1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/skbuff.h> 96 #include <linux/kthread.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dsa.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/gro.h> 108 #include <net/pkt_sched.h> 109 #include <net/pkt_cls.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <net/tcx.h> 113 #include <linux/highmem.h> 114 #include <linux/init.h> 115 #include <linux/module.h> 116 #include <linux/netpoll.h> 117 #include <linux/rcupdate.h> 118 #include <linux/delay.h> 119 #include <net/iw_handler.h> 120 #include <asm/current.h> 121 #include <linux/audit.h> 122 #include <linux/dmaengine.h> 123 #include <linux/err.h> 124 #include <linux/ctype.h> 125 #include <linux/if_arp.h> 126 #include <linux/if_vlan.h> 127 #include <linux/ip.h> 128 #include <net/ip.h> 129 #include <net/mpls.h> 130 #include <linux/ipv6.h> 131 #include <linux/in.h> 132 #include <linux/jhash.h> 133 #include <linux/random.h> 134 #include <trace/events/napi.h> 135 #include <trace/events/net.h> 136 #include <trace/events/skb.h> 137 #include <trace/events/qdisc.h> 138 #include <trace/events/xdp.h> 139 #include <linux/inetdevice.h> 140 #include <linux/cpu_rmap.h> 141 #include <linux/static_key.h> 142 #include <linux/hashtable.h> 143 #include <linux/vmalloc.h> 144 #include <linux/if_macvlan.h> 145 #include <linux/errqueue.h> 146 #include <linux/hrtimer.h> 147 #include <linux/netfilter_netdev.h> 148 #include <linux/crash_dump.h> 149 #include <linux/sctp.h> 150 #include <net/udp_tunnel.h> 151 #include <linux/net_namespace.h> 152 #include <linux/indirect_call_wrapper.h> 153 #include <net/devlink.h> 154 #include <linux/pm_runtime.h> 155 #include <linux/prandom.h> 156 #include <linux/once_lite.h> 157 #include <net/netdev_rx_queue.h> 158 #include <net/page_pool/types.h> 159 #include <net/page_pool/helpers.h> 160 #include <net/rps.h> 161 #include <linux/phy_link_topology.h> 162 163 #include "dev.h" 164 #include "devmem.h" 165 #include "net-sysfs.h" 166 167 static DEFINE_SPINLOCK(ptype_lock); 168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 169 170 static int netif_rx_internal(struct sk_buff *skb); 171 static int call_netdevice_notifiers_extack(unsigned long val, 172 struct net_device *dev, 173 struct netlink_ext_ack *extack); 174 175 static DEFINE_MUTEX(ifalias_mutex); 176 177 /* protects napi_hash addition/deletion and napi_gen_id */ 178 static DEFINE_SPINLOCK(napi_hash_lock); 179 180 static unsigned int napi_gen_id = NR_CPUS; 181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 182 183 static DECLARE_RWSEM(devnet_rename_sem); 184 185 static inline void dev_base_seq_inc(struct net *net) 186 { 187 unsigned int val = net->dev_base_seq + 1; 188 189 WRITE_ONCE(net->dev_base_seq, val ?: 1); 190 } 191 192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 193 { 194 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 195 196 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 197 } 198 199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 200 { 201 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 202 } 203 204 #ifndef CONFIG_PREEMPT_RT 205 206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 207 208 static int __init setup_backlog_napi_threads(char *arg) 209 { 210 static_branch_enable(&use_backlog_threads_key); 211 return 0; 212 } 213 early_param("thread_backlog_napi", setup_backlog_napi_threads); 214 215 static bool use_backlog_threads(void) 216 { 217 return static_branch_unlikely(&use_backlog_threads_key); 218 } 219 220 #else 221 222 static bool use_backlog_threads(void) 223 { 224 return true; 225 } 226 227 #endif 228 229 static inline void backlog_lock_irq_save(struct softnet_data *sd, 230 unsigned long *flags) 231 { 232 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 233 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 234 else 235 local_irq_save(*flags); 236 } 237 238 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 239 { 240 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 241 spin_lock_irq(&sd->input_pkt_queue.lock); 242 else 243 local_irq_disable(); 244 } 245 246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 247 unsigned long *flags) 248 { 249 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 250 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 251 else 252 local_irq_restore(*flags); 253 } 254 255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 256 { 257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 258 spin_unlock_irq(&sd->input_pkt_queue.lock); 259 else 260 local_irq_enable(); 261 } 262 263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 264 const char *name) 265 { 266 struct netdev_name_node *name_node; 267 268 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 269 if (!name_node) 270 return NULL; 271 INIT_HLIST_NODE(&name_node->hlist); 272 name_node->dev = dev; 273 name_node->name = name; 274 return name_node; 275 } 276 277 static struct netdev_name_node * 278 netdev_name_node_head_alloc(struct net_device *dev) 279 { 280 struct netdev_name_node *name_node; 281 282 name_node = netdev_name_node_alloc(dev, dev->name); 283 if (!name_node) 284 return NULL; 285 INIT_LIST_HEAD(&name_node->list); 286 return name_node; 287 } 288 289 static void netdev_name_node_free(struct netdev_name_node *name_node) 290 { 291 kfree(name_node); 292 } 293 294 static void netdev_name_node_add(struct net *net, 295 struct netdev_name_node *name_node) 296 { 297 hlist_add_head_rcu(&name_node->hlist, 298 dev_name_hash(net, name_node->name)); 299 } 300 301 static void netdev_name_node_del(struct netdev_name_node *name_node) 302 { 303 hlist_del_rcu(&name_node->hlist); 304 } 305 306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 307 const char *name) 308 { 309 struct hlist_head *head = dev_name_hash(net, name); 310 struct netdev_name_node *name_node; 311 312 hlist_for_each_entry(name_node, head, hlist) 313 if (!strcmp(name_node->name, name)) 314 return name_node; 315 return NULL; 316 } 317 318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 319 const char *name) 320 { 321 struct hlist_head *head = dev_name_hash(net, name); 322 struct netdev_name_node *name_node; 323 324 hlist_for_each_entry_rcu(name_node, head, hlist) 325 if (!strcmp(name_node->name, name)) 326 return name_node; 327 return NULL; 328 } 329 330 bool netdev_name_in_use(struct net *net, const char *name) 331 { 332 return netdev_name_node_lookup(net, name); 333 } 334 EXPORT_SYMBOL(netdev_name_in_use); 335 336 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 337 { 338 struct netdev_name_node *name_node; 339 struct net *net = dev_net(dev); 340 341 name_node = netdev_name_node_lookup(net, name); 342 if (name_node) 343 return -EEXIST; 344 name_node = netdev_name_node_alloc(dev, name); 345 if (!name_node) 346 return -ENOMEM; 347 netdev_name_node_add(net, name_node); 348 /* The node that holds dev->name acts as a head of per-device list. */ 349 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 350 351 return 0; 352 } 353 354 static void netdev_name_node_alt_free(struct rcu_head *head) 355 { 356 struct netdev_name_node *name_node = 357 container_of(head, struct netdev_name_node, rcu); 358 359 kfree(name_node->name); 360 netdev_name_node_free(name_node); 361 } 362 363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 364 { 365 netdev_name_node_del(name_node); 366 list_del(&name_node->list); 367 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 368 } 369 370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 371 { 372 struct netdev_name_node *name_node; 373 struct net *net = dev_net(dev); 374 375 name_node = netdev_name_node_lookup(net, name); 376 if (!name_node) 377 return -ENOENT; 378 /* lookup might have found our primary name or a name belonging 379 * to another device. 380 */ 381 if (name_node == dev->name_node || name_node->dev != dev) 382 return -EINVAL; 383 384 __netdev_name_node_alt_destroy(name_node); 385 return 0; 386 } 387 388 static void netdev_name_node_alt_flush(struct net_device *dev) 389 { 390 struct netdev_name_node *name_node, *tmp; 391 392 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 393 list_del(&name_node->list); 394 netdev_name_node_alt_free(&name_node->rcu); 395 } 396 } 397 398 /* Device list insertion */ 399 static void list_netdevice(struct net_device *dev) 400 { 401 struct netdev_name_node *name_node; 402 struct net *net = dev_net(dev); 403 404 ASSERT_RTNL(); 405 406 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 407 netdev_name_node_add(net, dev->name_node); 408 hlist_add_head_rcu(&dev->index_hlist, 409 dev_index_hash(net, dev->ifindex)); 410 411 netdev_for_each_altname(dev, name_node) 412 netdev_name_node_add(net, name_node); 413 414 /* We reserved the ifindex, this can't fail */ 415 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 416 417 dev_base_seq_inc(net); 418 } 419 420 /* Device list removal 421 * caller must respect a RCU grace period before freeing/reusing dev 422 */ 423 static void unlist_netdevice(struct net_device *dev) 424 { 425 struct netdev_name_node *name_node; 426 struct net *net = dev_net(dev); 427 428 ASSERT_RTNL(); 429 430 xa_erase(&net->dev_by_index, dev->ifindex); 431 432 netdev_for_each_altname(dev, name_node) 433 netdev_name_node_del(name_node); 434 435 /* Unlink dev from the device chain */ 436 list_del_rcu(&dev->dev_list); 437 netdev_name_node_del(dev->name_node); 438 hlist_del_rcu(&dev->index_hlist); 439 440 dev_base_seq_inc(dev_net(dev)); 441 } 442 443 /* 444 * Our notifier list 445 */ 446 447 static RAW_NOTIFIER_HEAD(netdev_chain); 448 449 /* 450 * Device drivers call our routines to queue packets here. We empty the 451 * queue in the local softnet handler. 452 */ 453 454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 455 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 456 }; 457 EXPORT_PER_CPU_SYMBOL(softnet_data); 458 459 /* Page_pool has a lockless array/stack to alloc/recycle pages. 460 * PP consumers must pay attention to run APIs in the appropriate context 461 * (e.g. NAPI context). 462 */ 463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool); 464 465 #ifdef CONFIG_LOCKDEP 466 /* 467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 468 * according to dev->type 469 */ 470 static const unsigned short netdev_lock_type[] = { 471 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 472 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 473 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 474 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 475 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 476 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 477 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 478 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 479 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 480 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 481 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 482 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 483 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 484 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 485 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 486 487 static const char *const netdev_lock_name[] = { 488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 503 504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 506 507 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 508 { 509 int i; 510 511 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 512 if (netdev_lock_type[i] == dev_type) 513 return i; 514 /* the last key is used by default */ 515 return ARRAY_SIZE(netdev_lock_type) - 1; 516 } 517 518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 519 unsigned short dev_type) 520 { 521 int i; 522 523 i = netdev_lock_pos(dev_type); 524 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 525 netdev_lock_name[i]); 526 } 527 528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 529 { 530 int i; 531 532 i = netdev_lock_pos(dev->type); 533 lockdep_set_class_and_name(&dev->addr_list_lock, 534 &netdev_addr_lock_key[i], 535 netdev_lock_name[i]); 536 } 537 #else 538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 539 unsigned short dev_type) 540 { 541 } 542 543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 544 { 545 } 546 #endif 547 548 /******************************************************************************* 549 * 550 * Protocol management and registration routines 551 * 552 *******************************************************************************/ 553 554 555 /* 556 * Add a protocol ID to the list. Now that the input handler is 557 * smarter we can dispense with all the messy stuff that used to be 558 * here. 559 * 560 * BEWARE!!! Protocol handlers, mangling input packets, 561 * MUST BE last in hash buckets and checking protocol handlers 562 * MUST start from promiscuous ptype_all chain in net_bh. 563 * It is true now, do not change it. 564 * Explanation follows: if protocol handler, mangling packet, will 565 * be the first on list, it is not able to sense, that packet 566 * is cloned and should be copied-on-write, so that it will 567 * change it and subsequent readers will get broken packet. 568 * --ANK (980803) 569 */ 570 571 static inline struct list_head *ptype_head(const struct packet_type *pt) 572 { 573 if (pt->type == htons(ETH_P_ALL)) 574 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; 575 else 576 return pt->dev ? &pt->dev->ptype_specific : 577 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 578 } 579 580 /** 581 * dev_add_pack - add packet handler 582 * @pt: packet type declaration 583 * 584 * Add a protocol handler to the networking stack. The passed &packet_type 585 * is linked into kernel lists and may not be freed until it has been 586 * removed from the kernel lists. 587 * 588 * This call does not sleep therefore it can not 589 * guarantee all CPU's that are in middle of receiving packets 590 * will see the new packet type (until the next received packet). 591 */ 592 593 void dev_add_pack(struct packet_type *pt) 594 { 595 struct list_head *head = ptype_head(pt); 596 597 spin_lock(&ptype_lock); 598 list_add_rcu(&pt->list, head); 599 spin_unlock(&ptype_lock); 600 } 601 EXPORT_SYMBOL(dev_add_pack); 602 603 /** 604 * __dev_remove_pack - remove packet handler 605 * @pt: packet type declaration 606 * 607 * Remove a protocol handler that was previously added to the kernel 608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 609 * from the kernel lists and can be freed or reused once this function 610 * returns. 611 * 612 * The packet type might still be in use by receivers 613 * and must not be freed until after all the CPU's have gone 614 * through a quiescent state. 615 */ 616 void __dev_remove_pack(struct packet_type *pt) 617 { 618 struct list_head *head = ptype_head(pt); 619 struct packet_type *pt1; 620 621 spin_lock(&ptype_lock); 622 623 list_for_each_entry(pt1, head, list) { 624 if (pt == pt1) { 625 list_del_rcu(&pt->list); 626 goto out; 627 } 628 } 629 630 pr_warn("dev_remove_pack: %p not found\n", pt); 631 out: 632 spin_unlock(&ptype_lock); 633 } 634 EXPORT_SYMBOL(__dev_remove_pack); 635 636 /** 637 * dev_remove_pack - remove packet handler 638 * @pt: packet type declaration 639 * 640 * Remove a protocol handler that was previously added to the kernel 641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 642 * from the kernel lists and can be freed or reused once this function 643 * returns. 644 * 645 * This call sleeps to guarantee that no CPU is looking at the packet 646 * type after return. 647 */ 648 void dev_remove_pack(struct packet_type *pt) 649 { 650 __dev_remove_pack(pt); 651 652 synchronize_net(); 653 } 654 EXPORT_SYMBOL(dev_remove_pack); 655 656 657 /******************************************************************************* 658 * 659 * Device Interface Subroutines 660 * 661 *******************************************************************************/ 662 663 /** 664 * dev_get_iflink - get 'iflink' value of a interface 665 * @dev: targeted interface 666 * 667 * Indicates the ifindex the interface is linked to. 668 * Physical interfaces have the same 'ifindex' and 'iflink' values. 669 */ 670 671 int dev_get_iflink(const struct net_device *dev) 672 { 673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 674 return dev->netdev_ops->ndo_get_iflink(dev); 675 676 return READ_ONCE(dev->ifindex); 677 } 678 EXPORT_SYMBOL(dev_get_iflink); 679 680 /** 681 * dev_fill_metadata_dst - Retrieve tunnel egress information. 682 * @dev: targeted interface 683 * @skb: The packet. 684 * 685 * For better visibility of tunnel traffic OVS needs to retrieve 686 * egress tunnel information for a packet. Following API allows 687 * user to get this info. 688 */ 689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 690 { 691 struct ip_tunnel_info *info; 692 693 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 694 return -EINVAL; 695 696 info = skb_tunnel_info_unclone(skb); 697 if (!info) 698 return -ENOMEM; 699 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 700 return -EINVAL; 701 702 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 703 } 704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 705 706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 707 { 708 int k = stack->num_paths++; 709 710 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 711 return NULL; 712 713 return &stack->path[k]; 714 } 715 716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 717 struct net_device_path_stack *stack) 718 { 719 const struct net_device *last_dev; 720 struct net_device_path_ctx ctx = { 721 .dev = dev, 722 }; 723 struct net_device_path *path; 724 int ret = 0; 725 726 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 727 stack->num_paths = 0; 728 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 729 last_dev = ctx.dev; 730 path = dev_fwd_path(stack); 731 if (!path) 732 return -1; 733 734 memset(path, 0, sizeof(struct net_device_path)); 735 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 736 if (ret < 0) 737 return -1; 738 739 if (WARN_ON_ONCE(last_dev == ctx.dev)) 740 return -1; 741 } 742 743 if (!ctx.dev) 744 return ret; 745 746 path = dev_fwd_path(stack); 747 if (!path) 748 return -1; 749 path->type = DEV_PATH_ETHERNET; 750 path->dev = ctx.dev; 751 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 755 756 /** 757 * __dev_get_by_name - find a device by its name 758 * @net: the applicable net namespace 759 * @name: name to find 760 * 761 * Find an interface by name. Must be called under RTNL semaphore. 762 * If the name is found a pointer to the device is returned. 763 * If the name is not found then %NULL is returned. The 764 * reference counters are not incremented so the caller must be 765 * careful with locks. 766 */ 767 768 struct net_device *__dev_get_by_name(struct net *net, const char *name) 769 { 770 struct netdev_name_node *node_name; 771 772 node_name = netdev_name_node_lookup(net, name); 773 return node_name ? node_name->dev : NULL; 774 } 775 EXPORT_SYMBOL(__dev_get_by_name); 776 777 /** 778 * dev_get_by_name_rcu - find a device by its name 779 * @net: the applicable net namespace 780 * @name: name to find 781 * 782 * Find an interface by name. 783 * If the name is found a pointer to the device is returned. 784 * If the name is not found then %NULL is returned. 785 * The reference counters are not incremented so the caller must be 786 * careful with locks. The caller must hold RCU lock. 787 */ 788 789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 790 { 791 struct netdev_name_node *node_name; 792 793 node_name = netdev_name_node_lookup_rcu(net, name); 794 return node_name ? node_name->dev : NULL; 795 } 796 EXPORT_SYMBOL(dev_get_by_name_rcu); 797 798 /* Deprecated for new users, call netdev_get_by_name() instead */ 799 struct net_device *dev_get_by_name(struct net *net, const char *name) 800 { 801 struct net_device *dev; 802 803 rcu_read_lock(); 804 dev = dev_get_by_name_rcu(net, name); 805 dev_hold(dev); 806 rcu_read_unlock(); 807 return dev; 808 } 809 EXPORT_SYMBOL(dev_get_by_name); 810 811 /** 812 * netdev_get_by_name() - find a device by its name 813 * @net: the applicable net namespace 814 * @name: name to find 815 * @tracker: tracking object for the acquired reference 816 * @gfp: allocation flags for the tracker 817 * 818 * Find an interface by name. This can be called from any 819 * context and does its own locking. The returned handle has 820 * the usage count incremented and the caller must use netdev_put() to 821 * release it when it is no longer needed. %NULL is returned if no 822 * matching device is found. 823 */ 824 struct net_device *netdev_get_by_name(struct net *net, const char *name, 825 netdevice_tracker *tracker, gfp_t gfp) 826 { 827 struct net_device *dev; 828 829 dev = dev_get_by_name(net, name); 830 if (dev) 831 netdev_tracker_alloc(dev, tracker, gfp); 832 return dev; 833 } 834 EXPORT_SYMBOL(netdev_get_by_name); 835 836 /** 837 * __dev_get_by_index - find a device by its ifindex 838 * @net: the applicable net namespace 839 * @ifindex: index of device 840 * 841 * Search for an interface by index. Returns %NULL if the device 842 * is not found or a pointer to the device. The device has not 843 * had its reference counter increased so the caller must be careful 844 * about locking. The caller must hold the RTNL semaphore. 845 */ 846 847 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 848 { 849 struct net_device *dev; 850 struct hlist_head *head = dev_index_hash(net, ifindex); 851 852 hlist_for_each_entry(dev, head, index_hlist) 853 if (dev->ifindex == ifindex) 854 return dev; 855 856 return NULL; 857 } 858 EXPORT_SYMBOL(__dev_get_by_index); 859 860 /** 861 * dev_get_by_index_rcu - find a device by its ifindex 862 * @net: the applicable net namespace 863 * @ifindex: index of device 864 * 865 * Search for an interface by index. Returns %NULL if the device 866 * is not found or a pointer to the device. The device has not 867 * had its reference counter increased so the caller must be careful 868 * about locking. The caller must hold RCU lock. 869 */ 870 871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 872 { 873 struct net_device *dev; 874 struct hlist_head *head = dev_index_hash(net, ifindex); 875 876 hlist_for_each_entry_rcu(dev, head, index_hlist) 877 if (dev->ifindex == ifindex) 878 return dev; 879 880 return NULL; 881 } 882 EXPORT_SYMBOL(dev_get_by_index_rcu); 883 884 /* Deprecated for new users, call netdev_get_by_index() instead */ 885 struct net_device *dev_get_by_index(struct net *net, int ifindex) 886 { 887 struct net_device *dev; 888 889 rcu_read_lock(); 890 dev = dev_get_by_index_rcu(net, ifindex); 891 dev_hold(dev); 892 rcu_read_unlock(); 893 return dev; 894 } 895 EXPORT_SYMBOL(dev_get_by_index); 896 897 /** 898 * netdev_get_by_index() - find a device by its ifindex 899 * @net: the applicable net namespace 900 * @ifindex: index of device 901 * @tracker: tracking object for the acquired reference 902 * @gfp: allocation flags for the tracker 903 * 904 * Search for an interface by index. Returns NULL if the device 905 * is not found or a pointer to the device. The device returned has 906 * had a reference added and the pointer is safe until the user calls 907 * netdev_put() to indicate they have finished with it. 908 */ 909 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 910 netdevice_tracker *tracker, gfp_t gfp) 911 { 912 struct net_device *dev; 913 914 dev = dev_get_by_index(net, ifindex); 915 if (dev) 916 netdev_tracker_alloc(dev, tracker, gfp); 917 return dev; 918 } 919 EXPORT_SYMBOL(netdev_get_by_index); 920 921 /** 922 * dev_get_by_napi_id - find a device by napi_id 923 * @napi_id: ID of the NAPI struct 924 * 925 * Search for an interface by NAPI ID. Returns %NULL if the device 926 * is not found or a pointer to the device. The device has not had 927 * its reference counter increased so the caller must be careful 928 * about locking. The caller must hold RCU lock. 929 */ 930 931 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 932 { 933 struct napi_struct *napi; 934 935 WARN_ON_ONCE(!rcu_read_lock_held()); 936 937 if (napi_id < MIN_NAPI_ID) 938 return NULL; 939 940 napi = napi_by_id(napi_id); 941 942 return napi ? napi->dev : NULL; 943 } 944 EXPORT_SYMBOL(dev_get_by_napi_id); 945 946 static DEFINE_SEQLOCK(netdev_rename_lock); 947 948 void netdev_copy_name(struct net_device *dev, char *name) 949 { 950 unsigned int seq; 951 952 do { 953 seq = read_seqbegin(&netdev_rename_lock); 954 strscpy(name, dev->name, IFNAMSIZ); 955 } while (read_seqretry(&netdev_rename_lock, seq)); 956 } 957 958 /** 959 * netdev_get_name - get a netdevice name, knowing its ifindex. 960 * @net: network namespace 961 * @name: a pointer to the buffer where the name will be stored. 962 * @ifindex: the ifindex of the interface to get the name from. 963 */ 964 int netdev_get_name(struct net *net, char *name, int ifindex) 965 { 966 struct net_device *dev; 967 int ret; 968 969 rcu_read_lock(); 970 971 dev = dev_get_by_index_rcu(net, ifindex); 972 if (!dev) { 973 ret = -ENODEV; 974 goto out; 975 } 976 977 netdev_copy_name(dev, name); 978 979 ret = 0; 980 out: 981 rcu_read_unlock(); 982 return ret; 983 } 984 985 /** 986 * dev_getbyhwaddr_rcu - find a device by its hardware address 987 * @net: the applicable net namespace 988 * @type: media type of device 989 * @ha: hardware address 990 * 991 * Search for an interface by MAC address. Returns NULL if the device 992 * is not found or a pointer to the device. 993 * The caller must hold RCU or RTNL. 994 * The returned device has not had its ref count increased 995 * and the caller must therefore be careful about locking 996 * 997 */ 998 999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1000 const char *ha) 1001 { 1002 struct net_device *dev; 1003 1004 for_each_netdev_rcu(net, dev) 1005 if (dev->type == type && 1006 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1007 return dev; 1008 1009 return NULL; 1010 } 1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1012 1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1014 { 1015 struct net_device *dev, *ret = NULL; 1016 1017 rcu_read_lock(); 1018 for_each_netdev_rcu(net, dev) 1019 if (dev->type == type) { 1020 dev_hold(dev); 1021 ret = dev; 1022 break; 1023 } 1024 rcu_read_unlock(); 1025 return ret; 1026 } 1027 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1028 1029 /** 1030 * __dev_get_by_flags - find any device with given flags 1031 * @net: the applicable net namespace 1032 * @if_flags: IFF_* values 1033 * @mask: bitmask of bits in if_flags to check 1034 * 1035 * Search for any interface with the given flags. Returns NULL if a device 1036 * is not found or a pointer to the device. Must be called inside 1037 * rtnl_lock(), and result refcount is unchanged. 1038 */ 1039 1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1041 unsigned short mask) 1042 { 1043 struct net_device *dev, *ret; 1044 1045 ASSERT_RTNL(); 1046 1047 ret = NULL; 1048 for_each_netdev(net, dev) { 1049 if (((dev->flags ^ if_flags) & mask) == 0) { 1050 ret = dev; 1051 break; 1052 } 1053 } 1054 return ret; 1055 } 1056 EXPORT_SYMBOL(__dev_get_by_flags); 1057 1058 /** 1059 * dev_valid_name - check if name is okay for network device 1060 * @name: name string 1061 * 1062 * Network device names need to be valid file names to 1063 * allow sysfs to work. We also disallow any kind of 1064 * whitespace. 1065 */ 1066 bool dev_valid_name(const char *name) 1067 { 1068 if (*name == '\0') 1069 return false; 1070 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1071 return false; 1072 if (!strcmp(name, ".") || !strcmp(name, "..")) 1073 return false; 1074 1075 while (*name) { 1076 if (*name == '/' || *name == ':' || isspace(*name)) 1077 return false; 1078 name++; 1079 } 1080 return true; 1081 } 1082 EXPORT_SYMBOL(dev_valid_name); 1083 1084 /** 1085 * __dev_alloc_name - allocate a name for a device 1086 * @net: network namespace to allocate the device name in 1087 * @name: name format string 1088 * @res: result name string 1089 * 1090 * Passed a format string - eg "lt%d" it will try and find a suitable 1091 * id. It scans list of devices to build up a free map, then chooses 1092 * the first empty slot. The caller must hold the dev_base or rtnl lock 1093 * while allocating the name and adding the device in order to avoid 1094 * duplicates. 1095 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1096 * Returns the number of the unit assigned or a negative errno code. 1097 */ 1098 1099 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1100 { 1101 int i = 0; 1102 const char *p; 1103 const int max_netdevices = 8*PAGE_SIZE; 1104 unsigned long *inuse; 1105 struct net_device *d; 1106 char buf[IFNAMSIZ]; 1107 1108 /* Verify the string as this thing may have come from the user. 1109 * There must be one "%d" and no other "%" characters. 1110 */ 1111 p = strchr(name, '%'); 1112 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1113 return -EINVAL; 1114 1115 /* Use one page as a bit array of possible slots */ 1116 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1117 if (!inuse) 1118 return -ENOMEM; 1119 1120 for_each_netdev(net, d) { 1121 struct netdev_name_node *name_node; 1122 1123 netdev_for_each_altname(d, name_node) { 1124 if (!sscanf(name_node->name, name, &i)) 1125 continue; 1126 if (i < 0 || i >= max_netdevices) 1127 continue; 1128 1129 /* avoid cases where sscanf is not exact inverse of printf */ 1130 snprintf(buf, IFNAMSIZ, name, i); 1131 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1132 __set_bit(i, inuse); 1133 } 1134 if (!sscanf(d->name, name, &i)) 1135 continue; 1136 if (i < 0 || i >= max_netdevices) 1137 continue; 1138 1139 /* avoid cases where sscanf is not exact inverse of printf */ 1140 snprintf(buf, IFNAMSIZ, name, i); 1141 if (!strncmp(buf, d->name, IFNAMSIZ)) 1142 __set_bit(i, inuse); 1143 } 1144 1145 i = find_first_zero_bit(inuse, max_netdevices); 1146 bitmap_free(inuse); 1147 if (i == max_netdevices) 1148 return -ENFILE; 1149 1150 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1151 strscpy(buf, name, IFNAMSIZ); 1152 snprintf(res, IFNAMSIZ, buf, i); 1153 return i; 1154 } 1155 1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1158 const char *want_name, char *out_name, 1159 int dup_errno) 1160 { 1161 if (!dev_valid_name(want_name)) 1162 return -EINVAL; 1163 1164 if (strchr(want_name, '%')) 1165 return __dev_alloc_name(net, want_name, out_name); 1166 1167 if (netdev_name_in_use(net, want_name)) 1168 return -dup_errno; 1169 if (out_name != want_name) 1170 strscpy(out_name, want_name, IFNAMSIZ); 1171 return 0; 1172 } 1173 1174 /** 1175 * dev_alloc_name - allocate a name for a device 1176 * @dev: device 1177 * @name: name format string 1178 * 1179 * Passed a format string - eg "lt%d" it will try and find a suitable 1180 * id. It scans list of devices to build up a free map, then chooses 1181 * the first empty slot. The caller must hold the dev_base or rtnl lock 1182 * while allocating the name and adding the device in order to avoid 1183 * duplicates. 1184 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1185 * Returns the number of the unit assigned or a negative errno code. 1186 */ 1187 1188 int dev_alloc_name(struct net_device *dev, const char *name) 1189 { 1190 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1191 } 1192 EXPORT_SYMBOL(dev_alloc_name); 1193 1194 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1195 const char *name) 1196 { 1197 int ret; 1198 1199 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1200 return ret < 0 ? ret : 0; 1201 } 1202 1203 /** 1204 * dev_change_name - change name of a device 1205 * @dev: device 1206 * @newname: name (or format string) must be at least IFNAMSIZ 1207 * 1208 * Change name of a device, can pass format strings "eth%d". 1209 * for wildcarding. 1210 */ 1211 int dev_change_name(struct net_device *dev, const char *newname) 1212 { 1213 unsigned char old_assign_type; 1214 char oldname[IFNAMSIZ]; 1215 int err = 0; 1216 int ret; 1217 struct net *net; 1218 1219 ASSERT_RTNL(); 1220 BUG_ON(!dev_net(dev)); 1221 1222 net = dev_net(dev); 1223 1224 down_write(&devnet_rename_sem); 1225 1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1227 up_write(&devnet_rename_sem); 1228 return 0; 1229 } 1230 1231 memcpy(oldname, dev->name, IFNAMSIZ); 1232 1233 write_seqlock_bh(&netdev_rename_lock); 1234 err = dev_get_valid_name(net, dev, newname); 1235 write_sequnlock_bh(&netdev_rename_lock); 1236 1237 if (err < 0) { 1238 up_write(&devnet_rename_sem); 1239 return err; 1240 } 1241 1242 if (oldname[0] && !strchr(oldname, '%')) 1243 netdev_info(dev, "renamed from %s%s\n", oldname, 1244 dev->flags & IFF_UP ? " (while UP)" : ""); 1245 1246 old_assign_type = dev->name_assign_type; 1247 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1248 1249 rollback: 1250 ret = device_rename(&dev->dev, dev->name); 1251 if (ret) { 1252 memcpy(dev->name, oldname, IFNAMSIZ); 1253 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1254 up_write(&devnet_rename_sem); 1255 return ret; 1256 } 1257 1258 up_write(&devnet_rename_sem); 1259 1260 netdev_adjacent_rename_links(dev, oldname); 1261 1262 netdev_name_node_del(dev->name_node); 1263 1264 synchronize_net(); 1265 1266 netdev_name_node_add(net, dev->name_node); 1267 1268 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1269 ret = notifier_to_errno(ret); 1270 1271 if (ret) { 1272 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1273 if (err >= 0) { 1274 err = ret; 1275 down_write(&devnet_rename_sem); 1276 write_seqlock_bh(&netdev_rename_lock); 1277 memcpy(dev->name, oldname, IFNAMSIZ); 1278 write_sequnlock_bh(&netdev_rename_lock); 1279 memcpy(oldname, newname, IFNAMSIZ); 1280 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1281 old_assign_type = NET_NAME_RENAMED; 1282 goto rollback; 1283 } else { 1284 netdev_err(dev, "name change rollback failed: %d\n", 1285 ret); 1286 } 1287 } 1288 1289 return err; 1290 } 1291 1292 /** 1293 * dev_set_alias - change ifalias of a device 1294 * @dev: device 1295 * @alias: name up to IFALIASZ 1296 * @len: limit of bytes to copy from info 1297 * 1298 * Set ifalias for a device, 1299 */ 1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1301 { 1302 struct dev_ifalias *new_alias = NULL; 1303 1304 if (len >= IFALIASZ) 1305 return -EINVAL; 1306 1307 if (len) { 1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1309 if (!new_alias) 1310 return -ENOMEM; 1311 1312 memcpy(new_alias->ifalias, alias, len); 1313 new_alias->ifalias[len] = 0; 1314 } 1315 1316 mutex_lock(&ifalias_mutex); 1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1318 mutex_is_locked(&ifalias_mutex)); 1319 mutex_unlock(&ifalias_mutex); 1320 1321 if (new_alias) 1322 kfree_rcu(new_alias, rcuhead); 1323 1324 return len; 1325 } 1326 EXPORT_SYMBOL(dev_set_alias); 1327 1328 /** 1329 * dev_get_alias - get ifalias of a device 1330 * @dev: device 1331 * @name: buffer to store name of ifalias 1332 * @len: size of buffer 1333 * 1334 * get ifalias for a device. Caller must make sure dev cannot go 1335 * away, e.g. rcu read lock or own a reference count to device. 1336 */ 1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1338 { 1339 const struct dev_ifalias *alias; 1340 int ret = 0; 1341 1342 rcu_read_lock(); 1343 alias = rcu_dereference(dev->ifalias); 1344 if (alias) 1345 ret = snprintf(name, len, "%s", alias->ifalias); 1346 rcu_read_unlock(); 1347 1348 return ret; 1349 } 1350 1351 /** 1352 * netdev_features_change - device changes features 1353 * @dev: device to cause notification 1354 * 1355 * Called to indicate a device has changed features. 1356 */ 1357 void netdev_features_change(struct net_device *dev) 1358 { 1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1360 } 1361 EXPORT_SYMBOL(netdev_features_change); 1362 1363 /** 1364 * netdev_state_change - device changes state 1365 * @dev: device to cause notification 1366 * 1367 * Called to indicate a device has changed state. This function calls 1368 * the notifier chains for netdev_chain and sends a NEWLINK message 1369 * to the routing socket. 1370 */ 1371 void netdev_state_change(struct net_device *dev) 1372 { 1373 if (dev->flags & IFF_UP) { 1374 struct netdev_notifier_change_info change_info = { 1375 .info.dev = dev, 1376 }; 1377 1378 call_netdevice_notifiers_info(NETDEV_CHANGE, 1379 &change_info.info); 1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1381 } 1382 } 1383 EXPORT_SYMBOL(netdev_state_change); 1384 1385 /** 1386 * __netdev_notify_peers - notify network peers about existence of @dev, 1387 * to be called when rtnl lock is already held. 1388 * @dev: network device 1389 * 1390 * Generate traffic such that interested network peers are aware of 1391 * @dev, such as by generating a gratuitous ARP. This may be used when 1392 * a device wants to inform the rest of the network about some sort of 1393 * reconfiguration such as a failover event or virtual machine 1394 * migration. 1395 */ 1396 void __netdev_notify_peers(struct net_device *dev) 1397 { 1398 ASSERT_RTNL(); 1399 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1400 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1401 } 1402 EXPORT_SYMBOL(__netdev_notify_peers); 1403 1404 /** 1405 * netdev_notify_peers - notify network peers about existence of @dev 1406 * @dev: network device 1407 * 1408 * Generate traffic such that interested network peers are aware of 1409 * @dev, such as by generating a gratuitous ARP. This may be used when 1410 * a device wants to inform the rest of the network about some sort of 1411 * reconfiguration such as a failover event or virtual machine 1412 * migration. 1413 */ 1414 void netdev_notify_peers(struct net_device *dev) 1415 { 1416 rtnl_lock(); 1417 __netdev_notify_peers(dev); 1418 rtnl_unlock(); 1419 } 1420 EXPORT_SYMBOL(netdev_notify_peers); 1421 1422 static int napi_threaded_poll(void *data); 1423 1424 static int napi_kthread_create(struct napi_struct *n) 1425 { 1426 int err = 0; 1427 1428 /* Create and wake up the kthread once to put it in 1429 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1430 * warning and work with loadavg. 1431 */ 1432 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1433 n->dev->name, n->napi_id); 1434 if (IS_ERR(n->thread)) { 1435 err = PTR_ERR(n->thread); 1436 pr_err("kthread_run failed with err %d\n", err); 1437 n->thread = NULL; 1438 } 1439 1440 return err; 1441 } 1442 1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1444 { 1445 const struct net_device_ops *ops = dev->netdev_ops; 1446 int ret; 1447 1448 ASSERT_RTNL(); 1449 dev_addr_check(dev); 1450 1451 if (!netif_device_present(dev)) { 1452 /* may be detached because parent is runtime-suspended */ 1453 if (dev->dev.parent) 1454 pm_runtime_resume(dev->dev.parent); 1455 if (!netif_device_present(dev)) 1456 return -ENODEV; 1457 } 1458 1459 /* Block netpoll from trying to do any rx path servicing. 1460 * If we don't do this there is a chance ndo_poll_controller 1461 * or ndo_poll may be running while we open the device 1462 */ 1463 netpoll_poll_disable(dev); 1464 1465 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1466 ret = notifier_to_errno(ret); 1467 if (ret) 1468 return ret; 1469 1470 set_bit(__LINK_STATE_START, &dev->state); 1471 1472 if (ops->ndo_validate_addr) 1473 ret = ops->ndo_validate_addr(dev); 1474 1475 if (!ret && ops->ndo_open) 1476 ret = ops->ndo_open(dev); 1477 1478 netpoll_poll_enable(dev); 1479 1480 if (ret) 1481 clear_bit(__LINK_STATE_START, &dev->state); 1482 else { 1483 dev->flags |= IFF_UP; 1484 dev_set_rx_mode(dev); 1485 dev_activate(dev); 1486 add_device_randomness(dev->dev_addr, dev->addr_len); 1487 } 1488 1489 return ret; 1490 } 1491 1492 /** 1493 * dev_open - prepare an interface for use. 1494 * @dev: device to open 1495 * @extack: netlink extended ack 1496 * 1497 * Takes a device from down to up state. The device's private open 1498 * function is invoked and then the multicast lists are loaded. Finally 1499 * the device is moved into the up state and a %NETDEV_UP message is 1500 * sent to the netdev notifier chain. 1501 * 1502 * Calling this function on an active interface is a nop. On a failure 1503 * a negative errno code is returned. 1504 */ 1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1506 { 1507 int ret; 1508 1509 if (dev->flags & IFF_UP) 1510 return 0; 1511 1512 ret = __dev_open(dev, extack); 1513 if (ret < 0) 1514 return ret; 1515 1516 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1517 call_netdevice_notifiers(NETDEV_UP, dev); 1518 1519 return ret; 1520 } 1521 EXPORT_SYMBOL(dev_open); 1522 1523 static void __dev_close_many(struct list_head *head) 1524 { 1525 struct net_device *dev; 1526 1527 ASSERT_RTNL(); 1528 might_sleep(); 1529 1530 list_for_each_entry(dev, head, close_list) { 1531 /* Temporarily disable netpoll until the interface is down */ 1532 netpoll_poll_disable(dev); 1533 1534 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1535 1536 clear_bit(__LINK_STATE_START, &dev->state); 1537 1538 /* Synchronize to scheduled poll. We cannot touch poll list, it 1539 * can be even on different cpu. So just clear netif_running(). 1540 * 1541 * dev->stop() will invoke napi_disable() on all of it's 1542 * napi_struct instances on this device. 1543 */ 1544 smp_mb__after_atomic(); /* Commit netif_running(). */ 1545 } 1546 1547 dev_deactivate_many(head); 1548 1549 list_for_each_entry(dev, head, close_list) { 1550 const struct net_device_ops *ops = dev->netdev_ops; 1551 1552 /* 1553 * Call the device specific close. This cannot fail. 1554 * Only if device is UP 1555 * 1556 * We allow it to be called even after a DETACH hot-plug 1557 * event. 1558 */ 1559 if (ops->ndo_stop) 1560 ops->ndo_stop(dev); 1561 1562 dev->flags &= ~IFF_UP; 1563 netpoll_poll_enable(dev); 1564 } 1565 } 1566 1567 static void __dev_close(struct net_device *dev) 1568 { 1569 LIST_HEAD(single); 1570 1571 list_add(&dev->close_list, &single); 1572 __dev_close_many(&single); 1573 list_del(&single); 1574 } 1575 1576 void dev_close_many(struct list_head *head, bool unlink) 1577 { 1578 struct net_device *dev, *tmp; 1579 1580 /* Remove the devices that don't need to be closed */ 1581 list_for_each_entry_safe(dev, tmp, head, close_list) 1582 if (!(dev->flags & IFF_UP)) 1583 list_del_init(&dev->close_list); 1584 1585 __dev_close_many(head); 1586 1587 list_for_each_entry_safe(dev, tmp, head, close_list) { 1588 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1589 call_netdevice_notifiers(NETDEV_DOWN, dev); 1590 if (unlink) 1591 list_del_init(&dev->close_list); 1592 } 1593 } 1594 EXPORT_SYMBOL(dev_close_many); 1595 1596 /** 1597 * dev_close - shutdown an interface. 1598 * @dev: device to shutdown 1599 * 1600 * This function moves an active device into down state. A 1601 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1602 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1603 * chain. 1604 */ 1605 void dev_close(struct net_device *dev) 1606 { 1607 if (dev->flags & IFF_UP) { 1608 LIST_HEAD(single); 1609 1610 list_add(&dev->close_list, &single); 1611 dev_close_many(&single, true); 1612 list_del(&single); 1613 } 1614 } 1615 EXPORT_SYMBOL(dev_close); 1616 1617 1618 /** 1619 * dev_disable_lro - disable Large Receive Offload on a device 1620 * @dev: device 1621 * 1622 * Disable Large Receive Offload (LRO) on a net device. Must be 1623 * called under RTNL. This is needed if received packets may be 1624 * forwarded to another interface. 