1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <net/mpls.h> 122 #include <linux/ipv6.h> 123 #include <linux/in.h> 124 #include <linux/jhash.h> 125 #include <linux/random.h> 126 #include <trace/events/napi.h> 127 #include <trace/events/net.h> 128 #include <trace/events/skb.h> 129 #include <linux/pci.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 static DEFINE_SPINLOCK(ptype_lock); 148 static DEFINE_SPINLOCK(offload_lock); 149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 150 struct list_head ptype_all __read_mostly; /* Taps */ 151 static struct list_head offload_base __read_mostly; 152 153 static int netif_rx_internal(struct sk_buff *skb); 154 static int call_netdevice_notifiers_info(unsigned long val, 155 struct net_device *dev, 156 struct netdev_notifier_info *info); 157 158 /* 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base_head list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 DEFINE_RWLOCK(dev_base_lock); 178 EXPORT_SYMBOL(dev_base_lock); 179 180 /* protects napi_hash addition/deletion and napi_gen_id */ 181 static DEFINE_SPINLOCK(napi_hash_lock); 182 183 static unsigned int napi_gen_id; 184 static DEFINE_HASHTABLE(napi_hash, 8); 185 186 static seqcount_t devnet_rename_seq; 187 188 static inline void dev_base_seq_inc(struct net *net) 189 { 190 while (++net->dev_base_seq == 0); 191 } 192 193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 194 { 195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 196 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 198 } 199 200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 201 { 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 203 } 204 205 static inline void rps_lock(struct softnet_data *sd) 206 { 207 #ifdef CONFIG_RPS 208 spin_lock(&sd->input_pkt_queue.lock); 209 #endif 210 } 211 212 static inline void rps_unlock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_unlock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 /* Device list insertion */ 220 static void list_netdevice(struct net_device *dev) 221 { 222 struct net *net = dev_net(dev); 223 224 ASSERT_RTNL(); 225 226 write_lock_bh(&dev_base_lock); 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 229 hlist_add_head_rcu(&dev->index_hlist, 230 dev_index_hash(net, dev->ifindex)); 231 write_unlock_bh(&dev_base_lock); 232 233 dev_base_seq_inc(net); 234 } 235 236 /* Device list removal 237 * caller must respect a RCU grace period before freeing/reusing dev 238 */ 239 static void unlist_netdevice(struct net_device *dev) 240 { 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del_rcu(&dev->dev_list); 246 hlist_del_rcu(&dev->name_hlist); 247 hlist_del_rcu(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 250 dev_base_seq_inc(dev_net(dev)); 251 } 252 253 /* 254 * Our notifier list 255 */ 256 257 static RAW_NOTIFIER_HEAD(netdev_chain); 258 259 /* 260 * Device drivers call our routines to queue packets here. We empty the 261 * queue in the local softnet handler. 262 */ 263 264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 265 EXPORT_PER_CPU_SYMBOL(softnet_data); 266 267 #ifdef CONFIG_LOCKDEP 268 /* 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 270 * according to dev->type 271 */ 272 static const unsigned short netdev_lock_type[] = 273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 288 289 static const char *const netdev_lock_name[] = 290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 305 306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 309 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 310 { 311 int i; 312 313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 314 if (netdev_lock_type[i] == dev_type) 315 return i; 316 /* the last key is used by default */ 317 return ARRAY_SIZE(netdev_lock_type) - 1; 318 } 319 320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 321 unsigned short dev_type) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev_type); 326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 327 netdev_lock_name[i]); 328 } 329 330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 331 { 332 int i; 333 334 i = netdev_lock_pos(dev->type); 335 lockdep_set_class_and_name(&dev->addr_list_lock, 336 &netdev_addr_lock_key[i], 337 netdev_lock_name[i]); 338 } 339 #else 340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342 { 343 } 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 } 347 #endif 348 349 /******************************************************************************* 350 351 Protocol management and registration routines 352 353 *******************************************************************************/ 354 355 /* 356 * Add a protocol ID to the list. Now that the input handler is 357 * smarter we can dispense with all the messy stuff that used to be 358 * here. 359 * 360 * BEWARE!!! Protocol handlers, mangling input packets, 361 * MUST BE last in hash buckets and checking protocol handlers 362 * MUST start from promiscuous ptype_all chain in net_bh. 363 * It is true now, do not change it. 364 * Explanation follows: if protocol handler, mangling packet, will 365 * be the first on list, it is not able to sense, that packet 366 * is cloned and should be copied-on-write, so that it will 367 * change it and subsequent readers will get broken packet. 368 * --ANK (980803) 369 */ 370 371 static inline struct list_head *ptype_head(const struct packet_type *pt) 372 { 373 if (pt->type == htons(ETH_P_ALL)) 374 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 375 else 376 return pt->dev ? &pt->dev->ptype_specific : 377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 378 } 379 380 /** 381 * dev_add_pack - add packet handler 382 * @pt: packet type declaration 383 * 384 * Add a protocol handler to the networking stack. The passed &packet_type 385 * is linked into kernel lists and may not be freed until it has been 386 * removed from the kernel lists. 387 * 388 * This call does not sleep therefore it can not 389 * guarantee all CPU's that are in middle of receiving packets 390 * will see the new packet type (until the next received packet). 391 */ 392 393 void dev_add_pack(struct packet_type *pt) 394 { 395 struct list_head *head = ptype_head(pt); 396 397 spin_lock(&ptype_lock); 398 list_add_rcu(&pt->list, head); 399 spin_unlock(&ptype_lock); 400 } 401 EXPORT_SYMBOL(dev_add_pack); 402 403 /** 404 * __dev_remove_pack - remove packet handler 405 * @pt: packet type declaration 406 * 407 * Remove a protocol handler that was previously added to the kernel 408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 409 * from the kernel lists and can be freed or reused once this function 410 * returns. 411 * 412 * The packet type might still be in use by receivers 413 * and must not be freed until after all the CPU's have gone 414 * through a quiescent state. 415 */ 416 void __dev_remove_pack(struct packet_type *pt) 417 { 418 struct list_head *head = ptype_head(pt); 419 struct packet_type *pt1; 420 421 spin_lock(&ptype_lock); 422 423 list_for_each_entry(pt1, head, list) { 424 if (pt == pt1) { 425 list_del_rcu(&pt->list); 426 goto out; 427 } 428 } 429 430 pr_warn("dev_remove_pack: %p not found\n", pt); 431 out: 432 spin_unlock(&ptype_lock); 433 } 434 EXPORT_SYMBOL(__dev_remove_pack); 435 436 /** 437 * dev_remove_pack - remove packet handler 438 * @pt: packet type declaration 439 * 440 * Remove a protocol handler that was previously added to the kernel 441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 442 * from the kernel lists and can be freed or reused once this function 443 * returns. 444 * 445 * This call sleeps to guarantee that no CPU is looking at the packet 446 * type after return. 447 */ 448 void dev_remove_pack(struct packet_type *pt) 449 { 450 __dev_remove_pack(pt); 451 452 synchronize_net(); 453 } 454 EXPORT_SYMBOL(dev_remove_pack); 455 456 457 /** 458 * dev_add_offload - register offload handlers 459 * @po: protocol offload declaration 460 * 461 * Add protocol offload handlers to the networking stack. The passed 462 * &proto_offload is linked into kernel lists and may not be freed until 463 * it has been removed from the kernel lists. 464 * 465 * This call does not sleep therefore it can not 466 * guarantee all CPU's that are in middle of receiving packets 467 * will see the new offload handlers (until the next received packet). 468 */ 469 void dev_add_offload(struct packet_offload *po) 470 { 471 struct list_head *head = &offload_base; 472 473 spin_lock(&offload_lock); 474 list_add_rcu(&po->list, head); 475 spin_unlock(&offload_lock); 476 } 477 EXPORT_SYMBOL(dev_add_offload); 478 479 /** 480 * __dev_remove_offload - remove offload handler 481 * @po: packet offload declaration 482 * 483 * Remove a protocol offload handler that was previously added to the 484 * kernel offload handlers by dev_add_offload(). The passed &offload_type 485 * is removed from the kernel lists and can be freed or reused once this 486 * function returns. 487 * 488 * The packet type might still be in use by receivers 489 * and must not be freed until after all the CPU's have gone 490 * through a quiescent state. 491 */ 492 static void __dev_remove_offload(struct packet_offload *po) 493 { 494 struct list_head *head = &offload_base; 495 struct packet_offload *po1; 496 497 spin_lock(&offload_lock); 498 499 list_for_each_entry(po1, head, list) { 500 if (po == po1) { 501 list_del_rcu(&po->list); 502 goto out; 503 } 504 } 505 506 pr_warn("dev_remove_offload: %p not found\n", po); 507 out: 508 spin_unlock(&offload_lock); 509 } 510 511 /** 512 * dev_remove_offload - remove packet offload handler 513 * @po: packet offload declaration 514 * 515 * Remove a packet offload handler that was previously added to the kernel 516 * offload handlers by dev_add_offload(). The passed &offload_type is 517 * removed from the kernel lists and can be freed or reused once this 518 * function returns. 519 * 520 * This call sleeps to guarantee that no CPU is looking at the packet 521 * type after return. 522 */ 523 void dev_remove_offload(struct packet_offload *po) 524 { 525 __dev_remove_offload(po); 526 527 synchronize_net(); 528 } 529 EXPORT_SYMBOL(dev_remove_offload); 530 531 /****************************************************************************** 532 533 Device Boot-time Settings Routines 534 535 *******************************************************************************/ 536 537 /* Boot time configuration table */ 538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 539 540 /** 541 * netdev_boot_setup_add - add new setup entry 542 * @name: name of the device 543 * @map: configured settings for the device 544 * 545 * Adds new setup entry to the dev_boot_setup list. The function 546 * returns 0 on error and 1 on success. This is a generic routine to 547 * all netdevices. 548 */ 549 static int netdev_boot_setup_add(char *name, struct ifmap *map) 550 { 551 struct netdev_boot_setup *s; 552 int i; 553 554 s = dev_boot_setup; 555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 557 memset(s[i].name, 0, sizeof(s[i].name)); 558 strlcpy(s[i].name, name, IFNAMSIZ); 559 memcpy(&s[i].map, map, sizeof(s[i].map)); 560 break; 561 } 562 } 563 564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 565 } 566 567 /** 568 * netdev_boot_setup_check - check boot time settings 569 * @dev: the netdevice 570 * 571 * Check boot time settings for the device. 572 * The found settings are set for the device to be used 573 * later in the device probing. 574 * Returns 0 if no settings found, 1 if they are. 575 */ 576 int netdev_boot_setup_check(struct net_device *dev) 577 { 578 struct netdev_boot_setup *s = dev_boot_setup; 579 int i; 580 581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 583 !strcmp(dev->name, s[i].name)) { 584 dev->irq = s[i].map.irq; 585 dev->base_addr = s[i].map.base_addr; 586 dev->mem_start = s[i].map.mem_start; 587 dev->mem_end = s[i].map.mem_end; 588 return 1; 589 } 590 } 591 return 0; 592 } 593 EXPORT_SYMBOL(netdev_boot_setup_check); 594 595 596 /** 597 * netdev_boot_base - get address from boot time settings 598 * @prefix: prefix for network device 599 * @unit: id for network device 600 * 601 * Check boot time settings for the base address of device. 602 * The found settings are set for the device to be used 603 * later in the device probing. 604 * Returns 0 if no settings found. 605 */ 606 unsigned long netdev_boot_base(const char *prefix, int unit) 607 { 608 const struct netdev_boot_setup *s = dev_boot_setup; 609 char name[IFNAMSIZ]; 610 int i; 611 612 sprintf(name, "%s%d", prefix, unit); 613 614 /* 615 * If device already registered then return base of 1 616 * to indicate not to probe for this interface 617 */ 618 if (__dev_get_by_name(&init_net, name)) 619 return 1; 620 621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 622 if (!strcmp(name, s[i].name)) 623 return s[i].map.base_addr; 624 return 0; 625 } 626 627 /* 628 * Saves at boot time configured settings for any netdevice. 629 */ 630 int __init netdev_boot_setup(char *str) 631 { 632 int ints[5]; 633 struct ifmap map; 634 635 str = get_options(str, ARRAY_SIZE(ints), ints); 636 if (!str || !*str) 637 return 0; 638 639 /* Save settings */ 640 memset(&map, 0, sizeof(map)); 641 if (ints[0] > 0) 642 map.irq = ints[1]; 643 if (ints[0] > 1) 644 map.base_addr = ints[2]; 645 if (ints[0] > 2) 646 map.mem_start = ints[3]; 647 if (ints[0] > 3) 648 map.mem_end = ints[4]; 649 650 /* Add new entry to the list */ 651 return netdev_boot_setup_add(str, &map); 652 } 653 654 __setup("netdev=", netdev_boot_setup); 655 656 /******************************************************************************* 657 658 Device Interface Subroutines 659 660 *******************************************************************************/ 661 662 /** 663 * __dev_get_by_name - find a device by its name 664 * @net: the applicable net namespace 665 * @name: name to find 666 * 667 * Find an interface by name. Must be called under RTNL semaphore 668 * or @dev_base_lock. If the name is found a pointer to the device 669 * is returned. If the name is not found then %NULL is returned. The 670 * reference counters are not incremented so the caller must be 671 * careful with locks. 672 */ 673 674 struct net_device *__dev_get_by_name(struct net *net, const char *name) 675 { 676 struct net_device *dev; 677 struct hlist_head *head = dev_name_hash(net, name); 678 679 hlist_for_each_entry(dev, head, name_hlist) 680 if (!strncmp(dev->name, name, IFNAMSIZ)) 681 return dev; 682 683 return NULL; 684 } 685 EXPORT_SYMBOL(__dev_get_by_name); 686 687 /** 688 * dev_get_by_name_rcu - find a device by its name 689 * @net: the applicable net namespace 690 * @name: name to find 691 * 692 * Find an interface by name. 693 * If the name is found a pointer to the device is returned. 694 * If the name is not found then %NULL is returned. 695 * The reference counters are not incremented so the caller must be 696 * careful with locks. The caller must hold RCU lock. 697 */ 698 699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 700 { 701 struct net_device *dev; 702 struct hlist_head *head = dev_name_hash(net, name); 703 704 hlist_for_each_entry_rcu(dev, head, name_hlist) 705 if (!strncmp(dev->name, name, IFNAMSIZ)) 706 return dev; 707 708 return NULL; 709 } 710 EXPORT_SYMBOL(dev_get_by_name_rcu); 711 712 /** 713 * dev_get_by_name - find a device by its name 714 * @net: the applicable net namespace 715 * @name: name to find 716 * 717 * Find an interface by name. This can be called from any 718 * context and does its own locking. The returned handle has 719 * the usage count incremented and the caller must use dev_put() to 720 * release it when it is no longer needed. %NULL is returned if no 721 * matching device is found. 722 */ 723 724 struct net_device *dev_get_by_name(struct net *net, const char *name) 725 { 726 struct net_device *dev; 727 728 rcu_read_lock(); 729 dev = dev_get_by_name_rcu(net, name); 730 if (dev) 731 dev_hold(dev); 732 rcu_read_unlock(); 733 return dev; 734 } 735 EXPORT_SYMBOL(dev_get_by_name); 736 737 /** 738 * __dev_get_by_index - find a device by its ifindex 739 * @net: the applicable net namespace 740 * @ifindex: index of device 741 * 742 * Search for an interface by index. Returns %NULL if the device 743 * is not found or a pointer to the device. The device has not 744 * had its reference counter increased so the caller must be careful 745 * about locking. The caller must hold either the RTNL semaphore 746 * or @dev_base_lock. 747 */ 748 749 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 750 { 751 struct net_device *dev; 752 struct hlist_head *head = dev_index_hash(net, ifindex); 753 754 hlist_for_each_entry(dev, head, index_hlist) 755 if (dev->ifindex == ifindex) 756 return dev; 757 758 return NULL; 759 } 760 EXPORT_SYMBOL(__dev_get_by_index); 761 762 /** 763 * dev_get_by_index_rcu - find a device by its ifindex 764 * @net: the applicable net namespace 765 * @ifindex: index of device 766 * 767 * Search for an interface by index. Returns %NULL if the device 768 * is not found or a pointer to the device. The device has not 769 * had its reference counter increased so the caller must be careful 770 * about locking. The caller must hold RCU lock. 771 */ 772 773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 774 { 775 struct net_device *dev; 776 struct hlist_head *head = dev_index_hash(net, ifindex); 777 778 hlist_for_each_entry_rcu(dev, head, index_hlist) 779 if (dev->ifindex == ifindex) 780 return dev; 781 782 return NULL; 783 } 784 EXPORT_SYMBOL(dev_get_by_index_rcu); 785 786 787 /** 788 * dev_get_by_index - find a device by its ifindex 789 * @net: the applicable net namespace 790 * @ifindex: index of device 791 * 792 * Search for an interface by index. Returns NULL if the device 793 * is not found or a pointer to the device. The device returned has 794 * had a reference added and the pointer is safe until the user calls 795 * dev_put to indicate they have finished with it. 796 */ 797 798 struct net_device *dev_get_by_index(struct net *net, int ifindex) 799 { 800 struct net_device *dev; 801 802 rcu_read_lock(); 803 dev = dev_get_by_index_rcu(net, ifindex); 804 if (dev) 805 dev_hold(dev); 806 rcu_read_unlock(); 807 return dev; 808 } 809 EXPORT_SYMBOL(dev_get_by_index); 810 811 /** 812 * netdev_get_name - get a netdevice name, knowing its ifindex. 813 * @net: network namespace 814 * @name: a pointer to the buffer where the name will be stored. 815 * @ifindex: the ifindex of the interface to get the name from. 816 * 817 * The use of raw_seqcount_begin() and cond_resched() before 818 * retrying is required as we want to give the writers a chance 819 * to complete when CONFIG_PREEMPT is not set. 820 */ 821 int netdev_get_name(struct net *net, char *name, int ifindex) 822 { 823 struct net_device *dev; 824 unsigned int seq; 825 826 retry: 827 seq = raw_seqcount_begin(&devnet_rename_seq); 828 rcu_read_lock(); 829 dev = dev_get_by_index_rcu(net, ifindex); 830 if (!dev) { 831 rcu_read_unlock(); 832 return -ENODEV; 833 } 834 835 strcpy(name, dev->name); 836 rcu_read_unlock(); 837 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 838 cond_resched(); 839 goto retry; 840 } 841 842 return 0; 843 } 844 845 /** 846 * dev_getbyhwaddr_rcu - find a device by its hardware address 847 * @net: the applicable net namespace 848 * @type: media type of device 849 * @ha: hardware address 850 * 851 * Search for an interface by MAC address. Returns NULL if the device 852 * is not found or a pointer to the device. 853 * The caller must hold RCU or RTNL. 854 * The returned device has not had its ref count increased 855 * and the caller must therefore be careful about locking 856 * 857 */ 858 859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 860 const char *ha) 861 { 862 struct net_device *dev; 863 864 for_each_netdev_rcu(net, dev) 865 if (dev->type == type && 866 !memcmp(dev->dev_addr, ha, dev->addr_len)) 867 return dev; 868 869 return NULL; 870 } 871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 872 873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 874 { 875 struct net_device *dev; 876 877 ASSERT_RTNL(); 878 for_each_netdev(net, dev) 879 if (dev->type == type) 880 return dev; 881 882 return NULL; 883 } 884 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 885 886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 887 { 888 struct net_device *dev, *ret = NULL; 889 890 rcu_read_lock(); 891 for_each_netdev_rcu(net, dev) 892 if (dev->type == type) { 893 dev_hold(dev); 894 ret = dev; 895 break; 896 } 897 rcu_read_unlock(); 898 return ret; 899 } 900 EXPORT_SYMBOL(dev_getfirstbyhwtype); 901 902 /** 903 * __dev_get_by_flags - find any device with given flags 904 * @net: the applicable net namespace 905 * @if_flags: IFF_* values 906 * @mask: bitmask of bits in if_flags to check 907 * 908 * Search for any interface with the given flags. Returns NULL if a device 909 * is not found or a pointer to the device. Must be called inside 910 * rtnl_lock(), and result refcount is unchanged. 911 */ 912 913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 914 unsigned short mask) 915 { 916 struct net_device *dev, *ret; 917 918 ASSERT_RTNL(); 919 920 ret = NULL; 921 for_each_netdev(net, dev) { 922 if (((dev->flags ^ if_flags) & mask) == 0) { 923 ret = dev; 924 break; 925 } 926 } 927 return ret; 928 } 929 EXPORT_SYMBOL(__dev_get_by_flags); 930 931 /** 932 * dev_valid_name - check if name is okay for network device 933 * @name: name string 934 * 935 * Network device names need to be valid file names to 936 * to allow sysfs to work. We also disallow any kind of 937 * whitespace. 938 */ 939 bool dev_valid_name(const char *name) 940 { 941 if (*name == '\0') 942 return false; 943 if (strlen(name) >= IFNAMSIZ) 944 return false; 945 if (!strcmp(name, ".") || !strcmp(name, "..")) 946 return false; 947 948 while (*name) { 949 if (*name == '/' || isspace(*name)) 950 return false; 951 name++; 952 } 953 return true; 954 } 955 EXPORT_SYMBOL(dev_valid_name); 956 957 /** 958 * __dev_alloc_name - allocate a name for a device 959 * @net: network namespace to allocate the device name in 960 * @name: name format string 961 * @buf: scratch buffer and result name string 962 * 963 * Passed a format string - eg "lt%d" it will try and find a suitable 964 * id. It scans list of devices to build up a free map, then chooses 965 * the first empty slot. The caller must hold the dev_base or rtnl lock 966 * while allocating the name and adding the device in order to avoid 967 * duplicates. 968 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 969 * Returns the number of the unit assigned or a negative errno code. 970 */ 971 972 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 973 { 974 int i = 0; 975 const char *p; 976 const int max_netdevices = 8*PAGE_SIZE; 977 unsigned long *inuse; 978 struct net_device *d; 979 980 p = strnchr(name, IFNAMSIZ-1, '%'); 981 if (p) { 982 /* 983 * Verify the string as this thing may have come from 984 * the user. There must be either one "%d" and no other "%" 985 * characters. 986 */ 987 if (p[1] != 'd' || strchr(p + 2, '%')) 988 return -EINVAL; 989 990 /* Use one page as a bit array of possible slots */ 991 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 992 if (!inuse) 993 return -ENOMEM; 994 995 for_each_netdev(net, d) { 996 if (!sscanf(d->name, name, &i)) 997 continue; 998 if (i < 0 || i >= max_netdevices) 999 continue; 1000 1001 /* avoid cases where sscanf is not exact inverse of printf */ 1002 snprintf(buf, IFNAMSIZ, name, i); 1003 if (!strncmp(buf, d->name, IFNAMSIZ)) 1004 set_bit(i, inuse); 1005 } 1006 1007 i = find_first_zero_bit(inuse, max_netdevices); 1008 free_page((unsigned long) inuse); 1009 } 1010 1011 if (buf != name) 1012 snprintf(buf, IFNAMSIZ, name, i); 1013 if (!__dev_get_by_name(net, buf)) 1014 return i; 1015 1016 /* It is possible to run out of possible slots 1017 * when the name is long and there isn't enough space left 1018 * for the digits, or if all bits are used. 1019 */ 1020 return -ENFILE; 1021 } 1022 1023 /** 1024 * dev_alloc_name - allocate a name for a device 1025 * @dev: device 1026 * @name: name format string 1027 * 1028 * Passed a format string - eg "lt%d" it will try and find a suitable 1029 * id. It scans list of devices to build up a free map, then chooses 1030 * the first empty slot. The caller must hold the dev_base or rtnl lock 1031 * while allocating the name and adding the device in order to avoid 1032 * duplicates. 1033 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1034 * Returns the number of the unit assigned or a negative errno code. 1035 */ 1036 1037 int dev_alloc_name(struct net_device *dev, const char *name) 1038 { 1039 char buf[IFNAMSIZ]; 1040 struct net *net; 1041 int ret; 1042 1043 BUG_ON(!dev_net(dev)); 1044 net = dev_net(dev); 1045 ret = __dev_alloc_name(net, name, buf); 1046 if (ret >= 0) 1047 strlcpy(dev->name, buf, IFNAMSIZ); 1048 return ret; 1049 } 1050 EXPORT_SYMBOL(dev_alloc_name); 1051 1052 static int dev_alloc_name_ns(struct net *net, 1053 struct net_device *dev, 1054 const char *name) 1055 { 1056 char buf[IFNAMSIZ]; 1057 int ret; 1058 1059 ret = __dev_alloc_name(net, name, buf); 1060 if (ret >= 0) 1061 strlcpy(dev->name, buf, IFNAMSIZ); 1062 return ret; 1063 } 1064 1065 static int dev_get_valid_name(struct net *net, 1066 struct net_device *dev, 1067 const char *name) 1068 { 1069 BUG_ON(!net); 1070 1071 if (!dev_valid_name(name)) 1072 return -EINVAL; 1073 1074 if (strchr(name, '%')) 1075 return dev_alloc_name_ns(net, dev, name); 1076 else if (__dev_get_by_name(net, name)) 1077 return -EEXIST; 1078 else if (dev->name != name) 1079 strlcpy(dev->name, name, IFNAMSIZ); 1080 1081 return 0; 1082 } 1083 1084 /** 1085 * dev_change_name - change name of a device 1086 * @dev: device 1087 * @newname: name (or format string) must be at least IFNAMSIZ 1088 * 1089 * Change name of a device, can pass format strings "eth%d". 