1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 149 #include "net-sysfs.h" 150 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 static struct napi_struct *napi_by_id(unsigned int napi_id); 169 170 /* 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 172 * semaphore. 173 * 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 175 * 176 * Writers must hold the rtnl semaphore while they loop through the 177 * dev_base_head list, and hold dev_base_lock for writing when they do the 178 * actual updates. This allows pure readers to access the list even 179 * while a writer is preparing to update it. 180 * 181 * To put it another way, dev_base_lock is held for writing only to 182 * protect against pure readers; the rtnl semaphore provides the 183 * protection against other writers. 184 * 185 * See, for example usages, register_netdevice() and 186 * unregister_netdevice(), which must be called with the rtnl 187 * semaphore held. 188 */ 189 DEFINE_RWLOCK(dev_base_lock); 190 EXPORT_SYMBOL(dev_base_lock); 191 192 static DEFINE_MUTEX(ifalias_mutex); 193 194 /* protects napi_hash addition/deletion and napi_gen_id */ 195 static DEFINE_SPINLOCK(napi_hash_lock); 196 197 static unsigned int napi_gen_id = NR_CPUS; 198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 199 200 static seqcount_t devnet_rename_seq; 201 202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0) 205 ; 206 } 207 208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 209 { 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 211 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_lock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 static inline void rps_unlock(struct softnet_data *sd) 228 { 229 #ifdef CONFIG_RPS 230 spin_unlock(&sd->input_pkt_queue.lock); 231 #endif 232 } 233 234 /* Device list insertion */ 235 static void list_netdevice(struct net_device *dev) 236 { 237 struct net *net = dev_net(dev); 238 239 ASSERT_RTNL(); 240 241 write_lock_bh(&dev_base_lock); 242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 244 hlist_add_head_rcu(&dev->index_hlist, 245 dev_index_hash(net, dev->ifindex)); 246 write_unlock_bh(&dev_base_lock); 247 248 dev_base_seq_inc(net); 249 } 250 251 /* Device list removal 252 * caller must respect a RCU grace period before freeing/reusing dev 253 */ 254 static void unlist_netdevice(struct net_device *dev) 255 { 256 ASSERT_RTNL(); 257 258 /* Unlink dev from the device chain */ 259 write_lock_bh(&dev_base_lock); 260 list_del_rcu(&dev->dev_list); 261 hlist_del_rcu(&dev->name_hlist); 262 hlist_del_rcu(&dev->index_hlist); 263 write_unlock_bh(&dev_base_lock); 264 265 dev_base_seq_inc(dev_net(dev)); 266 } 267 268 /* 269 * Our notifier list 270 */ 271 272 static RAW_NOTIFIER_HEAD(netdev_chain); 273 274 /* 275 * Device drivers call our routines to queue packets here. We empty the 276 * queue in the local softnet handler. 277 */ 278 279 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 280 EXPORT_PER_CPU_SYMBOL(softnet_data); 281 282 #ifdef CONFIG_LOCKDEP 283 /* 284 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 285 * according to dev->type 286 */ 287 static const unsigned short netdev_lock_type[] = { 288 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 289 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 290 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 291 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 292 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 293 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 294 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 295 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 296 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 297 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 298 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 299 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 300 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 301 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 302 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 303 304 static const char *const netdev_lock_name[] = { 305 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 306 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 307 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 308 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 309 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 310 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 311 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 312 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 313 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 314 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 315 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 316 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 317 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 318 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 319 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 320 321 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 323 324 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 325 { 326 int i; 327 328 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 329 if (netdev_lock_type[i] == dev_type) 330 return i; 331 /* the last key is used by default */ 332 return ARRAY_SIZE(netdev_lock_type) - 1; 333 } 334 335 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 336 unsigned short dev_type) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev_type); 341 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 346 { 347 int i; 348 349 i = netdev_lock_pos(dev->type); 350 lockdep_set_class_and_name(&dev->addr_list_lock, 351 &netdev_addr_lock_key[i], 352 netdev_lock_name[i]); 353 } 354 #else 355 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 356 unsigned short dev_type) 357 { 358 } 359 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 360 { 361 } 362 #endif 363 364 /******************************************************************************* 365 * 366 * Protocol management and registration routines 367 * 368 *******************************************************************************/ 369 370 371 /* 372 * Add a protocol ID to the list. Now that the input handler is 373 * smarter we can dispense with all the messy stuff that used to be 374 * here. 375 * 376 * BEWARE!!! Protocol handlers, mangling input packets, 377 * MUST BE last in hash buckets and checking protocol handlers 378 * MUST start from promiscuous ptype_all chain in net_bh. 379 * It is true now, do not change it. 380 * Explanation follows: if protocol handler, mangling packet, will 381 * be the first on list, it is not able to sense, that packet 382 * is cloned and should be copied-on-write, so that it will 383 * change it and subsequent readers will get broken packet. 384 * --ANK (980803) 385 */ 386 387 static inline struct list_head *ptype_head(const struct packet_type *pt) 388 { 389 if (pt->type == htons(ETH_P_ALL)) 390 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 391 else 392 return pt->dev ? &pt->dev->ptype_specific : 393 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 394 } 395 396 /** 397 * dev_add_pack - add packet handler 398 * @pt: packet type declaration 399 * 400 * Add a protocol handler to the networking stack. The passed &packet_type 401 * is linked into kernel lists and may not be freed until it has been 402 * removed from the kernel lists. 403 * 404 * This call does not sleep therefore it can not 405 * guarantee all CPU's that are in middle of receiving packets 406 * will see the new packet type (until the next received packet). 407 */ 408 409 void dev_add_pack(struct packet_type *pt) 410 { 411 struct list_head *head = ptype_head(pt); 412 413 spin_lock(&ptype_lock); 414 list_add_rcu(&pt->list, head); 415 spin_unlock(&ptype_lock); 416 } 417 EXPORT_SYMBOL(dev_add_pack); 418 419 /** 420 * __dev_remove_pack - remove packet handler 421 * @pt: packet type declaration 422 * 423 * Remove a protocol handler that was previously added to the kernel 424 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 425 * from the kernel lists and can be freed or reused once this function 426 * returns. 427 * 428 * The packet type might still be in use by receivers 429 * and must not be freed until after all the CPU's have gone 430 * through a quiescent state. 431 */ 432 void __dev_remove_pack(struct packet_type *pt) 433 { 434 struct list_head *head = ptype_head(pt); 435 struct packet_type *pt1; 436 437 spin_lock(&ptype_lock); 438 439 list_for_each_entry(pt1, head, list) { 440 if (pt == pt1) { 441 list_del_rcu(&pt->list); 442 goto out; 443 } 444 } 445 446 pr_warn("dev_remove_pack: %p not found\n", pt); 447 out: 448 spin_unlock(&ptype_lock); 449 } 450 EXPORT_SYMBOL(__dev_remove_pack); 451 452 /** 453 * dev_remove_pack - remove packet handler 454 * @pt: packet type declaration 455 * 456 * Remove a protocol handler that was previously added to the kernel 457 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 458 * from the kernel lists and can be freed or reused once this function 459 * returns. 460 * 461 * This call sleeps to guarantee that no CPU is looking at the packet 462 * type after return. 463 */ 464 void dev_remove_pack(struct packet_type *pt) 465 { 466 __dev_remove_pack(pt); 467 468 synchronize_net(); 469 } 470 EXPORT_SYMBOL(dev_remove_pack); 471 472 473 /** 474 * dev_add_offload - register offload handlers 475 * @po: protocol offload declaration 476 * 477 * Add protocol offload handlers to the networking stack. The passed 478 * &proto_offload is linked into kernel lists and may not be freed until 479 * it has been removed from the kernel lists. 480 * 481 * This call does not sleep therefore it can not 482 * guarantee all CPU's that are in middle of receiving packets 483 * will see the new offload handlers (until the next received packet). 484 */ 485 void dev_add_offload(struct packet_offload *po) 486 { 487 struct packet_offload *elem; 488 489 spin_lock(&offload_lock); 490 list_for_each_entry(elem, &offload_base, list) { 491 if (po->priority < elem->priority) 492 break; 493 } 494 list_add_rcu(&po->list, elem->list.prev); 495 spin_unlock(&offload_lock); 496 } 497 EXPORT_SYMBOL(dev_add_offload); 498 499 /** 500 * __dev_remove_offload - remove offload handler 501 * @po: packet offload declaration 502 * 503 * Remove a protocol offload handler that was previously added to the 504 * kernel offload handlers by dev_add_offload(). The passed &offload_type 505 * is removed from the kernel lists and can be freed or reused once this 506 * function returns. 507 * 508 * The packet type might still be in use by receivers 509 * and must not be freed until after all the CPU's have gone 510 * through a quiescent state. 511 */ 512 static void __dev_remove_offload(struct packet_offload *po) 513 { 514 struct list_head *head = &offload_base; 515 struct packet_offload *po1; 516 517 spin_lock(&offload_lock); 518 519 list_for_each_entry(po1, head, list) { 520 if (po == po1) { 521 list_del_rcu(&po->list); 522 goto out; 523 } 524 } 525 526 pr_warn("dev_remove_offload: %p not found\n", po); 527 out: 528 spin_unlock(&offload_lock); 529 } 530 531 /** 532 * dev_remove_offload - remove packet offload handler 533 * @po: packet offload declaration 534 * 535 * Remove a packet offload handler that was previously added to the kernel 536 * offload handlers by dev_add_offload(). The passed &offload_type is 537 * removed from the kernel lists and can be freed or reused once this 538 * function returns. 539 * 540 * This call sleeps to guarantee that no CPU is looking at the packet 541 * type after return. 542 */ 543 void dev_remove_offload(struct packet_offload *po) 544 { 545 __dev_remove_offload(po); 546 547 synchronize_net(); 548 } 549 EXPORT_SYMBOL(dev_remove_offload); 550 551 /****************************************************************************** 552 * 553 * Device Boot-time Settings Routines 554 * 555 ******************************************************************************/ 556 557 /* Boot time configuration table */ 558 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 559 560 /** 561 * netdev_boot_setup_add - add new setup entry 562 * @name: name of the device 563 * @map: configured settings for the device 564 * 565 * Adds new setup entry to the dev_boot_setup list. The function 566 * returns 0 on error and 1 on success. This is a generic routine to 567 * all netdevices. 568 */ 569 static int netdev_boot_setup_add(char *name, struct ifmap *map) 570 { 571 struct netdev_boot_setup *s; 572 int i; 573 574 s = dev_boot_setup; 575 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 576 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 577 memset(s[i].name, 0, sizeof(s[i].name)); 578 strlcpy(s[i].name, name, IFNAMSIZ); 579 memcpy(&s[i].map, map, sizeof(s[i].map)); 580 break; 581 } 582 } 583 584 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 585 } 586 587 /** 588 * netdev_boot_setup_check - check boot time settings 589 * @dev: the netdevice 590 * 591 * Check boot time settings for the device. 592 * The found settings are set for the device to be used 593 * later in the device probing. 594 * Returns 0 if no settings found, 1 if they are. 595 */ 596 int netdev_boot_setup_check(struct net_device *dev) 597 { 598 struct netdev_boot_setup *s = dev_boot_setup; 599 int i; 600 601 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 602 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 603 !strcmp(dev->name, s[i].name)) { 604 dev->irq = s[i].map.irq; 605 dev->base_addr = s[i].map.base_addr; 606 dev->mem_start = s[i].map.mem_start; 607 dev->mem_end = s[i].map.mem_end; 608 return 1; 609 } 610 } 611 return 0; 612 } 613 EXPORT_SYMBOL(netdev_boot_setup_check); 614 615 616 /** 617 * netdev_boot_base - get address from boot time settings 618 * @prefix: prefix for network device 619 * @unit: id for network device 620 * 621 * Check boot time settings for the base address of device. 622 * The found settings are set for the device to be used 623 * later in the device probing. 624 * Returns 0 if no settings found. 625 */ 626 unsigned long netdev_boot_base(const char *prefix, int unit) 627 { 628 const struct netdev_boot_setup *s = dev_boot_setup; 629 char name[IFNAMSIZ]; 630 int i; 631 632 sprintf(name, "%s%d", prefix, unit); 633 634 /* 635 * If device already registered then return base of 1 636 * to indicate not to probe for this interface 637 */ 638 if (__dev_get_by_name(&init_net, name)) 639 return 1; 640 641 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 642 if (!strcmp(name, s[i].name)) 643 return s[i].map.base_addr; 644 return 0; 645 } 646 647 /* 648 * Saves at boot time configured settings for any netdevice. 649 */ 650 int __init netdev_boot_setup(char *str) 651 { 652 int ints[5]; 653 struct ifmap map; 654 655 str = get_options(str, ARRAY_SIZE(ints), ints); 656 if (!str || !*str) 657 return 0; 658 659 /* Save settings */ 660 memset(&map, 0, sizeof(map)); 661 if (ints[0] > 0) 662 map.irq = ints[1]; 663 if (ints[0] > 1) 664 map.base_addr = ints[2]; 665 if (ints[0] > 2) 666 map.mem_start = ints[3]; 667 if (ints[0] > 3) 668 map.mem_end = ints[4]; 669 670 /* Add new entry to the list */ 671 return netdev_boot_setup_add(str, &map); 672 } 673 674 __setup("netdev=", netdev_boot_setup); 675 676 /******************************************************************************* 677 * 678 * Device Interface Subroutines 679 * 680 *******************************************************************************/ 681 682 /** 683 * dev_get_iflink - get 'iflink' value of a interface 684 * @dev: targeted interface 685 * 686 * Indicates the ifindex the interface is linked to. 687 * Physical interfaces have the same 'ifindex' and 'iflink' values. 688 */ 689 690 int dev_get_iflink(const struct net_device *dev) 691 { 692 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 693 return dev->netdev_ops->ndo_get_iflink(dev); 694 695 return dev->ifindex; 696 } 697 EXPORT_SYMBOL(dev_get_iflink); 698 699 /** 700 * dev_fill_metadata_dst - Retrieve tunnel egress information. 701 * @dev: targeted interface 702 * @skb: The packet. 703 * 704 * For better visibility of tunnel traffic OVS needs to retrieve 705 * egress tunnel information for a packet. Following API allows 706 * user to get this info. 707 */ 708 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 709 { 710 struct ip_tunnel_info *info; 711 712 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 713 return -EINVAL; 714 715 info = skb_tunnel_info_unclone(skb); 716 if (!info) 717 return -ENOMEM; 718 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 719 return -EINVAL; 720 721 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 722 } 723 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 724 725 /** 726 * __dev_get_by_name - find a device by its name 727 * @net: the applicable net namespace 728 * @name: name to find 729 * 730 * Find an interface by name. Must be called under RTNL semaphore 731 * or @dev_base_lock. If the name is found a pointer to the device 732 * is returned. If the name is not found then %NULL is returned. The 733 * reference counters are not incremented so the caller must be 734 * careful with locks. 735 */ 736 737 struct net_device *__dev_get_by_name(struct net *net, const char *name) 738 { 739 struct net_device *dev; 740 struct hlist_head *head = dev_name_hash(net, name); 741 742 hlist_for_each_entry(dev, head, name_hlist) 743 if (!strncmp(dev->name, name, IFNAMSIZ)) 744 return dev; 745 746 return NULL; 747 } 748 EXPORT_SYMBOL(__dev_get_by_name); 749 750 /** 751 * dev_get_by_name_rcu - find a device by its name 752 * @net: the applicable net namespace 753 * @name: name to find 754 * 755 * Find an interface by name. 756 * If the name is found a pointer to the device is returned. 757 * If the name is not found then %NULL is returned. 758 * The reference counters are not incremented so the caller must be 759 * careful with locks. The caller must hold RCU lock. 760 */ 761 762 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 763 { 764 struct net_device *dev; 765 struct hlist_head *head = dev_name_hash(net, name); 766 767 hlist_for_each_entry_rcu(dev, head, name_hlist) 768 if (!strncmp(dev->name, name, IFNAMSIZ)) 769 return dev; 770 771 return NULL; 772 } 773 EXPORT_SYMBOL(dev_get_by_name_rcu); 774 775 /** 776 * dev_get_by_name - find a device by its name 777 * @net: the applicable net namespace 778 * @name: name to find 779 * 780 * Find an interface by name. This can be called from any 781 * context and does its own locking. The returned handle has 782 * the usage count incremented and the caller must use dev_put() to 783 * release it when it is no longer needed. %NULL is returned if no 784 * matching device is found. 785 */ 786 787 struct net_device *dev_get_by_name(struct net *net, const char *name) 788 { 789 struct net_device *dev; 790 791 rcu_read_lock(); 792 dev = dev_get_by_name_rcu(net, name); 793 if (dev) 794 dev_hold(dev); 795 rcu_read_unlock(); 796 return dev; 797 } 798 EXPORT_SYMBOL(dev_get_by_name); 799 800 /** 801 * __dev_get_by_index - find a device by its ifindex 802 * @net: the applicable net namespace 803 * @ifindex: index of device 804 * 805 * Search for an interface by index. Returns %NULL if the device 806 * is not found or a pointer to the device. The device has not 807 * had its reference counter increased so the caller must be careful 808 * about locking. The caller must hold either the RTNL semaphore 809 * or @dev_base_lock. 810 */ 811 812 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 813 { 814 struct net_device *dev; 815 struct hlist_head *head = dev_index_hash(net, ifindex); 816 817 hlist_for_each_entry(dev, head, index_hlist) 818 if (dev->ifindex == ifindex) 819 return dev; 820 821 return NULL; 822 } 823 EXPORT_SYMBOL(__dev_get_by_index); 824 825 /** 826 * dev_get_by_index_rcu - find a device by its ifindex 827 * @net: the applicable net namespace 828 * @ifindex: index of device 829 * 830 * Search for an interface by index. Returns %NULL if the device 831 * is not found or a pointer to the device. The device has not 832 * had its reference counter increased so the caller must be careful 833 * about locking. The caller must hold RCU lock. 834 */ 835 836 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 837 { 838 struct net_device *dev; 839 struct hlist_head *head = dev_index_hash(net, ifindex); 840 841 hlist_for_each_entry_rcu(dev, head, index_hlist) 842 if (dev->ifindex == ifindex) 843 return dev; 844 845 return NULL; 846 } 847 EXPORT_SYMBOL(dev_get_by_index_rcu); 848 849 850 /** 851 * dev_get_by_index - find a device by its ifindex 852 * @net: the applicable net namespace 853 * @ifindex: index of device 854 * 855 * Search for an interface by index. Returns NULL if the device 856 * is not found or a pointer to the device. The device returned has 857 * had a reference added and the pointer is safe until the user calls 858 * dev_put to indicate they have finished with it. 859 */ 860 861 struct net_device *dev_get_by_index(struct net *net, int ifindex) 862 { 863 struct net_device *dev; 864 865 rcu_read_lock(); 866 dev = dev_get_by_index_rcu(net, ifindex); 867 if (dev) 868 dev_hold(dev); 869 rcu_read_unlock(); 870 return dev; 871 } 872 EXPORT_SYMBOL(dev_get_by_index); 873 874 /** 875 * dev_get_by_napi_id - find a device by napi_id 876 * @napi_id: ID of the NAPI struct 877 * 878 * Search for an interface by NAPI ID. Returns %NULL if the device 879 * is not found or a pointer to the device. The device has not had 880 * its reference counter increased so the caller must be careful 881 * about locking. The caller must hold RCU lock. 882 */ 883 884 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 885 { 886 struct napi_struct *napi; 887 888 WARN_ON_ONCE(!rcu_read_lock_held()); 889 890 if (napi_id < MIN_NAPI_ID) 891 return NULL; 892 893 napi = napi_by_id(napi_id); 894 895 return napi ? napi->dev : NULL; 896 } 897 EXPORT_SYMBOL(dev_get_by_napi_id); 898 899 /** 900 * netdev_get_name - get a netdevice name, knowing its ifindex. 