1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct netdev_notifier_info *info); 162 static int call_netdevice_notifiers_extack(unsigned long val, 163 struct net_device *dev, 164 struct netlink_ext_ack *extack); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 232 const char *name) 233 { 234 struct netdev_name_node *name_node; 235 236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 237 if (!name_node) 238 return NULL; 239 INIT_HLIST_NODE(&name_node->hlist); 240 name_node->dev = dev; 241 name_node->name = name; 242 return name_node; 243 } 244 245 static struct netdev_name_node * 246 netdev_name_node_head_alloc(struct net_device *dev) 247 { 248 struct netdev_name_node *name_node; 249 250 name_node = netdev_name_node_alloc(dev, dev->name); 251 if (!name_node) 252 return NULL; 253 INIT_LIST_HEAD(&name_node->list); 254 return name_node; 255 } 256 257 static void netdev_name_node_free(struct netdev_name_node *name_node) 258 { 259 kfree(name_node); 260 } 261 262 static void netdev_name_node_add(struct net *net, 263 struct netdev_name_node *name_node) 264 { 265 hlist_add_head_rcu(&name_node->hlist, 266 dev_name_hash(net, name_node->name)); 267 } 268 269 static void netdev_name_node_del(struct netdev_name_node *name_node) 270 { 271 hlist_del_rcu(&name_node->hlist); 272 } 273 274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 275 const char *name) 276 { 277 struct hlist_head *head = dev_name_hash(net, name); 278 struct netdev_name_node *name_node; 279 280 hlist_for_each_entry(name_node, head, hlist) 281 if (!strcmp(name_node->name, name)) 282 return name_node; 283 return NULL; 284 } 285 286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 287 const char *name) 288 { 289 struct hlist_head *head = dev_name_hash(net, name); 290 struct netdev_name_node *name_node; 291 292 hlist_for_each_entry_rcu(name_node, head, hlist) 293 if (!strcmp(name_node->name, name)) 294 return name_node; 295 return NULL; 296 } 297 298 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 299 { 300 struct netdev_name_node *name_node; 301 struct net *net = dev_net(dev); 302 303 name_node = netdev_name_node_lookup(net, name); 304 if (name_node) 305 return -EEXIST; 306 name_node = netdev_name_node_alloc(dev, name); 307 if (!name_node) 308 return -ENOMEM; 309 netdev_name_node_add(net, name_node); 310 /* The node that holds dev->name acts as a head of per-device list. */ 311 list_add_tail(&name_node->list, &dev->name_node->list); 312 313 return 0; 314 } 315 EXPORT_SYMBOL(netdev_name_node_alt_create); 316 317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 318 { 319 list_del(&name_node->list); 320 netdev_name_node_del(name_node); 321 kfree(name_node->name); 322 netdev_name_node_free(name_node); 323 } 324 325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 326 { 327 struct netdev_name_node *name_node; 328 struct net *net = dev_net(dev); 329 330 name_node = netdev_name_node_lookup(net, name); 331 if (!name_node) 332 return -ENOENT; 333 /* lookup might have found our primary name or a name belonging 334 * to another device. 335 */ 336 if (name_node == dev->name_node || name_node->dev != dev) 337 return -EINVAL; 338 339 __netdev_name_node_alt_destroy(name_node); 340 341 return 0; 342 } 343 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 344 345 static void netdev_name_node_alt_flush(struct net_device *dev) 346 { 347 struct netdev_name_node *name_node, *tmp; 348 349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 350 __netdev_name_node_alt_destroy(name_node); 351 } 352 353 /* Device list insertion */ 354 static void list_netdevice(struct net_device *dev) 355 { 356 struct net *net = dev_net(dev); 357 358 ASSERT_RTNL(); 359 360 write_lock_bh(&dev_base_lock); 361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 362 netdev_name_node_add(net, dev->name_node); 363 hlist_add_head_rcu(&dev->index_hlist, 364 dev_index_hash(net, dev->ifindex)); 365 write_unlock_bh(&dev_base_lock); 366 367 dev_base_seq_inc(net); 368 } 369 370 /* Device list removal 371 * caller must respect a RCU grace period before freeing/reusing dev 372 */ 373 static void unlist_netdevice(struct net_device *dev) 374 { 375 ASSERT_RTNL(); 376 377 /* Unlink dev from the device chain */ 378 write_lock_bh(&dev_base_lock); 379 list_del_rcu(&dev->dev_list); 380 netdev_name_node_del(dev->name_node); 381 hlist_del_rcu(&dev->index_hlist); 382 write_unlock_bh(&dev_base_lock); 383 384 dev_base_seq_inc(dev_net(dev)); 385 } 386 387 /* 388 * Our notifier list 389 */ 390 391 static RAW_NOTIFIER_HEAD(netdev_chain); 392 393 /* 394 * Device drivers call our routines to queue packets here. We empty the 395 * queue in the local softnet handler. 396 */ 397 398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 399 EXPORT_PER_CPU_SYMBOL(softnet_data); 400 401 #ifdef CONFIG_LOCKDEP 402 /* 403 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 404 * according to dev->type 405 */ 406 static const unsigned short netdev_lock_type[] = { 407 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 408 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 409 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 410 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 411 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 412 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 413 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 414 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 415 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 416 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 417 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 418 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 419 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 420 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 421 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 422 423 static const char *const netdev_lock_name[] = { 424 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 425 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 426 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 427 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 428 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 429 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 430 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 431 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 432 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 433 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 434 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 435 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 436 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 437 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 438 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 439 440 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 441 442 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 443 { 444 int i; 445 446 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 447 if (netdev_lock_type[i] == dev_type) 448 return i; 449 /* the last key is used by default */ 450 return ARRAY_SIZE(netdev_lock_type) - 1; 451 } 452 453 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 454 unsigned short dev_type) 455 { 456 int i; 457 458 i = netdev_lock_pos(dev_type); 459 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 460 netdev_lock_name[i]); 461 } 462 #else 463 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 464 unsigned short dev_type) 465 { 466 } 467 #endif 468 469 /******************************************************************************* 470 * 471 * Protocol management and registration routines 472 * 473 *******************************************************************************/ 474 475 476 /* 477 * Add a protocol ID to the list. Now that the input handler is 478 * smarter we can dispense with all the messy stuff that used to be 479 * here. 480 * 481 * BEWARE!!! Protocol handlers, mangling input packets, 482 * MUST BE last in hash buckets and checking protocol handlers 483 * MUST start from promiscuous ptype_all chain in net_bh. 484 * It is true now, do not change it. 485 * Explanation follows: if protocol handler, mangling packet, will 486 * be the first on list, it is not able to sense, that packet 487 * is cloned and should be copied-on-write, so that it will 488 * change it and subsequent readers will get broken packet. 489 * --ANK (980803) 490 */ 491 492 static inline struct list_head *ptype_head(const struct packet_type *pt) 493 { 494 if (pt->type == htons(ETH_P_ALL)) 495 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 496 else 497 return pt->dev ? &pt->dev->ptype_specific : 498 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 499 } 500 501 /** 502 * dev_add_pack - add packet handler 503 * @pt: packet type declaration 504 * 505 * Add a protocol handler to the networking stack. The passed &packet_type 506 * is linked into kernel lists and may not be freed until it has been 507 * removed from the kernel lists. 508 * 509 * This call does not sleep therefore it can not 510 * guarantee all CPU's that are in middle of receiving packets 511 * will see the new packet type (until the next received packet). 512 */ 513 514 void dev_add_pack(struct packet_type *pt) 515 { 516 struct list_head *head = ptype_head(pt); 517 518 spin_lock(&ptype_lock); 519 list_add_rcu(&pt->list, head); 520 spin_unlock(&ptype_lock); 521 } 522 EXPORT_SYMBOL(dev_add_pack); 523 524 /** 525 * __dev_remove_pack - remove packet handler 526 * @pt: packet type declaration 527 * 528 * Remove a protocol handler that was previously added to the kernel 529 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 530 * from the kernel lists and can be freed or reused once this function 531 * returns. 532 * 533 * The packet type might still be in use by receivers 534 * and must not be freed until after all the CPU's have gone 535 * through a quiescent state. 536 */ 537 void __dev_remove_pack(struct packet_type *pt) 538 { 539 struct list_head *head = ptype_head(pt); 540 struct packet_type *pt1; 541 542 spin_lock(&ptype_lock); 543 544 list_for_each_entry(pt1, head, list) { 545 if (pt == pt1) { 546 list_del_rcu(&pt->list); 547 goto out; 548 } 549 } 550 551 pr_warn("dev_remove_pack: %p not found\n", pt); 552 out: 553 spin_unlock(&ptype_lock); 554 } 555 EXPORT_SYMBOL(__dev_remove_pack); 556 557 /** 558 * dev_remove_pack - remove packet handler 559 * @pt: packet type declaration 560 * 561 * Remove a protocol handler that was previously added to the kernel 562 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 563 * from the kernel lists and can be freed or reused once this function 564 * returns. 565 * 566 * This call sleeps to guarantee that no CPU is looking at the packet 567 * type after return. 568 */ 569 void dev_remove_pack(struct packet_type *pt) 570 { 571 __dev_remove_pack(pt); 572 573 synchronize_net(); 574 } 575 EXPORT_SYMBOL(dev_remove_pack); 576 577 578 /** 579 * dev_add_offload - register offload handlers 580 * @po: protocol offload declaration 581 * 582 * Add protocol offload handlers to the networking stack. The passed 583 * &proto_offload is linked into kernel lists and may not be freed until 584 * it has been removed from the kernel lists. 585 * 586 * This call does not sleep therefore it can not 587 * guarantee all CPU's that are in middle of receiving packets 588 * will see the new offload handlers (until the next received packet). 589 */ 590 void dev_add_offload(struct packet_offload *po) 591 { 592 struct packet_offload *elem; 593 594 spin_lock(&offload_lock); 595 list_for_each_entry(elem, &offload_base, list) { 596 if (po->priority < elem->priority) 597 break; 598 } 599 list_add_rcu(&po->list, elem->list.prev); 600 spin_unlock(&offload_lock); 601 } 602 EXPORT_SYMBOL(dev_add_offload); 603 604 /** 605 * __dev_remove_offload - remove offload handler 606 * @po: packet offload declaration 607 * 608 * Remove a protocol offload handler that was previously added to the 609 * kernel offload handlers by dev_add_offload(). The passed &offload_type 610 * is removed from the kernel lists and can be freed or reused once this 611 * function returns. 612 * 613 * The packet type might still be in use by receivers 614 * and must not be freed until after all the CPU's have gone 615 * through a quiescent state. 616 */ 617 static void __dev_remove_offload(struct packet_offload *po) 618 { 619 struct list_head *head = &offload_base; 620 struct packet_offload *po1; 621 622 spin_lock(&offload_lock); 623 624 list_for_each_entry(po1, head, list) { 625 if (po == po1) { 626 list_del_rcu(&po->list); 627 goto out; 628 } 629 } 630 631 pr_warn("dev_remove_offload: %p not found\n", po); 632 out: 633 spin_unlock(&offload_lock); 634 } 635 636 /** 637 * dev_remove_offload - remove packet offload handler 638 * @po: packet offload declaration 639 * 640 * Remove a packet offload handler that was previously added to the kernel 641 * offload handlers by dev_add_offload(). The passed &offload_type is 642 * removed from the kernel lists and can be freed or reused once this 643 * function returns. 644 * 645 * This call sleeps to guarantee that no CPU is looking at the packet 646 * type after return. 647 */ 648 void dev_remove_offload(struct packet_offload *po) 649 { 650 __dev_remove_offload(po); 651 652 synchronize_net(); 653 } 654 EXPORT_SYMBOL(dev_remove_offload); 655 656 /****************************************************************************** 657 * 658 * Device Boot-time Settings Routines 659 * 660 ******************************************************************************/ 661 662 /* Boot time configuration table */ 663 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 664 665 /** 666 * netdev_boot_setup_add - add new setup entry 667 * @name: name of the device 668 * @map: configured settings for the device 669 * 670 * Adds new setup entry to the dev_boot_setup list. The function 671 * returns 0 on error and 1 on success. This is a generic routine to 672 * all netdevices. 673 */ 674 static int netdev_boot_setup_add(char *name, struct ifmap *map) 675 { 676 struct netdev_boot_setup *s; 677 int i; 678 679 s = dev_boot_setup; 680 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 681 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 682 memset(s[i].name, 0, sizeof(s[i].name)); 683 strlcpy(s[i].name, name, IFNAMSIZ); 684 memcpy(&s[i].map, map, sizeof(s[i].map)); 685 break; 686 } 687 } 688 689 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 690 } 691 692 /** 693 * netdev_boot_setup_check - check boot time settings 694 * @dev: the netdevice 695 * 696 * Check boot time settings for the device. 697 * The found settings are set for the device to be used 698 * later in the device probing. 699 * Returns 0 if no settings found, 1 if they are. 700 */ 701 int netdev_boot_setup_check(struct net_device *dev) 702 { 703 struct netdev_boot_setup *s = dev_boot_setup; 704 int i; 705 706 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 707 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 708 !strcmp(dev->name, s[i].name)) { 709 dev->irq = s[i].map.irq; 710 dev->base_addr = s[i].map.base_addr; 711 dev->mem_start = s[i].map.mem_start; 712 dev->mem_end = s[i].map.mem_end; 713 return 1; 714 } 715 } 716 return 0; 717 } 718 EXPORT_SYMBOL(netdev_boot_setup_check); 719 720 721 /** 722 * netdev_boot_base - get address from boot time settings 723 * @prefix: prefix for network device 724 * @unit: id for network device 725 * 726 * Check boot time settings for the base address of device. 727 * The found settings are set for the device to be used 728 * later in the device probing. 729 * Returns 0 if no settings found. 730 */ 731 unsigned long netdev_boot_base(const char *prefix, int unit) 732 { 733 const struct netdev_boot_setup *s = dev_boot_setup; 734 char name[IFNAMSIZ]; 735 int i; 736 737 sprintf(name, "%s%d", prefix, unit); 738 739 /* 740 * If device already registered then return base of 1 741 * to indicate not to probe for this interface 742 */ 743 if (__dev_get_by_name(&init_net, name)) 744 return 1; 745 746 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 747 if (!strcmp(name, s[i].name)) 748 return s[i].map.base_addr; 749 return 0; 750 } 751 752 /* 753 * Saves at boot time configured settings for any netdevice. 754 */ 755 int __init netdev_boot_setup(char *str) 756 { 757 int ints[5]; 758 struct ifmap map; 759 760 str = get_options(str, ARRAY_SIZE(ints), ints); 761 if (!str || !*str) 762 return 0; 763 764 /* Save settings */ 765 memset(&map, 0, sizeof(map)); 766 if (ints[0] > 0) 767 map.irq = ints[1]; 768 if (ints[0] > 1) 769 map.base_addr = ints[2]; 770 if (ints[0] > 2) 771 map.mem_start = ints[3]; 772 if (ints[0] > 3) 773 map.mem_end = ints[4]; 774 775 /* Add new entry to the list */ 776 return netdev_boot_setup_add(str, &map); 777 } 778 779 __setup("netdev=", netdev_boot_setup); 780 781 /******************************************************************************* 782 * 783 * Device Interface Subroutines 784 * 785 *******************************************************************************/ 786 787 /** 788 * dev_get_iflink - get 'iflink' value of a interface 789 * @dev: targeted interface 790 * 791 * Indicates the ifindex the interface is linked to. 792 * Physical interfaces have the same 'ifindex' and 'iflink' values. 793 */ 794 795 int dev_get_iflink(const struct net_device *dev) 796 { 797 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 798 return dev->netdev_ops->ndo_get_iflink(dev); 799 800 return dev->ifindex; 801 } 802 EXPORT_SYMBOL(dev_get_iflink); 803 804 /** 805 * dev_fill_metadata_dst - Retrieve tunnel egress information. 806 * @dev: targeted interface 807 * @skb: The packet. 808 * 809 * For better visibility of tunnel traffic OVS needs to retrieve 810 * egress tunnel information for a packet. Following API allows 811 * user to get this info. 812 */ 813 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 814 { 815 struct ip_tunnel_info *info; 816 817 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 818 return -EINVAL; 819 820 info = skb_tunnel_info_unclone(skb); 821 if (!info) 822 return -ENOMEM; 823 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 824 return -EINVAL; 825 826 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 827 } 828 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 829 830 /** 831 * __dev_get_by_name - find a device by its name 832 * @net: the applicable net namespace 833 * @name: name to find 834 * 835 * Find an interface by name. Must be called under RTNL semaphore 836 * or @dev_base_lock. If the name is found a pointer to the device 837 * is returned. If the name is not found then %NULL is returned. The 838 * reference counters are not incremented so the caller must be 839 * careful with locks. 840 */ 841 842 struct net_device *__dev_get_by_name(struct net *net, const char *name) 843 { 844 struct netdev_name_node *node_name; 845 846 node_name = netdev_name_node_lookup(net, name); 847 return node_name ? node_name->dev : NULL; 848 } 849 EXPORT_SYMBOL(__dev_get_by_name); 850 851 /** 852 * dev_get_by_name_rcu - find a device by its name 853 * @net: the applicable net namespace 854 * @name: name to find 855 * 856 * Find an interface by name. 857 * If the name is found a pointer to the device is returned. 858 * If the name is not found then %NULL is returned. 859 * The reference counters are not incremented so the caller must be 860 * careful with locks. The caller must hold RCU lock. 861 */ 862 863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 864 { 865 struct netdev_name_node *node_name; 866 867 node_name = netdev_name_node_lookup_rcu(net, name); 868 return node_name ? node_name->dev : NULL; 869 } 870 EXPORT_SYMBOL(dev_get_by_name_rcu); 871 872 /** 873 * dev_get_by_name - find a device by its name 874 * @net: the applicable net namespace 875 * @name: name to find 876 * 877 * Find an interface by name. This can be called from any 878 * context and does its own locking. The returned handle has 879 * the usage count incremented and the caller must use dev_put() to 880 * release it when it is no longer needed. %NULL is returned if no 881 * matching device is found. 882 */ 883 884 struct net_device *dev_get_by_name(struct net *net, const char *name) 885 { 886 struct net_device *dev; 887 888 rcu_read_lock(); 889 dev = dev_get_by_name_rcu(net, name); 890 if (dev) 891 dev_hold(dev); 892 rcu_read_unlock(); 893 return dev; 894 } 895 EXPORT_SYMBOL(dev_get_by_name); 896 897 /** 898 * __dev_get_by_index - find a device by its ifindex 899 * @net: the applicable net namespace 900 * @ifindex: index of device 901 * 902 * Search for an interface by index. Returns %NULL if the device 903 * is not found or a pointer to the device. The device has not 904 * had its reference counter increased so the caller must be careful 905 * about locking. The caller must hold either the RTNL semaphore 906 * or @dev_base_lock. 907 */ 908 909 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 910 { 911 struct net_device *dev; 912 struct hlist_head *head = dev_index_hash(net, ifindex); 913 914 hlist_for_each_entry(dev, head, index_hlist) 915 if (dev->ifindex == ifindex) 916 return dev; 917 918 return NULL; 919 } 920 EXPORT_SYMBOL(__dev_get_by_index); 921 922 /** 923 * dev_get_by_index_rcu - find a device by its ifindex 924 * @net: the applicable net namespace 925 * @ifindex: index of device 926 * 927 * Search for an interface by index. Returns %NULL if the device 928 * is not found or a pointer to the device. The device has not 929 * had its reference counter increased so the caller must be careful 930 * about locking. The caller must hold RCU lock. 931 */ 932 933 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 934 { 935 struct net_device *dev; 936 struct hlist_head *head = dev_index_hash(net, ifindex); 937 938 hlist_for_each_entry_rcu(dev, head, index_hlist) 939 if (dev->ifindex == ifindex) 940 return dev; 941 942 return NULL; 943 } 944 EXPORT_SYMBOL(dev_get_by_index_rcu); 945 946 947 /** 948 * dev_get_by_index - find a device by its ifindex 949 * @net: the applicable net namespace 950 * @ifindex: index of device 951 * 952 * Search for an interface by index. Returns NULL if the device 953 * is not found or a pointer to the device. The device returned has 954 * had a reference added and the pointer is safe until the user calls 955 * dev_put to indicate they have finished with it. 956 */ 957 958 struct net_device *dev_get_by_index(struct net *net, int ifindex) 959 { 960 struct net_device *dev; 961 962 rcu_read_lock(); 963 dev = dev_get_by_index_rcu(net, ifindex); 964 if (dev) 965 dev_hold(dev); 966 rcu_read_unlock(); 967 return dev; 968 } 969 EXPORT_SYMBOL(dev_get_by_index); 970 971 /** 972 * dev_get_by_napi_id - find a device by napi_id 973 * @napi_id: ID of the NAPI struct 974 * 975 * Search for an interface by NAPI ID. Returns %NULL if the device 976 * is not found or a pointer to the device. The device has not had 977 * its reference counter increased so the caller must be careful 978 * about locking. The caller must hold RCU lock. 979 */ 980 981 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 982 { 983 struct napi_struct *napi; 984 985 WARN_ON_ONCE(!rcu_read_lock_held()); 986 987 if (napi_id < MIN_NAPI_ID) 988 return NULL; 989 990 napi = napi_by_id(napi_id); 991 992 return napi ? napi->dev : NULL; 993 } 994 EXPORT_SYMBOL(dev_get_by_napi_id); 995 996 /** 997 * netdev_get_name - get a netdevice name, knowing its ifindex. 998 * @net: network namespace 999 * @name: a pointer to the buffer where the name will be stored. 1000 * @ifindex: the ifindex of the interface to get the name from. 1001 * 1002 * The use of raw_seqcount_begin() and cond_resched() before 1003 * retrying is required as we want to give the writers a chance 1004 * to complete when CONFIG_PREEMPTION is not set. 1005 */ 1006 int netdev_get_name(struct net *net, char *name, int ifindex) 1007 { 1008 struct net_device *dev; 1009 unsigned int seq; 1010 1011 retry: 1012 seq = raw_seqcount_begin(&devnet_rename_seq); 1013 rcu_read_lock(); 1014 dev = dev_get_by_index_rcu(net, ifindex); 1015 if (!dev) { 1016 rcu_read_unlock(); 1017 return -ENODEV; 1018 } 1019 1020 strcpy(name, dev->name); 1021 rcu_read_unlock(); 1022 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 1023 cond_resched(); 1024 goto retry; 1025 } 1026 1027 return 0; 1028 } 1029 1030 /** 1031 * dev_getbyhwaddr_rcu - find a device by its hardware address 1032 * @net: the applicable net namespace 1033 * @type: media type of device 1034 * @ha: hardware address 1035 * 1036 * Search for an interface by MAC address. Returns NULL if the device 1037 * is not found or a pointer to the device. 1038 * The caller must hold RCU or RTNL. 1039 * The returned device has not had its ref count increased 1040 * and the caller must therefore be careful about locking 1041 * 1042 */ 1043 1044 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1045 const char *ha) 1046 { 1047 struct net_device *dev; 1048 1049 for_each_netdev_rcu(net, dev) 1050 if (dev->type == type && 1051 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1052 return dev; 1053 1054 return NULL; 1055 } 1056 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1057 1058 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1059 { 1060 struct net_device *dev; 1061 1062 ASSERT_RTNL(); 1063 for_each_netdev(net, dev) 1064 if (dev->type == type) 1065 return dev; 1066 1067 return NULL; 1068 } 1069 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1070 1071 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1072 { 1073 struct net_device *dev, *ret = NULL; 1074 1075 rcu_read_lock(); 1076 for_each_netdev_rcu(net, dev) 1077 if (dev->type == type) { 1078 dev_hold(dev); 1079 ret = dev; 1080 break; 1081 } 1082 rcu_read_unlock(); 1083 return ret; 1084 } 1085 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1086 1087 /** 1088 * __dev_get_by_flags - find any device with given flags 1089 * @net: the applicable net namespace 1090 * @if_flags: IFF_* values 1091 * @mask: bitmask of bits in if_flags to check 1092 * 1093 * Search for any interface with the given flags. Returns NULL if a device 1094 * is not found or a pointer to the device. Must be called inside 1095 * rtnl_lock(), and result refcount is unchanged. 1096 */ 1097 1098 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1099 unsigned short mask) 1100 { 1101 struct net_device *dev, *ret; 1102 1103 ASSERT_RTNL(); 1104 1105 ret = NULL; 1106 for_each_netdev(net, dev) { 1107 if (((dev->flags ^ if_flags) & mask) == 0) { 1108 ret = dev; 1109 break; 1110 } 1111 } 1112 return ret; 1113 } 1114 EXPORT_SYMBOL(__dev_get_by_flags); 1115 1116 /** 1117 * dev_valid_name - check if name is okay for network device 1118 * @name: name string 1119 * 1120 * Network device names need to be valid file names to 1121 * to allow sysfs to work. We also disallow any kind of 1122 * whitespace. 1123 */ 1124 bool dev_valid_name(const char *name) 1125 { 1126 if (*name == '\0') 1127 return false; 1128 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1129 return false; 1130 if (!strcmp(name, ".") || !strcmp(name, "..")) 1131 return false; 1132 1133 while (*name) { 1134 if (*name == '/' || *name == ':' || isspace(*name)) 1135 return false; 1136 name++; 1137 } 1138 return true; 1139 } 1140 EXPORT_SYMBOL(dev_valid_name); 1141 1142 /** 1143 * __dev_alloc_name - allocate a name for a device 1144 * @net: network namespace to allocate the device name in 1145 * @name: name format string 1146 * @buf: scratch buffer and result name string 1147 * 1148 * Passed a format string - eg "lt%d" it will try and find a suitable 1149 * id. It scans list of devices to build up a free map, then chooses 1150 * the first empty slot. The caller must hold the dev_base or rtnl lock 1151 * while allocating the name and adding the device in order to avoid 1152 * duplicates. 1153 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1154 * Returns the number of the unit assigned or a negative errno code. 1155 */ 1156 1157 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1158 { 1159 int i = 0; 1160 const char *p; 1161 const int max_netdevices = 8*PAGE_SIZE; 1162 unsigned long *inuse; 1163 struct net_device *d; 1164 1165 if (!dev_valid_name(name)) 1166 return -EINVAL; 1167 1168 p = strchr(name, '%'); 1169 if (p) { 1170 /* 1171 * Verify the string as this thing may have come from 1172 * the user. There must be either one "%d" and no other "%" 1173 * characters. 1174 */ 1175 if (p[1] != 'd' || strchr(p + 2, '%')) 1176 return -EINVAL; 1177 1178 /* Use one page as a bit array of possible slots */ 1179 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1180 if (!inuse) 1181 return -ENOMEM; 1182 1183 for_each_netdev(net, d) { 1184 if (!sscanf(d->name, name, &i)) 1185 continue; 1186 if (i < 0 || i >= max_netdevices) 1187 continue; 1188 1189 /* avoid cases where sscanf is not exact inverse of printf */ 1190 snprintf(buf, IFNAMSIZ, name, i); 1191 if (!strncmp(buf, d->name, IFNAMSIZ)) 1192 set_bit(i, inuse); 1193 } 1194 1195 i = find_first_zero_bit(inuse, max_netdevices); 1196 free_page((unsigned long) inuse); 1197 } 1198 1199 snprintf(buf, IFNAMSIZ, name, i); 1200 if (!__dev_get_by_name(net, buf)) 1201 return i; 1202 1203 /* It is possible to run out of possible slots 1204 * when the name is long and there isn't enough space left 1205 * for the digits, or if all bits are used. 1206 */ 1207 return -ENFILE; 1208 } 1209 1210 static int dev_alloc_name_ns(struct net *net, 1211 struct net_device *dev, 1212 const char *name) 1213 { 1214 char buf[IFNAMSIZ]; 1215 int ret; 1216 1217 BUG_ON(!net); 1218 ret = __dev_alloc_name(net, name, buf); 1219 if (ret >= 0) 1220 strlcpy(dev->name, buf, IFNAMSIZ); 1221 return ret; 1222 } 1223 1224 /** 1225 * dev_alloc_name - allocate a name for a device 1226 * @dev: device 1227 * @name: name format string 1228 * 1229 * Passed a format string - eg "lt%d" it will try and find a suitable 1230 * id. It scans list of devices to build up a free map, then chooses 1231 * the first empty slot. The caller must hold the dev_base or rtnl lock 1232 * while allocating the name and adding the device in order to avoid 1233 * duplicates. 1234 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1235 * Returns the number of the unit assigned or a negative errno code. 1236 */ 1237 1238 int dev_alloc_name(struct net_device *dev, const char *name) 1239 { 1240 return dev_alloc_name_ns(dev_net(dev), dev, name); 1241 } 1242 EXPORT_SYMBOL(dev_alloc_name); 1243 1244 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1245 const char *name) 1246 { 1247 BUG_ON(!net); 1248 1249 if (!dev_valid_name(name)) 1250 return -EINVAL; 1251 1252 if (strchr(name, '%')) 1253 return dev_alloc_name_ns(net, dev, name); 1254 else if (__dev_get_by_name(net, name)) 1255 return -EEXIST; 1256 else if (dev->name != name) 1257 strlcpy(dev->name, name, IFNAMSIZ); 1258 1259 return 0; 1260 } 1261 1262 /** 1263 * dev_change_name - change name of a device 1264 * @dev: device 1265 * @newname: name (or format string) must be at least IFNAMSIZ 1266 * 1267 * Change name of a device, can pass format strings "eth%d". 1268 * for wildcarding. 1269 */ 1270 int dev_change_name(struct net_device *dev, const char *newname) 1271 { 1272 unsigned char old_assign_type; 1273 char oldname[IFNAMSIZ]; 1274 int err = 0; 1275 int ret; 1276 struct net *net; 1277 1278 ASSERT_RTNL(); 1279 BUG_ON(!dev_net(dev)); 1280 1281 net = dev_net(dev); 1282 1283 /* Some auto-enslaved devices e.g. failover slaves are 1284 * special, as userspace might rename the device after 1285 * the interface had been brought up and running since 1286 * the point kernel initiated auto-enslavement. Allow 1287 * live name change even when these slave devices are 1288 * up and running. 1289 * 1290 * Typically, users of these auto-enslaving devices 1291 * don't actually care about slave name change, as 1292 * they are supposed to operate on master interface 1293 * directly. 1294 */ 1295 if (dev->flags & IFF_UP && 1296 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1297 return -EBUSY; 1298 1299 write_seqcount_begin(&devnet_rename_seq); 1300 1301 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1302 write_seqcount_end(&devnet_rename_seq); 1303 return 0; 1304 } 1305 1306 memcpy(oldname, dev->name, IFNAMSIZ); 1307 1308 err = dev_get_valid_name(net, dev, newname); 1309 if (err < 0) { 1310 write_seqcount_end(&devnet_rename_seq); 1311 return err; 1312 } 1313 1314 if (oldname[0] && !strchr(oldname, '%')) 1315 netdev_info(dev, "renamed from %s\n", oldname); 1316 1317 old_assign_type = dev->name_assign_type; 1318 dev->name_assign_type = NET_NAME_RENAMED; 1319 1320 rollback: 1321 ret = device_rename(&dev->dev, dev->name); 1322 if (ret) { 1323 memcpy(dev->name, oldname, IFNAMSIZ); 1324 dev->name_assign_type = old_assign_type; 1325 write_seqcount_end(&devnet_rename_seq); 1326 return ret; 1327 } 1328 1329 write_seqcount_end(&devnet_rename_seq); 1330 1331 netdev_adjacent_rename_links(dev, oldname); 1332 1333 write_lock_bh(&dev_base_lock); 1334 netdev_name_node_del(dev->name_node); 1335 write_unlock_bh(&dev_base_lock); 1336 1337 synchronize_rcu(); 1338 1339 write_lock_bh(&dev_base_lock); 1340 netdev_name_node_add(net, dev->name_node); 1341 write_unlock_bh(&dev_base_lock); 1342 1343 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1344 ret = notifier_to_errno(ret); 1345 1346 if (ret) { 1347 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1348 if (err >= 0) { 1349 err = ret; 1350 write_seqcount_begin(&devnet_rename_seq); 1351 memcpy(dev->name, oldname, IFNAMSIZ); 1352 memcpy(oldname, newname, IFNAMSIZ); 1353 dev->name_assign_type = old_assign_type; 1354 old_assign_type = NET_NAME_RENAMED; 1355 goto rollback; 1356 } else { 1357 pr_err("%s: name change rollback failed: %d\n", 1358 dev->name, ret); 1359 } 1360 } 1361 1362 return err; 1363 } 1364 1365 /** 1366 * dev_set_alias - change ifalias of a device 1367 * @dev: device 1368 * @alias: name up to IFALIASZ 1369 * @len: limit of bytes to copy from info 1370 * 1371 * Set ifalias for a device, 1372 */ 1373 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1374 { 1375 struct dev_ifalias *new_alias = NULL; 1376 1377 if (len >= IFALIASZ) 1378 return -EINVAL; 1379 1380 if (len) { 1381 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1382 if (!new_alias) 1383 return -ENOMEM; 1384 1385 memcpy(new_alias->ifalias, alias, len); 1386 new_alias->ifalias[len] = 0; 1387 } 1388 1389 mutex_lock(&ifalias_mutex); 1390 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1391 mutex_is_locked(&ifalias_mutex)); 1392 mutex_unlock(&ifalias_mutex); 1393 1394 if (new_alias) 1395 kfree_rcu(new_alias, rcuhead); 1396 1397 return len; 1398 } 1399 EXPORT_SYMBOL(dev_set_alias); 1400 1401 /** 1402 * dev_get_alias - get ifalias of a device 1403 * @dev: device 1404 * @name: buffer to store name of ifalias 1405 * @len: size of buffer 1406 * 1407 * get ifalias for a device. Caller must make sure dev cannot go 1408 * away, e.g. rcu read lock or own a reference count to device. 1409 */ 1410 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1411 { 1412 const struct dev_ifalias *alias; 1413 int ret = 0; 1414 1415 rcu_read_lock(); 1416 alias = rcu_dereference(dev->ifalias); 1417 if (alias) 1418 ret = snprintf(name, len, "%s", alias->ifalias); 1419 rcu_read_unlock(); 1420 1421 return ret; 1422 } 1423 1424 /** 1425 * netdev_features_change - device changes features 1426 * @dev: device to cause notification 1427 * 1428 * Called to indicate a device has changed features. 1429 */ 1430 void netdev_features_change(struct net_device *dev) 1431 { 1432 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1433 } 1434 EXPORT_SYMBOL(netdev_features_change); 1435 1436 /** 1437 * netdev_state_change - device changes state 1438 * @dev: device to cause notification 1439 * 1440 * Called to indicate a device has changed state. This function calls 1441 * the notifier chains for netdev_chain and sends a NEWLINK message 1442 * to the routing socket. 1443 */ 1444 void netdev_state_change(struct net_device *dev) 1445 { 1446 if (dev->flags & IFF_UP) { 1447 struct netdev_notifier_change_info change_info = { 1448 .info.dev = dev, 1449 }; 1450 1451 call_netdevice_notifiers_info(NETDEV_CHANGE, 1452 &change_info.info); 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1454 } 1455 } 1456 EXPORT_SYMBOL(netdev_state_change); 1457 1458 /** 1459 * netdev_notify_peers - notify network peers about existence of @dev 1460 * @dev: network device 1461 * 1462 * Generate traffic such that interested network peers are aware of 1463 * @dev, such as by generating a gratuitous ARP. This may be used when 1464 * a device wants to inform the rest of the network about some sort of 1465 * reconfiguration such as a failover event or virtual machine 1466 * migration. 