xref: /linux/net/core/dev.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_alloc_name_ns(struct net *net,
963 			     struct net_device *dev,
964 			     const char *name)
965 {
966 	char buf[IFNAMSIZ];
967 	int ret;
968 
969 	ret = __dev_alloc_name(net, name, buf);
970 	if (ret >= 0)
971 		strlcpy(dev->name, buf, IFNAMSIZ);
972 	return ret;
973 }
974 
975 static int dev_get_valid_name(struct net *net,
976 			      struct net_device *dev,
977 			      const char *name)
978 {
979 	BUG_ON(!net);
980 
981 	if (!dev_valid_name(name))
982 		return -EINVAL;
983 
984 	if (strchr(name, '%'))
985 		return dev_alloc_name_ns(net, dev, name);
986 	else if (__dev_get_by_name(net, name))
987 		return -EEXIST;
988 	else if (dev->name != name)
989 		strlcpy(dev->name, name, IFNAMSIZ);
990 
991 	return 0;
992 }
993 
994 /**
995  *	dev_change_name - change name of a device
996  *	@dev: device
997  *	@newname: name (or format string) must be at least IFNAMSIZ
998  *
999  *	Change name of a device, can pass format strings "eth%d".
1000  *	for wildcarding.
1001  */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 	char oldname[IFNAMSIZ];
1005 	int err = 0;
1006 	int ret;
1007 	struct net *net;
1008 
1009 	ASSERT_RTNL();
1010 	BUG_ON(!dev_net(dev));
1011 
1012 	net = dev_net(dev);
1013 	if (dev->flags & IFF_UP)
1014 		return -EBUSY;
1015 
1016 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 		return 0;
1018 
1019 	memcpy(oldname, dev->name, IFNAMSIZ);
1020 
1021 	err = dev_get_valid_name(net, dev, newname);
1022 	if (err < 0)
1023 		return err;
1024 
1025 rollback:
1026 	ret = device_rename(&dev->dev, dev->name);
1027 	if (ret) {
1028 		memcpy(dev->name, oldname, IFNAMSIZ);
1029 		return ret;
1030 	}
1031 
1032 	write_lock_bh(&dev_base_lock);
1033 	hlist_del_rcu(&dev->name_hlist);
1034 	write_unlock_bh(&dev_base_lock);
1035 
1036 	synchronize_rcu();
1037 
1038 	write_lock_bh(&dev_base_lock);
1039 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 	write_unlock_bh(&dev_base_lock);
1041 
1042 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 	ret = notifier_to_errno(ret);
1044 
1045 	if (ret) {
1046 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1047 		if (err >= 0) {
1048 			err = ret;
1049 			memcpy(dev->name, oldname, IFNAMSIZ);
1050 			goto rollback;
1051 		} else {
1052 			pr_err("%s: name change rollback failed: %d\n",
1053 			       dev->name, ret);
1054 		}
1055 	}
1056 
1057 	return err;
1058 }
1059 
1060 /**
1061  *	dev_set_alias - change ifalias of a device
1062  *	@dev: device
1063  *	@alias: name up to IFALIASZ
1064  *	@len: limit of bytes to copy from info
1065  *
1066  *	Set ifalias for a device,
1067  */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 	char *new_ifalias;
1071 
1072 	ASSERT_RTNL();
1073 
1074 	if (len >= IFALIASZ)
1075 		return -EINVAL;
1076 
1077 	if (!len) {
1078 		if (dev->ifalias) {
1079 			kfree(dev->ifalias);
1080 			dev->ifalias = NULL;
1081 		}
1082 		return 0;
1083 	}
1084 
1085 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 	if (!new_ifalias)
1087 		return -ENOMEM;
1088 	dev->ifalias = new_ifalias;
1089 
1090 	strlcpy(dev->ifalias, alias, len+1);
1091 	return len;
1092 }
1093 
1094 
1095 /**
1096  *	netdev_features_change - device changes features
1097  *	@dev: device to cause notification
1098  *
1099  *	Called to indicate a device has changed features.
1100  */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106 
1107 /**
1108  *	netdev_state_change - device changes state
1109  *	@dev: device to cause notification
1110  *
1111  *	Called to indicate a device has changed state. This function calls
1112  *	the notifier chains for netdev_chain and sends a NEWLINK message
1113  *	to the routing socket.
1114  */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 	if (dev->flags & IFF_UP) {
1118 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 	}
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123 
1124 /**
1125  * 	netdev_notify_peers - notify network peers about existence of @dev
1126  * 	@dev: network device
1127  *
1128  * Generate traffic such that interested network peers are aware of
1129  * @dev, such as by generating a gratuitous ARP. This may be used when
1130  * a device wants to inform the rest of the network about some sort of
1131  * reconfiguration such as a failover event or virtual machine
1132  * migration.
1133  */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 	rtnl_lock();
1137 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 	rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141 
1142 /**
1143  *	dev_load 	- load a network module
1144  *	@net: the applicable net namespace
1145  *	@name: name of interface
1146  *
1147  *	If a network interface is not present and the process has suitable
1148  *	privileges this function loads the module. If module loading is not
1149  *	available in this kernel then it becomes a nop.
1150  */
1151 
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 	struct net_device *dev;
1155 	int no_module;
1156 
1157 	rcu_read_lock();
1158 	dev = dev_get_by_name_rcu(net, name);
1159 	rcu_read_unlock();
1160 
1161 	no_module = !dev;
1162 	if (no_module && capable(CAP_NET_ADMIN))
1163 		no_module = request_module("netdev-%s", name);
1164 	if (no_module && capable(CAP_SYS_MODULE)) {
1165 		if (!request_module("%s", name))
1166 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 				name);
1168 	}
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171 
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 	const struct net_device_ops *ops = dev->netdev_ops;
1175 	int ret;
1176 
1177 	ASSERT_RTNL();
1178 
1179 	if (!netif_device_present(dev))
1180 		return -ENODEV;
1181 
1182 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 	ret = notifier_to_errno(ret);
1184 	if (ret)
1185 		return ret;
1186 
1187 	set_bit(__LINK_STATE_START, &dev->state);
1188 
1189 	if (ops->ndo_validate_addr)
1190 		ret = ops->ndo_validate_addr(dev);
1191 
1192 	if (!ret && ops->ndo_open)
1193 		ret = ops->ndo_open(dev);
1194 
1195 	if (ret)
1196 		clear_bit(__LINK_STATE_START, &dev->state);
1197 	else {
1198 		dev->flags |= IFF_UP;
1199 		net_dmaengine_get();
1200 		dev_set_rx_mode(dev);
1201 		dev_activate(dev);
1202 		add_device_randomness(dev->dev_addr, dev->addr_len);
1203 	}
1204 
1205 	return ret;
1206 }
1207 
1208 /**
1209  *	dev_open	- prepare an interface for use.
1210  *	@dev:	device to open
1211  *
1212  *	Takes a device from down to up state. The device's private open
1213  *	function is invoked and then the multicast lists are loaded. Finally
1214  *	the device is moved into the up state and a %NETDEV_UP message is
1215  *	sent to the netdev notifier chain.
1216  *
1217  *	Calling this function on an active interface is a nop. On a failure
1218  *	a negative errno code is returned.
1219  */
1220 int dev_open(struct net_device *dev)
1221 {
1222 	int ret;
1223 
1224 	if (dev->flags & IFF_UP)
1225 		return 0;
1226 
1227 	ret = __dev_open(dev);
1228 	if (ret < 0)
1229 		return ret;
1230 
1231 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 	call_netdevice_notifiers(NETDEV_UP, dev);
1233 
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237 
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 	struct net_device *dev;
1241 
1242 	ASSERT_RTNL();
1243 	might_sleep();
1244 
1245 	list_for_each_entry(dev, head, unreg_list) {
1246 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247 
1248 		clear_bit(__LINK_STATE_START, &dev->state);
1249 
1250 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1251 		 * can be even on different cpu. So just clear netif_running().
1252 		 *
1253 		 * dev->stop() will invoke napi_disable() on all of it's
1254 		 * napi_struct instances on this device.
1255 		 */
1256 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 	}
1258 
1259 	dev_deactivate_many(head);
1260 
1261 	list_for_each_entry(dev, head, unreg_list) {
1262 		const struct net_device_ops *ops = dev->netdev_ops;
1263 
1264 		/*
1265 		 *	Call the device specific close. This cannot fail.
1266 		 *	Only if device is UP
1267 		 *
1268 		 *	We allow it to be called even after a DETACH hot-plug
1269 		 *	event.
1270 		 */
1271 		if (ops->ndo_stop)
1272 			ops->ndo_stop(dev);
1273 
1274 		dev->flags &= ~IFF_UP;
1275 		net_dmaengine_put();
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 	int retval;
1284 	LIST_HEAD(single);
1285 
1286 	list_add(&dev->unreg_list, &single);
1287 	retval = __dev_close_many(&single);
1288 	list_del(&single);
1289 	return retval;
1290 }
1291 
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 	struct net_device *dev, *tmp;
1295 	LIST_HEAD(tmp_list);
1296 
1297 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 		if (!(dev->flags & IFF_UP))
1299 			list_move(&dev->unreg_list, &tmp_list);
1300 
1301 	__dev_close_many(head);
1302 
1303 	list_for_each_entry(dev, head, unreg_list) {
1304 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 	}
1307 
1308 	/* rollback_registered_many needs the complete original list */
1309 	list_splice(&tmp_list, head);
1310 	return 0;
1311 }
1312 
1313 /**
1314  *	dev_close - shutdown an interface.
1315  *	@dev: device to shutdown
1316  *
1317  *	This function moves an active device into down state. A
1318  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320  *	chain.
1321  */
1322 int dev_close(struct net_device *dev)
1323 {
1324 	if (dev->flags & IFF_UP) {
1325 		LIST_HEAD(single);
1326 
1327 		list_add(&dev->unreg_list, &single);
1328 		dev_close_many(&single);
1329 		list_del(&single);
1330 	}
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334 
1335 
1336 /**
1337  *	dev_disable_lro - disable Large Receive Offload on a device
1338  *	@dev: device
1339  *
1340  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1341  *	called under RTNL.  This is needed if received packets may be
1342  *	forwarded to another interface.
1343  */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 	/*
1347 	 * If we're trying to disable lro on a vlan device
1348 	 * use the underlying physical device instead
1349 	 */
1350 	if (is_vlan_dev(dev))
1351 		dev = vlan_dev_real_dev(dev);
1352 
1353 	dev->wanted_features &= ~NETIF_F_LRO;
1354 	netdev_update_features(dev);
1355 
1356 	if (unlikely(dev->features & NETIF_F_LRO))
1357 		netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360 
1361 
1362 static int dev_boot_phase = 1;
1363 
1364 /**
1365  *	register_netdevice_notifier - register a network notifier block
1366  *	@nb: notifier
1367  *
1368  *	Register a notifier to be called when network device events occur.
1369  *	The notifier passed is linked into the kernel structures and must
1370  *	not be reused until it has been unregistered. A negative errno code
1371  *	is returned on a failure.
1372  *
1373  * 	When registered all registration and up events are replayed
1374  *	to the new notifier to allow device to have a race free
1375  *	view of the network device list.
1376  */
1377 
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 	struct net_device *dev;
1381 	struct net_device *last;
1382 	struct net *net;
1383 	int err;
1384 
1385 	rtnl_lock();
1386 	err = raw_notifier_chain_register(&netdev_chain, nb);
1387 	if (err)
1388 		goto unlock;
1389 	if (dev_boot_phase)
1390 		goto unlock;
1391 	for_each_net(net) {
1392 		for_each_netdev(net, dev) {
1393 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 			err = notifier_to_errno(err);
1395 			if (err)
1396 				goto rollback;
1397 
1398 			if (!(dev->flags & IFF_UP))
1399 				continue;
1400 
1401 			nb->notifier_call(nb, NETDEV_UP, dev);
1402 		}
1403 	}
1404 
1405 unlock:
1406 	rtnl_unlock();
1407 	return err;
1408 
1409 rollback:
1410 	last = dev;
1411 	for_each_net(net) {
1412 		for_each_netdev(net, dev) {
1413 			if (dev == last)
1414 				goto outroll;
1415 
1416 			if (dev->flags & IFF_UP) {
1417 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 			}
1420 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 		}
1422 	}
1423 
1424 outroll:
1425 	raw_notifier_chain_unregister(&netdev_chain, nb);
1426 	goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429 
1430 /**
1431  *	unregister_netdevice_notifier - unregister a network notifier block
1432  *	@nb: notifier
1433  *
1434  *	Unregister a notifier previously registered by
1435  *	register_netdevice_notifier(). The notifier is unlinked into the
1436  *	kernel structures and may then be reused. A negative errno code
1437  *	is returned on a failure.
1438  *
1439  * 	After unregistering unregister and down device events are synthesized
1440  *	for all devices on the device list to the removed notifier to remove
1441  *	the need for special case cleanup code.
1442  */
1443 
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 	struct net_device *dev;
1447 	struct net *net;
1448 	int err;
1449 
1450 	rtnl_lock();
1451 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 	if (err)
1453 		goto unlock;
1454 
1455 	for_each_net(net) {
1456 		for_each_netdev(net, dev) {
1457 			if (dev->flags & IFF_UP) {
1458 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 			}
1461 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 		}
1463 	}
1464 unlock:
1465 	rtnl_unlock();
1466 	return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469 
1470 /**
1471  *	call_netdevice_notifiers - call all network notifier blocks
1472  *      @val: value passed unmodified to notifier function
1473  *      @dev: net_device pointer passed unmodified to notifier function
1474  *
1475  *	Call all network notifier blocks.  Parameters and return value
1476  *	are as for raw_notifier_call_chain().
1477  */
1478 
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 	ASSERT_RTNL();
1482 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485 
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489  * If net_disable_timestamp() is called from irq context, defer the
1490  * static_key_slow_dec() calls.
1491  */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494 
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499 
1500 	if (deferred) {
1501 		while (--deferred)
1502 			static_key_slow_dec(&netstamp_needed);
1503 		return;
1504 	}
1505 #endif
1506 	WARN_ON(in_interrupt());
1507 	static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510 
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 	if (in_interrupt()) {
1515 		atomic_inc(&netstamp_needed_deferred);
1516 		return;
1517 	}
1518 #endif
1519 	static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522 
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 	skb->tstamp.tv64 = 0;
1526 	if (static_key_false(&netstamp_needed))
1527 		__net_timestamp(skb);
1528 }
1529 
1530 #define net_timestamp_check(COND, SKB)			\
1531 	if (static_key_false(&netstamp_needed)) {		\
1532 		if ((COND) && !(SKB)->tstamp.tv64)	\
1533 			__net_timestamp(SKB);		\
1534 	}						\
1535 
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 	struct hwtstamp_config cfg;
1539 	enum hwtstamp_tx_types tx_type;
1540 	enum hwtstamp_rx_filters rx_filter;
1541 	int tx_type_valid = 0;
1542 	int rx_filter_valid = 0;
1543 
1544 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 		return -EFAULT;
1546 
1547 	if (cfg.flags) /* reserved for future extensions */
1548 		return -EINVAL;
1549 
1550 	tx_type = cfg.tx_type;
1551 	rx_filter = cfg.rx_filter;
1552 
1553 	switch (tx_type) {
1554 	case HWTSTAMP_TX_OFF:
1555 	case HWTSTAMP_TX_ON:
1556 	case HWTSTAMP_TX_ONESTEP_SYNC:
1557 		tx_type_valid = 1;
1558 		break;
1559 	}
1560 
1561 	switch (rx_filter) {
1562 	case HWTSTAMP_FILTER_NONE:
1563 	case HWTSTAMP_FILTER_ALL:
1564 	case HWTSTAMP_FILTER_SOME:
1565 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 		rx_filter_valid = 1;
1578 		break;
1579 	}
1580 
1581 	if (!tx_type_valid || !rx_filter_valid)
1582 		return -ERANGE;
1583 
1584 	return 0;
1585 }
1586 
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 				      struct sk_buff *skb)
1589 {
1590 	unsigned int len;
1591 
1592 	if (!(dev->flags & IFF_UP))
1593 		return false;
1594 
1595 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 	if (skb->len <= len)
1597 		return true;
1598 
1599 	/* if TSO is enabled, we don't care about the length as the packet
1600 	 * could be forwarded without being segmented before
1601 	 */
1602 	if (skb_is_gso(skb))
1603 		return true;
1604 
1605 	return false;
1606 }
1607 
1608 /**
1609  * dev_forward_skb - loopback an skb to another netif
1610  *
1611  * @dev: destination network device
1612  * @skb: buffer to forward
1613  *
1614  * return values:
1615  *	NET_RX_SUCCESS	(no congestion)
1616  *	NET_RX_DROP     (packet was dropped, but freed)
1617  *
1618  * dev_forward_skb can be used for injecting an skb from the
1619  * start_xmit function of one device into the receive queue
1620  * of another device.
1621  *
1622  * The receiving device may be in another namespace, so
1623  * we have to clear all information in the skb that could
1624  * impact namespace isolation.
1625  */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 			atomic_long_inc(&dev->rx_dropped);
1631 			kfree_skb(skb);
1632 			return NET_RX_DROP;
1633 		}
1634 	}
1635 
1636 	skb_orphan(skb);
1637 	nf_reset(skb);
1638 
1639 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 		atomic_long_inc(&dev->rx_dropped);
1641 		kfree_skb(skb);
1642 		return NET_RX_DROP;
1643 	}
1644 	skb->skb_iif = 0;
1645 	skb->dev = dev;
1646 	skb_dst_drop(skb);
1647 	skb->tstamp.tv64 = 0;
1648 	skb->pkt_type = PACKET_HOST;
1649 	skb->protocol = eth_type_trans(skb, dev);
1650 	skb->mark = 0;
1651 	secpath_reset(skb);
1652 	nf_reset(skb);
1653 	return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656 
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 			      struct packet_type *pt_prev,
1659 			      struct net_device *orig_dev)
1660 {
1661 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 		return -ENOMEM;
1663 	atomic_inc(&skb->users);
1664 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666 
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 	if (ptype->af_packet_priv == NULL)
1670 		return false;
1671 
1672 	if (ptype->id_match)
1673 		return ptype->id_match(ptype, skb->sk);
1674 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 		return true;
1676 
1677 	return false;
1678 }
1679 
1680 /*
1681  *	Support routine. Sends outgoing frames to any network
1682  *	taps currently in use.
1683  */
1684 
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 	struct packet_type *ptype;
1688 	struct sk_buff *skb2 = NULL;
1689 	struct packet_type *pt_prev = NULL;
1690 
1691 	rcu_read_lock();
1692 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 		/* Never send packets back to the socket
1694 		 * they originated from - MvS (miquels@drinkel.ow.org)
1695 		 */
1696 		if ((ptype->dev == dev || !ptype->dev) &&
1697 		    (!skb_loop_sk(ptype, skb))) {
1698 			if (pt_prev) {
1699 				deliver_skb(skb2, pt_prev, skb->dev);
1700 				pt_prev = ptype;
1701 				continue;
1702 			}
1703 
1704 			skb2 = skb_clone(skb, GFP_ATOMIC);
1705 			if (!skb2)
1706 				break;
1707 
1708 			net_timestamp_set(skb2);
1709 
1710 			/* skb->nh should be correctly
1711 			   set by sender, so that the second statement is
1712 			   just protection against buggy protocols.
1713 			 */
1714 			skb_reset_mac_header(skb2);
1715 
1716 			if (skb_network_header(skb2) < skb2->data ||
1717 			    skb2->network_header > skb2->tail) {
1718 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 						     ntohs(skb2->protocol),
1720 						     dev->name);
1721 				skb_reset_network_header(skb2);
1722 			}
1723 
1724 			skb2->transport_header = skb2->network_header;
1725 			skb2->pkt_type = PACKET_OUTGOING;
1726 			pt_prev = ptype;
1727 		}
1728 	}
1729 	if (pt_prev)
1730 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 	rcu_read_unlock();
1732 }
1733 
1734 /**
1735  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736  * @dev: Network device
1737  * @txq: number of queues available
1738  *
1739  * If real_num_tx_queues is changed the tc mappings may no longer be
1740  * valid. To resolve this verify the tc mapping remains valid and if
1741  * not NULL the mapping. With no priorities mapping to this
1742  * offset/count pair it will no longer be used. In the worst case TC0
1743  * is invalid nothing can be done so disable priority mappings. If is
1744  * expected that drivers will fix this mapping if they can before
1745  * calling netif_set_real_num_tx_queues.
1746  */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 	int i;
1750 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751 
1752 	/* If TC0 is invalidated disable TC mapping */
1753 	if (tc->offset + tc->count > txq) {
1754 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 		dev->num_tc = 0;
1756 		return;
1757 	}
1758 
1759 	/* Invalidated prio to tc mappings set to TC0 */
1760 	for (i = 1; i < TC_BITMASK + 1; i++) {
1761 		int q = netdev_get_prio_tc_map(dev, i);
1762 
1763 		tc = &dev->tc_to_txq[q];
1764 		if (tc->offset + tc->count > txq) {
1765 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 				i, q);
1767 			netdev_set_prio_tc_map(dev, i, 0);
1768 		}
1769 	}
1770 }
1771 
1772 /*
1773  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775  */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 	int rc;
1779 
1780 	if (txq < 1 || txq > dev->num_tx_queues)
1781 		return -EINVAL;
1782 
1783 	if (dev->reg_state == NETREG_REGISTERED ||
1784 	    dev->reg_state == NETREG_UNREGISTERING) {
1785 		ASSERT_RTNL();
1786 
1787 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 						  txq);
1789 		if (rc)
1790 			return rc;
1791 
1792 		if (dev->num_tc)
1793 			netif_setup_tc(dev, txq);
1794 
1795 		if (txq < dev->real_num_tx_queues)
1796 			qdisc_reset_all_tx_gt(dev, txq);
1797 	}
1798 
1799 	dev->real_num_tx_queues = txq;
1800 	return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803 
1804 #ifdef CONFIG_RPS
1805 /**
1806  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1807  *	@dev: Network device
1808  *	@rxq: Actual number of RX queues
1809  *
1810  *	This must be called either with the rtnl_lock held or before
1811  *	registration of the net device.  Returns 0 on success, or a
1812  *	negative error code.  If called before registration, it always
1813  *	succeeds.
