------------------------------------------------------------------------------- 2163 * I notice this method can also return errors from the queue disciplines, 2164 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2165 * be positive. 2166 * 2167 * Regardless of the return value, the skb is consumed, so it is currently 2168 * difficult to retry a send to this method. (You can bump the ref count 2169 * before sending to hold a reference for retry if you are careful.) 2170 * 2171 * When calling this method, interrupts MUST be enabled. This is because 2172 * the BH enable code must have IRQs enabled so that it will not deadlock. 2173 * --BLG 2174 */ 2175 int dev_queue_xmit(struct sk_buff *skb) 2176 { 2177 struct net_device *dev = skb->dev; 2178 struct netdev_queue *txq; 2179 struct Qdisc *q; 2180 int rc = -ENOMEM; 2181 2182 /* Disable soft irqs for various locks below. Also 2183 * stops preemption for RCU. 2184 */ 2185 rcu_read_lock_bh(); 2186 2187 txq = dev_pick_tx(dev, skb); 2188 q = rcu_dereference_bh(txq->qdisc); 2189 2190 #ifdef CONFIG_NET_CLS_ACT 2191 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2192 #endif 2193 trace_net_dev_queue(skb); 2194 if (q->enqueue) { 2195 rc = __dev_xmit_skb(skb, q, dev, txq); 2196 goto out; 2197 } 2198 2199 /* The device has no queue. Common case for software devices: 2200 loopback, all the sorts of tunnels... 2201 2202 Really, it is unlikely that netif_tx_lock protection is necessary 2203 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2204 counters.) 2205 However, it is possible, that they rely on protection 2206 made by us here. 2207 2208 Check this and shot the lock. It is not prone from deadlocks. 2209 Either shot noqueue qdisc, it is even simpler 8) 2210 */ 2211 if (dev->flags & IFF_UP) { 2212 int cpu = smp_processor_id(); /* ok because BHs are off */ 2213 2214 if (txq->xmit_lock_owner != cpu) { 2215 2216 HARD_TX_LOCK(dev, txq, cpu); 2217 2218 if (!netif_tx_queue_stopped(txq)) { 2219 rc = dev_hard_start_xmit(skb, dev, txq); 2220 if (dev_xmit_complete(rc)) { 2221 HARD_TX_UNLOCK(dev, txq); 2222 goto out; 2223 } 2224 } 2225 HARD_TX_UNLOCK(dev, txq); 2226 if (net_ratelimit()) 2227 printk(KERN_CRIT "Virtual device %s asks to " 2228 "queue packet!\n", dev->name); 2229 } else { 2230 /* Recursion is detected! It is possible, 2231 * unfortunately */ 2232 if (net_ratelimit()) 2233 printk(KERN_CRIT "Dead loop on virtual device " 2234 "%s, fix it urgently!\n", dev->name); 2235 } 2236 } 2237 2238 rc = -ENETDOWN; 2239 rcu_read_unlock_bh(); 2240 2241 kfree_skb(skb); 2242 return rc; 2243 out: 2244 rcu_read_unlock_bh(); 2245 return rc; 2246 } 2247 EXPORT_SYMBOL(dev_queue_xmit); 2248 2249 2250 /*======================================================================= 2251 Receiver routines 2252 =======================================================================*/ 2253 2254 int netdev_max_backlog __read_mostly = 1000; 2255 int netdev_tstamp_prequeue __read_mostly = 1; 2256 int netdev_budget __read_mostly = 300; 2257 int weight_p __read_mostly = 64; /* old backlog weight */ 2258 2259 /* Called with irq disabled */ 2260 static inline void ____napi_schedule(struct softnet_data *sd, 2261 struct napi_struct *napi) 2262 { 2263 list_add_tail(&napi->poll_list, &sd->poll_list); 2264 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2265 } 2266 2267 #ifdef CONFIG_RPS 2268 2269 /* One global table that all flow-based protocols share. */ 2270 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly; 2271 EXPORT_SYMBOL(rps_sock_flow_table); 2272 2273 /* 2274 * get_rps_cpu is called from netif_receive_skb and returns the target 2275 * CPU from the RPS map of the receiving queue for a given skb. 2276 * rcu_read_lock must be held on entry. 2277 */ 2278 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2279 struct rps_dev_flow **rflowp) 2280 { 2281 struct ipv6hdr *ip6; 2282 struct iphdr *ip; 2283 struct netdev_rx_queue *rxqueue; 2284 struct rps_map *map; 2285 struct rps_dev_flow_table *flow_table; 2286 struct rps_sock_flow_table *sock_flow_table; 2287 int cpu = -1; 2288 u8 ip_proto; 2289 u16 tcpu; 2290 u32 addr1, addr2, ihl; 2291 union { 2292 u32 v32; 2293 u16 v16[2]; 2294 } ports; 2295 2296 if (skb_rx_queue_recorded(skb)) { 2297 u16 index = skb_get_rx_queue(skb); 2298 if (unlikely(index >= dev->num_rx_queues)) { 2299 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet " 2300 "on queue %u, but number of RX queues is %u\n", 2301 dev->name, index, dev->num_rx_queues); 2302 goto done; 2303 } 2304 rxqueue = dev->_rx + index; 2305 } else 2306 rxqueue = dev->_rx; 2307 2308 if (!rxqueue->rps_map && !rxqueue->rps_flow_table) 2309 goto done; 2310 2311 if (skb->rxhash) 2312 goto got_hash; /* Skip hash computation on packet header */ 2313 2314 switch (skb->protocol) { 2315 case __constant_htons(ETH_P_IP): 2316 if (!pskb_may_pull(skb, sizeof(*ip))) 2317 goto done; 2318 2319 ip = (struct iphdr *) skb->data; 2320 ip_proto = ip->protocol; 2321 addr1 = (__force u32) ip->saddr; 2322 addr2 = (__force u32) ip->daddr; 2323 ihl = ip->ihl; 2324 break; 2325 case __constant_htons(ETH_P_IPV6): 2326 if (!pskb_may_pull(skb, sizeof(*ip6))) 2327 goto done; 2328 2329 ip6 = (struct ipv6hdr *) skb->data; 2330 ip_proto = ip6->nexthdr; 2331 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2332 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2333 ihl = (40 >> 2); 2334 break; 2335 default: 2336 goto done; 2337 } 2338 switch (ip_proto) { 2339 case IPPROTO_TCP: 2340 case IPPROTO_UDP: 2341 case IPPROTO_DCCP: 2342 case IPPROTO_ESP: 2343 case IPPROTO_AH: 2344 case IPPROTO_SCTP: 2345 case IPPROTO_UDPLITE: 2346 if (pskb_may_pull(skb, (ihl * 4) + 4)) { 2347 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4)); 2348 if (ports.v16[1] < ports.v16[0]) 2349 swap(ports.v16[0], ports.v16[1]); 2350 break; 2351 } 2352 default: 2353 ports.v32 = 0; 2354 break; 2355 } 2356 2357 /* get a consistent hash (same value on both flow directions) */ 2358 if (addr2 < addr1) 2359 swap(addr1, addr2); 2360 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2361 if (!skb->rxhash) 2362 skb->rxhash = 1; 2363 2364 got_hash: 2365 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2366 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2367 if (flow_table && sock_flow_table) { 2368 u16 next_cpu; 2369 struct rps_dev_flow *rflow; 2370 2371 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2372 tcpu = rflow->cpu; 2373 2374 next_cpu = sock_flow_table->ents[skb->rxhash & 2375 sock_flow_table->mask]; 2376 2377 /* 2378 * If the desired CPU (where last recvmsg was done) is 2379 * different from current CPU (one in the rx-queue flow 2380 * table entry), switch if one of the following holds: 2381 * - Current CPU is unset (equal to RPS_NO_CPU). 2382 * - Current CPU is offline. 2383 * - The current CPU's queue tail has advanced beyond the 2384 * last packet that was enqueued using this table entry. 2385 * This guarantees that all previous packets for the flow 2386 * have been dequeued, thus preserving in order delivery. 2387 */ 2388 if (unlikely(tcpu != next_cpu) && 2389 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2390 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2391 rflow->last_qtail)) >= 0)) { 2392 tcpu = rflow->cpu = next_cpu; 2393 if (tcpu != RPS_NO_CPU) 2394 rflow->last_qtail = per_cpu(softnet_data, 2395 tcpu).input_queue_head; 2396 } 2397 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2398 *rflowp = rflow; 2399 cpu = tcpu; 2400 goto done; 2401 } 2402 } 2403 2404 map = rcu_dereference(rxqueue->rps_map); 2405 if (map) { 2406 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2407 2408 if (cpu_online(tcpu)) { 2409 cpu = tcpu; 2410 goto done; 2411 } 2412 } 2413 2414 done: 2415 return cpu; 2416 } 2417 2418 /* Called from hardirq (IPI) context */ 2419 static void rps_trigger_softirq(void *data) 2420 { 2421 struct softnet_data *sd = data; 2422 2423 ____napi_schedule(sd, &sd->backlog); 2424 sd->received_rps++; 2425 } 2426 2427 #endif /* CONFIG_RPS */ 2428 2429 /* 2430 * Check if this softnet_data structure is another cpu one 2431 * If yes, queue it to our IPI list and return 1 2432 * If no, return 0 2433 */ 2434 static int rps_ipi_queued(struct softnet_data *sd) 2435 { 2436 #ifdef CONFIG_RPS 2437 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2438 2439 if (sd != mysd) { 2440 sd->rps_ipi_next = mysd->rps_ipi_list; 2441 mysd->rps_ipi_list = sd; 2442 2443 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2444 return 1; 2445 } 2446 #endif /* CONFIG_RPS */ 2447 return 0; 2448 } 2449 2450 /* 2451 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2452 * queue (may be a remote CPU queue). 2453 */ 2454 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2455 unsigned int *qtail) 2456 { 2457 struct softnet_data *sd; 2458 unsigned long flags; 2459 2460 sd = &per_cpu(softnet_data, cpu); 2461 2462 local_irq_save(flags); 2463 2464 rps_lock(sd); 2465 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2466 if (skb_queue_len(&sd->input_pkt_queue)) { 2467 enqueue: 2468 __skb_queue_tail(&sd->input_pkt_queue, skb); 2469 input_queue_tail_incr_save(sd, qtail); 2470 rps_unlock(sd); 2471 local_irq_restore(flags); 2472 return NET_RX_SUCCESS; 2473 } 2474 2475 /* Schedule NAPI for backlog device 2476 * We can use non atomic operation since we own the queue lock 2477 */ 2478 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2479 if (!rps_ipi_queued(sd)) 2480 ____napi_schedule(sd, &sd->backlog); 2481 } 2482 goto enqueue; 2483 } 2484 2485 sd->dropped++; 2486 rps_unlock(sd); 2487 2488 local_irq_restore(flags); 2489 2490 kfree_skb(skb); 2491 return NET_RX_DROP; 2492 } 2493 2494 /** 2495 * netif_rx - post buffer to the network code 2496 * @skb: buffer to post 2497 * 2498 * This function receives a packet from a device driver and queues it for 2499 * the upper (protocol) levels to process. It always succeeds. The buffer 2500 * may be dropped during processing for congestion control or by the 2501 * protocol layers. 2502 * 2503 * return values: 2504 * NET_RX_SUCCESS (no congestion) 2505 * NET_RX_DROP (packet was dropped) 2506 * 2507 */ 2508 2509 int netif_rx(struct sk_buff *skb) 2510 { 2511 int ret; 2512 2513 /* if netpoll wants it, pretend we never saw it */ 2514 if (netpoll_rx(skb)) 2515 return NET_RX_DROP; 2516 2517 if (netdev_tstamp_prequeue) 2518 net_timestamp_check(skb); 2519 2520 trace_netif_rx(skb); 2521 #ifdef CONFIG_RPS 2522 { 2523 struct rps_dev_flow voidflow, *rflow = &voidflow; 2524 int cpu; 2525 2526 preempt_disable(); 2527 rcu_read_lock(); 2528 2529 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2530 if (cpu < 0) 2531 cpu = smp_processor_id(); 2532 2533 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2534 2535 rcu_read_unlock(); 2536 preempt_enable(); 2537 } 2538 #else 2539 { 2540 unsigned int qtail; 2541 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2542 put_cpu(); 2543 } 2544 #endif 2545 return ret; 2546 } 2547 EXPORT_SYMBOL(netif_rx); 2548 2549 int netif_rx_ni(struct sk_buff *skb) 2550 { 2551 int err; 2552 2553 preempt_disable(); 2554 err = netif_rx(skb); 2555 if (local_softirq_pending()) 2556 do_softirq(); 2557 preempt_enable(); 2558 2559 return err; 2560 } 2561 EXPORT_SYMBOL(netif_rx_ni); 2562 2563 static void net_tx_action(struct softirq_action *h) 2564 { 2565 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2566 2567 if (sd->completion_queue) { 2568 struct sk_buff *clist; 2569 2570 local_irq_disable(); 2571 clist = sd->completion_queue; 2572 sd->completion_queue = NULL; 2573 local_irq_enable(); 2574 2575 while (clist) { 2576 struct sk_buff *skb = clist; 2577 clist = clist->next; 2578 2579 WARN_ON(atomic_read(&skb->users)); 2580 trace_kfree_skb(skb, net_tx_action); 2581 __kfree_skb(skb); 2582 } 2583 } 2584 2585 if (sd->output_queue) { 2586 struct Qdisc *head; 2587 2588 local_irq_disable(); 2589 head = sd->output_queue; 2590 sd->output_queue = NULL; 2591 sd->output_queue_tailp = &sd->output_queue; 2592 local_irq_enable(); 2593 2594 while (head) { 2595 struct Qdisc *q = head; 2596 spinlock_t *root_lock; 2597 2598 head = head->next_sched; 2599 2600 root_lock = qdisc_lock(q); 2601 if (spin_trylock(root_lock)) { 2602 smp_mb__before_clear_bit(); 2603 clear_bit(__QDISC_STATE_SCHED, 2604 &q->state); 2605 qdisc_run(q); 2606 spin_unlock(root_lock); 2607 } else { 2608 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2609 &q->state)) { 2610 __netif_reschedule(q); 2611 } else { 2612 smp_mb__before_clear_bit(); 2613 clear_bit(__QDISC_STATE_SCHED, 2614 &q->state); 2615 } 2616 } 2617 } 2618 } 2619 } 2620 2621 static inline int deliver_skb(struct sk_buff *skb, 2622 struct packet_type *pt_prev, 2623 struct net_device *orig_dev) 2624 { 2625 atomic_inc(&skb->users); 2626 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2627 } 2628 2629 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2630 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2631 /* This hook is defined here for ATM LANE */ 2632 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2633 unsigned char *addr) __read_mostly; 2634 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2635 #endif 2636 2637 #ifdef CONFIG_NET_CLS_ACT 2638 /* TODO: Maybe we should just force sch_ingress to be compiled in 2639 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2640 * a compare and 2 stores extra right now if we dont have it on 2641 * but have CONFIG_NET_CLS_ACT 2642 * NOTE: This doesnt stop any functionality; if you dont have 2643 * the ingress scheduler, you just cant add policies on ingress. 