901 * @net: network namespace 902 * @name: a pointer to the buffer where the name will be stored. 903 * @ifindex: the ifindex of the interface to get the name from. 904 * 905 * The use of raw_seqcount_begin() and cond_resched() before 906 * retrying is required as we want to give the writers a chance 907 * to complete when CONFIG_PREEMPT is not set. 908 */ 909 int netdev_get_name(struct net *net, char *name, int ifindex) 910 { 911 struct net_device *dev; 912 unsigned int seq; 913 914 retry: 915 seq = raw_seqcount_begin(&devnet_rename_seq); 916 rcu_read_lock(); 917 dev = dev_get_by_index_rcu(net, ifindex); 918 if (!dev) { 919 rcu_read_unlock(); 920 return -ENODEV; 921 } 922 923 strcpy(name, dev->name); 924 rcu_read_unlock(); 925 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 926 cond_resched(); 927 goto retry; 928 } 929 930 return 0; 931 } 932 933 /** 934 * dev_getbyhwaddr_rcu - find a device by its hardware address 935 * @net: the applicable net namespace 936 * @type: media type of device 937 * @ha: hardware address 938 * 939 * Search for an interface by MAC address. Returns NULL if the device 940 * is not found or a pointer to the device. 941 * The caller must hold RCU or RTNL. 942 * The returned device has not had its ref count increased 943 * and the caller must therefore be careful about locking 944 * 945 */ 946 947 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 948 const char *ha) 949 { 950 struct net_device *dev; 951 952 for_each_netdev_rcu(net, dev) 953 if (dev->type == type && 954 !memcmp(dev->dev_addr, ha, dev->addr_len)) 955 return dev; 956 957 return NULL; 958 } 959 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 960 961 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 962 { 963 struct net_device *dev; 964 965 ASSERT_RTNL(); 966 for_each_netdev(net, dev) 967 if (dev->type == type) 968 return dev; 969 970 return NULL; 971 } 972 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 973 974 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 975 { 976 struct net_device *dev, *ret = NULL; 977 978 rcu_read_lock(); 979 for_each_netdev_rcu(net, dev) 980 if (dev->type == type) { 981 dev_hold(dev); 982 ret = dev; 983 break; 984 } 985 rcu_read_unlock(); 986 return ret; 987 } 988 EXPORT_SYMBOL(dev_getfirstbyhwtype); 989 990 /** 991 * __dev_get_by_flags - find any device with given flags 992 * @net: the applicable net namespace 993 * @if_flags: IFF_* values 994 * @mask: bitmask of bits in if_flags to check 995 * 996 * Search for any interface with the given flags. Returns NULL if a device 997 * is not found or a pointer to the device. Must be called inside 998 * rtnl_lock(), and result refcount is unchanged. 999 */ 1000 1001 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1002 unsigned short mask) 1003 { 1004 struct net_device *dev, *ret; 1005 1006 ASSERT_RTNL(); 1007 1008 ret = NULL; 1009 for_each_netdev(net, dev) { 1010 if (((dev->flags ^ if_flags) & mask) == 0) { 1011 ret = dev; 1012 break; 1013 } 1014 } 1015 return ret; 1016 } 1017 EXPORT_SYMBOL(__dev_get_by_flags); 1018 1019 /** 1020 * dev_valid_name - check if name is okay for network device 1021 * @name: name string 1022 * 1023 * Network device names need to be valid file names to 1024 * to allow sysfs to work. We also disallow any kind of 1025 * whitespace. 1026 */ 1027 bool dev_valid_name(const char *name) 1028 { 1029 if (*name == '\0') 1030 return false; 1031 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1032 return false; 1033 if (!strcmp(name, ".") || !strcmp(name, "..")) 1034 return false; 1035 1036 while (*name) { 1037 if (*name == '/' || *name == ':' || isspace(*name)) 1038 return false; 1039 name++; 1040 } 1041 return true; 1042 } 1043 EXPORT_SYMBOL(dev_valid_name); 1044 1045 /** 1046 * __dev_alloc_name - allocate a name for a device 1047 * @net: network namespace to allocate the device name in 1048 * @name: name format string 1049 * @buf: scratch buffer and result name string 1050 * 1051 * Passed a format string - eg "lt%d" it will try and find a suitable 1052 * id. It scans list of devices to build up a free map, then chooses 1053 * the first empty slot. The caller must hold the dev_base or rtnl lock 1054 * while allocating the name and adding the device in order to avoid 1055 * duplicates. 1056 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1057 * Returns the number of the unit assigned or a negative errno code. 1058 */ 1059 1060 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1061 { 1062 int i = 0; 1063 const char *p; 1064 const int max_netdevices = 8*PAGE_SIZE; 1065 unsigned long *inuse; 1066 struct net_device *d; 1067 1068 if (!dev_valid_name(name)) 1069 return -EINVAL; 1070 1071 p = strchr(name, '%'); 1072 if (p) { 1073 /* 1074 * Verify the string as this thing may have come from 1075 * the user. There must be either one "%d" and no other "%" 1076 * characters. 1077 */ 1078 if (p[1] != 'd' || strchr(p + 2, '%')) 1079 return -EINVAL; 1080 1081 /* Use one page as a bit array of possible slots */ 1082 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1083 if (!inuse) 1084 return -ENOMEM; 1085 1086 for_each_netdev(net, d) { 1087 if (!sscanf(d->name, name, &i)) 1088 continue; 1089 if (i < 0 || i >= max_netdevices) 1090 continue; 1091 1092 /* avoid cases where sscanf is not exact inverse of printf */ 1093 snprintf(buf, IFNAMSIZ, name, i); 1094 if (!strncmp(buf, d->name, IFNAMSIZ)) 1095 set_bit(i, inuse); 1096 } 1097 1098 i = find_first_zero_bit(inuse, max_netdevices); 1099 free_page((unsigned long) inuse); 1100 } 1101 1102 snprintf(buf, IFNAMSIZ, name, i); 1103 if (!__dev_get_by_name(net, buf)) 1104 return i; 1105 1106 /* It is possible to run out of possible slots 1107 * when the name is long and there isn't enough space left 1108 * for the digits, or if all bits are used. 1109 */ 1110 return -ENFILE; 1111 } 1112 1113 static int dev_alloc_name_ns(struct net *net, 1114 struct net_device *dev, 1115 const char *name) 1116 { 1117 char buf[IFNAMSIZ]; 1118 int ret; 1119 1120 BUG_ON(!net); 1121 ret = __dev_alloc_name(net, name, buf); 1122 if (ret >= 0) 1123 strlcpy(dev->name, buf, IFNAMSIZ); 1124 return ret; 1125 } 1126 1127 /** 1128 * dev_alloc_name - allocate a name for a device 1129 * @dev: device 1130 * @name: name format string 1131 * 1132 * Passed a format string - eg "lt%d" it will try and find a suitable 1133 * id. It scans list of devices to build up a free map, then chooses 1134 * the first empty slot. The caller must hold the dev_base or rtnl lock 1135 * while allocating the name and adding the device in order to avoid 1136 * duplicates. 1137 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1138 * Returns the number of the unit assigned or a negative errno code. 1139 */ 1140 1141 int dev_alloc_name(struct net_device *dev, const char *name) 1142 { 1143 return dev_alloc_name_ns(dev_net(dev), dev, name); 1144 } 1145 EXPORT_SYMBOL(dev_alloc_name); 1146 1147 int dev_get_valid_name(struct net *net, struct net_device *dev, 1148 const char *name) 1149 { 1150 BUG_ON(!net); 1151 1152 if (!dev_valid_name(name)) 1153 return -EINVAL; 1154 1155 if (strchr(name, '%')) 1156 return dev_alloc_name_ns(net, dev, name); 1157 else if (__dev_get_by_name(net, name)) 1158 return -EEXIST; 1159 else if (dev->name != name) 1160 strlcpy(dev->name, name, IFNAMSIZ); 1161 1162 return 0; 1163 } 1164 EXPORT_SYMBOL(dev_get_valid_name); 1165 1166 /** 1167 * dev_change_name - change name of a device 1168 * @dev: device 1169 * @newname: name (or format string) must be at least IFNAMSIZ 1170 * 1171 * Change name of a device, can pass format strings "eth%d". 1172 * for wildcarding. 1173 */ 1174 int dev_change_name(struct net_device *dev, const char *newname) 1175 { 1176 unsigned char old_assign_type; 1177 char oldname[IFNAMSIZ]; 1178 int err = 0; 1179 int ret; 1180 struct net *net; 1181 1182 ASSERT_RTNL(); 1183 BUG_ON(!dev_net(dev)); 1184 1185 net = dev_net(dev); 1186 if (dev->flags & IFF_UP) 1187 return -EBUSY; 1188 1189 write_seqcount_begin(&devnet_rename_seq); 1190 1191 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1192 write_seqcount_end(&devnet_rename_seq); 1193 return 0; 1194 } 1195 1196 memcpy(oldname, dev->name, IFNAMSIZ); 1197 1198 err = dev_get_valid_name(net, dev, newname); 1199 if (err < 0) { 1200 write_seqcount_end(&devnet_rename_seq); 1201 return err; 1202 } 1203 1204 if (oldname[0] && !strchr(oldname, '%')) 1205 netdev_info(dev, "renamed from %s\n", oldname); 1206 1207 old_assign_type = dev->name_assign_type; 1208 dev->name_assign_type = NET_NAME_RENAMED; 1209 1210 rollback: 1211 ret = device_rename(&dev->dev, dev->name); 1212 if (ret) { 1213 memcpy(dev->name, oldname, IFNAMSIZ); 1214 dev->name_assign_type = old_assign_type; 1215 write_seqcount_end(&devnet_rename_seq); 1216 return ret; 1217 } 1218 1219 write_seqcount_end(&devnet_rename_seq); 1220 1221 netdev_adjacent_rename_links(dev, oldname); 1222 1223 write_lock_bh(&dev_base_lock); 1224 hlist_del_rcu(&dev->name_hlist); 1225 write_unlock_bh(&dev_base_lock); 1226 1227 synchronize_rcu(); 1228 1229 write_lock_bh(&dev_base_lock); 1230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1231 write_unlock_bh(&dev_base_lock); 1232 1233 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1234 ret = notifier_to_errno(ret); 1235 1236 if (ret) { 1237 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1238 if (err >= 0) { 1239 err = ret; 1240 write_seqcount_begin(&devnet_rename_seq); 1241 memcpy(dev->name, oldname, IFNAMSIZ); 1242 memcpy(oldname, newname, IFNAMSIZ); 1243 dev->name_assign_type = old_assign_type; 1244 old_assign_type = NET_NAME_RENAMED; 1245 goto rollback; 1246 } else { 1247 pr_err("%s: name change rollback failed: %d\n", 1248 dev->name, ret); 1249 } 1250 } 1251 1252 return err; 1253 } 1254 1255 /** 1256 * dev_set_alias - change ifalias of a device 1257 * @dev: device 1258 * @alias: name up to IFALIASZ 1259 * @len: limit of bytes to copy from info 1260 * 1261 * Set ifalias for a device, 1262 */ 1263 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1264 { 1265 struct dev_ifalias *new_alias = NULL; 1266 1267 if (len >= IFALIASZ) 1268 return -EINVAL; 1269 1270 if (len) { 1271 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1272 if (!new_alias) 1273 return -ENOMEM; 1274 1275 memcpy(new_alias->ifalias, alias, len); 1276 new_alias->ifalias[len] = 0; 1277 } 1278 1279 mutex_lock(&ifalias_mutex); 1280 rcu_swap_protected(dev->ifalias, new_alias, 1281 mutex_is_locked(&ifalias_mutex)); 1282 mutex_unlock(&ifalias_mutex); 1283 1284 if (new_alias) 1285 kfree_rcu(new_alias, rcuhead); 1286 1287 return len; 1288 } 1289 EXPORT_SYMBOL(dev_set_alias); 1290 1291 /** 1292 * dev_get_alias - get ifalias of a device 1293 * @dev: device 1294 * @name: buffer to store name of ifalias 1295 * @len: size of buffer 1296 * 1297 * get ifalias for a device. Caller must make sure dev cannot go 1298 * away, e.g. rcu read lock or own a reference count to device. 1299 */ 1300 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1301 { 1302 const struct dev_ifalias *alias; 1303 int ret = 0; 1304 1305 rcu_read_lock(); 1306 alias = rcu_dereference(dev->ifalias); 1307 if (alias) 1308 ret = snprintf(name, len, "%s", alias->ifalias); 1309 rcu_read_unlock(); 1310 1311 return ret; 1312 } 1313 1314 /** 1315 * netdev_features_change - device changes features 1316 * @dev: device to cause notification 1317 * 1318 * Called to indicate a device has changed features. 1319 */ 1320 void netdev_features_change(struct net_device *dev) 1321 { 1322 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1323 } 1324 EXPORT_SYMBOL(netdev_features_change); 1325 1326 /** 1327 * netdev_state_change - device changes state 1328 * @dev: device to cause notification 1329 * 1330 * Called to indicate a device has changed state. This function calls 1331 * the notifier chains for netdev_chain and sends a NEWLINK message 1332 * to the routing socket. 1333 */ 1334 void netdev_state_change(struct net_device *dev) 1335 { 1336 if (dev->flags & IFF_UP) { 1337 struct netdev_notifier_change_info change_info = { 1338 .info.dev = dev, 1339 }; 1340 1341 call_netdevice_notifiers_info(NETDEV_CHANGE, 1342 &change_info.info); 1343 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1344 } 1345 } 1346 EXPORT_SYMBOL(netdev_state_change); 1347 1348 /** 1349 * netdev_notify_peers - notify network peers about existence of @dev 1350 * @dev: network device 1351 * 1352 * Generate traffic such that interested network peers are aware of 1353 * @dev, such as by generating a gratuitous ARP. This may be used when 1354 * a device wants to inform the rest of the network about some sort of 1355 * reconfiguration such as a failover event or virtual machine 1356 * migration. 1357 */ 1358 void netdev_notify_peers(struct net_device *dev) 1359 { 1360 rtnl_lock(); 1361 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1362 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1363 rtnl_unlock(); 1364 } 1365 EXPORT_SYMBOL(netdev_notify_peers); 1366 1367 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1368 { 1369 const struct net_device_ops *ops = dev->netdev_ops; 1370 int ret; 1371 1372 ASSERT_RTNL(); 1373 1374 if (!netif_device_present(dev)) 1375 return -ENODEV; 1376 1377 /* Block netpoll from trying to do any rx path servicing. 1378 * If we don't do this there is a chance ndo_poll_controller 1379 * or ndo_poll may be running while we open the device 1380 */ 1381 netpoll_poll_disable(dev); 1382 1383 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1384 ret = notifier_to_errno(ret); 1385 if (ret) 1386 return ret; 1387 1388 set_bit(__LINK_STATE_START, &dev->state); 1389 1390 if (ops->ndo_validate_addr) 1391 ret = ops->ndo_validate_addr(dev); 1392 1393 if (!ret && ops->ndo_open) 1394 ret = ops->ndo_open(dev); 1395 1396 netpoll_poll_enable(dev); 1397 1398 if (ret) 1399 clear_bit(__LINK_STATE_START, &dev->state); 1400 else { 1401 dev->flags |= IFF_UP; 1402 dev_set_rx_mode(dev); 1403 dev_activate(dev); 1404 add_device_randomness(dev->dev_addr, dev->addr_len); 1405 } 1406 1407 return ret; 1408 } 1409 1410 /** 1411 * dev_open - prepare an interface for use. 1412 * @dev: device to open 1413 * @extack: netlink extended ack 1414 * 1415 * Takes a device from down to up state. The device's private open 1416 * function is invoked and then the multicast lists are loaded. Finally 1417 * the device is moved into the up state and a %NETDEV_UP message is 1418 * sent to the netdev notifier chain. 1419 * 1420 * Calling this function on an active interface is a nop. On a failure 1421 * a negative errno code is returned. 1422 */ 1423 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1424 { 1425 int ret; 1426 1427 if (dev->flags & IFF_UP) 1428 return 0; 1429 1430 ret = __dev_open(dev, extack); 1431 if (ret < 0) 1432 return ret; 1433 1434 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1435 call_netdevice_notifiers(NETDEV_UP, dev); 1436 1437 return ret; 1438 } 1439 EXPORT_SYMBOL(dev_open); 1440 1441 static void __dev_close_many(struct list_head *head) 1442 { 1443 struct net_device *dev; 1444 1445 ASSERT_RTNL(); 1446 might_sleep(); 1447 1448 list_for_each_entry(dev, head, close_list) { 1449 /* Temporarily disable netpoll until the interface is down */ 1450 netpoll_poll_disable(dev); 1451 1452 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1453 1454 clear_bit(__LINK_STATE_START, &dev->state); 1455 1456 /* Synchronize to scheduled poll. We cannot touch poll list, it 1457 * can be even on different cpu. So just clear netif_running(). 1458 * 1459 * dev->stop() will invoke napi_disable() on all of it's 1460 * napi_struct instances on this device. 1461 */ 1462 smp_mb__after_atomic(); /* Commit netif_running(). */ 1463 } 1464 1465 dev_deactivate_many(head); 1466 1467 list_for_each_entry(dev, head, close_list) { 1468 const struct net_device_ops *ops = dev->netdev_ops; 1469 1470 /* 1471 * Call the device specific close. This cannot fail. 1472 * Only if device is UP 1473 * 1474 * We allow it to be called even after a DETACH hot-plug 1475 * event. 1476 */ 1477 if (ops->ndo_stop) 1478 ops->ndo_stop(dev); 1479 1480 dev->flags &= ~IFF_UP; 1481 netpoll_poll_enable(dev); 1482 } 1483 } 1484 1485 static void __dev_close(struct net_device *dev) 1486 { 1487 LIST_HEAD(single); 1488 1489 list_add(&dev->close_list, &single); 1490 __dev_close_many(&single); 1491 list_del(&single); 1492 } 1493 1494 void dev_close_many(struct list_head *head, bool unlink) 1495 { 1496 struct net_device *dev, *tmp; 1497 1498 /* Remove the devices that don't need to be closed */ 1499 list_for_each_entry_safe(dev, tmp, head, close_list) 1500 if (!(dev->flags & IFF_UP)) 1501 list_del_init(&dev->close_list); 1502 1503 __dev_close_many(head); 1504 1505 list_for_each_entry_safe(dev, tmp, head, close_list) { 1506 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1507 call_netdevice_notifiers(NETDEV_DOWN, dev); 1508 if (unlink) 1509 list_del_init(&dev->close_list); 1510 } 1511 } 1512 EXPORT_SYMBOL(dev_close_many); 1513 1514 /** 1515 * dev_close - shutdown an interface. 1516 * @dev: device to shutdown 1517 * 1518 * This function moves an active device into down state. A 1519 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1520 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1521 * chain. 1522 */ 1523 void dev_close(struct net_device *dev) 1524 { 1525 if (dev->flags & IFF_UP) { 1526 LIST_HEAD(single); 1527 1528 list_add(&dev->close_list, &single); 1529 dev_close_many(&single, true); 1530 list_del(&single); 1531 } 1532 } 1533 EXPORT_SYMBOL(dev_close); 1534 1535 1536 /** 1537 * dev_disable_lro - disable Large Receive Offload on a device 1538 * @dev: device 1539 * 1540 * Disable Large Receive Offload (LRO) on a net device. Must be 1541 * called under RTNL. This is needed if received packets may be 1542 * forwarded to another interface. 1543 */ 1544 void dev_disable_lro(struct net_device *dev) 1545 { 1546 struct net_device *lower_dev; 1547 struct list_head *iter; 1548 1549 dev->wanted_features &= ~NETIF_F_LRO; 1550 netdev_update_features(dev); 1551 1552 if (unlikely(dev->features & NETIF_F_LRO)) 1553 netdev_WARN(dev, "failed to disable LRO!\n"); 1554 1555 netdev_for_each_lower_dev(dev, lower_dev, iter) 1556 dev_disable_lro(lower_dev); 1557 } 1558 EXPORT_SYMBOL(dev_disable_lro); 1559 1560 /** 1561 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1562 * @dev: device 1563 * 1564 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1565 * called under RTNL. This is needed if Generic XDP is installed on 1566 * the device. 1567 */ 1568 static void dev_disable_gro_hw(struct net_device *dev) 1569 { 1570 dev->wanted_features &= ~NETIF_F_GRO_HW; 1571 netdev_update_features(dev); 1572 1573 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1574 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1575 } 1576 1577 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1578 { 1579 #define N(val) \ 1580 case NETDEV_##val: \ 1581 return "NETDEV_" __stringify(val); 1582 switch (cmd) { 1583 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1584 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1585 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1586 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1587 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1588 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1589 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1590 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1591 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1592 } 1593 #undef N 1594 return "UNKNOWN_NETDEV_EVENT"; 1595 } 1596 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1597 1598 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1599 struct net_device *dev) 1600 { 1601 struct netdev_notifier_info info = { 1602 .dev = dev, 1603 }; 1604 1605 return nb->notifier_call(nb, val, &info); 1606 } 1607 1608 static int dev_boot_phase = 1; 1609 1610 /** 1611 * register_netdevice_notifier - register a network notifier block 1612 * @nb: notifier 1613 * 1614 * Register a notifier to be called when network device events occur. 