xref: /linux/net/core/dev.c (revision 0427612cddef07568ba80596a02089181092783d)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 
149 #include "net-sysfs.h"
150 
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 	if (dev->flags & IFF_UP)
1184 		return -EBUSY;
1185 
1186 	write_seqcount_begin(&devnet_rename_seq);
1187 
1188 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 		write_seqcount_end(&devnet_rename_seq);
1190 		return 0;
1191 	}
1192 
1193 	memcpy(oldname, dev->name, IFNAMSIZ);
1194 
1195 	err = dev_get_valid_name(net, dev, newname);
1196 	if (err < 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return err;
1199 	}
1200 
1201 	if (oldname[0] && !strchr(oldname, '%'))
1202 		netdev_info(dev, "renamed from %s\n", oldname);
1203 
1204 	old_assign_type = dev->name_assign_type;
1205 	dev->name_assign_type = NET_NAME_RENAMED;
1206 
1207 rollback:
1208 	ret = device_rename(&dev->dev, dev->name);
1209 	if (ret) {
1210 		memcpy(dev->name, oldname, IFNAMSIZ);
1211 		dev->name_assign_type = old_assign_type;
1212 		write_seqcount_end(&devnet_rename_seq);
1213 		return ret;
1214 	}
1215 
1216 	write_seqcount_end(&devnet_rename_seq);
1217 
1218 	netdev_adjacent_rename_links(dev, oldname);
1219 
1220 	write_lock_bh(&dev_base_lock);
1221 	hlist_del_rcu(&dev->name_hlist);
1222 	write_unlock_bh(&dev_base_lock);
1223 
1224 	synchronize_rcu();
1225 
1226 	write_lock_bh(&dev_base_lock);
1227 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 	write_unlock_bh(&dev_base_lock);
1229 
1230 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 	ret = notifier_to_errno(ret);
1232 
1233 	if (ret) {
1234 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1235 		if (err >= 0) {
1236 			err = ret;
1237 			write_seqcount_begin(&devnet_rename_seq);
1238 			memcpy(dev->name, oldname, IFNAMSIZ);
1239 			memcpy(oldname, newname, IFNAMSIZ);
1240 			dev->name_assign_type = old_assign_type;
1241 			old_assign_type = NET_NAME_RENAMED;
1242 			goto rollback;
1243 		} else {
1244 			pr_err("%s: name change rollback failed: %d\n",
1245 			       dev->name, ret);
1246 		}
1247 	}
1248 
1249 	return err;
1250 }
1251 
1252 /**
1253  *	dev_set_alias - change ifalias of a device
1254  *	@dev: device
1255  *	@alias: name up to IFALIASZ
1256  *	@len: limit of bytes to copy from info
1257  *
1258  *	Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262 	struct dev_ifalias *new_alias = NULL;
1263 
1264 	if (len >= IFALIASZ)
1265 		return -EINVAL;
1266 
1267 	if (len) {
1268 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 		if (!new_alias)
1270 			return -ENOMEM;
1271 
1272 		memcpy(new_alias->ifalias, alias, len);
1273 		new_alias->ifalias[len] = 0;
1274 	}
1275 
1276 	mutex_lock(&ifalias_mutex);
1277 	rcu_swap_protected(dev->ifalias, new_alias,
1278 			   mutex_is_locked(&ifalias_mutex));
1279 	mutex_unlock(&ifalias_mutex);
1280 
1281 	if (new_alias)
1282 		kfree_rcu(new_alias, rcuhead);
1283 
1284 	return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287 
1288 /**
1289  *	dev_get_alias - get ifalias of a device
1290  *	@dev: device
1291  *	@name: buffer to store name of ifalias
1292  *	@len: size of buffer
1293  *
1294  *	get ifalias for a device.  Caller must make sure dev cannot go
1295  *	away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299 	const struct dev_ifalias *alias;
1300 	int ret = 0;
1301 
1302 	rcu_read_lock();
1303 	alias = rcu_dereference(dev->ifalias);
1304 	if (alias)
1305 		ret = snprintf(name, len, "%s", alias->ifalias);
1306 	rcu_read_unlock();
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  *	netdev_features_change - device changes features
1313  *	@dev: device to cause notification
1314  *
1315  *	Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322 
1323 /**
1324  *	netdev_state_change - device changes state
1325  *	@dev: device to cause notification
1326  *
1327  *	Called to indicate a device has changed state. This function calls
1328  *	the notifier chains for netdev_chain and sends a NEWLINK message
1329  *	to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333 	if (dev->flags & IFF_UP) {
1334 		struct netdev_notifier_change_info change_info = {
1335 			.info.dev = dev,
1336 		};
1337 
1338 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 					      &change_info.info);
1340 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 	}
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 	rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363 
1364 static int __dev_open(struct net_device *dev)
1365 {
1366 	const struct net_device_ops *ops = dev->netdev_ops;
1367 	int ret;
1368 
1369 	ASSERT_RTNL();
1370 
1371 	if (!netif_device_present(dev))
1372 		return -ENODEV;
1373 
1374 	/* Block netpoll from trying to do any rx path servicing.
1375 	 * If we don't do this there is a chance ndo_poll_controller
1376 	 * or ndo_poll may be running while we open the device
1377 	 */
1378 	netpoll_poll_disable(dev);
1379 
1380 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 	ret = notifier_to_errno(ret);
1382 	if (ret)
1383 		return ret;
1384 
1385 	set_bit(__LINK_STATE_START, &dev->state);
1386 
1387 	if (ops->ndo_validate_addr)
1388 		ret = ops->ndo_validate_addr(dev);
1389 
1390 	if (!ret && ops->ndo_open)
1391 		ret = ops->ndo_open(dev);
1392 
1393 	netpoll_poll_enable(dev);
1394 
1395 	if (ret)
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 	else {
1398 		dev->flags |= IFF_UP;
1399 		dev_set_rx_mode(dev);
1400 		dev_activate(dev);
1401 		add_device_randomness(dev->dev_addr, dev->addr_len);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  *	dev_open	- prepare an interface for use.
1409  *	@dev:	device to open
1410  *
1411  *	Takes a device from down to up state. The device's private open
1412  *	function is invoked and then the multicast lists are loaded. Finally
1413  *	the device is moved into the up state and a %NETDEV_UP message is
1414  *	sent to the netdev notifier chain.
1415  *
1416  *	Calling this function on an active interface is a nop. On a failure
1417  *	a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421 	int ret;
1422 
1423 	if (dev->flags & IFF_UP)
1424 		return 0;
1425 
1426 	ret = __dev_open(dev);
1427 	if (ret < 0)
1428 		return ret;
1429 
1430 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 	call_netdevice_notifiers(NETDEV_UP, dev);
1432 
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436 
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439 	struct net_device *dev;
1440 
1441 	ASSERT_RTNL();
1442 	might_sleep();
1443 
1444 	list_for_each_entry(dev, head, close_list) {
1445 		/* Temporarily disable netpoll until the interface is down */
1446 		netpoll_poll_disable(dev);
1447 
1448 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449 
1450 		clear_bit(__LINK_STATE_START, &dev->state);
1451 
1452 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1453 		 * can be even on different cpu. So just clear netif_running().
1454 		 *
1455 		 * dev->stop() will invoke napi_disable() on all of it's
1456 		 * napi_struct instances on this device.
1457 		 */
1458 		smp_mb__after_atomic(); /* Commit netif_running(). */
1459 	}
1460 
1461 	dev_deactivate_many(head);
1462 
1463 	list_for_each_entry(dev, head, close_list) {
1464 		const struct net_device_ops *ops = dev->netdev_ops;
1465 
1466 		/*
1467 		 *	Call the device specific close. This cannot fail.
1468 		 *	Only if device is UP
1469 		 *
1470 		 *	We allow it to be called even after a DETACH hot-plug
1471 		 *	event.
1472 		 */
1473 		if (ops->ndo_stop)
1474 			ops->ndo_stop(dev);
1475 
1476 		dev->flags &= ~IFF_UP;
1477 		netpoll_poll_enable(dev);
1478 	}
1479 }
1480 
1481 static void __dev_close(struct net_device *dev)
1482 {
1483 	LIST_HEAD(single);
1484 
1485 	list_add(&dev->close_list, &single);
1486 	__dev_close_many(&single);
1487 	list_del(&single);
1488 }
1489 
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492 	struct net_device *dev, *tmp;
1493 
1494 	/* Remove the devices that don't need to be closed */
1495 	list_for_each_entry_safe(dev, tmp, head, close_list)
1496 		if (!(dev->flags & IFF_UP))
1497 			list_del_init(&dev->close_list);
1498 
1499 	__dev_close_many(head);
1500 
1501 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 		if (unlink)
1505 			list_del_init(&dev->close_list);
1506 	}
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509 
1510 /**
1511  *	dev_close - shutdown an interface.
1512  *	@dev: device to shutdown
1513  *
1514  *	This function moves an active device into down state. A
1515  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *	chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521 	if (dev->flags & IFF_UP) {
1522 		LIST_HEAD(single);
1523 
1524 		list_add(&dev->close_list, &single);
1525 		dev_close_many(&single, true);
1526 		list_del(&single);
1527 	}
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530 
1531 
1532 /**
1533  *	dev_disable_lro - disable Large Receive Offload on a device
1534  *	@dev: device
1535  *
1536  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *	called under RTNL.  This is needed if received packets may be
1538  *	forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542 	struct net_device *lower_dev;
1543 	struct list_head *iter;
1544 
1545 	dev->wanted_features &= ~NETIF_F_LRO;
1546 	netdev_update_features(dev);
1547 
1548 	if (unlikely(dev->features & NETIF_F_LRO))
1549 		netdev_WARN(dev, "failed to disable LRO!\n");
1550 
1551 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 		dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555 
1556 /**
1557  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *	@dev: device
1559  *
1560  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *	called under RTNL.  This is needed if Generic XDP is installed on
1562  *	the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 	netdev_update_features(dev);
1568 
1569 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572 
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val) 						\
1576 	case NETDEV_##val:				\
1577 		return "NETDEV_" __stringify(val);
1578 	switch (cmd) {
1579 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 	}
1589 #undef N
1590 	return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593 
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 				   struct net_device *dev)
1596 {
1597 	struct netdev_notifier_info info = {
1598 		.dev = dev,
1599 	};
1600 
1601 	return nb->notifier_call(nb, val, &info);
1602 }
1603 
1604 static int dev_boot_phase = 1;
1605 
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619 
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622 	struct net_device *dev;
1623 	struct net_device *last;
1624 	struct net *net;
1625 	int err;
1626 
1627 	/* Close race with setup_net() and cleanup_net() */
1628 	down_write(&pernet_ops_rwsem);
1629 	rtnl_lock();
1630 	err = raw_notifier_chain_register(&netdev_chain, nb);
1631 	if (err)
1632 		goto unlock;
1633 	if (dev_boot_phase)
1634 		goto unlock;
1635 	for_each_net(net) {
1636 		for_each_netdev(net, dev) {
1637 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 			err = notifier_to_errno(err);
1639 			if (err)
1640 				goto rollback;
1641 
1642 			if (!(dev->flags & IFF_UP))
1643 				continue;
1644 
1645 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 		}
1647 	}
1648 
1649 unlock:
1650 	rtnl_unlock();
1651 	up_write(&pernet_ops_rwsem);
1652 	return err;
1653 
1654 rollback:
1655 	last = dev;
1656 	for_each_net(net) {
1657 		for_each_netdev(net, dev) {
1658 			if (dev == last)
1659 				goto outroll;
1660 
1661 			if (dev->flags & IFF_UP) {
1662 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 							dev);
1664 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 			}
1666 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 		}
1668 	}
1669 
1670 outroll:
1671 	raw_notifier_chain_unregister(&netdev_chain, nb);
1672 	goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675 
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689 
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692 	struct net_device *dev;
1693 	struct net *net;
1694 	int err;
1695 
1696 	/* Close race with setup_net() and cleanup_net() */
1697 	down_write(&pernet_ops_rwsem);
1698 	rtnl_lock();
1699 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 	if (err)
1701 		goto unlock;
1702 
1703 	for_each_net(net) {
1704 		for_each_netdev(net, dev) {
1705 			if (dev->flags & IFF_UP) {
1706 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 							dev);
1708 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 			}
1710 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 		}
1712 	}
1713 unlock:
1714 	rtnl_unlock();
1715 	up_write(&pernet_ops_rwsem);
1716 	return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719 
1720 /**
1721  *	call_netdevice_notifiers_info - call all network notifier blocks
1722  *	@val: value passed unmodified to notifier function
1723  *	@info: notifier information data
1724  *
1725  *	Call all network notifier blocks.  Parameters and return value
1726  *	are as for raw_notifier_call_chain().
1727  */
1728 
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730 					 struct netdev_notifier_info *info)
1731 {
1732 	ASSERT_RTNL();
1733 	return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735 
1736 /**
1737  *	call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747 	struct netdev_notifier_info info = {
1748 		.dev = dev,
1749 	};
1750 
1751 	return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754 
1755 /**
1756  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1757  *	@val: value passed unmodified to notifier function
1758  *	@dev: net_device pointer passed unmodified to notifier function
1759  *	@arg: additional u32 argument passed to the notifier function
1760  *
1761  *	Call all network notifier blocks.  Parameters and return value
1762  *	are as for raw_notifier_call_chain().
1763  */
1764 static int call_netdevice_notifiers_mtu(unsigned long val,
1765 					struct net_device *dev, u32 arg)
1766 {
1767 	struct netdev_notifier_info_ext info = {
1768 		.info.dev = dev,
1769 		.ext.mtu = arg,
1770 	};
1771 
1772 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773 
1774 	return call_netdevice_notifiers_info(val, &info.info);
1775 }
1776 
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779 
1780 void net_inc_ingress_queue(void)
1781 {
1782 	static_branch_inc(&ingress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785 
1786 void net_dec_ingress_queue(void)
1787 {
1788 	static_branch_dec(&ingress_needed_key);
1789 }
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791 #endif
1792 
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795 
1796 void net_inc_egress_queue(void)
1797 {
1798 	static_branch_inc(&egress_needed_key);
1799 }
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801 
1802 void net_dec_egress_queue(void)
1803 {
1804 	static_branch_dec(&egress_needed_key);
1805 }
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807 #endif
1808 
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred;
1812 static atomic_t netstamp_wanted;
1813 static void netstamp_clear(struct work_struct *work)
1814 {
1815 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816 	int wanted;
1817 
1818 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1819 	if (wanted > 0)
1820 		static_branch_enable(&netstamp_needed_key);
1821 	else
1822 		static_branch_disable(&netstamp_needed_key);
1823 }
1824 static DECLARE_WORK(netstamp_work, netstamp_clear);
1825 #endif
1826 
1827 void net_enable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 	int wanted;
1831 
1832 	while (1) {
1833 		wanted = atomic_read(&netstamp_wanted);
1834 		if (wanted <= 0)
1835 			break;
1836 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837 			return;
1838 	}
1839 	atomic_inc(&netstamp_needed_deferred);
1840 	schedule_work(&netstamp_work);
1841 #else
1842 	static_branch_inc(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_enable_timestamp);
1846 
1847 void net_disable_timestamp(void)
1848 {
1849 #ifdef HAVE_JUMP_LABEL
1850 	int wanted;
1851 
1852 	while (1) {
1853 		wanted = atomic_read(&netstamp_wanted);
1854 		if (wanted <= 1)
1855 			break;
1856 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857 			return;
1858 	}
1859 	atomic_dec(&netstamp_needed_deferred);
1860 	schedule_work(&netstamp_work);
1861 #else
1862 	static_branch_dec(&netstamp_needed_key);
1863 #endif
1864 }
1865 EXPORT_SYMBOL(net_disable_timestamp);
1866 
1867 static inline void net_timestamp_set(struct sk_buff *skb)
1868 {
1869 	skb->tstamp = 0;
1870 	if (static_branch_unlikely(&netstamp_needed_key))
1871 		__net_timestamp(skb);
1872 }
1873 
1874 #define net_timestamp_check(COND, SKB)				\
1875 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1876 		if ((COND) && !(SKB)->tstamp)			\
1877 			__net_timestamp(SKB);			\
1878 	}							\
1879 
1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881 {
1882 	unsigned int len;
1883 
1884 	if (!(dev->flags & IFF_UP))
1885 		return false;
1886 
1887 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888 	if (skb->len <= len)
1889 		return true;
1890 
1891 	/* if TSO is enabled, we don't care about the length as the packet
1892 	 * could be forwarded without being segmented before
1893 	 */
1894 	if (skb_is_gso(skb))
1895 		return true;
1896 
1897 	return false;
1898 }
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900 
1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902 {
1903 	int ret = ____dev_forward_skb(dev, skb);
1904 
1905 	if (likely(!ret)) {
1906 		skb->protocol = eth_type_trans(skb, dev);
1907 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908 	}
1909 
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913 
1914 /**
1915  * dev_forward_skb - loopback an skb to another netif
1916  *
1917  * @dev: destination network device
1918  * @skb: buffer to forward
1919  *
1920  * return values:
1921  *	NET_RX_SUCCESS	(no congestion)
1922  *	NET_RX_DROP     (packet was dropped, but freed)
1923  *
1924  * dev_forward_skb can be used for injecting an skb from the
1925  * start_xmit function of one device into the receive queue
1926  * of another device.
1927  *
1928  * The receiving device may be in another namespace, so
1929  * we have to clear all information in the skb that could
1930  * impact namespace isolation.
1931  */
1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933 {
1934 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935 }
1936 EXPORT_SYMBOL_GPL(dev_forward_skb);
1937 
1938 static inline int deliver_skb(struct sk_buff *skb,
1939 			      struct packet_type *pt_prev,
1940 			      struct net_device *orig_dev)
1941 {
1942 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943 		return -ENOMEM;
1944 	refcount_inc(&skb->users);
1945 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946 }
1947 
1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949 					  struct packet_type **pt,
1950 					  struct net_device *orig_dev,
1951 					  __be16 type,
1952 					  struct list_head *ptype_list)
1953 {
1954 	struct packet_type *ptype, *pt_prev = *pt;
1955 
1956 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1957 		if (ptype->type != type)
1958 			continue;
1959 		if (pt_prev)
1960 			deliver_skb(skb, pt_prev, orig_dev);
1961 		pt_prev = ptype;
1962 	}
1963 	*pt = pt_prev;
1964 }
1965 
1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967 {
1968 	if (!ptype->af_packet_priv || !skb->sk)
1969 		return false;
1970 
1971 	if (ptype->id_match)
1972 		return ptype->id_match(ptype, skb->sk);
1973 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974 		return true;
1975 
1976 	return false;
1977 }
1978 
1979 /**
1980  * dev_nit_active - return true if any network interface taps are in use
1981  *
1982  * @dev: network device to check for the presence of taps
1983  */
1984 bool dev_nit_active(struct net_device *dev)
1985 {
1986 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1987 }
1988 EXPORT_SYMBOL_GPL(dev_nit_active);
1989 
1990 /*
1991  *	Support routine. Sends outgoing frames to any network
1992  *	taps currently in use.
1993  */
1994 
1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997 	struct packet_type *ptype;
1998 	struct sk_buff *skb2 = NULL;
1999 	struct packet_type *pt_prev = NULL;
2000 	struct list_head *ptype_list = &ptype_all;
2001 
2002 	rcu_read_lock();
2003 again:
2004 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2005 		if (ptype->ignore_outgoing)
2006 			continue;
2007 
2008 		/* Never send packets back to the socket
2009 		 * they originated from - MvS (miquels@drinkel.ow.org)
2010 		 */
2011 		if (skb_loop_sk(ptype, skb))
2012 			continue;
2013 
2014 		if (pt_prev) {
2015 			deliver_skb(skb2, pt_prev, skb->dev);
2016 			pt_prev = ptype;
2017 			continue;
2018 		}
2019 
2020 		/* need to clone skb, done only once */
2021 		skb2 = skb_clone(skb, GFP_ATOMIC);
2022 		if (!skb2)
2023 			goto out_unlock;
2024 
2025 		net_timestamp_set(skb2);
2026 
2027 		/* skb->nh should be correctly
2028 		 * set by sender, so that the second statement is
2029 		 * just protection against buggy protocols.
2030 		 */
2031 		skb_reset_mac_header(skb2);
2032 
2033 		if (skb_network_header(skb2) < skb2->data ||
2034 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2035 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036 					     ntohs(skb2->protocol),
2037 					     dev->name);
2038 			skb_reset_network_header(skb2);
2039 		}
2040 
2041 		skb2->transport_header = skb2->network_header;
2042 		skb2->pkt_type = PACKET_OUTGOING;
2043 		pt_prev = ptype;
2044 	}
2045 
2046 	if (ptype_list == &ptype_all) {
2047 		ptype_list = &dev->ptype_all;
2048 		goto again;
2049 	}
2050 out_unlock:
2051 	if (pt_prev) {
2052 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2053 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2054 		else
2055 			kfree_skb(skb2);
2056 	}
2057 	rcu_read_unlock();
2058 }
2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2060 
2061 /**
2062  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063  * @dev: Network device
2064  * @txq: number of queues available
2065  *
2066  * If real_num_tx_queues is changed the tc mappings may no longer be
2067  * valid. To resolve this verify the tc mapping remains valid and if
2068  * not NULL the mapping. With no priorities mapping to this
2069  * offset/count pair it will no longer be used. In the worst case TC0
2070  * is invalid nothing can be done so disable priority mappings. If is
2071  * expected that drivers will fix this mapping if they can before
2072  * calling netif_set_real_num_tx_queues.
2073  */
2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2075 {
2076 	int i;
2077 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2078 
2079 	/* If TC0 is invalidated disable TC mapping */
2080 	if (tc->offset + tc->count > txq) {
2081 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2082 		dev->num_tc = 0;
2083 		return;
2084 	}
2085 
2086 	/* Invalidated prio to tc mappings set to TC0 */
2087 	for (i = 1; i < TC_BITMASK + 1; i++) {
2088 		int q = netdev_get_prio_tc_map(dev, i);
2089 
2090 		tc = &dev->tc_to_txq[q];
2091 		if (tc->offset + tc->count > txq) {
2092 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2093 				i, q);
2094 			netdev_set_prio_tc_map(dev, i, 0);
2095 		}
2096 	}
2097 }
2098 
2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2100 {
2101 	if (dev->num_tc) {
2102 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103 		int i;
2104 
2105 		/* walk through the TCs and see if it falls into any of them */
2106 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2107 			if ((txq - tc->offset) < tc->count)
2108 				return i;
2109 		}
2110 
2111 		/* didn't find it, just return -1 to indicate no match */
2112 		return -1;
2113 	}
2114 
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL(netdev_txq_to_tc);
2118 
2119 #ifdef CONFIG_XPS
2120 struct static_key xps_needed __read_mostly;
2121 EXPORT_SYMBOL(xps_needed);
2122 struct static_key xps_rxqs_needed __read_mostly;
2123 EXPORT_SYMBOL(xps_rxqs_needed);
2124 static DEFINE_MUTEX(xps_map_mutex);
2125 #define xmap_dereference(P)		\
2126 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2127 
2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2129 			     int tci, u16 index)
2130 {
2131 	struct xps_map *map = NULL;
2132 	int pos;
2133 
2134 	if (dev_maps)
2135 		map = xmap_dereference(dev_maps->attr_map[tci]);
2136 	if (!map)
2137 		return false;
2138 
2139 	for (pos = map->len; pos--;) {
2140 		if (map->queues[pos] != index)
2141 			continue;
2142 
2143 		if (map->len > 1) {
2144 			map->queues[pos] = map->queues[--map->len];
2145 			break;
2146 		}
2147 
2148 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2149 		kfree_rcu(map, rcu);
2150 		return false;
2151 	}
2152 
2153 	return true;
2154 }
2155 
2156 static bool remove_xps_queue_cpu(struct net_device *dev,
2157 				 struct xps_dev_maps *dev_maps,
2158 				 int cpu, u16 offset, u16 count)
2159 {
2160 	int num_tc = dev->num_tc ? : 1;
2161 	bool active = false;
2162 	int tci;
2163 
2164 	for (tci = cpu * num_tc; num_tc--; tci++) {
2165 		int i, j;
2166 
2167 		for (i = count, j = offset; i--; j++) {
2168 			if (!remove_xps_queue(dev_maps, tci, j))
2169 				break;
2170 		}
2171 
2172 		active |= i < 0;
2173 	}
2174 
2175 	return active;
2176 }
2177 
2178 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2179 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2180 			   u16 offset, u16 count, bool is_rxqs_map)
2181 {
2182 	bool active = false;
2183 	int i, j;
2184 
2185 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2186 	     j < nr_ids;)
2187 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2188 					       count);
2189 	if (!active) {
2190 		if (is_rxqs_map) {
2191 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2192 		} else {
2193 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2194 
2195 			for (i = offset + (count - 1); count--; i--)
2196 				netdev_queue_numa_node_write(
2197 					netdev_get_tx_queue(dev, i),
2198 							NUMA_NO_NODE);
2199 		}
2200 		kfree_rcu(dev_maps, rcu);
2201 	}
2202 }
2203 
2204 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2205 				   u16 count)
2206 {
2207 	const unsigned long *possible_mask = NULL;
2208 	struct xps_dev_maps *dev_maps;
2209 	unsigned int nr_ids;
2210 
2211 	if (!static_key_false(&xps_needed))
2212 		return;
2213 
2214 	cpus_read_lock();
2215 	mutex_lock(&xps_map_mutex);
2216 
2217 	if (static_key_false(&xps_rxqs_needed)) {
2218 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2219 		if (dev_maps) {
2220 			nr_ids = dev->num_rx_queues;
2221 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2222 				       offset, count, true);
2223 		}
2224 	}
2225 
2226 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2227 	if (!dev_maps)
2228 		goto out_no_maps;
2229 
2230 	if (num_possible_cpus() > 1)
2231 		possible_mask = cpumask_bits(cpu_possible_mask);
2232 	nr_ids = nr_cpu_ids;
2233 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2234 		       false);
2235 
2236 out_no_maps:
2237 	if (static_key_enabled(&xps_rxqs_needed))
2238 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2239 
2240 	static_key_slow_dec_cpuslocked(&xps_needed);
2241 	mutex_unlock(&xps_map_mutex);
2242 	cpus_read_unlock();
2243 }
2244 
2245 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2246 {
2247 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2248 }
2249 
2250 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2251 				      u16 index, bool is_rxqs_map)
2252 {
2253 	struct xps_map *new_map;
2254 	int alloc_len = XPS_MIN_MAP_ALLOC;
2255 	int i, pos;
2256 
2257 	for (pos = 0; map && pos < map->len; pos++) {
2258 		if (map->queues[pos] != index)
2259 			continue;
2260 		return map;
2261 	}
2262 
2263 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2264 	if (map) {
2265 		if (pos < map->alloc_len)
2266 			return map;
2267 
2268 		alloc_len = map->alloc_len * 2;
2269 	}
2270 
2271 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2272 	 *  map
2273 	 */
2274 	if (is_rxqs_map)
2275 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2276 	else
2277 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2278 				       cpu_to_node(attr_index));
2279 	if (!new_map)
2280 		return NULL;
2281 
2282 	for (i = 0; i < pos; i++)
2283 		new_map->queues[i] = map->queues[i];
2284 	new_map->alloc_len = alloc_len;
2285 	new_map->len = pos;
2286 
2287 	return new_map;
2288 }
2289 
2290 /* Must be called under cpus_read_lock */
2291 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2292 			  u16 index, bool is_rxqs_map)
2293 {
2294 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2295 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2296 	int i, j, tci, numa_node_id = -2;
2297 	int maps_sz, num_tc = 1, tc = 0;
2298 	struct xps_map *map, *new_map;
2299 	bool active = false;
2300 	unsigned int nr_ids;
2301 
2302 	if (dev->num_tc) {
2303 		/* Do not allow XPS on subordinate device directly */
2304 		num_tc = dev->num_tc;
2305 		if (num_tc < 0)
2306 			return -EINVAL;
2307 
2308 		/* If queue belongs to subordinate dev use its map */
2309 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2310 
2311 		tc = netdev_txq_to_tc(dev, index);
2312 		if (tc < 0)
2313 			return -EINVAL;
2314 	}
2315 
2316 	mutex_lock(&xps_map_mutex);
2317 	if (is_rxqs_map) {
2318 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2319 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2320 		nr_ids = dev->num_rx_queues;
2321 	} else {
2322 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2323 		if (num_possible_cpus() > 1) {
2324 			online_mask = cpumask_bits(cpu_online_mask);
2325 			possible_mask = cpumask_bits(cpu_possible_mask);
2326 		}
2327 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2328 		nr_ids = nr_cpu_ids;
2329 	}
2330 
2331 	if (maps_sz < L1_CACHE_BYTES)
2332 		maps_sz = L1_CACHE_BYTES;
2333 
2334 	/* allocate memory for queue storage */
2335 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2336 	     j < nr_ids;) {
2337 		if (!new_dev_maps)
2338 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2339 		if (!new_dev_maps) {
2340 			mutex_unlock(&xps_map_mutex);
2341 			return -ENOMEM;
2342 		}
2343 
2344 		tci = j * num_tc + tc;
2345 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2346 				 NULL;
2347 
2348 		map = expand_xps_map(map, j, index, is_rxqs_map);
2349 		if (!map)
2350 			goto error;
2351 
2352 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2353 	}
2354 
2355 	if (!new_dev_maps)
2356 		goto out_no_new_maps;
2357 
2358 	static_key_slow_inc_cpuslocked(&xps_needed);
2359 	if (is_rxqs_map)
2360 		static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2361 
2362 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2363 	     j < nr_ids;) {
2364 		/* copy maps belonging to foreign traffic classes */
2365 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2366 			/* fill in the new device map from the old device map */
2367 			map = xmap_dereference(dev_maps->attr_map[tci]);
2368 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2369 		}
2370 
2371 		/* We need to explicitly update tci as prevous loop
2372 		 * could break out early if dev_maps is NULL.
2373 		 */
2374 		tci = j * num_tc + tc;
2375 
2376 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2377 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2378 			/* add tx-queue to CPU/rx-queue maps */
2379 			int pos = 0;
2380 
2381 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2382 			while ((pos < map->len) && (map->queues[pos] != index))
2383 				pos++;
2384 
2385 			if (pos == map->len)
2386 				map->queues[map->len++] = index;
2387 #ifdef CONFIG_NUMA
2388 			if (!is_rxqs_map) {
2389 				if (numa_node_id == -2)
2390 					numa_node_id = cpu_to_node(j);
2391 				else if (numa_node_id != cpu_to_node(j))
2392 					numa_node_id = -1;
2393 			}
2394 #endif
2395 		} else if (dev_maps) {
2396 			/* fill in the new device map from the old device map */
2397 			map = xmap_dereference(dev_maps->attr_map[tci]);
2398 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2399 		}
2400 
2401 		/* copy maps belonging to foreign traffic classes */
2402 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2403 			/* fill in the new device map from the old device map */
2404 			map = xmap_dereference(dev_maps->attr_map[tci]);
2405 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2406 		}
2407 	}
2408 
2409 	if (is_rxqs_map)
2410 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2411 	else
2412 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2413 
2414 	/* Cleanup old maps */
2415 	if (!dev_maps)
2416 		goto out_no_old_maps;
2417 
2418 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2419 	     j < nr_ids;) {
2420 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2421 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2422 			map = xmap_dereference(dev_maps->attr_map[tci]);
2423 			if (map && map != new_map)
2424 				kfree_rcu(map, rcu);
2425 		}
2426 	}
2427 
2428 	kfree_rcu(dev_maps, rcu);
2429 
2430 out_no_old_maps:
2431 	dev_maps = new_dev_maps;
2432 	active = true;
2433 
2434 out_no_new_maps:
2435 	if (!is_rxqs_map) {
2436 		/* update Tx queue numa node */
2437 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2438 					     (numa_node_id >= 0) ?