2644 * 2645 */ 2646 static int ing_filter(struct sk_buff *skb) 2647 { 2648 struct net_device *dev = skb->dev; 2649 u32 ttl = G_TC_RTTL(skb->tc_verd); 2650 struct netdev_queue *rxq; 2651 int result = TC_ACT_OK; 2652 struct Qdisc *q; 2653 2654 if (unlikely(MAX_RED_LOOP < ttl++)) { 2655 if (net_ratelimit()) 2656 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2657 skb->skb_iif, dev->ifindex); 2658 return TC_ACT_SHOT; 2659 } 2660 2661 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2662 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2663 2664 rxq = &dev->rx_queue; 2665 2666 q = rxq->qdisc; 2667 if (q != &noop_qdisc) { 2668 spin_lock(qdisc_lock(q)); 2669 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2670 result = qdisc_enqueue_root(skb, q); 2671 spin_unlock(qdisc_lock(q)); 2672 } 2673 2674 return result; 2675 } 2676 2677 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2678 struct packet_type **pt_prev, 2679 int *ret, struct net_device *orig_dev) 2680 { 2681 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2682 goto out; 2683 2684 if (*pt_prev) { 2685 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2686 *pt_prev = NULL; 2687 } 2688 2689 switch (ing_filter(skb)) { 2690 case TC_ACT_SHOT: 2691 case TC_ACT_STOLEN: 2692 kfree_skb(skb); 2693 return NULL; 2694 } 2695 2696 out: 2697 skb->tc_verd = 0; 2698 return skb; 2699 } 2700 #endif 2701 2702 /* 2703 * netif_nit_deliver - deliver received packets to network taps 2704 * @skb: buffer 2705 * 2706 * This function is used to deliver incoming packets to network 2707 * taps. It should be used when the normal netif_receive_skb path 2708 * is bypassed, for example because of VLAN acceleration. 2709 */ 2710 void netif_nit_deliver(struct sk_buff *skb) 2711 { 2712 struct packet_type *ptype; 2713 2714 if (list_empty(&ptype_all)) 2715 return; 2716 2717 skb_reset_network_header(skb); 2718 skb_reset_transport_header(skb); 2719 skb->mac_len = skb->network_header - skb->mac_header; 2720 2721 rcu_read_lock(); 2722 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2723 if (!ptype->dev || ptype->dev == skb->dev) 2724 deliver_skb(skb, ptype, skb->dev); 2725 } 2726 rcu_read_unlock(); 2727 } 2728 2729 /** 2730 * netdev_rx_handler_register - register receive handler 2731 * @dev: device to register a handler for 2732 * @rx_handler: receive handler to register 2733 * @rx_handler_data: data pointer that is used by rx handler 2734 * 2735 * Register a receive hander for a device. This handler will then be 2736 * called from __netif_receive_skb. A negative errno code is returned 2737 * on a failure. 2738 * 2739 * The caller must hold the rtnl_mutex. 2740 */ 2741 int netdev_rx_handler_register(struct net_device *dev, 2742 rx_handler_func_t *rx_handler, 2743 void *rx_handler_data) 2744 { 2745 ASSERT_RTNL(); 2746 2747 if (dev->rx_handler) 2748 return -EBUSY; 2749 2750 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 2751 rcu_assign_pointer(dev->rx_handler, rx_handler); 2752 2753 return 0; 2754 } 2755 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 2756 2757 /** 2758 * netdev_rx_handler_unregister - unregister receive handler 2759 * @dev: device to unregister a handler from 2760 * 2761 * Unregister a receive hander from a device. 2762 * 2763 * The caller must hold the rtnl_mutex. 2764 */ 2765 void netdev_rx_handler_unregister(struct net_device *dev) 2766 { 2767 2768 ASSERT_RTNL(); 2769 rcu_assign_pointer(dev->rx_handler, NULL); 2770 rcu_assign_pointer(dev->rx_handler_data, NULL); 2771 } 2772 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 2773 2774 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2775 struct net_device *master) 2776 { 2777 if (skb->pkt_type == PACKET_HOST) { 2778 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2779 2780 memcpy(dest, master->dev_addr, ETH_ALEN); 2781 } 2782 } 2783 2784 /* On bonding slaves other than the currently active slave, suppress 2785 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2786 * ARP on active-backup slaves with arp_validate enabled. 2787 */ 2788 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2789 { 2790 struct net_device *dev = skb->dev; 2791 2792 if (master->priv_flags & IFF_MASTER_ARPMON) 2793 dev->last_rx = jiffies; 2794 2795 if ((master->priv_flags & IFF_MASTER_ALB) && 2796 (master->priv_flags & IFF_BRIDGE_PORT)) { 2797 /* Do address unmangle. The local destination address 2798 * will be always the one master has. Provides the right 2799 * functionality in a bridge. 2800 */ 2801 skb_bond_set_mac_by_master(skb, master); 2802 } 2803 2804 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2805 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2806 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2807 return 0; 2808 2809 if (master->priv_flags & IFF_MASTER_ALB) { 2810 if (skb->pkt_type != PACKET_BROADCAST && 2811 skb->pkt_type != PACKET_MULTICAST) 2812 return 0; 2813 } 2814 if (master->priv_flags & IFF_MASTER_8023AD && 2815 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2816 return 0; 2817 2818 return 1; 2819 } 2820 return 0; 2821 } 2822 EXPORT_SYMBOL(__skb_bond_should_drop); 2823 2824 static int __netif_receive_skb(struct sk_buff *skb) 2825 { 2826 struct packet_type *ptype, *pt_prev; 2827 rx_handler_func_t *rx_handler; 2828 struct net_device *orig_dev; 2829 struct net_device *master; 2830 struct net_device *null_or_orig; 2831 struct net_device *orig_or_bond; 2832 int ret = NET_RX_DROP; 2833 __be16 type; 2834 2835 if (!netdev_tstamp_prequeue) 2836 net_timestamp_check(skb); 2837 2838 trace_netif_receive_skb(skb); 2839 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2840 return NET_RX_SUCCESS; 2841 2842 /* if we've gotten here through NAPI, check netpoll */ 2843 if (netpoll_receive_skb(skb)) 2844 return NET_RX_DROP; 2845 2846 if (!skb->skb_iif) 2847 skb->skb_iif = skb->dev->ifindex; 2848 2849 /* 2850 * bonding note: skbs received on inactive slaves should only 2851 * be delivered to pkt handlers that are exact matches. Also 2852 * the deliver_no_wcard flag will be set. If packet handlers 2853 * are sensitive to duplicate packets these skbs will need to 2854 * be dropped at the handler. The vlan accel path may have 2855 * already set the deliver_no_wcard flag. 2856 */ 2857 null_or_orig = NULL; 2858 orig_dev = skb->dev; 2859 master = ACCESS_ONCE(orig_dev->master); 2860 if (skb->deliver_no_wcard) 2861 null_or_orig = orig_dev; 2862 else if (master) { 2863 if (skb_bond_should_drop(skb, master)) { 2864 skb->deliver_no_wcard = 1; 2865 null_or_orig = orig_dev; /* deliver only exact match */ 2866 } else 2867 skb->dev = master; 2868 } 2869 2870 __this_cpu_inc(softnet_data.processed); 2871 skb_reset_network_header(skb); 2872 skb_reset_transport_header(skb); 2873 skb->mac_len = skb->network_header - skb->mac_header; 2874 2875 pt_prev = NULL; 2876 2877 rcu_read_lock(); 2878 2879 #ifdef CONFIG_NET_CLS_ACT 2880 if (skb->tc_verd & TC_NCLS) { 2881 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2882 goto ncls; 2883 } 2884 #endif 2885 2886 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2887 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2888 ptype->dev == orig_dev) { 2889 if (pt_prev) 2890 ret = deliver_skb(skb, pt_prev, orig_dev); 2891 pt_prev = ptype; 2892 } 2893 } 2894 2895 #ifdef CONFIG_NET_CLS_ACT 2896 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2897 if (!skb) 2898 goto out; 2899 ncls: 2900 #endif 2901 2902 /* Handle special case of bridge or macvlan */ 2903 rx_handler = rcu_dereference(skb->dev->rx_handler); 2904 if (rx_handler) { 2905 if (pt_prev) { 2906 ret = deliver_skb(skb, pt_prev, orig_dev); 2907 pt_prev = NULL; 2908 } 2909 skb = rx_handler(skb); 2910 if (!skb) 2911 goto out; 2912 } 2913 2914 /* 2915 * Make sure frames received on VLAN interfaces stacked on 2916 * bonding interfaces still make their way to any base bonding 2917 * device that may have registered for a specific ptype. The 2918 * handler may have to adjust skb->dev and orig_dev. 2919 */ 2920 orig_or_bond = orig_dev; 2921 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2922 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2923 orig_or_bond = vlan_dev_real_dev(skb->dev); 2924 } 2925 2926 type = skb->protocol; 2927 list_for_each_entry_rcu(ptype, 2928 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2929 if (ptype->type == type && (ptype->dev == null_or_orig || 2930 ptype->dev == skb->dev || ptype->dev == orig_dev || 2931 ptype->dev == orig_or_bond)) { 2932 if (pt_prev) 2933 ret = deliver_skb(skb, pt_prev, orig_dev); 2934 pt_prev = ptype; 2935 } 2936 } 2937 2938 if (pt_prev) { 2939 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2940 } else { 2941 kfree_skb(skb); 2942 /* Jamal, now you will not able to escape explaining 2943 * me how you were going to use this. :-) 2944 */ 2945 ret = NET_RX_DROP; 2946 } 2947 2948 out: 2949 rcu_read_unlock(); 2950 return ret; 2951 } 2952 2953 /** 2954 * netif_receive_skb - process receive buffer from network 2955 * @skb: buffer to process 2956 * 2957 * netif_receive_skb() is the main receive data processing function. 2958 * It always succeeds. The buffer may be dropped during processing 2959 * for congestion control or by the protocol layers. 2960 * 2961 * This function may only be called from softirq context and interrupts 2962 * should be enabled. 2963 * 2964 * Return values (usually ignored): 2965 * NET_RX_SUCCESS: no congestion 2966 * NET_RX_DROP: packet was dropped 2967 */ 2968 int netif_receive_skb(struct sk_buff *skb) 2969 { 2970 if (netdev_tstamp_prequeue) 2971 net_timestamp_check(skb); 2972 2973 if (skb_defer_rx_timestamp(skb)) 2974 return NET_RX_SUCCESS; 2975 2976 #ifdef CONFIG_RPS 2977 { 2978 struct rps_dev_flow voidflow, *rflow = &voidflow; 2979 int cpu, ret; 2980 2981 rcu_read_lock(); 2982 2983 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2984 2985 if (cpu >= 0) { 2986 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2987 rcu_read_unlock(); 2988 } else { 2989 rcu_read_unlock(); 2990 ret = __netif_receive_skb(skb); 2991 } 2992 2993 return ret; 2994 } 2995 #else 2996 return __netif_receive_skb(skb); 2997 #endif 2998 } 2999 EXPORT_SYMBOL(netif_receive_skb); 3000 3001 /* Network device is going away, flush any packets still pending 3002 * Called with irqs disabled. 3003 */ 3004 static void flush_backlog(void *arg) 3005 { 3006 struct net_device *dev = arg; 3007 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3008 struct sk_buff *skb, *tmp; 3009 3010 rps_lock(sd); 3011 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3012 if (skb->dev == dev) { 3013 __skb_unlink(skb, &sd->input_pkt_queue); 3014 kfree_skb(skb); 3015 input_queue_head_incr(sd); 3016 } 3017 } 3018 rps_unlock(sd); 3019 3020 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3021 if (skb->dev == dev) { 3022 __skb_unlink(skb, &sd->process_queue); 3023 kfree_skb(skb); 3024 input_queue_head_incr(sd); 3025 } 3026 } 3027 } 3028 3029 static int napi_gro_complete(struct sk_buff *skb) 3030 { 3031 struct packet_type *ptype; 3032 __be16 type = skb->protocol; 3033 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3034 int err = -ENOENT; 3035 3036 if (NAPI_GRO_CB(skb)->count == 1) { 3037 skb_shinfo(skb)->gso_size = 0; 3038 goto out; 3039 } 3040 3041 rcu_read_lock(); 3042 list_for_each_entry_rcu(ptype, head, list) { 3043 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3044 continue; 3045 3046 err = ptype->gro_complete(skb); 3047 break; 3048 } 3049 rcu_read_unlock(); 3050 3051 if (err) { 3052 WARN_ON(&ptype->list == head); 3053 kfree_skb(skb); 3054 return NET_RX_SUCCESS; 3055 } 3056 3057 out: 3058 return netif_receive_skb(skb); 3059 } 3060 3061 static void napi_gro_flush(struct napi_struct *napi) 3062 { 3063 struct sk_buff *skb, *next; 3064 3065 for (skb = napi->gro_list; skb; skb = next) { 3066 next = skb->next; 3067 skb->next = NULL; 3068 napi_gro_complete(skb); 3069 } 3070 3071 napi->gro_count = 0; 3072 napi->gro_list = NULL; 3073 } 3074 3075 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3076 { 3077 struct sk_buff **pp = NULL; 3078 struct packet_type *ptype; 3079 __be16 type = skb->protocol; 3080 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3081 int same_flow; 3082 int mac_len; 3083 enum gro_result ret; 3084 3085 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3086 goto normal; 3087 3088 if (skb_is_gso(skb) || skb_has_frags(skb)) 3089 goto normal; 3090 3091 rcu_read_lock(); 3092 list_for_each_entry_rcu(ptype, head, list) { 3093 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3094 continue; 3095 3096 skb_set_network_header(skb, skb_gro_offset(skb)); 3097 mac_len = skb->network_header - skb->mac_header; 3098 skb->mac_len = mac_len; 3099 NAPI_GRO_CB(skb)->same_flow = 0; 3100 NAPI_GRO_CB(skb)->flush = 0; 3101 NAPI_GRO_CB(skb)->free = 0; 3102 3103 pp = ptype->gro_receive(&napi->gro_list, skb); 3104 break; 3105 } 3106 rcu_read_unlock(); 3107 3108 if (&ptype->list == head) 3109 goto normal; 3110 3111 same_flow = NAPI_GRO_CB(skb)->same_flow; 3112 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3113 3114 if (pp) { 3115 struct sk_buff *nskb = *pp; 3116 3117 *pp = nskb->next; 3118 nskb->next = NULL; 3119 napi_gro_complete(nskb); 3120 napi->gro_count--; 3121 } 3122 3123 if (same_flow) 3124 goto ok; 3125 3126 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3127 