1615 * The notifier passed is linked into the kernel structures and must 1616 * not be reused until it has been unregistered. A negative errno code 1617 * is returned on a failure. 1618 * 1619 * When registered all registration and up events are replayed 1620 * to the new notifier to allow device to have a race free 1621 * view of the network device list. 1622 */ 1623 1624 int register_netdevice_notifier(struct notifier_block *nb) 1625 { 1626 struct net_device *dev; 1627 struct net_device *last; 1628 struct net *net; 1629 int err; 1630 1631 /* Close race with setup_net() and cleanup_net() */ 1632 down_write(&pernet_ops_rwsem); 1633 rtnl_lock(); 1634 err = raw_notifier_chain_register(&netdev_chain, nb); 1635 if (err) 1636 goto unlock; 1637 if (dev_boot_phase) 1638 goto unlock; 1639 for_each_net(net) { 1640 for_each_netdev(net, dev) { 1641 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1642 err = notifier_to_errno(err); 1643 if (err) 1644 goto rollback; 1645 1646 if (!(dev->flags & IFF_UP)) 1647 continue; 1648 1649 call_netdevice_notifier(nb, NETDEV_UP, dev); 1650 } 1651 } 1652 1653 unlock: 1654 rtnl_unlock(); 1655 up_write(&pernet_ops_rwsem); 1656 return err; 1657 1658 rollback: 1659 last = dev; 1660 for_each_net(net) { 1661 for_each_netdev(net, dev) { 1662 if (dev == last) 1663 goto outroll; 1664 1665 if (dev->flags & IFF_UP) { 1666 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1667 dev); 1668 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1669 } 1670 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1671 } 1672 } 1673 1674 outroll: 1675 raw_notifier_chain_unregister(&netdev_chain, nb); 1676 goto unlock; 1677 } 1678 EXPORT_SYMBOL(register_netdevice_notifier); 1679 1680 /** 1681 * unregister_netdevice_notifier - unregister a network notifier block 1682 * @nb: notifier 1683 * 1684 * Unregister a notifier previously registered by 1685 * register_netdevice_notifier(). The notifier is unlinked into the 1686 * kernel structures and may then be reused. A negative errno code 1687 * is returned on a failure. 1688 * 1689 * After unregistering unregister and down device events are synthesized 1690 * for all devices on the device list to the removed notifier to remove 1691 * the need for special case cleanup code. 1692 */ 1693 1694 int unregister_netdevice_notifier(struct notifier_block *nb) 1695 { 1696 struct net_device *dev; 1697 struct net *net; 1698 int err; 1699 1700 /* Close race with setup_net() and cleanup_net() */ 1701 down_write(&pernet_ops_rwsem); 1702 rtnl_lock(); 1703 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1704 if (err) 1705 goto unlock; 1706 1707 for_each_net(net) { 1708 for_each_netdev(net, dev) { 1709 if (dev->flags & IFF_UP) { 1710 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1711 dev); 1712 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1713 } 1714 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1715 } 1716 } 1717 unlock: 1718 rtnl_unlock(); 1719 up_write(&pernet_ops_rwsem); 1720 return err; 1721 } 1722 EXPORT_SYMBOL(unregister_netdevice_notifier); 1723 1724 /** 1725 * call_netdevice_notifiers_info - call all network notifier blocks 1726 * @val: value passed unmodified to notifier function 1727 * @info: notifier information data 1728 * 1729 * Call all network notifier blocks. Parameters and return value 1730 * are as for raw_notifier_call_chain(). 1731 */ 1732 1733 static int call_netdevice_notifiers_info(unsigned long val, 1734 struct netdev_notifier_info *info) 1735 { 1736 ASSERT_RTNL(); 1737 return raw_notifier_call_chain(&netdev_chain, val, info); 1738 } 1739 1740 static int call_netdevice_notifiers_extack(unsigned long val, 1741 struct net_device *dev, 1742 struct netlink_ext_ack *extack) 1743 { 1744 struct netdev_notifier_info info = { 1745 .dev = dev, 1746 .extack = extack, 1747 }; 1748 1749 return call_netdevice_notifiers_info(val, &info); 1750 } 1751 1752 /** 1753 * call_netdevice_notifiers - call all network notifier blocks 1754 * @val: value passed unmodified to notifier function 1755 * @dev: net_device pointer passed unmodified to notifier function 1756 * 1757 * Call all network notifier blocks. Parameters and return value 1758 * are as for raw_notifier_call_chain(). 1759 */ 1760 1761 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1762 { 1763 return call_netdevice_notifiers_extack(val, dev, NULL); 1764 } 1765 EXPORT_SYMBOL(call_netdevice_notifiers); 1766 1767 /** 1768 * call_netdevice_notifiers_mtu - call all network notifier blocks 1769 * @val: value passed unmodified to notifier function 1770 * @dev: net_device pointer passed unmodified to notifier function 1771 * @arg: additional u32 argument passed to the notifier function 1772 * 1773 * Call all network notifier blocks. Parameters and return value 1774 * are as for raw_notifier_call_chain(). 1775 */ 1776 static int call_netdevice_notifiers_mtu(unsigned long val, 1777 struct net_device *dev, u32 arg) 1778 { 1779 struct netdev_notifier_info_ext info = { 1780 .info.dev = dev, 1781 .ext.mtu = arg, 1782 }; 1783 1784 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1785 1786 return call_netdevice_notifiers_info(val, &info.info); 1787 } 1788 1789 #ifdef CONFIG_NET_INGRESS 1790 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1791 1792 void net_inc_ingress_queue(void) 1793 { 1794 static_branch_inc(&ingress_needed_key); 1795 } 1796 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1797 1798 void net_dec_ingress_queue(void) 1799 { 1800 static_branch_dec(&ingress_needed_key); 1801 } 1802 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1803 #endif 1804 1805 #ifdef CONFIG_NET_EGRESS 1806 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1807 1808 void net_inc_egress_queue(void) 1809 { 1810 static_branch_inc(&egress_needed_key); 1811 } 1812 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1813 1814 void net_dec_egress_queue(void) 1815 { 1816 static_branch_dec(&egress_needed_key); 1817 } 1818 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1819 #endif 1820 1821 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1822 #ifdef HAVE_JUMP_LABEL 1823 static atomic_t netstamp_needed_deferred; 1824 static atomic_t netstamp_wanted; 1825 static void netstamp_clear(struct work_struct *work) 1826 { 1827 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1828 int wanted; 1829 1830 wanted = atomic_add_return(deferred, &netstamp_wanted); 1831 if (wanted > 0) 1832 static_branch_enable(&netstamp_needed_key); 1833 else 1834 static_branch_disable(&netstamp_needed_key); 1835 } 1836 static DECLARE_WORK(netstamp_work, netstamp_clear); 1837 #endif 1838 1839 void net_enable_timestamp(void) 1840 { 1841 #ifdef HAVE_JUMP_LABEL 1842 int wanted; 1843 1844 while (1) { 1845 wanted = atomic_read(&netstamp_wanted); 1846 if (wanted <= 0) 1847 break; 1848 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1849 return; 1850 } 1851 atomic_inc(&netstamp_needed_deferred); 1852 schedule_work(&netstamp_work); 1853 #else 1854 static_branch_inc(&netstamp_needed_key); 1855 #endif 1856 } 1857 EXPORT_SYMBOL(net_enable_timestamp); 1858 1859 void net_disable_timestamp(void) 1860 { 1861 #ifdef HAVE_JUMP_LABEL 1862 int wanted; 1863 1864 while (1) { 1865 wanted = atomic_read(&netstamp_wanted); 1866 if (wanted <= 1) 1867 break; 1868 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1869 return; 1870 } 1871 atomic_dec(&netstamp_needed_deferred); 1872 schedule_work(&netstamp_work); 1873 #else 1874 static_branch_dec(&netstamp_needed_key); 1875 #endif 1876 } 1877 EXPORT_SYMBOL(net_disable_timestamp); 1878 1879 static inline void net_timestamp_set(struct sk_buff *skb) 1880 { 1881 skb->tstamp = 0; 1882 if (static_branch_unlikely(&netstamp_needed_key)) 1883 __net_timestamp(skb); 1884 } 1885 1886 #define net_timestamp_check(COND, SKB) \ 1887 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1888 if ((COND) && !(SKB)->tstamp) \ 1889 __net_timestamp(SKB); \ 1890 } \ 1891 1892 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1893 { 1894 unsigned int len; 1895 1896 if (!(dev->flags & IFF_UP)) 1897 return false; 1898 1899 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1900 if (skb->len <= len) 1901 return true; 1902 1903 /* if TSO is enabled, we don't care about the length as the packet 1904 * could be forwarded without being segmented before 1905 */ 1906 if (skb_is_gso(skb)) 1907 return true; 1908 1909 return false; 1910 } 1911 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1912 1913 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1914 { 1915 int ret = ____dev_forward_skb(dev, skb); 1916 1917 if (likely(!ret)) { 1918 skb->protocol = eth_type_trans(skb, dev); 1919 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1920 } 1921 1922 return ret; 1923 } 1924 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1925 1926 /** 1927 * dev_forward_skb - loopback an skb to another netif 1928 * 1929 * @dev: destination network device 1930 * @skb: buffer to forward 1931 * 1932 * return values: 1933 * NET_RX_SUCCESS (no congestion) 1934 * NET_RX_DROP (packet was dropped, but freed) 1935 * 1936 * dev_forward_skb can be used for injecting an skb from the 1937 * start_xmit function of one device into the receive queue 1938 * of another device. 1939 * 1940 * The receiving device may be in another namespace, so 1941 * we have to clear all information in the skb that could 1942 * impact namespace isolation. 1943 */ 1944 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1945 { 1946 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1947 } 1948 EXPORT_SYMBOL_GPL(dev_forward_skb); 1949 1950 static inline int deliver_skb(struct sk_buff *skb, 1951 struct packet_type *pt_prev, 1952 struct net_device *orig_dev) 1953 { 1954 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1955 return -ENOMEM; 1956 refcount_inc(&skb->users); 1957 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1958 } 1959 1960 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1961 struct packet_type **pt, 1962 struct net_device *orig_dev, 1963 __be16 type, 1964 struct list_head *ptype_list) 1965 { 1966 struct packet_type *ptype, *pt_prev = *pt; 1967 1968 list_for_each_entry_rcu(ptype, ptype_list, list) { 1969 if (ptype->type != type) 1970 continue; 1971 if (pt_prev) 1972 deliver_skb(skb, pt_prev, orig_dev); 1973 pt_prev = ptype; 1974 } 1975 *pt = pt_prev; 1976 } 1977 1978 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1979 { 1980 if (!ptype->af_packet_priv || !skb->sk) 1981 return false; 1982 1983 if (ptype->id_match) 1984 return ptype->id_match(ptype, skb->sk); 1985 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1986 return true; 1987 1988 return false; 1989 } 1990 1991 /** 1992 * dev_nit_active - return true if any network interface taps are in use 1993 * 1994 * @dev: network device to check for the presence of taps 1995 */ 1996 bool dev_nit_active(struct net_device *dev) 1997 { 1998 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 1999 } 2000 EXPORT_SYMBOL_GPL(dev_nit_active); 2001 2002 /* 2003 * Support routine. Sends outgoing frames to any network 2004 * taps currently in use. 2005 */ 2006 2007 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2008 { 2009 struct packet_type *ptype; 2010 struct sk_buff *skb2 = NULL; 2011 struct packet_type *pt_prev = NULL; 2012 struct list_head *ptype_list = &ptype_all; 2013 2014 rcu_read_lock(); 2015 again: 2016 list_for_each_entry_rcu(ptype, ptype_list, list) { 2017 if (ptype->ignore_outgoing) 2018 continue; 2019 2020 /* Never send packets back to the socket 2021 * they originated from - MvS (miquels@drinkel.ow.org) 2022 */ 2023 if (skb_loop_sk(ptype, skb)) 2024 continue; 2025 2026 if (pt_prev) { 2027 deliver_skb(skb2, pt_prev, skb->dev); 2028 pt_prev = ptype; 2029 continue; 2030 } 2031 2032 /* need to clone skb, done only once */ 2033 skb2 = skb_clone(skb, GFP_ATOMIC); 2034 if (!skb2) 2035 goto out_unlock; 2036 2037 net_timestamp_set(skb2); 2038 2039 /* skb->nh should be correctly 2040 * set by sender, so that the second statement is 2041 * just protection against buggy protocols. 2042 */ 2043 skb_reset_mac_header(skb2); 2044 2045 if (skb_network_header(skb2) < skb2->data || 2046 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2047 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2048 ntohs(skb2->protocol), 2049 dev->name); 2050 skb_reset_network_header(skb2); 2051 } 2052 2053 skb2->transport_header = skb2->network_header; 2054 skb2->pkt_type = PACKET_OUTGOING; 2055 pt_prev = ptype; 2056 } 2057 2058 if (ptype_list == &ptype_all) { 2059 ptype_list = &dev->ptype_all; 2060 goto again; 2061 } 2062 out_unlock: 2063 if (pt_prev) { 2064 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2065 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2066 else 2067 kfree_skb(skb2); 2068 } 2069 rcu_read_unlock(); 2070 } 2071 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2072 2073 /** 2074 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2075 * @dev: Network device 2076 * @txq: number of queues available 2077 * 2078 * If real_num_tx_queues is changed the tc mappings may no longer be 2079 * valid. To resolve this verify the tc mapping remains valid and if 2080 * not NULL the mapping. With no priorities mapping to this 2081 * offset/count pair it will no longer be used. In the worst case TC0 2082 * is invalid nothing can be done so disable priority mappings. If is 2083 * expected that drivers will fix this mapping if they can before 2084 * calling netif_set_real_num_tx_queues. 2085 */ 2086 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2087 { 2088 int i; 2089 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2090 2091 /* If TC0 is invalidated disable TC mapping */ 2092 if (tc->offset + tc->count > txq) { 2093 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2094 dev->num_tc = 0; 2095 return; 2096 } 2097 2098 /* Invalidated prio to tc mappings set to TC0 */ 2099 for (i = 1; i < TC_BITMASK + 1; i++) { 2100 int q = netdev_get_prio_tc_map(dev, i); 2101 2102 tc = &dev->tc_to_txq[q]; 2103 if (tc->offset + tc->count > txq) { 2104 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2105 i, q); 2106 netdev_set_prio_tc_map(dev, i, 0); 2107 } 2108 } 2109 } 2110 2111 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2112 { 2113 if (dev->num_tc) { 2114 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2115 int i; 2116 2117 /* walk through the TCs and see if it falls into any of them */ 2118 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2119 if ((txq - tc->offset) < tc->count) 2120 return i; 2121 } 2122 2123 /* didn't find it, just return -1 to indicate no match */ 2124 return -1; 2125 } 2126 2127 return 0; 2128 } 2129 EXPORT_SYMBOL(netdev_txq_to_tc); 2130 2131 #ifdef CONFIG_XPS 2132 struct static_key xps_needed __read_mostly; 2133 EXPORT_SYMBOL(xps_needed); 2134 struct static_key xps_rxqs_needed __read_mostly; 2135 EXPORT_SYMBOL(xps_rxqs_needed); 2136 static DEFINE_MUTEX(xps_map_mutex); 2137 #define xmap_dereference(P) \ 2138 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2139 2140 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2141 int tci, u16 index) 2142 { 2143 struct xps_map *map = NULL; 2144 int pos; 2145 2146 if (dev_maps) 2147 map = xmap_dereference(dev_maps->attr_map[tci]); 2148 if (!map) 2149 return false; 2150 2151 for (pos = map->len; pos--;) { 2152 if (map->queues[pos] != index) 2153 continue; 2154 2155 if (map->len > 1) { 2156 map->queues[pos] = map->queues[--map->len]; 2157 break; 2158 } 2159 2160 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2161 kfree_rcu(map, rcu); 2162 return false; 2163 } 2164 2165 return true; 2166 } 2167 2168 static bool remove_xps_queue_cpu(struct net_device *dev, 2169 struct xps_dev_maps *dev_maps, 2170 int cpu, u16 offset, u16 count) 2171 { 2172 int num_tc = dev->num_tc ? : 1; 2173 bool active = false; 2174 int tci; 2175 2176 for (tci = cpu * num_tc; num_tc--; tci++) { 2177 int i, j; 2178 2179 for (i = count, j = offset; i--; j++) { 2180 if (!remove_xps_queue(dev_maps, tci, j)) 2181 break; 2182 } 2183 2184 active |= i < 0; 2185 } 2186 2187 return active; 2188 } 2189 2190 static void reset_xps_maps(struct net_device *dev, 2191 struct xps_dev_maps *dev_maps, 2192 bool is_rxqs_map) 2193 { 2194 if (is_rxqs_map) { 2195 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2196 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2197 } else { 2198 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2199 } 2200 static_key_slow_dec_cpuslocked(&xps_needed); 2201 kfree_rcu(dev_maps, rcu); 2202 } 2203 2204 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2205 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2206 u16 offset, u16 count, bool is_rxqs_map) 2207 { 2208 bool active = false; 2209 int i, j; 2210 2211 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2212 j < nr_ids;) 2213 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2214 count); 2215 if (!active) 2216 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2217 2218 if (!is_rxqs_map) { 2219 for (i = offset + (count - 1); count--; i--) { 2220 netdev_queue_numa_node_write( 2221 netdev_get_tx_queue(dev, i), 2222 NUMA_NO_NODE); 2223 } 2224 } 2225 } 2226 2227 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2228 u16 count) 2229 { 2230 const unsigned long *possible_mask = NULL; 2231 struct xps_dev_maps *dev_maps; 2232 unsigned int nr_ids; 2233 2234 if (!static_key_false(&xps_needed)) 2235 return; 2236 2237 cpus_read_lock(); 2238 mutex_lock(&xps_map_mutex); 2239 2240 if (static_key_false(&xps_rxqs_needed)) { 2241 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2242 if (dev_maps) { 2243 nr_ids = dev->num_rx_queues; 2244 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2245 offset, count, true); 2246 } 2247 } 2248 2249 dev_maps = xmap_dereference(dev->xps_cpus_map); 2250 if (!dev_maps) 2251 goto out_no_maps; 2252 2253 if (num_possible_cpus() > 1) 2254 possible_mask = cpumask_bits(cpu_possible_mask); 2255 nr_ids = nr_cpu_ids; 2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2257 false); 2258 2259 out_no_maps: 2260 mutex_unlock(&xps_map_mutex); 2261 cpus_read_unlock(); 2262 } 2263 2264 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2265 { 2266 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2267 } 2268 2269 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2270 u16 index, bool is_rxqs_map) 2271 { 2272 struct xps_map *new_map; 2273 int alloc_len = XPS_MIN_MAP_ALLOC; 2274 int i, pos; 2275 2276 for (pos = 0; map && pos < map->len; pos++) { 2277 if (map->queues[pos] != index) 2278 continue; 2279 return map; 2280 } 2281 2282 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2283 if (map) { 2284 if (pos < map->alloc_len) 2285 return map; 2286 2287 alloc_len = map->alloc_len * 2; 2288 } 2289 2290 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2291 * map 2292 */ 2293 if (is_rxqs_map) 2294 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2295 else 2296 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2297 cpu_to_node(attr_index)); 2298 if (!new_map) 2299 return NULL; 2300 2301 for (i = 0; i < pos; i++) 2302 new_map->queues[i] = map->queues[i]; 2303 new_map->alloc_len = alloc_len; 2304 new_map->len = pos; 2305 2306 return new_map; 2307 } 2308 2309 /* Must be called under cpus_read_lock */ 2310 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2311 u16 index, bool is_rxqs_map) 2312 { 2313 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2314 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2315 int i, j, tci, numa_node_id = -2; 2316 int maps_sz, num_tc = 1, tc = 0; 2317 struct xps_map *map, *new_map; 2318 bool active = false; 2319 unsigned int nr_ids; 2320 2321 if (dev->num_tc) { 2322 /* Do not allow XPS on subordinate device directly */ 2323 num_tc = dev->num_tc; 2324 if (num_tc < 0) 2325 return -EINVAL; 2326 2327 /* If queue belongs to subordinate dev use its map */ 2328 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2329 2330 tc = netdev_txq_to_tc(dev, index); 2331 if (tc < 0) 2332 return -EINVAL; 2333 } 2334 2335 mutex_lock(&xps_map_mutex); 2336 if (is_rxqs_map) { 2337 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2338 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2339 nr_ids = dev->num_rx_queues; 2340 } else { 2341 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2342 