xref: /linux/net/core/dev.c (revision 06b9cce42634a50f2840777a66553b02320db5ef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_create);
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct net *net = dev_net(dev);
385 
386 	ASSERT_RTNL();
387 
388 	write_lock(&dev_base_lock);
389 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390 	netdev_name_node_add(net, dev->name_node);
391 	hlist_add_head_rcu(&dev->index_hlist,
392 			   dev_index_hash(net, dev->ifindex));
393 	write_unlock(&dev_base_lock);
394 
395 	dev_base_seq_inc(net);
396 }
397 
398 /* Device list removal
399  * caller must respect a RCU grace period before freeing/reusing dev
400  */
401 static void unlist_netdevice(struct net_device *dev)
402 {
403 	ASSERT_RTNL();
404 
405 	/* Unlink dev from the device chain */
406 	write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	write_unlock(&dev_base_lock);
411 
412 	dev_base_seq_inc(dev_net(dev));
413 }
414 
415 /*
416  *	Our notifier list
417  */
418 
419 static RAW_NOTIFIER_HEAD(netdev_chain);
420 
421 /*
422  *	Device drivers call our routines to queue packets here. We empty the
423  *	queue in the local softnet handler.
424  */
425 
426 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
427 EXPORT_PER_CPU_SYMBOL(softnet_data);
428 
429 #ifdef CONFIG_LOCKDEP
430 /*
431  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
432  * according to dev->type
433  */
434 static const unsigned short netdev_lock_type[] = {
435 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
436 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
437 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
438 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
439 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
440 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
441 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
442 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
443 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
444 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
445 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
446 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
447 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
448 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
449 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
450 
451 static const char *const netdev_lock_name[] = {
452 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
453 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
454 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
455 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
456 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
457 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
458 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
459 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
460 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
461 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
462 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
463 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
464 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
465 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
466 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
467 
468 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 
471 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
472 {
473 	int i;
474 
475 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
476 		if (netdev_lock_type[i] == dev_type)
477 			return i;
478 	/* the last key is used by default */
479 	return ARRAY_SIZE(netdev_lock_type) - 1;
480 }
481 
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 						 unsigned short dev_type)
484 {
485 	int i;
486 
487 	i = netdev_lock_pos(dev_type);
488 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
489 				   netdev_lock_name[i]);
490 }
491 
492 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
493 {
494 	int i;
495 
496 	i = netdev_lock_pos(dev->type);
497 	lockdep_set_class_and_name(&dev->addr_list_lock,
498 				   &netdev_addr_lock_key[i],
499 				   netdev_lock_name[i]);
500 }
501 #else
502 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
503 						 unsigned short dev_type)
504 {
505 }
506 
507 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
508 {
509 }
510 #endif
511 
512 /*******************************************************************************
513  *
514  *		Protocol management and registration routines
515  *
516  *******************************************************************************/
517 
518 
519 /*
520  *	Add a protocol ID to the list. Now that the input handler is
521  *	smarter we can dispense with all the messy stuff that used to be
522  *	here.
523  *
524  *	BEWARE!!! Protocol handlers, mangling input packets,
525  *	MUST BE last in hash buckets and checking protocol handlers
526  *	MUST start from promiscuous ptype_all chain in net_bh.
527  *	It is true now, do not change it.
528  *	Explanation follows: if protocol handler, mangling packet, will
529  *	be the first on list, it is not able to sense, that packet
530  *	is cloned and should be copied-on-write, so that it will
531  *	change it and subsequent readers will get broken packet.
532  *							--ANK (980803)
533  */
534 
535 static inline struct list_head *ptype_head(const struct packet_type *pt)
536 {
537 	if (pt->type == htons(ETH_P_ALL))
538 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
539 	else
540 		return pt->dev ? &pt->dev->ptype_specific :
541 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
542 }
543 
544 /**
545  *	dev_add_pack - add packet handler
546  *	@pt: packet type declaration
547  *
548  *	Add a protocol handler to the networking stack. The passed &packet_type
549  *	is linked into kernel lists and may not be freed until it has been
550  *	removed from the kernel lists.
551  *
552  *	This call does not sleep therefore it can not
553  *	guarantee all CPU's that are in middle of receiving packets
554  *	will see the new packet type (until the next received packet).
555  */
556 
557 void dev_add_pack(struct packet_type *pt)
558 {
559 	struct list_head *head = ptype_head(pt);
560 
561 	spin_lock(&ptype_lock);
562 	list_add_rcu(&pt->list, head);
563 	spin_unlock(&ptype_lock);
564 }
565 EXPORT_SYMBOL(dev_add_pack);
566 
567 /**
568  *	__dev_remove_pack	 - remove packet handler
569  *	@pt: packet type declaration
570  *
571  *	Remove a protocol handler that was previously added to the kernel
572  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
573  *	from the kernel lists and can be freed or reused once this function
574  *	returns.
575  *
576  *      The packet type might still be in use by receivers
577  *	and must not be freed until after all the CPU's have gone
578  *	through a quiescent state.
579  */
580 void __dev_remove_pack(struct packet_type *pt)
581 {
582 	struct list_head *head = ptype_head(pt);
583 	struct packet_type *pt1;
584 
585 	spin_lock(&ptype_lock);
586 
587 	list_for_each_entry(pt1, head, list) {
588 		if (pt == pt1) {
589 			list_del_rcu(&pt->list);
590 			goto out;
591 		}
592 	}
593 
594 	pr_warn("dev_remove_pack: %p not found\n", pt);
595 out:
596 	spin_unlock(&ptype_lock);
597 }
598 EXPORT_SYMBOL(__dev_remove_pack);
599 
600 /**
601  *	dev_remove_pack	 - remove packet handler
602  *	@pt: packet type declaration
603  *
604  *	Remove a protocol handler that was previously added to the kernel
605  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
606  *	from the kernel lists and can be freed or reused once this function
607  *	returns.
608  *
609  *	This call sleeps to guarantee that no CPU is looking at the packet
610  *	type after return.
611  */
612 void dev_remove_pack(struct packet_type *pt)
613 {
614 	__dev_remove_pack(pt);
615 
616 	synchronize_net();
617 }
618 EXPORT_SYMBOL(dev_remove_pack);
619 
620 
621 /*******************************************************************************
622  *
623  *			    Device Interface Subroutines
624  *
625  *******************************************************************************/
626 
627 /**
628  *	dev_get_iflink	- get 'iflink' value of a interface
629  *	@dev: targeted interface
630  *
631  *	Indicates the ifindex the interface is linked to.
632  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
633  */
634 
635 int dev_get_iflink(const struct net_device *dev)
636 {
637 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
638 		return dev->netdev_ops->ndo_get_iflink(dev);
639 
640 	return dev->ifindex;
641 }
642 EXPORT_SYMBOL(dev_get_iflink);
643 
644 /**
645  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
646  *	@dev: targeted interface
647  *	@skb: The packet.
648  *
649  *	For better visibility of tunnel traffic OVS needs to retrieve
650  *	egress tunnel information for a packet. Following API allows
651  *	user to get this info.
652  */
653 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
654 {
655 	struct ip_tunnel_info *info;
656 
657 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
658 		return -EINVAL;
659 
660 	info = skb_tunnel_info_unclone(skb);
661 	if (!info)
662 		return -ENOMEM;
663 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
664 		return -EINVAL;
665 
666 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
667 }
668 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
669 
670 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
671 {
672 	int k = stack->num_paths++;
673 
674 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
675 		return NULL;
676 
677 	return &stack->path[k];
678 }
679 
680 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
681 			  struct net_device_path_stack *stack)
682 {
683 	const struct net_device *last_dev;
684 	struct net_device_path_ctx ctx = {
685 		.dev	= dev,
686 		.daddr	= daddr,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	stack->num_paths = 0;
692 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
693 		last_dev = ctx.dev;
694 		path = dev_fwd_path(stack);
695 		if (!path)
696 			return -1;
697 
698 		memset(path, 0, sizeof(struct net_device_path));
699 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
700 		if (ret < 0)
701 			return -1;
702 
703 		if (WARN_ON_ONCE(last_dev == ctx.dev))
704 			return -1;
705 	}
706 	path = dev_fwd_path(stack);
707 	if (!path)
708 		return -1;
709 	path->type = DEV_PATH_ETHERNET;
710 	path->dev = ctx.dev;
711 
712 	return ret;
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
715 
716 /**
717  *	__dev_get_by_name	- find a device by its name
718  *	@net: the applicable net namespace
719  *	@name: name to find
720  *
721  *	Find an interface by name. Must be called under RTNL semaphore
722  *	or @dev_base_lock. If the name is found a pointer to the device
723  *	is returned. If the name is not found then %NULL is returned. The
724  *	reference counters are not incremented so the caller must be
725  *	careful with locks.
726  */
727 
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730 	struct netdev_name_node *node_name;
731 
732 	node_name = netdev_name_node_lookup(net, name);
733 	return node_name ? node_name->dev : NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736 
737 /**
738  * dev_get_by_name_rcu	- find a device by its name
739  * @net: the applicable net namespace
740  * @name: name to find
741  *
742  * Find an interface by name.
743  * If the name is found a pointer to the device is returned.
744  * If the name is not found then %NULL is returned.
745  * The reference counters are not incremented so the caller must be
746  * careful with locks. The caller must hold RCU lock.
747  */
748 
749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup_rcu(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(dev_get_by_name_rcu);
757 
758 /**
759  *	dev_get_by_name		- find a device by its name
760  *	@net: the applicable net namespace
761  *	@name: name to find
762  *
763  *	Find an interface by name. This can be called from any
764  *	context and does its own locking. The returned handle has
765  *	the usage count incremented and the caller must use dev_put() to
766  *	release it when it is no longer needed. %NULL is returned if no
767  *	matching device is found.
768  */
769 
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
771 {
772 	struct net_device *dev;
773 
774 	rcu_read_lock();
775 	dev = dev_get_by_name_rcu(net, name);
776 	dev_hold(dev);
777 	rcu_read_unlock();
778 	return dev;
779 }
780 EXPORT_SYMBOL(dev_get_by_name);
781 
782 /**
783  *	__dev_get_by_index - find a device by its ifindex
784  *	@net: the applicable net namespace
785  *	@ifindex: index of device
786  *
787  *	Search for an interface by index. Returns %NULL if the device
788  *	is not found or a pointer to the device. The device has not
789  *	had its reference counter increased so the caller must be careful
790  *	about locking. The caller must hold either the RTNL semaphore
791  *	or @dev_base_lock.
792  */
793 
794 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
795 {
796 	struct net_device *dev;
797 	struct hlist_head *head = dev_index_hash(net, ifindex);
798 
799 	hlist_for_each_entry(dev, head, index_hlist)
800 		if (dev->ifindex == ifindex)
801 			return dev;
802 
803 	return NULL;
804 }
805 EXPORT_SYMBOL(__dev_get_by_index);
806 
807 /**
808  *	dev_get_by_index_rcu - find a device by its ifindex
809  *	@net: the applicable net namespace
810  *	@ifindex: index of device
811  *
812  *	Search for an interface by index. Returns %NULL if the device
813  *	is not found or a pointer to the device. The device has not
814  *	had its reference counter increased so the caller must be careful
815  *	about locking. The caller must hold RCU lock.
816  */
817 
818 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
819 {
820 	struct net_device *dev;
821 	struct hlist_head *head = dev_index_hash(net, ifindex);
822 
823 	hlist_for_each_entry_rcu(dev, head, index_hlist)
824 		if (dev->ifindex == ifindex)
825 			return dev;
826 
827 	return NULL;
828 }
829 EXPORT_SYMBOL(dev_get_by_index_rcu);
830 
831 
832 /**
833  *	dev_get_by_index - find a device by its ifindex
834  *	@net: the applicable net namespace
835  *	@ifindex: index of device
836  *
837  *	Search for an interface by index. Returns NULL if the device
838  *	is not found or a pointer to the device. The device returned has
839  *	had a reference added and the pointer is safe until the user calls
840  *	dev_put to indicate they have finished with it.
841  */
842 
843 struct net_device *dev_get_by_index(struct net *net, int ifindex)
844 {
845 	struct net_device *dev;
846 
847 	rcu_read_lock();
848 	dev = dev_get_by_index_rcu(net, ifindex);
849 	dev_hold(dev);
850 	rcu_read_unlock();
851 	return dev;
852 }
853 EXPORT_SYMBOL(dev_get_by_index);
854 
855 /**
856  *	dev_get_by_napi_id - find a device by napi_id
857  *	@napi_id: ID of the NAPI struct
858  *
859  *	Search for an interface by NAPI ID. Returns %NULL if the device
860  *	is not found or a pointer to the device. The device has not had
861  *	its reference counter increased so the caller must be careful
862  *	about locking. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
866 {
867 	struct napi_struct *napi;
868 
869 	WARN_ON_ONCE(!rcu_read_lock_held());
870 
871 	if (napi_id < MIN_NAPI_ID)
872 		return NULL;
873 
874 	napi = napi_by_id(napi_id);
875 
876 	return napi ? napi->dev : NULL;
877 }
878 EXPORT_SYMBOL(dev_get_by_napi_id);
879 
880 /**
881  *	netdev_get_name - get a netdevice name, knowing its ifindex.
882  *	@net: network namespace
883  *	@name: a pointer to the buffer where the name will be stored.
884  *	@ifindex: the ifindex of the interface to get the name from.
885  */
886 int netdev_get_name(struct net *net, char *name, int ifindex)
887 {
888 	struct net_device *dev;
889 	int ret;
890 
891 	down_read(&devnet_rename_sem);
892 	rcu_read_lock();
893 
894 	dev = dev_get_by_index_rcu(net, ifindex);
895 	if (!dev) {
896 		ret = -ENODEV;
897 		goto out;
898 	}
899 
900 	strcpy(name, dev->name);
901 
902 	ret = 0;
903 out:
904 	rcu_read_unlock();
905 	up_read(&devnet_rename_sem);
906 	return ret;
907 }
908 
909 /**
910  *	dev_getbyhwaddr_rcu - find a device by its hardware address
911  *	@net: the applicable net namespace
912  *	@type: media type of device
913  *	@ha: hardware address
914  *
915  *	Search for an interface by MAC address. Returns NULL if the device
916  *	is not found or a pointer to the device.
917  *	The caller must hold RCU or RTNL.
918  *	The returned device has not had its ref count increased
919  *	and the caller must therefore be careful about locking
920  *
921  */
922 
923 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
924 				       const char *ha)
925 {
926 	struct net_device *dev;
927 
928 	for_each_netdev_rcu(net, dev)
929 		if (dev->type == type &&
930 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
931 			return dev;
932 
933 	return NULL;
934 }
935 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
936 
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 	struct net_device *dev, *ret = NULL;
940 
941 	rcu_read_lock();
942 	for_each_netdev_rcu(net, dev)
943 		if (dev->type == type) {
944 			dev_hold(dev);
945 			ret = dev;
946 			break;
947 		}
948 	rcu_read_unlock();
949 	return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952 
953 /**
954  *	__dev_get_by_flags - find any device with given flags
955  *	@net: the applicable net namespace
956  *	@if_flags: IFF_* values
957  *	@mask: bitmask of bits in if_flags to check
958  *
959  *	Search for any interface with the given flags. Returns NULL if a device
960  *	is not found or a pointer to the device. Must be called inside
961  *	rtnl_lock(), and result refcount is unchanged.
962  */
963 
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 				      unsigned short mask)
966 {
967 	struct net_device *dev, *ret;
968 
969 	ASSERT_RTNL();
970 
971 	ret = NULL;
972 	for_each_netdev(net, dev) {
973 		if (((dev->flags ^ if_flags) & mask) == 0) {
974 			ret = dev;
975 			break;
976 		}
977 	}
978 	return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981 
982 /**
983  *	dev_valid_name - check if name is okay for network device
984  *	@name: name string
985  *
986  *	Network device names need to be valid file names to
987  *	allow sysfs to work.  We also disallow any kind of
988  *	whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992 	if (*name == '\0')
993 		return false;
994 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
995 		return false;
996 	if (!strcmp(name, ".") || !strcmp(name, ".."))
997 		return false;
998 
999 	while (*name) {
1000 		if (*name == '/' || *name == ':' || isspace(*name))
1001 			return false;
1002 		name++;
1003 	}
1004 	return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007 
1008 /**
1009  *	__dev_alloc_name - allocate a name for a device
1010  *	@net: network namespace to allocate the device name in
1011  *	@name: name format string
1012  *	@buf:  scratch buffer and result name string
1013  *
1014  *	Passed a format string - eg "lt%d" it will try and find a suitable
1015  *	id. It scans list of devices to build up a free map, then chooses
1016  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *	while allocating the name and adding the device in order to avoid
1018  *	duplicates.
1019  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *	Returns the number of the unit assigned or a negative errno code.
1021  */
1022 
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 	int i = 0;
1026 	const char *p;
1027 	const int max_netdevices = 8*PAGE_SIZE;
1028 	unsigned long *inuse;
1029 	struct net_device *d;
1030 
1031 	if (!dev_valid_name(name))
1032 		return -EINVAL;
1033 
1034 	p = strchr(name, '%');
1035 	if (p) {
1036 		/*
1037 		 * Verify the string as this thing may have come from
1038 		 * the user.  There must be either one "%d" and no other "%"
1039 		 * characters.
1040 		 */
1041 		if (p[1] != 'd' || strchr(p + 2, '%'))
1042 			return -EINVAL;
1043 
1044 		/* Use one page as a bit array of possible slots */
1045 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 		if (!inuse)
1047 			return -ENOMEM;
1048 
1049 		for_each_netdev(net, d) {
1050 			struct netdev_name_node *name_node;
1051 			list_for_each_entry(name_node, &d->name_node->list, list) {
1052 				if (!sscanf(name_node->name, name, &i))
1053 					continue;
1054 				if (i < 0 || i >= max_netdevices)
1055 					continue;
1056 
1057 				/*  avoid cases where sscanf is not exact inverse of printf */
1058 				snprintf(buf, IFNAMSIZ, name, i);
1059 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1060 					__set_bit(i, inuse);
1061 			}
1062 			if (!sscanf(d->name, name, &i))
1063 				continue;
1064 			if (i < 0 || i >= max_netdevices)
1065 				continue;
1066 
1067 			/*  avoid cases where sscanf is not exact inverse of printf */
1068 			snprintf(buf, IFNAMSIZ, name, i);
1069 			if (!strncmp(buf, d->name, IFNAMSIZ))
1070 				__set_bit(i, inuse);
1071 		}
1072 
1073 		i = find_first_zero_bit(inuse, max_netdevices);
1074 		free_page((unsigned long) inuse);
1075 	}
1076 
1077 	snprintf(buf, IFNAMSIZ, name, i);
1078 	if (!netdev_name_in_use(net, buf))
1079 		return i;
1080 
1081 	/* It is possible to run out of possible slots
1082 	 * when the name is long and there isn't enough space left
1083 	 * for the digits, or if all bits are used.
1084 	 */
1085 	return -ENFILE;
1086 }
1087 
1088 static int dev_alloc_name_ns(struct net *net,
1089 			     struct net_device *dev,
1090 			     const char *name)
1091 {
1092 	char buf[IFNAMSIZ];
1093 	int ret;
1094 
1095 	BUG_ON(!net);
1096 	ret = __dev_alloc_name(net, name, buf);
1097 	if (ret >= 0)
1098 		strlcpy(dev->name, buf, IFNAMSIZ);
1099 	return ret;
1100 }
1101 
1102 /**
1103  *	dev_alloc_name - allocate a name for a device
1104  *	@dev: device
1105  *	@name: name format string
1106  *
1107  *	Passed a format string - eg "lt%d" it will try and find a suitable
1108  *	id. It scans list of devices to build up a free map, then chooses
1109  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1110  *	while allocating the name and adding the device in order to avoid
1111  *	duplicates.
1112  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1113  *	Returns the number of the unit assigned or a negative errno code.
1114  */
1115 
1116 int dev_alloc_name(struct net_device *dev, const char *name)
1117 {
1118 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1119 }
1120 EXPORT_SYMBOL(dev_alloc_name);
1121 
1122 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1123 			      const char *name)
1124 {
1125 	BUG_ON(!net);
1126 
1127 	if (!dev_valid_name(name))
1128 		return -EINVAL;
1129 
1130 	if (strchr(name, '%'))
1131 		return dev_alloc_name_ns(net, dev, name);
1132 	else if (netdev_name_in_use(net, name))
1133 		return -EEXIST;
1134 	else if (dev->name != name)
1135 		strlcpy(dev->name, name, IFNAMSIZ);
1136 
1137 	return 0;
1138 }
1139 
1140 /**
1141  *	dev_change_name - change name of a device
1142  *	@dev: device
1143  *	@newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *	Change name of a device, can pass format strings "eth%d".
1146  *	for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150 	unsigned char old_assign_type;
1151 	char oldname[IFNAMSIZ];
1152 	int err = 0;
1153 	int ret;
1154 	struct net *net;
1155 
1156 	ASSERT_RTNL();
1157 	BUG_ON(!dev_net(dev));
1158 
1159 	net = dev_net(dev);
1160 
1161 	/* Some auto-enslaved devices e.g. failover slaves are
1162 	 * special, as userspace might rename the device after
1163 	 * the interface had been brought up and running since
1164 	 * the point kernel initiated auto-enslavement. Allow
1165 	 * live name change even when these slave devices are
1166 	 * up and running.
1167 	 *
1168 	 * Typically, users of these auto-enslaving devices
1169 	 * don't actually care about slave name change, as
1170 	 * they are supposed to operate on master interface
1171 	 * directly.
1172 	 */
1173 	if (dev->flags & IFF_UP &&
1174 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1175 		return -EBUSY;
1176 
1177 	down_write(&devnet_rename_sem);
1178 
1179 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1180 		up_write(&devnet_rename_sem);
1181 		return 0;
1182 	}
1183 
1184 	memcpy(oldname, dev->name, IFNAMSIZ);
1185 
1186 	err = dev_get_valid_name(net, dev, newname);
1187 	if (err < 0) {
1188 		up_write(&devnet_rename_sem);
1189 		return err;
1190 	}
1191 
1192 	if (oldname[0] && !strchr(oldname, '%'))
1193 		netdev_info(dev, "renamed from %s\n", oldname);
1194 
1195 	old_assign_type = dev->name_assign_type;
1196 	dev->name_assign_type = NET_NAME_RENAMED;
1197 
1198 rollback:
1199 	ret = device_rename(&dev->dev, dev->name);
1200 	if (ret) {
1201 		memcpy(dev->name, oldname, IFNAMSIZ);
1202 		dev->name_assign_type = old_assign_type;
1203 		up_write(&devnet_rename_sem);
1204 		return ret;
1205 	}
1206 
1207 	up_write(&devnet_rename_sem);
1208 
1209 	netdev_adjacent_rename_links(dev, oldname);
1210 
1211 	write_lock(&dev_base_lock);
1212 	netdev_name_node_del(dev->name_node);
1213 	write_unlock(&dev_base_lock);
1214 
1215 	synchronize_rcu();
1216 
1217 	write_lock(&dev_base_lock);
1218 	netdev_name_node_add(net, dev->name_node);
1219 	write_unlock(&dev_base_lock);
1220 
1221 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1222 	ret = notifier_to_errno(ret);
1223 
1224 	if (ret) {
1225 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1226 		if (err >= 0) {
1227 			err = ret;
1228 			down_write(&devnet_rename_sem);
1229 			memcpy(dev->name, oldname, IFNAMSIZ);
1230 			memcpy(oldname, newname, IFNAMSIZ);
1231 			dev->name_assign_type = old_assign_type;
1232 			old_assign_type = NET_NAME_RENAMED;
1233 			goto rollback;
1234 		} else {
1235 			netdev_err(dev, "name change rollback failed: %d\n",
1236 				   ret);
1237 		}
1238 	}
1239 
1240 	return err;
1241 }
1242 
1243 /**
1244  *	dev_set_alias - change ifalias of a device
1245  *	@dev: device
1246  *	@alias: name up to IFALIASZ
1247  *	@len: limit of bytes to copy from info
1248  *
1249  *	Set ifalias for a device,
1250  */
1251 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1252 {
1253 	struct dev_ifalias *new_alias = NULL;
1254 
1255 	if (len >= IFALIASZ)
1256 		return -EINVAL;
1257 
1258 	if (len) {
1259 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1260 		if (!new_alias)
1261 			return -ENOMEM;
1262 
1263 		memcpy(new_alias->ifalias, alias, len);
1264 		new_alias->ifalias[len] = 0;
1265 	}
1266 
1267 	mutex_lock(&ifalias_mutex);
1268 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1269 					mutex_is_locked(&ifalias_mutex));
1270 	mutex_unlock(&ifalias_mutex);
1271 
1272 	if (new_alias)
1273 		kfree_rcu(new_alias, rcuhead);
1274 
1275 	return len;
1276 }
1277 EXPORT_SYMBOL(dev_set_alias);
1278 
1279 /**
1280  *	dev_get_alias - get ifalias of a device
1281  *	@dev: device
1282  *	@name: buffer to store name of ifalias
1283  *	@len: size of buffer
1284  *
1285  *	get ifalias for a device.  Caller must make sure dev cannot go
1286  *	away,  e.g. rcu read lock or own a reference count to device.
1287  */
1288 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1289 {
1290 	const struct dev_ifalias *alias;
1291 	int ret = 0;
1292 
1293 	rcu_read_lock();
1294 	alias = rcu_dereference(dev->ifalias);
1295 	if (alias)
1296 		ret = snprintf(name, len, "%s", alias->ifalias);
1297 	rcu_read_unlock();
1298 
1299 	return ret;
1300 }
1301 
1302 /**
1303  *	netdev_features_change - device changes features
1304  *	@dev: device to cause notification
1305  *
1306  *	Called to indicate a device has changed features.
1307  */
1308 void netdev_features_change(struct net_device *dev)
1309 {
1310 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1311 }
1312 EXPORT_SYMBOL(netdev_features_change);
1313 
1314 /**
1315  *	netdev_state_change - device changes state
1316  *	@dev: device to cause notification
1317  *
1318  *	Called to indicate a device has changed state. This function calls
1319  *	the notifier chains for netdev_chain and sends a NEWLINK message
1320  *	to the routing socket.
1321  */
1322 void netdev_state_change(struct net_device *dev)
1323 {
1324 	if (dev->flags & IFF_UP) {
1325 		struct netdev_notifier_change_info change_info = {
1326 			.info.dev = dev,
1327 		};
1328 
1329 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1330 					      &change_info.info);
1331 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1332 	}
1333 }
1334 EXPORT_SYMBOL(netdev_state_change);
1335 
1336 /**
1337  * __netdev_notify_peers - notify network peers about existence of @dev,
1338  * to be called when rtnl lock is already held.
1339  * @dev: network device
1340  *
1341  * Generate traffic such that interested network peers are aware of
1342  * @dev, such as by generating a gratuitous ARP. This may be used when
1343  * a device wants to inform the rest of the network about some sort of
1344  * reconfiguration such as a failover event or virtual machine
1345  * migration.
1346  */
1347 void __netdev_notify_peers(struct net_device *dev)
1348 {
1349 	ASSERT_RTNL();
1350 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1351 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1352 }
1353 EXPORT_SYMBOL(__netdev_notify_peers);
1354 
1355 /**
1356  * netdev_notify_peers - notify network peers about existence of @dev
1357  * @dev: network device
1358  *
1359  * Generate traffic such that interested network peers are aware of
1360  * @dev, such as by generating a gratuitous ARP. This may be used when
1361  * a device wants to inform the rest of the network about some sort of
1362  * reconfiguration such as a failover event or virtual machine
1363  * migration.
1364  */
1365 void netdev_notify_peers(struct net_device *dev)
1366 {
1367 	rtnl_lock();
1368 	__netdev_notify_peers(dev);
1369 	rtnl_unlock();
1370 }
1371 EXPORT_SYMBOL(netdev_notify_peers);
1372 
1373 static int napi_threaded_poll(void *data);
1374 
1375 static int napi_kthread_create(struct napi_struct *n)
1376 {
1377 	int err = 0;
1378 
1379 	/* Create and wake up the kthread once to put it in
1380 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1381 	 * warning and work with loadavg.
1382 	 */
1383 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1384 				n->dev->name, n->napi_id);
1385 	if (IS_ERR(n->thread)) {
1386 		err = PTR_ERR(n->thread);
1387 		pr_err("kthread_run failed with err %d\n", err);
1388 		n->thread = NULL;
1389 	}
1390 
1391 	return err;
1392 }
1393 
1394 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1395 {
1396 	const struct net_device_ops *ops = dev->netdev_ops;
1397 	int ret;
1398 
1399 	ASSERT_RTNL();
1400 	dev_addr_check(dev);
1401 
1402 	if (!netif_device_present(dev)) {
1403 		/* may be detached because parent is runtime-suspended */
1404 		if (dev->dev.parent)
1405 			pm_runtime_resume(dev->dev.parent);
1406 		if (!netif_device_present(dev))
1407 			return -ENODEV;
1408 	}
1409 
1410 	/* Block netpoll from trying to do any rx path servicing.
1411 	 * If we don't do this there is a chance ndo_poll_controller
1412 	 * or ndo_poll may be running while we open the device
1413 	 */
1414 	netpoll_poll_disable(dev);
1415 
1416 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1417 	ret = notifier_to_errno(ret);
1418 	if (ret)
1419 		return ret;
1420 
1421 	set_bit(__LINK_STATE_START, &dev->state);
1422 
1423 	if (ops->ndo_validate_addr)
1424 		ret = ops->ndo_validate_addr(dev);
1425 
1426 	if (!ret && ops->ndo_open)
1427 		ret = ops->ndo_open(dev);
1428 
1429 	netpoll_poll_enable(dev);
1430 
1431 	if (ret)
1432 		clear_bit(__LINK_STATE_START, &dev->state);
1433 	else {
1434 		dev->flags |= IFF_UP;
1435 		dev_set_rx_mode(dev);
1436 		dev_activate(dev);
1437 		add_device_randomness(dev->dev_addr, dev->addr_len);
1438 	}
1439 
1440 	return ret;
1441 }
1442 
1443 /**
1444  *	dev_open	- prepare an interface for use.
1445  *	@dev: device to open
1446  *	@extack: netlink extended ack
1447  *
1448  *	Takes a device from down to up state. The device's private open
1449  *	function is invoked and then the multicast lists are loaded. Finally
1450  *	the device is moved into the up state and a %NETDEV_UP message is
1451  *	sent to the netdev notifier chain.
1452  *
1453  *	Calling this function on an active interface is a nop. On a failure
1454  *	a negative errno code is returned.
1455  */
1456 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1457 {
1458 	int ret;
1459 
1460 	if (dev->flags & IFF_UP)
1461 		return 0;
1462 
1463 	ret = __dev_open(dev, extack);
1464 	if (ret < 0)
1465 		return ret;
1466 
1467 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1468 	call_netdevice_notifiers(NETDEV_UP, dev);
1469 
1470 	return ret;
1471 }
1472 EXPORT_SYMBOL(dev_open);
1473 
1474 static void __dev_close_many(struct list_head *head)
1475 {
1476 	struct net_device *dev;
1477 
1478 	ASSERT_RTNL();
1479 	might_sleep();
1480 
1481 	list_for_each_entry(dev, head, close_list) {
1482 		/* Temporarily disable netpoll until the interface is down */
1483 		netpoll_poll_disable(dev);
1484 
1485 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1486 
1487 		clear_bit(__LINK_STATE_START, &dev->state);
1488 
1489 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1490 		 * can be even on different cpu. So just clear netif_running().
1491 		 *
1492 		 * dev->stop() will invoke napi_disable() on all of it's
1493 		 * napi_struct instances on this device.
1494 		 */
1495 		smp_mb__after_atomic(); /* Commit netif_running(). */
1496 	}
1497 
1498 	dev_deactivate_many(head);
1499 
1500 	list_for_each_entry(dev, head, close_list) {
1501 		const struct net_device_ops *ops = dev->netdev_ops;
1502 
1503 		/*
1504 		 *	Call the device specific close. This cannot fail.
1505 		 *	Only if device is UP
1506 		 *
1507 		 *	We allow it to be called even after a DETACH hot-plug
1508 		 *	event.
1509 		 */
1510 		if (ops->ndo_stop)
1511 			ops->ndo_stop(dev);
1512 
1513 		dev->flags &= ~IFF_UP;
1514 		netpoll_poll_enable(dev);
1515 	}
1516 }
1517 
1518 static void __dev_close(struct net_device *dev)
1519 {
1520 	LIST_HEAD(single);
1521 
1522 	list_add(&dev->close_list, &single);
1523 	__dev_close_many(&single);
1524 	list_del(&single);
1525 }
1526 
1527 void dev_close_many(struct list_head *head, bool unlink)
1528 {
1529 	struct net_device *dev, *tmp;
1530 
1531 	/* Remove the devices that don't need to be closed */
1532 	list_for_each_entry_safe(dev, tmp, head, close_list)
1533 		if (!(dev->flags & IFF_UP))
1534 			list_del_init(&dev->close_list);
1535 
1536 	__dev_close_many(head);
1537 
1538 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1539 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1540 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1541 		if (unlink)
1542 			list_del_init(&dev->close_list);
1543 	}
1544 }
1545 EXPORT_SYMBOL(dev_close_many);
1546 
1547 /**
1548  *	dev_close - shutdown an interface.
1549  *	@dev: device to shutdown
1550  *
1551  *	This function moves an active device into down state. A
1552  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1553  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1554  *	chain.
1555  */
1556 void dev_close(struct net_device *dev)
1557 {
1558 	if (dev->flags & IFF_UP) {
1559 		LIST_HEAD(single);
1560 
1561 		list_add(&dev->close_list, &single);
1562 		dev_close_many(&single, true);
1563 		list_del(&single);
1564 	}
1565 }
1566 EXPORT_SYMBOL(dev_close);
1567 
1568 
1569 /**
1570  *	dev_disable_lro - disable Large Receive Offload on a device
1571  *	@dev: device
1572  *
1573  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1574  *	called under RTNL.  This is needed if received packets may be
1575  *	forwarded to another interface.
1576  */
1577 void dev_disable_lro(struct net_device *dev)
1578 {
1579 	struct net_device *lower_dev;
1580 	struct list_head *iter;
1581 
1582 	dev->wanted_features &= ~NETIF_F_LRO;
1583 	netdev_update_features(dev);
1584 
1585 	if (unlikely(dev->features & NETIF_F_LRO))
1586 		netdev_WARN(dev, "failed to disable LRO!\n");
1587 
1588 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1589 		dev_disable_lro(lower_dev);
1590 }
1591 EXPORT_SYMBOL(dev_disable_lro);
1592 
1593 /**
1594  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1595  *	@dev: device
1596  *
1597  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1598  *	called under RTNL.  This is needed if Generic XDP is installed on
1599  *	the device.
1600  */
1601 static void dev_disable_gro_hw(struct net_device *dev)
1602 {
1603 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1604 	netdev_update_features(dev);
1605 
1606 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1607 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1608 }
1609 
1610 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1611 {
1612 #define N(val) 						\
1613 	case NETDEV_##val:				\
1614 		return "NETDEV_" __stringify(val);
1615 	switch (cmd) {
1616 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1617 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1618 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1619 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1620 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1621 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1622 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1623 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1624 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1625 	N(PRE_CHANGEADDR)
1626 	}
1627 #undef N
1628 	return "UNKNOWN_NETDEV_EVENT";
1629 }
1630 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1631 
1632 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1633 				   struct net_device *dev)
1634 {
1635 	struct netdev_notifier_info info = {
1636 		.dev = dev,
1637 	};
1638 
1639 	return nb->notifier_call(nb, val, &info);
1640 }
1641 
1642 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1643 					     struct net_device *dev)
1644 {
1645 	int err;
1646 
1647 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1648 	err = notifier_to_errno(err);
1649 	if (err)
1650 		return err;
1651 
1652 	if (!(dev->flags & IFF_UP))
1653 		return 0;
1654 
1655 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1656 	return 0;
1657 }
1658 
1659 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1660 						struct net_device *dev)
1661 {
1662 	if (dev->flags & IFF_UP) {
1663 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 					dev);
1665 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 	}
1667 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668 }
1669 
1670 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1671 						 struct net *net)
1672 {
1673 	struct net_device *dev;
1674 	int err;
1675 
1676 	for_each_netdev(net, dev) {
1677 		err = call_netdevice_register_notifiers(nb, dev);
1678 		if (err)
1679 			goto rollback;
1680 	}
1681 	return 0;
1682 
1683 rollback:
1684 	for_each_netdev_continue_reverse(net, dev)
1685 		call_netdevice_unregister_notifiers(nb, dev);
1686 	return err;
1687 }
1688 
1689 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1690 						    struct net *net)
1691 {
1692 	struct net_device *dev;
1693 
1694 	for_each_netdev(net, dev)
1695 		call_netdevice_unregister_notifiers(nb, dev);
1696 }
1697 
1698 static int dev_boot_phase = 1;
1699 
1700 /**
1701  * register_netdevice_notifier - register a network notifier block
1702  * @nb: notifier
1703  *
1704  * Register a notifier to be called when network device events occur.
1705  * The notifier passed is linked into the kernel structures and must
1706  * not be reused until it has been unregistered. A negative errno code
1707  * is returned on a failure.
1708  *
1709  * When registered all registration and up events are replayed
1710  * to the new notifier to allow device to have a race free
1711  * view of the network device list.
1712  */
1713 
1714 int register_netdevice_notifier(struct notifier_block *nb)
1715 {
1716 	struct net *net;
1717 	int err;
1718 
1719 	/* Close race with setup_net() and cleanup_net() */
1720 	down_write(&pernet_ops_rwsem);
1721 	rtnl_lock();
1722 	err = raw_notifier_chain_register(&netdev_chain, nb);
1723 	if (err)
1724 		goto unlock;
1725 	if (dev_boot_phase)
1726 		goto unlock;
1727 	for_each_net(net) {
1728 		err = call_netdevice_register_net_notifiers(nb, net);
1729 		if (err)
1730 			goto rollback;
1731 	}
1732 
1733 unlock:
1734 	rtnl_unlock();
1735 	up_write(&pernet_ops_rwsem);
1736 	return err;
1737 
1738 rollback:
1739 	for_each_net_continue_reverse(net)
1740 		call_netdevice_unregister_net_notifiers(nb, net);
1741 
1742 	raw_notifier_chain_unregister(&netdev_chain, nb);
1743 	goto unlock;
1744 }
1745 EXPORT_SYMBOL(register_netdevice_notifier);
1746 
1747 /**
1748  * unregister_netdevice_notifier - unregister a network notifier block
1749  * @nb: notifier
1750  *
1751  * Unregister a notifier previously registered by
1752  * register_netdevice_notifier(). The notifier is unlinked into the
1753  * kernel structures and may then be reused. A negative errno code
1754  * is returned on a failure.
1755  *
1756  * After unregistering unregister and down device events are synthesized
1757  * for all devices on the device list to the removed notifier to remove
1758  * the need for special case cleanup code.