1625 */ 1626 void dev_disable_lro(struct net_device *dev) 1627 { 1628 struct net_device *lower_dev; 1629 struct list_head *iter; 1630 1631 dev->wanted_features &= ~NETIF_F_LRO; 1632 netdev_update_features(dev); 1633 1634 if (unlikely(dev->features & NETIF_F_LRO)) 1635 netdev_WARN(dev, "failed to disable LRO!\n"); 1636 1637 netdev_for_each_lower_dev(dev, lower_dev, iter) 1638 dev_disable_lro(lower_dev); 1639 } 1640 EXPORT_SYMBOL(dev_disable_lro); 1641 1642 /** 1643 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1644 * @dev: device 1645 * 1646 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1647 * called under RTNL. This is needed if Generic XDP is installed on 1648 * the device. 1649 */ 1650 static void dev_disable_gro_hw(struct net_device *dev) 1651 { 1652 dev->wanted_features &= ~NETIF_F_GRO_HW; 1653 netdev_update_features(dev); 1654 1655 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1656 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1657 } 1658 1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1660 { 1661 #define N(val) \ 1662 case NETDEV_##val: \ 1663 return "NETDEV_" __stringify(val); 1664 switch (cmd) { 1665 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1666 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1667 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1668 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1669 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1670 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1671 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1672 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1673 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1674 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1675 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1676 N(XDP_FEAT_CHANGE) 1677 } 1678 #undef N 1679 return "UNKNOWN_NETDEV_EVENT"; 1680 } 1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1682 1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1684 struct net_device *dev) 1685 { 1686 struct netdev_notifier_info info = { 1687 .dev = dev, 1688 }; 1689 1690 return nb->notifier_call(nb, val, &info); 1691 } 1692 1693 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1694 struct net_device *dev) 1695 { 1696 int err; 1697 1698 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1699 err = notifier_to_errno(err); 1700 if (err) 1701 return err; 1702 1703 if (!(dev->flags & IFF_UP)) 1704 return 0; 1705 1706 call_netdevice_notifier(nb, NETDEV_UP, dev); 1707 return 0; 1708 } 1709 1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1711 struct net_device *dev) 1712 { 1713 if (dev->flags & IFF_UP) { 1714 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1715 dev); 1716 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1717 } 1718 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1719 } 1720 1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1722 struct net *net) 1723 { 1724 struct net_device *dev; 1725 int err; 1726 1727 for_each_netdev(net, dev) { 1728 err = call_netdevice_register_notifiers(nb, dev); 1729 if (err) 1730 goto rollback; 1731 } 1732 return 0; 1733 1734 rollback: 1735 for_each_netdev_continue_reverse(net, dev) 1736 call_netdevice_unregister_notifiers(nb, dev); 1737 return err; 1738 } 1739 1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1741 struct net *net) 1742 { 1743 struct net_device *dev; 1744 1745 for_each_netdev(net, dev) 1746 call_netdevice_unregister_notifiers(nb, dev); 1747 } 1748 1749 static int dev_boot_phase = 1; 1750 1751 /** 1752 * register_netdevice_notifier - register a network notifier block 1753 * @nb: notifier 1754 * 1755 * Register a notifier to be called when network device events occur. 1756 * The notifier passed is linked into the kernel structures and must 1757 * not be reused until it has been unregistered. A negative errno code 1758 * is returned on a failure. 1759 * 1760 * When registered all registration and up events are replayed 1761 * to the new notifier to allow device to have a race free 1762 * view of the network device list. 1763 */ 1764 1765 int register_netdevice_notifier(struct notifier_block *nb) 1766 { 1767 struct net *net; 1768 int err; 1769 1770 /* Close race with setup_net() and cleanup_net() */ 1771 down_write(&pernet_ops_rwsem); 1772 rtnl_lock(); 1773 err = raw_notifier_chain_register(&netdev_chain, nb); 1774 if (err) 1775 goto unlock; 1776 if (dev_boot_phase) 1777 goto unlock; 1778 for_each_net(net) { 1779 err = call_netdevice_register_net_notifiers(nb, net); 1780 if (err) 1781 goto rollback; 1782 } 1783 1784 unlock: 1785 rtnl_unlock(); 1786 up_write(&pernet_ops_rwsem); 1787 return err; 1788 1789 rollback: 1790 for_each_net_continue_reverse(net) 1791 call_netdevice_unregister_net_notifiers(nb, net); 1792 1793 raw_notifier_chain_unregister(&netdev_chain, nb); 1794 goto unlock; 1795 } 1796 EXPORT_SYMBOL(register_netdevice_notifier); 1797 1798 /** 1799 * unregister_netdevice_notifier - unregister a network notifier block 1800 * @nb: notifier 1801 * 1802 * Unregister a notifier previously registered by 1803 * register_netdevice_notifier(). The notifier is unlinked into the 1804 * kernel structures and may then be reused. A negative errno code 1805 * is returned on a failure. 1806 * 1807 * After unregistering unregister and down device events are synthesized 1808 * for all devices on the device list to the removed notifier to remove 1809 * the need for special case cleanup code. 1810 */ 1811 1812 int unregister_netdevice_notifier(struct notifier_block *nb) 1813 { 1814 struct net *net; 1815 int err; 1816 1817 /* Close race with setup_net() and cleanup_net() */ 1818 down_write(&pernet_ops_rwsem); 1819 rtnl_lock(); 1820 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1821 if (err) 1822 goto unlock; 1823 1824 for_each_net(net) 1825 call_netdevice_unregister_net_notifiers(nb, net); 1826 1827 unlock: 1828 rtnl_unlock(); 1829 up_write(&pernet_ops_rwsem); 1830 return err; 1831 } 1832 EXPORT_SYMBOL(unregister_netdevice_notifier); 1833 1834 static int __register_netdevice_notifier_net(struct net *net, 1835 struct notifier_block *nb, 1836 bool ignore_call_fail) 1837 { 1838 int err; 1839 1840 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1841 if (err) 1842 return err; 1843 if (dev_boot_phase) 1844 return 0; 1845 1846 err = call_netdevice_register_net_notifiers(nb, net); 1847 if (err && !ignore_call_fail) 1848 goto chain_unregister; 1849 1850 return 0; 1851 1852 chain_unregister: 1853 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1854 return err; 1855 } 1856 1857 static int __unregister_netdevice_notifier_net(struct net *net, 1858 struct notifier_block *nb) 1859 { 1860 int err; 1861 1862 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1863 if (err) 1864 return err; 1865 1866 call_netdevice_unregister_net_notifiers(nb, net); 1867 return 0; 1868 } 1869 1870 /** 1871 * register_netdevice_notifier_net - register a per-netns network notifier block 1872 * @net: network namespace 1873 * @nb: notifier 1874 * 1875 * Register a notifier to be called when network device events occur. 1876 * The notifier passed is linked into the kernel structures and must 1877 * not be reused until it has been unregistered. A negative errno code 1878 * is returned on a failure. 1879 * 1880 * When registered all registration and up events are replayed 1881 * to the new notifier to allow device to have a race free 1882 * view of the network device list. 1883 */ 1884 1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1886 { 1887 int err; 1888 1889 rtnl_lock(); 1890 err = __register_netdevice_notifier_net(net, nb, false); 1891 rtnl_unlock(); 1892 return err; 1893 } 1894 EXPORT_SYMBOL(register_netdevice_notifier_net); 1895 1896 /** 1897 * unregister_netdevice_notifier_net - unregister a per-netns 1898 * network notifier block 1899 * @net: network namespace 1900 * @nb: notifier 1901 * 1902 * Unregister a notifier previously registered by 1903 * register_netdevice_notifier_net(). The notifier is unlinked from the 1904 * kernel structures and may then be reused. A negative errno code 1905 * is returned on a failure. 1906 * 1907 * After unregistering unregister and down device events are synthesized 1908 * for all devices on the device list to the removed notifier to remove 1909 * the need for special case cleanup code. 1910 */ 1911 1912 int unregister_netdevice_notifier_net(struct net *net, 1913 struct notifier_block *nb) 1914 { 1915 int err; 1916 1917 rtnl_lock(); 1918 err = __unregister_netdevice_notifier_net(net, nb); 1919 rtnl_unlock(); 1920 return err; 1921 } 1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1923 1924 static void __move_netdevice_notifier_net(struct net *src_net, 1925 struct net *dst_net, 1926 struct notifier_block *nb) 1927 { 1928 __unregister_netdevice_notifier_net(src_net, nb); 1929 __register_netdevice_notifier_net(dst_net, nb, true); 1930 } 1931 1932 int register_netdevice_notifier_dev_net(struct net_device *dev, 1933 struct notifier_block *nb, 1934 struct netdev_net_notifier *nn) 1935 { 1936 int err; 1937 1938 rtnl_lock(); 1939 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1940 if (!err) { 1941 nn->nb = nb; 1942 list_add(&nn->list, &dev->net_notifier_list); 1943 } 1944 rtnl_unlock(); 1945 return err; 1946 } 1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1948 1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1950 struct notifier_block *nb, 1951 struct netdev_net_notifier *nn) 1952 { 1953 int err; 1954 1955 rtnl_lock(); 1956 list_del(&nn->list); 1957 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1958 rtnl_unlock(); 1959 return err; 1960 } 1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1962 1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1964 struct net *net) 1965 { 1966 struct netdev_net_notifier *nn; 1967 1968 list_for_each_entry(nn, &dev->net_notifier_list, list) 1969 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1970 } 1971 1972 /** 1973 * call_netdevice_notifiers_info - call all network notifier blocks 1974 * @val: value passed unmodified to notifier function 1975 * @info: notifier information data 1976 * 1977 * Call all network notifier blocks. Parameters and return value 1978 * are as for raw_notifier_call_chain(). 1979 */ 1980 1981 int call_netdevice_notifiers_info(unsigned long val, 1982 struct netdev_notifier_info *info) 1983 { 1984 struct net *net = dev_net(info->dev); 1985 int ret; 1986 1987 ASSERT_RTNL(); 1988 1989 /* Run per-netns notifier block chain first, then run the global one. 1990 * Hopefully, one day, the global one is going to be removed after 1991 * all notifier block registrators get converted to be per-netns. 1992 */ 1993 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1994 if (ret & NOTIFY_STOP_MASK) 1995 return ret; 1996 return raw_notifier_call_chain(&netdev_chain, val, info); 1997 } 1998 1999 /** 2000 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2001 * for and rollback on error 2002 * @val_up: value passed unmodified to notifier function 2003 * @val_down: value passed unmodified to the notifier function when 2004 * recovering from an error on @val_up 2005 * @info: notifier information data 2006 * 2007 * Call all per-netns network notifier blocks, but not notifier blocks on 2008 * the global notifier chain. Parameters and return value are as for 2009 * raw_notifier_call_chain_robust(). 2010 */ 2011 2012 static int 2013 call_netdevice_notifiers_info_robust(unsigned long val_up, 2014 unsigned long val_down, 2015 struct netdev_notifier_info *info) 2016 { 2017 struct net *net = dev_net(info->dev); 2018 2019 ASSERT_RTNL(); 2020 2021 return raw_notifier_call_chain_robust(&net->netdev_chain, 2022 val_up, val_down, info); 2023 } 2024 2025 static int call_netdevice_notifiers_extack(unsigned long val, 2026 struct net_device *dev, 2027 struct netlink_ext_ack *extack) 2028 { 2029 struct netdev_notifier_info info = { 2030 .dev = dev, 2031 .extack = extack, 2032 }; 2033 2034 return call_netdevice_notifiers_info(val, &info); 2035 } 2036 2037 /** 2038 * call_netdevice_notifiers - call all network notifier blocks 2039 * @val: value passed unmodified to notifier function 2040 * @dev: net_device pointer passed unmodified to notifier function 2041 * 2042 * Call all network notifier blocks. Parameters and return value 2043 * are as for raw_notifier_call_chain(). 2044 */ 2045 2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2047 { 2048 return call_netdevice_notifiers_extack(val, dev, NULL); 2049 } 2050 EXPORT_SYMBOL(call_netdevice_notifiers); 2051 2052 /** 2053 * call_netdevice_notifiers_mtu - call all network notifier blocks 2054 * @val: value passed unmodified to notifier function 2055 * @dev: net_device pointer passed unmodified to notifier function 2056 * @arg: additional u32 argument passed to the notifier function 2057 * 2058 * Call all network notifier blocks. Parameters and return value 2059 * are as for raw_notifier_call_chain(). 2060 */ 2061 static int call_netdevice_notifiers_mtu(unsigned long val, 2062 struct net_device *dev, u32 arg) 2063 { 2064 struct netdev_notifier_info_ext info = { 2065 .info.dev = dev, 2066 .ext.mtu = arg, 2067 }; 2068 2069 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2070 2071 return call_netdevice_notifiers_info(val, &info.info); 2072 } 2073 2074 #ifdef CONFIG_NET_INGRESS 2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2076 2077 void net_inc_ingress_queue(void) 2078 { 2079 static_branch_inc(&ingress_needed_key); 2080 } 2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2082 2083 void net_dec_ingress_queue(void) 2084 { 2085 static_branch_dec(&ingress_needed_key); 2086 } 2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2088 #endif 2089 2090 #ifdef CONFIG_NET_EGRESS 2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2092 2093 void net_inc_egress_queue(void) 2094 { 2095 static_branch_inc(&egress_needed_key); 2096 } 2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2098 2099 void net_dec_egress_queue(void) 2100 { 2101 static_branch_dec(&egress_needed_key); 2102 } 2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2104 #endif 2105 2106 #ifdef CONFIG_NET_CLS_ACT 2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key); 2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key); 2109 #endif 2110 2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2112 EXPORT_SYMBOL(netstamp_needed_key); 2113 #ifdef CONFIG_JUMP_LABEL 2114 static atomic_t netstamp_needed_deferred; 2115 static atomic_t netstamp_wanted; 2116 static void netstamp_clear(struct work_struct *work) 2117 { 2118 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2119 int wanted; 2120 2121 wanted = atomic_add_return(deferred, &netstamp_wanted); 2122 if (wanted > 0) 2123 static_branch_enable(&netstamp_needed_key); 2124 else 2125 static_branch_disable(&netstamp_needed_key); 2126 } 2127 static DECLARE_WORK(netstamp_work, netstamp_clear); 2128 #endif 2129 2130 void net_enable_timestamp(void) 2131 { 2132 #ifdef CONFIG_JUMP_LABEL 2133 int wanted = atomic_read(&netstamp_wanted); 2134 2135 while (wanted > 0) { 2136 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2137 return; 2138 } 2139 atomic_inc(&netstamp_needed_deferred); 2140 schedule_work(&netstamp_work); 2141 #else 2142 static_branch_inc(&netstamp_needed_key); 2143 #endif 2144 } 2145 EXPORT_SYMBOL(net_enable_timestamp); 2146 2147 void net_disable_timestamp(void) 2148 { 2149 #ifdef CONFIG_JUMP_LABEL 2150 int wanted = atomic_read(&netstamp_wanted); 2151 2152 while (wanted > 1) { 2153 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2154 return; 2155 } 2156 atomic_dec(&netstamp_needed_deferred); 2157 schedule_work(&netstamp_work); 2158 #else 2159 static_branch_dec(&netstamp_needed_key); 2160 #endif 2161 } 2162 EXPORT_SYMBOL(net_disable_timestamp); 2163 2164 static inline void net_timestamp_set(struct sk_buff *skb) 2165 { 2166 skb->tstamp = 0; 2167 skb->tstamp_type = SKB_CLOCK_REALTIME; 2168 if (static_branch_unlikely(&netstamp_needed_key)) 2169 skb->tstamp = ktime_get_real(); 2170 } 2171 2172 #define net_timestamp_check(COND, SKB) \ 2173 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2174 if ((COND) && !(SKB)->tstamp) \ 2175 (SKB)->tstamp = ktime_get_real(); \ 2176 } \ 2177 2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2179 { 2180 return __is_skb_forwardable(dev, skb, true); 2181 } 2182 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2183 2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2185 bool check_mtu) 2186 { 2187 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2188 2189 if (likely(!ret)) { 2190 skb->protocol = eth_type_trans(skb, dev); 2191 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2192 } 2193 2194 return ret; 2195 } 2196 2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2198 { 2199 return __dev_forward_skb2(dev, skb, true); 2200 } 2201 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2202 2203 /** 2204 * dev_forward_skb - loopback an skb to another netif 2205 * 2206 * @dev: destination network device 2207 * @skb: buffer to forward 2208 * 2209 * return values: 2210 * NET_RX_SUCCESS (no congestion) 2211 * NET_RX_DROP (packet was dropped, but freed) 2212 * 2213 * dev_forward_skb can be used for injecting an skb from the 2214 * start_xmit function of one device into the receive queue 2215 * of another device. 2216 * 2217 * The receiving device may be in another namespace, so 2218 * we have to clear all information in the skb that could 2219 * impact namespace isolation. 2220 */ 2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2222 { 2223 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2224 } 2225 EXPORT_SYMBOL_GPL(dev_forward_skb); 2226 2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2228 { 2229 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2230 } 2231 2232 static inline int deliver_skb(struct sk_buff *skb, 2233 struct packet_type *pt_prev, 2234 struct net_device *orig_dev) 2235 { 2236 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2237 return -ENOMEM; 2238 refcount_inc(&skb->users); 2239 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2240 } 2241 2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2243 struct packet_type **pt, 2244 struct net_device *orig_dev, 2245 __be16 type, 2246 struct list_head *ptype_list) 2247 { 2248 struct packet_type *ptype, *pt_prev = *pt; 2249 2250 list_for_each_entry_rcu(ptype, ptype_list, list) { 2251 if (ptype->type != type) 2252 continue; 2253 if (pt_prev) 2254 deliver_skb(skb, pt_prev, orig_dev); 2255 pt_prev = ptype; 2256 } 2257 *pt = pt_prev; 2258 } 2259 2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2261 { 2262 if (!ptype->af_packet_priv || !skb->sk) 2263 return false; 2264 2265 if (ptype->id_match) 2266 return ptype->id_match(ptype, skb->sk); 2267 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2268 return true; 2269 2270 return false; 2271 } 2272 2273 /** 2274 * dev_nit_active - return true if any network interface taps are in use 2275 * 2276 * @dev: network device to check for the presence of taps 2277 */ 2278 bool dev_nit_active(struct net_device *dev) 2279 { 2280 return !list_empty(&net_hotdata.ptype_all) || 2281 !list_empty(&dev->ptype_all); 2282 } 2283 EXPORT_SYMBOL_GPL(dev_nit_active); 2284 2285 /* 2286 * Support routine. Sends outgoing frames to any network 2287 * taps currently in use. 2288 */ 2289 2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2291 { 2292 struct list_head *ptype_list = &net_hotdata.ptype_all; 2293 struct packet_type *ptype, *pt_prev = NULL; 2294 struct sk_buff *skb2 = NULL; 2295 2296 rcu_read_lock(); 2297 again: 2298 list_for_each_entry_rcu(ptype, ptype_list, list) { 2299 if (READ_ONCE(ptype->ignore_outgoing)) 2300 continue; 2301 2302 /* Never send packets back to the socket 2303 * they originated from - MvS (miquels@drinkel.ow.org) 2304 */ 2305 if (skb_loop_sk(ptype, skb)) 2306 continue; 2307 2308 if (pt_prev) { 2309 deliver_skb(skb2, pt_prev, skb->dev); 2310 pt_prev = ptype; 2311 continue; 2312 } 2313 2314 /* need to clone skb, done only once */ 2315 skb2 = skb_clone(skb, GFP_ATOMIC); 2316 if (!skb2) 2317 goto out_unlock; 2318 2319 net_timestamp_set(skb2); 2320 2321 /* skb->nh should be correctly 2322 * set by sender, so that the second statement is 2323 * just protection against buggy protocols. 2324 */ 2325 skb_reset_mac_header(skb2); 2326 2327 if (skb_network_header(skb2) < skb2->data || 2328 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2329 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2330 ntohs(skb2->protocol), 2331 dev->name); 2332 skb_reset_network_header(skb2); 2333 } 2334 2335 skb2->transport_header = skb2->network_header; 2336 skb2->pkt_type = PACKET_OUTGOING; 2337 pt_prev = ptype; 2338 } 2339 2340 if (ptype_list == &net_hotdata.ptype_all) { 2341 ptype_list = &dev->ptype_all; 2342 goto again; 2343 } 2344 out_unlock: 2345 if (pt_prev) { 2346 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2347 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2348 else 2349 kfree_skb(skb2); 2350 } 2351 rcu_read_unlock(); 2352 } 2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2354 2355 /** 2356 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2357 * @dev: Network device 2358 * @txq: number of queues available 2359 * 2360 * If real_num_tx_queues is changed the tc mappings may no longer be 2361 * valid. To resolve this verify the tc mapping remains valid and if 2362 * not NULL the mapping. With no priorities mapping to this 2363 * offset/count pair it will no longer be used. In the worst case TC0 2364 * is invalid nothing can be done so disable priority mappings. If is 2365 * expected that drivers will fix this mapping if they can before 2366 * calling netif_set_real_num_tx_queues. 2367 */ 2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2369 { 2370 int i; 2371 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2372 2373 /* If TC0 is invalidated disable TC mapping */ 2374 if (tc->offset + tc->count > txq) { 2375 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2376 dev->num_tc = 0; 2377 return; 2378 } 2379 2380 /* Invalidated prio to tc mappings set to TC0 */ 2381 for (i = 1; i < TC_BITMASK + 1; i++) { 2382 int q = netdev_get_prio_tc_map(dev, i); 2383 2384 tc = &dev->tc_to_txq[q]; 2385 if (tc->offset + tc->count > txq) { 2386 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2387 i, q); 2388 netdev_set_prio_tc_map(dev, i, 0); 2389 } 2390 } 2391 } 2392 2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2394 { 2395 if (dev->num_tc) { 2396 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2397 int i; 2398 2399 /* walk through the TCs and see if it falls into any of them */ 2400 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2401 if ((txq - tc->offset) < tc->count) 2402 return i; 2403 } 2404 2405 /* didn't find it, just return -1 to indicate no match */ 2406 return -1; 2407 } 2408 2409 return 0; 2410 } 2411 EXPORT_SYMBOL(netdev_txq_to_tc); 2412 2413 #ifdef CONFIG_XPS 2414 static struct static_key xps_needed __read_mostly; 2415 static struct static_key xps_rxqs_needed __read_mostly; 2416 static DEFINE_MUTEX(xps_map_mutex); 2417 #define xmap_dereference(P) \ 2418 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2419 2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2421 struct xps_dev_maps *old_maps, int tci, u16 index) 2422 { 2423 struct xps_map *map = NULL; 2424 int pos; 2425 2426 map = xmap_dereference(dev_maps->attr_map[tci]); 2427 if (!map) 2428 return false; 2429 2430 for (pos = map->len; pos--;) { 2431 if (map->queues[pos] != index) 2432 continue; 2433 2434 if (map->len > 1) { 2435 map->queues[pos] = map->queues[--map->len]; 2436 break; 2437 } 2438 2439 if (old_maps) 2440 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2441 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2442 kfree_rcu(map, rcu); 2443 return false; 2444 } 2445 2446 return true; 2447 } 2448 2449 static bool remove_xps_queue_cpu(struct net_device *dev, 2450 struct xps_dev_maps *dev_maps, 2451 int cpu, u16 offset, u16 count) 2452 { 2453 int num_tc = dev_maps->num_tc; 2454 bool active = false; 2455 int tci; 2456 2457 for (tci = cpu * num_tc; num_tc--; tci++) { 2458 int i, j; 2459 2460 for (i = count, j = offset; i--; j++) { 2461 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2462 break; 2463 } 2464 2465 active |= i < 0; 2466 } 2467 2468 return active; 2469 } 2470 2471 static void reset_xps_maps(struct net_device *dev, 2472 struct xps_dev_maps *dev_maps, 2473 enum xps_map_type type) 2474 { 2475 static_key_slow_dec_cpuslocked(&xps_needed); 2476 if (type == XPS_RXQS) 2477 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2478 2479 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2480 2481 kfree_rcu(dev_maps, rcu); 2482 } 2483 2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2485 u16 offset, u16 count) 2486 { 2487 struct xps_dev_maps *dev_maps; 2488 bool active = false; 2489 int i, j; 2490 2491 dev_maps = xmap_dereference(dev->xps_maps[type]); 2492 if (!dev_maps) 2493 return; 2494 2495 for (j = 0; j < dev_maps->nr_ids; j++) 2496 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2497 if (!active) 2498 reset_xps_maps(dev, dev_maps, type); 2499 2500 if (type == XPS_CPUS) { 2501 for (i = offset + (count - 1); count--; i--) 2502 netdev_queue_numa_node_write( 2503 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2504 } 2505 } 2506 2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2508 u16 count) 2509 { 2510 if (!static_key_false(&xps_needed)) 2511 return; 2512 2513 cpus_read_lock(); 2514 mutex_lock(&xps_map_mutex); 2515 2516 if (static_key_false(&xps_rxqs_needed)) 2517 clean_xps_maps(dev, XPS_RXQS, offset, count); 2518 2519 clean_xps_maps(dev, XPS_CPUS, offset, count); 2520 2521 mutex_unlock(&xps_map_mutex); 2522 cpus_read_unlock(); 2523 } 2524 2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2526 { 2527 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2528 } 2529 2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2531 u16 index, bool is_rxqs_map) 2532 { 2533 struct xps_map *new_map; 2534 int alloc_len = XPS_MIN_MAP_ALLOC; 2535 int i, pos; 2536 2537 for (pos = 0; map && pos < map->len; pos++) { 2538 if (map->queues[pos] != index) 2539 continue; 2540 return map; 2541 } 2542 2543 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2544 if (map) { 2545 if (pos < map->alloc_len) 2546 return map; 2547 2548 alloc_len = map->alloc_len * 2; 2549 } 2550 2551 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2552 * map 2553 */ 2554 if (is_rxqs_map) 2555 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2556 else 2557 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2558 cpu_to_node(attr_index)); 2559 if (!new_map) 2560 return NULL; 2561 2562 for (i = 0; i < pos; i++) 2563 new_map->queues[i] = map->queues[i]; 2564 new_map->alloc_len = alloc_len; 2565 new_map->len = pos; 2566 2567 return new_map; 2568 } 2569 2570 /* Copy xps maps at a given index */ 2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2572 struct xps_dev_maps *new_dev_maps, int index, 2573 int tc, bool skip_tc) 2574 { 2575 int i, tci = index * dev_maps->num_tc; 2576 struct xps_map *map; 2577 2578 /* copy maps belonging to foreign traffic classes */ 2579 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2580 if (i == tc && skip_tc) 2581 continue; 2582 2583 /* fill in the new device map from the old device map */ 2584 map = xmap_dereference(dev_maps->attr_map[tci]); 2585 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2586 } 2587 } 2588 2589 /* Must be called under cpus_read_lock */ 2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2591 u16 index, enum xps_map_type type) 2592 { 2593 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2594 const unsigned long *online_mask = NULL; 2595 bool active = false, copy = false; 2596 int i, j, tci, numa_node_id = -2; 2597 int maps_sz, num_tc = 1, tc = 0; 2598 struct xps_map *map, *new_map; 2599 unsigned int nr_ids; 2600 2601 WARN_ON_ONCE(index >= dev->num_tx_queues); 2602 2603 if (dev->num_tc) { 2604 /* Do not allow XPS on subordinate device directly */ 2605 num_tc = dev->num_tc; 2606 if (num_tc < 0) 2607 return -EINVAL; 2608 2609 /* If queue belongs to subordinate dev use its map */ 2610 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2611 2612 tc = netdev_txq_to_tc(dev, index); 2613 if (tc < 0) 2614 return -EINVAL; 2615 } 2616 2617 mutex_lock(&xps_map_mutex); 2618 2619 dev_maps = xmap_dereference(dev->xps_maps[type]); 2620 if (type == XPS_RXQS) { 2621 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2622 nr_ids = dev->num_rx_queues; 2623 } else { 2624 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2625 if (num_possible_cpus() > 1) 2626 online_mask = cpumask_bits(cpu_online_mask); 2627 nr_ids = nr_cpu_ids; 2628 } 2629 2630 if (maps_sz < L1_CACHE_BYTES) 2631 maps_sz = L1_CACHE_BYTES; 2632 2633 /* The old dev_maps could be larger or smaller than the one we're 2634 * setting up now, as dev->num_tc or nr_ids could have been updated in 2635 * between. We could try to be smart, but let's be safe instead and only 2636 * copy foreign traffic classes if the two map sizes match. 2637 */ 2638 if (dev_maps && 2639 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2640 copy = true; 2641 2642 /* allocate memory for queue storage */ 2643 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2644 j < nr_ids;) { 2645 if (!new_dev_maps) { 2646 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2647 if (!new_dev_maps) { 2648 mutex_unlock(&xps_map_mutex); 2649 return -ENOMEM; 2650 } 2651 2652 new_dev_maps->nr_ids = nr_ids; 2653 new_dev_maps->num_tc = num_tc; 2654 } 2655 2656 tci = j * num_tc + tc; 2657 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2658 2659 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2660 if (!map) 2661 goto error; 2662 2663 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2664 } 2665 2666 if (!new_dev_maps) 2667 goto out_no_new_maps; 2668 2669 if (!dev_maps) { 2670 /* Increment static keys at most once per type */ 2671 static_key_slow_inc_cpuslocked(&xps_needed); 2672 if (type == XPS_RXQS) 2673 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2674 } 2675 2676 for (j = 0; j < nr_ids; j++) { 2677 bool skip_tc = false; 2678 2679 tci = j * num_tc + tc; 2680 if (netif_attr_test_mask(j, mask, nr_ids) && 2681 netif_attr_test_online(j, online_mask, nr_ids)) { 2682 /* add tx-queue to CPU/rx-queue maps */ 2683 int pos = 0; 2684 2685 skip_tc = true; 2686 2687 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2688 while ((pos < map->len) && (map->queues[pos] != index)) 2689 pos++; 2690 2691 if (pos == map->len) 2692 map->queues[map->len++] = index; 2693 #ifdef CONFIG_NUMA 2694 if (type == XPS_CPUS) { 2695 if (numa_node_id == -2) 2696 numa_node_id = cpu_to_node(j); 2697 else if (numa_node_id != cpu_to_node(j)) 2698 numa_node_id = -1; 2699 } 2700 #endif 2701 } 2702 2703 if (copy) 2704 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2705 skip_tc); 2706 } 2707 2708 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2709 2710 /* Cleanup old maps */ 2711 if (!dev_maps) 2712 goto out_no_old_maps; 2713 2714 for (j = 0; j < dev_maps->nr_ids; j++) { 2715 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2716 map = xmap_dereference(dev_maps->attr_map[tci]); 2717 if (!map) 2718 continue; 2719 2720 if (copy) { 2721 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2722 if (map == new_map) 2723 continue; 2724 } 2725 2726 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2727 kfree_rcu(map, rcu); 2728 } 2729 } 2730 2731 old_dev_maps = dev_maps; 2732 2733 out_no_old_maps: 2734 dev_maps = new_dev_maps; 2735 active = true; 2736 2737 out_no_new_maps: 2738 if (type == XPS_CPUS) 2739 /* update Tx queue numa node */ 2740 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2741 (numa_node_id >= 0) ? 2742 numa_node_id : NUMA_NO_NODE); 2743 2744 if (!dev_maps) 2745 goto out_no_maps; 2746 2747 /* removes tx-queue from unused CPUs/rx-queues */ 2748 for (j = 0; j < dev_maps->nr_ids; j++) { 2749 tci = j * dev_maps->num_tc; 2750 2751 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2752 if (i == tc && 2753 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2754 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2755 continue; 2756 2757 active |= remove_xps_queue(dev_maps, 2758 copy ? old_dev_maps : NULL, 2759 tci, index); 2760 } 2761 } 2762 2763 if (old_dev_maps) 2764 kfree_rcu(old_dev_maps, rcu); 2765 2766 /* free map if not active */ 2767 if (!active) 2768 reset_xps_maps(dev, dev_maps, type); 2769 2770 out_no_maps: 2771 mutex_unlock(&xps_map_mutex); 2772 2773 return 0; 2774 error: 2775 /* remove any maps that we added */ 2776 for (j = 0; j < nr_ids; j++) { 2777 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2778 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2779 map = copy ? 2780 xmap_dereference(dev_maps->attr_map[tci]) : 2781 NULL; 2782 if (new_map && new_map != map) 2783 kfree(new_map); 2784 } 2785 } 2786 2787 mutex_unlock(&xps_map_mutex); 2788 2789 kfree(new_dev_maps); 2790 return -ENOMEM; 2791 } 2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2793 2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2795 u16 index) 2796 { 2797 int ret; 2798 2799 cpus_read_lock(); 2800 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2801 cpus_read_unlock(); 2802 2803 return ret; 2804 } 2805 EXPORT_SYMBOL(netif_set_xps_queue); 2806 2807 #endif 2808 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2809 { 2810 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2811 2812 /* Unbind any subordinate channels */ 2813 while (txq-- != &dev->_tx[0]) { 2814 if (txq->sb_dev) 2815 netdev_unbind_sb_channel(dev, txq->sb_dev); 2816 } 2817 } 2818 2819 void netdev_reset_tc(struct net_device *dev) 2820 { 2821 #ifdef CONFIG_XPS 2822 netif_reset_xps_queues_gt(dev, 0); 2823 #endif 2824 netdev_unbind_all_sb_channels(dev); 2825 2826 /* Reset TC configuration of device */ 2827 dev->num_tc = 0; 2828 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2829 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2830 } 2831 EXPORT_SYMBOL(netdev_reset_tc); 2832 2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2834 { 2835 if (tc >= dev->num_tc) 2836 return -EINVAL; 2837 2838 #ifdef CONFIG_XPS 2839 netif_reset_xps_queues(dev, offset, count); 2840 #endif 2841 dev->tc_to_txq[tc].count = count; 2842 dev->tc_to_txq[tc].offset = offset; 2843 return 0; 2844 } 2845 EXPORT_SYMBOL(netdev_set_tc_queue); 2846 2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2848 { 2849 if (num_tc > TC_MAX_QUEUE) 2850 return -EINVAL; 2851 2852 #ifdef CONFIG_XPS 2853 netif_reset_xps_queues_gt(dev, 0); 2854 #endif 2855 netdev_unbind_all_sb_channels(dev); 2856 2857 dev->num_tc = num_tc; 2858 return 0; 2859 } 2860 EXPORT_SYMBOL(netdev_set_num_tc); 2861 2862 void netdev_unbind_sb_channel(struct net_device *dev, 2863 struct net_device *sb_dev) 2864 { 2865 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2866 2867 #ifdef CONFIG_XPS 2868 netif_reset_xps_queues_gt(sb_dev, 0); 2869 #endif 2870 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2871 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2872 2873 while (txq-- != &dev->_tx[0]) { 2874 if (txq->sb_dev == sb_dev) 2875 txq->sb_dev = NULL; 2876 } 2877 } 2878 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2879 2880 int netdev_bind_sb_channel_queue(struct net_device *dev, 2881 struct net_device *sb_dev, 2882 u8 tc, u16 count, u16 offset) 2883 { 2884 /* Make certain the sb_dev and dev are already configured */ 2885 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2886 return -EINVAL; 2887 2888 /* We cannot hand out queues we don't have */ 2889 if ((offset + count) > dev->real_num_tx_queues) 2890 return -EINVAL; 2891 2892 /* Record the mapping */ 2893 sb_dev->tc_to_txq[tc].count = count; 2894 sb_dev->tc_to_txq[tc].offset = offset; 2895 2896 /* Provide a way for Tx queue to find the tc_to_txq map or 2897 * XPS map for itself. 2898 */ 2899 while (count--) 2900 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2901 2902 return 0; 2903 } 2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2905 2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2907 { 2908 /* Do not use a multiqueue device to represent a subordinate channel */ 2909 if (netif_is_multiqueue(dev)) 2910 return -ENODEV; 2911 2912 /* We allow channels 1 - 32767 to be used for subordinate channels. 2913 * Channel 0 is meant to be "native" mode and used only to represent 2914 * the main root device. We allow writing 0 to reset the device back 2915 * to normal mode after being used as a subordinate channel. 2916 */ 2917 if (channel > S16_MAX) 2918 return -EINVAL; 2919 2920 dev->num_tc = -channel; 2921 2922 return 0; 2923 } 2924 EXPORT_SYMBOL(netdev_set_sb_channel); 2925 2926 /* 2927 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2928 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2929 */ 2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2931 { 2932 bool disabling; 2933 int rc; 2934 2935 disabling = txq < dev->real_num_tx_queues; 2936 2937 if (txq < 1 || txq > dev->num_tx_queues) 2938 return -EINVAL; 2939 2940 if (dev->reg_state == NETREG_REGISTERED || 2941 dev->reg_state == NETREG_UNREGISTERING) { 2942 ASSERT_RTNL(); 2943 2944 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2945 txq); 2946 if (rc) 2947 return rc; 2948 2949 if (dev->num_tc) 2950 netif_setup_tc(dev, txq); 2951 2952 dev_qdisc_change_real_num_tx(dev, txq); 2953 2954 dev->real_num_tx_queues = txq; 2955 2956 if (disabling) { 2957 synchronize_net(); 2958 qdisc_reset_all_tx_gt(dev, txq); 2959 #ifdef CONFIG_XPS 2960 netif_reset_xps_queues_gt(dev, txq); 2961 #endif 2962 } 2963 } else { 2964 dev->real_num_tx_queues = txq; 2965 } 2966 2967 return 0; 2968 } 2969 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2970 2971 #ifdef CONFIG_SYSFS 2972 /** 2973 * netif_set_real_num_rx_queues - set actual number of RX queues used 2974 * @dev: Network device 2975 * @rxq: Actual number of RX queues 2976 * 2977 * This must be called either with the rtnl_lock held or before 2978 * registration of the net device. Returns 0 on success, or a 2979 * negative error code. If called before registration, it always 2980 * succeeds. 2981 */ 2982 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2983 { 2984 int rc; 2985 2986 if (rxq < 1 || rxq > dev->num_rx_queues) 2987 return -EINVAL; 2988 2989 if (dev->reg_state == NETREG_REGISTERED) { 2990 ASSERT_RTNL(); 2991 2992 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2993 rxq); 2994 if (rc) 2995 return rc; 2996 } 2997 2998 dev->real_num_rx_queues = rxq; 2999 return 0; 3000 } 3001 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3002 #endif 3003 3004 /** 3005 * netif_set_real_num_queues - set actual number of RX and TX queues used 3006 * @dev: Network device 3007 * @txq: Actual number of TX queues 3008 * @rxq: Actual number of RX queues 3009 * 3010 * Set the real number of both TX and RX queues. 3011 * Does nothing if the number of queues is already correct. 3012 */ 3013 int netif_set_real_num_queues(struct net_device *dev, 3014 unsigned int txq, unsigned int rxq) 3015 { 3016 unsigned int old_rxq = dev->real_num_rx_queues; 3017 int err; 3018 3019 if (txq < 1 || txq > dev->num_tx_queues || 3020 rxq < 1 || rxq > dev->num_rx_queues) 3021 return -EINVAL; 3022 3023 /* Start from increases, so the error path only does decreases - 3024 * decreases can't fail. 3025 */ 3026 if (rxq > dev->real_num_rx_queues) { 3027 err = netif_set_real_num_rx_queues(dev, rxq); 3028 if (err) 3029 return err; 3030 } 3031 if (txq > dev->real_num_tx_queues) { 3032 err = netif_set_real_num_tx_queues(dev, txq); 3033 if (err) 3034 goto undo_rx; 3035 } 3036 if (rxq < dev->real_num_rx_queues) 3037 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3038 if (txq < dev->real_num_tx_queues) 3039 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3040 3041 return 0; 3042 undo_rx: 3043 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3044 return err; 3045 } 3046 EXPORT_SYMBOL(netif_set_real_num_queues); 3047 3048 /** 3049 * netif_set_tso_max_size() - set the max size of TSO frames supported 3050 * @dev: netdev to update 3051 * @size: max skb->len of a TSO frame 3052 * 3053 * Set the limit on the size of TSO super-frames the device can handle. 3054 * Unless explicitly set the stack will assume the value of 3055 * %GSO_LEGACY_MAX_SIZE. 3056 */ 3057 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3058 { 3059 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3060 if (size < READ_ONCE(dev->gso_max_size)) 3061 netif_set_gso_max_size(dev, size); 3062 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3063 netif_set_gso_ipv4_max_size(dev, size); 3064 } 3065 EXPORT_SYMBOL(netif_set_tso_max_size); 3066 3067 /** 3068 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3069 * @dev: netdev to update 3070 * @segs: max number of TCP segments 3071 * 3072 * Set the limit on the number of TCP segments the device can generate from 3073 * a single TSO super-frame. 3074 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3075 */ 3076 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3077 { 3078 dev->tso_max_segs = segs; 3079 if (segs < READ_ONCE(dev->gso_max_segs)) 3080 netif_set_gso_max_segs(dev, segs); 3081 } 3082 EXPORT_SYMBOL(netif_set_tso_max_segs); 3083 3084 /** 3085 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3086 * @to: netdev to update 3087 * @from: netdev from which to copy the limits 3088 */ 3089 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3090 { 3091 netif_set_tso_max_size(to, from->tso_max_size); 3092 netif_set_tso_max_segs(to, from->tso_max_segs); 3093 } 3094 EXPORT_SYMBOL(netif_inherit_tso_max); 3095 3096 /** 3097 * netif_get_num_default_rss_queues - default number of RSS queues 3098 * 3099 * Default value is the number of physical cores if there are only 1 or 2, or 3100 * divided by 2 if there are more. 3101 */ 3102 int netif_get_num_default_rss_queues(void) 3103 { 3104 cpumask_var_t cpus; 3105 int cpu, count = 0; 3106 3107 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3108 return 1; 3109 3110 cpumask_copy(cpus, cpu_online_mask); 3111 for_each_cpu(cpu, cpus) { 3112 ++count; 3113 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3114 } 3115 free_cpumask_var(cpus); 3116 3117 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3118 } 3119 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3120 3121 static void __netif_reschedule(struct Qdisc *q) 3122 { 3123 struct softnet_data *sd; 3124 unsigned long flags; 3125 3126 local_irq_save(flags); 3127 sd = this_cpu_ptr(&softnet_data); 3128 q->next_sched = NULL; 3129 *sd->output_queue_tailp = q; 3130 sd->output_queue_tailp = &q->next_sched; 3131 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3132 local_irq_restore(flags); 3133 } 3134 3135 void __netif_schedule(struct Qdisc *q) 3136 { 3137 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3138 __netif_reschedule(q); 3139 } 3140 EXPORT_SYMBOL(__netif_schedule); 3141 3142 struct dev_kfree_skb_cb { 3143 enum skb_drop_reason reason; 3144 }; 3145 3146 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3147 { 3148 return (struct dev_kfree_skb_cb *)skb->cb; 3149 } 3150 3151 void netif_schedule_queue(struct netdev_queue *txq) 3152 { 3153 rcu_read_lock(); 3154 if (!netif_xmit_stopped(txq)) { 3155 struct Qdisc *q = rcu_dereference(txq->qdisc); 3156 3157 __netif_schedule(q); 3158 } 3159 rcu_read_unlock(); 3160 } 3161 EXPORT_SYMBOL(netif_schedule_queue); 3162 3163 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3164 { 3165 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3166 struct Qdisc *q; 3167 3168 rcu_read_lock(); 3169 q = rcu_dereference(dev_queue->qdisc); 3170 __netif_schedule(q); 3171 rcu_read_unlock(); 3172 } 3173 } 3174 EXPORT_SYMBOL(netif_tx_wake_queue); 3175 3176 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3177 { 3178 unsigned long flags; 3179 3180 if (unlikely(!skb)) 3181 return; 3182 3183 if (likely(refcount_read(&skb->users) == 1)) { 3184 smp_rmb(); 3185 refcount_set(&skb->users, 0); 3186 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3187 return; 3188 } 3189 get_kfree_skb_cb(skb)->reason = reason; 3190 local_irq_save(flags); 3191 skb->next = __this_cpu_read(softnet_data.completion_queue); 3192 __this_cpu_write(softnet_data.completion_queue, skb); 3193 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3194 local_irq_restore(flags); 3195 } 3196 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3197 3198 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3199 { 3200 if (in_hardirq() || irqs_disabled()) 3201 dev_kfree_skb_irq_reason(skb, reason); 3202 else 3203 kfree_skb_reason(skb, reason); 3204 } 3205 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3206 3207 3208 /** 3209 * netif_device_detach - mark device as removed 3210 * @dev: network device 3211 * 3212 * Mark device as removed from system and therefore no longer available. 