1090 * for wildcarding. 1091 */ 1092 int dev_change_name(struct net_device *dev, const char *newname) 1093 { 1094 unsigned char old_assign_type; 1095 char oldname[IFNAMSIZ]; 1096 int err = 0; 1097 int ret; 1098 struct net *net; 1099 1100 ASSERT_RTNL(); 1101 BUG_ON(!dev_net(dev)); 1102 1103 net = dev_net(dev); 1104 if (dev->flags & IFF_UP) 1105 return -EBUSY; 1106 1107 write_seqcount_begin(&devnet_rename_seq); 1108 1109 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1110 write_seqcount_end(&devnet_rename_seq); 1111 return 0; 1112 } 1113 1114 memcpy(oldname, dev->name, IFNAMSIZ); 1115 1116 err = dev_get_valid_name(net, dev, newname); 1117 if (err < 0) { 1118 write_seqcount_end(&devnet_rename_seq); 1119 return err; 1120 } 1121 1122 if (oldname[0] && !strchr(oldname, '%')) 1123 netdev_info(dev, "renamed from %s\n", oldname); 1124 1125 old_assign_type = dev->name_assign_type; 1126 dev->name_assign_type = NET_NAME_RENAMED; 1127 1128 rollback: 1129 ret = device_rename(&dev->dev, dev->name); 1130 if (ret) { 1131 memcpy(dev->name, oldname, IFNAMSIZ); 1132 dev->name_assign_type = old_assign_type; 1133 write_seqcount_end(&devnet_rename_seq); 1134 return ret; 1135 } 1136 1137 write_seqcount_end(&devnet_rename_seq); 1138 1139 netdev_adjacent_rename_links(dev, oldname); 1140 1141 write_lock_bh(&dev_base_lock); 1142 hlist_del_rcu(&dev->name_hlist); 1143 write_unlock_bh(&dev_base_lock); 1144 1145 synchronize_rcu(); 1146 1147 write_lock_bh(&dev_base_lock); 1148 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1149 write_unlock_bh(&dev_base_lock); 1150 1151 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1152 ret = notifier_to_errno(ret); 1153 1154 if (ret) { 1155 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1156 if (err >= 0) { 1157 err = ret; 1158 write_seqcount_begin(&devnet_rename_seq); 1159 memcpy(dev->name, oldname, IFNAMSIZ); 1160 memcpy(oldname, newname, IFNAMSIZ); 1161 dev->name_assign_type = old_assign_type; 1162 old_assign_type = NET_NAME_RENAMED; 1163 goto rollback; 1164 } else { 1165 pr_err("%s: name change rollback failed: %d\n", 1166 dev->name, ret); 1167 } 1168 } 1169 1170 return err; 1171 } 1172 1173 /** 1174 * dev_set_alias - change ifalias of a device 1175 * @dev: device 1176 * @alias: name up to IFALIASZ 1177 * @len: limit of bytes to copy from info 1178 * 1179 * Set ifalias for a device, 1180 */ 1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1182 { 1183 char *new_ifalias; 1184 1185 ASSERT_RTNL(); 1186 1187 if (len >= IFALIASZ) 1188 return -EINVAL; 1189 1190 if (!len) { 1191 kfree(dev->ifalias); 1192 dev->ifalias = NULL; 1193 return 0; 1194 } 1195 1196 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1197 if (!new_ifalias) 1198 return -ENOMEM; 1199 dev->ifalias = new_ifalias; 1200 1201 strlcpy(dev->ifalias, alias, len+1); 1202 return len; 1203 } 1204 1205 1206 /** 1207 * netdev_features_change - device changes features 1208 * @dev: device to cause notification 1209 * 1210 * Called to indicate a device has changed features. 1211 */ 1212 void netdev_features_change(struct net_device *dev) 1213 { 1214 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1215 } 1216 EXPORT_SYMBOL(netdev_features_change); 1217 1218 /** 1219 * netdev_state_change - device changes state 1220 * @dev: device to cause notification 1221 * 1222 * Called to indicate a device has changed state. This function calls 1223 * the notifier chains for netdev_chain and sends a NEWLINK message 1224 * to the routing socket. 1225 */ 1226 void netdev_state_change(struct net_device *dev) 1227 { 1228 if (dev->flags & IFF_UP) { 1229 struct netdev_notifier_change_info change_info; 1230 1231 change_info.flags_changed = 0; 1232 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1233 &change_info.info); 1234 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1235 } 1236 } 1237 EXPORT_SYMBOL(netdev_state_change); 1238 1239 /** 1240 * netdev_notify_peers - notify network peers about existence of @dev 1241 * @dev: network device 1242 * 1243 * Generate traffic such that interested network peers are aware of 1244 * @dev, such as by generating a gratuitous ARP. This may be used when 1245 * a device wants to inform the rest of the network about some sort of 1246 * reconfiguration such as a failover event or virtual machine 1247 * migration. 1248 */ 1249 void netdev_notify_peers(struct net_device *dev) 1250 { 1251 rtnl_lock(); 1252 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1253 rtnl_unlock(); 1254 } 1255 EXPORT_SYMBOL(netdev_notify_peers); 1256 1257 static int __dev_open(struct net_device *dev) 1258 { 1259 const struct net_device_ops *ops = dev->netdev_ops; 1260 int ret; 1261 1262 ASSERT_RTNL(); 1263 1264 if (!netif_device_present(dev)) 1265 return -ENODEV; 1266 1267 /* Block netpoll from trying to do any rx path servicing. 1268 * If we don't do this there is a chance ndo_poll_controller 1269 * or ndo_poll may be running while we open the device 1270 */ 1271 netpoll_poll_disable(dev); 1272 1273 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1274 ret = notifier_to_errno(ret); 1275 if (ret) 1276 return ret; 1277 1278 set_bit(__LINK_STATE_START, &dev->state); 1279 1280 if (ops->ndo_validate_addr) 1281 ret = ops->ndo_validate_addr(dev); 1282 1283 if (!ret && ops->ndo_open) 1284 ret = ops->ndo_open(dev); 1285 1286 netpoll_poll_enable(dev); 1287 1288 if (ret) 1289 clear_bit(__LINK_STATE_START, &dev->state); 1290 else { 1291 dev->flags |= IFF_UP; 1292 dev_set_rx_mode(dev); 1293 dev_activate(dev); 1294 add_device_randomness(dev->dev_addr, dev->addr_len); 1295 } 1296 1297 return ret; 1298 } 1299 1300 /** 1301 * dev_open - prepare an interface for use. 1302 * @dev: device to open 1303 * 1304 * Takes a device from down to up state. The device's private open 1305 * function is invoked and then the multicast lists are loaded. Finally 1306 * the device is moved into the up state and a %NETDEV_UP message is 1307 * sent to the netdev notifier chain. 1308 * 1309 * Calling this function on an active interface is a nop. On a failure 1310 * a negative errno code is returned. 1311 */ 1312 int dev_open(struct net_device *dev) 1313 { 1314 int ret; 1315 1316 if (dev->flags & IFF_UP) 1317 return 0; 1318 1319 ret = __dev_open(dev); 1320 if (ret < 0) 1321 return ret; 1322 1323 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1324 call_netdevice_notifiers(NETDEV_UP, dev); 1325 1326 return ret; 1327 } 1328 EXPORT_SYMBOL(dev_open); 1329 1330 static int __dev_close_many(struct list_head *head) 1331 { 1332 struct net_device *dev; 1333 1334 ASSERT_RTNL(); 1335 might_sleep(); 1336 1337 list_for_each_entry(dev, head, close_list) { 1338 /* Temporarily disable netpoll until the interface is down */ 1339 netpoll_poll_disable(dev); 1340 1341 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1342 1343 clear_bit(__LINK_STATE_START, &dev->state); 1344 1345 /* Synchronize to scheduled poll. We cannot touch poll list, it 1346 * can be even on different cpu. So just clear netif_running(). 1347 * 1348 * dev->stop() will invoke napi_disable() on all of it's 1349 * napi_struct instances on this device. 1350 */ 1351 smp_mb__after_atomic(); /* Commit netif_running(). */ 1352 } 1353 1354 dev_deactivate_many(head); 1355 1356 list_for_each_entry(dev, head, close_list) { 1357 const struct net_device_ops *ops = dev->netdev_ops; 1358 1359 /* 1360 * Call the device specific close. This cannot fail. 1361 * Only if device is UP 1362 * 1363 * We allow it to be called even after a DETACH hot-plug 1364 * event. 1365 */ 1366 if (ops->ndo_stop) 1367 ops->ndo_stop(dev); 1368 1369 dev->flags &= ~IFF_UP; 1370 netpoll_poll_enable(dev); 1371 } 1372 1373 return 0; 1374 } 1375 1376 static int __dev_close(struct net_device *dev) 1377 { 1378 int retval; 1379 LIST_HEAD(single); 1380 1381 list_add(&dev->close_list, &single); 1382 retval = __dev_close_many(&single); 1383 list_del(&single); 1384 1385 return retval; 1386 } 1387 1388 static int dev_close_many(struct list_head *head) 1389 { 1390 struct net_device *dev, *tmp; 1391 1392 /* Remove the devices that don't need to be closed */ 1393 list_for_each_entry_safe(dev, tmp, head, close_list) 1394 if (!(dev->flags & IFF_UP)) 1395 list_del_init(&dev->close_list); 1396 1397 __dev_close_many(head); 1398 1399 list_for_each_entry_safe(dev, tmp, head, close_list) { 1400 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1401 call_netdevice_notifiers(NETDEV_DOWN, dev); 1402 list_del_init(&dev->close_list); 1403 } 1404 1405 return 0; 1406 } 1407 1408 /** 1409 * dev_close - shutdown an interface. 1410 * @dev: device to shutdown 1411 * 1412 * This function moves an active device into down state. A 1413 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1414 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1415 * chain. 1416 */ 1417 int dev_close(struct net_device *dev) 1418 { 1419 if (dev->flags & IFF_UP) { 1420 LIST_HEAD(single); 1421 1422 list_add(&dev->close_list, &single); 1423 dev_close_many(&single); 1424 list_del(&single); 1425 } 1426 return 0; 1427 } 1428 EXPORT_SYMBOL(dev_close); 1429 1430 1431 /** 1432 * dev_disable_lro - disable Large Receive Offload on a device 1433 * @dev: device 1434 * 1435 * Disable Large Receive Offload (LRO) on a net device. Must be 1436 * called under RTNL. This is needed if received packets may be 1437 * forwarded to another interface. 1438 */ 1439 void dev_disable_lro(struct net_device *dev) 1440 { 1441 struct net_device *lower_dev; 1442 struct list_head *iter; 1443 1444 dev->wanted_features &= ~NETIF_F_LRO; 1445 netdev_update_features(dev); 1446 1447 if (unlikely(dev->features & NETIF_F_LRO)) 1448 netdev_WARN(dev, "failed to disable LRO!\n"); 1449 1450 netdev_for_each_lower_dev(dev, lower_dev, iter) 1451 dev_disable_lro(lower_dev); 1452 } 1453 EXPORT_SYMBOL(dev_disable_lro); 1454 1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1456 struct net_device *dev) 1457 { 1458 struct netdev_notifier_info info; 1459 1460 netdev_notifier_info_init(&info, dev); 1461 return nb->notifier_call(nb, val, &info); 1462 } 1463 1464 static int dev_boot_phase = 1; 1465 1466 /** 1467 * register_netdevice_notifier - register a network notifier block 1468 * @nb: notifier 1469 * 1470 * Register a notifier to be called when network device events occur. 1471 * The notifier passed is linked into the kernel structures and must 1472 * not be reused until it has been unregistered. A negative errno code 1473 * is returned on a failure. 1474 * 1475 * When registered all registration and up events are replayed 1476 * to the new notifier to allow device to have a race free 1477 * view of the network device list. 1478 */ 1479 1480 int register_netdevice_notifier(struct notifier_block *nb) 1481 { 1482 struct net_device *dev; 1483 struct net_device *last; 1484 struct net *net; 1485 int err; 1486 1487 rtnl_lock(); 1488 err = raw_notifier_chain_register(&netdev_chain, nb); 1489 if (err) 1490 goto unlock; 1491 if (dev_boot_phase) 1492 goto unlock; 1493 for_each_net(net) { 1494 for_each_netdev(net, dev) { 1495 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1496 err = notifier_to_errno(err); 1497 if (err) 1498 goto rollback; 1499 1500 if (!(dev->flags & IFF_UP)) 1501 continue; 1502 1503 call_netdevice_notifier(nb, NETDEV_UP, dev); 1504 } 1505 } 1506 1507 unlock: 1508 rtnl_unlock(); 1509 return err; 1510 1511 rollback: 1512 last = dev; 1513 for_each_net(net) { 1514 for_each_netdev(net, dev) { 1515 if (dev == last) 1516 goto outroll; 1517 1518 if (dev->flags & IFF_UP) { 1519 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1520 dev); 1521 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1522 } 1523 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1524 } 1525 } 1526 1527 outroll: 1528 raw_notifier_chain_unregister(&netdev_chain, nb); 1529 goto unlock; 1530 } 1531 EXPORT_SYMBOL(register_netdevice_notifier); 1532 1533 /** 1534 * unregister_netdevice_notifier - unregister a network notifier block 1535 * @nb: notifier 1536 * 1537 * Unregister a notifier previously registered by 1538 * register_netdevice_notifier(). The notifier is unlinked into the 1539 * kernel structures and may then be reused. A negative errno code 1540 * is returned on a failure. 1541 * 1542 * After unregistering unregister and down device events are synthesized 1543 * for all devices on the device list to the removed notifier to remove 1544 * the need for special case cleanup code. 1545 */ 1546 1547 int unregister_netdevice_notifier(struct notifier_block *nb) 1548 { 1549 struct net_device *dev; 1550 struct net *net; 1551 int err; 1552 1553 rtnl_lock(); 1554 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1555 if (err) 1556 goto unlock; 1557 1558 for_each_net(net) { 1559 for_each_netdev(net, dev) { 1560 if (dev->flags & IFF_UP) { 1561 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1562 dev); 1563 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1564 } 1565 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1566 } 1567 } 1568 unlock: 1569 rtnl_unlock(); 1570 return err; 1571 } 1572 EXPORT_SYMBOL(unregister_netdevice_notifier); 1573 1574 /** 1575 * call_netdevice_notifiers_info - call all network notifier blocks 1576 * @val: value passed unmodified to notifier function 1577 * @dev: net_device pointer passed unmodified to notifier function 1578 * @info: notifier information data 1579 * 1580 * Call all network notifier blocks. Parameters and return value 1581 * are as for raw_notifier_call_chain(). 1582 */ 1583 1584 static int call_netdevice_notifiers_info(unsigned long val, 1585 struct net_device *dev, 1586 struct netdev_notifier_info *info) 1587 { 1588 ASSERT_RTNL(); 1589 netdev_notifier_info_init(info, dev); 1590 return raw_notifier_call_chain(&netdev_chain, val, info); 1591 } 1592 1593 /** 1594 * call_netdevice_notifiers - call all network notifier blocks 1595 * @val: value passed unmodified to notifier function 1596 * @dev: net_device pointer passed unmodified to notifier function 1597 * 1598 * Call all network notifier blocks. Parameters and return value 1599 * are as for raw_notifier_call_chain(). 1600 */ 1601 1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1603 { 1604 struct netdev_notifier_info info; 1605 1606 return call_netdevice_notifiers_info(val, dev, &info); 1607 } 1608 EXPORT_SYMBOL(call_netdevice_notifiers); 1609 1610 static struct static_key netstamp_needed __read_mostly; 1611 #ifdef HAVE_JUMP_LABEL 1612 /* We are not allowed to call static_key_slow_dec() from irq context 1613 * If net_disable_timestamp() is called from irq context, defer the 1614 * static_key_slow_dec() calls. 1615 */ 1616 static atomic_t netstamp_needed_deferred; 1617 #endif 1618 1619 void net_enable_timestamp(void) 1620 { 1621 #ifdef HAVE_JUMP_LABEL 1622 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1623 1624 if (deferred) { 1625 while (--deferred) 1626 static_key_slow_dec(&netstamp_needed); 1627 return; 1628 } 1629 #endif 1630 static_key_slow_inc(&netstamp_needed); 1631 } 1632 EXPORT_SYMBOL(net_enable_timestamp); 1633 1634 void net_disable_timestamp(void) 1635 { 1636 #ifdef HAVE_JUMP_LABEL 1637 if (in_interrupt()) { 1638 atomic_inc(&netstamp_needed_deferred); 1639 return; 1640 } 1641 #endif 1642 static_key_slow_dec(&netstamp_needed); 1643 } 1644 EXPORT_SYMBOL(net_disable_timestamp); 1645 1646 static inline void net_timestamp_set(struct sk_buff *skb) 1647 { 1648 skb->tstamp.tv64 = 0; 1649 if (static_key_false(&netstamp_needed)) 1650 __net_timestamp(skb); 1651 } 1652 1653 #define net_timestamp_check(COND, SKB) \ 1654 if (static_key_false(&netstamp_needed)) { \ 1655 if ((COND) && !(SKB)->tstamp.tv64) \ 1656 __net_timestamp(SKB); \ 1657 } \ 1658 1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1660 { 1661 unsigned int len; 1662 1663 if (!(dev->flags & IFF_UP)) 1664 return false; 1665 1666 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1667 if (skb->len <= len) 1668 return true; 1669 1670 /* if TSO is enabled, we don't care about the length as the packet 1671 * could be forwarded without being segmented before 1672 */ 1673 if (skb_is_gso(skb)) 1674 return true; 1675 1676 return false; 1677 } 1678 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1679 1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1681 { 1682 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1683 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1684 atomic_long_inc(&dev->rx_dropped); 1685 kfree_skb(skb); 1686 return NET_RX_DROP; 1687 } 1688 } 1689 1690 if (unlikely(!is_skb_forwardable(dev, skb))) { 1691 atomic_long_inc(&dev->rx_dropped); 1692 kfree_skb(skb); 1693 return NET_RX_DROP; 1694 } 1695 1696 skb_scrub_packet(skb, true); 1697 skb->protocol = eth_type_trans(skb, dev); 1698 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1699 1700 return 0; 1701 } 1702 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1703 1704 /** 1705 * dev_forward_skb - loopback an skb to another netif 1706 * 1707 * @dev: destination network device 1708 * @skb: buffer to forward 1709 * 1710 * return values: 1711 * NET_RX_SUCCESS (no congestion) 1712 * NET_RX_DROP (packet was dropped, but freed) 1713 * 1714 * dev_forward_skb can be used for injecting an skb from the 1715 * start_xmit function of one device into the receive queue 1716 * of another device. 1717 * 1718 * The receiving device may be in another namespace, so 1719 * we have to clear all information in the skb that could 1720 * impact namespace isolation. 1721 */ 1722 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1723 { 1724 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1725 } 1726 EXPORT_SYMBOL_GPL(dev_forward_skb); 1727 1728 static inline int deliver_skb(struct sk_buff *skb, 1729 struct packet_type *pt_prev, 1730 struct net_device *orig_dev) 1731 { 1732 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1733 return -ENOMEM; 1734 atomic_inc(&skb->users); 1735 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1736 } 1737 1738 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1739 struct packet_type **pt, 1740 struct net_device *dev, __be16 type, 1741 struct list_head *ptype_list) 1742 { 1743 struct packet_type *ptype, *pt_prev = *pt; 1744 1745 list_for_each_entry_rcu(ptype, ptype_list, list) { 1746 if (ptype->type != type) 1747 continue; 1748 if (pt_prev) 1749 deliver_skb(skb, pt_prev, dev); 1750 pt_prev = ptype; 1751 } 1752 *pt = pt_prev; 1753 } 1754 1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1756 { 1757 if (!ptype->af_packet_priv || !skb->sk) 1758 return false; 1759 1760 if (ptype->id_match) 1761 return ptype->id_match(ptype, skb->sk); 1762 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1763 return true; 1764 1765 return false; 1766 } 1767 1768 /* 1769 * Support routine. Sends outgoing frames to any network 1770 * taps currently in use. 1771 */ 1772 1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1774 { 1775 struct packet_type *ptype; 1776 struct sk_buff *skb2 = NULL; 1777 struct packet_type *pt_prev = NULL; 1778 struct list_head *ptype_list = &ptype_all; 1779 1780 rcu_read_lock(); 1781 again: 1782 list_for_each_entry_rcu(ptype, ptype_list, list) { 1783 /* Never send packets back to the socket 1784 * they originated from - MvS (miquels@drinkel.ow.org) 1785 */ 1786 if (skb_loop_sk(ptype, skb)) 1787 continue; 1788 1789 if (pt_prev) { 1790 deliver_skb(skb2, pt_prev, skb->dev); 1791 pt_prev = ptype; 1792 continue; 1793 } 1794 1795 /* need to clone skb, done only once */ 1796 skb2 = skb_clone(skb, GFP_ATOMIC); 1797 if (!skb2) 1798 goto out_unlock; 1799 1800 net_timestamp_set(skb2); 1801 1802 /* skb->nh should be correctly 1803 * set by sender, so that the second statement is 1804 * just protection against buggy protocols. 1805 */ 1806 skb_reset_mac_header(skb2); 1807 1808 if (skb_network_header(skb2) < skb2->data || 1809 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1810 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1811 ntohs(skb2->protocol), 1812 dev->name); 1813 skb_reset_network_header(skb2); 1814 } 1815 1816 skb2->transport_header = skb2->network_header; 1817 skb2->pkt_type = PACKET_OUTGOING; 1818 pt_prev = ptype; 1819 } 1820 1821 if (ptype_list == &ptype_all) { 1822 ptype_list = &dev->ptype_all; 1823 goto again; 1824 } 1825 out_unlock: 1826 if (pt_prev) 1827 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1828 rcu_read_unlock(); 1829 } 1830 1831 /** 1832 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1833 * @dev: Network device 1834 * @txq: number of queues available 1835 * 1836 * If real_num_tx_queues is changed the tc mappings may no longer be 1837 * valid. To resolve this verify the tc mapping remains valid and if 1838 * not NULL the mapping. With no priorities mapping to this 1839 * offset/count pair it will no longer be used. In the worst case TC0 1840 * is invalid nothing can be done so disable priority mappings. If is 1841 * expected that drivers will fix this mapping if they can before 1842 * calling netif_set_real_num_tx_queues. 1843 */ 1844 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1845 { 1846 int i; 1847 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1848 1849 /* If TC0 is invalidated disable TC mapping */ 1850 if (tc->offset + tc->count > txq) { 1851 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1852 dev->num_tc = 0; 1853 return; 1854 } 1855 1856 /* Invalidated prio to tc mappings set to TC0 */ 1857 for (i = 1; i < TC_BITMASK + 1; i++) { 1858 int q = netdev_get_prio_tc_map(dev, i); 1859 1860 tc = &dev->tc_to_txq[q]; 1861 if (tc->offset + tc->count > txq) { 1862 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1863 i, q); 1864 netdev_set_prio_tc_map(dev, i, 0); 1865 } 1866 } 1867 } 1868 1869 #ifdef CONFIG_XPS 1870 static DEFINE_MUTEX(xps_map_mutex); 1871 #define xmap_dereference(P) \ 1872 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1873 1874 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1875 int cpu, u16 index) 1876 { 1877 struct xps_map *map = NULL; 1878 int pos; 1879 1880 if (dev_maps) 1881 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1882 1883 for (pos = 0; map && pos < map->len; pos++) { 1884 if (map->queues[pos] == index) { 1885 if (map->len > 1) { 1886 map->queues[pos] = map->queues[--map->len]; 1887 } else { 1888 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1889 kfree_rcu(map, rcu); 1890 map = NULL; 1891 } 1892 break; 1893 } 1894 } 1895 1896 return map; 1897 } 1898 1899 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1900 { 1901 struct xps_dev_maps *dev_maps; 1902 int cpu, i; 1903 bool active = false; 1904 1905 mutex_lock(&xps_map_mutex); 1906 dev_maps = xmap_dereference(dev->xps_maps); 1907 1908 if (!dev_maps) 1909 goto out_no_maps; 1910 1911 for_each_possible_cpu(cpu) { 1912 for (i = index; i < dev->num_tx_queues; i++) { 1913 if (!remove_xps_queue(dev_maps, cpu, i)) 1914 break; 1915 } 1916 if (i == dev->num_tx_queues) 1917 active = true; 1918 } 1919 1920 if (!active) { 1921 RCU_INIT_POINTER(dev->xps_maps, NULL); 1922 kfree_rcu(dev_maps, rcu); 1923 } 1924 1925 for (i = index; i < dev->num_tx_queues; i++) 1926 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1927 NUMA_NO_NODE); 1928 1929 out_no_maps: 1930 mutex_unlock(&xps_map_mutex); 1931 } 1932 1933 static struct xps_map *expand_xps_map(struct xps_map *map, 1934 int cpu, u16 index) 1935 { 1936 struct xps_map *new_map; 1937 int alloc_len = XPS_MIN_MAP_ALLOC; 1938 int i, pos; 1939 1940 for (pos = 0; map && pos < map->len; pos++) { 1941 if (map->queues[pos] != index) 1942 continue; 1943 return map; 1944 } 1945 1946 /* Need to add queue to this CPU's existing map */ 1947 if (map) { 1948 if (pos < map->alloc_len) 1949 return map; 1950 1951 alloc_len = map->alloc_len * 2; 1952 } 1953 1954 /* Need to allocate new map to store queue on this CPU's map */ 1955 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1956 cpu_to_node(cpu)); 1957 if (!new_map) 1958 return NULL; 1959 1960 for (i = 0; i < pos; i++) 1961 new_map->queues[i] = map->queues[i]; 1962 new_map->alloc_len = alloc_len; 1963 new_map->len = pos; 1964 1965 return new_map; 1966 } 1967 1968 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1969 u16 index) 1970 { 1971 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1972 struct xps_map *map, *new_map; 1973 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1974 int cpu, numa_node_id = -2; 1975 bool active = false; 1976 1977 mutex_lock(&xps_map_mutex); 1978 1979 dev_maps = xmap_dereference(dev->xps_maps); 1980 1981 /* allocate memory for queue storage */ 1982 for_each_online_cpu(cpu) { 1983 if (!cpumask_test_cpu(cpu, mask)) 1984 continue; 1985 1986 if (!new_dev_maps) 1987 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1988 if (!new_dev_maps) { 1989 mutex_unlock(&xps_map_mutex); 1990 return -ENOMEM; 1991 } 1992 1993 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1994 NULL; 1995 1996 map = expand_xps_map(map, cpu, index); 1997 if (!map) 1998 goto error; 1999 2000 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2001 } 2002 2003 if (!new_dev_maps) 2004 goto out_no_new_maps; 2005 2006 for_each_possible_cpu(cpu) { 2007 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2008 /* add queue to CPU maps */ 2009 int pos = 0; 2010 2011 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2012 while ((pos < map->len) && (map->queues[pos] != index)) 2013 pos++; 2014 2015 if (pos == map->len) 2016 map->queues[map->len++] = index; 2017 #ifdef CONFIG_NUMA 2018 if (numa_node_id == -2) 2019 numa_node_id = cpu_to_node(cpu); 2020 else if (numa_node_id != cpu_to_node(cpu)) 2021 numa_node_id = -1; 2022 #endif 2023 } else if (dev_maps) { 2024 /* fill in the new device map from the old device map */ 2025 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2026 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2027 } 2028 2029 } 2030 2031 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2032 2033 /* Cleanup old maps */ 2034 if (dev_maps) { 2035 for_each_possible_cpu(cpu) { 2036 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2037 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2038 if (map && map != new_map) 2039 kfree_rcu(map, rcu); 2040 } 2041 2042 kfree_rcu(dev_maps, rcu); 2043 } 2044 2045 dev_maps = new_dev_maps; 2046 active = true; 2047 2048 out_no_new_maps: 2049 /* update Tx queue numa node */ 2050 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2051 (numa_node_id >= 0) ? numa_node_id : 2052 NUMA_NO_NODE); 2053 2054 if (!dev_maps) 2055 goto out_no_maps; 2056 2057 /* removes queue from unused CPUs */ 2058 for_each_possible_cpu(cpu) { 2059 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2060 continue; 2061 2062 if (remove_xps_queue(dev_maps, cpu, index)) 2063 active = true; 2064 } 2065 2066 /* free map if not active */ 2067 if (!active) { 2068 RCU_INIT_POINTER(dev->xps_maps, NULL); 2069 kfree_rcu(dev_maps, rcu); 2070 } 2071 2072 out_no_maps: 2073 mutex_unlock(&xps_map_mutex); 2074 2075 return 0; 2076 error: 2077 /* remove any maps that we added */ 2078 for_each_possible_cpu(cpu) { 2079 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2080 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2081 NULL; 2082 if (new_map && new_map != map) 2083 kfree(new_map); 2084 } 2085 2086 mutex_unlock(&xps_map_mutex); 2087 2088 kfree(new_dev_maps); 2089 return -ENOMEM; 2090 } 2091 EXPORT_SYMBOL(netif_set_xps_queue); 2092 2093 #endif 2094 /* 2095 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2096 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2097 */ 2098 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2099 { 2100 int rc; 2101 2102 if (txq < 1 || txq > dev->num_tx_queues) 2103 return -EINVAL; 2104 2105 if (dev->reg_state == NETREG_REGISTERED || 2106 dev->reg_state == NETREG_UNREGISTERING) { 2107 ASSERT_RTNL(); 2108 2109 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2110 txq); 2111 if (rc) 2112 return rc; 2113 2114 if (dev->num_tc) 2115 netif_setup_tc(dev, txq); 2116 2117 if (txq < dev->real_num_tx_queues) { 2118 qdisc_reset_all_tx_gt(dev, txq); 2119 #ifdef CONFIG_XPS 2120 netif_reset_xps_queues_gt(dev, txq); 2121 #endif 2122 } 2123 } 2124 2125 dev->real_num_tx_queues = txq; 2126 return 0; 2127 } 2128 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2129 2130 #ifdef CONFIG_SYSFS 2131 /** 2132 * netif_set_real_num_rx_queues - set actual number of RX queues used 2133 * @dev: Network device 2134 * @rxq: Actual number of RX queues 2135 * 2136 * This must be called either with the rtnl_lock held or before 2137 * registration of the net device. Returns 0 on success, or a 2138 * negative error code. If called before registration, it always 2139 * succeeds. 