xref: /linux/net/core/dev.c (revision 0738599856542bab0ebcd73cab9d8f15bddedcee)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	write_lock(&dev_base_lock);
406 	list_del_rcu(&dev->dev_list);
407 	netdev_name_node_del(dev->name_node);
408 	hlist_del_rcu(&dev->index_hlist);
409 	write_unlock(&dev_base_lock);
410 
411 	dev_base_seq_inc(dev_net(dev));
412 }
413 
414 /*
415  *	Our notifier list
416  */
417 
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419 
420 /*
421  *	Device drivers call our routines to queue packets here. We empty the
422  *	queue in the local softnet handler.
423  */
424 
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427 
428 #ifdef CONFIG_LOCKDEP
429 /*
430  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431  * according to dev->type
432  */
433 static const unsigned short netdev_lock_type[] = {
434 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449 
450 static const char *const netdev_lock_name[] = {
451 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466 
467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 
470 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471 {
472 	int i;
473 
474 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 		if (netdev_lock_type[i] == dev_type)
476 			return i;
477 	/* the last key is used by default */
478 	return ARRAY_SIZE(netdev_lock_type) - 1;
479 }
480 
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 						 unsigned short dev_type)
483 {
484 	int i;
485 
486 	i = netdev_lock_pos(dev_type);
487 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 				   netdev_lock_name[i]);
489 }
490 
491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492 {
493 	int i;
494 
495 	i = netdev_lock_pos(dev->type);
496 	lockdep_set_class_and_name(&dev->addr_list_lock,
497 				   &netdev_addr_lock_key[i],
498 				   netdev_lock_name[i]);
499 }
500 #else
501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 						 unsigned short dev_type)
503 {
504 }
505 
506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507 {
508 }
509 #endif
510 
511 /*******************************************************************************
512  *
513  *		Protocol management and registration routines
514  *
515  *******************************************************************************/
516 
517 
518 /*
519  *	Add a protocol ID to the list. Now that the input handler is
520  *	smarter we can dispense with all the messy stuff that used to be
521  *	here.
522  *
523  *	BEWARE!!! Protocol handlers, mangling input packets,
524  *	MUST BE last in hash buckets and checking protocol handlers
525  *	MUST start from promiscuous ptype_all chain in net_bh.
526  *	It is true now, do not change it.
527  *	Explanation follows: if protocol handler, mangling packet, will
528  *	be the first on list, it is not able to sense, that packet
529  *	is cloned and should be copied-on-write, so that it will
530  *	change it and subsequent readers will get broken packet.
531  *							--ANK (980803)
532  */
533 
534 static inline struct list_head *ptype_head(const struct packet_type *pt)
535 {
536 	if (pt->type == htons(ETH_P_ALL))
537 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538 	else
539 		return pt->dev ? &pt->dev->ptype_specific :
540 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541 }
542 
543 /**
544  *	dev_add_pack - add packet handler
545  *	@pt: packet type declaration
546  *
547  *	Add a protocol handler to the networking stack. The passed &packet_type
548  *	is linked into kernel lists and may not be freed until it has been
549  *	removed from the kernel lists.
550  *
551  *	This call does not sleep therefore it can not
552  *	guarantee all CPU's that are in middle of receiving packets
553  *	will see the new packet type (until the next received packet).
554  */
555 
556 void dev_add_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 
560 	spin_lock(&ptype_lock);
561 	list_add_rcu(&pt->list, head);
562 	spin_unlock(&ptype_lock);
563 }
564 EXPORT_SYMBOL(dev_add_pack);
565 
566 /**
567  *	__dev_remove_pack	 - remove packet handler
568  *	@pt: packet type declaration
569  *
570  *	Remove a protocol handler that was previously added to the kernel
571  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
572  *	from the kernel lists and can be freed or reused once this function
573  *	returns.
574  *
575  *      The packet type might still be in use by receivers
576  *	and must not be freed until after all the CPU's have gone
577  *	through a quiescent state.
578  */
579 void __dev_remove_pack(struct packet_type *pt)
580 {
581 	struct list_head *head = ptype_head(pt);
582 	struct packet_type *pt1;
583 
584 	spin_lock(&ptype_lock);
585 
586 	list_for_each_entry(pt1, head, list) {
587 		if (pt == pt1) {
588 			list_del_rcu(&pt->list);
589 			goto out;
590 		}
591 	}
592 
593 	pr_warn("dev_remove_pack: %p not found\n", pt);
594 out:
595 	spin_unlock(&ptype_lock);
596 }
597 EXPORT_SYMBOL(__dev_remove_pack);
598 
599 /**
600  *	dev_remove_pack	 - remove packet handler
601  *	@pt: packet type declaration
602  *
603  *	Remove a protocol handler that was previously added to the kernel
604  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
605  *	from the kernel lists and can be freed or reused once this function
606  *	returns.
607  *
608  *	This call sleeps to guarantee that no CPU is looking at the packet
609  *	type after return.
610  */
611 void dev_remove_pack(struct packet_type *pt)
612 {
613 	__dev_remove_pack(pt);
614 
615 	synchronize_net();
616 }
617 EXPORT_SYMBOL(dev_remove_pack);
618 
619 
620 /*******************************************************************************
621  *
622  *			    Device Interface Subroutines
623  *
624  *******************************************************************************/
625 
626 /**
627  *	dev_get_iflink	- get 'iflink' value of a interface
628  *	@dev: targeted interface
629  *
630  *	Indicates the ifindex the interface is linked to.
631  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
632  */
633 
634 int dev_get_iflink(const struct net_device *dev)
635 {
636 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 		return dev->netdev_ops->ndo_get_iflink(dev);
638 
639 	return dev->ifindex;
640 }
641 EXPORT_SYMBOL(dev_get_iflink);
642 
643 /**
644  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
645  *	@dev: targeted interface
646  *	@skb: The packet.
647  *
648  *	For better visibility of tunnel traffic OVS needs to retrieve
649  *	egress tunnel information for a packet. Following API allows
650  *	user to get this info.
651  */
652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653 {
654 	struct ip_tunnel_info *info;
655 
656 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
657 		return -EINVAL;
658 
659 	info = skb_tunnel_info_unclone(skb);
660 	if (!info)
661 		return -ENOMEM;
662 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 		return -EINVAL;
664 
665 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666 }
667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668 
669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670 {
671 	int k = stack->num_paths++;
672 
673 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 		return NULL;
675 
676 	return &stack->path[k];
677 }
678 
679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 			  struct net_device_path_stack *stack)
681 {
682 	const struct net_device *last_dev;
683 	struct net_device_path_ctx ctx = {
684 		.dev	= dev,
685 		.daddr	= daddr,
686 	};
687 	struct net_device_path *path;
688 	int ret = 0;
689 
690 	stack->num_paths = 0;
691 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 		last_dev = ctx.dev;
693 		path = dev_fwd_path(stack);
694 		if (!path)
695 			return -1;
696 
697 		memset(path, 0, sizeof(struct net_device_path));
698 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 		if (ret < 0)
700 			return -1;
701 
702 		if (WARN_ON_ONCE(last_dev == ctx.dev))
703 			return -1;
704 	}
705 
706 	if (!ctx.dev)
707 		return ret;
708 
709 	path = dev_fwd_path(stack);
710 	if (!path)
711 		return -1;
712 	path->type = DEV_PATH_ETHERNET;
713 	path->dev = ctx.dev;
714 
715 	return ret;
716 }
717 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718 
719 /**
720  *	__dev_get_by_name	- find a device by its name
721  *	@net: the applicable net namespace
722  *	@name: name to find
723  *
724  *	Find an interface by name. Must be called under RTNL semaphore
725  *	or @dev_base_lock. If the name is found a pointer to the device
726  *	is returned. If the name is not found then %NULL is returned. The
727  *	reference counters are not incremented so the caller must be
728  *	careful with locks.
729  */
730 
731 struct net_device *__dev_get_by_name(struct net *net, const char *name)
732 {
733 	struct netdev_name_node *node_name;
734 
735 	node_name = netdev_name_node_lookup(net, name);
736 	return node_name ? node_name->dev : NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  * dev_get_by_name_rcu	- find a device by its name
742  * @net: the applicable net namespace
743  * @name: name to find
744  *
745  * Find an interface by name.
746  * If the name is found a pointer to the device is returned.
747  * If the name is not found then %NULL is returned.
748  * The reference counters are not incremented so the caller must be
749  * careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct netdev_name_node *node_name;
755 
756 	node_name = netdev_name_node_lookup_rcu(net, name);
757 	return node_name ? node_name->dev : NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760 
761 /**
762  *	dev_get_by_name		- find a device by its name
763  *	@net: the applicable net namespace
764  *	@name: name to find
765  *
766  *	Find an interface by name. This can be called from any
767  *	context and does its own locking. The returned handle has
768  *	the usage count incremented and the caller must use dev_put() to
769  *	release it when it is no longer needed. %NULL is returned if no
770  *	matching device is found.
771  */
772 
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 	struct net_device *dev;
776 
777 	rcu_read_lock();
778 	dev = dev_get_by_name_rcu(net, name);
779 	dev_hold(dev);
780 	rcu_read_unlock();
781 	return dev;
782 }
783 EXPORT_SYMBOL(dev_get_by_name);
784 
785 /**
786  *	__dev_get_by_index - find a device by its ifindex
787  *	@net: the applicable net namespace
788  *	@ifindex: index of device
789  *
790  *	Search for an interface by index. Returns %NULL if the device
791  *	is not found or a pointer to the device. The device has not
792  *	had its reference counter increased so the caller must be careful
793  *	about locking. The caller must hold either the RTNL semaphore
794  *	or @dev_base_lock.
795  */
796 
797 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
798 {
799 	struct net_device *dev;
800 	struct hlist_head *head = dev_index_hash(net, ifindex);
801 
802 	hlist_for_each_entry(dev, head, index_hlist)
803 		if (dev->ifindex == ifindex)
804 			return dev;
805 
806 	return NULL;
807 }
808 EXPORT_SYMBOL(__dev_get_by_index);
809 
810 /**
811  *	dev_get_by_index_rcu - find a device by its ifindex
812  *	@net: the applicable net namespace
813  *	@ifindex: index of device
814  *
815  *	Search for an interface by index. Returns %NULL if the device
816  *	is not found or a pointer to the device. The device has not
817  *	had its reference counter increased so the caller must be careful
818  *	about locking. The caller must hold RCU lock.
819  */
820 
821 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
822 {
823 	struct net_device *dev;
824 	struct hlist_head *head = dev_index_hash(net, ifindex);
825 
826 	hlist_for_each_entry_rcu(dev, head, index_hlist)
827 		if (dev->ifindex == ifindex)
828 			return dev;
829 
830 	return NULL;
831 }
832 EXPORT_SYMBOL(dev_get_by_index_rcu);
833 
834 
835 /**
836  *	dev_get_by_index - find a device by its ifindex
837  *	@net: the applicable net namespace
838  *	@ifindex: index of device
839  *
840  *	Search for an interface by index. Returns NULL if the device
841  *	is not found or a pointer to the device. The device returned has
842  *	had a reference added and the pointer is safe until the user calls
843  *	dev_put to indicate they have finished with it.
844  */
845 
846 struct net_device *dev_get_by_index(struct net *net, int ifindex)
847 {
848 	struct net_device *dev;
849 
850 	rcu_read_lock();
851 	dev = dev_get_by_index_rcu(net, ifindex);
852 	dev_hold(dev);
853 	rcu_read_unlock();
854 	return dev;
855 }
856 EXPORT_SYMBOL(dev_get_by_index);
857 
858 /**
859  *	dev_get_by_napi_id - find a device by napi_id
860  *	@napi_id: ID of the NAPI struct
861  *
862  *	Search for an interface by NAPI ID. Returns %NULL if the device
863  *	is not found or a pointer to the device. The device has not had
864  *	its reference counter increased so the caller must be careful
865  *	about locking. The caller must hold RCU lock.
866  */
867 
868 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
869 {
870 	struct napi_struct *napi;
871 
872 	WARN_ON_ONCE(!rcu_read_lock_held());
873 
874 	if (napi_id < MIN_NAPI_ID)
875 		return NULL;
876 
877 	napi = napi_by_id(napi_id);
878 
879 	return napi ? napi->dev : NULL;
880 }
881 EXPORT_SYMBOL(dev_get_by_napi_id);
882 
883 /**
884  *	netdev_get_name - get a netdevice name, knowing its ifindex.
885  *	@net: network namespace
886  *	@name: a pointer to the buffer where the name will be stored.
887  *	@ifindex: the ifindex of the interface to get the name from.
888  */
889 int netdev_get_name(struct net *net, char *name, int ifindex)
890 {
891 	struct net_device *dev;
892 	int ret;
893 
894 	down_read(&devnet_rename_sem);
895 	rcu_read_lock();
896 
897 	dev = dev_get_by_index_rcu(net, ifindex);
898 	if (!dev) {
899 		ret = -ENODEV;
900 		goto out;
901 	}
902 
903 	strcpy(name, dev->name);
904 
905 	ret = 0;
906 out:
907 	rcu_read_unlock();
908 	up_read(&devnet_rename_sem);
909 	return ret;
910 }
911 
912 /**
913  *	dev_getbyhwaddr_rcu - find a device by its hardware address
914  *	@net: the applicable net namespace
915  *	@type: media type of device
916  *	@ha: hardware address
917  *
918  *	Search for an interface by MAC address. Returns NULL if the device
919  *	is not found or a pointer to the device.
920  *	The caller must hold RCU or RTNL.
921  *	The returned device has not had its ref count increased
922  *	and the caller must therefore be careful about locking
923  *
924  */
925 
926 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
927 				       const char *ha)
928 {
929 	struct net_device *dev;
930 
931 	for_each_netdev_rcu(net, dev)
932 		if (dev->type == type &&
933 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
934 			return dev;
935 
936 	return NULL;
937 }
938 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
939 
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 	struct net_device *dev, *ret = NULL;
943 
944 	rcu_read_lock();
945 	for_each_netdev_rcu(net, dev)
946 		if (dev->type == type) {
947 			dev_hold(dev);
948 			ret = dev;
949 			break;
950 		}
951 	rcu_read_unlock();
952 	return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 
956 /**
957  *	__dev_get_by_flags - find any device with given flags
958  *	@net: the applicable net namespace
959  *	@if_flags: IFF_* values
960  *	@mask: bitmask of bits in if_flags to check
961  *
962  *	Search for any interface with the given flags. Returns NULL if a device
963  *	is not found or a pointer to the device. Must be called inside
964  *	rtnl_lock(), and result refcount is unchanged.
965  */
966 
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 				      unsigned short mask)
969 {
970 	struct net_device *dev, *ret;
971 
972 	ASSERT_RTNL();
973 
974 	ret = NULL;
975 	for_each_netdev(net, dev) {
976 		if (((dev->flags ^ if_flags) & mask) == 0) {
977 			ret = dev;
978 			break;
979 		}
980 	}
981 	return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984 
985 /**
986  *	dev_valid_name - check if name is okay for network device
987  *	@name: name string
988  *
989  *	Network device names need to be valid file names to
990  *	allow sysfs to work.  We also disallow any kind of
991  *	whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995 	if (*name == '\0')
996 		return false;
997 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
998 		return false;
999 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 		return false;
1001 
1002 	while (*name) {
1003 		if (*name == '/' || *name == ':' || isspace(*name))
1004 			return false;
1005 		name++;
1006 	}
1007 	return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010 
1011 /**
1012  *	__dev_alloc_name - allocate a name for a device
1013  *	@net: network namespace to allocate the device name in
1014  *	@name: name format string
1015  *	@buf:  scratch buffer and result name string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 	int i = 0;
1029 	const char *p;
1030 	const int max_netdevices = 8*PAGE_SIZE;
1031 	unsigned long *inuse;
1032 	struct net_device *d;
1033 
1034 	if (!dev_valid_name(name))
1035 		return -EINVAL;
1036 
1037 	p = strchr(name, '%');
1038 	if (p) {
1039 		/*
1040 		 * Verify the string as this thing may have come from
1041 		 * the user.  There must be either one "%d" and no other "%"
1042 		 * characters.
1043 		 */
1044 		if (p[1] != 'd' || strchr(p + 2, '%'))
1045 			return -EINVAL;
1046 
1047 		/* Use one page as a bit array of possible slots */
1048 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1049 		if (!inuse)
1050 			return -ENOMEM;
1051 
1052 		for_each_netdev(net, d) {
1053 			struct netdev_name_node *name_node;
1054 			list_for_each_entry(name_node, &d->name_node->list, list) {
1055 				if (!sscanf(name_node->name, name, &i))
1056 					continue;
1057 				if (i < 0 || i >= max_netdevices)
1058 					continue;
1059 
1060 				/*  avoid cases where sscanf is not exact inverse of printf */
1061 				snprintf(buf, IFNAMSIZ, name, i);
1062 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1063 					__set_bit(i, inuse);
1064 			}
1065 			if (!sscanf(d->name, name, &i))
1066 				continue;
1067 			if (i < 0 || i >= max_netdevices)
1068 				continue;
1069 
1070 			/*  avoid cases where sscanf is not exact inverse of printf */
1071 			snprintf(buf, IFNAMSIZ, name, i);
1072 			if (!strncmp(buf, d->name, IFNAMSIZ))
1073 				__set_bit(i, inuse);
1074 		}
1075 
1076 		i = find_first_zero_bit(inuse, max_netdevices);
1077 		free_page((unsigned long) inuse);
1078 	}
1079 
1080 	snprintf(buf, IFNAMSIZ, name, i);
1081 	if (!netdev_name_in_use(net, buf))
1082 		return i;
1083 
1084 	/* It is possible to run out of possible slots
1085 	 * when the name is long and there isn't enough space left
1086 	 * for the digits, or if all bits are used.
1087 	 */
1088 	return -ENFILE;
1089 }
1090 
1091 static int dev_alloc_name_ns(struct net *net,
1092 			     struct net_device *dev,
1093 			     const char *name)
1094 {
1095 	char buf[IFNAMSIZ];
1096 	int ret;
1097 
1098 	BUG_ON(!net);
1099 	ret = __dev_alloc_name(net, name, buf);
1100 	if (ret >= 0)
1101 		strlcpy(dev->name, buf, IFNAMSIZ);
1102 	return ret;
1103 }
1104 
1105 /**
1106  *	dev_alloc_name - allocate a name for a device
1107  *	@dev: device
1108  *	@name: name format string
1109  *
1110  *	Passed a format string - eg "lt%d" it will try and find a suitable
1111  *	id. It scans list of devices to build up a free map, then chooses
1112  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1113  *	while allocating the name and adding the device in order to avoid
1114  *	duplicates.
1115  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116  *	Returns the number of the unit assigned or a negative errno code.
1117  */
1118 
1119 int dev_alloc_name(struct net_device *dev, const char *name)
1120 {
1121 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1122 }
1123 EXPORT_SYMBOL(dev_alloc_name);
1124 
1125 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1126 			      const char *name)
1127 {
1128 	BUG_ON(!net);
1129 
1130 	if (!dev_valid_name(name))
1131 		return -EINVAL;
1132 
1133 	if (strchr(name, '%'))
1134 		return dev_alloc_name_ns(net, dev, name);
1135 	else if (netdev_name_in_use(net, name))
1136 		return -EEXIST;
1137 	else if (dev->name != name)
1138 		strlcpy(dev->name, name, IFNAMSIZ);
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  *	dev_change_name - change name of a device
1145  *	@dev: device
1146  *	@newname: name (or format string) must be at least IFNAMSIZ
1147  *
1148  *	Change name of a device, can pass format strings "eth%d".
1149  *	for wildcarding.
1150  */
1151 int dev_change_name(struct net_device *dev, const char *newname)
1152 {
1153 	unsigned char old_assign_type;
1154 	char oldname[IFNAMSIZ];
1155 	int err = 0;
1156 	int ret;
1157 	struct net *net;
1158 
1159 	ASSERT_RTNL();
1160 	BUG_ON(!dev_net(dev));
1161 
1162 	net = dev_net(dev);
1163 
1164 	/* Some auto-enslaved devices e.g. failover slaves are
1165 	 * special, as userspace might rename the device after
1166 	 * the interface had been brought up and running since
1167 	 * the point kernel initiated auto-enslavement. Allow
1168 	 * live name change even when these slave devices are
1169 	 * up and running.
1170 	 *
1171 	 * Typically, users of these auto-enslaving devices
1172 	 * don't actually care about slave name change, as
1173 	 * they are supposed to operate on master interface
1174 	 * directly.
1175 	 */
1176 	if (dev->flags & IFF_UP &&
1177 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1178 		return -EBUSY;
1179 
1180 	down_write(&devnet_rename_sem);
1181 
1182 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1183 		up_write(&devnet_rename_sem);
1184 		return 0;
1185 	}
1186 
1187 	memcpy(oldname, dev->name, IFNAMSIZ);
1188 
1189 	err = dev_get_valid_name(net, dev, newname);
1190 	if (err < 0) {
1191 		up_write(&devnet_rename_sem);
1192 		return err;
1193 	}
1194 
1195 	if (oldname[0] && !strchr(oldname, '%'))
1196 		netdev_info(dev, "renamed from %s\n", oldname);
1197 
1198 	old_assign_type = dev->name_assign_type;
1199 	dev->name_assign_type = NET_NAME_RENAMED;
1200 
1201 rollback:
1202 	ret = device_rename(&dev->dev, dev->name);
1203 	if (ret) {
1204 		memcpy(dev->name, oldname, IFNAMSIZ);
1205 		dev->name_assign_type = old_assign_type;
1206 		up_write(&devnet_rename_sem);
1207 		return ret;
1208 	}
1209 
1210 	up_write(&devnet_rename_sem);
1211 
1212 	netdev_adjacent_rename_links(dev, oldname);
1213 
1214 	write_lock(&dev_base_lock);
1215 	netdev_name_node_del(dev->name_node);
1216 	write_unlock(&dev_base_lock);
1217 
1218 	synchronize_rcu();
1219 
1220 	write_lock(&dev_base_lock);
1221 	netdev_name_node_add(net, dev->name_node);
1222 	write_unlock(&dev_base_lock);
1223 
1224 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225 	ret = notifier_to_errno(ret);
1226 
1227 	if (ret) {
1228 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1229 		if (err >= 0) {
1230 			err = ret;
1231 			down_write(&devnet_rename_sem);
1232 			memcpy(dev->name, oldname, IFNAMSIZ);
1233 			memcpy(oldname, newname, IFNAMSIZ);
1234 			dev->name_assign_type = old_assign_type;
1235 			old_assign_type = NET_NAME_RENAMED;
1236 			goto rollback;
1237 		} else {
1238 			netdev_err(dev, "name change rollback failed: %d\n",
1239 				   ret);
1240 		}
1241 	}
1242 
1243 	return err;
1244 }
1245 
1246 /**
1247  *	dev_set_alias - change ifalias of a device
1248  *	@dev: device
1249  *	@alias: name up to IFALIASZ
1250  *	@len: limit of bytes to copy from info
1251  *
1252  *	Set ifalias for a device,
1253  */
1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255 {
1256 	struct dev_ifalias *new_alias = NULL;
1257 
1258 	if (len >= IFALIASZ)
1259 		return -EINVAL;
1260 
1261 	if (len) {
1262 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 		if (!new_alias)
1264 			return -ENOMEM;
1265 
1266 		memcpy(new_alias->ifalias, alias, len);
1267 		new_alias->ifalias[len] = 0;
1268 	}
1269 
1270 	mutex_lock(&ifalias_mutex);
1271 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 					mutex_is_locked(&ifalias_mutex));
1273 	mutex_unlock(&ifalias_mutex);
1274 
1275 	if (new_alias)
1276 		kfree_rcu(new_alias, rcuhead);
1277 
1278 	return len;
1279 }
1280 EXPORT_SYMBOL(dev_set_alias);
1281 
1282 /**
1283  *	dev_get_alias - get ifalias of a device
1284  *	@dev: device
1285  *	@name: buffer to store name of ifalias
1286  *	@len: size of buffer
1287  *
1288  *	get ifalias for a device.  Caller must make sure dev cannot go
1289  *	away,  e.g. rcu read lock or own a reference count to device.
1290  */
1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292 {
1293 	const struct dev_ifalias *alias;
1294 	int ret = 0;
1295 
1296 	rcu_read_lock();
1297 	alias = rcu_dereference(dev->ifalias);
1298 	if (alias)
1299 		ret = snprintf(name, len, "%s", alias->ifalias);
1300 	rcu_read_unlock();
1301 
1302 	return ret;
1303 }
1304 
1305 /**
1306  *	netdev_features_change - device changes features
1307  *	@dev: device to cause notification
1308  *
1309  *	Called to indicate a device has changed features.
1310  */
1311 void netdev_features_change(struct net_device *dev)
1312 {
1313 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314 }
1315 EXPORT_SYMBOL(netdev_features_change);
1316 
1317 /**
1318  *	netdev_state_change - device changes state
1319  *	@dev: device to cause notification
1320  *
1321  *	Called to indicate a device has changed state. This function calls
1322  *	the notifier chains for netdev_chain and sends a NEWLINK message
1323  *	to the routing socket.
1324  */
1325 void netdev_state_change(struct net_device *dev)
1326 {
1327 	if (dev->flags & IFF_UP) {
1328 		struct netdev_notifier_change_info change_info = {
1329 			.info.dev = dev,
1330 		};
1331 
1332 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1333 					      &change_info.info);
1334 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1335 	}
1336 }
1337 EXPORT_SYMBOL(netdev_state_change);
1338 
1339 /**
1340  * __netdev_notify_peers - notify network peers about existence of @dev,
1341  * to be called when rtnl lock is already held.
1342  * @dev: network device
1343  *
1344  * Generate traffic such that interested network peers are aware of
1345  * @dev, such as by generating a gratuitous ARP. This may be used when
1346  * a device wants to inform the rest of the network about some sort of
1347  * reconfiguration such as a failover event or virtual machine
1348  * migration.
1349  */
1350 void __netdev_notify_peers(struct net_device *dev)
1351 {
1352 	ASSERT_RTNL();
1353 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355 }
1356 EXPORT_SYMBOL(__netdev_notify_peers);
1357 
1358 /**
1359  * netdev_notify_peers - notify network peers about existence of @dev
1360  * @dev: network device
1361  *
1362  * Generate traffic such that interested network peers are aware of
1363  * @dev, such as by generating a gratuitous ARP. This may be used when
1364  * a device wants to inform the rest of the network about some sort of
1365  * reconfiguration such as a failover event or virtual machine
1366  * migration.
1367  */
1368 void netdev_notify_peers(struct net_device *dev)
1369 {
1370 	rtnl_lock();
1371 	__netdev_notify_peers(dev);
1372 	rtnl_unlock();
1373 }
1374 EXPORT_SYMBOL(netdev_notify_peers);
1375 
1376 static int napi_threaded_poll(void *data);
1377 
1378 static int napi_kthread_create(struct napi_struct *n)
1379 {
1380 	int err = 0;
1381 
1382 	/* Create and wake up the kthread once to put it in
1383 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 	 * warning and work with loadavg.
1385 	 */
1386 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 				n->dev->name, n->napi_id);
1388 	if (IS_ERR(n->thread)) {
1389 		err = PTR_ERR(n->thread);
1390 		pr_err("kthread_run failed with err %d\n", err);
1391 		n->thread = NULL;
1392 	}
1393 
1394 	return err;
1395 }
1396 
1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398 {
1399 	const struct net_device_ops *ops = dev->netdev_ops;
1400 	int ret;
1401 
1402 	ASSERT_RTNL();
1403 	dev_addr_check(dev);
1404 
1405 	if (!netif_device_present(dev)) {
1406 		/* may be detached because parent is runtime-suspended */
1407 		if (dev->dev.parent)
1408 			pm_runtime_resume(dev->dev.parent);
1409 		if (!netif_device_present(dev))
1410 			return -ENODEV;
1411 	}
1412 
1413 	/* Block netpoll from trying to do any rx path servicing.
1414 	 * If we don't do this there is a chance ndo_poll_controller
1415 	 * or ndo_poll may be running while we open the device
1416 	 */
1417 	netpoll_poll_disable(dev);
1418 
1419 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420 	ret = notifier_to_errno(ret);
1421 	if (ret)
1422 		return ret;
1423 
1424 	set_bit(__LINK_STATE_START, &dev->state);
1425 
1426 	if (ops->ndo_validate_addr)
1427 		ret = ops->ndo_validate_addr(dev);
1428 
1429 	if (!ret && ops->ndo_open)
1430 		ret = ops->ndo_open(dev);
1431 
1432 	netpoll_poll_enable(dev);
1433 
1434 	if (ret)
1435 		clear_bit(__LINK_STATE_START, &dev->state);
1436 	else {
1437 		dev->flags |= IFF_UP;
1438 		dev_set_rx_mode(dev);
1439 		dev_activate(dev);
1440 		add_device_randomness(dev->dev_addr, dev->addr_len);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 /**
1447  *	dev_open	- prepare an interface for use.
1448  *	@dev: device to open
1449  *	@extack: netlink extended ack
1450  *
1451  *	Takes a device from down to up state. The device's private open
1452  *	function is invoked and then the multicast lists are loaded. Finally
1453  *	the device is moved into the up state and a %NETDEV_UP message is
1454  *	sent to the netdev notifier chain.
1455  *
1456  *	Calling this function on an active interface is a nop. On a failure
1457  *	a negative errno code is returned.
1458  */
1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460 {
1461 	int ret;
1462 
1463 	if (dev->flags & IFF_UP)
1464 		return 0;
1465 
1466 	ret = __dev_open(dev, extack);
1467 	if (ret < 0)
1468 		return ret;
1469 
1470 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1471 	call_netdevice_notifiers(NETDEV_UP, dev);
1472 
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL(dev_open);
1476 
1477 static void __dev_close_many(struct list_head *head)
1478 {
1479 	struct net_device *dev;
1480 
1481 	ASSERT_RTNL();
1482 	might_sleep();
1483 
1484 	list_for_each_entry(dev, head, close_list) {
1485 		/* Temporarily disable netpoll until the interface is down */
1486 		netpoll_poll_disable(dev);
1487 
1488 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489 
1490 		clear_bit(__LINK_STATE_START, &dev->state);
1491 
1492 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1493 		 * can be even on different cpu. So just clear netif_running().
1494 		 *
1495 		 * dev->stop() will invoke napi_disable() on all of it's
1496 		 * napi_struct instances on this device.
1497 		 */
1498 		smp_mb__after_atomic(); /* Commit netif_running(). */
1499 	}
1500 
1501 	dev_deactivate_many(head);
1502 
1503 	list_for_each_entry(dev, head, close_list) {
1504 		const struct net_device_ops *ops = dev->netdev_ops;
1505 
1506 		/*
1507 		 *	Call the device specific close. This cannot fail.
1508 		 *	Only if device is UP
1509 		 *
1510 		 *	We allow it to be called even after a DETACH hot-plug
1511 		 *	event.
1512 		 */
1513 		if (ops->ndo_stop)
1514 			ops->ndo_stop(dev);
1515 
1516 		dev->flags &= ~IFF_UP;
1517 		netpoll_poll_enable(dev);
1518 	}
1519 }
1520 
1521 static void __dev_close(struct net_device *dev)
1522 {
1523 	LIST_HEAD(single);
1524 
1525 	list_add(&dev->close_list, &single);
1526 	__dev_close_many(&single);
1527 	list_del(&single);
1528 }
1529 
1530 void dev_close_many(struct list_head *head, bool unlink)
1531 {
1532 	struct net_device *dev, *tmp;
1533 
1534 	/* Remove the devices that don't need to be closed */
1535 	list_for_each_entry_safe(dev, tmp, head, close_list)
1536 		if (!(dev->flags & IFF_UP))
1537 			list_del_init(&dev->close_list);
1538 
1539 	__dev_close_many(head);
1540 
1541 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1543 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1544 		if (unlink)
1545 			list_del_init(&dev->close_list);
1546 	}
1547 }
1548 EXPORT_SYMBOL(dev_close_many);
1549 
1550 /**
1551  *	dev_close - shutdown an interface.
1552  *	@dev: device to shutdown
1553  *
1554  *	This function moves an active device into down state. A
1555  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557  *	chain.
1558  */
1559 void dev_close(struct net_device *dev)
1560 {
1561 	if (dev->flags & IFF_UP) {
1562 		LIST_HEAD(single);
1563 
1564 		list_add(&dev->close_list, &single);
1565 		dev_close_many(&single, true);
1566 		list_del(&single);
1567 	}
1568 }
1569 EXPORT_SYMBOL(dev_close);
1570 
1571 
1572 /**
1573  *	dev_disable_lro - disable Large Receive Offload on a device
1574  *	@dev: device
1575  *
1576  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1577  *	called under RTNL.  This is needed if received packets may be
1578  *	forwarded to another interface.
1579  */
1580 void dev_disable_lro(struct net_device *dev)
1581 {
1582 	struct net_device *lower_dev;
1583 	struct list_head *iter;
1584 
1585 	dev->wanted_features &= ~NETIF_F_LRO;
1586 	netdev_update_features(dev);
1587 
1588 	if (unlikely(dev->features & NETIF_F_LRO))
1589 		netdev_WARN(dev, "failed to disable LRO!\n");
1590 
1591 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 		dev_disable_lro(lower_dev);
1593 }
1594 EXPORT_SYMBOL(dev_disable_lro);
1595 
1596 /**
1597  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598  *	@dev: device
1599  *
1600  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1601  *	called under RTNL.  This is needed if Generic XDP is installed on
1602  *	the device.
1603  */
1604 static void dev_disable_gro_hw(struct net_device *dev)
1605 {
1606 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 	netdev_update_features(dev);
1608 
1609 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611 }
1612 
1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614 {
1615 #define N(val) 						\
1616 	case NETDEV_##val:				\
1617 		return "NETDEV_" __stringify(val);
1618 	switch (cmd) {
1619 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1623 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1624 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1625 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630 	}
1631 #undef N
1632 	return "UNKNOWN_NETDEV_EVENT";
1633 }
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635 
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 				   struct net_device *dev)
1638 {
1639 	struct netdev_notifier_info info = {
1640 		.dev = dev,
1641 	};
1642 
1643 	return nb->notifier_call(nb, val, &info);
1644 }
1645 
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 					     struct net_device *dev)
1648 {
1649 	int err;
1650 
1651 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 	err = notifier_to_errno(err);
1653 	if (err)
1654 		return err;
1655 
1656 	if (!(dev->flags & IFF_UP))
1657 		return 0;
1658 
1659 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 	return 0;
1661 }
1662 
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 						struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 					dev);
1669 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670 	}
1671 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672 }
1673 
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 						 struct net *net)
1676 {
1677 	struct net_device *dev;
1678 	int err;
1679 
1680 	for_each_netdev(net, dev) {
1681 		err = call_netdevice_register_notifiers(nb, dev);
1682 		if (err)
1683 			goto rollback;
1684 	}
1685 	return 0;
1686 
1687 rollback:
1688 	for_each_netdev_continue_reverse(net, dev)
1689 		call_netdevice_unregister_notifiers(nb, dev);
1690 	return err;
1691 }
1692 
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 						    struct net *net)
1695 {
1696 	struct net_device *dev;
1697 
1698 	for_each_netdev(net, dev)
1699 		call_netdevice_unregister_notifiers(nb, dev);
1700 }
1701 
1702 static int dev_boot_phase = 1;
1703 
1704 /**
1705  * register_netdevice_notifier - register a network notifier block
1706  * @nb: notifier
1707  *
1708  * Register a notifier to be called when network device events occur.
1709  * The notifier passed is linked into the kernel structures and must
1710  * not be reused until it has been unregistered. A negative errno code
1711  * is returned on a failure.
1712  *
1713  * When registered all registration and up events are replayed
1714  * to the new notifier to allow device to have a race free
1715  * view of the network device list.
1716  */
1717 
1718 int register_netdevice_notifier(struct notifier_block *nb)
1719 {
1720 	struct net *net;
1721 	int err;
1722 
1723 	/* Close race with setup_net() and cleanup_net() */
1724 	down_write(&pernet_ops_rwsem);
1725 	rtnl_lock();
1726 	err = raw_notifier_chain_register(&netdev_chain, nb);
1727 	if (err)
1728 		goto unlock;
1729 	if (dev_boot_phase)
1730 		goto unlock;
1731 	for_each_net(net) {
1732 		err = call_netdevice_register_net_notifiers(nb, net);
1733 		if (err)
1734 			goto rollback;
1735 	}
1736 
1737 unlock:
1738 	rtnl_unlock();
1739 	up_write(&pernet_ops_rwsem);
1740 	return err;
1741 
1742 rollback:
1743 	for_each_net_continue_reverse(net)
1744 		call_netdevice_unregister_net_notifiers(nb, net);
1745 
1746 	raw_notifier_chain_unregister(&netdev_chain, nb);
1747 	goto unlock;
1748 }
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1750 
1751 /**
1752  * unregister_netdevice_notifier - unregister a network notifier block
1753  * @nb: notifier
1754  *
1755  * Unregister a notifier previously registered by
1756  * register_netdevice_notifier(). The notifier is unlinked into the
1757  * kernel structures and may then be reused. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * After unregistering unregister and down device events are synthesized
1761  * for all devices on the device list to the removed notifier to remove
1762  * the need for special case cleanup code.
1763  */
1764 
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 
1777 	for_each_net(net)
1778 		call_netdevice_unregister_net_notifiers(nb, net);
1779 
1780 unlock:
1781 	rtnl_unlock();
1782 	up_write(&pernet_ops_rwsem);
1783 	return err;
1784 }
1785 EXPORT_SYMBOL(unregister_netdevice_notifier);
1786 
1787 static int __register_netdevice_notifier_net(struct net *net,
1788 					     struct notifier_block *nb,
1789 					     bool ignore_call_fail)
1790 {
1791 	int err;
1792 
1793 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1794 	if (err)
1795 		return err;
1796 	if (dev_boot_phase)
1797 		return 0;
1798 
1799 	err = call_netdevice_register_net_notifiers(nb, net);
1800 	if (err && !ignore_call_fail)
1801 		goto chain_unregister;
1802 
1803 	return 0;
1804 
1805 chain_unregister:
1806 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1807 	return err;
1808 }
1809 
1810 static int __unregister_netdevice_notifier_net(struct net *net,
1811 					       struct notifier_block *nb)
1812 {
1813 	int err;
1814 
1815 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1816 	if (err)
1817 		return err;
1818 
1819 	call_netdevice_unregister_net_notifiers(nb, net);
1820 	return 0;
1821 }
1822 
1823 /**
1824  * register_netdevice_notifier_net - register a per-netns network notifier block
1825  * @net: network namespace
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837 
1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1839 {
1840 	int err;
1841 
1842 	rtnl_lock();
1843 	err = __register_netdevice_notifier_net(net, nb, false);
1844 	rtnl_unlock();
1845 	return err;
1846 }
1847 EXPORT_SYMBOL(register_netdevice_notifier_net);
1848 
1849 /**
1850  * unregister_netdevice_notifier_net - unregister a per-netns
1851  *                                     network notifier block
1852  * @net: network namespace
1853  * @nb: notifier
1854  *
1855  * Unregister a notifier previously registered by
1856  * register_netdevice_notifier(). The notifier is unlinked into the
1857  * kernel structures and may then be reused. A negative errno code
1858  * is returned on a failure.
1859  *
1860  * After unregistering unregister and down device events are synthesized
1861  * for all devices on the device list to the removed notifier to remove
1862  * the need for special case cleanup code.
1863  */
1864 
1865 int unregister_netdevice_notifier_net(struct net *net,
1866 				      struct notifier_block *nb)
1867 {
1868 	int err;
1869 
1870 	rtnl_lock();
1871 	err = __unregister_netdevice_notifier_net(net, nb);
1872 	rtnl_unlock();
1873 	return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1876 
1877 int register_netdevice_notifier_dev_net(struct net_device *dev,
1878 					struct notifier_block *nb,
1879 					struct netdev_net_notifier *nn)
1880 {
1881 	int err;
1882 
1883 	rtnl_lock();
1884 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1885 	if (!err) {
1886 		nn->nb = nb;
1887 		list_add(&nn->list, &dev->net_notifier_list);
1888 	}
1889 	rtnl_unlock();
1890 	return err;
1891 }
1892 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1893 
1894 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1895 					  struct notifier_block *nb,
1896 					  struct netdev_net_notifier *nn)
1897 {
1898 	int err;
1899 
1900 	rtnl_lock();
1901 	list_del(&nn->list);
1902 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1903 	rtnl_unlock();
1904 	return err;
1905 }
1906 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1907 
1908 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1909 					     struct net *net)
1910 {
1911 	struct netdev_net_notifier *nn;
1912 
1913 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1914 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1915 		__register_netdevice_notifier_net(net, nn->nb, true);
1916 	}
1917 }
1918 
1919 /**
1920  *	call_netdevice_notifiers_info - call all network notifier blocks
1921  *	@val: value passed unmodified to notifier function
1922  *	@info: notifier information data
1923  *
1924  *	Call all network notifier blocks.  Parameters and return value
1925  *	are as for raw_notifier_call_chain().
