xref: /linux/net/core/dev.c (revision 056622053b8ae02978678ac1321b5bd956e7c812)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;	/* Taps */
151 static struct list_head offload_base __read_mostly;
152 
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 					 struct net_device *dev,
156 					 struct netdev_notifier_info *info);
157 
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185 
186 static seqcount_t devnet_rename_seq;
187 
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 	while (++net->dev_base_seq == 0);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 	spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211 
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 	struct net *net = dev_net(dev);
223 
224 	ASSERT_RTNL();
225 
226 	write_lock_bh(&dev_base_lock);
227 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 	hlist_add_head_rcu(&dev->index_hlist,
230 			   dev_index_hash(net, dev->ifindex));
231 	write_unlock_bh(&dev_base_lock);
232 
233 	dev_base_seq_inc(net);
234 }
235 
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del_rcu(&dev->dev_list);
246 	hlist_del_rcu(&dev->name_hlist);
247 	hlist_del_rcu(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 
250 	dev_base_seq_inc(dev_net(dev));
251 }
252 
253 /*
254  *	Our notifier list
255  */
256 
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258 
259 /*
260  *	Device drivers call our routines to queue packets here. We empty the
261  *	queue in the local softnet handler.
262  */
263 
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266 
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288 
289 static const char *const netdev_lock_name[] =
290 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305 
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 	int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 		if (netdev_lock_type[i] == dev_type)
315 			return i;
316 	/* the last key is used by default */
317 	return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319 
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 						 unsigned short dev_type)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev_type);
326 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 				   netdev_lock_name[i]);
328 }
329 
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 	int i;
333 
334 	i = netdev_lock_pos(dev->type);
335 	lockdep_set_class_and_name(&dev->addr_list_lock,
336 				   &netdev_addr_lock_key[i],
337 				   netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348 
349 /*******************************************************************************
350 
351 		Protocol management and registration routines
352 
353 *******************************************************************************/
354 
355 /*
356  *	Add a protocol ID to the list. Now that the input handler is
357  *	smarter we can dispense with all the messy stuff that used to be
358  *	here.
359  *
360  *	BEWARE!!! Protocol handlers, mangling input packets,
361  *	MUST BE last in hash buckets and checking protocol handlers
362  *	MUST start from promiscuous ptype_all chain in net_bh.
363  *	It is true now, do not change it.
364  *	Explanation follows: if protocol handler, mangling packet, will
365  *	be the first on list, it is not able to sense, that packet
366  *	is cloned and should be copied-on-write, so that it will
367  *	change it and subsequent readers will get broken packet.
368  *							--ANK (980803)
369  */
370 
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 	if (pt->type == htons(ETH_P_ALL))
374 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 	else
376 		return pt->dev ? &pt->dev->ptype_specific :
377 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379 
380 /**
381  *	dev_add_pack - add packet handler
382  *	@pt: packet type declaration
383  *
384  *	Add a protocol handler to the networking stack. The passed &packet_type
385  *	is linked into kernel lists and may not be freed until it has been
386  *	removed from the kernel lists.
387  *
388  *	This call does not sleep therefore it can not
389  *	guarantee all CPU's that are in middle of receiving packets
390  *	will see the new packet type (until the next received packet).
391  */
392 
393 void dev_add_pack(struct packet_type *pt)
394 {
395 	struct list_head *head = ptype_head(pt);
396 
397 	spin_lock(&ptype_lock);
398 	list_add_rcu(&pt->list, head);
399 	spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402 
403 /**
404  *	__dev_remove_pack	 - remove packet handler
405  *	@pt: packet type declaration
406  *
407  *	Remove a protocol handler that was previously added to the kernel
408  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *	from the kernel lists and can be freed or reused once this function
410  *	returns.
411  *
412  *      The packet type might still be in use by receivers
413  *	and must not be freed until after all the CPU's have gone
414  *	through a quiescent state.
415  */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 	struct list_head *head = ptype_head(pt);
419 	struct packet_type *pt1;
420 
421 	spin_lock(&ptype_lock);
422 
423 	list_for_each_entry(pt1, head, list) {
424 		if (pt == pt1) {
425 			list_del_rcu(&pt->list);
426 			goto out;
427 		}
428 	}
429 
430 	pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 	spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435 
436 /**
437  *	dev_remove_pack	 - remove packet handler
438  *	@pt: packet type declaration
439  *
440  *	Remove a protocol handler that was previously added to the kernel
441  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *	from the kernel lists and can be freed or reused once this function
443  *	returns.
444  *
445  *	This call sleeps to guarantee that no CPU is looking at the packet
446  *	type after return.
447  */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 	__dev_remove_pack(pt);
451 
452 	synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455 
456 
457 /**
458  *	dev_add_offload - register offload handlers
459  *	@po: protocol offload declaration
460  *
461  *	Add protocol offload handlers to the networking stack. The passed
462  *	&proto_offload is linked into kernel lists and may not be freed until
463  *	it has been removed from the kernel lists.
464  *
465  *	This call does not sleep therefore it can not
466  *	guarantee all CPU's that are in middle of receiving packets
467  *	will see the new offload handlers (until the next received packet).
468  */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 	struct list_head *head = &offload_base;
472 
473 	spin_lock(&offload_lock);
474 	list_add_rcu(&po->list, head);
475 	spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478 
479 /**
480  *	__dev_remove_offload	 - remove offload handler
481  *	@po: packet offload declaration
482  *
483  *	Remove a protocol offload handler that was previously added to the
484  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *	is removed from the kernel lists and can be freed or reused once this
486  *	function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *	and must not be freed until after all the CPU's have gone
490  *	through a quiescent state.
491  */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 	struct list_head *head = &offload_base;
495 	struct packet_offload *po1;
496 
497 	spin_lock(&offload_lock);
498 
499 	list_for_each_entry(po1, head, list) {
500 		if (po == po1) {
501 			list_del_rcu(&po->list);
502 			goto out;
503 		}
504 	}
505 
506 	pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 	spin_unlock(&offload_lock);
509 }
510 
511 /**
512  *	dev_remove_offload	 - remove packet offload handler
513  *	@po: packet offload declaration
514  *
515  *	Remove a packet offload handler that was previously added to the kernel
516  *	offload handlers by dev_add_offload(). The passed &offload_type is
517  *	removed from the kernel lists and can be freed or reused once this
518  *	function returns.
519  *
520  *	This call sleeps to guarantee that no CPU is looking at the packet
521  *	type after return.
522  */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 	__dev_remove_offload(po);
526 
527 	synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530 
531 /******************************************************************************
532 
533 		      Device Boot-time Settings Routines
534 
535 *******************************************************************************/
536 
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539 
540 /**
541  *	netdev_boot_setup_add	- add new setup entry
542  *	@name: name of the device
543  *	@map: configured settings for the device
544  *
545  *	Adds new setup entry to the dev_boot_setup list.  The function
546  *	returns 0 on error and 1 on success.  This is a generic routine to
547  *	all netdevices.
548  */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 	struct netdev_boot_setup *s;
552 	int i;
553 
554 	s = dev_boot_setup;
555 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 			memset(s[i].name, 0, sizeof(s[i].name));
558 			strlcpy(s[i].name, name, IFNAMSIZ);
559 			memcpy(&s[i].map, map, sizeof(s[i].map));
560 			break;
561 		}
562 	}
563 
564 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566 
567 /**
568  *	netdev_boot_setup_check	- check boot time settings
569  *	@dev: the netdevice
570  *
571  * 	Check boot time settings for the device.
572  *	The found settings are set for the device to be used
573  *	later in the device probing.
574  *	Returns 0 if no settings found, 1 if they are.
575  */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 	struct netdev_boot_setup *s = dev_boot_setup;
579 	int i;
580 
581 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 		    !strcmp(dev->name, s[i].name)) {
584 			dev->irq 	= s[i].map.irq;
585 			dev->base_addr 	= s[i].map.base_addr;
586 			dev->mem_start 	= s[i].map.mem_start;
587 			dev->mem_end 	= s[i].map.mem_end;
588 			return 1;
589 		}
590 	}
591 	return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594 
595 
596 /**
597  *	netdev_boot_base	- get address from boot time settings
598  *	@prefix: prefix for network device
599  *	@unit: id for network device
600  *
601  * 	Check boot time settings for the base address of device.
602  *	The found settings are set for the device to be used
603  *	later in the device probing.
604  *	Returns 0 if no settings found.
605  */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 	const struct netdev_boot_setup *s = dev_boot_setup;
609 	char name[IFNAMSIZ];
610 	int i;
611 
612 	sprintf(name, "%s%d", prefix, unit);
613 
614 	/*
615 	 * If device already registered then return base of 1
616 	 * to indicate not to probe for this interface
617 	 */
618 	if (__dev_get_by_name(&init_net, name))
619 		return 1;
620 
621 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 		if (!strcmp(name, s[i].name))
623 			return s[i].map.base_addr;
624 	return 0;
625 }
626 
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
630 int __init netdev_boot_setup(char *str)
631 {
632 	int ints[5];
633 	struct ifmap map;
634 
635 	str = get_options(str, ARRAY_SIZE(ints), ints);
636 	if (!str || !*str)
637 		return 0;
638 
639 	/* Save settings */
640 	memset(&map, 0, sizeof(map));
641 	if (ints[0] > 0)
642 		map.irq = ints[1];
643 	if (ints[0] > 1)
644 		map.base_addr = ints[2];
645 	if (ints[0] > 2)
646 		map.mem_start = ints[3];
647 	if (ints[0] > 3)
648 		map.mem_end = ints[4];
649 
650 	/* Add new entry to the list */
651 	return netdev_boot_setup_add(str, &map);
652 }
653 
654 __setup("netdev=", netdev_boot_setup);
655 
656 /*******************************************************************************
657 
658 			    Device Interface Subroutines
659 
660 *******************************************************************************/
661 
662 /**
663  *	__dev_get_by_name	- find a device by its name
664  *	@net: the applicable net namespace
665  *	@name: name to find
666  *
667  *	Find an interface by name. Must be called under RTNL semaphore
668  *	or @dev_base_lock. If the name is found a pointer to the device
669  *	is returned. If the name is not found then %NULL is returned. The
670  *	reference counters are not incremented so the caller must be
671  *	careful with locks.
672  */
673 
674 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 {
676 	struct net_device *dev;
677 	struct hlist_head *head = dev_name_hash(net, name);
678 
679 	hlist_for_each_entry(dev, head, name_hlist)
680 		if (!strncmp(dev->name, name, IFNAMSIZ))
681 			return dev;
682 
683 	return NULL;
684 }
685 EXPORT_SYMBOL(__dev_get_by_name);
686 
687 /**
688  *	dev_get_by_name_rcu	- find a device by its name
689  *	@net: the applicable net namespace
690  *	@name: name to find
691  *
692  *	Find an interface by name.
693  *	If the name is found a pointer to the device is returned.
694  * 	If the name is not found then %NULL is returned.
695  *	The reference counters are not incremented so the caller must be
696  *	careful with locks. The caller must hold RCU lock.
697  */
698 
699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 {
701 	struct net_device *dev;
702 	struct hlist_head *head = dev_name_hash(net, name);
703 
704 	hlist_for_each_entry_rcu(dev, head, name_hlist)
705 		if (!strncmp(dev->name, name, IFNAMSIZ))
706 			return dev;
707 
708 	return NULL;
709 }
710 EXPORT_SYMBOL(dev_get_by_name_rcu);
711 
712 /**
713  *	dev_get_by_name		- find a device by its name
714  *	@net: the applicable net namespace
715  *	@name: name to find
716  *
717  *	Find an interface by name. This can be called from any
718  *	context and does its own locking. The returned handle has
719  *	the usage count incremented and the caller must use dev_put() to
720  *	release it when it is no longer needed. %NULL is returned if no
721  *	matching device is found.
722  */
723 
724 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 {
726 	struct net_device *dev;
727 
728 	rcu_read_lock();
729 	dev = dev_get_by_name_rcu(net, name);
730 	if (dev)
731 		dev_hold(dev);
732 	rcu_read_unlock();
733 	return dev;
734 }
735 EXPORT_SYMBOL(dev_get_by_name);
736 
737 /**
738  *	__dev_get_by_index - find a device by its ifindex
739  *	@net: the applicable net namespace
740  *	@ifindex: index of device
741  *
742  *	Search for an interface by index. Returns %NULL if the device
743  *	is not found or a pointer to the device. The device has not
744  *	had its reference counter increased so the caller must be careful
745  *	about locking. The caller must hold either the RTNL semaphore
746  *	or @dev_base_lock.
747  */
748 
749 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 {
751 	struct net_device *dev;
752 	struct hlist_head *head = dev_index_hash(net, ifindex);
753 
754 	hlist_for_each_entry(dev, head, index_hlist)
755 		if (dev->ifindex == ifindex)
756 			return dev;
757 
758 	return NULL;
759 }
760 EXPORT_SYMBOL(__dev_get_by_index);
761 
762 /**
763  *	dev_get_by_index_rcu - find a device by its ifindex
764  *	@net: the applicable net namespace
765  *	@ifindex: index of device
766  *
767  *	Search for an interface by index. Returns %NULL if the device
768  *	is not found or a pointer to the device. The device has not
769  *	had its reference counter increased so the caller must be careful
770  *	about locking. The caller must hold RCU lock.
771  */
772 
773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 {
775 	struct net_device *dev;
776 	struct hlist_head *head = dev_index_hash(net, ifindex);
777 
778 	hlist_for_each_entry_rcu(dev, head, index_hlist)
779 		if (dev->ifindex == ifindex)
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_index_rcu);
785 
786 
787 /**
788  *	dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns NULL if the device
793  *	is not found or a pointer to the device. The device returned has
794  *	had a reference added and the pointer is safe until the user calls
795  *	dev_put to indicate they have finished with it.
796  */
797 
798 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 {
800 	struct net_device *dev;
801 
802 	rcu_read_lock();
803 	dev = dev_get_by_index_rcu(net, ifindex);
804 	if (dev)
805 		dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_index);
810 
811 /**
812  *	netdev_get_name - get a netdevice name, knowing its ifindex.
813  *	@net: network namespace
814  *	@name: a pointer to the buffer where the name will be stored.
815  *	@ifindex: the ifindex of the interface to get the name from.
816  *
817  *	The use of raw_seqcount_begin() and cond_resched() before
818  *	retrying is required as we want to give the writers a chance
819  *	to complete when CONFIG_PREEMPT is not set.
820  */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823 	struct net_device *dev;
824 	unsigned int seq;
825 
826 retry:
827 	seq = raw_seqcount_begin(&devnet_rename_seq);
828 	rcu_read_lock();
829 	dev = dev_get_by_index_rcu(net, ifindex);
830 	if (!dev) {
831 		rcu_read_unlock();
832 		return -ENODEV;
833 	}
834 
835 	strcpy(name, dev->name);
836 	rcu_read_unlock();
837 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 		cond_resched();
839 		goto retry;
840 	}
841 
842 	return 0;
843 }
844 
845 /**
846  *	dev_getbyhwaddr_rcu - find a device by its hardware address
847  *	@net: the applicable net namespace
848  *	@type: media type of device
849  *	@ha: hardware address
850  *
851  *	Search for an interface by MAC address. Returns NULL if the device
852  *	is not found or a pointer to the device.
853  *	The caller must hold RCU or RTNL.
854  *	The returned device has not had its ref count increased
855  *	and the caller must therefore be careful about locking
856  *
857  */
858 
859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 				       const char *ha)
861 {
862 	struct net_device *dev;
863 
864 	for_each_netdev_rcu(net, dev)
865 		if (dev->type == type &&
866 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
867 			return dev;
868 
869 	return NULL;
870 }
871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872 
873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875 	struct net_device *dev;
876 
877 	ASSERT_RTNL();
878 	for_each_netdev(net, dev)
879 		if (dev->type == type)
880 			return dev;
881 
882 	return NULL;
883 }
884 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885 
886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 {
888 	struct net_device *dev, *ret = NULL;
889 
890 	rcu_read_lock();
891 	for_each_netdev_rcu(net, dev)
892 		if (dev->type == type) {
893 			dev_hold(dev);
894 			ret = dev;
895 			break;
896 		}
897 	rcu_read_unlock();
898 	return ret;
899 }
900 EXPORT_SYMBOL(dev_getfirstbyhwtype);
901 
902 /**
903  *	__dev_get_by_flags - find any device with given flags
904  *	@net: the applicable net namespace
905  *	@if_flags: IFF_* values
906  *	@mask: bitmask of bits in if_flags to check
907  *
908  *	Search for any interface with the given flags. Returns NULL if a device
909  *	is not found or a pointer to the device. Must be called inside
910  *	rtnl_lock(), and result refcount is unchanged.
911  */
912 
913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 				      unsigned short mask)
915 {
916 	struct net_device *dev, *ret;
917 
918 	ASSERT_RTNL();
919 
920 	ret = NULL;
921 	for_each_netdev(net, dev) {
922 		if (((dev->flags ^ if_flags) & mask) == 0) {
923 			ret = dev;
924 			break;
925 		}
926 	}
927 	return ret;
928 }
929 EXPORT_SYMBOL(__dev_get_by_flags);
930 
931 /**
932  *	dev_valid_name - check if name is okay for network device
933  *	@name: name string
934  *
935  *	Network device names need to be valid file names to
936  *	to allow sysfs to work.  We also disallow any kind of
937  *	whitespace.
938  */
939 bool dev_valid_name(const char *name)
940 {
941 	if (*name == '\0')
942 		return false;
943 	if (strlen(name) >= IFNAMSIZ)
944 		return false;
945 	if (!strcmp(name, ".") || !strcmp(name, ".."))
946 		return false;
947 
948 	while (*name) {
949 		if (*name == '/' || isspace(*name))
950 			return false;
951 		name++;
952 	}
953 	return true;
954 }
955 EXPORT_SYMBOL(dev_valid_name);
956 
957 /**
958  *	__dev_alloc_name - allocate a name for a device
959  *	@net: network namespace to allocate the device name in
960  *	@name: name format string
961  *	@buf:  scratch buffer and result name string
962  *
963  *	Passed a format string - eg "lt%d" it will try and find a suitable
964  *	id. It scans list of devices to build up a free map, then chooses
965  *	the first empty slot. The caller must hold the dev_base or rtnl lock
966  *	while allocating the name and adding the device in order to avoid
967  *	duplicates.
968  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969  *	Returns the number of the unit assigned or a negative errno code.
970  */
971 
972 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973 {
974 	int i = 0;
975 	const char *p;
976 	const int max_netdevices = 8*PAGE_SIZE;
977 	unsigned long *inuse;
978 	struct net_device *d;
979 
980 	p = strnchr(name, IFNAMSIZ-1, '%');
981 	if (p) {
982 		/*
983 		 * Verify the string as this thing may have come from
984 		 * the user.  There must be either one "%d" and no other "%"
985 		 * characters.
986 		 */
987 		if (p[1] != 'd' || strchr(p + 2, '%'))
988 			return -EINVAL;
989 
990 		/* Use one page as a bit array of possible slots */
991 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992 		if (!inuse)
993 			return -ENOMEM;
994 
995 		for_each_netdev(net, d) {
996 			if (!sscanf(d->name, name, &i))
997 				continue;
998 			if (i < 0 || i >= max_netdevices)
999 				continue;
1000 
1001 			/*  avoid cases where sscanf is not exact inverse of printf */
1002 			snprintf(buf, IFNAMSIZ, name, i);
1003 			if (!strncmp(buf, d->name, IFNAMSIZ))
1004 				set_bit(i, inuse);
1005 		}
1006 
1007 		i = find_first_zero_bit(inuse, max_netdevices);
1008 		free_page((unsigned long) inuse);
1009 	}
1010 
1011 	if (buf != name)
1012 		snprintf(buf, IFNAMSIZ, name, i);
1013 	if (!__dev_get_by_name(net, buf))
1014 		return i;
1015 
1016 	/* It is possible to run out of possible slots
1017 	 * when the name is long and there isn't enough space left
1018 	 * for the digits, or if all bits are used.
1019 	 */
1020 	return -ENFILE;
1021 }
1022 
1023 /**
1024  *	dev_alloc_name - allocate a name for a device
1025  *	@dev: device
1026  *	@name: name format string
1027  *
1028  *	Passed a format string - eg "lt%d" it will try and find a suitable
1029  *	id. It scans list of devices to build up a free map, then chooses
1030  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1031  *	while allocating the name and adding the device in order to avoid
1032  *	duplicates.
1033  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034  *	Returns the number of the unit assigned or a negative errno code.
1035  */
1036 
1037 int dev_alloc_name(struct net_device *dev, const char *name)
1038 {
1039 	char buf[IFNAMSIZ];
1040 	struct net *net;
1041 	int ret;
1042 
1043 	BUG_ON(!dev_net(dev));
1044 	net = dev_net(dev);
1045 	ret = __dev_alloc_name(net, name, buf);
1046 	if (ret >= 0)
1047 		strlcpy(dev->name, buf, IFNAMSIZ);
1048 	return ret;
1049 }
1050 EXPORT_SYMBOL(dev_alloc_name);
1051 
1052 static int dev_alloc_name_ns(struct net *net,
1053 			     struct net_device *dev,
1054 			     const char *name)
1055 {
1056 	char buf[IFNAMSIZ];
1057 	int ret;
1058 
1059 	ret = __dev_alloc_name(net, name, buf);
1060 	if (ret >= 0)
1061 		strlcpy(dev->name, buf, IFNAMSIZ);
1062 	return ret;
1063 }
1064 
1065 static int dev_get_valid_name(struct net *net,
1066 			      struct net_device *dev,
1067 			      const char *name)
1068 {
1069 	BUG_ON(!net);
1070 
1071 	if (!dev_valid_name(name))
1072 		return -EINVAL;
1073 
1074 	if (strchr(name, '%'))
1075 		return dev_alloc_name_ns(net, dev, name);
1076 	else if (__dev_get_by_name(net, name))
1077 		return -EEXIST;
1078 	else if (dev->name != name)
1079 		strlcpy(dev->name, name, IFNAMSIZ);
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  *	dev_change_name - change name of a device
1086  *	@dev: device
1087  *	@newname: name (or format string) must be at least IFNAMSIZ
1088  *
1089  *	Change name of a device, can pass format strings "eth%d".
1090  *	for wildcarding.
1091  */
1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094 	unsigned char old_assign_type;
1095 	char oldname[IFNAMSIZ];
1096 	int err = 0;
1097 	int ret;
1098 	struct net *net;
1099 
1100 	ASSERT_RTNL();
1101 	BUG_ON(!dev_net(dev));
1102 
1103 	net = dev_net(dev);
1104 	if (dev->flags & IFF_UP)
1105 		return -EBUSY;
1106 
1107 	write_seqcount_begin(&devnet_rename_seq);
1108 
1109 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110 		write_seqcount_end(&devnet_rename_seq);
1111 		return 0;
1112 	}
1113 
1114 	memcpy(oldname, dev->name, IFNAMSIZ);
1115 
1116 	err = dev_get_valid_name(net, dev, newname);
1117 	if (err < 0) {
1118 		write_seqcount_end(&devnet_rename_seq);
1119 		return err;
1120 	}
1121 
1122 	if (oldname[0] && !strchr(oldname, '%'))
1123 		netdev_info(dev, "renamed from %s\n", oldname);
1124 
1125 	old_assign_type = dev->name_assign_type;
1126 	dev->name_assign_type = NET_NAME_RENAMED;
1127 
1128 rollback:
1129 	ret = device_rename(&dev->dev, dev->name);
1130 	if (ret) {
1131 		memcpy(dev->name, oldname, IFNAMSIZ);
1132 		dev->name_assign_type = old_assign_type;
1133 		write_seqcount_end(&devnet_rename_seq);
1134 		return ret;
1135 	}
1136 
1137 	write_seqcount_end(&devnet_rename_seq);
1138 
1139 	netdev_adjacent_rename_links(dev, oldname);
1140 
1141 	write_lock_bh(&dev_base_lock);
1142 	hlist_del_rcu(&dev->name_hlist);
1143 	write_unlock_bh(&dev_base_lock);
1144 
1145 	synchronize_rcu();
1146 
1147 	write_lock_bh(&dev_base_lock);
1148 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149 	write_unlock_bh(&dev_base_lock);
1150 
1151 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152 	ret = notifier_to_errno(ret);
1153 
1154 	if (ret) {
1155 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1156 		if (err >= 0) {
1157 			err = ret;
1158 			write_seqcount_begin(&devnet_rename_seq);
1159 			memcpy(dev->name, oldname, IFNAMSIZ);
1160 			memcpy(oldname, newname, IFNAMSIZ);
1161 			dev->name_assign_type = old_assign_type;
1162 			old_assign_type = NET_NAME_RENAMED;
1163 			goto rollback;
1164 		} else {
1165 			pr_err("%s: name change rollback failed: %d\n",
1166 			       dev->name, ret);
1167 		}
1168 	}
1169 
1170 	return err;
1171 }
1172 
1173 /**
1174  *	dev_set_alias - change ifalias of a device
1175  *	@dev: device
1176  *	@alias: name up to IFALIASZ
1177  *	@len: limit of bytes to copy from info
1178  *
1179  *	Set ifalias for a device,
1180  */
1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182 {
1183 	char *new_ifalias;
1184 
1185 	ASSERT_RTNL();
1186 
1187 	if (len >= IFALIASZ)
1188 		return -EINVAL;
1189 
1190 	if (!len) {
1191 		kfree(dev->ifalias);
1192 		dev->ifalias = NULL;
1193 		return 0;
1194 	}
1195 
1196 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 	if (!new_ifalias)
1198 		return -ENOMEM;
1199 	dev->ifalias = new_ifalias;
1200 
1201 	strlcpy(dev->ifalias, alias, len+1);
1202 	return len;
1203 }
1204 
1205 
1206 /**
1207  *	netdev_features_change - device changes features
1208  *	@dev: device to cause notification
1209  *
1210  *	Called to indicate a device has changed features.
1211  */
1212 void netdev_features_change(struct net_device *dev)
1213 {
1214 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 }
1216 EXPORT_SYMBOL(netdev_features_change);
1217 
1218 /**
1219  *	netdev_state_change - device changes state
1220  *	@dev: device to cause notification
1221  *
1222  *	Called to indicate a device has changed state. This function calls
1223  *	the notifier chains for netdev_chain and sends a NEWLINK message
1224  *	to the routing socket.