1814  */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 	int rc;
1818 
1819 	if (rxq < 1 || rxq > dev->num_rx_queues)
1820 		return -EINVAL;
1821 
1822 	if (dev->reg_state == NETREG_REGISTERED) {
1823 		ASSERT_RTNL();
1824 
1825 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 						  rxq);
1827 		if (rc)
1828 			return rc;
1829 	}
1830 
1831 	dev->real_num_rx_queues = rxq;
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836 
1837 /**
1838  * netif_get_num_default_rss_queues - default number of RSS queues
1839  *
1840  * This routine should set an upper limit on the number of RSS queues
1841  * used by default by multiqueue devices.
1842  */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848 
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 	struct softnet_data *sd;
1852 	unsigned long flags;
1853 
1854 	local_irq_save(flags);
1855 	sd = &__get_cpu_var(softnet_data);
1856 	q->next_sched = NULL;
1857 	*sd->output_queue_tailp = q;
1858 	sd->output_queue_tailp = &q->next_sched;
1859 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 	local_irq_restore(flags);
1861 }
1862 
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 		__netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869 
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 	if (atomic_dec_and_test(&skb->users)) {
1873 		struct softnet_data *sd;
1874 		unsigned long flags;
1875 
1876 		local_irq_save(flags);
1877 		sd = &__get_cpu_var(softnet_data);
1878 		skb->next = sd->completion_queue;
1879 		sd->completion_queue = skb;
1880 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 		local_irq_restore(flags);
1882 	}
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885 
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 	if (in_irq() || irqs_disabled())
1889 		dev_kfree_skb_irq(skb);
1890 	else
1891 		dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894 
1895 
1896 /**
1897  * netif_device_detach - mark device as removed
1898  * @dev: network device
1899  *
1900  * Mark device as removed from system and therefore no longer available.
1901  */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 	    netif_running(dev)) {
1906 		netif_tx_stop_all_queues(dev);
1907 	}
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910 
1911 /**
1912  * netif_device_attach - mark device as attached
1913  * @dev: network device
1914  *
1915  * Mark device as attached from system and restart if needed.
1916  */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 	    netif_running(dev)) {
1921 		netif_tx_wake_all_queues(dev);
1922 		__netdev_watchdog_up(dev);
1923 	}
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926 
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 	static const netdev_features_t null_features = 0;
1930 	struct net_device *dev = skb->dev;
1931 	const char *driver = "";
1932 
1933 	if (dev && dev->dev.parent)
1934 		driver = dev_driver_string(dev->dev.parent);
1935 
1936 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 	     "gso_type=%d ip_summed=%d\n",
1938 	     driver, dev ? &dev->features : &null_features,
1939 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943 
1944 /*
1945  * Invalidate hardware checksum when packet is to be mangled, and
1946  * complete checksum manually on outgoing path.
1947  */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 	__wsum csum;
1951 	int ret = 0, offset;
1952 
1953 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 		goto out_set_summed;
1955 
1956 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 		skb_warn_bad_offload(skb);
1958 		return -EINVAL;
1959 	}
1960 
1961 	offset = skb_checksum_start_offset(skb);
1962 	BUG_ON(offset >= skb_headlen(skb));
1963 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964 
1965 	offset += skb->csum_offset;
1966 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967 
1968 	if (skb_cloned(skb) &&
1969 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 		if (ret)
1972 			goto out;
1973 	}
1974 
1975 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 	skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 	return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982 
1983 /**
1984  *	skb_gso_segment - Perform segmentation on skb.
1985  *	@skb: buffer to segment
1986  *	@features: features for the output path (see dev->features)
1987  *
1988  *	This function segments the given skb and returns a list of segments.
1989  *
1990  *	It may return NULL if the skb requires no segmentation.  This is
1991  *	only possible when GSO is used for verifying header integrity.
1992  */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 	netdev_features_t features)
1995 {
1996 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 	struct packet_type *ptype;
1998 	__be16 type = skb->protocol;
1999 	int vlan_depth = ETH_HLEN;
2000 	int err;
2001 
2002 	while (type == htons(ETH_P_8021Q)) {
2003 		struct vlan_hdr *vh;
2004 
2005 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 			return ERR_PTR(-EINVAL);
2007 
2008 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 		type = vh->h_vlan_encapsulated_proto;
2010 		vlan_depth += VLAN_HLEN;
2011 	}
2012 
2013 	skb_reset_mac_header(skb);
2014 	skb->mac_len = skb->network_header - skb->mac_header;
2015 	__skb_pull(skb, skb->mac_len);
2016 
2017 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 		skb_warn_bad_offload(skb);
2019 
2020 		if (skb_header_cloned(skb) &&
2021 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 			return ERR_PTR(err);
2023 	}
2024 
2025 	rcu_read_lock();
2026 	list_for_each_entry_rcu(ptype,
2027 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 				err = ptype->gso_send_check(skb);
2031 				segs = ERR_PTR(err);
2032 				if (err || skb_gso_ok(skb, features))
2033 					break;
2034 				__skb_push(skb, (skb->data -
2035 						 skb_network_header(skb)));
2036 			}
2037 			segs = ptype->gso_segment(skb, features);
2038 			break;
2039 		}
2040 	}
2041 	rcu_read_unlock();
2042 
2043 	__skb_push(skb, skb->data - skb_mac_header(skb));
2044 
2045 	return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048 
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 	if (net_ratelimit()) {
2054 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 		dump_stack();
2056 	}
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060 
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062  * 1. IOMMU is present and allows to map all the memory.
2063  * 2. No high memory really exists on this machine.
2064  */
2065 
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 	int i;
2070 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 			if (PageHighMem(skb_frag_page(frag)))
2074 				return 1;
2075 		}
2076 	}
2077 
2078 	if (PCI_DMA_BUS_IS_PHYS) {
2079 		struct device *pdev = dev->dev.parent;
2080 
2081 		if (!pdev)
2082 			return 0;
2083 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 				return 1;
2088 		}
2089 	}
2090 #endif
2091 	return 0;
2092 }
2093 
2094 struct dev_gso_cb {
2095 	void (*destructor)(struct sk_buff *skb);
2096 };
2097 
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099 
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 	struct dev_gso_cb *cb;
2103 
2104 	do {
2105 		struct sk_buff *nskb = skb->next;
2106 
2107 		skb->next = nskb->next;
2108 		nskb->next = NULL;
2109 		kfree_skb(nskb);
2110 	} while (skb->next);
2111 
2112 	cb = DEV_GSO_CB(skb);
2113 	if (cb->destructor)
2114 		cb->destructor(skb);
2115 }
2116 
2117 /**
2118  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2119  *	@skb: buffer to segment
2120  *	@features: device features as applicable to this skb
2121  *
2122  *	This function segments the given skb and stores the list of segments
2123  *	in skb->next.
2124  */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 	struct sk_buff *segs;
2128 
2129 	segs = skb_gso_segment(skb, features);
2130 
2131 	/* Verifying header integrity only. */
2132 	if (!segs)
2133 		return 0;
2134 
2135 	if (IS_ERR(segs))
2136 		return PTR_ERR(segs);
2137 
2138 	skb->next = segs;
2139 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 	skb->destructor = dev_gso_skb_destructor;
2141 
2142 	return 0;
2143 }
2144 
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 	return ((features & NETIF_F_GEN_CSUM) ||
2148 		((features & NETIF_F_V4_CSUM) &&
2149 		 protocol == htons(ETH_P_IP)) ||
2150 		((features & NETIF_F_V6_CSUM) &&
2151 		 protocol == htons(ETH_P_IPV6)) ||
2152 		((features & NETIF_F_FCOE_CRC) &&
2153 		 protocol == htons(ETH_P_FCOE)));
2154 }
2155 
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 	__be16 protocol, netdev_features_t features)
2158 {
2159 	if (skb->ip_summed != CHECKSUM_NONE &&
2160 	    !can_checksum_protocol(features, protocol)) {
2161 		features &= ~NETIF_F_ALL_CSUM;
2162 		features &= ~NETIF_F_SG;
2163 	} else if (illegal_highdma(skb->dev, skb)) {
2164 		features &= ~NETIF_F_SG;
2165 	}
2166 
2167 	return features;
2168 }
2169 
2170 netdev_features_t netif_skb_features(struct sk_buff *skb)
2171 {
2172 	__be16 protocol = skb->protocol;
2173 	netdev_features_t features = skb->dev->features;
2174 
2175 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2176 		features &= ~NETIF_F_GSO_MASK;
2177 
2178 	if (protocol == htons(ETH_P_8021Q)) {
2179 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2180 		protocol = veh->h_vlan_encapsulated_proto;
2181 	} else if (!vlan_tx_tag_present(skb)) {
2182 		return harmonize_features(skb, protocol, features);
2183 	}
2184 
2185 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186 
2187 	if (protocol != htons(ETH_P_8021Q)) {
2188 		return harmonize_features(skb, protocol, features);
2189 	} else {
2190 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2191 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2192 		return harmonize_features(skb, protocol, features);
2193 	}
2194 }
2195 EXPORT_SYMBOL(netif_skb_features);
2196 
2197 /*
2198  * Returns true if either:
2199  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2200  *	2. skb is fragmented and the device does not support SG.
2201  */
2202 static inline int skb_needs_linearize(struct sk_buff *skb,
2203 				      int features)
2204 {
2205 	return skb_is_nonlinear(skb) &&
2206 			((skb_has_frag_list(skb) &&
2207 				!(features & NETIF_F_FRAGLIST)) ||
2208 			(skb_shinfo(skb)->nr_frags &&
2209 				!(features & NETIF_F_SG)));
2210 }
2211 
2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2213 			struct netdev_queue *txq)
2214 {
2215 	const struct net_device_ops *ops = dev->netdev_ops;
2216 	int rc = NETDEV_TX_OK;
2217 	unsigned int skb_len;
2218 
2219 	if (likely(!skb->next)) {
2220 		netdev_features_t features;
2221 
2222 		/*
2223 		 * If device doesn't need skb->dst, release it right now while
2224 		 * its hot in this cpu cache
2225 		 */
2226 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2227 			skb_dst_drop(skb);
2228 
2229 		features = netif_skb_features(skb);
2230 
2231 		if (vlan_tx_tag_present(skb) &&
2232 		    !(features & NETIF_F_HW_VLAN_TX)) {
2233 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2234 			if (unlikely(!skb))
2235 				goto out;
2236 
2237 			skb->vlan_tci = 0;
2238 		}
2239 
2240 		if (netif_needs_gso(skb, features)) {
2241 			if (unlikely(dev_gso_segment(skb, features)))
2242 				goto out_kfree_skb;
2243 			if (skb->next)
2244 				goto gso;
2245 		} else {
2246 			if (skb_needs_linearize(skb, features) &&
2247 			    __skb_linearize(skb))
2248 				goto out_kfree_skb;
2249 
2250 			/* If packet is not checksummed and device does not
2251 			 * support checksumming for this protocol, complete
2252 			 * checksumming here.
2253 			 */
2254 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2255 				skb_set_transport_header(skb,
2256 					skb_checksum_start_offset(skb));
2257 				if (!(features & NETIF_F_ALL_CSUM) &&
2258 				     skb_checksum_help(skb))
2259 					goto out_kfree_skb;
2260 			}
2261 		}
2262 
2263 		if (!list_empty(&ptype_all))
2264 			dev_queue_xmit_nit(skb, dev);
2265 
2266 		skb_len = skb->len;
2267 		rc = ops->ndo_start_xmit(skb, dev);
2268 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2269 		if (rc == NETDEV_TX_OK)
2270 			txq_trans_update(txq);
2271 		return rc;
2272 	}
2273 
2274 gso:
2275 	do {
2276 		struct sk_buff *nskb = skb->next;
2277 
2278 		skb->next = nskb->next;
2279 		nskb->next = NULL;
2280 
2281 		/*
2282 		 * If device doesn't need nskb->dst, release it right now while
2283 		 * its hot in this cpu cache
2284 		 */
2285 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2286 			skb_dst_drop(nskb);
2287 
2288 		if (!list_empty(&ptype_all))
2289 			dev_queue_xmit_nit(nskb, dev);
2290 
2291 		skb_len = nskb->len;
2292 		rc = ops->ndo_start_xmit(nskb, dev);
2293 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 		if (unlikely(rc != NETDEV_TX_OK)) {
2295 			if (rc & ~NETDEV_TX_MASK)
2296 				goto out_kfree_gso_skb;
2297 			nskb->next = skb->next;
2298 			skb->next = nskb;
2299 			return rc;
2300 		}
2301 		txq_trans_update(txq);
2302 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 			return NETDEV_TX_BUSY;
2304 	} while (skb->next);
2305 
2306 out_kfree_gso_skb:
2307 	if (likely(skb->next == NULL))
2308 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 	kfree_skb(skb);
2311 out:
2312 	return rc;
2313 }
2314 
2315 static u32 hashrnd __read_mostly;
2316 
2317 /*
2318  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319  * to be used as a distribution range.
2320  */
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 		  unsigned int num_tx_queues)
2323 {
2324 	u32 hash;
2325 	u16 qoffset = 0;
2326 	u16 qcount = num_tx_queues;
2327 
2328 	if (skb_rx_queue_recorded(skb)) {
2329 		hash = skb_get_rx_queue(skb);
2330 		while (unlikely(hash >= num_tx_queues))
2331 			hash -= num_tx_queues;
2332 		return hash;
2333 	}
2334 
2335 	if (dev->num_tc) {
2336 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 		qoffset = dev->tc_to_txq[tc].offset;
2338 		qcount = dev->tc_to_txq[tc].count;
2339 	}
2340 
2341 	if (skb->sk && skb->sk->sk_hash)
2342 		hash = skb->sk->sk_hash;
2343 	else
2344 		hash = (__force u16) skb->protocol;
2345 	hash = jhash_1word(hash, hashrnd);
2346 
2347 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2348 }
2349 EXPORT_SYMBOL(__skb_tx_hash);
2350 
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2352 {
2353 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2355 				     dev->name, queue_index,
2356 				     dev->real_num_tx_queues);
2357 		return 0;
2358 	}
2359 	return queue_index;
2360 }
2361 
2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 #ifdef CONFIG_XPS
2365 	struct xps_dev_maps *dev_maps;
2366 	struct xps_map *map;
2367 	int queue_index = -1;
2368 
2369 	rcu_read_lock();
2370 	dev_maps = rcu_dereference(dev->xps_maps);
2371 	if (dev_maps) {
2372 		map = rcu_dereference(
2373 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2374 		if (map) {
2375 			if (map->len == 1)
2376 				queue_index = map->queues[0];
2377 			else {
2378 				u32 hash;
2379 				if (skb->sk && skb->sk->sk_hash)
2380 					hash = skb->sk->sk_hash;
2381 				else
2382 					hash = (__force u16) skb->protocol ^
2383 					    skb->rxhash;
2384 				hash = jhash_1word(hash, hashrnd);
2385 				queue_index = map->queues[
2386 				    ((u64)hash * map->len) >> 32];
2387 			}
2388 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2389 				queue_index = -1;
2390 		}
2391 	}
2392 	rcu_read_unlock();
2393 
2394 	return queue_index;
2395 #else
2396 	return -1;
2397 #endif
2398 }
2399 
2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2401 				    struct sk_buff *skb)
2402 {
2403 	int queue_index;
2404 	const struct net_device_ops *ops = dev->netdev_ops;
2405 
2406 	if (dev->real_num_tx_queues == 1)
2407 		queue_index = 0;
2408 	else if (ops->ndo_select_queue) {
2409 		queue_index = ops->ndo_select_queue(dev, skb);
2410 		queue_index = dev_cap_txqueue(dev, queue_index);
2411 	} else {
2412 		struct sock *sk = skb->sk;
2413 		queue_index = sk_tx_queue_get(sk);
2414 
2415 		if (queue_index < 0 || skb->ooo_okay ||
2416 		    queue_index >= dev->real_num_tx_queues) {
2417 			int old_index = queue_index;
2418 
2419 			queue_index = get_xps_queue(dev, skb);
2420 			if (queue_index < 0)
2421 				queue_index = skb_tx_hash(dev, skb);
2422 
2423 			if (queue_index != old_index && sk) {
2424 				struct dst_entry *dst =
2425 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2426 
2427 				if (dst && skb_dst(skb) == dst)
2428 					sk_tx_queue_set(sk, queue_index);
2429 			}
2430 		}
2431 	}
2432 
2433 	skb_set_queue_mapping(skb, queue_index);
2434 	return netdev_get_tx_queue(dev, queue_index);
2435 }
2436 
2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2438 				 struct net_device *dev,
2439 				 struct netdev_queue *txq)
2440 {
2441 	spinlock_t *root_lock = qdisc_lock(q);
2442 	bool contended;
2443 	int rc;
2444 
2445 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2446 	qdisc_calculate_pkt_len(skb, q);
2447 	/*
2448 	 * Heuristic to force contended enqueues to serialize on a
2449 	 * separate lock before trying to get qdisc main lock.
2450 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2451 	 * and dequeue packets faster.
2452 	 */
2453 	contended = qdisc_is_running(q);
2454 	if (unlikely(contended))
2455 		spin_lock(&q->busylock);
2456 
2457 	spin_lock(root_lock);
2458 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2459 		kfree_skb(skb);
2460 		rc = NET_XMIT_DROP;
2461 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2462 		   qdisc_run_begin(q)) {
2463 		/*
2464 		 * This is a work-conserving queue; there are no old skbs
2465 		 * waiting to be sent out; and the qdisc is not running -
2466 		 * xmit the skb directly.
2467 		 */
2468 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2469 			skb_dst_force(skb);
2470 
2471 		qdisc_bstats_update(q, skb);
2472 
2473 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2474 			if (unlikely(contended)) {
2475 				spin_unlock(&q->busylock);
2476 				contended = false;
2477 			}
2478 			__qdisc_run(q);
2479 		} else
2480 			qdisc_run_end(q);
2481 
2482 		rc = NET_XMIT_SUCCESS;
2483 	} else {
2484 		skb_dst_force(skb);
2485 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2486 		if (qdisc_run_begin(q)) {
2487 			if (unlikely(contended)) {
2488 				spin_unlock(&q->busylock);
2489 				contended = false;
2490 			}
2491 			__qdisc_run(q);
2492 		}
2493 	}
2494 	spin_unlock(root_lock);
2495 	if (unlikely(contended))
2496 		spin_unlock(&q->busylock);
2497 	return rc;
2498 }
2499 
2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2501 static void skb_update_prio(struct sk_buff *skb)
2502 {
2503 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2504 
2505 	if (!skb->priority && skb->sk && map) {
2506 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2507 
2508 		if (prioidx < map->priomap_len)
2509 			skb->priority = map->priomap[prioidx];
2510 	}
2511 }
2512 #else
2513 #define skb_update_prio(skb)
2514 #endif
2515 
2516 static DEFINE_PER_CPU(int, xmit_recursion);
2517 #define RECURSION_LIMIT 10
2518 
2519 /**
2520  *	dev_loopback_xmit - loop back @skb
2521  *	@skb: buffer to transmit
2522  */
2523 int dev_loopback_xmit(struct sk_buff *skb)
2524 {
2525 	skb_reset_mac_header(skb);
2526 	__skb_pull(skb, skb_network_offset(skb));
2527 	skb->pkt_type = PACKET_LOOPBACK;
2528 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 	WARN_ON(!skb_dst(skb));
2530 	skb_dst_force(skb);
2531 	netif_rx_ni(skb);
2532 	return 0;
2533 }
2534 EXPORT_SYMBOL(dev_loopback_xmit);
2535 
2536 /**
2537  *	dev_queue_xmit - transmit a buffer
2538  *	@skb: buffer to transmit
2539  *
2540  *	Queue a buffer for transmission to a network device. The caller must
2541  *	have set the device and priority and built the buffer before calling
2542  *	this function. The function can be called from an interrupt.
2543  *
2544  *	A negative errno code is returned on a failure. A success does not
2545  *	guarantee the frame will be transmitted as it may be dropped due
2546  *	to congestion or traffic shaping.
2547  *
2548  * -----------------------------------------------------------------------------------
2549  *      I notice this method can also return errors from the queue disciplines,
2550  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2551  *      be positive.
2552  *
2553  *      Regardless of the return value, the skb is consumed, so it is currently
2554  *      difficult to retry a send to this method.  (You can bump the ref count
2555  *      before sending to hold a reference for retry if you are careful.)
2556  *
2557  *      When calling this method, interrupts MUST be enabled.  This is because
2558  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2559  *          --BLG
2560  */
2561 int dev_queue_xmit(struct sk_buff *skb)
2562 {
2563 	struct net_device *dev = skb->dev;
2564 	struct netdev_queue *txq;
2565 	struct Qdisc *q;
2566 	int rc = -ENOMEM;
2567 
2568 	/* Disable soft irqs for various locks below. Also
2569 	 * stops preemption for RCU.