if (num_possible_cpus() > 1) { 2343 online_mask = cpumask_bits(cpu_online_mask); 2344 possible_mask = cpumask_bits(cpu_possible_mask); 2345 } 2346 dev_maps = xmap_dereference(dev->xps_cpus_map); 2347 nr_ids = nr_cpu_ids; 2348 } 2349 2350 if (maps_sz < L1_CACHE_BYTES) 2351 maps_sz = L1_CACHE_BYTES; 2352 2353 /* allocate memory for queue storage */ 2354 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2355 j < nr_ids;) { 2356 if (!new_dev_maps) 2357 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2358 if (!new_dev_maps) { 2359 mutex_unlock(&xps_map_mutex); 2360 return -ENOMEM; 2361 } 2362 2363 tci = j * num_tc + tc; 2364 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2365 NULL; 2366 2367 map = expand_xps_map(map, j, index, is_rxqs_map); 2368 if (!map) 2369 goto error; 2370 2371 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2372 } 2373 2374 if (!new_dev_maps) 2375 goto out_no_new_maps; 2376 2377 if (!dev_maps) { 2378 /* Increment static keys at most once per type */ 2379 static_key_slow_inc_cpuslocked(&xps_needed); 2380 if (is_rxqs_map) 2381 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2382 } 2383 2384 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2385 j < nr_ids;) { 2386 /* copy maps belonging to foreign traffic classes */ 2387 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2388 /* fill in the new device map from the old device map */ 2389 map = xmap_dereference(dev_maps->attr_map[tci]); 2390 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2391 } 2392 2393 /* We need to explicitly update tci as prevous loop 2394 * could break out early if dev_maps is NULL. 2395 */ 2396 tci = j * num_tc + tc; 2397 2398 if (netif_attr_test_mask(j, mask, nr_ids) && 2399 netif_attr_test_online(j, online_mask, nr_ids)) { 2400 /* add tx-queue to CPU/rx-queue maps */ 2401 int pos = 0; 2402 2403 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2404 while ((pos < map->len) && (map->queues[pos] != index)) 2405 pos++; 2406 2407 if (pos == map->len) 2408 map->queues[map->len++] = index; 2409 #ifdef CONFIG_NUMA 2410 if (!is_rxqs_map) { 2411 if (numa_node_id == -2) 2412 numa_node_id = cpu_to_node(j); 2413 else if (numa_node_id != cpu_to_node(j)) 2414 numa_node_id = -1; 2415 } 2416 #endif 2417 } else if (dev_maps) { 2418 /* fill in the new device map from the old device map */ 2419 map = xmap_dereference(dev_maps->attr_map[tci]); 2420 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2421 } 2422 2423 /* copy maps belonging to foreign traffic classes */ 2424 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2425 /* fill in the new device map from the old device map */ 2426 map = xmap_dereference(dev_maps->attr_map[tci]); 2427 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2428 } 2429 } 2430 2431 if (is_rxqs_map) 2432 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2433 else 2434 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2435 2436 /* Cleanup old maps */ 2437 if (!dev_maps) 2438 goto out_no_old_maps; 2439 2440 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2441 j < nr_ids;) { 2442 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2443 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2444 map = xmap_dereference(dev_maps->attr_map[tci]); 2445 if (map && map != new_map) 2446 kfree_rcu(map, rcu); 2447 } 2448 } 2449 2450 kfree_rcu(dev_maps, rcu); 2451 2452 out_no_old_maps: 2453 dev_maps = new_dev_maps; 2454 active = true; 2455 2456 out_no_new_maps: 2457 if (!is_rxqs_map) { 2458 /* update Tx queue numa node */ 2459 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2460 (numa_node_id >= 0) ? 2461 numa_node_id : NUMA_NO_NODE); 2462 } 2463 2464 if (!dev_maps) 2465 goto out_no_maps; 2466 2467 /* removes tx-queue from unused CPUs/rx-queues */ 2468 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2469 j < nr_ids;) { 2470 for (i = tc, tci = j * num_tc; i--; tci++) 2471 active |= remove_xps_queue(dev_maps, tci, index); 2472 if (!netif_attr_test_mask(j, mask, nr_ids) || 2473 !netif_attr_test_online(j, online_mask, nr_ids)) 2474 active |= remove_xps_queue(dev_maps, tci, index); 2475 for (i = num_tc - tc, tci++; --i; tci++) 2476 active |= remove_xps_queue(dev_maps, tci, index); 2477 } 2478 2479 /* free map if not active */ 2480 if (!active) 2481 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2482 2483 out_no_maps: 2484 mutex_unlock(&xps_map_mutex); 2485 2486 return 0; 2487 error: 2488 /* remove any maps that we added */ 2489 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2490 j < nr_ids;) { 2491 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2492 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2493 map = dev_maps ? 2494 xmap_dereference(dev_maps->attr_map[tci]) : 2495 NULL; 2496 if (new_map && new_map != map) 2497 kfree(new_map); 2498 } 2499 } 2500 2501 mutex_unlock(&xps_map_mutex); 2502 2503 kfree(new_dev_maps); 2504 return -ENOMEM; 2505 } 2506 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2507 2508 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2509 u16 index) 2510 { 2511 int ret; 2512 2513 cpus_read_lock(); 2514 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2515 cpus_read_unlock(); 2516 2517 return ret; 2518 } 2519 EXPORT_SYMBOL(netif_set_xps_queue); 2520 2521 #endif 2522 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2523 { 2524 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2525 2526 /* Unbind any subordinate channels */ 2527 while (txq-- != &dev->_tx[0]) { 2528 if (txq->sb_dev) 2529 netdev_unbind_sb_channel(dev, txq->sb_dev); 2530 } 2531 } 2532 2533 void netdev_reset_tc(struct net_device *dev) 2534 { 2535 #ifdef CONFIG_XPS 2536 netif_reset_xps_queues_gt(dev, 0); 2537 #endif 2538 netdev_unbind_all_sb_channels(dev); 2539 2540 /* Reset TC configuration of device */ 2541 dev->num_tc = 0; 2542 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2543 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2544 } 2545 EXPORT_SYMBOL(netdev_reset_tc); 2546 2547 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2548 { 2549 if (tc >= dev->num_tc) 2550 return -EINVAL; 2551 2552 #ifdef CONFIG_XPS 2553 netif_reset_xps_queues(dev, offset, count); 2554 #endif 2555 dev->tc_to_txq[tc].count = count; 2556 dev->tc_to_txq[tc].offset = offset; 2557 return 0; 2558 } 2559 EXPORT_SYMBOL(netdev_set_tc_queue); 2560 2561 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2562 { 2563 if (num_tc > TC_MAX_QUEUE) 2564 return -EINVAL; 2565 2566 #ifdef CONFIG_XPS 2567 netif_reset_xps_queues_gt(dev, 0); 2568 #endif 2569 netdev_unbind_all_sb_channels(dev); 2570 2571 dev->num_tc = num_tc; 2572 return 0; 2573 } 2574 EXPORT_SYMBOL(netdev_set_num_tc); 2575 2576 void netdev_unbind_sb_channel(struct net_device *dev, 2577 struct net_device *sb_dev) 2578 { 2579 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2580 2581 #ifdef CONFIG_XPS 2582 netif_reset_xps_queues_gt(sb_dev, 0); 2583 #endif 2584 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2585 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2586 2587 while (txq-- != &dev->_tx[0]) { 2588 if (txq->sb_dev == sb_dev) 2589 txq->sb_dev = NULL; 2590 } 2591 } 2592 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2593 2594 int netdev_bind_sb_channel_queue(struct net_device *dev, 2595 struct net_device *sb_dev, 2596 u8 tc, u16 count, u16 offset) 2597 { 2598 /* Make certain the sb_dev and dev are already configured */ 2599 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2600 return -EINVAL; 2601 2602 /* We cannot hand out queues we don't have */ 2603 if ((offset + count) > dev->real_num_tx_queues) 2604 return -EINVAL; 2605 2606 /* Record the mapping */ 2607 sb_dev->tc_to_txq[tc].count = count; 2608 sb_dev->tc_to_txq[tc].offset = offset; 2609 2610 /* Provide a way for Tx queue to find the tc_to_txq map or 2611 * XPS map for itself. 2612 */ 2613 while (count--) 2614 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2615 2616 return 0; 2617 } 2618 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2619 2620 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2621 { 2622 /* Do not use a multiqueue device to represent a subordinate channel */ 2623 if (netif_is_multiqueue(dev)) 2624 return -ENODEV; 2625 2626 /* We allow channels 1 - 32767 to be used for subordinate channels. 2627 * Channel 0 is meant to be "native" mode and used only to represent 2628 * the main root device. We allow writing 0 to reset the device back 2629 * to normal mode after being used as a subordinate channel. 2630 */ 2631 if (channel > S16_MAX) 2632 return -EINVAL; 2633 2634 dev->num_tc = -channel; 2635 2636 return 0; 2637 } 2638 EXPORT_SYMBOL(netdev_set_sb_channel); 2639 2640 /* 2641 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2642 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2643 */ 2644 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2645 { 2646 bool disabling; 2647 int rc; 2648 2649 disabling = txq < dev->real_num_tx_queues; 2650 2651 if (txq < 1 || txq > dev->num_tx_queues) 2652 return -EINVAL; 2653 2654 if (dev->reg_state == NETREG_REGISTERED || 2655 dev->reg_state == NETREG_UNREGISTERING) { 2656 ASSERT_RTNL(); 2657 2658 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2659 txq); 2660 if (rc) 2661 return rc; 2662 2663 if (dev->num_tc) 2664 netif_setup_tc(dev, txq); 2665 2666 dev->real_num_tx_queues = txq; 2667 2668 if (disabling) { 2669 synchronize_net(); 2670 qdisc_reset_all_tx_gt(dev, txq); 2671 #ifdef CONFIG_XPS 2672 netif_reset_xps_queues_gt(dev, txq); 2673 #endif 2674 } 2675 } else { 2676 dev->real_num_tx_queues = txq; 2677 } 2678 2679 return 0; 2680 } 2681 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2682 2683 #ifdef CONFIG_SYSFS 2684 /** 2685 * netif_set_real_num_rx_queues - set actual number of RX queues used 2686 * @dev: Network device 2687 * @rxq: Actual number of RX queues 2688 * 2689 * This must be called either with the rtnl_lock held or before 2690 * registration of the net device. Returns 0 on success, or a 2691 * negative error code. If called before registration, it always 2692 * succeeds. 2693 */ 2694 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2695 { 2696 int rc; 2697 2698 if (rxq < 1 || rxq > dev->num_rx_queues) 2699 return -EINVAL; 2700 2701 if (dev->reg_state == NETREG_REGISTERED) { 2702 ASSERT_RTNL(); 2703 2704 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2705 rxq); 2706 if (rc) 2707 return rc; 2708 } 2709 2710 dev->real_num_rx_queues = rxq; 2711 return 0; 2712 } 2713 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2714 #endif 2715 2716 /** 2717 * netif_get_num_default_rss_queues - default number of RSS queues 2718 * 2719 * This routine should set an upper limit on the number of RSS queues 2720 * used by default by multiqueue devices. 2721 */ 2722 int netif_get_num_default_rss_queues(void) 2723 { 2724 return is_kdump_kernel() ? 2725 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2726 } 2727 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2728 2729 static void __netif_reschedule(struct Qdisc *q) 2730 { 2731 struct softnet_data *sd; 2732 unsigned long flags; 2733 2734 local_irq_save(flags); 2735 sd = this_cpu_ptr(&softnet_data); 2736 q->next_sched = NULL; 2737 *sd->output_queue_tailp = q; 2738 sd->output_queue_tailp = &q->next_sched; 2739 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2740 local_irq_restore(flags); 2741 } 2742 2743 void __netif_schedule(struct Qdisc *q) 2744 { 2745 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2746 __netif_reschedule(q); 2747 } 2748 EXPORT_SYMBOL(__netif_schedule); 2749 2750 struct dev_kfree_skb_cb { 2751 enum skb_free_reason reason; 2752 }; 2753 2754 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2755 { 2756 return (struct dev_kfree_skb_cb *)skb->cb; 2757 } 2758 2759 void netif_schedule_queue(struct netdev_queue *txq) 2760 { 2761 rcu_read_lock(); 2762 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2763 struct Qdisc *q = rcu_dereference(txq->qdisc); 2764 2765 __netif_schedule(q); 2766 } 2767 rcu_read_unlock(); 2768 } 2769 EXPORT_SYMBOL(netif_schedule_queue); 2770 2771 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2772 { 2773 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2774 struct Qdisc *q; 2775 2776 rcu_read_lock(); 2777 q = rcu_dereference(dev_queue->qdisc); 2778 __netif_schedule(q); 2779 rcu_read_unlock(); 2780 } 2781 } 2782 EXPORT_SYMBOL(netif_tx_wake_queue); 2783 2784 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2785 { 2786 unsigned long flags; 2787 2788 if (unlikely(!skb)) 2789 return; 2790 2791 if (likely(refcount_read(&skb->users) == 1)) { 2792 smp_rmb(); 2793 refcount_set(&skb->users, 0); 2794 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2795 return; 2796 } 2797 get_kfree_skb_cb(skb)->reason = reason; 2798 local_irq_save(flags); 2799 skb->next = __this_cpu_read(softnet_data.completion_queue); 2800 __this_cpu_write(softnet_data.completion_queue, skb); 2801 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2802 local_irq_restore(flags); 2803 } 2804 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2805 2806 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2807 { 2808 if (in_irq() || irqs_disabled()) 2809 __dev_kfree_skb_irq(skb, reason); 2810 else 2811 dev_kfree_skb(skb); 2812 } 2813 EXPORT_SYMBOL(__dev_kfree_skb_any); 2814 2815 2816 /** 2817 * netif_device_detach - mark device as removed 2818 * @dev: network device 2819 * 2820 * Mark device as removed from system and therefore no longer available. 2821 */ 2822 void netif_device_detach(struct net_device *dev) 2823 { 2824 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2825 netif_running(dev)) { 2826 netif_tx_stop_all_queues(dev); 2827 } 2828 } 2829 EXPORT_SYMBOL(netif_device_detach); 2830 2831 /** 2832 * netif_device_attach - mark device as attached 2833 * @dev: network device 2834 * 2835 * Mark device as attached from system and restart if needed. 2836 */ 2837 void netif_device_attach(struct net_device *dev) 2838 { 2839 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2840 netif_running(dev)) { 2841 netif_tx_wake_all_queues(dev); 2842 __netdev_watchdog_up(dev); 2843 } 2844 } 2845 EXPORT_SYMBOL(netif_device_attach); 2846 2847 /* 2848 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2849 * to be used as a distribution range. 2850 */ 2851 static u16 skb_tx_hash(const struct net_device *dev, 2852 const struct net_device *sb_dev, 2853 struct sk_buff *skb) 2854 { 2855 u32 hash; 2856 u16 qoffset = 0; 2857 u16 qcount = dev->real_num_tx_queues; 2858 2859 if (dev->num_tc) { 2860 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2861 2862 qoffset = sb_dev->tc_to_txq[tc].offset; 2863 qcount = sb_dev->tc_to_txq[tc].count; 2864 } 2865 2866 if (skb_rx_queue_recorded(skb)) { 2867 hash = skb_get_rx_queue(skb); 2868 while (unlikely(hash >= qcount)) 2869 hash -= qcount; 2870 return hash + qoffset; 2871 } 2872 2873 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2874 } 2875 2876 static void skb_warn_bad_offload(const struct sk_buff *skb) 2877 { 2878 static const netdev_features_t null_features; 2879 struct net_device *dev = skb->dev; 2880 const char *name = ""; 2881 2882 if (!net_ratelimit()) 2883 return; 2884 2885 if (dev) { 2886 if (dev->dev.parent) 2887 name = dev_driver_string(dev->dev.parent); 2888 else 2889 name = netdev_name(dev); 2890 } 2891 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2892 "gso_type=%d ip_summed=%d\n", 2893 name, dev ? &dev->features : &null_features, 2894 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2895 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2896 skb_shinfo(skb)->gso_type, skb->ip_summed); 2897 } 2898 2899 /* 2900 * Invalidate hardware checksum when packet is to be mangled, and 2901 * complete checksum manually on outgoing path. 2902 */ 2903 int skb_checksum_help(struct sk_buff *skb) 2904 { 2905 __wsum csum; 2906 int ret = 0, offset; 2907 2908 if (skb->ip_summed == CHECKSUM_COMPLETE) 2909 goto out_set_summed; 2910 2911 if (unlikely(skb_shinfo(skb)->gso_size)) { 2912 skb_warn_bad_offload(skb); 2913 return -EINVAL; 2914 } 2915 2916 /* Before computing a checksum, we should make sure no frag could 2917 * be modified by an external entity : checksum could be wrong. 2918 */ 2919 if (skb_has_shared_frag(skb)) { 2920 ret = __skb_linearize(skb); 2921 if (ret) 2922 goto out; 2923 } 2924 2925 offset = skb_checksum_start_offset(skb); 2926 BUG_ON(offset >= skb_headlen(skb)); 2927 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2928 2929 offset += skb->csum_offset; 2930 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2931 2932 if (skb_cloned(skb) && 2933 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2934 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2935 if (ret) 2936 goto out; 2937 } 2938 2939 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2940 out_set_summed: 2941 skb->ip_summed = CHECKSUM_NONE; 2942 out: 2943 return ret; 2944 } 2945 EXPORT_SYMBOL(skb_checksum_help); 2946 2947 int skb_crc32c_csum_help(struct sk_buff *skb) 2948 { 2949 __le32 crc32c_csum; 2950 int ret = 0, offset, start; 2951 2952 if (skb->ip_summed != CHECKSUM_PARTIAL) 2953 goto out; 2954 2955 if (unlikely(skb_is_gso(skb))) 2956 goto out; 2957 2958 /* Before computing a checksum, we should make sure no frag could 2959 * be modified by an external entity : checksum could be wrong. 2960 */ 2961 if (unlikely(skb_has_shared_frag(skb))) { 2962 ret = __skb_linearize(skb); 2963 if (ret) 2964 goto out; 2965 } 2966 start = skb_checksum_start_offset(skb); 2967 offset = start + offsetof(struct sctphdr, checksum); 2968 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2969 ret = -EINVAL; 2970 goto out; 2971 } 2972 if (skb_cloned(skb) && 2973 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2974 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2975 if (ret) 2976 goto out; 2977 } 2978 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2979 skb->len - start, ~(__u32)0, 2980 crc32c_csum_stub)); 2981 *(__le32 *)(skb->data + offset) = crc32c_csum; 2982 skb->ip_summed = CHECKSUM_NONE; 2983 skb->csum_not_inet = 0; 2984 out: 2985 return ret; 2986 } 2987 2988 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2989 { 2990 __be16 type = skb->protocol; 2991 2992 /* Tunnel gso handlers can set protocol to ethernet. */ 2993 if (type == htons(ETH_P_TEB)) { 2994 struct ethhdr *eth; 2995 2996 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2997 return 0; 2998 2999 eth = (struct ethhdr *)skb->data; 3000 type = eth->h_proto; 3001 } 3002 3003 return __vlan_get_protocol(skb, type, depth); 3004 } 3005 3006 /** 3007 * skb_mac_gso_segment - mac layer segmentation handler. 3008 * @skb: buffer to segment 3009 * @features: features for the output path (see dev->features) 3010 */ 3011 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3012 netdev_features_t features) 3013 { 3014 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3015 struct packet_offload *ptype; 3016 int vlan_depth = skb->mac_len; 3017 __be16 type = skb_network_protocol(skb, &vlan_depth); 3018 3019 if (unlikely(!type)) 3020 return ERR_PTR(-EINVAL); 3021 3022 __skb_pull(skb, vlan_depth); 3023 3024 rcu_read_lock(); 3025 list_for_each_entry_rcu(ptype, &offload_base, list) { 3026 if (ptype->type == type && ptype->callbacks.gso_segment) { 3027 segs = ptype->callbacks.gso_segment(skb, features); 3028 break; 3029 } 3030 } 3031 rcu_read_unlock(); 3032 3033 __skb_push(skb, skb->data - skb_mac_header(skb)); 3034 3035 return segs; 3036 } 3037 EXPORT_SYMBOL(skb_mac_gso_segment); 3038 3039 3040 /* openvswitch calls this on rx path, so we need a different check. 3041 */ 3042 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3043 { 3044 if (tx_path) 3045 return skb->ip_summed != CHECKSUM_PARTIAL && 3046 skb->ip_summed != CHECKSUM_UNNECESSARY; 3047 3048 return skb->ip_summed == CHECKSUM_NONE; 3049 } 3050 3051 /** 3052 * __skb_gso_segment - Perform segmentation on skb. 3053 * @skb: buffer to segment 3054 * @features: features for the output path (see dev->features) 3055 * @tx_path: whether it is called in TX path 3056 * 3057 * This function segments the given skb and returns a list of segments. 3058 * 3059 * It may return NULL if the skb requires no segmentation. This is 3060 * only possible when GSO is used for verifying header integrity. 