1225  */
1226 void netdev_state_change(struct net_device *dev)
1227 {
1228 	if (dev->flags & IFF_UP) {
1229 		struct netdev_notifier_change_info change_info;
1230 
1231 		change_info.flags_changed = 0;
1232 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 					      &change_info.info);
1234 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235 	}
1236 }
1237 EXPORT_SYMBOL(netdev_state_change);
1238 
1239 /**
1240  * 	netdev_notify_peers - notify network peers about existence of @dev
1241  * 	@dev: network device
1242  *
1243  * Generate traffic such that interested network peers are aware of
1244  * @dev, such as by generating a gratuitous ARP. This may be used when
1245  * a device wants to inform the rest of the network about some sort of
1246  * reconfiguration such as a failover event or virtual machine
1247  * migration.
1248  */
1249 void netdev_notify_peers(struct net_device *dev)
1250 {
1251 	rtnl_lock();
1252 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 	rtnl_unlock();
1254 }
1255 EXPORT_SYMBOL(netdev_notify_peers);
1256 
1257 static int __dev_open(struct net_device *dev)
1258 {
1259 	const struct net_device_ops *ops = dev->netdev_ops;
1260 	int ret;
1261 
1262 	ASSERT_RTNL();
1263 
1264 	if (!netif_device_present(dev))
1265 		return -ENODEV;
1266 
1267 	/* Block netpoll from trying to do any rx path servicing.
1268 	 * If we don't do this there is a chance ndo_poll_controller
1269 	 * or ndo_poll may be running while we open the device
1270 	 */
1271 	netpoll_poll_disable(dev);
1272 
1273 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 	ret = notifier_to_errno(ret);
1275 	if (ret)
1276 		return ret;
1277 
1278 	set_bit(__LINK_STATE_START, &dev->state);
1279 
1280 	if (ops->ndo_validate_addr)
1281 		ret = ops->ndo_validate_addr(dev);
1282 
1283 	if (!ret && ops->ndo_open)
1284 		ret = ops->ndo_open(dev);
1285 
1286 	netpoll_poll_enable(dev);
1287 
1288 	if (ret)
1289 		clear_bit(__LINK_STATE_START, &dev->state);
1290 	else {
1291 		dev->flags |= IFF_UP;
1292 		dev_set_rx_mode(dev);
1293 		dev_activate(dev);
1294 		add_device_randomness(dev->dev_addr, dev->addr_len);
1295 	}
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  *	dev_open	- prepare an interface for use.
1302  *	@dev:	device to open
1303  *
1304  *	Takes a device from down to up state. The device's private open
1305  *	function is invoked and then the multicast lists are loaded. Finally
1306  *	the device is moved into the up state and a %NETDEV_UP message is
1307  *	sent to the netdev notifier chain.
1308  *
1309  *	Calling this function on an active interface is a nop. On a failure
1310  *	a negative errno code is returned.
1311  */
1312 int dev_open(struct net_device *dev)
1313 {
1314 	int ret;
1315 
1316 	if (dev->flags & IFF_UP)
1317 		return 0;
1318 
1319 	ret = __dev_open(dev);
1320 	if (ret < 0)
1321 		return ret;
1322 
1323 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324 	call_netdevice_notifiers(NETDEV_UP, dev);
1325 
1326 	return ret;
1327 }
1328 EXPORT_SYMBOL(dev_open);
1329 
1330 static int __dev_close_many(struct list_head *head)
1331 {
1332 	struct net_device *dev;
1333 
1334 	ASSERT_RTNL();
1335 	might_sleep();
1336 
1337 	list_for_each_entry(dev, head, close_list) {
1338 		/* Temporarily disable netpoll until the interface is down */
1339 		netpoll_poll_disable(dev);
1340 
1341 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342 
1343 		clear_bit(__LINK_STATE_START, &dev->state);
1344 
1345 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1346 		 * can be even on different cpu. So just clear netif_running().
1347 		 *
1348 		 * dev->stop() will invoke napi_disable() on all of it's
1349 		 * napi_struct instances on this device.
1350 		 */
1351 		smp_mb__after_atomic(); /* Commit netif_running(). */
1352 	}
1353 
1354 	dev_deactivate_many(head);
1355 
1356 	list_for_each_entry(dev, head, close_list) {
1357 		const struct net_device_ops *ops = dev->netdev_ops;
1358 
1359 		/*
1360 		 *	Call the device specific close. This cannot fail.
1361 		 *	Only if device is UP
1362 		 *
1363 		 *	We allow it to be called even after a DETACH hot-plug
1364 		 *	event.
1365 		 */
1366 		if (ops->ndo_stop)
1367 			ops->ndo_stop(dev);
1368 
1369 		dev->flags &= ~IFF_UP;
1370 		netpoll_poll_enable(dev);
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int __dev_close(struct net_device *dev)
1377 {
1378 	int retval;
1379 	LIST_HEAD(single);
1380 
1381 	list_add(&dev->close_list, &single);
1382 	retval = __dev_close_many(&single);
1383 	list_del(&single);
1384 
1385 	return retval;
1386 }
1387 
1388 static int dev_close_many(struct list_head *head)
1389 {
1390 	struct net_device *dev, *tmp;
1391 
1392 	/* Remove the devices that don't need to be closed */
1393 	list_for_each_entry_safe(dev, tmp, head, close_list)
1394 		if (!(dev->flags & IFF_UP))
1395 			list_del_init(&dev->close_list);
1396 
1397 	__dev_close_many(head);
1398 
1399 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1400 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1402 		list_del_init(&dev->close_list);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 /**
1409  *	dev_close - shutdown an interface.
1410  *	@dev: device to shutdown
1411  *
1412  *	This function moves an active device into down state. A
1413  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415  *	chain.
1416  */
1417 int dev_close(struct net_device *dev)
1418 {
1419 	if (dev->flags & IFF_UP) {
1420 		LIST_HEAD(single);
1421 
1422 		list_add(&dev->close_list, &single);
1423 		dev_close_many(&single);
1424 		list_del(&single);
1425 	}
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL(dev_close);
1429 
1430 
1431 /**
1432  *	dev_disable_lro - disable Large Receive Offload on a device
1433  *	@dev: device
1434  *
1435  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1436  *	called under RTNL.  This is needed if received packets may be
1437  *	forwarded to another interface.
1438  */
1439 void dev_disable_lro(struct net_device *dev)
1440 {
1441 	struct net_device *lower_dev;
1442 	struct list_head *iter;
1443 
1444 	dev->wanted_features &= ~NETIF_F_LRO;
1445 	netdev_update_features(dev);
1446 
1447 	if (unlikely(dev->features & NETIF_F_LRO))
1448 		netdev_WARN(dev, "failed to disable LRO!\n");
1449 
1450 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1451 		dev_disable_lro(lower_dev);
1452 }
1453 EXPORT_SYMBOL(dev_disable_lro);
1454 
1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456 				   struct net_device *dev)
1457 {
1458 	struct netdev_notifier_info info;
1459 
1460 	netdev_notifier_info_init(&info, dev);
1461 	return nb->notifier_call(nb, val, &info);
1462 }
1463 
1464 static int dev_boot_phase = 1;
1465 
1466 /**
1467  *	register_netdevice_notifier - register a network notifier block
1468  *	@nb: notifier
1469  *
1470  *	Register a notifier to be called when network device events occur.
1471  *	The notifier passed is linked into the kernel structures and must
1472  *	not be reused until it has been unregistered. A negative errno code
1473  *	is returned on a failure.
1474  *
1475  * 	When registered all registration and up events are replayed
1476  *	to the new notifier to allow device to have a race free
1477  *	view of the network device list.
1478  */
1479 
1480 int register_netdevice_notifier(struct notifier_block *nb)
1481 {
1482 	struct net_device *dev;
1483 	struct net_device *last;
1484 	struct net *net;
1485 	int err;
1486 
1487 	rtnl_lock();
1488 	err = raw_notifier_chain_register(&netdev_chain, nb);
1489 	if (err)
1490 		goto unlock;
1491 	if (dev_boot_phase)
1492 		goto unlock;
1493 	for_each_net(net) {
1494 		for_each_netdev(net, dev) {
1495 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496 			err = notifier_to_errno(err);
1497 			if (err)
1498 				goto rollback;
1499 
1500 			if (!(dev->flags & IFF_UP))
1501 				continue;
1502 
1503 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1504 		}
1505 	}
1506 
1507 unlock:
1508 	rtnl_unlock();
1509 	return err;
1510 
1511 rollback:
1512 	last = dev;
1513 	for_each_net(net) {
1514 		for_each_netdev(net, dev) {
1515 			if (dev == last)
1516 				goto outroll;
1517 
1518 			if (dev->flags & IFF_UP) {
1519 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 							dev);
1521 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522 			}
1523 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524 		}
1525 	}
1526 
1527 outroll:
1528 	raw_notifier_chain_unregister(&netdev_chain, nb);
1529 	goto unlock;
1530 }
1531 EXPORT_SYMBOL(register_netdevice_notifier);
1532 
1533 /**
1534  *	unregister_netdevice_notifier - unregister a network notifier block
1535  *	@nb: notifier
1536  *
1537  *	Unregister a notifier previously registered by
1538  *	register_netdevice_notifier(). The notifier is unlinked into the
1539  *	kernel structures and may then be reused. A negative errno code
1540  *	is returned on a failure.
1541  *
1542  * 	After unregistering unregister and down device events are synthesized
1543  *	for all devices on the device list to the removed notifier to remove
1544  *	the need for special case cleanup code.
1545  */
1546 
1547 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 {
1549 	struct net_device *dev;
1550 	struct net *net;
1551 	int err;
1552 
1553 	rtnl_lock();
1554 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555 	if (err)
1556 		goto unlock;
1557 
1558 	for_each_net(net) {
1559 		for_each_netdev(net, dev) {
1560 			if (dev->flags & IFF_UP) {
1561 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 							dev);
1563 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564 			}
1565 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566 		}
1567 	}
1568 unlock:
1569 	rtnl_unlock();
1570 	return err;
1571 }
1572 EXPORT_SYMBOL(unregister_netdevice_notifier);
1573 
1574 /**
1575  *	call_netdevice_notifiers_info - call all network notifier blocks
1576  *	@val: value passed unmodified to notifier function
1577  *	@dev: net_device pointer passed unmodified to notifier function
1578  *	@info: notifier information data
1579  *
1580  *	Call all network notifier blocks.  Parameters and return value
1581  *	are as for raw_notifier_call_chain().
1582  */
1583 
1584 static int call_netdevice_notifiers_info(unsigned long val,
1585 					 struct net_device *dev,
1586 					 struct netdev_notifier_info *info)
1587 {
1588 	ASSERT_RTNL();
1589 	netdev_notifier_info_init(info, dev);
1590 	return raw_notifier_call_chain(&netdev_chain, val, info);
1591 }
1592 
1593 /**
1594  *	call_netdevice_notifiers - call all network notifier blocks
1595  *      @val: value passed unmodified to notifier function
1596  *      @dev: net_device pointer passed unmodified to notifier function
1597  *
1598  *	Call all network notifier blocks.  Parameters and return value
1599  *	are as for raw_notifier_call_chain().
1600  */
1601 
1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 {
1604 	struct netdev_notifier_info info;
1605 
1606 	return call_netdevice_notifiers_info(val, dev, &info);
1607 }
1608 EXPORT_SYMBOL(call_netdevice_notifiers);
1609 
1610 static struct static_key netstamp_needed __read_mostly;
1611 #ifdef HAVE_JUMP_LABEL
1612 /* We are not allowed to call static_key_slow_dec() from irq context
1613  * If net_disable_timestamp() is called from irq context, defer the
1614  * static_key_slow_dec() calls.
1615  */
1616 static atomic_t netstamp_needed_deferred;
1617 #endif
1618 
1619 void net_enable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623 
1624 	if (deferred) {
1625 		while (--deferred)
1626 			static_key_slow_dec(&netstamp_needed);
1627 		return;
1628 	}
1629 #endif
1630 	static_key_slow_inc(&netstamp_needed);
1631 }
1632 EXPORT_SYMBOL(net_enable_timestamp);
1633 
1634 void net_disable_timestamp(void)
1635 {
1636 #ifdef HAVE_JUMP_LABEL
1637 	if (in_interrupt()) {
1638 		atomic_inc(&netstamp_needed_deferred);
1639 		return;
1640 	}
1641 #endif
1642 	static_key_slow_dec(&netstamp_needed);
1643 }
1644 EXPORT_SYMBOL(net_disable_timestamp);
1645 
1646 static inline void net_timestamp_set(struct sk_buff *skb)
1647 {
1648 	skb->tstamp.tv64 = 0;
1649 	if (static_key_false(&netstamp_needed))
1650 		__net_timestamp(skb);
1651 }
1652 
1653 #define net_timestamp_check(COND, SKB)			\
1654 	if (static_key_false(&netstamp_needed)) {		\
1655 		if ((COND) && !(SKB)->tstamp.tv64)	\
1656 			__net_timestamp(SKB);		\
1657 	}						\
1658 
1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660 {
1661 	unsigned int len;
1662 
1663 	if (!(dev->flags & IFF_UP))
1664 		return false;
1665 
1666 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667 	if (skb->len <= len)
1668 		return true;
1669 
1670 	/* if TSO is enabled, we don't care about the length as the packet
1671 	 * could be forwarded without being segmented before
1672 	 */
1673 	if (skb_is_gso(skb))
1674 		return true;
1675 
1676 	return false;
1677 }
1678 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679 
1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 {
1682 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684 			atomic_long_inc(&dev->rx_dropped);
1685 			kfree_skb(skb);
1686 			return NET_RX_DROP;
1687 		}
1688 	}
1689 
1690 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1691 		atomic_long_inc(&dev->rx_dropped);
1692 		kfree_skb(skb);
1693 		return NET_RX_DROP;
1694 	}
1695 
1696 	skb_scrub_packet(skb, true);
1697 	skb->protocol = eth_type_trans(skb, dev);
1698 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1699 
1700 	return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703 
1704 /**
1705  * dev_forward_skb - loopback an skb to another netif
1706  *
1707  * @dev: destination network device
1708  * @skb: buffer to forward
1709  *
1710  * return values:
1711  *	NET_RX_SUCCESS	(no congestion)
1712  *	NET_RX_DROP     (packet was dropped, but freed)
1713  *
1714  * dev_forward_skb can be used for injecting an skb from the
1715  * start_xmit function of one device into the receive queue
1716  * of another device.
1717  *
1718  * The receiving device may be in another namespace, so
1719  * we have to clear all information in the skb that could
1720  * impact namespace isolation.
1721  */
1722 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723 {
1724 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1725 }
1726 EXPORT_SYMBOL_GPL(dev_forward_skb);
1727 
1728 static inline int deliver_skb(struct sk_buff *skb,
1729 			      struct packet_type *pt_prev,
1730 			      struct net_device *orig_dev)
1731 {
1732 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733 		return -ENOMEM;
1734 	atomic_inc(&skb->users);
1735 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736 }
1737 
1738 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739 					  struct packet_type **pt,
1740 					  struct net_device *dev, __be16 type,
1741 					  struct list_head *ptype_list)
1742 {
1743 	struct packet_type *ptype, *pt_prev = *pt;
1744 
1745 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1746 		if (ptype->type != type)
1747 			continue;
1748 		if (pt_prev)
1749 			deliver_skb(skb, pt_prev, dev);
1750 		pt_prev = ptype;
1751 	}
1752 	*pt = pt_prev;
1753 }
1754 
1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756 {
1757 	if (!ptype->af_packet_priv || !skb->sk)
1758 		return false;
1759 
1760 	if (ptype->id_match)
1761 		return ptype->id_match(ptype, skb->sk);
1762 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763 		return true;
1764 
1765 	return false;
1766 }
1767 
1768 /*
1769  *	Support routine. Sends outgoing frames to any network
1770  *	taps currently in use.
1771  */
1772 
1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775 	struct packet_type *ptype;
1776 	struct sk_buff *skb2 = NULL;
1777 	struct packet_type *pt_prev = NULL;
1778 	struct list_head *ptype_list = &ptype_all;
1779 
1780 	rcu_read_lock();
1781 again:
1782 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1783 		/* Never send packets back to the socket
1784 		 * they originated from - MvS (miquels@drinkel.ow.org)
1785 		 */
1786 		if (skb_loop_sk(ptype, skb))
1787 			continue;
1788 
1789 		if (pt_prev) {
1790 			deliver_skb(skb2, pt_prev, skb->dev);
1791 			pt_prev = ptype;
1792 			continue;
1793 		}
1794 
1795 		/* need to clone skb, done only once */
1796 		skb2 = skb_clone(skb, GFP_ATOMIC);
1797 		if (!skb2)
1798 			goto out_unlock;
1799 
1800 		net_timestamp_set(skb2);
1801 
1802 		/* skb->nh should be correctly
1803 		 * set by sender, so that the second statement is
1804 		 * just protection against buggy protocols.
1805 		 */
1806 		skb_reset_mac_header(skb2);
1807 
1808 		if (skb_network_header(skb2) < skb2->data ||
1809 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811 					     ntohs(skb2->protocol),
1812 					     dev->name);
1813 			skb_reset_network_header(skb2);
1814 		}
1815 
1816 		skb2->transport_header = skb2->network_header;
1817 		skb2->pkt_type = PACKET_OUTGOING;
1818 		pt_prev = ptype;
1819 	}
1820 
1821 	if (ptype_list == &ptype_all) {
1822 		ptype_list = &dev->ptype_all;
1823 		goto again;
1824 	}
1825 out_unlock:
1826 	if (pt_prev)
1827 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1828 	rcu_read_unlock();
1829 }
1830 
1831 /**
1832  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1833  * @dev: Network device
1834  * @txq: number of queues available
1835  *
1836  * If real_num_tx_queues is changed the tc mappings may no longer be
1837  * valid. To resolve this verify the tc mapping remains valid and if
1838  * not NULL the mapping. With no priorities mapping to this
1839  * offset/count pair it will no longer be used. In the worst case TC0
1840  * is invalid nothing can be done so disable priority mappings. If is
1841  * expected that drivers will fix this mapping if they can before
1842  * calling netif_set_real_num_tx_queues.
1843  */
1844 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1845 {
1846 	int i;
1847 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848 
1849 	/* If TC0 is invalidated disable TC mapping */
1850 	if (tc->offset + tc->count > txq) {
1851 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1852 		dev->num_tc = 0;
1853 		return;
1854 	}
1855 
1856 	/* Invalidated prio to tc mappings set to TC0 */
1857 	for (i = 1; i < TC_BITMASK + 1; i++) {
1858 		int q = netdev_get_prio_tc_map(dev, i);
1859 
1860 		tc = &dev->tc_to_txq[q];
1861 		if (tc->offset + tc->count > txq) {
1862 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863 				i, q);
1864 			netdev_set_prio_tc_map(dev, i, 0);
1865 		}
1866 	}
1867 }
1868 
1869 #ifdef CONFIG_XPS
1870 static DEFINE_MUTEX(xps_map_mutex);
1871 #define xmap_dereference(P)		\
1872 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873 
1874 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875 					int cpu, u16 index)
1876 {
1877 	struct xps_map *map = NULL;
1878 	int pos;
1879 
1880 	if (dev_maps)
1881 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1882 
1883 	for (pos = 0; map && pos < map->len; pos++) {
1884 		if (map->queues[pos] == index) {
1885 			if (map->len > 1) {
1886 				map->queues[pos] = map->queues[--map->len];
1887 			} else {
1888 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1889 				kfree_rcu(map, rcu);
1890 				map = NULL;
1891 			}
1892 			break;
1893 		}
1894 	}
1895 
1896 	return map;
1897 }
1898 
1899 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1900 {
1901 	struct xps_dev_maps *dev_maps;
1902 	int cpu, i;
1903 	bool active = false;
1904 
1905 	mutex_lock(&xps_map_mutex);
1906 	dev_maps = xmap_dereference(dev->xps_maps);
1907 
1908 	if (!dev_maps)
1909 		goto out_no_maps;
1910 
1911 	for_each_possible_cpu(cpu) {
1912 		for (i = index; i < dev->num_tx_queues; i++) {
1913 			if (!remove_xps_queue(dev_maps, cpu, i))
1914 				break;
1915 		}
1916 		if (i == dev->num_tx_queues)
1917 			active = true;
1918 	}
1919 
1920 	if (!active) {
1921 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1922 		kfree_rcu(dev_maps, rcu);
1923 	}
1924 
1925 	for (i = index; i < dev->num_tx_queues; i++)
1926 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927 					     NUMA_NO_NODE);
1928 
1929 out_no_maps:
1930 	mutex_unlock(&xps_map_mutex);
1931 }
1932 
1933 static struct xps_map *expand_xps_map(struct xps_map *map,
1934 				      int cpu, u16 index)
1935 {
1936 	struct xps_map *new_map;
1937 	int alloc_len = XPS_MIN_MAP_ALLOC;
1938 	int i, pos;
1939 
1940 	for (pos = 0; map && pos < map->len; pos++) {
1941 		if (map->queues[pos] != index)
1942 			continue;
1943 		return map;
1944 	}
1945 
1946 	/* Need to add queue to this CPU's existing map */
1947 	if (map) {
1948 		if (pos < map->alloc_len)
1949 			return map;
1950 
1951 		alloc_len = map->alloc_len * 2;
1952 	}
1953 
1954 	/* Need to allocate new map to store queue on this CPU's map */
1955 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956 			       cpu_to_node(cpu));
1957 	if (!new_map)
1958 		return NULL;
1959 
1960 	for (i = 0; i < pos; i++)
1961 		new_map->queues[i] = map->queues[i];
1962 	new_map->alloc_len = alloc_len;
1963 	new_map->len = pos;
1964 
1965 	return new_map;
1966 }
1967 
1968 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969 			u16 index)
1970 {
1971 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1972 	struct xps_map *map, *new_map;
1973 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1974 	int cpu, numa_node_id = -2;
1975 	bool active = false;
1976 
1977 	mutex_lock(&xps_map_mutex);
1978 
1979 	dev_maps = xmap_dereference(dev->xps_maps);
1980 
1981 	/* allocate memory for queue storage */
1982 	for_each_online_cpu(cpu) {
1983 		if (!cpumask_test_cpu(cpu, mask))
1984 			continue;
1985 
1986 		if (!new_dev_maps)
1987 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1988 		if (!new_dev_maps) {
1989 			mutex_unlock(&xps_map_mutex);
1990 			return -ENOMEM;
1991 		}
1992 
1993 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994 				 NULL;
1995 
1996 		map = expand_xps_map(map, cpu, index);
1997 		if (!map)
1998 			goto error;
1999 
2000 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001 	}
2002 
2003 	if (!new_dev_maps)
2004 		goto out_no_new_maps;
2005 
2006 	for_each_possible_cpu(cpu) {
2007 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008 			/* add queue to CPU maps */
2009 			int pos = 0;
2010 
2011 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 			while ((pos < map->len) && (map->queues[pos] != index))
2013 				pos++;
2014 
2015 			if (pos == map->len)
2016 				map->queues[map->len++] = index;
2017 #ifdef CONFIG_NUMA
2018 			if (numa_node_id == -2)
2019 				numa_node_id = cpu_to_node(cpu);
2020 			else if (numa_node_id != cpu_to_node(cpu))
2021 				numa_node_id = -1;
2022 #endif
2023 		} else if (dev_maps) {
2024 			/* fill in the new device map from the old device map */
2025 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2027 		}
2028 
2029 	}
2030 
2031 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032 
2033 	/* Cleanup old maps */
2034 	if (dev_maps) {
2035 		for_each_possible_cpu(cpu) {
2036 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038 			if (map && map != new_map)
2039 				kfree_rcu(map, rcu);
2040 		}
2041 
2042 		kfree_rcu(dev_maps, rcu);
2043 	}
2044 
2045 	dev_maps = new_dev_maps;
2046 	active = true;
2047 
2048 out_no_new_maps:
2049 	/* update Tx queue numa node */
2050 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051 				     (numa_node_id >= 0) ? numa_node_id :
2052 				     NUMA_NO_NODE);
2053 
2054 	if (!dev_maps)
2055 		goto out_no_maps;
2056 
2057 	/* removes queue from unused CPUs */
2058 	for_each_possible_cpu(cpu) {
2059 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060 			continue;
2061 
2062 		if (remove_xps_queue(dev_maps, cpu, index))
2063 			active = true;
2064 	}
2065 
2066 	/* free map if not active */
2067 	if (!active) {
2068 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2069 		kfree_rcu(dev_maps, rcu);
2070 	}
2071 
2072 out_no_maps:
2073 	mutex_unlock(&xps_map_mutex);
2074 
2075 	return 0;
2076 error:
2077 	/* remove any maps that we added */
2078 	for_each_possible_cpu(cpu) {
2079 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081 				 NULL;
2082 		if (new_map && new_map != map)
2083 			kfree(new_map);
2084 	}
2085 
2086 	mutex_unlock(&xps_map_mutex);
2087 
2088 	kfree(new_dev_maps);
2089 	return -ENOMEM;
2090 }
2091 EXPORT_SYMBOL(netif_set_xps_queue);
2092 
2093 #endif
2094 /*
2095  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097  */
2098 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2099 {
2100 	int rc;
2101 
2102 	if (txq < 1 || txq > dev->num_tx_queues)
2103 		return -EINVAL;
2104 
2105 	if (dev->reg_state == NETREG_REGISTERED ||
2106 	    dev->reg_state == NETREG_UNREGISTERING) {
2107 		ASSERT_RTNL();
2108 
2109 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110 						  txq);
2111 		if (rc)
2112 			return rc;
2113 
2114 		if (dev->num_tc)
2115 			netif_setup_tc(dev, txq);
2116 
2117 		if (txq < dev->real_num_tx_queues) {
2118 			qdisc_reset_all_tx_gt(dev, txq);
2119 #ifdef CONFIG_XPS
2120 			netif_reset_xps_queues_gt(dev, txq);
2121 #endif
2122 		}
2123 	}
2124 
2125 	dev->real_num_tx_queues = txq;
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2129 
2130 #ifdef CONFIG_SYSFS
2131 /**
2132  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2133  *	@dev: Network device
2134  *	@rxq: Actual number of RX queues
2135  *
2136  *	This must be called either with the rtnl_lock held or before
2137  *	registration of the net device.  Returns 0 on success, or a
2138  *	negative error code.  If called before registration, it always
2139  *	succeeds.
2140  */
2141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142 {
2143 	int rc;
2144 
2145 	if (rxq < 1 || rxq > dev->num_rx_queues)
2146 		return -EINVAL;
2147 
2148 	if (dev->reg_state == NETREG_REGISTERED) {
2149 		ASSERT_RTNL();
2150 
2151 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152 						  rxq);
2153 		if (rc)
2154 			return rc;
2155 	}
2156 
2157 	dev->real_num_rx_queues = rxq;
2158 	return 0;
2159 }
2160 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161 #endif
2162 
2163 /**
2164  * netif_get_num_default_rss_queues - default number of RSS queues
2165  *
2166  * This routine should set an upper limit on the number of RSS queues
2167  * used by default by multiqueue devices.