1926  */
1927 
1928 static int call_netdevice_notifiers_info(unsigned long val,
1929 					 struct netdev_notifier_info *info)
1930 {
1931 	struct net *net = dev_net(info->dev);
1932 	int ret;
1933 
1934 	ASSERT_RTNL();
1935 
1936 	/* Run per-netns notifier block chain first, then run the global one.
1937 	 * Hopefully, one day, the global one is going to be removed after
1938 	 * all notifier block registrators get converted to be per-netns.
1939 	 */
1940 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1941 	if (ret & NOTIFY_STOP_MASK)
1942 		return ret;
1943 	return raw_notifier_call_chain(&netdev_chain, val, info);
1944 }
1945 
1946 /**
1947  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1948  *	                                       for and rollback on error
1949  *	@val_up: value passed unmodified to notifier function
1950  *	@val_down: value passed unmodified to the notifier function when
1951  *	           recovering from an error on @val_up
1952  *	@info: notifier information data
1953  *
1954  *	Call all per-netns network notifier blocks, but not notifier blocks on
1955  *	the global notifier chain. Parameters and return value are as for
1956  *	raw_notifier_call_chain_robust().
1957  */
1958 
1959 static int
1960 call_netdevice_notifiers_info_robust(unsigned long val_up,
1961 				     unsigned long val_down,
1962 				     struct netdev_notifier_info *info)
1963 {
1964 	struct net *net = dev_net(info->dev);
1965 
1966 	ASSERT_RTNL();
1967 
1968 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1969 					      val_up, val_down, info);
1970 }
1971 
1972 static int call_netdevice_notifiers_extack(unsigned long val,
1973 					   struct net_device *dev,
1974 					   struct netlink_ext_ack *extack)
1975 {
1976 	struct netdev_notifier_info info = {
1977 		.dev = dev,
1978 		.extack = extack,
1979 	};
1980 
1981 	return call_netdevice_notifiers_info(val, &info);
1982 }
1983 
1984 /**
1985  *	call_netdevice_notifiers - call all network notifier blocks
1986  *      @val: value passed unmodified to notifier function
1987  *      @dev: net_device pointer passed unmodified to notifier function
1988  *
1989  *	Call all network notifier blocks.  Parameters and return value
1990  *	are as for raw_notifier_call_chain().
1991  */
1992 
1993 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1994 {
1995 	return call_netdevice_notifiers_extack(val, dev, NULL);
1996 }
1997 EXPORT_SYMBOL(call_netdevice_notifiers);
1998 
1999 /**
2000  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2001  *	@val: value passed unmodified to notifier function
2002  *	@dev: net_device pointer passed unmodified to notifier function
2003  *	@arg: additional u32 argument passed to the notifier function
2004  *
2005  *	Call all network notifier blocks.  Parameters and return value
2006  *	are as for raw_notifier_call_chain().
2007  */
2008 static int call_netdevice_notifiers_mtu(unsigned long val,
2009 					struct net_device *dev, u32 arg)
2010 {
2011 	struct netdev_notifier_info_ext info = {
2012 		.info.dev = dev,
2013 		.ext.mtu = arg,
2014 	};
2015 
2016 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2017 
2018 	return call_netdevice_notifiers_info(val, &info.info);
2019 }
2020 
2021 #ifdef CONFIG_NET_INGRESS
2022 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2023 
2024 void net_inc_ingress_queue(void)
2025 {
2026 	static_branch_inc(&ingress_needed_key);
2027 }
2028 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2029 
2030 void net_dec_ingress_queue(void)
2031 {
2032 	static_branch_dec(&ingress_needed_key);
2033 }
2034 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2035 #endif
2036 
2037 #ifdef CONFIG_NET_EGRESS
2038 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2039 
2040 void net_inc_egress_queue(void)
2041 {
2042 	static_branch_inc(&egress_needed_key);
2043 }
2044 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2045 
2046 void net_dec_egress_queue(void)
2047 {
2048 	static_branch_dec(&egress_needed_key);
2049 }
2050 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2051 #endif
2052 
2053 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2054 EXPORT_SYMBOL(netstamp_needed_key);
2055 #ifdef CONFIG_JUMP_LABEL
2056 static atomic_t netstamp_needed_deferred;
2057 static atomic_t netstamp_wanted;
2058 static void netstamp_clear(struct work_struct *work)
2059 {
2060 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2061 	int wanted;
2062 
2063 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2064 	if (wanted > 0)
2065 		static_branch_enable(&netstamp_needed_key);
2066 	else
2067 		static_branch_disable(&netstamp_needed_key);
2068 }
2069 static DECLARE_WORK(netstamp_work, netstamp_clear);
2070 #endif
2071 
2072 void net_enable_timestamp(void)
2073 {
2074 #ifdef CONFIG_JUMP_LABEL
2075 	int wanted;
2076 
2077 	while (1) {
2078 		wanted = atomic_read(&netstamp_wanted);
2079 		if (wanted <= 0)
2080 			break;
2081 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2082 			return;
2083 	}
2084 	atomic_inc(&netstamp_needed_deferred);
2085 	schedule_work(&netstamp_work);
2086 #else
2087 	static_branch_inc(&netstamp_needed_key);
2088 #endif
2089 }
2090 EXPORT_SYMBOL(net_enable_timestamp);
2091 
2092 void net_disable_timestamp(void)
2093 {
2094 #ifdef CONFIG_JUMP_LABEL
2095 	int wanted;
2096 
2097 	while (1) {
2098 		wanted = atomic_read(&netstamp_wanted);
2099 		if (wanted <= 1)
2100 			break;
2101 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2102 			return;
2103 	}
2104 	atomic_dec(&netstamp_needed_deferred);
2105 	schedule_work(&netstamp_work);
2106 #else
2107 	static_branch_dec(&netstamp_needed_key);
2108 #endif
2109 }
2110 EXPORT_SYMBOL(net_disable_timestamp);
2111 
2112 static inline void net_timestamp_set(struct sk_buff *skb)
2113 {
2114 	skb->tstamp = 0;
2115 	skb->mono_delivery_time = 0;
2116 	if (static_branch_unlikely(&netstamp_needed_key))
2117 		skb->tstamp = ktime_get_real();
2118 }
2119 
2120 #define net_timestamp_check(COND, SKB)				\
2121 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2122 		if ((COND) && !(SKB)->tstamp)			\
2123 			(SKB)->tstamp = ktime_get_real();	\
2124 	}							\
2125 
2126 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2127 {
2128 	return __is_skb_forwardable(dev, skb, true);
2129 }
2130 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2131 
2132 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2133 			      bool check_mtu)
2134 {
2135 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2136 
2137 	if (likely(!ret)) {
2138 		skb->protocol = eth_type_trans(skb, dev);
2139 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2140 	}
2141 
2142 	return ret;
2143 }
2144 
2145 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2146 {
2147 	return __dev_forward_skb2(dev, skb, true);
2148 }
2149 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2150 
2151 /**
2152  * dev_forward_skb - loopback an skb to another netif
2153  *
2154  * @dev: destination network device
2155  * @skb: buffer to forward
2156  *
2157  * return values:
2158  *	NET_RX_SUCCESS	(no congestion)
2159  *	NET_RX_DROP     (packet was dropped, but freed)
2160  *
2161  * dev_forward_skb can be used for injecting an skb from the
2162  * start_xmit function of one device into the receive queue
2163  * of another device.
2164  *
2165  * The receiving device may be in another namespace, so
2166  * we have to clear all information in the skb that could
2167  * impact namespace isolation.
2168  */
2169 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2170 {
2171 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2172 }
2173 EXPORT_SYMBOL_GPL(dev_forward_skb);
2174 
2175 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2176 {
2177 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2178 }
2179 
2180 static inline int deliver_skb(struct sk_buff *skb,
2181 			      struct packet_type *pt_prev,
2182 			      struct net_device *orig_dev)
2183 {
2184 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2185 		return -ENOMEM;
2186 	refcount_inc(&skb->users);
2187 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2188 }
2189 
2190 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2191 					  struct packet_type **pt,
2192 					  struct net_device *orig_dev,
2193 					  __be16 type,
2194 					  struct list_head *ptype_list)
2195 {
2196 	struct packet_type *ptype, *pt_prev = *pt;
2197 
2198 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2199 		if (ptype->type != type)
2200 			continue;
2201 		if (pt_prev)
2202 			deliver_skb(skb, pt_prev, orig_dev);
2203 		pt_prev = ptype;
2204 	}
2205 	*pt = pt_prev;
2206 }
2207 
2208 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2209 {
2210 	if (!ptype->af_packet_priv || !skb->sk)
2211 		return false;
2212 
2213 	if (ptype->id_match)
2214 		return ptype->id_match(ptype, skb->sk);
2215 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2216 		return true;
2217 
2218 	return false;
2219 }
2220 
2221 /**
2222  * dev_nit_active - return true if any network interface taps are in use
2223  *
2224  * @dev: network device to check for the presence of taps
2225  */
2226 bool dev_nit_active(struct net_device *dev)
2227 {
2228 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2229 }
2230 EXPORT_SYMBOL_GPL(dev_nit_active);
2231 
2232 /*
2233  *	Support routine. Sends outgoing frames to any network
2234  *	taps currently in use.
2235  */
2236 
2237 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2238 {
2239 	struct packet_type *ptype;
2240 	struct sk_buff *skb2 = NULL;
2241 	struct packet_type *pt_prev = NULL;
2242 	struct list_head *ptype_list = &ptype_all;
2243 
2244 	rcu_read_lock();
2245 again:
2246 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2247 		if (ptype->ignore_outgoing)
2248 			continue;
2249 
2250 		/* Never send packets back to the socket
2251 		 * they originated from - MvS (miquels@drinkel.ow.org)
2252 		 */
2253 		if (skb_loop_sk(ptype, skb))
2254 			continue;
2255 
2256 		if (pt_prev) {
2257 			deliver_skb(skb2, pt_prev, skb->dev);
2258 			pt_prev = ptype;
2259 			continue;
2260 		}
2261 
2262 		/* need to clone skb, done only once */
2263 		skb2 = skb_clone(skb, GFP_ATOMIC);
2264 		if (!skb2)
2265 			goto out_unlock;
2266 
2267 		net_timestamp_set(skb2);
2268 
2269 		/* skb->nh should be correctly
2270 		 * set by sender, so that the second statement is
2271 		 * just protection against buggy protocols.
2272 		 */
2273 		skb_reset_mac_header(skb2);
2274 
2275 		if (skb_network_header(skb2) < skb2->data ||
2276 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2277 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2278 					     ntohs(skb2->protocol),
2279 					     dev->name);
2280 			skb_reset_network_header(skb2);
2281 		}
2282 
2283 		skb2->transport_header = skb2->network_header;
2284 		skb2->pkt_type = PACKET_OUTGOING;
2285 		pt_prev = ptype;
2286 	}
2287 
2288 	if (ptype_list == &ptype_all) {
2289 		ptype_list = &dev->ptype_all;
2290 		goto again;
2291 	}
2292 out_unlock:
2293 	if (pt_prev) {
2294 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2295 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2296 		else
2297 			kfree_skb(skb2);
2298 	}
2299 	rcu_read_unlock();
2300 }
2301 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2302 
2303 /**
2304  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2305  * @dev: Network device
2306  * @txq: number of queues available
2307  *
2308  * If real_num_tx_queues is changed the tc mappings may no longer be
2309  * valid. To resolve this verify the tc mapping remains valid and if
2310  * not NULL the mapping. With no priorities mapping to this
2311  * offset/count pair it will no longer be used. In the worst case TC0
2312  * is invalid nothing can be done so disable priority mappings. If is
2313  * expected that drivers will fix this mapping if they can before
2314  * calling netif_set_real_num_tx_queues.
2315  */
2316 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2317 {
2318 	int i;
2319 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2320 
2321 	/* If TC0 is invalidated disable TC mapping */
2322 	if (tc->offset + tc->count > txq) {
2323 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2324 		dev->num_tc = 0;
2325 		return;
2326 	}
2327 
2328 	/* Invalidated prio to tc mappings set to TC0 */
2329 	for (i = 1; i < TC_BITMASK + 1; i++) {
2330 		int q = netdev_get_prio_tc_map(dev, i);
2331 
2332 		tc = &dev->tc_to_txq[q];
2333 		if (tc->offset + tc->count > txq) {
2334 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2335 				    i, q);
2336 			netdev_set_prio_tc_map(dev, i, 0);
2337 		}
2338 	}
2339 }
2340 
2341 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2342 {
2343 	if (dev->num_tc) {
2344 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345 		int i;
2346 
2347 		/* walk through the TCs and see if it falls into any of them */
2348 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2349 			if ((txq - tc->offset) < tc->count)
2350 				return i;
2351 		}
2352 
2353 		/* didn't find it, just return -1 to indicate no match */
2354 		return -1;
2355 	}
2356 
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(netdev_txq_to_tc);
2360 
2361 #ifdef CONFIG_XPS
2362 static struct static_key xps_needed __read_mostly;
2363 static struct static_key xps_rxqs_needed __read_mostly;
2364 static DEFINE_MUTEX(xps_map_mutex);
2365 #define xmap_dereference(P)		\
2366 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2367 
2368 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2369 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2370 {
2371 	struct xps_map *map = NULL;
2372 	int pos;
2373 
2374 	if (dev_maps)
2375 		map = xmap_dereference(dev_maps->attr_map[tci]);
2376 	if (!map)
2377 		return false;
2378 
2379 	for (pos = map->len; pos--;) {
2380 		if (map->queues[pos] != index)
2381 			continue;
2382 
2383 		if (map->len > 1) {
2384 			map->queues[pos] = map->queues[--map->len];
2385 			break;
2386 		}
2387 
2388 		if (old_maps)
2389 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 		kfree_rcu(map, rcu);
2392 		return false;
2393 	}
2394 
2395 	return true;
2396 }
2397 
2398 static bool remove_xps_queue_cpu(struct net_device *dev,
2399 				 struct xps_dev_maps *dev_maps,
2400 				 int cpu, u16 offset, u16 count)
2401 {
2402 	int num_tc = dev_maps->num_tc;
2403 	bool active = false;
2404 	int tci;
2405 
2406 	for (tci = cpu * num_tc; num_tc--; tci++) {
2407 		int i, j;
2408 
2409 		for (i = count, j = offset; i--; j++) {
2410 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411 				break;
2412 		}
2413 
2414 		active |= i < 0;
2415 	}
2416 
2417 	return active;
2418 }
2419 
2420 static void reset_xps_maps(struct net_device *dev,
2421 			   struct xps_dev_maps *dev_maps,
2422 			   enum xps_map_type type)
2423 {
2424 	static_key_slow_dec_cpuslocked(&xps_needed);
2425 	if (type == XPS_RXQS)
2426 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427 
2428 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429 
2430 	kfree_rcu(dev_maps, rcu);
2431 }
2432 
2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 			   u16 offset, u16 count)
2435 {
2436 	struct xps_dev_maps *dev_maps;
2437 	bool active = false;
2438 	int i, j;
2439 
2440 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 	if (!dev_maps)
2442 		return;
2443 
2444 	for (j = 0; j < dev_maps->nr_ids; j++)
2445 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446 	if (!active)
2447 		reset_xps_maps(dev, dev_maps, type);
2448 
2449 	if (type == XPS_CPUS) {
2450 		for (i = offset + (count - 1); count--; i--)
2451 			netdev_queue_numa_node_write(
2452 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453 	}
2454 }
2455 
2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 				   u16 count)
2458 {
2459 	if (!static_key_false(&xps_needed))
2460 		return;
2461 
2462 	cpus_read_lock();
2463 	mutex_lock(&xps_map_mutex);
2464 
2465 	if (static_key_false(&xps_rxqs_needed))
2466 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2467 
2468 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2469 
2470 	mutex_unlock(&xps_map_mutex);
2471 	cpus_read_unlock();
2472 }
2473 
2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475 {
2476 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477 }
2478 
2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 				      u16 index, bool is_rxqs_map)
2481 {
2482 	struct xps_map *new_map;
2483 	int alloc_len = XPS_MIN_MAP_ALLOC;
2484 	int i, pos;
2485 
2486 	for (pos = 0; map && pos < map->len; pos++) {
2487 		if (map->queues[pos] != index)
2488 			continue;
2489 		return map;
2490 	}
2491 
2492 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493 	if (map) {
2494 		if (pos < map->alloc_len)
2495 			return map;
2496 
2497 		alloc_len = map->alloc_len * 2;
2498 	}
2499 
2500 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 	 *  map
2502 	 */
2503 	if (is_rxqs_map)
2504 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 	else
2506 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 				       cpu_to_node(attr_index));
2508 	if (!new_map)
2509 		return NULL;
2510 
2511 	for (i = 0; i < pos; i++)
2512 		new_map->queues[i] = map->queues[i];
2513 	new_map->alloc_len = alloc_len;
2514 	new_map->len = pos;
2515 
2516 	return new_map;
2517 }
2518 
2519 /* Copy xps maps at a given index */
2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 			      struct xps_dev_maps *new_dev_maps, int index,
2522 			      int tc, bool skip_tc)
2523 {
2524 	int i, tci = index * dev_maps->num_tc;
2525 	struct xps_map *map;
2526 
2527 	/* copy maps belonging to foreign traffic classes */
2528 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 		if (i == tc && skip_tc)
2530 			continue;
2531 
2532 		/* fill in the new device map from the old device map */
2533 		map = xmap_dereference(dev_maps->attr_map[tci]);
2534 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 	}
2536 }
2537 
2538 /* Must be called under cpus_read_lock */
2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 			  u16 index, enum xps_map_type type)
2541 {
2542 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 	const unsigned long *online_mask = NULL;
2544 	bool active = false, copy = false;
2545 	int i, j, tci, numa_node_id = -2;
2546 	int maps_sz, num_tc = 1, tc = 0;
2547 	struct xps_map *map, *new_map;
2548 	unsigned int nr_ids;
2549 
2550 	if (dev->num_tc) {
2551 		/* Do not allow XPS on subordinate device directly */
2552 		num_tc = dev->num_tc;
2553 		if (num_tc < 0)
2554 			return -EINVAL;
2555 
2556 		/* If queue belongs to subordinate dev use its map */
2557 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2558 
2559 		tc = netdev_txq_to_tc(dev, index);
2560 		if (tc < 0)
2561 			return -EINVAL;
2562 	}
2563 
2564 	mutex_lock(&xps_map_mutex);
2565 
2566 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2567 	if (type == XPS_RXQS) {
2568 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2569 		nr_ids = dev->num_rx_queues;
2570 	} else {
2571 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2572 		if (num_possible_cpus() > 1)
2573 			online_mask = cpumask_bits(cpu_online_mask);
2574 		nr_ids = nr_cpu_ids;
2575 	}
2576 
2577 	if (maps_sz < L1_CACHE_BYTES)
2578 		maps_sz = L1_CACHE_BYTES;
2579 
2580 	/* The old dev_maps could be larger or smaller than the one we're
2581 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2582 	 * between. We could try to be smart, but let's be safe instead and only
2583 	 * copy foreign traffic classes if the two map sizes match.
2584 	 */
2585 	if (dev_maps &&
2586 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2587 		copy = true;
2588 
2589 	/* allocate memory for queue storage */
2590 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2591 	     j < nr_ids;) {
2592 		if (!new_dev_maps) {
2593 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2594 			if (!new_dev_maps) {
2595 				mutex_unlock(&xps_map_mutex);
2596 				return -ENOMEM;
2597 			}
2598 
2599 			new_dev_maps->nr_ids = nr_ids;
2600 			new_dev_maps->num_tc = num_tc;
2601 		}
2602 
2603 		tci = j * num_tc + tc;
2604 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2605 
2606 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2607 		if (!map)
2608 			goto error;
2609 
2610 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2611 	}
2612 
2613 	if (!new_dev_maps)
2614 		goto out_no_new_maps;
2615 
2616 	if (!dev_maps) {
2617 		/* Increment static keys at most once per type */
2618 		static_key_slow_inc_cpuslocked(&xps_needed);
2619 		if (type == XPS_RXQS)
2620 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2621 	}
2622 
2623 	for (j = 0; j < nr_ids; j++) {
2624 		bool skip_tc = false;
2625 
2626 		tci = j * num_tc + tc;
2627 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2628 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2629 			/* add tx-queue to CPU/rx-queue maps */
2630 			int pos = 0;
2631 
2632 			skip_tc = true;
2633 
2634 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2635 			while ((pos < map->len) && (map->queues[pos] != index))
2636 				pos++;
2637 
2638 			if (pos == map->len)
2639 				map->queues[map->len++] = index;
2640 #ifdef CONFIG_NUMA
2641 			if (type == XPS_CPUS) {
2642 				if (numa_node_id == -2)
2643 					numa_node_id = cpu_to_node(j);
2644 				else if (numa_node_id != cpu_to_node(j))
2645 					numa_node_id = -1;
2646 			}
2647 #endif
2648 		}
2649 
2650 		if (copy)
2651 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2652 					  skip_tc);
2653 	}
2654 
2655 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2656 
2657 	/* Cleanup old maps */
2658 	if (!dev_maps)
2659 		goto out_no_old_maps;
2660 
2661 	for (j = 0; j < dev_maps->nr_ids; j++) {
2662 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2663 			map = xmap_dereference(dev_maps->attr_map[tci]);
2664 			if (!map)
2665 				continue;
2666 
2667 			if (copy) {
2668 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2669 				if (map == new_map)
2670 					continue;
2671 			}
2672 
2673 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2674 			kfree_rcu(map, rcu);
2675 		}
2676 	}
2677 
2678 	old_dev_maps = dev_maps;
2679 
2680 out_no_old_maps:
2681 	dev_maps = new_dev_maps;
2682 	active = true;
2683 
2684 out_no_new_maps:
2685 	if (type == XPS_CPUS)
2686 		/* update Tx queue numa node */
2687 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2688 					     (numa_node_id >= 0) ?
2689 					     numa_node_id : NUMA_NO_NODE);
2690 
2691 	if (!dev_maps)
2692 		goto out_no_maps;
2693 
2694 	/* removes tx-queue from unused CPUs/rx-queues */
2695 	for (j = 0; j < dev_maps->nr_ids; j++) {
2696 		tci = j * dev_maps->num_tc;
2697 
2698 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2699 			if (i == tc &&
2700 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2701 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2702 				continue;
2703 
2704 			active |= remove_xps_queue(dev_maps,
2705 						   copy ? old_dev_maps : NULL,
2706 						   tci, index);
2707 		}
2708 	}
2709 
2710 	if (old_dev_maps)
2711 		kfree_rcu(old_dev_maps, rcu);
2712 
2713 	/* free map if not active */
2714 	if (!active)
2715 		reset_xps_maps(dev, dev_maps, type);
2716 
2717 out_no_maps:
2718 	mutex_unlock(&xps_map_mutex);
2719 
2720 	return 0;
2721 error:
2722 	/* remove any maps that we added */
2723 	for (j = 0; j < nr_ids; j++) {
2724 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2725 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2726 			map = copy ?
2727 			      xmap_dereference(dev_maps->attr_map[tci]) :
2728 			      NULL;
2729 			if (new_map && new_map != map)
2730 				kfree(new_map);
2731 		}
2732 	}
2733 
2734 	mutex_unlock(&xps_map_mutex);
2735 
2736 	kfree(new_dev_maps);
2737 	return -ENOMEM;
2738 }
2739 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2740 
2741 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2742 			u16 index)
2743 {
2744 	int ret;
2745 
2746 	cpus_read_lock();
2747 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2748 	cpus_read_unlock();
2749 
2750 	return ret;
2751 }
2752 EXPORT_SYMBOL(netif_set_xps_queue);
2753 
2754 #endif
2755 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2756 {
2757 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2758 
2759 	/* Unbind any subordinate channels */
2760 	while (txq-- != &dev->_tx[0]) {
2761 		if (txq->sb_dev)
2762 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2763 	}
2764 }
2765 
2766 void netdev_reset_tc(struct net_device *dev)
2767 {
2768 #ifdef CONFIG_XPS
2769 	netif_reset_xps_queues_gt(dev, 0);
2770 #endif
2771 	netdev_unbind_all_sb_channels(dev);
2772 
2773 	/* Reset TC configuration of device */
2774 	dev->num_tc = 0;
2775 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2776 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2777 }
2778 EXPORT_SYMBOL(netdev_reset_tc);
2779 
2780 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2781 {
2782 	if (tc >= dev->num_tc)
2783 		return -EINVAL;
2784 
2785 #ifdef CONFIG_XPS
2786 	netif_reset_xps_queues(dev, offset, count);
2787 #endif
2788 	dev->tc_to_txq[tc].count = count;
2789 	dev->tc_to_txq[tc].offset = offset;
2790 	return 0;
2791 }
2792 EXPORT_SYMBOL(netdev_set_tc_queue);
2793 
2794 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2795 {
2796 	if (num_tc > TC_MAX_QUEUE)
2797 		return -EINVAL;
2798 
2799 #ifdef CONFIG_XPS
2800 	netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802 	netdev_unbind_all_sb_channels(dev);
2803 
2804 	dev->num_tc = num_tc;
2805 	return 0;
2806 }
2807 EXPORT_SYMBOL(netdev_set_num_tc);
2808 
2809 void netdev_unbind_sb_channel(struct net_device *dev,
2810 			      struct net_device *sb_dev)
2811 {
2812 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2813 
2814 #ifdef CONFIG_XPS
2815 	netif_reset_xps_queues_gt(sb_dev, 0);
2816 #endif
2817 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2818 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2819 
2820 	while (txq-- != &dev->_tx[0]) {
2821 		if (txq->sb_dev == sb_dev)
2822 			txq->sb_dev = NULL;
2823 	}
2824 }
2825 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2826 
2827 int netdev_bind_sb_channel_queue(struct net_device *dev,
2828 				 struct net_device *sb_dev,
2829 				 u8 tc, u16 count, u16 offset)
2830 {
2831 	/* Make certain the sb_dev and dev are already configured */
2832 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2833 		return -EINVAL;
2834 
2835 	/* We cannot hand out queues we don't have */
2836 	if ((offset + count) > dev->real_num_tx_queues)
2837 		return -EINVAL;
2838 
2839 	/* Record the mapping */
2840 	sb_dev->tc_to_txq[tc].count = count;
2841 	sb_dev->tc_to_txq[tc].offset = offset;
2842 
2843 	/* Provide a way for Tx queue to find the tc_to_txq map or
2844 	 * XPS map for itself.
2845 	 */
2846 	while (count--)
2847 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2848 
2849 	return 0;
2850 }
2851 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2852 
2853 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2854 {
2855 	/* Do not use a multiqueue device to represent a subordinate channel */
2856 	if (netif_is_multiqueue(dev))
2857 		return -ENODEV;
2858 
2859 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2860 	 * Channel 0 is meant to be "native" mode and used only to represent
2861 	 * the main root device. We allow writing 0 to reset the device back
2862 	 * to normal mode after being used as a subordinate channel.
2863 	 */
2864 	if (channel > S16_MAX)
2865 		return -EINVAL;
2866 
2867 	dev->num_tc = -channel;
2868 
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_set_sb_channel);
2872 
2873 /*
2874  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2875  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2876  */
2877 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2878 {
2879 	bool disabling;
2880 	int rc;
2881 
2882 	disabling = txq < dev->real_num_tx_queues;
2883 
2884 	if (txq < 1 || txq > dev->num_tx_queues)
2885 		return -EINVAL;
2886 
2887 	if (dev->reg_state == NETREG_REGISTERED ||
2888 	    dev->reg_state == NETREG_UNREGISTERING) {
2889 		ASSERT_RTNL();
2890 
2891 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2892 						  txq);
2893 		if (rc)
2894 			return rc;
2895 
2896 		if (dev->num_tc)
2897 			netif_setup_tc(dev, txq);
2898 
2899 		dev_qdisc_change_real_num_tx(dev, txq);
2900 
2901 		dev->real_num_tx_queues = txq;
2902 
2903 		if (disabling) {
2904 			synchronize_net();
2905 			qdisc_reset_all_tx_gt(dev, txq);
2906 #ifdef CONFIG_XPS
2907 			netif_reset_xps_queues_gt(dev, txq);
2908 #endif
2909 		}
2910 	} else {
2911 		dev->real_num_tx_queues = txq;
2912 	}
2913 
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2917 
2918 #ifdef CONFIG_SYSFS
2919 /**
2920  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2921  *	@dev: Network device
2922  *	@rxq: Actual number of RX queues
2923  *
2924  *	This must be called either with the rtnl_lock held or before
2925  *	registration of the net device.  Returns 0 on success, or a
2926  *	negative error code.  If called before registration, it always
2927  *	succeeds.
2928  */
2929 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2930 {
2931 	int rc;
2932 
2933 	if (rxq < 1 || rxq > dev->num_rx_queues)
2934 		return -EINVAL;
2935 
2936 	if (dev->reg_state == NETREG_REGISTERED) {
2937 		ASSERT_RTNL();
2938 
2939 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2940 						  rxq);
2941 		if (rc)
2942 			return rc;
2943 	}
2944 
2945 	dev->real_num_rx_queues = rxq;
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2949 #endif
2950 
2951 /**
2952  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2953  *	@dev: Network device
2954  *	@txq: Actual number of TX queues
2955  *	@rxq: Actual number of RX queues
2956  *
2957  *	Set the real number of both TX and RX queues.
2958  *	Does nothing if the number of queues is already correct.
2959  */
2960 int netif_set_real_num_queues(struct net_device *dev,
2961 			      unsigned int txq, unsigned int rxq)
2962 {
2963 	unsigned int old_rxq = dev->real_num_rx_queues;
2964 	int err;
2965 
2966 	if (txq < 1 || txq > dev->num_tx_queues ||
2967 	    rxq < 1 || rxq > dev->num_rx_queues)
2968 		return -EINVAL;
2969 
2970 	/* Start from increases, so the error path only does decreases -
2971 	 * decreases can't fail.
2972 	 */
2973 	if (rxq > dev->real_num_rx_queues) {
2974 		err = netif_set_real_num_rx_queues(dev, rxq);
2975 		if (err)
2976 			return err;
2977 	}
2978 	if (txq > dev->real_num_tx_queues) {
2979 		err = netif_set_real_num_tx_queues(dev, txq);
2980 		if (err)
2981 			goto undo_rx;
2982 	}
2983 	if (rxq < dev->real_num_rx_queues)
2984 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2985 	if (txq < dev->real_num_tx_queues)
2986 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2987 
2988 	return 0;
2989 undo_rx:
2990 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2991 	return err;
2992 }
2993 EXPORT_SYMBOL(netif_set_real_num_queues);
2994 
2995 /**
2996  * netif_get_num_default_rss_queues - default number of RSS queues
2997  *
2998  * Default value is the number of physical cores if there are only 1 or 2, or
2999  * divided by 2 if there are more.
3000  */
3001 int netif_get_num_default_rss_queues(void)
3002 {
3003 	cpumask_var_t cpus;
3004 	int cpu, count = 0;
3005 
3006 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3007 		return 1;
3008 
3009 	cpumask_copy(cpus, cpu_online_mask);
3010 	for_each_cpu(cpu, cpus) {
3011 		++count;
3012 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3013 	}
3014 	free_cpumask_var(cpus);
3015 
3016 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3017 }
3018 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3019 
3020 static void __netif_reschedule(struct Qdisc *q)
3021 {
3022 	struct softnet_data *sd;
3023 	unsigned long flags;
3024 
3025 	local_irq_save(flags);
3026 	sd = this_cpu_ptr(&softnet_data);
3027 	q->next_sched = NULL;
3028 	*sd->output_queue_tailp = q;
3029 	sd->output_queue_tailp = &q->next_sched;
3030 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3031 	local_irq_restore(flags);
3032 }
3033 
3034 void __netif_schedule(struct Qdisc *q)
3035 {
3036 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3037 		__netif_reschedule(q);
3038 }
3039 EXPORT_SYMBOL(__netif_schedule);
3040 
3041 struct dev_kfree_skb_cb {
3042 	enum skb_free_reason reason;
3043 };
3044 
3045 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3046 {
3047 	return (struct dev_kfree_skb_cb *)skb->cb;
3048 }
3049 
3050 void netif_schedule_queue(struct netdev_queue *txq)
3051 {
3052 	rcu_read_lock();
3053 	if (!netif_xmit_stopped(txq)) {
3054 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3055 
3056 		__netif_schedule(q);
3057 	}
3058 	rcu_read_unlock();
3059 }
3060 EXPORT_SYMBOL(netif_schedule_queue);
3061 
3062 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3063 {
3064 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3065 		struct Qdisc *q;
3066 
3067 		rcu_read_lock();
3068 		q = rcu_dereference(dev_queue->qdisc);
3069 		__netif_schedule(q);
3070 		rcu_read_unlock();
3071 	}
3072 }
3073 EXPORT_SYMBOL(netif_tx_wake_queue);
3074 
3075 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3076 {
3077 	unsigned long flags;
3078 
3079 	if (unlikely(!skb))
3080 		return;
3081 
3082 	if (likely(refcount_read(&skb->users) == 1)) {
3083 		smp_rmb();
3084 		refcount_set(&skb->users, 0);
3085 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3086 		return;
3087 	}
3088 	get_kfree_skb_cb(skb)->reason = reason;
3089 	local_irq_save(flags);
3090 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3091 	__this_cpu_write(softnet_data.completion_queue, skb);
3092 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3093 	local_irq_restore(flags);
3094 }
3095 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3096 
3097 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3098 {
3099 	if (in_hardirq() || irqs_disabled())
3100 		__dev_kfree_skb_irq(skb, reason);
3101 	else
3102 		dev_kfree_skb(skb);
3103 }
3104 EXPORT_SYMBOL(__dev_kfree_skb_any);
3105 
3106 
3107 /**
3108  * netif_device_detach - mark device as removed
3109  * @dev: network device
3110  *
3111  * Mark device as removed from system and therefore no longer available.
3112  */
3113 void netif_device_detach(struct net_device *dev)
3114 {
3115 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3116 	    netif_running(dev)) {
3117 		netif_tx_stop_all_queues(dev);
3118 	}
3119 }
3120 EXPORT_SYMBOL(netif_device_detach);
3121 
3122 /**
3123  * netif_device_attach - mark device as attached
3124  * @dev: network device
3125  *
3126  * Mark device as attached from system and restart if needed.
3127  */
3128 void netif_device_attach(struct net_device *dev)
3129 {
3130 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3131 	    netif_running(dev)) {
3132 		netif_tx_wake_all_queues(dev);
3133 		__netdev_watchdog_up(dev);
3134 	}
3135 }
3136 EXPORT_SYMBOL(netif_device_attach);
3137 
3138 /*
3139  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3140  * to be used as a distribution range.
3141  */
3142 static u16 skb_tx_hash(const struct net_device *dev,
3143 		       const struct net_device *sb_dev,
3144 		       struct sk_buff *skb)
3145 {
3146 	u32 hash;
3147 	u16 qoffset = 0;
3148 	u16 qcount = dev->real_num_tx_queues;
3149 
3150 	if (dev->num_tc) {
3151 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3152 
3153 		qoffset = sb_dev->tc_to_txq[tc].offset;
3154 		qcount = sb_dev->tc_to_txq[tc].count;
3155 		if (unlikely(!qcount)) {
3156 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3157 					     sb_dev->name, qoffset, tc);
3158 			qoffset = 0;
3159 			qcount = dev->real_num_tx_queues;
3160 		}
3161 	}
3162 
3163 	if (skb_rx_queue_recorded(skb)) {
3164 		hash = skb_get_rx_queue(skb);
3165 		if (hash >= qoffset)
3166 			hash -= qoffset;
3167 		while (unlikely(hash >= qcount))
3168 			hash -= qcount;
3169 		return hash + qoffset;
3170 	}
3171 
3172 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3173 }
3174 
3175 static void skb_warn_bad_offload(const struct sk_buff *skb)
3176 {
3177 	static const netdev_features_t null_features;
3178 	struct net_device *dev = skb->dev;
3179 	const char *name = "";
3180 
3181 	if (!net_ratelimit())
3182 		return;
3183 
3184 	if (dev) {
3185 		if (dev->dev.parent)
3186 			name = dev_driver_string(dev->dev.parent);
3187 		else
3188 			name = netdev_name(dev);
3189 	}
3190 	skb_dump(KERN_WARNING, skb, false);
3191 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3192 	     name, dev ? &dev->features : &null_features,
3193 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3194 }
3195 
3196 /*
3197  * Invalidate hardware checksum when packet is to be mangled, and
3198  * complete checksum manually on outgoing path.
3199  */
3200 int skb_checksum_help(struct sk_buff *skb)
3201 {
3202 	__wsum csum;
3203 	int ret = 0, offset;
3204 
3205 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3206 		goto out_set_summed;
3207 
3208 	if (unlikely(skb_is_gso(skb))) {
3209 		skb_warn_bad_offload(skb);
3210 		return -EINVAL;
3211 	}
3212 
3213 	/* Before computing a checksum, we should make sure no frag could
3214 	 * be modified by an external entity : checksum could be wrong.
3215 	 */
3216 	if (skb_has_shared_frag(skb)) {
3217 		ret = __skb_linearize(skb);
3218 		if (ret)
3219 			goto out;
3220 	}
3221 
3222 	offset = skb_checksum_start_offset(skb);
3223 	BUG_ON(offset >= skb_headlen(skb));
3224 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3225 
3226 	offset += skb->csum_offset;
3227 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3228 
3229 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3230 	if (ret)
3231 		goto out;
3232 
3233 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3234 out_set_summed:
3235 	skb->ip_summed = CHECKSUM_NONE;
3236 out:
3237 	return ret;
3238 }
3239 EXPORT_SYMBOL(skb_checksum_help);
3240 
3241 int skb_crc32c_csum_help(struct sk_buff *skb)
3242 {
3243 	__le32 crc32c_csum;
3244 	int ret = 0, offset, start;
3245 
3246 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3247 		goto out;
3248 
3249 	if (unlikely(skb_is_gso(skb)))
3250 		goto out;
3251 
3252 	/* Before computing a checksum, we should make sure no frag could
3253 	 * be modified by an external entity : checksum could be wrong.
3254 	 */
3255 	if (unlikely(skb_has_shared_frag(skb))) {
3256 		ret = __skb_linearize(skb);
3257 		if (ret)
3258 			goto out;
3259 	}
3260 	start = skb_checksum_start_offset(skb);
3261 	offset = start + offsetof(struct sctphdr, checksum);
3262 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263 		ret = -EINVAL;
3264 		goto out;
3265 	}
3266 
3267 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3268 	if (ret)
3269 		goto out;
3270 
3271 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3272 						  skb->len - start, ~(__u32)0,
3273 						  crc32c_csum_stub));
3274 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3275 	skb->ip_summed = CHECKSUM_NONE;
3276 	skb->csum_not_inet = 0;
3277 out:
3278 	return ret;
3279 }
3280 
3281 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3282 {
3283 	__be16 type = skb->protocol;
3284 
3285 	/* Tunnel gso handlers can set protocol to ethernet. */
3286 	if (type == htons(ETH_P_TEB)) {
3287 		struct ethhdr *eth;
3288 
3289 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3290 			return 0;
3291 
3292 		eth = (struct ethhdr *)skb->data;
3293 		type = eth->h_proto;
3294 	}
3295 
3296 	return __vlan_get_protocol(skb, type, depth);
3297 }
3298 
3299 /* openvswitch calls this on rx path, so we need a different check.
3300  */
3301 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3302 {
3303 	if (tx_path)
3304 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3305 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3306 
3307 	return skb->ip_summed == CHECKSUM_NONE;
3308 }
3309 
3310 /**
3311  *	__skb_gso_segment - Perform segmentation on skb.