1467 */ 1468 void netdev_notify_peers(struct net_device *dev) 1469 { 1470 rtnl_lock(); 1471 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1472 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1473 rtnl_unlock(); 1474 } 1475 EXPORT_SYMBOL(netdev_notify_peers); 1476 1477 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1478 { 1479 const struct net_device_ops *ops = dev->netdev_ops; 1480 int ret; 1481 1482 ASSERT_RTNL(); 1483 1484 if (!netif_device_present(dev)) 1485 return -ENODEV; 1486 1487 /* Block netpoll from trying to do any rx path servicing. 1488 * If we don't do this there is a chance ndo_poll_controller 1489 * or ndo_poll may be running while we open the device 1490 */ 1491 netpoll_poll_disable(dev); 1492 1493 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1494 ret = notifier_to_errno(ret); 1495 if (ret) 1496 return ret; 1497 1498 set_bit(__LINK_STATE_START, &dev->state); 1499 1500 if (ops->ndo_validate_addr) 1501 ret = ops->ndo_validate_addr(dev); 1502 1503 if (!ret && ops->ndo_open) 1504 ret = ops->ndo_open(dev); 1505 1506 netpoll_poll_enable(dev); 1507 1508 if (ret) 1509 clear_bit(__LINK_STATE_START, &dev->state); 1510 else { 1511 dev->flags |= IFF_UP; 1512 dev_set_rx_mode(dev); 1513 dev_activate(dev); 1514 add_device_randomness(dev->dev_addr, dev->addr_len); 1515 } 1516 1517 return ret; 1518 } 1519 1520 /** 1521 * dev_open - prepare an interface for use. 1522 * @dev: device to open 1523 * @extack: netlink extended ack 1524 * 1525 * Takes a device from down to up state. The device's private open 1526 * function is invoked and then the multicast lists are loaded. Finally 1527 * the device is moved into the up state and a %NETDEV_UP message is 1528 * sent to the netdev notifier chain. 1529 * 1530 * Calling this function on an active interface is a nop. On a failure 1531 * a negative errno code is returned. 1532 */ 1533 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1534 { 1535 int ret; 1536 1537 if (dev->flags & IFF_UP) 1538 return 0; 1539 1540 ret = __dev_open(dev, extack); 1541 if (ret < 0) 1542 return ret; 1543 1544 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1545 call_netdevice_notifiers(NETDEV_UP, dev); 1546 1547 return ret; 1548 } 1549 EXPORT_SYMBOL(dev_open); 1550 1551 static void __dev_close_many(struct list_head *head) 1552 { 1553 struct net_device *dev; 1554 1555 ASSERT_RTNL(); 1556 might_sleep(); 1557 1558 list_for_each_entry(dev, head, close_list) { 1559 /* Temporarily disable netpoll until the interface is down */ 1560 netpoll_poll_disable(dev); 1561 1562 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1563 1564 clear_bit(__LINK_STATE_START, &dev->state); 1565 1566 /* Synchronize to scheduled poll. We cannot touch poll list, it 1567 * can be even on different cpu. So just clear netif_running(). 1568 * 1569 * dev->stop() will invoke napi_disable() on all of it's 1570 * napi_struct instances on this device. 1571 */ 1572 smp_mb__after_atomic(); /* Commit netif_running(). */ 1573 } 1574 1575 dev_deactivate_many(head); 1576 1577 list_for_each_entry(dev, head, close_list) { 1578 const struct net_device_ops *ops = dev->netdev_ops; 1579 1580 /* 1581 * Call the device specific close. This cannot fail. 1582 * Only if device is UP 1583 * 1584 * We allow it to be called even after a DETACH hot-plug 1585 * event. 1586 */ 1587 if (ops->ndo_stop) 1588 ops->ndo_stop(dev); 1589 1590 dev->flags &= ~IFF_UP; 1591 netpoll_poll_enable(dev); 1592 } 1593 } 1594 1595 static void __dev_close(struct net_device *dev) 1596 { 1597 LIST_HEAD(single); 1598 1599 list_add(&dev->close_list, &single); 1600 __dev_close_many(&single); 1601 list_del(&single); 1602 } 1603 1604 void dev_close_many(struct list_head *head, bool unlink) 1605 { 1606 struct net_device *dev, *tmp; 1607 1608 /* Remove the devices that don't need to be closed */ 1609 list_for_each_entry_safe(dev, tmp, head, close_list) 1610 if (!(dev->flags & IFF_UP)) 1611 list_del_init(&dev->close_list); 1612 1613 __dev_close_many(head); 1614 1615 list_for_each_entry_safe(dev, tmp, head, close_list) { 1616 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1617 call_netdevice_notifiers(NETDEV_DOWN, dev); 1618 if (unlink) 1619 list_del_init(&dev->close_list); 1620 } 1621 } 1622 EXPORT_SYMBOL(dev_close_many); 1623 1624 /** 1625 * dev_close - shutdown an interface. 1626 * @dev: device to shutdown 1627 * 1628 * This function moves an active device into down state. A 1629 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1630 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1631 * chain. 1632 */ 1633 void dev_close(struct net_device *dev) 1634 { 1635 if (dev->flags & IFF_UP) { 1636 LIST_HEAD(single); 1637 1638 list_add(&dev->close_list, &single); 1639 dev_close_many(&single, true); 1640 list_del(&single); 1641 } 1642 } 1643 EXPORT_SYMBOL(dev_close); 1644 1645 1646 /** 1647 * dev_disable_lro - disable Large Receive Offload on a device 1648 * @dev: device 1649 * 1650 * Disable Large Receive Offload (LRO) on a net device. Must be 1651 * called under RTNL. This is needed if received packets may be 1652 * forwarded to another interface. 1653 */ 1654 void dev_disable_lro(struct net_device *dev) 1655 { 1656 struct net_device *lower_dev; 1657 struct list_head *iter; 1658 1659 dev->wanted_features &= ~NETIF_F_LRO; 1660 netdev_update_features(dev); 1661 1662 if (unlikely(dev->features & NETIF_F_LRO)) 1663 netdev_WARN(dev, "failed to disable LRO!\n"); 1664 1665 netdev_for_each_lower_dev(dev, lower_dev, iter) 1666 dev_disable_lro(lower_dev); 1667 } 1668 EXPORT_SYMBOL(dev_disable_lro); 1669 1670 /** 1671 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1672 * @dev: device 1673 * 1674 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1675 * called under RTNL. This is needed if Generic XDP is installed on 1676 * the device. 1677 */ 1678 static void dev_disable_gro_hw(struct net_device *dev) 1679 { 1680 dev->wanted_features &= ~NETIF_F_GRO_HW; 1681 netdev_update_features(dev); 1682 1683 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1684 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1685 } 1686 1687 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1688 { 1689 #define N(val) \ 1690 case NETDEV_##val: \ 1691 return "NETDEV_" __stringify(val); 1692 switch (cmd) { 1693 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1694 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1695 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1696 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1697 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1698 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1699 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1700 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1701 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1702 N(PRE_CHANGEADDR) 1703 } 1704 #undef N 1705 return "UNKNOWN_NETDEV_EVENT"; 1706 } 1707 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1708 1709 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1710 struct net_device *dev) 1711 { 1712 struct netdev_notifier_info info = { 1713 .dev = dev, 1714 }; 1715 1716 return nb->notifier_call(nb, val, &info); 1717 } 1718 1719 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1720 struct net_device *dev) 1721 { 1722 int err; 1723 1724 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1725 err = notifier_to_errno(err); 1726 if (err) 1727 return err; 1728 1729 if (!(dev->flags & IFF_UP)) 1730 return 0; 1731 1732 call_netdevice_notifier(nb, NETDEV_UP, dev); 1733 return 0; 1734 } 1735 1736 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1737 struct net_device *dev) 1738 { 1739 if (dev->flags & IFF_UP) { 1740 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1741 dev); 1742 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1743 } 1744 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1745 } 1746 1747 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1748 struct net *net) 1749 { 1750 struct net_device *dev; 1751 int err; 1752 1753 for_each_netdev(net, dev) { 1754 err = call_netdevice_register_notifiers(nb, dev); 1755 if (err) 1756 goto rollback; 1757 } 1758 return 0; 1759 1760 rollback: 1761 for_each_netdev_continue_reverse(net, dev) 1762 call_netdevice_unregister_notifiers(nb, dev); 1763 return err; 1764 } 1765 1766 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1767 struct net *net) 1768 { 1769 struct net_device *dev; 1770 1771 for_each_netdev(net, dev) 1772 call_netdevice_unregister_notifiers(nb, dev); 1773 } 1774 1775 static int dev_boot_phase = 1; 1776 1777 /** 1778 * register_netdevice_notifier - register a network notifier block 1779 * @nb: notifier 1780 * 1781 * Register a notifier to be called when network device events occur. 1782 * The notifier passed is linked into the kernel structures and must 1783 * not be reused until it has been unregistered. A negative errno code 1784 * is returned on a failure. 1785 * 1786 * When registered all registration and up events are replayed 1787 * to the new notifier to allow device to have a race free 1788 * view of the network device list. 1789 */ 1790 1791 int register_netdevice_notifier(struct notifier_block *nb) 1792 { 1793 struct net *net; 1794 int err; 1795 1796 /* Close race with setup_net() and cleanup_net() */ 1797 down_write(&pernet_ops_rwsem); 1798 rtnl_lock(); 1799 err = raw_notifier_chain_register(&netdev_chain, nb); 1800 if (err) 1801 goto unlock; 1802 if (dev_boot_phase) 1803 goto unlock; 1804 for_each_net(net) { 1805 err = call_netdevice_register_net_notifiers(nb, net); 1806 if (err) 1807 goto rollback; 1808 } 1809 1810 unlock: 1811 rtnl_unlock(); 1812 up_write(&pernet_ops_rwsem); 1813 return err; 1814 1815 rollback: 1816 for_each_net_continue_reverse(net) 1817 call_netdevice_unregister_net_notifiers(nb, net); 1818 1819 raw_notifier_chain_unregister(&netdev_chain, nb); 1820 goto unlock; 1821 } 1822 EXPORT_SYMBOL(register_netdevice_notifier); 1823 1824 /** 1825 * unregister_netdevice_notifier - unregister a network notifier block 1826 * @nb: notifier 1827 * 1828 * Unregister a notifier previously registered by 1829 * register_netdevice_notifier(). The notifier is unlinked into the 1830 * kernel structures and may then be reused. A negative errno code 1831 * is returned on a failure. 1832 * 1833 * After unregistering unregister and down device events are synthesized 1834 * for all devices on the device list to the removed notifier to remove 1835 * the need for special case cleanup code. 1836 */ 1837 1838 int unregister_netdevice_notifier(struct notifier_block *nb) 1839 { 1840 struct net *net; 1841 int err; 1842 1843 /* Close race with setup_net() and cleanup_net() */ 1844 down_write(&pernet_ops_rwsem); 1845 rtnl_lock(); 1846 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1847 if (err) 1848 goto unlock; 1849 1850 for_each_net(net) 1851 call_netdevice_unregister_net_notifiers(nb, net); 1852 1853 unlock: 1854 rtnl_unlock(); 1855 up_write(&pernet_ops_rwsem); 1856 return err; 1857 } 1858 EXPORT_SYMBOL(unregister_netdevice_notifier); 1859 1860 static int __register_netdevice_notifier_net(struct net *net, 1861 struct notifier_block *nb, 1862 bool ignore_call_fail) 1863 { 1864 int err; 1865 1866 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1867 if (err) 1868 return err; 1869 if (dev_boot_phase) 1870 return 0; 1871 1872 err = call_netdevice_register_net_notifiers(nb, net); 1873 if (err && !ignore_call_fail) 1874 goto chain_unregister; 1875 1876 return 0; 1877 1878 chain_unregister: 1879 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1880 return err; 1881 } 1882 1883 static int __unregister_netdevice_notifier_net(struct net *net, 1884 struct notifier_block *nb) 1885 { 1886 int err; 1887 1888 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1889 if (err) 1890 return err; 1891 1892 call_netdevice_unregister_net_notifiers(nb, net); 1893 return 0; 1894 } 1895 1896 /** 1897 * register_netdevice_notifier_net - register a per-netns network notifier block 1898 * @net: network namespace 1899 * @nb: notifier 1900 * 1901 * Register a notifier to be called when network device events occur. 1902 * The notifier passed is linked into the kernel structures and must 1903 * not be reused until it has been unregistered. A negative errno code 1904 * is returned on a failure. 1905 * 1906 * When registered all registration and up events are replayed 1907 * to the new notifier to allow device to have a race free 1908 * view of the network device list. 1909 */ 1910 1911 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1912 { 1913 int err; 1914 1915 rtnl_lock(); 1916 err = __register_netdevice_notifier_net(net, nb, false); 1917 rtnl_unlock(); 1918 return err; 1919 } 1920 EXPORT_SYMBOL(register_netdevice_notifier_net); 1921 1922 /** 1923 * unregister_netdevice_notifier_net - unregister a per-netns 1924 * network notifier block 1925 * @net: network namespace 1926 * @nb: notifier 1927 * 1928 * Unregister a notifier previously registered by 1929 * register_netdevice_notifier(). The notifier is unlinked into the 1930 * kernel structures and may then be reused. A negative errno code 1931 * is returned on a failure. 1932 * 1933 * After unregistering unregister and down device events are synthesized 1934 * for all devices on the device list to the removed notifier to remove 1935 * the need for special case cleanup code. 1936 */ 1937 1938 int unregister_netdevice_notifier_net(struct net *net, 1939 struct notifier_block *nb) 1940 { 1941 int err; 1942 1943 rtnl_lock(); 1944 err = __unregister_netdevice_notifier_net(net, nb); 1945 rtnl_unlock(); 1946 return err; 1947 } 1948 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1949 1950 int register_netdevice_notifier_dev_net(struct net_device *dev, 1951 struct notifier_block *nb, 1952 struct netdev_net_notifier *nn) 1953 { 1954 int err; 1955 1956 rtnl_lock(); 1957 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1958 if (!err) { 1959 nn->nb = nb; 1960 list_add(&nn->list, &dev->net_notifier_list); 1961 } 1962 rtnl_unlock(); 1963 return err; 1964 } 1965 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1966 1967 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1968 struct notifier_block *nb, 1969 struct netdev_net_notifier *nn) 1970 { 1971 int err; 1972 1973 rtnl_lock(); 1974 list_del(&nn->list); 1975 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1976 rtnl_unlock(); 1977 return err; 1978 } 1979 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1980 1981 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1982 struct net *net) 1983 { 1984 struct netdev_net_notifier *nn; 1985 1986 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1987 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1988 __register_netdevice_notifier_net(net, nn->nb, true); 1989 } 1990 } 1991 1992 /** 1993 * call_netdevice_notifiers_info - call all network notifier blocks 1994 * @val: value passed unmodified to notifier function 1995 * @info: notifier information data 1996 * 1997 * Call all network notifier blocks. Parameters and return value 1998 * are as for raw_notifier_call_chain(). 1999 */ 2000 2001 static int call_netdevice_notifiers_info(unsigned long val, 2002 struct netdev_notifier_info *info) 2003 { 2004 struct net *net = dev_net(info->dev); 2005 int ret; 2006 2007 ASSERT_RTNL(); 2008 2009 /* Run per-netns notifier block chain first, then run the global one. 2010 * Hopefully, one day, the global one is going to be removed after 2011 * all notifier block registrators get converted to be per-netns. 2012 */ 2013 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2014 if (ret & NOTIFY_STOP_MASK) 2015 return ret; 2016 return raw_notifier_call_chain(&netdev_chain, val, info); 2017 } 2018 2019 static int call_netdevice_notifiers_extack(unsigned long val, 2020 struct net_device *dev, 2021 struct netlink_ext_ack *extack) 2022 { 2023 struct netdev_notifier_info info = { 2024 .dev = dev, 2025 .extack = extack, 2026 }; 2027 2028 return call_netdevice_notifiers_info(val, &info); 2029 } 2030 2031 /** 2032 * call_netdevice_notifiers - call all network notifier blocks 2033 * @val: value passed unmodified to notifier function 2034 * @dev: net_device pointer passed unmodified to notifier function 2035 * 2036 * Call all network notifier blocks. Parameters and return value 2037 * are as for raw_notifier_call_chain(). 2038 */ 2039 2040 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2041 { 2042 return call_netdevice_notifiers_extack(val, dev, NULL); 2043 } 2044 EXPORT_SYMBOL(call_netdevice_notifiers); 2045 2046 /** 2047 * call_netdevice_notifiers_mtu - call all network notifier blocks 2048 * @val: value passed unmodified to notifier function 2049 * @dev: net_device pointer passed unmodified to notifier function 2050 * @arg: additional u32 argument passed to the notifier function 2051 * 2052 * Call all network notifier blocks. Parameters and return value 2053 * are as for raw_notifier_call_chain(). 2054 */ 2055 static int call_netdevice_notifiers_mtu(unsigned long val, 2056 struct net_device *dev, u32 arg) 2057 { 2058 struct netdev_notifier_info_ext info = { 2059 .info.dev = dev, 2060 .ext.mtu = arg, 2061 }; 2062 2063 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2064 2065 return call_netdevice_notifiers_info(val, &info.info); 2066 } 2067 2068 #ifdef CONFIG_NET_INGRESS 2069 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2070 2071 void net_inc_ingress_queue(void) 2072 { 2073 static_branch_inc(&ingress_needed_key); 2074 } 2075 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2076 2077 void net_dec_ingress_queue(void) 2078 { 2079 static_branch_dec(&ingress_needed_key); 2080 } 2081 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2082 #endif 2083 2084 #ifdef CONFIG_NET_EGRESS 2085 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2086 2087 void net_inc_egress_queue(void) 2088 { 2089 static_branch_inc(&egress_needed_key); 2090 } 2091 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2092 2093 void net_dec_egress_queue(void) 2094 { 2095 static_branch_dec(&egress_needed_key); 2096 } 2097 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2098 #endif 2099 2100 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2101 #ifdef CONFIG_JUMP_LABEL 2102 static atomic_t netstamp_needed_deferred; 2103 static atomic_t netstamp_wanted; 2104 static void netstamp_clear(struct work_struct *work) 2105 { 2106 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2107 int wanted; 2108 2109 wanted = atomic_add_return(deferred, &netstamp_wanted); 2110 if (wanted > 0) 2111 static_branch_enable(&netstamp_needed_key); 2112 else 2113 static_branch_disable(&netstamp_needed_key); 2114 } 2115 static DECLARE_WORK(netstamp_work, netstamp_clear); 2116 #endif 2117 2118 void net_enable_timestamp(void) 2119 { 2120 #ifdef CONFIG_JUMP_LABEL 2121 int wanted; 2122 2123 while (1) { 2124 wanted = atomic_read(&netstamp_wanted); 2125 if (wanted <= 0) 2126 break; 2127 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2128 return; 2129 } 2130 atomic_inc(&netstamp_needed_deferred); 2131 schedule_work(&netstamp_work); 2132 #else 2133 static_branch_inc(&netstamp_needed_key); 2134 #endif 2135 } 2136 EXPORT_SYMBOL(net_enable_timestamp); 2137 2138 void net_disable_timestamp(void) 2139 { 2140 #ifdef CONFIG_JUMP_LABEL 2141 int wanted; 2142 2143 while (1) { 2144 wanted = atomic_read(&netstamp_wanted); 2145 if (wanted <= 1) 2146 break; 2147 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2148 return; 2149 } 2150 atomic_dec(&netstamp_needed_deferred); 2151 schedule_work(&netstamp_work); 2152 #else 2153 static_branch_dec(&netstamp_needed_key); 2154 #endif 2155 } 2156 EXPORT_SYMBOL(net_disable_timestamp); 2157 2158 static inline void net_timestamp_set(struct sk_buff *skb) 2159 { 2160 skb->tstamp = 0; 2161 if (static_branch_unlikely(&netstamp_needed_key)) 2162 __net_timestamp(skb); 2163 } 2164 2165 #define net_timestamp_check(COND, SKB) \ 2166 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2167 if ((COND) && !(SKB)->tstamp) \ 2168 __net_timestamp(SKB); \ 2169 } \ 2170 2171 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2172 { 2173 unsigned int len; 2174 2175 if (!(dev->flags & IFF_UP)) 2176 return false; 2177 2178 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2179 if (skb->len <= len) 2180 return true; 2181 2182 /* if TSO is enabled, we don't care about the length as the packet 2183 * could be forwarded without being segmented before 2184 */ 2185 if (skb_is_gso(skb)) 2186 return true; 2187 2188 return false; 2189 } 2190 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2191 2192 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2193 { 2194 int ret = ____dev_forward_skb(dev, skb); 2195 2196 if (likely(!ret)) { 2197 skb->protocol = eth_type_trans(skb, dev); 2198 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2199 } 2200 2201 return ret; 2202 } 2203 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2204 2205 /** 2206 * dev_forward_skb - loopback an skb to another netif 2207 * 2208 * @dev: destination network device 2209 * @skb: buffer to forward 2210 * 2211 * return values: 2212 * NET_RX_SUCCESS (no congestion) 2213 * NET_RX_DROP (packet was dropped, but freed) 2214 * 2215 * dev_forward_skb can be used for injecting an skb from the 2216 * start_xmit function of one device into the receive queue 2217 * of another device. 2218 * 2219 * The receiving device may be in another namespace, so 2220 * we have to clear all information in the skb that could 2221 * impact namespace isolation. 2222 */ 2223 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2224 { 2225 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2226 } 2227 EXPORT_SYMBOL_GPL(dev_forward_skb); 2228 2229 static inline int deliver_skb(struct sk_buff *skb, 2230 struct packet_type *pt_prev, 2231 struct net_device *orig_dev) 2232 { 2233 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2234 return -ENOMEM; 2235 refcount_inc(&skb->users); 2236 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2237 } 2238 2239 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2240 struct packet_type **pt, 2241 struct net_device *orig_dev, 2242 __be16 type, 2243 struct list_head *ptype_list) 2244 { 2245 struct packet_type *ptype, *pt_prev = *pt; 2246 2247 list_for_each_entry_rcu(ptype, ptype_list, list) { 2248 if (ptype->type != type) 2249 continue; 2250 if (pt_prev) 2251 deliver_skb(skb, pt_prev, orig_dev); 2252 pt_prev = ptype; 2253 } 2254 *pt = pt_prev; 2255 } 2256 2257 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2258 { 2259 if (!ptype->af_packet_priv || !skb->sk) 2260 return false; 2261 2262 if (ptype->id_match) 2263 return ptype->id_match(ptype, skb->sk); 2264 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2265 return true; 2266 2267 return false; 2268 } 2269 2270 /** 2271 * dev_nit_active - return true if any network interface taps are in use 2272 * 2273 * @dev: network device to check for the presence of taps 2274 */ 2275 bool dev_nit_active(struct net_device *dev) 2276 { 2277 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2278 } 2279 EXPORT_SYMBOL_GPL(dev_nit_active); 2280 2281 /* 2282 * Support routine. Sends outgoing frames to any network 2283 * taps currently in use. 2284 */ 2285 2286 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2287 { 2288 struct packet_type *ptype; 2289 struct sk_buff *skb2 = NULL; 2290 struct packet_type *pt_prev = NULL; 2291 struct list_head *ptype_list = &ptype_all; 2292 2293 rcu_read_lock(); 2294 again: 2295 list_for_each_entry_rcu(ptype, ptype_list, list) { 2296 if (ptype->ignore_outgoing) 2297 continue; 2298 2299 /* Never send packets back to the socket 2300 * they originated from - MvS (miquels@drinkel.ow.org) 2301 */ 2302 if (skb_loop_sk(ptype, skb)) 2303 continue; 2304 2305 if (pt_prev) { 2306 deliver_skb(skb2, pt_prev, skb->dev); 2307 pt_prev = ptype; 2308 continue; 2309 } 2310 2311 /* need to clone skb, done only once */ 2312 skb2 = skb_clone(skb, GFP_ATOMIC); 2313 if (!skb2) 2314 goto out_unlock; 2315 2316 net_timestamp_set(skb2); 2317 2318 /* skb->nh should be correctly 2319 * set by sender, so that the second statement is 2320 * just protection against buggy protocols. 2321 */ 2322 skb_reset_mac_header(skb2); 2323 2324 if (skb_network_header(skb2) < skb2->data || 2325 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2326 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2327 ntohs(skb2->protocol), 2328 dev->name); 2329 skb_reset_network_header(skb2); 2330 } 2331 2332 skb2->transport_header = skb2->network_header; 2333 skb2->pkt_type = PACKET_OUTGOING; 2334 pt_prev = ptype; 2335 } 2336 2337 if (ptype_list == &ptype_all) { 2338 ptype_list = &dev->ptype_all; 2339 goto again; 2340 } 2341 out_unlock: 2342 if (pt_prev) { 2343 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2344 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2345 else 2346 kfree_skb(skb2); 2347 } 2348 rcu_read_unlock(); 2349 } 2350 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2351 2352 /** 2353 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2354 * @dev: Network device 2355 * @txq: number of queues available 2356 * 2357 * If real_num_tx_queues is changed the tc mappings may no longer be 2358 * valid. To resolve this verify the tc mapping remains valid and if 2359 * not NULL the mapping. With no priorities mapping to this 2360 * offset/count pair it will no longer be used. In the worst case TC0 2361 * is invalid nothing can be done so disable priority mappings. If is 2362 * expected that drivers will fix this mapping if they can before 2363 * calling netif_set_real_num_tx_queues. 2364 */ 2365 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2366 { 2367 int i; 2368 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2369 2370 /* If TC0 is invalidated disable TC mapping */ 2371 if (tc->offset + tc->count > txq) { 2372 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2373 dev->num_tc = 0; 2374 return; 2375 } 2376 2377 /* Invalidated prio to tc mappings set to TC0 */ 2378 for (i = 1; i < TC_BITMASK + 1; i++) { 2379 int q = netdev_get_prio_tc_map(dev, i); 2380 2381 tc = &dev->tc_to_txq[q]; 2382 if (tc->offset + tc->count > txq) { 2383 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2384 i, q); 2385 netdev_set_prio_tc_map(dev, i, 0); 2386 } 2387 } 2388 } 2389 2390 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2391 { 2392 if (dev->num_tc) { 2393 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2394 int i; 2395 2396 /* walk through the TCs and see if it falls into any of them */ 2397 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2398 if ((txq - tc->offset) < tc->count) 2399 return i; 2400 } 2401 2402 /* didn't find it, just return -1 to indicate no match */ 2403 return -1; 2404 } 2405 2406 return 0; 2407 } 2408 EXPORT_SYMBOL(netdev_txq_to_tc); 2409 2410 #ifdef CONFIG_XPS 2411 struct static_key xps_needed __read_mostly; 2412 EXPORT_SYMBOL(xps_needed); 2413 struct static_key xps_rxqs_needed __read_mostly; 2414 EXPORT_SYMBOL(xps_rxqs_needed); 2415 static DEFINE_MUTEX(xps_map_mutex); 2416 #define xmap_dereference(P) \ 2417 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2418 2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2420 int tci, u16 index) 2421 { 2422 struct xps_map *map = NULL; 2423 int pos; 2424 2425 if (dev_maps) 2426 map = xmap_dereference(dev_maps->attr_map[tci]); 2427 if (!map) 2428 return false; 2429 2430 for (pos = map->len; pos--;) { 2431 if (map->queues[pos] != index) 2432 continue; 2433 2434 if (map->len > 1) { 2435 map->queues[pos] = map->queues[--map->len]; 2436 break; 2437 } 2438 2439 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2440 kfree_rcu(map, rcu); 2441 return false; 2442 } 2443 2444 return true; 2445 } 2446 2447 static bool remove_xps_queue_cpu(struct net_device *dev, 2448 struct xps_dev_maps *dev_maps, 2449 int cpu, u16 offset, u16 count) 2450 { 2451 int num_tc = dev->num_tc ? : 1; 2452 bool active = false; 2453 int tci; 2454 2455 for (tci = cpu * num_tc; num_tc--; tci++) { 2456 int i, j; 2457 2458 for (i = count, j = offset; i--; j++) { 2459 if (!remove_xps_queue(dev_maps, tci, j)) 2460 break; 2461 } 2462 2463 active |= i < 0; 2464 } 2465 2466 return active; 2467 } 2468 2469 static void reset_xps_maps(struct net_device *dev, 2470 struct xps_dev_maps *dev_maps, 2471 bool is_rxqs_map) 2472 { 2473 if (is_rxqs_map) { 2474 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2475 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2476 } else { 2477 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2478 } 2479 static_key_slow_dec_cpuslocked(&xps_needed); 2480 kfree_rcu(dev_maps, rcu); 2481 } 2482 2483 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2484 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2485 u16 offset, u16 count, bool is_rxqs_map) 2486 { 2487 bool active = false; 2488 int i, j; 2489 2490 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2491 j < nr_ids;) 2492 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2493 count); 2494 if (!active) 2495 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2496 2497 if (!is_rxqs_map) { 2498 for (i = offset + (count - 1); count--; i--) { 2499 netdev_queue_numa_node_write( 2500 netdev_get_tx_queue(dev, i), 2501 NUMA_NO_NODE); 2502 } 2503 } 2504 } 2505 2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2507 u16 count) 2508 { 2509 const unsigned long *possible_mask = NULL; 2510 struct xps_dev_maps *dev_maps; 2511 unsigned int nr_ids; 2512 2513 if (!static_key_false(&xps_needed)) 2514 return; 2515 2516 cpus_read_lock(); 2517 mutex_lock(&xps_map_mutex); 2518 2519 if (static_key_false(&xps_rxqs_needed)) { 2520 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2521 if (dev_maps) { 2522 nr_ids = dev->num_rx_queues; 2523 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2524 offset, count, true); 2525 } 2526 } 2527 2528 dev_maps = xmap_dereference(dev->xps_cpus_map); 2529 if (!dev_maps) 2530 goto out_no_maps; 2531 2532 if (num_possible_cpus() > 1) 2533 possible_mask = cpumask_bits(cpu_possible_mask); 2534 nr_ids = nr_cpu_ids; 2535 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2536 false); 2537 2538 out_no_maps: 2539 mutex_unlock(&xps_map_mutex); 2540 cpus_read_unlock(); 2541 } 2542 2543 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2544 { 2545 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2546 } 2547 2548 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2549 u16 index, bool is_rxqs_map) 2550 { 2551 struct xps_map *new_map; 2552 int alloc_len = XPS_MIN_MAP_ALLOC; 2553 int i, pos; 2554 2555 for (pos = 0; map && pos < map->len; pos++) { 2556 if (map->queues[pos] != index) 2557 continue; 2558 return map; 2559 } 2560 2561 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2562 if (map) { 2563 if (pos < map->alloc_len) 2564 return map; 2565 2566 alloc_len = map->alloc_len * 2; 2567 } 2568 2569 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2570 * map 2571 */ 2572 if (is_rxqs_map) 2573 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2574 else 2575 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2576 cpu_to_node(attr_index)); 2577 if (!new_map) 2578 return NULL; 2579 2580 for (i = 0; i < pos; i++) 2581 new_map->queues[i] = map->queues[i]; 2582 new_map->alloc_len = alloc_len; 2583 new_map->len = pos; 2584 2585 return new_map; 2586 } 2587 2588 /* Must be called under cpus_read_lock */ 2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2590 u16 index, bool is_rxqs_map) 2591 { 2592 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2593 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2594 int i, j, tci, numa_node_id = -2; 2595 int maps_sz, num_tc = 1, tc = 0; 2596 struct xps_map *map, *new_map; 2597 bool active = false; 2598 unsigned int nr_ids; 2599 2600 if (dev->num_tc) { 2601 /* Do not allow XPS on subordinate device directly */ 2602 num_tc = dev->num_tc; 2603 if (num_tc < 0) 2604 return -EINVAL; 2605 2606 /* If queue belongs to subordinate dev use its map */ 2607 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2608 2609 tc = netdev_txq_to_tc(dev, index); 2610 if (tc < 0) 2611 return -EINVAL; 2612 } 2613 2614 mutex_lock(&xps_map_mutex); 2615 if (is_rxqs_map) { 2616 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2617 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2618 nr_ids = dev->num_rx_queues; 2619 } else { 2620 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2621 if (num_possible_cpus() > 1) { 2622 online_mask = cpumask_bits(cpu_online_mask); 2623 possible_mask = cpumask_bits(cpu_possible_mask); 2624 } 2625 dev_maps = xmap_dereference(dev->xps_cpus_map); 2626 nr_ids = nr_cpu_ids; 2627 } 2628 2629 if (maps_sz < L1_CACHE_BYTES) 2630 maps_sz = L1_CACHE_BYTES; 2631 2632 /* allocate memory for queue storage */ 2633 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2634 j < nr_ids;) { 2635 if (!new_dev_maps) 2636 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2637 if (!new_dev_maps) { 2638 mutex_unlock(&xps_map_mutex); 2639 return -ENOMEM; 2640 } 2641 2642 tci = j * num_tc + tc; 2643 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2644 NULL; 2645 2646 map = expand_xps_map(map, j, index, is_rxqs_map); 2647 if (!map) 2648 goto error; 2649 2650 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2651 } 2652 2653 if (!new_dev_maps) 2654 goto out_no_new_maps; 2655 2656 if (!dev_maps) { 2657 /* Increment static keys at most once per type */ 2658 static_key_slow_inc_cpuslocked(&xps_needed); 2659 if (is_rxqs_map) 2660 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2661 } 2662 2663 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2664 j < nr_ids;) { 2665 /* copy maps belonging to foreign traffic classes */ 2666 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2667 /* fill in the new device map from the old device map */ 2668 map = xmap_dereference(dev_maps->attr_map[tci]); 2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2670 } 2671 2672 /* We need to explicitly update tci as prevous loop 2673 * could break out early if dev_maps is NULL. 2674 */ 2675 tci = j * num_tc + tc; 2676 2677 if (netif_attr_test_mask(j, mask, nr_ids) && 2678 netif_attr_test_online(j, online_mask, nr_ids)) { 2679 /* add tx-queue to CPU/rx-queue maps */ 2680 int pos = 0; 2681 2682 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2683 while ((pos < map->len) && (map->queues[pos] != index)) 2684 pos++; 2685 2686 if (pos == map->len) 2687 map->queues[map->len++] = index; 2688 #ifdef CONFIG_NUMA 2689 if (!is_rxqs_map) { 2690 if (numa_node_id == -2) 2691 numa_node_id = cpu_to_node(j); 2692 else if (numa_node_id != cpu_to_node(j)) 2693 numa_node_id = -1; 2694 } 2695 #endif 2696 } else if (dev_maps) { 2697 /* fill in the new device map from the old device map */ 2698 map = xmap_dereference(dev_maps->attr_map[tci]); 2699 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2700 } 2701 2702 /* copy maps belonging to foreign traffic classes */ 2703 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2704 /* fill in the new device map from the old device map */ 2705 map = xmap_dereference(dev_maps->attr_map[tci]); 2706 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2707 } 2708 } 2709 2710 if (is_rxqs_map) 2711 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2712 else 2713 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2714 2715 /* Cleanup old maps */ 2716 if (!dev_maps) 2717 goto out_no_old_maps; 2718 2719 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2720 j < nr_ids;) { 2721 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2722 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2723 map = xmap_dereference(dev_maps->attr_map[tci]); 2724 if (map && map != new_map) 2725 kfree_rcu(map, rcu); 2726 } 2727 } 2728 2729 kfree_rcu(dev_maps, rcu); 2730 2731 out_no_old_maps: 2732 dev_maps = new_dev_maps; 2733 active = true; 2734 2735 out_no_new_maps: 2736 if (!is_rxqs_map) { 2737 /* update Tx queue numa node */ 2738 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2739 (numa_node_id >= 0) ? 2740 numa_node_id : NUMA_NO_NODE); 2741 } 2742 2743 if (!dev_maps) 2744 goto out_no_maps; 2745 2746 /* removes tx-queue from unused CPUs/rx-queues */ 2747 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2748 j < nr_ids;) { 2749 for (i = tc, tci = j * num_tc; i--; tci++) 2750 active |= remove_xps_queue(dev_maps, tci, index); 2751 if (!netif_attr_test_mask(j, mask, nr_ids) || 2752 !netif_attr_test_online(j, online_mask, nr_ids)) 2753 active |= remove_xps_queue(dev_maps, tci, index); 2754 for (i = num_tc - tc, tci++; --i; tci++) 2755 active |= remove_xps_queue(dev_maps, tci, index); 2756 } 2757 2758 /* free map if not active */ 2759 if (!active) 2760 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2761 2762 out_no_maps: 2763 mutex_unlock(&xps_map_mutex); 2764 2765 return 0; 2766 error: 2767 /* remove any maps that we added */ 2768 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2769 j < nr_ids;) { 2770 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2771 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2772 map = dev_maps ? 