2439 					     numa_node_id : NUMA_NO_NODE);
2440 	}
2441 
2442 	if (!dev_maps)
2443 		goto out_no_maps;
2444 
2445 	/* removes tx-queue from unused CPUs/rx-queues */
2446 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2447 	     j < nr_ids;) {
2448 		for (i = tc, tci = j * num_tc; i--; tci++)
2449 			active |= remove_xps_queue(dev_maps, tci, index);
2450 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2451 		    !netif_attr_test_online(j, online_mask, nr_ids))
2452 			active |= remove_xps_queue(dev_maps, tci, index);
2453 		for (i = num_tc - tc, tci++; --i; tci++)
2454 			active |= remove_xps_queue(dev_maps, tci, index);
2455 	}
2456 
2457 	/* free map if not active */
2458 	if (!active) {
2459 		if (is_rxqs_map)
2460 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2461 		else
2462 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2463 		kfree_rcu(dev_maps, rcu);
2464 	}
2465 
2466 out_no_maps:
2467 	mutex_unlock(&xps_map_mutex);
2468 
2469 	return 0;
2470 error:
2471 	/* remove any maps that we added */
2472 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2473 	     j < nr_ids;) {
2474 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2475 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2476 			map = dev_maps ?
2477 			      xmap_dereference(dev_maps->attr_map[tci]) :
2478 			      NULL;
2479 			if (new_map && new_map != map)
2480 				kfree(new_map);
2481 		}
2482 	}
2483 
2484 	mutex_unlock(&xps_map_mutex);
2485 
2486 	kfree(new_dev_maps);
2487 	return -ENOMEM;
2488 }
2489 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2490 
2491 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2492 			u16 index)
2493 {
2494 	int ret;
2495 
2496 	cpus_read_lock();
2497 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2498 	cpus_read_unlock();
2499 
2500 	return ret;
2501 }
2502 EXPORT_SYMBOL(netif_set_xps_queue);
2503 
2504 #endif
2505 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2506 {
2507 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2508 
2509 	/* Unbind any subordinate channels */
2510 	while (txq-- != &dev->_tx[0]) {
2511 		if (txq->sb_dev)
2512 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2513 	}
2514 }
2515 
2516 void netdev_reset_tc(struct net_device *dev)
2517 {
2518 #ifdef CONFIG_XPS
2519 	netif_reset_xps_queues_gt(dev, 0);
2520 #endif
2521 	netdev_unbind_all_sb_channels(dev);
2522 
2523 	/* Reset TC configuration of device */
2524 	dev->num_tc = 0;
2525 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2526 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2527 }
2528 EXPORT_SYMBOL(netdev_reset_tc);
2529 
2530 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2531 {
2532 	if (tc >= dev->num_tc)
2533 		return -EINVAL;
2534 
2535 #ifdef CONFIG_XPS
2536 	netif_reset_xps_queues(dev, offset, count);
2537 #endif
2538 	dev->tc_to_txq[tc].count = count;
2539 	dev->tc_to_txq[tc].offset = offset;
2540 	return 0;
2541 }
2542 EXPORT_SYMBOL(netdev_set_tc_queue);
2543 
2544 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2545 {
2546 	if (num_tc > TC_MAX_QUEUE)
2547 		return -EINVAL;
2548 
2549 #ifdef CONFIG_XPS
2550 	netif_reset_xps_queues_gt(dev, 0);
2551 #endif
2552 	netdev_unbind_all_sb_channels(dev);
2553 
2554 	dev->num_tc = num_tc;
2555 	return 0;
2556 }
2557 EXPORT_SYMBOL(netdev_set_num_tc);
2558 
2559 void netdev_unbind_sb_channel(struct net_device *dev,
2560 			      struct net_device *sb_dev)
2561 {
2562 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2563 
2564 #ifdef CONFIG_XPS
2565 	netif_reset_xps_queues_gt(sb_dev, 0);
2566 #endif
2567 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2568 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2569 
2570 	while (txq-- != &dev->_tx[0]) {
2571 		if (txq->sb_dev == sb_dev)
2572 			txq->sb_dev = NULL;
2573 	}
2574 }
2575 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2576 
2577 int netdev_bind_sb_channel_queue(struct net_device *dev,
2578 				 struct net_device *sb_dev,
2579 				 u8 tc, u16 count, u16 offset)
2580 {
2581 	/* Make certain the sb_dev and dev are already configured */
2582 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2583 		return -EINVAL;
2584 
2585 	/* We cannot hand out queues we don't have */
2586 	if ((offset + count) > dev->real_num_tx_queues)
2587 		return -EINVAL;
2588 
2589 	/* Record the mapping */
2590 	sb_dev->tc_to_txq[tc].count = count;
2591 	sb_dev->tc_to_txq[tc].offset = offset;
2592 
2593 	/* Provide a way for Tx queue to find the tc_to_txq map or
2594 	 * XPS map for itself.
2595 	 */
2596 	while (count--)
2597 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2598 
2599 	return 0;
2600 }
2601 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2602 
2603 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2604 {
2605 	/* Do not use a multiqueue device to represent a subordinate channel */
2606 	if (netif_is_multiqueue(dev))
2607 		return -ENODEV;
2608 
2609 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2610 	 * Channel 0 is meant to be "native" mode and used only to represent
2611 	 * the main root device. We allow writing 0 to reset the device back
2612 	 * to normal mode after being used as a subordinate channel.
2613 	 */
2614 	if (channel > S16_MAX)
2615 		return -EINVAL;
2616 
2617 	dev->num_tc = -channel;
2618 
2619 	return 0;
2620 }
2621 EXPORT_SYMBOL(netdev_set_sb_channel);
2622 
2623 /*
2624  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2625  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2626  */
2627 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2628 {
2629 	bool disabling;
2630 	int rc;
2631 
2632 	disabling = txq < dev->real_num_tx_queues;
2633 
2634 	if (txq < 1 || txq > dev->num_tx_queues)
2635 		return -EINVAL;
2636 
2637 	if (dev->reg_state == NETREG_REGISTERED ||
2638 	    dev->reg_state == NETREG_UNREGISTERING) {
2639 		ASSERT_RTNL();
2640 
2641 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2642 						  txq);
2643 		if (rc)
2644 			return rc;
2645 
2646 		if (dev->num_tc)
2647 			netif_setup_tc(dev, txq);
2648 
2649 		dev->real_num_tx_queues = txq;
2650 
2651 		if (disabling) {
2652 			synchronize_net();
2653 			qdisc_reset_all_tx_gt(dev, txq);
2654 #ifdef CONFIG_XPS
2655 			netif_reset_xps_queues_gt(dev, txq);
2656 #endif
2657 		}
2658 	} else {
2659 		dev->real_num_tx_queues = txq;
2660 	}
2661 
2662 	return 0;
2663 }
2664 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2665 
2666 #ifdef CONFIG_SYSFS
2667 /**
2668  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2669  *	@dev: Network device
2670  *	@rxq: Actual number of RX queues
2671  *
2672  *	This must be called either with the rtnl_lock held or before
2673  *	registration of the net device.  Returns 0 on success, or a
2674  *	negative error code.  If called before registration, it always
2675  *	succeeds.
2676  */
2677 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2678 {
2679 	int rc;
2680 
2681 	if (rxq < 1 || rxq > dev->num_rx_queues)
2682 		return -EINVAL;
2683 
2684 	if (dev->reg_state == NETREG_REGISTERED) {
2685 		ASSERT_RTNL();
2686 
2687 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2688 						  rxq);
2689 		if (rc)
2690 			return rc;
2691 	}
2692 
2693 	dev->real_num_rx_queues = rxq;
2694 	return 0;
2695 }
2696 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2697 #endif
2698 
2699 /**
2700  * netif_get_num_default_rss_queues - default number of RSS queues
2701  *
2702  * This routine should set an upper limit on the number of RSS queues
2703  * used by default by multiqueue devices.
2704  */
2705 int netif_get_num_default_rss_queues(void)
2706 {
2707 	return is_kdump_kernel() ?
2708 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2709 }
2710 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2711 
2712 static void __netif_reschedule(struct Qdisc *q)
2713 {
2714 	struct softnet_data *sd;
2715 	unsigned long flags;
2716 
2717 	local_irq_save(flags);
2718 	sd = this_cpu_ptr(&softnet_data);
2719 	q->next_sched = NULL;
2720 	*sd->output_queue_tailp = q;
2721 	sd->output_queue_tailp = &q->next_sched;
2722 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2723 	local_irq_restore(flags);
2724 }
2725 
2726 void __netif_schedule(struct Qdisc *q)
2727 {
2728 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2729 		__netif_reschedule(q);
2730 }
2731 EXPORT_SYMBOL(__netif_schedule);
2732 
2733 struct dev_kfree_skb_cb {
2734 	enum skb_free_reason reason;
2735 };
2736 
2737 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2738 {
2739 	return (struct dev_kfree_skb_cb *)skb->cb;
2740 }
2741 
2742 void netif_schedule_queue(struct netdev_queue *txq)
2743 {
2744 	rcu_read_lock();
2745 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2746 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2747 
2748 		__netif_schedule(q);
2749 	}
2750 	rcu_read_unlock();
2751 }
2752 EXPORT_SYMBOL(netif_schedule_queue);
2753 
2754 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2755 {
2756 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2757 		struct Qdisc *q;
2758 
2759 		rcu_read_lock();
2760 		q = rcu_dereference(dev_queue->qdisc);
2761 		__netif_schedule(q);
2762 		rcu_read_unlock();
2763 	}
2764 }
2765 EXPORT_SYMBOL(netif_tx_wake_queue);
2766 
2767 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2768 {
2769 	unsigned long flags;
2770 
2771 	if (unlikely(!skb))
2772 		return;
2773 
2774 	if (likely(refcount_read(&skb->users) == 1)) {
2775 		smp_rmb();
2776 		refcount_set(&skb->users, 0);
2777 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2778 		return;
2779 	}
2780 	get_kfree_skb_cb(skb)->reason = reason;
2781 	local_irq_save(flags);
2782 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2783 	__this_cpu_write(softnet_data.completion_queue, skb);
2784 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2785 	local_irq_restore(flags);
2786 }
2787 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2788 
2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2790 {
2791 	if (in_irq() || irqs_disabled())
2792 		__dev_kfree_skb_irq(skb, reason);
2793 	else
2794 		dev_kfree_skb(skb);
2795 }
2796 EXPORT_SYMBOL(__dev_kfree_skb_any);
2797 
2798 
2799 /**
2800  * netif_device_detach - mark device as removed
2801  * @dev: network device
2802  *
2803  * Mark device as removed from system and therefore no longer available.
2804  */
2805 void netif_device_detach(struct net_device *dev)
2806 {
2807 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2808 	    netif_running(dev)) {
2809 		netif_tx_stop_all_queues(dev);
2810 	}
2811 }
2812 EXPORT_SYMBOL(netif_device_detach);
2813 
2814 /**
2815  * netif_device_attach - mark device as attached
2816  * @dev: network device
2817  *
2818  * Mark device as attached from system and restart if needed.
2819  */
2820 void netif_device_attach(struct net_device *dev)
2821 {
2822 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2823 	    netif_running(dev)) {
2824 		netif_tx_wake_all_queues(dev);
2825 		__netdev_watchdog_up(dev);
2826 	}
2827 }
2828 EXPORT_SYMBOL(netif_device_attach);
2829 
2830 /*
2831  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2832  * to be used as a distribution range.
2833  */
2834 static u16 skb_tx_hash(const struct net_device *dev,
2835 		       const struct net_device *sb_dev,
2836 		       struct sk_buff *skb)
2837 {
2838 	u32 hash;
2839 	u16 qoffset = 0;
2840 	u16 qcount = dev->real_num_tx_queues;
2841 
2842 	if (dev->num_tc) {
2843 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2844 
2845 		qoffset = sb_dev->tc_to_txq[tc].offset;
2846 		qcount = sb_dev->tc_to_txq[tc].count;
2847 	}
2848 
2849 	if (skb_rx_queue_recorded(skb)) {
2850 		hash = skb_get_rx_queue(skb);
2851 		while (unlikely(hash >= qcount))
2852 			hash -= qcount;
2853 		return hash + qoffset;
2854 	}
2855 
2856 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2857 }
2858 
2859 static void skb_warn_bad_offload(const struct sk_buff *skb)
2860 {
2861 	static const netdev_features_t null_features;
2862 	struct net_device *dev = skb->dev;
2863 	const char *name = "";
2864 
2865 	if (!net_ratelimit())
2866 		return;
2867 
2868 	if (dev) {
2869 		if (dev->dev.parent)
2870 			name = dev_driver_string(dev->dev.parent);
2871 		else
2872 			name = netdev_name(dev);
2873 	}
2874 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2875 	     "gso_type=%d ip_summed=%d\n",
2876 	     name, dev ? &dev->features : &null_features,
2877 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2878 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2879 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2880 }
2881 
2882 /*
2883  * Invalidate hardware checksum when packet is to be mangled, and
2884  * complete checksum manually on outgoing path.
2885  */
2886 int skb_checksum_help(struct sk_buff *skb)
2887 {
2888 	__wsum csum;
2889 	int ret = 0, offset;
2890 
2891 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2892 		goto out_set_summed;
2893 
2894 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2895 		skb_warn_bad_offload(skb);
2896 		return -EINVAL;
2897 	}
2898 
2899 	/* Before computing a checksum, we should make sure no frag could
2900 	 * be modified by an external entity : checksum could be wrong.
2901 	 */
2902 	if (skb_has_shared_frag(skb)) {
2903 		ret = __skb_linearize(skb);
2904 		if (ret)
2905 			goto out;
2906 	}
2907 
2908 	offset = skb_checksum_start_offset(skb);
2909 	BUG_ON(offset >= skb_headlen(skb));
2910 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2911 
2912 	offset += skb->csum_offset;
2913 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2914 
2915 	if (skb_cloned(skb) &&
2916 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2917 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2918 		if (ret)
2919 			goto out;
2920 	}
2921 
2922 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2923 out_set_summed:
2924 	skb->ip_summed = CHECKSUM_NONE;
2925 out:
2926 	return ret;
2927 }
2928 EXPORT_SYMBOL(skb_checksum_help);
2929 
2930 int skb_crc32c_csum_help(struct sk_buff *skb)
2931 {
2932 	__le32 crc32c_csum;
2933 	int ret = 0, offset, start;
2934 
2935 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2936 		goto out;
2937 
2938 	if (unlikely(skb_is_gso(skb)))
2939 		goto out;
2940 
2941 	/* Before computing a checksum, we should make sure no frag could
2942 	 * be modified by an external entity : checksum could be wrong.
2943 	 */
2944 	if (unlikely(skb_has_shared_frag(skb))) {
2945 		ret = __skb_linearize(skb);
2946 		if (ret)
2947 			goto out;
2948 	}
2949 	start = skb_checksum_start_offset(skb);
2950 	offset = start + offsetof(struct sctphdr, checksum);
2951 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2952 		ret = -EINVAL;
2953 		goto out;
2954 	}
2955 	if (skb_cloned(skb) &&
2956 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2957 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2958 		if (ret)
2959 			goto out;
2960 	}
2961 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2962 						  skb->len - start, ~(__u32)0,
2963 						  crc32c_csum_stub));
2964 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2965 	skb->ip_summed = CHECKSUM_NONE;
2966 	skb->csum_not_inet = 0;
2967 out:
2968 	return ret;
2969 }
2970 
2971 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2972 {
2973 	__be16 type = skb->protocol;
2974 
2975 	/* Tunnel gso handlers can set protocol to ethernet. */
2976 	if (type == htons(ETH_P_TEB)) {
2977 		struct ethhdr *eth;
2978 
2979 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2980 			return 0;
2981 
2982 		eth = (struct ethhdr *)skb->data;
2983 		type = eth->h_proto;
2984 	}
2985 
2986 	return __vlan_get_protocol(skb, type, depth);
2987 }
2988 
2989 /**
2990  *	skb_mac_gso_segment - mac layer segmentation handler.
2991  *	@skb: buffer to segment
2992  *	@features: features for the output path (see dev->features)
2993  */
2994 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2995 				    netdev_features_t features)
2996 {
2997 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2998 	struct packet_offload *ptype;
2999 	int vlan_depth = skb->mac_len;
3000 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3001 
3002 	if (unlikely(!type))
3003 		return ERR_PTR(-EINVAL);
3004 
3005 	__skb_pull(skb, vlan_depth);
3006 
3007 	rcu_read_lock();
3008 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3009 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3010 			segs = ptype->callbacks.gso_segment(skb, features);
3011 			break;
3012 		}
3013 	}
3014 	rcu_read_unlock();
3015 
3016 	__skb_push(skb, skb->data - skb_mac_header(skb));
3017 
3018 	return segs;
3019 }
3020 EXPORT_SYMBOL(skb_mac_gso_segment);
3021 
3022 
3023 /* openvswitch calls this on rx path, so we need a different check.
3024  */
3025 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3026 {
3027 	if (tx_path)
3028 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3029 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3030 
3031 	return skb->ip_summed == CHECKSUM_NONE;
3032 }
3033 
3034 /**
3035  *	__skb_gso_segment - Perform segmentation on skb.
3036  *	@skb: buffer to segment
3037  *	@features: features for the output path (see dev->features)
3038  *	@tx_path: whether it is called in TX path
3039  *
3040  *	This function segments the given skb and returns a list of segments.
3041  *
3042  *	It may return NULL if the skb requires no segmentation.  This is
3043  *	only possible when GSO is used for verifying header integrity.
3044  *
3045  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3046  */
3047 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3048 				  netdev_features_t features, bool tx_path)
3049 {
3050 	struct sk_buff *segs;
3051 
3052 	if (unlikely(skb_needs_check(skb, tx_path))) {
3053 		int err;
3054 
3055 		/* We're going to init ->check field in TCP or UDP header */
3056 		err = skb_cow_head(skb, 0);
3057 		if (err < 0)
3058 			return ERR_PTR(err);
3059 	}
3060 
3061 	/* Only report GSO partial support if it will enable us to
3062 	 * support segmentation on this frame without needing additional
3063 	 * work.
3064 	 */
3065 	if (features & NETIF_F_GSO_PARTIAL) {
3066 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3067 		struct net_device *dev = skb->dev;
3068 
3069 		partial_features |= dev->features & dev->gso_partial_features;
3070 		if (!skb_gso_ok(skb, features | partial_features))
3071 			features &= ~NETIF_F_GSO_PARTIAL;
3072 	}
3073 
3074 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3075 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3076 
3077 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3078 	SKB_GSO_CB(skb)->encap_level = 0;
3079 
3080 	skb_reset_mac_header(skb);
3081 	skb_reset_mac_len(skb);
3082 
3083 	segs = skb_mac_gso_segment(skb, features);
3084 
3085 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3086 		skb_warn_bad_offload(skb);
3087 
3088 	return segs;
3089 }
3090 EXPORT_SYMBOL(__skb_gso_segment);
3091 
3092 /* Take action when hardware reception checksum errors are detected. */
3093 #ifdef CONFIG_BUG
3094 void netdev_rx_csum_fault(struct net_device *dev)
3095 {
3096 	if (net_ratelimit()) {
3097 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3098 		dump_stack();
3099 	}
3100 }
3101 EXPORT_SYMBOL(netdev_rx_csum_fault);
3102 #endif
3103 
3104 /* XXX: check that highmem exists at all on the given machine. */
3105 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3106 {
3107 #ifdef CONFIG_HIGHMEM
3108 	int i;
3109 
3110 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3111 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3112 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3113 
3114 			if (PageHighMem(skb_frag_page(frag)))
3115 				return 1;
3116 		}
3117 	}
3118 #endif
3119 	return 0;
3120 }
3121 
3122 /* If MPLS offload request, verify we are testing hardware MPLS features
3123  * instead of standard features for the netdev.
3124  */
3125 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3126 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3127 					   netdev_features_t features,
3128 					   __be16 type)
3129 {
3130 	if (eth_p_mpls(type))
3131 		features &= skb->dev->mpls_features;
3132 
3133 	return features;
3134 }
3135 #else
3136 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3137 					   netdev_features_t features,
3138 					   __be16 type)
3139 {
3140 	return features;
3141 }
3142 #endif
3143 
3144 static netdev_features_t harmonize_features(struct sk_buff *skb,
3145 	netdev_features_t features)
3146 {
3147 	int tmp;
3148 	__be16 type;
3149 
3150 	type = skb_network_protocol(skb, &tmp);
3151 	features = net_mpls_features(skb, features, type);
3152 
3153 	if (skb->ip_summed != CHECKSUM_NONE &&
3154 	    !can_checksum_protocol(features, type)) {
3155 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3156 	}
3157 	if (illegal_highdma(skb->dev, skb))
3158 		features &= ~NETIF_F_SG;
3159 
3160 	return features;
3161 }
3162 
3163 netdev_features_t passthru_features_check(struct sk_buff *skb,
3164 					  struct net_device *dev,
3165 					  netdev_features_t features)
3166 {
3167 	return features;
3168 }
3169 EXPORT_SYMBOL(passthru_features_check);
3170 
3171 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3172 					     struct net_device *dev,
3173 					     netdev_features_t features)
3174 {
3175 	return vlan_features_check(skb, features);
3176 }
3177 
3178 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3179 					    struct net_device *dev,
3180 					    netdev_features_t features)
3181 {
3182 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3183 
3184 	if (gso_segs > dev->gso_max_segs)
3185 		return features & ~NETIF_F_GSO_MASK;
3186 
3187 	/* Support for GSO partial features requires software
3188 	 * intervention before we can actually process the packets
3189 	 * so we need to strip support for any partial features now
3190 	 * and we can pull them back in after we have partially
3191 	 * segmented the frame.
3192 	 */
3193 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3194 		features &= ~dev->gso_partial_features;
3195 
3196 	/* Make sure to clear the IPv4 ID mangling feature if the
3197 	 * IPv4 header has the potential to be fragmented.
3198 	 */
3199 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3200 		struct iphdr *iph = skb->encapsulation ?
3201 				    inner_ip_hdr(skb) : ip_hdr(skb);
3202 
3203 		if (!(iph->frag_off & htons(IP_DF)))
3204 			features &= ~NETIF_F_TSO_MANGLEID;
3205 	}
3206 
3207 	return features;
3208 }
3209 
3210 netdev_features_t netif_skb_features(struct sk_buff *skb)
3211 {
3212 	struct net_device *dev = skb->dev;
3213 	netdev_features_t features = dev->features;
3214 
3215 	if (skb_is_gso(skb))
3216 		features = gso_features_check(skb, dev, features);
3217 
3218 	/* If encapsulation offload request, verify we are testing
3219 	 * hardware encapsulation features instead of standard
3220 	 * features for the netdev
3221 	 */
3222 	if (skb->encapsulation)
3223 		features &= dev->hw_enc_features;
3224 
3225 	if (skb_vlan_tagged(skb))
3226 		features = netdev_intersect_features(features,
3227 						     dev->vlan_features |
3228 						     NETIF_F_HW_VLAN_CTAG_TX |
3229 						     NETIF_F_HW_VLAN_STAG_TX);
3230 
3231 	if (dev->netdev_ops->ndo_features_check)
3232 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3233 								features);
3234 	else
3235 		features &= dflt_features_check(skb, dev, features);
3236 
3237 	return harmonize_features(skb, features);
3238 }
3239 EXPORT_SYMBOL(netif_skb_features);
3240 
3241 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3242 		    struct netdev_queue *txq, bool more)
3243 {
3244 	unsigned int len;
3245 	int rc;
3246 
3247 	if (dev_nit_active(dev))
3248 		dev_queue_xmit_nit(skb, dev);
3249 
3250 	len = skb->len;
3251 	trace_net_dev_start_xmit(skb, dev);
3252 	rc = netdev_start_xmit(skb, dev, txq, more);
3253 	trace_net_dev_xmit(skb, rc, dev, len);
3254 
3255 	return rc;
3256 }
3257 
3258 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3259 				    struct netdev_queue *txq, int *ret)
3260 {
3261 	struct sk_buff *skb = first;
3262 	int rc = NETDEV_TX_OK;
3263 
3264 	while (skb) {
3265 		struct sk_buff *next = skb->next;
3266 
3267 		skb_mark_not_on_list(skb);
3268 		rc = xmit_one(skb, dev, txq, next != NULL);
3269 		if (unlikely(!dev_xmit_complete(rc))) {
3270 			skb->next = next;
3271 			goto out;
3272 		}
3273 
3274 		skb = next;
3275 		if (netif_xmit_stopped(txq) && skb) {
3276 			rc = NETDEV_TX_BUSY;
3277 			break;
3278 		}
3279 	}
3280 
3281 out:
3282 	*ret = rc;
3283 	return skb;
3284 }
3285 
3286 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3287 					  netdev_features_t features)
3288 {
3289 	if (skb_vlan_tag_present(skb) &&
3290 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3291 		skb = __vlan_hwaccel_push_inside(skb);
3292 	return skb;
3293 }
3294 
3295 int skb_csum_hwoffload_help(struct sk_buff *skb,
3296 			    const netdev_features_t features)
3297 {
3298 	if (unlikely(skb->csum_not_inet))
3299 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3300 			skb_crc32c_csum_help(skb);
3301 
3302 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3303 }
3304 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3305 
3306 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3307 {
3308 	netdev_features_t features;
3309 
3310 	features = netif_skb_features(skb);
3311 	skb = validate_xmit_vlan(skb, features);
3312 	if (unlikely(!skb))
3313 		goto out_null;
3314 
3315 	skb = sk_validate_xmit_skb(skb, dev);
3316 	if (unlikely(!skb))
3317 		goto out_null;
3318 
3319 	if (netif_needs_gso(skb, features)) {
3320 		struct sk_buff *segs;
3321 
3322 		segs = skb_gso_segment(skb, features);
3323 		if (IS_ERR(segs)) {
3324 			goto out_kfree_skb;
3325 		} else if (segs) {
3326 			consume_skb(skb);
3327 			skb = segs;
3328 		}
3329 	} else {
3330 		if (skb_needs_linearize(skb, features) &&
3331 		    __skb_linearize(skb))
3332 			goto out_kfree_skb;
3333 
3334 		/* If packet is not checksummed and device does not
3335 		 * support checksumming for this protocol, complete
3336 		 * checksumming here.
3337 		 */
3338 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3339 			if (skb->encapsulation)
3340 				skb_set_inner_transport_header(skb,
3341 							       skb_checksum_start_offset(skb));
3342 			else
3343 				skb_set_transport_header(skb,
3344 							 skb_checksum_start_offset(skb));
3345 			if (skb_csum_hwoffload_help(skb, features))
3346 				goto out_kfree_skb;
3347 		}
3348 	}
3349 
3350 	skb = validate_xmit_xfrm(skb, features, again);
3351 
3352 	return skb;
3353 
3354 out_kfree_skb:
3355 	kfree_skb(skb);
3356 out_null:
3357 	atomic_long_inc(&dev->tx_dropped);
3358 	return NULL;
3359 }
3360 
3361 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3362 {
3363 	struct sk_buff *next, *head = NULL, *tail;
3364 
3365 	for (; skb != NULL; skb = next) {
3366 		next = skb->next;
3367 		skb_mark_not_on_list(skb);
3368 
3369 		/* in case skb wont be segmented, point to itself */
3370 		skb->prev = skb;
3371 
3372 		skb = validate_xmit_skb(skb, dev, again);
3373 		if (!skb)
3374 			continue;
3375 
3376 		if (!head)
3377 			head = skb;
3378 		else
3379 			tail->next = skb;
3380 		/* If skb was segmented, skb->prev points to
3381 		 * the last segment. If not, it still contains skb.
3382 		 */
3383 		tail = skb->prev;
3384 	}
3385 	return head;
3386 }
3387 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3388 
3389 static void qdisc_pkt_len_init(struct sk_buff *skb)
3390 {
3391 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3392 
3393 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3394 
3395 	/* To get more precise estimation of bytes sent on wire,
3396 	 * we add to pkt_len the headers size of all segments
3397 	 */
3398 	if (shinfo->gso_size)  {
3399 		unsigned int hdr_len;
3400 		u16 gso_segs = shinfo->gso_segs;
3401 
3402 		/* mac layer + network layer */
3403 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3404 
3405 		/* + transport layer */
3406 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3407 			const struct tcphdr *th;
3408 			struct tcphdr _tcphdr;
3409 
3410 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3411 						sizeof(_tcphdr), &_tcphdr);
3412 			if (likely(th))
3413 				hdr_len += __tcp_hdrlen(th);
3414 		} else {
3415 			struct udphdr _udphdr;
3416 
3417 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3418 					       sizeof(_udphdr), &_udphdr))
3419 				hdr_len += sizeof(struct udphdr);
3420 		}
3421 
3422 		if (shinfo->gso_type & SKB_GSO_DODGY)
3423 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3424 						shinfo->gso_size);
3425 
3426 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3427 	}
3428 }
3429 
3430 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3431 				 struct net_device *dev,
3432 				 struct netdev_queue *txq)
3433 {
3434 	spinlock_t *root_lock = qdisc_lock(q);
3435 	struct sk_buff *to_free = NULL;
3436 	bool contended;
3437 	int rc;
3438 
3439 	qdisc_calculate_pkt_len(skb, q);
3440 
3441 	if (q->flags & TCQ_F_NOLOCK) {
3442 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3443 			__qdisc_drop(skb, &to_free);
3444 			rc = NET_XMIT_DROP;
3445 		} else {
3446 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3447 			qdisc_run(q);
3448 		}
3449 
3450 		if (unlikely(to_free))
3451 			kfree_skb_list(to_free);
3452 		return rc;
3453 	}
3454 
3455 	/*
3456 	 * Heuristic to force contended enqueues to serialize on a
3457 	 * separate lock before trying to get qdisc main lock.
3458 	 * This permits qdisc->running owner to get the lock more
3459 	 * often and dequeue packets faster.
3460 	 */
3461 	contended = qdisc_is_running(q);
3462 	if (unlikely(contended))
3463 		spin_lock(&q->busylock);
3464 
3465 	spin_lock(root_lock);
3466 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3467 		__qdisc_drop(skb, &to_free);
3468 		rc = NET_XMIT_DROP;
3469 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3470 		   qdisc_run_begin(q)) {
3471 		/*
3472 		 * This is a work-conserving queue; there are no old skbs
3473 		 * waiting to be sent out; and the qdisc is not running -
3474 		 * xmit the skb directly.
