1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/crash_dump.h> 143 144 #include "net-sysfs.h" 145 146 /* Instead of increasing this, you should create a hash table. */ 147 #define MAX_GRO_SKBS 8 148 149 /* This should be increased if a protocol with a bigger head is added. */ 150 #define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152 static DEFINE_SPINLOCK(ptype_lock); 153 static DEFINE_SPINLOCK(offload_lock); 154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155 struct list_head ptype_all __read_mostly; /* Taps */ 156 static struct list_head offload_base __read_mostly; 157 158 static int netif_rx_internal(struct sk_buff *skb); 159 static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163 /* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182 DEFINE_RWLOCK(dev_base_lock); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 /* protects napi_hash addition/deletion and napi_gen_id */ 186 static DEFINE_SPINLOCK(napi_hash_lock); 187 188 static unsigned int napi_gen_id = NR_CPUS; 189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191 static seqcount_t devnet_rename_seq; 192 193 static inline void dev_base_seq_inc(struct net *net) 194 { 195 while (++net->dev_base_seq == 0); 196 } 197 198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199 { 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 201 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208 } 209 210 static inline void rps_lock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_lock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 static inline void rps_unlock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_unlock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 /* Device list insertion */ 225 static void list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head_rcu(&dev->index_hlist, 235 dev_index_hash(net, dev->ifindex)); 236 write_unlock_bh(&dev_base_lock); 237 238 dev_base_seq_inc(net); 239 } 240 241 /* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244 static void unlist_netdevice(struct net_device *dev) 245 { 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 255 dev_base_seq_inc(dev_net(dev)); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 310 311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315 { 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323 } 324 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333 } 334 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 #else 345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347 { 348 } 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 } 352 #endif 353 354 /******************************************************************************* 355 356 Protocol management and registration routines 357 358 *******************************************************************************/ 359 360 /* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376 static inline struct list_head *ptype_head(const struct packet_type *pt) 377 { 378 if (pt->type == htons(ETH_P_ALL)) 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 380 else 381 return pt->dev ? &pt->dev->ptype_specific : 382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 pr_warn("dev_remove_pack: %p not found\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 462 /** 463 * dev_add_offload - register offload handlers 464 * @po: protocol offload declaration 465 * 466 * Add protocol offload handlers to the networking stack. The passed 467 * &proto_offload is linked into kernel lists and may not be freed until 468 * it has been removed from the kernel lists. 469 * 470 * This call does not sleep therefore it can not 471 * guarantee all CPU's that are in middle of receiving packets 472 * will see the new offload handlers (until the next received packet). 473 */ 474 void dev_add_offload(struct packet_offload *po) 475 { 476 struct packet_offload *elem; 477 478 spin_lock(&offload_lock); 479 list_for_each_entry(elem, &offload_base, list) { 480 if (po->priority < elem->priority) 481 break; 482 } 483 list_add_rcu(&po->list, elem->list.prev); 484 spin_unlock(&offload_lock); 485 } 486 EXPORT_SYMBOL(dev_add_offload); 487 488 /** 489 * __dev_remove_offload - remove offload handler 490 * @po: packet offload declaration 491 * 492 * Remove a protocol offload handler that was previously added to the 493 * kernel offload handlers by dev_add_offload(). The passed &offload_type 494 * is removed from the kernel lists and can be freed or reused once this 495 * function returns. 496 * 497 * The packet type might still be in use by receivers 498 * and must not be freed until after all the CPU's have gone 499 * through a quiescent state. 500 */ 501 static void __dev_remove_offload(struct packet_offload *po) 502 { 503 struct list_head *head = &offload_base; 504 struct packet_offload *po1; 505 506 spin_lock(&offload_lock); 507 508 list_for_each_entry(po1, head, list) { 509 if (po == po1) { 510 list_del_rcu(&po->list); 511 goto out; 512 } 513 } 514 515 pr_warn("dev_remove_offload: %p not found\n", po); 516 out: 517 spin_unlock(&offload_lock); 518 } 519 520 /** 521 * dev_remove_offload - remove packet offload handler 522 * @po: packet offload declaration 523 * 524 * Remove a packet offload handler that was previously added to the kernel 525 * offload handlers by dev_add_offload(). The passed &offload_type is 526 * removed from the kernel lists and can be freed or reused once this 527 * function returns. 528 * 529 * This call sleeps to guarantee that no CPU is looking at the packet 530 * type after return. 531 */ 532 void dev_remove_offload(struct packet_offload *po) 533 { 534 __dev_remove_offload(po); 535 536 synchronize_net(); 537 } 538 EXPORT_SYMBOL(dev_remove_offload); 539 540 /****************************************************************************** 541 542 Device Boot-time Settings Routines 543 544 *******************************************************************************/ 545 546 /* Boot time configuration table */ 547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 548 549 /** 550 * netdev_boot_setup_add - add new setup entry 551 * @name: name of the device 552 * @map: configured settings for the device 553 * 554 * Adds new setup entry to the dev_boot_setup list. The function 555 * returns 0 on error and 1 on success. This is a generic routine to 556 * all netdevices. 557 */ 558 static int netdev_boot_setup_add(char *name, struct ifmap *map) 559 { 560 struct netdev_boot_setup *s; 561 int i; 562 563 s = dev_boot_setup; 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 566 memset(s[i].name, 0, sizeof(s[i].name)); 567 strlcpy(s[i].name, name, IFNAMSIZ); 568 memcpy(&s[i].map, map, sizeof(s[i].map)); 569 break; 570 } 571 } 572 573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 574 } 575 576 /** 577 * netdev_boot_setup_check - check boot time settings 578 * @dev: the netdevice 579 * 580 * Check boot time settings for the device. 581 * The found settings are set for the device to be used 582 * later in the device probing. 583 * Returns 0 if no settings found, 1 if they are. 584 */ 585 int netdev_boot_setup_check(struct net_device *dev) 586 { 587 struct netdev_boot_setup *s = dev_boot_setup; 588 int i; 589 590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 592 !strcmp(dev->name, s[i].name)) { 593 dev->irq = s[i].map.irq; 594 dev->base_addr = s[i].map.base_addr; 595 dev->mem_start = s[i].map.mem_start; 596 dev->mem_end = s[i].map.mem_end; 597 return 1; 598 } 599 } 600 return 0; 601 } 602 EXPORT_SYMBOL(netdev_boot_setup_check); 603 604 605 /** 606 * netdev_boot_base - get address from boot time settings 607 * @prefix: prefix for network device 608 * @unit: id for network device 609 * 610 * Check boot time settings for the base address of device. 611 * The found settings are set for the device to be used 612 * later in the device probing. 613 * Returns 0 if no settings found. 614 */ 615 unsigned long netdev_boot_base(const char *prefix, int unit) 616 { 617 const struct netdev_boot_setup *s = dev_boot_setup; 618 char name[IFNAMSIZ]; 619 int i; 620 621 sprintf(name, "%s%d", prefix, unit); 622 623 /* 624 * If device already registered then return base of 1 625 * to indicate not to probe for this interface 626 */ 627 if (__dev_get_by_name(&init_net, name)) 628 return 1; 629 630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 631 if (!strcmp(name, s[i].name)) 632 return s[i].map.base_addr; 633 return 0; 634 } 635 636 /* 637 * Saves at boot time configured settings for any netdevice. 638 */ 639 int __init netdev_boot_setup(char *str) 640 { 641 int ints[5]; 642 struct ifmap map; 643 644 str = get_options(str, ARRAY_SIZE(ints), ints); 645 if (!str || !*str) 646 return 0; 647 648 /* Save settings */ 649 memset(&map, 0, sizeof(map)); 650 if (ints[0] > 0) 651 map.irq = ints[1]; 652 if (ints[0] > 1) 653 map.base_addr = ints[2]; 654 if (ints[0] > 2) 655 map.mem_start = ints[3]; 656 if (ints[0] > 3) 657 map.mem_end = ints[4]; 658 659 /* Add new entry to the list */ 660 return netdev_boot_setup_add(str, &map); 661 } 662 663 __setup("netdev=", netdev_boot_setup); 664 665 /******************************************************************************* 666 667 Device Interface Subroutines 668 669 *******************************************************************************/ 670 671 /** 672 * dev_get_iflink - get 'iflink' value of a interface 673 * @dev: targeted interface 674 * 675 * Indicates the ifindex the interface is linked to. 676 * Physical interfaces have the same 'ifindex' and 'iflink' values. 677 */ 678 679 int dev_get_iflink(const struct net_device *dev) 680 { 681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 682 return dev->netdev_ops->ndo_get_iflink(dev); 683 684 return dev->ifindex; 685 } 686 EXPORT_SYMBOL(dev_get_iflink); 687 688 /** 689 * dev_fill_metadata_dst - Retrieve tunnel egress information. 690 * @dev: targeted interface 691 * @skb: The packet. 692 * 693 * For better visibility of tunnel traffic OVS needs to retrieve 694 * egress tunnel information for a packet. Following API allows 695 * user to get this info. 696 */ 697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 698 { 699 struct ip_tunnel_info *info; 700 701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 702 return -EINVAL; 703 704 info = skb_tunnel_info_unclone(skb); 705 if (!info) 706 return -ENOMEM; 707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 708 return -EINVAL; 709 710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 711 } 712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 713 714 /** 715 * __dev_get_by_name - find a device by its name 716 * @net: the applicable net namespace 717 * @name: name to find 718 * 719 * Find an interface by name. Must be called under RTNL semaphore 720 * or @dev_base_lock. If the name is found a pointer to the device 721 * is returned. If the name is not found then %NULL is returned. The 722 * reference counters are not incremented so the caller must be 723 * careful with locks. 724 */ 725 726 struct net_device *__dev_get_by_name(struct net *net, const char *name) 727 { 728 struct net_device *dev; 729 struct hlist_head *head = dev_name_hash(net, name); 730 731 hlist_for_each_entry(dev, head, name_hlist) 732 if (!strncmp(dev->name, name, IFNAMSIZ)) 733 return dev; 734 735 return NULL; 736 } 737 EXPORT_SYMBOL(__dev_get_by_name); 738 739 /** 740 * dev_get_by_name_rcu - find a device by its name 741 * @net: the applicable net namespace 742 * @name: name to find 743 * 744 * Find an interface by name. 745 * If the name is found a pointer to the device is returned. 746 * If the name is not found then %NULL is returned. 747 * The reference counters are not incremented so the caller must be 748 * careful with locks. The caller must hold RCU lock. 749 */ 750 751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 752 { 753 struct net_device *dev; 754 struct hlist_head *head = dev_name_hash(net, name); 755 756 hlist_for_each_entry_rcu(dev, head, name_hlist) 757 if (!strncmp(dev->name, name, IFNAMSIZ)) 758 return dev; 759 760 return NULL; 761 } 762 EXPORT_SYMBOL(dev_get_by_name_rcu); 763 764 /** 765 * dev_get_by_name - find a device by its name 766 * @net: the applicable net namespace 767 * @name: name to find 768 * 769 * Find an interface by name. This can be called from any 770 * context and does its own locking. The returned handle has 771 * the usage count incremented and the caller must use dev_put() to 772 * release it when it is no longer needed. %NULL is returned if no 773 * matching device is found. 774 */ 775 776 struct net_device *dev_get_by_name(struct net *net, const char *name) 777 { 778 struct net_device *dev; 779 780 rcu_read_lock(); 781 dev = dev_get_by_name_rcu(net, name); 782 if (dev) 783 dev_hold(dev); 784 rcu_read_unlock(); 785 return dev; 786 } 787 EXPORT_SYMBOL(dev_get_by_name); 788 789 /** 790 * __dev_get_by_index - find a device by its ifindex 791 * @net: the applicable net namespace 792 * @ifindex: index of device 793 * 794 * Search for an interface by index. Returns %NULL if the device 795 * is not found or a pointer to the device. The device has not 796 * had its reference counter increased so the caller must be careful 797 * about locking. The caller must hold either the RTNL semaphore 798 * or @dev_base_lock. 799 */ 800 801 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 802 { 803 struct net_device *dev; 804 struct hlist_head *head = dev_index_hash(net, ifindex); 805 806 hlist_for_each_entry(dev, head, index_hlist) 807 if (dev->ifindex == ifindex) 808 return dev; 809 810 return NULL; 811 } 812 EXPORT_SYMBOL(__dev_get_by_index); 813 814 /** 815 * dev_get_by_index_rcu - find a device by its ifindex 816 * @net: the applicable net namespace 817 * @ifindex: index of device 818 * 819 * Search for an interface by index. Returns %NULL if the device 820 * is not found or a pointer to the device. The device has not 821 * had its reference counter increased so the caller must be careful 822 * about locking. The caller must hold RCU lock. 823 */ 824 825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 826 { 827 struct net_device *dev; 828 struct hlist_head *head = dev_index_hash(net, ifindex); 829 830 hlist_for_each_entry_rcu(dev, head, index_hlist) 831 if (dev->ifindex == ifindex) 832 return dev; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL(dev_get_by_index_rcu); 837 838 839 /** 840 * dev_get_by_index - find a device by its ifindex 841 * @net: the applicable net namespace 842 * @ifindex: index of device 843 * 844 * Search for an interface by index. Returns NULL if the device 845 * is not found or a pointer to the device. The device returned has 846 * had a reference added and the pointer is safe until the user calls 847 * dev_put to indicate they have finished with it. 848 */ 849 850 struct net_device *dev_get_by_index(struct net *net, int ifindex) 851 { 852 struct net_device *dev; 853 854 rcu_read_lock(); 855 dev = dev_get_by_index_rcu(net, ifindex); 856 if (dev) 857 dev_hold(dev); 858 rcu_read_unlock(); 859 return dev; 860 } 861 EXPORT_SYMBOL(dev_get_by_index); 862 863 /** 864 * netdev_get_name - get a netdevice name, knowing its ifindex. 865 * @net: network namespace 866 * @name: a pointer to the buffer where the name will be stored. 867 * @ifindex: the ifindex of the interface to get the name from. 868 * 869 * The use of raw_seqcount_begin() and cond_resched() before 870 * retrying is required as we want to give the writers a chance 871 * to complete when CONFIG_PREEMPT is not set. 872 */ 873 int netdev_get_name(struct net *net, char *name, int ifindex) 874 { 875 struct net_device *dev; 876 unsigned int seq; 877 878 retry: 879 seq = raw_seqcount_begin(&devnet_rename_seq); 880 rcu_read_lock(); 881 dev = dev_get_by_index_rcu(net, ifindex); 882 if (!dev) { 883 rcu_read_unlock(); 884 return -ENODEV; 885 } 886 887 strcpy(name, dev->name); 888 rcu_read_unlock(); 889 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 890 cond_resched(); 891 goto retry; 892 } 893 894 return 0; 895 } 896 897 /** 898 * dev_getbyhwaddr_rcu - find a device by its hardware address 899 * @net: the applicable net namespace 900 * @type: media type of device 901 * @ha: hardware address 902 * 903 * Search for an interface by MAC address. Returns NULL if the device 904 * is not found or a pointer to the device. 905 * The caller must hold RCU or RTNL. 906 * The returned device has not had its ref count increased 907 * and the caller must therefore be careful about locking 908 * 909 */ 910 911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 912 const char *ha) 913 { 914 struct net_device *dev; 915 916 for_each_netdev_rcu(net, dev) 917 if (dev->type == type && 918 !memcmp(dev->dev_addr, ha, dev->addr_len)) 919 return dev; 920 921 return NULL; 922 } 923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 924 925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 926 { 927 struct net_device *dev; 928 929 ASSERT_RTNL(); 930 for_each_netdev(net, dev) 931 if (dev->type == type) 932 return dev; 933 934 return NULL; 935 } 936 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 937 938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 939 { 940 struct net_device *dev, *ret = NULL; 941 942 rcu_read_lock(); 943 for_each_netdev_rcu(net, dev) 944 if (dev->type == type) { 945 dev_hold(dev); 946 ret = dev; 947 break; 948 } 949 rcu_read_unlock(); 950 return ret; 951 } 952 EXPORT_SYMBOL(dev_getfirstbyhwtype); 953 954 /** 955 * __dev_get_by_flags - find any device with given flags 956 * @net: the applicable net namespace 957 * @if_flags: IFF_* values 958 * @mask: bitmask of bits in if_flags to check 959 * 960 * Search for any interface with the given flags. Returns NULL if a device 961 * is not found or a pointer to the device. Must be called inside 962 * rtnl_lock(), and result refcount is unchanged. 963 */ 964 965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 966 unsigned short mask) 967 { 968 struct net_device *dev, *ret; 969 970 ASSERT_RTNL(); 971 972 ret = NULL; 973 for_each_netdev(net, dev) { 974 if (((dev->flags ^ if_flags) & mask) == 0) { 975 ret = dev; 976 break; 977 } 978 } 979 return ret; 980 } 981 EXPORT_SYMBOL(__dev_get_by_flags); 982 983 /** 984 * dev_valid_name - check if name is okay for network device 985 * @name: name string 986 * 987 * Network device names need to be valid file names to 988 * to allow sysfs to work. We also disallow any kind of 989 * whitespace. 990 */ 991 bool dev_valid_name(const char *name) 992 { 993 if (*name == '\0') 994 return false; 995 if (strlen(name) >= IFNAMSIZ) 996 return false; 997 if (!strcmp(name, ".") || !strcmp(name, "..")) 998 return false; 999 1000 while (*name) { 1001 if (*name == '/' || *name == ':' || isspace(*name)) 1002 return false; 1003 name++; 1004 } 1005 return true; 1006 } 1007 EXPORT_SYMBOL(dev_valid_name); 1008 1009 /** 1010 * __dev_alloc_name - allocate a name for a device 1011 * @net: network namespace to allocate the device name in 1012 * @name: name format string 1013 * @buf: scratch buffer and result name string 1014 * 1015 * Passed a format string - eg "lt%d" it will try and find a suitable 1016 * id. It scans list of devices to build up a free map, then chooses 1017 * the first empty slot. The caller must hold the dev_base or rtnl lock 1018 * while allocating the name and adding the device in order to avoid 1019 * duplicates. 1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1021 * Returns the number of the unit assigned or a negative errno code. 1022 */ 1023 1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1025 { 1026 int i = 0; 1027 const char *p; 1028 const int max_netdevices = 8*PAGE_SIZE; 1029 unsigned long *inuse; 1030 struct net_device *d; 1031 1032 p = strnchr(name, IFNAMSIZ-1, '%'); 1033 if (p) { 1034 /* 1035 * Verify the string as this thing may have come from 1036 * the user. There must be either one "%d" and no other "%" 1037 * characters. 1038 */ 1039 if (p[1] != 'd' || strchr(p + 2, '%')) 1040 return -EINVAL; 1041 1042 /* Use one page as a bit array of possible slots */ 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1044 if (!inuse) 1045 return -ENOMEM; 1046 1047 for_each_netdev(net, d) { 1048 if (!sscanf(d->name, name, &i)) 1049 continue; 1050 if (i < 0 || i >= max_netdevices) 1051 continue; 1052 1053 /* avoid cases where sscanf is not exact inverse of printf */ 1054 snprintf(buf, IFNAMSIZ, name, i); 1055 if (!strncmp(buf, d->name, IFNAMSIZ)) 1056 set_bit(i, inuse); 1057 } 1058 1059 i = find_first_zero_bit(inuse, max_netdevices); 1060 free_page((unsigned long) inuse); 1061 } 1062 1063 if (buf != name) 1064 snprintf(buf, IFNAMSIZ, name, i); 1065 if (!__dev_get_by_name(net, buf)) 1066 return i; 1067 1068 /* It is possible to run out of possible slots 1069 * when the name is long and there isn't enough space left 1070 * for the digits, or if all bits are used. 1071 */ 1072 return -ENFILE; 1073 } 1074 1075 /** 1076 * dev_alloc_name - allocate a name for a device 1077 * @dev: device 1078 * @name: name format string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089 int dev_alloc_name(struct net_device *dev, const char *name) 1090 { 1091 char buf[IFNAMSIZ]; 1092 struct net *net; 1093 int ret; 1094 1095 BUG_ON(!dev_net(dev)); 1096 net = dev_net(dev); 1097 ret = __dev_alloc_name(net, name, buf); 1098 if (ret >= 0) 1099 strlcpy(dev->name, buf, IFNAMSIZ); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(dev_alloc_name); 1103 1104 static int dev_alloc_name_ns(struct net *net, 1105 struct net_device *dev, 1106 const char *name) 1107 { 1108 char buf[IFNAMSIZ]; 1109 int ret; 1110 1111 ret = __dev_alloc_name(net, name, buf); 1112 if (ret >= 0) 1113 strlcpy(dev->name, buf, IFNAMSIZ); 1114 return ret; 1115 } 1116 1117 static int dev_get_valid_name(struct net *net, 1118 struct net_device *dev, 1119 const char *name) 1120 { 1121 BUG_ON(!net); 1122 1123 if (!dev_valid_name(name)) 1124 return -EINVAL; 1125 1126 if (strchr(name, '%')) 1127 return dev_alloc_name_ns(net, dev, name); 1128 else if (__dev_get_by_name(net, name)) 1129 return -EEXIST; 1130 else if (dev->name != name) 1131 strlcpy(dev->name, name, IFNAMSIZ); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * dev_change_name - change name of a device 1138 * @dev: device 1139 * @newname: name (or format string) must be at least IFNAMSIZ 1140 * 1141 * Change name of a device, can pass format strings "eth%d". 1142 * for wildcarding. 1143 */ 1144 int dev_change_name(struct net_device *dev, const char *newname) 1145 { 1146 unsigned char old_assign_type; 1147 char oldname[IFNAMSIZ]; 1148 int err = 0; 1149 int ret; 1150 struct net *net; 1151 1152 ASSERT_RTNL(); 1153 BUG_ON(!dev_net(dev)); 1154 1155 net = dev_net(dev); 1156 if (dev->flags & IFF_UP) 1157 return -EBUSY; 1158 1159 write_seqcount_begin(&devnet_rename_seq); 1160 1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1162 write_seqcount_end(&devnet_rename_seq); 1163 return 0; 1164 } 1165 1166 memcpy(oldname, dev->name, IFNAMSIZ); 1167 1168 err = dev_get_valid_name(net, dev, newname); 1169 if (err < 0) { 1170 write_seqcount_end(&devnet_rename_seq); 1171 return err; 1172 } 1173 1174 if (oldname[0] && !strchr(oldname, '%')) 1175 netdev_info(dev, "renamed from %s\n", oldname); 1176 1177 old_assign_type = dev->name_assign_type; 1178 dev->name_assign_type = NET_NAME_RENAMED; 1179 1180 rollback: 1181 ret = device_rename(&dev->dev, dev->name); 1182 if (ret) { 1183 memcpy(dev->name, oldname, IFNAMSIZ); 1184 dev->name_assign_type = old_assign_type; 1185 write_seqcount_end(&devnet_rename_seq); 1186 return ret; 1187 } 1188 1189 write_seqcount_end(&devnet_rename_seq); 1190 1191 netdev_adjacent_rename_links(dev, oldname); 1192 1193 write_lock_bh(&dev_base_lock); 1194 hlist_del_rcu(&dev->name_hlist); 1195 write_unlock_bh(&dev_base_lock); 1196 1197 synchronize_rcu(); 1198 1199 write_lock_bh(&dev_base_lock); 1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1201 write_unlock_bh(&dev_base_lock); 1202 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1204 ret = notifier_to_errno(ret); 1205 1206 if (ret) { 1207 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1208 if (err >= 0) { 1209 err = ret; 1210 write_seqcount_begin(&devnet_rename_seq); 1211 memcpy(dev->name, oldname, IFNAMSIZ); 1212 memcpy(oldname, newname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 old_assign_type = NET_NAME_RENAMED; 1215 goto rollback; 1216 } else { 1217 pr_err("%s: name change rollback failed: %d\n", 1218 dev->name, ret); 1219 } 1220 } 1221 1222 return err; 1223 } 1224 1225 /** 1226 * dev_set_alias - change ifalias of a device 1227 * @dev: device 1228 * @alias: name up to IFALIASZ 1229 * @len: limit of bytes to copy from info 1230 * 1231 * Set ifalias for a device, 1232 */ 1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1234 { 1235 char *new_ifalias; 1236 1237 ASSERT_RTNL(); 1238 1239 if (len >= IFALIASZ) 1240 return -EINVAL; 1241 1242 if (!len) { 1243 kfree(dev->ifalias); 1244 dev->ifalias = NULL; 1245 return 0; 1246 } 1247 1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1249 if (!new_ifalias) 1250 return -ENOMEM; 1251 dev->ifalias = new_ifalias; 1252 1253 strlcpy(dev->ifalias, alias, len+1); 1254 return len; 1255 } 1256 1257 1258 /** 1259 * netdev_features_change - device changes features 1260 * @dev: device to cause notification 1261 * 1262 * Called to indicate a device has changed features. 1263 */ 1264 void netdev_features_change(struct net_device *dev) 1265 { 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1267 } 1268 EXPORT_SYMBOL(netdev_features_change); 1269 1270 /** 1271 * netdev_state_change - device changes state 1272 * @dev: device to cause notification 1273 * 1274 * Called to indicate a device has changed state. This function calls 1275 * the notifier chains for netdev_chain and sends a NEWLINK message 1276 * to the routing socket. 1277 */ 1278 void netdev_state_change(struct net_device *dev) 1279 { 1280 if (dev->flags & IFF_UP) { 1281 struct netdev_notifier_change_info change_info; 1282 1283 change_info.flags_changed = 0; 1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1285 &change_info.info); 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1287 } 1288 } 1289 EXPORT_SYMBOL(netdev_state_change); 1290 1291 /** 1292 * netdev_notify_peers - notify network peers about existence of @dev 1293 * @dev: network device 1294 * 1295 * Generate traffic such that interested network peers are aware of 1296 * @dev, such as by generating a gratuitous ARP. This may be used when 1297 * a device wants to inform the rest of the network about some sort of 1298 * reconfiguration such as a failover event or virtual machine 1299 * migration. 1300 */ 1301 void netdev_notify_peers(struct net_device *dev) 1302 { 1303 rtnl_lock(); 1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1305 rtnl_unlock(); 1306 } 1307 EXPORT_SYMBOL(netdev_notify_peers); 1308 1309 static int __dev_open(struct net_device *dev) 1310 { 1311 const struct net_device_ops *ops = dev->netdev_ops; 1312 int ret; 1313 1314 ASSERT_RTNL(); 1315 1316 if (!netif_device_present(dev)) 1317 return -ENODEV; 1318 1319 /* Block netpoll from trying to do any rx path servicing. 1320 * If we don't do this there is a chance ndo_poll_controller 1321 * or ndo_poll may be running while we open the device 1322 */ 1323 netpoll_poll_disable(dev); 1324 1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1326 ret = notifier_to_errno(ret); 1327 if (ret) 1328 return ret; 1329 1330 set_bit(__LINK_STATE_START, &dev->state); 1331 1332 if (ops->ndo_validate_addr) 1333 ret = ops->ndo_validate_addr(dev); 1334 1335 if (!ret && ops->ndo_open) 1336 ret = ops->ndo_open(dev); 1337 1338 netpoll_poll_enable(dev); 1339 1340 if (ret) 1341 clear_bit(__LINK_STATE_START, &dev->state); 1342 else { 1343 dev->flags |= IFF_UP; 1344 dev_set_rx_mode(dev); 1345 dev_activate(dev); 1346 add_device_randomness(dev->dev_addr, dev->addr_len); 1347 } 1348 1349 return ret; 1350 } 1351 1352 /** 1353 * dev_open - prepare an interface for use. 1354 * @dev: device to open 1355 * 1356 * Takes a device from down to up state. The device's private open 1357 * function is invoked and then the multicast lists are loaded. Finally 1358 * the device is moved into the up state and a %NETDEV_UP message is 1359 * sent to the netdev notifier chain. 