1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_alloc_name_ns(struct net *net, 963 struct net_device *dev, 964 const char *name) 965 { 966 char buf[IFNAMSIZ]; 967 int ret; 968 969 ret = __dev_alloc_name(net, name, buf); 970 if (ret >= 0) 971 strlcpy(dev->name, buf, IFNAMSIZ); 972 return ret; 973 } 974 975 static int dev_get_valid_name(struct net *net, 976 struct net_device *dev, 977 const char *name) 978 { 979 BUG_ON(!net); 980 981 if (!dev_valid_name(name)) 982 return -EINVAL; 983 984 if (strchr(name, '%')) 985 return dev_alloc_name_ns(net, dev, name); 986 else if (__dev_get_by_name(net, name)) 987 return -EEXIST; 988 else if (dev->name != name) 989 strlcpy(dev->name, name, IFNAMSIZ); 990 991 return 0; 992 } 993 994 /** 995 * dev_change_name - change name of a device 996 * @dev: device 997 * @newname: name (or format string) must be at least IFNAMSIZ 998 * 999 * Change name of a device, can pass format strings "eth%d". 1000 * for wildcarding. 1001 */ 1002 int dev_change_name(struct net_device *dev, const char *newname) 1003 { 1004 char oldname[IFNAMSIZ]; 1005 int err = 0; 1006 int ret; 1007 struct net *net; 1008 1009 ASSERT_RTNL(); 1010 BUG_ON(!dev_net(dev)); 1011 1012 net = dev_net(dev); 1013 if (dev->flags & IFF_UP) 1014 return -EBUSY; 1015 1016 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1017 return 0; 1018 1019 memcpy(oldname, dev->name, IFNAMSIZ); 1020 1021 err = dev_get_valid_name(net, dev, newname); 1022 if (err < 0) 1023 return err; 1024 1025 rollback: 1026 ret = device_rename(&dev->dev, dev->name); 1027 if (ret) { 1028 memcpy(dev->name, oldname, IFNAMSIZ); 1029 return ret; 1030 } 1031 1032 write_lock_bh(&dev_base_lock); 1033 hlist_del_rcu(&dev->name_hlist); 1034 write_unlock_bh(&dev_base_lock); 1035 1036 synchronize_rcu(); 1037 1038 write_lock_bh(&dev_base_lock); 1039 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1040 write_unlock_bh(&dev_base_lock); 1041 1042 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1043 ret = notifier_to_errno(ret); 1044 1045 if (ret) { 1046 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1047 if (err >= 0) { 1048 err = ret; 1049 memcpy(dev->name, oldname, IFNAMSIZ); 1050 goto rollback; 1051 } else { 1052 pr_err("%s: name change rollback failed: %d\n", 1053 dev->name, ret); 1054 } 1055 } 1056 1057 return err; 1058 } 1059 1060 /** 1061 * dev_set_alias - change ifalias of a device 1062 * @dev: device 1063 * @alias: name up to IFALIASZ 1064 * @len: limit of bytes to copy from info 1065 * 1066 * Set ifalias for a device, 1067 */ 1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1069 { 1070 char *new_ifalias; 1071 1072 ASSERT_RTNL(); 1073 1074 if (len >= IFALIASZ) 1075 return -EINVAL; 1076 1077 if (!len) { 1078 if (dev->ifalias) { 1079 kfree(dev->ifalias); 1080 dev->ifalias = NULL; 1081 } 1082 return 0; 1083 } 1084 1085 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1086 if (!new_ifalias) 1087 return -ENOMEM; 1088 dev->ifalias = new_ifalias; 1089 1090 strlcpy(dev->ifalias, alias, len+1); 1091 return len; 1092 } 1093 1094 1095 /** 1096 * netdev_features_change - device changes features 1097 * @dev: device to cause notification 1098 * 1099 * Called to indicate a device has changed features. 1100 */ 1101 void netdev_features_change(struct net_device *dev) 1102 { 1103 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1104 } 1105 EXPORT_SYMBOL(netdev_features_change); 1106 1107 /** 1108 * netdev_state_change - device changes state 1109 * @dev: device to cause notification 1110 * 1111 * Called to indicate a device has changed state. This function calls 1112 * the notifier chains for netdev_chain and sends a NEWLINK message 1113 * to the routing socket. 1114 */ 1115 void netdev_state_change(struct net_device *dev) 1116 { 1117 if (dev->flags & IFF_UP) { 1118 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1119 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1120 } 1121 } 1122 EXPORT_SYMBOL(netdev_state_change); 1123 1124 /** 1125 * netdev_notify_peers - notify network peers about existence of @dev 1126 * @dev: network device 1127 * 1128 * Generate traffic such that interested network peers are aware of 1129 * @dev, such as by generating a gratuitous ARP. This may be used when 1130 * a device wants to inform the rest of the network about some sort of 1131 * reconfiguration such as a failover event or virtual machine 1132 * migration. 1133 */ 1134 void netdev_notify_peers(struct net_device *dev) 1135 { 1136 rtnl_lock(); 1137 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1138 rtnl_unlock(); 1139 } 1140 EXPORT_SYMBOL(netdev_notify_peers); 1141 1142 /** 1143 * dev_load - load a network module 1144 * @net: the applicable net namespace 1145 * @name: name of interface 1146 * 1147 * If a network interface is not present and the process has suitable 1148 * privileges this function loads the module. If module loading is not 1149 * available in this kernel then it becomes a nop. 1150 */ 1151 1152 void dev_load(struct net *net, const char *name) 1153 { 1154 struct net_device *dev; 1155 int no_module; 1156 1157 rcu_read_lock(); 1158 dev = dev_get_by_name_rcu(net, name); 1159 rcu_read_unlock(); 1160 1161 no_module = !dev; 1162 if (no_module && capable(CAP_NET_ADMIN)) 1163 no_module = request_module("netdev-%s", name); 1164 if (no_module && capable(CAP_SYS_MODULE)) { 1165 if (!request_module("%s", name)) 1166 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1167 name); 1168 } 1169 } 1170 EXPORT_SYMBOL(dev_load); 1171 1172 static int __dev_open(struct net_device *dev) 1173 { 1174 const struct net_device_ops *ops = dev->netdev_ops; 1175 int ret; 1176 1177 ASSERT_RTNL(); 1178 1179 if (!netif_device_present(dev)) 1180 return -ENODEV; 1181 1182 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1183 ret = notifier_to_errno(ret); 1184 if (ret) 1185 return ret; 1186 1187 set_bit(__LINK_STATE_START, &dev->state); 1188 1189 if (ops->ndo_validate_addr) 1190 ret = ops->ndo_validate_addr(dev); 1191 1192 if (!ret && ops->ndo_open) 1193 ret = ops->ndo_open(dev); 1194 1195 if (ret) 1196 clear_bit(__LINK_STATE_START, &dev->state); 1197 else { 1198 dev->flags |= IFF_UP; 1199 net_dmaengine_get(); 1200 dev_set_rx_mode(dev); 1201 dev_activate(dev); 1202 add_device_randomness(dev->dev_addr, dev->addr_len); 1203 } 1204 1205 return ret; 1206 } 1207 1208 /** 1209 * dev_open - prepare an interface for use. 1210 * @dev: device to open 1211 * 1212 * Takes a device from down to up state. The device's private open 1213 * function is invoked and then the multicast lists are loaded. Finally 1214 * the device is moved into the up state and a %NETDEV_UP message is 1215 * sent to the netdev notifier chain. 1216 * 1217 * Calling this function on an active interface is a nop. On a failure 1218 * a negative errno code is returned. 1219 */ 1220 int dev_open(struct net_device *dev) 1221 { 1222 int ret; 1223 1224 if (dev->flags & IFF_UP) 1225 return 0; 1226 1227 ret = __dev_open(dev); 1228 if (ret < 0) 1229 return ret; 1230 1231 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1232 call_netdevice_notifiers(NETDEV_UP, dev); 1233 1234 return ret; 1235 } 1236 EXPORT_SYMBOL(dev_open); 1237 1238 static int __dev_close_many(struct list_head *head) 1239 { 1240 struct net_device *dev; 1241 1242 ASSERT_RTNL(); 1243 might_sleep(); 1244 1245 list_for_each_entry(dev, head, unreg_list) { 1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1247 1248 clear_bit(__LINK_STATE_START, &dev->state); 1249 1250 /* Synchronize to scheduled poll. We cannot touch poll list, it 1251 * can be even on different cpu. So just clear netif_running(). 1252 * 1253 * dev->stop() will invoke napi_disable() on all of it's 1254 * napi_struct instances on this device. 1255 */ 1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1257 } 1258 1259 dev_deactivate_many(head); 1260 1261 list_for_each_entry(dev, head, unreg_list) { 1262 const struct net_device_ops *ops = dev->netdev_ops; 1263 1264 /* 1265 * Call the device specific close. This cannot fail. 1266 * Only if device is UP 1267 * 1268 * We allow it to be called even after a DETACH hot-plug 1269 * event. 1270 */ 1271 if (ops->ndo_stop) 1272 ops->ndo_stop(dev); 1273 1274 dev->flags &= ~IFF_UP; 1275 net_dmaengine_put(); 1276 } 1277 1278 return 0; 1279 } 1280 1281 static int __dev_close(struct net_device *dev) 1282 { 1283 int retval; 1284 LIST_HEAD(single); 1285 1286 list_add(&dev->unreg_list, &single); 1287 retval = __dev_close_many(&single); 1288 list_del(&single); 1289 return retval; 1290 } 1291 1292 static int dev_close_many(struct list_head *head) 1293 { 1294 struct net_device *dev, *tmp; 1295 LIST_HEAD(tmp_list); 1296 1297 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1298 if (!(dev->flags & IFF_UP)) 1299 list_move(&dev->unreg_list, &tmp_list); 1300 1301 __dev_close_many(head); 1302 1303 list_for_each_entry(dev, head, unreg_list) { 1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1305 call_netdevice_notifiers(NETDEV_DOWN, dev); 1306 } 1307 1308 /* rollback_registered_many needs the complete original list */ 1309 list_splice(&tmp_list, head); 1310 return 0; 1311 } 1312 1313 /** 1314 * dev_close - shutdown an interface. 1315 * @dev: device to shutdown 1316 * 1317 * This function moves an active device into down state. A 1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1320 * chain. 1321 */ 1322 int dev_close(struct net_device *dev) 1323 { 1324 if (dev->flags & IFF_UP) { 1325 LIST_HEAD(single); 1326 1327 list_add(&dev->unreg_list, &single); 1328 dev_close_many(&single); 1329 list_del(&single); 1330 } 1331 return 0; 1332 } 1333 EXPORT_SYMBOL(dev_close); 1334 1335 1336 /** 1337 * dev_disable_lro - disable Large Receive Offload on a device 1338 * @dev: device 1339 * 1340 * Disable Large Receive Offload (LRO) on a net device. Must be 1341 * called under RTNL. This is needed if received packets may be 1342 * forwarded to another interface. 1343 */ 1344 void dev_disable_lro(struct net_device *dev) 1345 { 1346 /* 1347 * If we're trying to disable lro on a vlan device 1348 * use the underlying physical device instead 1349 */ 1350 if (is_vlan_dev(dev)) 1351 dev = vlan_dev_real_dev(dev); 1352 1353 dev->wanted_features &= ~NETIF_F_LRO; 1354 netdev_update_features(dev); 1355 1356 if (unlikely(dev->features & NETIF_F_LRO)) 1357 netdev_WARN(dev, "failed to disable LRO!\n"); 1358 } 1359 EXPORT_SYMBOL(dev_disable_lro); 1360 1361 1362 static int dev_boot_phase = 1; 1363 1364 /** 1365 * register_netdevice_notifier - register a network notifier block 1366 * @nb: notifier 1367 * 1368 * Register a notifier to be called when network device events occur. 1369 * The notifier passed is linked into the kernel structures and must 1370 * not be reused until it has been unregistered. A negative errno code 1371 * is returned on a failure. 1372 * 1373 * When registered all registration and up events are replayed 1374 * to the new notifier to allow device to have a race free 1375 * view of the network device list. 1376 */ 1377 1378 int register_netdevice_notifier(struct notifier_block *nb) 1379 { 1380 struct net_device *dev; 1381 struct net_device *last; 1382 struct net *net; 1383 int err; 1384 1385 rtnl_lock(); 1386 err = raw_notifier_chain_register(&netdev_chain, nb); 1387 if (err) 1388 goto unlock; 1389 if (dev_boot_phase) 1390 goto unlock; 1391 for_each_net(net) { 1392 for_each_netdev(net, dev) { 1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1394 err = notifier_to_errno(err); 1395 if (err) 1396 goto rollback; 1397 1398 if (!(dev->flags & IFF_UP)) 1399 continue; 1400 1401 nb->notifier_call(nb, NETDEV_UP, dev); 1402 } 1403 } 1404 1405 unlock: 1406 rtnl_unlock(); 1407 return err; 1408 1409 rollback: 1410 last = dev; 1411 for_each_net(net) { 1412 for_each_netdev(net, dev) { 1413 if (dev == last) 1414 goto outroll; 1415 1416 if (dev->flags & IFF_UP) { 1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1418 nb->notifier_call(nb, NETDEV_DOWN, dev); 1419 } 1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1421 } 1422 } 1423 1424 outroll: 1425 raw_notifier_chain_unregister(&netdev_chain, nb); 1426 goto unlock; 1427 } 1428 EXPORT_SYMBOL(register_netdevice_notifier); 1429 1430 /** 1431 * unregister_netdevice_notifier - unregister a network notifier block 1432 * @nb: notifier 1433 * 1434 * Unregister a notifier previously registered by 1435 * register_netdevice_notifier(). The notifier is unlinked into the 1436 * kernel structures and may then be reused. A negative errno code 1437 * is returned on a failure. 1438 * 1439 * After unregistering unregister and down device events are synthesized 1440 * for all devices on the device list to the removed notifier to remove 1441 * the need for special case cleanup code. 1442 */ 1443 1444 int unregister_netdevice_notifier(struct notifier_block *nb) 1445 { 1446 struct net_device *dev; 1447 struct net *net; 1448 int err; 1449 1450 rtnl_lock(); 1451 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1452 if (err) 1453 goto unlock; 1454 1455 for_each_net(net) { 1456 for_each_netdev(net, dev) { 1457 if (dev->flags & IFF_UP) { 1458 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1459 nb->notifier_call(nb, NETDEV_DOWN, dev); 1460 } 1461 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1462 } 1463 } 1464 unlock: 1465 rtnl_unlock(); 1466 return err; 1467 } 1468 EXPORT_SYMBOL(unregister_netdevice_notifier); 1469 1470 /** 1471 * call_netdevice_notifiers - call all network notifier blocks 1472 * @val: value passed unmodified to notifier function 1473 * @dev: net_device pointer passed unmodified to notifier function 1474 * 1475 * Call all network notifier blocks. Parameters and return value 1476 * are as for raw_notifier_call_chain(). 1477 */ 1478 1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1480 { 1481 ASSERT_RTNL(); 1482 return raw_notifier_call_chain(&netdev_chain, val, dev); 1483 } 1484 EXPORT_SYMBOL(call_netdevice_notifiers); 1485 1486 static struct static_key netstamp_needed __read_mostly; 1487 #ifdef HAVE_JUMP_LABEL 1488 /* We are not allowed to call static_key_slow_dec() from irq context 1489 * If net_disable_timestamp() is called from irq context, defer the 1490 * static_key_slow_dec() calls. 1491 */ 1492 static atomic_t netstamp_needed_deferred; 1493 #endif 1494 1495 void net_enable_timestamp(void) 1496 { 1497 #ifdef HAVE_JUMP_LABEL 1498 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1499 1500 if (deferred) { 1501 while (--deferred) 1502 static_key_slow_dec(&netstamp_needed); 1503 return; 1504 } 1505 #endif 1506 WARN_ON(in_interrupt()); 1507 static_key_slow_inc(&netstamp_needed); 1508 } 1509 EXPORT_SYMBOL(net_enable_timestamp); 1510 1511 void net_disable_timestamp(void) 1512 { 1513 #ifdef HAVE_JUMP_LABEL 1514 if (in_interrupt()) { 1515 atomic_inc(&netstamp_needed_deferred); 1516 return; 1517 } 1518 #endif 1519 static_key_slow_dec(&netstamp_needed); 1520 } 1521 EXPORT_SYMBOL(net_disable_timestamp); 1522 1523 static inline void net_timestamp_set(struct sk_buff *skb) 1524 { 1525 skb->tstamp.tv64 = 0; 1526 if (static_key_false(&netstamp_needed)) 1527 __net_timestamp(skb); 1528 } 1529 1530 #define net_timestamp_check(COND, SKB) \ 1531 if (static_key_false(&netstamp_needed)) { \ 1532 if ((COND) && !(SKB)->tstamp.tv64) \ 1533 __net_timestamp(SKB); \ 1534 } \ 1535 1536 static int net_hwtstamp_validate(struct ifreq *ifr) 1537 { 1538 struct hwtstamp_config cfg; 1539 enum hwtstamp_tx_types tx_type; 1540 enum hwtstamp_rx_filters rx_filter; 1541 int tx_type_valid = 0; 1542 int rx_filter_valid = 0; 1543 1544 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1545 return -EFAULT; 1546 1547 if (cfg.flags) /* reserved for future extensions */ 1548 return -EINVAL; 1549 1550 tx_type = cfg.tx_type; 1551 rx_filter = cfg.rx_filter; 1552 1553 switch (tx_type) { 1554 case HWTSTAMP_TX_OFF: 1555 case HWTSTAMP_TX_ON: 1556 case HWTSTAMP_TX_ONESTEP_SYNC: 1557 tx_type_valid = 1; 1558 break; 1559 } 1560 1561 switch (rx_filter) { 1562 case HWTSTAMP_FILTER_NONE: 1563 case HWTSTAMP_FILTER_ALL: 1564 case HWTSTAMP_FILTER_SOME: 1565 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1566 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1567 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1569 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1571 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1572 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1573 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1574 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1575 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1576 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1577 rx_filter_valid = 1; 1578 break; 1579 } 1580 1581 if (!tx_type_valid || !rx_filter_valid) 1582 return -ERANGE; 1583 1584 return 0; 1585 } 1586 1587 static inline bool is_skb_forwardable(struct net_device *dev, 1588 struct sk_buff *skb) 1589 { 1590 unsigned int len; 1591 1592 if (!(dev->flags & IFF_UP)) 1593 return false; 1594 1595 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1596 if (skb->len <= len) 1597 return true; 1598 1599 /* if TSO is enabled, we don't care about the length as the packet 1600 * could be forwarded without being segmented before 1601 */ 1602 if (skb_is_gso(skb)) 1603 return true; 1604 1605 return false; 1606 } 1607 1608 /** 1609 * dev_forward_skb - loopback an skb to another netif 1610 * 1611 * @dev: destination network device 1612 * @skb: buffer to forward 1613 * 1614 * return values: 1615 * NET_RX_SUCCESS (no congestion) 1616 * NET_RX_DROP (packet was dropped, but freed) 1617 * 1618 * dev_forward_skb can be used for injecting an skb from the 1619 * start_xmit function of one device into the receive queue 1620 * of another device. 1621 * 1622 * The receiving device may be in another namespace, so 1623 * we have to clear all information in the skb that could 1624 * impact namespace isolation. 1625 */ 1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1627 { 1628 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1629 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1630 atomic_long_inc(&dev->rx_dropped); 1631 kfree_skb(skb); 1632 return NET_RX_DROP; 1633 } 1634 } 1635 1636 skb_orphan(skb); 1637 nf_reset(skb); 1638 1639 if (unlikely(!is_skb_forwardable(dev, skb))) { 1640 atomic_long_inc(&dev->rx_dropped); 1641 kfree_skb(skb); 1642 return NET_RX_DROP; 1643 } 1644 skb->skb_iif = 0; 1645 skb->dev = dev; 1646 skb_dst_drop(skb); 1647 skb->tstamp.tv64 = 0; 1648 skb->pkt_type = PACKET_HOST; 1649 skb->protocol = eth_type_trans(skb, dev); 1650 skb->mark = 0; 1651 secpath_reset(skb); 1652 nf_reset(skb); 1653 return netif_rx(skb); 1654 } 1655 EXPORT_SYMBOL_GPL(dev_forward_skb); 1656 1657 static inline int deliver_skb(struct sk_buff *skb, 1658 struct packet_type *pt_prev, 1659 struct net_device *orig_dev) 1660 { 1661 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1662 return -ENOMEM; 1663 atomic_inc(&skb->users); 1664 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1665 } 1666 1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1668 { 1669 if (ptype->af_packet_priv == NULL) 1670 return false; 1671 1672 if (ptype->id_match) 1673 return ptype->id_match(ptype, skb->sk); 1674 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1675 return true; 1676 1677 return false; 1678 } 1679 1680 /* 1681 * Support routine. Sends outgoing frames to any network 1682 * taps currently in use. 1683 */ 1684 1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1686 { 1687 struct packet_type *ptype; 1688 struct sk_buff *skb2 = NULL; 1689 struct packet_type *pt_prev = NULL; 1690 1691 rcu_read_lock(); 1692 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1693 /* Never send packets back to the socket 1694 * they originated from - MvS (miquels@drinkel.ow.org) 1695 */ 1696 if ((ptype->dev == dev || !ptype->dev) && 1697 (!skb_loop_sk(ptype, skb))) { 1698 if (pt_prev) { 1699 deliver_skb(skb2, pt_prev, skb->dev); 1700 pt_prev = ptype; 1701 continue; 1702 } 1703 1704 skb2 = skb_clone(skb, GFP_ATOMIC); 1705 if (!skb2) 1706 break; 1707 1708 net_timestamp_set(skb2); 1709 1710 /* skb->nh should be correctly 1711 set by sender, so that the second statement is 1712 just protection against buggy protocols. 