2168  */
2169 int netif_get_num_default_rss_queues(void)
2170 {
2171 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172 }
2173 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174 
2175 static inline void __netif_reschedule(struct Qdisc *q)
2176 {
2177 	struct softnet_data *sd;
2178 	unsigned long flags;
2179 
2180 	local_irq_save(flags);
2181 	sd = this_cpu_ptr(&softnet_data);
2182 	q->next_sched = NULL;
2183 	*sd->output_queue_tailp = q;
2184 	sd->output_queue_tailp = &q->next_sched;
2185 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186 	local_irq_restore(flags);
2187 }
2188 
2189 void __netif_schedule(struct Qdisc *q)
2190 {
2191 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192 		__netif_reschedule(q);
2193 }
2194 EXPORT_SYMBOL(__netif_schedule);
2195 
2196 struct dev_kfree_skb_cb {
2197 	enum skb_free_reason reason;
2198 };
2199 
2200 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2201 {
2202 	return (struct dev_kfree_skb_cb *)skb->cb;
2203 }
2204 
2205 void netif_schedule_queue(struct netdev_queue *txq)
2206 {
2207 	rcu_read_lock();
2208 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2210 
2211 		__netif_schedule(q);
2212 	}
2213 	rcu_read_unlock();
2214 }
2215 EXPORT_SYMBOL(netif_schedule_queue);
2216 
2217 /**
2218  *	netif_wake_subqueue - allow sending packets on subqueue
2219  *	@dev: network device
2220  *	@queue_index: sub queue index
2221  *
2222  * Resume individual transmit queue of a device with multiple transmit queues.
2223  */
2224 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225 {
2226 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227 
2228 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229 		struct Qdisc *q;
2230 
2231 		rcu_read_lock();
2232 		q = rcu_dereference(txq->qdisc);
2233 		__netif_schedule(q);
2234 		rcu_read_unlock();
2235 	}
2236 }
2237 EXPORT_SYMBOL(netif_wake_subqueue);
2238 
2239 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240 {
2241 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242 		struct Qdisc *q;
2243 
2244 		rcu_read_lock();
2245 		q = rcu_dereference(dev_queue->qdisc);
2246 		__netif_schedule(q);
2247 		rcu_read_unlock();
2248 	}
2249 }
2250 EXPORT_SYMBOL(netif_tx_wake_queue);
2251 
2252 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2253 {
2254 	unsigned long flags;
2255 
2256 	if (likely(atomic_read(&skb->users) == 1)) {
2257 		smp_rmb();
2258 		atomic_set(&skb->users, 0);
2259 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2260 		return;
2261 	}
2262 	get_kfree_skb_cb(skb)->reason = reason;
2263 	local_irq_save(flags);
2264 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2265 	__this_cpu_write(softnet_data.completion_queue, skb);
2266 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 	local_irq_restore(flags);
2268 }
2269 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2270 
2271 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2272 {
2273 	if (in_irq() || irqs_disabled())
2274 		__dev_kfree_skb_irq(skb, reason);
2275 	else
2276 		dev_kfree_skb(skb);
2277 }
2278 EXPORT_SYMBOL(__dev_kfree_skb_any);
2279 
2280 
2281 /**
2282  * netif_device_detach - mark device as removed
2283  * @dev: network device
2284  *
2285  * Mark device as removed from system and therefore no longer available.
2286  */
2287 void netif_device_detach(struct net_device *dev)
2288 {
2289 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290 	    netif_running(dev)) {
2291 		netif_tx_stop_all_queues(dev);
2292 	}
2293 }
2294 EXPORT_SYMBOL(netif_device_detach);
2295 
2296 /**
2297  * netif_device_attach - mark device as attached
2298  * @dev: network device
2299  *
2300  * Mark device as attached from system and restart if needed.
2301  */
2302 void netif_device_attach(struct net_device *dev)
2303 {
2304 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305 	    netif_running(dev)) {
2306 		netif_tx_wake_all_queues(dev);
2307 		__netdev_watchdog_up(dev);
2308 	}
2309 }
2310 EXPORT_SYMBOL(netif_device_attach);
2311 
2312 static void skb_warn_bad_offload(const struct sk_buff *skb)
2313 {
2314 	static const netdev_features_t null_features = 0;
2315 	struct net_device *dev = skb->dev;
2316 	const char *driver = "";
2317 
2318 	if (!net_ratelimit())
2319 		return;
2320 
2321 	if (dev && dev->dev.parent)
2322 		driver = dev_driver_string(dev->dev.parent);
2323 
2324 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325 	     "gso_type=%d ip_summed=%d\n",
2326 	     driver, dev ? &dev->features : &null_features,
2327 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2328 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2330 }
2331 
2332 /*
2333  * Invalidate hardware checksum when packet is to be mangled, and
2334  * complete checksum manually on outgoing path.
2335  */
2336 int skb_checksum_help(struct sk_buff *skb)
2337 {
2338 	__wsum csum;
2339 	int ret = 0, offset;
2340 
2341 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2342 		goto out_set_summed;
2343 
2344 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2345 		skb_warn_bad_offload(skb);
2346 		return -EINVAL;
2347 	}
2348 
2349 	/* Before computing a checksum, we should make sure no frag could
2350 	 * be modified by an external entity : checksum could be wrong.
2351 	 */
2352 	if (skb_has_shared_frag(skb)) {
2353 		ret = __skb_linearize(skb);
2354 		if (ret)
2355 			goto out;
2356 	}
2357 
2358 	offset = skb_checksum_start_offset(skb);
2359 	BUG_ON(offset >= skb_headlen(skb));
2360 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361 
2362 	offset += skb->csum_offset;
2363 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364 
2365 	if (skb_cloned(skb) &&
2366 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2367 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368 		if (ret)
2369 			goto out;
2370 	}
2371 
2372 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2373 out_set_summed:
2374 	skb->ip_summed = CHECKSUM_NONE;
2375 out:
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL(skb_checksum_help);
2379 
2380 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2381 {
2382 	__be16 type = skb->protocol;
2383 
2384 	/* Tunnel gso handlers can set protocol to ethernet. */
2385 	if (type == htons(ETH_P_TEB)) {
2386 		struct ethhdr *eth;
2387 
2388 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2389 			return 0;
2390 
2391 		eth = (struct ethhdr *)skb_mac_header(skb);
2392 		type = eth->h_proto;
2393 	}
2394 
2395 	return __vlan_get_protocol(skb, type, depth);
2396 }
2397 
2398 /**
2399  *	skb_mac_gso_segment - mac layer segmentation handler.
2400  *	@skb: buffer to segment
2401  *	@features: features for the output path (see dev->features)
2402  */
2403 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2404 				    netdev_features_t features)
2405 {
2406 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2407 	struct packet_offload *ptype;
2408 	int vlan_depth = skb->mac_len;
2409 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2410 
2411 	if (unlikely(!type))
2412 		return ERR_PTR(-EINVAL);
2413 
2414 	__skb_pull(skb, vlan_depth);
2415 
2416 	rcu_read_lock();
2417 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2418 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2419 			segs = ptype->callbacks.gso_segment(skb, features);
2420 			break;
2421 		}
2422 	}
2423 	rcu_read_unlock();
2424 
2425 	__skb_push(skb, skb->data - skb_mac_header(skb));
2426 
2427 	return segs;
2428 }
2429 EXPORT_SYMBOL(skb_mac_gso_segment);
2430 
2431 
2432 /* openvswitch calls this on rx path, so we need a different check.
2433  */
2434 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2435 {
2436 	if (tx_path)
2437 		return skb->ip_summed != CHECKSUM_PARTIAL;
2438 	else
2439 		return skb->ip_summed == CHECKSUM_NONE;
2440 }
2441 
2442 /**
2443  *	__skb_gso_segment - Perform segmentation on skb.
2444  *	@skb: buffer to segment
2445  *	@features: features for the output path (see dev->features)
2446  *	@tx_path: whether it is called in TX path
2447  *
2448  *	This function segments the given skb and returns a list of segments.
2449  *
2450  *	It may return NULL if the skb requires no segmentation.  This is
2451  *	only possible when GSO is used for verifying header integrity.
2452  */
2453 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2454 				  netdev_features_t features, bool tx_path)
2455 {
2456 	if (unlikely(skb_needs_check(skb, tx_path))) {
2457 		int err;
2458 
2459 		skb_warn_bad_offload(skb);
2460 
2461 		err = skb_cow_head(skb, 0);
2462 		if (err < 0)
2463 			return ERR_PTR(err);
2464 	}
2465 
2466 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2467 	SKB_GSO_CB(skb)->encap_level = 0;
2468 
2469 	skb_reset_mac_header(skb);
2470 	skb_reset_mac_len(skb);
2471 
2472 	return skb_mac_gso_segment(skb, features);
2473 }
2474 EXPORT_SYMBOL(__skb_gso_segment);
2475 
2476 /* Take action when hardware reception checksum errors are detected. */
2477 #ifdef CONFIG_BUG
2478 void netdev_rx_csum_fault(struct net_device *dev)
2479 {
2480 	if (net_ratelimit()) {
2481 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2482 		dump_stack();
2483 	}
2484 }
2485 EXPORT_SYMBOL(netdev_rx_csum_fault);
2486 #endif
2487 
2488 /* Actually, we should eliminate this check as soon as we know, that:
2489  * 1. IOMMU is present and allows to map all the memory.
2490  * 2. No high memory really exists on this machine.
2491  */
2492 
2493 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2494 {
2495 #ifdef CONFIG_HIGHMEM
2496 	int i;
2497 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2498 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500 			if (PageHighMem(skb_frag_page(frag)))
2501 				return 1;
2502 		}
2503 	}
2504 
2505 	if (PCI_DMA_BUS_IS_PHYS) {
2506 		struct device *pdev = dev->dev.parent;
2507 
2508 		if (!pdev)
2509 			return 0;
2510 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2513 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2514 				return 1;
2515 		}
2516 	}
2517 #endif
2518 	return 0;
2519 }
2520 
2521 /* If MPLS offload request, verify we are testing hardware MPLS features
2522  * instead of standard features for the netdev.
2523  */
2524 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2525 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2526 					   netdev_features_t features,
2527 					   __be16 type)
2528 {
2529 	if (eth_p_mpls(type))
2530 		features &= skb->dev->mpls_features;
2531 
2532 	return features;
2533 }
2534 #else
2535 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2536 					   netdev_features_t features,
2537 					   __be16 type)
2538 {
2539 	return features;
2540 }
2541 #endif
2542 
2543 static netdev_features_t harmonize_features(struct sk_buff *skb,
2544 	netdev_features_t features)
2545 {
2546 	int tmp;
2547 	__be16 type;
2548 
2549 	type = skb_network_protocol(skb, &tmp);
2550 	features = net_mpls_features(skb, features, type);
2551 
2552 	if (skb->ip_summed != CHECKSUM_NONE &&
2553 	    !can_checksum_protocol(features, type)) {
2554 		features &= ~NETIF_F_ALL_CSUM;
2555 	} else if (illegal_highdma(skb->dev, skb)) {
2556 		features &= ~NETIF_F_SG;
2557 	}
2558 
2559 	return features;
2560 }
2561 
2562 netdev_features_t netif_skb_features(struct sk_buff *skb)
2563 {
2564 	struct net_device *dev = skb->dev;
2565 	netdev_features_t features = dev->features;
2566 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2567 	__be16 protocol = skb->protocol;
2568 
2569 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2570 		features &= ~NETIF_F_GSO_MASK;
2571 
2572 	/* If encapsulation offload request, verify we are testing
2573 	 * hardware encapsulation features instead of standard
2574 	 * features for the netdev
2575 	 */
2576 	if (skb->encapsulation)
2577 		features &= dev->hw_enc_features;
2578 
2579 	if (!skb_vlan_tag_present(skb)) {
2580 		if (unlikely(protocol == htons(ETH_P_8021Q) ||
2581 			     protocol == htons(ETH_P_8021AD))) {
2582 			struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583 			protocol = veh->h_vlan_encapsulated_proto;
2584 		} else {
2585 			goto finalize;
2586 		}
2587 	}
2588 
2589 	features = netdev_intersect_features(features,
2590 					     dev->vlan_features |
2591 					     NETIF_F_HW_VLAN_CTAG_TX |
2592 					     NETIF_F_HW_VLAN_STAG_TX);
2593 
2594 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2595 		features = netdev_intersect_features(features,
2596 						     NETIF_F_SG |
2597 						     NETIF_F_HIGHDMA |
2598 						     NETIF_F_FRAGLIST |
2599 						     NETIF_F_GEN_CSUM |
2600 						     NETIF_F_HW_VLAN_CTAG_TX |
2601 						     NETIF_F_HW_VLAN_STAG_TX);
2602 
2603 finalize:
2604 	if (dev->netdev_ops->ndo_features_check)
2605 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2606 								features);
2607 
2608 	return harmonize_features(skb, features);
2609 }
2610 EXPORT_SYMBOL(netif_skb_features);
2611 
2612 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2613 		    struct netdev_queue *txq, bool more)
2614 {
2615 	unsigned int len;
2616 	int rc;
2617 
2618 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2619 		dev_queue_xmit_nit(skb, dev);
2620 
2621 	len = skb->len;
2622 	trace_net_dev_start_xmit(skb, dev);
2623 	rc = netdev_start_xmit(skb, dev, txq, more);
2624 	trace_net_dev_xmit(skb, rc, dev, len);
2625 
2626 	return rc;
2627 }
2628 
2629 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630 				    struct netdev_queue *txq, int *ret)
2631 {
2632 	struct sk_buff *skb = first;
2633 	int rc = NETDEV_TX_OK;
2634 
2635 	while (skb) {
2636 		struct sk_buff *next = skb->next;
2637 
2638 		skb->next = NULL;
2639 		rc = xmit_one(skb, dev, txq, next != NULL);
2640 		if (unlikely(!dev_xmit_complete(rc))) {
2641 			skb->next = next;
2642 			goto out;
2643 		}
2644 
2645 		skb = next;
2646 		if (netif_xmit_stopped(txq) && skb) {
2647 			rc = NETDEV_TX_BUSY;
2648 			break;
2649 		}
2650 	}
2651 
2652 out:
2653 	*ret = rc;
2654 	return skb;
2655 }
2656 
2657 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658 					  netdev_features_t features)
2659 {
2660 	if (skb_vlan_tag_present(skb) &&
2661 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2662 		skb = __vlan_hwaccel_push_inside(skb);
2663 	return skb;
2664 }
2665 
2666 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667 {
2668 	netdev_features_t features;
2669 
2670 	if (skb->next)
2671 		return skb;
2672 
2673 	features = netif_skb_features(skb);
2674 	skb = validate_xmit_vlan(skb, features);
2675 	if (unlikely(!skb))
2676 		goto out_null;
2677 
2678 	if (netif_needs_gso(dev, skb, features)) {
2679 		struct sk_buff *segs;
2680 
2681 		segs = skb_gso_segment(skb, features);
2682 		if (IS_ERR(segs)) {
2683 			goto out_kfree_skb;
2684 		} else if (segs) {
2685 			consume_skb(skb);
2686 			skb = segs;
2687 		}
2688 	} else {
2689 		if (skb_needs_linearize(skb, features) &&
2690 		    __skb_linearize(skb))
2691 			goto out_kfree_skb;
2692 
2693 		/* If packet is not checksummed and device does not
2694 		 * support checksumming for this protocol, complete
2695 		 * checksumming here.
2696 		 */
2697 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 			if (skb->encapsulation)
2699 				skb_set_inner_transport_header(skb,
2700 							       skb_checksum_start_offset(skb));
2701 			else
2702 				skb_set_transport_header(skb,
2703 							 skb_checksum_start_offset(skb));
2704 			if (!(features & NETIF_F_ALL_CSUM) &&
2705 			    skb_checksum_help(skb))
2706 				goto out_kfree_skb;
2707 		}
2708 	}
2709 
2710 	return skb;
2711 
2712 out_kfree_skb:
2713 	kfree_skb(skb);
2714 out_null:
2715 	return NULL;
2716 }
2717 
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720 	struct sk_buff *next, *head = NULL, *tail;
2721 
2722 	for (; skb != NULL; skb = next) {
2723 		next = skb->next;
2724 		skb->next = NULL;
2725 
2726 		/* in case skb wont be segmented, point to itself */
2727 		skb->prev = skb;
2728 
2729 		skb = validate_xmit_skb(skb, dev);
2730 		if (!skb)
2731 			continue;
2732 
2733 		if (!head)
2734 			head = skb;
2735 		else
2736 			tail->next = skb;
2737 		/* If skb was segmented, skb->prev points to
2738 		 * the last segment. If not, it still contains skb.
2739 		 */
2740 		tail = skb->prev;
2741 	}
2742 	return head;
2743 }
2744 
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748 
2749 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2750 
2751 	/* To get more precise estimation of bytes sent on wire,
2752 	 * we add to pkt_len the headers size of all segments
2753 	 */
2754 	if (shinfo->gso_size)  {
2755 		unsigned int hdr_len;
2756 		u16 gso_segs = shinfo->gso_segs;
2757 
2758 		/* mac layer + network layer */
2759 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760 
2761 		/* + transport layer */
2762 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 			hdr_len += tcp_hdrlen(skb);
2764 		else
2765 			hdr_len += sizeof(struct udphdr);
2766 
2767 		if (shinfo->gso_type & SKB_GSO_DODGY)
2768 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 						shinfo->gso_size);
2770 
2771 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 	}
2773 }
2774 
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 				 struct net_device *dev,
2777 				 struct netdev_queue *txq)
2778 {
2779 	spinlock_t *root_lock = qdisc_lock(q);
2780 	bool contended;
2781 	int rc;
2782 
2783 	qdisc_pkt_len_init(skb);
2784 	qdisc_calculate_pkt_len(skb, q);
2785 	/*
2786 	 * Heuristic to force contended enqueues to serialize on a
2787 	 * separate lock before trying to get qdisc main lock.
2788 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 	 * often and dequeue packets faster.
2790 	 */
2791 	contended = qdisc_is_running(q);
2792 	if (unlikely(contended))
2793 		spin_lock(&q->busylock);
2794 
2795 	spin_lock(root_lock);
2796 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 		kfree_skb(skb);
2798 		rc = NET_XMIT_DROP;
2799 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 		   qdisc_run_begin(q)) {
2801 		/*
2802 		 * This is a work-conserving queue; there are no old skbs
2803 		 * waiting to be sent out; and the qdisc is not running -
2804 		 * xmit the skb directly.
2805 		 */
2806 
2807 		qdisc_bstats_update(q, skb);
2808 
2809 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 			if (unlikely(contended)) {
2811 				spin_unlock(&q->busylock);
2812 				contended = false;
2813 			}
2814 			__qdisc_run(q);
2815 		} else
2816 			qdisc_run_end(q);
2817 
2818 		rc = NET_XMIT_SUCCESS;
2819 	} else {
2820 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 		if (qdisc_run_begin(q)) {
2822 			if (unlikely(contended)) {
2823 				spin_unlock(&q->busylock);
2824 				contended = false;
2825 			}
2826 			__qdisc_run(q);
2827 		}
2828 	}
2829 	spin_unlock(root_lock);
2830 	if (unlikely(contended))
2831 		spin_unlock(&q->busylock);
2832 	return rc;
2833 }
2834 
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839 
2840 	if (!skb->priority && skb->sk && map) {
2841 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842 
2843 		if (prioidx < map->priomap_len)
2844 			skb->priority = map->priomap[prioidx];
2845 	}
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850 
2851 static DEFINE_PER_CPU(int, xmit_recursion);
2852 #define RECURSION_LIMIT 10
2853 
2854 /**
2855  *	dev_loopback_xmit - loop back @skb
2856  *	@skb: buffer to transmit
2857  */
2858 int dev_loopback_xmit(struct sk_buff *skb)
2859 {
2860 	skb_reset_mac_header(skb);
2861 	__skb_pull(skb, skb_network_offset(skb));
2862 	skb->pkt_type = PACKET_LOOPBACK;
2863 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2864 	WARN_ON(!skb_dst(skb));
2865 	skb_dst_force(skb);
2866 	netif_rx_ni(skb);
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(dev_loopback_xmit);
2870 
2871 /**
2872  *	__dev_queue_xmit - transmit a buffer
2873  *	@skb: buffer to transmit
2874  *	@accel_priv: private data used for L2 forwarding offload
2875  *
2876  *	Queue a buffer for transmission to a network device. The caller must
2877  *	have set the device and priority and built the buffer before calling
2878  *	this function. The function can be called from an interrupt.
2879  *
2880  *	A negative errno code is returned on a failure. A success does not
2881  *	guarantee the frame will be transmitted as it may be dropped due
2882  *	to congestion or traffic shaping.
2883  *
2884  * -----------------------------------------------------------------------------------
2885  *      I notice this method can also return errors from the queue disciplines,
2886  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2887  *      be positive.
2888  *
2889  *      Regardless of the return value, the skb is consumed, so it is currently
2890  *      difficult to retry a send to this method.  (You can bump the ref count
2891  *      before sending to hold a reference for retry if you are careful.)
2892  *
2893  *      When calling this method, interrupts MUST be enabled.  This is because
2894  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2895  *          --BLG
2896  */
2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2898 {
2899 	struct net_device *dev = skb->dev;
2900 	struct netdev_queue *txq;
2901 	struct Qdisc *q;
2902 	int rc = -ENOMEM;
2903 
2904 	skb_reset_mac_header(skb);
2905 
2906 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908 
2909 	/* Disable soft irqs for various locks below. Also
2910 	 * stops preemption for RCU.
2911 	 */
2912 	rcu_read_lock_bh();
2913 
2914 	skb_update_prio(skb);
2915 
2916 	/* If device/qdisc don't need skb->dst, release it right now while
2917 	 * its hot in this cpu cache.
2918 	 */
2919 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920 		skb_dst_drop(skb);
2921 	else
2922 		skb_dst_force(skb);
2923 
2924 	txq = netdev_pick_tx(dev, skb, accel_priv);
2925 	q = rcu_dereference_bh(txq->qdisc);
2926 
2927 #ifdef CONFIG_NET_CLS_ACT
2928 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2929 #endif
2930 	trace_net_dev_queue(skb);
2931 	if (q->enqueue) {
2932 		rc = __dev_xmit_skb(skb, q, dev, txq);
2933 		goto out;
2934 	}
2935 
2936 	/* The device has no queue. Common case for software devices:
2937 	   loopback, all the sorts of tunnels...
2938 
2939 	   Really, it is unlikely that netif_tx_lock protection is necessary
2940 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2941 	   counters.)
2942 	   However, it is possible, that they rely on protection
2943 	   made by us here.
2944 
2945 	   Check this and shot the lock. It is not prone from deadlocks.
2946 	   Either shot noqueue qdisc, it is even simpler 8)
2947 	 */
2948 	if (dev->flags & IFF_UP) {
2949 		int cpu = smp_processor_id(); /* ok because BHs are off */
2950 
2951 		if (txq->xmit_lock_owner != cpu) {
2952 
2953 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954 				goto recursion_alert;
2955 
2956 			skb = validate_xmit_skb(skb, dev);
2957 			if (!skb)
2958 				goto drop;
2959 
2960 			HARD_TX_LOCK(dev, txq, cpu);
2961 
2962 			if (!netif_xmit_stopped(txq)) {
2963 				__this_cpu_inc(xmit_recursion);
2964 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2965 				__this_cpu_dec(xmit_recursion);
2966 				if (dev_xmit_complete(rc)) {
2967 					HARD_TX_UNLOCK(dev, txq);
2968 					goto out;
2969 				}
2970 			}
2971 			HARD_TX_UNLOCK(dev, txq);
2972 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973 					     dev->name);
2974 		} else {
2975 			/* Recursion is detected! It is possible,
2976 			 * unfortunately
2977 			 */
2978 recursion_alert:
2979 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980 					     dev->name);
2981 		}
2982 	}
2983 
2984 	rc = -ENETDOWN;
2985 drop:
2986 	rcu_read_unlock_bh();
2987 
2988 	atomic_long_inc(&dev->tx_dropped);
2989 	kfree_skb_list(skb);
2990 	return rc;
2991 out:
2992 	rcu_read_unlock_bh();
2993 	return rc;
2994 }
2995 
2996 int dev_queue_xmit(struct sk_buff *skb)
2997 {
2998 	return __dev_queue_xmit(skb, NULL);
2999 }
3000 EXPORT_SYMBOL(dev_queue_xmit);
3001 
3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003 {
3004 	return __dev_queue_xmit(skb, accel_priv);
3005 }
3006 EXPORT_SYMBOL(dev_queue_xmit_accel);
3007 
3008 
3009 /*=======================================================================
3010 			Receiver routines
3011   =======================================================================*/
3012 
3013 int netdev_max_backlog __read_mostly = 1000;
3014 EXPORT_SYMBOL(netdev_max_backlog);
3015 
3016 int netdev_tstamp_prequeue __read_mostly = 1;
3017 int netdev_budget __read_mostly = 300;
3018 int weight_p __read_mostly = 64;            /* old backlog weight */
3019 
3020 /* Called with irq disabled */
3021 static inline void ____napi_schedule(struct softnet_data *sd,
3022 				     struct napi_struct *napi)
3023 {
3024 	list_add_tail(&napi->poll_list, &sd->poll_list);
3025 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026 }
3027 
3028 #ifdef CONFIG_RPS
3029 
3030 /* One global table that all flow-based protocols share. */
3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3032 EXPORT_SYMBOL(rps_sock_flow_table);
3033 u32 rps_cpu_mask __read_mostly;
3034 EXPORT_SYMBOL(rps_cpu_mask);
3035 
3036 struct static_key rps_needed __read_mostly;
3037 
3038 static struct rps_dev_flow *
3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 	    struct rps_dev_flow *rflow, u16 next_cpu)
3041 {
3042 	if (next_cpu != RPS_NO_CPU) {
3043 #ifdef CONFIG_RFS_ACCEL
3044 		struct netdev_rx_queue *rxqueue;
3045 		struct rps_dev_flow_table *flow_table;
3046 		struct rps_dev_flow *old_rflow;
3047 		u32 flow_id;
3048 		u16 rxq_index;
3049 		int rc;
3050 
3051 		/* Should we steer this flow to a different hardware queue? */
3052 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 		    !(dev->features & NETIF_F_NTUPLE))
3054 			goto out;
3055 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 		if (rxq_index == skb_get_rx_queue(skb))
3057 			goto out;
3058 
3059 		rxqueue = dev->_rx + rxq_index;
3060 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061 		if (!flow_table)
3062 			goto out;
3063 		flow_id = skb_get_hash(skb) & flow_table->mask;
3064 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 							rxq_index, flow_id);
3066 		if (rc < 0)
3067 			goto out;
3068 		old_rflow = rflow;
3069 		rflow = &flow_table->flows[flow_id];
3070 		rflow->filter = rc;
3071 		if (old_rflow->filter == rflow->filter)
3072 			old_rflow->filter = RPS_NO_FILTER;
3073 	out:
3074 #endif
3075 		rflow->last_qtail =
3076 			per_cpu(softnet_data, next_cpu).input_queue_head;
3077 	}
3078 
3079 	rflow->cpu = next_cpu;
3080 	return rflow;
3081 }
3082 
3083 /*
3084  * get_rps_cpu is called from netif_receive_skb and returns the target
3085  * CPU from the RPS map of the receiving queue for a given skb.