1360 * 1361 * Calling this function on an active interface is a nop. On a failure 1362 * a negative errno code is returned. 1363 */ 1364 int dev_open(struct net_device *dev) 1365 { 1366 int ret; 1367 1368 if (dev->flags & IFF_UP) 1369 return 0; 1370 1371 ret = __dev_open(dev); 1372 if (ret < 0) 1373 return ret; 1374 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_UP, dev); 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL(dev_open); 1381 1382 static int __dev_close_many(struct list_head *head) 1383 { 1384 struct net_device *dev; 1385 1386 ASSERT_RTNL(); 1387 might_sleep(); 1388 1389 list_for_each_entry(dev, head, close_list) { 1390 /* Temporarily disable netpoll until the interface is down */ 1391 netpoll_poll_disable(dev); 1392 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1394 1395 clear_bit(__LINK_STATE_START, &dev->state); 1396 1397 /* Synchronize to scheduled poll. We cannot touch poll list, it 1398 * can be even on different cpu. So just clear netif_running(). 1399 * 1400 * dev->stop() will invoke napi_disable() on all of it's 1401 * napi_struct instances on this device. 1402 */ 1403 smp_mb__after_atomic(); /* Commit netif_running(). */ 1404 } 1405 1406 dev_deactivate_many(head); 1407 1408 list_for_each_entry(dev, head, close_list) { 1409 const struct net_device_ops *ops = dev->netdev_ops; 1410 1411 /* 1412 * Call the device specific close. This cannot fail. 1413 * Only if device is UP 1414 * 1415 * We allow it to be called even after a DETACH hot-plug 1416 * event. 1417 */ 1418 if (ops->ndo_stop) 1419 ops->ndo_stop(dev); 1420 1421 dev->flags &= ~IFF_UP; 1422 netpoll_poll_enable(dev); 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int __dev_close(struct net_device *dev) 1429 { 1430 int retval; 1431 LIST_HEAD(single); 1432 1433 list_add(&dev->close_list, &single); 1434 retval = __dev_close_many(&single); 1435 list_del(&single); 1436 1437 return retval; 1438 } 1439 1440 int dev_close_many(struct list_head *head, bool unlink) 1441 { 1442 struct net_device *dev, *tmp; 1443 1444 /* Remove the devices that don't need to be closed */ 1445 list_for_each_entry_safe(dev, tmp, head, close_list) 1446 if (!(dev->flags & IFF_UP)) 1447 list_del_init(&dev->close_list); 1448 1449 __dev_close_many(head); 1450 1451 list_for_each_entry_safe(dev, tmp, head, close_list) { 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1453 call_netdevice_notifiers(NETDEV_DOWN, dev); 1454 if (unlink) 1455 list_del_init(&dev->close_list); 1456 } 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(dev_close_many); 1461 1462 /** 1463 * dev_close - shutdown an interface. 1464 * @dev: device to shutdown 1465 * 1466 * This function moves an active device into down state. A 1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1469 * chain. 1470 */ 1471 int dev_close(struct net_device *dev) 1472 { 1473 if (dev->flags & IFF_UP) { 1474 LIST_HEAD(single); 1475 1476 list_add(&dev->close_list, &single); 1477 dev_close_many(&single, true); 1478 list_del(&single); 1479 } 1480 return 0; 1481 } 1482 EXPORT_SYMBOL(dev_close); 1483 1484 1485 /** 1486 * dev_disable_lro - disable Large Receive Offload on a device 1487 * @dev: device 1488 * 1489 * Disable Large Receive Offload (LRO) on a net device. Must be 1490 * called under RTNL. This is needed if received packets may be 1491 * forwarded to another interface. 1492 */ 1493 void dev_disable_lro(struct net_device *dev) 1494 { 1495 struct net_device *lower_dev; 1496 struct list_head *iter; 1497 1498 dev->wanted_features &= ~NETIF_F_LRO; 1499 netdev_update_features(dev); 1500 1501 if (unlikely(dev->features & NETIF_F_LRO)) 1502 netdev_WARN(dev, "failed to disable LRO!\n"); 1503 1504 netdev_for_each_lower_dev(dev, lower_dev, iter) 1505 dev_disable_lro(lower_dev); 1506 } 1507 EXPORT_SYMBOL(dev_disable_lro); 1508 1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1510 struct net_device *dev) 1511 { 1512 struct netdev_notifier_info info; 1513 1514 netdev_notifier_info_init(&info, dev); 1515 return nb->notifier_call(nb, val, &info); 1516 } 1517 1518 static int dev_boot_phase = 1; 1519 1520 /** 1521 * register_netdevice_notifier - register a network notifier block 1522 * @nb: notifier 1523 * 1524 * Register a notifier to be called when network device events occur. 1525 * The notifier passed is linked into the kernel structures and must 1526 * not be reused until it has been unregistered. A negative errno code 1527 * is returned on a failure. 1528 * 1529 * When registered all registration and up events are replayed 1530 * to the new notifier to allow device to have a race free 1531 * view of the network device list. 1532 */ 1533 1534 int register_netdevice_notifier(struct notifier_block *nb) 1535 { 1536 struct net_device *dev; 1537 struct net_device *last; 1538 struct net *net; 1539 int err; 1540 1541 rtnl_lock(); 1542 err = raw_notifier_chain_register(&netdev_chain, nb); 1543 if (err) 1544 goto unlock; 1545 if (dev_boot_phase) 1546 goto unlock; 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1550 err = notifier_to_errno(err); 1551 if (err) 1552 goto rollback; 1553 1554 if (!(dev->flags & IFF_UP)) 1555 continue; 1556 1557 call_netdevice_notifier(nb, NETDEV_UP, dev); 1558 } 1559 } 1560 1561 unlock: 1562 rtnl_unlock(); 1563 return err; 1564 1565 rollback: 1566 last = dev; 1567 for_each_net(net) { 1568 for_each_netdev(net, dev) { 1569 if (dev == last) 1570 goto outroll; 1571 1572 if (dev->flags & IFF_UP) { 1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1574 dev); 1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1576 } 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1578 } 1579 } 1580 1581 outroll: 1582 raw_notifier_chain_unregister(&netdev_chain, nb); 1583 goto unlock; 1584 } 1585 EXPORT_SYMBOL(register_netdevice_notifier); 1586 1587 /** 1588 * unregister_netdevice_notifier - unregister a network notifier block 1589 * @nb: notifier 1590 * 1591 * Unregister a notifier previously registered by 1592 * register_netdevice_notifier(). The notifier is unlinked into the 1593 * kernel structures and may then be reused. A negative errno code 1594 * is returned on a failure. 1595 * 1596 * After unregistering unregister and down device events are synthesized 1597 * for all devices on the device list to the removed notifier to remove 1598 * the need for special case cleanup code. 1599 */ 1600 1601 int unregister_netdevice_notifier(struct notifier_block *nb) 1602 { 1603 struct net_device *dev; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 1612 for_each_net(net) { 1613 for_each_netdev(net, dev) { 1614 if (dev->flags & IFF_UP) { 1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1616 dev); 1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1618 } 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1620 } 1621 } 1622 unlock: 1623 rtnl_unlock(); 1624 return err; 1625 } 1626 EXPORT_SYMBOL(unregister_netdevice_notifier); 1627 1628 /** 1629 * call_netdevice_notifiers_info - call all network notifier blocks 1630 * @val: value passed unmodified to notifier function 1631 * @dev: net_device pointer passed unmodified to notifier function 1632 * @info: notifier information data 1633 * 1634 * Call all network notifier blocks. Parameters and return value 1635 * are as for raw_notifier_call_chain(). 1636 */ 1637 1638 static int call_netdevice_notifiers_info(unsigned long val, 1639 struct net_device *dev, 1640 struct netdev_notifier_info *info) 1641 { 1642 ASSERT_RTNL(); 1643 netdev_notifier_info_init(info, dev); 1644 return raw_notifier_call_chain(&netdev_chain, val, info); 1645 } 1646 1647 /** 1648 * call_netdevice_notifiers - call all network notifier blocks 1649 * @val: value passed unmodified to notifier function 1650 * @dev: net_device pointer passed unmodified to notifier function 1651 * 1652 * Call all network notifier blocks. Parameters and return value 1653 * are as for raw_notifier_call_chain(). 1654 */ 1655 1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1657 { 1658 struct netdev_notifier_info info; 1659 1660 return call_netdevice_notifiers_info(val, dev, &info); 1661 } 1662 EXPORT_SYMBOL(call_netdevice_notifiers); 1663 1664 #ifdef CONFIG_NET_INGRESS 1665 static struct static_key ingress_needed __read_mostly; 1666 1667 void net_inc_ingress_queue(void) 1668 { 1669 static_key_slow_inc(&ingress_needed); 1670 } 1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1672 1673 void net_dec_ingress_queue(void) 1674 { 1675 static_key_slow_dec(&ingress_needed); 1676 } 1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1678 #endif 1679 1680 #ifdef CONFIG_NET_EGRESS 1681 static struct static_key egress_needed __read_mostly; 1682 1683 void net_inc_egress_queue(void) 1684 { 1685 static_key_slow_inc(&egress_needed); 1686 } 1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1688 1689 void net_dec_egress_queue(void) 1690 { 1691 static_key_slow_dec(&egress_needed); 1692 } 1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1694 #endif 1695 1696 static struct static_key netstamp_needed __read_mostly; 1697 #ifdef HAVE_JUMP_LABEL 1698 static atomic_t netstamp_needed_deferred; 1699 static void netstamp_clear(struct work_struct *work) 1700 { 1701 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1702 1703 while (deferred--) 1704 static_key_slow_dec(&netstamp_needed); 1705 } 1706 static DECLARE_WORK(netstamp_work, netstamp_clear); 1707 #endif 1708 1709 void net_enable_timestamp(void) 1710 { 1711 static_key_slow_inc(&netstamp_needed); 1712 } 1713 EXPORT_SYMBOL(net_enable_timestamp); 1714 1715 void net_disable_timestamp(void) 1716 { 1717 #ifdef HAVE_JUMP_LABEL 1718 /* net_disable_timestamp() can be called from non process context */ 1719 atomic_inc(&netstamp_needed_deferred); 1720 schedule_work(&netstamp_work); 1721 #else 1722 static_key_slow_dec(&netstamp_needed); 1723 #endif 1724 } 1725 EXPORT_SYMBOL(net_disable_timestamp); 1726 1727 static inline void net_timestamp_set(struct sk_buff *skb) 1728 { 1729 skb->tstamp = 0; 1730 if (static_key_false(&netstamp_needed)) 1731 __net_timestamp(skb); 1732 } 1733 1734 #define net_timestamp_check(COND, SKB) \ 1735 if (static_key_false(&netstamp_needed)) { \ 1736 if ((COND) && !(SKB)->tstamp) \ 1737 __net_timestamp(SKB); \ 1738 } \ 1739 1740 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1741 { 1742 unsigned int len; 1743 1744 if (!(dev->flags & IFF_UP)) 1745 return false; 1746 1747 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1748 if (skb->len <= len) 1749 return true; 1750 1751 /* if TSO is enabled, we don't care about the length as the packet 1752 * could be forwarded without being segmented before 1753 */ 1754 if (skb_is_gso(skb)) 1755 return true; 1756 1757 return false; 1758 } 1759 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1760 1761 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1762 { 1763 int ret = ____dev_forward_skb(dev, skb); 1764 1765 if (likely(!ret)) { 1766 skb->protocol = eth_type_trans(skb, dev); 1767 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1768 } 1769 1770 return ret; 1771 } 1772 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1773 1774 /** 1775 * dev_forward_skb - loopback an skb to another netif 1776 * 1777 * @dev: destination network device 1778 * @skb: buffer to forward 1779 * 1780 * return values: 1781 * NET_RX_SUCCESS (no congestion) 1782 * NET_RX_DROP (packet was dropped, but freed) 1783 * 1784 * dev_forward_skb can be used for injecting an skb from the 1785 * start_xmit function of one device into the receive queue 1786 * of another device. 1787 * 1788 * The receiving device may be in another namespace, so 1789 * we have to clear all information in the skb that could 1790 * impact namespace isolation. 1791 */ 1792 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1793 { 1794 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1795 } 1796 EXPORT_SYMBOL_GPL(dev_forward_skb); 1797 1798 static inline int deliver_skb(struct sk_buff *skb, 1799 struct packet_type *pt_prev, 1800 struct net_device *orig_dev) 1801 { 1802 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1803 return -ENOMEM; 1804 atomic_inc(&skb->users); 1805 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1806 } 1807 1808 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1809 struct packet_type **pt, 1810 struct net_device *orig_dev, 1811 __be16 type, 1812 struct list_head *ptype_list) 1813 { 1814 struct packet_type *ptype, *pt_prev = *pt; 1815 1816 list_for_each_entry_rcu(ptype, ptype_list, list) { 1817 if (ptype->type != type) 1818 continue; 1819 if (pt_prev) 1820 deliver_skb(skb, pt_prev, orig_dev); 1821 pt_prev = ptype; 1822 } 1823 *pt = pt_prev; 1824 } 1825 1826 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1827 { 1828 if (!ptype->af_packet_priv || !skb->sk) 1829 return false; 1830 1831 if (ptype->id_match) 1832 return ptype->id_match(ptype, skb->sk); 1833 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1834 return true; 1835 1836 return false; 1837 } 1838 1839 /* 1840 * Support routine. Sends outgoing frames to any network 1841 * taps currently in use. 1842 */ 1843 1844 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1845 { 1846 struct packet_type *ptype; 1847 struct sk_buff *skb2 = NULL; 1848 struct packet_type *pt_prev = NULL; 1849 struct list_head *ptype_list = &ptype_all; 1850 1851 rcu_read_lock(); 1852 again: 1853 list_for_each_entry_rcu(ptype, ptype_list, list) { 1854 /* Never send packets back to the socket 1855 * they originated from - MvS (miquels@drinkel.ow.org) 1856 */ 1857 if (skb_loop_sk(ptype, skb)) 1858 continue; 1859 1860 if (pt_prev) { 1861 deliver_skb(skb2, pt_prev, skb->dev); 1862 pt_prev = ptype; 1863 continue; 1864 } 1865 1866 /* need to clone skb, done only once */ 1867 skb2 = skb_clone(skb, GFP_ATOMIC); 1868 if (!skb2) 1869 goto out_unlock; 1870 1871 net_timestamp_set(skb2); 1872 1873 /* skb->nh should be correctly 1874 * set by sender, so that the second statement is 1875 * just protection against buggy protocols. 1876 */ 1877 skb_reset_mac_header(skb2); 1878 1879 if (skb_network_header(skb2) < skb2->data || 1880 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1881 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1882 ntohs(skb2->protocol), 1883 dev->name); 1884 skb_reset_network_header(skb2); 1885 } 1886 1887 skb2->transport_header = skb2->network_header; 1888 skb2->pkt_type = PACKET_OUTGOING; 1889 pt_prev = ptype; 1890 } 1891 1892 if (ptype_list == &ptype_all) { 1893 ptype_list = &dev->ptype_all; 1894 goto again; 1895 } 1896 out_unlock: 1897 if (pt_prev) 1898 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1899 rcu_read_unlock(); 1900 } 1901 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1902 1903 /** 1904 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1905 * @dev: Network device 1906 * @txq: number of queues available 1907 * 1908 * If real_num_tx_queues is changed the tc mappings may no longer be 1909 * valid. To resolve this verify the tc mapping remains valid and if 1910 * not NULL the mapping. With no priorities mapping to this 1911 * offset/count pair it will no longer be used. In the worst case TC0 1912 * is invalid nothing can be done so disable priority mappings. If is 1913 * expected that drivers will fix this mapping if they can before 1914 * calling netif_set_real_num_tx_queues. 1915 */ 1916 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1917 { 1918 int i; 1919 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1920 1921 /* If TC0 is invalidated disable TC mapping */ 1922 if (tc->offset + tc->count > txq) { 1923 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1924 dev->num_tc = 0; 1925 return; 1926 } 1927 1928 /* Invalidated prio to tc mappings set to TC0 */ 1929 for (i = 1; i < TC_BITMASK + 1; i++) { 1930 int q = netdev_get_prio_tc_map(dev, i); 1931 1932 tc = &dev->tc_to_txq[q]; 1933 if (tc->offset + tc->count > txq) { 1934 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1935 i, q); 1936 netdev_set_prio_tc_map(dev, i, 0); 1937 } 1938 } 1939 } 1940 1941 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1942 { 1943 if (dev->num_tc) { 1944 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1945 int i; 1946 1947 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1948 if ((txq - tc->offset) < tc->count) 1949 return i; 1950 } 1951 1952 return -1; 1953 } 1954 1955 return 0; 1956 } 1957 1958 #ifdef CONFIG_XPS 1959 static DEFINE_MUTEX(xps_map_mutex); 1960 #define xmap_dereference(P) \ 1961 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1962 1963 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1964 int tci, u16 index) 1965 { 1966 struct xps_map *map = NULL; 1967 int pos; 1968 1969 if (dev_maps) 1970 map = xmap_dereference(dev_maps->cpu_map[tci]); 1971 if (!map) 1972 return false; 1973 1974 for (pos = map->len; pos--;) { 1975 if (map->queues[pos] != index) 1976 continue; 1977 1978 if (map->len > 1) { 1979 map->queues[pos] = map->queues[--map->len]; 1980 break; 1981 } 1982 1983 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 1984 kfree_rcu(map, rcu); 1985 return false; 1986 } 1987 1988 return true; 1989 } 1990 1991 static bool remove_xps_queue_cpu(struct net_device *dev, 1992 struct xps_dev_maps *dev_maps, 1993 int cpu, u16 offset, u16 count) 1994 { 1995 int num_tc = dev->num_tc ? : 1; 1996 bool active = false; 1997 int tci; 1998 1999 for (tci = cpu * num_tc; num_tc--; tci++) { 2000 int i, j; 2001 2002 for (i = count, j = offset; i--; j++) { 2003 if (!remove_xps_queue(dev_maps, cpu, j)) 2004 break; 2005 } 2006 2007 active |= i < 0; 2008 } 2009 2010 return active; 2011 } 2012 2013 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2014 u16 count) 2015 { 2016 struct xps_dev_maps *dev_maps; 2017 int cpu, i; 2018 bool active = false; 2019 2020 mutex_lock(&xps_map_mutex); 2021 dev_maps = xmap_dereference(dev->xps_maps); 2022 2023 if (!dev_maps) 2024 goto out_no_maps; 2025 2026 for_each_possible_cpu(cpu) 2027 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2028 offset, count); 2029 2030 if (!active) { 2031 RCU_INIT_POINTER(dev->xps_maps, NULL); 2032 kfree_rcu(dev_maps, rcu); 2033 } 2034 2035 for (i = offset + (count - 1); count--; i--) 2036 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2037 NUMA_NO_NODE); 2038 2039 out_no_maps: 2040 mutex_unlock(&xps_map_mutex); 2041 } 2042 2043 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2044 { 2045 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2046 } 2047 2048 static struct xps_map *expand_xps_map(struct xps_map *map, 2049 int cpu, u16 index) 2050 { 2051 struct xps_map *new_map; 2052 int alloc_len = XPS_MIN_MAP_ALLOC; 2053 int i, pos; 2054 2055 for (pos = 0; map && pos < map->len; pos++) { 2056 if (map->queues[pos] != index) 2057 continue; 2058 return map; 2059 } 2060 2061 /* Need to add queue to this CPU's existing map */ 2062 if (map) { 2063 if (pos < map->alloc_len) 2064 return map; 2065 2066 alloc_len = map->alloc_len * 2; 2067 } 2068 2069 /* Need to allocate new map to store queue on this CPU's map */ 2070 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2071 cpu_to_node(cpu)); 2072 if (!new_map) 2073 return NULL; 2074 2075 for (i = 0; i < pos; i++) 2076 new_map->queues[i] = map->queues[i]; 2077 new_map->alloc_len = alloc_len; 2078 new_map->len = pos; 2079 2080 return new_map; 2081 } 2082 2083 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2084 u16 index) 2085 { 2086 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2087 int i, cpu, tci, numa_node_id = -2; 2088 int maps_sz, num_tc = 1, tc = 0; 2089 struct xps_map *map, *new_map; 2090 bool active = false; 2091 2092 if (dev->num_tc) { 2093 num_tc = dev->num_tc; 2094 tc = netdev_txq_to_tc(dev, index); 2095 if (tc < 0) 2096 return -EINVAL; 2097 } 2098 2099 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2100 if (maps_sz < L1_CACHE_BYTES) 2101 maps_sz = L1_CACHE_BYTES; 2102 2103 mutex_lock(&xps_map_mutex); 2104 2105 dev_maps = xmap_dereference(dev->xps_maps); 2106 2107 /* allocate memory for queue storage */ 2108 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2109 if (!new_dev_maps) 2110 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2111 if (!new_dev_maps) { 2112 mutex_unlock(&xps_map_mutex); 2113 return -ENOMEM; 2114 } 2115 2116 tci = cpu * num_tc + tc; 2117 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2118 NULL; 2119 2120 map = expand_xps_map(map, cpu, index); 2121 if (!map) 2122 goto error; 2123 2124 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2125 } 2126 2127 if (!new_dev_maps) 2128 goto out_no_new_maps; 2129 2130 for_each_possible_cpu(cpu) { 2131 /* copy maps belonging to foreign traffic classes */ 2132 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2133 /* fill in the new device map from the old device map */ 2134 map = xmap_dereference(dev_maps->cpu_map[tci]); 2135 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2136 } 2137 2138 /* We need to explicitly update tci as prevous loop 2139 * could break out early if dev_maps is NULL. 2140 */ 2141 tci = cpu * num_tc + tc; 2142 2143 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2144 /* add queue to CPU maps */ 2145 int pos = 0; 2146 2147 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2148 while ((pos < map->len) && (map->queues[pos] != index)) 2149 pos++; 2150 2151 if (pos == map->len) 2152 map->queues[map->len++] = index; 2153 #ifdef CONFIG_NUMA 2154 if (numa_node_id == -2) 2155 numa_node_id = cpu_to_node(cpu); 2156 else if (numa_node_id != cpu_to_node(cpu)) 2157 numa_node_id = -1; 2158 #endif 2159 } else if (dev_maps) { 2160 /* fill in the new device map from the old device map */ 2161 map = xmap_dereference(dev_maps->cpu_map[tci]); 2162 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2163 } 2164 2165 /* copy maps belonging to foreign traffic classes */ 2166 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2167 /* fill in the new device map from the old device map */ 2168 map = xmap_dereference(dev_maps->cpu_map[tci]); 2169 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2170 } 2171 } 2172 2173 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2174 2175 /* Cleanup old maps */ 2176 if (!dev_maps) 2177 goto out_no_old_maps; 2178 2179 for_each_possible_cpu(cpu) { 2180 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2181 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2182 map = xmap_dereference(dev_maps->cpu_map[tci]); 2183 if (map && map != new_map) 2184 kfree_rcu(map, rcu); 2185 } 2186 } 2187 2188 kfree_rcu(dev_maps, rcu); 2189 2190 out_no_old_maps: 2191 dev_maps = new_dev_maps; 2192 active = true; 2193 2194 out_no_new_maps: 2195 /* update Tx queue numa node */ 2196 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2197 (numa_node_id >= 0) ? numa_node_id : 2198 NUMA_NO_NODE); 2199 2200 if (!dev_maps) 2201 goto out_no_maps; 2202 2203 /* removes queue from unused CPUs */ 2204 for_each_possible_cpu(cpu) { 2205 for (i = tc, tci = cpu * num_tc; i--; tci++) 2206 active |= remove_xps_queue(dev_maps, tci, index); 2207 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2208 active |= remove_xps_queue(dev_maps, tci, index); 2209 for (i = num_tc - tc, tci++; --i; tci++) 2210 active |= remove_xps_queue(dev_maps, tci, index); 2211 } 2212 2213 /* free map if not active */ 2214 if (!active) { 2215 RCU_INIT_POINTER(dev->xps_maps, NULL); 2216 kfree_rcu(dev_maps, rcu); 2217 } 2218 2219 out_no_maps: 2220 mutex_unlock(&xps_map_mutex); 2221 2222 return 0; 2223 error: 2224 /* remove any maps that we added */ 2225 for_each_possible_cpu(cpu) { 2226 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2227 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2228 map = dev_maps ? 2229 xmap_dereference(dev_maps->cpu_map[tci]) : 2230 NULL; 2231 if (new_map && new_map != map) 2232 kfree(new_map); 2233 } 2234 } 2235 2236 mutex_unlock(&xps_map_mutex); 2237 2238 kfree(new_dev_maps); 2239 return -ENOMEM; 2240 } 2241 EXPORT_SYMBOL(netif_set_xps_queue); 2242 2243 #endif 2244 void netdev_reset_tc(struct net_device *dev) 2245 { 2246 #ifdef CONFIG_XPS 2247 netif_reset_xps_queues_gt(dev, 0); 2248 #endif 2249 dev->num_tc = 0; 2250 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2251 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2252 } 2253 EXPORT_SYMBOL(netdev_reset_tc); 2254 2255 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2256 { 2257 if (tc >= dev->num_tc) 2258 return -EINVAL; 2259 2260 #ifdef CONFIG_XPS 2261 netif_reset_xps_queues(dev, offset, count); 2262 #endif 2263 dev->tc_to_txq[tc].count = count; 2264 dev->tc_to_txq[tc].offset = offset; 2265 return 0; 2266 } 2267 EXPORT_SYMBOL(netdev_set_tc_queue); 2268 2269 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2270 { 2271 if (num_tc > TC_MAX_QUEUE) 2272 return -EINVAL; 2273 2274 #ifdef CONFIG_XPS 2275 netif_reset_xps_queues_gt(dev, 0); 2276 #endif 2277 dev->num_tc = num_tc; 2278 return 0; 2279 } 2280 EXPORT_SYMBOL(netdev_set_num_tc); 2281 2282 /* 2283 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2284 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2285 */ 2286 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2287 { 2288 int rc; 2289 2290 if (txq < 1 || txq > dev->num_tx_queues) 2291 return -EINVAL; 2292 2293 if (dev->reg_state == NETREG_REGISTERED || 2294 dev->reg_state == NETREG_UNREGISTERING) { 2295 ASSERT_RTNL(); 2296 2297 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2298 txq); 2299 if (rc) 2300 return rc; 2301 2302 if (dev->num_tc) 2303 netif_setup_tc(dev, txq); 2304 2305 if (txq < dev->real_num_tx_queues) { 2306 qdisc_reset_all_tx_gt(dev, txq); 2307 #ifdef CONFIG_XPS 2308 netif_reset_xps_queues_gt(dev, txq); 2309 #endif 2310 } 2311 } 2312 2313 dev->real_num_tx_queues = txq; 2314 return 0; 2315 } 2316 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2317 2318 #ifdef CONFIG_SYSFS 2319 /** 2320 * netif_set_real_num_rx_queues - set actual number of RX queues used 2321 * @dev: Network device 2322 * @rxq: Actual number of RX queues 2323 * 2324 * This must be called either with the rtnl_lock held or before 2325 * registration of the net device. Returns 0 on success, or a 2326 * negative error code. If called before registration, it always 2327 * succeeds. 2328 */ 2329 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2330 { 2331 int rc; 2332 2333 if (rxq < 1 || rxq > dev->num_rx_queues) 2334 return -EINVAL; 2335 2336 if (dev->reg_state == NETREG_REGISTERED) { 2337 ASSERT_RTNL(); 2338 2339 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2340 rxq); 2341 if (rc) 2342 return rc; 2343 } 2344 2345 dev->real_num_rx_queues = rxq; 2346 return 0; 2347 } 2348 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2349 #endif 2350 2351 /** 2352 * netif_get_num_default_rss_queues - default number of RSS queues 2353 * 2354 * This routine should set an upper limit on the number of RSS queues 2355 * used by default by multiqueue devices. 2356 */ 2357 int netif_get_num_default_rss_queues(void) 2358 { 2359 return is_kdump_kernel() ? 