2570 	 */
2571 	rcu_read_lock_bh();
2572 
2573 	skb_update_prio(skb);
2574 
2575 	txq = netdev_pick_tx(dev, skb);
2576 	q = rcu_dereference_bh(txq->qdisc);
2577 
2578 #ifdef CONFIG_NET_CLS_ACT
2579 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2580 #endif
2581 	trace_net_dev_queue(skb);
2582 	if (q->enqueue) {
2583 		rc = __dev_xmit_skb(skb, q, dev, txq);
2584 		goto out;
2585 	}
2586 
2587 	/* The device has no queue. Common case for software devices:
2588 	   loopback, all the sorts of tunnels...
2589 
2590 	   Really, it is unlikely that netif_tx_lock protection is necessary
2591 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2592 	   counters.)
2593 	   However, it is possible, that they rely on protection
2594 	   made by us here.
2595 
2596 	   Check this and shot the lock. It is not prone from deadlocks.
2597 	   Either shot noqueue qdisc, it is even simpler 8)
2598 	 */
2599 	if (dev->flags & IFF_UP) {
2600 		int cpu = smp_processor_id(); /* ok because BHs are off */
2601 
2602 		if (txq->xmit_lock_owner != cpu) {
2603 
2604 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2605 				goto recursion_alert;
2606 
2607 			HARD_TX_LOCK(dev, txq, cpu);
2608 
2609 			if (!netif_xmit_stopped(txq)) {
2610 				__this_cpu_inc(xmit_recursion);
2611 				rc = dev_hard_start_xmit(skb, dev, txq);
2612 				__this_cpu_dec(xmit_recursion);
2613 				if (dev_xmit_complete(rc)) {
2614 					HARD_TX_UNLOCK(dev, txq);
2615 					goto out;
2616 				}
2617 			}
2618 			HARD_TX_UNLOCK(dev, txq);
2619 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2620 					     dev->name);
2621 		} else {
2622 			/* Recursion is detected! It is possible,
2623 			 * unfortunately
2624 			 */
2625 recursion_alert:
2626 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2627 					     dev->name);
2628 		}
2629 	}
2630 
2631 	rc = -ENETDOWN;
2632 	rcu_read_unlock_bh();
2633 
2634 	kfree_skb(skb);
2635 	return rc;
2636 out:
2637 	rcu_read_unlock_bh();
2638 	return rc;
2639 }
2640 EXPORT_SYMBOL(dev_queue_xmit);
2641 
2642 
2643 /*=======================================================================
2644 			Receiver routines
2645   =======================================================================*/
2646 
2647 int netdev_max_backlog __read_mostly = 1000;
2648 EXPORT_SYMBOL(netdev_max_backlog);
2649 
2650 int netdev_tstamp_prequeue __read_mostly = 1;
2651 int netdev_budget __read_mostly = 300;
2652 int weight_p __read_mostly = 64;            /* old backlog weight */
2653 
2654 /* Called with irq disabled */
2655 static inline void ____napi_schedule(struct softnet_data *sd,
2656 				     struct napi_struct *napi)
2657 {
2658 	list_add_tail(&napi->poll_list, &sd->poll_list);
2659 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2660 }
2661 
2662 /*
2663  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2664  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2665  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2666  * if hash is a canonical 4-tuple hash over transport ports.
2667  */
2668 void __skb_get_rxhash(struct sk_buff *skb)
2669 {
2670 	struct flow_keys keys;
2671 	u32 hash;
2672 
2673 	if (!skb_flow_dissect(skb, &keys))
2674 		return;
2675 
2676 	if (keys.ports)
2677 		skb->l4_rxhash = 1;
2678 
2679 	/* get a consistent hash (same value on both flow directions) */
2680 	if (((__force u32)keys.dst < (__force u32)keys.src) ||
2681 	    (((__force u32)keys.dst == (__force u32)keys.src) &&
2682 	     ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2683 		swap(keys.dst, keys.src);
2684 		swap(keys.port16[0], keys.port16[1]);
2685 	}
2686 
2687 	hash = jhash_3words((__force u32)keys.dst,
2688 			    (__force u32)keys.src,
2689 			    (__force u32)keys.ports, hashrnd);
2690 	if (!hash)
2691 		hash = 1;
2692 
2693 	skb->rxhash = hash;
2694 }
2695 EXPORT_SYMBOL(__skb_get_rxhash);
2696 
2697 #ifdef CONFIG_RPS
2698 
2699 /* One global table that all flow-based protocols share. */
2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2701 EXPORT_SYMBOL(rps_sock_flow_table);
2702 
2703 struct static_key rps_needed __read_mostly;
2704 
2705 static struct rps_dev_flow *
2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 	    struct rps_dev_flow *rflow, u16 next_cpu)
2708 {
2709 	if (next_cpu != RPS_NO_CPU) {
2710 #ifdef CONFIG_RFS_ACCEL
2711 		struct netdev_rx_queue *rxqueue;
2712 		struct rps_dev_flow_table *flow_table;
2713 		struct rps_dev_flow *old_rflow;
2714 		u32 flow_id;
2715 		u16 rxq_index;
2716 		int rc;
2717 
2718 		/* Should we steer this flow to a different hardware queue? */
2719 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2720 		    !(dev->features & NETIF_F_NTUPLE))
2721 			goto out;
2722 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2723 		if (rxq_index == skb_get_rx_queue(skb))
2724 			goto out;
2725 
2726 		rxqueue = dev->_rx + rxq_index;
2727 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2728 		if (!flow_table)
2729 			goto out;
2730 		flow_id = skb->rxhash & flow_table->mask;
2731 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2732 							rxq_index, flow_id);
2733 		if (rc < 0)
2734 			goto out;
2735 		old_rflow = rflow;
2736 		rflow = &flow_table->flows[flow_id];
2737 		rflow->filter = rc;
2738 		if (old_rflow->filter == rflow->filter)
2739 			old_rflow->filter = RPS_NO_FILTER;
2740 	out:
2741 #endif
2742 		rflow->last_qtail =
2743 			per_cpu(softnet_data, next_cpu).input_queue_head;
2744 	}
2745 
2746 	rflow->cpu = next_cpu;
2747 	return rflow;
2748 }
2749 
2750 /*
2751  * get_rps_cpu is called from netif_receive_skb and returns the target
2752  * CPU from the RPS map of the receiving queue for a given skb.
2753  * rcu_read_lock must be held on entry.
2754  */
2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2756 		       struct rps_dev_flow **rflowp)
2757 {
2758 	struct netdev_rx_queue *rxqueue;
2759 	struct rps_map *map;
2760 	struct rps_dev_flow_table *flow_table;
2761 	struct rps_sock_flow_table *sock_flow_table;
2762 	int cpu = -1;
2763 	u16 tcpu;
2764 
2765 	if (skb_rx_queue_recorded(skb)) {
2766 		u16 index = skb_get_rx_queue(skb);
2767 		if (unlikely(index >= dev->real_num_rx_queues)) {
2768 			WARN_ONCE(dev->real_num_rx_queues > 1,
2769 				  "%s received packet on queue %u, but number "
2770 				  "of RX queues is %u\n",
2771 				  dev->name, index, dev->real_num_rx_queues);
2772 			goto done;
2773 		}
2774 		rxqueue = dev->_rx + index;
2775 	} else
2776 		rxqueue = dev->_rx;
2777 
2778 	map = rcu_dereference(rxqueue->rps_map);
2779 	if (map) {
2780 		if (map->len == 1 &&
2781 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2782 			tcpu = map->cpus[0];
2783 			if (cpu_online(tcpu))
2784 				cpu = tcpu;
2785 			goto done;
2786 		}
2787 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2788 		goto done;
2789 	}
2790 
2791 	skb_reset_network_header(skb);
2792 	if (!skb_get_rxhash(skb))
2793 		goto done;
2794 
2795 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2796 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2797 	if (flow_table && sock_flow_table) {
2798 		u16 next_cpu;
2799 		struct rps_dev_flow *rflow;
2800 
2801 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2802 		tcpu = rflow->cpu;
2803 
2804 		next_cpu = sock_flow_table->ents[skb->rxhash &
2805 		    sock_flow_table->mask];
2806 
2807 		/*
2808 		 * If the desired CPU (where last recvmsg was done) is
2809 		 * different from current CPU (one in the rx-queue flow
2810 		 * table entry), switch if one of the following holds:
2811 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2812 		 *   - Current CPU is offline.
2813 		 *   - The current CPU's queue tail has advanced beyond the
2814 		 *     last packet that was enqueued using this table entry.
2815 		 *     This guarantees that all previous packets for the flow
2816 		 *     have been dequeued, thus preserving in order delivery.
2817 		 */
2818 		if (unlikely(tcpu != next_cpu) &&
2819 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2820 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2821 		      rflow->last_qtail)) >= 0))
2822 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2823 
2824 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2825 			*rflowp = rflow;
2826 			cpu = tcpu;
2827 			goto done;
2828 		}
2829 	}
2830 
2831 	if (map) {
2832 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2833 
2834 		if (cpu_online(tcpu)) {
2835 			cpu = tcpu;
2836 			goto done;
2837 		}
2838 	}
2839 
2840 done:
2841 	return cpu;
2842 }
2843 
2844 #ifdef CONFIG_RFS_ACCEL
2845 
2846 /**
2847  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2848  * @dev: Device on which the filter was set
2849  * @rxq_index: RX queue index
2850  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2851  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2852  *
2853  * Drivers that implement ndo_rx_flow_steer() should periodically call
2854  * this function for each installed filter and remove the filters for
2855  * which it returns %true.
2856  */
2857 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2858 			 u32 flow_id, u16 filter_id)
2859 {
2860 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2861 	struct rps_dev_flow_table *flow_table;
2862 	struct rps_dev_flow *rflow;
2863 	bool expire = true;
2864 	int cpu;
2865 
2866 	rcu_read_lock();
2867 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2868 	if (flow_table && flow_id <= flow_table->mask) {
2869 		rflow = &flow_table->flows[flow_id];
2870 		cpu = ACCESS_ONCE(rflow->cpu);
2871 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2872 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2873 			   rflow->last_qtail) <
2874 		     (int)(10 * flow_table->mask)))
2875 			expire = false;
2876 	}
2877 	rcu_read_unlock();
2878 	return expire;
2879 }
2880 EXPORT_SYMBOL(rps_may_expire_flow);
2881 
2882 #endif /* CONFIG_RFS_ACCEL */
2883 
2884 /* Called from hardirq (IPI) context */
2885 static void rps_trigger_softirq(void *data)
2886 {
2887 	struct softnet_data *sd = data;
2888 
2889 	____napi_schedule(sd, &sd->backlog);
2890 	sd->received_rps++;
2891 }
2892 
2893 #endif /* CONFIG_RPS */
2894 
2895 /*
2896  * Check if this softnet_data structure is another cpu one
2897  * If yes, queue it to our IPI list and return 1
2898  * If no, return 0
2899  */
2900 static int rps_ipi_queued(struct softnet_data *sd)
2901 {
2902 #ifdef CONFIG_RPS
2903 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2904 
2905 	if (sd != mysd) {
2906 		sd->rps_ipi_next = mysd->rps_ipi_list;
2907 		mysd->rps_ipi_list = sd;
2908 
2909 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2910 		return 1;
2911 	}
2912 #endif /* CONFIG_RPS */
2913 	return 0;
2914 }
2915 
2916 /*
2917  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2918  * queue (may be a remote CPU queue).
2919  */
2920 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2921 			      unsigned int *qtail)
2922 {
2923 	struct softnet_data *sd;
2924 	unsigned long flags;
2925 
2926 	sd = &per_cpu(softnet_data, cpu);
2927 
2928 	local_irq_save(flags);
2929 
2930 	rps_lock(sd);
2931 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2932 		if (skb_queue_len(&sd->input_pkt_queue)) {
2933 enqueue:
2934 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2935 			input_queue_tail_incr_save(sd, qtail);
2936 			rps_unlock(sd);
2937 			local_irq_restore(flags);
2938 			return NET_RX_SUCCESS;
2939 		}
2940 
2941 		/* Schedule NAPI for backlog device
2942 		 * We can use non atomic operation since we own the queue lock
2943 		 */
2944 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2945 			if (!rps_ipi_queued(sd))
2946 				____napi_schedule(sd, &sd->backlog);
2947 		}
2948 		goto enqueue;
2949 	}
2950 
2951 	sd->dropped++;
2952 	rps_unlock(sd);
2953 
2954 	local_irq_restore(flags);
2955 
2956 	atomic_long_inc(&skb->dev->rx_dropped);
2957 	kfree_skb(skb);
2958 	return NET_RX_DROP;
2959 }
2960 
2961 /**
2962  *	netif_rx	-	post buffer to the network code
2963  *	@skb: buffer to post
2964  *
2965  *	This function receives a packet from a device driver and queues it for
2966  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2967  *	may be dropped during processing for congestion control or by the
2968  *	protocol layers.
2969  *
2970  *	return values:
2971  *	NET_RX_SUCCESS	(no congestion)
2972  *	NET_RX_DROP     (packet was dropped)
2973  *
2974  */
2975 
2976 int netif_rx(struct sk_buff *skb)
2977 {
2978 	int ret;
2979 
2980 	/* if netpoll wants it, pretend we never saw it */
2981 	if (netpoll_rx(skb))
2982 		return NET_RX_DROP;
2983 
2984 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2985 
2986 	trace_netif_rx(skb);
2987 #ifdef CONFIG_RPS
2988 	if (static_key_false(&rps_needed)) {
2989 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2990 		int cpu;
2991 
2992 		preempt_disable();
2993 		rcu_read_lock();
2994 
2995 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2996 		if (cpu < 0)
2997 			cpu = smp_processor_id();
2998 
2999 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3000 
3001 		rcu_read_unlock();
3002 		preempt_enable();
3003 	} else
3004 #endif
3005 	{
3006 		unsigned int qtail;
3007 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3008 		put_cpu();
3009 	}
3010 	return ret;
3011 }
3012 EXPORT_SYMBOL(netif_rx);
3013 
3014 int netif_rx_ni(struct sk_buff *skb)
3015 {
3016 	int err;
3017 
3018 	preempt_disable();
3019 	err = netif_rx(skb);
3020 	if (local_softirq_pending())
3021 		do_softirq();
3022 	preempt_enable();
3023 
3024 	return err;
3025 }
3026 EXPORT_SYMBOL(netif_rx_ni);
3027 
3028 static void net_tx_action(struct softirq_action *h)
3029 {
3030 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3031 
3032 	if (sd->completion_queue) {
3033 		struct sk_buff *clist;
3034 
3035 		local_irq_disable();
3036 		clist = sd->completion_queue;
3037 		sd->completion_queue = NULL;
3038 		local_irq_enable();
3039 
3040 		while (clist) {
3041 			struct sk_buff *skb = clist;
3042 			clist = clist->next;
3043 
3044 			WARN_ON(atomic_read(&skb->users));
3045 			trace_kfree_skb(skb, net_tx_action);
3046 			__kfree_skb(skb);
3047 		}
3048 	}
3049 
3050 	if (sd->output_queue) {
3051 		struct Qdisc *head;
3052 
3053 		local_irq_disable();
3054 		head = sd->output_queue;
3055 		sd->output_queue = NULL;
3056 		sd->output_queue_tailp = &sd->output_queue;
3057 		local_irq_enable();
3058 
3059 		while (head) {
3060 			struct Qdisc *q = head;
3061 			spinlock_t *root_lock;
3062 
3063 			head = head->next_sched;
3064 
3065 			root_lock = qdisc_lock(q);
3066 			if (spin_trylock(root_lock)) {
3067 				smp_mb__before_clear_bit();
3068 				clear_bit(__QDISC_STATE_SCHED,
3069 					  &q->state);
3070 				qdisc_run(q);
3071 				spin_unlock(root_lock);
3072 			} else {
3073 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3074 					      &q->state)) {
3075 					__netif_reschedule(q);
3076 				} else {
3077 					smp_mb__before_clear_bit();
3078 					clear_bit(__QDISC_STATE_SCHED,
3079 						  &q->state);
3080 				}
3081 			}
3082 		}
3083 	}
3084 }
3085 
3086 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3087     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3088 /* This hook is defined here for ATM LANE */
3089 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3090 			     unsigned char *addr) __read_mostly;
3091 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3092 #endif
3093 
3094 #ifdef CONFIG_NET_CLS_ACT
3095 /* TODO: Maybe we should just force sch_ingress to be compiled in
3096  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3097  * a compare and 2 stores extra right now if we dont have it on
3098  * but have CONFIG_NET_CLS_ACT
3099  * NOTE: This doesn't stop any functionality; if you dont have
3100  * the ingress scheduler, you just can't add policies on ingress.
3101  *
3102  */
3103 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3104 {
3105 	struct net_device *dev = skb->dev;
3106 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3107 	int result = TC_ACT_OK;
3108 	struct Qdisc *q;
3109 
3110 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3111 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3112 				     skb->skb_iif, dev->ifindex);
3113 		return TC_ACT_SHOT;
3114 	}
3115 
3116 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3117 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3118 
3119 	q = rxq->qdisc;
3120 	if (q != &noop_qdisc) {
3121 		spin_lock(qdisc_lock(q));
3122 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3123 			result = qdisc_enqueue_root(skb, q);
3124 		spin_unlock(qdisc_lock(q));
3125 	}
3126 
3127 	return result;
3128 }
3129 
3130 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3131 					 struct packet_type **pt_prev,
3132 					 int *ret, struct net_device *orig_dev)
3133 {
3134 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3135 
3136 	if (!rxq || rxq->qdisc == &noop_qdisc)
3137 		goto out;
3138 
3139 	if (*pt_prev) {
3140 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3141 		*pt_prev = NULL;
3142 	}
3143 
3144 	switch (ing_filter(skb, rxq)) {
3145 	case TC_ACT_SHOT:
3146 	case TC_ACT_STOLEN:
3147 		kfree_skb(skb);
3148 		return NULL;
3149 	}
3150 
3151 out:
3152 	skb->tc_verd = 0;
3153 	return skb;
3154 }
3155 #endif
3156 
3157 /**
3158  *	netdev_rx_handler_register - register receive handler
3159  *	@dev: device to register a handler for
3160  *	@rx_handler: receive handler to register
3161  *	@rx_handler_data: data pointer that is used by rx handler
3162  *
3163  *	Register a receive hander for a device. This handler will then be
3164  *	called from __netif_receive_skb. A negative errno code is returned
3165  *	on a failure.
3166  *
3167  *	The caller must hold the rtnl_mutex.
3168  *
3169  *	For a general description of rx_handler, see enum rx_handler_result.
3170  */
3171 int netdev_rx_handler_register(struct net_device *dev,
3172 			       rx_handler_func_t *rx_handler,
3173 			       void *rx_handler_data)
3174 {
3175 	ASSERT_RTNL();
3176 
3177 	if (dev->rx_handler)
3178 		return -EBUSY;
3179 
3180 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3181 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3182 
3183 	return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3186 
3187 /**
3188  *	netdev_rx_handler_unregister - unregister receive handler
3189  *	@dev: device to unregister a handler from
3190  *
3191  *	Unregister a receive hander from a device.
3192  *
3193  *	The caller must hold the rtnl_mutex.
3194  */
3195 void netdev_rx_handler_unregister(struct net_device *dev)
3196 {
3197 
3198 	ASSERT_RTNL();
3199 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3200 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3201 }
3202 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3203 
3204 /*
3205  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3206  * the special handling of PFMEMALLOC skbs.
3207  */
3208 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3209 {
3210 	switch (skb->protocol) {
3211 	case __constant_htons(ETH_P_ARP):
3212 	case __constant_htons(ETH_P_IP):
3213 	case __constant_htons(ETH_P_IPV6):
3214 	case __constant_htons(ETH_P_8021Q):
3215 		return true;
3216 	default:
3217 		return false;
3218 	}
3219 }
3220 
3221 static int __netif_receive_skb(struct sk_buff *skb)
3222 {
3223 	struct packet_type *ptype, *pt_prev;
3224 	rx_handler_func_t *rx_handler;
3225 	struct net_device *orig_dev;
3226 	struct net_device *null_or_dev;
3227 	bool deliver_exact = false;
3228 	int ret = NET_RX_DROP;
3229 	__be16 type;
3230 	unsigned long pflags = current->flags;
3231 
3232 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3233 
3234 	trace_netif_receive_skb(skb);
3235 
3236 	/*
3237 	 * PFMEMALLOC skbs are special, they should
3238 	 * - be delivered to SOCK_MEMALLOC sockets only
3239 	 * - stay away from userspace
3240 	 * - have bounded memory usage
3241 	 *
3242 	 * Use PF_MEMALLOC as this saves us from propagating the allocation
3243 	 * context down to all allocation sites.