goto normal; 3128 3129 napi->gro_count++; 3130 NAPI_GRO_CB(skb)->count = 1; 3131 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3132 skb->next = napi->gro_list; 3133 napi->gro_list = skb; 3134 ret = GRO_HELD; 3135 3136 pull: 3137 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3138 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3139 3140 BUG_ON(skb->end - skb->tail < grow); 3141 3142 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3143 3144 skb->tail += grow; 3145 skb->data_len -= grow; 3146 3147 skb_shinfo(skb)->frags[0].page_offset += grow; 3148 skb_shinfo(skb)->frags[0].size -= grow; 3149 3150 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3151 put_page(skb_shinfo(skb)->frags[0].page); 3152 memmove(skb_shinfo(skb)->frags, 3153 skb_shinfo(skb)->frags + 1, 3154 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3155 } 3156 } 3157 3158 ok: 3159 return ret; 3160 3161 normal: 3162 ret = GRO_NORMAL; 3163 goto pull; 3164 } 3165 EXPORT_SYMBOL(dev_gro_receive); 3166 3167 static gro_result_t 3168 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3169 { 3170 struct sk_buff *p; 3171 3172 for (p = napi->gro_list; p; p = p->next) { 3173 NAPI_GRO_CB(p)->same_flow = 3174 (p->dev == skb->dev) && 3175 !compare_ether_header(skb_mac_header(p), 3176 skb_gro_mac_header(skb)); 3177 NAPI_GRO_CB(p)->flush = 0; 3178 } 3179 3180 return dev_gro_receive(napi, skb); 3181 } 3182 3183 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3184 { 3185 switch (ret) { 3186 case GRO_NORMAL: 3187 if (netif_receive_skb(skb)) 3188 ret = GRO_DROP; 3189 break; 3190 3191 case GRO_DROP: 3192 case GRO_MERGED_FREE: 3193 kfree_skb(skb); 3194 break; 3195 3196 case GRO_HELD: 3197 case GRO_MERGED: 3198 break; 3199 } 3200 3201 return ret; 3202 } 3203 EXPORT_SYMBOL(napi_skb_finish); 3204 3205 void skb_gro_reset_offset(struct sk_buff *skb) 3206 { 3207 NAPI_GRO_CB(skb)->data_offset = 0; 3208 NAPI_GRO_CB(skb)->frag0 = NULL; 3209 NAPI_GRO_CB(skb)->frag0_len = 0; 3210 3211 if (skb->mac_header == skb->tail && 3212 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3213 NAPI_GRO_CB(skb)->frag0 = 3214 page_address(skb_shinfo(skb)->frags[0].page) + 3215 skb_shinfo(skb)->frags[0].page_offset; 3216 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3217 } 3218 } 3219 EXPORT_SYMBOL(skb_gro_reset_offset); 3220 3221 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3222 { 3223 skb_gro_reset_offset(skb); 3224 3225 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3226 } 3227 EXPORT_SYMBOL(napi_gro_receive); 3228 3229 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3230 { 3231 __skb_pull(skb, skb_headlen(skb)); 3232 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3233 3234 napi->skb = skb; 3235 } 3236 EXPORT_SYMBOL(napi_reuse_skb); 3237 3238 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3239 { 3240 struct sk_buff *skb = napi->skb; 3241 3242 if (!skb) { 3243 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3244 if (skb) 3245 napi->skb = skb; 3246 } 3247 return skb; 3248 } 3249 EXPORT_SYMBOL(napi_get_frags); 3250 3251 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3252 gro_result_t ret) 3253 { 3254 switch (ret) { 3255 case GRO_NORMAL: 3256 case GRO_HELD: 3257 skb->protocol = eth_type_trans(skb, skb->dev); 3258 3259 if (ret == GRO_HELD) 3260 skb_gro_pull(skb, -ETH_HLEN); 3261 else if (netif_receive_skb(skb)) 3262 ret = GRO_DROP; 3263 break; 3264 3265 case GRO_DROP: 3266 case GRO_MERGED_FREE: 3267 napi_reuse_skb(napi, skb); 3268 break; 3269 3270 case GRO_MERGED: 3271 break; 3272 } 3273 3274 return ret; 3275 } 3276 EXPORT_SYMBOL(napi_frags_finish); 3277 3278 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3279 { 3280 struct sk_buff *skb = napi->skb; 3281 struct ethhdr *eth; 3282 unsigned int hlen; 3283 unsigned int off; 3284 3285 napi->skb = NULL; 3286 3287 skb_reset_mac_header(skb); 3288 skb_gro_reset_offset(skb); 3289 3290 off = skb_gro_offset(skb); 3291 hlen = off + sizeof(*eth); 3292 eth = skb_gro_header_fast(skb, off); 3293 if (skb_gro_header_hard(skb, hlen)) { 3294 eth = skb_gro_header_slow(skb, hlen, off); 3295 if (unlikely(!eth)) { 3296 napi_reuse_skb(napi, skb); 3297 skb = NULL; 3298 goto out; 3299 } 3300 } 3301 3302 skb_gro_pull(skb, sizeof(*eth)); 3303 3304 /* 3305 * This works because the only protocols we care about don't require 3306 * special handling. We'll fix it up properly at the end. 3307 */ 3308 skb->protocol = eth->h_proto; 3309 3310 out: 3311 return skb; 3312 } 3313 EXPORT_SYMBOL(napi_frags_skb); 3314 3315 gro_result_t napi_gro_frags(struct napi_struct *napi) 3316 { 3317 struct sk_buff *skb = napi_frags_skb(napi); 3318 3319 if (!skb) 3320 return GRO_DROP; 3321 3322 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3323 } 3324 EXPORT_SYMBOL(napi_gro_frags); 3325 3326 /* 3327 * net_rps_action sends any pending IPI's for rps. 3328 * Note: called with local irq disabled, but exits with local irq enabled. 3329 */ 3330 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3331 { 3332 #ifdef CONFIG_RPS 3333 struct softnet_data *remsd = sd->rps_ipi_list; 3334 3335 if (remsd) { 3336 sd->rps_ipi_list = NULL; 3337 3338 local_irq_enable(); 3339 3340 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3341 while (remsd) { 3342 struct softnet_data *next = remsd->rps_ipi_next; 3343 3344 if (cpu_online(remsd->cpu)) 3345 __smp_call_function_single(remsd->cpu, 3346 &remsd->csd, 0); 3347 remsd = next; 3348 } 3349 } else 3350 #endif 3351 local_irq_enable(); 3352 } 3353 3354 static int process_backlog(struct napi_struct *napi, int quota) 3355 { 3356 int work = 0; 3357 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3358 3359 #ifdef CONFIG_RPS 3360 /* Check if we have pending ipi, its better to send them now, 3361 * not waiting net_rx_action() end. 3362 */ 3363 if (sd->rps_ipi_list) { 3364 local_irq_disable(); 3365 net_rps_action_and_irq_enable(sd); 3366 } 3367 #endif 3368 napi->weight = weight_p; 3369 local_irq_disable(); 3370 while (work < quota) { 3371 struct sk_buff *skb; 3372 unsigned int qlen; 3373 3374 while ((skb = __skb_dequeue(&sd->process_queue))) { 3375 local_irq_enable(); 3376 __netif_receive_skb(skb); 3377 local_irq_disable(); 3378 input_queue_head_incr(sd); 3379 if (++work >= quota) { 3380 local_irq_enable(); 3381 return work; 3382 } 3383 } 3384 3385 rps_lock(sd); 3386 qlen = skb_queue_len(&sd->input_pkt_queue); 3387 if (qlen) 3388 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3389 &sd->process_queue); 3390 3391 if (qlen < quota - work) { 3392 /* 3393 * Inline a custom version of __napi_complete(). 3394 * only current cpu owns and manipulates this napi, 3395 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3396 * we can use a plain write instead of clear_bit(), 3397 * and we dont need an smp_mb() memory barrier. 3398 */ 3399 list_del(&napi->poll_list); 3400 napi->state = 0; 3401 3402 quota = work + qlen; 3403 } 3404 rps_unlock(sd); 3405 } 3406 local_irq_enable(); 3407 3408 return work; 3409 } 3410 3411 /** 3412 * __napi_schedule - schedule for receive 3413 * @n: entry to schedule 3414 * 3415 * The entry's receive function will be scheduled to run 3416 */ 3417 void __napi_schedule(struct napi_struct *n) 3418 { 3419 unsigned long flags; 3420 3421 local_irq_save(flags); 3422 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3423 local_irq_restore(flags); 3424 } 3425 EXPORT_SYMBOL(__napi_schedule); 3426 3427 void __napi_complete(struct napi_struct *n) 3428 { 3429 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3430 BUG_ON(n->gro_list); 3431 3432 list_del(&n->poll_list); 3433 smp_mb__before_clear_bit(); 3434 clear_bit(NAPI_STATE_SCHED, &n->state); 3435 } 3436 EXPORT_SYMBOL(__napi_complete); 3437 3438 void napi_complete(struct napi_struct *n) 3439 { 3440 unsigned long flags; 3441 3442 /* 3443 * don't let napi dequeue from the cpu poll list 3444 * just in case its running on a different cpu 3445 */ 3446 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3447 return; 3448 3449 napi_gro_flush(n); 3450 local_irq_save(flags); 3451 __napi_complete(n); 3452 local_irq_restore(flags); 3453 } 3454 EXPORT_SYMBOL(napi_complete); 3455 3456 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3457 int (*poll)(struct napi_struct *, int), int weight) 3458 { 3459 INIT_LIST_HEAD(&napi->poll_list); 3460 napi->gro_count = 0; 3461 napi->gro_list = NULL; 3462 napi->skb = NULL; 3463 napi->poll = poll; 3464 napi->weight = weight; 3465 list_add(&napi->dev_list, &dev->napi_list); 3466 napi->dev = dev; 3467 #ifdef CONFIG_NETPOLL 3468 spin_lock_init(&napi->poll_lock); 3469 napi->poll_owner = -1; 3470 #endif 3471 set_bit(NAPI_STATE_SCHED, &napi->state); 3472 } 3473 EXPORT_SYMBOL(netif_napi_add); 3474 3475 void netif_napi_del(struct napi_struct *napi) 3476 { 3477 struct sk_buff *skb, *next; 3478 3479 list_del_init(&napi->dev_list); 3480 napi_free_frags(napi); 3481 3482 for (skb = napi->gro_list; skb; skb = next) { 3483 next = skb->next; 3484 skb->next = NULL; 3485 kfree_skb(skb); 3486 } 3487 3488 napi->gro_list = NULL; 3489 napi->gro_count = 0; 3490 } 3491 EXPORT_SYMBOL(netif_napi_del); 3492 3493 static void net_rx_action(struct softirq_action *h) 3494 { 3495 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3496 unsigned long time_limit = jiffies + 2; 3497 int budget = netdev_budget; 3498 void *have; 3499 3500 local_irq_disable(); 3501 3502 while (!list_empty(&sd->poll_list)) { 3503 struct napi_struct *n; 3504 int work, weight; 3505 3506 /* If softirq window is exhuasted then punt. 3507 * Allow this to run for 2 jiffies since which will allow 3508 * an average latency of 1.5/HZ. 3509 */ 3510 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3511 goto softnet_break; 3512 3513 local_irq_enable(); 3514 3515 /* Even though interrupts have been re-enabled, this 3516 * access is safe because interrupts can only add new 3517 * entries to the tail of this list, and only ->poll() 3518 * calls can remove this head entry from the list. 3519 */ 3520 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3521 3522 have = netpoll_poll_lock(n); 3523 3524 weight = n->weight; 3525 3526 /* This NAPI_STATE_SCHED test is for avoiding a race 3527 * with netpoll's poll_napi(). Only the entity which 3528 * obtains the lock and sees NAPI_STATE_SCHED set will 3529 * actually make the ->poll() call. Therefore we avoid 3530 * accidently calling ->poll() when NAPI is not scheduled. 3531 */ 3532 work = 0; 3533 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3534 work = n->poll(n, weight); 3535 trace_napi_poll(n); 3536 } 3537 3538 WARN_ON_ONCE(work > weight); 3539 3540 budget -= work; 3541 3542 local_irq_disable(); 3543 3544 /* Drivers must not modify the NAPI state if they 3545 * consume the entire weight. In such cases this code 3546 * still "owns" the NAPI instance and therefore can 3547 * move the instance around on the list at-will. 3548 */ 3549 if (unlikely(work == weight)) { 3550 if (unlikely(napi_disable_pending(n))) { 3551 local_irq_enable(); 3552 napi_complete(n); 3553 local_irq_disable(); 3554 } else 3555 list_move_tail(&n->poll_list, &sd->poll_list); 3556 } 3557 3558 netpoll_poll_unlock(have); 3559 } 3560 out: 3561 net_rps_action_and_irq_enable(sd); 3562 3563 #ifdef CONFIG_NET_DMA 3564 /* 3565 * There may not be any more sk_buffs coming right now, so push 3566 * any pending DMA copies to hardware 3567 */ 3568 dma_issue_pending_all(); 3569 #endif 3570 3571 return; 3572 3573 softnet_break: 3574 sd->time_squeeze++; 3575 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3576 goto out; 3577 } 3578 3579 static gifconf_func_t *gifconf_list[NPROTO]; 3580 3581 /** 3582 * register_gifconf - register a SIOCGIF handler 3583 * @family: Address family 3584 * @gifconf: Function handler 3585 * 3586 * Register protocol dependent address dumping routines. The handler 3587 * that is passed must not be freed or reused until it has been replaced 3588 * by another handler. 3589 */ 3590 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3591 { 3592 if (family >= NPROTO) 3593 return -EINVAL; 3594 gifconf_list[family] = gifconf; 3595 return 0; 3596 } 3597 EXPORT_SYMBOL(register_gifconf); 3598 3599 3600 /* 3601 * Map an interface index to its name (SIOCGIFNAME) 3602 */ 3603 3604 /* 3605 * We need this ioctl for efficient implementation of the 3606 * if_indextoname() function required by the IPv6 API. Without 3607 * it, we would have to search all the interfaces to find a 3608 * match. --pb 3609 */ 3610 3611 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3612 { 3613 struct net_device *dev; 3614 struct ifreq ifr; 3615 3616 /* 3617 * Fetch the caller's info block. 3618 */ 3619 3620 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3621 return -EFAULT; 3622 3623 rcu_read_lock(); 3624 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3625 if (!dev) { 3626 rcu_read_unlock(); 3627 return -ENODEV; 3628 } 3629 3630 strcpy(ifr.ifr_name, dev->name); 3631 rcu_read_unlock(); 3632 3633 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3634 return -EFAULT; 3635 return 0; 3636 } 3637 3638 /* 3639 * Perform a SIOCGIFCONF call. This structure will change 3640 * size eventually, and there is nothing I can do about it. 3641 * Thus we will need a 'compatibility mode'. 3642 */ 3643 3644 static int dev_ifconf(struct net *net, char __user *arg) 3645 { 3646 struct ifconf ifc; 3647 struct net_device *dev; 3648 char __user *pos; 3649 int len; 3650 int total; 3651 int i; 3652 3653 /* 3654 * Fetch the caller's info block. 