1759  */
1760 
1761 int unregister_netdevice_notifier(struct notifier_block *nb)
1762 {
1763 	struct net *net;
1764 	int err;
1765 
1766 	/* Close race with setup_net() and cleanup_net() */
1767 	down_write(&pernet_ops_rwsem);
1768 	rtnl_lock();
1769 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1770 	if (err)
1771 		goto unlock;
1772 
1773 	for_each_net(net)
1774 		call_netdevice_unregister_net_notifiers(nb, net);
1775 
1776 unlock:
1777 	rtnl_unlock();
1778 	up_write(&pernet_ops_rwsem);
1779 	return err;
1780 }
1781 EXPORT_SYMBOL(unregister_netdevice_notifier);
1782 
1783 static int __register_netdevice_notifier_net(struct net *net,
1784 					     struct notifier_block *nb,
1785 					     bool ignore_call_fail)
1786 {
1787 	int err;
1788 
1789 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1790 	if (err)
1791 		return err;
1792 	if (dev_boot_phase)
1793 		return 0;
1794 
1795 	err = call_netdevice_register_net_notifiers(nb, net);
1796 	if (err && !ignore_call_fail)
1797 		goto chain_unregister;
1798 
1799 	return 0;
1800 
1801 chain_unregister:
1802 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1803 	return err;
1804 }
1805 
1806 static int __unregister_netdevice_notifier_net(struct net *net,
1807 					       struct notifier_block *nb)
1808 {
1809 	int err;
1810 
1811 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 	if (err)
1813 		return err;
1814 
1815 	call_netdevice_unregister_net_notifiers(nb, net);
1816 	return 0;
1817 }
1818 
1819 /**
1820  * register_netdevice_notifier_net - register a per-netns network notifier block
1821  * @net: network namespace
1822  * @nb: notifier
1823  *
1824  * Register a notifier to be called when network device events occur.
1825  * The notifier passed is linked into the kernel structures and must
1826  * not be reused until it has been unregistered. A negative errno code
1827  * is returned on a failure.
1828  *
1829  * When registered all registration and up events are replayed
1830  * to the new notifier to allow device to have a race free
1831  * view of the network device list.
1832  */
1833 
1834 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1835 {
1836 	int err;
1837 
1838 	rtnl_lock();
1839 	err = __register_netdevice_notifier_net(net, nb, false);
1840 	rtnl_unlock();
1841 	return err;
1842 }
1843 EXPORT_SYMBOL(register_netdevice_notifier_net);
1844 
1845 /**
1846  * unregister_netdevice_notifier_net - unregister a per-netns
1847  *                                     network notifier block
1848  * @net: network namespace
1849  * @nb: notifier
1850  *
1851  * Unregister a notifier previously registered by
1852  * register_netdevice_notifier(). The notifier is unlinked into the
1853  * kernel structures and may then be reused. A negative errno code
1854  * is returned on a failure.
1855  *
1856  * After unregistering unregister and down device events are synthesized
1857  * for all devices on the device list to the removed notifier to remove
1858  * the need for special case cleanup code.
1859  */
1860 
1861 int unregister_netdevice_notifier_net(struct net *net,
1862 				      struct notifier_block *nb)
1863 {
1864 	int err;
1865 
1866 	rtnl_lock();
1867 	err = __unregister_netdevice_notifier_net(net, nb);
1868 	rtnl_unlock();
1869 	return err;
1870 }
1871 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1872 
1873 int register_netdevice_notifier_dev_net(struct net_device *dev,
1874 					struct notifier_block *nb,
1875 					struct netdev_net_notifier *nn)
1876 {
1877 	int err;
1878 
1879 	rtnl_lock();
1880 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1881 	if (!err) {
1882 		nn->nb = nb;
1883 		list_add(&nn->list, &dev->net_notifier_list);
1884 	}
1885 	rtnl_unlock();
1886 	return err;
1887 }
1888 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1889 
1890 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1891 					  struct notifier_block *nb,
1892 					  struct netdev_net_notifier *nn)
1893 {
1894 	int err;
1895 
1896 	rtnl_lock();
1897 	list_del(&nn->list);
1898 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1899 	rtnl_unlock();
1900 	return err;
1901 }
1902 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1903 
1904 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1905 					     struct net *net)
1906 {
1907 	struct netdev_net_notifier *nn;
1908 
1909 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1910 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1911 		__register_netdevice_notifier_net(net, nn->nb, true);
1912 	}
1913 }
1914 
1915 /**
1916  *	call_netdevice_notifiers_info - call all network notifier blocks
1917  *	@val: value passed unmodified to notifier function
1918  *	@info: notifier information data
1919  *
1920  *	Call all network notifier blocks.  Parameters and return value
1921  *	are as for raw_notifier_call_chain().
1922  */
1923 
1924 static int call_netdevice_notifiers_info(unsigned long val,
1925 					 struct netdev_notifier_info *info)
1926 {
1927 	struct net *net = dev_net(info->dev);
1928 	int ret;
1929 
1930 	ASSERT_RTNL();
1931 
1932 	/* Run per-netns notifier block chain first, then run the global one.
1933 	 * Hopefully, one day, the global one is going to be removed after
1934 	 * all notifier block registrators get converted to be per-netns.
1935 	 */
1936 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1937 	if (ret & NOTIFY_STOP_MASK)
1938 		return ret;
1939 	return raw_notifier_call_chain(&netdev_chain, val, info);
1940 }
1941 
1942 static int call_netdevice_notifiers_extack(unsigned long val,
1943 					   struct net_device *dev,
1944 					   struct netlink_ext_ack *extack)
1945 {
1946 	struct netdev_notifier_info info = {
1947 		.dev = dev,
1948 		.extack = extack,
1949 	};
1950 
1951 	return call_netdevice_notifiers_info(val, &info);
1952 }
1953 
1954 /**
1955  *	call_netdevice_notifiers - call all network notifier blocks
1956  *      @val: value passed unmodified to notifier function
1957  *      @dev: net_device pointer passed unmodified to notifier function
1958  *
1959  *	Call all network notifier blocks.  Parameters and return value
1960  *	are as for raw_notifier_call_chain().
1961  */
1962 
1963 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1964 {
1965 	return call_netdevice_notifiers_extack(val, dev, NULL);
1966 }
1967 EXPORT_SYMBOL(call_netdevice_notifiers);
1968 
1969 /**
1970  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1971  *	@val: value passed unmodified to notifier function
1972  *	@dev: net_device pointer passed unmodified to notifier function
1973  *	@arg: additional u32 argument passed to the notifier function
1974  *
1975  *	Call all network notifier blocks.  Parameters and return value
1976  *	are as for raw_notifier_call_chain().
1977  */
1978 static int call_netdevice_notifiers_mtu(unsigned long val,
1979 					struct net_device *dev, u32 arg)
1980 {
1981 	struct netdev_notifier_info_ext info = {
1982 		.info.dev = dev,
1983 		.ext.mtu = arg,
1984 	};
1985 
1986 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1987 
1988 	return call_netdevice_notifiers_info(val, &info.info);
1989 }
1990 
1991 #ifdef CONFIG_NET_INGRESS
1992 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1993 
1994 void net_inc_ingress_queue(void)
1995 {
1996 	static_branch_inc(&ingress_needed_key);
1997 }
1998 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1999 
2000 void net_dec_ingress_queue(void)
2001 {
2002 	static_branch_dec(&ingress_needed_key);
2003 }
2004 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2005 #endif
2006 
2007 #ifdef CONFIG_NET_EGRESS
2008 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2009 
2010 void net_inc_egress_queue(void)
2011 {
2012 	static_branch_inc(&egress_needed_key);
2013 }
2014 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2015 
2016 void net_dec_egress_queue(void)
2017 {
2018 	static_branch_dec(&egress_needed_key);
2019 }
2020 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2021 #endif
2022 
2023 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2024 #ifdef CONFIG_JUMP_LABEL
2025 static atomic_t netstamp_needed_deferred;
2026 static atomic_t netstamp_wanted;
2027 static void netstamp_clear(struct work_struct *work)
2028 {
2029 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2030 	int wanted;
2031 
2032 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2033 	if (wanted > 0)
2034 		static_branch_enable(&netstamp_needed_key);
2035 	else
2036 		static_branch_disable(&netstamp_needed_key);
2037 }
2038 static DECLARE_WORK(netstamp_work, netstamp_clear);
2039 #endif
2040 
2041 void net_enable_timestamp(void)
2042 {
2043 #ifdef CONFIG_JUMP_LABEL
2044 	int wanted;
2045 
2046 	while (1) {
2047 		wanted = atomic_read(&netstamp_wanted);
2048 		if (wanted <= 0)
2049 			break;
2050 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2051 			return;
2052 	}
2053 	atomic_inc(&netstamp_needed_deferred);
2054 	schedule_work(&netstamp_work);
2055 #else
2056 	static_branch_inc(&netstamp_needed_key);
2057 #endif
2058 }
2059 EXPORT_SYMBOL(net_enable_timestamp);
2060 
2061 void net_disable_timestamp(void)
2062 {
2063 #ifdef CONFIG_JUMP_LABEL
2064 	int wanted;
2065 
2066 	while (1) {
2067 		wanted = atomic_read(&netstamp_wanted);
2068 		if (wanted <= 1)
2069 			break;
2070 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2071 			return;
2072 	}
2073 	atomic_dec(&netstamp_needed_deferred);
2074 	schedule_work(&netstamp_work);
2075 #else
2076 	static_branch_dec(&netstamp_needed_key);
2077 #endif
2078 }
2079 EXPORT_SYMBOL(net_disable_timestamp);
2080 
2081 static inline void net_timestamp_set(struct sk_buff *skb)
2082 {
2083 	skb->tstamp = 0;
2084 	if (static_branch_unlikely(&netstamp_needed_key))
2085 		__net_timestamp(skb);
2086 }
2087 
2088 #define net_timestamp_check(COND, SKB)				\
2089 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2090 		if ((COND) && !(SKB)->tstamp)			\
2091 			__net_timestamp(SKB);			\
2092 	}							\
2093 
2094 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2095 {
2096 	return __is_skb_forwardable(dev, skb, true);
2097 }
2098 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2099 
2100 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2101 			      bool check_mtu)
2102 {
2103 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2104 
2105 	if (likely(!ret)) {
2106 		skb->protocol = eth_type_trans(skb, dev);
2107 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2108 	}
2109 
2110 	return ret;
2111 }
2112 
2113 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2114 {
2115 	return __dev_forward_skb2(dev, skb, true);
2116 }
2117 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2118 
2119 /**
2120  * dev_forward_skb - loopback an skb to another netif
2121  *
2122  * @dev: destination network device
2123  * @skb: buffer to forward
2124  *
2125  * return values:
2126  *	NET_RX_SUCCESS	(no congestion)
2127  *	NET_RX_DROP     (packet was dropped, but freed)
2128  *
2129  * dev_forward_skb can be used for injecting an skb from the
2130  * start_xmit function of one device into the receive queue
2131  * of another device.
2132  *
2133  * The receiving device may be in another namespace, so
2134  * we have to clear all information in the skb that could
2135  * impact namespace isolation.
2136  */
2137 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2138 {
2139 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2140 }
2141 EXPORT_SYMBOL_GPL(dev_forward_skb);
2142 
2143 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2144 {
2145 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2146 }
2147 
2148 static inline int deliver_skb(struct sk_buff *skb,
2149 			      struct packet_type *pt_prev,
2150 			      struct net_device *orig_dev)
2151 {
2152 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2153 		return -ENOMEM;
2154 	refcount_inc(&skb->users);
2155 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2156 }
2157 
2158 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2159 					  struct packet_type **pt,
2160 					  struct net_device *orig_dev,
2161 					  __be16 type,
2162 					  struct list_head *ptype_list)
2163 {
2164 	struct packet_type *ptype, *pt_prev = *pt;
2165 
2166 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2167 		if (ptype->type != type)
2168 			continue;
2169 		if (pt_prev)
2170 			deliver_skb(skb, pt_prev, orig_dev);
2171 		pt_prev = ptype;
2172 	}
2173 	*pt = pt_prev;
2174 }
2175 
2176 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2177 {
2178 	if (!ptype->af_packet_priv || !skb->sk)
2179 		return false;
2180 
2181 	if (ptype->id_match)
2182 		return ptype->id_match(ptype, skb->sk);
2183 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2184 		return true;
2185 
2186 	return false;
2187 }
2188 
2189 /**
2190  * dev_nit_active - return true if any network interface taps are in use
2191  *
2192  * @dev: network device to check for the presence of taps
2193  */
2194 bool dev_nit_active(struct net_device *dev)
2195 {
2196 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_nit_active);
2199 
2200 /*
2201  *	Support routine. Sends outgoing frames to any network
2202  *	taps currently in use.
2203  */
2204 
2205 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2206 {
2207 	struct packet_type *ptype;
2208 	struct sk_buff *skb2 = NULL;
2209 	struct packet_type *pt_prev = NULL;
2210 	struct list_head *ptype_list = &ptype_all;
2211 
2212 	rcu_read_lock();
2213 again:
2214 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2215 		if (ptype->ignore_outgoing)
2216 			continue;
2217 
2218 		/* Never send packets back to the socket
2219 		 * they originated from - MvS (miquels@drinkel.ow.org)
2220 		 */
2221 		if (skb_loop_sk(ptype, skb))
2222 			continue;
2223 
2224 		if (pt_prev) {
2225 			deliver_skb(skb2, pt_prev, skb->dev);
2226 			pt_prev = ptype;
2227 			continue;
2228 		}
2229 
2230 		/* need to clone skb, done only once */
2231 		skb2 = skb_clone(skb, GFP_ATOMIC);
2232 		if (!skb2)
2233 			goto out_unlock;
2234 
2235 		net_timestamp_set(skb2);
2236 
2237 		/* skb->nh should be correctly
2238 		 * set by sender, so that the second statement is
2239 		 * just protection against buggy protocols.
2240 		 */
2241 		skb_reset_mac_header(skb2);
2242 
2243 		if (skb_network_header(skb2) < skb2->data ||
2244 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2245 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2246 					     ntohs(skb2->protocol),
2247 					     dev->name);
2248 			skb_reset_network_header(skb2);
2249 		}
2250 
2251 		skb2->transport_header = skb2->network_header;
2252 		skb2->pkt_type = PACKET_OUTGOING;
2253 		pt_prev = ptype;
2254 	}
2255 
2256 	if (ptype_list == &ptype_all) {
2257 		ptype_list = &dev->ptype_all;
2258 		goto again;
2259 	}
2260 out_unlock:
2261 	if (pt_prev) {
2262 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2263 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2264 		else
2265 			kfree_skb(skb2);
2266 	}
2267 	rcu_read_unlock();
2268 }
2269 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2270 
2271 /**
2272  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2273  * @dev: Network device
2274  * @txq: number of queues available
2275  *
2276  * If real_num_tx_queues is changed the tc mappings may no longer be
2277  * valid. To resolve this verify the tc mapping remains valid and if
2278  * not NULL the mapping. With no priorities mapping to this
2279  * offset/count pair it will no longer be used. In the worst case TC0
2280  * is invalid nothing can be done so disable priority mappings. If is
2281  * expected that drivers will fix this mapping if they can before
2282  * calling netif_set_real_num_tx_queues.
2283  */
2284 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2285 {
2286 	int i;
2287 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2288 
2289 	/* If TC0 is invalidated disable TC mapping */
2290 	if (tc->offset + tc->count > txq) {
2291 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2292 		dev->num_tc = 0;
2293 		return;
2294 	}
2295 
2296 	/* Invalidated prio to tc mappings set to TC0 */
2297 	for (i = 1; i < TC_BITMASK + 1; i++) {
2298 		int q = netdev_get_prio_tc_map(dev, i);
2299 
2300 		tc = &dev->tc_to_txq[q];
2301 		if (tc->offset + tc->count > txq) {
2302 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2303 				    i, q);
2304 			netdev_set_prio_tc_map(dev, i, 0);
2305 		}
2306 	}
2307 }
2308 
2309 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2310 {
2311 	if (dev->num_tc) {
2312 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2313 		int i;
2314 
2315 		/* walk through the TCs and see if it falls into any of them */
2316 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2317 			if ((txq - tc->offset) < tc->count)
2318 				return i;
2319 		}
2320 
2321 		/* didn't find it, just return -1 to indicate no match */
2322 		return -1;
2323 	}
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(netdev_txq_to_tc);
2328 
2329 #ifdef CONFIG_XPS
2330 static struct static_key xps_needed __read_mostly;
2331 static struct static_key xps_rxqs_needed __read_mostly;
2332 static DEFINE_MUTEX(xps_map_mutex);
2333 #define xmap_dereference(P)		\
2334 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2335 
2336 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2337 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2338 {
2339 	struct xps_map *map = NULL;
2340 	int pos;
2341 
2342 	if (dev_maps)
2343 		map = xmap_dereference(dev_maps->attr_map[tci]);
2344 	if (!map)
2345 		return false;
2346 
2347 	for (pos = map->len; pos--;) {
2348 		if (map->queues[pos] != index)
2349 			continue;
2350 
2351 		if (map->len > 1) {
2352 			map->queues[pos] = map->queues[--map->len];
2353 			break;
2354 		}
2355 
2356 		if (old_maps)
2357 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2358 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2359 		kfree_rcu(map, rcu);
2360 		return false;
2361 	}
2362 
2363 	return true;
2364 }
2365 
2366 static bool remove_xps_queue_cpu(struct net_device *dev,
2367 				 struct xps_dev_maps *dev_maps,
2368 				 int cpu, u16 offset, u16 count)
2369 {
2370 	int num_tc = dev_maps->num_tc;
2371 	bool active = false;
2372 	int tci;
2373 
2374 	for (tci = cpu * num_tc; num_tc--; tci++) {
2375 		int i, j;
2376 
2377 		for (i = count, j = offset; i--; j++) {
2378 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2379 				break;
2380 		}
2381 
2382 		active |= i < 0;
2383 	}
2384 
2385 	return active;
2386 }
2387 
2388 static void reset_xps_maps(struct net_device *dev,
2389 			   struct xps_dev_maps *dev_maps,
2390 			   enum xps_map_type type)
2391 {
2392 	static_key_slow_dec_cpuslocked(&xps_needed);
2393 	if (type == XPS_RXQS)
2394 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2395 
2396 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2397 
2398 	kfree_rcu(dev_maps, rcu);
2399 }
2400 
2401 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2402 			   u16 offset, u16 count)
2403 {
2404 	struct xps_dev_maps *dev_maps;
2405 	bool active = false;
2406 	int i, j;
2407 
2408 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2409 	if (!dev_maps)
2410 		return;
2411 
2412 	for (j = 0; j < dev_maps->nr_ids; j++)
2413 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2414 	if (!active)
2415 		reset_xps_maps(dev, dev_maps, type);
2416 
2417 	if (type == XPS_CPUS) {
2418 		for (i = offset + (count - 1); count--; i--)
2419 			netdev_queue_numa_node_write(
2420 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2421 	}
2422 }
2423 
2424 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2425 				   u16 count)
2426 {
2427 	if (!static_key_false(&xps_needed))
2428 		return;
2429 
2430 	cpus_read_lock();
2431 	mutex_lock(&xps_map_mutex);
2432 
2433 	if (static_key_false(&xps_rxqs_needed))
2434 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2435 
2436 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2437 
2438 	mutex_unlock(&xps_map_mutex);
2439 	cpus_read_unlock();
2440 }
2441 
2442 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2443 {
2444 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2445 }
2446 
2447 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2448 				      u16 index, bool is_rxqs_map)
2449 {
2450 	struct xps_map *new_map;
2451 	int alloc_len = XPS_MIN_MAP_ALLOC;
2452 	int i, pos;
2453 
2454 	for (pos = 0; map && pos < map->len; pos++) {
2455 		if (map->queues[pos] != index)
2456 			continue;
2457 		return map;
2458 	}
2459 
2460 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2461 	if (map) {
2462 		if (pos < map->alloc_len)
2463 			return map;
2464 
2465 		alloc_len = map->alloc_len * 2;
2466 	}
2467 
2468 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2469 	 *  map
2470 	 */
2471 	if (is_rxqs_map)
2472 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2473 	else
2474 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2475 				       cpu_to_node(attr_index));
2476 	if (!new_map)
2477 		return NULL;
2478 
2479 	for (i = 0; i < pos; i++)
2480 		new_map->queues[i] = map->queues[i];
2481 	new_map->alloc_len = alloc_len;
2482 	new_map->len = pos;
2483 
2484 	return new_map;
2485 }
2486 
2487 /* Copy xps maps at a given index */
2488 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2489 			      struct xps_dev_maps *new_dev_maps, int index,
2490 			      int tc, bool skip_tc)
2491 {
2492 	int i, tci = index * dev_maps->num_tc;
2493 	struct xps_map *map;
2494 
2495 	/* copy maps belonging to foreign traffic classes */
2496 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2497 		if (i == tc && skip_tc)
2498 			continue;
2499 
2500 		/* fill in the new device map from the old device map */
2501 		map = xmap_dereference(dev_maps->attr_map[tci]);
2502 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2503 	}
2504 }
2505 
2506 /* Must be called under cpus_read_lock */
2507 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2508 			  u16 index, enum xps_map_type type)
2509 {
2510 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2511 	const unsigned long *online_mask = NULL;
2512 	bool active = false, copy = false;
2513 	int i, j, tci, numa_node_id = -2;
2514 	int maps_sz, num_tc = 1, tc = 0;
2515 	struct xps_map *map, *new_map;
2516 	unsigned int nr_ids;
2517 
2518 	if (dev->num_tc) {
2519 		/* Do not allow XPS on subordinate device directly */
2520 		num_tc = dev->num_tc;
2521 		if (num_tc < 0)
2522 			return -EINVAL;
2523 
2524 		/* If queue belongs to subordinate dev use its map */
2525 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2526 
2527 		tc = netdev_txq_to_tc(dev, index);
2528 		if (tc < 0)
2529 			return -EINVAL;
2530 	}
2531 
2532 	mutex_lock(&xps_map_mutex);
2533 
2534 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2535 	if (type == XPS_RXQS) {
2536 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2537 		nr_ids = dev->num_rx_queues;
2538 	} else {
2539 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2540 		if (num_possible_cpus() > 1)
2541 			online_mask = cpumask_bits(cpu_online_mask);
2542 		nr_ids = nr_cpu_ids;
2543 	}
2544 
2545 	if (maps_sz < L1_CACHE_BYTES)
2546 		maps_sz = L1_CACHE_BYTES;
2547 
2548 	/* The old dev_maps could be larger or smaller than the one we're
2549 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2550 	 * between. We could try to be smart, but let's be safe instead and only
2551 	 * copy foreign traffic classes if the two map sizes match.
2552 	 */
2553 	if (dev_maps &&
2554 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2555 		copy = true;
2556 
2557 	/* allocate memory for queue storage */
2558 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2559 	     j < nr_ids;) {
2560 		if (!new_dev_maps) {
2561 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2562 			if (!new_dev_maps) {
2563 				mutex_unlock(&xps_map_mutex);
2564 				return -ENOMEM;
2565 			}
2566 
2567 			new_dev_maps->nr_ids = nr_ids;
2568 			new_dev_maps->num_tc = num_tc;
2569 		}
2570 
2571 		tci = j * num_tc + tc;
2572 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2573 
2574 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2575 		if (!map)
2576 			goto error;
2577 
2578 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2579 	}
2580 
2581 	if (!new_dev_maps)
2582 		goto out_no_new_maps;
2583 
2584 	if (!dev_maps) {
2585 		/* Increment static keys at most once per type */
2586 		static_key_slow_inc_cpuslocked(&xps_needed);
2587 		if (type == XPS_RXQS)
2588 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2589 	}
2590 
2591 	for (j = 0; j < nr_ids; j++) {
2592 		bool skip_tc = false;
2593 
2594 		tci = j * num_tc + tc;
2595 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2596 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2597 			/* add tx-queue to CPU/rx-queue maps */
2598 			int pos = 0;
2599 
2600 			skip_tc = true;
2601 
2602 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2603 			while ((pos < map->len) && (map->queues[pos] != index))
2604 				pos++;
2605 
2606 			if (pos == map->len)
2607 				map->queues[map->len++] = index;
2608 #ifdef CONFIG_NUMA
2609 			if (type == XPS_CPUS) {
2610 				if (numa_node_id == -2)
2611 					numa_node_id = cpu_to_node(j);
2612 				else if (numa_node_id != cpu_to_node(j))
2613 					numa_node_id = -1;
2614 			}
2615 #endif
2616 		}
2617 
2618 		if (copy)
2619 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2620 					  skip_tc);
2621 	}
2622 
2623 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2624 
2625 	/* Cleanup old maps */
2626 	if (!dev_maps)
2627 		goto out_no_old_maps;
2628 
2629 	for (j = 0; j < dev_maps->nr_ids; j++) {
2630 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2631 			map = xmap_dereference(dev_maps->attr_map[tci]);
2632 			if (!map)
2633 				continue;
2634 
2635 			if (copy) {
2636 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 				if (map == new_map)
2638 					continue;
2639 			}
2640 
2641 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2642 			kfree_rcu(map, rcu);
2643 		}
2644 	}
2645 
2646 	old_dev_maps = dev_maps;
2647 
2648 out_no_old_maps:
2649 	dev_maps = new_dev_maps;
2650 	active = true;
2651 
2652 out_no_new_maps:
2653 	if (type == XPS_CPUS)
2654 		/* update Tx queue numa node */
2655 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2656 					     (numa_node_id >= 0) ?
2657 					     numa_node_id : NUMA_NO_NODE);
2658 
2659 	if (!dev_maps)
2660 		goto out_no_maps;
2661 
2662 	/* removes tx-queue from unused CPUs/rx-queues */
2663 	for (j = 0; j < dev_maps->nr_ids; j++) {
2664 		tci = j * dev_maps->num_tc;
2665 
2666 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2667 			if (i == tc &&
2668 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2669 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2670 				continue;
2671 
2672 			active |= remove_xps_queue(dev_maps,
2673 						   copy ? old_dev_maps : NULL,
2674 						   tci, index);
2675 		}
2676 	}
2677 
2678 	if (old_dev_maps)
2679 		kfree_rcu(old_dev_maps, rcu);
2680 
2681 	/* free map if not active */
2682 	if (!active)
2683 		reset_xps_maps(dev, dev_maps, type);
2684 
2685 out_no_maps:
2686 	mutex_unlock(&xps_map_mutex);
2687 
2688 	return 0;
2689 error:
2690 	/* remove any maps that we added */
2691 	for (j = 0; j < nr_ids; j++) {
2692 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2693 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694 			map = copy ?
2695 			      xmap_dereference(dev_maps->attr_map[tci]) :
2696 			      NULL;
2697 			if (new_map && new_map != map)
2698 				kfree(new_map);
2699 		}
2700 	}
2701 
2702 	mutex_unlock(&xps_map_mutex);
2703 
2704 	kfree(new_dev_maps);
2705 	return -ENOMEM;
2706 }
2707 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2708 
2709 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2710 			u16 index)
2711 {
2712 	int ret;
2713 
2714 	cpus_read_lock();
2715 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2716 	cpus_read_unlock();
2717 
2718 	return ret;
2719 }
2720 EXPORT_SYMBOL(netif_set_xps_queue);
2721 
2722 #endif
2723 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2724 {
2725 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2726 
2727 	/* Unbind any subordinate channels */
2728 	while (txq-- != &dev->_tx[0]) {
2729 		if (txq->sb_dev)
2730 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2731 	}
2732 }
2733 
2734 void netdev_reset_tc(struct net_device *dev)
2735 {
2736 #ifdef CONFIG_XPS
2737 	netif_reset_xps_queues_gt(dev, 0);
2738 #endif
2739 	netdev_unbind_all_sb_channels(dev);
2740 
2741 	/* Reset TC configuration of device */
2742 	dev->num_tc = 0;
2743 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2744 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2745 }
2746 EXPORT_SYMBOL(netdev_reset_tc);
2747 
2748 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2749 {
2750 	if (tc >= dev->num_tc)
2751 		return -EINVAL;
2752 
2753 #ifdef CONFIG_XPS
2754 	netif_reset_xps_queues(dev, offset, count);
2755 #endif
2756 	dev->tc_to_txq[tc].count = count;
2757 	dev->tc_to_txq[tc].offset = offset;
2758 	return 0;
2759 }
2760 EXPORT_SYMBOL(netdev_set_tc_queue);
2761 
2762 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2763 {
2764 	if (num_tc > TC_MAX_QUEUE)
2765 		return -EINVAL;
2766 
2767 #ifdef CONFIG_XPS
2768 	netif_reset_xps_queues_gt(dev, 0);
2769 #endif
2770 	netdev_unbind_all_sb_channels(dev);
2771 
2772 	dev->num_tc = num_tc;
2773 	return 0;
2774 }
2775 EXPORT_SYMBOL(netdev_set_num_tc);
2776 
2777 void netdev_unbind_sb_channel(struct net_device *dev,
2778 			      struct net_device *sb_dev)
2779 {
2780 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2781 
2782 #ifdef CONFIG_XPS
2783 	netif_reset_xps_queues_gt(sb_dev, 0);
2784 #endif
2785 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2786 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2787 
2788 	while (txq-- != &dev->_tx[0]) {
2789 		if (txq->sb_dev == sb_dev)
2790 			txq->sb_dev = NULL;
2791 	}
2792 }
2793 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2794 
2795 int netdev_bind_sb_channel_queue(struct net_device *dev,
2796 				 struct net_device *sb_dev,
2797 				 u8 tc, u16 count, u16 offset)
2798 {
2799 	/* Make certain the sb_dev and dev are already configured */
2800 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2801 		return -EINVAL;
2802 
2803 	/* We cannot hand out queues we don't have */
2804 	if ((offset + count) > dev->real_num_tx_queues)
2805 		return -EINVAL;
2806 
2807 	/* Record the mapping */
2808 	sb_dev->tc_to_txq[tc].count = count;
2809 	sb_dev->tc_to_txq[tc].offset = offset;
2810 
2811 	/* Provide a way for Tx queue to find the tc_to_txq map or
2812 	 * XPS map for itself.
2813 	 */
2814 	while (count--)
2815 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2816 
2817 	return 0;
2818 }
2819 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2820 
2821 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2822 {
2823 	/* Do not use a multiqueue device to represent a subordinate channel */
2824 	if (netif_is_multiqueue(dev))
2825 		return -ENODEV;
2826 
2827 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2828 	 * Channel 0 is meant to be "native" mode and used only to represent
2829 	 * the main root device. We allow writing 0 to reset the device back
2830 	 * to normal mode after being used as a subordinate channel.
2831 	 */
2832 	if (channel > S16_MAX)
2833 		return -EINVAL;
2834 
2835 	dev->num_tc = -channel;
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_sb_channel);
2840 
2841 /*
2842  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2843  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2844  */
2845 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2846 {
2847 	bool disabling;
2848 	int rc;
2849 
2850 	disabling = txq < dev->real_num_tx_queues;
2851 
2852 	if (txq < 1 || txq > dev->num_tx_queues)
2853 		return -EINVAL;
2854 
2855 	if (dev->reg_state == NETREG_REGISTERED ||
2856 	    dev->reg_state == NETREG_UNREGISTERING) {
2857 		ASSERT_RTNL();
2858 
2859 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2860 						  txq);
2861 		if (rc)
2862 			return rc;
2863 
2864 		if (dev->num_tc)
2865 			netif_setup_tc(dev, txq);
2866 
2867 		dev_qdisc_change_real_num_tx(dev, txq);
2868 
2869 		dev->real_num_tx_queues = txq;
2870 
2871 		if (disabling) {
2872 			synchronize_net();
2873 			qdisc_reset_all_tx_gt(dev, txq);
2874 #ifdef CONFIG_XPS
2875 			netif_reset_xps_queues_gt(dev, txq);
2876 #endif
2877 		}
2878 	} else {
2879 		dev->real_num_tx_queues = txq;
2880 	}
2881 
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2885 
2886 #ifdef CONFIG_SYSFS
2887 /**
2888  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2889  *	@dev: Network device
2890  *	@rxq: Actual number of RX queues
2891  *
2892  *	This must be called either with the rtnl_lock held or before
2893  *	registration of the net device.  Returns 0 on success, or a
2894  *	negative error code.  If called before registration, it always
2895  *	succeeds.
2896  */
2897 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2898 {
2899 	int rc;
2900 
2901 	if (rxq < 1 || rxq > dev->num_rx_queues)
2902 		return -EINVAL;
2903 
2904 	if (dev->reg_state == NETREG_REGISTERED) {
2905 		ASSERT_RTNL();
2906 
2907 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2908 						  rxq);
2909 		if (rc)
2910 			return rc;
2911 	}
2912 
2913 	dev->real_num_rx_queues = rxq;
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2917 #endif
2918 
2919 /**
2920  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2921  *	@dev: Network device
2922  *	@txq: Actual number of TX queues
2923  *	@rxq: Actual number of RX queues
2924  *
2925  *	Set the real number of both TX and RX queues.
2926  *	Does nothing if the number of queues is already correct.
2927  */
2928 int netif_set_real_num_queues(struct net_device *dev,
2929 			      unsigned int txq, unsigned int rxq)
2930 {
2931 	unsigned int old_rxq = dev->real_num_rx_queues;
2932 	int err;
2933 
2934 	if (txq < 1 || txq > dev->num_tx_queues ||
2935 	    rxq < 1 || rxq > dev->num_rx_queues)
2936 		return -EINVAL;
2937 
2938 	/* Start from increases, so the error path only does decreases -
2939 	 * decreases can't fail.
2940 	 */
2941 	if (rxq > dev->real_num_rx_queues) {
2942 		err = netif_set_real_num_rx_queues(dev, rxq);
2943 		if (err)
2944 			return err;
2945 	}
2946 	if (txq > dev->real_num_tx_queues) {
2947 		err = netif_set_real_num_tx_queues(dev, txq);
2948 		if (err)
2949 			goto undo_rx;
2950 	}
2951 	if (rxq < dev->real_num_rx_queues)
2952 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2953 	if (txq < dev->real_num_tx_queues)
2954 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2955 
2956 	return 0;
2957 undo_rx:
2958 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2959 	return err;
2960 }
2961 EXPORT_SYMBOL(netif_set_real_num_queues);
2962 
2963 /**
2964  * netif_get_num_default_rss_queues - default number of RSS queues
2965  *
2966  * This routine should set an upper limit on the number of RSS queues
2967  * used by default by multiqueue devices.
2968  */
2969 int netif_get_num_default_rss_queues(void)
2970 {
2971 	return is_kdump_kernel() ?
2972 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2973 }
2974 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2975 
2976 static void __netif_reschedule(struct Qdisc *q)
2977 {
2978 	struct softnet_data *sd;
2979 	unsigned long flags;
2980 
2981 	local_irq_save(flags);
2982 	sd = this_cpu_ptr(&softnet_data);
2983 	q->next_sched = NULL;
2984 	*sd->output_queue_tailp = q;
2985 	sd->output_queue_tailp = &q->next_sched;
2986 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2987 	local_irq_restore(flags);
2988 }
2989 
2990 void __netif_schedule(struct Qdisc *q)
2991 {
2992 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2993 		__netif_reschedule(q);
2994 }
2995 EXPORT_SYMBOL(__netif_schedule);
2996 
2997 struct dev_kfree_skb_cb {
2998 	enum skb_free_reason reason;
2999 };
3000 
3001 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3002 {
3003 	return (struct dev_kfree_skb_cb *)skb->cb;
3004 }
3005 
3006 void netif_schedule_queue(struct netdev_queue *txq)
3007 {
3008 	rcu_read_lock();
3009 	if (!netif_xmit_stopped(txq)) {
3010 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3011 
3012 		__netif_schedule(q);
3013 	}
3014 	rcu_read_unlock();
3015 }
3016 EXPORT_SYMBOL(netif_schedule_queue);
3017 
3018 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3019 {
3020 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3021 		struct Qdisc *q;
3022 
3023 		rcu_read_lock();
3024 		q = rcu_dereference(dev_queue->qdisc);
3025 		__netif_schedule(q);
3026 		rcu_read_unlock();
3027 	}
3028 }
3029 EXPORT_SYMBOL(netif_tx_wake_queue);
3030 
3031 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3032 {
3033 	unsigned long flags;
3034 
3035 	if (unlikely(!skb))
3036 		return;
3037 
3038 	if (likely(refcount_read(&skb->users) == 1)) {
3039 		smp_rmb();
3040 		refcount_set(&skb->users, 0);
3041 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3042 		return;
3043 	}
3044 	get_kfree_skb_cb(skb)->reason = reason;
3045 	local_irq_save(flags);
3046 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3047 	__this_cpu_write(softnet_data.completion_queue, skb);
3048 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3049 	local_irq_restore(flags);
3050 }
3051 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3052 
3053 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3054 {
3055 	if (in_hardirq() || irqs_disabled())
3056 		__dev_kfree_skb_irq(skb, reason);
3057 	else
3058 		dev_kfree_skb(skb);
3059 }
3060 EXPORT_SYMBOL(__dev_kfree_skb_any);
3061 
3062 
3063 /**
3064  * netif_device_detach - mark device as removed
3065  * @dev: network device
3066  *
3067  * Mark device as removed from system and therefore no longer available.
3068  */
3069 void netif_device_detach(struct net_device *dev)
3070 {
3071 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3072 	    netif_running(dev)) {
3073 		netif_tx_stop_all_queues(dev);
3074 	}
3075 }
3076 EXPORT_SYMBOL(netif_device_detach);
3077 
3078 /**
3079  * netif_device_attach - mark device as attached
3080  * @dev: network device
3081  *
3082  * Mark device as attached from system and restart if needed.
3083  */
3084 void netif_device_attach(struct net_device *dev)
3085 {
3086 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3087 	    netif_running(dev)) {
3088 		netif_tx_wake_all_queues(dev);
3089 		__netdev_watchdog_up(dev);
3090 	}
3091 }
3092 EXPORT_SYMBOL(netif_device_attach);
3093 
3094 /*
3095  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3096  * to be used as a distribution range.
3097  */
3098 static u16 skb_tx_hash(const struct net_device *dev,
3099 		       const struct net_device *sb_dev,
3100 		       struct sk_buff *skb)
3101 {
3102 	u32 hash;
3103 	u16 qoffset = 0;
3104 	u16 qcount = dev->real_num_tx_queues;
3105 
3106 	if (dev->num_tc) {
3107 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3108 
3109 		qoffset = sb_dev->tc_to_txq[tc].offset;
3110 		qcount = sb_dev->tc_to_txq[tc].count;
3111 		if (unlikely(!qcount)) {
3112 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3113 					     sb_dev->name, qoffset, tc);
3114 			qoffset = 0;
3115 			qcount = dev->real_num_tx_queues;
3116 		}
3117 	}
3118 
3119 	if (skb_rx_queue_recorded(skb)) {
3120 		hash = skb_get_rx_queue(skb);
3121 		if (hash >= qoffset)
3122 			hash -= qoffset;
3123 		while (unlikely(hash >= qcount))
3124 			hash -= qcount;
3125 		return hash + qoffset;
3126 	}
3127 
3128 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3129 }
3130 
3131 static void skb_warn_bad_offload(const struct sk_buff *skb)
3132 {
3133 	static const netdev_features_t null_features;
3134 	struct net_device *dev = skb->dev;
3135 	const char *name = "";
3136 
3137 	if (!net_ratelimit())
3138 		return;
3139 
3140 	if (dev) {
3141 		if (dev->dev.parent)
3142 			name = dev_driver_string(dev->dev.parent);
3143 		else
3144 			name = netdev_name(dev);
3145 	}
3146 	skb_dump(KERN_WARNING, skb, false);
3147 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3148 	     name, dev ? &dev->features : &null_features,
3149 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3150 }
3151 
3152 /*
3153  * Invalidate hardware checksum when packet is to be mangled, and
3154  * complete checksum manually on outgoing path.