3244 	 */
3245 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3246 		current->flags |= PF_MEMALLOC;
3247 
3248 	/* if we've gotten here through NAPI, check netpoll */
3249 	if (netpoll_receive_skb(skb))
3250 		goto out;
3251 
3252 	orig_dev = skb->dev;
3253 
3254 	skb_reset_network_header(skb);
3255 	skb_reset_transport_header(skb);
3256 	skb_reset_mac_len(skb);
3257 
3258 	pt_prev = NULL;
3259 
3260 	rcu_read_lock();
3261 
3262 another_round:
3263 	skb->skb_iif = skb->dev->ifindex;
3264 
3265 	__this_cpu_inc(softnet_data.processed);
3266 
3267 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3268 		skb = vlan_untag(skb);
3269 		if (unlikely(!skb))
3270 			goto unlock;
3271 	}
3272 
3273 #ifdef CONFIG_NET_CLS_ACT
3274 	if (skb->tc_verd & TC_NCLS) {
3275 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3276 		goto ncls;
3277 	}
3278 #endif
3279 
3280 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3281 		goto skip_taps;
3282 
3283 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3284 		if (!ptype->dev || ptype->dev == skb->dev) {
3285 			if (pt_prev)
3286 				ret = deliver_skb(skb, pt_prev, orig_dev);
3287 			pt_prev = ptype;
3288 		}
3289 	}
3290 
3291 skip_taps:
3292 #ifdef CONFIG_NET_CLS_ACT
3293 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3294 	if (!skb)
3295 		goto unlock;
3296 ncls:
3297 #endif
3298 
3299 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3300 				&& !skb_pfmemalloc_protocol(skb))
3301 		goto drop;
3302 
3303 	if (vlan_tx_tag_present(skb)) {
3304 		if (pt_prev) {
3305 			ret = deliver_skb(skb, pt_prev, orig_dev);
3306 			pt_prev = NULL;
3307 		}
3308 		if (vlan_do_receive(&skb))
3309 			goto another_round;
3310 		else if (unlikely(!skb))
3311 			goto unlock;
3312 	}
3313 
3314 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3315 	if (rx_handler) {
3316 		if (pt_prev) {
3317 			ret = deliver_skb(skb, pt_prev, orig_dev);
3318 			pt_prev = NULL;
3319 		}
3320 		switch (rx_handler(&skb)) {
3321 		case RX_HANDLER_CONSUMED:
3322 			goto unlock;
3323 		case RX_HANDLER_ANOTHER:
3324 			goto another_round;
3325 		case RX_HANDLER_EXACT:
3326 			deliver_exact = true;
3327 		case RX_HANDLER_PASS:
3328 			break;
3329 		default:
3330 			BUG();
3331 		}
3332 	}
3333 
3334 	if (vlan_tx_nonzero_tag_present(skb))
3335 		skb->pkt_type = PACKET_OTHERHOST;
3336 
3337 	/* deliver only exact match when indicated */
3338 	null_or_dev = deliver_exact ? skb->dev : NULL;
3339 
3340 	type = skb->protocol;
3341 	list_for_each_entry_rcu(ptype,
3342 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3343 		if (ptype->type == type &&
3344 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3345 		     ptype->dev == orig_dev)) {
3346 			if (pt_prev)
3347 				ret = deliver_skb(skb, pt_prev, orig_dev);
3348 			pt_prev = ptype;
3349 		}
3350 	}
3351 
3352 	if (pt_prev) {
3353 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3354 			goto drop;
3355 		else
3356 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3357 	} else {
3358 drop:
3359 		atomic_long_inc(&skb->dev->rx_dropped);
3360 		kfree_skb(skb);
3361 		/* Jamal, now you will not able to escape explaining
3362 		 * me how you were going to use this. :-)
3363 		 */
3364 		ret = NET_RX_DROP;
3365 	}
3366 
3367 unlock:
3368 	rcu_read_unlock();
3369 out:
3370 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
3371 	return ret;
3372 }
3373 
3374 /**
3375  *	netif_receive_skb - process receive buffer from network
3376  *	@skb: buffer to process
3377  *
3378  *	netif_receive_skb() is the main receive data processing function.
3379  *	It always succeeds. The buffer may be dropped during processing
3380  *	for congestion control or by the protocol layers.
3381  *
3382  *	This function may only be called from softirq context and interrupts
3383  *	should be enabled.
3384  *
3385  *	Return values (usually ignored):
3386  *	NET_RX_SUCCESS: no congestion
3387  *	NET_RX_DROP: packet was dropped
3388  */
3389 int netif_receive_skb(struct sk_buff *skb)
3390 {
3391 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3392 
3393 	if (skb_defer_rx_timestamp(skb))
3394 		return NET_RX_SUCCESS;
3395 
3396 #ifdef CONFIG_RPS
3397 	if (static_key_false(&rps_needed)) {
3398 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3399 		int cpu, ret;
3400 
3401 		rcu_read_lock();
3402 
3403 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3404 
3405 		if (cpu >= 0) {
3406 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3407 			rcu_read_unlock();
3408 			return ret;
3409 		}
3410 		rcu_read_unlock();
3411 	}
3412 #endif
3413 	return __netif_receive_skb(skb);
3414 }
3415 EXPORT_SYMBOL(netif_receive_skb);
3416 
3417 /* Network device is going away, flush any packets still pending
3418  * Called with irqs disabled.
3419  */
3420 static void flush_backlog(void *arg)
3421 {
3422 	struct net_device *dev = arg;
3423 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3424 	struct sk_buff *skb, *tmp;
3425 
3426 	rps_lock(sd);
3427 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3428 		if (skb->dev == dev) {
3429 			__skb_unlink(skb, &sd->input_pkt_queue);
3430 			kfree_skb(skb);
3431 			input_queue_head_incr(sd);
3432 		}
3433 	}
3434 	rps_unlock(sd);
3435 
3436 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3437 		if (skb->dev == dev) {
3438 			__skb_unlink(skb, &sd->process_queue);
3439 			kfree_skb(skb);
3440 			input_queue_head_incr(sd);
3441 		}
3442 	}
3443 }
3444 
3445 static int napi_gro_complete(struct sk_buff *skb)
3446 {
3447 	struct packet_type *ptype;
3448 	__be16 type = skb->protocol;
3449 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3450 	int err = -ENOENT;
3451 
3452 	if (NAPI_GRO_CB(skb)->count == 1) {
3453 		skb_shinfo(skb)->gso_size = 0;
3454 		goto out;
3455 	}
3456 
3457 	rcu_read_lock();
3458 	list_for_each_entry_rcu(ptype, head, list) {
3459 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3460 			continue;
3461 
3462 		err = ptype->gro_complete(skb);
3463 		break;
3464 	}
3465 	rcu_read_unlock();
3466 
3467 	if (err) {
3468 		WARN_ON(&ptype->list == head);
3469 		kfree_skb(skb);
3470 		return NET_RX_SUCCESS;
3471 	}
3472 
3473 out:
3474 	return netif_receive_skb(skb);
3475 }
3476 
3477 /* napi->gro_list contains packets ordered by age.
3478  * youngest packets at the head of it.
3479  * Complete skbs in reverse order to reduce latencies.
3480  */
3481 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3482 {
3483 	struct sk_buff *skb, *prev = NULL;
3484 
3485 	/* scan list and build reverse chain */
3486 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3487 		skb->prev = prev;
3488 		prev = skb;
3489 	}
3490 
3491 	for (skb = prev; skb; skb = prev) {
3492 		skb->next = NULL;
3493 
3494 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3495 			return;
3496 
3497 		prev = skb->prev;
3498 		napi_gro_complete(skb);
3499 		napi->gro_count--;
3500 	}
3501 
3502 	napi->gro_list = NULL;
3503 }
3504 EXPORT_SYMBOL(napi_gro_flush);
3505 
3506 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3507 {
3508 	struct sk_buff **pp = NULL;
3509 	struct packet_type *ptype;
3510 	__be16 type = skb->protocol;
3511 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3512 	int same_flow;
3513 	int mac_len;
3514 	enum gro_result ret;
3515 
3516 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3517 		goto normal;
3518 
3519 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3520 		goto normal;
3521 
3522 	rcu_read_lock();
3523 	list_for_each_entry_rcu(ptype, head, list) {
3524 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3525 			continue;
3526 
3527 		skb_set_network_header(skb, skb_gro_offset(skb));
3528 		mac_len = skb->network_header - skb->mac_header;
3529 		skb->mac_len = mac_len;
3530 		NAPI_GRO_CB(skb)->same_flow = 0;
3531 		NAPI_GRO_CB(skb)->flush = 0;
3532 		NAPI_GRO_CB(skb)->free = 0;
3533 
3534 		pp = ptype->gro_receive(&napi->gro_list, skb);
3535 		break;
3536 	}
3537 	rcu_read_unlock();
3538 
3539 	if (&ptype->list == head)
3540 		goto normal;
3541 
3542 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3543 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3544 
3545 	if (pp) {
3546 		struct sk_buff *nskb = *pp;
3547 
3548 		*pp = nskb->next;
3549 		nskb->next = NULL;
3550 		napi_gro_complete(nskb);
3551 		napi->gro_count--;
3552 	}
3553 
3554 	if (same_flow)
3555 		goto ok;
3556 
3557 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3558 		goto normal;
3559 
3560 	napi->gro_count++;
3561 	NAPI_GRO_CB(skb)->count = 1;
3562 	NAPI_GRO_CB(skb)->age = jiffies;
3563 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3564 	skb->next = napi->gro_list;
3565 	napi->gro_list = skb;
3566 	ret = GRO_HELD;
3567 
3568 pull:
3569 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3570 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3571 
3572 		BUG_ON(skb->end - skb->tail < grow);
3573 
3574 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3575 
3576 		skb->tail += grow;
3577 		skb->data_len -= grow;
3578 
3579 		skb_shinfo(skb)->frags[0].page_offset += grow;
3580 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3581 
3582 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3583 			skb_frag_unref(skb, 0);
3584 			memmove(skb_shinfo(skb)->frags,
3585 				skb_shinfo(skb)->frags + 1,
3586 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3587 		}
3588 	}
3589 
3590 ok:
3591 	return ret;
3592 
3593 normal:
3594 	ret = GRO_NORMAL;
3595 	goto pull;
3596 }
3597 EXPORT_SYMBOL(dev_gro_receive);
3598 
3599 static inline gro_result_t
3600 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3601 {
3602 	struct sk_buff *p;
3603 	unsigned int maclen = skb->dev->hard_header_len;
3604 
3605 	for (p = napi->gro_list; p; p = p->next) {
3606 		unsigned long diffs;
3607 
3608 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3609 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3610 		if (maclen == ETH_HLEN)
3611 			diffs |= compare_ether_header(skb_mac_header(p),
3612 						      skb_gro_mac_header(skb));
3613 		else if (!diffs)
3614 			diffs = memcmp(skb_mac_header(p),
3615 				       skb_gro_mac_header(skb),
3616 				       maclen);
3617 		NAPI_GRO_CB(p)->same_flow = !diffs;
3618 		NAPI_GRO_CB(p)->flush = 0;
3619 	}
3620 
3621 	return dev_gro_receive(napi, skb);
3622 }
3623 
3624 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3625 {
3626 	switch (ret) {
3627 	case GRO_NORMAL:
3628 		if (netif_receive_skb(skb))
3629 			ret = GRO_DROP;
3630 		break;
3631 
3632 	case GRO_DROP:
3633 		kfree_skb(skb);
3634 		break;
3635 
3636 	case GRO_MERGED_FREE:
3637 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3638 			kmem_cache_free(skbuff_head_cache, skb);
3639 		else
3640 			__kfree_skb(skb);
3641 		break;
3642 
3643 	case GRO_HELD:
3644 	case GRO_MERGED:
3645 		break;
3646 	}
3647 
3648 	return ret;
3649 }
3650 EXPORT_SYMBOL(napi_skb_finish);
3651 
3652 static void skb_gro_reset_offset(struct sk_buff *skb)
3653 {
3654 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3655 	const skb_frag_t *frag0 = &pinfo->frags[0];
3656 
3657 	NAPI_GRO_CB(skb)->data_offset = 0;
3658 	NAPI_GRO_CB(skb)->frag0 = NULL;
3659 	NAPI_GRO_CB(skb)->frag0_len = 0;
3660 
3661 	if (skb->mac_header == skb->tail &&
3662 	    pinfo->nr_frags &&
3663 	    !PageHighMem(skb_frag_page(frag0))) {
3664 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3665 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3666 	}
3667 }
3668 
3669 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3670 {
3671 	skb_gro_reset_offset(skb);
3672 
3673 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3674 }
3675 EXPORT_SYMBOL(napi_gro_receive);
3676 
3677 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3678 {
3679 	__skb_pull(skb, skb_headlen(skb));
3680 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3681 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3682 	skb->vlan_tci = 0;
3683 	skb->dev = napi->dev;
3684 	skb->skb_iif = 0;
3685 
3686 	napi->skb = skb;
3687 }
3688 
3689 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3690 {
3691 	struct sk_buff *skb = napi->skb;
3692 
3693 	if (!skb) {
3694 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3695 		if (skb)
3696 			napi->skb = skb;
3697 	}
3698 	return skb;
3699 }
3700 EXPORT_SYMBOL(napi_get_frags);
3701 
3702 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3703 			       gro_result_t ret)
3704 {
3705 	switch (ret) {
3706 	case GRO_NORMAL:
3707 	case GRO_HELD:
3708 		skb->protocol = eth_type_trans(skb, skb->dev);
3709 
3710 		if (ret == GRO_HELD)
3711 			skb_gro_pull(skb, -ETH_HLEN);
3712 		else if (netif_receive_skb(skb))
3713 			ret = GRO_DROP;
3714 		break;
3715 
3716 	case GRO_DROP:
3717 	case GRO_MERGED_FREE:
3718 		napi_reuse_skb(napi, skb);
3719 		break;
3720 
3721 	case GRO_MERGED:
3722 		break;
3723 	}
3724 
3725 	return ret;
3726 }
3727 EXPORT_SYMBOL(napi_frags_finish);
3728 
3729 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3730 {
3731 	struct sk_buff *skb = napi->skb;
3732 	struct ethhdr *eth;
3733 	unsigned int hlen;
3734 	unsigned int off;
3735 
3736 	napi->skb = NULL;
3737 
3738 	skb_reset_mac_header(skb);
3739 	skb_gro_reset_offset(skb);
3740 
3741 	off = skb_gro_offset(skb);
3742 	hlen = off + sizeof(*eth);
3743 	eth = skb_gro_header_fast(skb, off);
3744 	if (skb_gro_header_hard(skb, hlen)) {
3745 		eth = skb_gro_header_slow(skb, hlen, off);
3746 		if (unlikely(!eth)) {
3747 			napi_reuse_skb(napi, skb);
3748 			skb = NULL;
3749 			goto out;
3750 		}
3751 	}
3752 
3753 	skb_gro_pull(skb, sizeof(*eth));
3754 
3755 	/*
3756 	 * This works because the only protocols we care about don't require
3757 	 * special handling.  We'll fix it up properly at the end.
3758 	 */
3759 	skb->protocol = eth->h_proto;
3760 
3761 out:
3762 	return skb;
3763 }
3764 
3765 gro_result_t napi_gro_frags(struct napi_struct *napi)
3766 {
3767 	struct sk_buff *skb = napi_frags_skb(napi);
3768 
3769 	if (!skb)
3770 		return GRO_DROP;
3771 
3772 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3773 }
3774 EXPORT_SYMBOL(napi_gro_frags);
3775 
3776 /*
3777  * net_rps_action sends any pending IPI's for rps.
3778  * Note: called with local irq disabled, but exits with local irq enabled.
3779  */
3780 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3781 {
3782 #ifdef CONFIG_RPS
3783 	struct softnet_data *remsd = sd->rps_ipi_list;
3784 
3785 	if (remsd) {
3786 		sd->rps_ipi_list = NULL;
3787 
3788 		local_irq_enable();
3789 
3790 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3791 		while (remsd) {
3792 			struct softnet_data *next = remsd->rps_ipi_next;
3793 
3794 			if (cpu_online(remsd->cpu))
3795 				__smp_call_function_single(remsd->cpu,
3796 							   &remsd->csd, 0);
3797 			remsd = next;
3798 		}
3799 	} else
3800 #endif
3801 		local_irq_enable();
3802 }
3803 
3804 static int process_backlog(struct napi_struct *napi, int quota)
3805 {
3806 	int work = 0;
3807 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3808 
3809 #ifdef CONFIG_RPS
3810 	/* Check if we have pending ipi, its better to send them now,
3811 	 * not waiting net_rx_action() end.
3812 	 */
3813 	if (sd->rps_ipi_list) {
3814 		local_irq_disable();
3815 		net_rps_action_and_irq_enable(sd);
3816 	}
3817 #endif
3818 	napi->weight = weight_p;
3819 	local_irq_disable();
3820 	while (work < quota) {
3821 		struct sk_buff *skb;
3822 		unsigned int qlen;
3823 
3824 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3825 			local_irq_enable();
3826 			__netif_receive_skb(skb);
3827 			local_irq_disable();
3828 			input_queue_head_incr(sd);
3829 			if (++work >= quota) {
3830 				local_irq_enable();
3831 				return work;
3832 			}
3833 		}
3834 
3835 		rps_lock(sd);
3836 		qlen = skb_queue_len(&sd->input_pkt_queue);
3837 		if (qlen)
3838 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3839 						   &sd->process_queue);
3840 
3841 		if (qlen < quota - work) {
3842 			/*
3843 			 * Inline a custom version of __napi_complete().
3844 			 * only current cpu owns and manipulates this napi,
3845 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3846 			 * we can use a plain write instead of clear_bit(),
3847 			 * and we dont need an smp_mb() memory barrier.
3848 			 */
3849 			list_del(&napi->poll_list);
3850 			napi->state = 0;
3851 
3852 			quota = work + qlen;
3853 		}
3854 		rps_unlock(sd);
3855 	}
3856 	local_irq_enable();
3857 
3858 	return work;
3859 }
3860 
3861 /**
3862  * __napi_schedule - schedule for receive
3863  * @n: entry to schedule
3864  *
3865  * The entry's receive function will be scheduled to run
3866  */
3867 void __napi_schedule(struct napi_struct *n)
3868 {
3869 	unsigned long flags;
3870 
3871 	local_irq_save(flags);
3872 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3873 	local_irq_restore(flags);
3874 }
3875 EXPORT_SYMBOL(__napi_schedule);
3876 
3877 void __napi_complete(struct napi_struct *n)
3878 {
3879 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3880 	BUG_ON(n->gro_list);
3881 
3882 	list_del(&n->poll_list);
3883 	smp_mb__before_clear_bit();
3884 	clear_bit(NAPI_STATE_SCHED, &n->state);
3885 }
3886 EXPORT_SYMBOL(__napi_complete);
3887 
3888 void napi_complete(struct napi_struct *n)
3889 {
3890 	unsigned long flags;
3891 
3892 	/*
3893 	 * don't let napi dequeue from the cpu poll list
3894 	 * just in case its running on a different cpu
3895 	 */
3896 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3897 		return;
3898 
3899 	napi_gro_flush(n, false);
3900 	local_irq_save(flags);
3901 	__napi_complete(n);
3902 	local_irq_restore(flags);
3903 }
3904 EXPORT_SYMBOL(napi_complete);
3905 
3906 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3907 		    int (*poll)(struct napi_struct *, int), int weight)
3908 {
3909 	INIT_LIST_HEAD(&napi->poll_list);
3910 	napi->gro_count = 0;
3911 	napi->gro_list = NULL;
3912 	napi->skb = NULL;
3913 	napi->poll = poll;
3914 	napi->weight = weight;
3915 	list_add(&napi->dev_list, &dev->napi_list);
3916 	napi->dev = dev;
3917 #ifdef CONFIG_NETPOLL
3918 	spin_lock_init(&napi->poll_lock);
3919 	napi->poll_owner = -1;
3920 #endif
3921 	set_bit(NAPI_STATE_SCHED, &napi->state);
3922 }
3923 EXPORT_SYMBOL(netif_napi_add);
3924 
3925 void netif_napi_del(struct napi_struct *napi)
3926 {
3927 	struct sk_buff *skb, *next;
3928 
3929 	list_del_init(&napi->dev_list);
3930 	napi_free_frags(napi);
3931 
3932 	for (skb = napi->gro_list; skb; skb = next) {
3933 		next = skb->next;
3934 		skb->next = NULL;
3935 		kfree_skb(skb);
3936 	}
3937 
3938 	napi->gro_list = NULL;
3939 	napi->gro_count = 0;
3940 }
3941 EXPORT_SYMBOL(netif_napi_del);
3942 
3943 static void net_rx_action(struct softirq_action *h)
3944 {
3945 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3946 	unsigned long time_limit = jiffies + 2;
3947 	int budget = netdev_budget;
3948 	void *have;
3949 
3950 	local_irq_disable();
3951 
3952 	while (!list_empty(&sd->poll_list)) {
3953 		struct napi_struct *n;
3954 		int work, weight;
3955 
3956 		/* If softirq window is exhuasted then punt.
3957 		 * Allow this to run for 2 jiffies since which will allow
3958 		 * an average latency of 1.5/HZ.
3959 		 */
3960 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3961 			goto softnet_break;
3962 
3963 		local_irq_enable();
3964 
3965 		/* Even though interrupts have been re-enabled, this
3966 		 * access is safe because interrupts can only add new
3967 		 * entries to the tail of this list, and only ->poll()
3968 		 * calls can remove this head entry from the list.
3969 		 */
3970 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3971 
3972 		have = netpoll_poll_lock(n);
3973 
3974 		weight = n->weight;
3975 
3976 		/* This NAPI_STATE_SCHED test is for avoiding a race
3977 		 * with netpoll's poll_napi().  Only the entity which
3978 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3979 		 * actually make the ->poll() call.  Therefore we avoid
3980 		 * accidentally calling ->poll() when NAPI is not scheduled.