2140 */ 2141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2142 { 2143 int rc; 2144 2145 if (rxq < 1 || rxq > dev->num_rx_queues) 2146 return -EINVAL; 2147 2148 if (dev->reg_state == NETREG_REGISTERED) { 2149 ASSERT_RTNL(); 2150 2151 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2152 rxq); 2153 if (rc) 2154 return rc; 2155 } 2156 2157 dev->real_num_rx_queues = rxq; 2158 return 0; 2159 } 2160 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2161 #endif 2162 2163 /** 2164 * netif_get_num_default_rss_queues - default number of RSS queues 2165 * 2166 * This routine should set an upper limit on the number of RSS queues 2167 * used by default by multiqueue devices. 2168 */ 2169 int netif_get_num_default_rss_queues(void) 2170 { 2171 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2172 } 2173 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2174 2175 static inline void __netif_reschedule(struct Qdisc *q) 2176 { 2177 struct softnet_data *sd; 2178 unsigned long flags; 2179 2180 local_irq_save(flags); 2181 sd = this_cpu_ptr(&softnet_data); 2182 q->next_sched = NULL; 2183 *sd->output_queue_tailp = q; 2184 sd->output_queue_tailp = &q->next_sched; 2185 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2186 local_irq_restore(flags); 2187 } 2188 2189 void __netif_schedule(struct Qdisc *q) 2190 { 2191 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2192 __netif_reschedule(q); 2193 } 2194 EXPORT_SYMBOL(__netif_schedule); 2195 2196 struct dev_kfree_skb_cb { 2197 enum skb_free_reason reason; 2198 }; 2199 2200 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2201 { 2202 return (struct dev_kfree_skb_cb *)skb->cb; 2203 } 2204 2205 void netif_schedule_queue(struct netdev_queue *txq) 2206 { 2207 rcu_read_lock(); 2208 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2209 struct Qdisc *q = rcu_dereference(txq->qdisc); 2210 2211 __netif_schedule(q); 2212 } 2213 rcu_read_unlock(); 2214 } 2215 EXPORT_SYMBOL(netif_schedule_queue); 2216 2217 /** 2218 * netif_wake_subqueue - allow sending packets on subqueue 2219 * @dev: network device 2220 * @queue_index: sub queue index 2221 * 2222 * Resume individual transmit queue of a device with multiple transmit queues. 2223 */ 2224 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2225 { 2226 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2227 2228 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2229 struct Qdisc *q; 2230 2231 rcu_read_lock(); 2232 q = rcu_dereference(txq->qdisc); 2233 __netif_schedule(q); 2234 rcu_read_unlock(); 2235 } 2236 } 2237 EXPORT_SYMBOL(netif_wake_subqueue); 2238 2239 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2240 { 2241 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2242 struct Qdisc *q; 2243 2244 rcu_read_lock(); 2245 q = rcu_dereference(dev_queue->qdisc); 2246 __netif_schedule(q); 2247 rcu_read_unlock(); 2248 } 2249 } 2250 EXPORT_SYMBOL(netif_tx_wake_queue); 2251 2252 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2253 { 2254 unsigned long flags; 2255 2256 if (likely(atomic_read(&skb->users) == 1)) { 2257 smp_rmb(); 2258 atomic_set(&skb->users, 0); 2259 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2260 return; 2261 } 2262 get_kfree_skb_cb(skb)->reason = reason; 2263 local_irq_save(flags); 2264 skb->next = __this_cpu_read(softnet_data.completion_queue); 2265 __this_cpu_write(softnet_data.completion_queue, skb); 2266 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2267 local_irq_restore(flags); 2268 } 2269 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2270 2271 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2272 { 2273 if (in_irq() || irqs_disabled()) 2274 __dev_kfree_skb_irq(skb, reason); 2275 else 2276 dev_kfree_skb(skb); 2277 } 2278 EXPORT_SYMBOL(__dev_kfree_skb_any); 2279 2280 2281 /** 2282 * netif_device_detach - mark device as removed 2283 * @dev: network device 2284 * 2285 * Mark device as removed from system and therefore no longer available. 2286 */ 2287 void netif_device_detach(struct net_device *dev) 2288 { 2289 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2290 netif_running(dev)) { 2291 netif_tx_stop_all_queues(dev); 2292 } 2293 } 2294 EXPORT_SYMBOL(netif_device_detach); 2295 2296 /** 2297 * netif_device_attach - mark device as attached 2298 * @dev: network device 2299 * 2300 * Mark device as attached from system and restart if needed. 2301 */ 2302 void netif_device_attach(struct net_device *dev) 2303 { 2304 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2305 netif_running(dev)) { 2306 netif_tx_wake_all_queues(dev); 2307 __netdev_watchdog_up(dev); 2308 } 2309 } 2310 EXPORT_SYMBOL(netif_device_attach); 2311 2312 static void skb_warn_bad_offload(const struct sk_buff *skb) 2313 { 2314 static const netdev_features_t null_features = 0; 2315 struct net_device *dev = skb->dev; 2316 const char *driver = ""; 2317 2318 if (!net_ratelimit()) 2319 return; 2320 2321 if (dev && dev->dev.parent) 2322 driver = dev_driver_string(dev->dev.parent); 2323 2324 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2325 "gso_type=%d ip_summed=%d\n", 2326 driver, dev ? &dev->features : &null_features, 2327 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2328 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2329 skb_shinfo(skb)->gso_type, skb->ip_summed); 2330 } 2331 2332 /* 2333 * Invalidate hardware checksum when packet is to be mangled, and 2334 * complete checksum manually on outgoing path. 2335 */ 2336 int skb_checksum_help(struct sk_buff *skb) 2337 { 2338 __wsum csum; 2339 int ret = 0, offset; 2340 2341 if (skb->ip_summed == CHECKSUM_COMPLETE) 2342 goto out_set_summed; 2343 2344 if (unlikely(skb_shinfo(skb)->gso_size)) { 2345 skb_warn_bad_offload(skb); 2346 return -EINVAL; 2347 } 2348 2349 /* Before computing a checksum, we should make sure no frag could 2350 * be modified by an external entity : checksum could be wrong. 2351 */ 2352 if (skb_has_shared_frag(skb)) { 2353 ret = __skb_linearize(skb); 2354 if (ret) 2355 goto out; 2356 } 2357 2358 offset = skb_checksum_start_offset(skb); 2359 BUG_ON(offset >= skb_headlen(skb)); 2360 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2361 2362 offset += skb->csum_offset; 2363 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2364 2365 if (skb_cloned(skb) && 2366 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2367 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2368 if (ret) 2369 goto out; 2370 } 2371 2372 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2373 out_set_summed: 2374 skb->ip_summed = CHECKSUM_NONE; 2375 out: 2376 return ret; 2377 } 2378 EXPORT_SYMBOL(skb_checksum_help); 2379 2380 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2381 { 2382 __be16 type = skb->protocol; 2383 2384 /* Tunnel gso handlers can set protocol to ethernet. */ 2385 if (type == htons(ETH_P_TEB)) { 2386 struct ethhdr *eth; 2387 2388 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2389 return 0; 2390 2391 eth = (struct ethhdr *)skb_mac_header(skb); 2392 type = eth->h_proto; 2393 } 2394 2395 return __vlan_get_protocol(skb, type, depth); 2396 } 2397 2398 /** 2399 * skb_mac_gso_segment - mac layer segmentation handler. 2400 * @skb: buffer to segment 2401 * @features: features for the output path (see dev->features) 2402 */ 2403 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2404 netdev_features_t features) 2405 { 2406 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2407 struct packet_offload *ptype; 2408 int vlan_depth = skb->mac_len; 2409 __be16 type = skb_network_protocol(skb, &vlan_depth); 2410 2411 if (unlikely(!type)) 2412 return ERR_PTR(-EINVAL); 2413 2414 __skb_pull(skb, vlan_depth); 2415 2416 rcu_read_lock(); 2417 list_for_each_entry_rcu(ptype, &offload_base, list) { 2418 if (ptype->type == type && ptype->callbacks.gso_segment) { 2419 segs = ptype->callbacks.gso_segment(skb, features); 2420 break; 2421 } 2422 } 2423 rcu_read_unlock(); 2424 2425 __skb_push(skb, skb->data - skb_mac_header(skb)); 2426 2427 return segs; 2428 } 2429 EXPORT_SYMBOL(skb_mac_gso_segment); 2430 2431 2432 /* openvswitch calls this on rx path, so we need a different check. 2433 */ 2434 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2435 { 2436 if (tx_path) 2437 return skb->ip_summed != CHECKSUM_PARTIAL; 2438 else 2439 return skb->ip_summed == CHECKSUM_NONE; 2440 } 2441 2442 /** 2443 * __skb_gso_segment - Perform segmentation on skb. 2444 * @skb: buffer to segment 2445 * @features: features for the output path (see dev->features) 2446 * @tx_path: whether it is called in TX path 2447 * 2448 * This function segments the given skb and returns a list of segments. 2449 * 2450 * It may return NULL if the skb requires no segmentation. This is 2451 * only possible when GSO is used for verifying header integrity. 2452 */ 2453 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2454 netdev_features_t features, bool tx_path) 2455 { 2456 if (unlikely(skb_needs_check(skb, tx_path))) { 2457 int err; 2458 2459 skb_warn_bad_offload(skb); 2460 2461 err = skb_cow_head(skb, 0); 2462 if (err < 0) 2463 return ERR_PTR(err); 2464 } 2465 2466 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2467 SKB_GSO_CB(skb)->encap_level = 0; 2468 2469 skb_reset_mac_header(skb); 2470 skb_reset_mac_len(skb); 2471 2472 return skb_mac_gso_segment(skb, features); 2473 } 2474 EXPORT_SYMBOL(__skb_gso_segment); 2475 2476 /* Take action when hardware reception checksum errors are detected. */ 2477 #ifdef CONFIG_BUG 2478 void netdev_rx_csum_fault(struct net_device *dev) 2479 { 2480 if (net_ratelimit()) { 2481 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2482 dump_stack(); 2483 } 2484 } 2485 EXPORT_SYMBOL(netdev_rx_csum_fault); 2486 #endif 2487 2488 /* Actually, we should eliminate this check as soon as we know, that: 2489 * 1. IOMMU is present and allows to map all the memory. 2490 * 2. No high memory really exists on this machine. 2491 */ 2492 2493 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2494 { 2495 #ifdef CONFIG_HIGHMEM 2496 int i; 2497 if (!(dev->features & NETIF_F_HIGHDMA)) { 2498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2499 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2500 if (PageHighMem(skb_frag_page(frag))) 2501 return 1; 2502 } 2503 } 2504 2505 if (PCI_DMA_BUS_IS_PHYS) { 2506 struct device *pdev = dev->dev.parent; 2507 2508 if (!pdev) 2509 return 0; 2510 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2511 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2512 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2513 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2514 return 1; 2515 } 2516 } 2517 #endif 2518 return 0; 2519 } 2520 2521 /* If MPLS offload request, verify we are testing hardware MPLS features 2522 * instead of standard features for the netdev. 2523 */ 2524 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2525 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2526 netdev_features_t features, 2527 __be16 type) 2528 { 2529 if (eth_p_mpls(type)) 2530 features &= skb->dev->mpls_features; 2531 2532 return features; 2533 } 2534 #else 2535 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2536 netdev_features_t features, 2537 __be16 type) 2538 { 2539 return features; 2540 } 2541 #endif 2542 2543 static netdev_features_t harmonize_features(struct sk_buff *skb, 2544 netdev_features_t features) 2545 { 2546 int tmp; 2547 __be16 type; 2548 2549 type = skb_network_protocol(skb, &tmp); 2550 features = net_mpls_features(skb, features, type); 2551 2552 if (skb->ip_summed != CHECKSUM_NONE && 2553 !can_checksum_protocol(features, type)) { 2554 features &= ~NETIF_F_ALL_CSUM; 2555 } else if (illegal_highdma(skb->dev, skb)) { 2556 features &= ~NETIF_F_SG; 2557 } 2558 2559 return features; 2560 } 2561 2562 netdev_features_t netif_skb_features(struct sk_buff *skb) 2563 { 2564 struct net_device *dev = skb->dev; 2565 netdev_features_t features = dev->features; 2566 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2567 __be16 protocol = skb->protocol; 2568 2569 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2570 features &= ~NETIF_F_GSO_MASK; 2571 2572 /* If encapsulation offload request, verify we are testing 2573 * hardware encapsulation features instead of standard 2574 * features for the netdev 2575 */ 2576 if (skb->encapsulation) 2577 features &= dev->hw_enc_features; 2578 2579 if (!skb_vlan_tag_present(skb)) { 2580 if (unlikely(protocol == htons(ETH_P_8021Q) || 2581 protocol == htons(ETH_P_8021AD))) { 2582 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2583 protocol = veh->h_vlan_encapsulated_proto; 2584 } else { 2585 goto finalize; 2586 } 2587 } 2588 2589 features = netdev_intersect_features(features, 2590 dev->vlan_features | 2591 NETIF_F_HW_VLAN_CTAG_TX | 2592 NETIF_F_HW_VLAN_STAG_TX); 2593 2594 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2595 features = netdev_intersect_features(features, 2596 NETIF_F_SG | 2597 NETIF_F_HIGHDMA | 2598 NETIF_F_FRAGLIST | 2599 NETIF_F_GEN_CSUM | 2600 NETIF_F_HW_VLAN_CTAG_TX | 2601 NETIF_F_HW_VLAN_STAG_TX); 2602 2603 finalize: 2604 if (dev->netdev_ops->ndo_features_check) 2605 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2606 features); 2607 2608 return harmonize_features(skb, features); 2609 } 2610 EXPORT_SYMBOL(netif_skb_features); 2611 2612 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2613 struct netdev_queue *txq, bool more) 2614 { 2615 unsigned int len; 2616 int rc; 2617 2618 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2619 dev_queue_xmit_nit(skb, dev); 2620 2621 len = skb->len; 2622 trace_net_dev_start_xmit(skb, dev); 2623 rc = netdev_start_xmit(skb, dev, txq, more); 2624 trace_net_dev_xmit(skb, rc, dev, len); 2625 2626 return rc; 2627 } 2628 2629 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2630 struct netdev_queue *txq, int *ret) 2631 { 2632 struct sk_buff *skb = first; 2633 int rc = NETDEV_TX_OK; 2634 2635 while (skb) { 2636 struct sk_buff *next = skb->next; 2637 2638 skb->next = NULL; 2639 rc = xmit_one(skb, dev, txq, next != NULL); 2640 if (unlikely(!dev_xmit_complete(rc))) { 2641 skb->next = next; 2642 goto out; 2643 } 2644 2645 skb = next; 2646 if (netif_xmit_stopped(txq) && skb) { 2647 rc = NETDEV_TX_BUSY; 2648 break; 2649 } 2650 } 2651 2652 out: 2653 *ret = rc; 2654 return skb; 2655 } 2656 2657 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2658 netdev_features_t features) 2659 { 2660 if (skb_vlan_tag_present(skb) && 2661 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2662 skb = __vlan_hwaccel_push_inside(skb); 2663 return skb; 2664 } 2665 2666 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2667 { 2668 netdev_features_t features; 2669 2670 if (skb->next) 2671 return skb; 2672 2673 features = netif_skb_features(skb); 2674 skb = validate_xmit_vlan(skb, features); 2675 if (unlikely(!skb)) 2676 goto out_null; 2677 2678 if (netif_needs_gso(dev, skb, features)) { 2679 struct sk_buff *segs; 2680 2681 segs = skb_gso_segment(skb, features); 2682 if (IS_ERR(segs)) { 2683 goto out_kfree_skb; 2684 } else if (segs) { 2685 consume_skb(skb); 2686 skb = segs; 2687 } 2688 } else { 2689 if (skb_needs_linearize(skb, features) && 2690 __skb_linearize(skb)) 2691 goto out_kfree_skb; 2692 2693 /* If packet is not checksummed and device does not 2694 * support checksumming for this protocol, complete 2695 * checksumming here. 2696 */ 2697 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2698 if (skb->encapsulation) 2699 skb_set_inner_transport_header(skb, 2700 skb_checksum_start_offset(skb)); 2701 else 2702 skb_set_transport_header(skb, 2703 skb_checksum_start_offset(skb)); 2704 if (!(features & NETIF_F_ALL_CSUM) && 2705 skb_checksum_help(skb)) 2706 goto out_kfree_skb; 2707 } 2708 } 2709 2710 return skb; 2711 2712 out_kfree_skb: 2713 kfree_skb(skb); 2714 out_null: 2715 return NULL; 2716 } 2717 2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2719 { 2720 struct sk_buff *next, *head = NULL, *tail; 2721 2722 for (; skb != NULL; skb = next) { 2723 next = skb->next; 2724 skb->next = NULL; 2725 2726 /* in case skb wont be segmented, point to itself */ 2727 skb->prev = skb; 2728 2729 skb = validate_xmit_skb(skb, dev); 2730 if (!skb) 2731 continue; 2732 2733 if (!head) 2734 head = skb; 2735 else 2736 tail->next = skb; 2737 /* If skb was segmented, skb->prev points to 2738 * the last segment. If not, it still contains skb. 2739 */ 2740 tail = skb->prev; 2741 } 2742 return head; 2743 } 2744 2745 static void qdisc_pkt_len_init(struct sk_buff *skb) 2746 { 2747 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2748 2749 qdisc_skb_cb(skb)->pkt_len = skb->len; 2750 2751 /* To get more precise estimation of bytes sent on wire, 2752 * we add to pkt_len the headers size of all segments 2753 */ 2754 if (shinfo->gso_size) { 2755 unsigned int hdr_len; 2756 u16 gso_segs = shinfo->gso_segs; 2757 2758 /* mac layer + network layer */ 2759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2760 2761 /* + transport layer */ 2762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2763 hdr_len += tcp_hdrlen(skb); 2764 else 2765 hdr_len += sizeof(struct udphdr); 2766 2767 if (shinfo->gso_type & SKB_GSO_DODGY) 2768 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2769 shinfo->gso_size); 2770 2771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2772 } 2773 } 2774 2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2776 struct net_device *dev, 2777 struct netdev_queue *txq) 2778 { 2779 spinlock_t *root_lock = qdisc_lock(q); 2780 bool contended; 2781 int rc; 2782 2783 qdisc_pkt_len_init(skb); 2784 qdisc_calculate_pkt_len(skb, q); 2785 /* 2786 * Heuristic to force contended enqueues to serialize on a 2787 * separate lock before trying to get qdisc main lock. 2788 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2789 * often and dequeue packets faster. 2790 */ 2791 contended = qdisc_is_running(q); 2792 if (unlikely(contended)) 2793 spin_lock(&q->busylock); 2794 2795 spin_lock(root_lock); 2796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2797 kfree_skb(skb); 2798 rc = NET_XMIT_DROP; 2799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2800 qdisc_run_begin(q)) { 2801 /* 2802 * This is a work-conserving queue; there are no old skbs 2803 * waiting to be sent out; and the qdisc is not running - 2804 * xmit the skb directly. 2805 */ 2806 2807 qdisc_bstats_update(q, skb); 2808 2809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2810 if (unlikely(contended)) { 2811 spin_unlock(&q->busylock); 2812 contended = false; 2813 } 2814 __qdisc_run(q); 2815 } else 2816 qdisc_run_end(q); 2817 2818 rc = NET_XMIT_SUCCESS; 2819 } else { 2820 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2821 if (qdisc_run_begin(q)) { 2822 if (unlikely(contended)) { 2823 spin_unlock(&q->busylock); 2824 contended = false; 2825 } 2826 __qdisc_run(q); 2827 } 2828 } 2829 spin_unlock(root_lock); 2830 if (unlikely(contended)) 2831 spin_unlock(&q->busylock); 2832 return rc; 2833 } 2834 2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2836 static void skb_update_prio(struct sk_buff *skb) 2837 { 2838 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2839 2840 if (!skb->priority && skb->sk && map) { 2841 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2842 2843 if (prioidx < map->priomap_len) 2844 skb->priority = map->priomap[prioidx]; 2845 } 2846 } 2847 #else 2848 #define skb_update_prio(skb) 2849 #endif 2850 2851 static DEFINE_PER_CPU(int, xmit_recursion); 2852 #define RECURSION_LIMIT 10 2853 2854 /** 2855 * dev_loopback_xmit - loop back @skb 2856 * @skb: buffer to transmit 2857 */ 2858 int dev_loopback_xmit(struct sk_buff *skb) 2859 { 2860 skb_reset_mac_header(skb); 2861 __skb_pull(skb, skb_network_offset(skb)); 2862 skb->pkt_type = PACKET_LOOPBACK; 2863 skb->ip_summed = CHECKSUM_UNNECESSARY; 2864 WARN_ON(!skb_dst(skb)); 2865 skb_dst_force(skb); 2866 netif_rx_ni(skb); 2867 return 0; 2868 } 2869 EXPORT_SYMBOL(dev_loopback_xmit); 2870 2871 /** 2872 * __dev_queue_xmit - transmit a buffer 2873 * @skb: buffer to transmit 2874 * @accel_priv: private data used for L2 forwarding offload 2875 * 2876 * Queue a buffer for transmission to a network device. The caller must 2877 * have set the device and priority and built the buffer before calling 2878 * this function. The function can be called from an interrupt. 2879 * 2880 * A negative errno code is returned on a failure. A success does not 2881 * guarantee the frame will be transmitted as it may be dropped due 2882 * to congestion or traffic shaping. 2883 * 2884 * ----------------------------------------------------------------------------------- 2885 * I notice this method can also return errors from the queue disciplines, 2886 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2887 * be positive. 2888 * 2889 * Regardless of the return value, the skb is consumed, so it is currently 2890 * difficult to retry a send to this method. (You can bump the ref count 2891 * before sending to hold a reference for retry if you are careful.) 2892 * 2893 * When calling this method, interrupts MUST be enabled. This is because 2894 * the BH enable code must have IRQs enabled so that it will not deadlock. 2895 * --BLG 2896 */ 2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2898 { 2899 struct net_device *dev = skb->dev; 2900 struct netdev_queue *txq; 2901 struct Qdisc *q; 2902 int rc = -ENOMEM; 2903 2904 skb_reset_mac_header(skb); 2905 2906 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2907 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2908 2909 /* Disable soft irqs for various locks below. Also 2910 * stops preemption for RCU. 2911 */ 2912 rcu_read_lock_bh(); 2913 2914 skb_update_prio(skb); 2915 2916 /* If device/qdisc don't need skb->dst, release it right now while 2917 * its hot in this cpu cache. 2918 */ 2919 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2920 skb_dst_drop(skb); 2921 else 2922 skb_dst_force(skb); 2923 2924 txq = netdev_pick_tx(dev, skb, accel_priv); 2925 q = rcu_dereference_bh(txq->qdisc); 2926 2927 #ifdef CONFIG_NET_CLS_ACT 2928 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2929 #endif 2930 trace_net_dev_queue(skb); 2931 if (q->enqueue) { 2932 rc = __dev_xmit_skb(skb, q, dev, txq); 2933 goto out; 2934 } 2935 2936 /* The device has no queue. Common case for software devices: 2937 loopback, all the sorts of tunnels... 