3155  */
3156 int skb_checksum_help(struct sk_buff *skb)
3157 {
3158 	__wsum csum;
3159 	int ret = 0, offset;
3160 
3161 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3162 		goto out_set_summed;
3163 
3164 	if (unlikely(skb_is_gso(skb))) {
3165 		skb_warn_bad_offload(skb);
3166 		return -EINVAL;
3167 	}
3168 
3169 	/* Before computing a checksum, we should make sure no frag could
3170 	 * be modified by an external entity : checksum could be wrong.
3171 	 */
3172 	if (skb_has_shared_frag(skb)) {
3173 		ret = __skb_linearize(skb);
3174 		if (ret)
3175 			goto out;
3176 	}
3177 
3178 	offset = skb_checksum_start_offset(skb);
3179 	BUG_ON(offset >= skb_headlen(skb));
3180 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3181 
3182 	offset += skb->csum_offset;
3183 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3184 
3185 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3186 	if (ret)
3187 		goto out;
3188 
3189 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3190 out_set_summed:
3191 	skb->ip_summed = CHECKSUM_NONE;
3192 out:
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL(skb_checksum_help);
3196 
3197 int skb_crc32c_csum_help(struct sk_buff *skb)
3198 {
3199 	__le32 crc32c_csum;
3200 	int ret = 0, offset, start;
3201 
3202 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3203 		goto out;
3204 
3205 	if (unlikely(skb_is_gso(skb)))
3206 		goto out;
3207 
3208 	/* Before computing a checksum, we should make sure no frag could
3209 	 * be modified by an external entity : checksum could be wrong.
3210 	 */
3211 	if (unlikely(skb_has_shared_frag(skb))) {
3212 		ret = __skb_linearize(skb);
3213 		if (ret)
3214 			goto out;
3215 	}
3216 	start = skb_checksum_start_offset(skb);
3217 	offset = start + offsetof(struct sctphdr, checksum);
3218 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3219 		ret = -EINVAL;
3220 		goto out;
3221 	}
3222 
3223 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3224 	if (ret)
3225 		goto out;
3226 
3227 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3228 						  skb->len - start, ~(__u32)0,
3229 						  crc32c_csum_stub));
3230 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3231 	skb->ip_summed = CHECKSUM_NONE;
3232 	skb->csum_not_inet = 0;
3233 out:
3234 	return ret;
3235 }
3236 
3237 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3238 {
3239 	__be16 type = skb->protocol;
3240 
3241 	/* Tunnel gso handlers can set protocol to ethernet. */
3242 	if (type == htons(ETH_P_TEB)) {
3243 		struct ethhdr *eth;
3244 
3245 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3246 			return 0;
3247 
3248 		eth = (struct ethhdr *)skb->data;
3249 		type = eth->h_proto;
3250 	}
3251 
3252 	return __vlan_get_protocol(skb, type, depth);
3253 }
3254 
3255 /* openvswitch calls this on rx path, so we need a different check.
3256  */
3257 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3258 {
3259 	if (tx_path)
3260 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3261 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3262 
3263 	return skb->ip_summed == CHECKSUM_NONE;
3264 }
3265 
3266 /**
3267  *	__skb_gso_segment - Perform segmentation on skb.
3268  *	@skb: buffer to segment
3269  *	@features: features for the output path (see dev->features)
3270  *	@tx_path: whether it is called in TX path
3271  *
3272  *	This function segments the given skb and returns a list of segments.
3273  *
3274  *	It may return NULL if the skb requires no segmentation.  This is
3275  *	only possible when GSO is used for verifying header integrity.
3276  *
3277  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3278  */
3279 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3280 				  netdev_features_t features, bool tx_path)
3281 {
3282 	struct sk_buff *segs;
3283 
3284 	if (unlikely(skb_needs_check(skb, tx_path))) {
3285 		int err;
3286 
3287 		/* We're going to init ->check field in TCP or UDP header */
3288 		err = skb_cow_head(skb, 0);
3289 		if (err < 0)
3290 			return ERR_PTR(err);
3291 	}
3292 
3293 	/* Only report GSO partial support if it will enable us to
3294 	 * support segmentation on this frame without needing additional
3295 	 * work.
3296 	 */
3297 	if (features & NETIF_F_GSO_PARTIAL) {
3298 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3299 		struct net_device *dev = skb->dev;
3300 
3301 		partial_features |= dev->features & dev->gso_partial_features;
3302 		if (!skb_gso_ok(skb, features | partial_features))
3303 			features &= ~NETIF_F_GSO_PARTIAL;
3304 	}
3305 
3306 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3307 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3308 
3309 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3310 	SKB_GSO_CB(skb)->encap_level = 0;
3311 
3312 	skb_reset_mac_header(skb);
3313 	skb_reset_mac_len(skb);
3314 
3315 	segs = skb_mac_gso_segment(skb, features);
3316 
3317 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3318 		skb_warn_bad_offload(skb);
3319 
3320 	return segs;
3321 }
3322 EXPORT_SYMBOL(__skb_gso_segment);
3323 
3324 /* Take action when hardware reception checksum errors are detected. */
3325 #ifdef CONFIG_BUG
3326 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3327 {
3328 	netdev_err(dev, "hw csum failure\n");
3329 	skb_dump(KERN_ERR, skb, true);
3330 	dump_stack();
3331 }
3332 
3333 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3334 {
3335 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3336 }
3337 EXPORT_SYMBOL(netdev_rx_csum_fault);
3338 #endif
3339 
3340 /* XXX: check that highmem exists at all on the given machine. */
3341 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3342 {
3343 #ifdef CONFIG_HIGHMEM
3344 	int i;
3345 
3346 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3347 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3348 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3349 
3350 			if (PageHighMem(skb_frag_page(frag)))
3351 				return 1;
3352 		}
3353 	}
3354 #endif
3355 	return 0;
3356 }
3357 
3358 /* If MPLS offload request, verify we are testing hardware MPLS features
3359  * instead of standard features for the netdev.
3360  */
3361 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3362 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3363 					   netdev_features_t features,
3364 					   __be16 type)
3365 {
3366 	if (eth_p_mpls(type))
3367 		features &= skb->dev->mpls_features;
3368 
3369 	return features;
3370 }
3371 #else
3372 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3373 					   netdev_features_t features,
3374 					   __be16 type)
3375 {
3376 	return features;
3377 }
3378 #endif
3379 
3380 static netdev_features_t harmonize_features(struct sk_buff *skb,
3381 	netdev_features_t features)
3382 {
3383 	__be16 type;
3384 
3385 	type = skb_network_protocol(skb, NULL);
3386 	features = net_mpls_features(skb, features, type);
3387 
3388 	if (skb->ip_summed != CHECKSUM_NONE &&
3389 	    !can_checksum_protocol(features, type)) {
3390 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3391 	}
3392 	if (illegal_highdma(skb->dev, skb))
3393 		features &= ~NETIF_F_SG;
3394 
3395 	return features;
3396 }
3397 
3398 netdev_features_t passthru_features_check(struct sk_buff *skb,
3399 					  struct net_device *dev,
3400 					  netdev_features_t features)
3401 {
3402 	return features;
3403 }
3404 EXPORT_SYMBOL(passthru_features_check);
3405 
3406 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3407 					     struct net_device *dev,
3408 					     netdev_features_t features)
3409 {
3410 	return vlan_features_check(skb, features);
3411 }
3412 
3413 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3414 					    struct net_device *dev,
3415 					    netdev_features_t features)
3416 {
3417 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3418 
3419 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3420 		return features & ~NETIF_F_GSO_MASK;
3421 
3422 	if (!skb_shinfo(skb)->gso_type) {
3423 		skb_warn_bad_offload(skb);
3424 		return features & ~NETIF_F_GSO_MASK;
3425 	}
3426 
3427 	/* Support for GSO partial features requires software
3428 	 * intervention before we can actually process the packets
3429 	 * so we need to strip support for any partial features now
3430 	 * and we can pull them back in after we have partially
3431 	 * segmented the frame.
3432 	 */
3433 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3434 		features &= ~dev->gso_partial_features;
3435 
3436 	/* Make sure to clear the IPv4 ID mangling feature if the
3437 	 * IPv4 header has the potential to be fragmented.
3438 	 */
3439 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3440 		struct iphdr *iph = skb->encapsulation ?
3441 				    inner_ip_hdr(skb) : ip_hdr(skb);
3442 
3443 		if (!(iph->frag_off & htons(IP_DF)))
3444 			features &= ~NETIF_F_TSO_MANGLEID;
3445 	}
3446 
3447 	return features;
3448 }
3449 
3450 netdev_features_t netif_skb_features(struct sk_buff *skb)
3451 {
3452 	struct net_device *dev = skb->dev;
3453 	netdev_features_t features = dev->features;
3454 
3455 	if (skb_is_gso(skb))
3456 		features = gso_features_check(skb, dev, features);
3457 
3458 	/* If encapsulation offload request, verify we are testing
3459 	 * hardware encapsulation features instead of standard
3460 	 * features for the netdev
3461 	 */
3462 	if (skb->encapsulation)
3463 		features &= dev->hw_enc_features;
3464 
3465 	if (skb_vlan_tagged(skb))
3466 		features = netdev_intersect_features(features,
3467 						     dev->vlan_features |
3468 						     NETIF_F_HW_VLAN_CTAG_TX |
3469 						     NETIF_F_HW_VLAN_STAG_TX);
3470 
3471 	if (dev->netdev_ops->ndo_features_check)
3472 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3473 								features);
3474 	else
3475 		features &= dflt_features_check(skb, dev, features);
3476 
3477 	return harmonize_features(skb, features);
3478 }
3479 EXPORT_SYMBOL(netif_skb_features);
3480 
3481 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3482 		    struct netdev_queue *txq, bool more)
3483 {
3484 	unsigned int len;
3485 	int rc;
3486 
3487 	if (dev_nit_active(dev))
3488 		dev_queue_xmit_nit(skb, dev);
3489 
3490 	len = skb->len;
3491 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3492 	trace_net_dev_start_xmit(skb, dev);
3493 	rc = netdev_start_xmit(skb, dev, txq, more);
3494 	trace_net_dev_xmit(skb, rc, dev, len);
3495 
3496 	return rc;
3497 }
3498 
3499 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3500 				    struct netdev_queue *txq, int *ret)
3501 {
3502 	struct sk_buff *skb = first;
3503 	int rc = NETDEV_TX_OK;
3504 
3505 	while (skb) {
3506 		struct sk_buff *next = skb->next;
3507 
3508 		skb_mark_not_on_list(skb);
3509 		rc = xmit_one(skb, dev, txq, next != NULL);
3510 		if (unlikely(!dev_xmit_complete(rc))) {
3511 			skb->next = next;
3512 			goto out;
3513 		}
3514 
3515 		skb = next;
3516 		if (netif_tx_queue_stopped(txq) && skb) {
3517 			rc = NETDEV_TX_BUSY;
3518 			break;
3519 		}
3520 	}
3521 
3522 out:
3523 	*ret = rc;
3524 	return skb;
3525 }
3526 
3527 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3528 					  netdev_features_t features)
3529 {
3530 	if (skb_vlan_tag_present(skb) &&
3531 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3532 		skb = __vlan_hwaccel_push_inside(skb);
3533 	return skb;
3534 }
3535 
3536 int skb_csum_hwoffload_help(struct sk_buff *skb,
3537 			    const netdev_features_t features)
3538 {
3539 	if (unlikely(skb_csum_is_sctp(skb)))
3540 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3541 			skb_crc32c_csum_help(skb);
3542 
3543 	if (features & NETIF_F_HW_CSUM)
3544 		return 0;
3545 
3546 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3547 		switch (skb->csum_offset) {
3548 		case offsetof(struct tcphdr, check):
3549 		case offsetof(struct udphdr, check):
3550 			return 0;
3551 		}
3552 	}
3553 
3554 	return skb_checksum_help(skb);
3555 }
3556 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3557 
3558 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3559 {
3560 	netdev_features_t features;
3561 
3562 	features = netif_skb_features(skb);
3563 	skb = validate_xmit_vlan(skb, features);
3564 	if (unlikely(!skb))
3565 		goto out_null;
3566 
3567 	skb = sk_validate_xmit_skb(skb, dev);
3568 	if (unlikely(!skb))
3569 		goto out_null;
3570 
3571 	if (netif_needs_gso(skb, features)) {
3572 		struct sk_buff *segs;
3573 
3574 		segs = skb_gso_segment(skb, features);
3575 		if (IS_ERR(segs)) {
3576 			goto out_kfree_skb;
3577 		} else if (segs) {
3578 			consume_skb(skb);
3579 			skb = segs;
3580 		}
3581 	} else {
3582 		if (skb_needs_linearize(skb, features) &&
3583 		    __skb_linearize(skb))
3584 			goto out_kfree_skb;
3585 
3586 		/* If packet is not checksummed and device does not
3587 		 * support checksumming for this protocol, complete
3588 		 * checksumming here.
3589 		 */
3590 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3591 			if (skb->encapsulation)
3592 				skb_set_inner_transport_header(skb,
3593 							       skb_checksum_start_offset(skb));
3594 			else
3595 				skb_set_transport_header(skb,
3596 							 skb_checksum_start_offset(skb));
3597 			if (skb_csum_hwoffload_help(skb, features))
3598 				goto out_kfree_skb;
3599 		}
3600 	}
3601 
3602 	skb = validate_xmit_xfrm(skb, features, again);
3603 
3604 	return skb;
3605 
3606 out_kfree_skb:
3607 	kfree_skb(skb);
3608 out_null:
3609 	atomic_long_inc(&dev->tx_dropped);
3610 	return NULL;
3611 }
3612 
3613 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3614 {
3615 	struct sk_buff *next, *head = NULL, *tail;
3616 
3617 	for (; skb != NULL; skb = next) {
3618 		next = skb->next;
3619 		skb_mark_not_on_list(skb);
3620 
3621 		/* in case skb wont be segmented, point to itself */
3622 		skb->prev = skb;
3623 
3624 		skb = validate_xmit_skb(skb, dev, again);
3625 		if (!skb)
3626 			continue;
3627 
3628 		if (!head)
3629 			head = skb;
3630 		else
3631 			tail->next = skb;
3632 		/* If skb was segmented, skb->prev points to
3633 		 * the last segment. If not, it still contains skb.
3634 		 */
3635 		tail = skb->prev;
3636 	}
3637 	return head;
3638 }
3639 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3640 
3641 static void qdisc_pkt_len_init(struct sk_buff *skb)
3642 {
3643 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3644 
3645 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3646 
3647 	/* To get more precise estimation of bytes sent on wire,
3648 	 * we add to pkt_len the headers size of all segments
3649 	 */
3650 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3651 		unsigned int hdr_len;
3652 		u16 gso_segs = shinfo->gso_segs;
3653 
3654 		/* mac layer + network layer */
3655 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3656 
3657 		/* + transport layer */
3658 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3659 			const struct tcphdr *th;
3660 			struct tcphdr _tcphdr;
3661 
3662 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3663 						sizeof(_tcphdr), &_tcphdr);
3664 			if (likely(th))
3665 				hdr_len += __tcp_hdrlen(th);
3666 		} else {
3667 			struct udphdr _udphdr;
3668 
3669 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3670 					       sizeof(_udphdr), &_udphdr))
3671 				hdr_len += sizeof(struct udphdr);
3672 		}
3673 
3674 		if (shinfo->gso_type & SKB_GSO_DODGY)
3675 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3676 						shinfo->gso_size);
3677 
3678 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3679 	}
3680 }
3681 
3682 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3683 			     struct sk_buff **to_free,
3684 			     struct netdev_queue *txq)
3685 {
3686 	int rc;
3687 
3688 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3689 	if (rc == NET_XMIT_SUCCESS)
3690 		trace_qdisc_enqueue(q, txq, skb);
3691 	return rc;
3692 }
3693 
3694 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3695 				 struct net_device *dev,
3696 				 struct netdev_queue *txq)
3697 {
3698 	spinlock_t *root_lock = qdisc_lock(q);
3699 	struct sk_buff *to_free = NULL;
3700 	bool contended;
3701 	int rc;
3702 
3703 	qdisc_calculate_pkt_len(skb, q);
3704 
3705 	if (q->flags & TCQ_F_NOLOCK) {
3706 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3707 		    qdisc_run_begin(q)) {
3708 			/* Retest nolock_qdisc_is_empty() within the protection
3709 			 * of q->seqlock to protect from racing with requeuing.
3710 			 */
3711 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3712 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3713 				__qdisc_run(q);
3714 				qdisc_run_end(q);
3715 
3716 				goto no_lock_out;
3717 			}
3718 
3719 			qdisc_bstats_cpu_update(q, skb);
3720 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3721 			    !nolock_qdisc_is_empty(q))
3722 				__qdisc_run(q);
3723 
3724 			qdisc_run_end(q);
3725 			return NET_XMIT_SUCCESS;
3726 		}
3727 
3728 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3729 		qdisc_run(q);
3730 
3731 no_lock_out:
3732 		if (unlikely(to_free))
3733 			kfree_skb_list(to_free);
3734 		return rc;
3735 	}
3736 
3737 	/*
3738 	 * Heuristic to force contended enqueues to serialize on a
3739 	 * separate lock before trying to get qdisc main lock.
3740 	 * This permits qdisc->running owner to get the lock more
3741 	 * often and dequeue packets faster.
3742 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3743 	 * and then other tasks will only enqueue packets. The packets will be
3744 	 * sent after the qdisc owner is scheduled again. To prevent this
3745 	 * scenario the task always serialize on the lock.
3746 	 */
3747 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3748 	if (unlikely(contended))
3749 		spin_lock(&q->busylock);
3750 
3751 	spin_lock(root_lock);
3752 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3753 		__qdisc_drop(skb, &to_free);
3754 		rc = NET_XMIT_DROP;
3755 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3756 		   qdisc_run_begin(q)) {
3757 		/*
3758 		 * This is a work-conserving queue; there are no old skbs
3759 		 * waiting to be sent out; and the qdisc is not running -
3760 		 * xmit the skb directly.
3761 		 */
3762 
3763 		qdisc_bstats_update(q, skb);
3764 
3765 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3766 			if (unlikely(contended)) {
3767 				spin_unlock(&q->busylock);
3768 				contended = false;
3769 			}
3770 			__qdisc_run(q);
3771 		}
3772 
3773 		qdisc_run_end(q);
3774 		rc = NET_XMIT_SUCCESS;
3775 	} else {
3776 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3777 		if (qdisc_run_begin(q)) {
3778 			if (unlikely(contended)) {
3779 				spin_unlock(&q->busylock);
3780 				contended = false;
3781 			}
3782 			__qdisc_run(q);
3783 			qdisc_run_end(q);
3784 		}
3785 	}
3786 	spin_unlock(root_lock);
3787 	if (unlikely(to_free))
3788 		kfree_skb_list(to_free);
3789 	if (unlikely(contended))
3790 		spin_unlock(&q->busylock);
3791 	return rc;
3792 }
3793 
3794 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3795 static void skb_update_prio(struct sk_buff *skb)
3796 {
3797 	const struct netprio_map *map;
3798 	const struct sock *sk;
3799 	unsigned int prioidx;
3800 
3801 	if (skb->priority)
3802 		return;
3803 	map = rcu_dereference_bh(skb->dev->priomap);
3804 	if (!map)
3805 		return;
3806 	sk = skb_to_full_sk(skb);
3807 	if (!sk)
3808 		return;
3809 
3810 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3811 
3812 	if (prioidx < map->priomap_len)
3813 		skb->priority = map->priomap[prioidx];
3814 }
3815 #else
3816 #define skb_update_prio(skb)
3817 #endif
3818 
3819 /**
3820  *	dev_loopback_xmit - loop back @skb
3821  *	@net: network namespace this loopback is happening in
3822  *	@sk:  sk needed to be a netfilter okfn
3823  *	@skb: buffer to transmit
3824  */
3825 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3826 {
3827 	skb_reset_mac_header(skb);
3828 	__skb_pull(skb, skb_network_offset(skb));
3829 	skb->pkt_type = PACKET_LOOPBACK;
3830 	if (skb->ip_summed == CHECKSUM_NONE)
3831 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3832 	WARN_ON(!skb_dst(skb));
3833 	skb_dst_force(skb);
3834 	netif_rx_ni(skb);
3835 	return 0;
3836 }
3837 EXPORT_SYMBOL(dev_loopback_xmit);
3838 
3839 #ifdef CONFIG_NET_EGRESS
3840 static struct sk_buff *
3841 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3842 {
3843 #ifdef CONFIG_NET_CLS_ACT
3844 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3845 	struct tcf_result cl_res;
3846 
3847 	if (!miniq)
3848 		return skb;
3849 
3850 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3851 	tc_skb_cb(skb)->mru = 0;
3852 	tc_skb_cb(skb)->post_ct = false;
3853 	mini_qdisc_bstats_cpu_update(miniq, skb);
3854 
3855 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3856 	case TC_ACT_OK:
3857 	case TC_ACT_RECLASSIFY:
3858 		skb->tc_index = TC_H_MIN(cl_res.classid);
3859 		break;
3860 	case TC_ACT_SHOT:
3861 		mini_qdisc_qstats_cpu_drop(miniq);
3862 		*ret = NET_XMIT_DROP;
3863 		kfree_skb(skb);
3864 		return NULL;
3865 	case TC_ACT_STOLEN:
3866 	case TC_ACT_QUEUED:
3867 	case TC_ACT_TRAP:
3868 		*ret = NET_XMIT_SUCCESS;
3869 		consume_skb(skb);
3870 		return NULL;
3871 	case TC_ACT_REDIRECT:
3872 		/* No need to push/pop skb's mac_header here on egress! */
3873 		skb_do_redirect(skb);
3874 		*ret = NET_XMIT_SUCCESS;
3875 		return NULL;
3876 	default:
3877 		break;
3878 	}
3879 #endif /* CONFIG_NET_CLS_ACT */
3880 
3881 	return skb;
3882 }
3883 #endif /* CONFIG_NET_EGRESS */
3884 
3885 #ifdef CONFIG_XPS
3886 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3887 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3888 {
3889 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3890 	struct xps_map *map;
3891 	int queue_index = -1;
3892 
3893 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3894 		return queue_index;
3895 
3896 	tci *= dev_maps->num_tc;
3897 	tci += tc;
3898 
3899 	map = rcu_dereference(dev_maps->attr_map[tci]);
3900 	if (map) {
3901 		if (map->len == 1)
3902 			queue_index = map->queues[0];
3903 		else
3904 			queue_index = map->queues[reciprocal_scale(
3905 						skb_get_hash(skb), map->len)];
3906 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3907 			queue_index = -1;
3908 	}
3909 	return queue_index;
3910 }
3911 #endif
3912 
3913 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3914 			 struct sk_buff *skb)
3915 {
3916 #ifdef CONFIG_XPS
3917 	struct xps_dev_maps *dev_maps;
3918 	struct sock *sk = skb->sk;
3919 	int queue_index = -1;
3920 
3921 	if (!static_key_false(&xps_needed))
3922 		return -1;
3923 
3924 	rcu_read_lock();
3925 	if (!static_key_false(&xps_rxqs_needed))
3926 		goto get_cpus_map;
3927 
3928 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3929 	if (dev_maps) {
3930 		int tci = sk_rx_queue_get(sk);
3931 
3932 		if (tci >= 0)
3933 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3934 							  tci);
3935 	}
3936 
3937 get_cpus_map:
3938 	if (queue_index < 0) {
3939 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3940 		if (dev_maps) {
3941 			unsigned int tci = skb->sender_cpu - 1;
3942 
3943 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3944 							  tci);
3945 		}
3946 	}
3947 	rcu_read_unlock();
3948 
3949 	return queue_index;
3950 #else
3951 	return -1;
3952 #endif
3953 }
3954 
3955 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3956 		     struct net_device *sb_dev)
3957 {
3958 	return 0;
3959 }
3960 EXPORT_SYMBOL(dev_pick_tx_zero);
3961 
3962 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3963 		       struct net_device *sb_dev)
3964 {
3965 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3966 }
3967 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3968 
3969 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3970 		     struct net_device *sb_dev)
3971 {
3972 	struct sock *sk = skb->sk;
3973 	int queue_index = sk_tx_queue_get(sk);
3974 
3975 	sb_dev = sb_dev ? : dev;
3976 
3977 	if (queue_index < 0 || skb->ooo_okay ||
3978 	    queue_index >= dev->real_num_tx_queues) {
3979 		int new_index = get_xps_queue(dev, sb_dev, skb);
3980 
3981 		if (new_index < 0)
3982 			new_index = skb_tx_hash(dev, sb_dev, skb);
3983 
3984 		if (queue_index != new_index && sk &&
3985 		    sk_fullsock(sk) &&
3986 		    rcu_access_pointer(sk->sk_dst_cache))
3987 			sk_tx_queue_set(sk, new_index);
3988 
3989 		queue_index = new_index;
3990 	}
3991 
3992 	return queue_index;
3993 }
3994 EXPORT_SYMBOL(netdev_pick_tx);
3995 
3996 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3997 					 struct sk_buff *skb,
3998 					 struct net_device *sb_dev)
3999 {
4000 	int queue_index = 0;
4001 
4002 #ifdef CONFIG_XPS
4003 	u32 sender_cpu = skb->sender_cpu - 1;
4004 
4005 	if (sender_cpu >= (u32)NR_CPUS)
4006 		skb->sender_cpu = raw_smp_processor_id() + 1;
4007 #endif
4008 
4009 	if (dev->real_num_tx_queues != 1) {
4010 		const struct net_device_ops *ops = dev->netdev_ops;
4011 
4012 		if (ops->ndo_select_queue)
4013 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4014 		else
4015 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4016 
4017 		queue_index = netdev_cap_txqueue(dev, queue_index);
4018 	}
4019 
4020 	skb_set_queue_mapping(skb, queue_index);
4021 	return netdev_get_tx_queue(dev, queue_index);
4022 }
4023 
4024 /**
4025  *	__dev_queue_xmit - transmit a buffer
4026  *	@skb: buffer to transmit
4027  *	@sb_dev: suboordinate device used for L2 forwarding offload
4028  *
4029  *	Queue a buffer for transmission to a network device. The caller must
4030  *	have set the device and priority and built the buffer before calling
4031  *	this function. The function can be called from an interrupt.
4032  *
4033  *	A negative errno code is returned on a failure. A success does not
4034  *	guarantee the frame will be transmitted as it may be dropped due
4035  *	to congestion or traffic shaping.
4036  *
4037  * -----------------------------------------------------------------------------------
4038  *      I notice this method can also return errors from the queue disciplines,
4039  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4040  *      be positive.
4041  *
4042  *      Regardless of the return value, the skb is consumed, so it is currently
4043  *      difficult to retry a send to this method.  (You can bump the ref count
4044  *      before sending to hold a reference for retry if you are careful.)
4045  *
4046  *      When calling this method, interrupts MUST be enabled.  This is because
4047  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4048  *          --BLG
4049  */
4050 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4051 {
4052 	struct net_device *dev = skb->dev;
4053 	struct netdev_queue *txq;
4054 	struct Qdisc *q;
4055 	int rc = -ENOMEM;
4056 	bool again = false;
4057 
4058 	skb_reset_mac_header(skb);
4059 
4060 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4061 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4062 
4063 	/* Disable soft irqs for various locks below. Also
4064 	 * stops preemption for RCU.
4065 	 */
4066 	rcu_read_lock_bh();
4067 
4068 	skb_update_prio(skb);
4069 
4070 	qdisc_pkt_len_init(skb);
4071 #ifdef CONFIG_NET_CLS_ACT
4072 	skb->tc_at_ingress = 0;
4073 #endif
4074 #ifdef CONFIG_NET_EGRESS
4075 	if (static_branch_unlikely(&egress_needed_key)) {
4076 		if (nf_hook_egress_active()) {
4077 			skb = nf_hook_egress(skb, &rc, dev);
4078 			if (!skb)
4079 				goto out;
4080 		}
4081 		nf_skip_egress(skb, true);
4082 		skb = sch_handle_egress(skb, &rc, dev);
4083 		if (!skb)
4084 			goto out;
4085 		nf_skip_egress(skb, false);
4086 	}
4087 #endif
4088 	/* If device/qdisc don't need skb->dst, release it right now while
4089 	 * its hot in this cpu cache.
4090 	 */
4091 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4092 		skb_dst_drop(skb);
4093 	else
4094 		skb_dst_force(skb);
4095 
4096 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4097 	q = rcu_dereference_bh(txq->qdisc);
4098 
4099 	trace_net_dev_queue(skb);
4100 	if (q->enqueue) {
4101 		rc = __dev_xmit_skb(skb, q, dev, txq);
4102 		goto out;
4103 	}
4104 
4105 	/* The device has no queue. Common case for software devices:
4106 	 * loopback, all the sorts of tunnels...
4107 
4108 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4109 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4110 	 * counters.)
4111 	 * However, it is possible, that they rely on protection
4112 	 * made by us here.
4113 
4114 	 * Check this and shot the lock. It is not prone from deadlocks.
4115 	 *Either shot noqueue qdisc, it is even simpler 8)
4116 	 */
4117 	if (dev->flags & IFF_UP) {
4118 		int cpu = smp_processor_id(); /* ok because BHs are off */
4119 
4120 		/* Other cpus might concurrently change txq->xmit_lock_owner
4121 		 * to -1 or to their cpu id, but not to our id.
4122 		 */
4123 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4124 			if (dev_xmit_recursion())
4125 				goto recursion_alert;
4126 
4127 			skb = validate_xmit_skb(skb, dev, &again);
4128 			if (!skb)
4129 				goto out;
4130 
4131 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4132 			HARD_TX_LOCK(dev, txq, cpu);
4133 
4134 			if (!netif_xmit_stopped(txq)) {
4135 				dev_xmit_recursion_inc();
4136 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4137 				dev_xmit_recursion_dec();
4138 				if (dev_xmit_complete(rc)) {
4139 					HARD_TX_UNLOCK(dev, txq);
4140 					goto out;
4141 				}
4142 			}
4143 			HARD_TX_UNLOCK(dev, txq);
4144 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4145 					     dev->name);
4146 		} else {
4147 			/* Recursion is detected! It is possible,
4148 			 * unfortunately
4149 			 */
4150 recursion_alert:
4151 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4152 					     dev->name);
4153 		}
4154 	}
4155 
4156 	rc = -ENETDOWN;
4157 	rcu_read_unlock_bh();
4158 
4159 	atomic_long_inc(&dev->tx_dropped);
4160 	kfree_skb_list(skb);
4161 	return rc;
4162 out:
4163 	rcu_read_unlock_bh();
4164 	return rc;
4165 }
4166 
4167 int dev_queue_xmit(struct sk_buff *skb)
4168 {
4169 	return __dev_queue_xmit(skb, NULL);
4170 }
4171 EXPORT_SYMBOL(dev_queue_xmit);
4172 
4173 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4174 {
4175 	return __dev_queue_xmit(skb, sb_dev);
4176 }
4177 EXPORT_SYMBOL(dev_queue_xmit_accel);
4178 
4179 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4180 {
4181 	struct net_device *dev = skb->dev;
4182 	struct sk_buff *orig_skb = skb;
4183 	struct netdev_queue *txq;
4184 	int ret = NETDEV_TX_BUSY;
4185 	bool again = false;
4186 
4187 	if (unlikely(!netif_running(dev) ||
4188 		     !netif_carrier_ok(dev)))
4189 		goto drop;
4190 
4191 	skb = validate_xmit_skb_list(skb, dev, &again);
4192 	if (skb != orig_skb)
4193 		goto drop;
4194 
4195 	skb_set_queue_mapping(skb, queue_id);
4196 	txq = skb_get_tx_queue(dev, skb);
4197 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4198 
4199 	local_bh_disable();
4200 
4201 	dev_xmit_recursion_inc();
4202 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4203 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4204 		ret = netdev_start_xmit(skb, dev, txq, false);
4205 	HARD_TX_UNLOCK(dev, txq);
4206 	dev_xmit_recursion_dec();
4207 
4208 	local_bh_enable();
4209 	return ret;
4210 drop:
4211 	atomic_long_inc(&dev->tx_dropped);
4212 	kfree_skb_list(skb);
4213 	return NET_XMIT_DROP;
4214 }
4215 EXPORT_SYMBOL(__dev_direct_xmit);
4216 
4217 /*************************************************************************
4218  *			Receiver routines
4219  *************************************************************************/
4220 
4221 int netdev_max_backlog __read_mostly = 1000;
4222 EXPORT_SYMBOL(netdev_max_backlog);
4223 
4224 int netdev_tstamp_prequeue __read_mostly = 1;
4225 int netdev_budget __read_mostly = 300;
4226 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4227 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4228 int weight_p __read_mostly = 64;           /* old backlog weight */
4229 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4230 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4231 int dev_rx_weight __read_mostly = 64;
4232 int dev_tx_weight __read_mostly = 64;
4233 
4234 /* Called with irq disabled */
4235 static inline void ____napi_schedule(struct softnet_data *sd,
4236 				     struct napi_struct *napi)
4237 {
4238 	struct task_struct *thread;
4239 
4240 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4241 		/* Paired with smp_mb__before_atomic() in
4242 		 * napi_enable()/dev_set_threaded().
4243 		 * Use READ_ONCE() to guarantee a complete
4244 		 * read on napi->thread. Only call
4245 		 * wake_up_process() when it's not NULL.
4246 		 */
4247 		thread = READ_ONCE(napi->thread);
4248 		if (thread) {
4249 			/* Avoid doing set_bit() if the thread is in
4250 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4251 			 * makes sure to proceed with napi polling
4252 			 * if the thread is explicitly woken from here.
4253 			 */
4254 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4255 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4256 			wake_up_process(thread);
4257 			return;
4258 		}
4259 	}
4260 
4261 	list_add_tail(&napi->poll_list, &sd->poll_list);
4262 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4263 }
4264 
4265 #ifdef CONFIG_RPS
4266 
4267 /* One global table that all flow-based protocols share. */
4268 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4269 EXPORT_SYMBOL(rps_sock_flow_table);
4270 u32 rps_cpu_mask __read_mostly;
4271 EXPORT_SYMBOL(rps_cpu_mask);
4272 
4273 struct static_key_false rps_needed __read_mostly;
4274 EXPORT_SYMBOL(rps_needed);
4275 struct static_key_false rfs_needed __read_mostly;
4276 EXPORT_SYMBOL(rfs_needed);
4277 
4278 static struct rps_dev_flow *
4279 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4280 	    struct rps_dev_flow *rflow, u16 next_cpu)
4281 {
4282 	if (next_cpu < nr_cpu_ids) {
4283 #ifdef CONFIG_RFS_ACCEL
4284 		struct netdev_rx_queue *rxqueue;
4285 		struct rps_dev_flow_table *flow_table;
4286 		struct rps_dev_flow *old_rflow;
4287 		u32 flow_id;
4288 		u16 rxq_index;
4289 		int rc;
4290 
4291 		/* Should we steer this flow to a different hardware queue? */
4292 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4293 		    !(dev->features & NETIF_F_NTUPLE))
4294 			goto out;
4295 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4296 		if (rxq_index == skb_get_rx_queue(skb))
4297 			goto out;
4298 
4299 		rxqueue = dev->_rx + rxq_index;
4300 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4301 		if (!flow_table)
4302 			goto out;
4303 		flow_id = skb_get_hash(skb) & flow_table->mask;
4304 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4305 							rxq_index, flow_id);
4306 		if (rc < 0)
4307 			goto out;
4308 		old_rflow = rflow;
4309 		rflow = &flow_table->flows[flow_id];
4310 		rflow->filter = rc;
4311 		if (old_rflow->filter == rflow->filter)
4312 			old_rflow->filter = RPS_NO_FILTER;
4313 	out:
4314 #endif
4315 		rflow->last_qtail =
4316 			per_cpu(softnet_data, next_cpu).input_queue_head;
4317 	}
4318 
4319 	rflow->cpu = next_cpu;
4320 	return rflow;
4321 }
4322 
4323 /*
4324  * get_rps_cpu is called from netif_receive_skb and returns the target
4325  * CPU from the RPS map of the receiving queue for a given skb.
4326  * rcu_read_lock must be held on entry.
4327  */
4328 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4329 		       struct rps_dev_flow **rflowp)
4330 {
4331 	const struct rps_sock_flow_table *sock_flow_table;
4332 	struct netdev_rx_queue *rxqueue = dev->_rx;
4333 	struct rps_dev_flow_table *flow_table;
4334 	struct rps_map *map;
4335 	int cpu = -1;
4336 	u32 tcpu;
4337 	u32 hash;
4338 
4339 	if (skb_rx_queue_recorded(skb)) {
4340 		u16 index = skb_get_rx_queue(skb);
4341 
4342 		if (unlikely(index >= dev->real_num_rx_queues)) {
4343 			WARN_ONCE(dev->real_num_rx_queues > 1,
4344 				  "%s received packet on queue %u, but number "
4345 				  "of RX queues is %u\n",
4346 				  dev->name, index, dev->real_num_rx_queues);
4347 			goto done;
4348 		}
4349 		rxqueue += index;
4350 	}
4351 
4352 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4353 
4354 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4355 	map = rcu_dereference(rxqueue->rps_map);
4356 	if (!flow_table && !map)
4357 		goto done;
4358 
4359 	skb_reset_network_header(skb);
4360 	hash = skb_get_hash(skb);
4361 	if (!hash)
4362 		goto done;
4363 
4364 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4365 	if (flow_table && sock_flow_table) {
4366 		struct rps_dev_flow *rflow;
4367 		u32 next_cpu;
4368 		u32 ident;
4369 
4370 		/* First check into global flow table if there is a match */
4371 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4372 		if ((ident ^ hash) & ~rps_cpu_mask)
4373 			goto try_rps;
4374 
4375 		next_cpu = ident & rps_cpu_mask;
4376 
4377 		/* OK, now we know there is a match,
4378 		 * we can look at the local (per receive queue) flow table
4379 		 */
4380 		rflow = &flow_table->flows[hash & flow_table->mask];
4381 		tcpu = rflow->cpu;
4382 
4383 		/*
4384 		 * If the desired CPU (where last recvmsg was done) is
4385 		 * different from current CPU (one in the rx-queue flow
4386 		 * table entry), switch if one of the following holds:
4387 		 *   - Current CPU is unset (>= nr_cpu_ids).
4388 		 *   - Current CPU is offline.
4389 		 *   - The current CPU's queue tail has advanced beyond the
4390 		 *     last packet that was enqueued using this table entry.
4391 		 *     This guarantees that all previous packets for the flow
4392 		 *     have been dequeued, thus preserving in order delivery.
4393 		 */
4394 		if (unlikely(tcpu != next_cpu) &&
4395 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4396 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4397 		      rflow->last_qtail)) >= 0)) {
4398 			tcpu = next_cpu;
4399 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4400 		}
4401 
4402 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4403 			*rflowp = rflow;
4404 			cpu = tcpu;
4405 			goto done;
4406 		}
4407 	}
4408 
4409 try_rps:
4410 
4411 	if (map) {
4412 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4413 		if (cpu_online(tcpu)) {
4414 			cpu = tcpu;
4415 			goto done;
4416 		}
4417 	}
4418 
4419 done:
4420 	return cpu;
4421 }
4422 
4423 #ifdef CONFIG_RFS_ACCEL
4424 
4425 /**
4426  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4427  * @dev: Device on which the filter was set
4428  * @rxq_index: RX queue index
4429  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4430  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4431  *
4432  * Drivers that implement ndo_rx_flow_steer() should periodically call
4433  * this function for each installed filter and remove the filters for
4434  * which it returns %true.