3981 		 */
3982 		work = 0;
3983 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3984 			work = n->poll(n, weight);
3985 			trace_napi_poll(n);
3986 		}
3987 
3988 		WARN_ON_ONCE(work > weight);
3989 
3990 		budget -= work;
3991 
3992 		local_irq_disable();
3993 
3994 		/* Drivers must not modify the NAPI state if they
3995 		 * consume the entire weight.  In such cases this code
3996 		 * still "owns" the NAPI instance and therefore can
3997 		 * move the instance around on the list at-will.
3998 		 */
3999 		if (unlikely(work == weight)) {
4000 			if (unlikely(napi_disable_pending(n))) {
4001 				local_irq_enable();
4002 				napi_complete(n);
4003 				local_irq_disable();
4004 			} else {
4005 				if (n->gro_list) {
4006 					/* flush too old packets
4007 					 * If HZ < 1000, flush all packets.
4008 					 */
4009 					local_irq_enable();
4010 					napi_gro_flush(n, HZ >= 1000);
4011 					local_irq_disable();
4012 				}
4013 				list_move_tail(&n->poll_list, &sd->poll_list);
4014 			}
4015 		}
4016 
4017 		netpoll_poll_unlock(have);
4018 	}
4019 out:
4020 	net_rps_action_and_irq_enable(sd);
4021 
4022 #ifdef CONFIG_NET_DMA
4023 	/*
4024 	 * There may not be any more sk_buffs coming right now, so push
4025 	 * any pending DMA copies to hardware
4026 	 */
4027 	dma_issue_pending_all();
4028 #endif
4029 
4030 	return;
4031 
4032 softnet_break:
4033 	sd->time_squeeze++;
4034 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4035 	goto out;
4036 }
4037 
4038 static gifconf_func_t *gifconf_list[NPROTO];
4039 
4040 /**
4041  *	register_gifconf	-	register a SIOCGIF handler
4042  *	@family: Address family
4043  *	@gifconf: Function handler
4044  *
4045  *	Register protocol dependent address dumping routines. The handler
4046  *	that is passed must not be freed or reused until it has been replaced
4047  *	by another handler.
4048  */
4049 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4050 {
4051 	if (family >= NPROTO)
4052 		return -EINVAL;
4053 	gifconf_list[family] = gifconf;
4054 	return 0;
4055 }
4056 EXPORT_SYMBOL(register_gifconf);
4057 
4058 
4059 /*
4060  *	Map an interface index to its name (SIOCGIFNAME)
4061  */
4062 
4063 /*
4064  *	We need this ioctl for efficient implementation of the
4065  *	if_indextoname() function required by the IPv6 API.  Without
4066  *	it, we would have to search all the interfaces to find a
4067  *	match.  --pb
4068  */
4069 
4070 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4071 {
4072 	struct net_device *dev;
4073 	struct ifreq ifr;
4074 
4075 	/*
4076 	 *	Fetch the caller's info block.
4077 	 */
4078 
4079 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4080 		return -EFAULT;
4081 
4082 	rcu_read_lock();
4083 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4084 	if (!dev) {
4085 		rcu_read_unlock();
4086 		return -ENODEV;
4087 	}
4088 
4089 	strcpy(ifr.ifr_name, dev->name);
4090 	rcu_read_unlock();
4091 
4092 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4093 		return -EFAULT;
4094 	return 0;
4095 }
4096 
4097 /*
4098  *	Perform a SIOCGIFCONF call. This structure will change
4099  *	size eventually, and there is nothing I can do about it.
4100  *	Thus we will need a 'compatibility mode'.
4101  */
4102 
4103 static int dev_ifconf(struct net *net, char __user *arg)
4104 {
4105 	struct ifconf ifc;
4106 	struct net_device *dev;
4107 	char __user *pos;
4108 	int len;
4109 	int total;
4110 	int i;
4111 
4112 	/*
4113 	 *	Fetch the caller's info block.
4114 	 */
4115 
4116 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4117 		return -EFAULT;
4118 
4119 	pos = ifc.ifc_buf;
4120 	len = ifc.ifc_len;
4121 
4122 	/*
4123 	 *	Loop over the interfaces, and write an info block for each.
4124 	 */
4125 
4126 	total = 0;
4127 	for_each_netdev(net, dev) {
4128 		for (i = 0; i < NPROTO; i++) {
4129 			if (gifconf_list[i]) {
4130 				int done;
4131 				if (!pos)
4132 					done = gifconf_list[i](dev, NULL, 0);
4133 				else
4134 					done = gifconf_list[i](dev, pos + total,
4135 							       len - total);
4136 				if (done < 0)
4137 					return -EFAULT;
4138 				total += done;
4139 			}
4140 		}
4141 	}
4142 
4143 	/*
4144 	 *	All done.  Write the updated control block back to the caller.
4145 	 */
4146 	ifc.ifc_len = total;
4147 
4148 	/*
4149 	 * 	Both BSD and Solaris return 0 here, so we do too.
4150 	 */
4151 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4152 }
4153 
4154 #ifdef CONFIG_PROC_FS
4155 
4156 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4157 
4158 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4159 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4160 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4161 
4162 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4163 {
4164 	struct net *net = seq_file_net(seq);
4165 	struct net_device *dev;
4166 	struct hlist_node *p;
4167 	struct hlist_head *h;
4168 	unsigned int count = 0, offset = get_offset(*pos);
4169 
4170 	h = &net->dev_name_head[get_bucket(*pos)];
4171 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4172 		if (++count == offset)
4173 			return dev;
4174 	}
4175 
4176 	return NULL;
4177 }
4178 
4179 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4180 {
4181 	struct net_device *dev;
4182 	unsigned int bucket;
4183 
4184 	do {
4185 		dev = dev_from_same_bucket(seq, pos);
4186 		if (dev)
4187 			return dev;
4188 
4189 		bucket = get_bucket(*pos) + 1;
4190 		*pos = set_bucket_offset(bucket, 1);
4191 	} while (bucket < NETDEV_HASHENTRIES);
4192 
4193 	return NULL;
4194 }
4195 
4196 /*
4197  *	This is invoked by the /proc filesystem handler to display a device
4198  *	in detail.
4199  */
4200 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4201 	__acquires(RCU)
4202 {
4203 	rcu_read_lock();
4204 	if (!*pos)
4205 		return SEQ_START_TOKEN;
4206 
4207 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4208 		return NULL;
4209 
4210 	return dev_from_bucket(seq, pos);
4211 }
4212 
4213 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4214 {
4215 	++*pos;
4216 	return dev_from_bucket(seq, pos);
4217 }
4218 
4219 void dev_seq_stop(struct seq_file *seq, void *v)
4220 	__releases(RCU)
4221 {
4222 	rcu_read_unlock();
4223 }
4224 
4225 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4226 {
4227 	struct rtnl_link_stats64 temp;
4228 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4229 
4230 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4231 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4232 		   dev->name, stats->rx_bytes, stats->rx_packets,
4233 		   stats->rx_errors,
4234 		   stats->rx_dropped + stats->rx_missed_errors,
4235 		   stats->rx_fifo_errors,
4236 		   stats->rx_length_errors + stats->rx_over_errors +
4237 		    stats->rx_crc_errors + stats->rx_frame_errors,
4238 		   stats->rx_compressed, stats->multicast,
4239 		   stats->tx_bytes, stats->tx_packets,
4240 		   stats->tx_errors, stats->tx_dropped,
4241 		   stats->tx_fifo_errors, stats->collisions,
4242 		   stats->tx_carrier_errors +
4243 		    stats->tx_aborted_errors +
4244 		    stats->tx_window_errors +
4245 		    stats->tx_heartbeat_errors,
4246 		   stats->tx_compressed);
4247 }
4248 
4249 /*
4250  *	Called from the PROCfs module. This now uses the new arbitrary sized
4251  *	/proc/net interface to create /proc/net/dev
4252  */
4253 static int dev_seq_show(struct seq_file *seq, void *v)
4254 {
4255 	if (v == SEQ_START_TOKEN)
4256 		seq_puts(seq, "Inter-|   Receive                            "
4257 			      "                    |  Transmit\n"
4258 			      " face |bytes    packets errs drop fifo frame "
4259 			      "compressed multicast|bytes    packets errs "
4260 			      "drop fifo colls carrier compressed\n");
4261 	else
4262 		dev_seq_printf_stats(seq, v);
4263 	return 0;
4264 }
4265 
4266 static struct softnet_data *softnet_get_online(loff_t *pos)
4267 {
4268 	struct softnet_data *sd = NULL;
4269 
4270 	while (*pos < nr_cpu_ids)
4271 		if (cpu_online(*pos)) {
4272 			sd = &per_cpu(softnet_data, *pos);
4273 			break;
4274 		} else
4275 			++*pos;
4276 	return sd;
4277 }
4278 
4279 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4280 {
4281 	return softnet_get_online(pos);
4282 }
4283 
4284 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4285 {
4286 	++*pos;
4287 	return softnet_get_online(pos);
4288 }
4289 
4290 static void softnet_seq_stop(struct seq_file *seq, void *v)
4291 {
4292 }
4293 
4294 static int softnet_seq_show(struct seq_file *seq, void *v)
4295 {
4296 	struct softnet_data *sd = v;
4297 
4298 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4299 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4300 		   0, 0, 0, 0, /* was fastroute */
4301 		   sd->cpu_collision, sd->received_rps);
4302 	return 0;
4303 }
4304 
4305 static const struct seq_operations dev_seq_ops = {
4306 	.start = dev_seq_start,
4307 	.next  = dev_seq_next,
4308 	.stop  = dev_seq_stop,
4309 	.show  = dev_seq_show,
4310 };
4311 
4312 static int dev_seq_open(struct inode *inode, struct file *file)
4313 {
4314 	return seq_open_net(inode, file, &dev_seq_ops,
4315 			    sizeof(struct seq_net_private));
4316 }
4317 
4318 static const struct file_operations dev_seq_fops = {
4319 	.owner	 = THIS_MODULE,
4320 	.open    = dev_seq_open,
4321 	.read    = seq_read,
4322 	.llseek  = seq_lseek,
4323 	.release = seq_release_net,
4324 };
4325 
4326 static const struct seq_operations softnet_seq_ops = {
4327 	.start = softnet_seq_start,
4328 	.next  = softnet_seq_next,
4329 	.stop  = softnet_seq_stop,
4330 	.show  = softnet_seq_show,
4331 };
4332 
4333 static int softnet_seq_open(struct inode *inode, struct file *file)
4334 {
4335 	return seq_open(file, &softnet_seq_ops);
4336 }
4337 
4338 static const struct file_operations softnet_seq_fops = {
4339 	.owner	 = THIS_MODULE,
4340 	.open    = softnet_seq_open,
4341 	.read    = seq_read,
4342 	.llseek  = seq_lseek,
4343 	.release = seq_release,
4344 };
4345 
4346 static void *ptype_get_idx(loff_t pos)
4347 {
4348 	struct packet_type *pt = NULL;
4349 	loff_t i = 0;
4350 	int t;
4351 
4352 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4353 		if (i == pos)
4354 			return pt;
4355 		++i;
4356 	}
4357 
4358 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4359 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4360 			if (i == pos)
4361 				return pt;
4362 			++i;
4363 		}
4364 	}
4365 	return NULL;
4366 }
4367 
4368 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4369 	__acquires(RCU)
4370 {
4371 	rcu_read_lock();
4372 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4373 }
4374 
4375 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4376 {
4377 	struct packet_type *pt;
4378 	struct list_head *nxt;
4379 	int hash;
4380 
4381 	++*pos;
4382 	if (v == SEQ_START_TOKEN)
4383 		return ptype_get_idx(0);
4384 
4385 	pt = v;
4386 	nxt = pt->list.next;
4387 	if (pt->type == htons(ETH_P_ALL)) {
4388 		if (nxt != &ptype_all)
4389 			goto found;
4390 		hash = 0;
4391 		nxt = ptype_base[0].next;
4392 	} else
4393 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4394 
4395 	while (nxt == &ptype_base[hash]) {
4396 		if (++hash >= PTYPE_HASH_SIZE)
4397 			return NULL;
4398 		nxt = ptype_base[hash].next;
4399 	}
4400 found:
4401 	return list_entry(nxt, struct packet_type, list);
4402 }
4403 
4404 static void ptype_seq_stop(struct seq_file *seq, void *v)
4405 	__releases(RCU)
4406 {
4407 	rcu_read_unlock();
4408 }
4409 
4410 static int ptype_seq_show(struct seq_file *seq, void *v)
4411 {
4412 	struct packet_type *pt = v;
4413 
4414 	if (v == SEQ_START_TOKEN)
4415 		seq_puts(seq, "Type Device      Function\n");
4416 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4417 		if (pt->type == htons(ETH_P_ALL))
4418 			seq_puts(seq, "ALL ");
4419 		else
4420 			seq_printf(seq, "%04x", ntohs(pt->type));
4421 
4422 		seq_printf(seq, " %-8s %pF\n",
4423 			   pt->dev ? pt->dev->name : "", pt->func);
4424 	}
4425 
4426 	return 0;
4427 }
4428 
4429 static const struct seq_operations ptype_seq_ops = {
4430 	.start = ptype_seq_start,
4431 	.next  = ptype_seq_next,
4432 	.stop  = ptype_seq_stop,
4433 	.show  = ptype_seq_show,
4434 };
4435 
4436 static int ptype_seq_open(struct inode *inode, struct file *file)
4437 {
4438 	return seq_open_net(inode, file, &ptype_seq_ops,
4439 			sizeof(struct seq_net_private));
4440 }
4441 
4442 static const struct file_operations ptype_seq_fops = {
4443 	.owner	 = THIS_MODULE,
4444 	.open    = ptype_seq_open,
4445 	.read    = seq_read,
4446 	.llseek  = seq_lseek,
4447 	.release = seq_release_net,
4448 };
4449 
4450 
4451 static int __net_init dev_proc_net_init(struct net *net)
4452 {
4453 	int rc = -ENOMEM;
4454 
4455 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4456 		goto out;
4457 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4458 		goto out_dev;
4459 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4460 		goto out_softnet;
4461 
4462 	if (wext_proc_init(net))
4463 		goto out_ptype;
4464 	rc = 0;
4465 out:
4466 	return rc;
4467 out_ptype:
4468 	proc_net_remove(net, "ptype");
4469 out_softnet:
4470 	proc_net_remove(net, "softnet_stat");
4471 out_dev:
4472 	proc_net_remove(net, "dev");
4473 	goto out;
4474 }
4475 
4476 static void __net_exit dev_proc_net_exit(struct net *net)
4477 {
4478 	wext_proc_exit(net);
4479 
4480 	proc_net_remove(net, "ptype");
4481 	proc_net_remove(net, "softnet_stat");
4482 	proc_net_remove(net, "dev");
4483 }
4484 
4485 static struct pernet_operations __net_initdata dev_proc_ops = {
4486 	.init = dev_proc_net_init,
4487 	.exit = dev_proc_net_exit,
4488 };
4489 
4490 static int __init dev_proc_init(void)
4491 {
4492 	return register_pernet_subsys(&dev_proc_ops);
4493 }
4494 #else
4495 #define dev_proc_init() 0
4496 #endif	/* CONFIG_PROC_FS */
4497 
4498 
4499 /**
4500  *	netdev_set_master	-	set up master pointer
4501  *	@slave: slave device
4502  *	@master: new master device
4503  *
4504  *	Changes the master device of the slave. Pass %NULL to break the
4505  *	bonding. The caller must hold the RTNL semaphore. On a failure
4506  *	a negative errno code is returned. On success the reference counts
4507  *	are adjusted and the function returns zero.
4508  */
4509 int netdev_set_master(struct net_device *slave, struct net_device *master)
4510 {
4511 	struct net_device *old = slave->master;
4512 
4513 	ASSERT_RTNL();
4514 
4515 	if (master) {
4516 		if (old)
4517 			return -EBUSY;
4518 		dev_hold(master);
4519 	}
4520 
4521 	slave->master = master;
4522 
4523 	if (old)
4524 		dev_put(old);
4525 	return 0;
4526 }
4527 EXPORT_SYMBOL(netdev_set_master);
4528 
4529 /**
4530  *	netdev_set_bond_master	-	set up bonding master/slave pair
4531  *	@slave: slave device
4532  *	@master: new master device
4533  *
4534  *	Changes the master device of the slave. Pass %NULL to break the
4535  *	bonding. The caller must hold the RTNL semaphore. On a failure
4536  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4537  *	to the routing socket and the function returns zero.
4538  */
4539 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4540 {
4541 	int err;
4542 
4543 	ASSERT_RTNL();
4544 
4545 	err = netdev_set_master(slave, master);
4546 	if (err)
4547 		return err;
4548 	if (master)
4549 		slave->flags |= IFF_SLAVE;
4550 	else
4551 		slave->flags &= ~IFF_SLAVE;
4552 
4553 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4554 	return 0;
4555 }
4556 EXPORT_SYMBOL(netdev_set_bond_master);
4557 
4558 static void dev_change_rx_flags(struct net_device *dev, int flags)
4559 {
4560 	const struct net_device_ops *ops = dev->netdev_ops;
4561 
4562 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4563 		ops->ndo_change_rx_flags(dev, flags);
4564 }
4565 
4566 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4567 {
4568 	unsigned int old_flags = dev->flags;
4569 	kuid_t uid;
4570 	kgid_t gid;
4571 
4572 	ASSERT_RTNL();
4573 
4574 	dev->flags |= IFF_PROMISC;
4575 	dev->promiscuity += inc;
4576 	if (dev->promiscuity == 0) {
4577 		/*
4578 		 * Avoid overflow.
4579 		 * If inc causes overflow, untouch promisc and return error.
4580 		 */
4581 		if (inc < 0)
4582 			dev->flags &= ~IFF_PROMISC;
4583 		else {
4584 			dev->promiscuity -= inc;
4585 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4586 				dev->name);
4587 			return -EOVERFLOW;
4588 		}
4589 	}
4590 	if (dev->flags != old_flags) {
4591 		pr_info("device %s %s promiscuous mode\n",
4592 			dev->name,
4593 			dev->flags & IFF_PROMISC ? "entered" : "left");
4594 		if (audit_enabled) {
4595 			current_uid_gid(&uid, &gid);
4596 			audit_log(current->audit_context, GFP_ATOMIC,
4597 				AUDIT_ANOM_PROMISCUOUS,
4598 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4599 				dev->name, (dev->flags & IFF_PROMISC),
4600 				(old_flags & IFF_PROMISC),
4601 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
4602 				from_kuid(&init_user_ns, uid),
4603 				from_kgid(&init_user_ns, gid),
4604 				audit_get_sessionid(current));
4605 		}
4606 
4607 		dev_change_rx_flags(dev, IFF_PROMISC);
4608 	}
4609 	return 0;
4610 }
4611 
4612 /**
4613  *	dev_set_promiscuity	- update promiscuity count on a device
4614  *	@dev: device
4615  *	@inc: modifier
4616  *
4617  *	Add or remove promiscuity from a device. While the count in the device
4618  *	remains above zero the interface remains promiscuous. Once it hits zero
4619  *	the device reverts back to normal filtering operation. A negative inc
4620  *	value is used to drop promiscuity on the device.
4621  *	Return 0 if successful or a negative errno code on error.
4622  */
4623 int dev_set_promiscuity(struct net_device *dev, int inc)
4624 {
4625 	unsigned int old_flags = dev->flags;
4626 	int err;
4627 
4628 	err = __dev_set_promiscuity(dev, inc);
4629 	if (err < 0)
4630 		return err;
4631 	if (dev->flags != old_flags)
4632 		dev_set_rx_mode(dev);
4633 	return err;
4634 }
4635 EXPORT_SYMBOL(dev_set_promiscuity);
4636 
4637 /**
4638  *	dev_set_allmulti	- update allmulti count on a device
4639  *	@dev: device
4640  *	@inc: modifier
4641  *
4642  *	Add or remove reception of all multicast frames to a device. While the
4643  *	count in the device remains above zero the interface remains listening
4644  *	to all interfaces. Once it hits zero the device reverts back to normal
4645  *	filtering operation. A negative @inc value is used to drop the counter
4646  *	when releasing a resource needing all multicasts.
4647  *	Return 0 if successful or a negative errno code on error.
4648  */
4649 
4650 int dev_set_allmulti(struct net_device *dev, int inc)
4651 {
4652 	unsigned int old_flags = dev->flags;
4653 
4654 	ASSERT_RTNL();
4655 
4656 	dev->flags |= IFF_ALLMULTI;
4657 	dev->allmulti += inc;
4658 	if (dev->allmulti == 0) {
4659 		/*
4660 		 * Avoid overflow.
4661 		 * If inc causes overflow, untouch allmulti and return error.
4662 		 */
4663 		if (inc < 0)
4664 			dev->flags &= ~IFF_ALLMULTI;
4665 		else {
4666 			dev->allmulti -= inc;
4667 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4668 				dev->name);
4669 			return -EOVERFLOW;
4670 		}
4671 	}
4672 	if (dev->flags ^ old_flags) {
4673 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4674 		dev_set_rx_mode(dev);
4675 	}
4676 	return 0;
4677 }
4678 EXPORT_SYMBOL(dev_set_allmulti);
4679 
4680 /*
4681  *	Upload unicast and multicast address lists to device and
4682  *	configure RX filtering. When the device doesn't support unicast
4683  *	filtering it is put in promiscuous mode while unicast addresses
4684  *	are present.