2773 xmap_dereference(dev_maps->attr_map[tci]) : 2774 NULL; 2775 if (new_map && new_map != map) 2776 kfree(new_map); 2777 } 2778 } 2779 2780 mutex_unlock(&xps_map_mutex); 2781 2782 kfree(new_dev_maps); 2783 return -ENOMEM; 2784 } 2785 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2786 2787 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2788 u16 index) 2789 { 2790 int ret; 2791 2792 cpus_read_lock(); 2793 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2794 cpus_read_unlock(); 2795 2796 return ret; 2797 } 2798 EXPORT_SYMBOL(netif_set_xps_queue); 2799 2800 #endif 2801 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2802 { 2803 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2804 2805 /* Unbind any subordinate channels */ 2806 while (txq-- != &dev->_tx[0]) { 2807 if (txq->sb_dev) 2808 netdev_unbind_sb_channel(dev, txq->sb_dev); 2809 } 2810 } 2811 2812 void netdev_reset_tc(struct net_device *dev) 2813 { 2814 #ifdef CONFIG_XPS 2815 netif_reset_xps_queues_gt(dev, 0); 2816 #endif 2817 netdev_unbind_all_sb_channels(dev); 2818 2819 /* Reset TC configuration of device */ 2820 dev->num_tc = 0; 2821 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2822 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2823 } 2824 EXPORT_SYMBOL(netdev_reset_tc); 2825 2826 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2827 { 2828 if (tc >= dev->num_tc) 2829 return -EINVAL; 2830 2831 #ifdef CONFIG_XPS 2832 netif_reset_xps_queues(dev, offset, count); 2833 #endif 2834 dev->tc_to_txq[tc].count = count; 2835 dev->tc_to_txq[tc].offset = offset; 2836 return 0; 2837 } 2838 EXPORT_SYMBOL(netdev_set_tc_queue); 2839 2840 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2841 { 2842 if (num_tc > TC_MAX_QUEUE) 2843 return -EINVAL; 2844 2845 #ifdef CONFIG_XPS 2846 netif_reset_xps_queues_gt(dev, 0); 2847 #endif 2848 netdev_unbind_all_sb_channels(dev); 2849 2850 dev->num_tc = num_tc; 2851 return 0; 2852 } 2853 EXPORT_SYMBOL(netdev_set_num_tc); 2854 2855 void netdev_unbind_sb_channel(struct net_device *dev, 2856 struct net_device *sb_dev) 2857 { 2858 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2859 2860 #ifdef CONFIG_XPS 2861 netif_reset_xps_queues_gt(sb_dev, 0); 2862 #endif 2863 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2864 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2865 2866 while (txq-- != &dev->_tx[0]) { 2867 if (txq->sb_dev == sb_dev) 2868 txq->sb_dev = NULL; 2869 } 2870 } 2871 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2872 2873 int netdev_bind_sb_channel_queue(struct net_device *dev, 2874 struct net_device *sb_dev, 2875 u8 tc, u16 count, u16 offset) 2876 { 2877 /* Make certain the sb_dev and dev are already configured */ 2878 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2879 return -EINVAL; 2880 2881 /* We cannot hand out queues we don't have */ 2882 if ((offset + count) > dev->real_num_tx_queues) 2883 return -EINVAL; 2884 2885 /* Record the mapping */ 2886 sb_dev->tc_to_txq[tc].count = count; 2887 sb_dev->tc_to_txq[tc].offset = offset; 2888 2889 /* Provide a way for Tx queue to find the tc_to_txq map or 2890 * XPS map for itself. 2891 */ 2892 while (count--) 2893 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2894 2895 return 0; 2896 } 2897 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2898 2899 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2900 { 2901 /* Do not use a multiqueue device to represent a subordinate channel */ 2902 if (netif_is_multiqueue(dev)) 2903 return -ENODEV; 2904 2905 /* We allow channels 1 - 32767 to be used for subordinate channels. 2906 * Channel 0 is meant to be "native" mode and used only to represent 2907 * the main root device. We allow writing 0 to reset the device back 2908 * to normal mode after being used as a subordinate channel. 2909 */ 2910 if (channel > S16_MAX) 2911 return -EINVAL; 2912 2913 dev->num_tc = -channel; 2914 2915 return 0; 2916 } 2917 EXPORT_SYMBOL(netdev_set_sb_channel); 2918 2919 /* 2920 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2921 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2922 */ 2923 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2924 { 2925 bool disabling; 2926 int rc; 2927 2928 disabling = txq < dev->real_num_tx_queues; 2929 2930 if (txq < 1 || txq > dev->num_tx_queues) 2931 return -EINVAL; 2932 2933 if (dev->reg_state == NETREG_REGISTERED || 2934 dev->reg_state == NETREG_UNREGISTERING) { 2935 ASSERT_RTNL(); 2936 2937 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2938 txq); 2939 if (rc) 2940 return rc; 2941 2942 if (dev->num_tc) 2943 netif_setup_tc(dev, txq); 2944 2945 dev->real_num_tx_queues = txq; 2946 2947 if (disabling) { 2948 synchronize_net(); 2949 qdisc_reset_all_tx_gt(dev, txq); 2950 #ifdef CONFIG_XPS 2951 netif_reset_xps_queues_gt(dev, txq); 2952 #endif 2953 } 2954 } else { 2955 dev->real_num_tx_queues = txq; 2956 } 2957 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2961 2962 #ifdef CONFIG_SYSFS 2963 /** 2964 * netif_set_real_num_rx_queues - set actual number of RX queues used 2965 * @dev: Network device 2966 * @rxq: Actual number of RX queues 2967 * 2968 * This must be called either with the rtnl_lock held or before 2969 * registration of the net device. Returns 0 on success, or a 2970 * negative error code. If called before registration, it always 2971 * succeeds. 2972 */ 2973 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2974 { 2975 int rc; 2976 2977 if (rxq < 1 || rxq > dev->num_rx_queues) 2978 return -EINVAL; 2979 2980 if (dev->reg_state == NETREG_REGISTERED) { 2981 ASSERT_RTNL(); 2982 2983 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2984 rxq); 2985 if (rc) 2986 return rc; 2987 } 2988 2989 dev->real_num_rx_queues = rxq; 2990 return 0; 2991 } 2992 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2993 #endif 2994 2995 /** 2996 * netif_get_num_default_rss_queues - default number of RSS queues 2997 * 2998 * This routine should set an upper limit on the number of RSS queues 2999 * used by default by multiqueue devices. 3000 */ 3001 int netif_get_num_default_rss_queues(void) 3002 { 3003 return is_kdump_kernel() ? 3004 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3005 } 3006 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3007 3008 static void __netif_reschedule(struct Qdisc *q) 3009 { 3010 struct softnet_data *sd; 3011 unsigned long flags; 3012 3013 local_irq_save(flags); 3014 sd = this_cpu_ptr(&softnet_data); 3015 q->next_sched = NULL; 3016 *sd->output_queue_tailp = q; 3017 sd->output_queue_tailp = &q->next_sched; 3018 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3019 local_irq_restore(flags); 3020 } 3021 3022 void __netif_schedule(struct Qdisc *q) 3023 { 3024 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3025 __netif_reschedule(q); 3026 } 3027 EXPORT_SYMBOL(__netif_schedule); 3028 3029 struct dev_kfree_skb_cb { 3030 enum skb_free_reason reason; 3031 }; 3032 3033 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3034 { 3035 return (struct dev_kfree_skb_cb *)skb->cb; 3036 } 3037 3038 void netif_schedule_queue(struct netdev_queue *txq) 3039 { 3040 rcu_read_lock(); 3041 if (!netif_xmit_stopped(txq)) { 3042 struct Qdisc *q = rcu_dereference(txq->qdisc); 3043 3044 __netif_schedule(q); 3045 } 3046 rcu_read_unlock(); 3047 } 3048 EXPORT_SYMBOL(netif_schedule_queue); 3049 3050 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3051 { 3052 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3053 struct Qdisc *q; 3054 3055 rcu_read_lock(); 3056 q = rcu_dereference(dev_queue->qdisc); 3057 __netif_schedule(q); 3058 rcu_read_unlock(); 3059 } 3060 } 3061 EXPORT_SYMBOL(netif_tx_wake_queue); 3062 3063 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3064 { 3065 unsigned long flags; 3066 3067 if (unlikely(!skb)) 3068 return; 3069 3070 if (likely(refcount_read(&skb->users) == 1)) { 3071 smp_rmb(); 3072 refcount_set(&skb->users, 0); 3073 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3074 return; 3075 } 3076 get_kfree_skb_cb(skb)->reason = reason; 3077 local_irq_save(flags); 3078 skb->next = __this_cpu_read(softnet_data.completion_queue); 3079 __this_cpu_write(softnet_data.completion_queue, skb); 3080 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3081 local_irq_restore(flags); 3082 } 3083 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3084 3085 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3086 { 3087 if (in_irq() || irqs_disabled()) 3088 __dev_kfree_skb_irq(skb, reason); 3089 else 3090 dev_kfree_skb(skb); 3091 } 3092 EXPORT_SYMBOL(__dev_kfree_skb_any); 3093 3094 3095 /** 3096 * netif_device_detach - mark device as removed 3097 * @dev: network device 3098 * 3099 * Mark device as removed from system and therefore no longer available. 3100 */ 3101 void netif_device_detach(struct net_device *dev) 3102 { 3103 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3104 netif_running(dev)) { 3105 netif_tx_stop_all_queues(dev); 3106 } 3107 } 3108 EXPORT_SYMBOL(netif_device_detach); 3109 3110 /** 3111 * netif_device_attach - mark device as attached 3112 * @dev: network device 3113 * 3114 * Mark device as attached from system and restart if needed. 3115 */ 3116 void netif_device_attach(struct net_device *dev) 3117 { 3118 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3119 netif_running(dev)) { 3120 netif_tx_wake_all_queues(dev); 3121 __netdev_watchdog_up(dev); 3122 } 3123 } 3124 EXPORT_SYMBOL(netif_device_attach); 3125 3126 /* 3127 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3128 * to be used as a distribution range. 3129 */ 3130 static u16 skb_tx_hash(const struct net_device *dev, 3131 const struct net_device *sb_dev, 3132 struct sk_buff *skb) 3133 { 3134 u32 hash; 3135 u16 qoffset = 0; 3136 u16 qcount = dev->real_num_tx_queues; 3137 3138 if (dev->num_tc) { 3139 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3140 3141 qoffset = sb_dev->tc_to_txq[tc].offset; 3142 qcount = sb_dev->tc_to_txq[tc].count; 3143 } 3144 3145 if (skb_rx_queue_recorded(skb)) { 3146 hash = skb_get_rx_queue(skb); 3147 if (hash >= qoffset) 3148 hash -= qoffset; 3149 while (unlikely(hash >= qcount)) 3150 hash -= qcount; 3151 return hash + qoffset; 3152 } 3153 3154 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3155 } 3156 3157 static void skb_warn_bad_offload(const struct sk_buff *skb) 3158 { 3159 static const netdev_features_t null_features; 3160 struct net_device *dev = skb->dev; 3161 const char *name = ""; 3162 3163 if (!net_ratelimit()) 3164 return; 3165 3166 if (dev) { 3167 if (dev->dev.parent) 3168 name = dev_driver_string(dev->dev.parent); 3169 else 3170 name = netdev_name(dev); 3171 } 3172 skb_dump(KERN_WARNING, skb, false); 3173 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3174 name, dev ? &dev->features : &null_features, 3175 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3176 } 3177 3178 /* 3179 * Invalidate hardware checksum when packet is to be mangled, and 3180 * complete checksum manually on outgoing path. 3181 */ 3182 int skb_checksum_help(struct sk_buff *skb) 3183 { 3184 __wsum csum; 3185 int ret = 0, offset; 3186 3187 if (skb->ip_summed == CHECKSUM_COMPLETE) 3188 goto out_set_summed; 3189 3190 if (unlikely(skb_shinfo(skb)->gso_size)) { 3191 skb_warn_bad_offload(skb); 3192 return -EINVAL; 3193 } 3194 3195 /* Before computing a checksum, we should make sure no frag could 3196 * be modified by an external entity : checksum could be wrong. 3197 */ 3198 if (skb_has_shared_frag(skb)) { 3199 ret = __skb_linearize(skb); 3200 if (ret) 3201 goto out; 3202 } 3203 3204 offset = skb_checksum_start_offset(skb); 3205 BUG_ON(offset >= skb_headlen(skb)); 3206 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3207 3208 offset += skb->csum_offset; 3209 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3210 3211 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3212 if (ret) 3213 goto out; 3214 3215 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3216 out_set_summed: 3217 skb->ip_summed = CHECKSUM_NONE; 3218 out: 3219 return ret; 3220 } 3221 EXPORT_SYMBOL(skb_checksum_help); 3222 3223 int skb_crc32c_csum_help(struct sk_buff *skb) 3224 { 3225 __le32 crc32c_csum; 3226 int ret = 0, offset, start; 3227 3228 if (skb->ip_summed != CHECKSUM_PARTIAL) 3229 goto out; 3230 3231 if (unlikely(skb_is_gso(skb))) 3232 goto out; 3233 3234 /* Before computing a checksum, we should make sure no frag could 3235 * be modified by an external entity : checksum could be wrong. 3236 */ 3237 if (unlikely(skb_has_shared_frag(skb))) { 3238 ret = __skb_linearize(skb); 3239 if (ret) 3240 goto out; 3241 } 3242 start = skb_checksum_start_offset(skb); 3243 offset = start + offsetof(struct sctphdr, checksum); 3244 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3245 ret = -EINVAL; 3246 goto out; 3247 } 3248 3249 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3250 if (ret) 3251 goto out; 3252 3253 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3254 skb->len - start, ~(__u32)0, 3255 crc32c_csum_stub)); 3256 *(__le32 *)(skb->data + offset) = crc32c_csum; 3257 skb->ip_summed = CHECKSUM_NONE; 3258 skb->csum_not_inet = 0; 3259 out: 3260 return ret; 3261 } 3262 3263 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3264 { 3265 __be16 type = skb->protocol; 3266 3267 /* Tunnel gso handlers can set protocol to ethernet. */ 3268 if (type == htons(ETH_P_TEB)) { 3269 struct ethhdr *eth; 3270 3271 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3272 return 0; 3273 3274 eth = (struct ethhdr *)skb->data; 3275 type = eth->h_proto; 3276 } 3277 3278 return __vlan_get_protocol(skb, type, depth); 3279 } 3280 3281 /** 3282 * skb_mac_gso_segment - mac layer segmentation handler. 3283 * @skb: buffer to segment 3284 * @features: features for the output path (see dev->features) 3285 */ 3286 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3287 netdev_features_t features) 3288 { 3289 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3290 struct packet_offload *ptype; 3291 int vlan_depth = skb->mac_len; 3292 __be16 type = skb_network_protocol(skb, &vlan_depth); 3293 3294 if (unlikely(!type)) 3295 return ERR_PTR(-EINVAL); 3296 3297 __skb_pull(skb, vlan_depth); 3298 3299 rcu_read_lock(); 3300 list_for_each_entry_rcu(ptype, &offload_base, list) { 3301 if (ptype->type == type && ptype->callbacks.gso_segment) { 3302 segs = ptype->callbacks.gso_segment(skb, features); 3303 break; 3304 } 3305 } 3306 rcu_read_unlock(); 3307 3308 __skb_push(skb, skb->data - skb_mac_header(skb)); 3309 3310 return segs; 3311 } 3312 EXPORT_SYMBOL(skb_mac_gso_segment); 3313 3314 3315 /* openvswitch calls this on rx path, so we need a different check. 3316 */ 3317 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3318 { 3319 if (tx_path) 3320 return skb->ip_summed != CHECKSUM_PARTIAL && 3321 skb->ip_summed != CHECKSUM_UNNECESSARY; 3322 3323 return skb->ip_summed == CHECKSUM_NONE; 3324 } 3325 3326 /** 3327 * __skb_gso_segment - Perform segmentation on skb. 3328 * @skb: buffer to segment 3329 * @features: features for the output path (see dev->features) 3330 * @tx_path: whether it is called in TX path 3331 * 3332 * This function segments the given skb and returns a list of segments. 3333 * 3334 * It may return NULL if the skb requires no segmentation. This is 3335 * only possible when GSO is used for verifying header integrity. 3336 * 3337 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3338 */ 3339 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3340 netdev_features_t features, bool tx_path) 3341 { 3342 struct sk_buff *segs; 3343 3344 if (unlikely(skb_needs_check(skb, tx_path))) { 3345 int err; 3346 3347 /* We're going to init ->check field in TCP or UDP header */ 3348 err = skb_cow_head(skb, 0); 3349 if (err < 0) 3350 return ERR_PTR(err); 3351 } 3352 3353 /* Only report GSO partial support if it will enable us to 3354 * support segmentation on this frame without needing additional 3355 * work. 3356 */ 3357 if (features & NETIF_F_GSO_PARTIAL) { 3358 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3359 struct net_device *dev = skb->dev; 3360 3361 partial_features |= dev->features & dev->gso_partial_features; 3362 if (!skb_gso_ok(skb, features | partial_features)) 3363 features &= ~NETIF_F_GSO_PARTIAL; 3364 } 3365 3366 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3367 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3368 3369 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3370 SKB_GSO_CB(skb)->encap_level = 0; 3371 3372 skb_reset_mac_header(skb); 3373 skb_reset_mac_len(skb); 3374 3375 segs = skb_mac_gso_segment(skb, features); 3376 3377 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3378 skb_warn_bad_offload(skb); 3379 3380 return segs; 3381 } 3382 EXPORT_SYMBOL(__skb_gso_segment); 3383 3384 /* Take action when hardware reception checksum errors are detected. */ 3385 #ifdef CONFIG_BUG 3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3387 { 3388 if (net_ratelimit()) { 3389 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3390 skb_dump(KERN_ERR, skb, true); 3391 dump_stack(); 3392 } 3393 } 3394 EXPORT_SYMBOL(netdev_rx_csum_fault); 3395 #endif 3396 3397 /* XXX: check that highmem exists at all on the given machine. */ 3398 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3399 { 3400 #ifdef CONFIG_HIGHMEM 3401 int i; 3402 3403 if (!(dev->features & NETIF_F_HIGHDMA)) { 3404 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3405 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3406 3407 if (PageHighMem(skb_frag_page(frag))) 3408 return 1; 3409 } 3410 } 3411 #endif 3412 return 0; 3413 } 3414 3415 /* If MPLS offload request, verify we are testing hardware MPLS features 3416 * instead of standard features for the netdev. 3417 */ 3418 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3419 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3420 netdev_features_t features, 3421 __be16 type) 3422 { 3423 if (eth_p_mpls(type)) 3424 features &= skb->dev->mpls_features; 3425 3426 return features; 3427 } 3428 #else 3429 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3430 netdev_features_t features, 3431 __be16 type) 3432 { 3433 return features; 3434 } 3435 #endif 3436 3437 static netdev_features_t harmonize_features(struct sk_buff *skb, 3438 netdev_features_t features) 3439 { 3440 int tmp; 3441 __be16 type; 3442 3443 type = skb_network_protocol(skb, &tmp); 3444 features = net_mpls_features(skb, features, type); 3445 3446 if (skb->ip_summed != CHECKSUM_NONE && 3447 !can_checksum_protocol(features, type)) { 3448 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3449 } 3450 if (illegal_highdma(skb->dev, skb)) 3451 features &= ~NETIF_F_SG; 3452 3453 return features; 3454 } 3455 3456 netdev_features_t passthru_features_check(struct sk_buff *skb, 3457 struct net_device *dev, 3458 netdev_features_t features) 3459 { 3460 return features; 3461 } 3462 EXPORT_SYMBOL(passthru_features_check); 3463 3464 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3465 struct net_device *dev, 3466 netdev_features_t features) 3467 { 3468 return vlan_features_check(skb, features); 3469 } 3470 3471 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3472 struct net_device *dev, 3473 netdev_features_t features) 3474 { 3475 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3476 3477 if (gso_segs > dev->gso_max_segs) 3478 return features & ~NETIF_F_GSO_MASK; 3479 3480 /* Support for GSO partial features requires software 3481 * intervention before we can actually process the packets 3482 * so we need to strip support for any partial features now 3483 * and we can pull them back in after we have partially 3484 * segmented the frame. 3485 */ 3486 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3487 features &= ~dev->gso_partial_features; 3488 3489 /* Make sure to clear the IPv4 ID mangling feature if the 3490 * IPv4 header has the potential to be fragmented. 3491 */ 3492 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3493 struct iphdr *iph = skb->encapsulation ? 3494 inner_ip_hdr(skb) : ip_hdr(skb); 3495 3496 if (!(iph->frag_off & htons(IP_DF))) 3497 features &= ~NETIF_F_TSO_MANGLEID; 3498 } 3499 3500 return features; 3501 } 3502 3503 netdev_features_t netif_skb_features(struct sk_buff *skb) 3504 { 3505 struct net_device *dev = skb->dev; 3506 netdev_features_t features = dev->features; 3507 3508 if (skb_is_gso(skb)) 3509 features = gso_features_check(skb, dev, features); 3510 3511 /* If encapsulation offload request, verify we are testing 3512 * hardware encapsulation features instead of standard 3513 * features for the netdev 3514 */ 3515 if (skb->encapsulation) 3516 features &= dev->hw_enc_features; 3517 3518 if (skb_vlan_tagged(skb)) 3519 features = netdev_intersect_features(features, 3520 dev->vlan_features | 3521 NETIF_F_HW_VLAN_CTAG_TX | 3522 NETIF_F_HW_VLAN_STAG_TX); 3523 3524 if (dev->netdev_ops->ndo_features_check) 3525 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3526 features); 3527 else 3528 features &= dflt_features_check(skb, dev, features); 3529 3530 return harmonize_features(skb, features); 3531 } 3532 EXPORT_SYMBOL(netif_skb_features); 3533 3534 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3535 struct netdev_queue *txq, bool more) 3536 { 3537 unsigned int len; 3538 int rc; 3539 3540 if (dev_nit_active(dev)) 3541 dev_queue_xmit_nit(skb, dev); 3542 3543 len = skb->len; 3544 trace_net_dev_start_xmit(skb, dev); 3545 rc = netdev_start_xmit(skb, dev, txq, more); 3546 trace_net_dev_xmit(skb, rc, dev, len); 3547 3548 return rc; 3549 } 3550 3551 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3552 struct netdev_queue *txq, int *ret) 3553 { 3554 struct sk_buff *skb = first; 3555 int rc = NETDEV_TX_OK; 3556 3557 while (skb) { 3558 struct sk_buff *next = skb->next; 3559 3560 skb_mark_not_on_list(skb); 3561 rc = xmit_one(skb, dev, txq, next != NULL); 3562 if (unlikely(!dev_xmit_complete(rc))) { 3563 skb->next = next; 3564 goto out; 3565 } 3566 3567 skb = next; 3568 if (netif_tx_queue_stopped(txq) && skb) { 3569 rc = NETDEV_TX_BUSY; 3570 break; 3571 } 3572 } 3573 3574 out: 3575 *ret = rc; 3576 return skb; 3577 } 3578 3579 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3580 netdev_features_t features) 3581 { 3582 if (skb_vlan_tag_present(skb) && 3583 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3584 skb = __vlan_hwaccel_push_inside(skb); 3585 return skb; 3586 } 3587 3588 int skb_csum_hwoffload_help(struct sk_buff *skb, 3589 const netdev_features_t features) 3590 { 3591 if (unlikely(skb->csum_not_inet)) 3592 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3593 skb_crc32c_csum_help(skb); 3594 3595 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3596 } 3597 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3598 3599 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3600 { 3601 netdev_features_t features; 3602 3603 features = netif_skb_features(skb); 3604 skb = validate_xmit_vlan(skb, features); 3605 if (unlikely(!skb)) 3606 goto out_null; 3607 3608 skb = sk_validate_xmit_skb(skb, dev); 3609 if (unlikely(!skb)) 3610 goto out_null; 3611 3612 if (netif_needs_gso(skb, features)) { 3613 struct sk_buff *segs; 3614 3615 segs = skb_gso_segment(skb, features); 3616 if (IS_ERR(segs)) { 3617 goto out_kfree_skb; 3618 } else if (segs) { 3619 consume_skb(skb); 3620 skb = segs; 3621 } 3622 } else { 3623 if (skb_needs_linearize(skb, features) && 3624 __skb_linearize(skb)) 3625 goto out_kfree_skb; 3626 3627 /* If packet is not checksummed and device does not 3628 * support checksumming for this protocol, complete 3629 * checksumming here. 3630 */ 3631 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3632 if (skb->encapsulation) 3633 skb_set_inner_transport_header(skb, 3634 skb_checksum_start_offset(skb)); 3635 else 3636 skb_set_transport_header(skb, 3637 skb_checksum_start_offset(skb)); 3638 if (skb_csum_hwoffload_help(skb, features)) 3639 goto out_kfree_skb; 3640 } 3641 } 3642 3643 skb = validate_xmit_xfrm(skb, features, again); 3644 3645 return skb; 3646 3647 out_kfree_skb: 3648 kfree_skb(skb); 3649 out_null: 3650 atomic_long_inc(&dev->tx_dropped); 3651 return NULL; 3652 } 3653 3654 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3655 { 3656 struct sk_buff *next, *head = NULL, *tail; 3657 3658 for (; skb != NULL; skb = next) { 3659 next = skb->next; 3660 skb_mark_not_on_list(skb); 3661 3662 /* in case skb wont be segmented, point to itself */ 3663 skb->prev = skb; 3664 3665 skb = validate_xmit_skb(skb, dev, again); 3666 if (!skb) 3667 continue; 3668 3669 if (!head) 3670 head = skb; 3671 else 3672 tail->next = skb; 3673 /* If skb was segmented, skb->prev points to 3674 * the last segment. If not, it still contains skb. 3675 */ 3676 tail = skb->prev; 3677 } 3678 return head; 3679 } 3680 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3681 3682 static void qdisc_pkt_len_init(struct sk_buff *skb) 3683 { 3684 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3685 3686 qdisc_skb_cb(skb)->pkt_len = skb->len; 3687 3688 /* To get more precise estimation of bytes sent on wire, 3689 * we add to pkt_len the headers size of all segments 3690 */ 3691 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3692 unsigned int hdr_len; 3693 u16 gso_segs = shinfo->gso_segs; 3694 3695 /* mac layer + network layer */ 3696 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3697 3698 /* + transport layer */ 3699 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3700 const struct tcphdr *th; 3701 struct tcphdr _tcphdr; 3702 3703 th = skb_header_pointer(skb, skb_transport_offset(skb), 3704 sizeof(_tcphdr), &_tcphdr); 3705 if (likely(th)) 3706 hdr_len += __tcp_hdrlen(th); 3707 } else { 3708 struct udphdr _udphdr; 3709 3710 if (skb_header_pointer(skb, skb_transport_offset(skb), 3711 sizeof(_udphdr), &_udphdr)) 3712 hdr_len += sizeof(struct udphdr); 3713 } 3714 3715 if (shinfo->gso_type & SKB_GSO_DODGY) 3716 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3717 shinfo->gso_size); 3718 3719 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3720 } 3721 } 3722 3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3724 struct net_device *dev, 3725 struct netdev_queue *txq) 3726 { 3727 spinlock_t *root_lock = qdisc_lock(q); 3728 struct sk_buff *to_free = NULL; 3729 bool contended; 3730 int rc; 3731 3732 qdisc_calculate_pkt_len(skb, q); 3733 3734 if (q->flags & TCQ_F_NOLOCK) { 3735 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3736 qdisc_run(q); 3737 3738 if (unlikely(to_free)) 3739 kfree_skb_list(to_free); 3740 return rc; 3741 } 3742 3743 /* 3744 * Heuristic to force contended enqueues to serialize on a 3745 * separate lock before trying to get qdisc main lock. 3746 * This permits qdisc->running owner to get the lock more 3747 * often and dequeue packets faster. 3748 */ 3749 contended = qdisc_is_running(q); 3750 if (unlikely(contended)) 3751 spin_lock(&q->busylock); 3752 3753 spin_lock(root_lock); 3754 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3755 __qdisc_drop(skb, &to_free); 3756 rc = NET_XMIT_DROP; 3757 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3758 qdisc_run_begin(q)) { 3759 /* 3760 * This is a work-conserving queue; there are no old skbs 3761 * waiting to be sent out; and the qdisc is not running - 3762 * xmit the skb directly. 3763 */ 3764 3765 qdisc_bstats_update(q, skb); 3766 3767 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3768 if (unlikely(contended)) { 3769 spin_unlock(&q->busylock); 3770 contended = false; 3771 } 3772 __qdisc_run(q); 3773 } 3774 3775 qdisc_run_end(q); 3776 rc = NET_XMIT_SUCCESS; 3777 } else { 3778 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3779 if (qdisc_run_begin(q)) { 3780 if (unlikely(contended)) { 3781 spin_unlock(&q->busylock); 3782 contended = false; 3783 } 3784 __qdisc_run(q); 3785 qdisc_run_end(q); 3786 } 3787 } 3788 spin_unlock(root_lock); 3789 if (unlikely(to_free)) 3790 kfree_skb_list(to_free); 3791 if (unlikely(contended)) 3792 spin_unlock(&q->busylock); 3793 return rc; 3794 } 3795 3796 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3797 static void skb_update_prio(struct sk_buff *skb) 3798 { 3799 const struct netprio_map *map; 3800 const struct sock *sk; 3801 unsigned int prioidx; 3802 3803 if (skb->priority) 3804 return; 3805 map = rcu_dereference_bh(skb->dev->priomap); 3806 if (!map) 3807 return; 3808 sk = skb_to_full_sk(skb); 3809 if (!sk) 3810 return; 3811 3812 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3813 3814 if (prioidx < map->priomap_len) 3815 skb->priority = map->priomap[prioidx]; 3816 } 3817 #else 3818 #define skb_update_prio(skb) 3819 #endif 3820 3821 /** 3822 * dev_loopback_xmit - loop back @skb 3823 * @net: network namespace this loopback is happening in 3824 * @sk: sk needed to be a netfilter okfn 3825 * @skb: buffer to transmit 3826 */ 3827 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3828 { 3829 skb_reset_mac_header(skb); 3830 __skb_pull(skb, skb_network_offset(skb)); 3831 skb->pkt_type = PACKET_LOOPBACK; 3832 skb->ip_summed = CHECKSUM_UNNECESSARY; 3833 WARN_ON(!skb_dst(skb)); 3834 skb_dst_force(skb); 3835 netif_rx_ni(skb); 3836 return 0; 3837 } 3838 EXPORT_SYMBOL(dev_loopback_xmit); 3839 3840 #ifdef CONFIG_NET_EGRESS 3841 static struct sk_buff * 3842 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3843 { 3844 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3845 struct tcf_result cl_res; 3846 3847 if (!miniq) 3848 return skb; 3849 3850 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3851 mini_qdisc_bstats_cpu_update(miniq, skb); 3852 3853 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3854 case TC_ACT_OK: 3855 case TC_ACT_RECLASSIFY: 3856 skb->tc_index = TC_H_MIN(cl_res.classid); 3857 break; 3858 case TC_ACT_SHOT: 3859 mini_qdisc_qstats_cpu_drop(miniq); 3860 *ret = NET_XMIT_DROP; 3861 kfree_skb(skb); 3862 return NULL; 3863 case TC_ACT_STOLEN: 3864 case TC_ACT_QUEUED: 3865 case TC_ACT_TRAP: 3866 *ret = NET_XMIT_SUCCESS; 3867 consume_skb(skb); 3868 return NULL; 3869 case TC_ACT_REDIRECT: 3870 /* No need to push/pop skb's mac_header here on egress! */ 3871 skb_do_redirect(skb); 3872 *ret = NET_XMIT_SUCCESS; 3873 return NULL; 3874 default: 3875 break; 3876 } 3877 3878 return skb; 3879 } 3880 #endif /* CONFIG_NET_EGRESS */ 3881 3882 #ifdef CONFIG_XPS 3883 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3884 struct xps_dev_maps *dev_maps, unsigned int tci) 3885 { 3886 struct xps_map *map; 3887 int queue_index = -1; 3888 3889 if (dev->num_tc) { 3890 tci *= dev->num_tc; 3891 tci += netdev_get_prio_tc_map(dev, skb->priority); 3892 } 3893 3894 map = rcu_dereference(dev_maps->attr_map[tci]); 3895 if (map) { 3896 if (map->len == 1) 3897 queue_index = map->queues[0]; 3898 else 3899 queue_index = map->queues[reciprocal_scale( 3900 skb_get_hash(skb), map->len)]; 3901 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3902 queue_index = -1; 3903 } 3904 return queue_index; 3905 } 3906 #endif 3907 3908 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3909 struct sk_buff *skb) 3910 { 3911 #ifdef CONFIG_XPS 3912 struct xps_dev_maps *dev_maps; 3913 struct sock *sk = skb->sk; 3914 int queue_index = -1; 3915 3916 if (!static_key_false(&xps_needed)) 3917 return -1; 3918 3919 rcu_read_lock(); 3920 if (!static_key_false(&xps_rxqs_needed)) 3921 goto get_cpus_map; 3922 3923 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3924 if (dev_maps) { 3925 int tci = sk_rx_queue_get(sk); 3926 3927 if (tci >= 0 && tci < dev->num_rx_queues) 3928 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3929 tci); 3930 } 3931 3932 get_cpus_map: 3933 if (queue_index < 0) { 3934 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3935 if (dev_maps) { 3936 unsigned int tci = skb->sender_cpu - 1; 3937 3938 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3939 tci); 3940 } 3941 } 3942 rcu_read_unlock(); 3943 3944 return queue_index; 3945 #else 3946 return -1; 3947 #endif 3948 } 3949 3950 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3951 struct net_device *sb_dev) 3952 { 3953 return 0; 3954 } 3955 EXPORT_SYMBOL(dev_pick_tx_zero); 3956 3957 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3958 struct net_device *sb_dev) 3959 { 3960 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3961 } 3962 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3963 3964 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3965 struct net_device *sb_dev) 3966 { 3967 struct sock *sk = skb->sk; 3968 int queue_index = sk_tx_queue_get(sk); 3969 3970 sb_dev = sb_dev ? : dev; 3971 3972 if (queue_index < 0 || skb->ooo_okay || 3973 queue_index >= dev->real_num_tx_queues) { 3974 int new_index = get_xps_queue(dev, sb_dev, skb); 3975 3976 if (new_index < 0) 3977 new_index = skb_tx_hash(dev, sb_dev, skb); 3978 3979 if (queue_index != new_index && sk && 3980 sk_fullsock(sk) && 3981 rcu_access_pointer(sk->sk_dst_cache)) 3982 sk_tx_queue_set(sk, new_index); 3983 3984 queue_index = new_index; 3985 } 3986 3987 return queue_index; 3988 } 3989 EXPORT_SYMBOL(netdev_pick_tx); 3990 3991 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3992 struct sk_buff *skb, 3993 struct net_device *sb_dev) 3994 { 3995 int queue_index = 0; 3996 3997 #ifdef CONFIG_XPS 3998 u32 sender_cpu = skb->sender_cpu - 1; 3999 4000 if (sender_cpu >= (u32)NR_CPUS) 4001 skb->sender_cpu = raw_smp_processor_id() + 1; 4002 #endif 4003 4004 if (dev->real_num_tx_queues != 1) { 4005 const struct net_device_ops *ops = dev->netdev_ops; 4006 4007 if (ops->ndo_select_queue) 4008 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4009 else 4010 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4011 4012 queue_index = netdev_cap_txqueue(dev, queue_index); 4013 } 4014 4015 skb_set_queue_mapping(skb, queue_index); 4016 return netdev_get_tx_queue(dev, queue_index); 4017 } 4018 4019 /** 4020 * __dev_queue_xmit - transmit a buffer 4021 * @skb: buffer to transmit 4022 * @sb_dev: suboordinate device used for L2 forwarding offload 4023 * 4024 * Queue a buffer for transmission to a network device. The caller must 4025 * have set the device and priority and built the buffer before calling 4026 * this function. The function can be called from an interrupt. 4027 * 4028 * A negative errno code is returned on a failure. A success does not 4029 * guarantee the frame will be transmitted as it may be dropped due 4030 * to congestion or traffic shaping. 4031 * 4032 * ----------------------------------------------------------------------------------- 4033 * I notice this method can also return errors from the queue disciplines, 4034 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4035 * be positive. 4036 * 4037 * Regardless of the return value, the skb is consumed, so it is currently 4038 * difficult to retry a send to this method. (You can bump the ref count 4039 * before sending to hold a reference for retry if you are careful.) 4040 * 4041 * When calling this method, interrupts MUST be enabled. This is because 4042 * the BH enable code must have IRQs enabled so that it will not deadlock. 4043 * --BLG 4044 */ 4045 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4046 { 4047 struct net_device *dev = skb->dev; 4048 struct netdev_queue *txq; 4049 struct Qdisc *q; 4050 int rc = -ENOMEM; 4051 bool again = false; 4052 4053 skb_reset_mac_header(skb); 4054 4055 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4056 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4057 4058 /* Disable soft irqs for various locks below. Also 4059 * stops preemption for RCU. 4060 */ 4061 rcu_read_lock_bh(); 4062 4063 skb_update_prio(skb); 4064 4065 qdisc_pkt_len_init(skb); 4066 #ifdef CONFIG_NET_CLS_ACT 4067 skb->tc_at_ingress = 0; 4068 # ifdef CONFIG_NET_EGRESS 4069 if (static_branch_unlikely(&egress_needed_key)) { 4070 skb = sch_handle_egress(skb, &rc, dev); 4071 if (!skb) 4072 goto out; 4073 } 4074 # endif 4075 #endif 4076 /* If device/qdisc don't need skb->dst, release it right now while 4077 * its hot in this cpu cache. 4078 */ 4079 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4080 skb_dst_drop(skb); 4081 else 4082 skb_dst_force(skb); 4083 4084 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4085 q = rcu_dereference_bh(txq->qdisc); 4086 4087 trace_net_dev_queue(skb); 4088 if (q->enqueue) { 4089 rc = __dev_xmit_skb(skb, q, dev, txq); 4090 goto out; 4091 } 4092 4093 /* The device has no queue. Common case for software devices: 4094 * loopback, all the sorts of tunnels... 4095 4096 * Really, it is unlikely that netif_tx_lock protection is necessary 4097 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4098 * counters.) 4099 * However, it is possible, that they rely on protection 4100 * made by us here. 4101 4102 * Check this and shot the lock. It is not prone from deadlocks. 