4435  */
4436 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4437 			 u32 flow_id, u16 filter_id)
4438 {
4439 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4440 	struct rps_dev_flow_table *flow_table;
4441 	struct rps_dev_flow *rflow;
4442 	bool expire = true;
4443 	unsigned int cpu;
4444 
4445 	rcu_read_lock();
4446 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4447 	if (flow_table && flow_id <= flow_table->mask) {
4448 		rflow = &flow_table->flows[flow_id];
4449 		cpu = READ_ONCE(rflow->cpu);
4450 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4451 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4452 			   rflow->last_qtail) <
4453 		     (int)(10 * flow_table->mask)))
4454 			expire = false;
4455 	}
4456 	rcu_read_unlock();
4457 	return expire;
4458 }
4459 EXPORT_SYMBOL(rps_may_expire_flow);
4460 
4461 #endif /* CONFIG_RFS_ACCEL */
4462 
4463 /* Called from hardirq (IPI) context */
4464 static void rps_trigger_softirq(void *data)
4465 {
4466 	struct softnet_data *sd = data;
4467 
4468 	____napi_schedule(sd, &sd->backlog);
4469 	sd->received_rps++;
4470 }
4471 
4472 #endif /* CONFIG_RPS */
4473 
4474 /*
4475  * Check if this softnet_data structure is another cpu one
4476  * If yes, queue it to our IPI list and return 1
4477  * If no, return 0
4478  */
4479 static int napi_schedule_rps(struct softnet_data *sd)
4480 {
4481 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4482 
4483 #ifdef CONFIG_RPS
4484 	if (sd != mysd) {
4485 		sd->rps_ipi_next = mysd->rps_ipi_list;
4486 		mysd->rps_ipi_list = sd;
4487 
4488 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4489 		return 1;
4490 	}
4491 #endif /* CONFIG_RPS */
4492 	__napi_schedule_irqoff(&mysd->backlog);
4493 	return 0;
4494 }
4495 
4496 #ifdef CONFIG_NET_FLOW_LIMIT
4497 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4498 #endif
4499 
4500 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4501 {
4502 #ifdef CONFIG_NET_FLOW_LIMIT
4503 	struct sd_flow_limit *fl;
4504 	struct softnet_data *sd;
4505 	unsigned int old_flow, new_flow;
4506 
4507 	if (qlen < (netdev_max_backlog >> 1))
4508 		return false;
4509 
4510 	sd = this_cpu_ptr(&softnet_data);
4511 
4512 	rcu_read_lock();
4513 	fl = rcu_dereference(sd->flow_limit);
4514 	if (fl) {
4515 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4516 		old_flow = fl->history[fl->history_head];
4517 		fl->history[fl->history_head] = new_flow;
4518 
4519 		fl->history_head++;
4520 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4521 
4522 		if (likely(fl->buckets[old_flow]))
4523 			fl->buckets[old_flow]--;
4524 
4525 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4526 			fl->count++;
4527 			rcu_read_unlock();
4528 			return true;
4529 		}
4530 	}
4531 	rcu_read_unlock();
4532 #endif
4533 	return false;
4534 }
4535 
4536 /*
4537  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4538  * queue (may be a remote CPU queue).
4539  */
4540 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4541 			      unsigned int *qtail)
4542 {
4543 	struct softnet_data *sd;
4544 	unsigned long flags;
4545 	unsigned int qlen;
4546 
4547 	sd = &per_cpu(softnet_data, cpu);
4548 
4549 	rps_lock_irqsave(sd, &flags);
4550 	if (!netif_running(skb->dev))
4551 		goto drop;
4552 	qlen = skb_queue_len(&sd->input_pkt_queue);
4553 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4554 		if (qlen) {
4555 enqueue:
4556 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4557 			input_queue_tail_incr_save(sd, qtail);
4558 			rps_unlock_irq_restore(sd, &flags);
4559 			return NET_RX_SUCCESS;
4560 		}
4561 
4562 		/* Schedule NAPI for backlog device
4563 		 * We can use non atomic operation since we own the queue lock
4564 		 */
4565 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4566 			napi_schedule_rps(sd);
4567 		goto enqueue;
4568 	}
4569 
4570 drop:
4571 	sd->dropped++;
4572 	rps_unlock_irq_restore(sd, &flags);
4573 
4574 	atomic_long_inc(&skb->dev->rx_dropped);
4575 	kfree_skb(skb);
4576 	return NET_RX_DROP;
4577 }
4578 
4579 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4580 {
4581 	struct net_device *dev = skb->dev;
4582 	struct netdev_rx_queue *rxqueue;
4583 
4584 	rxqueue = dev->_rx;
4585 
4586 	if (skb_rx_queue_recorded(skb)) {
4587 		u16 index = skb_get_rx_queue(skb);
4588 
4589 		if (unlikely(index >= dev->real_num_rx_queues)) {
4590 			WARN_ONCE(dev->real_num_rx_queues > 1,
4591 				  "%s received packet on queue %u, but number "
4592 				  "of RX queues is %u\n",
4593 				  dev->name, index, dev->real_num_rx_queues);
4594 
4595 			return rxqueue; /* Return first rxqueue */
4596 		}
4597 		rxqueue += index;
4598 	}
4599 	return rxqueue;
4600 }
4601 
4602 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4603 			     struct bpf_prog *xdp_prog)
4604 {
4605 	void *orig_data, *orig_data_end, *hard_start;
4606 	struct netdev_rx_queue *rxqueue;
4607 	bool orig_bcast, orig_host;
4608 	u32 mac_len, frame_sz;
4609 	__be16 orig_eth_type;
4610 	struct ethhdr *eth;
4611 	u32 metalen, act;
4612 	int off;
4613 
4614 	/* The XDP program wants to see the packet starting at the MAC
4615 	 * header.
4616 	 */
4617 	mac_len = skb->data - skb_mac_header(skb);
4618 	hard_start = skb->data - skb_headroom(skb);
4619 
4620 	/* SKB "head" area always have tailroom for skb_shared_info */
4621 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4622 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4623 
4624 	rxqueue = netif_get_rxqueue(skb);
4625 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4626 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4627 			 skb_headlen(skb) + mac_len, true);
4628 
4629 	orig_data_end = xdp->data_end;
4630 	orig_data = xdp->data;
4631 	eth = (struct ethhdr *)xdp->data;
4632 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4633 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4634 	orig_eth_type = eth->h_proto;
4635 
4636 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4637 
4638 	/* check if bpf_xdp_adjust_head was used */
4639 	off = xdp->data - orig_data;
4640 	if (off) {
4641 		if (off > 0)
4642 			__skb_pull(skb, off);
4643 		else if (off < 0)
4644 			__skb_push(skb, -off);
4645 
4646 		skb->mac_header += off;
4647 		skb_reset_network_header(skb);
4648 	}
4649 
4650 	/* check if bpf_xdp_adjust_tail was used */
4651 	off = xdp->data_end - orig_data_end;
4652 	if (off != 0) {
4653 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4654 		skb->len += off; /* positive on grow, negative on shrink */
4655 	}
4656 
4657 	/* check if XDP changed eth hdr such SKB needs update */
4658 	eth = (struct ethhdr *)xdp->data;
4659 	if ((orig_eth_type != eth->h_proto) ||
4660 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4661 						  skb->dev->dev_addr)) ||
4662 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4663 		__skb_push(skb, ETH_HLEN);
4664 		skb->pkt_type = PACKET_HOST;
4665 		skb->protocol = eth_type_trans(skb, skb->dev);
4666 	}
4667 
4668 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4669 	 * before calling us again on redirect path. We do not call do_redirect
4670 	 * as we leave that up to the caller.
4671 	 *
4672 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4673 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4674 	 */
4675 	switch (act) {
4676 	case XDP_REDIRECT:
4677 	case XDP_TX:
4678 		__skb_push(skb, mac_len);
4679 		break;
4680 	case XDP_PASS:
4681 		metalen = xdp->data - xdp->data_meta;
4682 		if (metalen)
4683 			skb_metadata_set(skb, metalen);
4684 		break;
4685 	}
4686 
4687 	return act;
4688 }
4689 
4690 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4691 				     struct xdp_buff *xdp,
4692 				     struct bpf_prog *xdp_prog)
4693 {
4694 	u32 act = XDP_DROP;
4695 
4696 	/* Reinjected packets coming from act_mirred or similar should
4697 	 * not get XDP generic processing.
4698 	 */
4699 	if (skb_is_redirected(skb))
4700 		return XDP_PASS;
4701 
4702 	/* XDP packets must be linear and must have sufficient headroom
4703 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4704 	 * native XDP provides, thus we need to do it here as well.
4705 	 */
4706 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4707 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4708 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4709 		int troom = skb->tail + skb->data_len - skb->end;
4710 
4711 		/* In case we have to go down the path and also linearize,
4712 		 * then lets do the pskb_expand_head() work just once here.
4713 		 */
4714 		if (pskb_expand_head(skb,
4715 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4716 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4717 			goto do_drop;
4718 		if (skb_linearize(skb))
4719 			goto do_drop;
4720 	}
4721 
4722 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4723 	switch (act) {
4724 	case XDP_REDIRECT:
4725 	case XDP_TX:
4726 	case XDP_PASS:
4727 		break;
4728 	default:
4729 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4730 		fallthrough;
4731 	case XDP_ABORTED:
4732 		trace_xdp_exception(skb->dev, xdp_prog, act);
4733 		fallthrough;
4734 	case XDP_DROP:
4735 	do_drop:
4736 		kfree_skb(skb);
4737 		break;
4738 	}
4739 
4740 	return act;
4741 }
4742 
4743 /* When doing generic XDP we have to bypass the qdisc layer and the
4744  * network taps in order to match in-driver-XDP behavior.
4745  */
4746 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4747 {
4748 	struct net_device *dev = skb->dev;
4749 	struct netdev_queue *txq;
4750 	bool free_skb = true;
4751 	int cpu, rc;
4752 
4753 	txq = netdev_core_pick_tx(dev, skb, NULL);
4754 	cpu = smp_processor_id();
4755 	HARD_TX_LOCK(dev, txq, cpu);
4756 	if (!netif_xmit_stopped(txq)) {
4757 		rc = netdev_start_xmit(skb, dev, txq, 0);
4758 		if (dev_xmit_complete(rc))
4759 			free_skb = false;
4760 	}
4761 	HARD_TX_UNLOCK(dev, txq);
4762 	if (free_skb) {
4763 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4764 		kfree_skb(skb);
4765 	}
4766 }
4767 
4768 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4769 
4770 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4771 {
4772 	if (xdp_prog) {
4773 		struct xdp_buff xdp;
4774 		u32 act;
4775 		int err;
4776 
4777 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4778 		if (act != XDP_PASS) {
4779 			switch (act) {
4780 			case XDP_REDIRECT:
4781 				err = xdp_do_generic_redirect(skb->dev, skb,
4782 							      &xdp, xdp_prog);
4783 				if (err)
4784 					goto out_redir;
4785 				break;
4786 			case XDP_TX:
4787 				generic_xdp_tx(skb, xdp_prog);
4788 				break;
4789 			}
4790 			return XDP_DROP;
4791 		}
4792 	}
4793 	return XDP_PASS;
4794 out_redir:
4795 	kfree_skb(skb);
4796 	return XDP_DROP;
4797 }
4798 EXPORT_SYMBOL_GPL(do_xdp_generic);
4799 
4800 static int netif_rx_internal(struct sk_buff *skb)
4801 {
4802 	int ret;
4803 
4804 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4805 
4806 	trace_netif_rx(skb);
4807 
4808 #ifdef CONFIG_RPS
4809 	if (static_branch_unlikely(&rps_needed)) {
4810 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4811 		int cpu;
4812 
4813 		rcu_read_lock();
4814 
4815 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4816 		if (cpu < 0)
4817 			cpu = smp_processor_id();
4818 
4819 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4820 
4821 		rcu_read_unlock();
4822 	} else
4823 #endif
4824 	{
4825 		unsigned int qtail;
4826 
4827 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4828 	}
4829 	return ret;
4830 }
4831 
4832 /**
4833  *	__netif_rx	-	Slightly optimized version of netif_rx
4834  *	@skb: buffer to post
4835  *
4836  *	This behaves as netif_rx except that it does not disable bottom halves.
4837  *	As a result this function may only be invoked from the interrupt context
4838  *	(either hard or soft interrupt).
4839  */
4840 int __netif_rx(struct sk_buff *skb)
4841 {
4842 	int ret;
4843 
4844 	lockdep_assert_once(hardirq_count() | softirq_count());
4845 
4846 	trace_netif_rx_entry(skb);
4847 	ret = netif_rx_internal(skb);
4848 	trace_netif_rx_exit(ret);
4849 	return ret;
4850 }
4851 EXPORT_SYMBOL(__netif_rx);
4852 
4853 /**
4854  *	netif_rx	-	post buffer to the network code
4855  *	@skb: buffer to post
4856  *
4857  *	This function receives a packet from a device driver and queues it for
4858  *	the upper (protocol) levels to process via the backlog NAPI device. It
4859  *	always succeeds. The buffer may be dropped during processing for
4860  *	congestion control or by the protocol layers.
4861  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4862  *	driver should use NAPI and GRO.
4863  *	This function can used from interrupt and from process context. The
4864  *	caller from process context must not disable interrupts before invoking
4865  *	this function.
4866  *
4867  *	return values:
4868  *	NET_RX_SUCCESS	(no congestion)
4869  *	NET_RX_DROP     (packet was dropped)
4870  *
4871  */
4872 int netif_rx(struct sk_buff *skb)
4873 {
4874 	bool need_bh_off = !(hardirq_count() | softirq_count());
4875 	int ret;
4876 
4877 	if (need_bh_off)
4878 		local_bh_disable();
4879 	trace_netif_rx_entry(skb);
4880 	ret = netif_rx_internal(skb);
4881 	trace_netif_rx_exit(ret);
4882 	if (need_bh_off)
4883 		local_bh_enable();
4884 	return ret;
4885 }
4886 EXPORT_SYMBOL(netif_rx);
4887 
4888 static __latent_entropy void net_tx_action(struct softirq_action *h)
4889 {
4890 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4891 
4892 	if (sd->completion_queue) {
4893 		struct sk_buff *clist;
4894 
4895 		local_irq_disable();
4896 		clist = sd->completion_queue;
4897 		sd->completion_queue = NULL;
4898 		local_irq_enable();
4899 
4900 		while (clist) {
4901 			struct sk_buff *skb = clist;
4902 
4903 			clist = clist->next;
4904 
4905 			WARN_ON(refcount_read(&skb->users));
4906 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4907 				trace_consume_skb(skb);
4908 			else
4909 				trace_kfree_skb(skb, net_tx_action,
4910 						SKB_DROP_REASON_NOT_SPECIFIED);
4911 
4912 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4913 				__kfree_skb(skb);
4914 			else
4915 				__kfree_skb_defer(skb);
4916 		}
4917 	}
4918 
4919 	if (sd->output_queue) {
4920 		struct Qdisc *head;
4921 
4922 		local_irq_disable();
4923 		head = sd->output_queue;
4924 		sd->output_queue = NULL;
4925 		sd->output_queue_tailp = &sd->output_queue;
4926 		local_irq_enable();
4927 
4928 		rcu_read_lock();
4929 
4930 		while (head) {
4931 			struct Qdisc *q = head;
4932 			spinlock_t *root_lock = NULL;
4933 
4934 			head = head->next_sched;
4935 
4936 			/* We need to make sure head->next_sched is read
4937 			 * before clearing __QDISC_STATE_SCHED
4938 			 */
4939 			smp_mb__before_atomic();
4940 
4941 			if (!(q->flags & TCQ_F_NOLOCK)) {
4942 				root_lock = qdisc_lock(q);
4943 				spin_lock(root_lock);
4944 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4945 						     &q->state))) {
4946 				/* There is a synchronize_net() between
4947 				 * STATE_DEACTIVATED flag being set and
4948 				 * qdisc_reset()/some_qdisc_is_busy() in
4949 				 * dev_deactivate(), so we can safely bail out
4950 				 * early here to avoid data race between
4951 				 * qdisc_deactivate() and some_qdisc_is_busy()
4952 				 * for lockless qdisc.
4953 				 */
4954 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4955 				continue;
4956 			}
4957 
4958 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4959 			qdisc_run(q);
4960 			if (root_lock)
4961 				spin_unlock(root_lock);
4962 		}
4963 
4964 		rcu_read_unlock();
4965 	}
4966 
4967 	xfrm_dev_backlog(sd);
4968 }
4969 
4970 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4971 /* This hook is defined here for ATM LANE */
4972 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4973 			     unsigned char *addr) __read_mostly;
4974 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4975 #endif
4976 
4977 static inline struct sk_buff *
4978 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4979 		   struct net_device *orig_dev, bool *another)
4980 {
4981 #ifdef CONFIG_NET_CLS_ACT
4982 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4983 	struct tcf_result cl_res;
4984 
4985 	/* If there's at least one ingress present somewhere (so
4986 	 * we get here via enabled static key), remaining devices
4987 	 * that are not configured with an ingress qdisc will bail
4988 	 * out here.
4989 	 */
4990 	if (!miniq)
4991 		return skb;
4992 
4993 	if (*pt_prev) {
4994 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4995 		*pt_prev = NULL;
4996 	}
4997 
4998 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4999 	tc_skb_cb(skb)->mru = 0;
5000 	tc_skb_cb(skb)->post_ct = false;
5001 	skb->tc_at_ingress = 1;
5002 	mini_qdisc_bstats_cpu_update(miniq, skb);
5003 
5004 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5005 	case TC_ACT_OK:
5006 	case TC_ACT_RECLASSIFY:
5007 		skb->tc_index = TC_H_MIN(cl_res.classid);
5008 		break;
5009 	case TC_ACT_SHOT:
5010 		mini_qdisc_qstats_cpu_drop(miniq);
5011 		kfree_skb(skb);
5012 		return NULL;
5013 	case TC_ACT_STOLEN:
5014 	case TC_ACT_QUEUED:
5015 	case TC_ACT_TRAP:
5016 		consume_skb(skb);
5017 		return NULL;
5018 	case TC_ACT_REDIRECT:
5019 		/* skb_mac_header check was done by cls/act_bpf, so
5020 		 * we can safely push the L2 header back before
5021 		 * redirecting to another netdev
5022 		 */
5023 		__skb_push(skb, skb->mac_len);
5024 		if (skb_do_redirect(skb) == -EAGAIN) {
5025 			__skb_pull(skb, skb->mac_len);
5026 			*another = true;
5027 			break;
5028 		}
5029 		return NULL;
5030 	case TC_ACT_CONSUMED:
5031 		return NULL;
5032 	default:
5033 		break;
5034 	}
5035 #endif /* CONFIG_NET_CLS_ACT */
5036 	return skb;
5037 }
5038 
5039 /**
5040  *	netdev_is_rx_handler_busy - check if receive handler is registered
5041  *	@dev: device to check
5042  *
5043  *	Check if a receive handler is already registered for a given device.
5044  *	Return true if there one.
5045  *
5046  *	The caller must hold the rtnl_mutex.
5047  */
5048 bool netdev_is_rx_handler_busy(struct net_device *dev)
5049 {
5050 	ASSERT_RTNL();
5051 	return dev && rtnl_dereference(dev->rx_handler);
5052 }
5053 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5054 
5055 /**
5056  *	netdev_rx_handler_register - register receive handler
5057  *	@dev: device to register a handler for
5058  *	@rx_handler: receive handler to register
5059  *	@rx_handler_data: data pointer that is used by rx handler
5060  *
5061  *	Register a receive handler for a device. This handler will then be
5062  *	called from __netif_receive_skb. A negative errno code is returned
5063  *	on a failure.
5064  *
5065  *	The caller must hold the rtnl_mutex.
5066  *
5067  *	For a general description of rx_handler, see enum rx_handler_result.
5068  */
5069 int netdev_rx_handler_register(struct net_device *dev,
5070 			       rx_handler_func_t *rx_handler,
5071 			       void *rx_handler_data)
5072 {
5073 	if (netdev_is_rx_handler_busy(dev))
5074 		return -EBUSY;
5075 
5076 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5077 		return -EINVAL;
5078 
5079 	/* Note: rx_handler_data must be set before rx_handler */
5080 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5081 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5082 
5083 	return 0;
5084 }
5085 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5086 
5087 /**
5088  *	netdev_rx_handler_unregister - unregister receive handler
5089  *	@dev: device to unregister a handler from
5090  *
5091  *	Unregister a receive handler from a device.
5092  *
5093  *	The caller must hold the rtnl_mutex.
5094  */
5095 void netdev_rx_handler_unregister(struct net_device *dev)
5096 {
5097 
5098 	ASSERT_RTNL();
5099 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5100 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5101 	 * section has a guarantee to see a non NULL rx_handler_data
5102 	 * as well.
5103 	 */
5104 	synchronize_net();
5105 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5106 }
5107 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5108 
5109 /*
5110  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5111  * the special handling of PFMEMALLOC skbs.
5112  */
5113 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5114 {
5115 	switch (skb->protocol) {
5116 	case htons(ETH_P_ARP):
5117 	case htons(ETH_P_IP):
5118 	case htons(ETH_P_IPV6):
5119 	case htons(ETH_P_8021Q):
5120 	case htons(ETH_P_8021AD):
5121 		return true;
5122 	default:
5123 		return false;
5124 	}
5125 }
5126 
5127 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5128 			     int *ret, struct net_device *orig_dev)
5129 {
5130 	if (nf_hook_ingress_active(skb)) {
5131 		int ingress_retval;
5132 
5133 		if (*pt_prev) {
5134 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5135 			*pt_prev = NULL;
5136 		}
5137 
5138 		rcu_read_lock();
5139 		ingress_retval = nf_hook_ingress(skb);
5140 		rcu_read_unlock();
5141 		return ingress_retval;
5142 	}
5143 	return 0;
5144 }
5145 
5146 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5147 				    struct packet_type **ppt_prev)
5148 {
5149 	struct packet_type *ptype, *pt_prev;
5150 	rx_handler_func_t *rx_handler;
5151 	struct sk_buff *skb = *pskb;
5152 	struct net_device *orig_dev;
5153 	bool deliver_exact = false;
5154 	int ret = NET_RX_DROP;
5155 	__be16 type;
5156 
5157 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5158 
5159 	trace_netif_receive_skb(skb);
5160 
5161 	orig_dev = skb->dev;
5162 
5163 	skb_reset_network_header(skb);
5164 	if (!skb_transport_header_was_set(skb))
5165 		skb_reset_transport_header(skb);
5166 	skb_reset_mac_len(skb);
5167 
5168 	pt_prev = NULL;
5169 
5170 another_round:
5171 	skb->skb_iif = skb->dev->ifindex;
5172 
5173 	__this_cpu_inc(softnet_data.processed);
5174 
5175 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5176 		int ret2;
5177 
5178 		migrate_disable();
5179 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5180 		migrate_enable();
5181 
5182 		if (ret2 != XDP_PASS) {
5183 			ret = NET_RX_DROP;
5184 			goto out;
5185 		}
5186 	}
5187 
5188 	if (eth_type_vlan(skb->protocol)) {
5189 		skb = skb_vlan_untag(skb);
5190 		if (unlikely(!skb))
5191 			goto out;
5192 	}
5193 
5194 	if (skb_skip_tc_classify(skb))
5195 		goto skip_classify;
5196 
5197 	if (pfmemalloc)
5198 		goto skip_taps;
5199 
5200 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5201 		if (pt_prev)
5202 			ret = deliver_skb(skb, pt_prev, orig_dev);
5203 		pt_prev = ptype;
5204 	}
5205 
5206 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5207 		if (pt_prev)
5208 			ret = deliver_skb(skb, pt_prev, orig_dev);
5209 		pt_prev = ptype;
5210 	}
5211 
5212 skip_taps:
5213 #ifdef CONFIG_NET_INGRESS
5214 	if (static_branch_unlikely(&ingress_needed_key)) {
5215 		bool another = false;
5216 
5217 		nf_skip_egress(skb, true);
5218 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5219 					 &another);
5220 		if (another)
5221 			goto another_round;
5222 		if (!skb)
5223 			goto out;
5224 
5225 		nf_skip_egress(skb, false);
5226 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5227 			goto out;
5228 	}
5229 #endif
5230 	skb_reset_redirect(skb);
5231 skip_classify:
5232 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5233 		goto drop;
5234 
5235 	if (skb_vlan_tag_present(skb)) {
5236 		if (pt_prev) {
5237 			ret = deliver_skb(skb, pt_prev, orig_dev);
5238 			pt_prev = NULL;
5239 		}
5240 		if (vlan_do_receive(&skb))
5241 			goto another_round;
5242 		else if (unlikely(!skb))
5243 			goto out;
5244 	}
5245 
5246 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5247 	if (rx_handler) {
5248 		if (pt_prev) {
5249 			ret = deliver_skb(skb, pt_prev, orig_dev);
5250 			pt_prev = NULL;
5251 		}
5252 		switch (rx_handler(&skb)) {
5253 		case RX_HANDLER_CONSUMED:
5254 			ret = NET_RX_SUCCESS;
5255 			goto out;
5256 		case RX_HANDLER_ANOTHER:
5257 			goto another_round;
5258 		case RX_HANDLER_EXACT:
5259 			deliver_exact = true;
5260 			break;
5261 		case RX_HANDLER_PASS:
5262 			break;
5263 		default:
5264 			BUG();
5265 		}
5266 	}
5267 
5268 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5269 check_vlan_id:
5270 		if (skb_vlan_tag_get_id(skb)) {
5271 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5272 			 * find vlan device.
5273 			 */
5274 			skb->pkt_type = PACKET_OTHERHOST;
5275 		} else if (eth_type_vlan(skb->protocol)) {
5276 			/* Outer header is 802.1P with vlan 0, inner header is
5277 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5278 			 * not find vlan dev for vlan id 0.
5279 			 */
5280 			__vlan_hwaccel_clear_tag(skb);
5281 			skb = skb_vlan_untag(skb);
5282 			if (unlikely(!skb))
5283 				goto out;
5284 			if (vlan_do_receive(&skb))
5285 				/* After stripping off 802.1P header with vlan 0
5286 				 * vlan dev is found for inner header.
5287 				 */
5288 				goto another_round;
5289 			else if (unlikely(!skb))
5290 				goto out;
5291 			else
5292 				/* We have stripped outer 802.1P vlan 0 header.
5293 				 * But could not find vlan dev.
5294 				 * check again for vlan id to set OTHERHOST.
5295 				 */
5296 				goto check_vlan_id;
5297 		}
5298 		/* Note: we might in the future use prio bits
5299 		 * and set skb->priority like in vlan_do_receive()
5300 		 * For the time being, just ignore Priority Code Point
5301 		 */
5302 		__vlan_hwaccel_clear_tag(skb);
5303 	}
5304 
5305 	type = skb->protocol;
5306 
5307 	/* deliver only exact match when indicated */
5308 	if (likely(!deliver_exact)) {
5309 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5310 				       &ptype_base[ntohs(type) &
5311 						   PTYPE_HASH_MASK]);
5312 	}
5313 
5314 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5315 			       &orig_dev->ptype_specific);
5316 
5317 	if (unlikely(skb->dev != orig_dev)) {
5318 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5319 				       &skb->dev->ptype_specific);
5320 	}
5321 
5322 	if (pt_prev) {
5323 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5324 			goto drop;
5325 		*ppt_prev = pt_prev;
5326 	} else {
5327 drop:
5328 		if (!deliver_exact)
5329 			atomic_long_inc(&skb->dev->rx_dropped);
5330 		else
5331 			atomic_long_inc(&skb->dev->rx_nohandler);
5332 		kfree_skb(skb);
5333 		/* Jamal, now you will not able to escape explaining
5334 		 * me how you were going to use this. :-)
5335 		 */
5336 		ret = NET_RX_DROP;
5337 	}
5338 
5339 out:
5340 	/* The invariant here is that if *ppt_prev is not NULL
5341 	 * then skb should also be non-NULL.
5342 	 *
5343 	 * Apparently *ppt_prev assignment above holds this invariant due to
5344 	 * skb dereferencing near it.
5345 	 */
5346 	*pskb = skb;
5347 	return ret;
5348 }
5349 
5350 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5351 {
5352 	struct net_device *orig_dev = skb->dev;
5353 	struct packet_type *pt_prev = NULL;
5354 	int ret;
5355 
5356 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5357 	if (pt_prev)
5358 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5359 					 skb->dev, pt_prev, orig_dev);
5360 	return ret;
5361 }
5362 
5363 /**
5364  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5365  *	@skb: buffer to process
5366  *
5367  *	More direct receive version of netif_receive_skb().  It should
5368  *	only be used by callers that have a need to skip RPS and Generic XDP.
5369  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5370  *
5371  *	This function may only be called from softirq context and interrupts
5372  *	should be enabled.
5373  *
5374  *	Return values (usually ignored):
5375  *	NET_RX_SUCCESS: no congestion
5376  *	NET_RX_DROP: packet was dropped
5377  */
5378 int netif_receive_skb_core(struct sk_buff *skb)
5379 {
5380 	int ret;
5381 
5382 	rcu_read_lock();
5383 	ret = __netif_receive_skb_one_core(skb, false);
5384 	rcu_read_unlock();
5385 
5386 	return ret;
5387 }
5388 EXPORT_SYMBOL(netif_receive_skb_core);
5389 
5390 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5391 						  struct packet_type *pt_prev,
5392 						  struct net_device *orig_dev)
5393 {
5394 	struct sk_buff *skb, *next;
5395 
5396 	if (!pt_prev)
5397 		return;
5398 	if (list_empty(head))
5399 		return;
5400 	if (pt_prev->list_func != NULL)
5401 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5402 				   ip_list_rcv, head, pt_prev, orig_dev);
5403 	else
5404 		list_for_each_entry_safe(skb, next, head, list) {
5405 			skb_list_del_init(skb);
5406 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5407 		}
5408 }
5409 
5410 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5411 {
5412 	/* Fast-path assumptions:
5413 	 * - There is no RX handler.
5414 	 * - Only one packet_type matches.
5415 	 * If either of these fails, we will end up doing some per-packet
5416 	 * processing in-line, then handling the 'last ptype' for the whole
5417 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5418 	 * because the 'last ptype' must be constant across the sublist, and all
5419 	 * other ptypes are handled per-packet.
5420 	 */
5421 	/* Current (common) ptype of sublist */
5422 	struct packet_type *pt_curr = NULL;
5423 	/* Current (common) orig_dev of sublist */
5424 	struct net_device *od_curr = NULL;
5425 	struct list_head sublist;
5426 	struct sk_buff *skb, *next;
5427 
5428 	INIT_LIST_HEAD(&sublist);
5429 	list_for_each_entry_safe(skb, next, head, list) {
5430 		struct net_device *orig_dev = skb->dev;
5431 		struct packet_type *pt_prev = NULL;
5432 
5433 		skb_list_del_init(skb);
5434 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5435 		if (!pt_prev)
5436 			continue;
5437 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5438 			/* dispatch old sublist */
5439 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5440 			/* start new sublist */
5441 			INIT_LIST_HEAD(&sublist);
5442 			pt_curr = pt_prev;
5443 			od_curr = orig_dev;
5444 		}
5445 		list_add_tail(&skb->list, &sublist);
5446 	}
5447 
5448 	/* dispatch final sublist */
5449 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5450 }
5451 
5452 static int __netif_receive_skb(struct sk_buff *skb)
5453 {
5454 	int ret;
5455 
5456 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5457 		unsigned int noreclaim_flag;
5458 
5459 		/*
5460 		 * PFMEMALLOC skbs are special, they should
5461 		 * - be delivered to SOCK_MEMALLOC sockets only
5462 		 * - stay away from userspace
5463 		 * - have bounded memory usage
5464 		 *
5465 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5466 		 * context down to all allocation sites.
5467 		 */
5468 		noreclaim_flag = memalloc_noreclaim_save();
5469 		ret = __netif_receive_skb_one_core(skb, true);
5470 		memalloc_noreclaim_restore(noreclaim_flag);
5471 	} else
5472 		ret = __netif_receive_skb_one_core(skb, false);
5473 
5474 	return ret;
5475 }
5476 
5477 static void __netif_receive_skb_list(struct list_head *head)
5478 {
5479 	unsigned long noreclaim_flag = 0;
5480 	struct sk_buff *skb, *next;
5481 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5482 
5483 	list_for_each_entry_safe(skb, next, head, list) {
5484 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5485 			struct list_head sublist;
5486 
5487 			/* Handle the previous sublist */
5488 			list_cut_before(&sublist, head, &skb->list);
5489 			if (!list_empty(&sublist))
5490 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5491 			pfmemalloc = !pfmemalloc;
5492 			/* See comments in __netif_receive_skb */
5493 			if (pfmemalloc)
5494 				noreclaim_flag = memalloc_noreclaim_save();
5495 			else
5496 				memalloc_noreclaim_restore(noreclaim_flag);
5497 		}
5498 	}
5499 	/* Handle the remaining sublist */
5500 	if (!list_empty(head))
5501 		__netif_receive_skb_list_core(head, pfmemalloc);
5502 	/* Restore pflags */
5503 	if (pfmemalloc)
5504 		memalloc_noreclaim_restore(noreclaim_flag);
5505 }
5506 
5507 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5508 {
5509 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5510 	struct bpf_prog *new = xdp->prog;
5511 	int ret = 0;
5512 
5513 	switch (xdp->command) {
5514 	case XDP_SETUP_PROG:
5515 		rcu_assign_pointer(dev->xdp_prog, new);
5516 		if (old)
5517 			bpf_prog_put(old);
5518 
5519 		if (old && !new) {
5520 			static_branch_dec(&generic_xdp_needed_key);
5521 		} else if (new && !old) {
5522 			static_branch_inc(&generic_xdp_needed_key);
5523 			dev_disable_lro(dev);
5524 			dev_disable_gro_hw(dev);
5525 		}
5526 		break;
5527 
5528 	default:
5529 		ret = -EINVAL;
5530 		break;
5531 	}
5532 
5533 	return ret;
5534 }
5535 
5536 static int netif_receive_skb_internal(struct sk_buff *skb)
5537 {
5538 	int ret;
5539 
5540 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5541 
5542 	if (skb_defer_rx_timestamp(skb))
5543 		return NET_RX_SUCCESS;
5544 
5545 	rcu_read_lock();
5546 #ifdef CONFIG_RPS
5547 	if (static_branch_unlikely(&rps_needed)) {
5548 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5549 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5550 
5551 		if (cpu >= 0) {
5552 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5553 			rcu_read_unlock();
5554 			return ret;
5555 		}
5556 	}
5557 #endif
5558 	ret = __netif_receive_skb(skb);
5559 	rcu_read_unlock();
5560 	return ret;
5561 }
5562 
5563 void netif_receive_skb_list_internal(struct list_head *head)
5564 {
5565 	struct sk_buff *skb, *next;
5566 	struct list_head sublist;
5567 
5568 	INIT_LIST_HEAD(&sublist);
5569 	list_for_each_entry_safe(skb, next, head, list) {
5570 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5571 		skb_list_del_init(skb);
5572 		if (!skb_defer_rx_timestamp(skb))
5573 			list_add_tail(&skb->list, &sublist);
5574 	}
5575 	list_splice_init(&sublist, head);
5576 
5577 	rcu_read_lock();
5578 #ifdef CONFIG_RPS
5579 	if (static_branch_unlikely(&rps_needed)) {
5580 		list_for_each_entry_safe(skb, next, head, list) {
5581 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5582 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5583 
5584 			if (cpu >= 0) {
5585 				/* Will be handled, remove from list */
5586 				skb_list_del_init(skb);
5587 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5588 			}
5589 		}
5590 	}
5591 #endif
5592 	__netif_receive_skb_list(head);
5593 	rcu_read_unlock();
5594 }
5595 
5596 /**
5597  *	netif_receive_skb - process receive buffer from network
5598  *	@skb: buffer to process
5599  *
5600  *	netif_receive_skb() is the main receive data processing function.
5601  *	It always succeeds. The buffer may be dropped during processing
5602  *	for congestion control or by the protocol layers.
5603  *
5604  *	This function may only be called from softirq context and interrupts
5605  *	should be enabled.
5606  *
5607  *	Return values (usually ignored):
5608  *	NET_RX_SUCCESS: no congestion
5609  *	NET_RX_DROP: packet was dropped
5610  */
5611 int netif_receive_skb(struct sk_buff *skb)
5612 {
5613 	int ret;
5614 
5615 	trace_netif_receive_skb_entry(skb);
5616 
5617 	ret = netif_receive_skb_internal(skb);
5618 	trace_netif_receive_skb_exit(ret);
5619 
5620 	return ret;
5621 }
5622 EXPORT_SYMBOL(netif_receive_skb);
5623 
5624 /**
5625  *	netif_receive_skb_list - process many receive buffers from network
5626  *	@head: list of skbs to process.
5627  *
5628  *	Since return value of netif_receive_skb() is normally ignored, and
5629  *	wouldn't be meaningful for a list, this function returns void.
5630  *
5631  *	This function may only be called from softirq context and interrupts
5632  *	should be enabled.
5633  */
5634 void netif_receive_skb_list(struct list_head *head)
5635 {
5636 	struct sk_buff *skb;
5637 
5638 	if (list_empty(head))
5639 		return;
5640 	if (trace_netif_receive_skb_list_entry_enabled()) {
5641 		list_for_each_entry(skb, head, list)
5642 			trace_netif_receive_skb_list_entry(skb);
5643 	}
5644 	netif_receive_skb_list_internal(head);
5645 	trace_netif_receive_skb_list_exit(0);
5646 }
5647 EXPORT_SYMBOL(netif_receive_skb_list);
5648 
5649 static DEFINE_PER_CPU(struct work_struct, flush_works);
5650 
5651 /* Network device is going away, flush any packets still pending */
5652 static void flush_backlog(struct work_struct *work)
5653 {
5654 	struct sk_buff *skb, *tmp;
5655 	struct softnet_data *sd;
5656 
5657 	local_bh_disable();
5658 	sd = this_cpu_ptr(&softnet_data);
5659 
5660 	rps_lock_irq_disable(sd);
5661 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5662 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5663 			__skb_unlink(skb, &sd->input_pkt_queue);
5664 			dev_kfree_skb_irq(skb);
5665 			input_queue_head_incr(sd);
5666 		}
5667 	}
5668 	rps_unlock_irq_enable(sd);
5669 
5670 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5671 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5672 			__skb_unlink(skb, &sd->process_queue);
5673 			kfree_skb(skb);
5674 			input_queue_head_incr(sd);
5675 		}
5676 	}
5677 	local_bh_enable();
5678 }
5679 
5680 static bool flush_required(int cpu)
5681 {
5682 #if IS_ENABLED(CONFIG_RPS)
5683 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5684 	bool do_flush;
5685 
5686 	rps_lock_irq_disable(sd);
5687 
5688 	/* as insertion into process_queue happens with the rps lock held,
5689 	 * process_queue access may race only with dequeue
5690 	 */
5691 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5692 		   !skb_queue_empty_lockless(&sd->process_queue);
5693 	rps_unlock_irq_enable(sd);
5694 
5695 	return do_flush;
5696 #endif
5697 	/* without RPS we can't safely check input_pkt_queue: during a
5698 	 * concurrent remote skb_queue_splice() we can detect as empty both
5699 	 * input_pkt_queue and process_queue even if the latter could end-up
5700 	 * containing a lot of packets.