2360 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2361 } 2362 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2363 2364 static void __netif_reschedule(struct Qdisc *q) 2365 { 2366 struct softnet_data *sd; 2367 unsigned long flags; 2368 2369 local_irq_save(flags); 2370 sd = this_cpu_ptr(&softnet_data); 2371 q->next_sched = NULL; 2372 *sd->output_queue_tailp = q; 2373 sd->output_queue_tailp = &q->next_sched; 2374 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2375 local_irq_restore(flags); 2376 } 2377 2378 void __netif_schedule(struct Qdisc *q) 2379 { 2380 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2381 __netif_reschedule(q); 2382 } 2383 EXPORT_SYMBOL(__netif_schedule); 2384 2385 struct dev_kfree_skb_cb { 2386 enum skb_free_reason reason; 2387 }; 2388 2389 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2390 { 2391 return (struct dev_kfree_skb_cb *)skb->cb; 2392 } 2393 2394 void netif_schedule_queue(struct netdev_queue *txq) 2395 { 2396 rcu_read_lock(); 2397 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2398 struct Qdisc *q = rcu_dereference(txq->qdisc); 2399 2400 __netif_schedule(q); 2401 } 2402 rcu_read_unlock(); 2403 } 2404 EXPORT_SYMBOL(netif_schedule_queue); 2405 2406 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2407 { 2408 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2409 struct Qdisc *q; 2410 2411 rcu_read_lock(); 2412 q = rcu_dereference(dev_queue->qdisc); 2413 __netif_schedule(q); 2414 rcu_read_unlock(); 2415 } 2416 } 2417 EXPORT_SYMBOL(netif_tx_wake_queue); 2418 2419 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2420 { 2421 unsigned long flags; 2422 2423 if (likely(atomic_read(&skb->users) == 1)) { 2424 smp_rmb(); 2425 atomic_set(&skb->users, 0); 2426 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2427 return; 2428 } 2429 get_kfree_skb_cb(skb)->reason = reason; 2430 local_irq_save(flags); 2431 skb->next = __this_cpu_read(softnet_data.completion_queue); 2432 __this_cpu_write(softnet_data.completion_queue, skb); 2433 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2434 local_irq_restore(flags); 2435 } 2436 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2437 2438 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2439 { 2440 if (in_irq() || irqs_disabled()) 2441 __dev_kfree_skb_irq(skb, reason); 2442 else 2443 dev_kfree_skb(skb); 2444 } 2445 EXPORT_SYMBOL(__dev_kfree_skb_any); 2446 2447 2448 /** 2449 * netif_device_detach - mark device as removed 2450 * @dev: network device 2451 * 2452 * Mark device as removed from system and therefore no longer available. 2453 */ 2454 void netif_device_detach(struct net_device *dev) 2455 { 2456 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2457 netif_running(dev)) { 2458 netif_tx_stop_all_queues(dev); 2459 } 2460 } 2461 EXPORT_SYMBOL(netif_device_detach); 2462 2463 /** 2464 * netif_device_attach - mark device as attached 2465 * @dev: network device 2466 * 2467 * Mark device as attached from system and restart if needed. 2468 */ 2469 void netif_device_attach(struct net_device *dev) 2470 { 2471 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2472 netif_running(dev)) { 2473 netif_tx_wake_all_queues(dev); 2474 __netdev_watchdog_up(dev); 2475 } 2476 } 2477 EXPORT_SYMBOL(netif_device_attach); 2478 2479 /* 2480 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2481 * to be used as a distribution range. 2482 */ 2483 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2484 unsigned int num_tx_queues) 2485 { 2486 u32 hash; 2487 u16 qoffset = 0; 2488 u16 qcount = num_tx_queues; 2489 2490 if (skb_rx_queue_recorded(skb)) { 2491 hash = skb_get_rx_queue(skb); 2492 while (unlikely(hash >= num_tx_queues)) 2493 hash -= num_tx_queues; 2494 return hash; 2495 } 2496 2497 if (dev->num_tc) { 2498 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2499 qoffset = dev->tc_to_txq[tc].offset; 2500 qcount = dev->tc_to_txq[tc].count; 2501 } 2502 2503 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2504 } 2505 EXPORT_SYMBOL(__skb_tx_hash); 2506 2507 static void skb_warn_bad_offload(const struct sk_buff *skb) 2508 { 2509 static const netdev_features_t null_features; 2510 struct net_device *dev = skb->dev; 2511 const char *name = ""; 2512 2513 if (!net_ratelimit()) 2514 return; 2515 2516 if (dev) { 2517 if (dev->dev.parent) 2518 name = dev_driver_string(dev->dev.parent); 2519 else 2520 name = netdev_name(dev); 2521 } 2522 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2523 "gso_type=%d ip_summed=%d\n", 2524 name, dev ? &dev->features : &null_features, 2525 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2526 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2527 skb_shinfo(skb)->gso_type, skb->ip_summed); 2528 } 2529 2530 /* 2531 * Invalidate hardware checksum when packet is to be mangled, and 2532 * complete checksum manually on outgoing path. 2533 */ 2534 int skb_checksum_help(struct sk_buff *skb) 2535 { 2536 __wsum csum; 2537 int ret = 0, offset; 2538 2539 if (skb->ip_summed == CHECKSUM_COMPLETE) 2540 goto out_set_summed; 2541 2542 if (unlikely(skb_shinfo(skb)->gso_size)) { 2543 skb_warn_bad_offload(skb); 2544 return -EINVAL; 2545 } 2546 2547 /* Before computing a checksum, we should make sure no frag could 2548 * be modified by an external entity : checksum could be wrong. 2549 */ 2550 if (skb_has_shared_frag(skb)) { 2551 ret = __skb_linearize(skb); 2552 if (ret) 2553 goto out; 2554 } 2555 2556 offset = skb_checksum_start_offset(skb); 2557 BUG_ON(offset >= skb_headlen(skb)); 2558 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2559 2560 offset += skb->csum_offset; 2561 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2562 2563 if (skb_cloned(skb) && 2564 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2565 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2566 if (ret) 2567 goto out; 2568 } 2569 2570 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2571 out_set_summed: 2572 skb->ip_summed = CHECKSUM_NONE; 2573 out: 2574 return ret; 2575 } 2576 EXPORT_SYMBOL(skb_checksum_help); 2577 2578 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2579 { 2580 __be16 type = skb->protocol; 2581 2582 /* Tunnel gso handlers can set protocol to ethernet. */ 2583 if (type == htons(ETH_P_TEB)) { 2584 struct ethhdr *eth; 2585 2586 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2587 return 0; 2588 2589 eth = (struct ethhdr *)skb_mac_header(skb); 2590 type = eth->h_proto; 2591 } 2592 2593 return __vlan_get_protocol(skb, type, depth); 2594 } 2595 2596 /** 2597 * skb_mac_gso_segment - mac layer segmentation handler. 2598 * @skb: buffer to segment 2599 * @features: features for the output path (see dev->features) 2600 */ 2601 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2602 netdev_features_t features) 2603 { 2604 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2605 struct packet_offload *ptype; 2606 int vlan_depth = skb->mac_len; 2607 __be16 type = skb_network_protocol(skb, &vlan_depth); 2608 2609 if (unlikely(!type)) 2610 return ERR_PTR(-EINVAL); 2611 2612 __skb_pull(skb, vlan_depth); 2613 2614 rcu_read_lock(); 2615 list_for_each_entry_rcu(ptype, &offload_base, list) { 2616 if (ptype->type == type && ptype->callbacks.gso_segment) { 2617 segs = ptype->callbacks.gso_segment(skb, features); 2618 break; 2619 } 2620 } 2621 rcu_read_unlock(); 2622 2623 __skb_push(skb, skb->data - skb_mac_header(skb)); 2624 2625 return segs; 2626 } 2627 EXPORT_SYMBOL(skb_mac_gso_segment); 2628 2629 2630 /* openvswitch calls this on rx path, so we need a different check. 2631 */ 2632 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2633 { 2634 if (tx_path) 2635 return skb->ip_summed != CHECKSUM_PARTIAL && 2636 skb->ip_summed != CHECKSUM_NONE; 2637 2638 return skb->ip_summed == CHECKSUM_NONE; 2639 } 2640 2641 /** 2642 * __skb_gso_segment - Perform segmentation on skb. 2643 * @skb: buffer to segment 2644 * @features: features for the output path (see dev->features) 2645 * @tx_path: whether it is called in TX path 2646 * 2647 * This function segments the given skb and returns a list of segments. 2648 * 2649 * It may return NULL if the skb requires no segmentation. This is 2650 * only possible when GSO is used for verifying header integrity. 2651 * 2652 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2653 */ 2654 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2655 netdev_features_t features, bool tx_path) 2656 { 2657 struct sk_buff *segs; 2658 2659 if (unlikely(skb_needs_check(skb, tx_path))) { 2660 int err; 2661 2662 /* We're going to init ->check field in TCP or UDP header */ 2663 err = skb_cow_head(skb, 0); 2664 if (err < 0) 2665 return ERR_PTR(err); 2666 } 2667 2668 /* Only report GSO partial support if it will enable us to 2669 * support segmentation on this frame without needing additional 2670 * work. 2671 */ 2672 if (features & NETIF_F_GSO_PARTIAL) { 2673 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2674 struct net_device *dev = skb->dev; 2675 2676 partial_features |= dev->features & dev->gso_partial_features; 2677 if (!skb_gso_ok(skb, features | partial_features)) 2678 features &= ~NETIF_F_GSO_PARTIAL; 2679 } 2680 2681 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2682 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2683 2684 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2685 SKB_GSO_CB(skb)->encap_level = 0; 2686 2687 skb_reset_mac_header(skb); 2688 skb_reset_mac_len(skb); 2689 2690 segs = skb_mac_gso_segment(skb, features); 2691 2692 if (unlikely(skb_needs_check(skb, tx_path))) 2693 skb_warn_bad_offload(skb); 2694 2695 return segs; 2696 } 2697 EXPORT_SYMBOL(__skb_gso_segment); 2698 2699 /* Take action when hardware reception checksum errors are detected. */ 2700 #ifdef CONFIG_BUG 2701 void netdev_rx_csum_fault(struct net_device *dev) 2702 { 2703 if (net_ratelimit()) { 2704 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2705 dump_stack(); 2706 } 2707 } 2708 EXPORT_SYMBOL(netdev_rx_csum_fault); 2709 #endif 2710 2711 /* Actually, we should eliminate this check as soon as we know, that: 2712 * 1. IOMMU is present and allows to map all the memory. 2713 * 2. No high memory really exists on this machine. 2714 */ 2715 2716 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2717 { 2718 #ifdef CONFIG_HIGHMEM 2719 int i; 2720 if (!(dev->features & NETIF_F_HIGHDMA)) { 2721 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2722 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2723 if (PageHighMem(skb_frag_page(frag))) 2724 return 1; 2725 } 2726 } 2727 2728 if (PCI_DMA_BUS_IS_PHYS) { 2729 struct device *pdev = dev->dev.parent; 2730 2731 if (!pdev) 2732 return 0; 2733 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2734 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2735 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2736 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2737 return 1; 2738 } 2739 } 2740 #endif 2741 return 0; 2742 } 2743 2744 /* If MPLS offload request, verify we are testing hardware MPLS features 2745 * instead of standard features for the netdev. 2746 */ 2747 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2748 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2749 netdev_features_t features, 2750 __be16 type) 2751 { 2752 if (eth_p_mpls(type)) 2753 features &= skb->dev->mpls_features; 2754 2755 return features; 2756 } 2757 #else 2758 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2759 netdev_features_t features, 2760 __be16 type) 2761 { 2762 return features; 2763 } 2764 #endif 2765 2766 static netdev_features_t harmonize_features(struct sk_buff *skb, 2767 netdev_features_t features) 2768 { 2769 int tmp; 2770 __be16 type; 2771 2772 type = skb_network_protocol(skb, &tmp); 2773 features = net_mpls_features(skb, features, type); 2774 2775 if (skb->ip_summed != CHECKSUM_NONE && 2776 !can_checksum_protocol(features, type)) { 2777 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2778 } 2779 if (illegal_highdma(skb->dev, skb)) 2780 features &= ~NETIF_F_SG; 2781 2782 return features; 2783 } 2784 2785 netdev_features_t passthru_features_check(struct sk_buff *skb, 2786 struct net_device *dev, 2787 netdev_features_t features) 2788 { 2789 return features; 2790 } 2791 EXPORT_SYMBOL(passthru_features_check); 2792 2793 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2794 struct net_device *dev, 2795 netdev_features_t features) 2796 { 2797 return vlan_features_check(skb, features); 2798 } 2799 2800 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2801 struct net_device *dev, 2802 netdev_features_t features) 2803 { 2804 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2805 2806 if (gso_segs > dev->gso_max_segs) 2807 return features & ~NETIF_F_GSO_MASK; 2808 2809 /* Support for GSO partial features requires software 2810 * intervention before we can actually process the packets 2811 * so we need to strip support for any partial features now 2812 * and we can pull them back in after we have partially 2813 * segmented the frame. 2814 */ 2815 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2816 features &= ~dev->gso_partial_features; 2817 2818 /* Make sure to clear the IPv4 ID mangling feature if the 2819 * IPv4 header has the potential to be fragmented. 2820 */ 2821 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2822 struct iphdr *iph = skb->encapsulation ? 2823 inner_ip_hdr(skb) : ip_hdr(skb); 2824 2825 if (!(iph->frag_off & htons(IP_DF))) 2826 features &= ~NETIF_F_TSO_MANGLEID; 2827 } 2828 2829 return features; 2830 } 2831 2832 netdev_features_t netif_skb_features(struct sk_buff *skb) 2833 { 2834 struct net_device *dev = skb->dev; 2835 netdev_features_t features = dev->features; 2836 2837 if (skb_is_gso(skb)) 2838 features = gso_features_check(skb, dev, features); 2839 2840 /* If encapsulation offload request, verify we are testing 2841 * hardware encapsulation features instead of standard 2842 * features for the netdev 2843 */ 2844 if (skb->encapsulation) 2845 features &= dev->hw_enc_features; 2846 2847 if (skb_vlan_tagged(skb)) 2848 features = netdev_intersect_features(features, 2849 dev->vlan_features | 2850 NETIF_F_HW_VLAN_CTAG_TX | 2851 NETIF_F_HW_VLAN_STAG_TX); 2852 2853 if (dev->netdev_ops->ndo_features_check) 2854 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2855 features); 2856 else 2857 features &= dflt_features_check(skb, dev, features); 2858 2859 return harmonize_features(skb, features); 2860 } 2861 EXPORT_SYMBOL(netif_skb_features); 2862 2863 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2864 struct netdev_queue *txq, bool more) 2865 { 2866 unsigned int len; 2867 int rc; 2868 2869 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2870 dev_queue_xmit_nit(skb, dev); 2871 2872 len = skb->len; 2873 trace_net_dev_start_xmit(skb, dev); 2874 rc = netdev_start_xmit(skb, dev, txq, more); 2875 trace_net_dev_xmit(skb, rc, dev, len); 2876 2877 return rc; 2878 } 2879 2880 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2881 struct netdev_queue *txq, int *ret) 2882 { 2883 struct sk_buff *skb = first; 2884 int rc = NETDEV_TX_OK; 2885 2886 while (skb) { 2887 struct sk_buff *next = skb->next; 2888 2889 skb->next = NULL; 2890 rc = xmit_one(skb, dev, txq, next != NULL); 2891 if (unlikely(!dev_xmit_complete(rc))) { 2892 skb->next = next; 2893 goto out; 2894 } 2895 2896 skb = next; 2897 if (netif_xmit_stopped(txq) && skb) { 2898 rc = NETDEV_TX_BUSY; 2899 break; 2900 } 2901 } 2902 2903 out: 2904 *ret = rc; 2905 return skb; 2906 } 2907 2908 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2909 netdev_features_t features) 2910 { 2911 if (skb_vlan_tag_present(skb) && 2912 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2913 skb = __vlan_hwaccel_push_inside(skb); 2914 return skb; 2915 } 2916 2917 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2918 { 2919 netdev_features_t features; 2920 2921 features = netif_skb_features(skb); 2922 skb = validate_xmit_vlan(skb, features); 2923 if (unlikely(!skb)) 2924 goto out_null; 2925 2926 if (netif_needs_gso(skb, features)) { 2927 struct sk_buff *segs; 2928 2929 segs = skb_gso_segment(skb, features); 2930 if (IS_ERR(segs)) { 2931 goto out_kfree_skb; 2932 } else if (segs) { 2933 consume_skb(skb); 2934 skb = segs; 2935 } 2936 } else { 2937 if (skb_needs_linearize(skb, features) && 2938 __skb_linearize(skb)) 2939 goto out_kfree_skb; 2940 2941 /* If packet is not checksummed and device does not 2942 * support checksumming for this protocol, complete 2943 * checksumming here. 2944 */ 2945 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2946 if (skb->encapsulation) 2947 skb_set_inner_transport_header(skb, 2948 skb_checksum_start_offset(skb)); 2949 else 2950 skb_set_transport_header(skb, 2951 skb_checksum_start_offset(skb)); 2952 if (!(features & NETIF_F_CSUM_MASK) && 2953 skb_checksum_help(skb)) 2954 goto out_kfree_skb; 2955 } 2956 } 2957 2958 return skb; 2959 2960 out_kfree_skb: 2961 kfree_skb(skb); 2962 out_null: 2963 atomic_long_inc(&dev->tx_dropped); 2964 return NULL; 2965 } 2966 2967 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2968 { 2969 struct sk_buff *next, *head = NULL, *tail; 2970 2971 for (; skb != NULL; skb = next) { 2972 next = skb->next; 2973 skb->next = NULL; 2974 2975 /* in case skb wont be segmented, point to itself */ 2976 skb->prev = skb; 2977 2978 skb = validate_xmit_skb(skb, dev); 2979 if (!skb) 2980 continue; 2981 2982 if (!head) 2983 head = skb; 2984 else 2985 tail->next = skb; 2986 /* If skb was segmented, skb->prev points to 2987 * the last segment. If not, it still contains skb. 2988 */ 2989 tail = skb->prev; 2990 } 2991 return head; 2992 } 2993 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 2994 2995 static void qdisc_pkt_len_init(struct sk_buff *skb) 2996 { 2997 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2998 2999 qdisc_skb_cb(skb)->pkt_len = skb->len; 3000 3001 /* To get more precise estimation of bytes sent on wire, 3002 * we add to pkt_len the headers size of all segments 3003 */ 3004 if (shinfo->gso_size) { 3005 unsigned int hdr_len; 3006 u16 gso_segs = shinfo->gso_segs; 3007 3008 /* mac layer + network layer */ 3009 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3010 3011 /* + transport layer */ 3012 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3013 hdr_len += tcp_hdrlen(skb); 3014 else 3015 hdr_len += sizeof(struct udphdr); 3016 3017 if (shinfo->gso_type & SKB_GSO_DODGY) 3018 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3019 shinfo->gso_size); 3020 3021 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3022 } 3023 } 3024 3025 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3026 struct net_device *dev, 3027 struct netdev_queue *txq) 3028 { 3029 spinlock_t *root_lock = qdisc_lock(q); 3030 struct sk_buff *to_free = NULL; 3031 bool contended; 3032 int rc; 3033 3034 qdisc_calculate_pkt_len(skb, q); 3035 /* 3036 * Heuristic to force contended enqueues to serialize on a 3037 * separate lock before trying to get qdisc main lock. 3038 * This permits qdisc->running owner to get the lock more 3039 * often and dequeue packets faster. 3040 */ 3041 contended = qdisc_is_running(q); 3042 if (unlikely(contended)) 3043 spin_lock(&q->busylock); 3044 3045 spin_lock(root_lock); 3046 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3047 __qdisc_drop(skb, &to_free); 3048 rc = NET_XMIT_DROP; 3049 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3050 qdisc_run_begin(q)) { 3051 /* 3052 * This is a work-conserving queue; there are no old skbs 3053 * waiting to be sent out; and the qdisc is not running - 3054 * xmit the skb directly. 3055 */ 3056 3057 qdisc_bstats_update(q, skb); 3058 3059 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3060 if (unlikely(contended)) { 3061 spin_unlock(&q->busylock); 3062 contended = false; 3063 } 3064 __qdisc_run(q); 3065 } else 3066 qdisc_run_end(q); 3067 3068 rc = NET_XMIT_SUCCESS; 3069 } else { 3070 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3071 if (qdisc_run_begin(q)) { 3072 if (unlikely(contended)) { 3073 spin_unlock(&q->busylock); 3074 contended = false; 3075 } 3076 __qdisc_run(q); 3077 } 3078 } 3079 spin_unlock(root_lock); 3080 if (unlikely(to_free)) 3081 kfree_skb_list(to_free); 3082 if (unlikely(contended)) 3083 spin_unlock(&q->busylock); 3084 return rc; 3085 } 3086 3087 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3088 static void skb_update_prio(struct sk_buff *skb) 3089 { 3090 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3091 3092 if (!skb->priority && skb->sk && map) { 3093 unsigned int prioidx = 3094 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3095 3096 if (prioidx < map->priomap_len) 3097 skb->priority = map->priomap[prioidx]; 3098 } 3099 } 3100 #else 3101 #define skb_update_prio(skb) 3102 #endif 3103 3104 DEFINE_PER_CPU(int, xmit_recursion); 3105 EXPORT_SYMBOL(xmit_recursion); 3106 3107 /** 3108 * dev_loopback_xmit - loop back @skb 3109 * @net: network namespace this loopback is happening in 3110 * @sk: sk needed to be a netfilter okfn 3111 * @skb: buffer to transmit 3112 */ 3113 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3114 { 3115 skb_reset_mac_header(skb); 3116 __skb_pull(skb, skb_network_offset(skb)); 3117 skb->pkt_type = PACKET_LOOPBACK; 3118 skb->ip_summed = CHECKSUM_UNNECESSARY; 3119 WARN_ON(!skb_dst(skb)); 3120 skb_dst_force(skb); 3121 netif_rx_ni(skb); 3122 return 0; 3123 } 3124 EXPORT_SYMBOL(dev_loopback_xmit); 3125 3126 #ifdef CONFIG_NET_EGRESS 3127 static struct sk_buff * 3128 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3129 { 3130 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3131 struct tcf_result cl_res; 3132 3133 if (!cl) 3134 return skb; 3135 3136 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3137 qdisc_bstats_cpu_update(cl->q, skb); 3138 3139 switch (tc_classify(skb, cl, &cl_res, false)) { 3140 case TC_ACT_OK: 3141 case TC_ACT_RECLASSIFY: 3142 skb->tc_index = TC_H_MIN(cl_res.classid); 3143 break; 3144 case TC_ACT_SHOT: 3145 qdisc_qstats_cpu_drop(cl->q); 3146 *ret = NET_XMIT_DROP; 3147 kfree_skb(skb); 3148 return NULL; 3149 case TC_ACT_STOLEN: 3150 case TC_ACT_QUEUED: 3151 *ret = NET_XMIT_SUCCESS; 3152 consume_skb(skb); 3153 return NULL; 3154 case TC_ACT_REDIRECT: 3155 /* No need to push/pop skb's mac_header here on egress! */ 3156 skb_do_redirect(skb); 3157 *ret = NET_XMIT_SUCCESS; 3158 return NULL; 3159 default: 3160 break; 3161 } 3162 3163 return skb; 3164 } 3165 #endif /* CONFIG_NET_EGRESS */ 3166 3167 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3168 { 3169 #ifdef CONFIG_XPS 3170 struct xps_dev_maps *dev_maps; 3171 struct xps_map *map; 3172 int queue_index = -1; 3173 3174 rcu_read_lock(); 3175 dev_maps = rcu_dereference(dev->xps_maps); 3176 if (dev_maps) { 3177 unsigned int tci = skb->sender_cpu - 1; 3178 3179 if (dev->num_tc) { 3180 tci *= dev->num_tc; 3181 tci += netdev_get_prio_tc_map(dev, skb->priority); 3182 } 3183 3184 map = rcu_dereference(dev_maps->cpu_map[tci]); 3185 if (map) { 3186 if (map->len == 1) 3187 queue_index = map->queues[0]; 3188 else 3189 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3190 map->len)]; 3191 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3192 queue_index = -1; 3193 } 3194 } 3195 rcu_read_unlock(); 3196 3197 return queue_index; 3198 #else 3199 return -1; 3200 #endif 3201 } 3202 3203 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3204 { 3205 struct sock *sk = skb->sk; 3206 int queue_index = sk_tx_queue_get(sk); 3207 3208 if (queue_index < 0 || skb->ooo_okay || 3209 queue_index >= dev->real_num_tx_queues) { 3210 int new_index = get_xps_queue(dev, skb); 3211 if (new_index < 0) 3212 new_index = skb_tx_hash(dev, skb); 3213 3214 if (queue_index != new_index && sk && 3215 sk_fullsock(sk) && 3216 rcu_access_pointer(sk->sk_dst_cache)) 3217 sk_tx_queue_set(sk, new_index); 3218 3219 queue_index = new_index; 3220 } 3221 3222 return queue_index; 3223 } 3224 3225 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3226 struct sk_buff *skb, 3227 void *accel_priv) 3228 { 3229 int queue_index = 0; 3230 3231 #ifdef CONFIG_XPS 3232 u32 sender_cpu = skb->sender_cpu - 1; 3233 3234 if (sender_cpu >= (u32)NR_CPUS) 3235 skb->sender_cpu = raw_smp_processor_id() + 1; 3236 #endif 3237 3238 if (dev->real_num_tx_queues != 1) { 3239 const struct net_device_ops *ops = dev->netdev_ops; 3240 if (ops->ndo_select_queue) 3241 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3242 __netdev_pick_tx); 3243 else 3244 queue_index = __netdev_pick_tx(dev, skb); 3245 3246 if (!accel_priv) 3247 queue_index = netdev_cap_txqueue(dev, queue_index); 3248 } 3249 3250 skb_set_queue_mapping(skb, queue_index); 3251 return netdev_get_tx_queue(dev, queue_index); 3252 } 3253 3254 /** 3255 * __dev_queue_xmit - transmit a buffer 3256 * @skb: buffer to transmit 3257 * @accel_priv: private data used for L2 forwarding offload 3258 * 3259 * Queue a buffer for transmission to a network device. The caller must 3260 * have set the device and priority and built the buffer before calling 3261 * this function. The function can be called from an interrupt. 3262 * 3263 * A negative errno code is returned on a failure. A success does not 3264 * guarantee the frame will be transmitted as it may be dropped due 3265 * to congestion or traffic shaping. 3266 * 3267 * ----------------------------------------------------------------------------------- 3268 * I notice this method can also return errors from the queue disciplines, 3269 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3270 * be positive. 3271 * 3272 * Regardless of the return value, the skb is consumed, so it is currently 3273 * difficult to retry a send to this method. (You can bump the ref count 3274 * before sending to hold a reference for retry if you are careful.) 3275 * 3276 * When calling this method, interrupts MUST be enabled. This is because 3277 * the BH enable code must have IRQs enabled so that it will not deadlock. 3278 * --BLG 3279 */ 3280 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3281 { 3282 struct net_device *dev = skb->dev; 3283 struct netdev_queue *txq; 3284 struct Qdisc *q; 3285 int rc = -ENOMEM; 3286 3287 skb_reset_mac_header(skb); 3288 3289 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3290 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3291 3292 /* Disable soft irqs for various locks below. Also 3293 * stops preemption for RCU. 3294 */ 3295 rcu_read_lock_bh(); 3296 3297 skb_update_prio(skb); 3298 3299 qdisc_pkt_len_init(skb); 3300 #ifdef CONFIG_NET_CLS_ACT 3301 skb->tc_at_ingress = 0; 3302 # ifdef CONFIG_NET_EGRESS 3303 if (static_key_false(&egress_needed)) { 3304 skb = sch_handle_egress(skb, &rc, dev); 3305 if (!skb) 3306 goto out; 3307 } 3308 # endif 3309 #endif 3310 /* If device/qdisc don't need skb->dst, release it right now while 3311 * its hot in this cpu cache. 3312 */ 3313 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3314 skb_dst_drop(skb); 3315 else 3316 skb_dst_force(skb); 3317 3318 txq = netdev_pick_tx(dev, skb, accel_priv); 3319 q = rcu_dereference_bh(txq->qdisc); 3320 3321 trace_net_dev_queue(skb); 3322 if (q->enqueue) { 3323 rc = __dev_xmit_skb(skb, q, dev, txq); 3324 goto out; 3325 } 3326 3327 /* The device has no queue. Common case for software devices: 3328 loopback, all the sorts of tunnels... 3329 3330 Really, it is unlikely that netif_tx_lock protection is necessary 3331 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3332 counters.) 3333 However, it is possible, that they rely on protection 3334 made by us here. 3335 3336 Check this and shot the lock. It is not prone from deadlocks. 