4685  */
4686 void __dev_set_rx_mode(struct net_device *dev)
4687 {
4688 	const struct net_device_ops *ops = dev->netdev_ops;
4689 
4690 	/* dev_open will call this function so the list will stay sane. */
4691 	if (!(dev->flags&IFF_UP))
4692 		return;
4693 
4694 	if (!netif_device_present(dev))
4695 		return;
4696 
4697 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4698 		/* Unicast addresses changes may only happen under the rtnl,
4699 		 * therefore calling __dev_set_promiscuity here is safe.
4700 		 */
4701 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4702 			__dev_set_promiscuity(dev, 1);
4703 			dev->uc_promisc = true;
4704 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4705 			__dev_set_promiscuity(dev, -1);
4706 			dev->uc_promisc = false;
4707 		}
4708 	}
4709 
4710 	if (ops->ndo_set_rx_mode)
4711 		ops->ndo_set_rx_mode(dev);
4712 }
4713 
4714 void dev_set_rx_mode(struct net_device *dev)
4715 {
4716 	netif_addr_lock_bh(dev);
4717 	__dev_set_rx_mode(dev);
4718 	netif_addr_unlock_bh(dev);
4719 }
4720 
4721 /**
4722  *	dev_get_flags - get flags reported to userspace
4723  *	@dev: device
4724  *
4725  *	Get the combination of flag bits exported through APIs to userspace.
4726  */
4727 unsigned int dev_get_flags(const struct net_device *dev)
4728 {
4729 	unsigned int flags;
4730 
4731 	flags = (dev->flags & ~(IFF_PROMISC |
4732 				IFF_ALLMULTI |
4733 				IFF_RUNNING |
4734 				IFF_LOWER_UP |
4735 				IFF_DORMANT)) |
4736 		(dev->gflags & (IFF_PROMISC |
4737 				IFF_ALLMULTI));
4738 
4739 	if (netif_running(dev)) {
4740 		if (netif_oper_up(dev))
4741 			flags |= IFF_RUNNING;
4742 		if (netif_carrier_ok(dev))
4743 			flags |= IFF_LOWER_UP;
4744 		if (netif_dormant(dev))
4745 			flags |= IFF_DORMANT;
4746 	}
4747 
4748 	return flags;
4749 }
4750 EXPORT_SYMBOL(dev_get_flags);
4751 
4752 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4753 {
4754 	unsigned int old_flags = dev->flags;
4755 	int ret;
4756 
4757 	ASSERT_RTNL();
4758 
4759 	/*
4760 	 *	Set the flags on our device.
4761 	 */
4762 
4763 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4764 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4765 			       IFF_AUTOMEDIA)) |
4766 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4767 				    IFF_ALLMULTI));
4768 
4769 	/*
4770 	 *	Load in the correct multicast list now the flags have changed.
4771 	 */
4772 
4773 	if ((old_flags ^ flags) & IFF_MULTICAST)
4774 		dev_change_rx_flags(dev, IFF_MULTICAST);
4775 
4776 	dev_set_rx_mode(dev);
4777 
4778 	/*
4779 	 *	Have we downed the interface. We handle IFF_UP ourselves
4780 	 *	according to user attempts to set it, rather than blindly
4781 	 *	setting it.
4782 	 */
4783 
4784 	ret = 0;
4785 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4786 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4787 
4788 		if (!ret)
4789 			dev_set_rx_mode(dev);
4790 	}
4791 
4792 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4793 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4794 
4795 		dev->gflags ^= IFF_PROMISC;
4796 		dev_set_promiscuity(dev, inc);
4797 	}
4798 
4799 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4800 	   is important. Some (broken) drivers set IFF_PROMISC, when
4801 	   IFF_ALLMULTI is requested not asking us and not reporting.
4802 	 */
4803 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4804 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4805 
4806 		dev->gflags ^= IFF_ALLMULTI;
4807 		dev_set_allmulti(dev, inc);
4808 	}
4809 
4810 	return ret;
4811 }
4812 
4813 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4814 {
4815 	unsigned int changes = dev->flags ^ old_flags;
4816 
4817 	if (changes & IFF_UP) {
4818 		if (dev->flags & IFF_UP)
4819 			call_netdevice_notifiers(NETDEV_UP, dev);
4820 		else
4821 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4822 	}
4823 
4824 	if (dev->flags & IFF_UP &&
4825 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4826 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4827 }
4828 
4829 /**
4830  *	dev_change_flags - change device settings
4831  *	@dev: device
4832  *	@flags: device state flags
4833  *
4834  *	Change settings on device based state flags. The flags are
4835  *	in the userspace exported format.
4836  */
4837 int dev_change_flags(struct net_device *dev, unsigned int flags)
4838 {
4839 	int ret;
4840 	unsigned int changes, old_flags = dev->flags;
4841 
4842 	ret = __dev_change_flags(dev, flags);
4843 	if (ret < 0)
4844 		return ret;
4845 
4846 	changes = old_flags ^ dev->flags;
4847 	if (changes)
4848 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4849 
4850 	__dev_notify_flags(dev, old_flags);
4851 	return ret;
4852 }
4853 EXPORT_SYMBOL(dev_change_flags);
4854 
4855 /**
4856  *	dev_set_mtu - Change maximum transfer unit
4857  *	@dev: device
4858  *	@new_mtu: new transfer unit
4859  *
4860  *	Change the maximum transfer size of the network device.
4861  */
4862 int dev_set_mtu(struct net_device *dev, int new_mtu)
4863 {
4864 	const struct net_device_ops *ops = dev->netdev_ops;
4865 	int err;
4866 
4867 	if (new_mtu == dev->mtu)
4868 		return 0;
4869 
4870 	/*	MTU must be positive.	 */
4871 	if (new_mtu < 0)
4872 		return -EINVAL;
4873 
4874 	if (!netif_device_present(dev))
4875 		return -ENODEV;
4876 
4877 	err = 0;
4878 	if (ops->ndo_change_mtu)
4879 		err = ops->ndo_change_mtu(dev, new_mtu);
4880 	else
4881 		dev->mtu = new_mtu;
4882 
4883 	if (!err && dev->flags & IFF_UP)
4884 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4885 	return err;
4886 }
4887 EXPORT_SYMBOL(dev_set_mtu);
4888 
4889 /**
4890  *	dev_set_group - Change group this device belongs to
4891  *	@dev: device
4892  *	@new_group: group this device should belong to
4893  */
4894 void dev_set_group(struct net_device *dev, int new_group)
4895 {
4896 	dev->group = new_group;
4897 }
4898 EXPORT_SYMBOL(dev_set_group);
4899 
4900 /**
4901  *	dev_set_mac_address - Change Media Access Control Address
4902  *	@dev: device
4903  *	@sa: new address
4904  *
4905  *	Change the hardware (MAC) address of the device
4906  */
4907 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4908 {
4909 	const struct net_device_ops *ops = dev->netdev_ops;
4910 	int err;
4911 
4912 	if (!ops->ndo_set_mac_address)
4913 		return -EOPNOTSUPP;
4914 	if (sa->sa_family != dev->type)
4915 		return -EINVAL;
4916 	if (!netif_device_present(dev))
4917 		return -ENODEV;
4918 	err = ops->ndo_set_mac_address(dev, sa);
4919 	if (!err)
4920 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4921 	add_device_randomness(dev->dev_addr, dev->addr_len);
4922 	return err;
4923 }
4924 EXPORT_SYMBOL(dev_set_mac_address);
4925 
4926 /*
4927  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4928  */
4929 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4930 {
4931 	int err;
4932 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4933 
4934 	if (!dev)
4935 		return -ENODEV;
4936 
4937 	switch (cmd) {
4938 	case SIOCGIFFLAGS:	/* Get interface flags */
4939 		ifr->ifr_flags = (short) dev_get_flags(dev);
4940 		return 0;
4941 
4942 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4943 				   (currently unused) */
4944 		ifr->ifr_metric = 0;
4945 		return 0;
4946 
4947 	case SIOCGIFMTU:	/* Get the MTU of a device */
4948 		ifr->ifr_mtu = dev->mtu;
4949 		return 0;
4950 
4951 	case SIOCGIFHWADDR:
4952 		if (!dev->addr_len)
4953 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4954 		else
4955 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4956 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4957 		ifr->ifr_hwaddr.sa_family = dev->type;
4958 		return 0;
4959 
4960 	case SIOCGIFSLAVE:
4961 		err = -EINVAL;
4962 		break;
4963 
4964 	case SIOCGIFMAP:
4965 		ifr->ifr_map.mem_start = dev->mem_start;
4966 		ifr->ifr_map.mem_end   = dev->mem_end;
4967 		ifr->ifr_map.base_addr = dev->base_addr;
4968 		ifr->ifr_map.irq       = dev->irq;
4969 		ifr->ifr_map.dma       = dev->dma;
4970 		ifr->ifr_map.port      = dev->if_port;
4971 		return 0;
4972 
4973 	case SIOCGIFINDEX:
4974 		ifr->ifr_ifindex = dev->ifindex;
4975 		return 0;
4976 
4977 	case SIOCGIFTXQLEN:
4978 		ifr->ifr_qlen = dev->tx_queue_len;
4979 		return 0;
4980 
4981 	default:
4982 		/* dev_ioctl() should ensure this case
4983 		 * is never reached
4984 		 */
4985 		WARN_ON(1);
4986 		err = -ENOTTY;
4987 		break;
4988 
4989 	}
4990 	return err;
4991 }
4992 
4993 /*
4994  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4995  */
4996 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4997 {
4998 	int err;
4999 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5000 	const struct net_device_ops *ops;
5001 
5002 	if (!dev)
5003 		return -ENODEV;
5004 
5005 	ops = dev->netdev_ops;
5006 
5007 	switch (cmd) {
5008 	case SIOCSIFFLAGS:	/* Set interface flags */
5009 		return dev_change_flags(dev, ifr->ifr_flags);
5010 
5011 	case SIOCSIFMETRIC:	/* Set the metric on the interface
5012 				   (currently unused) */
5013 		return -EOPNOTSUPP;
5014 
5015 	case SIOCSIFMTU:	/* Set the MTU of a device */
5016 		return dev_set_mtu(dev, ifr->ifr_mtu);
5017 
5018 	case SIOCSIFHWADDR:
5019 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5020 
5021 	case SIOCSIFHWBROADCAST:
5022 		if (ifr->ifr_hwaddr.sa_family != dev->type)
5023 			return -EINVAL;
5024 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5025 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5026 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5027 		return 0;
5028 
5029 	case SIOCSIFMAP:
5030 		if (ops->ndo_set_config) {
5031 			if (!netif_device_present(dev))
5032 				return -ENODEV;
5033 			return ops->ndo_set_config(dev, &ifr->ifr_map);
5034 		}
5035 		return -EOPNOTSUPP;
5036 
5037 	case SIOCADDMULTI:
5038 		if (!ops->ndo_set_rx_mode ||
5039 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5040 			return -EINVAL;
5041 		if (!netif_device_present(dev))
5042 			return -ENODEV;
5043 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5044 
5045 	case SIOCDELMULTI:
5046 		if (!ops->ndo_set_rx_mode ||
5047 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5048 			return -EINVAL;
5049 		if (!netif_device_present(dev))
5050 			return -ENODEV;
5051 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5052 
5053 	case SIOCSIFTXQLEN:
5054 		if (ifr->ifr_qlen < 0)
5055 			return -EINVAL;
5056 		dev->tx_queue_len = ifr->ifr_qlen;
5057 		return 0;
5058 
5059 	case SIOCSIFNAME:
5060 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5061 		return dev_change_name(dev, ifr->ifr_newname);
5062 
5063 	case SIOCSHWTSTAMP:
5064 		err = net_hwtstamp_validate(ifr);
5065 		if (err)
5066 			return err;
5067 		/* fall through */
5068 
5069 	/*
5070 	 *	Unknown or private ioctl
5071 	 */
5072 	default:
5073 		if ((cmd >= SIOCDEVPRIVATE &&
5074 		    cmd <= SIOCDEVPRIVATE + 15) ||
5075 		    cmd == SIOCBONDENSLAVE ||
5076 		    cmd == SIOCBONDRELEASE ||
5077 		    cmd == SIOCBONDSETHWADDR ||
5078 		    cmd == SIOCBONDSLAVEINFOQUERY ||
5079 		    cmd == SIOCBONDINFOQUERY ||
5080 		    cmd == SIOCBONDCHANGEACTIVE ||
5081 		    cmd == SIOCGMIIPHY ||
5082 		    cmd == SIOCGMIIREG ||
5083 		    cmd == SIOCSMIIREG ||
5084 		    cmd == SIOCBRADDIF ||
5085 		    cmd == SIOCBRDELIF ||
5086 		    cmd == SIOCSHWTSTAMP ||
5087 		    cmd == SIOCWANDEV) {
5088 			err = -EOPNOTSUPP;
5089 			if (ops->ndo_do_ioctl) {
5090 				if (netif_device_present(dev))
5091 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
5092 				else
5093 					err = -ENODEV;
5094 			}
5095 		} else
5096 			err = -EINVAL;
5097 
5098 	}
5099 	return err;
5100 }
5101 
5102 /*
5103  *	This function handles all "interface"-type I/O control requests. The actual
5104  *	'doing' part of this is dev_ifsioc above.
5105  */
5106 
5107 /**
5108  *	dev_ioctl	-	network device ioctl
5109  *	@net: the applicable net namespace
5110  *	@cmd: command to issue
5111  *	@arg: pointer to a struct ifreq in user space
5112  *
5113  *	Issue ioctl functions to devices. This is normally called by the
5114  *	user space syscall interfaces but can sometimes be useful for
5115  *	other purposes. The return value is the return from the syscall if
5116  *	positive or a negative errno code on error.
5117  */
5118 
5119 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5120 {
5121 	struct ifreq ifr;
5122 	int ret;
5123 	char *colon;
5124 
5125 	/* One special case: SIOCGIFCONF takes ifconf argument
5126 	   and requires shared lock, because it sleeps writing
5127 	   to user space.
5128 	 */
5129 
5130 	if (cmd == SIOCGIFCONF) {
5131 		rtnl_lock();
5132 		ret = dev_ifconf(net, (char __user *) arg);
5133 		rtnl_unlock();
5134 		return ret;
5135 	}
5136 	if (cmd == SIOCGIFNAME)
5137 		return dev_ifname(net, (struct ifreq __user *)arg);
5138 
5139 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5140 		return -EFAULT;
5141 
5142 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5143 
5144 	colon = strchr(ifr.ifr_name, ':');
5145 	if (colon)
5146 		*colon = 0;
5147 
5148 	/*
5149 	 *	See which interface the caller is talking about.
5150 	 */
5151 
5152 	switch (cmd) {
5153 	/*
5154 	 *	These ioctl calls:
5155 	 *	- can be done by all.
5156 	 *	- atomic and do not require locking.
5157 	 *	- return a value
5158 	 */
5159 	case SIOCGIFFLAGS:
5160 	case SIOCGIFMETRIC:
5161 	case SIOCGIFMTU:
5162 	case SIOCGIFHWADDR:
5163 	case SIOCGIFSLAVE:
5164 	case SIOCGIFMAP:
5165 	case SIOCGIFINDEX:
5166 	case SIOCGIFTXQLEN:
5167 		dev_load(net, ifr.ifr_name);
5168 		rcu_read_lock();
5169 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5170 		rcu_read_unlock();
5171 		if (!ret) {
5172 			if (colon)
5173 				*colon = ':';
5174 			if (copy_to_user(arg, &ifr,
5175 					 sizeof(struct ifreq)))
5176 				ret = -EFAULT;
5177 		}
5178 		return ret;
5179 
5180 	case SIOCETHTOOL:
5181 		dev_load(net, ifr.ifr_name);
5182 		rtnl_lock();
5183 		ret = dev_ethtool(net, &ifr);
5184 		rtnl_unlock();
5185 		if (!ret) {
5186 			if (colon)
5187 				*colon = ':';
5188 			if (copy_to_user(arg, &ifr,
5189 					 sizeof(struct ifreq)))
5190 				ret = -EFAULT;
5191 		}
5192 		return ret;
5193 
5194 	/*
5195 	 *	These ioctl calls:
5196 	 *	- require superuser power.
5197 	 *	- require strict serialization.
5198 	 *	- return a value
5199 	 */
5200 	case SIOCGMIIPHY:
5201 	case SIOCGMIIREG:
5202 	case SIOCSIFNAME:
5203 		if (!capable(CAP_NET_ADMIN))
5204 			return -EPERM;
5205 		dev_load(net, ifr.ifr_name);
5206 		rtnl_lock();
5207 		ret = dev_ifsioc(net, &ifr, cmd);
5208 		rtnl_unlock();
5209 		if (!ret) {
5210 			if (colon)
5211 				*colon = ':';
5212 			if (copy_to_user(arg, &ifr,
5213 					 sizeof(struct ifreq)))
5214 				ret = -EFAULT;
5215 		}
5216 		return ret;
5217 
5218 	/*
5219 	 *	These ioctl calls:
5220 	 *	- require superuser power.
5221 	 *	- require strict serialization.
5222 	 *	- do not return a value
5223 	 */
5224 	case SIOCSIFFLAGS:
5225 	case SIOCSIFMETRIC:
5226 	case SIOCSIFMTU:
5227 	case SIOCSIFMAP:
5228 	case SIOCSIFHWADDR:
5229 	case SIOCSIFSLAVE:
5230 	case SIOCADDMULTI:
5231 	case SIOCDELMULTI:
5232 	case SIOCSIFHWBROADCAST:
5233 	case SIOCSIFTXQLEN:
5234 	case SIOCSMIIREG:
5235 	case SIOCBONDENSLAVE:
5236 	case SIOCBONDRELEASE:
5237 	case SIOCBONDSETHWADDR:
5238 	case SIOCBONDCHANGEACTIVE:
5239 	case SIOCBRADDIF:
5240 	case SIOCBRDELIF:
5241 	case SIOCSHWTSTAMP:
5242 		if (!capable(CAP_NET_ADMIN))
5243 			return -EPERM;
5244 		/* fall through */
5245 	case SIOCBONDSLAVEINFOQUERY:
5246 	case SIOCBONDINFOQUERY:
5247 		dev_load(net, ifr.ifr_name);
5248 		rtnl_lock();
5249 		ret = dev_ifsioc(net, &ifr, cmd);
5250 		rtnl_unlock();
5251 		return ret;
5252 
5253 	case SIOCGIFMEM:
5254 		/* Get the per device memory space. We can add this but
5255 		 * currently do not support it */
5256 	case SIOCSIFMEM:
5257 		/* Set the per device memory buffer space.
5258 		 * Not applicable in our case */
5259 	case SIOCSIFLINK:
5260 		return -ENOTTY;
5261 
5262 	/*
5263 	 *	Unknown or private ioctl.
5264 	 */
5265 	default:
5266 		if (cmd == SIOCWANDEV ||
5267 		    (cmd >= SIOCDEVPRIVATE &&
5268 		     cmd <= SIOCDEVPRIVATE + 15)) {
5269 			dev_load(net, ifr.ifr_name);
5270 			rtnl_lock();
5271 			ret = dev_ifsioc(net, &ifr, cmd);
5272 			rtnl_unlock();
5273 			if (!ret && copy_to_user(arg, &ifr,
5274 						 sizeof(struct ifreq)))
5275 				ret = -EFAULT;
5276 			return ret;
5277 		}
5278 		/* Take care of Wireless Extensions */
5279 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5280 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5281 		return -ENOTTY;
5282 	}
5283 }
5284 
5285 
5286 /**
5287  *	dev_new_index	-	allocate an ifindex
5288  *	@net: the applicable net namespace
5289  *
5290  *	Returns a suitable unique value for a new device interface
5291  *	number.  The caller must hold the rtnl semaphore or the
5292  *	dev_base_lock to be sure it remains unique.
5293  */
5294 static int dev_new_index(struct net *net)
5295 {
5296 	int ifindex = net->ifindex;
5297 	for (;;) {
5298 		if (++ifindex <= 0)
5299 			ifindex = 1;
5300 		if (!__dev_get_by_index(net, ifindex))
5301 			return net->ifindex = ifindex;
5302 	}
5303 }
5304 
5305 /* Delayed registration/unregisteration */
5306 static LIST_HEAD(net_todo_list);
5307 
5308 static void net_set_todo(struct net_device *dev)
5309 {
5310 	list_add_tail(&dev->todo_list, &net_todo_list);
5311 }
5312 
5313 static void rollback_registered_many(struct list_head *head)
5314 {
5315 	struct net_device *dev, *tmp;
5316 
5317 	BUG_ON(dev_boot_phase);
5318 	ASSERT_RTNL();
5319 
5320 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5321 		/* Some devices call without registering
5322 		 * for initialization unwind. Remove those
5323 		 * devices and proceed with the remaining.
5324 		 */
5325 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5326 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5327 				 dev->name, dev);
5328 
5329 			WARN_ON(1);
5330 			list_del(&dev->unreg_list);
5331 			continue;
5332 		}
5333 		dev->dismantle = true;
5334 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5335 	}
5336 
5337 	/* If device is running, close it first. */
5338 	dev_close_many(head);
5339 
5340 	list_for_each_entry(dev, head, unreg_list) {
5341 		/* And unlink it from device chain. */
5342 		unlist_netdevice(dev);
5343 
5344 		dev->reg_state = NETREG_UNREGISTERING;
5345 	}
5346 
5347 	synchronize_net();
5348 
5349 	list_for_each_entry(dev, head, unreg_list) {
5350 		/* Shutdown queueing discipline. */
5351 		dev_shutdown(dev);
5352 
5353 
5354 		/* Notify protocols, that we are about to destroy
5355 		   this device. They should clean all the things.
