xref: /linux/net/core/dev.c (revision 05ee19c18c2bb3dea69e29219017367c4a77e65a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 						       const char *name)
233 {
234 	struct netdev_name_node *name_node;
235 
236 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 	if (!name_node)
238 		return NULL;
239 	INIT_HLIST_NODE(&name_node->hlist);
240 	name_node->dev = dev;
241 	name_node->name = name;
242 	return name_node;
243 }
244 
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248 	struct netdev_name_node *name_node;
249 
250 	name_node = netdev_name_node_alloc(dev, dev->name);
251 	if (!name_node)
252 		return NULL;
253 	INIT_LIST_HEAD(&name_node->list);
254 	return name_node;
255 }
256 
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259 	kfree(name_node);
260 }
261 
262 static void netdev_name_node_add(struct net *net,
263 				 struct netdev_name_node *name_node)
264 {
265 	hlist_add_head_rcu(&name_node->hlist,
266 			   dev_name_hash(net, name_node->name));
267 }
268 
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271 	hlist_del_rcu(&name_node->hlist);
272 }
273 
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 							const char *name)
276 {
277 	struct hlist_head *head = dev_name_hash(net, name);
278 	struct netdev_name_node *name_node;
279 
280 	hlist_for_each_entry(name_node, head, hlist)
281 		if (!strcmp(name_node->name, name))
282 			return name_node;
283 	return NULL;
284 }
285 
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 							    const char *name)
288 {
289 	struct hlist_head *head = dev_name_hash(net, name);
290 	struct netdev_name_node *name_node;
291 
292 	hlist_for_each_entry_rcu(name_node, head, hlist)
293 		if (!strcmp(name_node->name, name))
294 			return name_node;
295 	return NULL;
296 }
297 
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300 	struct netdev_name_node *name_node;
301 	struct net *net = dev_net(dev);
302 
303 	name_node = netdev_name_node_lookup(net, name);
304 	if (name_node)
305 		return -EEXIST;
306 	name_node = netdev_name_node_alloc(dev, name);
307 	if (!name_node)
308 		return -ENOMEM;
309 	netdev_name_node_add(net, name_node);
310 	/* The node that holds dev->name acts as a head of per-device list. */
311 	list_add_tail(&name_node->list, &dev->name_node->list);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316 
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319 	list_del(&name_node->list);
320 	netdev_name_node_del(name_node);
321 	kfree(name_node->name);
322 	netdev_name_node_free(name_node);
323 }
324 
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (!name_node)
332 		return -ENOENT;
333 	/* lookup might have found our primary name or a name belonging
334 	 * to another device.
335 	 */
336 	if (name_node == dev->name_node || name_node->dev != dev)
337 		return -EINVAL;
338 
339 	__netdev_name_node_alt_destroy(name_node);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344 
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347 	struct netdev_name_node *name_node, *tmp;
348 
349 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 		__netdev_name_node_alt_destroy(name_node);
351 }
352 
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	ASSERT_RTNL();
359 
360 	write_lock_bh(&dev_base_lock);
361 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 	netdev_name_node_add(net, dev->name_node);
363 	hlist_add_head_rcu(&dev->index_hlist,
364 			   dev_index_hash(net, dev->ifindex));
365 	write_unlock_bh(&dev_base_lock);
366 
367 	dev_base_seq_inc(net);
368 }
369 
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375 	ASSERT_RTNL();
376 
377 	/* Unlink dev from the device chain */
378 	write_lock_bh(&dev_base_lock);
379 	list_del_rcu(&dev->dev_list);
380 	netdev_name_node_del(dev->name_node);
381 	hlist_del_rcu(&dev->index_hlist);
382 	write_unlock_bh(&dev_base_lock);
383 
384 	dev_base_seq_inc(dev_net(dev));
385 }
386 
387 /*
388  *	Our notifier list
389  */
390 
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392 
393 /*
394  *	Device drivers call our routines to queue packets here. We empty the
395  *	queue in the local softnet handler.
396  */
397 
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400 
401 #ifdef CONFIG_LOCKDEP
402 /*
403  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
404  * according to dev->type
405  */
406 static const unsigned short netdev_lock_type[] = {
407 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
408 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
409 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
410 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
411 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
412 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
413 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
414 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
415 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
416 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
417 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
418 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
419 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
420 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
421 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
422 
423 static const char *const netdev_lock_name[] = {
424 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
425 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
426 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
427 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
428 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
429 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
430 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
431 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
432 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
433 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
434 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
435 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
436 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
437 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
438 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
439 
440 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
441 
442 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
443 {
444 	int i;
445 
446 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
447 		if (netdev_lock_type[i] == dev_type)
448 			return i;
449 	/* the last key is used by default */
450 	return ARRAY_SIZE(netdev_lock_type) - 1;
451 }
452 
453 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
454 						 unsigned short dev_type)
455 {
456 	int i;
457 
458 	i = netdev_lock_pos(dev_type);
459 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
460 				   netdev_lock_name[i]);
461 }
462 #else
463 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
464 						 unsigned short dev_type)
465 {
466 }
467 #endif
468 
469 /*******************************************************************************
470  *
471  *		Protocol management and registration routines
472  *
473  *******************************************************************************/
474 
475 
476 /*
477  *	Add a protocol ID to the list. Now that the input handler is
478  *	smarter we can dispense with all the messy stuff that used to be
479  *	here.
480  *
481  *	BEWARE!!! Protocol handlers, mangling input packets,
482  *	MUST BE last in hash buckets and checking protocol handlers
483  *	MUST start from promiscuous ptype_all chain in net_bh.
484  *	It is true now, do not change it.
485  *	Explanation follows: if protocol handler, mangling packet, will
486  *	be the first on list, it is not able to sense, that packet
487  *	is cloned and should be copied-on-write, so that it will
488  *	change it and subsequent readers will get broken packet.
489  *							--ANK (980803)
490  */
491 
492 static inline struct list_head *ptype_head(const struct packet_type *pt)
493 {
494 	if (pt->type == htons(ETH_P_ALL))
495 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
496 	else
497 		return pt->dev ? &pt->dev->ptype_specific :
498 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
499 }
500 
501 /**
502  *	dev_add_pack - add packet handler
503  *	@pt: packet type declaration
504  *
505  *	Add a protocol handler to the networking stack. The passed &packet_type
506  *	is linked into kernel lists and may not be freed until it has been
507  *	removed from the kernel lists.
508  *
509  *	This call does not sleep therefore it can not
510  *	guarantee all CPU's that are in middle of receiving packets
511  *	will see the new packet type (until the next received packet).
512  */
513 
514 void dev_add_pack(struct packet_type *pt)
515 {
516 	struct list_head *head = ptype_head(pt);
517 
518 	spin_lock(&ptype_lock);
519 	list_add_rcu(&pt->list, head);
520 	spin_unlock(&ptype_lock);
521 }
522 EXPORT_SYMBOL(dev_add_pack);
523 
524 /**
525  *	__dev_remove_pack	 - remove packet handler
526  *	@pt: packet type declaration
527  *
528  *	Remove a protocol handler that was previously added to the kernel
529  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
530  *	from the kernel lists and can be freed or reused once this function
531  *	returns.
532  *
533  *      The packet type might still be in use by receivers
534  *	and must not be freed until after all the CPU's have gone
535  *	through a quiescent state.
536  */
537 void __dev_remove_pack(struct packet_type *pt)
538 {
539 	struct list_head *head = ptype_head(pt);
540 	struct packet_type *pt1;
541 
542 	spin_lock(&ptype_lock);
543 
544 	list_for_each_entry(pt1, head, list) {
545 		if (pt == pt1) {
546 			list_del_rcu(&pt->list);
547 			goto out;
548 		}
549 	}
550 
551 	pr_warn("dev_remove_pack: %p not found\n", pt);
552 out:
553 	spin_unlock(&ptype_lock);
554 }
555 EXPORT_SYMBOL(__dev_remove_pack);
556 
557 /**
558  *	dev_remove_pack	 - remove packet handler
559  *	@pt: packet type declaration
560  *
561  *	Remove a protocol handler that was previously added to the kernel
562  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
563  *	from the kernel lists and can be freed or reused once this function
564  *	returns.
565  *
566  *	This call sleeps to guarantee that no CPU is looking at the packet
567  *	type after return.
568  */
569 void dev_remove_pack(struct packet_type *pt)
570 {
571 	__dev_remove_pack(pt);
572 
573 	synchronize_net();
574 }
575 EXPORT_SYMBOL(dev_remove_pack);
576 
577 
578 /**
579  *	dev_add_offload - register offload handlers
580  *	@po: protocol offload declaration
581  *
582  *	Add protocol offload handlers to the networking stack. The passed
583  *	&proto_offload is linked into kernel lists and may not be freed until
584  *	it has been removed from the kernel lists.
585  *
586  *	This call does not sleep therefore it can not
587  *	guarantee all CPU's that are in middle of receiving packets
588  *	will see the new offload handlers (until the next received packet).
589  */
590 void dev_add_offload(struct packet_offload *po)
591 {
592 	struct packet_offload *elem;
593 
594 	spin_lock(&offload_lock);
595 	list_for_each_entry(elem, &offload_base, list) {
596 		if (po->priority < elem->priority)
597 			break;
598 	}
599 	list_add_rcu(&po->list, elem->list.prev);
600 	spin_unlock(&offload_lock);
601 }
602 EXPORT_SYMBOL(dev_add_offload);
603 
604 /**
605  *	__dev_remove_offload	 - remove offload handler
606  *	@po: packet offload declaration
607  *
608  *	Remove a protocol offload handler that was previously added to the
609  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
610  *	is removed from the kernel lists and can be freed or reused once this
611  *	function returns.
612  *
613  *      The packet type might still be in use by receivers
614  *	and must not be freed until after all the CPU's have gone
615  *	through a quiescent state.
616  */
617 static void __dev_remove_offload(struct packet_offload *po)
618 {
619 	struct list_head *head = &offload_base;
620 	struct packet_offload *po1;
621 
622 	spin_lock(&offload_lock);
623 
624 	list_for_each_entry(po1, head, list) {
625 		if (po == po1) {
626 			list_del_rcu(&po->list);
627 			goto out;
628 		}
629 	}
630 
631 	pr_warn("dev_remove_offload: %p not found\n", po);
632 out:
633 	spin_unlock(&offload_lock);
634 }
635 
636 /**
637  *	dev_remove_offload	 - remove packet offload handler
638  *	@po: packet offload declaration
639  *
640  *	Remove a packet offload handler that was previously added to the kernel
641  *	offload handlers by dev_add_offload(). The passed &offload_type is
642  *	removed from the kernel lists and can be freed or reused once this
643  *	function returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_offload(struct packet_offload *po)
649 {
650 	__dev_remove_offload(po);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_offload);
655 
656 /******************************************************************************
657  *
658  *		      Device Boot-time Settings Routines
659  *
660  ******************************************************************************/
661 
662 /* Boot time configuration table */
663 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
664 
665 /**
666  *	netdev_boot_setup_add	- add new setup entry
667  *	@name: name of the device
668  *	@map: configured settings for the device
669  *
670  *	Adds new setup entry to the dev_boot_setup list.  The function
671  *	returns 0 on error and 1 on success.  This is a generic routine to
672  *	all netdevices.
673  */
674 static int netdev_boot_setup_add(char *name, struct ifmap *map)
675 {
676 	struct netdev_boot_setup *s;
677 	int i;
678 
679 	s = dev_boot_setup;
680 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
681 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
682 			memset(s[i].name, 0, sizeof(s[i].name));
683 			strlcpy(s[i].name, name, IFNAMSIZ);
684 			memcpy(&s[i].map, map, sizeof(s[i].map));
685 			break;
686 		}
687 	}
688 
689 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
690 }
691 
692 /**
693  * netdev_boot_setup_check	- check boot time settings
694  * @dev: the netdevice
695  *
696  * Check boot time settings for the device.
697  * The found settings are set for the device to be used
698  * later in the device probing.
699  * Returns 0 if no settings found, 1 if they are.
700  */
701 int netdev_boot_setup_check(struct net_device *dev)
702 {
703 	struct netdev_boot_setup *s = dev_boot_setup;
704 	int i;
705 
706 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
707 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
708 		    !strcmp(dev->name, s[i].name)) {
709 			dev->irq = s[i].map.irq;
710 			dev->base_addr = s[i].map.base_addr;
711 			dev->mem_start = s[i].map.mem_start;
712 			dev->mem_end = s[i].map.mem_end;
713 			return 1;
714 		}
715 	}
716 	return 0;
717 }
718 EXPORT_SYMBOL(netdev_boot_setup_check);
719 
720 
721 /**
722  * netdev_boot_base	- get address from boot time settings
723  * @prefix: prefix for network device
724  * @unit: id for network device
725  *
726  * Check boot time settings for the base address of device.
727  * The found settings are set for the device to be used
728  * later in the device probing.
729  * Returns 0 if no settings found.
730  */
731 unsigned long netdev_boot_base(const char *prefix, int unit)
732 {
733 	const struct netdev_boot_setup *s = dev_boot_setup;
734 	char name[IFNAMSIZ];
735 	int i;
736 
737 	sprintf(name, "%s%d", prefix, unit);
738 
739 	/*
740 	 * If device already registered then return base of 1
741 	 * to indicate not to probe for this interface
742 	 */
743 	if (__dev_get_by_name(&init_net, name))
744 		return 1;
745 
746 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
747 		if (!strcmp(name, s[i].name))
748 			return s[i].map.base_addr;
749 	return 0;
750 }
751 
752 /*
753  * Saves at boot time configured settings for any netdevice.
754  */
755 int __init netdev_boot_setup(char *str)
756 {
757 	int ints[5];
758 	struct ifmap map;
759 
760 	str = get_options(str, ARRAY_SIZE(ints), ints);
761 	if (!str || !*str)
762 		return 0;
763 
764 	/* Save settings */
765 	memset(&map, 0, sizeof(map));
766 	if (ints[0] > 0)
767 		map.irq = ints[1];
768 	if (ints[0] > 1)
769 		map.base_addr = ints[2];
770 	if (ints[0] > 2)
771 		map.mem_start = ints[3];
772 	if (ints[0] > 3)
773 		map.mem_end = ints[4];
774 
775 	/* Add new entry to the list */
776 	return netdev_boot_setup_add(str, &map);
777 }
778 
779 __setup("netdev=", netdev_boot_setup);
780 
781 /*******************************************************************************
782  *
783  *			    Device Interface Subroutines
784  *
785  *******************************************************************************/
786 
787 /**
788  *	dev_get_iflink	- get 'iflink' value of a interface
789  *	@dev: targeted interface
790  *
791  *	Indicates the ifindex the interface is linked to.
792  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
793  */
794 
795 int dev_get_iflink(const struct net_device *dev)
796 {
797 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
798 		return dev->netdev_ops->ndo_get_iflink(dev);
799 
800 	return dev->ifindex;
801 }
802 EXPORT_SYMBOL(dev_get_iflink);
803 
804 /**
805  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
806  *	@dev: targeted interface
807  *	@skb: The packet.
808  *
809  *	For better visibility of tunnel traffic OVS needs to retrieve
810  *	egress tunnel information for a packet. Following API allows
811  *	user to get this info.
812  */
813 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
814 {
815 	struct ip_tunnel_info *info;
816 
817 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
818 		return -EINVAL;
819 
820 	info = skb_tunnel_info_unclone(skb);
821 	if (!info)
822 		return -ENOMEM;
823 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
824 		return -EINVAL;
825 
826 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
827 }
828 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
829 
830 /**
831  *	__dev_get_by_name	- find a device by its name
832  *	@net: the applicable net namespace
833  *	@name: name to find
834  *
835  *	Find an interface by name. Must be called under RTNL semaphore
836  *	or @dev_base_lock. If the name is found a pointer to the device
837  *	is returned. If the name is not found then %NULL is returned. The
838  *	reference counters are not incremented so the caller must be
839  *	careful with locks.
840  */
841 
842 struct net_device *__dev_get_by_name(struct net *net, const char *name)
843 {
844 	struct netdev_name_node *node_name;
845 
846 	node_name = netdev_name_node_lookup(net, name);
847 	return node_name ? node_name->dev : NULL;
848 }
849 EXPORT_SYMBOL(__dev_get_by_name);
850 
851 /**
852  * dev_get_by_name_rcu	- find a device by its name
853  * @net: the applicable net namespace
854  * @name: name to find
855  *
856  * Find an interface by name.
857  * If the name is found a pointer to the device is returned.
858  * If the name is not found then %NULL is returned.
859  * The reference counters are not incremented so the caller must be
860  * careful with locks. The caller must hold RCU lock.
861  */
862 
863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
864 {
865 	struct netdev_name_node *node_name;
866 
867 	node_name = netdev_name_node_lookup_rcu(net, name);
868 	return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(dev_get_by_name_rcu);
871 
872 /**
873  *	dev_get_by_name		- find a device by its name
874  *	@net: the applicable net namespace
875  *	@name: name to find
876  *
877  *	Find an interface by name. This can be called from any
878  *	context and does its own locking. The returned handle has
879  *	the usage count incremented and the caller must use dev_put() to
880  *	release it when it is no longer needed. %NULL is returned if no
881  *	matching device is found.
882  */
883 
884 struct net_device *dev_get_by_name(struct net *net, const char *name)
885 {
886 	struct net_device *dev;
887 
888 	rcu_read_lock();
889 	dev = dev_get_by_name_rcu(net, name);
890 	if (dev)
891 		dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_name);
896 
897 /**
898  *	__dev_get_by_index - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *
902  *	Search for an interface by index. Returns %NULL if the device
903  *	is not found or a pointer to the device. The device has not
904  *	had its reference counter increased so the caller must be careful
905  *	about locking. The caller must hold either the RTNL semaphore
906  *	or @dev_base_lock.
907  */
908 
909 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
910 {
911 	struct net_device *dev;
912 	struct hlist_head *head = dev_index_hash(net, ifindex);
913 
914 	hlist_for_each_entry(dev, head, index_hlist)
915 		if (dev->ifindex == ifindex)
916 			return dev;
917 
918 	return NULL;
919 }
920 EXPORT_SYMBOL(__dev_get_by_index);
921 
922 /**
923  *	dev_get_by_index_rcu - find a device by its ifindex
924  *	@net: the applicable net namespace
925  *	@ifindex: index of device
926  *
927  *	Search for an interface by index. Returns %NULL if the device
928  *	is not found or a pointer to the device. The device has not
929  *	had its reference counter increased so the caller must be careful
930  *	about locking. The caller must hold RCU lock.
931  */
932 
933 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
934 {
935 	struct net_device *dev;
936 	struct hlist_head *head = dev_index_hash(net, ifindex);
937 
938 	hlist_for_each_entry_rcu(dev, head, index_hlist)
939 		if (dev->ifindex == ifindex)
940 			return dev;
941 
942 	return NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_index_rcu);
945 
946 
947 /**
948  *	dev_get_by_index - find a device by its ifindex
949  *	@net: the applicable net namespace
950  *	@ifindex: index of device
951  *
952  *	Search for an interface by index. Returns NULL if the device
953  *	is not found or a pointer to the device. The device returned has
954  *	had a reference added and the pointer is safe until the user calls
955  *	dev_put to indicate they have finished with it.
956  */
957 
958 struct net_device *dev_get_by_index(struct net *net, int ifindex)
959 {
960 	struct net_device *dev;
961 
962 	rcu_read_lock();
963 	dev = dev_get_by_index_rcu(net, ifindex);
964 	if (dev)
965 		dev_hold(dev);
966 	rcu_read_unlock();
967 	return dev;
968 }
969 EXPORT_SYMBOL(dev_get_by_index);
970 
971 /**
972  *	dev_get_by_napi_id - find a device by napi_id
973  *	@napi_id: ID of the NAPI struct
974  *
975  *	Search for an interface by NAPI ID. Returns %NULL if the device
976  *	is not found or a pointer to the device. The device has not had
977  *	its reference counter increased so the caller must be careful
978  *	about locking. The caller must hold RCU lock.
979  */
980 
981 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
982 {
983 	struct napi_struct *napi;
984 
985 	WARN_ON_ONCE(!rcu_read_lock_held());
986 
987 	if (napi_id < MIN_NAPI_ID)
988 		return NULL;
989 
990 	napi = napi_by_id(napi_id);
991 
992 	return napi ? napi->dev : NULL;
993 }
994 EXPORT_SYMBOL(dev_get_by_napi_id);
995 
996 /**
997  *	netdev_get_name - get a netdevice name, knowing its ifindex.
998  *	@net: network namespace
999  *	@name: a pointer to the buffer where the name will be stored.
1000  *	@ifindex: the ifindex of the interface to get the name from.
1001  *
1002  *	The use of raw_seqcount_begin() and cond_resched() before
1003  *	retrying is required as we want to give the writers a chance
1004  *	to complete when CONFIG_PREEMPTION is not set.
1005  */
1006 int netdev_get_name(struct net *net, char *name, int ifindex)
1007 {
1008 	struct net_device *dev;
1009 	unsigned int seq;
1010 
1011 retry:
1012 	seq = raw_seqcount_begin(&devnet_rename_seq);
1013 	rcu_read_lock();
1014 	dev = dev_get_by_index_rcu(net, ifindex);
1015 	if (!dev) {
1016 		rcu_read_unlock();
1017 		return -ENODEV;
1018 	}
1019 
1020 	strcpy(name, dev->name);
1021 	rcu_read_unlock();
1022 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
1023 		cond_resched();
1024 		goto retry;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1032  *	@net: the applicable net namespace
1033  *	@type: media type of device
1034  *	@ha: hardware address
1035  *
1036  *	Search for an interface by MAC address. Returns NULL if the device
1037  *	is not found or a pointer to the device.
1038  *	The caller must hold RCU or RTNL.
1039  *	The returned device has not had its ref count increased
1040  *	and the caller must therefore be careful about locking
1041  *
1042  */
1043 
1044 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1045 				       const char *ha)
1046 {
1047 	struct net_device *dev;
1048 
1049 	for_each_netdev_rcu(net, dev)
1050 		if (dev->type == type &&
1051 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1052 			return dev;
1053 
1054 	return NULL;
1055 }
1056 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1057 
1058 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1059 {
1060 	struct net_device *dev;
1061 
1062 	ASSERT_RTNL();
1063 	for_each_netdev(net, dev)
1064 		if (dev->type == type)
1065 			return dev;
1066 
1067 	return NULL;
1068 }
1069 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1070 
1071 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1072 {
1073 	struct net_device *dev, *ret = NULL;
1074 
1075 	rcu_read_lock();
1076 	for_each_netdev_rcu(net, dev)
1077 		if (dev->type == type) {
1078 			dev_hold(dev);
1079 			ret = dev;
1080 			break;
1081 		}
1082 	rcu_read_unlock();
1083 	return ret;
1084 }
1085 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1086 
1087 /**
1088  *	__dev_get_by_flags - find any device with given flags
1089  *	@net: the applicable net namespace
1090  *	@if_flags: IFF_* values
1091  *	@mask: bitmask of bits in if_flags to check
1092  *
1093  *	Search for any interface with the given flags. Returns NULL if a device
1094  *	is not found or a pointer to the device. Must be called inside
1095  *	rtnl_lock(), and result refcount is unchanged.
1096  */
1097 
1098 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1099 				      unsigned short mask)
1100 {
1101 	struct net_device *dev, *ret;
1102 
1103 	ASSERT_RTNL();
1104 
1105 	ret = NULL;
1106 	for_each_netdev(net, dev) {
1107 		if (((dev->flags ^ if_flags) & mask) == 0) {
1108 			ret = dev;
1109 			break;
1110 		}
1111 	}
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL(__dev_get_by_flags);
1115 
1116 /**
1117  *	dev_valid_name - check if name is okay for network device
1118  *	@name: name string
1119  *
1120  *	Network device names need to be valid file names to
1121  *	to allow sysfs to work.  We also disallow any kind of
1122  *	whitespace.
1123  */
1124 bool dev_valid_name(const char *name)
1125 {
1126 	if (*name == '\0')
1127 		return false;
1128 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1129 		return false;
1130 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1131 		return false;
1132 
1133 	while (*name) {
1134 		if (*name == '/' || *name == ':' || isspace(*name))
1135 			return false;
1136 		name++;
1137 	}
1138 	return true;
1139 }
1140 EXPORT_SYMBOL(dev_valid_name);
1141 
1142 /**
1143  *	__dev_alloc_name - allocate a name for a device
1144  *	@net: network namespace to allocate the device name in
1145  *	@name: name format string
1146  *	@buf:  scratch buffer and result name string
1147  *
1148  *	Passed a format string - eg "lt%d" it will try and find a suitable
1149  *	id. It scans list of devices to build up a free map, then chooses
1150  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1151  *	while allocating the name and adding the device in order to avoid
1152  *	duplicates.
1153  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1154  *	Returns the number of the unit assigned or a negative errno code.
1155  */
1156 
1157 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1158 {
1159 	int i = 0;
1160 	const char *p;
1161 	const int max_netdevices = 8*PAGE_SIZE;
1162 	unsigned long *inuse;
1163 	struct net_device *d;
1164 
1165 	if (!dev_valid_name(name))
1166 		return -EINVAL;
1167 
1168 	p = strchr(name, '%');
1169 	if (p) {
1170 		/*
1171 		 * Verify the string as this thing may have come from
1172 		 * the user.  There must be either one "%d" and no other "%"
1173 		 * characters.
1174 		 */
1175 		if (p[1] != 'd' || strchr(p + 2, '%'))
1176 			return -EINVAL;
1177 
1178 		/* Use one page as a bit array of possible slots */
1179 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1180 		if (!inuse)
1181 			return -ENOMEM;
1182 
1183 		for_each_netdev(net, d) {
1184 			if (!sscanf(d->name, name, &i))
1185 				continue;
1186 			if (i < 0 || i >= max_netdevices)
1187 				continue;
1188 
1189 			/*  avoid cases where sscanf is not exact inverse of printf */
1190 			snprintf(buf, IFNAMSIZ, name, i);
1191 			if (!strncmp(buf, d->name, IFNAMSIZ))
1192 				set_bit(i, inuse);
1193 		}
1194 
1195 		i = find_first_zero_bit(inuse, max_netdevices);
1196 		free_page((unsigned long) inuse);
1197 	}
1198 
1199 	snprintf(buf, IFNAMSIZ, name, i);
1200 	if (!__dev_get_by_name(net, buf))
1201 		return i;
1202 
1203 	/* It is possible to run out of possible slots
1204 	 * when the name is long and there isn't enough space left
1205 	 * for the digits, or if all bits are used.
1206 	 */
1207 	return -ENFILE;
1208 }
1209 
1210 static int dev_alloc_name_ns(struct net *net,
1211 			     struct net_device *dev,
1212 			     const char *name)
1213 {
1214 	char buf[IFNAMSIZ];
1215 	int ret;
1216 
1217 	BUG_ON(!net);
1218 	ret = __dev_alloc_name(net, name, buf);
1219 	if (ret >= 0)
1220 		strlcpy(dev->name, buf, IFNAMSIZ);
1221 	return ret;
1222 }
1223 
1224 /**
1225  *	dev_alloc_name - allocate a name for a device
1226  *	@dev: device
1227  *	@name: name format string
1228  *
1229  *	Passed a format string - eg "lt%d" it will try and find a suitable
1230  *	id. It scans list of devices to build up a free map, then chooses
1231  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1232  *	while allocating the name and adding the device in order to avoid
1233  *	duplicates.
1234  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1235  *	Returns the number of the unit assigned or a negative errno code.
1236  */
1237 
1238 int dev_alloc_name(struct net_device *dev, const char *name)
1239 {
1240 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1241 }
1242 EXPORT_SYMBOL(dev_alloc_name);
1243 
1244 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1245 			      const char *name)
1246 {
1247 	BUG_ON(!net);
1248 
1249 	if (!dev_valid_name(name))
1250 		return -EINVAL;
1251 
1252 	if (strchr(name, '%'))
1253 		return dev_alloc_name_ns(net, dev, name);
1254 	else if (__dev_get_by_name(net, name))
1255 		return -EEXIST;
1256 	else if (dev->name != name)
1257 		strlcpy(dev->name, name, IFNAMSIZ);
1258 
1259 	return 0;
1260 }
1261 
1262 /**
1263  *	dev_change_name - change name of a device
1264  *	@dev: device
1265  *	@newname: name (or format string) must be at least IFNAMSIZ
1266  *
1267  *	Change name of a device, can pass format strings "eth%d".
1268  *	for wildcarding.
1269  */
1270 int dev_change_name(struct net_device *dev, const char *newname)
1271 {
1272 	unsigned char old_assign_type;
1273 	char oldname[IFNAMSIZ];
1274 	int err = 0;
1275 	int ret;
1276 	struct net *net;
1277 
1278 	ASSERT_RTNL();
1279 	BUG_ON(!dev_net(dev));
1280 
1281 	net = dev_net(dev);
1282 
1283 	/* Some auto-enslaved devices e.g. failover slaves are
1284 	 * special, as userspace might rename the device after
1285 	 * the interface had been brought up and running since
1286 	 * the point kernel initiated auto-enslavement. Allow
1287 	 * live name change even when these slave devices are
1288 	 * up and running.
1289 	 *
1290 	 * Typically, users of these auto-enslaving devices
1291 	 * don't actually care about slave name change, as
1292 	 * they are supposed to operate on master interface
1293 	 * directly.
1294 	 */
1295 	if (dev->flags & IFF_UP &&
1296 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1297 		return -EBUSY;
1298 
1299 	write_seqcount_begin(&devnet_rename_seq);
1300 
1301 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1302 		write_seqcount_end(&devnet_rename_seq);
1303 		return 0;
1304 	}
1305 
1306 	memcpy(oldname, dev->name, IFNAMSIZ);
1307 
1308 	err = dev_get_valid_name(net, dev, newname);
1309 	if (err < 0) {
1310 		write_seqcount_end(&devnet_rename_seq);
1311 		return err;
1312 	}
1313 
1314 	if (oldname[0] && !strchr(oldname, '%'))
1315 		netdev_info(dev, "renamed from %s\n", oldname);
1316 
1317 	old_assign_type = dev->name_assign_type;
1318 	dev->name_assign_type = NET_NAME_RENAMED;
1319 
1320 rollback:
1321 	ret = device_rename(&dev->dev, dev->name);
1322 	if (ret) {
1323 		memcpy(dev->name, oldname, IFNAMSIZ);
1324 		dev->name_assign_type = old_assign_type;
1325 		write_seqcount_end(&devnet_rename_seq);
1326 		return ret;
1327 	}
1328 
1329 	write_seqcount_end(&devnet_rename_seq);
1330 
1331 	netdev_adjacent_rename_links(dev, oldname);
1332 
1333 	write_lock_bh(&dev_base_lock);
1334 	netdev_name_node_del(dev->name_node);
1335 	write_unlock_bh(&dev_base_lock);
1336 
1337 	synchronize_rcu();
1338 
1339 	write_lock_bh(&dev_base_lock);
1340 	netdev_name_node_add(net, dev->name_node);
1341 	write_unlock_bh(&dev_base_lock);
1342 
1343 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1344 	ret = notifier_to_errno(ret);
1345 
1346 	if (ret) {
1347 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1348 		if (err >= 0) {
1349 			err = ret;
1350 			write_seqcount_begin(&devnet_rename_seq);
1351 			memcpy(dev->name, oldname, IFNAMSIZ);
1352 			memcpy(oldname, newname, IFNAMSIZ);
1353 			dev->name_assign_type = old_assign_type;
1354 			old_assign_type = NET_NAME_RENAMED;
1355 			goto rollback;
1356 		} else {
1357 			pr_err("%s: name change rollback failed: %d\n",
1358 			       dev->name, ret);
1359 		}
1360 	}
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  *	dev_set_alias - change ifalias of a device
1367  *	@dev: device
1368  *	@alias: name up to IFALIASZ
1369  *	@len: limit of bytes to copy from info
1370  *
1371  *	Set ifalias for a device,
1372  */
1373 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1374 {
1375 	struct dev_ifalias *new_alias = NULL;
1376 
1377 	if (len >= IFALIASZ)
1378 		return -EINVAL;
1379 
1380 	if (len) {
1381 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1382 		if (!new_alias)
1383 			return -ENOMEM;
1384 
1385 		memcpy(new_alias->ifalias, alias, len);
1386 		new_alias->ifalias[len] = 0;
1387 	}
1388 
1389 	mutex_lock(&ifalias_mutex);
1390 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1391 					mutex_is_locked(&ifalias_mutex));
1392 	mutex_unlock(&ifalias_mutex);
1393 
1394 	if (new_alias)
1395 		kfree_rcu(new_alias, rcuhead);
1396 
1397 	return len;
1398 }
1399 EXPORT_SYMBOL(dev_set_alias);
1400 
1401 /**
1402  *	dev_get_alias - get ifalias of a device
1403  *	@dev: device
1404  *	@name: buffer to store name of ifalias
1405  *	@len: size of buffer
1406  *
1407  *	get ifalias for a device.  Caller must make sure dev cannot go
1408  *	away,  e.g. rcu read lock or own a reference count to device.
1409  */
1410 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1411 {
1412 	const struct dev_ifalias *alias;
1413 	int ret = 0;
1414 
1415 	rcu_read_lock();
1416 	alias = rcu_dereference(dev->ifalias);
1417 	if (alias)
1418 		ret = snprintf(name, len, "%s", alias->ifalias);
1419 	rcu_read_unlock();
1420 
1421 	return ret;
1422 }
1423 
1424 /**
1425  *	netdev_features_change - device changes features
1426  *	@dev: device to cause notification
1427  *
1428  *	Called to indicate a device has changed features.
1429  */
1430 void netdev_features_change(struct net_device *dev)
1431 {
1432 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1433 }
1434 EXPORT_SYMBOL(netdev_features_change);
1435 
1436 /**
1437  *	netdev_state_change - device changes state
1438  *	@dev: device to cause notification
1439  *
1440  *	Called to indicate a device has changed state. This function calls
1441  *	the notifier chains for netdev_chain and sends a NEWLINK message
1442  *	to the routing socket.
1443  */
1444 void netdev_state_change(struct net_device *dev)
1445 {
1446 	if (dev->flags & IFF_UP) {
1447 		struct netdev_notifier_change_info change_info = {
1448 			.info.dev = dev,
1449 		};
1450 
1451 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1452 					      &change_info.info);
1453 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1454 	}
1455 }
1456 EXPORT_SYMBOL(netdev_state_change);
1457 
1458 /**
1459  * netdev_notify_peers - notify network peers about existence of @dev
1460  * @dev: network device
1461  *
1462  * Generate traffic such that interested network peers are aware of
1463  * @dev, such as by generating a gratuitous ARP. This may be used when
1464  * a device wants to inform the rest of the network about some sort of
1465  * reconfiguration such as a failover event or virtual machine
1466  * migration.
1467  */
1468 void netdev_notify_peers(struct net_device *dev)
1469 {
1470 	rtnl_lock();
1471 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1472 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1473 	rtnl_unlock();
1474 }
1475 EXPORT_SYMBOL(netdev_notify_peers);
1476 
1477 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1478 {
1479 	const struct net_device_ops *ops = dev->netdev_ops;
1480 	int ret;
1481 
1482 	ASSERT_RTNL();
1483 
1484 	if (!netif_device_present(dev))
1485 		return -ENODEV;
1486 
1487 	/* Block netpoll from trying to do any rx path servicing.
1488 	 * If we don't do this there is a chance ndo_poll_controller
1489 	 * or ndo_poll may be running while we open the device
1490 	 */
1491 	netpoll_poll_disable(dev);
1492 
1493 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1494 	ret = notifier_to_errno(ret);
1495 	if (ret)
1496 		return ret;
1497 
1498 	set_bit(__LINK_STATE_START, &dev->state);
1499 
1500 	if (ops->ndo_validate_addr)
1501 		ret = ops->ndo_validate_addr(dev);
1502 
1503 	if (!ret && ops->ndo_open)
1504 		ret = ops->ndo_open(dev);
1505 
1506 	netpoll_poll_enable(dev);
1507 
1508 	if (ret)
1509 		clear_bit(__LINK_STATE_START, &dev->state);
1510 	else {
1511 		dev->flags |= IFF_UP;
1512 		dev_set_rx_mode(dev);
1513 		dev_activate(dev);
1514 		add_device_randomness(dev->dev_addr, dev->addr_len);
1515 	}
1516 
1517 	return ret;
1518 }
1519 
1520 /**
1521  *	dev_open	- prepare an interface for use.
1522  *	@dev: device to open
1523  *	@extack: netlink extended ack
1524  *
1525  *	Takes a device from down to up state. The device's private open
1526  *	function is invoked and then the multicast lists are loaded. Finally
1527  *	the device is moved into the up state and a %NETDEV_UP message is
1528  *	sent to the netdev notifier chain.
1529  *
1530  *	Calling this function on an active interface is a nop. On a failure
1531  *	a negative errno code is returned.
1532  */
1533 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1534 {
1535 	int ret;
1536 
1537 	if (dev->flags & IFF_UP)
1538 		return 0;
1539 
1540 	ret = __dev_open(dev, extack);
1541 	if (ret < 0)
1542 		return ret;
1543 
1544 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545 	call_netdevice_notifiers(NETDEV_UP, dev);
1546 
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(dev_open);
1550 
1551 static void __dev_close_many(struct list_head *head)
1552 {
1553 	struct net_device *dev;
1554 
1555 	ASSERT_RTNL();
1556 	might_sleep();
1557 
1558 	list_for_each_entry(dev, head, close_list) {
1559 		/* Temporarily disable netpoll until the interface is down */
1560 		netpoll_poll_disable(dev);
1561 
1562 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1563 
1564 		clear_bit(__LINK_STATE_START, &dev->state);
1565 
1566 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1567 		 * can be even on different cpu. So just clear netif_running().
1568 		 *
1569 		 * dev->stop() will invoke napi_disable() on all of it's
1570 		 * napi_struct instances on this device.
1571 		 */
1572 		smp_mb__after_atomic(); /* Commit netif_running(). */
1573 	}
1574 
1575 	dev_deactivate_many(head);
1576 
1577 	list_for_each_entry(dev, head, close_list) {
1578 		const struct net_device_ops *ops = dev->netdev_ops;
1579 
1580 		/*
1581 		 *	Call the device specific close. This cannot fail.
1582 		 *	Only if device is UP
1583 		 *
1584 		 *	We allow it to be called even after a DETACH hot-plug
1585 		 *	event.