3337 Either shot noqueue qdisc, it is even simpler 8) 3338 */ 3339 if (dev->flags & IFF_UP) { 3340 int cpu = smp_processor_id(); /* ok because BHs are off */ 3341 3342 if (txq->xmit_lock_owner != cpu) { 3343 if (unlikely(__this_cpu_read(xmit_recursion) > 3344 XMIT_RECURSION_LIMIT)) 3345 goto recursion_alert; 3346 3347 skb = validate_xmit_skb(skb, dev); 3348 if (!skb) 3349 goto out; 3350 3351 HARD_TX_LOCK(dev, txq, cpu); 3352 3353 if (!netif_xmit_stopped(txq)) { 3354 __this_cpu_inc(xmit_recursion); 3355 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3356 __this_cpu_dec(xmit_recursion); 3357 if (dev_xmit_complete(rc)) { 3358 HARD_TX_UNLOCK(dev, txq); 3359 goto out; 3360 } 3361 } 3362 HARD_TX_UNLOCK(dev, txq); 3363 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3364 dev->name); 3365 } else { 3366 /* Recursion is detected! It is possible, 3367 * unfortunately 3368 */ 3369 recursion_alert: 3370 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3371 dev->name); 3372 } 3373 } 3374 3375 rc = -ENETDOWN; 3376 rcu_read_unlock_bh(); 3377 3378 atomic_long_inc(&dev->tx_dropped); 3379 kfree_skb_list(skb); 3380 return rc; 3381 out: 3382 rcu_read_unlock_bh(); 3383 return rc; 3384 } 3385 3386 int dev_queue_xmit(struct sk_buff *skb) 3387 { 3388 return __dev_queue_xmit(skb, NULL); 3389 } 3390 EXPORT_SYMBOL(dev_queue_xmit); 3391 3392 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3393 { 3394 return __dev_queue_xmit(skb, accel_priv); 3395 } 3396 EXPORT_SYMBOL(dev_queue_xmit_accel); 3397 3398 3399 /*======================================================================= 3400 Receiver routines 3401 =======================================================================*/ 3402 3403 int netdev_max_backlog __read_mostly = 1000; 3404 EXPORT_SYMBOL(netdev_max_backlog); 3405 3406 int netdev_tstamp_prequeue __read_mostly = 1; 3407 int netdev_budget __read_mostly = 300; 3408 int weight_p __read_mostly = 64; /* old backlog weight */ 3409 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3410 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3411 int dev_rx_weight __read_mostly = 64; 3412 int dev_tx_weight __read_mostly = 64; 3413 3414 /* Called with irq disabled */ 3415 static inline void ____napi_schedule(struct softnet_data *sd, 3416 struct napi_struct *napi) 3417 { 3418 list_add_tail(&napi->poll_list, &sd->poll_list); 3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3420 } 3421 3422 #ifdef CONFIG_RPS 3423 3424 /* One global table that all flow-based protocols share. */ 3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3426 EXPORT_SYMBOL(rps_sock_flow_table); 3427 u32 rps_cpu_mask __read_mostly; 3428 EXPORT_SYMBOL(rps_cpu_mask); 3429 3430 struct static_key rps_needed __read_mostly; 3431 EXPORT_SYMBOL(rps_needed); 3432 struct static_key rfs_needed __read_mostly; 3433 EXPORT_SYMBOL(rfs_needed); 3434 3435 static struct rps_dev_flow * 3436 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3437 struct rps_dev_flow *rflow, u16 next_cpu) 3438 { 3439 if (next_cpu < nr_cpu_ids) { 3440 #ifdef CONFIG_RFS_ACCEL 3441 struct netdev_rx_queue *rxqueue; 3442 struct rps_dev_flow_table *flow_table; 3443 struct rps_dev_flow *old_rflow; 3444 u32 flow_id; 3445 u16 rxq_index; 3446 int rc; 3447 3448 /* Should we steer this flow to a different hardware queue? */ 3449 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3450 !(dev->features & NETIF_F_NTUPLE)) 3451 goto out; 3452 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3453 if (rxq_index == skb_get_rx_queue(skb)) 3454 goto out; 3455 3456 rxqueue = dev->_rx + rxq_index; 3457 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3458 if (!flow_table) 3459 goto out; 3460 flow_id = skb_get_hash(skb) & flow_table->mask; 3461 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3462 rxq_index, flow_id); 3463 if (rc < 0) 3464 goto out; 3465 old_rflow = rflow; 3466 rflow = &flow_table->flows[flow_id]; 3467 rflow->filter = rc; 3468 if (old_rflow->filter == rflow->filter) 3469 old_rflow->filter = RPS_NO_FILTER; 3470 out: 3471 #endif 3472 rflow->last_qtail = 3473 per_cpu(softnet_data, next_cpu).input_queue_head; 3474 } 3475 3476 rflow->cpu = next_cpu; 3477 return rflow; 3478 } 3479 3480 /* 3481 * get_rps_cpu is called from netif_receive_skb and returns the target 3482 * CPU from the RPS map of the receiving queue for a given skb. 3483 * rcu_read_lock must be held on entry. 3484 */ 3485 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3486 struct rps_dev_flow **rflowp) 3487 { 3488 const struct rps_sock_flow_table *sock_flow_table; 3489 struct netdev_rx_queue *rxqueue = dev->_rx; 3490 struct rps_dev_flow_table *flow_table; 3491 struct rps_map *map; 3492 int cpu = -1; 3493 u32 tcpu; 3494 u32 hash; 3495 3496 if (skb_rx_queue_recorded(skb)) { 3497 u16 index = skb_get_rx_queue(skb); 3498 3499 if (unlikely(index >= dev->real_num_rx_queues)) { 3500 WARN_ONCE(dev->real_num_rx_queues > 1, 3501 "%s received packet on queue %u, but number " 3502 "of RX queues is %u\n", 3503 dev->name, index, dev->real_num_rx_queues); 3504 goto done; 3505 } 3506 rxqueue += index; 3507 } 3508 3509 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3510 3511 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3512 map = rcu_dereference(rxqueue->rps_map); 3513 if (!flow_table && !map) 3514 goto done; 3515 3516 skb_reset_network_header(skb); 3517 hash = skb_get_hash(skb); 3518 if (!hash) 3519 goto done; 3520 3521 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3522 if (flow_table && sock_flow_table) { 3523 struct rps_dev_flow *rflow; 3524 u32 next_cpu; 3525 u32 ident; 3526 3527 /* First check into global flow table if there is a match */ 3528 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3529 if ((ident ^ hash) & ~rps_cpu_mask) 3530 goto try_rps; 3531 3532 next_cpu = ident & rps_cpu_mask; 3533 3534 /* OK, now we know there is a match, 3535 * we can look at the local (per receive queue) flow table 3536 */ 3537 rflow = &flow_table->flows[hash & flow_table->mask]; 3538 tcpu = rflow->cpu; 3539 3540 /* 3541 * If the desired CPU (where last recvmsg was done) is 3542 * different from current CPU (one in the rx-queue flow 3543 * table entry), switch if one of the following holds: 3544 * - Current CPU is unset (>= nr_cpu_ids). 3545 * - Current CPU is offline. 3546 * - The current CPU's queue tail has advanced beyond the 3547 * last packet that was enqueued using this table entry. 3548 * This guarantees that all previous packets for the flow 3549 * have been dequeued, thus preserving in order delivery. 3550 */ 3551 if (unlikely(tcpu != next_cpu) && 3552 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3553 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3554 rflow->last_qtail)) >= 0)) { 3555 tcpu = next_cpu; 3556 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3557 } 3558 3559 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3560 *rflowp = rflow; 3561 cpu = tcpu; 3562 goto done; 3563 } 3564 } 3565 3566 try_rps: 3567 3568 if (map) { 3569 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3570 if (cpu_online(tcpu)) { 3571 cpu = tcpu; 3572 goto done; 3573 } 3574 } 3575 3576 done: 3577 return cpu; 3578 } 3579 3580 #ifdef CONFIG_RFS_ACCEL 3581 3582 /** 3583 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3584 * @dev: Device on which the filter was set 3585 * @rxq_index: RX queue index 3586 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3587 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3588 * 3589 * Drivers that implement ndo_rx_flow_steer() should periodically call 3590 * this function for each installed filter and remove the filters for 3591 * which it returns %true. 3592 */ 3593 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3594 u32 flow_id, u16 filter_id) 3595 { 3596 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3597 struct rps_dev_flow_table *flow_table; 3598 struct rps_dev_flow *rflow; 3599 bool expire = true; 3600 unsigned int cpu; 3601 3602 rcu_read_lock(); 3603 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3604 if (flow_table && flow_id <= flow_table->mask) { 3605 rflow = &flow_table->flows[flow_id]; 3606 cpu = ACCESS_ONCE(rflow->cpu); 3607 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3608 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3609 rflow->last_qtail) < 3610 (int)(10 * flow_table->mask))) 3611 expire = false; 3612 } 3613 rcu_read_unlock(); 3614 return expire; 3615 } 3616 EXPORT_SYMBOL(rps_may_expire_flow); 3617 3618 #endif /* CONFIG_RFS_ACCEL */ 3619 3620 /* Called from hardirq (IPI) context */ 3621 static void rps_trigger_softirq(void *data) 3622 { 3623 struct softnet_data *sd = data; 3624 3625 ____napi_schedule(sd, &sd->backlog); 3626 sd->received_rps++; 3627 } 3628 3629 #endif /* CONFIG_RPS */ 3630 3631 /* 3632 * Check if this softnet_data structure is another cpu one 3633 * If yes, queue it to our IPI list and return 1 3634 * If no, return 0 3635 */ 3636 static int rps_ipi_queued(struct softnet_data *sd) 3637 { 3638 #ifdef CONFIG_RPS 3639 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3640 3641 if (sd != mysd) { 3642 sd->rps_ipi_next = mysd->rps_ipi_list; 3643 mysd->rps_ipi_list = sd; 3644 3645 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3646 return 1; 3647 } 3648 #endif /* CONFIG_RPS */ 3649 return 0; 3650 } 3651 3652 #ifdef CONFIG_NET_FLOW_LIMIT 3653 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3654 #endif 3655 3656 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3657 { 3658 #ifdef CONFIG_NET_FLOW_LIMIT 3659 struct sd_flow_limit *fl; 3660 struct softnet_data *sd; 3661 unsigned int old_flow, new_flow; 3662 3663 if (qlen < (netdev_max_backlog >> 1)) 3664 return false; 3665 3666 sd = this_cpu_ptr(&softnet_data); 3667 3668 rcu_read_lock(); 3669 fl = rcu_dereference(sd->flow_limit); 3670 if (fl) { 3671 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3672 old_flow = fl->history[fl->history_head]; 3673 fl->history[fl->history_head] = new_flow; 3674 3675 fl->history_head++; 3676 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3677 3678 if (likely(fl->buckets[old_flow])) 3679 fl->buckets[old_flow]--; 3680 3681 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3682 fl->count++; 3683 rcu_read_unlock(); 3684 return true; 3685 } 3686 } 3687 rcu_read_unlock(); 3688 #endif 3689 return false; 3690 } 3691 3692 /* 3693 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3694 * queue (may be a remote CPU queue). 3695 */ 3696 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3697 unsigned int *qtail) 3698 { 3699 struct softnet_data *sd; 3700 unsigned long flags; 3701 unsigned int qlen; 3702 3703 sd = &per_cpu(softnet_data, cpu); 3704 3705 local_irq_save(flags); 3706 3707 rps_lock(sd); 3708 if (!netif_running(skb->dev)) 3709 goto drop; 3710 qlen = skb_queue_len(&sd->input_pkt_queue); 3711 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3712 if (qlen) { 3713 enqueue: 3714 __skb_queue_tail(&sd->input_pkt_queue, skb); 3715 input_queue_tail_incr_save(sd, qtail); 3716 rps_unlock(sd); 3717 local_irq_restore(flags); 3718 return NET_RX_SUCCESS; 3719 } 3720 3721 /* Schedule NAPI for backlog device 3722 * We can use non atomic operation since we own the queue lock 3723 */ 3724 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3725 if (!rps_ipi_queued(sd)) 3726 ____napi_schedule(sd, &sd->backlog); 3727 } 3728 goto enqueue; 3729 } 3730 3731 drop: 3732 sd->dropped++; 3733 rps_unlock(sd); 3734 3735 local_irq_restore(flags); 3736 3737 atomic_long_inc(&skb->dev->rx_dropped); 3738 kfree_skb(skb); 3739 return NET_RX_DROP; 3740 } 3741 3742 static int netif_rx_internal(struct sk_buff *skb) 3743 { 3744 int ret; 3745 3746 net_timestamp_check(netdev_tstamp_prequeue, skb); 3747 3748 trace_netif_rx(skb); 3749 #ifdef CONFIG_RPS 3750 if (static_key_false(&rps_needed)) { 3751 struct rps_dev_flow voidflow, *rflow = &voidflow; 3752 int cpu; 3753 3754 preempt_disable(); 3755 rcu_read_lock(); 3756 3757 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3758 if (cpu < 0) 3759 cpu = smp_processor_id(); 3760 3761 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3762 3763 rcu_read_unlock(); 3764 preempt_enable(); 3765 } else 3766 #endif 3767 { 3768 unsigned int qtail; 3769 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3770 put_cpu(); 3771 } 3772 return ret; 3773 } 3774 3775 /** 3776 * netif_rx - post buffer to the network code 3777 * @skb: buffer to post 3778 * 3779 * This function receives a packet from a device driver and queues it for 3780 * the upper (protocol) levels to process. It always succeeds. The buffer 3781 * may be dropped during processing for congestion control or by the 3782 * protocol layers. 3783 * 3784 * return values: 3785 * NET_RX_SUCCESS (no congestion) 3786 * NET_RX_DROP (packet was dropped) 3787 * 3788 */ 3789 3790 int netif_rx(struct sk_buff *skb) 3791 { 3792 trace_netif_rx_entry(skb); 3793 3794 return netif_rx_internal(skb); 3795 } 3796 EXPORT_SYMBOL(netif_rx); 3797 3798 int netif_rx_ni(struct sk_buff *skb) 3799 { 3800 int err; 3801 3802 trace_netif_rx_ni_entry(skb); 3803 3804 preempt_disable(); 3805 err = netif_rx_internal(skb); 3806 if (local_softirq_pending()) 3807 do_softirq(); 3808 preempt_enable(); 3809 3810 return err; 3811 } 3812 EXPORT_SYMBOL(netif_rx_ni); 3813 3814 static __latent_entropy void net_tx_action(struct softirq_action *h) 3815 { 3816 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3817 3818 if (sd->completion_queue) { 3819 struct sk_buff *clist; 3820 3821 local_irq_disable(); 3822 clist = sd->completion_queue; 3823 sd->completion_queue = NULL; 3824 local_irq_enable(); 3825 3826 while (clist) { 3827 struct sk_buff *skb = clist; 3828 clist = clist->next; 3829 3830 WARN_ON(atomic_read(&skb->users)); 3831 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3832 trace_consume_skb(skb); 3833 else 3834 trace_kfree_skb(skb, net_tx_action); 3835 3836 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3837 __kfree_skb(skb); 3838 else 3839 __kfree_skb_defer(skb); 3840 } 3841 3842 __kfree_skb_flush(); 3843 } 3844 3845 if (sd->output_queue) { 3846 struct Qdisc *head; 3847 3848 local_irq_disable(); 3849 head = sd->output_queue; 3850 sd->output_queue = NULL; 3851 sd->output_queue_tailp = &sd->output_queue; 3852 local_irq_enable(); 3853 3854 while (head) { 3855 struct Qdisc *q = head; 3856 spinlock_t *root_lock; 3857 3858 head = head->next_sched; 3859 3860 root_lock = qdisc_lock(q); 3861 spin_lock(root_lock); 3862 /* We need to make sure head->next_sched is read 3863 * before clearing __QDISC_STATE_SCHED 3864 */ 3865 smp_mb__before_atomic(); 3866 clear_bit(__QDISC_STATE_SCHED, &q->state); 3867 qdisc_run(q); 3868 spin_unlock(root_lock); 3869 } 3870 } 3871 } 3872 3873 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3874 /* This hook is defined here for ATM LANE */ 3875 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3876 unsigned char *addr) __read_mostly; 3877 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3878 #endif 3879 3880 static inline struct sk_buff * 3881 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3882 struct net_device *orig_dev) 3883 { 3884 #ifdef CONFIG_NET_CLS_ACT 3885 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3886 struct tcf_result cl_res; 3887 3888 /* If there's at least one ingress present somewhere (so 3889 * we get here via enabled static key), remaining devices 3890 * that are not configured with an ingress qdisc will bail 3891 * out here. 3892 */ 3893 if (!cl) 3894 return skb; 3895 if (*pt_prev) { 3896 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3897 *pt_prev = NULL; 3898 } 3899 3900 qdisc_skb_cb(skb)->pkt_len = skb->len; 3901 skb->tc_at_ingress = 1; 3902 qdisc_bstats_cpu_update(cl->q, skb); 3903 3904 switch (tc_classify(skb, cl, &cl_res, false)) { 3905 case TC_ACT_OK: 3906 case TC_ACT_RECLASSIFY: 3907 skb->tc_index = TC_H_MIN(cl_res.classid); 3908 break; 3909 case TC_ACT_SHOT: 3910 qdisc_qstats_cpu_drop(cl->q); 3911 kfree_skb(skb); 3912 return NULL; 3913 case TC_ACT_STOLEN: 3914 case TC_ACT_QUEUED: 3915 consume_skb(skb); 3916 return NULL; 3917 case TC_ACT_REDIRECT: 3918 /* skb_mac_header check was done by cls/act_bpf, so 3919 * we can safely push the L2 header back before 3920 * redirecting to another netdev 3921 */ 3922 __skb_push(skb, skb->mac_len); 3923 skb_do_redirect(skb); 3924 return NULL; 3925 default: 3926 break; 3927 } 3928 #endif /* CONFIG_NET_CLS_ACT */ 3929 return skb; 3930 } 3931 3932 /** 3933 * netdev_is_rx_handler_busy - check if receive handler is registered 3934 * @dev: device to check 3935 * 3936 * Check if a receive handler is already registered for a given device. 3937 * Return true if there one. 3938 * 3939 * The caller must hold the rtnl_mutex. 3940 */ 3941 bool netdev_is_rx_handler_busy(struct net_device *dev) 3942 { 3943 ASSERT_RTNL(); 3944 return dev && rtnl_dereference(dev->rx_handler); 3945 } 3946 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3947 3948 /** 3949 * netdev_rx_handler_register - register receive handler 3950 * @dev: device to register a handler for 3951 * @rx_handler: receive handler to register 3952 * @rx_handler_data: data pointer that is used by rx handler 3953 * 3954 * Register a receive handler for a device. This handler will then be 3955 * called from __netif_receive_skb. A negative errno code is returned 3956 * on a failure. 3957 * 3958 * The caller must hold the rtnl_mutex. 3959 * 3960 * For a general description of rx_handler, see enum rx_handler_result. 3961 */ 3962 int netdev_rx_handler_register(struct net_device *dev, 3963 rx_handler_func_t *rx_handler, 3964 void *rx_handler_data) 3965 { 3966 if (netdev_is_rx_handler_busy(dev)) 3967 return -EBUSY; 3968 3969 /* Note: rx_handler_data must be set before rx_handler */ 3970 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3971 rcu_assign_pointer(dev->rx_handler, rx_handler); 3972 3973 return 0; 3974 } 3975 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3976 3977 /** 3978 * netdev_rx_handler_unregister - unregister receive handler 3979 * @dev: device to unregister a handler from 3980 * 3981 * Unregister a receive handler from a device. 3982 * 3983 * The caller must hold the rtnl_mutex. 3984 */ 3985 void netdev_rx_handler_unregister(struct net_device *dev) 3986 { 3987 3988 ASSERT_RTNL(); 3989 RCU_INIT_POINTER(dev->rx_handler, NULL); 3990 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3991 * section has a guarantee to see a non NULL rx_handler_data 3992 * as well. 3993 */ 3994 synchronize_net(); 3995 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3996 } 3997 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3998 3999 /* 4000 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4001 * the special handling of PFMEMALLOC skbs. 4002 */ 4003 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4004 { 4005 switch (skb->protocol) { 4006 case htons(ETH_P_ARP): 4007 case htons(ETH_P_IP): 4008 case htons(ETH_P_IPV6): 4009 case htons(ETH_P_8021Q): 4010 case htons(ETH_P_8021AD): 4011 return true; 4012 default: 4013 return false; 4014 } 4015 } 4016 4017 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4018 int *ret, struct net_device *orig_dev) 4019 { 4020 #ifdef CONFIG_NETFILTER_INGRESS 4021 if (nf_hook_ingress_active(skb)) { 4022 int ingress_retval; 4023 4024 if (*pt_prev) { 4025 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4026 *pt_prev = NULL; 4027 } 4028 4029 rcu_read_lock(); 4030 ingress_retval = nf_hook_ingress(skb); 4031 rcu_read_unlock(); 4032 return ingress_retval; 4033 } 4034 #endif /* CONFIG_NETFILTER_INGRESS */ 4035 return 0; 4036 } 4037 4038 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4039 { 4040 struct packet_type *ptype, *pt_prev; 4041 rx_handler_func_t *rx_handler; 4042 struct net_device *orig_dev; 4043 bool deliver_exact = false; 4044 int ret = NET_RX_DROP; 4045 __be16 type; 4046 4047 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4048 4049 trace_netif_receive_skb(skb); 4050 4051 orig_dev = skb->dev; 4052 4053 skb_reset_network_header(skb); 4054 if (!skb_transport_header_was_set(skb)) 4055 skb_reset_transport_header(skb); 4056 skb_reset_mac_len(skb); 4057 4058 pt_prev = NULL; 4059 4060 another_round: 4061 skb->skb_iif = skb->dev->ifindex; 4062 4063 __this_cpu_inc(softnet_data.processed); 4064 4065 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4066 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4067 skb = skb_vlan_untag(skb); 4068 if (unlikely(!skb)) 4069 goto out; 4070 } 4071 4072 if (skb_skip_tc_classify(skb)) 4073 goto skip_classify; 4074 4075 if (pfmemalloc) 4076 goto skip_taps; 4077 4078 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4079 if (pt_prev) 4080 ret = deliver_skb(skb, pt_prev, orig_dev); 4081 pt_prev = ptype; 4082 } 4083 4084 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4085 if (pt_prev) 4086 ret = deliver_skb(skb, pt_prev, orig_dev); 4087 pt_prev = ptype; 4088 } 4089 4090 skip_taps: 4091 #ifdef CONFIG_NET_INGRESS 4092 if (static_key_false(&ingress_needed)) { 4093 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4094 if (!skb) 4095 goto out; 4096 4097 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4098 goto out; 4099 } 4100 #endif 4101 skb_reset_tc(skb); 4102 skip_classify: 4103 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4104 goto drop; 4105 4106 if (skb_vlan_tag_present(skb)) { 4107 if (pt_prev) { 4108 ret = deliver_skb(skb, pt_prev, orig_dev); 4109 pt_prev = NULL; 4110 } 4111 if (vlan_do_receive(&skb)) 4112 goto another_round; 4113 else if (unlikely(!skb)) 4114 goto out; 4115 } 4116 4117 rx_handler = rcu_dereference(skb->dev->rx_handler); 4118 if (rx_handler) { 4119 if (pt_prev) { 4120 ret = deliver_skb(skb, pt_prev, orig_dev); 4121 pt_prev = NULL; 4122 } 4123 switch (rx_handler(&skb)) { 4124 case RX_HANDLER_CONSUMED: 4125 ret = NET_RX_SUCCESS; 4126 goto out; 4127 case RX_HANDLER_ANOTHER: 4128 goto another_round; 4129 case RX_HANDLER_EXACT: 4130 deliver_exact = true; 4131 case RX_HANDLER_PASS: 4132 break; 4133 default: 4134 BUG(); 4135 } 4136 } 4137 4138 if (unlikely(skb_vlan_tag_present(skb))) { 4139 if (skb_vlan_tag_get_id(skb)) 4140 skb->pkt_type = PACKET_OTHERHOST; 4141 /* Note: we might in the future use prio bits 4142 * and set skb->priority like in vlan_do_receive() 4143 * For the time being, just ignore Priority Code Point 4144 */ 4145 skb->vlan_tci = 0; 4146 } 4147 4148 type = skb->protocol; 4149 4150 /* deliver only exact match when indicated */ 4151 if (likely(!deliver_exact)) { 4152 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4153 &ptype_base[ntohs(type) & 4154 PTYPE_HASH_MASK]); 4155 } 4156 4157 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4158 &orig_dev->ptype_specific); 4159 4160 if (unlikely(skb->dev != orig_dev)) { 4161 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4162 &skb->dev->ptype_specific); 4163 } 4164 4165 if (pt_prev) { 4166 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4167 goto drop; 4168 else 4169 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4170 } else { 4171 drop: 4172 if (!deliver_exact) 4173 atomic_long_inc(&skb->dev->rx_dropped); 4174 else 4175 atomic_long_inc(&skb->dev->rx_nohandler); 4176 kfree_skb(skb); 4177 /* Jamal, now you will not able to escape explaining 4178 * me how you were going to use this. :-) 4179 */ 4180 ret = NET_RX_DROP; 4181 } 4182 4183 out: 4184 return ret; 4185 } 4186 4187 static int __netif_receive_skb(struct sk_buff *skb) 4188 { 4189 int ret; 4190 4191 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4192 unsigned long pflags = current->flags; 4193 4194 /* 4195 * PFMEMALLOC skbs are special, they should 4196 * - be delivered to SOCK_MEMALLOC sockets only 4197 * - stay away from userspace 4198 * - have bounded memory usage 4199 * 4200 * Use PF_MEMALLOC as this saves us from propagating the allocation 4201 * context down to all allocation sites. 4202 */ 4203 current->flags |= PF_MEMALLOC; 4204 ret = __netif_receive_skb_core(skb, true); 4205 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4206 } else 4207 ret = __netif_receive_skb_core(skb, false); 4208 4209 return ret; 4210 } 4211 4212 static int netif_receive_skb_internal(struct sk_buff *skb) 4213 { 4214 int ret; 4215 4216 net_timestamp_check(netdev_tstamp_prequeue, skb); 4217 4218 if (skb_defer_rx_timestamp(skb)) 4219 return NET_RX_SUCCESS; 4220 4221 rcu_read_lock(); 4222 4223 #ifdef CONFIG_RPS 4224 if (static_key_false(&rps_needed)) { 4225 struct rps_dev_flow voidflow, *rflow = &voidflow; 4226 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4227 4228 if (cpu >= 0) { 4229 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4230 rcu_read_unlock(); 4231 return ret; 4232 } 4233 } 4234 #endif 4235 ret = __netif_receive_skb(skb); 4236 rcu_read_unlock(); 4237 return ret; 4238 } 4239 4240 /** 4241 * netif_receive_skb - process receive buffer from network 4242 * @skb: buffer to process 4243 * 4244 * netif_receive_skb() is the main receive data processing function. 4245 * It always succeeds. The buffer may be dropped during processing 4246 * for congestion control or by the protocol layers. 4247 * 4248 * This function may only be called from softirq context and interrupts 4249 * should be enabled. 4250 * 4251 * Return values (usually ignored): 4252 * NET_RX_SUCCESS: no congestion 4253 * NET_RX_DROP: packet was dropped 4254 */ 4255 int netif_receive_skb(struct sk_buff *skb) 4256 { 4257 trace_netif_receive_skb_entry(skb); 4258 4259 return netif_receive_skb_internal(skb); 4260 } 4261 EXPORT_SYMBOL(netif_receive_skb); 4262 4263 DEFINE_PER_CPU(struct work_struct, flush_works); 4264 4265 /* Network device is going away, flush any packets still pending */ 4266 static void flush_backlog(struct work_struct *work) 4267 { 4268 struct sk_buff *skb, *tmp; 4269 struct softnet_data *sd; 4270 4271 local_bh_disable(); 4272 sd = this_cpu_ptr(&softnet_data); 4273 4274 local_irq_disable(); 4275 rps_lock(sd); 4276 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4277 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4278 __skb_unlink(skb, &sd->input_pkt_queue); 4279 kfree_skb(skb); 4280 input_queue_head_incr(sd); 4281 } 4282 } 4283 rps_unlock(sd); 4284 local_irq_enable(); 4285 4286 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4287 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4288 __skb_unlink(skb, &sd->process_queue); 4289 kfree_skb(skb); 4290 input_queue_head_incr(sd); 4291 } 4292 } 4293 local_bh_enable(); 4294 } 4295 4296 static void flush_all_backlogs(void) 4297 { 4298 unsigned int cpu; 4299 4300 get_online_cpus(); 4301 4302 for_each_online_cpu(cpu) 4303 queue_work_on(cpu, system_highpri_wq, 4304 per_cpu_ptr(&flush_works, cpu)); 4305 4306 for_each_online_cpu(cpu) 4307 flush_work(per_cpu_ptr(&flush_works, cpu)); 4308 4309 put_online_cpus(); 4310 } 4311 4312 static int napi_gro_complete(struct sk_buff *skb) 4313 { 4314 struct packet_offload *ptype; 4315 __be16 type = skb->protocol; 4316 struct list_head *head = &offload_base; 4317 int err = -ENOENT; 4318 4319 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4320 4321 if (NAPI_GRO_CB(skb)->count == 1) { 4322 skb_shinfo(skb)->gso_size = 0; 4323 goto out; 4324 } 4325 4326 rcu_read_lock(); 4327 list_for_each_entry_rcu(ptype, head, list) { 4328 if (ptype->type != type || !ptype->callbacks.gro_complete) 4329 continue; 4330 4331 err = ptype->callbacks.gro_complete(skb, 0); 4332 break; 4333 } 4334 rcu_read_unlock(); 4335 4336 if (err) { 4337 WARN_ON(&ptype->list == head); 4338 kfree_skb(skb); 4339 return NET_RX_SUCCESS; 4340 } 4341 4342 out: 4343 return netif_receive_skb_internal(skb); 4344 } 4345 4346 /* napi->gro_list contains packets ordered by age. 4347 * youngest packets at the head of it. 4348 * Complete skbs in reverse order to reduce latencies. 