3655 */ 3656 3657 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3658 return -EFAULT; 3659 3660 pos = ifc.ifc_buf; 3661 len = ifc.ifc_len; 3662 3663 /* 3664 * Loop over the interfaces, and write an info block for each. 3665 */ 3666 3667 total = 0; 3668 for_each_netdev(net, dev) { 3669 for (i = 0; i < NPROTO; i++) { 3670 if (gifconf_list[i]) { 3671 int done; 3672 if (!pos) 3673 done = gifconf_list[i](dev, NULL, 0); 3674 else 3675 done = gifconf_list[i](dev, pos + total, 3676 len - total); 3677 if (done < 0) 3678 return -EFAULT; 3679 total += done; 3680 } 3681 } 3682 } 3683 3684 /* 3685 * All done. Write the updated control block back to the caller. 3686 */ 3687 ifc.ifc_len = total; 3688 3689 /* 3690 * Both BSD and Solaris return 0 here, so we do too. 3691 */ 3692 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3693 } 3694 3695 #ifdef CONFIG_PROC_FS 3696 /* 3697 * This is invoked by the /proc filesystem handler to display a device 3698 * in detail. 3699 */ 3700 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3701 __acquires(RCU) 3702 { 3703 struct net *net = seq_file_net(seq); 3704 loff_t off; 3705 struct net_device *dev; 3706 3707 rcu_read_lock(); 3708 if (!*pos) 3709 return SEQ_START_TOKEN; 3710 3711 off = 1; 3712 for_each_netdev_rcu(net, dev) 3713 if (off++ == *pos) 3714 return dev; 3715 3716 return NULL; 3717 } 3718 3719 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3720 { 3721 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3722 first_net_device(seq_file_net(seq)) : 3723 next_net_device((struct net_device *)v); 3724 3725 ++*pos; 3726 return rcu_dereference(dev); 3727 } 3728 3729 void dev_seq_stop(struct seq_file *seq, void *v) 3730 __releases(RCU) 3731 { 3732 rcu_read_unlock(); 3733 } 3734 3735 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3736 { 3737 struct rtnl_link_stats64 temp; 3738 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 3739 3740 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 3741 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 3742 dev->name, stats->rx_bytes, stats->rx_packets, 3743 stats->rx_errors, 3744 stats->rx_dropped + stats->rx_missed_errors, 3745 stats->rx_fifo_errors, 3746 stats->rx_length_errors + stats->rx_over_errors + 3747 stats->rx_crc_errors + stats->rx_frame_errors, 3748 stats->rx_compressed, stats->multicast, 3749 stats->tx_bytes, stats->tx_packets, 3750 stats->tx_errors, stats->tx_dropped, 3751 stats->tx_fifo_errors, stats->collisions, 3752 stats->tx_carrier_errors + 3753 stats->tx_aborted_errors + 3754 stats->tx_window_errors + 3755 stats->tx_heartbeat_errors, 3756 stats->tx_compressed); 3757 } 3758 3759 /* 3760 * Called from the PROCfs module. This now uses the new arbitrary sized 3761 * /proc/net interface to create /proc/net/dev 3762 */ 3763 static int dev_seq_show(struct seq_file *seq, void *v) 3764 { 3765 if (v == SEQ_START_TOKEN) 3766 seq_puts(seq, "Inter-| Receive " 3767 " | Transmit\n" 3768 " face |bytes packets errs drop fifo frame " 3769 "compressed multicast|bytes packets errs " 3770 "drop fifo colls carrier compressed\n"); 3771 else 3772 dev_seq_printf_stats(seq, v); 3773 return 0; 3774 } 3775 3776 static struct softnet_data *softnet_get_online(loff_t *pos) 3777 { 3778 struct softnet_data *sd = NULL; 3779 3780 while (*pos < nr_cpu_ids) 3781 if (cpu_online(*pos)) { 3782 sd = &per_cpu(softnet_data, *pos); 3783 break; 3784 } else 3785 ++*pos; 3786 return sd; 3787 } 3788 3789 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3790 { 3791 return softnet_get_online(pos); 3792 } 3793 3794 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3795 { 3796 ++*pos; 3797 return softnet_get_online(pos); 3798 } 3799 3800 static void softnet_seq_stop(struct seq_file *seq, void *v) 3801 { 3802 } 3803 3804 static int softnet_seq_show(struct seq_file *seq, void *v) 3805 { 3806 struct softnet_data *sd = v; 3807 3808 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3809 sd->processed, sd->dropped, sd->time_squeeze, 0, 3810 0, 0, 0, 0, /* was fastroute */ 3811 sd->cpu_collision, sd->received_rps); 3812 return 0; 3813 } 3814 3815 static const struct seq_operations dev_seq_ops = { 3816 .start = dev_seq_start, 3817 .next = dev_seq_next, 3818 .stop = dev_seq_stop, 3819 .show = dev_seq_show, 3820 }; 3821 3822 static int dev_seq_open(struct inode *inode, struct file *file) 3823 { 3824 return seq_open_net(inode, file, &dev_seq_ops, 3825 sizeof(struct seq_net_private)); 3826 } 3827 3828 static const struct file_operations dev_seq_fops = { 3829 .owner = THIS_MODULE, 3830 .open = dev_seq_open, 3831 .read = seq_read, 3832 .llseek = seq_lseek, 3833 .release = seq_release_net, 3834 }; 3835 3836 static const struct seq_operations softnet_seq_ops = { 3837 .start = softnet_seq_start, 3838 .next = softnet_seq_next, 3839 .stop = softnet_seq_stop, 3840 .show = softnet_seq_show, 3841 }; 3842 3843 static int softnet_seq_open(struct inode *inode, struct file *file) 3844 { 3845 return seq_open(file, &softnet_seq_ops); 3846 } 3847 3848 static const struct file_operations softnet_seq_fops = { 3849 .owner = THIS_MODULE, 3850 .open = softnet_seq_open, 3851 .read = seq_read, 3852 .llseek = seq_lseek, 3853 .release = seq_release, 3854 }; 3855 3856 static void *ptype_get_idx(loff_t pos) 3857 { 3858 struct packet_type *pt = NULL; 3859 loff_t i = 0; 3860 int t; 3861 3862 list_for_each_entry_rcu(pt, &ptype_all, list) { 3863 if (i == pos) 3864 return pt; 3865 ++i; 3866 } 3867 3868 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3869 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3870 if (i == pos) 3871 return pt; 3872 ++i; 3873 } 3874 } 3875 return NULL; 3876 } 3877 3878 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3879 __acquires(RCU) 3880 { 3881 rcu_read_lock(); 3882 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3883 } 3884 3885 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3886 { 3887 struct packet_type *pt; 3888 struct list_head *nxt; 3889 int hash; 3890 3891 ++*pos; 3892 if (v == SEQ_START_TOKEN) 3893 return ptype_get_idx(0); 3894 3895 pt = v; 3896 nxt = pt->list.next; 3897 if (pt->type == htons(ETH_P_ALL)) { 3898 if (nxt != &ptype_all) 3899 goto found; 3900 hash = 0; 3901 nxt = ptype_base[0].next; 3902 } else 3903 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3904 3905 while (nxt == &ptype_base[hash]) { 3906 if (++hash >= PTYPE_HASH_SIZE) 3907 return NULL; 3908 nxt = ptype_base[hash].next; 3909 } 3910 found: 3911 return list_entry(nxt, struct packet_type, list); 3912 } 3913 3914 static void ptype_seq_stop(struct seq_file *seq, void *v) 3915 __releases(RCU) 3916 { 3917 rcu_read_unlock(); 3918 } 3919 3920 static int ptype_seq_show(struct seq_file *seq, void *v) 3921 { 3922 struct packet_type *pt = v; 3923 3924 if (v == SEQ_START_TOKEN) 3925 seq_puts(seq, "Type Device Function\n"); 3926 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3927 if (pt->type == htons(ETH_P_ALL)) 3928 seq_puts(seq, "ALL "); 3929 else 3930 seq_printf(seq, "%04x", ntohs(pt->type)); 3931 3932 seq_printf(seq, " %-8s %pF\n", 3933 pt->dev ? pt->dev->name : "", pt->func); 3934 } 3935 3936 return 0; 3937 } 3938 3939 static const struct seq_operations ptype_seq_ops = { 3940 .start = ptype_seq_start, 3941 .next = ptype_seq_next, 3942 .stop = ptype_seq_stop, 3943 .show = ptype_seq_show, 3944 }; 3945 3946 static int ptype_seq_open(struct inode *inode, struct file *file) 3947 { 3948 return seq_open_net(inode, file, &ptype_seq_ops, 3949 sizeof(struct seq_net_private)); 3950 } 3951 3952 static const struct file_operations ptype_seq_fops = { 3953 .owner = THIS_MODULE, 3954 .open = ptype_seq_open, 3955 .read = seq_read, 3956 .llseek = seq_lseek, 3957 .release = seq_release_net, 3958 }; 3959 3960 3961 static int __net_init dev_proc_net_init(struct net *net) 3962 { 3963 int rc = -ENOMEM; 3964 3965 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3966 goto out; 3967 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3968 goto out_dev; 3969 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3970 goto out_softnet; 3971 3972 if (wext_proc_init(net)) 3973 goto out_ptype; 3974 rc = 0; 3975 out: 3976 return rc; 3977 out_ptype: 3978 proc_net_remove(net, "ptype"); 3979 out_softnet: 3980 proc_net_remove(net, "softnet_stat"); 3981 out_dev: 3982 proc_net_remove(net, "dev"); 3983 goto out; 3984 } 3985 3986 static void __net_exit dev_proc_net_exit(struct net *net) 3987 { 3988 wext_proc_exit(net); 3989 3990 proc_net_remove(net, "ptype"); 3991 proc_net_remove(net, "softnet_stat"); 3992 proc_net_remove(net, "dev"); 3993 } 3994 3995 static struct pernet_operations __net_initdata dev_proc_ops = { 3996 .init = dev_proc_net_init, 3997 .exit = dev_proc_net_exit, 3998 }; 3999 4000 static int __init dev_proc_init(void) 4001 { 4002 return register_pernet_subsys(&dev_proc_ops); 4003 } 4004 #else 4005 #define dev_proc_init() 0 4006 #endif /* CONFIG_PROC_FS */ 4007 4008 4009 /** 4010 * netdev_set_master - set up master/slave pair 4011 * @slave: slave device 4012 * @master: new master device 4013 * 4014 * Changes the master device of the slave. Pass %NULL to break the 4015 * bonding. The caller must hold the RTNL semaphore. On a failure 4016 * a negative errno code is returned. On success the reference counts 4017 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4018 * function returns zero. 4019 */ 4020 int netdev_set_master(struct net_device *slave, struct net_device *master) 4021 { 4022 struct net_device *old = slave->master; 4023 4024 ASSERT_RTNL(); 4025 4026 if (master) { 4027 if (old) 4028 return -EBUSY; 4029 dev_hold(master); 4030 } 4031 4032 slave->master = master; 4033 4034 if (old) { 4035 synchronize_net(); 4036 dev_put(old); 4037 } 4038 if (master) 4039 slave->flags |= IFF_SLAVE; 4040 else 4041 slave->flags &= ~IFF_SLAVE; 4042 4043 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4044 return 0; 4045 } 4046 EXPORT_SYMBOL(netdev_set_master); 4047 4048 static void dev_change_rx_flags(struct net_device *dev, int flags) 4049 { 4050 const struct net_device_ops *ops = dev->netdev_ops; 4051 4052 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4053 ops->ndo_change_rx_flags(dev, flags); 4054 } 4055 4056 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4057 { 4058 unsigned short old_flags = dev->flags; 4059 uid_t uid; 4060 gid_t gid; 4061 4062 ASSERT_RTNL(); 4063 4064 dev->flags |= IFF_PROMISC; 4065 dev->promiscuity += inc; 4066 if (dev->promiscuity == 0) { 4067 /* 4068 * Avoid overflow. 4069 * If inc causes overflow, untouch promisc and return error. 4070 */ 4071 if (inc < 0) 4072 dev->flags &= ~IFF_PROMISC; 4073 else { 4074 dev->promiscuity -= inc; 4075 printk(KERN_WARNING "%s: promiscuity touches roof, " 4076 "set promiscuity failed, promiscuity feature " 4077 "of device might be broken.\n", dev->name); 4078 return -EOVERFLOW; 4079 } 4080 } 4081 if (dev->flags != old_flags) { 4082 printk(KERN_INFO "device %s %s promiscuous mode\n", 4083 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4084 "left"); 4085 if (audit_enabled) { 4086 current_uid_gid(&uid, &gid); 4087 audit_log(current->audit_context, GFP_ATOMIC, 4088 AUDIT_ANOM_PROMISCUOUS, 4089 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4090 dev->name, (dev->flags & IFF_PROMISC), 4091 (old_flags & IFF_PROMISC), 4092 audit_get_loginuid(current), 4093 uid, gid, 4094 audit_get_sessionid(current)); 4095 } 4096 4097 dev_change_rx_flags(dev, IFF_PROMISC); 4098 } 4099 return 0; 4100 } 4101 4102 /** 4103 * dev_set_promiscuity - update promiscuity count on a device 4104 * @dev: device 4105 * @inc: modifier 4106 * 4107 * Add or remove promiscuity from a device. While the count in the device 4108 * remains above zero the interface remains promiscuous. Once it hits zero 4109 * the device reverts back to normal filtering operation. A negative inc 4110 * value is used to drop promiscuity on the device. 4111 * Return 0 if successful or a negative errno code on error. 4112 */ 4113 int dev_set_promiscuity(struct net_device *dev, int inc) 4114 { 4115 unsigned short old_flags = dev->flags; 4116 int err; 4117 4118 err = __dev_set_promiscuity(dev, inc); 4119 if (err < 0) 4120 return err; 4121 if (dev->flags != old_flags) 4122 dev_set_rx_mode(dev); 4123 return err; 4124 } 4125 EXPORT_SYMBOL(dev_set_promiscuity); 4126 4127 /** 4128 * dev_set_allmulti - update allmulti count on a device 4129 * @dev: device 4130 * @inc: modifier 4131 * 4132 * Add or remove reception of all multicast frames to a device. While the 4133 * count in the device remains above zero the interface remains listening 4134 * to all interfaces. Once it hits zero the device reverts back to normal 4135 * filtering operation. A negative @inc value is used to drop the counter 4136 * when releasing a resource needing all multicasts. 4137 * Return 0 if successful or a negative errno code on error. 4138 */ 4139 4140 int dev_set_allmulti(struct net_device *dev, int inc) 4141 { 4142 unsigned short old_flags = dev->flags; 4143 4144 ASSERT_RTNL(); 4145 4146 dev->flags |= IFF_ALLMULTI; 4147 dev->allmulti += inc; 4148 if (dev->allmulti == 0) { 4149 /* 4150 * Avoid overflow. 4151 * If inc causes overflow, untouch allmulti and return error. 4152 */ 4153 if (inc < 0) 4154 dev->flags &= ~IFF_ALLMULTI; 4155 else { 4156 dev->allmulti -= inc; 4157 printk(KERN_WARNING "%s: allmulti touches roof, " 4158 "set allmulti failed, allmulti feature of " 4159 "device might be broken.