1586 		 */
1587 		if (ops->ndo_stop)
1588 			ops->ndo_stop(dev);
1589 
1590 		dev->flags &= ~IFF_UP;
1591 		netpoll_poll_enable(dev);
1592 	}
1593 }
1594 
1595 static void __dev_close(struct net_device *dev)
1596 {
1597 	LIST_HEAD(single);
1598 
1599 	list_add(&dev->close_list, &single);
1600 	__dev_close_many(&single);
1601 	list_del(&single);
1602 }
1603 
1604 void dev_close_many(struct list_head *head, bool unlink)
1605 {
1606 	struct net_device *dev, *tmp;
1607 
1608 	/* Remove the devices that don't need to be closed */
1609 	list_for_each_entry_safe(dev, tmp, head, close_list)
1610 		if (!(dev->flags & IFF_UP))
1611 			list_del_init(&dev->close_list);
1612 
1613 	__dev_close_many(head);
1614 
1615 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1616 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1617 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1618 		if (unlink)
1619 			list_del_init(&dev->close_list);
1620 	}
1621 }
1622 EXPORT_SYMBOL(dev_close_many);
1623 
1624 /**
1625  *	dev_close - shutdown an interface.
1626  *	@dev: device to shutdown
1627  *
1628  *	This function moves an active device into down state. A
1629  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1630  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1631  *	chain.
1632  */
1633 void dev_close(struct net_device *dev)
1634 {
1635 	if (dev->flags & IFF_UP) {
1636 		LIST_HEAD(single);
1637 
1638 		list_add(&dev->close_list, &single);
1639 		dev_close_many(&single, true);
1640 		list_del(&single);
1641 	}
1642 }
1643 EXPORT_SYMBOL(dev_close);
1644 
1645 
1646 /**
1647  *	dev_disable_lro - disable Large Receive Offload on a device
1648  *	@dev: device
1649  *
1650  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1651  *	called under RTNL.  This is needed if received packets may be
1652  *	forwarded to another interface.
1653  */
1654 void dev_disable_lro(struct net_device *dev)
1655 {
1656 	struct net_device *lower_dev;
1657 	struct list_head *iter;
1658 
1659 	dev->wanted_features &= ~NETIF_F_LRO;
1660 	netdev_update_features(dev);
1661 
1662 	if (unlikely(dev->features & NETIF_F_LRO))
1663 		netdev_WARN(dev, "failed to disable LRO!\n");
1664 
1665 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1666 		dev_disable_lro(lower_dev);
1667 }
1668 EXPORT_SYMBOL(dev_disable_lro);
1669 
1670 /**
1671  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1672  *	@dev: device
1673  *
1674  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1675  *	called under RTNL.  This is needed if Generic XDP is installed on
1676  *	the device.
1677  */
1678 static void dev_disable_gro_hw(struct net_device *dev)
1679 {
1680 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1681 	netdev_update_features(dev);
1682 
1683 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1684 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1685 }
1686 
1687 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1688 {
1689 #define N(val) 						\
1690 	case NETDEV_##val:				\
1691 		return "NETDEV_" __stringify(val);
1692 	switch (cmd) {
1693 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1694 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1695 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1696 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1697 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1698 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1699 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1700 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1701 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1702 	N(PRE_CHANGEADDR)
1703 	}
1704 #undef N
1705 	return "UNKNOWN_NETDEV_EVENT";
1706 }
1707 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1708 
1709 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1710 				   struct net_device *dev)
1711 {
1712 	struct netdev_notifier_info info = {
1713 		.dev = dev,
1714 	};
1715 
1716 	return nb->notifier_call(nb, val, &info);
1717 }
1718 
1719 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1720 					     struct net_device *dev)
1721 {
1722 	int err;
1723 
1724 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1725 	err = notifier_to_errno(err);
1726 	if (err)
1727 		return err;
1728 
1729 	if (!(dev->flags & IFF_UP))
1730 		return 0;
1731 
1732 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1733 	return 0;
1734 }
1735 
1736 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1737 						struct net_device *dev)
1738 {
1739 	if (dev->flags & IFF_UP) {
1740 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1741 					dev);
1742 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1743 	}
1744 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1745 }
1746 
1747 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1748 						 struct net *net)
1749 {
1750 	struct net_device *dev;
1751 	int err;
1752 
1753 	for_each_netdev(net, dev) {
1754 		err = call_netdevice_register_notifiers(nb, dev);
1755 		if (err)
1756 			goto rollback;
1757 	}
1758 	return 0;
1759 
1760 rollback:
1761 	for_each_netdev_continue_reverse(net, dev)
1762 		call_netdevice_unregister_notifiers(nb, dev);
1763 	return err;
1764 }
1765 
1766 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1767 						    struct net *net)
1768 {
1769 	struct net_device *dev;
1770 
1771 	for_each_netdev(net, dev)
1772 		call_netdevice_unregister_notifiers(nb, dev);
1773 }
1774 
1775 static int dev_boot_phase = 1;
1776 
1777 /**
1778  * register_netdevice_notifier - register a network notifier block
1779  * @nb: notifier
1780  *
1781  * Register a notifier to be called when network device events occur.
1782  * The notifier passed is linked into the kernel structures and must
1783  * not be reused until it has been unregistered. A negative errno code
1784  * is returned on a failure.
1785  *
1786  * When registered all registration and up events are replayed
1787  * to the new notifier to allow device to have a race free
1788  * view of the network device list.
1789  */
1790 
1791 int register_netdevice_notifier(struct notifier_block *nb)
1792 {
1793 	struct net *net;
1794 	int err;
1795 
1796 	/* Close race with setup_net() and cleanup_net() */
1797 	down_write(&pernet_ops_rwsem);
1798 	rtnl_lock();
1799 	err = raw_notifier_chain_register(&netdev_chain, nb);
1800 	if (err)
1801 		goto unlock;
1802 	if (dev_boot_phase)
1803 		goto unlock;
1804 	for_each_net(net) {
1805 		err = call_netdevice_register_net_notifiers(nb, net);
1806 		if (err)
1807 			goto rollback;
1808 	}
1809 
1810 unlock:
1811 	rtnl_unlock();
1812 	up_write(&pernet_ops_rwsem);
1813 	return err;
1814 
1815 rollback:
1816 	for_each_net_continue_reverse(net)
1817 		call_netdevice_unregister_net_notifiers(nb, net);
1818 
1819 	raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	goto unlock;
1821 }
1822 EXPORT_SYMBOL(register_netdevice_notifier);
1823 
1824 /**
1825  * unregister_netdevice_notifier - unregister a network notifier block
1826  * @nb: notifier
1827  *
1828  * Unregister a notifier previously registered by
1829  * register_netdevice_notifier(). The notifier is unlinked into the
1830  * kernel structures and may then be reused. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * After unregistering unregister and down device events are synthesized
1834  * for all devices on the device list to the removed notifier to remove
1835  * the need for special case cleanup code.
1836  */
1837 
1838 int unregister_netdevice_notifier(struct notifier_block *nb)
1839 {
1840 	struct net *net;
1841 	int err;
1842 
1843 	/* Close race with setup_net() and cleanup_net() */
1844 	down_write(&pernet_ops_rwsem);
1845 	rtnl_lock();
1846 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1847 	if (err)
1848 		goto unlock;
1849 
1850 	for_each_net(net)
1851 		call_netdevice_unregister_net_notifiers(nb, net);
1852 
1853 unlock:
1854 	rtnl_unlock();
1855 	up_write(&pernet_ops_rwsem);
1856 	return err;
1857 }
1858 EXPORT_SYMBOL(unregister_netdevice_notifier);
1859 
1860 static int __register_netdevice_notifier_net(struct net *net,
1861 					     struct notifier_block *nb,
1862 					     bool ignore_call_fail)
1863 {
1864 	int err;
1865 
1866 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1867 	if (err)
1868 		return err;
1869 	if (dev_boot_phase)
1870 		return 0;
1871 
1872 	err = call_netdevice_register_net_notifiers(nb, net);
1873 	if (err && !ignore_call_fail)
1874 		goto chain_unregister;
1875 
1876 	return 0;
1877 
1878 chain_unregister:
1879 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1880 	return err;
1881 }
1882 
1883 static int __unregister_netdevice_notifier_net(struct net *net,
1884 					       struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1889 	if (err)
1890 		return err;
1891 
1892 	call_netdevice_unregister_net_notifiers(nb, net);
1893 	return 0;
1894 }
1895 
1896 /**
1897  * register_netdevice_notifier_net - register a per-netns network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Register a notifier to be called when network device events occur.
1902  * The notifier passed is linked into the kernel structures and must
1903  * not be reused until it has been unregistered. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * When registered all registration and up events are replayed
1907  * to the new notifier to allow device to have a race free
1908  * view of the network device list.
1909  */
1910 
1911 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1912 {
1913 	int err;
1914 
1915 	rtnl_lock();
1916 	err = __register_netdevice_notifier_net(net, nb, false);
1917 	rtnl_unlock();
1918 	return err;
1919 }
1920 EXPORT_SYMBOL(register_netdevice_notifier_net);
1921 
1922 /**
1923  * unregister_netdevice_notifier_net - unregister a per-netns
1924  *                                     network notifier block
1925  * @net: network namespace
1926  * @nb: notifier
1927  *
1928  * Unregister a notifier previously registered by
1929  * register_netdevice_notifier(). The notifier is unlinked into the
1930  * kernel structures and may then be reused. A negative errno code
1931  * is returned on a failure.
1932  *
1933  * After unregistering unregister and down device events are synthesized
1934  * for all devices on the device list to the removed notifier to remove
1935  * the need for special case cleanup code.
1936  */
1937 
1938 int unregister_netdevice_notifier_net(struct net *net,
1939 				      struct notifier_block *nb)
1940 {
1941 	int err;
1942 
1943 	rtnl_lock();
1944 	err = __unregister_netdevice_notifier_net(net, nb);
1945 	rtnl_unlock();
1946 	return err;
1947 }
1948 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1949 
1950 int register_netdevice_notifier_dev_net(struct net_device *dev,
1951 					struct notifier_block *nb,
1952 					struct netdev_net_notifier *nn)
1953 {
1954 	int err;
1955 
1956 	rtnl_lock();
1957 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1958 	if (!err) {
1959 		nn->nb = nb;
1960 		list_add(&nn->list, &dev->net_notifier_list);
1961 	}
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1966 
1967 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1968 					  struct notifier_block *nb,
1969 					  struct netdev_net_notifier *nn)
1970 {
1971 	int err;
1972 
1973 	rtnl_lock();
1974 	list_del(&nn->list);
1975 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1976 	rtnl_unlock();
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1980 
1981 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1982 					     struct net *net)
1983 {
1984 	struct netdev_net_notifier *nn;
1985 
1986 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1987 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1988 		__register_netdevice_notifier_net(net, nn->nb, true);
1989 	}
1990 }
1991 
1992 /**
1993  *	call_netdevice_notifiers_info - call all network notifier blocks
1994  *	@val: value passed unmodified to notifier function
1995  *	@info: notifier information data
1996  *
1997  *	Call all network notifier blocks.  Parameters and return value
1998  *	are as for raw_notifier_call_chain().
1999  */
2000 
2001 static int call_netdevice_notifiers_info(unsigned long val,
2002 					 struct netdev_notifier_info *info)
2003 {
2004 	struct net *net = dev_net(info->dev);
2005 	int ret;
2006 
2007 	ASSERT_RTNL();
2008 
2009 	/* Run per-netns notifier block chain first, then run the global one.
2010 	 * Hopefully, one day, the global one is going to be removed after
2011 	 * all notifier block registrators get converted to be per-netns.
2012 	 */
2013 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2014 	if (ret & NOTIFY_STOP_MASK)
2015 		return ret;
2016 	return raw_notifier_call_chain(&netdev_chain, val, info);
2017 }
2018 
2019 static int call_netdevice_notifiers_extack(unsigned long val,
2020 					   struct net_device *dev,
2021 					   struct netlink_ext_ack *extack)
2022 {
2023 	struct netdev_notifier_info info = {
2024 		.dev = dev,
2025 		.extack = extack,
2026 	};
2027 
2028 	return call_netdevice_notifiers_info(val, &info);
2029 }
2030 
2031 /**
2032  *	call_netdevice_notifiers - call all network notifier blocks
2033  *      @val: value passed unmodified to notifier function
2034  *      @dev: net_device pointer passed unmodified to notifier function
2035  *
2036  *	Call all network notifier blocks.  Parameters and return value
2037  *	are as for raw_notifier_call_chain().
2038  */
2039 
2040 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2041 {
2042 	return call_netdevice_notifiers_extack(val, dev, NULL);
2043 }
2044 EXPORT_SYMBOL(call_netdevice_notifiers);
2045 
2046 /**
2047  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2048  *	@val: value passed unmodified to notifier function
2049  *	@dev: net_device pointer passed unmodified to notifier function
2050  *	@arg: additional u32 argument passed to the notifier function
2051  *
2052  *	Call all network notifier blocks.  Parameters and return value
2053  *	are as for raw_notifier_call_chain().
2054  */
2055 static int call_netdevice_notifiers_mtu(unsigned long val,
2056 					struct net_device *dev, u32 arg)
2057 {
2058 	struct netdev_notifier_info_ext info = {
2059 		.info.dev = dev,
2060 		.ext.mtu = arg,
2061 	};
2062 
2063 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2064 
2065 	return call_netdevice_notifiers_info(val, &info.info);
2066 }
2067 
2068 #ifdef CONFIG_NET_INGRESS
2069 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2070 
2071 void net_inc_ingress_queue(void)
2072 {
2073 	static_branch_inc(&ingress_needed_key);
2074 }
2075 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2076 
2077 void net_dec_ingress_queue(void)
2078 {
2079 	static_branch_dec(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2082 #endif
2083 
2084 #ifdef CONFIG_NET_EGRESS
2085 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2086 
2087 void net_inc_egress_queue(void)
2088 {
2089 	static_branch_inc(&egress_needed_key);
2090 }
2091 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2092 
2093 void net_dec_egress_queue(void)
2094 {
2095 	static_branch_dec(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2098 #endif
2099 
2100 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2101 #ifdef CONFIG_JUMP_LABEL
2102 static atomic_t netstamp_needed_deferred;
2103 static atomic_t netstamp_wanted;
2104 static void netstamp_clear(struct work_struct *work)
2105 {
2106 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2107 	int wanted;
2108 
2109 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2110 	if (wanted > 0)
2111 		static_branch_enable(&netstamp_needed_key);
2112 	else
2113 		static_branch_disable(&netstamp_needed_key);
2114 }
2115 static DECLARE_WORK(netstamp_work, netstamp_clear);
2116 #endif
2117 
2118 void net_enable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121 	int wanted;
2122 
2123 	while (1) {
2124 		wanted = atomic_read(&netstamp_wanted);
2125 		if (wanted <= 0)
2126 			break;
2127 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2128 			return;
2129 	}
2130 	atomic_inc(&netstamp_needed_deferred);
2131 	schedule_work(&netstamp_work);
2132 #else
2133 	static_branch_inc(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_enable_timestamp);
2137 
2138 void net_disable_timestamp(void)
2139 {
2140 #ifdef CONFIG_JUMP_LABEL
2141 	int wanted;
2142 
2143 	while (1) {
2144 		wanted = atomic_read(&netstamp_wanted);
2145 		if (wanted <= 1)
2146 			break;
2147 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2148 			return;
2149 	}
2150 	atomic_dec(&netstamp_needed_deferred);
2151 	schedule_work(&netstamp_work);
2152 #else
2153 	static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157 
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 	skb->tstamp = 0;
2161 	if (static_branch_unlikely(&netstamp_needed_key))
2162 		__net_timestamp(skb);
2163 }
2164 
2165 #define net_timestamp_check(COND, SKB)				\
2166 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2167 		if ((COND) && !(SKB)->tstamp)			\
2168 			__net_timestamp(SKB);			\
2169 	}							\
2170 
2171 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2172 {
2173 	unsigned int len;
2174 
2175 	if (!(dev->flags & IFF_UP))
2176 		return false;
2177 
2178 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2179 	if (skb->len <= len)
2180 		return true;
2181 
2182 	/* if TSO is enabled, we don't care about the length as the packet
2183 	 * could be forwarded without being segmented before
2184 	 */
2185 	if (skb_is_gso(skb))
2186 		return true;
2187 
2188 	return false;
2189 }
2190 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2191 
2192 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2193 {
2194 	int ret = ____dev_forward_skb(dev, skb);
2195 
2196 	if (likely(!ret)) {
2197 		skb->protocol = eth_type_trans(skb, dev);
2198 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2199 	}
2200 
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2204 
2205 /**
2206  * dev_forward_skb - loopback an skb to another netif
2207  *
2208  * @dev: destination network device
2209  * @skb: buffer to forward
2210  *
2211  * return values:
2212  *	NET_RX_SUCCESS	(no congestion)
2213  *	NET_RX_DROP     (packet was dropped, but freed)
2214  *
2215  * dev_forward_skb can be used for injecting an skb from the
2216  * start_xmit function of one device into the receive queue
2217  * of another device.
2218  *
2219  * The receiving device may be in another namespace, so
2220  * we have to clear all information in the skb that could
2221  * impact namespace isolation.
2222  */
2223 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2226 }
2227 EXPORT_SYMBOL_GPL(dev_forward_skb);
2228 
2229 static inline int deliver_skb(struct sk_buff *skb,
2230 			      struct packet_type *pt_prev,
2231 			      struct net_device *orig_dev)
2232 {
2233 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2234 		return -ENOMEM;
2235 	refcount_inc(&skb->users);
2236 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2237 }
2238 
2239 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2240 					  struct packet_type **pt,
2241 					  struct net_device *orig_dev,
2242 					  __be16 type,
2243 					  struct list_head *ptype_list)
2244 {
2245 	struct packet_type *ptype, *pt_prev = *pt;
2246 
2247 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2248 		if (ptype->type != type)
2249 			continue;
2250 		if (pt_prev)
2251 			deliver_skb(skb, pt_prev, orig_dev);
2252 		pt_prev = ptype;
2253 	}
2254 	*pt = pt_prev;
2255 }
2256 
2257 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2258 {
2259 	if (!ptype->af_packet_priv || !skb->sk)
2260 		return false;
2261 
2262 	if (ptype->id_match)
2263 		return ptype->id_match(ptype, skb->sk);
2264 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2265 		return true;
2266 
2267 	return false;
2268 }
2269 
2270 /**
2271  * dev_nit_active - return true if any network interface taps are in use
2272  *
2273  * @dev: network device to check for the presence of taps
2274  */
2275 bool dev_nit_active(struct net_device *dev)
2276 {
2277 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2278 }
2279 EXPORT_SYMBOL_GPL(dev_nit_active);
2280 
2281 /*
2282  *	Support routine. Sends outgoing frames to any network
2283  *	taps currently in use.
2284  */
2285 
2286 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2287 {
2288 	struct packet_type *ptype;
2289 	struct sk_buff *skb2 = NULL;
2290 	struct packet_type *pt_prev = NULL;
2291 	struct list_head *ptype_list = &ptype_all;
2292 
2293 	rcu_read_lock();
2294 again:
2295 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2296 		if (ptype->ignore_outgoing)
2297 			continue;
2298 
2299 		/* Never send packets back to the socket
2300 		 * they originated from - MvS (miquels@drinkel.ow.org)
2301 		 */
2302 		if (skb_loop_sk(ptype, skb))
2303 			continue;
2304 
2305 		if (pt_prev) {
2306 			deliver_skb(skb2, pt_prev, skb->dev);
2307 			pt_prev = ptype;
2308 			continue;
2309 		}
2310 
2311 		/* need to clone skb, done only once */
2312 		skb2 = skb_clone(skb, GFP_ATOMIC);
2313 		if (!skb2)
2314 			goto out_unlock;
2315 
2316 		net_timestamp_set(skb2);
2317 
2318 		/* skb->nh should be correctly
2319 		 * set by sender, so that the second statement is
2320 		 * just protection against buggy protocols.
2321 		 */
2322 		skb_reset_mac_header(skb2);
2323 
2324 		if (skb_network_header(skb2) < skb2->data ||
2325 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2326 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2327 					     ntohs(skb2->protocol),
2328 					     dev->name);
2329 			skb_reset_network_header(skb2);
2330 		}
2331 
2332 		skb2->transport_header = skb2->network_header;
2333 		skb2->pkt_type = PACKET_OUTGOING;
2334 		pt_prev = ptype;
2335 	}
2336 
2337 	if (ptype_list == &ptype_all) {
2338 		ptype_list = &dev->ptype_all;
2339 		goto again;
2340 	}
2341 out_unlock:
2342 	if (pt_prev) {
2343 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2344 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2345 		else
2346 			kfree_skb(skb2);
2347 	}
2348 	rcu_read_unlock();
2349 }
2350 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2351 
2352 /**
2353  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2354  * @dev: Network device
2355  * @txq: number of queues available
2356  *
2357  * If real_num_tx_queues is changed the tc mappings may no longer be
2358  * valid. To resolve this verify the tc mapping remains valid and if
2359  * not NULL the mapping. With no priorities mapping to this
2360  * offset/count pair it will no longer be used. In the worst case TC0
2361  * is invalid nothing can be done so disable priority mappings. If is
2362  * expected that drivers will fix this mapping if they can before
2363  * calling netif_set_real_num_tx_queues.
2364  */
2365 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2366 {
2367 	int i;
2368 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2369 
2370 	/* If TC0 is invalidated disable TC mapping */
2371 	if (tc->offset + tc->count > txq) {
2372 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2373 		dev->num_tc = 0;
2374 		return;
2375 	}
2376 
2377 	/* Invalidated prio to tc mappings set to TC0 */
2378 	for (i = 1; i < TC_BITMASK + 1; i++) {
2379 		int q = netdev_get_prio_tc_map(dev, i);
2380 
2381 		tc = &dev->tc_to_txq[q];
2382 		if (tc->offset + tc->count > txq) {
2383 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2384 				i, q);
2385 			netdev_set_prio_tc_map(dev, i, 0);
2386 		}
2387 	}
2388 }
2389 
2390 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2391 {
2392 	if (dev->num_tc) {
2393 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2394 		int i;
2395 
2396 		/* walk through the TCs and see if it falls into any of them */
2397 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2398 			if ((txq - tc->offset) < tc->count)
2399 				return i;
2400 		}
2401 
2402 		/* didn't find it, just return -1 to indicate no match */
2403 		return -1;
2404 	}
2405 
2406 	return 0;
2407 }
2408 EXPORT_SYMBOL(netdev_txq_to_tc);
2409 
2410 #ifdef CONFIG_XPS
2411 struct static_key xps_needed __read_mostly;
2412 EXPORT_SYMBOL(xps_needed);
2413 struct static_key xps_rxqs_needed __read_mostly;
2414 EXPORT_SYMBOL(xps_rxqs_needed);
2415 static DEFINE_MUTEX(xps_map_mutex);
2416 #define xmap_dereference(P)		\
2417 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2418 
2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2420 			     int tci, u16 index)
2421 {
2422 	struct xps_map *map = NULL;
2423 	int pos;
2424 
2425 	if (dev_maps)
2426 		map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2440 		kfree_rcu(map, rcu);
2441 		return false;
2442 	}
2443 
2444 	return true;
2445 }
2446 
2447 static bool remove_xps_queue_cpu(struct net_device *dev,
2448 				 struct xps_dev_maps *dev_maps,
2449 				 int cpu, u16 offset, u16 count)
2450 {
2451 	int num_tc = dev->num_tc ? : 1;
2452 	bool active = false;
2453 	int tci;
2454 
2455 	for (tci = cpu * num_tc; num_tc--; tci++) {
2456 		int i, j;
2457 
2458 		for (i = count, j = offset; i--; j++) {
2459 			if (!remove_xps_queue(dev_maps, tci, j))
2460 				break;
2461 		}
2462 
2463 		active |= i < 0;
2464 	}
2465 
2466 	return active;
2467 }
2468 
2469 static void reset_xps_maps(struct net_device *dev,
2470 			   struct xps_dev_maps *dev_maps,
2471 			   bool is_rxqs_map)
2472 {
2473 	if (is_rxqs_map) {
2474 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2475 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2476 	} else {
2477 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2478 	}
2479 	static_key_slow_dec_cpuslocked(&xps_needed);
2480 	kfree_rcu(dev_maps, rcu);
2481 }
2482 
2483 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2484 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2485 			   u16 offset, u16 count, bool is_rxqs_map)
2486 {
2487 	bool active = false;
2488 	int i, j;
2489 
2490 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2491 	     j < nr_ids;)
2492 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2493 					       count);
2494 	if (!active)
2495 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2496 
2497 	if (!is_rxqs_map) {
2498 		for (i = offset + (count - 1); count--; i--) {
2499 			netdev_queue_numa_node_write(
2500 				netdev_get_tx_queue(dev, i),
2501 				NUMA_NO_NODE);
2502 		}
2503 	}
2504 }
2505 
2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2507 				   u16 count)
2508 {
2509 	const unsigned long *possible_mask = NULL;
2510 	struct xps_dev_maps *dev_maps;
2511 	unsigned int nr_ids;
2512 
2513 	if (!static_key_false(&xps_needed))
2514 		return;
2515 
2516 	cpus_read_lock();
2517 	mutex_lock(&xps_map_mutex);
2518 
2519 	if (static_key_false(&xps_rxqs_needed)) {
2520 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2521 		if (dev_maps) {
2522 			nr_ids = dev->num_rx_queues;
2523 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2524 				       offset, count, true);
2525 		}
2526 	}
2527 
2528 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2529 	if (!dev_maps)
2530 		goto out_no_maps;
2531 
2532 	if (num_possible_cpus() > 1)
2533 		possible_mask = cpumask_bits(cpu_possible_mask);
2534 	nr_ids = nr_cpu_ids;
2535 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2536 		       false);
2537 
2538 out_no_maps:
2539 	mutex_unlock(&xps_map_mutex);
2540 	cpus_read_unlock();
2541 }
2542 
2543 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2544 {
2545 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2546 }
2547 
2548 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2549 				      u16 index, bool is_rxqs_map)
2550 {
2551 	struct xps_map *new_map;
2552 	int alloc_len = XPS_MIN_MAP_ALLOC;
2553 	int i, pos;
2554 
2555 	for (pos = 0; map && pos < map->len; pos++) {
2556 		if (map->queues[pos] != index)
2557 			continue;
2558 		return map;
2559 	}
2560 
2561 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2562 	if (map) {
2563 		if (pos < map->alloc_len)
2564 			return map;
2565 
2566 		alloc_len = map->alloc_len * 2;
2567 	}
2568 
2569 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2570 	 *  map
2571 	 */
2572 	if (is_rxqs_map)
2573 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2574 	else
2575 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2576 				       cpu_to_node(attr_index));
2577 	if (!new_map)
2578 		return NULL;
2579 
2580 	for (i = 0; i < pos; i++)
2581 		new_map->queues[i] = map->queues[i];
2582 	new_map->alloc_len = alloc_len;
2583 	new_map->len = pos;
2584 
2585 	return new_map;
2586 }
2587 
2588 /* Must be called under cpus_read_lock */
2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2590 			  u16 index, bool is_rxqs_map)
2591 {
2592 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2594 	int i, j, tci, numa_node_id = -2;
2595 	int maps_sz, num_tc = 1, tc = 0;
2596 	struct xps_map *map, *new_map;
2597 	bool active = false;
2598 	unsigned int nr_ids;
2599 
2600 	if (dev->num_tc) {
2601 		/* Do not allow XPS on subordinate device directly */
2602 		num_tc = dev->num_tc;
2603 		if (num_tc < 0)
2604 			return -EINVAL;
2605 
2606 		/* If queue belongs to subordinate dev use its map */
2607 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2608 
2609 		tc = netdev_txq_to_tc(dev, index);
2610 		if (tc < 0)
2611 			return -EINVAL;
2612 	}
2613 
2614 	mutex_lock(&xps_map_mutex);
2615 	if (is_rxqs_map) {
2616 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2617 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2618 		nr_ids = dev->num_rx_queues;
2619 	} else {
2620 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2621 		if (num_possible_cpus() > 1) {
2622 			online_mask = cpumask_bits(cpu_online_mask);
2623 			possible_mask = cpumask_bits(cpu_possible_mask);
2624 		}
2625 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2626 		nr_ids = nr_cpu_ids;
2627 	}
2628 
2629 	if (maps_sz < L1_CACHE_BYTES)
2630 		maps_sz = L1_CACHE_BYTES;
2631 
2632 	/* allocate memory for queue storage */
2633 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2634 	     j < nr_ids;) {
2635 		if (!new_dev_maps)
2636 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2637 		if (!new_dev_maps) {
2638 			mutex_unlock(&xps_map_mutex);
2639 			return -ENOMEM;
2640 		}
2641 
2642 		tci = j * num_tc + tc;
2643 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2644 				 NULL;
2645 
2646 		map = expand_xps_map(map, j, index, is_rxqs_map);
2647 		if (!map)
2648 			goto error;
2649 
2650 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2651 	}
2652 
2653 	if (!new_dev_maps)
2654 		goto out_no_new_maps;
2655 
2656 	if (!dev_maps) {
2657 		/* Increment static keys at most once per type */
2658 		static_key_slow_inc_cpuslocked(&xps_needed);
2659 		if (is_rxqs_map)
2660 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2661 	}
2662 
2663 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2664 	     j < nr_ids;) {
2665 		/* copy maps belonging to foreign traffic classes */
2666 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2667 			/* fill in the new device map from the old device map */
2668 			map = xmap_dereference(dev_maps->attr_map[tci]);
2669 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2670 		}
2671 
2672 		/* We need to explicitly update tci as prevous loop
2673 		 * could break out early if dev_maps is NULL.
2674 		 */
2675 		tci = j * num_tc + tc;
2676 
2677 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2678 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2679 			/* add tx-queue to CPU/rx-queue maps */
2680 			int pos = 0;
2681 
2682 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2683 			while ((pos < map->len) && (map->queues[pos] != index))
2684 				pos++;
2685 
2686 			if (pos == map->len)
2687 				map->queues[map->len++] = index;
2688 #ifdef CONFIG_NUMA
2689 			if (!is_rxqs_map) {
2690 				if (numa_node_id == -2)
2691 					numa_node_id = cpu_to_node(j);
2692 				else if (numa_node_id != cpu_to_node(j))
2693 					numa_node_id = -1;
2694 			}
2695 #endif
2696 		} else if (dev_maps) {
2697 			/* fill in the new device map from the old device map */
2698 			map = xmap_dereference(dev_maps->attr_map[tci]);
2699 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2700 		}
2701 
2702 		/* copy maps belonging to foreign traffic classes */
2703 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2704 			/* fill in the new device map from the old device map */
2705 			map = xmap_dereference(dev_maps->attr_map[tci]);
2706 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2707 		}
2708 	}
2709 
2710 	if (is_rxqs_map)
2711 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2712 	else
2713 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2714 
2715 	/* Cleanup old maps */
2716 	if (!dev_maps)
2717 		goto out_no_old_maps;
2718 
2719 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2720 	     j < nr_ids;) {
2721 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2722 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2723 			map = xmap_dereference(dev_maps->attr_map[tci]);
2724 			if (map && map != new_map)
2725 				kfree_rcu(map, rcu);
2726 		}
2727 	}
2728 
2729 	kfree_rcu(dev_maps, rcu);
2730 
2731 out_no_old_maps:
2732 	dev_maps = new_dev_maps;
2733 	active = true;
2734 
2735 out_no_new_maps:
2736 	if (!is_rxqs_map) {
2737 		/* update Tx queue numa node */
2738 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2739 					     (numa_node_id >= 0) ?
2740 					     numa_node_id : NUMA_NO_NODE);
2741 	}
2742 
2743 	if (!dev_maps)
2744 		goto out_no_maps;
2745 
2746 	/* removes tx-queue from unused CPUs/rx-queues */
2747 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2748 	     j < nr_ids;) {
2749 		for (i = tc, tci = j * num_tc; i--; tci++)
2750 			active |= remove_xps_queue(dev_maps, tci, index);
2751 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2752 		    !netif_attr_test_online(j, online_mask, nr_ids))
2753 			active |= remove_xps_queue(dev_maps, tci, index);
2754 		for (i = num_tc - tc, tci++; --i; tci++)
2755 			active |= remove_xps_queue(dev_maps, tci, index);
2756 	}
2757 
2758 	/* free map if not active */
2759 	if (!active)
2760 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2761 
2762 out_no_maps:
2763 	mutex_unlock(&xps_map_mutex);
2764 
2765 	return 0;
2766 error:
2767 	/* remove any maps that we added */
2768 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2769 	     j < nr_ids;) {
2770 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2771 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2772 			map = dev_maps ?
2773 			      xmap_dereference(dev_maps->attr_map[tci]) :
2774 			      NULL;
2775 			if (new_map && new_map != map)
2776 				kfree(new_map);
2777 		}
2778 	}
2779 
2780 	mutex_unlock(&xps_map_mutex);
2781 
2782 	kfree(new_dev_maps);
2783 	return -ENOMEM;
2784 }
2785 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2786 
2787 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2788 			u16 index)
2789 {
2790 	int ret;
2791 
2792 	cpus_read_lock();
2793 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2794 	cpus_read_unlock();
2795 
2796 	return ret;
2797 }
2798 EXPORT_SYMBOL(netif_set_xps_queue);
2799 
2800 #endif
2801 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2802 {
2803 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2804 
2805 	/* Unbind any subordinate channels */
2806 	while (txq-- != &dev->_tx[0]) {
2807 		if (txq->sb_dev)
2808 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2809 	}
2810 }
2811 
2812 void netdev_reset_tc(struct net_device *dev)
2813 {
2814 #ifdef CONFIG_XPS
2815 	netif_reset_xps_queues_gt(dev, 0);
2816 #endif
2817 	netdev_unbind_all_sb_channels(dev);
2818 
2819 	/* Reset TC configuration of device */
2820 	dev->num_tc = 0;
2821 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2822 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2823 }
2824 EXPORT_SYMBOL(netdev_reset_tc);
2825 
2826 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2827 {
2828 	if (tc >= dev->num_tc)
2829 		return -EINVAL;
2830 
2831 #ifdef CONFIG_XPS
2832 	netif_reset_xps_queues(dev, offset, count);
2833 #endif
2834 	dev->tc_to_txq[tc].count = count;
2835 	dev->tc_to_txq[tc].offset = offset;
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_tc_queue);
2839 
2840 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2841 {
2842 	if (num_tc > TC_MAX_QUEUE)
2843 		return -EINVAL;
2844 
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(dev, 0);
2847 #endif
2848 	netdev_unbind_all_sb_channels(dev);
2849 
2850 	dev->num_tc = num_tc;
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_set_num_tc);
2854 
2855 void netdev_unbind_sb_channel(struct net_device *dev,
2856 			      struct net_device *sb_dev)
2857 {
2858 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2859 
2860 #ifdef CONFIG_XPS
2861 	netif_reset_xps_queues_gt(sb_dev, 0);
2862 #endif
2863 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2864 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2865 
2866 	while (txq-- != &dev->_tx[0]) {
2867 		if (txq->sb_dev == sb_dev)
2868 			txq->sb_dev = NULL;
2869 	}
2870 }
2871 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2872 
2873 int netdev_bind_sb_channel_queue(struct net_device *dev,
2874 				 struct net_device *sb_dev,
2875 				 u8 tc, u16 count, u16 offset)
2876 {
2877 	/* Make certain the sb_dev and dev are already configured */
2878 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2879 		return -EINVAL;
2880 
2881 	/* We cannot hand out queues we don't have */
2882 	if ((offset + count) > dev->real_num_tx_queues)
2883 		return -EINVAL;
2884 
2885 	/* Record the mapping */
2886 	sb_dev->tc_to_txq[tc].count = count;
2887 	sb_dev->tc_to_txq[tc].offset = offset;
2888 
2889 	/* Provide a way for Tx queue to find the tc_to_txq map or
2890 	 * XPS map for itself.
2891 	 */
2892 	while (count--)
2893 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2894 
2895 	return 0;
2896 }
2897 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2898 
2899 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2900 {
2901 	/* Do not use a multiqueue device to represent a subordinate channel */
2902 	if (netif_is_multiqueue(dev))
2903 		return -ENODEV;
2904 
2905 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2906 	 * Channel 0 is meant to be "native" mode and used only to represent
2907 	 * the main root device. We allow writing 0 to reset the device back
2908 	 * to normal mode after being used as a subordinate channel.
2909 	 */
2910 	if (channel > S16_MAX)
2911 		return -EINVAL;
2912 
2913 	dev->num_tc = -channel;
2914 
2915 	return 0;
2916 }
2917 EXPORT_SYMBOL(netdev_set_sb_channel);
2918 
2919 /*
2920  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2921  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2922  */
2923 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2924 {
2925 	bool disabling;
2926 	int rc;
2927 
2928 	disabling = txq < dev->real_num_tx_queues;
2929 
2930 	if (txq < 1 || txq > dev->num_tx_queues)
2931 		return -EINVAL;
2932 
2933 	if (dev->reg_state == NETREG_REGISTERED ||
2934 	    dev->reg_state == NETREG_UNREGISTERING) {
2935 		ASSERT_RTNL();
2936 
2937 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2938 						  txq);
2939 		if (rc)
2940 			return rc;
2941 
2942 		if (dev->num_tc)
2943 			netif_setup_tc(dev, txq);
2944 
2945 		dev->real_num_tx_queues = txq;
2946 
2947 		if (disabling) {
2948 			synchronize_net();
2949 			qdisc_reset_all_tx_gt(dev, txq);
2950 #ifdef CONFIG_XPS
2951 			netif_reset_xps_queues_gt(dev, txq);
2952 #endif
2953 		}
2954 	} else {
2955 		dev->real_num_tx_queues = txq;
2956 	}
2957 
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2961 
2962 #ifdef CONFIG_SYSFS
2963 /**
2964  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2965  *	@dev: Network device
2966  *	@rxq: Actual number of RX queues
2967  *
2968  *	This must be called either with the rtnl_lock held or before
2969  *	registration of the net device.  Returns 0 on success, or a
2970  *	negative error code.  If called before registration, it always
2971  *	succeeds.
2972  */
2973 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2974 {
2975 	int rc;
2976 
2977 	if (rxq < 1 || rxq > dev->num_rx_queues)
2978 		return -EINVAL;
2979 
2980 	if (dev->reg_state == NETREG_REGISTERED) {
2981 		ASSERT_RTNL();
2982 
2983 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2984 						  rxq);
2985 		if (rc)
2986 			return rc;
2987 	}
2988 
2989 	dev->real_num_rx_queues = rxq;
2990 	return 0;
2991 }
2992 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2993 #endif
2994 
2995 /**
2996  * netif_get_num_default_rss_queues - default number of RSS queues
2997  *
2998  * This routine should set an upper limit on the number of RSS queues
2999  * used by default by multiqueue devices.