4349 */ 4350 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4351 { 4352 struct sk_buff *skb, *prev = NULL; 4353 4354 /* scan list and build reverse chain */ 4355 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4356 skb->prev = prev; 4357 prev = skb; 4358 } 4359 4360 for (skb = prev; skb; skb = prev) { 4361 skb->next = NULL; 4362 4363 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4364 return; 4365 4366 prev = skb->prev; 4367 napi_gro_complete(skb); 4368 napi->gro_count--; 4369 } 4370 4371 napi->gro_list = NULL; 4372 } 4373 EXPORT_SYMBOL(napi_gro_flush); 4374 4375 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4376 { 4377 struct sk_buff *p; 4378 unsigned int maclen = skb->dev->hard_header_len; 4379 u32 hash = skb_get_hash_raw(skb); 4380 4381 for (p = napi->gro_list; p; p = p->next) { 4382 unsigned long diffs; 4383 4384 NAPI_GRO_CB(p)->flush = 0; 4385 4386 if (hash != skb_get_hash_raw(p)) { 4387 NAPI_GRO_CB(p)->same_flow = 0; 4388 continue; 4389 } 4390 4391 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4392 diffs |= p->vlan_tci ^ skb->vlan_tci; 4393 diffs |= skb_metadata_dst_cmp(p, skb); 4394 if (maclen == ETH_HLEN) 4395 diffs |= compare_ether_header(skb_mac_header(p), 4396 skb_mac_header(skb)); 4397 else if (!diffs) 4398 diffs = memcmp(skb_mac_header(p), 4399 skb_mac_header(skb), 4400 maclen); 4401 NAPI_GRO_CB(p)->same_flow = !diffs; 4402 } 4403 } 4404 4405 static void skb_gro_reset_offset(struct sk_buff *skb) 4406 { 4407 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4408 const skb_frag_t *frag0 = &pinfo->frags[0]; 4409 4410 NAPI_GRO_CB(skb)->data_offset = 0; 4411 NAPI_GRO_CB(skb)->frag0 = NULL; 4412 NAPI_GRO_CB(skb)->frag0_len = 0; 4413 4414 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4415 pinfo->nr_frags && 4416 !PageHighMem(skb_frag_page(frag0))) { 4417 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4418 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4419 skb_frag_size(frag0), 4420 skb->end - skb->tail); 4421 } 4422 } 4423 4424 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4425 { 4426 struct skb_shared_info *pinfo = skb_shinfo(skb); 4427 4428 BUG_ON(skb->end - skb->tail < grow); 4429 4430 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4431 4432 skb->data_len -= grow; 4433 skb->tail += grow; 4434 4435 pinfo->frags[0].page_offset += grow; 4436 skb_frag_size_sub(&pinfo->frags[0], grow); 4437 4438 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4439 skb_frag_unref(skb, 0); 4440 memmove(pinfo->frags, pinfo->frags + 1, 4441 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4442 } 4443 } 4444 4445 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4446 { 4447 struct sk_buff **pp = NULL; 4448 struct packet_offload *ptype; 4449 __be16 type = skb->protocol; 4450 struct list_head *head = &offload_base; 4451 int same_flow; 4452 enum gro_result ret; 4453 int grow; 4454 4455 if (!(skb->dev->features & NETIF_F_GRO)) 4456 goto normal; 4457 4458 if (skb->csum_bad) 4459 goto normal; 4460 4461 gro_list_prepare(napi, skb); 4462 4463 rcu_read_lock(); 4464 list_for_each_entry_rcu(ptype, head, list) { 4465 if (ptype->type != type || !ptype->callbacks.gro_receive) 4466 continue; 4467 4468 skb_set_network_header(skb, skb_gro_offset(skb)); 4469 skb_reset_mac_len(skb); 4470 NAPI_GRO_CB(skb)->same_flow = 0; 4471 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4472 NAPI_GRO_CB(skb)->free = 0; 4473 NAPI_GRO_CB(skb)->encap_mark = 0; 4474 NAPI_GRO_CB(skb)->recursion_counter = 0; 4475 NAPI_GRO_CB(skb)->is_fou = 0; 4476 NAPI_GRO_CB(skb)->is_atomic = 1; 4477 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4478 4479 /* Setup for GRO checksum validation */ 4480 switch (skb->ip_summed) { 4481 case CHECKSUM_COMPLETE: 4482 NAPI_GRO_CB(skb)->csum = skb->csum; 4483 NAPI_GRO_CB(skb)->csum_valid = 1; 4484 NAPI_GRO_CB(skb)->csum_cnt = 0; 4485 break; 4486 case CHECKSUM_UNNECESSARY: 4487 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4488 NAPI_GRO_CB(skb)->csum_valid = 0; 4489 break; 4490 default: 4491 NAPI_GRO_CB(skb)->csum_cnt = 0; 4492 NAPI_GRO_CB(skb)->csum_valid = 0; 4493 } 4494 4495 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4496 break; 4497 } 4498 rcu_read_unlock(); 4499 4500 if (&ptype->list == head) 4501 goto normal; 4502 4503 same_flow = NAPI_GRO_CB(skb)->same_flow; 4504 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4505 4506 if (pp) { 4507 struct sk_buff *nskb = *pp; 4508 4509 *pp = nskb->next; 4510 nskb->next = NULL; 4511 napi_gro_complete(nskb); 4512 napi->gro_count--; 4513 } 4514 4515 if (same_flow) 4516 goto ok; 4517 4518 if (NAPI_GRO_CB(skb)->flush) 4519 goto normal; 4520 4521 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4522 struct sk_buff *nskb = napi->gro_list; 4523 4524 /* locate the end of the list to select the 'oldest' flow */ 4525 while (nskb->next) { 4526 pp = &nskb->next; 4527 nskb = *pp; 4528 } 4529 *pp = NULL; 4530 nskb->next = NULL; 4531 napi_gro_complete(nskb); 4532 } else { 4533 napi->gro_count++; 4534 } 4535 NAPI_GRO_CB(skb)->count = 1; 4536 NAPI_GRO_CB(skb)->age = jiffies; 4537 NAPI_GRO_CB(skb)->last = skb; 4538 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4539 skb->next = napi->gro_list; 4540 napi->gro_list = skb; 4541 ret = GRO_HELD; 4542 4543 pull: 4544 grow = skb_gro_offset(skb) - skb_headlen(skb); 4545 if (grow > 0) 4546 gro_pull_from_frag0(skb, grow); 4547 ok: 4548 return ret; 4549 4550 normal: 4551 ret = GRO_NORMAL; 4552 goto pull; 4553 } 4554 4555 struct packet_offload *gro_find_receive_by_type(__be16 type) 4556 { 4557 struct list_head *offload_head = &offload_base; 4558 struct packet_offload *ptype; 4559 4560 list_for_each_entry_rcu(ptype, offload_head, list) { 4561 if (ptype->type != type || !ptype->callbacks.gro_receive) 4562 continue; 4563 return ptype; 4564 } 4565 return NULL; 4566 } 4567 EXPORT_SYMBOL(gro_find_receive_by_type); 4568 4569 struct packet_offload *gro_find_complete_by_type(__be16 type) 4570 { 4571 struct list_head *offload_head = &offload_base; 4572 struct packet_offload *ptype; 4573 4574 list_for_each_entry_rcu(ptype, offload_head, list) { 4575 if (ptype->type != type || !ptype->callbacks.gro_complete) 4576 continue; 4577 return ptype; 4578 } 4579 return NULL; 4580 } 4581 EXPORT_SYMBOL(gro_find_complete_by_type); 4582 4583 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4584 { 4585 switch (ret) { 4586 case GRO_NORMAL: 4587 if (netif_receive_skb_internal(skb)) 4588 ret = GRO_DROP; 4589 break; 4590 4591 case GRO_DROP: 4592 kfree_skb(skb); 4593 break; 4594 4595 case GRO_MERGED_FREE: 4596 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4597 skb_dst_drop(skb); 4598 secpath_reset(skb); 4599 kmem_cache_free(skbuff_head_cache, skb); 4600 } else { 4601 __kfree_skb(skb); 4602 } 4603 break; 4604 4605 case GRO_HELD: 4606 case GRO_MERGED: 4607 break; 4608 } 4609 4610 return ret; 4611 } 4612 4613 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4614 { 4615 skb_mark_napi_id(skb, napi); 4616 trace_napi_gro_receive_entry(skb); 4617 4618 skb_gro_reset_offset(skb); 4619 4620 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4621 } 4622 EXPORT_SYMBOL(napi_gro_receive); 4623 4624 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4625 { 4626 if (unlikely(skb->pfmemalloc)) { 4627 consume_skb(skb); 4628 return; 4629 } 4630 __skb_pull(skb, skb_headlen(skb)); 4631 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4632 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4633 skb->vlan_tci = 0; 4634 skb->dev = napi->dev; 4635 skb->skb_iif = 0; 4636 skb->encapsulation = 0; 4637 skb_shinfo(skb)->gso_type = 0; 4638 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4639 secpath_reset(skb); 4640 4641 napi->skb = skb; 4642 } 4643 4644 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4645 { 4646 struct sk_buff *skb = napi->skb; 4647 4648 if (!skb) { 4649 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4650 if (skb) { 4651 napi->skb = skb; 4652 skb_mark_napi_id(skb, napi); 4653 } 4654 } 4655 return skb; 4656 } 4657 EXPORT_SYMBOL(napi_get_frags); 4658 4659 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4660 struct sk_buff *skb, 4661 gro_result_t ret) 4662 { 4663 switch (ret) { 4664 case GRO_NORMAL: 4665 case GRO_HELD: 4666 __skb_push(skb, ETH_HLEN); 4667 skb->protocol = eth_type_trans(skb, skb->dev); 4668 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4669 ret = GRO_DROP; 4670 break; 4671 4672 case GRO_DROP: 4673 case GRO_MERGED_FREE: 4674 napi_reuse_skb(napi, skb); 4675 break; 4676 4677 case GRO_MERGED: 4678 break; 4679 } 4680 4681 return ret; 4682 } 4683 4684 /* Upper GRO stack assumes network header starts at gro_offset=0 4685 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4686 * We copy ethernet header into skb->data to have a common layout. 4687 */ 4688 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4689 { 4690 struct sk_buff *skb = napi->skb; 4691 const struct ethhdr *eth; 4692 unsigned int hlen = sizeof(*eth); 4693 4694 napi->skb = NULL; 4695 4696 skb_reset_mac_header(skb); 4697 skb_gro_reset_offset(skb); 4698 4699 eth = skb_gro_header_fast(skb, 0); 4700 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4701 eth = skb_gro_header_slow(skb, hlen, 0); 4702 if (unlikely(!eth)) { 4703 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4704 __func__, napi->dev->name); 4705 napi_reuse_skb(napi, skb); 4706 return NULL; 4707 } 4708 } else { 4709 gro_pull_from_frag0(skb, hlen); 4710 NAPI_GRO_CB(skb)->frag0 += hlen; 4711 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4712 } 4713 __skb_pull(skb, hlen); 4714 4715 /* 4716 * This works because the only protocols we care about don't require 4717 * special handling. 4718 * We'll fix it up properly in napi_frags_finish() 4719 */ 4720 skb->protocol = eth->h_proto; 4721 4722 return skb; 4723 } 4724 4725 gro_result_t napi_gro_frags(struct napi_struct *napi) 4726 { 4727 struct sk_buff *skb = napi_frags_skb(napi); 4728 4729 if (!skb) 4730 return GRO_DROP; 4731 4732 trace_napi_gro_frags_entry(skb); 4733 4734 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4735 } 4736 EXPORT_SYMBOL(napi_gro_frags); 4737 4738 /* Compute the checksum from gro_offset and return the folded value 4739 * after adding in any pseudo checksum. 4740 */ 4741 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4742 { 4743 __wsum wsum; 4744 __sum16 sum; 4745 4746 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4747 4748 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4749 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4750 if (likely(!sum)) { 4751 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4752 !skb->csum_complete_sw) 4753 netdev_rx_csum_fault(skb->dev); 4754 } 4755 4756 NAPI_GRO_CB(skb)->csum = wsum; 4757 NAPI_GRO_CB(skb)->csum_valid = 1; 4758 4759 return sum; 4760 } 4761 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4762 4763 /* 4764 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4765 * Note: called with local irq disabled, but exits with local irq enabled. 4766 */ 4767 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4768 { 4769 #ifdef CONFIG_RPS 4770 struct softnet_data *remsd = sd->rps_ipi_list; 4771 4772 if (remsd) { 4773 sd->rps_ipi_list = NULL; 4774 4775 local_irq_enable(); 4776 4777 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4778 while (remsd) { 4779 struct softnet_data *next = remsd->rps_ipi_next; 4780 4781 if (cpu_online(remsd->cpu)) 4782 smp_call_function_single_async(remsd->cpu, 4783 &remsd->csd); 4784 remsd = next; 4785 } 4786 } else 4787 #endif 4788 local_irq_enable(); 4789 } 4790 4791 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4792 { 4793 #ifdef CONFIG_RPS 4794 return sd->rps_ipi_list != NULL; 4795 #else 4796 return false; 4797 #endif 4798 } 4799 4800 static int process_backlog(struct napi_struct *napi, int quota) 4801 { 4802 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4803 bool again = true; 4804 int work = 0; 4805 4806 /* Check if we have pending ipi, its better to send them now, 4807 * not waiting net_rx_action() end. 4808 */ 4809 if (sd_has_rps_ipi_waiting(sd)) { 4810 local_irq_disable(); 4811 net_rps_action_and_irq_enable(sd); 4812 } 4813 4814 napi->weight = dev_rx_weight; 4815 while (again) { 4816 struct sk_buff *skb; 4817 4818 while ((skb = __skb_dequeue(&sd->process_queue))) { 4819 rcu_read_lock(); 4820 __netif_receive_skb(skb); 4821 rcu_read_unlock(); 4822 input_queue_head_incr(sd); 4823 if (++work >= quota) 4824 return work; 4825 4826 } 4827 4828 local_irq_disable(); 4829 rps_lock(sd); 4830 if (skb_queue_empty(&sd->input_pkt_queue)) { 4831 /* 4832 * Inline a custom version of __napi_complete(). 4833 * only current cpu owns and manipulates this napi, 4834 * and NAPI_STATE_SCHED is the only possible flag set 4835 * on backlog. 4836 * We can use a plain write instead of clear_bit(), 4837 * and we dont need an smp_mb() memory barrier. 4838 */ 4839 napi->state = 0; 4840 again = false; 4841 } else { 4842 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4843 &sd->process_queue); 4844 } 4845 rps_unlock(sd); 4846 local_irq_enable(); 4847 } 4848 4849 return work; 4850 } 4851 4852 /** 4853 * __napi_schedule - schedule for receive 4854 * @n: entry to schedule 4855 * 4856 * The entry's receive function will be scheduled to run. 4857 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4858 */ 4859 void __napi_schedule(struct napi_struct *n) 4860 { 4861 unsigned long flags; 4862 4863 local_irq_save(flags); 4864 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4865 local_irq_restore(flags); 4866 } 4867 EXPORT_SYMBOL(__napi_schedule); 4868 4869 /** 4870 * __napi_schedule_irqoff - schedule for receive 4871 * @n: entry to schedule 4872 * 4873 * Variant of __napi_schedule() assuming hard irqs are masked 4874 */ 4875 void __napi_schedule_irqoff(struct napi_struct *n) 4876 { 4877 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4878 } 4879 EXPORT_SYMBOL(__napi_schedule_irqoff); 4880 4881 bool napi_complete_done(struct napi_struct *n, int work_done) 4882 { 4883 unsigned long flags; 4884 4885 /* 4886 * 1) Don't let napi dequeue from the cpu poll list 4887 * just in case its running on a different cpu. 4888 * 2) If we are busy polling, do nothing here, we have 4889 * the guarantee we will be called later. 4890 */ 4891 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 4892 NAPIF_STATE_IN_BUSY_POLL))) 4893 return false; 4894 4895 if (n->gro_list) { 4896 unsigned long timeout = 0; 4897 4898 if (work_done) 4899 timeout = n->dev->gro_flush_timeout; 4900 4901 if (timeout) 4902 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4903 HRTIMER_MODE_REL_PINNED); 4904 else 4905 napi_gro_flush(n, false); 4906 } 4907 if (unlikely(!list_empty(&n->poll_list))) { 4908 /* If n->poll_list is not empty, we need to mask irqs */ 4909 local_irq_save(flags); 4910 list_del_init(&n->poll_list); 4911 local_irq_restore(flags); 4912 } 4913 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4914 return true; 4915 } 4916 EXPORT_SYMBOL(napi_complete_done); 4917 4918 /* must be called under rcu_read_lock(), as we dont take a reference */ 4919 static struct napi_struct *napi_by_id(unsigned int napi_id) 4920 { 4921 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4922 struct napi_struct *napi; 4923 4924 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4925 if (napi->napi_id == napi_id) 4926 return napi; 4927 4928 return NULL; 4929 } 4930 4931 #if defined(CONFIG_NET_RX_BUSY_POLL) 4932 4933 #define BUSY_POLL_BUDGET 8 4934 4935 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 4936 { 4937 int rc; 4938 4939 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 4940 4941 local_bh_disable(); 4942 4943 /* All we really want here is to re-enable device interrupts. 4944 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 4945 */ 4946 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4947 netpoll_poll_unlock(have_poll_lock); 4948 if (rc == BUSY_POLL_BUDGET) 4949 __napi_schedule(napi); 4950 local_bh_enable(); 4951 if (local_softirq_pending()) 4952 do_softirq(); 4953 } 4954 4955 bool sk_busy_loop(struct sock *sk, int nonblock) 4956 { 4957 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 4958 int (*napi_poll)(struct napi_struct *napi, int budget); 4959 void *have_poll_lock = NULL; 4960 struct napi_struct *napi; 4961 int rc; 4962 4963 restart: 4964 rc = false; 4965 napi_poll = NULL; 4966 4967 rcu_read_lock(); 4968 4969 napi = napi_by_id(sk->sk_napi_id); 4970 if (!napi) 4971 goto out; 4972 4973 preempt_disable(); 4974 for (;;) { 4975 rc = 0; 4976 local_bh_disable(); 4977 if (!napi_poll) { 4978 unsigned long val = READ_ONCE(napi->state); 4979 4980 /* If multiple threads are competing for this napi, 4981 * we avoid dirtying napi->state as much as we can. 4982 */ 4983 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 4984 NAPIF_STATE_IN_BUSY_POLL)) 4985 goto count; 4986 if (cmpxchg(&napi->state, val, 4987 val | NAPIF_STATE_IN_BUSY_POLL | 4988 NAPIF_STATE_SCHED) != val) 4989 goto count; 4990 have_poll_lock = netpoll_poll_lock(napi); 4991 napi_poll = napi->poll; 4992 } 4993 rc = napi_poll(napi, BUSY_POLL_BUDGET); 4994 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 4995 count: 4996 if (rc > 0) 4997 __NET_ADD_STATS(sock_net(sk), 4998 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 4999 local_bh_enable(); 5000 5001 if (rc == LL_FLUSH_FAILED) 5002 break; /* permanent failure */ 5003 5004 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) || 5005 busy_loop_timeout(end_time)) 5006 break; 5007 5008 if (unlikely(need_resched())) { 5009 if (napi_poll) 5010 busy_poll_stop(napi, have_poll_lock); 5011 preempt_enable(); 5012 rcu_read_unlock(); 5013 cond_resched(); 5014 rc = !skb_queue_empty(&sk->sk_receive_queue); 5015 if (rc || busy_loop_timeout(end_time)) 5016 return rc; 5017 goto restart; 5018 } 5019 cpu_relax(); 5020 } 5021 if (napi_poll) 5022 busy_poll_stop(napi, have_poll_lock); 5023 preempt_enable(); 5024 rc = !skb_queue_empty(&sk->sk_receive_queue); 5025 out: 5026 rcu_read_unlock(); 5027 return rc; 5028 } 5029 EXPORT_SYMBOL(sk_busy_loop); 5030 5031 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5032 5033 static void napi_hash_add(struct napi_struct *napi) 5034 { 5035 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5036 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5037 return; 5038 5039 spin_lock(&napi_hash_lock); 5040 5041 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5042 do { 5043 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5044 napi_gen_id = NR_CPUS + 1; 5045 } while (napi_by_id(napi_gen_id)); 5046 napi->napi_id = napi_gen_id; 5047 5048 hlist_add_head_rcu(&napi->napi_hash_node, 5049 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5050 5051 spin_unlock(&napi_hash_lock); 5052 } 5053 5054 /* Warning : caller is responsible to make sure rcu grace period 5055 * is respected before freeing memory containing @napi 5056 */ 5057 bool napi_hash_del(struct napi_struct *napi) 5058 { 5059 bool rcu_sync_needed = false; 5060 5061 spin_lock(&napi_hash_lock); 5062 5063 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5064 rcu_sync_needed = true; 5065 hlist_del_rcu(&napi->napi_hash_node); 5066 } 5067 spin_unlock(&napi_hash_lock); 5068 return rcu_sync_needed; 5069 } 5070 EXPORT_SYMBOL_GPL(napi_hash_del); 5071 5072 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5073 { 5074 struct napi_struct *napi; 5075 5076 napi = container_of(timer, struct napi_struct, timer); 5077 if (napi->gro_list) 5078 napi_schedule(napi); 5079 5080 return HRTIMER_NORESTART; 5081 } 5082 5083 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5084 int (*poll)(struct napi_struct *, int), int weight) 5085 { 5086 INIT_LIST_HEAD(&napi->poll_list); 5087 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5088 napi->timer.function = napi_watchdog; 5089 napi->gro_count = 0; 5090 napi->gro_list = NULL; 5091 napi->skb = NULL; 5092 napi->poll = poll; 5093 if (weight > NAPI_POLL_WEIGHT) 5094 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5095 weight, dev->name); 5096 napi->weight = weight; 5097 list_add(&napi->dev_list, &dev->napi_list); 5098 napi->dev = dev; 5099 #ifdef CONFIG_NETPOLL 5100 napi->poll_owner = -1; 5101 #endif 5102 set_bit(NAPI_STATE_SCHED, &napi->state); 5103 napi_hash_add(napi); 5104 } 5105 EXPORT_SYMBOL(netif_napi_add); 5106 5107 void napi_disable(struct napi_struct *n) 5108 { 5109 might_sleep(); 5110 set_bit(NAPI_STATE_DISABLE, &n->state); 5111 5112 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5113 msleep(1); 5114 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5115 msleep(1); 5116 5117 hrtimer_cancel(&n->timer); 5118 5119 clear_bit(NAPI_STATE_DISABLE, &n->state); 5120 } 5121 EXPORT_SYMBOL(napi_disable); 5122 5123 /* Must be called in process context */ 5124 void netif_napi_del(struct napi_struct *napi) 5125 { 5126 might_sleep(); 5127 if (napi_hash_del(napi)) 5128 synchronize_net(); 5129 list_del_init(&napi->dev_list); 5130 napi_free_frags(napi); 5131 5132 kfree_skb_list(napi->gro_list); 5133 napi->gro_list = NULL; 5134 napi->gro_count = 0; 5135 } 5136 EXPORT_SYMBOL(netif_napi_del); 5137 5138 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5139 { 5140 void *have; 5141 int work, weight; 5142 5143 list_del_init(&n->poll_list); 5144 5145 have = netpoll_poll_lock(n); 5146 5147 weight = n->weight; 5148 5149 /* This NAPI_STATE_SCHED test is for avoiding a race 5150 * with netpoll's poll_napi(). Only the entity which 5151 * obtains the lock and sees NAPI_STATE_SCHED set will 5152 * actually make the ->poll() call. Therefore we avoid 5153 * accidentally calling ->poll() when NAPI is not scheduled. 5154 */ 5155 work = 0; 5156 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5157 work = n->poll(n, weight); 5158 trace_napi_poll(n, work, weight); 5159 } 5160 5161 WARN_ON_ONCE(work > weight); 5162 5163 if (likely(work < weight)) 5164 goto out_unlock; 5165 5166 /* Drivers must not modify the NAPI state if they 5167 * consume the entire weight. In such cases this code 5168 * still "owns" the NAPI instance and therefore can 5169 * move the instance around on the list at-will. 5170 */ 5171 if (unlikely(napi_disable_pending(n))) { 5172 napi_complete(n); 5173 goto out_unlock; 5174 } 5175 5176 if (n->gro_list) { 5177 /* flush too old packets 5178 * If HZ < 1000, flush all packets. 5179 */ 5180 napi_gro_flush(n, HZ >= 1000); 5181 } 5182 5183 /* Some drivers may have called napi_schedule 5184 * prior to exhausting their budget. 5185 */ 5186 if (unlikely(!list_empty(&n->poll_list))) { 5187 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5188 n->dev ? n->dev->name : "backlog"); 5189 goto out_unlock; 5190 } 5191 5192 list_add_tail(&n->poll_list, repoll); 5193 5194 out_unlock: 5195 netpoll_poll_unlock(have); 5196 5197 return work; 5198 } 5199 5200 static __latent_entropy void net_rx_action(struct softirq_action *h) 5201 { 5202 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5203 unsigned long time_limit = jiffies + 2; 5204 int budget = netdev_budget; 5205 LIST_HEAD(list); 5206 LIST_HEAD(repoll); 5207 5208 local_irq_disable(); 5209 list_splice_init(&sd->poll_list, &list); 5210 local_irq_enable(); 5211 5212 for (;;) { 5213 struct napi_struct *n; 5214 5215 if (list_empty(&list)) { 5216 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5217 goto out; 5218 break; 5219 } 5220 5221 n = list_first_entry(&list, struct napi_struct, poll_list); 5222 budget -= napi_poll(n, &repoll); 5223 5224 /* If softirq window is exhausted then punt. 5225 * Allow this to run for 2 jiffies since which will allow 5226 * an average latency of 1.5/HZ. 5227 */ 5228 if (unlikely(budget <= 0 || 5229 time_after_eq(jiffies, time_limit))) { 5230 sd->time_squeeze++; 5231 break; 5232 } 5233 } 5234 5235 local_irq_disable(); 5236 5237 list_splice_tail_init(&sd->poll_list, &list); 5238 list_splice_tail(&repoll, &list); 5239 list_splice(&list, &sd->poll_list); 5240 if (!list_empty(&sd->poll_list)) 5241 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5242 5243 net_rps_action_and_irq_enable(sd); 5244 out: 5245 __kfree_skb_flush(); 5246 } 5247 5248 struct netdev_adjacent { 5249 struct net_device *dev; 5250 5251 /* upper master flag, there can only be one master device per list */ 5252 bool master; 5253 5254 /* counter for the number of times this device was added to us */ 5255 u16 ref_nr; 5256 5257 /* private field for the users */ 5258 void *private; 5259 5260 struct list_head list; 5261 struct rcu_head rcu; 5262 }; 5263 5264 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5265 struct list_head *adj_list) 5266 { 5267 struct netdev_adjacent *adj; 5268 5269 list_for_each_entry(adj, adj_list, list) { 5270 if (adj->dev == adj_dev) 5271 return adj; 5272 } 5273 return NULL; 5274 } 5275 5276 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5277 { 5278 struct net_device *dev = data; 5279 5280 return upper_dev == dev; 5281 } 5282 5283 /** 5284 * netdev_has_upper_dev - Check if device is linked to an upper device 5285 * @dev: device 5286 * @upper_dev: upper device to check 5287 * 5288 * Find out if a device is linked to specified upper device and return true 5289 * in case it is. Note that this checks only immediate upper device, 5290 * not through a complete stack of devices. The caller must hold the RTNL lock. 5291 */ 5292 bool netdev_has_upper_dev(struct net_device *dev, 5293 struct net_device *upper_dev) 5294 { 5295 ASSERT_RTNL(); 5296 5297 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5298 upper_dev); 5299 } 5300 EXPORT_SYMBOL(netdev_has_upper_dev); 5301 5302 /** 5303 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5304 * @dev: device 5305 * @upper_dev: upper device to check 5306 * 5307 * Find out if a device is linked to specified upper device and return true 5308 * in case it is. Note that this checks the entire upper device chain. 5309 * The caller must hold rcu lock. 5310 */ 5311 5312 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5313 struct net_device *upper_dev) 5314 { 5315 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5316 upper_dev); 5317 } 5318 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5319 5320 /** 5321 * netdev_has_any_upper_dev - Check if device is linked to some device 5322 * @dev: device 5323 * 5324 * Find out if a device is linked to an upper device and return true in case 5325 * it is. The caller must hold the RTNL lock. 5326 */ 5327 static bool netdev_has_any_upper_dev(struct net_device *dev) 5328 { 5329 ASSERT_RTNL(); 5330 5331 return !list_empty(&dev->adj_list.upper); 5332 } 5333 5334 /** 5335 * netdev_master_upper_dev_get - Get master upper device 5336 * @dev: device 5337 * 5338 * Find a master upper device and return pointer to it or NULL in case 5339 * it's not there. The caller must hold the RTNL lock. 5340 */ 5341 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5342 { 5343 struct netdev_adjacent *upper; 5344 5345 ASSERT_RTNL(); 5346 5347 if (list_empty(&dev->adj_list.upper)) 5348 return NULL; 5349 5350 upper = list_first_entry(&dev->adj_list.upper, 5351 struct netdev_adjacent, list); 5352 if (likely(upper->master)) 5353 return upper->dev; 5354 return NULL; 5355 } 5356 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5357 5358 /** 5359 * netdev_has_any_lower_dev - Check if device is linked to some device 5360 * @dev: device 5361 * 5362 * Find out if a device is linked to a lower device and return true in case 5363 * it is. The caller must hold the RTNL lock. 5364 */ 5365 static bool netdev_has_any_lower_dev(struct net_device *dev) 5366 { 5367 ASSERT_RTNL(); 5368 5369 return !list_empty(&dev->adj_list.lower); 5370 } 5371 5372 void *netdev_adjacent_get_private(struct list_head *adj_list) 5373 { 5374 struct netdev_adjacent *adj; 5375 5376 adj = list_entry(adj_list, struct netdev_adjacent, list); 5377 5378 return adj->private; 5379 } 5380 EXPORT_SYMBOL(netdev_adjacent_get_private); 5381 5382 /** 5383 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5384 * @dev: device 5385 * @iter: list_head ** of the current position 5386 * 5387 * Gets the next device from the dev's upper list, starting from iter 5388 * position. The caller must hold RCU read lock. 5389 */ 5390 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5391 struct list_head **iter) 5392 { 5393 struct netdev_adjacent *upper; 5394 5395 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5396 5397 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5398 5399 if (&upper->list == &dev->adj_list.upper) 5400 return NULL; 5401 5402 *iter = &upper->list; 5403 5404 return upper->dev; 5405 } 5406 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5407 5408 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5409 struct list_head **iter) 5410 { 5411 struct netdev_adjacent *upper; 5412 5413 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5414 5415 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5416 5417 if (&upper->list == &dev->adj_list.upper) 5418 return NULL; 5419 5420 *iter = &upper->list; 5421 5422 return upper->dev; 5423 } 5424 5425 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5426 int (*fn)(struct net_device *dev, 5427 void *data), 5428 void *data) 5429 { 5430 struct net_device *udev; 5431 struct list_head *iter; 5432 int ret; 5433 5434 for (iter = &dev->adj_list.upper, 5435 udev = netdev_next_upper_dev_rcu(dev, &iter); 5436 udev; 5437 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5438 /* first is the upper device itself */ 5439 ret = fn(udev, data); 5440 if (ret) 5441 return ret; 5442 5443 /* then look at all of its upper devices */ 5444 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5445 if (ret) 5446 return ret; 5447 } 5448 5449 return 0; 5450 } 5451 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5452 5453 /** 5454 * netdev_lower_get_next_private - Get the next ->private from the 5455 * lower neighbour list 5456 * @dev: device 5457 * @iter: list_head ** of the current position 5458 * 5459 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5460 * list, starting from iter position. The caller must hold either hold the 5461 * RTNL lock or its own locking that guarantees that the neighbour lower 5462 * list will remain unchanged. 