\n", dev->name); 4160 return -EOVERFLOW; 4161 } 4162 } 4163 if (dev->flags ^ old_flags) { 4164 dev_change_rx_flags(dev, IFF_ALLMULTI); 4165 dev_set_rx_mode(dev); 4166 } 4167 return 0; 4168 } 4169 EXPORT_SYMBOL(dev_set_allmulti); 4170 4171 /* 4172 * Upload unicast and multicast address lists to device and 4173 * configure RX filtering. When the device doesn't support unicast 4174 * filtering it is put in promiscuous mode while unicast addresses 4175 * are present. 4176 */ 4177 void __dev_set_rx_mode(struct net_device *dev) 4178 { 4179 const struct net_device_ops *ops = dev->netdev_ops; 4180 4181 /* dev_open will call this function so the list will stay sane. */ 4182 if (!(dev->flags&IFF_UP)) 4183 return; 4184 4185 if (!netif_device_present(dev)) 4186 return; 4187 4188 if (ops->ndo_set_rx_mode) 4189 ops->ndo_set_rx_mode(dev); 4190 else { 4191 /* Unicast addresses changes may only happen under the rtnl, 4192 * therefore calling __dev_set_promiscuity here is safe. 4193 */ 4194 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4195 __dev_set_promiscuity(dev, 1); 4196 dev->uc_promisc = 1; 4197 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4198 __dev_set_promiscuity(dev, -1); 4199 dev->uc_promisc = 0; 4200 } 4201 4202 if (ops->ndo_set_multicast_list) 4203 ops->ndo_set_multicast_list(dev); 4204 } 4205 } 4206 4207 void dev_set_rx_mode(struct net_device *dev) 4208 { 4209 netif_addr_lock_bh(dev); 4210 __dev_set_rx_mode(dev); 4211 netif_addr_unlock_bh(dev); 4212 } 4213 4214 /** 4215 * dev_get_flags - get flags reported to userspace 4216 * @dev: device 4217 * 4218 * Get the combination of flag bits exported through APIs to userspace. 4219 */ 4220 unsigned dev_get_flags(const struct net_device *dev) 4221 { 4222 unsigned flags; 4223 4224 flags = (dev->flags & ~(IFF_PROMISC | 4225 IFF_ALLMULTI | 4226 IFF_RUNNING | 4227 IFF_LOWER_UP | 4228 IFF_DORMANT)) | 4229 (dev->gflags & (IFF_PROMISC | 4230 IFF_ALLMULTI)); 4231 4232 if (netif_running(dev)) { 4233 if (netif_oper_up(dev)) 4234 flags |= IFF_RUNNING; 4235 if (netif_carrier_ok(dev)) 4236 flags |= IFF_LOWER_UP; 4237 if (netif_dormant(dev)) 4238 flags |= IFF_DORMANT; 4239 } 4240 4241 return flags; 4242 } 4243 EXPORT_SYMBOL(dev_get_flags); 4244 4245 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4246 { 4247 int old_flags = dev->flags; 4248 int ret; 4249 4250 ASSERT_RTNL(); 4251 4252 /* 4253 * Set the flags on our device. 4254 */ 4255 4256 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4257 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4258 IFF_AUTOMEDIA)) | 4259 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4260 IFF_ALLMULTI)); 4261 4262 /* 4263 * Load in the correct multicast list now the flags have changed. 4264 */ 4265 4266 if ((old_flags ^ flags) & IFF_MULTICAST) 4267 dev_change_rx_flags(dev, IFF_MULTICAST); 4268 4269 dev_set_rx_mode(dev); 4270 4271 /* 4272 * Have we downed the interface. We handle IFF_UP ourselves 4273 * according to user attempts to set it, rather than blindly 4274 * setting it. 4275 */ 4276 4277 ret = 0; 4278 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4279 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4280 4281 if (!ret) 4282 dev_set_rx_mode(dev); 4283 } 4284 4285 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4286 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4287 4288 dev->gflags ^= IFF_PROMISC; 4289 dev_set_promiscuity(dev, inc); 4290 } 4291 4292 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4293 is important. Some (broken) drivers set IFF_PROMISC, when 4294 IFF_ALLMULTI is requested not asking us and not reporting. 4295 */ 4296 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4297 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4298 4299 dev->gflags ^= IFF_ALLMULTI; 4300 dev_set_allmulti(dev, inc); 4301 } 4302 4303 return ret; 4304 } 4305 4306 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4307 { 4308 unsigned int changes = dev->flags ^ old_flags; 4309 4310 if (changes & IFF_UP) { 4311 if (dev->flags & IFF_UP) 4312 call_netdevice_notifiers(NETDEV_UP, dev); 4313 else 4314 call_netdevice_notifiers(NETDEV_DOWN, dev); 4315 } 4316 4317 if (dev->flags & IFF_UP && 4318 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4319 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4320 } 4321 4322 /** 4323 * dev_change_flags - change device settings 4324 * @dev: device 4325 * @flags: device state flags 4326 * 4327 * Change settings on device based state flags. The flags are 4328 * in the userspace exported format. 4329 */ 4330 int dev_change_flags(struct net_device *dev, unsigned flags) 4331 { 4332 int ret, changes; 4333 int old_flags = dev->flags; 4334 4335 ret = __dev_change_flags(dev, flags); 4336 if (ret < 0) 4337 return ret; 4338 4339 changes = old_flags ^ dev->flags; 4340 if (changes) 4341 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4342 4343 __dev_notify_flags(dev, old_flags); 4344 return ret; 4345 } 4346 EXPORT_SYMBOL(dev_change_flags); 4347 4348 /** 4349 * dev_set_mtu - Change maximum transfer unit 4350 * @dev: device 4351 * @new_mtu: new transfer unit 4352 * 4353 * Change the maximum transfer size of the network device. 4354 */ 4355 int dev_set_mtu(struct net_device *dev, int new_mtu) 4356 { 4357 const struct net_device_ops *ops = dev->netdev_ops; 4358 int err; 4359 4360 if (new_mtu == dev->mtu) 4361 return 0; 4362 4363 /* MTU must be positive. */ 4364 if (new_mtu < 0) 4365 return -EINVAL; 4366 4367 if (!netif_device_present(dev)) 4368 return -ENODEV; 4369 4370 err = 0; 4371 if (ops->ndo_change_mtu) 4372 err = ops->ndo_change_mtu(dev, new_mtu); 4373 else 4374 dev->mtu = new_mtu; 4375 4376 if (!err && dev->flags & IFF_UP) 4377 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4378 return err; 4379 } 4380 EXPORT_SYMBOL(dev_set_mtu); 4381 4382 /** 4383 * dev_set_mac_address - Change Media Access Control Address 4384 * @dev: device 4385 * @sa: new address 4386 * 4387 * Change the hardware (MAC) address of the device 4388 */ 4389 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4390 { 4391 const struct net_device_ops *ops = dev->netdev_ops; 4392 int err; 4393 4394 if (!ops->ndo_set_mac_address) 4395 return -EOPNOTSUPP; 4396 if (sa->sa_family != dev->type) 4397 return -EINVAL; 4398 if (!netif_device_present(dev)) 4399 return -ENODEV; 4400 err = ops->ndo_set_mac_address(dev, sa); 4401 if (!err) 4402 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4403 return err; 4404 } 4405 EXPORT_SYMBOL(dev_set_mac_address); 4406 4407 /* 4408 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4409 */ 4410 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4411 { 4412 int err; 4413 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4414 4415 if (!dev) 4416 return -ENODEV; 4417 4418 switch (cmd) { 4419 case SIOCGIFFLAGS: /* Get interface flags */ 4420 ifr->ifr_flags = (short) dev_get_flags(dev); 4421 return 0; 4422 4423 case SIOCGIFMETRIC: /* Get the metric on the interface 4424 (currently unused) */ 4425 ifr->ifr_metric = 0; 4426 return 0; 4427 4428 case SIOCGIFMTU: /* Get the MTU of a device */ 4429 ifr->ifr_mtu = dev->mtu; 4430 return 0; 4431 4432 case SIOCGIFHWADDR: 4433 if (!dev->addr_len) 4434 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4435 else 4436 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4437 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4438 ifr->ifr_hwaddr.sa_family = dev->type; 4439 return 0; 4440 4441 case SIOCGIFSLAVE: 4442 err = -EINVAL; 4443 break; 4444 4445 case SIOCGIFMAP: 4446 ifr->ifr_map.mem_start = dev->mem_start; 4447 ifr->ifr_map.mem_end = dev->mem_end; 4448 ifr->ifr_map.base_addr = dev->base_addr; 4449 ifr->ifr_map.irq = dev->irq; 4450 ifr->ifr_map.dma = dev->dma; 4451 ifr->ifr_map.port = dev->if_port; 4452 return 0; 4453 4454 case SIOCGIFINDEX: 4455 ifr->ifr_ifindex = dev->ifindex; 4456 return 0; 4457 4458 case SIOCGIFTXQLEN: 4459 ifr->ifr_qlen = dev->tx_queue_len; 4460 return 0; 4461 4462 default: 4463 /* dev_ioctl() should ensure this case 4464 * is never reached 4465 */ 4466 WARN_ON(1); 4467 err = -EINVAL; 4468 break; 4469 4470 } 4471 return err; 4472 } 4473 4474 /* 4475 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4476 */ 4477 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4478 { 4479 int err; 4480 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4481 const struct net_device_ops *ops; 4482 4483 if (!dev) 4484 return -ENODEV; 4485 4486 ops = dev->netdev_ops; 4487 4488 switch (cmd) { 4489 case SIOCSIFFLAGS: /* Set interface flags */ 4490 return dev_change_flags(dev, ifr->ifr_flags); 4491 4492 case SIOCSIFMETRIC: /* Set the metric on the interface 4493 (currently unused) */ 4494 return -EOPNOTSUPP; 4495 4496 case SIOCSIFMTU: /* Set the MTU of a device */ 4497 return dev_set_mtu(dev, ifr->ifr_mtu); 4498 4499 case SIOCSIFHWADDR: 4500 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4501 4502 case SIOCSIFHWBROADCAST: 4503 if (ifr->ifr_hwaddr.sa_family != dev->type) 4504 return -EINVAL; 4505 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4506 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4507 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4508 return 0; 4509 4510 case SIOCSIFMAP: 4511 if (ops->ndo_set_config) { 4512 if (!netif_device_present(dev)) 4513 return -ENODEV; 4514 return ops->ndo_set_config(dev, &ifr->ifr_map); 4515 } 4516 return -EOPNOTSUPP; 4517 4518 case SIOCADDMULTI: 4519 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4520 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4521 return -EINVAL; 4522 if (!netif_device_present(dev)) 4523 return -ENODEV; 4524 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4525 4526 case SIOCDELMULTI: 4527 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4528 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4529 return -EINVAL; 4530 if (!netif_device_present(dev)) 4531 return -ENODEV; 4532 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4533 4534 case SIOCSIFTXQLEN: 4535 if (ifr->ifr_qlen < 0) 4536 return -EINVAL; 4537 dev->tx_queue_len = ifr->ifr_qlen; 4538 return 0; 4539 4540 case SIOCSIFNAME: 4541 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4542 return dev_change_name(dev, ifr->ifr_newname); 4543 4544 /* 4545 * Unknown or private ioctl 4546 */ 4547 default: 4548 if ((cmd >= SIOCDEVPRIVATE && 4549 cmd <= SIOCDEVPRIVATE + 15) || 4550 cmd == SIOCBONDENSLAVE || 4551 cmd == SIOCBONDRELEASE || 4552 cmd == SIOCBONDSETHWADDR || 4553 cmd == SIOCBONDSLAVEINFOQUERY || 4554 cmd == SIOCBONDINFOQUERY || 4555 cmd == SIOCBONDCHANGEACTIVE || 4556 cmd == SIOCGMIIPHY || 4557 cmd == SIOCGMIIREG || 4558 cmd == SIOCSMIIREG || 4559 cmd == SIOCBRADDIF || 4560 cmd == SIOCBRDELIF || 4561 cmd == SIOCSHWTSTAMP || 4562 cmd == SIOCWANDEV) { 4563 err = -EOPNOTSUPP; 4564 if (ops->ndo_do_ioctl) { 4565 if (netif_device_present(dev)) 4566 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4567 else 4568 err = -ENODEV; 4569 } 4570 } else 4571 err = -EINVAL; 4572 4573 } 4574 return err; 4575 } 4576 4577 /* 4578 * This function handles all "interface"-type I/O control requests. The actual 4579 * 'doing' part of this is dev_ifsioc above. 4580 */ 4581 4582 /** 4583 * dev_ioctl - network device ioctl 4584 * @net: the applicable net namespace 4585 * @cmd: command to issue 4586 * @arg: pointer to a struct ifreq in user space 4587 * 4588 * Issue ioctl functions to devices. This is normally called by the 4589 * user space syscall interfaces but can sometimes be useful for 4590 * other purposes. The return value is the return from the syscall if 4591 * positive or a negative errno code on error. 4592 */ 4593 4594 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4595 { 4596 struct ifreq ifr; 4597 int ret; 4598 char *colon; 4599 4600 /* One special case: SIOCGIFCONF takes ifconf argument 4601 and requires shared lock, because it sleeps writing 4602 to user space. 4603 */ 4604 4605 if (cmd == SIOCGIFCONF) { 4606 rtnl_lock(); 4607 ret = dev_ifconf(net, (char __user *) arg); 4608 rtnl_unlock(); 4609 return ret; 4610 } 4611 if (cmd == SIOCGIFNAME) 4612 return dev_ifname(net, (struct ifreq __user *)arg); 4613 4614 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4615 return -EFAULT; 4616 4617 ifr.ifr_name[IFNAMSIZ-1] = 0; 4618 4619 colon = strchr(ifr.ifr_name, ':'); 4620 if (colon) 4621 *colon = 0; 4622 4623 /* 4624 * See which interface the caller is talking about. 4625 */ 4626 4627 switch (cmd) { 4628 /* 4629 * These ioctl calls: 4630 * - can be done by all. 4631 * - atomic and do not require locking. 4632 * - return a value 4633 */ 4634 case SIOCGIFFLAGS: 4635 case SIOCGIFMETRIC: 4636 case SIOCGIFMTU: 4637 case SIOCGIFHWADDR: 4638 case SIOCGIFSLAVE: 4639 case SIOCGIFMAP: 4640 case SIOCGIFINDEX: 4641 case SIOCGIFTXQLEN: 4642 dev_load(net, ifr.ifr_name); 4643 rcu_read_lock(); 4644 ret = dev_ifsioc_locked(net, &ifr, cmd); 4645 rcu_read_unlock(); 4646 if (!ret) { 4647 if (colon) 4648 *colon = ':'; 4649 if (copy_to_user(arg, &ifr, 4650 sizeof(struct ifreq))) 4651 ret = -EFAULT; 4652 } 4653 return ret; 4654 4655 case SIOCETHTOOL: 4656 dev_load(net, ifr.ifr_name); 4657 rtnl_lock(); 4658 ret = dev_ethtool(net, &ifr); 4659 rtnl_unlock(); 4660 if (!ret) { 4661 if (colon) 4662 *colon = ':'; 4663 if (copy_to_user(arg, &ifr, 4664 sizeof(struct ifreq))) 4665 ret = -EFAULT; 4666 } 4667 return ret; 4668 4669 /* 4670 * These ioctl calls: 4671 * - require superuser power. 