2938 2939 Really, it is unlikely that netif_tx_lock protection is necessary 2940 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2941 counters.) 2942 However, it is possible, that they rely on protection 2943 made by us here. 2944 2945 Check this and shot the lock. It is not prone from deadlocks. 2946 Either shot noqueue qdisc, it is even simpler 8) 2947 */ 2948 if (dev->flags & IFF_UP) { 2949 int cpu = smp_processor_id(); /* ok because BHs are off */ 2950 2951 if (txq->xmit_lock_owner != cpu) { 2952 2953 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2954 goto recursion_alert; 2955 2956 skb = validate_xmit_skb(skb, dev); 2957 if (!skb) 2958 goto drop; 2959 2960 HARD_TX_LOCK(dev, txq, cpu); 2961 2962 if (!netif_xmit_stopped(txq)) { 2963 __this_cpu_inc(xmit_recursion); 2964 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 2965 __this_cpu_dec(xmit_recursion); 2966 if (dev_xmit_complete(rc)) { 2967 HARD_TX_UNLOCK(dev, txq); 2968 goto out; 2969 } 2970 } 2971 HARD_TX_UNLOCK(dev, txq); 2972 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2973 dev->name); 2974 } else { 2975 /* Recursion is detected! It is possible, 2976 * unfortunately 2977 */ 2978 recursion_alert: 2979 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2980 dev->name); 2981 } 2982 } 2983 2984 rc = -ENETDOWN; 2985 drop: 2986 rcu_read_unlock_bh(); 2987 2988 atomic_long_inc(&dev->tx_dropped); 2989 kfree_skb_list(skb); 2990 return rc; 2991 out: 2992 rcu_read_unlock_bh(); 2993 return rc; 2994 } 2995 2996 int dev_queue_xmit(struct sk_buff *skb) 2997 { 2998 return __dev_queue_xmit(skb, NULL); 2999 } 3000 EXPORT_SYMBOL(dev_queue_xmit); 3001 3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3003 { 3004 return __dev_queue_xmit(skb, accel_priv); 3005 } 3006 EXPORT_SYMBOL(dev_queue_xmit_accel); 3007 3008 3009 /*======================================================================= 3010 Receiver routines 3011 =======================================================================*/ 3012 3013 int netdev_max_backlog __read_mostly = 1000; 3014 EXPORT_SYMBOL(netdev_max_backlog); 3015 3016 int netdev_tstamp_prequeue __read_mostly = 1; 3017 int netdev_budget __read_mostly = 300; 3018 int weight_p __read_mostly = 64; /* old backlog weight */ 3019 3020 /* Called with irq disabled */ 3021 static inline void ____napi_schedule(struct softnet_data *sd, 3022 struct napi_struct *napi) 3023 { 3024 list_add_tail(&napi->poll_list, &sd->poll_list); 3025 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3026 } 3027 3028 #ifdef CONFIG_RPS 3029 3030 /* One global table that all flow-based protocols share. */ 3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3032 EXPORT_SYMBOL(rps_sock_flow_table); 3033 u32 rps_cpu_mask __read_mostly; 3034 EXPORT_SYMBOL(rps_cpu_mask); 3035 3036 struct static_key rps_needed __read_mostly; 3037 3038 static struct rps_dev_flow * 3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3040 struct rps_dev_flow *rflow, u16 next_cpu) 3041 { 3042 if (next_cpu != RPS_NO_CPU) { 3043 #ifdef CONFIG_RFS_ACCEL 3044 struct netdev_rx_queue *rxqueue; 3045 struct rps_dev_flow_table *flow_table; 3046 struct rps_dev_flow *old_rflow; 3047 u32 flow_id; 3048 u16 rxq_index; 3049 int rc; 3050 3051 /* Should we steer this flow to a different hardware queue? */ 3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3053 !(dev->features & NETIF_F_NTUPLE)) 3054 goto out; 3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3056 if (rxq_index == skb_get_rx_queue(skb)) 3057 goto out; 3058 3059 rxqueue = dev->_rx + rxq_index; 3060 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3061 if (!flow_table) 3062 goto out; 3063 flow_id = skb_get_hash(skb) & flow_table->mask; 3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3065 rxq_index, flow_id); 3066 if (rc < 0) 3067 goto out; 3068 old_rflow = rflow; 3069 rflow = &flow_table->flows[flow_id]; 3070 rflow->filter = rc; 3071 if (old_rflow->filter == rflow->filter) 3072 old_rflow->filter = RPS_NO_FILTER; 3073 out: 3074 #endif 3075 rflow->last_qtail = 3076 per_cpu(softnet_data, next_cpu).input_queue_head; 3077 } 3078 3079 rflow->cpu = next_cpu; 3080 return rflow; 3081 } 3082 3083 /* 3084 * get_rps_cpu is called from netif_receive_skb and returns the target 3085 * CPU from the RPS map of the receiving queue for a given skb. 3086 * rcu_read_lock must be held on entry. 3087 */ 3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3089 struct rps_dev_flow **rflowp) 3090 { 3091 const struct rps_sock_flow_table *sock_flow_table; 3092 struct netdev_rx_queue *rxqueue = dev->_rx; 3093 struct rps_dev_flow_table *flow_table; 3094 struct rps_map *map; 3095 int cpu = -1; 3096 u32 tcpu; 3097 u32 hash; 3098 3099 if (skb_rx_queue_recorded(skb)) { 3100 u16 index = skb_get_rx_queue(skb); 3101 3102 if (unlikely(index >= dev->real_num_rx_queues)) { 3103 WARN_ONCE(dev->real_num_rx_queues > 1, 3104 "%s received packet on queue %u, but number " 3105 "of RX queues is %u\n", 3106 dev->name, index, dev->real_num_rx_queues); 3107 goto done; 3108 } 3109 rxqueue += index; 3110 } 3111 3112 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3113 3114 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3115 map = rcu_dereference(rxqueue->rps_map); 3116 if (!flow_table && !map) 3117 goto done; 3118 3119 skb_reset_network_header(skb); 3120 hash = skb_get_hash(skb); 3121 if (!hash) 3122 goto done; 3123 3124 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3125 if (flow_table && sock_flow_table) { 3126 struct rps_dev_flow *rflow; 3127 u32 next_cpu; 3128 u32 ident; 3129 3130 /* First check into global flow table if there is a match */ 3131 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3132 if ((ident ^ hash) & ~rps_cpu_mask) 3133 goto try_rps; 3134 3135 next_cpu = ident & rps_cpu_mask; 3136 3137 /* OK, now we know there is a match, 3138 * we can look at the local (per receive queue) flow table 3139 */ 3140 rflow = &flow_table->flows[hash & flow_table->mask]; 3141 tcpu = rflow->cpu; 3142 3143 /* 3144 * If the desired CPU (where last recvmsg was done) is 3145 * different from current CPU (one in the rx-queue flow 3146 * table entry), switch if one of the following holds: 3147 * - Current CPU is unset (equal to RPS_NO_CPU). 3148 * - Current CPU is offline. 3149 * - The current CPU's queue tail has advanced beyond the 3150 * last packet that was enqueued using this table entry. 3151 * This guarantees that all previous packets for the flow 3152 * have been dequeued, thus preserving in order delivery. 3153 */ 3154 if (unlikely(tcpu != next_cpu) && 3155 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3156 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3157 rflow->last_qtail)) >= 0)) { 3158 tcpu = next_cpu; 3159 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3160 } 3161 3162 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3163 *rflowp = rflow; 3164 cpu = tcpu; 3165 goto done; 3166 } 3167 } 3168 3169 try_rps: 3170 3171 if (map) { 3172 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3173 if (cpu_online(tcpu)) { 3174 cpu = tcpu; 3175 goto done; 3176 } 3177 } 3178 3179 done: 3180 return cpu; 3181 } 3182 3183 #ifdef CONFIG_RFS_ACCEL 3184 3185 /** 3186 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3187 * @dev: Device on which the filter was set 3188 * @rxq_index: RX queue index 3189 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3190 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3191 * 3192 * Drivers that implement ndo_rx_flow_steer() should periodically call 3193 * this function for each installed filter and remove the filters for 3194 * which it returns %true. 3195 */ 3196 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3197 u32 flow_id, u16 filter_id) 3198 { 3199 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3200 struct rps_dev_flow_table *flow_table; 3201 struct rps_dev_flow *rflow; 3202 bool expire = true; 3203 int cpu; 3204 3205 rcu_read_lock(); 3206 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3207 if (flow_table && flow_id <= flow_table->mask) { 3208 rflow = &flow_table->flows[flow_id]; 3209 cpu = ACCESS_ONCE(rflow->cpu); 3210 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3211 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3212 rflow->last_qtail) < 3213 (int)(10 * flow_table->mask))) 3214 expire = false; 3215 } 3216 rcu_read_unlock(); 3217 return expire; 3218 } 3219 EXPORT_SYMBOL(rps_may_expire_flow); 3220 3221 #endif /* CONFIG_RFS_ACCEL */ 3222 3223 /* Called from hardirq (IPI) context */ 3224 static void rps_trigger_softirq(void *data) 3225 { 3226 struct softnet_data *sd = data; 3227 3228 ____napi_schedule(sd, &sd->backlog); 3229 sd->received_rps++; 3230 } 3231 3232 #endif /* CONFIG_RPS */ 3233 3234 /* 3235 * Check if this softnet_data structure is another cpu one 3236 * If yes, queue it to our IPI list and return 1 3237 * If no, return 0 3238 */ 3239 static int rps_ipi_queued(struct softnet_data *sd) 3240 { 3241 #ifdef CONFIG_RPS 3242 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3243 3244 if (sd != mysd) { 3245 sd->rps_ipi_next = mysd->rps_ipi_list; 3246 mysd->rps_ipi_list = sd; 3247 3248 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3249 return 1; 3250 } 3251 #endif /* CONFIG_RPS */ 3252 return 0; 3253 } 3254 3255 #ifdef CONFIG_NET_FLOW_LIMIT 3256 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3257 #endif 3258 3259 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3260 { 3261 #ifdef CONFIG_NET_FLOW_LIMIT 3262 struct sd_flow_limit *fl; 3263 struct softnet_data *sd; 3264 unsigned int old_flow, new_flow; 3265 3266 if (qlen < (netdev_max_backlog >> 1)) 3267 return false; 3268 3269 sd = this_cpu_ptr(&softnet_data); 3270 3271 rcu_read_lock(); 3272 fl = rcu_dereference(sd->flow_limit); 3273 if (fl) { 3274 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3275 old_flow = fl->history[fl->history_head]; 3276 fl->history[fl->history_head] = new_flow; 3277 3278 fl->history_head++; 3279 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3280 3281 if (likely(fl->buckets[old_flow])) 3282 fl->buckets[old_flow]--; 3283 3284 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3285 fl->count++; 3286 rcu_read_unlock(); 3287 return true; 3288 } 3289 } 3290 rcu_read_unlock(); 3291 #endif 3292 return false; 3293 } 3294 3295 /* 3296 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3297 * queue (may be a remote CPU queue). 3298 */ 3299 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3300 unsigned int *qtail) 3301 { 3302 struct softnet_data *sd; 3303 unsigned long flags; 3304 unsigned int qlen; 3305 3306 sd = &per_cpu(softnet_data, cpu); 3307 3308 local_irq_save(flags); 3309 3310 rps_lock(sd); 3311 qlen = skb_queue_len(&sd->input_pkt_queue); 3312 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3313 if (qlen) { 3314 enqueue: 3315 __skb_queue_tail(&sd->input_pkt_queue, skb); 3316 input_queue_tail_incr_save(sd, qtail); 3317 rps_unlock(sd); 3318 local_irq_restore(flags); 3319 return NET_RX_SUCCESS; 3320 } 3321 3322 /* Schedule NAPI for backlog device 3323 * We can use non atomic operation since we own the queue lock 3324 */ 3325 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3326 if (!rps_ipi_queued(sd)) 3327 ____napi_schedule(sd, &sd->backlog); 3328 } 3329 goto enqueue; 3330 } 3331 3332 sd->dropped++; 3333 rps_unlock(sd); 3334 3335 local_irq_restore(flags); 3336 3337 atomic_long_inc(&skb->dev->rx_dropped); 3338 kfree_skb(skb); 3339 return NET_RX_DROP; 3340 } 3341 3342 static int netif_rx_internal(struct sk_buff *skb) 3343 { 3344 int ret; 3345 3346 net_timestamp_check(netdev_tstamp_prequeue, skb); 3347 3348 trace_netif_rx(skb); 3349 #ifdef CONFIG_RPS 3350 if (static_key_false(&rps_needed)) { 3351 struct rps_dev_flow voidflow, *rflow = &voidflow; 3352 int cpu; 3353 3354 preempt_disable(); 3355 rcu_read_lock(); 3356 3357 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3358 if (cpu < 0) 3359 cpu = smp_processor_id(); 3360 3361 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3362 3363 rcu_read_unlock(); 3364 preempt_enable(); 3365 } else 3366 #endif 3367 { 3368 unsigned int qtail; 3369 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3370 put_cpu(); 3371 } 3372 return ret; 3373 } 3374 3375 /** 3376 * netif_rx - post buffer to the network code 3377 * @skb: buffer to post 3378 * 3379 * This function receives a packet from a device driver and queues it for 3380 * the upper (protocol) levels to process. It always succeeds. The buffer 3381 * may be dropped during processing for congestion control or by the 3382 * protocol layers. 3383 * 3384 * return values: 3385 * NET_RX_SUCCESS (no congestion) 3386 * NET_RX_DROP (packet was dropped) 3387 * 3388 */ 3389 3390 int netif_rx(struct sk_buff *skb) 3391 { 3392 trace_netif_rx_entry(skb); 3393 3394 return netif_rx_internal(skb); 3395 } 3396 EXPORT_SYMBOL(netif_rx); 3397 3398 int netif_rx_ni(struct sk_buff *skb) 3399 { 3400 int err; 3401 3402 trace_netif_rx_ni_entry(skb); 3403 3404 preempt_disable(); 3405 err = netif_rx_internal(skb); 3406 if (local_softirq_pending()) 3407 do_softirq(); 3408 preempt_enable(); 3409 3410 return err; 3411 } 3412 EXPORT_SYMBOL(netif_rx_ni); 3413 3414 static void net_tx_action(struct softirq_action *h) 3415 { 3416 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3417 3418 if (sd->completion_queue) { 3419 struct sk_buff *clist; 3420 3421 local_irq_disable(); 3422 clist = sd->completion_queue; 3423 sd->completion_queue = NULL; 3424 local_irq_enable(); 3425 3426 while (clist) { 3427 struct sk_buff *skb = clist; 3428 clist = clist->next; 3429 3430 WARN_ON(atomic_read(&skb->users)); 3431 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3432 trace_consume_skb(skb); 3433 else 3434 trace_kfree_skb(skb, net_tx_action); 3435 __kfree_skb(skb); 3436 } 3437 } 3438 3439 if (sd->output_queue) { 3440 struct Qdisc *head; 3441 3442 local_irq_disable(); 3443 head = sd->output_queue; 3444 sd->output_queue = NULL; 3445 sd->output_queue_tailp = &sd->output_queue; 3446 local_irq_enable(); 3447 3448 while (head) { 3449 struct Qdisc *q = head; 3450 spinlock_t *root_lock; 3451 3452 head = head->next_sched; 3453 3454 root_lock = qdisc_lock(q); 3455 if (spin_trylock(root_lock)) { 3456 smp_mb__before_atomic(); 3457 clear_bit(__QDISC_STATE_SCHED, 3458 &q->state); 3459 qdisc_run(q); 3460 spin_unlock(root_lock); 3461 } else { 3462 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3463 &q->state)) { 3464 __netif_reschedule(q); 3465 } else { 3466 smp_mb__before_atomic(); 3467 clear_bit(__QDISC_STATE_SCHED, 3468 &q->state); 3469 } 3470 } 3471 } 3472 } 3473 } 3474 3475 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3476 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3477 /* This hook is defined here for ATM LANE */ 3478 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3479 unsigned char *addr) __read_mostly; 3480 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3481 #endif 3482 3483 #ifdef CONFIG_NET_CLS_ACT 3484 /* TODO: Maybe we should just force sch_ingress to be compiled in 3485 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3486 * a compare and 2 stores extra right now if we dont have it on 3487 * but have CONFIG_NET_CLS_ACT 3488 * NOTE: This doesn't stop any functionality; if you dont have 3489 * the ingress scheduler, you just can't add policies on ingress. 3490 * 3491 */ 3492 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3493 { 3494 struct net_device *dev = skb->dev; 3495 u32 ttl = G_TC_RTTL(skb->tc_verd); 3496 int result = TC_ACT_OK; 3497 struct Qdisc *q; 3498 3499 if (unlikely(MAX_RED_LOOP < ttl++)) { 3500 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3501 skb->skb_iif, dev->ifindex); 3502 return TC_ACT_SHOT; 3503 } 3504 3505 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3506 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3507 3508 q = rcu_dereference(rxq->qdisc); 3509 if (q != &noop_qdisc) { 3510 spin_lock(qdisc_lock(q)); 3511 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3512 result = qdisc_enqueue_root(skb, q); 3513 spin_unlock(qdisc_lock(q)); 3514 } 3515 3516 return result; 3517 } 3518 3519 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3520 struct packet_type **pt_prev, 3521 int *ret, struct net_device *orig_dev) 3522 { 3523 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3524 3525 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc) 3526 goto out; 3527 3528 if (*pt_prev) { 3529 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3530 *pt_prev = NULL; 3531 } 3532 3533 switch (ing_filter(skb, rxq)) { 3534 case TC_ACT_SHOT: 3535 case TC_ACT_STOLEN: 3536 kfree_skb(skb); 3537 return NULL; 3538 } 3539 3540 out: 3541 skb->tc_verd = 0; 3542 return skb; 3543 } 3544 #endif 3545 3546 /** 3547 * netdev_rx_handler_register - register receive handler 3548 * @dev: device to register a handler for 3549 * @rx_handler: receive handler to register 3550 * @rx_handler_data: data pointer that is used by rx handler 3551 * 3552 * Register a receive handler for a device. This handler will then be 3553 * called from __netif_receive_skb. A negative errno code is returned 3554 * on a failure. 3555 * 3556 * The caller must hold the rtnl_mutex. 3557 * 3558 * For a general description of rx_handler, see enum rx_handler_result. 3559 */ 3560 int netdev_rx_handler_register(struct net_device *dev, 3561 rx_handler_func_t *rx_handler, 3562 void *rx_handler_data) 3563 { 3564 ASSERT_RTNL(); 3565 3566 if (dev->rx_handler) 3567 return -EBUSY; 3568 3569 /* Note: rx_handler_data must be set before rx_handler */ 3570 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3571 rcu_assign_pointer(dev->rx_handler, rx_handler); 3572 3573 return 0; 3574 } 3575 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3576 3577 /** 3578 * netdev_rx_handler_unregister - unregister receive handler 3579 * @dev: device to unregister a handler from 3580 * 3581 * Unregister a receive handler from a device. 3582 * 3583 * The caller must hold the rtnl_mutex. 3584 */ 3585 void netdev_rx_handler_unregister(struct net_device *dev) 3586 { 3587 3588 ASSERT_RTNL(); 3589 RCU_INIT_POINTER(dev->rx_handler, NULL); 3590 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3591 * section has a guarantee to see a non NULL rx_handler_data 3592 * as well. 3593 */ 3594 synchronize_net(); 3595 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3596 } 3597 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3598 3599 /* 3600 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3601 * the special handling of PFMEMALLOC skbs. 3602 */ 3603 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3604 { 3605 switch (skb->protocol) { 3606 case htons(ETH_P_ARP): 3607 case htons(ETH_P_IP): 3608 case htons(ETH_P_IPV6): 3609 case htons(ETH_P_8021Q): 3610 case htons(ETH_P_8021AD): 3611 return true; 3612 default: 3613 return false; 3614 } 3615 } 3616 3617 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3618 { 3619 struct packet_type *ptype, *pt_prev; 3620 rx_handler_func_t *rx_handler; 3621 struct net_device *orig_dev; 3622 bool deliver_exact = false; 3623 int ret = NET_RX_DROP; 3624 __be16 type; 3625 3626 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3627 3628 trace_netif_receive_skb(skb); 3629 3630 orig_dev = skb->dev; 3631 3632 skb_reset_network_header(skb); 3633 if (!skb_transport_header_was_set(skb)) 3634 skb_reset_transport_header(skb); 3635 skb_reset_mac_len(skb); 3636 3637 pt_prev = NULL; 3638 3639 rcu_read_lock(); 3640 3641 another_round: 3642 skb->skb_iif = skb->dev->ifindex; 3643 3644 __this_cpu_inc(softnet_data.processed); 3645 3646 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3647 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3648 skb = skb_vlan_untag(skb); 3649 if (unlikely(!skb)) 3650 goto unlock; 3651 } 3652 3653 #ifdef CONFIG_NET_CLS_ACT 3654 if (skb->tc_verd & TC_NCLS) { 3655 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3656 goto ncls; 3657 } 3658 #endif 3659 3660 if (pfmemalloc) 3661 goto skip_taps; 3662 3663 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3664 if (pt_prev) 3665 ret = deliver_skb(skb, pt_prev, orig_dev); 3666 pt_prev = ptype; 3667 } 3668 3669 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3670 if (pt_prev) 3671 ret = deliver_skb(skb, pt_prev, orig_dev); 3672 pt_prev = ptype; 3673 } 3674 3675 skip_taps: 3676 #ifdef CONFIG_NET_CLS_ACT 3677 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3678 if (!skb) 3679 goto unlock; 3680 ncls: 3681 #endif 3682 3683 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3684 goto drop; 3685 3686 if (skb_vlan_tag_present(skb)) { 3687 if (pt_prev) { 3688 ret = deliver_skb(skb, pt_prev, orig_dev); 3689 pt_prev = NULL; 3690 } 3691 if (vlan_do_receive(&skb)) 3692 goto another_round; 3693 else if (unlikely(!skb)) 3694 goto unlock; 3695 } 3696 3697 rx_handler = rcu_dereference(skb->dev->rx_handler); 3698 if (rx_handler) { 3699 if (pt_prev) { 3700 ret = deliver_skb(skb, pt_prev, orig_dev); 3701 pt_prev = NULL; 3702 } 3703 switch (rx_handler(&skb)) { 3704 case RX_HANDLER_CONSUMED: 3705 ret = NET_RX_SUCCESS; 3706 goto unlock; 3707 case RX_HANDLER_ANOTHER: 3708 goto another_round; 3709 case RX_HANDLER_EXACT: 3710 deliver_exact = true; 3711 case RX_HANDLER_PASS: 3712 break; 3713 default: 3714 BUG(); 3715 } 3716 } 3717 3718 if (unlikely(skb_vlan_tag_present(skb))) { 3719 if (skb_vlan_tag_get_id(skb)) 3720 skb->pkt_type = PACKET_OTHERHOST; 3721 /* Note: we might in the future use prio bits 3722 * and set skb->priority like in vlan_do_receive() 3723 * For the time being, just ignore Priority Code Point 3724 */ 3725 skb->vlan_tci = 0; 3726 } 3727 3728 type = skb->protocol; 3729 3730 /* deliver only exact match when indicated */ 3731 if (likely(!deliver_exact)) { 3732 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3733 &ptype_base[ntohs(type) & 3734 PTYPE_HASH_MASK]); 3735 } 3736 3737 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3738 &orig_dev->ptype_specific); 3739 3740 if (unlikely(skb->dev != orig_dev)) { 3741 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3742 &skb->dev->ptype_specific); 3743 } 3744 3745 if (pt_prev) { 3746 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3747 goto drop; 3748 else 3749 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3750 } else { 3751 drop: 3752 atomic_long_inc(&skb->dev->rx_dropped); 3753 kfree_skb(skb); 3754 /* Jamal, now you will not able to escape explaining 3755 * me how you were going to use this. :-) 3756 */ 3757 ret = NET_RX_DROP; 3758 } 3759 3760 unlock: 3761 rcu_read_unlock(); 3762 return ret; 3763 } 3764 3765 static int __netif_receive_skb(struct sk_buff *skb) 3766 { 3767 int ret; 3768 3769 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3770 unsigned long pflags = current->flags; 3771 3772 /* 3773 * PFMEMALLOC skbs are special, they should 3774 * - be delivered to SOCK_MEMALLOC sockets only 3775 * - stay away from userspace 3776 * - have bounded memory usage 3777 * 3778 * Use PF_MEMALLOC as this saves us from propagating the allocation 3779 * context down to all allocation sites. 3780 */ 3781 current->flags |= PF_MEMALLOC; 3782 ret = __netif_receive_skb_core(skb, true); 3783 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3784 } else 3785 ret = __netif_receive_skb_core(skb, false); 3786 3787 return ret; 3788 } 3789 3790 static int netif_receive_skb_internal(struct sk_buff *skb) 3791 { 3792 net_timestamp_check(netdev_tstamp_prequeue, skb); 3793 3794 if (skb_defer_rx_timestamp(skb)) 3795 return NET_RX_SUCCESS; 3796 3797 #ifdef CONFIG_RPS 3798 if (static_key_false(&rps_needed)) { 3799 struct rps_dev_flow voidflow, *rflow = &voidflow; 3800 int cpu, ret; 3801 3802 rcu_read_lock(); 3803 3804 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3805 3806 if (cpu >= 0) { 3807 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3808 rcu_read_unlock(); 3809 return ret; 3810 } 3811 rcu_read_unlock(); 3812 } 3813 #endif 3814 return __netif_receive_skb(skb); 3815 } 3816 3817 /** 3818 * netif_receive_skb - process receive buffer from network 3819 * @skb: buffer to process 3820 * 3821 * netif_receive_skb() is the main receive data processing function. 3822 * It always succeeds. The buffer may be dropped during processing 3823 * for congestion control or by the protocol layers. 3824 * 3825 * This function may only be called from softirq context and interrupts 3826 * should be enabled. 3827 * 3828 * Return values (usually ignored): 3829 * NET_RX_SUCCESS: no congestion 3830 * NET_RX_DROP: packet was dropped 3831 */ 3832 int netif_receive_skb(struct sk_buff *skb) 3833 { 3834 trace_netif_receive_skb_entry(skb); 3835 3836 return netif_receive_skb_internal(skb); 3837 } 3838 EXPORT_SYMBOL(netif_receive_skb); 3839 3840 /* Network device is going away, flush any packets still pending 3841 * Called with irqs disabled. 