5701 	 */
5702 	return true;
5703 }
5704 
5705 static void flush_all_backlogs(void)
5706 {
5707 	static cpumask_t flush_cpus;
5708 	unsigned int cpu;
5709 
5710 	/* since we are under rtnl lock protection we can use static data
5711 	 * for the cpumask and avoid allocating on stack the possibly
5712 	 * large mask
5713 	 */
5714 	ASSERT_RTNL();
5715 
5716 	cpus_read_lock();
5717 
5718 	cpumask_clear(&flush_cpus);
5719 	for_each_online_cpu(cpu) {
5720 		if (flush_required(cpu)) {
5721 			queue_work_on(cpu, system_highpri_wq,
5722 				      per_cpu_ptr(&flush_works, cpu));
5723 			cpumask_set_cpu(cpu, &flush_cpus);
5724 		}
5725 	}
5726 
5727 	/* we can have in flight packet[s] on the cpus we are not flushing,
5728 	 * synchronize_net() in unregister_netdevice_many() will take care of
5729 	 * them
5730 	 */
5731 	for_each_cpu(cpu, &flush_cpus)
5732 		flush_work(per_cpu_ptr(&flush_works, cpu));
5733 
5734 	cpus_read_unlock();
5735 }
5736 
5737 static void net_rps_send_ipi(struct softnet_data *remsd)
5738 {
5739 #ifdef CONFIG_RPS
5740 	while (remsd) {
5741 		struct softnet_data *next = remsd->rps_ipi_next;
5742 
5743 		if (cpu_online(remsd->cpu))
5744 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5745 		remsd = next;
5746 	}
5747 #endif
5748 }
5749 
5750 /*
5751  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5752  * Note: called with local irq disabled, but exits with local irq enabled.
5753  */
5754 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5755 {
5756 #ifdef CONFIG_RPS
5757 	struct softnet_data *remsd = sd->rps_ipi_list;
5758 
5759 	if (remsd) {
5760 		sd->rps_ipi_list = NULL;
5761 
5762 		local_irq_enable();
5763 
5764 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5765 		net_rps_send_ipi(remsd);
5766 	} else
5767 #endif
5768 		local_irq_enable();
5769 }
5770 
5771 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5772 {
5773 #ifdef CONFIG_RPS
5774 	return sd->rps_ipi_list != NULL;
5775 #else
5776 	return false;
5777 #endif
5778 }
5779 
5780 static int process_backlog(struct napi_struct *napi, int quota)
5781 {
5782 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5783 	bool again = true;
5784 	int work = 0;
5785 
5786 	/* Check if we have pending ipi, its better to send them now,
5787 	 * not waiting net_rx_action() end.
5788 	 */
5789 	if (sd_has_rps_ipi_waiting(sd)) {
5790 		local_irq_disable();
5791 		net_rps_action_and_irq_enable(sd);
5792 	}
5793 
5794 	napi->weight = dev_rx_weight;
5795 	while (again) {
5796 		struct sk_buff *skb;
5797 
5798 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5799 			rcu_read_lock();
5800 			__netif_receive_skb(skb);
5801 			rcu_read_unlock();
5802 			input_queue_head_incr(sd);
5803 			if (++work >= quota)
5804 				return work;
5805 
5806 		}
5807 
5808 		rps_lock_irq_disable(sd);
5809 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5810 			/*
5811 			 * Inline a custom version of __napi_complete().
5812 			 * only current cpu owns and manipulates this napi,
5813 			 * and NAPI_STATE_SCHED is the only possible flag set
5814 			 * on backlog.
5815 			 * We can use a plain write instead of clear_bit(),
5816 			 * and we dont need an smp_mb() memory barrier.
5817 			 */
5818 			napi->state = 0;
5819 			again = false;
5820 		} else {
5821 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5822 						   &sd->process_queue);
5823 		}
5824 		rps_unlock_irq_enable(sd);
5825 	}
5826 
5827 	return work;
5828 }
5829 
5830 /**
5831  * __napi_schedule - schedule for receive
5832  * @n: entry to schedule
5833  *
5834  * The entry's receive function will be scheduled to run.
5835  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5836  */
5837 void __napi_schedule(struct napi_struct *n)
5838 {
5839 	unsigned long flags;
5840 
5841 	local_irq_save(flags);
5842 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5843 	local_irq_restore(flags);
5844 }
5845 EXPORT_SYMBOL(__napi_schedule);
5846 
5847 /**
5848  *	napi_schedule_prep - check if napi can be scheduled
5849  *	@n: napi context
5850  *
5851  * Test if NAPI routine is already running, and if not mark
5852  * it as running.  This is used as a condition variable to
5853  * insure only one NAPI poll instance runs.  We also make
5854  * sure there is no pending NAPI disable.
5855  */
5856 bool napi_schedule_prep(struct napi_struct *n)
5857 {
5858 	unsigned long val, new;
5859 
5860 	do {
5861 		val = READ_ONCE(n->state);
5862 		if (unlikely(val & NAPIF_STATE_DISABLE))
5863 			return false;
5864 		new = val | NAPIF_STATE_SCHED;
5865 
5866 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5867 		 * This was suggested by Alexander Duyck, as compiler
5868 		 * emits better code than :
5869 		 * if (val & NAPIF_STATE_SCHED)
5870 		 *     new |= NAPIF_STATE_MISSED;
5871 		 */
5872 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5873 						   NAPIF_STATE_MISSED;
5874 	} while (cmpxchg(&n->state, val, new) != val);
5875 
5876 	return !(val & NAPIF_STATE_SCHED);
5877 }
5878 EXPORT_SYMBOL(napi_schedule_prep);
5879 
5880 /**
5881  * __napi_schedule_irqoff - schedule for receive
5882  * @n: entry to schedule
5883  *
5884  * Variant of __napi_schedule() assuming hard irqs are masked.
5885  *
5886  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5887  * because the interrupt disabled assumption might not be true
5888  * due to force-threaded interrupts and spinlock substitution.
5889  */
5890 void __napi_schedule_irqoff(struct napi_struct *n)
5891 {
5892 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5893 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5894 	else
5895 		__napi_schedule(n);
5896 }
5897 EXPORT_SYMBOL(__napi_schedule_irqoff);
5898 
5899 bool napi_complete_done(struct napi_struct *n, int work_done)
5900 {
5901 	unsigned long flags, val, new, timeout = 0;
5902 	bool ret = true;
5903 
5904 	/*
5905 	 * 1) Don't let napi dequeue from the cpu poll list
5906 	 *    just in case its running on a different cpu.
5907 	 * 2) If we are busy polling, do nothing here, we have
5908 	 *    the guarantee we will be called later.
5909 	 */
5910 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5911 				 NAPIF_STATE_IN_BUSY_POLL)))
5912 		return false;
5913 
5914 	if (work_done) {
5915 		if (n->gro_bitmask)
5916 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5917 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5918 	}
5919 	if (n->defer_hard_irqs_count > 0) {
5920 		n->defer_hard_irqs_count--;
5921 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5922 		if (timeout)
5923 			ret = false;
5924 	}
5925 	if (n->gro_bitmask) {
5926 		/* When the NAPI instance uses a timeout and keeps postponing
5927 		 * it, we need to bound somehow the time packets are kept in
5928 		 * the GRO layer
5929 		 */
5930 		napi_gro_flush(n, !!timeout);
5931 	}
5932 
5933 	gro_normal_list(n);
5934 
5935 	if (unlikely(!list_empty(&n->poll_list))) {
5936 		/* If n->poll_list is not empty, we need to mask irqs */
5937 		local_irq_save(flags);
5938 		list_del_init(&n->poll_list);
5939 		local_irq_restore(flags);
5940 	}
5941 
5942 	do {
5943 		val = READ_ONCE(n->state);
5944 
5945 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5946 
5947 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5948 			      NAPIF_STATE_SCHED_THREADED |
5949 			      NAPIF_STATE_PREFER_BUSY_POLL);
5950 
5951 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5952 		 * because we will call napi->poll() one more time.
5953 		 * This C code was suggested by Alexander Duyck to help gcc.
5954 		 */
5955 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5956 						    NAPIF_STATE_SCHED;
5957 	} while (cmpxchg(&n->state, val, new) != val);
5958 
5959 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5960 		__napi_schedule(n);
5961 		return false;
5962 	}
5963 
5964 	if (timeout)
5965 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
5966 			      HRTIMER_MODE_REL_PINNED);
5967 	return ret;
5968 }
5969 EXPORT_SYMBOL(napi_complete_done);
5970 
5971 /* must be called under rcu_read_lock(), as we dont take a reference */
5972 static struct napi_struct *napi_by_id(unsigned int napi_id)
5973 {
5974 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5975 	struct napi_struct *napi;
5976 
5977 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5978 		if (napi->napi_id == napi_id)
5979 			return napi;
5980 
5981 	return NULL;
5982 }
5983 
5984 #if defined(CONFIG_NET_RX_BUSY_POLL)
5985 
5986 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
5987 {
5988 	if (!skip_schedule) {
5989 		gro_normal_list(napi);
5990 		__napi_schedule(napi);
5991 		return;
5992 	}
5993 
5994 	if (napi->gro_bitmask) {
5995 		/* flush too old packets
5996 		 * If HZ < 1000, flush all packets.
5997 		 */
5998 		napi_gro_flush(napi, HZ >= 1000);
5999 	}
6000 
6001 	gro_normal_list(napi);
6002 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6003 }
6004 
6005 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6006 			   u16 budget)
6007 {
6008 	bool skip_schedule = false;
6009 	unsigned long timeout;
6010 	int rc;
6011 
6012 	/* Busy polling means there is a high chance device driver hard irq
6013 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6014 	 * set in napi_schedule_prep().
6015 	 * Since we are about to call napi->poll() once more, we can safely
6016 	 * clear NAPI_STATE_MISSED.
6017 	 *
6018 	 * Note: x86 could use a single "lock and ..." instruction
6019 	 * to perform these two clear_bit()
6020 	 */
6021 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6022 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6023 
6024 	local_bh_disable();
6025 
6026 	if (prefer_busy_poll) {
6027 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6028 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6029 		if (napi->defer_hard_irqs_count && timeout) {
6030 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6031 			skip_schedule = true;
6032 		}
6033 	}
6034 
6035 	/* All we really want here is to re-enable device interrupts.
6036 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6037 	 */
6038 	rc = napi->poll(napi, budget);
6039 	/* We can't gro_normal_list() here, because napi->poll() might have
6040 	 * rearmed the napi (napi_complete_done()) in which case it could
6041 	 * already be running on another CPU.
6042 	 */
6043 	trace_napi_poll(napi, rc, budget);
6044 	netpoll_poll_unlock(have_poll_lock);
6045 	if (rc == budget)
6046 		__busy_poll_stop(napi, skip_schedule);
6047 	local_bh_enable();
6048 }
6049 
6050 void napi_busy_loop(unsigned int napi_id,
6051 		    bool (*loop_end)(void *, unsigned long),
6052 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6053 {
6054 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6055 	int (*napi_poll)(struct napi_struct *napi, int budget);
6056 	void *have_poll_lock = NULL;
6057 	struct napi_struct *napi;
6058 
6059 restart:
6060 	napi_poll = NULL;
6061 
6062 	rcu_read_lock();
6063 
6064 	napi = napi_by_id(napi_id);
6065 	if (!napi)
6066 		goto out;
6067 
6068 	preempt_disable();
6069 	for (;;) {
6070 		int work = 0;
6071 
6072 		local_bh_disable();
6073 		if (!napi_poll) {
6074 			unsigned long val = READ_ONCE(napi->state);
6075 
6076 			/* If multiple threads are competing for this napi,
6077 			 * we avoid dirtying napi->state as much as we can.
6078 			 */
6079 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6080 				   NAPIF_STATE_IN_BUSY_POLL)) {
6081 				if (prefer_busy_poll)
6082 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6083 				goto count;
6084 			}
6085 			if (cmpxchg(&napi->state, val,
6086 				    val | NAPIF_STATE_IN_BUSY_POLL |
6087 					  NAPIF_STATE_SCHED) != val) {
6088 				if (prefer_busy_poll)
6089 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6090 				goto count;
6091 			}
6092 			have_poll_lock = netpoll_poll_lock(napi);
6093 			napi_poll = napi->poll;
6094 		}
6095 		work = napi_poll(napi, budget);
6096 		trace_napi_poll(napi, work, budget);
6097 		gro_normal_list(napi);
6098 count:
6099 		if (work > 0)
6100 			__NET_ADD_STATS(dev_net(napi->dev),
6101 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6102 		local_bh_enable();
6103 
6104 		if (!loop_end || loop_end(loop_end_arg, start_time))
6105 			break;
6106 
6107 		if (unlikely(need_resched())) {
6108 			if (napi_poll)
6109 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6110 			preempt_enable();
6111 			rcu_read_unlock();
6112 			cond_resched();
6113 			if (loop_end(loop_end_arg, start_time))
6114 				return;
6115 			goto restart;
6116 		}
6117 		cpu_relax();
6118 	}
6119 	if (napi_poll)
6120 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6121 	preempt_enable();
6122 out:
6123 	rcu_read_unlock();
6124 }
6125 EXPORT_SYMBOL(napi_busy_loop);
6126 
6127 #endif /* CONFIG_NET_RX_BUSY_POLL */
6128 
6129 static void napi_hash_add(struct napi_struct *napi)
6130 {
6131 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6132 		return;
6133 
6134 	spin_lock(&napi_hash_lock);
6135 
6136 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6137 	do {
6138 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6139 			napi_gen_id = MIN_NAPI_ID;
6140 	} while (napi_by_id(napi_gen_id));
6141 	napi->napi_id = napi_gen_id;
6142 
6143 	hlist_add_head_rcu(&napi->napi_hash_node,
6144 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6145 
6146 	spin_unlock(&napi_hash_lock);
6147 }
6148 
6149 /* Warning : caller is responsible to make sure rcu grace period
6150  * is respected before freeing memory containing @napi
6151  */
6152 static void napi_hash_del(struct napi_struct *napi)
6153 {
6154 	spin_lock(&napi_hash_lock);
6155 
6156 	hlist_del_init_rcu(&napi->napi_hash_node);
6157 
6158 	spin_unlock(&napi_hash_lock);
6159 }
6160 
6161 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6162 {
6163 	struct napi_struct *napi;
6164 
6165 	napi = container_of(timer, struct napi_struct, timer);
6166 
6167 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6168 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6169 	 */
6170 	if (!napi_disable_pending(napi) &&
6171 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6172 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6173 		__napi_schedule_irqoff(napi);
6174 	}
6175 
6176 	return HRTIMER_NORESTART;
6177 }
6178 
6179 static void init_gro_hash(struct napi_struct *napi)
6180 {
6181 	int i;
6182 
6183 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6184 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6185 		napi->gro_hash[i].count = 0;
6186 	}
6187 	napi->gro_bitmask = 0;
6188 }
6189 
6190 int dev_set_threaded(struct net_device *dev, bool threaded)
6191 {
6192 	struct napi_struct *napi;
6193 	int err = 0;
6194 
6195 	if (dev->threaded == threaded)
6196 		return 0;
6197 
6198 	if (threaded) {
6199 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6200 			if (!napi->thread) {
6201 				err = napi_kthread_create(napi);
6202 				if (err) {
6203 					threaded = false;
6204 					break;
6205 				}
6206 			}
6207 		}
6208 	}
6209 
6210 	dev->threaded = threaded;
6211 
6212 	/* Make sure kthread is created before THREADED bit
6213 	 * is set.
6214 	 */
6215 	smp_mb__before_atomic();
6216 
6217 	/* Setting/unsetting threaded mode on a napi might not immediately
6218 	 * take effect, if the current napi instance is actively being
6219 	 * polled. In this case, the switch between threaded mode and
6220 	 * softirq mode will happen in the next round of napi_schedule().
6221 	 * This should not cause hiccups/stalls to the live traffic.
6222 	 */
6223 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6224 		if (threaded)
6225 			set_bit(NAPI_STATE_THREADED, &napi->state);
6226 		else
6227 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6228 	}
6229 
6230 	return err;
6231 }
6232 EXPORT_SYMBOL(dev_set_threaded);
6233 
6234 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6235 		    int (*poll)(struct napi_struct *, int), int weight)
6236 {
6237 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6238 		return;
6239 
6240 	INIT_LIST_HEAD(&napi->poll_list);
6241 	INIT_HLIST_NODE(&napi->napi_hash_node);
6242 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6243 	napi->timer.function = napi_watchdog;
6244 	init_gro_hash(napi);
6245 	napi->skb = NULL;
6246 	INIT_LIST_HEAD(&napi->rx_list);
6247 	napi->rx_count = 0;
6248 	napi->poll = poll;
6249 	if (weight > NAPI_POLL_WEIGHT)
6250 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6251 				weight);
6252 	napi->weight = weight;
6253 	napi->dev = dev;
6254 #ifdef CONFIG_NETPOLL
6255 	napi->poll_owner = -1;
6256 #endif
6257 	set_bit(NAPI_STATE_SCHED, &napi->state);
6258 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6259 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6260 	napi_hash_add(napi);
6261 	/* Create kthread for this napi if dev->threaded is set.
6262 	 * Clear dev->threaded if kthread creation failed so that
6263 	 * threaded mode will not be enabled in napi_enable().
6264 	 */
6265 	if (dev->threaded && napi_kthread_create(napi))
6266 		dev->threaded = 0;
6267 }
6268 EXPORT_SYMBOL(netif_napi_add);
6269 
6270 void napi_disable(struct napi_struct *n)
6271 {
6272 	unsigned long val, new;
6273 
6274 	might_sleep();
6275 	set_bit(NAPI_STATE_DISABLE, &n->state);
6276 
6277 	for ( ; ; ) {
6278 		val = READ_ONCE(n->state);
6279 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6280 			usleep_range(20, 200);
6281 			continue;
6282 		}
6283 
6284 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6285 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6286 
6287 		if (cmpxchg(&n->state, val, new) == val)
6288 			break;
6289 	}
6290 
6291 	hrtimer_cancel(&n->timer);
6292 
6293 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6294 }
6295 EXPORT_SYMBOL(napi_disable);
6296 
6297 /**
6298  *	napi_enable - enable NAPI scheduling
6299  *	@n: NAPI context
6300  *
6301  * Resume NAPI from being scheduled on this context.
6302  * Must be paired with napi_disable.
6303  */
6304 void napi_enable(struct napi_struct *n)
6305 {
6306 	unsigned long val, new;
6307 
6308 	do {
6309 		val = READ_ONCE(n->state);
6310 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6311 
6312 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6313 		if (n->dev->threaded && n->thread)
6314 			new |= NAPIF_STATE_THREADED;
6315 	} while (cmpxchg(&n->state, val, new) != val);
6316 }
6317 EXPORT_SYMBOL(napi_enable);
6318 
6319 static void flush_gro_hash(struct napi_struct *napi)
6320 {
6321 	int i;
6322 
6323 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6324 		struct sk_buff *skb, *n;
6325 
6326 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6327 			kfree_skb(skb);
6328 		napi->gro_hash[i].count = 0;
6329 	}
6330 }
6331 
6332 /* Must be called in process context */
6333 void __netif_napi_del(struct napi_struct *napi)
6334 {
6335 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6336 		return;
6337 
6338 	napi_hash_del(napi);
6339 	list_del_rcu(&napi->dev_list);
6340 	napi_free_frags(napi);
6341 
6342 	flush_gro_hash(napi);
6343 	napi->gro_bitmask = 0;
6344 
6345 	if (napi->thread) {
6346 		kthread_stop(napi->thread);
6347 		napi->thread = NULL;
6348 	}
6349 }
6350 EXPORT_SYMBOL(__netif_napi_del);
6351 
6352 static int __napi_poll(struct napi_struct *n, bool *repoll)
6353 {
6354 	int work, weight;
6355 
6356 	weight = n->weight;
6357 
6358 	/* This NAPI_STATE_SCHED test is for avoiding a race
6359 	 * with netpoll's poll_napi().  Only the entity which
6360 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6361 	 * actually make the ->poll() call.  Therefore we avoid
6362 	 * accidentally calling ->poll() when NAPI is not scheduled.
6363 	 */
6364 	work = 0;
6365 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6366 		work = n->poll(n, weight);
6367 		trace_napi_poll(n, work, weight);
6368 	}
6369 
6370 	if (unlikely(work > weight))
6371 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6372 				n->poll, work, weight);
6373 
6374 	if (likely(work < weight))
6375 		return work;
6376 
6377 	/* Drivers must not modify the NAPI state if they
6378 	 * consume the entire weight.  In such cases this code
6379 	 * still "owns" the NAPI instance and therefore can
6380 	 * move the instance around on the list at-will.
6381 	 */
6382 	if (unlikely(napi_disable_pending(n))) {
6383 		napi_complete(n);
6384 		return work;
6385 	}
6386 
6387 	/* The NAPI context has more processing work, but busy-polling
6388 	 * is preferred. Exit early.
6389 	 */
6390 	if (napi_prefer_busy_poll(n)) {
6391 		if (napi_complete_done(n, work)) {
6392 			/* If timeout is not set, we need to make sure
6393 			 * that the NAPI is re-scheduled.
6394 			 */
6395 			napi_schedule(n);
6396 		}
6397 		return work;
6398 	}
6399 
6400 	if (n->gro_bitmask) {
6401 		/* flush too old packets
6402 		 * If HZ < 1000, flush all packets.
6403 		 */
6404 		napi_gro_flush(n, HZ >= 1000);
6405 	}
6406 
6407 	gro_normal_list(n);
6408 
6409 	/* Some drivers may have called napi_schedule
6410 	 * prior to exhausting their budget.
6411 	 */
6412 	if (unlikely(!list_empty(&n->poll_list))) {
6413 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6414 			     n->dev ? n->dev->name : "backlog");
6415 		return work;
6416 	}
6417 
6418 	*repoll = true;
6419 
6420 	return work;
6421 }
6422 
6423 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6424 {
6425 	bool do_repoll = false;
6426 	void *have;
6427 	int work;
6428 
6429 	list_del_init(&n->poll_list);
6430 
6431 	have = netpoll_poll_lock(n);
6432 
6433 	work = __napi_poll(n, &do_repoll);
6434 
6435 	if (do_repoll)
6436 		list_add_tail(&n->poll_list, repoll);
6437 
6438 	netpoll_poll_unlock(have);
6439 
6440 	return work;
6441 }
6442 
6443 static int napi_thread_wait(struct napi_struct *napi)
6444 {
6445 	bool woken = false;
6446 
6447 	set_current_state(TASK_INTERRUPTIBLE);
6448 
6449 	while (!kthread_should_stop()) {
6450 		/* Testing SCHED_THREADED bit here to make sure the current
6451 		 * kthread owns this napi and could poll on this napi.
6452 		 * Testing SCHED bit is not enough because SCHED bit might be
6453 		 * set by some other busy poll thread or by napi_disable().
6454 		 */
6455 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6456 			WARN_ON(!list_empty(&napi->poll_list));
6457 			__set_current_state(TASK_RUNNING);
6458 			return 0;
6459 		}
6460 
6461 		schedule();
6462 		/* woken being true indicates this thread owns this napi. */
6463 		woken = true;
6464 		set_current_state(TASK_INTERRUPTIBLE);
6465 	}
6466 	__set_current_state(TASK_RUNNING);
6467 
6468 	return -1;
6469 }
6470 
6471 static int napi_threaded_poll(void *data)
6472 {
6473 	struct napi_struct *napi = data;
6474 	void *have;
6475 
6476 	while (!napi_thread_wait(napi)) {
6477 		for (;;) {
6478 			bool repoll = false;
6479 
6480 			local_bh_disable();
6481 
6482 			have = netpoll_poll_lock(napi);
6483 			__napi_poll(napi, &repoll);
6484 			netpoll_poll_unlock(have);
6485 
6486 			local_bh_enable();
6487 
6488 			if (!repoll)
6489 				break;
6490 
6491 			cond_resched();
6492 		}
6493 	}
6494 	return 0;
6495 }
6496 
6497 static __latent_entropy void net_rx_action(struct softirq_action *h)
6498 {
6499 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6500 	unsigned long time_limit = jiffies +
6501 		usecs_to_jiffies(netdev_budget_usecs);
6502 	int budget = netdev_budget;
6503 	LIST_HEAD(list);
6504 	LIST_HEAD(repoll);
6505 
6506 	local_irq_disable();
6507 	list_splice_init(&sd->poll_list, &list);
6508 	local_irq_enable();
6509 
6510 	for (;;) {
6511 		struct napi_struct *n;
6512 
6513 		if (list_empty(&list)) {
6514 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6515 				return;
6516 			break;
6517 		}
6518 
6519 		n = list_first_entry(&list, struct napi_struct, poll_list);
6520 		budget -= napi_poll(n, &repoll);
6521 
6522 		/* If softirq window is exhausted then punt.
6523 		 * Allow this to run for 2 jiffies since which will allow
6524 		 * an average latency of 1.5/HZ.
6525 		 */
6526 		if (unlikely(budget <= 0 ||
6527 			     time_after_eq(jiffies, time_limit))) {
6528 			sd->time_squeeze++;
6529 			break;
6530 		}
6531 	}
6532 
6533 	local_irq_disable();
6534 
6535 	list_splice_tail_init(&sd->poll_list, &list);
6536 	list_splice_tail(&repoll, &list);
6537 	list_splice(&list, &sd->poll_list);
6538 	if (!list_empty(&sd->poll_list))
6539 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6540 
6541 	net_rps_action_and_irq_enable(sd);
6542 }
6543 
6544 struct netdev_adjacent {
6545 	struct net_device *dev;
6546 	netdevice_tracker dev_tracker;
6547 
6548 	/* upper master flag, there can only be one master device per list */
6549 	bool master;
6550 
6551 	/* lookup ignore flag */
6552 	bool ignore;
6553 
6554 	/* counter for the number of times this device was added to us */
6555 	u16 ref_nr;
6556 
6557 	/* private field for the users */
6558 	void *private;
6559 
6560 	struct list_head list;
6561 	struct rcu_head rcu;
6562 };
6563 
6564 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6565 						 struct list_head *adj_list)
6566 {
6567 	struct netdev_adjacent *adj;
6568 
6569 	list_for_each_entry(adj, adj_list, list) {
6570 		if (adj->dev == adj_dev)
6571 			return adj;
6572 	}
6573 	return NULL;
6574 }
6575 
6576 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6577 				    struct netdev_nested_priv *priv)
6578 {
6579 	struct net_device *dev = (struct net_device *)priv->data;
6580 
6581 	return upper_dev == dev;
6582 }
6583 
6584 /**
6585  * netdev_has_upper_dev - Check if device is linked to an upper device
6586  * @dev: device
6587  * @upper_dev: upper device to check
6588  *
6589  * Find out if a device is linked to specified upper device and return true
6590  * in case it is. Note that this checks only immediate upper device,
6591  * not through a complete stack of devices. The caller must hold the RTNL lock.
6592  */
6593 bool netdev_has_upper_dev(struct net_device *dev,
6594 			  struct net_device *upper_dev)
6595 {
6596 	struct netdev_nested_priv priv = {
6597 		.data = (void *)upper_dev,
6598 	};
6599 
6600 	ASSERT_RTNL();
6601 
6602 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6603 					     &priv);
6604 }
6605 EXPORT_SYMBOL(netdev_has_upper_dev);
6606 
6607 /**
6608  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6609  * @dev: device
6610  * @upper_dev: upper device to check
6611  *
6612  * Find out if a device is linked to specified upper device and return true
6613  * in case it is. Note that this checks the entire upper device chain.
6614  * The caller must hold rcu lock.
6615  */
6616 
6617 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6618 				  struct net_device *upper_dev)
6619 {
6620 	struct netdev_nested_priv priv = {
6621 		.data = (void *)upper_dev,
6622 	};
6623 
6624 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6625 					       &priv);
6626 }
6627 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6628 
6629 /**
6630  * netdev_has_any_upper_dev - Check if device is linked to some device
6631  * @dev: device
6632  *
6633  * Find out if a device is linked to an upper device and return true in case
6634  * it is. The caller must hold the RTNL lock.
6635  */
6636 bool netdev_has_any_upper_dev(struct net_device *dev)
6637 {
6638 	ASSERT_RTNL();
6639 
6640 	return !list_empty(&dev->adj_list.upper);
6641 }
6642 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6643 
6644 /**
6645  * netdev_master_upper_dev_get - Get master upper device
6646  * @dev: device
6647  *
6648  * Find a master upper device and return pointer to it or NULL in case
6649  * it's not there. The caller must hold the RTNL lock.
6650  */
6651 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6652 {
6653 	struct netdev_adjacent *upper;
6654 
6655 	ASSERT_RTNL();
6656 
6657 	if (list_empty(&dev->adj_list.upper))
6658 		return NULL;
6659 
6660 	upper = list_first_entry(&dev->adj_list.upper,
6661 				 struct netdev_adjacent, list);
6662 	if (likely(upper->master))
6663 		return upper->dev;
6664 	return NULL;
6665 }
6666 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6667 
6668 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6669 {
6670 	struct netdev_adjacent *upper;
6671 
6672 	ASSERT_RTNL();
6673 
6674 	if (list_empty(&dev->adj_list.upper))
6675 		return NULL;
6676 
6677 	upper = list_first_entry(&dev->adj_list.upper,
6678 				 struct netdev_adjacent, list);
6679 	if (likely(upper->master) && !upper->ignore)
6680 		return upper->dev;
6681 	return NULL;
6682 }
6683 
6684 /**
6685  * netdev_has_any_lower_dev - Check if device is linked to some device
6686  * @dev: device
6687  *
6688  * Find out if a device is linked to a lower device and return true in case
6689  * it is. The caller must hold the RTNL lock.
6690  */
6691 static bool netdev_has_any_lower_dev(struct net_device *dev)
6692 {
6693 	ASSERT_RTNL();
6694 
6695 	return !list_empty(&dev->adj_list.lower);
6696 }
6697 
6698 void *netdev_adjacent_get_private(struct list_head *adj_list)
6699 {
6700 	struct netdev_adjacent *adj;
6701 
6702 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6703 
6704 	return adj->private;
6705 }
6706 EXPORT_SYMBOL(netdev_adjacent_get_private);
6707 
6708 /**
6709  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6710  * @dev: device
6711  * @iter: list_head ** of the current position
6712  *
6713  * Gets the next device from the dev's upper list, starting from iter
6714  * position. The caller must hold RCU read lock.
6715  */
6716 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6717 						 struct list_head **iter)
6718 {
6719 	struct netdev_adjacent *upper;
6720 
6721 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6722 
6723 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6724 
6725 	if (&upper->list == &dev->adj_list.upper)
6726 		return NULL;
6727 
6728 	*iter = &upper->list;
6729 
6730 	return upper->dev;
6731 }
6732 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6733 
6734 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6735 						  struct list_head **iter,
6736 						  bool *ignore)
6737 {
6738 	struct netdev_adjacent *upper;
6739 
6740 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6741 
6742 	if (&upper->list == &dev->adj_list.upper)
6743 		return NULL;
6744 
6745 	*iter = &upper->list;
6746 	*ignore = upper->ignore;
6747 
6748 	return upper->dev;
6749 }
6750 
6751 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6752 						    struct list_head **iter)
6753 {
6754 	struct netdev_adjacent *upper;
6755 
6756 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6757 
6758 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6759 
6760 	if (&upper->list == &dev->adj_list.upper)
6761 		return NULL;
6762 
6763 	*iter = &upper->list;
6764 
6765 	return upper->dev;
6766 }
6767 
6768 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6769 				       int (*fn)(struct net_device *dev,
6770 					 struct netdev_nested_priv *priv),
6771 				       struct netdev_nested_priv *priv)
6772 {
6773 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6774 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6775 	int ret, cur = 0;
6776 	bool ignore;
6777 
6778 	now = dev;
6779 	iter = &dev->adj_list.upper;
6780 
6781 	while (1) {
6782 		if (now != dev) {
6783 			ret = fn(now, priv);
6784 			if (ret)
6785 				return ret;
6786 		}
6787 
6788 		next = NULL;
6789 		while (1) {
6790 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6791 			if (!udev)
6792 				break;
6793 			if (ignore)
6794 				continue;
6795 
6796 			next = udev;
6797 			niter = &udev->adj_list.upper;
6798 			dev_stack[cur] = now;
6799 			iter_stack[cur++] = iter;
6800 			break;
6801 		}
6802 
6803 		if (!next) {
6804 			if (!cur)
6805 				return 0;
6806 			next = dev_stack[--cur];
6807 			niter = iter_stack[cur];
6808 		}
6809 
6810 		now = next;
6811 		iter = niter;
6812 	}
6813 
6814 	return 0;
6815 }
6816 
6817 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6818 				  int (*fn)(struct net_device *dev,
6819 					    struct netdev_nested_priv *priv),
6820 				  struct netdev_nested_priv *priv)
6821 {
6822 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6823 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6824 	int ret, cur = 0;
6825 
6826 	now = dev;
6827 	iter = &dev->adj_list.upper;
6828 
6829 	while (1) {
6830 		if (now != dev) {
6831 			ret = fn(now, priv);
6832 			if (ret)
6833 				return ret;
6834 		}
6835 
6836 		next = NULL;
6837 		while (1) {
6838 			udev = netdev_next_upper_dev_rcu(now, &iter);
6839 			if (!udev)
6840 				break;
6841 
6842 			next = udev;
6843 			niter = &udev->adj_list.upper;
6844 			dev_stack[cur] = now;
6845 			iter_stack[cur++] = iter;
6846 			break;
6847 		}
6848 
6849 		if (!next) {
6850 			if (!cur)
6851 				return 0;
6852 			next = dev_stack[--cur];
6853 			niter = iter_stack[cur];
6854 		}
6855 
6856 		now = next;
6857 		iter = niter;
6858 	}
6859 
6860 	return 0;
6861 }
6862 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6863 
6864 static bool __netdev_has_upper_dev(struct net_device *dev,
6865 				   struct net_device *upper_dev)
6866 {
6867 	struct netdev_nested_priv priv = {
6868 		.flags = 0,
6869 		.data = (void *)upper_dev,
6870 	};
6871 
6872 	ASSERT_RTNL();
6873 
6874 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6875 					   &priv);
6876 }
6877 
6878 /**
6879  * netdev_lower_get_next_private - Get the next ->private from the
6880  *				   lower neighbour list
6881  * @dev: device
6882  * @iter: list_head ** of the current position
6883  *
6884  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6885  * list, starting from iter position. The caller must hold either hold the
6886  * RTNL lock or its own locking that guarantees that the neighbour lower
6887  * list will remain unchanged.
6888  */
6889 void *netdev_lower_get_next_private(struct net_device *dev,
6890 				    struct list_head **iter)
6891 {
6892 	struct netdev_adjacent *lower;
6893 
6894 	lower = list_entry(*iter, struct netdev_adjacent, list);
6895 
6896 	if (&lower->list == &dev->adj_list.lower)
6897 		return NULL;
6898 
6899 	*iter = lower->list.next;
6900 
6901 	return lower->private;
6902 }
6903 EXPORT_SYMBOL(netdev_lower_get_next_private);
6904 
6905 /**
6906  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6907  *				       lower neighbour list, RCU
6908  *				       variant
6909  * @dev: device
6910  * @iter: list_head ** of the current position
6911  *
6912  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6913  * list, starting from iter position. The caller must hold RCU read lock.
6914  */
6915 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6916 					struct list_head **iter)
6917 {
6918 	struct netdev_adjacent *lower;
6919 
6920 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6921 
6922 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6923 
6924 	if (&lower->list == &dev->adj_list.lower)
6925 		return NULL;
6926 
6927 	*iter = &lower->list;
6928 
6929 	return lower->private;
6930 }
6931 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6932 
6933 /**
6934  * netdev_lower_get_next - Get the next device from the lower neighbour
6935  *                         list
6936  * @dev: device
6937  * @iter: list_head ** of the current position
6938  *
6939  * Gets the next netdev_adjacent from the dev's lower neighbour
6940  * list, starting from iter position. The caller must hold RTNL lock or
6941  * its own locking that guarantees that the neighbour lower
6942  * list will remain unchanged.