3000  */
3001 int netif_get_num_default_rss_queues(void)
3002 {
3003 	return is_kdump_kernel() ?
3004 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3005 }
3006 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3007 
3008 static void __netif_reschedule(struct Qdisc *q)
3009 {
3010 	struct softnet_data *sd;
3011 	unsigned long flags;
3012 
3013 	local_irq_save(flags);
3014 	sd = this_cpu_ptr(&softnet_data);
3015 	q->next_sched = NULL;
3016 	*sd->output_queue_tailp = q;
3017 	sd->output_queue_tailp = &q->next_sched;
3018 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3019 	local_irq_restore(flags);
3020 }
3021 
3022 void __netif_schedule(struct Qdisc *q)
3023 {
3024 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3025 		__netif_reschedule(q);
3026 }
3027 EXPORT_SYMBOL(__netif_schedule);
3028 
3029 struct dev_kfree_skb_cb {
3030 	enum skb_free_reason reason;
3031 };
3032 
3033 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3034 {
3035 	return (struct dev_kfree_skb_cb *)skb->cb;
3036 }
3037 
3038 void netif_schedule_queue(struct netdev_queue *txq)
3039 {
3040 	rcu_read_lock();
3041 	if (!netif_xmit_stopped(txq)) {
3042 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3043 
3044 		__netif_schedule(q);
3045 	}
3046 	rcu_read_unlock();
3047 }
3048 EXPORT_SYMBOL(netif_schedule_queue);
3049 
3050 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3051 {
3052 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3053 		struct Qdisc *q;
3054 
3055 		rcu_read_lock();
3056 		q = rcu_dereference(dev_queue->qdisc);
3057 		__netif_schedule(q);
3058 		rcu_read_unlock();
3059 	}
3060 }
3061 EXPORT_SYMBOL(netif_tx_wake_queue);
3062 
3063 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3064 {
3065 	unsigned long flags;
3066 
3067 	if (unlikely(!skb))
3068 		return;
3069 
3070 	if (likely(refcount_read(&skb->users) == 1)) {
3071 		smp_rmb();
3072 		refcount_set(&skb->users, 0);
3073 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3074 		return;
3075 	}
3076 	get_kfree_skb_cb(skb)->reason = reason;
3077 	local_irq_save(flags);
3078 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3079 	__this_cpu_write(softnet_data.completion_queue, skb);
3080 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081 	local_irq_restore(flags);
3082 }
3083 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3084 
3085 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3086 {
3087 	if (in_irq() || irqs_disabled())
3088 		__dev_kfree_skb_irq(skb, reason);
3089 	else
3090 		dev_kfree_skb(skb);
3091 }
3092 EXPORT_SYMBOL(__dev_kfree_skb_any);
3093 
3094 
3095 /**
3096  * netif_device_detach - mark device as removed
3097  * @dev: network device
3098  *
3099  * Mark device as removed from system and therefore no longer available.
3100  */
3101 void netif_device_detach(struct net_device *dev)
3102 {
3103 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3104 	    netif_running(dev)) {
3105 		netif_tx_stop_all_queues(dev);
3106 	}
3107 }
3108 EXPORT_SYMBOL(netif_device_detach);
3109 
3110 /**
3111  * netif_device_attach - mark device as attached
3112  * @dev: network device
3113  *
3114  * Mark device as attached from system and restart if needed.
3115  */
3116 void netif_device_attach(struct net_device *dev)
3117 {
3118 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3119 	    netif_running(dev)) {
3120 		netif_tx_wake_all_queues(dev);
3121 		__netdev_watchdog_up(dev);
3122 	}
3123 }
3124 EXPORT_SYMBOL(netif_device_attach);
3125 
3126 /*
3127  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3128  * to be used as a distribution range.
3129  */
3130 static u16 skb_tx_hash(const struct net_device *dev,
3131 		       const struct net_device *sb_dev,
3132 		       struct sk_buff *skb)
3133 {
3134 	u32 hash;
3135 	u16 qoffset = 0;
3136 	u16 qcount = dev->real_num_tx_queues;
3137 
3138 	if (dev->num_tc) {
3139 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3140 
3141 		qoffset = sb_dev->tc_to_txq[tc].offset;
3142 		qcount = sb_dev->tc_to_txq[tc].count;
3143 	}
3144 
3145 	if (skb_rx_queue_recorded(skb)) {
3146 		hash = skb_get_rx_queue(skb);
3147 		if (hash >= qoffset)
3148 			hash -= qoffset;
3149 		while (unlikely(hash >= qcount))
3150 			hash -= qcount;
3151 		return hash + qoffset;
3152 	}
3153 
3154 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3155 }
3156 
3157 static void skb_warn_bad_offload(const struct sk_buff *skb)
3158 {
3159 	static const netdev_features_t null_features;
3160 	struct net_device *dev = skb->dev;
3161 	const char *name = "";
3162 
3163 	if (!net_ratelimit())
3164 		return;
3165 
3166 	if (dev) {
3167 		if (dev->dev.parent)
3168 			name = dev_driver_string(dev->dev.parent);
3169 		else
3170 			name = netdev_name(dev);
3171 	}
3172 	skb_dump(KERN_WARNING, skb, false);
3173 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3174 	     name, dev ? &dev->features : &null_features,
3175 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3176 }
3177 
3178 /*
3179  * Invalidate hardware checksum when packet is to be mangled, and
3180  * complete checksum manually on outgoing path.
3181  */
3182 int skb_checksum_help(struct sk_buff *skb)
3183 {
3184 	__wsum csum;
3185 	int ret = 0, offset;
3186 
3187 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3188 		goto out_set_summed;
3189 
3190 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3191 		skb_warn_bad_offload(skb);
3192 		return -EINVAL;
3193 	}
3194 
3195 	/* Before computing a checksum, we should make sure no frag could
3196 	 * be modified by an external entity : checksum could be wrong.
3197 	 */
3198 	if (skb_has_shared_frag(skb)) {
3199 		ret = __skb_linearize(skb);
3200 		if (ret)
3201 			goto out;
3202 	}
3203 
3204 	offset = skb_checksum_start_offset(skb);
3205 	BUG_ON(offset >= skb_headlen(skb));
3206 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3207 
3208 	offset += skb->csum_offset;
3209 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3210 
3211 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3212 	if (ret)
3213 		goto out;
3214 
3215 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3216 out_set_summed:
3217 	skb->ip_summed = CHECKSUM_NONE;
3218 out:
3219 	return ret;
3220 }
3221 EXPORT_SYMBOL(skb_checksum_help);
3222 
3223 int skb_crc32c_csum_help(struct sk_buff *skb)
3224 {
3225 	__le32 crc32c_csum;
3226 	int ret = 0, offset, start;
3227 
3228 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3229 		goto out;
3230 
3231 	if (unlikely(skb_is_gso(skb)))
3232 		goto out;
3233 
3234 	/* Before computing a checksum, we should make sure no frag could
3235 	 * be modified by an external entity : checksum could be wrong.
3236 	 */
3237 	if (unlikely(skb_has_shared_frag(skb))) {
3238 		ret = __skb_linearize(skb);
3239 		if (ret)
3240 			goto out;
3241 	}
3242 	start = skb_checksum_start_offset(skb);
3243 	offset = start + offsetof(struct sctphdr, checksum);
3244 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3245 		ret = -EINVAL;
3246 		goto out;
3247 	}
3248 
3249 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3250 	if (ret)
3251 		goto out;
3252 
3253 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3254 						  skb->len - start, ~(__u32)0,
3255 						  crc32c_csum_stub));
3256 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3257 	skb->ip_summed = CHECKSUM_NONE;
3258 	skb->csum_not_inet = 0;
3259 out:
3260 	return ret;
3261 }
3262 
3263 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3264 {
3265 	__be16 type = skb->protocol;
3266 
3267 	/* Tunnel gso handlers can set protocol to ethernet. */
3268 	if (type == htons(ETH_P_TEB)) {
3269 		struct ethhdr *eth;
3270 
3271 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3272 			return 0;
3273 
3274 		eth = (struct ethhdr *)skb->data;
3275 		type = eth->h_proto;
3276 	}
3277 
3278 	return __vlan_get_protocol(skb, type, depth);
3279 }
3280 
3281 /**
3282  *	skb_mac_gso_segment - mac layer segmentation handler.
3283  *	@skb: buffer to segment
3284  *	@features: features for the output path (see dev->features)
3285  */
3286 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3287 				    netdev_features_t features)
3288 {
3289 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3290 	struct packet_offload *ptype;
3291 	int vlan_depth = skb->mac_len;
3292 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3293 
3294 	if (unlikely(!type))
3295 		return ERR_PTR(-EINVAL);
3296 
3297 	__skb_pull(skb, vlan_depth);
3298 
3299 	rcu_read_lock();
3300 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3301 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3302 			segs = ptype->callbacks.gso_segment(skb, features);
3303 			break;
3304 		}
3305 	}
3306 	rcu_read_unlock();
3307 
3308 	__skb_push(skb, skb->data - skb_mac_header(skb));
3309 
3310 	return segs;
3311 }
3312 EXPORT_SYMBOL(skb_mac_gso_segment);
3313 
3314 
3315 /* openvswitch calls this on rx path, so we need a different check.
3316  */
3317 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3318 {
3319 	if (tx_path)
3320 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3321 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3322 
3323 	return skb->ip_summed == CHECKSUM_NONE;
3324 }
3325 
3326 /**
3327  *	__skb_gso_segment - Perform segmentation on skb.
3328  *	@skb: buffer to segment
3329  *	@features: features for the output path (see dev->features)
3330  *	@tx_path: whether it is called in TX path
3331  *
3332  *	This function segments the given skb and returns a list of segments.
3333  *
3334  *	It may return NULL if the skb requires no segmentation.  This is
3335  *	only possible when GSO is used for verifying header integrity.
3336  *
3337  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3338  */
3339 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3340 				  netdev_features_t features, bool tx_path)
3341 {
3342 	struct sk_buff *segs;
3343 
3344 	if (unlikely(skb_needs_check(skb, tx_path))) {
3345 		int err;
3346 
3347 		/* We're going to init ->check field in TCP or UDP header */
3348 		err = skb_cow_head(skb, 0);
3349 		if (err < 0)
3350 			return ERR_PTR(err);
3351 	}
3352 
3353 	/* Only report GSO partial support if it will enable us to
3354 	 * support segmentation on this frame without needing additional
3355 	 * work.
3356 	 */
3357 	if (features & NETIF_F_GSO_PARTIAL) {
3358 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3359 		struct net_device *dev = skb->dev;
3360 
3361 		partial_features |= dev->features & dev->gso_partial_features;
3362 		if (!skb_gso_ok(skb, features | partial_features))
3363 			features &= ~NETIF_F_GSO_PARTIAL;
3364 	}
3365 
3366 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3367 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3368 
3369 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3370 	SKB_GSO_CB(skb)->encap_level = 0;
3371 
3372 	skb_reset_mac_header(skb);
3373 	skb_reset_mac_len(skb);
3374 
3375 	segs = skb_mac_gso_segment(skb, features);
3376 
3377 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3378 		skb_warn_bad_offload(skb);
3379 
3380 	return segs;
3381 }
3382 EXPORT_SYMBOL(__skb_gso_segment);
3383 
3384 /* Take action when hardware reception checksum errors are detected. */
3385 #ifdef CONFIG_BUG
3386 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387 {
3388 	if (net_ratelimit()) {
3389 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3390 		skb_dump(KERN_ERR, skb, true);
3391 		dump_stack();
3392 	}
3393 }
3394 EXPORT_SYMBOL(netdev_rx_csum_fault);
3395 #endif
3396 
3397 /* XXX: check that highmem exists at all on the given machine. */
3398 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3399 {
3400 #ifdef CONFIG_HIGHMEM
3401 	int i;
3402 
3403 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3404 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3405 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3406 
3407 			if (PageHighMem(skb_frag_page(frag)))
3408 				return 1;
3409 		}
3410 	}
3411 #endif
3412 	return 0;
3413 }
3414 
3415 /* If MPLS offload request, verify we are testing hardware MPLS features
3416  * instead of standard features for the netdev.
3417  */
3418 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3419 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3420 					   netdev_features_t features,
3421 					   __be16 type)
3422 {
3423 	if (eth_p_mpls(type))
3424 		features &= skb->dev->mpls_features;
3425 
3426 	return features;
3427 }
3428 #else
3429 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3430 					   netdev_features_t features,
3431 					   __be16 type)
3432 {
3433 	return features;
3434 }
3435 #endif
3436 
3437 static netdev_features_t harmonize_features(struct sk_buff *skb,
3438 	netdev_features_t features)
3439 {
3440 	int tmp;
3441 	__be16 type;
3442 
3443 	type = skb_network_protocol(skb, &tmp);
3444 	features = net_mpls_features(skb, features, type);
3445 
3446 	if (skb->ip_summed != CHECKSUM_NONE &&
3447 	    !can_checksum_protocol(features, type)) {
3448 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3449 	}
3450 	if (illegal_highdma(skb->dev, skb))
3451 		features &= ~NETIF_F_SG;
3452 
3453 	return features;
3454 }
3455 
3456 netdev_features_t passthru_features_check(struct sk_buff *skb,
3457 					  struct net_device *dev,
3458 					  netdev_features_t features)
3459 {
3460 	return features;
3461 }
3462 EXPORT_SYMBOL(passthru_features_check);
3463 
3464 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3465 					     struct net_device *dev,
3466 					     netdev_features_t features)
3467 {
3468 	return vlan_features_check(skb, features);
3469 }
3470 
3471 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3472 					    struct net_device *dev,
3473 					    netdev_features_t features)
3474 {
3475 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3476 
3477 	if (gso_segs > dev->gso_max_segs)
3478 		return features & ~NETIF_F_GSO_MASK;
3479 
3480 	/* Support for GSO partial features requires software
3481 	 * intervention before we can actually process the packets
3482 	 * so we need to strip support for any partial features now
3483 	 * and we can pull them back in after we have partially
3484 	 * segmented the frame.
3485 	 */
3486 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3487 		features &= ~dev->gso_partial_features;
3488 
3489 	/* Make sure to clear the IPv4 ID mangling feature if the
3490 	 * IPv4 header has the potential to be fragmented.
3491 	 */
3492 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3493 		struct iphdr *iph = skb->encapsulation ?
3494 				    inner_ip_hdr(skb) : ip_hdr(skb);
3495 
3496 		if (!(iph->frag_off & htons(IP_DF)))
3497 			features &= ~NETIF_F_TSO_MANGLEID;
3498 	}
3499 
3500 	return features;
3501 }
3502 
3503 netdev_features_t netif_skb_features(struct sk_buff *skb)
3504 {
3505 	struct net_device *dev = skb->dev;
3506 	netdev_features_t features = dev->features;
3507 
3508 	if (skb_is_gso(skb))
3509 		features = gso_features_check(skb, dev, features);
3510 
3511 	/* If encapsulation offload request, verify we are testing
3512 	 * hardware encapsulation features instead of standard
3513 	 * features for the netdev
3514 	 */
3515 	if (skb->encapsulation)
3516 		features &= dev->hw_enc_features;
3517 
3518 	if (skb_vlan_tagged(skb))
3519 		features = netdev_intersect_features(features,
3520 						     dev->vlan_features |
3521 						     NETIF_F_HW_VLAN_CTAG_TX |
3522 						     NETIF_F_HW_VLAN_STAG_TX);
3523 
3524 	if (dev->netdev_ops->ndo_features_check)
3525 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3526 								features);
3527 	else
3528 		features &= dflt_features_check(skb, dev, features);
3529 
3530 	return harmonize_features(skb, features);
3531 }
3532 EXPORT_SYMBOL(netif_skb_features);
3533 
3534 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3535 		    struct netdev_queue *txq, bool more)
3536 {
3537 	unsigned int len;
3538 	int rc;
3539 
3540 	if (dev_nit_active(dev))
3541 		dev_queue_xmit_nit(skb, dev);
3542 
3543 	len = skb->len;
3544 	trace_net_dev_start_xmit(skb, dev);
3545 	rc = netdev_start_xmit(skb, dev, txq, more);
3546 	trace_net_dev_xmit(skb, rc, dev, len);
3547 
3548 	return rc;
3549 }
3550 
3551 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3552 				    struct netdev_queue *txq, int *ret)
3553 {
3554 	struct sk_buff *skb = first;
3555 	int rc = NETDEV_TX_OK;
3556 
3557 	while (skb) {
3558 		struct sk_buff *next = skb->next;
3559 
3560 		skb_mark_not_on_list(skb);
3561 		rc = xmit_one(skb, dev, txq, next != NULL);
3562 		if (unlikely(!dev_xmit_complete(rc))) {
3563 			skb->next = next;
3564 			goto out;
3565 		}
3566 
3567 		skb = next;
3568 		if (netif_tx_queue_stopped(txq) && skb) {
3569 			rc = NETDEV_TX_BUSY;
3570 			break;
3571 		}
3572 	}
3573 
3574 out:
3575 	*ret = rc;
3576 	return skb;
3577 }
3578 
3579 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3580 					  netdev_features_t features)
3581 {
3582 	if (skb_vlan_tag_present(skb) &&
3583 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3584 		skb = __vlan_hwaccel_push_inside(skb);
3585 	return skb;
3586 }
3587 
3588 int skb_csum_hwoffload_help(struct sk_buff *skb,
3589 			    const netdev_features_t features)
3590 {
3591 	if (unlikely(skb->csum_not_inet))
3592 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3593 			skb_crc32c_csum_help(skb);
3594 
3595 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3596 }
3597 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3598 
3599 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3600 {
3601 	netdev_features_t features;
3602 
3603 	features = netif_skb_features(skb);
3604 	skb = validate_xmit_vlan(skb, features);
3605 	if (unlikely(!skb))
3606 		goto out_null;
3607 
3608 	skb = sk_validate_xmit_skb(skb, dev);
3609 	if (unlikely(!skb))
3610 		goto out_null;
3611 
3612 	if (netif_needs_gso(skb, features)) {
3613 		struct sk_buff *segs;
3614 
3615 		segs = skb_gso_segment(skb, features);
3616 		if (IS_ERR(segs)) {
3617 			goto out_kfree_skb;
3618 		} else if (segs) {
3619 			consume_skb(skb);
3620 			skb = segs;
3621 		}
3622 	} else {
3623 		if (skb_needs_linearize(skb, features) &&
3624 		    __skb_linearize(skb))
3625 			goto out_kfree_skb;
3626 
3627 		/* If packet is not checksummed and device does not
3628 		 * support checksumming for this protocol, complete
3629 		 * checksumming here.
3630 		 */
3631 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3632 			if (skb->encapsulation)
3633 				skb_set_inner_transport_header(skb,
3634 							       skb_checksum_start_offset(skb));
3635 			else
3636 				skb_set_transport_header(skb,
3637 							 skb_checksum_start_offset(skb));
3638 			if (skb_csum_hwoffload_help(skb, features))
3639 				goto out_kfree_skb;
3640 		}
3641 	}
3642 
3643 	skb = validate_xmit_xfrm(skb, features, again);
3644 
3645 	return skb;
3646 
3647 out_kfree_skb:
3648 	kfree_skb(skb);
3649 out_null:
3650 	atomic_long_inc(&dev->tx_dropped);
3651 	return NULL;
3652 }
3653 
3654 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3655 {
3656 	struct sk_buff *next, *head = NULL, *tail;
3657 
3658 	for (; skb != NULL; skb = next) {
3659 		next = skb->next;
3660 		skb_mark_not_on_list(skb);
3661 
3662 		/* in case skb wont be segmented, point to itself */
3663 		skb->prev = skb;
3664 
3665 		skb = validate_xmit_skb(skb, dev, again);
3666 		if (!skb)
3667 			continue;
3668 
3669 		if (!head)
3670 			head = skb;
3671 		else
3672 			tail->next = skb;
3673 		/* If skb was segmented, skb->prev points to
3674 		 * the last segment. If not, it still contains skb.
3675 		 */
3676 		tail = skb->prev;
3677 	}
3678 	return head;
3679 }
3680 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3681 
3682 static void qdisc_pkt_len_init(struct sk_buff *skb)
3683 {
3684 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3685 
3686 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3687 
3688 	/* To get more precise estimation of bytes sent on wire,
3689 	 * we add to pkt_len the headers size of all segments
3690 	 */
3691 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3692 		unsigned int hdr_len;
3693 		u16 gso_segs = shinfo->gso_segs;
3694 
3695 		/* mac layer + network layer */
3696 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3697 
3698 		/* + transport layer */
3699 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3700 			const struct tcphdr *th;
3701 			struct tcphdr _tcphdr;
3702 
3703 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3704 						sizeof(_tcphdr), &_tcphdr);
3705 			if (likely(th))
3706 				hdr_len += __tcp_hdrlen(th);
3707 		} else {
3708 			struct udphdr _udphdr;
3709 
3710 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3711 					       sizeof(_udphdr), &_udphdr))
3712 				hdr_len += sizeof(struct udphdr);
3713 		}
3714 
3715 		if (shinfo->gso_type & SKB_GSO_DODGY)
3716 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3717 						shinfo->gso_size);
3718 
3719 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3720 	}
3721 }
3722 
3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3724 				 struct net_device *dev,
3725 				 struct netdev_queue *txq)
3726 {
3727 	spinlock_t *root_lock = qdisc_lock(q);
3728 	struct sk_buff *to_free = NULL;
3729 	bool contended;
3730 	int rc;
3731 
3732 	qdisc_calculate_pkt_len(skb, q);
3733 
3734 	if (q->flags & TCQ_F_NOLOCK) {
3735 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3736 		qdisc_run(q);
3737 
3738 		if (unlikely(to_free))
3739 			kfree_skb_list(to_free);
3740 		return rc;
3741 	}
3742 
3743 	/*
3744 	 * Heuristic to force contended enqueues to serialize on a
3745 	 * separate lock before trying to get qdisc main lock.
3746 	 * This permits qdisc->running owner to get the lock more
3747 	 * often and dequeue packets faster.
3748 	 */
3749 	contended = qdisc_is_running(q);
3750 	if (unlikely(contended))
3751 		spin_lock(&q->busylock);
3752 
3753 	spin_lock(root_lock);
3754 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3755 		__qdisc_drop(skb, &to_free);
3756 		rc = NET_XMIT_DROP;
3757 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3758 		   qdisc_run_begin(q)) {
3759 		/*
3760 		 * This is a work-conserving queue; there are no old skbs
3761 		 * waiting to be sent out; and the qdisc is not running -
3762 		 * xmit the skb directly.
3763 		 */
3764 
3765 		qdisc_bstats_update(q, skb);
3766 
3767 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3768 			if (unlikely(contended)) {
3769 				spin_unlock(&q->busylock);
3770 				contended = false;
3771 			}
3772 			__qdisc_run(q);
3773 		}
3774 
3775 		qdisc_run_end(q);
3776 		rc = NET_XMIT_SUCCESS;
3777 	} else {
3778 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3779 		if (qdisc_run_begin(q)) {
3780 			if (unlikely(contended)) {
3781 				spin_unlock(&q->busylock);
3782 				contended = false;
3783 			}
3784 			__qdisc_run(q);
3785 			qdisc_run_end(q);
3786 		}
3787 	}
3788 	spin_unlock(root_lock);
3789 	if (unlikely(to_free))
3790 		kfree_skb_list(to_free);
3791 	if (unlikely(contended))
3792 		spin_unlock(&q->busylock);
3793 	return rc;
3794 }
3795 
3796 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3797 static void skb_update_prio(struct sk_buff *skb)
3798 {
3799 	const struct netprio_map *map;
3800 	const struct sock *sk;
3801 	unsigned int prioidx;
3802 
3803 	if (skb->priority)
3804 		return;
3805 	map = rcu_dereference_bh(skb->dev->priomap);
3806 	if (!map)
3807 		return;
3808 	sk = skb_to_full_sk(skb);
3809 	if (!sk)
3810 		return;
3811 
3812 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3813 
3814 	if (prioidx < map->priomap_len)
3815 		skb->priority = map->priomap[prioidx];
3816 }
3817 #else
3818 #define skb_update_prio(skb)
3819 #endif
3820 
3821 /**
3822  *	dev_loopback_xmit - loop back @skb
3823  *	@net: network namespace this loopback is happening in
3824  *	@sk:  sk needed to be a netfilter okfn
3825  *	@skb: buffer to transmit
3826  */
3827 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3828 {
3829 	skb_reset_mac_header(skb);
3830 	__skb_pull(skb, skb_network_offset(skb));
3831 	skb->pkt_type = PACKET_LOOPBACK;
3832 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3833 	WARN_ON(!skb_dst(skb));
3834 	skb_dst_force(skb);
3835 	netif_rx_ni(skb);
3836 	return 0;
3837 }
3838 EXPORT_SYMBOL(dev_loopback_xmit);
3839 
3840 #ifdef CONFIG_NET_EGRESS
3841 static struct sk_buff *
3842 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3843 {
3844 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3845 	struct tcf_result cl_res;
3846 
3847 	if (!miniq)
3848 		return skb;
3849 
3850 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3851 	mini_qdisc_bstats_cpu_update(miniq, skb);
3852 
3853 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3854 	case TC_ACT_OK:
3855 	case TC_ACT_RECLASSIFY:
3856 		skb->tc_index = TC_H_MIN(cl_res.classid);
3857 		break;
3858 	case TC_ACT_SHOT:
3859 		mini_qdisc_qstats_cpu_drop(miniq);
3860 		*ret = NET_XMIT_DROP;
3861 		kfree_skb(skb);
3862 		return NULL;
3863 	case TC_ACT_STOLEN:
3864 	case TC_ACT_QUEUED:
3865 	case TC_ACT_TRAP:
3866 		*ret = NET_XMIT_SUCCESS;
3867 		consume_skb(skb);
3868 		return NULL;
3869 	case TC_ACT_REDIRECT:
3870 		/* No need to push/pop skb's mac_header here on egress! */
3871 		skb_do_redirect(skb);
3872 		*ret = NET_XMIT_SUCCESS;
3873 		return NULL;
3874 	default:
3875 		break;
3876 	}
3877 
3878 	return skb;
3879 }
3880 #endif /* CONFIG_NET_EGRESS */
3881 
3882 #ifdef CONFIG_XPS
3883 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3884 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3885 {
3886 	struct xps_map *map;
3887 	int queue_index = -1;
3888 
3889 	if (dev->num_tc) {
3890 		tci *= dev->num_tc;
3891 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3892 	}
3893 
3894 	map = rcu_dereference(dev_maps->attr_map[tci]);
3895 	if (map) {
3896 		if (map->len == 1)
3897 			queue_index = map->queues[0];
3898 		else
3899 			queue_index = map->queues[reciprocal_scale(
3900 						skb_get_hash(skb), map->len)];
3901 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3902 			queue_index = -1;
3903 	}
3904 	return queue_index;
3905 }
3906 #endif
3907 
3908 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3909 			 struct sk_buff *skb)
3910 {
3911 #ifdef CONFIG_XPS
3912 	struct xps_dev_maps *dev_maps;
3913 	struct sock *sk = skb->sk;
3914 	int queue_index = -1;
3915 
3916 	if (!static_key_false(&xps_needed))
3917 		return -1;
3918 
3919 	rcu_read_lock();
3920 	if (!static_key_false(&xps_rxqs_needed))
3921 		goto get_cpus_map;
3922 
3923 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3924 	if (dev_maps) {
3925 		int tci = sk_rx_queue_get(sk);
3926 
3927 		if (tci >= 0 && tci < dev->num_rx_queues)
3928 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3929 							  tci);
3930 	}
3931 
3932 get_cpus_map:
3933 	if (queue_index < 0) {
3934 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3935 		if (dev_maps) {
3936 			unsigned int tci = skb->sender_cpu - 1;
3937 
3938 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3939 							  tci);
3940 		}
3941 	}
3942 	rcu_read_unlock();
3943 
3944 	return queue_index;
3945 #else
3946 	return -1;
3947 #endif
3948 }
3949 
3950 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3951 		     struct net_device *sb_dev)
3952 {
3953 	return 0;
3954 }
3955 EXPORT_SYMBOL(dev_pick_tx_zero);
3956 
3957 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3958 		       struct net_device *sb_dev)
3959 {
3960 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3961 }
3962 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3963 
3964 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3965 		     struct net_device *sb_dev)
3966 {
3967 	struct sock *sk = skb->sk;
3968 	int queue_index = sk_tx_queue_get(sk);
3969 
3970 	sb_dev = sb_dev ? : dev;
3971 
3972 	if (queue_index < 0 || skb->ooo_okay ||
3973 	    queue_index >= dev->real_num_tx_queues) {
3974 		int new_index = get_xps_queue(dev, sb_dev, skb);
3975 
3976 		if (new_index < 0)
3977 			new_index = skb_tx_hash(dev, sb_dev, skb);
3978 
3979 		if (queue_index != new_index && sk &&
3980 		    sk_fullsock(sk) &&
3981 		    rcu_access_pointer(sk->sk_dst_cache))
3982 			sk_tx_queue_set(sk, new_index);
3983 
3984 		queue_index = new_index;
3985 	}
3986 
3987 	return queue_index;
3988 }
3989 EXPORT_SYMBOL(netdev_pick_tx);
3990 
3991 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3992 					 struct sk_buff *skb,
3993 					 struct net_device *sb_dev)
3994 {
3995 	int queue_index = 0;
3996 
3997 #ifdef CONFIG_XPS
3998 	u32 sender_cpu = skb->sender_cpu - 1;
3999 
4000 	if (sender_cpu >= (u32)NR_CPUS)
4001 		skb->sender_cpu = raw_smp_processor_id() + 1;
4002 #endif
4003 
4004 	if (dev->real_num_tx_queues != 1) {
4005 		const struct net_device_ops *ops = dev->netdev_ops;
4006 
4007 		if (ops->ndo_select_queue)
4008 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4009 		else
4010 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4011 
4012 		queue_index = netdev_cap_txqueue(dev, queue_index);
4013 	}
4014 
4015 	skb_set_queue_mapping(skb, queue_index);
4016 	return netdev_get_tx_queue(dev, queue_index);
4017 }
4018 
4019 /**
4020  *	__dev_queue_xmit - transmit a buffer
4021  *	@skb: buffer to transmit
4022  *	@sb_dev: suboordinate device used for L2 forwarding offload
4023  *
4024  *	Queue a buffer for transmission to a network device. The caller must
4025  *	have set the device and priority and built the buffer before calling
4026  *	this function. The function can be called from an interrupt.
4027  *
4028  *	A negative errno code is returned on a failure. A success does not
4029  *	guarantee the frame will be transmitted as it may be dropped due
4030  *	to congestion or traffic shaping.
4031  *
4032  * -----------------------------------------------------------------------------------
4033  *      I notice this method can also return errors from the queue disciplines,
4034  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4035  *      be positive.
4036  *
4037  *      Regardless of the return value, the skb is consumed, so it is currently
4038  *      difficult to retry a send to this method.  (You can bump the ref count
4039  *      before sending to hold a reference for retry if you are careful.)
4040  *
4041  *      When calling this method, interrupts MUST be enabled.  This is because
4042  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4043  *          --BLG
4044  */
4045 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4046 {
4047 	struct net_device *dev = skb->dev;
4048 	struct netdev_queue *txq;
4049 	struct Qdisc *q;
4050 	int rc = -ENOMEM;
4051 	bool again = false;
4052 
4053 	skb_reset_mac_header(skb);
4054 
4055 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4056 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4057 
4058 	/* Disable soft irqs for various locks below. Also
4059 	 * stops preemption for RCU.
4060 	 */
4061 	rcu_read_lock_bh();
4062 
4063 	skb_update_prio(skb);
4064 
4065 	qdisc_pkt_len_init(skb);
4066 #ifdef CONFIG_NET_CLS_ACT
4067 	skb->tc_at_ingress = 0;
4068 # ifdef CONFIG_NET_EGRESS
4069 	if (static_branch_unlikely(&egress_needed_key)) {
4070 		skb = sch_handle_egress(skb, &rc, dev);
4071 		if (!skb)
4072 			goto out;
4073 	}
4074 # endif
4075 #endif
4076 	/* If device/qdisc don't need skb->dst, release it right now while
4077 	 * its hot in this cpu cache.
4078 	 */
4079 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4080 		skb_dst_drop(skb);
4081 	else
4082 		skb_dst_force(skb);
4083 
4084 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4085 	q = rcu_dereference_bh(txq->qdisc);
4086 
4087 	trace_net_dev_queue(skb);
4088 	if (q->enqueue) {
4089 		rc = __dev_xmit_skb(skb, q, dev, txq);
4090 		goto out;
4091 	}
4092 
4093 	/* The device has no queue. Common case for software devices:
4094 	 * loopback, all the sorts of tunnels...
4095 
4096 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4097 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4098 	 * counters.)
4099 	 * However, it is possible, that they rely on protection
4100 	 * made by us here.
4101 
4102 	 * Check this and shot the lock. It is not prone from deadlocks.
4103 	 *Either shot noqueue qdisc, it is even simpler 8)
4104 	 */
4105 	if (dev->flags & IFF_UP) {
4106 		int cpu = smp_processor_id(); /* ok because BHs are off */
4107 
4108 		if (txq->xmit_lock_owner != cpu) {
4109 			if (dev_xmit_recursion())
4110 				goto recursion_alert;
4111 
4112 			skb = validate_xmit_skb(skb, dev, &again);
4113 			if (!skb)
4114 				goto out;
4115 
4116 			HARD_TX_LOCK(dev, txq, cpu);
4117 
4118 			if (!netif_xmit_stopped(txq)) {
4119 				dev_xmit_recursion_inc();
4120 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4121 				dev_xmit_recursion_dec();
4122 				if (dev_xmit_complete(rc)) {
4123 					HARD_TX_UNLOCK(dev, txq);
4124 					goto out;
4125 				}
4126 			}
4127 			HARD_TX_UNLOCK(dev, txq);
4128 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4129 					     dev->name);
4130 		} else {
4131 			/* Recursion is detected! It is possible,
4132 			 * unfortunately
4133 			 */
4134 recursion_alert:
4135 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4136 					     dev->name);
4137 		}
4138 	}
4139 
4140 	rc = -ENETDOWN;
4141 	rcu_read_unlock_bh();
4142 
4143 	atomic_long_inc(&dev->tx_dropped);
4144 	kfree_skb_list(skb);
4145 	return rc;
4146 out:
4147 	rcu_read_unlock_bh();
4148 	return rc;
4149 }
4150 
4151 int dev_queue_xmit(struct sk_buff *skb)
4152 {
4153 	return __dev_queue_xmit(skb, NULL);
4154 }
4155 EXPORT_SYMBOL(dev_queue_xmit);
4156 
4157 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4158 {
4159 	return __dev_queue_xmit(skb, sb_dev);
4160 }
4161 EXPORT_SYMBOL(dev_queue_xmit_accel);
4162 
4163 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4164 {
4165 	struct net_device *dev = skb->dev;
4166 	struct sk_buff *orig_skb = skb;
4167 	struct netdev_queue *txq;
4168 	int ret = NETDEV_TX_BUSY;
4169 	bool again = false;
4170 
4171 	if (unlikely(!netif_running(dev) ||
4172 		     !netif_carrier_ok(dev)))
4173 		goto drop;
4174 
4175 	skb = validate_xmit_skb_list(skb, dev, &again);
4176 	if (skb != orig_skb)
4177 		goto drop;
4178 
4179 	skb_set_queue_mapping(skb, queue_id);
4180 	txq = skb_get_tx_queue(dev, skb);
4181 
4182 	local_bh_disable();
4183 
4184 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4185 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4186 		ret = netdev_start_xmit(skb, dev, txq, false);
4187 	HARD_TX_UNLOCK(dev, txq);
4188 
4189 	local_bh_enable();
4190 
4191 	if (!dev_xmit_complete(ret))
4192 		kfree_skb(skb);
4193 
4194 	return ret;
4195 drop:
4196 	atomic_long_inc(&dev->tx_dropped);
4197 	kfree_skb_list(skb);
4198 	return NET_XMIT_DROP;
4199 }
4200 EXPORT_SYMBOL(dev_direct_xmit);
4201 
4202 /*************************************************************************
4203  *			Receiver routines
4204  *************************************************************************/
4205 
4206 int netdev_max_backlog __read_mostly = 1000;
4207 EXPORT_SYMBOL(netdev_max_backlog);
4208 
4209 int netdev_tstamp_prequeue __read_mostly = 1;
4210 int netdev_budget __read_mostly = 300;
4211 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4212 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4213 int weight_p __read_mostly = 64;           /* old backlog weight */
4214 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4215 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4216 int dev_rx_weight __read_mostly = 64;
4217 int dev_tx_weight __read_mostly = 64;
4218 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4219 int gro_normal_batch __read_mostly = 8;
4220 
4221 /* Called with irq disabled */
4222 static inline void ____napi_schedule(struct softnet_data *sd,
4223 				     struct napi_struct *napi)
4224 {
4225 	list_add_tail(&napi->poll_list, &sd->poll_list);
4226 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4227 }
4228 
4229 #ifdef CONFIG_RPS
4230 
4231 /* One global table that all flow-based protocols share. */
4232 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4233 EXPORT_SYMBOL(rps_sock_flow_table);
4234 u32 rps_cpu_mask __read_mostly;
4235 EXPORT_SYMBOL(rps_cpu_mask);
4236 
4237 struct static_key_false rps_needed __read_mostly;
4238 EXPORT_SYMBOL(rps_needed);
4239 struct static_key_false rfs_needed __read_mostly;
4240 EXPORT_SYMBOL(rfs_needed);
4241 
4242 static struct rps_dev_flow *
4243 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4244 	    struct rps_dev_flow *rflow, u16 next_cpu)
4245 {
4246 	if (next_cpu < nr_cpu_ids) {
4247 #ifdef CONFIG_RFS_ACCEL
4248 		struct netdev_rx_queue *rxqueue;
4249 		struct rps_dev_flow_table *flow_table;
4250 		struct rps_dev_flow *old_rflow;
4251 		u32 flow_id;
4252 		u16 rxq_index;
4253 		int rc;
4254 
4255 		/* Should we steer this flow to a different hardware queue? */
4256 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4257 		    !(dev->features & NETIF_F_NTUPLE))
4258 			goto out;
4259 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4260 		if (rxq_index == skb_get_rx_queue(skb))
4261 			goto out;
4262 
4263 		rxqueue = dev->_rx + rxq_index;
4264 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4265 		if (!flow_table)
4266 			goto out;
4267 		flow_id = skb_get_hash(skb) & flow_table->mask;
4268 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4269 							rxq_index, flow_id);
4270 		if (rc < 0)
4271 			goto out;
4272 		old_rflow = rflow;
4273 		rflow = &flow_table->flows[flow_id];
4274 		rflow->filter = rc;
4275 		if (old_rflow->filter == rflow->filter)
4276 			old_rflow->filter = RPS_NO_FILTER;
4277 	out:
4278 #endif
4279 		rflow->last_qtail =
4280 			per_cpu(softnet_data, next_cpu).input_queue_head;
4281 	}
4282 
4283 	rflow->cpu = next_cpu;
4284 	return rflow;
4285 }
4286 
4287 /*
4288  * get_rps_cpu is called from netif_receive_skb and returns the target
4289  * CPU from the RPS map of the receiving queue for a given skb.