1713 */ 1714 skb_reset_mac_header(skb2); 1715 1716 if (skb_network_header(skb2) < skb2->data || 1717 skb2->network_header > skb2->tail) { 1718 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1719 ntohs(skb2->protocol), 1720 dev->name); 1721 skb_reset_network_header(skb2); 1722 } 1723 1724 skb2->transport_header = skb2->network_header; 1725 skb2->pkt_type = PACKET_OUTGOING; 1726 pt_prev = ptype; 1727 } 1728 } 1729 if (pt_prev) 1730 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1731 rcu_read_unlock(); 1732 } 1733 1734 /** 1735 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1736 * @dev: Network device 1737 * @txq: number of queues available 1738 * 1739 * If real_num_tx_queues is changed the tc mappings may no longer be 1740 * valid. To resolve this verify the tc mapping remains valid and if 1741 * not NULL the mapping. With no priorities mapping to this 1742 * offset/count pair it will no longer be used. In the worst case TC0 1743 * is invalid nothing can be done so disable priority mappings. If is 1744 * expected that drivers will fix this mapping if they can before 1745 * calling netif_set_real_num_tx_queues. 1746 */ 1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1748 { 1749 int i; 1750 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1751 1752 /* If TC0 is invalidated disable TC mapping */ 1753 if (tc->offset + tc->count > txq) { 1754 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1755 dev->num_tc = 0; 1756 return; 1757 } 1758 1759 /* Invalidated prio to tc mappings set to TC0 */ 1760 for (i = 1; i < TC_BITMASK + 1; i++) { 1761 int q = netdev_get_prio_tc_map(dev, i); 1762 1763 tc = &dev->tc_to_txq[q]; 1764 if (tc->offset + tc->count > txq) { 1765 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1766 i, q); 1767 netdev_set_prio_tc_map(dev, i, 0); 1768 } 1769 } 1770 } 1771 1772 /* 1773 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1774 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1775 */ 1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1777 { 1778 int rc; 1779 1780 if (txq < 1 || txq > dev->num_tx_queues) 1781 return -EINVAL; 1782 1783 if (dev->reg_state == NETREG_REGISTERED || 1784 dev->reg_state == NETREG_UNREGISTERING) { 1785 ASSERT_RTNL(); 1786 1787 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1788 txq); 1789 if (rc) 1790 return rc; 1791 1792 if (dev->num_tc) 1793 netif_setup_tc(dev, txq); 1794 1795 if (txq < dev->real_num_tx_queues) 1796 qdisc_reset_all_tx_gt(dev, txq); 1797 } 1798 1799 dev->real_num_tx_queues = txq; 1800 return 0; 1801 } 1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1803 1804 #ifdef CONFIG_RPS 1805 /** 1806 * netif_set_real_num_rx_queues - set actual number of RX queues used 1807 * @dev: Network device 1808 * @rxq: Actual number of RX queues 1809 * 1810 * This must be called either with the rtnl_lock held or before 1811 * registration of the net device. Returns 0 on success, or a 1812 * negative error code. If called before registration, it always 1813 * succeeds. 1814 */ 1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1816 { 1817 int rc; 1818 1819 if (rxq < 1 || rxq > dev->num_rx_queues) 1820 return -EINVAL; 1821 1822 if (dev->reg_state == NETREG_REGISTERED) { 1823 ASSERT_RTNL(); 1824 1825 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1826 rxq); 1827 if (rc) 1828 return rc; 1829 } 1830 1831 dev->real_num_rx_queues = rxq; 1832 return 0; 1833 } 1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1835 #endif 1836 1837 /** 1838 * netif_get_num_default_rss_queues - default number of RSS queues 1839 * 1840 * This routine should set an upper limit on the number of RSS queues 1841 * used by default by multiqueue devices. 1842 */ 1843 int netif_get_num_default_rss_queues(void) 1844 { 1845 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 1846 } 1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 1848 1849 static inline void __netif_reschedule(struct Qdisc *q) 1850 { 1851 struct softnet_data *sd; 1852 unsigned long flags; 1853 1854 local_irq_save(flags); 1855 sd = &__get_cpu_var(softnet_data); 1856 q->next_sched = NULL; 1857 *sd->output_queue_tailp = q; 1858 sd->output_queue_tailp = &q->next_sched; 1859 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1860 local_irq_restore(flags); 1861 } 1862 1863 void __netif_schedule(struct Qdisc *q) 1864 { 1865 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1866 __netif_reschedule(q); 1867 } 1868 EXPORT_SYMBOL(__netif_schedule); 1869 1870 void dev_kfree_skb_irq(struct sk_buff *skb) 1871 { 1872 if (atomic_dec_and_test(&skb->users)) { 1873 struct softnet_data *sd; 1874 unsigned long flags; 1875 1876 local_irq_save(flags); 1877 sd = &__get_cpu_var(softnet_data); 1878 skb->next = sd->completion_queue; 1879 sd->completion_queue = skb; 1880 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1881 local_irq_restore(flags); 1882 } 1883 } 1884 EXPORT_SYMBOL(dev_kfree_skb_irq); 1885 1886 void dev_kfree_skb_any(struct sk_buff *skb) 1887 { 1888 if (in_irq() || irqs_disabled()) 1889 dev_kfree_skb_irq(skb); 1890 else 1891 dev_kfree_skb(skb); 1892 } 1893 EXPORT_SYMBOL(dev_kfree_skb_any); 1894 1895 1896 /** 1897 * netif_device_detach - mark device as removed 1898 * @dev: network device 1899 * 1900 * Mark device as removed from system and therefore no longer available. 1901 */ 1902 void netif_device_detach(struct net_device *dev) 1903 { 1904 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1905 netif_running(dev)) { 1906 netif_tx_stop_all_queues(dev); 1907 } 1908 } 1909 EXPORT_SYMBOL(netif_device_detach); 1910 1911 /** 1912 * netif_device_attach - mark device as attached 1913 * @dev: network device 1914 * 1915 * Mark device as attached from system and restart if needed. 1916 */ 1917 void netif_device_attach(struct net_device *dev) 1918 { 1919 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1920 netif_running(dev)) { 1921 netif_tx_wake_all_queues(dev); 1922 __netdev_watchdog_up(dev); 1923 } 1924 } 1925 EXPORT_SYMBOL(netif_device_attach); 1926 1927 static void skb_warn_bad_offload(const struct sk_buff *skb) 1928 { 1929 static const netdev_features_t null_features = 0; 1930 struct net_device *dev = skb->dev; 1931 const char *driver = ""; 1932 1933 if (dev && dev->dev.parent) 1934 driver = dev_driver_string(dev->dev.parent); 1935 1936 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1937 "gso_type=%d ip_summed=%d\n", 1938 driver, dev ? &dev->features : &null_features, 1939 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1940 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1941 skb_shinfo(skb)->gso_type, skb->ip_summed); 1942 } 1943 1944 /* 1945 * Invalidate hardware checksum when packet is to be mangled, and 1946 * complete checksum manually on outgoing path. 1947 */ 1948 int skb_checksum_help(struct sk_buff *skb) 1949 { 1950 __wsum csum; 1951 int ret = 0, offset; 1952 1953 if (skb->ip_summed == CHECKSUM_COMPLETE) 1954 goto out_set_summed; 1955 1956 if (unlikely(skb_shinfo(skb)->gso_size)) { 1957 skb_warn_bad_offload(skb); 1958 return -EINVAL; 1959 } 1960 1961 offset = skb_checksum_start_offset(skb); 1962 BUG_ON(offset >= skb_headlen(skb)); 1963 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1964 1965 offset += skb->csum_offset; 1966 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1967 1968 if (skb_cloned(skb) && 1969 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1970 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1971 if (ret) 1972 goto out; 1973 } 1974 1975 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1976 out_set_summed: 1977 skb->ip_summed = CHECKSUM_NONE; 1978 out: 1979 return ret; 1980 } 1981 EXPORT_SYMBOL(skb_checksum_help); 1982 1983 /** 1984 * skb_gso_segment - Perform segmentation on skb. 1985 * @skb: buffer to segment 1986 * @features: features for the output path (see dev->features) 1987 * 1988 * This function segments the given skb and returns a list of segments. 1989 * 1990 * It may return NULL if the skb requires no segmentation. This is 1991 * only possible when GSO is used for verifying header integrity. 1992 */ 1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1994 netdev_features_t features) 1995 { 1996 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1997 struct packet_type *ptype; 1998 __be16 type = skb->protocol; 1999 int vlan_depth = ETH_HLEN; 2000 int err; 2001 2002 while (type == htons(ETH_P_8021Q)) { 2003 struct vlan_hdr *vh; 2004 2005 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2006 return ERR_PTR(-EINVAL); 2007 2008 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2009 type = vh->h_vlan_encapsulated_proto; 2010 vlan_depth += VLAN_HLEN; 2011 } 2012 2013 skb_reset_mac_header(skb); 2014 skb->mac_len = skb->network_header - skb->mac_header; 2015 __skb_pull(skb, skb->mac_len); 2016 2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2018 skb_warn_bad_offload(skb); 2019 2020 if (skb_header_cloned(skb) && 2021 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2022 return ERR_PTR(err); 2023 } 2024 2025 rcu_read_lock(); 2026 list_for_each_entry_rcu(ptype, 2027 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2028 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 2029 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2030 err = ptype->gso_send_check(skb); 2031 segs = ERR_PTR(err); 2032 if (err || skb_gso_ok(skb, features)) 2033 break; 2034 __skb_push(skb, (skb->data - 2035 skb_network_header(skb))); 2036 } 2037 segs = ptype->gso_segment(skb, features); 2038 break; 2039 } 2040 } 2041 rcu_read_unlock(); 2042 2043 __skb_push(skb, skb->data - skb_mac_header(skb)); 2044 2045 return segs; 2046 } 2047 EXPORT_SYMBOL(skb_gso_segment); 2048 2049 /* Take action when hardware reception checksum errors are detected. */ 2050 #ifdef CONFIG_BUG 2051 void netdev_rx_csum_fault(struct net_device *dev) 2052 { 2053 if (net_ratelimit()) { 2054 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2055 dump_stack(); 2056 } 2057 } 2058 EXPORT_SYMBOL(netdev_rx_csum_fault); 2059 #endif 2060 2061 /* Actually, we should eliminate this check as soon as we know, that: 2062 * 1. IOMMU is present and allows to map all the memory. 2063 * 2. No high memory really exists on this machine. 2064 */ 2065 2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2067 { 2068 #ifdef CONFIG_HIGHMEM 2069 int i; 2070 if (!(dev->features & NETIF_F_HIGHDMA)) { 2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2073 if (PageHighMem(skb_frag_page(frag))) 2074 return 1; 2075 } 2076 } 2077 2078 if (PCI_DMA_BUS_IS_PHYS) { 2079 struct device *pdev = dev->dev.parent; 2080 2081 if (!pdev) 2082 return 0; 2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2084 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2085 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2086 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2087 return 1; 2088 } 2089 } 2090 #endif 2091 return 0; 2092 } 2093 2094 struct dev_gso_cb { 2095 void (*destructor)(struct sk_buff *skb); 2096 }; 2097 2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2099 2100 static void dev_gso_skb_destructor(struct sk_buff *skb) 2101 { 2102 struct dev_gso_cb *cb; 2103 2104 do { 2105 struct sk_buff *nskb = skb->next; 2106 2107 skb->next = nskb->next; 2108 nskb->next = NULL; 2109 kfree_skb(nskb); 2110 } while (skb->next); 2111 2112 cb = DEV_GSO_CB(skb); 2113 if (cb->destructor) 2114 cb->destructor(skb); 2115 } 2116 2117 /** 2118 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2119 * @skb: buffer to segment 2120 * @features: device features as applicable to this skb 2121 * 2122 * This function segments the given skb and stores the list of segments 2123 * in skb->next. 2124 */ 2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2126 { 2127 struct sk_buff *segs; 2128 2129 segs = skb_gso_segment(skb, features); 2130 2131 /* Verifying header integrity only. */ 2132 if (!segs) 2133 return 0; 2134 2135 if (IS_ERR(segs)) 2136 return PTR_ERR(segs); 2137 2138 skb->next = segs; 2139 DEV_GSO_CB(skb)->destructor = skb->destructor; 2140 skb->destructor = dev_gso_skb_destructor; 2141 2142 return 0; 2143 } 2144 2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2146 { 2147 return ((features & NETIF_F_GEN_CSUM) || 2148 ((features & NETIF_F_V4_CSUM) && 2149 protocol == htons(ETH_P_IP)) || 2150 ((features & NETIF_F_V6_CSUM) && 2151 protocol == htons(ETH_P_IPV6)) || 2152 ((features & NETIF_F_FCOE_CRC) && 2153 protocol == htons(ETH_P_FCOE))); 2154 } 2155 2156 static netdev_features_t harmonize_features(struct sk_buff *skb, 2157 __be16 protocol, netdev_features_t features) 2158 { 2159 if (skb->ip_summed != CHECKSUM_NONE && 2160 !can_checksum_protocol(features, protocol)) { 2161 features &= ~NETIF_F_ALL_CSUM; 2162 features &= ~NETIF_F_SG; 2163 } else if (illegal_highdma(skb->dev, skb)) { 2164 features &= ~NETIF_F_SG; 2165 } 2166 2167 return features; 2168 } 2169 2170 netdev_features_t netif_skb_features(struct sk_buff *skb) 2171 { 2172 __be16 protocol = skb->protocol; 2173 netdev_features_t features = skb->dev->features; 2174 2175 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2176 features &= ~NETIF_F_GSO_MASK; 2177 2178 if (protocol == htons(ETH_P_8021Q)) { 2179 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2180 protocol = veh->h_vlan_encapsulated_proto; 2181 } else if (!vlan_tx_tag_present(skb)) { 2182 return harmonize_features(skb, protocol, features); 2183 } 2184 2185 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2186 2187 if (protocol != htons(ETH_P_8021Q)) { 2188 return harmonize_features(skb, protocol, features); 2189 } else { 2190 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2191 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2192 return harmonize_features(skb, protocol, features); 2193 } 2194 } 2195 EXPORT_SYMBOL(netif_skb_features); 2196 2197 /* 2198 * Returns true if either: 2199 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2200 * 2. skb is fragmented and the device does not support SG. 2201 */ 2202 static inline int skb_needs_linearize(struct sk_buff *skb, 2203 int features) 2204 { 2205 return skb_is_nonlinear(skb) && 2206 ((skb_has_frag_list(skb) && 2207 !(features & NETIF_F_FRAGLIST)) || 2208 (skb_shinfo(skb)->nr_frags && 2209 !(features & NETIF_F_SG))); 2210 } 2211 2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2213 struct netdev_queue *txq) 2214 { 2215 const struct net_device_ops *ops = dev->netdev_ops; 2216 int rc = NETDEV_TX_OK; 2217 unsigned int skb_len; 2218 2219 if (likely(!skb->next)) { 2220 netdev_features_t features; 2221 2222 /* 2223 * If device doesn't need skb->dst, release it right now while 2224 * its hot in this cpu cache 2225 */ 2226 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2227 skb_dst_drop(skb); 2228 2229 features = netif_skb_features(skb); 2230 2231 if (vlan_tx_tag_present(skb) && 2232 !(features & NETIF_F_HW_VLAN_TX)) { 2233 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2234 if (unlikely(!skb)) 2235 goto out; 2236 2237 skb->vlan_tci = 0; 2238 } 2239 2240 if (netif_needs_gso(skb, features)) { 2241 if (unlikely(dev_gso_segment(skb, features))) 2242 goto out_kfree_skb; 2243 if (skb->next) 2244 goto gso; 2245 } else { 2246 if (skb_needs_linearize(skb, features) && 2247 __skb_linearize(skb)) 2248 goto out_kfree_skb; 2249 2250 /* If packet is not checksummed and device does not 2251 * support checksumming for this protocol, complete 2252 * checksumming here. 2253 */ 2254 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2255 skb_set_transport_header(skb, 2256 skb_checksum_start_offset(skb)); 2257 if (!(features & NETIF_F_ALL_CSUM) && 2258 skb_checksum_help(skb)) 2259 goto out_kfree_skb; 2260 } 2261 } 2262 2263 if (!list_empty(&ptype_all)) 2264 dev_queue_xmit_nit(skb, dev); 2265 2266 skb_len = skb->len; 2267 rc = ops->ndo_start_xmit(skb, dev); 2268 trace_net_dev_xmit(skb, rc, dev, skb_len); 2269 if (rc == NETDEV_TX_OK) 2270 txq_trans_update(txq); 2271 return rc; 2272 } 2273 2274 gso: 2275 do { 2276 struct sk_buff *nskb = skb->next; 2277 2278 skb->next = nskb->next; 2279 nskb->next = NULL; 2280 2281 /* 2282 * If device doesn't need nskb->dst, release it right now while 2283 * its hot in this cpu cache 2284 */ 2285 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2286 skb_dst_drop(nskb); 2287 2288 if (!list_empty(&ptype_all)) 2289 dev_queue_xmit_nit(nskb, dev); 2290 2291 skb_len = nskb->len; 2292 rc = ops->ndo_start_xmit(nskb, dev); 2293 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2294 if (unlikely(rc != NETDEV_TX_OK)) { 2295 if (rc & ~NETDEV_TX_MASK) 2296 goto out_kfree_gso_skb; 2297 nskb->next = skb->next; 2298 skb->next = nskb; 2299 return rc; 2300 } 2301 txq_trans_update(txq); 2302 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2303 return NETDEV_TX_BUSY; 2304 } while (skb->next); 2305 2306 out_kfree_gso_skb: 2307 if (likely(skb->next == NULL)) 2308 skb->destructor = DEV_GSO_CB(skb)->destructor; 2309 out_kfree_skb: 2310 kfree_skb(skb); 2311 out: 2312 return rc; 2313 } 2314 2315 static u32 hashrnd __read_mostly; 2316 2317 /* 2318 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2319 * to be used as a distribution range. 2320 */ 2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2322 unsigned int num_tx_queues) 2323 { 2324 u32 hash; 2325 u16 qoffset = 0; 2326 u16 qcount = num_tx_queues; 2327 2328 if (skb_rx_queue_recorded(skb)) { 2329 hash = skb_get_rx_queue(skb); 2330 while (unlikely(hash >= num_tx_queues)) 2331 hash -= num_tx_queues; 2332 return hash; 2333 } 2334 2335 if (dev->num_tc) { 2336 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2337 qoffset = dev->tc_to_txq[tc].offset; 2338 qcount = dev->tc_to_txq[tc].count; 2339 } 2340 2341 if (skb->sk && skb->sk->sk_hash) 2342 hash = skb->sk->sk_hash; 2343 else 2344 hash = (__force u16) skb->protocol; 2345 hash = jhash_1word(hash, hashrnd); 2346 2347 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2348 } 2349 EXPORT_SYMBOL(__skb_tx_hash); 2350 2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2352 { 2353 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2354 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2355 dev->name, queue_index, 2356 dev->real_num_tx_queues); 2357 return 0; 2358 } 2359 return queue_index; 2360 } 2361 2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2363 { 2364 #ifdef CONFIG_XPS 2365 struct xps_dev_maps *dev_maps; 2366 struct xps_map *map; 2367 int queue_index = -1; 2368 2369 rcu_read_lock(); 2370 dev_maps = rcu_dereference(dev->xps_maps); 2371 if (dev_maps) { 2372 map = rcu_dereference( 2373 dev_maps->cpu_map[raw_smp_processor_id()]); 2374 if (map) { 2375 if (map->len == 1) 2376 queue_index = map->queues[0]; 2377 else { 2378 u32 hash; 2379 if (skb->sk && skb->sk->sk_hash) 2380 hash = skb->sk->sk_hash; 2381 else 2382 hash = (__force u16) skb->protocol ^ 2383 skb->rxhash; 2384 hash = jhash_1word(hash, hashrnd); 2385 queue_index = map->queues[ 2386 ((u64)hash * map->len) >> 32]; 2387 } 2388 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2389 queue_index = -1; 2390 } 2391 } 2392 rcu_read_unlock(); 2393 2394 return queue_index; 2395 #else 2396 return -1; 2397 #endif 2398 } 2399 2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2401 struct sk_buff *skb) 2402 { 2403 int queue_index; 2404 const struct net_device_ops *ops = dev->netdev_ops; 2405 2406 if (dev->real_num_tx_queues == 1) 2407 queue_index = 0; 2408 else if (ops->ndo_select_queue) { 2409 queue_index = ops->ndo_select_queue(dev, skb); 2410 queue_index = dev_cap_txqueue(dev, queue_index); 2411 } else { 2412 struct sock *sk = skb->sk; 2413 queue_index = sk_tx_queue_get(sk); 2414 2415 if (queue_index < 0 || skb->ooo_okay || 2416 queue_index >= dev->real_num_tx_queues) { 2417 int old_index = queue_index; 2418 2419 queue_index = get_xps_queue(dev, skb); 2420 if (queue_index < 0) 2421 queue_index = skb_tx_hash(dev, skb); 2422 2423 if (queue_index != old_index && sk) { 2424 struct dst_entry *dst = 2425 rcu_dereference_check(sk->sk_dst_cache, 1); 2426 2427 if (dst && skb_dst(skb) == dst) 2428 sk_tx_queue_set(sk, queue_index); 2429 } 2430 } 2431 } 2432 2433 skb_set_queue_mapping(skb, queue_index); 2434 return netdev_get_tx_queue(dev, queue_index); 2435 } 2436 2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2438 struct net_device *dev, 2439 struct netdev_queue *txq) 2440 { 2441 spinlock_t *root_lock = qdisc_lock(q); 2442 bool contended; 2443 int rc; 2444 2445 qdisc_skb_cb(skb)->pkt_len = skb->len; 2446 qdisc_calculate_pkt_len(skb, q); 2447 /* 2448 * Heuristic to force contended enqueues to serialize on a 2449 * separate lock before trying to get qdisc main lock. 2450 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2451 * and dequeue packets faster. 