4672 * - require strict serialization. 4673 * - return a value 4674 */ 4675 case SIOCGMIIPHY: 4676 case SIOCGMIIREG: 4677 case SIOCSIFNAME: 4678 if (!capable(CAP_NET_ADMIN)) 4679 return -EPERM; 4680 dev_load(net, ifr.ifr_name); 4681 rtnl_lock(); 4682 ret = dev_ifsioc(net, &ifr, cmd); 4683 rtnl_unlock(); 4684 if (!ret) { 4685 if (colon) 4686 *colon = ':'; 4687 if (copy_to_user(arg, &ifr, 4688 sizeof(struct ifreq))) 4689 ret = -EFAULT; 4690 } 4691 return ret; 4692 4693 /* 4694 * These ioctl calls: 4695 * - require superuser power. 4696 * - require strict serialization. 4697 * - do not return a value 4698 */ 4699 case SIOCSIFFLAGS: 4700 case SIOCSIFMETRIC: 4701 case SIOCSIFMTU: 4702 case SIOCSIFMAP: 4703 case SIOCSIFHWADDR: 4704 case SIOCSIFSLAVE: 4705 case SIOCADDMULTI: 4706 case SIOCDELMULTI: 4707 case SIOCSIFHWBROADCAST: 4708 case SIOCSIFTXQLEN: 4709 case SIOCSMIIREG: 4710 case SIOCBONDENSLAVE: 4711 case SIOCBONDRELEASE: 4712 case SIOCBONDSETHWADDR: 4713 case SIOCBONDCHANGEACTIVE: 4714 case SIOCBRADDIF: 4715 case SIOCBRDELIF: 4716 case SIOCSHWTSTAMP: 4717 if (!capable(CAP_NET_ADMIN)) 4718 return -EPERM; 4719 /* fall through */ 4720 case SIOCBONDSLAVEINFOQUERY: 4721 case SIOCBONDINFOQUERY: 4722 dev_load(net, ifr.ifr_name); 4723 rtnl_lock(); 4724 ret = dev_ifsioc(net, &ifr, cmd); 4725 rtnl_unlock(); 4726 return ret; 4727 4728 case SIOCGIFMEM: 4729 /* Get the per device memory space. We can add this but 4730 * currently do not support it */ 4731 case SIOCSIFMEM: 4732 /* Set the per device memory buffer space. 4733 * Not applicable in our case */ 4734 case SIOCSIFLINK: 4735 return -EINVAL; 4736 4737 /* 4738 * Unknown or private ioctl. 4739 */ 4740 default: 4741 if (cmd == SIOCWANDEV || 4742 (cmd >= SIOCDEVPRIVATE && 4743 cmd <= SIOCDEVPRIVATE + 15)) { 4744 dev_load(net, ifr.ifr_name); 4745 rtnl_lock(); 4746 ret = dev_ifsioc(net, &ifr, cmd); 4747 rtnl_unlock(); 4748 if (!ret && copy_to_user(arg, &ifr, 4749 sizeof(struct ifreq))) 4750 ret = -EFAULT; 4751 return ret; 4752 } 4753 /* Take care of Wireless Extensions */ 4754 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4755 return wext_handle_ioctl(net, &ifr, cmd, arg); 4756 return -EINVAL; 4757 } 4758 } 4759 4760 4761 /** 4762 * dev_new_index - allocate an ifindex 4763 * @net: the applicable net namespace 4764 * 4765 * Returns a suitable unique value for a new device interface 4766 * number. The caller must hold the rtnl semaphore or the 4767 * dev_base_lock to be sure it remains unique. 4768 */ 4769 static int dev_new_index(struct net *net) 4770 { 4771 static int ifindex; 4772 for (;;) { 4773 if (++ifindex <= 0) 4774 ifindex = 1; 4775 if (!__dev_get_by_index(net, ifindex)) 4776 return ifindex; 4777 } 4778 } 4779 4780 /* Delayed registration/unregisteration */ 4781 static LIST_HEAD(net_todo_list); 4782 4783 static void net_set_todo(struct net_device *dev) 4784 { 4785 list_add_tail(&dev->todo_list, &net_todo_list); 4786 } 4787 4788 static void rollback_registered_many(struct list_head *head) 4789 { 4790 struct net_device *dev, *tmp; 4791 4792 BUG_ON(dev_boot_phase); 4793 ASSERT_RTNL(); 4794 4795 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4796 /* Some devices call without registering 4797 * for initialization unwind. Remove those 4798 * devices and proceed with the remaining. 4799 */ 4800 if (dev->reg_state == NETREG_UNINITIALIZED) { 4801 pr_debug("unregister_netdevice: device %s/%p never " 4802 "was registered\n", dev->name, dev); 4803 4804 WARN_ON(1); 4805 list_del(&dev->unreg_list); 4806 continue; 4807 } 4808 4809 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4810 4811 /* If device is running, close it first. */ 4812 dev_close(dev); 4813 4814 /* And unlink it from device chain. */ 4815 unlist_netdevice(dev); 4816 4817 dev->reg_state = NETREG_UNREGISTERING; 4818 } 4819 4820 synchronize_net(); 4821 4822 list_for_each_entry(dev, head, unreg_list) { 4823 /* Shutdown queueing discipline. */ 4824 dev_shutdown(dev); 4825 4826 4827 /* Notify protocols, that we are about to destroy 4828 this device. They should clean all the things. 4829 */ 4830 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4831 4832 if (!dev->rtnl_link_ops || 4833 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4834 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4835 4836 /* 4837 * Flush the unicast and multicast chains 4838 */ 4839 dev_uc_flush(dev); 4840 dev_mc_flush(dev); 4841 4842 if (dev->netdev_ops->ndo_uninit) 4843 dev->netdev_ops->ndo_uninit(dev); 4844 4845 /* Notifier chain MUST detach us from master device. */ 4846 WARN_ON(dev->master); 4847 4848 /* Remove entries from kobject tree */ 4849 netdev_unregister_kobject(dev); 4850 } 4851 4852 /* Process any work delayed until the end of the batch */ 4853 dev = list_first_entry(head, struct net_device, unreg_list); 4854 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4855 4856 rcu_barrier(); 4857 4858 list_for_each_entry(dev, head, unreg_list) 4859 dev_put(dev); 4860 } 4861 4862 static void rollback_registered(struct net_device *dev) 4863 { 4864 LIST_HEAD(single); 4865 4866 list_add(&dev->unreg_list, &single); 4867 rollback_registered_many(&single); 4868 } 4869 4870 static void __netdev_init_queue_locks_one(struct net_device *dev, 4871 struct netdev_queue *dev_queue, 4872 void *_unused) 4873 { 4874 spin_lock_init(&dev_queue->_xmit_lock); 4875 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4876 dev_queue->xmit_lock_owner = -1; 4877 } 4878 4879 static void netdev_init_queue_locks(struct net_device *dev) 4880 { 4881 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4882 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4883 } 4884 4885 unsigned long netdev_fix_features(unsigned long features, const char *name) 4886 { 4887 /* Fix illegal SG+CSUM combinations. */ 4888 if ((features & NETIF_F_SG) && 4889 !(features & NETIF_F_ALL_CSUM)) { 4890 if (name) 4891 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4892 "checksum feature.\n", name); 4893 features &= ~NETIF_F_SG; 4894 } 4895 4896 /* TSO requires that SG is present as well. */ 4897 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4898 if (name) 4899 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4900 "SG feature.\n", name); 4901 features &= ~NETIF_F_TSO; 4902 } 4903 4904 if (features & NETIF_F_UFO) { 4905 if (!(features & NETIF_F_GEN_CSUM)) { 4906 if (name) 4907 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4908 "since no NETIF_F_HW_CSUM feature.\n", 4909 name); 4910 features &= ~NETIF_F_UFO; 4911 } 4912 4913 if (!(features & NETIF_F_SG)) { 4914 if (name) 4915 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4916 "since no NETIF_F_SG feature.\n", name); 4917 features &= ~NETIF_F_UFO; 4918 } 4919 } 4920 4921 return features; 4922 } 4923 EXPORT_SYMBOL(netdev_fix_features); 4924 4925 /** 4926 * netif_stacked_transfer_operstate - transfer operstate 4927 * @rootdev: the root or lower level device to transfer state from 4928 * @dev: the device to transfer operstate to 4929 * 4930 * Transfer operational state from root to device. This is normally 4931 * called when a stacking relationship exists between the root 4932 * device and the device(a leaf device). 4933 */ 4934 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4935 struct net_device *dev) 4936 { 4937 if (rootdev->operstate == IF_OPER_DORMANT) 4938 netif_dormant_on(dev); 4939 else 4940 netif_dormant_off(dev); 4941 4942 if (netif_carrier_ok(rootdev)) { 4943 if (!netif_carrier_ok(dev)) 4944 netif_carrier_on(dev); 4945 } else { 4946 if (netif_carrier_ok(dev)) 4947 netif_carrier_off(dev); 4948 } 4949 } 4950 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 4951 4952 /** 4953 * register_netdevice - register a network device 4954 * @dev: device to register 4955 * 4956 * Take a completed network device structure and add it to the kernel 4957 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4958 * chain. 0 is returned on success. A negative errno code is returned 4959 * on a failure to set up the device, or if the name is a duplicate. 4960 * 4961 * Callers must hold the rtnl semaphore. You may want 4962 * register_netdev() instead of this. 4963 * 4964 * BUGS: 4965 * The locking appears insufficient to guarantee two parallel registers 4966 * will not get the same name. 4967 */ 4968 4969 int register_netdevice(struct net_device *dev) 4970 { 4971 int ret; 4972 struct net *net = dev_net(dev); 4973 4974 BUG_ON(dev_boot_phase); 4975 ASSERT_RTNL(); 4976 4977 might_sleep(); 4978 4979 /* When net_device's are persistent, this will be fatal. */ 4980 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4981 BUG_ON(!net); 4982 4983 spin_lock_init(&dev->addr_list_lock); 4984 netdev_set_addr_lockdep_class(dev); 4985 netdev_init_queue_locks(dev); 4986 4987 dev->iflink = -1; 4988 4989 #ifdef CONFIG_RPS 4990 if (!dev->num_rx_queues) { 4991 /* 4992 * Allocate a single RX queue if driver never called 4993 * alloc_netdev_mq 4994 */ 4995 4996 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL); 4997 if (!dev->_rx) { 4998 ret = -ENOMEM; 4999 goto out; 5000 } 5001 5002 dev->_rx->first = dev->_rx; 5003 atomic_set(&dev->_rx->count, 1); 5004 dev->num_rx_queues = 1; 5005 } 5006 #endif 5007 /* Init, if this function is available */ 5008 if (dev->netdev_ops->ndo_init) { 5009 ret = dev->netdev_ops->ndo_init(dev); 5010 if (ret) { 5011 if (ret > 0) 5012 ret = -EIO; 5013 goto out; 5014 } 5015 } 5016 5017 ret = dev_get_valid_name(dev, dev->name, 0); 5018 if (ret) 5019 goto err_uninit; 5020 5021 dev->ifindex = dev_new_index(net); 5022 if (dev->iflink == -1) 5023 dev->iflink = dev->ifindex; 5024 5025 /* Fix illegal checksum combinations */ 5026 if ((dev->features & NETIF_F_HW_CSUM) && 5027 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5028 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5029 dev->name); 5030 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5031 } 5032 5033 if ((dev->features & NETIF_F_NO_CSUM) && 5034 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5035 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5036 dev->name); 5037 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5038 } 5039 5040 dev->features = netdev_fix_features(dev->features, dev->name); 5041 5042 /* Enable software GSO if SG is supported. */ 5043 if (dev->features & NETIF_F_SG) 5044 dev->features |= NETIF_F_GSO; 5045 5046 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5047 ret = notifier_to_errno(ret); 5048 if (ret) 5049 goto err_uninit; 5050 5051 ret = netdev_register_kobject(dev); 5052 if (ret) 5053 goto err_uninit; 5054 dev->reg_state = NETREG_REGISTERED; 5055 5056 /* 5057 * Default initial state at registry is that the 5058 * device is present. 5059 */ 5060 5061 set_bit(__LINK_STATE_PRESENT, &dev->state); 5062 5063 dev_init_scheduler(dev); 5064 dev_hold(dev); 5065 list_netdevice(dev); 5066 5067 /* Notify protocols, that a new device appeared. */ 5068 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5069 ret = notifier_to_errno(ret); 5070 if (ret) { 5071 rollback_registered(dev); 5072 dev->reg_state = NETREG_UNREGISTERED; 5073 } 5074 /* 5075 * Prevent userspace races by waiting until the network 5076 * device is fully setup before sending notifications. 5077 */ 5078 if (!dev->rtnl_link_ops || 5079 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5080 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5081 5082 out: 5083 return ret; 5084 5085 err_uninit: 5086 if (dev->netdev_ops->ndo_uninit) 5087 dev->netdev_ops->ndo_uninit(dev); 5088 goto out; 5089 } 5090 EXPORT_SYMBOL(register_netdevice); 5091 5092 /** 5093 * init_dummy_netdev - init a dummy network device for NAPI 5094 * @dev: device to init 5095 * 5096 * This takes a network device structure and initialize the minimum 5097 * amount of fields so it can be used to schedule NAPI polls without 5098 * registering a full blown interface. This is to be used by drivers 5099 * that need to tie several hardware interfaces to a single NAPI 5100 * poll scheduler due to HW limitations. 5101 */ 5102 int init_dummy_netdev(struct net_device *dev) 5103 { 5104 /* Clear everything. Note we don't initialize spinlocks 5105 * are they aren't supposed to be taken by any of the 5106 * NAPI code and this dummy netdev is supposed to be 5107 * only ever used for NAPI polls 5108 */ 5109 memset(dev, 0, sizeof(struct net_device)); 5110 5111 /* make sure we BUG if trying to hit standard 5112 * register/unregister code path 5113 */ 5114 dev->reg_state = NETREG_DUMMY; 5115 5116 /* initialize the ref count */ 5117 atomic_set(&dev->refcnt, 1); 5118 5119 /* NAPI wants this */ 5120 INIT_LIST_HEAD(&dev->napi_list); 5121 5122 /* a dummy interface is started by default */ 5123 set_bit(__LINK_STATE_PRESENT, &dev->state); 5124 set_bit(__LINK_STATE_START, &dev->state); 5125 5126 return 0; 5127 } 5128 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5129 5130 5131 /** 5132 * register_netdev - register a network device 5133 * @dev: device to register 5134 * 5135 * Take a completed network device structure and add it to the kernel 5136 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5137 * chain. 0 is returned on success. A negative errno code is returned 5138 * on a failure to set up the device, or if the name is a duplicate. 5139 * 5140 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5141 * and expands the device name if you passed a format string to 5142 * alloc_netdev. 