4290  * rcu_read_lock must be held on entry.
4291  */
4292 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4293 		       struct rps_dev_flow **rflowp)
4294 {
4295 	const struct rps_sock_flow_table *sock_flow_table;
4296 	struct netdev_rx_queue *rxqueue = dev->_rx;
4297 	struct rps_dev_flow_table *flow_table;
4298 	struct rps_map *map;
4299 	int cpu = -1;
4300 	u32 tcpu;
4301 	u32 hash;
4302 
4303 	if (skb_rx_queue_recorded(skb)) {
4304 		u16 index = skb_get_rx_queue(skb);
4305 
4306 		if (unlikely(index >= dev->real_num_rx_queues)) {
4307 			WARN_ONCE(dev->real_num_rx_queues > 1,
4308 				  "%s received packet on queue %u, but number "
4309 				  "of RX queues is %u\n",
4310 				  dev->name, index, dev->real_num_rx_queues);
4311 			goto done;
4312 		}
4313 		rxqueue += index;
4314 	}
4315 
4316 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4317 
4318 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4319 	map = rcu_dereference(rxqueue->rps_map);
4320 	if (!flow_table && !map)
4321 		goto done;
4322 
4323 	skb_reset_network_header(skb);
4324 	hash = skb_get_hash(skb);
4325 	if (!hash)
4326 		goto done;
4327 
4328 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4329 	if (flow_table && sock_flow_table) {
4330 		struct rps_dev_flow *rflow;
4331 		u32 next_cpu;
4332 		u32 ident;
4333 
4334 		/* First check into global flow table if there is a match */
4335 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4336 		if ((ident ^ hash) & ~rps_cpu_mask)
4337 			goto try_rps;
4338 
4339 		next_cpu = ident & rps_cpu_mask;
4340 
4341 		/* OK, now we know there is a match,
4342 		 * we can look at the local (per receive queue) flow table
4343 		 */
4344 		rflow = &flow_table->flows[hash & flow_table->mask];
4345 		tcpu = rflow->cpu;
4346 
4347 		/*
4348 		 * If the desired CPU (where last recvmsg was done) is
4349 		 * different from current CPU (one in the rx-queue flow
4350 		 * table entry), switch if one of the following holds:
4351 		 *   - Current CPU is unset (>= nr_cpu_ids).
4352 		 *   - Current CPU is offline.
4353 		 *   - The current CPU's queue tail has advanced beyond the
4354 		 *     last packet that was enqueued using this table entry.
4355 		 *     This guarantees that all previous packets for the flow
4356 		 *     have been dequeued, thus preserving in order delivery.
4357 		 */
4358 		if (unlikely(tcpu != next_cpu) &&
4359 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4360 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4361 		      rflow->last_qtail)) >= 0)) {
4362 			tcpu = next_cpu;
4363 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4364 		}
4365 
4366 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4367 			*rflowp = rflow;
4368 			cpu = tcpu;
4369 			goto done;
4370 		}
4371 	}
4372 
4373 try_rps:
4374 
4375 	if (map) {
4376 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4377 		if (cpu_online(tcpu)) {
4378 			cpu = tcpu;
4379 			goto done;
4380 		}
4381 	}
4382 
4383 done:
4384 	return cpu;
4385 }
4386 
4387 #ifdef CONFIG_RFS_ACCEL
4388 
4389 /**
4390  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4391  * @dev: Device on which the filter was set
4392  * @rxq_index: RX queue index
4393  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4394  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4395  *
4396  * Drivers that implement ndo_rx_flow_steer() should periodically call
4397  * this function for each installed filter and remove the filters for
4398  * which it returns %true.
4399  */
4400 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4401 			 u32 flow_id, u16 filter_id)
4402 {
4403 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4404 	struct rps_dev_flow_table *flow_table;
4405 	struct rps_dev_flow *rflow;
4406 	bool expire = true;
4407 	unsigned int cpu;
4408 
4409 	rcu_read_lock();
4410 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4411 	if (flow_table && flow_id <= flow_table->mask) {
4412 		rflow = &flow_table->flows[flow_id];
4413 		cpu = READ_ONCE(rflow->cpu);
4414 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4415 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4416 			   rflow->last_qtail) <
4417 		     (int)(10 * flow_table->mask)))
4418 			expire = false;
4419 	}
4420 	rcu_read_unlock();
4421 	return expire;
4422 }
4423 EXPORT_SYMBOL(rps_may_expire_flow);
4424 
4425 #endif /* CONFIG_RFS_ACCEL */
4426 
4427 /* Called from hardirq (IPI) context */
4428 static void rps_trigger_softirq(void *data)
4429 {
4430 	struct softnet_data *sd = data;
4431 
4432 	____napi_schedule(sd, &sd->backlog);
4433 	sd->received_rps++;
4434 }
4435 
4436 #endif /* CONFIG_RPS */
4437 
4438 /*
4439  * Check if this softnet_data structure is another cpu one
4440  * If yes, queue it to our IPI list and return 1
4441  * If no, return 0
4442  */
4443 static int rps_ipi_queued(struct softnet_data *sd)
4444 {
4445 #ifdef CONFIG_RPS
4446 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4447 
4448 	if (sd != mysd) {
4449 		sd->rps_ipi_next = mysd->rps_ipi_list;
4450 		mysd->rps_ipi_list = sd;
4451 
4452 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4453 		return 1;
4454 	}
4455 #endif /* CONFIG_RPS */
4456 	return 0;
4457 }
4458 
4459 #ifdef CONFIG_NET_FLOW_LIMIT
4460 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4461 #endif
4462 
4463 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4464 {
4465 #ifdef CONFIG_NET_FLOW_LIMIT
4466 	struct sd_flow_limit *fl;
4467 	struct softnet_data *sd;
4468 	unsigned int old_flow, new_flow;
4469 
4470 	if (qlen < (netdev_max_backlog >> 1))
4471 		return false;
4472 
4473 	sd = this_cpu_ptr(&softnet_data);
4474 
4475 	rcu_read_lock();
4476 	fl = rcu_dereference(sd->flow_limit);
4477 	if (fl) {
4478 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4479 		old_flow = fl->history[fl->history_head];
4480 		fl->history[fl->history_head] = new_flow;
4481 
4482 		fl->history_head++;
4483 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4484 
4485 		if (likely(fl->buckets[old_flow]))
4486 			fl->buckets[old_flow]--;
4487 
4488 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4489 			fl->count++;
4490 			rcu_read_unlock();
4491 			return true;
4492 		}
4493 	}
4494 	rcu_read_unlock();
4495 #endif
4496 	return false;
4497 }
4498 
4499 /*
4500  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4501  * queue (may be a remote CPU queue).
4502  */
4503 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4504 			      unsigned int *qtail)
4505 {
4506 	struct softnet_data *sd;
4507 	unsigned long flags;
4508 	unsigned int qlen;
4509 
4510 	sd = &per_cpu(softnet_data, cpu);
4511 
4512 	local_irq_save(flags);
4513 
4514 	rps_lock(sd);
4515 	if (!netif_running(skb->dev))
4516 		goto drop;
4517 	qlen = skb_queue_len(&sd->input_pkt_queue);
4518 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4519 		if (qlen) {
4520 enqueue:
4521 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4522 			input_queue_tail_incr_save(sd, qtail);
4523 			rps_unlock(sd);
4524 			local_irq_restore(flags);
4525 			return NET_RX_SUCCESS;
4526 		}
4527 
4528 		/* Schedule NAPI for backlog device
4529 		 * We can use non atomic operation since we own the queue lock
4530 		 */
4531 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4532 			if (!rps_ipi_queued(sd))
4533 				____napi_schedule(sd, &sd->backlog);
4534 		}
4535 		goto enqueue;
4536 	}
4537 
4538 drop:
4539 	sd->dropped++;
4540 	rps_unlock(sd);
4541 
4542 	local_irq_restore(flags);
4543 
4544 	atomic_long_inc(&skb->dev->rx_dropped);
4545 	kfree_skb(skb);
4546 	return NET_RX_DROP;
4547 }
4548 
4549 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4550 {
4551 	struct net_device *dev = skb->dev;
4552 	struct netdev_rx_queue *rxqueue;
4553 
4554 	rxqueue = dev->_rx;
4555 
4556 	if (skb_rx_queue_recorded(skb)) {
4557 		u16 index = skb_get_rx_queue(skb);
4558 
4559 		if (unlikely(index >= dev->real_num_rx_queues)) {
4560 			WARN_ONCE(dev->real_num_rx_queues > 1,
4561 				  "%s received packet on queue %u, but number "
4562 				  "of RX queues is %u\n",
4563 				  dev->name, index, dev->real_num_rx_queues);
4564 
4565 			return rxqueue; /* Return first rxqueue */
4566 		}
4567 		rxqueue += index;
4568 	}
4569 	return rxqueue;
4570 }
4571 
4572 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4573 				     struct xdp_buff *xdp,
4574 				     struct bpf_prog *xdp_prog)
4575 {
4576 	struct netdev_rx_queue *rxqueue;
4577 	void *orig_data, *orig_data_end;
4578 	u32 metalen, act = XDP_DROP;
4579 	__be16 orig_eth_type;
4580 	struct ethhdr *eth;
4581 	bool orig_bcast;
4582 	int hlen, off;
4583 	u32 mac_len;
4584 
4585 	/* Reinjected packets coming from act_mirred or similar should
4586 	 * not get XDP generic processing.
4587 	 */
4588 	if (skb_is_redirected(skb))
4589 		return XDP_PASS;
4590 
4591 	/* XDP packets must be linear and must have sufficient headroom
4592 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4593 	 * native XDP provides, thus we need to do it here as well.
4594 	 */
4595 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4596 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4597 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4598 		int troom = skb->tail + skb->data_len - skb->end;
4599 
4600 		/* In case we have to go down the path and also linearize,
4601 		 * then lets do the pskb_expand_head() work just once here.
4602 		 */
4603 		if (pskb_expand_head(skb,
4604 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4605 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4606 			goto do_drop;
4607 		if (skb_linearize(skb))
4608 			goto do_drop;
4609 	}
4610 
4611 	/* The XDP program wants to see the packet starting at the MAC
4612 	 * header.
4613 	 */
4614 	mac_len = skb->data - skb_mac_header(skb);
4615 	hlen = skb_headlen(skb) + mac_len;
4616 	xdp->data = skb->data - mac_len;
4617 	xdp->data_meta = xdp->data;
4618 	xdp->data_end = xdp->data + hlen;
4619 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4620 
4621 	/* SKB "head" area always have tailroom for skb_shared_info */
4622 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4623 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4624 
4625 	orig_data_end = xdp->data_end;
4626 	orig_data = xdp->data;
4627 	eth = (struct ethhdr *)xdp->data;
4628 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4629 	orig_eth_type = eth->h_proto;
4630 
4631 	rxqueue = netif_get_rxqueue(skb);
4632 	xdp->rxq = &rxqueue->xdp_rxq;
4633 
4634 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4635 
4636 	/* check if bpf_xdp_adjust_head was used */
4637 	off = xdp->data - orig_data;
4638 	if (off) {
4639 		if (off > 0)
4640 			__skb_pull(skb, off);
4641 		else if (off < 0)
4642 			__skb_push(skb, -off);
4643 
4644 		skb->mac_header += off;
4645 		skb_reset_network_header(skb);
4646 	}
4647 
4648 	/* check if bpf_xdp_adjust_tail was used */
4649 	off = xdp->data_end - orig_data_end;
4650 	if (off != 0) {
4651 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4652 		skb->len += off; /* positive on grow, negative on shrink */
4653 	}
4654 
4655 	/* check if XDP changed eth hdr such SKB needs update */
4656 	eth = (struct ethhdr *)xdp->data;
4657 	if ((orig_eth_type != eth->h_proto) ||
4658 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4659 		__skb_push(skb, ETH_HLEN);
4660 		skb->protocol = eth_type_trans(skb, skb->dev);
4661 	}
4662 
4663 	switch (act) {
4664 	case XDP_REDIRECT:
4665 	case XDP_TX:
4666 		__skb_push(skb, mac_len);
4667 		break;
4668 	case XDP_PASS:
4669 		metalen = xdp->data - xdp->data_meta;
4670 		if (metalen)
4671 			skb_metadata_set(skb, metalen);
4672 		break;
4673 	default:
4674 		bpf_warn_invalid_xdp_action(act);
4675 		/* fall through */
4676 	case XDP_ABORTED:
4677 		trace_xdp_exception(skb->dev, xdp_prog, act);
4678 		/* fall through */
4679 	case XDP_DROP:
4680 	do_drop:
4681 		kfree_skb(skb);
4682 		break;
4683 	}
4684 
4685 	return act;
4686 }
4687 
4688 /* When doing generic XDP we have to bypass the qdisc layer and the
4689  * network taps in order to match in-driver-XDP behavior.
4690  */
4691 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4692 {
4693 	struct net_device *dev = skb->dev;
4694 	struct netdev_queue *txq;
4695 	bool free_skb = true;
4696 	int cpu, rc;
4697 
4698 	txq = netdev_core_pick_tx(dev, skb, NULL);
4699 	cpu = smp_processor_id();
4700 	HARD_TX_LOCK(dev, txq, cpu);
4701 	if (!netif_xmit_stopped(txq)) {
4702 		rc = netdev_start_xmit(skb, dev, txq, 0);
4703 		if (dev_xmit_complete(rc))
4704 			free_skb = false;
4705 	}
4706 	HARD_TX_UNLOCK(dev, txq);
4707 	if (free_skb) {
4708 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4709 		kfree_skb(skb);
4710 	}
4711 }
4712 
4713 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4714 
4715 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4716 {
4717 	if (xdp_prog) {
4718 		struct xdp_buff xdp;
4719 		u32 act;
4720 		int err;
4721 
4722 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4723 		if (act != XDP_PASS) {
4724 			switch (act) {
4725 			case XDP_REDIRECT:
4726 				err = xdp_do_generic_redirect(skb->dev, skb,
4727 							      &xdp, xdp_prog);
4728 				if (err)
4729 					goto out_redir;
4730 				break;
4731 			case XDP_TX:
4732 				generic_xdp_tx(skb, xdp_prog);
4733 				break;
4734 			}
4735 			return XDP_DROP;
4736 		}
4737 	}
4738 	return XDP_PASS;
4739 out_redir:
4740 	kfree_skb(skb);
4741 	return XDP_DROP;
4742 }
4743 EXPORT_SYMBOL_GPL(do_xdp_generic);
4744 
4745 static int netif_rx_internal(struct sk_buff *skb)
4746 {
4747 	int ret;
4748 
4749 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4750 
4751 	trace_netif_rx(skb);
4752 
4753 #ifdef CONFIG_RPS
4754 	if (static_branch_unlikely(&rps_needed)) {
4755 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4756 		int cpu;
4757 
4758 		preempt_disable();
4759 		rcu_read_lock();
4760 
4761 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4762 		if (cpu < 0)
4763 			cpu = smp_processor_id();
4764 
4765 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4766 
4767 		rcu_read_unlock();
4768 		preempt_enable();
4769 	} else
4770 #endif
4771 	{
4772 		unsigned int qtail;
4773 
4774 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4775 		put_cpu();
4776 	}
4777 	return ret;
4778 }
4779 
4780 /**
4781  *	netif_rx	-	post buffer to the network code
4782  *	@skb: buffer to post
4783  *
4784  *	This function receives a packet from a device driver and queues it for
4785  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4786  *	may be dropped during processing for congestion control or by the
4787  *	protocol layers.
4788  *
4789  *	return values:
4790  *	NET_RX_SUCCESS	(no congestion)
4791  *	NET_RX_DROP     (packet was dropped)
4792  *
4793  */
4794 
4795 int netif_rx(struct sk_buff *skb)
4796 {
4797 	int ret;
4798 
4799 	trace_netif_rx_entry(skb);
4800 
4801 	ret = netif_rx_internal(skb);
4802 	trace_netif_rx_exit(ret);
4803 
4804 	return ret;
4805 }
4806 EXPORT_SYMBOL(netif_rx);
4807 
4808 int netif_rx_ni(struct sk_buff *skb)
4809 {
4810 	int err;
4811 
4812 	trace_netif_rx_ni_entry(skb);
4813 
4814 	preempt_disable();
4815 	err = netif_rx_internal(skb);
4816 	if (local_softirq_pending())
4817 		do_softirq();
4818 	preempt_enable();
4819 	trace_netif_rx_ni_exit(err);
4820 
4821 	return err;
4822 }
4823 EXPORT_SYMBOL(netif_rx_ni);
4824 
4825 static __latent_entropy void net_tx_action(struct softirq_action *h)
4826 {
4827 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4828 
4829 	if (sd->completion_queue) {
4830 		struct sk_buff *clist;
4831 
4832 		local_irq_disable();
4833 		clist = sd->completion_queue;
4834 		sd->completion_queue = NULL;
4835 		local_irq_enable();
4836 
4837 		while (clist) {
4838 			struct sk_buff *skb = clist;
4839 
4840 			clist = clist->next;
4841 
4842 			WARN_ON(refcount_read(&skb->users));
4843 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4844 				trace_consume_skb(skb);
4845 			else
4846 				trace_kfree_skb(skb, net_tx_action);
4847 
4848 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4849 				__kfree_skb(skb);
4850 			else
4851 				__kfree_skb_defer(skb);
4852 		}
4853 
4854 		__kfree_skb_flush();
4855 	}
4856 
4857 	if (sd->output_queue) {
4858 		struct Qdisc *head;
4859 
4860 		local_irq_disable();
4861 		head = sd->output_queue;
4862 		sd->output_queue = NULL;
4863 		sd->output_queue_tailp = &sd->output_queue;
4864 		local_irq_enable();
4865 
4866 		while (head) {
4867 			struct Qdisc *q = head;
4868 			spinlock_t *root_lock = NULL;
4869 
4870 			head = head->next_sched;
4871 
4872 			if (!(q->flags & TCQ_F_NOLOCK)) {
4873 				root_lock = qdisc_lock(q);
4874 				spin_lock(root_lock);
4875 			}
4876 			/* We need to make sure head->next_sched is read
4877 			 * before clearing __QDISC_STATE_SCHED
4878 			 */
4879 			smp_mb__before_atomic();
4880 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4881 			qdisc_run(q);
4882 			if (root_lock)
4883 				spin_unlock(root_lock);
4884 		}
4885 	}
4886 
4887 	xfrm_dev_backlog(sd);
4888 }
4889 
4890 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4891 /* This hook is defined here for ATM LANE */
4892 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4893 			     unsigned char *addr) __read_mostly;
4894 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4895 #endif
4896 
4897 static inline struct sk_buff *
4898 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4899 		   struct net_device *orig_dev)
4900 {
4901 #ifdef CONFIG_NET_CLS_ACT
4902 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4903 	struct tcf_result cl_res;
4904 
4905 	/* If there's at least one ingress present somewhere (so
4906 	 * we get here via enabled static key), remaining devices
4907 	 * that are not configured with an ingress qdisc will bail
4908 	 * out here.
4909 	 */
4910 	if (!miniq)
4911 		return skb;
4912 
4913 	if (*pt_prev) {
4914 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4915 		*pt_prev = NULL;
4916 	}
4917 
4918 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4919 	skb->tc_at_ingress = 1;
4920 	mini_qdisc_bstats_cpu_update(miniq, skb);
4921 
4922 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4923 				     &cl_res, false)) {
4924 	case TC_ACT_OK:
4925 	case TC_ACT_RECLASSIFY:
4926 		skb->tc_index = TC_H_MIN(cl_res.classid);
4927 		break;
4928 	case TC_ACT_SHOT:
4929 		mini_qdisc_qstats_cpu_drop(miniq);
4930 		kfree_skb(skb);
4931 		return NULL;
4932 	case TC_ACT_STOLEN:
4933 	case TC_ACT_QUEUED:
4934 	case TC_ACT_TRAP:
4935 		consume_skb(skb);
4936 		return NULL;
4937 	case TC_ACT_REDIRECT:
4938 		/* skb_mac_header check was done by cls/act_bpf, so
4939 		 * we can safely push the L2 header back before
4940 		 * redirecting to another netdev
4941 		 */
4942 		__skb_push(skb, skb->mac_len);
4943 		skb_do_redirect(skb);
4944 		return NULL;
4945 	case TC_ACT_CONSUMED:
4946 		return NULL;
4947 	default:
4948 		break;
4949 	}
4950 #endif /* CONFIG_NET_CLS_ACT */
4951 	return skb;
4952 }
4953 
4954 /**
4955  *	netdev_is_rx_handler_busy - check if receive handler is registered
4956  *	@dev: device to check
4957  *
4958  *	Check if a receive handler is already registered for a given device.
4959  *	Return true if there one.
4960  *
4961  *	The caller must hold the rtnl_mutex.
4962  */
4963 bool netdev_is_rx_handler_busy(struct net_device *dev)
4964 {
4965 	ASSERT_RTNL();
4966 	return dev && rtnl_dereference(dev->rx_handler);
4967 }
4968 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4969 
4970 /**
4971  *	netdev_rx_handler_register - register receive handler
4972  *	@dev: device to register a handler for
4973  *	@rx_handler: receive handler to register
4974  *	@rx_handler_data: data pointer that is used by rx handler
4975  *
4976  *	Register a receive handler for a device. This handler will then be
4977  *	called from __netif_receive_skb. A negative errno code is returned
4978  *	on a failure.
4979  *
4980  *	The caller must hold the rtnl_mutex.
4981  *
4982  *	For a general description of rx_handler, see enum rx_handler_result.
4983  */
4984 int netdev_rx_handler_register(struct net_device *dev,
4985 			       rx_handler_func_t *rx_handler,
4986 			       void *rx_handler_data)
4987 {
4988 	if (netdev_is_rx_handler_busy(dev))
4989 		return -EBUSY;
4990 
4991 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4992 		return -EINVAL;
4993 
4994 	/* Note: rx_handler_data must be set before rx_handler */
4995 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4996 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4997 
4998 	return 0;
4999 }
5000 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5001 
5002 /**
5003  *	netdev_rx_handler_unregister - unregister receive handler
5004  *	@dev: device to unregister a handler from
5005  *
5006  *	Unregister a receive handler from a device.
5007  *
5008  *	The caller must hold the rtnl_mutex.
5009  */
5010 void netdev_rx_handler_unregister(struct net_device *dev)
5011 {
5012 
5013 	ASSERT_RTNL();
5014 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5015 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5016 	 * section has a guarantee to see a non NULL rx_handler_data
5017 	 * as well.
5018 	 */
5019 	synchronize_net();
5020 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5021 }
5022 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5023 
5024 /*
5025  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5026  * the special handling of PFMEMALLOC skbs.
5027  */
5028 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5029 {
5030 	switch (skb->protocol) {
5031 	case htons(ETH_P_ARP):
5032 	case htons(ETH_P_IP):
5033 	case htons(ETH_P_IPV6):
5034 	case htons(ETH_P_8021Q):
5035 	case htons(ETH_P_8021AD):
5036 		return true;
5037 	default:
5038 		return false;
5039 	}
5040 }
5041 
5042 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5043 			     int *ret, struct net_device *orig_dev)
5044 {
5045 	if (nf_hook_ingress_active(skb)) {
5046 		int ingress_retval;
5047 
5048 		if (*pt_prev) {
5049 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5050 			*pt_prev = NULL;
5051 		}
5052 
5053 		rcu_read_lock();
5054 		ingress_retval = nf_hook_ingress(skb);
5055 		rcu_read_unlock();
5056 		return ingress_retval;
5057 	}
5058 	return 0;
5059 }
5060 
5061 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
5062 				    struct packet_type **ppt_prev)
5063 {
5064 	struct packet_type *ptype, *pt_prev;
5065 	rx_handler_func_t *rx_handler;
5066 	struct net_device *orig_dev;
5067 	bool deliver_exact = false;
5068 	int ret = NET_RX_DROP;
5069 	__be16 type;
5070 
5071 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5072 
5073 	trace_netif_receive_skb(skb);
5074 
5075 	orig_dev = skb->dev;
5076 
5077 	skb_reset_network_header(skb);
5078 	if (!skb_transport_header_was_set(skb))
5079 		skb_reset_transport_header(skb);
5080 	skb_reset_mac_len(skb);
5081 
5082 	pt_prev = NULL;
5083 
5084 another_round:
5085 	skb->skb_iif = skb->dev->ifindex;
5086 
5087 	__this_cpu_inc(softnet_data.processed);
5088 
5089 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5090 		int ret2;
5091 
5092 		preempt_disable();
5093 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5094 		preempt_enable();
5095 
5096 		if (ret2 != XDP_PASS)
5097 			return NET_RX_DROP;
5098 		skb_reset_mac_len(skb);
5099 	}
5100 
5101 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5102 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5103 		skb = skb_vlan_untag(skb);
5104 		if (unlikely(!skb))
5105 			goto out;
5106 	}
5107 
5108 	if (skb_skip_tc_classify(skb))
5109 		goto skip_classify;
5110 
5111 	if (pfmemalloc)
5112 		goto skip_taps;
5113 
5114 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5115 		if (pt_prev)
5116 			ret = deliver_skb(skb, pt_prev, orig_dev);
5117 		pt_prev = ptype;
5118 	}
5119 
5120 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5121 		if (pt_prev)
5122 			ret = deliver_skb(skb, pt_prev, orig_dev);
5123 		pt_prev = ptype;
5124 	}
5125 
5126 skip_taps:
5127 #ifdef CONFIG_NET_INGRESS
5128 	if (static_branch_unlikely(&ingress_needed_key)) {
5129 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5130 		if (!skb)
5131 			goto out;
5132 
5133 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5134 			goto out;
5135 	}
5136 #endif
5137 	skb_reset_redirect(skb);
5138 skip_classify:
5139 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5140 		goto drop;
5141 
5142 	if (skb_vlan_tag_present(skb)) {
5143 		if (pt_prev) {
5144 			ret = deliver_skb(skb, pt_prev, orig_dev);
5145 			pt_prev = NULL;
5146 		}
5147 		if (vlan_do_receive(&skb))
5148 			goto another_round;
5149 		else if (unlikely(!skb))
5150 			goto out;
5151 	}
5152 
5153 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5154 	if (rx_handler) {
5155 		if (pt_prev) {
5156 			ret = deliver_skb(skb, pt_prev, orig_dev);
5157 			pt_prev = NULL;
5158 		}
5159 		switch (rx_handler(&skb)) {
5160 		case RX_HANDLER_CONSUMED:
5161 			ret = NET_RX_SUCCESS;
5162 			goto out;
5163 		case RX_HANDLER_ANOTHER:
5164 			goto another_round;
5165 		case RX_HANDLER_EXACT:
5166 			deliver_exact = true;
5167 		case RX_HANDLER_PASS:
5168 			break;
5169 		default:
5170 			BUG();
5171 		}
5172 	}
5173 
5174 	if (unlikely(skb_vlan_tag_present(skb))) {
5175 check_vlan_id:
5176 		if (skb_vlan_tag_get_id(skb)) {
5177 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5178 			 * find vlan device.
5179 			 */
5180 			skb->pkt_type = PACKET_OTHERHOST;
5181 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5182 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5183 			/* Outer header is 802.1P with vlan 0, inner header is
5184 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5185 			 * not find vlan dev for vlan id 0.
5186 			 */
5187 			__vlan_hwaccel_clear_tag(skb);
5188 			skb = skb_vlan_untag(skb);
5189 			if (unlikely(!skb))
5190 				goto out;
5191 			if (vlan_do_receive(&skb))
5192 				/* After stripping off 802.1P header with vlan 0
5193 				 * vlan dev is found for inner header.
5194 				 */
5195 				goto another_round;
5196 			else if (unlikely(!skb))
5197 				goto out;
5198 			else
5199 				/* We have stripped outer 802.1P vlan 0 header.
5200 				 * But could not find vlan dev.
5201 				 * check again for vlan id to set OTHERHOST.
5202 				 */
5203 				goto check_vlan_id;
5204 		}
5205 		/* Note: we might in the future use prio bits
5206 		 * and set skb->priority like in vlan_do_receive()
5207 		 * For the time being, just ignore Priority Code Point
5208 		 */
5209 		__vlan_hwaccel_clear_tag(skb);
5210 	}
5211 
5212 	type = skb->protocol;
5213 
5214 	/* deliver only exact match when indicated */
5215 	if (likely(!deliver_exact)) {
5216 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5217 				       &ptype_base[ntohs(type) &
5218 						   PTYPE_HASH_MASK]);
5219 	}
5220 
5221 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5222 			       &orig_dev->ptype_specific);
5223 
5224 	if (unlikely(skb->dev != orig_dev)) {
5225 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5226 				       &skb->dev->ptype_specific);
5227 	}
5228 
5229 	if (pt_prev) {
5230 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5231 			goto drop;
5232 		*ppt_prev = pt_prev;
5233 	} else {
5234 drop:
5235 		if (!deliver_exact)
5236 			atomic_long_inc(&skb->dev->rx_dropped);
5237 		else
5238 			atomic_long_inc(&skb->dev->rx_nohandler);
5239 		kfree_skb(skb);
5240 		/* Jamal, now you will not able to escape explaining
5241 		 * me how you were going to use this. :-)
5242 		 */
5243 		ret = NET_RX_DROP;
5244 	}
5245 
5246 out:
5247 	return ret;
5248 }
5249 
5250 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5251 {
5252 	struct net_device *orig_dev = skb->dev;
5253 	struct packet_type *pt_prev = NULL;
5254 	int ret;
5255 
5256 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5257 	if (pt_prev)
5258 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5259 					 skb->dev, pt_prev, orig_dev);
5260 	return ret;
5261 }
5262 
5263 /**
5264  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5265  *	@skb: buffer to process
5266  *
5267  *	More direct receive version of netif_receive_skb().  It should
5268  *	only be used by callers that have a need to skip RPS and Generic XDP.
5269  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5270  *
5271  *	This function may only be called from softirq context and interrupts
5272  *	should be enabled.
5273  *
5274  *	Return values (usually ignored):
5275  *	NET_RX_SUCCESS: no congestion
5276  *	NET_RX_DROP: packet was dropped
5277  */
5278 int netif_receive_skb_core(struct sk_buff *skb)
5279 {
5280 	int ret;
5281 
5282 	rcu_read_lock();
5283 	ret = __netif_receive_skb_one_core(skb, false);
5284 	rcu_read_unlock();
5285 
5286 	return ret;
5287 }
5288 EXPORT_SYMBOL(netif_receive_skb_core);
5289 
5290 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5291 						  struct packet_type *pt_prev,
5292 						  struct net_device *orig_dev)
5293 {
5294 	struct sk_buff *skb, *next;
5295 
5296 	if (!pt_prev)
5297 		return;
5298 	if (list_empty(head))
5299 		return;
5300 	if (pt_prev->list_func != NULL)
5301 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5302 				   ip_list_rcv, head, pt_prev, orig_dev);
5303 	else
5304 		list_for_each_entry_safe(skb, next, head, list) {
5305 			skb_list_del_init(skb);
5306 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5307 		}
5308 }
5309 
5310 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5311 {
5312 	/* Fast-path assumptions:
5313 	 * - There is no RX handler.
5314 	 * - Only one packet_type matches.
5315 	 * If either of these fails, we will end up doing some per-packet
5316 	 * processing in-line, then handling the 'last ptype' for the whole
5317 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5318 	 * because the 'last ptype' must be constant across the sublist, and all
5319 	 * other ptypes are handled per-packet.
5320 	 */
5321 	/* Current (common) ptype of sublist */
5322 	struct packet_type *pt_curr = NULL;
5323 	/* Current (common) orig_dev of sublist */
5324 	struct net_device *od_curr = NULL;
5325 	struct list_head sublist;
5326 	struct sk_buff *skb, *next;
5327 
5328 	INIT_LIST_HEAD(&sublist);
5329 	list_for_each_entry_safe(skb, next, head, list) {
5330 		struct net_device *orig_dev = skb->dev;
5331 		struct packet_type *pt_prev = NULL;
5332 
5333 		skb_list_del_init(skb);
5334 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5335 		if (!pt_prev)
5336 			continue;
5337 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5338 			/* dispatch old sublist */
5339 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5340 			/* start new sublist */
5341 			INIT_LIST_HEAD(&sublist);
5342 			pt_curr = pt_prev;
5343 			od_curr = orig_dev;
5344 		}
5345 		list_add_tail(&skb->list, &sublist);
5346 	}
5347 
5348 	/* dispatch final sublist */
5349 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5350 }
5351 
5352 static int __netif_receive_skb(struct sk_buff *skb)
5353 {
5354 	int ret;
5355 
5356 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5357 		unsigned int noreclaim_flag;
5358 
5359 		/*
5360 		 * PFMEMALLOC skbs are special, they should
5361 		 * - be delivered to SOCK_MEMALLOC sockets only
5362 		 * - stay away from userspace
5363 		 * - have bounded memory usage
5364 		 *
5365 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5366 		 * context down to all allocation sites.
5367 		 */
5368 		noreclaim_flag = memalloc_noreclaim_save();
5369 		ret = __netif_receive_skb_one_core(skb, true);
5370 		memalloc_noreclaim_restore(noreclaim_flag);
5371 	} else
5372 		ret = __netif_receive_skb_one_core(skb, false);
5373 
5374 	return ret;
5375 }
5376 
5377 static void __netif_receive_skb_list(struct list_head *head)
5378 {
5379 	unsigned long noreclaim_flag = 0;
5380 	struct sk_buff *skb, *next;
5381 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5382 
5383 	list_for_each_entry_safe(skb, next, head, list) {
5384 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5385 			struct list_head sublist;
5386 
5387 			/* Handle the previous sublist */
5388 			list_cut_before(&sublist, head, &skb->list);
5389 			if (!list_empty(&sublist))
5390 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5391 			pfmemalloc = !pfmemalloc;
5392 			/* See comments in __netif_receive_skb */
5393 			if (pfmemalloc)
5394 				noreclaim_flag = memalloc_noreclaim_save();
5395 			else
5396 				memalloc_noreclaim_restore(noreclaim_flag);
5397 		}
5398 	}
5399 	/* Handle the remaining sublist */
5400 	if (!list_empty(head))
5401 		__netif_receive_skb_list_core(head, pfmemalloc);
5402 	/* Restore pflags */
5403 	if (pfmemalloc)
5404 		memalloc_noreclaim_restore(noreclaim_flag);
5405 }
5406 
5407 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5408 {
5409 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5410 	struct bpf_prog *new = xdp->prog;
5411 	int ret = 0;
5412 
5413 	switch (xdp->command) {
5414 	case XDP_SETUP_PROG:
5415 		rcu_assign_pointer(dev->xdp_prog, new);
5416 		if (old)
5417 			bpf_prog_put(old);
5418 
5419 		if (old && !new) {
5420 			static_branch_dec(&generic_xdp_needed_key);
5421 		} else if (new && !old) {
5422 			static_branch_inc(&generic_xdp_needed_key);
5423 			dev_disable_lro(dev);
5424 			dev_disable_gro_hw(dev);
5425 		}
5426 		break;
5427 
5428 	case XDP_QUERY_PROG:
5429 		xdp->prog_id = old ? old->aux->id : 0;
5430 		break;
5431 
5432 	default:
5433 		ret = -EINVAL;
5434 		break;
5435 	}
5436 
5437 	return ret;
5438 }
5439 
5440 static int netif_receive_skb_internal(struct sk_buff *skb)
5441 {
5442 	int ret;
5443 
5444 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5445 
5446 	if (skb_defer_rx_timestamp(skb))
5447 		return NET_RX_SUCCESS;
5448 
5449 	rcu_read_lock();
5450 #ifdef CONFIG_RPS
5451 	if (static_branch_unlikely(&rps_needed)) {
5452 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5453 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5454 
5455 		if (cpu >= 0) {
5456 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5457 			rcu_read_unlock();
5458 			return ret;
5459 		}
5460 	}
5461 #endif
5462 	ret = __netif_receive_skb(skb);
5463 	rcu_read_unlock();
5464 	return ret;
5465 }
5466 
5467 static void netif_receive_skb_list_internal(struct list_head *head)
5468 {
5469 	struct sk_buff *skb, *next;
5470 	struct list_head sublist;
5471 
5472 	INIT_LIST_HEAD(&sublist);
5473 	list_for_each_entry_safe(skb, next, head, list) {
5474 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5475 		skb_list_del_init(skb);
5476 		if (!skb_defer_rx_timestamp(skb))
5477 			list_add_tail(&skb->list, &sublist);
5478 	}
5479 	list_splice_init(&sublist, head);
5480 
5481 	rcu_read_lock();
5482 #ifdef CONFIG_RPS
5483 	if (static_branch_unlikely(&rps_needed)) {
5484 		list_for_each_entry_safe(skb, next, head, list) {
5485 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5486 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5487 
5488 			if (cpu >= 0) {
5489 				/* Will be handled, remove from list */
5490 				skb_list_del_init(skb);
5491 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5492 			}
5493 		}
5494 	}
5495 #endif
5496 	__netif_receive_skb_list(head);
5497 	rcu_read_unlock();
5498 }
5499 
5500 /**
5501  *	netif_receive_skb - process receive buffer from network
5502  *	@skb: buffer to process
5503  *
5504  *	netif_receive_skb() is the main receive data processing function.
5505  *	It always succeeds. The buffer may be dropped during processing
5506  *	for congestion control or by the protocol layers.
5507  *
5508  *	This function may only be called from softirq context and interrupts
5509  *	should be enabled.