3213 */ 3214 void netif_device_detach(struct net_device *dev) 3215 { 3216 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3217 netif_running(dev)) { 3218 netif_tx_stop_all_queues(dev); 3219 } 3220 } 3221 EXPORT_SYMBOL(netif_device_detach); 3222 3223 /** 3224 * netif_device_attach - mark device as attached 3225 * @dev: network device 3226 * 3227 * Mark device as attached from system and restart if needed. 3228 */ 3229 void netif_device_attach(struct net_device *dev) 3230 { 3231 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3232 netif_running(dev)) { 3233 netif_tx_wake_all_queues(dev); 3234 __netdev_watchdog_up(dev); 3235 } 3236 } 3237 EXPORT_SYMBOL(netif_device_attach); 3238 3239 /* 3240 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3241 * to be used as a distribution range. 3242 */ 3243 static u16 skb_tx_hash(const struct net_device *dev, 3244 const struct net_device *sb_dev, 3245 struct sk_buff *skb) 3246 { 3247 u32 hash; 3248 u16 qoffset = 0; 3249 u16 qcount = dev->real_num_tx_queues; 3250 3251 if (dev->num_tc) { 3252 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3253 3254 qoffset = sb_dev->tc_to_txq[tc].offset; 3255 qcount = sb_dev->tc_to_txq[tc].count; 3256 if (unlikely(!qcount)) { 3257 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3258 sb_dev->name, qoffset, tc); 3259 qoffset = 0; 3260 qcount = dev->real_num_tx_queues; 3261 } 3262 } 3263 3264 if (skb_rx_queue_recorded(skb)) { 3265 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3266 hash = skb_get_rx_queue(skb); 3267 if (hash >= qoffset) 3268 hash -= qoffset; 3269 while (unlikely(hash >= qcount)) 3270 hash -= qcount; 3271 return hash + qoffset; 3272 } 3273 3274 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3275 } 3276 3277 void skb_warn_bad_offload(const struct sk_buff *skb) 3278 { 3279 static const netdev_features_t null_features; 3280 struct net_device *dev = skb->dev; 3281 const char *name = ""; 3282 3283 if (!net_ratelimit()) 3284 return; 3285 3286 if (dev) { 3287 if (dev->dev.parent) 3288 name = dev_driver_string(dev->dev.parent); 3289 else 3290 name = netdev_name(dev); 3291 } 3292 skb_dump(KERN_WARNING, skb, false); 3293 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3294 name, dev ? &dev->features : &null_features, 3295 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3296 } 3297 3298 /* 3299 * Invalidate hardware checksum when packet is to be mangled, and 3300 * complete checksum manually on outgoing path. 3301 */ 3302 int skb_checksum_help(struct sk_buff *skb) 3303 { 3304 __wsum csum; 3305 int ret = 0, offset; 3306 3307 if (skb->ip_summed == CHECKSUM_COMPLETE) 3308 goto out_set_summed; 3309 3310 if (unlikely(skb_is_gso(skb))) { 3311 skb_warn_bad_offload(skb); 3312 return -EINVAL; 3313 } 3314 3315 if (!skb_frags_readable(skb)) { 3316 return -EFAULT; 3317 } 3318 3319 /* Before computing a checksum, we should make sure no frag could 3320 * be modified by an external entity : checksum could be wrong. 3321 */ 3322 if (skb_has_shared_frag(skb)) { 3323 ret = __skb_linearize(skb); 3324 if (ret) 3325 goto out; 3326 } 3327 3328 offset = skb_checksum_start_offset(skb); 3329 ret = -EINVAL; 3330 if (unlikely(offset >= skb_headlen(skb))) { 3331 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3332 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3333 offset, skb_headlen(skb)); 3334 goto out; 3335 } 3336 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3337 3338 offset += skb->csum_offset; 3339 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3340 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3341 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3342 offset + sizeof(__sum16), skb_headlen(skb)); 3343 goto out; 3344 } 3345 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3346 if (ret) 3347 goto out; 3348 3349 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3350 out_set_summed: 3351 skb->ip_summed = CHECKSUM_NONE; 3352 out: 3353 return ret; 3354 } 3355 EXPORT_SYMBOL(skb_checksum_help); 3356 3357 int skb_crc32c_csum_help(struct sk_buff *skb) 3358 { 3359 __le32 crc32c_csum; 3360 int ret = 0, offset, start; 3361 3362 if (skb->ip_summed != CHECKSUM_PARTIAL) 3363 goto out; 3364 3365 if (unlikely(skb_is_gso(skb))) 3366 goto out; 3367 3368 /* Before computing a checksum, we should make sure no frag could 3369 * be modified by an external entity : checksum could be wrong. 3370 */ 3371 if (unlikely(skb_has_shared_frag(skb))) { 3372 ret = __skb_linearize(skb); 3373 if (ret) 3374 goto out; 3375 } 3376 start = skb_checksum_start_offset(skb); 3377 offset = start + offsetof(struct sctphdr, checksum); 3378 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3379 ret = -EINVAL; 3380 goto out; 3381 } 3382 3383 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3384 if (ret) 3385 goto out; 3386 3387 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3388 skb->len - start, ~(__u32)0, 3389 crc32c_csum_stub)); 3390 *(__le32 *)(skb->data + offset) = crc32c_csum; 3391 skb_reset_csum_not_inet(skb); 3392 out: 3393 return ret; 3394 } 3395 EXPORT_SYMBOL(skb_crc32c_csum_help); 3396 3397 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3398 { 3399 __be16 type = skb->protocol; 3400 3401 /* Tunnel gso handlers can set protocol to ethernet. */ 3402 if (type == htons(ETH_P_TEB)) { 3403 struct ethhdr *eth; 3404 3405 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3406 return 0; 3407 3408 eth = (struct ethhdr *)skb->data; 3409 type = eth->h_proto; 3410 } 3411 3412 return vlan_get_protocol_and_depth(skb, type, depth); 3413 } 3414 3415 3416 /* Take action when hardware reception checksum errors are detected. */ 3417 #ifdef CONFIG_BUG 3418 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3419 { 3420 netdev_err(dev, "hw csum failure\n"); 3421 skb_dump(KERN_ERR, skb, true); 3422 dump_stack(); 3423 } 3424 3425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3426 { 3427 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3428 } 3429 EXPORT_SYMBOL(netdev_rx_csum_fault); 3430 #endif 3431 3432 /* XXX: check that highmem exists at all on the given machine. */ 3433 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3434 { 3435 #ifdef CONFIG_HIGHMEM 3436 int i; 3437 3438 if (!(dev->features & NETIF_F_HIGHDMA)) { 3439 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3440 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3441 struct page *page = skb_frag_page(frag); 3442 3443 if (page && PageHighMem(page)) 3444 return 1; 3445 } 3446 } 3447 #endif 3448 return 0; 3449 } 3450 3451 /* If MPLS offload request, verify we are testing hardware MPLS features 3452 * instead of standard features for the netdev. 3453 */ 3454 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3455 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3456 netdev_features_t features, 3457 __be16 type) 3458 { 3459 if (eth_p_mpls(type)) 3460 features &= skb->dev->mpls_features; 3461 3462 return features; 3463 } 3464 #else 3465 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3466 netdev_features_t features, 3467 __be16 type) 3468 { 3469 return features; 3470 } 3471 #endif 3472 3473 static netdev_features_t harmonize_features(struct sk_buff *skb, 3474 netdev_features_t features) 3475 { 3476 __be16 type; 3477 3478 type = skb_network_protocol(skb, NULL); 3479 features = net_mpls_features(skb, features, type); 3480 3481 if (skb->ip_summed != CHECKSUM_NONE && 3482 !can_checksum_protocol(features, type)) { 3483 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3484 } 3485 if (illegal_highdma(skb->dev, skb)) 3486 features &= ~NETIF_F_SG; 3487 3488 return features; 3489 } 3490 3491 netdev_features_t passthru_features_check(struct sk_buff *skb, 3492 struct net_device *dev, 3493 netdev_features_t features) 3494 { 3495 return features; 3496 } 3497 EXPORT_SYMBOL(passthru_features_check); 3498 3499 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3500 struct net_device *dev, 3501 netdev_features_t features) 3502 { 3503 return vlan_features_check(skb, features); 3504 } 3505 3506 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3507 struct net_device *dev, 3508 netdev_features_t features) 3509 { 3510 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3511 3512 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3513 return features & ~NETIF_F_GSO_MASK; 3514 3515 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3516 return features & ~NETIF_F_GSO_MASK; 3517 3518 if (!skb_shinfo(skb)->gso_type) { 3519 skb_warn_bad_offload(skb); 3520 return features & ~NETIF_F_GSO_MASK; 3521 } 3522 3523 /* Support for GSO partial features requires software 3524 * intervention before we can actually process the packets 3525 * so we need to strip support for any partial features now 3526 * and we can pull them back in after we have partially 3527 * segmented the frame. 3528 */ 3529 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3530 features &= ~dev->gso_partial_features; 3531 3532 /* Make sure to clear the IPv4 ID mangling feature if the 3533 * IPv4 header has the potential to be fragmented. 3534 */ 3535 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3536 struct iphdr *iph = skb->encapsulation ? 3537 inner_ip_hdr(skb) : ip_hdr(skb); 3538 3539 if (!(iph->frag_off & htons(IP_DF))) 3540 features &= ~NETIF_F_TSO_MANGLEID; 3541 } 3542 3543 return features; 3544 } 3545 3546 netdev_features_t netif_skb_features(struct sk_buff *skb) 3547 { 3548 struct net_device *dev = skb->dev; 3549 netdev_features_t features = dev->features; 3550 3551 if (skb_is_gso(skb)) 3552 features = gso_features_check(skb, dev, features); 3553 3554 /* If encapsulation offload request, verify we are testing 3555 * hardware encapsulation features instead of standard 3556 * features for the netdev 3557 */ 3558 if (skb->encapsulation) 3559 features &= dev->hw_enc_features; 3560 3561 if (skb_vlan_tagged(skb)) 3562 features = netdev_intersect_features(features, 3563 dev->vlan_features | 3564 NETIF_F_HW_VLAN_CTAG_TX | 3565 NETIF_F_HW_VLAN_STAG_TX); 3566 3567 if (dev->netdev_ops->ndo_features_check) 3568 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3569 features); 3570 else 3571 features &= dflt_features_check(skb, dev, features); 3572 3573 return harmonize_features(skb, features); 3574 } 3575 EXPORT_SYMBOL(netif_skb_features); 3576 3577 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3578 struct netdev_queue *txq, bool more) 3579 { 3580 unsigned int len; 3581 int rc; 3582 3583 if (dev_nit_active(dev)) 3584 dev_queue_xmit_nit(skb, dev); 3585 3586 len = skb->len; 3587 trace_net_dev_start_xmit(skb, dev); 3588 rc = netdev_start_xmit(skb, dev, txq, more); 3589 trace_net_dev_xmit(skb, rc, dev, len); 3590 3591 return rc; 3592 } 3593 3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3595 struct netdev_queue *txq, int *ret) 3596 { 3597 struct sk_buff *skb = first; 3598 int rc = NETDEV_TX_OK; 3599 3600 while (skb) { 3601 struct sk_buff *next = skb->next; 3602 3603 skb_mark_not_on_list(skb); 3604 rc = xmit_one(skb, dev, txq, next != NULL); 3605 if (unlikely(!dev_xmit_complete(rc))) { 3606 skb->next = next; 3607 goto out; 3608 } 3609 3610 skb = next; 3611 if (netif_tx_queue_stopped(txq) && skb) { 3612 rc = NETDEV_TX_BUSY; 3613 break; 3614 } 3615 } 3616 3617 out: 3618 *ret = rc; 3619 return skb; 3620 } 3621 3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3623 netdev_features_t features) 3624 { 3625 if (skb_vlan_tag_present(skb) && 3626 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3627 skb = __vlan_hwaccel_push_inside(skb); 3628 return skb; 3629 } 3630 3631 int skb_csum_hwoffload_help(struct sk_buff *skb, 3632 const netdev_features_t features) 3633 { 3634 if (unlikely(skb_csum_is_sctp(skb))) 3635 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3636 skb_crc32c_csum_help(skb); 3637 3638 if (features & NETIF_F_HW_CSUM) 3639 return 0; 3640 3641 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3642 switch (skb->csum_offset) { 3643 case offsetof(struct tcphdr, check): 3644 case offsetof(struct udphdr, check): 3645 return 0; 3646 } 3647 } 3648 3649 return skb_checksum_help(skb); 3650 } 3651 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3652 3653 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3654 { 3655 netdev_features_t features; 3656 3657 features = netif_skb_features(skb); 3658 skb = validate_xmit_vlan(skb, features); 3659 if (unlikely(!skb)) 3660 goto out_null; 3661 3662 skb = sk_validate_xmit_skb(skb, dev); 3663 if (unlikely(!skb)) 3664 goto out_null; 3665 3666 if (netif_needs_gso(skb, features)) { 3667 struct sk_buff *segs; 3668 3669 segs = skb_gso_segment(skb, features); 3670 if (IS_ERR(segs)) { 3671 goto out_kfree_skb; 3672 } else if (segs) { 3673 consume_skb(skb); 3674 skb = segs; 3675 } 3676 } else { 3677 if (skb_needs_linearize(skb, features) && 3678 __skb_linearize(skb)) 3679 goto out_kfree_skb; 3680 3681 /* If packet is not checksummed and device does not 3682 * support checksumming for this protocol, complete 3683 * checksumming here. 3684 */ 3685 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3686 if (skb->encapsulation) 3687 skb_set_inner_transport_header(skb, 3688 skb_checksum_start_offset(skb)); 3689 else 3690 skb_set_transport_header(skb, 3691 skb_checksum_start_offset(skb)); 3692 if (skb_csum_hwoffload_help(skb, features)) 3693 goto out_kfree_skb; 3694 } 3695 } 3696 3697 skb = validate_xmit_xfrm(skb, features, again); 3698 3699 return skb; 3700 3701 out_kfree_skb: 3702 kfree_skb(skb); 3703 out_null: 3704 dev_core_stats_tx_dropped_inc(dev); 3705 return NULL; 3706 } 3707 3708 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3709 { 3710 struct sk_buff *next, *head = NULL, *tail; 3711 3712 for (; skb != NULL; skb = next) { 3713 next = skb->next; 3714 skb_mark_not_on_list(skb); 3715 3716 /* in case skb won't be segmented, point to itself */ 3717 skb->prev = skb; 3718 3719 skb = validate_xmit_skb(skb, dev, again); 3720 if (!skb) 3721 continue; 3722 3723 if (!head) 3724 head = skb; 3725 else 3726 tail->next = skb; 3727 /* If skb was segmented, skb->prev points to 3728 * the last segment. If not, it still contains skb. 3729 */ 3730 tail = skb->prev; 3731 } 3732 return head; 3733 } 3734 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3735 3736 static void qdisc_pkt_len_init(struct sk_buff *skb) 3737 { 3738 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3739 3740 qdisc_skb_cb(skb)->pkt_len = skb->len; 3741 3742 /* To get more precise estimation of bytes sent on wire, 3743 * we add to pkt_len the headers size of all segments 3744 */ 3745 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3746 u16 gso_segs = shinfo->gso_segs; 3747 unsigned int hdr_len; 3748 3749 /* mac layer + network layer */ 3750 hdr_len = skb_transport_offset(skb); 3751 3752 /* + transport layer */ 3753 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3754 const struct tcphdr *th; 3755 struct tcphdr _tcphdr; 3756 3757 th = skb_header_pointer(skb, hdr_len, 3758 sizeof(_tcphdr), &_tcphdr); 3759 if (likely(th)) 3760 hdr_len += __tcp_hdrlen(th); 3761 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 3762 struct udphdr _udphdr; 3763 3764 if (skb_header_pointer(skb, hdr_len, 3765 sizeof(_udphdr), &_udphdr)) 3766 hdr_len += sizeof(struct udphdr); 3767 } 3768 3769 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 3770 int payload = skb->len - hdr_len; 3771 3772 /* Malicious packet. */ 3773 if (payload <= 0) 3774 return; 3775 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 3776 } 3777 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3778 } 3779 } 3780 3781 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3782 struct sk_buff **to_free, 3783 struct netdev_queue *txq) 3784 { 3785 int rc; 3786 3787 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3788 if (rc == NET_XMIT_SUCCESS) 3789 trace_qdisc_enqueue(q, txq, skb); 3790 return rc; 3791 } 3792 3793 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3794 struct net_device *dev, 3795 struct netdev_queue *txq) 3796 { 3797 spinlock_t *root_lock = qdisc_lock(q); 3798 struct sk_buff *to_free = NULL; 3799 bool contended; 3800 int rc; 3801 3802 qdisc_calculate_pkt_len(skb, q); 3803 3804 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3805 3806 if (q->flags & TCQ_F_NOLOCK) { 3807 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3808 qdisc_run_begin(q)) { 3809 /* Retest nolock_qdisc_is_empty() within the protection 3810 * of q->seqlock to protect from racing with requeuing. 3811 */ 3812 if (unlikely(!nolock_qdisc_is_empty(q))) { 3813 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3814 __qdisc_run(q); 3815 qdisc_run_end(q); 3816 3817 goto no_lock_out; 3818 } 3819 3820 qdisc_bstats_cpu_update(q, skb); 3821 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3822 !nolock_qdisc_is_empty(q)) 3823 __qdisc_run(q); 3824 3825 qdisc_run_end(q); 3826 return NET_XMIT_SUCCESS; 3827 } 3828 3829 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3830 qdisc_run(q); 3831 3832 no_lock_out: 3833 if (unlikely(to_free)) 3834 kfree_skb_list_reason(to_free, 3835 tcf_get_drop_reason(to_free)); 3836 return rc; 3837 } 3838 3839 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 3840 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 3841 return NET_XMIT_DROP; 3842 } 3843 /* 3844 * Heuristic to force contended enqueues to serialize on a 3845 * separate lock before trying to get qdisc main lock. 3846 * This permits qdisc->running owner to get the lock more 3847 * often and dequeue packets faster. 3848 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3849 * and then other tasks will only enqueue packets. The packets will be 3850 * sent after the qdisc owner is scheduled again. To prevent this 3851 * scenario the task always serialize on the lock. 3852 */ 3853 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3854 if (unlikely(contended)) 3855 spin_lock(&q->busylock); 3856 3857 spin_lock(root_lock); 3858 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3859 __qdisc_drop(skb, &to_free); 3860 rc = NET_XMIT_DROP; 3861 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3862 qdisc_run_begin(q)) { 3863 /* 3864 * This is a work-conserving queue; there are no old skbs 3865 * waiting to be sent out; and the qdisc is not running - 3866 * xmit the skb directly. 3867 */ 3868 3869 qdisc_bstats_update(q, skb); 3870 3871 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3872 if (unlikely(contended)) { 3873 spin_unlock(&q->busylock); 3874 contended = false; 3875 } 3876 __qdisc_run(q); 3877 } 3878 3879 qdisc_run_end(q); 3880 rc = NET_XMIT_SUCCESS; 3881 } else { 3882 WRITE_ONCE(q->owner, smp_processor_id()); 3883 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3884 WRITE_ONCE(q->owner, -1); 3885 if (qdisc_run_begin(q)) { 3886 if (unlikely(contended)) { 3887 spin_unlock(&q->busylock); 3888 contended = false; 3889 } 3890 __qdisc_run(q); 3891 qdisc_run_end(q); 3892 } 3893 } 3894 spin_unlock(root_lock); 3895 if (unlikely(to_free)) 3896 kfree_skb_list_reason(to_free, 3897 tcf_get_drop_reason(to_free)); 3898 if (unlikely(contended)) 3899 spin_unlock(&q->busylock); 3900 return rc; 3901 } 3902 3903 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3904 static void skb_update_prio(struct sk_buff *skb) 3905 { 3906 const struct netprio_map *map; 3907 const struct sock *sk; 3908 unsigned int prioidx; 3909 3910 if (skb->priority) 3911 return; 3912 map = rcu_dereference_bh(skb->dev->priomap); 3913 if (!map) 3914 return; 3915 sk = skb_to_full_sk(skb); 3916 if (!sk) 3917 return; 3918 3919 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3920 3921 if (prioidx < map->priomap_len) 3922 skb->priority = map->priomap[prioidx]; 3923 } 3924 #else 3925 #define skb_update_prio(skb) 3926 #endif 3927 3928 /** 3929 * dev_loopback_xmit - loop back @skb 3930 * @net: network namespace this loopback is happening in 3931 * @sk: sk needed to be a netfilter okfn 3932 * @skb: buffer to transmit 3933 */ 3934 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3935 { 3936 skb_reset_mac_header(skb); 3937 __skb_pull(skb, skb_network_offset(skb)); 3938 skb->pkt_type = PACKET_LOOPBACK; 3939 if (skb->ip_summed == CHECKSUM_NONE) 3940 skb->ip_summed = CHECKSUM_UNNECESSARY; 3941 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3942 skb_dst_force(skb); 3943 netif_rx(skb); 3944 return 0; 3945 } 3946 EXPORT_SYMBOL(dev_loopback_xmit); 3947 3948 #ifdef CONFIG_NET_EGRESS 3949 static struct netdev_queue * 3950 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3951 { 3952 int qm = skb_get_queue_mapping(skb); 3953 3954 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3955 } 3956 3957 #ifndef CONFIG_PREEMPT_RT 3958 static bool netdev_xmit_txqueue_skipped(void) 3959 { 3960 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3961 } 3962 3963 void netdev_xmit_skip_txqueue(bool skip) 3964 { 3965 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3966 } 3967 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3968 3969 #else 3970 static bool netdev_xmit_txqueue_skipped(void) 3971 { 3972 return current->net_xmit.skip_txqueue; 3973 } 3974 3975 void netdev_xmit_skip_txqueue(bool skip) 3976 { 3977 current->net_xmit.skip_txqueue = skip; 3978 } 3979 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3980 #endif 3981 #endif /* CONFIG_NET_EGRESS */ 3982 3983 #ifdef CONFIG_NET_XGRESS 3984 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3985 enum skb_drop_reason *drop_reason) 3986 { 3987 int ret = TC_ACT_UNSPEC; 3988 #ifdef CONFIG_NET_CLS_ACT 3989 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3990 struct tcf_result res; 3991 3992 if (!miniq) 3993 return ret; 3994 3995 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) { 3996 if (tcf_block_bypass_sw(miniq->block)) 3997 return ret; 3998 } 3999 4000 tc_skb_cb(skb)->mru = 0; 4001 tc_skb_cb(skb)->post_ct = false; 4002 tcf_set_drop_reason(skb, *drop_reason); 4003 4004 mini_qdisc_bstats_cpu_update(miniq, skb); 4005 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4006 /* Only tcf related quirks below. */ 4007 switch (ret) { 4008 case TC_ACT_SHOT: 4009 *drop_reason = tcf_get_drop_reason(skb); 4010 mini_qdisc_qstats_cpu_drop(miniq); 4011 break; 4012 case TC_ACT_OK: 4013 case TC_ACT_RECLASSIFY: 4014 skb->tc_index = TC_H_MIN(res.classid); 4015 break; 4016 } 4017 #endif /* CONFIG_NET_CLS_ACT */ 4018 return ret; 4019 } 4020 4021 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4022 4023 void tcx_inc(void) 4024 { 4025 static_branch_inc(&tcx_needed_key); 4026 } 4027 4028 void tcx_dec(void) 4029 { 4030 static_branch_dec(&tcx_needed_key); 4031 } 4032 4033 static __always_inline enum tcx_action_base 4034 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4035 const bool needs_mac) 4036 { 4037 const struct bpf_mprog_fp *fp; 4038 const struct bpf_prog *prog; 4039 int ret = TCX_NEXT; 4040 4041 if (needs_mac) 4042 __skb_push(skb, skb->mac_len); 4043 bpf_mprog_foreach_prog(entry, fp, prog) { 4044 bpf_compute_data_pointers(skb); 4045 ret = bpf_prog_run(prog, skb); 4046 if (ret != TCX_NEXT) 4047 break; 4048 } 4049 if (needs_mac) 4050 __skb_pull(skb, skb->mac_len); 4051 return tcx_action_code(skb, ret); 4052 } 4053 4054 static __always_inline struct sk_buff * 4055 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4056 struct net_device *orig_dev, bool *another) 4057 { 4058 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4059 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4060 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4061 int sch_ret; 4062 4063 if (!entry) 4064 return skb; 4065 4066 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4067 if (*pt_prev) { 4068 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4069 *pt_prev = NULL; 4070 } 4071 4072 qdisc_skb_cb(skb)->pkt_len = skb->len; 4073 tcx_set_ingress(skb, true); 4074 4075 if (static_branch_unlikely(&tcx_needed_key)) { 4076 sch_ret = tcx_run(entry, skb, true); 4077 if (sch_ret != TC_ACT_UNSPEC) 4078 goto ingress_verdict; 4079 } 4080 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4081 ingress_verdict: 4082 switch (sch_ret) { 4083 case TC_ACT_REDIRECT: 4084 /* skb_mac_header check was done by BPF, so we can safely 4085 * push the L2 header back before redirecting to another 4086 * netdev. 4087 */ 4088 __skb_push(skb, skb->mac_len); 4089 if (skb_do_redirect(skb) == -EAGAIN) { 4090 __skb_pull(skb, skb->mac_len); 4091 *another = true; 4092 break; 4093 } 4094 *ret = NET_RX_SUCCESS; 4095 bpf_net_ctx_clear(bpf_net_ctx); 4096 return NULL; 4097 case TC_ACT_SHOT: 4098 kfree_skb_reason(skb, drop_reason); 4099 *ret = NET_RX_DROP; 4100 bpf_net_ctx_clear(bpf_net_ctx); 4101 return NULL; 4102 /* used by tc_run */ 4103 case TC_ACT_STOLEN: 4104 case TC_ACT_QUEUED: 4105 case TC_ACT_TRAP: 4106 consume_skb(skb); 4107 fallthrough; 4108 case TC_ACT_CONSUMED: 4109 *ret = NET_RX_SUCCESS; 4110 bpf_net_ctx_clear(bpf_net_ctx); 4111 return NULL; 4112 } 4113 bpf_net_ctx_clear(bpf_net_ctx); 4114 4115 return skb; 4116 } 4117 4118 static __always_inline struct sk_buff * 4119 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4120 { 4121 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4122 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4123 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4124 int sch_ret; 4125 4126 if (!entry) 4127 return skb; 4128 4129 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4130 4131 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4132 * already set by the caller. 4133 */ 4134 if (static_branch_unlikely(&tcx_needed_key)) { 4135 sch_ret = tcx_run(entry, skb, false); 4136 if (sch_ret != TC_ACT_UNSPEC) 4137 goto egress_verdict; 4138 } 4139 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4140 egress_verdict: 4141 switch (sch_ret) { 4142 case TC_ACT_REDIRECT: 4143 /* No need to push/pop skb's mac_header here on egress! */ 4144 skb_do_redirect(skb); 4145 *ret = NET_XMIT_SUCCESS; 4146 bpf_net_ctx_clear(bpf_net_ctx); 4147 return NULL; 4148 case TC_ACT_SHOT: 4149 kfree_skb_reason(skb, drop_reason); 4150 *ret = NET_XMIT_DROP; 4151 bpf_net_ctx_clear(bpf_net_ctx); 4152 return NULL; 4153 /* used by tc_run */ 4154 case TC_ACT_STOLEN: 4155 case TC_ACT_QUEUED: 4156 case TC_ACT_TRAP: 4157 consume_skb(skb); 4158 fallthrough; 4159 case TC_ACT_CONSUMED: 4160 *ret = NET_XMIT_SUCCESS; 4161 bpf_net_ctx_clear(bpf_net_ctx); 4162 return NULL; 4163 } 4164 bpf_net_ctx_clear(bpf_net_ctx); 4165 4166 return skb; 4167 } 4168 #else 4169 static __always_inline struct sk_buff * 4170 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4171 struct net_device *orig_dev, bool *another) 4172 { 4173 return skb; 4174 } 4175 4176 static __always_inline struct sk_buff * 4177 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4178 { 4179 return skb; 4180 } 4181 #endif /* CONFIG_NET_XGRESS */ 4182 4183 #ifdef CONFIG_XPS 4184 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4185 struct xps_dev_maps *dev_maps, unsigned int tci) 4186 { 4187 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4188 struct xps_map *map; 4189 int queue_index = -1; 4190 4191 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4192 return queue_index; 4193 4194 tci *= dev_maps->num_tc; 4195 tci += tc; 4196 4197 map = rcu_dereference(dev_maps->attr_map[tci]); 4198 if (map) { 4199 if (map->len == 1) 4200 queue_index = map->queues[0]; 4201 else 4202 queue_index = map->queues[reciprocal_scale( 4203 skb_get_hash(skb), map->len)]; 4204 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4205 queue_index = -1; 4206 } 4207 return queue_index; 4208 } 4209 #endif 4210 4211 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4212 struct sk_buff *skb) 4213 { 4214 #ifdef CONFIG_XPS 4215 struct xps_dev_maps *dev_maps; 4216 struct sock *sk = skb->sk; 4217 int queue_index = -1; 4218 4219 if (!static_key_false(&xps_needed)) 4220 return -1; 4221 4222 rcu_read_lock(); 4223 if (!static_key_false(&xps_rxqs_needed)) 4224 goto get_cpus_map; 4225 4226 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4227 if (dev_maps) { 4228 int tci = sk_rx_queue_get(sk); 4229 4230 if (tci >= 0) 4231 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4232 tci); 4233 } 4234 4235 get_cpus_map: 4236 if (queue_index < 0) { 4237 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4238 if (dev_maps) { 4239 unsigned int tci = skb->sender_cpu - 1; 4240 4241 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4242 tci); 4243 } 4244 } 4245 rcu_read_unlock(); 4246 4247 return queue_index; 4248 #else 4249 return -1; 4250 #endif 4251 } 4252 4253 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4254 struct net_device *sb_dev) 4255 { 4256 return 0; 4257 } 4258 EXPORT_SYMBOL(dev_pick_tx_zero); 4259 4260 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4261 struct net_device *sb_dev) 4262 { 4263 struct sock *sk = skb->sk; 4264 int queue_index = sk_tx_queue_get(sk); 4265 4266 sb_dev = sb_dev ? : dev; 4267 4268 if (queue_index < 0 || skb->ooo_okay || 4269 queue_index >= dev->real_num_tx_queues) { 4270 int new_index = get_xps_queue(dev, sb_dev, skb); 4271 4272 if (new_index < 0) 4273 new_index = skb_tx_hash(dev, sb_dev, skb); 4274 4275 if (queue_index != new_index && sk && 4276 sk_fullsock(sk) && 4277 rcu_access_pointer(sk->sk_dst_cache)) 4278 sk_tx_queue_set(sk, new_index); 4279 4280 queue_index = new_index; 4281 } 4282 4283 return queue_index; 4284 } 4285 EXPORT_SYMBOL(netdev_pick_tx); 4286 4287 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4288 struct sk_buff *skb, 4289 struct net_device *sb_dev) 4290 { 4291 int queue_index = 0; 4292 4293 #ifdef CONFIG_XPS 4294 u32 sender_cpu = skb->sender_cpu - 1; 4295 4296 if (sender_cpu >= (u32)NR_CPUS) 4297 skb->sender_cpu = raw_smp_processor_id() + 1; 4298 #endif 4299 4300 if (dev->real_num_tx_queues != 1) { 4301 const struct net_device_ops *ops = dev->netdev_ops; 4302 4303 if (ops->ndo_select_queue) 4304 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4305 else 4306 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4307 4308 queue_index = netdev_cap_txqueue(dev, queue_index); 4309 } 4310 4311 skb_set_queue_mapping(skb, queue_index); 4312 return netdev_get_tx_queue(dev, queue_index); 4313 } 4314 4315 /** 4316 * __dev_queue_xmit() - transmit a buffer 4317 * @skb: buffer to transmit 4318 * @sb_dev: suboordinate device used for L2 forwarding offload 4319 * 4320 * Queue a buffer for transmission to a network device. The caller must 4321 * have set the device and priority and built the buffer before calling 4322 * this function. The function can be called from an interrupt. 4323 * 4324 * When calling this method, interrupts MUST be enabled. This is because 4325 * the BH enable code must have IRQs enabled so that it will not deadlock. 4326 * 4327 * Regardless of the return value, the skb is consumed, so it is currently 4328 * difficult to retry a send to this method. (You can bump the ref count 4329 * before sending to hold a reference for retry if you are careful.) 4330 * 4331 * Return: 4332 * * 0 - buffer successfully transmitted 4333 * * positive qdisc return code - NET_XMIT_DROP etc. 4334 * * negative errno - other errors 4335 */ 4336 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4337 { 4338 struct net_device *dev = skb->dev; 4339 struct netdev_queue *txq = NULL; 4340 struct Qdisc *q; 4341 int rc = -ENOMEM; 4342 bool again = false; 4343 4344 skb_reset_mac_header(skb); 4345 skb_assert_len(skb); 4346 4347 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4348 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4349 4350 /* Disable soft irqs for various locks below. Also 4351 * stops preemption for RCU. 4352 */ 4353 rcu_read_lock_bh(); 4354 4355 skb_update_prio(skb); 4356 4357 qdisc_pkt_len_init(skb); 4358 tcx_set_ingress(skb, false); 4359 #ifdef CONFIG_NET_EGRESS 4360 if (static_branch_unlikely(&egress_needed_key)) { 4361 if (nf_hook_egress_active()) { 4362 skb = nf_hook_egress(skb, &rc, dev); 4363 if (!skb) 4364 goto out; 4365 } 4366 4367 netdev_xmit_skip_txqueue(false); 4368 4369 nf_skip_egress(skb, true); 4370 skb = sch_handle_egress(skb, &rc, dev); 4371 if (!skb) 4372 goto out; 4373 nf_skip_egress(skb, false); 4374 4375 if (netdev_xmit_txqueue_skipped()) 4376 txq = netdev_tx_queue_mapping(dev, skb); 4377 } 4378 #endif 4379 /* If device/qdisc don't need skb->dst, release it right now while 4380 * its hot in this cpu cache. 4381 */ 4382 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4383 skb_dst_drop(skb); 4384 else 4385 skb_dst_force(skb); 4386 4387 if (!txq) 4388 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4389 4390 q = rcu_dereference_bh(txq->qdisc); 4391 4392 trace_net_dev_queue(skb); 4393 if (q->enqueue) { 4394 rc = __dev_xmit_skb(skb, q, dev, txq); 4395 goto out; 4396 } 4397 4398 /* The device has no queue. Common case for software devices: 4399 * loopback, all the sorts of tunnels... 4400 4401 * Really, it is unlikely that netif_tx_lock protection is necessary 4402 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4403 * counters.) 4404 * However, it is possible, that they rely on protection 4405 * made by us here. 4406 4407 * Check this and shot the lock. It is not prone from deadlocks. 4408 *Either shot noqueue qdisc, it is even simpler 8) 4409 */ 4410 if (dev->flags & IFF_UP) { 4411 int cpu = smp_processor_id(); /* ok because BHs are off */ 4412 4413 /* Other cpus might concurrently change txq->xmit_lock_owner 4414 * to -1 or to their cpu id, but not to our id. 4415 */ 4416 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4417 if (dev_xmit_recursion()) 4418 goto recursion_alert; 4419 4420 skb = validate_xmit_skb(skb, dev, &again); 4421 if (!skb) 4422 goto out; 4423 4424 HARD_TX_LOCK(dev, txq, cpu); 4425 4426 if (!netif_xmit_stopped(txq)) { 4427 dev_xmit_recursion_inc(); 4428 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4429 dev_xmit_recursion_dec(); 4430 if (dev_xmit_complete(rc)) { 4431 HARD_TX_UNLOCK(dev, txq); 4432 goto out; 4433 } 4434 } 4435 HARD_TX_UNLOCK(dev, txq); 4436 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4437 dev->name); 4438 } else { 4439 /* Recursion is detected! It is possible, 4440 * unfortunately 4441 */ 4442 recursion_alert: 4443 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4444 dev->name); 4445 } 4446 } 4447 4448 rc = -ENETDOWN; 4449 rcu_read_unlock_bh(); 4450 4451 dev_core_stats_tx_dropped_inc(dev); 4452 kfree_skb_list(skb); 4453 return rc; 4454 out: 4455 rcu_read_unlock_bh(); 4456 return rc; 4457 } 4458 EXPORT_SYMBOL(__dev_queue_xmit); 4459 4460 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4461 { 4462 struct net_device *dev = skb->dev; 4463 struct sk_buff *orig_skb = skb; 4464 struct netdev_queue *txq; 4465 int ret = NETDEV_TX_BUSY; 4466 bool again = false; 4467 4468 if (unlikely(!netif_running(dev) || 4469 !netif_carrier_ok(dev))) 4470 goto drop; 4471 4472 skb = validate_xmit_skb_list(skb, dev, &again); 4473 if (skb != orig_skb) 4474 goto drop; 4475 4476 skb_set_queue_mapping(skb, queue_id); 4477 txq = skb_get_tx_queue(dev, skb); 4478 4479 local_bh_disable(); 4480 4481 dev_xmit_recursion_inc(); 4482 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4483 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4484 ret = netdev_start_xmit(skb, dev, txq, false); 4485 HARD_TX_UNLOCK(dev, txq); 4486 dev_xmit_recursion_dec(); 4487 4488 local_bh_enable(); 4489 return ret; 4490 drop: 4491 dev_core_stats_tx_dropped_inc(dev); 4492 kfree_skb_list(skb); 4493 return NET_XMIT_DROP; 4494 } 4495 EXPORT_SYMBOL(__dev_direct_xmit); 4496 4497 /************************************************************************* 4498 * Receiver routines 4499 *************************************************************************/ 4500 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4501 4502 int weight_p __read_mostly = 64; /* old backlog weight */ 4503 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4504 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4505 4506 /* Called with irq disabled */ 4507 static inline void ____napi_schedule(struct softnet_data *sd, 4508 struct napi_struct *napi) 4509 { 4510 struct task_struct *thread; 4511 4512 lockdep_assert_irqs_disabled(); 4513 4514 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4515 /* Paired with smp_mb__before_atomic() in 4516 * napi_enable()/dev_set_threaded(). 4517 * Use READ_ONCE() to guarantee a complete 4518 * read on napi->thread. Only call 4519 * wake_up_process() when it's not NULL. 4520 */ 4521 thread = READ_ONCE(napi->thread); 4522 if (thread) { 4523 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4524 goto use_local_napi; 4525 4526 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4527 wake_up_process(thread); 4528 return; 4529 } 4530 } 4531 4532 use_local_napi: 4533 list_add_tail(&napi->poll_list, &sd->poll_list); 4534 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4535 /* If not called from net_rx_action() 4536 * we have to raise NET_RX_SOFTIRQ. 4537 */ 4538 if (!sd->in_net_rx_action) 4539 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4540 } 4541 4542 #ifdef CONFIG_RPS 4543 4544 struct static_key_false rps_needed __read_mostly; 4545 EXPORT_SYMBOL(rps_needed); 4546 struct static_key_false rfs_needed __read_mostly; 4547 EXPORT_SYMBOL(rfs_needed); 4548 4549 static struct rps_dev_flow * 4550 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4551 struct rps_dev_flow *rflow, u16 next_cpu) 4552 { 4553 if (next_cpu < nr_cpu_ids) { 4554 u32 head; 4555 #ifdef CONFIG_RFS_ACCEL 4556 struct netdev_rx_queue *rxqueue; 4557 struct rps_dev_flow_table *flow_table; 4558 struct rps_dev_flow *old_rflow; 4559 u16 rxq_index; 4560 u32 flow_id; 4561 int rc; 4562 4563 /* Should we steer this flow to a different hardware queue? */ 4564 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4565 !(dev->features & NETIF_F_NTUPLE)) 4566 goto out; 4567 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4568 if (rxq_index == skb_get_rx_queue(skb)) 4569 goto out; 4570 4571 rxqueue = dev->_rx + rxq_index; 4572 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4573 if (!flow_table) 4574 goto out; 4575 flow_id = skb_get_hash(skb) & flow_table->mask; 4576 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4577 rxq_index, flow_id); 4578 if (rc < 0) 4579 goto out; 4580 old_rflow = rflow; 4581 rflow = &flow_table->flows[flow_id]; 4582 WRITE_ONCE(rflow->filter, rc); 4583 if (old_rflow->filter == rc) 4584 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4585 out: 4586 #endif 4587 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4588 rps_input_queue_tail_save(&rflow->last_qtail, head); 4589 } 4590 4591 WRITE_ONCE(rflow->cpu, next_cpu); 4592 return rflow; 4593 } 4594 4595 /* 4596 * get_rps_cpu is called from netif_receive_skb and returns the target 4597 * CPU from the RPS map of the receiving queue for a given skb. 4598 * rcu_read_lock must be held on entry. 4599 */ 4600 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4601 struct rps_dev_flow **rflowp) 4602 { 4603 const struct rps_sock_flow_table *sock_flow_table; 4604 struct netdev_rx_queue *rxqueue = dev->_rx; 4605 struct rps_dev_flow_table *flow_table; 4606 struct rps_map *map; 4607 int cpu = -1; 4608 u32 tcpu; 4609 u32 hash; 4610 4611 if (skb_rx_queue_recorded(skb)) { 4612 u16 index = skb_get_rx_queue(skb); 4613 4614 if (unlikely(index >= dev->real_num_rx_queues)) { 4615 WARN_ONCE(dev->real_num_rx_queues > 1, 4616 "%s received packet on queue %u, but number " 4617 "of RX queues is %u\n", 4618 dev->name, index, dev->real_num_rx_queues); 4619 goto done; 4620 } 4621 rxqueue += index; 4622 } 4623 4624 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4625 4626 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4627 map = rcu_dereference(rxqueue->rps_map); 4628 if (!flow_table && !map) 4629 goto done; 4630 4631 skb_reset_network_header(skb); 4632 hash = skb_get_hash(skb); 4633 if (!hash) 4634 goto done; 4635 4636 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4637 if (flow_table && sock_flow_table) { 4638 struct rps_dev_flow *rflow; 4639 u32 next_cpu; 4640 u32 ident; 4641 4642 /* First check into global flow table if there is a match. 4643 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4644 */ 4645 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4646 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4647 goto try_rps; 4648 4649 next_cpu = ident & net_hotdata.rps_cpu_mask; 4650 4651 /* OK, now we know there is a match, 4652 * we can look at the local (per receive queue) flow table 4653 */ 4654 rflow = &flow_table->flows[hash & flow_table->mask]; 4655 tcpu = rflow->cpu; 4656 4657 /* 4658 * If the desired CPU (where last recvmsg was done) is 4659 * different from current CPU (one in the rx-queue flow 4660 * table entry), switch if one of the following holds: 4661 * - Current CPU is unset (>= nr_cpu_ids). 4662 * - Current CPU is offline. 4663 * - The current CPU's queue tail has advanced beyond the 4664 * last packet that was enqueued using this table entry. 4665 * This guarantees that all previous packets for the flow 4666 * have been dequeued, thus preserving in order delivery. 