3312  *	@skb: buffer to segment
3313  *	@features: features for the output path (see dev->features)
3314  *	@tx_path: whether it is called in TX path
3315  *
3316  *	This function segments the given skb and returns a list of segments.
3317  *
3318  *	It may return NULL if the skb requires no segmentation.  This is
3319  *	only possible when GSO is used for verifying header integrity.
3320  *
3321  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3322  */
3323 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3324 				  netdev_features_t features, bool tx_path)
3325 {
3326 	struct sk_buff *segs;
3327 
3328 	if (unlikely(skb_needs_check(skb, tx_path))) {
3329 		int err;
3330 
3331 		/* We're going to init ->check field in TCP or UDP header */
3332 		err = skb_cow_head(skb, 0);
3333 		if (err < 0)
3334 			return ERR_PTR(err);
3335 	}
3336 
3337 	/* Only report GSO partial support if it will enable us to
3338 	 * support segmentation on this frame without needing additional
3339 	 * work.
3340 	 */
3341 	if (features & NETIF_F_GSO_PARTIAL) {
3342 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3343 		struct net_device *dev = skb->dev;
3344 
3345 		partial_features |= dev->features & dev->gso_partial_features;
3346 		if (!skb_gso_ok(skb, features | partial_features))
3347 			features &= ~NETIF_F_GSO_PARTIAL;
3348 	}
3349 
3350 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3351 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3352 
3353 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3354 	SKB_GSO_CB(skb)->encap_level = 0;
3355 
3356 	skb_reset_mac_header(skb);
3357 	skb_reset_mac_len(skb);
3358 
3359 	segs = skb_mac_gso_segment(skb, features);
3360 
3361 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3362 		skb_warn_bad_offload(skb);
3363 
3364 	return segs;
3365 }
3366 EXPORT_SYMBOL(__skb_gso_segment);
3367 
3368 /* Take action when hardware reception checksum errors are detected. */
3369 #ifdef CONFIG_BUG
3370 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3371 {
3372 	netdev_err(dev, "hw csum failure\n");
3373 	skb_dump(KERN_ERR, skb, true);
3374 	dump_stack();
3375 }
3376 
3377 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3378 {
3379 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3380 }
3381 EXPORT_SYMBOL(netdev_rx_csum_fault);
3382 #endif
3383 
3384 /* XXX: check that highmem exists at all on the given machine. */
3385 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3386 {
3387 #ifdef CONFIG_HIGHMEM
3388 	int i;
3389 
3390 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3391 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3392 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3393 
3394 			if (PageHighMem(skb_frag_page(frag)))
3395 				return 1;
3396 		}
3397 	}
3398 #endif
3399 	return 0;
3400 }
3401 
3402 /* If MPLS offload request, verify we are testing hardware MPLS features
3403  * instead of standard features for the netdev.
3404  */
3405 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3406 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3407 					   netdev_features_t features,
3408 					   __be16 type)
3409 {
3410 	if (eth_p_mpls(type))
3411 		features &= skb->dev->mpls_features;
3412 
3413 	return features;
3414 }
3415 #else
3416 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3417 					   netdev_features_t features,
3418 					   __be16 type)
3419 {
3420 	return features;
3421 }
3422 #endif
3423 
3424 static netdev_features_t harmonize_features(struct sk_buff *skb,
3425 	netdev_features_t features)
3426 {
3427 	__be16 type;
3428 
3429 	type = skb_network_protocol(skb, NULL);
3430 	features = net_mpls_features(skb, features, type);
3431 
3432 	if (skb->ip_summed != CHECKSUM_NONE &&
3433 	    !can_checksum_protocol(features, type)) {
3434 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3435 	}
3436 	if (illegal_highdma(skb->dev, skb))
3437 		features &= ~NETIF_F_SG;
3438 
3439 	return features;
3440 }
3441 
3442 netdev_features_t passthru_features_check(struct sk_buff *skb,
3443 					  struct net_device *dev,
3444 					  netdev_features_t features)
3445 {
3446 	return features;
3447 }
3448 EXPORT_SYMBOL(passthru_features_check);
3449 
3450 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3451 					     struct net_device *dev,
3452 					     netdev_features_t features)
3453 {
3454 	return vlan_features_check(skb, features);
3455 }
3456 
3457 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3458 					    struct net_device *dev,
3459 					    netdev_features_t features)
3460 {
3461 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3462 
3463 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3464 		return features & ~NETIF_F_GSO_MASK;
3465 
3466 	if (!skb_shinfo(skb)->gso_type) {
3467 		skb_warn_bad_offload(skb);
3468 		return features & ~NETIF_F_GSO_MASK;
3469 	}
3470 
3471 	/* Support for GSO partial features requires software
3472 	 * intervention before we can actually process the packets
3473 	 * so we need to strip support for any partial features now
3474 	 * and we can pull them back in after we have partially
3475 	 * segmented the frame.
3476 	 */
3477 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3478 		features &= ~dev->gso_partial_features;
3479 
3480 	/* Make sure to clear the IPv4 ID mangling feature if the
3481 	 * IPv4 header has the potential to be fragmented.
3482 	 */
3483 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3484 		struct iphdr *iph = skb->encapsulation ?
3485 				    inner_ip_hdr(skb) : ip_hdr(skb);
3486 
3487 		if (!(iph->frag_off & htons(IP_DF)))
3488 			features &= ~NETIF_F_TSO_MANGLEID;
3489 	}
3490 
3491 	return features;
3492 }
3493 
3494 netdev_features_t netif_skb_features(struct sk_buff *skb)
3495 {
3496 	struct net_device *dev = skb->dev;
3497 	netdev_features_t features = dev->features;
3498 
3499 	if (skb_is_gso(skb))
3500 		features = gso_features_check(skb, dev, features);
3501 
3502 	/* If encapsulation offload request, verify we are testing
3503 	 * hardware encapsulation features instead of standard
3504 	 * features for the netdev
3505 	 */
3506 	if (skb->encapsulation)
3507 		features &= dev->hw_enc_features;
3508 
3509 	if (skb_vlan_tagged(skb))
3510 		features = netdev_intersect_features(features,
3511 						     dev->vlan_features |
3512 						     NETIF_F_HW_VLAN_CTAG_TX |
3513 						     NETIF_F_HW_VLAN_STAG_TX);
3514 
3515 	if (dev->netdev_ops->ndo_features_check)
3516 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3517 								features);
3518 	else
3519 		features &= dflt_features_check(skb, dev, features);
3520 
3521 	return harmonize_features(skb, features);
3522 }
3523 EXPORT_SYMBOL(netif_skb_features);
3524 
3525 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3526 		    struct netdev_queue *txq, bool more)
3527 {
3528 	unsigned int len;
3529 	int rc;
3530 
3531 	if (dev_nit_active(dev))
3532 		dev_queue_xmit_nit(skb, dev);
3533 
3534 	len = skb->len;
3535 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3536 	trace_net_dev_start_xmit(skb, dev);
3537 	rc = netdev_start_xmit(skb, dev, txq, more);
3538 	trace_net_dev_xmit(skb, rc, dev, len);
3539 
3540 	return rc;
3541 }
3542 
3543 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3544 				    struct netdev_queue *txq, int *ret)
3545 {
3546 	struct sk_buff *skb = first;
3547 	int rc = NETDEV_TX_OK;
3548 
3549 	while (skb) {
3550 		struct sk_buff *next = skb->next;
3551 
3552 		skb_mark_not_on_list(skb);
3553 		rc = xmit_one(skb, dev, txq, next != NULL);
3554 		if (unlikely(!dev_xmit_complete(rc))) {
3555 			skb->next = next;
3556 			goto out;
3557 		}
3558 
3559 		skb = next;
3560 		if (netif_tx_queue_stopped(txq) && skb) {
3561 			rc = NETDEV_TX_BUSY;
3562 			break;
3563 		}
3564 	}
3565 
3566 out:
3567 	*ret = rc;
3568 	return skb;
3569 }
3570 
3571 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3572 					  netdev_features_t features)
3573 {
3574 	if (skb_vlan_tag_present(skb) &&
3575 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3576 		skb = __vlan_hwaccel_push_inside(skb);
3577 	return skb;
3578 }
3579 
3580 int skb_csum_hwoffload_help(struct sk_buff *skb,
3581 			    const netdev_features_t features)
3582 {
3583 	if (unlikely(skb_csum_is_sctp(skb)))
3584 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3585 			skb_crc32c_csum_help(skb);
3586 
3587 	if (features & NETIF_F_HW_CSUM)
3588 		return 0;
3589 
3590 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3591 		switch (skb->csum_offset) {
3592 		case offsetof(struct tcphdr, check):
3593 		case offsetof(struct udphdr, check):
3594 			return 0;
3595 		}
3596 	}
3597 
3598 	return skb_checksum_help(skb);
3599 }
3600 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3601 
3602 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3603 {
3604 	netdev_features_t features;
3605 
3606 	features = netif_skb_features(skb);
3607 	skb = validate_xmit_vlan(skb, features);
3608 	if (unlikely(!skb))
3609 		goto out_null;
3610 
3611 	skb = sk_validate_xmit_skb(skb, dev);
3612 	if (unlikely(!skb))
3613 		goto out_null;
3614 
3615 	if (netif_needs_gso(skb, features)) {
3616 		struct sk_buff *segs;
3617 
3618 		segs = skb_gso_segment(skb, features);
3619 		if (IS_ERR(segs)) {
3620 			goto out_kfree_skb;
3621 		} else if (segs) {
3622 			consume_skb(skb);
3623 			skb = segs;
3624 		}
3625 	} else {
3626 		if (skb_needs_linearize(skb, features) &&
3627 		    __skb_linearize(skb))
3628 			goto out_kfree_skb;
3629 
3630 		/* If packet is not checksummed and device does not
3631 		 * support checksumming for this protocol, complete
3632 		 * checksumming here.
3633 		 */
3634 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3635 			if (skb->encapsulation)
3636 				skb_set_inner_transport_header(skb,
3637 							       skb_checksum_start_offset(skb));
3638 			else
3639 				skb_set_transport_header(skb,
3640 							 skb_checksum_start_offset(skb));
3641 			if (skb_csum_hwoffload_help(skb, features))
3642 				goto out_kfree_skb;
3643 		}
3644 	}
3645 
3646 	skb = validate_xmit_xfrm(skb, features, again);
3647 
3648 	return skb;
3649 
3650 out_kfree_skb:
3651 	kfree_skb(skb);
3652 out_null:
3653 	dev_core_stats_tx_dropped_inc(dev);
3654 	return NULL;
3655 }
3656 
3657 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3658 {
3659 	struct sk_buff *next, *head = NULL, *tail;
3660 
3661 	for (; skb != NULL; skb = next) {
3662 		next = skb->next;
3663 		skb_mark_not_on_list(skb);
3664 
3665 		/* in case skb wont be segmented, point to itself */
3666 		skb->prev = skb;
3667 
3668 		skb = validate_xmit_skb(skb, dev, again);
3669 		if (!skb)
3670 			continue;
3671 
3672 		if (!head)
3673 			head = skb;
3674 		else
3675 			tail->next = skb;
3676 		/* If skb was segmented, skb->prev points to
3677 		 * the last segment. If not, it still contains skb.
3678 		 */
3679 		tail = skb->prev;
3680 	}
3681 	return head;
3682 }
3683 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3684 
3685 static void qdisc_pkt_len_init(struct sk_buff *skb)
3686 {
3687 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3688 
3689 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3690 
3691 	/* To get more precise estimation of bytes sent on wire,
3692 	 * we add to pkt_len the headers size of all segments
3693 	 */
3694 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3695 		unsigned int hdr_len;
3696 		u16 gso_segs = shinfo->gso_segs;
3697 
3698 		/* mac layer + network layer */
3699 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3700 
3701 		/* + transport layer */
3702 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3703 			const struct tcphdr *th;
3704 			struct tcphdr _tcphdr;
3705 
3706 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3707 						sizeof(_tcphdr), &_tcphdr);
3708 			if (likely(th))
3709 				hdr_len += __tcp_hdrlen(th);
3710 		} else {
3711 			struct udphdr _udphdr;
3712 
3713 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3714 					       sizeof(_udphdr), &_udphdr))
3715 				hdr_len += sizeof(struct udphdr);
3716 		}
3717 
3718 		if (shinfo->gso_type & SKB_GSO_DODGY)
3719 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3720 						shinfo->gso_size);
3721 
3722 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3723 	}
3724 }
3725 
3726 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3727 			     struct sk_buff **to_free,
3728 			     struct netdev_queue *txq)
3729 {
3730 	int rc;
3731 
3732 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3733 	if (rc == NET_XMIT_SUCCESS)
3734 		trace_qdisc_enqueue(q, txq, skb);
3735 	return rc;
3736 }
3737 
3738 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3739 				 struct net_device *dev,
3740 				 struct netdev_queue *txq)
3741 {
3742 	spinlock_t *root_lock = qdisc_lock(q);
3743 	struct sk_buff *to_free = NULL;
3744 	bool contended;
3745 	int rc;
3746 
3747 	qdisc_calculate_pkt_len(skb, q);
3748 
3749 	if (q->flags & TCQ_F_NOLOCK) {
3750 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3751 		    qdisc_run_begin(q)) {
3752 			/* Retest nolock_qdisc_is_empty() within the protection
3753 			 * of q->seqlock to protect from racing with requeuing.
3754 			 */
3755 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3756 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3757 				__qdisc_run(q);
3758 				qdisc_run_end(q);
3759 
3760 				goto no_lock_out;
3761 			}
3762 
3763 			qdisc_bstats_cpu_update(q, skb);
3764 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3765 			    !nolock_qdisc_is_empty(q))
3766 				__qdisc_run(q);
3767 
3768 			qdisc_run_end(q);
3769 			return NET_XMIT_SUCCESS;
3770 		}
3771 
3772 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3773 		qdisc_run(q);
3774 
3775 no_lock_out:
3776 		if (unlikely(to_free))
3777 			kfree_skb_list_reason(to_free,
3778 					      SKB_DROP_REASON_QDISC_DROP);
3779 		return rc;
3780 	}
3781 
3782 	/*
3783 	 * Heuristic to force contended enqueues to serialize on a
3784 	 * separate lock before trying to get qdisc main lock.
3785 	 * This permits qdisc->running owner to get the lock more
3786 	 * often and dequeue packets faster.
3787 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3788 	 * and then other tasks will only enqueue packets. The packets will be
3789 	 * sent after the qdisc owner is scheduled again. To prevent this
3790 	 * scenario the task always serialize on the lock.
3791 	 */
3792 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3793 	if (unlikely(contended))
3794 		spin_lock(&q->busylock);
3795 
3796 	spin_lock(root_lock);
3797 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3798 		__qdisc_drop(skb, &to_free);
3799 		rc = NET_XMIT_DROP;
3800 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3801 		   qdisc_run_begin(q)) {
3802 		/*
3803 		 * This is a work-conserving queue; there are no old skbs
3804 		 * waiting to be sent out; and the qdisc is not running -
3805 		 * xmit the skb directly.
3806 		 */
3807 
3808 		qdisc_bstats_update(q, skb);
3809 
3810 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3811 			if (unlikely(contended)) {
3812 				spin_unlock(&q->busylock);
3813 				contended = false;
3814 			}
3815 			__qdisc_run(q);
3816 		}
3817 
3818 		qdisc_run_end(q);
3819 		rc = NET_XMIT_SUCCESS;
3820 	} else {
3821 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3822 		if (qdisc_run_begin(q)) {
3823 			if (unlikely(contended)) {
3824 				spin_unlock(&q->busylock);
3825 				contended = false;
3826 			}
3827 			__qdisc_run(q);
3828 			qdisc_run_end(q);
3829 		}
3830 	}
3831 	spin_unlock(root_lock);
3832 	if (unlikely(to_free))
3833 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3834 	if (unlikely(contended))
3835 		spin_unlock(&q->busylock);
3836 	return rc;
3837 }
3838 
3839 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3840 static void skb_update_prio(struct sk_buff *skb)
3841 {
3842 	const struct netprio_map *map;
3843 	const struct sock *sk;
3844 	unsigned int prioidx;
3845 
3846 	if (skb->priority)
3847 		return;
3848 	map = rcu_dereference_bh(skb->dev->priomap);
3849 	if (!map)
3850 		return;
3851 	sk = skb_to_full_sk(skb);
3852 	if (!sk)
3853 		return;
3854 
3855 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3856 
3857 	if (prioidx < map->priomap_len)
3858 		skb->priority = map->priomap[prioidx];
3859 }
3860 #else
3861 #define skb_update_prio(skb)
3862 #endif
3863 
3864 /**
3865  *	dev_loopback_xmit - loop back @skb
3866  *	@net: network namespace this loopback is happening in
3867  *	@sk:  sk needed to be a netfilter okfn
3868  *	@skb: buffer to transmit
3869  */
3870 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3871 {
3872 	skb_reset_mac_header(skb);
3873 	__skb_pull(skb, skb_network_offset(skb));
3874 	skb->pkt_type = PACKET_LOOPBACK;
3875 	if (skb->ip_summed == CHECKSUM_NONE)
3876 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3877 	WARN_ON(!skb_dst(skb));
3878 	skb_dst_force(skb);
3879 	netif_rx(skb);
3880 	return 0;
3881 }
3882 EXPORT_SYMBOL(dev_loopback_xmit);
3883 
3884 #ifdef CONFIG_NET_EGRESS
3885 static struct sk_buff *
3886 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3887 {
3888 #ifdef CONFIG_NET_CLS_ACT
3889 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3890 	struct tcf_result cl_res;
3891 
3892 	if (!miniq)
3893 		return skb;
3894 
3895 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3896 	tc_skb_cb(skb)->mru = 0;
3897 	tc_skb_cb(skb)->post_ct = false;
3898 	mini_qdisc_bstats_cpu_update(miniq, skb);
3899 
3900 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3901 	case TC_ACT_OK:
3902 	case TC_ACT_RECLASSIFY:
3903 		skb->tc_index = TC_H_MIN(cl_res.classid);
3904 		break;
3905 	case TC_ACT_SHOT:
3906 		mini_qdisc_qstats_cpu_drop(miniq);
3907 		*ret = NET_XMIT_DROP;
3908 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3909 		return NULL;
3910 	case TC_ACT_STOLEN:
3911 	case TC_ACT_QUEUED:
3912 	case TC_ACT_TRAP:
3913 		*ret = NET_XMIT_SUCCESS;
3914 		consume_skb(skb);
3915 		return NULL;
3916 	case TC_ACT_REDIRECT:
3917 		/* No need to push/pop skb's mac_header here on egress! */
3918 		skb_do_redirect(skb);
3919 		*ret = NET_XMIT_SUCCESS;
3920 		return NULL;
3921 	default:
3922 		break;
3923 	}
3924 #endif /* CONFIG_NET_CLS_ACT */
3925 
3926 	return skb;
3927 }
3928 #endif /* CONFIG_NET_EGRESS */
3929 
3930 #ifdef CONFIG_XPS
3931 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3932 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3933 {
3934 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3935 	struct xps_map *map;
3936 	int queue_index = -1;
3937 
3938 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3939 		return queue_index;
3940 
3941 	tci *= dev_maps->num_tc;
3942 	tci += tc;
3943 
3944 	map = rcu_dereference(dev_maps->attr_map[tci]);
3945 	if (map) {
3946 		if (map->len == 1)
3947 			queue_index = map->queues[0];
3948 		else
3949 			queue_index = map->queues[reciprocal_scale(
3950 						skb_get_hash(skb), map->len)];
3951 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3952 			queue_index = -1;
3953 	}
3954 	return queue_index;
3955 }
3956 #endif
3957 
3958 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3959 			 struct sk_buff *skb)
3960 {
3961 #ifdef CONFIG_XPS
3962 	struct xps_dev_maps *dev_maps;
3963 	struct sock *sk = skb->sk;
3964 	int queue_index = -1;
3965 
3966 	if (!static_key_false(&xps_needed))
3967 		return -1;
3968 
3969 	rcu_read_lock();
3970 	if (!static_key_false(&xps_rxqs_needed))
3971 		goto get_cpus_map;
3972 
3973 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3974 	if (dev_maps) {
3975 		int tci = sk_rx_queue_get(sk);
3976 
3977 		if (tci >= 0)
3978 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3979 							  tci);
3980 	}
3981 
3982 get_cpus_map:
3983 	if (queue_index < 0) {
3984 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3985 		if (dev_maps) {
3986 			unsigned int tci = skb->sender_cpu - 1;
3987 
3988 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3989 							  tci);
3990 		}
3991 	}
3992 	rcu_read_unlock();
3993 
3994 	return queue_index;
3995 #else
3996 	return -1;
3997 #endif
3998 }
3999 
4000 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4001 		     struct net_device *sb_dev)
4002 {
4003 	return 0;
4004 }
4005 EXPORT_SYMBOL(dev_pick_tx_zero);
4006 
4007 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4008 		       struct net_device *sb_dev)
4009 {
4010 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4011 }
4012 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4013 
4014 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4015 		     struct net_device *sb_dev)
4016 {
4017 	struct sock *sk = skb->sk;
4018 	int queue_index = sk_tx_queue_get(sk);
4019 
4020 	sb_dev = sb_dev ? : dev;
4021 
4022 	if (queue_index < 0 || skb->ooo_okay ||
4023 	    queue_index >= dev->real_num_tx_queues) {
4024 		int new_index = get_xps_queue(dev, sb_dev, skb);
4025 
4026 		if (new_index < 0)
4027 			new_index = skb_tx_hash(dev, sb_dev, skb);
4028 
4029 		if (queue_index != new_index && sk &&
4030 		    sk_fullsock(sk) &&
4031 		    rcu_access_pointer(sk->sk_dst_cache))
4032 			sk_tx_queue_set(sk, new_index);
4033 
4034 		queue_index = new_index;
4035 	}
4036 
4037 	return queue_index;
4038 }
4039 EXPORT_SYMBOL(netdev_pick_tx);
4040 
4041 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4042 					 struct sk_buff *skb,
4043 					 struct net_device *sb_dev)
4044 {
4045 	int queue_index = 0;
4046 
4047 #ifdef CONFIG_XPS
4048 	u32 sender_cpu = skb->sender_cpu - 1;
4049 
4050 	if (sender_cpu >= (u32)NR_CPUS)
4051 		skb->sender_cpu = raw_smp_processor_id() + 1;
4052 #endif
4053 
4054 	if (dev->real_num_tx_queues != 1) {
4055 		const struct net_device_ops *ops = dev->netdev_ops;
4056 
4057 		if (ops->ndo_select_queue)
4058 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4059 		else
4060 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4061 
4062 		queue_index = netdev_cap_txqueue(dev, queue_index);
4063 	}
4064 
4065 	skb_set_queue_mapping(skb, queue_index);
4066 	return netdev_get_tx_queue(dev, queue_index);
4067 }
4068 
4069 /**
4070  *	__dev_queue_xmit - transmit a buffer
4071  *	@skb: buffer to transmit
4072  *	@sb_dev: suboordinate device used for L2 forwarding offload
4073  *
4074  *	Queue a buffer for transmission to a network device. The caller must
4075  *	have set the device and priority and built the buffer before calling
4076  *	this function. The function can be called from an interrupt.
4077  *
4078  *	A negative errno code is returned on a failure. A success does not
4079  *	guarantee the frame will be transmitted as it may be dropped due
4080  *	to congestion or traffic shaping.
4081  *
4082  * -----------------------------------------------------------------------------------
4083  *      I notice this method can also return errors from the queue disciplines,
4084  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4085  *      be positive.
4086  *
4087  *      Regardless of the return value, the skb is consumed, so it is currently
4088  *      difficult to retry a send to this method.  (You can bump the ref count
4089  *      before sending to hold a reference for retry if you are careful.)
4090  *
4091  *      When calling this method, interrupts MUST be enabled.  This is because
4092  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4093  *          --BLG
4094  */
4095 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4096 {
4097 	struct net_device *dev = skb->dev;
4098 	struct netdev_queue *txq;
4099 	struct Qdisc *q;
4100 	int rc = -ENOMEM;
4101 	bool again = false;
4102 
4103 	skb_reset_mac_header(skb);
4104 
4105 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4106 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4107 
4108 	/* Disable soft irqs for various locks below. Also
4109 	 * stops preemption for RCU.
4110 	 */
4111 	rcu_read_lock_bh();
4112 
4113 	skb_update_prio(skb);
4114 
4115 	qdisc_pkt_len_init(skb);
4116 #ifdef CONFIG_NET_CLS_ACT
4117 	skb->tc_at_ingress = 0;
4118 #endif
4119 #ifdef CONFIG_NET_EGRESS
4120 	if (static_branch_unlikely(&egress_needed_key)) {
4121 		if (nf_hook_egress_active()) {
4122 			skb = nf_hook_egress(skb, &rc, dev);
4123 			if (!skb)
4124 				goto out;
4125 		}
4126 		nf_skip_egress(skb, true);
4127 		skb = sch_handle_egress(skb, &rc, dev);
4128 		if (!skb)
4129 			goto out;
4130 		nf_skip_egress(skb, false);
4131 	}
4132 #endif
4133 	/* If device/qdisc don't need skb->dst, release it right now while
4134 	 * its hot in this cpu cache.
4135 	 */
4136 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4137 		skb_dst_drop(skb);
4138 	else
4139 		skb_dst_force(skb);
4140 
4141 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4142 	q = rcu_dereference_bh(txq->qdisc);
4143 
4144 	trace_net_dev_queue(skb);
4145 	if (q->enqueue) {
4146 		rc = __dev_xmit_skb(skb, q, dev, txq);
4147 		goto out;
4148 	}
4149 
4150 	/* The device has no queue. Common case for software devices:
4151 	 * loopback, all the sorts of tunnels...
4152 
4153 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4154 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4155 	 * counters.)
4156 	 * However, it is possible, that they rely on protection
4157 	 * made by us here.
4158 
4159 	 * Check this and shot the lock. It is not prone from deadlocks.
4160 	 *Either shot noqueue qdisc, it is even simpler 8)
4161 	 */
4162 	if (dev->flags & IFF_UP) {
4163 		int cpu = smp_processor_id(); /* ok because BHs are off */
4164 
4165 		/* Other cpus might concurrently change txq->xmit_lock_owner
4166 		 * to -1 or to their cpu id, but not to our id.
4167 		 */
4168 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4169 			if (dev_xmit_recursion())
4170 				goto recursion_alert;
4171 
4172 			skb = validate_xmit_skb(skb, dev, &again);
4173 			if (!skb)
4174 				goto out;
4175 
4176 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4177 			HARD_TX_LOCK(dev, txq, cpu);
4178 
4179 			if (!netif_xmit_stopped(txq)) {
4180 				dev_xmit_recursion_inc();
4181 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4182 				dev_xmit_recursion_dec();
4183 				if (dev_xmit_complete(rc)) {
4184 					HARD_TX_UNLOCK(dev, txq);
4185 					goto out;
4186 				}
4187 			}
4188 			HARD_TX_UNLOCK(dev, txq);
4189 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4190 					     dev->name);
4191 		} else {
4192 			/* Recursion is detected! It is possible,
4193 			 * unfortunately
4194 			 */
4195 recursion_alert:
4196 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4197 					     dev->name);
4198 		}
4199 	}
4200 
4201 	rc = -ENETDOWN;
4202 	rcu_read_unlock_bh();
4203 
4204 	dev_core_stats_tx_dropped_inc(dev);
4205 	kfree_skb_list(skb);
4206 	return rc;
4207 out:
4208 	rcu_read_unlock_bh();
4209 	return rc;
4210 }
4211 
4212 int dev_queue_xmit(struct sk_buff *skb)
4213 {
4214 	return __dev_queue_xmit(skb, NULL);
4215 }
4216 EXPORT_SYMBOL(dev_queue_xmit);
4217 
4218 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4219 {
4220 	return __dev_queue_xmit(skb, sb_dev);
4221 }
4222 EXPORT_SYMBOL(dev_queue_xmit_accel);
4223 
4224 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4225 {
4226 	struct net_device *dev = skb->dev;
4227 	struct sk_buff *orig_skb = skb;
4228 	struct netdev_queue *txq;
4229 	int ret = NETDEV_TX_BUSY;
4230 	bool again = false;
4231 
4232 	if (unlikely(!netif_running(dev) ||
4233 		     !netif_carrier_ok(dev)))
4234 		goto drop;
4235 
4236 	skb = validate_xmit_skb_list(skb, dev, &again);
4237 	if (skb != orig_skb)
4238 		goto drop;
4239 
4240 	skb_set_queue_mapping(skb, queue_id);
4241 	txq = skb_get_tx_queue(dev, skb);
4242 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4243 
4244 	local_bh_disable();
4245 
4246 	dev_xmit_recursion_inc();
4247 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4248 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4249 		ret = netdev_start_xmit(skb, dev, txq, false);
4250 	HARD_TX_UNLOCK(dev, txq);
4251 	dev_xmit_recursion_dec();
4252 
4253 	local_bh_enable();
4254 	return ret;
4255 drop:
4256 	dev_core_stats_tx_dropped_inc(dev);
4257 	kfree_skb_list(skb);
4258 	return NET_XMIT_DROP;
4259 }
4260 EXPORT_SYMBOL(__dev_direct_xmit);
4261 
4262 /*************************************************************************
4263  *			Receiver routines
4264  *************************************************************************/
4265 
4266 int netdev_max_backlog __read_mostly = 1000;
4267 EXPORT_SYMBOL(netdev_max_backlog);
4268 
4269 int netdev_tstamp_prequeue __read_mostly = 1;
4270 int netdev_budget __read_mostly = 300;
4271 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4272 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4273 int weight_p __read_mostly = 64;           /* old backlog weight */
4274 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4275 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4276 int dev_rx_weight __read_mostly = 64;
4277 int dev_tx_weight __read_mostly = 64;
4278 
4279 /* Called with irq disabled */
4280 static inline void ____napi_schedule(struct softnet_data *sd,
4281 				     struct napi_struct *napi)
4282 {
4283 	struct task_struct *thread;
4284 
4285 	lockdep_assert_irqs_disabled();
4286 
4287 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4288 		/* Paired with smp_mb__before_atomic() in
4289 		 * napi_enable()/dev_set_threaded().
4290 		 * Use READ_ONCE() to guarantee a complete
4291 		 * read on napi->thread. Only call
4292 		 * wake_up_process() when it's not NULL.
4293 		 */
4294 		thread = READ_ONCE(napi->thread);
4295 		if (thread) {
4296 			/* Avoid doing set_bit() if the thread is in
4297 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4298 			 * makes sure to proceed with napi polling
4299 			 * if the thread is explicitly woken from here.
4300 			 */
4301 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4302 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4303 			wake_up_process(thread);
4304 			return;
4305 		}
4306 	}
4307 
4308 	list_add_tail(&napi->poll_list, &sd->poll_list);
4309 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4310 }
4311 
4312 #ifdef CONFIG_RPS
4313 
4314 /* One global table that all flow-based protocols share. */
4315 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4316 EXPORT_SYMBOL(rps_sock_flow_table);
4317 u32 rps_cpu_mask __read_mostly;
4318 EXPORT_SYMBOL(rps_cpu_mask);
4319 
4320 struct static_key_false rps_needed __read_mostly;
4321 EXPORT_SYMBOL(rps_needed);
4322 struct static_key_false rfs_needed __read_mostly;
4323 EXPORT_SYMBOL(rfs_needed);
4324 
4325 static struct rps_dev_flow *
4326 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4327 	    struct rps_dev_flow *rflow, u16 next_cpu)
4328 {
4329 	if (next_cpu < nr_cpu_ids) {
4330 #ifdef CONFIG_RFS_ACCEL
4331 		struct netdev_rx_queue *rxqueue;
4332 		struct rps_dev_flow_table *flow_table;
4333 		struct rps_dev_flow *old_rflow;
4334 		u32 flow_id;
4335 		u16 rxq_index;
4336 		int rc;
4337 
4338 		/* Should we steer this flow to a different hardware queue? */
4339 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4340 		    !(dev->features & NETIF_F_NTUPLE))
4341 			goto out;
4342 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4343 		if (rxq_index == skb_get_rx_queue(skb))
4344 			goto out;
4345 
4346 		rxqueue = dev->_rx + rxq_index;
4347 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4348 		if (!flow_table)
4349 			goto out;
4350 		flow_id = skb_get_hash(skb) & flow_table->mask;
4351 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4352 							rxq_index, flow_id);
4353 		if (rc < 0)
4354 			goto out;
4355 		old_rflow = rflow;
4356 		rflow = &flow_table->flows[flow_id];
4357 		rflow->filter = rc;
4358 		if (old_rflow->filter == rflow->filter)
4359 			old_rflow->filter = RPS_NO_FILTER;
4360 	out:
4361 #endif
4362 		rflow->last_qtail =
4363 			per_cpu(softnet_data, next_cpu).input_queue_head;
4364 	}
4365 
4366 	rflow->cpu = next_cpu;
4367 	return rflow;
4368 }
4369 
4370 /*
4371  * get_rps_cpu is called from netif_receive_skb and returns the target
4372  * CPU from the RPS map of the receiving queue for a given skb.
4373  * rcu_read_lock must be held on entry.
4374  */
4375 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4376 		       struct rps_dev_flow **rflowp)
4377 {
4378 	const struct rps_sock_flow_table *sock_flow_table;
4379 	struct netdev_rx_queue *rxqueue = dev->_rx;
4380 	struct rps_dev_flow_table *flow_table;
4381 	struct rps_map *map;
4382 	int cpu = -1;
4383 	u32 tcpu;
4384 	u32 hash;
4385 
4386 	if (skb_rx_queue_recorded(skb)) {
4387 		u16 index = skb_get_rx_queue(skb);
4388 
4389 		if (unlikely(index >= dev->real_num_rx_queues)) {
4390 			WARN_ONCE(dev->real_num_rx_queues > 1,
4391 				  "%s received packet on queue %u, but number "
4392 				  "of RX queues is %u\n",
4393 				  dev->name, index, dev->real_num_rx_queues);
4394 			goto done;
4395 		}
4396 		rxqueue += index;
4397 	}
4398 
4399 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4400 
4401 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4402 	map = rcu_dereference(rxqueue->rps_map);
4403 	if (!flow_table && !map)
4404 		goto done;
4405 
4406 	skb_reset_network_header(skb);
4407 	hash = skb_get_hash(skb);
4408 	if (!hash)
4409 		goto done;
4410 
4411 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4412 	if (flow_table && sock_flow_table) {
4413 		struct rps_dev_flow *rflow;
4414 		u32 next_cpu;
4415 		u32 ident;
4416 
4417 		/* First check into global flow table if there is a match */
4418 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4419 		if ((ident ^ hash) & ~rps_cpu_mask)
4420 			goto try_rps;
4421 
4422 		next_cpu = ident & rps_cpu_mask;
4423 
4424 		/* OK, now we know there is a match,
4425 		 * we can look at the local (per receive queue) flow table
4426 		 */
4427 		rflow = &flow_table->flows[hash & flow_table->mask];
4428 		tcpu = rflow->cpu;
4429 
4430 		/*
4431 		 * If the desired CPU (where last recvmsg was done) is
4432 		 * different from current CPU (one in the rx-queue flow
4433 		 * table entry), switch if one of the following holds:
4434 		 *   - Current CPU is unset (>= nr_cpu_ids).
4435 		 *   - Current CPU is offline.
4436 		 *   - The current CPU's queue tail has advanced beyond the
4437 		 *     last packet that was enqueued using this table entry.
4438 		 *     This guarantees that all previous packets for the flow
4439 		 *     have been dequeued, thus preserving in order delivery.
4440 		 */
4441 		if (unlikely(tcpu != next_cpu) &&
4442 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4443 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4444 		      rflow->last_qtail)) >= 0)) {
4445 			tcpu = next_cpu;
4446 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4447 		}
4448 
4449 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4450 			*rflowp = rflow;
4451 			cpu = tcpu;
4452 			goto done;
4453 		}
4454 	}
4455 
4456 try_rps:
4457 
4458 	if (map) {
4459 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4460 		if (cpu_online(tcpu)) {
4461 			cpu = tcpu;
4462 			goto done;
4463 		}
4464 	}
4465 
4466 done:
4467 	return cpu;
4468 }
4469 
4470 #ifdef CONFIG_RFS_ACCEL
4471 
4472 /**
4473  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4474  * @dev: Device on which the filter was set
4475  * @rxq_index: RX queue index
4476  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4477  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4478  *
4479  * Drivers that implement ndo_rx_flow_steer() should periodically call
4480  * this function for each installed filter and remove the filters for
4481  * which it returns %true.
4482  */
4483 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4484 			 u32 flow_id, u16 filter_id)
4485 {
4486 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4487 	struct rps_dev_flow_table *flow_table;
4488 	struct rps_dev_flow *rflow;
4489 	bool expire = true;
4490 	unsigned int cpu;
4491 
4492 	rcu_read_lock();
4493 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4494 	if (flow_table && flow_id <= flow_table->mask) {
4495 		rflow = &flow_table->flows[flow_id];
4496 		cpu = READ_ONCE(rflow->cpu);
4497 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4498 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4499 			   rflow->last_qtail) <
4500 		     (int)(10 * flow_table->mask)))
4501 			expire = false;
4502 	}
4503 	rcu_read_unlock();
4504 	return expire;
4505 }
4506 EXPORT_SYMBOL(rps_may_expire_flow);
4507 
4508 #endif /* CONFIG_RFS_ACCEL */
4509 
4510 /* Called from hardirq (IPI) context */
4511 static void rps_trigger_softirq(void *data)
4512 {
4513 	struct softnet_data *sd = data;
4514 
4515 	____napi_schedule(sd, &sd->backlog);
4516 	sd->received_rps++;
4517 }
4518 
4519 #endif /* CONFIG_RPS */
4520 
4521 /*
4522  * Check if this softnet_data structure is another cpu one
4523  * If yes, queue it to our IPI list and return 1
4524  * If no, return 0
4525  */
4526 static int napi_schedule_rps(struct softnet_data *sd)
4527 {
4528 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4529 
4530 #ifdef CONFIG_RPS
4531 	if (sd != mysd) {
4532 		sd->rps_ipi_next = mysd->rps_ipi_list;
4533 		mysd->rps_ipi_list = sd;
4534 
4535 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4536 		return 1;
4537 	}
4538 #endif /* CONFIG_RPS */
4539 	__napi_schedule_irqoff(&mysd->backlog);
4540 	return 0;
4541 }
4542 
4543 #ifdef CONFIG_NET_FLOW_LIMIT
4544 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4545 #endif
4546 
4547 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4548 {
4549 #ifdef CONFIG_NET_FLOW_LIMIT
4550 	struct sd_flow_limit *fl;
4551 	struct softnet_data *sd;
4552 	unsigned int old_flow, new_flow;
4553 
4554 	if (qlen < (netdev_max_backlog >> 1))
4555 		return false;
4556 
4557 	sd = this_cpu_ptr(&softnet_data);
4558 
4559 	rcu_read_lock();
4560 	fl = rcu_dereference(sd->flow_limit);
4561 	if (fl) {
4562 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4563 		old_flow = fl->history[fl->history_head];
4564 		fl->history[fl->history_head] = new_flow;
4565 
4566 		fl->history_head++;
4567 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4568 
4569 		if (likely(fl->buckets[old_flow]))
4570 			fl->buckets[old_flow]--;
4571 
4572 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4573 			fl->count++;
4574 			rcu_read_unlock();
4575 			return true;
4576 		}
4577 	}
4578 	rcu_read_unlock();
4579 #endif
4580 	return false;
4581 }
4582 
4583 /*
4584  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4585  * queue (may be a remote CPU queue).