6943  */
6944 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6945 {
6946 	struct netdev_adjacent *lower;
6947 
6948 	lower = list_entry(*iter, struct netdev_adjacent, list);
6949 
6950 	if (&lower->list == &dev->adj_list.lower)
6951 		return NULL;
6952 
6953 	*iter = lower->list.next;
6954 
6955 	return lower->dev;
6956 }
6957 EXPORT_SYMBOL(netdev_lower_get_next);
6958 
6959 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6960 						struct list_head **iter)
6961 {
6962 	struct netdev_adjacent *lower;
6963 
6964 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6965 
6966 	if (&lower->list == &dev->adj_list.lower)
6967 		return NULL;
6968 
6969 	*iter = &lower->list;
6970 
6971 	return lower->dev;
6972 }
6973 
6974 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6975 						  struct list_head **iter,
6976 						  bool *ignore)
6977 {
6978 	struct netdev_adjacent *lower;
6979 
6980 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6981 
6982 	if (&lower->list == &dev->adj_list.lower)
6983 		return NULL;
6984 
6985 	*iter = &lower->list;
6986 	*ignore = lower->ignore;
6987 
6988 	return lower->dev;
6989 }
6990 
6991 int netdev_walk_all_lower_dev(struct net_device *dev,
6992 			      int (*fn)(struct net_device *dev,
6993 					struct netdev_nested_priv *priv),
6994 			      struct netdev_nested_priv *priv)
6995 {
6996 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6997 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6998 	int ret, cur = 0;
6999 
7000 	now = dev;
7001 	iter = &dev->adj_list.lower;
7002 
7003 	while (1) {
7004 		if (now != dev) {
7005 			ret = fn(now, priv);
7006 			if (ret)
7007 				return ret;
7008 		}
7009 
7010 		next = NULL;
7011 		while (1) {
7012 			ldev = netdev_next_lower_dev(now, &iter);
7013 			if (!ldev)
7014 				break;
7015 
7016 			next = ldev;
7017 			niter = &ldev->adj_list.lower;
7018 			dev_stack[cur] = now;
7019 			iter_stack[cur++] = iter;
7020 			break;
7021 		}
7022 
7023 		if (!next) {
7024 			if (!cur)
7025 				return 0;
7026 			next = dev_stack[--cur];
7027 			niter = iter_stack[cur];
7028 		}
7029 
7030 		now = next;
7031 		iter = niter;
7032 	}
7033 
7034 	return 0;
7035 }
7036 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7037 
7038 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7039 				       int (*fn)(struct net_device *dev,
7040 					 struct netdev_nested_priv *priv),
7041 				       struct netdev_nested_priv *priv)
7042 {
7043 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7044 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7045 	int ret, cur = 0;
7046 	bool ignore;
7047 
7048 	now = dev;
7049 	iter = &dev->adj_list.lower;
7050 
7051 	while (1) {
7052 		if (now != dev) {
7053 			ret = fn(now, priv);
7054 			if (ret)
7055 				return ret;
7056 		}
7057 
7058 		next = NULL;
7059 		while (1) {
7060 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7061 			if (!ldev)
7062 				break;
7063 			if (ignore)
7064 				continue;
7065 
7066 			next = ldev;
7067 			niter = &ldev->adj_list.lower;
7068 			dev_stack[cur] = now;
7069 			iter_stack[cur++] = iter;
7070 			break;
7071 		}
7072 
7073 		if (!next) {
7074 			if (!cur)
7075 				return 0;
7076 			next = dev_stack[--cur];
7077 			niter = iter_stack[cur];
7078 		}
7079 
7080 		now = next;
7081 		iter = niter;
7082 	}
7083 
7084 	return 0;
7085 }
7086 
7087 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7088 					     struct list_head **iter)
7089 {
7090 	struct netdev_adjacent *lower;
7091 
7092 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7093 	if (&lower->list == &dev->adj_list.lower)
7094 		return NULL;
7095 
7096 	*iter = &lower->list;
7097 
7098 	return lower->dev;
7099 }
7100 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7101 
7102 static u8 __netdev_upper_depth(struct net_device *dev)
7103 {
7104 	struct net_device *udev;
7105 	struct list_head *iter;
7106 	u8 max_depth = 0;
7107 	bool ignore;
7108 
7109 	for (iter = &dev->adj_list.upper,
7110 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7111 	     udev;
7112 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7113 		if (ignore)
7114 			continue;
7115 		if (max_depth < udev->upper_level)
7116 			max_depth = udev->upper_level;
7117 	}
7118 
7119 	return max_depth;
7120 }
7121 
7122 static u8 __netdev_lower_depth(struct net_device *dev)
7123 {
7124 	struct net_device *ldev;
7125 	struct list_head *iter;
7126 	u8 max_depth = 0;
7127 	bool ignore;
7128 
7129 	for (iter = &dev->adj_list.lower,
7130 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7131 	     ldev;
7132 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7133 		if (ignore)
7134 			continue;
7135 		if (max_depth < ldev->lower_level)
7136 			max_depth = ldev->lower_level;
7137 	}
7138 
7139 	return max_depth;
7140 }
7141 
7142 static int __netdev_update_upper_level(struct net_device *dev,
7143 				       struct netdev_nested_priv *__unused)
7144 {
7145 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7146 	return 0;
7147 }
7148 
7149 static int __netdev_update_lower_level(struct net_device *dev,
7150 				       struct netdev_nested_priv *priv)
7151 {
7152 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7153 
7154 #ifdef CONFIG_LOCKDEP
7155 	if (!priv)
7156 		return 0;
7157 
7158 	if (priv->flags & NESTED_SYNC_IMM)
7159 		dev->nested_level = dev->lower_level - 1;
7160 	if (priv->flags & NESTED_SYNC_TODO)
7161 		net_unlink_todo(dev);
7162 #endif
7163 	return 0;
7164 }
7165 
7166 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7167 				  int (*fn)(struct net_device *dev,
7168 					    struct netdev_nested_priv *priv),
7169 				  struct netdev_nested_priv *priv)
7170 {
7171 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7172 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7173 	int ret, cur = 0;
7174 
7175 	now = dev;
7176 	iter = &dev->adj_list.lower;
7177 
7178 	while (1) {
7179 		if (now != dev) {
7180 			ret = fn(now, priv);
7181 			if (ret)
7182 				return ret;
7183 		}
7184 
7185 		next = NULL;
7186 		while (1) {
7187 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7188 			if (!ldev)
7189 				break;
7190 
7191 			next = ldev;
7192 			niter = &ldev->adj_list.lower;
7193 			dev_stack[cur] = now;
7194 			iter_stack[cur++] = iter;
7195 			break;
7196 		}
7197 
7198 		if (!next) {
7199 			if (!cur)
7200 				return 0;
7201 			next = dev_stack[--cur];
7202 			niter = iter_stack[cur];
7203 		}
7204 
7205 		now = next;
7206 		iter = niter;
7207 	}
7208 
7209 	return 0;
7210 }
7211 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7212 
7213 /**
7214  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7215  *				       lower neighbour list, RCU
7216  *				       variant
7217  * @dev: device
7218  *
7219  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7220  * list. The caller must hold RCU read lock.
7221  */
7222 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7223 {
7224 	struct netdev_adjacent *lower;
7225 
7226 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7227 			struct netdev_adjacent, list);
7228 	if (lower)
7229 		return lower->private;
7230 	return NULL;
7231 }
7232 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7233 
7234 /**
7235  * netdev_master_upper_dev_get_rcu - Get master upper device
7236  * @dev: device
7237  *
7238  * Find a master upper device and return pointer to it or NULL in case
7239  * it's not there. The caller must hold the RCU read lock.
7240  */
7241 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7242 {
7243 	struct netdev_adjacent *upper;
7244 
7245 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7246 				       struct netdev_adjacent, list);
7247 	if (upper && likely(upper->master))
7248 		return upper->dev;
7249 	return NULL;
7250 }
7251 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7252 
7253 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7254 			      struct net_device *adj_dev,
7255 			      struct list_head *dev_list)
7256 {
7257 	char linkname[IFNAMSIZ+7];
7258 
7259 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7260 		"upper_%s" : "lower_%s", adj_dev->name);
7261 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7262 				 linkname);
7263 }
7264 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7265 			       char *name,
7266 			       struct list_head *dev_list)
7267 {
7268 	char linkname[IFNAMSIZ+7];
7269 
7270 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7271 		"upper_%s" : "lower_%s", name);
7272 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7273 }
7274 
7275 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7276 						 struct net_device *adj_dev,
7277 						 struct list_head *dev_list)
7278 {
7279 	return (dev_list == &dev->adj_list.upper ||
7280 		dev_list == &dev->adj_list.lower) &&
7281 		net_eq(dev_net(dev), dev_net(adj_dev));
7282 }
7283 
7284 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7285 					struct net_device *adj_dev,
7286 					struct list_head *dev_list,
7287 					void *private, bool master)
7288 {
7289 	struct netdev_adjacent *adj;
7290 	int ret;
7291 
7292 	adj = __netdev_find_adj(adj_dev, dev_list);
7293 
7294 	if (adj) {
7295 		adj->ref_nr += 1;
7296 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7297 			 dev->name, adj_dev->name, adj->ref_nr);
7298 
7299 		return 0;
7300 	}
7301 
7302 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7303 	if (!adj)
7304 		return -ENOMEM;
7305 
7306 	adj->dev = adj_dev;
7307 	adj->master = master;
7308 	adj->ref_nr = 1;
7309 	adj->private = private;
7310 	adj->ignore = false;
7311 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7312 
7313 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7314 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7315 
7316 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7317 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7318 		if (ret)
7319 			goto free_adj;
7320 	}
7321 
7322 	/* Ensure that master link is always the first item in list. */
7323 	if (master) {
7324 		ret = sysfs_create_link(&(dev->dev.kobj),
7325 					&(adj_dev->dev.kobj), "master");
7326 		if (ret)
7327 			goto remove_symlinks;
7328 
7329 		list_add_rcu(&adj->list, dev_list);
7330 	} else {
7331 		list_add_tail_rcu(&adj->list, dev_list);
7332 	}
7333 
7334 	return 0;
7335 
7336 remove_symlinks:
7337 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7338 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7339 free_adj:
7340 	dev_put_track(adj_dev, &adj->dev_tracker);
7341 	kfree(adj);
7342 
7343 	return ret;
7344 }
7345 
7346 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7347 					 struct net_device *adj_dev,
7348 					 u16 ref_nr,
7349 					 struct list_head *dev_list)
7350 {
7351 	struct netdev_adjacent *adj;
7352 
7353 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7354 		 dev->name, adj_dev->name, ref_nr);
7355 
7356 	adj = __netdev_find_adj(adj_dev, dev_list);
7357 
7358 	if (!adj) {
7359 		pr_err("Adjacency does not exist for device %s from %s\n",
7360 		       dev->name, adj_dev->name);
7361 		WARN_ON(1);
7362 		return;
7363 	}
7364 
7365 	if (adj->ref_nr > ref_nr) {
7366 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7367 			 dev->name, adj_dev->name, ref_nr,
7368 			 adj->ref_nr - ref_nr);
7369 		adj->ref_nr -= ref_nr;
7370 		return;
7371 	}
7372 
7373 	if (adj->master)
7374 		sysfs_remove_link(&(dev->dev.kobj), "master");
7375 
7376 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7377 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7378 
7379 	list_del_rcu(&adj->list);
7380 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7381 		 adj_dev->name, dev->name, adj_dev->name);
7382 	dev_put_track(adj_dev, &adj->dev_tracker);
7383 	kfree_rcu(adj, rcu);
7384 }
7385 
7386 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7387 					    struct net_device *upper_dev,
7388 					    struct list_head *up_list,
7389 					    struct list_head *down_list,
7390 					    void *private, bool master)
7391 {
7392 	int ret;
7393 
7394 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7395 					   private, master);
7396 	if (ret)
7397 		return ret;
7398 
7399 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7400 					   private, false);
7401 	if (ret) {
7402 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7403 		return ret;
7404 	}
7405 
7406 	return 0;
7407 }
7408 
7409 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7410 					       struct net_device *upper_dev,
7411 					       u16 ref_nr,
7412 					       struct list_head *up_list,
7413 					       struct list_head *down_list)
7414 {
7415 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7416 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7417 }
7418 
7419 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7420 						struct net_device *upper_dev,
7421 						void *private, bool master)
7422 {
7423 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7424 						&dev->adj_list.upper,
7425 						&upper_dev->adj_list.lower,
7426 						private, master);
7427 }
7428 
7429 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7430 						   struct net_device *upper_dev)
7431 {
7432 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7433 					   &dev->adj_list.upper,
7434 					   &upper_dev->adj_list.lower);
7435 }
7436 
7437 static int __netdev_upper_dev_link(struct net_device *dev,
7438 				   struct net_device *upper_dev, bool master,
7439 				   void *upper_priv, void *upper_info,
7440 				   struct netdev_nested_priv *priv,
7441 				   struct netlink_ext_ack *extack)
7442 {
7443 	struct netdev_notifier_changeupper_info changeupper_info = {
7444 		.info = {
7445 			.dev = dev,
7446 			.extack = extack,
7447 		},
7448 		.upper_dev = upper_dev,
7449 		.master = master,
7450 		.linking = true,
7451 		.upper_info = upper_info,
7452 	};
7453 	struct net_device *master_dev;
7454 	int ret = 0;
7455 
7456 	ASSERT_RTNL();
7457 
7458 	if (dev == upper_dev)
7459 		return -EBUSY;
7460 
7461 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7462 	if (__netdev_has_upper_dev(upper_dev, dev))
7463 		return -EBUSY;
7464 
7465 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7466 		return -EMLINK;
7467 
7468 	if (!master) {
7469 		if (__netdev_has_upper_dev(dev, upper_dev))
7470 			return -EEXIST;
7471 	} else {
7472 		master_dev = __netdev_master_upper_dev_get(dev);
7473 		if (master_dev)
7474 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7475 	}
7476 
7477 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7478 					    &changeupper_info.info);
7479 	ret = notifier_to_errno(ret);
7480 	if (ret)
7481 		return ret;
7482 
7483 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7484 						   master);
7485 	if (ret)
7486 		return ret;
7487 
7488 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7489 					    &changeupper_info.info);
7490 	ret = notifier_to_errno(ret);
7491 	if (ret)
7492 		goto rollback;
7493 
7494 	__netdev_update_upper_level(dev, NULL);
7495 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7496 
7497 	__netdev_update_lower_level(upper_dev, priv);
7498 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7499 				    priv);
7500 
7501 	return 0;
7502 
7503 rollback:
7504 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7505 
7506 	return ret;
7507 }
7508 
7509 /**
7510  * netdev_upper_dev_link - Add a link to the upper device
7511  * @dev: device
7512  * @upper_dev: new upper device
7513  * @extack: netlink extended ack
7514  *
7515  * Adds a link to device which is upper to this one. The caller must hold
7516  * the RTNL lock. On a failure a negative errno code is returned.
7517  * On success the reference counts are adjusted and the function
7518  * returns zero.
7519  */
7520 int netdev_upper_dev_link(struct net_device *dev,
7521 			  struct net_device *upper_dev,
7522 			  struct netlink_ext_ack *extack)
7523 {
7524 	struct netdev_nested_priv priv = {
7525 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7526 		.data = NULL,
7527 	};
7528 
7529 	return __netdev_upper_dev_link(dev, upper_dev, false,
7530 				       NULL, NULL, &priv, extack);
7531 }
7532 EXPORT_SYMBOL(netdev_upper_dev_link);
7533 
7534 /**
7535  * netdev_master_upper_dev_link - Add a master link to the upper device
7536  * @dev: device
7537  * @upper_dev: new upper device
7538  * @upper_priv: upper device private
7539  * @upper_info: upper info to be passed down via notifier
7540  * @extack: netlink extended ack
7541  *
7542  * Adds a link to device which is upper to this one. In this case, only
7543  * one master upper device can be linked, although other non-master devices
7544  * might be linked as well. The caller must hold the RTNL lock.
7545  * On a failure a negative errno code is returned. On success the reference
7546  * counts are adjusted and the function returns zero.
7547  */
7548 int netdev_master_upper_dev_link(struct net_device *dev,
7549 				 struct net_device *upper_dev,
7550 				 void *upper_priv, void *upper_info,
7551 				 struct netlink_ext_ack *extack)
7552 {
7553 	struct netdev_nested_priv priv = {
7554 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7555 		.data = NULL,
7556 	};
7557 
7558 	return __netdev_upper_dev_link(dev, upper_dev, true,
7559 				       upper_priv, upper_info, &priv, extack);
7560 }
7561 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7562 
7563 static void __netdev_upper_dev_unlink(struct net_device *dev,
7564 				      struct net_device *upper_dev,
7565 				      struct netdev_nested_priv *priv)
7566 {
7567 	struct netdev_notifier_changeupper_info changeupper_info = {
7568 		.info = {
7569 			.dev = dev,
7570 		},
7571 		.upper_dev = upper_dev,
7572 		.linking = false,
7573 	};
7574 
7575 	ASSERT_RTNL();
7576 
7577 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7578 
7579 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7580 				      &changeupper_info.info);
7581 
7582 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7583 
7584 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7585 				      &changeupper_info.info);
7586 
7587 	__netdev_update_upper_level(dev, NULL);
7588 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7589 
7590 	__netdev_update_lower_level(upper_dev, priv);
7591 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7592 				    priv);
7593 }
7594 
7595 /**
7596  * netdev_upper_dev_unlink - Removes a link to upper device
7597  * @dev: device
7598  * @upper_dev: new upper device
7599  *
7600  * Removes a link to device which is upper to this one. The caller must hold
7601  * the RTNL lock.
7602  */
7603 void netdev_upper_dev_unlink(struct net_device *dev,
7604 			     struct net_device *upper_dev)
7605 {
7606 	struct netdev_nested_priv priv = {
7607 		.flags = NESTED_SYNC_TODO,
7608 		.data = NULL,
7609 	};
7610 
7611 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7612 }
7613 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7614 
7615 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7616 				      struct net_device *lower_dev,
7617 				      bool val)
7618 {
7619 	struct netdev_adjacent *adj;
7620 
7621 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7622 	if (adj)
7623 		adj->ignore = val;
7624 
7625 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7626 	if (adj)
7627 		adj->ignore = val;
7628 }
7629 
7630 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7631 					struct net_device *lower_dev)
7632 {
7633 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7634 }
7635 
7636 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7637 				       struct net_device *lower_dev)
7638 {
7639 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7640 }
7641 
7642 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7643 				   struct net_device *new_dev,
7644 				   struct net_device *dev,
7645 				   struct netlink_ext_ack *extack)
7646 {
7647 	struct netdev_nested_priv priv = {
7648 		.flags = 0,
7649 		.data = NULL,
7650 	};
7651 	int err;
7652 
7653 	if (!new_dev)
7654 		return 0;
7655 
7656 	if (old_dev && new_dev != old_dev)
7657 		netdev_adjacent_dev_disable(dev, old_dev);
7658 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7659 				      extack);
7660 	if (err) {
7661 		if (old_dev && new_dev != old_dev)
7662 			netdev_adjacent_dev_enable(dev, old_dev);
7663 		return err;
7664 	}
7665 
7666 	return 0;
7667 }
7668 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7669 
7670 void netdev_adjacent_change_commit(struct net_device *old_dev,
7671 				   struct net_device *new_dev,
7672 				   struct net_device *dev)
7673 {
7674 	struct netdev_nested_priv priv = {
7675 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7676 		.data = NULL,
7677 	};
7678 
7679 	if (!new_dev || !old_dev)
7680 		return;
7681 
7682 	if (new_dev == old_dev)
7683 		return;
7684 
7685 	netdev_adjacent_dev_enable(dev, old_dev);
7686 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7687 }
7688 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7689 
7690 void netdev_adjacent_change_abort(struct net_device *old_dev,
7691 				  struct net_device *new_dev,
7692 				  struct net_device *dev)
7693 {
7694 	struct netdev_nested_priv priv = {
7695 		.flags = 0,
7696 		.data = NULL,
7697 	};
7698 
7699 	if (!new_dev)
7700 		return;
7701 
7702 	if (old_dev && new_dev != old_dev)
7703 		netdev_adjacent_dev_enable(dev, old_dev);
7704 
7705 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7706 }
7707 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7708 
7709 /**
7710  * netdev_bonding_info_change - Dispatch event about slave change
7711  * @dev: device
7712  * @bonding_info: info to dispatch
7713  *
7714  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7715  * The caller must hold the RTNL lock.
7716  */
7717 void netdev_bonding_info_change(struct net_device *dev,
7718 				struct netdev_bonding_info *bonding_info)
7719 {
7720 	struct netdev_notifier_bonding_info info = {
7721 		.info.dev = dev,
7722 	};
7723 
7724 	memcpy(&info.bonding_info, bonding_info,
7725 	       sizeof(struct netdev_bonding_info));
7726 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7727 				      &info.info);
7728 }
7729 EXPORT_SYMBOL(netdev_bonding_info_change);
7730 
7731 /**
7732  * netdev_get_xmit_slave - Get the xmit slave of master device
7733  * @dev: device
7734  * @skb: The packet
7735  * @all_slaves: assume all the slaves are active
7736  *
7737  * The reference counters are not incremented so the caller must be
7738  * careful with locks. The caller must hold RCU lock.
7739  * %NULL is returned if no slave is found.
7740  */
7741 
7742 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7743 					 struct sk_buff *skb,
7744 					 bool all_slaves)
7745 {
7746 	const struct net_device_ops *ops = dev->netdev_ops;
7747 
7748 	if (!ops->ndo_get_xmit_slave)
7749 		return NULL;
7750 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7751 }
7752 EXPORT_SYMBOL(netdev_get_xmit_slave);
7753 
7754 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
7755 						  struct sock *sk)
7756 {
7757 	const struct net_device_ops *ops = dev->netdev_ops;
7758 
7759 	if (!ops->ndo_sk_get_lower_dev)
7760 		return NULL;
7761 	return ops->ndo_sk_get_lower_dev(dev, sk);
7762 }
7763 
7764 /**
7765  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
7766  * @dev: device
7767  * @sk: the socket
7768  *
7769  * %NULL is returned if no lower device is found.
7770  */
7771 
7772 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
7773 					    struct sock *sk)
7774 {
7775 	struct net_device *lower;
7776 
7777 	lower = netdev_sk_get_lower_dev(dev, sk);
7778 	while (lower) {
7779 		dev = lower;
7780 		lower = netdev_sk_get_lower_dev(dev, sk);
7781 	}
7782 
7783 	return dev;
7784 }
7785 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
7786 
7787 static void netdev_adjacent_add_links(struct net_device *dev)
7788 {
7789 	struct netdev_adjacent *iter;
7790 
7791 	struct net *net = dev_net(dev);
7792 
7793 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7794 		if (!net_eq(net, dev_net(iter->dev)))
7795 			continue;
7796 		netdev_adjacent_sysfs_add(iter->dev, dev,
7797 					  &iter->dev->adj_list.lower);
7798 		netdev_adjacent_sysfs_add(dev, iter->dev,
7799 					  &dev->adj_list.upper);
7800 	}
7801 
7802 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7803 		if (!net_eq(net, dev_net(iter->dev)))
7804 			continue;
7805 		netdev_adjacent_sysfs_add(iter->dev, dev,
7806 					  &iter->dev->adj_list.upper);
7807 		netdev_adjacent_sysfs_add(dev, iter->dev,
7808 					  &dev->adj_list.lower);
7809 	}
7810 }
7811 
7812 static void netdev_adjacent_del_links(struct net_device *dev)
7813 {
7814 	struct netdev_adjacent *iter;
7815 
7816 	struct net *net = dev_net(dev);
7817 
7818 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7819 		if (!net_eq(net, dev_net(iter->dev)))
7820 			continue;
7821 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7822 					  &iter->dev->adj_list.lower);
7823 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7824 					  &dev->adj_list.upper);
7825 	}
7826 
7827 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7828 		if (!net_eq(net, dev_net(iter->dev)))
7829 			continue;
7830 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7831 					  &iter->dev->adj_list.upper);
7832 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7833 					  &dev->adj_list.lower);
7834 	}
7835 }
7836 
7837 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7838 {
7839 	struct netdev_adjacent *iter;
7840 
7841 	struct net *net = dev_net(dev);
7842 
7843 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7844 		if (!net_eq(net, dev_net(iter->dev)))
7845 			continue;
7846 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7847 					  &iter->dev->adj_list.lower);
7848 		netdev_adjacent_sysfs_add(iter->dev, dev,
7849 					  &iter->dev->adj_list.lower);
7850 	}
7851 
7852 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7853 		if (!net_eq(net, dev_net(iter->dev)))
7854 			continue;
7855 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7856 					  &iter->dev->adj_list.upper);
7857 		netdev_adjacent_sysfs_add(iter->dev, dev,
7858 					  &iter->dev->adj_list.upper);
7859 	}
7860 }
7861 
7862 void *netdev_lower_dev_get_private(struct net_device *dev,
7863 				   struct net_device *lower_dev)
7864 {
7865 	struct netdev_adjacent *lower;
7866 
7867 	if (!lower_dev)
7868 		return NULL;
7869 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7870 	if (!lower)
7871 		return NULL;
7872 
7873 	return lower->private;
7874 }
7875 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7876 
7877 
7878 /**
7879  * netdev_lower_state_changed - Dispatch event about lower device state change
7880  * @lower_dev: device
7881  * @lower_state_info: state to dispatch
7882  *
7883  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7884  * The caller must hold the RTNL lock.
7885  */
7886 void netdev_lower_state_changed(struct net_device *lower_dev,
7887 				void *lower_state_info)
7888 {
7889 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7890 		.info.dev = lower_dev,
7891 	};
7892 
7893 	ASSERT_RTNL();
7894 	changelowerstate_info.lower_state_info = lower_state_info;
7895 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7896 				      &changelowerstate_info.info);
7897 }
7898 EXPORT_SYMBOL(netdev_lower_state_changed);
7899 
7900 static void dev_change_rx_flags(struct net_device *dev, int flags)
7901 {
7902 	const struct net_device_ops *ops = dev->netdev_ops;
7903 
7904 	if (ops->ndo_change_rx_flags)
7905 		ops->ndo_change_rx_flags(dev, flags);
7906 }
7907 
7908 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7909 {
7910 	unsigned int old_flags = dev->flags;
7911 	kuid_t uid;
7912 	kgid_t gid;
7913 
7914 	ASSERT_RTNL();
7915 
7916 	dev->flags |= IFF_PROMISC;
7917 	dev->promiscuity += inc;
7918 	if (dev->promiscuity == 0) {
7919 		/*
7920 		 * Avoid overflow.
7921 		 * If inc causes overflow, untouch promisc and return error.
7922 		 */
7923 		if (inc < 0)
7924 			dev->flags &= ~IFF_PROMISC;
7925 		else {
7926 			dev->promiscuity -= inc;
7927 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
7928 			return -EOVERFLOW;
7929 		}
7930 	}
7931 	if (dev->flags != old_flags) {
7932 		pr_info("device %s %s promiscuous mode\n",
7933 			dev->name,
7934 			dev->flags & IFF_PROMISC ? "entered" : "left");
7935 		if (audit_enabled) {
7936 			current_uid_gid(&uid, &gid);
7937 			audit_log(audit_context(), GFP_ATOMIC,
7938 				  AUDIT_ANOM_PROMISCUOUS,
7939 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7940 				  dev->name, (dev->flags & IFF_PROMISC),
7941 				  (old_flags & IFF_PROMISC),
7942 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7943 				  from_kuid(&init_user_ns, uid),
7944 				  from_kgid(&init_user_ns, gid),
7945 				  audit_get_sessionid(current));
7946 		}
7947 
7948 		dev_change_rx_flags(dev, IFF_PROMISC);
7949 	}
7950 	if (notify)
7951 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7952 	return 0;
7953 }
7954 
7955 /**
7956  *	dev_set_promiscuity	- update promiscuity count on a device
7957  *	@dev: device
7958  *	@inc: modifier
7959  *
7960  *	Add or remove promiscuity from a device. While the count in the device
7961  *	remains above zero the interface remains promiscuous. Once it hits zero
7962  *	the device reverts back to normal filtering operation. A negative inc
7963  *	value is used to drop promiscuity on the device.
7964  *	Return 0 if successful or a negative errno code on error.
7965  */
7966 int dev_set_promiscuity(struct net_device *dev, int inc)
7967 {
7968 	unsigned int old_flags = dev->flags;
7969 	int err;
7970 
7971 	err = __dev_set_promiscuity(dev, inc, true);
7972 	if (err < 0)
7973 		return err;
7974 	if (dev->flags != old_flags)
7975 		dev_set_rx_mode(dev);
7976 	return err;
7977 }
7978 EXPORT_SYMBOL(dev_set_promiscuity);
7979 
7980 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7981 {
7982 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7983 
7984 	ASSERT_RTNL();
7985 
7986 	dev->flags |= IFF_ALLMULTI;
7987 	dev->allmulti += inc;
7988 	if (dev->allmulti == 0) {
7989 		/*
7990 		 * Avoid overflow.
7991 		 * If inc causes overflow, untouch allmulti and return error.
7992 		 */
7993 		if (inc < 0)
7994 			dev->flags &= ~IFF_ALLMULTI;
7995 		else {
7996 			dev->allmulti -= inc;
7997 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
7998 			return -EOVERFLOW;
7999 		}
8000 	}
8001 	if (dev->flags ^ old_flags) {
8002 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8003 		dev_set_rx_mode(dev);
8004 		if (notify)
8005 			__dev_notify_flags(dev, old_flags,
8006 					   dev->gflags ^ old_gflags);
8007 	}
8008 	return 0;
8009 }
8010 
8011 /**
8012  *	dev_set_allmulti	- update allmulti count on a device
8013  *	@dev: device
8014  *	@inc: modifier
8015  *
8016  *	Add or remove reception of all multicast frames to a device. While the
8017  *	count in the device remains above zero the interface remains listening
8018  *	to all interfaces. Once it hits zero the device reverts back to normal
8019  *	filtering operation. A negative @inc value is used to drop the counter
8020  *	when releasing a resource needing all multicasts.
8021  *	Return 0 if successful or a negative errno code on error.
8022  */
8023 
8024 int dev_set_allmulti(struct net_device *dev, int inc)
8025 {
8026 	return __dev_set_allmulti(dev, inc, true);
8027 }
8028 EXPORT_SYMBOL(dev_set_allmulti);
8029 
8030 /*
8031  *	Upload unicast and multicast address lists to device and
8032  *	configure RX filtering. When the device doesn't support unicast
8033  *	filtering it is put in promiscuous mode while unicast addresses
8034  *	are present.
8035  */
8036 void __dev_set_rx_mode(struct net_device *dev)
8037 {
8038 	const struct net_device_ops *ops = dev->netdev_ops;
8039 
8040 	/* dev_open will call this function so the list will stay sane. */
8041 	if (!(dev->flags&IFF_UP))
8042 		return;
8043 
8044 	if (!netif_device_present(dev))
8045 		return;
8046 
8047 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8048 		/* Unicast addresses changes may only happen under the rtnl,
8049 		 * therefore calling __dev_set_promiscuity here is safe.
8050 		 */
8051 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8052 			__dev_set_promiscuity(dev, 1, false);
8053 			dev->uc_promisc = true;
8054 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8055 			__dev_set_promiscuity(dev, -1, false);
8056 			dev->uc_promisc = false;
8057 		}
8058 	}
8059 
8060 	if (ops->ndo_set_rx_mode)
8061 		ops->ndo_set_rx_mode(dev);
8062 }
8063 
8064 void dev_set_rx_mode(struct net_device *dev)
8065 {
8066 	netif_addr_lock_bh(dev);
8067 	__dev_set_rx_mode(dev);
8068 	netif_addr_unlock_bh(dev);
8069 }
8070 
8071 /**
8072  *	dev_get_flags - get flags reported to userspace
8073  *	@dev: device
8074  *
8075  *	Get the combination of flag bits exported through APIs to userspace.
8076  */
8077 unsigned int dev_get_flags(const struct net_device *dev)
8078 {
8079 	unsigned int flags;
8080 
8081 	flags = (dev->flags & ~(IFF_PROMISC |
8082 				IFF_ALLMULTI |
8083 				IFF_RUNNING |
8084 				IFF_LOWER_UP |
8085 				IFF_DORMANT)) |
8086 		(dev->gflags & (IFF_PROMISC |
8087 				IFF_ALLMULTI));
8088 
8089 	if (netif_running(dev)) {
8090 		if (netif_oper_up(dev))
8091 			flags |= IFF_RUNNING;
8092 		if (netif_carrier_ok(dev))
8093 			flags |= IFF_LOWER_UP;
8094 		if (netif_dormant(dev))
8095 			flags |= IFF_DORMANT;
8096 	}
8097 
8098 	return flags;
8099 }
8100 EXPORT_SYMBOL(dev_get_flags);
8101 
8102 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8103 		       struct netlink_ext_ack *extack)
8104 {
8105 	unsigned int old_flags = dev->flags;
8106 	int ret;
8107 
8108 	ASSERT_RTNL();
8109 
8110 	/*
8111 	 *	Set the flags on our device.
8112 	 */
8113 
8114 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8115 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8116 			       IFF_AUTOMEDIA)) |
8117 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8118 				    IFF_ALLMULTI));
8119 
8120 	/*
8121 	 *	Load in the correct multicast list now the flags have changed.
8122 	 */
8123 
8124 	if ((old_flags ^ flags) & IFF_MULTICAST)
8125 		dev_change_rx_flags(dev, IFF_MULTICAST);
8126 
8127 	dev_set_rx_mode(dev);
8128 
8129 	/*
8130 	 *	Have we downed the interface. We handle IFF_UP ourselves
8131 	 *	according to user attempts to set it, rather than blindly
8132 	 *	setting it.
8133 	 */
8134 
8135 	ret = 0;
8136 	if ((old_flags ^ flags) & IFF_UP) {
8137 		if (old_flags & IFF_UP)
8138 			__dev_close(dev);
8139 		else
8140 			ret = __dev_open(dev, extack);
8141 	}
8142 
8143 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8144 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8145 		unsigned int old_flags = dev->flags;
8146 
8147 		dev->gflags ^= IFF_PROMISC;
8148 
8149 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8150 			if (dev->flags != old_flags)
8151 				dev_set_rx_mode(dev);
8152 	}
8153 
8154 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8155 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8156 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8157 	 */
8158 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8159 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8160 
8161 		dev->gflags ^= IFF_ALLMULTI;
8162 		__dev_set_allmulti(dev, inc, false);
8163 	}
8164 
8165 	return ret;
8166 }
8167 
8168 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8169 			unsigned int gchanges)
8170 {
8171 	unsigned int changes = dev->flags ^ old_flags;
8172 
8173 	if (gchanges)
8174 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8175 
8176 	if (changes & IFF_UP) {
8177 		if (dev->flags & IFF_UP)
8178 			call_netdevice_notifiers(NETDEV_UP, dev);
8179 		else
8180 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8181 	}
8182 
8183 	if (dev->flags & IFF_UP &&
8184 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8185 		struct netdev_notifier_change_info change_info = {
8186 			.info = {
8187 				.dev = dev,
8188 			},
8189 			.flags_changed = changes,
8190 		};
8191 
8192 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8193 	}
8194 }
8195 
8196 /**
8197  *	dev_change_flags - change device settings
8198  *	@dev: device
8199  *	@flags: device state flags
8200  *	@extack: netlink extended ack
8201  *
8202  *	Change settings on device based state flags. The flags are
8203  *	in the userspace exported format.
8204  */
8205 int dev_change_flags(struct net_device *dev, unsigned int flags,
8206 		     struct netlink_ext_ack *extack)
8207 {
8208 	int ret;
8209 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8210 
8211 	ret = __dev_change_flags(dev, flags, extack);
8212 	if (ret < 0)
8213 		return ret;
8214 
8215 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8216 	__dev_notify_flags(dev, old_flags, changes);
8217 	return ret;
8218 }
8219 EXPORT_SYMBOL(dev_change_flags);
8220 
8221 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8222 {
8223 	const struct net_device_ops *ops = dev->netdev_ops;
8224 
8225 	if (ops->ndo_change_mtu)
8226 		return ops->ndo_change_mtu(dev, new_mtu);
8227 
8228 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8229 	WRITE_ONCE(dev->mtu, new_mtu);
8230 	return 0;
8231 }
8232 EXPORT_SYMBOL(__dev_set_mtu);
8233 
8234 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8235 		     struct netlink_ext_ack *extack)
8236 {
8237 	/* MTU must be positive, and in range */
8238 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8239 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8240 		return -EINVAL;
8241 	}
8242 
8243 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8244 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8245 		return -EINVAL;
8246 	}
8247 	return 0;
8248 }
8249 
8250 /**
8251  *	dev_set_mtu_ext - Change maximum transfer unit
8252  *	@dev: device
8253  *	@new_mtu: new transfer unit
8254  *	@extack: netlink extended ack
8255  *
8256  *	Change the maximum transfer size of the network device.
8257  */
8258 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8259 		    struct netlink_ext_ack *extack)
8260 {
8261 	int err, orig_mtu;
8262 
8263 	if (new_mtu == dev->mtu)
8264 		return 0;
8265 
8266 	err = dev_validate_mtu(dev, new_mtu, extack);
8267 	if (err)
8268 		return err;
8269 
8270 	if (!netif_device_present(dev))
8271 		return -ENODEV;
8272 
8273 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8274 	err = notifier_to_errno(err);
8275 	if (err)
8276 		return err;
8277 
8278 	orig_mtu = dev->mtu;
8279 	err = __dev_set_mtu(dev, new_mtu);
8280 
8281 	if (!err) {
8282 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8283 						   orig_mtu);
8284 		err = notifier_to_errno(err);
8285 		if (err) {
8286 			/* setting mtu back and notifying everyone again,
8287 			 * so that they have a chance to revert changes.
8288 			 */
8289 			__dev_set_mtu(dev, orig_mtu);
8290 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8291 						     new_mtu);
8292 		}
8293 	}
8294 	return err;
8295 }
8296 
8297 int dev_set_mtu(struct net_device *dev, int new_mtu)
8298 {
8299 	struct netlink_ext_ack extack;
8300 	int err;
8301 
8302 	memset(&extack, 0, sizeof(extack));
8303 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8304 	if (err && extack._msg)
8305 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8306 	return err;
8307 }
8308 EXPORT_SYMBOL(dev_set_mtu);
8309 
8310 /**
8311  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8312  *	@dev: device
8313  *	@new_len: new tx queue length
8314  */
8315 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8316 {
8317 	unsigned int orig_len = dev->tx_queue_len;
8318 	int res;
8319 
8320 	if (new_len != (unsigned int)new_len)
8321 		return -ERANGE;
8322 
8323 	if (new_len != orig_len) {
8324 		dev->tx_queue_len = new_len;
8325 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8326 		res = notifier_to_errno(res);
8327 		if (res)
8328 			goto err_rollback;
8329 		res = dev_qdisc_change_tx_queue_len(dev);
8330 		if (res)
8331 			goto err_rollback;
8332 	}
8333 
8334 	return 0;
8335 
8336 err_rollback:
8337 	netdev_err(dev, "refused to change device tx_queue_len\n");
8338 	dev->tx_queue_len = orig_len;
8339 	return res;
8340 }
8341 
8342 /**
8343  *	dev_set_group - Change group this device belongs to
8344  *	@dev: device
8345  *	@new_group: group this device should belong to
8346  */
8347 void dev_set_group(struct net_device *dev, int new_group)
8348 {
8349 	dev->group = new_group;
8350 }
8351 EXPORT_SYMBOL(dev_set_group);
8352 
8353 /**
8354  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8355  *	@dev: device
8356  *	@addr: new address
8357  *	@extack: netlink extended ack
8358  */
8359 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8360 			      struct netlink_ext_ack *extack)
8361 {
8362 	struct netdev_notifier_pre_changeaddr_info info = {
8363 		.info.dev = dev,
8364 		.info.extack = extack,
8365 		.dev_addr = addr,
8366 	};
8367 	int rc;
8368 
8369 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8370 	return notifier_to_errno(rc);
8371 }
8372 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8373 
8374 /**
8375  *	dev_set_mac_address - Change Media Access Control Address
8376  *	@dev: device
8377  *	@sa: new address
8378  *	@extack: netlink extended ack
8379  *
8380  *	Change the hardware (MAC) address of the device
8381  */
8382 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8383 			struct netlink_ext_ack *extack)
8384 {
8385 	const struct net_device_ops *ops = dev->netdev_ops;
8386 	int err;
8387 
8388 	if (!ops->ndo_set_mac_address)
8389 		return -EOPNOTSUPP;
8390 	if (sa->sa_family != dev->type)
8391 		return -EINVAL;
8392 	if (!netif_device_present(dev))
8393 		return -ENODEV;
8394 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8395 	if (err)
8396 		return err;
8397 	err = ops->ndo_set_mac_address(dev, sa);
8398 	if (err)
8399 		return err;
8400 	dev->addr_assign_type = NET_ADDR_SET;
8401 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8402 	add_device_randomness(dev->dev_addr, dev->addr_len);
8403 	return 0;
8404 }
8405 EXPORT_SYMBOL(dev_set_mac_address);
8406 
8407 static DECLARE_RWSEM(dev_addr_sem);
8408 
8409 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8410 			     struct netlink_ext_ack *extack)
8411 {
8412 	int ret;
8413 
8414 	down_write(&dev_addr_sem);
8415 	ret = dev_set_mac_address(dev, sa, extack);
8416 	up_write(&dev_addr_sem);
8417 	return ret;
8418 }
8419 EXPORT_SYMBOL(dev_set_mac_address_user);
8420 
8421 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8422 {
8423 	size_t size = sizeof(sa->sa_data);
8424 	struct net_device *dev;
8425 	int ret = 0;
8426 
8427 	down_read(&dev_addr_sem);
8428 	rcu_read_lock();
8429 
8430 	dev = dev_get_by_name_rcu(net, dev_name);
8431 	if (!dev) {
8432 		ret = -ENODEV;
8433 		goto unlock;
8434 	}
8435 	if (!dev->addr_len)
8436 		memset(sa->sa_data, 0, size);
8437 	else
8438 		memcpy(sa->sa_data, dev->dev_addr,
8439 		       min_t(size_t, size, dev->addr_len));
8440 	sa->sa_family = dev->type;
8441 
8442 unlock:
8443 	rcu_read_unlock();
8444 	up_read(&dev_addr_sem);
8445 	return ret;
8446 }
8447 EXPORT_SYMBOL(dev_get_mac_address);
8448 
8449 /**
8450  *	dev_change_carrier - Change device carrier
8451  *	@dev: device
8452  *	@new_carrier: new value
8453  *
8454  *	Change device carrier
8455  */
8456 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8457 {
8458 	const struct net_device_ops *ops = dev->netdev_ops;
8459 
8460 	if (!ops->ndo_change_carrier)
8461 		return -EOPNOTSUPP;
8462 	if (!netif_device_present(dev))
8463 		return -ENODEV;
8464 	return ops->ndo_change_carrier(dev, new_carrier);
8465 }
8466 EXPORT_SYMBOL(dev_change_carrier);
8467 
8468 /**
8469  *	dev_get_phys_port_id - Get device physical port ID
8470  *	@dev: device
8471  *	@ppid: port ID
8472  *
8473  *	Get device physical port ID
8474  */
8475 int dev_get_phys_port_id(struct net_device *dev,
8476 			 struct netdev_phys_item_id *ppid)
8477 {
8478 	const struct net_device_ops *ops = dev->netdev_ops;
8479 
8480 	if (!ops->ndo_get_phys_port_id)
8481 		return -EOPNOTSUPP;
8482 	return ops->ndo_get_phys_port_id(dev, ppid);
8483 }
8484 EXPORT_SYMBOL(dev_get_phys_port_id);
8485 
8486 /**
8487  *	dev_get_phys_port_name - Get device physical port name
8488  *	@dev: device
8489  *	@name: port name
8490  *	@len: limit of bytes to copy to name
8491  *
8492  *	Get device physical port name
8493  */
8494 int dev_get_phys_port_name(struct net_device *dev,
8495 			   char *name, size_t len)
8496 {
8497 	const struct net_device_ops *ops = dev->netdev_ops;
8498 	int err;
8499 
8500 	if (ops->ndo_get_phys_port_name) {
8501 		err = ops->ndo_get_phys_port_name(dev, name, len);
8502 		if (err != -EOPNOTSUPP)
8503 			return err;
8504 	}
8505 	return devlink_compat_phys_port_name_get(dev, name, len);
8506 }
8507 EXPORT_SYMBOL(dev_get_phys_port_name);
8508 
8509 /**
8510  *	dev_get_port_parent_id - Get the device's port parent identifier
8511  *	@dev: network device
8512  *	@ppid: pointer to a storage for the port's parent identifier
8513  *	@recurse: allow/disallow recursion to lower devices
8514  *
8515  *	Get the devices's port parent identifier
8516  */
8517 int dev_get_port_parent_id(struct net_device *dev,
8518 			   struct netdev_phys_item_id *ppid,
8519 			   bool recurse)
8520 {
8521 	const struct net_device_ops *ops = dev->netdev_ops;
8522 	struct netdev_phys_item_id first = { };
8523 	struct net_device *lower_dev;
8524 	struct list_head *iter;
8525 	int err;
8526 
8527 	if (ops->ndo_get_port_parent_id) {
8528 		err = ops->ndo_get_port_parent_id(dev, ppid);
8529 		if (err != -EOPNOTSUPP)
8530 			return err;
8531 	}
8532 
8533 	err = devlink_compat_switch_id_get(dev, ppid);
8534 	if (!recurse || err != -EOPNOTSUPP)
8535 		return err;
8536 
8537 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8538 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8539 		if (err)
8540 			break;
8541 		if (!first.id_len)
8542 			first = *ppid;
8543 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8544 			return -EOPNOTSUPP;
8545 	}
8546 
8547 	return err;
8548 }
8549 EXPORT_SYMBOL(dev_get_port_parent_id);
8550 
8551 /**
8552  *	netdev_port_same_parent_id - Indicate if two network devices have
8553  *	the same port parent identifier
8554  *	@a: first network device
8555  *	@b: second network device
8556  */
8557 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8558 {
8559 	struct netdev_phys_item_id a_id = { };
8560 	struct netdev_phys_item_id b_id = { };
8561 
8562 	if (dev_get_port_parent_id(a, &a_id, true) ||
8563 	    dev_get_port_parent_id(b, &b_id, true))
8564 		return false;
8565 
8566 	return netdev_phys_item_id_same(&a_id, &b_id);
8567 }
8568 EXPORT_SYMBOL(netdev_port_same_parent_id);
8569 
8570 /**
8571  *	dev_change_proto_down - set carrier according to proto_down.