2452 */ 2453 contended = qdisc_is_running(q); 2454 if (unlikely(contended)) 2455 spin_lock(&q->busylock); 2456 2457 spin_lock(root_lock); 2458 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2459 kfree_skb(skb); 2460 rc = NET_XMIT_DROP; 2461 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2462 qdisc_run_begin(q)) { 2463 /* 2464 * This is a work-conserving queue; there are no old skbs 2465 * waiting to be sent out; and the qdisc is not running - 2466 * xmit the skb directly. 2467 */ 2468 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2469 skb_dst_force(skb); 2470 2471 qdisc_bstats_update(q, skb); 2472 2473 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2474 if (unlikely(contended)) { 2475 spin_unlock(&q->busylock); 2476 contended = false; 2477 } 2478 __qdisc_run(q); 2479 } else 2480 qdisc_run_end(q); 2481 2482 rc = NET_XMIT_SUCCESS; 2483 } else { 2484 skb_dst_force(skb); 2485 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2486 if (qdisc_run_begin(q)) { 2487 if (unlikely(contended)) { 2488 spin_unlock(&q->busylock); 2489 contended = false; 2490 } 2491 __qdisc_run(q); 2492 } 2493 } 2494 spin_unlock(root_lock); 2495 if (unlikely(contended)) 2496 spin_unlock(&q->busylock); 2497 return rc; 2498 } 2499 2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2501 static void skb_update_prio(struct sk_buff *skb) 2502 { 2503 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2504 2505 if (!skb->priority && skb->sk && map) { 2506 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2507 2508 if (prioidx < map->priomap_len) 2509 skb->priority = map->priomap[prioidx]; 2510 } 2511 } 2512 #else 2513 #define skb_update_prio(skb) 2514 #endif 2515 2516 static DEFINE_PER_CPU(int, xmit_recursion); 2517 #define RECURSION_LIMIT 10 2518 2519 /** 2520 * dev_loopback_xmit - loop back @skb 2521 * @skb: buffer to transmit 2522 */ 2523 int dev_loopback_xmit(struct sk_buff *skb) 2524 { 2525 skb_reset_mac_header(skb); 2526 __skb_pull(skb, skb_network_offset(skb)); 2527 skb->pkt_type = PACKET_LOOPBACK; 2528 skb->ip_summed = CHECKSUM_UNNECESSARY; 2529 WARN_ON(!skb_dst(skb)); 2530 skb_dst_force(skb); 2531 netif_rx_ni(skb); 2532 return 0; 2533 } 2534 EXPORT_SYMBOL(dev_loopback_xmit); 2535 2536 /** 2537 * dev_queue_xmit - transmit a buffer 2538 * @skb: buffer to transmit 2539 * 2540 * Queue a buffer for transmission to a network device. The caller must 2541 * have set the device and priority and built the buffer before calling 2542 * this function. The function can be called from an interrupt. 2543 * 2544 * A negative errno code is returned on a failure. A success does not 2545 * guarantee the frame will be transmitted as it may be dropped due 2546 * to congestion or traffic shaping. 2547 * 2548 * ----------------------------------------------------------------------------------- 2549 * I notice this method can also return errors from the queue disciplines, 2550 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2551 * be positive. 2552 * 2553 * Regardless of the return value, the skb is consumed, so it is currently 2554 * difficult to retry a send to this method. (You can bump the ref count 2555 * before sending to hold a reference for retry if you are careful.) 2556 * 2557 * When calling this method, interrupts MUST be enabled. This is because 2558 * the BH enable code must have IRQs enabled so that it will not deadlock. 2559 * --BLG 2560 */ 2561 int dev_queue_xmit(struct sk_buff *skb) 2562 { 2563 struct net_device *dev = skb->dev; 2564 struct netdev_queue *txq; 2565 struct Qdisc *q; 2566 int rc = -ENOMEM; 2567 2568 /* Disable soft irqs for various locks below. Also 2569 * stops preemption for RCU. 2570 */ 2571 rcu_read_lock_bh(); 2572 2573 skb_update_prio(skb); 2574 2575 txq = netdev_pick_tx(dev, skb); 2576 q = rcu_dereference_bh(txq->qdisc); 2577 2578 #ifdef CONFIG_NET_CLS_ACT 2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2580 #endif 2581 trace_net_dev_queue(skb); 2582 if (q->enqueue) { 2583 rc = __dev_xmit_skb(skb, q, dev, txq); 2584 goto out; 2585 } 2586 2587 /* The device has no queue. Common case for software devices: 2588 loopback, all the sorts of tunnels... 2589 2590 Really, it is unlikely that netif_tx_lock protection is necessary 2591 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2592 counters.) 2593 However, it is possible, that they rely on protection 2594 made by us here. 2595 2596 Check this and shot the lock. It is not prone from deadlocks. 2597 Either shot noqueue qdisc, it is even simpler 8) 2598 */ 2599 if (dev->flags & IFF_UP) { 2600 int cpu = smp_processor_id(); /* ok because BHs are off */ 2601 2602 if (txq->xmit_lock_owner != cpu) { 2603 2604 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2605 goto recursion_alert; 2606 2607 HARD_TX_LOCK(dev, txq, cpu); 2608 2609 if (!netif_xmit_stopped(txq)) { 2610 __this_cpu_inc(xmit_recursion); 2611 rc = dev_hard_start_xmit(skb, dev, txq); 2612 __this_cpu_dec(xmit_recursion); 2613 if (dev_xmit_complete(rc)) { 2614 HARD_TX_UNLOCK(dev, txq); 2615 goto out; 2616 } 2617 } 2618 HARD_TX_UNLOCK(dev, txq); 2619 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2620 dev->name); 2621 } else { 2622 /* Recursion is detected! It is possible, 2623 * unfortunately 2624 */ 2625 recursion_alert: 2626 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2627 dev->name); 2628 } 2629 } 2630 2631 rc = -ENETDOWN; 2632 rcu_read_unlock_bh(); 2633 2634 kfree_skb(skb); 2635 return rc; 2636 out: 2637 rcu_read_unlock_bh(); 2638 return rc; 2639 } 2640 EXPORT_SYMBOL(dev_queue_xmit); 2641 2642 2643 /*======================================================================= 2644 Receiver routines 2645 =======================================================================*/ 2646 2647 int netdev_max_backlog __read_mostly = 1000; 2648 EXPORT_SYMBOL(netdev_max_backlog); 2649 2650 int netdev_tstamp_prequeue __read_mostly = 1; 2651 int netdev_budget __read_mostly = 300; 2652 int weight_p __read_mostly = 64; /* old backlog weight */ 2653 2654 /* Called with irq disabled */ 2655 static inline void ____napi_schedule(struct softnet_data *sd, 2656 struct napi_struct *napi) 2657 { 2658 list_add_tail(&napi->poll_list, &sd->poll_list); 2659 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2660 } 2661 2662 /* 2663 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2664 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2665 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2666 * if hash is a canonical 4-tuple hash over transport ports. 2667 */ 2668 void __skb_get_rxhash(struct sk_buff *skb) 2669 { 2670 struct flow_keys keys; 2671 u32 hash; 2672 2673 if (!skb_flow_dissect(skb, &keys)) 2674 return; 2675 2676 if (keys.ports) 2677 skb->l4_rxhash = 1; 2678 2679 /* get a consistent hash (same value on both flow directions) */ 2680 if (((__force u32)keys.dst < (__force u32)keys.src) || 2681 (((__force u32)keys.dst == (__force u32)keys.src) && 2682 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) { 2683 swap(keys.dst, keys.src); 2684 swap(keys.port16[0], keys.port16[1]); 2685 } 2686 2687 hash = jhash_3words((__force u32)keys.dst, 2688 (__force u32)keys.src, 2689 (__force u32)keys.ports, hashrnd); 2690 if (!hash) 2691 hash = 1; 2692 2693 skb->rxhash = hash; 2694 } 2695 EXPORT_SYMBOL(__skb_get_rxhash); 2696 2697 #ifdef CONFIG_RPS 2698 2699 /* One global table that all flow-based protocols share. */ 2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2701 EXPORT_SYMBOL(rps_sock_flow_table); 2702 2703 struct static_key rps_needed __read_mostly; 2704 2705 static struct rps_dev_flow * 2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2707 struct rps_dev_flow *rflow, u16 next_cpu) 2708 { 2709 if (next_cpu != RPS_NO_CPU) { 2710 #ifdef CONFIG_RFS_ACCEL 2711 struct netdev_rx_queue *rxqueue; 2712 struct rps_dev_flow_table *flow_table; 2713 struct rps_dev_flow *old_rflow; 2714 u32 flow_id; 2715 u16 rxq_index; 2716 int rc; 2717 2718 /* Should we steer this flow to a different hardware queue? */ 2719 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2720 !(dev->features & NETIF_F_NTUPLE)) 2721 goto out; 2722 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2723 if (rxq_index == skb_get_rx_queue(skb)) 2724 goto out; 2725 2726 rxqueue = dev->_rx + rxq_index; 2727 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2728 if (!flow_table) 2729 goto out; 2730 flow_id = skb->rxhash & flow_table->mask; 2731 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2732 rxq_index, flow_id); 2733 if (rc < 0) 2734 goto out; 2735 old_rflow = rflow; 2736 rflow = &flow_table->flows[flow_id]; 2737 rflow->filter = rc; 2738 if (old_rflow->filter == rflow->filter) 2739 old_rflow->filter = RPS_NO_FILTER; 2740 out: 2741 #endif 2742 rflow->last_qtail = 2743 per_cpu(softnet_data, next_cpu).input_queue_head; 2744 } 2745 2746 rflow->cpu = next_cpu; 2747 return rflow; 2748 } 2749 2750 /* 2751 * get_rps_cpu is called from netif_receive_skb and returns the target 2752 * CPU from the RPS map of the receiving queue for a given skb. 2753 * rcu_read_lock must be held on entry. 2754 */ 2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2756 struct rps_dev_flow **rflowp) 2757 { 2758 struct netdev_rx_queue *rxqueue; 2759 struct rps_map *map; 2760 struct rps_dev_flow_table *flow_table; 2761 struct rps_sock_flow_table *sock_flow_table; 2762 int cpu = -1; 2763 u16 tcpu; 2764 2765 if (skb_rx_queue_recorded(skb)) { 2766 u16 index = skb_get_rx_queue(skb); 2767 if (unlikely(index >= dev->real_num_rx_queues)) { 2768 WARN_ONCE(dev->real_num_rx_queues > 1, 2769 "%s received packet on queue %u, but number " 2770 "of RX queues is %u\n", 2771 dev->name, index, dev->real_num_rx_queues); 2772 goto done; 2773 } 2774 rxqueue = dev->_rx + index; 2775 } else 2776 rxqueue = dev->_rx; 2777 2778 map = rcu_dereference(rxqueue->rps_map); 2779 if (map) { 2780 if (map->len == 1 && 2781 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2782 tcpu = map->cpus[0]; 2783 if (cpu_online(tcpu)) 2784 cpu = tcpu; 2785 goto done; 2786 } 2787 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2788 goto done; 2789 } 2790 2791 skb_reset_network_header(skb); 2792 if (!skb_get_rxhash(skb)) 2793 goto done; 2794 2795 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2796 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2797 if (flow_table && sock_flow_table) { 2798 u16 next_cpu; 2799 struct rps_dev_flow *rflow; 2800 2801 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2802 tcpu = rflow->cpu; 2803 2804 next_cpu = sock_flow_table->ents[skb->rxhash & 2805 sock_flow_table->mask]; 2806 2807 /* 2808 * If the desired CPU (where last recvmsg was done) is 2809 * different from current CPU (one in the rx-queue flow 2810 * table entry), switch if one of the following holds: 2811 * - Current CPU is unset (equal to RPS_NO_CPU). 2812 * - Current CPU is offline. 2813 * - The current CPU's queue tail has advanced beyond the 2814 * last packet that was enqueued using this table entry. 2815 * This guarantees that all previous packets for the flow 2816 * have been dequeued, thus preserving in order delivery. 2817 */ 2818 if (unlikely(tcpu != next_cpu) && 2819 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2820 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2821 rflow->last_qtail)) >= 0)) 2822 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2823 2824 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2825 *rflowp = rflow; 2826 cpu = tcpu; 2827 goto done; 2828 } 2829 } 2830 2831 if (map) { 2832 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2833 2834 if (cpu_online(tcpu)) { 2835 cpu = tcpu; 2836 goto done; 2837 } 2838 } 2839 2840 done: 2841 return cpu; 2842 } 2843 2844 #ifdef CONFIG_RFS_ACCEL 2845 2846 /** 2847 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2848 * @dev: Device on which the filter was set 2849 * @rxq_index: RX queue index 2850 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2851 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2852 * 2853 * Drivers that implement ndo_rx_flow_steer() should periodically call 2854 * this function for each installed filter and remove the filters for 2855 * which it returns %true. 2856 */ 2857 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2858 u32 flow_id, u16 filter_id) 2859 { 2860 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2861 struct rps_dev_flow_table *flow_table; 2862 struct rps_dev_flow *rflow; 2863 bool expire = true; 2864 int cpu; 2865 2866 rcu_read_lock(); 2867 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2868 if (flow_table && flow_id <= flow_table->mask) { 2869 rflow = &flow_table->flows[flow_id]; 2870 cpu = ACCESS_ONCE(rflow->cpu); 2871 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2872 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2873 rflow->last_qtail) < 2874 (int)(10 * flow_table->mask))) 2875 expire = false; 2876 } 2877 rcu_read_unlock(); 2878 return expire; 2879 } 2880 EXPORT_SYMBOL(rps_may_expire_flow); 2881 2882 #endif /* CONFIG_RFS_ACCEL */ 2883 2884 /* Called from hardirq (IPI) context */ 2885 static void rps_trigger_softirq(void *data) 2886 { 2887 struct softnet_data *sd = data; 2888 2889 ____napi_schedule(sd, &sd->backlog); 2890 sd->received_rps++; 2891 } 2892 2893 #endif /* CONFIG_RPS */ 2894 2895 /* 2896 * Check if this softnet_data structure is another cpu one 2897 * If yes, queue it to our IPI list and return 1 2898 * If no, return 0 2899 */ 2900 static int rps_ipi_queued(struct softnet_data *sd) 2901 { 2902 #ifdef CONFIG_RPS 2903 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2904 2905 if (sd != mysd) { 2906 sd->rps_ipi_next = mysd->rps_ipi_list; 2907 mysd->rps_ipi_list = sd; 2908 2909 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2910 return 1; 2911 } 2912 #endif /* CONFIG_RPS */ 2913 return 0; 2914 } 2915 2916 /* 2917 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2918 * queue (may be a remote CPU queue). 2919 */ 2920 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2921 unsigned int *qtail) 2922 { 2923 struct softnet_data *sd; 2924 unsigned long flags; 2925 2926 sd = &per_cpu(softnet_data, cpu); 2927 2928 local_irq_save(flags); 2929 2930 rps_lock(sd); 2931 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2932 if (skb_queue_len(&sd->input_pkt_queue)) { 2933 enqueue: 2934 __skb_queue_tail(&sd->input_pkt_queue, skb); 2935 input_queue_tail_incr_save(sd, qtail); 2936 rps_unlock(sd); 2937 local_irq_restore(flags); 2938 return NET_RX_SUCCESS; 2939 } 2940 2941 /* Schedule NAPI for backlog device 2942 * We can use non atomic operation since we own the queue lock 2943 */ 2944 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2945 if (!rps_ipi_queued(sd)) 2946 ____napi_schedule(sd, &sd->backlog); 2947 } 2948 goto enqueue; 2949 } 2950 2951 sd->dropped++; 2952 rps_unlock(sd); 2953 2954 local_irq_restore(flags); 2955 2956 atomic_long_inc(&skb->dev->rx_dropped); 2957 kfree_skb(skb); 2958 return NET_RX_DROP; 2959 } 2960 2961 /** 2962 * netif_rx - post buffer to the network code 2963 * @skb: buffer to post 2964 * 2965 * This function receives a packet from a device driver and queues it for 2966 * the upper (protocol) levels to process. It always succeeds. The buffer 2967 * may be dropped during processing for congestion control or by the 2968 * protocol layers. 2969 * 2970 * return values: 2971 * NET_RX_SUCCESS (no congestion) 2972 * NET_RX_DROP (packet was dropped) 2973 * 2974 */ 2975 2976 int netif_rx(struct sk_buff *skb) 2977 { 2978 int ret; 2979 2980 /* if netpoll wants it, pretend we never saw it */ 2981 if (netpoll_rx(skb)) 2982 return NET_RX_DROP; 2983 2984 net_timestamp_check(netdev_tstamp_prequeue, skb); 2985 2986 trace_netif_rx(skb); 2987 #ifdef CONFIG_RPS 2988 if (static_key_false(&rps_needed)) { 2989 struct rps_dev_flow voidflow, *rflow = &voidflow; 2990 int cpu; 2991 2992 preempt_disable(); 2993 rcu_read_lock(); 2994 2995 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2996 if (cpu < 0) 2997 cpu = smp_processor_id(); 2998 2999 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3000 3001 rcu_read_unlock(); 3002 preempt_enable(); 3003 } else 3004 #endif 3005 { 3006 unsigned int qtail; 3007 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3008 put_cpu(); 3009 } 3010 return ret; 3011 } 3012 EXPORT_SYMBOL(netif_rx); 3013 3014 int netif_rx_ni(struct sk_buff *skb) 3015 { 3016 int err; 3017 3018 preempt_disable(); 3019 err = netif_rx(skb); 3020 if (local_softirq_pending()) 3021 do_softirq(); 3022 preempt_enable(); 3023 3024 return err; 3025 } 3026 EXPORT_SYMBOL(netif_rx_ni); 3027 3028 static void net_tx_action(struct softirq_action *h) 3029 { 3030 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3031 3032 if (sd->completion_queue) { 3033 struct sk_buff *clist; 3034 3035 local_irq_disable(); 3036 clist = sd->completion_queue; 3037 sd->completion_queue = NULL; 3038 local_irq_enable(); 3039 3040 while (clist) { 3041 struct sk_buff *skb = clist; 3042 clist = clist->next; 3043 3044 WARN_ON(atomic_read(&skb->users)); 3045 trace_kfree_skb(skb, net_tx_action); 3046 __kfree_skb(skb); 3047 } 3048 } 3049 3050 if (sd->output_queue) { 3051 struct Qdisc *head; 3052 3053 local_irq_disable(); 3054 head = sd->output_queue; 3055 sd->output_queue = NULL; 3056 sd->output_queue_tailp = &sd->output_queue; 3057 local_irq_enable(); 3058 3059 while (head) { 3060 struct Qdisc *q = head; 3061 spinlock_t *root_lock; 3062 3063 head = head->next_sched; 3064 3065 root_lock = qdisc_lock(q); 3066 if (spin_trylock(root_lock)) { 3067 smp_mb__before_clear_bit(); 3068 clear_bit(__QDISC_STATE_SCHED, 3069 &q->state); 3070 qdisc_run(q); 3071 spin_unlock(root_lock); 3072 } else { 3073 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3074 &q->state)) { 3075 __netif_reschedule(q); 3076 } else { 3077 smp_mb__before_clear_bit(); 3078 clear_bit(__QDISC_STATE_SCHED, 3079 &q->state); 3080 } 3081 } 3082 } 3083 } 3084 } 3085 3086 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3087 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3088 /* This hook is defined here for ATM LANE */ 3089 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3090 unsigned char *addr) __read_mostly; 3091 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3092 #endif 3093 3094 #ifdef CONFIG_NET_CLS_ACT 3095 /* TODO: Maybe we should just force sch_ingress to be compiled in 3096 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3097 * a compare and 2 stores extra right now if we dont have it on 3098 * but have CONFIG_NET_CLS_ACT 3099 * NOTE: This doesn't stop any functionality; if you dont have 3100 * the ingress scheduler, you just can't add policies on ingress. 