4586  */
4587 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4588 			      unsigned int *qtail)
4589 {
4590 	enum skb_drop_reason reason;
4591 	struct softnet_data *sd;
4592 	unsigned long flags;
4593 	unsigned int qlen;
4594 
4595 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4596 	sd = &per_cpu(softnet_data, cpu);
4597 
4598 	rps_lock_irqsave(sd, &flags);
4599 	if (!netif_running(skb->dev))
4600 		goto drop;
4601 	qlen = skb_queue_len(&sd->input_pkt_queue);
4602 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4603 		if (qlen) {
4604 enqueue:
4605 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4606 			input_queue_tail_incr_save(sd, qtail);
4607 			rps_unlock_irq_restore(sd, &flags);
4608 			return NET_RX_SUCCESS;
4609 		}
4610 
4611 		/* Schedule NAPI for backlog device
4612 		 * We can use non atomic operation since we own the queue lock
4613 		 */
4614 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4615 			napi_schedule_rps(sd);
4616 		goto enqueue;
4617 	}
4618 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4619 
4620 drop:
4621 	sd->dropped++;
4622 	rps_unlock_irq_restore(sd, &flags);
4623 
4624 	dev_core_stats_rx_dropped_inc(skb->dev);
4625 	kfree_skb_reason(skb, reason);
4626 	return NET_RX_DROP;
4627 }
4628 
4629 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4630 {
4631 	struct net_device *dev = skb->dev;
4632 	struct netdev_rx_queue *rxqueue;
4633 
4634 	rxqueue = dev->_rx;
4635 
4636 	if (skb_rx_queue_recorded(skb)) {
4637 		u16 index = skb_get_rx_queue(skb);
4638 
4639 		if (unlikely(index >= dev->real_num_rx_queues)) {
4640 			WARN_ONCE(dev->real_num_rx_queues > 1,
4641 				  "%s received packet on queue %u, but number "
4642 				  "of RX queues is %u\n",
4643 				  dev->name, index, dev->real_num_rx_queues);
4644 
4645 			return rxqueue; /* Return first rxqueue */
4646 		}
4647 		rxqueue += index;
4648 	}
4649 	return rxqueue;
4650 }
4651 
4652 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4653 			     struct bpf_prog *xdp_prog)
4654 {
4655 	void *orig_data, *orig_data_end, *hard_start;
4656 	struct netdev_rx_queue *rxqueue;
4657 	bool orig_bcast, orig_host;
4658 	u32 mac_len, frame_sz;
4659 	__be16 orig_eth_type;
4660 	struct ethhdr *eth;
4661 	u32 metalen, act;
4662 	int off;
4663 
4664 	/* The XDP program wants to see the packet starting at the MAC
4665 	 * header.
4666 	 */
4667 	mac_len = skb->data - skb_mac_header(skb);
4668 	hard_start = skb->data - skb_headroom(skb);
4669 
4670 	/* SKB "head" area always have tailroom for skb_shared_info */
4671 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4672 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4673 
4674 	rxqueue = netif_get_rxqueue(skb);
4675 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4676 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4677 			 skb_headlen(skb) + mac_len, true);
4678 
4679 	orig_data_end = xdp->data_end;
4680 	orig_data = xdp->data;
4681 	eth = (struct ethhdr *)xdp->data;
4682 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4683 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4684 	orig_eth_type = eth->h_proto;
4685 
4686 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4687 
4688 	/* check if bpf_xdp_adjust_head was used */
4689 	off = xdp->data - orig_data;
4690 	if (off) {
4691 		if (off > 0)
4692 			__skb_pull(skb, off);
4693 		else if (off < 0)
4694 			__skb_push(skb, -off);
4695 
4696 		skb->mac_header += off;
4697 		skb_reset_network_header(skb);
4698 	}
4699 
4700 	/* check if bpf_xdp_adjust_tail was used */
4701 	off = xdp->data_end - orig_data_end;
4702 	if (off != 0) {
4703 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4704 		skb->len += off; /* positive on grow, negative on shrink */
4705 	}
4706 
4707 	/* check if XDP changed eth hdr such SKB needs update */
4708 	eth = (struct ethhdr *)xdp->data;
4709 	if ((orig_eth_type != eth->h_proto) ||
4710 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4711 						  skb->dev->dev_addr)) ||
4712 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4713 		__skb_push(skb, ETH_HLEN);
4714 		skb->pkt_type = PACKET_HOST;
4715 		skb->protocol = eth_type_trans(skb, skb->dev);
4716 	}
4717 
4718 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4719 	 * before calling us again on redirect path. We do not call do_redirect
4720 	 * as we leave that up to the caller.
4721 	 *
4722 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4723 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4724 	 */
4725 	switch (act) {
4726 	case XDP_REDIRECT:
4727 	case XDP_TX:
4728 		__skb_push(skb, mac_len);
4729 		break;
4730 	case XDP_PASS:
4731 		metalen = xdp->data - xdp->data_meta;
4732 		if (metalen)
4733 			skb_metadata_set(skb, metalen);
4734 		break;
4735 	}
4736 
4737 	return act;
4738 }
4739 
4740 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4741 				     struct xdp_buff *xdp,
4742 				     struct bpf_prog *xdp_prog)
4743 {
4744 	u32 act = XDP_DROP;
4745 
4746 	/* Reinjected packets coming from act_mirred or similar should
4747 	 * not get XDP generic processing.
4748 	 */
4749 	if (skb_is_redirected(skb))
4750 		return XDP_PASS;
4751 
4752 	/* XDP packets must be linear and must have sufficient headroom
4753 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4754 	 * native XDP provides, thus we need to do it here as well.
4755 	 */
4756 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4757 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4758 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4759 		int troom = skb->tail + skb->data_len - skb->end;
4760 
4761 		/* In case we have to go down the path and also linearize,
4762 		 * then lets do the pskb_expand_head() work just once here.
4763 		 */
4764 		if (pskb_expand_head(skb,
4765 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4766 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4767 			goto do_drop;
4768 		if (skb_linearize(skb))
4769 			goto do_drop;
4770 	}
4771 
4772 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4773 	switch (act) {
4774 	case XDP_REDIRECT:
4775 	case XDP_TX:
4776 	case XDP_PASS:
4777 		break;
4778 	default:
4779 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4780 		fallthrough;
4781 	case XDP_ABORTED:
4782 		trace_xdp_exception(skb->dev, xdp_prog, act);
4783 		fallthrough;
4784 	case XDP_DROP:
4785 	do_drop:
4786 		kfree_skb(skb);
4787 		break;
4788 	}
4789 
4790 	return act;
4791 }
4792 
4793 /* When doing generic XDP we have to bypass the qdisc layer and the
4794  * network taps in order to match in-driver-XDP behavior.
4795  */
4796 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4797 {
4798 	struct net_device *dev = skb->dev;
4799 	struct netdev_queue *txq;
4800 	bool free_skb = true;
4801 	int cpu, rc;
4802 
4803 	txq = netdev_core_pick_tx(dev, skb, NULL);
4804 	cpu = smp_processor_id();
4805 	HARD_TX_LOCK(dev, txq, cpu);
4806 	if (!netif_xmit_stopped(txq)) {
4807 		rc = netdev_start_xmit(skb, dev, txq, 0);
4808 		if (dev_xmit_complete(rc))
4809 			free_skb = false;
4810 	}
4811 	HARD_TX_UNLOCK(dev, txq);
4812 	if (free_skb) {
4813 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4814 		kfree_skb(skb);
4815 	}
4816 }
4817 
4818 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4819 
4820 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4821 {
4822 	if (xdp_prog) {
4823 		struct xdp_buff xdp;
4824 		u32 act;
4825 		int err;
4826 
4827 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4828 		if (act != XDP_PASS) {
4829 			switch (act) {
4830 			case XDP_REDIRECT:
4831 				err = xdp_do_generic_redirect(skb->dev, skb,
4832 							      &xdp, xdp_prog);
4833 				if (err)
4834 					goto out_redir;
4835 				break;
4836 			case XDP_TX:
4837 				generic_xdp_tx(skb, xdp_prog);
4838 				break;
4839 			}
4840 			return XDP_DROP;
4841 		}
4842 	}
4843 	return XDP_PASS;
4844 out_redir:
4845 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4846 	return XDP_DROP;
4847 }
4848 EXPORT_SYMBOL_GPL(do_xdp_generic);
4849 
4850 static int netif_rx_internal(struct sk_buff *skb)
4851 {
4852 	int ret;
4853 
4854 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4855 
4856 	trace_netif_rx(skb);
4857 
4858 #ifdef CONFIG_RPS
4859 	if (static_branch_unlikely(&rps_needed)) {
4860 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4861 		int cpu;
4862 
4863 		rcu_read_lock();
4864 
4865 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4866 		if (cpu < 0)
4867 			cpu = smp_processor_id();
4868 
4869 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4870 
4871 		rcu_read_unlock();
4872 	} else
4873 #endif
4874 	{
4875 		unsigned int qtail;
4876 
4877 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4878 	}
4879 	return ret;
4880 }
4881 
4882 /**
4883  *	__netif_rx	-	Slightly optimized version of netif_rx
4884  *	@skb: buffer to post
4885  *
4886  *	This behaves as netif_rx except that it does not disable bottom halves.
4887  *	As a result this function may only be invoked from the interrupt context
4888  *	(either hard or soft interrupt).
4889  */
4890 int __netif_rx(struct sk_buff *skb)
4891 {
4892 	int ret;
4893 
4894 	lockdep_assert_once(hardirq_count() | softirq_count());
4895 
4896 	trace_netif_rx_entry(skb);
4897 	ret = netif_rx_internal(skb);
4898 	trace_netif_rx_exit(ret);
4899 	return ret;
4900 }
4901 EXPORT_SYMBOL(__netif_rx);
4902 
4903 /**
4904  *	netif_rx	-	post buffer to the network code
4905  *	@skb: buffer to post
4906  *
4907  *	This function receives a packet from a device driver and queues it for
4908  *	the upper (protocol) levels to process via the backlog NAPI device. It
4909  *	always succeeds. The buffer may be dropped during processing for
4910  *	congestion control or by the protocol layers.
4911  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4912  *	driver should use NAPI and GRO.
4913  *	This function can used from interrupt and from process context. The
4914  *	caller from process context must not disable interrupts before invoking
4915  *	this function.
4916  *
4917  *	return values:
4918  *	NET_RX_SUCCESS	(no congestion)
4919  *	NET_RX_DROP     (packet was dropped)
4920  *
4921  */
4922 int netif_rx(struct sk_buff *skb)
4923 {
4924 	bool need_bh_off = !(hardirq_count() | softirq_count());
4925 	int ret;
4926 
4927 	if (need_bh_off)
4928 		local_bh_disable();
4929 	trace_netif_rx_entry(skb);
4930 	ret = netif_rx_internal(skb);
4931 	trace_netif_rx_exit(ret);
4932 	if (need_bh_off)
4933 		local_bh_enable();
4934 	return ret;
4935 }
4936 EXPORT_SYMBOL(netif_rx);
4937 
4938 static __latent_entropy void net_tx_action(struct softirq_action *h)
4939 {
4940 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4941 
4942 	if (sd->completion_queue) {
4943 		struct sk_buff *clist;
4944 
4945 		local_irq_disable();
4946 		clist = sd->completion_queue;
4947 		sd->completion_queue = NULL;
4948 		local_irq_enable();
4949 
4950 		while (clist) {
4951 			struct sk_buff *skb = clist;
4952 
4953 			clist = clist->next;
4954 
4955 			WARN_ON(refcount_read(&skb->users));
4956 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4957 				trace_consume_skb(skb);
4958 			else
4959 				trace_kfree_skb(skb, net_tx_action,
4960 						SKB_DROP_REASON_NOT_SPECIFIED);
4961 
4962 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4963 				__kfree_skb(skb);
4964 			else
4965 				__kfree_skb_defer(skb);
4966 		}
4967 	}
4968 
4969 	if (sd->output_queue) {
4970 		struct Qdisc *head;
4971 
4972 		local_irq_disable();
4973 		head = sd->output_queue;
4974 		sd->output_queue = NULL;
4975 		sd->output_queue_tailp = &sd->output_queue;
4976 		local_irq_enable();
4977 
4978 		rcu_read_lock();
4979 
4980 		while (head) {
4981 			struct Qdisc *q = head;
4982 			spinlock_t *root_lock = NULL;
4983 
4984 			head = head->next_sched;
4985 
4986 			/* We need to make sure head->next_sched is read
4987 			 * before clearing __QDISC_STATE_SCHED
4988 			 */
4989 			smp_mb__before_atomic();
4990 
4991 			if (!(q->flags & TCQ_F_NOLOCK)) {
4992 				root_lock = qdisc_lock(q);
4993 				spin_lock(root_lock);
4994 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4995 						     &q->state))) {
4996 				/* There is a synchronize_net() between
4997 				 * STATE_DEACTIVATED flag being set and
4998 				 * qdisc_reset()/some_qdisc_is_busy() in
4999 				 * dev_deactivate(), so we can safely bail out
5000 				 * early here to avoid data race between
5001 				 * qdisc_deactivate() and some_qdisc_is_busy()
5002 				 * for lockless qdisc.
5003 				 */
5004 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5005 				continue;
5006 			}
5007 
5008 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5009 			qdisc_run(q);
5010 			if (root_lock)
5011 				spin_unlock(root_lock);
5012 		}
5013 
5014 		rcu_read_unlock();
5015 	}
5016 
5017 	xfrm_dev_backlog(sd);
5018 }
5019 
5020 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5021 /* This hook is defined here for ATM LANE */
5022 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5023 			     unsigned char *addr) __read_mostly;
5024 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5025 #endif
5026 
5027 static inline struct sk_buff *
5028 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5029 		   struct net_device *orig_dev, bool *another)
5030 {
5031 #ifdef CONFIG_NET_CLS_ACT
5032 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5033 	struct tcf_result cl_res;
5034 
5035 	/* If there's at least one ingress present somewhere (so
5036 	 * we get here via enabled static key), remaining devices
5037 	 * that are not configured with an ingress qdisc will bail
5038 	 * out here.
5039 	 */
5040 	if (!miniq)
5041 		return skb;
5042 
5043 	if (*pt_prev) {
5044 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5045 		*pt_prev = NULL;
5046 	}
5047 
5048 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5049 	tc_skb_cb(skb)->mru = 0;
5050 	tc_skb_cb(skb)->post_ct = false;
5051 	skb->tc_at_ingress = 1;
5052 	mini_qdisc_bstats_cpu_update(miniq, skb);
5053 
5054 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5055 	case TC_ACT_OK:
5056 	case TC_ACT_RECLASSIFY:
5057 		skb->tc_index = TC_H_MIN(cl_res.classid);
5058 		break;
5059 	case TC_ACT_SHOT:
5060 		mini_qdisc_qstats_cpu_drop(miniq);
5061 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5062 		return NULL;
5063 	case TC_ACT_STOLEN:
5064 	case TC_ACT_QUEUED:
5065 	case TC_ACT_TRAP:
5066 		consume_skb(skb);
5067 		return NULL;
5068 	case TC_ACT_REDIRECT:
5069 		/* skb_mac_header check was done by cls/act_bpf, so
5070 		 * we can safely push the L2 header back before
5071 		 * redirecting to another netdev
5072 		 */
5073 		__skb_push(skb, skb->mac_len);
5074 		if (skb_do_redirect(skb) == -EAGAIN) {
5075 			__skb_pull(skb, skb->mac_len);
5076 			*another = true;
5077 			break;
5078 		}
5079 		return NULL;
5080 	case TC_ACT_CONSUMED:
5081 		return NULL;
5082 	default:
5083 		break;
5084 	}
5085 #endif /* CONFIG_NET_CLS_ACT */
5086 	return skb;
5087 }
5088 
5089 /**
5090  *	netdev_is_rx_handler_busy - check if receive handler is registered
5091  *	@dev: device to check
5092  *
5093  *	Check if a receive handler is already registered for a given device.
5094  *	Return true if there one.
5095  *
5096  *	The caller must hold the rtnl_mutex.
5097  */
5098 bool netdev_is_rx_handler_busy(struct net_device *dev)
5099 {
5100 	ASSERT_RTNL();
5101 	return dev && rtnl_dereference(dev->rx_handler);
5102 }
5103 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5104 
5105 /**
5106  *	netdev_rx_handler_register - register receive handler
5107  *	@dev: device to register a handler for
5108  *	@rx_handler: receive handler to register
5109  *	@rx_handler_data: data pointer that is used by rx handler
5110  *
5111  *	Register a receive handler for a device. This handler will then be
5112  *	called from __netif_receive_skb. A negative errno code is returned
5113  *	on a failure.
5114  *
5115  *	The caller must hold the rtnl_mutex.
5116  *
5117  *	For a general description of rx_handler, see enum rx_handler_result.
5118  */
5119 int netdev_rx_handler_register(struct net_device *dev,
5120 			       rx_handler_func_t *rx_handler,
5121 			       void *rx_handler_data)
5122 {
5123 	if (netdev_is_rx_handler_busy(dev))
5124 		return -EBUSY;
5125 
5126 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5127 		return -EINVAL;
5128 
5129 	/* Note: rx_handler_data must be set before rx_handler */
5130 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5131 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5132 
5133 	return 0;
5134 }
5135 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5136 
5137 /**
5138  *	netdev_rx_handler_unregister - unregister receive handler
5139  *	@dev: device to unregister a handler from
5140  *
5141  *	Unregister a receive handler from a device.
5142  *
5143  *	The caller must hold the rtnl_mutex.
5144  */
5145 void netdev_rx_handler_unregister(struct net_device *dev)
5146 {
5147 
5148 	ASSERT_RTNL();
5149 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5150 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5151 	 * section has a guarantee to see a non NULL rx_handler_data
5152 	 * as well.
5153 	 */
5154 	synchronize_net();
5155 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5156 }
5157 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5158 
5159 /*
5160  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5161  * the special handling of PFMEMALLOC skbs.
5162  */
5163 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5164 {
5165 	switch (skb->protocol) {
5166 	case htons(ETH_P_ARP):
5167 	case htons(ETH_P_IP):
5168 	case htons(ETH_P_IPV6):
5169 	case htons(ETH_P_8021Q):
5170 	case htons(ETH_P_8021AD):
5171 		return true;
5172 	default:
5173 		return false;
5174 	}
5175 }
5176 
5177 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5178 			     int *ret, struct net_device *orig_dev)
5179 {
5180 	if (nf_hook_ingress_active(skb)) {
5181 		int ingress_retval;
5182 
5183 		if (*pt_prev) {
5184 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5185 			*pt_prev = NULL;
5186 		}
5187 
5188 		rcu_read_lock();
5189 		ingress_retval = nf_hook_ingress(skb);
5190 		rcu_read_unlock();
5191 		return ingress_retval;
5192 	}
5193 	return 0;
5194 }
5195 
5196 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5197 				    struct packet_type **ppt_prev)
5198 {
5199 	struct packet_type *ptype, *pt_prev;
5200 	rx_handler_func_t *rx_handler;
5201 	struct sk_buff *skb = *pskb;
5202 	struct net_device *orig_dev;
5203 	bool deliver_exact = false;
5204 	int ret = NET_RX_DROP;
5205 	__be16 type;
5206 
5207 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5208 
5209 	trace_netif_receive_skb(skb);
5210 
5211 	orig_dev = skb->dev;
5212 
5213 	skb_reset_network_header(skb);
5214 	if (!skb_transport_header_was_set(skb))
5215 		skb_reset_transport_header(skb);
5216 	skb_reset_mac_len(skb);
5217 
5218 	pt_prev = NULL;
5219 
5220 another_round:
5221 	skb->skb_iif = skb->dev->ifindex;
5222 
5223 	__this_cpu_inc(softnet_data.processed);
5224 
5225 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5226 		int ret2;
5227 
5228 		migrate_disable();
5229 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5230 		migrate_enable();
5231 
5232 		if (ret2 != XDP_PASS) {
5233 			ret = NET_RX_DROP;
5234 			goto out;
5235 		}
5236 	}
5237 
5238 	if (eth_type_vlan(skb->protocol)) {
5239 		skb = skb_vlan_untag(skb);
5240 		if (unlikely(!skb))
5241 			goto out;
5242 	}
5243 
5244 	if (skb_skip_tc_classify(skb))
5245 		goto skip_classify;
5246 
5247 	if (pfmemalloc)
5248 		goto skip_taps;
5249 
5250 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5251 		if (pt_prev)
5252 			ret = deliver_skb(skb, pt_prev, orig_dev);
5253 		pt_prev = ptype;
5254 	}
5255 
5256 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5257 		if (pt_prev)
5258 			ret = deliver_skb(skb, pt_prev, orig_dev);
5259 		pt_prev = ptype;
5260 	}
5261 
5262 skip_taps:
5263 #ifdef CONFIG_NET_INGRESS
5264 	if (static_branch_unlikely(&ingress_needed_key)) {
5265 		bool another = false;
5266 
5267 		nf_skip_egress(skb, true);
5268 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5269 					 &another);
5270 		if (another)
5271 			goto another_round;
5272 		if (!skb)
5273 			goto out;
5274 
5275 		nf_skip_egress(skb, false);
5276 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5277 			goto out;
5278 	}
5279 #endif
5280 	skb_reset_redirect(skb);
5281 skip_classify:
5282 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5283 		goto drop;
5284 
5285 	if (skb_vlan_tag_present(skb)) {
5286 		if (pt_prev) {
5287 			ret = deliver_skb(skb, pt_prev, orig_dev);
5288 			pt_prev = NULL;
5289 		}
5290 		if (vlan_do_receive(&skb))
5291 			goto another_round;
5292 		else if (unlikely(!skb))
5293 			goto out;
5294 	}
5295 
5296 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5297 	if (rx_handler) {
5298 		if (pt_prev) {
5299 			ret = deliver_skb(skb, pt_prev, orig_dev);
5300 			pt_prev = NULL;
5301 		}
5302 		switch (rx_handler(&skb)) {
5303 		case RX_HANDLER_CONSUMED:
5304 			ret = NET_RX_SUCCESS;
5305 			goto out;
5306 		case RX_HANDLER_ANOTHER:
5307 			goto another_round;
5308 		case RX_HANDLER_EXACT:
5309 			deliver_exact = true;
5310 			break;
5311 		case RX_HANDLER_PASS:
5312 			break;
5313 		default:
5314 			BUG();
5315 		}
5316 	}
5317 
5318 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5319 check_vlan_id:
5320 		if (skb_vlan_tag_get_id(skb)) {
5321 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5322 			 * find vlan device.
5323 			 */
5324 			skb->pkt_type = PACKET_OTHERHOST;
5325 		} else if (eth_type_vlan(skb->protocol)) {
5326 			/* Outer header is 802.1P with vlan 0, inner header is
5327 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5328 			 * not find vlan dev for vlan id 0.
5329 			 */
5330 			__vlan_hwaccel_clear_tag(skb);
5331 			skb = skb_vlan_untag(skb);
5332 			if (unlikely(!skb))
5333 				goto out;
5334 			if (vlan_do_receive(&skb))
5335 				/* After stripping off 802.1P header with vlan 0
5336 				 * vlan dev is found for inner header.
5337 				 */
5338 				goto another_round;
5339 			else if (unlikely(!skb))
5340 				goto out;
5341 			else
5342 				/* We have stripped outer 802.1P vlan 0 header.
5343 				 * But could not find vlan dev.
5344 				 * check again for vlan id to set OTHERHOST.
5345 				 */
5346 				goto check_vlan_id;
5347 		}
5348 		/* Note: we might in the future use prio bits
5349 		 * and set skb->priority like in vlan_do_receive()
5350 		 * For the time being, just ignore Priority Code Point
5351 		 */
5352 		__vlan_hwaccel_clear_tag(skb);
5353 	}
5354 
5355 	type = skb->protocol;
5356 
5357 	/* deliver only exact match when indicated */
5358 	if (likely(!deliver_exact)) {
5359 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5360 				       &ptype_base[ntohs(type) &
5361 						   PTYPE_HASH_MASK]);
5362 	}
5363 
5364 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5365 			       &orig_dev->ptype_specific);
5366 
5367 	if (unlikely(skb->dev != orig_dev)) {
5368 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5369 				       &skb->dev->ptype_specific);
5370 	}
5371 
5372 	if (pt_prev) {
5373 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5374 			goto drop;
5375 		*ppt_prev = pt_prev;
5376 	} else {
5377 drop:
5378 		if (!deliver_exact) {
5379 			dev_core_stats_rx_dropped_inc(skb->dev);
5380 			kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5381 		} else {
5382 			dev_core_stats_rx_nohandler_inc(skb->dev);
5383 			kfree_skb(skb);
5384 		}
5385 		/* Jamal, now you will not able to escape explaining
5386 		 * me how you were going to use this. :-)
5387 		 */
5388 		ret = NET_RX_DROP;
5389 	}
5390 
5391 out:
5392 	/* The invariant here is that if *ppt_prev is not NULL
5393 	 * then skb should also be non-NULL.
5394 	 *
5395 	 * Apparently *ppt_prev assignment above holds this invariant due to
5396 	 * skb dereferencing near it.
5397 	 */
5398 	*pskb = skb;
5399 	return ret;
5400 }
5401 
5402 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5403 {
5404 	struct net_device *orig_dev = skb->dev;
5405 	struct packet_type *pt_prev = NULL;
5406 	int ret;
5407 
5408 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5409 	if (pt_prev)
5410 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5411 					 skb->dev, pt_prev, orig_dev);
5412 	return ret;
5413 }
5414 
5415 /**
5416  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5417  *	@skb: buffer to process
5418  *
5419  *	More direct receive version of netif_receive_skb().  It should
5420  *	only be used by callers that have a need to skip RPS and Generic XDP.
5421  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5422  *
5423  *	This function may only be called from softirq context and interrupts
5424  *	should be enabled.
5425  *
5426  *	Return values (usually ignored):
5427  *	NET_RX_SUCCESS: no congestion
5428  *	NET_RX_DROP: packet was dropped
5429  */
5430 int netif_receive_skb_core(struct sk_buff *skb)
5431 {
5432 	int ret;
5433 
5434 	rcu_read_lock();
5435 	ret = __netif_receive_skb_one_core(skb, false);
5436 	rcu_read_unlock();
5437 
5438 	return ret;
5439 }
5440 EXPORT_SYMBOL(netif_receive_skb_core);
5441 
5442 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5443 						  struct packet_type *pt_prev,
5444 						  struct net_device *orig_dev)
5445 {
5446 	struct sk_buff *skb, *next;
5447 
5448 	if (!pt_prev)
5449 		return;
5450 	if (list_empty(head))
5451 		return;
5452 	if (pt_prev->list_func != NULL)
5453 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5454 				   ip_list_rcv, head, pt_prev, orig_dev);
5455 	else
5456 		list_for_each_entry_safe(skb, next, head, list) {
5457 			skb_list_del_init(skb);
5458 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5459 		}
5460 }
5461 
5462 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5463 {
5464 	/* Fast-path assumptions:
5465 	 * - There is no RX handler.
5466 	 * - Only one packet_type matches.
5467 	 * If either of these fails, we will end up doing some per-packet
5468 	 * processing in-line, then handling the 'last ptype' for the whole
5469 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5470 	 * because the 'last ptype' must be constant across the sublist, and all
5471 	 * other ptypes are handled per-packet.
5472 	 */
5473 	/* Current (common) ptype of sublist */
5474 	struct packet_type *pt_curr = NULL;
5475 	/* Current (common) orig_dev of sublist */
5476 	struct net_device *od_curr = NULL;
5477 	struct list_head sublist;
5478 	struct sk_buff *skb, *next;
5479 
5480 	INIT_LIST_HEAD(&sublist);
5481 	list_for_each_entry_safe(skb, next, head, list) {
5482 		struct net_device *orig_dev = skb->dev;
5483 		struct packet_type *pt_prev = NULL;
5484 
5485 		skb_list_del_init(skb);
5486 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5487 		if (!pt_prev)
5488 			continue;
5489 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5490 			/* dispatch old sublist */
5491 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5492 			/* start new sublist */
5493 			INIT_LIST_HEAD(&sublist);
5494 			pt_curr = pt_prev;
5495 			od_curr = orig_dev;
5496 		}
5497 		list_add_tail(&skb->list, &sublist);
5498 	}
5499 
5500 	/* dispatch final sublist */
5501 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5502 }
5503 
5504 static int __netif_receive_skb(struct sk_buff *skb)
5505 {
5506 	int ret;
5507 
5508 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5509 		unsigned int noreclaim_flag;
5510 
5511 		/*
5512 		 * PFMEMALLOC skbs are special, they should
5513 		 * - be delivered to SOCK_MEMALLOC sockets only
5514 		 * - stay away from userspace
5515 		 * - have bounded memory usage
5516 		 *
5517 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5518 		 * context down to all allocation sites.
5519 		 */
5520 		noreclaim_flag = memalloc_noreclaim_save();
5521 		ret = __netif_receive_skb_one_core(skb, true);
5522 		memalloc_noreclaim_restore(noreclaim_flag);
5523 	} else
5524 		ret = __netif_receive_skb_one_core(skb, false);
5525 
5526 	return ret;
5527 }
5528 
5529 static void __netif_receive_skb_list(struct list_head *head)
5530 {
5531 	unsigned long noreclaim_flag = 0;
5532 	struct sk_buff *skb, *next;
5533 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5534 
5535 	list_for_each_entry_safe(skb, next, head, list) {
5536 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5537 			struct list_head sublist;
5538 
5539 			/* Handle the previous sublist */
5540 			list_cut_before(&sublist, head, &skb->list);
5541 			if (!list_empty(&sublist))
5542 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5543 			pfmemalloc = !pfmemalloc;
5544 			/* See comments in __netif_receive_skb */
5545 			if (pfmemalloc)
5546 				noreclaim_flag = memalloc_noreclaim_save();
5547 			else
5548 				memalloc_noreclaim_restore(noreclaim_flag);
5549 		}
5550 	}
5551 	/* Handle the remaining sublist */
5552 	if (!list_empty(head))
5553 		__netif_receive_skb_list_core(head, pfmemalloc);
5554 	/* Restore pflags */
5555 	if (pfmemalloc)
5556 		memalloc_noreclaim_restore(noreclaim_flag);
5557 }
5558 
5559 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5560 {
5561 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5562 	struct bpf_prog *new = xdp->prog;
5563 	int ret = 0;
5564 
5565 	switch (xdp->command) {
5566 	case XDP_SETUP_PROG:
5567 		rcu_assign_pointer(dev->xdp_prog, new);
5568 		if (old)
5569 			bpf_prog_put(old);
5570 
5571 		if (old && !new) {
5572 			static_branch_dec(&generic_xdp_needed_key);
5573 		} else if (new && !old) {
5574 			static_branch_inc(&generic_xdp_needed_key);
5575 			dev_disable_lro(dev);
5576 			dev_disable_gro_hw(dev);
5577 		}
5578 		break;
5579 
5580 	default:
5581 		ret = -EINVAL;
5582 		break;
5583 	}
5584 
5585 	return ret;
5586 }
5587 
5588 static int netif_receive_skb_internal(struct sk_buff *skb)
5589 {
5590 	int ret;
5591 
5592 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5593 
5594 	if (skb_defer_rx_timestamp(skb))
5595 		return NET_RX_SUCCESS;
5596 
5597 	rcu_read_lock();
5598 #ifdef CONFIG_RPS
5599 	if (static_branch_unlikely(&rps_needed)) {
5600 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5601 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5602 
5603 		if (cpu >= 0) {
5604 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5605 			rcu_read_unlock();
5606 			return ret;
5607 		}
5608 	}
5609 #endif
5610 	ret = __netif_receive_skb(skb);
5611 	rcu_read_unlock();
5612 	return ret;
5613 }
5614 
5615 void netif_receive_skb_list_internal(struct list_head *head)
5616 {
5617 	struct sk_buff *skb, *next;
5618 	struct list_head sublist;
5619 
5620 	INIT_LIST_HEAD(&sublist);
5621 	list_for_each_entry_safe(skb, next, head, list) {
5622 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5623 		skb_list_del_init(skb);
5624 		if (!skb_defer_rx_timestamp(skb))
5625 			list_add_tail(&skb->list, &sublist);
5626 	}
5627 	list_splice_init(&sublist, head);
5628 
5629 	rcu_read_lock();
5630 #ifdef CONFIG_RPS
5631 	if (static_branch_unlikely(&rps_needed)) {
5632 		list_for_each_entry_safe(skb, next, head, list) {
5633 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5634 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5635 
5636 			if (cpu >= 0) {
5637 				/* Will be handled, remove from list */
5638 				skb_list_del_init(skb);
5639 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5640 			}
5641 		}
5642 	}
5643 #endif
5644 	__netif_receive_skb_list(head);
5645 	rcu_read_unlock();
5646 }
5647 
5648 /**
5649  *	netif_receive_skb - process receive buffer from network
5650  *	@skb: buffer to process
5651  *
5652  *	netif_receive_skb() is the main receive data processing function.
5653  *	It always succeeds. The buffer may be dropped during processing
5654  *	for congestion control or by the protocol layers.
5655  *
5656  *	This function may only be called from softirq context and interrupts
5657  *	should be enabled.
5658  *
5659  *	Return values (usually ignored):
5660  *	NET_RX_SUCCESS: no congestion
5661  *	NET_RX_DROP: packet was dropped
5662  */
5663 int netif_receive_skb(struct sk_buff *skb)
5664 {
5665 	int ret;
5666 
5667 	trace_netif_receive_skb_entry(skb);
5668 
5669 	ret = netif_receive_skb_internal(skb);
5670 	trace_netif_receive_skb_exit(ret);
5671 
5672 	return ret;
5673 }
5674 EXPORT_SYMBOL(netif_receive_skb);
5675 
5676 /**
5677  *	netif_receive_skb_list - process many receive buffers from network
5678  *	@head: list of skbs to process.
5679  *
5680  *	Since return value of netif_receive_skb() is normally ignored, and
5681  *	wouldn't be meaningful for a list, this function returns void.
5682  *
5683  *	This function may only be called from softirq context and interrupts
5684  *	should be enabled.
5685  */
5686 void netif_receive_skb_list(struct list_head *head)
5687 {
5688 	struct sk_buff *skb;
5689 
5690 	if (list_empty(head))
5691 		return;
5692 	if (trace_netif_receive_skb_list_entry_enabled()) {
5693 		list_for_each_entry(skb, head, list)
5694 			trace_netif_receive_skb_list_entry(skb);
5695 	}
5696 	netif_receive_skb_list_internal(head);
5697 	trace_netif_receive_skb_list_exit(0);
5698 }
5699 EXPORT_SYMBOL(netif_receive_skb_list);
5700 
5701 static DEFINE_PER_CPU(struct work_struct, flush_works);
5702 
5703 /* Network device is going away, flush any packets still pending */
5704 static void flush_backlog(struct work_struct *work)
5705 {
5706 	struct sk_buff *skb, *tmp;
5707 	struct softnet_data *sd;
5708 
5709 	local_bh_disable();
5710 	sd = this_cpu_ptr(&softnet_data);
5711 
5712 	rps_lock_irq_disable(sd);
5713 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5714 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5715 			__skb_unlink(skb, &sd->input_pkt_queue);
5716 			dev_kfree_skb_irq(skb);
5717 			input_queue_head_incr(sd);
5718 		}
5719 	}
5720 	rps_unlock_irq_enable(sd);
5721 
5722 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5723 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5724 			__skb_unlink(skb, &sd->process_queue);
5725 			kfree_skb(skb);
5726 			input_queue_head_incr(sd);
5727 		}
5728 	}
5729 	local_bh_enable();
5730 }
5731 
5732 static bool flush_required(int cpu)
5733 {
5734 #if IS_ENABLED(CONFIG_RPS)
5735 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5736 	bool do_flush;
5737 
5738 	rps_lock_irq_disable(sd);
5739 
5740 	/* as insertion into process_queue happens with the rps lock held,
5741 	 * process_queue access may race only with dequeue
5742 	 */
5743 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5744 		   !skb_queue_empty_lockless(&sd->process_queue);
5745 	rps_unlock_irq_enable(sd);
5746 
5747 	return do_flush;
5748 #endif
5749 	/* without RPS we can't safely check input_pkt_queue: during a
5750 	 * concurrent remote skb_queue_splice() we can detect as empty both
5751 	 * input_pkt_queue and process_queue even if the latter could end-up
5752 	 * containing a lot of packets.
5753 	 */
5754 	return true;
5755 }
5756 
5757 static void flush_all_backlogs(void)
5758 {
5759 	static cpumask_t flush_cpus;
5760 	unsigned int cpu;
5761 
5762 	/* since we are under rtnl lock protection we can use static data
5763 	 * for the cpumask and avoid allocating on stack the possibly
5764 	 * large mask
5765 	 */
5766 	ASSERT_RTNL();
5767 
5768 	cpus_read_lock();
5769 
5770 	cpumask_clear(&flush_cpus);
5771 	for_each_online_cpu(cpu) {
5772 		if (flush_required(cpu)) {
5773 			queue_work_on(cpu, system_highpri_wq,
5774 				      per_cpu_ptr(&flush_works, cpu));
5775 			cpumask_set_cpu(cpu, &flush_cpus);
5776 		}
5777 	}
5778 
5779 	/* we can have in flight packet[s] on the cpus we are not flushing,
5780 	 * synchronize_net() in unregister_netdevice_many() will take care of
5781 	 * them
5782 	 */
5783 	for_each_cpu(cpu, &flush_cpus)
5784 		flush_work(per_cpu_ptr(&flush_works, cpu));
5785 
5786 	cpus_read_unlock();
5787 }
5788 
5789 static void net_rps_send_ipi(struct softnet_data *remsd)
5790 {
5791 #ifdef CONFIG_RPS
5792 	while (remsd) {
5793 		struct softnet_data *next = remsd->rps_ipi_next;
5794 
5795 		if (cpu_online(remsd->cpu))
5796 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5797 		remsd = next;
5798 	}
5799 #endif
5800 }
5801 
5802 /*
5803  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5804  * Note: called with local irq disabled, but exits with local irq enabled.
5805  */
5806 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5807 {
5808 #ifdef CONFIG_RPS
5809 	struct softnet_data *remsd = sd->rps_ipi_list;
5810 
5811 	if (remsd) {
5812 		sd->rps_ipi_list = NULL;
5813 
5814 		local_irq_enable();
5815 
5816 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5817 		net_rps_send_ipi(remsd);
5818 	} else
5819 #endif
5820 		local_irq_enable();
5821 }
5822 
5823 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5824 {
5825 #ifdef CONFIG_RPS
5826 	return sd->rps_ipi_list != NULL;
5827 #else
5828 	return false;
5829 #endif
5830 }
5831 
5832 static int process_backlog(struct napi_struct *napi, int quota)
5833 {
5834 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5835 	bool again = true;
5836 	int work = 0;
5837 
5838 	/* Check if we have pending ipi, its better to send them now,
5839 	 * not waiting net_rx_action() end.
5840 	 */
5841 	if (sd_has_rps_ipi_waiting(sd)) {
5842 		local_irq_disable();
5843 		net_rps_action_and_irq_enable(sd);
5844 	}
5845 
5846 	napi->weight = dev_rx_weight;
5847 	while (again) {
5848 		struct sk_buff *skb;
5849 
5850 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5851 			rcu_read_lock();
5852 			__netif_receive_skb(skb);
5853 			rcu_read_unlock();
5854 			input_queue_head_incr(sd);
5855 			if (++work >= quota)
5856 				return work;
5857 
5858 		}
5859 
5860 		rps_lock_irq_disable(sd);
5861 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5862 			/*
5863 			 * Inline a custom version of __napi_complete().
5864 			 * only current cpu owns and manipulates this napi,
5865 			 * and NAPI_STATE_SCHED is the only possible flag set
5866 			 * on backlog.
5867 			 * We can use a plain write instead of clear_bit(),
5868 			 * and we dont need an smp_mb() memory barrier.
5869 			 */
5870 			napi->state = 0;
5871 			again = false;
5872 		} else {
5873 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5874 						   &sd->process_queue);
5875 		}
5876 		rps_unlock_irq_enable(sd);
5877 	}
5878 
5879 	return work;
5880 }
5881 
5882 /**
5883  * __napi_schedule - schedule for receive
5884  * @n: entry to schedule
5885  *
5886  * The entry's receive function will be scheduled to run.
5887  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5888  */
5889 void __napi_schedule(struct napi_struct *n)
5890 {
5891 	unsigned long flags;
5892 
5893 	local_irq_save(flags);
5894 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5895 	local_irq_restore(flags);
5896 }
5897 EXPORT_SYMBOL(__napi_schedule);
5898 
5899 /**
5900  *	napi_schedule_prep - check if napi can be scheduled
5901  *	@n: napi context
5902  *
5903  * Test if NAPI routine is already running, and if not mark
5904  * it as running.  This is used as a condition variable to
5905  * insure only one NAPI poll instance runs.  We also make
5906  * sure there is no pending NAPI disable.