5510  *
5511  *	Return values (usually ignored):
5512  *	NET_RX_SUCCESS: no congestion
5513  *	NET_RX_DROP: packet was dropped
5514  */
5515 int netif_receive_skb(struct sk_buff *skb)
5516 {
5517 	int ret;
5518 
5519 	trace_netif_receive_skb_entry(skb);
5520 
5521 	ret = netif_receive_skb_internal(skb);
5522 	trace_netif_receive_skb_exit(ret);
5523 
5524 	return ret;
5525 }
5526 EXPORT_SYMBOL(netif_receive_skb);
5527 
5528 /**
5529  *	netif_receive_skb_list - process many receive buffers from network
5530  *	@head: list of skbs to process.
5531  *
5532  *	Since return value of netif_receive_skb() is normally ignored, and
5533  *	wouldn't be meaningful for a list, this function returns void.
5534  *
5535  *	This function may only be called from softirq context and interrupts
5536  *	should be enabled.
5537  */
5538 void netif_receive_skb_list(struct list_head *head)
5539 {
5540 	struct sk_buff *skb;
5541 
5542 	if (list_empty(head))
5543 		return;
5544 	if (trace_netif_receive_skb_list_entry_enabled()) {
5545 		list_for_each_entry(skb, head, list)
5546 			trace_netif_receive_skb_list_entry(skb);
5547 	}
5548 	netif_receive_skb_list_internal(head);
5549 	trace_netif_receive_skb_list_exit(0);
5550 }
5551 EXPORT_SYMBOL(netif_receive_skb_list);
5552 
5553 DEFINE_PER_CPU(struct work_struct, flush_works);
5554 
5555 /* Network device is going away, flush any packets still pending */
5556 static void flush_backlog(struct work_struct *work)
5557 {
5558 	struct sk_buff *skb, *tmp;
5559 	struct softnet_data *sd;
5560 
5561 	local_bh_disable();
5562 	sd = this_cpu_ptr(&softnet_data);
5563 
5564 	local_irq_disable();
5565 	rps_lock(sd);
5566 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5567 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5568 			__skb_unlink(skb, &sd->input_pkt_queue);
5569 			kfree_skb(skb);
5570 			input_queue_head_incr(sd);
5571 		}
5572 	}
5573 	rps_unlock(sd);
5574 	local_irq_enable();
5575 
5576 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5577 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5578 			__skb_unlink(skb, &sd->process_queue);
5579 			kfree_skb(skb);
5580 			input_queue_head_incr(sd);
5581 		}
5582 	}
5583 	local_bh_enable();
5584 }
5585 
5586 static void flush_all_backlogs(void)
5587 {
5588 	unsigned int cpu;
5589 
5590 	get_online_cpus();
5591 
5592 	for_each_online_cpu(cpu)
5593 		queue_work_on(cpu, system_highpri_wq,
5594 			      per_cpu_ptr(&flush_works, cpu));
5595 
5596 	for_each_online_cpu(cpu)
5597 		flush_work(per_cpu_ptr(&flush_works, cpu));
5598 
5599 	put_online_cpus();
5600 }
5601 
5602 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5603 static void gro_normal_list(struct napi_struct *napi)
5604 {
5605 	if (!napi->rx_count)
5606 		return;
5607 	netif_receive_skb_list_internal(&napi->rx_list);
5608 	INIT_LIST_HEAD(&napi->rx_list);
5609 	napi->rx_count = 0;
5610 }
5611 
5612 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5613  * pass the whole batch up to the stack.
5614  */
5615 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5616 {
5617 	list_add_tail(&skb->list, &napi->rx_list);
5618 	if (++napi->rx_count >= gro_normal_batch)
5619 		gro_normal_list(napi);
5620 }
5621 
5622 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5623 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5624 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5625 {
5626 	struct packet_offload *ptype;
5627 	__be16 type = skb->protocol;
5628 	struct list_head *head = &offload_base;
5629 	int err = -ENOENT;
5630 
5631 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5632 
5633 	if (NAPI_GRO_CB(skb)->count == 1) {
5634 		skb_shinfo(skb)->gso_size = 0;
5635 		goto out;
5636 	}
5637 
5638 	rcu_read_lock();
5639 	list_for_each_entry_rcu(ptype, head, list) {
5640 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5641 			continue;
5642 
5643 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5644 					 ipv6_gro_complete, inet_gro_complete,
5645 					 skb, 0);
5646 		break;
5647 	}
5648 	rcu_read_unlock();
5649 
5650 	if (err) {
5651 		WARN_ON(&ptype->list == head);
5652 		kfree_skb(skb);
5653 		return NET_RX_SUCCESS;
5654 	}
5655 
5656 out:
5657 	gro_normal_one(napi, skb);
5658 	return NET_RX_SUCCESS;
5659 }
5660 
5661 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5662 				   bool flush_old)
5663 {
5664 	struct list_head *head = &napi->gro_hash[index].list;
5665 	struct sk_buff *skb, *p;
5666 
5667 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5668 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5669 			return;
5670 		skb_list_del_init(skb);
5671 		napi_gro_complete(napi, skb);
5672 		napi->gro_hash[index].count--;
5673 	}
5674 
5675 	if (!napi->gro_hash[index].count)
5676 		__clear_bit(index, &napi->gro_bitmask);
5677 }
5678 
5679 /* napi->gro_hash[].list contains packets ordered by age.
5680  * youngest packets at the head of it.
5681  * Complete skbs in reverse order to reduce latencies.
5682  */
5683 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5684 {
5685 	unsigned long bitmask = napi->gro_bitmask;
5686 	unsigned int i, base = ~0U;
5687 
5688 	while ((i = ffs(bitmask)) != 0) {
5689 		bitmask >>= i;
5690 		base += i;
5691 		__napi_gro_flush_chain(napi, base, flush_old);
5692 	}
5693 }
5694 EXPORT_SYMBOL(napi_gro_flush);
5695 
5696 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5697 					  struct sk_buff *skb)
5698 {
5699 	unsigned int maclen = skb->dev->hard_header_len;
5700 	u32 hash = skb_get_hash_raw(skb);
5701 	struct list_head *head;
5702 	struct sk_buff *p;
5703 
5704 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5705 	list_for_each_entry(p, head, list) {
5706 		unsigned long diffs;
5707 
5708 		NAPI_GRO_CB(p)->flush = 0;
5709 
5710 		if (hash != skb_get_hash_raw(p)) {
5711 			NAPI_GRO_CB(p)->same_flow = 0;
5712 			continue;
5713 		}
5714 
5715 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5716 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5717 		if (skb_vlan_tag_present(p))
5718 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5719 		diffs |= skb_metadata_dst_cmp(p, skb);
5720 		diffs |= skb_metadata_differs(p, skb);
5721 		if (maclen == ETH_HLEN)
5722 			diffs |= compare_ether_header(skb_mac_header(p),
5723 						      skb_mac_header(skb));
5724 		else if (!diffs)
5725 			diffs = memcmp(skb_mac_header(p),
5726 				       skb_mac_header(skb),
5727 				       maclen);
5728 		NAPI_GRO_CB(p)->same_flow = !diffs;
5729 	}
5730 
5731 	return head;
5732 }
5733 
5734 static void skb_gro_reset_offset(struct sk_buff *skb)
5735 {
5736 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5737 	const skb_frag_t *frag0 = &pinfo->frags[0];
5738 
5739 	NAPI_GRO_CB(skb)->data_offset = 0;
5740 	NAPI_GRO_CB(skb)->frag0 = NULL;
5741 	NAPI_GRO_CB(skb)->frag0_len = 0;
5742 
5743 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5744 	    !PageHighMem(skb_frag_page(frag0))) {
5745 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5746 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5747 						    skb_frag_size(frag0),
5748 						    skb->end - skb->tail);
5749 	}
5750 }
5751 
5752 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5753 {
5754 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5755 
5756 	BUG_ON(skb->end - skb->tail < grow);
5757 
5758 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5759 
5760 	skb->data_len -= grow;
5761 	skb->tail += grow;
5762 
5763 	skb_frag_off_add(&pinfo->frags[0], grow);
5764 	skb_frag_size_sub(&pinfo->frags[0], grow);
5765 
5766 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5767 		skb_frag_unref(skb, 0);
5768 		memmove(pinfo->frags, pinfo->frags + 1,
5769 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5770 	}
5771 }
5772 
5773 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5774 {
5775 	struct sk_buff *oldest;
5776 
5777 	oldest = list_last_entry(head, struct sk_buff, list);
5778 
5779 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5780 	 * impossible.
5781 	 */
5782 	if (WARN_ON_ONCE(!oldest))
5783 		return;
5784 
5785 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5786 	 * SKB to the chain.
5787 	 */
5788 	skb_list_del_init(oldest);
5789 	napi_gro_complete(napi, oldest);
5790 }
5791 
5792 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5793 							   struct sk_buff *));
5794 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5795 							   struct sk_buff *));
5796 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5797 {
5798 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5799 	struct list_head *head = &offload_base;
5800 	struct packet_offload *ptype;
5801 	__be16 type = skb->protocol;
5802 	struct list_head *gro_head;
5803 	struct sk_buff *pp = NULL;
5804 	enum gro_result ret;
5805 	int same_flow;
5806 	int grow;
5807 
5808 	if (netif_elide_gro(skb->dev))
5809 		goto normal;
5810 
5811 	gro_head = gro_list_prepare(napi, skb);
5812 
5813 	rcu_read_lock();
5814 	list_for_each_entry_rcu(ptype, head, list) {
5815 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5816 			continue;
5817 
5818 		skb_set_network_header(skb, skb_gro_offset(skb));
5819 		skb_reset_mac_len(skb);
5820 		NAPI_GRO_CB(skb)->same_flow = 0;
5821 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5822 		NAPI_GRO_CB(skb)->free = 0;
5823 		NAPI_GRO_CB(skb)->encap_mark = 0;
5824 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5825 		NAPI_GRO_CB(skb)->is_fou = 0;
5826 		NAPI_GRO_CB(skb)->is_atomic = 1;
5827 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5828 
5829 		/* Setup for GRO checksum validation */
5830 		switch (skb->ip_summed) {
5831 		case CHECKSUM_COMPLETE:
5832 			NAPI_GRO_CB(skb)->csum = skb->csum;
5833 			NAPI_GRO_CB(skb)->csum_valid = 1;
5834 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5835 			break;
5836 		case CHECKSUM_UNNECESSARY:
5837 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5838 			NAPI_GRO_CB(skb)->csum_valid = 0;
5839 			break;
5840 		default:
5841 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5842 			NAPI_GRO_CB(skb)->csum_valid = 0;
5843 		}
5844 
5845 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5846 					ipv6_gro_receive, inet_gro_receive,
5847 					gro_head, skb);
5848 		break;
5849 	}
5850 	rcu_read_unlock();
5851 
5852 	if (&ptype->list == head)
5853 		goto normal;
5854 
5855 	if (PTR_ERR(pp) == -EINPROGRESS) {
5856 		ret = GRO_CONSUMED;
5857 		goto ok;
5858 	}
5859 
5860 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5861 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5862 
5863 	if (pp) {
5864 		skb_list_del_init(pp);
5865 		napi_gro_complete(napi, pp);
5866 		napi->gro_hash[hash].count--;
5867 	}
5868 
5869 	if (same_flow)
5870 		goto ok;
5871 
5872 	if (NAPI_GRO_CB(skb)->flush)
5873 		goto normal;
5874 
5875 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5876 		gro_flush_oldest(napi, gro_head);
5877 	} else {
5878 		napi->gro_hash[hash].count++;
5879 	}
5880 	NAPI_GRO_CB(skb)->count = 1;
5881 	NAPI_GRO_CB(skb)->age = jiffies;
5882 	NAPI_GRO_CB(skb)->last = skb;
5883 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5884 	list_add(&skb->list, gro_head);
5885 	ret = GRO_HELD;
5886 
5887 pull:
5888 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5889 	if (grow > 0)
5890 		gro_pull_from_frag0(skb, grow);
5891 ok:
5892 	if (napi->gro_hash[hash].count) {
5893 		if (!test_bit(hash, &napi->gro_bitmask))
5894 			__set_bit(hash, &napi->gro_bitmask);
5895 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5896 		__clear_bit(hash, &napi->gro_bitmask);
5897 	}
5898 
5899 	return ret;
5900 
5901 normal:
5902 	ret = GRO_NORMAL;
5903 	goto pull;
5904 }
5905 
5906 struct packet_offload *gro_find_receive_by_type(__be16 type)
5907 {
5908 	struct list_head *offload_head = &offload_base;
5909 	struct packet_offload *ptype;
5910 
5911 	list_for_each_entry_rcu(ptype, offload_head, list) {
5912 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5913 			continue;
5914 		return ptype;
5915 	}
5916 	return NULL;
5917 }
5918 EXPORT_SYMBOL(gro_find_receive_by_type);
5919 
5920 struct packet_offload *gro_find_complete_by_type(__be16 type)
5921 {
5922 	struct list_head *offload_head = &offload_base;
5923 	struct packet_offload *ptype;
5924 
5925 	list_for_each_entry_rcu(ptype, offload_head, list) {
5926 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5927 			continue;
5928 		return ptype;
5929 	}
5930 	return NULL;
5931 }
5932 EXPORT_SYMBOL(gro_find_complete_by_type);
5933 
5934 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5935 {
5936 	skb_dst_drop(skb);
5937 	skb_ext_put(skb);
5938 	kmem_cache_free(skbuff_head_cache, skb);
5939 }
5940 
5941 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5942 				    struct sk_buff *skb,
5943 				    gro_result_t ret)
5944 {
5945 	switch (ret) {
5946 	case GRO_NORMAL:
5947 		gro_normal_one(napi, skb);
5948 		break;
5949 
5950 	case GRO_DROP:
5951 		kfree_skb(skb);
5952 		break;
5953 
5954 	case GRO_MERGED_FREE:
5955 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5956 			napi_skb_free_stolen_head(skb);
5957 		else
5958 			__kfree_skb(skb);
5959 		break;
5960 
5961 	case GRO_HELD:
5962 	case GRO_MERGED:
5963 	case GRO_CONSUMED:
5964 		break;
5965 	}
5966 
5967 	return ret;
5968 }
5969 
5970 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5971 {
5972 	gro_result_t ret;
5973 
5974 	skb_mark_napi_id(skb, napi);
5975 	trace_napi_gro_receive_entry(skb);
5976 
5977 	skb_gro_reset_offset(skb);
5978 
5979 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5980 	trace_napi_gro_receive_exit(ret);
5981 
5982 	return ret;
5983 }
5984 EXPORT_SYMBOL(napi_gro_receive);
5985 
5986 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5987 {
5988 	if (unlikely(skb->pfmemalloc)) {
5989 		consume_skb(skb);
5990 		return;
5991 	}
5992 	__skb_pull(skb, skb_headlen(skb));
5993 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5994 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5995 	__vlan_hwaccel_clear_tag(skb);
5996 	skb->dev = napi->dev;
5997 	skb->skb_iif = 0;
5998 
5999 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6000 	skb->pkt_type = PACKET_HOST;
6001 
6002 	skb->encapsulation = 0;
6003 	skb_shinfo(skb)->gso_type = 0;
6004 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6005 	skb_ext_reset(skb);
6006 
6007 	napi->skb = skb;
6008 }
6009 
6010 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6011 {
6012 	struct sk_buff *skb = napi->skb;
6013 
6014 	if (!skb) {
6015 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6016 		if (skb) {
6017 			napi->skb = skb;
6018 			skb_mark_napi_id(skb, napi);
6019 		}
6020 	}
6021 	return skb;
6022 }
6023 EXPORT_SYMBOL(napi_get_frags);
6024 
6025 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6026 				      struct sk_buff *skb,
6027 				      gro_result_t ret)
6028 {
6029 	switch (ret) {
6030 	case GRO_NORMAL:
6031 	case GRO_HELD:
6032 		__skb_push(skb, ETH_HLEN);
6033 		skb->protocol = eth_type_trans(skb, skb->dev);
6034 		if (ret == GRO_NORMAL)
6035 			gro_normal_one(napi, skb);
6036 		break;
6037 
6038 	case GRO_DROP:
6039 		napi_reuse_skb(napi, skb);
6040 		break;
6041 
6042 	case GRO_MERGED_FREE:
6043 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6044 			napi_skb_free_stolen_head(skb);
6045 		else
6046 			napi_reuse_skb(napi, skb);
6047 		break;
6048 
6049 	case GRO_MERGED:
6050 	case GRO_CONSUMED:
6051 		break;
6052 	}
6053 
6054 	return ret;
6055 }
6056 
6057 /* Upper GRO stack assumes network header starts at gro_offset=0
6058  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6059  * We copy ethernet header into skb->data to have a common layout.
6060  */
6061 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6062 {
6063 	struct sk_buff *skb = napi->skb;
6064 	const struct ethhdr *eth;
6065 	unsigned int hlen = sizeof(*eth);
6066 
6067 	napi->skb = NULL;
6068 
6069 	skb_reset_mac_header(skb);
6070 	skb_gro_reset_offset(skb);
6071 
6072 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6073 		eth = skb_gro_header_slow(skb, hlen, 0);
6074 		if (unlikely(!eth)) {
6075 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6076 					     __func__, napi->dev->name);
6077 			napi_reuse_skb(napi, skb);
6078 			return NULL;
6079 		}
6080 	} else {
6081 		eth = (const struct ethhdr *)skb->data;
6082 		gro_pull_from_frag0(skb, hlen);
6083 		NAPI_GRO_CB(skb)->frag0 += hlen;
6084 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6085 	}
6086 	__skb_pull(skb, hlen);
6087 
6088 	/*
6089 	 * This works because the only protocols we care about don't require
6090 	 * special handling.
6091 	 * We'll fix it up properly in napi_frags_finish()
6092 	 */
6093 	skb->protocol = eth->h_proto;
6094 
6095 	return skb;
6096 }
6097 
6098 gro_result_t napi_gro_frags(struct napi_struct *napi)
6099 {
6100 	gro_result_t ret;
6101 	struct sk_buff *skb = napi_frags_skb(napi);
6102 
6103 	if (!skb)
6104 		return GRO_DROP;
6105 
6106 	trace_napi_gro_frags_entry(skb);
6107 
6108 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6109 	trace_napi_gro_frags_exit(ret);
6110 
6111 	return ret;
6112 }
6113 EXPORT_SYMBOL(napi_gro_frags);
6114 
6115 /* Compute the checksum from gro_offset and return the folded value
6116  * after adding in any pseudo checksum.
6117  */
6118 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6119 {
6120 	__wsum wsum;
6121 	__sum16 sum;
6122 
6123 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6124 
6125 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6126 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6127 	/* See comments in __skb_checksum_complete(). */
6128 	if (likely(!sum)) {
6129 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6130 		    !skb->csum_complete_sw)
6131 			netdev_rx_csum_fault(skb->dev, skb);
6132 	}
6133 
6134 	NAPI_GRO_CB(skb)->csum = wsum;
6135 	NAPI_GRO_CB(skb)->csum_valid = 1;
6136 
6137 	return sum;
6138 }
6139 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6140 
6141 static void net_rps_send_ipi(struct softnet_data *remsd)
6142 {
6143 #ifdef CONFIG_RPS
6144 	while (remsd) {
6145 		struct softnet_data *next = remsd->rps_ipi_next;
6146 
6147 		if (cpu_online(remsd->cpu))
6148 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6149 		remsd = next;
6150 	}
6151 #endif
6152 }
6153 
6154 /*
6155  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6156  * Note: called with local irq disabled, but exits with local irq enabled.
6157  */
6158 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6159 {
6160 #ifdef CONFIG_RPS
6161 	struct softnet_data *remsd = sd->rps_ipi_list;
6162 
6163 	if (remsd) {
6164 		sd->rps_ipi_list = NULL;
6165 
6166 		local_irq_enable();
6167 
6168 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6169 		net_rps_send_ipi(remsd);
6170 	} else
6171 #endif
6172 		local_irq_enable();
6173 }
6174 
6175 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6176 {
6177 #ifdef CONFIG_RPS
6178 	return sd->rps_ipi_list != NULL;
6179 #else
6180 	return false;
6181 #endif
6182 }
6183 
6184 static int process_backlog(struct napi_struct *napi, int quota)
6185 {
6186 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6187 	bool again = true;
6188 	int work = 0;
6189 
6190 	/* Check if we have pending ipi, its better to send them now,
6191 	 * not waiting net_rx_action() end.
6192 	 */
6193 	if (sd_has_rps_ipi_waiting(sd)) {
6194 		local_irq_disable();
6195 		net_rps_action_and_irq_enable(sd);
6196 	}
6197 
6198 	napi->weight = dev_rx_weight;
6199 	while (again) {
6200 		struct sk_buff *skb;
6201 
6202 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6203 			rcu_read_lock();
6204 			__netif_receive_skb(skb);
6205 			rcu_read_unlock();
6206 			input_queue_head_incr(sd);
6207 			if (++work >= quota)
6208 				return work;
6209 
6210 		}
6211 
6212 		local_irq_disable();
6213 		rps_lock(sd);
6214 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6215 			/*
6216 			 * Inline a custom version of __napi_complete().
6217 			 * only current cpu owns and manipulates this napi,
6218 			 * and NAPI_STATE_SCHED is the only possible flag set
6219 			 * on backlog.
6220 			 * We can use a plain write instead of clear_bit(),
6221 			 * and we dont need an smp_mb() memory barrier.
6222 			 */
6223 			napi->state = 0;
6224 			again = false;
6225 		} else {
6226 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6227 						   &sd->process_queue);
6228 		}
6229 		rps_unlock(sd);
6230 		local_irq_enable();
6231 	}
6232 
6233 	return work;
6234 }
6235 
6236 /**
6237  * __napi_schedule - schedule for receive
6238  * @n: entry to schedule
6239  *
6240  * The entry's receive function will be scheduled to run.
6241  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6242  */
6243 void __napi_schedule(struct napi_struct *n)
6244 {
6245 	unsigned long flags;
6246 
6247 	local_irq_save(flags);
6248 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6249 	local_irq_restore(flags);
6250 }
6251 EXPORT_SYMBOL(__napi_schedule);
6252 
6253 /**
6254  *	napi_schedule_prep - check if napi can be scheduled
6255  *	@n: napi context
6256  *
6257  * Test if NAPI routine is already running, and if not mark
6258  * it as running.  This is used as a condition variable
6259  * insure only one NAPI poll instance runs.  We also make
6260  * sure there is no pending NAPI disable.
6261  */
6262 bool napi_schedule_prep(struct napi_struct *n)
6263 {
6264 	unsigned long val, new;
6265 
6266 	do {
6267 		val = READ_ONCE(n->state);
6268 		if (unlikely(val & NAPIF_STATE_DISABLE))
6269 			return false;
6270 		new = val | NAPIF_STATE_SCHED;
6271 
6272 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6273 		 * This was suggested by Alexander Duyck, as compiler
6274 		 * emits better code than :
6275 		 * if (val & NAPIF_STATE_SCHED)
6276 		 *     new |= NAPIF_STATE_MISSED;
6277 		 */
6278 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6279 						   NAPIF_STATE_MISSED;
6280 	} while (cmpxchg(&n->state, val, new) != val);
6281 
6282 	return !(val & NAPIF_STATE_SCHED);
6283 }
6284 EXPORT_SYMBOL(napi_schedule_prep);
6285 
6286 /**
6287  * __napi_schedule_irqoff - schedule for receive
6288  * @n: entry to schedule
6289  *
6290  * Variant of __napi_schedule() assuming hard irqs are masked
6291  */
6292 void __napi_schedule_irqoff(struct napi_struct *n)
6293 {
6294 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6295 }
6296 EXPORT_SYMBOL(__napi_schedule_irqoff);
6297 
6298 bool napi_complete_done(struct napi_struct *n, int work_done)
6299 {
6300 	unsigned long flags, val, new, timeout = 0;
6301 	bool ret = true;
6302 
6303 	/*
6304 	 * 1) Don't let napi dequeue from the cpu poll list
6305 	 *    just in case its running on a different cpu.
6306 	 * 2) If we are busy polling, do nothing here, we have
6307 	 *    the guarantee we will be called later.
6308 	 */
6309 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6310 				 NAPIF_STATE_IN_BUSY_POLL)))
6311 		return false;
6312 
6313 	if (work_done) {
6314 		if (n->gro_bitmask)
6315 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6316 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6317 	}
6318 	if (n->defer_hard_irqs_count > 0) {
6319 		n->defer_hard_irqs_count--;
6320 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6321 		if (timeout)
6322 			ret = false;
6323 	}
6324 	if (n->gro_bitmask) {
6325 		/* When the NAPI instance uses a timeout and keeps postponing
6326 		 * it, we need to bound somehow the time packets are kept in
6327 		 * the GRO layer
6328 		 */
6329 		napi_gro_flush(n, !!timeout);
6330 	}
6331 
6332 	gro_normal_list(n);
6333 
6334 	if (unlikely(!list_empty(&n->poll_list))) {
6335 		/* If n->poll_list is not empty, we need to mask irqs */
6336 		local_irq_save(flags);
6337 		list_del_init(&n->poll_list);
6338 		local_irq_restore(flags);
6339 	}
6340 
6341 	do {
6342 		val = READ_ONCE(n->state);
6343 
6344 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6345 
6346 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6347 
6348 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6349 		 * because we will call napi->poll() one more time.
6350 		 * This C code was suggested by Alexander Duyck to help gcc.
6351 		 */
6352 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6353 						    NAPIF_STATE_SCHED;
6354 	} while (cmpxchg(&n->state, val, new) != val);
6355 
6356 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6357 		__napi_schedule(n);
6358 		return false;
6359 	}
6360 
6361 	if (timeout)
6362 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6363 			      HRTIMER_MODE_REL_PINNED);
6364 	return ret;
6365 }
6366 EXPORT_SYMBOL(napi_complete_done);
6367 
6368 /* must be called under rcu_read_lock(), as we dont take a reference */
6369 static struct napi_struct *napi_by_id(unsigned int napi_id)
6370 {
6371 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6372 	struct napi_struct *napi;
6373 
6374 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6375 		if (napi->napi_id == napi_id)
6376 			return napi;
6377 
6378 	return NULL;
6379 }
6380 
6381 #if defined(CONFIG_NET_RX_BUSY_POLL)
6382 
6383 #define BUSY_POLL_BUDGET 8
6384 
6385 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6386 {
6387 	int rc;
6388 
6389 	/* Busy polling means there is a high chance device driver hard irq
6390 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6391 	 * set in napi_schedule_prep().
6392 	 * Since we are about to call napi->poll() once more, we can safely
6393 	 * clear NAPI_STATE_MISSED.
6394 	 *
6395 	 * Note: x86 could use a single "lock and ..." instruction
6396 	 * to perform these two clear_bit()
6397 	 */
6398 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6399 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6400 
6401 	local_bh_disable();
6402 
6403 	/* All we really want here is to re-enable device interrupts.
6404 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6405 	 */
6406 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6407 	/* We can't gro_normal_list() here, because napi->poll() might have
6408 	 * rearmed the napi (napi_complete_done()) in which case it could
6409 	 * already be running on another CPU.
6410 	 */
6411 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6412 	netpoll_poll_unlock(have_poll_lock);
6413 	if (rc == BUSY_POLL_BUDGET) {
6414 		/* As the whole budget was spent, we still own the napi so can
6415 		 * safely handle the rx_list.
6416 		 */
6417 		gro_normal_list(napi);
6418 		__napi_schedule(napi);
6419 	}
6420 	local_bh_enable();
6421 }
6422 
6423 void napi_busy_loop(unsigned int napi_id,
6424 		    bool (*loop_end)(void *, unsigned long),
6425 		    void *loop_end_arg)
6426 {
6427 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6428 	int (*napi_poll)(struct napi_struct *napi, int budget);
6429 	void *have_poll_lock = NULL;
6430 	struct napi_struct *napi;
6431 
6432 restart:
6433 	napi_poll = NULL;
6434 
6435 	rcu_read_lock();
6436 
6437 	napi = napi_by_id(napi_id);
6438 	if (!napi)
6439 		goto out;
6440 
6441 	preempt_disable();
6442 	for (;;) {
6443 		int work = 0;
6444 
6445 		local_bh_disable();
6446 		if (!napi_poll) {
6447 			unsigned long val = READ_ONCE(napi->state);
6448 
6449 			/* If multiple threads are competing for this napi,
6450 			 * we avoid dirtying napi->state as much as we can.
6451 			 */
6452 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6453 				   NAPIF_STATE_IN_BUSY_POLL))
6454 				goto count;
6455 			if (cmpxchg(&napi->state, val,
6456 				    val | NAPIF_STATE_IN_BUSY_POLL |
6457 					  NAPIF_STATE_SCHED) != val)
6458 				goto count;
6459 			have_poll_lock = netpoll_poll_lock(napi);
6460 			napi_poll = napi->poll;
6461 		}
6462 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6463 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6464 		gro_normal_list(napi);
6465 count:
6466 		if (work > 0)
6467 			__NET_ADD_STATS(dev_net(napi->dev),
6468 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6469 		local_bh_enable();
6470 
6471 		if (!loop_end || loop_end(loop_end_arg, start_time))
6472 			break;
6473 
6474 		if (unlikely(need_resched())) {
6475 			if (napi_poll)
6476 				busy_poll_stop(napi, have_poll_lock);
6477 			preempt_enable();
6478 			rcu_read_unlock();
6479 			cond_resched();
6480 			if (loop_end(loop_end_arg, start_time))
6481 				return;
6482 			goto restart;
6483 		}
6484 		cpu_relax();
6485 	}
6486 	if (napi_poll)
6487 		busy_poll_stop(napi, have_poll_lock);
6488 	preempt_enable();
6489 out:
6490 	rcu_read_unlock();
6491 }
6492 EXPORT_SYMBOL(napi_busy_loop);
6493 
6494 #endif /* CONFIG_NET_RX_BUSY_POLL */
6495 
6496 static void napi_hash_add(struct napi_struct *napi)
6497 {
6498 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6499 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6500 		return;
6501 
6502 	spin_lock(&napi_hash_lock);
6503 
6504 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6505 	do {
6506 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6507 			napi_gen_id = MIN_NAPI_ID;
6508 	} while (napi_by_id(napi_gen_id));
6509 	napi->napi_id = napi_gen_id;
6510 
6511 	hlist_add_head_rcu(&napi->napi_hash_node,
6512 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6513 
6514 	spin_unlock(&napi_hash_lock);
6515 }
6516 
6517 /* Warning : caller is responsible to make sure rcu grace period
6518  * is respected before freeing memory containing @napi
6519  */
6520 bool napi_hash_del(struct napi_struct *napi)
6521 {
6522 	bool rcu_sync_needed = false;
6523 
6524 	spin_lock(&napi_hash_lock);
6525 
6526 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6527 		rcu_sync_needed = true;
6528 		hlist_del_rcu(&napi->napi_hash_node);
6529 	}
6530 	spin_unlock(&napi_hash_lock);
6531 	return rcu_sync_needed;
6532 }
6533 EXPORT_SYMBOL_GPL(napi_hash_del);
6534 
6535 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6536 {
6537 	struct napi_struct *napi;
6538 
6539 	napi = container_of(timer, struct napi_struct, timer);
6540 
6541 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6542 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6543 	 */
6544 	if (!napi_disable_pending(napi) &&
6545 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6546 		__napi_schedule_irqoff(napi);
6547 
6548 	return HRTIMER_NORESTART;
6549 }
6550 
6551 static void init_gro_hash(struct napi_struct *napi)
6552 {
6553 	int i;
6554 
6555 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6556 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6557 		napi->gro_hash[i].count = 0;
6558 	}
6559 	napi->gro_bitmask = 0;
6560 }
6561 
6562 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6563 		    int (*poll)(struct napi_struct *, int), int weight)
6564 {
6565 	INIT_LIST_HEAD(&napi->poll_list);
6566 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6567 	napi->timer.function = napi_watchdog;
6568 	init_gro_hash(napi);
6569 	napi->skb = NULL;
6570 	INIT_LIST_HEAD(&napi->rx_list);
6571 	napi->rx_count = 0;
6572 	napi->poll = poll;
6573 	if (weight > NAPI_POLL_WEIGHT)
6574 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6575 				weight);
6576 	napi->weight = weight;
6577 	list_add(&napi->dev_list, &dev->napi_list);
6578 	napi->dev = dev;
6579 #ifdef CONFIG_NETPOLL
6580 	napi->poll_owner = -1;
6581 #endif
6582 	set_bit(NAPI_STATE_SCHED, &napi->state);
6583 	napi_hash_add(napi);
6584 }
6585 EXPORT_SYMBOL(netif_napi_add);
6586 
6587 void napi_disable(struct napi_struct *n)
6588 {
6589 	might_sleep();
6590 	set_bit(NAPI_STATE_DISABLE, &n->state);
6591 
6592 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6593 		msleep(1);
6594 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6595 		msleep(1);
6596 
6597 	hrtimer_cancel(&n->timer);
6598 
6599 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6600 }
6601 EXPORT_SYMBOL(napi_disable);
6602 
6603 static void flush_gro_hash(struct napi_struct *napi)
6604 {
6605 	int i;
6606 
6607 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6608 		struct sk_buff *skb, *n;
6609 
6610 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6611 			kfree_skb(skb);
6612 		napi->gro_hash[i].count = 0;
6613 	}
6614 }
6615 
6616 /* Must be called in process context */
6617 void netif_napi_del(struct napi_struct *napi)
6618 {
6619 	might_sleep();
6620 	if (napi_hash_del(napi))
6621 		synchronize_net();
6622 	list_del_init(&napi->dev_list);
6623 	napi_free_frags(napi);
6624 
6625 	flush_gro_hash(napi);
6626 	napi->gro_bitmask = 0;
6627 }
6628 EXPORT_SYMBOL(netif_napi_del);
6629 
6630 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6631 {
6632 	void *have;
6633 	int work, weight;
6634 
6635 	list_del_init(&n->poll_list);
6636 
6637 	have = netpoll_poll_lock(n);
6638 
6639 	weight = n->weight;
6640 
6641 	/* This NAPI_STATE_SCHED test is for avoiding a race
6642 	 * with netpoll's poll_napi().  Only the entity which
6643 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6644 	 * actually make the ->poll() call.  Therefore we avoid
6645 	 * accidentally calling ->poll() when NAPI is not scheduled.
6646 	 */
6647 	work = 0;
6648 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6649 		work = n->poll(n, weight);
6650 		trace_napi_poll(n, work, weight);
6651 	}
6652 
6653 	WARN_ON_ONCE(work > weight);
6654 
6655 	if (likely(work < weight))
6656 		goto out_unlock;
6657 
6658 	/* Drivers must not modify the NAPI state if they
6659 	 * consume the entire weight.  In such cases this code
6660 	 * still "owns" the NAPI instance and therefore can
6661 	 * move the instance around on the list at-will.
6662 	 */
6663 	if (unlikely(napi_disable_pending(n))) {
6664 		napi_complete(n);
6665 		goto out_unlock;
6666 	}
6667 
6668 	if (n->gro_bitmask) {
6669 		/* flush too old packets
6670 		 * If HZ < 1000, flush all packets.
6671 		 */
6672 		napi_gro_flush(n, HZ >= 1000);
6673 	}
6674 
6675 	gro_normal_list(n);
6676 
6677 	/* Some drivers may have called napi_schedule
6678 	 * prior to exhausting their budget.
6679 	 */
6680 	if (unlikely(!list_empty(&n->poll_list))) {
6681 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6682 			     n->dev ? n->dev->name : "backlog");
6683 		goto out_unlock;
6684 	}
6685 
6686 	list_add_tail(&n->poll_list, repoll);
6687 
6688 out_unlock:
6689 	netpoll_poll_unlock(have);
6690 
6691 	return work;
6692 }
6693 
6694 static __latent_entropy void net_rx_action(struct softirq_action *h)
6695 {
6696 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6697 	unsigned long time_limit = jiffies +
6698 		usecs_to_jiffies(netdev_budget_usecs);
6699 	int budget = netdev_budget;
6700 	LIST_HEAD(list);
6701 	LIST_HEAD(repoll);
6702 
6703 	local_irq_disable();
6704 	list_splice_init(&sd->poll_list, &list);
6705 	local_irq_enable();
6706 
6707 	for (;;) {
6708 		struct napi_struct *n;
6709 
6710 		if (list_empty(&list)) {
6711 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6712 				goto out;
6713 			break;
6714 		}
6715 
6716 		n = list_first_entry(&list, struct napi_struct, poll_list);
6717 		budget -= napi_poll(n, &repoll);
6718 
6719 		/* If softirq window is exhausted then punt.
6720 		 * Allow this to run for 2 jiffies since which will allow
6721 		 * an average latency of 1.5/HZ.
6722 		 */
6723 		if (unlikely(budget <= 0 ||
6724 			     time_after_eq(jiffies, time_limit))) {
6725 			sd->time_squeeze++;
6726 			break;
6727 		}
6728 	}
6729 
6730 	local_irq_disable();
6731 
6732 	list_splice_tail_init(&sd->poll_list, &list);
6733 	list_splice_tail(&repoll, &list);
6734 	list_splice(&list, &sd->poll_list);
6735 	if (!list_empty(&sd->poll_list))
6736 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6737 
6738 	net_rps_action_and_irq_enable(sd);
6739 out:
6740 	__kfree_skb_flush();
6741 }
6742 
6743 struct netdev_adjacent {
6744 	struct net_device *dev;
6745 
6746 	/* upper master flag, there can only be one master device per list */
6747 	bool master;
6748 
6749 	/* lookup ignore flag */
6750 	bool ignore;
6751 
6752 	/* counter for the number of times this device was added to us */
6753 	u16 ref_nr;
6754 
6755 	/* private field for the users */
6756 	void *private;
6757 
6758 	struct list_head list;
6759 	struct rcu_head rcu;
6760 };
6761 
6762 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6763 						 struct list_head *adj_list)
6764 {
6765 	struct netdev_adjacent *adj;
6766 
6767 	list_for_each_entry(adj, adj_list, list) {
6768 		if (adj->dev == adj_dev)
6769 			return adj;
6770 	}
6771 	return NULL;
6772 }
6773 
6774 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6775 {
6776 	struct net_device *dev = data;
6777 
6778 	return upper_dev == dev;
6779 }
6780 
6781 /**
6782  * netdev_has_upper_dev - Check if device is linked to an upper device
6783  * @dev: device
6784  * @upper_dev: upper device to check
6785  *
6786  * Find out if a device is linked to specified upper device and return true
6787  * in case it is. Note that this checks only immediate upper device,
6788  * not through a complete stack of devices. The caller must hold the RTNL lock.