3101 * 3102 */ 3103 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3104 { 3105 struct net_device *dev = skb->dev; 3106 u32 ttl = G_TC_RTTL(skb->tc_verd); 3107 int result = TC_ACT_OK; 3108 struct Qdisc *q; 3109 3110 if (unlikely(MAX_RED_LOOP < ttl++)) { 3111 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3112 skb->skb_iif, dev->ifindex); 3113 return TC_ACT_SHOT; 3114 } 3115 3116 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3117 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3118 3119 q = rxq->qdisc; 3120 if (q != &noop_qdisc) { 3121 spin_lock(qdisc_lock(q)); 3122 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3123 result = qdisc_enqueue_root(skb, q); 3124 spin_unlock(qdisc_lock(q)); 3125 } 3126 3127 return result; 3128 } 3129 3130 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3131 struct packet_type **pt_prev, 3132 int *ret, struct net_device *orig_dev) 3133 { 3134 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3135 3136 if (!rxq || rxq->qdisc == &noop_qdisc) 3137 goto out; 3138 3139 if (*pt_prev) { 3140 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3141 *pt_prev = NULL; 3142 } 3143 3144 switch (ing_filter(skb, rxq)) { 3145 case TC_ACT_SHOT: 3146 case TC_ACT_STOLEN: 3147 kfree_skb(skb); 3148 return NULL; 3149 } 3150 3151 out: 3152 skb->tc_verd = 0; 3153 return skb; 3154 } 3155 #endif 3156 3157 /** 3158 * netdev_rx_handler_register - register receive handler 3159 * @dev: device to register a handler for 3160 * @rx_handler: receive handler to register 3161 * @rx_handler_data: data pointer that is used by rx handler 3162 * 3163 * Register a receive hander for a device. This handler will then be 3164 * called from __netif_receive_skb. A negative errno code is returned 3165 * on a failure. 3166 * 3167 * The caller must hold the rtnl_mutex. 3168 * 3169 * For a general description of rx_handler, see enum rx_handler_result. 3170 */ 3171 int netdev_rx_handler_register(struct net_device *dev, 3172 rx_handler_func_t *rx_handler, 3173 void *rx_handler_data) 3174 { 3175 ASSERT_RTNL(); 3176 3177 if (dev->rx_handler) 3178 return -EBUSY; 3179 3180 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3181 rcu_assign_pointer(dev->rx_handler, rx_handler); 3182 3183 return 0; 3184 } 3185 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3186 3187 /** 3188 * netdev_rx_handler_unregister - unregister receive handler 3189 * @dev: device to unregister a handler from 3190 * 3191 * Unregister a receive hander from a device. 3192 * 3193 * The caller must hold the rtnl_mutex. 3194 */ 3195 void netdev_rx_handler_unregister(struct net_device *dev) 3196 { 3197 3198 ASSERT_RTNL(); 3199 RCU_INIT_POINTER(dev->rx_handler, NULL); 3200 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3201 } 3202 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3203 3204 /* 3205 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3206 * the special handling of PFMEMALLOC skbs. 3207 */ 3208 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3209 { 3210 switch (skb->protocol) { 3211 case __constant_htons(ETH_P_ARP): 3212 case __constant_htons(ETH_P_IP): 3213 case __constant_htons(ETH_P_IPV6): 3214 case __constant_htons(ETH_P_8021Q): 3215 return true; 3216 default: 3217 return false; 3218 } 3219 } 3220 3221 static int __netif_receive_skb(struct sk_buff *skb) 3222 { 3223 struct packet_type *ptype, *pt_prev; 3224 rx_handler_func_t *rx_handler; 3225 struct net_device *orig_dev; 3226 struct net_device *null_or_dev; 3227 bool deliver_exact = false; 3228 int ret = NET_RX_DROP; 3229 __be16 type; 3230 unsigned long pflags = current->flags; 3231 3232 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3233 3234 trace_netif_receive_skb(skb); 3235 3236 /* 3237 * PFMEMALLOC skbs are special, they should 3238 * - be delivered to SOCK_MEMALLOC sockets only 3239 * - stay away from userspace 3240 * - have bounded memory usage 3241 * 3242 * Use PF_MEMALLOC as this saves us from propagating the allocation 3243 * context down to all allocation sites. 3244 */ 3245 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3246 current->flags |= PF_MEMALLOC; 3247 3248 /* if we've gotten here through NAPI, check netpoll */ 3249 if (netpoll_receive_skb(skb)) 3250 goto out; 3251 3252 orig_dev = skb->dev; 3253 3254 skb_reset_network_header(skb); 3255 skb_reset_transport_header(skb); 3256 skb_reset_mac_len(skb); 3257 3258 pt_prev = NULL; 3259 3260 rcu_read_lock(); 3261 3262 another_round: 3263 skb->skb_iif = skb->dev->ifindex; 3264 3265 __this_cpu_inc(softnet_data.processed); 3266 3267 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3268 skb = vlan_untag(skb); 3269 if (unlikely(!skb)) 3270 goto unlock; 3271 } 3272 3273 #ifdef CONFIG_NET_CLS_ACT 3274 if (skb->tc_verd & TC_NCLS) { 3275 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3276 goto ncls; 3277 } 3278 #endif 3279 3280 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3281 goto skip_taps; 3282 3283 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3284 if (!ptype->dev || ptype->dev == skb->dev) { 3285 if (pt_prev) 3286 ret = deliver_skb(skb, pt_prev, orig_dev); 3287 pt_prev = ptype; 3288 } 3289 } 3290 3291 skip_taps: 3292 #ifdef CONFIG_NET_CLS_ACT 3293 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3294 if (!skb) 3295 goto unlock; 3296 ncls: 3297 #endif 3298 3299 if (sk_memalloc_socks() && skb_pfmemalloc(skb) 3300 && !skb_pfmemalloc_protocol(skb)) 3301 goto drop; 3302 3303 if (vlan_tx_tag_present(skb)) { 3304 if (pt_prev) { 3305 ret = deliver_skb(skb, pt_prev, orig_dev); 3306 pt_prev = NULL; 3307 } 3308 if (vlan_do_receive(&skb)) 3309 goto another_round; 3310 else if (unlikely(!skb)) 3311 goto unlock; 3312 } 3313 3314 rx_handler = rcu_dereference(skb->dev->rx_handler); 3315 if (rx_handler) { 3316 if (pt_prev) { 3317 ret = deliver_skb(skb, pt_prev, orig_dev); 3318 pt_prev = NULL; 3319 } 3320 switch (rx_handler(&skb)) { 3321 case RX_HANDLER_CONSUMED: 3322 goto unlock; 3323 case RX_HANDLER_ANOTHER: 3324 goto another_round; 3325 case RX_HANDLER_EXACT: 3326 deliver_exact = true; 3327 case RX_HANDLER_PASS: 3328 break; 3329 default: 3330 BUG(); 3331 } 3332 } 3333 3334 if (vlan_tx_nonzero_tag_present(skb)) 3335 skb->pkt_type = PACKET_OTHERHOST; 3336 3337 /* deliver only exact match when indicated */ 3338 null_or_dev = deliver_exact ? skb->dev : NULL; 3339 3340 type = skb->protocol; 3341 list_for_each_entry_rcu(ptype, 3342 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3343 if (ptype->type == type && 3344 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3345 ptype->dev == orig_dev)) { 3346 if (pt_prev) 3347 ret = deliver_skb(skb, pt_prev, orig_dev); 3348 pt_prev = ptype; 3349 } 3350 } 3351 3352 if (pt_prev) { 3353 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3354 goto drop; 3355 else 3356 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3357 } else { 3358 drop: 3359 atomic_long_inc(&skb->dev->rx_dropped); 3360 kfree_skb(skb); 3361 /* Jamal, now you will not able to escape explaining 3362 * me how you were going to use this. :-) 3363 */ 3364 ret = NET_RX_DROP; 3365 } 3366 3367 unlock: 3368 rcu_read_unlock(); 3369 out: 3370 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3371 return ret; 3372 } 3373 3374 /** 3375 * netif_receive_skb - process receive buffer from network 3376 * @skb: buffer to process 3377 * 3378 * netif_receive_skb() is the main receive data processing function. 3379 * It always succeeds. The buffer may be dropped during processing 3380 * for congestion control or by the protocol layers. 3381 * 3382 * This function may only be called from softirq context and interrupts 3383 * should be enabled. 3384 * 3385 * Return values (usually ignored): 3386 * NET_RX_SUCCESS: no congestion 3387 * NET_RX_DROP: packet was dropped 3388 */ 3389 int netif_receive_skb(struct sk_buff *skb) 3390 { 3391 net_timestamp_check(netdev_tstamp_prequeue, skb); 3392 3393 if (skb_defer_rx_timestamp(skb)) 3394 return NET_RX_SUCCESS; 3395 3396 #ifdef CONFIG_RPS 3397 if (static_key_false(&rps_needed)) { 3398 struct rps_dev_flow voidflow, *rflow = &voidflow; 3399 int cpu, ret; 3400 3401 rcu_read_lock(); 3402 3403 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3404 3405 if (cpu >= 0) { 3406 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3407 rcu_read_unlock(); 3408 return ret; 3409 } 3410 rcu_read_unlock(); 3411 } 3412 #endif 3413 return __netif_receive_skb(skb); 3414 } 3415 EXPORT_SYMBOL(netif_receive_skb); 3416 3417 /* Network device is going away, flush any packets still pending 3418 * Called with irqs disabled. 3419 */ 3420 static void flush_backlog(void *arg) 3421 { 3422 struct net_device *dev = arg; 3423 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3424 struct sk_buff *skb, *tmp; 3425 3426 rps_lock(sd); 3427 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3428 if (skb->dev == dev) { 3429 __skb_unlink(skb, &sd->input_pkt_queue); 3430 kfree_skb(skb); 3431 input_queue_head_incr(sd); 3432 } 3433 } 3434 rps_unlock(sd); 3435 3436 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3437 if (skb->dev == dev) { 3438 __skb_unlink(skb, &sd->process_queue); 3439 kfree_skb(skb); 3440 input_queue_head_incr(sd); 3441 } 3442 } 3443 } 3444 3445 static int napi_gro_complete(struct sk_buff *skb) 3446 { 3447 struct packet_type *ptype; 3448 __be16 type = skb->protocol; 3449 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3450 int err = -ENOENT; 3451 3452 if (NAPI_GRO_CB(skb)->count == 1) { 3453 skb_shinfo(skb)->gso_size = 0; 3454 goto out; 3455 } 3456 3457 rcu_read_lock(); 3458 list_for_each_entry_rcu(ptype, head, list) { 3459 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3460 continue; 3461 3462 err = ptype->gro_complete(skb); 3463 break; 3464 } 3465 rcu_read_unlock(); 3466 3467 if (err) { 3468 WARN_ON(&ptype->list == head); 3469 kfree_skb(skb); 3470 return NET_RX_SUCCESS; 3471 } 3472 3473 out: 3474 return netif_receive_skb(skb); 3475 } 3476 3477 /* napi->gro_list contains packets ordered by age. 3478 * youngest packets at the head of it. 3479 * Complete skbs in reverse order to reduce latencies. 3480 */ 3481 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3482 { 3483 struct sk_buff *skb, *prev = NULL; 3484 3485 /* scan list and build reverse chain */ 3486 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3487 skb->prev = prev; 3488 prev = skb; 3489 } 3490 3491 for (skb = prev; skb; skb = prev) { 3492 skb->next = NULL; 3493 3494 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3495 return; 3496 3497 prev = skb->prev; 3498 napi_gro_complete(skb); 3499 napi->gro_count--; 3500 } 3501 3502 napi->gro_list = NULL; 3503 } 3504 EXPORT_SYMBOL(napi_gro_flush); 3505 3506 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3507 { 3508 struct sk_buff **pp = NULL; 3509 struct packet_type *ptype; 3510 __be16 type = skb->protocol; 3511 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3512 int same_flow; 3513 int mac_len; 3514 enum gro_result ret; 3515 3516 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3517 goto normal; 3518 3519 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3520 goto normal; 3521 3522 rcu_read_lock(); 3523 list_for_each_entry_rcu(ptype, head, list) { 3524 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3525 continue; 3526 3527 skb_set_network_header(skb, skb_gro_offset(skb)); 3528 mac_len = skb->network_header - skb->mac_header; 3529 skb->mac_len = mac_len; 3530 NAPI_GRO_CB(skb)->same_flow = 0; 3531 NAPI_GRO_CB(skb)->flush = 0; 3532 NAPI_GRO_CB(skb)->free = 0; 3533 3534 pp = ptype->gro_receive(&napi->gro_list, skb); 3535 break; 3536 } 3537 rcu_read_unlock(); 3538 3539 if (&ptype->list == head) 3540 goto normal; 3541 3542 same_flow = NAPI_GRO_CB(skb)->same_flow; 3543 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3544 3545 if (pp) { 3546 struct sk_buff *nskb = *pp; 3547 3548 *pp = nskb->next; 3549 nskb->next = NULL; 3550 napi_gro_complete(nskb); 3551 napi->gro_count--; 3552 } 3553 3554 if (same_flow) 3555 goto ok; 3556 3557 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3558 goto normal; 3559 3560 napi->gro_count++; 3561 NAPI_GRO_CB(skb)->count = 1; 3562 NAPI_GRO_CB(skb)->age = jiffies; 3563 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3564 skb->next = napi->gro_list; 3565 napi->gro_list = skb; 3566 ret = GRO_HELD; 3567 3568 pull: 3569 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3570 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3571 3572 BUG_ON(skb->end - skb->tail < grow); 3573 3574 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3575 3576 skb->tail += grow; 3577 skb->data_len -= grow; 3578 3579 skb_shinfo(skb)->frags[0].page_offset += grow; 3580 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3581 3582 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3583 skb_frag_unref(skb, 0); 3584 memmove(skb_shinfo(skb)->frags, 3585 skb_shinfo(skb)->frags + 1, 3586 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3587 } 3588 } 3589 3590 ok: 3591 return ret; 3592 3593 normal: 3594 ret = GRO_NORMAL; 3595 goto pull; 3596 } 3597 EXPORT_SYMBOL(dev_gro_receive); 3598 3599 static inline gro_result_t 3600 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3601 { 3602 struct sk_buff *p; 3603 unsigned int maclen = skb->dev->hard_header_len; 3604 3605 for (p = napi->gro_list; p; p = p->next) { 3606 unsigned long diffs; 3607 3608 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3609 diffs |= p->vlan_tci ^ skb->vlan_tci; 3610 if (maclen == ETH_HLEN) 3611 diffs |= compare_ether_header(skb_mac_header(p), 3612 skb_gro_mac_header(skb)); 3613 else if (!diffs) 3614 diffs = memcmp(skb_mac_header(p), 3615 skb_gro_mac_header(skb), 3616 maclen); 3617 NAPI_GRO_CB(p)->same_flow = !diffs; 3618 NAPI_GRO_CB(p)->flush = 0; 3619 } 3620 3621 return dev_gro_receive(napi, skb); 3622 } 3623 3624 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3625 { 3626 switch (ret) { 3627 case GRO_NORMAL: 3628 if (netif_receive_skb(skb)) 3629 ret = GRO_DROP; 3630 break; 3631 3632 case GRO_DROP: 3633 kfree_skb(skb); 3634 break; 3635 3636 case GRO_MERGED_FREE: 3637 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3638 kmem_cache_free(skbuff_head_cache, skb); 3639 else 3640 __kfree_skb(skb); 3641 break; 3642 3643 case GRO_HELD: 3644 case GRO_MERGED: 3645 break; 3646 } 3647 3648 return ret; 3649 } 3650 EXPORT_SYMBOL(napi_skb_finish); 3651 3652 static void skb_gro_reset_offset(struct sk_buff *skb) 3653 { 3654 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3655 const skb_frag_t *frag0 = &pinfo->frags[0]; 3656 3657 NAPI_GRO_CB(skb)->data_offset = 0; 3658 NAPI_GRO_CB(skb)->frag0 = NULL; 3659 NAPI_GRO_CB(skb)->frag0_len = 0; 3660 3661 if (skb->mac_header == skb->tail && 3662 pinfo->nr_frags && 3663 !PageHighMem(skb_frag_page(frag0))) { 3664 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3665 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3666 } 3667 } 3668 3669 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3670 { 3671 skb_gro_reset_offset(skb); 3672 3673 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3674 } 3675 EXPORT_SYMBOL(napi_gro_receive); 3676 3677 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3678 { 3679 __skb_pull(skb, skb_headlen(skb)); 3680 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3681 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3682 skb->vlan_tci = 0; 3683 skb->dev = napi->dev; 3684 skb->skb_iif = 0; 3685 3686 napi->skb = skb; 3687 } 3688 3689 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3690 { 3691 struct sk_buff *skb = napi->skb; 3692 3693 if (!skb) { 3694 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3695 if (skb) 3696 napi->skb = skb; 3697 } 3698 return skb; 3699 } 3700 EXPORT_SYMBOL(napi_get_frags); 3701 3702 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3703 gro_result_t ret) 3704 { 3705 switch (ret) { 3706 case GRO_NORMAL: 3707 case GRO_HELD: 3708 skb->protocol = eth_type_trans(skb, skb->dev); 3709 3710 if (ret == GRO_HELD) 3711 skb_gro_pull(skb, -ETH_HLEN); 3712 else if (netif_receive_skb(skb)) 3713 ret = GRO_DROP; 3714 break; 3715 3716 case GRO_DROP: 3717 case GRO_MERGED_FREE: 3718 napi_reuse_skb(napi, skb); 3719 break; 3720 3721 case GRO_MERGED: 3722 break; 3723 } 3724 3725 return ret; 3726 } 3727 EXPORT_SYMBOL(napi_frags_finish); 3728 3729 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3730 { 3731 struct sk_buff *skb = napi->skb; 3732 struct ethhdr *eth; 3733 unsigned int hlen; 3734 unsigned int off; 3735 3736 napi->skb = NULL; 3737 3738 skb_reset_mac_header(skb); 3739 skb_gro_reset_offset(skb); 3740 3741 off = skb_gro_offset(skb); 3742 hlen = off + sizeof(*eth); 3743 eth = skb_gro_header_fast(skb, off); 3744 if (skb_gro_header_hard(skb, hlen)) { 3745 eth = skb_gro_header_slow(skb, hlen, off); 3746 if (unlikely(!eth)) { 3747 napi_reuse_skb(napi, skb); 3748 skb = NULL; 3749 goto out; 3750 } 3751 } 3752 3753 skb_gro_pull(skb, sizeof(*eth)); 3754 3755 /* 3756 * This works because the only protocols we care about don't require 3757 * special handling. We'll fix it up properly at the end. 3758 */ 3759 skb->protocol = eth->h_proto; 3760 3761 out: 3762 return skb; 3763 } 3764 3765 gro_result_t napi_gro_frags(struct napi_struct *napi) 3766 { 3767 struct sk_buff *skb = napi_frags_skb(napi); 3768 3769 if (!skb) 3770 return GRO_DROP; 3771 3772 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3773 } 3774 EXPORT_SYMBOL(napi_gro_frags); 3775 3776 /* 3777 * net_rps_action sends any pending IPI's for rps. 3778 * Note: called with local irq disabled, but exits with local irq enabled. 3779 */ 3780 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3781 { 3782 #ifdef CONFIG_RPS 3783 struct softnet_data *remsd = sd->rps_ipi_list; 3784 3785 if (remsd) { 3786 sd->rps_ipi_list = NULL; 3787 3788 local_irq_enable(); 3789 3790 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3791 while (remsd) { 3792 struct softnet_data *next = remsd->rps_ipi_next; 3793 3794 if (cpu_online(remsd->cpu)) 3795 __smp_call_function_single(remsd->cpu, 3796 &remsd->csd, 0); 3797 remsd = next; 3798 } 3799 } else 3800 #endif 3801 local_irq_enable(); 3802 } 3803 3804 static int process_backlog(struct napi_struct *napi, int quota) 3805 { 3806 int work = 0; 3807 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3808 3809 #ifdef CONFIG_RPS 3810 /* Check if we have pending ipi, its better to send them now, 3811 * not waiting net_rx_action() end. 3812 */ 3813 if (sd->rps_ipi_list) { 3814 local_irq_disable(); 3815 net_rps_action_and_irq_enable(sd); 3816 } 3817 #endif 3818 napi->weight = weight_p; 3819 local_irq_disable(); 3820 while (work < quota) { 3821 struct sk_buff *skb; 3822 unsigned int qlen; 3823 3824 while ((skb = __skb_dequeue(&sd->process_queue))) { 3825 local_irq_enable(); 3826 __netif_receive_skb(skb); 3827 local_irq_disable(); 3828 input_queue_head_incr(sd); 3829 if (++work >= quota) { 3830 local_irq_enable(); 3831 return work; 3832 } 3833 } 3834 3835 rps_lock(sd); 3836 qlen = skb_queue_len(&sd->input_pkt_queue); 3837 if (qlen) 3838 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3839 &sd->process_queue); 3840 3841 if (qlen < quota - work) { 3842 /* 3843 * Inline a custom version of __napi_complete(). 3844 * only current cpu owns and manipulates this napi, 3845 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3846 * we can use a plain write instead of clear_bit(), 3847 * and we dont need an smp_mb() memory barrier. 