3842 */ 3843 static void flush_backlog(void *arg) 3844 { 3845 struct net_device *dev = arg; 3846 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3847 struct sk_buff *skb, *tmp; 3848 3849 rps_lock(sd); 3850 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3851 if (skb->dev == dev) { 3852 __skb_unlink(skb, &sd->input_pkt_queue); 3853 kfree_skb(skb); 3854 input_queue_head_incr(sd); 3855 } 3856 } 3857 rps_unlock(sd); 3858 3859 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3860 if (skb->dev == dev) { 3861 __skb_unlink(skb, &sd->process_queue); 3862 kfree_skb(skb); 3863 input_queue_head_incr(sd); 3864 } 3865 } 3866 } 3867 3868 static int napi_gro_complete(struct sk_buff *skb) 3869 { 3870 struct packet_offload *ptype; 3871 __be16 type = skb->protocol; 3872 struct list_head *head = &offload_base; 3873 int err = -ENOENT; 3874 3875 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3876 3877 if (NAPI_GRO_CB(skb)->count == 1) { 3878 skb_shinfo(skb)->gso_size = 0; 3879 goto out; 3880 } 3881 3882 rcu_read_lock(); 3883 list_for_each_entry_rcu(ptype, head, list) { 3884 if (ptype->type != type || !ptype->callbacks.gro_complete) 3885 continue; 3886 3887 err = ptype->callbacks.gro_complete(skb, 0); 3888 break; 3889 } 3890 rcu_read_unlock(); 3891 3892 if (err) { 3893 WARN_ON(&ptype->list == head); 3894 kfree_skb(skb); 3895 return NET_RX_SUCCESS; 3896 } 3897 3898 out: 3899 return netif_receive_skb_internal(skb); 3900 } 3901 3902 /* napi->gro_list contains packets ordered by age. 3903 * youngest packets at the head of it. 3904 * Complete skbs in reverse order to reduce latencies. 3905 */ 3906 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3907 { 3908 struct sk_buff *skb, *prev = NULL; 3909 3910 /* scan list and build reverse chain */ 3911 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3912 skb->prev = prev; 3913 prev = skb; 3914 } 3915 3916 for (skb = prev; skb; skb = prev) { 3917 skb->next = NULL; 3918 3919 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3920 return; 3921 3922 prev = skb->prev; 3923 napi_gro_complete(skb); 3924 napi->gro_count--; 3925 } 3926 3927 napi->gro_list = NULL; 3928 } 3929 EXPORT_SYMBOL(napi_gro_flush); 3930 3931 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3932 { 3933 struct sk_buff *p; 3934 unsigned int maclen = skb->dev->hard_header_len; 3935 u32 hash = skb_get_hash_raw(skb); 3936 3937 for (p = napi->gro_list; p; p = p->next) { 3938 unsigned long diffs; 3939 3940 NAPI_GRO_CB(p)->flush = 0; 3941 3942 if (hash != skb_get_hash_raw(p)) { 3943 NAPI_GRO_CB(p)->same_flow = 0; 3944 continue; 3945 } 3946 3947 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3948 diffs |= p->vlan_tci ^ skb->vlan_tci; 3949 if (maclen == ETH_HLEN) 3950 diffs |= compare_ether_header(skb_mac_header(p), 3951 skb_mac_header(skb)); 3952 else if (!diffs) 3953 diffs = memcmp(skb_mac_header(p), 3954 skb_mac_header(skb), 3955 maclen); 3956 NAPI_GRO_CB(p)->same_flow = !diffs; 3957 } 3958 } 3959 3960 static void skb_gro_reset_offset(struct sk_buff *skb) 3961 { 3962 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3963 const skb_frag_t *frag0 = &pinfo->frags[0]; 3964 3965 NAPI_GRO_CB(skb)->data_offset = 0; 3966 NAPI_GRO_CB(skb)->frag0 = NULL; 3967 NAPI_GRO_CB(skb)->frag0_len = 0; 3968 3969 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3970 pinfo->nr_frags && 3971 !PageHighMem(skb_frag_page(frag0))) { 3972 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3973 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3974 } 3975 } 3976 3977 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3978 { 3979 struct skb_shared_info *pinfo = skb_shinfo(skb); 3980 3981 BUG_ON(skb->end - skb->tail < grow); 3982 3983 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3984 3985 skb->data_len -= grow; 3986 skb->tail += grow; 3987 3988 pinfo->frags[0].page_offset += grow; 3989 skb_frag_size_sub(&pinfo->frags[0], grow); 3990 3991 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3992 skb_frag_unref(skb, 0); 3993 memmove(pinfo->frags, pinfo->frags + 1, 3994 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3995 } 3996 } 3997 3998 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3999 { 4000 struct sk_buff **pp = NULL; 4001 struct packet_offload *ptype; 4002 __be16 type = skb->protocol; 4003 struct list_head *head = &offload_base; 4004 int same_flow; 4005 enum gro_result ret; 4006 int grow; 4007 4008 if (!(skb->dev->features & NETIF_F_GRO)) 4009 goto normal; 4010 4011 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4012 goto normal; 4013 4014 gro_list_prepare(napi, skb); 4015 4016 rcu_read_lock(); 4017 list_for_each_entry_rcu(ptype, head, list) { 4018 if (ptype->type != type || !ptype->callbacks.gro_receive) 4019 continue; 4020 4021 skb_set_network_header(skb, skb_gro_offset(skb)); 4022 skb_reset_mac_len(skb); 4023 NAPI_GRO_CB(skb)->same_flow = 0; 4024 NAPI_GRO_CB(skb)->flush = 0; 4025 NAPI_GRO_CB(skb)->free = 0; 4026 NAPI_GRO_CB(skb)->udp_mark = 0; 4027 4028 /* Setup for GRO checksum validation */ 4029 switch (skb->ip_summed) { 4030 case CHECKSUM_COMPLETE: 4031 NAPI_GRO_CB(skb)->csum = skb->csum; 4032 NAPI_GRO_CB(skb)->csum_valid = 1; 4033 NAPI_GRO_CB(skb)->csum_cnt = 0; 4034 break; 4035 case CHECKSUM_UNNECESSARY: 4036 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4037 NAPI_GRO_CB(skb)->csum_valid = 0; 4038 break; 4039 default: 4040 NAPI_GRO_CB(skb)->csum_cnt = 0; 4041 NAPI_GRO_CB(skb)->csum_valid = 0; 4042 } 4043 4044 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4045 break; 4046 } 4047 rcu_read_unlock(); 4048 4049 if (&ptype->list == head) 4050 goto normal; 4051 4052 same_flow = NAPI_GRO_CB(skb)->same_flow; 4053 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4054 4055 if (pp) { 4056 struct sk_buff *nskb = *pp; 4057 4058 *pp = nskb->next; 4059 nskb->next = NULL; 4060 napi_gro_complete(nskb); 4061 napi->gro_count--; 4062 } 4063 4064 if (same_flow) 4065 goto ok; 4066 4067 if (NAPI_GRO_CB(skb)->flush) 4068 goto normal; 4069 4070 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4071 struct sk_buff *nskb = napi->gro_list; 4072 4073 /* locate the end of the list to select the 'oldest' flow */ 4074 while (nskb->next) { 4075 pp = &nskb->next; 4076 nskb = *pp; 4077 } 4078 *pp = NULL; 4079 nskb->next = NULL; 4080 napi_gro_complete(nskb); 4081 } else { 4082 napi->gro_count++; 4083 } 4084 NAPI_GRO_CB(skb)->count = 1; 4085 NAPI_GRO_CB(skb)->age = jiffies; 4086 NAPI_GRO_CB(skb)->last = skb; 4087 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4088 skb->next = napi->gro_list; 4089 napi->gro_list = skb; 4090 ret = GRO_HELD; 4091 4092 pull: 4093 grow = skb_gro_offset(skb) - skb_headlen(skb); 4094 if (grow > 0) 4095 gro_pull_from_frag0(skb, grow); 4096 ok: 4097 return ret; 4098 4099 normal: 4100 ret = GRO_NORMAL; 4101 goto pull; 4102 } 4103 4104 struct packet_offload *gro_find_receive_by_type(__be16 type) 4105 { 4106 struct list_head *offload_head = &offload_base; 4107 struct packet_offload *ptype; 4108 4109 list_for_each_entry_rcu(ptype, offload_head, list) { 4110 if (ptype->type != type || !ptype->callbacks.gro_receive) 4111 continue; 4112 return ptype; 4113 } 4114 return NULL; 4115 } 4116 EXPORT_SYMBOL(gro_find_receive_by_type); 4117 4118 struct packet_offload *gro_find_complete_by_type(__be16 type) 4119 { 4120 struct list_head *offload_head = &offload_base; 4121 struct packet_offload *ptype; 4122 4123 list_for_each_entry_rcu(ptype, offload_head, list) { 4124 if (ptype->type != type || !ptype->callbacks.gro_complete) 4125 continue; 4126 return ptype; 4127 } 4128 return NULL; 4129 } 4130 EXPORT_SYMBOL(gro_find_complete_by_type); 4131 4132 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4133 { 4134 switch (ret) { 4135 case GRO_NORMAL: 4136 if (netif_receive_skb_internal(skb)) 4137 ret = GRO_DROP; 4138 break; 4139 4140 case GRO_DROP: 4141 kfree_skb(skb); 4142 break; 4143 4144 case GRO_MERGED_FREE: 4145 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4146 kmem_cache_free(skbuff_head_cache, skb); 4147 else 4148 __kfree_skb(skb); 4149 break; 4150 4151 case GRO_HELD: 4152 case GRO_MERGED: 4153 break; 4154 } 4155 4156 return ret; 4157 } 4158 4159 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4160 { 4161 trace_napi_gro_receive_entry(skb); 4162 4163 skb_gro_reset_offset(skb); 4164 4165 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4166 } 4167 EXPORT_SYMBOL(napi_gro_receive); 4168 4169 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4170 { 4171 if (unlikely(skb->pfmemalloc)) { 4172 consume_skb(skb); 4173 return; 4174 } 4175 __skb_pull(skb, skb_headlen(skb)); 4176 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4177 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4178 skb->vlan_tci = 0; 4179 skb->dev = napi->dev; 4180 skb->skb_iif = 0; 4181 skb->encapsulation = 0; 4182 skb_shinfo(skb)->gso_type = 0; 4183 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4184 4185 napi->skb = skb; 4186 } 4187 4188 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4189 { 4190 struct sk_buff *skb = napi->skb; 4191 4192 if (!skb) { 4193 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4194 napi->skb = skb; 4195 } 4196 return skb; 4197 } 4198 EXPORT_SYMBOL(napi_get_frags); 4199 4200 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4201 struct sk_buff *skb, 4202 gro_result_t ret) 4203 { 4204 switch (ret) { 4205 case GRO_NORMAL: 4206 case GRO_HELD: 4207 __skb_push(skb, ETH_HLEN); 4208 skb->protocol = eth_type_trans(skb, skb->dev); 4209 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4210 ret = GRO_DROP; 4211 break; 4212 4213 case GRO_DROP: 4214 case GRO_MERGED_FREE: 4215 napi_reuse_skb(napi, skb); 4216 break; 4217 4218 case GRO_MERGED: 4219 break; 4220 } 4221 4222 return ret; 4223 } 4224 4225 /* Upper GRO stack assumes network header starts at gro_offset=0 4226 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4227 * We copy ethernet header into skb->data to have a common layout. 4228 */ 4229 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4230 { 4231 struct sk_buff *skb = napi->skb; 4232 const struct ethhdr *eth; 4233 unsigned int hlen = sizeof(*eth); 4234 4235 napi->skb = NULL; 4236 4237 skb_reset_mac_header(skb); 4238 skb_gro_reset_offset(skb); 4239 4240 eth = skb_gro_header_fast(skb, 0); 4241 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4242 eth = skb_gro_header_slow(skb, hlen, 0); 4243 if (unlikely(!eth)) { 4244 napi_reuse_skb(napi, skb); 4245 return NULL; 4246 } 4247 } else { 4248 gro_pull_from_frag0(skb, hlen); 4249 NAPI_GRO_CB(skb)->frag0 += hlen; 4250 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4251 } 4252 __skb_pull(skb, hlen); 4253 4254 /* 4255 * This works because the only protocols we care about don't require 4256 * special handling. 4257 * We'll fix it up properly in napi_frags_finish() 4258 */ 4259 skb->protocol = eth->h_proto; 4260 4261 return skb; 4262 } 4263 4264 gro_result_t napi_gro_frags(struct napi_struct *napi) 4265 { 4266 struct sk_buff *skb = napi_frags_skb(napi); 4267 4268 if (!skb) 4269 return GRO_DROP; 4270 4271 trace_napi_gro_frags_entry(skb); 4272 4273 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4274 } 4275 EXPORT_SYMBOL(napi_gro_frags); 4276 4277 /* Compute the checksum from gro_offset and return the folded value 4278 * after adding in any pseudo checksum. 4279 */ 4280 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4281 { 4282 __wsum wsum; 4283 __sum16 sum; 4284 4285 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4286 4287 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4288 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4289 if (likely(!sum)) { 4290 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4291 !skb->csum_complete_sw) 4292 netdev_rx_csum_fault(skb->dev); 4293 } 4294 4295 NAPI_GRO_CB(skb)->csum = wsum; 4296 NAPI_GRO_CB(skb)->csum_valid = 1; 4297 4298 return sum; 4299 } 4300 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4301 4302 /* 4303 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4304 * Note: called with local irq disabled, but exits with local irq enabled. 4305 */ 4306 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4307 { 4308 #ifdef CONFIG_RPS 4309 struct softnet_data *remsd = sd->rps_ipi_list; 4310 4311 if (remsd) { 4312 sd->rps_ipi_list = NULL; 4313 4314 local_irq_enable(); 4315 4316 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4317 while (remsd) { 4318 struct softnet_data *next = remsd->rps_ipi_next; 4319 4320 if (cpu_online(remsd->cpu)) 4321 smp_call_function_single_async(remsd->cpu, 4322 &remsd->csd); 4323 remsd = next; 4324 } 4325 } else 4326 #endif 4327 local_irq_enable(); 4328 } 4329 4330 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4331 { 4332 #ifdef CONFIG_RPS 4333 return sd->rps_ipi_list != NULL; 4334 #else 4335 return false; 4336 #endif 4337 } 4338 4339 static int process_backlog(struct napi_struct *napi, int quota) 4340 { 4341 int work = 0; 4342 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4343 4344 /* Check if we have pending ipi, its better to send them now, 4345 * not waiting net_rx_action() end. 4346 */ 4347 if (sd_has_rps_ipi_waiting(sd)) { 4348 local_irq_disable(); 4349 net_rps_action_and_irq_enable(sd); 4350 } 4351 4352 napi->weight = weight_p; 4353 local_irq_disable(); 4354 while (1) { 4355 struct sk_buff *skb; 4356 4357 while ((skb = __skb_dequeue(&sd->process_queue))) { 4358 local_irq_enable(); 4359 __netif_receive_skb(skb); 4360 local_irq_disable(); 4361 input_queue_head_incr(sd); 4362 if (++work >= quota) { 4363 local_irq_enable(); 4364 return work; 4365 } 4366 } 4367 4368 rps_lock(sd); 4369 if (skb_queue_empty(&sd->input_pkt_queue)) { 4370 /* 4371 * Inline a custom version of __napi_complete(). 4372 * only current cpu owns and manipulates this napi, 4373 * and NAPI_STATE_SCHED is the only possible flag set 4374 * on backlog. 4375 * We can use a plain write instead of clear_bit(), 4376 * and we dont need an smp_mb() memory barrier. 4377 */ 4378 napi->state = 0; 4379 rps_unlock(sd); 4380 4381 break; 4382 } 4383 4384 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4385 &sd->process_queue); 4386 rps_unlock(sd); 4387 } 4388 local_irq_enable(); 4389 4390 return work; 4391 } 4392 4393 /** 4394 * __napi_schedule - schedule for receive 4395 * @n: entry to schedule 4396 * 4397 * The entry's receive function will be scheduled to run. 4398 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4399 */ 4400 void __napi_schedule(struct napi_struct *n) 4401 { 4402 unsigned long flags; 4403 4404 local_irq_save(flags); 4405 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4406 local_irq_restore(flags); 4407 } 4408 EXPORT_SYMBOL(__napi_schedule); 4409 4410 /** 4411 * __napi_schedule_irqoff - schedule for receive 4412 * @n: entry to schedule 4413 * 4414 * Variant of __napi_schedule() assuming hard irqs are masked 4415 */ 4416 void __napi_schedule_irqoff(struct napi_struct *n) 4417 { 4418 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4419 } 4420 EXPORT_SYMBOL(__napi_schedule_irqoff); 4421 4422 void __napi_complete(struct napi_struct *n) 4423 { 4424 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4425 4426 list_del_init(&n->poll_list); 4427 smp_mb__before_atomic(); 4428 clear_bit(NAPI_STATE_SCHED, &n->state); 4429 } 4430 EXPORT_SYMBOL(__napi_complete); 4431 4432 void napi_complete_done(struct napi_struct *n, int work_done) 4433 { 4434 unsigned long flags; 4435 4436 /* 4437 * don't let napi dequeue from the cpu poll list 4438 * just in case its running on a different cpu 4439 */ 4440 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4441 return; 4442 4443 if (n->gro_list) { 4444 unsigned long timeout = 0; 4445 4446 if (work_done) 4447 timeout = n->dev->gro_flush_timeout; 4448 4449 if (timeout) 4450 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4451 HRTIMER_MODE_REL_PINNED); 4452 else 4453 napi_gro_flush(n, false); 4454 } 4455 if (likely(list_empty(&n->poll_list))) { 4456 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4457 } else { 4458 /* If n->poll_list is not empty, we need to mask irqs */ 4459 local_irq_save(flags); 4460 __napi_complete(n); 4461 local_irq_restore(flags); 4462 } 4463 } 4464 EXPORT_SYMBOL(napi_complete_done); 4465 4466 /* must be called under rcu_read_lock(), as we dont take a reference */ 4467 struct napi_struct *napi_by_id(unsigned int napi_id) 4468 { 4469 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4470 struct napi_struct *napi; 4471 4472 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4473 if (napi->napi_id == napi_id) 4474 return napi; 4475 4476 return NULL; 4477 } 4478 EXPORT_SYMBOL_GPL(napi_by_id); 4479 4480 void napi_hash_add(struct napi_struct *napi) 4481 { 4482 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4483 4484 spin_lock(&napi_hash_lock); 4485 4486 /* 0 is not a valid id, we also skip an id that is taken 4487 * we expect both events to be extremely rare 4488 */ 4489 napi->napi_id = 0; 4490 while (!napi->napi_id) { 4491 napi->napi_id = ++napi_gen_id; 4492 if (napi_by_id(napi->napi_id)) 4493 napi->napi_id = 0; 4494 } 4495 4496 hlist_add_head_rcu(&napi->napi_hash_node, 4497 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4498 4499 spin_unlock(&napi_hash_lock); 4500 } 4501 } 4502 EXPORT_SYMBOL_GPL(napi_hash_add); 4503 4504 /* Warning : caller is responsible to make sure rcu grace period 4505 * is respected before freeing memory containing @napi 4506 */ 4507 void napi_hash_del(struct napi_struct *napi) 4508 { 4509 spin_lock(&napi_hash_lock); 4510 4511 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4512 hlist_del_rcu(&napi->napi_hash_node); 4513 4514 spin_unlock(&napi_hash_lock); 4515 } 4516 EXPORT_SYMBOL_GPL(napi_hash_del); 4517 4518 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4519 { 4520 struct napi_struct *napi; 4521 4522 napi = container_of(timer, struct napi_struct, timer); 4523 if (napi->gro_list) 4524 napi_schedule(napi); 4525 4526 return HRTIMER_NORESTART; 4527 } 4528 4529 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4530 int (*poll)(struct napi_struct *, int), int weight) 4531 { 4532 INIT_LIST_HEAD(&napi->poll_list); 4533 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4534 napi->timer.function = napi_watchdog; 4535 napi->gro_count = 0; 4536 napi->gro_list = NULL; 4537 napi->skb = NULL; 4538 napi->poll = poll; 4539 if (weight > NAPI_POLL_WEIGHT) 4540 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4541 weight, dev->name); 4542 napi->weight = weight; 4543 list_add(&napi->dev_list, &dev->napi_list); 4544 napi->dev = dev; 4545 #ifdef CONFIG_NETPOLL 4546 spin_lock_init(&napi->poll_lock); 4547 napi->poll_owner = -1; 4548 #endif 4549 set_bit(NAPI_STATE_SCHED, &napi->state); 4550 } 4551 EXPORT_SYMBOL(netif_napi_add); 4552 4553 void napi_disable(struct napi_struct *n) 4554 { 4555 might_sleep(); 4556 set_bit(NAPI_STATE_DISABLE, &n->state); 4557 4558 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4559 msleep(1); 4560 4561 hrtimer_cancel(&n->timer); 4562 4563 clear_bit(NAPI_STATE_DISABLE, &n->state); 4564 } 4565 EXPORT_SYMBOL(napi_disable); 4566 4567 void netif_napi_del(struct napi_struct *napi) 4568 { 4569 list_del_init(&napi->dev_list); 4570 napi_free_frags(napi); 4571 4572 kfree_skb_list(napi->gro_list); 4573 napi->gro_list = NULL; 4574 napi->gro_count = 0; 4575 } 4576 EXPORT_SYMBOL(netif_napi_del); 4577 4578 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4579 { 4580 void *have; 4581 int work, weight; 4582 4583 list_del_init(&n->poll_list); 4584 4585 have = netpoll_poll_lock(n); 4586 4587 weight = n->weight; 4588 4589 /* This NAPI_STATE_SCHED test is for avoiding a race 4590 * with netpoll's poll_napi(). Only the entity which 4591 * obtains the lock and sees NAPI_STATE_SCHED set will 4592 * actually make the ->poll() call. Therefore we avoid 4593 * accidentally calling ->poll() when NAPI is not scheduled. 4594 */ 4595 work = 0; 4596 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4597 work = n->poll(n, weight); 4598 trace_napi_poll(n); 4599 } 4600 4601 WARN_ON_ONCE(work > weight); 4602 4603 if (likely(work < weight)) 4604 goto out_unlock; 4605 4606 /* Drivers must not modify the NAPI state if they 4607 * consume the entire weight. In such cases this code 4608 * still "owns" the NAPI instance and therefore can 4609 * move the instance around on the list at-will. 4610 */ 4611 if (unlikely(napi_disable_pending(n))) { 4612 napi_complete(n); 4613 goto out_unlock; 4614 } 4615 4616 if (n->gro_list) { 4617 /* flush too old packets 4618 * If HZ < 1000, flush all packets. 4619 */ 4620 napi_gro_flush(n, HZ >= 1000); 4621 } 4622 4623 /* Some drivers may have called napi_schedule 4624 * prior to exhausting their budget. 4625 */ 4626 if (unlikely(!list_empty(&n->poll_list))) { 4627 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4628 n->dev ? n->dev->name : "backlog"); 4629 goto out_unlock; 4630 } 4631 4632 list_add_tail(&n->poll_list, repoll); 4633 4634 out_unlock: 4635 netpoll_poll_unlock(have); 4636 4637 return work; 4638 } 4639 4640 static void net_rx_action(struct softirq_action *h) 4641 { 4642 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4643 unsigned long time_limit = jiffies + 2; 4644 int budget = netdev_budget; 4645 LIST_HEAD(list); 4646 LIST_HEAD(repoll); 4647 4648 local_irq_disable(); 4649 list_splice_init(&sd->poll_list, &list); 4650 local_irq_enable(); 4651 4652 for (;;) { 4653 struct napi_struct *n; 4654 4655 if (list_empty(&list)) { 4656 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4657 return; 4658 break; 4659 } 4660 4661 n = list_first_entry(&list, struct napi_struct, poll_list); 4662 budget -= napi_poll(n, &repoll); 4663 4664 /* If softirq window is exhausted then punt. 4665 * Allow this to run for 2 jiffies since which will allow 4666 * an average latency of 1.5/HZ. 4667 */ 4668 if (unlikely(budget <= 0 || 4669 time_after_eq(jiffies, time_limit))) { 4670 sd->time_squeeze++; 4671 break; 4672 } 4673 } 4674 4675 local_irq_disable(); 4676 4677 list_splice_tail_init(&sd->poll_list, &list); 4678 list_splice_tail(&repoll, &list); 4679 list_splice(&list, &sd->poll_list); 4680 if (!list_empty(&sd->poll_list)) 4681 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4682 4683 net_rps_action_and_irq_enable(sd); 4684 } 4685 4686 struct netdev_adjacent { 4687 struct net_device *dev; 4688 4689 /* upper master flag, there can only be one master device per list */ 4690 bool master; 4691 4692 /* counter for the number of times this device was added to us */ 4693 u16 ref_nr; 4694 4695 /* private field for the users */ 4696 void *private; 4697 4698 struct list_head list; 4699 struct rcu_head rcu; 4700 }; 4701 4702 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4703 struct net_device *adj_dev, 4704 struct list_head *adj_list) 4705 { 4706 struct netdev_adjacent *adj; 4707 4708 list_for_each_entry(adj, adj_list, list) { 4709 if (adj->dev == adj_dev) 4710 return adj; 4711 } 4712 return NULL; 4713 } 4714 4715 /** 4716 * netdev_has_upper_dev - Check if device is linked to an upper device 4717 * @dev: device 4718 * @upper_dev: upper device to check 4719 * 4720 * Find out if a device is linked to specified upper device and return true 4721 * in case it is. Note that this checks only immediate upper device, 4722 * not through a complete stack of devices. The caller must hold the RTNL lock. 4723 */ 4724 bool netdev_has_upper_dev(struct net_device *dev, 4725 struct net_device *upper_dev) 4726 { 4727 ASSERT_RTNL(); 4728 4729 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4730 } 4731 EXPORT_SYMBOL(netdev_has_upper_dev); 4732 4733 /** 4734 * netdev_has_any_upper_dev - Check if device is linked to some device 4735 * @dev: device 4736 * 4737 * Find out if a device is linked to an upper device and return true in case 4738 * it is. The caller must hold the RTNL lock. 4739 */ 4740 static bool netdev_has_any_upper_dev(struct net_device *dev) 4741 { 4742 ASSERT_RTNL(); 4743 4744 return !list_empty(&dev->all_adj_list.upper); 4745 } 4746 4747 /** 4748 * netdev_master_upper_dev_get - Get master upper device 4749 * @dev: device 4750 * 4751 * Find a master upper device and return pointer to it or NULL in case 4752 * it's not there. The caller must hold the RTNL lock. 4753 */ 4754 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4755 { 4756 struct netdev_adjacent *upper; 4757 4758 ASSERT_RTNL(); 4759 4760 if (list_empty(&dev->adj_list.upper)) 4761 return NULL; 4762 4763 upper = list_first_entry(&dev->adj_list.upper, 4764 struct netdev_adjacent, list); 4765 if (likely(upper->master)) 4766 return upper->dev; 4767 return NULL; 4768 } 4769 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4770 4771 void *netdev_adjacent_get_private(struct list_head *adj_list) 4772 { 4773 struct netdev_adjacent *adj; 4774 4775 adj = list_entry(adj_list, struct netdev_adjacent, list); 4776 4777 return adj->private; 4778 } 4779 EXPORT_SYMBOL(netdev_adjacent_get_private); 4780 4781 /** 4782 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4783 * @dev: device 4784 * @iter: list_head ** of the current position 4785 * 4786 * Gets the next device from the dev's upper list, starting from iter 4787 * position. The caller must hold RCU read lock. 4788 */ 4789 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4790 struct list_head **iter) 4791 { 4792 struct netdev_adjacent *upper; 4793 4794 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4795 4796 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4797 4798 if (&upper->list == &dev->adj_list.upper) 4799 return NULL; 4800 4801 *iter = &upper->list; 4802 4803 return upper->dev; 4804 } 4805 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4806 4807 /** 4808 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4809 * @dev: device 4810 * @iter: list_head ** of the current position 4811 * 4812 * Gets the next device from the dev's upper list, starting from iter 4813 * position. The caller must hold RCU read lock. 4814 */ 4815 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4816 struct list_head **iter) 4817 { 4818 struct netdev_adjacent *upper; 4819 4820 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4821 4822 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4823 4824 if (&upper->list == &dev->all_adj_list.upper) 4825 return NULL; 4826 4827 *iter = &upper->list; 4828 4829 return upper->dev; 4830 } 4831 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4832 4833 /** 4834 * netdev_lower_get_next_private - Get the next ->private from the 4835 * lower neighbour list 4836 * @dev: device 4837 * @iter: list_head ** of the current position 4838 * 4839 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4840 * list, starting from iter position. The caller must hold either hold the 4841 * RTNL lock or its own locking that guarantees that the neighbour lower 4842 * list will remain unchainged. 