xref: /linux/net/core/dev.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142 
143 #include "net-sysfs.h"
144 
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147 
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150 
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly;	/* Taps */
155 static struct list_head offload_base __read_mostly;
156 
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 					 struct net_device *dev,
160 					 struct netdev_notifier_info *info);
161 
162 /*
163  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164  * semaphore.
165  *
166  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167  *
168  * Writers must hold the rtnl semaphore while they loop through the
169  * dev_base_head list, and hold dev_base_lock for writing when they do the
170  * actual updates.  This allows pure readers to access the list even
171  * while a writer is preparing to update it.
172  *
173  * To put it another way, dev_base_lock is held for writing only to
174  * protect against pure readers; the rtnl semaphore provides the
175  * protection against other writers.
176  *
177  * See, for example usages, register_netdevice() and
178  * unregister_netdevice(), which must be called with the rtnl
179  * semaphore held.
180  */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183 
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186 
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189 
190 static seqcount_t devnet_rename_seq;
191 
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 	while (++net->dev_base_seq == 0);
195 }
196 
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200 
201 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203 
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208 
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 	spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215 
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 	spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222 
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head_rcu(&dev->index_hlist,
234 			   dev_index_hash(net, dev->ifindex));
235 	write_unlock_bh(&dev_base_lock);
236 
237 	dev_base_seq_inc(net);
238 }
239 
240 /* Device list removal
241  * caller must respect a RCU grace period before freeing/reusing dev
242  */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 	ASSERT_RTNL();
246 
247 	/* Unlink dev from the device chain */
248 	write_lock_bh(&dev_base_lock);
249 	list_del_rcu(&dev->dev_list);
250 	hlist_del_rcu(&dev->name_hlist);
251 	hlist_del_rcu(&dev->index_hlist);
252 	write_unlock_bh(&dev_base_lock);
253 
254 	dev_base_seq_inc(dev_net(dev));
255 }
256 
257 /*
258  *	Our notifier list
259  */
260 
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262 
263 /*
264  *	Device drivers call our routines to queue packets here. We empty the
265  *	queue in the local softnet handler.
266  */
267 
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292 
293 static const char *const netdev_lock_name[] =
294 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309 
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 	int i;
316 
317 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 		if (netdev_lock_type[i] == dev_type)
319 			return i;
320 	/* the last key is used by default */
321 	return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323 
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 						 unsigned short dev_type)
326 {
327 	int i;
328 
329 	i = netdev_lock_pos(dev_type);
330 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 	int i;
337 
338 	i = netdev_lock_pos(dev->type);
339 	lockdep_set_class_and_name(&dev->addr_list_lock,
340 				   &netdev_addr_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 						 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352 
353 /*******************************************************************************
354 
355 		Protocol management and registration routines
356 
357 *******************************************************************************/
358 
359 /*
360  *	Add a protocol ID to the list. Now that the input handler is
361  *	smarter we can dispense with all the messy stuff that used to be
362  *	here.
363  *
364  *	BEWARE!!! Protocol handlers, mangling input packets,
365  *	MUST BE last in hash buckets and checking protocol handlers
366  *	MUST start from promiscuous ptype_all chain in net_bh.
367  *	It is true now, do not change it.
368  *	Explanation follows: if protocol handler, mangling packet, will
369  *	be the first on list, it is not able to sense, that packet
370  *	is cloned and should be copied-on-write, so that it will
371  *	change it and subsequent readers will get broken packet.
372  *							--ANK (980803)
373  */
374 
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 	if (pt->type == htons(ETH_P_ALL))
378 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 	else
380 		return pt->dev ? &pt->dev->ptype_specific :
381 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383 
384 /**
385  *	dev_add_pack - add packet handler
386  *	@pt: packet type declaration
387  *
388  *	Add a protocol handler to the networking stack. The passed &packet_type
389  *	is linked into kernel lists and may not be freed until it has been
390  *	removed from the kernel lists.
391  *
392  *	This call does not sleep therefore it can not
393  *	guarantee all CPU's that are in middle of receiving packets
394  *	will see the new packet type (until the next received packet).
395  */
396 
397 void dev_add_pack(struct packet_type *pt)
398 {
399 	struct list_head *head = ptype_head(pt);
400 
401 	spin_lock(&ptype_lock);
402 	list_add_rcu(&pt->list, head);
403 	spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406 
407 /**
408  *	__dev_remove_pack	 - remove packet handler
409  *	@pt: packet type declaration
410  *
411  *	Remove a protocol handler that was previously added to the kernel
412  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *	from the kernel lists and can be freed or reused once this function
414  *	returns.
415  *
416  *      The packet type might still be in use by receivers
417  *	and must not be freed until after all the CPU's have gone
418  *	through a quiescent state.
419  */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 	struct list_head *head = ptype_head(pt);
423 	struct packet_type *pt1;
424 
425 	spin_lock(&ptype_lock);
426 
427 	list_for_each_entry(pt1, head, list) {
428 		if (pt == pt1) {
429 			list_del_rcu(&pt->list);
430 			goto out;
431 		}
432 	}
433 
434 	pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 	spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439 
440 /**
441  *	dev_remove_pack	 - remove packet handler
442  *	@pt: packet type declaration
443  *
444  *	Remove a protocol handler that was previously added to the kernel
445  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
446  *	from the kernel lists and can be freed or reused once this function
447  *	returns.
448  *
449  *	This call sleeps to guarantee that no CPU is looking at the packet
450  *	type after return.
451  */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 	__dev_remove_pack(pt);
455 
456 	synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459 
460 
461 /**
462  *	dev_add_offload - register offload handlers
463  *	@po: protocol offload declaration
464  *
465  *	Add protocol offload handlers to the networking stack. The passed
466  *	&proto_offload is linked into kernel lists and may not be freed until
467  *	it has been removed from the kernel lists.
468  *
469  *	This call does not sleep therefore it can not
470  *	guarantee all CPU's that are in middle of receiving packets
471  *	will see the new offload handlers (until the next received packet).
472  */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 	struct packet_offload *elem;
476 
477 	spin_lock(&offload_lock);
478 	list_for_each_entry(elem, &offload_base, list) {
479 		if (po->priority < elem->priority)
480 			break;
481 	}
482 	list_add_rcu(&po->list, elem->list.prev);
483 	spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486 
487 /**
488  *	__dev_remove_offload	 - remove offload handler
489  *	@po: packet offload declaration
490  *
491  *	Remove a protocol offload handler that was previously added to the
492  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
493  *	is removed from the kernel lists and can be freed or reused once this
494  *	function returns.
495  *
496  *      The packet type might still be in use by receivers
497  *	and must not be freed until after all the CPU's have gone
498  *	through a quiescent state.
499  */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 	struct list_head *head = &offload_base;
503 	struct packet_offload *po1;
504 
505 	spin_lock(&offload_lock);
506 
507 	list_for_each_entry(po1, head, list) {
508 		if (po == po1) {
509 			list_del_rcu(&po->list);
510 			goto out;
511 		}
512 	}
513 
514 	pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 	spin_unlock(&offload_lock);
517 }
518 
519 /**
520  *	dev_remove_offload	 - remove packet offload handler
521  *	@po: packet offload declaration
522  *
523  *	Remove a packet offload handler that was previously added to the kernel
524  *	offload handlers by dev_add_offload(). The passed &offload_type is
525  *	removed from the kernel lists and can be freed or reused once this
526  *	function returns.
527  *
528  *	This call sleeps to guarantee that no CPU is looking at the packet
529  *	type after return.
530  */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 	__dev_remove_offload(po);
534 
535 	synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538 
539 /******************************************************************************
540 
541 		      Device Boot-time Settings Routines
542 
543 *******************************************************************************/
544 
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547 
548 /**
549  *	netdev_boot_setup_add	- add new setup entry
550  *	@name: name of the device
551  *	@map: configured settings for the device
552  *
553  *	Adds new setup entry to the dev_boot_setup list.  The function
554  *	returns 0 on error and 1 on success.  This is a generic routine to
555  *	all netdevices.
556  */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 	struct netdev_boot_setup *s;
560 	int i;
561 
562 	s = dev_boot_setup;
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 			memset(s[i].name, 0, sizeof(s[i].name));
566 			strlcpy(s[i].name, name, IFNAMSIZ);
567 			memcpy(&s[i].map, map, sizeof(s[i].map));
568 			break;
569 		}
570 	}
571 
572 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574 
575 /**
576  *	netdev_boot_setup_check	- check boot time settings
577  *	@dev: the netdevice
578  *
579  * 	Check boot time settings for the device.
580  *	The found settings are set for the device to be used
581  *	later in the device probing.
582  *	Returns 0 if no settings found, 1 if they are.
583  */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 	struct netdev_boot_setup *s = dev_boot_setup;
587 	int i;
588 
589 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 		    !strcmp(dev->name, s[i].name)) {
592 			dev->irq 	= s[i].map.irq;
593 			dev->base_addr 	= s[i].map.base_addr;
594 			dev->mem_start 	= s[i].map.mem_start;
595 			dev->mem_end 	= s[i].map.mem_end;
596 			return 1;
597 		}
598 	}
599 	return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602 
603 
604 /**
605  *	netdev_boot_base	- get address from boot time settings
606  *	@prefix: prefix for network device
607  *	@unit: id for network device
608  *
609  * 	Check boot time settings for the base address of device.
610  *	The found settings are set for the device to be used
611  *	later in the device probing.
612  *	Returns 0 if no settings found.
613  */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 	const struct netdev_boot_setup *s = dev_boot_setup;
617 	char name[IFNAMSIZ];
618 	int i;
619 
620 	sprintf(name, "%s%d", prefix, unit);
621 
622 	/*
623 	 * If device already registered then return base of 1
624 	 * to indicate not to probe for this interface
625 	 */
626 	if (__dev_get_by_name(&init_net, name))
627 		return 1;
628 
629 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 		if (!strcmp(name, s[i].name))
631 			return s[i].map.base_addr;
632 	return 0;
633 }
634 
635 /*
636  * Saves at boot time configured settings for any netdevice.
637  */
638 int __init netdev_boot_setup(char *str)
639 {
640 	int ints[5];
641 	struct ifmap map;
642 
643 	str = get_options(str, ARRAY_SIZE(ints), ints);
644 	if (!str || !*str)
645 		return 0;
646 
647 	/* Save settings */
648 	memset(&map, 0, sizeof(map));
649 	if (ints[0] > 0)
650 		map.irq = ints[1];
651 	if (ints[0] > 1)
652 		map.base_addr = ints[2];
653 	if (ints[0] > 2)
654 		map.mem_start = ints[3];
655 	if (ints[0] > 3)
656 		map.mem_end = ints[4];
657 
658 	/* Add new entry to the list */
659 	return netdev_boot_setup_add(str, &map);
660 }
661 
662 __setup("netdev=", netdev_boot_setup);
663 
664 /*******************************************************************************
665 
666 			    Device Interface Subroutines
667 
668 *******************************************************************************/
669 
670 /**
671  *	dev_get_iflink	- get 'iflink' value of a interface
672  *	@dev: targeted interface
673  *
674  *	Indicates the ifindex the interface is linked to.
675  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
676  */
677 
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 		return dev->netdev_ops->ndo_get_iflink(dev);
682 
683 	return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686 
687 /**
688  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
689  *	@dev: targeted interface
690  *	@skb: The packet.
691  *
692  *	For better visibility of tunnel traffic OVS needs to retrieve
693  *	egress tunnel information for a packet. Following API allows
694  *	user to get this info.
695  */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 	struct ip_tunnel_info *info;
699 
700 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
701 		return -EINVAL;
702 
703 	info = skb_tunnel_info_unclone(skb);
704 	if (!info)
705 		return -ENOMEM;
706 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 		return -EINVAL;
708 
709 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712 
713 /**
714  *	__dev_get_by_name	- find a device by its name
715  *	@net: the applicable net namespace
716  *	@name: name to find
717  *
718  *	Find an interface by name. Must be called under RTNL semaphore
719  *	or @dev_base_lock. If the name is found a pointer to the device
720  *	is returned. If the name is not found then %NULL is returned. The
721  *	reference counters are not incremented so the caller must be
722  *	careful with locks.
723  */
724 
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 	struct net_device *dev;
728 	struct hlist_head *head = dev_name_hash(net, name);
729 
730 	hlist_for_each_entry(dev, head, name_hlist)
731 		if (!strncmp(dev->name, name, IFNAMSIZ))
732 			return dev;
733 
734 	return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737 
738 /**
739  *	dev_get_by_name_rcu	- find a device by its name
740  *	@net: the applicable net namespace
741  *	@name: name to find
742  *
743  *	Find an interface by name.
744  *	If the name is found a pointer to the device is returned.
745  * 	If the name is not found then %NULL is returned.
746  *	The reference counters are not incremented so the caller must be
747  *	careful with locks. The caller must hold RCU lock.
748  */
749 
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 	struct net_device *dev;
753 	struct hlist_head *head = dev_name_hash(net, name);
754 
755 	hlist_for_each_entry_rcu(dev, head, name_hlist)
756 		if (!strncmp(dev->name, name, IFNAMSIZ))
757 			return dev;
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	if (dev)
782 		dev_hold(dev);
783 	rcu_read_unlock();
784 	return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787 
788 /**
789  *	__dev_get_by_index - find a device by its ifindex
790  *	@net: the applicable net namespace
791  *	@ifindex: index of device
792  *
793  *	Search for an interface by index. Returns %NULL if the device
794  *	is not found or a pointer to the device. The device has not
795  *	had its reference counter increased so the caller must be careful
796  *	about locking. The caller must hold either the RTNL semaphore
797  *	or @dev_base_lock.
798  */
799 
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 	struct net_device *dev;
803 	struct hlist_head *head = dev_index_hash(net, ifindex);
804 
805 	hlist_for_each_entry(dev, head, index_hlist)
806 		if (dev->ifindex == ifindex)
807 			return dev;
808 
809 	return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812 
813 /**
814  *	dev_get_by_index_rcu - find a device by its ifindex
815  *	@net: the applicable net namespace
816  *	@ifindex: index of device
817  *
818  *	Search for an interface by index. Returns %NULL if the device
819  *	is not found or a pointer to the device. The device has not
820  *	had its reference counter increased so the caller must be careful
821  *	about locking. The caller must hold RCU lock.
822  */
823 
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 	struct net_device *dev;
827 	struct hlist_head *head = dev_index_hash(net, ifindex);
828 
829 	hlist_for_each_entry_rcu(dev, head, index_hlist)
830 		if (dev->ifindex == ifindex)
831 			return dev;
832 
833 	return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836 
837 
838 /**
839  *	dev_get_by_index - find a device by its ifindex
840  *	@net: the applicable net namespace
841  *	@ifindex: index of device
842  *
843  *	Search for an interface by index. Returns NULL if the device
844  *	is not found or a pointer to the device. The device returned has
845  *	had a reference added and the pointer is safe until the user calls
846  *	dev_put to indicate they have finished with it.
847  */
848 
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 	struct net_device *dev;
852 
853 	rcu_read_lock();
854 	dev = dev_get_by_index_rcu(net, ifindex);
855 	if (dev)
856 		dev_hold(dev);
857 	rcu_read_unlock();
858 	return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861 
862 /**
863  *	netdev_get_name - get a netdevice name, knowing its ifindex.
864  *	@net: network namespace
865  *	@name: a pointer to the buffer where the name will be stored.
866  *	@ifindex: the ifindex of the interface to get the name from.
867  *
868  *	The use of raw_seqcount_begin() and cond_resched() before
869  *	retrying is required as we want to give the writers a chance
870  *	to complete when CONFIG_PREEMPT is not set.
871  */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 	struct net_device *dev;
875 	unsigned int seq;
876 
877 retry:
878 	seq = raw_seqcount_begin(&devnet_rename_seq);
879 	rcu_read_lock();
880 	dev = dev_get_by_index_rcu(net, ifindex);
881 	if (!dev) {
882 		rcu_read_unlock();
883 		return -ENODEV;
884 	}
885 
886 	strcpy(name, dev->name);
887 	rcu_read_unlock();
888 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 		cond_resched();
890 		goto retry;
891 	}
892 
893 	return 0;
894 }
895 
896 /**
897  *	dev_getbyhwaddr_rcu - find a device by its hardware address
898  *	@net: the applicable net namespace
899  *	@type: media type of device
900  *	@ha: hardware address
901  *
902  *	Search for an interface by MAC address. Returns NULL if the device
903  *	is not found or a pointer to the device.
904  *	The caller must hold RCU or RTNL.
905  *	The returned device has not had its ref count increased
906  *	and the caller must therefore be careful about locking
907  *
908  */
909 
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 				       const char *ha)
912 {
913 	struct net_device *dev;
914 
915 	for_each_netdev_rcu(net, dev)
916 		if (dev->type == type &&
917 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
918 			return dev;
919 
920 	return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923 
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 	struct net_device *dev;
927 
928 	ASSERT_RTNL();
929 	for_each_netdev(net, dev)
930 		if (dev->type == type)
931 			return dev;
932 
933 	return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936 
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 	struct net_device *dev, *ret = NULL;
940 
941 	rcu_read_lock();
942 	for_each_netdev_rcu(net, dev)
943 		if (dev->type == type) {
944 			dev_hold(dev);
945 			ret = dev;
946 			break;
947 		}
948 	rcu_read_unlock();
949 	return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952 
953 /**
954  *	__dev_get_by_flags - find any device with given flags
955  *	@net: the applicable net namespace
956  *	@if_flags: IFF_* values
957  *	@mask: bitmask of bits in if_flags to check
958  *
959  *	Search for any interface with the given flags. Returns NULL if a device
960  *	is not found or a pointer to the device. Must be called inside
961  *	rtnl_lock(), and result refcount is unchanged.
962  */
963 
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 				      unsigned short mask)
966 {
967 	struct net_device *dev, *ret;
968 
969 	ASSERT_RTNL();
970 
971 	ret = NULL;
972 	for_each_netdev(net, dev) {
973 		if (((dev->flags ^ if_flags) & mask) == 0) {
974 			ret = dev;
975 			break;
976 		}
977 	}
978 	return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981 
982 /**
983  *	dev_valid_name - check if name is okay for network device
984  *	@name: name string
985  *
986  *	Network device names need to be valid file names to
987  *	to allow sysfs to work.  We also disallow any kind of
988  *	whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992 	if (*name == '\0')
993 		return false;
994 	if (strlen(name) >= IFNAMSIZ)
995 		return false;
996 	if (!strcmp(name, ".") || !strcmp(name, ".."))
997 		return false;
998 
999 	while (*name) {
1000 		if (*name == '/' || *name == ':' || isspace(*name))
1001 			return false;
1002 		name++;
1003 	}
1004 	return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007 
1008 /**
1009  *	__dev_alloc_name - allocate a name for a device
1010  *	@net: network namespace to allocate the device name in
1011  *	@name: name format string
1012  *	@buf:  scratch buffer and result name string
1013  *
1014  *	Passed a format string - eg "lt%d" it will try and find a suitable
1015  *	id. It scans list of devices to build up a free map, then chooses
1016  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *	while allocating the name and adding the device in order to avoid
1018  *	duplicates.
1019  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *	Returns the number of the unit assigned or a negative errno code.
1021  */
1022 
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 	int i = 0;
1026 	const char *p;
1027 	const int max_netdevices = 8*PAGE_SIZE;
1028 	unsigned long *inuse;
1029 	struct net_device *d;
1030 
1031 	p = strnchr(name, IFNAMSIZ-1, '%');
1032 	if (p) {
1033 		/*
1034 		 * Verify the string as this thing may have come from
1035 		 * the user.  There must be either one "%d" and no other "%"
1036 		 * characters.
1037 		 */
1038 		if (p[1] != 'd' || strchr(p + 2, '%'))
1039 			return -EINVAL;
1040 
1041 		/* Use one page as a bit array of possible slots */
1042 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 		if (!inuse)
1044 			return -ENOMEM;
1045 
1046 		for_each_netdev(net, d) {
1047 			if (!sscanf(d->name, name, &i))
1048 				continue;
1049 			if (i < 0 || i >= max_netdevices)
1050 				continue;
1051 
1052 			/*  avoid cases where sscanf is not exact inverse of printf */
1053 			snprintf(buf, IFNAMSIZ, name, i);
1054 			if (!strncmp(buf, d->name, IFNAMSIZ))
1055 				set_bit(i, inuse);
1056 		}
1057 
1058 		i = find_first_zero_bit(inuse, max_netdevices);
1059 		free_page((unsigned long) inuse);
1060 	}
1061 
1062 	if (buf != name)
1063 		snprintf(buf, IFNAMSIZ, name, i);
1064 	if (!__dev_get_by_name(net, buf))
1065 		return i;
1066 
1067 	/* It is possible to run out of possible slots
1068 	 * when the name is long and there isn't enough space left
1069 	 * for the digits, or if all bits are used.
1070 	 */
1071 	return -ENFILE;
1072 }
1073 
1074 /**
1075  *	dev_alloc_name - allocate a name for a device
1076  *	@dev: device
1077  *	@name: name format string
1078  *
1079  *	Passed a format string - eg "lt%d" it will try and find a suitable
1080  *	id. It scans list of devices to build up a free map, then chooses
1081  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1082  *	while allocating the name and adding the device in order to avoid
1083  *	duplicates.
1084  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085  *	Returns the number of the unit assigned or a negative errno code.
1086  */
1087 
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 	char buf[IFNAMSIZ];
1091 	struct net *net;
1092 	int ret;
1093 
1094 	BUG_ON(!dev_net(dev));
1095 	net = dev_net(dev);
1096 	ret = __dev_alloc_name(net, name, buf);
1097 	if (ret >= 0)
1098 		strlcpy(dev->name, buf, IFNAMSIZ);
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102 
1103 static int dev_alloc_name_ns(struct net *net,
1104 			     struct net_device *dev,
1105 			     const char *name)
1106 {
1107 	char buf[IFNAMSIZ];
1108 	int ret;
1109 
1110 	ret = __dev_alloc_name(net, name, buf);
1111 	if (ret >= 0)
1112 		strlcpy(dev->name, buf, IFNAMSIZ);
1113 	return ret;
1114 }
1115 
1116 static int dev_get_valid_name(struct net *net,
1117 			      struct net_device *dev,
1118 			      const char *name)
1119 {
1120 	BUG_ON(!net);
1121 
1122 	if (!dev_valid_name(name))
1123 		return -EINVAL;
1124 
1125 	if (strchr(name, '%'))
1126 		return dev_alloc_name_ns(net, dev, name);
1127 	else if (__dev_get_by_name(net, name))
1128 		return -EEXIST;
1129 	else if (dev->name != name)
1130 		strlcpy(dev->name, name, IFNAMSIZ);
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  *	dev_change_name - change name of a device
1137  *	@dev: device
1138  *	@newname: name (or format string) must be at least IFNAMSIZ
1139  *
1140  *	Change name of a device, can pass format strings "eth%d".
1141  *	for wildcarding.
1142  */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 	unsigned char old_assign_type;
1146 	char oldname[IFNAMSIZ];
1147 	int err = 0;
1148 	int ret;
1149 	struct net *net;
1150 
1151 	ASSERT_RTNL();
1152 	BUG_ON(!dev_net(dev));
1153 
1154 	net = dev_net(dev);
1155 	if (dev->flags & IFF_UP)
1156 		return -EBUSY;
1157 
1158 	write_seqcount_begin(&devnet_rename_seq);
1159 
1160 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 		write_seqcount_end(&devnet_rename_seq);
1162 		return 0;
1163 	}
1164 
1165 	memcpy(oldname, dev->name, IFNAMSIZ);
1166 
1167 	err = dev_get_valid_name(net, dev, newname);
1168 	if (err < 0) {
1169 		write_seqcount_end(&devnet_rename_seq);
1170 		return err;
1171 	}
1172 
1173 	if (oldname[0] && !strchr(oldname, '%'))
1174 		netdev_info(dev, "renamed from %s\n", oldname);
1175 
1176 	old_assign_type = dev->name_assign_type;
1177 	dev->name_assign_type = NET_NAME_RENAMED;
1178 
1179 rollback:
1180 	ret = device_rename(&dev->dev, dev->name);
1181 	if (ret) {
1182 		memcpy(dev->name, oldname, IFNAMSIZ);
1183 		dev->name_assign_type = old_assign_type;
1184 		write_seqcount_end(&devnet_rename_seq);
1185 		return ret;
1186 	}
1187 
1188 	write_seqcount_end(&devnet_rename_seq);
1189 
1190 	netdev_adjacent_rename_links(dev, oldname);
1191 
1192 	write_lock_bh(&dev_base_lock);
1193 	hlist_del_rcu(&dev->name_hlist);
1194 	write_unlock_bh(&dev_base_lock);
1195 
1196 	synchronize_rcu();
1197 
1198 	write_lock_bh(&dev_base_lock);
1199 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 	write_unlock_bh(&dev_base_lock);
1201 
1202 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 	ret = notifier_to_errno(ret);
1204 
1205 	if (ret) {
1206 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1207 		if (err >= 0) {
1208 			err = ret;
1209 			write_seqcount_begin(&devnet_rename_seq);
1210 			memcpy(dev->name, oldname, IFNAMSIZ);
1211 			memcpy(oldname, newname, IFNAMSIZ);
1212 			dev->name_assign_type = old_assign_type;
1213 			old_assign_type = NET_NAME_RENAMED;
1214 			goto rollback;
1215 		} else {
1216 			pr_err("%s: name change rollback failed: %d\n",
1217 			       dev->name, ret);
1218 		}
1219 	}
1220 
1221 	return err;
1222 }
1223 
1224 /**
1225  *	dev_set_alias - change ifalias of a device
1226  *	@dev: device
1227  *	@alias: name up to IFALIASZ
1228  *	@len: limit of bytes to copy from info
1229  *
1230  *	Set ifalias for a device,
1231  */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 	char *new_ifalias;
1235 
1236 	ASSERT_RTNL();
1237 
1238 	if (len >= IFALIASZ)
1239 		return -EINVAL;
1240 
1241 	if (!len) {
1242 		kfree(dev->ifalias);
1243 		dev->ifalias = NULL;
1244 		return 0;
1245 	}
1246 
1247 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 	if (!new_ifalias)
1249 		return -ENOMEM;
1250 	dev->ifalias = new_ifalias;
1251 
1252 	strlcpy(dev->ifalias, alias, len+1);
1253 	return len;
1254 }
1255 
1256 
1257 /**
1258  *	netdev_features_change - device changes features
1259  *	@dev: device to cause notification
1260  *
1261  *	Called to indicate a device has changed features.
1262  */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268 
1269 /**
1270  *	netdev_state_change - device changes state
1271  *	@dev: device to cause notification
1272  *
1273  *	Called to indicate a device has changed state. This function calls
1274  *	the notifier chains for netdev_chain and sends a NEWLINK message
1275  *	to the routing socket.
1276  */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 	if (dev->flags & IFF_UP) {
1280 		struct netdev_notifier_change_info change_info;
1281 
1282 		change_info.flags_changed = 0;
1283 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 					      &change_info.info);
1285 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 	}
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289 
1290 /**
1291  * 	netdev_notify_peers - notify network peers about existence of @dev
1292  * 	@dev: network device
1293  *
1294  * Generate traffic such that interested network peers are aware of
1295  * @dev, such as by generating a gratuitous ARP. This may be used when
1296  * a device wants to inform the rest of the network about some sort of
1297  * reconfiguration such as a failover event or virtual machine
1298  * migration.
1299  */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 	rtnl_lock();
1303 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 	rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307 
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 	const struct net_device_ops *ops = dev->netdev_ops;
1311 	int ret;
1312 
1313 	ASSERT_RTNL();
1314 
1315 	if (!netif_device_present(dev))
1316 		return -ENODEV;
1317 
1318 	/* Block netpoll from trying to do any rx path servicing.
1319 	 * If we don't do this there is a chance ndo_poll_controller
1320 	 * or ndo_poll may be running while we open the device
1321 	 */
1322 	netpoll_poll_disable(dev);
1323 
1324 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 	ret = notifier_to_errno(ret);
1326 	if (ret)
1327 		return ret;
1328 
1329 	set_bit(__LINK_STATE_START, &dev->state);
1330 
1331 	if (ops->ndo_validate_addr)
1332 		ret = ops->ndo_validate_addr(dev);
1333 
1334 	if (!ret && ops->ndo_open)
1335 		ret = ops->ndo_open(dev);
1336 
1337 	netpoll_poll_enable(dev);
1338 
1339 	if (ret)
1340 		clear_bit(__LINK_STATE_START, &dev->state);
1341 	else {
1342 		dev->flags |= IFF_UP;
1343 		dev_set_rx_mode(dev);
1344 		dev_activate(dev);
1345 		add_device_randomness(dev->dev_addr, dev->addr_len);
1346 	}
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	dev_open	- prepare an interface for use.
1353  *	@dev:	device to open
1354  *
1355  *	Takes a device from down to up state. The device's private open
1356  *	function is invoked and then the multicast lists are loaded. Finally
1357  *	the device is moved into the up state and a %NETDEV_UP message is
1358  *	sent to the netdev notifier chain.
1359  *
1360  *	Calling this function on an active interface is a nop. On a failure
1361  *	a negative errno code is returned.