3086  * rcu_read_lock must be held on entry.
3087  */
3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 		       struct rps_dev_flow **rflowp)
3090 {
3091 	const struct rps_sock_flow_table *sock_flow_table;
3092 	struct netdev_rx_queue *rxqueue = dev->_rx;
3093 	struct rps_dev_flow_table *flow_table;
3094 	struct rps_map *map;
3095 	int cpu = -1;
3096 	u32 tcpu;
3097 	u32 hash;
3098 
3099 	if (skb_rx_queue_recorded(skb)) {
3100 		u16 index = skb_get_rx_queue(skb);
3101 
3102 		if (unlikely(index >= dev->real_num_rx_queues)) {
3103 			WARN_ONCE(dev->real_num_rx_queues > 1,
3104 				  "%s received packet on queue %u, but number "
3105 				  "of RX queues is %u\n",
3106 				  dev->name, index, dev->real_num_rx_queues);
3107 			goto done;
3108 		}
3109 		rxqueue += index;
3110 	}
3111 
3112 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3113 
3114 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3115 	map = rcu_dereference(rxqueue->rps_map);
3116 	if (!flow_table && !map)
3117 		goto done;
3118 
3119 	skb_reset_network_header(skb);
3120 	hash = skb_get_hash(skb);
3121 	if (!hash)
3122 		goto done;
3123 
3124 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3125 	if (flow_table && sock_flow_table) {
3126 		struct rps_dev_flow *rflow;
3127 		u32 next_cpu;
3128 		u32 ident;
3129 
3130 		/* First check into global flow table if there is a match */
3131 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3132 		if ((ident ^ hash) & ~rps_cpu_mask)
3133 			goto try_rps;
3134 
3135 		next_cpu = ident & rps_cpu_mask;
3136 
3137 		/* OK, now we know there is a match,
3138 		 * we can look at the local (per receive queue) flow table
3139 		 */
3140 		rflow = &flow_table->flows[hash & flow_table->mask];
3141 		tcpu = rflow->cpu;
3142 
3143 		/*
3144 		 * If the desired CPU (where last recvmsg was done) is
3145 		 * different from current CPU (one in the rx-queue flow
3146 		 * table entry), switch if one of the following holds:
3147 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3148 		 *   - Current CPU is offline.
3149 		 *   - The current CPU's queue tail has advanced beyond the
3150 		 *     last packet that was enqueued using this table entry.
3151 		 *     This guarantees that all previous packets for the flow
3152 		 *     have been dequeued, thus preserving in order delivery.
3153 		 */
3154 		if (unlikely(tcpu != next_cpu) &&
3155 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3156 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3157 		      rflow->last_qtail)) >= 0)) {
3158 			tcpu = next_cpu;
3159 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3160 		}
3161 
3162 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3163 			*rflowp = rflow;
3164 			cpu = tcpu;
3165 			goto done;
3166 		}
3167 	}
3168 
3169 try_rps:
3170 
3171 	if (map) {
3172 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3173 		if (cpu_online(tcpu)) {
3174 			cpu = tcpu;
3175 			goto done;
3176 		}
3177 	}
3178 
3179 done:
3180 	return cpu;
3181 }
3182 
3183 #ifdef CONFIG_RFS_ACCEL
3184 
3185 /**
3186  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3187  * @dev: Device on which the filter was set
3188  * @rxq_index: RX queue index
3189  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3190  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3191  *
3192  * Drivers that implement ndo_rx_flow_steer() should periodically call
3193  * this function for each installed filter and remove the filters for
3194  * which it returns %true.
3195  */
3196 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3197 			 u32 flow_id, u16 filter_id)
3198 {
3199 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3200 	struct rps_dev_flow_table *flow_table;
3201 	struct rps_dev_flow *rflow;
3202 	bool expire = true;
3203 	int cpu;
3204 
3205 	rcu_read_lock();
3206 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3207 	if (flow_table && flow_id <= flow_table->mask) {
3208 		rflow = &flow_table->flows[flow_id];
3209 		cpu = ACCESS_ONCE(rflow->cpu);
3210 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3211 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3212 			   rflow->last_qtail) <
3213 		     (int)(10 * flow_table->mask)))
3214 			expire = false;
3215 	}
3216 	rcu_read_unlock();
3217 	return expire;
3218 }
3219 EXPORT_SYMBOL(rps_may_expire_flow);
3220 
3221 #endif /* CONFIG_RFS_ACCEL */
3222 
3223 /* Called from hardirq (IPI) context */
3224 static void rps_trigger_softirq(void *data)
3225 {
3226 	struct softnet_data *sd = data;
3227 
3228 	____napi_schedule(sd, &sd->backlog);
3229 	sd->received_rps++;
3230 }
3231 
3232 #endif /* CONFIG_RPS */
3233 
3234 /*
3235  * Check if this softnet_data structure is another cpu one
3236  * If yes, queue it to our IPI list and return 1
3237  * If no, return 0
3238  */
3239 static int rps_ipi_queued(struct softnet_data *sd)
3240 {
3241 #ifdef CONFIG_RPS
3242 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3243 
3244 	if (sd != mysd) {
3245 		sd->rps_ipi_next = mysd->rps_ipi_list;
3246 		mysd->rps_ipi_list = sd;
3247 
3248 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3249 		return 1;
3250 	}
3251 #endif /* CONFIG_RPS */
3252 	return 0;
3253 }
3254 
3255 #ifdef CONFIG_NET_FLOW_LIMIT
3256 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3257 #endif
3258 
3259 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3260 {
3261 #ifdef CONFIG_NET_FLOW_LIMIT
3262 	struct sd_flow_limit *fl;
3263 	struct softnet_data *sd;
3264 	unsigned int old_flow, new_flow;
3265 
3266 	if (qlen < (netdev_max_backlog >> 1))
3267 		return false;
3268 
3269 	sd = this_cpu_ptr(&softnet_data);
3270 
3271 	rcu_read_lock();
3272 	fl = rcu_dereference(sd->flow_limit);
3273 	if (fl) {
3274 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3275 		old_flow = fl->history[fl->history_head];
3276 		fl->history[fl->history_head] = new_flow;
3277 
3278 		fl->history_head++;
3279 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3280 
3281 		if (likely(fl->buckets[old_flow]))
3282 			fl->buckets[old_flow]--;
3283 
3284 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3285 			fl->count++;
3286 			rcu_read_unlock();
3287 			return true;
3288 		}
3289 	}
3290 	rcu_read_unlock();
3291 #endif
3292 	return false;
3293 }
3294 
3295 /*
3296  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3297  * queue (may be a remote CPU queue).
3298  */
3299 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3300 			      unsigned int *qtail)
3301 {
3302 	struct softnet_data *sd;
3303 	unsigned long flags;
3304 	unsigned int qlen;
3305 
3306 	sd = &per_cpu(softnet_data, cpu);
3307 
3308 	local_irq_save(flags);
3309 
3310 	rps_lock(sd);
3311 	qlen = skb_queue_len(&sd->input_pkt_queue);
3312 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3313 		if (qlen) {
3314 enqueue:
3315 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3316 			input_queue_tail_incr_save(sd, qtail);
3317 			rps_unlock(sd);
3318 			local_irq_restore(flags);
3319 			return NET_RX_SUCCESS;
3320 		}
3321 
3322 		/* Schedule NAPI for backlog device
3323 		 * We can use non atomic operation since we own the queue lock
3324 		 */
3325 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3326 			if (!rps_ipi_queued(sd))
3327 				____napi_schedule(sd, &sd->backlog);
3328 		}
3329 		goto enqueue;
3330 	}
3331 
3332 	sd->dropped++;
3333 	rps_unlock(sd);
3334 
3335 	local_irq_restore(flags);
3336 
3337 	atomic_long_inc(&skb->dev->rx_dropped);
3338 	kfree_skb(skb);
3339 	return NET_RX_DROP;
3340 }
3341 
3342 static int netif_rx_internal(struct sk_buff *skb)
3343 {
3344 	int ret;
3345 
3346 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3347 
3348 	trace_netif_rx(skb);
3349 #ifdef CONFIG_RPS
3350 	if (static_key_false(&rps_needed)) {
3351 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3352 		int cpu;
3353 
3354 		preempt_disable();
3355 		rcu_read_lock();
3356 
3357 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3358 		if (cpu < 0)
3359 			cpu = smp_processor_id();
3360 
3361 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3362 
3363 		rcu_read_unlock();
3364 		preempt_enable();
3365 	} else
3366 #endif
3367 	{
3368 		unsigned int qtail;
3369 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3370 		put_cpu();
3371 	}
3372 	return ret;
3373 }
3374 
3375 /**
3376  *	netif_rx	-	post buffer to the network code
3377  *	@skb: buffer to post
3378  *
3379  *	This function receives a packet from a device driver and queues it for
3380  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3381  *	may be dropped during processing for congestion control or by the
3382  *	protocol layers.
3383  *
3384  *	return values:
3385  *	NET_RX_SUCCESS	(no congestion)
3386  *	NET_RX_DROP     (packet was dropped)
3387  *
3388  */
3389 
3390 int netif_rx(struct sk_buff *skb)
3391 {
3392 	trace_netif_rx_entry(skb);
3393 
3394 	return netif_rx_internal(skb);
3395 }
3396 EXPORT_SYMBOL(netif_rx);
3397 
3398 int netif_rx_ni(struct sk_buff *skb)
3399 {
3400 	int err;
3401 
3402 	trace_netif_rx_ni_entry(skb);
3403 
3404 	preempt_disable();
3405 	err = netif_rx_internal(skb);
3406 	if (local_softirq_pending())
3407 		do_softirq();
3408 	preempt_enable();
3409 
3410 	return err;
3411 }
3412 EXPORT_SYMBOL(netif_rx_ni);
3413 
3414 static void net_tx_action(struct softirq_action *h)
3415 {
3416 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3417 
3418 	if (sd->completion_queue) {
3419 		struct sk_buff *clist;
3420 
3421 		local_irq_disable();
3422 		clist = sd->completion_queue;
3423 		sd->completion_queue = NULL;
3424 		local_irq_enable();
3425 
3426 		while (clist) {
3427 			struct sk_buff *skb = clist;
3428 			clist = clist->next;
3429 
3430 			WARN_ON(atomic_read(&skb->users));
3431 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3432 				trace_consume_skb(skb);
3433 			else
3434 				trace_kfree_skb(skb, net_tx_action);
3435 			__kfree_skb(skb);
3436 		}
3437 	}
3438 
3439 	if (sd->output_queue) {
3440 		struct Qdisc *head;
3441 
3442 		local_irq_disable();
3443 		head = sd->output_queue;
3444 		sd->output_queue = NULL;
3445 		sd->output_queue_tailp = &sd->output_queue;
3446 		local_irq_enable();
3447 
3448 		while (head) {
3449 			struct Qdisc *q = head;
3450 			spinlock_t *root_lock;
3451 
3452 			head = head->next_sched;
3453 
3454 			root_lock = qdisc_lock(q);
3455 			if (spin_trylock(root_lock)) {
3456 				smp_mb__before_atomic();
3457 				clear_bit(__QDISC_STATE_SCHED,
3458 					  &q->state);
3459 				qdisc_run(q);
3460 				spin_unlock(root_lock);
3461 			} else {
3462 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3463 					      &q->state)) {
3464 					__netif_reschedule(q);
3465 				} else {
3466 					smp_mb__before_atomic();
3467 					clear_bit(__QDISC_STATE_SCHED,
3468 						  &q->state);
3469 				}
3470 			}
3471 		}
3472 	}
3473 }
3474 
3475 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3476     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3477 /* This hook is defined here for ATM LANE */
3478 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3479 			     unsigned char *addr) __read_mostly;
3480 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3481 #endif
3482 
3483 #ifdef CONFIG_NET_CLS_ACT
3484 /* TODO: Maybe we should just force sch_ingress to be compiled in
3485  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3486  * a compare and 2 stores extra right now if we dont have it on
3487  * but have CONFIG_NET_CLS_ACT
3488  * NOTE: This doesn't stop any functionality; if you dont have
3489  * the ingress scheduler, you just can't add policies on ingress.
3490  *
3491  */
3492 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3493 {
3494 	struct net_device *dev = skb->dev;
3495 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3496 	int result = TC_ACT_OK;
3497 	struct Qdisc *q;
3498 
3499 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3500 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3501 				     skb->skb_iif, dev->ifindex);
3502 		return TC_ACT_SHOT;
3503 	}
3504 
3505 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3506 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3507 
3508 	q = rcu_dereference(rxq->qdisc);
3509 	if (q != &noop_qdisc) {
3510 		spin_lock(qdisc_lock(q));
3511 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3512 			result = qdisc_enqueue_root(skb, q);
3513 		spin_unlock(qdisc_lock(q));
3514 	}
3515 
3516 	return result;
3517 }
3518 
3519 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3520 					 struct packet_type **pt_prev,
3521 					 int *ret, struct net_device *orig_dev)
3522 {
3523 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3524 
3525 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3526 		goto out;
3527 
3528 	if (*pt_prev) {
3529 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3530 		*pt_prev = NULL;
3531 	}
3532 
3533 	switch (ing_filter(skb, rxq)) {
3534 	case TC_ACT_SHOT:
3535 	case TC_ACT_STOLEN:
3536 		kfree_skb(skb);
3537 		return NULL;
3538 	}
3539 
3540 out:
3541 	skb->tc_verd = 0;
3542 	return skb;
3543 }
3544 #endif
3545 
3546 /**
3547  *	netdev_rx_handler_register - register receive handler
3548  *	@dev: device to register a handler for
3549  *	@rx_handler: receive handler to register
3550  *	@rx_handler_data: data pointer that is used by rx handler
3551  *
3552  *	Register a receive handler for a device. This handler will then be
3553  *	called from __netif_receive_skb. A negative errno code is returned
3554  *	on a failure.
3555  *
3556  *	The caller must hold the rtnl_mutex.
3557  *
3558  *	For a general description of rx_handler, see enum rx_handler_result.
3559  */
3560 int netdev_rx_handler_register(struct net_device *dev,
3561 			       rx_handler_func_t *rx_handler,
3562 			       void *rx_handler_data)
3563 {
3564 	ASSERT_RTNL();
3565 
3566 	if (dev->rx_handler)
3567 		return -EBUSY;
3568 
3569 	/* Note: rx_handler_data must be set before rx_handler */
3570 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3571 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3572 
3573 	return 0;
3574 }
3575 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3576 
3577 /**
3578  *	netdev_rx_handler_unregister - unregister receive handler
3579  *	@dev: device to unregister a handler from
3580  *
3581  *	Unregister a receive handler from a device.
3582  *
3583  *	The caller must hold the rtnl_mutex.
3584  */
3585 void netdev_rx_handler_unregister(struct net_device *dev)
3586 {
3587 
3588 	ASSERT_RTNL();
3589 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3590 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3591 	 * section has a guarantee to see a non NULL rx_handler_data
3592 	 * as well.
3593 	 */
3594 	synchronize_net();
3595 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3596 }
3597 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3598 
3599 /*
3600  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3601  * the special handling of PFMEMALLOC skbs.
3602  */
3603 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3604 {
3605 	switch (skb->protocol) {
3606 	case htons(ETH_P_ARP):
3607 	case htons(ETH_P_IP):
3608 	case htons(ETH_P_IPV6):
3609 	case htons(ETH_P_8021Q):
3610 	case htons(ETH_P_8021AD):
3611 		return true;
3612 	default:
3613 		return false;
3614 	}
3615 }
3616 
3617 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3618 {
3619 	struct packet_type *ptype, *pt_prev;
3620 	rx_handler_func_t *rx_handler;
3621 	struct net_device *orig_dev;
3622 	bool deliver_exact = false;
3623 	int ret = NET_RX_DROP;
3624 	__be16 type;
3625 
3626 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3627 
3628 	trace_netif_receive_skb(skb);
3629 
3630 	orig_dev = skb->dev;
3631 
3632 	skb_reset_network_header(skb);
3633 	if (!skb_transport_header_was_set(skb))
3634 		skb_reset_transport_header(skb);
3635 	skb_reset_mac_len(skb);
3636 
3637 	pt_prev = NULL;
3638 
3639 	rcu_read_lock();
3640 
3641 another_round:
3642 	skb->skb_iif = skb->dev->ifindex;
3643 
3644 	__this_cpu_inc(softnet_data.processed);
3645 
3646 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3647 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3648 		skb = skb_vlan_untag(skb);
3649 		if (unlikely(!skb))
3650 			goto unlock;
3651 	}
3652 
3653 #ifdef CONFIG_NET_CLS_ACT
3654 	if (skb->tc_verd & TC_NCLS) {
3655 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3656 		goto ncls;
3657 	}
3658 #endif
3659 
3660 	if (pfmemalloc)
3661 		goto skip_taps;
3662 
3663 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3664 		if (pt_prev)
3665 			ret = deliver_skb(skb, pt_prev, orig_dev);
3666 		pt_prev = ptype;
3667 	}
3668 
3669 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3670 		if (pt_prev)
3671 			ret = deliver_skb(skb, pt_prev, orig_dev);
3672 		pt_prev = ptype;
3673 	}
3674 
3675 skip_taps:
3676 #ifdef CONFIG_NET_CLS_ACT
3677 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3678 	if (!skb)
3679 		goto unlock;
3680 ncls:
3681 #endif
3682 
3683 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3684 		goto drop;
3685 
3686 	if (skb_vlan_tag_present(skb)) {
3687 		if (pt_prev) {
3688 			ret = deliver_skb(skb, pt_prev, orig_dev);
3689 			pt_prev = NULL;
3690 		}
3691 		if (vlan_do_receive(&skb))
3692 			goto another_round;
3693 		else if (unlikely(!skb))
3694 			goto unlock;
3695 	}
3696 
3697 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3698 	if (rx_handler) {
3699 		if (pt_prev) {
3700 			ret = deliver_skb(skb, pt_prev, orig_dev);
3701 			pt_prev = NULL;
3702 		}
3703 		switch (rx_handler(&skb)) {
3704 		case RX_HANDLER_CONSUMED:
3705 			ret = NET_RX_SUCCESS;
3706 			goto unlock;
3707 		case RX_HANDLER_ANOTHER:
3708 			goto another_round;
3709 		case RX_HANDLER_EXACT:
3710 			deliver_exact = true;
3711 		case RX_HANDLER_PASS:
3712 			break;
3713 		default:
3714 			BUG();
3715 		}
3716 	}
3717 
3718 	if (unlikely(skb_vlan_tag_present(skb))) {
3719 		if (skb_vlan_tag_get_id(skb))
3720 			skb->pkt_type = PACKET_OTHERHOST;
3721 		/* Note: we might in the future use prio bits
3722 		 * and set skb->priority like in vlan_do_receive()
3723 		 * For the time being, just ignore Priority Code Point
3724 		 */
3725 		skb->vlan_tci = 0;
3726 	}
3727 
3728 	type = skb->protocol;
3729 
3730 	/* deliver only exact match when indicated */
3731 	if (likely(!deliver_exact)) {
3732 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3733 				       &ptype_base[ntohs(type) &
3734 						   PTYPE_HASH_MASK]);
3735 	}
3736 
3737 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3738 			       &orig_dev->ptype_specific);
3739 
3740 	if (unlikely(skb->dev != orig_dev)) {
3741 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3742 				       &skb->dev->ptype_specific);
3743 	}
3744 
3745 	if (pt_prev) {
3746 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3747 			goto drop;
3748 		else
3749 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3750 	} else {
3751 drop:
3752 		atomic_long_inc(&skb->dev->rx_dropped);
3753 		kfree_skb(skb);
3754 		/* Jamal, now you will not able to escape explaining
3755 		 * me how you were going to use this. :-)
3756 		 */
3757 		ret = NET_RX_DROP;
3758 	}
3759 
3760 unlock:
3761 	rcu_read_unlock();
3762 	return ret;
3763 }
3764 
3765 static int __netif_receive_skb(struct sk_buff *skb)
3766 {
3767 	int ret;
3768 
3769 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3770 		unsigned long pflags = current->flags;
3771 
3772 		/*
3773 		 * PFMEMALLOC skbs are special, they should
3774 		 * - be delivered to SOCK_MEMALLOC sockets only
3775 		 * - stay away from userspace
3776 		 * - have bounded memory usage
3777 		 *
3778 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3779 		 * context down to all allocation sites.
3780 		 */
3781 		current->flags |= PF_MEMALLOC;
3782 		ret = __netif_receive_skb_core(skb, true);
3783 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3784 	} else
3785 		ret = __netif_receive_skb_core(skb, false);
3786 
3787 	return ret;
3788 }
3789 
3790 static int netif_receive_skb_internal(struct sk_buff *skb)
3791 {
3792 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3793 
3794 	if (skb_defer_rx_timestamp(skb))
3795 		return NET_RX_SUCCESS;
3796 
3797 #ifdef CONFIG_RPS
3798 	if (static_key_false(&rps_needed)) {
3799 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3800 		int cpu, ret;
3801 
3802 		rcu_read_lock();
3803 
3804 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3805 
3806 		if (cpu >= 0) {
3807 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808 			rcu_read_unlock();
3809 			return ret;
3810 		}
3811 		rcu_read_unlock();
3812 	}
3813 #endif
3814 	return __netif_receive_skb(skb);
3815 }
3816 
3817 /**
3818  *	netif_receive_skb - process receive buffer from network
3819  *	@skb: buffer to process
3820  *
3821  *	netif_receive_skb() is the main receive data processing function.
3822  *	It always succeeds. The buffer may be dropped during processing
3823  *	for congestion control or by the protocol layers.
3824  *
3825  *	This function may only be called from softirq context and interrupts
3826  *	should be enabled.
3827  *
3828  *	Return values (usually ignored):
3829  *	NET_RX_SUCCESS: no congestion
3830  *	NET_RX_DROP: packet was dropped
3831  */
3832 int netif_receive_skb(struct sk_buff *skb)
3833 {
3834 	trace_netif_receive_skb_entry(skb);
3835 
3836 	return netif_receive_skb_internal(skb);
3837 }
3838 EXPORT_SYMBOL(netif_receive_skb);
3839 
3840 /* Network device is going away, flush any packets still pending
3841  * Called with irqs disabled.
3842  */
3843 static void flush_backlog(void *arg)
3844 {
3845 	struct net_device *dev = arg;
3846 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3847 	struct sk_buff *skb, *tmp;
3848 
3849 	rps_lock(sd);
3850 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3851 		if (skb->dev == dev) {
3852 			__skb_unlink(skb, &sd->input_pkt_queue);
3853 			kfree_skb(skb);
3854 			input_queue_head_incr(sd);
3855 		}
3856 	}
3857 	rps_unlock(sd);
3858 
3859 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3860 		if (skb->dev == dev) {
3861 			__skb_unlink(skb, &sd->process_queue);
3862 			kfree_skb(skb);
3863 			input_queue_head_incr(sd);
3864 		}
3865 	}
3866 }
3867 
3868 static int napi_gro_complete(struct sk_buff *skb)
3869 {
3870 	struct packet_offload *ptype;
3871 	__be16 type = skb->protocol;
3872 	struct list_head *head = &offload_base;
3873 	int err = -ENOENT;
3874 
3875 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3876 
3877 	if (NAPI_GRO_CB(skb)->count == 1) {
3878 		skb_shinfo(skb)->gso_size = 0;
3879 		goto out;
3880 	}
3881 
3882 	rcu_read_lock();
3883 	list_for_each_entry_rcu(ptype, head, list) {
3884 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3885 			continue;
3886 
3887 		err = ptype->callbacks.gro_complete(skb, 0);
3888 		break;
3889 	}
3890 	rcu_read_unlock();
3891 
3892 	if (err) {
3893 		WARN_ON(&ptype->list == head);
3894 		kfree_skb(skb);
3895 		return NET_RX_SUCCESS;
3896 	}
3897 
3898 out:
3899 	return netif_receive_skb_internal(skb);
3900 }
3901 
3902 /* napi->gro_list contains packets ordered by age.
3903  * youngest packets at the head of it.
3904  * Complete skbs in reverse order to reduce latencies.