4103 *Either shot noqueue qdisc, it is even simpler 8) 4104 */ 4105 if (dev->flags & IFF_UP) { 4106 int cpu = smp_processor_id(); /* ok because BHs are off */ 4107 4108 if (txq->xmit_lock_owner != cpu) { 4109 if (dev_xmit_recursion()) 4110 goto recursion_alert; 4111 4112 skb = validate_xmit_skb(skb, dev, &again); 4113 if (!skb) 4114 goto out; 4115 4116 HARD_TX_LOCK(dev, txq, cpu); 4117 4118 if (!netif_xmit_stopped(txq)) { 4119 dev_xmit_recursion_inc(); 4120 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4121 dev_xmit_recursion_dec(); 4122 if (dev_xmit_complete(rc)) { 4123 HARD_TX_UNLOCK(dev, txq); 4124 goto out; 4125 } 4126 } 4127 HARD_TX_UNLOCK(dev, txq); 4128 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4129 dev->name); 4130 } else { 4131 /* Recursion is detected! It is possible, 4132 * unfortunately 4133 */ 4134 recursion_alert: 4135 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4136 dev->name); 4137 } 4138 } 4139 4140 rc = -ENETDOWN; 4141 rcu_read_unlock_bh(); 4142 4143 atomic_long_inc(&dev->tx_dropped); 4144 kfree_skb_list(skb); 4145 return rc; 4146 out: 4147 rcu_read_unlock_bh(); 4148 return rc; 4149 } 4150 4151 int dev_queue_xmit(struct sk_buff *skb) 4152 { 4153 return __dev_queue_xmit(skb, NULL); 4154 } 4155 EXPORT_SYMBOL(dev_queue_xmit); 4156 4157 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4158 { 4159 return __dev_queue_xmit(skb, sb_dev); 4160 } 4161 EXPORT_SYMBOL(dev_queue_xmit_accel); 4162 4163 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4164 { 4165 struct net_device *dev = skb->dev; 4166 struct sk_buff *orig_skb = skb; 4167 struct netdev_queue *txq; 4168 int ret = NETDEV_TX_BUSY; 4169 bool again = false; 4170 4171 if (unlikely(!netif_running(dev) || 4172 !netif_carrier_ok(dev))) 4173 goto drop; 4174 4175 skb = validate_xmit_skb_list(skb, dev, &again); 4176 if (skb != orig_skb) 4177 goto drop; 4178 4179 skb_set_queue_mapping(skb, queue_id); 4180 txq = skb_get_tx_queue(dev, skb); 4181 4182 local_bh_disable(); 4183 4184 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4185 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4186 ret = netdev_start_xmit(skb, dev, txq, false); 4187 HARD_TX_UNLOCK(dev, txq); 4188 4189 local_bh_enable(); 4190 4191 if (!dev_xmit_complete(ret)) 4192 kfree_skb(skb); 4193 4194 return ret; 4195 drop: 4196 atomic_long_inc(&dev->tx_dropped); 4197 kfree_skb_list(skb); 4198 return NET_XMIT_DROP; 4199 } 4200 EXPORT_SYMBOL(dev_direct_xmit); 4201 4202 /************************************************************************* 4203 * Receiver routines 4204 *************************************************************************/ 4205 4206 int netdev_max_backlog __read_mostly = 1000; 4207 EXPORT_SYMBOL(netdev_max_backlog); 4208 4209 int netdev_tstamp_prequeue __read_mostly = 1; 4210 int netdev_budget __read_mostly = 300; 4211 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4212 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4213 int weight_p __read_mostly = 64; /* old backlog weight */ 4214 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4215 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4216 int dev_rx_weight __read_mostly = 64; 4217 int dev_tx_weight __read_mostly = 64; 4218 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4219 int gro_normal_batch __read_mostly = 8; 4220 4221 /* Called with irq disabled */ 4222 static inline void ____napi_schedule(struct softnet_data *sd, 4223 struct napi_struct *napi) 4224 { 4225 list_add_tail(&napi->poll_list, &sd->poll_list); 4226 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4227 } 4228 4229 #ifdef CONFIG_RPS 4230 4231 /* One global table that all flow-based protocols share. */ 4232 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4233 EXPORT_SYMBOL(rps_sock_flow_table); 4234 u32 rps_cpu_mask __read_mostly; 4235 EXPORT_SYMBOL(rps_cpu_mask); 4236 4237 struct static_key_false rps_needed __read_mostly; 4238 EXPORT_SYMBOL(rps_needed); 4239 struct static_key_false rfs_needed __read_mostly; 4240 EXPORT_SYMBOL(rfs_needed); 4241 4242 static struct rps_dev_flow * 4243 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4244 struct rps_dev_flow *rflow, u16 next_cpu) 4245 { 4246 if (next_cpu < nr_cpu_ids) { 4247 #ifdef CONFIG_RFS_ACCEL 4248 struct netdev_rx_queue *rxqueue; 4249 struct rps_dev_flow_table *flow_table; 4250 struct rps_dev_flow *old_rflow; 4251 u32 flow_id; 4252 u16 rxq_index; 4253 int rc; 4254 4255 /* Should we steer this flow to a different hardware queue? */ 4256 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4257 !(dev->features & NETIF_F_NTUPLE)) 4258 goto out; 4259 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4260 if (rxq_index == skb_get_rx_queue(skb)) 4261 goto out; 4262 4263 rxqueue = dev->_rx + rxq_index; 4264 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4265 if (!flow_table) 4266 goto out; 4267 flow_id = skb_get_hash(skb) & flow_table->mask; 4268 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4269 rxq_index, flow_id); 4270 if (rc < 0) 4271 goto out; 4272 old_rflow = rflow; 4273 rflow = &flow_table->flows[flow_id]; 4274 rflow->filter = rc; 4275 if (old_rflow->filter == rflow->filter) 4276 old_rflow->filter = RPS_NO_FILTER; 4277 out: 4278 #endif 4279 rflow->last_qtail = 4280 per_cpu(softnet_data, next_cpu).input_queue_head; 4281 } 4282 4283 rflow->cpu = next_cpu; 4284 return rflow; 4285 } 4286 4287 /* 4288 * get_rps_cpu is called from netif_receive_skb and returns the target 4289 * CPU from the RPS map of the receiving queue for a given skb. 4290 * rcu_read_lock must be held on entry. 4291 */ 4292 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4293 struct rps_dev_flow **rflowp) 4294 { 4295 const struct rps_sock_flow_table *sock_flow_table; 4296 struct netdev_rx_queue *rxqueue = dev->_rx; 4297 struct rps_dev_flow_table *flow_table; 4298 struct rps_map *map; 4299 int cpu = -1; 4300 u32 tcpu; 4301 u32 hash; 4302 4303 if (skb_rx_queue_recorded(skb)) { 4304 u16 index = skb_get_rx_queue(skb); 4305 4306 if (unlikely(index >= dev->real_num_rx_queues)) { 4307 WARN_ONCE(dev->real_num_rx_queues > 1, 4308 "%s received packet on queue %u, but number " 4309 "of RX queues is %u\n", 4310 dev->name, index, dev->real_num_rx_queues); 4311 goto done; 4312 } 4313 rxqueue += index; 4314 } 4315 4316 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4317 4318 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4319 map = rcu_dereference(rxqueue->rps_map); 4320 if (!flow_table && !map) 4321 goto done; 4322 4323 skb_reset_network_header(skb); 4324 hash = skb_get_hash(skb); 4325 if (!hash) 4326 goto done; 4327 4328 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4329 if (flow_table && sock_flow_table) { 4330 struct rps_dev_flow *rflow; 4331 u32 next_cpu; 4332 u32 ident; 4333 4334 /* First check into global flow table if there is a match */ 4335 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4336 if ((ident ^ hash) & ~rps_cpu_mask) 4337 goto try_rps; 4338 4339 next_cpu = ident & rps_cpu_mask; 4340 4341 /* OK, now we know there is a match, 4342 * we can look at the local (per receive queue) flow table 4343 */ 4344 rflow = &flow_table->flows[hash & flow_table->mask]; 4345 tcpu = rflow->cpu; 4346 4347 /* 4348 * If the desired CPU (where last recvmsg was done) is 4349 * different from current CPU (one in the rx-queue flow 4350 * table entry), switch if one of the following holds: 4351 * - Current CPU is unset (>= nr_cpu_ids). 4352 * - Current CPU is offline. 4353 * - The current CPU's queue tail has advanced beyond the 4354 * last packet that was enqueued using this table entry. 4355 * This guarantees that all previous packets for the flow 4356 * have been dequeued, thus preserving in order delivery. 4357 */ 4358 if (unlikely(tcpu != next_cpu) && 4359 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4360 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4361 rflow->last_qtail)) >= 0)) { 4362 tcpu = next_cpu; 4363 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4364 } 4365 4366 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4367 *rflowp = rflow; 4368 cpu = tcpu; 4369 goto done; 4370 } 4371 } 4372 4373 try_rps: 4374 4375 if (map) { 4376 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4377 if (cpu_online(tcpu)) { 4378 cpu = tcpu; 4379 goto done; 4380 } 4381 } 4382 4383 done: 4384 return cpu; 4385 } 4386 4387 #ifdef CONFIG_RFS_ACCEL 4388 4389 /** 4390 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4391 * @dev: Device on which the filter was set 4392 * @rxq_index: RX queue index 4393 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4394 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4395 * 4396 * Drivers that implement ndo_rx_flow_steer() should periodically call 4397 * this function for each installed filter and remove the filters for 4398 * which it returns %true. 4399 */ 4400 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4401 u32 flow_id, u16 filter_id) 4402 { 4403 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4404 struct rps_dev_flow_table *flow_table; 4405 struct rps_dev_flow *rflow; 4406 bool expire = true; 4407 unsigned int cpu; 4408 4409 rcu_read_lock(); 4410 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4411 if (flow_table && flow_id <= flow_table->mask) { 4412 rflow = &flow_table->flows[flow_id]; 4413 cpu = READ_ONCE(rflow->cpu); 4414 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4415 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4416 rflow->last_qtail) < 4417 (int)(10 * flow_table->mask))) 4418 expire = false; 4419 } 4420 rcu_read_unlock(); 4421 return expire; 4422 } 4423 EXPORT_SYMBOL(rps_may_expire_flow); 4424 4425 #endif /* CONFIG_RFS_ACCEL */ 4426 4427 /* Called from hardirq (IPI) context */ 4428 static void rps_trigger_softirq(void *data) 4429 { 4430 struct softnet_data *sd = data; 4431 4432 ____napi_schedule(sd, &sd->backlog); 4433 sd->received_rps++; 4434 } 4435 4436 #endif /* CONFIG_RPS */ 4437 4438 /* 4439 * Check if this softnet_data structure is another cpu one 4440 * If yes, queue it to our IPI list and return 1 4441 * If no, return 0 4442 */ 4443 static int rps_ipi_queued(struct softnet_data *sd) 4444 { 4445 #ifdef CONFIG_RPS 4446 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4447 4448 if (sd != mysd) { 4449 sd->rps_ipi_next = mysd->rps_ipi_list; 4450 mysd->rps_ipi_list = sd; 4451 4452 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4453 return 1; 4454 } 4455 #endif /* CONFIG_RPS */ 4456 return 0; 4457 } 4458 4459 #ifdef CONFIG_NET_FLOW_LIMIT 4460 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4461 #endif 4462 4463 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4464 { 4465 #ifdef CONFIG_NET_FLOW_LIMIT 4466 struct sd_flow_limit *fl; 4467 struct softnet_data *sd; 4468 unsigned int old_flow, new_flow; 4469 4470 if (qlen < (netdev_max_backlog >> 1)) 4471 return false; 4472 4473 sd = this_cpu_ptr(&softnet_data); 4474 4475 rcu_read_lock(); 4476 fl = rcu_dereference(sd->flow_limit); 4477 if (fl) { 4478 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4479 old_flow = fl->history[fl->history_head]; 4480 fl->history[fl->history_head] = new_flow; 4481 4482 fl->history_head++; 4483 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4484 4485 if (likely(fl->buckets[old_flow])) 4486 fl->buckets[old_flow]--; 4487 4488 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4489 fl->count++; 4490 rcu_read_unlock(); 4491 return true; 4492 } 4493 } 4494 rcu_read_unlock(); 4495 #endif 4496 return false; 4497 } 4498 4499 /* 4500 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4501 * queue (may be a remote CPU queue). 4502 */ 4503 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4504 unsigned int *qtail) 4505 { 4506 struct softnet_data *sd; 4507 unsigned long flags; 4508 unsigned int qlen; 4509 4510 sd = &per_cpu(softnet_data, cpu); 4511 4512 local_irq_save(flags); 4513 4514 rps_lock(sd); 4515 if (!netif_running(skb->dev)) 4516 goto drop; 4517 qlen = skb_queue_len(&sd->input_pkt_queue); 4518 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4519 if (qlen) { 4520 enqueue: 4521 __skb_queue_tail(&sd->input_pkt_queue, skb); 4522 input_queue_tail_incr_save(sd, qtail); 4523 rps_unlock(sd); 4524 local_irq_restore(flags); 4525 return NET_RX_SUCCESS; 4526 } 4527 4528 /* Schedule NAPI for backlog device 4529 * We can use non atomic operation since we own the queue lock 4530 */ 4531 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4532 if (!rps_ipi_queued(sd)) 4533 ____napi_schedule(sd, &sd->backlog); 4534 } 4535 goto enqueue; 4536 } 4537 4538 drop: 4539 sd->dropped++; 4540 rps_unlock(sd); 4541 4542 local_irq_restore(flags); 4543 4544 atomic_long_inc(&skb->dev->rx_dropped); 4545 kfree_skb(skb); 4546 return NET_RX_DROP; 4547 } 4548 4549 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4550 { 4551 struct net_device *dev = skb->dev; 4552 struct netdev_rx_queue *rxqueue; 4553 4554 rxqueue = dev->_rx; 4555 4556 if (skb_rx_queue_recorded(skb)) { 4557 u16 index = skb_get_rx_queue(skb); 4558 4559 if (unlikely(index >= dev->real_num_rx_queues)) { 4560 WARN_ONCE(dev->real_num_rx_queues > 1, 4561 "%s received packet on queue %u, but number " 4562 "of RX queues is %u\n", 4563 dev->name, index, dev->real_num_rx_queues); 4564 4565 return rxqueue; /* Return first rxqueue */ 4566 } 4567 rxqueue += index; 4568 } 4569 return rxqueue; 4570 } 4571 4572 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4573 struct xdp_buff *xdp, 4574 struct bpf_prog *xdp_prog) 4575 { 4576 struct netdev_rx_queue *rxqueue; 4577 void *orig_data, *orig_data_end; 4578 u32 metalen, act = XDP_DROP; 4579 __be16 orig_eth_type; 4580 struct ethhdr *eth; 4581 bool orig_bcast; 4582 int hlen, off; 4583 u32 mac_len; 4584 4585 /* Reinjected packets coming from act_mirred or similar should 4586 * not get XDP generic processing. 4587 */ 4588 if (skb_is_redirected(skb)) 4589 return XDP_PASS; 4590 4591 /* XDP packets must be linear and must have sufficient headroom 4592 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4593 * native XDP provides, thus we need to do it here as well. 4594 */ 4595 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4596 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4597 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4598 int troom = skb->tail + skb->data_len - skb->end; 4599 4600 /* In case we have to go down the path and also linearize, 4601 * then lets do the pskb_expand_head() work just once here. 4602 */ 4603 if (pskb_expand_head(skb, 4604 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4605 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4606 goto do_drop; 4607 if (skb_linearize(skb)) 4608 goto do_drop; 4609 } 4610 4611 /* The XDP program wants to see the packet starting at the MAC 4612 * header. 4613 */ 4614 mac_len = skb->data - skb_mac_header(skb); 4615 hlen = skb_headlen(skb) + mac_len; 4616 xdp->data = skb->data - mac_len; 4617 xdp->data_meta = xdp->data; 4618 xdp->data_end = xdp->data + hlen; 4619 xdp->data_hard_start = skb->data - skb_headroom(skb); 4620 4621 /* SKB "head" area always have tailroom for skb_shared_info */ 4622 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start; 4623 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4624 4625 orig_data_end = xdp->data_end; 4626 orig_data = xdp->data; 4627 eth = (struct ethhdr *)xdp->data; 4628 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4629 orig_eth_type = eth->h_proto; 4630 4631 rxqueue = netif_get_rxqueue(skb); 4632 xdp->rxq = &rxqueue->xdp_rxq; 4633 4634 act = bpf_prog_run_xdp(xdp_prog, xdp); 4635 4636 /* check if bpf_xdp_adjust_head was used */ 4637 off = xdp->data - orig_data; 4638 if (off) { 4639 if (off > 0) 4640 __skb_pull(skb, off); 4641 else if (off < 0) 4642 __skb_push(skb, -off); 4643 4644 skb->mac_header += off; 4645 skb_reset_network_header(skb); 4646 } 4647 4648 /* check if bpf_xdp_adjust_tail was used */ 4649 off = xdp->data_end - orig_data_end; 4650 if (off != 0) { 4651 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4652 skb->len += off; /* positive on grow, negative on shrink */ 4653 } 4654 4655 /* check if XDP changed eth hdr such SKB needs update */ 4656 eth = (struct ethhdr *)xdp->data; 4657 if ((orig_eth_type != eth->h_proto) || 4658 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4659 __skb_push(skb, ETH_HLEN); 4660 skb->protocol = eth_type_trans(skb, skb->dev); 4661 } 4662 4663 switch (act) { 4664 case XDP_REDIRECT: 4665 case XDP_TX: 4666 __skb_push(skb, mac_len); 4667 break; 4668 case XDP_PASS: 4669 metalen = xdp->data - xdp->data_meta; 4670 if (metalen) 4671 skb_metadata_set(skb, metalen); 4672 break; 4673 default: 4674 bpf_warn_invalid_xdp_action(act); 4675 /* fall through */ 4676 case XDP_ABORTED: 4677 trace_xdp_exception(skb->dev, xdp_prog, act); 4678 /* fall through */ 4679 case XDP_DROP: 4680 do_drop: 4681 kfree_skb(skb); 4682 break; 4683 } 4684 4685 return act; 4686 } 4687 4688 /* When doing generic XDP we have to bypass the qdisc layer and the 4689 * network taps in order to match in-driver-XDP behavior. 4690 */ 4691 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4692 { 4693 struct net_device *dev = skb->dev; 4694 struct netdev_queue *txq; 4695 bool free_skb = true; 4696 int cpu, rc; 4697 4698 txq = netdev_core_pick_tx(dev, skb, NULL); 4699 cpu = smp_processor_id(); 4700 HARD_TX_LOCK(dev, txq, cpu); 4701 if (!netif_xmit_stopped(txq)) { 4702 rc = netdev_start_xmit(skb, dev, txq, 0); 4703 if (dev_xmit_complete(rc)) 4704 free_skb = false; 4705 } 4706 HARD_TX_UNLOCK(dev, txq); 4707 if (free_skb) { 4708 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4709 kfree_skb(skb); 4710 } 4711 } 4712 4713 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4714 4715 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4716 { 4717 if (xdp_prog) { 4718 struct xdp_buff xdp; 4719 u32 act; 4720 int err; 4721 4722 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4723 if (act != XDP_PASS) { 4724 switch (act) { 4725 case XDP_REDIRECT: 4726 err = xdp_do_generic_redirect(skb->dev, skb, 4727 &xdp, xdp_prog); 4728 if (err) 4729 goto out_redir; 4730 break; 4731 case XDP_TX: 4732 generic_xdp_tx(skb, xdp_prog); 4733 break; 4734 } 4735 return XDP_DROP; 4736 } 4737 } 4738 return XDP_PASS; 4739 out_redir: 4740 kfree_skb(skb); 4741 return XDP_DROP; 4742 } 4743 EXPORT_SYMBOL_GPL(do_xdp_generic); 4744 4745 static int netif_rx_internal(struct sk_buff *skb) 4746 { 4747 int ret; 4748 4749 net_timestamp_check(netdev_tstamp_prequeue, skb); 4750 4751 trace_netif_rx(skb); 4752 4753 #ifdef CONFIG_RPS 4754 if (static_branch_unlikely(&rps_needed)) { 4755 struct rps_dev_flow voidflow, *rflow = &voidflow; 4756 int cpu; 4757 4758 preempt_disable(); 4759 rcu_read_lock(); 4760 4761 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4762 if (cpu < 0) 4763 cpu = smp_processor_id(); 4764 4765 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4766 4767 rcu_read_unlock(); 4768 preempt_enable(); 4769 } else 4770 #endif 4771 { 4772 unsigned int qtail; 4773 4774 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4775 put_cpu(); 4776 } 4777 return ret; 4778 } 4779 4780 /** 4781 * netif_rx - post buffer to the network code 4782 * @skb: buffer to post 4783 * 4784 * This function receives a packet from a device driver and queues it for 4785 * the upper (protocol) levels to process. It always succeeds. The buffer 4786 * may be dropped during processing for congestion control or by the 4787 * protocol layers. 4788 * 4789 * return values: 4790 * NET_RX_SUCCESS (no congestion) 4791 * NET_RX_DROP (packet was dropped) 4792 * 4793 */ 4794 4795 int netif_rx(struct sk_buff *skb) 4796 { 4797 int ret; 4798 4799 trace_netif_rx_entry(skb); 4800 4801 ret = netif_rx_internal(skb); 4802 trace_netif_rx_exit(ret); 4803 4804 return ret; 4805 } 4806 EXPORT_SYMBOL(netif_rx); 4807 4808 int netif_rx_ni(struct sk_buff *skb) 4809 { 4810 int err; 4811 4812 trace_netif_rx_ni_entry(skb); 4813 4814 preempt_disable(); 4815 err = netif_rx_internal(skb); 4816 if (local_softirq_pending()) 4817 do_softirq(); 4818 preempt_enable(); 4819 trace_netif_rx_ni_exit(err); 4820 4821 return err; 4822 } 4823 EXPORT_SYMBOL(netif_rx_ni); 4824 4825 static __latent_entropy void net_tx_action(struct softirq_action *h) 4826 { 4827 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4828 4829 if (sd->completion_queue) { 4830 struct sk_buff *clist; 4831 4832 local_irq_disable(); 4833 clist = sd->completion_queue; 4834 sd->completion_queue = NULL; 4835 local_irq_enable(); 4836 4837 while (clist) { 4838 struct sk_buff *skb = clist; 4839 4840 clist = clist->next; 4841 4842 WARN_ON(refcount_read(&skb->users)); 4843 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4844 trace_consume_skb(skb); 4845 else 4846 trace_kfree_skb(skb, net_tx_action); 4847 4848 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4849 __kfree_skb(skb); 4850 else 4851 __kfree_skb_defer(skb); 4852 } 4853 4854 __kfree_skb_flush(); 4855 } 4856 4857 if (sd->output_queue) { 4858 struct Qdisc *head; 4859 4860 local_irq_disable(); 4861 head = sd->output_queue; 4862 sd->output_queue = NULL; 4863 sd->output_queue_tailp = &sd->output_queue; 4864 local_irq_enable(); 4865 4866 while (head) { 4867 struct Qdisc *q = head; 4868 spinlock_t *root_lock = NULL; 4869 4870 head = head->next_sched; 4871 4872 if (!(q->flags & TCQ_F_NOLOCK)) { 4873 root_lock = qdisc_lock(q); 4874 spin_lock(root_lock); 4875 } 4876 /* We need to make sure head->next_sched is read 4877 * before clearing __QDISC_STATE_SCHED 4878 */ 4879 smp_mb__before_atomic(); 4880 clear_bit(__QDISC_STATE_SCHED, &q->state); 4881 qdisc_run(q); 4882 if (root_lock) 4883 spin_unlock(root_lock); 4884 } 4885 } 4886 4887 xfrm_dev_backlog(sd); 4888 } 4889 4890 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4891 /* This hook is defined here for ATM LANE */ 4892 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4893 unsigned char *addr) __read_mostly; 4894 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4895 #endif 4896 4897 static inline struct sk_buff * 4898 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4899 struct net_device *orig_dev) 4900 { 4901 #ifdef CONFIG_NET_CLS_ACT 4902 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4903 struct tcf_result cl_res; 4904 4905 /* If there's at least one ingress present somewhere (so 4906 * we get here via enabled static key), remaining devices 4907 * that are not configured with an ingress qdisc will bail 4908 * out here. 4909 */ 4910 if (!miniq) 4911 return skb; 4912 4913 if (*pt_prev) { 4914 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4915 *pt_prev = NULL; 4916 } 4917 4918 qdisc_skb_cb(skb)->pkt_len = skb->len; 4919 skb->tc_at_ingress = 1; 4920 mini_qdisc_bstats_cpu_update(miniq, skb); 4921 4922 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4923 &cl_res, false)) { 4924 case TC_ACT_OK: 4925 case TC_ACT_RECLASSIFY: 4926 skb->tc_index = TC_H_MIN(cl_res.classid); 4927 break; 4928 case TC_ACT_SHOT: 4929 mini_qdisc_qstats_cpu_drop(miniq); 4930 kfree_skb(skb); 4931 return NULL; 4932 case TC_ACT_STOLEN: 4933 case TC_ACT_QUEUED: 4934 case TC_ACT_TRAP: 4935 consume_skb(skb); 4936 return NULL; 4937 case TC_ACT_REDIRECT: 4938 /* skb_mac_header check was done by cls/act_bpf, so 4939 * we can safely push the L2 header back before 4940 * redirecting to another netdev 4941 */ 4942 __skb_push(skb, skb->mac_len); 4943 skb_do_redirect(skb); 4944 return NULL; 4945 case TC_ACT_CONSUMED: 4946 return NULL; 4947 default: 4948 break; 4949 } 4950 #endif /* CONFIG_NET_CLS_ACT */ 4951 return skb; 4952 } 4953 4954 /** 4955 * netdev_is_rx_handler_busy - check if receive handler is registered 4956 * @dev: device to check 4957 * 4958 * Check if a receive handler is already registered for a given device. 4959 * Return true if there one. 4960 * 4961 * The caller must hold the rtnl_mutex. 4962 */ 4963 bool netdev_is_rx_handler_busy(struct net_device *dev) 4964 { 4965 ASSERT_RTNL(); 4966 return dev && rtnl_dereference(dev->rx_handler); 4967 } 4968 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4969 4970 /** 4971 * netdev_rx_handler_register - register receive handler 4972 * @dev: device to register a handler for 4973 * @rx_handler: receive handler to register 4974 * @rx_handler_data: data pointer that is used by rx handler 4975 * 4976 * Register a receive handler for a device. This handler will then be 4977 * called from __netif_receive_skb. A negative errno code is returned 4978 * on a failure. 4979 * 4980 * The caller must hold the rtnl_mutex. 4981 * 4982 * For a general description of rx_handler, see enum rx_handler_result. 4983 */ 4984 int netdev_rx_handler_register(struct net_device *dev, 4985 rx_handler_func_t *rx_handler, 4986 void *rx_handler_data) 4987 { 4988 if (netdev_is_rx_handler_busy(dev)) 4989 return -EBUSY; 4990 4991 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4992 return -EINVAL; 4993 4994 /* Note: rx_handler_data must be set before rx_handler */ 4995 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4996 rcu_assign_pointer(dev->rx_handler, rx_handler); 4997 4998 return 0; 4999 } 5000 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5001 5002 /** 5003 * netdev_rx_handler_unregister - unregister receive handler 5004 * @dev: device to unregister a handler from 5005 * 5006 * Unregister a receive handler from a device. 5007 * 5008 * The caller must hold the rtnl_mutex. 5009 */ 5010 void netdev_rx_handler_unregister(struct net_device *dev) 5011 { 5012 5013 ASSERT_RTNL(); 5014 RCU_INIT_POINTER(dev->rx_handler, NULL); 5015 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5016 * section has a guarantee to see a non NULL rx_handler_data 5017 * as well. 5018 */ 5019 synchronize_net(); 5020 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5021 } 5022 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5023 5024 /* 5025 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5026 * the special handling of PFMEMALLOC skbs. 5027 */ 5028 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5029 { 5030 switch (skb->protocol) { 5031 case htons(ETH_P_ARP): 5032 case htons(ETH_P_IP): 5033 case htons(ETH_P_IPV6): 5034 case htons(ETH_P_8021Q): 5035 case htons(ETH_P_8021AD): 5036 return true; 5037 default: 5038 return false; 5039 } 5040 } 5041 5042 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5043 int *ret, struct net_device *orig_dev) 5044 { 5045 if (nf_hook_ingress_active(skb)) { 5046 int ingress_retval; 5047 5048 if (*pt_prev) { 5049 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5050 *pt_prev = NULL; 5051 } 5052 5053 rcu_read_lock(); 5054 ingress_retval = nf_hook_ingress(skb); 5055 rcu_read_unlock(); 5056 return ingress_retval; 5057 } 5058 return 0; 5059 } 5060 5061 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 5062 struct packet_type **ppt_prev) 5063 { 5064 struct packet_type *ptype, *pt_prev; 5065 rx_handler_func_t *rx_handler; 5066 struct net_device *orig_dev; 5067 bool deliver_exact = false; 5068 int ret = NET_RX_DROP; 5069 __be16 type; 5070 5071 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5072 5073 trace_netif_receive_skb(skb); 5074 5075 orig_dev = skb->dev; 5076 5077 skb_reset_network_header(skb); 5078 if (!skb_transport_header_was_set(skb)) 5079 skb_reset_transport_header(skb); 5080 skb_reset_mac_len(skb); 5081 5082 pt_prev = NULL; 5083 5084 another_round: 5085 skb->skb_iif = skb->dev->ifindex; 5086 5087 __this_cpu_inc(softnet_data.processed); 5088 5089 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5090 int ret2; 5091 5092 preempt_disable(); 5093 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5094 preempt_enable(); 5095 5096 if (ret2 != XDP_PASS) 5097 return NET_RX_DROP; 5098 skb_reset_mac_len(skb); 5099 } 5100 5101 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5102 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5103 skb = skb_vlan_untag(skb); 5104 if (unlikely(!skb)) 5105 goto out; 5106 } 5107 5108 if (skb_skip_tc_classify(skb)) 5109 goto skip_classify; 5110 5111 if (pfmemalloc) 5112 goto skip_taps; 5113 5114 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5115 if (pt_prev) 5116 ret = deliver_skb(skb, pt_prev, orig_dev); 5117 pt_prev = ptype; 5118 } 5119 5120 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5121 if (pt_prev) 5122 ret = deliver_skb(skb, pt_prev, orig_dev); 5123 pt_prev = ptype; 5124 } 5125 5126 skip_taps: 5127 #ifdef CONFIG_NET_INGRESS 5128 if (static_branch_unlikely(&ingress_needed_key)) { 5129 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5130 if (!skb) 5131 goto out; 5132 5133 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5134 goto out; 5135 } 5136 #endif 5137 skb_reset_redirect(skb); 5138 skip_classify: 5139 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5140 goto drop; 5141 5142 if (skb_vlan_tag_present(skb)) { 5143 if (pt_prev) { 5144 ret = deliver_skb(skb, pt_prev, orig_dev); 5145 pt_prev = NULL; 5146 } 5147 if (vlan_do_receive(&skb)) 5148 goto another_round; 5149 else if (unlikely(!skb)) 5150 goto out; 5151 } 5152 5153 rx_handler = rcu_dereference(skb->dev->rx_handler); 5154 if (rx_handler) { 5155 if (pt_prev) { 5156 ret = deliver_skb(skb, pt_prev, orig_dev); 5157 pt_prev = NULL; 5158 } 5159 switch (rx_handler(&skb)) { 5160 case RX_HANDLER_CONSUMED: 5161 ret = NET_RX_SUCCESS; 5162 goto out; 5163 case RX_HANDLER_ANOTHER: 5164 goto another_round; 5165 case RX_HANDLER_EXACT: 5166 deliver_exact = true; 5167 case RX_HANDLER_PASS: 5168 break; 5169 default: 5170 BUG(); 5171 } 5172 } 5173 5174 if (unlikely(skb_vlan_tag_present(skb))) { 5175 check_vlan_id: 5176 if (skb_vlan_tag_get_id(skb)) { 5177 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5178 * find vlan device. 5179 */ 5180 skb->pkt_type = PACKET_OTHERHOST; 5181 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5182 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5183 /* Outer header is 802.1P with vlan 0, inner header is 5184 * 802.1Q or 802.1AD and vlan_do_receive() above could 5185 * not find vlan dev for vlan id 0. 5186 */ 5187 __vlan_hwaccel_clear_tag(skb); 5188 skb = skb_vlan_untag(skb); 5189 if (unlikely(!skb)) 5190 goto out; 5191 if (vlan_do_receive(&skb)) 5192 /* After stripping off 802.1P header with vlan 0 5193 * vlan dev is found for inner header. 5194 */ 5195 goto another_round; 5196 else if (unlikely(!skb)) 5197 goto out; 5198 else 5199 /* We have stripped outer 802.1P vlan 0 header. 5200 * But could not find vlan dev. 5201 * check again for vlan id to set OTHERHOST. 5202 */ 5203 goto check_vlan_id; 5204 } 5205 /* Note: we might in the future use prio bits 5206 * and set skb->priority like in vlan_do_receive() 5207 * For the time being, just ignore Priority Code Point 5208 */ 5209 __vlan_hwaccel_clear_tag(skb); 5210 } 5211 5212 type = skb->protocol; 5213 5214 /* deliver only exact match when indicated */ 5215 if (likely(!deliver_exact)) { 5216 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5217 &ptype_base[ntohs(type) & 5218 PTYPE_HASH_MASK]); 5219 } 5220 5221 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5222 &orig_dev->ptype_specific); 5223 5224 if (unlikely(skb->dev != orig_dev)) { 5225 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5226 &skb->dev->ptype_specific); 5227 } 5228 5229 if (pt_prev) { 5230 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5231 goto drop; 5232 *ppt_prev = pt_prev; 5233 } else { 5234 drop: 5235 if (!deliver_exact) 5236 atomic_long_inc(&skb->dev->rx_dropped); 5237 else 5238 atomic_long_inc(&skb->dev->rx_nohandler); 5239 kfree_skb(skb); 5240 /* Jamal, now you will not able to escape explaining 5241 * me how you were going to use this. :-) 5242 */ 5243 ret = NET_RX_DROP; 5244 } 5245 5246 out: 5247 return ret; 5248 } 5249 5250 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5251 { 5252 struct net_device *orig_dev = skb->dev; 5253 struct packet_type *pt_prev = NULL; 5254 int ret; 5255 5256 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5257 if (pt_prev) 5258 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5259 skb->dev, pt_prev, orig_dev); 5260 return ret; 5261 } 5262 5263 /** 5264 * netif_receive_skb_core - special purpose version of netif_receive_skb 5265 * @skb: buffer to process 5266 * 5267 * More direct receive version of netif_receive_skb(). It should 5268 * only be used by callers that have a need to skip RPS and Generic XDP. 5269 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5270 * 5271 * This function may only be called from softirq context and interrupts 5272 * should be enabled. 5273 * 5274 * Return values (usually ignored): 5275 * NET_RX_SUCCESS: no congestion 5276 * NET_RX_DROP: packet was dropped 5277 */ 5278 int netif_receive_skb_core(struct sk_buff *skb) 5279 { 5280 int ret; 5281 5282 rcu_read_lock(); 5283 ret = __netif_receive_skb_one_core(skb, false); 5284 rcu_read_unlock(); 5285 5286 return ret; 5287 } 5288 EXPORT_SYMBOL(netif_receive_skb_core); 5289 5290 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5291 struct packet_type *pt_prev, 5292 struct net_device *orig_dev) 5293 { 5294 struct sk_buff *skb, *next; 5295 5296 if (!pt_prev) 5297 return; 5298 if (list_empty(head)) 5299 return; 5300 if (pt_prev->list_func != NULL) 5301 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5302 ip_list_rcv, head, pt_prev, orig_dev); 5303 else 5304 list_for_each_entry_safe(skb, next, head, list) { 5305 skb_list_del_init(skb); 5306 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5307 } 5308 } 5309 5310 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5311 { 5312 /* Fast-path assumptions: 5313 * - There is no RX handler. 5314 * - Only one packet_type matches. 5315 * If either of these fails, we will end up doing some per-packet 5316 * processing in-line, then handling the 'last ptype' for the whole 5317 * sublist. This can't cause out-of-order delivery to any single ptype, 5318 * because the 'last ptype' must be constant across the sublist, and all 5319 * other ptypes are handled per-packet. 5320 */ 5321 /* Current (common) ptype of sublist */ 5322 struct packet_type *pt_curr = NULL; 5323 /* Current (common) orig_dev of sublist */ 5324 struct net_device *od_curr = NULL; 5325 struct list_head sublist; 5326 struct sk_buff *skb, *next; 5327 5328 INIT_LIST_HEAD(&sublist); 5329 list_for_each_entry_safe(skb, next, head, list) { 5330 struct net_device *orig_dev = skb->dev; 5331 struct packet_type *pt_prev = NULL; 5332 5333 skb_list_del_init(skb); 5334 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5335 if (!pt_prev) 5336 continue; 5337 if (pt_curr != pt_prev || od_curr != orig_dev) { 5338 /* dispatch old sublist */ 5339 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5340 /* start new sublist */ 5341 INIT_LIST_HEAD(&sublist); 5342 pt_curr = pt_prev; 5343 od_curr = orig_dev; 5344 } 5345 list_add_tail(&skb->list, &sublist); 5346 } 5347 5348 /* dispatch final sublist */ 5349 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5350 } 5351 5352 static int __netif_receive_skb(struct sk_buff *skb) 5353 { 5354 int ret; 5355 5356 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5357 unsigned int noreclaim_flag; 5358 5359 /* 5360 * PFMEMALLOC skbs are special, they should 5361 * - be delivered to SOCK_MEMALLOC sockets only 5362 * - stay away from userspace 5363 * - have bounded memory usage 5364 * 5365 * Use PF_MEMALLOC as this saves us from propagating the allocation 5366 * context down to all allocation sites. 