3475 		 */
3476 
3477 		qdisc_bstats_update(q, skb);
3478 
3479 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3480 			if (unlikely(contended)) {
3481 				spin_unlock(&q->busylock);
3482 				contended = false;
3483 			}
3484 			__qdisc_run(q);
3485 		}
3486 
3487 		qdisc_run_end(q);
3488 		rc = NET_XMIT_SUCCESS;
3489 	} else {
3490 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3491 		if (qdisc_run_begin(q)) {
3492 			if (unlikely(contended)) {
3493 				spin_unlock(&q->busylock);
3494 				contended = false;
3495 			}
3496 			__qdisc_run(q);
3497 			qdisc_run_end(q);
3498 		}
3499 	}
3500 	spin_unlock(root_lock);
3501 	if (unlikely(to_free))
3502 		kfree_skb_list(to_free);
3503 	if (unlikely(contended))
3504 		spin_unlock(&q->busylock);
3505 	return rc;
3506 }
3507 
3508 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3509 static void skb_update_prio(struct sk_buff *skb)
3510 {
3511 	const struct netprio_map *map;
3512 	const struct sock *sk;
3513 	unsigned int prioidx;
3514 
3515 	if (skb->priority)
3516 		return;
3517 	map = rcu_dereference_bh(skb->dev->priomap);
3518 	if (!map)
3519 		return;
3520 	sk = skb_to_full_sk(skb);
3521 	if (!sk)
3522 		return;
3523 
3524 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3525 
3526 	if (prioidx < map->priomap_len)
3527 		skb->priority = map->priomap[prioidx];
3528 }
3529 #else
3530 #define skb_update_prio(skb)
3531 #endif
3532 
3533 DEFINE_PER_CPU(int, xmit_recursion);
3534 EXPORT_SYMBOL(xmit_recursion);
3535 
3536 /**
3537  *	dev_loopback_xmit - loop back @skb
3538  *	@net: network namespace this loopback is happening in
3539  *	@sk:  sk needed to be a netfilter okfn
3540  *	@skb: buffer to transmit
3541  */
3542 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3543 {
3544 	skb_reset_mac_header(skb);
3545 	__skb_pull(skb, skb_network_offset(skb));
3546 	skb->pkt_type = PACKET_LOOPBACK;
3547 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3548 	WARN_ON(!skb_dst(skb));
3549 	skb_dst_force(skb);
3550 	netif_rx_ni(skb);
3551 	return 0;
3552 }
3553 EXPORT_SYMBOL(dev_loopback_xmit);
3554 
3555 #ifdef CONFIG_NET_EGRESS
3556 static struct sk_buff *
3557 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3558 {
3559 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3560 	struct tcf_result cl_res;
3561 
3562 	if (!miniq)
3563 		return skb;
3564 
3565 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3566 	mini_qdisc_bstats_cpu_update(miniq, skb);
3567 
3568 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3569 	case TC_ACT_OK:
3570 	case TC_ACT_RECLASSIFY:
3571 		skb->tc_index = TC_H_MIN(cl_res.classid);
3572 		break;
3573 	case TC_ACT_SHOT:
3574 		mini_qdisc_qstats_cpu_drop(miniq);
3575 		*ret = NET_XMIT_DROP;
3576 		kfree_skb(skb);
3577 		return NULL;
3578 	case TC_ACT_STOLEN:
3579 	case TC_ACT_QUEUED:
3580 	case TC_ACT_TRAP:
3581 		*ret = NET_XMIT_SUCCESS;
3582 		consume_skb(skb);
3583 		return NULL;
3584 	case TC_ACT_REDIRECT:
3585 		/* No need to push/pop skb's mac_header here on egress! */
3586 		skb_do_redirect(skb);
3587 		*ret = NET_XMIT_SUCCESS;
3588 		return NULL;
3589 	default:
3590 		break;
3591 	}
3592 
3593 	return skb;
3594 }
3595 #endif /* CONFIG_NET_EGRESS */
3596 
3597 #ifdef CONFIG_XPS
3598 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3599 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3600 {
3601 	struct xps_map *map;
3602 	int queue_index = -1;
3603 
3604 	if (dev->num_tc) {
3605 		tci *= dev->num_tc;
3606 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3607 	}
3608 
3609 	map = rcu_dereference(dev_maps->attr_map[tci]);
3610 	if (map) {
3611 		if (map->len == 1)
3612 			queue_index = map->queues[0];
3613 		else
3614 			queue_index = map->queues[reciprocal_scale(
3615 						skb_get_hash(skb), map->len)];
3616 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3617 			queue_index = -1;
3618 	}
3619 	return queue_index;
3620 }
3621 #endif
3622 
3623 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3624 			 struct sk_buff *skb)
3625 {
3626 #ifdef CONFIG_XPS
3627 	struct xps_dev_maps *dev_maps;
3628 	struct sock *sk = skb->sk;
3629 	int queue_index = -1;
3630 
3631 	if (!static_key_false(&xps_needed))
3632 		return -1;
3633 
3634 	rcu_read_lock();
3635 	if (!static_key_false(&xps_rxqs_needed))
3636 		goto get_cpus_map;
3637 
3638 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3639 	if (dev_maps) {
3640 		int tci = sk_rx_queue_get(sk);
3641 
3642 		if (tci >= 0 && tci < dev->num_rx_queues)
3643 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3644 							  tci);
3645 	}
3646 
3647 get_cpus_map:
3648 	if (queue_index < 0) {
3649 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3650 		if (dev_maps) {
3651 			unsigned int tci = skb->sender_cpu - 1;
3652 
3653 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3654 							  tci);
3655 		}
3656 	}
3657 	rcu_read_unlock();
3658 
3659 	return queue_index;
3660 #else
3661 	return -1;
3662 #endif
3663 }
3664 
3665 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3666 		     struct net_device *sb_dev,
3667 		     select_queue_fallback_t fallback)
3668 {
3669 	return 0;
3670 }
3671 EXPORT_SYMBOL(dev_pick_tx_zero);
3672 
3673 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3674 		       struct net_device *sb_dev,
3675 		       select_queue_fallback_t fallback)
3676 {
3677 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3678 }
3679 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3680 
3681 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3682 			    struct net_device *sb_dev)
3683 {
3684 	struct sock *sk = skb->sk;
3685 	int queue_index = sk_tx_queue_get(sk);
3686 
3687 	sb_dev = sb_dev ? : dev;
3688 
3689 	if (queue_index < 0 || skb->ooo_okay ||
3690 	    queue_index >= dev->real_num_tx_queues) {
3691 		int new_index = get_xps_queue(dev, sb_dev, skb);
3692 
3693 		if (new_index < 0)
3694 			new_index = skb_tx_hash(dev, sb_dev, skb);
3695 
3696 		if (queue_index != new_index && sk &&
3697 		    sk_fullsock(sk) &&
3698 		    rcu_access_pointer(sk->sk_dst_cache))
3699 			sk_tx_queue_set(sk, new_index);
3700 
3701 		queue_index = new_index;
3702 	}
3703 
3704 	return queue_index;
3705 }
3706 
3707 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3708 				    struct sk_buff *skb,
3709 				    struct net_device *sb_dev)
3710 {
3711 	int queue_index = 0;
3712 
3713 #ifdef CONFIG_XPS
3714 	u32 sender_cpu = skb->sender_cpu - 1;
3715 
3716 	if (sender_cpu >= (u32)NR_CPUS)
3717 		skb->sender_cpu = raw_smp_processor_id() + 1;
3718 #endif
3719 
3720 	if (dev->real_num_tx_queues != 1) {
3721 		const struct net_device_ops *ops = dev->netdev_ops;
3722 
3723 		if (ops->ndo_select_queue)
3724 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3725 							    __netdev_pick_tx);
3726 		else
3727 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3728 
3729 		queue_index = netdev_cap_txqueue(dev, queue_index);
3730 	}
3731 
3732 	skb_set_queue_mapping(skb, queue_index);
3733 	return netdev_get_tx_queue(dev, queue_index);
3734 }
3735 
3736 /**
3737  *	__dev_queue_xmit - transmit a buffer
3738  *	@skb: buffer to transmit
3739  *	@sb_dev: suboordinate device used for L2 forwarding offload
3740  *
3741  *	Queue a buffer for transmission to a network device. The caller must
3742  *	have set the device and priority and built the buffer before calling
3743  *	this function. The function can be called from an interrupt.
3744  *
3745  *	A negative errno code is returned on a failure. A success does not
3746  *	guarantee the frame will be transmitted as it may be dropped due
3747  *	to congestion or traffic shaping.
3748  *
3749  * -----------------------------------------------------------------------------------
3750  *      I notice this method can also return errors from the queue disciplines,
3751  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3752  *      be positive.
3753  *
3754  *      Regardless of the return value, the skb is consumed, so it is currently
3755  *      difficult to retry a send to this method.  (You can bump the ref count
3756  *      before sending to hold a reference for retry if you are careful.)
3757  *
3758  *      When calling this method, interrupts MUST be enabled.  This is because
3759  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3760  *          --BLG
3761  */
3762 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3763 {
3764 	struct net_device *dev = skb->dev;
3765 	struct netdev_queue *txq;
3766 	struct Qdisc *q;
3767 	int rc = -ENOMEM;
3768 	bool again = false;
3769 
3770 	skb_reset_mac_header(skb);
3771 
3772 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3773 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3774 
3775 	/* Disable soft irqs for various locks below. Also
3776 	 * stops preemption for RCU.
3777 	 */
3778 	rcu_read_lock_bh();
3779 
3780 	skb_update_prio(skb);
3781 
3782 	qdisc_pkt_len_init(skb);
3783 #ifdef CONFIG_NET_CLS_ACT
3784 	skb->tc_at_ingress = 0;
3785 # ifdef CONFIG_NET_EGRESS
3786 	if (static_branch_unlikely(&egress_needed_key)) {
3787 		skb = sch_handle_egress(skb, &rc, dev);
3788 		if (!skb)
3789 			goto out;
3790 	}
3791 # endif
3792 #endif
3793 	/* If device/qdisc don't need skb->dst, release it right now while
3794 	 * its hot in this cpu cache.
3795 	 */
3796 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3797 		skb_dst_drop(skb);
3798 	else
3799 		skb_dst_force(skb);
3800 
3801 	txq = netdev_pick_tx(dev, skb, sb_dev);
3802 	q = rcu_dereference_bh(txq->qdisc);
3803 
3804 	trace_net_dev_queue(skb);
3805 	if (q->enqueue) {
3806 		rc = __dev_xmit_skb(skb, q, dev, txq);
3807 		goto out;
3808 	}
3809 
3810 	/* The device has no queue. Common case for software devices:
3811 	 * loopback, all the sorts of tunnels...
3812 
3813 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3814 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3815 	 * counters.)
3816 	 * However, it is possible, that they rely on protection
3817 	 * made by us here.
3818 
3819 	 * Check this and shot the lock. It is not prone from deadlocks.
3820 	 *Either shot noqueue qdisc, it is even simpler 8)
3821 	 */
3822 	if (dev->flags & IFF_UP) {
3823 		int cpu = smp_processor_id(); /* ok because BHs are off */
3824 
3825 		if (txq->xmit_lock_owner != cpu) {
3826 			if (unlikely(__this_cpu_read(xmit_recursion) >
3827 				     XMIT_RECURSION_LIMIT))
3828 				goto recursion_alert;
3829 
3830 			skb = validate_xmit_skb(skb, dev, &again);
3831 			if (!skb)
3832 				goto out;
3833 
3834 			HARD_TX_LOCK(dev, txq, cpu);
3835 
3836 			if (!netif_xmit_stopped(txq)) {
3837 				__this_cpu_inc(xmit_recursion);
3838 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3839 				__this_cpu_dec(xmit_recursion);
3840 				if (dev_xmit_complete(rc)) {
3841 					HARD_TX_UNLOCK(dev, txq);
3842 					goto out;
3843 				}
3844 			}
3845 			HARD_TX_UNLOCK(dev, txq);
3846 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3847 					     dev->name);
3848 		} else {
3849 			/* Recursion is detected! It is possible,
3850 			 * unfortunately
3851 			 */
3852 recursion_alert:
3853 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3854 					     dev->name);
3855 		}
3856 	}
3857 
3858 	rc = -ENETDOWN;
3859 	rcu_read_unlock_bh();
3860 
3861 	atomic_long_inc(&dev->tx_dropped);
3862 	kfree_skb_list(skb);
3863 	return rc;
3864 out:
3865 	rcu_read_unlock_bh();
3866 	return rc;
3867 }
3868 
3869 int dev_queue_xmit(struct sk_buff *skb)
3870 {
3871 	return __dev_queue_xmit(skb, NULL);
3872 }
3873 EXPORT_SYMBOL(dev_queue_xmit);
3874 
3875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3876 {
3877 	return __dev_queue_xmit(skb, sb_dev);
3878 }
3879 EXPORT_SYMBOL(dev_queue_xmit_accel);
3880 
3881 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3882 {
3883 	struct net_device *dev = skb->dev;
3884 	struct sk_buff *orig_skb = skb;
3885 	struct netdev_queue *txq;
3886 	int ret = NETDEV_TX_BUSY;
3887 	bool again = false;
3888 
3889 	if (unlikely(!netif_running(dev) ||
3890 		     !netif_carrier_ok(dev)))
3891 		goto drop;
3892 
3893 	skb = validate_xmit_skb_list(skb, dev, &again);
3894 	if (skb != orig_skb)
3895 		goto drop;
3896 
3897 	skb_set_queue_mapping(skb, queue_id);
3898 	txq = skb_get_tx_queue(dev, skb);
3899 
3900 	local_bh_disable();
3901 
3902 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3903 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3904 		ret = netdev_start_xmit(skb, dev, txq, false);
3905 	HARD_TX_UNLOCK(dev, txq);
3906 
3907 	local_bh_enable();
3908 
3909 	if (!dev_xmit_complete(ret))
3910 		kfree_skb(skb);
3911 
3912 	return ret;
3913 drop:
3914 	atomic_long_inc(&dev->tx_dropped);
3915 	kfree_skb_list(skb);
3916 	return NET_XMIT_DROP;
3917 }
3918 EXPORT_SYMBOL(dev_direct_xmit);
3919 
3920 /*************************************************************************
3921  *			Receiver routines
3922  *************************************************************************/
3923 
3924 int netdev_max_backlog __read_mostly = 1000;
3925 EXPORT_SYMBOL(netdev_max_backlog);
3926 
3927 int netdev_tstamp_prequeue __read_mostly = 1;
3928 int netdev_budget __read_mostly = 300;
3929 unsigned int __read_mostly netdev_budget_usecs = 2000;
3930 int weight_p __read_mostly = 64;           /* old backlog weight */
3931 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3932 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3933 int dev_rx_weight __read_mostly = 64;
3934 int dev_tx_weight __read_mostly = 64;
3935 
3936 /* Called with irq disabled */
3937 static inline void ____napi_schedule(struct softnet_data *sd,
3938 				     struct napi_struct *napi)
3939 {
3940 	list_add_tail(&napi->poll_list, &sd->poll_list);
3941 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3942 }
3943 
3944 #ifdef CONFIG_RPS
3945 
3946 /* One global table that all flow-based protocols share. */
3947 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3948 EXPORT_SYMBOL(rps_sock_flow_table);
3949 u32 rps_cpu_mask __read_mostly;
3950 EXPORT_SYMBOL(rps_cpu_mask);
3951 
3952 struct static_key rps_needed __read_mostly;
3953 EXPORT_SYMBOL(rps_needed);
3954 struct static_key rfs_needed __read_mostly;
3955 EXPORT_SYMBOL(rfs_needed);
3956 
3957 static struct rps_dev_flow *
3958 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3959 	    struct rps_dev_flow *rflow, u16 next_cpu)
3960 {
3961 	if (next_cpu < nr_cpu_ids) {
3962 #ifdef CONFIG_RFS_ACCEL
3963 		struct netdev_rx_queue *rxqueue;
3964 		struct rps_dev_flow_table *flow_table;
3965 		struct rps_dev_flow *old_rflow;
3966 		u32 flow_id;
3967 		u16 rxq_index;
3968 		int rc;
3969 
3970 		/* Should we steer this flow to a different hardware queue? */
3971 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3972 		    !(dev->features & NETIF_F_NTUPLE))
3973 			goto out;
3974 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3975 		if (rxq_index == skb_get_rx_queue(skb))
3976 			goto out;
3977 
3978 		rxqueue = dev->_rx + rxq_index;
3979 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3980 		if (!flow_table)
3981 			goto out;
3982 		flow_id = skb_get_hash(skb) & flow_table->mask;
3983 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3984 							rxq_index, flow_id);
3985 		if (rc < 0)
3986 			goto out;
3987 		old_rflow = rflow;
3988 		rflow = &flow_table->flows[flow_id];
3989 		rflow->filter = rc;
3990 		if (old_rflow->filter == rflow->filter)
3991 			old_rflow->filter = RPS_NO_FILTER;
3992 	out:
3993 #endif
3994 		rflow->last_qtail =
3995 			per_cpu(softnet_data, next_cpu).input_queue_head;
3996 	}
3997 
3998 	rflow->cpu = next_cpu;
3999 	return rflow;
4000 }
4001 
4002 /*
4003  * get_rps_cpu is called from netif_receive_skb and returns the target
4004  * CPU from the RPS map of the receiving queue for a given skb.
4005  * rcu_read_lock must be held on entry.
4006  */
4007 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4008 		       struct rps_dev_flow **rflowp)
4009 {
4010 	const struct rps_sock_flow_table *sock_flow_table;
4011 	struct netdev_rx_queue *rxqueue = dev->_rx;
4012 	struct rps_dev_flow_table *flow_table;
4013 	struct rps_map *map;
4014 	int cpu = -1;
4015 	u32 tcpu;
4016 	u32 hash;
4017 
4018 	if (skb_rx_queue_recorded(skb)) {
4019 		u16 index = skb_get_rx_queue(skb);
4020 
4021 		if (unlikely(index >= dev->real_num_rx_queues)) {
4022 			WARN_ONCE(dev->real_num_rx_queues > 1,
4023 				  "%s received packet on queue %u, but number "
4024 				  "of RX queues is %u\n",
4025 				  dev->name, index, dev->real_num_rx_queues);
4026 			goto done;
4027 		}
4028 		rxqueue += index;
4029 	}
4030 
4031 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4032 
4033 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4034 	map = rcu_dereference(rxqueue->rps_map);
4035 	if (!flow_table && !map)
4036 		goto done;
4037 
4038 	skb_reset_network_header(skb);
4039 	hash = skb_get_hash(skb);
4040 	if (!hash)
4041 		goto done;
4042 
4043 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4044 	if (flow_table && sock_flow_table) {
4045 		struct rps_dev_flow *rflow;
4046 		u32 next_cpu;
4047 		u32 ident;
4048 
4049 		/* First check into global flow table if there is a match */
4050 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4051 		if ((ident ^ hash) & ~rps_cpu_mask)
4052 			goto try_rps;
4053 
4054 		next_cpu = ident & rps_cpu_mask;
4055 
4056 		/* OK, now we know there is a match,
4057 		 * we can look at the local (per receive queue) flow table
4058 		 */
4059 		rflow = &flow_table->flows[hash & flow_table->mask];
4060 		tcpu = rflow->cpu;
4061 
4062 		/*
4063 		 * If the desired CPU (where last recvmsg was done) is
4064 		 * different from current CPU (one in the rx-queue flow
4065 		 * table entry), switch if one of the following holds:
4066 		 *   - Current CPU is unset (>= nr_cpu_ids).
4067 		 *   - Current CPU is offline.
4068 		 *   - The current CPU's queue tail has advanced beyond the
4069 		 *     last packet that was enqueued using this table entry.
4070 		 *     This guarantees that all previous packets for the flow
4071 		 *     have been dequeued, thus preserving in order delivery.
4072 		 */
4073 		if (unlikely(tcpu != next_cpu) &&
4074 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4075 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4076 		      rflow->last_qtail)) >= 0)) {
4077 			tcpu = next_cpu;
4078 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4079 		}
4080 
4081 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4082 			*rflowp = rflow;
4083 			cpu = tcpu;
4084 			goto done;
4085 		}
4086 	}
4087 
4088 try_rps:
4089 
4090 	if (map) {
4091 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4092 		if (cpu_online(tcpu)) {
4093 			cpu = tcpu;
4094 			goto done;
4095 		}
4096 	}
4097 
4098 done:
4099 	return cpu;
4100 }
4101 
4102 #ifdef CONFIG_RFS_ACCEL
4103 
4104 /**
4105  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4106  * @dev: Device on which the filter was set
4107  * @rxq_index: RX queue index
4108  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4109  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4110  *
4111  * Drivers that implement ndo_rx_flow_steer() should periodically call
4112  * this function for each installed filter and remove the filters for
4113  * which it returns %true.
4114  */
4115 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4116 			 u32 flow_id, u16 filter_id)
4117 {
4118 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4119 	struct rps_dev_flow_table *flow_table;
4120 	struct rps_dev_flow *rflow;
4121 	bool expire = true;
4122 	unsigned int cpu;
4123 
4124 	rcu_read_lock();
4125 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4126 	if (flow_table && flow_id <= flow_table->mask) {
4127 		rflow = &flow_table->flows[flow_id];
4128 		cpu = READ_ONCE(rflow->cpu);
4129 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4130 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4131 			   rflow->last_qtail) <
4132 		     (int)(10 * flow_table->mask)))
4133 			expire = false;
4134 	}
4135 	rcu_read_unlock();
4136 	return expire;
4137 }
4138 EXPORT_SYMBOL(rps_may_expire_flow);
4139 
4140 #endif /* CONFIG_RFS_ACCEL */
4141 
4142 /* Called from hardirq (IPI) context */
4143 static void rps_trigger_softirq(void *data)
4144 {
4145 	struct softnet_data *sd = data;
4146 
4147 	____napi_schedule(sd, &sd->backlog);
4148 	sd->received_rps++;
4149 }
4150 
4151 #endif /* CONFIG_RPS */
4152 
4153 /*
4154  * Check if this softnet_data structure is another cpu one
4155  * If yes, queue it to our IPI list and return 1
4156  * If no, return 0
4157  */
4158 static int rps_ipi_queued(struct softnet_data *sd)
4159 {
4160 #ifdef CONFIG_RPS
4161 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4162 
4163 	if (sd != mysd) {
4164 		sd->rps_ipi_next = mysd->rps_ipi_list;
4165 		mysd->rps_ipi_list = sd;
4166 
4167 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4168 		return 1;
4169 	}
4170 #endif /* CONFIG_RPS */
4171 	return 0;
4172 }
4173 
4174 #ifdef CONFIG_NET_FLOW_LIMIT
4175 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4176 #endif
4177 
4178 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4179 {
4180 #ifdef CONFIG_NET_FLOW_LIMIT
4181 	struct sd_flow_limit *fl;
4182 	struct softnet_data *sd;
4183 	unsigned int old_flow, new_flow;
4184 
4185 	if (qlen < (netdev_max_backlog >> 1))
4186 		return false;
4187 
4188 	sd = this_cpu_ptr(&softnet_data);
4189 
4190 	rcu_read_lock();
4191 	fl = rcu_dereference(sd->flow_limit);
4192 	if (fl) {
4193 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4194 		old_flow = fl->history[fl->history_head];
4195 		fl->history[fl->history_head] = new_flow;
4196 
4197 		fl->history_head++;
4198 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4199 
4200 		if (likely(fl->buckets[old_flow]))
4201 			fl->buckets[old_flow]--;
4202 
4203 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4204 			fl->count++;
4205 			rcu_read_unlock();
4206 			return true;
4207 		}
4208 	}
4209 	rcu_read_unlock();
4210 #endif
4211 	return false;
4212 }
4213 
4214 /*
4215  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4216  * queue (may be a remote CPU queue).
4217  */
4218 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4219 			      unsigned int *qtail)
4220 {
4221 	struct softnet_data *sd;
4222 	unsigned long flags;
4223 	unsigned int qlen;
4224 
4225 	sd = &per_cpu(softnet_data, cpu);
4226 
4227 	local_irq_save(flags);
4228 
4229 	rps_lock(sd);
4230 	if (!netif_running(skb->dev))
4231 		goto drop;
4232 	qlen = skb_queue_len(&sd->input_pkt_queue);
4233 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4234 		if (qlen) {
4235 enqueue:
4236 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4237 			input_queue_tail_incr_save(sd, qtail);
4238 			rps_unlock(sd);
4239 			local_irq_restore(flags);
4240 			return NET_RX_SUCCESS;
4241 		}
4242 
4243 		/* Schedule NAPI for backlog device
4244 		 * We can use non atomic operation since we own the queue lock
4245 		 */
4246 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4247 			if (!rps_ipi_queued(sd))
4248 				____napi_schedule(sd, &sd->backlog);
4249 		}
4250 		goto enqueue;
4251 	}
4252 
4253 drop:
4254 	sd->dropped++;
4255 	rps_unlock(sd);
4256 
4257 	local_irq_restore(flags);
4258 
4259 	atomic_long_inc(&skb->dev->rx_dropped);
4260 	kfree_skb(skb);
4261 	return NET_RX_DROP;
4262 }
4263 
4264 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4265 {
4266 	struct net_device *dev = skb->dev;
4267 	struct netdev_rx_queue *rxqueue;
4268 
4269 	rxqueue = dev->_rx;
4270 
4271 	if (skb_rx_queue_recorded(skb)) {
4272 		u16 index = skb_get_rx_queue(skb);
4273 
4274 		if (unlikely(index >= dev->real_num_rx_queues)) {
4275 			WARN_ONCE(dev->real_num_rx_queues > 1,
4276 				  "%s received packet on queue %u, but number "
4277 				  "of RX queues is %u\n",
4278 				  dev->name, index, dev->real_num_rx_queues);
4279 
4280 			return rxqueue; /* Return first rxqueue */
4281 		}
4282 		rxqueue += index;
4283 	}
4284 	return rxqueue;
4285 }
4286 
4287 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4288 				     struct xdp_buff *xdp,
4289 				     struct bpf_prog *xdp_prog)
4290 {
4291 	struct netdev_rx_queue *rxqueue;
4292 	void *orig_data, *orig_data_end;
4293 	u32 metalen, act = XDP_DROP;
4294 	__be16 orig_eth_type;
4295 	struct ethhdr *eth;
4296 	bool orig_bcast;
4297 	int hlen, off;
4298 	u32 mac_len;
4299 
4300 	/* Reinjected packets coming from act_mirred or similar should
4301 	 * not get XDP generic processing.
4302 	 */
4303 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4304 		return XDP_PASS;
4305 
4306 	/* XDP packets must be linear and must have sufficient headroom
4307 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4308 	 * native XDP provides, thus we need to do it here as well.
4309 	 */
4310 	if (skb_is_nonlinear(skb) ||
4311 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4312 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4313 		int troom = skb->tail + skb->data_len - skb->end;
4314 
4315 		/* In case we have to go down the path and also linearize,
4316 		 * then lets do the pskb_expand_head() work just once here.
4317 		 */
4318 		if (pskb_expand_head(skb,
4319 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4320 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4321 			goto do_drop;
4322 		if (skb_linearize(skb))
4323 			goto do_drop;
4324 	}
4325 
4326 	/* The XDP program wants to see the packet starting at the MAC
4327 	 * header.
4328 	 */
4329 	mac_len = skb->data - skb_mac_header(skb);
4330 	hlen = skb_headlen(skb) + mac_len;
4331 	xdp->data = skb->data - mac_len;
4332 	xdp->data_meta = xdp->data;
4333 	xdp->data_end = xdp->data + hlen;
4334 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4335 	orig_data_end = xdp->data_end;
4336 	orig_data = xdp->data;
4337 	eth = (struct ethhdr *)xdp->data;
4338 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4339 	orig_eth_type = eth->h_proto;
4340 
4341 	rxqueue = netif_get_rxqueue(skb);
4342 	xdp->rxq = &rxqueue->xdp_rxq;
4343 
4344 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4345 
4346 	off = xdp->data - orig_data;
4347 	if (off > 0)
4348 		__skb_pull(skb, off);
4349 	else if (off < 0)
4350 		__skb_push(skb, -off);
4351 	skb->mac_header += off;
4352 
4353 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4354 	 * pckt.
4355 	 */
4356 	off = orig_data_end - xdp->data_end;
4357 	if (off != 0) {
4358 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4359 		skb->len -= off;
4360 
4361 	}
4362 
4363 	/* check if XDP changed eth hdr such SKB needs update */
4364 	eth = (struct ethhdr *)xdp->data;
4365 	if ((orig_eth_type != eth->h_proto) ||
4366 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4367 		__skb_push(skb, ETH_HLEN);
4368 		skb->protocol = eth_type_trans(skb, skb->dev);
4369 	}
4370 
4371 	switch (act) {
4372 	case XDP_REDIRECT:
4373 	case XDP_TX:
4374 		__skb_push(skb, mac_len);
4375 		break;
4376 	case XDP_PASS:
4377 		metalen = xdp->data - xdp->data_meta;
4378 		if (metalen)
4379 			skb_metadata_set(skb, metalen);
4380 		break;
4381 	default:
4382 		bpf_warn_invalid_xdp_action(act);
4383 		/* fall through */
4384 	case XDP_ABORTED:
4385 		trace_xdp_exception(skb->dev, xdp_prog, act);
4386 		/* fall through */
4387 	case XDP_DROP:
4388 	do_drop:
4389 		kfree_skb(skb);
4390 		break;
4391 	}
4392 
4393 	return act;
4394 }
4395 
4396 /* When doing generic XDP we have to bypass the qdisc layer and the
4397  * network taps in order to match in-driver-XDP behavior.
4398  */
4399 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4400 {
4401 	struct net_device *dev = skb->dev;
4402 	struct netdev_queue *txq;
4403 	bool free_skb = true;
4404 	int cpu, rc;
4405 
4406 	txq = netdev_pick_tx(dev, skb, NULL);
4407 	cpu = smp_processor_id();
4408 	HARD_TX_LOCK(dev, txq, cpu);
4409 	if (!netif_xmit_stopped(txq)) {
4410 		rc = netdev_start_xmit(skb, dev, txq, 0);
4411 		if (dev_xmit_complete(rc))
4412 			free_skb = false;
4413 	}
4414 	HARD_TX_UNLOCK(dev, txq);
4415 	if (free_skb) {
4416 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4417 		kfree_skb(skb);
4418 	}
4419 }
4420 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4421 
4422 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4423 
4424 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4425 {
4426 	if (xdp_prog) {
4427 		struct xdp_buff xdp;
4428 		u32 act;
4429 		int err;
4430 
4431 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4432 		if (act != XDP_PASS) {
4433 			switch (act) {
4434 			case XDP_REDIRECT:
4435 				err = xdp_do_generic_redirect(skb->dev, skb,
4436 							      &xdp, xdp_prog);
4437 				if (err)
4438 					goto out_redir;
4439 				break;
4440 			case XDP_TX:
4441 				generic_xdp_tx(skb, xdp_prog);
4442 				break;
4443 			}
4444 			return XDP_DROP;
4445 		}
4446 	}
4447 	return XDP_PASS;
4448 out_redir:
4449 	kfree_skb(skb);
4450 	return XDP_DROP;
4451 }
4452 EXPORT_SYMBOL_GPL(do_xdp_generic);
4453 
4454 static int netif_rx_internal(struct sk_buff *skb)
4455 {
4456 	int ret;
4457 
4458 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4459 
4460 	trace_netif_rx(skb);
4461 
4462 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4463 		int ret;
4464 
4465 		preempt_disable();
4466 		rcu_read_lock();
4467 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4468 		rcu_read_unlock();
4469 		preempt_enable();
4470 
4471 		/* Consider XDP consuming the packet a success from
4472 		 * the netdev point of view we do not want to count
4473 		 * this as an error.