4843 */ 4844 void *netdev_lower_get_next_private(struct net_device *dev, 4845 struct list_head **iter) 4846 { 4847 struct netdev_adjacent *lower; 4848 4849 lower = list_entry(*iter, struct netdev_adjacent, list); 4850 4851 if (&lower->list == &dev->adj_list.lower) 4852 return NULL; 4853 4854 *iter = lower->list.next; 4855 4856 return lower->private; 4857 } 4858 EXPORT_SYMBOL(netdev_lower_get_next_private); 4859 4860 /** 4861 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4862 * lower neighbour list, RCU 4863 * variant 4864 * @dev: device 4865 * @iter: list_head ** of the current position 4866 * 4867 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4868 * list, starting from iter position. The caller must hold RCU read lock. 4869 */ 4870 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4871 struct list_head **iter) 4872 { 4873 struct netdev_adjacent *lower; 4874 4875 WARN_ON_ONCE(!rcu_read_lock_held()); 4876 4877 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4878 4879 if (&lower->list == &dev->adj_list.lower) 4880 return NULL; 4881 4882 *iter = &lower->list; 4883 4884 return lower->private; 4885 } 4886 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4887 4888 /** 4889 * netdev_lower_get_next - Get the next device from the lower neighbour 4890 * list 4891 * @dev: device 4892 * @iter: list_head ** of the current position 4893 * 4894 * Gets the next netdev_adjacent from the dev's lower neighbour 4895 * list, starting from iter position. The caller must hold RTNL lock or 4896 * its own locking that guarantees that the neighbour lower 4897 * list will remain unchainged. 4898 */ 4899 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4900 { 4901 struct netdev_adjacent *lower; 4902 4903 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4904 4905 if (&lower->list == &dev->adj_list.lower) 4906 return NULL; 4907 4908 *iter = &lower->list; 4909 4910 return lower->dev; 4911 } 4912 EXPORT_SYMBOL(netdev_lower_get_next); 4913 4914 /** 4915 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4916 * lower neighbour list, RCU 4917 * variant 4918 * @dev: device 4919 * 4920 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4921 * list. The caller must hold RCU read lock. 4922 */ 4923 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4924 { 4925 struct netdev_adjacent *lower; 4926 4927 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4928 struct netdev_adjacent, list); 4929 if (lower) 4930 return lower->private; 4931 return NULL; 4932 } 4933 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4934 4935 /** 4936 * netdev_master_upper_dev_get_rcu - Get master upper device 4937 * @dev: device 4938 * 4939 * Find a master upper device and return pointer to it or NULL in case 4940 * it's not there. The caller must hold the RCU read lock. 4941 */ 4942 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4943 { 4944 struct netdev_adjacent *upper; 4945 4946 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4947 struct netdev_adjacent, list); 4948 if (upper && likely(upper->master)) 4949 return upper->dev; 4950 return NULL; 4951 } 4952 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4953 4954 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4955 struct net_device *adj_dev, 4956 struct list_head *dev_list) 4957 { 4958 char linkname[IFNAMSIZ+7]; 4959 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4960 "upper_%s" : "lower_%s", adj_dev->name); 4961 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4962 linkname); 4963 } 4964 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4965 char *name, 4966 struct list_head *dev_list) 4967 { 4968 char linkname[IFNAMSIZ+7]; 4969 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4970 "upper_%s" : "lower_%s", name); 4971 sysfs_remove_link(&(dev->dev.kobj), linkname); 4972 } 4973 4974 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 4975 struct net_device *adj_dev, 4976 struct list_head *dev_list) 4977 { 4978 return (dev_list == &dev->adj_list.upper || 4979 dev_list == &dev->adj_list.lower) && 4980 net_eq(dev_net(dev), dev_net(adj_dev)); 4981 } 4982 4983 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4984 struct net_device *adj_dev, 4985 struct list_head *dev_list, 4986 void *private, bool master) 4987 { 4988 struct netdev_adjacent *adj; 4989 int ret; 4990 4991 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4992 4993 if (adj) { 4994 adj->ref_nr++; 4995 return 0; 4996 } 4997 4998 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4999 if (!adj) 5000 return -ENOMEM; 5001 5002 adj->dev = adj_dev; 5003 adj->master = master; 5004 adj->ref_nr = 1; 5005 adj->private = private; 5006 dev_hold(adj_dev); 5007 5008 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5009 adj_dev->name, dev->name, adj_dev->name); 5010 5011 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5012 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5013 if (ret) 5014 goto free_adj; 5015 } 5016 5017 /* Ensure that master link is always the first item in list. */ 5018 if (master) { 5019 ret = sysfs_create_link(&(dev->dev.kobj), 5020 &(adj_dev->dev.kobj), "master"); 5021 if (ret) 5022 goto remove_symlinks; 5023 5024 list_add_rcu(&adj->list, dev_list); 5025 } else { 5026 list_add_tail_rcu(&adj->list, dev_list); 5027 } 5028 5029 return 0; 5030 5031 remove_symlinks: 5032 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5033 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5034 free_adj: 5035 kfree(adj); 5036 dev_put(adj_dev); 5037 5038 return ret; 5039 } 5040 5041 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5042 struct net_device *adj_dev, 5043 struct list_head *dev_list) 5044 { 5045 struct netdev_adjacent *adj; 5046 5047 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5048 5049 if (!adj) { 5050 pr_err("tried to remove device %s from %s\n", 5051 dev->name, adj_dev->name); 5052 BUG(); 5053 } 5054 5055 if (adj->ref_nr > 1) { 5056 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5057 adj->ref_nr-1); 5058 adj->ref_nr--; 5059 return; 5060 } 5061 5062 if (adj->master) 5063 sysfs_remove_link(&(dev->dev.kobj), "master"); 5064 5065 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5066 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5067 5068 list_del_rcu(&adj->list); 5069 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5070 adj_dev->name, dev->name, adj_dev->name); 5071 dev_put(adj_dev); 5072 kfree_rcu(adj, rcu); 5073 } 5074 5075 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5076 struct net_device *upper_dev, 5077 struct list_head *up_list, 5078 struct list_head *down_list, 5079 void *private, bool master) 5080 { 5081 int ret; 5082 5083 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5084 master); 5085 if (ret) 5086 return ret; 5087 5088 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5089 false); 5090 if (ret) { 5091 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5092 return ret; 5093 } 5094 5095 return 0; 5096 } 5097 5098 static int __netdev_adjacent_dev_link(struct net_device *dev, 5099 struct net_device *upper_dev) 5100 { 5101 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5102 &dev->all_adj_list.upper, 5103 &upper_dev->all_adj_list.lower, 5104 NULL, false); 5105 } 5106 5107 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5108 struct net_device *upper_dev, 5109 struct list_head *up_list, 5110 struct list_head *down_list) 5111 { 5112 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5113 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5114 } 5115 5116 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5117 struct net_device *upper_dev) 5118 { 5119 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5120 &dev->all_adj_list.upper, 5121 &upper_dev->all_adj_list.lower); 5122 } 5123 5124 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5125 struct net_device *upper_dev, 5126 void *private, bool master) 5127 { 5128 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5129 5130 if (ret) 5131 return ret; 5132 5133 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5134 &dev->adj_list.upper, 5135 &upper_dev->adj_list.lower, 5136 private, master); 5137 if (ret) { 5138 __netdev_adjacent_dev_unlink(dev, upper_dev); 5139 return ret; 5140 } 5141 5142 return 0; 5143 } 5144 5145 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5146 struct net_device *upper_dev) 5147 { 5148 __netdev_adjacent_dev_unlink(dev, upper_dev); 5149 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5150 &dev->adj_list.upper, 5151 &upper_dev->adj_list.lower); 5152 } 5153 5154 static int __netdev_upper_dev_link(struct net_device *dev, 5155 struct net_device *upper_dev, bool master, 5156 void *private) 5157 { 5158 struct netdev_adjacent *i, *j, *to_i, *to_j; 5159 int ret = 0; 5160 5161 ASSERT_RTNL(); 5162 5163 if (dev == upper_dev) 5164 return -EBUSY; 5165 5166 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5167 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5168 return -EBUSY; 5169 5170 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 5171 return -EEXIST; 5172 5173 if (master && netdev_master_upper_dev_get(dev)) 5174 return -EBUSY; 5175 5176 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5177 master); 5178 if (ret) 5179 return ret; 5180 5181 /* Now that we linked these devs, make all the upper_dev's 5182 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5183 * versa, and don't forget the devices itself. All of these 5184 * links are non-neighbours. 5185 */ 5186 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5187 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5188 pr_debug("Interlinking %s with %s, non-neighbour\n", 5189 i->dev->name, j->dev->name); 5190 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5191 if (ret) 5192 goto rollback_mesh; 5193 } 5194 } 5195 5196 /* add dev to every upper_dev's upper device */ 5197 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5198 pr_debug("linking %s's upper device %s with %s\n", 5199 upper_dev->name, i->dev->name, dev->name); 5200 ret = __netdev_adjacent_dev_link(dev, i->dev); 5201 if (ret) 5202 goto rollback_upper_mesh; 5203 } 5204 5205 /* add upper_dev to every dev's lower device */ 5206 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5207 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5208 i->dev->name, upper_dev->name); 5209 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5210 if (ret) 5211 goto rollback_lower_mesh; 5212 } 5213 5214 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5215 return 0; 5216 5217 rollback_lower_mesh: 5218 to_i = i; 5219 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5220 if (i == to_i) 5221 break; 5222 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5223 } 5224 5225 i = NULL; 5226 5227 rollback_upper_mesh: 5228 to_i = i; 5229 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5230 if (i == to_i) 5231 break; 5232 __netdev_adjacent_dev_unlink(dev, i->dev); 5233 } 5234 5235 i = j = NULL; 5236 5237 rollback_mesh: 5238 to_i = i; 5239 to_j = j; 5240 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5241 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5242 if (i == to_i && j == to_j) 5243 break; 5244 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5245 } 5246 if (i == to_i) 5247 break; 5248 } 5249 5250 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5251 5252 return ret; 5253 } 5254 5255 /** 5256 * netdev_upper_dev_link - Add a link to the upper device 5257 * @dev: device 5258 * @upper_dev: new upper device 5259 * 5260 * Adds a link to device which is upper to this one. The caller must hold 5261 * the RTNL lock. On a failure a negative errno code is returned. 5262 * On success the reference counts are adjusted and the function 5263 * returns zero. 5264 */ 5265 int netdev_upper_dev_link(struct net_device *dev, 5266 struct net_device *upper_dev) 5267 { 5268 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5269 } 5270 EXPORT_SYMBOL(netdev_upper_dev_link); 5271 5272 /** 5273 * netdev_master_upper_dev_link - Add a master link to the upper device 5274 * @dev: device 5275 * @upper_dev: new upper device 5276 * 5277 * Adds a link to device which is upper to this one. In this case, only 5278 * one master upper device can be linked, although other non-master devices 5279 * might be linked as well. The caller must hold the RTNL lock. 5280 * On a failure a negative errno code is returned. On success the reference 5281 * counts are adjusted and the function returns zero. 5282 */ 5283 int netdev_master_upper_dev_link(struct net_device *dev, 5284 struct net_device *upper_dev) 5285 { 5286 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5287 } 5288 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5289 5290 int netdev_master_upper_dev_link_private(struct net_device *dev, 5291 struct net_device *upper_dev, 5292 void *private) 5293 { 5294 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5295 } 5296 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5297 5298 /** 5299 * netdev_upper_dev_unlink - Removes a link to upper device 5300 * @dev: device 5301 * @upper_dev: new upper device 5302 * 5303 * Removes a link to device which is upper to this one. The caller must hold 5304 * the RTNL lock. 5305 */ 5306 void netdev_upper_dev_unlink(struct net_device *dev, 5307 struct net_device *upper_dev) 5308 { 5309 struct netdev_adjacent *i, *j; 5310 ASSERT_RTNL(); 5311 5312 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5313 5314 /* Here is the tricky part. We must remove all dev's lower 5315 * devices from all upper_dev's upper devices and vice 5316 * versa, to maintain the graph relationship. 5317 */ 5318 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5319 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5320 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5321 5322 /* remove also the devices itself from lower/upper device 5323 * list 5324 */ 5325 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5326 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5327 5328 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5329 __netdev_adjacent_dev_unlink(dev, i->dev); 5330 5331 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5332 } 5333 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5334 5335 /** 5336 * netdev_bonding_info_change - Dispatch event about slave change 5337 * @dev: device 5338 * @netdev_bonding_info: info to dispatch 5339 * 5340 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5341 * The caller must hold the RTNL lock. 5342 */ 5343 void netdev_bonding_info_change(struct net_device *dev, 5344 struct netdev_bonding_info *bonding_info) 5345 { 5346 struct netdev_notifier_bonding_info info; 5347 5348 memcpy(&info.bonding_info, bonding_info, 5349 sizeof(struct netdev_bonding_info)); 5350 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5351 &info.info); 5352 } 5353 EXPORT_SYMBOL(netdev_bonding_info_change); 5354 5355 static void netdev_adjacent_add_links(struct net_device *dev) 5356 { 5357 struct netdev_adjacent *iter; 5358 5359 struct net *net = dev_net(dev); 5360 5361 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5362 if (!net_eq(net,dev_net(iter->dev))) 5363 continue; 5364 netdev_adjacent_sysfs_add(iter->dev, dev, 5365 &iter->dev->adj_list.lower); 5366 netdev_adjacent_sysfs_add(dev, iter->dev, 5367 &dev->adj_list.upper); 5368 } 5369 5370 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5371 if (!net_eq(net,dev_net(iter->dev))) 5372 continue; 5373 netdev_adjacent_sysfs_add(iter->dev, dev, 5374 &iter->dev->adj_list.upper); 5375 netdev_adjacent_sysfs_add(dev, iter->dev, 5376 &dev->adj_list.lower); 5377 } 5378 } 5379 5380 static void netdev_adjacent_del_links(struct net_device *dev) 5381 { 5382 struct netdev_adjacent *iter; 5383 5384 struct net *net = dev_net(dev); 5385 5386 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5387 if (!net_eq(net,dev_net(iter->dev))) 5388 continue; 5389 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5390 &iter->dev->adj_list.lower); 5391 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5392 &dev->adj_list.upper); 5393 } 5394 5395 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5396 if (!net_eq(net,dev_net(iter->dev))) 5397 continue; 5398 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5399 &iter->dev->adj_list.upper); 5400 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5401 &dev->adj_list.lower); 5402 } 5403 } 5404 5405 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5406 { 5407 struct netdev_adjacent *iter; 5408 5409 struct net *net = dev_net(dev); 5410 5411 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5412 if (!net_eq(net,dev_net(iter->dev))) 5413 continue; 5414 netdev_adjacent_sysfs_del(iter->dev, oldname, 5415 &iter->dev->adj_list.lower); 5416 netdev_adjacent_sysfs_add(iter->dev, dev, 5417 &iter->dev->adj_list.lower); 5418 } 5419 5420 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5421 if (!net_eq(net,dev_net(iter->dev))) 5422 continue; 5423 netdev_adjacent_sysfs_del(iter->dev, oldname, 5424 &iter->dev->adj_list.upper); 5425 netdev_adjacent_sysfs_add(iter->dev, dev, 5426 &iter->dev->adj_list.upper); 5427 } 5428 } 5429 5430 void *netdev_lower_dev_get_private(struct net_device *dev, 5431 struct net_device *lower_dev) 5432 { 5433 struct netdev_adjacent *lower; 5434 5435 if (!lower_dev) 5436 return NULL; 5437 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5438 if (!lower) 5439 return NULL; 5440 5441 return lower->private; 5442 } 5443 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5444 5445 5446 int dev_get_nest_level(struct net_device *dev, 5447 bool (*type_check)(struct net_device *dev)) 5448 { 5449 struct net_device *lower = NULL; 5450 struct list_head *iter; 5451 int max_nest = -1; 5452 int nest; 5453 5454 ASSERT_RTNL(); 5455 5456 netdev_for_each_lower_dev(dev, lower, iter) { 5457 nest = dev_get_nest_level(lower, type_check); 5458 if (max_nest < nest) 5459 max_nest = nest; 5460 } 5461 5462 if (type_check(dev)) 5463 max_nest++; 5464 5465 return max_nest; 5466 } 5467 EXPORT_SYMBOL(dev_get_nest_level); 5468 5469 static void dev_change_rx_flags(struct net_device *dev, int flags) 5470 { 5471 const struct net_device_ops *ops = dev->netdev_ops; 5472 5473 if (ops->ndo_change_rx_flags) 5474 ops->ndo_change_rx_flags(dev, flags); 5475 } 5476 5477 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5478 { 5479 unsigned int old_flags = dev->flags; 5480 kuid_t uid; 5481 kgid_t gid; 5482 5483 ASSERT_RTNL(); 5484 5485 dev->flags |= IFF_PROMISC; 5486 dev->promiscuity += inc; 5487 if (dev->promiscuity == 0) { 5488 /* 5489 * Avoid overflow. 5490 * If inc causes overflow, untouch promisc and return error. 5491 */ 5492 if (inc < 0) 5493 dev->flags &= ~IFF_PROMISC; 5494 else { 5495 dev->promiscuity -= inc; 5496 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5497 dev->name); 5498 return -EOVERFLOW; 5499 } 5500 } 5501 if (dev->flags != old_flags) { 5502 pr_info("device %s %s promiscuous mode\n", 5503 dev->name, 5504 dev->flags & IFF_PROMISC ? "entered" : "left"); 5505 if (audit_enabled) { 5506 current_uid_gid(&uid, &gid); 5507 audit_log(current->audit_context, GFP_ATOMIC, 5508 AUDIT_ANOM_PROMISCUOUS, 5509 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5510 dev->name, (dev->flags & IFF_PROMISC), 5511 (old_flags & IFF_PROMISC), 5512 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5513 from_kuid(&init_user_ns, uid), 5514 from_kgid(&init_user_ns, gid), 5515 audit_get_sessionid(current)); 5516 } 5517 5518 dev_change_rx_flags(dev, IFF_PROMISC); 5519 } 5520 if (notify) 5521 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5522 return 0; 5523 } 5524 5525 /** 5526 * dev_set_promiscuity - update promiscuity count on a device 5527 * @dev: device 5528 * @inc: modifier 5529 * 5530 * Add or remove promiscuity from a device. While the count in the device 5531 * remains above zero the interface remains promiscuous. Once it hits zero 5532 * the device reverts back to normal filtering operation. A negative inc 5533 * value is used to drop promiscuity on the device. 5534 * Return 0 if successful or a negative errno code on error. 5535 */ 5536 int dev_set_promiscuity(struct net_device *dev, int inc) 5537 { 5538 unsigned int old_flags = dev->flags; 5539 int err; 5540 5541 err = __dev_set_promiscuity(dev, inc, true); 5542 if (err < 0) 5543 return err; 5544 if (dev->flags != old_flags) 5545 dev_set_rx_mode(dev); 5546 return err; 5547 } 5548 EXPORT_SYMBOL(dev_set_promiscuity); 5549 5550 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5551 { 5552 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5553 5554 ASSERT_RTNL(); 5555 5556 dev->flags |= IFF_ALLMULTI; 5557 dev->allmulti += inc; 5558 if (dev->allmulti == 0) { 5559 /* 5560 * Avoid overflow. 5561 * If inc causes overflow, untouch allmulti and return error. 5562 */ 5563 if (inc < 0) 5564 dev->flags &= ~IFF_ALLMULTI; 5565 else { 5566 dev->allmulti -= inc; 5567 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5568 dev->name); 5569 return -EOVERFLOW; 5570 } 5571 } 5572 if (dev->flags ^ old_flags) { 5573 dev_change_rx_flags(dev, IFF_ALLMULTI); 5574 dev_set_rx_mode(dev); 5575 if (notify) 5576 __dev_notify_flags(dev, old_flags, 5577 dev->gflags ^ old_gflags); 5578 } 5579 return 0; 5580 } 5581 5582 /** 5583 * dev_set_allmulti - update allmulti count on a device 5584 * @dev: device 5585 * @inc: modifier 5586 * 5587 * Add or remove reception of all multicast frames to a device. While the 5588 * count in the device remains above zero the interface remains listening 5589 * to all interfaces. Once it hits zero the device reverts back to normal 5590 * filtering operation. A negative @inc value is used to drop the counter 5591 * when releasing a resource needing all multicasts. 5592 * Return 0 if successful or a negative errno code on error. 5593 */ 5594 5595 int dev_set_allmulti(struct net_device *dev, int inc) 5596 { 5597 return __dev_set_allmulti(dev, inc, true); 5598 } 5599 EXPORT_SYMBOL(dev_set_allmulti); 5600 5601 /* 5602 * Upload unicast and multicast address lists to device and 5603 * configure RX filtering. When the device doesn't support unicast 5604 * filtering it is put in promiscuous mode while unicast addresses 5605 * are present. 5606 */ 5607 void __dev_set_rx_mode(struct net_device *dev) 5608 { 5609 const struct net_device_ops *ops = dev->netdev_ops; 5610 5611 /* dev_open will call this function so the list will stay sane. */ 5612 if (!(dev->flags&IFF_UP)) 5613 return; 5614 5615 if (!netif_device_present(dev)) 5616 return; 5617 5618 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5619 /* Unicast addresses changes may only happen under the rtnl, 5620 * therefore calling __dev_set_promiscuity here is safe. 5621 */ 5622 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5623 __dev_set_promiscuity(dev, 1, false); 5624 dev->uc_promisc = true; 5625 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5626 __dev_set_promiscuity(dev, -1, false); 5627 dev->uc_promisc = false; 5628 } 5629 } 5630 5631 if (ops->ndo_set_rx_mode) 5632 ops->ndo_set_rx_mode(dev); 5633 } 5634 5635 void dev_set_rx_mode(struct net_device *dev) 5636 { 5637 netif_addr_lock_bh(dev); 5638 __dev_set_rx_mode(dev); 5639 netif_addr_unlock_bh(dev); 5640 } 5641 5642 /** 5643 * dev_get_flags - get flags reported to userspace 5644 * @dev: device 5645 * 5646 * Get the combination of flag bits exported through APIs to userspace. 5647 */ 5648 unsigned int dev_get_flags(const struct net_device *dev) 5649 { 5650 unsigned int flags; 5651 5652 flags = (dev->flags & ~(IFF_PROMISC | 5653 IFF_ALLMULTI | 5654 IFF_RUNNING | 5655 IFF_LOWER_UP | 5656 IFF_DORMANT)) | 5657 (dev->gflags & (IFF_PROMISC | 5658 IFF_ALLMULTI)); 5659 5660 if (netif_running(dev)) { 5661 if (netif_oper_up(dev)) 5662 flags |= IFF_RUNNING; 5663 if (netif_carrier_ok(dev)) 5664 flags |= IFF_LOWER_UP; 5665 if (netif_dormant(dev)) 5666 flags |= IFF_DORMANT; 5667 } 5668 5669 return flags; 5670 } 5671 EXPORT_SYMBOL(dev_get_flags); 5672 5673 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5674 { 5675 unsigned int old_flags = dev->flags; 5676 int ret; 5677 5678 ASSERT_RTNL(); 5679 5680 /* 5681 * Set the flags on our device. 5682 */ 5683 5684 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5685 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5686 IFF_AUTOMEDIA)) | 5687 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5688 IFF_ALLMULTI)); 5689 5690 /* 5691 * Load in the correct multicast list now the flags have changed. 5692 */ 5693 5694 if ((old_flags ^ flags) & IFF_MULTICAST) 5695 dev_change_rx_flags(dev, IFF_MULTICAST); 5696 5697 dev_set_rx_mode(dev); 5698 5699 /* 5700 * Have we downed the interface. We handle IFF_UP ourselves 5701 * according to user attempts to set it, rather than blindly 5702 * setting it. 5703 */ 5704 5705 ret = 0; 5706 if ((old_flags ^ flags) & IFF_UP) 5707 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5708 5709 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5710 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5711 unsigned int old_flags = dev->flags; 5712 5713 dev->gflags ^= IFF_PROMISC; 5714 5715 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5716 if (dev->flags != old_flags) 5717 dev_set_rx_mode(dev); 5718 } 5719 5720 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5721 is important. Some (broken) drivers set IFF_PROMISC, when 5722 IFF_ALLMULTI is requested not asking us and not reporting. 