1362  */
1363 int dev_open(struct net_device *dev)
1364 {
1365 	int ret;
1366 
1367 	if (dev->flags & IFF_UP)
1368 		return 0;
1369 
1370 	ret = __dev_open(dev);
1371 	if (ret < 0)
1372 		return ret;
1373 
1374 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 	call_netdevice_notifiers(NETDEV_UP, dev);
1376 
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380 
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 	struct net_device *dev;
1384 
1385 	ASSERT_RTNL();
1386 	might_sleep();
1387 
1388 	list_for_each_entry(dev, head, close_list) {
1389 		/* Temporarily disable netpoll until the interface is down */
1390 		netpoll_poll_disable(dev);
1391 
1392 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393 
1394 		clear_bit(__LINK_STATE_START, &dev->state);
1395 
1396 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1397 		 * can be even on different cpu. So just clear netif_running().
1398 		 *
1399 		 * dev->stop() will invoke napi_disable() on all of it's
1400 		 * napi_struct instances on this device.
1401 		 */
1402 		smp_mb__after_atomic(); /* Commit netif_running(). */
1403 	}
1404 
1405 	dev_deactivate_many(head);
1406 
1407 	list_for_each_entry(dev, head, close_list) {
1408 		const struct net_device_ops *ops = dev->netdev_ops;
1409 
1410 		/*
1411 		 *	Call the device specific close. This cannot fail.
1412 		 *	Only if device is UP
1413 		 *
1414 		 *	We allow it to be called even after a DETACH hot-plug
1415 		 *	event.
1416 		 */
1417 		if (ops->ndo_stop)
1418 			ops->ndo_stop(dev);
1419 
1420 		dev->flags &= ~IFF_UP;
1421 		netpoll_poll_enable(dev);
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 	int retval;
1430 	LIST_HEAD(single);
1431 
1432 	list_add(&dev->close_list, &single);
1433 	retval = __dev_close_many(&single);
1434 	list_del(&single);
1435 
1436 	return retval;
1437 }
1438 
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 	struct net_device *dev, *tmp;
1442 
1443 	/* Remove the devices that don't need to be closed */
1444 	list_for_each_entry_safe(dev, tmp, head, close_list)
1445 		if (!(dev->flags & IFF_UP))
1446 			list_del_init(&dev->close_list);
1447 
1448 	__dev_close_many(head);
1449 
1450 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 		if (unlink)
1454 			list_del_init(&dev->close_list);
1455 	}
1456 
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460 
1461 /**
1462  *	dev_close - shutdown an interface.
1463  *	@dev: device to shutdown
1464  *
1465  *	This function moves an active device into down state. A
1466  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468  *	chain.
1469  */
1470 int dev_close(struct net_device *dev)
1471 {
1472 	if (dev->flags & IFF_UP) {
1473 		LIST_HEAD(single);
1474 
1475 		list_add(&dev->close_list, &single);
1476 		dev_close_many(&single, true);
1477 		list_del(&single);
1478 	}
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482 
1483 
1484 /**
1485  *	dev_disable_lro - disable Large Receive Offload on a device
1486  *	@dev: device
1487  *
1488  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1489  *	called under RTNL.  This is needed if received packets may be
1490  *	forwarded to another interface.
1491  */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 	struct net_device *lower_dev;
1495 	struct list_head *iter;
1496 
1497 	dev->wanted_features &= ~NETIF_F_LRO;
1498 	netdev_update_features(dev);
1499 
1500 	if (unlikely(dev->features & NETIF_F_LRO))
1501 		netdev_WARN(dev, "failed to disable LRO!\n");
1502 
1503 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 		dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507 
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 				   struct net_device *dev)
1510 {
1511 	struct netdev_notifier_info info;
1512 
1513 	netdev_notifier_info_init(&info, dev);
1514 	return nb->notifier_call(nb, val, &info);
1515 }
1516 
1517 static int dev_boot_phase = 1;
1518 
1519 /**
1520  *	register_netdevice_notifier - register a network notifier block
1521  *	@nb: notifier
1522  *
1523  *	Register a notifier to be called when network device events occur.
1524  *	The notifier passed is linked into the kernel structures and must
1525  *	not be reused until it has been unregistered. A negative errno code
1526  *	is returned on a failure.
1527  *
1528  * 	When registered all registration and up events are replayed
1529  *	to the new notifier to allow device to have a race free
1530  *	view of the network device list.
1531  */
1532 
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 	struct net_device *dev;
1536 	struct net_device *last;
1537 	struct net *net;
1538 	int err;
1539 
1540 	rtnl_lock();
1541 	err = raw_notifier_chain_register(&netdev_chain, nb);
1542 	if (err)
1543 		goto unlock;
1544 	if (dev_boot_phase)
1545 		goto unlock;
1546 	for_each_net(net) {
1547 		for_each_netdev(net, dev) {
1548 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 			err = notifier_to_errno(err);
1550 			if (err)
1551 				goto rollback;
1552 
1553 			if (!(dev->flags & IFF_UP))
1554 				continue;
1555 
1556 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 		}
1558 	}
1559 
1560 unlock:
1561 	rtnl_unlock();
1562 	return err;
1563 
1564 rollback:
1565 	last = dev;
1566 	for_each_net(net) {
1567 		for_each_netdev(net, dev) {
1568 			if (dev == last)
1569 				goto outroll;
1570 
1571 			if (dev->flags & IFF_UP) {
1572 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 							dev);
1574 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 			}
1576 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 		}
1578 	}
1579 
1580 outroll:
1581 	raw_notifier_chain_unregister(&netdev_chain, nb);
1582 	goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585 
1586 /**
1587  *	unregister_netdevice_notifier - unregister a network notifier block
1588  *	@nb: notifier
1589  *
1590  *	Unregister a notifier previously registered by
1591  *	register_netdevice_notifier(). The notifier is unlinked into the
1592  *	kernel structures and may then be reused. A negative errno code
1593  *	is returned on a failure.
1594  *
1595  * 	After unregistering unregister and down device events are synthesized
1596  *	for all devices on the device list to the removed notifier to remove
1597  *	the need for special case cleanup code.
1598  */
1599 
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 	struct net_device *dev;
1603 	struct net *net;
1604 	int err;
1605 
1606 	rtnl_lock();
1607 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 	if (err)
1609 		goto unlock;
1610 
1611 	for_each_net(net) {
1612 		for_each_netdev(net, dev) {
1613 			if (dev->flags & IFF_UP) {
1614 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 							dev);
1616 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 			}
1618 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 		}
1620 	}
1621 unlock:
1622 	rtnl_unlock();
1623 	return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626 
1627 /**
1628  *	call_netdevice_notifiers_info - call all network notifier blocks
1629  *	@val: value passed unmodified to notifier function
1630  *	@dev: net_device pointer passed unmodified to notifier function
1631  *	@info: notifier information data
1632  *
1633  *	Call all network notifier blocks.  Parameters and return value
1634  *	are as for raw_notifier_call_chain().
1635  */
1636 
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 					 struct net_device *dev,
1639 					 struct netdev_notifier_info *info)
1640 {
1641 	ASSERT_RTNL();
1642 	netdev_notifier_info_init(info, dev);
1643 	return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645 
1646 /**
1647  *	call_netdevice_notifiers - call all network notifier blocks
1648  *      @val: value passed unmodified to notifier function
1649  *      @dev: net_device pointer passed unmodified to notifier function
1650  *
1651  *	Call all network notifier blocks.  Parameters and return value
1652  *	are as for raw_notifier_call_chain().
1653  */
1654 
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 	struct netdev_notifier_info info;
1658 
1659 	return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662 
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665 
1666 void net_inc_ingress_queue(void)
1667 {
1668 	static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671 
1672 void net_dec_ingress_queue(void)
1673 {
1674 	static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678 
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681 
1682 void net_inc_egress_queue(void)
1683 {
1684 	static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687 
1688 void net_dec_egress_queue(void)
1689 {
1690 	static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694 
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698  * If net_disable_timestamp() is called from irq context, defer the
1699  * static_key_slow_dec() calls.
1700  */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703 
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708 
1709 	if (deferred) {
1710 		while (--deferred)
1711 			static_key_slow_dec(&netstamp_needed);
1712 		return;
1713 	}
1714 #endif
1715 	static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718 
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 	if (in_interrupt()) {
1723 		atomic_inc(&netstamp_needed_deferred);
1724 		return;
1725 	}
1726 #endif
1727 	static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730 
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 	skb->tstamp.tv64 = 0;
1734 	if (static_key_false(&netstamp_needed))
1735 		__net_timestamp(skb);
1736 }
1737 
1738 #define net_timestamp_check(COND, SKB)			\
1739 	if (static_key_false(&netstamp_needed)) {		\
1740 		if ((COND) && !(SKB)->tstamp.tv64)	\
1741 			__net_timestamp(SKB);		\
1742 	}						\
1743 
1744 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1745 {
1746 	unsigned int len;
1747 
1748 	if (!(dev->flags & IFF_UP))
1749 		return false;
1750 
1751 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 	if (skb->len <= len)
1753 		return true;
1754 
1755 	/* if TSO is enabled, we don't care about the length as the packet
1756 	 * could be forwarded without being segmented before
1757 	 */
1758 	if (skb_is_gso(skb))
1759 		return true;
1760 
1761 	return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764 
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 	    unlikely(!is_skb_forwardable(dev, skb))) {
1769 		atomic_long_inc(&dev->rx_dropped);
1770 		kfree_skb(skb);
1771 		return NET_RX_DROP;
1772 	}
1773 
1774 	skb_scrub_packet(skb, true);
1775 	skb->priority = 0;
1776 	skb->protocol = eth_type_trans(skb, dev);
1777 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778 
1779 	return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782 
1783 /**
1784  * dev_forward_skb - loopback an skb to another netif
1785  *
1786  * @dev: destination network device
1787  * @skb: buffer to forward
1788  *
1789  * return values:
1790  *	NET_RX_SUCCESS	(no congestion)
1791  *	NET_RX_DROP     (packet was dropped, but freed)
1792  *
1793  * dev_forward_skb can be used for injecting an skb from the
1794  * start_xmit function of one device into the receive queue
1795  * of another device.
1796  *
1797  * The receiving device may be in another namespace, so
1798  * we have to clear all information in the skb that could
1799  * impact namespace isolation.
1800  */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806 
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 			      struct packet_type *pt_prev,
1809 			      struct net_device *orig_dev)
1810 {
1811 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 		return -ENOMEM;
1813 	atomic_inc(&skb->users);
1814 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816 
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 					  struct packet_type **pt,
1819 					  struct net_device *orig_dev,
1820 					  __be16 type,
1821 					  struct list_head *ptype_list)
1822 {
1823 	struct packet_type *ptype, *pt_prev = *pt;
1824 
1825 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 		if (ptype->type != type)
1827 			continue;
1828 		if (pt_prev)
1829 			deliver_skb(skb, pt_prev, orig_dev);
1830 		pt_prev = ptype;
1831 	}
1832 	*pt = pt_prev;
1833 }
1834 
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 	if (!ptype->af_packet_priv || !skb->sk)
1838 		return false;
1839 
1840 	if (ptype->id_match)
1841 		return ptype->id_match(ptype, skb->sk);
1842 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 		return true;
1844 
1845 	return false;
1846 }
1847 
1848 /*
1849  *	Support routine. Sends outgoing frames to any network
1850  *	taps currently in use.
1851  */
1852 
1853 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 	struct packet_type *ptype;
1856 	struct sk_buff *skb2 = NULL;
1857 	struct packet_type *pt_prev = NULL;
1858 	struct list_head *ptype_list = &ptype_all;
1859 
1860 	rcu_read_lock();
1861 again:
1862 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 		/* Never send packets back to the socket
1864 		 * they originated from - MvS (miquels@drinkel.ow.org)
1865 		 */
1866 		if (skb_loop_sk(ptype, skb))
1867 			continue;
1868 
1869 		if (pt_prev) {
1870 			deliver_skb(skb2, pt_prev, skb->dev);
1871 			pt_prev = ptype;
1872 			continue;
1873 		}
1874 
1875 		/* need to clone skb, done only once */
1876 		skb2 = skb_clone(skb, GFP_ATOMIC);
1877 		if (!skb2)
1878 			goto out_unlock;
1879 
1880 		net_timestamp_set(skb2);
1881 
1882 		/* skb->nh should be correctly
1883 		 * set by sender, so that the second statement is
1884 		 * just protection against buggy protocols.
1885 		 */
1886 		skb_reset_mac_header(skb2);
1887 
1888 		if (skb_network_header(skb2) < skb2->data ||
1889 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 					     ntohs(skb2->protocol),
1892 					     dev->name);
1893 			skb_reset_network_header(skb2);
1894 		}
1895 
1896 		skb2->transport_header = skb2->network_header;
1897 		skb2->pkt_type = PACKET_OUTGOING;
1898 		pt_prev = ptype;
1899 	}
1900 
1901 	if (ptype_list == &ptype_all) {
1902 		ptype_list = &dev->ptype_all;
1903 		goto again;
1904 	}
1905 out_unlock:
1906 	if (pt_prev)
1907 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 	rcu_read_unlock();
1909 }
1910 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1911 
1912 /**
1913  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1914  * @dev: Network device
1915  * @txq: number of queues available
1916  *
1917  * If real_num_tx_queues is changed the tc mappings may no longer be
1918  * valid. To resolve this verify the tc mapping remains valid and if
1919  * not NULL the mapping. With no priorities mapping to this
1920  * offset/count pair it will no longer be used. In the worst case TC0
1921  * is invalid nothing can be done so disable priority mappings. If is
1922  * expected that drivers will fix this mapping if they can before
1923  * calling netif_set_real_num_tx_queues.
1924  */
1925 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1926 {
1927 	int i;
1928 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1929 
1930 	/* If TC0 is invalidated disable TC mapping */
1931 	if (tc->offset + tc->count > txq) {
1932 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1933 		dev->num_tc = 0;
1934 		return;
1935 	}
1936 
1937 	/* Invalidated prio to tc mappings set to TC0 */
1938 	for (i = 1; i < TC_BITMASK + 1; i++) {
1939 		int q = netdev_get_prio_tc_map(dev, i);
1940 
1941 		tc = &dev->tc_to_txq[q];
1942 		if (tc->offset + tc->count > txq) {
1943 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1944 				i, q);
1945 			netdev_set_prio_tc_map(dev, i, 0);
1946 		}
1947 	}
1948 }
1949 
1950 #ifdef CONFIG_XPS
1951 static DEFINE_MUTEX(xps_map_mutex);
1952 #define xmap_dereference(P)		\
1953 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1954 
1955 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1956 					int cpu, u16 index)
1957 {
1958 	struct xps_map *map = NULL;
1959 	int pos;
1960 
1961 	if (dev_maps)
1962 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1963 
1964 	for (pos = 0; map && pos < map->len; pos++) {
1965 		if (map->queues[pos] == index) {
1966 			if (map->len > 1) {
1967 				map->queues[pos] = map->queues[--map->len];
1968 			} else {
1969 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1970 				kfree_rcu(map, rcu);
1971 				map = NULL;
1972 			}
1973 			break;
1974 		}
1975 	}
1976 
1977 	return map;
1978 }
1979 
1980 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1981 {
1982 	struct xps_dev_maps *dev_maps;
1983 	int cpu, i;
1984 	bool active = false;
1985 
1986 	mutex_lock(&xps_map_mutex);
1987 	dev_maps = xmap_dereference(dev->xps_maps);
1988 
1989 	if (!dev_maps)
1990 		goto out_no_maps;
1991 
1992 	for_each_possible_cpu(cpu) {
1993 		for (i = index; i < dev->num_tx_queues; i++) {
1994 			if (!remove_xps_queue(dev_maps, cpu, i))
1995 				break;
1996 		}
1997 		if (i == dev->num_tx_queues)
1998 			active = true;
1999 	}
2000 
2001 	if (!active) {
2002 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2003 		kfree_rcu(dev_maps, rcu);
2004 	}
2005 
2006 	for (i = index; i < dev->num_tx_queues; i++)
2007 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2008 					     NUMA_NO_NODE);
2009 
2010 out_no_maps:
2011 	mutex_unlock(&xps_map_mutex);
2012 }
2013 
2014 static struct xps_map *expand_xps_map(struct xps_map *map,
2015 				      int cpu, u16 index)
2016 {
2017 	struct xps_map *new_map;
2018 	int alloc_len = XPS_MIN_MAP_ALLOC;
2019 	int i, pos;
2020 
2021 	for (pos = 0; map && pos < map->len; pos++) {
2022 		if (map->queues[pos] != index)
2023 			continue;
2024 		return map;
2025 	}
2026 
2027 	/* Need to add queue to this CPU's existing map */
2028 	if (map) {
2029 		if (pos < map->alloc_len)
2030 			return map;
2031 
2032 		alloc_len = map->alloc_len * 2;
2033 	}
2034 
2035 	/* Need to allocate new map to store queue on this CPU's map */
2036 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2037 			       cpu_to_node(cpu));
2038 	if (!new_map)
2039 		return NULL;
2040 
2041 	for (i = 0; i < pos; i++)
2042 		new_map->queues[i] = map->queues[i];
2043 	new_map->alloc_len = alloc_len;
2044 	new_map->len = pos;
2045 
2046 	return new_map;
2047 }
2048 
2049 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2050 			u16 index)
2051 {
2052 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2053 	struct xps_map *map, *new_map;
2054 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2055 	int cpu, numa_node_id = -2;
2056 	bool active = false;
2057 
2058 	mutex_lock(&xps_map_mutex);
2059 
2060 	dev_maps = xmap_dereference(dev->xps_maps);
2061 
2062 	/* allocate memory for queue storage */
2063 	for_each_online_cpu(cpu) {
2064 		if (!cpumask_test_cpu(cpu, mask))
2065 			continue;
2066 
2067 		if (!new_dev_maps)
2068 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2069 		if (!new_dev_maps) {
2070 			mutex_unlock(&xps_map_mutex);
2071 			return -ENOMEM;
2072 		}
2073 
2074 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2075 				 NULL;
2076 
2077 		map = expand_xps_map(map, cpu, index);
2078 		if (!map)
2079 			goto error;
2080 
2081 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2082 	}
2083 
2084 	if (!new_dev_maps)
2085 		goto out_no_new_maps;
2086 
2087 	for_each_possible_cpu(cpu) {
2088 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2089 			/* add queue to CPU maps */
2090 			int pos = 0;
2091 
2092 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2093 			while ((pos < map->len) && (map->queues[pos] != index))
2094 				pos++;
2095 
2096 			if (pos == map->len)
2097 				map->queues[map->len++] = index;
2098 #ifdef CONFIG_NUMA
2099 			if (numa_node_id == -2)
2100 				numa_node_id = cpu_to_node(cpu);
2101 			else if (numa_node_id != cpu_to_node(cpu))
2102 				numa_node_id = -1;
2103 #endif
2104 		} else if (dev_maps) {
2105 			/* fill in the new device map from the old device map */
2106 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2107 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2108 		}
2109 
2110 	}
2111 
2112 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2113 
2114 	/* Cleanup old maps */
2115 	if (dev_maps) {
2116 		for_each_possible_cpu(cpu) {
2117 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2118 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2119 			if (map && map != new_map)
2120 				kfree_rcu(map, rcu);
2121 		}
2122 
2123 		kfree_rcu(dev_maps, rcu);
2124 	}
2125 
2126 	dev_maps = new_dev_maps;
2127 	active = true;
2128 
2129 out_no_new_maps:
2130 	/* update Tx queue numa node */
2131 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2132 				     (numa_node_id >= 0) ? numa_node_id :
2133 				     NUMA_NO_NODE);
2134 
2135 	if (!dev_maps)
2136 		goto out_no_maps;
2137 
2138 	/* removes queue from unused CPUs */
2139 	for_each_possible_cpu(cpu) {
2140 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2141 			continue;
2142 
2143 		if (remove_xps_queue(dev_maps, cpu, index))
2144 			active = true;
2145 	}
2146 
2147 	/* free map if not active */
2148 	if (!active) {
2149 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2150 		kfree_rcu(dev_maps, rcu);
2151 	}
2152 
2153 out_no_maps:
2154 	mutex_unlock(&xps_map_mutex);
2155 
2156 	return 0;
2157 error:
2158 	/* remove any maps that we added */
2159 	for_each_possible_cpu(cpu) {
2160 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2161 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2162 				 NULL;
2163 		if (new_map && new_map != map)
2164 			kfree(new_map);
2165 	}
2166 
2167 	mutex_unlock(&xps_map_mutex);
2168 
2169 	kfree(new_dev_maps);
2170 	return -ENOMEM;
2171 }
2172 EXPORT_SYMBOL(netif_set_xps_queue);
2173 
2174 #endif
2175 /*
2176  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2177  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2178  */
2179 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2180 {
2181 	int rc;
2182 
2183 	if (txq < 1 || txq > dev->num_tx_queues)
2184 		return -EINVAL;
2185 
2186 	if (dev->reg_state == NETREG_REGISTERED ||
2187 	    dev->reg_state == NETREG_UNREGISTERING) {
2188 		ASSERT_RTNL();
2189 
2190 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2191 						  txq);
2192 		if (rc)
2193 			return rc;
2194 
2195 		if (dev->num_tc)
2196 			netif_setup_tc(dev, txq);
2197 
2198 		if (txq < dev->real_num_tx_queues) {
2199 			qdisc_reset_all_tx_gt(dev, txq);
2200 #ifdef CONFIG_XPS
2201 			netif_reset_xps_queues_gt(dev, txq);
2202 #endif
2203 		}
2204 	}
2205 
2206 	dev->real_num_tx_queues = txq;
2207 	return 0;
2208 }
2209 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2210 
2211 #ifdef CONFIG_SYSFS
2212 /**
2213  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2214  *	@dev: Network device
2215  *	@rxq: Actual number of RX queues
2216  *
2217  *	This must be called either with the rtnl_lock held or before
2218  *	registration of the net device.  Returns 0 on success, or a
2219  *	negative error code.  If called before registration, it always
2220  *	succeeds.
2221  */
2222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2223 {
2224 	int rc;
2225 
2226 	if (rxq < 1 || rxq > dev->num_rx_queues)
2227 		return -EINVAL;
2228 
2229 	if (dev->reg_state == NETREG_REGISTERED) {
2230 		ASSERT_RTNL();
2231 
2232 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2233 						  rxq);
2234 		if (rc)
2235 			return rc;
2236 	}
2237 
2238 	dev->real_num_rx_queues = rxq;
2239 	return 0;
2240 }
2241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2242 #endif
2243 
2244 /**
2245  * netif_get_num_default_rss_queues - default number of RSS queues
2246  *
2247  * This routine should set an upper limit on the number of RSS queues
2248  * used by default by multiqueue devices.
2249  */
2250 int netif_get_num_default_rss_queues(void)
2251 {
2252 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2253 }
2254 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2255 
2256 static inline void __netif_reschedule(struct Qdisc *q)
2257 {
2258 	struct softnet_data *sd;
2259 	unsigned long flags;
2260 
2261 	local_irq_save(flags);
2262 	sd = this_cpu_ptr(&softnet_data);
2263 	q->next_sched = NULL;
2264 	*sd->output_queue_tailp = q;
2265 	sd->output_queue_tailp = &q->next_sched;
2266 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 	local_irq_restore(flags);
2268 }
2269 
2270 void __netif_schedule(struct Qdisc *q)
2271 {
2272 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2273 		__netif_reschedule(q);
2274 }
2275 EXPORT_SYMBOL(__netif_schedule);
2276 
2277 struct dev_kfree_skb_cb {
2278 	enum skb_free_reason reason;
2279 };
2280 
2281 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2282 {
2283 	return (struct dev_kfree_skb_cb *)skb->cb;
2284 }
2285 
2286 void netif_schedule_queue(struct netdev_queue *txq)
2287 {
2288 	rcu_read_lock();
2289 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2290 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2291 
2292 		__netif_schedule(q);
2293 	}
2294 	rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL(netif_schedule_queue);
2297 
2298 /**
2299  *	netif_wake_subqueue - allow sending packets on subqueue
2300  *	@dev: network device
2301  *	@queue_index: sub queue index
2302  *
2303  * Resume individual transmit queue of a device with multiple transmit queues.
2304  */
2305 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2306 {
2307 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2308 
2309 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2310 		struct Qdisc *q;
2311 
2312 		rcu_read_lock();
2313 		q = rcu_dereference(txq->qdisc);
2314 		__netif_schedule(q);
2315 		rcu_read_unlock();
2316 	}
2317 }
2318 EXPORT_SYMBOL(netif_wake_subqueue);
2319 
2320 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2321 {
2322 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2323 		struct Qdisc *q;
2324 
2325 		rcu_read_lock();
2326 		q = rcu_dereference(dev_queue->qdisc);
2327 		__netif_schedule(q);
2328 		rcu_read_unlock();
2329 	}
2330 }
2331 EXPORT_SYMBOL(netif_tx_wake_queue);
2332 
2333 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335 	unsigned long flags;
2336 
2337 	if (likely(atomic_read(&skb->users) == 1)) {
2338 		smp_rmb();
2339 		atomic_set(&skb->users, 0);
2340 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2341 		return;
2342 	}
2343 	get_kfree_skb_cb(skb)->reason = reason;
2344 	local_irq_save(flags);
2345 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2346 	__this_cpu_write(softnet_data.completion_queue, skb);
2347 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2348 	local_irq_restore(flags);
2349 }
2350 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2351 
2352 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2353 {
2354 	if (in_irq() || irqs_disabled())
2355 		__dev_kfree_skb_irq(skb, reason);
2356 	else
2357 		dev_kfree_skb(skb);
2358 }
2359 EXPORT_SYMBOL(__dev_kfree_skb_any);
2360 
2361 
2362 /**
2363  * netif_device_detach - mark device as removed
2364  * @dev: network device
2365  *
2366  * Mark device as removed from system and therefore no longer available.
2367  */
2368 void netif_device_detach(struct net_device *dev)
2369 {
2370 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2371 	    netif_running(dev)) {
2372 		netif_tx_stop_all_queues(dev);
2373 	}
2374 }
2375 EXPORT_SYMBOL(netif_device_detach);
2376 
2377 /**
2378  * netif_device_attach - mark device as attached
2379  * @dev: network device
2380  *
2381  * Mark device as attached from system and restart if needed.
2382  */
2383 void netif_device_attach(struct net_device *dev)
2384 {
2385 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2386 	    netif_running(dev)) {
2387 		netif_tx_wake_all_queues(dev);
2388 		__netdev_watchdog_up(dev);
2389 	}
2390 }
2391 EXPORT_SYMBOL(netif_device_attach);
2392 
2393 /*
2394  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2395  * to be used as a distribution range.
2396  */
2397 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2398 		  unsigned int num_tx_queues)
2399 {
2400 	u32 hash;
2401 	u16 qoffset = 0;
2402 	u16 qcount = num_tx_queues;
2403 
2404 	if (skb_rx_queue_recorded(skb)) {
2405 		hash = skb_get_rx_queue(skb);
2406 		while (unlikely(hash >= num_tx_queues))
2407 			hash -= num_tx_queues;
2408 		return hash;
2409 	}
2410 
2411 	if (dev->num_tc) {
2412 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2413 		qoffset = dev->tc_to_txq[tc].offset;
2414 		qcount = dev->tc_to_txq[tc].count;
2415 	}
2416 
2417 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2418 }
2419 EXPORT_SYMBOL(__skb_tx_hash);
2420 
2421 static void skb_warn_bad_offload(const struct sk_buff *skb)
2422 {
2423 	static const netdev_features_t null_features = 0;
2424 	struct net_device *dev = skb->dev;
2425 	const char *name = "";
2426 
2427 	if (!net_ratelimit())
2428 		return;
2429 
2430 	if (dev) {
2431 		if (dev->dev.parent)
2432 			name = dev_driver_string(dev->dev.parent);
2433 		else
2434 			name = netdev_name(dev);
2435 	}
2436 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2437 	     "gso_type=%d ip_summed=%d\n",
2438 	     name, dev ? &dev->features : &null_features,
2439 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2440 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2441 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2442 }
2443 
2444 /*
2445  * Invalidate hardware checksum when packet is to be mangled, and
2446  * complete checksum manually on outgoing path.
2447  */
2448 int skb_checksum_help(struct sk_buff *skb)
2449 {
2450 	__wsum csum;
2451 	int ret = 0, offset;
2452 
2453 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2454 		goto out_set_summed;
2455 
2456 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2457 		skb_warn_bad_offload(skb);
2458 		return -EINVAL;
2459 	}
2460 
2461 	/* Before computing a checksum, we should make sure no frag could
2462 	 * be modified by an external entity : checksum could be wrong.
2463 	 */
2464 	if (skb_has_shared_frag(skb)) {
2465 		ret = __skb_linearize(skb);
2466 		if (ret)
2467 			goto out;
2468 	}
2469 
2470 	offset = skb_checksum_start_offset(skb);
2471 	BUG_ON(offset >= skb_headlen(skb));
2472 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2473 
2474 	offset += skb->csum_offset;
2475 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2476 
2477 	if (skb_cloned(skb) &&
2478 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2479 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2480 		if (ret)
2481 			goto out;
2482 	}
2483 
2484 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2485 out_set_summed:
2486 	skb->ip_summed = CHECKSUM_NONE;
2487 out:
2488 	return ret;
2489 }
2490 EXPORT_SYMBOL(skb_checksum_help);
2491 
2492 /* skb_csum_offload_check - Driver helper function to determine if a device
2493  * with limited checksum offload capabilities is able to offload the checksum
2494  * for a given packet.