6789  */
6790 bool netdev_has_upper_dev(struct net_device *dev,
6791 			  struct net_device *upper_dev)
6792 {
6793 	ASSERT_RTNL();
6794 
6795 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6796 					     upper_dev);
6797 }
6798 EXPORT_SYMBOL(netdev_has_upper_dev);
6799 
6800 /**
6801  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6802  * @dev: device
6803  * @upper_dev: upper device to check
6804  *
6805  * Find out if a device is linked to specified upper device and return true
6806  * in case it is. Note that this checks the entire upper device chain.
6807  * The caller must hold rcu lock.
6808  */
6809 
6810 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6811 				  struct net_device *upper_dev)
6812 {
6813 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6814 					       upper_dev);
6815 }
6816 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6817 
6818 /**
6819  * netdev_has_any_upper_dev - Check if device is linked to some device
6820  * @dev: device
6821  *
6822  * Find out if a device is linked to an upper device and return true in case
6823  * it is. The caller must hold the RTNL lock.
6824  */
6825 bool netdev_has_any_upper_dev(struct net_device *dev)
6826 {
6827 	ASSERT_RTNL();
6828 
6829 	return !list_empty(&dev->adj_list.upper);
6830 }
6831 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6832 
6833 /**
6834  * netdev_master_upper_dev_get - Get master upper device
6835  * @dev: device
6836  *
6837  * Find a master upper device and return pointer to it or NULL in case
6838  * it's not there. The caller must hold the RTNL lock.
6839  */
6840 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6841 {
6842 	struct netdev_adjacent *upper;
6843 
6844 	ASSERT_RTNL();
6845 
6846 	if (list_empty(&dev->adj_list.upper))
6847 		return NULL;
6848 
6849 	upper = list_first_entry(&dev->adj_list.upper,
6850 				 struct netdev_adjacent, list);
6851 	if (likely(upper->master))
6852 		return upper->dev;
6853 	return NULL;
6854 }
6855 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6856 
6857 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6858 {
6859 	struct netdev_adjacent *upper;
6860 
6861 	ASSERT_RTNL();
6862 
6863 	if (list_empty(&dev->adj_list.upper))
6864 		return NULL;
6865 
6866 	upper = list_first_entry(&dev->adj_list.upper,
6867 				 struct netdev_adjacent, list);
6868 	if (likely(upper->master) && !upper->ignore)
6869 		return upper->dev;
6870 	return NULL;
6871 }
6872 
6873 /**
6874  * netdev_has_any_lower_dev - Check if device is linked to some device
6875  * @dev: device
6876  *
6877  * Find out if a device is linked to a lower device and return true in case
6878  * it is. The caller must hold the RTNL lock.
6879  */
6880 static bool netdev_has_any_lower_dev(struct net_device *dev)
6881 {
6882 	ASSERT_RTNL();
6883 
6884 	return !list_empty(&dev->adj_list.lower);
6885 }
6886 
6887 void *netdev_adjacent_get_private(struct list_head *adj_list)
6888 {
6889 	struct netdev_adjacent *adj;
6890 
6891 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6892 
6893 	return adj->private;
6894 }
6895 EXPORT_SYMBOL(netdev_adjacent_get_private);
6896 
6897 /**
6898  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6899  * @dev: device
6900  * @iter: list_head ** of the current position
6901  *
6902  * Gets the next device from the dev's upper list, starting from iter
6903  * position. The caller must hold RCU read lock.
6904  */
6905 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6906 						 struct list_head **iter)
6907 {
6908 	struct netdev_adjacent *upper;
6909 
6910 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6911 
6912 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6913 
6914 	if (&upper->list == &dev->adj_list.upper)
6915 		return NULL;
6916 
6917 	*iter = &upper->list;
6918 
6919 	return upper->dev;
6920 }
6921 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6922 
6923 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6924 						  struct list_head **iter,
6925 						  bool *ignore)
6926 {
6927 	struct netdev_adjacent *upper;
6928 
6929 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6930 
6931 	if (&upper->list == &dev->adj_list.upper)
6932 		return NULL;
6933 
6934 	*iter = &upper->list;
6935 	*ignore = upper->ignore;
6936 
6937 	return upper->dev;
6938 }
6939 
6940 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6941 						    struct list_head **iter)
6942 {
6943 	struct netdev_adjacent *upper;
6944 
6945 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6946 
6947 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6948 
6949 	if (&upper->list == &dev->adj_list.upper)
6950 		return NULL;
6951 
6952 	*iter = &upper->list;
6953 
6954 	return upper->dev;
6955 }
6956 
6957 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6958 				       int (*fn)(struct net_device *dev,
6959 						 void *data),
6960 				       void *data)
6961 {
6962 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6963 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6964 	int ret, cur = 0;
6965 	bool ignore;
6966 
6967 	now = dev;
6968 	iter = &dev->adj_list.upper;
6969 
6970 	while (1) {
6971 		if (now != dev) {
6972 			ret = fn(now, data);
6973 			if (ret)
6974 				return ret;
6975 		}
6976 
6977 		next = NULL;
6978 		while (1) {
6979 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6980 			if (!udev)
6981 				break;
6982 			if (ignore)
6983 				continue;
6984 
6985 			next = udev;
6986 			niter = &udev->adj_list.upper;
6987 			dev_stack[cur] = now;
6988 			iter_stack[cur++] = iter;
6989 			break;
6990 		}
6991 
6992 		if (!next) {
6993 			if (!cur)
6994 				return 0;
6995 			next = dev_stack[--cur];
6996 			niter = iter_stack[cur];
6997 		}
6998 
6999 		now = next;
7000 		iter = niter;
7001 	}
7002 
7003 	return 0;
7004 }
7005 
7006 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7007 				  int (*fn)(struct net_device *dev,
7008 					    void *data),
7009 				  void *data)
7010 {
7011 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7012 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7013 	int ret, cur = 0;
7014 
7015 	now = dev;
7016 	iter = &dev->adj_list.upper;
7017 
7018 	while (1) {
7019 		if (now != dev) {
7020 			ret = fn(now, data);
7021 			if (ret)
7022 				return ret;
7023 		}
7024 
7025 		next = NULL;
7026 		while (1) {
7027 			udev = netdev_next_upper_dev_rcu(now, &iter);
7028 			if (!udev)
7029 				break;
7030 
7031 			next = udev;
7032 			niter = &udev->adj_list.upper;
7033 			dev_stack[cur] = now;
7034 			iter_stack[cur++] = iter;
7035 			break;
7036 		}
7037 
7038 		if (!next) {
7039 			if (!cur)
7040 				return 0;
7041 			next = dev_stack[--cur];
7042 			niter = iter_stack[cur];
7043 		}
7044 
7045 		now = next;
7046 		iter = niter;
7047 	}
7048 
7049 	return 0;
7050 }
7051 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7052 
7053 static bool __netdev_has_upper_dev(struct net_device *dev,
7054 				   struct net_device *upper_dev)
7055 {
7056 	ASSERT_RTNL();
7057 
7058 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7059 					   upper_dev);
7060 }
7061 
7062 /**
7063  * netdev_lower_get_next_private - Get the next ->private from the
7064  *				   lower neighbour list
7065  * @dev: device
7066  * @iter: list_head ** of the current position
7067  *
7068  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7069  * list, starting from iter position. The caller must hold either hold the
7070  * RTNL lock or its own locking that guarantees that the neighbour lower
7071  * list will remain unchanged.
7072  */
7073 void *netdev_lower_get_next_private(struct net_device *dev,
7074 				    struct list_head **iter)
7075 {
7076 	struct netdev_adjacent *lower;
7077 
7078 	lower = list_entry(*iter, struct netdev_adjacent, list);
7079 
7080 	if (&lower->list == &dev->adj_list.lower)
7081 		return NULL;
7082 
7083 	*iter = lower->list.next;
7084 
7085 	return lower->private;
7086 }
7087 EXPORT_SYMBOL(netdev_lower_get_next_private);
7088 
7089 /**
7090  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7091  *				       lower neighbour list, RCU
7092  *				       variant
7093  * @dev: device
7094  * @iter: list_head ** of the current position
7095  *
7096  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7097  * list, starting from iter position. The caller must hold RCU read lock.
7098  */
7099 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7100 					struct list_head **iter)
7101 {
7102 	struct netdev_adjacent *lower;
7103 
7104 	WARN_ON_ONCE(!rcu_read_lock_held());
7105 
7106 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7107 
7108 	if (&lower->list == &dev->adj_list.lower)
7109 		return NULL;
7110 
7111 	*iter = &lower->list;
7112 
7113 	return lower->private;
7114 }
7115 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7116 
7117 /**
7118  * netdev_lower_get_next - Get the next device from the lower neighbour
7119  *                         list
7120  * @dev: device
7121  * @iter: list_head ** of the current position
7122  *
7123  * Gets the next netdev_adjacent from the dev's lower neighbour
7124  * list, starting from iter position. The caller must hold RTNL lock or
7125  * its own locking that guarantees that the neighbour lower
7126  * list will remain unchanged.
7127  */
7128 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7129 {
7130 	struct netdev_adjacent *lower;
7131 
7132 	lower = list_entry(*iter, struct netdev_adjacent, list);
7133 
7134 	if (&lower->list == &dev->adj_list.lower)
7135 		return NULL;
7136 
7137 	*iter = lower->list.next;
7138 
7139 	return lower->dev;
7140 }
7141 EXPORT_SYMBOL(netdev_lower_get_next);
7142 
7143 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7144 						struct list_head **iter)
7145 {
7146 	struct netdev_adjacent *lower;
7147 
7148 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7149 
7150 	if (&lower->list == &dev->adj_list.lower)
7151 		return NULL;
7152 
7153 	*iter = &lower->list;
7154 
7155 	return lower->dev;
7156 }
7157 
7158 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7159 						  struct list_head **iter,
7160 						  bool *ignore)
7161 {
7162 	struct netdev_adjacent *lower;
7163 
7164 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7165 
7166 	if (&lower->list == &dev->adj_list.lower)
7167 		return NULL;
7168 
7169 	*iter = &lower->list;
7170 	*ignore = lower->ignore;
7171 
7172 	return lower->dev;
7173 }
7174 
7175 int netdev_walk_all_lower_dev(struct net_device *dev,
7176 			      int (*fn)(struct net_device *dev,
7177 					void *data),
7178 			      void *data)
7179 {
7180 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7181 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7182 	int ret, cur = 0;
7183 
7184 	now = dev;
7185 	iter = &dev->adj_list.lower;
7186 
7187 	while (1) {
7188 		if (now != dev) {
7189 			ret = fn(now, data);
7190 			if (ret)
7191 				return ret;
7192 		}
7193 
7194 		next = NULL;
7195 		while (1) {
7196 			ldev = netdev_next_lower_dev(now, &iter);
7197 			if (!ldev)
7198 				break;
7199 
7200 			next = ldev;
7201 			niter = &ldev->adj_list.lower;
7202 			dev_stack[cur] = now;
7203 			iter_stack[cur++] = iter;
7204 			break;
7205 		}
7206 
7207 		if (!next) {
7208 			if (!cur)
7209 				return 0;
7210 			next = dev_stack[--cur];
7211 			niter = iter_stack[cur];
7212 		}
7213 
7214 		now = next;
7215 		iter = niter;
7216 	}
7217 
7218 	return 0;
7219 }
7220 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7221 
7222 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7223 				       int (*fn)(struct net_device *dev,
7224 						 void *data),
7225 				       void *data)
7226 {
7227 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7228 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7229 	int ret, cur = 0;
7230 	bool ignore;
7231 
7232 	now = dev;
7233 	iter = &dev->adj_list.lower;
7234 
7235 	while (1) {
7236 		if (now != dev) {
7237 			ret = fn(now, data);
7238 			if (ret)
7239 				return ret;
7240 		}
7241 
7242 		next = NULL;
7243 		while (1) {
7244 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7245 			if (!ldev)
7246 				break;
7247 			if (ignore)
7248 				continue;
7249 
7250 			next = ldev;
7251 			niter = &ldev->adj_list.lower;
7252 			dev_stack[cur] = now;
7253 			iter_stack[cur++] = iter;
7254 			break;
7255 		}
7256 
7257 		if (!next) {
7258 			if (!cur)
7259 				return 0;
7260 			next = dev_stack[--cur];
7261 			niter = iter_stack[cur];
7262 		}
7263 
7264 		now = next;
7265 		iter = niter;
7266 	}
7267 
7268 	return 0;
7269 }
7270 
7271 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7272 					     struct list_head **iter)
7273 {
7274 	struct netdev_adjacent *lower;
7275 
7276 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7277 	if (&lower->list == &dev->adj_list.lower)
7278 		return NULL;
7279 
7280 	*iter = &lower->list;
7281 
7282 	return lower->dev;
7283 }
7284 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7285 
7286 static u8 __netdev_upper_depth(struct net_device *dev)
7287 {
7288 	struct net_device *udev;
7289 	struct list_head *iter;
7290 	u8 max_depth = 0;
7291 	bool ignore;
7292 
7293 	for (iter = &dev->adj_list.upper,
7294 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7295 	     udev;
7296 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7297 		if (ignore)
7298 			continue;
7299 		if (max_depth < udev->upper_level)
7300 			max_depth = udev->upper_level;
7301 	}
7302 
7303 	return max_depth;
7304 }
7305 
7306 static u8 __netdev_lower_depth(struct net_device *dev)
7307 {
7308 	struct net_device *ldev;
7309 	struct list_head *iter;
7310 	u8 max_depth = 0;
7311 	bool ignore;
7312 
7313 	for (iter = &dev->adj_list.lower,
7314 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7315 	     ldev;
7316 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7317 		if (ignore)
7318 			continue;
7319 		if (max_depth < ldev->lower_level)
7320 			max_depth = ldev->lower_level;
7321 	}
7322 
7323 	return max_depth;
7324 }
7325 
7326 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7327 {
7328 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7329 	return 0;
7330 }
7331 
7332 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7333 {
7334 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7335 	return 0;
7336 }
7337 
7338 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7339 				  int (*fn)(struct net_device *dev,
7340 					    void *data),
7341 				  void *data)
7342 {
7343 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7344 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7345 	int ret, cur = 0;
7346 
7347 	now = dev;
7348 	iter = &dev->adj_list.lower;
7349 
7350 	while (1) {
7351 		if (now != dev) {
7352 			ret = fn(now, data);
7353 			if (ret)
7354 				return ret;
7355 		}
7356 
7357 		next = NULL;
7358 		while (1) {
7359 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7360 			if (!ldev)
7361 				break;
7362 
7363 			next = ldev;
7364 			niter = &ldev->adj_list.lower;
7365 			dev_stack[cur] = now;
7366 			iter_stack[cur++] = iter;
7367 			break;
7368 		}
7369 
7370 		if (!next) {
7371 			if (!cur)
7372 				return 0;
7373 			next = dev_stack[--cur];
7374 			niter = iter_stack[cur];
7375 		}
7376 
7377 		now = next;
7378 		iter = niter;
7379 	}
7380 
7381 	return 0;
7382 }
7383 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7384 
7385 /**
7386  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7387  *				       lower neighbour list, RCU
7388  *				       variant
7389  * @dev: device
7390  *
7391  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7392  * list. The caller must hold RCU read lock.
7393  */
7394 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7395 {
7396 	struct netdev_adjacent *lower;
7397 
7398 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7399 			struct netdev_adjacent, list);
7400 	if (lower)
7401 		return lower->private;
7402 	return NULL;
7403 }
7404 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7405 
7406 /**
7407  * netdev_master_upper_dev_get_rcu - Get master upper device
7408  * @dev: device
7409  *
7410  * Find a master upper device and return pointer to it or NULL in case
7411  * it's not there. The caller must hold the RCU read lock.
7412  */
7413 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7414 {
7415 	struct netdev_adjacent *upper;
7416 
7417 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7418 				       struct netdev_adjacent, list);
7419 	if (upper && likely(upper->master))
7420 		return upper->dev;
7421 	return NULL;
7422 }
7423 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7424 
7425 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7426 			      struct net_device *adj_dev,
7427 			      struct list_head *dev_list)
7428 {
7429 	char linkname[IFNAMSIZ+7];
7430 
7431 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7432 		"upper_%s" : "lower_%s", adj_dev->name);
7433 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7434 				 linkname);
7435 }
7436 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7437 			       char *name,
7438 			       struct list_head *dev_list)
7439 {
7440 	char linkname[IFNAMSIZ+7];
7441 
7442 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7443 		"upper_%s" : "lower_%s", name);
7444 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7445 }
7446 
7447 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7448 						 struct net_device *adj_dev,
7449 						 struct list_head *dev_list)
7450 {
7451 	return (dev_list == &dev->adj_list.upper ||
7452 		dev_list == &dev->adj_list.lower) &&
7453 		net_eq(dev_net(dev), dev_net(adj_dev));
7454 }
7455 
7456 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7457 					struct net_device *adj_dev,
7458 					struct list_head *dev_list,
7459 					void *private, bool master)
7460 {
7461 	struct netdev_adjacent *adj;
7462 	int ret;
7463 
7464 	adj = __netdev_find_adj(adj_dev, dev_list);
7465 
7466 	if (adj) {
7467 		adj->ref_nr += 1;
7468 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7469 			 dev->name, adj_dev->name, adj->ref_nr);
7470 
7471 		return 0;
7472 	}
7473 
7474 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7475 	if (!adj)
7476 		return -ENOMEM;
7477 
7478 	adj->dev = adj_dev;
7479 	adj->master = master;
7480 	adj->ref_nr = 1;
7481 	adj->private = private;
7482 	adj->ignore = false;
7483 	dev_hold(adj_dev);
7484 
7485 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7486 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7487 
7488 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7489 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7490 		if (ret)
7491 			goto free_adj;
7492 	}
7493 
7494 	/* Ensure that master link is always the first item in list. */
7495 	if (master) {
7496 		ret = sysfs_create_link(&(dev->dev.kobj),
7497 					&(adj_dev->dev.kobj), "master");
7498 		if (ret)
7499 			goto remove_symlinks;
7500 
7501 		list_add_rcu(&adj->list, dev_list);
7502 	} else {
7503 		list_add_tail_rcu(&adj->list, dev_list);
7504 	}
7505 
7506 	return 0;
7507 
7508 remove_symlinks:
7509 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7510 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7511 free_adj:
7512 	kfree(adj);
7513 	dev_put(adj_dev);
7514 
7515 	return ret;
7516 }
7517 
7518 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7519 					 struct net_device *adj_dev,
7520 					 u16 ref_nr,
7521 					 struct list_head *dev_list)
7522 {
7523 	struct netdev_adjacent *adj;
7524 
7525 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7526 		 dev->name, adj_dev->name, ref_nr);
7527 
7528 	adj = __netdev_find_adj(adj_dev, dev_list);
7529 
7530 	if (!adj) {
7531 		pr_err("Adjacency does not exist for device %s from %s\n",
7532 		       dev->name, adj_dev->name);
7533 		WARN_ON(1);
7534 		return;
7535 	}
7536 
7537 	if (adj->ref_nr > ref_nr) {
7538 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7539 			 dev->name, adj_dev->name, ref_nr,
7540 			 adj->ref_nr - ref_nr);
7541 		adj->ref_nr -= ref_nr;
7542 		return;
7543 	}
7544 
7545 	if (adj->master)
7546 		sysfs_remove_link(&(dev->dev.kobj), "master");
7547 
7548 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7549 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7550 
7551 	list_del_rcu(&adj->list);
7552 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7553 		 adj_dev->name, dev->name, adj_dev->name);
7554 	dev_put(adj_dev);
7555 	kfree_rcu(adj, rcu);
7556 }
7557 
7558 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7559 					    struct net_device *upper_dev,
7560 					    struct list_head *up_list,
7561 					    struct list_head *down_list,
7562 					    void *private, bool master)
7563 {
7564 	int ret;
7565 
7566 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7567 					   private, master);
7568 	if (ret)
7569 		return ret;
7570 
7571 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7572 					   private, false);
7573 	if (ret) {
7574 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7575 		return ret;
7576 	}
7577 
7578 	return 0;
7579 }
7580 
7581 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7582 					       struct net_device *upper_dev,
7583 					       u16 ref_nr,
7584 					       struct list_head *up_list,
7585 					       struct list_head *down_list)
7586 {
7587 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7588 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7589 }
7590 
7591 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7592 						struct net_device *upper_dev,
7593 						void *private, bool master)
7594 {
7595 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7596 						&dev->adj_list.upper,
7597 						&upper_dev->adj_list.lower,
7598 						private, master);
7599 }
7600 
7601 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7602 						   struct net_device *upper_dev)
7603 {
7604 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7605 					   &dev->adj_list.upper,
7606 					   &upper_dev->adj_list.lower);
7607 }
7608 
7609 static int __netdev_upper_dev_link(struct net_device *dev,
7610 				   struct net_device *upper_dev, bool master,
7611 				   void *upper_priv, void *upper_info,
7612 				   struct netlink_ext_ack *extack)
7613 {
7614 	struct netdev_notifier_changeupper_info changeupper_info = {
7615 		.info = {
7616 			.dev = dev,
7617 			.extack = extack,
7618 		},
7619 		.upper_dev = upper_dev,
7620 		.master = master,
7621 		.linking = true,
7622 		.upper_info = upper_info,
7623 	};
7624 	struct net_device *master_dev;
7625 	int ret = 0;
7626 
7627 	ASSERT_RTNL();
7628 
7629 	if (dev == upper_dev)
7630 		return -EBUSY;
7631 
7632 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7633 	if (__netdev_has_upper_dev(upper_dev, dev))
7634 		return -EBUSY;
7635 
7636 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7637 		return -EMLINK;
7638 
7639 	if (!master) {
7640 		if (__netdev_has_upper_dev(dev, upper_dev))
7641 			return -EEXIST;
7642 	} else {
7643 		master_dev = __netdev_master_upper_dev_get(dev);
7644 		if (master_dev)
7645 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7646 	}
7647 
7648 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7649 					    &changeupper_info.info);
7650 	ret = notifier_to_errno(ret);
7651 	if (ret)
7652 		return ret;
7653 
7654 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7655 						   master);
7656 	if (ret)
7657 		return ret;
7658 
7659 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7660 					    &changeupper_info.info);
7661 	ret = notifier_to_errno(ret);
7662 	if (ret)
7663 		goto rollback;
7664 
7665 	__netdev_update_upper_level(dev, NULL);
7666 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7667 
7668 	__netdev_update_lower_level(upper_dev, NULL);
7669 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7670 				    NULL);
7671 
7672 	return 0;
7673 
7674 rollback:
7675 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7676 
7677 	return ret;
7678 }
7679 
7680 /**
7681  * netdev_upper_dev_link - Add a link to the upper device
7682  * @dev: device
7683  * @upper_dev: new upper device
7684  * @extack: netlink extended ack
7685  *
7686  * Adds a link to device which is upper to this one. The caller must hold
7687  * the RTNL lock. On a failure a negative errno code is returned.
7688  * On success the reference counts are adjusted and the function
7689  * returns zero.
7690  */
7691 int netdev_upper_dev_link(struct net_device *dev,
7692 			  struct net_device *upper_dev,
7693 			  struct netlink_ext_ack *extack)
7694 {
7695 	return __netdev_upper_dev_link(dev, upper_dev, false,
7696 				       NULL, NULL, extack);
7697 }
7698 EXPORT_SYMBOL(netdev_upper_dev_link);
7699 
7700 /**
7701  * netdev_master_upper_dev_link - Add a master link to the upper device
7702  * @dev: device
7703  * @upper_dev: new upper device
7704  * @upper_priv: upper device private
7705  * @upper_info: upper info to be passed down via notifier
7706  * @extack: netlink extended ack
7707  *
7708  * Adds a link to device which is upper to this one. In this case, only
7709  * one master upper device can be linked, although other non-master devices
7710  * might be linked as well. The caller must hold the RTNL lock.
7711  * On a failure a negative errno code is returned. On success the reference
7712  * counts are adjusted and the function returns zero.
7713  */
7714 int netdev_master_upper_dev_link(struct net_device *dev,
7715 				 struct net_device *upper_dev,
7716 				 void *upper_priv, void *upper_info,
7717 				 struct netlink_ext_ack *extack)
7718 {
7719 	return __netdev_upper_dev_link(dev, upper_dev, true,
7720 				       upper_priv, upper_info, extack);
7721 }
7722 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7723 
7724 /**
7725  * netdev_upper_dev_unlink - Removes a link to upper device
7726  * @dev: device
7727  * @upper_dev: new upper device
7728  *
7729  * Removes a link to device which is upper to this one. The caller must hold
7730  * the RTNL lock.
7731  */
7732 void netdev_upper_dev_unlink(struct net_device *dev,
7733 			     struct net_device *upper_dev)
7734 {
7735 	struct netdev_notifier_changeupper_info changeupper_info = {
7736 		.info = {
7737 			.dev = dev,
7738 		},
7739 		.upper_dev = upper_dev,
7740 		.linking = false,
7741 	};
7742 
7743 	ASSERT_RTNL();
7744 
7745 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7746 
7747 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7748 				      &changeupper_info.info);
7749 
7750 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7751 
7752 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7753 				      &changeupper_info.info);
7754 
7755 	__netdev_update_upper_level(dev, NULL);
7756 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7757 
7758 	__netdev_update_lower_level(upper_dev, NULL);
7759 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7760 				    NULL);
7761 }
7762 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7763 
7764 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7765 				      struct net_device *lower_dev,
7766 				      bool val)
7767 {
7768 	struct netdev_adjacent *adj;
7769 
7770 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7771 	if (adj)
7772 		adj->ignore = val;
7773 
7774 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7775 	if (adj)
7776 		adj->ignore = val;
7777 }
7778 
7779 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7780 					struct net_device *lower_dev)
7781 {
7782 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7783 }
7784 
7785 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7786 				       struct net_device *lower_dev)
7787 {
7788 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7789 }
7790 
7791 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7792 				   struct net_device *new_dev,
7793 				   struct net_device *dev,
7794 				   struct netlink_ext_ack *extack)
7795 {
7796 	int err;
7797 
7798 	if (!new_dev)
7799 		return 0;
7800 
7801 	if (old_dev && new_dev != old_dev)
7802 		netdev_adjacent_dev_disable(dev, old_dev);
7803 
7804 	err = netdev_upper_dev_link(new_dev, dev, extack);
7805 	if (err) {
7806 		if (old_dev && new_dev != old_dev)
7807 			netdev_adjacent_dev_enable(dev, old_dev);
7808 		return err;
7809 	}
7810 
7811 	return 0;
7812 }
7813 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7814 
7815 void netdev_adjacent_change_commit(struct net_device *old_dev,
7816 				   struct net_device *new_dev,
7817 				   struct net_device *dev)
7818 {
7819 	if (!new_dev || !old_dev)
7820 		return;
7821 
7822 	if (new_dev == old_dev)
7823 		return;
7824 
7825 	netdev_adjacent_dev_enable(dev, old_dev);
7826 	netdev_upper_dev_unlink(old_dev, dev);
7827 }
7828 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7829 
7830 void netdev_adjacent_change_abort(struct net_device *old_dev,
7831 				  struct net_device *new_dev,
7832 				  struct net_device *dev)
7833 {
7834 	if (!new_dev)
7835 		return;
7836 
7837 	if (old_dev && new_dev != old_dev)
7838 		netdev_adjacent_dev_enable(dev, old_dev);
7839 
7840 	netdev_upper_dev_unlink(new_dev, dev);
7841 }
7842 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7843 
7844 /**
7845  * netdev_bonding_info_change - Dispatch event about slave change
7846  * @dev: device
7847  * @bonding_info: info to dispatch
7848  *
7849  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7850  * The caller must hold the RTNL lock.
7851  */
7852 void netdev_bonding_info_change(struct net_device *dev,
7853 				struct netdev_bonding_info *bonding_info)
7854 {
7855 	struct netdev_notifier_bonding_info info = {
7856 		.info.dev = dev,
7857 	};
7858 
7859 	memcpy(&info.bonding_info, bonding_info,
7860 	       sizeof(struct netdev_bonding_info));
7861 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7862 				      &info.info);
7863 }
7864 EXPORT_SYMBOL(netdev_bonding_info_change);
7865 
7866 /**
7867  * netdev_get_xmit_slave - Get the xmit slave of master device
7868  * @skb: The packet
7869  * @all_slaves: assume all the slaves are active
7870  *
7871  * The reference counters are not incremented so the caller must be
7872  * careful with locks. The caller must hold RCU lock.
7873  * %NULL is returned if no slave is found.
7874  */
7875 
7876 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7877 					 struct sk_buff *skb,
7878 					 bool all_slaves)
7879 {
7880 	const struct net_device_ops *ops = dev->netdev_ops;
7881 
7882 	if (!ops->ndo_get_xmit_slave)
7883 		return NULL;
7884 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7885 }
7886 EXPORT_SYMBOL(netdev_get_xmit_slave);
7887 
7888 static void netdev_adjacent_add_links(struct net_device *dev)
7889 {
7890 	struct netdev_adjacent *iter;
7891 
7892 	struct net *net = dev_net(dev);
7893 
7894 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7895 		if (!net_eq(net, dev_net(iter->dev)))
7896 			continue;
7897 		netdev_adjacent_sysfs_add(iter->dev, dev,
7898 					  &iter->dev->adj_list.lower);
7899 		netdev_adjacent_sysfs_add(dev, iter->dev,
7900 					  &dev->adj_list.upper);
7901 	}
7902 
7903 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7904 		if (!net_eq(net, dev_net(iter->dev)))
7905 			continue;
7906 		netdev_adjacent_sysfs_add(iter->dev, dev,
7907 					  &iter->dev->adj_list.upper);
7908 		netdev_adjacent_sysfs_add(dev, iter->dev,
7909 					  &dev->adj_list.lower);
7910 	}
7911 }
7912 
7913 static void netdev_adjacent_del_links(struct net_device *dev)
7914 {
7915 	struct netdev_adjacent *iter;
7916 
7917 	struct net *net = dev_net(dev);
7918 
7919 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7920 		if (!net_eq(net, dev_net(iter->dev)))
7921 			continue;
7922 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7923 					  &iter->dev->adj_list.lower);
7924 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7925 					  &dev->adj_list.upper);
7926 	}
7927 
7928 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7929 		if (!net_eq(net, dev_net(iter->dev)))
7930 			continue;
7931 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7932 					  &iter->dev->adj_list.upper);
7933 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7934 					  &dev->adj_list.lower);
7935 	}
7936 }
7937 
7938 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7939 {
7940 	struct netdev_adjacent *iter;
7941 
7942 	struct net *net = dev_net(dev);
7943 
7944 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7945 		if (!net_eq(net, dev_net(iter->dev)))
7946 			continue;
7947 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7948 					  &iter->dev->adj_list.lower);
7949 		netdev_adjacent_sysfs_add(iter->dev, dev,
7950 					  &iter->dev->adj_list.lower);
7951 	}
7952 
7953 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7954 		if (!net_eq(net, dev_net(iter->dev)))
7955 			continue;
7956 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7957 					  &iter->dev->adj_list.upper);
7958 		netdev_adjacent_sysfs_add(iter->dev, dev,
7959 					  &iter->dev->adj_list.upper);
7960 	}
7961 }
7962 
7963 void *netdev_lower_dev_get_private(struct net_device *dev,
7964 				   struct net_device *lower_dev)
7965 {
7966 	struct netdev_adjacent *lower;
7967 
7968 	if (!lower_dev)
7969 		return NULL;
7970 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7971 	if (!lower)
7972 		return NULL;
7973 
7974 	return lower->private;
7975 }
7976 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7977 
7978 
7979 /**
7980  * netdev_lower_change - Dispatch event about lower device state change
7981  * @lower_dev: device
7982  * @lower_state_info: state to dispatch
7983  *
7984  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7985  * The caller must hold the RTNL lock.
7986  */
7987 void netdev_lower_state_changed(struct net_device *lower_dev,
7988 				void *lower_state_info)
7989 {
7990 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7991 		.info.dev = lower_dev,
7992 	};
7993 
7994 	ASSERT_RTNL();
7995 	changelowerstate_info.lower_state_info = lower_state_info;
7996 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7997 				      &changelowerstate_info.info);
7998 }
7999 EXPORT_SYMBOL(netdev_lower_state_changed);
8000 
8001 static void dev_change_rx_flags(struct net_device *dev, int flags)
8002 {
8003 	const struct net_device_ops *ops = dev->netdev_ops;
8004 
8005 	if (ops->ndo_change_rx_flags)
8006 		ops->ndo_change_rx_flags(dev, flags);
8007 }
8008 
8009 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8010 {
8011 	unsigned int old_flags = dev->flags;
8012 	kuid_t uid;
8013 	kgid_t gid;
8014 
8015 	ASSERT_RTNL();
8016 
8017 	dev->flags |= IFF_PROMISC;
8018 	dev->promiscuity += inc;
8019 	if (dev->promiscuity == 0) {
8020 		/*
8021 		 * Avoid overflow.
8022 		 * If inc causes overflow, untouch promisc and return error.
8023 		 */
8024 		if (inc < 0)
8025 			dev->flags &= ~IFF_PROMISC;
8026 		else {
8027 			dev->promiscuity -= inc;
8028 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8029 				dev->name);
8030 			return -EOVERFLOW;
8031 		}
8032 	}
8033 	if (dev->flags != old_flags) {
8034 		pr_info("device %s %s promiscuous mode\n",
8035 			dev->name,
8036 			dev->flags & IFF_PROMISC ? "entered" : "left");
8037 		if (audit_enabled) {
8038 			current_uid_gid(&uid, &gid);
8039 			audit_log(audit_context(), GFP_ATOMIC,
8040 				  AUDIT_ANOM_PROMISCUOUS,
8041 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8042 				  dev->name, (dev->flags & IFF_PROMISC),
8043 				  (old_flags & IFF_PROMISC),
8044 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8045 				  from_kuid(&init_user_ns, uid),
8046 				  from_kgid(&init_user_ns, gid),
8047 				  audit_get_sessionid(current));
8048 		}
8049 
8050 		dev_change_rx_flags(dev, IFF_PROMISC);
8051 	}
8052 	if (notify)
8053 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8054 	return 0;
8055 }
8056 
8057 /**
8058  *	dev_set_promiscuity	- update promiscuity count on a device
8059  *	@dev: device
8060  *	@inc: modifier
8061  *
8062  *	Add or remove promiscuity from a device. While the count in the device
8063  *	remains above zero the interface remains promiscuous. Once it hits zero
8064  *	the device reverts back to normal filtering operation. A negative inc
8065  *	value is used to drop promiscuity on the device.
8066  *	Return 0 if successful or a negative errno code on error.
8067  */
8068 int dev_set_promiscuity(struct net_device *dev, int inc)
8069 {
8070 	unsigned int old_flags = dev->flags;
8071 	int err;
8072 
8073 	err = __dev_set_promiscuity(dev, inc, true);
8074 	if (err < 0)
8075 		return err;
8076 	if (dev->flags != old_flags)
8077 		dev_set_rx_mode(dev);
8078 	return err;
8079 }
8080 EXPORT_SYMBOL(dev_set_promiscuity);
8081 
8082 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8083 {
8084 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8085 
8086 	ASSERT_RTNL();
8087 
8088 	dev->flags |= IFF_ALLMULTI;
8089 	dev->allmulti += inc;
8090 	if (dev->allmulti == 0) {
8091 		/*
8092 		 * Avoid overflow.
8093 		 * If inc causes overflow, untouch allmulti and return error.
8094 		 */
8095 		if (inc < 0)
8096 			dev->flags &= ~IFF_ALLMULTI;
8097 		else {
8098 			dev->allmulti -= inc;
8099 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8100 				dev->name);
8101 			return -EOVERFLOW;
8102 		}
8103 	}
8104 	if (dev->flags ^ old_flags) {
8105 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8106 		dev_set_rx_mode(dev);
8107 		if (notify)
8108 			__dev_notify_flags(dev, old_flags,
8109 					   dev->gflags ^ old_gflags);
8110 	}
8111 	return 0;
8112 }
8113 
8114 /**
8115  *	dev_set_allmulti	- update allmulti count on a device
8116  *	@dev: device
8117  *	@inc: modifier
8118  *
8119  *	Add or remove reception of all multicast frames to a device. While the
8120  *	count in the device remains above zero the interface remains listening
8121  *	to all interfaces. Once it hits zero the device reverts back to normal
8122  *	filtering operation. A negative @inc value is used to drop the counter
8123  *	when releasing a resource needing all multicasts.
8124  *	Return 0 if successful or a negative errno code on error.
8125  */
8126 
8127 int dev_set_allmulti(struct net_device *dev, int inc)
8128 {
8129 	return __dev_set_allmulti(dev, inc, true);
8130 }
8131 EXPORT_SYMBOL(dev_set_allmulti);
8132 
8133 /*
8134  *	Upload unicast and multicast address lists to device and
8135  *	configure RX filtering. When the device doesn't support unicast
8136  *	filtering it is put in promiscuous mode while unicast addresses
8137  *	are present.
8138  */
8139 void __dev_set_rx_mode(struct net_device *dev)
8140 {
8141 	const struct net_device_ops *ops = dev->netdev_ops;
8142 
8143 	/* dev_open will call this function so the list will stay sane. */
8144 	if (!(dev->flags&IFF_UP))
8145 		return;
8146 
8147 	if (!netif_device_present(dev))
8148 		return;
8149 
8150 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8151 		/* Unicast addresses changes may only happen under the rtnl,
8152 		 * therefore calling __dev_set_promiscuity here is safe.
8153 		 */
8154 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8155 			__dev_set_promiscuity(dev, 1, false);
8156 			dev->uc_promisc = true;
8157 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8158 			__dev_set_promiscuity(dev, -1, false);
8159 			dev->uc_promisc = false;
8160 		}
8161 	}
8162 
8163 	if (ops->ndo_set_rx_mode)
8164 		ops->ndo_set_rx_mode(dev);
8165 }
8166 
8167 void dev_set_rx_mode(struct net_device *dev)
8168 {
8169 	netif_addr_lock_bh(dev);
8170 	__dev_set_rx_mode(dev);
8171 	netif_addr_unlock_bh(dev);
8172 }
8173 
8174 /**
8175  *	dev_get_flags - get flags reported to userspace
8176  *	@dev: device
8177  *
8178  *	Get the combination of flag bits exported through APIs to userspace.