3848 */ 3849 list_del(&napi->poll_list); 3850 napi->state = 0; 3851 3852 quota = work + qlen; 3853 } 3854 rps_unlock(sd); 3855 } 3856 local_irq_enable(); 3857 3858 return work; 3859 } 3860 3861 /** 3862 * __napi_schedule - schedule for receive 3863 * @n: entry to schedule 3864 * 3865 * The entry's receive function will be scheduled to run 3866 */ 3867 void __napi_schedule(struct napi_struct *n) 3868 { 3869 unsigned long flags; 3870 3871 local_irq_save(flags); 3872 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3873 local_irq_restore(flags); 3874 } 3875 EXPORT_SYMBOL(__napi_schedule); 3876 3877 void __napi_complete(struct napi_struct *n) 3878 { 3879 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3880 BUG_ON(n->gro_list); 3881 3882 list_del(&n->poll_list); 3883 smp_mb__before_clear_bit(); 3884 clear_bit(NAPI_STATE_SCHED, &n->state); 3885 } 3886 EXPORT_SYMBOL(__napi_complete); 3887 3888 void napi_complete(struct napi_struct *n) 3889 { 3890 unsigned long flags; 3891 3892 /* 3893 * don't let napi dequeue from the cpu poll list 3894 * just in case its running on a different cpu 3895 */ 3896 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3897 return; 3898 3899 napi_gro_flush(n, false); 3900 local_irq_save(flags); 3901 __napi_complete(n); 3902 local_irq_restore(flags); 3903 } 3904 EXPORT_SYMBOL(napi_complete); 3905 3906 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3907 int (*poll)(struct napi_struct *, int), int weight) 3908 { 3909 INIT_LIST_HEAD(&napi->poll_list); 3910 napi->gro_count = 0; 3911 napi->gro_list = NULL; 3912 napi->skb = NULL; 3913 napi->poll = poll; 3914 napi->weight = weight; 3915 list_add(&napi->dev_list, &dev->napi_list); 3916 napi->dev = dev; 3917 #ifdef CONFIG_NETPOLL 3918 spin_lock_init(&napi->poll_lock); 3919 napi->poll_owner = -1; 3920 #endif 3921 set_bit(NAPI_STATE_SCHED, &napi->state); 3922 } 3923 EXPORT_SYMBOL(netif_napi_add); 3924 3925 void netif_napi_del(struct napi_struct *napi) 3926 { 3927 struct sk_buff *skb, *next; 3928 3929 list_del_init(&napi->dev_list); 3930 napi_free_frags(napi); 3931 3932 for (skb = napi->gro_list; skb; skb = next) { 3933 next = skb->next; 3934 skb->next = NULL; 3935 kfree_skb(skb); 3936 } 3937 3938 napi->gro_list = NULL; 3939 napi->gro_count = 0; 3940 } 3941 EXPORT_SYMBOL(netif_napi_del); 3942 3943 static void net_rx_action(struct softirq_action *h) 3944 { 3945 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3946 unsigned long time_limit = jiffies + 2; 3947 int budget = netdev_budget; 3948 void *have; 3949 3950 local_irq_disable(); 3951 3952 while (!list_empty(&sd->poll_list)) { 3953 struct napi_struct *n; 3954 int work, weight; 3955 3956 /* If softirq window is exhuasted then punt. 3957 * Allow this to run for 2 jiffies since which will allow 3958 * an average latency of 1.5/HZ. 3959 */ 3960 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3961 goto softnet_break; 3962 3963 local_irq_enable(); 3964 3965 /* Even though interrupts have been re-enabled, this 3966 * access is safe because interrupts can only add new 3967 * entries to the tail of this list, and only ->poll() 3968 * calls can remove this head entry from the list. 3969 */ 3970 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3971 3972 have = netpoll_poll_lock(n); 3973 3974 weight = n->weight; 3975 3976 /* This NAPI_STATE_SCHED test is for avoiding a race 3977 * with netpoll's poll_napi(). Only the entity which 3978 * obtains the lock and sees NAPI_STATE_SCHED set will 3979 * actually make the ->poll() call. Therefore we avoid 3980 * accidentally calling ->poll() when NAPI is not scheduled. 3981 */ 3982 work = 0; 3983 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3984 work = n->poll(n, weight); 3985 trace_napi_poll(n); 3986 } 3987 3988 WARN_ON_ONCE(work > weight); 3989 3990 budget -= work; 3991 3992 local_irq_disable(); 3993 3994 /* Drivers must not modify the NAPI state if they 3995 * consume the entire weight. In such cases this code 3996 * still "owns" the NAPI instance and therefore can 3997 * move the instance around on the list at-will. 3998 */ 3999 if (unlikely(work == weight)) { 4000 if (unlikely(napi_disable_pending(n))) { 4001 local_irq_enable(); 4002 napi_complete(n); 4003 local_irq_disable(); 4004 } else { 4005 if (n->gro_list) { 4006 /* flush too old packets 4007 * If HZ < 1000, flush all packets. 4008 */ 4009 local_irq_enable(); 4010 napi_gro_flush(n, HZ >= 1000); 4011 local_irq_disable(); 4012 } 4013 list_move_tail(&n->poll_list, &sd->poll_list); 4014 } 4015 } 4016 4017 netpoll_poll_unlock(have); 4018 } 4019 out: 4020 net_rps_action_and_irq_enable(sd); 4021 4022 #ifdef CONFIG_NET_DMA 4023 /* 4024 * There may not be any more sk_buffs coming right now, so push 4025 * any pending DMA copies to hardware 4026 */ 4027 dma_issue_pending_all(); 4028 #endif 4029 4030 return; 4031 4032 softnet_break: 4033 sd->time_squeeze++; 4034 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4035 goto out; 4036 } 4037 4038 static gifconf_func_t *gifconf_list[NPROTO]; 4039 4040 /** 4041 * register_gifconf - register a SIOCGIF handler 4042 * @family: Address family 4043 * @gifconf: Function handler 4044 * 4045 * Register protocol dependent address dumping routines. The handler 4046 * that is passed must not be freed or reused until it has been replaced 4047 * by another handler. 4048 */ 4049 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 4050 { 4051 if (family >= NPROTO) 4052 return -EINVAL; 4053 gifconf_list[family] = gifconf; 4054 return 0; 4055 } 4056 EXPORT_SYMBOL(register_gifconf); 4057 4058 4059 /* 4060 * Map an interface index to its name (SIOCGIFNAME) 4061 */ 4062 4063 /* 4064 * We need this ioctl for efficient implementation of the 4065 * if_indextoname() function required by the IPv6 API. Without 4066 * it, we would have to search all the interfaces to find a 4067 * match. --pb 4068 */ 4069 4070 static int dev_ifname(struct net *net, struct ifreq __user *arg) 4071 { 4072 struct net_device *dev; 4073 struct ifreq ifr; 4074 4075 /* 4076 * Fetch the caller's info block. 4077 */ 4078 4079 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4080 return -EFAULT; 4081 4082 rcu_read_lock(); 4083 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4084 if (!dev) { 4085 rcu_read_unlock(); 4086 return -ENODEV; 4087 } 4088 4089 strcpy(ifr.ifr_name, dev->name); 4090 rcu_read_unlock(); 4091 4092 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4093 return -EFAULT; 4094 return 0; 4095 } 4096 4097 /* 4098 * Perform a SIOCGIFCONF call. This structure will change 4099 * size eventually, and there is nothing I can do about it. 4100 * Thus we will need a 'compatibility mode'. 4101 */ 4102 4103 static int dev_ifconf(struct net *net, char __user *arg) 4104 { 4105 struct ifconf ifc; 4106 struct net_device *dev; 4107 char __user *pos; 4108 int len; 4109 int total; 4110 int i; 4111 4112 /* 4113 * Fetch the caller's info block. 4114 */ 4115 4116 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4117 return -EFAULT; 4118 4119 pos = ifc.ifc_buf; 4120 len = ifc.ifc_len; 4121 4122 /* 4123 * Loop over the interfaces, and write an info block for each. 4124 */ 4125 4126 total = 0; 4127 for_each_netdev(net, dev) { 4128 for (i = 0; i < NPROTO; i++) { 4129 if (gifconf_list[i]) { 4130 int done; 4131 if (!pos) 4132 done = gifconf_list[i](dev, NULL, 0); 4133 else 4134 done = gifconf_list[i](dev, pos + total, 4135 len - total); 4136 if (done < 0) 4137 return -EFAULT; 4138 total += done; 4139 } 4140 } 4141 } 4142 4143 /* 4144 * All done. Write the updated control block back to the caller. 4145 */ 4146 ifc.ifc_len = total; 4147 4148 /* 4149 * Both BSD and Solaris return 0 here, so we do too. 4150 */ 4151 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4152 } 4153 4154 #ifdef CONFIG_PROC_FS 4155 4156 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4157 4158 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4159 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4160 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4161 4162 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4163 { 4164 struct net *net = seq_file_net(seq); 4165 struct net_device *dev; 4166 struct hlist_node *p; 4167 struct hlist_head *h; 4168 unsigned int count = 0, offset = get_offset(*pos); 4169 4170 h = &net->dev_name_head[get_bucket(*pos)]; 4171 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4172 if (++count == offset) 4173 return dev; 4174 } 4175 4176 return NULL; 4177 } 4178 4179 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4180 { 4181 struct net_device *dev; 4182 unsigned int bucket; 4183 4184 do { 4185 dev = dev_from_same_bucket(seq, pos); 4186 if (dev) 4187 return dev; 4188 4189 bucket = get_bucket(*pos) + 1; 4190 *pos = set_bucket_offset(bucket, 1); 4191 } while (bucket < NETDEV_HASHENTRIES); 4192 4193 return NULL; 4194 } 4195 4196 /* 4197 * This is invoked by the /proc filesystem handler to display a device 4198 * in detail. 4199 */ 4200 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4201 __acquires(RCU) 4202 { 4203 rcu_read_lock(); 4204 if (!*pos) 4205 return SEQ_START_TOKEN; 4206 4207 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4208 return NULL; 4209 4210 return dev_from_bucket(seq, pos); 4211 } 4212 4213 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4214 { 4215 ++*pos; 4216 return dev_from_bucket(seq, pos); 4217 } 4218 4219 void dev_seq_stop(struct seq_file *seq, void *v) 4220 __releases(RCU) 4221 { 4222 rcu_read_unlock(); 4223 } 4224 4225 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4226 { 4227 struct rtnl_link_stats64 temp; 4228 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4229 4230 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4231 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4232 dev->name, stats->rx_bytes, stats->rx_packets, 4233 stats->rx_errors, 4234 stats->rx_dropped + stats->rx_missed_errors, 4235 stats->rx_fifo_errors, 4236 stats->rx_length_errors + stats->rx_over_errors + 4237 stats->rx_crc_errors + stats->rx_frame_errors, 4238 stats->rx_compressed, stats->multicast, 4239 stats->tx_bytes, stats->tx_packets, 4240 stats->tx_errors, stats->tx_dropped, 4241 stats->tx_fifo_errors, stats->collisions, 4242 stats->tx_carrier_errors + 4243 stats->tx_aborted_errors + 4244 stats->tx_window_errors + 4245 stats->tx_heartbeat_errors, 4246 stats->tx_compressed); 4247 } 4248 4249 /* 4250 * Called from the PROCfs module. This now uses the new arbitrary sized 4251 * /proc/net interface to create /proc/net/dev 4252 */ 4253 static int dev_seq_show(struct seq_file *seq, void *v) 4254 { 4255 if (v == SEQ_START_TOKEN) 4256 seq_puts(seq, "Inter-| Receive " 4257 " | Transmit\n" 4258 " face |bytes packets errs drop fifo frame " 4259 "compressed multicast|bytes packets errs " 4260 "drop fifo colls carrier compressed\n"); 4261 else 4262 dev_seq_printf_stats(seq, v); 4263 return 0; 4264 } 4265 4266 static struct softnet_data *softnet_get_online(loff_t *pos) 4267 { 4268 struct softnet_data *sd = NULL; 4269 4270 while (*pos < nr_cpu_ids) 4271 if (cpu_online(*pos)) { 4272 sd = &per_cpu(softnet_data, *pos); 4273 break; 4274 } else 4275 ++*pos; 4276 return sd; 4277 } 4278 4279 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4280 { 4281 return softnet_get_online(pos); 4282 } 4283 4284 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4285 { 4286 ++*pos; 4287 return softnet_get_online(pos); 4288 } 4289 4290 static void softnet_seq_stop(struct seq_file *seq, void *v) 4291 { 4292 } 4293 4294 static int softnet_seq_show(struct seq_file *seq, void *v) 4295 { 4296 struct softnet_data *sd = v; 4297 4298 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4299 sd->processed, sd->dropped, sd->time_squeeze, 0, 4300 0, 0, 0, 0, /* was fastroute */ 4301 sd->cpu_collision, sd->received_rps); 4302 return 0; 4303 } 4304 4305 static const struct seq_operations dev_seq_ops = { 4306 .start = dev_seq_start, 4307 .next = dev_seq_next, 4308 .stop = dev_seq_stop, 4309 .show = dev_seq_show, 4310 }; 4311 4312 static int dev_seq_open(struct inode *inode, struct file *file) 4313 { 4314 return seq_open_net(inode, file, &dev_seq_ops, 4315 sizeof(struct seq_net_private)); 4316 } 4317 4318 static const struct file_operations dev_seq_fops = { 4319 .owner = THIS_MODULE, 4320 .open = dev_seq_open, 4321 .read = seq_read, 4322 .llseek = seq_lseek, 4323 .release = seq_release_net, 4324 }; 4325 4326 static const struct seq_operations softnet_seq_ops = { 4327 .start = softnet_seq_start, 4328 .next = softnet_seq_next, 4329 .stop = softnet_seq_stop, 4330 .show = softnet_seq_show, 4331 }; 4332 4333 static int softnet_seq_open(struct inode *inode, struct file *file) 4334 { 4335 return seq_open(file, &softnet_seq_ops); 4336 } 4337 4338 static const struct file_operations softnet_seq_fops = { 4339 .owner = THIS_MODULE, 4340 .open = softnet_seq_open, 4341 .read = seq_read, 4342 .llseek = seq_lseek, 4343 .release = seq_release, 4344 }; 4345 4346 static void *ptype_get_idx(loff_t pos) 4347 { 4348 struct packet_type *pt = NULL; 4349 loff_t i = 0; 4350 int t; 4351 4352 list_for_each_entry_rcu(pt, &ptype_all, list) { 4353 if (i == pos) 4354 return pt; 4355 ++i; 4356 } 4357 4358 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4359 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4360 if (i == pos) 4361 return pt; 4362 ++i; 4363 } 4364 } 4365 return NULL; 4366 } 4367 4368 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4369 __acquires(RCU) 4370 { 4371 rcu_read_lock(); 4372 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4373 } 4374 4375 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4376 { 4377 struct packet_type *pt; 4378 struct list_head *nxt; 4379 int hash; 4380 4381 ++*pos; 4382 if (v == SEQ_START_TOKEN) 4383 return ptype_get_idx(0); 4384 4385 pt = v; 4386 nxt = pt->list.next; 4387 if (pt->type == htons(ETH_P_ALL)) { 4388 if (nxt != &ptype_all) 4389 goto found; 4390 hash = 0; 4391 nxt = ptype_base[0].next; 4392 } else 4393 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4394 4395 while (nxt == &ptype_base[hash]) { 4396 if (++hash >= PTYPE_HASH_SIZE) 4397 return NULL; 4398 nxt = ptype_base[hash].next; 4399 } 4400 found: 4401 return list_entry(nxt, struct packet_type, list); 4402 } 4403 4404 static void ptype_seq_stop(struct seq_file *seq, void *v) 4405 __releases(RCU) 4406 { 4407 rcu_read_unlock(); 4408 } 4409 4410 static int ptype_seq_show(struct seq_file *seq, void *v) 4411 { 4412 struct packet_type *pt = v; 4413 4414 if (v == SEQ_START_TOKEN) 4415 seq_puts(seq, "Type Device Function\n"); 4416 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4417 if (pt->type == htons(ETH_P_ALL)) 4418 seq_puts(seq, "ALL "); 4419 else 4420 seq_printf(seq, "%04x", ntohs(pt->type)); 4421 4422 seq_printf(seq, " %-8s %pF\n", 4423 pt->dev ? pt->dev->name : "", pt->func); 4424 } 4425 4426 return 0; 4427 } 4428 4429 static const struct seq_operations ptype_seq_ops = { 4430 .start = ptype_seq_start, 4431 .next = ptype_seq_next, 4432 .stop = ptype_seq_stop, 4433 .show = ptype_seq_show, 4434 }; 4435 4436 static int ptype_seq_open(struct inode *inode, struct file *file) 4437 { 4438 return seq_open_net(inode, file, &ptype_seq_ops, 4439 sizeof(struct seq_net_private)); 4440 } 4441 4442 static const struct file_operations ptype_seq_fops = { 4443 .owner = THIS_MODULE, 4444 .open = ptype_seq_open, 4445 .read = seq_read, 4446 .llseek = seq_lseek, 4447 .release = seq_release_net, 4448 }; 4449 4450 4451 static int __net_init dev_proc_net_init(struct net *net) 4452 { 4453 int rc = -ENOMEM; 4454 4455 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4456 goto out; 4457 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4458 goto out_dev; 4459 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4460 goto out_softnet; 4461 4462 if (wext_proc_init(net)) 4463 goto out_ptype; 4464 rc = 0; 4465 out: 4466 return rc; 4467 out_ptype: 4468 proc_net_remove(net, "ptype"); 4469 out_softnet: 4470 proc_net_remove(net, "softnet_stat"); 4471 out_dev: 4472 proc_net_remove(net, "dev"); 4473 goto out; 4474 } 4475 4476 static void __net_exit dev_proc_net_exit(struct net *net) 4477 { 4478 wext_proc_exit(net); 4479 4480 proc_net_remove(net, "ptype"); 4481 proc_net_remove(net, "softnet_stat"); 4482 proc_net_remove(net, "dev"); 4483 } 4484 4485 static struct pernet_operations __net_initdata dev_proc_ops = { 4486 .init = dev_proc_net_init, 4487 .exit = dev_proc_net_exit, 4488 }; 4489 4490 static int __init dev_proc_init(void) 4491 { 4492 return register_pernet_subsys(&dev_proc_ops); 4493 } 4494 #else 4495 #define dev_proc_init() 0 4496 #endif /* CONFIG_PROC_FS */ 4497 4498 4499 /** 4500 * netdev_set_master - set up master pointer 4501 * @slave: slave device 4502 * @master: new master device 4503 * 4504 * Changes the master device of the slave. Pass %NULL to break the 4505 * bonding. The caller must hold the RTNL semaphore. On a failure 4506 * a negative errno code is returned. On success the reference counts 4507 * are adjusted and the function returns zero. 4508 */ 4509 int netdev_set_master(struct net_device *slave, struct net_device *master) 4510 { 4511 struct net_device *old = slave->master; 4512 4513 ASSERT_RTNL(); 4514 4515 if (master) { 4516 if (old) 4517 return -EBUSY; 4518 dev_hold(master); 4519 } 4520 4521 slave->master = master; 4522 4523 if (old) 4524 dev_put(old); 4525 return 0; 4526 } 4527 EXPORT_SYMBOL(netdev_set_master); 4528 4529 /** 4530 * netdev_set_bond_master - set up bonding master/slave pair 4531 * @slave: slave device 4532 * @master: new master device 4533 * 4534 * Changes the master device of the slave. Pass %NULL to break the 4535 * bonding. The caller must hold the RTNL semaphore. On a failure 4536 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4537 * to the routing socket and the function returns zero. 4538 */ 4539 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4540 { 4541 int err; 4542 4543 ASSERT_RTNL(); 4544 4545 err = netdev_set_master(slave, master); 4546 if (err) 4547 return err; 4548 if (master) 4549 slave->flags |= IFF_SLAVE; 4550 else 4551 slave->flags &= ~IFF_SLAVE; 4552 4553 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4554 return 0; 4555 } 4556 EXPORT_SYMBOL(netdev_set_bond_master); 4557 4558 static void dev_change_rx_flags(struct net_device *dev, int flags) 4559 { 4560 const struct net_device_ops *ops = dev->netdev_ops; 4561 4562 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4563 ops->ndo_change_rx_flags(dev, flags); 4564 } 4565 4566 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4567 { 4568 unsigned int old_flags = dev->flags; 4569 kuid_t uid; 4570 kgid_t gid; 4571 4572 ASSERT_RTNL(); 4573 4574 dev->flags |= IFF_PROMISC; 4575 dev->promiscuity += inc; 4576 if (dev->promiscuity == 0) { 4577 /* 4578 * Avoid overflow. 4579 * If inc causes overflow, untouch promisc and return error. 4580 */ 4581 if (inc < 0) 4582 dev->flags &= ~IFF_PROMISC; 4583 else { 4584 dev->promiscuity -= inc; 4585 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4586 dev->name); 4587 return -EOVERFLOW; 4588 } 4589 } 4590 if (dev->flags != old_flags) { 4591 pr_info("device %s %s promiscuous mode\n", 4592 dev->name, 4593 dev->flags & IFF_PROMISC ? "entered" : "left"); 4594 if (audit_enabled) { 4595 current_uid_gid(&uid, &gid); 4596 audit_log(current->audit_context, GFP_ATOMIC, 4597 AUDIT_ANOM_PROMISCUOUS, 4598 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4599 dev->name, (dev->flags & IFF_PROMISC), 4600 (old_flags & IFF_PROMISC), 4601 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4602 from_kuid(&init_user_ns, uid), 4603 from_kgid(&init_user_ns, gid), 4604 audit_get_sessionid(current)); 4605 } 4606 4607 dev_change_rx_flags(dev, IFF_PROMISC); 4608 } 4609 return 0; 4610 } 4611 4612 /** 4613 * dev_set_promiscuity - update promiscuity count on a device 4614 * @dev: device 4615 * @inc: modifier 4616 * 4617 * Add or remove promiscuity from a device. While the count in the device 4618 * remains above zero the interface remains promiscuous. Once it hits zero 4619 * the device reverts back to normal filtering operation. A negative inc 4620 * value is used to drop promiscuity on the device. 