5907  */
5908 bool napi_schedule_prep(struct napi_struct *n)
5909 {
5910 	unsigned long val, new;
5911 
5912 	do {
5913 		val = READ_ONCE(n->state);
5914 		if (unlikely(val & NAPIF_STATE_DISABLE))
5915 			return false;
5916 		new = val | NAPIF_STATE_SCHED;
5917 
5918 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5919 		 * This was suggested by Alexander Duyck, as compiler
5920 		 * emits better code than :
5921 		 * if (val & NAPIF_STATE_SCHED)
5922 		 *     new |= NAPIF_STATE_MISSED;
5923 		 */
5924 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5925 						   NAPIF_STATE_MISSED;
5926 	} while (cmpxchg(&n->state, val, new) != val);
5927 
5928 	return !(val & NAPIF_STATE_SCHED);
5929 }
5930 EXPORT_SYMBOL(napi_schedule_prep);
5931 
5932 /**
5933  * __napi_schedule_irqoff - schedule for receive
5934  * @n: entry to schedule
5935  *
5936  * Variant of __napi_schedule() assuming hard irqs are masked.
5937  *
5938  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5939  * because the interrupt disabled assumption might not be true
5940  * due to force-threaded interrupts and spinlock substitution.
5941  */
5942 void __napi_schedule_irqoff(struct napi_struct *n)
5943 {
5944 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5945 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5946 	else
5947 		__napi_schedule(n);
5948 }
5949 EXPORT_SYMBOL(__napi_schedule_irqoff);
5950 
5951 bool napi_complete_done(struct napi_struct *n, int work_done)
5952 {
5953 	unsigned long flags, val, new, timeout = 0;
5954 	bool ret = true;
5955 
5956 	/*
5957 	 * 1) Don't let napi dequeue from the cpu poll list
5958 	 *    just in case its running on a different cpu.
5959 	 * 2) If we are busy polling, do nothing here, we have
5960 	 *    the guarantee we will be called later.
5961 	 */
5962 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5963 				 NAPIF_STATE_IN_BUSY_POLL)))
5964 		return false;
5965 
5966 	if (work_done) {
5967 		if (n->gro_bitmask)
5968 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5969 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5970 	}
5971 	if (n->defer_hard_irqs_count > 0) {
5972 		n->defer_hard_irqs_count--;
5973 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5974 		if (timeout)
5975 			ret = false;
5976 	}
5977 	if (n->gro_bitmask) {
5978 		/* When the NAPI instance uses a timeout and keeps postponing
5979 		 * it, we need to bound somehow the time packets are kept in
5980 		 * the GRO layer
5981 		 */
5982 		napi_gro_flush(n, !!timeout);
5983 	}
5984 
5985 	gro_normal_list(n);
5986 
5987 	if (unlikely(!list_empty(&n->poll_list))) {
5988 		/* If n->poll_list is not empty, we need to mask irqs */
5989 		local_irq_save(flags);
5990 		list_del_init(&n->poll_list);
5991 		local_irq_restore(flags);
5992 	}
5993 
5994 	do {
5995 		val = READ_ONCE(n->state);
5996 
5997 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5998 
5999 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6000 			      NAPIF_STATE_SCHED_THREADED |
6001 			      NAPIF_STATE_PREFER_BUSY_POLL);
6002 
6003 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6004 		 * because we will call napi->poll() one more time.
6005 		 * This C code was suggested by Alexander Duyck to help gcc.
6006 		 */
6007 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6008 						    NAPIF_STATE_SCHED;
6009 	} while (cmpxchg(&n->state, val, new) != val);
6010 
6011 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6012 		__napi_schedule(n);
6013 		return false;
6014 	}
6015 
6016 	if (timeout)
6017 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6018 			      HRTIMER_MODE_REL_PINNED);
6019 	return ret;
6020 }
6021 EXPORT_SYMBOL(napi_complete_done);
6022 
6023 /* must be called under rcu_read_lock(), as we dont take a reference */
6024 static struct napi_struct *napi_by_id(unsigned int napi_id)
6025 {
6026 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6027 	struct napi_struct *napi;
6028 
6029 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6030 		if (napi->napi_id == napi_id)
6031 			return napi;
6032 
6033 	return NULL;
6034 }
6035 
6036 #if defined(CONFIG_NET_RX_BUSY_POLL)
6037 
6038 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6039 {
6040 	if (!skip_schedule) {
6041 		gro_normal_list(napi);
6042 		__napi_schedule(napi);
6043 		return;
6044 	}
6045 
6046 	if (napi->gro_bitmask) {
6047 		/* flush too old packets
6048 		 * If HZ < 1000, flush all packets.
6049 		 */
6050 		napi_gro_flush(napi, HZ >= 1000);
6051 	}
6052 
6053 	gro_normal_list(napi);
6054 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6055 }
6056 
6057 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6058 			   u16 budget)
6059 {
6060 	bool skip_schedule = false;
6061 	unsigned long timeout;
6062 	int rc;
6063 
6064 	/* Busy polling means there is a high chance device driver hard irq
6065 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6066 	 * set in napi_schedule_prep().
6067 	 * Since we are about to call napi->poll() once more, we can safely
6068 	 * clear NAPI_STATE_MISSED.
6069 	 *
6070 	 * Note: x86 could use a single "lock and ..." instruction
6071 	 * to perform these two clear_bit()
6072 	 */
6073 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6074 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6075 
6076 	local_bh_disable();
6077 
6078 	if (prefer_busy_poll) {
6079 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6080 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6081 		if (napi->defer_hard_irqs_count && timeout) {
6082 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6083 			skip_schedule = true;
6084 		}
6085 	}
6086 
6087 	/* All we really want here is to re-enable device interrupts.
6088 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6089 	 */
6090 	rc = napi->poll(napi, budget);
6091 	/* We can't gro_normal_list() here, because napi->poll() might have
6092 	 * rearmed the napi (napi_complete_done()) in which case it could
6093 	 * already be running on another CPU.
6094 	 */
6095 	trace_napi_poll(napi, rc, budget);
6096 	netpoll_poll_unlock(have_poll_lock);
6097 	if (rc == budget)
6098 		__busy_poll_stop(napi, skip_schedule);
6099 	local_bh_enable();
6100 }
6101 
6102 void napi_busy_loop(unsigned int napi_id,
6103 		    bool (*loop_end)(void *, unsigned long),
6104 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6105 {
6106 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6107 	int (*napi_poll)(struct napi_struct *napi, int budget);
6108 	void *have_poll_lock = NULL;
6109 	struct napi_struct *napi;
6110 
6111 restart:
6112 	napi_poll = NULL;
6113 
6114 	rcu_read_lock();
6115 
6116 	napi = napi_by_id(napi_id);
6117 	if (!napi)
6118 		goto out;
6119 
6120 	preempt_disable();
6121 	for (;;) {
6122 		int work = 0;
6123 
6124 		local_bh_disable();
6125 		if (!napi_poll) {
6126 			unsigned long val = READ_ONCE(napi->state);
6127 
6128 			/* If multiple threads are competing for this napi,
6129 			 * we avoid dirtying napi->state as much as we can.
6130 			 */
6131 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6132 				   NAPIF_STATE_IN_BUSY_POLL)) {
6133 				if (prefer_busy_poll)
6134 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6135 				goto count;
6136 			}
6137 			if (cmpxchg(&napi->state, val,
6138 				    val | NAPIF_STATE_IN_BUSY_POLL |
6139 					  NAPIF_STATE_SCHED) != val) {
6140 				if (prefer_busy_poll)
6141 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6142 				goto count;
6143 			}
6144 			have_poll_lock = netpoll_poll_lock(napi);
6145 			napi_poll = napi->poll;
6146 		}
6147 		work = napi_poll(napi, budget);
6148 		trace_napi_poll(napi, work, budget);
6149 		gro_normal_list(napi);
6150 count:
6151 		if (work > 0)
6152 			__NET_ADD_STATS(dev_net(napi->dev),
6153 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6154 		local_bh_enable();
6155 
6156 		if (!loop_end || loop_end(loop_end_arg, start_time))
6157 			break;
6158 
6159 		if (unlikely(need_resched())) {
6160 			if (napi_poll)
6161 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6162 			preempt_enable();
6163 			rcu_read_unlock();
6164 			cond_resched();
6165 			if (loop_end(loop_end_arg, start_time))
6166 				return;
6167 			goto restart;
6168 		}
6169 		cpu_relax();
6170 	}
6171 	if (napi_poll)
6172 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6173 	preempt_enable();
6174 out:
6175 	rcu_read_unlock();
6176 }
6177 EXPORT_SYMBOL(napi_busy_loop);
6178 
6179 #endif /* CONFIG_NET_RX_BUSY_POLL */
6180 
6181 static void napi_hash_add(struct napi_struct *napi)
6182 {
6183 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6184 		return;
6185 
6186 	spin_lock(&napi_hash_lock);
6187 
6188 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6189 	do {
6190 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6191 			napi_gen_id = MIN_NAPI_ID;
6192 	} while (napi_by_id(napi_gen_id));
6193 	napi->napi_id = napi_gen_id;
6194 
6195 	hlist_add_head_rcu(&napi->napi_hash_node,
6196 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6197 
6198 	spin_unlock(&napi_hash_lock);
6199 }
6200 
6201 /* Warning : caller is responsible to make sure rcu grace period
6202  * is respected before freeing memory containing @napi
6203  */
6204 static void napi_hash_del(struct napi_struct *napi)
6205 {
6206 	spin_lock(&napi_hash_lock);
6207 
6208 	hlist_del_init_rcu(&napi->napi_hash_node);
6209 
6210 	spin_unlock(&napi_hash_lock);
6211 }
6212 
6213 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6214 {
6215 	struct napi_struct *napi;
6216 
6217 	napi = container_of(timer, struct napi_struct, timer);
6218 
6219 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6220 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6221 	 */
6222 	if (!napi_disable_pending(napi) &&
6223 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6224 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6225 		__napi_schedule_irqoff(napi);
6226 	}
6227 
6228 	return HRTIMER_NORESTART;
6229 }
6230 
6231 static void init_gro_hash(struct napi_struct *napi)
6232 {
6233 	int i;
6234 
6235 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6236 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6237 		napi->gro_hash[i].count = 0;
6238 	}
6239 	napi->gro_bitmask = 0;
6240 }
6241 
6242 int dev_set_threaded(struct net_device *dev, bool threaded)
6243 {
6244 	struct napi_struct *napi;
6245 	int err = 0;
6246 
6247 	if (dev->threaded == threaded)
6248 		return 0;
6249 
6250 	if (threaded) {
6251 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6252 			if (!napi->thread) {
6253 				err = napi_kthread_create(napi);
6254 				if (err) {
6255 					threaded = false;
6256 					break;
6257 				}
6258 			}
6259 		}
6260 	}
6261 
6262 	dev->threaded = threaded;
6263 
6264 	/* Make sure kthread is created before THREADED bit
6265 	 * is set.
6266 	 */
6267 	smp_mb__before_atomic();
6268 
6269 	/* Setting/unsetting threaded mode on a napi might not immediately
6270 	 * take effect, if the current napi instance is actively being
6271 	 * polled. In this case, the switch between threaded mode and
6272 	 * softirq mode will happen in the next round of napi_schedule().
6273 	 * This should not cause hiccups/stalls to the live traffic.
6274 	 */
6275 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6276 		if (threaded)
6277 			set_bit(NAPI_STATE_THREADED, &napi->state);
6278 		else
6279 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6280 	}
6281 
6282 	return err;
6283 }
6284 EXPORT_SYMBOL(dev_set_threaded);
6285 
6286 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6287 		    int (*poll)(struct napi_struct *, int), int weight)
6288 {
6289 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6290 		return;
6291 
6292 	INIT_LIST_HEAD(&napi->poll_list);
6293 	INIT_HLIST_NODE(&napi->napi_hash_node);
6294 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6295 	napi->timer.function = napi_watchdog;
6296 	init_gro_hash(napi);
6297 	napi->skb = NULL;
6298 	INIT_LIST_HEAD(&napi->rx_list);
6299 	napi->rx_count = 0;
6300 	napi->poll = poll;
6301 	if (weight > NAPI_POLL_WEIGHT)
6302 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6303 				weight);
6304 	napi->weight = weight;
6305 	napi->dev = dev;
6306 #ifdef CONFIG_NETPOLL
6307 	napi->poll_owner = -1;
6308 #endif
6309 	set_bit(NAPI_STATE_SCHED, &napi->state);
6310 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6311 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6312 	napi_hash_add(napi);
6313 	/* Create kthread for this napi if dev->threaded is set.
6314 	 * Clear dev->threaded if kthread creation failed so that
6315 	 * threaded mode will not be enabled in napi_enable().
6316 	 */
6317 	if (dev->threaded && napi_kthread_create(napi))
6318 		dev->threaded = 0;
6319 }
6320 EXPORT_SYMBOL(netif_napi_add);
6321 
6322 void napi_disable(struct napi_struct *n)
6323 {
6324 	unsigned long val, new;
6325 
6326 	might_sleep();
6327 	set_bit(NAPI_STATE_DISABLE, &n->state);
6328 
6329 	for ( ; ; ) {
6330 		val = READ_ONCE(n->state);
6331 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6332 			usleep_range(20, 200);
6333 			continue;
6334 		}
6335 
6336 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6337 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6338 
6339 		if (cmpxchg(&n->state, val, new) == val)
6340 			break;
6341 	}
6342 
6343 	hrtimer_cancel(&n->timer);
6344 
6345 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6346 }
6347 EXPORT_SYMBOL(napi_disable);
6348 
6349 /**
6350  *	napi_enable - enable NAPI scheduling
6351  *	@n: NAPI context
6352  *
6353  * Resume NAPI from being scheduled on this context.
6354  * Must be paired with napi_disable.
6355  */
6356 void napi_enable(struct napi_struct *n)
6357 {
6358 	unsigned long val, new;
6359 
6360 	do {
6361 		val = READ_ONCE(n->state);
6362 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6363 
6364 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6365 		if (n->dev->threaded && n->thread)
6366 			new |= NAPIF_STATE_THREADED;
6367 	} while (cmpxchg(&n->state, val, new) != val);
6368 }
6369 EXPORT_SYMBOL(napi_enable);
6370 
6371 static void flush_gro_hash(struct napi_struct *napi)
6372 {
6373 	int i;
6374 
6375 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6376 		struct sk_buff *skb, *n;
6377 
6378 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6379 			kfree_skb(skb);
6380 		napi->gro_hash[i].count = 0;
6381 	}
6382 }
6383 
6384 /* Must be called in process context */
6385 void __netif_napi_del(struct napi_struct *napi)
6386 {
6387 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6388 		return;
6389 
6390 	napi_hash_del(napi);
6391 	list_del_rcu(&napi->dev_list);
6392 	napi_free_frags(napi);
6393 
6394 	flush_gro_hash(napi);
6395 	napi->gro_bitmask = 0;
6396 
6397 	if (napi->thread) {
6398 		kthread_stop(napi->thread);
6399 		napi->thread = NULL;
6400 	}
6401 }
6402 EXPORT_SYMBOL(__netif_napi_del);
6403 
6404 static int __napi_poll(struct napi_struct *n, bool *repoll)
6405 {
6406 	int work, weight;
6407 
6408 	weight = n->weight;
6409 
6410 	/* This NAPI_STATE_SCHED test is for avoiding a race
6411 	 * with netpoll's poll_napi().  Only the entity which
6412 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6413 	 * actually make the ->poll() call.  Therefore we avoid
6414 	 * accidentally calling ->poll() when NAPI is not scheduled.
6415 	 */
6416 	work = 0;
6417 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6418 		work = n->poll(n, weight);
6419 		trace_napi_poll(n, work, weight);
6420 	}
6421 
6422 	if (unlikely(work > weight))
6423 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6424 				n->poll, work, weight);
6425 
6426 	if (likely(work < weight))
6427 		return work;
6428 
6429 	/* Drivers must not modify the NAPI state if they
6430 	 * consume the entire weight.  In such cases this code
6431 	 * still "owns" the NAPI instance and therefore can
6432 	 * move the instance around on the list at-will.
6433 	 */
6434 	if (unlikely(napi_disable_pending(n))) {
6435 		napi_complete(n);
6436 		return work;
6437 	}
6438 
6439 	/* The NAPI context has more processing work, but busy-polling
6440 	 * is preferred. Exit early.
6441 	 */
6442 	if (napi_prefer_busy_poll(n)) {
6443 		if (napi_complete_done(n, work)) {
6444 			/* If timeout is not set, we need to make sure
6445 			 * that the NAPI is re-scheduled.
6446 			 */
6447 			napi_schedule(n);
6448 		}
6449 		return work;
6450 	}
6451 
6452 	if (n->gro_bitmask) {
6453 		/* flush too old packets
6454 		 * If HZ < 1000, flush all packets.
6455 		 */
6456 		napi_gro_flush(n, HZ >= 1000);
6457 	}
6458 
6459 	gro_normal_list(n);
6460 
6461 	/* Some drivers may have called napi_schedule
6462 	 * prior to exhausting their budget.
6463 	 */
6464 	if (unlikely(!list_empty(&n->poll_list))) {
6465 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6466 			     n->dev ? n->dev->name : "backlog");
6467 		return work;
6468 	}
6469 
6470 	*repoll = true;
6471 
6472 	return work;
6473 }
6474 
6475 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6476 {
6477 	bool do_repoll = false;
6478 	void *have;
6479 	int work;
6480 
6481 	list_del_init(&n->poll_list);
6482 
6483 	have = netpoll_poll_lock(n);
6484 
6485 	work = __napi_poll(n, &do_repoll);
6486 
6487 	if (do_repoll)
6488 		list_add_tail(&n->poll_list, repoll);
6489 
6490 	netpoll_poll_unlock(have);
6491 
6492 	return work;
6493 }
6494 
6495 static int napi_thread_wait(struct napi_struct *napi)
6496 {
6497 	bool woken = false;
6498 
6499 	set_current_state(TASK_INTERRUPTIBLE);
6500 
6501 	while (!kthread_should_stop()) {
6502 		/* Testing SCHED_THREADED bit here to make sure the current
6503 		 * kthread owns this napi and could poll on this napi.
6504 		 * Testing SCHED bit is not enough because SCHED bit might be
6505 		 * set by some other busy poll thread or by napi_disable().
6506 		 */
6507 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6508 			WARN_ON(!list_empty(&napi->poll_list));
6509 			__set_current_state(TASK_RUNNING);
6510 			return 0;
6511 		}
6512 
6513 		schedule();
6514 		/* woken being true indicates this thread owns this napi. */
6515 		woken = true;
6516 		set_current_state(TASK_INTERRUPTIBLE);
6517 	}
6518 	__set_current_state(TASK_RUNNING);
6519 
6520 	return -1;
6521 }
6522 
6523 static int napi_threaded_poll(void *data)
6524 {
6525 	struct napi_struct *napi = data;
6526 	void *have;
6527 
6528 	while (!napi_thread_wait(napi)) {
6529 		for (;;) {
6530 			bool repoll = false;
6531 
6532 			local_bh_disable();
6533 
6534 			have = netpoll_poll_lock(napi);
6535 			__napi_poll(napi, &repoll);
6536 			netpoll_poll_unlock(have);
6537 
6538 			local_bh_enable();
6539 
6540 			if (!repoll)
6541 				break;
6542 
6543 			cond_resched();
6544 		}
6545 	}
6546 	return 0;
6547 }
6548 
6549 static __latent_entropy void net_rx_action(struct softirq_action *h)
6550 {
6551 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6552 	unsigned long time_limit = jiffies +
6553 		usecs_to_jiffies(netdev_budget_usecs);
6554 	int budget = netdev_budget;
6555 	LIST_HEAD(list);
6556 	LIST_HEAD(repoll);
6557 
6558 	local_irq_disable();
6559 	list_splice_init(&sd->poll_list, &list);
6560 	local_irq_enable();
6561 
6562 	for (;;) {
6563 		struct napi_struct *n;
6564 
6565 		if (list_empty(&list)) {
6566 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6567 				return;
6568 			break;
6569 		}
6570 
6571 		n = list_first_entry(&list, struct napi_struct, poll_list);
6572 		budget -= napi_poll(n, &repoll);
6573 
6574 		/* If softirq window is exhausted then punt.
6575 		 * Allow this to run for 2 jiffies since which will allow
6576 		 * an average latency of 1.5/HZ.
6577 		 */
6578 		if (unlikely(budget <= 0 ||
6579 			     time_after_eq(jiffies, time_limit))) {
6580 			sd->time_squeeze++;
6581 			break;
6582 		}
6583 	}
6584 
6585 	local_irq_disable();
6586 
6587 	list_splice_tail_init(&sd->poll_list, &list);
6588 	list_splice_tail(&repoll, &list);
6589 	list_splice(&list, &sd->poll_list);
6590 	if (!list_empty(&sd->poll_list))
6591 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6592 
6593 	net_rps_action_and_irq_enable(sd);
6594 }
6595 
6596 struct netdev_adjacent {
6597 	struct net_device *dev;
6598 	netdevice_tracker dev_tracker;
6599 
6600 	/* upper master flag, there can only be one master device per list */
6601 	bool master;
6602 
6603 	/* lookup ignore flag */
6604 	bool ignore;
6605 
6606 	/* counter for the number of times this device was added to us */
6607 	u16 ref_nr;
6608 
6609 	/* private field for the users */
6610 	void *private;
6611 
6612 	struct list_head list;
6613 	struct rcu_head rcu;
6614 };
6615 
6616 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6617 						 struct list_head *adj_list)
6618 {
6619 	struct netdev_adjacent *adj;
6620 
6621 	list_for_each_entry(adj, adj_list, list) {
6622 		if (adj->dev == adj_dev)
6623 			return adj;
6624 	}
6625 	return NULL;
6626 }
6627 
6628 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6629 				    struct netdev_nested_priv *priv)
6630 {
6631 	struct net_device *dev = (struct net_device *)priv->data;
6632 
6633 	return upper_dev == dev;
6634 }
6635 
6636 /**
6637  * netdev_has_upper_dev - Check if device is linked to an upper device
6638  * @dev: device
6639  * @upper_dev: upper device to check
6640  *
6641  * Find out if a device is linked to specified upper device and return true
6642  * in case it is. Note that this checks only immediate upper device,
6643  * not through a complete stack of devices. The caller must hold the RTNL lock.
6644  */
6645 bool netdev_has_upper_dev(struct net_device *dev,
6646 			  struct net_device *upper_dev)
6647 {
6648 	struct netdev_nested_priv priv = {
6649 		.data = (void *)upper_dev,
6650 	};
6651 
6652 	ASSERT_RTNL();
6653 
6654 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6655 					     &priv);
6656 }
6657 EXPORT_SYMBOL(netdev_has_upper_dev);
6658 
6659 /**
6660  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6661  * @dev: device
6662  * @upper_dev: upper device to check
6663  *
6664  * Find out if a device is linked to specified upper device and return true
6665  * in case it is. Note that this checks the entire upper device chain.
6666  * The caller must hold rcu lock.
6667  */
6668 
6669 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6670 				  struct net_device *upper_dev)
6671 {
6672 	struct netdev_nested_priv priv = {
6673 		.data = (void *)upper_dev,
6674 	};
6675 
6676 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6677 					       &priv);
6678 }
6679 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6680 
6681 /**
6682  * netdev_has_any_upper_dev - Check if device is linked to some device
6683  * @dev: device
6684  *
6685  * Find out if a device is linked to an upper device and return true in case
6686  * it is. The caller must hold the RTNL lock.
6687  */
6688 bool netdev_has_any_upper_dev(struct net_device *dev)
6689 {
6690 	ASSERT_RTNL();
6691 
6692 	return !list_empty(&dev->adj_list.upper);
6693 }
6694 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6695 
6696 /**
6697  * netdev_master_upper_dev_get - Get master upper device
6698  * @dev: device
6699  *
6700  * Find a master upper device and return pointer to it or NULL in case
6701  * it's not there. The caller must hold the RTNL lock.
6702  */
6703 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6704 {
6705 	struct netdev_adjacent *upper;
6706 
6707 	ASSERT_RTNL();
6708 
6709 	if (list_empty(&dev->adj_list.upper))
6710 		return NULL;
6711 
6712 	upper = list_first_entry(&dev->adj_list.upper,
6713 				 struct netdev_adjacent, list);
6714 	if (likely(upper->master))
6715 		return upper->dev;
6716 	return NULL;
6717 }
6718 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6719 
6720 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6721 {
6722 	struct netdev_adjacent *upper;
6723 
6724 	ASSERT_RTNL();
6725 
6726 	if (list_empty(&dev->adj_list.upper))
6727 		return NULL;
6728 
6729 	upper = list_first_entry(&dev->adj_list.upper,
6730 				 struct netdev_adjacent, list);
6731 	if (likely(upper->master) && !upper->ignore)
6732 		return upper->dev;
6733 	return NULL;
6734 }
6735 
6736 /**
6737  * netdev_has_any_lower_dev - Check if device is linked to some device
6738  * @dev: device
6739  *
6740  * Find out if a device is linked to a lower device and return true in case
6741  * it is. The caller must hold the RTNL lock.
6742  */
6743 static bool netdev_has_any_lower_dev(struct net_device *dev)
6744 {
6745 	ASSERT_RTNL();
6746 
6747 	return !list_empty(&dev->adj_list.lower);
6748 }
6749 
6750 void *netdev_adjacent_get_private(struct list_head *adj_list)
6751 {
6752 	struct netdev_adjacent *adj;
6753 
6754 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6755 
6756 	return adj->private;
6757 }
6758 EXPORT_SYMBOL(netdev_adjacent_get_private);
6759 
6760 /**
6761  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6762  * @dev: device
6763  * @iter: list_head ** of the current position
6764  *
6765  * Gets the next device from the dev's upper list, starting from iter
6766  * position. The caller must hold RCU read lock.
6767  */
6768 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6769 						 struct list_head **iter)
6770 {
6771 	struct netdev_adjacent *upper;
6772 
6773 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6774 
6775 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6776 
6777 	if (&upper->list == &dev->adj_list.upper)
6778 		return NULL;
6779 
6780 	*iter = &upper->list;
6781 
6782 	return upper->dev;
6783 }
6784 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6785 
6786 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6787 						  struct list_head **iter,
6788 						  bool *ignore)
6789 {
6790 	struct netdev_adjacent *upper;
6791 
6792 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6793 
6794 	if (&upper->list == &dev->adj_list.upper)
6795 		return NULL;
6796 
6797 	*iter = &upper->list;
6798 	*ignore = upper->ignore;
6799 
6800 	return upper->dev;
6801 }
6802 
6803 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6804 						    struct list_head **iter)
6805 {
6806 	struct netdev_adjacent *upper;
6807 
6808 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6809 
6810 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6811 
6812 	if (&upper->list == &dev->adj_list.upper)
6813 		return NULL;
6814 
6815 	*iter = &upper->list;
6816 
6817 	return upper->dev;
6818 }
6819 
6820 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6821 				       int (*fn)(struct net_device *dev,
6822 					 struct netdev_nested_priv *priv),
6823 				       struct netdev_nested_priv *priv)
6824 {
6825 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6826 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6827 	int ret, cur = 0;
6828 	bool ignore;
6829 
6830 	now = dev;
6831 	iter = &dev->adj_list.upper;
6832 
6833 	while (1) {
6834 		if (now != dev) {
6835 			ret = fn(now, priv);
6836 			if (ret)
6837 				return ret;
6838 		}
6839 
6840 		next = NULL;
6841 		while (1) {
6842 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6843 			if (!udev)
6844 				break;
6845 			if (ignore)
6846 				continue;
6847 
6848 			next = udev;
6849 			niter = &udev->adj_list.upper;
6850 			dev_stack[cur] = now;
6851 			iter_stack[cur++] = iter;
6852 			break;
6853 		}
6854 
6855 		if (!next) {
6856 			if (!cur)
6857 				return 0;
6858 			next = dev_stack[--cur];
6859 			niter = iter_stack[cur];
6860 		}
6861 
6862 		now = next;
6863 		iter = niter;
6864 	}
6865 
6866 	return 0;
6867 }
6868 
6869 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6870 				  int (*fn)(struct net_device *dev,
6871 					    struct netdev_nested_priv *priv),
6872 				  struct netdev_nested_priv *priv)
6873 {
6874 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6875 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6876 	int ret, cur = 0;
6877 
6878 	now = dev;
6879 	iter = &dev->adj_list.upper;
6880 
6881 	while (1) {
6882 		if (now != dev) {
6883 			ret = fn(now, priv);
6884 			if (ret)
6885 				return ret;
6886 		}
6887 
6888 		next = NULL;
6889 		while (1) {
6890 			udev = netdev_next_upper_dev_rcu(now, &iter);
6891 			if (!udev)
6892 				break;
6893 
6894 			next = udev;
6895 			niter = &udev->adj_list.upper;
6896 			dev_stack[cur] = now;
6897 			iter_stack[cur++] = iter;
6898 			break;
6899 		}
6900 
6901 		if (!next) {
6902 			if (!cur)
6903 				return 0;
6904 			next = dev_stack[--cur];
6905 			niter = iter_stack[cur];
6906 		}
6907 
6908 		now = next;
6909 		iter = niter;
6910 	}
6911 
6912 	return 0;
6913 }
6914 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6915 
6916 static bool __netdev_has_upper_dev(struct net_device *dev,
6917 				   struct net_device *upper_dev)
6918 {
6919 	struct netdev_nested_priv priv = {
6920 		.flags = 0,
6921 		.data = (void *)upper_dev,
6922 	};
6923 
6924 	ASSERT_RTNL();
6925 
6926 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6927 					   &priv);
6928 }
6929 
6930 /**
6931  * netdev_lower_get_next_private - Get the next ->private from the
6932  *				   lower neighbour list
6933  * @dev: device
6934  * @iter: list_head ** of the current position
6935  *
6936  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6937  * list, starting from iter position. The caller must hold either hold the
6938  * RTNL lock or its own locking that guarantees that the neighbour lower
6939  * list will remain unchanged.
6940  */
6941 void *netdev_lower_get_next_private(struct net_device *dev,
6942 				    struct list_head **iter)
6943 {
6944 	struct netdev_adjacent *lower;
6945 
6946 	lower = list_entry(*iter, struct netdev_adjacent, list);
6947 
6948 	if (&lower->list == &dev->adj_list.lower)
6949 		return NULL;
6950 
6951 	*iter = lower->list.next;
6952 
6953 	return lower->private;
6954 }
6955 EXPORT_SYMBOL(netdev_lower_get_next_private);
6956 
6957 /**
6958  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6959  *				       lower neighbour list, RCU
6960  *				       variant
6961  * @dev: device
6962  * @iter: list_head ** of the current position
6963  *
6964  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6965  * list, starting from iter position. The caller must hold RCU read lock.
6966  */
6967 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6968 					struct list_head **iter)
6969 {
6970 	struct netdev_adjacent *lower;
6971 
6972 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6973 
6974 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6975 
6976 	if (&lower->list == &dev->adj_list.lower)
6977 		return NULL;
6978 
6979 	*iter = &lower->list;
6980 
6981 	return lower->private;
6982 }
6983 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6984 
6985 /**
6986  * netdev_lower_get_next - Get the next device from the lower neighbour
6987  *                         list
6988  * @dev: device
6989  * @iter: list_head ** of the current position
6990  *
6991  * Gets the next netdev_adjacent from the dev's lower neighbour
6992  * list, starting from iter position. The caller must hold RTNL lock or
6993  * its own locking that guarantees that the neighbour lower
6994  * list will remain unchanged.
6995  */
6996 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6997 {
6998 	struct netdev_adjacent *lower;
6999 
7000 	lower = list_entry(*iter, struct netdev_adjacent, list);
7001 
7002 	if (&lower->list == &dev->adj_list.lower)
7003 		return NULL;
7004 
7005 	*iter = lower->list.next;
7006 
7007 	return lower->dev;
7008 }
7009 EXPORT_SYMBOL(netdev_lower_get_next);
7010 
7011 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7012 						struct list_head **iter)
7013 {
7014 	struct netdev_adjacent *lower;
7015 
7016 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7017 
7018 	if (&lower->list == &dev->adj_list.lower)
7019 		return NULL;
7020 
7021 	*iter = &lower->list;
7022 
7023 	return lower->dev;
7024 }
7025 
7026 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7027 						  struct list_head **iter,
7028 						  bool *ignore)
7029 {
7030 	struct netdev_adjacent *lower;
7031 
7032 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7033 
7034 	if (&lower->list == &dev->adj_list.lower)
7035 		return NULL;
7036 
7037 	*iter = &lower->list;
7038 	*ignore = lower->ignore;
7039 
7040 	return lower->dev;
7041 }
7042 
7043 int netdev_walk_all_lower_dev(struct net_device *dev,
7044 			      int (*fn)(struct net_device *dev,
7045 					struct netdev_nested_priv *priv),
7046 			      struct netdev_nested_priv *priv)
7047 {
7048 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7049 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7050 	int ret, cur = 0;
7051 
7052 	now = dev;
7053 	iter = &dev->adj_list.lower;
7054 
7055 	while (1) {
7056 		if (now != dev) {
7057 			ret = fn(now, priv);
7058 			if (ret)
7059 				return ret;
7060 		}
7061 
7062 		next = NULL;
7063 		while (1) {
7064 			ldev = netdev_next_lower_dev(now, &iter);
7065 			if (!ldev)
7066 				break;
7067 
7068 			next = ldev;
7069 			niter = &ldev->adj_list.lower;
7070 			dev_stack[cur] = now;
7071 			iter_stack[cur++] = iter;
7072 			break;
7073 		}
7074 
7075 		if (!next) {
7076 			if (!cur)
7077 				return 0;
7078 			next = dev_stack[--cur];
7079 			niter = iter_stack[cur];
7080 		}
7081 
7082 		now = next;
7083 		iter = niter;
7084 	}
7085 
7086 	return 0;
7087 }
7088 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7089 
7090 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7091 				       int (*fn)(struct net_device *dev,
7092 					 struct netdev_nested_priv *priv),
7093 				       struct netdev_nested_priv *priv)
7094 {
7095 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7096 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7097 	int ret, cur = 0;
7098 	bool ignore;
7099 
7100 	now = dev;
7101 	iter = &dev->adj_list.lower;
7102 
7103 	while (1) {
7104 		if (now != dev) {
7105 			ret = fn(now, priv);
7106 			if (ret)
7107 				return ret;
7108 		}
7109 
7110 		next = NULL;
7111 		while (1) {
7112 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7113 			if (!ldev)
7114 				break;
7115 			if (ignore)
7116 				continue;
7117 
7118 			next = ldev;
7119 			niter = &ldev->adj_list.lower;
7120 			dev_stack[cur] = now;
7121 			iter_stack[cur++] = iter;
7122 			break;
7123 		}
7124 
7125 		if (!next) {
7126 			if (!cur)
7127 				return 0;
7128 			next = dev_stack[--cur];
7129 			niter = iter_stack[cur];
7130 		}
7131 
7132 		now = next;
7133 		iter = niter;
7134 	}
7135 
7136 	return 0;
7137 }
7138 
7139 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7140 					     struct list_head **iter)
7141 {
7142 	struct netdev_adjacent *lower;
7143 
7144 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7145 	if (&lower->list == &dev->adj_list.lower)
7146 		return NULL;
7147 
7148 	*iter = &lower->list;
7149 
7150 	return lower->dev;
7151 }
7152 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7153 
7154 static u8 __netdev_upper_depth(struct net_device *dev)
7155 {
7156 	struct net_device *udev;
7157 	struct list_head *iter;
7158 	u8 max_depth = 0;
7159 	bool ignore;
7160 
7161 	for (iter = &dev->adj_list.upper,
7162 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7163 	     udev;
7164 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7165 		if (ignore)
7166 			continue;
7167 		if (max_depth < udev->upper_level)
7168 			max_depth = udev->upper_level;
7169 	}
7170 
7171 	return max_depth;
7172 }
7173 
7174 static u8 __netdev_lower_depth(struct net_device *dev)
7175 {
7176 	struct net_device *ldev;
7177 	struct list_head *iter;
7178 	u8 max_depth = 0;
7179 	bool ignore;
7180 
7181 	for (iter = &dev->adj_list.lower,
7182 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7183 	     ldev;
7184 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7185 		if (ignore)
7186 			continue;
7187 		if (max_depth < ldev->lower_level)
7188 			max_depth = ldev->lower_level;
7189 	}
7190 
7191 	return max_depth;
7192 }
7193 
7194 static int __netdev_update_upper_level(struct net_device *dev,
7195 				       struct netdev_nested_priv *__unused)
7196 {
7197 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7198 	return 0;
7199 }
7200 
7201 #ifdef CONFIG_LOCKDEP
7202 static LIST_HEAD(net_unlink_list);
7203 
7204 static void net_unlink_todo(struct net_device *dev)
7205 {
7206 	if (list_empty(&dev->unlink_list))
7207 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7208 }
7209 #endif
7210 
7211 static int __netdev_update_lower_level(struct net_device *dev,
7212 				       struct netdev_nested_priv *priv)
7213 {
7214 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7215 
7216 #ifdef CONFIG_LOCKDEP
7217 	if (!priv)
7218 		return 0;
7219 
7220 	if (priv->flags & NESTED_SYNC_IMM)
7221 		dev->nested_level = dev->lower_level - 1;
7222 	if (priv->flags & NESTED_SYNC_TODO)
7223 		net_unlink_todo(dev);
7224 #endif
7225 	return 0;
7226 }
7227 
7228 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7229 				  int (*fn)(struct net_device *dev,
7230 					    struct netdev_nested_priv *priv),
7231 				  struct netdev_nested_priv *priv)
7232 {
7233 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7234 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7235 	int ret, cur = 0;
7236 
7237 	now = dev;
7238 	iter = &dev->adj_list.lower;
7239 
7240 	while (1) {
7241 		if (now != dev) {
7242 			ret = fn(now, priv);
7243 			if (ret)
7244 				return ret;
7245 		}
7246 
7247 		next = NULL;
7248 		while (1) {
7249 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7250 			if (!ldev)
7251 				break;
7252 
7253 			next = ldev;
7254 			niter = &ldev->adj_list.lower;
7255 			dev_stack[cur] = now;
7256 			iter_stack[cur++] = iter;
7257 			break;
7258 		}
7259 
7260 		if (!next) {
7261 			if (!cur)
7262 				return 0;
7263 			next = dev_stack[--cur];
7264 			niter = iter_stack[cur];
7265 		}
7266 
7267 		now = next;
7268 		iter = niter;
7269 	}
7270 
7271 	return 0;
7272 }
7273 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7274 
7275 /**
7276  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7277  *				       lower neighbour list, RCU
7278  *				       variant
7279  * @dev: device
7280  *
7281  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7282  * list. The caller must hold RCU read lock.
7283  */
7284 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7285 {
7286 	struct netdev_adjacent *lower;
7287 
7288 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7289 			struct netdev_adjacent, list);
7290 	if (lower)
7291 		return lower->private;
7292 	return NULL;
7293 }
7294 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7295 
7296 /**
7297  * netdev_master_upper_dev_get_rcu - Get master upper device
7298  * @dev: device
7299  *
7300  * Find a master upper device and return pointer to it or NULL in case
7301  * it's not there. The caller must hold the RCU read lock.