3061 * 3062 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3063 */ 3064 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3065 netdev_features_t features, bool tx_path) 3066 { 3067 struct sk_buff *segs; 3068 3069 if (unlikely(skb_needs_check(skb, tx_path))) { 3070 int err; 3071 3072 /* We're going to init ->check field in TCP or UDP header */ 3073 err = skb_cow_head(skb, 0); 3074 if (err < 0) 3075 return ERR_PTR(err); 3076 } 3077 3078 /* Only report GSO partial support if it will enable us to 3079 * support segmentation on this frame without needing additional 3080 * work. 3081 */ 3082 if (features & NETIF_F_GSO_PARTIAL) { 3083 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3084 struct net_device *dev = skb->dev; 3085 3086 partial_features |= dev->features & dev->gso_partial_features; 3087 if (!skb_gso_ok(skb, features | partial_features)) 3088 features &= ~NETIF_F_GSO_PARTIAL; 3089 } 3090 3091 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3092 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3093 3094 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3095 SKB_GSO_CB(skb)->encap_level = 0; 3096 3097 skb_reset_mac_header(skb); 3098 skb_reset_mac_len(skb); 3099 3100 segs = skb_mac_gso_segment(skb, features); 3101 3102 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3103 skb_warn_bad_offload(skb); 3104 3105 return segs; 3106 } 3107 EXPORT_SYMBOL(__skb_gso_segment); 3108 3109 /* Take action when hardware reception checksum errors are detected. */ 3110 #ifdef CONFIG_BUG 3111 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3112 { 3113 if (net_ratelimit()) { 3114 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3115 if (dev) 3116 pr_err("dev features: %pNF\n", &dev->features); 3117 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n", 3118 skb->len, skb->data_len, skb->pkt_type, 3119 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type, 3120 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum, 3121 skb->csum_complete_sw, skb->csum_valid, skb->csum_level); 3122 dump_stack(); 3123 } 3124 } 3125 EXPORT_SYMBOL(netdev_rx_csum_fault); 3126 #endif 3127 3128 /* XXX: check that highmem exists at all on the given machine. */ 3129 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3130 { 3131 #ifdef CONFIG_HIGHMEM 3132 int i; 3133 3134 if (!(dev->features & NETIF_F_HIGHDMA)) { 3135 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3136 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3137 3138 if (PageHighMem(skb_frag_page(frag))) 3139 return 1; 3140 } 3141 } 3142 #endif 3143 return 0; 3144 } 3145 3146 /* If MPLS offload request, verify we are testing hardware MPLS features 3147 * instead of standard features for the netdev. 3148 */ 3149 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3150 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3151 netdev_features_t features, 3152 __be16 type) 3153 { 3154 if (eth_p_mpls(type)) 3155 features &= skb->dev->mpls_features; 3156 3157 return features; 3158 } 3159 #else 3160 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3161 netdev_features_t features, 3162 __be16 type) 3163 { 3164 return features; 3165 } 3166 #endif 3167 3168 static netdev_features_t harmonize_features(struct sk_buff *skb, 3169 netdev_features_t features) 3170 { 3171 int tmp; 3172 __be16 type; 3173 3174 type = skb_network_protocol(skb, &tmp); 3175 features = net_mpls_features(skb, features, type); 3176 3177 if (skb->ip_summed != CHECKSUM_NONE && 3178 !can_checksum_protocol(features, type)) { 3179 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3180 } 3181 if (illegal_highdma(skb->dev, skb)) 3182 features &= ~NETIF_F_SG; 3183 3184 return features; 3185 } 3186 3187 netdev_features_t passthru_features_check(struct sk_buff *skb, 3188 struct net_device *dev, 3189 netdev_features_t features) 3190 { 3191 return features; 3192 } 3193 EXPORT_SYMBOL(passthru_features_check); 3194 3195 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3196 struct net_device *dev, 3197 netdev_features_t features) 3198 { 3199 return vlan_features_check(skb, features); 3200 } 3201 3202 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3203 struct net_device *dev, 3204 netdev_features_t features) 3205 { 3206 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3207 3208 if (gso_segs > dev->gso_max_segs) 3209 return features & ~NETIF_F_GSO_MASK; 3210 3211 /* Support for GSO partial features requires software 3212 * intervention before we can actually process the packets 3213 * so we need to strip support for any partial features now 3214 * and we can pull them back in after we have partially 3215 * segmented the frame. 3216 */ 3217 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3218 features &= ~dev->gso_partial_features; 3219 3220 /* Make sure to clear the IPv4 ID mangling feature if the 3221 * IPv4 header has the potential to be fragmented. 3222 */ 3223 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3224 struct iphdr *iph = skb->encapsulation ? 3225 inner_ip_hdr(skb) : ip_hdr(skb); 3226 3227 if (!(iph->frag_off & htons(IP_DF))) 3228 features &= ~NETIF_F_TSO_MANGLEID; 3229 } 3230 3231 return features; 3232 } 3233 3234 netdev_features_t netif_skb_features(struct sk_buff *skb) 3235 { 3236 struct net_device *dev = skb->dev; 3237 netdev_features_t features = dev->features; 3238 3239 if (skb_is_gso(skb)) 3240 features = gso_features_check(skb, dev, features); 3241 3242 /* If encapsulation offload request, verify we are testing 3243 * hardware encapsulation features instead of standard 3244 * features for the netdev 3245 */ 3246 if (skb->encapsulation) 3247 features &= dev->hw_enc_features; 3248 3249 if (skb_vlan_tagged(skb)) 3250 features = netdev_intersect_features(features, 3251 dev->vlan_features | 3252 NETIF_F_HW_VLAN_CTAG_TX | 3253 NETIF_F_HW_VLAN_STAG_TX); 3254 3255 if (dev->netdev_ops->ndo_features_check) 3256 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3257 features); 3258 else 3259 features &= dflt_features_check(skb, dev, features); 3260 3261 return harmonize_features(skb, features); 3262 } 3263 EXPORT_SYMBOL(netif_skb_features); 3264 3265 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3266 struct netdev_queue *txq, bool more) 3267 { 3268 unsigned int len; 3269 int rc; 3270 3271 if (dev_nit_active(dev)) 3272 dev_queue_xmit_nit(skb, dev); 3273 3274 len = skb->len; 3275 trace_net_dev_start_xmit(skb, dev); 3276 rc = netdev_start_xmit(skb, dev, txq, more); 3277 trace_net_dev_xmit(skb, rc, dev, len); 3278 3279 return rc; 3280 } 3281 3282 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3283 struct netdev_queue *txq, int *ret) 3284 { 3285 struct sk_buff *skb = first; 3286 int rc = NETDEV_TX_OK; 3287 3288 while (skb) { 3289 struct sk_buff *next = skb->next; 3290 3291 skb_mark_not_on_list(skb); 3292 rc = xmit_one(skb, dev, txq, next != NULL); 3293 if (unlikely(!dev_xmit_complete(rc))) { 3294 skb->next = next; 3295 goto out; 3296 } 3297 3298 skb = next; 3299 if (netif_tx_queue_stopped(txq) && skb) { 3300 rc = NETDEV_TX_BUSY; 3301 break; 3302 } 3303 } 3304 3305 out: 3306 *ret = rc; 3307 return skb; 3308 } 3309 3310 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3311 netdev_features_t features) 3312 { 3313 if (skb_vlan_tag_present(skb) && 3314 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3315 skb = __vlan_hwaccel_push_inside(skb); 3316 return skb; 3317 } 3318 3319 int skb_csum_hwoffload_help(struct sk_buff *skb, 3320 const netdev_features_t features) 3321 { 3322 if (unlikely(skb->csum_not_inet)) 3323 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3324 skb_crc32c_csum_help(skb); 3325 3326 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3327 } 3328 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3329 3330 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3331 { 3332 netdev_features_t features; 3333 3334 features = netif_skb_features(skb); 3335 skb = validate_xmit_vlan(skb, features); 3336 if (unlikely(!skb)) 3337 goto out_null; 3338 3339 skb = sk_validate_xmit_skb(skb, dev); 3340 if (unlikely(!skb)) 3341 goto out_null; 3342 3343 if (netif_needs_gso(skb, features)) { 3344 struct sk_buff *segs; 3345 3346 segs = skb_gso_segment(skb, features); 3347 if (IS_ERR(segs)) { 3348 goto out_kfree_skb; 3349 } else if (segs) { 3350 consume_skb(skb); 3351 skb = segs; 3352 } 3353 } else { 3354 if (skb_needs_linearize(skb, features) && 3355 __skb_linearize(skb)) 3356 goto out_kfree_skb; 3357 3358 /* If packet is not checksummed and device does not 3359 * support checksumming for this protocol, complete 3360 * checksumming here. 3361 */ 3362 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3363 if (skb->encapsulation) 3364 skb_set_inner_transport_header(skb, 3365 skb_checksum_start_offset(skb)); 3366 else 3367 skb_set_transport_header(skb, 3368 skb_checksum_start_offset(skb)); 3369 if (skb_csum_hwoffload_help(skb, features)) 3370 goto out_kfree_skb; 3371 } 3372 } 3373 3374 skb = validate_xmit_xfrm(skb, features, again); 3375 3376 return skb; 3377 3378 out_kfree_skb: 3379 kfree_skb(skb); 3380 out_null: 3381 atomic_long_inc(&dev->tx_dropped); 3382 return NULL; 3383 } 3384 3385 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3386 { 3387 struct sk_buff *next, *head = NULL, *tail; 3388 3389 for (; skb != NULL; skb = next) { 3390 next = skb->next; 3391 skb_mark_not_on_list(skb); 3392 3393 /* in case skb wont be segmented, point to itself */ 3394 skb->prev = skb; 3395 3396 skb = validate_xmit_skb(skb, dev, again); 3397 if (!skb) 3398 continue; 3399 3400 if (!head) 3401 head = skb; 3402 else 3403 tail->next = skb; 3404 /* If skb was segmented, skb->prev points to 3405 * the last segment. If not, it still contains skb. 3406 */ 3407 tail = skb->prev; 3408 } 3409 return head; 3410 } 3411 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3412 3413 static void qdisc_pkt_len_init(struct sk_buff *skb) 3414 { 3415 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3416 3417 qdisc_skb_cb(skb)->pkt_len = skb->len; 3418 3419 /* To get more precise estimation of bytes sent on wire, 3420 * we add to pkt_len the headers size of all segments 3421 */ 3422 if (shinfo->gso_size) { 3423 unsigned int hdr_len; 3424 u16 gso_segs = shinfo->gso_segs; 3425 3426 /* mac layer + network layer */ 3427 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3428 3429 /* + transport layer */ 3430 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3431 const struct tcphdr *th; 3432 struct tcphdr _tcphdr; 3433 3434 th = skb_header_pointer(skb, skb_transport_offset(skb), 3435 sizeof(_tcphdr), &_tcphdr); 3436 if (likely(th)) 3437 hdr_len += __tcp_hdrlen(th); 3438 } else { 3439 struct udphdr _udphdr; 3440 3441 if (skb_header_pointer(skb, skb_transport_offset(skb), 3442 sizeof(_udphdr), &_udphdr)) 3443 hdr_len += sizeof(struct udphdr); 3444 } 3445 3446 if (shinfo->gso_type & SKB_GSO_DODGY) 3447 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3448 shinfo->gso_size); 3449 3450 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3451 } 3452 } 3453 3454 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3455 struct net_device *dev, 3456 struct netdev_queue *txq) 3457 { 3458 spinlock_t *root_lock = qdisc_lock(q); 3459 struct sk_buff *to_free = NULL; 3460 bool contended; 3461 int rc; 3462 3463 qdisc_calculate_pkt_len(skb, q); 3464 3465 if (q->flags & TCQ_F_NOLOCK) { 3466 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3467 __qdisc_drop(skb, &to_free); 3468 rc = NET_XMIT_DROP; 3469 } else { 3470 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3471 qdisc_run(q); 3472 } 3473 3474 if (unlikely(to_free)) 3475 kfree_skb_list(to_free); 3476 return rc; 3477 } 3478 3479 /* 3480 * Heuristic to force contended enqueues to serialize on a 3481 * separate lock before trying to get qdisc main lock. 3482 * This permits qdisc->running owner to get the lock more 3483 * often and dequeue packets faster. 3484 */ 3485 contended = qdisc_is_running(q); 3486 if (unlikely(contended)) 3487 spin_lock(&q->busylock); 3488 3489 spin_lock(root_lock); 3490 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3491 __qdisc_drop(skb, &to_free); 3492 rc = NET_XMIT_DROP; 3493 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3494 qdisc_run_begin(q)) { 3495 /* 3496 * This is a work-conserving queue; there are no old skbs 3497 * waiting to be sent out; and the qdisc is not running - 3498 * xmit the skb directly. 3499 */ 3500 3501 qdisc_bstats_update(q, skb); 3502 3503 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3504 if (unlikely(contended)) { 3505 spin_unlock(&q->busylock); 3506 contended = false; 3507 } 3508 __qdisc_run(q); 3509 } 3510 3511 qdisc_run_end(q); 3512 rc = NET_XMIT_SUCCESS; 3513 } else { 3514 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3515 if (qdisc_run_begin(q)) { 3516 if (unlikely(contended)) { 3517 spin_unlock(&q->busylock); 3518 contended = false; 3519 } 3520 __qdisc_run(q); 3521 qdisc_run_end(q); 3522 } 3523 } 3524 spin_unlock(root_lock); 3525 if (unlikely(to_free)) 3526 kfree_skb_list(to_free); 3527 if (unlikely(contended)) 3528 spin_unlock(&q->busylock); 3529 return rc; 3530 } 3531 3532 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3533 static void skb_update_prio(struct sk_buff *skb) 3534 { 3535 const struct netprio_map *map; 3536 const struct sock *sk; 3537 unsigned int prioidx; 3538 3539 if (skb->priority) 3540 return; 3541 map = rcu_dereference_bh(skb->dev->priomap); 3542 if (!map) 3543 return; 3544 sk = skb_to_full_sk(skb); 3545 if (!sk) 3546 return; 3547 3548 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3549 3550 if (prioidx < map->priomap_len) 3551 skb->priority = map->priomap[prioidx]; 3552 } 3553 #else 3554 #define skb_update_prio(skb) 3555 #endif 3556 3557 DEFINE_PER_CPU(int, xmit_recursion); 3558 EXPORT_SYMBOL(xmit_recursion); 3559 3560 /** 3561 * dev_loopback_xmit - loop back @skb 3562 * @net: network namespace this loopback is happening in 3563 * @sk: sk needed to be a netfilter okfn 3564 * @skb: buffer to transmit 3565 */ 3566 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3567 { 3568 skb_reset_mac_header(skb); 3569 __skb_pull(skb, skb_network_offset(skb)); 3570 skb->pkt_type = PACKET_LOOPBACK; 3571 skb->ip_summed = CHECKSUM_UNNECESSARY; 3572 WARN_ON(!skb_dst(skb)); 3573 skb_dst_force(skb); 3574 netif_rx_ni(skb); 3575 return 0; 3576 } 3577 EXPORT_SYMBOL(dev_loopback_xmit); 3578 3579 #ifdef CONFIG_NET_EGRESS 3580 static struct sk_buff * 3581 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3582 { 3583 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3584 struct tcf_result cl_res; 3585 3586 if (!miniq) 3587 return skb; 3588 3589 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3590 mini_qdisc_bstats_cpu_update(miniq, skb); 3591 3592 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3593 case TC_ACT_OK: 3594 case TC_ACT_RECLASSIFY: 3595 skb->tc_index = TC_H_MIN(cl_res.classid); 3596 break; 3597 case TC_ACT_SHOT: 3598 mini_qdisc_qstats_cpu_drop(miniq); 3599 *ret = NET_XMIT_DROP; 3600 kfree_skb(skb); 3601 return NULL; 3602 case TC_ACT_STOLEN: 3603 case TC_ACT_QUEUED: 3604 case TC_ACT_TRAP: 3605 *ret = NET_XMIT_SUCCESS; 3606 consume_skb(skb); 3607 return NULL; 3608 case TC_ACT_REDIRECT: 3609 /* No need to push/pop skb's mac_header here on egress! */ 3610 skb_do_redirect(skb); 3611 *ret = NET_XMIT_SUCCESS; 3612 return NULL; 3613 default: 3614 break; 3615 } 3616 3617 return skb; 3618 } 3619 #endif /* CONFIG_NET_EGRESS */ 3620 3621 #ifdef CONFIG_XPS 3622 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3623 struct xps_dev_maps *dev_maps, unsigned int tci) 3624 { 3625 struct xps_map *map; 3626 int queue_index = -1; 3627 3628 if (dev->num_tc) { 3629 tci *= dev->num_tc; 3630 tci += netdev_get_prio_tc_map(dev, skb->priority); 3631 } 3632 3633 map = rcu_dereference(dev_maps->attr_map[tci]); 3634 if (map) { 3635 if (map->len == 1) 3636 queue_index = map->queues[0]; 3637 else 3638 queue_index = map->queues[reciprocal_scale( 3639 skb_get_hash(skb), map->len)]; 3640 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3641 queue_index = -1; 3642 } 3643 return queue_index; 3644 } 3645 #endif 3646 3647 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3648 struct sk_buff *skb) 3649 { 3650 #ifdef CONFIG_XPS 3651 struct xps_dev_maps *dev_maps; 3652 struct sock *sk = skb->sk; 3653 int queue_index = -1; 3654 3655 if (!static_key_false(&xps_needed)) 3656 return -1; 3657 3658 rcu_read_lock(); 3659 if (!static_key_false(&xps_rxqs_needed)) 3660 goto get_cpus_map; 3661 3662 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3663 if (dev_maps) { 3664 int tci = sk_rx_queue_get(sk); 3665 3666 if (tci >= 0 && tci < dev->num_rx_queues) 3667 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3668 tci); 3669 } 3670 3671 get_cpus_map: 3672 if (queue_index < 0) { 3673 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3674 if (dev_maps) { 3675 unsigned int tci = skb->sender_cpu - 1; 3676 3677 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3678 tci); 3679 } 3680 } 3681 rcu_read_unlock(); 3682 3683 return queue_index; 3684 #else 3685 return -1; 3686 #endif 3687 } 3688 3689 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3690 struct net_device *sb_dev, 3691 select_queue_fallback_t fallback) 3692 { 3693 return 0; 3694 } 3695 EXPORT_SYMBOL(dev_pick_tx_zero); 3696 3697 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3698 struct net_device *sb_dev, 3699 select_queue_fallback_t fallback) 3700 { 3701 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3702 } 3703 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3704 3705 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3706 struct net_device *sb_dev) 3707 { 3708 struct sock *sk = skb->sk; 3709 int queue_index = sk_tx_queue_get(sk); 3710 3711 sb_dev = sb_dev ? : dev; 3712 3713 if (queue_index < 0 || skb->ooo_okay || 3714 queue_index >= dev->real_num_tx_queues) { 3715 int new_index = get_xps_queue(dev, sb_dev, skb); 3716 3717 if (new_index < 0) 3718 new_index = skb_tx_hash(dev, sb_dev, skb); 3719 3720 if (queue_index != new_index && sk && 3721 sk_fullsock(sk) && 3722 rcu_access_pointer(sk->sk_dst_cache)) 3723 sk_tx_queue_set(sk, new_index); 3724 3725 queue_index = new_index; 3726 } 3727 3728 return queue_index; 3729 } 3730 3731 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3732 struct sk_buff *skb, 3733 struct net_device *sb_dev) 3734 { 3735 int queue_index = 0; 3736 3737 #ifdef CONFIG_XPS 3738 u32 sender_cpu = skb->sender_cpu - 1; 3739 3740 if (sender_cpu >= (u32)NR_CPUS) 3741 skb->sender_cpu = raw_smp_processor_id() + 1; 3742 #endif 3743 3744 if (dev->real_num_tx_queues != 1) { 3745 const struct net_device_ops *ops = dev->netdev_ops; 3746 3747 if (ops->ndo_select_queue) 3748 queue_index = ops->ndo_select_queue(dev, skb, sb_dev, 3749 __netdev_pick_tx); 3750 else 3751 queue_index = __netdev_pick_tx(dev, skb, sb_dev); 3752 3753 queue_index = netdev_cap_txqueue(dev, queue_index); 3754 } 3755 3756 skb_set_queue_mapping(skb, queue_index); 3757 return netdev_get_tx_queue(dev, queue_index); 3758 } 3759 3760 /** 3761 * __dev_queue_xmit - transmit a buffer 3762 * @skb: buffer to transmit 3763 * @sb_dev: suboordinate device used for L2 forwarding offload 3764 * 3765 * Queue a buffer for transmission to a network device. The caller must 3766 * have set the device and priority and built the buffer before calling 3767 * this function. The function can be called from an interrupt. 3768 * 3769 * A negative errno code is returned on a failure. A success does not 3770 * guarantee the frame will be transmitted as it may be dropped due 3771 * to congestion or traffic shaping. 3772 * 3773 * ----------------------------------------------------------------------------------- 3774 * I notice this method can also return errors from the queue disciplines, 3775 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3776 * be positive. 3777 * 3778 * Regardless of the return value, the skb is consumed, so it is currently 3779 * difficult to retry a send to this method. (You can bump the ref count 3780 * before sending to hold a reference for retry if you are careful.) 3781 * 3782 * When calling this method, interrupts MUST be enabled. This is because 3783 * the BH enable code must have IRQs enabled so that it will not deadlock. 3784 * --BLG 3785 */ 3786 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3787 { 3788 struct net_device *dev = skb->dev; 3789 struct netdev_queue *txq; 3790 struct Qdisc *q; 3791 int rc = -ENOMEM; 3792 bool again = false; 3793 3794 skb_reset_mac_header(skb); 3795 3796 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3797 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3798 3799 /* Disable soft irqs for various locks below. Also 3800 * stops preemption for RCU. 3801 */ 3802 rcu_read_lock_bh(); 3803 3804 skb_update_prio(skb); 3805 3806 qdisc_pkt_len_init(skb); 3807 #ifdef CONFIG_NET_CLS_ACT 3808 skb->tc_at_ingress = 0; 3809 # ifdef CONFIG_NET_EGRESS 3810 if (static_branch_unlikely(&egress_needed_key)) { 3811 skb = sch_handle_egress(skb, &rc, dev); 3812 if (!skb) 3813 goto out; 3814 } 3815 # endif 3816 #endif 3817 /* If device/qdisc don't need skb->dst, release it right now while 3818 * its hot in this cpu cache. 