5143 */ 5144 int register_netdev(struct net_device *dev) 5145 { 5146 int err; 5147 5148 rtnl_lock(); 5149 5150 /* 5151 * If the name is a format string the caller wants us to do a 5152 * name allocation. 5153 */ 5154 if (strchr(dev->name, '%')) { 5155 err = dev_alloc_name(dev, dev->name); 5156 if (err < 0) 5157 goto out; 5158 } 5159 5160 err = register_netdevice(dev); 5161 out: 5162 rtnl_unlock(); 5163 return err; 5164 } 5165 EXPORT_SYMBOL(register_netdev); 5166 5167 /* 5168 * netdev_wait_allrefs - wait until all references are gone. 5169 * 5170 * This is called when unregistering network devices. 5171 * 5172 * Any protocol or device that holds a reference should register 5173 * for netdevice notification, and cleanup and put back the 5174 * reference if they receive an UNREGISTER event. 5175 * We can get stuck here if buggy protocols don't correctly 5176 * call dev_put. 5177 */ 5178 static void netdev_wait_allrefs(struct net_device *dev) 5179 { 5180 unsigned long rebroadcast_time, warning_time; 5181 5182 linkwatch_forget_dev(dev); 5183 5184 rebroadcast_time = warning_time = jiffies; 5185 while (atomic_read(&dev->refcnt) != 0) { 5186 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5187 rtnl_lock(); 5188 5189 /* Rebroadcast unregister notification */ 5190 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5191 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5192 * should have already handle it the first time */ 5193 5194 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5195 &dev->state)) { 5196 /* We must not have linkwatch events 5197 * pending on unregister. If this 5198 * happens, we simply run the queue 5199 * unscheduled, resulting in a noop 5200 * for this device. 5201 */ 5202 linkwatch_run_queue(); 5203 } 5204 5205 __rtnl_unlock(); 5206 5207 rebroadcast_time = jiffies; 5208 } 5209 5210 msleep(250); 5211 5212 if (time_after(jiffies, warning_time + 10 * HZ)) { 5213 printk(KERN_EMERG "unregister_netdevice: " 5214 "waiting for %s to become free. Usage " 5215 "count = %d\n", 5216 dev->name, atomic_read(&dev->refcnt)); 5217 warning_time = jiffies; 5218 } 5219 } 5220 } 5221 5222 /* The sequence is: 5223 * 5224 * rtnl_lock(); 5225 * ... 5226 * register_netdevice(x1); 5227 * register_netdevice(x2); 5228 * ... 5229 * unregister_netdevice(y1); 5230 * unregister_netdevice(y2); 5231 * ... 5232 * rtnl_unlock(); 5233 * free_netdev(y1); 5234 * free_netdev(y2); 5235 * 5236 * We are invoked by rtnl_unlock(). 5237 * This allows us to deal with problems: 5238 * 1) We can delete sysfs objects which invoke hotplug 5239 * without deadlocking with linkwatch via keventd. 5240 * 2) Since we run with the RTNL semaphore not held, we can sleep 5241 * safely in order to wait for the netdev refcnt to drop to zero. 5242 * 5243 * We must not return until all unregister events added during 5244 * the interval the lock was held have been completed. 5245 */ 5246 void netdev_run_todo(void) 5247 { 5248 struct list_head list; 5249 5250 /* Snapshot list, allow later requests */ 5251 list_replace_init(&net_todo_list, &list); 5252 5253 __rtnl_unlock(); 5254 5255 while (!list_empty(&list)) { 5256 struct net_device *dev 5257 = list_first_entry(&list, struct net_device, todo_list); 5258 list_del(&dev->todo_list); 5259 5260 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5261 printk(KERN_ERR "network todo '%s' but state %d\n", 5262 dev->name, dev->reg_state); 5263 dump_stack(); 5264 continue; 5265 } 5266 5267 dev->reg_state = NETREG_UNREGISTERED; 5268 5269 on_each_cpu(flush_backlog, dev, 1); 5270 5271 netdev_wait_allrefs(dev); 5272 5273 /* paranoia */ 5274 BUG_ON(atomic_read(&dev->refcnt)); 5275 WARN_ON(dev->ip_ptr); 5276 WARN_ON(dev->ip6_ptr); 5277 WARN_ON(dev->dn_ptr); 5278 5279 if (dev->destructor) 5280 dev->destructor(dev); 5281 5282 /* Free network device */ 5283 kobject_put(&dev->dev.kobj); 5284 } 5285 } 5286 5287 /** 5288 * dev_txq_stats_fold - fold tx_queues stats 5289 * @dev: device to get statistics from 5290 * @stats: struct rtnl_link_stats64 to hold results 5291 */ 5292 void dev_txq_stats_fold(const struct net_device *dev, 5293 struct rtnl_link_stats64 *stats) 5294 { 5295 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5296 unsigned int i; 5297 struct netdev_queue *txq; 5298 5299 for (i = 0; i < dev->num_tx_queues; i++) { 5300 txq = netdev_get_tx_queue(dev, i); 5301 spin_lock_bh(&txq->_xmit_lock); 5302 tx_bytes += txq->tx_bytes; 5303 tx_packets += txq->tx_packets; 5304 tx_dropped += txq->tx_dropped; 5305 spin_unlock_bh(&txq->_xmit_lock); 5306 } 5307 if (tx_bytes || tx_packets || tx_dropped) { 5308 stats->tx_bytes = tx_bytes; 5309 stats->tx_packets = tx_packets; 5310 stats->tx_dropped = tx_dropped; 5311 } 5312 } 5313 EXPORT_SYMBOL(dev_txq_stats_fold); 5314 5315 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5316 * fields in the same order, with only the type differing. 5317 */ 5318 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5319 const struct net_device_stats *netdev_stats) 5320 { 5321 #if BITS_PER_LONG == 64 5322 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5323 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5324 #else 5325 size_t i, n = sizeof(*stats64) / sizeof(u64); 5326 const unsigned long *src = (const unsigned long *)netdev_stats; 5327 u64 *dst = (u64 *)stats64; 5328 5329 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5330 sizeof(*stats64) / sizeof(u64)); 5331 for (i = 0; i < n; i++) 5332 dst[i] = src[i]; 5333 #endif 5334 } 5335 5336 /** 5337 * dev_get_stats - get network device statistics 5338 * @dev: device to get statistics from 5339 * @storage: place to store stats 5340 * 5341 * Get network statistics from device. Return @storage. 5342 * The device driver may provide its own method by setting 5343 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5344 * otherwise the internal statistics structure is used. 5345 */ 5346 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5347 struct rtnl_link_stats64 *storage) 5348 { 5349 const struct net_device_ops *ops = dev->netdev_ops; 5350 5351 if (ops->ndo_get_stats64) { 5352 memset(storage, 0, sizeof(*storage)); 5353 return ops->ndo_get_stats64(dev, storage); 5354 } 5355 if (ops->ndo_get_stats) { 5356 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5357 return storage; 5358 } 5359 netdev_stats_to_stats64(storage, &dev->stats); 5360 dev_txq_stats_fold(dev, storage); 5361 return storage; 5362 } 5363 EXPORT_SYMBOL(dev_get_stats); 5364 5365 static void netdev_init_one_queue(struct net_device *dev, 5366 struct netdev_queue *queue, 5367 void *_unused) 5368 { 5369 queue->dev = dev; 5370 } 5371 5372 static void netdev_init_queues(struct net_device *dev) 5373 { 5374 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5375 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5376 spin_lock_init(&dev->tx_global_lock); 5377 } 5378 5379 /** 5380 * alloc_netdev_mq - allocate network device 5381 * @sizeof_priv: size of private data to allocate space for 5382 * @name: device name format string 5383 * @setup: callback to initialize device 5384 * @queue_count: the number of subqueues to allocate 5385 * 5386 * Allocates a struct net_device with private data area for driver use 5387 * and performs basic initialization. Also allocates subquue structs 5388 * for each queue on the device at the end of the netdevice. 5389 */ 5390 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5391 void (*setup)(struct net_device *), unsigned int queue_count) 5392 { 5393 struct netdev_queue *tx; 5394 struct net_device *dev; 5395 size_t alloc_size; 5396 struct net_device *p; 5397 #ifdef CONFIG_RPS 5398 struct netdev_rx_queue *rx; 5399 int i; 5400 #endif 5401 5402 BUG_ON(strlen(name) >= sizeof(dev->name)); 5403 5404 alloc_size = sizeof(struct net_device); 5405 if (sizeof_priv) { 5406 /* ensure 32-byte alignment of private area */ 5407 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5408 alloc_size += sizeof_priv; 5409 } 5410 /* ensure 32-byte alignment of whole construct */ 5411 alloc_size += NETDEV_ALIGN - 1; 5412 5413 p = kzalloc(alloc_size, GFP_KERNEL); 5414 if (!p) { 5415 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5416 return NULL; 5417 } 5418 5419 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5420 if (!tx) { 5421 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5422 "tx qdiscs.\n"); 5423 goto free_p; 5424 } 5425 5426 #ifdef CONFIG_RPS 5427 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5428 if (!rx) { 5429 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5430 "rx queues.\n"); 5431 goto free_tx; 5432 } 5433 5434 atomic_set(&rx->count, queue_count); 5435 5436 /* 5437 * Set a pointer to first element in the array which holds the 5438 * reference count. 5439 */ 5440 for (i = 0; i < queue_count; i++) 5441 rx[i].first = rx; 5442 #endif 5443 5444 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5445 dev->padded = (char *)dev - (char *)p; 5446 5447 if (dev_addr_init(dev)) 5448 goto free_rx; 5449 5450 dev_mc_init(dev); 5451 dev_uc_init(dev); 5452 5453 dev_net_set(dev, &init_net); 5454 5455 dev->_tx = tx; 5456 dev->num_tx_queues = queue_count; 5457 dev->real_num_tx_queues = queue_count; 5458 5459 #ifdef CONFIG_RPS 5460 dev->_rx = rx; 5461 dev->num_rx_queues = queue_count; 5462 #endif 5463 5464 dev->gso_max_size = GSO_MAX_SIZE; 5465 5466 netdev_init_queues(dev); 5467 5468 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5469 dev->ethtool_ntuple_list.count = 0; 5470 INIT_LIST_HEAD(&dev->napi_list); 5471 INIT_LIST_HEAD(&dev->unreg_list); 5472 INIT_LIST_HEAD(&dev->link_watch_list); 5473 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5474 setup(dev); 5475 strcpy(dev->name, name); 5476 return dev; 5477 5478 free_rx: 5479 #ifdef CONFIG_RPS 5480 kfree(rx); 5481 free_tx: 5482 #endif 5483 kfree(tx); 5484 free_p: 5485 kfree(p); 5486 return NULL; 5487 } 5488 EXPORT_SYMBOL(alloc_netdev_mq); 5489 5490 /** 5491 * free_netdev - free network device 5492 * @dev: device 5493 * 5494 * This function does the last stage of destroying an allocated device 5495 * interface. The reference to the device object is released. 5496 * If this is the last reference then it will be freed. 5497 */ 5498 void free_netdev(struct net_device *dev) 5499 { 5500 struct napi_struct *p, *n; 5501 5502 release_net(dev_net(dev)); 5503 5504 kfree(dev->_tx); 5505 5506 /* Flush device addresses */ 5507 dev_addr_flush(dev); 5508 5509 /* Clear ethtool n-tuple list */ 5510 ethtool_ntuple_flush(dev); 5511 5512 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5513 netif_napi_del(p); 5514 5515 /* Compatibility with error handling in drivers */ 5516 if (dev->reg_state == NETREG_UNINITIALIZED) { 5517 kfree((char *)dev - dev->padded); 5518 return; 5519 } 5520 5521 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5522 dev->reg_state = NETREG_RELEASED; 5523 5524 /* will free via device release */ 5525 put_device(&dev->dev); 5526 } 5527 EXPORT_SYMBOL(free_netdev); 5528 5529 /** 5530 * synchronize_net - Synchronize with packet receive processing 5531 * 5532 * Wait for packets currently being received to be done. 5533 * Does not block later packets from starting. 5534 */ 5535 void synchronize_net(void) 5536 { 5537 might_sleep(); 5538 synchronize_rcu(); 5539 } 5540 EXPORT_SYMBOL(synchronize_net); 5541 5542 /** 5543 * unregister_netdevice_queue - remove device from the kernel 5544 * @dev: device 5545 * @head: list 5546 * 5547 * This function shuts down a device interface and removes it 5548 * from the kernel tables. 5549 * If head not NULL, device is queued to be unregistered later. 5550 * 5551 * Callers must hold the rtnl semaphore. You may want 5552 * unregister_netdev() instead of this. 5553 */ 5554 5555 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5556 { 5557 ASSERT_RTNL(); 5558 5559 if (head) { 5560 list_move_tail(&dev->unreg_list, head); 5561 } else { 5562 rollback_registered(dev); 5563 /* Finish processing unregister after unlock */ 5564 net_set_todo(dev); 5565 } 5566 } 5567 EXPORT_SYMBOL(unregister_netdevice_queue); 5568 5569 /** 5570 * unregister_netdevice_many - unregister many devices 5571 * @head: list of devices 5572 */ 5573 void unregister_netdevice_many(struct list_head *head) 5574 { 5575 struct net_device *dev; 5576 5577 if (!list_empty(head)) { 5578 rollback_registered_many(head); 5579 list_for_each_entry(dev, head, unreg_list) 5580 net_set_todo(dev); 5581 } 5582 } 5583 EXPORT_SYMBOL(unregister_netdevice_many); 5584 5585 /** 5586 * unregister_netdev - remove device from the kernel 5587 * @dev: device 5588 * 5589 * This function shuts down a device interface and removes it 5590 * from the kernel tables. 5591 * 5592 * This is just a wrapper for unregister_netdevice that takes 5593 * the rtnl semaphore. In general you want to use this and not 5594 * unregister_netdevice. 5595 */ 5596 void unregister_netdev(struct net_device *dev) 5597 { 5598 rtnl_lock(); 5599 unregister_netdevice(dev); 5600 rtnl_unlock(); 5601 } 5602 EXPORT_SYMBOL(unregister_netdev); 5603 5604 /** 5605 * dev_change_net_namespace - move device to different nethost namespace 5606 * @dev: device 5607 * @net: network namespace 5608 * @pat: If not NULL name pattern to try if the current device name 5609 * is already taken in the destination network namespace. 5610 * 5611 * This function shuts down a device interface and moves it 5612 * to a new network namespace. On success 0 is returned, on 5613 * a failure a netagive errno code is returned. 