4474 		 */
4475 		if (ret != XDP_PASS)
4476 			return NET_RX_SUCCESS;
4477 	}
4478 
4479 #ifdef CONFIG_RPS
4480 	if (static_key_false(&rps_needed)) {
4481 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4482 		int cpu;
4483 
4484 		preempt_disable();
4485 		rcu_read_lock();
4486 
4487 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4488 		if (cpu < 0)
4489 			cpu = smp_processor_id();
4490 
4491 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4492 
4493 		rcu_read_unlock();
4494 		preempt_enable();
4495 	} else
4496 #endif
4497 	{
4498 		unsigned int qtail;
4499 
4500 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4501 		put_cpu();
4502 	}
4503 	return ret;
4504 }
4505 
4506 /**
4507  *	netif_rx	-	post buffer to the network code
4508  *	@skb: buffer to post
4509  *
4510  *	This function receives a packet from a device driver and queues it for
4511  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4512  *	may be dropped during processing for congestion control or by the
4513  *	protocol layers.
4514  *
4515  *	return values:
4516  *	NET_RX_SUCCESS	(no congestion)
4517  *	NET_RX_DROP     (packet was dropped)
4518  *
4519  */
4520 
4521 int netif_rx(struct sk_buff *skb)
4522 {
4523 	trace_netif_rx_entry(skb);
4524 
4525 	return netif_rx_internal(skb);
4526 }
4527 EXPORT_SYMBOL(netif_rx);
4528 
4529 int netif_rx_ni(struct sk_buff *skb)
4530 {
4531 	int err;
4532 
4533 	trace_netif_rx_ni_entry(skb);
4534 
4535 	preempt_disable();
4536 	err = netif_rx_internal(skb);
4537 	if (local_softirq_pending())
4538 		do_softirq();
4539 	preempt_enable();
4540 
4541 	return err;
4542 }
4543 EXPORT_SYMBOL(netif_rx_ni);
4544 
4545 static __latent_entropy void net_tx_action(struct softirq_action *h)
4546 {
4547 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4548 
4549 	if (sd->completion_queue) {
4550 		struct sk_buff *clist;
4551 
4552 		local_irq_disable();
4553 		clist = sd->completion_queue;
4554 		sd->completion_queue = NULL;
4555 		local_irq_enable();
4556 
4557 		while (clist) {
4558 			struct sk_buff *skb = clist;
4559 
4560 			clist = clist->next;
4561 
4562 			WARN_ON(refcount_read(&skb->users));
4563 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4564 				trace_consume_skb(skb);
4565 			else
4566 				trace_kfree_skb(skb, net_tx_action);
4567 
4568 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4569 				__kfree_skb(skb);
4570 			else
4571 				__kfree_skb_defer(skb);
4572 		}
4573 
4574 		__kfree_skb_flush();
4575 	}
4576 
4577 	if (sd->output_queue) {
4578 		struct Qdisc *head;
4579 
4580 		local_irq_disable();
4581 		head = sd->output_queue;
4582 		sd->output_queue = NULL;
4583 		sd->output_queue_tailp = &sd->output_queue;
4584 		local_irq_enable();
4585 
4586 		while (head) {
4587 			struct Qdisc *q = head;
4588 			spinlock_t *root_lock = NULL;
4589 
4590 			head = head->next_sched;
4591 
4592 			if (!(q->flags & TCQ_F_NOLOCK)) {
4593 				root_lock = qdisc_lock(q);
4594 				spin_lock(root_lock);
4595 			}
4596 			/* We need to make sure head->next_sched is read
4597 			 * before clearing __QDISC_STATE_SCHED
4598 			 */
4599 			smp_mb__before_atomic();
4600 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4601 			qdisc_run(q);
4602 			if (root_lock)
4603 				spin_unlock(root_lock);
4604 		}
4605 	}
4606 
4607 	xfrm_dev_backlog(sd);
4608 }
4609 
4610 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4611 /* This hook is defined here for ATM LANE */
4612 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4613 			     unsigned char *addr) __read_mostly;
4614 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4615 #endif
4616 
4617 static inline struct sk_buff *
4618 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4619 		   struct net_device *orig_dev)
4620 {
4621 #ifdef CONFIG_NET_CLS_ACT
4622 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4623 	struct tcf_result cl_res;
4624 
4625 	/* If there's at least one ingress present somewhere (so
4626 	 * we get here via enabled static key), remaining devices
4627 	 * that are not configured with an ingress qdisc will bail
4628 	 * out here.
4629 	 */
4630 	if (!miniq)
4631 		return skb;
4632 
4633 	if (*pt_prev) {
4634 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4635 		*pt_prev = NULL;
4636 	}
4637 
4638 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4639 	skb->tc_at_ingress = 1;
4640 	mini_qdisc_bstats_cpu_update(miniq, skb);
4641 
4642 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4643 	case TC_ACT_OK:
4644 	case TC_ACT_RECLASSIFY:
4645 		skb->tc_index = TC_H_MIN(cl_res.classid);
4646 		break;
4647 	case TC_ACT_SHOT:
4648 		mini_qdisc_qstats_cpu_drop(miniq);
4649 		kfree_skb(skb);
4650 		return NULL;
4651 	case TC_ACT_STOLEN:
4652 	case TC_ACT_QUEUED:
4653 	case TC_ACT_TRAP:
4654 		consume_skb(skb);
4655 		return NULL;
4656 	case TC_ACT_REDIRECT:
4657 		/* skb_mac_header check was done by cls/act_bpf, so
4658 		 * we can safely push the L2 header back before
4659 		 * redirecting to another netdev
4660 		 */
4661 		__skb_push(skb, skb->mac_len);
4662 		skb_do_redirect(skb);
4663 		return NULL;
4664 	case TC_ACT_REINSERT:
4665 		/* this does not scrub the packet, and updates stats on error */
4666 		skb_tc_reinsert(skb, &cl_res);
4667 		return NULL;
4668 	default:
4669 		break;
4670 	}
4671 #endif /* CONFIG_NET_CLS_ACT */
4672 	return skb;
4673 }
4674 
4675 /**
4676  *	netdev_is_rx_handler_busy - check if receive handler is registered
4677  *	@dev: device to check
4678  *
4679  *	Check if a receive handler is already registered for a given device.
4680  *	Return true if there one.
4681  *
4682  *	The caller must hold the rtnl_mutex.
4683  */
4684 bool netdev_is_rx_handler_busy(struct net_device *dev)
4685 {
4686 	ASSERT_RTNL();
4687 	return dev && rtnl_dereference(dev->rx_handler);
4688 }
4689 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4690 
4691 /**
4692  *	netdev_rx_handler_register - register receive handler
4693  *	@dev: device to register a handler for
4694  *	@rx_handler: receive handler to register
4695  *	@rx_handler_data: data pointer that is used by rx handler
4696  *
4697  *	Register a receive handler for a device. This handler will then be
4698  *	called from __netif_receive_skb. A negative errno code is returned
4699  *	on a failure.
4700  *
4701  *	The caller must hold the rtnl_mutex.
4702  *
4703  *	For a general description of rx_handler, see enum rx_handler_result.
4704  */
4705 int netdev_rx_handler_register(struct net_device *dev,
4706 			       rx_handler_func_t *rx_handler,
4707 			       void *rx_handler_data)
4708 {
4709 	if (netdev_is_rx_handler_busy(dev))
4710 		return -EBUSY;
4711 
4712 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4713 		return -EINVAL;
4714 
4715 	/* Note: rx_handler_data must be set before rx_handler */
4716 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4717 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4718 
4719 	return 0;
4720 }
4721 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4722 
4723 /**
4724  *	netdev_rx_handler_unregister - unregister receive handler
4725  *	@dev: device to unregister a handler from
4726  *
4727  *	Unregister a receive handler from a device.
4728  *
4729  *	The caller must hold the rtnl_mutex.
4730  */
4731 void netdev_rx_handler_unregister(struct net_device *dev)
4732 {
4733 
4734 	ASSERT_RTNL();
4735 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4736 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4737 	 * section has a guarantee to see a non NULL rx_handler_data
4738 	 * as well.
4739 	 */
4740 	synchronize_net();
4741 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4742 }
4743 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4744 
4745 /*
4746  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4747  * the special handling of PFMEMALLOC skbs.
4748  */
4749 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4750 {
4751 	switch (skb->protocol) {
4752 	case htons(ETH_P_ARP):
4753 	case htons(ETH_P_IP):
4754 	case htons(ETH_P_IPV6):
4755 	case htons(ETH_P_8021Q):
4756 	case htons(ETH_P_8021AD):
4757 		return true;
4758 	default:
4759 		return false;
4760 	}
4761 }
4762 
4763 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4764 			     int *ret, struct net_device *orig_dev)
4765 {
4766 #ifdef CONFIG_NETFILTER_INGRESS
4767 	if (nf_hook_ingress_active(skb)) {
4768 		int ingress_retval;
4769 
4770 		if (*pt_prev) {
4771 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4772 			*pt_prev = NULL;
4773 		}
4774 
4775 		rcu_read_lock();
4776 		ingress_retval = nf_hook_ingress(skb);
4777 		rcu_read_unlock();
4778 		return ingress_retval;
4779 	}
4780 #endif /* CONFIG_NETFILTER_INGRESS */
4781 	return 0;
4782 }
4783 
4784 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4785 				    struct packet_type **ppt_prev)
4786 {
4787 	struct packet_type *ptype, *pt_prev;
4788 	rx_handler_func_t *rx_handler;
4789 	struct net_device *orig_dev;
4790 	bool deliver_exact = false;
4791 	int ret = NET_RX_DROP;
4792 	__be16 type;
4793 
4794 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4795 
4796 	trace_netif_receive_skb(skb);
4797 
4798 	orig_dev = skb->dev;
4799 
4800 	skb_reset_network_header(skb);
4801 	if (!skb_transport_header_was_set(skb))
4802 		skb_reset_transport_header(skb);
4803 	skb_reset_mac_len(skb);
4804 
4805 	pt_prev = NULL;
4806 
4807 another_round:
4808 	skb->skb_iif = skb->dev->ifindex;
4809 
4810 	__this_cpu_inc(softnet_data.processed);
4811 
4812 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4813 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4814 		skb = skb_vlan_untag(skb);
4815 		if (unlikely(!skb))
4816 			goto out;
4817 	}
4818 
4819 	if (skb_skip_tc_classify(skb))
4820 		goto skip_classify;
4821 
4822 	if (pfmemalloc)
4823 		goto skip_taps;
4824 
4825 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4826 		if (pt_prev)
4827 			ret = deliver_skb(skb, pt_prev, orig_dev);
4828 		pt_prev = ptype;
4829 	}
4830 
4831 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4832 		if (pt_prev)
4833 			ret = deliver_skb(skb, pt_prev, orig_dev);
4834 		pt_prev = ptype;
4835 	}
4836 
4837 skip_taps:
4838 #ifdef CONFIG_NET_INGRESS
4839 	if (static_branch_unlikely(&ingress_needed_key)) {
4840 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4841 		if (!skb)
4842 			goto out;
4843 
4844 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4845 			goto out;
4846 	}
4847 #endif
4848 	skb_reset_tc(skb);
4849 skip_classify:
4850 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4851 		goto drop;
4852 
4853 	if (skb_vlan_tag_present(skb)) {
4854 		if (pt_prev) {
4855 			ret = deliver_skb(skb, pt_prev, orig_dev);
4856 			pt_prev = NULL;
4857 		}
4858 		if (vlan_do_receive(&skb))
4859 			goto another_round;
4860 		else if (unlikely(!skb))
4861 			goto out;
4862 	}
4863 
4864 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4865 	if (rx_handler) {
4866 		if (pt_prev) {
4867 			ret = deliver_skb(skb, pt_prev, orig_dev);
4868 			pt_prev = NULL;
4869 		}
4870 		switch (rx_handler(&skb)) {
4871 		case RX_HANDLER_CONSUMED:
4872 			ret = NET_RX_SUCCESS;
4873 			goto out;
4874 		case RX_HANDLER_ANOTHER:
4875 			goto another_round;
4876 		case RX_HANDLER_EXACT:
4877 			deliver_exact = true;
4878 		case RX_HANDLER_PASS:
4879 			break;
4880 		default:
4881 			BUG();
4882 		}
4883 	}
4884 
4885 	if (unlikely(skb_vlan_tag_present(skb))) {
4886 		if (skb_vlan_tag_get_id(skb))
4887 			skb->pkt_type = PACKET_OTHERHOST;
4888 		/* Note: we might in the future use prio bits
4889 		 * and set skb->priority like in vlan_do_receive()
4890 		 * For the time being, just ignore Priority Code Point
4891 		 */
4892 		skb->vlan_tci = 0;
4893 	}
4894 
4895 	type = skb->protocol;
4896 
4897 	/* deliver only exact match when indicated */
4898 	if (likely(!deliver_exact)) {
4899 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4900 				       &ptype_base[ntohs(type) &
4901 						   PTYPE_HASH_MASK]);
4902 	}
4903 
4904 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4905 			       &orig_dev->ptype_specific);
4906 
4907 	if (unlikely(skb->dev != orig_dev)) {
4908 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4909 				       &skb->dev->ptype_specific);
4910 	}
4911 
4912 	if (pt_prev) {
4913 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4914 			goto drop;
4915 		*ppt_prev = pt_prev;
4916 	} else {
4917 drop:
4918 		if (!deliver_exact)
4919 			atomic_long_inc(&skb->dev->rx_dropped);
4920 		else
4921 			atomic_long_inc(&skb->dev->rx_nohandler);
4922 		kfree_skb(skb);
4923 		/* Jamal, now you will not able to escape explaining
4924 		 * me how you were going to use this. :-)
4925 		 */
4926 		ret = NET_RX_DROP;
4927 	}
4928 
4929 out:
4930 	return ret;
4931 }
4932 
4933 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4934 {
4935 	struct net_device *orig_dev = skb->dev;
4936 	struct packet_type *pt_prev = NULL;
4937 	int ret;
4938 
4939 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4940 	if (pt_prev)
4941 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4942 	return ret;
4943 }
4944 
4945 /**
4946  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4947  *	@skb: buffer to process
4948  *
4949  *	More direct receive version of netif_receive_skb().  It should
4950  *	only be used by callers that have a need to skip RPS and Generic XDP.
4951  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4952  *
4953  *	This function may only be called from softirq context and interrupts
4954  *	should be enabled.
4955  *
4956  *	Return values (usually ignored):
4957  *	NET_RX_SUCCESS: no congestion
4958  *	NET_RX_DROP: packet was dropped
4959  */
4960 int netif_receive_skb_core(struct sk_buff *skb)
4961 {
4962 	int ret;
4963 
4964 	rcu_read_lock();
4965 	ret = __netif_receive_skb_one_core(skb, false);
4966 	rcu_read_unlock();
4967 
4968 	return ret;
4969 }
4970 EXPORT_SYMBOL(netif_receive_skb_core);
4971 
4972 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4973 						  struct packet_type *pt_prev,
4974 						  struct net_device *orig_dev)
4975 {
4976 	struct sk_buff *skb, *next;
4977 
4978 	if (!pt_prev)
4979 		return;
4980 	if (list_empty(head))
4981 		return;
4982 	if (pt_prev->list_func != NULL)
4983 		pt_prev->list_func(head, pt_prev, orig_dev);
4984 	else
4985 		list_for_each_entry_safe(skb, next, head, list)
4986 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4987 }
4988 
4989 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4990 {
4991 	/* Fast-path assumptions:
4992 	 * - There is no RX handler.
4993 	 * - Only one packet_type matches.
4994 	 * If either of these fails, we will end up doing some per-packet
4995 	 * processing in-line, then handling the 'last ptype' for the whole
4996 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4997 	 * because the 'last ptype' must be constant across the sublist, and all
4998 	 * other ptypes are handled per-packet.
4999 	 */
5000 	/* Current (common) ptype of sublist */
5001 	struct packet_type *pt_curr = NULL;
5002 	/* Current (common) orig_dev of sublist */
5003 	struct net_device *od_curr = NULL;
5004 	struct list_head sublist;
5005 	struct sk_buff *skb, *next;
5006 
5007 	INIT_LIST_HEAD(&sublist);
5008 	list_for_each_entry_safe(skb, next, head, list) {
5009 		struct net_device *orig_dev = skb->dev;
5010 		struct packet_type *pt_prev = NULL;
5011 
5012 		list_del(&skb->list);
5013 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5014 		if (!pt_prev)
5015 			continue;
5016 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5017 			/* dispatch old sublist */
5018 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5019 			/* start new sublist */
5020 			INIT_LIST_HEAD(&sublist);
5021 			pt_curr = pt_prev;
5022 			od_curr = orig_dev;
5023 		}
5024 		list_add_tail(&skb->list, &sublist);
5025 	}
5026 
5027 	/* dispatch final sublist */
5028 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5029 }
5030 
5031 static int __netif_receive_skb(struct sk_buff *skb)
5032 {
5033 	int ret;
5034 
5035 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5036 		unsigned int noreclaim_flag;
5037 
5038 		/*
5039 		 * PFMEMALLOC skbs are special, they should
5040 		 * - be delivered to SOCK_MEMALLOC sockets only
5041 		 * - stay away from userspace
5042 		 * - have bounded memory usage
5043 		 *
5044 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5045 		 * context down to all allocation sites.
5046 		 */
5047 		noreclaim_flag = memalloc_noreclaim_save();
5048 		ret = __netif_receive_skb_one_core(skb, true);
5049 		memalloc_noreclaim_restore(noreclaim_flag);
5050 	} else
5051 		ret = __netif_receive_skb_one_core(skb, false);
5052 
5053 	return ret;
5054 }
5055 
5056 static void __netif_receive_skb_list(struct list_head *head)
5057 {
5058 	unsigned long noreclaim_flag = 0;
5059 	struct sk_buff *skb, *next;
5060 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5061 
5062 	list_for_each_entry_safe(skb, next, head, list) {
5063 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5064 			struct list_head sublist;
5065 
5066 			/* Handle the previous sublist */
5067 			list_cut_before(&sublist, head, &skb->list);
5068 			if (!list_empty(&sublist))
5069 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5070 			pfmemalloc = !pfmemalloc;
5071 			/* See comments in __netif_receive_skb */
5072 			if (pfmemalloc)
5073 				noreclaim_flag = memalloc_noreclaim_save();
5074 			else
5075 				memalloc_noreclaim_restore(noreclaim_flag);
5076 		}
5077 	}
5078 	/* Handle the remaining sublist */
5079 	if (!list_empty(head))
5080 		__netif_receive_skb_list_core(head, pfmemalloc);
5081 	/* Restore pflags */
5082 	if (pfmemalloc)
5083 		memalloc_noreclaim_restore(noreclaim_flag);
5084 }
5085 
5086 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5087 {
5088 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5089 	struct bpf_prog *new = xdp->prog;
5090 	int ret = 0;
5091 
5092 	switch (xdp->command) {
5093 	case XDP_SETUP_PROG:
5094 		rcu_assign_pointer(dev->xdp_prog, new);
5095 		if (old)
5096 			bpf_prog_put(old);
5097 
5098 		if (old && !new) {
5099 			static_branch_dec(&generic_xdp_needed_key);
5100 		} else if (new && !old) {
5101 			static_branch_inc(&generic_xdp_needed_key);
5102 			dev_disable_lro(dev);
5103 			dev_disable_gro_hw(dev);
5104 		}
5105 		break;
5106 
5107 	case XDP_QUERY_PROG:
5108 		xdp->prog_id = old ? old->aux->id : 0;
5109 		break;
5110 
5111 	default:
5112 		ret = -EINVAL;
5113 		break;
5114 	}
5115 
5116 	return ret;
5117 }
5118 
5119 static int netif_receive_skb_internal(struct sk_buff *skb)
5120 {
5121 	int ret;
5122 
5123 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5124 
5125 	if (skb_defer_rx_timestamp(skb))
5126 		return NET_RX_SUCCESS;
5127 
5128 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5129 		int ret;
5130 
5131 		preempt_disable();
5132 		rcu_read_lock();
5133 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5134 		rcu_read_unlock();
5135 		preempt_enable();
5136 
5137 		if (ret != XDP_PASS)
5138 			return NET_RX_DROP;
5139 	}
5140 
5141 	rcu_read_lock();
5142 #ifdef CONFIG_RPS
5143 	if (static_key_false(&rps_needed)) {
5144 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5145 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5146 
5147 		if (cpu >= 0) {
5148 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5149 			rcu_read_unlock();
5150 			return ret;
5151 		}
5152 	}
5153 #endif
5154 	ret = __netif_receive_skb(skb);
5155 	rcu_read_unlock();
5156 	return ret;
5157 }
5158 
5159 static void netif_receive_skb_list_internal(struct list_head *head)
5160 {
5161 	struct bpf_prog *xdp_prog = NULL;
5162 	struct sk_buff *skb, *next;
5163 	struct list_head sublist;
5164 
5165 	INIT_LIST_HEAD(&sublist);
5166 	list_for_each_entry_safe(skb, next, head, list) {
5167 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5168 		list_del(&skb->list);
5169 		if (!skb_defer_rx_timestamp(skb))
5170 			list_add_tail(&skb->list, &sublist);
5171 	}
5172 	list_splice_init(&sublist, head);
5173 
5174 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5175 		preempt_disable();
5176 		rcu_read_lock();
5177 		list_for_each_entry_safe(skb, next, head, list) {
5178 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5179 			list_del(&skb->list);
5180 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5181 				list_add_tail(&skb->list, &sublist);
5182 		}
5183 		rcu_read_unlock();
5184 		preempt_enable();
5185 		/* Put passed packets back on main list */
5186 		list_splice_init(&sublist, head);
5187 	}
5188 
5189 	rcu_read_lock();
5190 #ifdef CONFIG_RPS
5191 	if (static_key_false(&rps_needed)) {
5192 		list_for_each_entry_safe(skb, next, head, list) {
5193 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5194 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5195 
5196 			if (cpu >= 0) {
5197 				/* Will be handled, remove from list */
5198 				list_del(&skb->list);
5199 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5200 			}
5201 		}
5202 	}
5203 #endif
5204 	__netif_receive_skb_list(head);
5205 	rcu_read_unlock();
5206 }
5207 
5208 /**
5209  *	netif_receive_skb - process receive buffer from network
5210  *	@skb: buffer to process
5211  *
5212  *	netif_receive_skb() is the main receive data processing function.
5213  *	It always succeeds. The buffer may be dropped during processing
5214  *	for congestion control or by the protocol layers.
5215  *
5216  *	This function may only be called from softirq context and interrupts
5217  *	should be enabled.
5218  *
5219  *	Return values (usually ignored):
5220  *	NET_RX_SUCCESS: no congestion
5221  *	NET_RX_DROP: packet was dropped
5222  */
5223 int netif_receive_skb(struct sk_buff *skb)
5224 {
5225 	trace_netif_receive_skb_entry(skb);
5226 
5227 	return netif_receive_skb_internal(skb);
5228 }
5229 EXPORT_SYMBOL(netif_receive_skb);
5230 
5231 /**
5232  *	netif_receive_skb_list - process many receive buffers from network
5233  *	@head: list of skbs to process.
5234  *
5235  *	Since return value of netif_receive_skb() is normally ignored, and
5236  *	wouldn't be meaningful for a list, this function returns void.
5237  *
5238  *	This function may only be called from softirq context and interrupts
5239  *	should be enabled.
5240  */
5241 void netif_receive_skb_list(struct list_head *head)
5242 {
5243 	struct sk_buff *skb;
5244 
5245 	if (list_empty(head))
5246 		return;
5247 	list_for_each_entry(skb, head, list)
5248 		trace_netif_receive_skb_list_entry(skb);
5249 	netif_receive_skb_list_internal(head);
5250 }
5251 EXPORT_SYMBOL(netif_receive_skb_list);
5252 
5253 DEFINE_PER_CPU(struct work_struct, flush_works);
5254 
5255 /* Network device is going away, flush any packets still pending */
5256 static void flush_backlog(struct work_struct *work)
5257 {
5258 	struct sk_buff *skb, *tmp;
5259 	struct softnet_data *sd;
5260 
5261 	local_bh_disable();
5262 	sd = this_cpu_ptr(&softnet_data);
5263 
5264 	local_irq_disable();
5265 	rps_lock(sd);
5266 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5267 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5268 			__skb_unlink(skb, &sd->input_pkt_queue);
5269 			kfree_skb(skb);
5270 			input_queue_head_incr(sd);
5271 		}
5272 	}
5273 	rps_unlock(sd);
5274 	local_irq_enable();
5275 
5276 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5277 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5278 			__skb_unlink(skb, &sd->process_queue);
5279 			kfree_skb(skb);
5280 			input_queue_head_incr(sd);
5281 		}
5282 	}
5283 	local_bh_enable();
5284 }
5285 
5286 static void flush_all_backlogs(void)
5287 {
5288 	unsigned int cpu;
5289 
5290 	get_online_cpus();
5291 
5292 	for_each_online_cpu(cpu)
5293 		queue_work_on(cpu, system_highpri_wq,
5294 			      per_cpu_ptr(&flush_works, cpu));
5295 
5296 	for_each_online_cpu(cpu)
5297 		flush_work(per_cpu_ptr(&flush_works, cpu));
5298 
5299 	put_online_cpus();
5300 }
5301 
5302 static int napi_gro_complete(struct sk_buff *skb)
5303 {
5304 	struct packet_offload *ptype;
5305 	__be16 type = skb->protocol;
5306 	struct list_head *head = &offload_base;
5307 	int err = -ENOENT;
5308 
5309 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5310 
5311 	if (NAPI_GRO_CB(skb)->count == 1) {
5312 		skb_shinfo(skb)->gso_size = 0;
5313 		goto out;
5314 	}
5315 
5316 	rcu_read_lock();
5317 	list_for_each_entry_rcu(ptype, head, list) {
5318 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5319 			continue;
5320 
5321 		err = ptype->callbacks.gro_complete(skb, 0);
5322 		break;
5323 	}
5324 	rcu_read_unlock();
5325 
5326 	if (err) {
5327 		WARN_ON(&ptype->list == head);
5328 		kfree_skb(skb);
5329 		return NET_RX_SUCCESS;
5330 	}
5331 
5332 out:
5333 	return netif_receive_skb_internal(skb);
5334 }
5335 
5336 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5337 				   bool flush_old)
5338 {
5339 	struct list_head *head = &napi->gro_hash[index].list;
5340 	struct sk_buff *skb, *p;
5341 
5342 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5343 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5344 			return;
5345 		skb_list_del_init(skb);
5346 		napi_gro_complete(skb);
5347 		napi->gro_hash[index].count--;
5348 	}
5349 
5350 	if (!napi->gro_hash[index].count)
5351 		__clear_bit(index, &napi->gro_bitmask);
5352 }
5353 
5354 /* napi->gro_hash[].list contains packets ordered by age.
5355  * youngest packets at the head of it.
5356  * Complete skbs in reverse order to reduce latencies.
5357  */
5358 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5359 {
5360 	u32 i;
5361 
5362 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5363 		if (test_bit(i, &napi->gro_bitmask))
5364 			__napi_gro_flush_chain(napi, i, flush_old);
5365 	}
5366 }
5367 EXPORT_SYMBOL(napi_gro_flush);
5368 
5369 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5370 					  struct sk_buff *skb)
5371 {
5372 	unsigned int maclen = skb->dev->hard_header_len;
5373 	u32 hash = skb_get_hash_raw(skb);
5374 	struct list_head *head;
5375 	struct sk_buff *p;
5376 
5377 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5378 	list_for_each_entry(p, head, list) {
5379 		unsigned long diffs;
5380 
5381 		NAPI_GRO_CB(p)->flush = 0;
5382 
5383 		if (hash != skb_get_hash_raw(p)) {
5384 			NAPI_GRO_CB(p)->same_flow = 0;
5385 			continue;
5386 		}
5387 
5388 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5389 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5390 		diffs |= skb_metadata_dst_cmp(p, skb);
5391 		diffs |= skb_metadata_differs(p, skb);
5392 		if (maclen == ETH_HLEN)
5393 			diffs |= compare_ether_header(skb_mac_header(p),
5394 						      skb_mac_header(skb));
5395 		else if (!diffs)
5396 			diffs = memcmp(skb_mac_header(p),
5397 				       skb_mac_header(skb),
5398 				       maclen);
5399 		NAPI_GRO_CB(p)->same_flow = !diffs;
5400 	}
5401 
5402 	return head;
5403 }
5404 
5405 static void skb_gro_reset_offset(struct sk_buff *skb)
5406 {
5407 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5408 	const skb_frag_t *frag0 = &pinfo->frags[0];
5409 
5410 	NAPI_GRO_CB(skb)->data_offset = 0;
5411 	NAPI_GRO_CB(skb)->frag0 = NULL;
5412 	NAPI_GRO_CB(skb)->frag0_len = 0;
5413 
5414 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5415 	    pinfo->nr_frags &&
5416 	    !PageHighMem(skb_frag_page(frag0))) {
5417 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5418 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5419 						    skb_frag_size(frag0),
5420 						    skb->end - skb->tail);
5421 	}
5422 }
5423 
5424 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5425 {
5426 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5427 
5428 	BUG_ON(skb->end - skb->tail < grow);
5429 
5430 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5431 
5432 	skb->data_len -= grow;
5433 	skb->tail += grow;
5434 
5435 	pinfo->frags[0].page_offset += grow;
5436 	skb_frag_size_sub(&pinfo->frags[0], grow);
5437 
5438 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5439 		skb_frag_unref(skb, 0);
5440 		memmove(pinfo->frags, pinfo->frags + 1,
5441 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5442 	}
5443 }
5444 
5445 static void gro_flush_oldest(struct list_head *head)
5446 {
5447 	struct sk_buff *oldest;
5448 
5449 	oldest = list_last_entry(head, struct sk_buff, list);
5450 
5451 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5452 	 * impossible.
5453 	 */
5454 	if (WARN_ON_ONCE(!oldest))
5455 		return;
5456 
5457 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5458 	 * SKB to the chain.