4667 */ 4668 if (unlikely(tcpu != next_cpu) && 4669 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4670 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4671 rflow->last_qtail)) >= 0)) { 4672 tcpu = next_cpu; 4673 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4674 } 4675 4676 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4677 *rflowp = rflow; 4678 cpu = tcpu; 4679 goto done; 4680 } 4681 } 4682 4683 try_rps: 4684 4685 if (map) { 4686 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4687 if (cpu_online(tcpu)) { 4688 cpu = tcpu; 4689 goto done; 4690 } 4691 } 4692 4693 done: 4694 return cpu; 4695 } 4696 4697 #ifdef CONFIG_RFS_ACCEL 4698 4699 /** 4700 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4701 * @dev: Device on which the filter was set 4702 * @rxq_index: RX queue index 4703 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4704 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4705 * 4706 * Drivers that implement ndo_rx_flow_steer() should periodically call 4707 * this function for each installed filter and remove the filters for 4708 * which it returns %true. 4709 */ 4710 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4711 u32 flow_id, u16 filter_id) 4712 { 4713 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4714 struct rps_dev_flow_table *flow_table; 4715 struct rps_dev_flow *rflow; 4716 bool expire = true; 4717 unsigned int cpu; 4718 4719 rcu_read_lock(); 4720 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4721 if (flow_table && flow_id <= flow_table->mask) { 4722 rflow = &flow_table->flows[flow_id]; 4723 cpu = READ_ONCE(rflow->cpu); 4724 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4725 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4726 READ_ONCE(rflow->last_qtail)) < 4727 (int)(10 * flow_table->mask))) 4728 expire = false; 4729 } 4730 rcu_read_unlock(); 4731 return expire; 4732 } 4733 EXPORT_SYMBOL(rps_may_expire_flow); 4734 4735 #endif /* CONFIG_RFS_ACCEL */ 4736 4737 /* Called from hardirq (IPI) context */ 4738 static void rps_trigger_softirq(void *data) 4739 { 4740 struct softnet_data *sd = data; 4741 4742 ____napi_schedule(sd, &sd->backlog); 4743 sd->received_rps++; 4744 } 4745 4746 #endif /* CONFIG_RPS */ 4747 4748 /* Called from hardirq (IPI) context */ 4749 static void trigger_rx_softirq(void *data) 4750 { 4751 struct softnet_data *sd = data; 4752 4753 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4754 smp_store_release(&sd->defer_ipi_scheduled, 0); 4755 } 4756 4757 /* 4758 * After we queued a packet into sd->input_pkt_queue, 4759 * we need to make sure this queue is serviced soon. 4760 * 4761 * - If this is another cpu queue, link it to our rps_ipi_list, 4762 * and make sure we will process rps_ipi_list from net_rx_action(). 4763 * 4764 * - If this is our own queue, NAPI schedule our backlog. 4765 * Note that this also raises NET_RX_SOFTIRQ. 4766 */ 4767 static void napi_schedule_rps(struct softnet_data *sd) 4768 { 4769 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4770 4771 #ifdef CONFIG_RPS 4772 if (sd != mysd) { 4773 if (use_backlog_threads()) { 4774 __napi_schedule_irqoff(&sd->backlog); 4775 return; 4776 } 4777 4778 sd->rps_ipi_next = mysd->rps_ipi_list; 4779 mysd->rps_ipi_list = sd; 4780 4781 /* If not called from net_rx_action() or napi_threaded_poll() 4782 * we have to raise NET_RX_SOFTIRQ. 4783 */ 4784 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4785 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4786 return; 4787 } 4788 #endif /* CONFIG_RPS */ 4789 __napi_schedule_irqoff(&mysd->backlog); 4790 } 4791 4792 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 4793 { 4794 unsigned long flags; 4795 4796 if (use_backlog_threads()) { 4797 backlog_lock_irq_save(sd, &flags); 4798 4799 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4800 __napi_schedule_irqoff(&sd->backlog); 4801 4802 backlog_unlock_irq_restore(sd, &flags); 4803 4804 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 4805 smp_call_function_single_async(cpu, &sd->defer_csd); 4806 } 4807 } 4808 4809 #ifdef CONFIG_NET_FLOW_LIMIT 4810 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4811 #endif 4812 4813 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4814 { 4815 #ifdef CONFIG_NET_FLOW_LIMIT 4816 struct sd_flow_limit *fl; 4817 struct softnet_data *sd; 4818 unsigned int old_flow, new_flow; 4819 4820 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 4821 return false; 4822 4823 sd = this_cpu_ptr(&softnet_data); 4824 4825 rcu_read_lock(); 4826 fl = rcu_dereference(sd->flow_limit); 4827 if (fl) { 4828 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4829 old_flow = fl->history[fl->history_head]; 4830 fl->history[fl->history_head] = new_flow; 4831 4832 fl->history_head++; 4833 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4834 4835 if (likely(fl->buckets[old_flow])) 4836 fl->buckets[old_flow]--; 4837 4838 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4839 fl->count++; 4840 rcu_read_unlock(); 4841 return true; 4842 } 4843 } 4844 rcu_read_unlock(); 4845 #endif 4846 return false; 4847 } 4848 4849 /* 4850 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4851 * queue (may be a remote CPU queue). 4852 */ 4853 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4854 unsigned int *qtail) 4855 { 4856 enum skb_drop_reason reason; 4857 struct softnet_data *sd; 4858 unsigned long flags; 4859 unsigned int qlen; 4860 int max_backlog; 4861 u32 tail; 4862 4863 reason = SKB_DROP_REASON_DEV_READY; 4864 if (!netif_running(skb->dev)) 4865 goto bad_dev; 4866 4867 reason = SKB_DROP_REASON_CPU_BACKLOG; 4868 sd = &per_cpu(softnet_data, cpu); 4869 4870 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 4871 max_backlog = READ_ONCE(net_hotdata.max_backlog); 4872 if (unlikely(qlen > max_backlog)) 4873 goto cpu_backlog_drop; 4874 backlog_lock_irq_save(sd, &flags); 4875 qlen = skb_queue_len(&sd->input_pkt_queue); 4876 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 4877 if (!qlen) { 4878 /* Schedule NAPI for backlog device. We can use 4879 * non atomic operation as we own the queue lock. 4880 */ 4881 if (!__test_and_set_bit(NAPI_STATE_SCHED, 4882 &sd->backlog.state)) 4883 napi_schedule_rps(sd); 4884 } 4885 __skb_queue_tail(&sd->input_pkt_queue, skb); 4886 tail = rps_input_queue_tail_incr(sd); 4887 backlog_unlock_irq_restore(sd, &flags); 4888 4889 /* save the tail outside of the critical section */ 4890 rps_input_queue_tail_save(qtail, tail); 4891 return NET_RX_SUCCESS; 4892 } 4893 4894 backlog_unlock_irq_restore(sd, &flags); 4895 4896 cpu_backlog_drop: 4897 atomic_inc(&sd->dropped); 4898 bad_dev: 4899 dev_core_stats_rx_dropped_inc(skb->dev); 4900 kfree_skb_reason(skb, reason); 4901 return NET_RX_DROP; 4902 } 4903 4904 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4905 { 4906 struct net_device *dev = skb->dev; 4907 struct netdev_rx_queue *rxqueue; 4908 4909 rxqueue = dev->_rx; 4910 4911 if (skb_rx_queue_recorded(skb)) { 4912 u16 index = skb_get_rx_queue(skb); 4913 4914 if (unlikely(index >= dev->real_num_rx_queues)) { 4915 WARN_ONCE(dev->real_num_rx_queues > 1, 4916 "%s received packet on queue %u, but number " 4917 "of RX queues is %u\n", 4918 dev->name, index, dev->real_num_rx_queues); 4919 4920 return rxqueue; /* Return first rxqueue */ 4921 } 4922 rxqueue += index; 4923 } 4924 return rxqueue; 4925 } 4926 4927 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4928 struct bpf_prog *xdp_prog) 4929 { 4930 void *orig_data, *orig_data_end, *hard_start; 4931 struct netdev_rx_queue *rxqueue; 4932 bool orig_bcast, orig_host; 4933 u32 mac_len, frame_sz; 4934 __be16 orig_eth_type; 4935 struct ethhdr *eth; 4936 u32 metalen, act; 4937 int off; 4938 4939 /* The XDP program wants to see the packet starting at the MAC 4940 * header. 4941 */ 4942 mac_len = skb->data - skb_mac_header(skb); 4943 hard_start = skb->data - skb_headroom(skb); 4944 4945 /* SKB "head" area always have tailroom for skb_shared_info */ 4946 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4947 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4948 4949 rxqueue = netif_get_rxqueue(skb); 4950 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4951 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4952 skb_headlen(skb) + mac_len, true); 4953 if (skb_is_nonlinear(skb)) { 4954 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 4955 xdp_buff_set_frags_flag(xdp); 4956 } else { 4957 xdp_buff_clear_frags_flag(xdp); 4958 } 4959 4960 orig_data_end = xdp->data_end; 4961 orig_data = xdp->data; 4962 eth = (struct ethhdr *)xdp->data; 4963 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4964 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4965 orig_eth_type = eth->h_proto; 4966 4967 act = bpf_prog_run_xdp(xdp_prog, xdp); 4968 4969 /* check if bpf_xdp_adjust_head was used */ 4970 off = xdp->data - orig_data; 4971 if (off) { 4972 if (off > 0) 4973 __skb_pull(skb, off); 4974 else if (off < 0) 4975 __skb_push(skb, -off); 4976 4977 skb->mac_header += off; 4978 skb_reset_network_header(skb); 4979 } 4980 4981 /* check if bpf_xdp_adjust_tail was used */ 4982 off = xdp->data_end - orig_data_end; 4983 if (off != 0) { 4984 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4985 skb->len += off; /* positive on grow, negative on shrink */ 4986 } 4987 4988 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 4989 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 4990 */ 4991 if (xdp_buff_has_frags(xdp)) 4992 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 4993 else 4994 skb->data_len = 0; 4995 4996 /* check if XDP changed eth hdr such SKB needs update */ 4997 eth = (struct ethhdr *)xdp->data; 4998 if ((orig_eth_type != eth->h_proto) || 4999 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5000 skb->dev->dev_addr)) || 5001 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5002 __skb_push(skb, ETH_HLEN); 5003 skb->pkt_type = PACKET_HOST; 5004 skb->protocol = eth_type_trans(skb, skb->dev); 5005 } 5006 5007 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5008 * before calling us again on redirect path. We do not call do_redirect 5009 * as we leave that up to the caller. 5010 * 5011 * Caller is responsible for managing lifetime of skb (i.e. calling 5012 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5013 */ 5014 switch (act) { 5015 case XDP_REDIRECT: 5016 case XDP_TX: 5017 __skb_push(skb, mac_len); 5018 break; 5019 case XDP_PASS: 5020 metalen = xdp->data - xdp->data_meta; 5021 if (metalen) 5022 skb_metadata_set(skb, metalen); 5023 break; 5024 } 5025 5026 return act; 5027 } 5028 5029 static int 5030 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) 5031 { 5032 struct sk_buff *skb = *pskb; 5033 int err, hroom, troom; 5034 5035 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5036 return 0; 5037 5038 /* In case we have to go down the path and also linearize, 5039 * then lets do the pskb_expand_head() work just once here. 5040 */ 5041 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5042 troom = skb->tail + skb->data_len - skb->end; 5043 err = pskb_expand_head(skb, 5044 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5045 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5046 if (err) 5047 return err; 5048 5049 return skb_linearize(skb); 5050 } 5051 5052 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5053 struct xdp_buff *xdp, 5054 struct bpf_prog *xdp_prog) 5055 { 5056 struct sk_buff *skb = *pskb; 5057 u32 mac_len, act = XDP_DROP; 5058 5059 /* Reinjected packets coming from act_mirred or similar should 5060 * not get XDP generic processing. 5061 */ 5062 if (skb_is_redirected(skb)) 5063 return XDP_PASS; 5064 5065 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5066 * bytes. This is the guarantee that also native XDP provides, 5067 * thus we need to do it here as well. 5068 */ 5069 mac_len = skb->data - skb_mac_header(skb); 5070 __skb_push(skb, mac_len); 5071 5072 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5073 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5074 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5075 goto do_drop; 5076 } 5077 5078 __skb_pull(*pskb, mac_len); 5079 5080 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5081 switch (act) { 5082 case XDP_REDIRECT: 5083 case XDP_TX: 5084 case XDP_PASS: 5085 break; 5086 default: 5087 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5088 fallthrough; 5089 case XDP_ABORTED: 5090 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5091 fallthrough; 5092 case XDP_DROP: 5093 do_drop: 5094 kfree_skb(*pskb); 5095 break; 5096 } 5097 5098 return act; 5099 } 5100 5101 /* When doing generic XDP we have to bypass the qdisc layer and the 5102 * network taps in order to match in-driver-XDP behavior. This also means 5103 * that XDP packets are able to starve other packets going through a qdisc, 5104 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5105 * queues, so they do not have this starvation issue. 5106 */ 5107 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5108 { 5109 struct net_device *dev = skb->dev; 5110 struct netdev_queue *txq; 5111 bool free_skb = true; 5112 int cpu, rc; 5113 5114 txq = netdev_core_pick_tx(dev, skb, NULL); 5115 cpu = smp_processor_id(); 5116 HARD_TX_LOCK(dev, txq, cpu); 5117 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5118 rc = netdev_start_xmit(skb, dev, txq, 0); 5119 if (dev_xmit_complete(rc)) 5120 free_skb = false; 5121 } 5122 HARD_TX_UNLOCK(dev, txq); 5123 if (free_skb) { 5124 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5125 dev_core_stats_tx_dropped_inc(dev); 5126 kfree_skb(skb); 5127 } 5128 } 5129 5130 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5131 5132 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5133 { 5134 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5135 5136 if (xdp_prog) { 5137 struct xdp_buff xdp; 5138 u32 act; 5139 int err; 5140 5141 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5142 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5143 if (act != XDP_PASS) { 5144 switch (act) { 5145 case XDP_REDIRECT: 5146 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5147 &xdp, xdp_prog); 5148 if (err) 5149 goto out_redir; 5150 break; 5151 case XDP_TX: 5152 generic_xdp_tx(*pskb, xdp_prog); 5153 break; 5154 } 5155 bpf_net_ctx_clear(bpf_net_ctx); 5156 return XDP_DROP; 5157 } 5158 bpf_net_ctx_clear(bpf_net_ctx); 5159 } 5160 return XDP_PASS; 5161 out_redir: 5162 bpf_net_ctx_clear(bpf_net_ctx); 5163 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5164 return XDP_DROP; 5165 } 5166 EXPORT_SYMBOL_GPL(do_xdp_generic); 5167 5168 static int netif_rx_internal(struct sk_buff *skb) 5169 { 5170 int ret; 5171 5172 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5173 5174 trace_netif_rx(skb); 5175 5176 #ifdef CONFIG_RPS 5177 if (static_branch_unlikely(&rps_needed)) { 5178 struct rps_dev_flow voidflow, *rflow = &voidflow; 5179 int cpu; 5180 5181 rcu_read_lock(); 5182 5183 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5184 if (cpu < 0) 5185 cpu = smp_processor_id(); 5186 5187 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5188 5189 rcu_read_unlock(); 5190 } else 5191 #endif 5192 { 5193 unsigned int qtail; 5194 5195 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5196 } 5197 return ret; 5198 } 5199 5200 /** 5201 * __netif_rx - Slightly optimized version of netif_rx 5202 * @skb: buffer to post 5203 * 5204 * This behaves as netif_rx except that it does not disable bottom halves. 5205 * As a result this function may only be invoked from the interrupt context 5206 * (either hard or soft interrupt). 5207 */ 5208 int __netif_rx(struct sk_buff *skb) 5209 { 5210 int ret; 5211 5212 lockdep_assert_once(hardirq_count() | softirq_count()); 5213 5214 trace_netif_rx_entry(skb); 5215 ret = netif_rx_internal(skb); 5216 trace_netif_rx_exit(ret); 5217 return ret; 5218 } 5219 EXPORT_SYMBOL(__netif_rx); 5220 5221 /** 5222 * netif_rx - post buffer to the network code 5223 * @skb: buffer to post 5224 * 5225 * This function receives a packet from a device driver and queues it for 5226 * the upper (protocol) levels to process via the backlog NAPI device. It 5227 * always succeeds. The buffer may be dropped during processing for 5228 * congestion control or by the protocol layers. 5229 * The network buffer is passed via the backlog NAPI device. Modern NIC 5230 * driver should use NAPI and GRO. 5231 * This function can used from interrupt and from process context. The 5232 * caller from process context must not disable interrupts before invoking 5233 * this function. 5234 * 5235 * return values: 5236 * NET_RX_SUCCESS (no congestion) 5237 * NET_RX_DROP (packet was dropped) 5238 * 5239 */ 5240 int netif_rx(struct sk_buff *skb) 5241 { 5242 bool need_bh_off = !(hardirq_count() | softirq_count()); 5243 int ret; 5244 5245 if (need_bh_off) 5246 local_bh_disable(); 5247 trace_netif_rx_entry(skb); 5248 ret = netif_rx_internal(skb); 5249 trace_netif_rx_exit(ret); 5250 if (need_bh_off) 5251 local_bh_enable(); 5252 return ret; 5253 } 5254 EXPORT_SYMBOL(netif_rx); 5255 5256 static __latent_entropy void net_tx_action(void) 5257 { 5258 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5259 5260 if (sd->completion_queue) { 5261 struct sk_buff *clist; 5262 5263 local_irq_disable(); 5264 clist = sd->completion_queue; 5265 sd->completion_queue = NULL; 5266 local_irq_enable(); 5267 5268 while (clist) { 5269 struct sk_buff *skb = clist; 5270 5271 clist = clist->next; 5272 5273 WARN_ON(refcount_read(&skb->users)); 5274 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5275 trace_consume_skb(skb, net_tx_action); 5276 else 5277 trace_kfree_skb(skb, net_tx_action, 5278 get_kfree_skb_cb(skb)->reason, NULL); 5279 5280 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5281 __kfree_skb(skb); 5282 else 5283 __napi_kfree_skb(skb, 5284 get_kfree_skb_cb(skb)->reason); 5285 } 5286 } 5287 5288 if (sd->output_queue) { 5289 struct Qdisc *head; 5290 5291 local_irq_disable(); 5292 head = sd->output_queue; 5293 sd->output_queue = NULL; 5294 sd->output_queue_tailp = &sd->output_queue; 5295 local_irq_enable(); 5296 5297 rcu_read_lock(); 5298 5299 while (head) { 5300 struct Qdisc *q = head; 5301 spinlock_t *root_lock = NULL; 5302 5303 head = head->next_sched; 5304 5305 /* We need to make sure head->next_sched is read 5306 * before clearing __QDISC_STATE_SCHED 5307 */ 5308 smp_mb__before_atomic(); 5309 5310 if (!(q->flags & TCQ_F_NOLOCK)) { 5311 root_lock = qdisc_lock(q); 5312 spin_lock(root_lock); 5313 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5314 &q->state))) { 5315 /* There is a synchronize_net() between 5316 * STATE_DEACTIVATED flag being set and 5317 * qdisc_reset()/some_qdisc_is_busy() in 5318 * dev_deactivate(), so we can safely bail out 5319 * early here to avoid data race between 5320 * qdisc_deactivate() and some_qdisc_is_busy() 5321 * for lockless qdisc. 5322 */ 5323 clear_bit(__QDISC_STATE_SCHED, &q->state); 5324 continue; 5325 } 5326 5327 clear_bit(__QDISC_STATE_SCHED, &q->state); 5328 qdisc_run(q); 5329 if (root_lock) 5330 spin_unlock(root_lock); 5331 } 5332 5333 rcu_read_unlock(); 5334 } 5335 5336 xfrm_dev_backlog(sd); 5337 } 5338 5339 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5340 /* This hook is defined here for ATM LANE */ 5341 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5342 unsigned char *addr) __read_mostly; 5343 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5344 #endif 5345 5346 /** 5347 * netdev_is_rx_handler_busy - check if receive handler is registered 5348 * @dev: device to check 5349 * 5350 * Check if a receive handler is already registered for a given device. 5351 * Return true if there one. 5352 * 5353 * The caller must hold the rtnl_mutex. 5354 */ 5355 bool netdev_is_rx_handler_busy(struct net_device *dev) 5356 { 5357 ASSERT_RTNL(); 5358 return dev && rtnl_dereference(dev->rx_handler); 5359 } 5360 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5361 5362 /** 5363 * netdev_rx_handler_register - register receive handler 5364 * @dev: device to register a handler for 5365 * @rx_handler: receive handler to register 5366 * @rx_handler_data: data pointer that is used by rx handler 5367 * 5368 * Register a receive handler for a device. This handler will then be 5369 * called from __netif_receive_skb. A negative errno code is returned 5370 * on a failure. 5371 * 5372 * The caller must hold the rtnl_mutex. 5373 * 5374 * For a general description of rx_handler, see enum rx_handler_result. 5375 */ 5376 int netdev_rx_handler_register(struct net_device *dev, 5377 rx_handler_func_t *rx_handler, 5378 void *rx_handler_data) 5379 { 5380 if (netdev_is_rx_handler_busy(dev)) 5381 return -EBUSY; 5382 5383 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5384 return -EINVAL; 5385 5386 /* Note: rx_handler_data must be set before rx_handler */ 5387 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5388 rcu_assign_pointer(dev->rx_handler, rx_handler); 5389 5390 return 0; 5391 } 5392 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5393 5394 /** 5395 * netdev_rx_handler_unregister - unregister receive handler 5396 * @dev: device to unregister a handler from 5397 * 5398 * Unregister a receive handler from a device. 5399 * 5400 * The caller must hold the rtnl_mutex. 5401 */ 5402 void netdev_rx_handler_unregister(struct net_device *dev) 5403 { 5404 5405 ASSERT_RTNL(); 5406 RCU_INIT_POINTER(dev->rx_handler, NULL); 5407 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5408 * section has a guarantee to see a non NULL rx_handler_data 5409 * as well. 5410 */ 5411 synchronize_net(); 5412 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5413 } 5414 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5415 5416 /* 5417 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5418 * the special handling of PFMEMALLOC skbs. 5419 */ 5420 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5421 { 5422 switch (skb->protocol) { 5423 case htons(ETH_P_ARP): 5424 case htons(ETH_P_IP): 5425 case htons(ETH_P_IPV6): 5426 case htons(ETH_P_8021Q): 5427 case htons(ETH_P_8021AD): 5428 return true; 5429 default: 5430 return false; 5431 } 5432 } 5433 5434 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5435 int *ret, struct net_device *orig_dev) 5436 { 5437 if (nf_hook_ingress_active(skb)) { 5438 int ingress_retval; 5439 5440 if (*pt_prev) { 5441 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5442 *pt_prev = NULL; 5443 } 5444 5445 rcu_read_lock(); 5446 ingress_retval = nf_hook_ingress(skb); 5447 rcu_read_unlock(); 5448 return ingress_retval; 5449 } 5450 return 0; 5451 } 5452 5453 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5454 struct packet_type **ppt_prev) 5455 { 5456 struct packet_type *ptype, *pt_prev; 5457 rx_handler_func_t *rx_handler; 5458 struct sk_buff *skb = *pskb; 5459 struct net_device *orig_dev; 5460 bool deliver_exact = false; 5461 int ret = NET_RX_DROP; 5462 __be16 type; 5463 5464 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5465 5466 trace_netif_receive_skb(skb); 5467 5468 orig_dev = skb->dev; 5469 5470 skb_reset_network_header(skb); 5471 if (!skb_transport_header_was_set(skb)) 5472 skb_reset_transport_header(skb); 5473 skb_reset_mac_len(skb); 5474 5475 pt_prev = NULL; 5476 5477 another_round: 5478 skb->skb_iif = skb->dev->ifindex; 5479 5480 __this_cpu_inc(softnet_data.processed); 5481 5482 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5483 int ret2; 5484 5485 migrate_disable(); 5486 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5487 &skb); 5488 migrate_enable(); 5489 5490 if (ret2 != XDP_PASS) { 5491 ret = NET_RX_DROP; 5492 goto out; 5493 } 5494 } 5495 5496 if (eth_type_vlan(skb->protocol)) { 5497 skb = skb_vlan_untag(skb); 5498 if (unlikely(!skb)) 5499 goto out; 5500 } 5501 5502 if (skb_skip_tc_classify(skb)) 5503 goto skip_classify; 5504 5505 if (pfmemalloc) 5506 goto skip_taps; 5507 5508 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { 5509 if (pt_prev) 5510 ret = deliver_skb(skb, pt_prev, orig_dev); 5511 pt_prev = ptype; 5512 } 5513 5514 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5515 if (pt_prev) 5516 ret = deliver_skb(skb, pt_prev, orig_dev); 5517 pt_prev = ptype; 5518 } 5519 5520 skip_taps: 5521 #ifdef CONFIG_NET_INGRESS 5522 if (static_branch_unlikely(&ingress_needed_key)) { 5523 bool another = false; 5524 5525 nf_skip_egress(skb, true); 5526 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5527 &another); 5528 if (another) 5529 goto another_round; 5530 if (!skb) 5531 goto out; 5532 5533 nf_skip_egress(skb, false); 5534 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5535 goto out; 5536 } 5537 #endif 5538 skb_reset_redirect(skb); 5539 skip_classify: 5540 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5541 goto drop; 5542 5543 if (skb_vlan_tag_present(skb)) { 5544 if (pt_prev) { 5545 ret = deliver_skb(skb, pt_prev, orig_dev); 5546 pt_prev = NULL; 5547 } 5548 if (vlan_do_receive(&skb)) 5549 goto another_round; 5550 else if (unlikely(!skb)) 5551 goto out; 5552 } 5553 5554 rx_handler = rcu_dereference(skb->dev->rx_handler); 5555 if (rx_handler) { 5556 if (pt_prev) { 5557 ret = deliver_skb(skb, pt_prev, orig_dev); 5558 pt_prev = NULL; 5559 } 5560 switch (rx_handler(&skb)) { 5561 case RX_HANDLER_CONSUMED: 5562 ret = NET_RX_SUCCESS; 5563 goto out; 5564 case RX_HANDLER_ANOTHER: 5565 goto another_round; 5566 case RX_HANDLER_EXACT: 5567 deliver_exact = true; 5568 break; 5569 case RX_HANDLER_PASS: 5570 break; 5571 default: 5572 BUG(); 5573 } 5574 } 5575 5576 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5577 check_vlan_id: 5578 if (skb_vlan_tag_get_id(skb)) { 5579 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5580 * find vlan device. 5581 */ 5582 skb->pkt_type = PACKET_OTHERHOST; 5583 } else if (eth_type_vlan(skb->protocol)) { 5584 /* Outer header is 802.1P with vlan 0, inner header is 5585 * 802.1Q or 802.1AD and vlan_do_receive() above could 5586 * not find vlan dev for vlan id 0. 5587 */ 5588 __vlan_hwaccel_clear_tag(skb); 5589 skb = skb_vlan_untag(skb); 5590 if (unlikely(!skb)) 5591 goto out; 5592 if (vlan_do_receive(&skb)) 5593 /* After stripping off 802.1P header with vlan 0 5594 * vlan dev is found for inner header. 5595 */ 5596 goto another_round; 5597 else if (unlikely(!skb)) 5598 goto out; 5599 else 5600 /* We have stripped outer 802.1P vlan 0 header. 5601 * But could not find vlan dev. 5602 * check again for vlan id to set OTHERHOST. 5603 */ 5604 goto check_vlan_id; 5605 } 5606 /* Note: we might in the future use prio bits 5607 * and set skb->priority like in vlan_do_receive() 5608 * For the time being, just ignore Priority Code Point 5609 */ 5610 __vlan_hwaccel_clear_tag(skb); 5611 } 5612 5613 type = skb->protocol; 5614 5615 /* deliver only exact match when indicated */ 5616 if (likely(!deliver_exact)) { 5617 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5618 &ptype_base[ntohs(type) & 5619 PTYPE_HASH_MASK]); 5620 } 5621 5622 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5623 &orig_dev->ptype_specific); 5624 5625 if (unlikely(skb->dev != orig_dev)) { 5626 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5627 &skb->dev->ptype_specific); 5628 } 5629 5630 if (pt_prev) { 5631 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5632 goto drop; 5633 *ppt_prev = pt_prev; 5634 } else { 5635 drop: 5636 if (!deliver_exact) 5637 dev_core_stats_rx_dropped_inc(skb->dev); 5638 else 5639 dev_core_stats_rx_nohandler_inc(skb->dev); 5640 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5641 /* Jamal, now you will not able to escape explaining 5642 * me how you were going to use this. :-) 5643 */ 5644 ret = NET_RX_DROP; 5645 } 5646 5647 out: 5648 /* The invariant here is that if *ppt_prev is not NULL 5649 * then skb should also be non-NULL. 5650 * 5651 * Apparently *ppt_prev assignment above holds this invariant due to 5652 * skb dereferencing near it. 5653 */ 5654 *pskb = skb; 5655 return ret; 5656 } 5657 5658 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5659 { 5660 struct net_device *orig_dev = skb->dev; 5661 struct packet_type *pt_prev = NULL; 5662 int ret; 5663 5664 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5665 if (pt_prev) 5666 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5667 skb->dev, pt_prev, orig_dev); 5668 return ret; 5669 } 5670 5671 /** 5672 * netif_receive_skb_core - special purpose version of netif_receive_skb 5673 * @skb: buffer to process 5674 * 5675 * More direct receive version of netif_receive_skb(). It should 5676 * only be used by callers that have a need to skip RPS and Generic XDP. 5677 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5678 * 5679 * This function may only be called from softirq context and interrupts 5680 * should be enabled. 5681 * 5682 * Return values (usually ignored): 5683 * NET_RX_SUCCESS: no congestion 5684 * NET_RX_DROP: packet was dropped 5685 */ 5686 int netif_receive_skb_core(struct sk_buff *skb) 5687 { 5688 int ret; 5689 5690 rcu_read_lock(); 5691 ret = __netif_receive_skb_one_core(skb, false); 5692 rcu_read_unlock(); 5693 5694 return ret; 5695 } 5696 EXPORT_SYMBOL(netif_receive_skb_core); 5697 5698 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5699 struct packet_type *pt_prev, 5700 struct net_device *orig_dev) 5701 { 5702 struct sk_buff *skb, *next; 5703 5704 if (!pt_prev) 5705 return; 5706 if (list_empty(head)) 5707 return; 5708 if (pt_prev->list_func != NULL) 5709 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5710 ip_list_rcv, head, pt_prev, orig_dev); 5711 else 5712 list_for_each_entry_safe(skb, next, head, list) { 5713 skb_list_del_init(skb); 5714 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5715 } 5716 } 5717 5718 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5719 { 5720 /* Fast-path assumptions: 5721 * - There is no RX handler. 5722 * - Only one packet_type matches. 5723 * If either of these fails, we will end up doing some per-packet 5724 * processing in-line, then handling the 'last ptype' for the whole 5725 * sublist. This can't cause out-of-order delivery to any single ptype, 5726 * because the 'last ptype' must be constant across the sublist, and all 5727 * other ptypes are handled per-packet. 5728 */ 5729 /* Current (common) ptype of sublist */ 5730 struct packet_type *pt_curr = NULL; 5731 /* Current (common) orig_dev of sublist */ 5732 struct net_device *od_curr = NULL; 5733 struct sk_buff *skb, *next; 5734 LIST_HEAD(sublist); 5735 5736 list_for_each_entry_safe(skb, next, head, list) { 5737 struct net_device *orig_dev = skb->dev; 5738 struct packet_type *pt_prev = NULL; 5739 5740 skb_list_del_init(skb); 5741 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5742 if (!pt_prev) 5743 continue; 5744 if (pt_curr != pt_prev || od_curr != orig_dev) { 5745 /* dispatch old sublist */ 5746 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5747 /* start new sublist */ 5748 INIT_LIST_HEAD(&sublist); 5749 pt_curr = pt_prev; 5750 od_curr = orig_dev; 5751 } 5752 list_add_tail(&skb->list, &sublist); 5753 } 5754 5755 /* dispatch final sublist */ 5756 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5757 } 5758 5759 static int __netif_receive_skb(struct sk_buff *skb) 5760 { 5761 int ret; 5762 5763 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5764 unsigned int noreclaim_flag; 5765 5766 /* 5767 * PFMEMALLOC skbs are special, they should 5768 * - be delivered to SOCK_MEMALLOC sockets only 5769 * - stay away from userspace 5770 * - have bounded memory usage 5771 * 5772 * Use PF_MEMALLOC as this saves us from propagating the allocation 5773 * context down to all allocation sites. 5774 */ 5775 noreclaim_flag = memalloc_noreclaim_save(); 5776 ret = __netif_receive_skb_one_core(skb, true); 5777 memalloc_noreclaim_restore(noreclaim_flag); 5778 } else 5779 ret = __netif_receive_skb_one_core(skb, false); 5780 5781 return ret; 5782 } 5783 5784 static void __netif_receive_skb_list(struct list_head *head) 5785 { 5786 unsigned long noreclaim_flag = 0; 5787 struct sk_buff *skb, *next; 5788 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5789 5790 list_for_each_entry_safe(skb, next, head, list) { 5791 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5792 struct list_head sublist; 5793 5794 /* Handle the previous sublist */ 5795 list_cut_before(&sublist, head, &skb->list); 5796 if (!list_empty(&sublist)) 5797 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5798 pfmemalloc = !pfmemalloc; 5799 /* See comments in __netif_receive_skb */ 5800 if (pfmemalloc) 5801 noreclaim_flag = memalloc_noreclaim_save(); 5802 else 5803 memalloc_noreclaim_restore(noreclaim_flag); 5804 } 5805 } 5806 /* Handle the remaining sublist */ 5807 if (!list_empty(head)) 5808 __netif_receive_skb_list_core(head, pfmemalloc); 5809 /* Restore pflags */ 5810 if (pfmemalloc) 5811 memalloc_noreclaim_restore(noreclaim_flag); 5812 } 5813 5814 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5815 { 5816 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5817 struct bpf_prog *new = xdp->prog; 5818 int ret = 0; 5819 5820 switch (xdp->command) { 5821 case XDP_SETUP_PROG: 5822 rcu_assign_pointer(dev->xdp_prog, new); 5823 if (old) 5824 bpf_prog_put(old); 5825 5826 if (old && !new) { 5827 static_branch_dec(&generic_xdp_needed_key); 5828 } else if (new && !old) { 5829 static_branch_inc(&generic_xdp_needed_key); 5830 dev_disable_lro(dev); 5831 dev_disable_gro_hw(dev); 5832 } 5833 break; 5834 5835 default: 5836 ret = -EINVAL; 5837 break; 5838 } 5839 5840 return ret; 5841 } 5842 5843 static int netif_receive_skb_internal(struct sk_buff *skb) 5844 { 5845 int ret; 5846 5847 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5848 5849 if (skb_defer_rx_timestamp(skb)) 5850 return NET_RX_SUCCESS; 5851 5852 rcu_read_lock(); 5853 #ifdef CONFIG_RPS 5854 if (static_branch_unlikely(&rps_needed)) { 5855 struct rps_dev_flow voidflow, *rflow = &voidflow; 5856 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5857 5858 if (cpu >= 0) { 5859 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5860 rcu_read_unlock(); 5861 return ret; 5862 } 5863 } 5864 #endif 5865 ret = __netif_receive_skb(skb); 5866 rcu_read_unlock(); 5867 return ret; 5868 } 5869 5870 void netif_receive_skb_list_internal(struct list_head *head) 5871 { 5872 struct sk_buff *skb, *next; 5873 LIST_HEAD(sublist); 5874 5875 list_for_each_entry_safe(skb, next, head, list) { 5876 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 5877 skb); 5878 skb_list_del_init(skb); 5879 if (!skb_defer_rx_timestamp(skb)) 5880 list_add_tail(&skb->list, &sublist); 5881 } 5882 list_splice_init(&sublist, head); 5883 5884 rcu_read_lock(); 5885 #ifdef CONFIG_RPS 5886 if (static_branch_unlikely(&rps_needed)) { 5887 list_for_each_entry_safe(skb, next, head, list) { 5888 struct rps_dev_flow voidflow, *rflow = &voidflow; 5889 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5890 5891 if (cpu >= 0) { 5892 /* Will be handled, remove from list */ 5893 skb_list_del_init(skb); 5894 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5895 } 5896 } 5897 } 5898 #endif 5899 __netif_receive_skb_list(head); 5900 rcu_read_unlock(); 5901 } 5902 5903 /** 5904 * netif_receive_skb - process receive buffer from network 5905 * @skb: buffer to process 5906 * 5907 * netif_receive_skb() is the main receive data processing function. 5908 * It always succeeds. The buffer may be dropped during processing 5909 * for congestion control or by the protocol layers. 5910 * 5911 * This function may only be called from softirq context and interrupts 5912 * should be enabled. 5913 * 5914 * Return values (usually ignored): 5915 * NET_RX_SUCCESS: no congestion 5916 * NET_RX_DROP: packet was dropped 5917 */ 5918 int netif_receive_skb(struct sk_buff *skb) 5919 { 5920 int ret; 5921 5922 trace_netif_receive_skb_entry(skb); 5923 5924 ret = netif_receive_skb_internal(skb); 5925 trace_netif_receive_skb_exit(ret); 5926 5927 return ret; 5928 } 5929 EXPORT_SYMBOL(netif_receive_skb); 5930 5931 /** 5932 * netif_receive_skb_list - process many receive buffers from network 5933 * @head: list of skbs to process. 5934 * 5935 * Since return value of netif_receive_skb() is normally ignored, and 5936 * wouldn't be meaningful for a list, this function returns void. 5937 * 5938 * This function may only be called from softirq context and interrupts 5939 * should be enabled. 5940 */ 5941 void netif_receive_skb_list(struct list_head *head) 5942 { 5943 struct sk_buff *skb; 5944 5945 if (list_empty(head)) 5946 return; 5947 if (trace_netif_receive_skb_list_entry_enabled()) { 5948 list_for_each_entry(skb, head, list) 5949 trace_netif_receive_skb_list_entry(skb); 5950 } 5951 netif_receive_skb_list_internal(head); 5952 trace_netif_receive_skb_list_exit(0); 5953 } 5954 EXPORT_SYMBOL(netif_receive_skb_list); 5955 5956 static DEFINE_PER_CPU(struct work_struct, flush_works); 5957 5958 /* Network device is going away, flush any packets still pending */ 5959 static void flush_backlog(struct work_struct *work) 5960 { 5961 struct sk_buff *skb, *tmp; 5962 struct softnet_data *sd; 5963 5964 local_bh_disable(); 5965 sd = this_cpu_ptr(&softnet_data); 5966 5967 backlog_lock_irq_disable(sd); 5968 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5969 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5970 __skb_unlink(skb, &sd->input_pkt_queue); 5971 dev_kfree_skb_irq(skb); 5972 rps_input_queue_head_incr(sd); 5973 } 5974 } 5975 backlog_unlock_irq_enable(sd); 5976 5977 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 5978 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5979 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5980 __skb_unlink(skb, &sd->process_queue); 5981 kfree_skb(skb); 5982 rps_input_queue_head_incr(sd); 5983 } 5984 } 5985 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 5986 local_bh_enable(); 5987 } 5988 5989 static bool flush_required(int cpu) 5990 { 5991 #if IS_ENABLED(CONFIG_RPS) 5992 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5993 bool do_flush; 5994 5995 backlog_lock_irq_disable(sd); 5996 5997 /* as insertion into process_queue happens with the rps lock held, 5998 * process_queue access may race only with dequeue 5999 */ 6000 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6001 !skb_queue_empty_lockless(&sd->process_queue); 6002 backlog_unlock_irq_enable(sd); 6003 6004 return do_flush; 6005 #endif 6006 /* without RPS we can't safely check input_pkt_queue: during a 6007 * concurrent remote skb_queue_splice() we can detect as empty both 6008 * input_pkt_queue and process_queue even if the latter could end-up 6009 * containing a lot of packets. 6010 */ 6011 return true; 6012 } 6013 6014 static void flush_all_backlogs(void) 6015 { 6016 static cpumask_t flush_cpus; 6017 unsigned int cpu; 6018 6019 /* since we are under rtnl lock protection we can use static data 6020 * for the cpumask and avoid allocating on stack the possibly 6021 * large mask 6022 */ 6023 ASSERT_RTNL(); 6024 6025 cpus_read_lock(); 6026 6027 cpumask_clear(&flush_cpus); 6028 for_each_online_cpu(cpu) { 6029 if (flush_required(cpu)) { 6030 queue_work_on(cpu, system_highpri_wq, 6031 per_cpu_ptr(&flush_works, cpu)); 6032 cpumask_set_cpu(cpu, &flush_cpus); 6033 } 6034 } 6035 6036 /* we can have in flight packet[s] on the cpus we are not flushing, 6037 * synchronize_net() in unregister_netdevice_many() will take care of 6038 * them 6039 */ 6040 for_each_cpu(cpu, &flush_cpus) 6041 flush_work(per_cpu_ptr(&flush_works, cpu)); 6042 6043 cpus_read_unlock(); 6044 } 6045 6046 static void net_rps_send_ipi(struct softnet_data *remsd) 6047 { 6048 #ifdef CONFIG_RPS 6049 while (remsd) { 6050 struct softnet_data *next = remsd->rps_ipi_next; 6051 6052 if (cpu_online(remsd->cpu)) 6053 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6054 remsd = next; 6055 } 6056 #endif 6057 } 6058 6059 /* 6060 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6061 * Note: called with local irq disabled, but exits with local irq enabled. 6062 */ 6063 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6064 { 6065 #ifdef CONFIG_RPS 6066 struct softnet_data *remsd = sd->rps_ipi_list; 6067 6068 if (!use_backlog_threads() && remsd) { 6069 sd->rps_ipi_list = NULL; 6070 6071 local_irq_enable(); 6072 6073 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6074 net_rps_send_ipi(remsd); 6075 } else 6076 #endif 6077 local_irq_enable(); 6078 } 6079 6080 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6081 { 6082 #ifdef CONFIG_RPS 6083 return !use_backlog_threads() && sd->rps_ipi_list; 6084 #else 6085 return false; 6086 #endif 6087 } 6088 6089 static int process_backlog(struct napi_struct *napi, int quota) 6090 { 6091 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6092 bool again = true; 6093 int work = 0; 6094 6095 /* Check if we have pending ipi, its better to send them now, 6096 * not waiting net_rx_action() end. 6097 */ 6098 if (sd_has_rps_ipi_waiting(sd)) { 6099 local_irq_disable(); 6100 net_rps_action_and_irq_enable(sd); 6101 } 6102 6103 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6104 while (again) { 6105 struct sk_buff *skb; 6106 6107 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6108 while ((skb = __skb_dequeue(&sd->process_queue))) { 6109 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6110 rcu_read_lock(); 6111 __netif_receive_skb(skb); 6112 rcu_read_unlock(); 6113 if (++work >= quota) { 6114 rps_input_queue_head_add(sd, work); 6115 return work; 6116 } 6117 6118 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6119 } 6120 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6121 6122 backlog_lock_irq_disable(sd); 6123 if (skb_queue_empty(&sd->input_pkt_queue)) { 6124 /* 6125 * Inline a custom version of __napi_complete(). 6126 * only current cpu owns and manipulates this napi, 6127 * and NAPI_STATE_SCHED is the only possible flag set 6128 * on backlog. 6129 * We can use a plain write instead of clear_bit(), 6130 * and we dont need an smp_mb() memory barrier. 6131 */ 6132 napi->state &= NAPIF_STATE_THREADED; 6133 again = false; 6134 } else { 6135 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6136 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6137 &sd->process_queue); 6138 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6139 } 6140 backlog_unlock_irq_enable(sd); 6141 } 6142 6143 if (work) 6144 rps_input_queue_head_add(sd, work); 6145 return work; 6146 } 6147 6148 /** 6149 * __napi_schedule - schedule for receive 6150 * @n: entry to schedule 6151 * 6152 * The entry's receive function will be scheduled to run. 6153 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6154 */ 6155 void __napi_schedule(struct napi_struct *n) 6156 { 6157 unsigned long flags; 6158 6159 local_irq_save(flags); 6160 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6161 local_irq_restore(flags); 6162 } 6163 EXPORT_SYMBOL(__napi_schedule); 6164 6165 /** 6166 * napi_schedule_prep - check if napi can be scheduled 6167 * @n: napi context 6168 * 6169 * Test if NAPI routine is already running, and if not mark 6170 * it as running. This is used as a condition variable to 6171 * insure only one NAPI poll instance runs. We also make 6172 * sure there is no pending NAPI disable. 6173 */ 6174 bool napi_schedule_prep(struct napi_struct *n) 6175 { 6176 unsigned long new, val = READ_ONCE(n->state); 6177 6178 do { 6179 if (unlikely(val & NAPIF_STATE_DISABLE)) 6180 return false; 6181 new = val | NAPIF_STATE_SCHED; 6182 6183 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6184 * This was suggested by Alexander Duyck, as compiler 6185 * emits better code than : 6186 * if (val & NAPIF_STATE_SCHED) 6187 * new |= NAPIF_STATE_MISSED; 6188 */ 6189 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6190 NAPIF_STATE_MISSED; 6191 } while (!try_cmpxchg(&n->state, &val, new)); 6192 6193 return !