5723 */ 5724 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5725 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5726 5727 dev->gflags ^= IFF_ALLMULTI; 5728 __dev_set_allmulti(dev, inc, false); 5729 } 5730 5731 return ret; 5732 } 5733 5734 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5735 unsigned int gchanges) 5736 { 5737 unsigned int changes = dev->flags ^ old_flags; 5738 5739 if (gchanges) 5740 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5741 5742 if (changes & IFF_UP) { 5743 if (dev->flags & IFF_UP) 5744 call_netdevice_notifiers(NETDEV_UP, dev); 5745 else 5746 call_netdevice_notifiers(NETDEV_DOWN, dev); 5747 } 5748 5749 if (dev->flags & IFF_UP && 5750 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5751 struct netdev_notifier_change_info change_info; 5752 5753 change_info.flags_changed = changes; 5754 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5755 &change_info.info); 5756 } 5757 } 5758 5759 /** 5760 * dev_change_flags - change device settings 5761 * @dev: device 5762 * @flags: device state flags 5763 * 5764 * Change settings on device based state flags. The flags are 5765 * in the userspace exported format. 5766 */ 5767 int dev_change_flags(struct net_device *dev, unsigned int flags) 5768 { 5769 int ret; 5770 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5771 5772 ret = __dev_change_flags(dev, flags); 5773 if (ret < 0) 5774 return ret; 5775 5776 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5777 __dev_notify_flags(dev, old_flags, changes); 5778 return ret; 5779 } 5780 EXPORT_SYMBOL(dev_change_flags); 5781 5782 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5783 { 5784 const struct net_device_ops *ops = dev->netdev_ops; 5785 5786 if (ops->ndo_change_mtu) 5787 return ops->ndo_change_mtu(dev, new_mtu); 5788 5789 dev->mtu = new_mtu; 5790 return 0; 5791 } 5792 5793 /** 5794 * dev_set_mtu - Change maximum transfer unit 5795 * @dev: device 5796 * @new_mtu: new transfer unit 5797 * 5798 * Change the maximum transfer size of the network device. 5799 */ 5800 int dev_set_mtu(struct net_device *dev, int new_mtu) 5801 { 5802 int err, orig_mtu; 5803 5804 if (new_mtu == dev->mtu) 5805 return 0; 5806 5807 /* MTU must be positive. */ 5808 if (new_mtu < 0) 5809 return -EINVAL; 5810 5811 if (!netif_device_present(dev)) 5812 return -ENODEV; 5813 5814 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5815 err = notifier_to_errno(err); 5816 if (err) 5817 return err; 5818 5819 orig_mtu = dev->mtu; 5820 err = __dev_set_mtu(dev, new_mtu); 5821 5822 if (!err) { 5823 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5824 err = notifier_to_errno(err); 5825 if (err) { 5826 /* setting mtu back and notifying everyone again, 5827 * so that they have a chance to revert changes. 5828 */ 5829 __dev_set_mtu(dev, orig_mtu); 5830 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5831 } 5832 } 5833 return err; 5834 } 5835 EXPORT_SYMBOL(dev_set_mtu); 5836 5837 /** 5838 * dev_set_group - Change group this device belongs to 5839 * @dev: device 5840 * @new_group: group this device should belong to 5841 */ 5842 void dev_set_group(struct net_device *dev, int new_group) 5843 { 5844 dev->group = new_group; 5845 } 5846 EXPORT_SYMBOL(dev_set_group); 5847 5848 /** 5849 * dev_set_mac_address - Change Media Access Control Address 5850 * @dev: device 5851 * @sa: new address 5852 * 5853 * Change the hardware (MAC) address of the device 5854 */ 5855 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5856 { 5857 const struct net_device_ops *ops = dev->netdev_ops; 5858 int err; 5859 5860 if (!ops->ndo_set_mac_address) 5861 return -EOPNOTSUPP; 5862 if (sa->sa_family != dev->type) 5863 return -EINVAL; 5864 if (!netif_device_present(dev)) 5865 return -ENODEV; 5866 err = ops->ndo_set_mac_address(dev, sa); 5867 if (err) 5868 return err; 5869 dev->addr_assign_type = NET_ADDR_SET; 5870 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5871 add_device_randomness(dev->dev_addr, dev->addr_len); 5872 return 0; 5873 } 5874 EXPORT_SYMBOL(dev_set_mac_address); 5875 5876 /** 5877 * dev_change_carrier - Change device carrier 5878 * @dev: device 5879 * @new_carrier: new value 5880 * 5881 * Change device carrier 5882 */ 5883 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5884 { 5885 const struct net_device_ops *ops = dev->netdev_ops; 5886 5887 if (!ops->ndo_change_carrier) 5888 return -EOPNOTSUPP; 5889 if (!netif_device_present(dev)) 5890 return -ENODEV; 5891 return ops->ndo_change_carrier(dev, new_carrier); 5892 } 5893 EXPORT_SYMBOL(dev_change_carrier); 5894 5895 /** 5896 * dev_get_phys_port_id - Get device physical port ID 5897 * @dev: device 5898 * @ppid: port ID 5899 * 5900 * Get device physical port ID 5901 */ 5902 int dev_get_phys_port_id(struct net_device *dev, 5903 struct netdev_phys_item_id *ppid) 5904 { 5905 const struct net_device_ops *ops = dev->netdev_ops; 5906 5907 if (!ops->ndo_get_phys_port_id) 5908 return -EOPNOTSUPP; 5909 return ops->ndo_get_phys_port_id(dev, ppid); 5910 } 5911 EXPORT_SYMBOL(dev_get_phys_port_id); 5912 5913 /** 5914 * dev_new_index - allocate an ifindex 5915 * @net: the applicable net namespace 5916 * 5917 * Returns a suitable unique value for a new device interface 5918 * number. The caller must hold the rtnl semaphore or the 5919 * dev_base_lock to be sure it remains unique. 5920 */ 5921 static int dev_new_index(struct net *net) 5922 { 5923 int ifindex = net->ifindex; 5924 for (;;) { 5925 if (++ifindex <= 0) 5926 ifindex = 1; 5927 if (!__dev_get_by_index(net, ifindex)) 5928 return net->ifindex = ifindex; 5929 } 5930 } 5931 5932 /* Delayed registration/unregisteration */ 5933 static LIST_HEAD(net_todo_list); 5934 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5935 5936 static void net_set_todo(struct net_device *dev) 5937 { 5938 list_add_tail(&dev->todo_list, &net_todo_list); 5939 dev_net(dev)->dev_unreg_count++; 5940 } 5941 5942 static void rollback_registered_many(struct list_head *head) 5943 { 5944 struct net_device *dev, *tmp; 5945 LIST_HEAD(close_head); 5946 5947 BUG_ON(dev_boot_phase); 5948 ASSERT_RTNL(); 5949 5950 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5951 /* Some devices call without registering 5952 * for initialization unwind. Remove those 5953 * devices and proceed with the remaining. 5954 */ 5955 if (dev->reg_state == NETREG_UNINITIALIZED) { 5956 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5957 dev->name, dev); 5958 5959 WARN_ON(1); 5960 list_del(&dev->unreg_list); 5961 continue; 5962 } 5963 dev->dismantle = true; 5964 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5965 } 5966 5967 /* If device is running, close it first. */ 5968 list_for_each_entry(dev, head, unreg_list) 5969 list_add_tail(&dev->close_list, &close_head); 5970 dev_close_many(&close_head); 5971 5972 list_for_each_entry(dev, head, unreg_list) { 5973 /* And unlink it from device chain. */ 5974 unlist_netdevice(dev); 5975 5976 dev->reg_state = NETREG_UNREGISTERING; 5977 } 5978 5979 synchronize_net(); 5980 5981 list_for_each_entry(dev, head, unreg_list) { 5982 struct sk_buff *skb = NULL; 5983 5984 /* Shutdown queueing discipline. */ 5985 dev_shutdown(dev); 5986 5987 5988 /* Notify protocols, that we are about to destroy 5989 this device. They should clean all the things. 5990 */ 5991 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5992 5993 if (!dev->rtnl_link_ops || 5994 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5995 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 5996 GFP_KERNEL); 5997 5998 /* 5999 * Flush the unicast and multicast chains 6000 */ 6001 dev_uc_flush(dev); 6002 dev_mc_flush(dev); 6003 6004 if (dev->netdev_ops->ndo_uninit) 6005 dev->netdev_ops->ndo_uninit(dev); 6006 6007 if (skb) 6008 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6009 6010 /* Notifier chain MUST detach us all upper devices. */ 6011 WARN_ON(netdev_has_any_upper_dev(dev)); 6012 6013 /* Remove entries from kobject tree */ 6014 netdev_unregister_kobject(dev); 6015 #ifdef CONFIG_XPS 6016 /* Remove XPS queueing entries */ 6017 netif_reset_xps_queues_gt(dev, 0); 6018 #endif 6019 } 6020 6021 synchronize_net(); 6022 6023 list_for_each_entry(dev, head, unreg_list) 6024 dev_put(dev); 6025 } 6026 6027 static void rollback_registered(struct net_device *dev) 6028 { 6029 LIST_HEAD(single); 6030 6031 list_add(&dev->unreg_list, &single); 6032 rollback_registered_many(&single); 6033 list_del(&single); 6034 } 6035 6036 static netdev_features_t netdev_fix_features(struct net_device *dev, 6037 netdev_features_t features) 6038 { 6039 /* Fix illegal checksum combinations */ 6040 if ((features & NETIF_F_HW_CSUM) && 6041 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6042 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6043 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6044 } 6045 6046 /* TSO requires that SG is present as well. */ 6047 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6048 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6049 features &= ~NETIF_F_ALL_TSO; 6050 } 6051 6052 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6053 !(features & NETIF_F_IP_CSUM)) { 6054 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6055 features &= ~NETIF_F_TSO; 6056 features &= ~NETIF_F_TSO_ECN; 6057 } 6058 6059 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6060 !(features & NETIF_F_IPV6_CSUM)) { 6061 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6062 features &= ~NETIF_F_TSO6; 6063 } 6064 6065 /* TSO ECN requires that TSO is present as well. */ 6066 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6067 features &= ~NETIF_F_TSO_ECN; 6068 6069 /* Software GSO depends on SG. */ 6070 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6071 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6072 features &= ~NETIF_F_GSO; 6073 } 6074 6075 /* UFO needs SG and checksumming */ 6076 if (features & NETIF_F_UFO) { 6077 /* maybe split UFO into V4 and V6? */ 6078 if (!((features & NETIF_F_GEN_CSUM) || 6079 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6080 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6081 netdev_dbg(dev, 6082 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6083 features &= ~NETIF_F_UFO; 6084 } 6085 6086 if (!(features & NETIF_F_SG)) { 6087 netdev_dbg(dev, 6088 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6089 features &= ~NETIF_F_UFO; 6090 } 6091 } 6092 6093 #ifdef CONFIG_NET_RX_BUSY_POLL 6094 if (dev->netdev_ops->ndo_busy_poll) 6095 features |= NETIF_F_BUSY_POLL; 6096 else 6097 #endif 6098 features &= ~NETIF_F_BUSY_POLL; 6099 6100 return features; 6101 } 6102 6103 int __netdev_update_features(struct net_device *dev) 6104 { 6105 netdev_features_t features; 6106 int err = 0; 6107 6108 ASSERT_RTNL(); 6109 6110 features = netdev_get_wanted_features(dev); 6111 6112 if (dev->netdev_ops->ndo_fix_features) 6113 features = dev->netdev_ops->ndo_fix_features(dev, features); 6114 6115 /* driver might be less strict about feature dependencies */ 6116 features = netdev_fix_features(dev, features); 6117 6118 if (dev->features == features) 6119 return 0; 6120 6121 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6122 &dev->features, &features); 6123 6124 if (dev->netdev_ops->ndo_set_features) 6125 err = dev->netdev_ops->ndo_set_features(dev, features); 6126 6127 if (unlikely(err < 0)) { 6128 netdev_err(dev, 6129 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6130 err, &features, &dev->features); 6131 return -1; 6132 } 6133 6134 if (!err) 6135 dev->features = features; 6136 6137 return 1; 6138 } 6139 6140 /** 6141 * netdev_update_features - recalculate device features 6142 * @dev: the device to check 6143 * 6144 * Recalculate dev->features set and send notifications if it 6145 * has changed. Should be called after driver or hardware dependent 6146 * conditions might have changed that influence the features. 6147 */ 6148 void netdev_update_features(struct net_device *dev) 6149 { 6150 if (__netdev_update_features(dev)) 6151 netdev_features_change(dev); 6152 } 6153 EXPORT_SYMBOL(netdev_update_features); 6154 6155 /** 6156 * netdev_change_features - recalculate device features 6157 * @dev: the device to check 6158 * 6159 * Recalculate dev->features set and send notifications even 6160 * if they have not changed. Should be called instead of 6161 * netdev_update_features() if also dev->vlan_features might 6162 * have changed to allow the changes to be propagated to stacked 6163 * VLAN devices. 6164 */ 6165 void netdev_change_features(struct net_device *dev) 6166 { 6167 __netdev_update_features(dev); 6168 netdev_features_change(dev); 6169 } 6170 EXPORT_SYMBOL(netdev_change_features); 6171 6172 /** 6173 * netif_stacked_transfer_operstate - transfer operstate 6174 * @rootdev: the root or lower level device to transfer state from 6175 * @dev: the device to transfer operstate to 6176 * 6177 * Transfer operational state from root to device. This is normally 6178 * called when a stacking relationship exists between the root 6179 * device and the device(a leaf device). 6180 */ 6181 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6182 struct net_device *dev) 6183 { 6184 if (rootdev->operstate == IF_OPER_DORMANT) 6185 netif_dormant_on(dev); 6186 else 6187 netif_dormant_off(dev); 6188 6189 if (netif_carrier_ok(rootdev)) { 6190 if (!netif_carrier_ok(dev)) 6191 netif_carrier_on(dev); 6192 } else { 6193 if (netif_carrier_ok(dev)) 6194 netif_carrier_off(dev); 6195 } 6196 } 6197 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6198 6199 #ifdef CONFIG_SYSFS 6200 static int netif_alloc_rx_queues(struct net_device *dev) 6201 { 6202 unsigned int i, count = dev->num_rx_queues; 6203 struct netdev_rx_queue *rx; 6204 size_t sz = count * sizeof(*rx); 6205 6206 BUG_ON(count < 1); 6207 6208 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6209 if (!rx) { 6210 rx = vzalloc(sz); 6211 if (!rx) 6212 return -ENOMEM; 6213 } 6214 dev->_rx = rx; 6215 6216 for (i = 0; i < count; i++) 6217 rx[i].dev = dev; 6218 return 0; 6219 } 6220 #endif 6221 6222 static void netdev_init_one_queue(struct net_device *dev, 6223 struct netdev_queue *queue, void *_unused) 6224 { 6225 /* Initialize queue lock */ 6226 spin_lock_init(&queue->_xmit_lock); 6227 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6228 queue->xmit_lock_owner = -1; 6229 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6230 queue->dev = dev; 6231 #ifdef CONFIG_BQL 6232 dql_init(&queue->dql, HZ); 6233 #endif 6234 } 6235 6236 static void netif_free_tx_queues(struct net_device *dev) 6237 { 6238 kvfree(dev->_tx); 6239 } 6240 6241 static int netif_alloc_netdev_queues(struct net_device *dev) 6242 { 6243 unsigned int count = dev->num_tx_queues; 6244 struct netdev_queue *tx; 6245 size_t sz = count * sizeof(*tx); 6246 6247 BUG_ON(count < 1 || count > 0xffff); 6248 6249 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6250 if (!tx) { 6251 tx = vzalloc(sz); 6252 if (!tx) 6253 return -ENOMEM; 6254 } 6255 dev->_tx = tx; 6256 6257 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6258 spin_lock_init(&dev->tx_global_lock); 6259 6260 return 0; 6261 } 6262 6263 /** 6264 * register_netdevice - register a network device 6265 * @dev: device to register 6266 * 6267 * Take a completed network device structure and add it to the kernel 6268 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6269 * chain. 0 is returned on success. A negative errno code is returned 6270 * on a failure to set up the device, or if the name is a duplicate. 6271 * 6272 * Callers must hold the rtnl semaphore. You may want 6273 * register_netdev() instead of this. 6274 * 6275 * BUGS: 6276 * The locking appears insufficient to guarantee two parallel registers 6277 * will not get the same name. 6278 */ 6279 6280 int register_netdevice(struct net_device *dev) 6281 { 6282 int ret; 6283 struct net *net = dev_net(dev); 6284 6285 BUG_ON(dev_boot_phase); 6286 ASSERT_RTNL(); 6287 6288 might_sleep(); 6289 6290 /* When net_device's are persistent, this will be fatal. */ 6291 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6292 BUG_ON(!net); 6293 6294 spin_lock_init(&dev->addr_list_lock); 6295 netdev_set_addr_lockdep_class(dev); 6296 6297 dev->iflink = -1; 6298 6299 ret = dev_get_valid_name(net, dev, dev->name); 6300 if (ret < 0) 6301 goto out; 6302 6303 /* Init, if this function is available */ 6304 if (dev->netdev_ops->ndo_init) { 6305 ret = dev->netdev_ops->ndo_init(dev); 6306 if (ret) { 6307 if (ret > 0) 6308 ret = -EIO; 6309 goto out; 6310 } 6311 } 6312 6313 if (((dev->hw_features | dev->features) & 6314 NETIF_F_HW_VLAN_CTAG_FILTER) && 6315 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6316 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6317 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6318 ret = -EINVAL; 6319 goto err_uninit; 6320 } 6321 6322 ret = -EBUSY; 6323 if (!dev->ifindex) 6324 dev->ifindex = dev_new_index(net); 6325 else if (__dev_get_by_index(net, dev->ifindex)) 6326 goto err_uninit; 6327 6328 if (dev->iflink == -1) 6329 dev->iflink = dev->ifindex; 6330 6331 /* Transfer changeable features to wanted_features and enable 6332 * software offloads (GSO and GRO). 6333 */ 6334 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6335 dev->features |= NETIF_F_SOFT_FEATURES; 6336 dev->wanted_features = dev->features & dev->hw_features; 6337 6338 if (!(dev->flags & IFF_LOOPBACK)) { 6339 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6340 } 6341 6342 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6343 */ 6344 dev->vlan_features |= NETIF_F_HIGHDMA; 6345 6346 /* Make NETIF_F_SG inheritable to tunnel devices. 6347 */ 6348 dev->hw_enc_features |= NETIF_F_SG; 6349 6350 /* Make NETIF_F_SG inheritable to MPLS. 6351 */ 6352 dev->mpls_features |= NETIF_F_SG; 6353 6354 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6355 ret = notifier_to_errno(ret); 6356 if (ret) 6357 goto err_uninit; 6358 6359 ret = netdev_register_kobject(dev); 6360 if (ret) 6361 goto err_uninit; 6362 dev->reg_state = NETREG_REGISTERED; 6363 6364 __netdev_update_features(dev); 6365 6366 /* 6367 * Default initial state at registry is that the 6368 * device is present. 6369 */ 6370 6371 set_bit(__LINK_STATE_PRESENT, &dev->state); 6372 6373 linkwatch_init_dev(dev); 6374 6375 dev_init_scheduler(dev); 6376 dev_hold(dev); 6377 list_netdevice(dev); 6378 add_device_randomness(dev->dev_addr, dev->addr_len); 6379 6380 /* If the device has permanent device address, driver should 6381 * set dev_addr and also addr_assign_type should be set to 6382 * NET_ADDR_PERM (default value). 6383 */ 6384 if (dev->addr_assign_type == NET_ADDR_PERM) 6385 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6386 6387 /* Notify protocols, that a new device appeared. */ 6388 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6389 ret = notifier_to_errno(ret); 6390 if (ret) { 6391 rollback_registered(dev); 6392 dev->reg_state = NETREG_UNREGISTERED; 6393 } 6394 /* 6395 * Prevent userspace races by waiting until the network 6396 * device is fully setup before sending notifications. 6397 */ 6398 if (!dev->rtnl_link_ops || 6399 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6400 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6401 6402 out: 6403 return ret; 6404 6405 err_uninit: 6406 if (dev->netdev_ops->ndo_uninit) 6407 dev->netdev_ops->ndo_uninit(dev); 6408 goto out; 6409 } 6410 EXPORT_SYMBOL(register_netdevice); 6411 6412 /** 6413 * init_dummy_netdev - init a dummy network device for NAPI 6414 * @dev: device to init 6415 * 6416 * This takes a network device structure and initialize the minimum 6417 * amount of fields so it can be used to schedule NAPI polls without 6418 * registering a full blown interface. This is to be used by drivers 6419 * that need to tie several hardware interfaces to a single NAPI 6420 * poll scheduler due to HW limitations. 6421 */ 6422 int init_dummy_netdev(struct net_device *dev) 6423 { 6424 /* Clear everything. Note we don't initialize spinlocks 6425 * are they aren't supposed to be taken by any of the 6426 * NAPI code and this dummy netdev is supposed to be 6427 * only ever used for NAPI polls 6428 */ 6429 memset(dev, 0, sizeof(struct net_device)); 6430 6431 /* make sure we BUG if trying to hit standard 6432 * register/unregister code path 6433 */ 6434 dev->reg_state = NETREG_DUMMY; 6435 6436 /* NAPI wants this */ 6437 INIT_LIST_HEAD(&dev->napi_list); 6438 6439 /* a dummy interface is started by default */ 6440 set_bit(__LINK_STATE_PRESENT, &dev->state); 6441 set_bit(__LINK_STATE_START, &dev->state); 6442 6443 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6444 * because users of this 'device' dont need to change 6445 * its refcount. 6446 */ 6447 6448 return 0; 6449 } 6450 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6451 6452 6453 /** 6454 * register_netdev - register a network device 6455 * @dev: device to register 6456 * 6457 * Take a completed network device structure and add it to the kernel 6458 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6459 * chain. 0 is returned on success. A negative errno code is returned 6460 * on a failure to set up the device, or if the name is a duplicate. 6461 * 6462 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6463 * and expands the device name if you passed a format string to 6464 * alloc_netdev. 6465 */ 6466 int register_netdev(struct net_device *dev) 6467 { 6468 int err; 6469 6470 rtnl_lock(); 6471 err = register_netdevice(dev); 6472 rtnl_unlock(); 6473 return err; 6474 } 6475 EXPORT_SYMBOL(register_netdev); 6476 6477 int netdev_refcnt_read(const struct net_device *dev) 6478 { 6479 int i, refcnt = 0; 6480 6481 for_each_possible_cpu(i) 6482 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6483 return refcnt; 6484 } 6485 EXPORT_SYMBOL(netdev_refcnt_read); 6486 6487 /** 6488 * netdev_wait_allrefs - wait until all references are gone. 6489 * @dev: target net_device 6490 * 6491 * This is called when unregistering network devices. 6492 * 6493 * Any protocol or device that holds a reference should register 6494 * for netdevice notification, and cleanup and put back the 6495 * reference if they receive an UNREGISTER event. 6496 * We can get stuck here if buggy protocols don't correctly 6497 * call dev_put. 6498 */ 6499 static void netdev_wait_allrefs(struct net_device *dev) 6500 { 6501 unsigned long rebroadcast_time, warning_time; 6502 int refcnt; 6503 6504 linkwatch_forget_dev(dev); 6505 6506 rebroadcast_time = warning_time = jiffies; 6507 refcnt = netdev_refcnt_read(dev); 6508 6509 while (refcnt != 0) { 6510 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6511 rtnl_lock(); 6512 6513 /* Rebroadcast unregister notification */ 6514 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6515 6516 __rtnl_unlock(); 6517 rcu_barrier(); 6518 rtnl_lock(); 6519 6520 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6521 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6522 &dev->state)) { 6523 /* We must not have linkwatch events 6524 * pending on unregister. If this 6525 * happens, we simply run the queue 6526 * unscheduled, resulting in a noop 6527 * for this device. 6528 */ 6529 linkwatch_run_queue(); 6530 } 6531 6532 __rtnl_unlock(); 6533 6534 rebroadcast_time = jiffies; 6535 } 6536 6537 msleep(250); 6538 6539 refcnt = netdev_refcnt_read(dev); 6540 6541 if (time_after(jiffies, warning_time + 10 * HZ)) { 6542 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6543 dev->name, refcnt); 6544 warning_time = jiffies; 6545 } 6546 } 6547 } 6548 6549 /* The sequence is: 6550 * 6551 * rtnl_lock(); 6552 * ... 6553 * register_netdevice(x1); 6554 * register_netdevice(x2); 6555 * ... 6556 * unregister_netdevice(y1); 6557 * unregister_netdevice(y2); 6558 * ... 6559 * rtnl_unlock(); 6560 * free_netdev(y1); 6561 * free_netdev(y2); 6562 * 6563 * We are invoked by rtnl_unlock(). 6564 * This allows us to deal with problems: 6565 * 1) We can delete sysfs objects which invoke hotplug 6566 * without deadlocking with linkwatch via keventd. 6567 * 2) Since we run with the RTNL semaphore not held, we can sleep 6568 * safely in order to wait for the netdev refcnt to drop to zero. 6569 * 6570 * We must not return until all unregister events added during 6571 * the interval the lock was held have been completed. 6572 */ 6573 void netdev_run_todo(void) 6574 { 6575 struct list_head list; 6576 6577 /* Snapshot list, allow later requests */ 6578 list_replace_init(&net_todo_list, &list); 6579 6580 __rtnl_unlock(); 6581 6582 6583 /* Wait for rcu callbacks to finish before next phase */ 6584 if (!list_empty(&list)) 6585 rcu_barrier(); 6586 6587 while (!list_empty(&list)) { 6588 struct net_device *dev 6589 = list_first_entry(&list, struct net_device, todo_list); 6590 list_del(&dev->todo_list); 6591 6592 rtnl_lock(); 6593 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6594 __rtnl_unlock(); 6595 6596 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6597 pr_err("network todo '%s' but state %d\n", 6598 dev->name, dev->reg_state); 6599 dump_stack(); 6600 continue; 6601 } 6602 6603 dev->reg_state = NETREG_UNREGISTERED; 6604 6605 on_each_cpu(flush_backlog, dev, 1); 6606 6607 netdev_wait_allrefs(dev); 6608 6609 /* paranoia */ 6610 BUG_ON(netdev_refcnt_read(dev)); 6611 BUG_ON(!list_empty(&dev->ptype_all)); 6612 BUG_ON(!list_empty(&dev->ptype_specific)); 6613 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6614 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6615 WARN_ON(dev->dn_ptr); 6616 6617 if (dev->destructor) 6618 dev->destructor(dev); 6619 6620 /* Report a network device has been unregistered */ 6621 rtnl_lock(); 6622 dev_net(dev)->dev_unreg_count--; 6623 __rtnl_unlock(); 6624 wake_up(&netdev_unregistering_wq); 6625 6626 /* Free network device */ 6627 kobject_put(&dev->dev.kobj); 6628 } 6629 } 6630 6631 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6632 * fields in the same order, with only the type differing. 