3905  */
3906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3907 {
3908 	struct sk_buff *skb, *prev = NULL;
3909 
3910 	/* scan list and build reverse chain */
3911 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3912 		skb->prev = prev;
3913 		prev = skb;
3914 	}
3915 
3916 	for (skb = prev; skb; skb = prev) {
3917 		skb->next = NULL;
3918 
3919 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3920 			return;
3921 
3922 		prev = skb->prev;
3923 		napi_gro_complete(skb);
3924 		napi->gro_count--;
3925 	}
3926 
3927 	napi->gro_list = NULL;
3928 }
3929 EXPORT_SYMBOL(napi_gro_flush);
3930 
3931 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3932 {
3933 	struct sk_buff *p;
3934 	unsigned int maclen = skb->dev->hard_header_len;
3935 	u32 hash = skb_get_hash_raw(skb);
3936 
3937 	for (p = napi->gro_list; p; p = p->next) {
3938 		unsigned long diffs;
3939 
3940 		NAPI_GRO_CB(p)->flush = 0;
3941 
3942 		if (hash != skb_get_hash_raw(p)) {
3943 			NAPI_GRO_CB(p)->same_flow = 0;
3944 			continue;
3945 		}
3946 
3947 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3948 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3949 		if (maclen == ETH_HLEN)
3950 			diffs |= compare_ether_header(skb_mac_header(p),
3951 						      skb_mac_header(skb));
3952 		else if (!diffs)
3953 			diffs = memcmp(skb_mac_header(p),
3954 				       skb_mac_header(skb),
3955 				       maclen);
3956 		NAPI_GRO_CB(p)->same_flow = !diffs;
3957 	}
3958 }
3959 
3960 static void skb_gro_reset_offset(struct sk_buff *skb)
3961 {
3962 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3963 	const skb_frag_t *frag0 = &pinfo->frags[0];
3964 
3965 	NAPI_GRO_CB(skb)->data_offset = 0;
3966 	NAPI_GRO_CB(skb)->frag0 = NULL;
3967 	NAPI_GRO_CB(skb)->frag0_len = 0;
3968 
3969 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3970 	    pinfo->nr_frags &&
3971 	    !PageHighMem(skb_frag_page(frag0))) {
3972 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3973 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3974 	}
3975 }
3976 
3977 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3978 {
3979 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3980 
3981 	BUG_ON(skb->end - skb->tail < grow);
3982 
3983 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3984 
3985 	skb->data_len -= grow;
3986 	skb->tail += grow;
3987 
3988 	pinfo->frags[0].page_offset += grow;
3989 	skb_frag_size_sub(&pinfo->frags[0], grow);
3990 
3991 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3992 		skb_frag_unref(skb, 0);
3993 		memmove(pinfo->frags, pinfo->frags + 1,
3994 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3995 	}
3996 }
3997 
3998 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3999 {
4000 	struct sk_buff **pp = NULL;
4001 	struct packet_offload *ptype;
4002 	__be16 type = skb->protocol;
4003 	struct list_head *head = &offload_base;
4004 	int same_flow;
4005 	enum gro_result ret;
4006 	int grow;
4007 
4008 	if (!(skb->dev->features & NETIF_F_GRO))
4009 		goto normal;
4010 
4011 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4012 		goto normal;
4013 
4014 	gro_list_prepare(napi, skb);
4015 
4016 	rcu_read_lock();
4017 	list_for_each_entry_rcu(ptype, head, list) {
4018 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4019 			continue;
4020 
4021 		skb_set_network_header(skb, skb_gro_offset(skb));
4022 		skb_reset_mac_len(skb);
4023 		NAPI_GRO_CB(skb)->same_flow = 0;
4024 		NAPI_GRO_CB(skb)->flush = 0;
4025 		NAPI_GRO_CB(skb)->free = 0;
4026 		NAPI_GRO_CB(skb)->udp_mark = 0;
4027 
4028 		/* Setup for GRO checksum validation */
4029 		switch (skb->ip_summed) {
4030 		case CHECKSUM_COMPLETE:
4031 			NAPI_GRO_CB(skb)->csum = skb->csum;
4032 			NAPI_GRO_CB(skb)->csum_valid = 1;
4033 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4034 			break;
4035 		case CHECKSUM_UNNECESSARY:
4036 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4037 			NAPI_GRO_CB(skb)->csum_valid = 0;
4038 			break;
4039 		default:
4040 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4041 			NAPI_GRO_CB(skb)->csum_valid = 0;
4042 		}
4043 
4044 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4045 		break;
4046 	}
4047 	rcu_read_unlock();
4048 
4049 	if (&ptype->list == head)
4050 		goto normal;
4051 
4052 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4053 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4054 
4055 	if (pp) {
4056 		struct sk_buff *nskb = *pp;
4057 
4058 		*pp = nskb->next;
4059 		nskb->next = NULL;
4060 		napi_gro_complete(nskb);
4061 		napi->gro_count--;
4062 	}
4063 
4064 	if (same_flow)
4065 		goto ok;
4066 
4067 	if (NAPI_GRO_CB(skb)->flush)
4068 		goto normal;
4069 
4070 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4071 		struct sk_buff *nskb = napi->gro_list;
4072 
4073 		/* locate the end of the list to select the 'oldest' flow */
4074 		while (nskb->next) {
4075 			pp = &nskb->next;
4076 			nskb = *pp;
4077 		}
4078 		*pp = NULL;
4079 		nskb->next = NULL;
4080 		napi_gro_complete(nskb);
4081 	} else {
4082 		napi->gro_count++;
4083 	}
4084 	NAPI_GRO_CB(skb)->count = 1;
4085 	NAPI_GRO_CB(skb)->age = jiffies;
4086 	NAPI_GRO_CB(skb)->last = skb;
4087 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4088 	skb->next = napi->gro_list;
4089 	napi->gro_list = skb;
4090 	ret = GRO_HELD;
4091 
4092 pull:
4093 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4094 	if (grow > 0)
4095 		gro_pull_from_frag0(skb, grow);
4096 ok:
4097 	return ret;
4098 
4099 normal:
4100 	ret = GRO_NORMAL;
4101 	goto pull;
4102 }
4103 
4104 struct packet_offload *gro_find_receive_by_type(__be16 type)
4105 {
4106 	struct list_head *offload_head = &offload_base;
4107 	struct packet_offload *ptype;
4108 
4109 	list_for_each_entry_rcu(ptype, offload_head, list) {
4110 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4111 			continue;
4112 		return ptype;
4113 	}
4114 	return NULL;
4115 }
4116 EXPORT_SYMBOL(gro_find_receive_by_type);
4117 
4118 struct packet_offload *gro_find_complete_by_type(__be16 type)
4119 {
4120 	struct list_head *offload_head = &offload_base;
4121 	struct packet_offload *ptype;
4122 
4123 	list_for_each_entry_rcu(ptype, offload_head, list) {
4124 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4125 			continue;
4126 		return ptype;
4127 	}
4128 	return NULL;
4129 }
4130 EXPORT_SYMBOL(gro_find_complete_by_type);
4131 
4132 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4133 {
4134 	switch (ret) {
4135 	case GRO_NORMAL:
4136 		if (netif_receive_skb_internal(skb))
4137 			ret = GRO_DROP;
4138 		break;
4139 
4140 	case GRO_DROP:
4141 		kfree_skb(skb);
4142 		break;
4143 
4144 	case GRO_MERGED_FREE:
4145 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4146 			kmem_cache_free(skbuff_head_cache, skb);
4147 		else
4148 			__kfree_skb(skb);
4149 		break;
4150 
4151 	case GRO_HELD:
4152 	case GRO_MERGED:
4153 		break;
4154 	}
4155 
4156 	return ret;
4157 }
4158 
4159 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4160 {
4161 	trace_napi_gro_receive_entry(skb);
4162 
4163 	skb_gro_reset_offset(skb);
4164 
4165 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4166 }
4167 EXPORT_SYMBOL(napi_gro_receive);
4168 
4169 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4170 {
4171 	if (unlikely(skb->pfmemalloc)) {
4172 		consume_skb(skb);
4173 		return;
4174 	}
4175 	__skb_pull(skb, skb_headlen(skb));
4176 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4177 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4178 	skb->vlan_tci = 0;
4179 	skb->dev = napi->dev;
4180 	skb->skb_iif = 0;
4181 	skb->encapsulation = 0;
4182 	skb_shinfo(skb)->gso_type = 0;
4183 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4184 
4185 	napi->skb = skb;
4186 }
4187 
4188 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4189 {
4190 	struct sk_buff *skb = napi->skb;
4191 
4192 	if (!skb) {
4193 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4194 		napi->skb = skb;
4195 	}
4196 	return skb;
4197 }
4198 EXPORT_SYMBOL(napi_get_frags);
4199 
4200 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4201 				      struct sk_buff *skb,
4202 				      gro_result_t ret)
4203 {
4204 	switch (ret) {
4205 	case GRO_NORMAL:
4206 	case GRO_HELD:
4207 		__skb_push(skb, ETH_HLEN);
4208 		skb->protocol = eth_type_trans(skb, skb->dev);
4209 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4210 			ret = GRO_DROP;
4211 		break;
4212 
4213 	case GRO_DROP:
4214 	case GRO_MERGED_FREE:
4215 		napi_reuse_skb(napi, skb);
4216 		break;
4217 
4218 	case GRO_MERGED:
4219 		break;
4220 	}
4221 
4222 	return ret;
4223 }
4224 
4225 /* Upper GRO stack assumes network header starts at gro_offset=0
4226  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4227  * We copy ethernet header into skb->data to have a common layout.
4228  */
4229 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4230 {
4231 	struct sk_buff *skb = napi->skb;
4232 	const struct ethhdr *eth;
4233 	unsigned int hlen = sizeof(*eth);
4234 
4235 	napi->skb = NULL;
4236 
4237 	skb_reset_mac_header(skb);
4238 	skb_gro_reset_offset(skb);
4239 
4240 	eth = skb_gro_header_fast(skb, 0);
4241 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4242 		eth = skb_gro_header_slow(skb, hlen, 0);
4243 		if (unlikely(!eth)) {
4244 			napi_reuse_skb(napi, skb);
4245 			return NULL;
4246 		}
4247 	} else {
4248 		gro_pull_from_frag0(skb, hlen);
4249 		NAPI_GRO_CB(skb)->frag0 += hlen;
4250 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4251 	}
4252 	__skb_pull(skb, hlen);
4253 
4254 	/*
4255 	 * This works because the only protocols we care about don't require
4256 	 * special handling.
4257 	 * We'll fix it up properly in napi_frags_finish()
4258 	 */
4259 	skb->protocol = eth->h_proto;
4260 
4261 	return skb;
4262 }
4263 
4264 gro_result_t napi_gro_frags(struct napi_struct *napi)
4265 {
4266 	struct sk_buff *skb = napi_frags_skb(napi);
4267 
4268 	if (!skb)
4269 		return GRO_DROP;
4270 
4271 	trace_napi_gro_frags_entry(skb);
4272 
4273 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4274 }
4275 EXPORT_SYMBOL(napi_gro_frags);
4276 
4277 /* Compute the checksum from gro_offset and return the folded value
4278  * after adding in any pseudo checksum.
4279  */
4280 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4281 {
4282 	__wsum wsum;
4283 	__sum16 sum;
4284 
4285 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4286 
4287 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4288 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4289 	if (likely(!sum)) {
4290 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4291 		    !skb->csum_complete_sw)
4292 			netdev_rx_csum_fault(skb->dev);
4293 	}
4294 
4295 	NAPI_GRO_CB(skb)->csum = wsum;
4296 	NAPI_GRO_CB(skb)->csum_valid = 1;
4297 
4298 	return sum;
4299 }
4300 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4301 
4302 /*
4303  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4304  * Note: called with local irq disabled, but exits with local irq enabled.
4305  */
4306 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4307 {
4308 #ifdef CONFIG_RPS
4309 	struct softnet_data *remsd = sd->rps_ipi_list;
4310 
4311 	if (remsd) {
4312 		sd->rps_ipi_list = NULL;
4313 
4314 		local_irq_enable();
4315 
4316 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4317 		while (remsd) {
4318 			struct softnet_data *next = remsd->rps_ipi_next;
4319 
4320 			if (cpu_online(remsd->cpu))
4321 				smp_call_function_single_async(remsd->cpu,
4322 							   &remsd->csd);
4323 			remsd = next;
4324 		}
4325 	} else
4326 #endif
4327 		local_irq_enable();
4328 }
4329 
4330 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4331 {
4332 #ifdef CONFIG_RPS
4333 	return sd->rps_ipi_list != NULL;
4334 #else
4335 	return false;
4336 #endif
4337 }
4338 
4339 static int process_backlog(struct napi_struct *napi, int quota)
4340 {
4341 	int work = 0;
4342 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4343 
4344 	/* Check if we have pending ipi, its better to send them now,
4345 	 * not waiting net_rx_action() end.
4346 	 */
4347 	if (sd_has_rps_ipi_waiting(sd)) {
4348 		local_irq_disable();
4349 		net_rps_action_and_irq_enable(sd);
4350 	}
4351 
4352 	napi->weight = weight_p;
4353 	local_irq_disable();
4354 	while (1) {
4355 		struct sk_buff *skb;
4356 
4357 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4358 			local_irq_enable();
4359 			__netif_receive_skb(skb);
4360 			local_irq_disable();
4361 			input_queue_head_incr(sd);
4362 			if (++work >= quota) {
4363 				local_irq_enable();
4364 				return work;
4365 			}
4366 		}
4367 
4368 		rps_lock(sd);
4369 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4370 			/*
4371 			 * Inline a custom version of __napi_complete().
4372 			 * only current cpu owns and manipulates this napi,
4373 			 * and NAPI_STATE_SCHED is the only possible flag set
4374 			 * on backlog.
4375 			 * We can use a plain write instead of clear_bit(),
4376 			 * and we dont need an smp_mb() memory barrier.
4377 			 */
4378 			napi->state = 0;
4379 			rps_unlock(sd);
4380 
4381 			break;
4382 		}
4383 
4384 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4385 					   &sd->process_queue);
4386 		rps_unlock(sd);
4387 	}
4388 	local_irq_enable();
4389 
4390 	return work;
4391 }
4392 
4393 /**
4394  * __napi_schedule - schedule for receive
4395  * @n: entry to schedule
4396  *
4397  * The entry's receive function will be scheduled to run.
4398  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4399  */
4400 void __napi_schedule(struct napi_struct *n)
4401 {
4402 	unsigned long flags;
4403 
4404 	local_irq_save(flags);
4405 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4406 	local_irq_restore(flags);
4407 }
4408 EXPORT_SYMBOL(__napi_schedule);
4409 
4410 /**
4411  * __napi_schedule_irqoff - schedule for receive
4412  * @n: entry to schedule
4413  *
4414  * Variant of __napi_schedule() assuming hard irqs are masked
4415  */
4416 void __napi_schedule_irqoff(struct napi_struct *n)
4417 {
4418 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4419 }
4420 EXPORT_SYMBOL(__napi_schedule_irqoff);
4421 
4422 void __napi_complete(struct napi_struct *n)
4423 {
4424 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4425 
4426 	list_del_init(&n->poll_list);
4427 	smp_mb__before_atomic();
4428 	clear_bit(NAPI_STATE_SCHED, &n->state);
4429 }
4430 EXPORT_SYMBOL(__napi_complete);
4431 
4432 void napi_complete_done(struct napi_struct *n, int work_done)
4433 {
4434 	unsigned long flags;
4435 
4436 	/*
4437 	 * don't let napi dequeue from the cpu poll list
4438 	 * just in case its running on a different cpu
4439 	 */
4440 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4441 		return;
4442 
4443 	if (n->gro_list) {
4444 		unsigned long timeout = 0;
4445 
4446 		if (work_done)
4447 			timeout = n->dev->gro_flush_timeout;
4448 
4449 		if (timeout)
4450 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4451 				      HRTIMER_MODE_REL_PINNED);
4452 		else
4453 			napi_gro_flush(n, false);
4454 	}
4455 	if (likely(list_empty(&n->poll_list))) {
4456 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4457 	} else {
4458 		/* If n->poll_list is not empty, we need to mask irqs */
4459 		local_irq_save(flags);
4460 		__napi_complete(n);
4461 		local_irq_restore(flags);
4462 	}
4463 }
4464 EXPORT_SYMBOL(napi_complete_done);
4465 
4466 /* must be called under rcu_read_lock(), as we dont take a reference */
4467 struct napi_struct *napi_by_id(unsigned int napi_id)
4468 {
4469 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4470 	struct napi_struct *napi;
4471 
4472 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4473 		if (napi->napi_id == napi_id)
4474 			return napi;
4475 
4476 	return NULL;
4477 }
4478 EXPORT_SYMBOL_GPL(napi_by_id);
4479 
4480 void napi_hash_add(struct napi_struct *napi)
4481 {
4482 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4483 
4484 		spin_lock(&napi_hash_lock);
4485 
4486 		/* 0 is not a valid id, we also skip an id that is taken
4487 		 * we expect both events to be extremely rare
4488 		 */
4489 		napi->napi_id = 0;
4490 		while (!napi->napi_id) {
4491 			napi->napi_id = ++napi_gen_id;
4492 			if (napi_by_id(napi->napi_id))
4493 				napi->napi_id = 0;
4494 		}
4495 
4496 		hlist_add_head_rcu(&napi->napi_hash_node,
4497 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4498 
4499 		spin_unlock(&napi_hash_lock);
4500 	}
4501 }
4502 EXPORT_SYMBOL_GPL(napi_hash_add);
4503 
4504 /* Warning : caller is responsible to make sure rcu grace period
4505  * is respected before freeing memory containing @napi
4506  */
4507 void napi_hash_del(struct napi_struct *napi)
4508 {
4509 	spin_lock(&napi_hash_lock);
4510 
4511 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4512 		hlist_del_rcu(&napi->napi_hash_node);
4513 
4514 	spin_unlock(&napi_hash_lock);
4515 }
4516 EXPORT_SYMBOL_GPL(napi_hash_del);
4517 
4518 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4519 {
4520 	struct napi_struct *napi;
4521 
4522 	napi = container_of(timer, struct napi_struct, timer);
4523 	if (napi->gro_list)
4524 		napi_schedule(napi);
4525 
4526 	return HRTIMER_NORESTART;
4527 }
4528 
4529 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4530 		    int (*poll)(struct napi_struct *, int), int weight)
4531 {
4532 	INIT_LIST_HEAD(&napi->poll_list);
4533 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4534 	napi->timer.function = napi_watchdog;
4535 	napi->gro_count = 0;
4536 	napi->gro_list = NULL;
4537 	napi->skb = NULL;
4538 	napi->poll = poll;
4539 	if (weight > NAPI_POLL_WEIGHT)
4540 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4541 			    weight, dev->name);
4542 	napi->weight = weight;
4543 	list_add(&napi->dev_list, &dev->napi_list);
4544 	napi->dev = dev;
4545 #ifdef CONFIG_NETPOLL
4546 	spin_lock_init(&napi->poll_lock);
4547 	napi->poll_owner = -1;
4548 #endif
4549 	set_bit(NAPI_STATE_SCHED, &napi->state);
4550 }
4551 EXPORT_SYMBOL(netif_napi_add);
4552 
4553 void napi_disable(struct napi_struct *n)
4554 {
4555 	might_sleep();
4556 	set_bit(NAPI_STATE_DISABLE, &n->state);
4557 
4558 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4559 		msleep(1);
4560 
4561 	hrtimer_cancel(&n->timer);
4562 
4563 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4564 }
4565 EXPORT_SYMBOL(napi_disable);
4566 
4567 void netif_napi_del(struct napi_struct *napi)
4568 {
4569 	list_del_init(&napi->dev_list);
4570 	napi_free_frags(napi);
4571 
4572 	kfree_skb_list(napi->gro_list);
4573 	napi->gro_list = NULL;
4574 	napi->gro_count = 0;
4575 }
4576 EXPORT_SYMBOL(netif_napi_del);
4577 
4578 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4579 {
4580 	void *have;
4581 	int work, weight;
4582 
4583 	list_del_init(&n->poll_list);
4584 
4585 	have = netpoll_poll_lock(n);
4586 
4587 	weight = n->weight;
4588 
4589 	/* This NAPI_STATE_SCHED test is for avoiding a race
4590 	 * with netpoll's poll_napi().  Only the entity which
4591 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4592 	 * actually make the ->poll() call.  Therefore we avoid
4593 	 * accidentally calling ->poll() when NAPI is not scheduled.
4594 	 */
4595 	work = 0;
4596 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4597 		work = n->poll(n, weight);
4598 		trace_napi_poll(n);
4599 	}
4600 
4601 	WARN_ON_ONCE(work > weight);
4602 
4603 	if (likely(work < weight))
4604 		goto out_unlock;
4605 
4606 	/* Drivers must not modify the NAPI state if they
4607 	 * consume the entire weight.  In such cases this code
4608 	 * still "owns" the NAPI instance and therefore can
4609 	 * move the instance around on the list at-will.
4610 	 */
4611 	if (unlikely(napi_disable_pending(n))) {
4612 		napi_complete(n);
4613 		goto out_unlock;
4614 	}
4615 
4616 	if (n->gro_list) {
4617 		/* flush too old packets
4618 		 * If HZ < 1000, flush all packets.
4619 		 */
4620 		napi_gro_flush(n, HZ >= 1000);
4621 	}
4622 
4623 	/* Some drivers may have called napi_schedule
4624 	 * prior to exhausting their budget.
4625 	 */
4626 	if (unlikely(!list_empty(&n->poll_list))) {
4627 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4628 			     n->dev ? n->dev->name : "backlog");
4629 		goto out_unlock;
4630 	}
4631 
4632 	list_add_tail(&n->poll_list, repoll);
4633 
4634 out_unlock:
4635 	netpoll_poll_unlock(have);
4636 
4637 	return work;
4638 }
4639 
4640 static void net_rx_action(struct softirq_action *h)
4641 {
4642 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4643 	unsigned long time_limit = jiffies + 2;
4644 	int budget = netdev_budget;
4645 	LIST_HEAD(list);
4646 	LIST_HEAD(repoll);
4647 
4648 	local_irq_disable();
4649 	list_splice_init(&sd->poll_list, &list);
4650 	local_irq_enable();
4651 
4652 	for (;;) {
4653 		struct napi_struct *n;
4654 
4655 		if (list_empty(&list)) {
4656 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4657 				return;
4658 			break;
4659 		}
4660 
4661 		n = list_first_entry(&list, struct napi_struct, poll_list);
4662 		budget -= napi_poll(n, &repoll);
4663 
4664 		/* If softirq window is exhausted then punt.
4665 		 * Allow this to run for 2 jiffies since which will allow
4666 		 * an average latency of 1.5/HZ.
4667 		 */
4668 		if (unlikely(budget <= 0 ||
4669 			     time_after_eq(jiffies, time_limit))) {
4670 			sd->time_squeeze++;
4671 			break;
4672 		}
4673 	}
4674 
4675 	local_irq_disable();
4676 
4677 	list_splice_tail_init(&sd->poll_list, &list);
4678 	list_splice_tail(&repoll, &list);
4679 	list_splice(&list, &sd->poll_list);
4680 	if (!list_empty(&sd->poll_list))
4681 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4682 
4683 	net_rps_action_and_irq_enable(sd);
4684 }
4685 
4686 struct netdev_adjacent {
4687 	struct net_device *dev;
4688 
4689 	/* upper master flag, there can only be one master device per list */
4690 	bool master;
4691 
4692 	/* counter for the number of times this device was added to us */
4693 	u16 ref_nr;
4694 
4695 	/* private field for the users */
4696 	void *private;
4697 
4698 	struct list_head list;
4699 	struct rcu_head rcu;
4700 };
4701 
4702 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4703 						 struct net_device *adj_dev,
4704 						 struct list_head *adj_list)
4705 {
4706 	struct netdev_adjacent *adj;
4707 
4708 	list_for_each_entry(adj, adj_list, list) {
4709 		if (adj->dev == adj_dev)
4710 			return adj;
4711 	}
4712 	return NULL;
4713 }
4714 
4715 /**
4716  * netdev_has_upper_dev - Check if device is linked to an upper device
4717  * @dev: device
4718  * @upper_dev: upper device to check
4719  *
4720  * Find out if a device is linked to specified upper device and return true
4721  * in case it is. Note that this checks only immediate upper device,
4722  * not through a complete stack of devices. The caller must hold the RTNL lock.
4723  */
4724 bool netdev_has_upper_dev(struct net_device *dev,
4725 			  struct net_device *upper_dev)
4726 {
4727 	ASSERT_RTNL();
4728 
4729 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4730 }
4731 EXPORT_SYMBOL(netdev_has_upper_dev);
4732 
4733 /**
4734  * netdev_has_any_upper_dev - Check if device is linked to some device
4735  * @dev: device
4736  *
4737  * Find out if a device is linked to an upper device and return true in case
4738  * it is. The caller must hold the RTNL lock.
4739  */
4740 static bool netdev_has_any_upper_dev(struct net_device *dev)
4741 {
4742 	ASSERT_RTNL();
4743 
4744 	return !list_empty(&dev->all_adj_list.upper);
4745 }
4746 
4747 /**
4748  * netdev_master_upper_dev_get - Get master upper device
4749  * @dev: device
4750  *
4751  * Find a master upper device and return pointer to it or NULL in case
4752  * it's not there. The caller must hold the RTNL lock.
4753  */
4754 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4755 {
4756 	struct netdev_adjacent *upper;
4757 
4758 	ASSERT_RTNL();
4759 
4760 	if (list_empty(&dev->adj_list.upper))
4761 		return NULL;
4762 
4763 	upper = list_first_entry(&dev->adj_list.upper,
4764 				 struct netdev_adjacent, list);
4765 	if (likely(upper->master))
4766 		return upper->dev;
4767 	return NULL;
4768 }
4769 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4770 
4771 void *netdev_adjacent_get_private(struct list_head *adj_list)
4772 {
4773 	struct netdev_adjacent *adj;
4774 
4775 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4776 
4777 	return adj->private;
4778 }
4779 EXPORT_SYMBOL(netdev_adjacent_get_private);
4780 
4781 /**
4782  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4783  * @dev: device
4784  * @iter: list_head ** of the current position
4785  *
4786  * Gets the next device from the dev's upper list, starting from iter
4787  * position. The caller must hold RCU read lock.
4788  */
4789 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4790 						 struct list_head **iter)
4791 {
4792 	struct netdev_adjacent *upper;
4793 
4794 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4795 
4796 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4797 
4798 	if (&upper->list == &dev->adj_list.upper)
4799 		return NULL;
4800 
4801 	*iter = &upper->list;
4802 
4803 	return upper->dev;
4804 }
4805 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4806 
4807 /**
4808  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4809  * @dev: device
4810  * @iter: list_head ** of the current position
4811  *
4812  * Gets the next device from the dev's upper list, starting from iter
4813  * position. The caller must hold RCU read lock.
4814  */
4815 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4816 						     struct list_head **iter)
4817 {
4818 	struct netdev_adjacent *upper;
4819 
4820 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4821 
4822 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4823 
4824 	if (&upper->list == &dev->all_adj_list.upper)
4825 		return NULL;
4826 
4827 	*iter = &upper->list;
4828 
4829 	return upper->dev;
4830 }
4831 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4832 
4833 /**
4834  * netdev_lower_get_next_private - Get the next ->private from the
4835  *				   lower neighbour list
4836  * @dev: device
4837  * @iter: list_head ** of the current position
4838  *
4839  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4840  * list, starting from iter position. The caller must hold either hold the
4841  * RTNL lock or its own locking that guarantees that the neighbour lower
4842  * list will remain unchainged.
4843  */
4844 void *netdev_lower_get_next_private(struct net_device *dev,
4845 				    struct list_head **iter)
4846 {
4847 	struct netdev_adjacent *lower;
4848 
4849 	lower = list_entry(*iter, struct netdev_adjacent, list);
4850 
4851 	if (&lower->list == &dev->adj_list.lower)
4852 		return NULL;
4853 
4854 	*iter = lower->list.next;
4855 
4856 	return lower->private;
4857 }
4858 EXPORT_SYMBOL(netdev_lower_get_next_private);
4859 
4860 /**
4861  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4862  *				       lower neighbour list, RCU
4863  *				       variant
4864  * @dev: device
4865  * @iter: list_head ** of the current position
4866  *
4867  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4868  * list, starting from iter position. The caller must hold RCU read lock.