(val & NAPIF_STATE_SCHED); 6194 } 6195 EXPORT_SYMBOL(napi_schedule_prep); 6196 6197 /** 6198 * __napi_schedule_irqoff - schedule for receive 6199 * @n: entry to schedule 6200 * 6201 * Variant of __napi_schedule() assuming hard irqs are masked. 6202 * 6203 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6204 * because the interrupt disabled assumption might not be true 6205 * due to force-threaded interrupts and spinlock substitution. 6206 */ 6207 void __napi_schedule_irqoff(struct napi_struct *n) 6208 { 6209 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6210 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6211 else 6212 __napi_schedule(n); 6213 } 6214 EXPORT_SYMBOL(__napi_schedule_irqoff); 6215 6216 bool napi_complete_done(struct napi_struct *n, int work_done) 6217 { 6218 unsigned long flags, val, new, timeout = 0; 6219 bool ret = true; 6220 6221 /* 6222 * 1) Don't let napi dequeue from the cpu poll list 6223 * just in case its running on a different cpu. 6224 * 2) If we are busy polling, do nothing here, we have 6225 * the guarantee we will be called later. 6226 */ 6227 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6228 NAPIF_STATE_IN_BUSY_POLL))) 6229 return false; 6230 6231 if (work_done) { 6232 if (n->gro_bitmask) 6233 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6234 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6235 } 6236 if (n->defer_hard_irqs_count > 0) { 6237 n->defer_hard_irqs_count--; 6238 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6239 if (timeout) 6240 ret = false; 6241 } 6242 if (n->gro_bitmask) { 6243 /* When the NAPI instance uses a timeout and keeps postponing 6244 * it, we need to bound somehow the time packets are kept in 6245 * the GRO layer 6246 */ 6247 napi_gro_flush(n, !!timeout); 6248 } 6249 6250 gro_normal_list(n); 6251 6252 if (unlikely(!list_empty(&n->poll_list))) { 6253 /* If n->poll_list is not empty, we need to mask irqs */ 6254 local_irq_save(flags); 6255 list_del_init(&n->poll_list); 6256 local_irq_restore(flags); 6257 } 6258 WRITE_ONCE(n->list_owner, -1); 6259 6260 val = READ_ONCE(n->state); 6261 do { 6262 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6263 6264 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6265 NAPIF_STATE_SCHED_THREADED | 6266 NAPIF_STATE_PREFER_BUSY_POLL); 6267 6268 /* If STATE_MISSED was set, leave STATE_SCHED set, 6269 * because we will call napi->poll() one more time. 6270 * This C code was suggested by Alexander Duyck to help gcc. 6271 */ 6272 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6273 NAPIF_STATE_SCHED; 6274 } while (!try_cmpxchg(&n->state, &val, new)); 6275 6276 if (unlikely(val & NAPIF_STATE_MISSED)) { 6277 __napi_schedule(n); 6278 return false; 6279 } 6280 6281 if (timeout) 6282 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6283 HRTIMER_MODE_REL_PINNED); 6284 return ret; 6285 } 6286 EXPORT_SYMBOL(napi_complete_done); 6287 6288 /* must be called under rcu_read_lock(), as we dont take a reference */ 6289 struct napi_struct *napi_by_id(unsigned int napi_id) 6290 { 6291 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6292 struct napi_struct *napi; 6293 6294 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6295 if (napi->napi_id == napi_id) 6296 return napi; 6297 6298 return NULL; 6299 } 6300 6301 static void skb_defer_free_flush(struct softnet_data *sd) 6302 { 6303 struct sk_buff *skb, *next; 6304 6305 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6306 if (!READ_ONCE(sd->defer_list)) 6307 return; 6308 6309 spin_lock(&sd->defer_lock); 6310 skb = sd->defer_list; 6311 sd->defer_list = NULL; 6312 sd->defer_count = 0; 6313 spin_unlock(&sd->defer_lock); 6314 6315 while (skb != NULL) { 6316 next = skb->next; 6317 napi_consume_skb(skb, 1); 6318 skb = next; 6319 } 6320 } 6321 6322 #if defined(CONFIG_NET_RX_BUSY_POLL) 6323 6324 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6325 { 6326 if (!skip_schedule) { 6327 gro_normal_list(napi); 6328 __napi_schedule(napi); 6329 return; 6330 } 6331 6332 if (napi->gro_bitmask) { 6333 /* flush too old packets 6334 * If HZ < 1000, flush all packets. 6335 */ 6336 napi_gro_flush(napi, HZ >= 1000); 6337 } 6338 6339 gro_normal_list(napi); 6340 clear_bit(NAPI_STATE_SCHED, &napi->state); 6341 } 6342 6343 enum { 6344 NAPI_F_PREFER_BUSY_POLL = 1, 6345 NAPI_F_END_ON_RESCHED = 2, 6346 }; 6347 6348 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6349 unsigned flags, u16 budget) 6350 { 6351 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6352 bool skip_schedule = false; 6353 unsigned long timeout; 6354 int rc; 6355 6356 /* Busy polling means there is a high chance device driver hard irq 6357 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6358 * set in napi_schedule_prep(). 6359 * Since we are about to call napi->poll() once more, we can safely 6360 * clear NAPI_STATE_MISSED. 6361 * 6362 * Note: x86 could use a single "lock and ..." instruction 6363 * to perform these two clear_bit() 6364 */ 6365 clear_bit(NAPI_STATE_MISSED, &napi->state); 6366 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6367 6368 local_bh_disable(); 6369 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6370 6371 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6372 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6373 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6374 if (napi->defer_hard_irqs_count && timeout) { 6375 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6376 skip_schedule = true; 6377 } 6378 } 6379 6380 /* All we really want here is to re-enable device interrupts. 6381 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6382 */ 6383 rc = napi->poll(napi, budget); 6384 /* We can't gro_normal_list() here, because napi->poll() might have 6385 * rearmed the napi (napi_complete_done()) in which case it could 6386 * already be running on another CPU. 6387 */ 6388 trace_napi_poll(napi, rc, budget); 6389 netpoll_poll_unlock(have_poll_lock); 6390 if (rc == budget) 6391 __busy_poll_stop(napi, skip_schedule); 6392 bpf_net_ctx_clear(bpf_net_ctx); 6393 local_bh_enable(); 6394 } 6395 6396 static void __napi_busy_loop(unsigned int napi_id, 6397 bool (*loop_end)(void *, unsigned long), 6398 void *loop_end_arg, unsigned flags, u16 budget) 6399 { 6400 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6401 int (*napi_poll)(struct napi_struct *napi, int budget); 6402 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6403 void *have_poll_lock = NULL; 6404 struct napi_struct *napi; 6405 6406 WARN_ON_ONCE(!rcu_read_lock_held()); 6407 6408 restart: 6409 napi_poll = NULL; 6410 6411 napi = napi_by_id(napi_id); 6412 if (!napi) 6413 return; 6414 6415 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6416 preempt_disable(); 6417 for (;;) { 6418 int work = 0; 6419 6420 local_bh_disable(); 6421 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6422 if (!napi_poll) { 6423 unsigned long val = READ_ONCE(napi->state); 6424 6425 /* If multiple threads are competing for this napi, 6426 * we avoid dirtying napi->state as much as we can. 6427 */ 6428 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6429 NAPIF_STATE_IN_BUSY_POLL)) { 6430 if (flags & NAPI_F_PREFER_BUSY_POLL) 6431 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6432 goto count; 6433 } 6434 if (cmpxchg(&napi->state, val, 6435 val | NAPIF_STATE_IN_BUSY_POLL | 6436 NAPIF_STATE_SCHED) != val) { 6437 if (flags & NAPI_F_PREFER_BUSY_POLL) 6438 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6439 goto count; 6440 } 6441 have_poll_lock = netpoll_poll_lock(napi); 6442 napi_poll = napi->poll; 6443 } 6444 work = napi_poll(napi, budget); 6445 trace_napi_poll(napi, work, budget); 6446 gro_normal_list(napi); 6447 count: 6448 if (work > 0) 6449 __NET_ADD_STATS(dev_net(napi->dev), 6450 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6451 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6452 bpf_net_ctx_clear(bpf_net_ctx); 6453 local_bh_enable(); 6454 6455 if (!loop_end || loop_end(loop_end_arg, start_time)) 6456 break; 6457 6458 if (unlikely(need_resched())) { 6459 if (flags & NAPI_F_END_ON_RESCHED) 6460 break; 6461 if (napi_poll) 6462 busy_poll_stop(napi, have_poll_lock, flags, budget); 6463 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6464 preempt_enable(); 6465 rcu_read_unlock(); 6466 cond_resched(); 6467 rcu_read_lock(); 6468 if (loop_end(loop_end_arg, start_time)) 6469 return; 6470 goto restart; 6471 } 6472 cpu_relax(); 6473 } 6474 if (napi_poll) 6475 busy_poll_stop(napi, have_poll_lock, flags, budget); 6476 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6477 preempt_enable(); 6478 } 6479 6480 void napi_busy_loop_rcu(unsigned int napi_id, 6481 bool (*loop_end)(void *, unsigned long), 6482 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6483 { 6484 unsigned flags = NAPI_F_END_ON_RESCHED; 6485 6486 if (prefer_busy_poll) 6487 flags |= NAPI_F_PREFER_BUSY_POLL; 6488 6489 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6490 } 6491 6492 void napi_busy_loop(unsigned int napi_id, 6493 bool (*loop_end)(void *, unsigned long), 6494 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6495 { 6496 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6497 6498 rcu_read_lock(); 6499 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6500 rcu_read_unlock(); 6501 } 6502 EXPORT_SYMBOL(napi_busy_loop); 6503 6504 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6505 6506 static void napi_hash_add(struct napi_struct *napi) 6507 { 6508 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6509 return; 6510 6511 spin_lock(&napi_hash_lock); 6512 6513 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6514 do { 6515 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6516 napi_gen_id = MIN_NAPI_ID; 6517 } while (napi_by_id(napi_gen_id)); 6518 napi->napi_id = napi_gen_id; 6519 6520 hlist_add_head_rcu(&napi->napi_hash_node, 6521 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6522 6523 spin_unlock(&napi_hash_lock); 6524 } 6525 6526 /* Warning : caller is responsible to make sure rcu grace period 6527 * is respected before freeing memory containing @napi 6528 */ 6529 static void napi_hash_del(struct napi_struct *napi) 6530 { 6531 spin_lock(&napi_hash_lock); 6532 6533 hlist_del_init_rcu(&napi->napi_hash_node); 6534 6535 spin_unlock(&napi_hash_lock); 6536 } 6537 6538 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6539 { 6540 struct napi_struct *napi; 6541 6542 napi = container_of(timer, struct napi_struct, timer); 6543 6544 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6545 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6546 */ 6547 if (!napi_disable_pending(napi) && 6548 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6549 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6550 __napi_schedule_irqoff(napi); 6551 } 6552 6553 return HRTIMER_NORESTART; 6554 } 6555 6556 static void init_gro_hash(struct napi_struct *napi) 6557 { 6558 int i; 6559 6560 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6561 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6562 napi->gro_hash[i].count = 0; 6563 } 6564 napi->gro_bitmask = 0; 6565 } 6566 6567 int dev_set_threaded(struct net_device *dev, bool threaded) 6568 { 6569 struct napi_struct *napi; 6570 int err = 0; 6571 6572 if (dev->threaded == threaded) 6573 return 0; 6574 6575 if (threaded) { 6576 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6577 if (!napi->thread) { 6578 err = napi_kthread_create(napi); 6579 if (err) { 6580 threaded = false; 6581 break; 6582 } 6583 } 6584 } 6585 } 6586 6587 WRITE_ONCE(dev->threaded, threaded); 6588 6589 /* Make sure kthread is created before THREADED bit 6590 * is set. 6591 */ 6592 smp_mb__before_atomic(); 6593 6594 /* Setting/unsetting threaded mode on a napi might not immediately 6595 * take effect, if the current napi instance is actively being 6596 * polled. In this case, the switch between threaded mode and 6597 * softirq mode will happen in the next round of napi_schedule(). 6598 * This should not cause hiccups/stalls to the live traffic. 6599 */ 6600 list_for_each_entry(napi, &dev->napi_list, dev_list) 6601 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6602 6603 return err; 6604 } 6605 EXPORT_SYMBOL(dev_set_threaded); 6606 6607 /** 6608 * netif_queue_set_napi - Associate queue with the napi 6609 * @dev: device to which NAPI and queue belong 6610 * @queue_index: Index of queue 6611 * @type: queue type as RX or TX 6612 * @napi: NAPI context, pass NULL to clear previously set NAPI 6613 * 6614 * Set queue with its corresponding napi context. This should be done after 6615 * registering the NAPI handler for the queue-vector and the queues have been 6616 * mapped to the corresponding interrupt vector. 6617 */ 6618 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6619 enum netdev_queue_type type, struct napi_struct *napi) 6620 { 6621 struct netdev_rx_queue *rxq; 6622 struct netdev_queue *txq; 6623 6624 if (WARN_ON_ONCE(napi && !napi->dev)) 6625 return; 6626 if (dev->reg_state >= NETREG_REGISTERED) 6627 ASSERT_RTNL(); 6628 6629 switch (type) { 6630 case NETDEV_QUEUE_TYPE_RX: 6631 rxq = __netif_get_rx_queue(dev, queue_index); 6632 rxq->napi = napi; 6633 return; 6634 case NETDEV_QUEUE_TYPE_TX: 6635 txq = netdev_get_tx_queue(dev, queue_index); 6636 txq->napi = napi; 6637 return; 6638 default: 6639 return; 6640 } 6641 } 6642 EXPORT_SYMBOL(netif_queue_set_napi); 6643 6644 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6645 int (*poll)(struct napi_struct *, int), int weight) 6646 { 6647 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6648 return; 6649 6650 INIT_LIST_HEAD(&napi->poll_list); 6651 INIT_HLIST_NODE(&napi->napi_hash_node); 6652 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6653 napi->timer.function = napi_watchdog; 6654 init_gro_hash(napi); 6655 napi->skb = NULL; 6656 INIT_LIST_HEAD(&napi->rx_list); 6657 napi->rx_count = 0; 6658 napi->poll = poll; 6659 if (weight > NAPI_POLL_WEIGHT) 6660 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6661 weight); 6662 napi->weight = weight; 6663 napi->dev = dev; 6664 #ifdef CONFIG_NETPOLL 6665 napi->poll_owner = -1; 6666 #endif 6667 napi->list_owner = -1; 6668 set_bit(NAPI_STATE_SCHED, &napi->state); 6669 set_bit(NAPI_STATE_NPSVC, &napi->state); 6670 list_add_rcu(&napi->dev_list, &dev->napi_list); 6671 napi_hash_add(napi); 6672 napi_get_frags_check(napi); 6673 /* Create kthread for this napi if dev->threaded is set. 6674 * Clear dev->threaded if kthread creation failed so that 6675 * threaded mode will not be enabled in napi_enable(). 6676 */ 6677 if (dev->threaded && napi_kthread_create(napi)) 6678 dev->threaded = false; 6679 netif_napi_set_irq(napi, -1); 6680 } 6681 EXPORT_SYMBOL(netif_napi_add_weight); 6682 6683 void napi_disable(struct napi_struct *n) 6684 { 6685 unsigned long val, new; 6686 6687 might_sleep(); 6688 set_bit(NAPI_STATE_DISABLE, &n->state); 6689 6690 val = READ_ONCE(n->state); 6691 do { 6692 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6693 usleep_range(20, 200); 6694 val = READ_ONCE(n->state); 6695 } 6696 6697 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6698 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6699 } while (!try_cmpxchg(&n->state, &val, new)); 6700 6701 hrtimer_cancel(&n->timer); 6702 6703 clear_bit(NAPI_STATE_DISABLE, &n->state); 6704 } 6705 EXPORT_SYMBOL(napi_disable); 6706 6707 /** 6708 * napi_enable - enable NAPI scheduling 6709 * @n: NAPI context 6710 * 6711 * Resume NAPI from being scheduled on this context. 6712 * Must be paired with napi_disable. 6713 */ 6714 void napi_enable(struct napi_struct *n) 6715 { 6716 unsigned long new, val = READ_ONCE(n->state); 6717 6718 do { 6719 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6720 6721 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6722 if (n->dev->threaded && n->thread) 6723 new |= NAPIF_STATE_THREADED; 6724 } while (!try_cmpxchg(&n->state, &val, new)); 6725 } 6726 EXPORT_SYMBOL(napi_enable); 6727 6728 static void flush_gro_hash(struct napi_struct *napi) 6729 { 6730 int i; 6731 6732 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6733 struct sk_buff *skb, *n; 6734 6735 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6736 kfree_skb(skb); 6737 napi->gro_hash[i].count = 0; 6738 } 6739 } 6740 6741 /* Must be called in process context */ 6742 void __netif_napi_del(struct napi_struct *napi) 6743 { 6744 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6745 return; 6746 6747 napi_hash_del(napi); 6748 list_del_rcu(&napi->dev_list); 6749 napi_free_frags(napi); 6750 6751 flush_gro_hash(napi); 6752 napi->gro_bitmask = 0; 6753 6754 if (napi->thread) { 6755 kthread_stop(napi->thread); 6756 napi->thread = NULL; 6757 } 6758 } 6759 EXPORT_SYMBOL(__netif_napi_del); 6760 6761 static int __napi_poll(struct napi_struct *n, bool *repoll) 6762 { 6763 int work, weight; 6764 6765 weight = n->weight; 6766 6767 /* This NAPI_STATE_SCHED test is for avoiding a race 6768 * with netpoll's poll_napi(). Only the entity which 6769 * obtains the lock and sees NAPI_STATE_SCHED set will 6770 * actually make the ->poll() call. Therefore we avoid 6771 * accidentally calling ->poll() when NAPI is not scheduled. 6772 */ 6773 work = 0; 6774 if (napi_is_scheduled(n)) { 6775 work = n->poll(n, weight); 6776 trace_napi_poll(n, work, weight); 6777 6778 xdp_do_check_flushed(n); 6779 } 6780 6781 if (unlikely(work > weight)) 6782 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6783 n->poll, work, weight); 6784 6785 if (likely(work < weight)) 6786 return work; 6787 6788 /* Drivers must not modify the NAPI state if they 6789 * consume the entire weight. In such cases this code 6790 * still "owns" the NAPI instance and therefore can 6791 * move the instance around on the list at-will. 6792 */ 6793 if (unlikely(napi_disable_pending(n))) { 6794 napi_complete(n); 6795 return work; 6796 } 6797 6798 /* The NAPI context has more processing work, but busy-polling 6799 * is preferred. Exit early. 6800 */ 6801 if (napi_prefer_busy_poll(n)) { 6802 if (napi_complete_done(n, work)) { 6803 /* If timeout is not set, we need to make sure 6804 * that the NAPI is re-scheduled. 6805 */ 6806 napi_schedule(n); 6807 } 6808 return work; 6809 } 6810 6811 if (n->gro_bitmask) { 6812 /* flush too old packets 6813 * If HZ < 1000, flush all packets. 6814 */ 6815 napi_gro_flush(n, HZ >= 1000); 6816 } 6817 6818 gro_normal_list(n); 6819 6820 /* Some drivers may have called napi_schedule 6821 * prior to exhausting their budget. 6822 */ 6823 if (unlikely(!list_empty(&n->poll_list))) { 6824 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6825 n->dev ? n->dev->name : "backlog"); 6826 return work; 6827 } 6828 6829 *repoll = true; 6830 6831 return work; 6832 } 6833 6834 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6835 { 6836 bool do_repoll = false; 6837 void *have; 6838 int work; 6839 6840 list_del_init(&n->poll_list); 6841 6842 have = netpoll_poll_lock(n); 6843 6844 work = __napi_poll(n, &do_repoll); 6845 6846 if (do_repoll) 6847 list_add_tail(&n->poll_list, repoll); 6848 6849 netpoll_poll_unlock(have); 6850 6851 return work; 6852 } 6853 6854 static int napi_thread_wait(struct napi_struct *napi) 6855 { 6856 set_current_state(TASK_INTERRUPTIBLE); 6857 6858 while (!kthread_should_stop()) { 6859 /* Testing SCHED_THREADED bit here to make sure the current 6860 * kthread owns this napi and could poll on this napi. 6861 * Testing SCHED bit is not enough because SCHED bit might be 6862 * set by some other busy poll thread or by napi_disable(). 6863 */ 6864 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 6865 WARN_ON(!list_empty(&napi->poll_list)); 6866 __set_current_state(TASK_RUNNING); 6867 return 0; 6868 } 6869 6870 schedule(); 6871 set_current_state(TASK_INTERRUPTIBLE); 6872 } 6873 __set_current_state(TASK_RUNNING); 6874 6875 return -1; 6876 } 6877 6878 static void napi_threaded_poll_loop(struct napi_struct *napi) 6879 { 6880 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6881 struct softnet_data *sd; 6882 unsigned long last_qs = jiffies; 6883 6884 for (;;) { 6885 bool repoll = false; 6886 void *have; 6887 6888 local_bh_disable(); 6889 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6890 6891 sd = this_cpu_ptr(&softnet_data); 6892 sd->in_napi_threaded_poll = true; 6893 6894 have = netpoll_poll_lock(napi); 6895 __napi_poll(napi, &repoll); 6896 netpoll_poll_unlock(have); 6897 6898 sd->in_napi_threaded_poll = false; 6899 barrier(); 6900 6901 if (sd_has_rps_ipi_waiting(sd)) { 6902 local_irq_disable(); 6903 net_rps_action_and_irq_enable(sd); 6904 } 6905 skb_defer_free_flush(sd); 6906 bpf_net_ctx_clear(bpf_net_ctx); 6907 local_bh_enable(); 6908 6909 if (!repoll) 6910 break; 6911 6912 rcu_softirq_qs_periodic(last_qs); 6913 cond_resched(); 6914 } 6915 } 6916 6917 static int napi_threaded_poll(void *data) 6918 { 6919 struct napi_struct *napi = data; 6920 6921 while (!napi_thread_wait(napi)) 6922 napi_threaded_poll_loop(napi); 6923 6924 return 0; 6925 } 6926 6927 static __latent_entropy void net_rx_action(void) 6928 { 6929 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6930 unsigned long time_limit = jiffies + 6931 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 6932 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6933 int budget = READ_ONCE(net_hotdata.netdev_budget); 6934 LIST_HEAD(list); 6935 LIST_HEAD(repoll); 6936 6937 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6938 start: 6939 sd->in_net_rx_action = true; 6940 local_irq_disable(); 6941 list_splice_init(&sd->poll_list, &list); 6942 local_irq_enable(); 6943 6944 for (;;) { 6945 struct napi_struct *n; 6946 6947 skb_defer_free_flush(sd); 6948 6949 if (list_empty(&list)) { 6950 if (list_empty(&repoll)) { 6951 sd->in_net_rx_action = false; 6952 barrier(); 6953 /* We need to check if ____napi_schedule() 6954 * had refilled poll_list while 6955 * sd->in_net_rx_action was true. 6956 */ 6957 if (!list_empty(&sd->poll_list)) 6958 goto start; 6959 if (!sd_has_rps_ipi_waiting(sd)) 6960 goto end; 6961 } 6962 break; 6963 } 6964 6965 n = list_first_entry(&list, struct napi_struct, poll_list); 6966 budget -= napi_poll(n, &repoll); 6967 6968 /* If softirq window is exhausted then punt. 6969 * Allow this to run for 2 jiffies since which will allow 6970 * an average latency of 1.5/HZ. 6971 */ 6972 if (unlikely(budget <= 0 || 6973 time_after_eq(jiffies, time_limit))) { 6974 sd->time_squeeze++; 6975 break; 6976 } 6977 } 6978 6979 local_irq_disable(); 6980 6981 list_splice_tail_init(&sd->poll_list, &list); 6982 list_splice_tail(&repoll, &list); 6983 list_splice(&list, &sd->poll_list); 6984 if (!list_empty(&sd->poll_list)) 6985 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6986 else 6987 sd->in_net_rx_action = false; 6988 6989 net_rps_action_and_irq_enable(sd); 6990 end: 6991 bpf_net_ctx_clear(bpf_net_ctx); 6992 } 6993 6994 struct netdev_adjacent { 6995 struct net_device *dev; 6996 netdevice_tracker dev_tracker; 6997 6998 /* upper master flag, there can only be one master device per list */ 6999 bool master; 7000 7001 /* lookup ignore flag */ 7002 bool ignore; 7003 7004 /* counter for the number of times this device was added to us */ 7005 u16 ref_nr; 7006 7007 /* private field for the users */ 7008 void *private; 7009 7010 struct list_head list; 7011 struct rcu_head rcu; 7012 }; 7013 7014 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7015 struct list_head *adj_list) 7016 { 7017 struct netdev_adjacent *adj; 7018 7019 list_for_each_entry(adj, adj_list, list) { 7020 if (adj->dev == adj_dev) 7021 return adj; 7022 } 7023 return NULL; 7024 } 7025 7026 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7027 struct netdev_nested_priv *priv) 7028 { 7029 struct net_device *dev = (struct net_device *)priv->data; 7030 7031 return upper_dev == dev; 7032 } 7033 7034 /** 7035 * netdev_has_upper_dev - Check if device is linked to an upper device 7036 * @dev: device 7037 * @upper_dev: upper device to check 7038 * 7039 * Find out if a device is linked to specified upper device and return true 7040 * in case it is. Note that this checks only immediate upper device, 7041 * not through a complete stack of devices. The caller must hold the RTNL lock. 7042 */ 7043 bool netdev_has_upper_dev(struct net_device *dev, 7044 struct net_device *upper_dev) 7045 { 7046 struct netdev_nested_priv priv = { 7047 .data = (void *)upper_dev, 7048 }; 7049 7050 ASSERT_RTNL(); 7051 7052 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7053 &priv); 7054 } 7055 EXPORT_SYMBOL(netdev_has_upper_dev); 7056 7057 /** 7058 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7059 * @dev: device 7060 * @upper_dev: upper device to check 7061 * 7062 * Find out if a device is linked to specified upper device and return true 7063 * in case it is. Note that this checks the entire upper device chain. 7064 * The caller must hold rcu lock. 7065 */ 7066 7067 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7068 struct net_device *upper_dev) 7069 { 7070 struct netdev_nested_priv priv = { 7071 .data = (void *)upper_dev, 7072 }; 7073 7074 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7075 &priv); 7076 } 7077 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7078 7079 /** 7080 * netdev_has_any_upper_dev - Check if device is linked to some device 7081 * @dev: device 7082 * 7083 * Find out if a device is linked to an upper device and return true in case 7084 * it is. The caller must hold the RTNL lock. 7085 */ 7086 bool netdev_has_any_upper_dev(struct net_device *dev) 7087 { 7088 ASSERT_RTNL(); 7089 7090 return !list_empty(&dev->adj_list.upper); 7091 } 7092 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7093 7094 /** 7095 * netdev_master_upper_dev_get - Get master upper device 7096 * @dev: device 7097 * 7098 * Find a master upper device and return pointer to it or NULL in case 7099 * it's not there. The caller must hold the RTNL lock. 7100 */ 7101 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7102 { 7103 struct netdev_adjacent *upper; 7104 7105 ASSERT_RTNL(); 7106 7107 if (list_empty(&dev->adj_list.upper)) 7108 return NULL; 7109 7110 upper = list_first_entry(&dev->adj_list.upper, 7111 struct netdev_adjacent, list); 7112 if (likely(upper->master)) 7113 return upper->dev; 7114 return NULL; 7115 } 7116 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7117 7118 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7119 { 7120 struct netdev_adjacent *upper; 7121 7122 ASSERT_RTNL(); 7123 7124 if (list_empty(&dev->adj_list.upper)) 7125 return NULL; 7126 7127 upper = list_first_entry(&dev->adj_list.upper, 7128 struct netdev_adjacent, list); 7129 if (likely(upper->master) && !upper->ignore) 7130 return upper->dev; 7131 return NULL; 7132 } 7133 7134 /** 7135 * netdev_has_any_lower_dev - Check if device is linked to some device 7136 * @dev: device 7137 * 7138 * Find out if a device is linked to a lower device and return true in case 7139 * it is. The caller must hold the RTNL lock. 7140 */ 7141 static bool netdev_has_any_lower_dev(struct net_device *dev) 7142 { 7143 ASSERT_RTNL(); 7144 7145 return !list_empty(&dev->adj_list.lower); 7146 } 7147 7148 void *netdev_adjacent_get_private(struct list_head *adj_list) 7149 { 7150 struct netdev_adjacent *adj; 7151 7152 adj = list_entry(adj_list, struct netdev_adjacent, list); 7153 7154 return adj->private; 7155 } 7156 EXPORT_SYMBOL(netdev_adjacent_get_private); 7157 7158 /** 7159 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7160 * @dev: device 7161 * @iter: list_head ** of the current position 7162 * 7163 * Gets the next device from the dev's upper list, starting from iter 7164 * position. The caller must hold RCU read lock. 7165 */ 7166 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7167 struct list_head **iter) 7168 { 7169 struct netdev_adjacent *upper; 7170 7171 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7172 7173 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7174 7175 if (&upper->list == &dev->adj_list.upper) 7176 return NULL; 7177 7178 *iter = &upper->list; 7179 7180 return upper->dev; 7181 } 7182 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7183 7184 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7185 struct list_head **iter, 7186 bool *ignore) 7187 { 7188 struct netdev_adjacent *upper; 7189 7190 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7191 7192 if (&upper->list == &dev->adj_list.upper) 7193 return NULL; 7194 7195 *iter = &upper->list; 7196 *ignore = upper->ignore; 7197 7198 return upper->dev; 7199 } 7200 7201 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7202 struct list_head **iter) 7203 { 7204 struct netdev_adjacent *upper; 7205 7206 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7207 7208 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7209 7210 if (&upper->list == &dev->adj_list.upper) 7211 return NULL; 7212 7213 *iter = &upper->list; 7214 7215 return upper->dev; 7216 } 7217 7218 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7219 int (*fn)(struct net_device *dev, 7220 struct netdev_nested_priv *priv), 7221 struct netdev_nested_priv *priv) 7222 { 7223 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7224 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7225 int ret, cur = 0; 7226 bool ignore; 7227 7228 now = dev; 7229 iter = &dev->adj_list.upper; 7230 7231 while (1) { 7232 if (now != dev) { 7233 ret = fn(now, priv); 7234 if (ret) 7235 return ret; 7236 } 7237 7238 next = NULL; 7239 while (1) { 7240 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7241 if (!udev) 7242 break; 7243 if (ignore) 7244 continue; 7245 7246 next = udev; 7247 niter = &udev->adj_list.upper; 7248 dev_stack[cur] = now; 7249 iter_stack[cur++] = iter; 7250 break; 7251 } 7252 7253 if (!next) { 7254 if (!cur) 7255 return 0; 7256 next = dev_stack[--cur]; 7257 niter = iter_stack[cur]; 7258 } 7259 7260 now = next; 7261 iter = niter; 7262 } 7263 7264 return 0; 7265 } 7266 7267 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7268 int (*fn)(struct net_device *dev, 7269 struct netdev_nested_priv *priv), 7270 struct netdev_nested_priv *priv) 7271 { 7272 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7273 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7274 int ret, cur = 0; 7275 7276 now = dev; 7277 iter = &dev->adj_list.upper; 7278 7279 while (1) { 7280 if (now != dev) { 7281 ret = fn(now, priv); 7282 if (ret) 7283 return ret; 7284 } 7285 7286 next = NULL; 7287 while (1) { 7288 udev = netdev_next_upper_dev_rcu(now, &iter); 7289 if (!udev) 7290 break; 7291 7292 next = udev; 7293 niter = &udev->adj_list.upper; 7294 dev_stack[cur] = now; 7295 iter_stack[cur++] = iter; 7296 break; 7297 } 7298 7299 if (!next) { 7300 if (!cur) 7301 return 0; 7302 next = dev_stack[--cur]; 7303 niter = iter_stack[cur]; 7304 } 7305 7306 now = next; 7307 iter = niter; 7308 } 7309 7310 return 0; 7311 } 7312 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7313 7314 static bool __netdev_has_upper_dev(struct net_device *dev, 7315 struct net_device *upper_dev) 7316 { 7317 struct netdev_nested_priv priv = { 7318 .flags = 0, 7319 .data = (void *)upper_dev, 7320 }; 7321 7322 ASSERT_RTNL(); 7323 7324 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7325 &priv); 7326 } 7327 7328 /** 7329 * netdev_lower_get_next_private - Get the next ->private from the 7330 * lower neighbour list 7331 * @dev: device 7332 * @iter: list_head ** of the current position 7333 * 7334 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7335 * list, starting from iter position. The caller must hold either hold the 7336 * RTNL lock or its own locking that guarantees that the neighbour lower 7337 * list will remain unchanged. 7338 */ 7339 void *netdev_lower_get_next_private(struct net_device *dev, 7340 struct list_head **iter) 7341 { 7342 struct netdev_adjacent *lower; 7343 7344 lower = list_entry(*iter, struct netdev_adjacent, list); 7345 7346 if (&lower->list == &dev->adj_list.lower) 7347 return NULL; 7348 7349 *iter = lower->list.next; 7350 7351 return lower->private; 7352 } 7353 EXPORT_SYMBOL(netdev_lower_get_next_private); 7354 7355 /** 7356 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7357 * lower neighbour list, RCU 7358 * variant 7359 * @dev: device 7360 * @iter: list_head ** of the current position 7361 * 7362 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7363 * list, starting from iter position. The caller must hold RCU read lock. 7364 */ 7365 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7366 struct list_head **iter) 7367 { 7368 struct netdev_adjacent *lower; 7369 7370 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7371 7372 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7373 7374 if (&lower->list == &dev->adj_list.lower) 7375 return NULL; 7376 7377 *iter = &lower->list; 7378 7379 return lower->private; 7380 } 7381 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7382 7383 /** 7384 * netdev_lower_get_next - Get the next device from the lower neighbour 7385 * list 7386 * @dev: device 7387 * @iter: list_head ** of the current position 7388 * 7389 * Gets the next netdev_adjacent from the dev's lower neighbour 7390 * list, starting from iter position. The caller must hold RTNL lock or 7391 * its own locking that guarantees that the neighbour lower 7392 * list will remain unchanged. 7393 */ 7394 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7395 { 7396 struct netdev_adjacent *lower; 7397 7398 lower = list_entry(*iter, struct netdev_adjacent, list); 7399 7400 if (&lower->list == &dev->adj_list.lower) 7401 return NULL; 7402 7403 *iter = lower->list.next; 7404 7405 return lower->dev; 7406 } 7407 EXPORT_SYMBOL(netdev_lower_get_next); 7408 7409 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7410 struct list_head **iter) 7411 { 7412 struct netdev_adjacent *lower; 7413 7414 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7415 7416 if (&lower->list == &dev->adj_list.lower) 7417 return NULL; 7418 7419 *iter = &lower->list; 7420 7421 return lower->dev; 7422 } 7423 7424 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7425 struct list_head **iter, 7426 bool *ignore) 7427 { 7428 struct netdev_adjacent *lower; 7429 7430 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7431 7432 if (&lower->list == &dev->adj_list.lower) 7433 return NULL; 7434 7435 *iter = &lower->list; 7436 *ignore = lower->ignore; 7437 7438 return lower->dev; 7439 } 7440 7441 int netdev_walk_all_lower_dev(struct net_device *dev, 7442 int (*fn)(struct net_device *dev, 7443 struct netdev_nested_priv *priv), 7444 struct netdev_nested_priv *priv) 7445 { 7446 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7447 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7448 int ret, cur = 0; 7449 7450 now = dev; 7451 iter = &dev->adj_list.lower; 7452 7453 while (1) { 7454 if (now != dev) { 7455 ret = fn(now, priv); 7456 if (ret) 7457 return ret; 7458 } 7459 7460 next = NULL; 7461 while (1) { 7462 ldev = netdev_next_lower_dev(now, &iter); 7463 if (!ldev) 7464 break; 7465 7466 next = ldev; 7467 niter = &ldev->adj_list.lower; 7468 dev_stack[cur] = now; 7469 iter_stack[cur++] = iter; 7470 break; 7471 } 7472 7473 if (!next) { 7474 if (!cur) 7475 return 0; 7476 next = dev_stack[--cur]; 7477 niter = iter_stack[cur]; 7478 } 7479 7480 now = next; 7481 iter = niter; 7482 } 7483 7484 return 0; 7485 } 7486 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7487 7488 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7489 int (*fn)(struct net_device *dev, 7490 struct netdev_nested_priv *priv), 7491 struct netdev_nested_priv *priv) 7492 { 7493 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7494 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7495 int ret, cur = 0; 7496 bool ignore; 7497 7498 now = dev; 7499 iter = &dev->adj_list.lower; 7500 7501 while (1) { 7502 if (now != dev) { 7503 ret = fn(now, priv); 7504 if (ret) 7505 return ret; 7506 } 7507 7508 next = NULL; 7509 while (1) { 7510 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7511 if (!ldev) 7512 break; 7513 if (ignore) 7514 continue; 7515 7516 next = ldev; 7517 niter = &ldev->adj_list.lower; 7518 dev_stack[cur] = now; 7519 iter_stack[cur++] = iter; 7520 break; 7521 } 7522 7523 if (!next) { 7524 if (!cur) 7525 return 0; 7526 next = dev_stack[--cur]; 7527 niter = iter_stack[cur]; 7528 } 7529 7530 now = next; 7531 iter = niter; 7532 } 7533 7534 return 0; 7535 } 7536 7537 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7538 struct list_head **iter) 7539 { 7540 struct netdev_adjacent *lower; 7541 7542 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7543 if (&lower->list == &dev->adj_list.lower) 7544 return NULL; 7545 7546 *iter = &lower->list; 7547 7548 return lower->dev; 7549 } 7550 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7551 7552 static u8 __netdev_upper_depth(struct net_device *dev) 7553 { 7554 struct net_device *udev; 7555 struct list_head *iter; 7556 u8 max_depth = 0; 7557 bool ignore; 7558 7559 for (iter = &dev->adj_list.upper, 7560 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7561 udev; 7562 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7563 if (ignore) 7564 continue; 7565 if (max_depth < udev->upper_level) 7566 max_depth = udev->upper_level; 7567 } 7568 7569 return max_depth; 7570 } 7571 7572 static u8 __netdev_lower_depth(struct net_device *dev) 7573 { 7574 struct net_device *ldev; 7575 struct list_head *iter; 7576 u8 max_depth = 0; 7577 bool ignore; 7578 7579 for (iter = &dev->adj_list.lower, 7580 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7581 ldev; 7582 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7583 if (ignore) 7584 continue; 7585 if (max_depth < ldev->lower_level) 7586 max_depth = ldev->lower_level; 7587 } 7588 7589 return max_depth; 7590 } 7591 7592 static int __netdev_update_upper_level(struct net_device *dev, 7593 struct netdev_nested_priv *__unused) 7594 { 7595 dev->upper_level = __netdev_upper_depth(dev) + 1; 7596 return 0; 7597 } 7598 7599 #ifdef CONFIG_LOCKDEP 7600 static LIST_HEAD(net_unlink_list); 7601 7602 static void net_unlink_todo(struct net_device *dev) 7603 { 7604 if (list_empty(&dev->unlink_list)) 7605 list_add_tail(&dev->unlink_list, &net_unlink_list); 7606 } 7607 #endif 7608 7609 static int __netdev_update_lower_level(struct net_device *dev, 7610 struct netdev_nested_priv *priv) 7611 { 7612 dev->lower_level = __netdev_lower_depth(dev) + 1; 7613 7614 #ifdef CONFIG_LOCKDEP 7615 if (!priv) 7616 return 0; 7617 7618 if (priv->flags & NESTED_SYNC_IMM) 7619 dev->nested_level = dev->lower_level - 1; 7620 if (priv->flags & NESTED_SYNC_TODO) 7621 net_unlink_todo(dev); 7622 #endif 7623 return 0; 7624 } 7625 7626 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7627 int (*fn)(struct net_device *dev, 7628 struct netdev_nested_priv *priv), 7629 struct netdev_nested_priv *priv) 7630 { 7631 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7632 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7633 int ret, cur = 0; 7634 7635 now = dev; 7636 iter = &dev->adj_list.lower; 7637 7638 while (1) { 7639 if (now != dev) { 7640 ret = fn(now, priv); 7641 if (ret) 7642 return ret; 7643 } 7644 7645 next = NULL; 7646 while (1) { 7647 ldev = netdev_next_lower_dev_rcu(now, &iter); 7648 if (!ldev) 7649 break; 7650 7651 next = ldev; 7652 niter = &ldev->adj_list.lower; 7653 dev_stack[cur] = now; 7654 iter_stack[cur++] = iter; 7655 break; 7656 } 7657 7658 if (!next) { 7659 if (!cur) 7660 return 0; 7661 next = dev_stack[--cur]; 7662 niter = iter_stack[cur]; 7663 } 7664 7665 now = next; 7666 iter = niter; 7667 } 7668 7669 return 0; 7670 } 7671 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7672 7673 /** 7674 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7675 * lower neighbour list, RCU 7676 * variant 7677 * @dev: device 7678 * 7679 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7680 * list. The caller must hold RCU read lock. 7681 */ 7682 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7683 { 7684 struct netdev_adjacent *lower; 7685 7686 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7687 struct netdev_adjacent, list); 7688 if (lower) 7689 return lower->private; 7690 return NULL; 7691 } 7692 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7693 7694 /** 7695 * netdev_master_upper_dev_get_rcu - Get master upper device 7696 * @dev: device 7697 * 7698 * Find a master upper device and return pointer to it or NULL in case 7699 * it's not there. The caller must hold the RCU read lock. 7700 */ 7701 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7702 { 7703 struct netdev_adjacent *upper; 7704 7705 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7706 struct netdev_adjacent, list); 7707 if (upper && likely(upper->master)) 7708 return upper->dev; 7709 return NULL; 7710 } 7711 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7712 7713 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7714 struct net_device *adj_dev, 7715 struct list_head *dev_list) 7716 { 7717 char linkname[IFNAMSIZ+7]; 7718 7719 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7720 "upper_%s" : "lower_%s", adj_dev->name); 7721 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7722 linkname); 7723 } 7724 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7725 char *name, 7726 struct list_head *dev_list) 7727 { 7728 char linkname[IFNAMSIZ+7]; 7729 7730 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7731 "upper_%s" : "lower_%s", name); 7732 sysfs_remove_link(&(dev->dev.kobj), linkname); 7733 } 7734 7735 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7736 struct net_device *adj_dev, 7737 struct list_head *dev_list) 7738 { 7739 return (dev_list == &dev->adj_list.upper || 7740 dev_list == &dev->adj_list.lower) && 7741 net_eq(dev_net(dev), dev_net(adj_dev)); 7742 } 7743 7744 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7745 struct net_device *adj_dev, 7746 struct list_head *dev_list, 7747 void *private, bool master) 7748 { 7749 struct netdev_adjacent *adj; 7750 int ret; 7751 7752 adj = __netdev_find_adj(adj_dev, dev_list); 7753 7754 if (adj) { 7755 adj->ref_nr += 1; 7756 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7757 dev->name, adj_dev->name, adj->ref_nr); 7758 7759 return 0; 7760 } 7761 7762 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7763 if (!adj) 7764 return -ENOMEM; 7765 7766 adj->dev = adj_dev; 7767 adj->master = master; 7768 adj->ref_nr = 1; 7769 adj->private = private; 7770 adj->ignore = false; 7771 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7772 7773 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7774 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7775 7776 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7777 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7778 if (ret) 7779 goto free_adj; 7780 } 7781 7782 /* Ensure that master link is always the first item in list. */ 7783 if (master) { 7784 ret = sysfs_create_link(&(dev->dev.kobj), 7785 &(adj_dev->dev.kobj), "master"); 7786 if (ret) 7787 goto remove_symlinks; 7788 7789 list_add_rcu(&adj->list, dev_list); 7790 } else { 7791 list_add_tail_rcu(&adj->list, dev_list); 7792 } 7793 7794 return 0; 7795 7796 remove_symlinks: 7797 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7798 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7799 free_adj: 7800 netdev_put(adj_dev, &adj->dev_tracker); 7801 kfree(adj); 7802 7803 return ret; 7804 } 7805 7806 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7807 struct net_device *adj_dev, 7808 u16 ref_nr, 7809 struct list_head *dev_list) 7810 { 7811 struct netdev_adjacent *adj; 7812 7813 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7814 dev->name, adj_dev->name, ref_nr); 7815 7816 adj = __netdev_find_adj(adj_dev, dev_list); 7817 7818 if (!adj) { 7819 pr_err("Adjacency does not exist for device %s from %s\n", 7820 dev->name, adj_dev->name); 7821 WARN_ON(1); 7822 return; 7823 } 7824 7825 if (adj->ref_nr > ref_nr) { 7826 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7827 dev->name, adj_dev->name, ref_nr, 7828 adj->ref_nr - ref_nr); 7829 adj->ref_nr -= ref_nr; 7830 return; 7831 } 7832 7833 if (adj->master) 7834 sysfs_remove_link(&(dev->dev.kobj), "master"); 7835 7836 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7837 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7838 7839 list_del_rcu(&adj->list); 7840 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7841 adj_dev->name, dev->name, adj_dev->name); 7842 netdev_put(adj_dev, &adj->dev_tracker); 7843 kfree_rcu(adj, rcu); 7844 } 7845 7846 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7847 struct net_device *upper_dev, 7848 struct list_head *up_list, 7849 struct list_head *down_list, 7850 void *private, bool master) 7851 { 7852 int ret; 7853 7854 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7855 private, master); 7856 if (ret) 7857 return ret; 7858 7859 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7860 private, false); 7861 if (ret) { 7862 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7863 return ret; 7864 } 7865 7866 return 0; 7867 } 7868 7869 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7870 struct net_device *upper_dev, 7871 u16 ref_nr, 7872 struct list_head *up_list, 7873 struct list_head *down_list) 7874 { 7875 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7876 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7877 } 7878 7879 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7880 struct net_device *upper_dev, 7881 void *private, bool master) 7882 { 7883 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7884 &dev->adj_list.upper, 7885 &upper_dev->adj_list.lower, 7886 private, master); 7887 } 7888 7889 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7890 struct net_device *upper_dev) 7891 { 7892 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7893 &dev->adj_list.upper, 7894 &upper_dev->adj_list.lower); 7895 } 7896 7897 static int __netdev_upper_dev_link(struct net_device *dev, 7898 struct net_device *upper_dev, bool master, 7899 void *upper_priv, void *upper_info, 7900 struct netdev_nested_priv *priv, 7901 struct netlink_ext_ack *extack) 7902 { 7903 struct netdev_notifier_changeupper_info changeupper_info = { 7904 .info = { 7905 .dev = dev, 7906 .extack = extack, 7907 }, 7908 .upper_dev = upper_dev, 7909 .master = master, 7910 .linking = true, 7911 .upper_info = upper_info, 7912 }; 7913 struct net_device *master_dev; 7914 int ret = 0; 7915 7916 ASSERT_RTNL(); 7917 7918 if (dev == upper_dev) 7919 return -EBUSY; 7920 7921 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7922 if (__netdev_has_upper_dev(upper_dev, dev)) 7923 return -EBUSY; 7924 7925 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7926 return -EMLINK; 7927 7928 if (!master) { 7929 if (__netdev_has_upper_dev(dev, upper_dev)) 7930 return -EEXIST; 7931 } else { 7932 master_dev = __netdev_master_upper_dev_get(dev); 7933 if (master_dev) 7934 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7935 } 7936 7937 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7938 &changeupper_info.info); 7939 ret = notifier_to_errno(ret); 7940 if (ret) 7941 return ret; 7942 7943 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7944 master); 7945 if (ret) 7946 return ret; 7947 7948 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7949 &changeupper_info.info); 7950 ret = notifier_to_errno(ret); 7951 if (ret) 7952 goto rollback; 7953 7954 __netdev_update_upper_level(dev, NULL); 7955 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7956 7957 __netdev_update_lower_level(upper_dev, priv); 7958 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7959 priv); 7960 7961 return 0; 7962 7963 rollback: 7964 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7965 7966 return ret; 7967 } 7968 7969 /** 7970 * netdev_upper_dev_link - Add a link to the upper device 7971 * @dev: device 7972 * @upper_dev: new upper device 7973 * @extack: netlink extended ack 7974 * 7975 * Adds a link to device which is upper to this one. The caller must hold 7976 * the RTNL lock. On a failure a negative errno code is returned. 