5459 	 */
5460 	skb_list_del_init(oldest);
5461 	napi_gro_complete(oldest);
5462 }
5463 
5464 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5465 {
5466 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5467 	struct list_head *head = &offload_base;
5468 	struct packet_offload *ptype;
5469 	__be16 type = skb->protocol;
5470 	struct list_head *gro_head;
5471 	struct sk_buff *pp = NULL;
5472 	enum gro_result ret;
5473 	int same_flow;
5474 	int grow;
5475 
5476 	if (netif_elide_gro(skb->dev))
5477 		goto normal;
5478 
5479 	gro_head = gro_list_prepare(napi, skb);
5480 
5481 	rcu_read_lock();
5482 	list_for_each_entry_rcu(ptype, head, list) {
5483 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5484 			continue;
5485 
5486 		skb_set_network_header(skb, skb_gro_offset(skb));
5487 		skb_reset_mac_len(skb);
5488 		NAPI_GRO_CB(skb)->same_flow = 0;
5489 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5490 		NAPI_GRO_CB(skb)->free = 0;
5491 		NAPI_GRO_CB(skb)->encap_mark = 0;
5492 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5493 		NAPI_GRO_CB(skb)->is_fou = 0;
5494 		NAPI_GRO_CB(skb)->is_atomic = 1;
5495 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5496 
5497 		/* Setup for GRO checksum validation */
5498 		switch (skb->ip_summed) {
5499 		case CHECKSUM_COMPLETE:
5500 			NAPI_GRO_CB(skb)->csum = skb->csum;
5501 			NAPI_GRO_CB(skb)->csum_valid = 1;
5502 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5503 			break;
5504 		case CHECKSUM_UNNECESSARY:
5505 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5506 			NAPI_GRO_CB(skb)->csum_valid = 0;
5507 			break;
5508 		default:
5509 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5510 			NAPI_GRO_CB(skb)->csum_valid = 0;
5511 		}
5512 
5513 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5514 		break;
5515 	}
5516 	rcu_read_unlock();
5517 
5518 	if (&ptype->list == head)
5519 		goto normal;
5520 
5521 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5522 		ret = GRO_CONSUMED;
5523 		goto ok;
5524 	}
5525 
5526 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5527 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5528 
5529 	if (pp) {
5530 		skb_list_del_init(pp);
5531 		napi_gro_complete(pp);
5532 		napi->gro_hash[hash].count--;
5533 	}
5534 
5535 	if (same_flow)
5536 		goto ok;
5537 
5538 	if (NAPI_GRO_CB(skb)->flush)
5539 		goto normal;
5540 
5541 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5542 		gro_flush_oldest(gro_head);
5543 	} else {
5544 		napi->gro_hash[hash].count++;
5545 	}
5546 	NAPI_GRO_CB(skb)->count = 1;
5547 	NAPI_GRO_CB(skb)->age = jiffies;
5548 	NAPI_GRO_CB(skb)->last = skb;
5549 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5550 	list_add(&skb->list, gro_head);
5551 	ret = GRO_HELD;
5552 
5553 pull:
5554 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5555 	if (grow > 0)
5556 		gro_pull_from_frag0(skb, grow);
5557 ok:
5558 	if (napi->gro_hash[hash].count) {
5559 		if (!test_bit(hash, &napi->gro_bitmask))
5560 			__set_bit(hash, &napi->gro_bitmask);
5561 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5562 		__clear_bit(hash, &napi->gro_bitmask);
5563 	}
5564 
5565 	return ret;
5566 
5567 normal:
5568 	ret = GRO_NORMAL;
5569 	goto pull;
5570 }
5571 
5572 struct packet_offload *gro_find_receive_by_type(__be16 type)
5573 {
5574 	struct list_head *offload_head = &offload_base;
5575 	struct packet_offload *ptype;
5576 
5577 	list_for_each_entry_rcu(ptype, offload_head, list) {
5578 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5579 			continue;
5580 		return ptype;
5581 	}
5582 	return NULL;
5583 }
5584 EXPORT_SYMBOL(gro_find_receive_by_type);
5585 
5586 struct packet_offload *gro_find_complete_by_type(__be16 type)
5587 {
5588 	struct list_head *offload_head = &offload_base;
5589 	struct packet_offload *ptype;
5590 
5591 	list_for_each_entry_rcu(ptype, offload_head, list) {
5592 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5593 			continue;
5594 		return ptype;
5595 	}
5596 	return NULL;
5597 }
5598 EXPORT_SYMBOL(gro_find_complete_by_type);
5599 
5600 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5601 {
5602 	skb_dst_drop(skb);
5603 	secpath_reset(skb);
5604 	kmem_cache_free(skbuff_head_cache, skb);
5605 }
5606 
5607 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5608 {
5609 	switch (ret) {
5610 	case GRO_NORMAL:
5611 		if (netif_receive_skb_internal(skb))
5612 			ret = GRO_DROP;
5613 		break;
5614 
5615 	case GRO_DROP:
5616 		kfree_skb(skb);
5617 		break;
5618 
5619 	case GRO_MERGED_FREE:
5620 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5621 			napi_skb_free_stolen_head(skb);
5622 		else
5623 			__kfree_skb(skb);
5624 		break;
5625 
5626 	case GRO_HELD:
5627 	case GRO_MERGED:
5628 	case GRO_CONSUMED:
5629 		break;
5630 	}
5631 
5632 	return ret;
5633 }
5634 
5635 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5636 {
5637 	skb_mark_napi_id(skb, napi);
5638 	trace_napi_gro_receive_entry(skb);
5639 
5640 	skb_gro_reset_offset(skb);
5641 
5642 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5643 }
5644 EXPORT_SYMBOL(napi_gro_receive);
5645 
5646 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5647 {
5648 	if (unlikely(skb->pfmemalloc)) {
5649 		consume_skb(skb);
5650 		return;
5651 	}
5652 	__skb_pull(skb, skb_headlen(skb));
5653 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5654 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5655 	skb->vlan_tci = 0;
5656 	skb->dev = napi->dev;
5657 	skb->skb_iif = 0;
5658 	skb->encapsulation = 0;
5659 	skb_shinfo(skb)->gso_type = 0;
5660 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5661 	secpath_reset(skb);
5662 
5663 	napi->skb = skb;
5664 }
5665 
5666 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5667 {
5668 	struct sk_buff *skb = napi->skb;
5669 
5670 	if (!skb) {
5671 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5672 		if (skb) {
5673 			napi->skb = skb;
5674 			skb_mark_napi_id(skb, napi);
5675 		}
5676 	}
5677 	return skb;
5678 }
5679 EXPORT_SYMBOL(napi_get_frags);
5680 
5681 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5682 				      struct sk_buff *skb,
5683 				      gro_result_t ret)
5684 {
5685 	switch (ret) {
5686 	case GRO_NORMAL:
5687 	case GRO_HELD:
5688 		__skb_push(skb, ETH_HLEN);
5689 		skb->protocol = eth_type_trans(skb, skb->dev);
5690 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5691 			ret = GRO_DROP;
5692 		break;
5693 
5694 	case GRO_DROP:
5695 		napi_reuse_skb(napi, skb);
5696 		break;
5697 
5698 	case GRO_MERGED_FREE:
5699 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5700 			napi_skb_free_stolen_head(skb);
5701 		else
5702 			napi_reuse_skb(napi, skb);
5703 		break;
5704 
5705 	case GRO_MERGED:
5706 	case GRO_CONSUMED:
5707 		break;
5708 	}
5709 
5710 	return ret;
5711 }
5712 
5713 /* Upper GRO stack assumes network header starts at gro_offset=0
5714  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5715  * We copy ethernet header into skb->data to have a common layout.
5716  */
5717 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5718 {
5719 	struct sk_buff *skb = napi->skb;
5720 	const struct ethhdr *eth;
5721 	unsigned int hlen = sizeof(*eth);
5722 
5723 	napi->skb = NULL;
5724 
5725 	skb_reset_mac_header(skb);
5726 	skb_gro_reset_offset(skb);
5727 
5728 	eth = skb_gro_header_fast(skb, 0);
5729 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5730 		eth = skb_gro_header_slow(skb, hlen, 0);
5731 		if (unlikely(!eth)) {
5732 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5733 					     __func__, napi->dev->name);
5734 			napi_reuse_skb(napi, skb);
5735 			return NULL;
5736 		}
5737 	} else {
5738 		gro_pull_from_frag0(skb, hlen);
5739 		NAPI_GRO_CB(skb)->frag0 += hlen;
5740 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5741 	}
5742 	__skb_pull(skb, hlen);
5743 
5744 	/*
5745 	 * This works because the only protocols we care about don't require
5746 	 * special handling.
5747 	 * We'll fix it up properly in napi_frags_finish()
5748 	 */
5749 	skb->protocol = eth->h_proto;
5750 
5751 	return skb;
5752 }
5753 
5754 gro_result_t napi_gro_frags(struct napi_struct *napi)
5755 {
5756 	struct sk_buff *skb = napi_frags_skb(napi);
5757 
5758 	if (!skb)
5759 		return GRO_DROP;
5760 
5761 	trace_napi_gro_frags_entry(skb);
5762 
5763 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5764 }
5765 EXPORT_SYMBOL(napi_gro_frags);
5766 
5767 /* Compute the checksum from gro_offset and return the folded value
5768  * after adding in any pseudo checksum.
5769  */
5770 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5771 {
5772 	__wsum wsum;
5773 	__sum16 sum;
5774 
5775 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5776 
5777 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5778 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5779 	if (likely(!sum)) {
5780 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5781 		    !skb->csum_complete_sw)
5782 			netdev_rx_csum_fault(skb->dev);
5783 	}
5784 
5785 	NAPI_GRO_CB(skb)->csum = wsum;
5786 	NAPI_GRO_CB(skb)->csum_valid = 1;
5787 
5788 	return sum;
5789 }
5790 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5791 
5792 static void net_rps_send_ipi(struct softnet_data *remsd)
5793 {
5794 #ifdef CONFIG_RPS
5795 	while (remsd) {
5796 		struct softnet_data *next = remsd->rps_ipi_next;
5797 
5798 		if (cpu_online(remsd->cpu))
5799 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5800 		remsd = next;
5801 	}
5802 #endif
5803 }
5804 
5805 /*
5806  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5807  * Note: called with local irq disabled, but exits with local irq enabled.
5808  */
5809 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5810 {
5811 #ifdef CONFIG_RPS
5812 	struct softnet_data *remsd = sd->rps_ipi_list;
5813 
5814 	if (remsd) {
5815 		sd->rps_ipi_list = NULL;
5816 
5817 		local_irq_enable();
5818 
5819 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5820 		net_rps_send_ipi(remsd);
5821 	} else
5822 #endif
5823 		local_irq_enable();
5824 }
5825 
5826 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5827 {
5828 #ifdef CONFIG_RPS
5829 	return sd->rps_ipi_list != NULL;
5830 #else
5831 	return false;
5832 #endif
5833 }
5834 
5835 static int process_backlog(struct napi_struct *napi, int quota)
5836 {
5837 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5838 	bool again = true;
5839 	int work = 0;
5840 
5841 	/* Check if we have pending ipi, its better to send them now,
5842 	 * not waiting net_rx_action() end.
5843 	 */
5844 	if (sd_has_rps_ipi_waiting(sd)) {
5845 		local_irq_disable();
5846 		net_rps_action_and_irq_enable(sd);
5847 	}
5848 
5849 	napi->weight = dev_rx_weight;
5850 	while (again) {
5851 		struct sk_buff *skb;
5852 
5853 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5854 			rcu_read_lock();
5855 			__netif_receive_skb(skb);
5856 			rcu_read_unlock();
5857 			input_queue_head_incr(sd);
5858 			if (++work >= quota)
5859 				return work;
5860 
5861 		}
5862 
5863 		local_irq_disable();
5864 		rps_lock(sd);
5865 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5866 			/*
5867 			 * Inline a custom version of __napi_complete().
5868 			 * only current cpu owns and manipulates this napi,
5869 			 * and NAPI_STATE_SCHED is the only possible flag set
5870 			 * on backlog.
5871 			 * We can use a plain write instead of clear_bit(),
5872 			 * and we dont need an smp_mb() memory barrier.
5873 			 */
5874 			napi->state = 0;
5875 			again = false;
5876 		} else {
5877 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5878 						   &sd->process_queue);
5879 		}
5880 		rps_unlock(sd);
5881 		local_irq_enable();
5882 	}
5883 
5884 	return work;
5885 }
5886 
5887 /**
5888  * __napi_schedule - schedule for receive
5889  * @n: entry to schedule
5890  *
5891  * The entry's receive function will be scheduled to run.
5892  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5893  */
5894 void __napi_schedule(struct napi_struct *n)
5895 {
5896 	unsigned long flags;
5897 
5898 	local_irq_save(flags);
5899 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5900 	local_irq_restore(flags);
5901 }
5902 EXPORT_SYMBOL(__napi_schedule);
5903 
5904 /**
5905  *	napi_schedule_prep - check if napi can be scheduled
5906  *	@n: napi context
5907  *
5908  * Test if NAPI routine is already running, and if not mark
5909  * it as running.  This is used as a condition variable
5910  * insure only one NAPI poll instance runs.  We also make
5911  * sure there is no pending NAPI disable.
5912  */
5913 bool napi_schedule_prep(struct napi_struct *n)
5914 {
5915 	unsigned long val, new;
5916 
5917 	do {
5918 		val = READ_ONCE(n->state);
5919 		if (unlikely(val & NAPIF_STATE_DISABLE))
5920 			return false;
5921 		new = val | NAPIF_STATE_SCHED;
5922 
5923 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5924 		 * This was suggested by Alexander Duyck, as compiler
5925 		 * emits better code than :
5926 		 * if (val & NAPIF_STATE_SCHED)
5927 		 *     new |= NAPIF_STATE_MISSED;
5928 		 */
5929 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5930 						   NAPIF_STATE_MISSED;
5931 	} while (cmpxchg(&n->state, val, new) != val);
5932 
5933 	return !(val & NAPIF_STATE_SCHED);
5934 }
5935 EXPORT_SYMBOL(napi_schedule_prep);
5936 
5937 /**
5938  * __napi_schedule_irqoff - schedule for receive
5939  * @n: entry to schedule
5940  *
5941  * Variant of __napi_schedule() assuming hard irqs are masked
5942  */
5943 void __napi_schedule_irqoff(struct napi_struct *n)
5944 {
5945 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5946 }
5947 EXPORT_SYMBOL(__napi_schedule_irqoff);
5948 
5949 bool napi_complete_done(struct napi_struct *n, int work_done)
5950 {
5951 	unsigned long flags, val, new;
5952 
5953 	/*
5954 	 * 1) Don't let napi dequeue from the cpu poll list
5955 	 *    just in case its running on a different cpu.
5956 	 * 2) If we are busy polling, do nothing here, we have
5957 	 *    the guarantee we will be called later.
5958 	 */
5959 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5960 				 NAPIF_STATE_IN_BUSY_POLL)))
5961 		return false;
5962 
5963 	if (n->gro_bitmask) {
5964 		unsigned long timeout = 0;
5965 
5966 		if (work_done)
5967 			timeout = n->dev->gro_flush_timeout;
5968 
5969 		if (timeout)
5970 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5971 				      HRTIMER_MODE_REL_PINNED);
5972 		else
5973 			napi_gro_flush(n, false);
5974 	}
5975 	if (unlikely(!list_empty(&n->poll_list))) {
5976 		/* If n->poll_list is not empty, we need to mask irqs */
5977 		local_irq_save(flags);
5978 		list_del_init(&n->poll_list);
5979 		local_irq_restore(flags);
5980 	}
5981 
5982 	do {
5983 		val = READ_ONCE(n->state);
5984 
5985 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5986 
5987 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5988 
5989 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5990 		 * because we will call napi->poll() one more time.
5991 		 * This C code was suggested by Alexander Duyck to help gcc.
5992 		 */
5993 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5994 						    NAPIF_STATE_SCHED;
5995 	} while (cmpxchg(&n->state, val, new) != val);
5996 
5997 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5998 		__napi_schedule(n);
5999 		return false;
6000 	}
6001 
6002 	return true;
6003 }
6004 EXPORT_SYMBOL(napi_complete_done);
6005 
6006 /* must be called under rcu_read_lock(), as we dont take a reference */
6007 static struct napi_struct *napi_by_id(unsigned int napi_id)
6008 {
6009 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6010 	struct napi_struct *napi;
6011 
6012 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6013 		if (napi->napi_id == napi_id)
6014 			return napi;
6015 
6016 	return NULL;
6017 }
6018 
6019 #if defined(CONFIG_NET_RX_BUSY_POLL)
6020 
6021 #define BUSY_POLL_BUDGET 8
6022 
6023 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6024 {
6025 	int rc;
6026 
6027 	/* Busy polling means there is a high chance device driver hard irq
6028 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6029 	 * set in napi_schedule_prep().
6030 	 * Since we are about to call napi->poll() once more, we can safely
6031 	 * clear NAPI_STATE_MISSED.
6032 	 *
6033 	 * Note: x86 could use a single "lock and ..." instruction
6034 	 * to perform these two clear_bit()
6035 	 */
6036 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6037 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6038 
6039 	local_bh_disable();
6040 
6041 	/* All we really want here is to re-enable device interrupts.
6042 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6043 	 */
6044 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6045 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6046 	netpoll_poll_unlock(have_poll_lock);
6047 	if (rc == BUSY_POLL_BUDGET)
6048 		__napi_schedule(napi);
6049 	local_bh_enable();
6050 }
6051 
6052 void napi_busy_loop(unsigned int napi_id,
6053 		    bool (*loop_end)(void *, unsigned long),
6054 		    void *loop_end_arg)
6055 {
6056 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6057 	int (*napi_poll)(struct napi_struct *napi, int budget);
6058 	void *have_poll_lock = NULL;
6059 	struct napi_struct *napi;
6060 
6061 restart:
6062 	napi_poll = NULL;
6063 
6064 	rcu_read_lock();
6065 
6066 	napi = napi_by_id(napi_id);
6067 	if (!napi)
6068 		goto out;
6069 
6070 	preempt_disable();
6071 	for (;;) {
6072 		int work = 0;
6073 
6074 		local_bh_disable();
6075 		if (!napi_poll) {
6076 			unsigned long val = READ_ONCE(napi->state);
6077 
6078 			/* If multiple threads are competing for this napi,
6079 			 * we avoid dirtying napi->state as much as we can.
6080 			 */
6081 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6082 				   NAPIF_STATE_IN_BUSY_POLL))
6083 				goto count;
6084 			if (cmpxchg(&napi->state, val,
6085 				    val | NAPIF_STATE_IN_BUSY_POLL |
6086 					  NAPIF_STATE_SCHED) != val)
6087 				goto count;
6088 			have_poll_lock = netpoll_poll_lock(napi);
6089 			napi_poll = napi->poll;
6090 		}
6091 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6092 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6093 count:
6094 		if (work > 0)
6095 			__NET_ADD_STATS(dev_net(napi->dev),
6096 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6097 		local_bh_enable();
6098 
6099 		if (!loop_end || loop_end(loop_end_arg, start_time))
6100 			break;
6101 
6102 		if (unlikely(need_resched())) {
6103 			if (napi_poll)
6104 				busy_poll_stop(napi, have_poll_lock);
6105 			preempt_enable();
6106 			rcu_read_unlock();
6107 			cond_resched();
6108 			if (loop_end(loop_end_arg, start_time))
6109 				return;
6110 			goto restart;
6111 		}
6112 		cpu_relax();
6113 	}
6114 	if (napi_poll)
6115 		busy_poll_stop(napi, have_poll_lock);
6116 	preempt_enable();
6117 out:
6118 	rcu_read_unlock();
6119 }
6120 EXPORT_SYMBOL(napi_busy_loop);
6121 
6122 #endif /* CONFIG_NET_RX_BUSY_POLL */
6123 
6124 static void napi_hash_add(struct napi_struct *napi)
6125 {
6126 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6127 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6128 		return;
6129 
6130 	spin_lock(&napi_hash_lock);
6131 
6132 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6133 	do {
6134 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6135 			napi_gen_id = MIN_NAPI_ID;
6136 	} while (napi_by_id(napi_gen_id));
6137 	napi->napi_id = napi_gen_id;
6138 
6139 	hlist_add_head_rcu(&napi->napi_hash_node,
6140 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6141 
6142 	spin_unlock(&napi_hash_lock);
6143 }
6144 
6145 /* Warning : caller is responsible to make sure rcu grace period
6146  * is respected before freeing memory containing @napi
6147  */
6148 bool napi_hash_del(struct napi_struct *napi)
6149 {
6150 	bool rcu_sync_needed = false;
6151 
6152 	spin_lock(&napi_hash_lock);
6153 
6154 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6155 		rcu_sync_needed = true;
6156 		hlist_del_rcu(&napi->napi_hash_node);
6157 	}
6158 	spin_unlock(&napi_hash_lock);
6159 	return rcu_sync_needed;
6160 }
6161 EXPORT_SYMBOL_GPL(napi_hash_del);
6162 
6163 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6164 {
6165 	struct napi_struct *napi;
6166 
6167 	napi = container_of(timer, struct napi_struct, timer);
6168 
6169 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6170 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6171 	 */
6172 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6173 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6174 		__napi_schedule_irqoff(napi);
6175 
6176 	return HRTIMER_NORESTART;
6177 }
6178 
6179 static void init_gro_hash(struct napi_struct *napi)
6180 {
6181 	int i;
6182 
6183 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6184 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6185 		napi->gro_hash[i].count = 0;
6186 	}
6187 	napi->gro_bitmask = 0;
6188 }
6189 
6190 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6191 		    int (*poll)(struct napi_struct *, int), int weight)
6192 {
6193 	INIT_LIST_HEAD(&napi->poll_list);
6194 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6195 	napi->timer.function = napi_watchdog;
6196 	init_gro_hash(napi);
6197 	napi->skb = NULL;
6198 	napi->poll = poll;
6199 	if (weight > NAPI_POLL_WEIGHT)
6200 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6201 			    weight, dev->name);
6202 	napi->weight = weight;
6203 	list_add(&napi->dev_list, &dev->napi_list);
6204 	napi->dev = dev;
6205 #ifdef CONFIG_NETPOLL
6206 	napi->poll_owner = -1;
6207 #endif
6208 	set_bit(NAPI_STATE_SCHED, &napi->state);
6209 	napi_hash_add(napi);
6210 }
6211 EXPORT_SYMBOL(netif_napi_add);
6212 
6213 void napi_disable(struct napi_struct *n)
6214 {
6215 	might_sleep();
6216 	set_bit(NAPI_STATE_DISABLE, &n->state);
6217 
6218 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6219 		msleep(1);
6220 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6221 		msleep(1);
6222 
6223 	hrtimer_cancel(&n->timer);
6224 
6225 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6226 }
6227 EXPORT_SYMBOL(napi_disable);
6228 
6229 static void flush_gro_hash(struct napi_struct *napi)
6230 {
6231 	int i;
6232 
6233 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6234 		struct sk_buff *skb, *n;
6235 
6236 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6237 			kfree_skb(skb);
6238 		napi->gro_hash[i].count = 0;
6239 	}
6240 }
6241 
6242 /* Must be called in process context */
6243 void netif_napi_del(struct napi_struct *napi)
6244 {
6245 	might_sleep();
6246 	if (napi_hash_del(napi))
6247 		synchronize_net();
6248 	list_del_init(&napi->dev_list);
6249 	napi_free_frags(napi);
6250 
6251 	flush_gro_hash(napi);
6252 	napi->gro_bitmask = 0;
6253 }
6254 EXPORT_SYMBOL(netif_napi_del);
6255 
6256 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6257 {
6258 	void *have;
6259 	int work, weight;
6260 
6261 	list_del_init(&n->poll_list);
6262 
6263 	have = netpoll_poll_lock(n);
6264 
6265 	weight = n->weight;
6266 
6267 	/* This NAPI_STATE_SCHED test is for avoiding a race
6268 	 * with netpoll's poll_napi().  Only the entity which
6269 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6270 	 * actually make the ->poll() call.  Therefore we avoid
6271 	 * accidentally calling ->poll() when NAPI is not scheduled.
6272 	 */
6273 	work = 0;
6274 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6275 		work = n->poll(n, weight);
6276 		trace_napi_poll(n, work, weight);
6277 	}
6278 
6279 	WARN_ON_ONCE(work > weight);
6280 
6281 	if (likely(work < weight))
6282 		goto out_unlock;
6283 
6284 	/* Drivers must not modify the NAPI state if they
6285 	 * consume the entire weight.  In such cases this code
6286 	 * still "owns" the NAPI instance and therefore can
6287 	 * move the instance around on the list at-will.
6288 	 */
6289 	if (unlikely(napi_disable_pending(n))) {
6290 		napi_complete(n);
6291 		goto out_unlock;
6292 	}
6293 
6294 	if (n->gro_bitmask) {
6295 		/* flush too old packets
6296 		 * If HZ < 1000, flush all packets.
6297 		 */
6298 		napi_gro_flush(n, HZ >= 1000);
6299 	}
6300 
6301 	/* Some drivers may have called napi_schedule
6302 	 * prior to exhausting their budget.
6303 	 */
6304 	if (unlikely(!list_empty(&n->poll_list))) {
6305 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6306 			     n->dev ? n->dev->name : "backlog");
6307 		goto out_unlock;
6308 	}
6309 
6310 	list_add_tail(&n->poll_list, repoll);
6311 
6312 out_unlock:
6313 	netpoll_poll_unlock(have);
6314 
6315 	return work;
6316 }
6317 
6318 static __latent_entropy void net_rx_action(struct softirq_action *h)
6319 {
6320 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6321 	unsigned long time_limit = jiffies +
6322 		usecs_to_jiffies(netdev_budget_usecs);
6323 	int budget = netdev_budget;
6324 	LIST_HEAD(list);
6325 	LIST_HEAD(repoll);
6326 
6327 	local_irq_disable();
6328 	list_splice_init(&sd->poll_list, &list);
6329 	local_irq_enable();
6330 
6331 	for (;;) {
6332 		struct napi_struct *n;
6333 
6334 		if (list_empty(&list)) {
6335 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6336 				goto out;
6337 			break;
6338 		}
6339 
6340 		n = list_first_entry(&list, struct napi_struct, poll_list);
6341 		budget -= napi_poll(n, &repoll);
6342 
6343 		/* If softirq window is exhausted then punt.
6344 		 * Allow this to run for 2 jiffies since which will allow
6345 		 * an average latency of 1.5/HZ.
6346 		 */
6347 		if (unlikely(budget <= 0 ||
6348 			     time_after_eq(jiffies, time_limit))) {
6349 			sd->time_squeeze++;
6350 			break;
6351 		}
6352 	}
6353 
6354 	local_irq_disable();
6355 
6356 	list_splice_tail_init(&sd->poll_list, &list);
6357 	list_splice_tail(&repoll, &list);
6358 	list_splice(&list, &sd->poll_list);
6359 	if (!list_empty(&sd->poll_list))
6360 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6361 
6362 	net_rps_action_and_irq_enable(sd);
6363 out:
6364 	__kfree_skb_flush();
6365 }
6366 
6367 struct netdev_adjacent {
6368 	struct net_device *dev;
6369 
6370 	/* upper master flag, there can only be one master device per list */
6371 	bool master;
6372 
6373 	/* counter for the number of times this device was added to us */
6374 	u16 ref_nr;
6375 
6376 	/* private field for the users */
6377 	void *private;
6378 
6379 	struct list_head list;
6380 	struct rcu_head rcu;
6381 };
6382 
6383 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6384 						 struct list_head *adj_list)
6385 {
6386 	struct netdev_adjacent *adj;
6387 
6388 	list_for_each_entry(adj, adj_list, list) {
6389 		if (adj->dev == adj_dev)
6390 			return adj;
6391 	}
6392 	return NULL;
6393 }
6394 
6395 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6396 {
6397 	struct net_device *dev = data;
6398 
6399 	return upper_dev == dev;
6400 }
6401 
6402 /**
6403  * netdev_has_upper_dev - Check if device is linked to an upper device
6404  * @dev: device
6405  * @upper_dev: upper device to check
6406  *
6407  * Find out if a device is linked to specified upper device and return true
6408  * in case it is. Note that this checks only immediate upper device,
6409  * not through a complete stack of devices. The caller must hold the RTNL lock.
6410  */
6411 bool netdev_has_upper_dev(struct net_device *dev,
6412 			  struct net_device *upper_dev)
6413 {
6414 	ASSERT_RTNL();
6415 
6416 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6417 					     upper_dev);
6418 }
6419 EXPORT_SYMBOL(netdev_has_upper_dev);
6420 
6421 /**
6422  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6423  * @dev: device
6424  * @upper_dev: upper device to check
6425  *
6426  * Find out if a device is linked to specified upper device and return true
6427  * in case it is. Note that this checks the entire upper device chain.
6428  * The caller must hold rcu lock.
6429  */
6430 
6431 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6432 				  struct net_device *upper_dev)
6433 {
6434 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6435 					       upper_dev);
6436 }
6437 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6438 
6439 /**
6440  * netdev_has_any_upper_dev - Check if device is linked to some device
6441  * @dev: device
6442  *
6443  * Find out if a device is linked to an upper device and return true in case
6444  * it is. The caller must hold the RTNL lock.
6445  */
6446 bool netdev_has_any_upper_dev(struct net_device *dev)
6447 {
6448 	ASSERT_RTNL();
6449 
6450 	return !list_empty(&dev->adj_list.upper);
6451 }
6452 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6453 
6454 /**
6455  * netdev_master_upper_dev_get - Get master upper device
6456  * @dev: device
6457  *
6458  * Find a master upper device and return pointer to it or NULL in case
6459  * it's not there. The caller must hold the RTNL lock.
6460  */
6461 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6462 {
6463 	struct netdev_adjacent *upper;
6464 
6465 	ASSERT_RTNL();
6466 
6467 	if (list_empty(&dev->adj_list.upper))
6468 		return NULL;
6469 
6470 	upper = list_first_entry(&dev->adj_list.upper,
6471 				 struct netdev_adjacent, list);
6472 	if (likely(upper->master))
6473 		return upper->dev;
6474 	return NULL;
6475 }
6476 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6477 
6478 /**
6479  * netdev_has_any_lower_dev - Check if device is linked to some device
6480  * @dev: device
6481  *
6482  * Find out if a device is linked to a lower device and return true in case
6483  * it is. The caller must hold the RTNL lock.
6484  */
6485 static bool netdev_has_any_lower_dev(struct net_device *dev)
6486 {
6487 	ASSERT_RTNL();
6488 
6489 	return !list_empty(&dev->adj_list.lower);
6490 }
6491 
6492 void *netdev_adjacent_get_private(struct list_head *adj_list)
6493 {
6494 	struct netdev_adjacent *adj;
6495 
6496 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6497 
6498 	return adj->private;
6499 }
6500 EXPORT_SYMBOL(netdev_adjacent_get_private);
6501 
6502 /**
6503  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6504  * @dev: device
6505  * @iter: list_head ** of the current position
6506  *
6507  * Gets the next device from the dev's upper list, starting from iter
6508  * position. The caller must hold RCU read lock.
6509  */
6510 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6511 						 struct list_head **iter)
6512 {
6513 	struct netdev_adjacent *upper;
6514 
6515 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6516 
6517 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6518 
6519 	if (&upper->list == &dev->adj_list.upper)
6520 		return NULL;
6521 
6522 	*iter = &upper->list;
6523 
6524 	return upper->dev;
6525 }
6526 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6527 
6528 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6529 						    struct list_head **iter)
6530 {
6531 	struct netdev_adjacent *upper;
6532 
6533 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6534 
6535 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6536 
6537 	if (&upper->list == &dev->adj_list.upper)
6538 		return NULL;
6539 
6540 	*iter = &upper->list;
6541 
6542 	return upper->dev;
6543 }
6544 
6545 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6546 				  int (*fn)(struct net_device *dev,
6547 					    void *data),
6548 				  void *data)
6549 {
6550 	struct net_device *udev;
6551 	struct list_head *iter;
6552 	int ret;
6553 
6554 	for (iter = &dev->adj_list.upper,
6555 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6556 	     udev;
6557 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6558 		/* first is the upper device itself */
6559 		ret = fn(udev, data);
6560 		if (ret)
6561 			return ret;
6562 
6563 		/* then look at all of its upper devices */
6564 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6565 		if (ret)
6566 			return ret;
6567 	}
6568 
6569 	return 0;
6570 }
6571 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6572 
6573 /**
6574  * netdev_lower_get_next_private - Get the next ->private from the
6575  *				   lower neighbour list
6576  * @dev: device
6577  * @iter: list_head ** of the current position
6578  *
6579  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6580  * list, starting from iter position. The caller must hold either hold the
6581  * RTNL lock or its own locking that guarantees that the neighbour lower
6582  * list will remain unchanged.