5463 */ 5464 void *netdev_lower_get_next_private(struct net_device *dev, 5465 struct list_head **iter) 5466 { 5467 struct netdev_adjacent *lower; 5468 5469 lower = list_entry(*iter, struct netdev_adjacent, list); 5470 5471 if (&lower->list == &dev->adj_list.lower) 5472 return NULL; 5473 5474 *iter = lower->list.next; 5475 5476 return lower->private; 5477 } 5478 EXPORT_SYMBOL(netdev_lower_get_next_private); 5479 5480 /** 5481 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5482 * lower neighbour list, RCU 5483 * variant 5484 * @dev: device 5485 * @iter: list_head ** of the current position 5486 * 5487 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5488 * list, starting from iter position. The caller must hold RCU read lock. 5489 */ 5490 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5491 struct list_head **iter) 5492 { 5493 struct netdev_adjacent *lower; 5494 5495 WARN_ON_ONCE(!rcu_read_lock_held()); 5496 5497 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5498 5499 if (&lower->list == &dev->adj_list.lower) 5500 return NULL; 5501 5502 *iter = &lower->list; 5503 5504 return lower->private; 5505 } 5506 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5507 5508 /** 5509 * netdev_lower_get_next - Get the next device from the lower neighbour 5510 * list 5511 * @dev: device 5512 * @iter: list_head ** of the current position 5513 * 5514 * Gets the next netdev_adjacent from the dev's lower neighbour 5515 * list, starting from iter position. The caller must hold RTNL lock or 5516 * its own locking that guarantees that the neighbour lower 5517 * list will remain unchanged. 5518 */ 5519 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5520 { 5521 struct netdev_adjacent *lower; 5522 5523 lower = list_entry(*iter, struct netdev_adjacent, list); 5524 5525 if (&lower->list == &dev->adj_list.lower) 5526 return NULL; 5527 5528 *iter = lower->list.next; 5529 5530 return lower->dev; 5531 } 5532 EXPORT_SYMBOL(netdev_lower_get_next); 5533 5534 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5535 struct list_head **iter) 5536 { 5537 struct netdev_adjacent *lower; 5538 5539 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5540 5541 if (&lower->list == &dev->adj_list.lower) 5542 return NULL; 5543 5544 *iter = &lower->list; 5545 5546 return lower->dev; 5547 } 5548 5549 int netdev_walk_all_lower_dev(struct net_device *dev, 5550 int (*fn)(struct net_device *dev, 5551 void *data), 5552 void *data) 5553 { 5554 struct net_device *ldev; 5555 struct list_head *iter; 5556 int ret; 5557 5558 for (iter = &dev->adj_list.lower, 5559 ldev = netdev_next_lower_dev(dev, &iter); 5560 ldev; 5561 ldev = netdev_next_lower_dev(dev, &iter)) { 5562 /* first is the lower device itself */ 5563 ret = fn(ldev, data); 5564 if (ret) 5565 return ret; 5566 5567 /* then look at all of its lower devices */ 5568 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5569 if (ret) 5570 return ret; 5571 } 5572 5573 return 0; 5574 } 5575 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5576 5577 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5578 struct list_head **iter) 5579 { 5580 struct netdev_adjacent *lower; 5581 5582 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5583 if (&lower->list == &dev->adj_list.lower) 5584 return NULL; 5585 5586 *iter = &lower->list; 5587 5588 return lower->dev; 5589 } 5590 5591 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5592 int (*fn)(struct net_device *dev, 5593 void *data), 5594 void *data) 5595 { 5596 struct net_device *ldev; 5597 struct list_head *iter; 5598 int ret; 5599 5600 for (iter = &dev->adj_list.lower, 5601 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5602 ldev; 5603 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5604 /* first is the lower device itself */ 5605 ret = fn(ldev, data); 5606 if (ret) 5607 return ret; 5608 5609 /* then look at all of its lower devices */ 5610 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5611 if (ret) 5612 return ret; 5613 } 5614 5615 return 0; 5616 } 5617 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5618 5619 /** 5620 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5621 * lower neighbour list, RCU 5622 * variant 5623 * @dev: device 5624 * 5625 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5626 * list. The caller must hold RCU read lock. 5627 */ 5628 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5629 { 5630 struct netdev_adjacent *lower; 5631 5632 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5633 struct netdev_adjacent, list); 5634 if (lower) 5635 return lower->private; 5636 return NULL; 5637 } 5638 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5639 5640 /** 5641 * netdev_master_upper_dev_get_rcu - Get master upper device 5642 * @dev: device 5643 * 5644 * Find a master upper device and return pointer to it or NULL in case 5645 * it's not there. The caller must hold the RCU read lock. 5646 */ 5647 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5648 { 5649 struct netdev_adjacent *upper; 5650 5651 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5652 struct netdev_adjacent, list); 5653 if (upper && likely(upper->master)) 5654 return upper->dev; 5655 return NULL; 5656 } 5657 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5658 5659 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5660 struct net_device *adj_dev, 5661 struct list_head *dev_list) 5662 { 5663 char linkname[IFNAMSIZ+7]; 5664 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5665 "upper_%s" : "lower_%s", adj_dev->name); 5666 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5667 linkname); 5668 } 5669 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5670 char *name, 5671 struct list_head *dev_list) 5672 { 5673 char linkname[IFNAMSIZ+7]; 5674 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5675 "upper_%s" : "lower_%s", name); 5676 sysfs_remove_link(&(dev->dev.kobj), linkname); 5677 } 5678 5679 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5680 struct net_device *adj_dev, 5681 struct list_head *dev_list) 5682 { 5683 return (dev_list == &dev->adj_list.upper || 5684 dev_list == &dev->adj_list.lower) && 5685 net_eq(dev_net(dev), dev_net(adj_dev)); 5686 } 5687 5688 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5689 struct net_device *adj_dev, 5690 struct list_head *dev_list, 5691 void *private, bool master) 5692 { 5693 struct netdev_adjacent *adj; 5694 int ret; 5695 5696 adj = __netdev_find_adj(adj_dev, dev_list); 5697 5698 if (adj) { 5699 adj->ref_nr += 1; 5700 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5701 dev->name, adj_dev->name, adj->ref_nr); 5702 5703 return 0; 5704 } 5705 5706 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5707 if (!adj) 5708 return -ENOMEM; 5709 5710 adj->dev = adj_dev; 5711 adj->master = master; 5712 adj->ref_nr = 1; 5713 adj->private = private; 5714 dev_hold(adj_dev); 5715 5716 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5717 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5718 5719 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5720 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5721 if (ret) 5722 goto free_adj; 5723 } 5724 5725 /* Ensure that master link is always the first item in list. */ 5726 if (master) { 5727 ret = sysfs_create_link(&(dev->dev.kobj), 5728 &(adj_dev->dev.kobj), "master"); 5729 if (ret) 5730 goto remove_symlinks; 5731 5732 list_add_rcu(&adj->list, dev_list); 5733 } else { 5734 list_add_tail_rcu(&adj->list, dev_list); 5735 } 5736 5737 return 0; 5738 5739 remove_symlinks: 5740 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5741 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5742 free_adj: 5743 kfree(adj); 5744 dev_put(adj_dev); 5745 5746 return ret; 5747 } 5748 5749 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5750 struct net_device *adj_dev, 5751 u16 ref_nr, 5752 struct list_head *dev_list) 5753 { 5754 struct netdev_adjacent *adj; 5755 5756 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 5757 dev->name, adj_dev->name, ref_nr); 5758 5759 adj = __netdev_find_adj(adj_dev, dev_list); 5760 5761 if (!adj) { 5762 pr_err("Adjacency does not exist for device %s from %s\n", 5763 dev->name, adj_dev->name); 5764 WARN_ON(1); 5765 return; 5766 } 5767 5768 if (adj->ref_nr > ref_nr) { 5769 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 5770 dev->name, adj_dev->name, ref_nr, 5771 adj->ref_nr - ref_nr); 5772 adj->ref_nr -= ref_nr; 5773 return; 5774 } 5775 5776 if (adj->master) 5777 sysfs_remove_link(&(dev->dev.kobj), "master"); 5778 5779 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5780 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5781 5782 list_del_rcu(&adj->list); 5783 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 5784 adj_dev->name, dev->name, adj_dev->name); 5785 dev_put(adj_dev); 5786 kfree_rcu(adj, rcu); 5787 } 5788 5789 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5790 struct net_device *upper_dev, 5791 struct list_head *up_list, 5792 struct list_head *down_list, 5793 void *private, bool master) 5794 { 5795 int ret; 5796 5797 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 5798 private, master); 5799 if (ret) 5800 return ret; 5801 5802 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 5803 private, false); 5804 if (ret) { 5805 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 5806 return ret; 5807 } 5808 5809 return 0; 5810 } 5811 5812 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5813 struct net_device *upper_dev, 5814 u16 ref_nr, 5815 struct list_head *up_list, 5816 struct list_head *down_list) 5817 { 5818 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5819 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 5820 } 5821 5822 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5823 struct net_device *upper_dev, 5824 void *private, bool master) 5825 { 5826 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5827 &dev->adj_list.upper, 5828 &upper_dev->adj_list.lower, 5829 private, master); 5830 } 5831 5832 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5833 struct net_device *upper_dev) 5834 { 5835 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 5836 &dev->adj_list.upper, 5837 &upper_dev->adj_list.lower); 5838 } 5839 5840 static int __netdev_upper_dev_link(struct net_device *dev, 5841 struct net_device *upper_dev, bool master, 5842 void *upper_priv, void *upper_info) 5843 { 5844 struct netdev_notifier_changeupper_info changeupper_info; 5845 int ret = 0; 5846 5847 ASSERT_RTNL(); 5848 5849 if (dev == upper_dev) 5850 return -EBUSY; 5851 5852 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5853 if (netdev_has_upper_dev(upper_dev, dev)) 5854 return -EBUSY; 5855 5856 if (netdev_has_upper_dev(dev, upper_dev)) 5857 return -EEXIST; 5858 5859 if (master && netdev_master_upper_dev_get(dev)) 5860 return -EBUSY; 5861 5862 changeupper_info.upper_dev = upper_dev; 5863 changeupper_info.master = master; 5864 changeupper_info.linking = true; 5865 changeupper_info.upper_info = upper_info; 5866 5867 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5868 &changeupper_info.info); 5869 ret = notifier_to_errno(ret); 5870 if (ret) 5871 return ret; 5872 5873 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5874 master); 5875 if (ret) 5876 return ret; 5877 5878 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5879 &changeupper_info.info); 5880 ret = notifier_to_errno(ret); 5881 if (ret) 5882 goto rollback; 5883 5884 return 0; 5885 5886 rollback: 5887 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5888 5889 return ret; 5890 } 5891 5892 /** 5893 * netdev_upper_dev_link - Add a link to the upper device 5894 * @dev: device 5895 * @upper_dev: new upper device 5896 * 5897 * Adds a link to device which is upper to this one. The caller must hold 5898 * the RTNL lock. On a failure a negative errno code is returned. 5899 * On success the reference counts are adjusted and the function 5900 * returns zero. 5901 */ 5902 int netdev_upper_dev_link(struct net_device *dev, 5903 struct net_device *upper_dev) 5904 { 5905 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5906 } 5907 EXPORT_SYMBOL(netdev_upper_dev_link); 5908 5909 /** 5910 * netdev_master_upper_dev_link - Add a master link to the upper device 5911 * @dev: device 5912 * @upper_dev: new upper device 5913 * @upper_priv: upper device private 5914 * @upper_info: upper info to be passed down via notifier 5915 * 5916 * Adds a link to device which is upper to this one. In this case, only 5917 * one master upper device can be linked, although other non-master devices 5918 * might be linked as well. The caller must hold the RTNL lock. 5919 * On a failure a negative errno code is returned. On success the reference 5920 * counts are adjusted and the function returns zero. 5921 */ 5922 int netdev_master_upper_dev_link(struct net_device *dev, 5923 struct net_device *upper_dev, 5924 void *upper_priv, void *upper_info) 5925 { 5926 return __netdev_upper_dev_link(dev, upper_dev, true, 5927 upper_priv, upper_info); 5928 } 5929 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5930 5931 /** 5932 * netdev_upper_dev_unlink - Removes a link to upper device 5933 * @dev: device 5934 * @upper_dev: new upper device 5935 * 5936 * Removes a link to device which is upper to this one. The caller must hold 5937 * the RTNL lock. 5938 */ 5939 void netdev_upper_dev_unlink(struct net_device *dev, 5940 struct net_device *upper_dev) 5941 { 5942 struct netdev_notifier_changeupper_info changeupper_info; 5943 ASSERT_RTNL(); 5944 5945 changeupper_info.upper_dev = upper_dev; 5946 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5947 changeupper_info.linking = false; 5948 5949 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5950 &changeupper_info.info); 5951 5952 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5953 5954 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5955 &changeupper_info.info); 5956 } 5957 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5958 5959 /** 5960 * netdev_bonding_info_change - Dispatch event about slave change 5961 * @dev: device 5962 * @bonding_info: info to dispatch 5963 * 5964 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5965 * The caller must hold the RTNL lock. 5966 */ 5967 void netdev_bonding_info_change(struct net_device *dev, 5968 struct netdev_bonding_info *bonding_info) 5969 { 5970 struct netdev_notifier_bonding_info info; 5971 5972 memcpy(&info.bonding_info, bonding_info, 5973 sizeof(struct netdev_bonding_info)); 5974 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5975 &info.info); 5976 } 5977 EXPORT_SYMBOL(netdev_bonding_info_change); 5978 5979 static void netdev_adjacent_add_links(struct net_device *dev) 5980 { 5981 struct netdev_adjacent *iter; 5982 5983 struct net *net = dev_net(dev); 5984 5985 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5986 if (!net_eq(net, dev_net(iter->dev))) 5987 continue; 5988 netdev_adjacent_sysfs_add(iter->dev, dev, 5989 &iter->dev->adj_list.lower); 5990 netdev_adjacent_sysfs_add(dev, iter->dev, 5991 &dev->adj_list.upper); 5992 } 5993 5994 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5995 if (!net_eq(net, dev_net(iter->dev))) 5996 continue; 5997 netdev_adjacent_sysfs_add(iter->dev, dev, 5998 &iter->dev->adj_list.upper); 5999 netdev_adjacent_sysfs_add(dev, iter->dev, 6000 &dev->adj_list.lower); 6001 } 6002 } 6003 6004 static void netdev_adjacent_del_links(struct net_device *dev) 6005 { 6006 struct netdev_adjacent *iter; 6007 6008 struct net *net = dev_net(dev); 6009 6010 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6011 if (!net_eq(net, dev_net(iter->dev))) 6012 continue; 6013 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6014 &iter->dev->adj_list.lower); 6015 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6016 &dev->adj_list.upper); 6017 } 6018 6019 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6020 if (!net_eq(net, dev_net(iter->dev))) 6021 continue; 6022 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6023 &iter->dev->adj_list.upper); 6024 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6025 &dev->adj_list.lower); 6026 } 6027 } 6028 6029 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6030 { 6031 struct netdev_adjacent *iter; 6032 6033 struct net *net = dev_net(dev); 6034 6035 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6036 if (!net_eq(net, dev_net(iter->dev))) 6037 continue; 6038 netdev_adjacent_sysfs_del(iter->dev, oldname, 6039 &iter->dev->adj_list.lower); 6040 netdev_adjacent_sysfs_add(iter->dev, dev, 6041 &iter->dev->adj_list.lower); 6042 } 6043 6044 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6045 if (!net_eq(net, dev_net(iter->dev))) 6046 continue; 6047 netdev_adjacent_sysfs_del(iter->dev, oldname, 6048 &iter->dev->adj_list.upper); 6049 netdev_adjacent_sysfs_add(iter->dev, dev, 6050 &iter->dev->adj_list.upper); 6051 } 6052 } 6053 6054 void *netdev_lower_dev_get_private(struct net_device *dev, 6055 struct net_device *lower_dev) 6056 { 6057 struct netdev_adjacent *lower; 6058 6059 if (!lower_dev) 6060 return NULL; 6061 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6062 if (!lower) 6063 return NULL; 6064 6065 return lower->private; 6066 } 6067 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6068 6069 6070 int dev_get_nest_level(struct net_device *dev) 6071 { 6072 struct net_device *lower = NULL; 6073 struct list_head *iter; 6074 int max_nest = -1; 6075 int nest; 6076 6077 ASSERT_RTNL(); 6078 6079 netdev_for_each_lower_dev(dev, lower, iter) { 6080 nest = dev_get_nest_level(lower); 6081 if (max_nest < nest) 6082 max_nest = nest; 6083 } 6084 6085 return max_nest + 1; 6086 } 6087 EXPORT_SYMBOL(dev_get_nest_level); 6088 6089 /** 6090 * netdev_lower_change - Dispatch event about lower device state change 6091 * @lower_dev: device 6092 * @lower_state_info: state to dispatch 6093 * 6094 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6095 * The caller must hold the RTNL lock. 6096 */ 6097 void netdev_lower_state_changed(struct net_device *lower_dev, 6098 void *lower_state_info) 6099 { 6100 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6101 6102 ASSERT_RTNL(); 6103 changelowerstate_info.lower_state_info = lower_state_info; 6104 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6105 &changelowerstate_info.info); 6106 } 6107 EXPORT_SYMBOL(netdev_lower_state_changed); 6108 6109 static void dev_change_rx_flags(struct net_device *dev, int flags) 6110 { 6111 const struct net_device_ops *ops = dev->netdev_ops; 6112 6113 if (ops->ndo_change_rx_flags) 6114 ops->ndo_change_rx_flags(dev, flags); 6115 } 6116 6117 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6118 { 6119 unsigned int old_flags = dev->flags; 6120 kuid_t uid; 6121 kgid_t gid; 6122 6123 ASSERT_RTNL(); 6124 6125 dev->flags |= IFF_PROMISC; 6126 dev->promiscuity += inc; 6127 if (dev->promiscuity == 0) { 6128 /* 6129 * Avoid overflow. 6130 * If inc causes overflow, untouch promisc and return error. 6131 */ 6132 if (inc < 0) 6133 dev->flags &= ~IFF_PROMISC; 6134 else { 6135 dev->promiscuity -= inc; 6136 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6137 dev->name); 6138 return -EOVERFLOW; 6139 } 6140 } 6141 if (dev->flags != old_flags) { 6142 pr_info("device %s %s promiscuous mode\n", 6143 dev->name, 6144 dev->flags & IFF_PROMISC ? "entered" : "left"); 6145 if (audit_enabled) { 6146 current_uid_gid(&uid, &gid); 6147 audit_log(current->audit_context, GFP_ATOMIC, 6148 AUDIT_ANOM_PROMISCUOUS, 6149 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6150 dev->name, (dev->flags & IFF_PROMISC), 6151 (old_flags & IFF_PROMISC), 6152 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6153 from_kuid(&init_user_ns, uid), 6154 from_kgid(&init_user_ns, gid), 6155 audit_get_sessionid(current)); 6156 } 6157 6158 dev_change_rx_flags(dev, IFF_PROMISC); 6159 } 6160 if (notify) 6161 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6162 return 0; 6163 } 6164 6165 /** 6166 * dev_set_promiscuity - update promiscuity count on a device 6167 * @dev: device 6168 * @inc: modifier 6169 * 6170 * Add or remove promiscuity from a device. While the count in the device 6171 * remains above zero the interface remains promiscuous. Once it hits zero 6172 * the device reverts back to normal filtering operation. A negative inc 6173 * value is used to drop promiscuity on the device. 6174 * Return 0 if successful or a negative errno code on error. 6175 */ 6176 int dev_set_promiscuity(struct net_device *dev, int inc) 6177 { 6178 unsigned int old_flags = dev->flags; 6179 int err; 6180 6181 err = __dev_set_promiscuity(dev, inc, true); 6182 if (err < 0) 6183 return err; 6184 if (dev->flags != old_flags) 6185 dev_set_rx_mode(dev); 6186 return err; 6187 } 6188 EXPORT_SYMBOL(dev_set_promiscuity); 6189 6190 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6191 { 6192 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6193 6194 ASSERT_RTNL(); 6195 6196 dev->flags |= IFF_ALLMULTI; 6197 dev->allmulti += inc; 6198 if (dev->allmulti == 0) { 6199 /* 6200 * Avoid overflow. 6201 * If inc causes overflow, untouch allmulti and return error. 6202 */ 6203 if (inc < 0) 6204 dev->flags &= ~IFF_ALLMULTI; 6205 else { 6206 dev->allmulti -= inc; 6207 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6208 dev->name); 6209 return -EOVERFLOW; 6210 } 6211 } 6212 if (dev->flags ^ old_flags) { 6213 dev_change_rx_flags(dev, IFF_ALLMULTI); 6214 dev_set_rx_mode(dev); 6215 if (notify) 6216 __dev_notify_flags(dev, old_flags, 6217 dev->gflags ^ old_gflags); 6218 } 6219 return 0; 6220 } 6221 6222 /** 6223 * dev_set_allmulti - update allmulti count on a device 6224 * @dev: device 6225 * @inc: modifier 6226 * 6227 * Add or remove reception of all multicast frames to a device. While the 6228 * count in the device remains above zero the interface remains listening 6229 * to all interfaces. Once it hits zero the device reverts back to normal 6230 * filtering operation. A negative @inc value is used to drop the counter 6231 * when releasing a resource needing all multicasts. 6232 * Return 0 if successful or a negative errno code on error. 6233 */ 6234 6235 int dev_set_allmulti(struct net_device *dev, int inc) 6236 { 6237 return __dev_set_allmulti(dev, inc, true); 6238 } 6239 EXPORT_SYMBOL(dev_set_allmulti); 6240 6241 /* 6242 * Upload unicast and multicast address lists to device and 6243 * configure RX filtering. When the device doesn't support unicast 6244 * filtering it is put in promiscuous mode while unicast addresses 6245 * are present. 6246 */ 6247 void __dev_set_rx_mode(struct net_device *dev) 6248 { 6249 const struct net_device_ops *ops = dev->netdev_ops; 6250 6251 /* dev_open will call this function so the list will stay sane. */ 6252 if (!(dev->flags&IFF_UP)) 6253 return; 6254 6255 if (!netif_device_present(dev)) 6256 return; 6257 6258 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6259 /* Unicast addresses changes may only happen under the rtnl, 6260 * therefore calling __dev_set_promiscuity here is safe. 6261 */ 6262 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6263 __dev_set_promiscuity(dev, 1, false); 6264 dev->uc_promisc = true; 6265 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6266 __dev_set_promiscuity(dev, -1, false); 6267 dev->uc_promisc = false; 6268 } 6269 } 6270 6271 if (ops->ndo_set_rx_mode) 6272 ops->ndo_set_rx_mode(dev); 6273 } 6274 6275 void dev_set_rx_mode(struct net_device *dev) 6276 { 6277 netif_addr_lock_bh(dev); 6278 __dev_set_rx_mode(dev); 6279 netif_addr_unlock_bh(dev); 6280 } 6281 6282 /** 6283 * dev_get_flags - get flags reported to userspace 6284 * @dev: device 6285 * 6286 * Get the combination of flag bits exported through APIs to userspace. 6287 */ 6288 unsigned int dev_get_flags(const struct net_device *dev) 6289 { 6290 unsigned int flags; 6291 6292 flags = (dev->flags & ~(IFF_PROMISC | 6293 IFF_ALLMULTI | 6294 IFF_RUNNING | 6295 IFF_LOWER_UP | 6296 IFF_DORMANT)) | 6297 (dev->gflags & (IFF_PROMISC | 6298 IFF_ALLMULTI)); 6299 6300 if (netif_running(dev)) { 6301 if (netif_oper_up(dev)) 6302 flags |= IFF_RUNNING; 6303 if (netif_carrier_ok(dev)) 6304 flags |= IFF_LOWER_UP; 6305 if (netif_dormant(dev)) 6306 flags |= IFF_DORMANT; 6307 } 6308 6309 return flags; 6310 } 6311 EXPORT_SYMBOL(dev_get_flags); 6312 6313 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6314 { 6315 unsigned int old_flags = dev->flags; 6316 int ret; 6317 6318 ASSERT_RTNL(); 6319 6320 /* 6321 * Set the flags on our device. 6322 */ 6323 6324 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6325 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6326 IFF_AUTOMEDIA)) | 6327 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6328 IFF_ALLMULTI)); 6329 6330 /* 6331 * Load in the correct multicast list now the flags have changed. 6332 */ 6333 6334 if ((old_flags ^ flags) & IFF_MULTICAST) 6335 dev_change_rx_flags(dev, IFF_MULTICAST); 6336 6337 dev_set_rx_mode(dev); 6338 6339 /* 6340 * Have we downed the interface. We handle IFF_UP ourselves 6341 * according to user attempts to set it, rather than blindly 6342 * setting it. 6343 */ 6344 6345 ret = 0; 6346 if ((old_flags ^ flags) & IFF_UP) 6347 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6348 6349 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6350 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6351 unsigned int old_flags = dev->flags; 6352 6353 dev->gflags ^= IFF_PROMISC; 6354 6355 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6356 if (dev->flags != old_flags) 6357 dev_set_rx_mode(dev); 6358 } 6359 6360 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6361 is important. Some (broken) drivers set IFF_PROMISC, when 6362 IFF_ALLMULTI is requested not asking us and not reporting. 6363 */ 6364 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6365 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6366 6367 dev->gflags ^= IFF_ALLMULTI; 6368 __dev_set_allmulti(dev, inc, false); 6369 } 6370 6371 return ret; 6372 } 6373 6374 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6375 unsigned int gchanges) 6376 { 6377 unsigned int changes = dev->flags ^ old_flags; 6378 6379 if (gchanges) 6380 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6381 6382 if (changes & IFF_UP) { 6383 if (dev->flags & IFF_UP) 6384 call_netdevice_notifiers(NETDEV_UP, dev); 6385 else 6386 call_netdevice_notifiers(NETDEV_DOWN, dev); 6387 } 6388 6389 if (dev->flags & IFF_UP && 6390 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6391 struct netdev_notifier_change_info change_info; 6392 6393 change_info.flags_changed = changes; 6394 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6395 &change_info.info); 6396 } 6397 } 6398 6399 /** 6400 * dev_change_flags - change device settings 6401 * @dev: device 6402 * @flags: device state flags 6403 * 6404 * Change settings on device based state flags. The flags are 6405 * in the userspace exported format. 