7977 * On success the reference counts are adjusted and the function 7978 * returns zero. 7979 */ 7980 int netdev_upper_dev_link(struct net_device *dev, 7981 struct net_device *upper_dev, 7982 struct netlink_ext_ack *extack) 7983 { 7984 struct netdev_nested_priv priv = { 7985 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7986 .data = NULL, 7987 }; 7988 7989 return __netdev_upper_dev_link(dev, upper_dev, false, 7990 NULL, NULL, &priv, extack); 7991 } 7992 EXPORT_SYMBOL(netdev_upper_dev_link); 7993 7994 /** 7995 * netdev_master_upper_dev_link - Add a master link to the upper device 7996 * @dev: device 7997 * @upper_dev: new upper device 7998 * @upper_priv: upper device private 7999 * @upper_info: upper info to be passed down via notifier 8000 * @extack: netlink extended ack 8001 * 8002 * Adds a link to device which is upper to this one. In this case, only 8003 * one master upper device can be linked, although other non-master devices 8004 * might be linked as well. The caller must hold the RTNL lock. 8005 * On a failure a negative errno code is returned. On success the reference 8006 * counts are adjusted and the function returns zero. 8007 */ 8008 int netdev_master_upper_dev_link(struct net_device *dev, 8009 struct net_device *upper_dev, 8010 void *upper_priv, void *upper_info, 8011 struct netlink_ext_ack *extack) 8012 { 8013 struct netdev_nested_priv priv = { 8014 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8015 .data = NULL, 8016 }; 8017 8018 return __netdev_upper_dev_link(dev, upper_dev, true, 8019 upper_priv, upper_info, &priv, extack); 8020 } 8021 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8022 8023 static void __netdev_upper_dev_unlink(struct net_device *dev, 8024 struct net_device *upper_dev, 8025 struct netdev_nested_priv *priv) 8026 { 8027 struct netdev_notifier_changeupper_info changeupper_info = { 8028 .info = { 8029 .dev = dev, 8030 }, 8031 .upper_dev = upper_dev, 8032 .linking = false, 8033 }; 8034 8035 ASSERT_RTNL(); 8036 8037 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8038 8039 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8040 &changeupper_info.info); 8041 8042 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8043 8044 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8045 &changeupper_info.info); 8046 8047 __netdev_update_upper_level(dev, NULL); 8048 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8049 8050 __netdev_update_lower_level(upper_dev, priv); 8051 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8052 priv); 8053 } 8054 8055 /** 8056 * netdev_upper_dev_unlink - Removes a link to upper device 8057 * @dev: device 8058 * @upper_dev: new upper device 8059 * 8060 * Removes a link to device which is upper to this one. The caller must hold 8061 * the RTNL lock. 8062 */ 8063 void netdev_upper_dev_unlink(struct net_device *dev, 8064 struct net_device *upper_dev) 8065 { 8066 struct netdev_nested_priv priv = { 8067 .flags = NESTED_SYNC_TODO, 8068 .data = NULL, 8069 }; 8070 8071 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8072 } 8073 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8074 8075 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8076 struct net_device *lower_dev, 8077 bool val) 8078 { 8079 struct netdev_adjacent *adj; 8080 8081 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8082 if (adj) 8083 adj->ignore = val; 8084 8085 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8086 if (adj) 8087 adj->ignore = val; 8088 } 8089 8090 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8091 struct net_device *lower_dev) 8092 { 8093 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8094 } 8095 8096 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8097 struct net_device *lower_dev) 8098 { 8099 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8100 } 8101 8102 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8103 struct net_device *new_dev, 8104 struct net_device *dev, 8105 struct netlink_ext_ack *extack) 8106 { 8107 struct netdev_nested_priv priv = { 8108 .flags = 0, 8109 .data = NULL, 8110 }; 8111 int err; 8112 8113 if (!new_dev) 8114 return 0; 8115 8116 if (old_dev && new_dev != old_dev) 8117 netdev_adjacent_dev_disable(dev, old_dev); 8118 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8119 extack); 8120 if (err) { 8121 if (old_dev && new_dev != old_dev) 8122 netdev_adjacent_dev_enable(dev, old_dev); 8123 return err; 8124 } 8125 8126 return 0; 8127 } 8128 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8129 8130 void netdev_adjacent_change_commit(struct net_device *old_dev, 8131 struct net_device *new_dev, 8132 struct net_device *dev) 8133 { 8134 struct netdev_nested_priv priv = { 8135 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8136 .data = NULL, 8137 }; 8138 8139 if (!new_dev || !old_dev) 8140 return; 8141 8142 if (new_dev == old_dev) 8143 return; 8144 8145 netdev_adjacent_dev_enable(dev, old_dev); 8146 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8147 } 8148 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8149 8150 void netdev_adjacent_change_abort(struct net_device *old_dev, 8151 struct net_device *new_dev, 8152 struct net_device *dev) 8153 { 8154 struct netdev_nested_priv priv = { 8155 .flags = 0, 8156 .data = NULL, 8157 }; 8158 8159 if (!new_dev) 8160 return; 8161 8162 if (old_dev && new_dev != old_dev) 8163 netdev_adjacent_dev_enable(dev, old_dev); 8164 8165 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8166 } 8167 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8168 8169 /** 8170 * netdev_bonding_info_change - Dispatch event about slave change 8171 * @dev: device 8172 * @bonding_info: info to dispatch 8173 * 8174 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8175 * The caller must hold the RTNL lock. 8176 */ 8177 void netdev_bonding_info_change(struct net_device *dev, 8178 struct netdev_bonding_info *bonding_info) 8179 { 8180 struct netdev_notifier_bonding_info info = { 8181 .info.dev = dev, 8182 }; 8183 8184 memcpy(&info.bonding_info, bonding_info, 8185 sizeof(struct netdev_bonding_info)); 8186 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8187 &info.info); 8188 } 8189 EXPORT_SYMBOL(netdev_bonding_info_change); 8190 8191 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8192 struct netlink_ext_ack *extack) 8193 { 8194 struct netdev_notifier_offload_xstats_info info = { 8195 .info.dev = dev, 8196 .info.extack = extack, 8197 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8198 }; 8199 int err; 8200 int rc; 8201 8202 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8203 GFP_KERNEL); 8204 if (!dev->offload_xstats_l3) 8205 return -ENOMEM; 8206 8207 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8208 NETDEV_OFFLOAD_XSTATS_DISABLE, 8209 &info.info); 8210 err = notifier_to_errno(rc); 8211 if (err) 8212 goto free_stats; 8213 8214 return 0; 8215 8216 free_stats: 8217 kfree(dev->offload_xstats_l3); 8218 dev->offload_xstats_l3 = NULL; 8219 return err; 8220 } 8221 8222 int netdev_offload_xstats_enable(struct net_device *dev, 8223 enum netdev_offload_xstats_type type, 8224 struct netlink_ext_ack *extack) 8225 { 8226 ASSERT_RTNL(); 8227 8228 if (netdev_offload_xstats_enabled(dev, type)) 8229 return -EALREADY; 8230 8231 switch (type) { 8232 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8233 return netdev_offload_xstats_enable_l3(dev, extack); 8234 } 8235 8236 WARN_ON(1); 8237 return -EINVAL; 8238 } 8239 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8240 8241 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8242 { 8243 struct netdev_notifier_offload_xstats_info info = { 8244 .info.dev = dev, 8245 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8246 }; 8247 8248 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8249 &info.info); 8250 kfree(dev->offload_xstats_l3); 8251 dev->offload_xstats_l3 = NULL; 8252 } 8253 8254 int netdev_offload_xstats_disable(struct net_device *dev, 8255 enum netdev_offload_xstats_type type) 8256 { 8257 ASSERT_RTNL(); 8258 8259 if (!netdev_offload_xstats_enabled(dev, type)) 8260 return -EALREADY; 8261 8262 switch (type) { 8263 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8264 netdev_offload_xstats_disable_l3(dev); 8265 return 0; 8266 } 8267 8268 WARN_ON(1); 8269 return -EINVAL; 8270 } 8271 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8272 8273 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8274 { 8275 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8276 } 8277 8278 static struct rtnl_hw_stats64 * 8279 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8280 enum netdev_offload_xstats_type type) 8281 { 8282 switch (type) { 8283 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8284 return dev->offload_xstats_l3; 8285 } 8286 8287 WARN_ON(1); 8288 return NULL; 8289 } 8290 8291 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8292 enum netdev_offload_xstats_type type) 8293 { 8294 ASSERT_RTNL(); 8295 8296 return netdev_offload_xstats_get_ptr(dev, type); 8297 } 8298 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8299 8300 struct netdev_notifier_offload_xstats_ru { 8301 bool used; 8302 }; 8303 8304 struct netdev_notifier_offload_xstats_rd { 8305 struct rtnl_hw_stats64 stats; 8306 bool used; 8307 }; 8308 8309 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8310 const struct rtnl_hw_stats64 *src) 8311 { 8312 dest->rx_packets += src->rx_packets; 8313 dest->tx_packets += src->tx_packets; 8314 dest->rx_bytes += src->rx_bytes; 8315 dest->tx_bytes += src->tx_bytes; 8316 dest->rx_errors += src->rx_errors; 8317 dest->tx_errors += src->tx_errors; 8318 dest->rx_dropped += src->rx_dropped; 8319 dest->tx_dropped += src->tx_dropped; 8320 dest->multicast += src->multicast; 8321 } 8322 8323 static int netdev_offload_xstats_get_used(struct net_device *dev, 8324 enum netdev_offload_xstats_type type, 8325 bool *p_used, 8326 struct netlink_ext_ack *extack) 8327 { 8328 struct netdev_notifier_offload_xstats_ru report_used = {}; 8329 struct netdev_notifier_offload_xstats_info info = { 8330 .info.dev = dev, 8331 .info.extack = extack, 8332 .type = type, 8333 .report_used = &report_used, 8334 }; 8335 int rc; 8336 8337 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8338 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8339 &info.info); 8340 *p_used = report_used.used; 8341 return notifier_to_errno(rc); 8342 } 8343 8344 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8345 enum netdev_offload_xstats_type type, 8346 struct rtnl_hw_stats64 *p_stats, 8347 bool *p_used, 8348 struct netlink_ext_ack *extack) 8349 { 8350 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8351 struct netdev_notifier_offload_xstats_info info = { 8352 .info.dev = dev, 8353 .info.extack = extack, 8354 .type = type, 8355 .report_delta = &report_delta, 8356 }; 8357 struct rtnl_hw_stats64 *stats; 8358 int rc; 8359 8360 stats = netdev_offload_xstats_get_ptr(dev, type); 8361 if (WARN_ON(!stats)) 8362 return -EINVAL; 8363 8364 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8365 &info.info); 8366 8367 /* Cache whatever we got, even if there was an error, otherwise the 8368 * successful stats retrievals would get lost. 8369 */ 8370 netdev_hw_stats64_add(stats, &report_delta.stats); 8371 8372 if (p_stats) 8373 *p_stats = *stats; 8374 *p_used = report_delta.used; 8375 8376 return notifier_to_errno(rc); 8377 } 8378 8379 int netdev_offload_xstats_get(struct net_device *dev, 8380 enum netdev_offload_xstats_type type, 8381 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8382 struct netlink_ext_ack *extack) 8383 { 8384 ASSERT_RTNL(); 8385 8386 if (p_stats) 8387 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8388 p_used, extack); 8389 else 8390 return netdev_offload_xstats_get_used(dev, type, p_used, 8391 extack); 8392 } 8393 EXPORT_SYMBOL(netdev_offload_xstats_get); 8394 8395 void 8396 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8397 const struct rtnl_hw_stats64 *stats) 8398 { 8399 report_delta->used = true; 8400 netdev_hw_stats64_add(&report_delta->stats, stats); 8401 } 8402 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8403 8404 void 8405 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8406 { 8407 report_used->used = true; 8408 } 8409 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8410 8411 void netdev_offload_xstats_push_delta(struct net_device *dev, 8412 enum netdev_offload_xstats_type type, 8413 const struct rtnl_hw_stats64 *p_stats) 8414 { 8415 struct rtnl_hw_stats64 *stats; 8416 8417 ASSERT_RTNL(); 8418 8419 stats = netdev_offload_xstats_get_ptr(dev, type); 8420 if (WARN_ON(!stats)) 8421 return; 8422 8423 netdev_hw_stats64_add(stats, p_stats); 8424 } 8425 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8426 8427 /** 8428 * netdev_get_xmit_slave - Get the xmit slave of master device 8429 * @dev: device 8430 * @skb: The packet 8431 * @all_slaves: assume all the slaves are active 8432 * 8433 * The reference counters are not incremented so the caller must be 8434 * careful with locks. The caller must hold RCU lock. 8435 * %NULL is returned if no slave is found. 8436 */ 8437 8438 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8439 struct sk_buff *skb, 8440 bool all_slaves) 8441 { 8442 const struct net_device_ops *ops = dev->netdev_ops; 8443 8444 if (!ops->ndo_get_xmit_slave) 8445 return NULL; 8446 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8447 } 8448 EXPORT_SYMBOL(netdev_get_xmit_slave); 8449 8450 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8451 struct sock *sk) 8452 { 8453 const struct net_device_ops *ops = dev->netdev_ops; 8454 8455 if (!ops->ndo_sk_get_lower_dev) 8456 return NULL; 8457 return ops->ndo_sk_get_lower_dev(dev, sk); 8458 } 8459 8460 /** 8461 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8462 * @dev: device 8463 * @sk: the socket 8464 * 8465 * %NULL is returned if no lower device is found. 8466 */ 8467 8468 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8469 struct sock *sk) 8470 { 8471 struct net_device *lower; 8472 8473 lower = netdev_sk_get_lower_dev(dev, sk); 8474 while (lower) { 8475 dev = lower; 8476 lower = netdev_sk_get_lower_dev(dev, sk); 8477 } 8478 8479 return dev; 8480 } 8481 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8482 8483 static void netdev_adjacent_add_links(struct net_device *dev) 8484 { 8485 struct netdev_adjacent *iter; 8486 8487 struct net *net = dev_net(dev); 8488 8489 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8490 if (!net_eq(net, dev_net(iter->dev))) 8491 continue; 8492 netdev_adjacent_sysfs_add(iter->dev, dev, 8493 &iter->dev->adj_list.lower); 8494 netdev_adjacent_sysfs_add(dev, iter->dev, 8495 &dev->adj_list.upper); 8496 } 8497 8498 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8499 if (!net_eq(net, dev_net(iter->dev))) 8500 continue; 8501 netdev_adjacent_sysfs_add(iter->dev, dev, 8502 &iter->dev->adj_list.upper); 8503 netdev_adjacent_sysfs_add(dev, iter->dev, 8504 &dev->adj_list.lower); 8505 } 8506 } 8507 8508 static void netdev_adjacent_del_links(struct net_device *dev) 8509 { 8510 struct netdev_adjacent *iter; 8511 8512 struct net *net = dev_net(dev); 8513 8514 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8515 if (!net_eq(net, dev_net(iter->dev))) 8516 continue; 8517 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8518 &iter->dev->adj_list.lower); 8519 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8520 &dev->adj_list.upper); 8521 } 8522 8523 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8524 if (!net_eq(net, dev_net(iter->dev))) 8525 continue; 8526 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8527 &iter->dev->adj_list.upper); 8528 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8529 &dev->adj_list.lower); 8530 } 8531 } 8532 8533 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8534 { 8535 struct netdev_adjacent *iter; 8536 8537 struct net *net = dev_net(dev); 8538 8539 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8540 if (!net_eq(net, dev_net(iter->dev))) 8541 continue; 8542 netdev_adjacent_sysfs_del(iter->dev, oldname, 8543 &iter->dev->adj_list.lower); 8544 netdev_adjacent_sysfs_add(iter->dev, dev, 8545 &iter->dev->adj_list.lower); 8546 } 8547 8548 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8549 if (!net_eq(net, dev_net(iter->dev))) 8550 continue; 8551 netdev_adjacent_sysfs_del(iter->dev, oldname, 8552 &iter->dev->adj_list.upper); 8553 netdev_adjacent_sysfs_add(iter->dev, dev, 8554 &iter->dev->adj_list.upper); 8555 } 8556 } 8557 8558 void *netdev_lower_dev_get_private(struct net_device *dev, 8559 struct net_device *lower_dev) 8560 { 8561 struct netdev_adjacent *lower; 8562 8563 if (!lower_dev) 8564 return NULL; 8565 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8566 if (!lower) 8567 return NULL; 8568 8569 return lower->private; 8570 } 8571 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8572 8573 8574 /** 8575 * netdev_lower_state_changed - Dispatch event about lower device state change 8576 * @lower_dev: device 8577 * @lower_state_info: state to dispatch 8578 * 8579 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8580 * The caller must hold the RTNL lock. 8581 */ 8582 void netdev_lower_state_changed(struct net_device *lower_dev, 8583 void *lower_state_info) 8584 { 8585 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8586 .info.dev = lower_dev, 8587 }; 8588 8589 ASSERT_RTNL(); 8590 changelowerstate_info.lower_state_info = lower_state_info; 8591 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8592 &changelowerstate_info.info); 8593 } 8594 EXPORT_SYMBOL(netdev_lower_state_changed); 8595 8596 static void dev_change_rx_flags(struct net_device *dev, int flags) 8597 { 8598 const struct net_device_ops *ops = dev->netdev_ops; 8599 8600 if (ops->ndo_change_rx_flags) 8601 ops->ndo_change_rx_flags(dev, flags); 8602 } 8603 8604 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8605 { 8606 unsigned int old_flags = dev->flags; 8607 unsigned int promiscuity, flags; 8608 kuid_t uid; 8609 kgid_t gid; 8610 8611 ASSERT_RTNL(); 8612 8613 promiscuity = dev->promiscuity + inc; 8614 if (promiscuity == 0) { 8615 /* 8616 * Avoid overflow. 8617 * If inc causes overflow, untouch promisc and return error. 8618 */ 8619 if (unlikely(inc > 0)) { 8620 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8621 return -EOVERFLOW; 8622 } 8623 flags = old_flags & ~IFF_PROMISC; 8624 } else { 8625 flags = old_flags | IFF_PROMISC; 8626 } 8627 WRITE_ONCE(dev->promiscuity, promiscuity); 8628 if (flags != old_flags) { 8629 WRITE_ONCE(dev->flags, flags); 8630 netdev_info(dev, "%s promiscuous mode\n", 8631 dev->flags & IFF_PROMISC ? "entered" : "left"); 8632 if (audit_enabled) { 8633 current_uid_gid(&uid, &gid); 8634 audit_log(audit_context(), GFP_ATOMIC, 8635 AUDIT_ANOM_PROMISCUOUS, 8636 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8637 dev->name, (dev->flags & IFF_PROMISC), 8638 (old_flags & IFF_PROMISC), 8639 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8640 from_kuid(&init_user_ns, uid), 8641 from_kgid(&init_user_ns, gid), 8642 audit_get_sessionid(current)); 8643 } 8644 8645 dev_change_rx_flags(dev, IFF_PROMISC); 8646 } 8647 if (notify) 8648 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8649 return 0; 8650 } 8651 8652 /** 8653 * dev_set_promiscuity - update promiscuity count on a device 8654 * @dev: device 8655 * @inc: modifier 8656 * 8657 * Add or remove promiscuity from a device. While the count in the device 8658 * remains above zero the interface remains promiscuous. Once it hits zero 8659 * the device reverts back to normal filtering operation. A negative inc 8660 * value is used to drop promiscuity on the device. 8661 * Return 0 if successful or a negative errno code on error. 8662 */ 8663 int dev_set_promiscuity(struct net_device *dev, int inc) 8664 { 8665 unsigned int old_flags = dev->flags; 8666 int err; 8667 8668 err = __dev_set_promiscuity(dev, inc, true); 8669 if (err < 0) 8670 return err; 8671 if (dev->flags != old_flags) 8672 dev_set_rx_mode(dev); 8673 return err; 8674 } 8675 EXPORT_SYMBOL(dev_set_promiscuity); 8676 8677 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8678 { 8679 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8680 unsigned int allmulti, flags; 8681 8682 ASSERT_RTNL(); 8683 8684 allmulti = dev->allmulti + inc; 8685 if (allmulti == 0) { 8686 /* 8687 * Avoid overflow. 8688 * If inc causes overflow, untouch allmulti and return error. 8689 */ 8690 if (unlikely(inc > 0)) { 8691 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8692 return -EOVERFLOW; 8693 } 8694 flags = old_flags & ~IFF_ALLMULTI; 8695 } else { 8696 flags = old_flags | IFF_ALLMULTI; 8697 } 8698 WRITE_ONCE(dev->allmulti, allmulti); 8699 if (flags != old_flags) { 8700 WRITE_ONCE(dev->flags, flags); 8701 netdev_info(dev, "%s allmulticast mode\n", 8702 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8703 dev_change_rx_flags(dev, IFF_ALLMULTI); 8704 dev_set_rx_mode(dev); 8705 if (notify) 8706 __dev_notify_flags(dev, old_flags, 8707 dev->gflags ^ old_gflags, 0, NULL); 8708 } 8709 return 0; 8710 } 8711 8712 /** 8713 * dev_set_allmulti - update allmulti count on a device 8714 * @dev: device 8715 * @inc: modifier 8716 * 8717 * Add or remove reception of all multicast frames to a device. While the 8718 * count in the device remains above zero the interface remains listening 8719 * to all interfaces. Once it hits zero the device reverts back to normal 8720 * filtering operation. A negative @inc value is used to drop the counter 8721 * when releasing a resource needing all multicasts. 8722 * Return 0 if successful or a negative errno code on error. 8723 */ 8724 8725 int dev_set_allmulti(struct net_device *dev, int inc) 8726 { 8727 return __dev_set_allmulti(dev, inc, true); 8728 } 8729 EXPORT_SYMBOL(dev_set_allmulti); 8730 8731 /* 8732 * Upload unicast and multicast address lists to device and 8733 * configure RX filtering. When the device doesn't support unicast 8734 * filtering it is put in promiscuous mode while unicast addresses 8735 * are present. 8736 */ 8737 void __dev_set_rx_mode(struct net_device *dev) 8738 { 8739 const struct net_device_ops *ops = dev->netdev_ops; 8740 8741 /* dev_open will call this function so the list will stay sane. */ 8742 if (!(dev->flags&IFF_UP)) 8743 return; 8744 8745 if (!netif_device_present(dev)) 8746 return; 8747 8748 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8749 /* Unicast addresses changes may only happen under the rtnl, 8750 * therefore calling __dev_set_promiscuity here is safe. 8751 */ 8752 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8753 __dev_set_promiscuity(dev, 1, false); 8754 dev->uc_promisc = true; 8755 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8756 __dev_set_promiscuity(dev, -1, false); 8757 dev->uc_promisc = false; 8758 } 8759 } 8760 8761 if (ops->ndo_set_rx_mode) 8762 ops->ndo_set_rx_mode(dev); 8763 } 8764 8765 void dev_set_rx_mode(struct net_device *dev) 8766 { 8767 netif_addr_lock_bh(dev); 8768 __dev_set_rx_mode(dev); 8769 netif_addr_unlock_bh(dev); 8770 } 8771 8772 /** 8773 * dev_get_flags - get flags reported to userspace 8774 * @dev: device 8775 * 8776 * Get the combination of flag bits exported through APIs to userspace. 8777 */ 8778 unsigned int dev_get_flags(const struct net_device *dev) 8779 { 8780 unsigned int flags; 8781 8782 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 8783 IFF_ALLMULTI | 8784 IFF_RUNNING | 8785 IFF_LOWER_UP | 8786 IFF_DORMANT)) | 8787 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 8788 IFF_ALLMULTI)); 8789 8790 if (netif_running(dev)) { 8791 if (netif_oper_up(dev)) 8792 flags |= IFF_RUNNING; 8793 if (netif_carrier_ok(dev)) 8794 flags |= IFF_LOWER_UP; 8795 if (netif_dormant(dev)) 8796 flags |= IFF_DORMANT; 8797 } 8798 8799 return flags; 8800 } 8801 EXPORT_SYMBOL(dev_get_flags); 8802 8803 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8804 struct netlink_ext_ack *extack) 8805 { 8806 unsigned int old_flags = dev->flags; 8807 int ret; 8808 8809 ASSERT_RTNL(); 8810 8811 /* 8812 * Set the flags on our device. 8813 */ 8814 8815 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8816 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8817 IFF_AUTOMEDIA)) | 8818 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8819 IFF_ALLMULTI)); 8820 8821 /* 8822 * Load in the correct multicast list now the flags have changed. 8823 */ 8824 8825 if ((old_flags ^ flags) & IFF_MULTICAST) 8826 dev_change_rx_flags(dev, IFF_MULTICAST); 8827 8828 dev_set_rx_mode(dev); 8829 8830 /* 8831 * Have we downed the interface. We handle IFF_UP ourselves 8832 * according to user attempts to set it, rather than blindly 8833 * setting it. 8834 */ 8835 8836 ret = 0; 8837 if ((old_flags ^ flags) & IFF_UP) { 8838 if (old_flags & IFF_UP) 8839 __dev_close(dev); 8840 else 8841 ret = __dev_open(dev, extack); 8842 } 8843 8844 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8845 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8846 unsigned int old_flags = dev->flags; 8847 8848 dev->gflags ^= IFF_PROMISC; 8849 8850 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8851 if (dev->flags != old_flags) 8852 dev_set_rx_mode(dev); 8853 } 8854 8855 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8856 * is important. Some (broken) drivers set IFF_PROMISC, when 8857 * IFF_ALLMULTI is requested not asking us and not reporting. 8858 */ 8859 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8860 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8861 8862 dev->gflags ^= IFF_ALLMULTI; 8863 __dev_set_allmulti(dev, inc, false); 8864 } 8865 8866 return ret; 8867 } 8868 8869 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8870 unsigned int gchanges, u32 portid, 8871 const struct nlmsghdr *nlh) 8872 { 8873 unsigned int changes = dev->flags ^ old_flags; 8874 8875 if (gchanges) 8876 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8877 8878 if (changes & IFF_UP) { 8879 if (dev->flags & IFF_UP) 8880 call_netdevice_notifiers(NETDEV_UP, dev); 8881 else 8882 call_netdevice_notifiers(NETDEV_DOWN, dev); 8883 } 8884 8885 if (dev->flags & IFF_UP && 8886 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8887 struct netdev_notifier_change_info change_info = { 8888 .info = { 8889 .dev = dev, 8890 }, 8891 .flags_changed = changes, 8892 }; 8893 8894 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8895 } 8896 } 8897 8898 /** 8899 * dev_change_flags - change device settings 8900 * @dev: device 8901 * @flags: device state flags 8902 * @extack: netlink extended ack 8903 * 8904 * Change settings on device based state flags. The flags are 8905 * in the userspace exported format. 8906 */ 8907 int dev_change_flags(struct net_device *dev, unsigned int flags, 8908 struct netlink_ext_ack *extack) 8909 { 8910 int ret; 8911 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8912 8913 ret = __dev_change_flags(dev, flags, extack); 8914 if (ret < 0) 8915 return ret; 8916 8917 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8918 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8919 return ret; 8920 } 8921 EXPORT_SYMBOL(dev_change_flags); 8922 8923 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8924 { 8925 const struct net_device_ops *ops = dev->netdev_ops; 8926 8927 if (ops->ndo_change_mtu) 8928 return ops->ndo_change_mtu(dev, new_mtu); 8929 8930 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8931 WRITE_ONCE(dev->mtu, new_mtu); 8932 return 0; 8933 } 8934 EXPORT_SYMBOL(__dev_set_mtu); 8935 8936 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8937 struct netlink_ext_ack *extack) 8938 { 8939 /* MTU must be positive, and in range */ 8940 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8941 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8942 return -EINVAL; 8943 } 8944 8945 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8946 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8947 return -EINVAL; 8948 } 8949 return 0; 8950 } 8951 8952 /** 8953 * dev_set_mtu_ext - Change maximum transfer unit 8954 * @dev: device 8955 * @new_mtu: new transfer unit 8956 * @extack: netlink extended ack 8957 * 8958 * Change the maximum transfer size of the network device. 8959 */ 8960 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8961 struct netlink_ext_ack *extack) 8962 { 8963 int err, orig_mtu; 8964 8965 if (new_mtu == dev->mtu) 8966 return 0; 8967 8968 err = dev_validate_mtu(dev, new_mtu, extack); 8969 if (err) 8970 return err; 8971 8972 if (!netif_device_present(dev)) 8973 return -ENODEV; 8974 8975 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8976 err = notifier_to_errno(err); 8977 if (err) 8978 return err; 8979 8980 orig_mtu = dev->mtu; 8981 err = __dev_set_mtu(dev, new_mtu); 8982 8983 if (!err) { 8984 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8985 orig_mtu); 8986 err = notifier_to_errno(err); 8987 if (err) { 8988 /* setting mtu back and notifying everyone again, 8989 * so that they have a chance to revert changes. 8990 */ 8991 __dev_set_mtu(dev, orig_mtu); 8992 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8993 new_mtu); 8994 } 8995 } 8996 return err; 8997 } 8998 8999 int dev_set_mtu(struct net_device *dev, int new_mtu) 9000 { 9001 struct netlink_ext_ack extack; 9002 int err; 9003 9004 memset(&extack, 0, sizeof(extack)); 9005 err = dev_set_mtu_ext(dev, new_mtu, &extack); 9006 if (err && extack._msg) 9007 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9008 return err; 9009 } 9010 EXPORT_SYMBOL(dev_set_mtu); 9011 9012 /** 9013 * dev_change_tx_queue_len - Change TX queue length of a netdevice 9014 * @dev: device 9015 * @new_len: new tx queue length 9016 */ 9017 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9018 { 9019 unsigned int orig_len = dev->tx_queue_len; 9020 int res; 9021 9022 if (new_len != (unsigned int)new_len) 9023 return -ERANGE; 9024 9025 if (new_len != orig_len) { 9026 WRITE_ONCE(dev->tx_queue_len, new_len); 9027 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9028 res = notifier_to_errno(res); 9029 if (res) 9030 goto err_rollback; 9031 res = dev_qdisc_change_tx_queue_len(dev); 9032 if (res) 9033 goto err_rollback; 9034 } 9035 9036 return 0; 9037 9038 err_rollback: 9039 netdev_err(dev, "refused to change device tx_queue_len\n"); 9040 WRITE_ONCE(dev->tx_queue_len, orig_len); 9041 return res; 9042 } 9043 9044 /** 9045 * dev_set_group - Change group this device belongs to 9046 * @dev: device 9047 * @new_group: group this device should belong to 9048 */ 9049 void dev_set_group(struct net_device *dev, int new_group) 9050 { 9051 dev->group = new_group; 9052 } 9053 9054 /** 9055 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9056 * @dev: device 9057 * @addr: new address 9058 * @extack: netlink extended ack 9059 */ 9060 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9061 struct netlink_ext_ack *extack) 9062 { 9063 struct netdev_notifier_pre_changeaddr_info info = { 9064 .info.dev = dev, 9065 .info.extack = extack, 9066 .dev_addr = addr, 9067 }; 9068 int rc; 9069 9070 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9071 return notifier_to_errno(rc); 9072 } 9073 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9074 9075 /** 9076 * dev_set_mac_address - Change Media Access Control Address 9077 * @dev: device 9078 * @sa: new address 9079 * @extack: netlink extended ack 9080 * 9081 * Change the hardware (MAC) address of the device 9082 */ 9083 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9084 struct netlink_ext_ack *extack) 9085 { 9086 const struct net_device_ops *ops = dev->netdev_ops; 9087 int err; 9088 9089 if (!ops->ndo_set_mac_address) 9090 return -EOPNOTSUPP; 9091 if (sa->sa_family != dev->type) 9092 return -EINVAL; 9093 if (!netif_device_present(dev)) 9094 return -ENODEV; 9095 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9096 if (err) 9097 return err; 9098 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9099 err = ops->ndo_set_mac_address(dev, sa); 9100 if (err) 9101 return err; 9102 } 9103 dev->addr_assign_type = NET_ADDR_SET; 9104 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9105 add_device_randomness(dev->dev_addr, dev->addr_len); 9106 return 0; 9107 } 9108 EXPORT_SYMBOL(dev_set_mac_address); 9109 9110 DECLARE_RWSEM(dev_addr_sem); 9111 9112 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9113 struct netlink_ext_ack *extack) 9114 { 9115 int ret; 9116 9117 down_write(&dev_addr_sem); 9118 ret = dev_set_mac_address(dev, sa, extack); 9119 up_write(&dev_addr_sem); 9120 return ret; 9121 } 9122 EXPORT_SYMBOL(dev_set_mac_address_user); 9123 9124 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9125 { 9126 size_t size = sizeof(sa->sa_data_min); 9127 struct net_device *dev; 9128 int ret = 0; 9129 9130 down_read(&dev_addr_sem); 9131 rcu_read_lock(); 9132 9133 dev = dev_get_by_name_rcu(net, dev_name); 9134 if (!dev) { 9135 ret = -ENODEV; 9136 goto unlock; 9137 } 9138 if (!dev->addr_len) 9139 memset(sa->sa_data, 0, size); 9140 else 9141 memcpy(sa->sa_data, dev->dev_addr, 9142 min_t(size_t, size, dev->addr_len)); 9143 sa->sa_family = dev->type; 9144 9145 unlock: 9146 rcu_read_unlock(); 9147 up_read(&dev_addr_sem); 9148 return ret; 9149 } 9150 EXPORT_SYMBOL(dev_get_mac_address); 9151 9152 /** 9153 * dev_change_carrier - Change device carrier 9154 * @dev: device 9155 * @new_carrier: new value 9156 * 9157 * Change device carrier 9158 */ 9159 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9160 { 9161 const struct net_device_ops *ops = dev->netdev_ops; 9162 9163 if (!ops->ndo_change_carrier) 9164 return -EOPNOTSUPP; 9165 if (!netif_device_present(dev)) 9166 return -ENODEV; 9167 return ops->ndo_change_carrier(dev, new_carrier); 9168 } 9169 9170 /** 9171 * dev_get_phys_port_id - Get device physical port ID 9172 * @dev: device 9173 * @ppid: port ID 9174 * 9175 * Get device physical port ID 9176 */ 9177 int dev_get_phys_port_id(struct net_device *dev, 9178 struct netdev_phys_item_id *ppid) 9179 { 9180 const struct net_device_ops *ops = dev->netdev_ops; 9181 9182 if (!ops->ndo_get_phys_port_id) 9183 return -EOPNOTSUPP; 9184 return ops->ndo_get_phys_port_id(dev, ppid); 9185 } 9186 9187 /** 9188 * dev_get_phys_port_name - Get device physical port name 9189 * @dev: device 9190 * @name: port name 9191 * @len: limit of bytes to copy to name 9192 * 9193 * Get device physical port name 9194 */ 9195 int dev_get_phys_port_name(struct net_device *dev, 9196 char *name, size_t len) 9197 { 9198 const struct net_device_ops *ops = dev->netdev_ops; 9199 int err; 9200 9201 if (ops->ndo_get_phys_port_name) { 9202 err = ops->ndo_get_phys_port_name(dev, name, len); 9203 if (err != -EOPNOTSUPP) 9204 return err; 9205 } 9206 return devlink_compat_phys_port_name_get(dev, name, len); 9207 } 9208 9209 /** 9210 * dev_get_port_parent_id - Get the device's port parent identifier 9211 * @dev: network device 9212 * @ppid: pointer to a storage for the port's parent identifier 9213 * @recurse: allow/disallow recursion to lower devices 9214 * 9215 * Get the devices's port parent identifier 9216 */ 9217 int dev_get_port_parent_id(struct net_device *dev, 9218 struct netdev_phys_item_id *ppid, 9219 bool recurse) 9220 { 9221 const struct net_device_ops *ops = dev->netdev_ops; 9222 struct netdev_phys_item_id first = { }; 9223 struct net_device *lower_dev; 9224 struct list_head *iter; 9225 int err; 9226 9227 if (ops->ndo_get_port_parent_id) { 9228 err = ops->ndo_get_port_parent_id(dev, ppid); 9229 if (err != -EOPNOTSUPP) 9230 return err; 9231 } 9232 9233 err = devlink_compat_switch_id_get(dev, ppid); 9234 if (!recurse || err != -EOPNOTSUPP) 9235 return err; 9236 9237 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9238 err = dev_get_port_parent_id(lower_dev, ppid, true); 9239 if (err) 9240 break; 9241 if (!first.id_len) 9242 first = *ppid; 9243 else if (memcmp(&first, ppid, sizeof(*ppid))) 9244 return -EOPNOTSUPP; 9245 } 9246 9247 return err; 9248 } 9249 EXPORT_SYMBOL(dev_get_port_parent_id); 9250 9251 /** 9252 * netdev_port_same_parent_id - Indicate if two network devices have 9253 * the same port parent identifier 9254 * @a: first network device 9255 * @b: second network device 9256 */ 9257 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9258 { 9259 struct netdev_phys_item_id a_id = { }; 9260 struct netdev_phys_item_id b_id = { }; 9261 9262 if (dev_get_port_parent_id(a, &a_id, true) || 9263 dev_get_port_parent_id(b, &b_id, true)) 9264 return false; 9265 9266 return netdev_phys_item_id_same(&a_id, &b_id); 9267 } 9268 EXPORT_SYMBOL(netdev_port_same_parent_id); 9269 9270 /** 9271 * dev_change_proto_down - set carrier according to proto_down. 9272 * 9273 * @dev: device 9274 * @proto_down: new value 9275 */ 9276 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9277 { 9278 if (!dev->change_proto_down) 9279 return -EOPNOTSUPP; 9280 if (!netif_device_present(dev)) 9281 return -ENODEV; 9282 if (proto_down) 9283 netif_carrier_off(dev); 9284 else 9285 netif_carrier_on(dev); 9286 WRITE_ONCE(dev->proto_down, proto_down); 9287 return 0; 9288 } 9289 9290 /** 9291 * dev_change_proto_down_reason - proto down reason 9292 * 9293 * @dev: device 9294 * @mask: proto down mask 9295 * @value: proto down value 9296 */ 9297 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9298 u32 value) 9299 { 9300 u32 proto_down_reason; 9301 int b; 9302 9303 if (!mask) { 9304 proto_down_reason = value; 9305 } else { 9306 proto_down_reason = dev->proto_down_reason; 9307 for_each_set_bit(b, &mask, 32) { 9308 if (value & (1 << b)) 9309 proto_down_reason |= BIT(b); 9310 else 9311 proto_down_reason &= ~BIT(b); 9312 } 9313 } 9314 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9315 } 9316 9317 struct bpf_xdp_link { 9318 struct bpf_link link; 9319 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9320 int flags; 9321 }; 9322 9323 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9324 { 9325 if (flags & XDP_FLAGS_HW_MODE) 9326 return XDP_MODE_HW; 9327 if (flags & XDP_FLAGS_DRV_MODE) 9328 return XDP_MODE_DRV; 9329 if (flags & XDP_FLAGS_SKB_MODE) 9330 return XDP_MODE_SKB; 9331 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9332 } 9333 9334 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9335 { 9336 switch (mode) { 9337 case XDP_MODE_SKB: 9338 return generic_xdp_install; 9339 case XDP_MODE_DRV: 9340 case XDP_MODE_HW: 9341 return dev->netdev_ops->ndo_bpf; 9342 default: 9343 return NULL; 9344 } 9345 } 9346 9347 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9348 enum bpf_xdp_mode mode) 9349 { 9350 return dev->xdp_state[mode].link; 9351 } 9352 9353 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9354 enum bpf_xdp_mode mode) 9355 { 9356 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9357 9358 if (link) 9359 return link->link.prog; 9360 return dev->xdp_state[mode].prog; 9361 } 9362 9363 u8 dev_xdp_prog_count(struct net_device *dev) 9364 { 9365 u8 count = 0; 9366 int i; 9367 9368 for (i = 0; i < __MAX_XDP_MODE; i++) 9369 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9370 count++; 9371 return count; 9372 } 9373 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9374 9375 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9376 { 9377 if (!dev->netdev_ops->ndo_bpf) 9378 return -EOPNOTSUPP; 9379 9380 if (dev_get_min_mp_channel_count(dev)) { 9381 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 9382 return -EBUSY; 9383 } 9384 9385 return dev->netdev_ops->ndo_bpf(dev, bpf); 9386 } 9387 EXPORT_SYMBOL_GPL(dev_xdp_propagate); 9388 9389 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9390 { 9391 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9392 9393 return prog ? prog->aux->id : 0; 9394 } 9395 9396 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9397 struct bpf_xdp_link *link) 9398 { 9399 dev->xdp_state[mode].link = link; 9400 dev->xdp_state[mode].prog = NULL; 9401 } 9402 9403 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9404 struct bpf_prog *prog) 9405 { 9406 dev->xdp_state[mode].link = NULL; 9407 dev->xdp_state[mode].prog = prog; 9408 } 9409 9410 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9411 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9412 u32 flags, struct bpf_prog *prog) 9413 { 9414 struct netdev_bpf xdp; 9415 int err; 9416 9417 if (dev_get_min_mp_channel_count(dev)) { 9418 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 9419 return -EBUSY; 9420 } 9421 9422 memset(&xdp, 0, sizeof(xdp)); 9423 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9424 xdp.extack = extack; 9425 xdp.flags = flags; 9426 xdp.prog = prog; 9427 9428 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9429 * "moved" into driver), so they don't increment it on their own, but 9430 * they do decrement refcnt when program is detached or replaced. 