5356 		*/
5357 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5358 
5359 		if (!dev->rtnl_link_ops ||
5360 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5361 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5362 
5363 		/*
5364 		 *	Flush the unicast and multicast chains
5365 		 */
5366 		dev_uc_flush(dev);
5367 		dev_mc_flush(dev);
5368 
5369 		if (dev->netdev_ops->ndo_uninit)
5370 			dev->netdev_ops->ndo_uninit(dev);
5371 
5372 		/* Notifier chain MUST detach us from master device. */
5373 		WARN_ON(dev->master);
5374 
5375 		/* Remove entries from kobject tree */
5376 		netdev_unregister_kobject(dev);
5377 	}
5378 
5379 	synchronize_net();
5380 
5381 	list_for_each_entry(dev, head, unreg_list)
5382 		dev_put(dev);
5383 }
5384 
5385 static void rollback_registered(struct net_device *dev)
5386 {
5387 	LIST_HEAD(single);
5388 
5389 	list_add(&dev->unreg_list, &single);
5390 	rollback_registered_many(&single);
5391 	list_del(&single);
5392 }
5393 
5394 static netdev_features_t netdev_fix_features(struct net_device *dev,
5395 	netdev_features_t features)
5396 {
5397 	/* Fix illegal checksum combinations */
5398 	if ((features & NETIF_F_HW_CSUM) &&
5399 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5400 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5401 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5402 	}
5403 
5404 	/* Fix illegal SG+CSUM combinations. */
5405 	if ((features & NETIF_F_SG) &&
5406 	    !(features & NETIF_F_ALL_CSUM)) {
5407 		netdev_dbg(dev,
5408 			"Dropping NETIF_F_SG since no checksum feature.\n");
5409 		features &= ~NETIF_F_SG;
5410 	}
5411 
5412 	/* TSO requires that SG is present as well. */
5413 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5414 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5415 		features &= ~NETIF_F_ALL_TSO;
5416 	}
5417 
5418 	/* TSO ECN requires that TSO is present as well. */
5419 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5420 		features &= ~NETIF_F_TSO_ECN;
5421 
5422 	/* Software GSO depends on SG. */
5423 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5424 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5425 		features &= ~NETIF_F_GSO;
5426 	}
5427 
5428 	/* UFO needs SG and checksumming */
5429 	if (features & NETIF_F_UFO) {
5430 		/* maybe split UFO into V4 and V6? */
5431 		if (!((features & NETIF_F_GEN_CSUM) ||
5432 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5433 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5434 			netdev_dbg(dev,
5435 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5436 			features &= ~NETIF_F_UFO;
5437 		}
5438 
5439 		if (!(features & NETIF_F_SG)) {
5440 			netdev_dbg(dev,
5441 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5442 			features &= ~NETIF_F_UFO;
5443 		}
5444 	}
5445 
5446 	return features;
5447 }
5448 
5449 int __netdev_update_features(struct net_device *dev)
5450 {
5451 	netdev_features_t features;
5452 	int err = 0;
5453 
5454 	ASSERT_RTNL();
5455 
5456 	features = netdev_get_wanted_features(dev);
5457 
5458 	if (dev->netdev_ops->ndo_fix_features)
5459 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5460 
5461 	/* driver might be less strict about feature dependencies */
5462 	features = netdev_fix_features(dev, features);
5463 
5464 	if (dev->features == features)
5465 		return 0;
5466 
5467 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5468 		&dev->features, &features);
5469 
5470 	if (dev->netdev_ops->ndo_set_features)
5471 		err = dev->netdev_ops->ndo_set_features(dev, features);
5472 
5473 	if (unlikely(err < 0)) {
5474 		netdev_err(dev,
5475 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5476 			err, &features, &dev->features);
5477 		return -1;
5478 	}
5479 
5480 	if (!err)
5481 		dev->features = features;
5482 
5483 	return 1;
5484 }
5485 
5486 /**
5487  *	netdev_update_features - recalculate device features
5488  *	@dev: the device to check
5489  *
5490  *	Recalculate dev->features set and send notifications if it
5491  *	has changed. Should be called after driver or hardware dependent
5492  *	conditions might have changed that influence the features.
5493  */
5494 void netdev_update_features(struct net_device *dev)
5495 {
5496 	if (__netdev_update_features(dev))
5497 		netdev_features_change(dev);
5498 }
5499 EXPORT_SYMBOL(netdev_update_features);
5500 
5501 /**
5502  *	netdev_change_features - recalculate device features
5503  *	@dev: the device to check
5504  *
5505  *	Recalculate dev->features set and send notifications even
5506  *	if they have not changed. Should be called instead of
5507  *	netdev_update_features() if also dev->vlan_features might
5508  *	have changed to allow the changes to be propagated to stacked
5509  *	VLAN devices.
5510  */
5511 void netdev_change_features(struct net_device *dev)
5512 {
5513 	__netdev_update_features(dev);
5514 	netdev_features_change(dev);
5515 }
5516 EXPORT_SYMBOL(netdev_change_features);
5517 
5518 /**
5519  *	netif_stacked_transfer_operstate -	transfer operstate
5520  *	@rootdev: the root or lower level device to transfer state from
5521  *	@dev: the device to transfer operstate to
5522  *
5523  *	Transfer operational state from root to device. This is normally
5524  *	called when a stacking relationship exists between the root
5525  *	device and the device(a leaf device).
5526  */
5527 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5528 					struct net_device *dev)
5529 {
5530 	if (rootdev->operstate == IF_OPER_DORMANT)
5531 		netif_dormant_on(dev);
5532 	else
5533 		netif_dormant_off(dev);
5534 
5535 	if (netif_carrier_ok(rootdev)) {
5536 		if (!netif_carrier_ok(dev))
5537 			netif_carrier_on(dev);
5538 	} else {
5539 		if (netif_carrier_ok(dev))
5540 			netif_carrier_off(dev);
5541 	}
5542 }
5543 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5544 
5545 #ifdef CONFIG_RPS
5546 static int netif_alloc_rx_queues(struct net_device *dev)
5547 {
5548 	unsigned int i, count = dev->num_rx_queues;
5549 	struct netdev_rx_queue *rx;
5550 
5551 	BUG_ON(count < 1);
5552 
5553 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5554 	if (!rx) {
5555 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5556 		return -ENOMEM;
5557 	}
5558 	dev->_rx = rx;
5559 
5560 	for (i = 0; i < count; i++)
5561 		rx[i].dev = dev;
5562 	return 0;
5563 }
5564 #endif
5565 
5566 static void netdev_init_one_queue(struct net_device *dev,
5567 				  struct netdev_queue *queue, void *_unused)
5568 {
5569 	/* Initialize queue lock */
5570 	spin_lock_init(&queue->_xmit_lock);
5571 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5572 	queue->xmit_lock_owner = -1;
5573 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5574 	queue->dev = dev;
5575 #ifdef CONFIG_BQL
5576 	dql_init(&queue->dql, HZ);
5577 #endif
5578 }
5579 
5580 static int netif_alloc_netdev_queues(struct net_device *dev)
5581 {
5582 	unsigned int count = dev->num_tx_queues;
5583 	struct netdev_queue *tx;
5584 
5585 	BUG_ON(count < 1);
5586 
5587 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5588 	if (!tx) {
5589 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5590 		return -ENOMEM;
5591 	}
5592 	dev->_tx = tx;
5593 
5594 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5595 	spin_lock_init(&dev->tx_global_lock);
5596 
5597 	return 0;
5598 }
5599 
5600 /**
5601  *	register_netdevice	- register a network device
5602  *	@dev: device to register
5603  *
5604  *	Take a completed network device structure and add it to the kernel
5605  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5606  *	chain. 0 is returned on success. A negative errno code is returned
5607  *	on a failure to set up the device, or if the name is a duplicate.
5608  *
5609  *	Callers must hold the rtnl semaphore. You may want
5610  *	register_netdev() instead of this.
5611  *
5612  *	BUGS:
5613  *	The locking appears insufficient to guarantee two parallel registers
5614  *	will not get the same name.
5615  */
5616 
5617 int register_netdevice(struct net_device *dev)
5618 {
5619 	int ret;
5620 	struct net *net = dev_net(dev);
5621 
5622 	BUG_ON(dev_boot_phase);
5623 	ASSERT_RTNL();
5624 
5625 	might_sleep();
5626 
5627 	/* When net_device's are persistent, this will be fatal. */
5628 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5629 	BUG_ON(!net);
5630 
5631 	spin_lock_init(&dev->addr_list_lock);
5632 	netdev_set_addr_lockdep_class(dev);
5633 
5634 	dev->iflink = -1;
5635 
5636 	ret = dev_get_valid_name(net, dev, dev->name);
5637 	if (ret < 0)
5638 		goto out;
5639 
5640 	/* Init, if this function is available */
5641 	if (dev->netdev_ops->ndo_init) {
5642 		ret = dev->netdev_ops->ndo_init(dev);
5643 		if (ret) {
5644 			if (ret > 0)
5645 				ret = -EIO;
5646 			goto out;
5647 		}
5648 	}
5649 
5650 	ret = -EBUSY;
5651 	if (!dev->ifindex)
5652 		dev->ifindex = dev_new_index(net);
5653 	else if (__dev_get_by_index(net, dev->ifindex))
5654 		goto err_uninit;
5655 
5656 	if (dev->iflink == -1)
5657 		dev->iflink = dev->ifindex;
5658 
5659 	/* Transfer changeable features to wanted_features and enable
5660 	 * software offloads (GSO and GRO).
5661 	 */
5662 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5663 	dev->features |= NETIF_F_SOFT_FEATURES;
5664 	dev->wanted_features = dev->features & dev->hw_features;
5665 
5666 	/* Turn on no cache copy if HW is doing checksum */
5667 	if (!(dev->flags & IFF_LOOPBACK)) {
5668 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5669 		if (dev->features & NETIF_F_ALL_CSUM) {
5670 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5671 			dev->features |= NETIF_F_NOCACHE_COPY;
5672 		}
5673 	}
5674 
5675 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5676 	 */
5677 	dev->vlan_features |= NETIF_F_HIGHDMA;
5678 
5679 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5680 	ret = notifier_to_errno(ret);
5681 	if (ret)
5682 		goto err_uninit;
5683 
5684 	ret = netdev_register_kobject(dev);
5685 	if (ret)
5686 		goto err_uninit;
5687 	dev->reg_state = NETREG_REGISTERED;
5688 
5689 	__netdev_update_features(dev);
5690 
5691 	/*
5692 	 *	Default initial state at registry is that the
5693 	 *	device is present.
5694 	 */
5695 
5696 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5697 
5698 	linkwatch_init_dev(dev);
5699 
5700 	dev_init_scheduler(dev);
5701 	dev_hold(dev);
5702 	list_netdevice(dev);
5703 	add_device_randomness(dev->dev_addr, dev->addr_len);
5704 
5705 	/* Notify protocols, that a new device appeared. */
5706 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5707 	ret = notifier_to_errno(ret);
5708 	if (ret) {
5709 		rollback_registered(dev);
5710 		dev->reg_state = NETREG_UNREGISTERED;
5711 	}
5712 	/*
5713 	 *	Prevent userspace races by waiting until the network
5714 	 *	device is fully setup before sending notifications.
5715 	 */
5716 	if (!dev->rtnl_link_ops ||
5717 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5718 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5719 
5720 out:
5721 	return ret;
5722 
5723 err_uninit:
5724 	if (dev->netdev_ops->ndo_uninit)
5725 		dev->netdev_ops->ndo_uninit(dev);
5726 	goto out;
5727 }
5728 EXPORT_SYMBOL(register_netdevice);
5729 
5730 /**
5731  *	init_dummy_netdev	- init a dummy network device for NAPI
5732  *	@dev: device to init
5733  *
5734  *	This takes a network device structure and initialize the minimum
5735  *	amount of fields so it can be used to schedule NAPI polls without
5736  *	registering a full blown interface. This is to be used by drivers
5737  *	that need to tie several hardware interfaces to a single NAPI
5738  *	poll scheduler due to HW limitations.
5739  */
5740 int init_dummy_netdev(struct net_device *dev)
5741 {
5742 	/* Clear everything. Note we don't initialize spinlocks
5743 	 * are they aren't supposed to be taken by any of the
5744 	 * NAPI code and this dummy netdev is supposed to be
5745 	 * only ever used for NAPI polls
5746 	 */
5747 	memset(dev, 0, sizeof(struct net_device));
5748 
5749 	/* make sure we BUG if trying to hit standard
5750 	 * register/unregister code path
5751 	 */
5752 	dev->reg_state = NETREG_DUMMY;
5753 
5754 	/* NAPI wants this */
5755 	INIT_LIST_HEAD(&dev->napi_list);
5756 
5757 	/* a dummy interface is started by default */
5758 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5759 	set_bit(__LINK_STATE_START, &dev->state);
5760 
5761 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5762 	 * because users of this 'device' dont need to change
5763 	 * its refcount.
5764 	 */
5765 
5766 	return 0;
5767 }
5768 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5769 
5770 
5771 /**
5772  *	register_netdev	- register a network device
5773  *	@dev: device to register
5774  *
5775  *	Take a completed network device structure and add it to the kernel
5776  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5777  *	chain. 0 is returned on success. A negative errno code is returned
5778  *	on a failure to set up the device, or if the name is a duplicate.
5779  *
5780  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5781  *	and expands the device name if you passed a format string to
5782  *	alloc_netdev.
5783  */
5784 int register_netdev(struct net_device *dev)
5785 {
5786 	int err;
5787 
5788 	rtnl_lock();
5789 	err = register_netdevice(dev);
5790 	rtnl_unlock();
5791 	return err;
5792 }
5793 EXPORT_SYMBOL(register_netdev);
5794 
5795 int netdev_refcnt_read(const struct net_device *dev)
5796 {
5797 	int i, refcnt = 0;
5798 
5799 	for_each_possible_cpu(i)
5800 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5801 	return refcnt;
5802 }
5803 EXPORT_SYMBOL(netdev_refcnt_read);
5804 
5805 /**
5806  * netdev_wait_allrefs - wait until all references are gone.
5807  * @dev: target net_device
5808  *
5809  * This is called when unregistering network devices.
5810  *
5811  * Any protocol or device that holds a reference should register
5812  * for netdevice notification, and cleanup and put back the
5813  * reference if they receive an UNREGISTER event.
5814  * We can get stuck here if buggy protocols don't correctly
5815  * call dev_put.
5816  */
5817 static void netdev_wait_allrefs(struct net_device *dev)
5818 {
5819 	unsigned long rebroadcast_time, warning_time;
5820 	int refcnt;
5821 
5822 	linkwatch_forget_dev(dev);
5823 
5824 	rebroadcast_time = warning_time = jiffies;
5825 	refcnt = netdev_refcnt_read(dev);
5826 
5827 	while (refcnt != 0) {
5828 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5829 			rtnl_lock();
5830 
5831 			/* Rebroadcast unregister notification */
5832 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5833 
5834 			__rtnl_unlock();
5835 			rcu_barrier();
5836 			rtnl_lock();
5837 
5838 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5839 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5840 				     &dev->state)) {
5841 				/* We must not have linkwatch events
5842 				 * pending on unregister. If this
5843 				 * happens, we simply run the queue
5844 				 * unscheduled, resulting in a noop
5845 				 * for this device.
5846 				 */
5847 				linkwatch_run_queue();
5848 			}
5849 
5850 			__rtnl_unlock();
5851 
5852 			rebroadcast_time = jiffies;
5853 		}
5854 
5855 		msleep(250);
5856 
5857 		refcnt = netdev_refcnt_read(dev);
5858 
5859 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5860 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5861 				 dev->name, refcnt);
5862 			warning_time = jiffies;
5863 		}
5864 	}
5865 }
5866 
5867 /* The sequence is:
5868  *
5869  *	rtnl_lock();
5870  *	...
5871  *	register_netdevice(x1);
5872  *	register_netdevice(x2);
5873  *	...
5874  *	unregister_netdevice(y1);
5875  *	unregister_netdevice(y2);
5876  *      ...
5877  *	rtnl_unlock();
5878  *	free_netdev(y1);
5879  *	free_netdev(y2);
5880  *
5881  * We are invoked by rtnl_unlock().
5882  * This allows us to deal with problems:
5883  * 1) We can delete sysfs objects which invoke hotplug
5884  *    without deadlocking with linkwatch via keventd.
5885  * 2) Since we run with the RTNL semaphore not held, we can sleep
5886  *    safely in order to wait for the netdev refcnt to drop to zero.
5887  *
5888  * We must not return until all unregister events added during
5889  * the interval the lock was held have been completed.
5890  */
5891 void netdev_run_todo(void)
5892 {
5893 	struct list_head list;
5894 
5895 	/* Snapshot list, allow later requests */
5896 	list_replace_init(&net_todo_list, &list);
5897 
5898 	__rtnl_unlock();
5899 
5900 
5901 	/* Wait for rcu callbacks to finish before next phase */
5902 	if (!list_empty(&list))
5903 		rcu_barrier();
5904 
5905 	while (!list_empty(&list)) {
5906 		struct net_device *dev
5907 			= list_first_entry(&list, struct net_device, todo_list);
5908 		list_del(&dev->todo_list);
5909 
5910 		rtnl_lock();
5911 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5912 		__rtnl_unlock();
5913 
5914 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5915 			pr_err("network todo '%s' but state %d\n",
5916 			       dev->name, dev->reg_state);
5917 			dump_stack();
5918 			continue;
5919 		}
5920 
5921 		dev->reg_state = NETREG_UNREGISTERED;
5922 
5923 		on_each_cpu(flush_backlog, dev, 1);
5924 
5925 		netdev_wait_allrefs(dev);
5926 
5927 		/* paranoia */
5928 		BUG_ON(netdev_refcnt_read(dev));
5929 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5930 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5931 		WARN_ON(dev->dn_ptr);
5932 
5933 		if (dev->destructor)
5934 			dev->destructor(dev);
5935 
5936 		/* Free network device */
5937 		kobject_put(&dev->dev.kobj);
5938 	}
5939 }
5940 
5941 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5942  * fields in the same order, with only the type differing.
5943  */
5944 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5945 			     const struct net_device_stats *netdev_stats)
5946 {
5947 #if BITS_PER_LONG == 64
5948 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5949 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5950 #else
5951 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5952 	const unsigned long *src = (const unsigned long *)netdev_stats;
5953 	u64 *dst = (u64 *)stats64;
5954 
5955 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5956 		     sizeof(*stats64) / sizeof(u64));
5957 	for (i = 0; i < n; i++)
5958 		dst[i] = src[i];
5959 #endif
5960 }
5961 EXPORT_SYMBOL(netdev_stats_to_stats64);
5962 
5963 /**
5964  *	dev_get_stats	- get network device statistics
5965  *	@dev: device to get statistics from
5966  *	@storage: place to store stats
5967  *
5968  *	Get network statistics from device. Return @storage.
5969  *	The device driver may provide its own method by setting
5970  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5971  *	otherwise the internal statistics structure is used.
5972  */
5973 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5974 					struct rtnl_link_stats64 *storage)
5975 {
5976 	const struct net_device_ops *ops = dev->netdev_ops;
5977 
5978 	if (ops->ndo_get_stats64) {
5979 		memset(storage, 0, sizeof(*storage));
5980 		ops->ndo_get_stats64(dev, storage);
5981 	} else if (ops->ndo_get_stats) {
5982 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5983 	} else {
5984 		netdev_stats_to_stats64(storage, &dev->stats);
5985 	}
5986 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5987 	return storage;
5988 }
5989 EXPORT_SYMBOL(dev_get_stats);
5990 
5991 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5992 {
5993 	struct netdev_queue *queue = dev_ingress_queue(dev);
5994 
5995 #ifdef CONFIG_NET_CLS_ACT
5996 	if (queue)
5997 		return queue;
5998 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5999 	if (!queue)
6000 		return NULL;
6001 	netdev_init_one_queue(dev, queue, NULL);
6002 	queue->qdisc = &noop_qdisc;
6003 	queue->qdisc_sleeping = &noop_qdisc;
6004 	rcu_assign_pointer(dev->ingress_queue, queue);
6005 #endif
6006 	return queue;
6007 }
6008 
6009 static const struct ethtool_ops default_ethtool_ops;
6010 
6011 /**
6012  *	alloc_netdev_mqs - allocate network device
6013  *	@sizeof_priv:	size of private data to allocate space for
6014  *	@name:		device name format string
6015  *	@setup:		callback to initialize device
6016  *	@txqs:		the number of TX subqueues to allocate
6017  *	@rxqs:		the number of RX subqueues to allocate
6018  *
6019  *	Allocates a struct net_device with private data area for driver use
6020  *	and performs basic initialization.  Also allocates subquue structs
6021  *	for each queue on the device.