8572  *
8573  *	@dev: device
8574  *	@proto_down: new value
8575  */
8576 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8577 {
8578 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8579 		return -EOPNOTSUPP;
8580 	if (!netif_device_present(dev))
8581 		return -ENODEV;
8582 	if (proto_down)
8583 		netif_carrier_off(dev);
8584 	else
8585 		netif_carrier_on(dev);
8586 	dev->proto_down = proto_down;
8587 	return 0;
8588 }
8589 EXPORT_SYMBOL(dev_change_proto_down);
8590 
8591 /**
8592  *	dev_change_proto_down_reason - proto down reason
8593  *
8594  *	@dev: device
8595  *	@mask: proto down mask
8596  *	@value: proto down value
8597  */
8598 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8599 				  u32 value)
8600 {
8601 	int b;
8602 
8603 	if (!mask) {
8604 		dev->proto_down_reason = value;
8605 	} else {
8606 		for_each_set_bit(b, &mask, 32) {
8607 			if (value & (1 << b))
8608 				dev->proto_down_reason |= BIT(b);
8609 			else
8610 				dev->proto_down_reason &= ~BIT(b);
8611 		}
8612 	}
8613 }
8614 EXPORT_SYMBOL(dev_change_proto_down_reason);
8615 
8616 struct bpf_xdp_link {
8617 	struct bpf_link link;
8618 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8619 	int flags;
8620 };
8621 
8622 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8623 {
8624 	if (flags & XDP_FLAGS_HW_MODE)
8625 		return XDP_MODE_HW;
8626 	if (flags & XDP_FLAGS_DRV_MODE)
8627 		return XDP_MODE_DRV;
8628 	if (flags & XDP_FLAGS_SKB_MODE)
8629 		return XDP_MODE_SKB;
8630 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8631 }
8632 
8633 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8634 {
8635 	switch (mode) {
8636 	case XDP_MODE_SKB:
8637 		return generic_xdp_install;
8638 	case XDP_MODE_DRV:
8639 	case XDP_MODE_HW:
8640 		return dev->netdev_ops->ndo_bpf;
8641 	default:
8642 		return NULL;
8643 	}
8644 }
8645 
8646 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8647 					 enum bpf_xdp_mode mode)
8648 {
8649 	return dev->xdp_state[mode].link;
8650 }
8651 
8652 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8653 				     enum bpf_xdp_mode mode)
8654 {
8655 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8656 
8657 	if (link)
8658 		return link->link.prog;
8659 	return dev->xdp_state[mode].prog;
8660 }
8661 
8662 u8 dev_xdp_prog_count(struct net_device *dev)
8663 {
8664 	u8 count = 0;
8665 	int i;
8666 
8667 	for (i = 0; i < __MAX_XDP_MODE; i++)
8668 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8669 			count++;
8670 	return count;
8671 }
8672 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8673 
8674 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8675 {
8676 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8677 
8678 	return prog ? prog->aux->id : 0;
8679 }
8680 
8681 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8682 			     struct bpf_xdp_link *link)
8683 {
8684 	dev->xdp_state[mode].link = link;
8685 	dev->xdp_state[mode].prog = NULL;
8686 }
8687 
8688 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8689 			     struct bpf_prog *prog)
8690 {
8691 	dev->xdp_state[mode].link = NULL;
8692 	dev->xdp_state[mode].prog = prog;
8693 }
8694 
8695 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8696 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8697 			   u32 flags, struct bpf_prog *prog)
8698 {
8699 	struct netdev_bpf xdp;
8700 	int err;
8701 
8702 	memset(&xdp, 0, sizeof(xdp));
8703 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8704 	xdp.extack = extack;
8705 	xdp.flags = flags;
8706 	xdp.prog = prog;
8707 
8708 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8709 	 * "moved" into driver), so they don't increment it on their own, but
8710 	 * they do decrement refcnt when program is detached or replaced.
8711 	 * Given net_device also owns link/prog, we need to bump refcnt here
8712 	 * to prevent drivers from underflowing it.
8713 	 */
8714 	if (prog)
8715 		bpf_prog_inc(prog);
8716 	err = bpf_op(dev, &xdp);
8717 	if (err) {
8718 		if (prog)
8719 			bpf_prog_put(prog);
8720 		return err;
8721 	}
8722 
8723 	if (mode != XDP_MODE_HW)
8724 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8725 
8726 	return 0;
8727 }
8728 
8729 static void dev_xdp_uninstall(struct net_device *dev)
8730 {
8731 	struct bpf_xdp_link *link;
8732 	struct bpf_prog *prog;
8733 	enum bpf_xdp_mode mode;
8734 	bpf_op_t bpf_op;
8735 
8736 	ASSERT_RTNL();
8737 
8738 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8739 		prog = dev_xdp_prog(dev, mode);
8740 		if (!prog)
8741 			continue;
8742 
8743 		bpf_op = dev_xdp_bpf_op(dev, mode);
8744 		if (!bpf_op)
8745 			continue;
8746 
8747 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8748 
8749 		/* auto-detach link from net device */
8750 		link = dev_xdp_link(dev, mode);
8751 		if (link)
8752 			link->dev = NULL;
8753 		else
8754 			bpf_prog_put(prog);
8755 
8756 		dev_xdp_set_link(dev, mode, NULL);
8757 	}
8758 }
8759 
8760 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8761 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8762 			  struct bpf_prog *old_prog, u32 flags)
8763 {
8764 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
8765 	struct bpf_prog *cur_prog;
8766 	struct net_device *upper;
8767 	struct list_head *iter;
8768 	enum bpf_xdp_mode mode;
8769 	bpf_op_t bpf_op;
8770 	int err;
8771 
8772 	ASSERT_RTNL();
8773 
8774 	/* either link or prog attachment, never both */
8775 	if (link && (new_prog || old_prog))
8776 		return -EINVAL;
8777 	/* link supports only XDP mode flags */
8778 	if (link && (flags & ~XDP_FLAGS_MODES)) {
8779 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8780 		return -EINVAL;
8781 	}
8782 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
8783 	if (num_modes > 1) {
8784 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8785 		return -EINVAL;
8786 	}
8787 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
8788 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
8789 		NL_SET_ERR_MSG(extack,
8790 			       "More than one program loaded, unset mode is ambiguous");
8791 		return -EINVAL;
8792 	}
8793 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8794 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8795 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8796 		return -EINVAL;
8797 	}
8798 
8799 	mode = dev_xdp_mode(dev, flags);
8800 	/* can't replace attached link */
8801 	if (dev_xdp_link(dev, mode)) {
8802 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8803 		return -EBUSY;
8804 	}
8805 
8806 	/* don't allow if an upper device already has a program */
8807 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
8808 		if (dev_xdp_prog_count(upper) > 0) {
8809 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
8810 			return -EEXIST;
8811 		}
8812 	}
8813 
8814 	cur_prog = dev_xdp_prog(dev, mode);
8815 	/* can't replace attached prog with link */
8816 	if (link && cur_prog) {
8817 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8818 		return -EBUSY;
8819 	}
8820 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8821 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
8822 		return -EEXIST;
8823 	}
8824 
8825 	/* put effective new program into new_prog */
8826 	if (link)
8827 		new_prog = link->link.prog;
8828 
8829 	if (new_prog) {
8830 		bool offload = mode == XDP_MODE_HW;
8831 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8832 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
8833 
8834 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8835 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8836 			return -EBUSY;
8837 		}
8838 		if (!offload && dev_xdp_prog(dev, other_mode)) {
8839 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8840 			return -EEXIST;
8841 		}
8842 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8843 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8844 			return -EINVAL;
8845 		}
8846 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8847 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8848 			return -EINVAL;
8849 		}
8850 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8851 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8852 			return -EINVAL;
8853 		}
8854 	}
8855 
8856 	/* don't call drivers if the effective program didn't change */
8857 	if (new_prog != cur_prog) {
8858 		bpf_op = dev_xdp_bpf_op(dev, mode);
8859 		if (!bpf_op) {
8860 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8861 			return -EOPNOTSUPP;
8862 		}
8863 
8864 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8865 		if (err)
8866 			return err;
8867 	}
8868 
8869 	if (link)
8870 		dev_xdp_set_link(dev, mode, link);
8871 	else
8872 		dev_xdp_set_prog(dev, mode, new_prog);
8873 	if (cur_prog)
8874 		bpf_prog_put(cur_prog);
8875 
8876 	return 0;
8877 }
8878 
8879 static int dev_xdp_attach_link(struct net_device *dev,
8880 			       struct netlink_ext_ack *extack,
8881 			       struct bpf_xdp_link *link)
8882 {
8883 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8884 }
8885 
8886 static int dev_xdp_detach_link(struct net_device *dev,
8887 			       struct netlink_ext_ack *extack,
8888 			       struct bpf_xdp_link *link)
8889 {
8890 	enum bpf_xdp_mode mode;
8891 	bpf_op_t bpf_op;
8892 
8893 	ASSERT_RTNL();
8894 
8895 	mode = dev_xdp_mode(dev, link->flags);
8896 	if (dev_xdp_link(dev, mode) != link)
8897 		return -EINVAL;
8898 
8899 	bpf_op = dev_xdp_bpf_op(dev, mode);
8900 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8901 	dev_xdp_set_link(dev, mode, NULL);
8902 	return 0;
8903 }
8904 
8905 static void bpf_xdp_link_release(struct bpf_link *link)
8906 {
8907 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8908 
8909 	rtnl_lock();
8910 
8911 	/* if racing with net_device's tear down, xdp_link->dev might be
8912 	 * already NULL, in which case link was already auto-detached
8913 	 */
8914 	if (xdp_link->dev) {
8915 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
8916 		xdp_link->dev = NULL;
8917 	}
8918 
8919 	rtnl_unlock();
8920 }
8921 
8922 static int bpf_xdp_link_detach(struct bpf_link *link)
8923 {
8924 	bpf_xdp_link_release(link);
8925 	return 0;
8926 }
8927 
8928 static void bpf_xdp_link_dealloc(struct bpf_link *link)
8929 {
8930 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8931 
8932 	kfree(xdp_link);
8933 }
8934 
8935 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
8936 				     struct seq_file *seq)
8937 {
8938 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8939 	u32 ifindex = 0;
8940 
8941 	rtnl_lock();
8942 	if (xdp_link->dev)
8943 		ifindex = xdp_link->dev->ifindex;
8944 	rtnl_unlock();
8945 
8946 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
8947 }
8948 
8949 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
8950 				       struct bpf_link_info *info)
8951 {
8952 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8953 	u32 ifindex = 0;
8954 
8955 	rtnl_lock();
8956 	if (xdp_link->dev)
8957 		ifindex = xdp_link->dev->ifindex;
8958 	rtnl_unlock();
8959 
8960 	info->xdp.ifindex = ifindex;
8961 	return 0;
8962 }
8963 
8964 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
8965 			       struct bpf_prog *old_prog)
8966 {
8967 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8968 	enum bpf_xdp_mode mode;
8969 	bpf_op_t bpf_op;
8970 	int err = 0;
8971 
8972 	rtnl_lock();
8973 
8974 	/* link might have been auto-released already, so fail */
8975 	if (!xdp_link->dev) {
8976 		err = -ENOLINK;
8977 		goto out_unlock;
8978 	}
8979 
8980 	if (old_prog && link->prog != old_prog) {
8981 		err = -EPERM;
8982 		goto out_unlock;
8983 	}
8984 	old_prog = link->prog;
8985 	if (old_prog->type != new_prog->type ||
8986 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
8987 		err = -EINVAL;
8988 		goto out_unlock;
8989 	}
8990 
8991 	if (old_prog == new_prog) {
8992 		/* no-op, don't disturb drivers */
8993 		bpf_prog_put(new_prog);
8994 		goto out_unlock;
8995 	}
8996 
8997 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
8998 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
8999 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9000 			      xdp_link->flags, new_prog);
9001 	if (err)
9002 		goto out_unlock;
9003 
9004 	old_prog = xchg(&link->prog, new_prog);
9005 	bpf_prog_put(old_prog);
9006 
9007 out_unlock:
9008 	rtnl_unlock();
9009 	return err;
9010 }
9011 
9012 static const struct bpf_link_ops bpf_xdp_link_lops = {
9013 	.release = bpf_xdp_link_release,
9014 	.dealloc = bpf_xdp_link_dealloc,
9015 	.detach = bpf_xdp_link_detach,
9016 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9017 	.fill_link_info = bpf_xdp_link_fill_link_info,
9018 	.update_prog = bpf_xdp_link_update,
9019 };
9020 
9021 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9022 {
9023 	struct net *net = current->nsproxy->net_ns;
9024 	struct bpf_link_primer link_primer;
9025 	struct bpf_xdp_link *link;
9026 	struct net_device *dev;
9027 	int err, fd;
9028 
9029 	rtnl_lock();
9030 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9031 	if (!dev) {
9032 		rtnl_unlock();
9033 		return -EINVAL;
9034 	}
9035 
9036 	link = kzalloc(sizeof(*link), GFP_USER);
9037 	if (!link) {
9038 		err = -ENOMEM;
9039 		goto unlock;
9040 	}
9041 
9042 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9043 	link->dev = dev;
9044 	link->flags = attr->link_create.flags;
9045 
9046 	err = bpf_link_prime(&link->link, &link_primer);
9047 	if (err) {
9048 		kfree(link);
9049 		goto unlock;
9050 	}
9051 
9052 	err = dev_xdp_attach_link(dev, NULL, link);
9053 	rtnl_unlock();
9054 
9055 	if (err) {
9056 		link->dev = NULL;
9057 		bpf_link_cleanup(&link_primer);
9058 		goto out_put_dev;
9059 	}
9060 
9061 	fd = bpf_link_settle(&link_primer);
9062 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9063 	dev_put(dev);
9064 	return fd;
9065 
9066 unlock:
9067 	rtnl_unlock();
9068 
9069 out_put_dev:
9070 	dev_put(dev);
9071 	return err;
9072 }
9073 
9074 /**
9075  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9076  *	@dev: device
9077  *	@extack: netlink extended ack
9078  *	@fd: new program fd or negative value to clear
9079  *	@expected_fd: old program fd that userspace expects to replace or clear
9080  *	@flags: xdp-related flags
9081  *
9082  *	Set or clear a bpf program for a device
9083  */
9084 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9085 		      int fd, int expected_fd, u32 flags)
9086 {
9087 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9088 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9089 	int err;
9090 
9091 	ASSERT_RTNL();
9092 
9093 	if (fd >= 0) {
9094 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9095 						 mode != XDP_MODE_SKB);
9096 		if (IS_ERR(new_prog))
9097 			return PTR_ERR(new_prog);
9098 	}
9099 
9100 	if (expected_fd >= 0) {
9101 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9102 						 mode != XDP_MODE_SKB);
9103 		if (IS_ERR(old_prog)) {
9104 			err = PTR_ERR(old_prog);
9105 			old_prog = NULL;
9106 			goto err_out;
9107 		}
9108 	}
9109 
9110 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9111 
9112 err_out:
9113 	if (err && new_prog)
9114 		bpf_prog_put(new_prog);
9115 	if (old_prog)
9116 		bpf_prog_put(old_prog);
9117 	return err;
9118 }
9119 
9120 /**
9121  *	dev_new_index	-	allocate an ifindex
9122  *	@net: the applicable net namespace
9123  *
9124  *	Returns a suitable unique value for a new device interface
9125  *	number.  The caller must hold the rtnl semaphore or the
9126  *	dev_base_lock to be sure it remains unique.
9127  */
9128 static int dev_new_index(struct net *net)
9129 {
9130 	int ifindex = net->ifindex;
9131 
9132 	for (;;) {
9133 		if (++ifindex <= 0)
9134 			ifindex = 1;
9135 		if (!__dev_get_by_index(net, ifindex))
9136 			return net->ifindex = ifindex;
9137 	}
9138 }
9139 
9140 /* Delayed registration/unregisteration */
9141 static LIST_HEAD(net_todo_list);
9142 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9143 
9144 static void net_set_todo(struct net_device *dev)
9145 {
9146 	list_add_tail(&dev->todo_list, &net_todo_list);
9147 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9148 }
9149 
9150 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9151 	struct net_device *upper, netdev_features_t features)
9152 {
9153 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9154 	netdev_features_t feature;
9155 	int feature_bit;
9156 
9157 	for_each_netdev_feature(upper_disables, feature_bit) {
9158 		feature = __NETIF_F_BIT(feature_bit);
9159 		if (!(upper->wanted_features & feature)
9160 		    && (features & feature)) {
9161 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9162 				   &feature, upper->name);
9163 			features &= ~feature;
9164 		}
9165 	}
9166 
9167 	return features;
9168 }
9169 
9170 static void netdev_sync_lower_features(struct net_device *upper,
9171 	struct net_device *lower, netdev_features_t features)
9172 {
9173 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9174 	netdev_features_t feature;
9175 	int feature_bit;
9176 
9177 	for_each_netdev_feature(upper_disables, feature_bit) {
9178 		feature = __NETIF_F_BIT(feature_bit);
9179 		if (!(features & feature) && (lower->features & feature)) {
9180 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9181 				   &feature, lower->name);
9182 			lower->wanted_features &= ~feature;
9183 			__netdev_update_features(lower);
9184 
9185 			if (unlikely(lower->features & feature))
9186 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9187 					    &feature, lower->name);
9188 			else
9189 				netdev_features_change(lower);
9190 		}
9191 	}
9192 }
9193 
9194 static netdev_features_t netdev_fix_features(struct net_device *dev,
9195 	netdev_features_t features)
9196 {
9197 	/* Fix illegal checksum combinations */
9198 	if ((features & NETIF_F_HW_CSUM) &&
9199 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9200 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9201 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9202 	}
9203 
9204 	/* TSO requires that SG is present as well. */
9205 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9206 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9207 		features &= ~NETIF_F_ALL_TSO;
9208 	}
9209 
9210 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9211 					!(features & NETIF_F_IP_CSUM)) {
9212 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9213 		features &= ~NETIF_F_TSO;
9214 		features &= ~NETIF_F_TSO_ECN;
9215 	}
9216 
9217 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9218 					 !(features & NETIF_F_IPV6_CSUM)) {
9219 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9220 		features &= ~NETIF_F_TSO6;
9221 	}
9222 
9223 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9224 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9225 		features &= ~NETIF_F_TSO_MANGLEID;
9226 
9227 	/* TSO ECN requires that TSO is present as well. */
9228 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9229 		features &= ~NETIF_F_TSO_ECN;
9230 
9231 	/* Software GSO depends on SG. */
9232 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9233 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9234 		features &= ~NETIF_F_GSO;
9235 	}
9236 
9237 	/* GSO partial features require GSO partial be set */
9238 	if ((features & dev->gso_partial_features) &&
9239 	    !(features & NETIF_F_GSO_PARTIAL)) {
9240 		netdev_dbg(dev,
9241 			   "Dropping partially supported GSO features since no GSO partial.\n");
9242 		features &= ~dev->gso_partial_features;
9243 	}
9244 
9245 	if (!(features & NETIF_F_RXCSUM)) {
9246 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9247 		 * successfully merged by hardware must also have the
9248 		 * checksum verified by hardware.  If the user does not
9249 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9250 		 */
9251 		if (features & NETIF_F_GRO_HW) {
9252 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9253 			features &= ~NETIF_F_GRO_HW;
9254 		}
9255 	}
9256 
9257 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9258 	if (features & NETIF_F_RXFCS) {
9259 		if (features & NETIF_F_LRO) {
9260 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9261 			features &= ~NETIF_F_LRO;
9262 		}
9263 
9264 		if (features & NETIF_F_GRO_HW) {
9265 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9266 			features &= ~NETIF_F_GRO_HW;
9267 		}
9268 	}
9269 
9270 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9271 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9272 		features &= ~NETIF_F_LRO;
9273 	}
9274 
9275 	if (features & NETIF_F_HW_TLS_TX) {
9276 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9277 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9278 		bool hw_csum = features & NETIF_F_HW_CSUM;
9279 
9280 		if (!ip_csum && !hw_csum) {
9281 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9282 			features &= ~NETIF_F_HW_TLS_TX;
9283 		}
9284 	}
9285 
9286 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9287 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9288 		features &= ~NETIF_F_HW_TLS_RX;
9289 	}
9290 
9291 	return features;
9292 }
9293 
9294 int __netdev_update_features(struct net_device *dev)
9295 {
9296 	struct net_device *upper, *lower;
9297 	netdev_features_t features;
9298 	struct list_head *iter;
9299 	int err = -1;
9300 
9301 	ASSERT_RTNL();
9302 
9303 	features = netdev_get_wanted_features(dev);
9304 
9305 	if (dev->netdev_ops->ndo_fix_features)
9306 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9307 
9308 	/* driver might be less strict about feature dependencies */
9309 	features = netdev_fix_features(dev, features);
9310 
9311 	/* some features can't be enabled if they're off on an upper device */
9312 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9313 		features = netdev_sync_upper_features(dev, upper, features);
9314 
9315 	if (dev->features == features)
9316 		goto sync_lower;
9317 
9318 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9319 		&dev->features, &features);
9320 
9321 	if (dev->netdev_ops->ndo_set_features)
9322 		err = dev->netdev_ops->ndo_set_features(dev, features);
9323 	else
9324 		err = 0;
9325 
9326 	if (unlikely(err < 0)) {
9327 		netdev_err(dev,
9328 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9329 			err, &features, &dev->features);
9330 		/* return non-0 since some features might have changed and
9331 		 * it's better to fire a spurious notification than miss it
9332 		 */
9333 		return -1;
9334 	}
9335 
9336 sync_lower:
9337 	/* some features must be disabled on lower devices when disabled
9338 	 * on an upper device (think: bonding master or bridge)
9339 	 */
9340 	netdev_for_each_lower_dev(dev, lower, iter)
9341 		netdev_sync_lower_features(dev, lower, features);
9342 
9343 	if (!err) {
9344 		netdev_features_t diff = features ^ dev->features;
9345 
9346 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9347 			/* udp_tunnel_{get,drop}_rx_info both need
9348 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9349 			 * device, or they won't do anything.
9350 			 * Thus we need to update dev->features
9351 			 * *before* calling udp_tunnel_get_rx_info,
9352 			 * but *after* calling udp_tunnel_drop_rx_info.
9353 			 */
9354 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9355 				dev->features = features;
9356 				udp_tunnel_get_rx_info(dev);
9357 			} else {
9358 				udp_tunnel_drop_rx_info(dev);
9359 			}
9360 		}
9361 
9362 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9363 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9364 				dev->features = features;
9365 				err |= vlan_get_rx_ctag_filter_info(dev);
9366 			} else {
9367 				vlan_drop_rx_ctag_filter_info(dev);
9368 			}
9369 		}
9370 
9371 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9372 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9373 				dev->features = features;
9374 				err |= vlan_get_rx_stag_filter_info(dev);
9375 			} else {
9376 				vlan_drop_rx_stag_filter_info(dev);
9377 			}
9378 		}
9379 
9380 		dev->features = features;
9381 	}
9382 
9383 	return err < 0 ? 0 : 1;
9384 }
9385 
9386 /**
9387  *	netdev_update_features - recalculate device features
9388  *	@dev: the device to check
9389  *
9390  *	Recalculate dev->features set and send notifications if it
9391  *	has changed. Should be called after driver or hardware dependent
9392  *	conditions might have changed that influence the features.
9393  */
9394 void netdev_update_features(struct net_device *dev)
9395 {
9396 	if (__netdev_update_features(dev))
9397 		netdev_features_change(dev);
9398 }
9399 EXPORT_SYMBOL(netdev_update_features);
9400 
9401 /**
9402  *	netdev_change_features - recalculate device features
9403  *	@dev: the device to check
9404  *
9405  *	Recalculate dev->features set and send notifications even
9406  *	if they have not changed. Should be called instead of
9407  *	netdev_update_features() if also dev->vlan_features might
9408  *	have changed to allow the changes to be propagated to stacked
9409  *	VLAN devices.
9410  */
9411 void netdev_change_features(struct net_device *dev)
9412 {
9413 	__netdev_update_features(dev);
9414 	netdev_features_change(dev);
9415 }
9416 EXPORT_SYMBOL(netdev_change_features);
9417 
9418 /**
9419  *	netif_stacked_transfer_operstate -	transfer operstate
9420  *	@rootdev: the root or lower level device to transfer state from
9421  *	@dev: the device to transfer operstate to
9422  *
9423  *	Transfer operational state from root to device. This is normally
9424  *	called when a stacking relationship exists between the root
9425  *	device and the device(a leaf device).
9426  */
9427 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9428 					struct net_device *dev)
9429 {
9430 	if (rootdev->operstate == IF_OPER_DORMANT)
9431 		netif_dormant_on(dev);
9432 	else
9433 		netif_dormant_off(dev);
9434 
9435 	if (rootdev->operstate == IF_OPER_TESTING)
9436 		netif_testing_on(dev);
9437 	else
9438 		netif_testing_off(dev);
9439 
9440 	if (netif_carrier_ok(rootdev))
9441 		netif_carrier_on(dev);
9442 	else
9443 		netif_carrier_off(dev);
9444 }
9445 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9446 
9447 static int netif_alloc_rx_queues(struct net_device *dev)
9448 {
9449 	unsigned int i, count = dev->num_rx_queues;
9450 	struct netdev_rx_queue *rx;
9451 	size_t sz = count * sizeof(*rx);
9452 	int err = 0;
9453 
9454 	BUG_ON(count < 1);
9455 
9456 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9457 	if (!rx)
9458 		return -ENOMEM;
9459 
9460 	dev->_rx = rx;
9461 
9462 	for (i = 0; i < count; i++) {
9463 		rx[i].dev = dev;
9464 
9465 		/* XDP RX-queue setup */
9466 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9467 		if (err < 0)
9468 			goto err_rxq_info;
9469 	}
9470 	return 0;
9471 
9472 err_rxq_info:
9473 	/* Rollback successful reg's and free other resources */
9474 	while (i--)
9475 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9476 	kvfree(dev->_rx);
9477 	dev->_rx = NULL;
9478 	return err;
9479 }
9480 
9481 static void netif_free_rx_queues(struct net_device *dev)
9482 {
9483 	unsigned int i, count = dev->num_rx_queues;
9484 
9485 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9486 	if (!dev->_rx)
9487 		return;
9488 
9489 	for (i = 0; i < count; i++)
9490 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9491 
9492 	kvfree(dev->_rx);
9493 }
9494 
9495 static void netdev_init_one_queue(struct net_device *dev,
9496 				  struct netdev_queue *queue, void *_unused)
9497 {
9498 	/* Initialize queue lock */
9499 	spin_lock_init(&queue->_xmit_lock);
9500 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9501 	queue->xmit_lock_owner = -1;
9502 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9503 	queue->dev = dev;
9504 #ifdef CONFIG_BQL
9505 	dql_init(&queue->dql, HZ);
9506 #endif
9507 }
9508 
9509 static void netif_free_tx_queues(struct net_device *dev)
9510 {
9511 	kvfree(dev->_tx);
9512 }
9513 
9514 static int netif_alloc_netdev_queues(struct net_device *dev)
9515 {
9516 	unsigned int count = dev->num_tx_queues;
9517 	struct netdev_queue *tx;
9518 	size_t sz = count * sizeof(*tx);
9519 
9520 	if (count < 1 || count > 0xffff)
9521 		return -EINVAL;
9522 
9523 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9524 	if (!tx)
9525 		return -ENOMEM;
9526 
9527 	dev->_tx = tx;
9528 
9529 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9530 	spin_lock_init(&dev->tx_global_lock);
9531 
9532 	return 0;
9533 }
9534 
9535 void netif_tx_stop_all_queues(struct net_device *dev)
9536 {
9537 	unsigned int i;
9538 
9539 	for (i = 0; i < dev->num_tx_queues; i++) {
9540 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9541 
9542 		netif_tx_stop_queue(txq);
9543 	}
9544 }
9545 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9546 
9547 /**
9548  *	register_netdevice	- register a network device
9549  *	@dev: device to register
9550  *
9551  *	Take a completed network device structure and add it to the kernel
9552  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9553  *	chain. 0 is returned on success. A negative errno code is returned
9554  *	on a failure to set up the device, or if the name is a duplicate.
9555  *
9556  *	Callers must hold the rtnl semaphore. You may want
9557  *	register_netdev() instead of this.
9558  *
9559  *	BUGS:
9560  *	The locking appears insufficient to guarantee two parallel registers
9561  *	will not get the same name.
9562  */
9563 
9564 int register_netdevice(struct net_device *dev)
9565 {
9566 	int ret;
9567 	struct net *net = dev_net(dev);
9568 
9569 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9570 		     NETDEV_FEATURE_COUNT);
9571 	BUG_ON(dev_boot_phase);
9572 	ASSERT_RTNL();
9573 
9574 	might_sleep();
9575 
9576 	/* When net_device's are persistent, this will be fatal. */
9577 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9578 	BUG_ON(!net);
9579 
9580 	ret = ethtool_check_ops(dev->ethtool_ops);
9581 	if (ret)
9582 		return ret;
9583 
9584 	spin_lock_init(&dev->addr_list_lock);
9585 	netdev_set_addr_lockdep_class(dev);
9586 
9587 	ret = dev_get_valid_name(net, dev, dev->name);
9588 	if (ret < 0)
9589 		goto out;
9590 
9591 	ret = -ENOMEM;
9592 	dev->name_node = netdev_name_node_head_alloc(dev);
9593 	if (!dev->name_node)
9594 		goto out;
9595 
9596 	/* Init, if this function is available */
9597 	if (dev->netdev_ops->ndo_init) {
9598 		ret = dev->netdev_ops->ndo_init(dev);
9599 		if (ret) {
9600 			if (ret > 0)
9601 				ret = -EIO;
9602 			goto err_free_name;
9603 		}
9604 	}
9605 
9606 	if (((dev->hw_features | dev->features) &
9607 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9608 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9609 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9610 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9611 		ret = -EINVAL;
9612 		goto err_uninit;
9613 	}
9614 
9615 	ret = -EBUSY;
9616 	if (!dev->ifindex)
9617 		dev->ifindex = dev_new_index(net);
9618 	else if (__dev_get_by_index(net, dev->ifindex))
9619 		goto err_uninit;
9620 
9621 	/* Transfer changeable features to wanted_features and enable
9622 	 * software offloads (GSO and GRO).
9623 	 */
9624 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9625 	dev->features |= NETIF_F_SOFT_FEATURES;
9626 
9627 	if (dev->udp_tunnel_nic_info) {
9628 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9629 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9630 	}
9631 
9632 	dev->wanted_features = dev->features & dev->hw_features;
9633 
9634 	if (!(dev->flags & IFF_LOOPBACK))
9635 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9636 
9637 	/* If IPv4 TCP segmentation offload is supported we should also
9638 	 * allow the device to enable segmenting the frame with the option
9639 	 * of ignoring a static IP ID value.  This doesn't enable the
9640 	 * feature itself but allows the user to enable it later.
9641 	 */
9642 	if (dev->hw_features & NETIF_F_TSO)
9643 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9644 	if (dev->vlan_features & NETIF_F_TSO)
9645 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9646 	if (dev->mpls_features & NETIF_F_TSO)
9647 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9648 	if (dev->hw_enc_features & NETIF_F_TSO)
9649 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9650 
9651 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9652 	 */
9653 	dev->vlan_features |= NETIF_F_HIGHDMA;
9654 
9655 	/* Make NETIF_F_SG inheritable to tunnel devices.
9656 	 */
9657 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9658 
9659 	/* Make NETIF_F_SG inheritable to MPLS.
9660 	 */
9661 	dev->mpls_features |= NETIF_F_SG;
9662 
9663 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9664 	ret = notifier_to_errno(ret);
9665 	if (ret)
9666 		goto err_uninit;
9667 
9668 	ret = netdev_register_kobject(dev);
9669 	if (ret) {
9670 		dev->reg_state = NETREG_UNREGISTERED;
9671 		goto err_uninit;
9672 	}
9673 	dev->reg_state = NETREG_REGISTERED;
9674 
9675 	__netdev_update_features(dev);
9676 
9677 	/*
9678 	 *	Default initial state at registry is that the
9679 	 *	device is present.
9680 	 */
9681 
9682 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9683 
9684 	linkwatch_init_dev(dev);
9685 
9686 	dev_init_scheduler(dev);
9687 
9688 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9689 	list_netdevice(dev);
9690 
9691 	add_device_randomness(dev->dev_addr, dev->addr_len);
9692 
9693 	/* If the device has permanent device address, driver should
9694 	 * set dev_addr and also addr_assign_type should be set to
9695 	 * NET_ADDR_PERM (default value).
9696 	 */
9697 	if (dev->addr_assign_type == NET_ADDR_PERM)
9698 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9699 
9700 	/* Notify protocols, that a new device appeared. */
9701 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9702 	ret = notifier_to_errno(ret);
9703 	if (ret) {
9704 		/* Expect explicit free_netdev() on failure */
9705 		dev->needs_free_netdev = false;
9706 		unregister_netdevice_queue(dev, NULL);
9707 		goto out;
9708 	}
9709 	/*
9710 	 *	Prevent userspace races by waiting until the network
9711 	 *	device is fully setup before sending notifications.
9712 	 */
9713 	if (!dev->rtnl_link_ops ||
9714 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9715 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9716 
9717 out:
9718 	return ret;
9719 
9720 err_uninit:
9721 	if (dev->netdev_ops->ndo_uninit)
9722 		dev->netdev_ops->ndo_uninit(dev);
9723 	if (dev->priv_destructor)
9724 		dev->priv_destructor(dev);
9725 err_free_name:
9726 	netdev_name_node_free(dev->name_node);
9727 	goto out;
9728 }
9729 EXPORT_SYMBOL(register_netdevice);
9730 
9731 /**
9732  *	init_dummy_netdev	- init a dummy network device for NAPI
9733  *	@dev: device to init
9734  *
9735  *	This takes a network device structure and initialize the minimum
9736  *	amount of fields so it can be used to schedule NAPI polls without
9737  *	registering a full blown interface. This is to be used by drivers
9738  *	that need to tie several hardware interfaces to a single NAPI
9739  *	poll scheduler due to HW limitations.
9740  */
9741 int init_dummy_netdev(struct net_device *dev)
9742 {
9743 	/* Clear everything. Note we don't initialize spinlocks
9744 	 * are they aren't supposed to be taken by any of the
9745 	 * NAPI code and this dummy netdev is supposed to be
9746 	 * only ever used for NAPI polls
9747 	 */
9748 	memset(dev, 0, sizeof(struct net_device));
9749 
9750 	/* make sure we BUG if trying to hit standard
9751 	 * register/unregister code path
9752 	 */
9753 	dev->reg_state = NETREG_DUMMY;
9754 
9755 	/* NAPI wants this */
9756 	INIT_LIST_HEAD(&dev->napi_list);
9757 
9758 	/* a dummy interface is started by default */
9759 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9760 	set_bit(__LINK_STATE_START, &dev->state);
9761 
9762 	/* napi_busy_loop stats accounting wants this */
9763 	dev_net_set(dev, &init_net);
9764 
9765 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9766 	 * because users of this 'device' dont need to change
9767 	 * its refcount.
9768 	 */
9769 
9770 	return 0;
9771 }
9772 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9773 
9774 
9775 /**
9776  *	register_netdev	- register a network device
9777  *	@dev: device to register
9778  *
9779  *	Take a completed network device structure and add it to the kernel
9780  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9781  *	chain. 0 is returned on success. A negative errno code is returned
9782  *	on a failure to set up the device, or if the name is a duplicate.
9783  *
9784  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9785  *	and expands the device name if you passed a format string to
9786  *	alloc_netdev.