7302  */
7303 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7304 {
7305 	struct netdev_adjacent *upper;
7306 
7307 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7308 				       struct netdev_adjacent, list);
7309 	if (upper && likely(upper->master))
7310 		return upper->dev;
7311 	return NULL;
7312 }
7313 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7314 
7315 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7316 			      struct net_device *adj_dev,
7317 			      struct list_head *dev_list)
7318 {
7319 	char linkname[IFNAMSIZ+7];
7320 
7321 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7322 		"upper_%s" : "lower_%s", adj_dev->name);
7323 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7324 				 linkname);
7325 }
7326 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7327 			       char *name,
7328 			       struct list_head *dev_list)
7329 {
7330 	char linkname[IFNAMSIZ+7];
7331 
7332 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7333 		"upper_%s" : "lower_%s", name);
7334 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7335 }
7336 
7337 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7338 						 struct net_device *adj_dev,
7339 						 struct list_head *dev_list)
7340 {
7341 	return (dev_list == &dev->adj_list.upper ||
7342 		dev_list == &dev->adj_list.lower) &&
7343 		net_eq(dev_net(dev), dev_net(adj_dev));
7344 }
7345 
7346 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7347 					struct net_device *adj_dev,
7348 					struct list_head *dev_list,
7349 					void *private, bool master)
7350 {
7351 	struct netdev_adjacent *adj;
7352 	int ret;
7353 
7354 	adj = __netdev_find_adj(adj_dev, dev_list);
7355 
7356 	if (adj) {
7357 		adj->ref_nr += 1;
7358 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7359 			 dev->name, adj_dev->name, adj->ref_nr);
7360 
7361 		return 0;
7362 	}
7363 
7364 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7365 	if (!adj)
7366 		return -ENOMEM;
7367 
7368 	adj->dev = adj_dev;
7369 	adj->master = master;
7370 	adj->ref_nr = 1;
7371 	adj->private = private;
7372 	adj->ignore = false;
7373 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7374 
7375 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7376 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7377 
7378 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7379 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7380 		if (ret)
7381 			goto free_adj;
7382 	}
7383 
7384 	/* Ensure that master link is always the first item in list. */
7385 	if (master) {
7386 		ret = sysfs_create_link(&(dev->dev.kobj),
7387 					&(adj_dev->dev.kobj), "master");
7388 		if (ret)
7389 			goto remove_symlinks;
7390 
7391 		list_add_rcu(&adj->list, dev_list);
7392 	} else {
7393 		list_add_tail_rcu(&adj->list, dev_list);
7394 	}
7395 
7396 	return 0;
7397 
7398 remove_symlinks:
7399 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7400 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7401 free_adj:
7402 	dev_put_track(adj_dev, &adj->dev_tracker);
7403 	kfree(adj);
7404 
7405 	return ret;
7406 }
7407 
7408 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7409 					 struct net_device *adj_dev,
7410 					 u16 ref_nr,
7411 					 struct list_head *dev_list)
7412 {
7413 	struct netdev_adjacent *adj;
7414 
7415 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7416 		 dev->name, adj_dev->name, ref_nr);
7417 
7418 	adj = __netdev_find_adj(adj_dev, dev_list);
7419 
7420 	if (!adj) {
7421 		pr_err("Adjacency does not exist for device %s from %s\n",
7422 		       dev->name, adj_dev->name);
7423 		WARN_ON(1);
7424 		return;
7425 	}
7426 
7427 	if (adj->ref_nr > ref_nr) {
7428 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7429 			 dev->name, adj_dev->name, ref_nr,
7430 			 adj->ref_nr - ref_nr);
7431 		adj->ref_nr -= ref_nr;
7432 		return;
7433 	}
7434 
7435 	if (adj->master)
7436 		sysfs_remove_link(&(dev->dev.kobj), "master");
7437 
7438 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7439 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7440 
7441 	list_del_rcu(&adj->list);
7442 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7443 		 adj_dev->name, dev->name, adj_dev->name);
7444 	dev_put_track(adj_dev, &adj->dev_tracker);
7445 	kfree_rcu(adj, rcu);
7446 }
7447 
7448 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7449 					    struct net_device *upper_dev,
7450 					    struct list_head *up_list,
7451 					    struct list_head *down_list,
7452 					    void *private, bool master)
7453 {
7454 	int ret;
7455 
7456 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7457 					   private, master);
7458 	if (ret)
7459 		return ret;
7460 
7461 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7462 					   private, false);
7463 	if (ret) {
7464 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7465 		return ret;
7466 	}
7467 
7468 	return 0;
7469 }
7470 
7471 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7472 					       struct net_device *upper_dev,
7473 					       u16 ref_nr,
7474 					       struct list_head *up_list,
7475 					       struct list_head *down_list)
7476 {
7477 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7478 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7479 }
7480 
7481 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7482 						struct net_device *upper_dev,
7483 						void *private, bool master)
7484 {
7485 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7486 						&dev->adj_list.upper,
7487 						&upper_dev->adj_list.lower,
7488 						private, master);
7489 }
7490 
7491 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7492 						   struct net_device *upper_dev)
7493 {
7494 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7495 					   &dev->adj_list.upper,
7496 					   &upper_dev->adj_list.lower);
7497 }
7498 
7499 static int __netdev_upper_dev_link(struct net_device *dev,
7500 				   struct net_device *upper_dev, bool master,
7501 				   void *upper_priv, void *upper_info,
7502 				   struct netdev_nested_priv *priv,
7503 				   struct netlink_ext_ack *extack)
7504 {
7505 	struct netdev_notifier_changeupper_info changeupper_info = {
7506 		.info = {
7507 			.dev = dev,
7508 			.extack = extack,
7509 		},
7510 		.upper_dev = upper_dev,
7511 		.master = master,
7512 		.linking = true,
7513 		.upper_info = upper_info,
7514 	};
7515 	struct net_device *master_dev;
7516 	int ret = 0;
7517 
7518 	ASSERT_RTNL();
7519 
7520 	if (dev == upper_dev)
7521 		return -EBUSY;
7522 
7523 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7524 	if (__netdev_has_upper_dev(upper_dev, dev))
7525 		return -EBUSY;
7526 
7527 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7528 		return -EMLINK;
7529 
7530 	if (!master) {
7531 		if (__netdev_has_upper_dev(dev, upper_dev))
7532 			return -EEXIST;
7533 	} else {
7534 		master_dev = __netdev_master_upper_dev_get(dev);
7535 		if (master_dev)
7536 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7537 	}
7538 
7539 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7540 					    &changeupper_info.info);
7541 	ret = notifier_to_errno(ret);
7542 	if (ret)
7543 		return ret;
7544 
7545 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7546 						   master);
7547 	if (ret)
7548 		return ret;
7549 
7550 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7551 					    &changeupper_info.info);
7552 	ret = notifier_to_errno(ret);
7553 	if (ret)
7554 		goto rollback;
7555 
7556 	__netdev_update_upper_level(dev, NULL);
7557 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7558 
7559 	__netdev_update_lower_level(upper_dev, priv);
7560 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7561 				    priv);
7562 
7563 	return 0;
7564 
7565 rollback:
7566 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7567 
7568 	return ret;
7569 }
7570 
7571 /**
7572  * netdev_upper_dev_link - Add a link to the upper device
7573  * @dev: device
7574  * @upper_dev: new upper device
7575  * @extack: netlink extended ack
7576  *
7577  * Adds a link to device which is upper to this one. The caller must hold
7578  * the RTNL lock. On a failure a negative errno code is returned.
7579  * On success the reference counts are adjusted and the function
7580  * returns zero.
7581  */
7582 int netdev_upper_dev_link(struct net_device *dev,
7583 			  struct net_device *upper_dev,
7584 			  struct netlink_ext_ack *extack)
7585 {
7586 	struct netdev_nested_priv priv = {
7587 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7588 		.data = NULL,
7589 	};
7590 
7591 	return __netdev_upper_dev_link(dev, upper_dev, false,
7592 				       NULL, NULL, &priv, extack);
7593 }
7594 EXPORT_SYMBOL(netdev_upper_dev_link);
7595 
7596 /**
7597  * netdev_master_upper_dev_link - Add a master link to the upper device
7598  * @dev: device
7599  * @upper_dev: new upper device
7600  * @upper_priv: upper device private
7601  * @upper_info: upper info to be passed down via notifier
7602  * @extack: netlink extended ack
7603  *
7604  * Adds a link to device which is upper to this one. In this case, only
7605  * one master upper device can be linked, although other non-master devices
7606  * might be linked as well. The caller must hold the RTNL lock.
7607  * On a failure a negative errno code is returned. On success the reference
7608  * counts are adjusted and the function returns zero.
7609  */
7610 int netdev_master_upper_dev_link(struct net_device *dev,
7611 				 struct net_device *upper_dev,
7612 				 void *upper_priv, void *upper_info,
7613 				 struct netlink_ext_ack *extack)
7614 {
7615 	struct netdev_nested_priv priv = {
7616 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7617 		.data = NULL,
7618 	};
7619 
7620 	return __netdev_upper_dev_link(dev, upper_dev, true,
7621 				       upper_priv, upper_info, &priv, extack);
7622 }
7623 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7624 
7625 static void __netdev_upper_dev_unlink(struct net_device *dev,
7626 				      struct net_device *upper_dev,
7627 				      struct netdev_nested_priv *priv)
7628 {
7629 	struct netdev_notifier_changeupper_info changeupper_info = {
7630 		.info = {
7631 			.dev = dev,
7632 		},
7633 		.upper_dev = upper_dev,
7634 		.linking = false,
7635 	};
7636 
7637 	ASSERT_RTNL();
7638 
7639 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7640 
7641 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7642 				      &changeupper_info.info);
7643 
7644 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7645 
7646 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7647 				      &changeupper_info.info);
7648 
7649 	__netdev_update_upper_level(dev, NULL);
7650 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7651 
7652 	__netdev_update_lower_level(upper_dev, priv);
7653 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7654 				    priv);
7655 }
7656 
7657 /**
7658  * netdev_upper_dev_unlink - Removes a link to upper device
7659  * @dev: device
7660  * @upper_dev: new upper device
7661  *
7662  * Removes a link to device which is upper to this one. The caller must hold
7663  * the RTNL lock.
7664  */
7665 void netdev_upper_dev_unlink(struct net_device *dev,
7666 			     struct net_device *upper_dev)
7667 {
7668 	struct netdev_nested_priv priv = {
7669 		.flags = NESTED_SYNC_TODO,
7670 		.data = NULL,
7671 	};
7672 
7673 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7674 }
7675 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7676 
7677 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7678 				      struct net_device *lower_dev,
7679 				      bool val)
7680 {
7681 	struct netdev_adjacent *adj;
7682 
7683 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7684 	if (adj)
7685 		adj->ignore = val;
7686 
7687 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7688 	if (adj)
7689 		adj->ignore = val;
7690 }
7691 
7692 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7693 					struct net_device *lower_dev)
7694 {
7695 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7696 }
7697 
7698 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7699 				       struct net_device *lower_dev)
7700 {
7701 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7702 }
7703 
7704 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7705 				   struct net_device *new_dev,
7706 				   struct net_device *dev,
7707 				   struct netlink_ext_ack *extack)
7708 {
7709 	struct netdev_nested_priv priv = {
7710 		.flags = 0,
7711 		.data = NULL,
7712 	};
7713 	int err;
7714 
7715 	if (!new_dev)
7716 		return 0;
7717 
7718 	if (old_dev && new_dev != old_dev)
7719 		netdev_adjacent_dev_disable(dev, old_dev);
7720 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7721 				      extack);
7722 	if (err) {
7723 		if (old_dev && new_dev != old_dev)
7724 			netdev_adjacent_dev_enable(dev, old_dev);
7725 		return err;
7726 	}
7727 
7728 	return 0;
7729 }
7730 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7731 
7732 void netdev_adjacent_change_commit(struct net_device *old_dev,
7733 				   struct net_device *new_dev,
7734 				   struct net_device *dev)
7735 {
7736 	struct netdev_nested_priv priv = {
7737 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7738 		.data = NULL,
7739 	};
7740 
7741 	if (!new_dev || !old_dev)
7742 		return;
7743 
7744 	if (new_dev == old_dev)
7745 		return;
7746 
7747 	netdev_adjacent_dev_enable(dev, old_dev);
7748 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7749 }
7750 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7751 
7752 void netdev_adjacent_change_abort(struct net_device *old_dev,
7753 				  struct net_device *new_dev,
7754 				  struct net_device *dev)
7755 {
7756 	struct netdev_nested_priv priv = {
7757 		.flags = 0,
7758 		.data = NULL,
7759 	};
7760 
7761 	if (!new_dev)
7762 		return;
7763 
7764 	if (old_dev && new_dev != old_dev)
7765 		netdev_adjacent_dev_enable(dev, old_dev);
7766 
7767 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7768 }
7769 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7770 
7771 /**
7772  * netdev_bonding_info_change - Dispatch event about slave change
7773  * @dev: device
7774  * @bonding_info: info to dispatch
7775  *
7776  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7777  * The caller must hold the RTNL lock.
7778  */
7779 void netdev_bonding_info_change(struct net_device *dev,
7780 				struct netdev_bonding_info *bonding_info)
7781 {
7782 	struct netdev_notifier_bonding_info info = {
7783 		.info.dev = dev,
7784 	};
7785 
7786 	memcpy(&info.bonding_info, bonding_info,
7787 	       sizeof(struct netdev_bonding_info));
7788 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7789 				      &info.info);
7790 }
7791 EXPORT_SYMBOL(netdev_bonding_info_change);
7792 
7793 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7794 					   struct netlink_ext_ack *extack)
7795 {
7796 	struct netdev_notifier_offload_xstats_info info = {
7797 		.info.dev = dev,
7798 		.info.extack = extack,
7799 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7800 	};
7801 	int err;
7802 	int rc;
7803 
7804 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7805 					 GFP_KERNEL);
7806 	if (!dev->offload_xstats_l3)
7807 		return -ENOMEM;
7808 
7809 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7810 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7811 						  &info.info);
7812 	err = notifier_to_errno(rc);
7813 	if (err)
7814 		goto free_stats;
7815 
7816 	return 0;
7817 
7818 free_stats:
7819 	kfree(dev->offload_xstats_l3);
7820 	dev->offload_xstats_l3 = NULL;
7821 	return err;
7822 }
7823 
7824 int netdev_offload_xstats_enable(struct net_device *dev,
7825 				 enum netdev_offload_xstats_type type,
7826 				 struct netlink_ext_ack *extack)
7827 {
7828 	ASSERT_RTNL();
7829 
7830 	if (netdev_offload_xstats_enabled(dev, type))
7831 		return -EALREADY;
7832 
7833 	switch (type) {
7834 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7835 		return netdev_offload_xstats_enable_l3(dev, extack);
7836 	}
7837 
7838 	WARN_ON(1);
7839 	return -EINVAL;
7840 }
7841 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7842 
7843 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7844 {
7845 	struct netdev_notifier_offload_xstats_info info = {
7846 		.info.dev = dev,
7847 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7848 	};
7849 
7850 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7851 				      &info.info);
7852 	kfree(dev->offload_xstats_l3);
7853 	dev->offload_xstats_l3 = NULL;
7854 }
7855 
7856 int netdev_offload_xstats_disable(struct net_device *dev,
7857 				  enum netdev_offload_xstats_type type)
7858 {
7859 	ASSERT_RTNL();
7860 
7861 	if (!netdev_offload_xstats_enabled(dev, type))
7862 		return -EALREADY;
7863 
7864 	switch (type) {
7865 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7866 		netdev_offload_xstats_disable_l3(dev);
7867 		return 0;
7868 	}
7869 
7870 	WARN_ON(1);
7871 	return -EINVAL;
7872 }
7873 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7874 
7875 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7876 {
7877 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7878 }
7879 
7880 static struct rtnl_hw_stats64 *
7881 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7882 			      enum netdev_offload_xstats_type type)
7883 {
7884 	switch (type) {
7885 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7886 		return dev->offload_xstats_l3;
7887 	}
7888 
7889 	WARN_ON(1);
7890 	return NULL;
7891 }
7892 
7893 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7894 				   enum netdev_offload_xstats_type type)
7895 {
7896 	ASSERT_RTNL();
7897 
7898 	return netdev_offload_xstats_get_ptr(dev, type);
7899 }
7900 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7901 
7902 struct netdev_notifier_offload_xstats_ru {
7903 	bool used;
7904 };
7905 
7906 struct netdev_notifier_offload_xstats_rd {
7907 	struct rtnl_hw_stats64 stats;
7908 	bool used;
7909 };
7910 
7911 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7912 				  const struct rtnl_hw_stats64 *src)
7913 {
7914 	dest->rx_packets	  += src->rx_packets;
7915 	dest->tx_packets	  += src->tx_packets;
7916 	dest->rx_bytes		  += src->rx_bytes;
7917 	dest->tx_bytes		  += src->tx_bytes;
7918 	dest->rx_errors		  += src->rx_errors;
7919 	dest->tx_errors		  += src->tx_errors;
7920 	dest->rx_dropped	  += src->rx_dropped;
7921 	dest->tx_dropped	  += src->tx_dropped;
7922 	dest->multicast		  += src->multicast;
7923 }
7924 
7925 static int netdev_offload_xstats_get_used(struct net_device *dev,
7926 					  enum netdev_offload_xstats_type type,
7927 					  bool *p_used,
7928 					  struct netlink_ext_ack *extack)
7929 {
7930 	struct netdev_notifier_offload_xstats_ru report_used = {};
7931 	struct netdev_notifier_offload_xstats_info info = {
7932 		.info.dev = dev,
7933 		.info.extack = extack,
7934 		.type = type,
7935 		.report_used = &report_used,
7936 	};
7937 	int rc;
7938 
7939 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7940 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7941 					   &info.info);
7942 	*p_used = report_used.used;
7943 	return notifier_to_errno(rc);
7944 }
7945 
7946 static int netdev_offload_xstats_get_stats(struct net_device *dev,
7947 					   enum netdev_offload_xstats_type type,
7948 					   struct rtnl_hw_stats64 *p_stats,
7949 					   bool *p_used,
7950 					   struct netlink_ext_ack *extack)
7951 {
7952 	struct netdev_notifier_offload_xstats_rd report_delta = {};
7953 	struct netdev_notifier_offload_xstats_info info = {
7954 		.info.dev = dev,
7955 		.info.extack = extack,
7956 		.type = type,
7957 		.report_delta = &report_delta,
7958 	};
7959 	struct rtnl_hw_stats64 *stats;
7960 	int rc;
7961 
7962 	stats = netdev_offload_xstats_get_ptr(dev, type);
7963 	if (WARN_ON(!stats))
7964 		return -EINVAL;
7965 
7966 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7967 					   &info.info);
7968 
7969 	/* Cache whatever we got, even if there was an error, otherwise the
7970 	 * successful stats retrievals would get lost.
7971 	 */
7972 	netdev_hw_stats64_add(stats, &report_delta.stats);
7973 
7974 	if (p_stats)
7975 		*p_stats = *stats;
7976 	*p_used = report_delta.used;
7977 
7978 	return notifier_to_errno(rc);
7979 }
7980 
7981 int netdev_offload_xstats_get(struct net_device *dev,
7982 			      enum netdev_offload_xstats_type type,
7983 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
7984 			      struct netlink_ext_ack *extack)
7985 {
7986 	ASSERT_RTNL();
7987 
7988 	if (p_stats)
7989 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
7990 						       p_used, extack);
7991 	else
7992 		return netdev_offload_xstats_get_used(dev, type, p_used,
7993 						      extack);
7994 }
7995 EXPORT_SYMBOL(netdev_offload_xstats_get);
7996 
7997 void
7998 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7999 				   const struct rtnl_hw_stats64 *stats)
8000 {
8001 	report_delta->used = true;
8002 	netdev_hw_stats64_add(&report_delta->stats, stats);
8003 }
8004 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8005 
8006 void
8007 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8008 {
8009 	report_used->used = true;
8010 }
8011 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8012 
8013 void netdev_offload_xstats_push_delta(struct net_device *dev,
8014 				      enum netdev_offload_xstats_type type,
8015 				      const struct rtnl_hw_stats64 *p_stats)
8016 {
8017 	struct rtnl_hw_stats64 *stats;
8018 
8019 	ASSERT_RTNL();
8020 
8021 	stats = netdev_offload_xstats_get_ptr(dev, type);
8022 	if (WARN_ON(!stats))
8023 		return;
8024 
8025 	netdev_hw_stats64_add(stats, p_stats);
8026 }
8027 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8028 
8029 /**
8030  * netdev_get_xmit_slave - Get the xmit slave of master device
8031  * @dev: device
8032  * @skb: The packet
8033  * @all_slaves: assume all the slaves are active
8034  *
8035  * The reference counters are not incremented so the caller must be
8036  * careful with locks. The caller must hold RCU lock.
8037  * %NULL is returned if no slave is found.
8038  */
8039 
8040 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8041 					 struct sk_buff *skb,
8042 					 bool all_slaves)
8043 {
8044 	const struct net_device_ops *ops = dev->netdev_ops;
8045 
8046 	if (!ops->ndo_get_xmit_slave)
8047 		return NULL;
8048 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8049 }
8050 EXPORT_SYMBOL(netdev_get_xmit_slave);
8051 
8052 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8053 						  struct sock *sk)
8054 {
8055 	const struct net_device_ops *ops = dev->netdev_ops;
8056 
8057 	if (!ops->ndo_sk_get_lower_dev)
8058 		return NULL;
8059 	return ops->ndo_sk_get_lower_dev(dev, sk);
8060 }
8061 
8062 /**
8063  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8064  * @dev: device
8065  * @sk: the socket
8066  *
8067  * %NULL is returned if no lower device is found.
8068  */
8069 
8070 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8071 					    struct sock *sk)
8072 {
8073 	struct net_device *lower;
8074 
8075 	lower = netdev_sk_get_lower_dev(dev, sk);
8076 	while (lower) {
8077 		dev = lower;
8078 		lower = netdev_sk_get_lower_dev(dev, sk);
8079 	}
8080 
8081 	return dev;
8082 }
8083 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8084 
8085 static void netdev_adjacent_add_links(struct net_device *dev)
8086 {
8087 	struct netdev_adjacent *iter;
8088 
8089 	struct net *net = dev_net(dev);
8090 
8091 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8092 		if (!net_eq(net, dev_net(iter->dev)))
8093 			continue;
8094 		netdev_adjacent_sysfs_add(iter->dev, dev,
8095 					  &iter->dev->adj_list.lower);
8096 		netdev_adjacent_sysfs_add(dev, iter->dev,
8097 					  &dev->adj_list.upper);
8098 	}
8099 
8100 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8101 		if (!net_eq(net, dev_net(iter->dev)))
8102 			continue;
8103 		netdev_adjacent_sysfs_add(iter->dev, dev,
8104 					  &iter->dev->adj_list.upper);
8105 		netdev_adjacent_sysfs_add(dev, iter->dev,
8106 					  &dev->adj_list.lower);
8107 	}
8108 }
8109 
8110 static void netdev_adjacent_del_links(struct net_device *dev)
8111 {
8112 	struct netdev_adjacent *iter;
8113 
8114 	struct net *net = dev_net(dev);
8115 
8116 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8117 		if (!net_eq(net, dev_net(iter->dev)))
8118 			continue;
8119 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8120 					  &iter->dev->adj_list.lower);
8121 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8122 					  &dev->adj_list.upper);
8123 	}
8124 
8125 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8126 		if (!net_eq(net, dev_net(iter->dev)))
8127 			continue;
8128 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8129 					  &iter->dev->adj_list.upper);
8130 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8131 					  &dev->adj_list.lower);
8132 	}
8133 }
8134 
8135 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8136 {
8137 	struct netdev_adjacent *iter;
8138 
8139 	struct net *net = dev_net(dev);
8140 
8141 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8142 		if (!net_eq(net, dev_net(iter->dev)))
8143 			continue;
8144 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8145 					  &iter->dev->adj_list.lower);
8146 		netdev_adjacent_sysfs_add(iter->dev, dev,
8147 					  &iter->dev->adj_list.lower);
8148 	}
8149 
8150 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8151 		if (!net_eq(net, dev_net(iter->dev)))
8152 			continue;
8153 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8154 					  &iter->dev->adj_list.upper);
8155 		netdev_adjacent_sysfs_add(iter->dev, dev,
8156 					  &iter->dev->adj_list.upper);
8157 	}
8158 }
8159 
8160 void *netdev_lower_dev_get_private(struct net_device *dev,
8161 				   struct net_device *lower_dev)
8162 {
8163 	struct netdev_adjacent *lower;
8164 
8165 	if (!lower_dev)
8166 		return NULL;
8167 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8168 	if (!lower)
8169 		return NULL;
8170 
8171 	return lower->private;
8172 }
8173 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8174 
8175 
8176 /**
8177  * netdev_lower_state_changed - Dispatch event about lower device state change
8178  * @lower_dev: device
8179  * @lower_state_info: state to dispatch
8180  *
8181  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8182  * The caller must hold the RTNL lock.
8183  */
8184 void netdev_lower_state_changed(struct net_device *lower_dev,
8185 				void *lower_state_info)
8186 {
8187 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8188 		.info.dev = lower_dev,
8189 	};
8190 
8191 	ASSERT_RTNL();
8192 	changelowerstate_info.lower_state_info = lower_state_info;
8193 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8194 				      &changelowerstate_info.info);
8195 }
8196 EXPORT_SYMBOL(netdev_lower_state_changed);
8197 
8198 static void dev_change_rx_flags(struct net_device *dev, int flags)
8199 {
8200 	const struct net_device_ops *ops = dev->netdev_ops;
8201 
8202 	if (ops->ndo_change_rx_flags)
8203 		ops->ndo_change_rx_flags(dev, flags);
8204 }
8205 
8206 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8207 {
8208 	unsigned int old_flags = dev->flags;
8209 	kuid_t uid;
8210 	kgid_t gid;
8211 
8212 	ASSERT_RTNL();
8213 
8214 	dev->flags |= IFF_PROMISC;
8215 	dev->promiscuity += inc;
8216 	if (dev->promiscuity == 0) {
8217 		/*
8218 		 * Avoid overflow.
8219 		 * If inc causes overflow, untouch promisc and return error.
8220 		 */
8221 		if (inc < 0)
8222 			dev->flags &= ~IFF_PROMISC;
8223 		else {
8224 			dev->promiscuity -= inc;
8225 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8226 			return -EOVERFLOW;
8227 		}
8228 	}
8229 	if (dev->flags != old_flags) {
8230 		pr_info("device %s %s promiscuous mode\n",
8231 			dev->name,
8232 			dev->flags & IFF_PROMISC ? "entered" : "left");
8233 		if (audit_enabled) {
8234 			current_uid_gid(&uid, &gid);
8235 			audit_log(audit_context(), GFP_ATOMIC,
8236 				  AUDIT_ANOM_PROMISCUOUS,
8237 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8238 				  dev->name, (dev->flags & IFF_PROMISC),
8239 				  (old_flags & IFF_PROMISC),
8240 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8241 				  from_kuid(&init_user_ns, uid),
8242 				  from_kgid(&init_user_ns, gid),
8243 				  audit_get_sessionid(current));
8244 		}
8245 
8246 		dev_change_rx_flags(dev, IFF_PROMISC);
8247 	}
8248 	if (notify)
8249 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8250 	return 0;
8251 }
8252 
8253 /**
8254  *	dev_set_promiscuity	- update promiscuity count on a device
8255  *	@dev: device
8256  *	@inc: modifier
8257  *
8258  *	Add or remove promiscuity from a device. While the count in the device
8259  *	remains above zero the interface remains promiscuous. Once it hits zero
8260  *	the device reverts back to normal filtering operation. A negative inc
8261  *	value is used to drop promiscuity on the device.
8262  *	Return 0 if successful or a negative errno code on error.
8263  */
8264 int dev_set_promiscuity(struct net_device *dev, int inc)
8265 {
8266 	unsigned int old_flags = dev->flags;
8267 	int err;
8268 
8269 	err = __dev_set_promiscuity(dev, inc, true);
8270 	if (err < 0)
8271 		return err;
8272 	if (dev->flags != old_flags)
8273 		dev_set_rx_mode(dev);
8274 	return err;
8275 }
8276 EXPORT_SYMBOL(dev_set_promiscuity);
8277 
8278 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8279 {
8280 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8281 
8282 	ASSERT_RTNL();
8283 
8284 	dev->flags |= IFF_ALLMULTI;
8285 	dev->allmulti += inc;
8286 	if (dev->allmulti == 0) {
8287 		/*
8288 		 * Avoid overflow.
8289 		 * If inc causes overflow, untouch allmulti and return error.
8290 		 */
8291 		if (inc < 0)
8292 			dev->flags &= ~IFF_ALLMULTI;
8293 		else {
8294 			dev->allmulti -= inc;
8295 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8296 			return -EOVERFLOW;
8297 		}
8298 	}
8299 	if (dev->flags ^ old_flags) {
8300 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8301 		dev_set_rx_mode(dev);
8302 		if (notify)
8303 			__dev_notify_flags(dev, old_flags,
8304 					   dev->gflags ^ old_gflags);
8305 	}
8306 	return 0;
8307 }
8308 
8309 /**
8310  *	dev_set_allmulti	- update allmulti count on a device
8311  *	@dev: device
8312  *	@inc: modifier
8313  *
8314  *	Add or remove reception of all multicast frames to a device. While the
8315  *	count in the device remains above zero the interface remains listening
8316  *	to all interfaces. Once it hits zero the device reverts back to normal
8317  *	filtering operation. A negative @inc value is used to drop the counter
8318  *	when releasing a resource needing all multicasts.
8319  *	Return 0 if successful or a negative errno code on error.
8320  */
8321 
8322 int dev_set_allmulti(struct net_device *dev, int inc)
8323 {
8324 	return __dev_set_allmulti(dev, inc, true);
8325 }
8326 EXPORT_SYMBOL(dev_set_allmulti);
8327 
8328 /*
8329  *	Upload unicast and multicast address lists to device and
8330  *	configure RX filtering. When the device doesn't support unicast
8331  *	filtering it is put in promiscuous mode while unicast addresses
8332  *	are present.
8333  */
8334 void __dev_set_rx_mode(struct net_device *dev)
8335 {
8336 	const struct net_device_ops *ops = dev->netdev_ops;
8337 
8338 	/* dev_open will call this function so the list will stay sane. */
8339 	if (!(dev->flags&IFF_UP))
8340 		return;
8341 
8342 	if (!netif_device_present(dev))
8343 		return;
8344 
8345 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8346 		/* Unicast addresses changes may only happen under the rtnl,
8347 		 * therefore calling __dev_set_promiscuity here is safe.
8348 		 */
8349 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8350 			__dev_set_promiscuity(dev, 1, false);
8351 			dev->uc_promisc = true;
8352 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8353 			__dev_set_promiscuity(dev, -1, false);
8354 			dev->uc_promisc = false;
8355 		}
8356 	}
8357 
8358 	if (ops->ndo_set_rx_mode)
8359 		ops->ndo_set_rx_mode(dev);
8360 }
8361 
8362 void dev_set_rx_mode(struct net_device *dev)
8363 {
8364 	netif_addr_lock_bh(dev);
8365 	__dev_set_rx_mode(dev);
8366 	netif_addr_unlock_bh(dev);
8367 }
8368 
8369 /**
8370  *	dev_get_flags - get flags reported to userspace
8371  *	@dev: device
8372  *
8373  *	Get the combination of flag bits exported through APIs to userspace.
8374  */
8375 unsigned int dev_get_flags(const struct net_device *dev)
8376 {
8377 	unsigned int flags;
8378 
8379 	flags = (dev->flags & ~(IFF_PROMISC |
8380 				IFF_ALLMULTI |
8381 				IFF_RUNNING |
8382 				IFF_LOWER_UP |
8383 				IFF_DORMANT)) |
8384 		(dev->gflags & (IFF_PROMISC |
8385 				IFF_ALLMULTI));
8386 
8387 	if (netif_running(dev)) {
8388 		if (netif_oper_up(dev))
8389 			flags |= IFF_RUNNING;
8390 		if (netif_carrier_ok(dev))
8391 			flags |= IFF_LOWER_UP;
8392 		if (netif_dormant(dev))
8393 			flags |= IFF_DORMANT;
8394 	}
8395 
8396 	return flags;
8397 }
8398 EXPORT_SYMBOL(dev_get_flags);
8399 
8400 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8401 		       struct netlink_ext_ack *extack)
8402 {
8403 	unsigned int old_flags = dev->flags;
8404 	int ret;
8405 
8406 	ASSERT_RTNL();
8407 
8408 	/*
8409 	 *	Set the flags on our device.
8410 	 */
8411 
8412 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8413 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8414 			       IFF_AUTOMEDIA)) |
8415 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8416 				    IFF_ALLMULTI));
8417 
8418 	/*
8419 	 *	Load in the correct multicast list now the flags have changed.
8420 	 */
8421 
8422 	if ((old_flags ^ flags) & IFF_MULTICAST)
8423 		dev_change_rx_flags(dev, IFF_MULTICAST);
8424 
8425 	dev_set_rx_mode(dev);
8426 
8427 	/*
8428 	 *	Have we downed the interface. We handle IFF_UP ourselves
8429 	 *	according to user attempts to set it, rather than blindly
8430 	 *	setting it.
8431 	 */
8432 
8433 	ret = 0;
8434 	if ((old_flags ^ flags) & IFF_UP) {
8435 		if (old_flags & IFF_UP)
8436 			__dev_close(dev);
8437 		else
8438 			ret = __dev_open(dev, extack);
8439 	}
8440 
8441 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8442 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8443 		unsigned int old_flags = dev->flags;
8444 
8445 		dev->gflags ^= IFF_PROMISC;
8446 
8447 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8448 			if (dev->flags != old_flags)
8449 				dev_set_rx_mode(dev);
8450 	}
8451 
8452 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8453 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8454 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8455 	 */
8456 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8457 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8458 
8459 		dev->gflags ^= IFF_ALLMULTI;
8460 		__dev_set_allmulti(dev, inc, false);
8461 	}
8462 
8463 	return ret;
8464 }
8465 
8466 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8467 			unsigned int gchanges)
8468 {
8469 	unsigned int changes = dev->flags ^ old_flags;
8470 
8471 	if (gchanges)
8472 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8473 
8474 	if (changes & IFF_UP) {
8475 		if (dev->flags & IFF_UP)
8476 			call_netdevice_notifiers(NETDEV_UP, dev);
8477 		else
8478 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8479 	}
8480 
8481 	if (dev->flags & IFF_UP &&
8482 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8483 		struct netdev_notifier_change_info change_info = {
8484 			.info = {
8485 				.dev = dev,
8486 			},
8487 			.flags_changed = changes,
8488 		};
8489 
8490 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8491 	}
8492 }
8493 
8494 /**
8495  *	dev_change_flags - change device settings
8496  *	@dev: device
8497  *	@flags: device state flags
8498  *	@extack: netlink extended ack
8499  *
8500  *	Change settings on device based state flags. The flags are
8501  *	in the userspace exported format.
8502  */
8503 int dev_change_flags(struct net_device *dev, unsigned int flags,
8504 		     struct netlink_ext_ack *extack)
8505 {
8506 	int ret;
8507 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8508 
8509 	ret = __dev_change_flags(dev, flags, extack);
8510 	if (ret < 0)
8511 		return ret;
8512 
8513 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8514 	__dev_notify_flags(dev, old_flags, changes);
8515 	return ret;
8516 }
8517 EXPORT_SYMBOL(dev_change_flags);
8518 
8519 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8520 {
8521 	const struct net_device_ops *ops = dev->netdev_ops;
8522 
8523 	if (ops->ndo_change_mtu)
8524 		return ops->ndo_change_mtu(dev, new_mtu);
8525 
8526 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8527 	WRITE_ONCE(dev->mtu, new_mtu);
8528 	return 0;
8529 }
8530 EXPORT_SYMBOL(__dev_set_mtu);
8531 
8532 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8533 		     struct netlink_ext_ack *extack)
8534 {
8535 	/* MTU must be positive, and in range */
8536 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8537 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8538 		return -EINVAL;
8539 	}
8540 
8541 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8542 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8543 		return -EINVAL;
8544 	}
8545 	return 0;
8546 }
8547 
8548 /**
8549  *	dev_set_mtu_ext - Change maximum transfer unit
8550  *	@dev: device
8551  *	@new_mtu: new transfer unit
8552  *	@extack: netlink extended ack
8553  *
8554  *	Change the maximum transfer size of the network device.
8555  */
8556 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8557 		    struct netlink_ext_ack *extack)
8558 {
8559 	int err, orig_mtu;
8560 
8561 	if (new_mtu == dev->mtu)
8562 		return 0;
8563 
8564 	err = dev_validate_mtu(dev, new_mtu, extack);
8565 	if (err)
8566 		return err;
8567 
8568 	if (!netif_device_present(dev))
8569 		return -ENODEV;
8570 
8571 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8572 	err = notifier_to_errno(err);
8573 	if (err)
8574 		return err;
8575 
8576 	orig_mtu = dev->mtu;
8577 	err = __dev_set_mtu(dev, new_mtu);
8578 
8579 	if (!err) {
8580 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8581 						   orig_mtu);
8582 		err = notifier_to_errno(err);
8583 		if (err) {
8584 			/* setting mtu back and notifying everyone again,
8585 			 * so that they have a chance to revert changes.