6406 */ 6407 int dev_change_flags(struct net_device *dev, unsigned int flags) 6408 { 6409 int ret; 6410 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6411 6412 ret = __dev_change_flags(dev, flags); 6413 if (ret < 0) 6414 return ret; 6415 6416 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6417 __dev_notify_flags(dev, old_flags, changes); 6418 return ret; 6419 } 6420 EXPORT_SYMBOL(dev_change_flags); 6421 6422 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6423 { 6424 const struct net_device_ops *ops = dev->netdev_ops; 6425 6426 if (ops->ndo_change_mtu) 6427 return ops->ndo_change_mtu(dev, new_mtu); 6428 6429 dev->mtu = new_mtu; 6430 return 0; 6431 } 6432 6433 /** 6434 * dev_set_mtu - Change maximum transfer unit 6435 * @dev: device 6436 * @new_mtu: new transfer unit 6437 * 6438 * Change the maximum transfer size of the network device. 6439 */ 6440 int dev_set_mtu(struct net_device *dev, int new_mtu) 6441 { 6442 int err, orig_mtu; 6443 6444 if (new_mtu == dev->mtu) 6445 return 0; 6446 6447 /* MTU must be positive, and in range */ 6448 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6449 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6450 dev->name, new_mtu, dev->min_mtu); 6451 return -EINVAL; 6452 } 6453 6454 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6455 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6456 dev->name, new_mtu, dev->max_mtu); 6457 return -EINVAL; 6458 } 6459 6460 if (!netif_device_present(dev)) 6461 return -ENODEV; 6462 6463 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6464 err = notifier_to_errno(err); 6465 if (err) 6466 return err; 6467 6468 orig_mtu = dev->mtu; 6469 err = __dev_set_mtu(dev, new_mtu); 6470 6471 if (!err) { 6472 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6473 err = notifier_to_errno(err); 6474 if (err) { 6475 /* setting mtu back and notifying everyone again, 6476 * so that they have a chance to revert changes. 6477 */ 6478 __dev_set_mtu(dev, orig_mtu); 6479 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6480 } 6481 } 6482 return err; 6483 } 6484 EXPORT_SYMBOL(dev_set_mtu); 6485 6486 /** 6487 * dev_set_group - Change group this device belongs to 6488 * @dev: device 6489 * @new_group: group this device should belong to 6490 */ 6491 void dev_set_group(struct net_device *dev, int new_group) 6492 { 6493 dev->group = new_group; 6494 } 6495 EXPORT_SYMBOL(dev_set_group); 6496 6497 /** 6498 * dev_set_mac_address - Change Media Access Control Address 6499 * @dev: device 6500 * @sa: new address 6501 * 6502 * Change the hardware (MAC) address of the device 6503 */ 6504 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6505 { 6506 const struct net_device_ops *ops = dev->netdev_ops; 6507 int err; 6508 6509 if (!ops->ndo_set_mac_address) 6510 return -EOPNOTSUPP; 6511 if (sa->sa_family != dev->type) 6512 return -EINVAL; 6513 if (!netif_device_present(dev)) 6514 return -ENODEV; 6515 err = ops->ndo_set_mac_address(dev, sa); 6516 if (err) 6517 return err; 6518 dev->addr_assign_type = NET_ADDR_SET; 6519 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6520 add_device_randomness(dev->dev_addr, dev->addr_len); 6521 return 0; 6522 } 6523 EXPORT_SYMBOL(dev_set_mac_address); 6524 6525 /** 6526 * dev_change_carrier - Change device carrier 6527 * @dev: device 6528 * @new_carrier: new value 6529 * 6530 * Change device carrier 6531 */ 6532 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6533 { 6534 const struct net_device_ops *ops = dev->netdev_ops; 6535 6536 if (!ops->ndo_change_carrier) 6537 return -EOPNOTSUPP; 6538 if (!netif_device_present(dev)) 6539 return -ENODEV; 6540 return ops->ndo_change_carrier(dev, new_carrier); 6541 } 6542 EXPORT_SYMBOL(dev_change_carrier); 6543 6544 /** 6545 * dev_get_phys_port_id - Get device physical port ID 6546 * @dev: device 6547 * @ppid: port ID 6548 * 6549 * Get device physical port ID 6550 */ 6551 int dev_get_phys_port_id(struct net_device *dev, 6552 struct netdev_phys_item_id *ppid) 6553 { 6554 const struct net_device_ops *ops = dev->netdev_ops; 6555 6556 if (!ops->ndo_get_phys_port_id) 6557 return -EOPNOTSUPP; 6558 return ops->ndo_get_phys_port_id(dev, ppid); 6559 } 6560 EXPORT_SYMBOL(dev_get_phys_port_id); 6561 6562 /** 6563 * dev_get_phys_port_name - Get device physical port name 6564 * @dev: device 6565 * @name: port name 6566 * @len: limit of bytes to copy to name 6567 * 6568 * Get device physical port name 6569 */ 6570 int dev_get_phys_port_name(struct net_device *dev, 6571 char *name, size_t len) 6572 { 6573 const struct net_device_ops *ops = dev->netdev_ops; 6574 6575 if (!ops->ndo_get_phys_port_name) 6576 return -EOPNOTSUPP; 6577 return ops->ndo_get_phys_port_name(dev, name, len); 6578 } 6579 EXPORT_SYMBOL(dev_get_phys_port_name); 6580 6581 /** 6582 * dev_change_proto_down - update protocol port state information 6583 * @dev: device 6584 * @proto_down: new value 6585 * 6586 * This info can be used by switch drivers to set the phys state of the 6587 * port. 6588 */ 6589 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6590 { 6591 const struct net_device_ops *ops = dev->netdev_ops; 6592 6593 if (!ops->ndo_change_proto_down) 6594 return -EOPNOTSUPP; 6595 if (!netif_device_present(dev)) 6596 return -ENODEV; 6597 return ops->ndo_change_proto_down(dev, proto_down); 6598 } 6599 EXPORT_SYMBOL(dev_change_proto_down); 6600 6601 /** 6602 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6603 * @dev: device 6604 * @fd: new program fd or negative value to clear 6605 * @flags: xdp-related flags 6606 * 6607 * Set or clear a bpf program for a device 6608 */ 6609 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags) 6610 { 6611 const struct net_device_ops *ops = dev->netdev_ops; 6612 struct bpf_prog *prog = NULL; 6613 struct netdev_xdp xdp; 6614 int err; 6615 6616 ASSERT_RTNL(); 6617 6618 if (!ops->ndo_xdp) 6619 return -EOPNOTSUPP; 6620 if (fd >= 0) { 6621 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { 6622 memset(&xdp, 0, sizeof(xdp)); 6623 xdp.command = XDP_QUERY_PROG; 6624 6625 err = ops->ndo_xdp(dev, &xdp); 6626 if (err < 0) 6627 return err; 6628 if (xdp.prog_attached) 6629 return -EBUSY; 6630 } 6631 6632 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6633 if (IS_ERR(prog)) 6634 return PTR_ERR(prog); 6635 } 6636 6637 memset(&xdp, 0, sizeof(xdp)); 6638 xdp.command = XDP_SETUP_PROG; 6639 xdp.prog = prog; 6640 6641 err = ops->ndo_xdp(dev, &xdp); 6642 if (err < 0 && prog) 6643 bpf_prog_put(prog); 6644 6645 return err; 6646 } 6647 EXPORT_SYMBOL(dev_change_xdp_fd); 6648 6649 /** 6650 * dev_new_index - allocate an ifindex 6651 * @net: the applicable net namespace 6652 * 6653 * Returns a suitable unique value for a new device interface 6654 * number. The caller must hold the rtnl semaphore or the 6655 * dev_base_lock to be sure it remains unique. 6656 */ 6657 static int dev_new_index(struct net *net) 6658 { 6659 int ifindex = net->ifindex; 6660 for (;;) { 6661 if (++ifindex <= 0) 6662 ifindex = 1; 6663 if (!__dev_get_by_index(net, ifindex)) 6664 return net->ifindex = ifindex; 6665 } 6666 } 6667 6668 /* Delayed registration/unregisteration */ 6669 static LIST_HEAD(net_todo_list); 6670 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6671 6672 static void net_set_todo(struct net_device *dev) 6673 { 6674 list_add_tail(&dev->todo_list, &net_todo_list); 6675 dev_net(dev)->dev_unreg_count++; 6676 } 6677 6678 static void rollback_registered_many(struct list_head *head) 6679 { 6680 struct net_device *dev, *tmp; 6681 LIST_HEAD(close_head); 6682 6683 BUG_ON(dev_boot_phase); 6684 ASSERT_RTNL(); 6685 6686 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6687 /* Some devices call without registering 6688 * for initialization unwind. Remove those 6689 * devices and proceed with the remaining. 6690 */ 6691 if (dev->reg_state == NETREG_UNINITIALIZED) { 6692 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6693 dev->name, dev); 6694 6695 WARN_ON(1); 6696 list_del(&dev->unreg_list); 6697 continue; 6698 } 6699 dev->dismantle = true; 6700 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6701 } 6702 6703 /* If device is running, close it first. */ 6704 list_for_each_entry(dev, head, unreg_list) 6705 list_add_tail(&dev->close_list, &close_head); 6706 dev_close_many(&close_head, true); 6707 6708 list_for_each_entry(dev, head, unreg_list) { 6709 /* And unlink it from device chain. */ 6710 unlist_netdevice(dev); 6711 6712 dev->reg_state = NETREG_UNREGISTERING; 6713 } 6714 flush_all_backlogs(); 6715 6716 synchronize_net(); 6717 6718 list_for_each_entry(dev, head, unreg_list) { 6719 struct sk_buff *skb = NULL; 6720 6721 /* Shutdown queueing discipline. */ 6722 dev_shutdown(dev); 6723 6724 6725 /* Notify protocols, that we are about to destroy 6726 this device. They should clean all the things. 6727 */ 6728 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6729 6730 if (!dev->rtnl_link_ops || 6731 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6732 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6733 GFP_KERNEL); 6734 6735 /* 6736 * Flush the unicast and multicast chains 6737 */ 6738 dev_uc_flush(dev); 6739 dev_mc_flush(dev); 6740 6741 if (dev->netdev_ops->ndo_uninit) 6742 dev->netdev_ops->ndo_uninit(dev); 6743 6744 if (skb) 6745 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6746 6747 /* Notifier chain MUST detach us all upper devices. */ 6748 WARN_ON(netdev_has_any_upper_dev(dev)); 6749 WARN_ON(netdev_has_any_lower_dev(dev)); 6750 6751 /* Remove entries from kobject tree */ 6752 netdev_unregister_kobject(dev); 6753 #ifdef CONFIG_XPS 6754 /* Remove XPS queueing entries */ 6755 netif_reset_xps_queues_gt(dev, 0); 6756 #endif 6757 } 6758 6759 synchronize_net(); 6760 6761 list_for_each_entry(dev, head, unreg_list) 6762 dev_put(dev); 6763 } 6764 6765 static void rollback_registered(struct net_device *dev) 6766 { 6767 LIST_HEAD(single); 6768 6769 list_add(&dev->unreg_list, &single); 6770 rollback_registered_many(&single); 6771 list_del(&single); 6772 } 6773 6774 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6775 struct net_device *upper, netdev_features_t features) 6776 { 6777 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6778 netdev_features_t feature; 6779 int feature_bit; 6780 6781 for_each_netdev_feature(&upper_disables, feature_bit) { 6782 feature = __NETIF_F_BIT(feature_bit); 6783 if (!(upper->wanted_features & feature) 6784 && (features & feature)) { 6785 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6786 &feature, upper->name); 6787 features &= ~feature; 6788 } 6789 } 6790 6791 return features; 6792 } 6793 6794 static void netdev_sync_lower_features(struct net_device *upper, 6795 struct net_device *lower, netdev_features_t features) 6796 { 6797 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6798 netdev_features_t feature; 6799 int feature_bit; 6800 6801 for_each_netdev_feature(&upper_disables, feature_bit) { 6802 feature = __NETIF_F_BIT(feature_bit); 6803 if (!(features & feature) && (lower->features & feature)) { 6804 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6805 &feature, lower->name); 6806 lower->wanted_features &= ~feature; 6807 netdev_update_features(lower); 6808 6809 if (unlikely(lower->features & feature)) 6810 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6811 &feature, lower->name); 6812 } 6813 } 6814 } 6815 6816 static netdev_features_t netdev_fix_features(struct net_device *dev, 6817 netdev_features_t features) 6818 { 6819 /* Fix illegal checksum combinations */ 6820 if ((features & NETIF_F_HW_CSUM) && 6821 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6822 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6823 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6824 } 6825 6826 /* TSO requires that SG is present as well. */ 6827 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6828 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6829 features &= ~NETIF_F_ALL_TSO; 6830 } 6831 6832 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6833 !(features & NETIF_F_IP_CSUM)) { 6834 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6835 features &= ~NETIF_F_TSO; 6836 features &= ~NETIF_F_TSO_ECN; 6837 } 6838 6839 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6840 !(features & NETIF_F_IPV6_CSUM)) { 6841 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6842 features &= ~NETIF_F_TSO6; 6843 } 6844 6845 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6846 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6847 features &= ~NETIF_F_TSO_MANGLEID; 6848 6849 /* TSO ECN requires that TSO is present as well. */ 6850 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6851 features &= ~NETIF_F_TSO_ECN; 6852 6853 /* Software GSO depends on SG. */ 6854 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6855 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6856 features &= ~NETIF_F_GSO; 6857 } 6858 6859 /* UFO needs SG and checksumming */ 6860 if (features & NETIF_F_UFO) { 6861 /* maybe split UFO into V4 and V6? */ 6862 if (!(features & NETIF_F_HW_CSUM) && 6863 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6864 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6865 netdev_dbg(dev, 6866 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6867 features &= ~NETIF_F_UFO; 6868 } 6869 6870 if (!(features & NETIF_F_SG)) { 6871 netdev_dbg(dev, 6872 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6873 features &= ~NETIF_F_UFO; 6874 } 6875 } 6876 6877 /* GSO partial features require GSO partial be set */ 6878 if ((features & dev->gso_partial_features) && 6879 !(features & NETIF_F_GSO_PARTIAL)) { 6880 netdev_dbg(dev, 6881 "Dropping partially supported GSO features since no GSO partial.\n"); 6882 features &= ~dev->gso_partial_features; 6883 } 6884 6885 return features; 6886 } 6887 6888 int __netdev_update_features(struct net_device *dev) 6889 { 6890 struct net_device *upper, *lower; 6891 netdev_features_t features; 6892 struct list_head *iter; 6893 int err = -1; 6894 6895 ASSERT_RTNL(); 6896 6897 features = netdev_get_wanted_features(dev); 6898 6899 if (dev->netdev_ops->ndo_fix_features) 6900 features = dev->netdev_ops->ndo_fix_features(dev, features); 6901 6902 /* driver might be less strict about feature dependencies */ 6903 features = netdev_fix_features(dev, features); 6904 6905 /* some features can't be enabled if they're off an an upper device */ 6906 netdev_for_each_upper_dev_rcu(dev, upper, iter) 6907 features = netdev_sync_upper_features(dev, upper, features); 6908 6909 if (dev->features == features) 6910 goto sync_lower; 6911 6912 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6913 &dev->features, &features); 6914 6915 if (dev->netdev_ops->ndo_set_features) 6916 err = dev->netdev_ops->ndo_set_features(dev, features); 6917 else 6918 err = 0; 6919 6920 if (unlikely(err < 0)) { 6921 netdev_err(dev, 6922 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6923 err, &features, &dev->features); 6924 /* return non-0 since some features might have changed and 6925 * it's better to fire a spurious notification than miss it 6926 */ 6927 return -1; 6928 } 6929 6930 sync_lower: 6931 /* some features must be disabled on lower devices when disabled 6932 * on an upper device (think: bonding master or bridge) 6933 */ 6934 netdev_for_each_lower_dev(dev, lower, iter) 6935 netdev_sync_lower_features(dev, lower, features); 6936 6937 if (!err) 6938 dev->features = features; 6939 6940 return err < 0 ? 0 : 1; 6941 } 6942 6943 /** 6944 * netdev_update_features - recalculate device features 6945 * @dev: the device to check 6946 * 6947 * Recalculate dev->features set and send notifications if it 6948 * has changed. Should be called after driver or hardware dependent 6949 * conditions might have changed that influence the features. 6950 */ 6951 void netdev_update_features(struct net_device *dev) 6952 { 6953 if (__netdev_update_features(dev)) 6954 netdev_features_change(dev); 6955 } 6956 EXPORT_SYMBOL(netdev_update_features); 6957 6958 /** 6959 * netdev_change_features - recalculate device features 6960 * @dev: the device to check 6961 * 6962 * Recalculate dev->features set and send notifications even 6963 * if they have not changed. Should be called instead of 6964 * netdev_update_features() if also dev->vlan_features might 6965 * have changed to allow the changes to be propagated to stacked 6966 * VLAN devices. 6967 */ 6968 void netdev_change_features(struct net_device *dev) 6969 { 6970 __netdev_update_features(dev); 6971 netdev_features_change(dev); 6972 } 6973 EXPORT_SYMBOL(netdev_change_features); 6974 6975 /** 6976 * netif_stacked_transfer_operstate - transfer operstate 6977 * @rootdev: the root or lower level device to transfer state from 6978 * @dev: the device to transfer operstate to 6979 * 6980 * Transfer operational state from root to device. This is normally 6981 * called when a stacking relationship exists between the root 6982 * device and the device(a leaf device). 6983 */ 6984 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6985 struct net_device *dev) 6986 { 6987 if (rootdev->operstate == IF_OPER_DORMANT) 6988 netif_dormant_on(dev); 6989 else 6990 netif_dormant_off(dev); 6991 6992 if (netif_carrier_ok(rootdev)) { 6993 if (!netif_carrier_ok(dev)) 6994 netif_carrier_on(dev); 6995 } else { 6996 if (netif_carrier_ok(dev)) 6997 netif_carrier_off(dev); 6998 } 6999 } 7000 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7001 7002 #ifdef CONFIG_SYSFS 7003 static int netif_alloc_rx_queues(struct net_device *dev) 7004 { 7005 unsigned int i, count = dev->num_rx_queues; 7006 struct netdev_rx_queue *rx; 7007 size_t sz = count * sizeof(*rx); 7008 7009 BUG_ON(count < 1); 7010 7011 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7012 if (!rx) { 7013 rx = vzalloc(sz); 7014 if (!rx) 7015 return -ENOMEM; 7016 } 7017 dev->_rx = rx; 7018 7019 for (i = 0; i < count; i++) 7020 rx[i].dev = dev; 7021 return 0; 7022 } 7023 #endif 7024 7025 static void netdev_init_one_queue(struct net_device *dev, 7026 struct netdev_queue *queue, void *_unused) 7027 { 7028 /* Initialize queue lock */ 7029 spin_lock_init(&queue->_xmit_lock); 7030 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7031 queue->xmit_lock_owner = -1; 7032 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7033 queue->dev = dev; 7034 #ifdef CONFIG_BQL 7035 dql_init(&queue->dql, HZ); 7036 #endif 7037 } 7038 7039 static void netif_free_tx_queues(struct net_device *dev) 7040 { 7041 kvfree(dev->_tx); 7042 } 7043 7044 static int netif_alloc_netdev_queues(struct net_device *dev) 7045 { 7046 unsigned int count = dev->num_tx_queues; 7047 struct netdev_queue *tx; 7048 size_t sz = count * sizeof(*tx); 7049 7050 if (count < 1 || count > 0xffff) 7051 return -EINVAL; 7052 7053 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7054 if (!tx) { 7055 tx = vzalloc(sz); 7056 if (!tx) 7057 return -ENOMEM; 7058 } 7059 dev->_tx = tx; 7060 7061 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7062 spin_lock_init(&dev->tx_global_lock); 7063 7064 return 0; 7065 } 7066 7067 void netif_tx_stop_all_queues(struct net_device *dev) 7068 { 7069 unsigned int i; 7070 7071 for (i = 0; i < dev->num_tx_queues; i++) { 7072 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7073 netif_tx_stop_queue(txq); 7074 } 7075 } 7076 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7077 7078 /** 7079 * register_netdevice - register a network device 7080 * @dev: device to register 7081 * 7082 * Take a completed network device structure and add it to the kernel 7083 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7084 * chain. 0 is returned on success. A negative errno code is returned 7085 * on a failure to set up the device, or if the name is a duplicate. 7086 * 7087 * Callers must hold the rtnl semaphore. You may want 7088 * register_netdev() instead of this. 7089 * 7090 * BUGS: 7091 * The locking appears insufficient to guarantee two parallel registers 7092 * will not get the same name. 7093 */ 7094 7095 int register_netdevice(struct net_device *dev) 7096 { 7097 int ret; 7098 struct net *net = dev_net(dev); 7099 7100 BUG_ON(dev_boot_phase); 7101 ASSERT_RTNL(); 7102 7103 might_sleep(); 7104 7105 /* When net_device's are persistent, this will be fatal. */ 7106 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7107 BUG_ON(!net); 7108 7109 spin_lock_init(&dev->addr_list_lock); 7110 netdev_set_addr_lockdep_class(dev); 7111 7112 ret = dev_get_valid_name(net, dev, dev->name); 7113 if (ret < 0) 7114 goto out; 7115 7116 /* Init, if this function is available */ 7117 if (dev->netdev_ops->ndo_init) { 7118 ret = dev->netdev_ops->ndo_init(dev); 7119 if (ret) { 7120 if (ret > 0) 7121 ret = -EIO; 7122 goto out; 7123 } 7124 } 7125 7126 if (((dev->hw_features | dev->features) & 7127 NETIF_F_HW_VLAN_CTAG_FILTER) && 7128 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7129 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7130 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7131 ret = -EINVAL; 7132 goto err_uninit; 7133 } 7134 7135 ret = -EBUSY; 7136 if (!dev->ifindex) 7137 dev->ifindex = dev_new_index(net); 7138 else if (__dev_get_by_index(net, dev->ifindex)) 7139 goto err_uninit; 7140 7141 /* Transfer changeable features to wanted_features and enable 7142 * software offloads (GSO and GRO). 7143 */ 7144 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7145 dev->features |= NETIF_F_SOFT_FEATURES; 7146 dev->wanted_features = dev->features & dev->hw_features; 7147 7148 if (!(dev->flags & IFF_LOOPBACK)) 7149 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7150 7151 /* If IPv4 TCP segmentation offload is supported we should also 7152 * allow the device to enable segmenting the frame with the option 7153 * of ignoring a static IP ID value. This doesn't enable the 7154 * feature itself but allows the user to enable it later. 7155 */ 7156 if (dev->hw_features & NETIF_F_TSO) 7157 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7158 if (dev->vlan_features & NETIF_F_TSO) 7159 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7160 if (dev->mpls_features & NETIF_F_TSO) 7161 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7162 if (dev->hw_enc_features & NETIF_F_TSO) 7163 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7164 7165 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7166 */ 7167 dev->vlan_features |= NETIF_F_HIGHDMA; 7168 7169 /* Make NETIF_F_SG inheritable to tunnel devices. 7170 */ 7171 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7172 7173 /* Make NETIF_F_SG inheritable to MPLS. 7174 */ 7175 dev->mpls_features |= NETIF_F_SG; 7176 7177 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7178 ret = notifier_to_errno(ret); 7179 if (ret) 7180 goto err_uninit; 7181 7182 ret = netdev_register_kobject(dev); 7183 if (ret) 7184 goto err_uninit; 7185 dev->reg_state = NETREG_REGISTERED; 7186 7187 __netdev_update_features(dev); 7188 7189 /* 7190 * Default initial state at registry is that the 7191 * device is present. 7192 */ 7193 7194 set_bit(__LINK_STATE_PRESENT, &dev->state); 7195 7196 linkwatch_init_dev(dev); 7197 7198 dev_init_scheduler(dev); 7199 dev_hold(dev); 7200 list_netdevice(dev); 7201 add_device_randomness(dev->dev_addr, dev->addr_len); 7202 7203 /* If the device has permanent device address, driver should 7204 * set dev_addr and also addr_assign_type should be set to 7205 * NET_ADDR_PERM (default value). 7206 */ 7207 if (dev->addr_assign_type == NET_ADDR_PERM) 7208 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7209 7210 /* Notify protocols, that a new device appeared. */ 7211 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7212 ret = notifier_to_errno(ret); 7213 if (ret) { 7214 rollback_registered(dev); 7215 dev->reg_state = NETREG_UNREGISTERED; 7216 } 7217 /* 7218 * Prevent userspace races by waiting until the network 7219 * device is fully setup before sending notifications. 7220 */ 7221 if (!dev->rtnl_link_ops || 7222 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7224 7225 out: 7226 return ret; 7227 7228 err_uninit: 7229 if (dev->netdev_ops->ndo_uninit) 7230 dev->netdev_ops->ndo_uninit(dev); 7231 goto out; 7232 } 7233 EXPORT_SYMBOL(register_netdevice); 7234 7235 /** 7236 * init_dummy_netdev - init a dummy network device for NAPI 7237 * @dev: device to init 7238 * 7239 * This takes a network device structure and initialize the minimum 7240 * amount of fields so it can be used to schedule NAPI polls without 7241 * registering a full blown interface. This is to be used by drivers 7242 * that need to tie several hardware interfaces to a single NAPI 7243 * poll scheduler due to HW limitations. 7244 */ 7245 int init_dummy_netdev(struct net_device *dev) 7246 { 7247 /* Clear everything. Note we don't initialize spinlocks 7248 * are they aren't supposed to be taken by any of the 7249 * NAPI code and this dummy netdev is supposed to be 7250 * only ever used for NAPI polls 7251 */ 7252 memset(dev, 0, sizeof(struct net_device)); 7253 7254 /* make sure we BUG if trying to hit standard 7255 * register/unregister code path 7256 */ 7257 dev->reg_state = NETREG_DUMMY; 7258 7259 /* NAPI wants this */ 7260 INIT_LIST_HEAD(&dev->napi_list); 7261 7262 /* a dummy interface is started by default */ 7263 set_bit(__LINK_STATE_PRESENT, &dev->state); 7264 set_bit(__LINK_STATE_START, &dev->state); 7265 7266 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7267 * because users of this 'device' dont need to change 7268 * its refcount. 7269 */ 7270 7271 return 0; 7272 } 7273 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7274 7275 7276 /** 7277 * register_netdev - register a network device 7278 * @dev: device to register 7279 * 7280 * Take a completed network device structure and add it to the kernel 7281 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7282 * chain. 0 is returned on success. A negative errno code is returned 7283 * on a failure to set up the device, or if the name is a duplicate. 7284 * 7285 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7286 * and expands the device name if you passed a format string to 7287 * alloc_netdev. 7288 */ 7289 int register_netdev(struct net_device *dev) 7290 { 7291 int err; 7292 7293 rtnl_lock(); 7294 err = register_netdevice(dev); 7295 rtnl_unlock(); 7296 return err; 7297 } 7298 EXPORT_SYMBOL(register_netdev); 7299 7300 int netdev_refcnt_read(const struct net_device *dev) 7301 { 7302 int i, refcnt = 0; 7303 7304 for_each_possible_cpu(i) 7305 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7306 return refcnt; 7307 } 7308 EXPORT_SYMBOL(netdev_refcnt_read); 7309 7310 /** 7311 * netdev_wait_allrefs - wait until all references are gone. 7312 * @dev: target net_device 7313 * 7314 * This is called when unregistering network devices. 7315 * 7316 * Any protocol or device that holds a reference should register 7317 * for netdevice notification, and cleanup and put back the 7318 * reference if they receive an UNREGISTER event. 7319 * We can get stuck here if buggy protocols don't correctly 7320 * call dev_put. 7321 */ 7322 static void netdev_wait_allrefs(struct net_device *dev) 7323 { 7324 unsigned long rebroadcast_time, warning_time; 7325 int refcnt; 7326 7327 linkwatch_forget_dev(dev); 7328 7329 rebroadcast_time = warning_time = jiffies; 7330 refcnt = netdev_refcnt_read(dev); 7331 7332 while (refcnt != 0) { 7333 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7334 rtnl_lock(); 7335 7336 /* Rebroadcast unregister notification */ 7337 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7338 7339 __rtnl_unlock(); 7340 rcu_barrier(); 7341 rtnl_lock(); 7342 7343 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7344 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7345 &dev->state)) { 7346 /* We must not have linkwatch events 7347 * pending on unregister. If this 7348 * happens, we simply run the queue 7349 * unscheduled, resulting in a noop 7350 * for this device. 