5367 */ 5368 noreclaim_flag = memalloc_noreclaim_save(); 5369 ret = __netif_receive_skb_one_core(skb, true); 5370 memalloc_noreclaim_restore(noreclaim_flag); 5371 } else 5372 ret = __netif_receive_skb_one_core(skb, false); 5373 5374 return ret; 5375 } 5376 5377 static void __netif_receive_skb_list(struct list_head *head) 5378 { 5379 unsigned long noreclaim_flag = 0; 5380 struct sk_buff *skb, *next; 5381 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5382 5383 list_for_each_entry_safe(skb, next, head, list) { 5384 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5385 struct list_head sublist; 5386 5387 /* Handle the previous sublist */ 5388 list_cut_before(&sublist, head, &skb->list); 5389 if (!list_empty(&sublist)) 5390 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5391 pfmemalloc = !pfmemalloc; 5392 /* See comments in __netif_receive_skb */ 5393 if (pfmemalloc) 5394 noreclaim_flag = memalloc_noreclaim_save(); 5395 else 5396 memalloc_noreclaim_restore(noreclaim_flag); 5397 } 5398 } 5399 /* Handle the remaining sublist */ 5400 if (!list_empty(head)) 5401 __netif_receive_skb_list_core(head, pfmemalloc); 5402 /* Restore pflags */ 5403 if (pfmemalloc) 5404 memalloc_noreclaim_restore(noreclaim_flag); 5405 } 5406 5407 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5408 { 5409 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5410 struct bpf_prog *new = xdp->prog; 5411 int ret = 0; 5412 5413 switch (xdp->command) { 5414 case XDP_SETUP_PROG: 5415 rcu_assign_pointer(dev->xdp_prog, new); 5416 if (old) 5417 bpf_prog_put(old); 5418 5419 if (old && !new) { 5420 static_branch_dec(&generic_xdp_needed_key); 5421 } else if (new && !old) { 5422 static_branch_inc(&generic_xdp_needed_key); 5423 dev_disable_lro(dev); 5424 dev_disable_gro_hw(dev); 5425 } 5426 break; 5427 5428 case XDP_QUERY_PROG: 5429 xdp->prog_id = old ? old->aux->id : 0; 5430 break; 5431 5432 default: 5433 ret = -EINVAL; 5434 break; 5435 } 5436 5437 return ret; 5438 } 5439 5440 static int netif_receive_skb_internal(struct sk_buff *skb) 5441 { 5442 int ret; 5443 5444 net_timestamp_check(netdev_tstamp_prequeue, skb); 5445 5446 if (skb_defer_rx_timestamp(skb)) 5447 return NET_RX_SUCCESS; 5448 5449 rcu_read_lock(); 5450 #ifdef CONFIG_RPS 5451 if (static_branch_unlikely(&rps_needed)) { 5452 struct rps_dev_flow voidflow, *rflow = &voidflow; 5453 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5454 5455 if (cpu >= 0) { 5456 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5457 rcu_read_unlock(); 5458 return ret; 5459 } 5460 } 5461 #endif 5462 ret = __netif_receive_skb(skb); 5463 rcu_read_unlock(); 5464 return ret; 5465 } 5466 5467 static void netif_receive_skb_list_internal(struct list_head *head) 5468 { 5469 struct sk_buff *skb, *next; 5470 struct list_head sublist; 5471 5472 INIT_LIST_HEAD(&sublist); 5473 list_for_each_entry_safe(skb, next, head, list) { 5474 net_timestamp_check(netdev_tstamp_prequeue, skb); 5475 skb_list_del_init(skb); 5476 if (!skb_defer_rx_timestamp(skb)) 5477 list_add_tail(&skb->list, &sublist); 5478 } 5479 list_splice_init(&sublist, head); 5480 5481 rcu_read_lock(); 5482 #ifdef CONFIG_RPS 5483 if (static_branch_unlikely(&rps_needed)) { 5484 list_for_each_entry_safe(skb, next, head, list) { 5485 struct rps_dev_flow voidflow, *rflow = &voidflow; 5486 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5487 5488 if (cpu >= 0) { 5489 /* Will be handled, remove from list */ 5490 skb_list_del_init(skb); 5491 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5492 } 5493 } 5494 } 5495 #endif 5496 __netif_receive_skb_list(head); 5497 rcu_read_unlock(); 5498 } 5499 5500 /** 5501 * netif_receive_skb - process receive buffer from network 5502 * @skb: buffer to process 5503 * 5504 * netif_receive_skb() is the main receive data processing function. 5505 * It always succeeds. The buffer may be dropped during processing 5506 * for congestion control or by the protocol layers. 5507 * 5508 * This function may only be called from softirq context and interrupts 5509 * should be enabled. 5510 * 5511 * Return values (usually ignored): 5512 * NET_RX_SUCCESS: no congestion 5513 * NET_RX_DROP: packet was dropped 5514 */ 5515 int netif_receive_skb(struct sk_buff *skb) 5516 { 5517 int ret; 5518 5519 trace_netif_receive_skb_entry(skb); 5520 5521 ret = netif_receive_skb_internal(skb); 5522 trace_netif_receive_skb_exit(ret); 5523 5524 return ret; 5525 } 5526 EXPORT_SYMBOL(netif_receive_skb); 5527 5528 /** 5529 * netif_receive_skb_list - process many receive buffers from network 5530 * @head: list of skbs to process. 5531 * 5532 * Since return value of netif_receive_skb() is normally ignored, and 5533 * wouldn't be meaningful for a list, this function returns void. 5534 * 5535 * This function may only be called from softirq context and interrupts 5536 * should be enabled. 5537 */ 5538 void netif_receive_skb_list(struct list_head *head) 5539 { 5540 struct sk_buff *skb; 5541 5542 if (list_empty(head)) 5543 return; 5544 if (trace_netif_receive_skb_list_entry_enabled()) { 5545 list_for_each_entry(skb, head, list) 5546 trace_netif_receive_skb_list_entry(skb); 5547 } 5548 netif_receive_skb_list_internal(head); 5549 trace_netif_receive_skb_list_exit(0); 5550 } 5551 EXPORT_SYMBOL(netif_receive_skb_list); 5552 5553 DEFINE_PER_CPU(struct work_struct, flush_works); 5554 5555 /* Network device is going away, flush any packets still pending */ 5556 static void flush_backlog(struct work_struct *work) 5557 { 5558 struct sk_buff *skb, *tmp; 5559 struct softnet_data *sd; 5560 5561 local_bh_disable(); 5562 sd = this_cpu_ptr(&softnet_data); 5563 5564 local_irq_disable(); 5565 rps_lock(sd); 5566 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5567 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5568 __skb_unlink(skb, &sd->input_pkt_queue); 5569 kfree_skb(skb); 5570 input_queue_head_incr(sd); 5571 } 5572 } 5573 rps_unlock(sd); 5574 local_irq_enable(); 5575 5576 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5577 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5578 __skb_unlink(skb, &sd->process_queue); 5579 kfree_skb(skb); 5580 input_queue_head_incr(sd); 5581 } 5582 } 5583 local_bh_enable(); 5584 } 5585 5586 static void flush_all_backlogs(void) 5587 { 5588 unsigned int cpu; 5589 5590 get_online_cpus(); 5591 5592 for_each_online_cpu(cpu) 5593 queue_work_on(cpu, system_highpri_wq, 5594 per_cpu_ptr(&flush_works, cpu)); 5595 5596 for_each_online_cpu(cpu) 5597 flush_work(per_cpu_ptr(&flush_works, cpu)); 5598 5599 put_online_cpus(); 5600 } 5601 5602 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5603 static void gro_normal_list(struct napi_struct *napi) 5604 { 5605 if (!napi->rx_count) 5606 return; 5607 netif_receive_skb_list_internal(&napi->rx_list); 5608 INIT_LIST_HEAD(&napi->rx_list); 5609 napi->rx_count = 0; 5610 } 5611 5612 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5613 * pass the whole batch up to the stack. 5614 */ 5615 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5616 { 5617 list_add_tail(&skb->list, &napi->rx_list); 5618 if (++napi->rx_count >= gro_normal_batch) 5619 gro_normal_list(napi); 5620 } 5621 5622 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5623 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5624 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5625 { 5626 struct packet_offload *ptype; 5627 __be16 type = skb->protocol; 5628 struct list_head *head = &offload_base; 5629 int err = -ENOENT; 5630 5631 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5632 5633 if (NAPI_GRO_CB(skb)->count == 1) { 5634 skb_shinfo(skb)->gso_size = 0; 5635 goto out; 5636 } 5637 5638 rcu_read_lock(); 5639 list_for_each_entry_rcu(ptype, head, list) { 5640 if (ptype->type != type || !ptype->callbacks.gro_complete) 5641 continue; 5642 5643 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5644 ipv6_gro_complete, inet_gro_complete, 5645 skb, 0); 5646 break; 5647 } 5648 rcu_read_unlock(); 5649 5650 if (err) { 5651 WARN_ON(&ptype->list == head); 5652 kfree_skb(skb); 5653 return NET_RX_SUCCESS; 5654 } 5655 5656 out: 5657 gro_normal_one(napi, skb); 5658 return NET_RX_SUCCESS; 5659 } 5660 5661 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5662 bool flush_old) 5663 { 5664 struct list_head *head = &napi->gro_hash[index].list; 5665 struct sk_buff *skb, *p; 5666 5667 list_for_each_entry_safe_reverse(skb, p, head, list) { 5668 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5669 return; 5670 skb_list_del_init(skb); 5671 napi_gro_complete(napi, skb); 5672 napi->gro_hash[index].count--; 5673 } 5674 5675 if (!napi->gro_hash[index].count) 5676 __clear_bit(index, &napi->gro_bitmask); 5677 } 5678 5679 /* napi->gro_hash[].list contains packets ordered by age. 5680 * youngest packets at the head of it. 5681 * Complete skbs in reverse order to reduce latencies. 5682 */ 5683 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5684 { 5685 unsigned long bitmask = napi->gro_bitmask; 5686 unsigned int i, base = ~0U; 5687 5688 while ((i = ffs(bitmask)) != 0) { 5689 bitmask >>= i; 5690 base += i; 5691 __napi_gro_flush_chain(napi, base, flush_old); 5692 } 5693 } 5694 EXPORT_SYMBOL(napi_gro_flush); 5695 5696 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5697 struct sk_buff *skb) 5698 { 5699 unsigned int maclen = skb->dev->hard_header_len; 5700 u32 hash = skb_get_hash_raw(skb); 5701 struct list_head *head; 5702 struct sk_buff *p; 5703 5704 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5705 list_for_each_entry(p, head, list) { 5706 unsigned long diffs; 5707 5708 NAPI_GRO_CB(p)->flush = 0; 5709 5710 if (hash != skb_get_hash_raw(p)) { 5711 NAPI_GRO_CB(p)->same_flow = 0; 5712 continue; 5713 } 5714 5715 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5716 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5717 if (skb_vlan_tag_present(p)) 5718 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5719 diffs |= skb_metadata_dst_cmp(p, skb); 5720 diffs |= skb_metadata_differs(p, skb); 5721 if (maclen == ETH_HLEN) 5722 diffs |= compare_ether_header(skb_mac_header(p), 5723 skb_mac_header(skb)); 5724 else if (!diffs) 5725 diffs = memcmp(skb_mac_header(p), 5726 skb_mac_header(skb), 5727 maclen); 5728 NAPI_GRO_CB(p)->same_flow = !diffs; 5729 } 5730 5731 return head; 5732 } 5733 5734 static void skb_gro_reset_offset(struct sk_buff *skb) 5735 { 5736 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5737 const skb_frag_t *frag0 = &pinfo->frags[0]; 5738 5739 NAPI_GRO_CB(skb)->data_offset = 0; 5740 NAPI_GRO_CB(skb)->frag0 = NULL; 5741 NAPI_GRO_CB(skb)->frag0_len = 0; 5742 5743 if (!skb_headlen(skb) && pinfo->nr_frags && 5744 !PageHighMem(skb_frag_page(frag0))) { 5745 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5746 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5747 skb_frag_size(frag0), 5748 skb->end - skb->tail); 5749 } 5750 } 5751 5752 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5753 { 5754 struct skb_shared_info *pinfo = skb_shinfo(skb); 5755 5756 BUG_ON(skb->end - skb->tail < grow); 5757 5758 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5759 5760 skb->data_len -= grow; 5761 skb->tail += grow; 5762 5763 skb_frag_off_add(&pinfo->frags[0], grow); 5764 skb_frag_size_sub(&pinfo->frags[0], grow); 5765 5766 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5767 skb_frag_unref(skb, 0); 5768 memmove(pinfo->frags, pinfo->frags + 1, 5769 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5770 } 5771 } 5772 5773 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5774 { 5775 struct sk_buff *oldest; 5776 5777 oldest = list_last_entry(head, struct sk_buff, list); 5778 5779 /* We are called with head length >= MAX_GRO_SKBS, so this is 5780 * impossible. 5781 */ 5782 if (WARN_ON_ONCE(!oldest)) 5783 return; 5784 5785 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5786 * SKB to the chain. 5787 */ 5788 skb_list_del_init(oldest); 5789 napi_gro_complete(napi, oldest); 5790 } 5791 5792 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5793 struct sk_buff *)); 5794 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5795 struct sk_buff *)); 5796 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5797 { 5798 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5799 struct list_head *head = &offload_base; 5800 struct packet_offload *ptype; 5801 __be16 type = skb->protocol; 5802 struct list_head *gro_head; 5803 struct sk_buff *pp = NULL; 5804 enum gro_result ret; 5805 int same_flow; 5806 int grow; 5807 5808 if (netif_elide_gro(skb->dev)) 5809 goto normal; 5810 5811 gro_head = gro_list_prepare(napi, skb); 5812 5813 rcu_read_lock(); 5814 list_for_each_entry_rcu(ptype, head, list) { 5815 if (ptype->type != type || !ptype->callbacks.gro_receive) 5816 continue; 5817 5818 skb_set_network_header(skb, skb_gro_offset(skb)); 5819 skb_reset_mac_len(skb); 5820 NAPI_GRO_CB(skb)->same_flow = 0; 5821 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5822 NAPI_GRO_CB(skb)->free = 0; 5823 NAPI_GRO_CB(skb)->encap_mark = 0; 5824 NAPI_GRO_CB(skb)->recursion_counter = 0; 5825 NAPI_GRO_CB(skb)->is_fou = 0; 5826 NAPI_GRO_CB(skb)->is_atomic = 1; 5827 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5828 5829 /* Setup for GRO checksum validation */ 5830 switch (skb->ip_summed) { 5831 case CHECKSUM_COMPLETE: 5832 NAPI_GRO_CB(skb)->csum = skb->csum; 5833 NAPI_GRO_CB(skb)->csum_valid = 1; 5834 NAPI_GRO_CB(skb)->csum_cnt = 0; 5835 break; 5836 case CHECKSUM_UNNECESSARY: 5837 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5838 NAPI_GRO_CB(skb)->csum_valid = 0; 5839 break; 5840 default: 5841 NAPI_GRO_CB(skb)->csum_cnt = 0; 5842 NAPI_GRO_CB(skb)->csum_valid = 0; 5843 } 5844 5845 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5846 ipv6_gro_receive, inet_gro_receive, 5847 gro_head, skb); 5848 break; 5849 } 5850 rcu_read_unlock(); 5851 5852 if (&ptype->list == head) 5853 goto normal; 5854 5855 if (PTR_ERR(pp) == -EINPROGRESS) { 5856 ret = GRO_CONSUMED; 5857 goto ok; 5858 } 5859 5860 same_flow = NAPI_GRO_CB(skb)->same_flow; 5861 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5862 5863 if (pp) { 5864 skb_list_del_init(pp); 5865 napi_gro_complete(napi, pp); 5866 napi->gro_hash[hash].count--; 5867 } 5868 5869 if (same_flow) 5870 goto ok; 5871 5872 if (NAPI_GRO_CB(skb)->flush) 5873 goto normal; 5874 5875 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5876 gro_flush_oldest(napi, gro_head); 5877 } else { 5878 napi->gro_hash[hash].count++; 5879 } 5880 NAPI_GRO_CB(skb)->count = 1; 5881 NAPI_GRO_CB(skb)->age = jiffies; 5882 NAPI_GRO_CB(skb)->last = skb; 5883 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5884 list_add(&skb->list, gro_head); 5885 ret = GRO_HELD; 5886 5887 pull: 5888 grow = skb_gro_offset(skb) - skb_headlen(skb); 5889 if (grow > 0) 5890 gro_pull_from_frag0(skb, grow); 5891 ok: 5892 if (napi->gro_hash[hash].count) { 5893 if (!test_bit(hash, &napi->gro_bitmask)) 5894 __set_bit(hash, &napi->gro_bitmask); 5895 } else if (test_bit(hash, &napi->gro_bitmask)) { 5896 __clear_bit(hash, &napi->gro_bitmask); 5897 } 5898 5899 return ret; 5900 5901 normal: 5902 ret = GRO_NORMAL; 5903 goto pull; 5904 } 5905 5906 struct packet_offload *gro_find_receive_by_type(__be16 type) 5907 { 5908 struct list_head *offload_head = &offload_base; 5909 struct packet_offload *ptype; 5910 5911 list_for_each_entry_rcu(ptype, offload_head, list) { 5912 if (ptype->type != type || !ptype->callbacks.gro_receive) 5913 continue; 5914 return ptype; 5915 } 5916 return NULL; 5917 } 5918 EXPORT_SYMBOL(gro_find_receive_by_type); 5919 5920 struct packet_offload *gro_find_complete_by_type(__be16 type) 5921 { 5922 struct list_head *offload_head = &offload_base; 5923 struct packet_offload *ptype; 5924 5925 list_for_each_entry_rcu(ptype, offload_head, list) { 5926 if (ptype->type != type || !ptype->callbacks.gro_complete) 5927 continue; 5928 return ptype; 5929 } 5930 return NULL; 5931 } 5932 EXPORT_SYMBOL(gro_find_complete_by_type); 5933 5934 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5935 { 5936 skb_dst_drop(skb); 5937 skb_ext_put(skb); 5938 kmem_cache_free(skbuff_head_cache, skb); 5939 } 5940 5941 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5942 struct sk_buff *skb, 5943 gro_result_t ret) 5944 { 5945 switch (ret) { 5946 case GRO_NORMAL: 5947 gro_normal_one(napi, skb); 5948 break; 5949 5950 case GRO_DROP: 5951 kfree_skb(skb); 5952 break; 5953 5954 case GRO_MERGED_FREE: 5955 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5956 napi_skb_free_stolen_head(skb); 5957 else 5958 __kfree_skb(skb); 5959 break; 5960 5961 case GRO_HELD: 5962 case GRO_MERGED: 5963 case GRO_CONSUMED: 5964 break; 5965 } 5966 5967 return ret; 5968 } 5969 5970 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5971 { 5972 gro_result_t ret; 5973 5974 skb_mark_napi_id(skb, napi); 5975 trace_napi_gro_receive_entry(skb); 5976 5977 skb_gro_reset_offset(skb); 5978 5979 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 5980 trace_napi_gro_receive_exit(ret); 5981 5982 return ret; 5983 } 5984 EXPORT_SYMBOL(napi_gro_receive); 5985 5986 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5987 { 5988 if (unlikely(skb->pfmemalloc)) { 5989 consume_skb(skb); 5990 return; 5991 } 5992 __skb_pull(skb, skb_headlen(skb)); 5993 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5994 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5995 __vlan_hwaccel_clear_tag(skb); 5996 skb->dev = napi->dev; 5997 skb->skb_iif = 0; 5998 5999 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6000 skb->pkt_type = PACKET_HOST; 6001 6002 skb->encapsulation = 0; 6003 skb_shinfo(skb)->gso_type = 0; 6004 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6005 skb_ext_reset(skb); 6006 6007 napi->skb = skb; 6008 } 6009 6010 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6011 { 6012 struct sk_buff *skb = napi->skb; 6013 6014 if (!skb) { 6015 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6016 if (skb) { 6017 napi->skb = skb; 6018 skb_mark_napi_id(skb, napi); 6019 } 6020 } 6021 return skb; 6022 } 6023 EXPORT_SYMBOL(napi_get_frags); 6024 6025 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6026 struct sk_buff *skb, 6027 gro_result_t ret) 6028 { 6029 switch (ret) { 6030 case GRO_NORMAL: 6031 case GRO_HELD: 6032 __skb_push(skb, ETH_HLEN); 6033 skb->protocol = eth_type_trans(skb, skb->dev); 6034 if (ret == GRO_NORMAL) 6035 gro_normal_one(napi, skb); 6036 break; 6037 6038 case GRO_DROP: 6039 napi_reuse_skb(napi, skb); 6040 break; 6041 6042 case GRO_MERGED_FREE: 6043 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6044 napi_skb_free_stolen_head(skb); 6045 else 6046 napi_reuse_skb(napi, skb); 6047 break; 6048 6049 case GRO_MERGED: 6050 case GRO_CONSUMED: 6051 break; 6052 } 6053 6054 return ret; 6055 } 6056 6057 /* Upper GRO stack assumes network header starts at gro_offset=0 6058 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6059 * We copy ethernet header into skb->data to have a common layout. 6060 */ 6061 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6062 { 6063 struct sk_buff *skb = napi->skb; 6064 const struct ethhdr *eth; 6065 unsigned int hlen = sizeof(*eth); 6066 6067 napi->skb = NULL; 6068 6069 skb_reset_mac_header(skb); 6070 skb_gro_reset_offset(skb); 6071 6072 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6073 eth = skb_gro_header_slow(skb, hlen, 0); 6074 if (unlikely(!eth)) { 6075 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6076 __func__, napi->dev->name); 6077 napi_reuse_skb(napi, skb); 6078 return NULL; 6079 } 6080 } else { 6081 eth = (const struct ethhdr *)skb->data; 6082 gro_pull_from_frag0(skb, hlen); 6083 NAPI_GRO_CB(skb)->frag0 += hlen; 6084 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6085 } 6086 __skb_pull(skb, hlen); 6087 6088 /* 6089 * This works because the only protocols we care about don't require 6090 * special handling. 6091 * We'll fix it up properly in napi_frags_finish() 6092 */ 6093 skb->protocol = eth->h_proto; 6094 6095 return skb; 6096 } 6097 6098 gro_result_t napi_gro_frags(struct napi_struct *napi) 6099 { 6100 gro_result_t ret; 6101 struct sk_buff *skb = napi_frags_skb(napi); 6102 6103 if (!skb) 6104 return GRO_DROP; 6105 6106 trace_napi_gro_frags_entry(skb); 6107 6108 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6109 trace_napi_gro_frags_exit(ret); 6110 6111 return ret; 6112 } 6113 EXPORT_SYMBOL(napi_gro_frags); 6114 6115 /* Compute the checksum from gro_offset and return the folded value 6116 * after adding in any pseudo checksum. 6117 */ 6118 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6119 { 6120 __wsum wsum; 6121 __sum16 sum; 6122 6123 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6124 6125 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6126 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6127 /* See comments in __skb_checksum_complete(). */ 6128 if (likely(!sum)) { 6129 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6130 !skb->csum_complete_sw) 6131 netdev_rx_csum_fault(skb->dev, skb); 6132 } 6133 6134 NAPI_GRO_CB(skb)->csum = wsum; 6135 NAPI_GRO_CB(skb)->csum_valid = 1; 6136 6137 return sum; 6138 } 6139 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6140 6141 static void net_rps_send_ipi(struct softnet_data *remsd) 6142 { 6143 #ifdef CONFIG_RPS 6144 while (remsd) { 6145 struct softnet_data *next = remsd->rps_ipi_next; 6146 6147 if (cpu_online(remsd->cpu)) 6148 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6149 remsd = next; 6150 } 6151 #endif 6152 } 6153 6154 /* 6155 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6156 * Note: called with local irq disabled, but exits with local irq enabled. 6157 */ 6158 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6159 { 6160 #ifdef CONFIG_RPS 6161 struct softnet_data *remsd = sd->rps_ipi_list; 6162 6163 if (remsd) { 6164 sd->rps_ipi_list = NULL; 6165 6166 local_irq_enable(); 6167 6168 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6169 net_rps_send_ipi(remsd); 6170 } else 6171 #endif 6172 local_irq_enable(); 6173 } 6174 6175 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6176 { 6177 #ifdef CONFIG_RPS 6178 return sd->rps_ipi_list != NULL; 6179 #else 6180 return false; 6181 #endif 6182 } 6183 6184 static int process_backlog(struct napi_struct *napi, int quota) 6185 { 6186 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6187 bool again = true; 6188 int work = 0; 6189 6190 /* Check if we have pending ipi, its better to send them now, 6191 * not waiting net_rx_action() end. 6192 */ 6193 if (sd_has_rps_ipi_waiting(sd)) { 6194 local_irq_disable(); 6195 net_rps_action_and_irq_enable(sd); 6196 } 6197 6198 napi->weight = dev_rx_weight; 6199 while (again) { 6200 struct sk_buff *skb; 6201 6202 while ((skb = __skb_dequeue(&sd->process_queue))) { 6203 rcu_read_lock(); 6204 __netif_receive_skb(skb); 6205 rcu_read_unlock(); 6206 input_queue_head_incr(sd); 6207 if (++work >= quota) 6208 return work; 6209 6210 } 6211 6212 local_irq_disable(); 6213 rps_lock(sd); 6214 if (skb_queue_empty(&sd->input_pkt_queue)) { 6215 /* 6216 * Inline a custom version of __napi_complete(). 6217 * only current cpu owns and manipulates this napi, 6218 * and NAPI_STATE_SCHED is the only possible flag set 6219 * on backlog. 6220 * We can use a plain write instead of clear_bit(), 6221 * and we dont need an smp_mb() memory barrier. 6222 */ 6223 napi->state = 0; 6224 again = false; 6225 } else { 6226 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6227 &sd->process_queue); 6228 } 6229 rps_unlock(sd); 6230 local_irq_enable(); 6231 } 6232 6233 return work; 6234 } 6235 6236 /** 6237 * __napi_schedule - schedule for receive 6238 * @n: entry to schedule 6239 * 6240 * The entry's receive function will be scheduled to run. 6241 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6242 */ 6243 void __napi_schedule(struct napi_struct *n) 6244 { 6245 unsigned long flags; 6246 6247 local_irq_save(flags); 6248 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6249 local_irq_restore(flags); 6250 } 6251 EXPORT_SYMBOL(__napi_schedule); 6252 6253 /** 6254 * napi_schedule_prep - check if napi can be scheduled 6255 * @n: napi context 6256 * 6257 * Test if NAPI routine is already running, and if not mark 6258 * it as running. This is used as a condition variable 6259 * insure only one NAPI poll instance runs. We also make 6260 * sure there is no pending NAPI disable. 6261 */ 6262 bool napi_schedule_prep(struct napi_struct *n) 6263 { 6264 unsigned long val, new; 6265 6266 do { 6267 val = READ_ONCE(n->state); 6268 if (unlikely(val & NAPIF_STATE_DISABLE)) 6269 return false; 6270 new = val | NAPIF_STATE_SCHED; 6271 6272 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6273 * This was suggested by Alexander Duyck, as compiler 6274 * emits better code than : 6275 * if (val & NAPIF_STATE_SCHED) 6276 * new |= NAPIF_STATE_MISSED; 6277 */ 6278 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6279 NAPIF_STATE_MISSED; 6280 } while (cmpxchg(&n->state, val, new) != val); 6281 6282 return !(val & NAPIF_STATE_SCHED); 6283 } 6284 EXPORT_SYMBOL(napi_schedule_prep); 6285 6286 /** 6287 * __napi_schedule_irqoff - schedule for receive 6288 * @n: entry to schedule 6289 * 6290 * Variant of __napi_schedule() assuming hard irqs are masked 6291 */ 6292 void __napi_schedule_irqoff(struct napi_struct *n) 6293 { 6294 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6295 } 6296 EXPORT_SYMBOL(__napi_schedule_irqoff); 6297 6298 bool napi_complete_done(struct napi_struct *n, int work_done) 6299 { 6300 unsigned long flags, val, new, timeout = 0; 6301 bool ret = true; 6302 6303 /* 6304 * 1) Don't let napi dequeue from the cpu poll list 6305 * just in case its running on a different cpu. 6306 * 2) If we are busy polling, do nothing here, we have 6307 * the guarantee we will be called later. 6308 */ 6309 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6310 NAPIF_STATE_IN_BUSY_POLL))) 6311 return false; 6312 6313 if (work_done) { 6314 if (n->gro_bitmask) 6315 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6316 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6317 } 6318 if (n->defer_hard_irqs_count > 0) { 6319 n->defer_hard_irqs_count--; 6320 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6321 if (timeout) 6322 ret = false; 6323 } 6324 if (n->gro_bitmask) { 6325 /* When the NAPI instance uses a timeout and keeps postponing 6326 * it, we need to bound somehow the time packets are kept in 6327 * the GRO layer 6328 */ 6329 napi_gro_flush(n, !!timeout); 6330 } 6331 6332 gro_normal_list(n); 6333 6334 if (unlikely(!list_empty(&n->poll_list))) { 6335 /* If n->poll_list is not empty, we need to mask irqs */ 6336 local_irq_save(flags); 6337 list_del_init(&n->poll_list); 6338 local_irq_restore(flags); 6339 } 6340 6341 do { 6342 val = READ_ONCE(n->state); 6343 6344 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6345 6346 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6347 6348 /* If STATE_MISSED was set, leave STATE_SCHED set, 6349 * because we will call napi->poll() one more time. 6350 * This C code was suggested by Alexander Duyck to help gcc. 6351 */ 6352 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6353 NAPIF_STATE_SCHED; 6354 } while (cmpxchg(&n->state, val, new) != val); 6355 6356 if (unlikely(val & NAPIF_STATE_MISSED)) { 6357 __napi_schedule(n); 6358 return false; 6359 } 6360 6361 if (timeout) 6362 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6363 HRTIMER_MODE_REL_PINNED); 6364 return ret; 6365 } 6366 EXPORT_SYMBOL(napi_complete_done); 6367 6368 /* must be called under rcu_read_lock(), as we dont take a reference */ 6369 static struct napi_struct *napi_by_id(unsigned int napi_id) 6370 { 6371 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6372 struct napi_struct *napi; 6373 6374 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6375 if (napi->napi_id == napi_id) 6376 return napi; 6377 6378 return NULL; 6379 } 6380 6381 #if defined(CONFIG_NET_RX_BUSY_POLL) 6382 6383 #define BUSY_POLL_BUDGET 8 6384 6385 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6386 { 6387 int rc; 6388 6389 /* Busy polling means there is a high chance device driver hard irq 6390 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6391 * set in napi_schedule_prep(). 6392 * Since we are about to call napi->poll() once more, we can safely 6393 * clear NAPI_STATE_MISSED. 6394 * 6395 * Note: x86 could use a single "lock and ..." instruction 6396 * to perform these two clear_bit() 6397 */ 6398 clear_bit(NAPI_STATE_MISSED, &napi->state); 6399 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6400 6401 local_bh_disable(); 6402 6403 /* All we really want here is to re-enable device interrupts. 6404 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6405 */ 6406 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6407 /* We can't gro_normal_list() here, because napi->poll() might have 6408 * rearmed the napi (napi_complete_done()) in which case it could 6409 * already be running on another CPU. 6410 */ 6411 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6412 netpoll_poll_unlock(have_poll_lock); 6413 if (rc == BUSY_POLL_BUDGET) { 6414 /* As the whole budget was spent, we still own the napi so can 6415 * safely handle the rx_list. 6416 */ 6417 gro_normal_list(napi); 6418 __napi_schedule(napi); 6419 } 6420 local_bh_enable(); 6421 } 6422 6423 void napi_busy_loop(unsigned int napi_id, 6424 bool (*loop_end)(void *, unsigned long), 6425 void *loop_end_arg) 6426 { 6427 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6428 int (*napi_poll)(struct napi_struct *napi, int budget); 6429 void *have_poll_lock = NULL; 6430 struct napi_struct *napi; 6431 6432 restart: 6433 napi_poll = NULL; 6434 6435 rcu_read_lock(); 6436 6437 napi = napi_by_id(napi_id); 6438 if (!napi) 6439 goto out; 6440 6441 preempt_disable(); 6442 for (;;) { 6443 int work = 0; 6444 6445 local_bh_disable(); 6446 if (!napi_poll) { 6447 unsigned long val = READ_ONCE(napi->state); 6448 6449 /* If multiple threads are competing for this napi, 6450 * we avoid dirtying napi->state as much as we can. 6451 */ 6452 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6453 NAPIF_STATE_IN_BUSY_POLL)) 6454 goto count; 6455 if (cmpxchg(&napi->state, val, 6456 val | NAPIF_STATE_IN_BUSY_POLL | 6457 NAPIF_STATE_SCHED) != val) 6458 goto count; 6459 have_poll_lock = netpoll_poll_lock(napi); 6460 napi_poll = napi->poll; 6461 } 6462 work = napi_poll(napi, BUSY_POLL_BUDGET); 6463 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6464 gro_normal_list(napi); 6465 count: 6466 if (work > 0) 6467 __NET_ADD_STATS(dev_net(napi->dev), 6468 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6469 local_bh_enable(); 6470 6471 if (!loop_end || loop_end(loop_end_arg, start_time)) 6472 break; 6473 6474 if (unlikely(need_resched())) { 6475 if (napi_poll) 6476 busy_poll_stop(napi, have_poll_lock); 6477 preempt_enable(); 6478 rcu_read_unlock(); 6479 cond_resched(); 6480 if (loop_end(loop_end_arg, start_time)) 6481 return; 6482 goto restart; 6483 } 6484 cpu_relax(); 6485 } 6486 if (napi_poll) 6487 busy_poll_stop(napi, have_poll_lock); 6488 preempt_enable(); 6489 out: 6490 rcu_read_unlock(); 6491 } 6492 EXPORT_SYMBOL(napi_busy_loop); 6493 6494 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6495 6496 static void napi_hash_add(struct napi_struct *napi) 6497 { 6498 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6499 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6500 return; 6501 6502 spin_lock(&napi_hash_lock); 6503 6504 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6505 do { 6506 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6507 napi_gen_id = MIN_NAPI_ID; 6508 } while (napi_by_id(napi_gen_id)); 6509 napi->napi_id = napi_gen_id; 6510 6511 hlist_add_head_rcu(&napi->napi_hash_node, 6512 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6513 6514 spin_unlock(&napi_hash_lock); 6515 } 6516 6517 /* Warning : caller is responsible to make sure rcu grace period 6518 * is respected before freeing memory containing @napi 6519 */ 6520 bool napi_hash_del(struct napi_struct *napi) 6521 { 6522 bool rcu_sync_needed = false; 6523 6524 spin_lock(&napi_hash_lock); 6525 6526 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6527 rcu_sync_needed = true; 6528 hlist_del_rcu(&napi->napi_hash_node); 6529 } 6530 spin_unlock(&napi_hash_lock); 6531 return rcu_sync_needed; 6532 } 6533 EXPORT_SYMBOL_GPL(napi_hash_del); 6534 6535 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6536 { 6537 struct napi_struct *napi; 6538 6539 napi = container_of(timer, struct napi_struct, timer); 6540 6541 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6542 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6543 */ 6544 if (!napi_disable_pending(napi) && 6545 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6546 __napi_schedule_irqoff(napi); 6547 6548 return HRTIMER_NORESTART; 6549 } 6550 6551 static void init_gro_hash(struct napi_struct *napi) 6552 { 6553 int i; 6554 6555 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6556 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6557 napi->gro_hash[i].count = 0; 6558 } 6559 napi->gro_bitmask = 0; 6560 } 6561 6562 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6563 int (*poll)(struct napi_struct *, int), int weight) 6564 { 6565 INIT_LIST_HEAD(&napi->poll_list); 6566 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6567 napi->timer.function = napi_watchdog; 6568 init_gro_hash(napi); 6569 napi->skb = NULL; 6570 INIT_LIST_HEAD(&napi->rx_list); 6571 napi->rx_count = 0; 6572 napi->poll = poll; 6573 if (weight > NAPI_POLL_WEIGHT) 6574 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6575 weight); 6576 napi->weight = weight; 6577 list_add(&napi->dev_list, &dev->napi_list); 6578 napi->dev = dev; 6579 #ifdef CONFIG_NETPOLL 6580 napi->poll_owner = -1; 6581 #endif 6582 set_bit(NAPI_STATE_SCHED, &napi->state); 6583 napi_hash_add(napi); 6584 } 6585 EXPORT_SYMBOL(netif_napi_add); 6586 6587 void napi_disable(struct napi_struct *n) 6588 { 6589 might_sleep(); 6590 set_bit(NAPI_STATE_DISABLE, &n->state); 6591 6592 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6593 msleep(1); 6594 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6595 msleep(1); 6596 6597 hrtimer_cancel(&n->timer); 6598 6599 clear_bit(NAPI_STATE_DISABLE, &n->state); 6600 } 6601 EXPORT_SYMBOL(napi_disable); 6602 6603 static void flush_gro_hash(struct napi_struct *napi) 6604 { 6605 int i; 6606 6607 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6608 struct sk_buff *skb, *n; 6609 6610 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6611 kfree_skb(skb); 6612 napi->gro_hash[i].count = 0; 6613 } 6614 } 6615 6616 /* Must be called in process context */ 6617 void netif_napi_del(struct napi_struct *napi) 6618 { 6619 might_sleep(); 6620 if (napi_hash_del(napi)) 6621 synchronize_net(); 6622 list_del_init(&napi->dev_list); 6623 napi_free_frags(napi); 6624 6625 flush_gro_hash(napi); 6626 napi->gro_bitmask = 0; 6627 } 6628 EXPORT_SYMBOL(netif_napi_del); 6629 6630 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6631 { 6632 void *have; 6633 int work, weight; 6634 6635 list_del_init(&n->poll_list); 6636 6637 have = netpoll_poll_lock(n); 6638 6639 weight = n->weight; 6640 6641 /* This NAPI_STATE_SCHED test is for avoiding a race 6642 * with netpoll's poll_napi(). Only the entity which 6643 * obtains the lock and sees NAPI_STATE_SCHED set will 6644 * actually make the ->poll() call. Therefore we avoid 6645 * accidentally calling ->poll() when NAPI is not scheduled. 6646 */ 6647 work = 0; 6648 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6649 work = n->poll(n, weight); 6650 trace_napi_poll(n, work, weight); 6651 } 6652 6653 WARN_ON_ONCE(work > weight); 6654 6655 if (likely(work < weight)) 6656 goto out_unlock; 6657 6658 /* Drivers must not modify the NAPI state if they 6659 * consume the entire weight. In such cases this code 6660 * still "owns" the NAPI instance and therefore can 6661 * move the instance around on the list at-will. 6662 */ 6663 if (unlikely(napi_disable_pending(n))) { 6664 napi_complete(n); 6665 goto out_unlock; 6666 } 6667 6668 if (n->gro_bitmask) { 6669 /* flush too old packets 6670 * If HZ < 1000, flush all packets. 6671 */ 6672 napi_gro_flush(n, HZ >= 1000); 6673 } 6674 6675 gro_normal_list(n); 6676 6677 /* Some drivers may have called napi_schedule 6678 * prior to exhausting their budget. 6679 */ 6680 if (unlikely(!list_empty(&n->poll_list))) { 6681 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6682 n->dev ? n->dev->name : "backlog"); 6683 goto out_unlock; 6684 } 6685 6686 list_add_tail(&n->poll_list, repoll); 6687 6688 out_unlock: 6689 netpoll_poll_unlock(have); 6690 6691 return work; 6692 } 6693 6694 static __latent_entropy void net_rx_action(struct softirq_action *h) 6695 { 6696 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6697 unsigned long time_limit = jiffies + 6698 usecs_to_jiffies(netdev_budget_usecs); 6699 int budget = netdev_budget; 6700 LIST_HEAD(list); 6701 LIST_HEAD(repoll); 6702 6703 local_irq_disable(); 6704 list_splice_init(&sd->poll_list, &list); 6705 local_irq_enable(); 6706 6707 for (;;) { 6708 struct napi_struct *n; 6709 6710 if (list_empty(&list)) { 6711 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6712 goto out; 6713 break; 6714 } 6715 6716 n = list_first_entry(&list, struct napi_struct, poll_list); 6717 budget -= napi_poll(n, &repoll); 6718 6719 /* If softirq window is exhausted then punt. 6720 * Allow this to run for 2 jiffies since which will allow 6721 * an average latency of 1.5/HZ. 6722 */ 6723 if (unlikely(budget <= 0 || 6724 time_after_eq(jiffies, time_limit))) { 6725 sd->time_squeeze++; 6726 break; 6727 } 6728 } 6729 6730 local_irq_disable(); 6731 6732 list_splice_tail_init(&sd->poll_list, &list); 6733 list_splice_tail(&repoll, &list); 6734 list_splice(&list, &sd->poll_list); 6735 if (!list_empty(&sd->poll_list)) 6736 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6737 6738 net_rps_action_and_irq_enable(sd); 6739 out: 6740 __kfree_skb_flush(); 6741 } 6742 6743 struct netdev_adjacent { 6744 struct net_device *dev; 6745 6746 /* upper master flag, there can only be one master device per list */ 6747 bool master; 6748 6749 /* lookup ignore flag */ 6750 bool ignore; 6751 6752 /* counter for the number of times this device was added to us */ 6753 u16 ref_nr; 6754 6755 /* private field for the users */ 6756 void *private; 6757 6758 struct list_head list; 6759 struct rcu_head rcu; 6760 }; 6761 6762 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6763 struct list_head *adj_list) 6764 { 6765 struct netdev_adjacent *adj; 6766 6767 list_for_each_entry(adj, adj_list, list) { 6768 if (adj->dev == adj_dev) 6769 return adj; 6770 } 6771 return NULL; 6772 } 6773 6774 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6775 { 6776 struct net_device *dev = data; 6777 6778 return upper_dev == dev; 6779 } 6780 6781 /** 6782 * netdev_has_upper_dev - Check if device is linked to an upper device 6783 * @dev: device 6784 * @upper_dev: upper device to check 6785 * 6786 * Find out if a device is linked to specified upper device and return true 6787 * in case it is. Note that this checks only immediate upper device, 6788 * not through a complete stack of devices. The caller must hold the RTNL lock. 6789 */ 6790 bool netdev_has_upper_dev(struct net_device *dev, 6791 struct net_device *upper_dev) 6792 { 6793 ASSERT_RTNL(); 6794 6795 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6796 upper_dev); 6797 } 6798 EXPORT_SYMBOL(netdev_has_upper_dev); 6799 6800 /** 6801 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6802 * @dev: device 6803 * @upper_dev: upper device to check 6804 * 6805 * Find out if a device is linked to specified upper device and return true 6806 * in case it is. Note that this checks the entire upper device chain. 