2495  *
2496  * Arguments:
2497  *   skb - sk_buff for the packet in question
2498  *   spec - contains the description of what device can offload
2499  *   csum_encapped - returns true if the checksum being offloaded is
2500  *	      encpasulated. That is it is checksum for the transport header
2501  *	      in the inner headers.
2502  *   checksum_help - when set indicates that helper function should
2503  *	      call skb_checksum_help if offload checks fail
2504  *
2505  * Returns:
2506  *   true: Packet has passed the checksum checks and should be offloadable to
2507  *	   the device (a driver may still need to check for additional
2508  *	   restrictions of its device)
2509  *   false: Checksum is not offloadable. If checksum_help was set then
2510  *	   skb_checksum_help was called to resolve checksum for non-GSO
2511  *	   packets and when IP protocol is not SCTP
2512  */
2513 bool __skb_csum_offload_chk(struct sk_buff *skb,
2514 			    const struct skb_csum_offl_spec *spec,
2515 			    bool *csum_encapped,
2516 			    bool csum_help)
2517 {
2518 	struct iphdr *iph;
2519 	struct ipv6hdr *ipv6;
2520 	void *nhdr;
2521 	int protocol;
2522 	u8 ip_proto;
2523 
2524 	if (skb->protocol == htons(ETH_P_8021Q) ||
2525 	    skb->protocol == htons(ETH_P_8021AD)) {
2526 		if (!spec->vlan_okay)
2527 			goto need_help;
2528 	}
2529 
2530 	/* We check whether the checksum refers to a transport layer checksum in
2531 	 * the outermost header or an encapsulated transport layer checksum that
2532 	 * corresponds to the inner headers of the skb. If the checksum is for
2533 	 * something else in the packet we need help.
2534 	 */
2535 	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2536 		/* Non-encapsulated checksum */
2537 		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2538 		nhdr = skb_network_header(skb);
2539 		*csum_encapped = false;
2540 		if (spec->no_not_encapped)
2541 			goto need_help;
2542 	} else if (skb->encapsulation && spec->encap_okay &&
2543 		   skb_checksum_start_offset(skb) ==
2544 		   skb_inner_transport_offset(skb)) {
2545 		/* Encapsulated checksum */
2546 		*csum_encapped = true;
2547 		switch (skb->inner_protocol_type) {
2548 		case ENCAP_TYPE_ETHER:
2549 			protocol = eproto_to_ipproto(skb->inner_protocol);
2550 			break;
2551 		case ENCAP_TYPE_IPPROTO:
2552 			protocol = skb->inner_protocol;
2553 			break;
2554 		}
2555 		nhdr = skb_inner_network_header(skb);
2556 	} else {
2557 		goto need_help;
2558 	}
2559 
2560 	switch (protocol) {
2561 	case IPPROTO_IP:
2562 		if (!spec->ipv4_okay)
2563 			goto need_help;
2564 		iph = nhdr;
2565 		ip_proto = iph->protocol;
2566 		if (iph->ihl != 5 && !spec->ip_options_okay)
2567 			goto need_help;
2568 		break;
2569 	case IPPROTO_IPV6:
2570 		if (!spec->ipv6_okay)
2571 			goto need_help;
2572 		if (spec->no_encapped_ipv6 && *csum_encapped)
2573 			goto need_help;
2574 		ipv6 = nhdr;
2575 		nhdr += sizeof(*ipv6);
2576 		ip_proto = ipv6->nexthdr;
2577 		break;
2578 	default:
2579 		goto need_help;
2580 	}
2581 
2582 ip_proto_again:
2583 	switch (ip_proto) {
2584 	case IPPROTO_TCP:
2585 		if (!spec->tcp_okay ||
2586 		    skb->csum_offset != offsetof(struct tcphdr, check))
2587 			goto need_help;
2588 		break;
2589 	case IPPROTO_UDP:
2590 		if (!spec->udp_okay ||
2591 		    skb->csum_offset != offsetof(struct udphdr, check))
2592 			goto need_help;
2593 		break;
2594 	case IPPROTO_SCTP:
2595 		if (!spec->sctp_okay ||
2596 		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2597 			goto cant_help;
2598 		break;
2599 	case NEXTHDR_HOP:
2600 	case NEXTHDR_ROUTING:
2601 	case NEXTHDR_DEST: {
2602 		u8 *opthdr = nhdr;
2603 
2604 		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2605 			goto need_help;
2606 
2607 		ip_proto = opthdr[0];
2608 		nhdr += (opthdr[1] + 1) << 3;
2609 
2610 		goto ip_proto_again;
2611 	}
2612 	default:
2613 		goto need_help;
2614 	}
2615 
2616 	/* Passed the tests for offloading checksum */
2617 	return true;
2618 
2619 need_help:
2620 	if (csum_help && !skb_shinfo(skb)->gso_size)
2621 		skb_checksum_help(skb);
2622 cant_help:
2623 	return false;
2624 }
2625 EXPORT_SYMBOL(__skb_csum_offload_chk);
2626 
2627 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2628 {
2629 	__be16 type = skb->protocol;
2630 
2631 	/* Tunnel gso handlers can set protocol to ethernet. */
2632 	if (type == htons(ETH_P_TEB)) {
2633 		struct ethhdr *eth;
2634 
2635 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2636 			return 0;
2637 
2638 		eth = (struct ethhdr *)skb_mac_header(skb);
2639 		type = eth->h_proto;
2640 	}
2641 
2642 	return __vlan_get_protocol(skb, type, depth);
2643 }
2644 
2645 /**
2646  *	skb_mac_gso_segment - mac layer segmentation handler.
2647  *	@skb: buffer to segment
2648  *	@features: features for the output path (see dev->features)
2649  */
2650 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2651 				    netdev_features_t features)
2652 {
2653 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2654 	struct packet_offload *ptype;
2655 	int vlan_depth = skb->mac_len;
2656 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2657 
2658 	if (unlikely(!type))
2659 		return ERR_PTR(-EINVAL);
2660 
2661 	__skb_pull(skb, vlan_depth);
2662 
2663 	rcu_read_lock();
2664 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2665 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2666 			segs = ptype->callbacks.gso_segment(skb, features);
2667 			break;
2668 		}
2669 	}
2670 	rcu_read_unlock();
2671 
2672 	__skb_push(skb, skb->data - skb_mac_header(skb));
2673 
2674 	return segs;
2675 }
2676 EXPORT_SYMBOL(skb_mac_gso_segment);
2677 
2678 
2679 /* openvswitch calls this on rx path, so we need a different check.
2680  */
2681 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2682 {
2683 	if (tx_path)
2684 		return skb->ip_summed != CHECKSUM_PARTIAL;
2685 	else
2686 		return skb->ip_summed == CHECKSUM_NONE;
2687 }
2688 
2689 /**
2690  *	__skb_gso_segment - Perform segmentation on skb.
2691  *	@skb: buffer to segment
2692  *	@features: features for the output path (see dev->features)
2693  *	@tx_path: whether it is called in TX path
2694  *
2695  *	This function segments the given skb and returns a list of segments.
2696  *
2697  *	It may return NULL if the skb requires no segmentation.  This is
2698  *	only possible when GSO is used for verifying header integrity.
2699  *
2700  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2701  */
2702 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2703 				  netdev_features_t features, bool tx_path)
2704 {
2705 	if (unlikely(skb_needs_check(skb, tx_path))) {
2706 		int err;
2707 
2708 		skb_warn_bad_offload(skb);
2709 
2710 		err = skb_cow_head(skb, 0);
2711 		if (err < 0)
2712 			return ERR_PTR(err);
2713 	}
2714 
2715 	/* Only report GSO partial support if it will enable us to
2716 	 * support segmentation on this frame without needing additional
2717 	 * work.
2718 	 */
2719 	if (features & NETIF_F_GSO_PARTIAL) {
2720 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2721 		struct net_device *dev = skb->dev;
2722 
2723 		partial_features |= dev->features & dev->gso_partial_features;
2724 		if (!skb_gso_ok(skb, features | partial_features))
2725 			features &= ~NETIF_F_GSO_PARTIAL;
2726 	}
2727 
2728 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2729 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2730 
2731 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2732 	SKB_GSO_CB(skb)->encap_level = 0;
2733 
2734 	skb_reset_mac_header(skb);
2735 	skb_reset_mac_len(skb);
2736 
2737 	return skb_mac_gso_segment(skb, features);
2738 }
2739 EXPORT_SYMBOL(__skb_gso_segment);
2740 
2741 /* Take action when hardware reception checksum errors are detected. */
2742 #ifdef CONFIG_BUG
2743 void netdev_rx_csum_fault(struct net_device *dev)
2744 {
2745 	if (net_ratelimit()) {
2746 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2747 		dump_stack();
2748 	}
2749 }
2750 EXPORT_SYMBOL(netdev_rx_csum_fault);
2751 #endif
2752 
2753 /* Actually, we should eliminate this check as soon as we know, that:
2754  * 1. IOMMU is present and allows to map all the memory.
2755  * 2. No high memory really exists on this machine.
2756  */
2757 
2758 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2759 {
2760 #ifdef CONFIG_HIGHMEM
2761 	int i;
2762 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2763 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2765 			if (PageHighMem(skb_frag_page(frag)))
2766 				return 1;
2767 		}
2768 	}
2769 
2770 	if (PCI_DMA_BUS_IS_PHYS) {
2771 		struct device *pdev = dev->dev.parent;
2772 
2773 		if (!pdev)
2774 			return 0;
2775 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2776 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2777 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2778 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2779 				return 1;
2780 		}
2781 	}
2782 #endif
2783 	return 0;
2784 }
2785 
2786 /* If MPLS offload request, verify we are testing hardware MPLS features
2787  * instead of standard features for the netdev.
2788  */
2789 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2790 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2791 					   netdev_features_t features,
2792 					   __be16 type)
2793 {
2794 	if (eth_p_mpls(type))
2795 		features &= skb->dev->mpls_features;
2796 
2797 	return features;
2798 }
2799 #else
2800 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2801 					   netdev_features_t features,
2802 					   __be16 type)
2803 {
2804 	return features;
2805 }
2806 #endif
2807 
2808 static netdev_features_t harmonize_features(struct sk_buff *skb,
2809 	netdev_features_t features)
2810 {
2811 	int tmp;
2812 	__be16 type;
2813 
2814 	type = skb_network_protocol(skb, &tmp);
2815 	features = net_mpls_features(skb, features, type);
2816 
2817 	if (skb->ip_summed != CHECKSUM_NONE &&
2818 	    !can_checksum_protocol(features, type)) {
2819 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2820 	} else if (illegal_highdma(skb->dev, skb)) {
2821 		features &= ~NETIF_F_SG;
2822 	}
2823 
2824 	return features;
2825 }
2826 
2827 netdev_features_t passthru_features_check(struct sk_buff *skb,
2828 					  struct net_device *dev,
2829 					  netdev_features_t features)
2830 {
2831 	return features;
2832 }
2833 EXPORT_SYMBOL(passthru_features_check);
2834 
2835 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2836 					     struct net_device *dev,
2837 					     netdev_features_t features)
2838 {
2839 	return vlan_features_check(skb, features);
2840 }
2841 
2842 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2843 					    struct net_device *dev,
2844 					    netdev_features_t features)
2845 {
2846 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2847 
2848 	if (gso_segs > dev->gso_max_segs)
2849 		return features & ~NETIF_F_GSO_MASK;
2850 
2851 	/* Support for GSO partial features requires software
2852 	 * intervention before we can actually process the packets
2853 	 * so we need to strip support for any partial features now
2854 	 * and we can pull them back in after we have partially
2855 	 * segmented the frame.
2856 	 */
2857 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2858 		features &= ~dev->gso_partial_features;
2859 
2860 	/* Make sure to clear the IPv4 ID mangling feature if the
2861 	 * IPv4 header has the potential to be fragmented.
2862 	 */
2863 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2864 		struct iphdr *iph = skb->encapsulation ?
2865 				    inner_ip_hdr(skb) : ip_hdr(skb);
2866 
2867 		if (!(iph->frag_off & htons(IP_DF)))
2868 			features &= ~NETIF_F_TSO_MANGLEID;
2869 	}
2870 
2871 	return features;
2872 }
2873 
2874 netdev_features_t netif_skb_features(struct sk_buff *skb)
2875 {
2876 	struct net_device *dev = skb->dev;
2877 	netdev_features_t features = dev->features;
2878 
2879 	if (skb_is_gso(skb))
2880 		features = gso_features_check(skb, dev, features);
2881 
2882 	/* If encapsulation offload request, verify we are testing
2883 	 * hardware encapsulation features instead of standard
2884 	 * features for the netdev
2885 	 */
2886 	if (skb->encapsulation)
2887 		features &= dev->hw_enc_features;
2888 
2889 	if (skb_vlan_tagged(skb))
2890 		features = netdev_intersect_features(features,
2891 						     dev->vlan_features |
2892 						     NETIF_F_HW_VLAN_CTAG_TX |
2893 						     NETIF_F_HW_VLAN_STAG_TX);
2894 
2895 	if (dev->netdev_ops->ndo_features_check)
2896 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2897 								features);
2898 	else
2899 		features &= dflt_features_check(skb, dev, features);
2900 
2901 	return harmonize_features(skb, features);
2902 }
2903 EXPORT_SYMBOL(netif_skb_features);
2904 
2905 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2906 		    struct netdev_queue *txq, bool more)
2907 {
2908 	unsigned int len;
2909 	int rc;
2910 
2911 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2912 		dev_queue_xmit_nit(skb, dev);
2913 
2914 	len = skb->len;
2915 	trace_net_dev_start_xmit(skb, dev);
2916 	rc = netdev_start_xmit(skb, dev, txq, more);
2917 	trace_net_dev_xmit(skb, rc, dev, len);
2918 
2919 	return rc;
2920 }
2921 
2922 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2923 				    struct netdev_queue *txq, int *ret)
2924 {
2925 	struct sk_buff *skb = first;
2926 	int rc = NETDEV_TX_OK;
2927 
2928 	while (skb) {
2929 		struct sk_buff *next = skb->next;
2930 
2931 		skb->next = NULL;
2932 		rc = xmit_one(skb, dev, txq, next != NULL);
2933 		if (unlikely(!dev_xmit_complete(rc))) {
2934 			skb->next = next;
2935 			goto out;
2936 		}
2937 
2938 		skb = next;
2939 		if (netif_xmit_stopped(txq) && skb) {
2940 			rc = NETDEV_TX_BUSY;
2941 			break;
2942 		}
2943 	}
2944 
2945 out:
2946 	*ret = rc;
2947 	return skb;
2948 }
2949 
2950 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2951 					  netdev_features_t features)
2952 {
2953 	if (skb_vlan_tag_present(skb) &&
2954 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2955 		skb = __vlan_hwaccel_push_inside(skb);
2956 	return skb;
2957 }
2958 
2959 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2960 {
2961 	netdev_features_t features;
2962 
2963 	features = netif_skb_features(skb);
2964 	skb = validate_xmit_vlan(skb, features);
2965 	if (unlikely(!skb))
2966 		goto out_null;
2967 
2968 	if (netif_needs_gso(skb, features)) {
2969 		struct sk_buff *segs;
2970 
2971 		segs = skb_gso_segment(skb, features);
2972 		if (IS_ERR(segs)) {
2973 			goto out_kfree_skb;
2974 		} else if (segs) {
2975 			consume_skb(skb);
2976 			skb = segs;
2977 		}
2978 	} else {
2979 		if (skb_needs_linearize(skb, features) &&
2980 		    __skb_linearize(skb))
2981 			goto out_kfree_skb;
2982 
2983 		/* If packet is not checksummed and device does not
2984 		 * support checksumming for this protocol, complete
2985 		 * checksumming here.
2986 		 */
2987 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2988 			if (skb->encapsulation)
2989 				skb_set_inner_transport_header(skb,
2990 							       skb_checksum_start_offset(skb));
2991 			else
2992 				skb_set_transport_header(skb,
2993 							 skb_checksum_start_offset(skb));
2994 			if (!(features & NETIF_F_CSUM_MASK) &&
2995 			    skb_checksum_help(skb))
2996 				goto out_kfree_skb;
2997 		}
2998 	}
2999 
3000 	return skb;
3001 
3002 out_kfree_skb:
3003 	kfree_skb(skb);
3004 out_null:
3005 	atomic_long_inc(&dev->tx_dropped);
3006 	return NULL;
3007 }
3008 
3009 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3010 {
3011 	struct sk_buff *next, *head = NULL, *tail;
3012 
3013 	for (; skb != NULL; skb = next) {
3014 		next = skb->next;
3015 		skb->next = NULL;
3016 
3017 		/* in case skb wont be segmented, point to itself */
3018 		skb->prev = skb;
3019 
3020 		skb = validate_xmit_skb(skb, dev);
3021 		if (!skb)
3022 			continue;
3023 
3024 		if (!head)
3025 			head = skb;
3026 		else
3027 			tail->next = skb;
3028 		/* If skb was segmented, skb->prev points to
3029 		 * the last segment. If not, it still contains skb.
3030 		 */
3031 		tail = skb->prev;
3032 	}
3033 	return head;
3034 }
3035 
3036 static void qdisc_pkt_len_init(struct sk_buff *skb)
3037 {
3038 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3039 
3040 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3041 
3042 	/* To get more precise estimation of bytes sent on wire,
3043 	 * we add to pkt_len the headers size of all segments
3044 	 */
3045 	if (shinfo->gso_size)  {
3046 		unsigned int hdr_len;
3047 		u16 gso_segs = shinfo->gso_segs;
3048 
3049 		/* mac layer + network layer */
3050 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3051 
3052 		/* + transport layer */
3053 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3054 			hdr_len += tcp_hdrlen(skb);
3055 		else
3056 			hdr_len += sizeof(struct udphdr);
3057 
3058 		if (shinfo->gso_type & SKB_GSO_DODGY)
3059 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3060 						shinfo->gso_size);
3061 
3062 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3063 	}
3064 }
3065 
3066 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3067 				 struct net_device *dev,
3068 				 struct netdev_queue *txq)
3069 {
3070 	spinlock_t *root_lock = qdisc_lock(q);
3071 	bool contended;
3072 	int rc;
3073 
3074 	qdisc_calculate_pkt_len(skb, q);
3075 	/*
3076 	 * Heuristic to force contended enqueues to serialize on a
3077 	 * separate lock before trying to get qdisc main lock.
3078 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3079 	 * often and dequeue packets faster.
3080 	 */
3081 	contended = qdisc_is_running(q);
3082 	if (unlikely(contended))
3083 		spin_lock(&q->busylock);
3084 
3085 	spin_lock(root_lock);
3086 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3087 		kfree_skb(skb);
3088 		rc = NET_XMIT_DROP;
3089 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3090 		   qdisc_run_begin(q)) {
3091 		/*
3092 		 * This is a work-conserving queue; there are no old skbs
3093 		 * waiting to be sent out; and the qdisc is not running -
3094 		 * xmit the skb directly.
3095 		 */
3096 
3097 		qdisc_bstats_update(q, skb);
3098 
3099 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3100 			if (unlikely(contended)) {
3101 				spin_unlock(&q->busylock);
3102 				contended = false;
3103 			}
3104 			__qdisc_run(q);
3105 		} else
3106 			qdisc_run_end(q);
3107 
3108 		rc = NET_XMIT_SUCCESS;
3109 	} else {
3110 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3111 		if (qdisc_run_begin(q)) {
3112 			if (unlikely(contended)) {
3113 				spin_unlock(&q->busylock);
3114 				contended = false;
3115 			}
3116 			__qdisc_run(q);
3117 		}
3118 	}
3119 	spin_unlock(root_lock);
3120 	if (unlikely(contended))
3121 		spin_unlock(&q->busylock);
3122 	return rc;
3123 }
3124 
3125 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3126 static void skb_update_prio(struct sk_buff *skb)
3127 {
3128 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3129 
3130 	if (!skb->priority && skb->sk && map) {
3131 		unsigned int prioidx =
3132 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3133 
3134 		if (prioidx < map->priomap_len)
3135 			skb->priority = map->priomap[prioidx];
3136 	}
3137 }
3138 #else
3139 #define skb_update_prio(skb)
3140 #endif
3141 
3142 DEFINE_PER_CPU(int, xmit_recursion);
3143 EXPORT_SYMBOL(xmit_recursion);
3144 
3145 #define RECURSION_LIMIT 10
3146 
3147 /**
3148  *	dev_loopback_xmit - loop back @skb
3149  *	@net: network namespace this loopback is happening in
3150  *	@sk:  sk needed to be a netfilter okfn
3151  *	@skb: buffer to transmit
3152  */
3153 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3154 {
3155 	skb_reset_mac_header(skb);
3156 	__skb_pull(skb, skb_network_offset(skb));
3157 	skb->pkt_type = PACKET_LOOPBACK;
3158 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3159 	WARN_ON(!skb_dst(skb));
3160 	skb_dst_force(skb);
3161 	netif_rx_ni(skb);
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(dev_loopback_xmit);
3165 
3166 #ifdef CONFIG_NET_EGRESS
3167 static struct sk_buff *
3168 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3169 {
3170 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3171 	struct tcf_result cl_res;
3172 
3173 	if (!cl)
3174 		return skb;
3175 
3176 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3177 	 * earlier by the caller.
3178 	 */
3179 	qdisc_bstats_cpu_update(cl->q, skb);
3180 
3181 	switch (tc_classify(skb, cl, &cl_res, false)) {
3182 	case TC_ACT_OK:
3183 	case TC_ACT_RECLASSIFY:
3184 		skb->tc_index = TC_H_MIN(cl_res.classid);
3185 		break;
3186 	case TC_ACT_SHOT:
3187 		qdisc_qstats_cpu_drop(cl->q);
3188 		*ret = NET_XMIT_DROP;
3189 		kfree_skb(skb);
3190 		return NULL;
3191 	case TC_ACT_STOLEN:
3192 	case TC_ACT_QUEUED:
3193 		*ret = NET_XMIT_SUCCESS;
3194 		consume_skb(skb);
3195 		return NULL;
3196 	case TC_ACT_REDIRECT:
3197 		/* No need to push/pop skb's mac_header here on egress! */
3198 		skb_do_redirect(skb);
3199 		*ret = NET_XMIT_SUCCESS;
3200 		return NULL;
3201 	default:
3202 		break;
3203 	}
3204 
3205 	return skb;
3206 }
3207 #endif /* CONFIG_NET_EGRESS */
3208 
3209 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210 {
3211 #ifdef CONFIG_XPS
3212 	struct xps_dev_maps *dev_maps;
3213 	struct xps_map *map;
3214 	int queue_index = -1;
3215 
3216 	rcu_read_lock();
3217 	dev_maps = rcu_dereference(dev->xps_maps);
3218 	if (dev_maps) {
3219 		map = rcu_dereference(
3220 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3221 		if (map) {
3222 			if (map->len == 1)
3223 				queue_index = map->queues[0];
3224 			else
3225 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3226 									   map->len)];
3227 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3228 				queue_index = -1;
3229 		}
3230 	}
3231 	rcu_read_unlock();
3232 
3233 	return queue_index;
3234 #else
3235 	return -1;
3236 #endif
3237 }
3238 
3239 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3240 {
3241 	struct sock *sk = skb->sk;
3242 	int queue_index = sk_tx_queue_get(sk);
3243 
3244 	if (queue_index < 0 || skb->ooo_okay ||
3245 	    queue_index >= dev->real_num_tx_queues) {
3246 		int new_index = get_xps_queue(dev, skb);
3247 		if (new_index < 0)
3248 			new_index = skb_tx_hash(dev, skb);
3249 
3250 		if (queue_index != new_index && sk &&
3251 		    sk_fullsock(sk) &&
3252 		    rcu_access_pointer(sk->sk_dst_cache))
3253 			sk_tx_queue_set(sk, new_index);
3254 
3255 		queue_index = new_index;
3256 	}
3257 
3258 	return queue_index;
3259 }
3260 
3261 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3262 				    struct sk_buff *skb,
3263 				    void *accel_priv)
3264 {
3265 	int queue_index = 0;
3266 
3267 #ifdef CONFIG_XPS
3268 	u32 sender_cpu = skb->sender_cpu - 1;
3269 
3270 	if (sender_cpu >= (u32)NR_CPUS)
3271 		skb->sender_cpu = raw_smp_processor_id() + 1;
3272 #endif
3273 
3274 	if (dev->real_num_tx_queues != 1) {
3275 		const struct net_device_ops *ops = dev->netdev_ops;
3276 		if (ops->ndo_select_queue)
3277 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278 							    __netdev_pick_tx);
3279 		else
3280 			queue_index = __netdev_pick_tx(dev, skb);
3281 
3282 		if (!accel_priv)
3283 			queue_index = netdev_cap_txqueue(dev, queue_index);
3284 	}
3285 
3286 	skb_set_queue_mapping(skb, queue_index);
3287 	return netdev_get_tx_queue(dev, queue_index);
3288 }
3289 
3290 /**
3291  *	__dev_queue_xmit - transmit a buffer
3292  *	@skb: buffer to transmit
3293  *	@accel_priv: private data used for L2 forwarding offload
3294  *
3295  *	Queue a buffer for transmission to a network device. The caller must
3296  *	have set the device and priority and built the buffer before calling
3297  *	this function. The function can be called from an interrupt.
3298  *
3299  *	A negative errno code is returned on a failure. A success does not
3300  *	guarantee the frame will be transmitted as it may be dropped due
3301  *	to congestion or traffic shaping.
3302  *
3303  * -----------------------------------------------------------------------------------
3304  *      I notice this method can also return errors from the queue disciplines,
3305  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3306  *      be positive.
3307  *
3308  *      Regardless of the return value, the skb is consumed, so it is currently
3309  *      difficult to retry a send to this method.  (You can bump the ref count
3310  *      before sending to hold a reference for retry if you are careful.)
3311  *
3312  *      When calling this method, interrupts MUST be enabled.  This is because
3313  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3314  *          --BLG
3315  */
3316 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3317 {
3318 	struct net_device *dev = skb->dev;
3319 	struct netdev_queue *txq;
3320 	struct Qdisc *q;
3321 	int rc = -ENOMEM;
3322 
3323 	skb_reset_mac_header(skb);
3324 
3325 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327 
3328 	/* Disable soft irqs for various locks below. Also
3329 	 * stops preemption for RCU.
3330 	 */
3331 	rcu_read_lock_bh();
3332 
3333 	skb_update_prio(skb);
3334 
3335 	qdisc_pkt_len_init(skb);
3336 #ifdef CONFIG_NET_CLS_ACT
3337 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3338 # ifdef CONFIG_NET_EGRESS
3339 	if (static_key_false(&egress_needed)) {
3340 		skb = sch_handle_egress(skb, &rc, dev);
3341 		if (!skb)
3342 			goto out;
3343 	}
3344 # endif
3345 #endif
3346 	/* If device/qdisc don't need skb->dst, release it right now while
3347 	 * its hot in this cpu cache.
3348 	 */
3349 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350 		skb_dst_drop(skb);
3351 	else
3352 		skb_dst_force(skb);
3353 
3354 #ifdef CONFIG_NET_SWITCHDEV
3355 	/* Don't forward if offload device already forwarded */
3356 	if (skb->offload_fwd_mark &&
3357 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3358 		consume_skb(skb);
3359 		rc = NET_XMIT_SUCCESS;
3360 		goto out;
3361 	}
3362 #endif
3363 
3364 	txq = netdev_pick_tx(dev, skb, accel_priv);
3365 	q = rcu_dereference_bh(txq->qdisc);
3366 
3367 	trace_net_dev_queue(skb);
3368 	if (q->enqueue) {
3369 		rc = __dev_xmit_skb(skb, q, dev, txq);
3370 		goto out;
3371 	}
3372 
3373 	/* The device has no queue. Common case for software devices:
3374 	   loopback, all the sorts of tunnels...
3375 
3376 	   Really, it is unlikely that netif_tx_lock protection is necessary
3377 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3378 	   counters.)
3379 	   However, it is possible, that they rely on protection
3380 	   made by us here.