8179  */
8180 unsigned int dev_get_flags(const struct net_device *dev)
8181 {
8182 	unsigned int flags;
8183 
8184 	flags = (dev->flags & ~(IFF_PROMISC |
8185 				IFF_ALLMULTI |
8186 				IFF_RUNNING |
8187 				IFF_LOWER_UP |
8188 				IFF_DORMANT)) |
8189 		(dev->gflags & (IFF_PROMISC |
8190 				IFF_ALLMULTI));
8191 
8192 	if (netif_running(dev)) {
8193 		if (netif_oper_up(dev))
8194 			flags |= IFF_RUNNING;
8195 		if (netif_carrier_ok(dev))
8196 			flags |= IFF_LOWER_UP;
8197 		if (netif_dormant(dev))
8198 			flags |= IFF_DORMANT;
8199 	}
8200 
8201 	return flags;
8202 }
8203 EXPORT_SYMBOL(dev_get_flags);
8204 
8205 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8206 		       struct netlink_ext_ack *extack)
8207 {
8208 	unsigned int old_flags = dev->flags;
8209 	int ret;
8210 
8211 	ASSERT_RTNL();
8212 
8213 	/*
8214 	 *	Set the flags on our device.
8215 	 */
8216 
8217 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8218 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8219 			       IFF_AUTOMEDIA)) |
8220 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8221 				    IFF_ALLMULTI));
8222 
8223 	/*
8224 	 *	Load in the correct multicast list now the flags have changed.
8225 	 */
8226 
8227 	if ((old_flags ^ flags) & IFF_MULTICAST)
8228 		dev_change_rx_flags(dev, IFF_MULTICAST);
8229 
8230 	dev_set_rx_mode(dev);
8231 
8232 	/*
8233 	 *	Have we downed the interface. We handle IFF_UP ourselves
8234 	 *	according to user attempts to set it, rather than blindly
8235 	 *	setting it.
8236 	 */
8237 
8238 	ret = 0;
8239 	if ((old_flags ^ flags) & IFF_UP) {
8240 		if (old_flags & IFF_UP)
8241 			__dev_close(dev);
8242 		else
8243 			ret = __dev_open(dev, extack);
8244 	}
8245 
8246 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8247 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8248 		unsigned int old_flags = dev->flags;
8249 
8250 		dev->gflags ^= IFF_PROMISC;
8251 
8252 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8253 			if (dev->flags != old_flags)
8254 				dev_set_rx_mode(dev);
8255 	}
8256 
8257 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8258 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8259 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8260 	 */
8261 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8262 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8263 
8264 		dev->gflags ^= IFF_ALLMULTI;
8265 		__dev_set_allmulti(dev, inc, false);
8266 	}
8267 
8268 	return ret;
8269 }
8270 
8271 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8272 			unsigned int gchanges)
8273 {
8274 	unsigned int changes = dev->flags ^ old_flags;
8275 
8276 	if (gchanges)
8277 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8278 
8279 	if (changes & IFF_UP) {
8280 		if (dev->flags & IFF_UP)
8281 			call_netdevice_notifiers(NETDEV_UP, dev);
8282 		else
8283 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8284 	}
8285 
8286 	if (dev->flags & IFF_UP &&
8287 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8288 		struct netdev_notifier_change_info change_info = {
8289 			.info = {
8290 				.dev = dev,
8291 			},
8292 			.flags_changed = changes,
8293 		};
8294 
8295 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8296 	}
8297 }
8298 
8299 /**
8300  *	dev_change_flags - change device settings
8301  *	@dev: device
8302  *	@flags: device state flags
8303  *	@extack: netlink extended ack
8304  *
8305  *	Change settings on device based state flags. The flags are
8306  *	in the userspace exported format.
8307  */
8308 int dev_change_flags(struct net_device *dev, unsigned int flags,
8309 		     struct netlink_ext_ack *extack)
8310 {
8311 	int ret;
8312 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8313 
8314 	ret = __dev_change_flags(dev, flags, extack);
8315 	if (ret < 0)
8316 		return ret;
8317 
8318 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8319 	__dev_notify_flags(dev, old_flags, changes);
8320 	return ret;
8321 }
8322 EXPORT_SYMBOL(dev_change_flags);
8323 
8324 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8325 {
8326 	const struct net_device_ops *ops = dev->netdev_ops;
8327 
8328 	if (ops->ndo_change_mtu)
8329 		return ops->ndo_change_mtu(dev, new_mtu);
8330 
8331 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8332 	WRITE_ONCE(dev->mtu, new_mtu);
8333 	return 0;
8334 }
8335 EXPORT_SYMBOL(__dev_set_mtu);
8336 
8337 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8338 		     struct netlink_ext_ack *extack)
8339 {
8340 	/* MTU must be positive, and in range */
8341 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8342 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8343 		return -EINVAL;
8344 	}
8345 
8346 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8347 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8348 		return -EINVAL;
8349 	}
8350 	return 0;
8351 }
8352 
8353 /**
8354  *	dev_set_mtu_ext - Change maximum transfer unit
8355  *	@dev: device
8356  *	@new_mtu: new transfer unit
8357  *	@extack: netlink extended ack
8358  *
8359  *	Change the maximum transfer size of the network device.
8360  */
8361 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8362 		    struct netlink_ext_ack *extack)
8363 {
8364 	int err, orig_mtu;
8365 
8366 	if (new_mtu == dev->mtu)
8367 		return 0;
8368 
8369 	err = dev_validate_mtu(dev, new_mtu, extack);
8370 	if (err)
8371 		return err;
8372 
8373 	if (!netif_device_present(dev))
8374 		return -ENODEV;
8375 
8376 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8377 	err = notifier_to_errno(err);
8378 	if (err)
8379 		return err;
8380 
8381 	orig_mtu = dev->mtu;
8382 	err = __dev_set_mtu(dev, new_mtu);
8383 
8384 	if (!err) {
8385 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8386 						   orig_mtu);
8387 		err = notifier_to_errno(err);
8388 		if (err) {
8389 			/* setting mtu back and notifying everyone again,
8390 			 * so that they have a chance to revert changes.
8391 			 */
8392 			__dev_set_mtu(dev, orig_mtu);
8393 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8394 						     new_mtu);
8395 		}
8396 	}
8397 	return err;
8398 }
8399 
8400 int dev_set_mtu(struct net_device *dev, int new_mtu)
8401 {
8402 	struct netlink_ext_ack extack;
8403 	int err;
8404 
8405 	memset(&extack, 0, sizeof(extack));
8406 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8407 	if (err && extack._msg)
8408 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8409 	return err;
8410 }
8411 EXPORT_SYMBOL(dev_set_mtu);
8412 
8413 /**
8414  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8415  *	@dev: device
8416  *	@new_len: new tx queue length
8417  */
8418 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8419 {
8420 	unsigned int orig_len = dev->tx_queue_len;
8421 	int res;
8422 
8423 	if (new_len != (unsigned int)new_len)
8424 		return -ERANGE;
8425 
8426 	if (new_len != orig_len) {
8427 		dev->tx_queue_len = new_len;
8428 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8429 		res = notifier_to_errno(res);
8430 		if (res)
8431 			goto err_rollback;
8432 		res = dev_qdisc_change_tx_queue_len(dev);
8433 		if (res)
8434 			goto err_rollback;
8435 	}
8436 
8437 	return 0;
8438 
8439 err_rollback:
8440 	netdev_err(dev, "refused to change device tx_queue_len\n");
8441 	dev->tx_queue_len = orig_len;
8442 	return res;
8443 }
8444 
8445 /**
8446  *	dev_set_group - Change group this device belongs to
8447  *	@dev: device
8448  *	@new_group: group this device should belong to
8449  */
8450 void dev_set_group(struct net_device *dev, int new_group)
8451 {
8452 	dev->group = new_group;
8453 }
8454 EXPORT_SYMBOL(dev_set_group);
8455 
8456 /**
8457  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8458  *	@dev: device
8459  *	@addr: new address
8460  *	@extack: netlink extended ack
8461  */
8462 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8463 			      struct netlink_ext_ack *extack)
8464 {
8465 	struct netdev_notifier_pre_changeaddr_info info = {
8466 		.info.dev = dev,
8467 		.info.extack = extack,
8468 		.dev_addr = addr,
8469 	};
8470 	int rc;
8471 
8472 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8473 	return notifier_to_errno(rc);
8474 }
8475 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8476 
8477 /**
8478  *	dev_set_mac_address - Change Media Access Control Address
8479  *	@dev: device
8480  *	@sa: new address
8481  *	@extack: netlink extended ack
8482  *
8483  *	Change the hardware (MAC) address of the device
8484  */
8485 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8486 			struct netlink_ext_ack *extack)
8487 {
8488 	const struct net_device_ops *ops = dev->netdev_ops;
8489 	int err;
8490 
8491 	if (!ops->ndo_set_mac_address)
8492 		return -EOPNOTSUPP;
8493 	if (sa->sa_family != dev->type)
8494 		return -EINVAL;
8495 	if (!netif_device_present(dev))
8496 		return -ENODEV;
8497 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8498 	if (err)
8499 		return err;
8500 	err = ops->ndo_set_mac_address(dev, sa);
8501 	if (err)
8502 		return err;
8503 	dev->addr_assign_type = NET_ADDR_SET;
8504 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8505 	add_device_randomness(dev->dev_addr, dev->addr_len);
8506 	return 0;
8507 }
8508 EXPORT_SYMBOL(dev_set_mac_address);
8509 
8510 /**
8511  *	dev_change_carrier - Change device carrier
8512  *	@dev: device
8513  *	@new_carrier: new value
8514  *
8515  *	Change device carrier
8516  */
8517 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8518 {
8519 	const struct net_device_ops *ops = dev->netdev_ops;
8520 
8521 	if (!ops->ndo_change_carrier)
8522 		return -EOPNOTSUPP;
8523 	if (!netif_device_present(dev))
8524 		return -ENODEV;
8525 	return ops->ndo_change_carrier(dev, new_carrier);
8526 }
8527 EXPORT_SYMBOL(dev_change_carrier);
8528 
8529 /**
8530  *	dev_get_phys_port_id - Get device physical port ID
8531  *	@dev: device
8532  *	@ppid: port ID
8533  *
8534  *	Get device physical port ID
8535  */
8536 int dev_get_phys_port_id(struct net_device *dev,
8537 			 struct netdev_phys_item_id *ppid)
8538 {
8539 	const struct net_device_ops *ops = dev->netdev_ops;
8540 
8541 	if (!ops->ndo_get_phys_port_id)
8542 		return -EOPNOTSUPP;
8543 	return ops->ndo_get_phys_port_id(dev, ppid);
8544 }
8545 EXPORT_SYMBOL(dev_get_phys_port_id);
8546 
8547 /**
8548  *	dev_get_phys_port_name - Get device physical port name
8549  *	@dev: device
8550  *	@name: port name
8551  *	@len: limit of bytes to copy to name
8552  *
8553  *	Get device physical port name
8554  */
8555 int dev_get_phys_port_name(struct net_device *dev,
8556 			   char *name, size_t len)
8557 {
8558 	const struct net_device_ops *ops = dev->netdev_ops;
8559 	int err;
8560 
8561 	if (ops->ndo_get_phys_port_name) {
8562 		err = ops->ndo_get_phys_port_name(dev, name, len);
8563 		if (err != -EOPNOTSUPP)
8564 			return err;
8565 	}
8566 	return devlink_compat_phys_port_name_get(dev, name, len);
8567 }
8568 EXPORT_SYMBOL(dev_get_phys_port_name);
8569 
8570 /**
8571  *	dev_get_port_parent_id - Get the device's port parent identifier
8572  *	@dev: network device
8573  *	@ppid: pointer to a storage for the port's parent identifier
8574  *	@recurse: allow/disallow recursion to lower devices
8575  *
8576  *	Get the devices's port parent identifier
8577  */
8578 int dev_get_port_parent_id(struct net_device *dev,
8579 			   struct netdev_phys_item_id *ppid,
8580 			   bool recurse)
8581 {
8582 	const struct net_device_ops *ops = dev->netdev_ops;
8583 	struct netdev_phys_item_id first = { };
8584 	struct net_device *lower_dev;
8585 	struct list_head *iter;
8586 	int err;
8587 
8588 	if (ops->ndo_get_port_parent_id) {
8589 		err = ops->ndo_get_port_parent_id(dev, ppid);
8590 		if (err != -EOPNOTSUPP)
8591 			return err;
8592 	}
8593 
8594 	err = devlink_compat_switch_id_get(dev, ppid);
8595 	if (!err || err != -EOPNOTSUPP)
8596 		return err;
8597 
8598 	if (!recurse)
8599 		return -EOPNOTSUPP;
8600 
8601 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8602 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8603 		if (err)
8604 			break;
8605 		if (!first.id_len)
8606 			first = *ppid;
8607 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8608 			return -ENODATA;
8609 	}
8610 
8611 	return err;
8612 }
8613 EXPORT_SYMBOL(dev_get_port_parent_id);
8614 
8615 /**
8616  *	netdev_port_same_parent_id - Indicate if two network devices have
8617  *	the same port parent identifier
8618  *	@a: first network device
8619  *	@b: second network device
8620  */
8621 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8622 {
8623 	struct netdev_phys_item_id a_id = { };
8624 	struct netdev_phys_item_id b_id = { };
8625 
8626 	if (dev_get_port_parent_id(a, &a_id, true) ||
8627 	    dev_get_port_parent_id(b, &b_id, true))
8628 		return false;
8629 
8630 	return netdev_phys_item_id_same(&a_id, &b_id);
8631 }
8632 EXPORT_SYMBOL(netdev_port_same_parent_id);
8633 
8634 /**
8635  *	dev_change_proto_down - update protocol port state information
8636  *	@dev: device
8637  *	@proto_down: new value
8638  *
8639  *	This info can be used by switch drivers to set the phys state of the
8640  *	port.
8641  */
8642 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8643 {
8644 	const struct net_device_ops *ops = dev->netdev_ops;
8645 
8646 	if (!ops->ndo_change_proto_down)
8647 		return -EOPNOTSUPP;
8648 	if (!netif_device_present(dev))
8649 		return -ENODEV;
8650 	return ops->ndo_change_proto_down(dev, proto_down);
8651 }
8652 EXPORT_SYMBOL(dev_change_proto_down);
8653 
8654 /**
8655  *	dev_change_proto_down_generic - generic implementation for
8656  * 	ndo_change_proto_down that sets carrier according to
8657  * 	proto_down.
8658  *
8659  *	@dev: device
8660  *	@proto_down: new value
8661  */
8662 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8663 {
8664 	if (proto_down)
8665 		netif_carrier_off(dev);
8666 	else
8667 		netif_carrier_on(dev);
8668 	dev->proto_down = proto_down;
8669 	return 0;
8670 }
8671 EXPORT_SYMBOL(dev_change_proto_down_generic);
8672 
8673 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8674 		    enum bpf_netdev_command cmd)
8675 {
8676 	struct netdev_bpf xdp;
8677 
8678 	if (!bpf_op)
8679 		return 0;
8680 
8681 	memset(&xdp, 0, sizeof(xdp));
8682 	xdp.command = cmd;
8683 
8684 	/* Query must always succeed. */
8685 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8686 
8687 	return xdp.prog_id;
8688 }
8689 
8690 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8691 			   struct netlink_ext_ack *extack, u32 flags,
8692 			   struct bpf_prog *prog)
8693 {
8694 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8695 	struct bpf_prog *prev_prog = NULL;
8696 	struct netdev_bpf xdp;
8697 	int err;
8698 
8699 	if (non_hw) {
8700 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8701 							   XDP_QUERY_PROG));
8702 		if (IS_ERR(prev_prog))
8703 			prev_prog = NULL;
8704 	}
8705 
8706 	memset(&xdp, 0, sizeof(xdp));
8707 	if (flags & XDP_FLAGS_HW_MODE)
8708 		xdp.command = XDP_SETUP_PROG_HW;
8709 	else
8710 		xdp.command = XDP_SETUP_PROG;
8711 	xdp.extack = extack;
8712 	xdp.flags = flags;
8713 	xdp.prog = prog;
8714 
8715 	err = bpf_op(dev, &xdp);
8716 	if (!err && non_hw)
8717 		bpf_prog_change_xdp(prev_prog, prog);
8718 
8719 	if (prev_prog)
8720 		bpf_prog_put(prev_prog);
8721 
8722 	return err;
8723 }
8724 
8725 static void dev_xdp_uninstall(struct net_device *dev)
8726 {
8727 	struct netdev_bpf xdp;
8728 	bpf_op_t ndo_bpf;
8729 
8730 	/* Remove generic XDP */
8731 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8732 
8733 	/* Remove from the driver */
8734 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8735 	if (!ndo_bpf)
8736 		return;
8737 
8738 	memset(&xdp, 0, sizeof(xdp));
8739 	xdp.command = XDP_QUERY_PROG;
8740 	WARN_ON(ndo_bpf(dev, &xdp));
8741 	if (xdp.prog_id)
8742 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8743 					NULL));
8744 
8745 	/* Remove HW offload */
8746 	memset(&xdp, 0, sizeof(xdp));
8747 	xdp.command = XDP_QUERY_PROG_HW;
8748 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8749 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8750 					NULL));
8751 }
8752 
8753 /**
8754  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8755  *	@dev: device
8756  *	@extack: netlink extended ack
8757  *	@fd: new program fd or negative value to clear
8758  *	@expected_fd: old program fd that userspace expects to replace or clear
8759  *	@flags: xdp-related flags
8760  *
8761  *	Set or clear a bpf program for a device
8762  */
8763 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8764 		      int fd, int expected_fd, u32 flags)
8765 {
8766 	const struct net_device_ops *ops = dev->netdev_ops;
8767 	enum bpf_netdev_command query;
8768 	u32 prog_id, expected_id = 0;
8769 	bpf_op_t bpf_op, bpf_chk;
8770 	struct bpf_prog *prog;
8771 	bool offload;
8772 	int err;
8773 
8774 	ASSERT_RTNL();
8775 
8776 	offload = flags & XDP_FLAGS_HW_MODE;
8777 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8778 
8779 	bpf_op = bpf_chk = ops->ndo_bpf;
8780 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8781 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8782 		return -EOPNOTSUPP;
8783 	}
8784 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8785 		bpf_op = generic_xdp_install;
8786 	if (bpf_op == bpf_chk)
8787 		bpf_chk = generic_xdp_install;
8788 
8789 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8790 	if (flags & XDP_FLAGS_REPLACE) {
8791 		if (expected_fd >= 0) {
8792 			prog = bpf_prog_get_type_dev(expected_fd,
8793 						     BPF_PROG_TYPE_XDP,
8794 						     bpf_op == ops->ndo_bpf);
8795 			if (IS_ERR(prog))
8796 				return PTR_ERR(prog);
8797 			expected_id = prog->aux->id;
8798 			bpf_prog_put(prog);
8799 		}
8800 
8801 		if (prog_id != expected_id) {
8802 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8803 			return -EEXIST;
8804 		}
8805 	}
8806 	if (fd >= 0) {
8807 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8808 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8809 			return -EEXIST;
8810 		}
8811 
8812 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8813 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8814 			return -EBUSY;
8815 		}
8816 
8817 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8818 					     bpf_op == ops->ndo_bpf);
8819 		if (IS_ERR(prog))
8820 			return PTR_ERR(prog);
8821 
8822 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8823 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8824 			bpf_prog_put(prog);
8825 			return -EINVAL;
8826 		}
8827 
8828 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8829 		if (prog->aux->id && prog->aux->id == prog_id) {
8830 			bpf_prog_put(prog);
8831 			return 0;
8832 		}
8833 	} else {
8834 		if (!prog_id)
8835 			return 0;
8836 		prog = NULL;
8837 	}
8838 
8839 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8840 	if (err < 0 && prog)
8841 		bpf_prog_put(prog);
8842 
8843 	return err;
8844 }
8845 
8846 /**
8847  *	dev_new_index	-	allocate an ifindex
8848  *	@net: the applicable net namespace
8849  *
8850  *	Returns a suitable unique value for a new device interface
8851  *	number.  The caller must hold the rtnl semaphore or the
8852  *	dev_base_lock to be sure it remains unique.
8853  */
8854 static int dev_new_index(struct net *net)
8855 {
8856 	int ifindex = net->ifindex;
8857 
8858 	for (;;) {
8859 		if (++ifindex <= 0)
8860 			ifindex = 1;
8861 		if (!__dev_get_by_index(net, ifindex))
8862 			return net->ifindex = ifindex;
8863 	}
8864 }
8865 
8866 /* Delayed registration/unregisteration */
8867 static LIST_HEAD(net_todo_list);
8868 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8869 
8870 static void net_set_todo(struct net_device *dev)
8871 {
8872 	list_add_tail(&dev->todo_list, &net_todo_list);
8873 	dev_net(dev)->dev_unreg_count++;
8874 }
8875 
8876 static void rollback_registered_many(struct list_head *head)
8877 {
8878 	struct net_device *dev, *tmp;
8879 	LIST_HEAD(close_head);
8880 
8881 	BUG_ON(dev_boot_phase);
8882 	ASSERT_RTNL();
8883 
8884 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8885 		/* Some devices call without registering
8886 		 * for initialization unwind. Remove those
8887 		 * devices and proceed with the remaining.
8888 		 */
8889 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8890 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8891 				 dev->name, dev);
8892 
8893 			WARN_ON(1);
8894 			list_del(&dev->unreg_list);
8895 			continue;
8896 		}
8897 		dev->dismantle = true;
8898 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8899 	}
8900 
8901 	/* If device is running, close it first. */
8902 	list_for_each_entry(dev, head, unreg_list)
8903 		list_add_tail(&dev->close_list, &close_head);
8904 	dev_close_many(&close_head, true);
8905 
8906 	list_for_each_entry(dev, head, unreg_list) {
8907 		/* And unlink it from device chain. */
8908 		unlist_netdevice(dev);
8909 
8910 		dev->reg_state = NETREG_UNREGISTERING;
8911 	}
8912 	flush_all_backlogs();
8913 
8914 	synchronize_net();
8915 
8916 	list_for_each_entry(dev, head, unreg_list) {
8917 		struct sk_buff *skb = NULL;
8918 
8919 		/* Shutdown queueing discipline. */
8920 		dev_shutdown(dev);
8921 
8922 		dev_xdp_uninstall(dev);
8923 
8924 		/* Notify protocols, that we are about to destroy
8925 		 * this device. They should clean all the things.
8926 		 */
8927 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8928 
8929 		if (!dev->rtnl_link_ops ||
8930 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8931 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8932 						     GFP_KERNEL, NULL, 0);
8933 
8934 		/*
8935 		 *	Flush the unicast and multicast chains
8936 		 */
8937 		dev_uc_flush(dev);
8938 		dev_mc_flush(dev);
8939 
8940 		netdev_name_node_alt_flush(dev);
8941 		netdev_name_node_free(dev->name_node);
8942 
8943 		if (dev->netdev_ops->ndo_uninit)
8944 			dev->netdev_ops->ndo_uninit(dev);
8945 
8946 		if (skb)
8947 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8948 
8949 		/* Notifier chain MUST detach us all upper devices. */
8950 		WARN_ON(netdev_has_any_upper_dev(dev));
8951 		WARN_ON(netdev_has_any_lower_dev(dev));
8952 
8953 		/* Remove entries from kobject tree */
8954 		netdev_unregister_kobject(dev);
8955 #ifdef CONFIG_XPS
8956 		/* Remove XPS queueing entries */
8957 		netif_reset_xps_queues_gt(dev, 0);
8958 #endif
8959 	}
8960 
8961 	synchronize_net();
8962 
8963 	list_for_each_entry(dev, head, unreg_list)
8964 		dev_put(dev);
8965 }
8966 
8967 static void rollback_registered(struct net_device *dev)
8968 {
8969 	LIST_HEAD(single);
8970 
8971 	list_add(&dev->unreg_list, &single);
8972 	rollback_registered_many(&single);
8973 	list_del(&single);
8974 }
8975 
8976 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8977 	struct net_device *upper, netdev_features_t features)
8978 {
8979 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8980 	netdev_features_t feature;
8981 	int feature_bit;
8982 
8983 	for_each_netdev_feature(upper_disables, feature_bit) {
8984 		feature = __NETIF_F_BIT(feature_bit);
8985 		if (!(upper->wanted_features & feature)
8986 		    && (features & feature)) {
8987 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8988 				   &feature, upper->name);
8989 			features &= ~feature;
8990 		}
8991 	}
8992 
8993 	return features;
8994 }
8995 
8996 static void netdev_sync_lower_features(struct net_device *upper,
8997 	struct net_device *lower, netdev_features_t features)
8998 {
8999 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9000 	netdev_features_t feature;
9001 	int feature_bit;
9002 
9003 	for_each_netdev_feature(upper_disables, feature_bit) {
9004 		feature = __NETIF_F_BIT(feature_bit);
9005 		if (!(features & feature) && (lower->features & feature)) {
9006 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9007 				   &feature, lower->name);
9008 			lower->wanted_features &= ~feature;
9009 			__netdev_update_features(lower);
9010 
9011 			if (unlikely(lower->features & feature))
9012 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9013 					    &feature, lower->name);
9014 			else
9015 				netdev_features_change(lower);
9016 		}
9017 	}
9018 }
9019 
9020 static netdev_features_t netdev_fix_features(struct net_device *dev,
9021 	netdev_features_t features)
9022 {
9023 	/* Fix illegal checksum combinations */
9024 	if ((features & NETIF_F_HW_CSUM) &&
9025 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9026 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9027 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9028 	}
9029 
9030 	/* TSO requires that SG is present as well. */
9031 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9032 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9033 		features &= ~NETIF_F_ALL_TSO;
9034 	}
9035 
9036 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9037 					!(features & NETIF_F_IP_CSUM)) {
9038 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9039 		features &= ~NETIF_F_TSO;
9040 		features &= ~NETIF_F_TSO_ECN;
9041 	}
9042 
9043 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9044 					 !(features & NETIF_F_IPV6_CSUM)) {
9045 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9046 		features &= ~NETIF_F_TSO6;
9047 	}
9048 
9049 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9050 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9051 		features &= ~NETIF_F_TSO_MANGLEID;
9052 
9053 	/* TSO ECN requires that TSO is present as well. */
9054 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9055 		features &= ~NETIF_F_TSO_ECN;
9056 
9057 	/* Software GSO depends on SG. */
9058 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9059 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9060 		features &= ~NETIF_F_GSO;
9061 	}
9062 
9063 	/* GSO partial features require GSO partial be set */
9064 	if ((features & dev->gso_partial_features) &&
9065 	    !(features & NETIF_F_GSO_PARTIAL)) {
9066 		netdev_dbg(dev,
9067 			   "Dropping partially supported GSO features since no GSO partial.\n");
9068 		features &= ~dev->gso_partial_features;
9069 	}
9070 
9071 	if (!(features & NETIF_F_RXCSUM)) {
9072 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9073 		 * successfully merged by hardware must also have the
9074 		 * checksum verified by hardware.  If the user does not
9075 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9076 		 */
9077 		if (features & NETIF_F_GRO_HW) {
9078 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9079 			features &= ~NETIF_F_GRO_HW;
9080 		}
9081 	}
9082 
9083 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9084 	if (features & NETIF_F_RXFCS) {
9085 		if (features & NETIF_F_LRO) {
9086 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9087 			features &= ~NETIF_F_LRO;
9088 		}
9089 
9090 		if (features & NETIF_F_GRO_HW) {
9091 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9092 			features &= ~NETIF_F_GRO_HW;
9093 		}
9094 	}
9095 
9096 	return features;
9097 }
9098 
9099 int __netdev_update_features(struct net_device *dev)
9100 {
9101 	struct net_device *upper, *lower;
9102 	netdev_features_t features;
9103 	struct list_head *iter;
9104 	int err = -1;
9105 
9106 	ASSERT_RTNL();
9107 
9108 	features = netdev_get_wanted_features(dev);
9109 
9110 	if (dev->netdev_ops->ndo_fix_features)
9111 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9112 
9113 	/* driver might be less strict about feature dependencies */
9114 	features = netdev_fix_features(dev, features);
9115 
9116 	/* some features can't be enabled if they're off an an upper device */
9117 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9118 		features = netdev_sync_upper_features(dev, upper, features);
9119 
9120 	if (dev->features == features)
9121 		goto sync_lower;
9122 
9123 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9124 		&dev->features, &features);
9125 
9126 	if (dev->netdev_ops->ndo_set_features)
9127 		err = dev->netdev_ops->ndo_set_features(dev, features);
9128 	else
9129 		err = 0;
9130 
9131 	if (unlikely(err < 0)) {
9132 		netdev_err(dev,
9133 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9134 			err, &features, &dev->features);
9135 		/* return non-0 since some features might have changed and
9136 		 * it's better to fire a spurious notification than miss it
9137 		 */
9138 		return -1;
9139 	}
9140 
9141 sync_lower:
9142 	/* some features must be disabled on lower devices when disabled
9143 	 * on an upper device (think: bonding master or bridge)
9144 	 */
9145 	netdev_for_each_lower_dev(dev, lower, iter)
9146 		netdev_sync_lower_features(dev, lower, features);
9147 
9148 	if (!err) {
9149 		netdev_features_t diff = features ^ dev->features;
9150 
9151 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9152 			/* udp_tunnel_{get,drop}_rx_info both need
9153 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9154 			 * device, or they won't do anything.
9155 			 * Thus we need to update dev->features
9156 			 * *before* calling udp_tunnel_get_rx_info,
9157 			 * but *after* calling udp_tunnel_drop_rx_info.
9158 			 */
9159 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9160 				dev->features = features;
9161 				udp_tunnel_get_rx_info(dev);
9162 			} else {
9163 				udp_tunnel_drop_rx_info(dev);
9164 			}
9165 		}
9166 
9167 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9168 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9169 				dev->features = features;
9170 				err |= vlan_get_rx_ctag_filter_info(dev);
9171 			} else {
9172 				vlan_drop_rx_ctag_filter_info(dev);
9173 			}
9174 		}
9175 
9176 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9177 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9178 				dev->features = features;
9179 				err |= vlan_get_rx_stag_filter_info(dev);
9180 			} else {
9181 				vlan_drop_rx_stag_filter_info(dev);
9182 			}
9183 		}
9184 
9185 		dev->features = features;
9186 	}
9187 
9188 	return err < 0 ? 0 : 1;
9189 }
9190 
9191 /**
9192  *	netdev_update_features - recalculate device features
9193  *	@dev: the device to check
9194  *
9195  *	Recalculate dev->features set and send notifications if it
9196  *	has changed. Should be called after driver or hardware dependent
9197  *	conditions might have changed that influence the features.
9198  */
9199 void netdev_update_features(struct net_device *dev)
9200 {
9201 	if (__netdev_update_features(dev))
9202 		netdev_features_change(dev);
9203 }
9204 EXPORT_SYMBOL(netdev_update_features);
9205 
9206 /**
9207  *	netdev_change_features - recalculate device features
9208  *	@dev: the device to check
9209  *
9210  *	Recalculate dev->features set and send notifications even
9211  *	if they have not changed. Should be called instead of
9212  *	netdev_update_features() if also dev->vlan_features might
9213  *	have changed to allow the changes to be propagated to stacked
9214  *	VLAN devices.
9215  */
9216 void netdev_change_features(struct net_device *dev)
9217 {
9218 	__netdev_update_features(dev);
9219 	netdev_features_change(dev);
9220 }
9221 EXPORT_SYMBOL(netdev_change_features);
9222 
9223 /**
9224  *	netif_stacked_transfer_operstate -	transfer operstate
9225  *	@rootdev: the root or lower level device to transfer state from
9226  *	@dev: the device to transfer operstate to
9227  *
9228  *	Transfer operational state from root to device. This is normally
9229  *	called when a stacking relationship exists between the root
9230  *	device and the device(a leaf device).
9231  */
9232 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9233 					struct net_device *dev)
9234 {
9235 	if (rootdev->operstate == IF_OPER_DORMANT)
9236 		netif_dormant_on(dev);
9237 	else
9238 		netif_dormant_off(dev);
9239 
9240 	if (rootdev->operstate == IF_OPER_TESTING)
9241 		netif_testing_on(dev);
9242 	else
9243 		netif_testing_off(dev);
9244 
9245 	if (netif_carrier_ok(rootdev))
9246 		netif_carrier_on(dev);
9247 	else
9248 		netif_carrier_off(dev);
9249 }
9250 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9251 
9252 static int netif_alloc_rx_queues(struct net_device *dev)
9253 {
9254 	unsigned int i, count = dev->num_rx_queues;
9255 	struct netdev_rx_queue *rx;
9256 	size_t sz = count * sizeof(*rx);
9257 	int err = 0;
9258 
9259 	BUG_ON(count < 1);
9260 
9261 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9262 	if (!rx)
9263 		return -ENOMEM;
9264 
9265 	dev->_rx = rx;
9266 
9267 	for (i = 0; i < count; i++) {
9268 		rx[i].dev = dev;
9269 
9270 		/* XDP RX-queue setup */
9271 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9272 		if (err < 0)
9273 			goto err_rxq_info;
9274 	}
9275 	return 0;
9276 
9277 err_rxq_info:
9278 	/* Rollback successful reg's and free other resources */
9279 	while (i--)
9280 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9281 	kvfree(dev->_rx);
9282 	dev->_rx = NULL;
9283 	return err;
9284 }
9285 
9286 static void netif_free_rx_queues(struct net_device *dev)
9287 {
9288 	unsigned int i, count = dev->num_rx_queues;
9289 
9290 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9291 	if (!dev->_rx)
9292 		return;
9293 
9294 	for (i = 0; i < count; i++)
9295 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9296 
9297 	kvfree(dev->_rx);
9298 }
9299 
9300 static void netdev_init_one_queue(struct net_device *dev,
9301 				  struct netdev_queue *queue, void *_unused)
9302 {
9303 	/* Initialize queue lock */
9304 	spin_lock_init(&queue->_xmit_lock);
9305 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9306 	queue->xmit_lock_owner = -1;
9307 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9308 	queue->dev = dev;
9309 #ifdef CONFIG_BQL
9310 	dql_init(&queue->dql, HZ);
9311 #endif
9312 }
9313 
9314 static void netif_free_tx_queues(struct net_device *dev)
9315 {
9316 	kvfree(dev->_tx);
9317 }
9318 
9319 static int netif_alloc_netdev_queues(struct net_device *dev)
9320 {
9321 	unsigned int count = dev->num_tx_queues;
9322 	struct netdev_queue *tx;
9323 	size_t sz = count * sizeof(*tx);
9324 
9325 	if (count < 1 || count > 0xffff)
9326 		return -EINVAL;
9327 
9328 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9329 	if (!tx)
9330 		return -ENOMEM;
9331 
9332 	dev->_tx = tx;
9333 
9334 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9335 	spin_lock_init(&dev->tx_global_lock);
9336 
9337 	return 0;
9338 }
9339 
9340 void netif_tx_stop_all_queues(struct net_device *dev)
9341 {
9342 	unsigned int i;
9343 
9344 	for (i = 0; i < dev->num_tx_queues; i++) {
9345 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9346 
9347 		netif_tx_stop_queue(txq);
9348 	}
9349 }
9350 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9351 
9352 void netdev_update_lockdep_key(struct net_device *dev)
9353 {
9354 	lockdep_unregister_key(&dev->addr_list_lock_key);
9355 	lockdep_register_key(&dev->addr_list_lock_key);
9356 
9357 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9358 }
9359 EXPORT_SYMBOL(netdev_update_lockdep_key);
9360 
9361 /**
9362  *	register_netdevice	- register a network device
9363  *	@dev: device to register
9364  *
9365  *	Take a completed network device structure and add it to the kernel
9366  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9367  *	chain. 0 is returned on success. A negative errno code is returned
9368  *	on a failure to set up the device, or if the name is a duplicate.
9369  *
9370  *	Callers must hold the rtnl semaphore. You may want
9371  *	register_netdev() instead of this.
9372  *
9373  *	BUGS:
9374  *	The locking appears insufficient to guarantee two parallel registers
9375  *	will not get the same name.
9376  */
9377 
9378 int register_netdevice(struct net_device *dev)
9379 {
9380 	int ret;
9381 	struct net *net = dev_net(dev);
9382 
9383 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9384 		     NETDEV_FEATURE_COUNT);
9385 	BUG_ON(dev_boot_phase);
9386 	ASSERT_RTNL();
9387 
9388 	might_sleep();
9389 
9390 	/* When net_device's are persistent, this will be fatal. */
9391 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9392 	BUG_ON(!net);
9393 
9394 	ret = ethtool_check_ops(dev->ethtool_ops);
9395 	if (ret)
9396 		return ret;
9397 
9398 	spin_lock_init(&dev->addr_list_lock);
9399 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9400 
9401 	ret = dev_get_valid_name(net, dev, dev->name);
9402 	if (ret < 0)
9403 		goto out;
9404 
9405 	ret = -ENOMEM;
9406 	dev->name_node = netdev_name_node_head_alloc(dev);
9407 	if (!dev->name_node)
9408 		goto out;
9409 
9410 	/* Init, if this function is available */
9411 	if (dev->netdev_ops->ndo_init) {
9412 		ret = dev->netdev_ops->ndo_init(dev);
9413 		if (ret) {
9414 			if (ret > 0)
9415 				ret = -EIO;
9416 			goto err_free_name;
9417 		}
9418 	}
9419 
9420 	if (((dev->hw_features | dev->features) &
9421 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9422 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9423 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9424 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9425 		ret = -EINVAL;
9426 		goto err_uninit;
9427 	}
9428 
9429 	ret = -EBUSY;
9430 	if (!dev->ifindex)
9431 		dev->ifindex = dev_new_index(net);
9432 	else if (__dev_get_by_index(net, dev->ifindex))
9433 		goto err_uninit;
9434 
9435 	/* Transfer changeable features to wanted_features and enable
9436 	 * software offloads (GSO and GRO).
9437 	 */
9438 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9439 	dev->features |= NETIF_F_SOFT_FEATURES;
9440 
9441 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9442 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9443 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9444 	}
9445 
9446 	dev->wanted_features = dev->features & dev->hw_features;
9447 
9448 	if (!(dev->flags & IFF_LOOPBACK))
9449 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9450 
9451 	/* If IPv4 TCP segmentation offload is supported we should also
9452 	 * allow the device to enable segmenting the frame with the option
9453 	 * of ignoring a static IP ID value.  This doesn't enable the
9454 	 * feature itself but allows the user to enable it later.