6807 * The caller must hold rcu lock. 6808 */ 6809 6810 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6811 struct net_device *upper_dev) 6812 { 6813 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6814 upper_dev); 6815 } 6816 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6817 6818 /** 6819 * netdev_has_any_upper_dev - Check if device is linked to some device 6820 * @dev: device 6821 * 6822 * Find out if a device is linked to an upper device and return true in case 6823 * it is. The caller must hold the RTNL lock. 6824 */ 6825 bool netdev_has_any_upper_dev(struct net_device *dev) 6826 { 6827 ASSERT_RTNL(); 6828 6829 return !list_empty(&dev->adj_list.upper); 6830 } 6831 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6832 6833 /** 6834 * netdev_master_upper_dev_get - Get master upper device 6835 * @dev: device 6836 * 6837 * Find a master upper device and return pointer to it or NULL in case 6838 * it's not there. The caller must hold the RTNL lock. 6839 */ 6840 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6841 { 6842 struct netdev_adjacent *upper; 6843 6844 ASSERT_RTNL(); 6845 6846 if (list_empty(&dev->adj_list.upper)) 6847 return NULL; 6848 6849 upper = list_first_entry(&dev->adj_list.upper, 6850 struct netdev_adjacent, list); 6851 if (likely(upper->master)) 6852 return upper->dev; 6853 return NULL; 6854 } 6855 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6856 6857 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6858 { 6859 struct netdev_adjacent *upper; 6860 6861 ASSERT_RTNL(); 6862 6863 if (list_empty(&dev->adj_list.upper)) 6864 return NULL; 6865 6866 upper = list_first_entry(&dev->adj_list.upper, 6867 struct netdev_adjacent, list); 6868 if (likely(upper->master) && !upper->ignore) 6869 return upper->dev; 6870 return NULL; 6871 } 6872 6873 /** 6874 * netdev_has_any_lower_dev - Check if device is linked to some device 6875 * @dev: device 6876 * 6877 * Find out if a device is linked to a lower device and return true in case 6878 * it is. The caller must hold the RTNL lock. 6879 */ 6880 static bool netdev_has_any_lower_dev(struct net_device *dev) 6881 { 6882 ASSERT_RTNL(); 6883 6884 return !list_empty(&dev->adj_list.lower); 6885 } 6886 6887 void *netdev_adjacent_get_private(struct list_head *adj_list) 6888 { 6889 struct netdev_adjacent *adj; 6890 6891 adj = list_entry(adj_list, struct netdev_adjacent, list); 6892 6893 return adj->private; 6894 } 6895 EXPORT_SYMBOL(netdev_adjacent_get_private); 6896 6897 /** 6898 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6899 * @dev: device 6900 * @iter: list_head ** of the current position 6901 * 6902 * Gets the next device from the dev's upper list, starting from iter 6903 * position. The caller must hold RCU read lock. 6904 */ 6905 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6906 struct list_head **iter) 6907 { 6908 struct netdev_adjacent *upper; 6909 6910 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6911 6912 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6913 6914 if (&upper->list == &dev->adj_list.upper) 6915 return NULL; 6916 6917 *iter = &upper->list; 6918 6919 return upper->dev; 6920 } 6921 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6922 6923 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6924 struct list_head **iter, 6925 bool *ignore) 6926 { 6927 struct netdev_adjacent *upper; 6928 6929 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6930 6931 if (&upper->list == &dev->adj_list.upper) 6932 return NULL; 6933 6934 *iter = &upper->list; 6935 *ignore = upper->ignore; 6936 6937 return upper->dev; 6938 } 6939 6940 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6941 struct list_head **iter) 6942 { 6943 struct netdev_adjacent *upper; 6944 6945 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6946 6947 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6948 6949 if (&upper->list == &dev->adj_list.upper) 6950 return NULL; 6951 6952 *iter = &upper->list; 6953 6954 return upper->dev; 6955 } 6956 6957 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6958 int (*fn)(struct net_device *dev, 6959 void *data), 6960 void *data) 6961 { 6962 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6963 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6964 int ret, cur = 0; 6965 bool ignore; 6966 6967 now = dev; 6968 iter = &dev->adj_list.upper; 6969 6970 while (1) { 6971 if (now != dev) { 6972 ret = fn(now, data); 6973 if (ret) 6974 return ret; 6975 } 6976 6977 next = NULL; 6978 while (1) { 6979 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6980 if (!udev) 6981 break; 6982 if (ignore) 6983 continue; 6984 6985 next = udev; 6986 niter = &udev->adj_list.upper; 6987 dev_stack[cur] = now; 6988 iter_stack[cur++] = iter; 6989 break; 6990 } 6991 6992 if (!next) { 6993 if (!cur) 6994 return 0; 6995 next = dev_stack[--cur]; 6996 niter = iter_stack[cur]; 6997 } 6998 6999 now = next; 7000 iter = niter; 7001 } 7002 7003 return 0; 7004 } 7005 7006 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7007 int (*fn)(struct net_device *dev, 7008 void *data), 7009 void *data) 7010 { 7011 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7012 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7013 int ret, cur = 0; 7014 7015 now = dev; 7016 iter = &dev->adj_list.upper; 7017 7018 while (1) { 7019 if (now != dev) { 7020 ret = fn(now, data); 7021 if (ret) 7022 return ret; 7023 } 7024 7025 next = NULL; 7026 while (1) { 7027 udev = netdev_next_upper_dev_rcu(now, &iter); 7028 if (!udev) 7029 break; 7030 7031 next = udev; 7032 niter = &udev->adj_list.upper; 7033 dev_stack[cur] = now; 7034 iter_stack[cur++] = iter; 7035 break; 7036 } 7037 7038 if (!next) { 7039 if (!cur) 7040 return 0; 7041 next = dev_stack[--cur]; 7042 niter = iter_stack[cur]; 7043 } 7044 7045 now = next; 7046 iter = niter; 7047 } 7048 7049 return 0; 7050 } 7051 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7052 7053 static bool __netdev_has_upper_dev(struct net_device *dev, 7054 struct net_device *upper_dev) 7055 { 7056 ASSERT_RTNL(); 7057 7058 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7059 upper_dev); 7060 } 7061 7062 /** 7063 * netdev_lower_get_next_private - Get the next ->private from the 7064 * lower neighbour list 7065 * @dev: device 7066 * @iter: list_head ** of the current position 7067 * 7068 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7069 * list, starting from iter position. The caller must hold either hold the 7070 * RTNL lock or its own locking that guarantees that the neighbour lower 7071 * list will remain unchanged. 7072 */ 7073 void *netdev_lower_get_next_private(struct net_device *dev, 7074 struct list_head **iter) 7075 { 7076 struct netdev_adjacent *lower; 7077 7078 lower = list_entry(*iter, struct netdev_adjacent, list); 7079 7080 if (&lower->list == &dev->adj_list.lower) 7081 return NULL; 7082 7083 *iter = lower->list.next; 7084 7085 return lower->private; 7086 } 7087 EXPORT_SYMBOL(netdev_lower_get_next_private); 7088 7089 /** 7090 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7091 * lower neighbour list, RCU 7092 * variant 7093 * @dev: device 7094 * @iter: list_head ** of the current position 7095 * 7096 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7097 * list, starting from iter position. The caller must hold RCU read lock. 7098 */ 7099 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7100 struct list_head **iter) 7101 { 7102 struct netdev_adjacent *lower; 7103 7104 WARN_ON_ONCE(!rcu_read_lock_held()); 7105 7106 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7107 7108 if (&lower->list == &dev->adj_list.lower) 7109 return NULL; 7110 7111 *iter = &lower->list; 7112 7113 return lower->private; 7114 } 7115 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7116 7117 /** 7118 * netdev_lower_get_next - Get the next device from the lower neighbour 7119 * list 7120 * @dev: device 7121 * @iter: list_head ** of the current position 7122 * 7123 * Gets the next netdev_adjacent from the dev's lower neighbour 7124 * list, starting from iter position. The caller must hold RTNL lock or 7125 * its own locking that guarantees that the neighbour lower 7126 * list will remain unchanged. 7127 */ 7128 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7129 { 7130 struct netdev_adjacent *lower; 7131 7132 lower = list_entry(*iter, struct netdev_adjacent, list); 7133 7134 if (&lower->list == &dev->adj_list.lower) 7135 return NULL; 7136 7137 *iter = lower->list.next; 7138 7139 return lower->dev; 7140 } 7141 EXPORT_SYMBOL(netdev_lower_get_next); 7142 7143 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7144 struct list_head **iter) 7145 { 7146 struct netdev_adjacent *lower; 7147 7148 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7149 7150 if (&lower->list == &dev->adj_list.lower) 7151 return NULL; 7152 7153 *iter = &lower->list; 7154 7155 return lower->dev; 7156 } 7157 7158 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7159 struct list_head **iter, 7160 bool *ignore) 7161 { 7162 struct netdev_adjacent *lower; 7163 7164 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7165 7166 if (&lower->list == &dev->adj_list.lower) 7167 return NULL; 7168 7169 *iter = &lower->list; 7170 *ignore = lower->ignore; 7171 7172 return lower->dev; 7173 } 7174 7175 int netdev_walk_all_lower_dev(struct net_device *dev, 7176 int (*fn)(struct net_device *dev, 7177 void *data), 7178 void *data) 7179 { 7180 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7181 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7182 int ret, cur = 0; 7183 7184 now = dev; 7185 iter = &dev->adj_list.lower; 7186 7187 while (1) { 7188 if (now != dev) { 7189 ret = fn(now, data); 7190 if (ret) 7191 return ret; 7192 } 7193 7194 next = NULL; 7195 while (1) { 7196 ldev = netdev_next_lower_dev(now, &iter); 7197 if (!ldev) 7198 break; 7199 7200 next = ldev; 7201 niter = &ldev->adj_list.lower; 7202 dev_stack[cur] = now; 7203 iter_stack[cur++] = iter; 7204 break; 7205 } 7206 7207 if (!next) { 7208 if (!cur) 7209 return 0; 7210 next = dev_stack[--cur]; 7211 niter = iter_stack[cur]; 7212 } 7213 7214 now = next; 7215 iter = niter; 7216 } 7217 7218 return 0; 7219 } 7220 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7221 7222 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7223 int (*fn)(struct net_device *dev, 7224 void *data), 7225 void *data) 7226 { 7227 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7228 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7229 int ret, cur = 0; 7230 bool ignore; 7231 7232 now = dev; 7233 iter = &dev->adj_list.lower; 7234 7235 while (1) { 7236 if (now != dev) { 7237 ret = fn(now, data); 7238 if (ret) 7239 return ret; 7240 } 7241 7242 next = NULL; 7243 while (1) { 7244 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7245 if (!ldev) 7246 break; 7247 if (ignore) 7248 continue; 7249 7250 next = ldev; 7251 niter = &ldev->adj_list.lower; 7252 dev_stack[cur] = now; 7253 iter_stack[cur++] = iter; 7254 break; 7255 } 7256 7257 if (!next) { 7258 if (!cur) 7259 return 0; 7260 next = dev_stack[--cur]; 7261 niter = iter_stack[cur]; 7262 } 7263 7264 now = next; 7265 iter = niter; 7266 } 7267 7268 return 0; 7269 } 7270 7271 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7272 struct list_head **iter) 7273 { 7274 struct netdev_adjacent *lower; 7275 7276 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7277 if (&lower->list == &dev->adj_list.lower) 7278 return NULL; 7279 7280 *iter = &lower->list; 7281 7282 return lower->dev; 7283 } 7284 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7285 7286 static u8 __netdev_upper_depth(struct net_device *dev) 7287 { 7288 struct net_device *udev; 7289 struct list_head *iter; 7290 u8 max_depth = 0; 7291 bool ignore; 7292 7293 for (iter = &dev->adj_list.upper, 7294 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7295 udev; 7296 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7297 if (ignore) 7298 continue; 7299 if (max_depth < udev->upper_level) 7300 max_depth = udev->upper_level; 7301 } 7302 7303 return max_depth; 7304 } 7305 7306 static u8 __netdev_lower_depth(struct net_device *dev) 7307 { 7308 struct net_device *ldev; 7309 struct list_head *iter; 7310 u8 max_depth = 0; 7311 bool ignore; 7312 7313 for (iter = &dev->adj_list.lower, 7314 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7315 ldev; 7316 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7317 if (ignore) 7318 continue; 7319 if (max_depth < ldev->lower_level) 7320 max_depth = ldev->lower_level; 7321 } 7322 7323 return max_depth; 7324 } 7325 7326 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7327 { 7328 dev->upper_level = __netdev_upper_depth(dev) + 1; 7329 return 0; 7330 } 7331 7332 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7333 { 7334 dev->lower_level = __netdev_lower_depth(dev) + 1; 7335 return 0; 7336 } 7337 7338 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7339 int (*fn)(struct net_device *dev, 7340 void *data), 7341 void *data) 7342 { 7343 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7344 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7345 int ret, cur = 0; 7346 7347 now = dev; 7348 iter = &dev->adj_list.lower; 7349 7350 while (1) { 7351 if (now != dev) { 7352 ret = fn(now, data); 7353 if (ret) 7354 return ret; 7355 } 7356 7357 next = NULL; 7358 while (1) { 7359 ldev = netdev_next_lower_dev_rcu(now, &iter); 7360 if (!ldev) 7361 break; 7362 7363 next = ldev; 7364 niter = &ldev->adj_list.lower; 7365 dev_stack[cur] = now; 7366 iter_stack[cur++] = iter; 7367 break; 7368 } 7369 7370 if (!next) { 7371 if (!cur) 7372 return 0; 7373 next = dev_stack[--cur]; 7374 niter = iter_stack[cur]; 7375 } 7376 7377 now = next; 7378 iter = niter; 7379 } 7380 7381 return 0; 7382 } 7383 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7384 7385 /** 7386 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7387 * lower neighbour list, RCU 7388 * variant 7389 * @dev: device 7390 * 7391 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7392 * list. The caller must hold RCU read lock. 7393 */ 7394 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7395 { 7396 struct netdev_adjacent *lower; 7397 7398 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7399 struct netdev_adjacent, list); 7400 if (lower) 7401 return lower->private; 7402 return NULL; 7403 } 7404 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7405 7406 /** 7407 * netdev_master_upper_dev_get_rcu - Get master upper device 7408 * @dev: device 7409 * 7410 * Find a master upper device and return pointer to it or NULL in case 7411 * it's not there. The caller must hold the RCU read lock. 7412 */ 7413 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7414 { 7415 struct netdev_adjacent *upper; 7416 7417 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7418 struct netdev_adjacent, list); 7419 if (upper && likely(upper->master)) 7420 return upper->dev; 7421 return NULL; 7422 } 7423 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7424 7425 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7426 struct net_device *adj_dev, 7427 struct list_head *dev_list) 7428 { 7429 char linkname[IFNAMSIZ+7]; 7430 7431 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7432 "upper_%s" : "lower_%s", adj_dev->name); 7433 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7434 linkname); 7435 } 7436 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7437 char *name, 7438 struct list_head *dev_list) 7439 { 7440 char linkname[IFNAMSIZ+7]; 7441 7442 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7443 "upper_%s" : "lower_%s", name); 7444 sysfs_remove_link(&(dev->dev.kobj), linkname); 7445 } 7446 7447 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7448 struct net_device *adj_dev, 7449 struct list_head *dev_list) 7450 { 7451 return (dev_list == &dev->adj_list.upper || 7452 dev_list == &dev->adj_list.lower) && 7453 net_eq(dev_net(dev), dev_net(adj_dev)); 7454 } 7455 7456 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7457 struct net_device *adj_dev, 7458 struct list_head *dev_list, 7459 void *private, bool master) 7460 { 7461 struct netdev_adjacent *adj; 7462 int ret; 7463 7464 adj = __netdev_find_adj(adj_dev, dev_list); 7465 7466 if (adj) { 7467 adj->ref_nr += 1; 7468 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7469 dev->name, adj_dev->name, adj->ref_nr); 7470 7471 return 0; 7472 } 7473 7474 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7475 if (!adj) 7476 return -ENOMEM; 7477 7478 adj->dev = adj_dev; 7479 adj->master = master; 7480 adj->ref_nr = 1; 7481 adj->private = private; 7482 adj->ignore = false; 7483 dev_hold(adj_dev); 7484 7485 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7486 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7487 7488 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7489 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7490 if (ret) 7491 goto free_adj; 7492 } 7493 7494 /* Ensure that master link is always the first item in list. */ 7495 if (master) { 7496 ret = sysfs_create_link(&(dev->dev.kobj), 7497 &(adj_dev->dev.kobj), "master"); 7498 if (ret) 7499 goto remove_symlinks; 7500 7501 list_add_rcu(&adj->list, dev_list); 7502 } else { 7503 list_add_tail_rcu(&adj->list, dev_list); 7504 } 7505 7506 return 0; 7507 7508 remove_symlinks: 7509 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7510 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7511 free_adj: 7512 kfree(adj); 7513 dev_put(adj_dev); 7514 7515 return ret; 7516 } 7517 7518 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7519 struct net_device *adj_dev, 7520 u16 ref_nr, 7521 struct list_head *dev_list) 7522 { 7523 struct netdev_adjacent *adj; 7524 7525 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7526 dev->name, adj_dev->name, ref_nr); 7527 7528 adj = __netdev_find_adj(adj_dev, dev_list); 7529 7530 if (!adj) { 7531 pr_err("Adjacency does not exist for device %s from %s\n", 7532 dev->name, adj_dev->name); 7533 WARN_ON(1); 7534 return; 7535 } 7536 7537 if (adj->ref_nr > ref_nr) { 7538 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7539 dev->name, adj_dev->name, ref_nr, 7540 adj->ref_nr - ref_nr); 7541 adj->ref_nr -= ref_nr; 7542 return; 7543 } 7544 7545 if (adj->master) 7546 sysfs_remove_link(&(dev->dev.kobj), "master"); 7547 7548 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7549 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7550 7551 list_del_rcu(&adj->list); 7552 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7553 adj_dev->name, dev->name, adj_dev->name); 7554 dev_put(adj_dev); 7555 kfree_rcu(adj, rcu); 7556 } 7557 7558 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7559 struct net_device *upper_dev, 7560 struct list_head *up_list, 7561 struct list_head *down_list, 7562 void *private, bool master) 7563 { 7564 int ret; 7565 7566 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7567 private, master); 7568 if (ret) 7569 return ret; 7570 7571 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7572 private, false); 7573 if (ret) { 7574 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7575 return ret; 7576 } 7577 7578 return 0; 7579 } 7580 7581 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7582 struct net_device *upper_dev, 7583 u16 ref_nr, 7584 struct list_head *up_list, 7585 struct list_head *down_list) 7586 { 7587 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7588 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7589 } 7590 7591 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7592 struct net_device *upper_dev, 7593 void *private, bool master) 7594 { 7595 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7596 &dev->adj_list.upper, 7597 &upper_dev->adj_list.lower, 7598 private, master); 7599 } 7600 7601 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7602 struct net_device *upper_dev) 7603 { 7604 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7605 &dev->adj_list.upper, 7606 &upper_dev->adj_list.lower); 7607 } 7608 7609 static int __netdev_upper_dev_link(struct net_device *dev, 7610 struct net_device *upper_dev, bool master, 7611 void *upper_priv, void *upper_info, 7612 struct netlink_ext_ack *extack) 7613 { 7614 struct netdev_notifier_changeupper_info changeupper_info = { 7615 .info = { 7616 .dev = dev, 7617 .extack = extack, 7618 }, 7619 .upper_dev = upper_dev, 7620 .master = master, 7621 .linking = true, 7622 .upper_info = upper_info, 7623 }; 7624 struct net_device *master_dev; 7625 int ret = 0; 7626 7627 ASSERT_RTNL(); 7628 7629 if (dev == upper_dev) 7630 return -EBUSY; 7631 7632 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7633 if (__netdev_has_upper_dev(upper_dev, dev)) 7634 return -EBUSY; 7635 7636 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7637 return -EMLINK; 7638 7639 if (!master) { 7640 if (__netdev_has_upper_dev(dev, upper_dev)) 7641 return -EEXIST; 7642 } else { 7643 master_dev = __netdev_master_upper_dev_get(dev); 7644 if (master_dev) 7645 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7646 } 7647 7648 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7649 &changeupper_info.info); 7650 ret = notifier_to_errno(ret); 7651 if (ret) 7652 return ret; 7653 7654 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7655 master); 7656 if (ret) 7657 return ret; 7658 7659 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7660 &changeupper_info.info); 7661 ret = notifier_to_errno(ret); 7662 if (ret) 7663 goto rollback; 7664 7665 __netdev_update_upper_level(dev, NULL); 7666 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7667 7668 __netdev_update_lower_level(upper_dev, NULL); 7669 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7670 NULL); 7671 7672 return 0; 7673 7674 rollback: 7675 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7676 7677 return ret; 7678 } 7679 7680 /** 7681 * netdev_upper_dev_link - Add a link to the upper device 7682 * @dev: device 7683 * @upper_dev: new upper device 7684 * @extack: netlink extended ack 7685 * 7686 * Adds a link to device which is upper to this one. The caller must hold 7687 * the RTNL lock. On a failure a negative errno code is returned. 7688 * On success the reference counts are adjusted and the function 7689 * returns zero. 7690 */ 7691 int netdev_upper_dev_link(struct net_device *dev, 7692 struct net_device *upper_dev, 7693 struct netlink_ext_ack *extack) 7694 { 7695 return __netdev_upper_dev_link(dev, upper_dev, false, 7696 NULL, NULL, extack); 7697 } 7698 EXPORT_SYMBOL(netdev_upper_dev_link); 7699 7700 /** 7701 * netdev_master_upper_dev_link - Add a master link to the upper device 7702 * @dev: device 7703 * @upper_dev: new upper device 7704 * @upper_priv: upper device private 7705 * @upper_info: upper info to be passed down via notifier 7706 * @extack: netlink extended ack 7707 * 7708 * Adds a link to device which is upper to this one. In this case, only 7709 * one master upper device can be linked, although other non-master devices 7710 * might be linked as well. The caller must hold the RTNL lock. 7711 * On a failure a negative errno code is returned. On success the reference 7712 * counts are adjusted and the function returns zero. 7713 */ 7714 int netdev_master_upper_dev_link(struct net_device *dev, 7715 struct net_device *upper_dev, 7716 void *upper_priv, void *upper_info, 7717 struct netlink_ext_ack *extack) 7718 { 7719 return __netdev_upper_dev_link(dev, upper_dev, true, 7720 upper_priv, upper_info, extack); 7721 } 7722 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7723 7724 /** 7725 * netdev_upper_dev_unlink - Removes a link to upper device 7726 * @dev: device 7727 * @upper_dev: new upper device 7728 * 7729 * Removes a link to device which is upper to this one. The caller must hold 7730 * the RTNL lock. 7731 */ 7732 void netdev_upper_dev_unlink(struct net_device *dev, 7733 struct net_device *upper_dev) 7734 { 7735 struct netdev_notifier_changeupper_info changeupper_info = { 7736 .info = { 7737 .dev = dev, 7738 }, 7739 .upper_dev = upper_dev, 7740 .linking = false, 7741 }; 7742 7743 ASSERT_RTNL(); 7744 7745 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7746 7747 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7748 &changeupper_info.info); 7749 7750 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7751 7752 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7753 &changeupper_info.info); 7754 7755 __netdev_update_upper_level(dev, NULL); 7756 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7757 7758 __netdev_update_lower_level(upper_dev, NULL); 7759 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7760 NULL); 7761 } 7762 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7763 7764 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7765 struct net_device *lower_dev, 7766 bool val) 7767 { 7768 struct netdev_adjacent *adj; 7769 7770 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7771 if (adj) 7772 adj->ignore = val; 7773 7774 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7775 if (adj) 7776 adj->ignore = val; 7777 } 7778 7779 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7780 struct net_device *lower_dev) 7781 { 7782 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7783 } 7784 7785 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7786 struct net_device *lower_dev) 7787 { 7788 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7789 } 7790 7791 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7792 struct net_device *new_dev, 7793 struct net_device *dev, 7794 struct netlink_ext_ack *extack) 7795 { 7796 int err; 7797 7798 if (!new_dev) 7799 return 0; 7800 7801 if (old_dev && new_dev != old_dev) 7802 netdev_adjacent_dev_disable(dev, old_dev); 7803 7804 err = netdev_upper_dev_link(new_dev, dev, extack); 7805 if (err) { 7806 if (old_dev && new_dev != old_dev) 7807 netdev_adjacent_dev_enable(dev, old_dev); 7808 return err; 7809 } 7810 7811 return 0; 7812 } 7813 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7814 7815 void netdev_adjacent_change_commit(struct net_device *old_dev, 7816 struct net_device *new_dev, 7817 struct net_device *dev) 7818 { 7819 if (!new_dev || !old_dev) 7820 return; 7821 7822 if (new_dev == old_dev) 7823 return; 7824 7825 netdev_adjacent_dev_enable(dev, old_dev); 7826 netdev_upper_dev_unlink(old_dev, dev); 7827 } 7828 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7829 7830 void netdev_adjacent_change_abort(struct net_device *old_dev, 7831 struct net_device *new_dev, 7832 struct net_device *dev) 7833 { 7834 if (!new_dev) 7835 return; 7836 7837 if (old_dev && new_dev != old_dev) 7838 netdev_adjacent_dev_enable(dev, old_dev); 7839 7840 netdev_upper_dev_unlink(new_dev, dev); 7841 } 7842 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7843 7844 /** 7845 * netdev_bonding_info_change - Dispatch event about slave change 7846 * @dev: device 7847 * @bonding_info: info to dispatch 7848 * 7849 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7850 * The caller must hold the RTNL lock. 7851 */ 7852 void netdev_bonding_info_change(struct net_device *dev, 7853 struct netdev_bonding_info *bonding_info) 7854 { 7855 struct netdev_notifier_bonding_info info = { 7856 .info.dev = dev, 7857 }; 7858 7859 memcpy(&info.bonding_info, bonding_info, 7860 sizeof(struct netdev_bonding_info)); 7861 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7862 &info.info); 7863 } 7864 EXPORT_SYMBOL(netdev_bonding_info_change); 7865 7866 /** 7867 * netdev_get_xmit_slave - Get the xmit slave of master device 7868 * @skb: The packet 7869 * @all_slaves: assume all the slaves are active 7870 * 7871 * The reference counters are not incremented so the caller must be 7872 * careful with locks. The caller must hold RCU lock. 7873 * %NULL is returned if no slave is found. 7874 */ 7875 7876 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 7877 struct sk_buff *skb, 7878 bool all_slaves) 7879 { 7880 const struct net_device_ops *ops = dev->netdev_ops; 7881 7882 if (!ops->ndo_get_xmit_slave) 7883 return NULL; 7884 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 7885 } 7886 EXPORT_SYMBOL(netdev_get_xmit_slave); 7887 7888 static void netdev_adjacent_add_links(struct net_device *dev) 7889 { 7890 struct netdev_adjacent *iter; 7891 7892 struct net *net = dev_net(dev); 7893 7894 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7895 if (!net_eq(net, dev_net(iter->dev))) 7896 continue; 7897 netdev_adjacent_sysfs_add(iter->dev, dev, 7898 &iter->dev->adj_list.lower); 7899 netdev_adjacent_sysfs_add(dev, iter->dev, 7900 &dev->adj_list.upper); 7901 } 7902 7903 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7904 if (!net_eq(net, dev_net(iter->dev))) 7905 continue; 7906 netdev_adjacent_sysfs_add(iter->dev, dev, 7907 &iter->dev->adj_list.upper); 7908 netdev_adjacent_sysfs_add(dev, iter->dev, 7909 &dev->adj_list.lower); 7910 } 7911 } 7912 7913 static void netdev_adjacent_del_links(struct net_device *dev) 7914 { 7915 struct netdev_adjacent *iter; 7916 7917 struct net *net = dev_net(dev); 7918 7919 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7920 if (!net_eq(net, dev_net(iter->dev))) 7921 continue; 7922 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7923 &iter->dev->adj_list.lower); 7924 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7925 &dev->adj_list.upper); 7926 } 7927 7928 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7929 if (!net_eq(net, dev_net(iter->dev))) 7930 continue; 7931 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7932 &iter->dev->adj_list.upper); 7933 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7934 &dev->adj_list.lower); 7935 } 7936 } 7937 7938 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7939 { 7940 struct netdev_adjacent *iter; 7941 7942 struct net *net = dev_net(dev); 7943 7944 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7945 if (!net_eq(net, dev_net(iter->dev))) 7946 continue; 7947 netdev_adjacent_sysfs_del(iter->dev, oldname, 7948 &iter->dev->adj_list.lower); 7949 netdev_adjacent_sysfs_add(iter->dev, dev, 7950 &iter->dev->adj_list.lower); 7951 } 7952 7953 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7954 if (!net_eq(net, dev_net(iter->dev))) 7955 continue; 7956 netdev_adjacent_sysfs_del(iter->dev, oldname, 7957 &iter->dev->adj_list.upper); 7958 netdev_adjacent_sysfs_add(iter->dev, dev, 7959 &iter->dev->adj_list.upper); 7960 } 7961 } 7962 7963 void *netdev_lower_dev_get_private(struct net_device *dev, 7964 struct net_device *lower_dev) 7965 { 7966 struct netdev_adjacent *lower; 7967 7968 if (!lower_dev) 7969 return NULL; 7970 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7971 if (!lower) 7972 return NULL; 7973 7974 return lower->private; 7975 } 7976 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7977 7978 7979 /** 7980 * netdev_lower_change - Dispatch event about lower device state change 7981 * @lower_dev: device 7982 * @lower_state_info: state to dispatch 7983 * 7984 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7985 * The caller must hold the RTNL lock. 7986 */ 7987 void netdev_lower_state_changed(struct net_device *lower_dev, 7988 void *lower_state_info) 7989 { 7990 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7991 .info.dev = lower_dev, 7992 }; 7993 7994 ASSERT_RTNL(); 7995 changelowerstate_info.lower_state_info = lower_state_info; 7996 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7997 &changelowerstate_info.info); 7998 } 7999 EXPORT_SYMBOL(netdev_lower_state_changed); 8000 8001 static void dev_change_rx_flags(struct net_device *dev, int flags) 8002 { 8003 const struct net_device_ops *ops = dev->netdev_ops; 8004 8005 if (ops->ndo_change_rx_flags) 8006 ops->ndo_change_rx_flags(dev, flags); 8007 } 8008 8009 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8010 { 8011 unsigned int old_flags = dev->flags; 8012 kuid_t uid; 8013 kgid_t gid; 8014 8015 ASSERT_RTNL(); 8016 8017 dev->flags |= IFF_PROMISC; 8018 dev->promiscuity += inc; 8019 if (dev->promiscuity == 0) { 8020 /* 8021 * Avoid overflow. 8022 * If inc causes overflow, untouch promisc and return error. 8023 */ 8024 if (inc < 0) 8025 dev->flags &= ~IFF_PROMISC; 8026 else { 8027 dev->promiscuity -= inc; 8028 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8029 dev->name); 8030 return -EOVERFLOW; 8031 } 8032 } 8033 if (dev->flags != old_flags) { 8034 pr_info("device %s %s promiscuous mode\n", 8035 dev->name, 8036 dev->flags & IFF_PROMISC ? "entered" : "left"); 8037 if (audit_enabled) { 8038 current_uid_gid(&uid, &gid); 8039 audit_log(audit_context(), GFP_ATOMIC, 8040 AUDIT_ANOM_PROMISCUOUS, 8041 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8042 dev->name, (dev->flags & IFF_PROMISC), 8043 (old_flags & IFF_PROMISC), 8044 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8045 from_kuid(&init_user_ns, uid), 8046 from_kgid(&init_user_ns, gid), 8047 audit_get_sessionid(current)); 8048 } 8049 8050 dev_change_rx_flags(dev, IFF_PROMISC); 8051 } 8052 if (notify) 8053 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8054 return 0; 8055 } 8056 8057 /** 8058 * dev_set_promiscuity - update promiscuity count on a device 8059 * @dev: device 8060 * @inc: modifier 8061 * 8062 * Add or remove promiscuity from a device. While the count in the device 8063 * remains above zero the interface remains promiscuous. Once it hits zero 8064 * the device reverts back to normal filtering operation. A negative inc 8065 * value is used to drop promiscuity on the device. 8066 * Return 0 if successful or a negative errno code on error. 8067 */ 8068 int dev_set_promiscuity(struct net_device *dev, int inc) 8069 { 8070 unsigned int old_flags = dev->flags; 8071 int err; 8072 8073 err = __dev_set_promiscuity(dev, inc, true); 8074 if (err < 0) 8075 return err; 8076 if (dev->flags != old_flags) 8077 dev_set_rx_mode(dev); 8078 return err; 8079 } 8080 EXPORT_SYMBOL(dev_set_promiscuity); 8081 8082 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8083 { 8084 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8085 8086 ASSERT_RTNL(); 8087 8088 dev->flags |= IFF_ALLMULTI; 8089 dev->allmulti += inc; 8090 if (dev->allmulti == 0) { 8091 /* 8092 * Avoid overflow. 8093 * If inc causes overflow, untouch allmulti and return error. 8094 */ 8095 if (inc < 0) 8096 dev->flags &= ~IFF_ALLMULTI; 8097 else { 8098 dev->allmulti -= inc; 8099 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8100 dev->name); 8101 return -EOVERFLOW; 8102 } 8103 } 8104 if (dev->flags ^ old_flags) { 8105 dev_change_rx_flags(dev, IFF_ALLMULTI); 8106 dev_set_rx_mode(dev); 8107 if (notify) 8108 __dev_notify_flags(dev, old_flags, 8109 dev->gflags ^ old_gflags); 8110 } 8111 return 0; 8112 } 8113 8114 /** 8115 * dev_set_allmulti - update allmulti count on a device 8116 * @dev: device 8117 * @inc: modifier 8118 * 8119 * Add or remove reception of all multicast frames to a device. While the 8120 * count in the device remains above zero the interface remains listening 8121 * to all interfaces. Once it hits zero the device reverts back to normal 8122 * filtering operation. A negative @inc value is used to drop the counter 8123 * when releasing a resource needing all multicasts. 8124 * Return 0 if successful or a negative errno code on error. 8125 */ 8126 8127 int dev_set_allmulti(struct net_device *dev, int inc) 8128 { 8129 return __dev_set_allmulti(dev, inc, true); 8130 } 8131 EXPORT_SYMBOL(dev_set_allmulti); 8132 8133 /* 8134 * Upload unicast and multicast address lists to device and 8135 * configure RX filtering. When the device doesn't support unicast 8136 * filtering it is put in promiscuous mode while unicast addresses 8137 * are present. 8138 */ 8139 void __dev_set_rx_mode(struct net_device *dev) 8140 { 8141 const struct net_device_ops *ops = dev->netdev_ops; 8142 8143 /* dev_open will call this function so the list will stay sane. */ 8144 if (!