3381 
3382 	   Check this and shot the lock. It is not prone from deadlocks.
3383 	   Either shot noqueue qdisc, it is even simpler 8)
3384 	 */
3385 	if (dev->flags & IFF_UP) {
3386 		int cpu = smp_processor_id(); /* ok because BHs are off */
3387 
3388 		if (txq->xmit_lock_owner != cpu) {
3389 
3390 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3391 				goto recursion_alert;
3392 
3393 			skb = validate_xmit_skb(skb, dev);
3394 			if (!skb)
3395 				goto out;
3396 
3397 			HARD_TX_LOCK(dev, txq, cpu);
3398 
3399 			if (!netif_xmit_stopped(txq)) {
3400 				__this_cpu_inc(xmit_recursion);
3401 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3402 				__this_cpu_dec(xmit_recursion);
3403 				if (dev_xmit_complete(rc)) {
3404 					HARD_TX_UNLOCK(dev, txq);
3405 					goto out;
3406 				}
3407 			}
3408 			HARD_TX_UNLOCK(dev, txq);
3409 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3410 					     dev->name);
3411 		} else {
3412 			/* Recursion is detected! It is possible,
3413 			 * unfortunately
3414 			 */
3415 recursion_alert:
3416 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3417 					     dev->name);
3418 		}
3419 	}
3420 
3421 	rc = -ENETDOWN;
3422 	rcu_read_unlock_bh();
3423 
3424 	atomic_long_inc(&dev->tx_dropped);
3425 	kfree_skb_list(skb);
3426 	return rc;
3427 out:
3428 	rcu_read_unlock_bh();
3429 	return rc;
3430 }
3431 
3432 int dev_queue_xmit(struct sk_buff *skb)
3433 {
3434 	return __dev_queue_xmit(skb, NULL);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit);
3437 
3438 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3439 {
3440 	return __dev_queue_xmit(skb, accel_priv);
3441 }
3442 EXPORT_SYMBOL(dev_queue_xmit_accel);
3443 
3444 
3445 /*=======================================================================
3446 			Receiver routines
3447   =======================================================================*/
3448 
3449 int netdev_max_backlog __read_mostly = 1000;
3450 EXPORT_SYMBOL(netdev_max_backlog);
3451 
3452 int netdev_tstamp_prequeue __read_mostly = 1;
3453 int netdev_budget __read_mostly = 300;
3454 int weight_p __read_mostly = 64;            /* old backlog weight */
3455 
3456 /* Called with irq disabled */
3457 static inline void ____napi_schedule(struct softnet_data *sd,
3458 				     struct napi_struct *napi)
3459 {
3460 	list_add_tail(&napi->poll_list, &sd->poll_list);
3461 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3462 }
3463 
3464 #ifdef CONFIG_RPS
3465 
3466 /* One global table that all flow-based protocols share. */
3467 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3468 EXPORT_SYMBOL(rps_sock_flow_table);
3469 u32 rps_cpu_mask __read_mostly;
3470 EXPORT_SYMBOL(rps_cpu_mask);
3471 
3472 struct static_key rps_needed __read_mostly;
3473 EXPORT_SYMBOL(rps_needed);
3474 
3475 static struct rps_dev_flow *
3476 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3477 	    struct rps_dev_flow *rflow, u16 next_cpu)
3478 {
3479 	if (next_cpu < nr_cpu_ids) {
3480 #ifdef CONFIG_RFS_ACCEL
3481 		struct netdev_rx_queue *rxqueue;
3482 		struct rps_dev_flow_table *flow_table;
3483 		struct rps_dev_flow *old_rflow;
3484 		u32 flow_id;
3485 		u16 rxq_index;
3486 		int rc;
3487 
3488 		/* Should we steer this flow to a different hardware queue? */
3489 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3490 		    !(dev->features & NETIF_F_NTUPLE))
3491 			goto out;
3492 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3493 		if (rxq_index == skb_get_rx_queue(skb))
3494 			goto out;
3495 
3496 		rxqueue = dev->_rx + rxq_index;
3497 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3498 		if (!flow_table)
3499 			goto out;
3500 		flow_id = skb_get_hash(skb) & flow_table->mask;
3501 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3502 							rxq_index, flow_id);
3503 		if (rc < 0)
3504 			goto out;
3505 		old_rflow = rflow;
3506 		rflow = &flow_table->flows[flow_id];
3507 		rflow->filter = rc;
3508 		if (old_rflow->filter == rflow->filter)
3509 			old_rflow->filter = RPS_NO_FILTER;
3510 	out:
3511 #endif
3512 		rflow->last_qtail =
3513 			per_cpu(softnet_data, next_cpu).input_queue_head;
3514 	}
3515 
3516 	rflow->cpu = next_cpu;
3517 	return rflow;
3518 }
3519 
3520 /*
3521  * get_rps_cpu is called from netif_receive_skb and returns the target
3522  * CPU from the RPS map of the receiving queue for a given skb.
3523  * rcu_read_lock must be held on entry.
3524  */
3525 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3526 		       struct rps_dev_flow **rflowp)
3527 {
3528 	const struct rps_sock_flow_table *sock_flow_table;
3529 	struct netdev_rx_queue *rxqueue = dev->_rx;
3530 	struct rps_dev_flow_table *flow_table;
3531 	struct rps_map *map;
3532 	int cpu = -1;
3533 	u32 tcpu;
3534 	u32 hash;
3535 
3536 	if (skb_rx_queue_recorded(skb)) {
3537 		u16 index = skb_get_rx_queue(skb);
3538 
3539 		if (unlikely(index >= dev->real_num_rx_queues)) {
3540 			WARN_ONCE(dev->real_num_rx_queues > 1,
3541 				  "%s received packet on queue %u, but number "
3542 				  "of RX queues is %u\n",
3543 				  dev->name, index, dev->real_num_rx_queues);
3544 			goto done;
3545 		}
3546 		rxqueue += index;
3547 	}
3548 
3549 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3550 
3551 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3552 	map = rcu_dereference(rxqueue->rps_map);
3553 	if (!flow_table && !map)
3554 		goto done;
3555 
3556 	skb_reset_network_header(skb);
3557 	hash = skb_get_hash(skb);
3558 	if (!hash)
3559 		goto done;
3560 
3561 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3562 	if (flow_table && sock_flow_table) {
3563 		struct rps_dev_flow *rflow;
3564 		u32 next_cpu;
3565 		u32 ident;
3566 
3567 		/* First check into global flow table if there is a match */
3568 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3569 		if ((ident ^ hash) & ~rps_cpu_mask)
3570 			goto try_rps;
3571 
3572 		next_cpu = ident & rps_cpu_mask;
3573 
3574 		/* OK, now we know there is a match,
3575 		 * we can look at the local (per receive queue) flow table
3576 		 */
3577 		rflow = &flow_table->flows[hash & flow_table->mask];
3578 		tcpu = rflow->cpu;
3579 
3580 		/*
3581 		 * If the desired CPU (where last recvmsg was done) is
3582 		 * different from current CPU (one in the rx-queue flow
3583 		 * table entry), switch if one of the following holds:
3584 		 *   - Current CPU is unset (>= nr_cpu_ids).
3585 		 *   - Current CPU is offline.
3586 		 *   - The current CPU's queue tail has advanced beyond the
3587 		 *     last packet that was enqueued using this table entry.
3588 		 *     This guarantees that all previous packets for the flow
3589 		 *     have been dequeued, thus preserving in order delivery.
3590 		 */
3591 		if (unlikely(tcpu != next_cpu) &&
3592 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3593 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3594 		      rflow->last_qtail)) >= 0)) {
3595 			tcpu = next_cpu;
3596 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3597 		}
3598 
3599 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3600 			*rflowp = rflow;
3601 			cpu = tcpu;
3602 			goto done;
3603 		}
3604 	}
3605 
3606 try_rps:
3607 
3608 	if (map) {
3609 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3610 		if (cpu_online(tcpu)) {
3611 			cpu = tcpu;
3612 			goto done;
3613 		}
3614 	}
3615 
3616 done:
3617 	return cpu;
3618 }
3619 
3620 #ifdef CONFIG_RFS_ACCEL
3621 
3622 /**
3623  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3624  * @dev: Device on which the filter was set
3625  * @rxq_index: RX queue index
3626  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3627  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3628  *
3629  * Drivers that implement ndo_rx_flow_steer() should periodically call
3630  * this function for each installed filter and remove the filters for
3631  * which it returns %true.
3632  */
3633 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3634 			 u32 flow_id, u16 filter_id)
3635 {
3636 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3637 	struct rps_dev_flow_table *flow_table;
3638 	struct rps_dev_flow *rflow;
3639 	bool expire = true;
3640 	unsigned int cpu;
3641 
3642 	rcu_read_lock();
3643 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3644 	if (flow_table && flow_id <= flow_table->mask) {
3645 		rflow = &flow_table->flows[flow_id];
3646 		cpu = ACCESS_ONCE(rflow->cpu);
3647 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3648 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3649 			   rflow->last_qtail) <
3650 		     (int)(10 * flow_table->mask)))
3651 			expire = false;
3652 	}
3653 	rcu_read_unlock();
3654 	return expire;
3655 }
3656 EXPORT_SYMBOL(rps_may_expire_flow);
3657 
3658 #endif /* CONFIG_RFS_ACCEL */
3659 
3660 /* Called from hardirq (IPI) context */
3661 static void rps_trigger_softirq(void *data)
3662 {
3663 	struct softnet_data *sd = data;
3664 
3665 	____napi_schedule(sd, &sd->backlog);
3666 	sd->received_rps++;
3667 }
3668 
3669 #endif /* CONFIG_RPS */
3670 
3671 /*
3672  * Check if this softnet_data structure is another cpu one
3673  * If yes, queue it to our IPI list and return 1
3674  * If no, return 0
3675  */
3676 static int rps_ipi_queued(struct softnet_data *sd)
3677 {
3678 #ifdef CONFIG_RPS
3679 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3680 
3681 	if (sd != mysd) {
3682 		sd->rps_ipi_next = mysd->rps_ipi_list;
3683 		mysd->rps_ipi_list = sd;
3684 
3685 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3686 		return 1;
3687 	}
3688 #endif /* CONFIG_RPS */
3689 	return 0;
3690 }
3691 
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3694 #endif
3695 
3696 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3697 {
3698 #ifdef CONFIG_NET_FLOW_LIMIT
3699 	struct sd_flow_limit *fl;
3700 	struct softnet_data *sd;
3701 	unsigned int old_flow, new_flow;
3702 
3703 	if (qlen < (netdev_max_backlog >> 1))
3704 		return false;
3705 
3706 	sd = this_cpu_ptr(&softnet_data);
3707 
3708 	rcu_read_lock();
3709 	fl = rcu_dereference(sd->flow_limit);
3710 	if (fl) {
3711 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3712 		old_flow = fl->history[fl->history_head];
3713 		fl->history[fl->history_head] = new_flow;
3714 
3715 		fl->history_head++;
3716 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3717 
3718 		if (likely(fl->buckets[old_flow]))
3719 			fl->buckets[old_flow]--;
3720 
3721 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3722 			fl->count++;
3723 			rcu_read_unlock();
3724 			return true;
3725 		}
3726 	}
3727 	rcu_read_unlock();
3728 #endif
3729 	return false;
3730 }
3731 
3732 /*
3733  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3734  * queue (may be a remote CPU queue).
3735  */
3736 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3737 			      unsigned int *qtail)
3738 {
3739 	struct softnet_data *sd;
3740 	unsigned long flags;
3741 	unsigned int qlen;
3742 
3743 	sd = &per_cpu(softnet_data, cpu);
3744 
3745 	local_irq_save(flags);
3746 
3747 	rps_lock(sd);
3748 	if (!netif_running(skb->dev))
3749 		goto drop;
3750 	qlen = skb_queue_len(&sd->input_pkt_queue);
3751 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3752 		if (qlen) {
3753 enqueue:
3754 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3755 			input_queue_tail_incr_save(sd, qtail);
3756 			rps_unlock(sd);
3757 			local_irq_restore(flags);
3758 			return NET_RX_SUCCESS;
3759 		}
3760 
3761 		/* Schedule NAPI for backlog device
3762 		 * We can use non atomic operation since we own the queue lock
3763 		 */
3764 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3765 			if (!rps_ipi_queued(sd))
3766 				____napi_schedule(sd, &sd->backlog);
3767 		}
3768 		goto enqueue;
3769 	}
3770 
3771 drop:
3772 	sd->dropped++;
3773 	rps_unlock(sd);
3774 
3775 	local_irq_restore(flags);
3776 
3777 	atomic_long_inc(&skb->dev->rx_dropped);
3778 	kfree_skb(skb);
3779 	return NET_RX_DROP;
3780 }
3781 
3782 static int netif_rx_internal(struct sk_buff *skb)
3783 {
3784 	int ret;
3785 
3786 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3787 
3788 	trace_netif_rx(skb);
3789 #ifdef CONFIG_RPS
3790 	if (static_key_false(&rps_needed)) {
3791 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3792 		int cpu;
3793 
3794 		preempt_disable();
3795 		rcu_read_lock();
3796 
3797 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3798 		if (cpu < 0)
3799 			cpu = smp_processor_id();
3800 
3801 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3802 
3803 		rcu_read_unlock();
3804 		preempt_enable();
3805 	} else
3806 #endif
3807 	{
3808 		unsigned int qtail;
3809 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3810 		put_cpu();
3811 	}
3812 	return ret;
3813 }
3814 
3815 /**
3816  *	netif_rx	-	post buffer to the network code
3817  *	@skb: buffer to post
3818  *
3819  *	This function receives a packet from a device driver and queues it for
3820  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3821  *	may be dropped during processing for congestion control or by the
3822  *	protocol layers.
3823  *
3824  *	return values:
3825  *	NET_RX_SUCCESS	(no congestion)
3826  *	NET_RX_DROP     (packet was dropped)
3827  *
3828  */
3829 
3830 int netif_rx(struct sk_buff *skb)
3831 {
3832 	trace_netif_rx_entry(skb);
3833 
3834 	return netif_rx_internal(skb);
3835 }
3836 EXPORT_SYMBOL(netif_rx);
3837 
3838 int netif_rx_ni(struct sk_buff *skb)
3839 {
3840 	int err;
3841 
3842 	trace_netif_rx_ni_entry(skb);
3843 
3844 	preempt_disable();
3845 	err = netif_rx_internal(skb);
3846 	if (local_softirq_pending())
3847 		do_softirq();
3848 	preempt_enable();
3849 
3850 	return err;
3851 }
3852 EXPORT_SYMBOL(netif_rx_ni);
3853 
3854 static void net_tx_action(struct softirq_action *h)
3855 {
3856 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3857 
3858 	if (sd->completion_queue) {
3859 		struct sk_buff *clist;
3860 
3861 		local_irq_disable();
3862 		clist = sd->completion_queue;
3863 		sd->completion_queue = NULL;
3864 		local_irq_enable();
3865 
3866 		while (clist) {
3867 			struct sk_buff *skb = clist;
3868 			clist = clist->next;
3869 
3870 			WARN_ON(atomic_read(&skb->users));
3871 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3872 				trace_consume_skb(skb);
3873 			else
3874 				trace_kfree_skb(skb, net_tx_action);
3875 
3876 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3877 				__kfree_skb(skb);
3878 			else
3879 				__kfree_skb_defer(skb);
3880 		}
3881 
3882 		__kfree_skb_flush();
3883 	}
3884 
3885 	if (sd->output_queue) {
3886 		struct Qdisc *head;
3887 
3888 		local_irq_disable();
3889 		head = sd->output_queue;
3890 		sd->output_queue = NULL;
3891 		sd->output_queue_tailp = &sd->output_queue;
3892 		local_irq_enable();
3893 
3894 		while (head) {
3895 			struct Qdisc *q = head;
3896 			spinlock_t *root_lock;
3897 
3898 			head = head->next_sched;
3899 
3900 			root_lock = qdisc_lock(q);
3901 			if (spin_trylock(root_lock)) {
3902 				smp_mb__before_atomic();
3903 				clear_bit(__QDISC_STATE_SCHED,
3904 					  &q->state);
3905 				qdisc_run(q);
3906 				spin_unlock(root_lock);
3907 			} else {
3908 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3909 					      &q->state)) {
3910 					__netif_reschedule(q);
3911 				} else {
3912 					smp_mb__before_atomic();
3913 					clear_bit(__QDISC_STATE_SCHED,
3914 						  &q->state);
3915 				}
3916 			}
3917 		}
3918 	}
3919 }
3920 
3921 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3922     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3923 /* This hook is defined here for ATM LANE */
3924 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3925 			     unsigned char *addr) __read_mostly;
3926 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3927 #endif
3928 
3929 static inline struct sk_buff *
3930 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3931 		   struct net_device *orig_dev)
3932 {
3933 #ifdef CONFIG_NET_CLS_ACT
3934 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3935 	struct tcf_result cl_res;
3936 
3937 	/* If there's at least one ingress present somewhere (so
3938 	 * we get here via enabled static key), remaining devices
3939 	 * that are not configured with an ingress qdisc will bail
3940 	 * out here.
3941 	 */
3942 	if (!cl)
3943 		return skb;
3944 	if (*pt_prev) {
3945 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3946 		*pt_prev = NULL;
3947 	}
3948 
3949 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3950 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3951 	qdisc_bstats_cpu_update(cl->q, skb);
3952 
3953 	switch (tc_classify(skb, cl, &cl_res, false)) {
3954 	case TC_ACT_OK:
3955 	case TC_ACT_RECLASSIFY:
3956 		skb->tc_index = TC_H_MIN(cl_res.classid);
3957 		break;
3958 	case TC_ACT_SHOT:
3959 		qdisc_qstats_cpu_drop(cl->q);
3960 		kfree_skb(skb);
3961 		return NULL;
3962 	case TC_ACT_STOLEN:
3963 	case TC_ACT_QUEUED:
3964 		consume_skb(skb);
3965 		return NULL;
3966 	case TC_ACT_REDIRECT:
3967 		/* skb_mac_header check was done by cls/act_bpf, so
3968 		 * we can safely push the L2 header back before
3969 		 * redirecting to another netdev
3970 		 */
3971 		__skb_push(skb, skb->mac_len);
3972 		skb_do_redirect(skb);
3973 		return NULL;
3974 	default:
3975 		break;
3976 	}
3977 #endif /* CONFIG_NET_CLS_ACT */
3978 	return skb;
3979 }
3980 
3981 /**
3982  *	netdev_rx_handler_register - register receive handler
3983  *	@dev: device to register a handler for
3984  *	@rx_handler: receive handler to register
3985  *	@rx_handler_data: data pointer that is used by rx handler
3986  *
3987  *	Register a receive handler for a device. This handler will then be
3988  *	called from __netif_receive_skb. A negative errno code is returned
3989  *	on a failure.
3990  *
3991  *	The caller must hold the rtnl_mutex.
3992  *
3993  *	For a general description of rx_handler, see enum rx_handler_result.
3994  */
3995 int netdev_rx_handler_register(struct net_device *dev,
3996 			       rx_handler_func_t *rx_handler,
3997 			       void *rx_handler_data)
3998 {
3999 	ASSERT_RTNL();
4000 
4001 	if (dev->rx_handler)
4002 		return -EBUSY;
4003 
4004 	/* Note: rx_handler_data must be set before rx_handler */
4005 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4006 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4007 
4008 	return 0;
4009 }
4010 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4011 
4012 /**
4013  *	netdev_rx_handler_unregister - unregister receive handler
4014  *	@dev: device to unregister a handler from
4015  *
4016  *	Unregister a receive handler from a device.
4017  *
4018  *	The caller must hold the rtnl_mutex.
4019  */
4020 void netdev_rx_handler_unregister(struct net_device *dev)
4021 {
4022 
4023 	ASSERT_RTNL();
4024 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4025 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4026 	 * section has a guarantee to see a non NULL rx_handler_data
4027 	 * as well.
4028 	 */
4029 	synchronize_net();
4030 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4031 }
4032 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4033 
4034 /*
4035  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4036  * the special handling of PFMEMALLOC skbs.
4037  */
4038 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4039 {
4040 	switch (skb->protocol) {
4041 	case htons(ETH_P_ARP):
4042 	case htons(ETH_P_IP):
4043 	case htons(ETH_P_IPV6):
4044 	case htons(ETH_P_8021Q):
4045 	case htons(ETH_P_8021AD):
4046 		return true;
4047 	default:
4048 		return false;
4049 	}
4050 }
4051 
4052 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4053 			     int *ret, struct net_device *orig_dev)
4054 {
4055 #ifdef CONFIG_NETFILTER_INGRESS
4056 	if (nf_hook_ingress_active(skb)) {
4057 		if (*pt_prev) {
4058 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4059 			*pt_prev = NULL;
4060 		}
4061 
4062 		return nf_hook_ingress(skb);
4063 	}
4064 #endif /* CONFIG_NETFILTER_INGRESS */
4065 	return 0;
4066 }
4067 
4068 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4069 {
4070 	struct packet_type *ptype, *pt_prev;
4071 	rx_handler_func_t *rx_handler;
4072 	struct net_device *orig_dev;
4073 	bool deliver_exact = false;
4074 	int ret = NET_RX_DROP;
4075 	__be16 type;
4076 
4077 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4078 
4079 	trace_netif_receive_skb(skb);
4080 
4081 	orig_dev = skb->dev;
4082 
4083 	skb_reset_network_header(skb);
4084 	if (!skb_transport_header_was_set(skb))
4085 		skb_reset_transport_header(skb);
4086 	skb_reset_mac_len(skb);
4087 
4088 	pt_prev = NULL;
4089 
4090 another_round:
4091 	skb->skb_iif = skb->dev->ifindex;
4092 
4093 	__this_cpu_inc(softnet_data.processed);
4094 
4095 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4096 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4097 		skb = skb_vlan_untag(skb);
4098 		if (unlikely(!skb))
4099 			goto out;
4100 	}
4101 
4102 #ifdef CONFIG_NET_CLS_ACT
4103 	if (skb->tc_verd & TC_NCLS) {
4104 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4105 		goto ncls;
4106 	}
4107 #endif
4108 
4109 	if (pfmemalloc)
4110 		goto skip_taps;
4111 
4112 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4113 		if (pt_prev)
4114 			ret = deliver_skb(skb, pt_prev, orig_dev);
4115 		pt_prev = ptype;
4116 	}
4117 
4118 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4119 		if (pt_prev)
4120 			ret = deliver_skb(skb, pt_prev, orig_dev);
4121 		pt_prev = ptype;
4122 	}
4123 
4124 skip_taps:
4125 #ifdef CONFIG_NET_INGRESS
4126 	if (static_key_false(&ingress_needed)) {
4127 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4128 		if (!skb)
4129 			goto out;
4130 
4131 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4132 			goto out;
4133 	}
4134 #endif
4135 #ifdef CONFIG_NET_CLS_ACT
4136 	skb->tc_verd = 0;
4137 ncls:
4138 #endif
4139 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4140 		goto drop;
4141 
4142 	if (skb_vlan_tag_present(skb)) {
4143 		if (pt_prev) {
4144 			ret = deliver_skb(skb, pt_prev, orig_dev);
4145 			pt_prev = NULL;
4146 		}
4147 		if (vlan_do_receive(&skb))
4148 			goto another_round;
4149 		else if (unlikely(!skb))
4150 			goto out;
4151 	}
4152 
4153 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4154 	if (rx_handler) {
4155 		if (pt_prev) {
4156 			ret = deliver_skb(skb, pt_prev, orig_dev);
4157 			pt_prev = NULL;
4158 		}
4159 		switch (rx_handler(&skb)) {
4160 		case RX_HANDLER_CONSUMED:
4161 			ret = NET_RX_SUCCESS;
4162 			goto out;
4163 		case RX_HANDLER_ANOTHER:
4164 			goto another_round;
4165 		case RX_HANDLER_EXACT:
4166 			deliver_exact = true;
4167 		case RX_HANDLER_PASS:
4168 			break;
4169 		default:
4170 			BUG();
4171 		}
4172 	}
4173 
4174 	if (unlikely(skb_vlan_tag_present(skb))) {
4175 		if (skb_vlan_tag_get_id(skb))
4176 			skb->pkt_type = PACKET_OTHERHOST;
4177 		/* Note: we might in the future use prio bits
4178 		 * and set skb->priority like in vlan_do_receive()
4179 		 * For the time being, just ignore Priority Code Point
4180 		 */
4181 		skb->vlan_tci = 0;
4182 	}
4183 
4184 	type = skb->protocol;
4185 
4186 	/* deliver only exact match when indicated */
4187 	if (likely(!deliver_exact)) {
4188 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4189 				       &ptype_base[ntohs(type) &
4190 						   PTYPE_HASH_MASK]);
4191 	}
4192 
4193 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 			       &orig_dev->ptype_specific);
4195 
4196 	if (unlikely(skb->dev != orig_dev)) {
4197 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4198 				       &skb->dev->ptype_specific);
4199 	}
4200 
4201 	if (pt_prev) {
4202 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4203 			goto drop;
4204 		else
4205 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4206 	} else {
4207 drop:
4208 		if (!deliver_exact)
4209 			atomic_long_inc(&skb->dev->rx_dropped);
4210 		else
4211 			atomic_long_inc(&skb->dev->rx_nohandler);
4212 		kfree_skb(skb);
4213 		/* Jamal, now you will not able to escape explaining
4214 		 * me how you were going to use this. :-)
4215 		 */
4216 		ret = NET_RX_DROP;
4217 	}
4218 
4219 out:
4220 	return ret;
4221 }
4222 
4223 static int __netif_receive_skb(struct sk_buff *skb)
4224 {
4225 	int ret;
4226 
4227 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4228 		unsigned long pflags = current->flags;
4229 
4230 		/*
4231 		 * PFMEMALLOC skbs are special, they should
4232 		 * - be delivered to SOCK_MEMALLOC sockets only
4233 		 * - stay away from userspace
4234 		 * - have bounded memory usage
4235 		 *
4236 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4237 		 * context down to all allocation sites.
4238 		 */
4239 		current->flags |= PF_MEMALLOC;
4240 		ret = __netif_receive_skb_core(skb, true);
4241 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4242 	} else
4243 		ret = __netif_receive_skb_core(skb, false);
4244 
4245 	return ret;
4246 }
4247 
4248 static int netif_receive_skb_internal(struct sk_buff *skb)
4249 {
4250 	int ret;
4251 
4252 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4253 
4254 	if (skb_defer_rx_timestamp(skb))
4255 		return NET_RX_SUCCESS;
4256 
4257 	rcu_read_lock();
4258 
4259 #ifdef CONFIG_RPS
4260 	if (static_key_false(&rps_needed)) {
4261 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4262 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4263 
4264 		if (cpu >= 0) {
4265 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4266 			rcu_read_unlock();
4267 			return ret;
4268 		}
4269 	}
4270 #endif
4271 	ret = __netif_receive_skb(skb);
4272 	rcu_read_unlock();
4273 	return ret;
4274 }
4275 
4276 /**
4277  *	netif_receive_skb - process receive buffer from network
4278  *	@skb: buffer to process
4279  *
4280  *	netif_receive_skb() is the main receive data processing function.
4281  *	It always succeeds. The buffer may be dropped during processing
4282  *	for congestion control or by the protocol layers.
4283  *
4284  *	This function may only be called from softirq context and interrupts
4285  *	should be enabled.
4286  *
4287  *	Return values (usually ignored):
4288  *	NET_RX_SUCCESS: no congestion
4289  *	NET_RX_DROP: packet was dropped
4290  */
4291 int netif_receive_skb(struct sk_buff *skb)
4292 {
4293 	trace_netif_receive_skb_entry(skb);
4294 
4295 	return netif_receive_skb_internal(skb);
4296 }
4297 EXPORT_SYMBOL(netif_receive_skb);
4298 
4299 /* Network device is going away, flush any packets still pending
4300  * Called with irqs disabled.
4301  */
4302 static void flush_backlog(void *arg)
4303 {
4304 	struct net_device *dev = arg;
4305 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4306 	struct sk_buff *skb, *tmp;
4307 
4308 	rps_lock(sd);
4309 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4310 		if (skb->dev == dev) {
4311 			__skb_unlink(skb, &sd->input_pkt_queue);
4312 			kfree_skb(skb);
4313 			input_queue_head_incr(sd);
4314 		}
4315 	}
4316 	rps_unlock(sd);
4317 
4318 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4319 		if (skb->dev == dev) {
4320 			__skb_unlink(skb, &sd->process_queue);
4321 			kfree_skb(skb);
4322 			input_queue_head_incr(sd);
4323 		}
4324 	}
4325 }
4326 
4327 static int napi_gro_complete(struct sk_buff *skb)
4328 {
4329 	struct packet_offload *ptype;
4330 	__be16 type = skb->protocol;
4331 	struct list_head *head = &offload_base;
4332 	int err = -ENOENT;
4333 
4334 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4335 
4336 	if (NAPI_GRO_CB(skb)->count == 1) {
4337 		skb_shinfo(skb)->gso_size = 0;
4338 		goto out;
4339 	}
4340 
4341 	rcu_read_lock();
4342 	list_for_each_entry_rcu(ptype, head, list) {
4343 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4344 			continue;
4345 
4346 		err = ptype->callbacks.gro_complete(skb, 0);
4347 		break;
4348 	}
4349 	rcu_read_unlock();
4350 
4351 	if (err) {
4352 		WARN_ON(&ptype->list == head);
4353 		kfree_skb(skb);
4354 		return NET_RX_SUCCESS;
4355 	}
4356 
4357 out:
4358 	return netif_receive_skb_internal(skb);
4359 }
4360 
4361 /* napi->gro_list contains packets ordered by age.
4362  * youngest packets at the head of it.
4363  * Complete skbs in reverse order to reduce latencies.