8586 			 */
8587 			__dev_set_mtu(dev, orig_mtu);
8588 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8589 						     new_mtu);
8590 		}
8591 	}
8592 	return err;
8593 }
8594 
8595 int dev_set_mtu(struct net_device *dev, int new_mtu)
8596 {
8597 	struct netlink_ext_ack extack;
8598 	int err;
8599 
8600 	memset(&extack, 0, sizeof(extack));
8601 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8602 	if (err && extack._msg)
8603 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8604 	return err;
8605 }
8606 EXPORT_SYMBOL(dev_set_mtu);
8607 
8608 /**
8609  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8610  *	@dev: device
8611  *	@new_len: new tx queue length
8612  */
8613 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8614 {
8615 	unsigned int orig_len = dev->tx_queue_len;
8616 	int res;
8617 
8618 	if (new_len != (unsigned int)new_len)
8619 		return -ERANGE;
8620 
8621 	if (new_len != orig_len) {
8622 		dev->tx_queue_len = new_len;
8623 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8624 		res = notifier_to_errno(res);
8625 		if (res)
8626 			goto err_rollback;
8627 		res = dev_qdisc_change_tx_queue_len(dev);
8628 		if (res)
8629 			goto err_rollback;
8630 	}
8631 
8632 	return 0;
8633 
8634 err_rollback:
8635 	netdev_err(dev, "refused to change device tx_queue_len\n");
8636 	dev->tx_queue_len = orig_len;
8637 	return res;
8638 }
8639 
8640 /**
8641  *	dev_set_group - Change group this device belongs to
8642  *	@dev: device
8643  *	@new_group: group this device should belong to
8644  */
8645 void dev_set_group(struct net_device *dev, int new_group)
8646 {
8647 	dev->group = new_group;
8648 }
8649 
8650 /**
8651  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8652  *	@dev: device
8653  *	@addr: new address
8654  *	@extack: netlink extended ack
8655  */
8656 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8657 			      struct netlink_ext_ack *extack)
8658 {
8659 	struct netdev_notifier_pre_changeaddr_info info = {
8660 		.info.dev = dev,
8661 		.info.extack = extack,
8662 		.dev_addr = addr,
8663 	};
8664 	int rc;
8665 
8666 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8667 	return notifier_to_errno(rc);
8668 }
8669 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8670 
8671 /**
8672  *	dev_set_mac_address - Change Media Access Control Address
8673  *	@dev: device
8674  *	@sa: new address
8675  *	@extack: netlink extended ack
8676  *
8677  *	Change the hardware (MAC) address of the device
8678  */
8679 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8680 			struct netlink_ext_ack *extack)
8681 {
8682 	const struct net_device_ops *ops = dev->netdev_ops;
8683 	int err;
8684 
8685 	if (!ops->ndo_set_mac_address)
8686 		return -EOPNOTSUPP;
8687 	if (sa->sa_family != dev->type)
8688 		return -EINVAL;
8689 	if (!netif_device_present(dev))
8690 		return -ENODEV;
8691 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8692 	if (err)
8693 		return err;
8694 	err = ops->ndo_set_mac_address(dev, sa);
8695 	if (err)
8696 		return err;
8697 	dev->addr_assign_type = NET_ADDR_SET;
8698 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8699 	add_device_randomness(dev->dev_addr, dev->addr_len);
8700 	return 0;
8701 }
8702 EXPORT_SYMBOL(dev_set_mac_address);
8703 
8704 static DECLARE_RWSEM(dev_addr_sem);
8705 
8706 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8707 			     struct netlink_ext_ack *extack)
8708 {
8709 	int ret;
8710 
8711 	down_write(&dev_addr_sem);
8712 	ret = dev_set_mac_address(dev, sa, extack);
8713 	up_write(&dev_addr_sem);
8714 	return ret;
8715 }
8716 EXPORT_SYMBOL(dev_set_mac_address_user);
8717 
8718 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8719 {
8720 	size_t size = sizeof(sa->sa_data);
8721 	struct net_device *dev;
8722 	int ret = 0;
8723 
8724 	down_read(&dev_addr_sem);
8725 	rcu_read_lock();
8726 
8727 	dev = dev_get_by_name_rcu(net, dev_name);
8728 	if (!dev) {
8729 		ret = -ENODEV;
8730 		goto unlock;
8731 	}
8732 	if (!dev->addr_len)
8733 		memset(sa->sa_data, 0, size);
8734 	else
8735 		memcpy(sa->sa_data, dev->dev_addr,
8736 		       min_t(size_t, size, dev->addr_len));
8737 	sa->sa_family = dev->type;
8738 
8739 unlock:
8740 	rcu_read_unlock();
8741 	up_read(&dev_addr_sem);
8742 	return ret;
8743 }
8744 EXPORT_SYMBOL(dev_get_mac_address);
8745 
8746 /**
8747  *	dev_change_carrier - Change device carrier
8748  *	@dev: device
8749  *	@new_carrier: new value
8750  *
8751  *	Change device carrier
8752  */
8753 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8754 {
8755 	const struct net_device_ops *ops = dev->netdev_ops;
8756 
8757 	if (!ops->ndo_change_carrier)
8758 		return -EOPNOTSUPP;
8759 	if (!netif_device_present(dev))
8760 		return -ENODEV;
8761 	return ops->ndo_change_carrier(dev, new_carrier);
8762 }
8763 
8764 /**
8765  *	dev_get_phys_port_id - Get device physical port ID
8766  *	@dev: device
8767  *	@ppid: port ID
8768  *
8769  *	Get device physical port ID
8770  */
8771 int dev_get_phys_port_id(struct net_device *dev,
8772 			 struct netdev_phys_item_id *ppid)
8773 {
8774 	const struct net_device_ops *ops = dev->netdev_ops;
8775 
8776 	if (!ops->ndo_get_phys_port_id)
8777 		return -EOPNOTSUPP;
8778 	return ops->ndo_get_phys_port_id(dev, ppid);
8779 }
8780 
8781 /**
8782  *	dev_get_phys_port_name - Get device physical port name
8783  *	@dev: device
8784  *	@name: port name
8785  *	@len: limit of bytes to copy to name
8786  *
8787  *	Get device physical port name
8788  */
8789 int dev_get_phys_port_name(struct net_device *dev,
8790 			   char *name, size_t len)
8791 {
8792 	const struct net_device_ops *ops = dev->netdev_ops;
8793 	int err;
8794 
8795 	if (ops->ndo_get_phys_port_name) {
8796 		err = ops->ndo_get_phys_port_name(dev, name, len);
8797 		if (err != -EOPNOTSUPP)
8798 			return err;
8799 	}
8800 	return devlink_compat_phys_port_name_get(dev, name, len);
8801 }
8802 
8803 /**
8804  *	dev_get_port_parent_id - Get the device's port parent identifier
8805  *	@dev: network device
8806  *	@ppid: pointer to a storage for the port's parent identifier
8807  *	@recurse: allow/disallow recursion to lower devices
8808  *
8809  *	Get the devices's port parent identifier
8810  */
8811 int dev_get_port_parent_id(struct net_device *dev,
8812 			   struct netdev_phys_item_id *ppid,
8813 			   bool recurse)
8814 {
8815 	const struct net_device_ops *ops = dev->netdev_ops;
8816 	struct netdev_phys_item_id first = { };
8817 	struct net_device *lower_dev;
8818 	struct list_head *iter;
8819 	int err;
8820 
8821 	if (ops->ndo_get_port_parent_id) {
8822 		err = ops->ndo_get_port_parent_id(dev, ppid);
8823 		if (err != -EOPNOTSUPP)
8824 			return err;
8825 	}
8826 
8827 	err = devlink_compat_switch_id_get(dev, ppid);
8828 	if (!recurse || err != -EOPNOTSUPP)
8829 		return err;
8830 
8831 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8832 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8833 		if (err)
8834 			break;
8835 		if (!first.id_len)
8836 			first = *ppid;
8837 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8838 			return -EOPNOTSUPP;
8839 	}
8840 
8841 	return err;
8842 }
8843 EXPORT_SYMBOL(dev_get_port_parent_id);
8844 
8845 /**
8846  *	netdev_port_same_parent_id - Indicate if two network devices have
8847  *	the same port parent identifier
8848  *	@a: first network device
8849  *	@b: second network device
8850  */
8851 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8852 {
8853 	struct netdev_phys_item_id a_id = { };
8854 	struct netdev_phys_item_id b_id = { };
8855 
8856 	if (dev_get_port_parent_id(a, &a_id, true) ||
8857 	    dev_get_port_parent_id(b, &b_id, true))
8858 		return false;
8859 
8860 	return netdev_phys_item_id_same(&a_id, &b_id);
8861 }
8862 EXPORT_SYMBOL(netdev_port_same_parent_id);
8863 
8864 /**
8865  *	dev_change_proto_down - set carrier according to proto_down.
8866  *
8867  *	@dev: device
8868  *	@proto_down: new value
8869  */
8870 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8871 {
8872 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8873 		return -EOPNOTSUPP;
8874 	if (!netif_device_present(dev))
8875 		return -ENODEV;
8876 	if (proto_down)
8877 		netif_carrier_off(dev);
8878 	else
8879 		netif_carrier_on(dev);
8880 	dev->proto_down = proto_down;
8881 	return 0;
8882 }
8883 
8884 /**
8885  *	dev_change_proto_down_reason - proto down reason
8886  *
8887  *	@dev: device
8888  *	@mask: proto down mask
8889  *	@value: proto down value
8890  */
8891 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8892 				  u32 value)
8893 {
8894 	int b;
8895 
8896 	if (!mask) {
8897 		dev->proto_down_reason = value;
8898 	} else {
8899 		for_each_set_bit(b, &mask, 32) {
8900 			if (value & (1 << b))
8901 				dev->proto_down_reason |= BIT(b);
8902 			else
8903 				dev->proto_down_reason &= ~BIT(b);
8904 		}
8905 	}
8906 }
8907 
8908 struct bpf_xdp_link {
8909 	struct bpf_link link;
8910 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8911 	int flags;
8912 };
8913 
8914 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8915 {
8916 	if (flags & XDP_FLAGS_HW_MODE)
8917 		return XDP_MODE_HW;
8918 	if (flags & XDP_FLAGS_DRV_MODE)
8919 		return XDP_MODE_DRV;
8920 	if (flags & XDP_FLAGS_SKB_MODE)
8921 		return XDP_MODE_SKB;
8922 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8923 }
8924 
8925 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8926 {
8927 	switch (mode) {
8928 	case XDP_MODE_SKB:
8929 		return generic_xdp_install;
8930 	case XDP_MODE_DRV:
8931 	case XDP_MODE_HW:
8932 		return dev->netdev_ops->ndo_bpf;
8933 	default:
8934 		return NULL;
8935 	}
8936 }
8937 
8938 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8939 					 enum bpf_xdp_mode mode)
8940 {
8941 	return dev->xdp_state[mode].link;
8942 }
8943 
8944 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8945 				     enum bpf_xdp_mode mode)
8946 {
8947 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8948 
8949 	if (link)
8950 		return link->link.prog;
8951 	return dev->xdp_state[mode].prog;
8952 }
8953 
8954 u8 dev_xdp_prog_count(struct net_device *dev)
8955 {
8956 	u8 count = 0;
8957 	int i;
8958 
8959 	for (i = 0; i < __MAX_XDP_MODE; i++)
8960 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8961 			count++;
8962 	return count;
8963 }
8964 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8965 
8966 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8967 {
8968 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8969 
8970 	return prog ? prog->aux->id : 0;
8971 }
8972 
8973 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8974 			     struct bpf_xdp_link *link)
8975 {
8976 	dev->xdp_state[mode].link = link;
8977 	dev->xdp_state[mode].prog = NULL;
8978 }
8979 
8980 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8981 			     struct bpf_prog *prog)
8982 {
8983 	dev->xdp_state[mode].link = NULL;
8984 	dev->xdp_state[mode].prog = prog;
8985 }
8986 
8987 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8988 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8989 			   u32 flags, struct bpf_prog *prog)
8990 {
8991 	struct netdev_bpf xdp;
8992 	int err;
8993 
8994 	memset(&xdp, 0, sizeof(xdp));
8995 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8996 	xdp.extack = extack;
8997 	xdp.flags = flags;
8998 	xdp.prog = prog;
8999 
9000 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9001 	 * "moved" into driver), so they don't increment it on their own, but
9002 	 * they do decrement refcnt when program is detached or replaced.
9003 	 * Given net_device also owns link/prog, we need to bump refcnt here
9004 	 * to prevent drivers from underflowing it.
9005 	 */
9006 	if (prog)
9007 		bpf_prog_inc(prog);
9008 	err = bpf_op(dev, &xdp);
9009 	if (err) {
9010 		if (prog)
9011 			bpf_prog_put(prog);
9012 		return err;
9013 	}
9014 
9015 	if (mode != XDP_MODE_HW)
9016 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9017 
9018 	return 0;
9019 }
9020 
9021 static void dev_xdp_uninstall(struct net_device *dev)
9022 {
9023 	struct bpf_xdp_link *link;
9024 	struct bpf_prog *prog;
9025 	enum bpf_xdp_mode mode;
9026 	bpf_op_t bpf_op;
9027 
9028 	ASSERT_RTNL();
9029 
9030 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9031 		prog = dev_xdp_prog(dev, mode);
9032 		if (!prog)
9033 			continue;
9034 
9035 		bpf_op = dev_xdp_bpf_op(dev, mode);
9036 		if (!bpf_op)
9037 			continue;
9038 
9039 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9040 
9041 		/* auto-detach link from net device */
9042 		link = dev_xdp_link(dev, mode);
9043 		if (link)
9044 			link->dev = NULL;
9045 		else
9046 			bpf_prog_put(prog);
9047 
9048 		dev_xdp_set_link(dev, mode, NULL);
9049 	}
9050 }
9051 
9052 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9053 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9054 			  struct bpf_prog *old_prog, u32 flags)
9055 {
9056 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9057 	struct bpf_prog *cur_prog;
9058 	struct net_device *upper;
9059 	struct list_head *iter;
9060 	enum bpf_xdp_mode mode;
9061 	bpf_op_t bpf_op;
9062 	int err;
9063 
9064 	ASSERT_RTNL();
9065 
9066 	/* either link or prog attachment, never both */
9067 	if (link && (new_prog || old_prog))
9068 		return -EINVAL;
9069 	/* link supports only XDP mode flags */
9070 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9071 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9072 		return -EINVAL;
9073 	}
9074 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9075 	if (num_modes > 1) {
9076 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9077 		return -EINVAL;
9078 	}
9079 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9080 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9081 		NL_SET_ERR_MSG(extack,
9082 			       "More than one program loaded, unset mode is ambiguous");
9083 		return -EINVAL;
9084 	}
9085 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9086 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9087 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9088 		return -EINVAL;
9089 	}
9090 
9091 	mode = dev_xdp_mode(dev, flags);
9092 	/* can't replace attached link */
9093 	if (dev_xdp_link(dev, mode)) {
9094 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9095 		return -EBUSY;
9096 	}
9097 
9098 	/* don't allow if an upper device already has a program */
9099 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9100 		if (dev_xdp_prog_count(upper) > 0) {
9101 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9102 			return -EEXIST;
9103 		}
9104 	}
9105 
9106 	cur_prog = dev_xdp_prog(dev, mode);
9107 	/* can't replace attached prog with link */
9108 	if (link && cur_prog) {
9109 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9110 		return -EBUSY;
9111 	}
9112 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9113 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9114 		return -EEXIST;
9115 	}
9116 
9117 	/* put effective new program into new_prog */
9118 	if (link)
9119 		new_prog = link->link.prog;
9120 
9121 	if (new_prog) {
9122 		bool offload = mode == XDP_MODE_HW;
9123 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9124 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9125 
9126 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9127 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9128 			return -EBUSY;
9129 		}
9130 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9131 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9132 			return -EEXIST;
9133 		}
9134 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9135 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9136 			return -EINVAL;
9137 		}
9138 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9139 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9140 			return -EINVAL;
9141 		}
9142 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9143 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9144 			return -EINVAL;
9145 		}
9146 	}
9147 
9148 	/* don't call drivers if the effective program didn't change */
9149 	if (new_prog != cur_prog) {
9150 		bpf_op = dev_xdp_bpf_op(dev, mode);
9151 		if (!bpf_op) {
9152 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9153 			return -EOPNOTSUPP;
9154 		}
9155 
9156 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9157 		if (err)
9158 			return err;
9159 	}
9160 
9161 	if (link)
9162 		dev_xdp_set_link(dev, mode, link);
9163 	else
9164 		dev_xdp_set_prog(dev, mode, new_prog);
9165 	if (cur_prog)
9166 		bpf_prog_put(cur_prog);
9167 
9168 	return 0;
9169 }
9170 
9171 static int dev_xdp_attach_link(struct net_device *dev,
9172 			       struct netlink_ext_ack *extack,
9173 			       struct bpf_xdp_link *link)
9174 {
9175 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9176 }
9177 
9178 static int dev_xdp_detach_link(struct net_device *dev,
9179 			       struct netlink_ext_ack *extack,
9180 			       struct bpf_xdp_link *link)
9181 {
9182 	enum bpf_xdp_mode mode;
9183 	bpf_op_t bpf_op;
9184 
9185 	ASSERT_RTNL();
9186 
9187 	mode = dev_xdp_mode(dev, link->flags);
9188 	if (dev_xdp_link(dev, mode) != link)
9189 		return -EINVAL;
9190 
9191 	bpf_op = dev_xdp_bpf_op(dev, mode);
9192 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9193 	dev_xdp_set_link(dev, mode, NULL);
9194 	return 0;
9195 }
9196 
9197 static void bpf_xdp_link_release(struct bpf_link *link)
9198 {
9199 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9200 
9201 	rtnl_lock();
9202 
9203 	/* if racing with net_device's tear down, xdp_link->dev might be
9204 	 * already NULL, in which case link was already auto-detached
9205 	 */
9206 	if (xdp_link->dev) {
9207 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9208 		xdp_link->dev = NULL;
9209 	}
9210 
9211 	rtnl_unlock();
9212 }
9213 
9214 static int bpf_xdp_link_detach(struct bpf_link *link)
9215 {
9216 	bpf_xdp_link_release(link);
9217 	return 0;
9218 }
9219 
9220 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9221 {
9222 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9223 
9224 	kfree(xdp_link);
9225 }
9226 
9227 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9228 				     struct seq_file *seq)
9229 {
9230 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9231 	u32 ifindex = 0;
9232 
9233 	rtnl_lock();
9234 	if (xdp_link->dev)
9235 		ifindex = xdp_link->dev->ifindex;
9236 	rtnl_unlock();
9237 
9238 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9239 }
9240 
9241 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9242 				       struct bpf_link_info *info)
9243 {
9244 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9245 	u32 ifindex = 0;
9246 
9247 	rtnl_lock();
9248 	if (xdp_link->dev)
9249 		ifindex = xdp_link->dev->ifindex;
9250 	rtnl_unlock();
9251 
9252 	info->xdp.ifindex = ifindex;
9253 	return 0;
9254 }
9255 
9256 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9257 			       struct bpf_prog *old_prog)
9258 {
9259 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9260 	enum bpf_xdp_mode mode;
9261 	bpf_op_t bpf_op;
9262 	int err = 0;
9263 
9264 	rtnl_lock();
9265 
9266 	/* link might have been auto-released already, so fail */
9267 	if (!xdp_link->dev) {
9268 		err = -ENOLINK;
9269 		goto out_unlock;
9270 	}
9271 
9272 	if (old_prog && link->prog != old_prog) {
9273 		err = -EPERM;
9274 		goto out_unlock;
9275 	}
9276 	old_prog = link->prog;
9277 	if (old_prog->type != new_prog->type ||
9278 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9279 		err = -EINVAL;
9280 		goto out_unlock;
9281 	}
9282 
9283 	if (old_prog == new_prog) {
9284 		/* no-op, don't disturb drivers */
9285 		bpf_prog_put(new_prog);
9286 		goto out_unlock;
9287 	}
9288 
9289 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9290 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9291 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9292 			      xdp_link->flags, new_prog);
9293 	if (err)
9294 		goto out_unlock;
9295 
9296 	old_prog = xchg(&link->prog, new_prog);
9297 	bpf_prog_put(old_prog);
9298 
9299 out_unlock:
9300 	rtnl_unlock();
9301 	return err;
9302 }
9303 
9304 static const struct bpf_link_ops bpf_xdp_link_lops = {
9305 	.release = bpf_xdp_link_release,
9306 	.dealloc = bpf_xdp_link_dealloc,
9307 	.detach = bpf_xdp_link_detach,
9308 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9309 	.fill_link_info = bpf_xdp_link_fill_link_info,
9310 	.update_prog = bpf_xdp_link_update,
9311 };
9312 
9313 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9314 {
9315 	struct net *net = current->nsproxy->net_ns;
9316 	struct bpf_link_primer link_primer;
9317 	struct bpf_xdp_link *link;
9318 	struct net_device *dev;
9319 	int err, fd;
9320 
9321 	rtnl_lock();
9322 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9323 	if (!dev) {
9324 		rtnl_unlock();
9325 		return -EINVAL;
9326 	}
9327 
9328 	link = kzalloc(sizeof(*link), GFP_USER);
9329 	if (!link) {
9330 		err = -ENOMEM;
9331 		goto unlock;
9332 	}
9333 
9334 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9335 	link->dev = dev;
9336 	link->flags = attr->link_create.flags;
9337 
9338 	err = bpf_link_prime(&link->link, &link_primer);
9339 	if (err) {
9340 		kfree(link);
9341 		goto unlock;
9342 	}
9343 
9344 	err = dev_xdp_attach_link(dev, NULL, link);
9345 	rtnl_unlock();
9346 
9347 	if (err) {
9348 		link->dev = NULL;
9349 		bpf_link_cleanup(&link_primer);
9350 		goto out_put_dev;
9351 	}
9352 
9353 	fd = bpf_link_settle(&link_primer);
9354 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9355 	dev_put(dev);
9356 	return fd;
9357 
9358 unlock:
9359 	rtnl_unlock();
9360 
9361 out_put_dev:
9362 	dev_put(dev);
9363 	return err;
9364 }
9365 
9366 /**
9367  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9368  *	@dev: device
9369  *	@extack: netlink extended ack
9370  *	@fd: new program fd or negative value to clear
9371  *	@expected_fd: old program fd that userspace expects to replace or clear
9372  *	@flags: xdp-related flags
9373  *
9374  *	Set or clear a bpf program for a device
9375  */
9376 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9377 		      int fd, int expected_fd, u32 flags)
9378 {
9379 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9380 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9381 	int err;
9382 
9383 	ASSERT_RTNL();
9384 
9385 	if (fd >= 0) {
9386 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9387 						 mode != XDP_MODE_SKB);
9388 		if (IS_ERR(new_prog))
9389 			return PTR_ERR(new_prog);
9390 	}
9391 
9392 	if (expected_fd >= 0) {
9393 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9394 						 mode != XDP_MODE_SKB);
9395 		if (IS_ERR(old_prog)) {
9396 			err = PTR_ERR(old_prog);
9397 			old_prog = NULL;
9398 			goto err_out;
9399 		}
9400 	}
9401 
9402 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9403 
9404 err_out:
9405 	if (err && new_prog)
9406 		bpf_prog_put(new_prog);
9407 	if (old_prog)
9408 		bpf_prog_put(old_prog);
9409 	return err;
9410 }
9411 
9412 /**
9413  *	dev_new_index	-	allocate an ifindex
9414  *	@net: the applicable net namespace
9415  *
9416  *	Returns a suitable unique value for a new device interface
9417  *	number.  The caller must hold the rtnl semaphore or the
9418  *	dev_base_lock to be sure it remains unique.
9419  */
9420 static int dev_new_index(struct net *net)
9421 {
9422 	int ifindex = net->ifindex;
9423 
9424 	for (;;) {
9425 		if (++ifindex <= 0)
9426 			ifindex = 1;
9427 		if (!__dev_get_by_index(net, ifindex))
9428 			return net->ifindex = ifindex;
9429 	}
9430 }
9431 
9432 /* Delayed registration/unregisteration */
9433 LIST_HEAD(net_todo_list);
9434 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9435 
9436 static void net_set_todo(struct net_device *dev)
9437 {
9438 	list_add_tail(&dev->todo_list, &net_todo_list);
9439 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9440 }
9441 
9442 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9443 	struct net_device *upper, netdev_features_t features)
9444 {
9445 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9446 	netdev_features_t feature;
9447 	int feature_bit;
9448 
9449 	for_each_netdev_feature(upper_disables, feature_bit) {
9450 		feature = __NETIF_F_BIT(feature_bit);
9451 		if (!(upper->wanted_features & feature)
9452 		    && (features & feature)) {
9453 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9454 				   &feature, upper->name);
9455 			features &= ~feature;
9456 		}
9457 	}
9458 
9459 	return features;
9460 }
9461 
9462 static void netdev_sync_lower_features(struct net_device *upper,
9463 	struct net_device *lower, netdev_features_t features)
9464 {
9465 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9466 	netdev_features_t feature;
9467 	int feature_bit;
9468 
9469 	for_each_netdev_feature(upper_disables, feature_bit) {
9470 		feature = __NETIF_F_BIT(feature_bit);
9471 		if (!(features & feature) && (lower->features & feature)) {
9472 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9473 				   &feature, lower->name);
9474 			lower->wanted_features &= ~feature;
9475 			__netdev_update_features(lower);
9476 
9477 			if (unlikely(lower->features & feature))
9478 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9479 					    &feature, lower->name);
9480 			else
9481 				netdev_features_change(lower);
9482 		}
9483 	}
9484 }
9485 
9486 static netdev_features_t netdev_fix_features(struct net_device *dev,
9487 	netdev_features_t features)
9488 {
9489 	/* Fix illegal checksum combinations */
9490 	if ((features & NETIF_F_HW_CSUM) &&
9491 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9492 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9493 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9494 	}
9495 
9496 	/* TSO requires that SG is present as well. */
9497 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9498 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9499 		features &= ~NETIF_F_ALL_TSO;
9500 	}
9501 
9502 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9503 					!(features & NETIF_F_IP_CSUM)) {
9504 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9505 		features &= ~NETIF_F_TSO;
9506 		features &= ~NETIF_F_TSO_ECN;
9507 	}
9508 
9509 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9510 					 !(features & NETIF_F_IPV6_CSUM)) {
9511 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9512 		features &= ~NETIF_F_TSO6;
9513 	}
9514 
9515 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9516 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9517 		features &= ~NETIF_F_TSO_MANGLEID;
9518 
9519 	/* TSO ECN requires that TSO is present as well. */
9520 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9521 		features &= ~NETIF_F_TSO_ECN;
9522 
9523 	/* Software GSO depends on SG. */
9524 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9525 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9526 		features &= ~NETIF_F_GSO;
9527 	}
9528 
9529 	/* GSO partial features require GSO partial be set */
9530 	if ((features & dev->gso_partial_features) &&
9531 	    !(features & NETIF_F_GSO_PARTIAL)) {
9532 		netdev_dbg(dev,
9533 			   "Dropping partially supported GSO features since no GSO partial.\n");
9534 		features &= ~dev->gso_partial_features;
9535 	}
9536 
9537 	if (!(features & NETIF_F_RXCSUM)) {
9538 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9539 		 * successfully merged by hardware must also have the
9540 		 * checksum verified by hardware.  If the user does not
9541 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9542 		 */
9543 		if (features & NETIF_F_GRO_HW) {
9544 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9545 			features &= ~NETIF_F_GRO_HW;
9546 		}
9547 	}
9548 
9549 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9550 	if (features & NETIF_F_RXFCS) {
9551 		if (features & NETIF_F_LRO) {
9552 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9553 			features &= ~NETIF_F_LRO;
9554 		}
9555 
9556 		if (features & NETIF_F_GRO_HW) {
9557 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9558 			features &= ~NETIF_F_GRO_HW;
9559 		}
9560 	}
9561 
9562 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9563 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9564 		features &= ~NETIF_F_LRO;
9565 	}
9566 
9567 	if (features & NETIF_F_HW_TLS_TX) {
9568 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9569 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9570 		bool hw_csum = features & NETIF_F_HW_CSUM;
9571 
9572 		if (!ip_csum && !hw_csum) {
9573 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9574 			features &= ~NETIF_F_HW_TLS_TX;
9575 		}
9576 	}
9577 
9578 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9579 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9580 		features &= ~NETIF_F_HW_TLS_RX;
9581 	}
9582 
9583 	return features;
9584 }
9585 
9586 int __netdev_update_features(struct net_device *dev)
9587 {
9588 	struct net_device *upper, *lower;
9589 	netdev_features_t features;
9590 	struct list_head *iter;
9591 	int err = -1;
9592 
9593 	ASSERT_RTNL();
9594 
9595 	features = netdev_get_wanted_features(dev);
9596 
9597 	if (dev->netdev_ops->ndo_fix_features)
9598 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9599 
9600 	/* driver might be less strict about feature dependencies */
9601 	features = netdev_fix_features(dev, features);
9602 
9603 	/* some features can't be enabled if they're off on an upper device */
9604 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9605 		features = netdev_sync_upper_features(dev, upper, features);
9606 
9607 	if (dev->features == features)
9608 		goto sync_lower;
9609 
9610 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9611 		&dev->features, &features);
9612 
9613 	if (dev->netdev_ops->ndo_set_features)
9614 		err = dev->netdev_ops->ndo_set_features(dev, features);
9615 	else
9616 		err = 0;
9617 
9618 	if (unlikely(err < 0)) {
9619 		netdev_err(dev,
9620 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9621 			err, &features, &dev->features);
9622 		/* return non-0 since some features might have changed and
9623 		 * it's better to fire a spurious notification than miss it
9624 		 */
9625 		return -1;
9626 	}
9627 
9628 sync_lower:
9629 	/* some features must be disabled on lower devices when disabled
9630 	 * on an upper device (think: bonding master or bridge)
9631 	 */
9632 	netdev_for_each_lower_dev(dev, lower, iter)
9633 		netdev_sync_lower_features(dev, lower, features);
9634 
9635 	if (!err) {
9636 		netdev_features_t diff = features ^ dev->features;
9637 
9638 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9639 			/* udp_tunnel_{get,drop}_rx_info both need
9640 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9641 			 * device, or they won't do anything.
9642 			 * Thus we need to update dev->features
9643 			 * *before* calling udp_tunnel_get_rx_info,
9644 			 * but *after* calling udp_tunnel_drop_rx_info.
9645 			 */
9646 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9647 				dev->features = features;
9648 				udp_tunnel_get_rx_info(dev);
9649 			} else {
9650 				udp_tunnel_drop_rx_info(dev);
9651 			}
9652 		}
9653 
9654 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9655 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9656 				dev->features = features;
9657 				err |= vlan_get_rx_ctag_filter_info(dev);
9658 			} else {
9659 				vlan_drop_rx_ctag_filter_info(dev);
9660 			}
9661 		}
9662 
9663 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9664 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9665 				dev->features = features;
9666 				err |= vlan_get_rx_stag_filter_info(dev);
9667 			} else {
9668 				vlan_drop_rx_stag_filter_info(dev);
9669 			}
9670 		}
9671 
9672 		dev->features = features;
9673 	}
9674 
9675 	return err < 0 ? 0 : 1;
9676 }
9677 
9678 /**
9679  *	netdev_update_features - recalculate device features
9680  *	@dev: the device to check
9681  *
9682  *	Recalculate dev->features set and send notifications if it
9683  *	has changed. Should be called after driver or hardware dependent
9684  *	conditions might have changed that influence the features.
9685  */
9686 void netdev_update_features(struct net_device *dev)
9687 {
9688 	if (__netdev_update_features(dev))
9689 		netdev_features_change(dev);
9690 }
9691 EXPORT_SYMBOL(netdev_update_features);
9692 
9693 /**
9694  *	netdev_change_features - recalculate device features
9695  *	@dev: the device to check
9696  *
9697  *	Recalculate dev->features set and send notifications even
9698  *	if they have not changed. Should be called instead of
9699  *	netdev_update_features() if also dev->vlan_features might
9700  *	have changed to allow the changes to be propagated to stacked
9701  *	VLAN devices.
9702  */
9703 void netdev_change_features(struct net_device *dev)
9704 {
9705 	__netdev_update_features(dev);
9706 	netdev_features_change(dev);
9707 }
9708 EXPORT_SYMBOL(netdev_change_features);
9709 
9710 /**
9711  *	netif_stacked_transfer_operstate -	transfer operstate
9712  *	@rootdev: the root or lower level device to transfer state from
9713  *	@dev: the device to transfer operstate to
9714  *
9715  *	Transfer operational state from root to device. This is normally
9716  *	called when a stacking relationship exists between the root
9717  *	device and the device(a leaf device).
9718  */
9719 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9720 					struct net_device *dev)
9721 {
9722 	if (rootdev->operstate == IF_OPER_DORMANT)
9723 		netif_dormant_on(dev);
9724 	else
9725 		netif_dormant_off(dev);
9726 
9727 	if (rootdev->operstate == IF_OPER_TESTING)
9728 		netif_testing_on(dev);
9729 	else
9730 		netif_testing_off(dev);
9731 
9732 	if (netif_carrier_ok(rootdev))
9733 		netif_carrier_on(dev);
9734 	else
9735 		netif_carrier_off(dev);
9736 }
9737 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9738 
9739 static int netif_alloc_rx_queues(struct net_device *dev)
9740 {
9741 	unsigned int i, count = dev->num_rx_queues;
9742 	struct netdev_rx_queue *rx;
9743 	size_t sz = count * sizeof(*rx);
9744 	int err = 0;
9745 
9746 	BUG_ON(count < 1);
9747 
9748 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9749 	if (!rx)
9750 		return -ENOMEM;
9751 
9752 	dev->_rx = rx;
9753 
9754 	for (i = 0; i < count; i++) {
9755 		rx[i].dev = dev;
9756 
9757 		/* XDP RX-queue setup */
9758 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9759 		if (err < 0)
9760 			goto err_rxq_info;
9761 	}
9762 	return 0;
9763 
9764 err_rxq_info:
9765 	/* Rollback successful reg's and free other resources */
9766 	while (i--)
9767 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9768 	kvfree(dev->_rx);
9769 	dev->_rx = NULL;
9770 	return err;
9771 }
9772 
9773 static void netif_free_rx_queues(struct net_device *dev)
9774 {
9775 	unsigned int i, count = dev->num_rx_queues;
9776 
9777 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9778 	if (!dev->_rx)
9779 		return;
9780 
9781 	for (i = 0; i < count; i++)
9782 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9783 
9784 	kvfree(dev->_rx);
9785 }
9786 
9787 static void netdev_init_one_queue(struct net_device *dev,
9788 				  struct netdev_queue *queue, void *_unused)
9789 {
9790 	/* Initialize queue lock */
9791 	spin_lock_init(&queue->_xmit_lock);
9792 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9793 	queue->xmit_lock_owner = -1;
9794 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9795 	queue->dev = dev;
9796 #ifdef CONFIG_BQL
9797 	dql_init(&queue->dql, HZ);
9798 #endif
9799 }
9800 
9801 static void netif_free_tx_queues(struct net_device *dev)
9802 {
9803 	kvfree(dev->_tx);
9804 }
9805 
9806 static int netif_alloc_netdev_queues(struct net_device *dev)
9807 {
9808 	unsigned int count = dev->num_tx_queues;
9809 	struct netdev_queue *tx;
9810 	size_t sz = count * sizeof(*tx);
9811 
9812 	if (count < 1 || count > 0xffff)
9813 		return -EINVAL;
9814 
9815 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9816 	if (!tx)
9817 		return -ENOMEM;
9818 
9819 	dev->_tx = tx;
9820 
9821 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9822 	spin_lock_init(&dev->tx_global_lock);
9823 
9824 	return 0;
9825 }
9826 
9827 void netif_tx_stop_all_queues(struct net_device *dev)
9828 {
9829 	unsigned int i;
9830 
9831 	for (i = 0; i < dev->num_tx_queues; i++) {
9832 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9833 
9834 		netif_tx_stop_queue(txq);
9835 	}
9836 }
9837 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9838 
9839 /**
9840  *	register_netdevice	- register a network device
9841  *	@dev: device to register
9842  *
9843  *	Take a completed network device structure and add it to the kernel
9844  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9845  *	chain. 0 is returned on success. A negative errno code is returned
9846  *	on a failure to set up the device, or if the name is a duplicate.
9847  *
9848  *	Callers must hold the rtnl semaphore. You may want
9849  *	register_netdev() instead of this.
9850  *
9851  *	BUGS:
9852  *	The locking appears insufficient to guarantee two parallel registers
9853  *	will not get the same name.
9854  */
9855 
9856 int register_netdevice(struct net_device *dev)
9857 {
9858 	int ret;
9859 	struct net *net = dev_net(dev);
9860 
9861 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9862 		     NETDEV_FEATURE_COUNT);
9863 	BUG_ON(dev_boot_phase);
9864 	ASSERT_RTNL();
9865 
9866 	might_sleep();
9867 
9868 	/* When net_device's are persistent, this will be fatal. */
9869 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9870 	BUG_ON(!net);
9871 
9872 	ret = ethtool_check_ops(dev->ethtool_ops);
9873 	if (ret)
9874 		return ret;
9875 
9876 	spin_lock_init(&dev->addr_list_lock);
9877 	netdev_set_addr_lockdep_class(dev);
9878 
9879 	ret = dev_get_valid_name(net, dev, dev->name);
9880 	if (ret < 0)
9881 		goto out;
9882 
9883 	ret = -ENOMEM;
9884 	dev->name_node = netdev_name_node_head_alloc(dev);
9885 	if (!dev->name_node)
9886 		goto out;
9887 
9888 	/* Init, if this function is available */
9889 	if (dev->netdev_ops->ndo_init) {
9890 		ret = dev->netdev_ops->ndo_init(dev);
9891 		if (ret) {
9892 			if (ret > 0)
9893 				ret = -EIO;
9894 			goto err_free_name;
9895 		}
9896 	}
9897 
9898 	if (((dev->hw_features | dev->features) &
9899 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9900 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9901 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9902 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9903 		ret = -EINVAL;
9904 		goto err_uninit;
9905 	}
9906 
9907 	ret = -EBUSY;
9908 	if (!dev->ifindex)
9909 		dev->ifindex = dev_new_index(net);
9910 	else if (__dev_get_by_index(net, dev->ifindex))
9911 		goto err_uninit;
9912 
9913 	/* Transfer changeable features to wanted_features and enable
9914 	 * software offloads (GSO and GRO).
9915 	 */
9916 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9917 	dev->features |= NETIF_F_SOFT_FEATURES;
9918 
9919 	if (dev->udp_tunnel_nic_info) {
9920 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9921 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9922 	}
9923 
9924 	dev->wanted_features = dev->features & dev->hw_features;
9925 
9926 	if (!(dev->flags & IFF_LOOPBACK))
9927 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9928 
9929 	/* If IPv4 TCP segmentation offload is supported we should also
9930 	 * allow the device to enable segmenting the frame with the option
9931 	 * of ignoring a static IP ID value.  This doesn't enable the
9932 	 * feature itself but allows the user to enable it later.
9933 	 */
9934 	if (dev->hw_features & NETIF_F_TSO)
9935 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9936 	if (dev->vlan_features & NETIF_F_TSO)
9937 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9938 	if (dev->mpls_features & NETIF_F_TSO)
9939 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9940 	if (dev->hw_enc_features & NETIF_F_TSO)
9941 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9942 
9943 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9944 	 */
9945 	dev->vlan_features |= NETIF_F_HIGHDMA;
9946 
9947 	/* Make NETIF_F_SG inheritable to tunnel devices.
9948 	 */
9949 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9950 
9951 	/* Make NETIF_F_SG inheritable to MPLS.
9952 	 */
9953 	dev->mpls_features |= NETIF_F_SG;
9954 
9955 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9956 	ret = notifier_to_errno(ret);
9957 	if (ret)
9958 		goto err_uninit;
9959 
9960 	ret = netdev_register_kobject(dev);
9961 	if (ret) {
9962 		dev->reg_state = NETREG_UNREGISTERED;
9963 		goto err_uninit;
9964 	}
9965 	dev->reg_state = NETREG_REGISTERED;
9966 
9967 	__netdev_update_features(dev);
9968 
9969 	/*
9970 	 *	Default initial state at registry is that the
9971 	 *	device is present.
9972 	 */
9973 
9974 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9975 
9976 	linkwatch_init_dev(dev);
9977 
9978 	dev_init_scheduler(dev);
9979 
9980 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9981 	list_netdevice(dev);
9982 
9983 	add_device_randomness(dev->dev_addr, dev->addr_len);
9984 
9985 	/* If the device has permanent device address, driver should
9986 	 * set dev_addr and also addr_assign_type should be set to
9987 	 * NET_ADDR_PERM (default value).
9988 	 */
9989 	if (dev->addr_assign_type == NET_ADDR_PERM)
9990 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9991 
9992 	/* Notify protocols, that a new device appeared. */
9993 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9994 	ret = notifier_to_errno(ret);
9995 	if (ret) {
9996 		/* Expect explicit free_netdev() on failure */
9997 		dev->needs_free_netdev = false;
9998 		unregister_netdevice_queue(dev, NULL);
9999 		goto out;
10000 	}
10001 	/*
10002 	 *	Prevent userspace races by waiting until the network
10003 	 *	device is fully setup before sending notifications.
10004 	 */
10005 	if (!dev->rtnl_link_ops ||
10006 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10007 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10008 
10009 out:
10010 	return ret;
10011 
10012 err_uninit:
10013 	if (dev->netdev_ops->ndo_uninit)
10014 		dev->netdev_ops->ndo_uninit(dev);
10015 	if (dev->priv_destructor)
10016 		dev->priv_destructor(dev);
10017 err_free_name:
10018 	netdev_name_node_free(dev->name_node);
10019 	goto out;
10020 }
10021 EXPORT_SYMBOL(register_netdevice);
10022 
10023 /**
10024  *	init_dummy_netdev	- init a dummy network device for NAPI
10025  *	@dev: device to init
10026  *
10027  *	This takes a network device structure and initialize the minimum
10028  *	amount of fields so it can be used to schedule NAPI polls without
10029  *	registering a full blown interface. This is to be used by drivers
10030  *	that need to tie several hardware interfaces to a single NAPI
10031  *	poll scheduler due to HW limitations.
10032  */
10033 int init_dummy_netdev(struct net_device *dev)
10034 {
10035 	/* Clear everything. Note we don't initialize spinlocks
10036 	 * are they aren't supposed to be taken by any of the
10037 	 * NAPI code and this dummy netdev is supposed to be
10038 	 * only ever used for NAPI polls
10039 	 */
10040 	memset(dev, 0, sizeof(struct net_device));
10041 
10042 	/* make sure we BUG if trying to hit standard
10043 	 * register/unregister code path
10044 	 */
10045 	dev->reg_state = NETREG_DUMMY;
10046 
10047 	/* NAPI wants this */
10048 	INIT_LIST_HEAD(&dev->napi_list);
10049 
10050 	/* a dummy interface is started by default */
10051 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10052 	set_bit(__LINK_STATE_START, &dev->state);
10053 
10054 	/* napi_busy_loop stats accounting wants this */
10055 	dev_net_set(dev, &init_net);
10056 
10057 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10058 	 * because users of this 'device' dont need to change
10059 	 * its refcount.
10060 	 */
10061 
10062 	return 0;
10063 }
10064 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10065 
10066 
10067 /**
10068  *	register_netdev	- register a network device
10069  *	@dev: device to register
10070  *
10071  *	Take a completed network device structure and add it to the kernel
10072  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10073  *	chain. 0 is returned on success. A negative errno code is returned
10074  *	on a failure to set up the device, or if the name is a duplicate.
10075  *
10076  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10077  *	and expands the device name if you passed a format string to
10078  *	alloc_netdev.