7351 */ 7352 linkwatch_run_queue(); 7353 } 7354 7355 __rtnl_unlock(); 7356 7357 rebroadcast_time = jiffies; 7358 } 7359 7360 msleep(250); 7361 7362 refcnt = netdev_refcnt_read(dev); 7363 7364 if (time_after(jiffies, warning_time + 10 * HZ)) { 7365 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7366 dev->name, refcnt); 7367 warning_time = jiffies; 7368 } 7369 } 7370 } 7371 7372 /* The sequence is: 7373 * 7374 * rtnl_lock(); 7375 * ... 7376 * register_netdevice(x1); 7377 * register_netdevice(x2); 7378 * ... 7379 * unregister_netdevice(y1); 7380 * unregister_netdevice(y2); 7381 * ... 7382 * rtnl_unlock(); 7383 * free_netdev(y1); 7384 * free_netdev(y2); 7385 * 7386 * We are invoked by rtnl_unlock(). 7387 * This allows us to deal with problems: 7388 * 1) We can delete sysfs objects which invoke hotplug 7389 * without deadlocking with linkwatch via keventd. 7390 * 2) Since we run with the RTNL semaphore not held, we can sleep 7391 * safely in order to wait for the netdev refcnt to drop to zero. 7392 * 7393 * We must not return until all unregister events added during 7394 * the interval the lock was held have been completed. 7395 */ 7396 void netdev_run_todo(void) 7397 { 7398 struct list_head list; 7399 7400 /* Snapshot list, allow later requests */ 7401 list_replace_init(&net_todo_list, &list); 7402 7403 __rtnl_unlock(); 7404 7405 7406 /* Wait for rcu callbacks to finish before next phase */ 7407 if (!list_empty(&list)) 7408 rcu_barrier(); 7409 7410 while (!list_empty(&list)) { 7411 struct net_device *dev 7412 = list_first_entry(&list, struct net_device, todo_list); 7413 list_del(&dev->todo_list); 7414 7415 rtnl_lock(); 7416 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7417 __rtnl_unlock(); 7418 7419 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7420 pr_err("network todo '%s' but state %d\n", 7421 dev->name, dev->reg_state); 7422 dump_stack(); 7423 continue; 7424 } 7425 7426 dev->reg_state = NETREG_UNREGISTERED; 7427 7428 netdev_wait_allrefs(dev); 7429 7430 /* paranoia */ 7431 BUG_ON(netdev_refcnt_read(dev)); 7432 BUG_ON(!list_empty(&dev->ptype_all)); 7433 BUG_ON(!list_empty(&dev->ptype_specific)); 7434 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7435 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7436 WARN_ON(dev->dn_ptr); 7437 7438 if (dev->destructor) 7439 dev->destructor(dev); 7440 7441 /* Report a network device has been unregistered */ 7442 rtnl_lock(); 7443 dev_net(dev)->dev_unreg_count--; 7444 __rtnl_unlock(); 7445 wake_up(&netdev_unregistering_wq); 7446 7447 /* Free network device */ 7448 kobject_put(&dev->dev.kobj); 7449 } 7450 } 7451 7452 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7453 * all the same fields in the same order as net_device_stats, with only 7454 * the type differing, but rtnl_link_stats64 may have additional fields 7455 * at the end for newer counters. 7456 */ 7457 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7458 const struct net_device_stats *netdev_stats) 7459 { 7460 #if BITS_PER_LONG == 64 7461 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7462 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7463 /* zero out counters that only exist in rtnl_link_stats64 */ 7464 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7465 sizeof(*stats64) - sizeof(*netdev_stats)); 7466 #else 7467 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7468 const unsigned long *src = (const unsigned long *)netdev_stats; 7469 u64 *dst = (u64 *)stats64; 7470 7471 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7472 for (i = 0; i < n; i++) 7473 dst[i] = src[i]; 7474 /* zero out counters that only exist in rtnl_link_stats64 */ 7475 memset((char *)stats64 + n * sizeof(u64), 0, 7476 sizeof(*stats64) - n * sizeof(u64)); 7477 #endif 7478 } 7479 EXPORT_SYMBOL(netdev_stats_to_stats64); 7480 7481 /** 7482 * dev_get_stats - get network device statistics 7483 * @dev: device to get statistics from 7484 * @storage: place to store stats 7485 * 7486 * Get network statistics from device. Return @storage. 7487 * The device driver may provide its own method by setting 7488 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7489 * otherwise the internal statistics structure is used. 7490 */ 7491 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7492 struct rtnl_link_stats64 *storage) 7493 { 7494 const struct net_device_ops *ops = dev->netdev_ops; 7495 7496 if (ops->ndo_get_stats64) { 7497 memset(storage, 0, sizeof(*storage)); 7498 ops->ndo_get_stats64(dev, storage); 7499 } else if (ops->ndo_get_stats) { 7500 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7501 } else { 7502 netdev_stats_to_stats64(storage, &dev->stats); 7503 } 7504 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7505 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7506 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7507 return storage; 7508 } 7509 EXPORT_SYMBOL(dev_get_stats); 7510 7511 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7512 { 7513 struct netdev_queue *queue = dev_ingress_queue(dev); 7514 7515 #ifdef CONFIG_NET_CLS_ACT 7516 if (queue) 7517 return queue; 7518 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7519 if (!queue) 7520 return NULL; 7521 netdev_init_one_queue(dev, queue, NULL); 7522 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7523 queue->qdisc_sleeping = &noop_qdisc; 7524 rcu_assign_pointer(dev->ingress_queue, queue); 7525 #endif 7526 return queue; 7527 } 7528 7529 static const struct ethtool_ops default_ethtool_ops; 7530 7531 void netdev_set_default_ethtool_ops(struct net_device *dev, 7532 const struct ethtool_ops *ops) 7533 { 7534 if (dev->ethtool_ops == &default_ethtool_ops) 7535 dev->ethtool_ops = ops; 7536 } 7537 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7538 7539 void netdev_freemem(struct net_device *dev) 7540 { 7541 char *addr = (char *)dev - dev->padded; 7542 7543 kvfree(addr); 7544 } 7545 7546 /** 7547 * alloc_netdev_mqs - allocate network device 7548 * @sizeof_priv: size of private data to allocate space for 7549 * @name: device name format string 7550 * @name_assign_type: origin of device name 7551 * @setup: callback to initialize device 7552 * @txqs: the number of TX subqueues to allocate 7553 * @rxqs: the number of RX subqueues to allocate 7554 * 7555 * Allocates a struct net_device with private data area for driver use 7556 * and performs basic initialization. Also allocates subqueue structs 7557 * for each queue on the device. 7558 */ 7559 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7560 unsigned char name_assign_type, 7561 void (*setup)(struct net_device *), 7562 unsigned int txqs, unsigned int rxqs) 7563 { 7564 struct net_device *dev; 7565 size_t alloc_size; 7566 struct net_device *p; 7567 7568 BUG_ON(strlen(name) >= sizeof(dev->name)); 7569 7570 if (txqs < 1) { 7571 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7572 return NULL; 7573 } 7574 7575 #ifdef CONFIG_SYSFS 7576 if (rxqs < 1) { 7577 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7578 return NULL; 7579 } 7580 #endif 7581 7582 alloc_size = sizeof(struct net_device); 7583 if (sizeof_priv) { 7584 /* ensure 32-byte alignment of private area */ 7585 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7586 alloc_size += sizeof_priv; 7587 } 7588 /* ensure 32-byte alignment of whole construct */ 7589 alloc_size += NETDEV_ALIGN - 1; 7590 7591 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7592 if (!p) 7593 p = vzalloc(alloc_size); 7594 if (!p) 7595 return NULL; 7596 7597 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7598 dev->padded = (char *)dev - (char *)p; 7599 7600 dev->pcpu_refcnt = alloc_percpu(int); 7601 if (!dev->pcpu_refcnt) 7602 goto free_dev; 7603 7604 if (dev_addr_init(dev)) 7605 goto free_pcpu; 7606 7607 dev_mc_init(dev); 7608 dev_uc_init(dev); 7609 7610 dev_net_set(dev, &init_net); 7611 7612 dev->gso_max_size = GSO_MAX_SIZE; 7613 dev->gso_max_segs = GSO_MAX_SEGS; 7614 7615 INIT_LIST_HEAD(&dev->napi_list); 7616 INIT_LIST_HEAD(&dev->unreg_list); 7617 INIT_LIST_HEAD(&dev->close_list); 7618 INIT_LIST_HEAD(&dev->link_watch_list); 7619 INIT_LIST_HEAD(&dev->adj_list.upper); 7620 INIT_LIST_HEAD(&dev->adj_list.lower); 7621 INIT_LIST_HEAD(&dev->ptype_all); 7622 INIT_LIST_HEAD(&dev->ptype_specific); 7623 #ifdef CONFIG_NET_SCHED 7624 hash_init(dev->qdisc_hash); 7625 #endif 7626 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7627 setup(dev); 7628 7629 if (!dev->tx_queue_len) { 7630 dev->priv_flags |= IFF_NO_QUEUE; 7631 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7632 } 7633 7634 dev->num_tx_queues = txqs; 7635 dev->real_num_tx_queues = txqs; 7636 if (netif_alloc_netdev_queues(dev)) 7637 goto free_all; 7638 7639 #ifdef CONFIG_SYSFS 7640 dev->num_rx_queues = rxqs; 7641 dev->real_num_rx_queues = rxqs; 7642 if (netif_alloc_rx_queues(dev)) 7643 goto free_all; 7644 #endif 7645 7646 strcpy(dev->name, name); 7647 dev->name_assign_type = name_assign_type; 7648 dev->group = INIT_NETDEV_GROUP; 7649 if (!dev->ethtool_ops) 7650 dev->ethtool_ops = &default_ethtool_ops; 7651 7652 nf_hook_ingress_init(dev); 7653 7654 return dev; 7655 7656 free_all: 7657 free_netdev(dev); 7658 return NULL; 7659 7660 free_pcpu: 7661 free_percpu(dev->pcpu_refcnt); 7662 free_dev: 7663 netdev_freemem(dev); 7664 return NULL; 7665 } 7666 EXPORT_SYMBOL(alloc_netdev_mqs); 7667 7668 /** 7669 * free_netdev - free network device 7670 * @dev: device 7671 * 7672 * This function does the last stage of destroying an allocated device 7673 * interface. The reference to the device object is released. 7674 * If this is the last reference then it will be freed. 7675 * Must be called in process context. 7676 */ 7677 void free_netdev(struct net_device *dev) 7678 { 7679 struct napi_struct *p, *n; 7680 7681 might_sleep(); 7682 netif_free_tx_queues(dev); 7683 #ifdef CONFIG_SYSFS 7684 kvfree(dev->_rx); 7685 #endif 7686 7687 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7688 7689 /* Flush device addresses */ 7690 dev_addr_flush(dev); 7691 7692 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7693 netif_napi_del(p); 7694 7695 free_percpu(dev->pcpu_refcnt); 7696 dev->pcpu_refcnt = NULL; 7697 7698 /* Compatibility with error handling in drivers */ 7699 if (dev->reg_state == NETREG_UNINITIALIZED) { 7700 netdev_freemem(dev); 7701 return; 7702 } 7703 7704 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7705 dev->reg_state = NETREG_RELEASED; 7706 7707 /* will free via device release */ 7708 put_device(&dev->dev); 7709 } 7710 EXPORT_SYMBOL(free_netdev); 7711 7712 /** 7713 * synchronize_net - Synchronize with packet receive processing 7714 * 7715 * Wait for packets currently being received to be done. 7716 * Does not block later packets from starting. 7717 */ 7718 void synchronize_net(void) 7719 { 7720 might_sleep(); 7721 if (rtnl_is_locked()) 7722 synchronize_rcu_expedited(); 7723 else 7724 synchronize_rcu(); 7725 } 7726 EXPORT_SYMBOL(synchronize_net); 7727 7728 /** 7729 * unregister_netdevice_queue - remove device from the kernel 7730 * @dev: device 7731 * @head: list 7732 * 7733 * This function shuts down a device interface and removes it 7734 * from the kernel tables. 7735 * If head not NULL, device is queued to be unregistered later. 7736 * 7737 * Callers must hold the rtnl semaphore. You may want 7738 * unregister_netdev() instead of this. 7739 */ 7740 7741 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7742 { 7743 ASSERT_RTNL(); 7744 7745 if (head) { 7746 list_move_tail(&dev->unreg_list, head); 7747 } else { 7748 rollback_registered(dev); 7749 /* Finish processing unregister after unlock */ 7750 net_set_todo(dev); 7751 } 7752 } 7753 EXPORT_SYMBOL(unregister_netdevice_queue); 7754 7755 /** 7756 * unregister_netdevice_many - unregister many devices 7757 * @head: list of devices 7758 * 7759 * Note: As most callers use a stack allocated list_head, 7760 * we force a list_del() to make sure stack wont be corrupted later. 7761 */ 7762 void unregister_netdevice_many(struct list_head *head) 7763 { 7764 struct net_device *dev; 7765 7766 if (!list_empty(head)) { 7767 rollback_registered_many(head); 7768 list_for_each_entry(dev, head, unreg_list) 7769 net_set_todo(dev); 7770 list_del(head); 7771 } 7772 } 7773 EXPORT_SYMBOL(unregister_netdevice_many); 7774 7775 /** 7776 * unregister_netdev - remove device from the kernel 7777 * @dev: device 7778 * 7779 * This function shuts down a device interface and removes it 7780 * from the kernel tables. 7781 * 7782 * This is just a wrapper for unregister_netdevice that takes 7783 * the rtnl semaphore. In general you want to use this and not 7784 * unregister_netdevice. 7785 */ 7786 void unregister_netdev(struct net_device *dev) 7787 { 7788 rtnl_lock(); 7789 unregister_netdevice(dev); 7790 rtnl_unlock(); 7791 } 7792 EXPORT_SYMBOL(unregister_netdev); 7793 7794 /** 7795 * dev_change_net_namespace - move device to different nethost namespace 7796 * @dev: device 7797 * @net: network namespace 7798 * @pat: If not NULL name pattern to try if the current device name 7799 * is already taken in the destination network namespace. 7800 * 7801 * This function shuts down a device interface and moves it 7802 * to a new network namespace. On success 0 is returned, on 7803 * a failure a netagive errno code is returned. 7804 * 7805 * Callers must hold the rtnl semaphore. 7806 */ 7807 7808 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7809 { 7810 int err; 7811 7812 ASSERT_RTNL(); 7813 7814 /* Don't allow namespace local devices to be moved. */ 7815 err = -EINVAL; 7816 if (dev->features & NETIF_F_NETNS_LOCAL) 7817 goto out; 7818 7819 /* Ensure the device has been registrered */ 7820 if (dev->reg_state != NETREG_REGISTERED) 7821 goto out; 7822 7823 /* Get out if there is nothing todo */ 7824 err = 0; 7825 if (net_eq(dev_net(dev), net)) 7826 goto out; 7827 7828 /* Pick the destination device name, and ensure 7829 * we can use it in the destination network namespace. 7830 */ 7831 err = -EEXIST; 7832 if (__dev_get_by_name(net, dev->name)) { 7833 /* We get here if we can't use the current device name */ 7834 if (!pat) 7835 goto out; 7836 if (dev_get_valid_name(net, dev, pat) < 0) 7837 goto out; 7838 } 7839 7840 /* 7841 * And now a mini version of register_netdevice unregister_netdevice. 7842 */ 7843 7844 /* If device is running close it first. */ 7845 dev_close(dev); 7846 7847 /* And unlink it from device chain */ 7848 err = -ENODEV; 7849 unlist_netdevice(dev); 7850 7851 synchronize_net(); 7852 7853 /* Shutdown queueing discipline. */ 7854 dev_shutdown(dev); 7855 7856 /* Notify protocols, that we are about to destroy 7857 this device. They should clean all the things. 7858 7859 Note that dev->reg_state stays at NETREG_REGISTERED. 7860 This is wanted because this way 8021q and macvlan know 7861 the device is just moving and can keep their slaves up. 7862 */ 7863 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7864 rcu_barrier(); 7865 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7866 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7867 7868 /* 7869 * Flush the unicast and multicast chains 7870 */ 7871 dev_uc_flush(dev); 7872 dev_mc_flush(dev); 7873 7874 /* Send a netdev-removed uevent to the old namespace */ 7875 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7876 netdev_adjacent_del_links(dev); 7877 7878 /* Actually switch the network namespace */ 7879 dev_net_set(dev, net); 7880 7881 /* If there is an ifindex conflict assign a new one */ 7882 if (__dev_get_by_index(net, dev->ifindex)) 7883 dev->ifindex = dev_new_index(net); 7884 7885 /* Send a netdev-add uevent to the new namespace */ 7886 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7887 netdev_adjacent_add_links(dev); 7888 7889 /* Fixup kobjects */ 7890 err = device_rename(&dev->dev, dev->name); 7891 WARN_ON(err); 7892 7893 /* Add the device back in the hashes */ 7894 list_netdevice(dev); 7895 7896 /* Notify protocols, that a new device appeared. */ 7897 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7898 7899 /* 7900 * Prevent userspace races by waiting until the network 7901 * device is fully setup before sending notifications. 7902 */ 7903 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7904 7905 synchronize_net(); 7906 err = 0; 7907 out: 7908 return err; 7909 } 7910 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7911 7912 static int dev_cpu_dead(unsigned int oldcpu) 7913 { 7914 struct sk_buff **list_skb; 7915 struct sk_buff *skb; 7916 unsigned int cpu; 7917 struct softnet_data *sd, *oldsd; 7918 7919 local_irq_disable(); 7920 cpu = smp_processor_id(); 7921 sd = &per_cpu(softnet_data, cpu); 7922 oldsd = &per_cpu(softnet_data, oldcpu); 7923 7924 /* Find end of our completion_queue. */ 7925 list_skb = &sd->completion_queue; 7926 while (*list_skb) 7927 list_skb = &(*list_skb)->next; 7928 /* Append completion queue from offline CPU. */ 7929 *list_skb = oldsd->completion_queue; 7930 oldsd->completion_queue = NULL; 7931 7932 /* Append output queue from offline CPU. */ 7933 if (oldsd->output_queue) { 7934 *sd->output_queue_tailp = oldsd->output_queue; 7935 sd->output_queue_tailp = oldsd->output_queue_tailp; 7936 oldsd->output_queue = NULL; 7937 oldsd->output_queue_tailp = &oldsd->output_queue; 7938 } 7939 /* Append NAPI poll list from offline CPU, with one exception : 7940 * process_backlog() must be called by cpu owning percpu backlog. 7941 * We properly handle process_queue & input_pkt_queue later. 7942 */ 7943 while (!list_empty(&oldsd->poll_list)) { 7944 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7945 struct napi_struct, 7946 poll_list); 7947 7948 list_del_init(&napi->poll_list); 7949 if (napi->poll == process_backlog) 7950 napi->state = 0; 7951 else 7952 ____napi_schedule(sd, napi); 7953 } 7954 7955 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7956 local_irq_enable(); 7957 7958 /* Process offline CPU's input_pkt_queue */ 7959 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7960 netif_rx_ni(skb); 7961 input_queue_head_incr(oldsd); 7962 } 7963 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7964 netif_rx_ni(skb); 7965 input_queue_head_incr(oldsd); 7966 } 7967 7968 return 0; 7969 } 7970 7971 /** 7972 * netdev_increment_features - increment feature set by one 7973 * @all: current feature set 7974 * @one: new feature set 7975 * @mask: mask feature set 7976 * 7977 * Computes a new feature set after adding a device with feature set 7978 * @one to the master device with current feature set @all. Will not 7979 * enable anything that is off in @mask. Returns the new feature set. 7980 */ 7981 netdev_features_t netdev_increment_features(netdev_features_t all, 7982 netdev_features_t one, netdev_features_t mask) 7983 { 7984 if (mask & NETIF_F_HW_CSUM) 7985 mask |= NETIF_F_CSUM_MASK; 7986 mask |= NETIF_F_VLAN_CHALLENGED; 7987 7988 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 7989 all &= one | ~NETIF_F_ALL_FOR_ALL; 7990 7991 /* If one device supports hw checksumming, set for all. */ 7992 if (all & NETIF_F_HW_CSUM) 7993 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 7994 7995 return all; 7996 } 7997 EXPORT_SYMBOL(netdev_increment_features); 7998 7999 static struct hlist_head * __net_init netdev_create_hash(void) 8000 { 8001 int i; 8002 struct hlist_head *hash; 8003 8004 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8005 if (hash != NULL) 8006 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8007 INIT_HLIST_HEAD(&hash[i]); 8008 8009 return hash; 8010 } 8011 8012 /* Initialize per network namespace state */ 8013 static int __net_init netdev_init(struct net *net) 8014 { 8015 if (net != &init_net) 8016 INIT_LIST_HEAD(&net->dev_base_head); 8017 8018 net->dev_name_head = netdev_create_hash(); 8019 if (net->dev_name_head == NULL) 8020 goto err_name; 8021 8022 net->dev_index_head = netdev_create_hash(); 8023 if (net->dev_index_head == NULL) 8024 goto err_idx; 8025 8026 return 0; 8027 8028 err_idx: 8029 kfree(net->dev_name_head); 8030 err_name: 8031 return -ENOMEM; 8032 } 8033 8034 /** 8035 * netdev_drivername - network driver for the device 8036 * @dev: network device 8037 * 8038 * Determine network driver for device. 8039 */ 8040 const char *netdev_drivername(const struct net_device *dev) 8041 { 8042 const struct device_driver *driver; 8043 const struct device *parent; 8044 const char *empty = ""; 8045 8046 parent = dev->dev.parent; 8047 if (!parent) 8048 return empty; 8049 8050 driver = parent->driver; 8051 if (driver && driver->name) 8052 return driver->name; 8053 return empty; 8054 } 8055 8056 static void __netdev_printk(const char *level, const struct net_device *dev, 8057 struct va_format *vaf) 8058 { 8059 if (dev && dev->dev.parent) { 8060 dev_printk_emit(level[1] - '0', 8061 dev->dev.parent, 8062 "%s %s %s%s: %pV", 8063 dev_driver_string(dev->dev.parent), 8064 dev_name(dev->dev.parent), 8065 netdev_name(dev), netdev_reg_state(dev), 8066 vaf); 8067 } else if (dev) { 8068 printk("%s%s%s: %pV", 8069 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8070 } else { 8071 printk("%s(NULL net_device): %pV", level, vaf); 8072 } 8073 } 8074 8075 void netdev_printk(const char *level, const struct net_device *dev, 8076 const char *format, ...) 8077 { 8078 struct va_format vaf; 8079 va_list args; 8080 8081 va_start(args, format); 8082 8083 vaf.fmt = format; 8084 vaf.va = &args; 8085 8086 __netdev_printk(level, dev, &vaf); 8087 8088 va_end(args); 8089 } 8090 EXPORT_SYMBOL(netdev_printk); 8091 8092 #define define_netdev_printk_level(func, level) \ 8093 void func(const struct net_device *dev, const char *fmt, ...) \ 8094 { \ 8095 struct va_format vaf; \ 8096 va_list args; \ 8097 \ 8098 va_start(args, fmt); \ 8099 \ 8100 vaf.fmt = fmt; \ 8101 vaf.va = &args; \ 8102 \ 8103 __netdev_printk(level, dev, &vaf); \ 8104 \ 8105 va_end(args); \ 8106 } \ 8107 EXPORT_SYMBOL(func); 8108 8109 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8110 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8111 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8112 define_netdev_printk_level(netdev_err, KERN_ERR); 8113 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8114 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8115 define_netdev_printk_level(netdev_info, KERN_INFO); 8116 8117 static void __net_exit netdev_exit(struct net *net) 8118 { 8119 kfree(net->dev_name_head); 8120 kfree(net->dev_index_head); 8121 } 8122 8123 static struct pernet_operations __net_initdata netdev_net_ops = { 8124 .init = netdev_init, 8125 .exit = netdev_exit, 8126 }; 8127 8128 static void __net_exit default_device_exit(struct net *net) 8129 { 8130 struct net_device *dev, *aux; 8131 /* 8132 * Push all migratable network devices back to the 8133 * initial network namespace 8134 */ 8135 rtnl_lock(); 8136 for_each_netdev_safe(net, dev, aux) { 8137 int err; 8138 char fb_name[IFNAMSIZ]; 8139 8140 /* Ignore unmoveable devices (i.e. loopback) */ 8141 if (dev->features & NETIF_F_NETNS_LOCAL) 8142 continue; 8143 8144 /* Leave virtual devices for the generic cleanup */ 8145 if (dev->rtnl_link_ops) 8146 continue; 8147 8148 /* Push remaining network devices to init_net */ 8149 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8150 err = dev_change_net_namespace(dev, &init_net, fb_name); 8151 if (err) { 8152 pr_emerg("%s: failed to move %s to init_net: %d\n", 8153 __func__, dev->name, err); 8154 BUG(); 8155 } 8156 } 8157 rtnl_unlock(); 8158 } 8159 8160 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8161 { 8162 /* Return with the rtnl_lock held when there are no network 8163 * devices unregistering in any network namespace in net_list. 8164 */ 8165 struct net *net; 8166 bool unregistering; 8167 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8168 8169 add_wait_queue(&netdev_unregistering_wq, &wait); 8170 for (;;) { 8171 unregistering = false; 8172 rtnl_lock(); 8173 list_for_each_entry(net, net_list, exit_list) { 8174 if (net->dev_unreg_count > 0) { 8175 unregistering = true; 8176 break; 8177 } 8178 } 8179 if (!unregistering) 8180 break; 8181 __rtnl_unlock(); 8182 8183 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8184 } 8185 remove_wait_queue(&netdev_unregistering_wq, &wait); 8186 } 8187 8188 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8189 { 8190 /* At exit all network devices most be removed from a network 8191 * namespace. Do this in the reverse order of registration. 8192 * Do this across as many network namespaces as possible to 8193 * improve batching efficiency. 8194 */ 8195 struct net_device *dev; 8196 struct net *net; 8197 LIST_HEAD(dev_kill_list); 8198 8199 /* To prevent network device cleanup code from dereferencing 8200 * loopback devices or network devices that have been freed 8201 * wait here for all pending unregistrations to complete, 8202 * before unregistring the loopback device and allowing the 8203 * network namespace be freed. 8204 * 8205 * The netdev todo list containing all network devices 8206 * unregistrations that happen in default_device_exit_batch 8207 * will run in the rtnl_unlock() at the end of 8208 * default_device_exit_batch. 8209 */ 8210 rtnl_lock_unregistering(net_list); 8211 list_for_each_entry(net, net_list, exit_list) { 8212 for_each_netdev_reverse(net, dev) { 8213 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8214 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8215 else 8216 unregister_netdevice_queue(dev, &dev_kill_list); 8217 } 8218 } 8219 unregister_netdevice_many(&dev_kill_list); 8220 rtnl_unlock(); 8221 } 8222 8223 static struct pernet_operations __net_initdata default_device_ops = { 8224 .exit = default_device_exit, 8225 .exit_batch = default_device_exit_batch, 8226 }; 8227 8228 /* 8229 * Initialize the DEV module. At boot time this walks the device list and 8230 * unhooks any devices that fail to initialise (normally hardware not 8231 * present) and leaves us with a valid list of present and active devices. 8232 * 8233 */ 8234 8235 /* 8236 * This is called single threaded during boot, so no need 8237 * to take the rtnl semaphore. 8238 */ 8239 static int __init net_dev_init(void) 8240 { 8241 int i, rc = -ENOMEM; 8242 8243 BUG_ON(!dev_boot_phase); 8244 8245 if (dev_proc_init()) 8246 goto out; 8247 8248 if (netdev_kobject_init()) 8249 goto out; 8250 8251 INIT_LIST_HEAD(&ptype_all); 8252 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8253 INIT_LIST_HEAD(&ptype_base[i]); 8254 8255 INIT_LIST_HEAD(&offload_base); 8256 8257 if (register_pernet_subsys(&netdev_net_ops)) 8258 goto out; 8259 8260 /* 8261 * Initialise the packet receive queues. 8262 */ 8263 8264 for_each_possible_cpu(i) { 8265 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8266 struct softnet_data *sd = &per_cpu(softnet_data, i); 8267 8268 INIT_WORK(flush, flush_backlog); 8269 8270 skb_queue_head_init(&sd->input_pkt_queue); 8271 skb_queue_head_init(&sd->process_queue); 8272 INIT_LIST_HEAD(&sd->poll_list); 8273 sd->output_queue_tailp = &sd->output_queue; 8274 #ifdef CONFIG_RPS 8275 sd->csd.func = rps_trigger_softirq; 8276 sd->csd.info = sd; 8277 sd->cpu = i; 8278 #endif 8279 8280 sd->backlog.poll = process_backlog; 8281 sd->backlog.weight = weight_p; 8282 } 8283 8284 dev_boot_phase = 0; 8285 8286 /* The loopback device is special if any other network devices 8287 * is present in a network namespace the loopback device must 8288 * be present. Since we now dynamically allocate and free the 8289 * loopback device ensure this invariant is maintained by 8290 * keeping the loopback device as the first device on the 8291 * list of network devices. Ensuring the loopback devices 8292 * is the first device that appears and the last network device 8293 * that disappears. 8294 */ 8295 if (register_pernet_device(&loopback_net_ops)) 8296 goto out; 8297 8298 if (register_pernet_device(&default_device_ops)) 8299 goto out; 8300 8301 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8302 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8303 8304 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8305 NULL, dev_cpu_dead); 8306 WARN_ON(rc < 0); 8307 dst_subsys_init(); 8308 rc = 0; 8309 out: 8310 return rc; 8311 } 8312 8313 subsys_initcall(net_dev_init); 8314