4364  */
4365 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4366 {
4367 	struct sk_buff *skb, *prev = NULL;
4368 
4369 	/* scan list and build reverse chain */
4370 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4371 		skb->prev = prev;
4372 		prev = skb;
4373 	}
4374 
4375 	for (skb = prev; skb; skb = prev) {
4376 		skb->next = NULL;
4377 
4378 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4379 			return;
4380 
4381 		prev = skb->prev;
4382 		napi_gro_complete(skb);
4383 		napi->gro_count--;
4384 	}
4385 
4386 	napi->gro_list = NULL;
4387 }
4388 EXPORT_SYMBOL(napi_gro_flush);
4389 
4390 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4391 {
4392 	struct sk_buff *p;
4393 	unsigned int maclen = skb->dev->hard_header_len;
4394 	u32 hash = skb_get_hash_raw(skb);
4395 
4396 	for (p = napi->gro_list; p; p = p->next) {
4397 		unsigned long diffs;
4398 
4399 		NAPI_GRO_CB(p)->flush = 0;
4400 
4401 		if (hash != skb_get_hash_raw(p)) {
4402 			NAPI_GRO_CB(p)->same_flow = 0;
4403 			continue;
4404 		}
4405 
4406 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4407 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4408 		diffs |= skb_metadata_dst_cmp(p, skb);
4409 		if (maclen == ETH_HLEN)
4410 			diffs |= compare_ether_header(skb_mac_header(p),
4411 						      skb_mac_header(skb));
4412 		else if (!diffs)
4413 			diffs = memcmp(skb_mac_header(p),
4414 				       skb_mac_header(skb),
4415 				       maclen);
4416 		NAPI_GRO_CB(p)->same_flow = !diffs;
4417 	}
4418 }
4419 
4420 static void skb_gro_reset_offset(struct sk_buff *skb)
4421 {
4422 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4423 	const skb_frag_t *frag0 = &pinfo->frags[0];
4424 
4425 	NAPI_GRO_CB(skb)->data_offset = 0;
4426 	NAPI_GRO_CB(skb)->frag0 = NULL;
4427 	NAPI_GRO_CB(skb)->frag0_len = 0;
4428 
4429 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4430 	    pinfo->nr_frags &&
4431 	    !PageHighMem(skb_frag_page(frag0))) {
4432 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4433 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4434 	}
4435 }
4436 
4437 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4438 {
4439 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4440 
4441 	BUG_ON(skb->end - skb->tail < grow);
4442 
4443 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4444 
4445 	skb->data_len -= grow;
4446 	skb->tail += grow;
4447 
4448 	pinfo->frags[0].page_offset += grow;
4449 	skb_frag_size_sub(&pinfo->frags[0], grow);
4450 
4451 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4452 		skb_frag_unref(skb, 0);
4453 		memmove(pinfo->frags, pinfo->frags + 1,
4454 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4455 	}
4456 }
4457 
4458 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4459 {
4460 	struct sk_buff **pp = NULL;
4461 	struct packet_offload *ptype;
4462 	__be16 type = skb->protocol;
4463 	struct list_head *head = &offload_base;
4464 	int same_flow;
4465 	enum gro_result ret;
4466 	int grow;
4467 
4468 	if (!(skb->dev->features & NETIF_F_GRO))
4469 		goto normal;
4470 
4471 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4472 		goto normal;
4473 
4474 	gro_list_prepare(napi, skb);
4475 
4476 	rcu_read_lock();
4477 	list_for_each_entry_rcu(ptype, head, list) {
4478 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4479 			continue;
4480 
4481 		skb_set_network_header(skb, skb_gro_offset(skb));
4482 		skb_reset_mac_len(skb);
4483 		NAPI_GRO_CB(skb)->same_flow = 0;
4484 		NAPI_GRO_CB(skb)->flush = 0;
4485 		NAPI_GRO_CB(skb)->free = 0;
4486 		NAPI_GRO_CB(skb)->encap_mark = 0;
4487 		NAPI_GRO_CB(skb)->is_fou = 0;
4488 		NAPI_GRO_CB(skb)->is_atomic = 1;
4489 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4490 
4491 		/* Setup for GRO checksum validation */
4492 		switch (skb->ip_summed) {
4493 		case CHECKSUM_COMPLETE:
4494 			NAPI_GRO_CB(skb)->csum = skb->csum;
4495 			NAPI_GRO_CB(skb)->csum_valid = 1;
4496 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4497 			break;
4498 		case CHECKSUM_UNNECESSARY:
4499 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4500 			NAPI_GRO_CB(skb)->csum_valid = 0;
4501 			break;
4502 		default:
4503 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4504 			NAPI_GRO_CB(skb)->csum_valid = 0;
4505 		}
4506 
4507 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4508 		break;
4509 	}
4510 	rcu_read_unlock();
4511 
4512 	if (&ptype->list == head)
4513 		goto normal;
4514 
4515 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4516 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4517 
4518 	if (pp) {
4519 		struct sk_buff *nskb = *pp;
4520 
4521 		*pp = nskb->next;
4522 		nskb->next = NULL;
4523 		napi_gro_complete(nskb);
4524 		napi->gro_count--;
4525 	}
4526 
4527 	if (same_flow)
4528 		goto ok;
4529 
4530 	if (NAPI_GRO_CB(skb)->flush)
4531 		goto normal;
4532 
4533 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4534 		struct sk_buff *nskb = napi->gro_list;
4535 
4536 		/* locate the end of the list to select the 'oldest' flow */
4537 		while (nskb->next) {
4538 			pp = &nskb->next;
4539 			nskb = *pp;
4540 		}
4541 		*pp = NULL;
4542 		nskb->next = NULL;
4543 		napi_gro_complete(nskb);
4544 	} else {
4545 		napi->gro_count++;
4546 	}
4547 	NAPI_GRO_CB(skb)->count = 1;
4548 	NAPI_GRO_CB(skb)->age = jiffies;
4549 	NAPI_GRO_CB(skb)->last = skb;
4550 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4551 	skb->next = napi->gro_list;
4552 	napi->gro_list = skb;
4553 	ret = GRO_HELD;
4554 
4555 pull:
4556 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4557 	if (grow > 0)
4558 		gro_pull_from_frag0(skb, grow);
4559 ok:
4560 	return ret;
4561 
4562 normal:
4563 	ret = GRO_NORMAL;
4564 	goto pull;
4565 }
4566 
4567 struct packet_offload *gro_find_receive_by_type(__be16 type)
4568 {
4569 	struct list_head *offload_head = &offload_base;
4570 	struct packet_offload *ptype;
4571 
4572 	list_for_each_entry_rcu(ptype, offload_head, list) {
4573 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4574 			continue;
4575 		return ptype;
4576 	}
4577 	return NULL;
4578 }
4579 EXPORT_SYMBOL(gro_find_receive_by_type);
4580 
4581 struct packet_offload *gro_find_complete_by_type(__be16 type)
4582 {
4583 	struct list_head *offload_head = &offload_base;
4584 	struct packet_offload *ptype;
4585 
4586 	list_for_each_entry_rcu(ptype, offload_head, list) {
4587 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4588 			continue;
4589 		return ptype;
4590 	}
4591 	return NULL;
4592 }
4593 EXPORT_SYMBOL(gro_find_complete_by_type);
4594 
4595 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4596 {
4597 	switch (ret) {
4598 	case GRO_NORMAL:
4599 		if (netif_receive_skb_internal(skb))
4600 			ret = GRO_DROP;
4601 		break;
4602 
4603 	case GRO_DROP:
4604 		kfree_skb(skb);
4605 		break;
4606 
4607 	case GRO_MERGED_FREE:
4608 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4609 			skb_dst_drop(skb);
4610 			kmem_cache_free(skbuff_head_cache, skb);
4611 		} else {
4612 			__kfree_skb(skb);
4613 		}
4614 		break;
4615 
4616 	case GRO_HELD:
4617 	case GRO_MERGED:
4618 		break;
4619 	}
4620 
4621 	return ret;
4622 }
4623 
4624 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4625 {
4626 	skb_mark_napi_id(skb, napi);
4627 	trace_napi_gro_receive_entry(skb);
4628 
4629 	skb_gro_reset_offset(skb);
4630 
4631 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4632 }
4633 EXPORT_SYMBOL(napi_gro_receive);
4634 
4635 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4636 {
4637 	if (unlikely(skb->pfmemalloc)) {
4638 		consume_skb(skb);
4639 		return;
4640 	}
4641 	__skb_pull(skb, skb_headlen(skb));
4642 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4643 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4644 	skb->vlan_tci = 0;
4645 	skb->dev = napi->dev;
4646 	skb->skb_iif = 0;
4647 	skb->encapsulation = 0;
4648 	skb_shinfo(skb)->gso_type = 0;
4649 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4650 
4651 	napi->skb = skb;
4652 }
4653 
4654 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4655 {
4656 	struct sk_buff *skb = napi->skb;
4657 
4658 	if (!skb) {
4659 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4660 		if (skb) {
4661 			napi->skb = skb;
4662 			skb_mark_napi_id(skb, napi);
4663 		}
4664 	}
4665 	return skb;
4666 }
4667 EXPORT_SYMBOL(napi_get_frags);
4668 
4669 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4670 				      struct sk_buff *skb,
4671 				      gro_result_t ret)
4672 {
4673 	switch (ret) {
4674 	case GRO_NORMAL:
4675 	case GRO_HELD:
4676 		__skb_push(skb, ETH_HLEN);
4677 		skb->protocol = eth_type_trans(skb, skb->dev);
4678 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4679 			ret = GRO_DROP;
4680 		break;
4681 
4682 	case GRO_DROP:
4683 	case GRO_MERGED_FREE:
4684 		napi_reuse_skb(napi, skb);
4685 		break;
4686 
4687 	case GRO_MERGED:
4688 		break;
4689 	}
4690 
4691 	return ret;
4692 }
4693 
4694 /* Upper GRO stack assumes network header starts at gro_offset=0
4695  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4696  * We copy ethernet header into skb->data to have a common layout.
4697  */
4698 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4699 {
4700 	struct sk_buff *skb = napi->skb;
4701 	const struct ethhdr *eth;
4702 	unsigned int hlen = sizeof(*eth);
4703 
4704 	napi->skb = NULL;
4705 
4706 	skb_reset_mac_header(skb);
4707 	skb_gro_reset_offset(skb);
4708 
4709 	eth = skb_gro_header_fast(skb, 0);
4710 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4711 		eth = skb_gro_header_slow(skb, hlen, 0);
4712 		if (unlikely(!eth)) {
4713 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4714 					     __func__, napi->dev->name);
4715 			napi_reuse_skb(napi, skb);
4716 			return NULL;
4717 		}
4718 	} else {
4719 		gro_pull_from_frag0(skb, hlen);
4720 		NAPI_GRO_CB(skb)->frag0 += hlen;
4721 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4722 	}
4723 	__skb_pull(skb, hlen);
4724 
4725 	/*
4726 	 * This works because the only protocols we care about don't require
4727 	 * special handling.
4728 	 * We'll fix it up properly in napi_frags_finish()
4729 	 */
4730 	skb->protocol = eth->h_proto;
4731 
4732 	return skb;
4733 }
4734 
4735 gro_result_t napi_gro_frags(struct napi_struct *napi)
4736 {
4737 	struct sk_buff *skb = napi_frags_skb(napi);
4738 
4739 	if (!skb)
4740 		return GRO_DROP;
4741 
4742 	trace_napi_gro_frags_entry(skb);
4743 
4744 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4745 }
4746 EXPORT_SYMBOL(napi_gro_frags);
4747 
4748 /* Compute the checksum from gro_offset and return the folded value
4749  * after adding in any pseudo checksum.
4750  */
4751 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4752 {
4753 	__wsum wsum;
4754 	__sum16 sum;
4755 
4756 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4757 
4758 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4759 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4760 	if (likely(!sum)) {
4761 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4762 		    !skb->csum_complete_sw)
4763 			netdev_rx_csum_fault(skb->dev);
4764 	}
4765 
4766 	NAPI_GRO_CB(skb)->csum = wsum;
4767 	NAPI_GRO_CB(skb)->csum_valid = 1;
4768 
4769 	return sum;
4770 }
4771 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4772 
4773 /*
4774  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4775  * Note: called with local irq disabled, but exits with local irq enabled.
4776  */
4777 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4778 {
4779 #ifdef CONFIG_RPS
4780 	struct softnet_data *remsd = sd->rps_ipi_list;
4781 
4782 	if (remsd) {
4783 		sd->rps_ipi_list = NULL;
4784 
4785 		local_irq_enable();
4786 
4787 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4788 		while (remsd) {
4789 			struct softnet_data *next = remsd->rps_ipi_next;
4790 
4791 			if (cpu_online(remsd->cpu))
4792 				smp_call_function_single_async(remsd->cpu,
4793 							   &remsd->csd);
4794 			remsd = next;
4795 		}
4796 	} else
4797 #endif
4798 		local_irq_enable();
4799 }
4800 
4801 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4802 {
4803 #ifdef CONFIG_RPS
4804 	return sd->rps_ipi_list != NULL;
4805 #else
4806 	return false;
4807 #endif
4808 }
4809 
4810 static int process_backlog(struct napi_struct *napi, int quota)
4811 {
4812 	int work = 0;
4813 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4814 
4815 	/* Check if we have pending ipi, its better to send them now,
4816 	 * not waiting net_rx_action() end.
4817 	 */
4818 	if (sd_has_rps_ipi_waiting(sd)) {
4819 		local_irq_disable();
4820 		net_rps_action_and_irq_enable(sd);
4821 	}
4822 
4823 	napi->weight = weight_p;
4824 	local_irq_disable();
4825 	while (1) {
4826 		struct sk_buff *skb;
4827 
4828 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4829 			rcu_read_lock();
4830 			local_irq_enable();
4831 			__netif_receive_skb(skb);
4832 			rcu_read_unlock();
4833 			local_irq_disable();
4834 			input_queue_head_incr(sd);
4835 			if (++work >= quota) {
4836 				local_irq_enable();
4837 				return work;
4838 			}
4839 		}
4840 
4841 		rps_lock(sd);
4842 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4843 			/*
4844 			 * Inline a custom version of __napi_complete().
4845 			 * only current cpu owns and manipulates this napi,
4846 			 * and NAPI_STATE_SCHED is the only possible flag set
4847 			 * on backlog.
4848 			 * We can use a plain write instead of clear_bit(),
4849 			 * and we dont need an smp_mb() memory barrier.
4850 			 */
4851 			napi->state = 0;
4852 			rps_unlock(sd);
4853 
4854 			break;
4855 		}
4856 
4857 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4858 					   &sd->process_queue);
4859 		rps_unlock(sd);
4860 	}
4861 	local_irq_enable();
4862 
4863 	return work;
4864 }
4865 
4866 /**
4867  * __napi_schedule - schedule for receive
4868  * @n: entry to schedule
4869  *
4870  * The entry's receive function will be scheduled to run.
4871  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4872  */
4873 void __napi_schedule(struct napi_struct *n)
4874 {
4875 	unsigned long flags;
4876 
4877 	local_irq_save(flags);
4878 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4879 	local_irq_restore(flags);
4880 }
4881 EXPORT_SYMBOL(__napi_schedule);
4882 
4883 /**
4884  * __napi_schedule_irqoff - schedule for receive
4885  * @n: entry to schedule
4886  *
4887  * Variant of __napi_schedule() assuming hard irqs are masked
4888  */
4889 void __napi_schedule_irqoff(struct napi_struct *n)
4890 {
4891 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4892 }
4893 EXPORT_SYMBOL(__napi_schedule_irqoff);
4894 
4895 void __napi_complete(struct napi_struct *n)
4896 {
4897 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4898 
4899 	list_del_init(&n->poll_list);
4900 	smp_mb__before_atomic();
4901 	clear_bit(NAPI_STATE_SCHED, &n->state);
4902 }
4903 EXPORT_SYMBOL(__napi_complete);
4904 
4905 void napi_complete_done(struct napi_struct *n, int work_done)
4906 {
4907 	unsigned long flags;
4908 
4909 	/*
4910 	 * don't let napi dequeue from the cpu poll list
4911 	 * just in case its running on a different cpu
4912 	 */
4913 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4914 		return;
4915 
4916 	if (n->gro_list) {
4917 		unsigned long timeout = 0;
4918 
4919 		if (work_done)
4920 			timeout = n->dev->gro_flush_timeout;
4921 
4922 		if (timeout)
4923 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4924 				      HRTIMER_MODE_REL_PINNED);
4925 		else
4926 			napi_gro_flush(n, false);
4927 	}
4928 	if (likely(list_empty(&n->poll_list))) {
4929 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4930 	} else {
4931 		/* If n->poll_list is not empty, we need to mask irqs */
4932 		local_irq_save(flags);
4933 		__napi_complete(n);
4934 		local_irq_restore(flags);
4935 	}
4936 }
4937 EXPORT_SYMBOL(napi_complete_done);
4938 
4939 /* must be called under rcu_read_lock(), as we dont take a reference */
4940 static struct napi_struct *napi_by_id(unsigned int napi_id)
4941 {
4942 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4943 	struct napi_struct *napi;
4944 
4945 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4946 		if (napi->napi_id == napi_id)
4947 			return napi;
4948 
4949 	return NULL;
4950 }
4951 
4952 #if defined(CONFIG_NET_RX_BUSY_POLL)
4953 #define BUSY_POLL_BUDGET 8
4954 bool sk_busy_loop(struct sock *sk, int nonblock)
4955 {
4956 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4957 	int (*busy_poll)(struct napi_struct *dev);
4958 	struct napi_struct *napi;
4959 	int rc = false;
4960 
4961 	rcu_read_lock();
4962 
4963 	napi = napi_by_id(sk->sk_napi_id);
4964 	if (!napi)
4965 		goto out;
4966 
4967 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4968 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4969 
4970 	do {
4971 		rc = 0;
4972 		local_bh_disable();
4973 		if (busy_poll) {
4974 			rc = busy_poll(napi);
4975 		} else if (napi_schedule_prep(napi)) {
4976 			void *have = netpoll_poll_lock(napi);
4977 
4978 			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4979 				rc = napi->poll(napi, BUSY_POLL_BUDGET);
4980 				trace_napi_poll(napi);
4981 				if (rc == BUSY_POLL_BUDGET) {
4982 					napi_complete_done(napi, rc);
4983 					napi_schedule(napi);
4984 				}
4985 			}
4986 			netpoll_poll_unlock(have);
4987 		}
4988 		if (rc > 0)
4989 			__NET_ADD_STATS(sock_net(sk),
4990 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4991 		local_bh_enable();
4992 
4993 		if (rc == LL_FLUSH_FAILED)
4994 			break; /* permanent failure */
4995 
4996 		cpu_relax();
4997 	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4998 		 !need_resched() && !busy_loop_timeout(end_time));
4999 
5000 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5001 out:
5002 	rcu_read_unlock();
5003 	return rc;
5004 }
5005 EXPORT_SYMBOL(sk_busy_loop);
5006 
5007 #endif /* CONFIG_NET_RX_BUSY_POLL */
5008 
5009 void napi_hash_add(struct napi_struct *napi)
5010 {
5011 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5012 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5013 		return;
5014 
5015 	spin_lock(&napi_hash_lock);
5016 
5017 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5018 	do {
5019 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5020 			napi_gen_id = NR_CPUS + 1;
5021 	} while (napi_by_id(napi_gen_id));
5022 	napi->napi_id = napi_gen_id;
5023 
5024 	hlist_add_head_rcu(&napi->napi_hash_node,
5025 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5026 
5027 	spin_unlock(&napi_hash_lock);
5028 }
5029 EXPORT_SYMBOL_GPL(napi_hash_add);
5030 
5031 /* Warning : caller is responsible to make sure rcu grace period
5032  * is respected before freeing memory containing @napi
5033  */
5034 bool napi_hash_del(struct napi_struct *napi)
5035 {
5036 	bool rcu_sync_needed = false;
5037 
5038 	spin_lock(&napi_hash_lock);
5039 
5040 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5041 		rcu_sync_needed = true;
5042 		hlist_del_rcu(&napi->napi_hash_node);
5043 	}
5044 	spin_unlock(&napi_hash_lock);
5045 	return rcu_sync_needed;
5046 }
5047 EXPORT_SYMBOL_GPL(napi_hash_del);
5048 
5049 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5050 {
5051 	struct napi_struct *napi;
5052 
5053 	napi = container_of(timer, struct napi_struct, timer);
5054 	if (napi->gro_list)
5055 		napi_schedule(napi);
5056 
5057 	return HRTIMER_NORESTART;
5058 }
5059 
5060 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5061 		    int (*poll)(struct napi_struct *, int), int weight)
5062 {
5063 	INIT_LIST_HEAD(&napi->poll_list);
5064 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5065 	napi->timer.function = napi_watchdog;
5066 	napi->gro_count = 0;
5067 	napi->gro_list = NULL;
5068 	napi->skb = NULL;
5069 	napi->poll = poll;
5070 	if (weight > NAPI_POLL_WEIGHT)
5071 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5072 			    weight, dev->name);
5073 	napi->weight = weight;
5074 	list_add(&napi->dev_list, &dev->napi_list);
5075 	napi->dev = dev;
5076 #ifdef CONFIG_NETPOLL
5077 	spin_lock_init(&napi->poll_lock);
5078 	napi->poll_owner = -1;
5079 #endif
5080 	set_bit(NAPI_STATE_SCHED, &napi->state);
5081 	napi_hash_add(napi);
5082 }
5083 EXPORT_SYMBOL(netif_napi_add);
5084 
5085 void napi_disable(struct napi_struct *n)
5086 {
5087 	might_sleep();
5088 	set_bit(NAPI_STATE_DISABLE, &n->state);
5089 
5090 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5091 		msleep(1);
5092 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5093 		msleep(1);
5094 
5095 	hrtimer_cancel(&n->timer);
5096 
5097 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5098 }
5099 EXPORT_SYMBOL(napi_disable);
5100 
5101 /* Must be called in process context */
5102 void netif_napi_del(struct napi_struct *napi)
5103 {
5104 	might_sleep();
5105 	if (napi_hash_del(napi))
5106 		synchronize_net();
5107 	list_del_init(&napi->dev_list);
5108 	napi_free_frags(napi);
5109 
5110 	kfree_skb_list(napi->gro_list);
5111 	napi->gro_list = NULL;
5112 	napi->gro_count = 0;
5113 }
5114 EXPORT_SYMBOL(netif_napi_del);
5115 
5116 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5117 {
5118 	void *have;
5119 	int work, weight;
5120 
5121 	list_del_init(&n->poll_list);
5122 
5123 	have = netpoll_poll_lock(n);
5124 
5125 	weight = n->weight;
5126 
5127 	/* This NAPI_STATE_SCHED test is for avoiding a race
5128 	 * with netpoll's poll_napi().  Only the entity which
5129 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5130 	 * actually make the ->poll() call.  Therefore we avoid
5131 	 * accidentally calling ->poll() when NAPI is not scheduled.
5132 	 */
5133 	work = 0;
5134 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5135 		work = n->poll(n, weight);
5136 		trace_napi_poll(n);
5137 	}
5138 
5139 	WARN_ON_ONCE(work > weight);
5140 
5141 	if (likely(work < weight))
5142 		goto out_unlock;
5143 
5144 	/* Drivers must not modify the NAPI state if they
5145 	 * consume the entire weight.  In such cases this code
5146 	 * still "owns" the NAPI instance and therefore can
5147 	 * move the instance around on the list at-will.
5148 	 */
5149 	if (unlikely(napi_disable_pending(n))) {
5150 		napi_complete(n);
5151 		goto out_unlock;
5152 	}
5153 
5154 	if (n->gro_list) {
5155 		/* flush too old packets
5156 		 * If HZ < 1000, flush all packets.
5157 		 */
5158 		napi_gro_flush(n, HZ >= 1000);
5159 	}
5160 
5161 	/* Some drivers may have called napi_schedule
5162 	 * prior to exhausting their budget.
5163 	 */
5164 	if (unlikely(!list_empty(&n->poll_list))) {
5165 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5166 			     n->dev ? n->dev->name : "backlog");
5167 		goto out_unlock;
5168 	}
5169 
5170 	list_add_tail(&n->poll_list, repoll);
5171 
5172 out_unlock:
5173 	netpoll_poll_unlock(have);
5174 
5175 	return work;
5176 }
5177 
5178 static void net_rx_action(struct softirq_action *h)
5179 {
5180 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5181 	unsigned long time_limit = jiffies + 2;
5182 	int budget = netdev_budget;
5183 	LIST_HEAD(list);
5184 	LIST_HEAD(repoll);
5185 
5186 	local_irq_disable();
5187 	list_splice_init(&sd->poll_list, &list);
5188 	local_irq_enable();
5189 
5190 	for (;;) {
5191 		struct napi_struct *n;
5192 
5193 		if (list_empty(&list)) {
5194 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5195 				return;
5196 			break;
5197 		}
5198 
5199 		n = list_first_entry(&list, struct napi_struct, poll_list);
5200 		budget -= napi_poll(n, &repoll);
5201 
5202 		/* If softirq window is exhausted then punt.
5203 		 * Allow this to run for 2 jiffies since which will allow
5204 		 * an average latency of 1.5/HZ.
5205 		 */
5206 		if (unlikely(budget <= 0 ||
5207 			     time_after_eq(jiffies, time_limit))) {
5208 			sd->time_squeeze++;
5209 			break;
5210 		}
5211 	}
5212 
5213 	__kfree_skb_flush();
5214 	local_irq_disable();
5215 
5216 	list_splice_tail_init(&sd->poll_list, &list);
5217 	list_splice_tail(&repoll, &list);
5218 	list_splice(&list, &sd->poll_list);
5219 	if (!list_empty(&sd->poll_list))
5220 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5221 
5222 	net_rps_action_and_irq_enable(sd);
5223 }
5224 
5225 struct netdev_adjacent {
5226 	struct net_device *dev;
5227 
5228 	/* upper master flag, there can only be one master device per list */
5229 	bool master;
5230 
5231 	/* counter for the number of times this device was added to us */
5232 	u16 ref_nr;
5233 
5234 	/* private field for the users */
5235 	void *private;
5236 
5237 	struct list_head list;
5238 	struct rcu_head rcu;
5239 };
5240 
5241 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5242 						 struct list_head *adj_list)
5243 {
5244 	struct netdev_adjacent *adj;
5245 
5246 	list_for_each_entry(adj, adj_list, list) {
5247 		if (adj->dev == adj_dev)
5248 			return adj;
5249 	}
5250 	return NULL;
5251 }
5252 
5253 /**
5254  * netdev_has_upper_dev - Check if device is linked to an upper device
5255  * @dev: device
5256  * @upper_dev: upper device to check
5257  *
5258  * Find out if a device is linked to specified upper device and return true
5259  * in case it is. Note that this checks only immediate upper device,
5260  * not through a complete stack of devices. The caller must hold the RTNL lock.
5261  */
5262 bool netdev_has_upper_dev(struct net_device *dev,
5263 			  struct net_device *upper_dev)
5264 {
5265 	ASSERT_RTNL();
5266 
5267 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5268 }
5269 EXPORT_SYMBOL(netdev_has_upper_dev);
5270 
5271 /**
5272  * netdev_has_any_upper_dev - Check if device is linked to some device
5273  * @dev: device
5274  *
5275  * Find out if a device is linked to an upper device and return true in case
5276  * it is. The caller must hold the RTNL lock.
5277  */
5278 static bool netdev_has_any_upper_dev(struct net_device *dev)
5279 {
5280 	ASSERT_RTNL();
5281 
5282 	return !list_empty(&dev->all_adj_list.upper);
5283 }
5284 
5285 /**
5286  * netdev_master_upper_dev_get - Get master upper device
5287  * @dev: device
5288  *
5289  * Find a master upper device and return pointer to it or NULL in case
5290  * it's not there. The caller must hold the RTNL lock.
5291  */
5292 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5293 {
5294 	struct netdev_adjacent *upper;
5295 
5296 	ASSERT_RTNL();
5297 
5298 	if (list_empty(&dev->adj_list.upper))
5299 		return NULL;
5300 
5301 	upper = list_first_entry(&dev->adj_list.upper,
5302 				 struct netdev_adjacent, list);
5303 	if (likely(upper->master))
5304 		return upper->dev;
5305 	return NULL;
5306 }
5307 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5308 
5309 void *netdev_adjacent_get_private(struct list_head *adj_list)
5310 {
5311 	struct netdev_adjacent *adj;
5312 
5313 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5314 
5315 	return adj->private;
5316 }
5317 EXPORT_SYMBOL(netdev_adjacent_get_private);
5318 
5319 /**
5320  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5321  * @dev: device
5322  * @iter: list_head ** of the current position
5323  *
5324  * Gets the next device from the dev's upper list, starting from iter
5325  * position. The caller must hold RCU read lock.
5326  */
5327 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5328 						 struct list_head **iter)
5329 {
5330 	struct netdev_adjacent *upper;
5331 
5332 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5333 
5334 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5335 
5336 	if (&upper->list == &dev->adj_list.upper)
5337 		return NULL;
5338 
5339 	*iter = &upper->list;
5340 
5341 	return upper->dev;
5342 }
5343 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5344 
5345 /**
5346  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5347  * @dev: device
5348  * @iter: list_head ** of the current position
5349  *
5350  * Gets the next device from the dev's upper list, starting from iter
5351  * position. The caller must hold RCU read lock.