4869  */
4870 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4871 					struct list_head **iter)
4872 {
4873 	struct netdev_adjacent *lower;
4874 
4875 	WARN_ON_ONCE(!rcu_read_lock_held());
4876 
4877 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4878 
4879 	if (&lower->list == &dev->adj_list.lower)
4880 		return NULL;
4881 
4882 	*iter = &lower->list;
4883 
4884 	return lower->private;
4885 }
4886 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4887 
4888 /**
4889  * netdev_lower_get_next - Get the next device from the lower neighbour
4890  *                         list
4891  * @dev: device
4892  * @iter: list_head ** of the current position
4893  *
4894  * Gets the next netdev_adjacent from the dev's lower neighbour
4895  * list, starting from iter position. The caller must hold RTNL lock or
4896  * its own locking that guarantees that the neighbour lower
4897  * list will remain unchainged.
4898  */
4899 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4900 {
4901 	struct netdev_adjacent *lower;
4902 
4903 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4904 
4905 	if (&lower->list == &dev->adj_list.lower)
4906 		return NULL;
4907 
4908 	*iter = &lower->list;
4909 
4910 	return lower->dev;
4911 }
4912 EXPORT_SYMBOL(netdev_lower_get_next);
4913 
4914 /**
4915  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4916  *				       lower neighbour list, RCU
4917  *				       variant
4918  * @dev: device
4919  *
4920  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4921  * list. The caller must hold RCU read lock.
4922  */
4923 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4924 {
4925 	struct netdev_adjacent *lower;
4926 
4927 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4928 			struct netdev_adjacent, list);
4929 	if (lower)
4930 		return lower->private;
4931 	return NULL;
4932 }
4933 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4934 
4935 /**
4936  * netdev_master_upper_dev_get_rcu - Get master upper device
4937  * @dev: device
4938  *
4939  * Find a master upper device and return pointer to it or NULL in case
4940  * it's not there. The caller must hold the RCU read lock.
4941  */
4942 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4943 {
4944 	struct netdev_adjacent *upper;
4945 
4946 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4947 				       struct netdev_adjacent, list);
4948 	if (upper && likely(upper->master))
4949 		return upper->dev;
4950 	return NULL;
4951 }
4952 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4953 
4954 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4955 			      struct net_device *adj_dev,
4956 			      struct list_head *dev_list)
4957 {
4958 	char linkname[IFNAMSIZ+7];
4959 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4960 		"upper_%s" : "lower_%s", adj_dev->name);
4961 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4962 				 linkname);
4963 }
4964 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4965 			       char *name,
4966 			       struct list_head *dev_list)
4967 {
4968 	char linkname[IFNAMSIZ+7];
4969 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4970 		"upper_%s" : "lower_%s", name);
4971 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4972 }
4973 
4974 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4975 						 struct net_device *adj_dev,
4976 						 struct list_head *dev_list)
4977 {
4978 	return (dev_list == &dev->adj_list.upper ||
4979 		dev_list == &dev->adj_list.lower) &&
4980 		net_eq(dev_net(dev), dev_net(adj_dev));
4981 }
4982 
4983 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4984 					struct net_device *adj_dev,
4985 					struct list_head *dev_list,
4986 					void *private, bool master)
4987 {
4988 	struct netdev_adjacent *adj;
4989 	int ret;
4990 
4991 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4992 
4993 	if (adj) {
4994 		adj->ref_nr++;
4995 		return 0;
4996 	}
4997 
4998 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4999 	if (!adj)
5000 		return -ENOMEM;
5001 
5002 	adj->dev = adj_dev;
5003 	adj->master = master;
5004 	adj->ref_nr = 1;
5005 	adj->private = private;
5006 	dev_hold(adj_dev);
5007 
5008 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5009 		 adj_dev->name, dev->name, adj_dev->name);
5010 
5011 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5012 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5013 		if (ret)
5014 			goto free_adj;
5015 	}
5016 
5017 	/* Ensure that master link is always the first item in list. */
5018 	if (master) {
5019 		ret = sysfs_create_link(&(dev->dev.kobj),
5020 					&(adj_dev->dev.kobj), "master");
5021 		if (ret)
5022 			goto remove_symlinks;
5023 
5024 		list_add_rcu(&adj->list, dev_list);
5025 	} else {
5026 		list_add_tail_rcu(&adj->list, dev_list);
5027 	}
5028 
5029 	return 0;
5030 
5031 remove_symlinks:
5032 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5033 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5034 free_adj:
5035 	kfree(adj);
5036 	dev_put(adj_dev);
5037 
5038 	return ret;
5039 }
5040 
5041 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5042 					 struct net_device *adj_dev,
5043 					 struct list_head *dev_list)
5044 {
5045 	struct netdev_adjacent *adj;
5046 
5047 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5048 
5049 	if (!adj) {
5050 		pr_err("tried to remove device %s from %s\n",
5051 		       dev->name, adj_dev->name);
5052 		BUG();
5053 	}
5054 
5055 	if (adj->ref_nr > 1) {
5056 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5057 			 adj->ref_nr-1);
5058 		adj->ref_nr--;
5059 		return;
5060 	}
5061 
5062 	if (adj->master)
5063 		sysfs_remove_link(&(dev->dev.kobj), "master");
5064 
5065 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5066 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5067 
5068 	list_del_rcu(&adj->list);
5069 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5070 		 adj_dev->name, dev->name, adj_dev->name);
5071 	dev_put(adj_dev);
5072 	kfree_rcu(adj, rcu);
5073 }
5074 
5075 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5076 					    struct net_device *upper_dev,
5077 					    struct list_head *up_list,
5078 					    struct list_head *down_list,
5079 					    void *private, bool master)
5080 {
5081 	int ret;
5082 
5083 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5084 					   master);
5085 	if (ret)
5086 		return ret;
5087 
5088 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5089 					   false);
5090 	if (ret) {
5091 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5092 		return ret;
5093 	}
5094 
5095 	return 0;
5096 }
5097 
5098 static int __netdev_adjacent_dev_link(struct net_device *dev,
5099 				      struct net_device *upper_dev)
5100 {
5101 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5102 						&dev->all_adj_list.upper,
5103 						&upper_dev->all_adj_list.lower,
5104 						NULL, false);
5105 }
5106 
5107 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5108 					       struct net_device *upper_dev,
5109 					       struct list_head *up_list,
5110 					       struct list_head *down_list)
5111 {
5112 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5113 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5114 }
5115 
5116 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5117 					 struct net_device *upper_dev)
5118 {
5119 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5120 					   &dev->all_adj_list.upper,
5121 					   &upper_dev->all_adj_list.lower);
5122 }
5123 
5124 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5125 						struct net_device *upper_dev,
5126 						void *private, bool master)
5127 {
5128 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5129 
5130 	if (ret)
5131 		return ret;
5132 
5133 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5134 					       &dev->adj_list.upper,
5135 					       &upper_dev->adj_list.lower,
5136 					       private, master);
5137 	if (ret) {
5138 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5139 		return ret;
5140 	}
5141 
5142 	return 0;
5143 }
5144 
5145 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5146 						   struct net_device *upper_dev)
5147 {
5148 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5149 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5150 					   &dev->adj_list.upper,
5151 					   &upper_dev->adj_list.lower);
5152 }
5153 
5154 static int __netdev_upper_dev_link(struct net_device *dev,
5155 				   struct net_device *upper_dev, bool master,
5156 				   void *private)
5157 {
5158 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5159 	int ret = 0;
5160 
5161 	ASSERT_RTNL();
5162 
5163 	if (dev == upper_dev)
5164 		return -EBUSY;
5165 
5166 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5167 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5168 		return -EBUSY;
5169 
5170 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5171 		return -EEXIST;
5172 
5173 	if (master && netdev_master_upper_dev_get(dev))
5174 		return -EBUSY;
5175 
5176 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5177 						   master);
5178 	if (ret)
5179 		return ret;
5180 
5181 	/* Now that we linked these devs, make all the upper_dev's
5182 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5183 	 * versa, and don't forget the devices itself. All of these
5184 	 * links are non-neighbours.
5185 	 */
5186 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5187 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5188 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5189 				 i->dev->name, j->dev->name);
5190 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5191 			if (ret)
5192 				goto rollback_mesh;
5193 		}
5194 	}
5195 
5196 	/* add dev to every upper_dev's upper device */
5197 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5198 		pr_debug("linking %s's upper device %s with %s\n",
5199 			 upper_dev->name, i->dev->name, dev->name);
5200 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5201 		if (ret)
5202 			goto rollback_upper_mesh;
5203 	}
5204 
5205 	/* add upper_dev to every dev's lower device */
5206 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5207 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5208 			 i->dev->name, upper_dev->name);
5209 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5210 		if (ret)
5211 			goto rollback_lower_mesh;
5212 	}
5213 
5214 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5215 	return 0;
5216 
5217 rollback_lower_mesh:
5218 	to_i = i;
5219 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5220 		if (i == to_i)
5221 			break;
5222 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5223 	}
5224 
5225 	i = NULL;
5226 
5227 rollback_upper_mesh:
5228 	to_i = i;
5229 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5230 		if (i == to_i)
5231 			break;
5232 		__netdev_adjacent_dev_unlink(dev, i->dev);
5233 	}
5234 
5235 	i = j = NULL;
5236 
5237 rollback_mesh:
5238 	to_i = i;
5239 	to_j = j;
5240 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5241 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5242 			if (i == to_i && j == to_j)
5243 				break;
5244 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5245 		}
5246 		if (i == to_i)
5247 			break;
5248 	}
5249 
5250 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5251 
5252 	return ret;
5253 }
5254 
5255 /**
5256  * netdev_upper_dev_link - Add a link to the upper device
5257  * @dev: device
5258  * @upper_dev: new upper device
5259  *
5260  * Adds a link to device which is upper to this one. The caller must hold
5261  * the RTNL lock. On a failure a negative errno code is returned.
5262  * On success the reference counts are adjusted and the function
5263  * returns zero.
5264  */
5265 int netdev_upper_dev_link(struct net_device *dev,
5266 			  struct net_device *upper_dev)
5267 {
5268 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5269 }
5270 EXPORT_SYMBOL(netdev_upper_dev_link);
5271 
5272 /**
5273  * netdev_master_upper_dev_link - Add a master link to the upper device
5274  * @dev: device
5275  * @upper_dev: new upper device
5276  *
5277  * Adds a link to device which is upper to this one. In this case, only
5278  * one master upper device can be linked, although other non-master devices
5279  * might be linked as well. The caller must hold the RTNL lock.
5280  * On a failure a negative errno code is returned. On success the reference
5281  * counts are adjusted and the function returns zero.
5282  */
5283 int netdev_master_upper_dev_link(struct net_device *dev,
5284 				 struct net_device *upper_dev)
5285 {
5286 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5287 }
5288 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5289 
5290 int netdev_master_upper_dev_link_private(struct net_device *dev,
5291 					 struct net_device *upper_dev,
5292 					 void *private)
5293 {
5294 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5295 }
5296 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5297 
5298 /**
5299  * netdev_upper_dev_unlink - Removes a link to upper device
5300  * @dev: device
5301  * @upper_dev: new upper device
5302  *
5303  * Removes a link to device which is upper to this one. The caller must hold
5304  * the RTNL lock.
5305  */
5306 void netdev_upper_dev_unlink(struct net_device *dev,
5307 			     struct net_device *upper_dev)
5308 {
5309 	struct netdev_adjacent *i, *j;
5310 	ASSERT_RTNL();
5311 
5312 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5313 
5314 	/* Here is the tricky part. We must remove all dev's lower
5315 	 * devices from all upper_dev's upper devices and vice
5316 	 * versa, to maintain the graph relationship.
5317 	 */
5318 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5319 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5320 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5321 
5322 	/* remove also the devices itself from lower/upper device
5323 	 * list
5324 	 */
5325 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5326 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5327 
5328 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5329 		__netdev_adjacent_dev_unlink(dev, i->dev);
5330 
5331 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5332 }
5333 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5334 
5335 /**
5336  * netdev_bonding_info_change - Dispatch event about slave change
5337  * @dev: device
5338  * @netdev_bonding_info: info to dispatch
5339  *
5340  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5341  * The caller must hold the RTNL lock.
5342  */
5343 void netdev_bonding_info_change(struct net_device *dev,
5344 				struct netdev_bonding_info *bonding_info)
5345 {
5346 	struct netdev_notifier_bonding_info	info;
5347 
5348 	memcpy(&info.bonding_info, bonding_info,
5349 	       sizeof(struct netdev_bonding_info));
5350 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5351 				      &info.info);
5352 }
5353 EXPORT_SYMBOL(netdev_bonding_info_change);
5354 
5355 static void netdev_adjacent_add_links(struct net_device *dev)
5356 {
5357 	struct netdev_adjacent *iter;
5358 
5359 	struct net *net = dev_net(dev);
5360 
5361 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5362 		if (!net_eq(net,dev_net(iter->dev)))
5363 			continue;
5364 		netdev_adjacent_sysfs_add(iter->dev, dev,
5365 					  &iter->dev->adj_list.lower);
5366 		netdev_adjacent_sysfs_add(dev, iter->dev,
5367 					  &dev->adj_list.upper);
5368 	}
5369 
5370 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5371 		if (!net_eq(net,dev_net(iter->dev)))
5372 			continue;
5373 		netdev_adjacent_sysfs_add(iter->dev, dev,
5374 					  &iter->dev->adj_list.upper);
5375 		netdev_adjacent_sysfs_add(dev, iter->dev,
5376 					  &dev->adj_list.lower);
5377 	}
5378 }
5379 
5380 static void netdev_adjacent_del_links(struct net_device *dev)
5381 {
5382 	struct netdev_adjacent *iter;
5383 
5384 	struct net *net = dev_net(dev);
5385 
5386 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5387 		if (!net_eq(net,dev_net(iter->dev)))
5388 			continue;
5389 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5390 					  &iter->dev->adj_list.lower);
5391 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5392 					  &dev->adj_list.upper);
5393 	}
5394 
5395 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5396 		if (!net_eq(net,dev_net(iter->dev)))
5397 			continue;
5398 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5399 					  &iter->dev->adj_list.upper);
5400 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5401 					  &dev->adj_list.lower);
5402 	}
5403 }
5404 
5405 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5406 {
5407 	struct netdev_adjacent *iter;
5408 
5409 	struct net *net = dev_net(dev);
5410 
5411 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5412 		if (!net_eq(net,dev_net(iter->dev)))
5413 			continue;
5414 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5415 					  &iter->dev->adj_list.lower);
5416 		netdev_adjacent_sysfs_add(iter->dev, dev,
5417 					  &iter->dev->adj_list.lower);
5418 	}
5419 
5420 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5421 		if (!net_eq(net,dev_net(iter->dev)))
5422 			continue;
5423 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5424 					  &iter->dev->adj_list.upper);
5425 		netdev_adjacent_sysfs_add(iter->dev, dev,
5426 					  &iter->dev->adj_list.upper);
5427 	}
5428 }
5429 
5430 void *netdev_lower_dev_get_private(struct net_device *dev,
5431 				   struct net_device *lower_dev)
5432 {
5433 	struct netdev_adjacent *lower;
5434 
5435 	if (!lower_dev)
5436 		return NULL;
5437 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5438 	if (!lower)
5439 		return NULL;
5440 
5441 	return lower->private;
5442 }
5443 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5444 
5445 
5446 int dev_get_nest_level(struct net_device *dev,
5447 		       bool (*type_check)(struct net_device *dev))
5448 {
5449 	struct net_device *lower = NULL;
5450 	struct list_head *iter;
5451 	int max_nest = -1;
5452 	int nest;
5453 
5454 	ASSERT_RTNL();
5455 
5456 	netdev_for_each_lower_dev(dev, lower, iter) {
5457 		nest = dev_get_nest_level(lower, type_check);
5458 		if (max_nest < nest)
5459 			max_nest = nest;
5460 	}
5461 
5462 	if (type_check(dev))
5463 		max_nest++;
5464 
5465 	return max_nest;
5466 }
5467 EXPORT_SYMBOL(dev_get_nest_level);
5468 
5469 static void dev_change_rx_flags(struct net_device *dev, int flags)
5470 {
5471 	const struct net_device_ops *ops = dev->netdev_ops;
5472 
5473 	if (ops->ndo_change_rx_flags)
5474 		ops->ndo_change_rx_flags(dev, flags);
5475 }
5476 
5477 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5478 {
5479 	unsigned int old_flags = dev->flags;
5480 	kuid_t uid;
5481 	kgid_t gid;
5482 
5483 	ASSERT_RTNL();
5484 
5485 	dev->flags |= IFF_PROMISC;
5486 	dev->promiscuity += inc;
5487 	if (dev->promiscuity == 0) {
5488 		/*
5489 		 * Avoid overflow.
5490 		 * If inc causes overflow, untouch promisc and return error.
5491 		 */
5492 		if (inc < 0)
5493 			dev->flags &= ~IFF_PROMISC;
5494 		else {
5495 			dev->promiscuity -= inc;
5496 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5497 				dev->name);
5498 			return -EOVERFLOW;
5499 		}
5500 	}
5501 	if (dev->flags != old_flags) {
5502 		pr_info("device %s %s promiscuous mode\n",
5503 			dev->name,
5504 			dev->flags & IFF_PROMISC ? "entered" : "left");
5505 		if (audit_enabled) {
5506 			current_uid_gid(&uid, &gid);
5507 			audit_log(current->audit_context, GFP_ATOMIC,
5508 				AUDIT_ANOM_PROMISCUOUS,
5509 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5510 				dev->name, (dev->flags & IFF_PROMISC),
5511 				(old_flags & IFF_PROMISC),
5512 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5513 				from_kuid(&init_user_ns, uid),
5514 				from_kgid(&init_user_ns, gid),
5515 				audit_get_sessionid(current));
5516 		}
5517 
5518 		dev_change_rx_flags(dev, IFF_PROMISC);
5519 	}
5520 	if (notify)
5521 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5522 	return 0;
5523 }
5524 
5525 /**
5526  *	dev_set_promiscuity	- update promiscuity count on a device
5527  *	@dev: device
5528  *	@inc: modifier
5529  *
5530  *	Add or remove promiscuity from a device. While the count in the device
5531  *	remains above zero the interface remains promiscuous. Once it hits zero
5532  *	the device reverts back to normal filtering operation. A negative inc
5533  *	value is used to drop promiscuity on the device.
5534  *	Return 0 if successful or a negative errno code on error.
5535  */
5536 int dev_set_promiscuity(struct net_device *dev, int inc)
5537 {
5538 	unsigned int old_flags = dev->flags;
5539 	int err;
5540 
5541 	err = __dev_set_promiscuity(dev, inc, true);
5542 	if (err < 0)
5543 		return err;
5544 	if (dev->flags != old_flags)
5545 		dev_set_rx_mode(dev);
5546 	return err;
5547 }
5548 EXPORT_SYMBOL(dev_set_promiscuity);
5549 
5550 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5551 {
5552 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5553 
5554 	ASSERT_RTNL();
5555 
5556 	dev->flags |= IFF_ALLMULTI;
5557 	dev->allmulti += inc;
5558 	if (dev->allmulti == 0) {
5559 		/*
5560 		 * Avoid overflow.
5561 		 * If inc causes overflow, untouch allmulti and return error.
5562 		 */
5563 		if (inc < 0)
5564 			dev->flags &= ~IFF_ALLMULTI;
5565 		else {
5566 			dev->allmulti -= inc;
5567 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5568 				dev->name);
5569 			return -EOVERFLOW;
5570 		}
5571 	}
5572 	if (dev->flags ^ old_flags) {
5573 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5574 		dev_set_rx_mode(dev);
5575 		if (notify)
5576 			__dev_notify_flags(dev, old_flags,
5577 					   dev->gflags ^ old_gflags);
5578 	}
5579 	return 0;
5580 }
5581 
5582 /**
5583  *	dev_set_allmulti	- update allmulti count on a device
5584  *	@dev: device
5585  *	@inc: modifier
5586  *
5587  *	Add or remove reception of all multicast frames to a device. While the
5588  *	count in the device remains above zero the interface remains listening
5589  *	to all interfaces. Once it hits zero the device reverts back to normal
5590  *	filtering operation. A negative @inc value is used to drop the counter
5591  *	when releasing a resource needing all multicasts.
5592  *	Return 0 if successful or a negative errno code on error.
5593  */
5594 
5595 int dev_set_allmulti(struct net_device *dev, int inc)
5596 {
5597 	return __dev_set_allmulti(dev, inc, true);
5598 }
5599 EXPORT_SYMBOL(dev_set_allmulti);
5600 
5601 /*
5602  *	Upload unicast and multicast address lists to device and
5603  *	configure RX filtering. When the device doesn't support unicast
5604  *	filtering it is put in promiscuous mode while unicast addresses
5605  *	are present.
5606  */
5607 void __dev_set_rx_mode(struct net_device *dev)
5608 {
5609 	const struct net_device_ops *ops = dev->netdev_ops;
5610 
5611 	/* dev_open will call this function so the list will stay sane. */
5612 	if (!(dev->flags&IFF_UP))
5613 		return;
5614 
5615 	if (!netif_device_present(dev))
5616 		return;
5617 
5618 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5619 		/* Unicast addresses changes may only happen under the rtnl,
5620 		 * therefore calling __dev_set_promiscuity here is safe.
5621 		 */
5622 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5623 			__dev_set_promiscuity(dev, 1, false);
5624 			dev->uc_promisc = true;
5625 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5626 			__dev_set_promiscuity(dev, -1, false);
5627 			dev->uc_promisc = false;
5628 		}
5629 	}
5630 
5631 	if (ops->ndo_set_rx_mode)
5632 		ops->ndo_set_rx_mode(dev);
5633 }
5634 
5635 void dev_set_rx_mode(struct net_device *dev)
5636 {
5637 	netif_addr_lock_bh(dev);
5638 	__dev_set_rx_mode(dev);
5639 	netif_addr_unlock_bh(dev);
5640 }
5641 
5642 /**
5643  *	dev_get_flags - get flags reported to userspace
5644  *	@dev: device
5645  *
5646  *	Get the combination of flag bits exported through APIs to userspace.
5647  */
5648 unsigned int dev_get_flags(const struct net_device *dev)
5649 {
5650 	unsigned int flags;
5651 
5652 	flags = (dev->flags & ~(IFF_PROMISC |
5653 				IFF_ALLMULTI |
5654 				IFF_RUNNING |
5655 				IFF_LOWER_UP |
5656 				IFF_DORMANT)) |
5657 		(dev->gflags & (IFF_PROMISC |
5658 				IFF_ALLMULTI));
5659 
5660 	if (netif_running(dev)) {
5661 		if (netif_oper_up(dev))
5662 			flags |= IFF_RUNNING;
5663 		if (netif_carrier_ok(dev))
5664 			flags |= IFF_LOWER_UP;
5665 		if (netif_dormant(dev))
5666 			flags |= IFF_DORMANT;
5667 	}
5668 
5669 	return flags;
5670 }
5671 EXPORT_SYMBOL(dev_get_flags);
5672 
5673 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5674 {
5675 	unsigned int old_flags = dev->flags;
5676 	int ret;
5677 
5678 	ASSERT_RTNL();
5679 
5680 	/*
5681 	 *	Set the flags on our device.
5682 	 */
5683 
5684 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5685 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5686 			       IFF_AUTOMEDIA)) |
5687 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5688 				    IFF_ALLMULTI));
5689 
5690 	/*
5691 	 *	Load in the correct multicast list now the flags have changed.
5692 	 */
5693 
5694 	if ((old_flags ^ flags) & IFF_MULTICAST)
5695 		dev_change_rx_flags(dev, IFF_MULTICAST);
5696 
5697 	dev_set_rx_mode(dev);
5698 
5699 	/*
5700 	 *	Have we downed the interface. We handle IFF_UP ourselves
5701 	 *	according to user attempts to set it, rather than blindly
5702 	 *	setting it.
5703 	 */
5704 
5705 	ret = 0;
5706 	if ((old_flags ^ flags) & IFF_UP)
5707 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5708 
5709 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5710 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5711 		unsigned int old_flags = dev->flags;
5712 
5713 		dev->gflags ^= IFF_PROMISC;
5714 
5715 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5716 			if (dev->flags != old_flags)
5717 				dev_set_rx_mode(dev);
5718 	}
5719 
5720 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5721 	   is important. Some (broken) drivers set IFF_PROMISC, when
5722 	   IFF_ALLMULTI is requested not asking us and not reporting.
5723 	 */
5724 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5725 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5726 
5727 		dev->gflags ^= IFF_ALLMULTI;
5728 		__dev_set_allmulti(dev, inc, false);
5729 	}
5730 
5731 	return ret;
5732 }
5733 
5734 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5735 			unsigned int gchanges)
5736 {
5737 	unsigned int changes = dev->flags ^ old_flags;
5738 
5739 	if (gchanges)
5740 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5741 
5742 	if (changes & IFF_UP) {
5743 		if (dev->flags & IFF_UP)
5744 			call_netdevice_notifiers(NETDEV_UP, dev);
5745 		else
5746 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5747 	}
5748 
5749 	if (dev->flags & IFF_UP &&
5750 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5751 		struct netdev_notifier_change_info change_info;
5752 
5753 		change_info.flags_changed = changes;
5754 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5755 					      &change_info.info);
5756 	}
5757 }
5758 
5759 /**
5760  *	dev_change_flags - change device settings
5761  *	@dev: device
5762  *	@flags: device state flags
5763  *
5764  *	Change settings on device based state flags. The flags are
5765  *	in the userspace exported format.
5766  */
5767 int dev_change_flags(struct net_device *dev, unsigned int flags)
5768 {
5769 	int ret;
5770 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5771 
5772 	ret = __dev_change_flags(dev, flags);
5773 	if (ret < 0)
5774 		return ret;
5775 
5776 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5777 	__dev_notify_flags(dev, old_flags, changes);
5778 	return ret;
5779 }
5780 EXPORT_SYMBOL(dev_change_flags);
5781 
5782 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5783 {
5784 	const struct net_device_ops *ops = dev->netdev_ops;
5785 
5786 	if (ops->ndo_change_mtu)
5787 		return ops->ndo_change_mtu(dev, new_mtu);
5788 
5789 	dev->mtu = new_mtu;
5790 	return 0;
5791 }
5792 
5793 /**
5794  *	dev_set_mtu - Change maximum transfer unit
5795  *	@dev: device
5796  *	@new_mtu: new transfer unit
5797  *
5798  *	Change the maximum transfer size of the network device.