3819 */ 3820 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3821 skb_dst_drop(skb); 3822 else 3823 skb_dst_force(skb); 3824 3825 txq = netdev_pick_tx(dev, skb, sb_dev); 3826 q = rcu_dereference_bh(txq->qdisc); 3827 3828 trace_net_dev_queue(skb); 3829 if (q->enqueue) { 3830 rc = __dev_xmit_skb(skb, q, dev, txq); 3831 goto out; 3832 } 3833 3834 /* The device has no queue. Common case for software devices: 3835 * loopback, all the sorts of tunnels... 3836 3837 * Really, it is unlikely that netif_tx_lock protection is necessary 3838 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3839 * counters.) 3840 * However, it is possible, that they rely on protection 3841 * made by us here. 3842 3843 * Check this and shot the lock. It is not prone from deadlocks. 3844 *Either shot noqueue qdisc, it is even simpler 8) 3845 */ 3846 if (dev->flags & IFF_UP) { 3847 int cpu = smp_processor_id(); /* ok because BHs are off */ 3848 3849 if (txq->xmit_lock_owner != cpu) { 3850 if (unlikely(__this_cpu_read(xmit_recursion) > 3851 XMIT_RECURSION_LIMIT)) 3852 goto recursion_alert; 3853 3854 skb = validate_xmit_skb(skb, dev, &again); 3855 if (!skb) 3856 goto out; 3857 3858 HARD_TX_LOCK(dev, txq, cpu); 3859 3860 if (!netif_xmit_stopped(txq)) { 3861 __this_cpu_inc(xmit_recursion); 3862 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3863 __this_cpu_dec(xmit_recursion); 3864 if (dev_xmit_complete(rc)) { 3865 HARD_TX_UNLOCK(dev, txq); 3866 goto out; 3867 } 3868 } 3869 HARD_TX_UNLOCK(dev, txq); 3870 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3871 dev->name); 3872 } else { 3873 /* Recursion is detected! It is possible, 3874 * unfortunately 3875 */ 3876 recursion_alert: 3877 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3878 dev->name); 3879 } 3880 } 3881 3882 rc = -ENETDOWN; 3883 rcu_read_unlock_bh(); 3884 3885 atomic_long_inc(&dev->tx_dropped); 3886 kfree_skb_list(skb); 3887 return rc; 3888 out: 3889 rcu_read_unlock_bh(); 3890 return rc; 3891 } 3892 3893 int dev_queue_xmit(struct sk_buff *skb) 3894 { 3895 return __dev_queue_xmit(skb, NULL); 3896 } 3897 EXPORT_SYMBOL(dev_queue_xmit); 3898 3899 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3900 { 3901 return __dev_queue_xmit(skb, sb_dev); 3902 } 3903 EXPORT_SYMBOL(dev_queue_xmit_accel); 3904 3905 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3906 { 3907 struct net_device *dev = skb->dev; 3908 struct sk_buff *orig_skb = skb; 3909 struct netdev_queue *txq; 3910 int ret = NETDEV_TX_BUSY; 3911 bool again = false; 3912 3913 if (unlikely(!netif_running(dev) || 3914 !netif_carrier_ok(dev))) 3915 goto drop; 3916 3917 skb = validate_xmit_skb_list(skb, dev, &again); 3918 if (skb != orig_skb) 3919 goto drop; 3920 3921 skb_set_queue_mapping(skb, queue_id); 3922 txq = skb_get_tx_queue(dev, skb); 3923 3924 local_bh_disable(); 3925 3926 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3927 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3928 ret = netdev_start_xmit(skb, dev, txq, false); 3929 HARD_TX_UNLOCK(dev, txq); 3930 3931 local_bh_enable(); 3932 3933 if (!dev_xmit_complete(ret)) 3934 kfree_skb(skb); 3935 3936 return ret; 3937 drop: 3938 atomic_long_inc(&dev->tx_dropped); 3939 kfree_skb_list(skb); 3940 return NET_XMIT_DROP; 3941 } 3942 EXPORT_SYMBOL(dev_direct_xmit); 3943 3944 /************************************************************************* 3945 * Receiver routines 3946 *************************************************************************/ 3947 3948 int netdev_max_backlog __read_mostly = 1000; 3949 EXPORT_SYMBOL(netdev_max_backlog); 3950 3951 int netdev_tstamp_prequeue __read_mostly = 1; 3952 int netdev_budget __read_mostly = 300; 3953 unsigned int __read_mostly netdev_budget_usecs = 2000; 3954 int weight_p __read_mostly = 64; /* old backlog weight */ 3955 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3956 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3957 int dev_rx_weight __read_mostly = 64; 3958 int dev_tx_weight __read_mostly = 64; 3959 3960 /* Called with irq disabled */ 3961 static inline void ____napi_schedule(struct softnet_data *sd, 3962 struct napi_struct *napi) 3963 { 3964 list_add_tail(&napi->poll_list, &sd->poll_list); 3965 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3966 } 3967 3968 #ifdef CONFIG_RPS 3969 3970 /* One global table that all flow-based protocols share. */ 3971 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3972 EXPORT_SYMBOL(rps_sock_flow_table); 3973 u32 rps_cpu_mask __read_mostly; 3974 EXPORT_SYMBOL(rps_cpu_mask); 3975 3976 struct static_key rps_needed __read_mostly; 3977 EXPORT_SYMBOL(rps_needed); 3978 struct static_key rfs_needed __read_mostly; 3979 EXPORT_SYMBOL(rfs_needed); 3980 3981 static struct rps_dev_flow * 3982 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3983 struct rps_dev_flow *rflow, u16 next_cpu) 3984 { 3985 if (next_cpu < nr_cpu_ids) { 3986 #ifdef CONFIG_RFS_ACCEL 3987 struct netdev_rx_queue *rxqueue; 3988 struct rps_dev_flow_table *flow_table; 3989 struct rps_dev_flow *old_rflow; 3990 u32 flow_id; 3991 u16 rxq_index; 3992 int rc; 3993 3994 /* Should we steer this flow to a different hardware queue? */ 3995 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3996 !(dev->features & NETIF_F_NTUPLE)) 3997 goto out; 3998 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3999 if (rxq_index == skb_get_rx_queue(skb)) 4000 goto out; 4001 4002 rxqueue = dev->_rx + rxq_index; 4003 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4004 if (!flow_table) 4005 goto out; 4006 flow_id = skb_get_hash(skb) & flow_table->mask; 4007 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4008 rxq_index, flow_id); 4009 if (rc < 0) 4010 goto out; 4011 old_rflow = rflow; 4012 rflow = &flow_table->flows[flow_id]; 4013 rflow->filter = rc; 4014 if (old_rflow->filter == rflow->filter) 4015 old_rflow->filter = RPS_NO_FILTER; 4016 out: 4017 #endif 4018 rflow->last_qtail = 4019 per_cpu(softnet_data, next_cpu).input_queue_head; 4020 } 4021 4022 rflow->cpu = next_cpu; 4023 return rflow; 4024 } 4025 4026 /* 4027 * get_rps_cpu is called from netif_receive_skb and returns the target 4028 * CPU from the RPS map of the receiving queue for a given skb. 4029 * rcu_read_lock must be held on entry. 4030 */ 4031 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4032 struct rps_dev_flow **rflowp) 4033 { 4034 const struct rps_sock_flow_table *sock_flow_table; 4035 struct netdev_rx_queue *rxqueue = dev->_rx; 4036 struct rps_dev_flow_table *flow_table; 4037 struct rps_map *map; 4038 int cpu = -1; 4039 u32 tcpu; 4040 u32 hash; 4041 4042 if (skb_rx_queue_recorded(skb)) { 4043 u16 index = skb_get_rx_queue(skb); 4044 4045 if (unlikely(index >= dev->real_num_rx_queues)) { 4046 WARN_ONCE(dev->real_num_rx_queues > 1, 4047 "%s received packet on queue %u, but number " 4048 "of RX queues is %u\n", 4049 dev->name, index, dev->real_num_rx_queues); 4050 goto done; 4051 } 4052 rxqueue += index; 4053 } 4054 4055 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4056 4057 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4058 map = rcu_dereference(rxqueue->rps_map); 4059 if (!flow_table && !map) 4060 goto done; 4061 4062 skb_reset_network_header(skb); 4063 hash = skb_get_hash(skb); 4064 if (!hash) 4065 goto done; 4066 4067 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4068 if (flow_table && sock_flow_table) { 4069 struct rps_dev_flow *rflow; 4070 u32 next_cpu; 4071 u32 ident; 4072 4073 /* First check into global flow table if there is a match */ 4074 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4075 if ((ident ^ hash) & ~rps_cpu_mask) 4076 goto try_rps; 4077 4078 next_cpu = ident & rps_cpu_mask; 4079 4080 /* OK, now we know there is a match, 4081 * we can look at the local (per receive queue) flow table 4082 */ 4083 rflow = &flow_table->flows[hash & flow_table->mask]; 4084 tcpu = rflow->cpu; 4085 4086 /* 4087 * If the desired CPU (where last recvmsg was done) is 4088 * different from current CPU (one in the rx-queue flow 4089 * table entry), switch if one of the following holds: 4090 * - Current CPU is unset (>= nr_cpu_ids). 4091 * - Current CPU is offline. 4092 * - The current CPU's queue tail has advanced beyond the 4093 * last packet that was enqueued using this table entry. 4094 * This guarantees that all previous packets for the flow 4095 * have been dequeued, thus preserving in order delivery. 4096 */ 4097 if (unlikely(tcpu != next_cpu) && 4098 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4099 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4100 rflow->last_qtail)) >= 0)) { 4101 tcpu = next_cpu; 4102 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4103 } 4104 4105 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4106 *rflowp = rflow; 4107 cpu = tcpu; 4108 goto done; 4109 } 4110 } 4111 4112 try_rps: 4113 4114 if (map) { 4115 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4116 if (cpu_online(tcpu)) { 4117 cpu = tcpu; 4118 goto done; 4119 } 4120 } 4121 4122 done: 4123 return cpu; 4124 } 4125 4126 #ifdef CONFIG_RFS_ACCEL 4127 4128 /** 4129 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4130 * @dev: Device on which the filter was set 4131 * @rxq_index: RX queue index 4132 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4133 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4134 * 4135 * Drivers that implement ndo_rx_flow_steer() should periodically call 4136 * this function for each installed filter and remove the filters for 4137 * which it returns %true. 4138 */ 4139 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4140 u32 flow_id, u16 filter_id) 4141 { 4142 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4143 struct rps_dev_flow_table *flow_table; 4144 struct rps_dev_flow *rflow; 4145 bool expire = true; 4146 unsigned int cpu; 4147 4148 rcu_read_lock(); 4149 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4150 if (flow_table && flow_id <= flow_table->mask) { 4151 rflow = &flow_table->flows[flow_id]; 4152 cpu = READ_ONCE(rflow->cpu); 4153 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4154 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4155 rflow->last_qtail) < 4156 (int)(10 * flow_table->mask))) 4157 expire = false; 4158 } 4159 rcu_read_unlock(); 4160 return expire; 4161 } 4162 EXPORT_SYMBOL(rps_may_expire_flow); 4163 4164 #endif /* CONFIG_RFS_ACCEL */ 4165 4166 /* Called from hardirq (IPI) context */ 4167 static void rps_trigger_softirq(void *data) 4168 { 4169 struct softnet_data *sd = data; 4170 4171 ____napi_schedule(sd, &sd->backlog); 4172 sd->received_rps++; 4173 } 4174 4175 #endif /* CONFIG_RPS */ 4176 4177 /* 4178 * Check if this softnet_data structure is another cpu one 4179 * If yes, queue it to our IPI list and return 1 4180 * If no, return 0 4181 */ 4182 static int rps_ipi_queued(struct softnet_data *sd) 4183 { 4184 #ifdef CONFIG_RPS 4185 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4186 4187 if (sd != mysd) { 4188 sd->rps_ipi_next = mysd->rps_ipi_list; 4189 mysd->rps_ipi_list = sd; 4190 4191 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4192 return 1; 4193 } 4194 #endif /* CONFIG_RPS */ 4195 return 0; 4196 } 4197 4198 #ifdef CONFIG_NET_FLOW_LIMIT 4199 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4200 #endif 4201 4202 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4203 { 4204 #ifdef CONFIG_NET_FLOW_LIMIT 4205 struct sd_flow_limit *fl; 4206 struct softnet_data *sd; 4207 unsigned int old_flow, new_flow; 4208 4209 if (qlen < (netdev_max_backlog >> 1)) 4210 return false; 4211 4212 sd = this_cpu_ptr(&softnet_data); 4213 4214 rcu_read_lock(); 4215 fl = rcu_dereference(sd->flow_limit); 4216 if (fl) { 4217 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4218 old_flow = fl->history[fl->history_head]; 4219 fl->history[fl->history_head] = new_flow; 4220 4221 fl->history_head++; 4222 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4223 4224 if (likely(fl->buckets[old_flow])) 4225 fl->buckets[old_flow]--; 4226 4227 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4228 fl->count++; 4229 rcu_read_unlock(); 4230 return true; 4231 } 4232 } 4233 rcu_read_unlock(); 4234 #endif 4235 return false; 4236 } 4237 4238 /* 4239 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4240 * queue (may be a remote CPU queue). 4241 */ 4242 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4243 unsigned int *qtail) 4244 { 4245 struct softnet_data *sd; 4246 unsigned long flags; 4247 unsigned int qlen; 4248 4249 sd = &per_cpu(softnet_data, cpu); 4250 4251 local_irq_save(flags); 4252 4253 rps_lock(sd); 4254 if (!netif_running(skb->dev)) 4255 goto drop; 4256 qlen = skb_queue_len(&sd->input_pkt_queue); 4257 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4258 if (qlen) { 4259 enqueue: 4260 __skb_queue_tail(&sd->input_pkt_queue, skb); 4261 input_queue_tail_incr_save(sd, qtail); 4262 rps_unlock(sd); 4263 local_irq_restore(flags); 4264 return NET_RX_SUCCESS; 4265 } 4266 4267 /* Schedule NAPI for backlog device 4268 * We can use non atomic operation since we own the queue lock 4269 */ 4270 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4271 if (!rps_ipi_queued(sd)) 4272 ____napi_schedule(sd, &sd->backlog); 4273 } 4274 goto enqueue; 4275 } 4276 4277 drop: 4278 sd->dropped++; 4279 rps_unlock(sd); 4280 4281 local_irq_restore(flags); 4282 4283 atomic_long_inc(&skb->dev->rx_dropped); 4284 kfree_skb(skb); 4285 return NET_RX_DROP; 4286 } 4287 4288 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4289 { 4290 struct net_device *dev = skb->dev; 4291 struct netdev_rx_queue *rxqueue; 4292 4293 rxqueue = dev->_rx; 4294 4295 if (skb_rx_queue_recorded(skb)) { 4296 u16 index = skb_get_rx_queue(skb); 4297 4298 if (unlikely(index >= dev->real_num_rx_queues)) { 4299 WARN_ONCE(dev->real_num_rx_queues > 1, 4300 "%s received packet on queue %u, but number " 4301 "of RX queues is %u\n", 4302 dev->name, index, dev->real_num_rx_queues); 4303 4304 return rxqueue; /* Return first rxqueue */ 4305 } 4306 rxqueue += index; 4307 } 4308 return rxqueue; 4309 } 4310 4311 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4312 struct xdp_buff *xdp, 4313 struct bpf_prog *xdp_prog) 4314 { 4315 struct netdev_rx_queue *rxqueue; 4316 void *orig_data, *orig_data_end; 4317 u32 metalen, act = XDP_DROP; 4318 __be16 orig_eth_type; 4319 struct ethhdr *eth; 4320 bool orig_bcast; 4321 int hlen, off; 4322 u32 mac_len; 4323 4324 /* Reinjected packets coming from act_mirred or similar should 4325 * not get XDP generic processing. 4326 */ 4327 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4328 return XDP_PASS; 4329 4330 /* XDP packets must be linear and must have sufficient headroom 4331 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4332 * native XDP provides, thus we need to do it here as well. 4333 */ 4334 if (skb_is_nonlinear(skb) || 4335 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4336 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4337 int troom = skb->tail + skb->data_len - skb->end; 4338 4339 /* In case we have to go down the path and also linearize, 4340 * then lets do the pskb_expand_head() work just once here. 4341 */ 4342 if (pskb_expand_head(skb, 4343 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4344 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4345 goto do_drop; 4346 if (skb_linearize(skb)) 4347 goto do_drop; 4348 } 4349 4350 /* The XDP program wants to see the packet starting at the MAC 4351 * header. 4352 */ 4353 mac_len = skb->data - skb_mac_header(skb); 4354 hlen = skb_headlen(skb) + mac_len; 4355 xdp->data = skb->data - mac_len; 4356 xdp->data_meta = xdp->data; 4357 xdp->data_end = xdp->data + hlen; 4358 xdp->data_hard_start = skb->data - skb_headroom(skb); 4359 orig_data_end = xdp->data_end; 4360 orig_data = xdp->data; 4361 eth = (struct ethhdr *)xdp->data; 4362 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4363 orig_eth_type = eth->h_proto; 4364 4365 rxqueue = netif_get_rxqueue(skb); 4366 xdp->rxq = &rxqueue->xdp_rxq; 4367 4368 act = bpf_prog_run_xdp(xdp_prog, xdp); 4369 4370 off = xdp->data - orig_data; 4371 if (off > 0) 4372 __skb_pull(skb, off); 4373 else if (off < 0) 4374 __skb_push(skb, -off); 4375 skb->mac_header += off; 4376 4377 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4378 * pckt. 4379 */ 4380 off = orig_data_end - xdp->data_end; 4381 if (off != 0) { 4382 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4383 skb->len -= off; 4384 4385 } 4386 4387 /* check if XDP changed eth hdr such SKB needs update */ 4388 eth = (struct ethhdr *)xdp->data; 4389 if ((orig_eth_type != eth->h_proto) || 4390 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4391 __skb_push(skb, ETH_HLEN); 4392 skb->protocol = eth_type_trans(skb, skb->dev); 4393 } 4394 4395 switch (act) { 4396 case XDP_REDIRECT: 4397 case XDP_TX: 4398 __skb_push(skb, mac_len); 4399 break; 4400 case XDP_PASS: 4401 metalen = xdp->data - xdp->data_meta; 4402 if (metalen) 4403 skb_metadata_set(skb, metalen); 4404 break; 4405 default: 4406 bpf_warn_invalid_xdp_action(act); 4407 /* fall through */ 4408 case XDP_ABORTED: 4409 trace_xdp_exception(skb->dev, xdp_prog, act); 4410 /* fall through */ 4411 case XDP_DROP: 4412 do_drop: 4413 kfree_skb(skb); 4414 break; 4415 } 4416 4417 return act; 4418 } 4419 4420 /* When doing generic XDP we have to bypass the qdisc layer and the 4421 * network taps in order to match in-driver-XDP behavior. 4422 */ 4423 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4424 { 4425 struct net_device *dev = skb->dev; 4426 struct netdev_queue *txq; 4427 bool free_skb = true; 4428 int cpu, rc; 4429 4430 txq = netdev_pick_tx(dev, skb, NULL); 4431 cpu = smp_processor_id(); 4432 HARD_TX_LOCK(dev, txq, cpu); 4433 if (!netif_xmit_stopped(txq)) { 4434 rc = netdev_start_xmit(skb, dev, txq, 0); 4435 if (dev_xmit_complete(rc)) 4436 free_skb = false; 4437 } 4438 HARD_TX_UNLOCK(dev, txq); 4439 if (free_skb) { 4440 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4441 kfree_skb(skb); 4442 } 4443 } 4444 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4445 4446 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4447 4448 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4449 { 4450 if (xdp_prog) { 4451 struct xdp_buff xdp; 4452 u32 act; 4453 int err; 4454 4455 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4456 if (act != XDP_PASS) { 4457 switch (act) { 4458 case XDP_REDIRECT: 4459 err = xdp_do_generic_redirect(skb->dev, skb, 4460 &xdp, xdp_prog); 4461 if (err) 4462 goto out_redir; 4463 break; 4464 case XDP_TX: 4465 generic_xdp_tx(skb, xdp_prog); 4466 break; 4467 } 4468 return XDP_DROP; 4469 } 4470 } 4471 return XDP_PASS; 4472 out_redir: 4473 kfree_skb(skb); 4474 return XDP_DROP; 4475 } 4476 EXPORT_SYMBOL_GPL(do_xdp_generic); 4477 4478 static int netif_rx_internal(struct sk_buff *skb) 4479 { 4480 int ret; 4481 4482 net_timestamp_check(netdev_tstamp_prequeue, skb); 4483 4484 trace_netif_rx(skb); 4485 4486 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4487 int ret; 4488 4489 preempt_disable(); 4490 rcu_read_lock(); 4491 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4492 rcu_read_unlock(); 4493 preempt_enable(); 4494 4495 /* Consider XDP consuming the packet a success from 4496 * the netdev point of view we do not want to count 4497 * this as an error. 4498 */ 4499 if (ret != XDP_PASS) 4500 return NET_RX_SUCCESS; 4501 } 4502 4503 #ifdef CONFIG_RPS 4504 if (static_key_false(&rps_needed)) { 4505 struct rps_dev_flow voidflow, *rflow = &voidflow; 4506 int cpu; 4507 4508 preempt_disable(); 4509 rcu_read_lock(); 4510 4511 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4512 if (cpu < 0) 4513 cpu = smp_processor_id(); 4514 4515 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4516 4517 rcu_read_unlock(); 4518 preempt_enable(); 4519 } else 4520 #endif 4521 { 4522 unsigned int qtail; 4523 4524 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4525 put_cpu(); 4526 } 4527 return ret; 4528 } 4529 4530 /** 4531 * netif_rx - post buffer to the network code 4532 * @skb: buffer to post 4533 * 4534 * This function receives a packet from a device driver and queues it for 4535 * the upper (protocol) levels to process. It always succeeds. The buffer 4536 * may be dropped during processing for congestion control or by the 4537 * protocol layers. 