9431 * Given net_device also owns link/prog, we need to bump refcnt here 9432 * to prevent drivers from underflowing it. 9433 */ 9434 if (prog) 9435 bpf_prog_inc(prog); 9436 err = bpf_op(dev, &xdp); 9437 if (err) { 9438 if (prog) 9439 bpf_prog_put(prog); 9440 return err; 9441 } 9442 9443 if (mode != XDP_MODE_HW) 9444 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9445 9446 return 0; 9447 } 9448 9449 static void dev_xdp_uninstall(struct net_device *dev) 9450 { 9451 struct bpf_xdp_link *link; 9452 struct bpf_prog *prog; 9453 enum bpf_xdp_mode mode; 9454 bpf_op_t bpf_op; 9455 9456 ASSERT_RTNL(); 9457 9458 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9459 prog = dev_xdp_prog(dev, mode); 9460 if (!prog) 9461 continue; 9462 9463 bpf_op = dev_xdp_bpf_op(dev, mode); 9464 if (!bpf_op) 9465 continue; 9466 9467 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9468 9469 /* auto-detach link from net device */ 9470 link = dev_xdp_link(dev, mode); 9471 if (link) 9472 link->dev = NULL; 9473 else 9474 bpf_prog_put(prog); 9475 9476 dev_xdp_set_link(dev, mode, NULL); 9477 } 9478 } 9479 9480 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9481 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9482 struct bpf_prog *old_prog, u32 flags) 9483 { 9484 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9485 struct bpf_prog *cur_prog; 9486 struct net_device *upper; 9487 struct list_head *iter; 9488 enum bpf_xdp_mode mode; 9489 bpf_op_t bpf_op; 9490 int err; 9491 9492 ASSERT_RTNL(); 9493 9494 /* either link or prog attachment, never both */ 9495 if (link && (new_prog || old_prog)) 9496 return -EINVAL; 9497 /* link supports only XDP mode flags */ 9498 if (link && (flags & ~XDP_FLAGS_MODES)) { 9499 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9500 return -EINVAL; 9501 } 9502 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9503 if (num_modes > 1) { 9504 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9505 return -EINVAL; 9506 } 9507 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9508 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9509 NL_SET_ERR_MSG(extack, 9510 "More than one program loaded, unset mode is ambiguous"); 9511 return -EINVAL; 9512 } 9513 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9514 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9515 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9516 return -EINVAL; 9517 } 9518 9519 mode = dev_xdp_mode(dev, flags); 9520 /* can't replace attached link */ 9521 if (dev_xdp_link(dev, mode)) { 9522 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9523 return -EBUSY; 9524 } 9525 9526 /* don't allow if an upper device already has a program */ 9527 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9528 if (dev_xdp_prog_count(upper) > 0) { 9529 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9530 return -EEXIST; 9531 } 9532 } 9533 9534 cur_prog = dev_xdp_prog(dev, mode); 9535 /* can't replace attached prog with link */ 9536 if (link && cur_prog) { 9537 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9538 return -EBUSY; 9539 } 9540 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9541 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9542 return -EEXIST; 9543 } 9544 9545 /* put effective new program into new_prog */ 9546 if (link) 9547 new_prog = link->link.prog; 9548 9549 if (new_prog) { 9550 bool offload = mode == XDP_MODE_HW; 9551 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9552 ? XDP_MODE_DRV : XDP_MODE_SKB; 9553 9554 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9555 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9556 return -EBUSY; 9557 } 9558 if (!offload && dev_xdp_prog(dev, other_mode)) { 9559 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9560 return -EEXIST; 9561 } 9562 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9563 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9564 return -EINVAL; 9565 } 9566 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9567 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9568 return -EINVAL; 9569 } 9570 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9571 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9572 return -EINVAL; 9573 } 9574 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9575 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9576 return -EINVAL; 9577 } 9578 } 9579 9580 /* don't call drivers if the effective program didn't change */ 9581 if (new_prog != cur_prog) { 9582 bpf_op = dev_xdp_bpf_op(dev, mode); 9583 if (!bpf_op) { 9584 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9585 return -EOPNOTSUPP; 9586 } 9587 9588 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9589 if (err) 9590 return err; 9591 } 9592 9593 if (link) 9594 dev_xdp_set_link(dev, mode, link); 9595 else 9596 dev_xdp_set_prog(dev, mode, new_prog); 9597 if (cur_prog) 9598 bpf_prog_put(cur_prog); 9599 9600 return 0; 9601 } 9602 9603 static int dev_xdp_attach_link(struct net_device *dev, 9604 struct netlink_ext_ack *extack, 9605 struct bpf_xdp_link *link) 9606 { 9607 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9608 } 9609 9610 static int dev_xdp_detach_link(struct net_device *dev, 9611 struct netlink_ext_ack *extack, 9612 struct bpf_xdp_link *link) 9613 { 9614 enum bpf_xdp_mode mode; 9615 bpf_op_t bpf_op; 9616 9617 ASSERT_RTNL(); 9618 9619 mode = dev_xdp_mode(dev, link->flags); 9620 if (dev_xdp_link(dev, mode) != link) 9621 return -EINVAL; 9622 9623 bpf_op = dev_xdp_bpf_op(dev, mode); 9624 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9625 dev_xdp_set_link(dev, mode, NULL); 9626 return 0; 9627 } 9628 9629 static void bpf_xdp_link_release(struct bpf_link *link) 9630 { 9631 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9632 9633 rtnl_lock(); 9634 9635 /* if racing with net_device's tear down, xdp_link->dev might be 9636 * already NULL, in which case link was already auto-detached 9637 */ 9638 if (xdp_link->dev) { 9639 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9640 xdp_link->dev = NULL; 9641 } 9642 9643 rtnl_unlock(); 9644 } 9645 9646 static int bpf_xdp_link_detach(struct bpf_link *link) 9647 { 9648 bpf_xdp_link_release(link); 9649 return 0; 9650 } 9651 9652 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9653 { 9654 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9655 9656 kfree(xdp_link); 9657 } 9658 9659 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9660 struct seq_file *seq) 9661 { 9662 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9663 u32 ifindex = 0; 9664 9665 rtnl_lock(); 9666 if (xdp_link->dev) 9667 ifindex = xdp_link->dev->ifindex; 9668 rtnl_unlock(); 9669 9670 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9671 } 9672 9673 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9674 struct bpf_link_info *info) 9675 { 9676 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9677 u32 ifindex = 0; 9678 9679 rtnl_lock(); 9680 if (xdp_link->dev) 9681 ifindex = xdp_link->dev->ifindex; 9682 rtnl_unlock(); 9683 9684 info->xdp.ifindex = ifindex; 9685 return 0; 9686 } 9687 9688 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9689 struct bpf_prog *old_prog) 9690 { 9691 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9692 enum bpf_xdp_mode mode; 9693 bpf_op_t bpf_op; 9694 int err = 0; 9695 9696 rtnl_lock(); 9697 9698 /* link might have been auto-released already, so fail */ 9699 if (!xdp_link->dev) { 9700 err = -ENOLINK; 9701 goto out_unlock; 9702 } 9703 9704 if (old_prog && link->prog != old_prog) { 9705 err = -EPERM; 9706 goto out_unlock; 9707 } 9708 old_prog = link->prog; 9709 if (old_prog->type != new_prog->type || 9710 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9711 err = -EINVAL; 9712 goto out_unlock; 9713 } 9714 9715 if (old_prog == new_prog) { 9716 /* no-op, don't disturb drivers */ 9717 bpf_prog_put(new_prog); 9718 goto out_unlock; 9719 } 9720 9721 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9722 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9723 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9724 xdp_link->flags, new_prog); 9725 if (err) 9726 goto out_unlock; 9727 9728 old_prog = xchg(&link->prog, new_prog); 9729 bpf_prog_put(old_prog); 9730 9731 out_unlock: 9732 rtnl_unlock(); 9733 return err; 9734 } 9735 9736 static const struct bpf_link_ops bpf_xdp_link_lops = { 9737 .release = bpf_xdp_link_release, 9738 .dealloc = bpf_xdp_link_dealloc, 9739 .detach = bpf_xdp_link_detach, 9740 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9741 .fill_link_info = bpf_xdp_link_fill_link_info, 9742 .update_prog = bpf_xdp_link_update, 9743 }; 9744 9745 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9746 { 9747 struct net *net = current->nsproxy->net_ns; 9748 struct bpf_link_primer link_primer; 9749 struct netlink_ext_ack extack = {}; 9750 struct bpf_xdp_link *link; 9751 struct net_device *dev; 9752 int err, fd; 9753 9754 rtnl_lock(); 9755 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9756 if (!dev) { 9757 rtnl_unlock(); 9758 return -EINVAL; 9759 } 9760 9761 link = kzalloc(sizeof(*link), GFP_USER); 9762 if (!link) { 9763 err = -ENOMEM; 9764 goto unlock; 9765 } 9766 9767 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9768 link->dev = dev; 9769 link->flags = attr->link_create.flags; 9770 9771 err = bpf_link_prime(&link->link, &link_primer); 9772 if (err) { 9773 kfree(link); 9774 goto unlock; 9775 } 9776 9777 err = dev_xdp_attach_link(dev, &extack, link); 9778 rtnl_unlock(); 9779 9780 if (err) { 9781 link->dev = NULL; 9782 bpf_link_cleanup(&link_primer); 9783 trace_bpf_xdp_link_attach_failed(extack._msg); 9784 goto out_put_dev; 9785 } 9786 9787 fd = bpf_link_settle(&link_primer); 9788 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9789 dev_put(dev); 9790 return fd; 9791 9792 unlock: 9793 rtnl_unlock(); 9794 9795 out_put_dev: 9796 dev_put(dev); 9797 return err; 9798 } 9799 9800 /** 9801 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9802 * @dev: device 9803 * @extack: netlink extended ack 9804 * @fd: new program fd or negative value to clear 9805 * @expected_fd: old program fd that userspace expects to replace or clear 9806 * @flags: xdp-related flags 9807 * 9808 * Set or clear a bpf program for a device 9809 */ 9810 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9811 int fd, int expected_fd, u32 flags) 9812 { 9813 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9814 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9815 int err; 9816 9817 ASSERT_RTNL(); 9818 9819 if (fd >= 0) { 9820 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9821 mode != XDP_MODE_SKB); 9822 if (IS_ERR(new_prog)) 9823 return PTR_ERR(new_prog); 9824 } 9825 9826 if (expected_fd >= 0) { 9827 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9828 mode != XDP_MODE_SKB); 9829 if (IS_ERR(old_prog)) { 9830 err = PTR_ERR(old_prog); 9831 old_prog = NULL; 9832 goto err_out; 9833 } 9834 } 9835 9836 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9837 9838 err_out: 9839 if (err && new_prog) 9840 bpf_prog_put(new_prog); 9841 if (old_prog) 9842 bpf_prog_put(old_prog); 9843 return err; 9844 } 9845 9846 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 9847 { 9848 int i; 9849 9850 ASSERT_RTNL(); 9851 9852 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 9853 if (dev->_rx[i].mp_params.mp_priv) 9854 /* The channel count is the idx plus 1. */ 9855 return i + 1; 9856 9857 return 0; 9858 } 9859 9860 /** 9861 * dev_index_reserve() - allocate an ifindex in a namespace 9862 * @net: the applicable net namespace 9863 * @ifindex: requested ifindex, pass %0 to get one allocated 9864 * 9865 * Allocate a ifindex for a new device. Caller must either use the ifindex 9866 * to store the device (via list_netdevice()) or call dev_index_release() 9867 * to give the index up. 9868 * 9869 * Return: a suitable unique value for a new device interface number or -errno. 9870 */ 9871 static int dev_index_reserve(struct net *net, u32 ifindex) 9872 { 9873 int err; 9874 9875 if (ifindex > INT_MAX) { 9876 DEBUG_NET_WARN_ON_ONCE(1); 9877 return -EINVAL; 9878 } 9879 9880 if (!ifindex) 9881 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9882 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9883 else 9884 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9885 if (err < 0) 9886 return err; 9887 9888 return ifindex; 9889 } 9890 9891 static void dev_index_release(struct net *net, int ifindex) 9892 { 9893 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9894 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9895 } 9896 9897 /* Delayed registration/unregisteration */ 9898 LIST_HEAD(net_todo_list); 9899 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9900 atomic_t dev_unreg_count = ATOMIC_INIT(0); 9901 9902 static void net_set_todo(struct net_device *dev) 9903 { 9904 list_add_tail(&dev->todo_list, &net_todo_list); 9905 } 9906 9907 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9908 struct net_device *upper, netdev_features_t features) 9909 { 9910 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9911 netdev_features_t feature; 9912 int feature_bit; 9913 9914 for_each_netdev_feature(upper_disables, feature_bit) { 9915 feature = __NETIF_F_BIT(feature_bit); 9916 if (!(upper->wanted_features & feature) 9917 && (features & feature)) { 9918 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9919 &feature, upper->name); 9920 features &= ~feature; 9921 } 9922 } 9923 9924 return features; 9925 } 9926 9927 static void netdev_sync_lower_features(struct net_device *upper, 9928 struct net_device *lower, netdev_features_t features) 9929 { 9930 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9931 netdev_features_t feature; 9932 int feature_bit; 9933 9934 for_each_netdev_feature(upper_disables, feature_bit) { 9935 feature = __NETIF_F_BIT(feature_bit); 9936 if (!(features & feature) && (lower->features & feature)) { 9937 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9938 &feature, lower->name); 9939 lower->wanted_features &= ~feature; 9940 __netdev_update_features(lower); 9941 9942 if (unlikely(lower->features & feature)) 9943 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9944 &feature, lower->name); 9945 else 9946 netdev_features_change(lower); 9947 } 9948 } 9949 } 9950 9951 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 9952 { 9953 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 9954 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 9955 bool hw_csum = features & NETIF_F_HW_CSUM; 9956 9957 return ip_csum || hw_csum; 9958 } 9959 9960 static netdev_features_t netdev_fix_features(struct net_device *dev, 9961 netdev_features_t features) 9962 { 9963 /* Fix illegal checksum combinations */ 9964 if ((features & NETIF_F_HW_CSUM) && 9965 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9966 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9967 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9968 } 9969 9970 /* TSO requires that SG is present as well. */ 9971 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9972 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9973 features &= ~NETIF_F_ALL_TSO; 9974 } 9975 9976 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9977 !(features & NETIF_F_IP_CSUM)) { 9978 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9979 features &= ~NETIF_F_TSO; 9980 features &= ~NETIF_F_TSO_ECN; 9981 } 9982 9983 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9984 !(features & NETIF_F_IPV6_CSUM)) { 9985 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9986 features &= ~NETIF_F_TSO6; 9987 } 9988 9989 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9990 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9991 features &= ~NETIF_F_TSO_MANGLEID; 9992 9993 /* TSO ECN requires that TSO is present as well. */ 9994 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9995 features &= ~NETIF_F_TSO_ECN; 9996 9997 /* Software GSO depends on SG. */ 9998 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9999 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10000 features &= ~NETIF_F_GSO; 10001 } 10002 10003 /* GSO partial features require GSO partial be set */ 10004 if ((features & dev->gso_partial_features) && 10005 !(features & NETIF_F_GSO_PARTIAL)) { 10006 netdev_dbg(dev, 10007 "Dropping partially supported GSO features since no GSO partial.\n"); 10008 features &= ~dev->gso_partial_features; 10009 } 10010 10011 if (!(features & NETIF_F_RXCSUM)) { 10012 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10013 * successfully merged by hardware must also have the 10014 * checksum verified by hardware. If the user does not 10015 * want to enable RXCSUM, logically, we should disable GRO_HW. 10016 */ 10017 if (features & NETIF_F_GRO_HW) { 10018 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10019 features &= ~NETIF_F_GRO_HW; 10020 } 10021 } 10022 10023 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10024 if (features & NETIF_F_RXFCS) { 10025 if (features & NETIF_F_LRO) { 10026 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10027 features &= ~NETIF_F_LRO; 10028 } 10029 10030 if (features & NETIF_F_GRO_HW) { 10031 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10032 features &= ~NETIF_F_GRO_HW; 10033 } 10034 } 10035 10036 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10037 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10038 features &= ~NETIF_F_LRO; 10039 } 10040 10041 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10042 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10043 features &= ~NETIF_F_HW_TLS_TX; 10044 } 10045 10046 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10047 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10048 features &= ~NETIF_F_HW_TLS_RX; 10049 } 10050 10051 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10052 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10053 features &= ~NETIF_F_GSO_UDP_L4; 10054 } 10055 10056 return features; 10057 } 10058 10059 int __netdev_update_features(struct net_device *dev) 10060 { 10061 struct net_device *upper, *lower; 10062 netdev_features_t features; 10063 struct list_head *iter; 10064 int err = -1; 10065 10066 ASSERT_RTNL(); 10067 10068 features = netdev_get_wanted_features(dev); 10069 10070 if (dev->netdev_ops->ndo_fix_features) 10071 features = dev->netdev_ops->ndo_fix_features(dev, features); 10072 10073 /* driver might be less strict about feature dependencies */ 10074 features = netdev_fix_features(dev, features); 10075 10076 /* some features can't be enabled if they're off on an upper device */ 10077 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10078 features = netdev_sync_upper_features(dev, upper, features); 10079 10080 if (dev->features == features) 10081 goto sync_lower; 10082 10083 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10084 &dev->features, &features); 10085 10086 if (dev->netdev_ops->ndo_set_features) 10087 err = dev->netdev_ops->ndo_set_features(dev, features); 10088 else 10089 err = 0; 10090 10091 if (unlikely(err < 0)) { 10092 netdev_err(dev, 10093 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10094 err, &features, &dev->features); 10095 /* return non-0 since some features might have changed and 10096 * it's better to fire a spurious notification than miss it 10097 */ 10098 return -1; 10099 } 10100 10101 sync_lower: 10102 /* some features must be disabled on lower devices when disabled 10103 * on an upper device (think: bonding master or bridge) 10104 */ 10105 netdev_for_each_lower_dev(dev, lower, iter) 10106 netdev_sync_lower_features(dev, lower, features); 10107 10108 if (!err) { 10109 netdev_features_t diff = features ^ dev->features; 10110 10111 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10112 /* udp_tunnel_{get,drop}_rx_info both need 10113 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10114 * device, or they won't do anything. 10115 * Thus we need to update dev->features 10116 * *before* calling udp_tunnel_get_rx_info, 10117 * but *after* calling udp_tunnel_drop_rx_info. 10118 */ 10119 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10120 dev->features = features; 10121 udp_tunnel_get_rx_info(dev); 10122 } else { 10123 udp_tunnel_drop_rx_info(dev); 10124 } 10125 } 10126 10127 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10128 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10129 dev->features = features; 10130 err |= vlan_get_rx_ctag_filter_info(dev); 10131 } else { 10132 vlan_drop_rx_ctag_filter_info(dev); 10133 } 10134 } 10135 10136 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10137 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10138 dev->features = features; 10139 err |= vlan_get_rx_stag_filter_info(dev); 10140 } else { 10141 vlan_drop_rx_stag_filter_info(dev); 10142 } 10143 } 10144 10145 dev->features = features; 10146 } 10147 10148 return err < 0 ? 0 : 1; 10149 } 10150 10151 /** 10152 * netdev_update_features - recalculate device features 10153 * @dev: the device to check 10154 * 10155 * Recalculate dev->features set and send notifications if it 10156 * has changed. Should be called after driver or hardware dependent 10157 * conditions might have changed that influence the features. 10158 */ 10159 void netdev_update_features(struct net_device *dev) 10160 { 10161 if (__netdev_update_features(dev)) 10162 netdev_features_change(dev); 10163 } 10164 EXPORT_SYMBOL(netdev_update_features); 10165 10166 /** 10167 * netdev_change_features - recalculate device features 10168 * @dev: the device to check 10169 * 10170 * Recalculate dev->features set and send notifications even 10171 * if they have not changed. Should be called instead of 10172 * netdev_update_features() if also dev->vlan_features might 10173 * have changed to allow the changes to be propagated to stacked 10174 * VLAN devices. 10175 */ 10176 void netdev_change_features(struct net_device *dev) 10177 { 10178 __netdev_update_features(dev); 10179 netdev_features_change(dev); 10180 } 10181 EXPORT_SYMBOL(netdev_change_features); 10182 10183 /** 10184 * netif_stacked_transfer_operstate - transfer operstate 10185 * @rootdev: the root or lower level device to transfer state from 10186 * @dev: the device to transfer operstate to 10187 * 10188 * Transfer operational state from root to device. This is normally 10189 * called when a stacking relationship exists between the root 10190 * device and the device(a leaf device). 10191 */ 10192 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10193 struct net_device *dev) 10194 { 10195 if (rootdev->operstate == IF_OPER_DORMANT) 10196 netif_dormant_on(dev); 10197 else 10198 netif_dormant_off(dev); 10199 10200 if (rootdev->operstate == IF_OPER_TESTING) 10201 netif_testing_on(dev); 10202 else 10203 netif_testing_off(dev); 10204 10205 if (netif_carrier_ok(rootdev)) 10206 netif_carrier_on(dev); 10207 else 10208 netif_carrier_off(dev); 10209 } 10210 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10211 10212 static int netif_alloc_rx_queues(struct net_device *dev) 10213 { 10214 unsigned int i, count = dev->num_rx_queues; 10215 struct netdev_rx_queue *rx; 10216 size_t sz = count * sizeof(*rx); 10217 int err = 0; 10218 10219 BUG_ON(count < 1); 10220 10221 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10222 if (!rx) 10223 return -ENOMEM; 10224 10225 dev->_rx = rx; 10226 10227 for (i = 0; i < count; i++) { 10228 rx[i].dev = dev; 10229 10230 /* XDP RX-queue setup */ 10231 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10232 if (err < 0) 10233 goto err_rxq_info; 10234 } 10235 return 0; 10236 10237 err_rxq_info: 10238 /* Rollback successful reg's and free other resources */ 10239 while (i--) 10240 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10241 kvfree(dev->_rx); 10242 dev->_rx = NULL; 10243 return err; 10244 } 10245 10246 static void netif_free_rx_queues(struct net_device *dev) 10247 { 10248 unsigned int i, count = dev->num_rx_queues; 10249 10250 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10251 if (!dev->_rx) 10252 return; 10253 10254 for (i = 0; i < count; i++) 10255 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10256 10257 kvfree(dev->_rx); 10258 } 10259 10260 static void netdev_init_one_queue(struct net_device *dev, 10261 struct netdev_queue *queue, void *_unused) 10262 { 10263 /* Initialize queue lock */ 10264 spin_lock_init(&queue->_xmit_lock); 10265 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10266 queue->xmit_lock_owner = -1; 10267 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10268 queue->dev = dev; 10269 #ifdef CONFIG_BQL 10270 dql_init(&queue->dql, HZ); 10271 #endif 10272 } 10273 10274 static void netif_free_tx_queues(struct net_device *dev) 10275 { 10276 kvfree(dev->_tx); 10277 } 10278 10279 static int netif_alloc_netdev_queues(struct net_device *dev) 10280 { 10281 unsigned int count = dev->num_tx_queues; 10282 struct netdev_queue *tx; 10283 size_t sz = count * sizeof(*tx); 10284 10285 if (count < 1 || count > 0xffff) 10286 return -EINVAL; 10287 10288 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10289 if (!tx) 10290 return -ENOMEM; 10291 10292 dev->_tx = tx; 10293 10294 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10295 spin_lock_init(&dev->tx_global_lock); 10296 10297 return 0; 10298 } 10299 10300 void netif_tx_stop_all_queues(struct net_device *dev) 10301 { 10302 unsigned int i; 10303 10304 for (i = 0; i < dev->num_tx_queues; i++) { 10305 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10306 10307 netif_tx_stop_queue(txq); 10308 } 10309 } 10310 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10311 10312 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10313 { 10314 void __percpu *v; 10315 10316 /* Drivers implementing ndo_get_peer_dev must support tstat 10317 * accounting, so that skb_do_redirect() can bump the dev's 10318 * RX stats upon network namespace switch. 10319 */ 10320 if (dev->netdev_ops->ndo_get_peer_dev && 10321 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10322 return -EOPNOTSUPP; 10323 10324 switch (dev->pcpu_stat_type) { 10325 case NETDEV_PCPU_STAT_NONE: 10326 return 0; 10327 case NETDEV_PCPU_STAT_LSTATS: 10328 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10329 break; 10330 case NETDEV_PCPU_STAT_TSTATS: 10331 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10332 break; 10333 case NETDEV_PCPU_STAT_DSTATS: 10334 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10335 break; 10336 default: 10337 return -EINVAL; 10338 } 10339 10340 return v ? 0 : -ENOMEM; 10341 } 10342 10343 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10344 { 10345 switch (dev->pcpu_stat_type) { 10346 case NETDEV_PCPU_STAT_NONE: 10347 return; 10348 case NETDEV_PCPU_STAT_LSTATS: 10349 free_percpu(dev->lstats); 10350 break; 10351 case NETDEV_PCPU_STAT_TSTATS: 10352 free_percpu(dev->tstats); 10353 break; 10354 case NETDEV_PCPU_STAT_DSTATS: 10355 free_percpu(dev->dstats); 10356 break; 10357 } 10358 } 10359 10360 static void netdev_free_phy_link_topology(struct net_device *dev) 10361 { 10362 struct phy_link_topology *topo = dev->link_topo; 10363 10364 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 10365 xa_destroy(&topo->phys); 10366 kfree(topo); 10367 dev->link_topo = NULL; 10368 } 10369 } 10370 10371 /** 10372 * register_netdevice() - register a network device 10373 * @dev: device to register 10374 * 10375 * Take a prepared network device structure and make it externally accessible. 10376 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10377 * Callers must hold the rtnl lock - you may want register_netdev() 10378 * instead of this. 10379 */ 10380 int register_netdevice(struct net_device *dev) 10381 { 10382 int ret; 10383 struct net *net = dev_net(dev); 10384 10385 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10386 NETDEV_FEATURE_COUNT); 10387 BUG_ON(dev_boot_phase); 10388 ASSERT_RTNL(); 10389 10390 might_sleep(); 10391 10392 /* When net_device's are persistent, this will be fatal. */ 10393 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10394 BUG_ON(!net); 10395 10396 ret = ethtool_check_ops(dev->ethtool_ops); 10397 if (ret) 10398 return ret; 10399 10400 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 10401 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 10402 mutex_init(&dev->ethtool->rss_lock); 10403 10404 spin_lock_init(&dev->addr_list_lock); 10405 netdev_set_addr_lockdep_class(dev); 10406 10407 ret = dev_get_valid_name(net, dev, dev->name); 10408 if (ret < 0) 10409 goto out; 10410 10411 ret = -ENOMEM; 10412 dev->name_node = netdev_name_node_head_alloc(dev); 10413 if (!dev->name_node) 10414 goto out; 10415 10416 /* Init, if this function is available */ 10417 if (dev->netdev_ops->ndo_init) { 10418 ret = dev->netdev_ops->ndo_init(dev); 10419 if (ret) { 10420 if (ret > 0) 10421 ret = -EIO; 10422 goto err_free_name; 10423 } 10424 } 10425 10426 if (((dev->hw_features | dev->features) & 10427 NETIF_F_HW_VLAN_CTAG_FILTER) && 10428 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10429 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10430 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10431 ret = -EINVAL; 10432 goto err_uninit; 10433 } 10434 10435 ret = netdev_do_alloc_pcpu_stats(dev); 10436 if (ret) 10437 goto err_uninit; 10438 10439 ret = dev_index_reserve(net, dev->ifindex); 10440 if (ret < 0) 10441 goto err_free_pcpu; 10442 dev->ifindex = ret; 10443 10444 /* Transfer changeable features to wanted_features and enable 10445 * software offloads (GSO and GRO). 10446 */ 10447 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10448 dev->features |= NETIF_F_SOFT_FEATURES; 10449 10450 if (dev->udp_tunnel_nic_info) { 10451 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10452 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10453 } 10454 10455 dev->wanted_features = dev->features & dev->hw_features; 10456 10457 if (!(dev->flags & IFF_LOOPBACK)) 10458 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10459 10460 /* If IPv4 TCP segmentation offload is supported we should also 10461 * allow the device to enable segmenting the frame with the option 10462 * of ignoring a static IP ID value. This doesn't enable the 10463 * feature itself but allows the user to enable it later. 10464 */ 10465 if (dev->hw_features & NETIF_F_TSO) 10466 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10467 if (dev->vlan_features & NETIF_F_TSO) 10468 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10469 if (dev->mpls_features & NETIF_F_TSO) 10470 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10471 if (dev->hw_enc_features & NETIF_F_TSO) 10472 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10473 10474 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10475 */ 10476 dev->vlan_features |= NETIF_F_HIGHDMA; 10477 10478 /* Make NETIF_F_SG inheritable to tunnel devices. 10479 */ 10480 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10481 10482 /* Make NETIF_F_SG inheritable to MPLS. 10483 */ 10484 dev->mpls_features |= NETIF_F_SG; 10485 10486 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10487 ret = notifier_to_errno(ret); 10488 if (ret) 10489 goto err_ifindex_release; 10490 10491 ret = netdev_register_kobject(dev); 10492 10493 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 10494 10495 if (ret) 10496 goto err_uninit_notify; 10497 10498 __netdev_update_features(dev); 10499 10500 /* 10501 * Default initial state at registry is that the 10502 * device is present. 10503 */ 10504 10505 set_bit(__LINK_STATE_PRESENT, &dev->state); 10506 10507 linkwatch_init_dev(dev); 10508 10509 dev_init_scheduler(dev); 10510 10511 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10512 list_netdevice(dev); 10513 10514 add_device_randomness(dev->dev_addr, dev->addr_len); 10515 10516 /* If the device has permanent device address, driver should 10517 * set dev_addr and also addr_assign_type should be set to 10518 * NET_ADDR_PERM (default value). 10519 */ 10520 if (dev->addr_assign_type == NET_ADDR_PERM) 10521 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10522 10523 /* Notify protocols, that a new device appeared. */ 10524 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10525 ret = notifier_to_errno(ret); 10526 if (ret) { 10527 /* Expect explicit free_netdev() on failure */ 10528 dev->needs_free_netdev = false; 10529 unregister_netdevice_queue(dev, NULL); 10530 goto out; 10531 } 10532 /* 10533 * Prevent userspace races by waiting until the network 10534 * device is fully setup before sending notifications. 10535 */ 10536 if (!dev->rtnl_link_ops || 10537 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10538 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10539 10540 out: 10541 return ret; 10542 10543 err_uninit_notify: 10544 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10545 err_ifindex_release: 10546 dev_index_release(net, dev->ifindex); 10547 err_free_pcpu: 10548 netdev_do_free_pcpu_stats(dev); 10549 err_uninit: 10550 if (dev->netdev_ops->ndo_uninit) 10551 dev->netdev_ops->ndo_uninit(dev); 10552 if (dev->priv_destructor) 10553 dev->priv_destructor(dev); 10554 err_free_name: 10555 netdev_name_node_free(dev->name_node); 10556 goto out; 10557 } 10558 EXPORT_SYMBOL(register_netdevice); 10559 10560 /* Initialize the core of a dummy net device. 10561 * This is useful if you are calling this function after alloc_netdev(), 10562 * since it does not memset the net_device fields. 10563 */ 10564 static void init_dummy_netdev_core(struct net_device *dev) 10565 { 10566 /* make sure we BUG if trying to hit standard 10567 * register/unregister code path 10568 */ 10569 dev->reg_state = NETREG_DUMMY; 10570 10571 /* NAPI wants this */ 10572 INIT_LIST_HEAD(&dev->napi_list); 10573 10574 /* a dummy interface is started by default */ 10575 set_bit(__LINK_STATE_PRESENT, &dev->state); 10576 set_bit(__LINK_STATE_START, &dev->state); 10577 10578 /* napi_busy_loop stats accounting wants this */ 10579 dev_net_set(dev, &init_net); 10580 10581 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10582 * because users of this 'device' dont need to change 10583 * its refcount. 10584 */ 10585 } 10586 10587 /** 10588 * init_dummy_netdev - init a dummy network device for NAPI 10589 * @dev: device to init 10590 * 10591 * This takes a network device structure and initializes the minimum 10592 * amount of fields so it can be used to schedule NAPI polls without 10593 * registering a full blown interface. This is to be used by drivers 10594 * that need to tie several hardware interfaces to a single NAPI 10595 * poll scheduler due to HW limitations. 10596 */ 10597 void init_dummy_netdev(struct net_device *dev) 10598 { 10599 /* Clear everything. Note we don't initialize spinlocks 10600 * as they aren't supposed to be taken by any of the 10601 * NAPI code and this dummy netdev is supposed to be 10602 * only ever used for NAPI polls 10603 */ 10604 memset(dev, 0, sizeof(struct net_device)); 10605 init_dummy_netdev_core(dev); 10606 } 10607 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10608 10609 /** 10610 * register_netdev - register a network device 10611 * @dev: device to register 10612 * 10613 * Take a completed network device structure and add it to the kernel 10614 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10615 * chain. 0 is returned on success. A negative errno code is returned 10616 * on a failure to set up the device, or if the name is a duplicate. 10617 * 10618 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10619 * and expands the device name if you passed a format string to 10620 * alloc_netdev. 10621 */ 10622 int register_netdev(struct net_device *dev) 10623 { 10624 int err; 10625 10626 if (rtnl_lock_killable()) 10627 return -EINTR; 10628 err = register_netdevice(dev); 10629 rtnl_unlock(); 10630 return err; 10631 } 10632 EXPORT_SYMBOL(register_netdev); 10633 10634 int netdev_refcnt_read(const struct net_device *dev) 10635 { 10636 #ifdef CONFIG_PCPU_DEV_REFCNT 10637 int i, refcnt = 0; 10638 10639 for_each_possible_cpu(i) 10640 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10641 return refcnt; 10642 #else 10643 return refcount_read(&dev->dev_refcnt); 10644 #endif 10645 } 10646 EXPORT_SYMBOL(netdev_refcnt_read); 10647 10648 int netdev_unregister_timeout_secs __read_mostly = 10; 10649 10650 #define WAIT_REFS_MIN_MSECS 1 10651 #define WAIT_REFS_MAX_MSECS 250 10652 /** 10653 * netdev_wait_allrefs_any - wait until all references are gone. 10654 * @list: list of net_devices to wait on 10655 * 10656 * This is called when unregistering network devices. 10657 * 10658 * Any protocol or device that holds a reference should register 10659 * for netdevice notification, and cleanup and put back the 10660 * reference if they receive an UNREGISTER event. 10661 * We can get stuck here if buggy protocols don't correctly 10662 * call dev_put. 10663 */ 10664 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10665 { 10666 unsigned long rebroadcast_time, warning_time; 10667 struct net_device *dev; 10668 int wait = 0; 10669 10670 rebroadcast_time = warning_time = jiffies; 10671 10672 list_for_each_entry(dev, list, todo_list) 10673 if (netdev_refcnt_read(dev) == 1) 10674 return dev; 10675 10676 while (true) { 10677 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10678 rtnl_lock(); 10679 10680 /* Rebroadcast unregister notification */ 10681 list_for_each_entry(dev, list, todo_list) 10682 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10683 10684 __rtnl_unlock(); 10685 rcu_barrier(); 10686 rtnl_lock(); 10687 10688 list_for_each_entry(dev, list, todo_list) 10689 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10690 &dev->state)) { 10691 /* We must not have linkwatch events 10692 * pending on unregister. If this 10693 * happens, we simply run the queue 10694 * unscheduled, resulting in a noop 10695 * for this device. 10696 */ 10697 linkwatch_run_queue(); 10698 break; 10699 } 10700 10701 __rtnl_unlock(); 10702 10703 rebroadcast_time = jiffies; 10704 } 10705 10706 rcu_barrier(); 10707 10708 if (!wait) { 10709 wait = WAIT_REFS_MIN_MSECS; 10710 } else { 10711 msleep(wait); 10712 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10713 } 10714 10715 list_for_each_entry(dev, list, todo_list) 10716 if (netdev_refcnt_read(dev) == 1) 10717 return dev; 10718 10719 if (time_after(jiffies, warning_time + 10720 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10721 list_for_each_entry(dev, list, todo_list) { 10722 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10723 dev->name, netdev_refcnt_read(dev)); 10724 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10725 } 10726 10727 warning_time = jiffies; 10728 } 10729 } 10730 } 10731 10732 /* The sequence is: 10733 * 10734 * rtnl_lock(); 10735 * ... 10736 * register_netdevice(x1); 10737 * register_netdevice(x2); 10738 * ... 10739 * unregister_netdevice(y1); 10740 * unregister_netdevice(y2); 10741 * ... 10742 * rtnl_unlock(); 10743 * free_netdev(y1); 10744 * free_netdev(y2); 10745 * 10746 * We are invoked by rtnl_unlock(). 10747 * This allows us to deal with problems: 10748 * 1) We can delete sysfs objects which invoke hotplug 10749 * without deadlocking with linkwatch via keventd. 10750 * 2) Since we run with the RTNL semaphore not held, we can sleep 10751 * safely in order to wait for the netdev refcnt to drop to zero. 10752 * 10753 * We must not return until all unregister events added during 10754 * the interval the lock was held have been completed. 10755 */ 10756 void netdev_run_todo(void) 10757 { 10758 struct net_device *dev, *tmp; 10759 struct list_head list; 10760 int cnt; 10761 #ifdef CONFIG_LOCKDEP 10762 struct list_head unlink_list; 10763 10764 list_replace_init(&net_unlink_list, &unlink_list); 10765 10766 while (!list_empty(&unlink_list)) { 10767 struct net_device *dev = list_first_entry(&unlink_list, 10768 struct net_device, 10769 unlink_list); 10770 list_del_init(&dev->unlink_list); 10771 dev->nested_level = dev->lower_level - 1; 10772 } 10773 #endif 10774 10775 /* Snapshot list, allow later requests */ 10776 list_replace_init(&net_todo_list, &list); 10777 10778 __rtnl_unlock(); 10779 10780 /* Wait for rcu callbacks to finish before next phase */ 10781 if (!list_empty(&list)) 10782 rcu_barrier(); 10783 10784 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10785 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10786 netdev_WARN(dev, "run_todo but not unregistering\n"); 10787 list_del(&dev->todo_list); 10788 continue; 10789 } 10790 10791 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 10792 linkwatch_sync_dev(dev); 10793 } 10794 10795 cnt = 0; 10796 while (!list_empty(&list)) { 10797 dev = netdev_wait_allrefs_any(&list); 10798 list_del(&dev->todo_list); 10799 10800 /* paranoia */ 10801 BUG_ON(netdev_refcnt_read(dev) != 1); 10802 BUG_ON(!list_empty(&dev->ptype_all)); 10803 BUG_ON(!list_empty(&dev->ptype_specific)); 10804 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10805 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10806 10807 netdev_do_free_pcpu_stats(dev); 10808 if (dev->priv_destructor) 10809 dev->priv_destructor(dev); 10810 if (dev->needs_free_netdev) 10811 free_netdev(dev); 10812 10813 cnt++; 10814 10815 /* Free network device */ 10816 kobject_put(&dev->dev.kobj); 10817 } 10818 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 10819 wake_up(&netdev_unregistering_wq); 10820 } 10821 10822 /* Collate per-cpu network dstats statistics 10823 * 10824 * Read per-cpu network statistics from dev->dstats and populate the related 10825 * fields in @s. 10826 */ 10827 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 10828 const struct pcpu_dstats __percpu *dstats) 10829 { 10830 int cpu; 10831 10832 for_each_possible_cpu(cpu) { 10833 u64 rx_packets, rx_bytes, rx_drops; 10834 u64 tx_packets, tx_bytes, tx_drops; 10835 const struct pcpu_dstats *stats; 10836 unsigned int start; 10837 10838 stats = per_cpu_ptr(dstats, cpu); 10839 do { 10840 start = u64_stats_fetch_begin(&stats->syncp); 10841 rx_packets = u64_stats_read(&stats->rx_packets); 10842 rx_bytes = u64_stats_read(&stats->rx_bytes); 10843 rx_drops = u64_stats_read(&stats->rx_drops); 10844 tx_packets = u64_stats_read(&stats->tx_packets); 10845 tx_bytes = u64_stats_read(&stats->tx_bytes); 10846 tx_drops = u64_stats_read(&stats->tx_drops); 10847 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10848 10849 s->rx_packets += rx_packets; 10850 s->rx_bytes += rx_bytes; 10851 s->rx_dropped += rx_drops; 10852 s->tx_packets += tx_packets; 10853 s->tx_bytes += tx_bytes; 10854 s->tx_dropped += tx_drops; 10855 } 10856 } 10857 10858 /* ndo_get_stats64 implementation for dtstats-based accounting. 