5614 * 5615 * Callers must hold the rtnl semaphore. 5616 */ 5617 5618 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5619 { 5620 int err; 5621 5622 ASSERT_RTNL(); 5623 5624 /* Don't allow namespace local devices to be moved. */ 5625 err = -EINVAL; 5626 if (dev->features & NETIF_F_NETNS_LOCAL) 5627 goto out; 5628 5629 /* Ensure the device has been registrered */ 5630 err = -EINVAL; 5631 if (dev->reg_state != NETREG_REGISTERED) 5632 goto out; 5633 5634 /* Get out if there is nothing todo */ 5635 err = 0; 5636 if (net_eq(dev_net(dev), net)) 5637 goto out; 5638 5639 /* Pick the destination device name, and ensure 5640 * we can use it in the destination network namespace. 5641 */ 5642 err = -EEXIST; 5643 if (__dev_get_by_name(net, dev->name)) { 5644 /* We get here if we can't use the current device name */ 5645 if (!pat) 5646 goto out; 5647 if (dev_get_valid_name(dev, pat, 1)) 5648 goto out; 5649 } 5650 5651 /* 5652 * And now a mini version of register_netdevice unregister_netdevice. 5653 */ 5654 5655 /* If device is running close it first. */ 5656 dev_close(dev); 5657 5658 /* And unlink it from device chain */ 5659 err = -ENODEV; 5660 unlist_netdevice(dev); 5661 5662 synchronize_net(); 5663 5664 /* Shutdown queueing discipline. */ 5665 dev_shutdown(dev); 5666 5667 /* Notify protocols, that we are about to destroy 5668 this device. They should clean all the things. 5669 */ 5670 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5671 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5672 5673 /* 5674 * Flush the unicast and multicast chains 5675 */ 5676 dev_uc_flush(dev); 5677 dev_mc_flush(dev); 5678 5679 /* Actually switch the network namespace */ 5680 dev_net_set(dev, net); 5681 5682 /* If there is an ifindex conflict assign a new one */ 5683 if (__dev_get_by_index(net, dev->ifindex)) { 5684 int iflink = (dev->iflink == dev->ifindex); 5685 dev->ifindex = dev_new_index(net); 5686 if (iflink) 5687 dev->iflink = dev->ifindex; 5688 } 5689 5690 /* Fixup kobjects */ 5691 err = device_rename(&dev->dev, dev->name); 5692 WARN_ON(err); 5693 5694 /* Add the device back in the hashes */ 5695 list_netdevice(dev); 5696 5697 /* Notify protocols, that a new device appeared. */ 5698 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5699 5700 /* 5701 * Prevent userspace races by waiting until the network 5702 * device is fully setup before sending notifications. 5703 */ 5704 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5705 5706 synchronize_net(); 5707 err = 0; 5708 out: 5709 return err; 5710 } 5711 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5712 5713 static int dev_cpu_callback(struct notifier_block *nfb, 5714 unsigned long action, 5715 void *ocpu) 5716 { 5717 struct sk_buff **list_skb; 5718 struct sk_buff *skb; 5719 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5720 struct softnet_data *sd, *oldsd; 5721 5722 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5723 return NOTIFY_OK; 5724 5725 local_irq_disable(); 5726 cpu = smp_processor_id(); 5727 sd = &per_cpu(softnet_data, cpu); 5728 oldsd = &per_cpu(softnet_data, oldcpu); 5729 5730 /* Find end of our completion_queue. */ 5731 list_skb = &sd->completion_queue; 5732 while (*list_skb) 5733 list_skb = &(*list_skb)->next; 5734 /* Append completion queue from offline CPU. */ 5735 *list_skb = oldsd->completion_queue; 5736 oldsd->completion_queue = NULL; 5737 5738 /* Append output queue from offline CPU. */ 5739 if (oldsd->output_queue) { 5740 *sd->output_queue_tailp = oldsd->output_queue; 5741 sd->output_queue_tailp = oldsd->output_queue_tailp; 5742 oldsd->output_queue = NULL; 5743 oldsd->output_queue_tailp = &oldsd->output_queue; 5744 } 5745 5746 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5747 local_irq_enable(); 5748 5749 /* Process offline CPU's input_pkt_queue */ 5750 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5751 netif_rx(skb); 5752 input_queue_head_incr(oldsd); 5753 } 5754 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5755 netif_rx(skb); 5756 input_queue_head_incr(oldsd); 5757 } 5758 5759 return NOTIFY_OK; 5760 } 5761 5762 5763 /** 5764 * netdev_increment_features - increment feature set by one 5765 * @all: current feature set 5766 * @one: new feature set 5767 * @mask: mask feature set 5768 * 5769 * Computes a new feature set after adding a device with feature set 5770 * @one to the master device with current feature set @all. Will not 5771 * enable anything that is off in @mask. Returns the new feature set. 5772 */ 5773 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5774 unsigned long mask) 5775 { 5776 /* If device needs checksumming, downgrade to it. */ 5777 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5778 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5779 else if (mask & NETIF_F_ALL_CSUM) { 5780 /* If one device supports v4/v6 checksumming, set for all. */ 5781 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5782 !(all & NETIF_F_GEN_CSUM)) { 5783 all &= ~NETIF_F_ALL_CSUM; 5784 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5785 } 5786 5787 /* If one device supports hw checksumming, set for all. */ 5788 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5789 all &= ~NETIF_F_ALL_CSUM; 5790 all |= NETIF_F_HW_CSUM; 5791 } 5792 } 5793 5794 one |= NETIF_F_ALL_CSUM; 5795 5796 one |= all & NETIF_F_ONE_FOR_ALL; 5797 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5798 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5799 5800 return all; 5801 } 5802 EXPORT_SYMBOL(netdev_increment_features); 5803 5804 static struct hlist_head *netdev_create_hash(void) 5805 { 5806 int i; 5807 struct hlist_head *hash; 5808 5809 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5810 if (hash != NULL) 5811 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5812 INIT_HLIST_HEAD(&hash[i]); 5813 5814 return hash; 5815 } 5816 5817 /* Initialize per network namespace state */ 5818 static int __net_init netdev_init(struct net *net) 5819 { 5820 INIT_LIST_HEAD(&net->dev_base_head); 5821 5822 net->dev_name_head = netdev_create_hash(); 5823 if (net->dev_name_head == NULL) 5824 goto err_name; 5825 5826 net->dev_index_head = netdev_create_hash(); 5827 if (net->dev_index_head == NULL) 5828 goto err_idx; 5829 5830 return 0; 5831 5832 err_idx: 5833 kfree(net->dev_name_head); 5834 err_name: 5835 return -ENOMEM; 5836 } 5837 5838 /** 5839 * netdev_drivername - network driver for the device 5840 * @dev: network device 5841 * @buffer: buffer for resulting name 5842 * @len: size of buffer 5843 * 5844 * Determine network driver for device. 5845 */ 5846 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5847 { 5848 const struct device_driver *driver; 5849 const struct device *parent; 5850 5851 if (len <= 0 || !buffer) 5852 return buffer; 5853 buffer[0] = 0; 5854 5855 parent = dev->dev.parent; 5856 5857 if (!parent) 5858 return buffer; 5859 5860 driver = parent->driver; 5861 if (driver && driver->name) 5862 strlcpy(buffer, driver->name, len); 5863 return buffer; 5864 } 5865 5866 static int __netdev_printk(const char *level, const struct net_device *dev, 5867 struct va_format *vaf) 5868 { 5869 int r; 5870 5871 if (dev && dev->dev.parent) 5872 r = dev_printk(level, dev->dev.parent, "%s: %pV", 5873 netdev_name(dev), vaf); 5874 else if (dev) 5875 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 5876 else 5877 r = printk("%s(NULL net_device): %pV", level, vaf); 5878 5879 return r; 5880 } 5881 5882 int netdev_printk(const char *level, const struct net_device *dev, 5883 const char *format, ...) 5884 { 5885 struct va_format vaf; 5886 va_list args; 5887 int r; 5888 5889 va_start(args, format); 5890 5891 vaf.fmt = format; 5892 vaf.va = &args; 5893 5894 r = __netdev_printk(level, dev, &vaf); 5895 va_end(args); 5896 5897 return r; 5898 } 5899 EXPORT_SYMBOL(netdev_printk); 5900 5901 #define define_netdev_printk_level(func, level) \ 5902 int func(const struct net_device *dev, const char *fmt, ...) \ 5903 { \ 5904 int r; \ 5905 struct va_format vaf; \ 5906 va_list args; \ 5907 \ 5908 va_start(args, fmt); \ 5909 \ 5910 vaf.fmt = fmt; \ 5911 vaf.va = &args; \ 5912 \ 5913 r = __netdev_printk(level, dev, &vaf); \ 5914 va_end(args); \ 5915 \ 5916 return r; \ 5917 } \ 5918 EXPORT_SYMBOL(func); 5919 5920 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 5921 define_netdev_printk_level(netdev_alert, KERN_ALERT); 5922 define_netdev_printk_level(netdev_crit, KERN_CRIT); 5923 define_netdev_printk_level(netdev_err, KERN_ERR); 5924 define_netdev_printk_level(netdev_warn, KERN_WARNING); 5925 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 5926 define_netdev_printk_level(netdev_info, KERN_INFO); 5927 5928 static void __net_exit netdev_exit(struct net *net) 5929 { 5930 kfree(net->dev_name_head); 5931 kfree(net->dev_index_head); 5932 } 5933 5934 static struct pernet_operations __net_initdata netdev_net_ops = { 5935 .init = netdev_init, 5936 .exit = netdev_exit, 5937 }; 5938 5939 static void __net_exit default_device_exit(struct net *net) 5940 { 5941 struct net_device *dev, *aux; 5942 /* 5943 * Push all migratable network devices back to the 5944 * initial network namespace 5945 */ 5946 rtnl_lock(); 5947 for_each_netdev_safe(net, dev, aux) { 5948 int err; 5949 char fb_name[IFNAMSIZ]; 5950 5951 /* Ignore unmoveable devices (i.e. loopback) */ 5952 if (dev->features & NETIF_F_NETNS_LOCAL) 5953 continue; 5954 5955 /* Leave virtual devices for the generic cleanup */ 5956 if (dev->rtnl_link_ops) 5957 continue; 5958 5959 /* Push remaing network devices to init_net */ 5960 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5961 err = dev_change_net_namespace(dev, &init_net, fb_name); 5962 if (err) { 5963 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5964 __func__, dev->name, err); 5965 BUG(); 5966 } 5967 } 5968 rtnl_unlock(); 5969 } 5970 5971 static void __net_exit default_device_exit_batch(struct list_head *net_list) 5972 { 5973 /* At exit all network devices most be removed from a network 5974 * namespace. Do this in the reverse order of registeration. 5975 * Do this across as many network namespaces as possible to 5976 * improve batching efficiency. 5977 */ 5978 struct net_device *dev; 5979 struct net *net; 5980 LIST_HEAD(dev_kill_list); 5981 5982 rtnl_lock(); 5983 list_for_each_entry(net, net_list, exit_list) { 5984 for_each_netdev_reverse(net, dev) { 5985 if (dev->rtnl_link_ops) 5986 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5987 else 5988 unregister_netdevice_queue(dev, &dev_kill_list); 5989 } 5990 } 5991 unregister_netdevice_many(&dev_kill_list); 5992 rtnl_unlock(); 5993 } 5994 5995 static struct pernet_operations __net_initdata default_device_ops = { 5996 .exit = default_device_exit, 5997 .exit_batch = default_device_exit_batch, 5998 }; 5999 6000 /* 6001 * Initialize the DEV module. At boot time this walks the device list and 6002 * unhooks any devices that fail to initialise (normally hardware not 6003 * present) and leaves us with a valid list of present and active devices. 6004 * 6005 */ 6006 6007 /* 6008 * This is called single threaded during boot, so no need 6009 * to take the rtnl semaphore. 6010 */ 6011 static int __init net_dev_init(void) 6012 { 6013 int i, rc = -ENOMEM; 6014 6015 BUG_ON(!dev_boot_phase); 6016 6017 if (dev_proc_init()) 6018 goto out; 6019 6020 if (netdev_kobject_init()) 6021 goto out; 6022 6023 INIT_LIST_HEAD(&ptype_all); 6024 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6025 INIT_LIST_HEAD(&ptype_base[i]); 6026 6027 if (register_pernet_subsys(&netdev_net_ops)) 6028 goto out; 6029 6030 /* 6031 * Initialise the packet receive queues. 6032 */ 6033 6034 for_each_possible_cpu(i) { 6035 struct softnet_data *sd = &per_cpu(softnet_data, i); 6036 6037 memset(sd, 0, sizeof(*sd)); 6038 skb_queue_head_init(&sd->input_pkt_queue); 6039 skb_queue_head_init(&sd->process_queue); 6040 sd->completion_queue = NULL; 6041 INIT_LIST_HEAD(&sd->poll_list); 6042 sd->output_queue = NULL; 6043 sd->output_queue_tailp = &sd->output_queue; 6044 #ifdef CONFIG_RPS 6045 sd->csd.func = rps_trigger_softirq; 6046 sd->csd.info = sd; 6047 sd->csd.flags = 0; 6048 sd->cpu = i; 6049 #endif 6050 6051 sd->backlog.poll = process_backlog; 6052 sd->backlog.weight = weight_p; 6053 sd->backlog.gro_list = NULL; 6054 sd->backlog.gro_count = 0; 6055 } 6056 6057 dev_boot_phase = 0; 6058 6059 /* The loopback device is special if any other network devices 6060 * is present in a network namespace the loopback device must 6061 * be present. Since we now dynamically allocate and free the 6062 * loopback device ensure this invariant is maintained by 6063 * keeping the loopback device as the first device on the 6064 * list of network devices. Ensuring the loopback devices 6065 * is the first device that appears and the last network device 6066 * that disappears. 6067 */ 6068 if (register_pernet_device(&loopback_net_ops)) 6069 goto out; 6070 6071 if (register_pernet_device(&default_device_ops)) 6072 goto out; 6073 6074 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6075 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6076 6077 hotcpu_notifier(dev_cpu_callback, 0); 6078 dst_init(); 6079 dev_mcast_init(); 6080 rc = 0; 6081 out: 6082 return rc; 6083 } 6084 6085 subsys_initcall(net_dev_init); 6086 6087 static int __init initialize_hashrnd(void) 6088 { 6089 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6090 return 0; 6091 } 6092 6093 late_initcall_sync(initialize_hashrnd); 6094 6095