(dev->flags&IFF_UP)) 8145 return; 8146 8147 if (!netif_device_present(dev)) 8148 return; 8149 8150 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8151 /* Unicast addresses changes may only happen under the rtnl, 8152 * therefore calling __dev_set_promiscuity here is safe. 8153 */ 8154 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8155 __dev_set_promiscuity(dev, 1, false); 8156 dev->uc_promisc = true; 8157 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8158 __dev_set_promiscuity(dev, -1, false); 8159 dev->uc_promisc = false; 8160 } 8161 } 8162 8163 if (ops->ndo_set_rx_mode) 8164 ops->ndo_set_rx_mode(dev); 8165 } 8166 8167 void dev_set_rx_mode(struct net_device *dev) 8168 { 8169 netif_addr_lock_bh(dev); 8170 __dev_set_rx_mode(dev); 8171 netif_addr_unlock_bh(dev); 8172 } 8173 8174 /** 8175 * dev_get_flags - get flags reported to userspace 8176 * @dev: device 8177 * 8178 * Get the combination of flag bits exported through APIs to userspace. 8179 */ 8180 unsigned int dev_get_flags(const struct net_device *dev) 8181 { 8182 unsigned int flags; 8183 8184 flags = (dev->flags & ~(IFF_PROMISC | 8185 IFF_ALLMULTI | 8186 IFF_RUNNING | 8187 IFF_LOWER_UP | 8188 IFF_DORMANT)) | 8189 (dev->gflags & (IFF_PROMISC | 8190 IFF_ALLMULTI)); 8191 8192 if (netif_running(dev)) { 8193 if (netif_oper_up(dev)) 8194 flags |= IFF_RUNNING; 8195 if (netif_carrier_ok(dev)) 8196 flags |= IFF_LOWER_UP; 8197 if (netif_dormant(dev)) 8198 flags |= IFF_DORMANT; 8199 } 8200 8201 return flags; 8202 } 8203 EXPORT_SYMBOL(dev_get_flags); 8204 8205 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8206 struct netlink_ext_ack *extack) 8207 { 8208 unsigned int old_flags = dev->flags; 8209 int ret; 8210 8211 ASSERT_RTNL(); 8212 8213 /* 8214 * Set the flags on our device. 8215 */ 8216 8217 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8218 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8219 IFF_AUTOMEDIA)) | 8220 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8221 IFF_ALLMULTI)); 8222 8223 /* 8224 * Load in the correct multicast list now the flags have changed. 8225 */ 8226 8227 if ((old_flags ^ flags) & IFF_MULTICAST) 8228 dev_change_rx_flags(dev, IFF_MULTICAST); 8229 8230 dev_set_rx_mode(dev); 8231 8232 /* 8233 * Have we downed the interface. We handle IFF_UP ourselves 8234 * according to user attempts to set it, rather than blindly 8235 * setting it. 8236 */ 8237 8238 ret = 0; 8239 if ((old_flags ^ flags) & IFF_UP) { 8240 if (old_flags & IFF_UP) 8241 __dev_close(dev); 8242 else 8243 ret = __dev_open(dev, extack); 8244 } 8245 8246 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8247 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8248 unsigned int old_flags = dev->flags; 8249 8250 dev->gflags ^= IFF_PROMISC; 8251 8252 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8253 if (dev->flags != old_flags) 8254 dev_set_rx_mode(dev); 8255 } 8256 8257 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8258 * is important. Some (broken) drivers set IFF_PROMISC, when 8259 * IFF_ALLMULTI is requested not asking us and not reporting. 8260 */ 8261 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8262 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8263 8264 dev->gflags ^= IFF_ALLMULTI; 8265 __dev_set_allmulti(dev, inc, false); 8266 } 8267 8268 return ret; 8269 } 8270 8271 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8272 unsigned int gchanges) 8273 { 8274 unsigned int changes = dev->flags ^ old_flags; 8275 8276 if (gchanges) 8277 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8278 8279 if (changes & IFF_UP) { 8280 if (dev->flags & IFF_UP) 8281 call_netdevice_notifiers(NETDEV_UP, dev); 8282 else 8283 call_netdevice_notifiers(NETDEV_DOWN, dev); 8284 } 8285 8286 if (dev->flags & IFF_UP && 8287 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8288 struct netdev_notifier_change_info change_info = { 8289 .info = { 8290 .dev = dev, 8291 }, 8292 .flags_changed = changes, 8293 }; 8294 8295 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8296 } 8297 } 8298 8299 /** 8300 * dev_change_flags - change device settings 8301 * @dev: device 8302 * @flags: device state flags 8303 * @extack: netlink extended ack 8304 * 8305 * Change settings on device based state flags. The flags are 8306 * in the userspace exported format. 8307 */ 8308 int dev_change_flags(struct net_device *dev, unsigned int flags, 8309 struct netlink_ext_ack *extack) 8310 { 8311 int ret; 8312 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8313 8314 ret = __dev_change_flags(dev, flags, extack); 8315 if (ret < 0) 8316 return ret; 8317 8318 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8319 __dev_notify_flags(dev, old_flags, changes); 8320 return ret; 8321 } 8322 EXPORT_SYMBOL(dev_change_flags); 8323 8324 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8325 { 8326 const struct net_device_ops *ops = dev->netdev_ops; 8327 8328 if (ops->ndo_change_mtu) 8329 return ops->ndo_change_mtu(dev, new_mtu); 8330 8331 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8332 WRITE_ONCE(dev->mtu, new_mtu); 8333 return 0; 8334 } 8335 EXPORT_SYMBOL(__dev_set_mtu); 8336 8337 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8338 struct netlink_ext_ack *extack) 8339 { 8340 /* MTU must be positive, and in range */ 8341 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8342 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8343 return -EINVAL; 8344 } 8345 8346 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8347 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8348 return -EINVAL; 8349 } 8350 return 0; 8351 } 8352 8353 /** 8354 * dev_set_mtu_ext - Change maximum transfer unit 8355 * @dev: device 8356 * @new_mtu: new transfer unit 8357 * @extack: netlink extended ack 8358 * 8359 * Change the maximum transfer size of the network device. 8360 */ 8361 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8362 struct netlink_ext_ack *extack) 8363 { 8364 int err, orig_mtu; 8365 8366 if (new_mtu == dev->mtu) 8367 return 0; 8368 8369 err = dev_validate_mtu(dev, new_mtu, extack); 8370 if (err) 8371 return err; 8372 8373 if (!netif_device_present(dev)) 8374 return -ENODEV; 8375 8376 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8377 err = notifier_to_errno(err); 8378 if (err) 8379 return err; 8380 8381 orig_mtu = dev->mtu; 8382 err = __dev_set_mtu(dev, new_mtu); 8383 8384 if (!err) { 8385 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8386 orig_mtu); 8387 err = notifier_to_errno(err); 8388 if (err) { 8389 /* setting mtu back and notifying everyone again, 8390 * so that they have a chance to revert changes. 8391 */ 8392 __dev_set_mtu(dev, orig_mtu); 8393 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8394 new_mtu); 8395 } 8396 } 8397 return err; 8398 } 8399 8400 int dev_set_mtu(struct net_device *dev, int new_mtu) 8401 { 8402 struct netlink_ext_ack extack; 8403 int err; 8404 8405 memset(&extack, 0, sizeof(extack)); 8406 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8407 if (err && extack._msg) 8408 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8409 return err; 8410 } 8411 EXPORT_SYMBOL(dev_set_mtu); 8412 8413 /** 8414 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8415 * @dev: device 8416 * @new_len: new tx queue length 8417 */ 8418 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8419 { 8420 unsigned int orig_len = dev->tx_queue_len; 8421 int res; 8422 8423 if (new_len != (unsigned int)new_len) 8424 return -ERANGE; 8425 8426 if (new_len != orig_len) { 8427 dev->tx_queue_len = new_len; 8428 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8429 res = notifier_to_errno(res); 8430 if (res) 8431 goto err_rollback; 8432 res = dev_qdisc_change_tx_queue_len(dev); 8433 if (res) 8434 goto err_rollback; 8435 } 8436 8437 return 0; 8438 8439 err_rollback: 8440 netdev_err(dev, "refused to change device tx_queue_len\n"); 8441 dev->tx_queue_len = orig_len; 8442 return res; 8443 } 8444 8445 /** 8446 * dev_set_group - Change group this device belongs to 8447 * @dev: device 8448 * @new_group: group this device should belong to 8449 */ 8450 void dev_set_group(struct net_device *dev, int new_group) 8451 { 8452 dev->group = new_group; 8453 } 8454 EXPORT_SYMBOL(dev_set_group); 8455 8456 /** 8457 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8458 * @dev: device 8459 * @addr: new address 8460 * @extack: netlink extended ack 8461 */ 8462 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8463 struct netlink_ext_ack *extack) 8464 { 8465 struct netdev_notifier_pre_changeaddr_info info = { 8466 .info.dev = dev, 8467 .info.extack = extack, 8468 .dev_addr = addr, 8469 }; 8470 int rc; 8471 8472 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8473 return notifier_to_errno(rc); 8474 } 8475 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8476 8477 /** 8478 * dev_set_mac_address - Change Media Access Control Address 8479 * @dev: device 8480 * @sa: new address 8481 * @extack: netlink extended ack 8482 * 8483 * Change the hardware (MAC) address of the device 8484 */ 8485 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8486 struct netlink_ext_ack *extack) 8487 { 8488 const struct net_device_ops *ops = dev->netdev_ops; 8489 int err; 8490 8491 if (!ops->ndo_set_mac_address) 8492 return -EOPNOTSUPP; 8493 if (sa->sa_family != dev->type) 8494 return -EINVAL; 8495 if (!netif_device_present(dev)) 8496 return -ENODEV; 8497 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8498 if (err) 8499 return err; 8500 err = ops->ndo_set_mac_address(dev, sa); 8501 if (err) 8502 return err; 8503 dev->addr_assign_type = NET_ADDR_SET; 8504 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8505 add_device_randomness(dev->dev_addr, dev->addr_len); 8506 return 0; 8507 } 8508 EXPORT_SYMBOL(dev_set_mac_address); 8509 8510 /** 8511 * dev_change_carrier - Change device carrier 8512 * @dev: device 8513 * @new_carrier: new value 8514 * 8515 * Change device carrier 8516 */ 8517 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8518 { 8519 const struct net_device_ops *ops = dev->netdev_ops; 8520 8521 if (!ops->ndo_change_carrier) 8522 return -EOPNOTSUPP; 8523 if (!netif_device_present(dev)) 8524 return -ENODEV; 8525 return ops->ndo_change_carrier(dev, new_carrier); 8526 } 8527 EXPORT_SYMBOL(dev_change_carrier); 8528 8529 /** 8530 * dev_get_phys_port_id - Get device physical port ID 8531 * @dev: device 8532 * @ppid: port ID 8533 * 8534 * Get device physical port ID 8535 */ 8536 int dev_get_phys_port_id(struct net_device *dev, 8537 struct netdev_phys_item_id *ppid) 8538 { 8539 const struct net_device_ops *ops = dev->netdev_ops; 8540 8541 if (!ops->ndo_get_phys_port_id) 8542 return -EOPNOTSUPP; 8543 return ops->ndo_get_phys_port_id(dev, ppid); 8544 } 8545 EXPORT_SYMBOL(dev_get_phys_port_id); 8546 8547 /** 8548 * dev_get_phys_port_name - Get device physical port name 8549 * @dev: device 8550 * @name: port name 8551 * @len: limit of bytes to copy to name 8552 * 8553 * Get device physical port name 8554 */ 8555 int dev_get_phys_port_name(struct net_device *dev, 8556 char *name, size_t len) 8557 { 8558 const struct net_device_ops *ops = dev->netdev_ops; 8559 int err; 8560 8561 if (ops->ndo_get_phys_port_name) { 8562 err = ops->ndo_get_phys_port_name(dev, name, len); 8563 if (err != -EOPNOTSUPP) 8564 return err; 8565 } 8566 return devlink_compat_phys_port_name_get(dev, name, len); 8567 } 8568 EXPORT_SYMBOL(dev_get_phys_port_name); 8569 8570 /** 8571 * dev_get_port_parent_id - Get the device's port parent identifier 8572 * @dev: network device 8573 * @ppid: pointer to a storage for the port's parent identifier 8574 * @recurse: allow/disallow recursion to lower devices 8575 * 8576 * Get the devices's port parent identifier 8577 */ 8578 int dev_get_port_parent_id(struct net_device *dev, 8579 struct netdev_phys_item_id *ppid, 8580 bool recurse) 8581 { 8582 const struct net_device_ops *ops = dev->netdev_ops; 8583 struct netdev_phys_item_id first = { }; 8584 struct net_device *lower_dev; 8585 struct list_head *iter; 8586 int err; 8587 8588 if (ops->ndo_get_port_parent_id) { 8589 err = ops->ndo_get_port_parent_id(dev, ppid); 8590 if (err != -EOPNOTSUPP) 8591 return err; 8592 } 8593 8594 err = devlink_compat_switch_id_get(dev, ppid); 8595 if (!err || err != -EOPNOTSUPP) 8596 return err; 8597 8598 if (!recurse) 8599 return -EOPNOTSUPP; 8600 8601 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8602 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8603 if (err) 8604 break; 8605 if (!first.id_len) 8606 first = *ppid; 8607 else if (memcmp(&first, ppid, sizeof(*ppid))) 8608 return -ENODATA; 8609 } 8610 8611 return err; 8612 } 8613 EXPORT_SYMBOL(dev_get_port_parent_id); 8614 8615 /** 8616 * netdev_port_same_parent_id - Indicate if two network devices have 8617 * the same port parent identifier 8618 * @a: first network device 8619 * @b: second network device 8620 */ 8621 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8622 { 8623 struct netdev_phys_item_id a_id = { }; 8624 struct netdev_phys_item_id b_id = { }; 8625 8626 if (dev_get_port_parent_id(a, &a_id, true) || 8627 dev_get_port_parent_id(b, &b_id, true)) 8628 return false; 8629 8630 return netdev_phys_item_id_same(&a_id, &b_id); 8631 } 8632 EXPORT_SYMBOL(netdev_port_same_parent_id); 8633 8634 /** 8635 * dev_change_proto_down - update protocol port state information 8636 * @dev: device 8637 * @proto_down: new value 8638 * 8639 * This info can be used by switch drivers to set the phys state of the 8640 * port. 8641 */ 8642 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8643 { 8644 const struct net_device_ops *ops = dev->netdev_ops; 8645 8646 if (!ops->ndo_change_proto_down) 8647 return -EOPNOTSUPP; 8648 if (!netif_device_present(dev)) 8649 return -ENODEV; 8650 return ops->ndo_change_proto_down(dev, proto_down); 8651 } 8652 EXPORT_SYMBOL(dev_change_proto_down); 8653 8654 /** 8655 * dev_change_proto_down_generic - generic implementation for 8656 * ndo_change_proto_down that sets carrier according to 8657 * proto_down. 8658 * 8659 * @dev: device 8660 * @proto_down: new value 8661 */ 8662 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8663 { 8664 if (proto_down) 8665 netif_carrier_off(dev); 8666 else 8667 netif_carrier_on(dev); 8668 dev->proto_down = proto_down; 8669 return 0; 8670 } 8671 EXPORT_SYMBOL(dev_change_proto_down_generic); 8672 8673 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8674 enum bpf_netdev_command cmd) 8675 { 8676 struct netdev_bpf xdp; 8677 8678 if (!bpf_op) 8679 return 0; 8680 8681 memset(&xdp, 0, sizeof(xdp)); 8682 xdp.command = cmd; 8683 8684 /* Query must always succeed. */ 8685 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8686 8687 return xdp.prog_id; 8688 } 8689 8690 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8691 struct netlink_ext_ack *extack, u32 flags, 8692 struct bpf_prog *prog) 8693 { 8694 bool non_hw = !(flags & XDP_FLAGS_HW_MODE); 8695 struct bpf_prog *prev_prog = NULL; 8696 struct netdev_bpf xdp; 8697 int err; 8698 8699 if (non_hw) { 8700 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op, 8701 XDP_QUERY_PROG)); 8702 if (IS_ERR(prev_prog)) 8703 prev_prog = NULL; 8704 } 8705 8706 memset(&xdp, 0, sizeof(xdp)); 8707 if (flags & XDP_FLAGS_HW_MODE) 8708 xdp.command = XDP_SETUP_PROG_HW; 8709 else 8710 xdp.command = XDP_SETUP_PROG; 8711 xdp.extack = extack; 8712 xdp.flags = flags; 8713 xdp.prog = prog; 8714 8715 err = bpf_op(dev, &xdp); 8716 if (!err && non_hw) 8717 bpf_prog_change_xdp(prev_prog, prog); 8718 8719 if (prev_prog) 8720 bpf_prog_put(prev_prog); 8721 8722 return err; 8723 } 8724 8725 static void dev_xdp_uninstall(struct net_device *dev) 8726 { 8727 struct netdev_bpf xdp; 8728 bpf_op_t ndo_bpf; 8729 8730 /* Remove generic XDP */ 8731 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8732 8733 /* Remove from the driver */ 8734 ndo_bpf = dev->netdev_ops->ndo_bpf; 8735 if (!ndo_bpf) 8736 return; 8737 8738 memset(&xdp, 0, sizeof(xdp)); 8739 xdp.command = XDP_QUERY_PROG; 8740 WARN_ON(ndo_bpf(dev, &xdp)); 8741 if (xdp.prog_id) 8742 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8743 NULL)); 8744 8745 /* Remove HW offload */ 8746 memset(&xdp, 0, sizeof(xdp)); 8747 xdp.command = XDP_QUERY_PROG_HW; 8748 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8749 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8750 NULL)); 8751 } 8752 8753 /** 8754 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8755 * @dev: device 8756 * @extack: netlink extended ack 8757 * @fd: new program fd or negative value to clear 8758 * @expected_fd: old program fd that userspace expects to replace or clear 8759 * @flags: xdp-related flags 8760 * 8761 * Set or clear a bpf program for a device 8762 */ 8763 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8764 int fd, int expected_fd, u32 flags) 8765 { 8766 const struct net_device_ops *ops = dev->netdev_ops; 8767 enum bpf_netdev_command query; 8768 u32 prog_id, expected_id = 0; 8769 bpf_op_t bpf_op, bpf_chk; 8770 struct bpf_prog *prog; 8771 bool offload; 8772 int err; 8773 8774 ASSERT_RTNL(); 8775 8776 offload = flags & XDP_FLAGS_HW_MODE; 8777 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8778 8779 bpf_op = bpf_chk = ops->ndo_bpf; 8780 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8781 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8782 return -EOPNOTSUPP; 8783 } 8784 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8785 bpf_op = generic_xdp_install; 8786 if (bpf_op == bpf_chk) 8787 bpf_chk = generic_xdp_install; 8788 8789 prog_id = __dev_xdp_query(dev, bpf_op, query); 8790 if (flags & XDP_FLAGS_REPLACE) { 8791 if (expected_fd >= 0) { 8792 prog = bpf_prog_get_type_dev(expected_fd, 8793 BPF_PROG_TYPE_XDP, 8794 bpf_op == ops->ndo_bpf); 8795 if (IS_ERR(prog)) 8796 return PTR_ERR(prog); 8797 expected_id = prog->aux->id; 8798 bpf_prog_put(prog); 8799 } 8800 8801 if (prog_id != expected_id) { 8802 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 8803 return -EEXIST; 8804 } 8805 } 8806 if (fd >= 0) { 8807 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8808 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8809 return -EEXIST; 8810 } 8811 8812 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8813 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8814 return -EBUSY; 8815 } 8816 8817 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8818 bpf_op == ops->ndo_bpf); 8819 if (IS_ERR(prog)) 8820 return PTR_ERR(prog); 8821 8822 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8823 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8824 bpf_prog_put(prog); 8825 return -EINVAL; 8826 } 8827 8828 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8829 if (prog->aux->id && prog->aux->id == prog_id) { 8830 bpf_prog_put(prog); 8831 return 0; 8832 } 8833 } else { 8834 if (!prog_id) 8835 return 0; 8836 prog = NULL; 8837 } 8838 8839 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8840 if (err < 0 && prog) 8841 bpf_prog_put(prog); 8842 8843 return err; 8844 } 8845 8846 /** 8847 * dev_new_index - allocate an ifindex 8848 * @net: the applicable net namespace 8849 * 8850 * Returns a suitable unique value for a new device interface 8851 * number. The caller must hold the rtnl semaphore or the 8852 * dev_base_lock to be sure it remains unique. 8853 */ 8854 static int dev_new_index(struct net *net) 8855 { 8856 int ifindex = net->ifindex; 8857 8858 for (;;) { 8859 if (++ifindex <= 0) 8860 ifindex = 1; 8861 if (!__dev_get_by_index(net, ifindex)) 8862 return net->ifindex = ifindex; 8863 } 8864 } 8865 8866 /* Delayed registration/unregisteration */ 8867 static LIST_HEAD(net_todo_list); 8868 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8869 8870 static void net_set_todo(struct net_device *dev) 8871 { 8872 list_add_tail(&dev->todo_list, &net_todo_list); 8873 dev_net(dev)->dev_unreg_count++; 8874 } 8875 8876 static void rollback_registered_many(struct list_head *head) 8877 { 8878 struct net_device *dev, *tmp; 8879 LIST_HEAD(close_head); 8880 8881 BUG_ON(dev_boot_phase); 8882 ASSERT_RTNL(); 8883 8884 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8885 /* Some devices call without registering 8886 * for initialization unwind. Remove those 8887 * devices and proceed with the remaining. 8888 */ 8889 if (dev->reg_state == NETREG_UNINITIALIZED) { 8890 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8891 dev->name, dev); 8892 8893 WARN_ON(1); 8894 list_del(&dev->unreg_list); 8895 continue; 8896 } 8897 dev->dismantle = true; 8898 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8899 } 8900 8901 /* If device is running, close it first. */ 8902 list_for_each_entry(dev, head, unreg_list) 8903 list_add_tail(&dev->close_list, &close_head); 8904 dev_close_many(&close_head, true); 8905 8906 list_for_each_entry(dev, head, unreg_list) { 8907 /* And unlink it from device chain. */ 8908 unlist_netdevice(dev); 8909 8910 dev->reg_state = NETREG_UNREGISTERING; 8911 } 8912 flush_all_backlogs(); 8913 8914 synchronize_net(); 8915 8916 list_for_each_entry(dev, head, unreg_list) { 8917 struct sk_buff *skb = NULL; 8918 8919 /* Shutdown queueing discipline. */ 8920 dev_shutdown(dev); 8921 8922 dev_xdp_uninstall(dev); 8923 8924 /* Notify protocols, that we are about to destroy 8925 * this device. They should clean all the things. 8926 */ 8927 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8928 8929 if (!dev->rtnl_link_ops || 8930 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8931 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8932 GFP_KERNEL, NULL, 0); 8933 8934 /* 8935 * Flush the unicast and multicast chains 8936 */ 8937 dev_uc_flush(dev); 8938 dev_mc_flush(dev); 8939 8940 netdev_name_node_alt_flush(dev); 8941 netdev_name_node_free(dev->name_node); 8942 8943 if (dev->netdev_ops->ndo_uninit) 8944 dev->netdev_ops->ndo_uninit(dev); 8945 8946 if (skb) 8947 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8948 8949 /* Notifier chain MUST detach us all upper devices. */ 8950 WARN_ON(netdev_has_any_upper_dev(dev)); 8951 WARN_ON(netdev_has_any_lower_dev(dev)); 8952 8953 /* Remove entries from kobject tree */ 8954 netdev_unregister_kobject(dev); 8955 #ifdef CONFIG_XPS 8956 /* Remove XPS queueing entries */ 8957 netif_reset_xps_queues_gt(dev, 0); 8958 #endif 8959 } 8960 8961 synchronize_net(); 8962 8963 list_for_each_entry(dev, head, unreg_list) 8964 dev_put(dev); 8965 } 8966 8967 static void rollback_registered(struct net_device *dev) 8968 { 8969 LIST_HEAD(single); 8970 8971 list_add(&dev->unreg_list, &single); 8972 rollback_registered_many(&single); 8973 list_del(&single); 8974 } 8975 8976 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8977 struct net_device *upper, netdev_features_t features) 8978 { 8979 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8980 netdev_features_t feature; 8981 int feature_bit; 8982 8983 for_each_netdev_feature(upper_disables, feature_bit) { 8984 feature = __NETIF_F_BIT(feature_bit); 8985 if (!(upper->wanted_features & feature) 8986 && (features & feature)) { 8987 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8988 &feature, upper->name); 8989 features &= ~feature; 8990 } 8991 } 8992 8993 return features; 8994 } 8995 8996 static void netdev_sync_lower_features(struct net_device *upper, 8997 struct net_device *lower, netdev_features_t features) 8998 { 8999 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9000 netdev_features_t feature; 9001 int feature_bit; 9002 9003 for_each_netdev_feature(upper_disables, feature_bit) { 9004 feature = __NETIF_F_BIT(feature_bit); 9005 if (!(features & feature) && (lower->features & feature)) { 9006 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9007 &feature, lower->name); 9008 lower->wanted_features &= ~feature; 9009 __netdev_update_features(lower); 9010 9011 if (unlikely(lower->features & feature)) 9012 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9013 &feature, lower->name); 9014 else 9015 netdev_features_change(lower); 9016 } 9017 } 9018 } 9019 9020 static netdev_features_t netdev_fix_features(struct net_device *dev, 9021 netdev_features_t features) 9022 { 9023 /* Fix illegal checksum combinations */ 9024 if ((features & NETIF_F_HW_CSUM) && 9025 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9026 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9027 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9028 } 9029 9030 /* TSO requires that SG is present as well. */ 9031 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9032 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9033 features &= ~NETIF_F_ALL_TSO; 9034 } 9035 9036 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9037 !(features & NETIF_F_IP_CSUM)) { 9038 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9039 features &= ~NETIF_F_TSO; 9040 features &= ~NETIF_F_TSO_ECN; 9041 } 9042 9043 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9044 !(features & NETIF_F_IPV6_CSUM)) { 9045 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9046 features &= ~NETIF_F_TSO6; 9047 } 9048 9049 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9050 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9051 features &= ~NETIF_F_TSO_MANGLEID; 9052 9053 /* TSO ECN requires that TSO is present as well. */ 9054 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9055 features &= ~NETIF_F_TSO_ECN; 9056 9057 /* Software GSO depends on SG. */ 9058 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9059 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9060 features &= ~NETIF_F_GSO; 9061 } 9062 9063 /* GSO partial features require GSO partial be set */ 9064 if ((features & dev->gso_partial_features) && 9065 !(features & NETIF_F_GSO_PARTIAL)) { 9066 netdev_dbg(dev, 9067 "Dropping partially supported GSO features since no GSO partial.\n"); 9068 features &= ~dev->gso_partial_features; 9069 } 9070 9071 if (!(features & NETIF_F_RXCSUM)) { 9072 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9073 * successfully merged by hardware must also have the 9074 * checksum verified by hardware. If the user does not 9075 * want to enable RXCSUM, logically, we should disable GRO_HW. 9076 */ 9077 if (features & NETIF_F_GRO_HW) { 9078 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9079 features &= ~NETIF_F_GRO_HW; 9080 } 9081 } 9082 9083 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9084 if (features & NETIF_F_RXFCS) { 9085 if (features & NETIF_F_LRO) { 9086 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9087 features &= ~NETIF_F_LRO; 9088 } 9089 9090 if (features & NETIF_F_GRO_HW) { 9091 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9092 features &= ~NETIF_F_GRO_HW; 9093 } 9094 } 9095 9096 return features; 9097 } 9098 9099 int __netdev_update_features(struct net_device *dev) 9100 { 9101 struct net_device *upper, *lower; 9102 netdev_features_t features; 9103 struct list_head *iter; 9104 int err = -1; 9105 9106 ASSERT_RTNL(); 9107 9108 features = netdev_get_wanted_features(dev); 9109 9110 if (dev->netdev_ops->ndo_fix_features) 9111 features = dev->netdev_ops->ndo_fix_features(dev, features); 9112 9113 /* driver might be less strict about feature dependencies */ 9114 features = netdev_fix_features(dev, features); 9115 9116 /* some features can't be enabled if they're off an an upper device */ 9117 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9118 features = netdev_sync_upper_features(dev, upper, features); 9119 9120 if (dev->features == features) 9121 goto sync_lower; 9122 9123 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9124 &dev->features, &features); 9125 9126 if (dev->netdev_ops->ndo_set_features) 9127 err = dev->netdev_ops->ndo_set_features(dev, features); 9128 else 9129 err = 0; 9130 9131 if (unlikely(err < 0)) { 9132 netdev_err(dev, 9133 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9134 err, &features, &dev->features); 9135 /* return non-0 since some features might have changed and 9136 * it's better to fire a spurious notification than miss it 9137 */ 9138 return -1; 9139 } 9140 9141 sync_lower: 9142 /* some features must be disabled on lower devices when disabled 9143 * on an upper device (think: bonding master or bridge) 9144 */ 9145 netdev_for_each_lower_dev(dev, lower, iter) 9146 netdev_sync_lower_features(dev, lower, features); 9147 9148 if (!err) { 9149 netdev_features_t diff = features ^ dev->features; 9150 9151 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9152 /* udp_tunnel_{get,drop}_rx_info both need 9153 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9154 * device, or they won't do anything. 9155 * Thus we need to update dev->features 9156 * *before* calling udp_tunnel_get_rx_info, 9157 * but *after* calling udp_tunnel_drop_rx_info. 9158 */ 9159 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9160 dev->features = features; 9161 udp_tunnel_get_rx_info(dev); 9162 } else { 9163 udp_tunnel_drop_rx_info(dev); 9164 } 9165 } 9166 9167 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9168 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9169 dev->features = features; 9170 err |= vlan_get_rx_ctag_filter_info(dev); 9171 } else { 9172 vlan_drop_rx_ctag_filter_info(dev); 9173 } 9174 } 9175 9176 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9177 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9178 dev->features = features; 9179 err |= vlan_get_rx_stag_filter_info(dev); 9180 } else { 9181 vlan_drop_rx_stag_filter_info(dev); 9182 } 9183 } 9184 9185 dev->features = features; 9186 } 9187 9188 return err < 0 ? 0 : 1; 9189 } 9190 9191 /** 9192 * netdev_update_features - recalculate device features 9193 * @dev: the device to check 9194 * 9195 * Recalculate dev->features set and send notifications if it 9196 * has changed. Should be called after driver or hardware dependent 9197 * conditions might have changed that influence the features. 9198 */ 9199 void netdev_update_features(struct net_device *dev) 9200 { 9201 if (__netdev_update_features(dev)) 9202 netdev_features_change(dev); 9203 } 9204 EXPORT_SYMBOL(netdev_update_features); 9205 9206 /** 9207 * netdev_change_features - recalculate device features 9208 * @dev: the device to check 9209 * 9210 * Recalculate dev->features set and send notifications even 9211 * if they have not changed. Should be called instead of 9212 * netdev_update_features() if also dev->vlan_features might 9213 * have changed to allow the changes to be propagated to stacked 9214 * VLAN devices. 9215 */ 9216 void netdev_change_features(struct net_device *dev) 9217 { 9218 __netdev_update_features(dev); 9219 netdev_features_change(dev); 9220 } 9221 EXPORT_SYMBOL(netdev_change_features); 9222 9223 /** 9224 * netif_stacked_transfer_operstate - transfer operstate 9225 * @rootdev: the root or lower level device to transfer state from 9226 * @dev: the device to transfer operstate to 9227 * 9228 * Transfer operational state from root to device. This is normally 9229 * called when a stacking relationship exists between the root 9230 * device and the device(a leaf device). 9231 */ 9232 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9233 struct net_device *dev) 9234 { 9235 if (rootdev->operstate == IF_OPER_DORMANT) 9236 netif_dormant_on(dev); 9237 else 9238 netif_dormant_off(dev); 9239 9240 if (rootdev->operstate == IF_OPER_TESTING) 9241 netif_testing_on(dev); 9242 else 9243 netif_testing_off(dev); 9244 9245 if (netif_carrier_ok(rootdev)) 9246 netif_carrier_on(dev); 9247 else 9248 netif_carrier_off(dev); 9249 } 9250 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9251 9252 static int netif_alloc_rx_queues(struct net_device *dev) 9253 { 9254 unsigned int i, count = dev->num_rx_queues; 9255 struct netdev_rx_queue *rx; 9256 size_t sz = count * sizeof(*rx); 9257 int err = 0; 9258 9259 BUG_ON(count < 1); 9260 9261 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9262 if (!rx) 9263 return -ENOMEM; 9264 9265 dev->_rx = rx; 9266 9267 for (i = 0; i < count; i++) { 9268 rx[i].dev = dev; 9269 9270 /* XDP RX-queue setup */ 9271 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9272 if (err < 0) 9273 goto err_rxq_info; 9274 } 9275 return 0; 9276 9277 err_rxq_info: 9278 /* Rollback successful reg's and free other resources */ 9279 while (i--) 9280 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9281 kvfree(dev->_rx); 9282 dev->_rx = NULL; 9283 return err; 9284 } 9285 9286 static void netif_free_rx_queues(struct net_device *dev) 9287 { 9288 unsigned int i, count = dev->num_rx_queues; 9289 9290 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9291 if (!dev->_rx) 9292 return; 9293 9294 for (i = 0; i < count; i++) 9295 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9296 9297 kvfree(dev->_rx); 9298 } 9299 9300 static void netdev_init_one_queue(struct net_device *dev, 9301 struct netdev_queue *queue, void *_unused) 9302 { 9303 /* Initialize queue lock */ 9304 spin_lock_init(&queue->_xmit_lock); 9305 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9306 queue->xmit_lock_owner = -1; 9307 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9308 queue->dev = dev; 9309 #ifdef CONFIG_BQL 9310 dql_init(&queue->dql, HZ); 9311 #endif 9312 } 9313 9314 static void netif_free_tx_queues(struct net_device *dev) 9315 { 9316 kvfree(dev->_tx); 9317 } 9318 9319 static int netif_alloc_netdev_queues(struct net_device *dev) 9320 { 9321 unsigned int count = dev->num_tx_queues; 9322 struct netdev_queue *tx; 9323 size_t sz = count * sizeof(*tx); 9324 9325 if (count < 1 || count > 0xffff) 9326 return -EINVAL; 9327 9328 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9329 if (!tx) 9330 return -ENOMEM; 9331 9332 dev->_tx = tx; 9333 9334 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9335 spin_lock_init(&dev->tx_global_lock); 9336 9337 return 0; 9338 } 9339 9340 void netif_tx_stop_all_queues(struct net_device *dev) 9341 { 9342 unsigned int i; 9343 9344 for (i = 0; i < dev->num_tx_queues; i++) { 9345 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9346 9347 netif_tx_stop_queue(txq); 9348 } 9349 } 9350 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9351 9352 void netdev_update_lockdep_key(struct net_device *dev) 9353 { 9354 lockdep_unregister_key(&dev->addr_list_lock_key); 9355 lockdep_register_key(&dev->addr_list_lock_key); 9356 9357 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9358 } 9359 EXPORT_SYMBOL(netdev_update_lockdep_key); 9360 9361 /** 9362 * register_netdevice - register a network device 9363 * @dev: device to register 9364 * 9365 * Take a completed network device structure and add it to the kernel 9366 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9367 * chain. 0 is returned on success. A negative errno code is returned 9368 * on a failure to set up the device, or if the name is a duplicate. 9369 * 9370 * Callers must hold the rtnl semaphore. You may want 9371 * register_netdev() instead of this. 9372 * 9373 * BUGS: 9374 * The locking appears insufficient to guarantee two parallel registers 9375 * will not get the same name. 9376 */ 9377 9378 int register_netdevice(struct net_device *dev) 9379 { 9380 int ret; 9381 struct net *net = dev_net(dev); 9382 9383 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9384 NETDEV_FEATURE_COUNT); 9385 BUG_ON(dev_boot_phase); 9386 ASSERT_RTNL(); 9387 9388 might_sleep(); 9389 9390 /* When net_device's are persistent, this will be fatal. */ 9391 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9392 BUG_ON(!net); 9393 9394 ret = ethtool_check_ops(dev->ethtool_ops); 9395 if (ret) 9396 return ret; 9397 9398 spin_lock_init(&dev->addr_list_lock); 9399 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9400 9401 ret = dev_get_valid_name(net, dev, dev->name); 9402 if (ret < 0) 9403 goto out; 9404 9405 ret = -ENOMEM; 9406 dev->name_node = netdev_name_node_head_alloc(dev); 9407 if (!dev->name_node) 9408 goto out; 9409 9410 /* Init, if this function is available */ 9411 if (dev->netdev_ops->ndo_init) { 9412 ret = dev->netdev_ops->ndo_init(dev); 9413 if (ret) { 9414 if (ret > 0) 9415 ret = -EIO; 9416 goto err_free_name; 9417 } 9418 } 9419 9420 if (((dev->hw_features | dev->features) & 9421 NETIF_F_HW_VLAN_CTAG_FILTER) && 9422 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9423 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9424 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9425 ret = -EINVAL; 9426 goto err_uninit; 9427 } 9428 9429 ret = -EBUSY; 9430 if (!dev->ifindex) 9431 dev->ifindex = dev_new_index(net); 9432 else if (__dev_get_by_index(net, dev->ifindex)) 9433 goto err_uninit; 9434 9435 /* Transfer changeable features to wanted_features and enable 9436 * software offloads (GSO and GRO). 9437 */ 9438 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9439 dev->features |= NETIF_F_SOFT_FEATURES; 9440 9441 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9442 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9443 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9444 } 9445 9446 dev->wanted_features = dev->features & dev->hw_features; 9447 9448 if (!