4538 * 4539 * return values: 4540 * NET_RX_SUCCESS (no congestion) 4541 * NET_RX_DROP (packet was dropped) 4542 * 4543 */ 4544 4545 int netif_rx(struct sk_buff *skb) 4546 { 4547 int ret; 4548 4549 trace_netif_rx_entry(skb); 4550 4551 ret = netif_rx_internal(skb); 4552 trace_netif_rx_exit(ret); 4553 4554 return ret; 4555 } 4556 EXPORT_SYMBOL(netif_rx); 4557 4558 int netif_rx_ni(struct sk_buff *skb) 4559 { 4560 int err; 4561 4562 trace_netif_rx_ni_entry(skb); 4563 4564 preempt_disable(); 4565 err = netif_rx_internal(skb); 4566 if (local_softirq_pending()) 4567 do_softirq(); 4568 preempt_enable(); 4569 trace_netif_rx_ni_exit(err); 4570 4571 return err; 4572 } 4573 EXPORT_SYMBOL(netif_rx_ni); 4574 4575 static __latent_entropy void net_tx_action(struct softirq_action *h) 4576 { 4577 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4578 4579 if (sd->completion_queue) { 4580 struct sk_buff *clist; 4581 4582 local_irq_disable(); 4583 clist = sd->completion_queue; 4584 sd->completion_queue = NULL; 4585 local_irq_enable(); 4586 4587 while (clist) { 4588 struct sk_buff *skb = clist; 4589 4590 clist = clist->next; 4591 4592 WARN_ON(refcount_read(&skb->users)); 4593 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4594 trace_consume_skb(skb); 4595 else 4596 trace_kfree_skb(skb, net_tx_action); 4597 4598 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4599 __kfree_skb(skb); 4600 else 4601 __kfree_skb_defer(skb); 4602 } 4603 4604 __kfree_skb_flush(); 4605 } 4606 4607 if (sd->output_queue) { 4608 struct Qdisc *head; 4609 4610 local_irq_disable(); 4611 head = sd->output_queue; 4612 sd->output_queue = NULL; 4613 sd->output_queue_tailp = &sd->output_queue; 4614 local_irq_enable(); 4615 4616 while (head) { 4617 struct Qdisc *q = head; 4618 spinlock_t *root_lock = NULL; 4619 4620 head = head->next_sched; 4621 4622 if (!(q->flags & TCQ_F_NOLOCK)) { 4623 root_lock = qdisc_lock(q); 4624 spin_lock(root_lock); 4625 } 4626 /* We need to make sure head->next_sched is read 4627 * before clearing __QDISC_STATE_SCHED 4628 */ 4629 smp_mb__before_atomic(); 4630 clear_bit(__QDISC_STATE_SCHED, &q->state); 4631 qdisc_run(q); 4632 if (root_lock) 4633 spin_unlock(root_lock); 4634 } 4635 } 4636 4637 xfrm_dev_backlog(sd); 4638 } 4639 4640 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4641 /* This hook is defined here for ATM LANE */ 4642 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4643 unsigned char *addr) __read_mostly; 4644 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4645 #endif 4646 4647 static inline struct sk_buff * 4648 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4649 struct net_device *orig_dev) 4650 { 4651 #ifdef CONFIG_NET_CLS_ACT 4652 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4653 struct tcf_result cl_res; 4654 4655 /* If there's at least one ingress present somewhere (so 4656 * we get here via enabled static key), remaining devices 4657 * that are not configured with an ingress qdisc will bail 4658 * out here. 4659 */ 4660 if (!miniq) 4661 return skb; 4662 4663 if (*pt_prev) { 4664 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4665 *pt_prev = NULL; 4666 } 4667 4668 qdisc_skb_cb(skb)->pkt_len = skb->len; 4669 skb->tc_at_ingress = 1; 4670 mini_qdisc_bstats_cpu_update(miniq, skb); 4671 4672 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4673 case TC_ACT_OK: 4674 case TC_ACT_RECLASSIFY: 4675 skb->tc_index = TC_H_MIN(cl_res.classid); 4676 break; 4677 case TC_ACT_SHOT: 4678 mini_qdisc_qstats_cpu_drop(miniq); 4679 kfree_skb(skb); 4680 return NULL; 4681 case TC_ACT_STOLEN: 4682 case TC_ACT_QUEUED: 4683 case TC_ACT_TRAP: 4684 consume_skb(skb); 4685 return NULL; 4686 case TC_ACT_REDIRECT: 4687 /* skb_mac_header check was done by cls/act_bpf, so 4688 * we can safely push the L2 header back before 4689 * redirecting to another netdev 4690 */ 4691 __skb_push(skb, skb->mac_len); 4692 skb_do_redirect(skb); 4693 return NULL; 4694 case TC_ACT_REINSERT: 4695 /* this does not scrub the packet, and updates stats on error */ 4696 skb_tc_reinsert(skb, &cl_res); 4697 return NULL; 4698 default: 4699 break; 4700 } 4701 #endif /* CONFIG_NET_CLS_ACT */ 4702 return skb; 4703 } 4704 4705 /** 4706 * netdev_is_rx_handler_busy - check if receive handler is registered 4707 * @dev: device to check 4708 * 4709 * Check if a receive handler is already registered for a given device. 4710 * Return true if there one. 4711 * 4712 * The caller must hold the rtnl_mutex. 4713 */ 4714 bool netdev_is_rx_handler_busy(struct net_device *dev) 4715 { 4716 ASSERT_RTNL(); 4717 return dev && rtnl_dereference(dev->rx_handler); 4718 } 4719 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4720 4721 /** 4722 * netdev_rx_handler_register - register receive handler 4723 * @dev: device to register a handler for 4724 * @rx_handler: receive handler to register 4725 * @rx_handler_data: data pointer that is used by rx handler 4726 * 4727 * Register a receive handler for a device. This handler will then be 4728 * called from __netif_receive_skb. A negative errno code is returned 4729 * on a failure. 4730 * 4731 * The caller must hold the rtnl_mutex. 4732 * 4733 * For a general description of rx_handler, see enum rx_handler_result. 4734 */ 4735 int netdev_rx_handler_register(struct net_device *dev, 4736 rx_handler_func_t *rx_handler, 4737 void *rx_handler_data) 4738 { 4739 if (netdev_is_rx_handler_busy(dev)) 4740 return -EBUSY; 4741 4742 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4743 return -EINVAL; 4744 4745 /* Note: rx_handler_data must be set before rx_handler */ 4746 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4747 rcu_assign_pointer(dev->rx_handler, rx_handler); 4748 4749 return 0; 4750 } 4751 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4752 4753 /** 4754 * netdev_rx_handler_unregister - unregister receive handler 4755 * @dev: device to unregister a handler from 4756 * 4757 * Unregister a receive handler from a device. 4758 * 4759 * The caller must hold the rtnl_mutex. 4760 */ 4761 void netdev_rx_handler_unregister(struct net_device *dev) 4762 { 4763 4764 ASSERT_RTNL(); 4765 RCU_INIT_POINTER(dev->rx_handler, NULL); 4766 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4767 * section has a guarantee to see a non NULL rx_handler_data 4768 * as well. 4769 */ 4770 synchronize_net(); 4771 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4772 } 4773 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4774 4775 /* 4776 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4777 * the special handling of PFMEMALLOC skbs. 4778 */ 4779 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4780 { 4781 switch (skb->protocol) { 4782 case htons(ETH_P_ARP): 4783 case htons(ETH_P_IP): 4784 case htons(ETH_P_IPV6): 4785 case htons(ETH_P_8021Q): 4786 case htons(ETH_P_8021AD): 4787 return true; 4788 default: 4789 return false; 4790 } 4791 } 4792 4793 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4794 int *ret, struct net_device *orig_dev) 4795 { 4796 #ifdef CONFIG_NETFILTER_INGRESS 4797 if (nf_hook_ingress_active(skb)) { 4798 int ingress_retval; 4799 4800 if (*pt_prev) { 4801 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4802 *pt_prev = NULL; 4803 } 4804 4805 rcu_read_lock(); 4806 ingress_retval = nf_hook_ingress(skb); 4807 rcu_read_unlock(); 4808 return ingress_retval; 4809 } 4810 #endif /* CONFIG_NETFILTER_INGRESS */ 4811 return 0; 4812 } 4813 4814 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4815 struct packet_type **ppt_prev) 4816 { 4817 struct packet_type *ptype, *pt_prev; 4818 rx_handler_func_t *rx_handler; 4819 struct net_device *orig_dev; 4820 bool deliver_exact = false; 4821 int ret = NET_RX_DROP; 4822 __be16 type; 4823 4824 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4825 4826 trace_netif_receive_skb(skb); 4827 4828 orig_dev = skb->dev; 4829 4830 skb_reset_network_header(skb); 4831 if (!skb_transport_header_was_set(skb)) 4832 skb_reset_transport_header(skb); 4833 skb_reset_mac_len(skb); 4834 4835 pt_prev = NULL; 4836 4837 another_round: 4838 skb->skb_iif = skb->dev->ifindex; 4839 4840 __this_cpu_inc(softnet_data.processed); 4841 4842 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4843 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4844 skb = skb_vlan_untag(skb); 4845 if (unlikely(!skb)) 4846 goto out; 4847 } 4848 4849 if (skb_skip_tc_classify(skb)) 4850 goto skip_classify; 4851 4852 if (pfmemalloc) 4853 goto skip_taps; 4854 4855 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4856 if (pt_prev) 4857 ret = deliver_skb(skb, pt_prev, orig_dev); 4858 pt_prev = ptype; 4859 } 4860 4861 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4862 if (pt_prev) 4863 ret = deliver_skb(skb, pt_prev, orig_dev); 4864 pt_prev = ptype; 4865 } 4866 4867 skip_taps: 4868 #ifdef CONFIG_NET_INGRESS 4869 if (static_branch_unlikely(&ingress_needed_key)) { 4870 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4871 if (!skb) 4872 goto out; 4873 4874 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4875 goto out; 4876 } 4877 #endif 4878 skb_reset_tc(skb); 4879 skip_classify: 4880 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4881 goto drop; 4882 4883 if (skb_vlan_tag_present(skb)) { 4884 if (pt_prev) { 4885 ret = deliver_skb(skb, pt_prev, orig_dev); 4886 pt_prev = NULL; 4887 } 4888 if (vlan_do_receive(&skb)) 4889 goto another_round; 4890 else if (unlikely(!skb)) 4891 goto out; 4892 } 4893 4894 rx_handler = rcu_dereference(skb->dev->rx_handler); 4895 if (rx_handler) { 4896 if (pt_prev) { 4897 ret = deliver_skb(skb, pt_prev, orig_dev); 4898 pt_prev = NULL; 4899 } 4900 switch (rx_handler(&skb)) { 4901 case RX_HANDLER_CONSUMED: 4902 ret = NET_RX_SUCCESS; 4903 goto out; 4904 case RX_HANDLER_ANOTHER: 4905 goto another_round; 4906 case RX_HANDLER_EXACT: 4907 deliver_exact = true; 4908 case RX_HANDLER_PASS: 4909 break; 4910 default: 4911 BUG(); 4912 } 4913 } 4914 4915 if (unlikely(skb_vlan_tag_present(skb))) { 4916 if (skb_vlan_tag_get_id(skb)) 4917 skb->pkt_type = PACKET_OTHERHOST; 4918 /* Note: we might in the future use prio bits 4919 * and set skb->priority like in vlan_do_receive() 4920 * For the time being, just ignore Priority Code Point 4921 */ 4922 __vlan_hwaccel_clear_tag(skb); 4923 } 4924 4925 type = skb->protocol; 4926 4927 /* deliver only exact match when indicated */ 4928 if (likely(!deliver_exact)) { 4929 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4930 &ptype_base[ntohs(type) & 4931 PTYPE_HASH_MASK]); 4932 } 4933 4934 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4935 &orig_dev->ptype_specific); 4936 4937 if (unlikely(skb->dev != orig_dev)) { 4938 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4939 &skb->dev->ptype_specific); 4940 } 4941 4942 if (pt_prev) { 4943 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4944 goto drop; 4945 *ppt_prev = pt_prev; 4946 } else { 4947 drop: 4948 if (!deliver_exact) 4949 atomic_long_inc(&skb->dev->rx_dropped); 4950 else 4951 atomic_long_inc(&skb->dev->rx_nohandler); 4952 kfree_skb(skb); 4953 /* Jamal, now you will not able to escape explaining 4954 * me how you were going to use this. :-) 4955 */ 4956 ret = NET_RX_DROP; 4957 } 4958 4959 out: 4960 return ret; 4961 } 4962 4963 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4964 { 4965 struct net_device *orig_dev = skb->dev; 4966 struct packet_type *pt_prev = NULL; 4967 int ret; 4968 4969 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4970 if (pt_prev) 4971 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4972 return ret; 4973 } 4974 4975 /** 4976 * netif_receive_skb_core - special purpose version of netif_receive_skb 4977 * @skb: buffer to process 4978 * 4979 * More direct receive version of netif_receive_skb(). It should 4980 * only be used by callers that have a need to skip RPS and Generic XDP. 4981 * Caller must also take care of handling if (page_is_)pfmemalloc. 4982 * 4983 * This function may only be called from softirq context and interrupts 4984 * should be enabled. 4985 * 4986 * Return values (usually ignored): 4987 * NET_RX_SUCCESS: no congestion 4988 * NET_RX_DROP: packet was dropped 4989 */ 4990 int netif_receive_skb_core(struct sk_buff *skb) 4991 { 4992 int ret; 4993 4994 rcu_read_lock(); 4995 ret = __netif_receive_skb_one_core(skb, false); 4996 rcu_read_unlock(); 4997 4998 return ret; 4999 } 5000 EXPORT_SYMBOL(netif_receive_skb_core); 5001 5002 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5003 struct packet_type *pt_prev, 5004 struct net_device *orig_dev) 5005 { 5006 struct sk_buff *skb, *next; 5007 5008 if (!pt_prev) 5009 return; 5010 if (list_empty(head)) 5011 return; 5012 if (pt_prev->list_func != NULL) 5013 pt_prev->list_func(head, pt_prev, orig_dev); 5014 else 5015 list_for_each_entry_safe(skb, next, head, list) 5016 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5017 } 5018 5019 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5020 { 5021 /* Fast-path assumptions: 5022 * - There is no RX handler. 5023 * - Only one packet_type matches. 5024 * If either of these fails, we will end up doing some per-packet 5025 * processing in-line, then handling the 'last ptype' for the whole 5026 * sublist. This can't cause out-of-order delivery to any single ptype, 5027 * because the 'last ptype' must be constant across the sublist, and all 5028 * other ptypes are handled per-packet. 5029 */ 5030 /* Current (common) ptype of sublist */ 5031 struct packet_type *pt_curr = NULL; 5032 /* Current (common) orig_dev of sublist */ 5033 struct net_device *od_curr = NULL; 5034 struct list_head sublist; 5035 struct sk_buff *skb, *next; 5036 5037 INIT_LIST_HEAD(&sublist); 5038 list_for_each_entry_safe(skb, next, head, list) { 5039 struct net_device *orig_dev = skb->dev; 5040 struct packet_type *pt_prev = NULL; 5041 5042 skb_list_del_init(skb); 5043 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5044 if (!pt_prev) 5045 continue; 5046 if (pt_curr != pt_prev || od_curr != orig_dev) { 5047 /* dispatch old sublist */ 5048 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5049 /* start new sublist */ 5050 INIT_LIST_HEAD(&sublist); 5051 pt_curr = pt_prev; 5052 od_curr = orig_dev; 5053 } 5054 list_add_tail(&skb->list, &sublist); 5055 } 5056 5057 /* dispatch final sublist */ 5058 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5059 } 5060 5061 static int __netif_receive_skb(struct sk_buff *skb) 5062 { 5063 int ret; 5064 5065 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5066 unsigned int noreclaim_flag; 5067 5068 /* 5069 * PFMEMALLOC skbs are special, they should 5070 * - be delivered to SOCK_MEMALLOC sockets only 5071 * - stay away from userspace 5072 * - have bounded memory usage 5073 * 5074 * Use PF_MEMALLOC as this saves us from propagating the allocation 5075 * context down to all allocation sites. 5076 */ 5077 noreclaim_flag = memalloc_noreclaim_save(); 5078 ret = __netif_receive_skb_one_core(skb, true); 5079 memalloc_noreclaim_restore(noreclaim_flag); 5080 } else 5081 ret = __netif_receive_skb_one_core(skb, false); 5082 5083 return ret; 5084 } 5085 5086 static void __netif_receive_skb_list(struct list_head *head) 5087 { 5088 unsigned long noreclaim_flag = 0; 5089 struct sk_buff *skb, *next; 5090 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5091 5092 list_for_each_entry_safe(skb, next, head, list) { 5093 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5094 struct list_head sublist; 5095 5096 /* Handle the previous sublist */ 5097 list_cut_before(&sublist, head, &skb->list); 5098 if (!list_empty(&sublist)) 5099 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5100 pfmemalloc = !pfmemalloc; 5101 /* See comments in __netif_receive_skb */ 5102 if (pfmemalloc) 5103 noreclaim_flag = memalloc_noreclaim_save(); 5104 else 5105 memalloc_noreclaim_restore(noreclaim_flag); 5106 } 5107 } 5108 /* Handle the remaining sublist */ 5109 if (!list_empty(head)) 5110 __netif_receive_skb_list_core(head, pfmemalloc); 5111 /* Restore pflags */ 5112 if (pfmemalloc) 5113 memalloc_noreclaim_restore(noreclaim_flag); 5114 } 5115 5116 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5117 { 5118 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5119 struct bpf_prog *new = xdp->prog; 5120 int ret = 0; 5121 5122 switch (xdp->command) { 5123 case XDP_SETUP_PROG: 5124 rcu_assign_pointer(dev->xdp_prog, new); 5125 if (old) 5126 bpf_prog_put(old); 5127 5128 if (old && !new) { 5129 static_branch_dec(&generic_xdp_needed_key); 5130 } else if (new && !old) { 5131 static_branch_inc(&generic_xdp_needed_key); 5132 dev_disable_lro(dev); 5133 dev_disable_gro_hw(dev); 5134 } 5135 break; 5136 5137 case XDP_QUERY_PROG: 5138 xdp->prog_id = old ? old->aux->id : 0; 5139 break; 5140 5141 default: 5142 ret = -EINVAL; 5143 break; 5144 } 5145 5146 return ret; 5147 } 5148 5149 static int netif_receive_skb_internal(struct sk_buff *skb) 5150 { 5151 int ret; 5152 5153 net_timestamp_check(netdev_tstamp_prequeue, skb); 5154 5155 if (skb_defer_rx_timestamp(skb)) 5156 return NET_RX_SUCCESS; 5157 5158 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5159 int ret; 5160 5161 preempt_disable(); 5162 rcu_read_lock(); 5163 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5164 rcu_read_unlock(); 5165 preempt_enable(); 5166 5167 if (ret != XDP_PASS) 5168 return NET_RX_DROP; 5169 } 5170 5171 rcu_read_lock(); 5172 #ifdef CONFIG_RPS 5173 if (static_key_false(&rps_needed)) { 5174 struct rps_dev_flow voidflow, *rflow = &voidflow; 5175 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5176 5177 if (cpu >= 0) { 5178 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5179 rcu_read_unlock(); 5180 return ret; 5181 } 5182 } 5183 #endif 5184 ret = __netif_receive_skb(skb); 5185 rcu_read_unlock(); 5186 return ret; 5187 } 5188 5189 static void netif_receive_skb_list_internal(struct list_head *head) 5190 { 5191 struct bpf_prog *xdp_prog = NULL; 5192 struct sk_buff *skb, *next; 5193 struct list_head sublist; 5194 5195 INIT_LIST_HEAD(&sublist); 5196 list_for_each_entry_safe(skb, next, head, list) { 5197 net_timestamp_check(netdev_tstamp_prequeue, skb); 5198 skb_list_del_init(skb); 5199 if (!skb_defer_rx_timestamp(skb)) 5200 list_add_tail(&skb->list, &sublist); 5201 } 5202 list_splice_init(&sublist, head); 5203 5204 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5205 preempt_disable(); 5206 rcu_read_lock(); 5207 list_for_each_entry_safe(skb, next, head, list) { 5208 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5209 skb_list_del_init(skb); 5210 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5211 list_add_tail(&skb->list, &sublist); 5212 } 5213 rcu_read_unlock(); 5214 preempt_enable(); 5215 /* Put passed packets back on main list */ 5216 list_splice_init(&sublist, head); 5217 } 5218 5219 rcu_read_lock(); 5220 #ifdef CONFIG_RPS 5221 if (static_key_false(&rps_needed)) { 5222 list_for_each_entry_safe(skb, next, head, list) { 5223 struct rps_dev_flow voidflow, *rflow = &voidflow; 5224 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5225 5226 if (cpu >= 0) { 5227 /* Will be handled, remove from list */ 5228 skb_list_del_init(skb); 5229 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5230 } 5231 } 5232 } 5233 #endif 5234 __netif_receive_skb_list(head); 5235 rcu_read_unlock(); 5236 } 5237 5238 /** 5239 * netif_receive_skb - process receive buffer from network 5240 * @skb: buffer to process 5241 * 5242 * netif_receive_skb() is the main receive data processing function. 5243 * It always succeeds. The buffer may be dropped during processing 5244 * for congestion control or by the protocol layers. 5245 * 5246 * This function may only be called from softirq context and interrupts 5247 * should be enabled. 5248 * 5249 * Return values (usually ignored): 5250 * NET_RX_SUCCESS: no congestion 5251 * NET_RX_DROP: packet was dropped 5252 */ 5253 int netif_receive_skb(struct sk_buff *skb) 5254 { 5255 int ret; 5256 5257 trace_netif_receive_skb_entry(skb); 5258 5259 ret = netif_receive_skb_internal(skb); 5260 trace_netif_receive_skb_exit(ret); 5261 5262 return ret; 5263 } 5264 EXPORT_SYMBOL(netif_receive_skb); 5265 5266 /** 5267 * netif_receive_skb_list - process many receive buffers from network 5268 * @head: list of skbs to process. 5269 * 5270 * Since return value of netif_receive_skb() is normally ignored, and 5271 * wouldn't be meaningful for a list, this function returns void. 5272 * 5273 * This function may only be called from softirq context and interrupts 5274 * should be enabled. 