4621 * Return 0 if successful or a negative errno code on error. 4622 */ 4623 int dev_set_promiscuity(struct net_device *dev, int inc) 4624 { 4625 unsigned int old_flags = dev->flags; 4626 int err; 4627 4628 err = __dev_set_promiscuity(dev, inc); 4629 if (err < 0) 4630 return err; 4631 if (dev->flags != old_flags) 4632 dev_set_rx_mode(dev); 4633 return err; 4634 } 4635 EXPORT_SYMBOL(dev_set_promiscuity); 4636 4637 /** 4638 * dev_set_allmulti - update allmulti count on a device 4639 * @dev: device 4640 * @inc: modifier 4641 * 4642 * Add or remove reception of all multicast frames to a device. While the 4643 * count in the device remains above zero the interface remains listening 4644 * to all interfaces. Once it hits zero the device reverts back to normal 4645 * filtering operation. A negative @inc value is used to drop the counter 4646 * when releasing a resource needing all multicasts. 4647 * Return 0 if successful or a negative errno code on error. 4648 */ 4649 4650 int dev_set_allmulti(struct net_device *dev, int inc) 4651 { 4652 unsigned int old_flags = dev->flags; 4653 4654 ASSERT_RTNL(); 4655 4656 dev->flags |= IFF_ALLMULTI; 4657 dev->allmulti += inc; 4658 if (dev->allmulti == 0) { 4659 /* 4660 * Avoid overflow. 4661 * If inc causes overflow, untouch allmulti and return error. 4662 */ 4663 if (inc < 0) 4664 dev->flags &= ~IFF_ALLMULTI; 4665 else { 4666 dev->allmulti -= inc; 4667 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4668 dev->name); 4669 return -EOVERFLOW; 4670 } 4671 } 4672 if (dev->flags ^ old_flags) { 4673 dev_change_rx_flags(dev, IFF_ALLMULTI); 4674 dev_set_rx_mode(dev); 4675 } 4676 return 0; 4677 } 4678 EXPORT_SYMBOL(dev_set_allmulti); 4679 4680 /* 4681 * Upload unicast and multicast address lists to device and 4682 * configure RX filtering. When the device doesn't support unicast 4683 * filtering it is put in promiscuous mode while unicast addresses 4684 * are present. 4685 */ 4686 void __dev_set_rx_mode(struct net_device *dev) 4687 { 4688 const struct net_device_ops *ops = dev->netdev_ops; 4689 4690 /* dev_open will call this function so the list will stay sane. */ 4691 if (!(dev->flags&IFF_UP)) 4692 return; 4693 4694 if (!netif_device_present(dev)) 4695 return; 4696 4697 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4698 /* Unicast addresses changes may only happen under the rtnl, 4699 * therefore calling __dev_set_promiscuity here is safe. 4700 */ 4701 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4702 __dev_set_promiscuity(dev, 1); 4703 dev->uc_promisc = true; 4704 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4705 __dev_set_promiscuity(dev, -1); 4706 dev->uc_promisc = false; 4707 } 4708 } 4709 4710 if (ops->ndo_set_rx_mode) 4711 ops->ndo_set_rx_mode(dev); 4712 } 4713 4714 void dev_set_rx_mode(struct net_device *dev) 4715 { 4716 netif_addr_lock_bh(dev); 4717 __dev_set_rx_mode(dev); 4718 netif_addr_unlock_bh(dev); 4719 } 4720 4721 /** 4722 * dev_get_flags - get flags reported to userspace 4723 * @dev: device 4724 * 4725 * Get the combination of flag bits exported through APIs to userspace. 4726 */ 4727 unsigned int dev_get_flags(const struct net_device *dev) 4728 { 4729 unsigned int flags; 4730 4731 flags = (dev->flags & ~(IFF_PROMISC | 4732 IFF_ALLMULTI | 4733 IFF_RUNNING | 4734 IFF_LOWER_UP | 4735 IFF_DORMANT)) | 4736 (dev->gflags & (IFF_PROMISC | 4737 IFF_ALLMULTI)); 4738 4739 if (netif_running(dev)) { 4740 if (netif_oper_up(dev)) 4741 flags |= IFF_RUNNING; 4742 if (netif_carrier_ok(dev)) 4743 flags |= IFF_LOWER_UP; 4744 if (netif_dormant(dev)) 4745 flags |= IFF_DORMANT; 4746 } 4747 4748 return flags; 4749 } 4750 EXPORT_SYMBOL(dev_get_flags); 4751 4752 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4753 { 4754 unsigned int old_flags = dev->flags; 4755 int ret; 4756 4757 ASSERT_RTNL(); 4758 4759 /* 4760 * Set the flags on our device. 4761 */ 4762 4763 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4764 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4765 IFF_AUTOMEDIA)) | 4766 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4767 IFF_ALLMULTI)); 4768 4769 /* 4770 * Load in the correct multicast list now the flags have changed. 4771 */ 4772 4773 if ((old_flags ^ flags) & IFF_MULTICAST) 4774 dev_change_rx_flags(dev, IFF_MULTICAST); 4775 4776 dev_set_rx_mode(dev); 4777 4778 /* 4779 * Have we downed the interface. We handle IFF_UP ourselves 4780 * according to user attempts to set it, rather than blindly 4781 * setting it. 4782 */ 4783 4784 ret = 0; 4785 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4786 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4787 4788 if (!ret) 4789 dev_set_rx_mode(dev); 4790 } 4791 4792 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4793 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4794 4795 dev->gflags ^= IFF_PROMISC; 4796 dev_set_promiscuity(dev, inc); 4797 } 4798 4799 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4800 is important. Some (broken) drivers set IFF_PROMISC, when 4801 IFF_ALLMULTI is requested not asking us and not reporting. 4802 */ 4803 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4804 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4805 4806 dev->gflags ^= IFF_ALLMULTI; 4807 dev_set_allmulti(dev, inc); 4808 } 4809 4810 return ret; 4811 } 4812 4813 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4814 { 4815 unsigned int changes = dev->flags ^ old_flags; 4816 4817 if (changes & IFF_UP) { 4818 if (dev->flags & IFF_UP) 4819 call_netdevice_notifiers(NETDEV_UP, dev); 4820 else 4821 call_netdevice_notifiers(NETDEV_DOWN, dev); 4822 } 4823 4824 if (dev->flags & IFF_UP && 4825 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4826 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4827 } 4828 4829 /** 4830 * dev_change_flags - change device settings 4831 * @dev: device 4832 * @flags: device state flags 4833 * 4834 * Change settings on device based state flags. The flags are 4835 * in the userspace exported format. 4836 */ 4837 int dev_change_flags(struct net_device *dev, unsigned int flags) 4838 { 4839 int ret; 4840 unsigned int changes, old_flags = dev->flags; 4841 4842 ret = __dev_change_flags(dev, flags); 4843 if (ret < 0) 4844 return ret; 4845 4846 changes = old_flags ^ dev->flags; 4847 if (changes) 4848 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4849 4850 __dev_notify_flags(dev, old_flags); 4851 return ret; 4852 } 4853 EXPORT_SYMBOL(dev_change_flags); 4854 4855 /** 4856 * dev_set_mtu - Change maximum transfer unit 4857 * @dev: device 4858 * @new_mtu: new transfer unit 4859 * 4860 * Change the maximum transfer size of the network device. 4861 */ 4862 int dev_set_mtu(struct net_device *dev, int new_mtu) 4863 { 4864 const struct net_device_ops *ops = dev->netdev_ops; 4865 int err; 4866 4867 if (new_mtu == dev->mtu) 4868 return 0; 4869 4870 /* MTU must be positive. */ 4871 if (new_mtu < 0) 4872 return -EINVAL; 4873 4874 if (!netif_device_present(dev)) 4875 return -ENODEV; 4876 4877 err = 0; 4878 if (ops->ndo_change_mtu) 4879 err = ops->ndo_change_mtu(dev, new_mtu); 4880 else 4881 dev->mtu = new_mtu; 4882 4883 if (!err && dev->flags & IFF_UP) 4884 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4885 return err; 4886 } 4887 EXPORT_SYMBOL(dev_set_mtu); 4888 4889 /** 4890 * dev_set_group - Change group this device belongs to 4891 * @dev: device 4892 * @new_group: group this device should belong to 4893 */ 4894 void dev_set_group(struct net_device *dev, int new_group) 4895 { 4896 dev->group = new_group; 4897 } 4898 EXPORT_SYMBOL(dev_set_group); 4899 4900 /** 4901 * dev_set_mac_address - Change Media Access Control Address 4902 * @dev: device 4903 * @sa: new address 4904 * 4905 * Change the hardware (MAC) address of the device 4906 */ 4907 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4908 { 4909 const struct net_device_ops *ops = dev->netdev_ops; 4910 int err; 4911 4912 if (!ops->ndo_set_mac_address) 4913 return -EOPNOTSUPP; 4914 if (sa->sa_family != dev->type) 4915 return -EINVAL; 4916 if (!netif_device_present(dev)) 4917 return -ENODEV; 4918 err = ops->ndo_set_mac_address(dev, sa); 4919 if (!err) 4920 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4921 add_device_randomness(dev->dev_addr, dev->addr_len); 4922 return err; 4923 } 4924 EXPORT_SYMBOL(dev_set_mac_address); 4925 4926 /* 4927 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4928 */ 4929 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4930 { 4931 int err; 4932 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4933 4934 if (!dev) 4935 return -ENODEV; 4936 4937 switch (cmd) { 4938 case SIOCGIFFLAGS: /* Get interface flags */ 4939 ifr->ifr_flags = (short) dev_get_flags(dev); 4940 return 0; 4941 4942 case SIOCGIFMETRIC: /* Get the metric on the interface 4943 (currently unused) */ 4944 ifr->ifr_metric = 0; 4945 return 0; 4946 4947 case SIOCGIFMTU: /* Get the MTU of a device */ 4948 ifr->ifr_mtu = dev->mtu; 4949 return 0; 4950 4951 case SIOCGIFHWADDR: 4952 if (!dev->addr_len) 4953 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4954 else 4955 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4956 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4957 ifr->ifr_hwaddr.sa_family = dev->type; 4958 return 0; 4959 4960 case SIOCGIFSLAVE: 4961 err = -EINVAL; 4962 break; 4963 4964 case SIOCGIFMAP: 4965 ifr->ifr_map.mem_start = dev->mem_start; 4966 ifr->ifr_map.mem_end = dev->mem_end; 4967 ifr->ifr_map.base_addr = dev->base_addr; 4968 ifr->ifr_map.irq = dev->irq; 4969 ifr->ifr_map.dma = dev->dma; 4970 ifr->ifr_map.port = dev->if_port; 4971 return 0; 4972 4973 case SIOCGIFINDEX: 4974 ifr->ifr_ifindex = dev->ifindex; 4975 return 0; 4976 4977 case SIOCGIFTXQLEN: 4978 ifr->ifr_qlen = dev->tx_queue_len; 4979 return 0; 4980 4981 default: 4982 /* dev_ioctl() should ensure this case 4983 * is never reached 4984 */ 4985 WARN_ON(1); 4986 err = -ENOTTY; 4987 break; 4988 4989 } 4990 return err; 4991 } 4992 4993 /* 4994 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4995 */ 4996 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4997 { 4998 int err; 4999 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 5000 const struct net_device_ops *ops; 5001 5002 if (!dev) 5003 return -ENODEV; 5004 5005 ops = dev->netdev_ops; 5006 5007 switch (cmd) { 5008 case SIOCSIFFLAGS: /* Set interface flags */ 5009 return dev_change_flags(dev, ifr->ifr_flags); 5010 5011 case SIOCSIFMETRIC: /* Set the metric on the interface 5012 (currently unused) */ 5013 return -EOPNOTSUPP; 5014 5015 case SIOCSIFMTU: /* Set the MTU of a device */ 5016 return dev_set_mtu(dev, ifr->ifr_mtu); 5017 5018 case SIOCSIFHWADDR: 5019 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 5020 5021 case SIOCSIFHWBROADCAST: 5022 if (ifr->ifr_hwaddr.sa_family != dev->type) 5023 return -EINVAL; 5024 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 5025 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 5026 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5027 return 0; 5028 5029 case SIOCSIFMAP: 5030 if (ops->ndo_set_config) { 5031 if (!netif_device_present(dev)) 5032 return -ENODEV; 5033 return ops->ndo_set_config(dev, &ifr->ifr_map); 5034 } 5035 return -EOPNOTSUPP; 5036 5037 case SIOCADDMULTI: 5038 if (!ops->ndo_set_rx_mode || 5039 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5040 return -EINVAL; 5041 if (!netif_device_present(dev)) 5042 return -ENODEV; 5043 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 5044 5045 case SIOCDELMULTI: 5046 if (!ops->ndo_set_rx_mode || 5047 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5048 return -EINVAL; 5049 if (!netif_device_present(dev)) 5050 return -ENODEV; 5051 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 5052 5053 case SIOCSIFTXQLEN: 5054 if (ifr->ifr_qlen < 0) 5055 return -EINVAL; 5056 dev->tx_queue_len = ifr->ifr_qlen; 5057 return 0; 5058 5059 case SIOCSIFNAME: 5060 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 5061 return dev_change_name(dev, ifr->ifr_newname); 5062 5063 case SIOCSHWTSTAMP: 5064 err = net_hwtstamp_validate(ifr); 5065 if (err) 5066 return err; 5067 /* fall through */ 5068 5069 /* 5070 * Unknown or private ioctl 5071 */ 5072 default: 5073 if ((cmd >= SIOCDEVPRIVATE && 5074 cmd <= SIOCDEVPRIVATE + 15) || 5075 cmd == SIOCBONDENSLAVE || 5076 cmd == SIOCBONDRELEASE || 5077 cmd == SIOCBONDSETHWADDR || 5078 cmd == SIOCBONDSLAVEINFOQUERY || 5079 cmd == SIOCBONDINFOQUERY || 5080 cmd == SIOCBONDCHANGEACTIVE || 5081 cmd == SIOCGMIIPHY || 5082 cmd == SIOCGMIIREG || 5083 cmd == SIOCSMIIREG || 5084 cmd == SIOCBRADDIF || 5085 cmd == SIOCBRDELIF || 5086 cmd == SIOCSHWTSTAMP || 5087 cmd == SIOCWANDEV) { 5088 err = -EOPNOTSUPP; 5089 if (ops->ndo_do_ioctl) { 5090 if (netif_device_present(dev)) 5091 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5092 else 5093 err = -ENODEV; 5094 } 5095 } else 5096 err = -EINVAL; 5097 5098 } 5099 return err; 5100 } 5101 5102 /* 5103 * This function handles all "interface"-type I/O control requests. The actual 5104 * 'doing' part of this is dev_ifsioc above. 5105 */ 5106 5107 /** 5108 * dev_ioctl - network device ioctl 5109 * @net: the applicable net namespace 5110 * @cmd: command to issue 5111 * @arg: pointer to a struct ifreq in user space 5112 * 5113 * Issue ioctl functions to devices. This is normally called by the 5114 * user space syscall interfaces but can sometimes be useful for 5115 * other purposes. The return value is the return from the syscall if 5116 * positive or a negative errno code on error. 5117 */ 5118 5119 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5120 { 5121 struct ifreq ifr; 5122 int ret; 5123 char *colon; 5124 5125 /* One special case: SIOCGIFCONF takes ifconf argument 5126 and requires shared lock, because it sleeps writing 5127 to user space. 5128 */ 5129 5130 if (cmd == SIOCGIFCONF) { 5131 rtnl_lock(); 5132 ret = dev_ifconf(net, (char __user *) arg); 5133 rtnl_unlock(); 5134 return ret; 5135 } 5136 if (cmd == SIOCGIFNAME) 5137 return dev_ifname(net, (struct ifreq __user *)arg); 5138 5139 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5140 return -EFAULT; 5141 5142 ifr.ifr_name[IFNAMSIZ-1] = 0; 5143 5144 colon = strchr(ifr.ifr_name, ':'); 5145 if (colon) 5146 *colon = 0; 5147 5148 /* 5149 * See which interface the caller is talking about. 5150 */ 5151 5152 switch (cmd) { 5153 /* 5154 * These ioctl calls: 5155 * - can be done by all. 5156 * - atomic and do not require locking. 5157 * - return a value 5158 */ 5159 case SIOCGIFFLAGS: 5160 case SIOCGIFMETRIC: 5161 case SIOCGIFMTU: 5162 case SIOCGIFHWADDR: 5163 case SIOCGIFSLAVE: 5164 case SIOCGIFMAP: 5165 case SIOCGIFINDEX: 5166 case SIOCGIFTXQLEN: 5167 dev_load(net, ifr.ifr_name); 5168 rcu_read_lock(); 5169 ret = dev_ifsioc_locked(net, &ifr, cmd); 5170 rcu_read_unlock(); 5171 if (!ret) { 5172 if (colon) 5173 *colon = ':'; 5174 if (copy_to_user(arg, &ifr, 5175 sizeof(struct ifreq))) 5176 ret = -EFAULT; 5177 } 5178 return ret; 5179 5180 case SIOCETHTOOL: 5181 dev_load(net, ifr.ifr_name); 5182 rtnl_lock(); 5183 ret = dev_ethtool(net, &ifr); 5184 rtnl_unlock(); 5185 if (!ret) { 5186 if (colon) 5187 *colon = ':'; 5188 if (copy_to_user(arg, &ifr, 5189 sizeof(struct ifreq))) 5190 ret = -EFAULT; 5191 } 5192 return ret; 5193 5194 /* 5195 * These ioctl calls: 5196 * - require superuser power. 5197 * - require strict serialization. 5198 * - return a value 5199 */ 5200 case SIOCGMIIPHY: 5201 case SIOCGMIIREG: 5202 case SIOCSIFNAME: 5203 if (!capable(CAP_NET_ADMIN)) 5204 return -EPERM; 5205 dev_load(net, ifr.ifr_name); 5206 rtnl_lock(); 5207 ret = dev_ifsioc(net, &ifr, cmd); 5208 rtnl_unlock(); 5209 if (!ret) { 5210 if (colon) 5211 *colon = ':'; 5212 if (copy_to_user(arg, &ifr, 5213 sizeof(struct ifreq))) 5214 ret = -EFAULT; 5215 } 5216 return ret; 5217 5218 /* 5219 * These ioctl calls: 5220 * - require superuser power. 5221 * - require strict serialization. 5222 * - do not return a value 5223 */ 5224 case SIOCSIFFLAGS: 5225 case SIOCSIFMETRIC: 5226 case SIOCSIFMTU: 5227 case SIOCSIFMAP: 5228 case SIOCSIFHWADDR: 5229 case SIOCSIFSLAVE: 5230 case SIOCADDMULTI: 5231 case SIOCDELMULTI: 5232 case SIOCSIFHWBROADCAST: 5233 case SIOCSIFTXQLEN: 5234 case SIOCSMIIREG: 5235 case SIOCBONDENSLAVE: 5236 case SIOCBONDRELEASE: 5237 case SIOCBONDSETHWADDR: 5238 case SIOCBONDCHANGEACTIVE: 5239 case SIOCBRADDIF: 5240 case SIOCBRDELIF: 5241 case SIOCSHWTSTAMP: 5242 if (!capable(CAP_NET_ADMIN)) 5243 return -EPERM; 5244 /* fall through */ 5245 case SIOCBONDSLAVEINFOQUERY: 5246 case SIOCBONDINFOQUERY: 5247 dev_load(net, ifr.ifr_name); 5248 rtnl_lock(); 5249 ret = dev_ifsioc(net, &ifr, cmd); 5250 rtnl_unlock(); 5251 return ret; 5252 5253 case SIOCGIFMEM: 5254 /* Get the per device memory space. We can add this but 5255 * currently do not support it */ 5256 case SIOCSIFMEM: 5257 /* Set the per device memory buffer space. 5258 * Not applicable in our case */ 5259 case SIOCSIFLINK: 5260 return -ENOTTY; 5261 5262 /* 5263 * Unknown or private ioctl. 5264 */ 5265 default: 5266 if (cmd == SIOCWANDEV || 5267 (cmd >= SIOCDEVPRIVATE && 5268 cmd <= SIOCDEVPRIVATE + 15)) { 5269 dev_load(net, ifr.ifr_name); 5270 rtnl_lock(); 5271 ret = dev_ifsioc(net, &ifr, cmd); 5272 rtnl_unlock(); 5273 if (!ret && copy_to_user(arg, &ifr, 5274 sizeof(struct ifreq))) 5275 ret = -EFAULT; 5276 return ret; 5277 } 5278 /* Take care of Wireless Extensions */ 5279 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5280 return wext_handle_ioctl(net, &ifr, cmd, arg); 5281 return -ENOTTY; 5282 } 5283 } 5284 5285 5286 /** 5287 * dev_new_index - allocate an ifindex 5288 * @net: the applicable net namespace 5289 * 5290 * Returns a suitable unique value for a new device interface 5291 * number. The caller must hold the rtnl semaphore or the 5292 * dev_base_lock to be sure it remains unique. 5293 */ 5294 static int dev_new_index(struct net *net) 5295 { 5296 int ifindex = net->ifindex; 5297 for (;;) { 5298 if (++ifindex <= 0) 5299 ifindex = 1; 5300 if (!__dev_get_by_index(net, ifindex)) 5301 return net->ifindex = ifindex; 5302 } 5303 } 5304 5305 /* Delayed registration/unregisteration */ 5306 static LIST_HEAD(net_todo_list); 5307 5308 static void net_set_todo(struct net_device *dev) 5309 { 5310 list_add_tail(&dev->todo_list, &net_todo_list); 5311 } 5312 5313 static void rollback_registered_many(struct list_head *head) 5314 { 5315 struct net_device *dev, *tmp; 5316 5317 BUG_ON(dev_boot_phase); 5318 ASSERT_RTNL(); 5319 5320 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5321 /* Some devices call without registering 5322 * for initialization unwind. Remove those 5323 * devices and proceed with the remaining. 5324 */ 5325 if (dev->reg_state == NETREG_UNINITIALIZED) { 5326 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5327 dev->name, dev); 5328 5329 WARN_ON(1); 5330 list_del(&dev->unreg_list); 5331 continue; 5332 } 5333 dev->dismantle = true; 5334 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5335 } 5336 5337 /* If device is running, close it first. */ 5338 dev_close_many(head); 5339 5340 list_for_each_entry(dev, head, unreg_list) { 5341 /* And unlink it from device chain. */ 5342 unlist_netdevice(dev); 5343 5344 dev->reg_state = NETREG_UNREGISTERING; 5345 } 5346 5347 synchronize_net(); 5348 5349 list_for_each_entry(dev, head, unreg_list) { 5350 /* Shutdown queueing discipline. */ 5351 dev_shutdown(dev); 5352 5353 5354 /* Notify protocols, that we are about to destroy 5355 this device. They should clean all the things. 