5352  */
5353 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5354 						     struct list_head **iter)
5355 {
5356 	struct netdev_adjacent *upper;
5357 
5358 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5359 
5360 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5361 
5362 	if (&upper->list == &dev->all_adj_list.upper)
5363 		return NULL;
5364 
5365 	*iter = &upper->list;
5366 
5367 	return upper->dev;
5368 }
5369 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5370 
5371 /**
5372  * netdev_lower_get_next_private - Get the next ->private from the
5373  *				   lower neighbour list
5374  * @dev: device
5375  * @iter: list_head ** of the current position
5376  *
5377  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5378  * list, starting from iter position. The caller must hold either hold the
5379  * RTNL lock or its own locking that guarantees that the neighbour lower
5380  * list will remain unchanged.
5381  */
5382 void *netdev_lower_get_next_private(struct net_device *dev,
5383 				    struct list_head **iter)
5384 {
5385 	struct netdev_adjacent *lower;
5386 
5387 	lower = list_entry(*iter, struct netdev_adjacent, list);
5388 
5389 	if (&lower->list == &dev->adj_list.lower)
5390 		return NULL;
5391 
5392 	*iter = lower->list.next;
5393 
5394 	return lower->private;
5395 }
5396 EXPORT_SYMBOL(netdev_lower_get_next_private);
5397 
5398 /**
5399  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5400  *				       lower neighbour list, RCU
5401  *				       variant
5402  * @dev: device
5403  * @iter: list_head ** of the current position
5404  *
5405  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5406  * list, starting from iter position. The caller must hold RCU read lock.
5407  */
5408 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5409 					struct list_head **iter)
5410 {
5411 	struct netdev_adjacent *lower;
5412 
5413 	WARN_ON_ONCE(!rcu_read_lock_held());
5414 
5415 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5416 
5417 	if (&lower->list == &dev->adj_list.lower)
5418 		return NULL;
5419 
5420 	*iter = &lower->list;
5421 
5422 	return lower->private;
5423 }
5424 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5425 
5426 /**
5427  * netdev_lower_get_next - Get the next device from the lower neighbour
5428  *                         list
5429  * @dev: device
5430  * @iter: list_head ** of the current position
5431  *
5432  * Gets the next netdev_adjacent from the dev's lower neighbour
5433  * list, starting from iter position. The caller must hold RTNL lock or
5434  * its own locking that guarantees that the neighbour lower
5435  * list will remain unchanged.
5436  */
5437 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5438 {
5439 	struct netdev_adjacent *lower;
5440 
5441 	lower = list_entry(*iter, struct netdev_adjacent, list);
5442 
5443 	if (&lower->list == &dev->adj_list.lower)
5444 		return NULL;
5445 
5446 	*iter = lower->list.next;
5447 
5448 	return lower->dev;
5449 }
5450 EXPORT_SYMBOL(netdev_lower_get_next);
5451 
5452 /**
5453  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5454  *				       lower neighbour list, RCU
5455  *				       variant
5456  * @dev: device
5457  *
5458  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5459  * list. The caller must hold RCU read lock.
5460  */
5461 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5462 {
5463 	struct netdev_adjacent *lower;
5464 
5465 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5466 			struct netdev_adjacent, list);
5467 	if (lower)
5468 		return lower->private;
5469 	return NULL;
5470 }
5471 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5472 
5473 /**
5474  * netdev_master_upper_dev_get_rcu - Get master upper device
5475  * @dev: device
5476  *
5477  * Find a master upper device and return pointer to it or NULL in case
5478  * it's not there. The caller must hold the RCU read lock.
5479  */
5480 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5481 {
5482 	struct netdev_adjacent *upper;
5483 
5484 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5485 				       struct netdev_adjacent, list);
5486 	if (upper && likely(upper->master))
5487 		return upper->dev;
5488 	return NULL;
5489 }
5490 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5491 
5492 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5493 			      struct net_device *adj_dev,
5494 			      struct list_head *dev_list)
5495 {
5496 	char linkname[IFNAMSIZ+7];
5497 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5498 		"upper_%s" : "lower_%s", adj_dev->name);
5499 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5500 				 linkname);
5501 }
5502 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5503 			       char *name,
5504 			       struct list_head *dev_list)
5505 {
5506 	char linkname[IFNAMSIZ+7];
5507 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5508 		"upper_%s" : "lower_%s", name);
5509 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5510 }
5511 
5512 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5513 						 struct net_device *adj_dev,
5514 						 struct list_head *dev_list)
5515 {
5516 	return (dev_list == &dev->adj_list.upper ||
5517 		dev_list == &dev->adj_list.lower) &&
5518 		net_eq(dev_net(dev), dev_net(adj_dev));
5519 }
5520 
5521 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5522 					struct net_device *adj_dev,
5523 					struct list_head *dev_list,
5524 					void *private, bool master)
5525 {
5526 	struct netdev_adjacent *adj;
5527 	int ret;
5528 
5529 	adj = __netdev_find_adj(adj_dev, dev_list);
5530 
5531 	if (adj) {
5532 		adj->ref_nr++;
5533 		return 0;
5534 	}
5535 
5536 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5537 	if (!adj)
5538 		return -ENOMEM;
5539 
5540 	adj->dev = adj_dev;
5541 	adj->master = master;
5542 	adj->ref_nr = 1;
5543 	adj->private = private;
5544 	dev_hold(adj_dev);
5545 
5546 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5547 		 adj_dev->name, dev->name, adj_dev->name);
5548 
5549 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5550 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5551 		if (ret)
5552 			goto free_adj;
5553 	}
5554 
5555 	/* Ensure that master link is always the first item in list. */
5556 	if (master) {
5557 		ret = sysfs_create_link(&(dev->dev.kobj),
5558 					&(adj_dev->dev.kobj), "master");
5559 		if (ret)
5560 			goto remove_symlinks;
5561 
5562 		list_add_rcu(&adj->list, dev_list);
5563 	} else {
5564 		list_add_tail_rcu(&adj->list, dev_list);
5565 	}
5566 
5567 	return 0;
5568 
5569 remove_symlinks:
5570 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5571 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5572 free_adj:
5573 	kfree(adj);
5574 	dev_put(adj_dev);
5575 
5576 	return ret;
5577 }
5578 
5579 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5580 					 struct net_device *adj_dev,
5581 					 struct list_head *dev_list)
5582 {
5583 	struct netdev_adjacent *adj;
5584 
5585 	adj = __netdev_find_adj(adj_dev, dev_list);
5586 
5587 	if (!adj) {
5588 		pr_err("tried to remove device %s from %s\n",
5589 		       dev->name, adj_dev->name);
5590 		BUG();
5591 	}
5592 
5593 	if (adj->ref_nr > 1) {
5594 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5595 			 adj->ref_nr-1);
5596 		adj->ref_nr--;
5597 		return;
5598 	}
5599 
5600 	if (adj->master)
5601 		sysfs_remove_link(&(dev->dev.kobj), "master");
5602 
5603 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5604 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5605 
5606 	list_del_rcu(&adj->list);
5607 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5608 		 adj_dev->name, dev->name, adj_dev->name);
5609 	dev_put(adj_dev);
5610 	kfree_rcu(adj, rcu);
5611 }
5612 
5613 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5614 					    struct net_device *upper_dev,
5615 					    struct list_head *up_list,
5616 					    struct list_head *down_list,
5617 					    void *private, bool master)
5618 {
5619 	int ret;
5620 
5621 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5622 					   master);
5623 	if (ret)
5624 		return ret;
5625 
5626 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5627 					   false);
5628 	if (ret) {
5629 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5630 		return ret;
5631 	}
5632 
5633 	return 0;
5634 }
5635 
5636 static int __netdev_adjacent_dev_link(struct net_device *dev,
5637 				      struct net_device *upper_dev)
5638 {
5639 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5640 						&dev->all_adj_list.upper,
5641 						&upper_dev->all_adj_list.lower,
5642 						NULL, false);
5643 }
5644 
5645 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5646 					       struct net_device *upper_dev,
5647 					       struct list_head *up_list,
5648 					       struct list_head *down_list)
5649 {
5650 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5651 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5652 }
5653 
5654 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5655 					 struct net_device *upper_dev)
5656 {
5657 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5658 					   &dev->all_adj_list.upper,
5659 					   &upper_dev->all_adj_list.lower);
5660 }
5661 
5662 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5663 						struct net_device *upper_dev,
5664 						void *private, bool master)
5665 {
5666 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5667 
5668 	if (ret)
5669 		return ret;
5670 
5671 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5672 					       &dev->adj_list.upper,
5673 					       &upper_dev->adj_list.lower,
5674 					       private, master);
5675 	if (ret) {
5676 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5677 		return ret;
5678 	}
5679 
5680 	return 0;
5681 }
5682 
5683 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5684 						   struct net_device *upper_dev)
5685 {
5686 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5687 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5688 					   &dev->adj_list.upper,
5689 					   &upper_dev->adj_list.lower);
5690 }
5691 
5692 static int __netdev_upper_dev_link(struct net_device *dev,
5693 				   struct net_device *upper_dev, bool master,
5694 				   void *upper_priv, void *upper_info)
5695 {
5696 	struct netdev_notifier_changeupper_info changeupper_info;
5697 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5698 	int ret = 0;
5699 
5700 	ASSERT_RTNL();
5701 
5702 	if (dev == upper_dev)
5703 		return -EBUSY;
5704 
5705 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5706 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5707 		return -EBUSY;
5708 
5709 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5710 		return -EEXIST;
5711 
5712 	if (master && netdev_master_upper_dev_get(dev))
5713 		return -EBUSY;
5714 
5715 	changeupper_info.upper_dev = upper_dev;
5716 	changeupper_info.master = master;
5717 	changeupper_info.linking = true;
5718 	changeupper_info.upper_info = upper_info;
5719 
5720 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5721 					    &changeupper_info.info);
5722 	ret = notifier_to_errno(ret);
5723 	if (ret)
5724 		return ret;
5725 
5726 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5727 						   master);
5728 	if (ret)
5729 		return ret;
5730 
5731 	/* Now that we linked these devs, make all the upper_dev's
5732 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5733 	 * versa, and don't forget the devices itself. All of these
5734 	 * links are non-neighbours.
5735 	 */
5736 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5737 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5738 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5739 				 i->dev->name, j->dev->name);
5740 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5741 			if (ret)
5742 				goto rollback_mesh;
5743 		}
5744 	}
5745 
5746 	/* add dev to every upper_dev's upper device */
5747 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5748 		pr_debug("linking %s's upper device %s with %s\n",
5749 			 upper_dev->name, i->dev->name, dev->name);
5750 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5751 		if (ret)
5752 			goto rollback_upper_mesh;
5753 	}
5754 
5755 	/* add upper_dev to every dev's lower device */
5756 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5757 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5758 			 i->dev->name, upper_dev->name);
5759 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5760 		if (ret)
5761 			goto rollback_lower_mesh;
5762 	}
5763 
5764 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5765 					    &changeupper_info.info);
5766 	ret = notifier_to_errno(ret);
5767 	if (ret)
5768 		goto rollback_lower_mesh;
5769 
5770 	return 0;
5771 
5772 rollback_lower_mesh:
5773 	to_i = i;
5774 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5775 		if (i == to_i)
5776 			break;
5777 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5778 	}
5779 
5780 	i = NULL;
5781 
5782 rollback_upper_mesh:
5783 	to_i = i;
5784 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5785 		if (i == to_i)
5786 			break;
5787 		__netdev_adjacent_dev_unlink(dev, i->dev);
5788 	}
5789 
5790 	i = j = NULL;
5791 
5792 rollback_mesh:
5793 	to_i = i;
5794 	to_j = j;
5795 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5796 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5797 			if (i == to_i && j == to_j)
5798 				break;
5799 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5800 		}
5801 		if (i == to_i)
5802 			break;
5803 	}
5804 
5805 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5806 
5807 	return ret;
5808 }
5809 
5810 /**
5811  * netdev_upper_dev_link - Add a link to the upper device
5812  * @dev: device
5813  * @upper_dev: new upper device
5814  *
5815  * Adds a link to device which is upper to this one. The caller must hold
5816  * the RTNL lock. On a failure a negative errno code is returned.
5817  * On success the reference counts are adjusted and the function
5818  * returns zero.
5819  */
5820 int netdev_upper_dev_link(struct net_device *dev,
5821 			  struct net_device *upper_dev)
5822 {
5823 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5824 }
5825 EXPORT_SYMBOL(netdev_upper_dev_link);
5826 
5827 /**
5828  * netdev_master_upper_dev_link - Add a master link to the upper device
5829  * @dev: device
5830  * @upper_dev: new upper device
5831  * @upper_priv: upper device private
5832  * @upper_info: upper info to be passed down via notifier
5833  *
5834  * Adds a link to device which is upper to this one. In this case, only
5835  * one master upper device can be linked, although other non-master devices
5836  * might be linked as well. The caller must hold the RTNL lock.
5837  * On a failure a negative errno code is returned. On success the reference
5838  * counts are adjusted and the function returns zero.
5839  */
5840 int netdev_master_upper_dev_link(struct net_device *dev,
5841 				 struct net_device *upper_dev,
5842 				 void *upper_priv, void *upper_info)
5843 {
5844 	return __netdev_upper_dev_link(dev, upper_dev, true,
5845 				       upper_priv, upper_info);
5846 }
5847 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5848 
5849 /**
5850  * netdev_upper_dev_unlink - Removes a link to upper device
5851  * @dev: device
5852  * @upper_dev: new upper device
5853  *
5854  * Removes a link to device which is upper to this one. The caller must hold
5855  * the RTNL lock.
5856  */
5857 void netdev_upper_dev_unlink(struct net_device *dev,
5858 			     struct net_device *upper_dev)
5859 {
5860 	struct netdev_notifier_changeupper_info changeupper_info;
5861 	struct netdev_adjacent *i, *j;
5862 	ASSERT_RTNL();
5863 
5864 	changeupper_info.upper_dev = upper_dev;
5865 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5866 	changeupper_info.linking = false;
5867 
5868 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5869 				      &changeupper_info.info);
5870 
5871 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5872 
5873 	/* Here is the tricky part. We must remove all dev's lower
5874 	 * devices from all upper_dev's upper devices and vice
5875 	 * versa, to maintain the graph relationship.
5876 	 */
5877 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5878 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5879 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5880 
5881 	/* remove also the devices itself from lower/upper device
5882 	 * list
5883 	 */
5884 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5885 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5886 
5887 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5888 		__netdev_adjacent_dev_unlink(dev, i->dev);
5889 
5890 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5891 				      &changeupper_info.info);
5892 }
5893 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5894 
5895 /**
5896  * netdev_bonding_info_change - Dispatch event about slave change
5897  * @dev: device
5898  * @bonding_info: info to dispatch
5899  *
5900  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5901  * The caller must hold the RTNL lock.
5902  */
5903 void netdev_bonding_info_change(struct net_device *dev,
5904 				struct netdev_bonding_info *bonding_info)
5905 {
5906 	struct netdev_notifier_bonding_info	info;
5907 
5908 	memcpy(&info.bonding_info, bonding_info,
5909 	       sizeof(struct netdev_bonding_info));
5910 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5911 				      &info.info);
5912 }
5913 EXPORT_SYMBOL(netdev_bonding_info_change);
5914 
5915 static void netdev_adjacent_add_links(struct net_device *dev)
5916 {
5917 	struct netdev_adjacent *iter;
5918 
5919 	struct net *net = dev_net(dev);
5920 
5921 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5922 		if (!net_eq(net,dev_net(iter->dev)))
5923 			continue;
5924 		netdev_adjacent_sysfs_add(iter->dev, dev,
5925 					  &iter->dev->adj_list.lower);
5926 		netdev_adjacent_sysfs_add(dev, iter->dev,
5927 					  &dev->adj_list.upper);
5928 	}
5929 
5930 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5931 		if (!net_eq(net,dev_net(iter->dev)))
5932 			continue;
5933 		netdev_adjacent_sysfs_add(iter->dev, dev,
5934 					  &iter->dev->adj_list.upper);
5935 		netdev_adjacent_sysfs_add(dev, iter->dev,
5936 					  &dev->adj_list.lower);
5937 	}
5938 }
5939 
5940 static void netdev_adjacent_del_links(struct net_device *dev)
5941 {
5942 	struct netdev_adjacent *iter;
5943 
5944 	struct net *net = dev_net(dev);
5945 
5946 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5947 		if (!net_eq(net,dev_net(iter->dev)))
5948 			continue;
5949 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5950 					  &iter->dev->adj_list.lower);
5951 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5952 					  &dev->adj_list.upper);
5953 	}
5954 
5955 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5956 		if (!net_eq(net,dev_net(iter->dev)))
5957 			continue;
5958 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5959 					  &iter->dev->adj_list.upper);
5960 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5961 					  &dev->adj_list.lower);
5962 	}
5963 }
5964 
5965 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5966 {
5967 	struct netdev_adjacent *iter;
5968 
5969 	struct net *net = dev_net(dev);
5970 
5971 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5972 		if (!net_eq(net,dev_net(iter->dev)))
5973 			continue;
5974 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5975 					  &iter->dev->adj_list.lower);
5976 		netdev_adjacent_sysfs_add(iter->dev, dev,
5977 					  &iter->dev->adj_list.lower);
5978 	}
5979 
5980 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5981 		if (!net_eq(net,dev_net(iter->dev)))
5982 			continue;
5983 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5984 					  &iter->dev->adj_list.upper);
5985 		netdev_adjacent_sysfs_add(iter->dev, dev,
5986 					  &iter->dev->adj_list.upper);
5987 	}
5988 }
5989 
5990 void *netdev_lower_dev_get_private(struct net_device *dev,
5991 				   struct net_device *lower_dev)
5992 {
5993 	struct netdev_adjacent *lower;
5994 
5995 	if (!lower_dev)
5996 		return NULL;
5997 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5998 	if (!lower)
5999 		return NULL;
6000 
6001 	return lower->private;
6002 }
6003 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6004 
6005 
6006 int dev_get_nest_level(struct net_device *dev,
6007 		       bool (*type_check)(const struct net_device *dev))
6008 {
6009 	struct net_device *lower = NULL;
6010 	struct list_head *iter;
6011 	int max_nest = -1;
6012 	int nest;
6013 
6014 	ASSERT_RTNL();
6015 
6016 	netdev_for_each_lower_dev(dev, lower, iter) {
6017 		nest = dev_get_nest_level(lower, type_check);
6018 		if (max_nest < nest)
6019 			max_nest = nest;
6020 	}
6021 
6022 	if (type_check(dev))
6023 		max_nest++;
6024 
6025 	return max_nest;
6026 }
6027 EXPORT_SYMBOL(dev_get_nest_level);
6028 
6029 /**
6030  * netdev_lower_change - Dispatch event about lower device state change
6031  * @lower_dev: device
6032  * @lower_state_info: state to dispatch
6033  *
6034  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6035  * The caller must hold the RTNL lock.
6036  */
6037 void netdev_lower_state_changed(struct net_device *lower_dev,
6038 				void *lower_state_info)
6039 {
6040 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6041 
6042 	ASSERT_RTNL();
6043 	changelowerstate_info.lower_state_info = lower_state_info;
6044 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6045 				      &changelowerstate_info.info);
6046 }
6047 EXPORT_SYMBOL(netdev_lower_state_changed);
6048 
6049 static void dev_change_rx_flags(struct net_device *dev, int flags)
6050 {
6051 	const struct net_device_ops *ops = dev->netdev_ops;
6052 
6053 	if (ops->ndo_change_rx_flags)
6054 		ops->ndo_change_rx_flags(dev, flags);
6055 }
6056 
6057 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6058 {
6059 	unsigned int old_flags = dev->flags;
6060 	kuid_t uid;
6061 	kgid_t gid;
6062 
6063 	ASSERT_RTNL();
6064 
6065 	dev->flags |= IFF_PROMISC;
6066 	dev->promiscuity += inc;
6067 	if (dev->promiscuity == 0) {
6068 		/*
6069 		 * Avoid overflow.
6070 		 * If inc causes overflow, untouch promisc and return error.
6071 		 */
6072 		if (inc < 0)
6073 			dev->flags &= ~IFF_PROMISC;
6074 		else {
6075 			dev->promiscuity -= inc;
6076 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6077 				dev->name);
6078 			return -EOVERFLOW;
6079 		}
6080 	}
6081 	if (dev->flags != old_flags) {
6082 		pr_info("device %s %s promiscuous mode\n",
6083 			dev->name,
6084 			dev->flags & IFF_PROMISC ? "entered" : "left");
6085 		if (audit_enabled) {
6086 			current_uid_gid(&uid, &gid);
6087 			audit_log(current->audit_context, GFP_ATOMIC,
6088 				AUDIT_ANOM_PROMISCUOUS,
6089 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6090 				dev->name, (dev->flags & IFF_PROMISC),
6091 				(old_flags & IFF_PROMISC),
6092 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6093 				from_kuid(&init_user_ns, uid),
6094 				from_kgid(&init_user_ns, gid),
6095 				audit_get_sessionid(current));
6096 		}
6097 
6098 		dev_change_rx_flags(dev, IFF_PROMISC);
6099 	}
6100 	if (notify)
6101 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6102 	return 0;
6103 }
6104 
6105 /**
6106  *	dev_set_promiscuity	- update promiscuity count on a device
6107  *	@dev: device
6108  *	@inc: modifier
6109  *
6110  *	Add or remove promiscuity from a device. While the count in the device
6111  *	remains above zero the interface remains promiscuous. Once it hits zero
6112  *	the device reverts back to normal filtering operation. A negative inc
6113  *	value is used to drop promiscuity on the device.
6114  *	Return 0 if successful or a negative errno code on error.
6115  */
6116 int dev_set_promiscuity(struct net_device *dev, int inc)
6117 {
6118 	unsigned int old_flags = dev->flags;
6119 	int err;
6120 
6121 	err = __dev_set_promiscuity(dev, inc, true);
6122 	if (err < 0)
6123 		return err;
6124 	if (dev->flags != old_flags)
6125 		dev_set_rx_mode(dev);
6126 	return err;
6127 }
6128 EXPORT_SYMBOL(dev_set_promiscuity);
6129 
6130 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6131 {
6132 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6133 
6134 	ASSERT_RTNL();
6135 
6136 	dev->flags |= IFF_ALLMULTI;
6137 	dev->allmulti += inc;
6138 	if (dev->allmulti == 0) {
6139 		/*
6140 		 * Avoid overflow.
6141 		 * If inc causes overflow, untouch allmulti and return error.
6142 		 */
6143 		if (inc < 0)
6144 			dev->flags &= ~IFF_ALLMULTI;
6145 		else {
6146 			dev->allmulti -= inc;
6147 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6148 				dev->name);
6149 			return -EOVERFLOW;
6150 		}
6151 	}
6152 	if (dev->flags ^ old_flags) {
6153 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6154 		dev_set_rx_mode(dev);
6155 		if (notify)
6156 			__dev_notify_flags(dev, old_flags,
6157 					   dev->gflags ^ old_gflags);
6158 	}
6159 	return 0;
6160 }
6161 
6162 /**
6163  *	dev_set_allmulti	- update allmulti count on a device
6164  *	@dev: device
6165  *	@inc: modifier
6166  *
6167  *	Add or remove reception of all multicast frames to a device. While the
6168  *	count in the device remains above zero the interface remains listening
6169  *	to all interfaces. Once it hits zero the device reverts back to normal
6170  *	filtering operation. A negative @inc value is used to drop the counter
6171  *	when releasing a resource needing all multicasts.
6172  *	Return 0 if successful or a negative errno code on error.
6173  */
6174 
6175 int dev_set_allmulti(struct net_device *dev, int inc)
6176 {
6177 	return __dev_set_allmulti(dev, inc, true);
6178 }
6179 EXPORT_SYMBOL(dev_set_allmulti);
6180 
6181 /*
6182  *	Upload unicast and multicast address lists to device and
6183  *	configure RX filtering. When the device doesn't support unicast
6184  *	filtering it is put in promiscuous mode while unicast addresses
6185  *	are present.
6186  */
6187 void __dev_set_rx_mode(struct net_device *dev)
6188 {
6189 	const struct net_device_ops *ops = dev->netdev_ops;
6190 
6191 	/* dev_open will call this function so the list will stay sane. */
6192 	if (!(dev->flags&IFF_UP))
6193 		return;
6194 
6195 	if (!netif_device_present(dev))
6196 		return;
6197 
6198 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6199 		/* Unicast addresses changes may only happen under the rtnl,
6200 		 * therefore calling __dev_set_promiscuity here is safe.
6201 		 */
6202 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6203 			__dev_set_promiscuity(dev, 1, false);
6204 			dev->uc_promisc = true;
6205 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6206 			__dev_set_promiscuity(dev, -1, false);
6207 			dev->uc_promisc = false;
6208 		}
6209 	}
6210 
6211 	if (ops->ndo_set_rx_mode)
6212 		ops->ndo_set_rx_mode(dev);
6213 }
6214 
6215 void dev_set_rx_mode(struct net_device *dev)
6216 {
6217 	netif_addr_lock_bh(dev);
6218 	__dev_set_rx_mode(dev);
6219 	netif_addr_unlock_bh(dev);
6220 }
6221 
6222 /**
6223  *	dev_get_flags - get flags reported to userspace
6224  *	@dev: device
6225  *
6226  *	Get the combination of flag bits exported through APIs to userspace.
6227  */
6228 unsigned int dev_get_flags(const struct net_device *dev)
6229 {
6230 	unsigned int flags;
6231 
6232 	flags = (dev->flags & ~(IFF_PROMISC |
6233 				IFF_ALLMULTI |
6234 				IFF_RUNNING |
6235 				IFF_LOWER_UP |
6236 				IFF_DORMANT)) |
6237 		(dev->gflags & (IFF_PROMISC |
6238 				IFF_ALLMULTI));
6239 
6240 	if (netif_running(dev)) {
6241 		if (netif_oper_up(dev))
6242 			flags |= IFF_RUNNING;
6243 		if (netif_carrier_ok(dev))
6244 			flags |= IFF_LOWER_UP;
6245 		if (netif_dormant(dev))
6246 			flags |= IFF_DORMANT;
6247 	}
6248 
6249 	return flags;
6250 }
6251 EXPORT_SYMBOL(dev_get_flags);
6252 
6253 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6254 {
6255 	unsigned int old_flags = dev->flags;
6256 	int ret;
6257 
6258 	ASSERT_RTNL();
6259 
6260 	/*
6261 	 *	Set the flags on our device.
6262 	 */
6263 
6264 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6265 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6266 			       IFF_AUTOMEDIA)) |
6267 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6268 				    IFF_ALLMULTI));
6269 
6270 	/*
6271 	 *	Load in the correct multicast list now the flags have changed.
6272 	 */
6273 
6274 	if ((old_flags ^ flags) & IFF_MULTICAST)
6275 		dev_change_rx_flags(dev, IFF_MULTICAST);
6276 
6277 	dev_set_rx_mode(dev);
6278 
6279 	/*
6280 	 *	Have we downed the interface. We handle IFF_UP ourselves
6281 	 *	according to user attempts to set it, rather than blindly
6282 	 *	setting it.
6283 	 */
6284 
6285 	ret = 0;
6286 	if ((old_flags ^ flags) & IFF_UP)
6287 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6288 
6289 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6290 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6291 		unsigned int old_flags = dev->flags;
6292 
6293 		dev->gflags ^= IFF_PROMISC;
6294 
6295 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6296 			if (dev->flags != old_flags)
6297 				dev_set_rx_mode(dev);
6298 	}
6299 
6300 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6301 	   is important. Some (broken) drivers set IFF_PROMISC, when
6302 	   IFF_ALLMULTI is requested not asking us and not reporting.
6303 	 */
6304 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6305 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6306 
6307 		dev->gflags ^= IFF_ALLMULTI;
6308 		__dev_set_allmulti(dev, inc, false);
6309 	}
6310 
6311 	return ret;
6312 }
6313 
6314 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6315 			unsigned int gchanges)
6316 {
6317 	unsigned int changes = dev->flags ^ old_flags;
6318 
6319 	if (gchanges)
6320 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6321 
6322 	if (changes & IFF_UP) {
6323 		if (dev->flags & IFF_UP)
6324 			call_netdevice_notifiers(NETDEV_UP, dev);
6325 		else
6326 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6327 	}
6328 
6329 	if (dev->flags & IFF_UP &&
6330 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6331 		struct netdev_notifier_change_info change_info;
6332 
6333 		change_info.flags_changed = changes;
6334 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6335 					      &change_info.info);
6336 	}
6337 }
6338 
6339 /**
6340  *	dev_change_flags - change device settings
6341  *	@dev: device
6342  *	@flags: device state flags
6343  *
6344  *	Change settings on device based state flags. The flags are
6345  *	in the userspace exported format.
6346  */
6347 int dev_change_flags(struct net_device *dev, unsigned int flags)
6348 {
6349 	int ret;
6350 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6351 
6352 	ret = __dev_change_flags(dev, flags);
6353 	if (ret < 0)
6354 		return ret;
6355 
6356 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6357 	__dev_notify_flags(dev, old_flags, changes);
6358 	return ret;
6359 }
6360 EXPORT_SYMBOL(dev_change_flags);
6361 
6362 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6363 {
6364 	const struct net_device_ops *ops = dev->netdev_ops;
6365 
6366 	if (ops->ndo_change_mtu)
6367 		return ops->ndo_change_mtu(dev, new_mtu);
6368 
6369 	dev->mtu = new_mtu;
6370 	return 0;
6371 }
6372 
6373 /**
6374  *	dev_set_mtu - Change maximum transfer unit
6375  *	@dev: device
6376  *	@new_mtu: new transfer unit
6377  *
6378  *	Change the maximum transfer size of the network device.