6583  */
6584 void *netdev_lower_get_next_private(struct net_device *dev,
6585 				    struct list_head **iter)
6586 {
6587 	struct netdev_adjacent *lower;
6588 
6589 	lower = list_entry(*iter, struct netdev_adjacent, list);
6590 
6591 	if (&lower->list == &dev->adj_list.lower)
6592 		return NULL;
6593 
6594 	*iter = lower->list.next;
6595 
6596 	return lower->private;
6597 }
6598 EXPORT_SYMBOL(netdev_lower_get_next_private);
6599 
6600 /**
6601  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6602  *				       lower neighbour list, RCU
6603  *				       variant
6604  * @dev: device
6605  * @iter: list_head ** of the current position
6606  *
6607  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6608  * list, starting from iter position. The caller must hold RCU read lock.
6609  */
6610 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6611 					struct list_head **iter)
6612 {
6613 	struct netdev_adjacent *lower;
6614 
6615 	WARN_ON_ONCE(!rcu_read_lock_held());
6616 
6617 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6618 
6619 	if (&lower->list == &dev->adj_list.lower)
6620 		return NULL;
6621 
6622 	*iter = &lower->list;
6623 
6624 	return lower->private;
6625 }
6626 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6627 
6628 /**
6629  * netdev_lower_get_next - Get the next device from the lower neighbour
6630  *                         list
6631  * @dev: device
6632  * @iter: list_head ** of the current position
6633  *
6634  * Gets the next netdev_adjacent from the dev's lower neighbour
6635  * list, starting from iter position. The caller must hold RTNL lock or
6636  * its own locking that guarantees that the neighbour lower
6637  * list will remain unchanged.
6638  */
6639 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6640 {
6641 	struct netdev_adjacent *lower;
6642 
6643 	lower = list_entry(*iter, struct netdev_adjacent, list);
6644 
6645 	if (&lower->list == &dev->adj_list.lower)
6646 		return NULL;
6647 
6648 	*iter = lower->list.next;
6649 
6650 	return lower->dev;
6651 }
6652 EXPORT_SYMBOL(netdev_lower_get_next);
6653 
6654 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6655 						struct list_head **iter)
6656 {
6657 	struct netdev_adjacent *lower;
6658 
6659 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6660 
6661 	if (&lower->list == &dev->adj_list.lower)
6662 		return NULL;
6663 
6664 	*iter = &lower->list;
6665 
6666 	return lower->dev;
6667 }
6668 
6669 int netdev_walk_all_lower_dev(struct net_device *dev,
6670 			      int (*fn)(struct net_device *dev,
6671 					void *data),
6672 			      void *data)
6673 {
6674 	struct net_device *ldev;
6675 	struct list_head *iter;
6676 	int ret;
6677 
6678 	for (iter = &dev->adj_list.lower,
6679 	     ldev = netdev_next_lower_dev(dev, &iter);
6680 	     ldev;
6681 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6682 		/* first is the lower device itself */
6683 		ret = fn(ldev, data);
6684 		if (ret)
6685 			return ret;
6686 
6687 		/* then look at all of its lower devices */
6688 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6689 		if (ret)
6690 			return ret;
6691 	}
6692 
6693 	return 0;
6694 }
6695 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6696 
6697 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6698 						    struct list_head **iter)
6699 {
6700 	struct netdev_adjacent *lower;
6701 
6702 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6703 	if (&lower->list == &dev->adj_list.lower)
6704 		return NULL;
6705 
6706 	*iter = &lower->list;
6707 
6708 	return lower->dev;
6709 }
6710 
6711 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6712 				  int (*fn)(struct net_device *dev,
6713 					    void *data),
6714 				  void *data)
6715 {
6716 	struct net_device *ldev;
6717 	struct list_head *iter;
6718 	int ret;
6719 
6720 	for (iter = &dev->adj_list.lower,
6721 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6722 	     ldev;
6723 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6724 		/* first is the lower device itself */
6725 		ret = fn(ldev, data);
6726 		if (ret)
6727 			return ret;
6728 
6729 		/* then look at all of its lower devices */
6730 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6731 		if (ret)
6732 			return ret;
6733 	}
6734 
6735 	return 0;
6736 }
6737 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6738 
6739 /**
6740  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6741  *				       lower neighbour list, RCU
6742  *				       variant
6743  * @dev: device
6744  *
6745  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6746  * list. The caller must hold RCU read lock.
6747  */
6748 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6749 {
6750 	struct netdev_adjacent *lower;
6751 
6752 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6753 			struct netdev_adjacent, list);
6754 	if (lower)
6755 		return lower->private;
6756 	return NULL;
6757 }
6758 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6759 
6760 /**
6761  * netdev_master_upper_dev_get_rcu - Get master upper device
6762  * @dev: device
6763  *
6764  * Find a master upper device and return pointer to it or NULL in case
6765  * it's not there. The caller must hold the RCU read lock.
6766  */
6767 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6768 {
6769 	struct netdev_adjacent *upper;
6770 
6771 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6772 				       struct netdev_adjacent, list);
6773 	if (upper && likely(upper->master))
6774 		return upper->dev;
6775 	return NULL;
6776 }
6777 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6778 
6779 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6780 			      struct net_device *adj_dev,
6781 			      struct list_head *dev_list)
6782 {
6783 	char linkname[IFNAMSIZ+7];
6784 
6785 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6786 		"upper_%s" : "lower_%s", adj_dev->name);
6787 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6788 				 linkname);
6789 }
6790 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6791 			       char *name,
6792 			       struct list_head *dev_list)
6793 {
6794 	char linkname[IFNAMSIZ+7];
6795 
6796 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6797 		"upper_%s" : "lower_%s", name);
6798 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6799 }
6800 
6801 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6802 						 struct net_device *adj_dev,
6803 						 struct list_head *dev_list)
6804 {
6805 	return (dev_list == &dev->adj_list.upper ||
6806 		dev_list == &dev->adj_list.lower) &&
6807 		net_eq(dev_net(dev), dev_net(adj_dev));
6808 }
6809 
6810 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6811 					struct net_device *adj_dev,
6812 					struct list_head *dev_list,
6813 					void *private, bool master)
6814 {
6815 	struct netdev_adjacent *adj;
6816 	int ret;
6817 
6818 	adj = __netdev_find_adj(adj_dev, dev_list);
6819 
6820 	if (adj) {
6821 		adj->ref_nr += 1;
6822 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6823 			 dev->name, adj_dev->name, adj->ref_nr);
6824 
6825 		return 0;
6826 	}
6827 
6828 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6829 	if (!adj)
6830 		return -ENOMEM;
6831 
6832 	adj->dev = adj_dev;
6833 	adj->master = master;
6834 	adj->ref_nr = 1;
6835 	adj->private = private;
6836 	dev_hold(adj_dev);
6837 
6838 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6839 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6840 
6841 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6842 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6843 		if (ret)
6844 			goto free_adj;
6845 	}
6846 
6847 	/* Ensure that master link is always the first item in list. */
6848 	if (master) {
6849 		ret = sysfs_create_link(&(dev->dev.kobj),
6850 					&(adj_dev->dev.kobj), "master");
6851 		if (ret)
6852 			goto remove_symlinks;
6853 
6854 		list_add_rcu(&adj->list, dev_list);
6855 	} else {
6856 		list_add_tail_rcu(&adj->list, dev_list);
6857 	}
6858 
6859 	return 0;
6860 
6861 remove_symlinks:
6862 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6863 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6864 free_adj:
6865 	kfree(adj);
6866 	dev_put(adj_dev);
6867 
6868 	return ret;
6869 }
6870 
6871 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6872 					 struct net_device *adj_dev,
6873 					 u16 ref_nr,
6874 					 struct list_head *dev_list)
6875 {
6876 	struct netdev_adjacent *adj;
6877 
6878 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6879 		 dev->name, adj_dev->name, ref_nr);
6880 
6881 	adj = __netdev_find_adj(adj_dev, dev_list);
6882 
6883 	if (!adj) {
6884 		pr_err("Adjacency does not exist for device %s from %s\n",
6885 		       dev->name, adj_dev->name);
6886 		WARN_ON(1);
6887 		return;
6888 	}
6889 
6890 	if (adj->ref_nr > ref_nr) {
6891 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6892 			 dev->name, adj_dev->name, ref_nr,
6893 			 adj->ref_nr - ref_nr);
6894 		adj->ref_nr -= ref_nr;
6895 		return;
6896 	}
6897 
6898 	if (adj->master)
6899 		sysfs_remove_link(&(dev->dev.kobj), "master");
6900 
6901 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6902 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6903 
6904 	list_del_rcu(&adj->list);
6905 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6906 		 adj_dev->name, dev->name, adj_dev->name);
6907 	dev_put(adj_dev);
6908 	kfree_rcu(adj, rcu);
6909 }
6910 
6911 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6912 					    struct net_device *upper_dev,
6913 					    struct list_head *up_list,
6914 					    struct list_head *down_list,
6915 					    void *private, bool master)
6916 {
6917 	int ret;
6918 
6919 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6920 					   private, master);
6921 	if (ret)
6922 		return ret;
6923 
6924 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6925 					   private, false);
6926 	if (ret) {
6927 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6928 		return ret;
6929 	}
6930 
6931 	return 0;
6932 }
6933 
6934 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6935 					       struct net_device *upper_dev,
6936 					       u16 ref_nr,
6937 					       struct list_head *up_list,
6938 					       struct list_head *down_list)
6939 {
6940 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6941 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6942 }
6943 
6944 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6945 						struct net_device *upper_dev,
6946 						void *private, bool master)
6947 {
6948 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6949 						&dev->adj_list.upper,
6950 						&upper_dev->adj_list.lower,
6951 						private, master);
6952 }
6953 
6954 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6955 						   struct net_device *upper_dev)
6956 {
6957 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6958 					   &dev->adj_list.upper,
6959 					   &upper_dev->adj_list.lower);
6960 }
6961 
6962 static int __netdev_upper_dev_link(struct net_device *dev,
6963 				   struct net_device *upper_dev, bool master,
6964 				   void *upper_priv, void *upper_info,
6965 				   struct netlink_ext_ack *extack)
6966 {
6967 	struct netdev_notifier_changeupper_info changeupper_info = {
6968 		.info = {
6969 			.dev = dev,
6970 			.extack = extack,
6971 		},
6972 		.upper_dev = upper_dev,
6973 		.master = master,
6974 		.linking = true,
6975 		.upper_info = upper_info,
6976 	};
6977 	struct net_device *master_dev;
6978 	int ret = 0;
6979 
6980 	ASSERT_RTNL();
6981 
6982 	if (dev == upper_dev)
6983 		return -EBUSY;
6984 
6985 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6986 	if (netdev_has_upper_dev(upper_dev, dev))
6987 		return -EBUSY;
6988 
6989 	if (!master) {
6990 		if (netdev_has_upper_dev(dev, upper_dev))
6991 			return -EEXIST;
6992 	} else {
6993 		master_dev = netdev_master_upper_dev_get(dev);
6994 		if (master_dev)
6995 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6996 	}
6997 
6998 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6999 					    &changeupper_info.info);
7000 	ret = notifier_to_errno(ret);
7001 	if (ret)
7002 		return ret;
7003 
7004 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7005 						   master);
7006 	if (ret)
7007 		return ret;
7008 
7009 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7010 					    &changeupper_info.info);
7011 	ret = notifier_to_errno(ret);
7012 	if (ret)
7013 		goto rollback;
7014 
7015 	return 0;
7016 
7017 rollback:
7018 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7019 
7020 	return ret;
7021 }
7022 
7023 /**
7024  * netdev_upper_dev_link - Add a link to the upper device
7025  * @dev: device
7026  * @upper_dev: new upper device
7027  * @extack: netlink extended ack
7028  *
7029  * Adds a link to device which is upper to this one. The caller must hold
7030  * the RTNL lock. On a failure a negative errno code is returned.
7031  * On success the reference counts are adjusted and the function
7032  * returns zero.
7033  */
7034 int netdev_upper_dev_link(struct net_device *dev,
7035 			  struct net_device *upper_dev,
7036 			  struct netlink_ext_ack *extack)
7037 {
7038 	return __netdev_upper_dev_link(dev, upper_dev, false,
7039 				       NULL, NULL, extack);
7040 }
7041 EXPORT_SYMBOL(netdev_upper_dev_link);
7042 
7043 /**
7044  * netdev_master_upper_dev_link - Add a master link to the upper device
7045  * @dev: device
7046  * @upper_dev: new upper device
7047  * @upper_priv: upper device private
7048  * @upper_info: upper info to be passed down via notifier
7049  * @extack: netlink extended ack
7050  *
7051  * Adds a link to device which is upper to this one. In this case, only
7052  * one master upper device can be linked, although other non-master devices
7053  * might be linked as well. The caller must hold the RTNL lock.
7054  * On a failure a negative errno code is returned. On success the reference
7055  * counts are adjusted and the function returns zero.
7056  */
7057 int netdev_master_upper_dev_link(struct net_device *dev,
7058 				 struct net_device *upper_dev,
7059 				 void *upper_priv, void *upper_info,
7060 				 struct netlink_ext_ack *extack)
7061 {
7062 	return __netdev_upper_dev_link(dev, upper_dev, true,
7063 				       upper_priv, upper_info, extack);
7064 }
7065 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7066 
7067 /**
7068  * netdev_upper_dev_unlink - Removes a link to upper device
7069  * @dev: device
7070  * @upper_dev: new upper device
7071  *
7072  * Removes a link to device which is upper to this one. The caller must hold
7073  * the RTNL lock.
7074  */
7075 void netdev_upper_dev_unlink(struct net_device *dev,
7076 			     struct net_device *upper_dev)
7077 {
7078 	struct netdev_notifier_changeupper_info changeupper_info = {
7079 		.info = {
7080 			.dev = dev,
7081 		},
7082 		.upper_dev = upper_dev,
7083 		.linking = false,
7084 	};
7085 
7086 	ASSERT_RTNL();
7087 
7088 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7089 
7090 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7091 				      &changeupper_info.info);
7092 
7093 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7094 
7095 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7096 				      &changeupper_info.info);
7097 }
7098 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7099 
7100 /**
7101  * netdev_bonding_info_change - Dispatch event about slave change
7102  * @dev: device
7103  * @bonding_info: info to dispatch
7104  *
7105  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7106  * The caller must hold the RTNL lock.
7107  */
7108 void netdev_bonding_info_change(struct net_device *dev,
7109 				struct netdev_bonding_info *bonding_info)
7110 {
7111 	struct netdev_notifier_bonding_info info = {
7112 		.info.dev = dev,
7113 	};
7114 
7115 	memcpy(&info.bonding_info, bonding_info,
7116 	       sizeof(struct netdev_bonding_info));
7117 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7118 				      &info.info);
7119 }
7120 EXPORT_SYMBOL(netdev_bonding_info_change);
7121 
7122 static void netdev_adjacent_add_links(struct net_device *dev)
7123 {
7124 	struct netdev_adjacent *iter;
7125 
7126 	struct net *net = dev_net(dev);
7127 
7128 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7129 		if (!net_eq(net, dev_net(iter->dev)))
7130 			continue;
7131 		netdev_adjacent_sysfs_add(iter->dev, dev,
7132 					  &iter->dev->adj_list.lower);
7133 		netdev_adjacent_sysfs_add(dev, iter->dev,
7134 					  &dev->adj_list.upper);
7135 	}
7136 
7137 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7138 		if (!net_eq(net, dev_net(iter->dev)))
7139 			continue;
7140 		netdev_adjacent_sysfs_add(iter->dev, dev,
7141 					  &iter->dev->adj_list.upper);
7142 		netdev_adjacent_sysfs_add(dev, iter->dev,
7143 					  &dev->adj_list.lower);
7144 	}
7145 }
7146 
7147 static void netdev_adjacent_del_links(struct net_device *dev)
7148 {
7149 	struct netdev_adjacent *iter;
7150 
7151 	struct net *net = dev_net(dev);
7152 
7153 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7154 		if (!net_eq(net, dev_net(iter->dev)))
7155 			continue;
7156 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7157 					  &iter->dev->adj_list.lower);
7158 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7159 					  &dev->adj_list.upper);
7160 	}
7161 
7162 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7163 		if (!net_eq(net, dev_net(iter->dev)))
7164 			continue;
7165 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7166 					  &iter->dev->adj_list.upper);
7167 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7168 					  &dev->adj_list.lower);
7169 	}
7170 }
7171 
7172 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7173 {
7174 	struct netdev_adjacent *iter;
7175 
7176 	struct net *net = dev_net(dev);
7177 
7178 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7179 		if (!net_eq(net, dev_net(iter->dev)))
7180 			continue;
7181 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7182 					  &iter->dev->adj_list.lower);
7183 		netdev_adjacent_sysfs_add(iter->dev, dev,
7184 					  &iter->dev->adj_list.lower);
7185 	}
7186 
7187 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7188 		if (!net_eq(net, dev_net(iter->dev)))
7189 			continue;
7190 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7191 					  &iter->dev->adj_list.upper);
7192 		netdev_adjacent_sysfs_add(iter->dev, dev,
7193 					  &iter->dev->adj_list.upper);
7194 	}
7195 }
7196 
7197 void *netdev_lower_dev_get_private(struct net_device *dev,
7198 				   struct net_device *lower_dev)
7199 {
7200 	struct netdev_adjacent *lower;
7201 
7202 	if (!lower_dev)
7203 		return NULL;
7204 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7205 	if (!lower)
7206 		return NULL;
7207 
7208 	return lower->private;
7209 }
7210 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7211 
7212 
7213 int dev_get_nest_level(struct net_device *dev)
7214 {
7215 	struct net_device *lower = NULL;
7216 	struct list_head *iter;
7217 	int max_nest = -1;
7218 	int nest;
7219 
7220 	ASSERT_RTNL();
7221 
7222 	netdev_for_each_lower_dev(dev, lower, iter) {
7223 		nest = dev_get_nest_level(lower);
7224 		if (max_nest < nest)
7225 			max_nest = nest;
7226 	}
7227 
7228 	return max_nest + 1;
7229 }
7230 EXPORT_SYMBOL(dev_get_nest_level);
7231 
7232 /**
7233  * netdev_lower_change - Dispatch event about lower device state change
7234  * @lower_dev: device
7235  * @lower_state_info: state to dispatch
7236  *
7237  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7238  * The caller must hold the RTNL lock.
7239  */
7240 void netdev_lower_state_changed(struct net_device *lower_dev,
7241 				void *lower_state_info)
7242 {
7243 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7244 		.info.dev = lower_dev,
7245 	};
7246 
7247 	ASSERT_RTNL();
7248 	changelowerstate_info.lower_state_info = lower_state_info;
7249 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7250 				      &changelowerstate_info.info);
7251 }
7252 EXPORT_SYMBOL(netdev_lower_state_changed);
7253 
7254 static void dev_change_rx_flags(struct net_device *dev, int flags)
7255 {
7256 	const struct net_device_ops *ops = dev->netdev_ops;
7257 
7258 	if (ops->ndo_change_rx_flags)
7259 		ops->ndo_change_rx_flags(dev, flags);
7260 }
7261 
7262 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7263 {
7264 	unsigned int old_flags = dev->flags;
7265 	kuid_t uid;
7266 	kgid_t gid;
7267 
7268 	ASSERT_RTNL();
7269 
7270 	dev->flags |= IFF_PROMISC;
7271 	dev->promiscuity += inc;
7272 	if (dev->promiscuity == 0) {
7273 		/*
7274 		 * Avoid overflow.
7275 		 * If inc causes overflow, untouch promisc and return error.
7276 		 */
7277 		if (inc < 0)
7278 			dev->flags &= ~IFF_PROMISC;
7279 		else {
7280 			dev->promiscuity -= inc;
7281 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7282 				dev->name);
7283 			return -EOVERFLOW;
7284 		}
7285 	}
7286 	if (dev->flags != old_flags) {
7287 		pr_info("device %s %s promiscuous mode\n",
7288 			dev->name,
7289 			dev->flags & IFF_PROMISC ? "entered" : "left");
7290 		if (audit_enabled) {
7291 			current_uid_gid(&uid, &gid);
7292 			audit_log(audit_context(), GFP_ATOMIC,
7293 				  AUDIT_ANOM_PROMISCUOUS,
7294 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7295 				  dev->name, (dev->flags & IFF_PROMISC),
7296 				  (old_flags & IFF_PROMISC),
7297 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7298 				  from_kuid(&init_user_ns, uid),
7299 				  from_kgid(&init_user_ns, gid),
7300 				  audit_get_sessionid(current));
7301 		}
7302 
7303 		dev_change_rx_flags(dev, IFF_PROMISC);
7304 	}
7305 	if (notify)
7306 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7307 	return 0;
7308 }
7309 
7310 /**
7311  *	dev_set_promiscuity	- update promiscuity count on a device
7312  *	@dev: device
7313  *	@inc: modifier
7314  *
7315  *	Add or remove promiscuity from a device. While the count in the device
7316  *	remains above zero the interface remains promiscuous. Once it hits zero
7317  *	the device reverts back to normal filtering operation. A negative inc
7318  *	value is used to drop promiscuity on the device.
7319  *	Return 0 if successful or a negative errno code on error.
7320  */
7321 int dev_set_promiscuity(struct net_device *dev, int inc)
7322 {
7323 	unsigned int old_flags = dev->flags;
7324 	int err;
7325 
7326 	err = __dev_set_promiscuity(dev, inc, true);
7327 	if (err < 0)
7328 		return err;
7329 	if (dev->flags != old_flags)
7330 		dev_set_rx_mode(dev);
7331 	return err;
7332 }
7333 EXPORT_SYMBOL(dev_set_promiscuity);
7334 
7335 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7336 {
7337 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7338 
7339 	ASSERT_RTNL();
7340 
7341 	dev->flags |= IFF_ALLMULTI;
7342 	dev->allmulti += inc;
7343 	if (dev->allmulti == 0) {
7344 		/*
7345 		 * Avoid overflow.
7346 		 * If inc causes overflow, untouch allmulti and return error.
7347 		 */
7348 		if (inc < 0)
7349 			dev->flags &= ~IFF_ALLMULTI;
7350 		else {
7351 			dev->allmulti -= inc;
7352 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7353 				dev->name);
7354 			return -EOVERFLOW;
7355 		}
7356 	}
7357 	if (dev->flags ^ old_flags) {
7358 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7359 		dev_set_rx_mode(dev);
7360 		if (notify)
7361 			__dev_notify_flags(dev, old_flags,
7362 					   dev->gflags ^ old_gflags);
7363 	}
7364 	return 0;
7365 }
7366 
7367 /**
7368  *	dev_set_allmulti	- update allmulti count on a device
7369  *	@dev: device
7370  *	@inc: modifier
7371  *
7372  *	Add or remove reception of all multicast frames to a device. While the
7373  *	count in the device remains above zero the interface remains listening
7374  *	to all interfaces. Once it hits zero the device reverts back to normal
7375  *	filtering operation. A negative @inc value is used to drop the counter
7376  *	when releasing a resource needing all multicasts.
7377  *	Return 0 if successful or a negative errno code on error.
7378  */
7379 
7380 int dev_set_allmulti(struct net_device *dev, int inc)
7381 {
7382 	return __dev_set_allmulti(dev, inc, true);
7383 }
7384 EXPORT_SYMBOL(dev_set_allmulti);
7385 
7386 /*
7387  *	Upload unicast and multicast address lists to device and
7388  *	configure RX filtering. When the device doesn't support unicast
7389  *	filtering it is put in promiscuous mode while unicast addresses
7390  *	are present.
7391  */
7392 void __dev_set_rx_mode(struct net_device *dev)
7393 {
7394 	const struct net_device_ops *ops = dev->netdev_ops;
7395 
7396 	/* dev_open will call this function so the list will stay sane. */
7397 	if (!(dev->flags&IFF_UP))
7398 		return;
7399 
7400 	if (!netif_device_present(dev))
7401 		return;
7402 
7403 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7404 		/* Unicast addresses changes may only happen under the rtnl,
7405 		 * therefore calling __dev_set_promiscuity here is safe.
7406 		 */
7407 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7408 			__dev_set_promiscuity(dev, 1, false);
7409 			dev->uc_promisc = true;
7410 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7411 			__dev_set_promiscuity(dev, -1, false);
7412 			dev->uc_promisc = false;
7413 		}
7414 	}
7415 
7416 	if (ops->ndo_set_rx_mode)
7417 		ops->ndo_set_rx_mode(dev);
7418 }
7419 
7420 void dev_set_rx_mode(struct net_device *dev)
7421 {
7422 	netif_addr_lock_bh(dev);
7423 	__dev_set_rx_mode(dev);
7424 	netif_addr_unlock_bh(dev);
7425 }
7426 
7427 /**
7428  *	dev_get_flags - get flags reported to userspace
7429  *	@dev: device
7430  *
7431  *	Get the combination of flag bits exported through APIs to userspace.
7432  */
7433 unsigned int dev_get_flags(const struct net_device *dev)
7434 {
7435 	unsigned int flags;
7436 
7437 	flags = (dev->flags & ~(IFF_PROMISC |
7438 				IFF_ALLMULTI |
7439 				IFF_RUNNING |
7440 				IFF_LOWER_UP |
7441 				IFF_DORMANT)) |
7442 		(dev->gflags & (IFF_PROMISC |
7443 				IFF_ALLMULTI));
7444 
7445 	if (netif_running(dev)) {
7446 		if (netif_oper_up(dev))
7447 			flags |= IFF_RUNNING;
7448 		if (netif_carrier_ok(dev))
7449 			flags |= IFF_LOWER_UP;
7450 		if (netif_dormant(dev))
7451 			flags |= IFF_DORMANT;
7452 	}
7453 
7454 	return flags;
7455 }
7456 EXPORT_SYMBOL(dev_get_flags);
7457 
7458 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7459 {
7460 	unsigned int old_flags = dev->flags;
7461 	int ret;
7462 
7463 	ASSERT_RTNL();
7464 
7465 	/*
7466 	 *	Set the flags on our device.
7467 	 */
7468 
7469 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7470 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7471 			       IFF_AUTOMEDIA)) |
7472 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7473 				    IFF_ALLMULTI));
7474 
7475 	/*
7476 	 *	Load in the correct multicast list now the flags have changed.
7477 	 */
7478 
7479 	if ((old_flags ^ flags) & IFF_MULTICAST)
7480 		dev_change_rx_flags(dev, IFF_MULTICAST);
7481 
7482 	dev_set_rx_mode(dev);
7483 
7484 	/*
7485 	 *	Have we downed the interface. We handle IFF_UP ourselves
7486 	 *	according to user attempts to set it, rather than blindly
7487 	 *	setting it.
7488 	 */
7489 
7490 	ret = 0;
7491 	if ((old_flags ^ flags) & IFF_UP) {
7492 		if (old_flags & IFF_UP)
7493 			__dev_close(dev);
7494 		else
7495 			ret = __dev_open(dev);
7496 	}
7497 
7498 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7499 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7500 		unsigned int old_flags = dev->flags;
7501 
7502 		dev->gflags ^= IFF_PROMISC;
7503 
7504 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7505 			if (dev->flags != old_flags)
7506 				dev_set_rx_mode(dev);
7507 	}
7508 
7509 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7510 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7511 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7512 	 */
7513 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7514 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7515 
7516 		dev->gflags ^= IFF_ALLMULTI;
7517 		__dev_set_allmulti(dev, inc, false);
7518 	}
7519 
7520 	return ret;
7521 }
7522 
7523 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7524 			unsigned int gchanges)
7525 {
7526 	unsigned int changes = dev->flags ^ old_flags;
7527 
7528 	if (gchanges)
7529 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7530 
7531 	if (changes & IFF_UP) {
7532 		if (dev->flags & IFF_UP)
7533 			call_netdevice_notifiers(NETDEV_UP, dev);
7534 		else
7535 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7536 	}
7537 
7538 	if (dev->flags & IFF_UP &&
7539 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7540 		struct netdev_notifier_change_info change_info = {
7541 			.info = {
7542 				.dev = dev,
7543 			},
7544 			.flags_changed = changes,
7545 		};
7546 
7547 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7548 	}
7549 }
7550 
7551 /**
7552  *	dev_change_flags - change device settings
7553  *	@dev: device
7554  *	@flags: device state flags
7555  *
7556  *	Change settings on device based state flags. The flags are
7557  *	in the userspace exported format.
7558  */
7559 int dev_change_flags(struct net_device *dev, unsigned int flags)
7560 {
7561 	int ret;
7562 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7563 
7564 	ret = __dev_change_flags(dev, flags);
7565 	if (ret < 0)
7566 		return ret;
7567 
7568 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7569 	__dev_notify_flags(dev, old_flags, changes);
7570 	return ret;
7571 }
7572 EXPORT_SYMBOL(dev_change_flags);
7573 
7574 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7575 {
7576 	const struct net_device_ops *ops = dev->netdev_ops;
7577 
7578 	if (ops->ndo_change_mtu)
7579 		return ops->ndo_change_mtu(dev, new_mtu);
7580 
7581 	dev->mtu = new_mtu;
7582 	return 0;
7583 }
7584 EXPORT_SYMBOL(__dev_set_mtu);
7585 
7586 /**
7587  *	dev_set_mtu_ext - Change maximum transfer unit
7588  *	@dev: device
7589  *	@new_mtu: new transfer unit
7590  *	@extack: netlink extended ack
7591  *
7592  *	Change the maximum transfer size of the network device.
7593  */
7594 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7595 		    struct netlink_ext_ack *extack)
7596 {
7597 	int err, orig_mtu;
7598 
7599 	if (new_mtu == dev->mtu)
7600 		return 0;
7601 
7602 	/* MTU must be positive, and in range */
7603 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7604 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7605 		return -EINVAL;
7606 	}
7607 
7608 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7609 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7610 		return -EINVAL;
7611 	}
7612 
7613 	if (!netif_device_present(dev))
7614 		return -ENODEV;
7615 
7616 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7617 	err = notifier_to_errno(err);
7618 	if (err)
7619 		return err;
7620 
7621 	orig_mtu = dev->mtu;
7622 	err = __dev_set_mtu(dev, new_mtu);
7623 
7624 	if (!err) {
7625 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7626 						   orig_mtu);
7627 		err = notifier_to_errno(err);
7628 		if (err) {
7629 			/* setting mtu back and notifying everyone again,
7630 			 * so that they have a chance to revert changes.