6633 */ 6634 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6635 const struct net_device_stats *netdev_stats) 6636 { 6637 #if BITS_PER_LONG == 64 6638 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6639 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6640 #else 6641 size_t i, n = sizeof(*stats64) / sizeof(u64); 6642 const unsigned long *src = (const unsigned long *)netdev_stats; 6643 u64 *dst = (u64 *)stats64; 6644 6645 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6646 sizeof(*stats64) / sizeof(u64)); 6647 for (i = 0; i < n; i++) 6648 dst[i] = src[i]; 6649 #endif 6650 } 6651 EXPORT_SYMBOL(netdev_stats_to_stats64); 6652 6653 /** 6654 * dev_get_stats - get network device statistics 6655 * @dev: device to get statistics from 6656 * @storage: place to store stats 6657 * 6658 * Get network statistics from device. Return @storage. 6659 * The device driver may provide its own method by setting 6660 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6661 * otherwise the internal statistics structure is used. 6662 */ 6663 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6664 struct rtnl_link_stats64 *storage) 6665 { 6666 const struct net_device_ops *ops = dev->netdev_ops; 6667 6668 if (ops->ndo_get_stats64) { 6669 memset(storage, 0, sizeof(*storage)); 6670 ops->ndo_get_stats64(dev, storage); 6671 } else if (ops->ndo_get_stats) { 6672 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6673 } else { 6674 netdev_stats_to_stats64(storage, &dev->stats); 6675 } 6676 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6677 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6678 return storage; 6679 } 6680 EXPORT_SYMBOL(dev_get_stats); 6681 6682 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6683 { 6684 struct netdev_queue *queue = dev_ingress_queue(dev); 6685 6686 #ifdef CONFIG_NET_CLS_ACT 6687 if (queue) 6688 return queue; 6689 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6690 if (!queue) 6691 return NULL; 6692 netdev_init_one_queue(dev, queue, NULL); 6693 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 6694 queue->qdisc_sleeping = &noop_qdisc; 6695 rcu_assign_pointer(dev->ingress_queue, queue); 6696 #endif 6697 return queue; 6698 } 6699 6700 static const struct ethtool_ops default_ethtool_ops; 6701 6702 void netdev_set_default_ethtool_ops(struct net_device *dev, 6703 const struct ethtool_ops *ops) 6704 { 6705 if (dev->ethtool_ops == &default_ethtool_ops) 6706 dev->ethtool_ops = ops; 6707 } 6708 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6709 6710 void netdev_freemem(struct net_device *dev) 6711 { 6712 char *addr = (char *)dev - dev->padded; 6713 6714 kvfree(addr); 6715 } 6716 6717 /** 6718 * alloc_netdev_mqs - allocate network device 6719 * @sizeof_priv: size of private data to allocate space for 6720 * @name: device name format string 6721 * @name_assign_type: origin of device name 6722 * @setup: callback to initialize device 6723 * @txqs: the number of TX subqueues to allocate 6724 * @rxqs: the number of RX subqueues to allocate 6725 * 6726 * Allocates a struct net_device with private data area for driver use 6727 * and performs basic initialization. Also allocates subqueue structs 6728 * for each queue on the device. 6729 */ 6730 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6731 unsigned char name_assign_type, 6732 void (*setup)(struct net_device *), 6733 unsigned int txqs, unsigned int rxqs) 6734 { 6735 struct net_device *dev; 6736 size_t alloc_size; 6737 struct net_device *p; 6738 6739 BUG_ON(strlen(name) >= sizeof(dev->name)); 6740 6741 if (txqs < 1) { 6742 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6743 return NULL; 6744 } 6745 6746 #ifdef CONFIG_SYSFS 6747 if (rxqs < 1) { 6748 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6749 return NULL; 6750 } 6751 #endif 6752 6753 alloc_size = sizeof(struct net_device); 6754 if (sizeof_priv) { 6755 /* ensure 32-byte alignment of private area */ 6756 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6757 alloc_size += sizeof_priv; 6758 } 6759 /* ensure 32-byte alignment of whole construct */ 6760 alloc_size += NETDEV_ALIGN - 1; 6761 6762 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6763 if (!p) 6764 p = vzalloc(alloc_size); 6765 if (!p) 6766 return NULL; 6767 6768 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6769 dev->padded = (char *)dev - (char *)p; 6770 6771 dev->pcpu_refcnt = alloc_percpu(int); 6772 if (!dev->pcpu_refcnt) 6773 goto free_dev; 6774 6775 if (dev_addr_init(dev)) 6776 goto free_pcpu; 6777 6778 dev_mc_init(dev); 6779 dev_uc_init(dev); 6780 6781 dev_net_set(dev, &init_net); 6782 6783 dev->gso_max_size = GSO_MAX_SIZE; 6784 dev->gso_max_segs = GSO_MAX_SEGS; 6785 dev->gso_min_segs = 0; 6786 6787 INIT_LIST_HEAD(&dev->napi_list); 6788 INIT_LIST_HEAD(&dev->unreg_list); 6789 INIT_LIST_HEAD(&dev->close_list); 6790 INIT_LIST_HEAD(&dev->link_watch_list); 6791 INIT_LIST_HEAD(&dev->adj_list.upper); 6792 INIT_LIST_HEAD(&dev->adj_list.lower); 6793 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6794 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6795 INIT_LIST_HEAD(&dev->ptype_all); 6796 INIT_LIST_HEAD(&dev->ptype_specific); 6797 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 6798 setup(dev); 6799 6800 dev->num_tx_queues = txqs; 6801 dev->real_num_tx_queues = txqs; 6802 if (netif_alloc_netdev_queues(dev)) 6803 goto free_all; 6804 6805 #ifdef CONFIG_SYSFS 6806 dev->num_rx_queues = rxqs; 6807 dev->real_num_rx_queues = rxqs; 6808 if (netif_alloc_rx_queues(dev)) 6809 goto free_all; 6810 #endif 6811 6812 strcpy(dev->name, name); 6813 dev->name_assign_type = name_assign_type; 6814 dev->group = INIT_NETDEV_GROUP; 6815 if (!dev->ethtool_ops) 6816 dev->ethtool_ops = &default_ethtool_ops; 6817 return dev; 6818 6819 free_all: 6820 free_netdev(dev); 6821 return NULL; 6822 6823 free_pcpu: 6824 free_percpu(dev->pcpu_refcnt); 6825 free_dev: 6826 netdev_freemem(dev); 6827 return NULL; 6828 } 6829 EXPORT_SYMBOL(alloc_netdev_mqs); 6830 6831 /** 6832 * free_netdev - free network device 6833 * @dev: device 6834 * 6835 * This function does the last stage of destroying an allocated device 6836 * interface. The reference to the device object is released. 6837 * If this is the last reference then it will be freed. 6838 */ 6839 void free_netdev(struct net_device *dev) 6840 { 6841 struct napi_struct *p, *n; 6842 6843 release_net(dev_net(dev)); 6844 6845 netif_free_tx_queues(dev); 6846 #ifdef CONFIG_SYSFS 6847 kvfree(dev->_rx); 6848 #endif 6849 6850 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6851 6852 /* Flush device addresses */ 6853 dev_addr_flush(dev); 6854 6855 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6856 netif_napi_del(p); 6857 6858 free_percpu(dev->pcpu_refcnt); 6859 dev->pcpu_refcnt = NULL; 6860 6861 /* Compatibility with error handling in drivers */ 6862 if (dev->reg_state == NETREG_UNINITIALIZED) { 6863 netdev_freemem(dev); 6864 return; 6865 } 6866 6867 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6868 dev->reg_state = NETREG_RELEASED; 6869 6870 /* will free via device release */ 6871 put_device(&dev->dev); 6872 } 6873 EXPORT_SYMBOL(free_netdev); 6874 6875 /** 6876 * synchronize_net - Synchronize with packet receive processing 6877 * 6878 * Wait for packets currently being received to be done. 6879 * Does not block later packets from starting. 6880 */ 6881 void synchronize_net(void) 6882 { 6883 might_sleep(); 6884 if (rtnl_is_locked()) 6885 synchronize_rcu_expedited(); 6886 else 6887 synchronize_rcu(); 6888 } 6889 EXPORT_SYMBOL(synchronize_net); 6890 6891 /** 6892 * unregister_netdevice_queue - remove device from the kernel 6893 * @dev: device 6894 * @head: list 6895 * 6896 * This function shuts down a device interface and removes it 6897 * from the kernel tables. 6898 * If head not NULL, device is queued to be unregistered later. 6899 * 6900 * Callers must hold the rtnl semaphore. You may want 6901 * unregister_netdev() instead of this. 6902 */ 6903 6904 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6905 { 6906 ASSERT_RTNL(); 6907 6908 if (head) { 6909 list_move_tail(&dev->unreg_list, head); 6910 } else { 6911 rollback_registered(dev); 6912 /* Finish processing unregister after unlock */ 6913 net_set_todo(dev); 6914 } 6915 } 6916 EXPORT_SYMBOL(unregister_netdevice_queue); 6917 6918 /** 6919 * unregister_netdevice_many - unregister many devices 6920 * @head: list of devices 6921 * 6922 * Note: As most callers use a stack allocated list_head, 6923 * we force a list_del() to make sure stack wont be corrupted later. 6924 */ 6925 void unregister_netdevice_many(struct list_head *head) 6926 { 6927 struct net_device *dev; 6928 6929 if (!list_empty(head)) { 6930 rollback_registered_many(head); 6931 list_for_each_entry(dev, head, unreg_list) 6932 net_set_todo(dev); 6933 list_del(head); 6934 } 6935 } 6936 EXPORT_SYMBOL(unregister_netdevice_many); 6937 6938 /** 6939 * unregister_netdev - remove device from the kernel 6940 * @dev: device 6941 * 6942 * This function shuts down a device interface and removes it 6943 * from the kernel tables. 6944 * 6945 * This is just a wrapper for unregister_netdevice that takes 6946 * the rtnl semaphore. In general you want to use this and not 6947 * unregister_netdevice. 6948 */ 6949 void unregister_netdev(struct net_device *dev) 6950 { 6951 rtnl_lock(); 6952 unregister_netdevice(dev); 6953 rtnl_unlock(); 6954 } 6955 EXPORT_SYMBOL(unregister_netdev); 6956 6957 /** 6958 * dev_change_net_namespace - move device to different nethost namespace 6959 * @dev: device 6960 * @net: network namespace 6961 * @pat: If not NULL name pattern to try if the current device name 6962 * is already taken in the destination network namespace. 6963 * 6964 * This function shuts down a device interface and moves it 6965 * to a new network namespace. On success 0 is returned, on 6966 * a failure a netagive errno code is returned. 6967 * 6968 * Callers must hold the rtnl semaphore. 6969 */ 6970 6971 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6972 { 6973 int err; 6974 6975 ASSERT_RTNL(); 6976 6977 /* Don't allow namespace local devices to be moved. */ 6978 err = -EINVAL; 6979 if (dev->features & NETIF_F_NETNS_LOCAL) 6980 goto out; 6981 6982 /* Ensure the device has been registrered */ 6983 if (dev->reg_state != NETREG_REGISTERED) 6984 goto out; 6985 6986 /* Get out if there is nothing todo */ 6987 err = 0; 6988 if (net_eq(dev_net(dev), net)) 6989 goto out; 6990 6991 /* Pick the destination device name, and ensure 6992 * we can use it in the destination network namespace. 6993 */ 6994 err = -EEXIST; 6995 if (__dev_get_by_name(net, dev->name)) { 6996 /* We get here if we can't use the current device name */ 6997 if (!pat) 6998 goto out; 6999 if (dev_get_valid_name(net, dev, pat) < 0) 7000 goto out; 7001 } 7002 7003 /* 7004 * And now a mini version of register_netdevice unregister_netdevice. 7005 */ 7006 7007 /* If device is running close it first. */ 7008 dev_close(dev); 7009 7010 /* And unlink it from device chain */ 7011 err = -ENODEV; 7012 unlist_netdevice(dev); 7013 7014 synchronize_net(); 7015 7016 /* Shutdown queueing discipline. */ 7017 dev_shutdown(dev); 7018 7019 /* Notify protocols, that we are about to destroy 7020 this device. They should clean all the things. 7021 7022 Note that dev->reg_state stays at NETREG_REGISTERED. 7023 This is wanted because this way 8021q and macvlan know 7024 the device is just moving and can keep their slaves up. 7025 */ 7026 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7027 rcu_barrier(); 7028 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7029 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7030 7031 /* 7032 * Flush the unicast and multicast chains 7033 */ 7034 dev_uc_flush(dev); 7035 dev_mc_flush(dev); 7036 7037 /* Send a netdev-removed uevent to the old namespace */ 7038 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7039 netdev_adjacent_del_links(dev); 7040 7041 /* Actually switch the network namespace */ 7042 dev_net_set(dev, net); 7043 7044 /* If there is an ifindex conflict assign a new one */ 7045 if (__dev_get_by_index(net, dev->ifindex)) { 7046 int iflink = (dev->iflink == dev->ifindex); 7047 dev->ifindex = dev_new_index(net); 7048 if (iflink) 7049 dev->iflink = dev->ifindex; 7050 } 7051 7052 /* Send a netdev-add uevent to the new namespace */ 7053 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7054 netdev_adjacent_add_links(dev); 7055 7056 /* Fixup kobjects */ 7057 err = device_rename(&dev->dev, dev->name); 7058 WARN_ON(err); 7059 7060 /* Add the device back in the hashes */ 7061 list_netdevice(dev); 7062 7063 /* Notify protocols, that a new device appeared. */ 7064 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7065 7066 /* 7067 * Prevent userspace races by waiting until the network 7068 * device is fully setup before sending notifications. 7069 */ 7070 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7071 7072 synchronize_net(); 7073 err = 0; 7074 out: 7075 return err; 7076 } 7077 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7078 7079 static int dev_cpu_callback(struct notifier_block *nfb, 7080 unsigned long action, 7081 void *ocpu) 7082 { 7083 struct sk_buff **list_skb; 7084 struct sk_buff *skb; 7085 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7086 struct softnet_data *sd, *oldsd; 7087 7088 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7089 return NOTIFY_OK; 7090 7091 local_irq_disable(); 7092 cpu = smp_processor_id(); 7093 sd = &per_cpu(softnet_data, cpu); 7094 oldsd = &per_cpu(softnet_data, oldcpu); 7095 7096 /* Find end of our completion_queue. */ 7097 list_skb = &sd->completion_queue; 7098 while (*list_skb) 7099 list_skb = &(*list_skb)->next; 7100 /* Append completion queue from offline CPU. */ 7101 *list_skb = oldsd->completion_queue; 7102 oldsd->completion_queue = NULL; 7103 7104 /* Append output queue from offline CPU. */ 7105 if (oldsd->output_queue) { 7106 *sd->output_queue_tailp = oldsd->output_queue; 7107 sd->output_queue_tailp = oldsd->output_queue_tailp; 7108 oldsd->output_queue = NULL; 7109 oldsd->output_queue_tailp = &oldsd->output_queue; 7110 } 7111 /* Append NAPI poll list from offline CPU, with one exception : 7112 * process_backlog() must be called by cpu owning percpu backlog. 7113 * We properly handle process_queue & input_pkt_queue later. 7114 */ 7115 while (!list_empty(&oldsd->poll_list)) { 7116 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7117 struct napi_struct, 7118 poll_list); 7119 7120 list_del_init(&napi->poll_list); 7121 if (napi->poll == process_backlog) 7122 napi->state = 0; 7123 else 7124 ____napi_schedule(sd, napi); 7125 } 7126 7127 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7128 local_irq_enable(); 7129 7130 /* Process offline CPU's input_pkt_queue */ 7131 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7132 netif_rx_ni(skb); 7133 input_queue_head_incr(oldsd); 7134 } 7135 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7136 netif_rx_ni(skb); 7137 input_queue_head_incr(oldsd); 7138 } 7139 7140 return NOTIFY_OK; 7141 } 7142 7143 7144 /** 7145 * netdev_increment_features - increment feature set by one 7146 * @all: current feature set 7147 * @one: new feature set 7148 * @mask: mask feature set 7149 * 7150 * Computes a new feature set after adding a device with feature set 7151 * @one to the master device with current feature set @all. Will not 7152 * enable anything that is off in @mask. Returns the new feature set. 7153 */ 7154 netdev_features_t netdev_increment_features(netdev_features_t all, 7155 netdev_features_t one, netdev_features_t mask) 7156 { 7157 if (mask & NETIF_F_GEN_CSUM) 7158 mask |= NETIF_F_ALL_CSUM; 7159 mask |= NETIF_F_VLAN_CHALLENGED; 7160 7161 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7162 all &= one | ~NETIF_F_ALL_FOR_ALL; 7163 7164 /* If one device supports hw checksumming, set for all. */ 7165 if (all & NETIF_F_GEN_CSUM) 7166 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7167 7168 return all; 7169 } 7170 EXPORT_SYMBOL(netdev_increment_features); 7171 7172 static struct hlist_head * __net_init netdev_create_hash(void) 7173 { 7174 int i; 7175 struct hlist_head *hash; 7176 7177 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7178 if (hash != NULL) 7179 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7180 INIT_HLIST_HEAD(&hash[i]); 7181 7182 return hash; 7183 } 7184 7185 /* Initialize per network namespace state */ 7186 static int __net_init netdev_init(struct net *net) 7187 { 7188 if (net != &init_net) 7189 INIT_LIST_HEAD(&net->dev_base_head); 7190 7191 net->dev_name_head = netdev_create_hash(); 7192 if (net->dev_name_head == NULL) 7193 goto err_name; 7194 7195 net->dev_index_head = netdev_create_hash(); 7196 if (net->dev_index_head == NULL) 7197 goto err_idx; 7198 7199 return 0; 7200 7201 err_idx: 7202 kfree(net->dev_name_head); 7203 err_name: 7204 return -ENOMEM; 7205 } 7206 7207 /** 7208 * netdev_drivername - network driver for the device 7209 * @dev: network device 7210 * 7211 * Determine network driver for device. 7212 */ 7213 const char *netdev_drivername(const struct net_device *dev) 7214 { 7215 const struct device_driver *driver; 7216 const struct device *parent; 7217 const char *empty = ""; 7218 7219 parent = dev->dev.parent; 7220 if (!parent) 7221 return empty; 7222 7223 driver = parent->driver; 7224 if (driver && driver->name) 7225 return driver->name; 7226 return empty; 7227 } 7228 7229 static void __netdev_printk(const char *level, const struct net_device *dev, 7230 struct va_format *vaf) 7231 { 7232 if (dev && dev->dev.parent) { 7233 dev_printk_emit(level[1] - '0', 7234 dev->dev.parent, 7235 "%s %s %s%s: %pV", 7236 dev_driver_string(dev->dev.parent), 7237 dev_name(dev->dev.parent), 7238 netdev_name(dev), netdev_reg_state(dev), 7239 vaf); 7240 } else if (dev) { 7241 printk("%s%s%s: %pV", 7242 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7243 } else { 7244 printk("%s(NULL net_device): %pV", level, vaf); 7245 } 7246 } 7247 7248 void netdev_printk(const char *level, const struct net_device *dev, 7249 const char *format, ...) 7250 { 7251 struct va_format vaf; 7252 va_list args; 7253 7254 va_start(args, format); 7255 7256 vaf.fmt = format; 7257 vaf.va = &args; 7258 7259 __netdev_printk(level, dev, &vaf); 7260 7261 va_end(args); 7262 } 7263 EXPORT_SYMBOL(netdev_printk); 7264 7265 #define define_netdev_printk_level(func, level) \ 7266 void func(const struct net_device *dev, const char *fmt, ...) \ 7267 { \ 7268 struct va_format vaf; \ 7269 va_list args; \ 7270 \ 7271 va_start(args, fmt); \ 7272 \ 7273 vaf.fmt = fmt; \ 7274 vaf.va = &args; \ 7275 \ 7276 __netdev_printk(level, dev, &vaf); \ 7277 \ 7278 va_end(args); \ 7279 } \ 7280 EXPORT_SYMBOL(func); 7281 7282 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7283 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7284 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7285 define_netdev_printk_level(netdev_err, KERN_ERR); 7286 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7287 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7288 define_netdev_printk_level(netdev_info, KERN_INFO); 7289 7290 static void __net_exit netdev_exit(struct net *net) 7291 { 7292 kfree(net->dev_name_head); 7293 kfree(net->dev_index_head); 7294 } 7295 7296 static struct pernet_operations __net_initdata netdev_net_ops = { 7297 .init = netdev_init, 7298 .exit = netdev_exit, 7299 }; 7300 7301 static void __net_exit default_device_exit(struct net *net) 7302 { 7303 struct net_device *dev, *aux; 7304 /* 7305 * Push all migratable network devices back to the 7306 * initial network namespace 7307 */ 7308 rtnl_lock(); 7309 for_each_netdev_safe(net, dev, aux) { 7310 int err; 7311 char fb_name[IFNAMSIZ]; 7312 7313 /* Ignore unmoveable devices (i.e. loopback) */ 7314 if (dev->features & NETIF_F_NETNS_LOCAL) 7315 continue; 7316 7317 /* Leave virtual devices for the generic cleanup */ 7318 if (dev->rtnl_link_ops) 7319 continue; 7320 7321 /* Push remaining network devices to init_net */ 7322 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7323 err = dev_change_net_namespace(dev, &init_net, fb_name); 7324 if (err) { 7325 pr_emerg("%s: failed to move %s to init_net: %d\n", 7326 __func__, dev->name, err); 7327 BUG(); 7328 } 7329 } 7330 rtnl_unlock(); 7331 } 7332 7333 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7334 { 7335 /* Return with the rtnl_lock held when there are no network 7336 * devices unregistering in any network namespace in net_list. 7337 */ 7338 struct net *net; 7339 bool unregistering; 7340 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7341 7342 add_wait_queue(&netdev_unregistering_wq, &wait); 7343 for (;;) { 7344 unregistering = false; 7345 rtnl_lock(); 7346 list_for_each_entry(net, net_list, exit_list) { 7347 if (net->dev_unreg_count > 0) { 7348 unregistering = true; 7349 break; 7350 } 7351 } 7352 if (!unregistering) 7353 break; 7354 __rtnl_unlock(); 7355 7356 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7357 } 7358 remove_wait_queue(&netdev_unregistering_wq, &wait); 7359 } 7360 7361 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7362 { 7363 /* At exit all network devices most be removed from a network 7364 * namespace. Do this in the reverse order of registration. 7365 * Do this across as many network namespaces as possible to 7366 * improve batching efficiency. 7367 */ 7368 struct net_device *dev; 7369 struct net *net; 7370 LIST_HEAD(dev_kill_list); 7371 7372 /* To prevent network device cleanup code from dereferencing 7373 * loopback devices or network devices that have been freed 7374 * wait here for all pending unregistrations to complete, 7375 * before unregistring the loopback device and allowing the 7376 * network namespace be freed. 7377 * 7378 * The netdev todo list containing all network devices 7379 * unregistrations that happen in default_device_exit_batch 7380 * will run in the rtnl_unlock() at the end of 7381 * default_device_exit_batch. 7382 */ 7383 rtnl_lock_unregistering(net_list); 7384 list_for_each_entry(net, net_list, exit_list) { 7385 for_each_netdev_reverse(net, dev) { 7386 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7387 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7388 else 7389 unregister_netdevice_queue(dev, &dev_kill_list); 7390 } 7391 } 7392 unregister_netdevice_many(&dev_kill_list); 7393 rtnl_unlock(); 7394 } 7395 7396 static struct pernet_operations __net_initdata default_device_ops = { 7397 .exit = default_device_exit, 7398 .exit_batch = default_device_exit_batch, 7399 }; 7400 7401 /* 7402 * Initialize the DEV module. At boot time this walks the device list and 7403 * unhooks any devices that fail to initialise (normally hardware not 7404 * present) and leaves us with a valid list of present and active devices. 7405 * 7406 */ 7407 7408 /* 7409 * This is called single threaded during boot, so no need 7410 * to take the rtnl semaphore. 7411 */ 7412 static int __init net_dev_init(void) 7413 { 7414 int i, rc = -ENOMEM; 7415 7416 BUG_ON(!dev_boot_phase); 7417 7418 if (dev_proc_init()) 7419 goto out; 7420 7421 if (netdev_kobject_init()) 7422 goto out; 7423 7424 INIT_LIST_HEAD(&ptype_all); 7425 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7426 INIT_LIST_HEAD(&ptype_base[i]); 7427 7428 INIT_LIST_HEAD(&offload_base); 7429 7430 if (register_pernet_subsys(&netdev_net_ops)) 7431 goto out; 7432 7433 /* 7434 * Initialise the packet receive queues. 7435 */ 7436 7437 for_each_possible_cpu(i) { 7438 struct softnet_data *sd = &per_cpu(softnet_data, i); 7439 7440 skb_queue_head_init(&sd->input_pkt_queue); 7441 skb_queue_head_init(&sd->process_queue); 7442 INIT_LIST_HEAD(&sd->poll_list); 7443 sd->output_queue_tailp = &sd->output_queue; 7444 #ifdef CONFIG_RPS 7445 sd->csd.func = rps_trigger_softirq; 7446 sd->csd.info = sd; 7447 sd->cpu = i; 7448 #endif 7449 7450 sd->backlog.poll = process_backlog; 7451 sd->backlog.weight = weight_p; 7452 } 7453 7454 dev_boot_phase = 0; 7455 7456 /* The loopback device is special if any other network devices 7457 * is present in a network namespace the loopback device must 7458 * be present. Since we now dynamically allocate and free the 7459 * loopback device ensure this invariant is maintained by 7460 * keeping the loopback device as the first device on the 7461 * list of network devices. Ensuring the loopback devices 7462 * is the first device that appears and the last network device 7463 * that disappears. 7464 */ 7465 if (register_pernet_device(&loopback_net_ops)) 7466 goto out; 7467 7468 if (register_pernet_device(&default_device_ops)) 7469 goto out; 7470 7471 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7472 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7473 7474 hotcpu_notifier(dev_cpu_callback, 0); 7475 dst_init(); 7476 rc = 0; 7477 out: 7478 return rc; 7479 } 7480 7481 subsys_initcall(net_dev_init); 7482