5356 */ 5357 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5358 5359 if (!dev->rtnl_link_ops || 5360 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5361 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5362 5363 /* 5364 * Flush the unicast and multicast chains 5365 */ 5366 dev_uc_flush(dev); 5367 dev_mc_flush(dev); 5368 5369 if (dev->netdev_ops->ndo_uninit) 5370 dev->netdev_ops->ndo_uninit(dev); 5371 5372 /* Notifier chain MUST detach us from master device. */ 5373 WARN_ON(dev->master); 5374 5375 /* Remove entries from kobject tree */ 5376 netdev_unregister_kobject(dev); 5377 } 5378 5379 synchronize_net(); 5380 5381 list_for_each_entry(dev, head, unreg_list) 5382 dev_put(dev); 5383 } 5384 5385 static void rollback_registered(struct net_device *dev) 5386 { 5387 LIST_HEAD(single); 5388 5389 list_add(&dev->unreg_list, &single); 5390 rollback_registered_many(&single); 5391 list_del(&single); 5392 } 5393 5394 static netdev_features_t netdev_fix_features(struct net_device *dev, 5395 netdev_features_t features) 5396 { 5397 /* Fix illegal checksum combinations */ 5398 if ((features & NETIF_F_HW_CSUM) && 5399 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5400 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5401 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5402 } 5403 5404 /* Fix illegal SG+CSUM combinations. */ 5405 if ((features & NETIF_F_SG) && 5406 !(features & NETIF_F_ALL_CSUM)) { 5407 netdev_dbg(dev, 5408 "Dropping NETIF_F_SG since no checksum feature.\n"); 5409 features &= ~NETIF_F_SG; 5410 } 5411 5412 /* TSO requires that SG is present as well. */ 5413 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5414 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5415 features &= ~NETIF_F_ALL_TSO; 5416 } 5417 5418 /* TSO ECN requires that TSO is present as well. */ 5419 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5420 features &= ~NETIF_F_TSO_ECN; 5421 5422 /* Software GSO depends on SG. */ 5423 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5424 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5425 features &= ~NETIF_F_GSO; 5426 } 5427 5428 /* UFO needs SG and checksumming */ 5429 if (features & NETIF_F_UFO) { 5430 /* maybe split UFO into V4 and V6? */ 5431 if (!((features & NETIF_F_GEN_CSUM) || 5432 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5433 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5434 netdev_dbg(dev, 5435 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5436 features &= ~NETIF_F_UFO; 5437 } 5438 5439 if (!(features & NETIF_F_SG)) { 5440 netdev_dbg(dev, 5441 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5442 features &= ~NETIF_F_UFO; 5443 } 5444 } 5445 5446 return features; 5447 } 5448 5449 int __netdev_update_features(struct net_device *dev) 5450 { 5451 netdev_features_t features; 5452 int err = 0; 5453 5454 ASSERT_RTNL(); 5455 5456 features = netdev_get_wanted_features(dev); 5457 5458 if (dev->netdev_ops->ndo_fix_features) 5459 features = dev->netdev_ops->ndo_fix_features(dev, features); 5460 5461 /* driver might be less strict about feature dependencies */ 5462 features = netdev_fix_features(dev, features); 5463 5464 if (dev->features == features) 5465 return 0; 5466 5467 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5468 &dev->features, &features); 5469 5470 if (dev->netdev_ops->ndo_set_features) 5471 err = dev->netdev_ops->ndo_set_features(dev, features); 5472 5473 if (unlikely(err < 0)) { 5474 netdev_err(dev, 5475 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5476 err, &features, &dev->features); 5477 return -1; 5478 } 5479 5480 if (!err) 5481 dev->features = features; 5482 5483 return 1; 5484 } 5485 5486 /** 5487 * netdev_update_features - recalculate device features 5488 * @dev: the device to check 5489 * 5490 * Recalculate dev->features set and send notifications if it 5491 * has changed. Should be called after driver or hardware dependent 5492 * conditions might have changed that influence the features. 5493 */ 5494 void netdev_update_features(struct net_device *dev) 5495 { 5496 if (__netdev_update_features(dev)) 5497 netdev_features_change(dev); 5498 } 5499 EXPORT_SYMBOL(netdev_update_features); 5500 5501 /** 5502 * netdev_change_features - recalculate device features 5503 * @dev: the device to check 5504 * 5505 * Recalculate dev->features set and send notifications even 5506 * if they have not changed. Should be called instead of 5507 * netdev_update_features() if also dev->vlan_features might 5508 * have changed to allow the changes to be propagated to stacked 5509 * VLAN devices. 5510 */ 5511 void netdev_change_features(struct net_device *dev) 5512 { 5513 __netdev_update_features(dev); 5514 netdev_features_change(dev); 5515 } 5516 EXPORT_SYMBOL(netdev_change_features); 5517 5518 /** 5519 * netif_stacked_transfer_operstate - transfer operstate 5520 * @rootdev: the root or lower level device to transfer state from 5521 * @dev: the device to transfer operstate to 5522 * 5523 * Transfer operational state from root to device. This is normally 5524 * called when a stacking relationship exists between the root 5525 * device and the device(a leaf device). 5526 */ 5527 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5528 struct net_device *dev) 5529 { 5530 if (rootdev->operstate == IF_OPER_DORMANT) 5531 netif_dormant_on(dev); 5532 else 5533 netif_dormant_off(dev); 5534 5535 if (netif_carrier_ok(rootdev)) { 5536 if (!netif_carrier_ok(dev)) 5537 netif_carrier_on(dev); 5538 } else { 5539 if (netif_carrier_ok(dev)) 5540 netif_carrier_off(dev); 5541 } 5542 } 5543 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5544 5545 #ifdef CONFIG_RPS 5546 static int netif_alloc_rx_queues(struct net_device *dev) 5547 { 5548 unsigned int i, count = dev->num_rx_queues; 5549 struct netdev_rx_queue *rx; 5550 5551 BUG_ON(count < 1); 5552 5553 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5554 if (!rx) { 5555 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5556 return -ENOMEM; 5557 } 5558 dev->_rx = rx; 5559 5560 for (i = 0; i < count; i++) 5561 rx[i].dev = dev; 5562 return 0; 5563 } 5564 #endif 5565 5566 static void netdev_init_one_queue(struct net_device *dev, 5567 struct netdev_queue *queue, void *_unused) 5568 { 5569 /* Initialize queue lock */ 5570 spin_lock_init(&queue->_xmit_lock); 5571 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5572 queue->xmit_lock_owner = -1; 5573 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5574 queue->dev = dev; 5575 #ifdef CONFIG_BQL 5576 dql_init(&queue->dql, HZ); 5577 #endif 5578 } 5579 5580 static int netif_alloc_netdev_queues(struct net_device *dev) 5581 { 5582 unsigned int count = dev->num_tx_queues; 5583 struct netdev_queue *tx; 5584 5585 BUG_ON(count < 1); 5586 5587 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5588 if (!tx) { 5589 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5590 return -ENOMEM; 5591 } 5592 dev->_tx = tx; 5593 5594 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5595 spin_lock_init(&dev->tx_global_lock); 5596 5597 return 0; 5598 } 5599 5600 /** 5601 * register_netdevice - register a network device 5602 * @dev: device to register 5603 * 5604 * Take a completed network device structure and add it to the kernel 5605 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5606 * chain. 0 is returned on success. A negative errno code is returned 5607 * on a failure to set up the device, or if the name is a duplicate. 5608 * 5609 * Callers must hold the rtnl semaphore. You may want 5610 * register_netdev() instead of this. 5611 * 5612 * BUGS: 5613 * The locking appears insufficient to guarantee two parallel registers 5614 * will not get the same name. 5615 */ 5616 5617 int register_netdevice(struct net_device *dev) 5618 { 5619 int ret; 5620 struct net *net = dev_net(dev); 5621 5622 BUG_ON(dev_boot_phase); 5623 ASSERT_RTNL(); 5624 5625 might_sleep(); 5626 5627 /* When net_device's are persistent, this will be fatal. */ 5628 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5629 BUG_ON(!net); 5630 5631 spin_lock_init(&dev->addr_list_lock); 5632 netdev_set_addr_lockdep_class(dev); 5633 5634 dev->iflink = -1; 5635 5636 ret = dev_get_valid_name(net, dev, dev->name); 5637 if (ret < 0) 5638 goto out; 5639 5640 /* Init, if this function is available */ 5641 if (dev->netdev_ops->ndo_init) { 5642 ret = dev->netdev_ops->ndo_init(dev); 5643 if (ret) { 5644 if (ret > 0) 5645 ret = -EIO; 5646 goto out; 5647 } 5648 } 5649 5650 ret = -EBUSY; 5651 if (!dev->ifindex) 5652 dev->ifindex = dev_new_index(net); 5653 else if (__dev_get_by_index(net, dev->ifindex)) 5654 goto err_uninit; 5655 5656 if (dev->iflink == -1) 5657 dev->iflink = dev->ifindex; 5658 5659 /* Transfer changeable features to wanted_features and enable 5660 * software offloads (GSO and GRO). 5661 */ 5662 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5663 dev->features |= NETIF_F_SOFT_FEATURES; 5664 dev->wanted_features = dev->features & dev->hw_features; 5665 5666 /* Turn on no cache copy if HW is doing checksum */ 5667 if (!(dev->flags & IFF_LOOPBACK)) { 5668 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5669 if (dev->features & NETIF_F_ALL_CSUM) { 5670 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5671 dev->features |= NETIF_F_NOCACHE_COPY; 5672 } 5673 } 5674 5675 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5676 */ 5677 dev->vlan_features |= NETIF_F_HIGHDMA; 5678 5679 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5680 ret = notifier_to_errno(ret); 5681 if (ret) 5682 goto err_uninit; 5683 5684 ret = netdev_register_kobject(dev); 5685 if (ret) 5686 goto err_uninit; 5687 dev->reg_state = NETREG_REGISTERED; 5688 5689 __netdev_update_features(dev); 5690 5691 /* 5692 * Default initial state at registry is that the 5693 * device is present. 5694 */ 5695 5696 set_bit(__LINK_STATE_PRESENT, &dev->state); 5697 5698 linkwatch_init_dev(dev); 5699 5700 dev_init_scheduler(dev); 5701 dev_hold(dev); 5702 list_netdevice(dev); 5703 add_device_randomness(dev->dev_addr, dev->addr_len); 5704 5705 /* Notify protocols, that a new device appeared. */ 5706 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5707 ret = notifier_to_errno(ret); 5708 if (ret) { 5709 rollback_registered(dev); 5710 dev->reg_state = NETREG_UNREGISTERED; 5711 } 5712 /* 5713 * Prevent userspace races by waiting until the network 5714 * device is fully setup before sending notifications. 5715 */ 5716 if (!dev->rtnl_link_ops || 5717 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5718 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5719 5720 out: 5721 return ret; 5722 5723 err_uninit: 5724 if (dev->netdev_ops->ndo_uninit) 5725 dev->netdev_ops->ndo_uninit(dev); 5726 goto out; 5727 } 5728 EXPORT_SYMBOL(register_netdevice); 5729 5730 /** 5731 * init_dummy_netdev - init a dummy network device for NAPI 5732 * @dev: device to init 5733 * 5734 * This takes a network device structure and initialize the minimum 5735 * amount of fields so it can be used to schedule NAPI polls without 5736 * registering a full blown interface. This is to be used by drivers 5737 * that need to tie several hardware interfaces to a single NAPI 5738 * poll scheduler due to HW limitations. 5739 */ 5740 int init_dummy_netdev(struct net_device *dev) 5741 { 5742 /* Clear everything. Note we don't initialize spinlocks 5743 * are they aren't supposed to be taken by any of the 5744 * NAPI code and this dummy netdev is supposed to be 5745 * only ever used for NAPI polls 5746 */ 5747 memset(dev, 0, sizeof(struct net_device)); 5748 5749 /* make sure we BUG if trying to hit standard 5750 * register/unregister code path 5751 */ 5752 dev->reg_state = NETREG_DUMMY; 5753 5754 /* NAPI wants this */ 5755 INIT_LIST_HEAD(&dev->napi_list); 5756 5757 /* a dummy interface is started by default */ 5758 set_bit(__LINK_STATE_PRESENT, &dev->state); 5759 set_bit(__LINK_STATE_START, &dev->state); 5760 5761 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5762 * because users of this 'device' dont need to change 5763 * its refcount. 5764 */ 5765 5766 return 0; 5767 } 5768 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5769 5770 5771 /** 5772 * register_netdev - register a network device 5773 * @dev: device to register 5774 * 5775 * Take a completed network device structure and add it to the kernel 5776 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5777 * chain. 0 is returned on success. A negative errno code is returned 5778 * on a failure to set up the device, or if the name is a duplicate. 5779 * 5780 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5781 * and expands the device name if you passed a format string to 5782 * alloc_netdev. 5783 */ 5784 int register_netdev(struct net_device *dev) 5785 { 5786 int err; 5787 5788 rtnl_lock(); 5789 err = register_netdevice(dev); 5790 rtnl_unlock(); 5791 return err; 5792 } 5793 EXPORT_SYMBOL(register_netdev); 5794 5795 int netdev_refcnt_read(const struct net_device *dev) 5796 { 5797 int i, refcnt = 0; 5798 5799 for_each_possible_cpu(i) 5800 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5801 return refcnt; 5802 } 5803 EXPORT_SYMBOL(netdev_refcnt_read); 5804 5805 /** 5806 * netdev_wait_allrefs - wait until all references are gone. 5807 * @dev: target net_device 5808 * 5809 * This is called when unregistering network devices. 5810 * 5811 * Any protocol or device that holds a reference should register 5812 * for netdevice notification, and cleanup and put back the 5813 * reference if they receive an UNREGISTER event. 5814 * We can get stuck here if buggy protocols don't correctly 5815 * call dev_put. 5816 */ 5817 static void netdev_wait_allrefs(struct net_device *dev) 5818 { 5819 unsigned long rebroadcast_time, warning_time; 5820 int refcnt; 5821 5822 linkwatch_forget_dev(dev); 5823 5824 rebroadcast_time = warning_time = jiffies; 5825 refcnt = netdev_refcnt_read(dev); 5826 5827 while (refcnt != 0) { 5828 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5829 rtnl_lock(); 5830 5831 /* Rebroadcast unregister notification */ 5832 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5833 5834 __rtnl_unlock(); 5835 rcu_barrier(); 5836 rtnl_lock(); 5837 5838 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5839 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5840 &dev->state)) { 5841 /* We must not have linkwatch events 5842 * pending on unregister. If this 5843 * happens, we simply run the queue 5844 * unscheduled, resulting in a noop 5845 * for this device. 5846 */ 5847 linkwatch_run_queue(); 5848 } 5849 5850 __rtnl_unlock(); 5851 5852 rebroadcast_time = jiffies; 5853 } 5854 5855 msleep(250); 5856 5857 refcnt = netdev_refcnt_read(dev); 5858 5859 if (time_after(jiffies, warning_time + 10 * HZ)) { 5860 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5861 dev->name, refcnt); 5862 warning_time = jiffies; 5863 } 5864 } 5865 } 5866 5867 /* The sequence is: 5868 * 5869 * rtnl_lock(); 5870 * ... 5871 * register_netdevice(x1); 5872 * register_netdevice(x2); 5873 * ... 5874 * unregister_netdevice(y1); 5875 * unregister_netdevice(y2); 5876 * ... 5877 * rtnl_unlock(); 5878 * free_netdev(y1); 5879 * free_netdev(y2); 5880 * 5881 * We are invoked by rtnl_unlock(). 5882 * This allows us to deal with problems: 5883 * 1) We can delete sysfs objects which invoke hotplug 5884 * without deadlocking with linkwatch via keventd. 5885 * 2) Since we run with the RTNL semaphore not held, we can sleep 5886 * safely in order to wait for the netdev refcnt to drop to zero. 5887 * 5888 * We must not return until all unregister events added during 5889 * the interval the lock was held have been completed. 5890 */ 5891 void netdev_run_todo(void) 5892 { 5893 struct list_head list; 5894 5895 /* Snapshot list, allow later requests */ 5896 list_replace_init(&net_todo_list, &list); 5897 5898 __rtnl_unlock(); 5899 5900 5901 /* Wait for rcu callbacks to finish before next phase */ 5902 if (!list_empty(&list)) 5903 rcu_barrier(); 5904 5905 while (!list_empty(&list)) { 5906 struct net_device *dev 5907 = list_first_entry(&list, struct net_device, todo_list); 5908 list_del(&dev->todo_list); 5909 5910 rtnl_lock(); 5911 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5912 __rtnl_unlock(); 5913 5914 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5915 pr_err("network todo '%s' but state %d\n", 5916 dev->name, dev->reg_state); 5917 dump_stack(); 5918 continue; 5919 } 5920 5921 dev->reg_state = NETREG_UNREGISTERED; 5922 5923 on_each_cpu(flush_backlog, dev, 1); 5924 5925 netdev_wait_allrefs(dev); 5926 5927 /* paranoia */ 5928 BUG_ON(netdev_refcnt_read(dev)); 5929 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5930 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5931 WARN_ON(dev->dn_ptr); 5932 5933 if (dev->destructor) 5934 dev->destructor(dev); 5935 5936 /* Free network device */ 5937 kobject_put(&dev->dev.kobj); 5938 } 5939 } 5940 5941 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5942 * fields in the same order, with only the type differing. 5943 */ 5944 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5945 const struct net_device_stats *netdev_stats) 5946 { 5947 #if BITS_PER_LONG == 64 5948 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5949 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5950 #else 5951 size_t i, n = sizeof(*stats64) / sizeof(u64); 5952 const unsigned long *src = (const unsigned long *)netdev_stats; 5953 u64 *dst = (u64 *)stats64; 5954 5955 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5956 sizeof(*stats64) / sizeof(u64)); 5957 for (i = 0; i < n; i++) 5958 dst[i] = src[i]; 5959 #endif 5960 } 5961 EXPORT_SYMBOL(netdev_stats_to_stats64); 5962 5963 /** 5964 * dev_get_stats - get network device statistics 5965 * @dev: device to get statistics from 5966 * @storage: place to store stats 5967 * 5968 * Get network statistics from device. Return @storage. 5969 * The device driver may provide its own method by setting 5970 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5971 * otherwise the internal statistics structure is used. 5972 */ 5973 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5974 struct rtnl_link_stats64 *storage) 5975 { 5976 const struct net_device_ops *ops = dev->netdev_ops; 5977 5978 if (ops->ndo_get_stats64) { 5979 memset(storage, 0, sizeof(*storage)); 5980 ops->ndo_get_stats64(dev, storage); 5981 } else if (ops->ndo_get_stats) { 5982 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5983 } else { 5984 netdev_stats_to_stats64(storage, &dev->stats); 5985 } 5986 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5987 return storage; 5988 } 5989 EXPORT_SYMBOL(dev_get_stats); 5990 5991 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5992 { 5993 struct netdev_queue *queue = dev_ingress_queue(dev); 5994 5995 #ifdef CONFIG_NET_CLS_ACT 5996 if (queue) 5997 return queue; 5998 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5999 if (!queue) 6000 return NULL; 6001 netdev_init_one_queue(dev, queue, NULL); 6002 queue->qdisc = &noop_qdisc; 6003 queue->qdisc_sleeping = &noop_qdisc; 6004 rcu_assign_pointer(dev->ingress_queue, queue); 6005 #endif 6006 return queue; 6007 } 6008 6009 static const struct ethtool_ops default_ethtool_ops; 6010 6011 /** 6012 * alloc_netdev_mqs - allocate network device 6013 * @sizeof_priv: size of private data to allocate space for 6014 * @name: device name format string 6015 * @setup: callback to initialize device 6016 * @txqs: the number of TX subqueues to allocate 6017 * @rxqs: the number of RX subqueues to allocate 6018 * 6019 * Allocates a struct net_device with private data area for driver use 6020 * and performs basic initialization. Also allocates subquue structs 6021 * for each queue on the device. 