5799  */
5800 int dev_set_mtu(struct net_device *dev, int new_mtu)
5801 {
5802 	int err, orig_mtu;
5803 
5804 	if (new_mtu == dev->mtu)
5805 		return 0;
5806 
5807 	/*	MTU must be positive.	 */
5808 	if (new_mtu < 0)
5809 		return -EINVAL;
5810 
5811 	if (!netif_device_present(dev))
5812 		return -ENODEV;
5813 
5814 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5815 	err = notifier_to_errno(err);
5816 	if (err)
5817 		return err;
5818 
5819 	orig_mtu = dev->mtu;
5820 	err = __dev_set_mtu(dev, new_mtu);
5821 
5822 	if (!err) {
5823 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5824 		err = notifier_to_errno(err);
5825 		if (err) {
5826 			/* setting mtu back and notifying everyone again,
5827 			 * so that they have a chance to revert changes.
5828 			 */
5829 			__dev_set_mtu(dev, orig_mtu);
5830 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5831 		}
5832 	}
5833 	return err;
5834 }
5835 EXPORT_SYMBOL(dev_set_mtu);
5836 
5837 /**
5838  *	dev_set_group - Change group this device belongs to
5839  *	@dev: device
5840  *	@new_group: group this device should belong to
5841  */
5842 void dev_set_group(struct net_device *dev, int new_group)
5843 {
5844 	dev->group = new_group;
5845 }
5846 EXPORT_SYMBOL(dev_set_group);
5847 
5848 /**
5849  *	dev_set_mac_address - Change Media Access Control Address
5850  *	@dev: device
5851  *	@sa: new address
5852  *
5853  *	Change the hardware (MAC) address of the device
5854  */
5855 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5856 {
5857 	const struct net_device_ops *ops = dev->netdev_ops;
5858 	int err;
5859 
5860 	if (!ops->ndo_set_mac_address)
5861 		return -EOPNOTSUPP;
5862 	if (sa->sa_family != dev->type)
5863 		return -EINVAL;
5864 	if (!netif_device_present(dev))
5865 		return -ENODEV;
5866 	err = ops->ndo_set_mac_address(dev, sa);
5867 	if (err)
5868 		return err;
5869 	dev->addr_assign_type = NET_ADDR_SET;
5870 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5871 	add_device_randomness(dev->dev_addr, dev->addr_len);
5872 	return 0;
5873 }
5874 EXPORT_SYMBOL(dev_set_mac_address);
5875 
5876 /**
5877  *	dev_change_carrier - Change device carrier
5878  *	@dev: device
5879  *	@new_carrier: new value
5880  *
5881  *	Change device carrier
5882  */
5883 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5884 {
5885 	const struct net_device_ops *ops = dev->netdev_ops;
5886 
5887 	if (!ops->ndo_change_carrier)
5888 		return -EOPNOTSUPP;
5889 	if (!netif_device_present(dev))
5890 		return -ENODEV;
5891 	return ops->ndo_change_carrier(dev, new_carrier);
5892 }
5893 EXPORT_SYMBOL(dev_change_carrier);
5894 
5895 /**
5896  *	dev_get_phys_port_id - Get device physical port ID
5897  *	@dev: device
5898  *	@ppid: port ID
5899  *
5900  *	Get device physical port ID
5901  */
5902 int dev_get_phys_port_id(struct net_device *dev,
5903 			 struct netdev_phys_item_id *ppid)
5904 {
5905 	const struct net_device_ops *ops = dev->netdev_ops;
5906 
5907 	if (!ops->ndo_get_phys_port_id)
5908 		return -EOPNOTSUPP;
5909 	return ops->ndo_get_phys_port_id(dev, ppid);
5910 }
5911 EXPORT_SYMBOL(dev_get_phys_port_id);
5912 
5913 /**
5914  *	dev_new_index	-	allocate an ifindex
5915  *	@net: the applicable net namespace
5916  *
5917  *	Returns a suitable unique value for a new device interface
5918  *	number.  The caller must hold the rtnl semaphore or the
5919  *	dev_base_lock to be sure it remains unique.
5920  */
5921 static int dev_new_index(struct net *net)
5922 {
5923 	int ifindex = net->ifindex;
5924 	for (;;) {
5925 		if (++ifindex <= 0)
5926 			ifindex = 1;
5927 		if (!__dev_get_by_index(net, ifindex))
5928 			return net->ifindex = ifindex;
5929 	}
5930 }
5931 
5932 /* Delayed registration/unregisteration */
5933 static LIST_HEAD(net_todo_list);
5934 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5935 
5936 static void net_set_todo(struct net_device *dev)
5937 {
5938 	list_add_tail(&dev->todo_list, &net_todo_list);
5939 	dev_net(dev)->dev_unreg_count++;
5940 }
5941 
5942 static void rollback_registered_many(struct list_head *head)
5943 {
5944 	struct net_device *dev, *tmp;
5945 	LIST_HEAD(close_head);
5946 
5947 	BUG_ON(dev_boot_phase);
5948 	ASSERT_RTNL();
5949 
5950 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5951 		/* Some devices call without registering
5952 		 * for initialization unwind. Remove those
5953 		 * devices and proceed with the remaining.
5954 		 */
5955 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5956 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5957 				 dev->name, dev);
5958 
5959 			WARN_ON(1);
5960 			list_del(&dev->unreg_list);
5961 			continue;
5962 		}
5963 		dev->dismantle = true;
5964 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5965 	}
5966 
5967 	/* If device is running, close it first. */
5968 	list_for_each_entry(dev, head, unreg_list)
5969 		list_add_tail(&dev->close_list, &close_head);
5970 	dev_close_many(&close_head);
5971 
5972 	list_for_each_entry(dev, head, unreg_list) {
5973 		/* And unlink it from device chain. */
5974 		unlist_netdevice(dev);
5975 
5976 		dev->reg_state = NETREG_UNREGISTERING;
5977 	}
5978 
5979 	synchronize_net();
5980 
5981 	list_for_each_entry(dev, head, unreg_list) {
5982 		struct sk_buff *skb = NULL;
5983 
5984 		/* Shutdown queueing discipline. */
5985 		dev_shutdown(dev);
5986 
5987 
5988 		/* Notify protocols, that we are about to destroy
5989 		   this device. They should clean all the things.
5990 		*/
5991 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5992 
5993 		if (!dev->rtnl_link_ops ||
5994 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5995 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5996 						     GFP_KERNEL);
5997 
5998 		/*
5999 		 *	Flush the unicast and multicast chains
6000 		 */
6001 		dev_uc_flush(dev);
6002 		dev_mc_flush(dev);
6003 
6004 		if (dev->netdev_ops->ndo_uninit)
6005 			dev->netdev_ops->ndo_uninit(dev);
6006 
6007 		if (skb)
6008 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6009 
6010 		/* Notifier chain MUST detach us all upper devices. */
6011 		WARN_ON(netdev_has_any_upper_dev(dev));
6012 
6013 		/* Remove entries from kobject tree */
6014 		netdev_unregister_kobject(dev);
6015 #ifdef CONFIG_XPS
6016 		/* Remove XPS queueing entries */
6017 		netif_reset_xps_queues_gt(dev, 0);
6018 #endif
6019 	}
6020 
6021 	synchronize_net();
6022 
6023 	list_for_each_entry(dev, head, unreg_list)
6024 		dev_put(dev);
6025 }
6026 
6027 static void rollback_registered(struct net_device *dev)
6028 {
6029 	LIST_HEAD(single);
6030 
6031 	list_add(&dev->unreg_list, &single);
6032 	rollback_registered_many(&single);
6033 	list_del(&single);
6034 }
6035 
6036 static netdev_features_t netdev_fix_features(struct net_device *dev,
6037 	netdev_features_t features)
6038 {
6039 	/* Fix illegal checksum combinations */
6040 	if ((features & NETIF_F_HW_CSUM) &&
6041 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6042 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6043 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6044 	}
6045 
6046 	/* TSO requires that SG is present as well. */
6047 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6048 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6049 		features &= ~NETIF_F_ALL_TSO;
6050 	}
6051 
6052 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6053 					!(features & NETIF_F_IP_CSUM)) {
6054 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6055 		features &= ~NETIF_F_TSO;
6056 		features &= ~NETIF_F_TSO_ECN;
6057 	}
6058 
6059 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6060 					 !(features & NETIF_F_IPV6_CSUM)) {
6061 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6062 		features &= ~NETIF_F_TSO6;
6063 	}
6064 
6065 	/* TSO ECN requires that TSO is present as well. */
6066 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6067 		features &= ~NETIF_F_TSO_ECN;
6068 
6069 	/* Software GSO depends on SG. */
6070 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6071 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6072 		features &= ~NETIF_F_GSO;
6073 	}
6074 
6075 	/* UFO needs SG and checksumming */
6076 	if (features & NETIF_F_UFO) {
6077 		/* maybe split UFO into V4 and V6? */
6078 		if (!((features & NETIF_F_GEN_CSUM) ||
6079 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6080 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6081 			netdev_dbg(dev,
6082 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6083 			features &= ~NETIF_F_UFO;
6084 		}
6085 
6086 		if (!(features & NETIF_F_SG)) {
6087 			netdev_dbg(dev,
6088 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6089 			features &= ~NETIF_F_UFO;
6090 		}
6091 	}
6092 
6093 #ifdef CONFIG_NET_RX_BUSY_POLL
6094 	if (dev->netdev_ops->ndo_busy_poll)
6095 		features |= NETIF_F_BUSY_POLL;
6096 	else
6097 #endif
6098 		features &= ~NETIF_F_BUSY_POLL;
6099 
6100 	return features;
6101 }
6102 
6103 int __netdev_update_features(struct net_device *dev)
6104 {
6105 	netdev_features_t features;
6106 	int err = 0;
6107 
6108 	ASSERT_RTNL();
6109 
6110 	features = netdev_get_wanted_features(dev);
6111 
6112 	if (dev->netdev_ops->ndo_fix_features)
6113 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6114 
6115 	/* driver might be less strict about feature dependencies */
6116 	features = netdev_fix_features(dev, features);
6117 
6118 	if (dev->features == features)
6119 		return 0;
6120 
6121 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6122 		&dev->features, &features);
6123 
6124 	if (dev->netdev_ops->ndo_set_features)
6125 		err = dev->netdev_ops->ndo_set_features(dev, features);
6126 
6127 	if (unlikely(err < 0)) {
6128 		netdev_err(dev,
6129 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6130 			err, &features, &dev->features);
6131 		return -1;
6132 	}
6133 
6134 	if (!err)
6135 		dev->features = features;
6136 
6137 	return 1;
6138 }
6139 
6140 /**
6141  *	netdev_update_features - recalculate device features
6142  *	@dev: the device to check
6143  *
6144  *	Recalculate dev->features set and send notifications if it
6145  *	has changed. Should be called after driver or hardware dependent
6146  *	conditions might have changed that influence the features.
6147  */
6148 void netdev_update_features(struct net_device *dev)
6149 {
6150 	if (__netdev_update_features(dev))
6151 		netdev_features_change(dev);
6152 }
6153 EXPORT_SYMBOL(netdev_update_features);
6154 
6155 /**
6156  *	netdev_change_features - recalculate device features
6157  *	@dev: the device to check
6158  *
6159  *	Recalculate dev->features set and send notifications even
6160  *	if they have not changed. Should be called instead of
6161  *	netdev_update_features() if also dev->vlan_features might
6162  *	have changed to allow the changes to be propagated to stacked
6163  *	VLAN devices.
6164  */
6165 void netdev_change_features(struct net_device *dev)
6166 {
6167 	__netdev_update_features(dev);
6168 	netdev_features_change(dev);
6169 }
6170 EXPORT_SYMBOL(netdev_change_features);
6171 
6172 /**
6173  *	netif_stacked_transfer_operstate -	transfer operstate
6174  *	@rootdev: the root or lower level device to transfer state from
6175  *	@dev: the device to transfer operstate to
6176  *
6177  *	Transfer operational state from root to device. This is normally
6178  *	called when a stacking relationship exists between the root
6179  *	device and the device(a leaf device).
6180  */
6181 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6182 					struct net_device *dev)
6183 {
6184 	if (rootdev->operstate == IF_OPER_DORMANT)
6185 		netif_dormant_on(dev);
6186 	else
6187 		netif_dormant_off(dev);
6188 
6189 	if (netif_carrier_ok(rootdev)) {
6190 		if (!netif_carrier_ok(dev))
6191 			netif_carrier_on(dev);
6192 	} else {
6193 		if (netif_carrier_ok(dev))
6194 			netif_carrier_off(dev);
6195 	}
6196 }
6197 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6198 
6199 #ifdef CONFIG_SYSFS
6200 static int netif_alloc_rx_queues(struct net_device *dev)
6201 {
6202 	unsigned int i, count = dev->num_rx_queues;
6203 	struct netdev_rx_queue *rx;
6204 	size_t sz = count * sizeof(*rx);
6205 
6206 	BUG_ON(count < 1);
6207 
6208 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6209 	if (!rx) {
6210 		rx = vzalloc(sz);
6211 		if (!rx)
6212 			return -ENOMEM;
6213 	}
6214 	dev->_rx = rx;
6215 
6216 	for (i = 0; i < count; i++)
6217 		rx[i].dev = dev;
6218 	return 0;
6219 }
6220 #endif
6221 
6222 static void netdev_init_one_queue(struct net_device *dev,
6223 				  struct netdev_queue *queue, void *_unused)
6224 {
6225 	/* Initialize queue lock */
6226 	spin_lock_init(&queue->_xmit_lock);
6227 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6228 	queue->xmit_lock_owner = -1;
6229 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6230 	queue->dev = dev;
6231 #ifdef CONFIG_BQL
6232 	dql_init(&queue->dql, HZ);
6233 #endif
6234 }
6235 
6236 static void netif_free_tx_queues(struct net_device *dev)
6237 {
6238 	kvfree(dev->_tx);
6239 }
6240 
6241 static int netif_alloc_netdev_queues(struct net_device *dev)
6242 {
6243 	unsigned int count = dev->num_tx_queues;
6244 	struct netdev_queue *tx;
6245 	size_t sz = count * sizeof(*tx);
6246 
6247 	BUG_ON(count < 1 || count > 0xffff);
6248 
6249 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6250 	if (!tx) {
6251 		tx = vzalloc(sz);
6252 		if (!tx)
6253 			return -ENOMEM;
6254 	}
6255 	dev->_tx = tx;
6256 
6257 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6258 	spin_lock_init(&dev->tx_global_lock);
6259 
6260 	return 0;
6261 }
6262 
6263 /**
6264  *	register_netdevice	- register a network device
6265  *	@dev: device to register
6266  *
6267  *	Take a completed network device structure and add it to the kernel
6268  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6269  *	chain. 0 is returned on success. A negative errno code is returned
6270  *	on a failure to set up the device, or if the name is a duplicate.
6271  *
6272  *	Callers must hold the rtnl semaphore. You may want
6273  *	register_netdev() instead of this.
6274  *
6275  *	BUGS:
6276  *	The locking appears insufficient to guarantee two parallel registers
6277  *	will not get the same name.
6278  */
6279 
6280 int register_netdevice(struct net_device *dev)
6281 {
6282 	int ret;
6283 	struct net *net = dev_net(dev);
6284 
6285 	BUG_ON(dev_boot_phase);
6286 	ASSERT_RTNL();
6287 
6288 	might_sleep();
6289 
6290 	/* When net_device's are persistent, this will be fatal. */
6291 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6292 	BUG_ON(!net);
6293 
6294 	spin_lock_init(&dev->addr_list_lock);
6295 	netdev_set_addr_lockdep_class(dev);
6296 
6297 	dev->iflink = -1;
6298 
6299 	ret = dev_get_valid_name(net, dev, dev->name);
6300 	if (ret < 0)
6301 		goto out;
6302 
6303 	/* Init, if this function is available */
6304 	if (dev->netdev_ops->ndo_init) {
6305 		ret = dev->netdev_ops->ndo_init(dev);
6306 		if (ret) {
6307 			if (ret > 0)
6308 				ret = -EIO;
6309 			goto out;
6310 		}
6311 	}
6312 
6313 	if (((dev->hw_features | dev->features) &
6314 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6315 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6316 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6317 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6318 		ret = -EINVAL;
6319 		goto err_uninit;
6320 	}
6321 
6322 	ret = -EBUSY;
6323 	if (!dev->ifindex)
6324 		dev->ifindex = dev_new_index(net);
6325 	else if (__dev_get_by_index(net, dev->ifindex))
6326 		goto err_uninit;
6327 
6328 	if (dev->iflink == -1)
6329 		dev->iflink = dev->ifindex;
6330 
6331 	/* Transfer changeable features to wanted_features and enable
6332 	 * software offloads (GSO and GRO).
6333 	 */
6334 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6335 	dev->features |= NETIF_F_SOFT_FEATURES;
6336 	dev->wanted_features = dev->features & dev->hw_features;
6337 
6338 	if (!(dev->flags & IFF_LOOPBACK)) {
6339 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6340 	}
6341 
6342 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6343 	 */
6344 	dev->vlan_features |= NETIF_F_HIGHDMA;
6345 
6346 	/* Make NETIF_F_SG inheritable to tunnel devices.
6347 	 */
6348 	dev->hw_enc_features |= NETIF_F_SG;
6349 
6350 	/* Make NETIF_F_SG inheritable to MPLS.
6351 	 */
6352 	dev->mpls_features |= NETIF_F_SG;
6353 
6354 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6355 	ret = notifier_to_errno(ret);
6356 	if (ret)
6357 		goto err_uninit;
6358 
6359 	ret = netdev_register_kobject(dev);
6360 	if (ret)
6361 		goto err_uninit;
6362 	dev->reg_state = NETREG_REGISTERED;
6363 
6364 	__netdev_update_features(dev);
6365 
6366 	/*
6367 	 *	Default initial state at registry is that the
6368 	 *	device is present.
6369 	 */
6370 
6371 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6372 
6373 	linkwatch_init_dev(dev);
6374 
6375 	dev_init_scheduler(dev);
6376 	dev_hold(dev);
6377 	list_netdevice(dev);
6378 	add_device_randomness(dev->dev_addr, dev->addr_len);
6379 
6380 	/* If the device has permanent device address, driver should
6381 	 * set dev_addr and also addr_assign_type should be set to
6382 	 * NET_ADDR_PERM (default value).
6383 	 */
6384 	if (dev->addr_assign_type == NET_ADDR_PERM)
6385 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6386 
6387 	/* Notify protocols, that a new device appeared. */
6388 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6389 	ret = notifier_to_errno(ret);
6390 	if (ret) {
6391 		rollback_registered(dev);
6392 		dev->reg_state = NETREG_UNREGISTERED;
6393 	}
6394 	/*
6395 	 *	Prevent userspace races by waiting until the network
6396 	 *	device is fully setup before sending notifications.
6397 	 */
6398 	if (!dev->rtnl_link_ops ||
6399 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6400 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6401 
6402 out:
6403 	return ret;
6404 
6405 err_uninit:
6406 	if (dev->netdev_ops->ndo_uninit)
6407 		dev->netdev_ops->ndo_uninit(dev);
6408 	goto out;
6409 }
6410 EXPORT_SYMBOL(register_netdevice);
6411 
6412 /**
6413  *	init_dummy_netdev	- init a dummy network device for NAPI
6414  *	@dev: device to init
6415  *
6416  *	This takes a network device structure and initialize the minimum
6417  *	amount of fields so it can be used to schedule NAPI polls without
6418  *	registering a full blown interface. This is to be used by drivers
6419  *	that need to tie several hardware interfaces to a single NAPI
6420  *	poll scheduler due to HW limitations.
6421  */
6422 int init_dummy_netdev(struct net_device *dev)
6423 {
6424 	/* Clear everything. Note we don't initialize spinlocks
6425 	 * are they aren't supposed to be taken by any of the
6426 	 * NAPI code and this dummy netdev is supposed to be
6427 	 * only ever used for NAPI polls
6428 	 */
6429 	memset(dev, 0, sizeof(struct net_device));
6430 
6431 	/* make sure we BUG if trying to hit standard
6432 	 * register/unregister code path
6433 	 */
6434 	dev->reg_state = NETREG_DUMMY;
6435 
6436 	/* NAPI wants this */
6437 	INIT_LIST_HEAD(&dev->napi_list);
6438 
6439 	/* a dummy interface is started by default */
6440 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6441 	set_bit(__LINK_STATE_START, &dev->state);
6442 
6443 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6444 	 * because users of this 'device' dont need to change
6445 	 * its refcount.
6446 	 */
6447 
6448 	return 0;
6449 }
6450 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6451 
6452 
6453 /**
6454  *	register_netdev	- register a network device
6455  *	@dev: device to register
6456  *
6457  *	Take a completed network device structure and add it to the kernel
6458  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6459  *	chain. 0 is returned on success. A negative errno code is returned
6460  *	on a failure to set up the device, or if the name is a duplicate.
6461  *
6462  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6463  *	and expands the device name if you passed a format string to
6464  *	alloc_netdev.
6465  */
6466 int register_netdev(struct net_device *dev)
6467 {
6468 	int err;
6469 
6470 	rtnl_lock();
6471 	err = register_netdevice(dev);
6472 	rtnl_unlock();
6473 	return err;
6474 }
6475 EXPORT_SYMBOL(register_netdev);
6476 
6477 int netdev_refcnt_read(const struct net_device *dev)
6478 {
6479 	int i, refcnt = 0;
6480 
6481 	for_each_possible_cpu(i)
6482 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6483 	return refcnt;
6484 }
6485 EXPORT_SYMBOL(netdev_refcnt_read);
6486 
6487 /**
6488  * netdev_wait_allrefs - wait until all references are gone.
6489  * @dev: target net_device
6490  *
6491  * This is called when unregistering network devices.
6492  *
6493  * Any protocol or device that holds a reference should register
6494  * for netdevice notification, and cleanup and put back the
6495  * reference if they receive an UNREGISTER event.
6496  * We can get stuck here if buggy protocols don't correctly
6497  * call dev_put.
6498  */
6499 static void netdev_wait_allrefs(struct net_device *dev)
6500 {
6501 	unsigned long rebroadcast_time, warning_time;
6502 	int refcnt;
6503 
6504 	linkwatch_forget_dev(dev);
6505 
6506 	rebroadcast_time = warning_time = jiffies;
6507 	refcnt = netdev_refcnt_read(dev);
6508 
6509 	while (refcnt != 0) {
6510 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6511 			rtnl_lock();
6512 
6513 			/* Rebroadcast unregister notification */
6514 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6515 
6516 			__rtnl_unlock();
6517 			rcu_barrier();
6518 			rtnl_lock();
6519 
6520 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6521 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6522 				     &dev->state)) {
6523 				/* We must not have linkwatch events
6524 				 * pending on unregister. If this
6525 				 * happens, we simply run the queue
6526 				 * unscheduled, resulting in a noop
6527 				 * for this device.
6528 				 */
6529 				linkwatch_run_queue();
6530 			}
6531 
6532 			__rtnl_unlock();
6533 
6534 			rebroadcast_time = jiffies;
6535 		}
6536 
6537 		msleep(250);
6538 
6539 		refcnt = netdev_refcnt_read(dev);
6540 
6541 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6542 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6543 				 dev->name, refcnt);
6544 			warning_time = jiffies;
6545 		}
6546 	}
6547 }
6548 
6549 /* The sequence is:
6550  *
6551  *	rtnl_lock();
6552  *	...
6553  *	register_netdevice(x1);
6554  *	register_netdevice(x2);
6555  *	...
6556  *	unregister_netdevice(y1);
6557  *	unregister_netdevice(y2);
6558  *      ...
6559  *	rtnl_unlock();
6560  *	free_netdev(y1);
6561  *	free_netdev(y2);
6562  *
6563  * We are invoked by rtnl_unlock().
6564  * This allows us to deal with problems:
6565  * 1) We can delete sysfs objects which invoke hotplug
6566  *    without deadlocking with linkwatch via keventd.
6567  * 2) Since we run with the RTNL semaphore not held, we can sleep
6568  *    safely in order to wait for the netdev refcnt to drop to zero.
6569  *
6570  * We must not return until all unregister events added during
6571  * the interval the lock was held have been completed.
6572  */
6573 void netdev_run_todo(void)
6574 {
6575 	struct list_head list;
6576 
6577 	/* Snapshot list, allow later requests */
6578 	list_replace_init(&net_todo_list, &list);
6579 
6580 	__rtnl_unlock();
6581 
6582 
6583 	/* Wait for rcu callbacks to finish before next phase */
6584 	if (!list_empty(&list))
6585 		rcu_barrier();
6586 
6587 	while (!list_empty(&list)) {
6588 		struct net_device *dev
6589 			= list_first_entry(&list, struct net_device, todo_list);
6590 		list_del(&dev->todo_list);
6591 
6592 		rtnl_lock();
6593 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6594 		__rtnl_unlock();
6595 
6596 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6597 			pr_err("network todo '%s' but state %d\n",
6598 			       dev->name, dev->reg_state);
6599 			dump_stack();
6600 			continue;
6601 		}
6602 
6603 		dev->reg_state = NETREG_UNREGISTERED;
6604 
6605 		on_each_cpu(flush_backlog, dev, 1);
6606 
6607 		netdev_wait_allrefs(dev);
6608 
6609 		/* paranoia */
6610 		BUG_ON(netdev_refcnt_read(dev));
6611 		BUG_ON(!list_empty(&dev->ptype_all));
6612 		BUG_ON(!list_empty(&dev->ptype_specific));
6613 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6614 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6615 		WARN_ON(dev->dn_ptr);
6616 
6617 		if (dev->destructor)
6618 			dev->destructor(dev);
6619 
6620 		/* Report a network device has been unregistered */
6621 		rtnl_lock();
6622 		dev_net(dev)->dev_unreg_count--;
6623 		__rtnl_unlock();
6624 		wake_up(&netdev_unregistering_wq);
6625 
6626 		/* Free network device */
6627 		kobject_put(&dev->dev.kobj);
6628 	}
6629 }
6630 
6631 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6632  * fields in the same order, with only the type differing.
6633  */
6634 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6635 			     const struct net_device_stats *netdev_stats)
6636 {
6637 #if BITS_PER_LONG == 64
6638 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6639 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6640 #else
6641 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6642 	const unsigned long *src = (const unsigned long *)netdev_stats;
6643 	u64 *dst = (u64 *)stats64;
6644 
6645 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6646 		     sizeof(*stats64) / sizeof(u64));
6647 	for (i = 0; i < n; i++)
6648 		dst[i] = src[i];
6649 #endif
6650 }
6651 EXPORT_SYMBOL(netdev_stats_to_stats64);
6652 
6653 /**
6654  *	dev_get_stats	- get network device statistics
6655  *	@dev: device to get statistics from
6656  *	@storage: place to store stats
6657  *
6658  *	Get network statistics from device. Return @storage.