7631 			 */
7632 			__dev_set_mtu(dev, orig_mtu);
7633 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7634 						     new_mtu);
7635 		}
7636 	}
7637 	return err;
7638 }
7639 
7640 int dev_set_mtu(struct net_device *dev, int new_mtu)
7641 {
7642 	struct netlink_ext_ack extack;
7643 	int err;
7644 
7645 	memset(&extack, 0, sizeof(extack));
7646 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7647 	if (err && extack._msg)
7648 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7649 	return err;
7650 }
7651 EXPORT_SYMBOL(dev_set_mtu);
7652 
7653 /**
7654  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7655  *	@dev: device
7656  *	@new_len: new tx queue length
7657  */
7658 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7659 {
7660 	unsigned int orig_len = dev->tx_queue_len;
7661 	int res;
7662 
7663 	if (new_len != (unsigned int)new_len)
7664 		return -ERANGE;
7665 
7666 	if (new_len != orig_len) {
7667 		dev->tx_queue_len = new_len;
7668 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7669 		res = notifier_to_errno(res);
7670 		if (res)
7671 			goto err_rollback;
7672 		res = dev_qdisc_change_tx_queue_len(dev);
7673 		if (res)
7674 			goto err_rollback;
7675 	}
7676 
7677 	return 0;
7678 
7679 err_rollback:
7680 	netdev_err(dev, "refused to change device tx_queue_len\n");
7681 	dev->tx_queue_len = orig_len;
7682 	return res;
7683 }
7684 
7685 /**
7686  *	dev_set_group - Change group this device belongs to
7687  *	@dev: device
7688  *	@new_group: group this device should belong to
7689  */
7690 void dev_set_group(struct net_device *dev, int new_group)
7691 {
7692 	dev->group = new_group;
7693 }
7694 EXPORT_SYMBOL(dev_set_group);
7695 
7696 /**
7697  *	dev_set_mac_address - Change Media Access Control Address
7698  *	@dev: device
7699  *	@sa: new address
7700  *
7701  *	Change the hardware (MAC) address of the device
7702  */
7703 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7704 {
7705 	const struct net_device_ops *ops = dev->netdev_ops;
7706 	int err;
7707 
7708 	if (!ops->ndo_set_mac_address)
7709 		return -EOPNOTSUPP;
7710 	if (sa->sa_family != dev->type)
7711 		return -EINVAL;
7712 	if (!netif_device_present(dev))
7713 		return -ENODEV;
7714 	err = ops->ndo_set_mac_address(dev, sa);
7715 	if (err)
7716 		return err;
7717 	dev->addr_assign_type = NET_ADDR_SET;
7718 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7719 	add_device_randomness(dev->dev_addr, dev->addr_len);
7720 	return 0;
7721 }
7722 EXPORT_SYMBOL(dev_set_mac_address);
7723 
7724 /**
7725  *	dev_change_carrier - Change device carrier
7726  *	@dev: device
7727  *	@new_carrier: new value
7728  *
7729  *	Change device carrier
7730  */
7731 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7732 {
7733 	const struct net_device_ops *ops = dev->netdev_ops;
7734 
7735 	if (!ops->ndo_change_carrier)
7736 		return -EOPNOTSUPP;
7737 	if (!netif_device_present(dev))
7738 		return -ENODEV;
7739 	return ops->ndo_change_carrier(dev, new_carrier);
7740 }
7741 EXPORT_SYMBOL(dev_change_carrier);
7742 
7743 /**
7744  *	dev_get_phys_port_id - Get device physical port ID
7745  *	@dev: device
7746  *	@ppid: port ID
7747  *
7748  *	Get device physical port ID
7749  */
7750 int dev_get_phys_port_id(struct net_device *dev,
7751 			 struct netdev_phys_item_id *ppid)
7752 {
7753 	const struct net_device_ops *ops = dev->netdev_ops;
7754 
7755 	if (!ops->ndo_get_phys_port_id)
7756 		return -EOPNOTSUPP;
7757 	return ops->ndo_get_phys_port_id(dev, ppid);
7758 }
7759 EXPORT_SYMBOL(dev_get_phys_port_id);
7760 
7761 /**
7762  *	dev_get_phys_port_name - Get device physical port name
7763  *	@dev: device
7764  *	@name: port name
7765  *	@len: limit of bytes to copy to name
7766  *
7767  *	Get device physical port name
7768  */
7769 int dev_get_phys_port_name(struct net_device *dev,
7770 			   char *name, size_t len)
7771 {
7772 	const struct net_device_ops *ops = dev->netdev_ops;
7773 
7774 	if (!ops->ndo_get_phys_port_name)
7775 		return -EOPNOTSUPP;
7776 	return ops->ndo_get_phys_port_name(dev, name, len);
7777 }
7778 EXPORT_SYMBOL(dev_get_phys_port_name);
7779 
7780 /**
7781  *	dev_change_proto_down - update protocol port state information
7782  *	@dev: device
7783  *	@proto_down: new value
7784  *
7785  *	This info can be used by switch drivers to set the phys state of the
7786  *	port.
7787  */
7788 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7789 {
7790 	const struct net_device_ops *ops = dev->netdev_ops;
7791 
7792 	if (!ops->ndo_change_proto_down)
7793 		return -EOPNOTSUPP;
7794 	if (!netif_device_present(dev))
7795 		return -ENODEV;
7796 	return ops->ndo_change_proto_down(dev, proto_down);
7797 }
7798 EXPORT_SYMBOL(dev_change_proto_down);
7799 
7800 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7801 		    enum bpf_netdev_command cmd)
7802 {
7803 	struct netdev_bpf xdp;
7804 
7805 	if (!bpf_op)
7806 		return 0;
7807 
7808 	memset(&xdp, 0, sizeof(xdp));
7809 	xdp.command = cmd;
7810 
7811 	/* Query must always succeed. */
7812 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7813 
7814 	return xdp.prog_id;
7815 }
7816 
7817 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7818 			   struct netlink_ext_ack *extack, u32 flags,
7819 			   struct bpf_prog *prog)
7820 {
7821 	struct netdev_bpf xdp;
7822 
7823 	memset(&xdp, 0, sizeof(xdp));
7824 	if (flags & XDP_FLAGS_HW_MODE)
7825 		xdp.command = XDP_SETUP_PROG_HW;
7826 	else
7827 		xdp.command = XDP_SETUP_PROG;
7828 	xdp.extack = extack;
7829 	xdp.flags = flags;
7830 	xdp.prog = prog;
7831 
7832 	return bpf_op(dev, &xdp);
7833 }
7834 
7835 static void dev_xdp_uninstall(struct net_device *dev)
7836 {
7837 	struct netdev_bpf xdp;
7838 	bpf_op_t ndo_bpf;
7839 
7840 	/* Remove generic XDP */
7841 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7842 
7843 	/* Remove from the driver */
7844 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7845 	if (!ndo_bpf)
7846 		return;
7847 
7848 	memset(&xdp, 0, sizeof(xdp));
7849 	xdp.command = XDP_QUERY_PROG;
7850 	WARN_ON(ndo_bpf(dev, &xdp));
7851 	if (xdp.prog_id)
7852 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7853 					NULL));
7854 
7855 	/* Remove HW offload */
7856 	memset(&xdp, 0, sizeof(xdp));
7857 	xdp.command = XDP_QUERY_PROG_HW;
7858 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7859 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7860 					NULL));
7861 }
7862 
7863 /**
7864  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7865  *	@dev: device
7866  *	@extack: netlink extended ack
7867  *	@fd: new program fd or negative value to clear
7868  *	@flags: xdp-related flags
7869  *
7870  *	Set or clear a bpf program for a device
7871  */
7872 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7873 		      int fd, u32 flags)
7874 {
7875 	const struct net_device_ops *ops = dev->netdev_ops;
7876 	enum bpf_netdev_command query;
7877 	struct bpf_prog *prog = NULL;
7878 	bpf_op_t bpf_op, bpf_chk;
7879 	int err;
7880 
7881 	ASSERT_RTNL();
7882 
7883 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7884 
7885 	bpf_op = bpf_chk = ops->ndo_bpf;
7886 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7887 		return -EOPNOTSUPP;
7888 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7889 		bpf_op = generic_xdp_install;
7890 	if (bpf_op == bpf_chk)
7891 		bpf_chk = generic_xdp_install;
7892 
7893 	if (fd >= 0) {
7894 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7895 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7896 			return -EEXIST;
7897 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7898 		    __dev_xdp_query(dev, bpf_op, query))
7899 			return -EBUSY;
7900 
7901 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7902 					     bpf_op == ops->ndo_bpf);
7903 		if (IS_ERR(prog))
7904 			return PTR_ERR(prog);
7905 
7906 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7907 		    bpf_prog_is_dev_bound(prog->aux)) {
7908 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7909 			bpf_prog_put(prog);
7910 			return -EINVAL;
7911 		}
7912 	}
7913 
7914 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7915 	if (err < 0 && prog)
7916 		bpf_prog_put(prog);
7917 
7918 	return err;
7919 }
7920 
7921 /**
7922  *	dev_new_index	-	allocate an ifindex
7923  *	@net: the applicable net namespace
7924  *
7925  *	Returns a suitable unique value for a new device interface
7926  *	number.  The caller must hold the rtnl semaphore or the
7927  *	dev_base_lock to be sure it remains unique.
7928  */
7929 static int dev_new_index(struct net *net)
7930 {
7931 	int ifindex = net->ifindex;
7932 
7933 	for (;;) {
7934 		if (++ifindex <= 0)
7935 			ifindex = 1;
7936 		if (!__dev_get_by_index(net, ifindex))
7937 			return net->ifindex = ifindex;
7938 	}
7939 }
7940 
7941 /* Delayed registration/unregisteration */
7942 static LIST_HEAD(net_todo_list);
7943 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7944 
7945 static void net_set_todo(struct net_device *dev)
7946 {
7947 	list_add_tail(&dev->todo_list, &net_todo_list);
7948 	dev_net(dev)->dev_unreg_count++;
7949 }
7950 
7951 static void rollback_registered_many(struct list_head *head)
7952 {
7953 	struct net_device *dev, *tmp;
7954 	LIST_HEAD(close_head);
7955 
7956 	BUG_ON(dev_boot_phase);
7957 	ASSERT_RTNL();
7958 
7959 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7960 		/* Some devices call without registering
7961 		 * for initialization unwind. Remove those
7962 		 * devices and proceed with the remaining.
7963 		 */
7964 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7965 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7966 				 dev->name, dev);
7967 
7968 			WARN_ON(1);
7969 			list_del(&dev->unreg_list);
7970 			continue;
7971 		}
7972 		dev->dismantle = true;
7973 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7974 	}
7975 
7976 	/* If device is running, close it first. */
7977 	list_for_each_entry(dev, head, unreg_list)
7978 		list_add_tail(&dev->close_list, &close_head);
7979 	dev_close_many(&close_head, true);
7980 
7981 	list_for_each_entry(dev, head, unreg_list) {
7982 		/* And unlink it from device chain. */
7983 		unlist_netdevice(dev);
7984 
7985 		dev->reg_state = NETREG_UNREGISTERING;
7986 	}
7987 	flush_all_backlogs();
7988 
7989 	synchronize_net();
7990 
7991 	list_for_each_entry(dev, head, unreg_list) {
7992 		struct sk_buff *skb = NULL;
7993 
7994 		/* Shutdown queueing discipline. */
7995 		dev_shutdown(dev);
7996 
7997 		dev_xdp_uninstall(dev);
7998 
7999 		/* Notify protocols, that we are about to destroy
8000 		 * this device. They should clean all the things.
8001 		 */
8002 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8003 
8004 		if (!dev->rtnl_link_ops ||
8005 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8006 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8007 						     GFP_KERNEL, NULL, 0);
8008 
8009 		/*
8010 		 *	Flush the unicast and multicast chains
8011 		 */
8012 		dev_uc_flush(dev);
8013 		dev_mc_flush(dev);
8014 
8015 		if (dev->netdev_ops->ndo_uninit)
8016 			dev->netdev_ops->ndo_uninit(dev);
8017 
8018 		if (skb)
8019 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8020 
8021 		/* Notifier chain MUST detach us all upper devices. */
8022 		WARN_ON(netdev_has_any_upper_dev(dev));
8023 		WARN_ON(netdev_has_any_lower_dev(dev));
8024 
8025 		/* Remove entries from kobject tree */
8026 		netdev_unregister_kobject(dev);
8027 #ifdef CONFIG_XPS
8028 		/* Remove XPS queueing entries */
8029 		netif_reset_xps_queues_gt(dev, 0);
8030 #endif
8031 	}
8032 
8033 	synchronize_net();
8034 
8035 	list_for_each_entry(dev, head, unreg_list)
8036 		dev_put(dev);
8037 }
8038 
8039 static void rollback_registered(struct net_device *dev)
8040 {
8041 	LIST_HEAD(single);
8042 
8043 	list_add(&dev->unreg_list, &single);
8044 	rollback_registered_many(&single);
8045 	list_del(&single);
8046 }
8047 
8048 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8049 	struct net_device *upper, netdev_features_t features)
8050 {
8051 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8052 	netdev_features_t feature;
8053 	int feature_bit;
8054 
8055 	for_each_netdev_feature(&upper_disables, feature_bit) {
8056 		feature = __NETIF_F_BIT(feature_bit);
8057 		if (!(upper->wanted_features & feature)
8058 		    && (features & feature)) {
8059 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8060 				   &feature, upper->name);
8061 			features &= ~feature;
8062 		}
8063 	}
8064 
8065 	return features;
8066 }
8067 
8068 static void netdev_sync_lower_features(struct net_device *upper,
8069 	struct net_device *lower, netdev_features_t features)
8070 {
8071 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8072 	netdev_features_t feature;
8073 	int feature_bit;
8074 
8075 	for_each_netdev_feature(&upper_disables, feature_bit) {
8076 		feature = __NETIF_F_BIT(feature_bit);
8077 		if (!(features & feature) && (lower->features & feature)) {
8078 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8079 				   &feature, lower->name);
8080 			lower->wanted_features &= ~feature;
8081 			netdev_update_features(lower);
8082 
8083 			if (unlikely(lower->features & feature))
8084 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8085 					    &feature, lower->name);
8086 		}
8087 	}
8088 }
8089 
8090 static netdev_features_t netdev_fix_features(struct net_device *dev,
8091 	netdev_features_t features)
8092 {
8093 	/* Fix illegal checksum combinations */
8094 	if ((features & NETIF_F_HW_CSUM) &&
8095 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8096 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8097 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8098 	}
8099 
8100 	/* TSO requires that SG is present as well. */
8101 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8102 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8103 		features &= ~NETIF_F_ALL_TSO;
8104 	}
8105 
8106 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8107 					!(features & NETIF_F_IP_CSUM)) {
8108 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8109 		features &= ~NETIF_F_TSO;
8110 		features &= ~NETIF_F_TSO_ECN;
8111 	}
8112 
8113 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8114 					 !(features & NETIF_F_IPV6_CSUM)) {
8115 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8116 		features &= ~NETIF_F_TSO6;
8117 	}
8118 
8119 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8120 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8121 		features &= ~NETIF_F_TSO_MANGLEID;
8122 
8123 	/* TSO ECN requires that TSO is present as well. */
8124 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8125 		features &= ~NETIF_F_TSO_ECN;
8126 
8127 	/* Software GSO depends on SG. */
8128 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8129 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8130 		features &= ~NETIF_F_GSO;
8131 	}
8132 
8133 	/* GSO partial features require GSO partial be set */
8134 	if ((features & dev->gso_partial_features) &&
8135 	    !(features & NETIF_F_GSO_PARTIAL)) {
8136 		netdev_dbg(dev,
8137 			   "Dropping partially supported GSO features since no GSO partial.\n");
8138 		features &= ~dev->gso_partial_features;
8139 	}
8140 
8141 	if (!(features & NETIF_F_RXCSUM)) {
8142 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8143 		 * successfully merged by hardware must also have the
8144 		 * checksum verified by hardware.  If the user does not
8145 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8146 		 */
8147 		if (features & NETIF_F_GRO_HW) {
8148 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8149 			features &= ~NETIF_F_GRO_HW;
8150 		}
8151 	}
8152 
8153 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8154 	if (features & NETIF_F_RXFCS) {
8155 		if (features & NETIF_F_LRO) {
8156 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8157 			features &= ~NETIF_F_LRO;
8158 		}
8159 
8160 		if (features & NETIF_F_GRO_HW) {
8161 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8162 			features &= ~NETIF_F_GRO_HW;
8163 		}
8164 	}
8165 
8166 	return features;
8167 }
8168 
8169 int __netdev_update_features(struct net_device *dev)
8170 {
8171 	struct net_device *upper, *lower;
8172 	netdev_features_t features;
8173 	struct list_head *iter;
8174 	int err = -1;
8175 
8176 	ASSERT_RTNL();
8177 
8178 	features = netdev_get_wanted_features(dev);
8179 
8180 	if (dev->netdev_ops->ndo_fix_features)
8181 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8182 
8183 	/* driver might be less strict about feature dependencies */
8184 	features = netdev_fix_features(dev, features);
8185 
8186 	/* some features can't be enabled if they're off an an upper device */
8187 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8188 		features = netdev_sync_upper_features(dev, upper, features);
8189 
8190 	if (dev->features == features)
8191 		goto sync_lower;
8192 
8193 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8194 		&dev->features, &features);
8195 
8196 	if (dev->netdev_ops->ndo_set_features)
8197 		err = dev->netdev_ops->ndo_set_features(dev, features);
8198 	else
8199 		err = 0;
8200 
8201 	if (unlikely(err < 0)) {
8202 		netdev_err(dev,
8203 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8204 			err, &features, &dev->features);
8205 		/* return non-0 since some features might have changed and
8206 		 * it's better to fire a spurious notification than miss it
8207 		 */
8208 		return -1;
8209 	}
8210 
8211 sync_lower:
8212 	/* some features must be disabled on lower devices when disabled
8213 	 * on an upper device (think: bonding master or bridge)
8214 	 */
8215 	netdev_for_each_lower_dev(dev, lower, iter)
8216 		netdev_sync_lower_features(dev, lower, features);
8217 
8218 	if (!err) {
8219 		netdev_features_t diff = features ^ dev->features;
8220 
8221 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8222 			/* udp_tunnel_{get,drop}_rx_info both need
8223 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8224 			 * device, or they won't do anything.
8225 			 * Thus we need to update dev->features
8226 			 * *before* calling udp_tunnel_get_rx_info,
8227 			 * but *after* calling udp_tunnel_drop_rx_info.
8228 			 */
8229 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8230 				dev->features = features;
8231 				udp_tunnel_get_rx_info(dev);
8232 			} else {
8233 				udp_tunnel_drop_rx_info(dev);
8234 			}
8235 		}
8236 
8237 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8238 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8239 				dev->features = features;
8240 				err |= vlan_get_rx_ctag_filter_info(dev);
8241 			} else {
8242 				vlan_drop_rx_ctag_filter_info(dev);
8243 			}
8244 		}
8245 
8246 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8247 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8248 				dev->features = features;
8249 				err |= vlan_get_rx_stag_filter_info(dev);
8250 			} else {
8251 				vlan_drop_rx_stag_filter_info(dev);
8252 			}
8253 		}
8254 
8255 		dev->features = features;
8256 	}
8257 
8258 	return err < 0 ? 0 : 1;
8259 }
8260 
8261 /**
8262  *	netdev_update_features - recalculate device features
8263  *	@dev: the device to check
8264  *
8265  *	Recalculate dev->features set and send notifications if it
8266  *	has changed. Should be called after driver or hardware dependent
8267  *	conditions might have changed that influence the features.
8268  */
8269 void netdev_update_features(struct net_device *dev)
8270 {
8271 	if (__netdev_update_features(dev))
8272 		netdev_features_change(dev);
8273 }
8274 EXPORT_SYMBOL(netdev_update_features);
8275 
8276 /**
8277  *	netdev_change_features - recalculate device features
8278  *	@dev: the device to check
8279  *
8280  *	Recalculate dev->features set and send notifications even
8281  *	if they have not changed. Should be called instead of
8282  *	netdev_update_features() if also dev->vlan_features might
8283  *	have changed to allow the changes to be propagated to stacked
8284  *	VLAN devices.
8285  */
8286 void netdev_change_features(struct net_device *dev)
8287 {
8288 	__netdev_update_features(dev);
8289 	netdev_features_change(dev);
8290 }
8291 EXPORT_SYMBOL(netdev_change_features);
8292 
8293 /**
8294  *	netif_stacked_transfer_operstate -	transfer operstate
8295  *	@rootdev: the root or lower level device to transfer state from
8296  *	@dev: the device to transfer operstate to
8297  *
8298  *	Transfer operational state from root to device. This is normally
8299  *	called when a stacking relationship exists between the root
8300  *	device and the device(a leaf device).
8301  */
8302 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8303 					struct net_device *dev)
8304 {
8305 	if (rootdev->operstate == IF_OPER_DORMANT)
8306 		netif_dormant_on(dev);
8307 	else
8308 		netif_dormant_off(dev);
8309 
8310 	if (netif_carrier_ok(rootdev))
8311 		netif_carrier_on(dev);
8312 	else
8313 		netif_carrier_off(dev);
8314 }
8315 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8316 
8317 static int netif_alloc_rx_queues(struct net_device *dev)
8318 {
8319 	unsigned int i, count = dev->num_rx_queues;
8320 	struct netdev_rx_queue *rx;
8321 	size_t sz = count * sizeof(*rx);
8322 	int err = 0;
8323 
8324 	BUG_ON(count < 1);
8325 
8326 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8327 	if (!rx)
8328 		return -ENOMEM;
8329 
8330 	dev->_rx = rx;
8331 
8332 	for (i = 0; i < count; i++) {
8333 		rx[i].dev = dev;
8334 
8335 		/* XDP RX-queue setup */
8336 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8337 		if (err < 0)
8338 			goto err_rxq_info;
8339 	}
8340 	return 0;
8341 
8342 err_rxq_info:
8343 	/* Rollback successful reg's and free other resources */
8344 	while (i--)
8345 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8346 	kvfree(dev->_rx);
8347 	dev->_rx = NULL;
8348 	return err;
8349 }
8350 
8351 static void netif_free_rx_queues(struct net_device *dev)
8352 {
8353 	unsigned int i, count = dev->num_rx_queues;
8354 
8355 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8356 	if (!dev->_rx)
8357 		return;
8358 
8359 	for (i = 0; i < count; i++)
8360 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8361 
8362 	kvfree(dev->_rx);
8363 }
8364 
8365 static void netdev_init_one_queue(struct net_device *dev,
8366 				  struct netdev_queue *queue, void *_unused)
8367 {
8368 	/* Initialize queue lock */
8369 	spin_lock_init(&queue->_xmit_lock);
8370 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8371 	queue->xmit_lock_owner = -1;
8372 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8373 	queue->dev = dev;
8374 #ifdef CONFIG_BQL
8375 	dql_init(&queue->dql, HZ);
8376 #endif
8377 }
8378 
8379 static void netif_free_tx_queues(struct net_device *dev)
8380 {
8381 	kvfree(dev->_tx);
8382 }
8383 
8384 static int netif_alloc_netdev_queues(struct net_device *dev)
8385 {
8386 	unsigned int count = dev->num_tx_queues;
8387 	struct netdev_queue *tx;
8388 	size_t sz = count * sizeof(*tx);
8389 
8390 	if (count < 1 || count > 0xffff)
8391 		return -EINVAL;
8392 
8393 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8394 	if (!tx)
8395 		return -ENOMEM;
8396 
8397 	dev->_tx = tx;
8398 
8399 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8400 	spin_lock_init(&dev->tx_global_lock);
8401 
8402 	return 0;
8403 }
8404 
8405 void netif_tx_stop_all_queues(struct net_device *dev)
8406 {
8407 	unsigned int i;
8408 
8409 	for (i = 0; i < dev->num_tx_queues; i++) {
8410 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8411 
8412 		netif_tx_stop_queue(txq);
8413 	}
8414 }
8415 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8416 
8417 /**
8418  *	register_netdevice	- register a network device
8419  *	@dev: device to register
8420  *
8421  *	Take a completed network device structure and add it to the kernel
8422  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8423  *	chain. 0 is returned on success. A negative errno code is returned
8424  *	on a failure to set up the device, or if the name is a duplicate.
8425  *
8426  *	Callers must hold the rtnl semaphore. You may want
8427  *	register_netdev() instead of this.
8428  *
8429  *	BUGS:
8430  *	The locking appears insufficient to guarantee two parallel registers
8431  *	will not get the same name.
8432  */
8433 
8434 int register_netdevice(struct net_device *dev)
8435 {
8436 	int ret;
8437 	struct net *net = dev_net(dev);
8438 
8439 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8440 		     NETDEV_FEATURE_COUNT);
8441 	BUG_ON(dev_boot_phase);
8442 	ASSERT_RTNL();
8443 
8444 	might_sleep();
8445 
8446 	/* When net_device's are persistent, this will be fatal. */
8447 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8448 	BUG_ON(!net);
8449 
8450 	spin_lock_init(&dev->addr_list_lock);
8451 	netdev_set_addr_lockdep_class(dev);
8452 
8453 	ret = dev_get_valid_name(net, dev, dev->name);
8454 	if (ret < 0)
8455 		goto out;
8456 
8457 	/* Init, if this function is available */
8458 	if (dev->netdev_ops->ndo_init) {
8459 		ret = dev->netdev_ops->ndo_init(dev);
8460 		if (ret) {
8461 			if (ret > 0)
8462 				ret = -EIO;
8463 			goto out;
8464 		}
8465 	}
8466 
8467 	if (((dev->hw_features | dev->features) &
8468 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8469 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8470 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8471 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8472 		ret = -EINVAL;
8473 		goto err_uninit;
8474 	}
8475 
8476 	ret = -EBUSY;
8477 	if (!dev->ifindex)
8478 		dev->ifindex = dev_new_index(net);
8479 	else if (__dev_get_by_index(net, dev->ifindex))
8480 		goto err_uninit;
8481 
8482 	/* Transfer changeable features to wanted_features and enable
8483 	 * software offloads (GSO and GRO).
8484 	 */
8485 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8486 	dev->features |= NETIF_F_SOFT_FEATURES;
8487 
8488 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8489 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8490 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8491 	}
8492 
8493 	dev->wanted_features = dev->features & dev->hw_features;
8494 
8495 	if (!(dev->flags & IFF_LOOPBACK))
8496 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8497 
8498 	/* If IPv4 TCP segmentation offload is supported we should also
8499 	 * allow the device to enable segmenting the frame with the option
8500 	 * of ignoring a static IP ID value.  This doesn't enable the
8501 	 * feature itself but allows the user to enable it later.
8502 	 */
8503 	if (dev->hw_features & NETIF_F_TSO)
8504 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8505 	if (dev->vlan_features & NETIF_F_TSO)
8506 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8507 	if (dev->mpls_features & NETIF_F_TSO)
8508 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8509 	if (dev->hw_enc_features & NETIF_F_TSO)
8510 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8511 
8512 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8513 	 */
8514 	dev->vlan_features |= NETIF_F_HIGHDMA;
8515 
8516 	/* Make NETIF_F_SG inheritable to tunnel devices.
8517 	 */
8518 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8519 
8520 	/* Make NETIF_F_SG inheritable to MPLS.
8521 	 */
8522 	dev->mpls_features |= NETIF_F_SG;
8523 
8524 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8525 	ret = notifier_to_errno(ret);
8526 	if (ret)
8527 		goto err_uninit;
8528 
8529 	ret = netdev_register_kobject(dev);
8530 	if (ret)
8531 		goto err_uninit;
8532 	dev->reg_state = NETREG_REGISTERED;
8533 
8534 	__netdev_update_features(dev);
8535 
8536 	/*
8537 	 *	Default initial state at registry is that the
8538 	 *	device is present.
8539 	 */
8540 
8541 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8542 
8543 	linkwatch_init_dev(dev);
8544 
8545 	dev_init_scheduler(dev);
8546 	dev_hold(dev);
8547 	list_netdevice(dev);
8548 	add_device_randomness(dev->dev_addr, dev->addr_len);
8549 
8550 	/* If the device has permanent device address, driver should
8551 	 * set dev_addr and also addr_assign_type should be set to
8552 	 * NET_ADDR_PERM (default value).
8553 	 */
8554 	if (dev->addr_assign_type == NET_ADDR_PERM)
8555 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8556 
8557 	/* Notify protocols, that a new device appeared. */
8558 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8559 	ret = notifier_to_errno(ret);
8560 	if (ret) {
8561 		rollback_registered(dev);
8562 		dev->reg_state = NETREG_UNREGISTERED;
8563 	}
8564 	/*
8565 	 *	Prevent userspace races by waiting until the network
8566 	 *	device is fully setup before sending notifications.
8567 	 */
8568 	if (!dev->rtnl_link_ops ||
8569 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8570 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8571 
8572 out:
8573 	return ret;
8574 
8575 err_uninit:
8576 	if (dev->netdev_ops->ndo_uninit)
8577 		dev->netdev_ops->ndo_uninit(dev);
8578 	if (dev->priv_destructor)
8579 		dev->priv_destructor(dev);
8580 	goto out;
8581 }
8582 EXPORT_SYMBOL(register_netdevice);
8583 
8584 /**
8585  *	init_dummy_netdev	- init a dummy network device for NAPI
8586  *	@dev: device to init
8587  *
8588  *	This takes a network device structure and initialize the minimum
8589  *	amount of fields so it can be used to schedule NAPI polls without
8590  *	registering a full blown interface. This is to be used by drivers
8591  *	that need to tie several hardware interfaces to a single NAPI
8592  *	poll scheduler due to HW limitations.
8593  */
8594 int init_dummy_netdev(struct net_device *dev)
8595 {
8596 	/* Clear everything. Note we don't initialize spinlocks
8597 	 * are they aren't supposed to be taken by any of the
8598 	 * NAPI code and this dummy netdev is supposed to be
8599 	 * only ever used for NAPI polls
8600 	 */
8601 	memset(dev, 0, sizeof(struct net_device));
8602 
8603 	/* make sure we BUG if trying to hit standard
8604 	 * register/unregister code path
8605 	 */
8606 	dev->reg_state = NETREG_DUMMY;
8607 
8608 	/* NAPI wants this */
8609 	INIT_LIST_HEAD(&dev->napi_list);
8610 
8611 	/* a dummy interface is started by default */
8612 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8613 	set_bit(__LINK_STATE_START, &dev->state);
8614 
8615 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8616 	 * because users of this 'device' dont need to change
8617 	 * its refcount.
8618 	 */
8619 
8620 	return 0;
8621 }
8622 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8623 
8624 
8625 /**
8626  *	register_netdev	- register a network device
8627  *	@dev: device to register
8628  *
8629  *	Take a completed network device structure and add it to the kernel
8630  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8631  *	chain. 0 is returned on success. A negative errno code is returned
8632  *	on a failure to set up the device, or if the name is a duplicate.
8633  *
8634  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8635  *	and expands the device name if you passed a format string to
8636  *	alloc_netdev.
8637  */
8638 int register_netdev(struct net_device *dev)
8639 {
8640 	int err;
8641 
8642 	if (rtnl_lock_killable())
8643 		return -EINTR;
8644 	err = register_netdevice(dev);
8645 	rtnl_unlock();
8646 	return err;
8647 }
8648 EXPORT_SYMBOL(register_netdev);
8649 
8650 int netdev_refcnt_read(const struct net_device *dev)
8651 {
8652 	int i, refcnt = 0;
8653 
8654 	for_each_possible_cpu(i)
8655 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8656 	return refcnt;
8657 }
8658 EXPORT_SYMBOL(netdev_refcnt_read);
8659 
8660 /**
8661  * netdev_wait_allrefs - wait until all references are gone.
8662  * @dev: target net_device
8663  *
8664  * This is called when unregistering network devices.
8665  *
8666  * Any protocol or device that holds a reference should register
8667  * for netdevice notification, and cleanup and put back the
8668  * reference if they receive an UNREGISTER event.
8669  * We can get stuck here if buggy protocols don't correctly
8670  * call dev_put.
8671  */
8672 static void netdev_wait_allrefs(struct net_device *dev)
8673 {
8674 	unsigned long rebroadcast_time, warning_time;
8675 	int refcnt;
8676 
8677 	linkwatch_forget_dev(dev);
8678 
8679 	rebroadcast_time = warning_time = jiffies;
8680 	refcnt = netdev_refcnt_read(dev);
8681 
8682 	while (refcnt != 0) {
8683 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8684 			rtnl_lock();
8685 
8686 			/* Rebroadcast unregister notification */
8687 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8688 
8689 			__rtnl_unlock();
8690 			rcu_barrier();
8691 			rtnl_lock();
8692 
8693 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8694 				     &dev->state)) {
8695 				/* We must not have linkwatch events
8696 				 * pending on unregister. If this
8697 				 * happens, we simply run the queue
8698 				 * unscheduled, resulting in a noop
8699 				 * for this device.