10079  */
10080 int register_netdev(struct net_device *dev)
10081 {
10082 	int err;
10083 
10084 	if (rtnl_lock_killable())
10085 		return -EINTR;
10086 	err = register_netdevice(dev);
10087 	rtnl_unlock();
10088 	return err;
10089 }
10090 EXPORT_SYMBOL(register_netdev);
10091 
10092 int netdev_refcnt_read(const struct net_device *dev)
10093 {
10094 #ifdef CONFIG_PCPU_DEV_REFCNT
10095 	int i, refcnt = 0;
10096 
10097 	for_each_possible_cpu(i)
10098 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10099 	return refcnt;
10100 #else
10101 	return refcount_read(&dev->dev_refcnt);
10102 #endif
10103 }
10104 EXPORT_SYMBOL(netdev_refcnt_read);
10105 
10106 int netdev_unregister_timeout_secs __read_mostly = 10;
10107 
10108 #define WAIT_REFS_MIN_MSECS 1
10109 #define WAIT_REFS_MAX_MSECS 250
10110 /**
10111  * netdev_wait_allrefs_any - wait until all references are gone.
10112  * @list: list of net_devices to wait on
10113  *
10114  * This is called when unregistering network devices.
10115  *
10116  * Any protocol or device that holds a reference should register
10117  * for netdevice notification, and cleanup and put back the
10118  * reference if they receive an UNREGISTER event.
10119  * We can get stuck here if buggy protocols don't correctly
10120  * call dev_put.
10121  */
10122 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10123 {
10124 	unsigned long rebroadcast_time, warning_time;
10125 	struct net_device *dev;
10126 	int wait = 0;
10127 
10128 	rebroadcast_time = warning_time = jiffies;
10129 
10130 	list_for_each_entry(dev, list, todo_list)
10131 		if (netdev_refcnt_read(dev) == 1)
10132 			return dev;
10133 
10134 	while (true) {
10135 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10136 			rtnl_lock();
10137 
10138 			/* Rebroadcast unregister notification */
10139 			list_for_each_entry(dev, list, todo_list)
10140 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10141 
10142 			__rtnl_unlock();
10143 			rcu_barrier();
10144 			rtnl_lock();
10145 
10146 			list_for_each_entry(dev, list, todo_list)
10147 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10148 					     &dev->state)) {
10149 					/* We must not have linkwatch events
10150 					 * pending on unregister. If this
10151 					 * happens, we simply run the queue
10152 					 * unscheduled, resulting in a noop
10153 					 * for this device.
10154 					 */
10155 					linkwatch_run_queue();
10156 					break;
10157 				}
10158 
10159 			__rtnl_unlock();
10160 
10161 			rebroadcast_time = jiffies;
10162 		}
10163 
10164 		if (!wait) {
10165 			rcu_barrier();
10166 			wait = WAIT_REFS_MIN_MSECS;
10167 		} else {
10168 			msleep(wait);
10169 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10170 		}
10171 
10172 		list_for_each_entry(dev, list, todo_list)
10173 			if (netdev_refcnt_read(dev) == 1)
10174 				return dev;
10175 
10176 		if (time_after(jiffies, warning_time +
10177 			       netdev_unregister_timeout_secs * HZ)) {
10178 			list_for_each_entry(dev, list, todo_list) {
10179 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10180 					 dev->name, netdev_refcnt_read(dev));
10181 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10182 			}
10183 
10184 			warning_time = jiffies;
10185 		}
10186 	}
10187 }
10188 
10189 /* The sequence is:
10190  *
10191  *	rtnl_lock();
10192  *	...
10193  *	register_netdevice(x1);
10194  *	register_netdevice(x2);
10195  *	...
10196  *	unregister_netdevice(y1);
10197  *	unregister_netdevice(y2);
10198  *      ...
10199  *	rtnl_unlock();
10200  *	free_netdev(y1);
10201  *	free_netdev(y2);
10202  *
10203  * We are invoked by rtnl_unlock().
10204  * This allows us to deal with problems:
10205  * 1) We can delete sysfs objects which invoke hotplug
10206  *    without deadlocking with linkwatch via keventd.
10207  * 2) Since we run with the RTNL semaphore not held, we can sleep
10208  *    safely in order to wait for the netdev refcnt to drop to zero.
10209  *
10210  * We must not return until all unregister events added during
10211  * the interval the lock was held have been completed.
10212  */
10213 void netdev_run_todo(void)
10214 {
10215 	struct net_device *dev, *tmp;
10216 	struct list_head list;
10217 #ifdef CONFIG_LOCKDEP
10218 	struct list_head unlink_list;
10219 
10220 	list_replace_init(&net_unlink_list, &unlink_list);
10221 
10222 	while (!list_empty(&unlink_list)) {
10223 		struct net_device *dev = list_first_entry(&unlink_list,
10224 							  struct net_device,
10225 							  unlink_list);
10226 		list_del_init(&dev->unlink_list);
10227 		dev->nested_level = dev->lower_level - 1;
10228 	}
10229 #endif
10230 
10231 	/* Snapshot list, allow later requests */
10232 	list_replace_init(&net_todo_list, &list);
10233 
10234 	__rtnl_unlock();
10235 
10236 	/* Wait for rcu callbacks to finish before next phase */
10237 	if (!list_empty(&list))
10238 		rcu_barrier();
10239 
10240 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10241 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10242 			netdev_WARN(dev, "run_todo but not unregistering\n");
10243 			list_del(&dev->todo_list);
10244 			continue;
10245 		}
10246 
10247 		dev->reg_state = NETREG_UNREGISTERED;
10248 		linkwatch_forget_dev(dev);
10249 	}
10250 
10251 	while (!list_empty(&list)) {
10252 		dev = netdev_wait_allrefs_any(&list);
10253 		list_del(&dev->todo_list);
10254 
10255 		/* paranoia */
10256 		BUG_ON(netdev_refcnt_read(dev) != 1);
10257 		BUG_ON(!list_empty(&dev->ptype_all));
10258 		BUG_ON(!list_empty(&dev->ptype_specific));
10259 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10260 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10261 #if IS_ENABLED(CONFIG_DECNET)
10262 		WARN_ON(dev->dn_ptr);
10263 #endif
10264 		if (dev->priv_destructor)
10265 			dev->priv_destructor(dev);
10266 		if (dev->needs_free_netdev)
10267 			free_netdev(dev);
10268 
10269 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10270 			wake_up(&netdev_unregistering_wq);
10271 
10272 		/* Free network device */
10273 		kobject_put(&dev->dev.kobj);
10274 	}
10275 }
10276 
10277 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10278  * all the same fields in the same order as net_device_stats, with only
10279  * the type differing, but rtnl_link_stats64 may have additional fields
10280  * at the end for newer counters.
10281  */
10282 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10283 			     const struct net_device_stats *netdev_stats)
10284 {
10285 #if BITS_PER_LONG == 64
10286 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10287 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10288 	/* zero out counters that only exist in rtnl_link_stats64 */
10289 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10290 	       sizeof(*stats64) - sizeof(*netdev_stats));
10291 #else
10292 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10293 	const unsigned long *src = (const unsigned long *)netdev_stats;
10294 	u64 *dst = (u64 *)stats64;
10295 
10296 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10297 	for (i = 0; i < n; i++)
10298 		dst[i] = src[i];
10299 	/* zero out counters that only exist in rtnl_link_stats64 */
10300 	memset((char *)stats64 + n * sizeof(u64), 0,
10301 	       sizeof(*stats64) - n * sizeof(u64));
10302 #endif
10303 }
10304 EXPORT_SYMBOL(netdev_stats_to_stats64);
10305 
10306 struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev)
10307 {
10308 	struct net_device_core_stats __percpu *p;
10309 
10310 	p = alloc_percpu_gfp(struct net_device_core_stats,
10311 			     GFP_ATOMIC | __GFP_NOWARN);
10312 
10313 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10314 		free_percpu(p);
10315 
10316 	/* This READ_ONCE() pairs with the cmpxchg() above */
10317 	p = READ_ONCE(dev->core_stats);
10318 	if (!p)
10319 		return NULL;
10320 
10321 	return this_cpu_ptr(p);
10322 }
10323 EXPORT_SYMBOL(netdev_core_stats_alloc);
10324 
10325 /**
10326  *	dev_get_stats	- get network device statistics
10327  *	@dev: device to get statistics from
10328  *	@storage: place to store stats
10329  *
10330  *	Get network statistics from device. Return @storage.
10331  *	The device driver may provide its own method by setting
10332  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10333  *	otherwise the internal statistics structure is used.
10334  */
10335 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10336 					struct rtnl_link_stats64 *storage)
10337 {
10338 	const struct net_device_ops *ops = dev->netdev_ops;
10339 	const struct net_device_core_stats __percpu *p;
10340 
10341 	if (ops->ndo_get_stats64) {
10342 		memset(storage, 0, sizeof(*storage));
10343 		ops->ndo_get_stats64(dev, storage);
10344 	} else if (ops->ndo_get_stats) {
10345 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10346 	} else {
10347 		netdev_stats_to_stats64(storage, &dev->stats);
10348 	}
10349 
10350 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10351 	p = READ_ONCE(dev->core_stats);
10352 	if (p) {
10353 		const struct net_device_core_stats *core_stats;
10354 		int i;
10355 
10356 		for_each_possible_cpu(i) {
10357 			core_stats = per_cpu_ptr(p, i);
10358 			storage->rx_dropped += local_read(&core_stats->rx_dropped);
10359 			storage->tx_dropped += local_read(&core_stats->tx_dropped);
10360 			storage->rx_nohandler += local_read(&core_stats->rx_nohandler);
10361 			storage->rx_otherhost_dropped += local_read(&core_stats->rx_otherhost_dropped);
10362 		}
10363 	}
10364 	return storage;
10365 }
10366 EXPORT_SYMBOL(dev_get_stats);
10367 
10368 /**
10369  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10370  *	@s: place to store stats
10371  *	@netstats: per-cpu network stats to read from
10372  *
10373  *	Read per-cpu network statistics and populate the related fields in @s.
10374  */
10375 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10376 			   const struct pcpu_sw_netstats __percpu *netstats)
10377 {
10378 	int cpu;
10379 
10380 	for_each_possible_cpu(cpu) {
10381 		const struct pcpu_sw_netstats *stats;
10382 		struct pcpu_sw_netstats tmp;
10383 		unsigned int start;
10384 
10385 		stats = per_cpu_ptr(netstats, cpu);
10386 		do {
10387 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10388 			tmp.rx_packets = stats->rx_packets;
10389 			tmp.rx_bytes   = stats->rx_bytes;
10390 			tmp.tx_packets = stats->tx_packets;
10391 			tmp.tx_bytes   = stats->tx_bytes;
10392 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10393 
10394 		s->rx_packets += tmp.rx_packets;
10395 		s->rx_bytes   += tmp.rx_bytes;
10396 		s->tx_packets += tmp.tx_packets;
10397 		s->tx_bytes   += tmp.tx_bytes;
10398 	}
10399 }
10400 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10401 
10402 /**
10403  *	dev_get_tstats64 - ndo_get_stats64 implementation
10404  *	@dev: device to get statistics from
10405  *	@s: place to store stats
10406  *
10407  *	Populate @s from dev->stats and dev->tstats. Can be used as
10408  *	ndo_get_stats64() callback.
10409  */
10410 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10411 {
10412 	netdev_stats_to_stats64(s, &dev->stats);
10413 	dev_fetch_sw_netstats(s, dev->tstats);
10414 }
10415 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10416 
10417 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10418 {
10419 	struct netdev_queue *queue = dev_ingress_queue(dev);
10420 
10421 #ifdef CONFIG_NET_CLS_ACT
10422 	if (queue)
10423 		return queue;
10424 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10425 	if (!queue)
10426 		return NULL;
10427 	netdev_init_one_queue(dev, queue, NULL);
10428 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10429 	queue->qdisc_sleeping = &noop_qdisc;
10430 	rcu_assign_pointer(dev->ingress_queue, queue);
10431 #endif
10432 	return queue;
10433 }
10434 
10435 static const struct ethtool_ops default_ethtool_ops;
10436 
10437 void netdev_set_default_ethtool_ops(struct net_device *dev,
10438 				    const struct ethtool_ops *ops)
10439 {
10440 	if (dev->ethtool_ops == &default_ethtool_ops)
10441 		dev->ethtool_ops = ops;
10442 }
10443 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10444 
10445 void netdev_freemem(struct net_device *dev)
10446 {
10447 	char *addr = (char *)dev - dev->padded;
10448 
10449 	kvfree(addr);
10450 }
10451 
10452 /**
10453  * alloc_netdev_mqs - allocate network device
10454  * @sizeof_priv: size of private data to allocate space for
10455  * @name: device name format string
10456  * @name_assign_type: origin of device name
10457  * @setup: callback to initialize device
10458  * @txqs: the number of TX subqueues to allocate
10459  * @rxqs: the number of RX subqueues to allocate
10460  *
10461  * Allocates a struct net_device with private data area for driver use
10462  * and performs basic initialization.  Also allocates subqueue structs
10463  * for each queue on the device.
10464  */
10465 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10466 		unsigned char name_assign_type,
10467 		void (*setup)(struct net_device *),
10468 		unsigned int txqs, unsigned int rxqs)
10469 {
10470 	struct net_device *dev;
10471 	unsigned int alloc_size;
10472 	struct net_device *p;
10473 
10474 	BUG_ON(strlen(name) >= sizeof(dev->name));
10475 
10476 	if (txqs < 1) {
10477 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10478 		return NULL;
10479 	}
10480 
10481 	if (rxqs < 1) {
10482 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10483 		return NULL;
10484 	}
10485 
10486 	alloc_size = sizeof(struct net_device);
10487 	if (sizeof_priv) {
10488 		/* ensure 32-byte alignment of private area */
10489 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10490 		alloc_size += sizeof_priv;
10491 	}
10492 	/* ensure 32-byte alignment of whole construct */
10493 	alloc_size += NETDEV_ALIGN - 1;
10494 
10495 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10496 	if (!p)
10497 		return NULL;
10498 
10499 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10500 	dev->padded = (char *)dev - (char *)p;
10501 
10502 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10503 #ifdef CONFIG_PCPU_DEV_REFCNT
10504 	dev->pcpu_refcnt = alloc_percpu(int);
10505 	if (!dev->pcpu_refcnt)
10506 		goto free_dev;
10507 	__dev_hold(dev);
10508 #else
10509 	refcount_set(&dev->dev_refcnt, 1);
10510 #endif
10511 
10512 	if (dev_addr_init(dev))
10513 		goto free_pcpu;
10514 
10515 	dev_mc_init(dev);
10516 	dev_uc_init(dev);
10517 
10518 	dev_net_set(dev, &init_net);
10519 
10520 	dev->gso_max_size = GSO_MAX_SIZE;
10521 	dev->gso_max_segs = GSO_MAX_SEGS;
10522 	dev->gro_max_size = GRO_MAX_SIZE;
10523 	dev->upper_level = 1;
10524 	dev->lower_level = 1;
10525 #ifdef CONFIG_LOCKDEP
10526 	dev->nested_level = 0;
10527 	INIT_LIST_HEAD(&dev->unlink_list);
10528 #endif
10529 
10530 	INIT_LIST_HEAD(&dev->napi_list);
10531 	INIT_LIST_HEAD(&dev->unreg_list);
10532 	INIT_LIST_HEAD(&dev->close_list);
10533 	INIT_LIST_HEAD(&dev->link_watch_list);
10534 	INIT_LIST_HEAD(&dev->adj_list.upper);
10535 	INIT_LIST_HEAD(&dev->adj_list.lower);
10536 	INIT_LIST_HEAD(&dev->ptype_all);
10537 	INIT_LIST_HEAD(&dev->ptype_specific);
10538 	INIT_LIST_HEAD(&dev->net_notifier_list);
10539 #ifdef CONFIG_NET_SCHED
10540 	hash_init(dev->qdisc_hash);
10541 #endif
10542 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10543 	setup(dev);
10544 
10545 	if (!dev->tx_queue_len) {
10546 		dev->priv_flags |= IFF_NO_QUEUE;
10547 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10548 	}
10549 
10550 	dev->num_tx_queues = txqs;
10551 	dev->real_num_tx_queues = txqs;
10552 	if (netif_alloc_netdev_queues(dev))
10553 		goto free_all;
10554 
10555 	dev->num_rx_queues = rxqs;
10556 	dev->real_num_rx_queues = rxqs;
10557 	if (netif_alloc_rx_queues(dev))
10558 		goto free_all;
10559 
10560 	strcpy(dev->name, name);
10561 	dev->name_assign_type = name_assign_type;
10562 	dev->group = INIT_NETDEV_GROUP;
10563 	if (!dev->ethtool_ops)
10564 		dev->ethtool_ops = &default_ethtool_ops;
10565 
10566 	nf_hook_netdev_init(dev);
10567 
10568 	return dev;
10569 
10570 free_all:
10571 	free_netdev(dev);
10572 	return NULL;
10573 
10574 free_pcpu:
10575 #ifdef CONFIG_PCPU_DEV_REFCNT
10576 	free_percpu(dev->pcpu_refcnt);
10577 free_dev:
10578 #endif
10579 	netdev_freemem(dev);
10580 	return NULL;
10581 }
10582 EXPORT_SYMBOL(alloc_netdev_mqs);
10583 
10584 /**
10585  * free_netdev - free network device
10586  * @dev: device
10587  *
10588  * This function does the last stage of destroying an allocated device
10589  * interface. The reference to the device object is released. If this
10590  * is the last reference then it will be freed.Must be called in process
10591  * context.
10592  */
10593 void free_netdev(struct net_device *dev)
10594 {
10595 	struct napi_struct *p, *n;
10596 
10597 	might_sleep();
10598 
10599 	/* When called immediately after register_netdevice() failed the unwind
10600 	 * handling may still be dismantling the device. Handle that case by
10601 	 * deferring the free.
10602 	 */
10603 	if (dev->reg_state == NETREG_UNREGISTERING) {
10604 		ASSERT_RTNL();
10605 		dev->needs_free_netdev = true;
10606 		return;
10607 	}
10608 
10609 	netif_free_tx_queues(dev);
10610 	netif_free_rx_queues(dev);
10611 
10612 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10613 
10614 	/* Flush device addresses */
10615 	dev_addr_flush(dev);
10616 
10617 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10618 		netif_napi_del(p);
10619 
10620 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10621 #ifdef CONFIG_PCPU_DEV_REFCNT
10622 	free_percpu(dev->pcpu_refcnt);
10623 	dev->pcpu_refcnt = NULL;
10624 #endif
10625 	free_percpu(dev->core_stats);
10626 	dev->core_stats = NULL;
10627 	free_percpu(dev->xdp_bulkq);
10628 	dev->xdp_bulkq = NULL;
10629 
10630 	/*  Compatibility with error handling in drivers */
10631 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10632 		netdev_freemem(dev);
10633 		return;
10634 	}
10635 
10636 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10637 	dev->reg_state = NETREG_RELEASED;
10638 
10639 	/* will free via device release */
10640 	put_device(&dev->dev);
10641 }
10642 EXPORT_SYMBOL(free_netdev);
10643 
10644 /**
10645  *	synchronize_net -  Synchronize with packet receive processing
10646  *
10647  *	Wait for packets currently being received to be done.
10648  *	Does not block later packets from starting.
10649  */
10650 void synchronize_net(void)
10651 {
10652 	might_sleep();
10653 	if (rtnl_is_locked())
10654 		synchronize_rcu_expedited();
10655 	else
10656 		synchronize_rcu();
10657 }
10658 EXPORT_SYMBOL(synchronize_net);
10659 
10660 /**
10661  *	unregister_netdevice_queue - remove device from the kernel
10662  *	@dev: device
10663  *	@head: list
10664  *
10665  *	This function shuts down a device interface and removes it
10666  *	from the kernel tables.
10667  *	If head not NULL, device is queued to be unregistered later.
10668  *
10669  *	Callers must hold the rtnl semaphore.  You may want
10670  *	unregister_netdev() instead of this.
10671  */
10672 
10673 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10674 {
10675 	ASSERT_RTNL();
10676 
10677 	if (head) {
10678 		list_move_tail(&dev->unreg_list, head);
10679 	} else {
10680 		LIST_HEAD(single);
10681 
10682 		list_add(&dev->unreg_list, &single);
10683 		unregister_netdevice_many(&single);
10684 	}
10685 }
10686 EXPORT_SYMBOL(unregister_netdevice_queue);
10687 
10688 /**
10689  *	unregister_netdevice_many - unregister many devices
10690  *	@head: list of devices
10691  *
10692  *  Note: As most callers use a stack allocated list_head,
10693  *  we force a list_del() to make sure stack wont be corrupted later.
10694  */
10695 void unregister_netdevice_many(struct list_head *head)
10696 {
10697 	struct net_device *dev, *tmp;
10698 	LIST_HEAD(close_head);
10699 
10700 	BUG_ON(dev_boot_phase);
10701 	ASSERT_RTNL();
10702 
10703 	if (list_empty(head))
10704 		return;
10705 
10706 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10707 		/* Some devices call without registering
10708 		 * for initialization unwind. Remove those
10709 		 * devices and proceed with the remaining.
10710 		 */
10711 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10712 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10713 				 dev->name, dev);
10714 
10715 			WARN_ON(1);
10716 			list_del(&dev->unreg_list);
10717 			continue;
10718 		}
10719 		dev->dismantle = true;
10720 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10721 	}
10722 
10723 	/* If device is running, close it first. */
10724 	list_for_each_entry(dev, head, unreg_list)
10725 		list_add_tail(&dev->close_list, &close_head);
10726 	dev_close_many(&close_head, true);
10727 
10728 	list_for_each_entry(dev, head, unreg_list) {
10729 		/* And unlink it from device chain. */
10730 		unlist_netdevice(dev);
10731 
10732 		dev->reg_state = NETREG_UNREGISTERING;
10733 	}
10734 	flush_all_backlogs();
10735 
10736 	synchronize_net();
10737 
10738 	list_for_each_entry(dev, head, unreg_list) {
10739 		struct sk_buff *skb = NULL;
10740 
10741 		/* Shutdown queueing discipline. */
10742 		dev_shutdown(dev);
10743 
10744 		dev_xdp_uninstall(dev);
10745 
10746 		netdev_offload_xstats_disable_all(dev);
10747 
10748 		/* Notify protocols, that we are about to destroy
10749 		 * this device. They should clean all the things.
10750 		 */
10751 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10752 
10753 		if (!dev->rtnl_link_ops ||
10754 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10755 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10756 						     GFP_KERNEL, NULL, 0);
10757 
10758 		/*
10759 		 *	Flush the unicast and multicast chains
10760 		 */
10761 		dev_uc_flush(dev);
10762 		dev_mc_flush(dev);
10763 
10764 		netdev_name_node_alt_flush(dev);
10765 		netdev_name_node_free(dev->name_node);
10766 
10767 		if (dev->netdev_ops->ndo_uninit)
10768 			dev->netdev_ops->ndo_uninit(dev);
10769 
10770 		if (skb)
10771 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10772 
10773 		/* Notifier chain MUST detach us all upper devices. */
10774 		WARN_ON(netdev_has_any_upper_dev(dev));
10775 		WARN_ON(netdev_has_any_lower_dev(dev));
10776 
10777 		/* Remove entries from kobject tree */
10778 		netdev_unregister_kobject(dev);
10779 #ifdef CONFIG_XPS
10780 		/* Remove XPS queueing entries */
10781 		netif_reset_xps_queues_gt(dev, 0);
10782 #endif
10783 	}
10784 
10785 	synchronize_net();
10786 
10787 	list_for_each_entry(dev, head, unreg_list) {
10788 		dev_put_track(dev, &dev->dev_registered_tracker);
10789 		net_set_todo(dev);
10790 	}
10791 
10792 	list_del(head);
10793 }
10794 EXPORT_SYMBOL(unregister_netdevice_many);
10795 
10796 /**
10797  *	unregister_netdev - remove device from the kernel
10798  *	@dev: device
10799  *
10800  *	This function shuts down a device interface and removes it
10801  *	from the kernel tables.
10802  *
10803  *	This is just a wrapper for unregister_netdevice that takes
10804  *	the rtnl semaphore.  In general you want to use this and not
10805  *	unregister_netdevice.
10806  */
10807 void unregister_netdev(struct net_device *dev)
10808 {
10809 	rtnl_lock();
10810 	unregister_netdevice(dev);
10811 	rtnl_unlock();
10812 }
10813 EXPORT_SYMBOL(unregister_netdev);
10814 
10815 /**
10816  *	__dev_change_net_namespace - move device to different nethost namespace
10817  *	@dev: device
10818  *	@net: network namespace
10819  *	@pat: If not NULL name pattern to try if the current device name
10820  *	      is already taken in the destination network namespace.
10821  *	@new_ifindex: If not zero, specifies device index in the target
10822  *	              namespace.
10823  *
10824  *	This function shuts down a device interface and moves it
10825  *	to a new network namespace. On success 0 is returned, on
10826  *	a failure a netagive errno code is returned.
10827  *
10828  *	Callers must hold the rtnl semaphore.
10829  */
10830 
10831 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10832 			       const char *pat, int new_ifindex)
10833 {
10834 	struct net *net_old = dev_net(dev);
10835 	int err, new_nsid;
10836 
10837 	ASSERT_RTNL();
10838 
10839 	/* Don't allow namespace local devices to be moved. */
10840 	err = -EINVAL;
10841 	if (dev->features & NETIF_F_NETNS_LOCAL)
10842 		goto out;
10843 
10844 	/* Ensure the device has been registrered */
10845 	if (dev->reg_state != NETREG_REGISTERED)
10846 		goto out;
10847 
10848 	/* Get out if there is nothing todo */
10849 	err = 0;
10850 	if (net_eq(net_old, net))
10851 		goto out;
10852 
10853 	/* Pick the destination device name, and ensure
10854 	 * we can use it in the destination network namespace.
10855 	 */
10856 	err = -EEXIST;
10857 	if (netdev_name_in_use(net, dev->name)) {
10858 		/* We get here if we can't use the current device name */
10859 		if (!pat)
10860 			goto out;
10861 		err = dev_get_valid_name(net, dev, pat);
10862 		if (err < 0)
10863 			goto out;
10864 	}
10865 
10866 	/* Check that new_ifindex isn't used yet. */
10867 	err = -EBUSY;
10868 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10869 		goto out;
10870 
10871 	/*
10872 	 * And now a mini version of register_netdevice unregister_netdevice.
10873 	 */
10874 
10875 	/* If device is running close it first. */
10876 	dev_close(dev);
10877 
10878 	/* And unlink it from device chain */
10879 	unlist_netdevice(dev);
10880 
10881 	synchronize_net();
10882 
10883 	/* Shutdown queueing discipline. */
10884 	dev_shutdown(dev);
10885 
10886 	/* Notify protocols, that we are about to destroy
10887 	 * this device. They should clean all the things.
10888 	 *
10889 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10890 	 * This is wanted because this way 8021q and macvlan know
10891 	 * the device is just moving and can keep their slaves up.
10892 	 */
10893 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10894 	rcu_barrier();
10895 
10896 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10897 	/* If there is an ifindex conflict assign a new one */
10898 	if (!new_ifindex) {
10899 		if (__dev_get_by_index(net, dev->ifindex))
10900 			new_ifindex = dev_new_index(net);
10901 		else
10902 			new_ifindex = dev->ifindex;
10903 	}
10904 
10905 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10906 			    new_ifindex);
10907 
10908 	/*
10909 	 *	Flush the unicast and multicast chains
10910 	 */
10911 	dev_uc_flush(dev);
10912 	dev_mc_flush(dev);
10913 
10914 	/* Send a netdev-removed uevent to the old namespace */
10915 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10916 	netdev_adjacent_del_links(dev);
10917 
10918 	/* Move per-net netdevice notifiers that are following the netdevice */
10919 	move_netdevice_notifiers_dev_net(dev, net);
10920 
10921 	/* Actually switch the network namespace */
10922 	dev_net_set(dev, net);
10923 	dev->ifindex = new_ifindex;
10924 
10925 	/* Send a netdev-add uevent to the new namespace */
10926 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10927 	netdev_adjacent_add_links(dev);
10928 
10929 	/* Fixup kobjects */
10930 	err = device_rename(&dev->dev, dev->name);
10931 	WARN_ON(err);
10932 
10933 	/* Adapt owner in case owning user namespace of target network
10934 	 * namespace is different from the original one.
10935 	 */
10936 	err = netdev_change_owner(dev, net_old, net);
10937 	WARN_ON(err);
10938 
10939 	/* Add the device back in the hashes */
10940 	list_netdevice(dev);
10941 
10942 	/* Notify protocols, that a new device appeared. */
10943 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10944 
10945 	/*
10946 	 *	Prevent userspace races by waiting until the network
10947 	 *	device is fully setup before sending notifications.
10948 	 */
10949 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10950 
10951 	synchronize_net();
10952 	err = 0;
10953 out:
10954 	return err;
10955 }
10956 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10957 
10958 static int dev_cpu_dead(unsigned int oldcpu)
10959 {
10960 	struct sk_buff **list_skb;
10961 	struct sk_buff *skb;
10962 	unsigned int cpu;
10963 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10964 
10965 	local_irq_disable();
10966 	cpu = smp_processor_id();
10967 	sd = &per_cpu(softnet_data, cpu);
10968 	oldsd = &per_cpu(softnet_data, oldcpu);
10969 
10970 	/* Find end of our completion_queue. */
10971 	list_skb = &sd->completion_queue;
10972 	while (*list_skb)
10973 		list_skb = &(*list_skb)->next;
10974 	/* Append completion queue from offline CPU. */
10975 	*list_skb = oldsd->completion_queue;
10976 	oldsd->completion_queue = NULL;
10977 
10978 	/* Append output queue from offline CPU. */
10979 	if (oldsd->output_queue) {
10980 		*sd->output_queue_tailp = oldsd->output_queue;
10981 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10982 		oldsd->output_queue = NULL;
10983 		oldsd->output_queue_tailp = &oldsd->output_queue;
10984 	}
10985 	/* Append NAPI poll list from offline CPU, with one exception :
10986 	 * process_backlog() must be called by cpu owning percpu backlog.
10987 	 * We properly handle process_queue & input_pkt_queue later.
10988 	 */
10989 	while (!list_empty(&oldsd->poll_list)) {
10990 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10991 							    struct napi_struct,
10992 							    poll_list);
10993 
10994 		list_del_init(&napi->poll_list);
10995 		if (napi->poll == process_backlog)
10996 			napi->state = 0;
10997 		else
10998 			____napi_schedule(sd, napi);
10999 	}
11000 
11001 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11002 	local_irq_enable();
11003 
11004 #ifdef CONFIG_RPS
11005 	remsd = oldsd->rps_ipi_list;
11006 	oldsd->rps_ipi_list = NULL;
11007 #endif
11008 	/* send out pending IPI's on offline CPU */
11009 	net_rps_send_ipi(remsd);
11010 
11011 	/* Process offline CPU's input_pkt_queue */
11012 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11013 		netif_rx(skb);
11014 		input_queue_head_incr(oldsd);
11015 	}
11016 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11017 		netif_rx(skb);
11018 		input_queue_head_incr(oldsd);
11019 	}
11020 
11021 	return 0;
11022 }
11023 
11024 /**
11025  *	netdev_increment_features - increment feature set by one
11026  *	@all: current feature set
11027  *	@one: new feature set
11028  *	@mask: mask feature set
11029  *
11030  *	Computes a new feature set after adding a device with feature set
11031  *	@one to the master device with current feature set @all.  Will not
11032  *	enable anything that is off in @mask. Returns the new feature set.
11033  */
11034 netdev_features_t netdev_increment_features(netdev_features_t all,
11035 	netdev_features_t one, netdev_features_t mask)
11036 {
11037 	if (mask & NETIF_F_HW_CSUM)
11038 		mask |= NETIF_F_CSUM_MASK;
11039 	mask |= NETIF_F_VLAN_CHALLENGED;
11040 
11041 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11042 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11043 
11044 	/* If one device supports hw checksumming, set for all. */
11045 	if (all & NETIF_F_HW_CSUM)
11046 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11047 
11048 	return all;
11049 }
11050 EXPORT_SYMBOL(netdev_increment_features);
11051 
11052 static struct hlist_head * __net_init netdev_create_hash(void)
11053 {
11054 	int i;
11055 	struct hlist_head *hash;
11056 
11057 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11058 	if (hash != NULL)
11059 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11060 			INIT_HLIST_HEAD(&hash[i]);
11061 
11062 	return hash;
11063 }
11064 
11065 /* Initialize per network namespace state */
11066 static int __net_init netdev_init(struct net *net)
11067 {
11068 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11069 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11070 
11071 	INIT_LIST_HEAD(&net->dev_base_head);
11072 
11073 	net->dev_name_head = netdev_create_hash();
11074 	if (net->dev_name_head == NULL)
11075 		goto err_name;
11076 
11077 	net->dev_index_head = netdev_create_hash();
11078 	if (net->dev_index_head == NULL)
11079 		goto err_idx;
11080 
11081 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11082 
11083 	return 0;
11084 
11085 err_idx:
11086 	kfree(net->dev_name_head);
11087 err_name:
11088 	return -ENOMEM;
11089 }
11090 
11091 /**
11092  *	netdev_drivername - network driver for the device
11093  *	@dev: network device
11094  *
11095  *	Determine network driver for device.
11096  */
11097 const char *netdev_drivername(const struct net_device *dev)
11098 {
11099 	const struct device_driver *driver;
11100 	const struct device *parent;
11101 	const char *empty = "";
11102 
11103 	parent = dev->dev.parent;
11104 	if (!parent)
11105 		return empty;
11106 
11107 	driver = parent->driver;
11108 	if (driver && driver->name)
11109 		return driver->name;
11110 	return empty;
11111 }
11112 
11113 static void __netdev_printk(const char *level, const struct net_device *dev,
11114 			    struct va_format *vaf)
11115 {
11116 	if (dev && dev->dev.parent) {
11117 		dev_printk_emit(level[1] - '0',
11118 				dev->dev.parent,
11119 				"%s %s %s%s: %pV",
11120 				dev_driver_string(dev->dev.parent),
11121 				dev_name(dev->dev.parent),
11122 				netdev_name(dev), netdev_reg_state(dev),
11123 				vaf);
11124 	} else if (dev) {
11125 		printk("%s%s%s: %pV",
11126 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11127 	} else {
11128 		printk("%s(NULL net_device): %pV", level, vaf);
11129 	}
11130 }
11131 
11132 void netdev_printk(const char *level, const struct net_device *dev,
11133 		   const char *format, ...)
11134 {
11135 	struct va_format vaf;
11136 	va_list args;
11137 
11138 	va_start(args, format);
11139 
11140 	vaf.fmt = format;
11141 	vaf.va = &args;
11142 
11143 	__netdev_printk(level, dev, &vaf);
11144 
11145 	va_end(args);
11146 }
11147 EXPORT_SYMBOL(netdev_printk);
11148 
11149 #define define_netdev_printk_level(func, level)			\
11150 void func(const struct net_device *dev, const char *fmt, ...)	\
11151 {								\
11152 	struct va_format vaf;					\
11153 	va_list args;						\
11154 								\
11155 	va_start(args, fmt);					\
11156 								\
11157 	vaf.fmt = fmt;						\
11158 	vaf.va = &args;						\
11159 								\
11160 	__netdev_printk(level, dev, &vaf);			\
11161 								\
11162 	va_end(args);						\
11163 }								\
11164 EXPORT_SYMBOL(func);
11165 
11166 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11167 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11168 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11169 define_netdev_printk_level(netdev_err, KERN_ERR);
11170 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11171 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11172 define_netdev_printk_level(netdev_info, KERN_INFO);
11173 
11174 static void __net_exit netdev_exit(struct net *net)
11175 {
11176 	kfree(net->dev_name_head);
11177 	kfree(net->dev_index_head);
11178 	if (net != &init_net)
11179 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11180 }
11181 
11182 static struct pernet_operations __net_initdata netdev_net_ops = {
11183 	.init = netdev_init,
11184 	.exit = netdev_exit,
11185 };
11186 
11187 static void __net_exit default_device_exit_net(struct net *net)
11188 {
11189 	struct net_device *dev, *aux;
11190 	/*
11191 	 * Push all migratable network devices back to the
11192 	 * initial network namespace
11193 	 */
11194 	ASSERT_RTNL();
11195 	for_each_netdev_safe(net, dev, aux) {
11196 		int err;
11197 		char fb_name[IFNAMSIZ];
11198 
11199 		/* Ignore unmoveable devices (i.e. loopback) */
11200 		if (dev->features & NETIF_F_NETNS_LOCAL)
11201 			continue;
11202 
11203 		/* Leave virtual devices for the generic cleanup */
11204 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11205 			continue;
11206 
11207 		/* Push remaining network devices to init_net */
11208 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11209 		if (netdev_name_in_use(&init_net, fb_name))
11210 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11211 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11212 		if (err) {
11213 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11214 				 __func__, dev->name, err);
11215 			BUG();
11216 		}
11217 	}
11218 }
11219 
11220 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11221 {
11222 	/* At exit all network devices most be removed from a network
11223 	 * namespace.  Do this in the reverse order of registration.
11224 	 * Do this across as many network namespaces as possible to
11225 	 * improve batching efficiency.
11226 	 */
11227 	struct net_device *dev;
11228 	struct net *net;
11229 	LIST_HEAD(dev_kill_list);
11230 
11231 	rtnl_lock();
11232 	list_for_each_entry(net, net_list, exit_list) {
11233 		default_device_exit_net(net);
11234 		cond_resched();
11235 	}
11236 
11237 	list_for_each_entry(net, net_list, exit_list) {
11238 		for_each_netdev_reverse(net, dev) {
11239 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11240 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11241 			else
11242 				unregister_netdevice_queue(dev, &dev_kill_list);
11243 		}
11244 	}
11245 	unregister_netdevice_many(&dev_kill_list);
11246 	rtnl_unlock();
11247 }
11248 
11249 static struct pernet_operations __net_initdata default_device_ops = {
11250 	.exit_batch = default_device_exit_batch,
11251 };
11252 
11253 /*
11254  *	Initialize the DEV module. At boot time this walks the device list and
11255  *	unhooks any devices that fail to initialise (normally hardware not
11256  *	present) and leaves us with a valid list of present and active devices.
11257  *
11258  */
11259 
11260 /*
11261  *       This is called single threaded during boot, so no need
11262  *       to take the rtnl semaphore.
11263  */
11264 static int __init net_dev_init(void)
11265 {
11266 	int i, rc = -ENOMEM;
11267 
11268 	BUG_ON(!dev_boot_phase);
11269 
11270 	if (dev_proc_init())
11271 		goto out;
11272 
11273 	if (netdev_kobject_init())
11274 		goto out;
11275 
11276 	INIT_LIST_HEAD(&ptype_all);
11277 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11278 		INIT_LIST_HEAD(&ptype_base[i]);
11279 
11280 	if (register_pernet_subsys(&netdev_net_ops))
11281 		goto out;
11282 
11283 	/*
11284 	 *	Initialise the packet receive queues.
11285 	 */
11286 
11287 	for_each_possible_cpu(i) {
11288 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11289 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11290 
11291 		INIT_WORK(flush, flush_backlog);
11292 
11293 		skb_queue_head_init(&sd->input_pkt_queue);
11294 		skb_queue_head_init(&sd->process_queue);
11295 #ifdef CONFIG_XFRM_OFFLOAD
11296 		skb_queue_head_init(&sd->xfrm_backlog);
11297 #endif
11298 		INIT_LIST_HEAD(&sd->poll_list);
11299 		sd->output_queue_tailp = &sd->output_queue;
11300 #ifdef CONFIG_RPS
11301 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11302 		sd->cpu = i;
11303 #endif
11304 
11305 		init_gro_hash(&sd->backlog);
11306 		sd->backlog.poll = process_backlog;
11307 		sd->backlog.weight = weight_p;
11308 	}
11309 
11310 	dev_boot_phase = 0;
11311 
11312 	/* The loopback device is special if any other network devices
11313 	 * is present in a network namespace the loopback device must
11314 	 * be present. Since we now dynamically allocate and free the
11315 	 * loopback device ensure this invariant is maintained by
11316 	 * keeping the loopback device as the first device on the
11317 	 * list of network devices.  Ensuring the loopback devices
11318 	 * is the first device that appears and the last network device
11319 	 * that disappears.
11320 	 */
11321 	if (register_pernet_device(&loopback_net_ops))
11322 		goto out;
11323 
11324 	if (register_pernet_device(&default_device_ops))
11325 		goto out;
11326 
11327 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11328 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11329 
11330 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11331 				       NULL, dev_cpu_dead);
11332 	WARN_ON(rc < 0);
11333 	rc = 0;
11334 out:
11335 	return rc;
11336 }
11337 
11338 subsys_initcall(net_dev_init);
11339