9787  */
9788 int register_netdev(struct net_device *dev)
9789 {
9790 	int err;
9791 
9792 	if (rtnl_lock_killable())
9793 		return -EINTR;
9794 	err = register_netdevice(dev);
9795 	rtnl_unlock();
9796 	return err;
9797 }
9798 EXPORT_SYMBOL(register_netdev);
9799 
9800 int netdev_refcnt_read(const struct net_device *dev)
9801 {
9802 #ifdef CONFIG_PCPU_DEV_REFCNT
9803 	int i, refcnt = 0;
9804 
9805 	for_each_possible_cpu(i)
9806 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9807 	return refcnt;
9808 #else
9809 	return refcount_read(&dev->dev_refcnt);
9810 #endif
9811 }
9812 EXPORT_SYMBOL(netdev_refcnt_read);
9813 
9814 int netdev_unregister_timeout_secs __read_mostly = 10;
9815 
9816 #define WAIT_REFS_MIN_MSECS 1
9817 #define WAIT_REFS_MAX_MSECS 250
9818 /**
9819  * netdev_wait_allrefs_any - wait until all references are gone.
9820  * @list: list of net_devices to wait on
9821  *
9822  * This is called when unregistering network devices.
9823  *
9824  * Any protocol or device that holds a reference should register
9825  * for netdevice notification, and cleanup and put back the
9826  * reference if they receive an UNREGISTER event.
9827  * We can get stuck here if buggy protocols don't correctly
9828  * call dev_put.
9829  */
9830 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
9831 {
9832 	unsigned long rebroadcast_time, warning_time;
9833 	struct net_device *dev;
9834 	int wait = 0;
9835 
9836 	rebroadcast_time = warning_time = jiffies;
9837 
9838 	list_for_each_entry(dev, list, todo_list)
9839 		if (netdev_refcnt_read(dev) == 1)
9840 			return dev;
9841 
9842 	while (true) {
9843 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9844 			rtnl_lock();
9845 
9846 			/* Rebroadcast unregister notification */
9847 			list_for_each_entry(dev, list, todo_list)
9848 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9849 
9850 			__rtnl_unlock();
9851 			rcu_barrier();
9852 			rtnl_lock();
9853 
9854 			list_for_each_entry(dev, list, todo_list)
9855 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9856 					     &dev->state)) {
9857 					/* We must not have linkwatch events
9858 					 * pending on unregister. If this
9859 					 * happens, we simply run the queue
9860 					 * unscheduled, resulting in a noop
9861 					 * for this device.
9862 					 */
9863 					linkwatch_run_queue();
9864 					break;
9865 				}
9866 
9867 			__rtnl_unlock();
9868 
9869 			rebroadcast_time = jiffies;
9870 		}
9871 
9872 		if (!wait) {
9873 			rcu_barrier();
9874 			wait = WAIT_REFS_MIN_MSECS;
9875 		} else {
9876 			msleep(wait);
9877 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
9878 		}
9879 
9880 		list_for_each_entry(dev, list, todo_list)
9881 			if (netdev_refcnt_read(dev) == 1)
9882 				return dev;
9883 
9884 		if (time_after(jiffies, warning_time +
9885 			       netdev_unregister_timeout_secs * HZ)) {
9886 			list_for_each_entry(dev, list, todo_list) {
9887 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9888 					 dev->name, netdev_refcnt_read(dev));
9889 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
9890 			}
9891 
9892 			warning_time = jiffies;
9893 		}
9894 	}
9895 }
9896 
9897 /* The sequence is:
9898  *
9899  *	rtnl_lock();
9900  *	...
9901  *	register_netdevice(x1);
9902  *	register_netdevice(x2);
9903  *	...
9904  *	unregister_netdevice(y1);
9905  *	unregister_netdevice(y2);
9906  *      ...
9907  *	rtnl_unlock();
9908  *	free_netdev(y1);
9909  *	free_netdev(y2);
9910  *
9911  * We are invoked by rtnl_unlock().
9912  * This allows us to deal with problems:
9913  * 1) We can delete sysfs objects which invoke hotplug
9914  *    without deadlocking with linkwatch via keventd.
9915  * 2) Since we run with the RTNL semaphore not held, we can sleep
9916  *    safely in order to wait for the netdev refcnt to drop to zero.
9917  *
9918  * We must not return until all unregister events added during
9919  * the interval the lock was held have been completed.
9920  */
9921 void netdev_run_todo(void)
9922 {
9923 	struct net_device *dev, *tmp;
9924 	struct list_head list;
9925 #ifdef CONFIG_LOCKDEP
9926 	struct list_head unlink_list;
9927 
9928 	list_replace_init(&net_unlink_list, &unlink_list);
9929 
9930 	while (!list_empty(&unlink_list)) {
9931 		struct net_device *dev = list_first_entry(&unlink_list,
9932 							  struct net_device,
9933 							  unlink_list);
9934 		list_del_init(&dev->unlink_list);
9935 		dev->nested_level = dev->lower_level - 1;
9936 	}
9937 #endif
9938 
9939 	/* Snapshot list, allow later requests */
9940 	list_replace_init(&net_todo_list, &list);
9941 
9942 	__rtnl_unlock();
9943 
9944 	/* Wait for rcu callbacks to finish before next phase */
9945 	if (!list_empty(&list))
9946 		rcu_barrier();
9947 
9948 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
9949 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9950 			netdev_WARN(dev, "run_todo but not unregistering\n");
9951 			list_del(&dev->todo_list);
9952 			continue;
9953 		}
9954 
9955 		dev->reg_state = NETREG_UNREGISTERED;
9956 		linkwatch_forget_dev(dev);
9957 	}
9958 
9959 	while (!list_empty(&list)) {
9960 		dev = netdev_wait_allrefs_any(&list);
9961 		list_del(&dev->todo_list);
9962 
9963 		/* paranoia */
9964 		BUG_ON(netdev_refcnt_read(dev) != 1);
9965 		BUG_ON(!list_empty(&dev->ptype_all));
9966 		BUG_ON(!list_empty(&dev->ptype_specific));
9967 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9968 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9969 #if IS_ENABLED(CONFIG_DECNET)
9970 		WARN_ON(dev->dn_ptr);
9971 #endif
9972 		if (dev->priv_destructor)
9973 			dev->priv_destructor(dev);
9974 		if (dev->needs_free_netdev)
9975 			free_netdev(dev);
9976 
9977 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
9978 			wake_up(&netdev_unregistering_wq);
9979 
9980 		/* Free network device */
9981 		kobject_put(&dev->dev.kobj);
9982 	}
9983 }
9984 
9985 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9986  * all the same fields in the same order as net_device_stats, with only
9987  * the type differing, but rtnl_link_stats64 may have additional fields
9988  * at the end for newer counters.
9989  */
9990 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9991 			     const struct net_device_stats *netdev_stats)
9992 {
9993 #if BITS_PER_LONG == 64
9994 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9995 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9996 	/* zero out counters that only exist in rtnl_link_stats64 */
9997 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9998 	       sizeof(*stats64) - sizeof(*netdev_stats));
9999 #else
10000 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10001 	const unsigned long *src = (const unsigned long *)netdev_stats;
10002 	u64 *dst = (u64 *)stats64;
10003 
10004 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10005 	for (i = 0; i < n; i++)
10006 		dst[i] = src[i];
10007 	/* zero out counters that only exist in rtnl_link_stats64 */
10008 	memset((char *)stats64 + n * sizeof(u64), 0,
10009 	       sizeof(*stats64) - n * sizeof(u64));
10010 #endif
10011 }
10012 EXPORT_SYMBOL(netdev_stats_to_stats64);
10013 
10014 /**
10015  *	dev_get_stats	- get network device statistics
10016  *	@dev: device to get statistics from
10017  *	@storage: place to store stats
10018  *
10019  *	Get network statistics from device. Return @storage.
10020  *	The device driver may provide its own method by setting
10021  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10022  *	otherwise the internal statistics structure is used.
10023  */
10024 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10025 					struct rtnl_link_stats64 *storage)
10026 {
10027 	const struct net_device_ops *ops = dev->netdev_ops;
10028 
10029 	if (ops->ndo_get_stats64) {
10030 		memset(storage, 0, sizeof(*storage));
10031 		ops->ndo_get_stats64(dev, storage);
10032 	} else if (ops->ndo_get_stats) {
10033 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10034 	} else {
10035 		netdev_stats_to_stats64(storage, &dev->stats);
10036 	}
10037 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10038 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10039 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10040 	return storage;
10041 }
10042 EXPORT_SYMBOL(dev_get_stats);
10043 
10044 /**
10045  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10046  *	@s: place to store stats
10047  *	@netstats: per-cpu network stats to read from
10048  *
10049  *	Read per-cpu network statistics and populate the related fields in @s.
10050  */
10051 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10052 			   const struct pcpu_sw_netstats __percpu *netstats)
10053 {
10054 	int cpu;
10055 
10056 	for_each_possible_cpu(cpu) {
10057 		const struct pcpu_sw_netstats *stats;
10058 		struct pcpu_sw_netstats tmp;
10059 		unsigned int start;
10060 
10061 		stats = per_cpu_ptr(netstats, cpu);
10062 		do {
10063 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10064 			tmp.rx_packets = stats->rx_packets;
10065 			tmp.rx_bytes   = stats->rx_bytes;
10066 			tmp.tx_packets = stats->tx_packets;
10067 			tmp.tx_bytes   = stats->tx_bytes;
10068 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10069 
10070 		s->rx_packets += tmp.rx_packets;
10071 		s->rx_bytes   += tmp.rx_bytes;
10072 		s->tx_packets += tmp.tx_packets;
10073 		s->tx_bytes   += tmp.tx_bytes;
10074 	}
10075 }
10076 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10077 
10078 /**
10079  *	dev_get_tstats64 - ndo_get_stats64 implementation
10080  *	@dev: device to get statistics from
10081  *	@s: place to store stats
10082  *
10083  *	Populate @s from dev->stats and dev->tstats. Can be used as
10084  *	ndo_get_stats64() callback.
10085  */
10086 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10087 {
10088 	netdev_stats_to_stats64(s, &dev->stats);
10089 	dev_fetch_sw_netstats(s, dev->tstats);
10090 }
10091 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10092 
10093 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10094 {
10095 	struct netdev_queue *queue = dev_ingress_queue(dev);
10096 
10097 #ifdef CONFIG_NET_CLS_ACT
10098 	if (queue)
10099 		return queue;
10100 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10101 	if (!queue)
10102 		return NULL;
10103 	netdev_init_one_queue(dev, queue, NULL);
10104 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10105 	queue->qdisc_sleeping = &noop_qdisc;
10106 	rcu_assign_pointer(dev->ingress_queue, queue);
10107 #endif
10108 	return queue;
10109 }
10110 
10111 static const struct ethtool_ops default_ethtool_ops;
10112 
10113 void netdev_set_default_ethtool_ops(struct net_device *dev,
10114 				    const struct ethtool_ops *ops)
10115 {
10116 	if (dev->ethtool_ops == &default_ethtool_ops)
10117 		dev->ethtool_ops = ops;
10118 }
10119 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10120 
10121 void netdev_freemem(struct net_device *dev)
10122 {
10123 	char *addr = (char *)dev - dev->padded;
10124 
10125 	kvfree(addr);
10126 }
10127 
10128 /**
10129  * alloc_netdev_mqs - allocate network device
10130  * @sizeof_priv: size of private data to allocate space for
10131  * @name: device name format string
10132  * @name_assign_type: origin of device name
10133  * @setup: callback to initialize device
10134  * @txqs: the number of TX subqueues to allocate
10135  * @rxqs: the number of RX subqueues to allocate
10136  *
10137  * Allocates a struct net_device with private data area for driver use
10138  * and performs basic initialization.  Also allocates subqueue structs
10139  * for each queue on the device.
10140  */
10141 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10142 		unsigned char name_assign_type,
10143 		void (*setup)(struct net_device *),
10144 		unsigned int txqs, unsigned int rxqs)
10145 {
10146 	struct net_device *dev;
10147 	unsigned int alloc_size;
10148 	struct net_device *p;
10149 
10150 	BUG_ON(strlen(name) >= sizeof(dev->name));
10151 
10152 	if (txqs < 1) {
10153 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10154 		return NULL;
10155 	}
10156 
10157 	if (rxqs < 1) {
10158 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10159 		return NULL;
10160 	}
10161 
10162 	alloc_size = sizeof(struct net_device);
10163 	if (sizeof_priv) {
10164 		/* ensure 32-byte alignment of private area */
10165 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10166 		alloc_size += sizeof_priv;
10167 	}
10168 	/* ensure 32-byte alignment of whole construct */
10169 	alloc_size += NETDEV_ALIGN - 1;
10170 
10171 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10172 	if (!p)
10173 		return NULL;
10174 
10175 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10176 	dev->padded = (char *)dev - (char *)p;
10177 
10178 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10179 #ifdef CONFIG_PCPU_DEV_REFCNT
10180 	dev->pcpu_refcnt = alloc_percpu(int);
10181 	if (!dev->pcpu_refcnt)
10182 		goto free_dev;
10183 	__dev_hold(dev);
10184 #else
10185 	refcount_set(&dev->dev_refcnt, 1);
10186 #endif
10187 
10188 	if (dev_addr_init(dev))
10189 		goto free_pcpu;
10190 
10191 	dev_mc_init(dev);
10192 	dev_uc_init(dev);
10193 
10194 	dev_net_set(dev, &init_net);
10195 
10196 	dev->gso_max_size = GSO_MAX_SIZE;
10197 	dev->gso_max_segs = GSO_MAX_SEGS;
10198 	dev->gro_max_size = GRO_MAX_SIZE;
10199 	dev->upper_level = 1;
10200 	dev->lower_level = 1;
10201 #ifdef CONFIG_LOCKDEP
10202 	dev->nested_level = 0;
10203 	INIT_LIST_HEAD(&dev->unlink_list);
10204 #endif
10205 
10206 	INIT_LIST_HEAD(&dev->napi_list);
10207 	INIT_LIST_HEAD(&dev->unreg_list);
10208 	INIT_LIST_HEAD(&dev->close_list);
10209 	INIT_LIST_HEAD(&dev->link_watch_list);
10210 	INIT_LIST_HEAD(&dev->adj_list.upper);
10211 	INIT_LIST_HEAD(&dev->adj_list.lower);
10212 	INIT_LIST_HEAD(&dev->ptype_all);
10213 	INIT_LIST_HEAD(&dev->ptype_specific);
10214 	INIT_LIST_HEAD(&dev->net_notifier_list);
10215 #ifdef CONFIG_NET_SCHED
10216 	hash_init(dev->qdisc_hash);
10217 #endif
10218 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10219 	setup(dev);
10220 
10221 	if (!dev->tx_queue_len) {
10222 		dev->priv_flags |= IFF_NO_QUEUE;
10223 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10224 	}
10225 
10226 	dev->num_tx_queues = txqs;
10227 	dev->real_num_tx_queues = txqs;
10228 	if (netif_alloc_netdev_queues(dev))
10229 		goto free_all;
10230 
10231 	dev->num_rx_queues = rxqs;
10232 	dev->real_num_rx_queues = rxqs;
10233 	if (netif_alloc_rx_queues(dev))
10234 		goto free_all;
10235 
10236 	strcpy(dev->name, name);
10237 	dev->name_assign_type = name_assign_type;
10238 	dev->group = INIT_NETDEV_GROUP;
10239 	if (!dev->ethtool_ops)
10240 		dev->ethtool_ops = &default_ethtool_ops;
10241 
10242 	nf_hook_netdev_init(dev);
10243 
10244 	return dev;
10245 
10246 free_all:
10247 	free_netdev(dev);
10248 	return NULL;
10249 
10250 free_pcpu:
10251 #ifdef CONFIG_PCPU_DEV_REFCNT
10252 	free_percpu(dev->pcpu_refcnt);
10253 free_dev:
10254 #endif
10255 	netdev_freemem(dev);
10256 	return NULL;
10257 }
10258 EXPORT_SYMBOL(alloc_netdev_mqs);
10259 
10260 /**
10261  * free_netdev - free network device
10262  * @dev: device
10263  *
10264  * This function does the last stage of destroying an allocated device
10265  * interface. The reference to the device object is released. If this
10266  * is the last reference then it will be freed.Must be called in process
10267  * context.
10268  */
10269 void free_netdev(struct net_device *dev)
10270 {
10271 	struct napi_struct *p, *n;
10272 
10273 	might_sleep();
10274 
10275 	/* When called immediately after register_netdevice() failed the unwind
10276 	 * handling may still be dismantling the device. Handle that case by
10277 	 * deferring the free.
10278 	 */
10279 	if (dev->reg_state == NETREG_UNREGISTERING) {
10280 		ASSERT_RTNL();
10281 		dev->needs_free_netdev = true;
10282 		return;
10283 	}
10284 
10285 	netif_free_tx_queues(dev);
10286 	netif_free_rx_queues(dev);
10287 
10288 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10289 
10290 	/* Flush device addresses */
10291 	dev_addr_flush(dev);
10292 
10293 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10294 		netif_napi_del(p);
10295 
10296 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10297 #ifdef CONFIG_PCPU_DEV_REFCNT
10298 	free_percpu(dev->pcpu_refcnt);
10299 	dev->pcpu_refcnt = NULL;
10300 #endif
10301 	free_percpu(dev->xdp_bulkq);
10302 	dev->xdp_bulkq = NULL;
10303 
10304 	/*  Compatibility with error handling in drivers */
10305 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10306 		netdev_freemem(dev);
10307 		return;
10308 	}
10309 
10310 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10311 	dev->reg_state = NETREG_RELEASED;
10312 
10313 	/* will free via device release */
10314 	put_device(&dev->dev);
10315 }
10316 EXPORT_SYMBOL(free_netdev);
10317 
10318 /**
10319  *	synchronize_net -  Synchronize with packet receive processing
10320  *
10321  *	Wait for packets currently being received to be done.
10322  *	Does not block later packets from starting.
10323  */
10324 void synchronize_net(void)
10325 {
10326 	might_sleep();
10327 	if (rtnl_is_locked())
10328 		synchronize_rcu_expedited();
10329 	else
10330 		synchronize_rcu();
10331 }
10332 EXPORT_SYMBOL(synchronize_net);
10333 
10334 /**
10335  *	unregister_netdevice_queue - remove device from the kernel
10336  *	@dev: device
10337  *	@head: list
10338  *
10339  *	This function shuts down a device interface and removes it
10340  *	from the kernel tables.
10341  *	If head not NULL, device is queued to be unregistered later.
10342  *
10343  *	Callers must hold the rtnl semaphore.  You may want
10344  *	unregister_netdev() instead of this.
10345  */
10346 
10347 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10348 {
10349 	ASSERT_RTNL();
10350 
10351 	if (head) {
10352 		list_move_tail(&dev->unreg_list, head);
10353 	} else {
10354 		LIST_HEAD(single);
10355 
10356 		list_add(&dev->unreg_list, &single);
10357 		unregister_netdevice_many(&single);
10358 	}
10359 }
10360 EXPORT_SYMBOL(unregister_netdevice_queue);
10361 
10362 /**
10363  *	unregister_netdevice_many - unregister many devices
10364  *	@head: list of devices
10365  *
10366  *  Note: As most callers use a stack allocated list_head,
10367  *  we force a list_del() to make sure stack wont be corrupted later.
10368  */
10369 void unregister_netdevice_many(struct list_head *head)
10370 {
10371 	struct net_device *dev, *tmp;
10372 	LIST_HEAD(close_head);
10373 
10374 	BUG_ON(dev_boot_phase);
10375 	ASSERT_RTNL();
10376 
10377 	if (list_empty(head))
10378 		return;
10379 
10380 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10381 		/* Some devices call without registering
10382 		 * for initialization unwind. Remove those
10383 		 * devices and proceed with the remaining.
10384 		 */
10385 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10386 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10387 				 dev->name, dev);
10388 
10389 			WARN_ON(1);
10390 			list_del(&dev->unreg_list);
10391 			continue;
10392 		}
10393 		dev->dismantle = true;
10394 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10395 	}
10396 
10397 	/* If device is running, close it first. */
10398 	list_for_each_entry(dev, head, unreg_list)
10399 		list_add_tail(&dev->close_list, &close_head);
10400 	dev_close_many(&close_head, true);
10401 
10402 	list_for_each_entry(dev, head, unreg_list) {
10403 		/* And unlink it from device chain. */
10404 		unlist_netdevice(dev);
10405 
10406 		dev->reg_state = NETREG_UNREGISTERING;
10407 	}
10408 	flush_all_backlogs();
10409 
10410 	synchronize_net();
10411 
10412 	list_for_each_entry(dev, head, unreg_list) {
10413 		struct sk_buff *skb = NULL;
10414 
10415 		/* Shutdown queueing discipline. */
10416 		dev_shutdown(dev);
10417 
10418 		dev_xdp_uninstall(dev);
10419 
10420 		/* Notify protocols, that we are about to destroy
10421 		 * this device. They should clean all the things.
10422 		 */
10423 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10424 
10425 		if (!dev->rtnl_link_ops ||
10426 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10427 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10428 						     GFP_KERNEL, NULL, 0);
10429 
10430 		/*
10431 		 *	Flush the unicast and multicast chains
10432 		 */
10433 		dev_uc_flush(dev);
10434 		dev_mc_flush(dev);
10435 
10436 		netdev_name_node_alt_flush(dev);
10437 		netdev_name_node_free(dev->name_node);
10438 
10439 		if (dev->netdev_ops->ndo_uninit)
10440 			dev->netdev_ops->ndo_uninit(dev);
10441 
10442 		if (skb)
10443 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10444 
10445 		/* Notifier chain MUST detach us all upper devices. */
10446 		WARN_ON(netdev_has_any_upper_dev(dev));
10447 		WARN_ON(netdev_has_any_lower_dev(dev));
10448 
10449 		/* Remove entries from kobject tree */
10450 		netdev_unregister_kobject(dev);
10451 #ifdef CONFIG_XPS
10452 		/* Remove XPS queueing entries */
10453 		netif_reset_xps_queues_gt(dev, 0);
10454 #endif
10455 	}
10456 
10457 	synchronize_net();
10458 
10459 	list_for_each_entry(dev, head, unreg_list) {
10460 		dev_put_track(dev, &dev->dev_registered_tracker);
10461 		net_set_todo(dev);
10462 	}
10463 
10464 	list_del(head);
10465 }
10466 EXPORT_SYMBOL(unregister_netdevice_many);
10467 
10468 /**
10469  *	unregister_netdev - remove device from the kernel
10470  *	@dev: device
10471  *
10472  *	This function shuts down a device interface and removes it
10473  *	from the kernel tables.
10474  *
10475  *	This is just a wrapper for unregister_netdevice that takes
10476  *	the rtnl semaphore.  In general you want to use this and not
10477  *	unregister_netdevice.
10478  */
10479 void unregister_netdev(struct net_device *dev)
10480 {
10481 	rtnl_lock();
10482 	unregister_netdevice(dev);
10483 	rtnl_unlock();
10484 }
10485 EXPORT_SYMBOL(unregister_netdev);
10486 
10487 /**
10488  *	__dev_change_net_namespace - move device to different nethost namespace
10489  *	@dev: device
10490  *	@net: network namespace
10491  *	@pat: If not NULL name pattern to try if the current device name
10492  *	      is already taken in the destination network namespace.
10493  *	@new_ifindex: If not zero, specifies device index in the target
10494  *	              namespace.
10495  *
10496  *	This function shuts down a device interface and moves it
10497  *	to a new network namespace. On success 0 is returned, on
10498  *	a failure a netagive errno code is returned.
10499  *
10500  *	Callers must hold the rtnl semaphore.
10501  */
10502 
10503 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10504 			       const char *pat, int new_ifindex)
10505 {
10506 	struct net *net_old = dev_net(dev);
10507 	int err, new_nsid;
10508 
10509 	ASSERT_RTNL();
10510 
10511 	/* Don't allow namespace local devices to be moved. */
10512 	err = -EINVAL;
10513 	if (dev->features & NETIF_F_NETNS_LOCAL)
10514 		goto out;
10515 
10516 	/* Ensure the device has been registrered */
10517 	if (dev->reg_state != NETREG_REGISTERED)
10518 		goto out;
10519 
10520 	/* Get out if there is nothing todo */
10521 	err = 0;
10522 	if (net_eq(net_old, net))
10523 		goto out;
10524 
10525 	/* Pick the destination device name, and ensure
10526 	 * we can use it in the destination network namespace.
10527 	 */
10528 	err = -EEXIST;
10529 	if (netdev_name_in_use(net, dev->name)) {
10530 		/* We get here if we can't use the current device name */
10531 		if (!pat)
10532 			goto out;
10533 		err = dev_get_valid_name(net, dev, pat);
10534 		if (err < 0)
10535 			goto out;
10536 	}
10537 
10538 	/* Check that new_ifindex isn't used yet. */
10539 	err = -EBUSY;
10540 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10541 		goto out;
10542 
10543 	/*
10544 	 * And now a mini version of register_netdevice unregister_netdevice.
10545 	 */
10546 
10547 	/* If device is running close it first. */
10548 	dev_close(dev);
10549 
10550 	/* And unlink it from device chain */
10551 	unlist_netdevice(dev);
10552 
10553 	synchronize_net();
10554 
10555 	/* Shutdown queueing discipline. */
10556 	dev_shutdown(dev);
10557 
10558 	/* Notify protocols, that we are about to destroy
10559 	 * this device. They should clean all the things.
10560 	 *
10561 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10562 	 * This is wanted because this way 8021q and macvlan know
10563 	 * the device is just moving and can keep their slaves up.
10564 	 */
10565 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10566 	rcu_barrier();
10567 
10568 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10569 	/* If there is an ifindex conflict assign a new one */
10570 	if (!new_ifindex) {
10571 		if (__dev_get_by_index(net, dev->ifindex))
10572 			new_ifindex = dev_new_index(net);
10573 		else
10574 			new_ifindex = dev->ifindex;
10575 	}
10576 
10577 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10578 			    new_ifindex);
10579 
10580 	/*
10581 	 *	Flush the unicast and multicast chains
10582 	 */
10583 	dev_uc_flush(dev);
10584 	dev_mc_flush(dev);
10585 
10586 	/* Send a netdev-removed uevent to the old namespace */
10587 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10588 	netdev_adjacent_del_links(dev);
10589 
10590 	/* Move per-net netdevice notifiers that are following the netdevice */
10591 	move_netdevice_notifiers_dev_net(dev, net);
10592 
10593 	/* Actually switch the network namespace */
10594 	dev_net_set(dev, net);
10595 	dev->ifindex = new_ifindex;
10596 
10597 	/* Send a netdev-add uevent to the new namespace */
10598 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10599 	netdev_adjacent_add_links(dev);
10600 
10601 	/* Fixup kobjects */
10602 	err = device_rename(&dev->dev, dev->name);
10603 	WARN_ON(err);
10604 
10605 	/* Adapt owner in case owning user namespace of target network
10606 	 * namespace is different from the original one.
10607 	 */
10608 	err = netdev_change_owner(dev, net_old, net);
10609 	WARN_ON(err);
10610 
10611 	/* Add the device back in the hashes */
10612 	list_netdevice(dev);
10613 
10614 	/* Notify protocols, that a new device appeared. */
10615 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10616 
10617 	/*
10618 	 *	Prevent userspace races by waiting until the network
10619 	 *	device is fully setup before sending notifications.
10620 	 */
10621 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10622 
10623 	synchronize_net();
10624 	err = 0;
10625 out:
10626 	return err;
10627 }
10628 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10629 
10630 static int dev_cpu_dead(unsigned int oldcpu)
10631 {
10632 	struct sk_buff **list_skb;
10633 	struct sk_buff *skb;
10634 	unsigned int cpu;
10635 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10636 
10637 	local_irq_disable();
10638 	cpu = smp_processor_id();
10639 	sd = &per_cpu(softnet_data, cpu);
10640 	oldsd = &per_cpu(softnet_data, oldcpu);
10641 
10642 	/* Find end of our completion_queue. */
10643 	list_skb = &sd->completion_queue;
10644 	while (*list_skb)
10645 		list_skb = &(*list_skb)->next;
10646 	/* Append completion queue from offline CPU. */
10647 	*list_skb = oldsd->completion_queue;
10648 	oldsd->completion_queue = NULL;
10649 
10650 	/* Append output queue from offline CPU. */
10651 	if (oldsd->output_queue) {
10652 		*sd->output_queue_tailp = oldsd->output_queue;
10653 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10654 		oldsd->output_queue = NULL;
10655 		oldsd->output_queue_tailp = &oldsd->output_queue;
10656 	}
10657 	/* Append NAPI poll list from offline CPU, with one exception :
10658 	 * process_backlog() must be called by cpu owning percpu backlog.
10659 	 * We properly handle process_queue & input_pkt_queue later.
10660 	 */
10661 	while (!list_empty(&oldsd->poll_list)) {
10662 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10663 							    struct napi_struct,
10664 							    poll_list);
10665 
10666 		list_del_init(&napi->poll_list);
10667 		if (napi->poll == process_backlog)
10668 			napi->state = 0;
10669 		else
10670 			____napi_schedule(sd, napi);
10671 	}
10672 
10673 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10674 	local_irq_enable();
10675 
10676 #ifdef CONFIG_RPS
10677 	remsd = oldsd->rps_ipi_list;
10678 	oldsd->rps_ipi_list = NULL;
10679 #endif
10680 	/* send out pending IPI's on offline CPU */
10681 	net_rps_send_ipi(remsd);
10682 
10683 	/* Process offline CPU's input_pkt_queue */
10684 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10685 		netif_rx_ni(skb);
10686 		input_queue_head_incr(oldsd);
10687 	}
10688 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10689 		netif_rx_ni(skb);
10690 		input_queue_head_incr(oldsd);
10691 	}
10692 
10693 	return 0;
10694 }
10695 
10696 /**
10697  *	netdev_increment_features - increment feature set by one
10698  *	@all: current feature set
10699  *	@one: new feature set
10700  *	@mask: mask feature set
10701  *
10702  *	Computes a new feature set after adding a device with feature set
10703  *	@one to the master device with current feature set @all.  Will not
10704  *	enable anything that is off in @mask. Returns the new feature set.
10705  */
10706 netdev_features_t netdev_increment_features(netdev_features_t all,
10707 	netdev_features_t one, netdev_features_t mask)
10708 {
10709 	if (mask & NETIF_F_HW_CSUM)
10710 		mask |= NETIF_F_CSUM_MASK;
10711 	mask |= NETIF_F_VLAN_CHALLENGED;
10712 
10713 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10714 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10715 
10716 	/* If one device supports hw checksumming, set for all. */
10717 	if (all & NETIF_F_HW_CSUM)
10718 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10719 
10720 	return all;
10721 }
10722 EXPORT_SYMBOL(netdev_increment_features);
10723 
10724 static struct hlist_head * __net_init netdev_create_hash(void)
10725 {
10726 	int i;
10727 	struct hlist_head *hash;
10728 
10729 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10730 	if (hash != NULL)
10731 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10732 			INIT_HLIST_HEAD(&hash[i]);
10733 
10734 	return hash;
10735 }
10736 
10737 /* Initialize per network namespace state */
10738 static int __net_init netdev_init(struct net *net)
10739 {
10740 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10741 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10742 
10743 	INIT_LIST_HEAD(&net->dev_base_head);
10744 
10745 	net->dev_name_head = netdev_create_hash();
10746 	if (net->dev_name_head == NULL)
10747 		goto err_name;
10748 
10749 	net->dev_index_head = netdev_create_hash();
10750 	if (net->dev_index_head == NULL)
10751 		goto err_idx;
10752 
10753 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10754 
10755 	return 0;
10756 
10757 err_idx:
10758 	kfree(net->dev_name_head);
10759 err_name:
10760 	return -ENOMEM;
10761 }
10762 
10763 /**
10764  *	netdev_drivername - network driver for the device
10765  *	@dev: network device
10766  *
10767  *	Determine network driver for device.
10768  */
10769 const char *netdev_drivername(const struct net_device *dev)
10770 {
10771 	const struct device_driver *driver;
10772 	const struct device *parent;
10773 	const char *empty = "";
10774 
10775 	parent = dev->dev.parent;
10776 	if (!parent)
10777 		return empty;
10778 
10779 	driver = parent->driver;
10780 	if (driver && driver->name)
10781 		return driver->name;
10782 	return empty;
10783 }
10784 
10785 static void __netdev_printk(const char *level, const struct net_device *dev,
10786 			    struct va_format *vaf)
10787 {
10788 	if (dev && dev->dev.parent) {
10789 		dev_printk_emit(level[1] - '0',
10790 				dev->dev.parent,
10791 				"%s %s %s%s: %pV",
10792 				dev_driver_string(dev->dev.parent),
10793 				dev_name(dev->dev.parent),
10794 				netdev_name(dev), netdev_reg_state(dev),
10795 				vaf);
10796 	} else if (dev) {
10797 		printk("%s%s%s: %pV",
10798 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10799 	} else {
10800 		printk("%s(NULL net_device): %pV", level, vaf);
10801 	}
10802 }
10803 
10804 void netdev_printk(const char *level, const struct net_device *dev,
10805 		   const char *format, ...)
10806 {
10807 	struct va_format vaf;
10808 	va_list args;
10809 
10810 	va_start(args, format);
10811 
10812 	vaf.fmt = format;
10813 	vaf.va = &args;
10814 
10815 	__netdev_printk(level, dev, &vaf);
10816 
10817 	va_end(args);
10818 }
10819 EXPORT_SYMBOL(netdev_printk);
10820 
10821 #define define_netdev_printk_level(func, level)			\
10822 void func(const struct net_device *dev, const char *fmt, ...)	\
10823 {								\
10824 	struct va_format vaf;					\
10825 	va_list args;						\
10826 								\
10827 	va_start(args, fmt);					\
10828 								\
10829 	vaf.fmt = fmt;						\
10830 	vaf.va = &args;						\
10831 								\
10832 	__netdev_printk(level, dev, &vaf);			\
10833 								\
10834 	va_end(args);						\
10835 }								\
10836 EXPORT_SYMBOL(func);
10837 
10838 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10839 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10840 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10841 define_netdev_printk_level(netdev_err, KERN_ERR);
10842 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10843 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10844 define_netdev_printk_level(netdev_info, KERN_INFO);
10845 
10846 static void __net_exit netdev_exit(struct net *net)
10847 {
10848 	kfree(net->dev_name_head);
10849 	kfree(net->dev_index_head);
10850 	if (net != &init_net)
10851 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10852 }
10853 
10854 static struct pernet_operations __net_initdata netdev_net_ops = {
10855 	.init = netdev_init,
10856 	.exit = netdev_exit,
10857 };
10858 
10859 static void __net_exit default_device_exit_net(struct net *net)
10860 {
10861 	struct net_device *dev, *aux;
10862 	/*
10863 	 * Push all migratable network devices back to the
10864 	 * initial network namespace
10865 	 */
10866 	ASSERT_RTNL();
10867 	for_each_netdev_safe(net, dev, aux) {
10868 		int err;
10869 		char fb_name[IFNAMSIZ];
10870 
10871 		/* Ignore unmoveable devices (i.e. loopback) */
10872 		if (dev->features & NETIF_F_NETNS_LOCAL)
10873 			continue;
10874 
10875 		/* Leave virtual devices for the generic cleanup */
10876 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10877 			continue;
10878 
10879 		/* Push remaining network devices to init_net */
10880 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10881 		if (netdev_name_in_use(&init_net, fb_name))
10882 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10883 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10884 		if (err) {
10885 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10886 				 __func__, dev->name, err);
10887 			BUG();
10888 		}
10889 	}
10890 }
10891 
10892 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10893 {
10894 	/* At exit all network devices most be removed from a network
10895 	 * namespace.  Do this in the reverse order of registration.
10896 	 * Do this across as many network namespaces as possible to
10897 	 * improve batching efficiency.
10898 	 */
10899 	struct net_device *dev;
10900 	struct net *net;
10901 	LIST_HEAD(dev_kill_list);
10902 
10903 	rtnl_lock();
10904 	list_for_each_entry(net, net_list, exit_list) {
10905 		default_device_exit_net(net);
10906 		cond_resched();
10907 	}
10908 
10909 	list_for_each_entry(net, net_list, exit_list) {
10910 		for_each_netdev_reverse(net, dev) {
10911 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10912 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10913 			else
10914 				unregister_netdevice_queue(dev, &dev_kill_list);
10915 		}
10916 	}
10917 	unregister_netdevice_many(&dev_kill_list);
10918 	rtnl_unlock();
10919 }
10920 
10921 static struct pernet_operations __net_initdata default_device_ops = {
10922 	.exit_batch = default_device_exit_batch,
10923 };
10924 
10925 /*
10926  *	Initialize the DEV module. At boot time this walks the device list and
10927  *	unhooks any devices that fail to initialise (normally hardware not
10928  *	present) and leaves us with a valid list of present and active devices.
10929  *
10930  */
10931 
10932 /*
10933  *       This is called single threaded during boot, so no need
10934  *       to take the rtnl semaphore.
10935  */
10936 static int __init net_dev_init(void)
10937 {
10938 	int i, rc = -ENOMEM;
10939 
10940 	BUG_ON(!dev_boot_phase);
10941 
10942 	if (dev_proc_init())
10943 		goto out;
10944 
10945 	if (netdev_kobject_init())
10946 		goto out;
10947 
10948 	INIT_LIST_HEAD(&ptype_all);
10949 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10950 		INIT_LIST_HEAD(&ptype_base[i]);
10951 
10952 	if (register_pernet_subsys(&netdev_net_ops))
10953 		goto out;
10954 
10955 	/*
10956 	 *	Initialise the packet receive queues.
10957 	 */
10958 
10959 	for_each_possible_cpu(i) {
10960 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10961 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10962 
10963 		INIT_WORK(flush, flush_backlog);
10964 
10965 		skb_queue_head_init(&sd->input_pkt_queue);
10966 		skb_queue_head_init(&sd->process_queue);
10967 #ifdef CONFIG_XFRM_OFFLOAD
10968 		skb_queue_head_init(&sd->xfrm_backlog);
10969 #endif
10970 		INIT_LIST_HEAD(&sd->poll_list);
10971 		sd->output_queue_tailp = &sd->output_queue;
10972 #ifdef CONFIG_RPS
10973 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
10974 		sd->cpu = i;
10975 #endif
10976 
10977 		init_gro_hash(&sd->backlog);
10978 		sd->backlog.poll = process_backlog;
10979 		sd->backlog.weight = weight_p;
10980 	}
10981 
10982 	dev_boot_phase = 0;
10983 
10984 	/* The loopback device is special if any other network devices
10985 	 * is present in a network namespace the loopback device must
10986 	 * be present. Since we now dynamically allocate and free the
10987 	 * loopback device ensure this invariant is maintained by
10988 	 * keeping the loopback device as the first device on the
10989 	 * list of network devices.  Ensuring the loopback devices
10990 	 * is the first device that appears and the last network device
10991 	 * that disappears.
10992 	 */
10993 	if (register_pernet_device(&loopback_net_ops))
10994 		goto out;
10995 
10996 	if (register_pernet_device(&default_device_ops))
10997 		goto out;
10998 
10999 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11000 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11001 
11002 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11003 				       NULL, dev_cpu_dead);
11004 	WARN_ON(rc < 0);
11005 	rc = 0;
11006 out:
11007 	return rc;
11008 }
11009 
11010 subsys_initcall(net_dev_init);
11011