6022  */
6023 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6024 		void (*setup)(struct net_device *),
6025 		unsigned int txqs, unsigned int rxqs)
6026 {
6027 	struct net_device *dev;
6028 	size_t alloc_size;
6029 	struct net_device *p;
6030 
6031 	BUG_ON(strlen(name) >= sizeof(dev->name));
6032 
6033 	if (txqs < 1) {
6034 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6035 		return NULL;
6036 	}
6037 
6038 #ifdef CONFIG_RPS
6039 	if (rxqs < 1) {
6040 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6041 		return NULL;
6042 	}
6043 #endif
6044 
6045 	alloc_size = sizeof(struct net_device);
6046 	if (sizeof_priv) {
6047 		/* ensure 32-byte alignment of private area */
6048 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6049 		alloc_size += sizeof_priv;
6050 	}
6051 	/* ensure 32-byte alignment of whole construct */
6052 	alloc_size += NETDEV_ALIGN - 1;
6053 
6054 	p = kzalloc(alloc_size, GFP_KERNEL);
6055 	if (!p) {
6056 		pr_err("alloc_netdev: Unable to allocate device\n");
6057 		return NULL;
6058 	}
6059 
6060 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6061 	dev->padded = (char *)dev - (char *)p;
6062 
6063 	dev->pcpu_refcnt = alloc_percpu(int);
6064 	if (!dev->pcpu_refcnt)
6065 		goto free_p;
6066 
6067 	if (dev_addr_init(dev))
6068 		goto free_pcpu;
6069 
6070 	dev_mc_init(dev);
6071 	dev_uc_init(dev);
6072 
6073 	dev_net_set(dev, &init_net);
6074 
6075 	dev->gso_max_size = GSO_MAX_SIZE;
6076 	dev->gso_max_segs = GSO_MAX_SEGS;
6077 
6078 	INIT_LIST_HEAD(&dev->napi_list);
6079 	INIT_LIST_HEAD(&dev->unreg_list);
6080 	INIT_LIST_HEAD(&dev->link_watch_list);
6081 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6082 	setup(dev);
6083 
6084 	dev->num_tx_queues = txqs;
6085 	dev->real_num_tx_queues = txqs;
6086 	if (netif_alloc_netdev_queues(dev))
6087 		goto free_all;
6088 
6089 #ifdef CONFIG_RPS
6090 	dev->num_rx_queues = rxqs;
6091 	dev->real_num_rx_queues = rxqs;
6092 	if (netif_alloc_rx_queues(dev))
6093 		goto free_all;
6094 #endif
6095 
6096 	strcpy(dev->name, name);
6097 	dev->group = INIT_NETDEV_GROUP;
6098 	if (!dev->ethtool_ops)
6099 		dev->ethtool_ops = &default_ethtool_ops;
6100 	return dev;
6101 
6102 free_all:
6103 	free_netdev(dev);
6104 	return NULL;
6105 
6106 free_pcpu:
6107 	free_percpu(dev->pcpu_refcnt);
6108 	kfree(dev->_tx);
6109 #ifdef CONFIG_RPS
6110 	kfree(dev->_rx);
6111 #endif
6112 
6113 free_p:
6114 	kfree(p);
6115 	return NULL;
6116 }
6117 EXPORT_SYMBOL(alloc_netdev_mqs);
6118 
6119 /**
6120  *	free_netdev - free network device
6121  *	@dev: device
6122  *
6123  *	This function does the last stage of destroying an allocated device
6124  * 	interface. The reference to the device object is released.
6125  *	If this is the last reference then it will be freed.
6126  */
6127 void free_netdev(struct net_device *dev)
6128 {
6129 	struct napi_struct *p, *n;
6130 
6131 	release_net(dev_net(dev));
6132 
6133 	kfree(dev->_tx);
6134 #ifdef CONFIG_RPS
6135 	kfree(dev->_rx);
6136 #endif
6137 
6138 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6139 
6140 	/* Flush device addresses */
6141 	dev_addr_flush(dev);
6142 
6143 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6144 		netif_napi_del(p);
6145 
6146 	free_percpu(dev->pcpu_refcnt);
6147 	dev->pcpu_refcnt = NULL;
6148 
6149 	/*  Compatibility with error handling in drivers */
6150 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6151 		kfree((char *)dev - dev->padded);
6152 		return;
6153 	}
6154 
6155 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6156 	dev->reg_state = NETREG_RELEASED;
6157 
6158 	/* will free via device release */
6159 	put_device(&dev->dev);
6160 }
6161 EXPORT_SYMBOL(free_netdev);
6162 
6163 /**
6164  *	synchronize_net -  Synchronize with packet receive processing
6165  *
6166  *	Wait for packets currently being received to be done.
6167  *	Does not block later packets from starting.
6168  */
6169 void synchronize_net(void)
6170 {
6171 	might_sleep();
6172 	if (rtnl_is_locked())
6173 		synchronize_rcu_expedited();
6174 	else
6175 		synchronize_rcu();
6176 }
6177 EXPORT_SYMBOL(synchronize_net);
6178 
6179 /**
6180  *	unregister_netdevice_queue - remove device from the kernel
6181  *	@dev: device
6182  *	@head: list
6183  *
6184  *	This function shuts down a device interface and removes it
6185  *	from the kernel tables.
6186  *	If head not NULL, device is queued to be unregistered later.
6187  *
6188  *	Callers must hold the rtnl semaphore.  You may want
6189  *	unregister_netdev() instead of this.
6190  */
6191 
6192 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6193 {
6194 	ASSERT_RTNL();
6195 
6196 	if (head) {
6197 		list_move_tail(&dev->unreg_list, head);
6198 	} else {
6199 		rollback_registered(dev);
6200 		/* Finish processing unregister after unlock */
6201 		net_set_todo(dev);
6202 	}
6203 }
6204 EXPORT_SYMBOL(unregister_netdevice_queue);
6205 
6206 /**
6207  *	unregister_netdevice_many - unregister many devices
6208  *	@head: list of devices
6209  */
6210 void unregister_netdevice_many(struct list_head *head)
6211 {
6212 	struct net_device *dev;
6213 
6214 	if (!list_empty(head)) {
6215 		rollback_registered_many(head);
6216 		list_for_each_entry(dev, head, unreg_list)
6217 			net_set_todo(dev);
6218 	}
6219 }
6220 EXPORT_SYMBOL(unregister_netdevice_many);
6221 
6222 /**
6223  *	unregister_netdev - remove device from the kernel
6224  *	@dev: device
6225  *
6226  *	This function shuts down a device interface and removes it
6227  *	from the kernel tables.
6228  *
6229  *	This is just a wrapper for unregister_netdevice that takes
6230  *	the rtnl semaphore.  In general you want to use this and not
6231  *	unregister_netdevice.
6232  */
6233 void unregister_netdev(struct net_device *dev)
6234 {
6235 	rtnl_lock();
6236 	unregister_netdevice(dev);
6237 	rtnl_unlock();
6238 }
6239 EXPORT_SYMBOL(unregister_netdev);
6240 
6241 /**
6242  *	dev_change_net_namespace - move device to different nethost namespace
6243  *	@dev: device
6244  *	@net: network namespace
6245  *	@pat: If not NULL name pattern to try if the current device name
6246  *	      is already taken in the destination network namespace.
6247  *
6248  *	This function shuts down a device interface and moves it
6249  *	to a new network namespace. On success 0 is returned, on
6250  *	a failure a netagive errno code is returned.
6251  *
6252  *	Callers must hold the rtnl semaphore.
6253  */
6254 
6255 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6256 {
6257 	int err;
6258 
6259 	ASSERT_RTNL();
6260 
6261 	/* Don't allow namespace local devices to be moved. */
6262 	err = -EINVAL;
6263 	if (dev->features & NETIF_F_NETNS_LOCAL)
6264 		goto out;
6265 
6266 	/* Ensure the device has been registrered */
6267 	err = -EINVAL;
6268 	if (dev->reg_state != NETREG_REGISTERED)
6269 		goto out;
6270 
6271 	/* Get out if there is nothing todo */
6272 	err = 0;
6273 	if (net_eq(dev_net(dev), net))
6274 		goto out;
6275 
6276 	/* Pick the destination device name, and ensure
6277 	 * we can use it in the destination network namespace.
6278 	 */
6279 	err = -EEXIST;
6280 	if (__dev_get_by_name(net, dev->name)) {
6281 		/* We get here if we can't use the current device name */
6282 		if (!pat)
6283 			goto out;
6284 		if (dev_get_valid_name(net, dev, pat) < 0)
6285 			goto out;
6286 	}
6287 
6288 	/*
6289 	 * And now a mini version of register_netdevice unregister_netdevice.
6290 	 */
6291 
6292 	/* If device is running close it first. */
6293 	dev_close(dev);
6294 
6295 	/* And unlink it from device chain */
6296 	err = -ENODEV;
6297 	unlist_netdevice(dev);
6298 
6299 	synchronize_net();
6300 
6301 	/* Shutdown queueing discipline. */
6302 	dev_shutdown(dev);
6303 
6304 	/* Notify protocols, that we are about to destroy
6305 	   this device. They should clean all the things.
6306 
6307 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6308 	   This is wanted because this way 8021q and macvlan know
6309 	   the device is just moving and can keep their slaves up.
6310 	*/
6311 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6312 	rcu_barrier();
6313 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6314 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6315 
6316 	/*
6317 	 *	Flush the unicast and multicast chains
6318 	 */
6319 	dev_uc_flush(dev);
6320 	dev_mc_flush(dev);
6321 
6322 	/* Actually switch the network namespace */
6323 	dev_net_set(dev, net);
6324 
6325 	/* If there is an ifindex conflict assign a new one */
6326 	if (__dev_get_by_index(net, dev->ifindex)) {
6327 		int iflink = (dev->iflink == dev->ifindex);
6328 		dev->ifindex = dev_new_index(net);
6329 		if (iflink)
6330 			dev->iflink = dev->ifindex;
6331 	}
6332 
6333 	/* Fixup kobjects */
6334 	err = device_rename(&dev->dev, dev->name);
6335 	WARN_ON(err);
6336 
6337 	/* Add the device back in the hashes */
6338 	list_netdevice(dev);
6339 
6340 	/* Notify protocols, that a new device appeared. */
6341 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6342 
6343 	/*
6344 	 *	Prevent userspace races by waiting until the network
6345 	 *	device is fully setup before sending notifications.
6346 	 */
6347 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6348 
6349 	synchronize_net();
6350 	err = 0;
6351 out:
6352 	return err;
6353 }
6354 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6355 
6356 static int dev_cpu_callback(struct notifier_block *nfb,
6357 			    unsigned long action,
6358 			    void *ocpu)
6359 {
6360 	struct sk_buff **list_skb;
6361 	struct sk_buff *skb;
6362 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6363 	struct softnet_data *sd, *oldsd;
6364 
6365 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6366 		return NOTIFY_OK;
6367 
6368 	local_irq_disable();
6369 	cpu = smp_processor_id();
6370 	sd = &per_cpu(softnet_data, cpu);
6371 	oldsd = &per_cpu(softnet_data, oldcpu);
6372 
6373 	/* Find end of our completion_queue. */
6374 	list_skb = &sd->completion_queue;
6375 	while (*list_skb)
6376 		list_skb = &(*list_skb)->next;
6377 	/* Append completion queue from offline CPU. */
6378 	*list_skb = oldsd->completion_queue;
6379 	oldsd->completion_queue = NULL;
6380 
6381 	/* Append output queue from offline CPU. */
6382 	if (oldsd->output_queue) {
6383 		*sd->output_queue_tailp = oldsd->output_queue;
6384 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6385 		oldsd->output_queue = NULL;
6386 		oldsd->output_queue_tailp = &oldsd->output_queue;
6387 	}
6388 	/* Append NAPI poll list from offline CPU. */
6389 	if (!list_empty(&oldsd->poll_list)) {
6390 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6391 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6392 	}
6393 
6394 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6395 	local_irq_enable();
6396 
6397 	/* Process offline CPU's input_pkt_queue */
6398 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6399 		netif_rx(skb);
6400 		input_queue_head_incr(oldsd);
6401 	}
6402 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6403 		netif_rx(skb);
6404 		input_queue_head_incr(oldsd);
6405 	}
6406 
6407 	return NOTIFY_OK;
6408 }
6409 
6410 
6411 /**
6412  *	netdev_increment_features - increment feature set by one
6413  *	@all: current feature set
6414  *	@one: new feature set
6415  *	@mask: mask feature set
6416  *
6417  *	Computes a new feature set after adding a device with feature set
6418  *	@one to the master device with current feature set @all.  Will not
6419  *	enable anything that is off in @mask. Returns the new feature set.
6420  */
6421 netdev_features_t netdev_increment_features(netdev_features_t all,
6422 	netdev_features_t one, netdev_features_t mask)
6423 {
6424 	if (mask & NETIF_F_GEN_CSUM)
6425 		mask |= NETIF_F_ALL_CSUM;
6426 	mask |= NETIF_F_VLAN_CHALLENGED;
6427 
6428 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6429 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6430 
6431 	/* If one device supports hw checksumming, set for all. */
6432 	if (all & NETIF_F_GEN_CSUM)
6433 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6434 
6435 	return all;
6436 }
6437 EXPORT_SYMBOL(netdev_increment_features);
6438 
6439 static struct hlist_head *netdev_create_hash(void)
6440 {
6441 	int i;
6442 	struct hlist_head *hash;
6443 
6444 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6445 	if (hash != NULL)
6446 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6447 			INIT_HLIST_HEAD(&hash[i]);
6448 
6449 	return hash;
6450 }
6451 
6452 /* Initialize per network namespace state */
6453 static int __net_init netdev_init(struct net *net)
6454 {
6455 	if (net != &init_net)
6456 		INIT_LIST_HEAD(&net->dev_base_head);
6457 
6458 	net->dev_name_head = netdev_create_hash();
6459 	if (net->dev_name_head == NULL)
6460 		goto err_name;
6461 
6462 	net->dev_index_head = netdev_create_hash();
6463 	if (net->dev_index_head == NULL)
6464 		goto err_idx;
6465 
6466 	return 0;
6467 
6468 err_idx:
6469 	kfree(net->dev_name_head);
6470 err_name:
6471 	return -ENOMEM;
6472 }
6473 
6474 /**
6475  *	netdev_drivername - network driver for the device
6476  *	@dev: network device
6477  *
6478  *	Determine network driver for device.
6479  */
6480 const char *netdev_drivername(const struct net_device *dev)
6481 {
6482 	const struct device_driver *driver;
6483 	const struct device *parent;
6484 	const char *empty = "";
6485 
6486 	parent = dev->dev.parent;
6487 	if (!parent)
6488 		return empty;
6489 
6490 	driver = parent->driver;
6491 	if (driver && driver->name)
6492 		return driver->name;
6493 	return empty;
6494 }
6495 
6496 static int __netdev_printk(const char *level, const struct net_device *dev,
6497 			   struct va_format *vaf)
6498 {
6499 	int r;
6500 
6501 	if (dev && dev->dev.parent) {
6502 		r = dev_printk_emit(level[1] - '0',
6503 				    dev->dev.parent,
6504 				    "%s %s %s: %pV",
6505 				    dev_driver_string(dev->dev.parent),
6506 				    dev_name(dev->dev.parent),
6507 				    netdev_name(dev), vaf);
6508 	} else if (dev) {
6509 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6510 	} else {
6511 		r = printk("%s(NULL net_device): %pV", level, vaf);
6512 	}
6513 
6514 	return r;
6515 }
6516 
6517 int netdev_printk(const char *level, const struct net_device *dev,
6518 		  const char *format, ...)
6519 {
6520 	struct va_format vaf;
6521 	va_list args;
6522 	int r;
6523 
6524 	va_start(args, format);
6525 
6526 	vaf.fmt = format;
6527 	vaf.va = &args;
6528 
6529 	r = __netdev_printk(level, dev, &vaf);
6530 
6531 	va_end(args);
6532 
6533 	return r;
6534 }
6535 EXPORT_SYMBOL(netdev_printk);
6536 
6537 #define define_netdev_printk_level(func, level)			\
6538 int func(const struct net_device *dev, const char *fmt, ...)	\
6539 {								\
6540 	int r;							\
6541 	struct va_format vaf;					\
6542 	va_list args;						\
6543 								\
6544 	va_start(args, fmt);					\
6545 								\
6546 	vaf.fmt = fmt;						\
6547 	vaf.va = &args;						\
6548 								\
6549 	r = __netdev_printk(level, dev, &vaf);			\
6550 								\
6551 	va_end(args);						\
6552 								\
6553 	return r;						\
6554 }								\
6555 EXPORT_SYMBOL(func);
6556 
6557 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6558 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6559 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6560 define_netdev_printk_level(netdev_err, KERN_ERR);
6561 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6562 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6563 define_netdev_printk_level(netdev_info, KERN_INFO);
6564 
6565 static void __net_exit netdev_exit(struct net *net)
6566 {
6567 	kfree(net->dev_name_head);
6568 	kfree(net->dev_index_head);
6569 }
6570 
6571 static struct pernet_operations __net_initdata netdev_net_ops = {
6572 	.init = netdev_init,
6573 	.exit = netdev_exit,
6574 };
6575 
6576 static void __net_exit default_device_exit(struct net *net)
6577 {
6578 	struct net_device *dev, *aux;
6579 	/*
6580 	 * Push all migratable network devices back to the
6581 	 * initial network namespace
6582 	 */
6583 	rtnl_lock();
6584 	for_each_netdev_safe(net, dev, aux) {
6585 		int err;
6586 		char fb_name[IFNAMSIZ];
6587 
6588 		/* Ignore unmoveable devices (i.e. loopback) */
6589 		if (dev->features & NETIF_F_NETNS_LOCAL)
6590 			continue;
6591 
6592 		/* Leave virtual devices for the generic cleanup */
6593 		if (dev->rtnl_link_ops)
6594 			continue;
6595 
6596 		/* Push remaining network devices to init_net */
6597 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6598 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6599 		if (err) {
6600 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6601 				 __func__, dev->name, err);
6602 			BUG();
6603 		}
6604 	}
6605 	rtnl_unlock();
6606 }
6607 
6608 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6609 {
6610 	/* At exit all network devices most be removed from a network
6611 	 * namespace.  Do this in the reverse order of registration.
6612 	 * Do this across as many network namespaces as possible to
6613 	 * improve batching efficiency.
6614 	 */
6615 	struct net_device *dev;
6616 	struct net *net;
6617 	LIST_HEAD(dev_kill_list);
6618 
6619 	rtnl_lock();
6620 	list_for_each_entry(net, net_list, exit_list) {
6621 		for_each_netdev_reverse(net, dev) {
6622 			if (dev->rtnl_link_ops)
6623 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6624 			else
6625 				unregister_netdevice_queue(dev, &dev_kill_list);
6626 		}
6627 	}
6628 	unregister_netdevice_many(&dev_kill_list);
6629 	list_del(&dev_kill_list);
6630 	rtnl_unlock();
6631 }
6632 
6633 static struct pernet_operations __net_initdata default_device_ops = {
6634 	.exit = default_device_exit,
6635 	.exit_batch = default_device_exit_batch,
6636 };
6637 
6638 /*
6639  *	Initialize the DEV module. At boot time this walks the device list and
6640  *	unhooks any devices that fail to initialise (normally hardware not
6641  *	present) and leaves us with a valid list of present and active devices.
6642  *
6643  */
6644 
6645 /*
6646  *       This is called single threaded during boot, so no need
6647  *       to take the rtnl semaphore.
6648  */
6649 static int __init net_dev_init(void)
6650 {
6651 	int i, rc = -ENOMEM;
6652 
6653 	BUG_ON(!dev_boot_phase);
6654 
6655 	if (dev_proc_init())
6656 		goto out;
6657 
6658 	if (netdev_kobject_init())
6659 		goto out;
6660 
6661 	INIT_LIST_HEAD(&ptype_all);
6662 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6663 		INIT_LIST_HEAD(&ptype_base[i]);
6664 
6665 	if (register_pernet_subsys(&netdev_net_ops))
6666 		goto out;
6667 
6668 	/*
6669 	 *	Initialise the packet receive queues.
6670 	 */
6671 
6672 	for_each_possible_cpu(i) {
6673 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6674 
6675 		memset(sd, 0, sizeof(*sd));
6676 		skb_queue_head_init(&sd->input_pkt_queue);
6677 		skb_queue_head_init(&sd->process_queue);
6678 		sd->completion_queue = NULL;
6679 		INIT_LIST_HEAD(&sd->poll_list);
6680 		sd->output_queue = NULL;
6681 		sd->output_queue_tailp = &sd->output_queue;
6682 #ifdef CONFIG_RPS
6683 		sd->csd.func = rps_trigger_softirq;
6684 		sd->csd.info = sd;
6685 		sd->csd.flags = 0;
6686 		sd->cpu = i;
6687 #endif
6688 
6689 		sd->backlog.poll = process_backlog;
6690 		sd->backlog.weight = weight_p;
6691 		sd->backlog.gro_list = NULL;
6692 		sd->backlog.gro_count = 0;
6693 	}
6694 
6695 	dev_boot_phase = 0;
6696 
6697 	/* The loopback device is special if any other network devices
6698 	 * is present in a network namespace the loopback device must
6699 	 * be present. Since we now dynamically allocate and free the
6700 	 * loopback device ensure this invariant is maintained by
6701 	 * keeping the loopback device as the first device on the
6702 	 * list of network devices.  Ensuring the loopback devices
6703 	 * is the first device that appears and the last network device
6704 	 * that disappears.
6705 	 */
6706 	if (register_pernet_device(&loopback_net_ops))
6707 		goto out;
6708 
6709 	if (register_pernet_device(&default_device_ops))
6710 		goto out;
6711 
6712 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6713 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6714 
6715 	hotcpu_notifier(dev_cpu_callback, 0);
6716 	dst_init();
6717 	dev_mcast_init();
6718 	rc = 0;
6719 out:
6720 	return rc;
6721 }
6722 
6723 subsys_initcall(net_dev_init);
6724 
6725 static int __init initialize_hashrnd(void)
6726 {
6727 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6728 	return 0;
6729 }
6730 
6731 late_initcall_sync(initialize_hashrnd);
6732 
6733