6659  *	The device driver may provide its own method by setting
6660  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6661  *	otherwise the internal statistics structure is used.
6662  */
6663 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6664 					struct rtnl_link_stats64 *storage)
6665 {
6666 	const struct net_device_ops *ops = dev->netdev_ops;
6667 
6668 	if (ops->ndo_get_stats64) {
6669 		memset(storage, 0, sizeof(*storage));
6670 		ops->ndo_get_stats64(dev, storage);
6671 	} else if (ops->ndo_get_stats) {
6672 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6673 	} else {
6674 		netdev_stats_to_stats64(storage, &dev->stats);
6675 	}
6676 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6677 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6678 	return storage;
6679 }
6680 EXPORT_SYMBOL(dev_get_stats);
6681 
6682 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6683 {
6684 	struct netdev_queue *queue = dev_ingress_queue(dev);
6685 
6686 #ifdef CONFIG_NET_CLS_ACT
6687 	if (queue)
6688 		return queue;
6689 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6690 	if (!queue)
6691 		return NULL;
6692 	netdev_init_one_queue(dev, queue, NULL);
6693 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6694 	queue->qdisc_sleeping = &noop_qdisc;
6695 	rcu_assign_pointer(dev->ingress_queue, queue);
6696 #endif
6697 	return queue;
6698 }
6699 
6700 static const struct ethtool_ops default_ethtool_ops;
6701 
6702 void netdev_set_default_ethtool_ops(struct net_device *dev,
6703 				    const struct ethtool_ops *ops)
6704 {
6705 	if (dev->ethtool_ops == &default_ethtool_ops)
6706 		dev->ethtool_ops = ops;
6707 }
6708 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6709 
6710 void netdev_freemem(struct net_device *dev)
6711 {
6712 	char *addr = (char *)dev - dev->padded;
6713 
6714 	kvfree(addr);
6715 }
6716 
6717 /**
6718  *	alloc_netdev_mqs - allocate network device
6719  *	@sizeof_priv:		size of private data to allocate space for
6720  *	@name:			device name format string
6721  *	@name_assign_type: 	origin of device name
6722  *	@setup:			callback to initialize device
6723  *	@txqs:			the number of TX subqueues to allocate
6724  *	@rxqs:			the number of RX subqueues to allocate
6725  *
6726  *	Allocates a struct net_device with private data area for driver use
6727  *	and performs basic initialization.  Also allocates subqueue structs
6728  *	for each queue on the device.
6729  */
6730 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6731 		unsigned char name_assign_type,
6732 		void (*setup)(struct net_device *),
6733 		unsigned int txqs, unsigned int rxqs)
6734 {
6735 	struct net_device *dev;
6736 	size_t alloc_size;
6737 	struct net_device *p;
6738 
6739 	BUG_ON(strlen(name) >= sizeof(dev->name));
6740 
6741 	if (txqs < 1) {
6742 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6743 		return NULL;
6744 	}
6745 
6746 #ifdef CONFIG_SYSFS
6747 	if (rxqs < 1) {
6748 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6749 		return NULL;
6750 	}
6751 #endif
6752 
6753 	alloc_size = sizeof(struct net_device);
6754 	if (sizeof_priv) {
6755 		/* ensure 32-byte alignment of private area */
6756 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6757 		alloc_size += sizeof_priv;
6758 	}
6759 	/* ensure 32-byte alignment of whole construct */
6760 	alloc_size += NETDEV_ALIGN - 1;
6761 
6762 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6763 	if (!p)
6764 		p = vzalloc(alloc_size);
6765 	if (!p)
6766 		return NULL;
6767 
6768 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6769 	dev->padded = (char *)dev - (char *)p;
6770 
6771 	dev->pcpu_refcnt = alloc_percpu(int);
6772 	if (!dev->pcpu_refcnt)
6773 		goto free_dev;
6774 
6775 	if (dev_addr_init(dev))
6776 		goto free_pcpu;
6777 
6778 	dev_mc_init(dev);
6779 	dev_uc_init(dev);
6780 
6781 	dev_net_set(dev, &init_net);
6782 
6783 	dev->gso_max_size = GSO_MAX_SIZE;
6784 	dev->gso_max_segs = GSO_MAX_SEGS;
6785 	dev->gso_min_segs = 0;
6786 
6787 	INIT_LIST_HEAD(&dev->napi_list);
6788 	INIT_LIST_HEAD(&dev->unreg_list);
6789 	INIT_LIST_HEAD(&dev->close_list);
6790 	INIT_LIST_HEAD(&dev->link_watch_list);
6791 	INIT_LIST_HEAD(&dev->adj_list.upper);
6792 	INIT_LIST_HEAD(&dev->adj_list.lower);
6793 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6794 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6795 	INIT_LIST_HEAD(&dev->ptype_all);
6796 	INIT_LIST_HEAD(&dev->ptype_specific);
6797 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6798 	setup(dev);
6799 
6800 	dev->num_tx_queues = txqs;
6801 	dev->real_num_tx_queues = txqs;
6802 	if (netif_alloc_netdev_queues(dev))
6803 		goto free_all;
6804 
6805 #ifdef CONFIG_SYSFS
6806 	dev->num_rx_queues = rxqs;
6807 	dev->real_num_rx_queues = rxqs;
6808 	if (netif_alloc_rx_queues(dev))
6809 		goto free_all;
6810 #endif
6811 
6812 	strcpy(dev->name, name);
6813 	dev->name_assign_type = name_assign_type;
6814 	dev->group = INIT_NETDEV_GROUP;
6815 	if (!dev->ethtool_ops)
6816 		dev->ethtool_ops = &default_ethtool_ops;
6817 	return dev;
6818 
6819 free_all:
6820 	free_netdev(dev);
6821 	return NULL;
6822 
6823 free_pcpu:
6824 	free_percpu(dev->pcpu_refcnt);
6825 free_dev:
6826 	netdev_freemem(dev);
6827 	return NULL;
6828 }
6829 EXPORT_SYMBOL(alloc_netdev_mqs);
6830 
6831 /**
6832  *	free_netdev - free network device
6833  *	@dev: device
6834  *
6835  *	This function does the last stage of destroying an allocated device
6836  * 	interface. The reference to the device object is released.
6837  *	If this is the last reference then it will be freed.
6838  */
6839 void free_netdev(struct net_device *dev)
6840 {
6841 	struct napi_struct *p, *n;
6842 
6843 	release_net(dev_net(dev));
6844 
6845 	netif_free_tx_queues(dev);
6846 #ifdef CONFIG_SYSFS
6847 	kvfree(dev->_rx);
6848 #endif
6849 
6850 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6851 
6852 	/* Flush device addresses */
6853 	dev_addr_flush(dev);
6854 
6855 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6856 		netif_napi_del(p);
6857 
6858 	free_percpu(dev->pcpu_refcnt);
6859 	dev->pcpu_refcnt = NULL;
6860 
6861 	/*  Compatibility with error handling in drivers */
6862 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6863 		netdev_freemem(dev);
6864 		return;
6865 	}
6866 
6867 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6868 	dev->reg_state = NETREG_RELEASED;
6869 
6870 	/* will free via device release */
6871 	put_device(&dev->dev);
6872 }
6873 EXPORT_SYMBOL(free_netdev);
6874 
6875 /**
6876  *	synchronize_net -  Synchronize with packet receive processing
6877  *
6878  *	Wait for packets currently being received to be done.
6879  *	Does not block later packets from starting.
6880  */
6881 void synchronize_net(void)
6882 {
6883 	might_sleep();
6884 	if (rtnl_is_locked())
6885 		synchronize_rcu_expedited();
6886 	else
6887 		synchronize_rcu();
6888 }
6889 EXPORT_SYMBOL(synchronize_net);
6890 
6891 /**
6892  *	unregister_netdevice_queue - remove device from the kernel
6893  *	@dev: device
6894  *	@head: list
6895  *
6896  *	This function shuts down a device interface and removes it
6897  *	from the kernel tables.
6898  *	If head not NULL, device is queued to be unregistered later.
6899  *
6900  *	Callers must hold the rtnl semaphore.  You may want
6901  *	unregister_netdev() instead of this.
6902  */
6903 
6904 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6905 {
6906 	ASSERT_RTNL();
6907 
6908 	if (head) {
6909 		list_move_tail(&dev->unreg_list, head);
6910 	} else {
6911 		rollback_registered(dev);
6912 		/* Finish processing unregister after unlock */
6913 		net_set_todo(dev);
6914 	}
6915 }
6916 EXPORT_SYMBOL(unregister_netdevice_queue);
6917 
6918 /**
6919  *	unregister_netdevice_many - unregister many devices
6920  *	@head: list of devices
6921  *
6922  *  Note: As most callers use a stack allocated list_head,
6923  *  we force a list_del() to make sure stack wont be corrupted later.
6924  */
6925 void unregister_netdevice_many(struct list_head *head)
6926 {
6927 	struct net_device *dev;
6928 
6929 	if (!list_empty(head)) {
6930 		rollback_registered_many(head);
6931 		list_for_each_entry(dev, head, unreg_list)
6932 			net_set_todo(dev);
6933 		list_del(head);
6934 	}
6935 }
6936 EXPORT_SYMBOL(unregister_netdevice_many);
6937 
6938 /**
6939  *	unregister_netdev - remove device from the kernel
6940  *	@dev: device
6941  *
6942  *	This function shuts down a device interface and removes it
6943  *	from the kernel tables.
6944  *
6945  *	This is just a wrapper for unregister_netdevice that takes
6946  *	the rtnl semaphore.  In general you want to use this and not
6947  *	unregister_netdevice.
6948  */
6949 void unregister_netdev(struct net_device *dev)
6950 {
6951 	rtnl_lock();
6952 	unregister_netdevice(dev);
6953 	rtnl_unlock();
6954 }
6955 EXPORT_SYMBOL(unregister_netdev);
6956 
6957 /**
6958  *	dev_change_net_namespace - move device to different nethost namespace
6959  *	@dev: device
6960  *	@net: network namespace
6961  *	@pat: If not NULL name pattern to try if the current device name
6962  *	      is already taken in the destination network namespace.
6963  *
6964  *	This function shuts down a device interface and moves it
6965  *	to a new network namespace. On success 0 is returned, on
6966  *	a failure a netagive errno code is returned.
6967  *
6968  *	Callers must hold the rtnl semaphore.
6969  */
6970 
6971 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6972 {
6973 	int err;
6974 
6975 	ASSERT_RTNL();
6976 
6977 	/* Don't allow namespace local devices to be moved. */
6978 	err = -EINVAL;
6979 	if (dev->features & NETIF_F_NETNS_LOCAL)
6980 		goto out;
6981 
6982 	/* Ensure the device has been registrered */
6983 	if (dev->reg_state != NETREG_REGISTERED)
6984 		goto out;
6985 
6986 	/* Get out if there is nothing todo */
6987 	err = 0;
6988 	if (net_eq(dev_net(dev), net))
6989 		goto out;
6990 
6991 	/* Pick the destination device name, and ensure
6992 	 * we can use it in the destination network namespace.
6993 	 */
6994 	err = -EEXIST;
6995 	if (__dev_get_by_name(net, dev->name)) {
6996 		/* We get here if we can't use the current device name */
6997 		if (!pat)
6998 			goto out;
6999 		if (dev_get_valid_name(net, dev, pat) < 0)
7000 			goto out;
7001 	}
7002 
7003 	/*
7004 	 * And now a mini version of register_netdevice unregister_netdevice.
7005 	 */
7006 
7007 	/* If device is running close it first. */
7008 	dev_close(dev);
7009 
7010 	/* And unlink it from device chain */
7011 	err = -ENODEV;
7012 	unlist_netdevice(dev);
7013 
7014 	synchronize_net();
7015 
7016 	/* Shutdown queueing discipline. */
7017 	dev_shutdown(dev);
7018 
7019 	/* Notify protocols, that we are about to destroy
7020 	   this device. They should clean all the things.
7021 
7022 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7023 	   This is wanted because this way 8021q and macvlan know
7024 	   the device is just moving and can keep their slaves up.
7025 	*/
7026 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7027 	rcu_barrier();
7028 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7029 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7030 
7031 	/*
7032 	 *	Flush the unicast and multicast chains
7033 	 */
7034 	dev_uc_flush(dev);
7035 	dev_mc_flush(dev);
7036 
7037 	/* Send a netdev-removed uevent to the old namespace */
7038 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7039 	netdev_adjacent_del_links(dev);
7040 
7041 	/* Actually switch the network namespace */
7042 	dev_net_set(dev, net);
7043 
7044 	/* If there is an ifindex conflict assign a new one */
7045 	if (__dev_get_by_index(net, dev->ifindex)) {
7046 		int iflink = (dev->iflink == dev->ifindex);
7047 		dev->ifindex = dev_new_index(net);
7048 		if (iflink)
7049 			dev->iflink = dev->ifindex;
7050 	}
7051 
7052 	/* Send a netdev-add uevent to the new namespace */
7053 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7054 	netdev_adjacent_add_links(dev);
7055 
7056 	/* Fixup kobjects */
7057 	err = device_rename(&dev->dev, dev->name);
7058 	WARN_ON(err);
7059 
7060 	/* Add the device back in the hashes */
7061 	list_netdevice(dev);
7062 
7063 	/* Notify protocols, that a new device appeared. */
7064 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7065 
7066 	/*
7067 	 *	Prevent userspace races by waiting until the network
7068 	 *	device is fully setup before sending notifications.
7069 	 */
7070 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7071 
7072 	synchronize_net();
7073 	err = 0;
7074 out:
7075 	return err;
7076 }
7077 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7078 
7079 static int dev_cpu_callback(struct notifier_block *nfb,
7080 			    unsigned long action,
7081 			    void *ocpu)
7082 {
7083 	struct sk_buff **list_skb;
7084 	struct sk_buff *skb;
7085 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7086 	struct softnet_data *sd, *oldsd;
7087 
7088 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7089 		return NOTIFY_OK;
7090 
7091 	local_irq_disable();
7092 	cpu = smp_processor_id();
7093 	sd = &per_cpu(softnet_data, cpu);
7094 	oldsd = &per_cpu(softnet_data, oldcpu);
7095 
7096 	/* Find end of our completion_queue. */
7097 	list_skb = &sd->completion_queue;
7098 	while (*list_skb)
7099 		list_skb = &(*list_skb)->next;
7100 	/* Append completion queue from offline CPU. */
7101 	*list_skb = oldsd->completion_queue;
7102 	oldsd->completion_queue = NULL;
7103 
7104 	/* Append output queue from offline CPU. */
7105 	if (oldsd->output_queue) {
7106 		*sd->output_queue_tailp = oldsd->output_queue;
7107 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7108 		oldsd->output_queue = NULL;
7109 		oldsd->output_queue_tailp = &oldsd->output_queue;
7110 	}
7111 	/* Append NAPI poll list from offline CPU, with one exception :
7112 	 * process_backlog() must be called by cpu owning percpu backlog.
7113 	 * We properly handle process_queue & input_pkt_queue later.
7114 	 */
7115 	while (!list_empty(&oldsd->poll_list)) {
7116 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7117 							    struct napi_struct,
7118 							    poll_list);
7119 
7120 		list_del_init(&napi->poll_list);
7121 		if (napi->poll == process_backlog)
7122 			napi->state = 0;
7123 		else
7124 			____napi_schedule(sd, napi);
7125 	}
7126 
7127 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7128 	local_irq_enable();
7129 
7130 	/* Process offline CPU's input_pkt_queue */
7131 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7132 		netif_rx_ni(skb);
7133 		input_queue_head_incr(oldsd);
7134 	}
7135 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7136 		netif_rx_ni(skb);
7137 		input_queue_head_incr(oldsd);
7138 	}
7139 
7140 	return NOTIFY_OK;
7141 }
7142 
7143 
7144 /**
7145  *	netdev_increment_features - increment feature set by one
7146  *	@all: current feature set
7147  *	@one: new feature set
7148  *	@mask: mask feature set
7149  *
7150  *	Computes a new feature set after adding a device with feature set
7151  *	@one to the master device with current feature set @all.  Will not
7152  *	enable anything that is off in @mask. Returns the new feature set.
7153  */
7154 netdev_features_t netdev_increment_features(netdev_features_t all,
7155 	netdev_features_t one, netdev_features_t mask)
7156 {
7157 	if (mask & NETIF_F_GEN_CSUM)
7158 		mask |= NETIF_F_ALL_CSUM;
7159 	mask |= NETIF_F_VLAN_CHALLENGED;
7160 
7161 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7162 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7163 
7164 	/* If one device supports hw checksumming, set for all. */
7165 	if (all & NETIF_F_GEN_CSUM)
7166 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7167 
7168 	return all;
7169 }
7170 EXPORT_SYMBOL(netdev_increment_features);
7171 
7172 static struct hlist_head * __net_init netdev_create_hash(void)
7173 {
7174 	int i;
7175 	struct hlist_head *hash;
7176 
7177 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7178 	if (hash != NULL)
7179 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7180 			INIT_HLIST_HEAD(&hash[i]);
7181 
7182 	return hash;
7183 }
7184 
7185 /* Initialize per network namespace state */
7186 static int __net_init netdev_init(struct net *net)
7187 {
7188 	if (net != &init_net)
7189 		INIT_LIST_HEAD(&net->dev_base_head);
7190 
7191 	net->dev_name_head = netdev_create_hash();
7192 	if (net->dev_name_head == NULL)
7193 		goto err_name;
7194 
7195 	net->dev_index_head = netdev_create_hash();
7196 	if (net->dev_index_head == NULL)
7197 		goto err_idx;
7198 
7199 	return 0;
7200 
7201 err_idx:
7202 	kfree(net->dev_name_head);
7203 err_name:
7204 	return -ENOMEM;
7205 }
7206 
7207 /**
7208  *	netdev_drivername - network driver for the device
7209  *	@dev: network device
7210  *
7211  *	Determine network driver for device.
7212  */
7213 const char *netdev_drivername(const struct net_device *dev)
7214 {
7215 	const struct device_driver *driver;
7216 	const struct device *parent;
7217 	const char *empty = "";
7218 
7219 	parent = dev->dev.parent;
7220 	if (!parent)
7221 		return empty;
7222 
7223 	driver = parent->driver;
7224 	if (driver && driver->name)
7225 		return driver->name;
7226 	return empty;
7227 }
7228 
7229 static void __netdev_printk(const char *level, const struct net_device *dev,
7230 			    struct va_format *vaf)
7231 {
7232 	if (dev && dev->dev.parent) {
7233 		dev_printk_emit(level[1] - '0',
7234 				dev->dev.parent,
7235 				"%s %s %s%s: %pV",
7236 				dev_driver_string(dev->dev.parent),
7237 				dev_name(dev->dev.parent),
7238 				netdev_name(dev), netdev_reg_state(dev),
7239 				vaf);
7240 	} else if (dev) {
7241 		printk("%s%s%s: %pV",
7242 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7243 	} else {
7244 		printk("%s(NULL net_device): %pV", level, vaf);
7245 	}
7246 }
7247 
7248 void netdev_printk(const char *level, const struct net_device *dev,
7249 		   const char *format, ...)
7250 {
7251 	struct va_format vaf;
7252 	va_list args;
7253 
7254 	va_start(args, format);
7255 
7256 	vaf.fmt = format;
7257 	vaf.va = &args;
7258 
7259 	__netdev_printk(level, dev, &vaf);
7260 
7261 	va_end(args);
7262 }
7263 EXPORT_SYMBOL(netdev_printk);
7264 
7265 #define define_netdev_printk_level(func, level)			\
7266 void func(const struct net_device *dev, const char *fmt, ...)	\
7267 {								\
7268 	struct va_format vaf;					\
7269 	va_list args;						\
7270 								\
7271 	va_start(args, fmt);					\
7272 								\
7273 	vaf.fmt = fmt;						\
7274 	vaf.va = &args;						\
7275 								\
7276 	__netdev_printk(level, dev, &vaf);			\
7277 								\
7278 	va_end(args);						\
7279 }								\
7280 EXPORT_SYMBOL(func);
7281 
7282 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7283 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7284 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7285 define_netdev_printk_level(netdev_err, KERN_ERR);
7286 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7287 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7288 define_netdev_printk_level(netdev_info, KERN_INFO);
7289 
7290 static void __net_exit netdev_exit(struct net *net)
7291 {
7292 	kfree(net->dev_name_head);
7293 	kfree(net->dev_index_head);
7294 }
7295 
7296 static struct pernet_operations __net_initdata netdev_net_ops = {
7297 	.init = netdev_init,
7298 	.exit = netdev_exit,
7299 };
7300 
7301 static void __net_exit default_device_exit(struct net *net)
7302 {
7303 	struct net_device *dev, *aux;
7304 	/*
7305 	 * Push all migratable network devices back to the
7306 	 * initial network namespace
7307 	 */
7308 	rtnl_lock();
7309 	for_each_netdev_safe(net, dev, aux) {
7310 		int err;
7311 		char fb_name[IFNAMSIZ];
7312 
7313 		/* Ignore unmoveable devices (i.e. loopback) */
7314 		if (dev->features & NETIF_F_NETNS_LOCAL)
7315 			continue;
7316 
7317 		/* Leave virtual devices for the generic cleanup */
7318 		if (dev->rtnl_link_ops)
7319 			continue;
7320 
7321 		/* Push remaining network devices to init_net */
7322 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7323 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7324 		if (err) {
7325 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7326 				 __func__, dev->name, err);
7327 			BUG();
7328 		}
7329 	}
7330 	rtnl_unlock();
7331 }
7332 
7333 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7334 {
7335 	/* Return with the rtnl_lock held when there are no network
7336 	 * devices unregistering in any network namespace in net_list.
7337 	 */
7338 	struct net *net;
7339 	bool unregistering;
7340 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7341 
7342 	add_wait_queue(&netdev_unregistering_wq, &wait);
7343 	for (;;) {
7344 		unregistering = false;
7345 		rtnl_lock();
7346 		list_for_each_entry(net, net_list, exit_list) {
7347 			if (net->dev_unreg_count > 0) {
7348 				unregistering = true;
7349 				break;
7350 			}
7351 		}
7352 		if (!unregistering)
7353 			break;
7354 		__rtnl_unlock();
7355 
7356 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7357 	}
7358 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7359 }
7360 
7361 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7362 {
7363 	/* At exit all network devices most be removed from a network
7364 	 * namespace.  Do this in the reverse order of registration.
7365 	 * Do this across as many network namespaces as possible to
7366 	 * improve batching efficiency.
7367 	 */
7368 	struct net_device *dev;
7369 	struct net *net;
7370 	LIST_HEAD(dev_kill_list);
7371 
7372 	/* To prevent network device cleanup code from dereferencing
7373 	 * loopback devices or network devices that have been freed
7374 	 * wait here for all pending unregistrations to complete,
7375 	 * before unregistring the loopback device and allowing the
7376 	 * network namespace be freed.
7377 	 *
7378 	 * The netdev todo list containing all network devices
7379 	 * unregistrations that happen in default_device_exit_batch
7380 	 * will run in the rtnl_unlock() at the end of
7381 	 * default_device_exit_batch.
7382 	 */
7383 	rtnl_lock_unregistering(net_list);
7384 	list_for_each_entry(net, net_list, exit_list) {
7385 		for_each_netdev_reverse(net, dev) {
7386 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7387 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7388 			else
7389 				unregister_netdevice_queue(dev, &dev_kill_list);
7390 		}
7391 	}
7392 	unregister_netdevice_many(&dev_kill_list);
7393 	rtnl_unlock();
7394 }
7395 
7396 static struct pernet_operations __net_initdata default_device_ops = {
7397 	.exit = default_device_exit,
7398 	.exit_batch = default_device_exit_batch,
7399 };
7400 
7401 /*
7402  *	Initialize the DEV module. At boot time this walks the device list and
7403  *	unhooks any devices that fail to initialise (normally hardware not
7404  *	present) and leaves us with a valid list of present and active devices.
7405  *
7406  */
7407 
7408 /*
7409  *       This is called single threaded during boot, so no need
7410  *       to take the rtnl semaphore.
7411  */
7412 static int __init net_dev_init(void)
7413 {
7414 	int i, rc = -ENOMEM;
7415 
7416 	BUG_ON(!dev_boot_phase);
7417 
7418 	if (dev_proc_init())
7419 		goto out;
7420 
7421 	if (netdev_kobject_init())
7422 		goto out;
7423 
7424 	INIT_LIST_HEAD(&ptype_all);
7425 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7426 		INIT_LIST_HEAD(&ptype_base[i]);
7427 
7428 	INIT_LIST_HEAD(&offload_base);
7429 
7430 	if (register_pernet_subsys(&netdev_net_ops))
7431 		goto out;
7432 
7433 	/*
7434 	 *	Initialise the packet receive queues.
7435 	 */
7436 
7437 	for_each_possible_cpu(i) {
7438 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7439 
7440 		skb_queue_head_init(&sd->input_pkt_queue);
7441 		skb_queue_head_init(&sd->process_queue);
7442 		INIT_LIST_HEAD(&sd->poll_list);
7443 		sd->output_queue_tailp = &sd->output_queue;
7444 #ifdef CONFIG_RPS
7445 		sd->csd.func = rps_trigger_softirq;
7446 		sd->csd.info = sd;
7447 		sd->cpu = i;
7448 #endif
7449 
7450 		sd->backlog.poll = process_backlog;
7451 		sd->backlog.weight = weight_p;
7452 	}
7453 
7454 	dev_boot_phase = 0;
7455 
7456 	/* The loopback device is special if any other network devices
7457 	 * is present in a network namespace the loopback device must
7458 	 * be present. Since we now dynamically allocate and free the
7459 	 * loopback device ensure this invariant is maintained by
7460 	 * keeping the loopback device as the first device on the
7461 	 * list of network devices.  Ensuring the loopback devices
7462 	 * is the first device that appears and the last network device
7463 	 * that disappears.
7464 	 */
7465 	if (register_pernet_device(&loopback_net_ops))
7466 		goto out;
7467 
7468 	if (register_pernet_device(&default_device_ops))
7469 		goto out;
7470 
7471 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7472 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7473 
7474 	hotcpu_notifier(dev_cpu_callback, 0);
7475 	dst_init();
7476 	rc = 0;
7477 out:
7478 	return rc;
7479 }
7480 
7481 subsys_initcall(net_dev_init);
7482