8700 				 */
8701 				linkwatch_run_queue();
8702 			}
8703 
8704 			__rtnl_unlock();
8705 
8706 			rebroadcast_time = jiffies;
8707 		}
8708 
8709 		msleep(250);
8710 
8711 		refcnt = netdev_refcnt_read(dev);
8712 
8713 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8714 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8715 				 dev->name, refcnt);
8716 			warning_time = jiffies;
8717 		}
8718 	}
8719 }
8720 
8721 /* The sequence is:
8722  *
8723  *	rtnl_lock();
8724  *	...
8725  *	register_netdevice(x1);
8726  *	register_netdevice(x2);
8727  *	...
8728  *	unregister_netdevice(y1);
8729  *	unregister_netdevice(y2);
8730  *      ...
8731  *	rtnl_unlock();
8732  *	free_netdev(y1);
8733  *	free_netdev(y2);
8734  *
8735  * We are invoked by rtnl_unlock().
8736  * This allows us to deal with problems:
8737  * 1) We can delete sysfs objects which invoke hotplug
8738  *    without deadlocking with linkwatch via keventd.
8739  * 2) Since we run with the RTNL semaphore not held, we can sleep
8740  *    safely in order to wait for the netdev refcnt to drop to zero.
8741  *
8742  * We must not return until all unregister events added during
8743  * the interval the lock was held have been completed.
8744  */
8745 void netdev_run_todo(void)
8746 {
8747 	struct list_head list;
8748 
8749 	/* Snapshot list, allow later requests */
8750 	list_replace_init(&net_todo_list, &list);
8751 
8752 	__rtnl_unlock();
8753 
8754 
8755 	/* Wait for rcu callbacks to finish before next phase */
8756 	if (!list_empty(&list))
8757 		rcu_barrier();
8758 
8759 	while (!list_empty(&list)) {
8760 		struct net_device *dev
8761 			= list_first_entry(&list, struct net_device, todo_list);
8762 		list_del(&dev->todo_list);
8763 
8764 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8765 			pr_err("network todo '%s' but state %d\n",
8766 			       dev->name, dev->reg_state);
8767 			dump_stack();
8768 			continue;
8769 		}
8770 
8771 		dev->reg_state = NETREG_UNREGISTERED;
8772 
8773 		netdev_wait_allrefs(dev);
8774 
8775 		/* paranoia */
8776 		BUG_ON(netdev_refcnt_read(dev));
8777 		BUG_ON(!list_empty(&dev->ptype_all));
8778 		BUG_ON(!list_empty(&dev->ptype_specific));
8779 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8780 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8781 #if IS_ENABLED(CONFIG_DECNET)
8782 		WARN_ON(dev->dn_ptr);
8783 #endif
8784 		if (dev->priv_destructor)
8785 			dev->priv_destructor(dev);
8786 		if (dev->needs_free_netdev)
8787 			free_netdev(dev);
8788 
8789 		/* Report a network device has been unregistered */
8790 		rtnl_lock();
8791 		dev_net(dev)->dev_unreg_count--;
8792 		__rtnl_unlock();
8793 		wake_up(&netdev_unregistering_wq);
8794 
8795 		/* Free network device */
8796 		kobject_put(&dev->dev.kobj);
8797 	}
8798 }
8799 
8800 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8801  * all the same fields in the same order as net_device_stats, with only
8802  * the type differing, but rtnl_link_stats64 may have additional fields
8803  * at the end for newer counters.
8804  */
8805 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8806 			     const struct net_device_stats *netdev_stats)
8807 {
8808 #if BITS_PER_LONG == 64
8809 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8810 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8811 	/* zero out counters that only exist in rtnl_link_stats64 */
8812 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8813 	       sizeof(*stats64) - sizeof(*netdev_stats));
8814 #else
8815 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8816 	const unsigned long *src = (const unsigned long *)netdev_stats;
8817 	u64 *dst = (u64 *)stats64;
8818 
8819 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8820 	for (i = 0; i < n; i++)
8821 		dst[i] = src[i];
8822 	/* zero out counters that only exist in rtnl_link_stats64 */
8823 	memset((char *)stats64 + n * sizeof(u64), 0,
8824 	       sizeof(*stats64) - n * sizeof(u64));
8825 #endif
8826 }
8827 EXPORT_SYMBOL(netdev_stats_to_stats64);
8828 
8829 /**
8830  *	dev_get_stats	- get network device statistics
8831  *	@dev: device to get statistics from
8832  *	@storage: place to store stats
8833  *
8834  *	Get network statistics from device. Return @storage.
8835  *	The device driver may provide its own method by setting
8836  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8837  *	otherwise the internal statistics structure is used.
8838  */
8839 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8840 					struct rtnl_link_stats64 *storage)
8841 {
8842 	const struct net_device_ops *ops = dev->netdev_ops;
8843 
8844 	if (ops->ndo_get_stats64) {
8845 		memset(storage, 0, sizeof(*storage));
8846 		ops->ndo_get_stats64(dev, storage);
8847 	} else if (ops->ndo_get_stats) {
8848 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8849 	} else {
8850 		netdev_stats_to_stats64(storage, &dev->stats);
8851 	}
8852 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8853 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8854 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8855 	return storage;
8856 }
8857 EXPORT_SYMBOL(dev_get_stats);
8858 
8859 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8860 {
8861 	struct netdev_queue *queue = dev_ingress_queue(dev);
8862 
8863 #ifdef CONFIG_NET_CLS_ACT
8864 	if (queue)
8865 		return queue;
8866 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8867 	if (!queue)
8868 		return NULL;
8869 	netdev_init_one_queue(dev, queue, NULL);
8870 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8871 	queue->qdisc_sleeping = &noop_qdisc;
8872 	rcu_assign_pointer(dev->ingress_queue, queue);
8873 #endif
8874 	return queue;
8875 }
8876 
8877 static const struct ethtool_ops default_ethtool_ops;
8878 
8879 void netdev_set_default_ethtool_ops(struct net_device *dev,
8880 				    const struct ethtool_ops *ops)
8881 {
8882 	if (dev->ethtool_ops == &default_ethtool_ops)
8883 		dev->ethtool_ops = ops;
8884 }
8885 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8886 
8887 void netdev_freemem(struct net_device *dev)
8888 {
8889 	char *addr = (char *)dev - dev->padded;
8890 
8891 	kvfree(addr);
8892 }
8893 
8894 /**
8895  * alloc_netdev_mqs - allocate network device
8896  * @sizeof_priv: size of private data to allocate space for
8897  * @name: device name format string
8898  * @name_assign_type: origin of device name
8899  * @setup: callback to initialize device
8900  * @txqs: the number of TX subqueues to allocate
8901  * @rxqs: the number of RX subqueues to allocate
8902  *
8903  * Allocates a struct net_device with private data area for driver use
8904  * and performs basic initialization.  Also allocates subqueue structs
8905  * for each queue on the device.
8906  */
8907 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8908 		unsigned char name_assign_type,
8909 		void (*setup)(struct net_device *),
8910 		unsigned int txqs, unsigned int rxqs)
8911 {
8912 	struct net_device *dev;
8913 	unsigned int alloc_size;
8914 	struct net_device *p;
8915 
8916 	BUG_ON(strlen(name) >= sizeof(dev->name));
8917 
8918 	if (txqs < 1) {
8919 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8920 		return NULL;
8921 	}
8922 
8923 	if (rxqs < 1) {
8924 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8925 		return NULL;
8926 	}
8927 
8928 	alloc_size = sizeof(struct net_device);
8929 	if (sizeof_priv) {
8930 		/* ensure 32-byte alignment of private area */
8931 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8932 		alloc_size += sizeof_priv;
8933 	}
8934 	/* ensure 32-byte alignment of whole construct */
8935 	alloc_size += NETDEV_ALIGN - 1;
8936 
8937 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8938 	if (!p)
8939 		return NULL;
8940 
8941 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8942 	dev->padded = (char *)dev - (char *)p;
8943 
8944 	dev->pcpu_refcnt = alloc_percpu(int);
8945 	if (!dev->pcpu_refcnt)
8946 		goto free_dev;
8947 
8948 	if (dev_addr_init(dev))
8949 		goto free_pcpu;
8950 
8951 	dev_mc_init(dev);
8952 	dev_uc_init(dev);
8953 
8954 	dev_net_set(dev, &init_net);
8955 
8956 	dev->gso_max_size = GSO_MAX_SIZE;
8957 	dev->gso_max_segs = GSO_MAX_SEGS;
8958 
8959 	INIT_LIST_HEAD(&dev->napi_list);
8960 	INIT_LIST_HEAD(&dev->unreg_list);
8961 	INIT_LIST_HEAD(&dev->close_list);
8962 	INIT_LIST_HEAD(&dev->link_watch_list);
8963 	INIT_LIST_HEAD(&dev->adj_list.upper);
8964 	INIT_LIST_HEAD(&dev->adj_list.lower);
8965 	INIT_LIST_HEAD(&dev->ptype_all);
8966 	INIT_LIST_HEAD(&dev->ptype_specific);
8967 #ifdef CONFIG_NET_SCHED
8968 	hash_init(dev->qdisc_hash);
8969 #endif
8970 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8971 	setup(dev);
8972 
8973 	if (!dev->tx_queue_len) {
8974 		dev->priv_flags |= IFF_NO_QUEUE;
8975 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8976 	}
8977 
8978 	dev->num_tx_queues = txqs;
8979 	dev->real_num_tx_queues = txqs;
8980 	if (netif_alloc_netdev_queues(dev))
8981 		goto free_all;
8982 
8983 	dev->num_rx_queues = rxqs;
8984 	dev->real_num_rx_queues = rxqs;
8985 	if (netif_alloc_rx_queues(dev))
8986 		goto free_all;
8987 
8988 	strcpy(dev->name, name);
8989 	dev->name_assign_type = name_assign_type;
8990 	dev->group = INIT_NETDEV_GROUP;
8991 	if (!dev->ethtool_ops)
8992 		dev->ethtool_ops = &default_ethtool_ops;
8993 
8994 	nf_hook_ingress_init(dev);
8995 
8996 	return dev;
8997 
8998 free_all:
8999 	free_netdev(dev);
9000 	return NULL;
9001 
9002 free_pcpu:
9003 	free_percpu(dev->pcpu_refcnt);
9004 free_dev:
9005 	netdev_freemem(dev);
9006 	return NULL;
9007 }
9008 EXPORT_SYMBOL(alloc_netdev_mqs);
9009 
9010 /**
9011  * free_netdev - free network device
9012  * @dev: device
9013  *
9014  * This function does the last stage of destroying an allocated device
9015  * interface. The reference to the device object is released. If this
9016  * is the last reference then it will be freed.Must be called in process
9017  * context.
9018  */
9019 void free_netdev(struct net_device *dev)
9020 {
9021 	struct napi_struct *p, *n;
9022 
9023 	might_sleep();
9024 	netif_free_tx_queues(dev);
9025 	netif_free_rx_queues(dev);
9026 
9027 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9028 
9029 	/* Flush device addresses */
9030 	dev_addr_flush(dev);
9031 
9032 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9033 		netif_napi_del(p);
9034 
9035 	free_percpu(dev->pcpu_refcnt);
9036 	dev->pcpu_refcnt = NULL;
9037 
9038 	/*  Compatibility with error handling in drivers */
9039 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9040 		netdev_freemem(dev);
9041 		return;
9042 	}
9043 
9044 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9045 	dev->reg_state = NETREG_RELEASED;
9046 
9047 	/* will free via device release */
9048 	put_device(&dev->dev);
9049 }
9050 EXPORT_SYMBOL(free_netdev);
9051 
9052 /**
9053  *	synchronize_net -  Synchronize with packet receive processing
9054  *
9055  *	Wait for packets currently being received to be done.
9056  *	Does not block later packets from starting.
9057  */
9058 void synchronize_net(void)
9059 {
9060 	might_sleep();
9061 	if (rtnl_is_locked())
9062 		synchronize_rcu_expedited();
9063 	else
9064 		synchronize_rcu();
9065 }
9066 EXPORT_SYMBOL(synchronize_net);
9067 
9068 /**
9069  *	unregister_netdevice_queue - remove device from the kernel
9070  *	@dev: device
9071  *	@head: list
9072  *
9073  *	This function shuts down a device interface and removes it
9074  *	from the kernel tables.
9075  *	If head not NULL, device is queued to be unregistered later.
9076  *
9077  *	Callers must hold the rtnl semaphore.  You may want
9078  *	unregister_netdev() instead of this.
9079  */
9080 
9081 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9082 {
9083 	ASSERT_RTNL();
9084 
9085 	if (head) {
9086 		list_move_tail(&dev->unreg_list, head);
9087 	} else {
9088 		rollback_registered(dev);
9089 		/* Finish processing unregister after unlock */
9090 		net_set_todo(dev);
9091 	}
9092 }
9093 EXPORT_SYMBOL(unregister_netdevice_queue);
9094 
9095 /**
9096  *	unregister_netdevice_many - unregister many devices
9097  *	@head: list of devices
9098  *
9099  *  Note: As most callers use a stack allocated list_head,
9100  *  we force a list_del() to make sure stack wont be corrupted later.
9101  */
9102 void unregister_netdevice_many(struct list_head *head)
9103 {
9104 	struct net_device *dev;
9105 
9106 	if (!list_empty(head)) {
9107 		rollback_registered_many(head);
9108 		list_for_each_entry(dev, head, unreg_list)
9109 			net_set_todo(dev);
9110 		list_del(head);
9111 	}
9112 }
9113 EXPORT_SYMBOL(unregister_netdevice_many);
9114 
9115 /**
9116  *	unregister_netdev - remove device from the kernel
9117  *	@dev: device
9118  *
9119  *	This function shuts down a device interface and removes it
9120  *	from the kernel tables.
9121  *
9122  *	This is just a wrapper for unregister_netdevice that takes
9123  *	the rtnl semaphore.  In general you want to use this and not
9124  *	unregister_netdevice.
9125  */
9126 void unregister_netdev(struct net_device *dev)
9127 {
9128 	rtnl_lock();
9129 	unregister_netdevice(dev);
9130 	rtnl_unlock();
9131 }
9132 EXPORT_SYMBOL(unregister_netdev);
9133 
9134 /**
9135  *	dev_change_net_namespace - move device to different nethost namespace
9136  *	@dev: device
9137  *	@net: network namespace
9138  *	@pat: If not NULL name pattern to try if the current device name
9139  *	      is already taken in the destination network namespace.
9140  *
9141  *	This function shuts down a device interface and moves it
9142  *	to a new network namespace. On success 0 is returned, on
9143  *	a failure a netagive errno code is returned.
9144  *
9145  *	Callers must hold the rtnl semaphore.
9146  */
9147 
9148 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9149 {
9150 	int err, new_nsid, new_ifindex;
9151 
9152 	ASSERT_RTNL();
9153 
9154 	/* Don't allow namespace local devices to be moved. */
9155 	err = -EINVAL;
9156 	if (dev->features & NETIF_F_NETNS_LOCAL)
9157 		goto out;
9158 
9159 	/* Ensure the device has been registrered */
9160 	if (dev->reg_state != NETREG_REGISTERED)
9161 		goto out;
9162 
9163 	/* Get out if there is nothing todo */
9164 	err = 0;
9165 	if (net_eq(dev_net(dev), net))
9166 		goto out;
9167 
9168 	/* Pick the destination device name, and ensure
9169 	 * we can use it in the destination network namespace.
9170 	 */
9171 	err = -EEXIST;
9172 	if (__dev_get_by_name(net, dev->name)) {
9173 		/* We get here if we can't use the current device name */
9174 		if (!pat)
9175 			goto out;
9176 		err = dev_get_valid_name(net, dev, pat);
9177 		if (err < 0)
9178 			goto out;
9179 	}
9180 
9181 	/*
9182 	 * And now a mini version of register_netdevice unregister_netdevice.
9183 	 */
9184 
9185 	/* If device is running close it first. */
9186 	dev_close(dev);
9187 
9188 	/* And unlink it from device chain */
9189 	unlist_netdevice(dev);
9190 
9191 	synchronize_net();
9192 
9193 	/* Shutdown queueing discipline. */
9194 	dev_shutdown(dev);
9195 
9196 	/* Notify protocols, that we are about to destroy
9197 	 * this device. They should clean all the things.
9198 	 *
9199 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9200 	 * This is wanted because this way 8021q and macvlan know
9201 	 * the device is just moving and can keep their slaves up.
9202 	 */
9203 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9204 	rcu_barrier();
9205 
9206 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9207 	/* If there is an ifindex conflict assign a new one */
9208 	if (__dev_get_by_index(net, dev->ifindex))
9209 		new_ifindex = dev_new_index(net);
9210 	else
9211 		new_ifindex = dev->ifindex;
9212 
9213 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9214 			    new_ifindex);
9215 
9216 	/*
9217 	 *	Flush the unicast and multicast chains
9218 	 */
9219 	dev_uc_flush(dev);
9220 	dev_mc_flush(dev);
9221 
9222 	/* Send a netdev-removed uevent to the old namespace */
9223 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9224 	netdev_adjacent_del_links(dev);
9225 
9226 	/* Actually switch the network namespace */
9227 	dev_net_set(dev, net);
9228 	dev->ifindex = new_ifindex;
9229 
9230 	/* Send a netdev-add uevent to the new namespace */
9231 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9232 	netdev_adjacent_add_links(dev);
9233 
9234 	/* Fixup kobjects */
9235 	err = device_rename(&dev->dev, dev->name);
9236 	WARN_ON(err);
9237 
9238 	/* Add the device back in the hashes */
9239 	list_netdevice(dev);
9240 
9241 	/* Notify protocols, that a new device appeared. */
9242 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9243 
9244 	/*
9245 	 *	Prevent userspace races by waiting until the network
9246 	 *	device is fully setup before sending notifications.
9247 	 */
9248 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9249 
9250 	synchronize_net();
9251 	err = 0;
9252 out:
9253 	return err;
9254 }
9255 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9256 
9257 static int dev_cpu_dead(unsigned int oldcpu)
9258 {
9259 	struct sk_buff **list_skb;
9260 	struct sk_buff *skb;
9261 	unsigned int cpu;
9262 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9263 
9264 	local_irq_disable();
9265 	cpu = smp_processor_id();
9266 	sd = &per_cpu(softnet_data, cpu);
9267 	oldsd = &per_cpu(softnet_data, oldcpu);
9268 
9269 	/* Find end of our completion_queue. */
9270 	list_skb = &sd->completion_queue;
9271 	while (*list_skb)
9272 		list_skb = &(*list_skb)->next;
9273 	/* Append completion queue from offline CPU. */
9274 	*list_skb = oldsd->completion_queue;
9275 	oldsd->completion_queue = NULL;
9276 
9277 	/* Append output queue from offline CPU. */
9278 	if (oldsd->output_queue) {
9279 		*sd->output_queue_tailp = oldsd->output_queue;
9280 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9281 		oldsd->output_queue = NULL;
9282 		oldsd->output_queue_tailp = &oldsd->output_queue;
9283 	}
9284 	/* Append NAPI poll list from offline CPU, with one exception :
9285 	 * process_backlog() must be called by cpu owning percpu backlog.
9286 	 * We properly handle process_queue & input_pkt_queue later.
9287 	 */
9288 	while (!list_empty(&oldsd->poll_list)) {
9289 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9290 							    struct napi_struct,
9291 							    poll_list);
9292 
9293 		list_del_init(&napi->poll_list);
9294 		if (napi->poll == process_backlog)
9295 			napi->state = 0;
9296 		else
9297 			____napi_schedule(sd, napi);
9298 	}
9299 
9300 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9301 	local_irq_enable();
9302 
9303 #ifdef CONFIG_RPS
9304 	remsd = oldsd->rps_ipi_list;
9305 	oldsd->rps_ipi_list = NULL;
9306 #endif
9307 	/* send out pending IPI's on offline CPU */
9308 	net_rps_send_ipi(remsd);
9309 
9310 	/* Process offline CPU's input_pkt_queue */
9311 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9312 		netif_rx_ni(skb);
9313 		input_queue_head_incr(oldsd);
9314 	}
9315 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9316 		netif_rx_ni(skb);
9317 		input_queue_head_incr(oldsd);
9318 	}
9319 
9320 	return 0;
9321 }
9322 
9323 /**
9324  *	netdev_increment_features - increment feature set by one
9325  *	@all: current feature set
9326  *	@one: new feature set
9327  *	@mask: mask feature set
9328  *
9329  *	Computes a new feature set after adding a device with feature set
9330  *	@one to the master device with current feature set @all.  Will not
9331  *	enable anything that is off in @mask. Returns the new feature set.
9332  */
9333 netdev_features_t netdev_increment_features(netdev_features_t all,
9334 	netdev_features_t one, netdev_features_t mask)
9335 {
9336 	if (mask & NETIF_F_HW_CSUM)
9337 		mask |= NETIF_F_CSUM_MASK;
9338 	mask |= NETIF_F_VLAN_CHALLENGED;
9339 
9340 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9341 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9342 
9343 	/* If one device supports hw checksumming, set for all. */
9344 	if (all & NETIF_F_HW_CSUM)
9345 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9346 
9347 	return all;
9348 }
9349 EXPORT_SYMBOL(netdev_increment_features);
9350 
9351 static struct hlist_head * __net_init netdev_create_hash(void)
9352 {
9353 	int i;
9354 	struct hlist_head *hash;
9355 
9356 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9357 	if (hash != NULL)
9358 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9359 			INIT_HLIST_HEAD(&hash[i]);
9360 
9361 	return hash;
9362 }
9363 
9364 /* Initialize per network namespace state */
9365 static int __net_init netdev_init(struct net *net)
9366 {
9367 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9368 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9369 
9370 	if (net != &init_net)
9371 		INIT_LIST_HEAD(&net->dev_base_head);
9372 
9373 	net->dev_name_head = netdev_create_hash();
9374 	if (net->dev_name_head == NULL)
9375 		goto err_name;
9376 
9377 	net->dev_index_head = netdev_create_hash();
9378 	if (net->dev_index_head == NULL)
9379 		goto err_idx;
9380 
9381 	return 0;
9382 
9383 err_idx:
9384 	kfree(net->dev_name_head);
9385 err_name:
9386 	return -ENOMEM;
9387 }
9388 
9389 /**
9390  *	netdev_drivername - network driver for the device
9391  *	@dev: network device
9392  *
9393  *	Determine network driver for device.
9394  */
9395 const char *netdev_drivername(const struct net_device *dev)
9396 {
9397 	const struct device_driver *driver;
9398 	const struct device *parent;
9399 	const char *empty = "";
9400 
9401 	parent = dev->dev.parent;
9402 	if (!parent)
9403 		return empty;
9404 
9405 	driver = parent->driver;
9406 	if (driver && driver->name)
9407 		return driver->name;
9408 	return empty;
9409 }
9410 
9411 static void __netdev_printk(const char *level, const struct net_device *dev,
9412 			    struct va_format *vaf)
9413 {
9414 	if (dev && dev->dev.parent) {
9415 		dev_printk_emit(level[1] - '0',
9416 				dev->dev.parent,
9417 				"%s %s %s%s: %pV",
9418 				dev_driver_string(dev->dev.parent),
9419 				dev_name(dev->dev.parent),
9420 				netdev_name(dev), netdev_reg_state(dev),
9421 				vaf);
9422 	} else if (dev) {
9423 		printk("%s%s%s: %pV",
9424 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9425 	} else {
9426 		printk("%s(NULL net_device): %pV", level, vaf);
9427 	}
9428 }
9429 
9430 void netdev_printk(const char *level, const struct net_device *dev,
9431 		   const char *format, ...)
9432 {
9433 	struct va_format vaf;
9434 	va_list args;
9435 
9436 	va_start(args, format);
9437 
9438 	vaf.fmt = format;
9439 	vaf.va = &args;
9440 
9441 	__netdev_printk(level, dev, &vaf);
9442 
9443 	va_end(args);
9444 }
9445 EXPORT_SYMBOL(netdev_printk);
9446 
9447 #define define_netdev_printk_level(func, level)			\
9448 void func(const struct net_device *dev, const char *fmt, ...)	\
9449 {								\
9450 	struct va_format vaf;					\
9451 	va_list args;						\
9452 								\
9453 	va_start(args, fmt);					\
9454 								\
9455 	vaf.fmt = fmt;						\
9456 	vaf.va = &args;						\
9457 								\
9458 	__netdev_printk(level, dev, &vaf);			\
9459 								\
9460 	va_end(args);						\
9461 }								\
9462 EXPORT_SYMBOL(func);
9463 
9464 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9465 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9466 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9467 define_netdev_printk_level(netdev_err, KERN_ERR);
9468 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9469 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9470 define_netdev_printk_level(netdev_info, KERN_INFO);
9471 
9472 static void __net_exit netdev_exit(struct net *net)
9473 {
9474 	kfree(net->dev_name_head);
9475 	kfree(net->dev_index_head);
9476 	if (net != &init_net)
9477 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9478 }
9479 
9480 static struct pernet_operations __net_initdata netdev_net_ops = {
9481 	.init = netdev_init,
9482 	.exit = netdev_exit,
9483 };
9484 
9485 static void __net_exit default_device_exit(struct net *net)
9486 {
9487 	struct net_device *dev, *aux;
9488 	/*
9489 	 * Push all migratable network devices back to the
9490 	 * initial network namespace
9491 	 */
9492 	rtnl_lock();
9493 	for_each_netdev_safe(net, dev, aux) {
9494 		int err;
9495 		char fb_name[IFNAMSIZ];
9496 
9497 		/* Ignore unmoveable devices (i.e. loopback) */
9498 		if (dev->features & NETIF_F_NETNS_LOCAL)
9499 			continue;
9500 
9501 		/* Leave virtual devices for the generic cleanup */
9502 		if (dev->rtnl_link_ops)
9503 			continue;
9504 
9505 		/* Push remaining network devices to init_net */
9506 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9507 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9508 		if (err) {
9509 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9510 				 __func__, dev->name, err);
9511 			BUG();
9512 		}
9513 	}
9514 	rtnl_unlock();
9515 }
9516 
9517 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9518 {
9519 	/* Return with the rtnl_lock held when there are no network
9520 	 * devices unregistering in any network namespace in net_list.
9521 	 */
9522 	struct net *net;
9523 	bool unregistering;
9524 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9525 
9526 	add_wait_queue(&netdev_unregistering_wq, &wait);
9527 	for (;;) {
9528 		unregistering = false;
9529 		rtnl_lock();
9530 		list_for_each_entry(net, net_list, exit_list) {
9531 			if (net->dev_unreg_count > 0) {
9532 				unregistering = true;
9533 				break;
9534 			}
9535 		}
9536 		if (!unregistering)
9537 			break;
9538 		__rtnl_unlock();
9539 
9540 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9541 	}
9542 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9543 }
9544 
9545 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9546 {
9547 	/* At exit all network devices most be removed from a network
9548 	 * namespace.  Do this in the reverse order of registration.
9549 	 * Do this across as many network namespaces as possible to
9550 	 * improve batching efficiency.
9551 	 */
9552 	struct net_device *dev;
9553 	struct net *net;
9554 	LIST_HEAD(dev_kill_list);
9555 
9556 	/* To prevent network device cleanup code from dereferencing
9557 	 * loopback devices or network devices that have been freed
9558 	 * wait here for all pending unregistrations to complete,
9559 	 * before unregistring the loopback device and allowing the
9560 	 * network namespace be freed.
9561 	 *
9562 	 * The netdev todo list containing all network devices
9563 	 * unregistrations that happen in default_device_exit_batch
9564 	 * will run in the rtnl_unlock() at the end of
9565 	 * default_device_exit_batch.
9566 	 */
9567 	rtnl_lock_unregistering(net_list);
9568 	list_for_each_entry(net, net_list, exit_list) {
9569 		for_each_netdev_reverse(net, dev) {
9570 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9571 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9572 			else
9573 				unregister_netdevice_queue(dev, &dev_kill_list);
9574 		}
9575 	}
9576 	unregister_netdevice_many(&dev_kill_list);
9577 	rtnl_unlock();
9578 }
9579 
9580 static struct pernet_operations __net_initdata default_device_ops = {
9581 	.exit = default_device_exit,
9582 	.exit_batch = default_device_exit_batch,
9583 };
9584 
9585 /*
9586  *	Initialize the DEV module. At boot time this walks the device list and
9587  *	unhooks any devices that fail to initialise (normally hardware not
9588  *	present) and leaves us with a valid list of present and active devices.
9589  *
9590  */
9591 
9592 /*
9593  *       This is called single threaded during boot, so no need
9594  *       to take the rtnl semaphore.
9595  */
9596 static int __init net_dev_init(void)
9597 {
9598 	int i, rc = -ENOMEM;
9599 
9600 	BUG_ON(!dev_boot_phase);
9601 
9602 	if (dev_proc_init())
9603 		goto out;
9604 
9605 	if (netdev_kobject_init())
9606 		goto out;
9607 
9608 	INIT_LIST_HEAD(&ptype_all);
9609 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9610 		INIT_LIST_HEAD(&ptype_base[i]);
9611 
9612 	INIT_LIST_HEAD(&offload_base);
9613 
9614 	if (register_pernet_subsys(&netdev_net_ops))
9615 		goto out;
9616 
9617 	/*
9618 	 *	Initialise the packet receive queues.
9619 	 */
9620 
9621 	for_each_possible_cpu(i) {
9622 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9623 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9624 
9625 		INIT_WORK(flush, flush_backlog);
9626 
9627 		skb_queue_head_init(&sd->input_pkt_queue);
9628 		skb_queue_head_init(&sd->process_queue);
9629 #ifdef CONFIG_XFRM_OFFLOAD
9630 		skb_queue_head_init(&sd->xfrm_backlog);
9631 #endif
9632 		INIT_LIST_HEAD(&sd->poll_list);
9633 		sd->output_queue_tailp = &sd->output_queue;
9634 #ifdef CONFIG_RPS
9635 		sd->csd.func = rps_trigger_softirq;
9636 		sd->csd.info = sd;
9637 		sd->cpu = i;
9638 #endif
9639 
9640 		init_gro_hash(&sd->backlog);
9641 		sd->backlog.poll = process_backlog;
9642 		sd->backlog.weight = weight_p;
9643 	}
9644 
9645 	dev_boot_phase = 0;
9646 
9647 	/* The loopback device is special if any other network devices
9648 	 * is present in a network namespace the loopback device must
9649 	 * be present. Since we now dynamically allocate and free the
9650 	 * loopback device ensure this invariant is maintained by
9651 	 * keeping the loopback device as the first device on the
9652 	 * list of network devices.  Ensuring the loopback devices
9653 	 * is the first device that appears and the last network device
9654 	 * that disappears.
9655 	 */
9656 	if (register_pernet_device(&loopback_net_ops))
9657 		goto out;
9658 
9659 	if (register_pernet_device(&default_device_ops))
9660 		goto out;
9661 
9662 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9663 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9664 
9665 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9666 				       NULL, dev_cpu_dead);
9667 	WARN_ON(rc < 0);
9668 	rc = 0;
9669 out:
9670 	return rc;
9671 }
9672 
9673 subsys_initcall(net_dev_init);
9674