(dev->flags & IFF_LOOPBACK)) 9449 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9450 9451 /* If IPv4 TCP segmentation offload is supported we should also 9452 * allow the device to enable segmenting the frame with the option 9453 * of ignoring a static IP ID value. This doesn't enable the 9454 * feature itself but allows the user to enable it later. 9455 */ 9456 if (dev->hw_features & NETIF_F_TSO) 9457 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9458 if (dev->vlan_features & NETIF_F_TSO) 9459 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9460 if (dev->mpls_features & NETIF_F_TSO) 9461 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9462 if (dev->hw_enc_features & NETIF_F_TSO) 9463 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9464 9465 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9466 */ 9467 dev->vlan_features |= NETIF_F_HIGHDMA; 9468 9469 /* Make NETIF_F_SG inheritable to tunnel devices. 9470 */ 9471 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9472 9473 /* Make NETIF_F_SG inheritable to MPLS. 9474 */ 9475 dev->mpls_features |= NETIF_F_SG; 9476 9477 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9478 ret = notifier_to_errno(ret); 9479 if (ret) 9480 goto err_uninit; 9481 9482 ret = netdev_register_kobject(dev); 9483 if (ret) { 9484 dev->reg_state = NETREG_UNREGISTERED; 9485 goto err_uninit; 9486 } 9487 dev->reg_state = NETREG_REGISTERED; 9488 9489 __netdev_update_features(dev); 9490 9491 /* 9492 * Default initial state at registry is that the 9493 * device is present. 9494 */ 9495 9496 set_bit(__LINK_STATE_PRESENT, &dev->state); 9497 9498 linkwatch_init_dev(dev); 9499 9500 dev_init_scheduler(dev); 9501 dev_hold(dev); 9502 list_netdevice(dev); 9503 add_device_randomness(dev->dev_addr, dev->addr_len); 9504 9505 /* If the device has permanent device address, driver should 9506 * set dev_addr and also addr_assign_type should be set to 9507 * NET_ADDR_PERM (default value). 9508 */ 9509 if (dev->addr_assign_type == NET_ADDR_PERM) 9510 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9511 9512 /* Notify protocols, that a new device appeared. */ 9513 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9514 ret = notifier_to_errno(ret); 9515 if (ret) { 9516 rollback_registered(dev); 9517 rcu_barrier(); 9518 9519 dev->reg_state = NETREG_UNREGISTERED; 9520 } 9521 /* 9522 * Prevent userspace races by waiting until the network 9523 * device is fully setup before sending notifications. 9524 */ 9525 if (!dev->rtnl_link_ops || 9526 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9527 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9528 9529 out: 9530 return ret; 9531 9532 err_uninit: 9533 if (dev->netdev_ops->ndo_uninit) 9534 dev->netdev_ops->ndo_uninit(dev); 9535 if (dev->priv_destructor) 9536 dev->priv_destructor(dev); 9537 err_free_name: 9538 netdev_name_node_free(dev->name_node); 9539 goto out; 9540 } 9541 EXPORT_SYMBOL(register_netdevice); 9542 9543 /** 9544 * init_dummy_netdev - init a dummy network device for NAPI 9545 * @dev: device to init 9546 * 9547 * This takes a network device structure and initialize the minimum 9548 * amount of fields so it can be used to schedule NAPI polls without 9549 * registering a full blown interface. This is to be used by drivers 9550 * that need to tie several hardware interfaces to a single NAPI 9551 * poll scheduler due to HW limitations. 9552 */ 9553 int init_dummy_netdev(struct net_device *dev) 9554 { 9555 /* Clear everything. Note we don't initialize spinlocks 9556 * are they aren't supposed to be taken by any of the 9557 * NAPI code and this dummy netdev is supposed to be 9558 * only ever used for NAPI polls 9559 */ 9560 memset(dev, 0, sizeof(struct net_device)); 9561 9562 /* make sure we BUG if trying to hit standard 9563 * register/unregister code path 9564 */ 9565 dev->reg_state = NETREG_DUMMY; 9566 9567 /* NAPI wants this */ 9568 INIT_LIST_HEAD(&dev->napi_list); 9569 9570 /* a dummy interface is started by default */ 9571 set_bit(__LINK_STATE_PRESENT, &dev->state); 9572 set_bit(__LINK_STATE_START, &dev->state); 9573 9574 /* napi_busy_loop stats accounting wants this */ 9575 dev_net_set(dev, &init_net); 9576 9577 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9578 * because users of this 'device' dont need to change 9579 * its refcount. 9580 */ 9581 9582 return 0; 9583 } 9584 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9585 9586 9587 /** 9588 * register_netdev - register a network device 9589 * @dev: device to register 9590 * 9591 * Take a completed network device structure and add it to the kernel 9592 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9593 * chain. 0 is returned on success. A negative errno code is returned 9594 * on a failure to set up the device, or if the name is a duplicate. 9595 * 9596 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9597 * and expands the device name if you passed a format string to 9598 * alloc_netdev. 9599 */ 9600 int register_netdev(struct net_device *dev) 9601 { 9602 int err; 9603 9604 if (rtnl_lock_killable()) 9605 return -EINTR; 9606 err = register_netdevice(dev); 9607 rtnl_unlock(); 9608 return err; 9609 } 9610 EXPORT_SYMBOL(register_netdev); 9611 9612 int netdev_refcnt_read(const struct net_device *dev) 9613 { 9614 int i, refcnt = 0; 9615 9616 for_each_possible_cpu(i) 9617 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9618 return refcnt; 9619 } 9620 EXPORT_SYMBOL(netdev_refcnt_read); 9621 9622 /** 9623 * netdev_wait_allrefs - wait until all references are gone. 9624 * @dev: target net_device 9625 * 9626 * This is called when unregistering network devices. 9627 * 9628 * Any protocol or device that holds a reference should register 9629 * for netdevice notification, and cleanup and put back the 9630 * reference if they receive an UNREGISTER event. 9631 * We can get stuck here if buggy protocols don't correctly 9632 * call dev_put. 9633 */ 9634 static void netdev_wait_allrefs(struct net_device *dev) 9635 { 9636 unsigned long rebroadcast_time, warning_time; 9637 int refcnt; 9638 9639 linkwatch_forget_dev(dev); 9640 9641 rebroadcast_time = warning_time = jiffies; 9642 refcnt = netdev_refcnt_read(dev); 9643 9644 while (refcnt != 0) { 9645 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9646 rtnl_lock(); 9647 9648 /* Rebroadcast unregister notification */ 9649 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9650 9651 __rtnl_unlock(); 9652 rcu_barrier(); 9653 rtnl_lock(); 9654 9655 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9656 &dev->state)) { 9657 /* We must not have linkwatch events 9658 * pending on unregister. If this 9659 * happens, we simply run the queue 9660 * unscheduled, resulting in a noop 9661 * for this device. 9662 */ 9663 linkwatch_run_queue(); 9664 } 9665 9666 __rtnl_unlock(); 9667 9668 rebroadcast_time = jiffies; 9669 } 9670 9671 msleep(250); 9672 9673 refcnt = netdev_refcnt_read(dev); 9674 9675 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9676 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9677 dev->name, refcnt); 9678 warning_time = jiffies; 9679 } 9680 } 9681 } 9682 9683 /* The sequence is: 9684 * 9685 * rtnl_lock(); 9686 * ... 9687 * register_netdevice(x1); 9688 * register_netdevice(x2); 9689 * ... 9690 * unregister_netdevice(y1); 9691 * unregister_netdevice(y2); 9692 * ... 9693 * rtnl_unlock(); 9694 * free_netdev(y1); 9695 * free_netdev(y2); 9696 * 9697 * We are invoked by rtnl_unlock(). 9698 * This allows us to deal with problems: 9699 * 1) We can delete sysfs objects which invoke hotplug 9700 * without deadlocking with linkwatch via keventd. 9701 * 2) Since we run with the RTNL semaphore not held, we can sleep 9702 * safely in order to wait for the netdev refcnt to drop to zero. 9703 * 9704 * We must not return until all unregister events added during 9705 * the interval the lock was held have been completed. 9706 */ 9707 void netdev_run_todo(void) 9708 { 9709 struct list_head list; 9710 9711 /* Snapshot list, allow later requests */ 9712 list_replace_init(&net_todo_list, &list); 9713 9714 __rtnl_unlock(); 9715 9716 9717 /* Wait for rcu callbacks to finish before next phase */ 9718 if (!list_empty(&list)) 9719 rcu_barrier(); 9720 9721 while (!list_empty(&list)) { 9722 struct net_device *dev 9723 = list_first_entry(&list, struct net_device, todo_list); 9724 list_del(&dev->todo_list); 9725 9726 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9727 pr_err("network todo '%s' but state %d\n", 9728 dev->name, dev->reg_state); 9729 dump_stack(); 9730 continue; 9731 } 9732 9733 dev->reg_state = NETREG_UNREGISTERED; 9734 9735 netdev_wait_allrefs(dev); 9736 9737 /* paranoia */ 9738 BUG_ON(netdev_refcnt_read(dev)); 9739 BUG_ON(!list_empty(&dev->ptype_all)); 9740 BUG_ON(!list_empty(&dev->ptype_specific)); 9741 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9742 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9743 #if IS_ENABLED(CONFIG_DECNET) 9744 WARN_ON(dev->dn_ptr); 9745 #endif 9746 if (dev->priv_destructor) 9747 dev->priv_destructor(dev); 9748 if (dev->needs_free_netdev) 9749 free_netdev(dev); 9750 9751 /* Report a network device has been unregistered */ 9752 rtnl_lock(); 9753 dev_net(dev)->dev_unreg_count--; 9754 __rtnl_unlock(); 9755 wake_up(&netdev_unregistering_wq); 9756 9757 /* Free network device */ 9758 kobject_put(&dev->dev.kobj); 9759 } 9760 } 9761 9762 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9763 * all the same fields in the same order as net_device_stats, with only 9764 * the type differing, but rtnl_link_stats64 may have additional fields 9765 * at the end for newer counters. 9766 */ 9767 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9768 const struct net_device_stats *netdev_stats) 9769 { 9770 #if BITS_PER_LONG == 64 9771 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9772 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9773 /* zero out counters that only exist in rtnl_link_stats64 */ 9774 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9775 sizeof(*stats64) - sizeof(*netdev_stats)); 9776 #else 9777 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9778 const unsigned long *src = (const unsigned long *)netdev_stats; 9779 u64 *dst = (u64 *)stats64; 9780 9781 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9782 for (i = 0; i < n; i++) 9783 dst[i] = src[i]; 9784 /* zero out counters that only exist in rtnl_link_stats64 */ 9785 memset((char *)stats64 + n * sizeof(u64), 0, 9786 sizeof(*stats64) - n * sizeof(u64)); 9787 #endif 9788 } 9789 EXPORT_SYMBOL(netdev_stats_to_stats64); 9790 9791 /** 9792 * dev_get_stats - get network device statistics 9793 * @dev: device to get statistics from 9794 * @storage: place to store stats 9795 * 9796 * Get network statistics from device. Return @storage. 9797 * The device driver may provide its own method by setting 9798 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9799 * otherwise the internal statistics structure is used. 9800 */ 9801 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9802 struct rtnl_link_stats64 *storage) 9803 { 9804 const struct net_device_ops *ops = dev->netdev_ops; 9805 9806 if (ops->ndo_get_stats64) { 9807 memset(storage, 0, sizeof(*storage)); 9808 ops->ndo_get_stats64(dev, storage); 9809 } else if (ops->ndo_get_stats) { 9810 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9811 } else { 9812 netdev_stats_to_stats64(storage, &dev->stats); 9813 } 9814 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9815 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9816 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9817 return storage; 9818 } 9819 EXPORT_SYMBOL(dev_get_stats); 9820 9821 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9822 { 9823 struct netdev_queue *queue = dev_ingress_queue(dev); 9824 9825 #ifdef CONFIG_NET_CLS_ACT 9826 if (queue) 9827 return queue; 9828 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9829 if (!queue) 9830 return NULL; 9831 netdev_init_one_queue(dev, queue, NULL); 9832 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9833 queue->qdisc_sleeping = &noop_qdisc; 9834 rcu_assign_pointer(dev->ingress_queue, queue); 9835 #endif 9836 return queue; 9837 } 9838 9839 static const struct ethtool_ops default_ethtool_ops; 9840 9841 void netdev_set_default_ethtool_ops(struct net_device *dev, 9842 const struct ethtool_ops *ops) 9843 { 9844 if (dev->ethtool_ops == &default_ethtool_ops) 9845 dev->ethtool_ops = ops; 9846 } 9847 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9848 9849 void netdev_freemem(struct net_device *dev) 9850 { 9851 char *addr = (char *)dev - dev->padded; 9852 9853 kvfree(addr); 9854 } 9855 9856 /** 9857 * alloc_netdev_mqs - allocate network device 9858 * @sizeof_priv: size of private data to allocate space for 9859 * @name: device name format string 9860 * @name_assign_type: origin of device name 9861 * @setup: callback to initialize device 9862 * @txqs: the number of TX subqueues to allocate 9863 * @rxqs: the number of RX subqueues to allocate 9864 * 9865 * Allocates a struct net_device with private data area for driver use 9866 * and performs basic initialization. Also allocates subqueue structs 9867 * for each queue on the device. 9868 */ 9869 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9870 unsigned char name_assign_type, 9871 void (*setup)(struct net_device *), 9872 unsigned int txqs, unsigned int rxqs) 9873 { 9874 struct net_device *dev; 9875 unsigned int alloc_size; 9876 struct net_device *p; 9877 9878 BUG_ON(strlen(name) >= sizeof(dev->name)); 9879 9880 if (txqs < 1) { 9881 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9882 return NULL; 9883 } 9884 9885 if (rxqs < 1) { 9886 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9887 return NULL; 9888 } 9889 9890 alloc_size = sizeof(struct net_device); 9891 if (sizeof_priv) { 9892 /* ensure 32-byte alignment of private area */ 9893 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9894 alloc_size += sizeof_priv; 9895 } 9896 /* ensure 32-byte alignment of whole construct */ 9897 alloc_size += NETDEV_ALIGN - 1; 9898 9899 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9900 if (!p) 9901 return NULL; 9902 9903 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9904 dev->padded = (char *)dev - (char *)p; 9905 9906 dev->pcpu_refcnt = alloc_percpu(int); 9907 if (!dev->pcpu_refcnt) 9908 goto free_dev; 9909 9910 if (dev_addr_init(dev)) 9911 goto free_pcpu; 9912 9913 dev_mc_init(dev); 9914 dev_uc_init(dev); 9915 9916 dev_net_set(dev, &init_net); 9917 9918 lockdep_register_key(&dev->addr_list_lock_key); 9919 9920 dev->gso_max_size = GSO_MAX_SIZE; 9921 dev->gso_max_segs = GSO_MAX_SEGS; 9922 dev->upper_level = 1; 9923 dev->lower_level = 1; 9924 9925 INIT_LIST_HEAD(&dev->napi_list); 9926 INIT_LIST_HEAD(&dev->unreg_list); 9927 INIT_LIST_HEAD(&dev->close_list); 9928 INIT_LIST_HEAD(&dev->link_watch_list); 9929 INIT_LIST_HEAD(&dev->adj_list.upper); 9930 INIT_LIST_HEAD(&dev->adj_list.lower); 9931 INIT_LIST_HEAD(&dev->ptype_all); 9932 INIT_LIST_HEAD(&dev->ptype_specific); 9933 INIT_LIST_HEAD(&dev->net_notifier_list); 9934 #ifdef CONFIG_NET_SCHED 9935 hash_init(dev->qdisc_hash); 9936 #endif 9937 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9938 setup(dev); 9939 9940 if (!dev->tx_queue_len) { 9941 dev->priv_flags |= IFF_NO_QUEUE; 9942 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9943 } 9944 9945 dev->num_tx_queues = txqs; 9946 dev->real_num_tx_queues = txqs; 9947 if (netif_alloc_netdev_queues(dev)) 9948 goto free_all; 9949 9950 dev->num_rx_queues = rxqs; 9951 dev->real_num_rx_queues = rxqs; 9952 if (netif_alloc_rx_queues(dev)) 9953 goto free_all; 9954 9955 strcpy(dev->name, name); 9956 dev->name_assign_type = name_assign_type; 9957 dev->group = INIT_NETDEV_GROUP; 9958 if (!dev->ethtool_ops) 9959 dev->ethtool_ops = &default_ethtool_ops; 9960 9961 nf_hook_ingress_init(dev); 9962 9963 return dev; 9964 9965 free_all: 9966 free_netdev(dev); 9967 return NULL; 9968 9969 free_pcpu: 9970 free_percpu(dev->pcpu_refcnt); 9971 free_dev: 9972 netdev_freemem(dev); 9973 return NULL; 9974 } 9975 EXPORT_SYMBOL(alloc_netdev_mqs); 9976 9977 /** 9978 * free_netdev - free network device 9979 * @dev: device 9980 * 9981 * This function does the last stage of destroying an allocated device 9982 * interface. The reference to the device object is released. If this 9983 * is the last reference then it will be freed.Must be called in process 9984 * context. 9985 */ 9986 void free_netdev(struct net_device *dev) 9987 { 9988 struct napi_struct *p, *n; 9989 9990 might_sleep(); 9991 netif_free_tx_queues(dev); 9992 netif_free_rx_queues(dev); 9993 9994 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9995 9996 /* Flush device addresses */ 9997 dev_addr_flush(dev); 9998 9999 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10000 netif_napi_del(p); 10001 10002 free_percpu(dev->pcpu_refcnt); 10003 dev->pcpu_refcnt = NULL; 10004 free_percpu(dev->xdp_bulkq); 10005 dev->xdp_bulkq = NULL; 10006 10007 lockdep_unregister_key(&dev->addr_list_lock_key); 10008 10009 /* Compatibility with error handling in drivers */ 10010 if (dev->reg_state == NETREG_UNINITIALIZED) { 10011 netdev_freemem(dev); 10012 return; 10013 } 10014 10015 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10016 dev->reg_state = NETREG_RELEASED; 10017 10018 /* will free via device release */ 10019 put_device(&dev->dev); 10020 } 10021 EXPORT_SYMBOL(free_netdev); 10022 10023 /** 10024 * synchronize_net - Synchronize with packet receive processing 10025 * 10026 * Wait for packets currently being received to be done. 10027 * Does not block later packets from starting. 10028 */ 10029 void synchronize_net(void) 10030 { 10031 might_sleep(); 10032 if (rtnl_is_locked()) 10033 synchronize_rcu_expedited(); 10034 else 10035 synchronize_rcu(); 10036 } 10037 EXPORT_SYMBOL(synchronize_net); 10038 10039 /** 10040 * unregister_netdevice_queue - remove device from the kernel 10041 * @dev: device 10042 * @head: list 10043 * 10044 * This function shuts down a device interface and removes it 10045 * from the kernel tables. 10046 * If head not NULL, device is queued to be unregistered later. 10047 * 10048 * Callers must hold the rtnl semaphore. You may want 10049 * unregister_netdev() instead of this. 10050 */ 10051 10052 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10053 { 10054 ASSERT_RTNL(); 10055 10056 if (head) { 10057 list_move_tail(&dev->unreg_list, head); 10058 } else { 10059 rollback_registered(dev); 10060 /* Finish processing unregister after unlock */ 10061 net_set_todo(dev); 10062 } 10063 } 10064 EXPORT_SYMBOL(unregister_netdevice_queue); 10065 10066 /** 10067 * unregister_netdevice_many - unregister many devices 10068 * @head: list of devices 10069 * 10070 * Note: As most callers use a stack allocated list_head, 10071 * we force a list_del() to make sure stack wont be corrupted later. 10072 */ 10073 void unregister_netdevice_many(struct list_head *head) 10074 { 10075 struct net_device *dev; 10076 10077 if (!list_empty(head)) { 10078 rollback_registered_many(head); 10079 list_for_each_entry(dev, head, unreg_list) 10080 net_set_todo(dev); 10081 list_del(head); 10082 } 10083 } 10084 EXPORT_SYMBOL(unregister_netdevice_many); 10085 10086 /** 10087 * unregister_netdev - remove device from the kernel 10088 * @dev: device 10089 * 10090 * This function shuts down a device interface and removes it 10091 * from the kernel tables. 10092 * 10093 * This is just a wrapper for unregister_netdevice that takes 10094 * the rtnl semaphore. In general you want to use this and not 10095 * unregister_netdevice. 10096 */ 10097 void unregister_netdev(struct net_device *dev) 10098 { 10099 rtnl_lock(); 10100 unregister_netdevice(dev); 10101 rtnl_unlock(); 10102 } 10103 EXPORT_SYMBOL(unregister_netdev); 10104 10105 /** 10106 * dev_change_net_namespace - move device to different nethost namespace 10107 * @dev: device 10108 * @net: network namespace 10109 * @pat: If not NULL name pattern to try if the current device name 10110 * is already taken in the destination network namespace. 10111 * 10112 * This function shuts down a device interface and moves it 10113 * to a new network namespace. On success 0 is returned, on 10114 * a failure a netagive errno code is returned. 10115 * 10116 * Callers must hold the rtnl semaphore. 10117 */ 10118 10119 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10120 { 10121 struct net *net_old = dev_net(dev); 10122 int err, new_nsid, new_ifindex; 10123 10124 ASSERT_RTNL(); 10125 10126 /* Don't allow namespace local devices to be moved. */ 10127 err = -EINVAL; 10128 if (dev->features & NETIF_F_NETNS_LOCAL) 10129 goto out; 10130 10131 /* Ensure the device has been registrered */ 10132 if (dev->reg_state != NETREG_REGISTERED) 10133 goto out; 10134 10135 /* Get out if there is nothing todo */ 10136 err = 0; 10137 if (net_eq(net_old, net)) 10138 goto out; 10139 10140 /* Pick the destination device name, and ensure 10141 * we can use it in the destination network namespace. 10142 */ 10143 err = -EEXIST; 10144 if (__dev_get_by_name(net, dev->name)) { 10145 /* We get here if we can't use the current device name */ 10146 if (!pat) 10147 goto out; 10148 err = dev_get_valid_name(net, dev, pat); 10149 if (err < 0) 10150 goto out; 10151 } 10152 10153 /* 10154 * And now a mini version of register_netdevice unregister_netdevice. 10155 */ 10156 10157 /* If device is running close it first. */ 10158 dev_close(dev); 10159 10160 /* And unlink it from device chain */ 10161 unlist_netdevice(dev); 10162 10163 synchronize_net(); 10164 10165 /* Shutdown queueing discipline. */ 10166 dev_shutdown(dev); 10167 10168 /* Notify protocols, that we are about to destroy 10169 * this device. They should clean all the things. 10170 * 10171 * Note that dev->reg_state stays at NETREG_REGISTERED. 10172 * This is wanted because this way 8021q and macvlan know 10173 * the device is just moving and can keep their slaves up. 10174 */ 10175 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10176 rcu_barrier(); 10177 10178 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10179 /* If there is an ifindex conflict assign a new one */ 10180 if (__dev_get_by_index(net, dev->ifindex)) 10181 new_ifindex = dev_new_index(net); 10182 else 10183 new_ifindex = dev->ifindex; 10184 10185 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10186 new_ifindex); 10187 10188 /* 10189 * Flush the unicast and multicast chains 10190 */ 10191 dev_uc_flush(dev); 10192 dev_mc_flush(dev); 10193 10194 /* Send a netdev-removed uevent to the old namespace */ 10195 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10196 netdev_adjacent_del_links(dev); 10197 10198 /* Move per-net netdevice notifiers that are following the netdevice */ 10199 move_netdevice_notifiers_dev_net(dev, net); 10200 10201 /* Actually switch the network namespace */ 10202 dev_net_set(dev, net); 10203 dev->ifindex = new_ifindex; 10204 10205 /* Send a netdev-add uevent to the new namespace */ 10206 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10207 netdev_adjacent_add_links(dev); 10208 10209 /* Fixup kobjects */ 10210 err = device_rename(&dev->dev, dev->name); 10211 WARN_ON(err); 10212 10213 /* Adapt owner in case owning user namespace of target network 10214 * namespace is different from the original one. 10215 */ 10216 err = netdev_change_owner(dev, net_old, net); 10217 WARN_ON(err); 10218 10219 /* Add the device back in the hashes */ 10220 list_netdevice(dev); 10221 10222 /* Notify protocols, that a new device appeared. */ 10223 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10224 10225 /* 10226 * Prevent userspace races by waiting until the network 10227 * device is fully setup before sending notifications. 10228 */ 10229 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10230 10231 synchronize_net(); 10232 err = 0; 10233 out: 10234 return err; 10235 } 10236 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10237 10238 static int dev_cpu_dead(unsigned int oldcpu) 10239 { 10240 struct sk_buff **list_skb; 10241 struct sk_buff *skb; 10242 unsigned int cpu; 10243 struct softnet_data *sd, *oldsd, *remsd = NULL; 10244 10245 local_irq_disable(); 10246 cpu = smp_processor_id(); 10247 sd = &per_cpu(softnet_data, cpu); 10248 oldsd = &per_cpu(softnet_data, oldcpu); 10249 10250 /* Find end of our completion_queue. */ 10251 list_skb = &sd->completion_queue; 10252 while (*list_skb) 10253 list_skb = &(*list_skb)->next; 10254 /* Append completion queue from offline CPU. */ 10255 *list_skb = oldsd->completion_queue; 10256 oldsd->completion_queue = NULL; 10257 10258 /* Append output queue from offline CPU. */ 10259 if (oldsd->output_queue) { 10260 *sd->output_queue_tailp = oldsd->output_queue; 10261 sd->output_queue_tailp = oldsd->output_queue_tailp; 10262 oldsd->output_queue = NULL; 10263 oldsd->output_queue_tailp = &oldsd->output_queue; 10264 } 10265 /* Append NAPI poll list from offline CPU, with one exception : 10266 * process_backlog() must be called by cpu owning percpu backlog. 10267 * We properly handle process_queue & input_pkt_queue later. 10268 */ 10269 while (!list_empty(&oldsd->poll_list)) { 10270 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10271 struct napi_struct, 10272 poll_list); 10273 10274 list_del_init(&napi->poll_list); 10275 if (napi->poll == process_backlog) 10276 napi->state = 0; 10277 else 10278 ____napi_schedule(sd, napi); 10279 } 10280 10281 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10282 local_irq_enable(); 10283 10284 #ifdef CONFIG_RPS 10285 remsd = oldsd->rps_ipi_list; 10286 oldsd->rps_ipi_list = NULL; 10287 #endif 10288 /* send out pending IPI's on offline CPU */ 10289 net_rps_send_ipi(remsd); 10290 10291 /* Process offline CPU's input_pkt_queue */ 10292 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10293 netif_rx_ni(skb); 10294 input_queue_head_incr(oldsd); 10295 } 10296 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10297 netif_rx_ni(skb); 10298 input_queue_head_incr(oldsd); 10299 } 10300 10301 return 0; 10302 } 10303 10304 /** 10305 * netdev_increment_features - increment feature set by one 10306 * @all: current feature set 10307 * @one: new feature set 10308 * @mask: mask feature set 10309 * 10310 * Computes a new feature set after adding a device with feature set 10311 * @one to the master device with current feature set @all. Will not 10312 * enable anything that is off in @mask. Returns the new feature set. 10313 */ 10314 netdev_features_t netdev_increment_features(netdev_features_t all, 10315 netdev_features_t one, netdev_features_t mask) 10316 { 10317 if (mask & NETIF_F_HW_CSUM) 10318 mask |= NETIF_F_CSUM_MASK; 10319 mask |= NETIF_F_VLAN_CHALLENGED; 10320 10321 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10322 all &= one | ~NETIF_F_ALL_FOR_ALL; 10323 10324 /* If one device supports hw checksumming, set for all. */ 10325 if (all & NETIF_F_HW_CSUM) 10326 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10327 10328 return all; 10329 } 10330 EXPORT_SYMBOL(netdev_increment_features); 10331 10332 static struct hlist_head * __net_init netdev_create_hash(void) 10333 { 10334 int i; 10335 struct hlist_head *hash; 10336 10337 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10338 if (hash != NULL) 10339 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10340 INIT_HLIST_HEAD(&hash[i]); 10341 10342 return hash; 10343 } 10344 10345 /* Initialize per network namespace state */ 10346 static int __net_init netdev_init(struct net *net) 10347 { 10348 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10349 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10350 10351 if (net != &init_net) 10352 INIT_LIST_HEAD(&net->dev_base_head); 10353 10354 net->dev_name_head = netdev_create_hash(); 10355 if (net->dev_name_head == NULL) 10356 goto err_name; 10357 10358 net->dev_index_head = netdev_create_hash(); 10359 if (net->dev_index_head == NULL) 10360 goto err_idx; 10361 10362 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10363 10364 return 0; 10365 10366 err_idx: 10367 kfree(net->dev_name_head); 10368 err_name: 10369 return -ENOMEM; 10370 } 10371 10372 /** 10373 * netdev_drivername - network driver for the device 10374 * @dev: network device 10375 * 10376 * Determine network driver for device. 10377 */ 10378 const char *netdev_drivername(const struct net_device *dev) 10379 { 10380 const struct device_driver *driver; 10381 const struct device *parent; 10382 const char *empty = ""; 10383 10384 parent = dev->dev.parent; 10385 if (!parent) 10386 return empty; 10387 10388 driver = parent->driver; 10389 if (driver && driver->name) 10390 return driver->name; 10391 return empty; 10392 } 10393 10394 static void __netdev_printk(const char *level, const struct net_device *dev, 10395 struct va_format *vaf) 10396 { 10397 if (dev && dev->dev.parent) { 10398 dev_printk_emit(level[1] - '0', 10399 dev->dev.parent, 10400 "%s %s %s%s: %pV", 10401 dev_driver_string(dev->dev.parent), 10402 dev_name(dev->dev.parent), 10403 netdev_name(dev), netdev_reg_state(dev), 10404 vaf); 10405 } else if (dev) { 10406 printk("%s%s%s: %pV", 10407 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10408 } else { 10409 printk("%s(NULL net_device): %pV", level, vaf); 10410 } 10411 } 10412 10413 void netdev_printk(const char *level, const struct net_device *dev, 10414 const char *format, ...) 10415 { 10416 struct va_format vaf; 10417 va_list args; 10418 10419 va_start(args, format); 10420 10421 vaf.fmt = format; 10422 vaf.va = &args; 10423 10424 __netdev_printk(level, dev, &vaf); 10425 10426 va_end(args); 10427 } 10428 EXPORT_SYMBOL(netdev_printk); 10429 10430 #define define_netdev_printk_level(func, level) \ 10431 void func(const struct net_device *dev, const char *fmt, ...) \ 10432 { \ 10433 struct va_format vaf; \ 10434 va_list args; \ 10435 \ 10436 va_start(args, fmt); \ 10437 \ 10438 vaf.fmt = fmt; \ 10439 vaf.va = &args; \ 10440 \ 10441 __netdev_printk(level, dev, &vaf); \ 10442 \ 10443 va_end(args); \ 10444 } \ 10445 EXPORT_SYMBOL(func); 10446 10447 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10448 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10449 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10450 define_netdev_printk_level(netdev_err, KERN_ERR); 10451 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10452 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10453 define_netdev_printk_level(netdev_info, KERN_INFO); 10454 10455 static void __net_exit netdev_exit(struct net *net) 10456 { 10457 kfree(net->dev_name_head); 10458 kfree(net->dev_index_head); 10459 if (net != &init_net) 10460 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10461 } 10462 10463 static struct pernet_operations __net_initdata netdev_net_ops = { 10464 .init = netdev_init, 10465 .exit = netdev_exit, 10466 }; 10467 10468 static void __net_exit default_device_exit(struct net *net) 10469 { 10470 struct net_device *dev, *aux; 10471 /* 10472 * Push all migratable network devices back to the 10473 * initial network namespace 10474 */ 10475 rtnl_lock(); 10476 for_each_netdev_safe(net, dev, aux) { 10477 int err; 10478 char fb_name[IFNAMSIZ]; 10479 10480 /* Ignore unmoveable devices (i.e. loopback) */ 10481 if (dev->features & NETIF_F_NETNS_LOCAL) 10482 continue; 10483 10484 /* Leave virtual devices for the generic cleanup */ 10485 if (dev->rtnl_link_ops) 10486 continue; 10487 10488 /* Push remaining network devices to init_net */ 10489 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10490 if (__dev_get_by_name(&init_net, fb_name)) 10491 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10492 err = dev_change_net_namespace(dev, &init_net, fb_name); 10493 if (err) { 10494 pr_emerg("%s: failed to move %s to init_net: %d\n", 10495 __func__, dev->name, err); 10496 BUG(); 10497 } 10498 } 10499 rtnl_unlock(); 10500 } 10501 10502 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10503 { 10504 /* Return with the rtnl_lock held when there are no network 10505 * devices unregistering in any network namespace in net_list. 10506 */ 10507 struct net *net; 10508 bool unregistering; 10509 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10510 10511 add_wait_queue(&netdev_unregistering_wq, &wait); 10512 for (;;) { 10513 unregistering = false; 10514 rtnl_lock(); 10515 list_for_each_entry(net, net_list, exit_list) { 10516 if (net->dev_unreg_count > 0) { 10517 unregistering = true; 10518 break; 10519 } 10520 } 10521 if (!unregistering) 10522 break; 10523 __rtnl_unlock(); 10524 10525 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10526 } 10527 remove_wait_queue(&netdev_unregistering_wq, &wait); 10528 } 10529 10530 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10531 { 10532 /* At exit all network devices most be removed from a network 10533 * namespace. Do this in the reverse order of registration. 10534 * Do this across as many network namespaces as possible to 10535 * improve batching efficiency. 10536 */ 10537 struct net_device *dev; 10538 struct net *net; 10539 LIST_HEAD(dev_kill_list); 10540 10541 /* To prevent network device cleanup code from dereferencing 10542 * loopback devices or network devices that have been freed 10543 * wait here for all pending unregistrations to complete, 10544 * before unregistring the loopback device and allowing the 10545 * network namespace be freed. 10546 * 10547 * The netdev todo list containing all network devices 10548 * unregistrations that happen in default_device_exit_batch 10549 * will run in the rtnl_unlock() at the end of 10550 * default_device_exit_batch. 10551 */ 10552 rtnl_lock_unregistering(net_list); 10553 list_for_each_entry(net, net_list, exit_list) { 10554 for_each_netdev_reverse(net, dev) { 10555 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10556 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10557 else 10558 unregister_netdevice_queue(dev, &dev_kill_list); 10559 } 10560 } 10561 unregister_netdevice_many(&dev_kill_list); 10562 rtnl_unlock(); 10563 } 10564 10565 static struct pernet_operations __net_initdata default_device_ops = { 10566 .exit = default_device_exit, 10567 .exit_batch = default_device_exit_batch, 10568 }; 10569 10570 /* 10571 * Initialize the DEV module. At boot time this walks the device list and 10572 * unhooks any devices that fail to initialise (normally hardware not 10573 * present) and leaves us with a valid list of present and active devices. 10574 * 10575 */ 10576 10577 /* 10578 * This is called single threaded during boot, so no need 10579 * to take the rtnl semaphore. 10580 */ 10581 static int __init net_dev_init(void) 10582 { 10583 int i, rc = -ENOMEM; 10584 10585 BUG_ON(!dev_boot_phase); 10586 10587 if (dev_proc_init()) 10588 goto out; 10589 10590 if (netdev_kobject_init()) 10591 goto out; 10592 10593 INIT_LIST_HEAD(&ptype_all); 10594 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10595 INIT_LIST_HEAD(&ptype_base[i]); 10596 10597 INIT_LIST_HEAD(&offload_base); 10598 10599 if (register_pernet_subsys(&netdev_net_ops)) 10600 goto out; 10601 10602 /* 10603 * Initialise the packet receive queues. 10604 */ 10605 10606 for_each_possible_cpu(i) { 10607 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10608 struct softnet_data *sd = &per_cpu(softnet_data, i); 10609 10610 INIT_WORK(flush, flush_backlog); 10611 10612 skb_queue_head_init(&sd->input_pkt_queue); 10613 skb_queue_head_init(&sd->process_queue); 10614 #ifdef CONFIG_XFRM_OFFLOAD 10615 skb_queue_head_init(&sd->xfrm_backlog); 10616 #endif 10617 INIT_LIST_HEAD(&sd->poll_list); 10618 sd->output_queue_tailp = &sd->output_queue; 10619 #ifdef CONFIG_RPS 10620 sd->csd.func = rps_trigger_softirq; 10621 sd->csd.info = sd; 10622 sd->cpu = i; 10623 #endif 10624 10625 init_gro_hash(&sd->backlog); 10626 sd->backlog.poll = process_backlog; 10627 sd->backlog.weight = weight_p; 10628 } 10629 10630 dev_boot_phase = 0; 10631 10632 /* The loopback device is special if any other network devices 10633 * is present in a network namespace the loopback device must 10634 * be present. Since we now dynamically allocate and free the 10635 * loopback device ensure this invariant is maintained by 10636 * keeping the loopback device as the first device on the 10637 * list of network devices. Ensuring the loopback devices 10638 * is the first device that appears and the last network device 10639 * that disappears. 10640 */ 10641 if (register_pernet_device(&loopback_net_ops)) 10642 goto out; 10643 10644 if (register_pernet_device(&default_device_ops)) 10645 goto out; 10646 10647 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10648 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10649 10650 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10651 NULL, dev_cpu_dead); 10652 WARN_ON(rc < 0); 10653 rc = 0; 10654 out: 10655 return rc; 10656 } 10657 10658 subsys_initcall(net_dev_init); 10659