6379  */
6380 int dev_set_mtu(struct net_device *dev, int new_mtu)
6381 {
6382 	int err, orig_mtu;
6383 
6384 	if (new_mtu == dev->mtu)
6385 		return 0;
6386 
6387 	/*	MTU must be positive.	 */
6388 	if (new_mtu < 0)
6389 		return -EINVAL;
6390 
6391 	if (!netif_device_present(dev))
6392 		return -ENODEV;
6393 
6394 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6395 	err = notifier_to_errno(err);
6396 	if (err)
6397 		return err;
6398 
6399 	orig_mtu = dev->mtu;
6400 	err = __dev_set_mtu(dev, new_mtu);
6401 
6402 	if (!err) {
6403 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6404 		err = notifier_to_errno(err);
6405 		if (err) {
6406 			/* setting mtu back and notifying everyone again,
6407 			 * so that they have a chance to revert changes.
6408 			 */
6409 			__dev_set_mtu(dev, orig_mtu);
6410 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6411 		}
6412 	}
6413 	return err;
6414 }
6415 EXPORT_SYMBOL(dev_set_mtu);
6416 
6417 /**
6418  *	dev_set_group - Change group this device belongs to
6419  *	@dev: device
6420  *	@new_group: group this device should belong to
6421  */
6422 void dev_set_group(struct net_device *dev, int new_group)
6423 {
6424 	dev->group = new_group;
6425 }
6426 EXPORT_SYMBOL(dev_set_group);
6427 
6428 /**
6429  *	dev_set_mac_address - Change Media Access Control Address
6430  *	@dev: device
6431  *	@sa: new address
6432  *
6433  *	Change the hardware (MAC) address of the device
6434  */
6435 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6436 {
6437 	const struct net_device_ops *ops = dev->netdev_ops;
6438 	int err;
6439 
6440 	if (!ops->ndo_set_mac_address)
6441 		return -EOPNOTSUPP;
6442 	if (sa->sa_family != dev->type)
6443 		return -EINVAL;
6444 	if (!netif_device_present(dev))
6445 		return -ENODEV;
6446 	err = ops->ndo_set_mac_address(dev, sa);
6447 	if (err)
6448 		return err;
6449 	dev->addr_assign_type = NET_ADDR_SET;
6450 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6451 	add_device_randomness(dev->dev_addr, dev->addr_len);
6452 	return 0;
6453 }
6454 EXPORT_SYMBOL(dev_set_mac_address);
6455 
6456 /**
6457  *	dev_change_carrier - Change device carrier
6458  *	@dev: device
6459  *	@new_carrier: new value
6460  *
6461  *	Change device carrier
6462  */
6463 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6464 {
6465 	const struct net_device_ops *ops = dev->netdev_ops;
6466 
6467 	if (!ops->ndo_change_carrier)
6468 		return -EOPNOTSUPP;
6469 	if (!netif_device_present(dev))
6470 		return -ENODEV;
6471 	return ops->ndo_change_carrier(dev, new_carrier);
6472 }
6473 EXPORT_SYMBOL(dev_change_carrier);
6474 
6475 /**
6476  *	dev_get_phys_port_id - Get device physical port ID
6477  *	@dev: device
6478  *	@ppid: port ID
6479  *
6480  *	Get device physical port ID
6481  */
6482 int dev_get_phys_port_id(struct net_device *dev,
6483 			 struct netdev_phys_item_id *ppid)
6484 {
6485 	const struct net_device_ops *ops = dev->netdev_ops;
6486 
6487 	if (!ops->ndo_get_phys_port_id)
6488 		return -EOPNOTSUPP;
6489 	return ops->ndo_get_phys_port_id(dev, ppid);
6490 }
6491 EXPORT_SYMBOL(dev_get_phys_port_id);
6492 
6493 /**
6494  *	dev_get_phys_port_name - Get device physical port name
6495  *	@dev: device
6496  *	@name: port name
6497  *	@len: limit of bytes to copy to name
6498  *
6499  *	Get device physical port name
6500  */
6501 int dev_get_phys_port_name(struct net_device *dev,
6502 			   char *name, size_t len)
6503 {
6504 	const struct net_device_ops *ops = dev->netdev_ops;
6505 
6506 	if (!ops->ndo_get_phys_port_name)
6507 		return -EOPNOTSUPP;
6508 	return ops->ndo_get_phys_port_name(dev, name, len);
6509 }
6510 EXPORT_SYMBOL(dev_get_phys_port_name);
6511 
6512 /**
6513  *	dev_change_proto_down - update protocol port state information
6514  *	@dev: device
6515  *	@proto_down: new value
6516  *
6517  *	This info can be used by switch drivers to set the phys state of the
6518  *	port.
6519  */
6520 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6521 {
6522 	const struct net_device_ops *ops = dev->netdev_ops;
6523 
6524 	if (!ops->ndo_change_proto_down)
6525 		return -EOPNOTSUPP;
6526 	if (!netif_device_present(dev))
6527 		return -ENODEV;
6528 	return ops->ndo_change_proto_down(dev, proto_down);
6529 }
6530 EXPORT_SYMBOL(dev_change_proto_down);
6531 
6532 /**
6533  *	dev_new_index	-	allocate an ifindex
6534  *	@net: the applicable net namespace
6535  *
6536  *	Returns a suitable unique value for a new device interface
6537  *	number.  The caller must hold the rtnl semaphore or the
6538  *	dev_base_lock to be sure it remains unique.
6539  */
6540 static int dev_new_index(struct net *net)
6541 {
6542 	int ifindex = net->ifindex;
6543 	for (;;) {
6544 		if (++ifindex <= 0)
6545 			ifindex = 1;
6546 		if (!__dev_get_by_index(net, ifindex))
6547 			return net->ifindex = ifindex;
6548 	}
6549 }
6550 
6551 /* Delayed registration/unregisteration */
6552 static LIST_HEAD(net_todo_list);
6553 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6554 
6555 static void net_set_todo(struct net_device *dev)
6556 {
6557 	list_add_tail(&dev->todo_list, &net_todo_list);
6558 	dev_net(dev)->dev_unreg_count++;
6559 }
6560 
6561 static void rollback_registered_many(struct list_head *head)
6562 {
6563 	struct net_device *dev, *tmp;
6564 	LIST_HEAD(close_head);
6565 
6566 	BUG_ON(dev_boot_phase);
6567 	ASSERT_RTNL();
6568 
6569 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6570 		/* Some devices call without registering
6571 		 * for initialization unwind. Remove those
6572 		 * devices and proceed with the remaining.
6573 		 */
6574 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6575 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6576 				 dev->name, dev);
6577 
6578 			WARN_ON(1);
6579 			list_del(&dev->unreg_list);
6580 			continue;
6581 		}
6582 		dev->dismantle = true;
6583 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6584 	}
6585 
6586 	/* If device is running, close it first. */
6587 	list_for_each_entry(dev, head, unreg_list)
6588 		list_add_tail(&dev->close_list, &close_head);
6589 	dev_close_many(&close_head, true);
6590 
6591 	list_for_each_entry(dev, head, unreg_list) {
6592 		/* And unlink it from device chain. */
6593 		unlist_netdevice(dev);
6594 
6595 		dev->reg_state = NETREG_UNREGISTERING;
6596 		on_each_cpu(flush_backlog, dev, 1);
6597 	}
6598 
6599 	synchronize_net();
6600 
6601 	list_for_each_entry(dev, head, unreg_list) {
6602 		struct sk_buff *skb = NULL;
6603 
6604 		/* Shutdown queueing discipline. */
6605 		dev_shutdown(dev);
6606 
6607 
6608 		/* Notify protocols, that we are about to destroy
6609 		   this device. They should clean all the things.
6610 		*/
6611 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6612 
6613 		if (!dev->rtnl_link_ops ||
6614 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6615 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6616 						     GFP_KERNEL);
6617 
6618 		/*
6619 		 *	Flush the unicast and multicast chains
6620 		 */
6621 		dev_uc_flush(dev);
6622 		dev_mc_flush(dev);
6623 
6624 		if (dev->netdev_ops->ndo_uninit)
6625 			dev->netdev_ops->ndo_uninit(dev);
6626 
6627 		if (skb)
6628 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6629 
6630 		/* Notifier chain MUST detach us all upper devices. */
6631 		WARN_ON(netdev_has_any_upper_dev(dev));
6632 
6633 		/* Remove entries from kobject tree */
6634 		netdev_unregister_kobject(dev);
6635 #ifdef CONFIG_XPS
6636 		/* Remove XPS queueing entries */
6637 		netif_reset_xps_queues_gt(dev, 0);
6638 #endif
6639 	}
6640 
6641 	synchronize_net();
6642 
6643 	list_for_each_entry(dev, head, unreg_list)
6644 		dev_put(dev);
6645 }
6646 
6647 static void rollback_registered(struct net_device *dev)
6648 {
6649 	LIST_HEAD(single);
6650 
6651 	list_add(&dev->unreg_list, &single);
6652 	rollback_registered_many(&single);
6653 	list_del(&single);
6654 }
6655 
6656 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6657 	struct net_device *upper, netdev_features_t features)
6658 {
6659 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6660 	netdev_features_t feature;
6661 	int feature_bit;
6662 
6663 	for_each_netdev_feature(&upper_disables, feature_bit) {
6664 		feature = __NETIF_F_BIT(feature_bit);
6665 		if (!(upper->wanted_features & feature)
6666 		    && (features & feature)) {
6667 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6668 				   &feature, upper->name);
6669 			features &= ~feature;
6670 		}
6671 	}
6672 
6673 	return features;
6674 }
6675 
6676 static void netdev_sync_lower_features(struct net_device *upper,
6677 	struct net_device *lower, netdev_features_t features)
6678 {
6679 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6680 	netdev_features_t feature;
6681 	int feature_bit;
6682 
6683 	for_each_netdev_feature(&upper_disables, feature_bit) {
6684 		feature = __NETIF_F_BIT(feature_bit);
6685 		if (!(features & feature) && (lower->features & feature)) {
6686 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6687 				   &feature, lower->name);
6688 			lower->wanted_features &= ~feature;
6689 			netdev_update_features(lower);
6690 
6691 			if (unlikely(lower->features & feature))
6692 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6693 					    &feature, lower->name);
6694 		}
6695 	}
6696 }
6697 
6698 static netdev_features_t netdev_fix_features(struct net_device *dev,
6699 	netdev_features_t features)
6700 {
6701 	/* Fix illegal checksum combinations */
6702 	if ((features & NETIF_F_HW_CSUM) &&
6703 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6704 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6705 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6706 	}
6707 
6708 	/* TSO requires that SG is present as well. */
6709 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6710 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6711 		features &= ~NETIF_F_ALL_TSO;
6712 	}
6713 
6714 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6715 					!(features & NETIF_F_IP_CSUM)) {
6716 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6717 		features &= ~NETIF_F_TSO;
6718 		features &= ~NETIF_F_TSO_ECN;
6719 	}
6720 
6721 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6722 					 !(features & NETIF_F_IPV6_CSUM)) {
6723 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6724 		features &= ~NETIF_F_TSO6;
6725 	}
6726 
6727 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6728 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6729 		features &= ~NETIF_F_TSO_MANGLEID;
6730 
6731 	/* TSO ECN requires that TSO is present as well. */
6732 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6733 		features &= ~NETIF_F_TSO_ECN;
6734 
6735 	/* Software GSO depends on SG. */
6736 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6737 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6738 		features &= ~NETIF_F_GSO;
6739 	}
6740 
6741 	/* UFO needs SG and checksumming */
6742 	if (features & NETIF_F_UFO) {
6743 		/* maybe split UFO into V4 and V6? */
6744 		if (!(features & NETIF_F_HW_CSUM) &&
6745 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6746 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6747 			netdev_dbg(dev,
6748 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6749 			features &= ~NETIF_F_UFO;
6750 		}
6751 
6752 		if (!(features & NETIF_F_SG)) {
6753 			netdev_dbg(dev,
6754 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6755 			features &= ~NETIF_F_UFO;
6756 		}
6757 	}
6758 
6759 	/* GSO partial features require GSO partial be set */
6760 	if ((features & dev->gso_partial_features) &&
6761 	    !(features & NETIF_F_GSO_PARTIAL)) {
6762 		netdev_dbg(dev,
6763 			   "Dropping partially supported GSO features since no GSO partial.\n");
6764 		features &= ~dev->gso_partial_features;
6765 	}
6766 
6767 #ifdef CONFIG_NET_RX_BUSY_POLL
6768 	if (dev->netdev_ops->ndo_busy_poll)
6769 		features |= NETIF_F_BUSY_POLL;
6770 	else
6771 #endif
6772 		features &= ~NETIF_F_BUSY_POLL;
6773 
6774 	return features;
6775 }
6776 
6777 int __netdev_update_features(struct net_device *dev)
6778 {
6779 	struct net_device *upper, *lower;
6780 	netdev_features_t features;
6781 	struct list_head *iter;
6782 	int err = -1;
6783 
6784 	ASSERT_RTNL();
6785 
6786 	features = netdev_get_wanted_features(dev);
6787 
6788 	if (dev->netdev_ops->ndo_fix_features)
6789 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6790 
6791 	/* driver might be less strict about feature dependencies */
6792 	features = netdev_fix_features(dev, features);
6793 
6794 	/* some features can't be enabled if they're off an an upper device */
6795 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6796 		features = netdev_sync_upper_features(dev, upper, features);
6797 
6798 	if (dev->features == features)
6799 		goto sync_lower;
6800 
6801 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6802 		&dev->features, &features);
6803 
6804 	if (dev->netdev_ops->ndo_set_features)
6805 		err = dev->netdev_ops->ndo_set_features(dev, features);
6806 	else
6807 		err = 0;
6808 
6809 	if (unlikely(err < 0)) {
6810 		netdev_err(dev,
6811 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6812 			err, &features, &dev->features);
6813 		/* return non-0 since some features might have changed and
6814 		 * it's better to fire a spurious notification than miss it
6815 		 */
6816 		return -1;
6817 	}
6818 
6819 sync_lower:
6820 	/* some features must be disabled on lower devices when disabled
6821 	 * on an upper device (think: bonding master or bridge)
6822 	 */
6823 	netdev_for_each_lower_dev(dev, lower, iter)
6824 		netdev_sync_lower_features(dev, lower, features);
6825 
6826 	if (!err)
6827 		dev->features = features;
6828 
6829 	return err < 0 ? 0 : 1;
6830 }
6831 
6832 /**
6833  *	netdev_update_features - recalculate device features
6834  *	@dev: the device to check
6835  *
6836  *	Recalculate dev->features set and send notifications if it
6837  *	has changed. Should be called after driver or hardware dependent
6838  *	conditions might have changed that influence the features.
6839  */
6840 void netdev_update_features(struct net_device *dev)
6841 {
6842 	if (__netdev_update_features(dev))
6843 		netdev_features_change(dev);
6844 }
6845 EXPORT_SYMBOL(netdev_update_features);
6846 
6847 /**
6848  *	netdev_change_features - recalculate device features
6849  *	@dev: the device to check
6850  *
6851  *	Recalculate dev->features set and send notifications even
6852  *	if they have not changed. Should be called instead of
6853  *	netdev_update_features() if also dev->vlan_features might
6854  *	have changed to allow the changes to be propagated to stacked
6855  *	VLAN devices.
6856  */
6857 void netdev_change_features(struct net_device *dev)
6858 {
6859 	__netdev_update_features(dev);
6860 	netdev_features_change(dev);
6861 }
6862 EXPORT_SYMBOL(netdev_change_features);
6863 
6864 /**
6865  *	netif_stacked_transfer_operstate -	transfer operstate
6866  *	@rootdev: the root or lower level device to transfer state from
6867  *	@dev: the device to transfer operstate to
6868  *
6869  *	Transfer operational state from root to device. This is normally
6870  *	called when a stacking relationship exists between the root
6871  *	device and the device(a leaf device).
6872  */
6873 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6874 					struct net_device *dev)
6875 {
6876 	if (rootdev->operstate == IF_OPER_DORMANT)
6877 		netif_dormant_on(dev);
6878 	else
6879 		netif_dormant_off(dev);
6880 
6881 	if (netif_carrier_ok(rootdev)) {
6882 		if (!netif_carrier_ok(dev))
6883 			netif_carrier_on(dev);
6884 	} else {
6885 		if (netif_carrier_ok(dev))
6886 			netif_carrier_off(dev);
6887 	}
6888 }
6889 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6890 
6891 #ifdef CONFIG_SYSFS
6892 static int netif_alloc_rx_queues(struct net_device *dev)
6893 {
6894 	unsigned int i, count = dev->num_rx_queues;
6895 	struct netdev_rx_queue *rx;
6896 	size_t sz = count * sizeof(*rx);
6897 
6898 	BUG_ON(count < 1);
6899 
6900 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6901 	if (!rx) {
6902 		rx = vzalloc(sz);
6903 		if (!rx)
6904 			return -ENOMEM;
6905 	}
6906 	dev->_rx = rx;
6907 
6908 	for (i = 0; i < count; i++)
6909 		rx[i].dev = dev;
6910 	return 0;
6911 }
6912 #endif
6913 
6914 static void netdev_init_one_queue(struct net_device *dev,
6915 				  struct netdev_queue *queue, void *_unused)
6916 {
6917 	/* Initialize queue lock */
6918 	spin_lock_init(&queue->_xmit_lock);
6919 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6920 	queue->xmit_lock_owner = -1;
6921 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6922 	queue->dev = dev;
6923 #ifdef CONFIG_BQL
6924 	dql_init(&queue->dql, HZ);
6925 #endif
6926 }
6927 
6928 static void netif_free_tx_queues(struct net_device *dev)
6929 {
6930 	kvfree(dev->_tx);
6931 }
6932 
6933 static int netif_alloc_netdev_queues(struct net_device *dev)
6934 {
6935 	unsigned int count = dev->num_tx_queues;
6936 	struct netdev_queue *tx;
6937 	size_t sz = count * sizeof(*tx);
6938 
6939 	if (count < 1 || count > 0xffff)
6940 		return -EINVAL;
6941 
6942 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6943 	if (!tx) {
6944 		tx = vzalloc(sz);
6945 		if (!tx)
6946 			return -ENOMEM;
6947 	}
6948 	dev->_tx = tx;
6949 
6950 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6951 	spin_lock_init(&dev->tx_global_lock);
6952 
6953 	return 0;
6954 }
6955 
6956 void netif_tx_stop_all_queues(struct net_device *dev)
6957 {
6958 	unsigned int i;
6959 
6960 	for (i = 0; i < dev->num_tx_queues; i++) {
6961 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6962 		netif_tx_stop_queue(txq);
6963 	}
6964 }
6965 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6966 
6967 /**
6968  *	register_netdevice	- register a network device
6969  *	@dev: device to register
6970  *
6971  *	Take a completed network device structure and add it to the kernel
6972  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6973  *	chain. 0 is returned on success. A negative errno code is returned
6974  *	on a failure to set up the device, or if the name is a duplicate.
6975  *
6976  *	Callers must hold the rtnl semaphore. You may want
6977  *	register_netdev() instead of this.
6978  *
6979  *	BUGS:
6980  *	The locking appears insufficient to guarantee two parallel registers
6981  *	will not get the same name.
6982  */
6983 
6984 int register_netdevice(struct net_device *dev)
6985 {
6986 	int ret;
6987 	struct net *net = dev_net(dev);
6988 
6989 	BUG_ON(dev_boot_phase);
6990 	ASSERT_RTNL();
6991 
6992 	might_sleep();
6993 
6994 	/* When net_device's are persistent, this will be fatal. */
6995 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6996 	BUG_ON(!net);
6997 
6998 	spin_lock_init(&dev->addr_list_lock);
6999 	netdev_set_addr_lockdep_class(dev);
7000 
7001 	ret = dev_get_valid_name(net, dev, dev->name);
7002 	if (ret < 0)
7003 		goto out;
7004 
7005 	/* Init, if this function is available */
7006 	if (dev->netdev_ops->ndo_init) {
7007 		ret = dev->netdev_ops->ndo_init(dev);
7008 		if (ret) {
7009 			if (ret > 0)
7010 				ret = -EIO;
7011 			goto out;
7012 		}
7013 	}
7014 
7015 	if (((dev->hw_features | dev->features) &
7016 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7017 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7018 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7019 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7020 		ret = -EINVAL;
7021 		goto err_uninit;
7022 	}
7023 
7024 	ret = -EBUSY;
7025 	if (!dev->ifindex)
7026 		dev->ifindex = dev_new_index(net);
7027 	else if (__dev_get_by_index(net, dev->ifindex))
7028 		goto err_uninit;
7029 
7030 	/* Transfer changeable features to wanted_features and enable
7031 	 * software offloads (GSO and GRO).
7032 	 */
7033 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7034 	dev->features |= NETIF_F_SOFT_FEATURES;
7035 	dev->wanted_features = dev->features & dev->hw_features;
7036 
7037 	if (!(dev->flags & IFF_LOOPBACK))
7038 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7039 
7040 	/* If IPv4 TCP segmentation offload is supported we should also
7041 	 * allow the device to enable segmenting the frame with the option
7042 	 * of ignoring a static IP ID value.  This doesn't enable the
7043 	 * feature itself but allows the user to enable it later.
7044 	 */
7045 	if (dev->hw_features & NETIF_F_TSO)
7046 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7047 	if (dev->vlan_features & NETIF_F_TSO)
7048 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7049 	if (dev->mpls_features & NETIF_F_TSO)
7050 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7051 	if (dev->hw_enc_features & NETIF_F_TSO)
7052 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7053 
7054 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7055 	 */
7056 	dev->vlan_features |= NETIF_F_HIGHDMA;
7057 
7058 	/* Make NETIF_F_SG inheritable to tunnel devices.
7059 	 */
7060 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7061 
7062 	/* Make NETIF_F_SG inheritable to MPLS.
7063 	 */
7064 	dev->mpls_features |= NETIF_F_SG;
7065 
7066 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7067 	ret = notifier_to_errno(ret);
7068 	if (ret)
7069 		goto err_uninit;
7070 
7071 	ret = netdev_register_kobject(dev);
7072 	if (ret)
7073 		goto err_uninit;
7074 	dev->reg_state = NETREG_REGISTERED;
7075 
7076 	__netdev_update_features(dev);
7077 
7078 	/*
7079 	 *	Default initial state at registry is that the
7080 	 *	device is present.
7081 	 */
7082 
7083 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7084 
7085 	linkwatch_init_dev(dev);
7086 
7087 	dev_init_scheduler(dev);
7088 	dev_hold(dev);
7089 	list_netdevice(dev);
7090 	add_device_randomness(dev->dev_addr, dev->addr_len);
7091 
7092 	/* If the device has permanent device address, driver should
7093 	 * set dev_addr and also addr_assign_type should be set to
7094 	 * NET_ADDR_PERM (default value).
7095 	 */
7096 	if (dev->addr_assign_type == NET_ADDR_PERM)
7097 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7098 
7099 	/* Notify protocols, that a new device appeared. */
7100 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7101 	ret = notifier_to_errno(ret);
7102 	if (ret) {
7103 		rollback_registered(dev);
7104 		dev->reg_state = NETREG_UNREGISTERED;
7105 	}
7106 	/*
7107 	 *	Prevent userspace races by waiting until the network
7108 	 *	device is fully setup before sending notifications.
7109 	 */
7110 	if (!dev->rtnl_link_ops ||
7111 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7112 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7113 
7114 out:
7115 	return ret;
7116 
7117 err_uninit:
7118 	if (dev->netdev_ops->ndo_uninit)
7119 		dev->netdev_ops->ndo_uninit(dev);
7120 	goto out;
7121 }
7122 EXPORT_SYMBOL(register_netdevice);
7123 
7124 /**
7125  *	init_dummy_netdev	- init a dummy network device for NAPI
7126  *	@dev: device to init
7127  *
7128  *	This takes a network device structure and initialize the minimum
7129  *	amount of fields so it can be used to schedule NAPI polls without
7130  *	registering a full blown interface. This is to be used by drivers
7131  *	that need to tie several hardware interfaces to a single NAPI
7132  *	poll scheduler due to HW limitations.
7133  */
7134 int init_dummy_netdev(struct net_device *dev)
7135 {
7136 	/* Clear everything. Note we don't initialize spinlocks
7137 	 * are they aren't supposed to be taken by any of the
7138 	 * NAPI code and this dummy netdev is supposed to be
7139 	 * only ever used for NAPI polls
7140 	 */
7141 	memset(dev, 0, sizeof(struct net_device));
7142 
7143 	/* make sure we BUG if trying to hit standard
7144 	 * register/unregister code path
7145 	 */
7146 	dev->reg_state = NETREG_DUMMY;
7147 
7148 	/* NAPI wants this */
7149 	INIT_LIST_HEAD(&dev->napi_list);
7150 
7151 	/* a dummy interface is started by default */
7152 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7153 	set_bit(__LINK_STATE_START, &dev->state);
7154 
7155 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7156 	 * because users of this 'device' dont need to change
7157 	 * its refcount.
7158 	 */
7159 
7160 	return 0;
7161 }
7162 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7163 
7164 
7165 /**
7166  *	register_netdev	- register a network device
7167  *	@dev: device to register
7168  *
7169  *	Take a completed network device structure and add it to the kernel
7170  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7171  *	chain. 0 is returned on success. A negative errno code is returned
7172  *	on a failure to set up the device, or if the name is a duplicate.
7173  *
7174  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7175  *	and expands the device name if you passed a format string to
7176  *	alloc_netdev.
7177  */
7178 int register_netdev(struct net_device *dev)
7179 {
7180 	int err;
7181 
7182 	rtnl_lock();
7183 	err = register_netdevice(dev);
7184 	rtnl_unlock();
7185 	return err;
7186 }
7187 EXPORT_SYMBOL(register_netdev);
7188 
7189 int netdev_refcnt_read(const struct net_device *dev)
7190 {
7191 	int i, refcnt = 0;
7192 
7193 	for_each_possible_cpu(i)
7194 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7195 	return refcnt;
7196 }
7197 EXPORT_SYMBOL(netdev_refcnt_read);
7198 
7199 /**
7200  * netdev_wait_allrefs - wait until all references are gone.
7201  * @dev: target net_device
7202  *
7203  * This is called when unregistering network devices.
7204  *
7205  * Any protocol or device that holds a reference should register
7206  * for netdevice notification, and cleanup and put back the
7207  * reference if they receive an UNREGISTER event.
7208  * We can get stuck here if buggy protocols don't correctly
7209  * call dev_put.
7210  */
7211 static void netdev_wait_allrefs(struct net_device *dev)
7212 {
7213 	unsigned long rebroadcast_time, warning_time;
7214 	int refcnt;
7215 
7216 	linkwatch_forget_dev(dev);
7217 
7218 	rebroadcast_time = warning_time = jiffies;
7219 	refcnt = netdev_refcnt_read(dev);
7220 
7221 	while (refcnt != 0) {
7222 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7223 			rtnl_lock();
7224 
7225 			/* Rebroadcast unregister notification */
7226 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7227 
7228 			__rtnl_unlock();
7229 			rcu_barrier();
7230 			rtnl_lock();
7231 
7232 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7233 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7234 				     &dev->state)) {
7235 				/* We must not have linkwatch events
7236 				 * pending on unregister. If this
7237 				 * happens, we simply run the queue
7238 				 * unscheduled, resulting in a noop
7239 				 * for this device.
7240 				 */
7241 				linkwatch_run_queue();
7242 			}
7243 
7244 			__rtnl_unlock();
7245 
7246 			rebroadcast_time = jiffies;
7247 		}
7248 
7249 		msleep(250);
7250 
7251 		refcnt = netdev_refcnt_read(dev);
7252 
7253 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7254 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7255 				 dev->name, refcnt);
7256 			warning_time = jiffies;
7257 		}
7258 	}
7259 }
7260 
7261 /* The sequence is:
7262  *
7263  *	rtnl_lock();
7264  *	...
7265  *	register_netdevice(x1);
7266  *	register_netdevice(x2);
7267  *	...
7268  *	unregister_netdevice(y1);
7269  *	unregister_netdevice(y2);
7270  *      ...
7271  *	rtnl_unlock();
7272  *	free_netdev(y1);
7273  *	free_netdev(y2);
7274  *
7275  * We are invoked by rtnl_unlock().
7276  * This allows us to deal with problems:
7277  * 1) We can delete sysfs objects which invoke hotplug
7278  *    without deadlocking with linkwatch via keventd.
7279  * 2) Since we run with the RTNL semaphore not held, we can sleep
7280  *    safely in order to wait for the netdev refcnt to drop to zero.
7281  *
7282  * We must not return until all unregister events added during
7283  * the interval the lock was held have been completed.