6022 */ 6023 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6024 void (*setup)(struct net_device *), 6025 unsigned int txqs, unsigned int rxqs) 6026 { 6027 struct net_device *dev; 6028 size_t alloc_size; 6029 struct net_device *p; 6030 6031 BUG_ON(strlen(name) >= sizeof(dev->name)); 6032 6033 if (txqs < 1) { 6034 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6035 return NULL; 6036 } 6037 6038 #ifdef CONFIG_RPS 6039 if (rxqs < 1) { 6040 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6041 return NULL; 6042 } 6043 #endif 6044 6045 alloc_size = sizeof(struct net_device); 6046 if (sizeof_priv) { 6047 /* ensure 32-byte alignment of private area */ 6048 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6049 alloc_size += sizeof_priv; 6050 } 6051 /* ensure 32-byte alignment of whole construct */ 6052 alloc_size += NETDEV_ALIGN - 1; 6053 6054 p = kzalloc(alloc_size, GFP_KERNEL); 6055 if (!p) { 6056 pr_err("alloc_netdev: Unable to allocate device\n"); 6057 return NULL; 6058 } 6059 6060 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6061 dev->padded = (char *)dev - (char *)p; 6062 6063 dev->pcpu_refcnt = alloc_percpu(int); 6064 if (!dev->pcpu_refcnt) 6065 goto free_p; 6066 6067 if (dev_addr_init(dev)) 6068 goto free_pcpu; 6069 6070 dev_mc_init(dev); 6071 dev_uc_init(dev); 6072 6073 dev_net_set(dev, &init_net); 6074 6075 dev->gso_max_size = GSO_MAX_SIZE; 6076 dev->gso_max_segs = GSO_MAX_SEGS; 6077 6078 INIT_LIST_HEAD(&dev->napi_list); 6079 INIT_LIST_HEAD(&dev->unreg_list); 6080 INIT_LIST_HEAD(&dev->link_watch_list); 6081 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6082 setup(dev); 6083 6084 dev->num_tx_queues = txqs; 6085 dev->real_num_tx_queues = txqs; 6086 if (netif_alloc_netdev_queues(dev)) 6087 goto free_all; 6088 6089 #ifdef CONFIG_RPS 6090 dev->num_rx_queues = rxqs; 6091 dev->real_num_rx_queues = rxqs; 6092 if (netif_alloc_rx_queues(dev)) 6093 goto free_all; 6094 #endif 6095 6096 strcpy(dev->name, name); 6097 dev->group = INIT_NETDEV_GROUP; 6098 if (!dev->ethtool_ops) 6099 dev->ethtool_ops = &default_ethtool_ops; 6100 return dev; 6101 6102 free_all: 6103 free_netdev(dev); 6104 return NULL; 6105 6106 free_pcpu: 6107 free_percpu(dev->pcpu_refcnt); 6108 kfree(dev->_tx); 6109 #ifdef CONFIG_RPS 6110 kfree(dev->_rx); 6111 #endif 6112 6113 free_p: 6114 kfree(p); 6115 return NULL; 6116 } 6117 EXPORT_SYMBOL(alloc_netdev_mqs); 6118 6119 /** 6120 * free_netdev - free network device 6121 * @dev: device 6122 * 6123 * This function does the last stage of destroying an allocated device 6124 * interface. The reference to the device object is released. 6125 * If this is the last reference then it will be freed. 6126 */ 6127 void free_netdev(struct net_device *dev) 6128 { 6129 struct napi_struct *p, *n; 6130 6131 release_net(dev_net(dev)); 6132 6133 kfree(dev->_tx); 6134 #ifdef CONFIG_RPS 6135 kfree(dev->_rx); 6136 #endif 6137 6138 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6139 6140 /* Flush device addresses */ 6141 dev_addr_flush(dev); 6142 6143 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6144 netif_napi_del(p); 6145 6146 free_percpu(dev->pcpu_refcnt); 6147 dev->pcpu_refcnt = NULL; 6148 6149 /* Compatibility with error handling in drivers */ 6150 if (dev->reg_state == NETREG_UNINITIALIZED) { 6151 kfree((char *)dev - dev->padded); 6152 return; 6153 } 6154 6155 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6156 dev->reg_state = NETREG_RELEASED; 6157 6158 /* will free via device release */ 6159 put_device(&dev->dev); 6160 } 6161 EXPORT_SYMBOL(free_netdev); 6162 6163 /** 6164 * synchronize_net - Synchronize with packet receive processing 6165 * 6166 * Wait for packets currently being received to be done. 6167 * Does not block later packets from starting. 6168 */ 6169 void synchronize_net(void) 6170 { 6171 might_sleep(); 6172 if (rtnl_is_locked()) 6173 synchronize_rcu_expedited(); 6174 else 6175 synchronize_rcu(); 6176 } 6177 EXPORT_SYMBOL(synchronize_net); 6178 6179 /** 6180 * unregister_netdevice_queue - remove device from the kernel 6181 * @dev: device 6182 * @head: list 6183 * 6184 * This function shuts down a device interface and removes it 6185 * from the kernel tables. 6186 * If head not NULL, device is queued to be unregistered later. 6187 * 6188 * Callers must hold the rtnl semaphore. You may want 6189 * unregister_netdev() instead of this. 6190 */ 6191 6192 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6193 { 6194 ASSERT_RTNL(); 6195 6196 if (head) { 6197 list_move_tail(&dev->unreg_list, head); 6198 } else { 6199 rollback_registered(dev); 6200 /* Finish processing unregister after unlock */ 6201 net_set_todo(dev); 6202 } 6203 } 6204 EXPORT_SYMBOL(unregister_netdevice_queue); 6205 6206 /** 6207 * unregister_netdevice_many - unregister many devices 6208 * @head: list of devices 6209 */ 6210 void unregister_netdevice_many(struct list_head *head) 6211 { 6212 struct net_device *dev; 6213 6214 if (!list_empty(head)) { 6215 rollback_registered_many(head); 6216 list_for_each_entry(dev, head, unreg_list) 6217 net_set_todo(dev); 6218 } 6219 } 6220 EXPORT_SYMBOL(unregister_netdevice_many); 6221 6222 /** 6223 * unregister_netdev - remove device from the kernel 6224 * @dev: device 6225 * 6226 * This function shuts down a device interface and removes it 6227 * from the kernel tables. 6228 * 6229 * This is just a wrapper for unregister_netdevice that takes 6230 * the rtnl semaphore. In general you want to use this and not 6231 * unregister_netdevice. 6232 */ 6233 void unregister_netdev(struct net_device *dev) 6234 { 6235 rtnl_lock(); 6236 unregister_netdevice(dev); 6237 rtnl_unlock(); 6238 } 6239 EXPORT_SYMBOL(unregister_netdev); 6240 6241 /** 6242 * dev_change_net_namespace - move device to different nethost namespace 6243 * @dev: device 6244 * @net: network namespace 6245 * @pat: If not NULL name pattern to try if the current device name 6246 * is already taken in the destination network namespace. 6247 * 6248 * This function shuts down a device interface and moves it 6249 * to a new network namespace. On success 0 is returned, on 6250 * a failure a netagive errno code is returned. 6251 * 6252 * Callers must hold the rtnl semaphore. 6253 */ 6254 6255 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6256 { 6257 int err; 6258 6259 ASSERT_RTNL(); 6260 6261 /* Don't allow namespace local devices to be moved. */ 6262 err = -EINVAL; 6263 if (dev->features & NETIF_F_NETNS_LOCAL) 6264 goto out; 6265 6266 /* Ensure the device has been registrered */ 6267 err = -EINVAL; 6268 if (dev->reg_state != NETREG_REGISTERED) 6269 goto out; 6270 6271 /* Get out if there is nothing todo */ 6272 err = 0; 6273 if (net_eq(dev_net(dev), net)) 6274 goto out; 6275 6276 /* Pick the destination device name, and ensure 6277 * we can use it in the destination network namespace. 6278 */ 6279 err = -EEXIST; 6280 if (__dev_get_by_name(net, dev->name)) { 6281 /* We get here if we can't use the current device name */ 6282 if (!pat) 6283 goto out; 6284 if (dev_get_valid_name(net, dev, pat) < 0) 6285 goto out; 6286 } 6287 6288 /* 6289 * And now a mini version of register_netdevice unregister_netdevice. 6290 */ 6291 6292 /* If device is running close it first. */ 6293 dev_close(dev); 6294 6295 /* And unlink it from device chain */ 6296 err = -ENODEV; 6297 unlist_netdevice(dev); 6298 6299 synchronize_net(); 6300 6301 /* Shutdown queueing discipline. */ 6302 dev_shutdown(dev); 6303 6304 /* Notify protocols, that we are about to destroy 6305 this device. They should clean all the things. 6306 6307 Note that dev->reg_state stays at NETREG_REGISTERED. 6308 This is wanted because this way 8021q and macvlan know 6309 the device is just moving and can keep their slaves up. 6310 */ 6311 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6312 rcu_barrier(); 6313 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6314 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6315 6316 /* 6317 * Flush the unicast and multicast chains 6318 */ 6319 dev_uc_flush(dev); 6320 dev_mc_flush(dev); 6321 6322 /* Actually switch the network namespace */ 6323 dev_net_set(dev, net); 6324 6325 /* If there is an ifindex conflict assign a new one */ 6326 if (__dev_get_by_index(net, dev->ifindex)) { 6327 int iflink = (dev->iflink == dev->ifindex); 6328 dev->ifindex = dev_new_index(net); 6329 if (iflink) 6330 dev->iflink = dev->ifindex; 6331 } 6332 6333 /* Fixup kobjects */ 6334 err = device_rename(&dev->dev, dev->name); 6335 WARN_ON(err); 6336 6337 /* Add the device back in the hashes */ 6338 list_netdevice(dev); 6339 6340 /* Notify protocols, that a new device appeared. */ 6341 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6342 6343 /* 6344 * Prevent userspace races by waiting until the network 6345 * device is fully setup before sending notifications. 6346 */ 6347 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6348 6349 synchronize_net(); 6350 err = 0; 6351 out: 6352 return err; 6353 } 6354 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6355 6356 static int dev_cpu_callback(struct notifier_block *nfb, 6357 unsigned long action, 6358 void *ocpu) 6359 { 6360 struct sk_buff **list_skb; 6361 struct sk_buff *skb; 6362 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6363 struct softnet_data *sd, *oldsd; 6364 6365 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6366 return NOTIFY_OK; 6367 6368 local_irq_disable(); 6369 cpu = smp_processor_id(); 6370 sd = &per_cpu(softnet_data, cpu); 6371 oldsd = &per_cpu(softnet_data, oldcpu); 6372 6373 /* Find end of our completion_queue. */ 6374 list_skb = &sd->completion_queue; 6375 while (*list_skb) 6376 list_skb = &(*list_skb)->next; 6377 /* Append completion queue from offline CPU. */ 6378 *list_skb = oldsd->completion_queue; 6379 oldsd->completion_queue = NULL; 6380 6381 /* Append output queue from offline CPU. */ 6382 if (oldsd->output_queue) { 6383 *sd->output_queue_tailp = oldsd->output_queue; 6384 sd->output_queue_tailp = oldsd->output_queue_tailp; 6385 oldsd->output_queue = NULL; 6386 oldsd->output_queue_tailp = &oldsd->output_queue; 6387 } 6388 /* Append NAPI poll list from offline CPU. */ 6389 if (!list_empty(&oldsd->poll_list)) { 6390 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6391 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6392 } 6393 6394 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6395 local_irq_enable(); 6396 6397 /* Process offline CPU's input_pkt_queue */ 6398 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6399 netif_rx(skb); 6400 input_queue_head_incr(oldsd); 6401 } 6402 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6403 netif_rx(skb); 6404 input_queue_head_incr(oldsd); 6405 } 6406 6407 return NOTIFY_OK; 6408 } 6409 6410 6411 /** 6412 * netdev_increment_features - increment feature set by one 6413 * @all: current feature set 6414 * @one: new feature set 6415 * @mask: mask feature set 6416 * 6417 * Computes a new feature set after adding a device with feature set 6418 * @one to the master device with current feature set @all. Will not 6419 * enable anything that is off in @mask. Returns the new feature set. 6420 */ 6421 netdev_features_t netdev_increment_features(netdev_features_t all, 6422 netdev_features_t one, netdev_features_t mask) 6423 { 6424 if (mask & NETIF_F_GEN_CSUM) 6425 mask |= NETIF_F_ALL_CSUM; 6426 mask |= NETIF_F_VLAN_CHALLENGED; 6427 6428 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6429 all &= one | ~NETIF_F_ALL_FOR_ALL; 6430 6431 /* If one device supports hw checksumming, set for all. */ 6432 if (all & NETIF_F_GEN_CSUM) 6433 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6434 6435 return all; 6436 } 6437 EXPORT_SYMBOL(netdev_increment_features); 6438 6439 static struct hlist_head *netdev_create_hash(void) 6440 { 6441 int i; 6442 struct hlist_head *hash; 6443 6444 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6445 if (hash != NULL) 6446 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6447 INIT_HLIST_HEAD(&hash[i]); 6448 6449 return hash; 6450 } 6451 6452 /* Initialize per network namespace state */ 6453 static int __net_init netdev_init(struct net *net) 6454 { 6455 if (net != &init_net) 6456 INIT_LIST_HEAD(&net->dev_base_head); 6457 6458 net->dev_name_head = netdev_create_hash(); 6459 if (net->dev_name_head == NULL) 6460 goto err_name; 6461 6462 net->dev_index_head = netdev_create_hash(); 6463 if (net->dev_index_head == NULL) 6464 goto err_idx; 6465 6466 return 0; 6467 6468 err_idx: 6469 kfree(net->dev_name_head); 6470 err_name: 6471 return -ENOMEM; 6472 } 6473 6474 /** 6475 * netdev_drivername - network driver for the device 6476 * @dev: network device 6477 * 6478 * Determine network driver for device. 6479 */ 6480 const char *netdev_drivername(const struct net_device *dev) 6481 { 6482 const struct device_driver *driver; 6483 const struct device *parent; 6484 const char *empty = ""; 6485 6486 parent = dev->dev.parent; 6487 if (!parent) 6488 return empty; 6489 6490 driver = parent->driver; 6491 if (driver && driver->name) 6492 return driver->name; 6493 return empty; 6494 } 6495 6496 static int __netdev_printk(const char *level, const struct net_device *dev, 6497 struct va_format *vaf) 6498 { 6499 int r; 6500 6501 if (dev && dev->dev.parent) { 6502 r = dev_printk_emit(level[1] - '0', 6503 dev->dev.parent, 6504 "%s %s %s: %pV", 6505 dev_driver_string(dev->dev.parent), 6506 dev_name(dev->dev.parent), 6507 netdev_name(dev), vaf); 6508 } else if (dev) { 6509 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6510 } else { 6511 r = printk("%s(NULL net_device): %pV", level, vaf); 6512 } 6513 6514 return r; 6515 } 6516 6517 int netdev_printk(const char *level, const struct net_device *dev, 6518 const char *format, ...) 6519 { 6520 struct va_format vaf; 6521 va_list args; 6522 int r; 6523 6524 va_start(args, format); 6525 6526 vaf.fmt = format; 6527 vaf.va = &args; 6528 6529 r = __netdev_printk(level, dev, &vaf); 6530 6531 va_end(args); 6532 6533 return r; 6534 } 6535 EXPORT_SYMBOL(netdev_printk); 6536 6537 #define define_netdev_printk_level(func, level) \ 6538 int func(const struct net_device *dev, const char *fmt, ...) \ 6539 { \ 6540 int r; \ 6541 struct va_format vaf; \ 6542 va_list args; \ 6543 \ 6544 va_start(args, fmt); \ 6545 \ 6546 vaf.fmt = fmt; \ 6547 vaf.va = &args; \ 6548 \ 6549 r = __netdev_printk(level, dev, &vaf); \ 6550 \ 6551 va_end(args); \ 6552 \ 6553 return r; \ 6554 } \ 6555 EXPORT_SYMBOL(func); 6556 6557 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6558 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6559 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6560 define_netdev_printk_level(netdev_err, KERN_ERR); 6561 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6562 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6563 define_netdev_printk_level(netdev_info, KERN_INFO); 6564 6565 static void __net_exit netdev_exit(struct net *net) 6566 { 6567 kfree(net->dev_name_head); 6568 kfree(net->dev_index_head); 6569 } 6570 6571 static struct pernet_operations __net_initdata netdev_net_ops = { 6572 .init = netdev_init, 6573 .exit = netdev_exit, 6574 }; 6575 6576 static void __net_exit default_device_exit(struct net *net) 6577 { 6578 struct net_device *dev, *aux; 6579 /* 6580 * Push all migratable network devices back to the 6581 * initial network namespace 6582 */ 6583 rtnl_lock(); 6584 for_each_netdev_safe(net, dev, aux) { 6585 int err; 6586 char fb_name[IFNAMSIZ]; 6587 6588 /* Ignore unmoveable devices (i.e. loopback) */ 6589 if (dev->features & NETIF_F_NETNS_LOCAL) 6590 continue; 6591 6592 /* Leave virtual devices for the generic cleanup */ 6593 if (dev->rtnl_link_ops) 6594 continue; 6595 6596 /* Push remaining network devices to init_net */ 6597 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6598 err = dev_change_net_namespace(dev, &init_net, fb_name); 6599 if (err) { 6600 pr_emerg("%s: failed to move %s to init_net: %d\n", 6601 __func__, dev->name, err); 6602 BUG(); 6603 } 6604 } 6605 rtnl_unlock(); 6606 } 6607 6608 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6609 { 6610 /* At exit all network devices most be removed from a network 6611 * namespace. Do this in the reverse order of registration. 6612 * Do this across as many network namespaces as possible to 6613 * improve batching efficiency. 6614 */ 6615 struct net_device *dev; 6616 struct net *net; 6617 LIST_HEAD(dev_kill_list); 6618 6619 rtnl_lock(); 6620 list_for_each_entry(net, net_list, exit_list) { 6621 for_each_netdev_reverse(net, dev) { 6622 if (dev->rtnl_link_ops) 6623 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6624 else 6625 unregister_netdevice_queue(dev, &dev_kill_list); 6626 } 6627 } 6628 unregister_netdevice_many(&dev_kill_list); 6629 list_del(&dev_kill_list); 6630 rtnl_unlock(); 6631 } 6632 6633 static struct pernet_operations __net_initdata default_device_ops = { 6634 .exit = default_device_exit, 6635 .exit_batch = default_device_exit_batch, 6636 }; 6637 6638 /* 6639 * Initialize the DEV module. At boot time this walks the device list and 6640 * unhooks any devices that fail to initialise (normally hardware not 6641 * present) and leaves us with a valid list of present and active devices. 6642 * 6643 */ 6644 6645 /* 6646 * This is called single threaded during boot, so no need 6647 * to take the rtnl semaphore. 6648 */ 6649 static int __init net_dev_init(void) 6650 { 6651 int i, rc = -ENOMEM; 6652 6653 BUG_ON(!dev_boot_phase); 6654 6655 if (dev_proc_init()) 6656 goto out; 6657 6658 if (netdev_kobject_init()) 6659 goto out; 6660 6661 INIT_LIST_HEAD(&ptype_all); 6662 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6663 INIT_LIST_HEAD(&ptype_base[i]); 6664 6665 if (register_pernet_subsys(&netdev_net_ops)) 6666 goto out; 6667 6668 /* 6669 * Initialise the packet receive queues. 6670 */ 6671 6672 for_each_possible_cpu(i) { 6673 struct softnet_data *sd = &per_cpu(softnet_data, i); 6674 6675 memset(sd, 0, sizeof(*sd)); 6676 skb_queue_head_init(&sd->input_pkt_queue); 6677 skb_queue_head_init(&sd->process_queue); 6678 sd->completion_queue = NULL; 6679 INIT_LIST_HEAD(&sd->poll_list); 6680 sd->output_queue = NULL; 6681 sd->output_queue_tailp = &sd->output_queue; 6682 #ifdef CONFIG_RPS 6683 sd->csd.func = rps_trigger_softirq; 6684 sd->csd.info = sd; 6685 sd->csd.flags = 0; 6686 sd->cpu = i; 6687 #endif 6688 6689 sd->backlog.poll = process_backlog; 6690 sd->backlog.weight = weight_p; 6691 sd->backlog.gro_list = NULL; 6692 sd->backlog.gro_count = 0; 6693 } 6694 6695 dev_boot_phase = 0; 6696 6697 /* The loopback device is special if any other network devices 6698 * is present in a network namespace the loopback device must 6699 * be present. Since we now dynamically allocate and free the 6700 * loopback device ensure this invariant is maintained by 6701 * keeping the loopback device as the first device on the 6702 * list of network devices. Ensuring the loopback devices 6703 * is the first device that appears and the last network device 6704 * that disappears. 6705 */ 6706 if (register_pernet_device(&loopback_net_ops)) 6707 goto out; 6708 6709 if (register_pernet_device(&default_device_ops)) 6710 goto out; 6711 6712 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6713 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6714 6715 hotcpu_notifier(dev_cpu_callback, 0); 6716 dst_init(); 6717 dev_mcast_init(); 6718 rc = 0; 6719 out: 6720 return rc; 6721 } 6722 6723 subsys_initcall(net_dev_init); 6724 6725 static int __init initialize_hashrnd(void) 6726 { 6727 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6728 return 0; 6729 } 6730 6731 late_initcall_sync(initialize_hashrnd); 6732 6733