9455 	 */
9456 	if (dev->hw_features & NETIF_F_TSO)
9457 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9458 	if (dev->vlan_features & NETIF_F_TSO)
9459 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9460 	if (dev->mpls_features & NETIF_F_TSO)
9461 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9462 	if (dev->hw_enc_features & NETIF_F_TSO)
9463 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9464 
9465 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9466 	 */
9467 	dev->vlan_features |= NETIF_F_HIGHDMA;
9468 
9469 	/* Make NETIF_F_SG inheritable to tunnel devices.
9470 	 */
9471 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9472 
9473 	/* Make NETIF_F_SG inheritable to MPLS.
9474 	 */
9475 	dev->mpls_features |= NETIF_F_SG;
9476 
9477 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9478 	ret = notifier_to_errno(ret);
9479 	if (ret)
9480 		goto err_uninit;
9481 
9482 	ret = netdev_register_kobject(dev);
9483 	if (ret) {
9484 		dev->reg_state = NETREG_UNREGISTERED;
9485 		goto err_uninit;
9486 	}
9487 	dev->reg_state = NETREG_REGISTERED;
9488 
9489 	__netdev_update_features(dev);
9490 
9491 	/*
9492 	 *	Default initial state at registry is that the
9493 	 *	device is present.
9494 	 */
9495 
9496 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9497 
9498 	linkwatch_init_dev(dev);
9499 
9500 	dev_init_scheduler(dev);
9501 	dev_hold(dev);
9502 	list_netdevice(dev);
9503 	add_device_randomness(dev->dev_addr, dev->addr_len);
9504 
9505 	/* If the device has permanent device address, driver should
9506 	 * set dev_addr and also addr_assign_type should be set to
9507 	 * NET_ADDR_PERM (default value).
9508 	 */
9509 	if (dev->addr_assign_type == NET_ADDR_PERM)
9510 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9511 
9512 	/* Notify protocols, that a new device appeared. */
9513 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9514 	ret = notifier_to_errno(ret);
9515 	if (ret) {
9516 		rollback_registered(dev);
9517 		rcu_barrier();
9518 
9519 		dev->reg_state = NETREG_UNREGISTERED;
9520 	}
9521 	/*
9522 	 *	Prevent userspace races by waiting until the network
9523 	 *	device is fully setup before sending notifications.
9524 	 */
9525 	if (!dev->rtnl_link_ops ||
9526 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9527 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9528 
9529 out:
9530 	return ret;
9531 
9532 err_uninit:
9533 	if (dev->netdev_ops->ndo_uninit)
9534 		dev->netdev_ops->ndo_uninit(dev);
9535 	if (dev->priv_destructor)
9536 		dev->priv_destructor(dev);
9537 err_free_name:
9538 	netdev_name_node_free(dev->name_node);
9539 	goto out;
9540 }
9541 EXPORT_SYMBOL(register_netdevice);
9542 
9543 /**
9544  *	init_dummy_netdev	- init a dummy network device for NAPI
9545  *	@dev: device to init
9546  *
9547  *	This takes a network device structure and initialize the minimum
9548  *	amount of fields so it can be used to schedule NAPI polls without
9549  *	registering a full blown interface. This is to be used by drivers
9550  *	that need to tie several hardware interfaces to a single NAPI
9551  *	poll scheduler due to HW limitations.
9552  */
9553 int init_dummy_netdev(struct net_device *dev)
9554 {
9555 	/* Clear everything. Note we don't initialize spinlocks
9556 	 * are they aren't supposed to be taken by any of the
9557 	 * NAPI code and this dummy netdev is supposed to be
9558 	 * only ever used for NAPI polls
9559 	 */
9560 	memset(dev, 0, sizeof(struct net_device));
9561 
9562 	/* make sure we BUG if trying to hit standard
9563 	 * register/unregister code path
9564 	 */
9565 	dev->reg_state = NETREG_DUMMY;
9566 
9567 	/* NAPI wants this */
9568 	INIT_LIST_HEAD(&dev->napi_list);
9569 
9570 	/* a dummy interface is started by default */
9571 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9572 	set_bit(__LINK_STATE_START, &dev->state);
9573 
9574 	/* napi_busy_loop stats accounting wants this */
9575 	dev_net_set(dev, &init_net);
9576 
9577 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9578 	 * because users of this 'device' dont need to change
9579 	 * its refcount.
9580 	 */
9581 
9582 	return 0;
9583 }
9584 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9585 
9586 
9587 /**
9588  *	register_netdev	- register a network device
9589  *	@dev: device to register
9590  *
9591  *	Take a completed network device structure and add it to the kernel
9592  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9593  *	chain. 0 is returned on success. A negative errno code is returned
9594  *	on a failure to set up the device, or if the name is a duplicate.
9595  *
9596  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9597  *	and expands the device name if you passed a format string to
9598  *	alloc_netdev.
9599  */
9600 int register_netdev(struct net_device *dev)
9601 {
9602 	int err;
9603 
9604 	if (rtnl_lock_killable())
9605 		return -EINTR;
9606 	err = register_netdevice(dev);
9607 	rtnl_unlock();
9608 	return err;
9609 }
9610 EXPORT_SYMBOL(register_netdev);
9611 
9612 int netdev_refcnt_read(const struct net_device *dev)
9613 {
9614 	int i, refcnt = 0;
9615 
9616 	for_each_possible_cpu(i)
9617 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9618 	return refcnt;
9619 }
9620 EXPORT_SYMBOL(netdev_refcnt_read);
9621 
9622 /**
9623  * netdev_wait_allrefs - wait until all references are gone.
9624  * @dev: target net_device
9625  *
9626  * This is called when unregistering network devices.
9627  *
9628  * Any protocol or device that holds a reference should register
9629  * for netdevice notification, and cleanup and put back the
9630  * reference if they receive an UNREGISTER event.
9631  * We can get stuck here if buggy protocols don't correctly
9632  * call dev_put.
9633  */
9634 static void netdev_wait_allrefs(struct net_device *dev)
9635 {
9636 	unsigned long rebroadcast_time, warning_time;
9637 	int refcnt;
9638 
9639 	linkwatch_forget_dev(dev);
9640 
9641 	rebroadcast_time = warning_time = jiffies;
9642 	refcnt = netdev_refcnt_read(dev);
9643 
9644 	while (refcnt != 0) {
9645 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9646 			rtnl_lock();
9647 
9648 			/* Rebroadcast unregister notification */
9649 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9650 
9651 			__rtnl_unlock();
9652 			rcu_barrier();
9653 			rtnl_lock();
9654 
9655 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9656 				     &dev->state)) {
9657 				/* We must not have linkwatch events
9658 				 * pending on unregister. If this
9659 				 * happens, we simply run the queue
9660 				 * unscheduled, resulting in a noop
9661 				 * for this device.
9662 				 */
9663 				linkwatch_run_queue();
9664 			}
9665 
9666 			__rtnl_unlock();
9667 
9668 			rebroadcast_time = jiffies;
9669 		}
9670 
9671 		msleep(250);
9672 
9673 		refcnt = netdev_refcnt_read(dev);
9674 
9675 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9676 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9677 				 dev->name, refcnt);
9678 			warning_time = jiffies;
9679 		}
9680 	}
9681 }
9682 
9683 /* The sequence is:
9684  *
9685  *	rtnl_lock();
9686  *	...
9687  *	register_netdevice(x1);
9688  *	register_netdevice(x2);
9689  *	...
9690  *	unregister_netdevice(y1);
9691  *	unregister_netdevice(y2);
9692  *      ...
9693  *	rtnl_unlock();
9694  *	free_netdev(y1);
9695  *	free_netdev(y2);
9696  *
9697  * We are invoked by rtnl_unlock().
9698  * This allows us to deal with problems:
9699  * 1) We can delete sysfs objects which invoke hotplug
9700  *    without deadlocking with linkwatch via keventd.
9701  * 2) Since we run with the RTNL semaphore not held, we can sleep
9702  *    safely in order to wait for the netdev refcnt to drop to zero.
9703  *
9704  * We must not return until all unregister events added during
9705  * the interval the lock was held have been completed.
9706  */
9707 void netdev_run_todo(void)
9708 {
9709 	struct list_head list;
9710 
9711 	/* Snapshot list, allow later requests */
9712 	list_replace_init(&net_todo_list, &list);
9713 
9714 	__rtnl_unlock();
9715 
9716 
9717 	/* Wait for rcu callbacks to finish before next phase */
9718 	if (!list_empty(&list))
9719 		rcu_barrier();
9720 
9721 	while (!list_empty(&list)) {
9722 		struct net_device *dev
9723 			= list_first_entry(&list, struct net_device, todo_list);
9724 		list_del(&dev->todo_list);
9725 
9726 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9727 			pr_err("network todo '%s' but state %d\n",
9728 			       dev->name, dev->reg_state);
9729 			dump_stack();
9730 			continue;
9731 		}
9732 
9733 		dev->reg_state = NETREG_UNREGISTERED;
9734 
9735 		netdev_wait_allrefs(dev);
9736 
9737 		/* paranoia */
9738 		BUG_ON(netdev_refcnt_read(dev));
9739 		BUG_ON(!list_empty(&dev->ptype_all));
9740 		BUG_ON(!list_empty(&dev->ptype_specific));
9741 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9742 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9743 #if IS_ENABLED(CONFIG_DECNET)
9744 		WARN_ON(dev->dn_ptr);
9745 #endif
9746 		if (dev->priv_destructor)
9747 			dev->priv_destructor(dev);
9748 		if (dev->needs_free_netdev)
9749 			free_netdev(dev);
9750 
9751 		/* Report a network device has been unregistered */
9752 		rtnl_lock();
9753 		dev_net(dev)->dev_unreg_count--;
9754 		__rtnl_unlock();
9755 		wake_up(&netdev_unregistering_wq);
9756 
9757 		/* Free network device */
9758 		kobject_put(&dev->dev.kobj);
9759 	}
9760 }
9761 
9762 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9763  * all the same fields in the same order as net_device_stats, with only
9764  * the type differing, but rtnl_link_stats64 may have additional fields
9765  * at the end for newer counters.
9766  */
9767 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9768 			     const struct net_device_stats *netdev_stats)
9769 {
9770 #if BITS_PER_LONG == 64
9771 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9772 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9773 	/* zero out counters that only exist in rtnl_link_stats64 */
9774 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9775 	       sizeof(*stats64) - sizeof(*netdev_stats));
9776 #else
9777 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9778 	const unsigned long *src = (const unsigned long *)netdev_stats;
9779 	u64 *dst = (u64 *)stats64;
9780 
9781 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9782 	for (i = 0; i < n; i++)
9783 		dst[i] = src[i];
9784 	/* zero out counters that only exist in rtnl_link_stats64 */
9785 	memset((char *)stats64 + n * sizeof(u64), 0,
9786 	       sizeof(*stats64) - n * sizeof(u64));
9787 #endif
9788 }
9789 EXPORT_SYMBOL(netdev_stats_to_stats64);
9790 
9791 /**
9792  *	dev_get_stats	- get network device statistics
9793  *	@dev: device to get statistics from
9794  *	@storage: place to store stats
9795  *
9796  *	Get network statistics from device. Return @storage.
9797  *	The device driver may provide its own method by setting
9798  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9799  *	otherwise the internal statistics structure is used.
9800  */
9801 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9802 					struct rtnl_link_stats64 *storage)
9803 {
9804 	const struct net_device_ops *ops = dev->netdev_ops;
9805 
9806 	if (ops->ndo_get_stats64) {
9807 		memset(storage, 0, sizeof(*storage));
9808 		ops->ndo_get_stats64(dev, storage);
9809 	} else if (ops->ndo_get_stats) {
9810 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9811 	} else {
9812 		netdev_stats_to_stats64(storage, &dev->stats);
9813 	}
9814 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9815 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9816 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9817 	return storage;
9818 }
9819 EXPORT_SYMBOL(dev_get_stats);
9820 
9821 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9822 {
9823 	struct netdev_queue *queue = dev_ingress_queue(dev);
9824 
9825 #ifdef CONFIG_NET_CLS_ACT
9826 	if (queue)
9827 		return queue;
9828 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9829 	if (!queue)
9830 		return NULL;
9831 	netdev_init_one_queue(dev, queue, NULL);
9832 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9833 	queue->qdisc_sleeping = &noop_qdisc;
9834 	rcu_assign_pointer(dev->ingress_queue, queue);
9835 #endif
9836 	return queue;
9837 }
9838 
9839 static const struct ethtool_ops default_ethtool_ops;
9840 
9841 void netdev_set_default_ethtool_ops(struct net_device *dev,
9842 				    const struct ethtool_ops *ops)
9843 {
9844 	if (dev->ethtool_ops == &default_ethtool_ops)
9845 		dev->ethtool_ops = ops;
9846 }
9847 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9848 
9849 void netdev_freemem(struct net_device *dev)
9850 {
9851 	char *addr = (char *)dev - dev->padded;
9852 
9853 	kvfree(addr);
9854 }
9855 
9856 /**
9857  * alloc_netdev_mqs - allocate network device
9858  * @sizeof_priv: size of private data to allocate space for
9859  * @name: device name format string
9860  * @name_assign_type: origin of device name
9861  * @setup: callback to initialize device
9862  * @txqs: the number of TX subqueues to allocate
9863  * @rxqs: the number of RX subqueues to allocate
9864  *
9865  * Allocates a struct net_device with private data area for driver use
9866  * and performs basic initialization.  Also allocates subqueue structs
9867  * for each queue on the device.
9868  */
9869 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9870 		unsigned char name_assign_type,
9871 		void (*setup)(struct net_device *),
9872 		unsigned int txqs, unsigned int rxqs)
9873 {
9874 	struct net_device *dev;
9875 	unsigned int alloc_size;
9876 	struct net_device *p;
9877 
9878 	BUG_ON(strlen(name) >= sizeof(dev->name));
9879 
9880 	if (txqs < 1) {
9881 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9882 		return NULL;
9883 	}
9884 
9885 	if (rxqs < 1) {
9886 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9887 		return NULL;
9888 	}
9889 
9890 	alloc_size = sizeof(struct net_device);
9891 	if (sizeof_priv) {
9892 		/* ensure 32-byte alignment of private area */
9893 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9894 		alloc_size += sizeof_priv;
9895 	}
9896 	/* ensure 32-byte alignment of whole construct */
9897 	alloc_size += NETDEV_ALIGN - 1;
9898 
9899 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9900 	if (!p)
9901 		return NULL;
9902 
9903 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9904 	dev->padded = (char *)dev - (char *)p;
9905 
9906 	dev->pcpu_refcnt = alloc_percpu(int);
9907 	if (!dev->pcpu_refcnt)
9908 		goto free_dev;
9909 
9910 	if (dev_addr_init(dev))
9911 		goto free_pcpu;
9912 
9913 	dev_mc_init(dev);
9914 	dev_uc_init(dev);
9915 
9916 	dev_net_set(dev, &init_net);
9917 
9918 	lockdep_register_key(&dev->addr_list_lock_key);
9919 
9920 	dev->gso_max_size = GSO_MAX_SIZE;
9921 	dev->gso_max_segs = GSO_MAX_SEGS;
9922 	dev->upper_level = 1;
9923 	dev->lower_level = 1;
9924 
9925 	INIT_LIST_HEAD(&dev->napi_list);
9926 	INIT_LIST_HEAD(&dev->unreg_list);
9927 	INIT_LIST_HEAD(&dev->close_list);
9928 	INIT_LIST_HEAD(&dev->link_watch_list);
9929 	INIT_LIST_HEAD(&dev->adj_list.upper);
9930 	INIT_LIST_HEAD(&dev->adj_list.lower);
9931 	INIT_LIST_HEAD(&dev->ptype_all);
9932 	INIT_LIST_HEAD(&dev->ptype_specific);
9933 	INIT_LIST_HEAD(&dev->net_notifier_list);
9934 #ifdef CONFIG_NET_SCHED
9935 	hash_init(dev->qdisc_hash);
9936 #endif
9937 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9938 	setup(dev);
9939 
9940 	if (!dev->tx_queue_len) {
9941 		dev->priv_flags |= IFF_NO_QUEUE;
9942 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9943 	}
9944 
9945 	dev->num_tx_queues = txqs;
9946 	dev->real_num_tx_queues = txqs;
9947 	if (netif_alloc_netdev_queues(dev))
9948 		goto free_all;
9949 
9950 	dev->num_rx_queues = rxqs;
9951 	dev->real_num_rx_queues = rxqs;
9952 	if (netif_alloc_rx_queues(dev))
9953 		goto free_all;
9954 
9955 	strcpy(dev->name, name);
9956 	dev->name_assign_type = name_assign_type;
9957 	dev->group = INIT_NETDEV_GROUP;
9958 	if (!dev->ethtool_ops)
9959 		dev->ethtool_ops = &default_ethtool_ops;
9960 
9961 	nf_hook_ingress_init(dev);
9962 
9963 	return dev;
9964 
9965 free_all:
9966 	free_netdev(dev);
9967 	return NULL;
9968 
9969 free_pcpu:
9970 	free_percpu(dev->pcpu_refcnt);
9971 free_dev:
9972 	netdev_freemem(dev);
9973 	return NULL;
9974 }
9975 EXPORT_SYMBOL(alloc_netdev_mqs);
9976 
9977 /**
9978  * free_netdev - free network device
9979  * @dev: device
9980  *
9981  * This function does the last stage of destroying an allocated device
9982  * interface. The reference to the device object is released. If this
9983  * is the last reference then it will be freed.Must be called in process
9984  * context.
9985  */
9986 void free_netdev(struct net_device *dev)
9987 {
9988 	struct napi_struct *p, *n;
9989 
9990 	might_sleep();
9991 	netif_free_tx_queues(dev);
9992 	netif_free_rx_queues(dev);
9993 
9994 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9995 
9996 	/* Flush device addresses */
9997 	dev_addr_flush(dev);
9998 
9999 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10000 		netif_napi_del(p);
10001 
10002 	free_percpu(dev->pcpu_refcnt);
10003 	dev->pcpu_refcnt = NULL;
10004 	free_percpu(dev->xdp_bulkq);
10005 	dev->xdp_bulkq = NULL;
10006 
10007 	lockdep_unregister_key(&dev->addr_list_lock_key);
10008 
10009 	/*  Compatibility with error handling in drivers */
10010 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10011 		netdev_freemem(dev);
10012 		return;
10013 	}
10014 
10015 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10016 	dev->reg_state = NETREG_RELEASED;
10017 
10018 	/* will free via device release */
10019 	put_device(&dev->dev);
10020 }
10021 EXPORT_SYMBOL(free_netdev);
10022 
10023 /**
10024  *	synchronize_net -  Synchronize with packet receive processing
10025  *
10026  *	Wait for packets currently being received to be done.
10027  *	Does not block later packets from starting.
10028  */
10029 void synchronize_net(void)
10030 {
10031 	might_sleep();
10032 	if (rtnl_is_locked())
10033 		synchronize_rcu_expedited();
10034 	else
10035 		synchronize_rcu();
10036 }
10037 EXPORT_SYMBOL(synchronize_net);
10038 
10039 /**
10040  *	unregister_netdevice_queue - remove device from the kernel
10041  *	@dev: device
10042  *	@head: list
10043  *
10044  *	This function shuts down a device interface and removes it
10045  *	from the kernel tables.
10046  *	If head not NULL, device is queued to be unregistered later.
10047  *
10048  *	Callers must hold the rtnl semaphore.  You may want
10049  *	unregister_netdev() instead of this.
10050  */
10051 
10052 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10053 {
10054 	ASSERT_RTNL();
10055 
10056 	if (head) {
10057 		list_move_tail(&dev->unreg_list, head);
10058 	} else {
10059 		rollback_registered(dev);
10060 		/* Finish processing unregister after unlock */
10061 		net_set_todo(dev);
10062 	}
10063 }
10064 EXPORT_SYMBOL(unregister_netdevice_queue);
10065 
10066 /**
10067  *	unregister_netdevice_many - unregister many devices
10068  *	@head: list of devices
10069  *
10070  *  Note: As most callers use a stack allocated list_head,
10071  *  we force a list_del() to make sure stack wont be corrupted later.
10072  */
10073 void unregister_netdevice_many(struct list_head *head)
10074 {
10075 	struct net_device *dev;
10076 
10077 	if (!list_empty(head)) {
10078 		rollback_registered_many(head);
10079 		list_for_each_entry(dev, head, unreg_list)
10080 			net_set_todo(dev);
10081 		list_del(head);
10082 	}
10083 }
10084 EXPORT_SYMBOL(unregister_netdevice_many);
10085 
10086 /**
10087  *	unregister_netdev - remove device from the kernel
10088  *	@dev: device
10089  *
10090  *	This function shuts down a device interface and removes it
10091  *	from the kernel tables.
10092  *
10093  *	This is just a wrapper for unregister_netdevice that takes
10094  *	the rtnl semaphore.  In general you want to use this and not
10095  *	unregister_netdevice.
10096  */
10097 void unregister_netdev(struct net_device *dev)
10098 {
10099 	rtnl_lock();
10100 	unregister_netdevice(dev);
10101 	rtnl_unlock();
10102 }
10103 EXPORT_SYMBOL(unregister_netdev);
10104 
10105 /**
10106  *	dev_change_net_namespace - move device to different nethost namespace
10107  *	@dev: device
10108  *	@net: network namespace
10109  *	@pat: If not NULL name pattern to try if the current device name
10110  *	      is already taken in the destination network namespace.
10111  *
10112  *	This function shuts down a device interface and moves it
10113  *	to a new network namespace. On success 0 is returned, on
10114  *	a failure a netagive errno code is returned.
10115  *
10116  *	Callers must hold the rtnl semaphore.
10117  */
10118 
10119 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10120 {
10121 	struct net *net_old = dev_net(dev);
10122 	int err, new_nsid, new_ifindex;
10123 
10124 	ASSERT_RTNL();
10125 
10126 	/* Don't allow namespace local devices to be moved. */
10127 	err = -EINVAL;
10128 	if (dev->features & NETIF_F_NETNS_LOCAL)
10129 		goto out;
10130 
10131 	/* Ensure the device has been registrered */
10132 	if (dev->reg_state != NETREG_REGISTERED)
10133 		goto out;
10134 
10135 	/* Get out if there is nothing todo */
10136 	err = 0;
10137 	if (net_eq(net_old, net))
10138 		goto out;
10139 
10140 	/* Pick the destination device name, and ensure
10141 	 * we can use it in the destination network namespace.
10142 	 */
10143 	err = -EEXIST;
10144 	if (__dev_get_by_name(net, dev->name)) {
10145 		/* We get here if we can't use the current device name */
10146 		if (!pat)
10147 			goto out;
10148 		err = dev_get_valid_name(net, dev, pat);
10149 		if (err < 0)
10150 			goto out;
10151 	}
10152 
10153 	/*
10154 	 * And now a mini version of register_netdevice unregister_netdevice.
10155 	 */
10156 
10157 	/* If device is running close it first. */
10158 	dev_close(dev);
10159 
10160 	/* And unlink it from device chain */
10161 	unlist_netdevice(dev);
10162 
10163 	synchronize_net();
10164 
10165 	/* Shutdown queueing discipline. */
10166 	dev_shutdown(dev);
10167 
10168 	/* Notify protocols, that we are about to destroy
10169 	 * this device. They should clean all the things.
10170 	 *
10171 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10172 	 * This is wanted because this way 8021q and macvlan know
10173 	 * the device is just moving and can keep their slaves up.
10174 	 */
10175 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10176 	rcu_barrier();
10177 
10178 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10179 	/* If there is an ifindex conflict assign a new one */
10180 	if (__dev_get_by_index(net, dev->ifindex))
10181 		new_ifindex = dev_new_index(net);
10182 	else
10183 		new_ifindex = dev->ifindex;
10184 
10185 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10186 			    new_ifindex);
10187 
10188 	/*
10189 	 *	Flush the unicast and multicast chains
10190 	 */
10191 	dev_uc_flush(dev);
10192 	dev_mc_flush(dev);
10193 
10194 	/* Send a netdev-removed uevent to the old namespace */
10195 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10196 	netdev_adjacent_del_links(dev);
10197 
10198 	/* Move per-net netdevice notifiers that are following the netdevice */
10199 	move_netdevice_notifiers_dev_net(dev, net);
10200 
10201 	/* Actually switch the network namespace */
10202 	dev_net_set(dev, net);
10203 	dev->ifindex = new_ifindex;
10204 
10205 	/* Send a netdev-add uevent to the new namespace */
10206 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10207 	netdev_adjacent_add_links(dev);
10208 
10209 	/* Fixup kobjects */
10210 	err = device_rename(&dev->dev, dev->name);
10211 	WARN_ON(err);
10212 
10213 	/* Adapt owner in case owning user namespace of target network
10214 	 * namespace is different from the original one.
10215 	 */
10216 	err = netdev_change_owner(dev, net_old, net);
10217 	WARN_ON(err);
10218 
10219 	/* Add the device back in the hashes */
10220 	list_netdevice(dev);
10221 
10222 	/* Notify protocols, that a new device appeared. */
10223 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10224 
10225 	/*
10226 	 *	Prevent userspace races by waiting until the network
10227 	 *	device is fully setup before sending notifications.
10228 	 */
10229 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10230 
10231 	synchronize_net();
10232 	err = 0;
10233 out:
10234 	return err;
10235 }
10236 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10237 
10238 static int dev_cpu_dead(unsigned int oldcpu)
10239 {
10240 	struct sk_buff **list_skb;
10241 	struct sk_buff *skb;
10242 	unsigned int cpu;
10243 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10244 
10245 	local_irq_disable();
10246 	cpu = smp_processor_id();
10247 	sd = &per_cpu(softnet_data, cpu);
10248 	oldsd = &per_cpu(softnet_data, oldcpu);
10249 
10250 	/* Find end of our completion_queue. */
10251 	list_skb = &sd->completion_queue;
10252 	while (*list_skb)
10253 		list_skb = &(*list_skb)->next;
10254 	/* Append completion queue from offline CPU. */
10255 	*list_skb = oldsd->completion_queue;
10256 	oldsd->completion_queue = NULL;
10257 
10258 	/* Append output queue from offline CPU. */
10259 	if (oldsd->output_queue) {
10260 		*sd->output_queue_tailp = oldsd->output_queue;
10261 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10262 		oldsd->output_queue = NULL;
10263 		oldsd->output_queue_tailp = &oldsd->output_queue;
10264 	}
10265 	/* Append NAPI poll list from offline CPU, with one exception :
10266 	 * process_backlog() must be called by cpu owning percpu backlog.
10267 	 * We properly handle process_queue & input_pkt_queue later.
10268 	 */
10269 	while (!list_empty(&oldsd->poll_list)) {
10270 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10271 							    struct napi_struct,
10272 							    poll_list);
10273 
10274 		list_del_init(&napi->poll_list);
10275 		if (napi->poll == process_backlog)
10276 			napi->state = 0;
10277 		else
10278 			____napi_schedule(sd, napi);
10279 	}
10280 
10281 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10282 	local_irq_enable();
10283 
10284 #ifdef CONFIG_RPS
10285 	remsd = oldsd->rps_ipi_list;
10286 	oldsd->rps_ipi_list = NULL;
10287 #endif
10288 	/* send out pending IPI's on offline CPU */
10289 	net_rps_send_ipi(remsd);
10290 
10291 	/* Process offline CPU's input_pkt_queue */
10292 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10293 		netif_rx_ni(skb);
10294 		input_queue_head_incr(oldsd);
10295 	}
10296 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10297 		netif_rx_ni(skb);
10298 		input_queue_head_incr(oldsd);
10299 	}
10300 
10301 	return 0;
10302 }
10303 
10304 /**
10305  *	netdev_increment_features - increment feature set by one
10306  *	@all: current feature set
10307  *	@one: new feature set
10308  *	@mask: mask feature set
10309  *
10310  *	Computes a new feature set after adding a device with feature set
10311  *	@one to the master device with current feature set @all.  Will not
10312  *	enable anything that is off in @mask. Returns the new feature set.
10313  */
10314 netdev_features_t netdev_increment_features(netdev_features_t all,
10315 	netdev_features_t one, netdev_features_t mask)
10316 {
10317 	if (mask & NETIF_F_HW_CSUM)
10318 		mask |= NETIF_F_CSUM_MASK;
10319 	mask |= NETIF_F_VLAN_CHALLENGED;
10320 
10321 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10322 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10323 
10324 	/* If one device supports hw checksumming, set for all. */
10325 	if (all & NETIF_F_HW_CSUM)
10326 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10327 
10328 	return all;
10329 }
10330 EXPORT_SYMBOL(netdev_increment_features);
10331 
10332 static struct hlist_head * __net_init netdev_create_hash(void)
10333 {
10334 	int i;
10335 	struct hlist_head *hash;
10336 
10337 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10338 	if (hash != NULL)
10339 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10340 			INIT_HLIST_HEAD(&hash[i]);
10341 
10342 	return hash;
10343 }
10344 
10345 /* Initialize per network namespace state */
10346 static int __net_init netdev_init(struct net *net)
10347 {
10348 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10349 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10350 
10351 	if (net != &init_net)
10352 		INIT_LIST_HEAD(&net->dev_base_head);
10353 
10354 	net->dev_name_head = netdev_create_hash();
10355 	if (net->dev_name_head == NULL)
10356 		goto err_name;
10357 
10358 	net->dev_index_head = netdev_create_hash();
10359 	if (net->dev_index_head == NULL)
10360 		goto err_idx;
10361 
10362 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10363 
10364 	return 0;
10365 
10366 err_idx:
10367 	kfree(net->dev_name_head);
10368 err_name:
10369 	return -ENOMEM;
10370 }
10371 
10372 /**
10373  *	netdev_drivername - network driver for the device
10374  *	@dev: network device
10375  *
10376  *	Determine network driver for device.
10377  */
10378 const char *netdev_drivername(const struct net_device *dev)
10379 {
10380 	const struct device_driver *driver;
10381 	const struct device *parent;
10382 	const char *empty = "";
10383 
10384 	parent = dev->dev.parent;
10385 	if (!parent)
10386 		return empty;
10387 
10388 	driver = parent->driver;
10389 	if (driver && driver->name)
10390 		return driver->name;
10391 	return empty;
10392 }
10393 
10394 static void __netdev_printk(const char *level, const struct net_device *dev,
10395 			    struct va_format *vaf)
10396 {
10397 	if (dev && dev->dev.parent) {
10398 		dev_printk_emit(level[1] - '0',
10399 				dev->dev.parent,
10400 				"%s %s %s%s: %pV",
10401 				dev_driver_string(dev->dev.parent),
10402 				dev_name(dev->dev.parent),
10403 				netdev_name(dev), netdev_reg_state(dev),
10404 				vaf);
10405 	} else if (dev) {
10406 		printk("%s%s%s: %pV",
10407 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10408 	} else {
10409 		printk("%s(NULL net_device): %pV", level, vaf);
10410 	}
10411 }
10412 
10413 void netdev_printk(const char *level, const struct net_device *dev,
10414 		   const char *format, ...)
10415 {
10416 	struct va_format vaf;
10417 	va_list args;
10418 
10419 	va_start(args, format);
10420 
10421 	vaf.fmt = format;
10422 	vaf.va = &args;
10423 
10424 	__netdev_printk(level, dev, &vaf);
10425 
10426 	va_end(args);
10427 }
10428 EXPORT_SYMBOL(netdev_printk);
10429 
10430 #define define_netdev_printk_level(func, level)			\
10431 void func(const struct net_device *dev, const char *fmt, ...)	\
10432 {								\
10433 	struct va_format vaf;					\
10434 	va_list args;						\
10435 								\
10436 	va_start(args, fmt);					\
10437 								\
10438 	vaf.fmt = fmt;						\
10439 	vaf.va = &args;						\
10440 								\
10441 	__netdev_printk(level, dev, &vaf);			\
10442 								\
10443 	va_end(args);						\
10444 }								\
10445 EXPORT_SYMBOL(func);
10446 
10447 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10448 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10449 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10450 define_netdev_printk_level(netdev_err, KERN_ERR);
10451 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10452 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10453 define_netdev_printk_level(netdev_info, KERN_INFO);
10454 
10455 static void __net_exit netdev_exit(struct net *net)
10456 {
10457 	kfree(net->dev_name_head);
10458 	kfree(net->dev_index_head);
10459 	if (net != &init_net)
10460 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10461 }
10462 
10463 static struct pernet_operations __net_initdata netdev_net_ops = {
10464 	.init = netdev_init,
10465 	.exit = netdev_exit,
10466 };
10467 
10468 static void __net_exit default_device_exit(struct net *net)
10469 {
10470 	struct net_device *dev, *aux;
10471 	/*
10472 	 * Push all migratable network devices back to the
10473 	 * initial network namespace
10474 	 */
10475 	rtnl_lock();
10476 	for_each_netdev_safe(net, dev, aux) {
10477 		int err;
10478 		char fb_name[IFNAMSIZ];
10479 
10480 		/* Ignore unmoveable devices (i.e. loopback) */
10481 		if (dev->features & NETIF_F_NETNS_LOCAL)
10482 			continue;
10483 
10484 		/* Leave virtual devices for the generic cleanup */
10485 		if (dev->rtnl_link_ops)
10486 			continue;
10487 
10488 		/* Push remaining network devices to init_net */
10489 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10490 		if (__dev_get_by_name(&init_net, fb_name))
10491 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10492 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10493 		if (err) {
10494 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10495 				 __func__, dev->name, err);
10496 			BUG();
10497 		}
10498 	}
10499 	rtnl_unlock();
10500 }
10501 
10502 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10503 {
10504 	/* Return with the rtnl_lock held when there are no network
10505 	 * devices unregistering in any network namespace in net_list.
10506 	 */
10507 	struct net *net;
10508 	bool unregistering;
10509 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10510 
10511 	add_wait_queue(&netdev_unregistering_wq, &wait);
10512 	for (;;) {
10513 		unregistering = false;
10514 		rtnl_lock();
10515 		list_for_each_entry(net, net_list, exit_list) {
10516 			if (net->dev_unreg_count > 0) {
10517 				unregistering = true;
10518 				break;
10519 			}
10520 		}
10521 		if (!unregistering)
10522 			break;
10523 		__rtnl_unlock();
10524 
10525 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10526 	}
10527 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10528 }
10529 
10530 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10531 {
10532 	/* At exit all network devices most be removed from a network
10533 	 * namespace.  Do this in the reverse order of registration.
10534 	 * Do this across as many network namespaces as possible to
10535 	 * improve batching efficiency.
10536 	 */
10537 	struct net_device *dev;
10538 	struct net *net;
10539 	LIST_HEAD(dev_kill_list);
10540 
10541 	/* To prevent network device cleanup code from dereferencing
10542 	 * loopback devices or network devices that have been freed
10543 	 * wait here for all pending unregistrations to complete,
10544 	 * before unregistring the loopback device and allowing the
10545 	 * network namespace be freed.
10546 	 *
10547 	 * The netdev todo list containing all network devices
10548 	 * unregistrations that happen in default_device_exit_batch
10549 	 * will run in the rtnl_unlock() at the end of
10550 	 * default_device_exit_batch.
10551 	 */
10552 	rtnl_lock_unregistering(net_list);
10553 	list_for_each_entry(net, net_list, exit_list) {
10554 		for_each_netdev_reverse(net, dev) {
10555 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10556 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10557 			else
10558 				unregister_netdevice_queue(dev, &dev_kill_list);
10559 		}
10560 	}
10561 	unregister_netdevice_many(&dev_kill_list);
10562 	rtnl_unlock();
10563 }
10564 
10565 static struct pernet_operations __net_initdata default_device_ops = {
10566 	.exit = default_device_exit,
10567 	.exit_batch = default_device_exit_batch,
10568 };
10569 
10570 /*
10571  *	Initialize the DEV module. At boot time this walks the device list and
10572  *	unhooks any devices that fail to initialise (normally hardware not
10573  *	present) and leaves us with a valid list of present and active devices.
10574  *
10575  */
10576 
10577 /*
10578  *       This is called single threaded during boot, so no need
10579  *       to take the rtnl semaphore.
10580  */
10581 static int __init net_dev_init(void)
10582 {
10583 	int i, rc = -ENOMEM;
10584 
10585 	BUG_ON(!dev_boot_phase);
10586 
10587 	if (dev_proc_init())
10588 		goto out;
10589 
10590 	if (netdev_kobject_init())
10591 		goto out;
10592 
10593 	INIT_LIST_HEAD(&ptype_all);
10594 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10595 		INIT_LIST_HEAD(&ptype_base[i]);
10596 
10597 	INIT_LIST_HEAD(&offload_base);
10598 
10599 	if (register_pernet_subsys(&netdev_net_ops))
10600 		goto out;
10601 
10602 	/*
10603 	 *	Initialise the packet receive queues.
10604 	 */
10605 
10606 	for_each_possible_cpu(i) {
10607 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10608 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10609 
10610 		INIT_WORK(flush, flush_backlog);
10611 
10612 		skb_queue_head_init(&sd->input_pkt_queue);
10613 		skb_queue_head_init(&sd->process_queue);
10614 #ifdef CONFIG_XFRM_OFFLOAD
10615 		skb_queue_head_init(&sd->xfrm_backlog);
10616 #endif
10617 		INIT_LIST_HEAD(&sd->poll_list);
10618 		sd->output_queue_tailp = &sd->output_queue;
10619 #ifdef CONFIG_RPS
10620 		sd->csd.func = rps_trigger_softirq;
10621 		sd->csd.info = sd;
10622 		sd->cpu = i;
10623 #endif
10624 
10625 		init_gro_hash(&sd->backlog);
10626 		sd->backlog.poll = process_backlog;
10627 		sd->backlog.weight = weight_p;
10628 	}
10629 
10630 	dev_boot_phase = 0;
10631 
10632 	/* The loopback device is special if any other network devices
10633 	 * is present in a network namespace the loopback device must
10634 	 * be present. Since we now dynamically allocate and free the
10635 	 * loopback device ensure this invariant is maintained by
10636 	 * keeping the loopback device as the first device on the
10637 	 * list of network devices.  Ensuring the loopback devices
10638 	 * is the first device that appears and the last network device
10639 	 * that disappears.
10640 	 */
10641 	if (register_pernet_device(&loopback_net_ops))
10642 		goto out;
10643 
10644 	if (register_pernet_device(&default_device_ops))
10645 		goto out;
10646 
10647 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10648 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10649 
10650 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10651 				       NULL, dev_cpu_dead);
10652 	WARN_ON(rc < 0);
10653 	rc = 0;
10654 out:
10655 	return rc;
10656 }
10657 
10658 subsys_initcall(net_dev_init);
10659