7284  */
7285 void netdev_run_todo(void)
7286 {
7287 	struct list_head list;
7288 
7289 	/* Snapshot list, allow later requests */
7290 	list_replace_init(&net_todo_list, &list);
7291 
7292 	__rtnl_unlock();
7293 
7294 
7295 	/* Wait for rcu callbacks to finish before next phase */
7296 	if (!list_empty(&list))
7297 		rcu_barrier();
7298 
7299 	while (!list_empty(&list)) {
7300 		struct net_device *dev
7301 			= list_first_entry(&list, struct net_device, todo_list);
7302 		list_del(&dev->todo_list);
7303 
7304 		rtnl_lock();
7305 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7306 		__rtnl_unlock();
7307 
7308 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7309 			pr_err("network todo '%s' but state %d\n",
7310 			       dev->name, dev->reg_state);
7311 			dump_stack();
7312 			continue;
7313 		}
7314 
7315 		dev->reg_state = NETREG_UNREGISTERED;
7316 
7317 		netdev_wait_allrefs(dev);
7318 
7319 		/* paranoia */
7320 		BUG_ON(netdev_refcnt_read(dev));
7321 		BUG_ON(!list_empty(&dev->ptype_all));
7322 		BUG_ON(!list_empty(&dev->ptype_specific));
7323 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7324 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7325 		WARN_ON(dev->dn_ptr);
7326 
7327 		if (dev->destructor)
7328 			dev->destructor(dev);
7329 
7330 		/* Report a network device has been unregistered */
7331 		rtnl_lock();
7332 		dev_net(dev)->dev_unreg_count--;
7333 		__rtnl_unlock();
7334 		wake_up(&netdev_unregistering_wq);
7335 
7336 		/* Free network device */
7337 		kobject_put(&dev->dev.kobj);
7338 	}
7339 }
7340 
7341 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7342  * all the same fields in the same order as net_device_stats, with only
7343  * the type differing, but rtnl_link_stats64 may have additional fields
7344  * at the end for newer counters.
7345  */
7346 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7347 			     const struct net_device_stats *netdev_stats)
7348 {
7349 #if BITS_PER_LONG == 64
7350 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7351 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7352 	/* zero out counters that only exist in rtnl_link_stats64 */
7353 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7354 	       sizeof(*stats64) - sizeof(*netdev_stats));
7355 #else
7356 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7357 	const unsigned long *src = (const unsigned long *)netdev_stats;
7358 	u64 *dst = (u64 *)stats64;
7359 
7360 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7361 	for (i = 0; i < n; i++)
7362 		dst[i] = src[i];
7363 	/* zero out counters that only exist in rtnl_link_stats64 */
7364 	memset((char *)stats64 + n * sizeof(u64), 0,
7365 	       sizeof(*stats64) - n * sizeof(u64));
7366 #endif
7367 }
7368 EXPORT_SYMBOL(netdev_stats_to_stats64);
7369 
7370 /**
7371  *	dev_get_stats	- get network device statistics
7372  *	@dev: device to get statistics from
7373  *	@storage: place to store stats
7374  *
7375  *	Get network statistics from device. Return @storage.
7376  *	The device driver may provide its own method by setting
7377  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7378  *	otherwise the internal statistics structure is used.
7379  */
7380 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7381 					struct rtnl_link_stats64 *storage)
7382 {
7383 	const struct net_device_ops *ops = dev->netdev_ops;
7384 
7385 	if (ops->ndo_get_stats64) {
7386 		memset(storage, 0, sizeof(*storage));
7387 		ops->ndo_get_stats64(dev, storage);
7388 	} else if (ops->ndo_get_stats) {
7389 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7390 	} else {
7391 		netdev_stats_to_stats64(storage, &dev->stats);
7392 	}
7393 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7394 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7395 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7396 	return storage;
7397 }
7398 EXPORT_SYMBOL(dev_get_stats);
7399 
7400 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7401 {
7402 	struct netdev_queue *queue = dev_ingress_queue(dev);
7403 
7404 #ifdef CONFIG_NET_CLS_ACT
7405 	if (queue)
7406 		return queue;
7407 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7408 	if (!queue)
7409 		return NULL;
7410 	netdev_init_one_queue(dev, queue, NULL);
7411 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7412 	queue->qdisc_sleeping = &noop_qdisc;
7413 	rcu_assign_pointer(dev->ingress_queue, queue);
7414 #endif
7415 	return queue;
7416 }
7417 
7418 static const struct ethtool_ops default_ethtool_ops;
7419 
7420 void netdev_set_default_ethtool_ops(struct net_device *dev,
7421 				    const struct ethtool_ops *ops)
7422 {
7423 	if (dev->ethtool_ops == &default_ethtool_ops)
7424 		dev->ethtool_ops = ops;
7425 }
7426 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7427 
7428 void netdev_freemem(struct net_device *dev)
7429 {
7430 	char *addr = (char *)dev - dev->padded;
7431 
7432 	kvfree(addr);
7433 }
7434 
7435 /**
7436  *	alloc_netdev_mqs - allocate network device
7437  *	@sizeof_priv:		size of private data to allocate space for
7438  *	@name:			device name format string
7439  *	@name_assign_type: 	origin of device name
7440  *	@setup:			callback to initialize device
7441  *	@txqs:			the number of TX subqueues to allocate
7442  *	@rxqs:			the number of RX subqueues to allocate
7443  *
7444  *	Allocates a struct net_device with private data area for driver use
7445  *	and performs basic initialization.  Also allocates subqueue structs
7446  *	for each queue on the device.
7447  */
7448 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7449 		unsigned char name_assign_type,
7450 		void (*setup)(struct net_device *),
7451 		unsigned int txqs, unsigned int rxqs)
7452 {
7453 	struct net_device *dev;
7454 	size_t alloc_size;
7455 	struct net_device *p;
7456 
7457 	BUG_ON(strlen(name) >= sizeof(dev->name));
7458 
7459 	if (txqs < 1) {
7460 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7461 		return NULL;
7462 	}
7463 
7464 #ifdef CONFIG_SYSFS
7465 	if (rxqs < 1) {
7466 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7467 		return NULL;
7468 	}
7469 #endif
7470 
7471 	alloc_size = sizeof(struct net_device);
7472 	if (sizeof_priv) {
7473 		/* ensure 32-byte alignment of private area */
7474 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7475 		alloc_size += sizeof_priv;
7476 	}
7477 	/* ensure 32-byte alignment of whole construct */
7478 	alloc_size += NETDEV_ALIGN - 1;
7479 
7480 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7481 	if (!p)
7482 		p = vzalloc(alloc_size);
7483 	if (!p)
7484 		return NULL;
7485 
7486 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7487 	dev->padded = (char *)dev - (char *)p;
7488 
7489 	dev->pcpu_refcnt = alloc_percpu(int);
7490 	if (!dev->pcpu_refcnt)
7491 		goto free_dev;
7492 
7493 	if (dev_addr_init(dev))
7494 		goto free_pcpu;
7495 
7496 	dev_mc_init(dev);
7497 	dev_uc_init(dev);
7498 
7499 	dev_net_set(dev, &init_net);
7500 
7501 	dev->gso_max_size = GSO_MAX_SIZE;
7502 	dev->gso_max_segs = GSO_MAX_SEGS;
7503 
7504 	INIT_LIST_HEAD(&dev->napi_list);
7505 	INIT_LIST_HEAD(&dev->unreg_list);
7506 	INIT_LIST_HEAD(&dev->close_list);
7507 	INIT_LIST_HEAD(&dev->link_watch_list);
7508 	INIT_LIST_HEAD(&dev->adj_list.upper);
7509 	INIT_LIST_HEAD(&dev->adj_list.lower);
7510 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7511 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7512 	INIT_LIST_HEAD(&dev->ptype_all);
7513 	INIT_LIST_HEAD(&dev->ptype_specific);
7514 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7515 	setup(dev);
7516 
7517 	if (!dev->tx_queue_len) {
7518 		dev->priv_flags |= IFF_NO_QUEUE;
7519 		dev->tx_queue_len = 1;
7520 	}
7521 
7522 	dev->num_tx_queues = txqs;
7523 	dev->real_num_tx_queues = txqs;
7524 	if (netif_alloc_netdev_queues(dev))
7525 		goto free_all;
7526 
7527 #ifdef CONFIG_SYSFS
7528 	dev->num_rx_queues = rxqs;
7529 	dev->real_num_rx_queues = rxqs;
7530 	if (netif_alloc_rx_queues(dev))
7531 		goto free_all;
7532 #endif
7533 
7534 	strcpy(dev->name, name);
7535 	dev->name_assign_type = name_assign_type;
7536 	dev->group = INIT_NETDEV_GROUP;
7537 	if (!dev->ethtool_ops)
7538 		dev->ethtool_ops = &default_ethtool_ops;
7539 
7540 	nf_hook_ingress_init(dev);
7541 
7542 	return dev;
7543 
7544 free_all:
7545 	free_netdev(dev);
7546 	return NULL;
7547 
7548 free_pcpu:
7549 	free_percpu(dev->pcpu_refcnt);
7550 free_dev:
7551 	netdev_freemem(dev);
7552 	return NULL;
7553 }
7554 EXPORT_SYMBOL(alloc_netdev_mqs);
7555 
7556 /**
7557  *	free_netdev - free network device
7558  *	@dev: device
7559  *
7560  *	This function does the last stage of destroying an allocated device
7561  * 	interface. The reference to the device object is released.
7562  *	If this is the last reference then it will be freed.
7563  *	Must be called in process context.
7564  */
7565 void free_netdev(struct net_device *dev)
7566 {
7567 	struct napi_struct *p, *n;
7568 
7569 	might_sleep();
7570 	netif_free_tx_queues(dev);
7571 #ifdef CONFIG_SYSFS
7572 	kvfree(dev->_rx);
7573 #endif
7574 
7575 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7576 
7577 	/* Flush device addresses */
7578 	dev_addr_flush(dev);
7579 
7580 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7581 		netif_napi_del(p);
7582 
7583 	free_percpu(dev->pcpu_refcnt);
7584 	dev->pcpu_refcnt = NULL;
7585 
7586 	/*  Compatibility with error handling in drivers */
7587 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7588 		netdev_freemem(dev);
7589 		return;
7590 	}
7591 
7592 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7593 	dev->reg_state = NETREG_RELEASED;
7594 
7595 	/* will free via device release */
7596 	put_device(&dev->dev);
7597 }
7598 EXPORT_SYMBOL(free_netdev);
7599 
7600 /**
7601  *	synchronize_net -  Synchronize with packet receive processing
7602  *
7603  *	Wait for packets currently being received to be done.
7604  *	Does not block later packets from starting.
7605  */
7606 void synchronize_net(void)
7607 {
7608 	might_sleep();
7609 	if (rtnl_is_locked())
7610 		synchronize_rcu_expedited();
7611 	else
7612 		synchronize_rcu();
7613 }
7614 EXPORT_SYMBOL(synchronize_net);
7615 
7616 /**
7617  *	unregister_netdevice_queue - remove device from the kernel
7618  *	@dev: device
7619  *	@head: list
7620  *
7621  *	This function shuts down a device interface and removes it
7622  *	from the kernel tables.
7623  *	If head not NULL, device is queued to be unregistered later.
7624  *
7625  *	Callers must hold the rtnl semaphore.  You may want
7626  *	unregister_netdev() instead of this.
7627  */
7628 
7629 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7630 {
7631 	ASSERT_RTNL();
7632 
7633 	if (head) {
7634 		list_move_tail(&dev->unreg_list, head);
7635 	} else {
7636 		rollback_registered(dev);
7637 		/* Finish processing unregister after unlock */
7638 		net_set_todo(dev);
7639 	}
7640 }
7641 EXPORT_SYMBOL(unregister_netdevice_queue);
7642 
7643 /**
7644  *	unregister_netdevice_many - unregister many devices
7645  *	@head: list of devices
7646  *
7647  *  Note: As most callers use a stack allocated list_head,
7648  *  we force a list_del() to make sure stack wont be corrupted later.
7649  */
7650 void unregister_netdevice_many(struct list_head *head)
7651 {
7652 	struct net_device *dev;
7653 
7654 	if (!list_empty(head)) {
7655 		rollback_registered_many(head);
7656 		list_for_each_entry(dev, head, unreg_list)
7657 			net_set_todo(dev);
7658 		list_del(head);
7659 	}
7660 }
7661 EXPORT_SYMBOL(unregister_netdevice_many);
7662 
7663 /**
7664  *	unregister_netdev - remove device from the kernel
7665  *	@dev: device
7666  *
7667  *	This function shuts down a device interface and removes it
7668  *	from the kernel tables.
7669  *
7670  *	This is just a wrapper for unregister_netdevice that takes
7671  *	the rtnl semaphore.  In general you want to use this and not
7672  *	unregister_netdevice.
7673  */
7674 void unregister_netdev(struct net_device *dev)
7675 {
7676 	rtnl_lock();
7677 	unregister_netdevice(dev);
7678 	rtnl_unlock();
7679 }
7680 EXPORT_SYMBOL(unregister_netdev);
7681 
7682 /**
7683  *	dev_change_net_namespace - move device to different nethost namespace
7684  *	@dev: device
7685  *	@net: network namespace
7686  *	@pat: If not NULL name pattern to try if the current device name
7687  *	      is already taken in the destination network namespace.
7688  *
7689  *	This function shuts down a device interface and moves it
7690  *	to a new network namespace. On success 0 is returned, on
7691  *	a failure a netagive errno code is returned.
7692  *
7693  *	Callers must hold the rtnl semaphore.
7694  */
7695 
7696 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7697 {
7698 	int err;
7699 
7700 	ASSERT_RTNL();
7701 
7702 	/* Don't allow namespace local devices to be moved. */
7703 	err = -EINVAL;
7704 	if (dev->features & NETIF_F_NETNS_LOCAL)
7705 		goto out;
7706 
7707 	/* Ensure the device has been registrered */
7708 	if (dev->reg_state != NETREG_REGISTERED)
7709 		goto out;
7710 
7711 	/* Get out if there is nothing todo */
7712 	err = 0;
7713 	if (net_eq(dev_net(dev), net))
7714 		goto out;
7715 
7716 	/* Pick the destination device name, and ensure
7717 	 * we can use it in the destination network namespace.
7718 	 */
7719 	err = -EEXIST;
7720 	if (__dev_get_by_name(net, dev->name)) {
7721 		/* We get here if we can't use the current device name */
7722 		if (!pat)
7723 			goto out;
7724 		if (dev_get_valid_name(net, dev, pat) < 0)
7725 			goto out;
7726 	}
7727 
7728 	/*
7729 	 * And now a mini version of register_netdevice unregister_netdevice.
7730 	 */
7731 
7732 	/* If device is running close it first. */
7733 	dev_close(dev);
7734 
7735 	/* And unlink it from device chain */
7736 	err = -ENODEV;
7737 	unlist_netdevice(dev);
7738 
7739 	synchronize_net();
7740 
7741 	/* Shutdown queueing discipline. */
7742 	dev_shutdown(dev);
7743 
7744 	/* Notify protocols, that we are about to destroy
7745 	   this device. They should clean all the things.
7746 
7747 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7748 	   This is wanted because this way 8021q and macvlan know
7749 	   the device is just moving and can keep their slaves up.
7750 	*/
7751 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7752 	rcu_barrier();
7753 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7754 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7755 
7756 	/*
7757 	 *	Flush the unicast and multicast chains
7758 	 */
7759 	dev_uc_flush(dev);
7760 	dev_mc_flush(dev);
7761 
7762 	/* Send a netdev-removed uevent to the old namespace */
7763 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7764 	netdev_adjacent_del_links(dev);
7765 
7766 	/* Actually switch the network namespace */
7767 	dev_net_set(dev, net);
7768 
7769 	/* If there is an ifindex conflict assign a new one */
7770 	if (__dev_get_by_index(net, dev->ifindex))
7771 		dev->ifindex = dev_new_index(net);
7772 
7773 	/* Send a netdev-add uevent to the new namespace */
7774 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7775 	netdev_adjacent_add_links(dev);
7776 
7777 	/* Fixup kobjects */
7778 	err = device_rename(&dev->dev, dev->name);
7779 	WARN_ON(err);
7780 
7781 	/* Add the device back in the hashes */
7782 	list_netdevice(dev);
7783 
7784 	/* Notify protocols, that a new device appeared. */
7785 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7786 
7787 	/*
7788 	 *	Prevent userspace races by waiting until the network
7789 	 *	device is fully setup before sending notifications.
7790 	 */
7791 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7792 
7793 	synchronize_net();
7794 	err = 0;
7795 out:
7796 	return err;
7797 }
7798 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7799 
7800 static int dev_cpu_callback(struct notifier_block *nfb,
7801 			    unsigned long action,
7802 			    void *ocpu)
7803 {
7804 	struct sk_buff **list_skb;
7805 	struct sk_buff *skb;
7806 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7807 	struct softnet_data *sd, *oldsd;
7808 
7809 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7810 		return NOTIFY_OK;
7811 
7812 	local_irq_disable();
7813 	cpu = smp_processor_id();
7814 	sd = &per_cpu(softnet_data, cpu);
7815 	oldsd = &per_cpu(softnet_data, oldcpu);
7816 
7817 	/* Find end of our completion_queue. */
7818 	list_skb = &sd->completion_queue;
7819 	while (*list_skb)
7820 		list_skb = &(*list_skb)->next;
7821 	/* Append completion queue from offline CPU. */
7822 	*list_skb = oldsd->completion_queue;
7823 	oldsd->completion_queue = NULL;
7824 
7825 	/* Append output queue from offline CPU. */
7826 	if (oldsd->output_queue) {
7827 		*sd->output_queue_tailp = oldsd->output_queue;
7828 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7829 		oldsd->output_queue = NULL;
7830 		oldsd->output_queue_tailp = &oldsd->output_queue;
7831 	}
7832 	/* Append NAPI poll list from offline CPU, with one exception :
7833 	 * process_backlog() must be called by cpu owning percpu backlog.
7834 	 * We properly handle process_queue & input_pkt_queue later.
7835 	 */
7836 	while (!list_empty(&oldsd->poll_list)) {
7837 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7838 							    struct napi_struct,
7839 							    poll_list);
7840 
7841 		list_del_init(&napi->poll_list);
7842 		if (napi->poll == process_backlog)
7843 			napi->state = 0;
7844 		else
7845 			____napi_schedule(sd, napi);
7846 	}
7847 
7848 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7849 	local_irq_enable();
7850 
7851 	/* Process offline CPU's input_pkt_queue */
7852 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7853 		netif_rx_ni(skb);
7854 		input_queue_head_incr(oldsd);
7855 	}
7856 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7857 		netif_rx_ni(skb);
7858 		input_queue_head_incr(oldsd);
7859 	}
7860 
7861 	return NOTIFY_OK;
7862 }
7863 
7864 
7865 /**
7866  *	netdev_increment_features - increment feature set by one
7867  *	@all: current feature set
7868  *	@one: new feature set
7869  *	@mask: mask feature set
7870  *
7871  *	Computes a new feature set after adding a device with feature set
7872  *	@one to the master device with current feature set @all.  Will not
7873  *	enable anything that is off in @mask. Returns the new feature set.
7874  */
7875 netdev_features_t netdev_increment_features(netdev_features_t all,
7876 	netdev_features_t one, netdev_features_t mask)
7877 {
7878 	if (mask & NETIF_F_HW_CSUM)
7879 		mask |= NETIF_F_CSUM_MASK;
7880 	mask |= NETIF_F_VLAN_CHALLENGED;
7881 
7882 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7883 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7884 
7885 	/* If one device supports hw checksumming, set for all. */
7886 	if (all & NETIF_F_HW_CSUM)
7887 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7888 
7889 	return all;
7890 }
7891 EXPORT_SYMBOL(netdev_increment_features);
7892 
7893 static struct hlist_head * __net_init netdev_create_hash(void)
7894 {
7895 	int i;
7896 	struct hlist_head *hash;
7897 
7898 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7899 	if (hash != NULL)
7900 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7901 			INIT_HLIST_HEAD(&hash[i]);
7902 
7903 	return hash;
7904 }
7905 
7906 /* Initialize per network namespace state */
7907 static int __net_init netdev_init(struct net *net)
7908 {
7909 	if (net != &init_net)
7910 		INIT_LIST_HEAD(&net->dev_base_head);
7911 
7912 	net->dev_name_head = netdev_create_hash();
7913 	if (net->dev_name_head == NULL)
7914 		goto err_name;
7915 
7916 	net->dev_index_head = netdev_create_hash();
7917 	if (net->dev_index_head == NULL)
7918 		goto err_idx;
7919 
7920 	return 0;
7921 
7922 err_idx:
7923 	kfree(net->dev_name_head);
7924 err_name:
7925 	return -ENOMEM;
7926 }
7927 
7928 /**
7929  *	netdev_drivername - network driver for the device
7930  *	@dev: network device
7931  *
7932  *	Determine network driver for device.
7933  */
7934 const char *netdev_drivername(const struct net_device *dev)
7935 {
7936 	const struct device_driver *driver;
7937 	const struct device *parent;
7938 	const char *empty = "";
7939 
7940 	parent = dev->dev.parent;
7941 	if (!parent)
7942 		return empty;
7943 
7944 	driver = parent->driver;
7945 	if (driver && driver->name)
7946 		return driver->name;
7947 	return empty;
7948 }
7949 
7950 static void __netdev_printk(const char *level, const struct net_device *dev,
7951 			    struct va_format *vaf)
7952 {
7953 	if (dev && dev->dev.parent) {
7954 		dev_printk_emit(level[1] - '0',
7955 				dev->dev.parent,
7956 				"%s %s %s%s: %pV",
7957 				dev_driver_string(dev->dev.parent),
7958 				dev_name(dev->dev.parent),
7959 				netdev_name(dev), netdev_reg_state(dev),
7960 				vaf);
7961 	} else if (dev) {
7962 		printk("%s%s%s: %pV",
7963 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7964 	} else {
7965 		printk("%s(NULL net_device): %pV", level, vaf);
7966 	}
7967 }
7968 
7969 void netdev_printk(const char *level, const struct net_device *dev,
7970 		   const char *format, ...)
7971 {
7972 	struct va_format vaf;
7973 	va_list args;
7974 
7975 	va_start(args, format);
7976 
7977 	vaf.fmt = format;
7978 	vaf.va = &args;
7979 
7980 	__netdev_printk(level, dev, &vaf);
7981 
7982 	va_end(args);
7983 }
7984 EXPORT_SYMBOL(netdev_printk);
7985 
7986 #define define_netdev_printk_level(func, level)			\
7987 void func(const struct net_device *dev, const char *fmt, ...)	\
7988 {								\
7989 	struct va_format vaf;					\
7990 	va_list args;						\
7991 								\
7992 	va_start(args, fmt);					\
7993 								\
7994 	vaf.fmt = fmt;						\
7995 	vaf.va = &args;						\
7996 								\
7997 	__netdev_printk(level, dev, &vaf);			\
7998 								\
7999 	va_end(args);						\
8000 }								\
8001 EXPORT_SYMBOL(func);
8002 
8003 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8004 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8005 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8006 define_netdev_printk_level(netdev_err, KERN_ERR);
8007 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8008 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8009 define_netdev_printk_level(netdev_info, KERN_INFO);
8010 
8011 static void __net_exit netdev_exit(struct net *net)
8012 {
8013 	kfree(net->dev_name_head);
8014 	kfree(net->dev_index_head);
8015 }
8016 
8017 static struct pernet_operations __net_initdata netdev_net_ops = {
8018 	.init = netdev_init,
8019 	.exit = netdev_exit,
8020 };
8021 
8022 static void __net_exit default_device_exit(struct net *net)
8023 {
8024 	struct net_device *dev, *aux;
8025 	/*
8026 	 * Push all migratable network devices back to the
8027 	 * initial network namespace
8028 	 */
8029 	rtnl_lock();
8030 	for_each_netdev_safe(net, dev, aux) {
8031 		int err;
8032 		char fb_name[IFNAMSIZ];
8033 
8034 		/* Ignore unmoveable devices (i.e. loopback) */
8035 		if (dev->features & NETIF_F_NETNS_LOCAL)
8036 			continue;
8037 
8038 		/* Leave virtual devices for the generic cleanup */
8039 		if (dev->rtnl_link_ops)
8040 			continue;
8041 
8042 		/* Push remaining network devices to init_net */
8043 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8044 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8045 		if (err) {
8046 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8047 				 __func__, dev->name, err);
8048 			BUG();
8049 		}
8050 	}
8051 	rtnl_unlock();
8052 }
8053 
8054 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8055 {
8056 	/* Return with the rtnl_lock held when there are no network
8057 	 * devices unregistering in any network namespace in net_list.
8058 	 */
8059 	struct net *net;
8060 	bool unregistering;
8061 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8062 
8063 	add_wait_queue(&netdev_unregistering_wq, &wait);
8064 	for (;;) {
8065 		unregistering = false;
8066 		rtnl_lock();
8067 		list_for_each_entry(net, net_list, exit_list) {
8068 			if (net->dev_unreg_count > 0) {
8069 				unregistering = true;
8070 				break;
8071 			}
8072 		}
8073 		if (!unregistering)
8074 			break;
8075 		__rtnl_unlock();
8076 
8077 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8078 	}
8079 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8080 }
8081 
8082 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8083 {
8084 	/* At exit all network devices most be removed from a network
8085 	 * namespace.  Do this in the reverse order of registration.
8086 	 * Do this across as many network namespaces as possible to
8087 	 * improve batching efficiency.
8088 	 */
8089 	struct net_device *dev;
8090 	struct net *net;
8091 	LIST_HEAD(dev_kill_list);
8092 
8093 	/* To prevent network device cleanup code from dereferencing
8094 	 * loopback devices or network devices that have been freed
8095 	 * wait here for all pending unregistrations to complete,
8096 	 * before unregistring the loopback device and allowing the
8097 	 * network namespace be freed.
8098 	 *
8099 	 * The netdev todo list containing all network devices
8100 	 * unregistrations that happen in default_device_exit_batch
8101 	 * will run in the rtnl_unlock() at the end of
8102 	 * default_device_exit_batch.
8103 	 */
8104 	rtnl_lock_unregistering(net_list);
8105 	list_for_each_entry(net, net_list, exit_list) {
8106 		for_each_netdev_reverse(net, dev) {
8107 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8108 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8109 			else
8110 				unregister_netdevice_queue(dev, &dev_kill_list);
8111 		}
8112 	}
8113 	unregister_netdevice_many(&dev_kill_list);
8114 	rtnl_unlock();
8115 }
8116 
8117 static struct pernet_operations __net_initdata default_device_ops = {
8118 	.exit = default_device_exit,
8119 	.exit_batch = default_device_exit_batch,
8120 };
8121 
8122 /*
8123  *	Initialize the DEV module. At boot time this walks the device list and
8124  *	unhooks any devices that fail to initialise (normally hardware not
8125  *	present) and leaves us with a valid list of present and active devices.
8126  *
8127  */
8128 
8129 /*
8130  *       This is called single threaded during boot, so no need
8131  *       to take the rtnl semaphore.
8132  */
8133 static int __init net_dev_init(void)
8134 {
8135 	int i, rc = -ENOMEM;
8136 
8137 	BUG_ON(!dev_boot_phase);
8138 
8139 	if (dev_proc_init())
8140 		goto out;
8141 
8142 	if (netdev_kobject_init())
8143 		goto out;
8144 
8145 	INIT_LIST_HEAD(&ptype_all);
8146 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8147 		INIT_LIST_HEAD(&ptype_base[i]);
8148 
8149 	INIT_LIST_HEAD(&offload_base);
8150 
8151 	if (register_pernet_subsys(&netdev_net_ops))
8152 		goto out;
8153 
8154 	/*
8155 	 *	Initialise the packet receive queues.
8156 	 */
8157 
8158 	for_each_possible_cpu(i) {
8159 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8160 
8161 		skb_queue_head_init(&sd->input_pkt_queue);
8162 		skb_queue_head_init(&sd->process_queue);
8163 		INIT_LIST_HEAD(&sd->poll_list);
8164 		sd->output_queue_tailp = &sd->output_queue;
8165 #ifdef CONFIG_RPS
8166 		sd->csd.func = rps_trigger_softirq;
8167 		sd->csd.info = sd;
8168 		sd->cpu = i;
8169 #endif
8170 
8171 		sd->backlog.poll = process_backlog;
8172 		sd->backlog.weight = weight_p;
8173 	}
8174 
8175 	dev_boot_phase = 0;
8176 
8177 	/* The loopback device is special if any other network devices
8178 	 * is present in a network namespace the loopback device must
8179 	 * be present. Since we now dynamically allocate and free the
8180 	 * loopback device ensure this invariant is maintained by
8181 	 * keeping the loopback device as the first device on the
8182 	 * list of network devices.  Ensuring the loopback devices
8183 	 * is the first device that appears and the last network device
8184 	 * that disappears.
8185 	 */
8186 	if (register_pernet_device(&loopback_net_ops))
8187 		goto out;
8188 
8189 	if (register_pernet_device(&default_device_ops))
8190 		goto out;
8191 
8192 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8193 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8194 
8195 	hotcpu_notifier(dev_cpu_callback, 0);
8196 	dst_subsys_init();
8197 	rc = 0;
8198 out:
8199 	return rc;
8200 }
8201 
8202 subsys_initcall(net_dev_init);
8203