10859 * 10860 * Populate @s from dev->stats and dev->dstats. This is used internally by the 10861 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 10862 */ 10863 static void dev_get_dstats64(const struct net_device *dev, 10864 struct rtnl_link_stats64 *s) 10865 { 10866 netdev_stats_to_stats64(s, &dev->stats); 10867 dev_fetch_dstats(s, dev->dstats); 10868 } 10869 10870 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10871 * all the same fields in the same order as net_device_stats, with only 10872 * the type differing, but rtnl_link_stats64 may have additional fields 10873 * at the end for newer counters. 10874 */ 10875 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10876 const struct net_device_stats *netdev_stats) 10877 { 10878 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10879 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10880 u64 *dst = (u64 *)stats64; 10881 10882 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10883 for (i = 0; i < n; i++) 10884 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10885 /* zero out counters that only exist in rtnl_link_stats64 */ 10886 memset((char *)stats64 + n * sizeof(u64), 0, 10887 sizeof(*stats64) - n * sizeof(u64)); 10888 } 10889 EXPORT_SYMBOL(netdev_stats_to_stats64); 10890 10891 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 10892 struct net_device *dev) 10893 { 10894 struct net_device_core_stats __percpu *p; 10895 10896 p = alloc_percpu_gfp(struct net_device_core_stats, 10897 GFP_ATOMIC | __GFP_NOWARN); 10898 10899 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10900 free_percpu(p); 10901 10902 /* This READ_ONCE() pairs with the cmpxchg() above */ 10903 return READ_ONCE(dev->core_stats); 10904 } 10905 10906 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 10907 { 10908 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10909 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 10910 unsigned long __percpu *field; 10911 10912 if (unlikely(!p)) { 10913 p = netdev_core_stats_alloc(dev); 10914 if (!p) 10915 return; 10916 } 10917 10918 field = (unsigned long __percpu *)((void __percpu *)p + offset); 10919 this_cpu_inc(*field); 10920 } 10921 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 10922 10923 /** 10924 * dev_get_stats - get network device statistics 10925 * @dev: device to get statistics from 10926 * @storage: place to store stats 10927 * 10928 * Get network statistics from device. Return @storage. 10929 * The device driver may provide its own method by setting 10930 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10931 * otherwise the internal statistics structure is used. 10932 */ 10933 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10934 struct rtnl_link_stats64 *storage) 10935 { 10936 const struct net_device_ops *ops = dev->netdev_ops; 10937 const struct net_device_core_stats __percpu *p; 10938 10939 if (ops->ndo_get_stats64) { 10940 memset(storage, 0, sizeof(*storage)); 10941 ops->ndo_get_stats64(dev, storage); 10942 } else if (ops->ndo_get_stats) { 10943 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10944 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 10945 dev_get_tstats64(dev, storage); 10946 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 10947 dev_get_dstats64(dev, storage); 10948 } else { 10949 netdev_stats_to_stats64(storage, &dev->stats); 10950 } 10951 10952 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10953 p = READ_ONCE(dev->core_stats); 10954 if (p) { 10955 const struct net_device_core_stats *core_stats; 10956 int i; 10957 10958 for_each_possible_cpu(i) { 10959 core_stats = per_cpu_ptr(p, i); 10960 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10961 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10962 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10963 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10964 } 10965 } 10966 return storage; 10967 } 10968 EXPORT_SYMBOL(dev_get_stats); 10969 10970 /** 10971 * dev_fetch_sw_netstats - get per-cpu network device statistics 10972 * @s: place to store stats 10973 * @netstats: per-cpu network stats to read from 10974 * 10975 * Read per-cpu network statistics and populate the related fields in @s. 10976 */ 10977 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10978 const struct pcpu_sw_netstats __percpu *netstats) 10979 { 10980 int cpu; 10981 10982 for_each_possible_cpu(cpu) { 10983 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10984 const struct pcpu_sw_netstats *stats; 10985 unsigned int start; 10986 10987 stats = per_cpu_ptr(netstats, cpu); 10988 do { 10989 start = u64_stats_fetch_begin(&stats->syncp); 10990 rx_packets = u64_stats_read(&stats->rx_packets); 10991 rx_bytes = u64_stats_read(&stats->rx_bytes); 10992 tx_packets = u64_stats_read(&stats->tx_packets); 10993 tx_bytes = u64_stats_read(&stats->tx_bytes); 10994 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10995 10996 s->rx_packets += rx_packets; 10997 s->rx_bytes += rx_bytes; 10998 s->tx_packets += tx_packets; 10999 s->tx_bytes += tx_bytes; 11000 } 11001 } 11002 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11003 11004 /** 11005 * dev_get_tstats64 - ndo_get_stats64 implementation 11006 * @dev: device to get statistics from 11007 * @s: place to store stats 11008 * 11009 * Populate @s from dev->stats and dev->tstats. Can be used as 11010 * ndo_get_stats64() callback. 11011 */ 11012 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11013 { 11014 netdev_stats_to_stats64(s, &dev->stats); 11015 dev_fetch_sw_netstats(s, dev->tstats); 11016 } 11017 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11018 11019 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11020 { 11021 struct netdev_queue *queue = dev_ingress_queue(dev); 11022 11023 #ifdef CONFIG_NET_CLS_ACT 11024 if (queue) 11025 return queue; 11026 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11027 if (!queue) 11028 return NULL; 11029 netdev_init_one_queue(dev, queue, NULL); 11030 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11031 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11032 rcu_assign_pointer(dev->ingress_queue, queue); 11033 #endif 11034 return queue; 11035 } 11036 11037 static const struct ethtool_ops default_ethtool_ops; 11038 11039 void netdev_set_default_ethtool_ops(struct net_device *dev, 11040 const struct ethtool_ops *ops) 11041 { 11042 if (dev->ethtool_ops == &default_ethtool_ops) 11043 dev->ethtool_ops = ops; 11044 } 11045 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11046 11047 /** 11048 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11049 * @dev: netdev to enable the IRQ coalescing on 11050 * 11051 * Sets a conservative default for SW IRQ coalescing. Users can use 11052 * sysfs attributes to override the default values. 11053 */ 11054 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11055 { 11056 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11057 11058 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11059 dev->gro_flush_timeout = 20000; 11060 dev->napi_defer_hard_irqs = 1; 11061 } 11062 } 11063 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11064 11065 /** 11066 * alloc_netdev_mqs - allocate network device 11067 * @sizeof_priv: size of private data to allocate space for 11068 * @name: device name format string 11069 * @name_assign_type: origin of device name 11070 * @setup: callback to initialize device 11071 * @txqs: the number of TX subqueues to allocate 11072 * @rxqs: the number of RX subqueues to allocate 11073 * 11074 * Allocates a struct net_device with private data area for driver use 11075 * and performs basic initialization. Also allocates subqueue structs 11076 * for each queue on the device. 11077 */ 11078 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11079 unsigned char name_assign_type, 11080 void (*setup)(struct net_device *), 11081 unsigned int txqs, unsigned int rxqs) 11082 { 11083 struct net_device *dev; 11084 11085 BUG_ON(strlen(name) >= sizeof(dev->name)); 11086 11087 if (txqs < 1) { 11088 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11089 return NULL; 11090 } 11091 11092 if (rxqs < 1) { 11093 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11094 return NULL; 11095 } 11096 11097 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11098 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11099 if (!dev) 11100 return NULL; 11101 11102 dev->priv_len = sizeof_priv; 11103 11104 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11105 #ifdef CONFIG_PCPU_DEV_REFCNT 11106 dev->pcpu_refcnt = alloc_percpu(int); 11107 if (!dev->pcpu_refcnt) 11108 goto free_dev; 11109 __dev_hold(dev); 11110 #else 11111 refcount_set(&dev->dev_refcnt, 1); 11112 #endif 11113 11114 if (dev_addr_init(dev)) 11115 goto free_pcpu; 11116 11117 dev_mc_init(dev); 11118 dev_uc_init(dev); 11119 11120 dev_net_set(dev, &init_net); 11121 11122 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11123 dev->xdp_zc_max_segs = 1; 11124 dev->gso_max_segs = GSO_MAX_SEGS; 11125 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11126 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11127 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11128 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11129 dev->tso_max_segs = TSO_MAX_SEGS; 11130 dev->upper_level = 1; 11131 dev->lower_level = 1; 11132 #ifdef CONFIG_LOCKDEP 11133 dev->nested_level = 0; 11134 INIT_LIST_HEAD(&dev->unlink_list); 11135 #endif 11136 11137 INIT_LIST_HEAD(&dev->napi_list); 11138 INIT_LIST_HEAD(&dev->unreg_list); 11139 INIT_LIST_HEAD(&dev->close_list); 11140 INIT_LIST_HEAD(&dev->link_watch_list); 11141 INIT_LIST_HEAD(&dev->adj_list.upper); 11142 INIT_LIST_HEAD(&dev->adj_list.lower); 11143 INIT_LIST_HEAD(&dev->ptype_all); 11144 INIT_LIST_HEAD(&dev->ptype_specific); 11145 INIT_LIST_HEAD(&dev->net_notifier_list); 11146 #ifdef CONFIG_NET_SCHED 11147 hash_init(dev->qdisc_hash); 11148 #endif 11149 11150 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11151 setup(dev); 11152 11153 if (!dev->tx_queue_len) { 11154 dev->priv_flags |= IFF_NO_QUEUE; 11155 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11156 } 11157 11158 dev->num_tx_queues = txqs; 11159 dev->real_num_tx_queues = txqs; 11160 if (netif_alloc_netdev_queues(dev)) 11161 goto free_all; 11162 11163 dev->num_rx_queues = rxqs; 11164 dev->real_num_rx_queues = rxqs; 11165 if (netif_alloc_rx_queues(dev)) 11166 goto free_all; 11167 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11168 if (!dev->ethtool) 11169 goto free_all; 11170 11171 strscpy(dev->name, name); 11172 dev->name_assign_type = name_assign_type; 11173 dev->group = INIT_NETDEV_GROUP; 11174 if (!dev->ethtool_ops) 11175 dev->ethtool_ops = &default_ethtool_ops; 11176 11177 nf_hook_netdev_init(dev); 11178 11179 return dev; 11180 11181 free_all: 11182 free_netdev(dev); 11183 return NULL; 11184 11185 free_pcpu: 11186 #ifdef CONFIG_PCPU_DEV_REFCNT 11187 free_percpu(dev->pcpu_refcnt); 11188 free_dev: 11189 #endif 11190 kvfree(dev); 11191 return NULL; 11192 } 11193 EXPORT_SYMBOL(alloc_netdev_mqs); 11194 11195 /** 11196 * free_netdev - free network device 11197 * @dev: device 11198 * 11199 * This function does the last stage of destroying an allocated device 11200 * interface. The reference to the device object is released. If this 11201 * is the last reference then it will be freed.Must be called in process 11202 * context. 11203 */ 11204 void free_netdev(struct net_device *dev) 11205 { 11206 struct napi_struct *p, *n; 11207 11208 might_sleep(); 11209 11210 /* When called immediately after register_netdevice() failed the unwind 11211 * handling may still be dismantling the device. Handle that case by 11212 * deferring the free. 11213 */ 11214 if (dev->reg_state == NETREG_UNREGISTERING) { 11215 ASSERT_RTNL(); 11216 dev->needs_free_netdev = true; 11217 return; 11218 } 11219 11220 kfree(dev->ethtool); 11221 netif_free_tx_queues(dev); 11222 netif_free_rx_queues(dev); 11223 11224 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11225 11226 /* Flush device addresses */ 11227 dev_addr_flush(dev); 11228 11229 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11230 netif_napi_del(p); 11231 11232 ref_tracker_dir_exit(&dev->refcnt_tracker); 11233 #ifdef CONFIG_PCPU_DEV_REFCNT 11234 free_percpu(dev->pcpu_refcnt); 11235 dev->pcpu_refcnt = NULL; 11236 #endif 11237 free_percpu(dev->core_stats); 11238 dev->core_stats = NULL; 11239 free_percpu(dev->xdp_bulkq); 11240 dev->xdp_bulkq = NULL; 11241 11242 netdev_free_phy_link_topology(dev); 11243 11244 /* Compatibility with error handling in drivers */ 11245 if (dev->reg_state == NETREG_UNINITIALIZED || 11246 dev->reg_state == NETREG_DUMMY) { 11247 kvfree(dev); 11248 return; 11249 } 11250 11251 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11252 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11253 11254 /* will free via device release */ 11255 put_device(&dev->dev); 11256 } 11257 EXPORT_SYMBOL(free_netdev); 11258 11259 /** 11260 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11261 * @sizeof_priv: size of private data to allocate space for 11262 * 11263 * Return: the allocated net_device on success, NULL otherwise 11264 */ 11265 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11266 { 11267 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11268 init_dummy_netdev_core); 11269 } 11270 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11271 11272 /** 11273 * synchronize_net - Synchronize with packet receive processing 11274 * 11275 * Wait for packets currently being received to be done. 11276 * Does not block later packets from starting. 11277 */ 11278 void synchronize_net(void) 11279 { 11280 might_sleep(); 11281 if (rtnl_is_locked()) 11282 synchronize_rcu_expedited(); 11283 else 11284 synchronize_rcu(); 11285 } 11286 EXPORT_SYMBOL(synchronize_net); 11287 11288 static void netdev_rss_contexts_free(struct net_device *dev) 11289 { 11290 struct ethtool_rxfh_context *ctx; 11291 unsigned long context; 11292 11293 mutex_lock(&dev->ethtool->rss_lock); 11294 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11295 struct ethtool_rxfh_param rxfh; 11296 11297 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11298 rxfh.key = ethtool_rxfh_context_key(ctx); 11299 rxfh.hfunc = ctx->hfunc; 11300 rxfh.input_xfrm = ctx->input_xfrm; 11301 rxfh.rss_context = context; 11302 rxfh.rss_delete = true; 11303 11304 xa_erase(&dev->ethtool->rss_ctx, context); 11305 if (dev->ethtool_ops->create_rxfh_context) 11306 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11307 context, NULL); 11308 else 11309 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11310 kfree(ctx); 11311 } 11312 xa_destroy(&dev->ethtool->rss_ctx); 11313 mutex_unlock(&dev->ethtool->rss_lock); 11314 } 11315 11316 /** 11317 * unregister_netdevice_queue - remove device from the kernel 11318 * @dev: device 11319 * @head: list 11320 * 11321 * This function shuts down a device interface and removes it 11322 * from the kernel tables. 11323 * If head not NULL, device is queued to be unregistered later. 11324 * 11325 * Callers must hold the rtnl semaphore. You may want 11326 * unregister_netdev() instead of this. 11327 */ 11328 11329 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11330 { 11331 ASSERT_RTNL(); 11332 11333 if (head) { 11334 list_move_tail(&dev->unreg_list, head); 11335 } else { 11336 LIST_HEAD(single); 11337 11338 list_add(&dev->unreg_list, &single); 11339 unregister_netdevice_many(&single); 11340 } 11341 } 11342 EXPORT_SYMBOL(unregister_netdevice_queue); 11343 11344 void unregister_netdevice_many_notify(struct list_head *head, 11345 u32 portid, const struct nlmsghdr *nlh) 11346 { 11347 struct net_device *dev, *tmp; 11348 LIST_HEAD(close_head); 11349 int cnt = 0; 11350 11351 BUG_ON(dev_boot_phase); 11352 ASSERT_RTNL(); 11353 11354 if (list_empty(head)) 11355 return; 11356 11357 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11358 /* Some devices call without registering 11359 * for initialization unwind. Remove those 11360 * devices and proceed with the remaining. 11361 */ 11362 if (dev->reg_state == NETREG_UNINITIALIZED) { 11363 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11364 dev->name, dev); 11365 11366 WARN_ON(1); 11367 list_del(&dev->unreg_list); 11368 continue; 11369 } 11370 dev->dismantle = true; 11371 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11372 } 11373 11374 /* If device is running, close it first. */ 11375 list_for_each_entry(dev, head, unreg_list) 11376 list_add_tail(&dev->close_list, &close_head); 11377 dev_close_many(&close_head, true); 11378 11379 list_for_each_entry(dev, head, unreg_list) { 11380 /* And unlink it from device chain. */ 11381 unlist_netdevice(dev); 11382 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11383 } 11384 flush_all_backlogs(); 11385 11386 synchronize_net(); 11387 11388 list_for_each_entry(dev, head, unreg_list) { 11389 struct sk_buff *skb = NULL; 11390 11391 /* Shutdown queueing discipline. */ 11392 dev_shutdown(dev); 11393 dev_tcx_uninstall(dev); 11394 dev_xdp_uninstall(dev); 11395 bpf_dev_bound_netdev_unregister(dev); 11396 dev_dmabuf_uninstall(dev); 11397 11398 netdev_offload_xstats_disable_all(dev); 11399 11400 /* Notify protocols, that we are about to destroy 11401 * this device. They should clean all the things. 11402 */ 11403 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11404 11405 if (!dev->rtnl_link_ops || 11406 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11407 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11408 GFP_KERNEL, NULL, 0, 11409 portid, nlh); 11410 11411 /* 11412 * Flush the unicast and multicast chains 11413 */ 11414 dev_uc_flush(dev); 11415 dev_mc_flush(dev); 11416 11417 netdev_name_node_alt_flush(dev); 11418 netdev_name_node_free(dev->name_node); 11419 11420 netdev_rss_contexts_free(dev); 11421 11422 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11423 11424 if (dev->netdev_ops->ndo_uninit) 11425 dev->netdev_ops->ndo_uninit(dev); 11426 11427 mutex_destroy(&dev->ethtool->rss_lock); 11428 11429 if (skb) 11430 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11431 11432 /* Notifier chain MUST detach us all upper devices. */ 11433 WARN_ON(netdev_has_any_upper_dev(dev)); 11434 WARN_ON(netdev_has_any_lower_dev(dev)); 11435 11436 /* Remove entries from kobject tree */ 11437 netdev_unregister_kobject(dev); 11438 #ifdef CONFIG_XPS 11439 /* Remove XPS queueing entries */ 11440 netif_reset_xps_queues_gt(dev, 0); 11441 #endif 11442 } 11443 11444 synchronize_net(); 11445 11446 list_for_each_entry(dev, head, unreg_list) { 11447 netdev_put(dev, &dev->dev_registered_tracker); 11448 net_set_todo(dev); 11449 cnt++; 11450 } 11451 atomic_add(cnt, &dev_unreg_count); 11452 11453 list_del(head); 11454 } 11455 11456 /** 11457 * unregister_netdevice_many - unregister many devices 11458 * @head: list of devices 11459 * 11460 * Note: As most callers use a stack allocated list_head, 11461 * we force a list_del() to make sure stack won't be corrupted later. 11462 */ 11463 void unregister_netdevice_many(struct list_head *head) 11464 { 11465 unregister_netdevice_many_notify(head, 0, NULL); 11466 } 11467 EXPORT_SYMBOL(unregister_netdevice_many); 11468 11469 /** 11470 * unregister_netdev - remove device from the kernel 11471 * @dev: device 11472 * 11473 * This function shuts down a device interface and removes it 11474 * from the kernel tables. 11475 * 11476 * This is just a wrapper for unregister_netdevice that takes 11477 * the rtnl semaphore. In general you want to use this and not 11478 * unregister_netdevice. 11479 */ 11480 void unregister_netdev(struct net_device *dev) 11481 { 11482 rtnl_lock(); 11483 unregister_netdevice(dev); 11484 rtnl_unlock(); 11485 } 11486 EXPORT_SYMBOL(unregister_netdev); 11487 11488 /** 11489 * __dev_change_net_namespace - move device to different nethost namespace 11490 * @dev: device 11491 * @net: network namespace 11492 * @pat: If not NULL name pattern to try if the current device name 11493 * is already taken in the destination network namespace. 11494 * @new_ifindex: If not zero, specifies device index in the target 11495 * namespace. 11496 * 11497 * This function shuts down a device interface and moves it 11498 * to a new network namespace. On success 0 is returned, on 11499 * a failure a netagive errno code is returned. 11500 * 11501 * Callers must hold the rtnl semaphore. 11502 */ 11503 11504 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11505 const char *pat, int new_ifindex) 11506 { 11507 struct netdev_name_node *name_node; 11508 struct net *net_old = dev_net(dev); 11509 char new_name[IFNAMSIZ] = {}; 11510 int err, new_nsid; 11511 11512 ASSERT_RTNL(); 11513 11514 /* Don't allow namespace local devices to be moved. */ 11515 err = -EINVAL; 11516 if (dev->netns_local) 11517 goto out; 11518 11519 /* Ensure the device has been registered */ 11520 if (dev->reg_state != NETREG_REGISTERED) 11521 goto out; 11522 11523 /* Get out if there is nothing todo */ 11524 err = 0; 11525 if (net_eq(net_old, net)) 11526 goto out; 11527 11528 /* Pick the destination device name, and ensure 11529 * we can use it in the destination network namespace. 11530 */ 11531 err = -EEXIST; 11532 if (netdev_name_in_use(net, dev->name)) { 11533 /* We get here if we can't use the current device name */ 11534 if (!pat) 11535 goto out; 11536 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11537 if (err < 0) 11538 goto out; 11539 } 11540 /* Check that none of the altnames conflicts. */ 11541 err = -EEXIST; 11542 netdev_for_each_altname(dev, name_node) 11543 if (netdev_name_in_use(net, name_node->name)) 11544 goto out; 11545 11546 /* Check that new_ifindex isn't used yet. */ 11547 if (new_ifindex) { 11548 err = dev_index_reserve(net, new_ifindex); 11549 if (err < 0) 11550 goto out; 11551 } else { 11552 /* If there is an ifindex conflict assign a new one */ 11553 err = dev_index_reserve(net, dev->ifindex); 11554 if (err == -EBUSY) 11555 err = dev_index_reserve(net, 0); 11556 if (err < 0) 11557 goto out; 11558 new_ifindex = err; 11559 } 11560 11561 /* 11562 * And now a mini version of register_netdevice unregister_netdevice. 11563 */ 11564 11565 /* If device is running close it first. */ 11566 dev_close(dev); 11567 11568 /* And unlink it from device chain */ 11569 unlist_netdevice(dev); 11570 11571 synchronize_net(); 11572 11573 /* Shutdown queueing discipline. */ 11574 dev_shutdown(dev); 11575 11576 /* Notify protocols, that we are about to destroy 11577 * this device. They should clean all the things. 11578 * 11579 * Note that dev->reg_state stays at NETREG_REGISTERED. 11580 * This is wanted because this way 8021q and macvlan know 11581 * the device is just moving and can keep their slaves up. 11582 */ 11583 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11584 rcu_barrier(); 11585 11586 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11587 11588 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11589 new_ifindex); 11590 11591 /* 11592 * Flush the unicast and multicast chains 11593 */ 11594 dev_uc_flush(dev); 11595 dev_mc_flush(dev); 11596 11597 /* Send a netdev-removed uevent to the old namespace */ 11598 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11599 netdev_adjacent_del_links(dev); 11600 11601 /* Move per-net netdevice notifiers that are following the netdevice */ 11602 move_netdevice_notifiers_dev_net(dev, net); 11603 11604 /* Actually switch the network namespace */ 11605 dev_net_set(dev, net); 11606 dev->ifindex = new_ifindex; 11607 11608 if (new_name[0]) { 11609 /* Rename the netdev to prepared name */ 11610 write_seqlock_bh(&netdev_rename_lock); 11611 strscpy(dev->name, new_name, IFNAMSIZ); 11612 write_sequnlock_bh(&netdev_rename_lock); 11613 } 11614 11615 /* Fixup kobjects */ 11616 dev_set_uevent_suppress(&dev->dev, 1); 11617 err = device_rename(&dev->dev, dev->name); 11618 dev_set_uevent_suppress(&dev->dev, 0); 11619 WARN_ON(err); 11620 11621 /* Send a netdev-add uevent to the new namespace */ 11622 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11623 netdev_adjacent_add_links(dev); 11624 11625 /* Adapt owner in case owning user namespace of target network 11626 * namespace is different from the original one. 11627 */ 11628 err = netdev_change_owner(dev, net_old, net); 11629 WARN_ON(err); 11630 11631 /* Add the device back in the hashes */ 11632 list_netdevice(dev); 11633 11634 /* Notify protocols, that a new device appeared. */ 11635 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11636 11637 /* 11638 * Prevent userspace races by waiting until the network 11639 * device is fully setup before sending notifications. 11640 */ 11641 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11642 11643 synchronize_net(); 11644 err = 0; 11645 out: 11646 return err; 11647 } 11648 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11649 11650 static int dev_cpu_dead(unsigned int oldcpu) 11651 { 11652 struct sk_buff **list_skb; 11653 struct sk_buff *skb; 11654 unsigned int cpu; 11655 struct softnet_data *sd, *oldsd, *remsd = NULL; 11656 11657 local_irq_disable(); 11658 cpu = smp_processor_id(); 11659 sd = &per_cpu(softnet_data, cpu); 11660 oldsd = &per_cpu(softnet_data, oldcpu); 11661 11662 /* Find end of our completion_queue. */ 11663 list_skb = &sd->completion_queue; 11664 while (*list_skb) 11665 list_skb = &(*list_skb)->next; 11666 /* Append completion queue from offline CPU. */ 11667 *list_skb = oldsd->completion_queue; 11668 oldsd->completion_queue = NULL; 11669 11670 /* Append output queue from offline CPU. */ 11671 if (oldsd->output_queue) { 11672 *sd->output_queue_tailp = oldsd->output_queue; 11673 sd->output_queue_tailp = oldsd->output_queue_tailp; 11674 oldsd->output_queue = NULL; 11675 oldsd->output_queue_tailp = &oldsd->output_queue; 11676 } 11677 /* Append NAPI poll list from offline CPU, with one exception : 11678 * process_backlog() must be called by cpu owning percpu backlog. 11679 * We properly handle process_queue & input_pkt_queue later. 11680 */ 11681 while (!list_empty(&oldsd->poll_list)) { 11682 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11683 struct napi_struct, 11684 poll_list); 11685 11686 list_del_init(&napi->poll_list); 11687 if (napi->poll == process_backlog) 11688 napi->state &= NAPIF_STATE_THREADED; 11689 else 11690 ____napi_schedule(sd, napi); 11691 } 11692 11693 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11694 local_irq_enable(); 11695 11696 if (!use_backlog_threads()) { 11697 #ifdef CONFIG_RPS 11698 remsd = oldsd->rps_ipi_list; 11699 oldsd->rps_ipi_list = NULL; 11700 #endif 11701 /* send out pending IPI's on offline CPU */ 11702 net_rps_send_ipi(remsd); 11703 } 11704 11705 /* Process offline CPU's input_pkt_queue */ 11706 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11707 netif_rx(skb); 11708 rps_input_queue_head_incr(oldsd); 11709 } 11710 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11711 netif_rx(skb); 11712 rps_input_queue_head_incr(oldsd); 11713 } 11714 11715 return 0; 11716 } 11717 11718 /** 11719 * netdev_increment_features - increment feature set by one 11720 * @all: current feature set 11721 * @one: new feature set 11722 * @mask: mask feature set 11723 * 11724 * Computes a new feature set after adding a device with feature set 11725 * @one to the master device with current feature set @all. Will not 11726 * enable anything that is off in @mask. Returns the new feature set. 11727 */ 11728 netdev_features_t netdev_increment_features(netdev_features_t all, 11729 netdev_features_t one, netdev_features_t mask) 11730 { 11731 if (mask & NETIF_F_HW_CSUM) 11732 mask |= NETIF_F_CSUM_MASK; 11733 mask |= NETIF_F_VLAN_CHALLENGED; 11734 11735 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11736 all &= one | ~NETIF_F_ALL_FOR_ALL; 11737 11738 /* If one device supports hw checksumming, set for all. */ 11739 if (all & NETIF_F_HW_CSUM) 11740 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11741 11742 return all; 11743 } 11744 EXPORT_SYMBOL(netdev_increment_features); 11745 11746 static struct hlist_head * __net_init netdev_create_hash(void) 11747 { 11748 int i; 11749 struct hlist_head *hash; 11750 11751 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11752 if (hash != NULL) 11753 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11754 INIT_HLIST_HEAD(&hash[i]); 11755 11756 return hash; 11757 } 11758 11759 /* Initialize per network namespace state */ 11760 static int __net_init netdev_init(struct net *net) 11761 { 11762 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11763 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11764 11765 INIT_LIST_HEAD(&net->dev_base_head); 11766 11767 net->dev_name_head = netdev_create_hash(); 11768 if (net->dev_name_head == NULL) 11769 goto err_name; 11770 11771 net->dev_index_head = netdev_create_hash(); 11772 if (net->dev_index_head == NULL) 11773 goto err_idx; 11774 11775 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11776 11777 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11778 11779 return 0; 11780 11781 err_idx: 11782 kfree(net->dev_name_head); 11783 err_name: 11784 return -ENOMEM; 11785 } 11786 11787 /** 11788 * netdev_drivername - network driver for the device 11789 * @dev: network device 11790 * 11791 * Determine network driver for device. 11792 */ 11793 const char *netdev_drivername(const struct net_device *dev) 11794 { 11795 const struct device_driver *driver; 11796 const struct device *parent; 11797 const char *empty = ""; 11798 11799 parent = dev->dev.parent; 11800 if (!parent) 11801 return empty; 11802 11803 driver = parent->driver; 11804 if (driver && driver->name) 11805 return driver->name; 11806 return empty; 11807 } 11808 11809 static void __netdev_printk(const char *level, const struct net_device *dev, 11810 struct va_format *vaf) 11811 { 11812 if (dev && dev->dev.parent) { 11813 dev_printk_emit(level[1] - '0', 11814 dev->dev.parent, 11815 "%s %s %s%s: %pV", 11816 dev_driver_string(dev->dev.parent), 11817 dev_name(dev->dev.parent), 11818 netdev_name(dev), netdev_reg_state(dev), 11819 vaf); 11820 } else if (dev) { 11821 printk("%s%s%s: %pV", 11822 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11823 } else { 11824 printk("%s(NULL net_device): %pV", level, vaf); 11825 } 11826 } 11827 11828 void netdev_printk(const char *level, const struct net_device *dev, 11829 const char *format, ...) 11830 { 11831 struct va_format vaf; 11832 va_list args; 11833 11834 va_start(args, format); 11835 11836 vaf.fmt = format; 11837 vaf.va = &args; 11838 11839 __netdev_printk(level, dev, &vaf); 11840 11841 va_end(args); 11842 } 11843 EXPORT_SYMBOL(netdev_printk); 11844 11845 #define define_netdev_printk_level(func, level) \ 11846 void func(const struct net_device *dev, const char *fmt, ...) \ 11847 { \ 11848 struct va_format vaf; \ 11849 va_list args; \ 11850 \ 11851 va_start(args, fmt); \ 11852 \ 11853 vaf.fmt = fmt; \ 11854 vaf.va = &args; \ 11855 \ 11856 __netdev_printk(level, dev, &vaf); \ 11857 \ 11858 va_end(args); \ 11859 } \ 11860 EXPORT_SYMBOL(func); 11861 11862 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11863 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11864 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11865 define_netdev_printk_level(netdev_err, KERN_ERR); 11866 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11867 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11868 define_netdev_printk_level(netdev_info, KERN_INFO); 11869 11870 static void __net_exit netdev_exit(struct net *net) 11871 { 11872 kfree(net->dev_name_head); 11873 kfree(net->dev_index_head); 11874 xa_destroy(&net->dev_by_index); 11875 if (net != &init_net) 11876 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11877 } 11878 11879 static struct pernet_operations __net_initdata netdev_net_ops = { 11880 .init = netdev_init, 11881 .exit = netdev_exit, 11882 }; 11883 11884 static void __net_exit default_device_exit_net(struct net *net) 11885 { 11886 struct netdev_name_node *name_node, *tmp; 11887 struct net_device *dev, *aux; 11888 /* 11889 * Push all migratable network devices back to the 11890 * initial network namespace 11891 */ 11892 ASSERT_RTNL(); 11893 for_each_netdev_safe(net, dev, aux) { 11894 int err; 11895 char fb_name[IFNAMSIZ]; 11896 11897 /* Ignore unmoveable devices (i.e. loopback) */ 11898 if (dev->netns_local) 11899 continue; 11900 11901 /* Leave virtual devices for the generic cleanup */ 11902 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11903 continue; 11904 11905 /* Push remaining network devices to init_net */ 11906 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11907 if (netdev_name_in_use(&init_net, fb_name)) 11908 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11909 11910 netdev_for_each_altname_safe(dev, name_node, tmp) 11911 if (netdev_name_in_use(&init_net, name_node->name)) 11912 __netdev_name_node_alt_destroy(name_node); 11913 11914 err = dev_change_net_namespace(dev, &init_net, fb_name); 11915 if (err) { 11916 pr_emerg("%s: failed to move %s to init_net: %d\n", 11917 __func__, dev->name, err); 11918 BUG(); 11919 } 11920 } 11921 } 11922 11923 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11924 { 11925 /* At exit all network devices most be removed from a network 11926 * namespace. Do this in the reverse order of registration. 11927 * Do this across as many network namespaces as possible to 11928 * improve batching efficiency. 11929 */ 11930 struct net_device *dev; 11931 struct net *net; 11932 LIST_HEAD(dev_kill_list); 11933 11934 rtnl_lock(); 11935 list_for_each_entry(net, net_list, exit_list) { 11936 default_device_exit_net(net); 11937 cond_resched(); 11938 } 11939 11940 list_for_each_entry(net, net_list, exit_list) { 11941 for_each_netdev_reverse(net, dev) { 11942 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11943 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11944 else 11945 unregister_netdevice_queue(dev, &dev_kill_list); 11946 } 11947 } 11948 unregister_netdevice_many(&dev_kill_list); 11949 rtnl_unlock(); 11950 } 11951 11952 static struct pernet_operations __net_initdata default_device_ops = { 11953 .exit_batch = default_device_exit_batch, 11954 }; 11955 11956 static void __init net_dev_struct_check(void) 11957 { 11958 /* TX read-mostly hotpath */ 11959 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 11960 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 11961 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 11962 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 11963 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 11964 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 11965 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 11966 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 11967 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 11968 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 11969 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 11970 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 11971 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 11972 #ifdef CONFIG_XPS 11973 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 11974 #endif 11975 #ifdef CONFIG_NETFILTER_EGRESS 11976 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 11977 #endif 11978 #ifdef CONFIG_NET_XGRESS 11979 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 11980 #endif 11981 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 11982 11983 /* TXRX read-mostly hotpath */ 11984 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 11985 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 11986 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 11987 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 11988 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 11989 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 11990 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 11991 11992 /* RX read-mostly hotpath */ 11993 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 11994 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 11995 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 11996 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 11997 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout); 11998 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs); 11999 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12000 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12001 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12002 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12003 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12004 #ifdef CONFIG_NETPOLL 12005 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12006 #endif 12007 #ifdef CONFIG_NET_XGRESS 12008 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12009 #endif 12010 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104); 12011 } 12012 12013 /* 12014 * Initialize the DEV module. At boot time this walks the device list and 12015 * unhooks any devices that fail to initialise (normally hardware not 12016 * present) and leaves us with a valid list of present and active devices. 12017 * 12018 */ 12019 12020 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12021 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12022 12023 static int net_page_pool_create(int cpuid) 12024 { 12025 #if IS_ENABLED(CONFIG_PAGE_POOL) 12026 struct page_pool_params page_pool_params = { 12027 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12028 .flags = PP_FLAG_SYSTEM_POOL, 12029 .nid = cpu_to_mem(cpuid), 12030 }; 12031 struct page_pool *pp_ptr; 12032 12033 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12034 if (IS_ERR(pp_ptr)) 12035 return -ENOMEM; 12036 12037 per_cpu(system_page_pool, cpuid) = pp_ptr; 12038 #endif 12039 return 0; 12040 } 12041 12042 static int backlog_napi_should_run(unsigned int cpu) 12043 { 12044 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12045 struct napi_struct *napi = &sd->backlog; 12046 12047 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12048 } 12049 12050 static void run_backlog_napi(unsigned int cpu) 12051 { 12052 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12053 12054 napi_threaded_poll_loop(&sd->backlog); 12055 } 12056 12057 static void backlog_napi_setup(unsigned int cpu) 12058 { 12059 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12060 struct napi_struct *napi = &sd->backlog; 12061 12062 napi->thread = this_cpu_read(backlog_napi); 12063 set_bit(NAPI_STATE_THREADED, &napi->state); 12064 } 12065 12066 static struct smp_hotplug_thread backlog_threads = { 12067 .store = &backlog_napi, 12068 .thread_should_run = backlog_napi_should_run, 12069 .thread_fn = run_backlog_napi, 12070 .thread_comm = "backlog_napi/%u", 12071 .setup = backlog_napi_setup, 12072 }; 12073 12074 /* 12075 * This is called single threaded during boot, so no need 12076 * to take the rtnl semaphore. 12077 */ 12078 static int __init net_dev_init(void) 12079 { 12080 int i, rc = -ENOMEM; 12081 12082 BUG_ON(!dev_boot_phase); 12083 12084 net_dev_struct_check(); 12085 12086 if (dev_proc_init()) 12087 goto out; 12088 12089 if (netdev_kobject_init()) 12090 goto out; 12091 12092 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12093 INIT_LIST_HEAD(&ptype_base[i]); 12094 12095 if (register_pernet_subsys(&netdev_net_ops)) 12096 goto out; 12097 12098 /* 12099 * Initialise the packet receive queues. 12100 */ 12101 12102 for_each_possible_cpu(i) { 12103 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 12104 struct softnet_data *sd = &per_cpu(softnet_data, i); 12105 12106 INIT_WORK(flush, flush_backlog); 12107 12108 skb_queue_head_init(&sd->input_pkt_queue); 12109 skb_queue_head_init(&sd->process_queue); 12110 #ifdef CONFIG_XFRM_OFFLOAD 12111 skb_queue_head_init(&sd->xfrm_backlog); 12112 #endif 12113 INIT_LIST_HEAD(&sd->poll_list); 12114 sd->output_queue_tailp = &sd->output_queue; 12115 #ifdef CONFIG_RPS 12116 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12117 sd->cpu = i; 12118 #endif 12119 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12120 spin_lock_init(&sd->defer_lock); 12121 12122 init_gro_hash(&sd->backlog); 12123 sd->backlog.poll = process_backlog; 12124 sd->backlog.weight = weight_p; 12125 INIT_LIST_HEAD(&sd->backlog.poll_list); 12126 12127 if (net_page_pool_create(i)) 12128 goto out; 12129 } 12130 if (use_backlog_threads()) 12131 smpboot_register_percpu_thread(&backlog_threads); 12132 12133 dev_boot_phase = 0; 12134 12135 /* The loopback device is special if any other network devices 12136 * is present in a network namespace the loopback device must 12137 * be present. Since we now dynamically allocate and free the 12138 * loopback device ensure this invariant is maintained by 12139 * keeping the loopback device as the first device on the 12140 * list of network devices. Ensuring the loopback devices 12141 * is the first device that appears and the last network device 12142 * that disappears. 12143 */ 12144 if (register_pernet_device(&loopback_net_ops)) 12145 goto out; 12146 12147 if (register_pernet_device(&default_device_ops)) 12148 goto out; 12149 12150 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12151 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12152 12153 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12154 NULL, dev_cpu_dead); 12155 WARN_ON(rc < 0); 12156 rc = 0; 12157 12158 /* avoid static key IPIs to isolated CPUs */ 12159 if (housekeeping_enabled(HK_TYPE_MISC)) 12160 net_enable_timestamp(); 12161 out: 12162 if (rc < 0) { 12163 for_each_possible_cpu(i) { 12164 struct page_pool *pp_ptr; 12165 12166 pp_ptr = per_cpu(system_page_pool, i); 12167 if (!pp_ptr) 12168 continue; 12169 12170 page_pool_destroy(pp_ptr); 12171 per_cpu(system_page_pool, i) = NULL; 12172 } 12173 } 12174 12175 return rc; 12176 } 12177 12178 subsys_initcall(net_dev_init); 12179