5275 */ 5276 void netif_receive_skb_list(struct list_head *head) 5277 { 5278 struct sk_buff *skb; 5279 5280 if (list_empty(head)) 5281 return; 5282 if (trace_netif_receive_skb_list_entry_enabled()) { 5283 list_for_each_entry(skb, head, list) 5284 trace_netif_receive_skb_list_entry(skb); 5285 } 5286 netif_receive_skb_list_internal(head); 5287 trace_netif_receive_skb_list_exit(0); 5288 } 5289 EXPORT_SYMBOL(netif_receive_skb_list); 5290 5291 DEFINE_PER_CPU(struct work_struct, flush_works); 5292 5293 /* Network device is going away, flush any packets still pending */ 5294 static void flush_backlog(struct work_struct *work) 5295 { 5296 struct sk_buff *skb, *tmp; 5297 struct softnet_data *sd; 5298 5299 local_bh_disable(); 5300 sd = this_cpu_ptr(&softnet_data); 5301 5302 local_irq_disable(); 5303 rps_lock(sd); 5304 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5305 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5306 __skb_unlink(skb, &sd->input_pkt_queue); 5307 kfree_skb(skb); 5308 input_queue_head_incr(sd); 5309 } 5310 } 5311 rps_unlock(sd); 5312 local_irq_enable(); 5313 5314 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5315 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5316 __skb_unlink(skb, &sd->process_queue); 5317 kfree_skb(skb); 5318 input_queue_head_incr(sd); 5319 } 5320 } 5321 local_bh_enable(); 5322 } 5323 5324 static void flush_all_backlogs(void) 5325 { 5326 unsigned int cpu; 5327 5328 get_online_cpus(); 5329 5330 for_each_online_cpu(cpu) 5331 queue_work_on(cpu, system_highpri_wq, 5332 per_cpu_ptr(&flush_works, cpu)); 5333 5334 for_each_online_cpu(cpu) 5335 flush_work(per_cpu_ptr(&flush_works, cpu)); 5336 5337 put_online_cpus(); 5338 } 5339 5340 static int napi_gro_complete(struct sk_buff *skb) 5341 { 5342 struct packet_offload *ptype; 5343 __be16 type = skb->protocol; 5344 struct list_head *head = &offload_base; 5345 int err = -ENOENT; 5346 5347 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5348 5349 if (NAPI_GRO_CB(skb)->count == 1) { 5350 skb_shinfo(skb)->gso_size = 0; 5351 goto out; 5352 } 5353 5354 rcu_read_lock(); 5355 list_for_each_entry_rcu(ptype, head, list) { 5356 if (ptype->type != type || !ptype->callbacks.gro_complete) 5357 continue; 5358 5359 err = ptype->callbacks.gro_complete(skb, 0); 5360 break; 5361 } 5362 rcu_read_unlock(); 5363 5364 if (err) { 5365 WARN_ON(&ptype->list == head); 5366 kfree_skb(skb); 5367 return NET_RX_SUCCESS; 5368 } 5369 5370 out: 5371 return netif_receive_skb_internal(skb); 5372 } 5373 5374 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5375 bool flush_old) 5376 { 5377 struct list_head *head = &napi->gro_hash[index].list; 5378 struct sk_buff *skb, *p; 5379 5380 list_for_each_entry_safe_reverse(skb, p, head, list) { 5381 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5382 return; 5383 skb_list_del_init(skb); 5384 napi_gro_complete(skb); 5385 napi->gro_hash[index].count--; 5386 } 5387 5388 if (!napi->gro_hash[index].count) 5389 __clear_bit(index, &napi->gro_bitmask); 5390 } 5391 5392 /* napi->gro_hash[].list contains packets ordered by age. 5393 * youngest packets at the head of it. 5394 * Complete skbs in reverse order to reduce latencies. 5395 */ 5396 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5397 { 5398 unsigned long bitmask = napi->gro_bitmask; 5399 unsigned int i, base = ~0U; 5400 5401 while ((i = ffs(bitmask)) != 0) { 5402 bitmask >>= i; 5403 base += i; 5404 __napi_gro_flush_chain(napi, base, flush_old); 5405 } 5406 } 5407 EXPORT_SYMBOL(napi_gro_flush); 5408 5409 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5410 struct sk_buff *skb) 5411 { 5412 unsigned int maclen = skb->dev->hard_header_len; 5413 u32 hash = skb_get_hash_raw(skb); 5414 struct list_head *head; 5415 struct sk_buff *p; 5416 5417 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5418 list_for_each_entry(p, head, list) { 5419 unsigned long diffs; 5420 5421 NAPI_GRO_CB(p)->flush = 0; 5422 5423 if (hash != skb_get_hash_raw(p)) { 5424 NAPI_GRO_CB(p)->same_flow = 0; 5425 continue; 5426 } 5427 5428 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5429 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5430 if (skb_vlan_tag_present(p)) 5431 diffs |= p->vlan_tci ^ skb->vlan_tci; 5432 diffs |= skb_metadata_dst_cmp(p, skb); 5433 diffs |= skb_metadata_differs(p, skb); 5434 if (maclen == ETH_HLEN) 5435 diffs |= compare_ether_header(skb_mac_header(p), 5436 skb_mac_header(skb)); 5437 else if (!diffs) 5438 diffs = memcmp(skb_mac_header(p), 5439 skb_mac_header(skb), 5440 maclen); 5441 NAPI_GRO_CB(p)->same_flow = !diffs; 5442 } 5443 5444 return head; 5445 } 5446 5447 static void skb_gro_reset_offset(struct sk_buff *skb) 5448 { 5449 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5450 const skb_frag_t *frag0 = &pinfo->frags[0]; 5451 5452 NAPI_GRO_CB(skb)->data_offset = 0; 5453 NAPI_GRO_CB(skb)->frag0 = NULL; 5454 NAPI_GRO_CB(skb)->frag0_len = 0; 5455 5456 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5457 pinfo->nr_frags && 5458 !PageHighMem(skb_frag_page(frag0))) { 5459 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5460 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5461 skb_frag_size(frag0), 5462 skb->end - skb->tail); 5463 } 5464 } 5465 5466 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5467 { 5468 struct skb_shared_info *pinfo = skb_shinfo(skb); 5469 5470 BUG_ON(skb->end - skb->tail < grow); 5471 5472 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5473 5474 skb->data_len -= grow; 5475 skb->tail += grow; 5476 5477 pinfo->frags[0].page_offset += grow; 5478 skb_frag_size_sub(&pinfo->frags[0], grow); 5479 5480 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5481 skb_frag_unref(skb, 0); 5482 memmove(pinfo->frags, pinfo->frags + 1, 5483 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5484 } 5485 } 5486 5487 static void gro_flush_oldest(struct list_head *head) 5488 { 5489 struct sk_buff *oldest; 5490 5491 oldest = list_last_entry(head, struct sk_buff, list); 5492 5493 /* We are called with head length >= MAX_GRO_SKBS, so this is 5494 * impossible. 5495 */ 5496 if (WARN_ON_ONCE(!oldest)) 5497 return; 5498 5499 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5500 * SKB to the chain. 5501 */ 5502 skb_list_del_init(oldest); 5503 napi_gro_complete(oldest); 5504 } 5505 5506 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5507 { 5508 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5509 struct list_head *head = &offload_base; 5510 struct packet_offload *ptype; 5511 __be16 type = skb->protocol; 5512 struct list_head *gro_head; 5513 struct sk_buff *pp = NULL; 5514 enum gro_result ret; 5515 int same_flow; 5516 int grow; 5517 5518 if (netif_elide_gro(skb->dev)) 5519 goto normal; 5520 5521 gro_head = gro_list_prepare(napi, skb); 5522 5523 rcu_read_lock(); 5524 list_for_each_entry_rcu(ptype, head, list) { 5525 if (ptype->type != type || !ptype->callbacks.gro_receive) 5526 continue; 5527 5528 skb_set_network_header(skb, skb_gro_offset(skb)); 5529 skb_reset_mac_len(skb); 5530 NAPI_GRO_CB(skb)->same_flow = 0; 5531 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5532 NAPI_GRO_CB(skb)->free = 0; 5533 NAPI_GRO_CB(skb)->encap_mark = 0; 5534 NAPI_GRO_CB(skb)->recursion_counter = 0; 5535 NAPI_GRO_CB(skb)->is_fou = 0; 5536 NAPI_GRO_CB(skb)->is_atomic = 1; 5537 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5538 5539 /* Setup for GRO checksum validation */ 5540 switch (skb->ip_summed) { 5541 case CHECKSUM_COMPLETE: 5542 NAPI_GRO_CB(skb)->csum = skb->csum; 5543 NAPI_GRO_CB(skb)->csum_valid = 1; 5544 NAPI_GRO_CB(skb)->csum_cnt = 0; 5545 break; 5546 case CHECKSUM_UNNECESSARY: 5547 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5548 NAPI_GRO_CB(skb)->csum_valid = 0; 5549 break; 5550 default: 5551 NAPI_GRO_CB(skb)->csum_cnt = 0; 5552 NAPI_GRO_CB(skb)->csum_valid = 0; 5553 } 5554 5555 pp = ptype->callbacks.gro_receive(gro_head, skb); 5556 break; 5557 } 5558 rcu_read_unlock(); 5559 5560 if (&ptype->list == head) 5561 goto normal; 5562 5563 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5564 ret = GRO_CONSUMED; 5565 goto ok; 5566 } 5567 5568 same_flow = NAPI_GRO_CB(skb)->same_flow; 5569 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5570 5571 if (pp) { 5572 skb_list_del_init(pp); 5573 napi_gro_complete(pp); 5574 napi->gro_hash[hash].count--; 5575 } 5576 5577 if (same_flow) 5578 goto ok; 5579 5580 if (NAPI_GRO_CB(skb)->flush) 5581 goto normal; 5582 5583 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5584 gro_flush_oldest(gro_head); 5585 } else { 5586 napi->gro_hash[hash].count++; 5587 } 5588 NAPI_GRO_CB(skb)->count = 1; 5589 NAPI_GRO_CB(skb)->age = jiffies; 5590 NAPI_GRO_CB(skb)->last = skb; 5591 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5592 list_add(&skb->list, gro_head); 5593 ret = GRO_HELD; 5594 5595 pull: 5596 grow = skb_gro_offset(skb) - skb_headlen(skb); 5597 if (grow > 0) 5598 gro_pull_from_frag0(skb, grow); 5599 ok: 5600 if (napi->gro_hash[hash].count) { 5601 if (!test_bit(hash, &napi->gro_bitmask)) 5602 __set_bit(hash, &napi->gro_bitmask); 5603 } else if (test_bit(hash, &napi->gro_bitmask)) { 5604 __clear_bit(hash, &napi->gro_bitmask); 5605 } 5606 5607 return ret; 5608 5609 normal: 5610 ret = GRO_NORMAL; 5611 goto pull; 5612 } 5613 5614 struct packet_offload *gro_find_receive_by_type(__be16 type) 5615 { 5616 struct list_head *offload_head = &offload_base; 5617 struct packet_offload *ptype; 5618 5619 list_for_each_entry_rcu(ptype, offload_head, list) { 5620 if (ptype->type != type || !ptype->callbacks.gro_receive) 5621 continue; 5622 return ptype; 5623 } 5624 return NULL; 5625 } 5626 EXPORT_SYMBOL(gro_find_receive_by_type); 5627 5628 struct packet_offload *gro_find_complete_by_type(__be16 type) 5629 { 5630 struct list_head *offload_head = &offload_base; 5631 struct packet_offload *ptype; 5632 5633 list_for_each_entry_rcu(ptype, offload_head, list) { 5634 if (ptype->type != type || !ptype->callbacks.gro_complete) 5635 continue; 5636 return ptype; 5637 } 5638 return NULL; 5639 } 5640 EXPORT_SYMBOL(gro_find_complete_by_type); 5641 5642 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5643 { 5644 skb_dst_drop(skb); 5645 secpath_reset(skb); 5646 kmem_cache_free(skbuff_head_cache, skb); 5647 } 5648 5649 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5650 { 5651 switch (ret) { 5652 case GRO_NORMAL: 5653 if (netif_receive_skb_internal(skb)) 5654 ret = GRO_DROP; 5655 break; 5656 5657 case GRO_DROP: 5658 kfree_skb(skb); 5659 break; 5660 5661 case GRO_MERGED_FREE: 5662 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5663 napi_skb_free_stolen_head(skb); 5664 else 5665 __kfree_skb(skb); 5666 break; 5667 5668 case GRO_HELD: 5669 case GRO_MERGED: 5670 case GRO_CONSUMED: 5671 break; 5672 } 5673 5674 return ret; 5675 } 5676 5677 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5678 { 5679 gro_result_t ret; 5680 5681 skb_mark_napi_id(skb, napi); 5682 trace_napi_gro_receive_entry(skb); 5683 5684 skb_gro_reset_offset(skb); 5685 5686 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5687 trace_napi_gro_receive_exit(ret); 5688 5689 return ret; 5690 } 5691 EXPORT_SYMBOL(napi_gro_receive); 5692 5693 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5694 { 5695 if (unlikely(skb->pfmemalloc)) { 5696 consume_skb(skb); 5697 return; 5698 } 5699 __skb_pull(skb, skb_headlen(skb)); 5700 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5701 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5702 __vlan_hwaccel_clear_tag(skb); 5703 skb->dev = napi->dev; 5704 skb->skb_iif = 0; 5705 5706 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5707 skb->pkt_type = PACKET_HOST; 5708 5709 skb->encapsulation = 0; 5710 skb_shinfo(skb)->gso_type = 0; 5711 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5712 secpath_reset(skb); 5713 5714 napi->skb = skb; 5715 } 5716 5717 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5718 { 5719 struct sk_buff *skb = napi->skb; 5720 5721 if (!skb) { 5722 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5723 if (skb) { 5724 napi->skb = skb; 5725 skb_mark_napi_id(skb, napi); 5726 } 5727 } 5728 return skb; 5729 } 5730 EXPORT_SYMBOL(napi_get_frags); 5731 5732 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5733 struct sk_buff *skb, 5734 gro_result_t ret) 5735 { 5736 switch (ret) { 5737 case GRO_NORMAL: 5738 case GRO_HELD: 5739 __skb_push(skb, ETH_HLEN); 5740 skb->protocol = eth_type_trans(skb, skb->dev); 5741 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5742 ret = GRO_DROP; 5743 break; 5744 5745 case GRO_DROP: 5746 napi_reuse_skb(napi, skb); 5747 break; 5748 5749 case GRO_MERGED_FREE: 5750 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5751 napi_skb_free_stolen_head(skb); 5752 else 5753 napi_reuse_skb(napi, skb); 5754 break; 5755 5756 case GRO_MERGED: 5757 case GRO_CONSUMED: 5758 break; 5759 } 5760 5761 return ret; 5762 } 5763 5764 /* Upper GRO stack assumes network header starts at gro_offset=0 5765 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5766 * We copy ethernet header into skb->data to have a common layout. 5767 */ 5768 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5769 { 5770 struct sk_buff *skb = napi->skb; 5771 const struct ethhdr *eth; 5772 unsigned int hlen = sizeof(*eth); 5773 5774 napi->skb = NULL; 5775 5776 skb_reset_mac_header(skb); 5777 skb_gro_reset_offset(skb); 5778 5779 eth = skb_gro_header_fast(skb, 0); 5780 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5781 eth = skb_gro_header_slow(skb, hlen, 0); 5782 if (unlikely(!eth)) { 5783 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5784 __func__, napi->dev->name); 5785 napi_reuse_skb(napi, skb); 5786 return NULL; 5787 } 5788 } else { 5789 gro_pull_from_frag0(skb, hlen); 5790 NAPI_GRO_CB(skb)->frag0 += hlen; 5791 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5792 } 5793 __skb_pull(skb, hlen); 5794 5795 /* 5796 * This works because the only protocols we care about don't require 5797 * special handling. 5798 * We'll fix it up properly in napi_frags_finish() 5799 */ 5800 skb->protocol = eth->h_proto; 5801 5802 return skb; 5803 } 5804 5805 gro_result_t napi_gro_frags(struct napi_struct *napi) 5806 { 5807 gro_result_t ret; 5808 struct sk_buff *skb = napi_frags_skb(napi); 5809 5810 if (!skb) 5811 return GRO_DROP; 5812 5813 trace_napi_gro_frags_entry(skb); 5814 5815 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5816 trace_napi_gro_frags_exit(ret); 5817 5818 return ret; 5819 } 5820 EXPORT_SYMBOL(napi_gro_frags); 5821 5822 /* Compute the checksum from gro_offset and return the folded value 5823 * after adding in any pseudo checksum. 5824 */ 5825 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5826 { 5827 __wsum wsum; 5828 __sum16 sum; 5829 5830 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5831 5832 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5833 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5834 /* See comments in __skb_checksum_complete(). */ 5835 if (likely(!sum)) { 5836 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5837 !skb->csum_complete_sw) 5838 netdev_rx_csum_fault(skb->dev, skb); 5839 } 5840 5841 NAPI_GRO_CB(skb)->csum = wsum; 5842 NAPI_GRO_CB(skb)->csum_valid = 1; 5843 5844 return sum; 5845 } 5846 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5847 5848 static void net_rps_send_ipi(struct softnet_data *remsd) 5849 { 5850 #ifdef CONFIG_RPS 5851 while (remsd) { 5852 struct softnet_data *next = remsd->rps_ipi_next; 5853 5854 if (cpu_online(remsd->cpu)) 5855 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5856 remsd = next; 5857 } 5858 #endif 5859 } 5860 5861 /* 5862 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5863 * Note: called with local irq disabled, but exits with local irq enabled. 5864 */ 5865 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5866 { 5867 #ifdef CONFIG_RPS 5868 struct softnet_data *remsd = sd->rps_ipi_list; 5869 5870 if (remsd) { 5871 sd->rps_ipi_list = NULL; 5872 5873 local_irq_enable(); 5874 5875 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5876 net_rps_send_ipi(remsd); 5877 } else 5878 #endif 5879 local_irq_enable(); 5880 } 5881 5882 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5883 { 5884 #ifdef CONFIG_RPS 5885 return sd->rps_ipi_list != NULL; 5886 #else 5887 return false; 5888 #endif 5889 } 5890 5891 static int process_backlog(struct napi_struct *napi, int quota) 5892 { 5893 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5894 bool again = true; 5895 int work = 0; 5896 5897 /* Check if we have pending ipi, its better to send them now, 5898 * not waiting net_rx_action() end. 5899 */ 5900 if (sd_has_rps_ipi_waiting(sd)) { 5901 local_irq_disable(); 5902 net_rps_action_and_irq_enable(sd); 5903 } 5904 5905 napi->weight = dev_rx_weight; 5906 while (again) { 5907 struct sk_buff *skb; 5908 5909 while ((skb = __skb_dequeue(&sd->process_queue))) { 5910 rcu_read_lock(); 5911 __netif_receive_skb(skb); 5912 rcu_read_unlock(); 5913 input_queue_head_incr(sd); 5914 if (++work >= quota) 5915 return work; 5916 5917 } 5918 5919 local_irq_disable(); 5920 rps_lock(sd); 5921 if (skb_queue_empty(&sd->input_pkt_queue)) { 5922 /* 5923 * Inline a custom version of __napi_complete(). 5924 * only current cpu owns and manipulates this napi, 5925 * and NAPI_STATE_SCHED is the only possible flag set 5926 * on backlog. 5927 * We can use a plain write instead of clear_bit(), 5928 * and we dont need an smp_mb() memory barrier. 5929 */ 5930 napi->state = 0; 5931 again = false; 5932 } else { 5933 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5934 &sd->process_queue); 5935 } 5936 rps_unlock(sd); 5937 local_irq_enable(); 5938 } 5939 5940 return work; 5941 } 5942 5943 /** 5944 * __napi_schedule - schedule for receive 5945 * @n: entry to schedule 5946 * 5947 * The entry's receive function will be scheduled to run. 5948 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5949 */ 5950 void __napi_schedule(struct napi_struct *n) 5951 { 5952 unsigned long flags; 5953 5954 local_irq_save(flags); 5955 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5956 local_irq_restore(flags); 5957 } 5958 EXPORT_SYMBOL(__napi_schedule); 5959 5960 /** 5961 * napi_schedule_prep - check if napi can be scheduled 5962 * @n: napi context 5963 * 5964 * Test if NAPI routine is already running, and if not mark 5965 * it as running. This is used as a condition variable 5966 * insure only one NAPI poll instance runs. We also make 5967 * sure there is no pending NAPI disable. 5968 */ 5969 bool napi_schedule_prep(struct napi_struct *n) 5970 { 5971 unsigned long val, new; 5972 5973 do { 5974 val = READ_ONCE(n->state); 5975 if (unlikely(val & NAPIF_STATE_DISABLE)) 5976 return false; 5977 new = val | NAPIF_STATE_SCHED; 5978 5979 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5980 * This was suggested by Alexander Duyck, as compiler 5981 * emits better code than : 5982 * if (val & NAPIF_STATE_SCHED) 5983 * new |= NAPIF_STATE_MISSED; 5984 */ 5985 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5986 NAPIF_STATE_MISSED; 5987 } while (cmpxchg(&n->state, val, new) != val); 5988 5989 return !(val & NAPIF_STATE_SCHED); 5990 } 5991 EXPORT_SYMBOL(napi_schedule_prep); 5992 5993 /** 5994 * __napi_schedule_irqoff - schedule for receive 5995 * @n: entry to schedule 5996 * 5997 * Variant of __napi_schedule() assuming hard irqs are masked 5998 */ 5999 void __napi_schedule_irqoff(struct napi_struct *n) 6000 { 6001 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6002 } 6003 EXPORT_SYMBOL(__napi_schedule_irqoff); 6004 6005 bool napi_complete_done(struct napi_struct *n, int work_done) 6006 { 6007 unsigned long flags, val, new; 6008 6009 /* 6010 * 1) Don't let napi dequeue from the cpu poll list 6011 * just in case its running on a different cpu. 6012 * 2) If we are busy polling, do nothing here, we have 6013 * the guarantee we will be called later. 6014 */ 6015 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6016 NAPIF_STATE_IN_BUSY_POLL))) 6017 return false; 6018 6019 if (n->gro_bitmask) { 6020 unsigned long timeout = 0; 6021 6022 if (work_done) 6023 timeout = n->dev->gro_flush_timeout; 6024 6025 /* When the NAPI instance uses a timeout and keeps postponing 6026 * it, we need to bound somehow the time packets are kept in 6027 * the GRO layer 6028 */ 6029 napi_gro_flush(n, !!timeout); 6030 if (timeout) 6031 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6032 HRTIMER_MODE_REL_PINNED); 6033 } 6034 if (unlikely(!list_empty(&n->poll_list))) { 6035 /* If n->poll_list is not empty, we need to mask irqs */ 6036 local_irq_save(flags); 6037 list_del_init(&n->poll_list); 6038 local_irq_restore(flags); 6039 } 6040 6041 do { 6042 val = READ_ONCE(n->state); 6043 6044 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6045 6046 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6047 6048 /* If STATE_MISSED was set, leave STATE_SCHED set, 6049 * because we will call napi->poll() one more time. 6050 * This C code was suggested by Alexander Duyck to help gcc. 6051 */ 6052 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6053 NAPIF_STATE_SCHED; 6054 } while (cmpxchg(&n->state, val, new) != val); 6055 6056 if (unlikely(val & NAPIF_STATE_MISSED)) { 6057 __napi_schedule(n); 6058 return false; 6059 } 6060 6061 return true; 6062 } 6063 EXPORT_SYMBOL(napi_complete_done); 6064 6065 /* must be called under rcu_read_lock(), as we dont take a reference */ 6066 static struct napi_struct *napi_by_id(unsigned int napi_id) 6067 { 6068 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6069 struct napi_struct *napi; 6070 6071 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6072 if (napi->napi_id == napi_id) 6073 return napi; 6074 6075 return NULL; 6076 } 6077 6078 #if defined(CONFIG_NET_RX_BUSY_POLL) 6079 6080 #define BUSY_POLL_BUDGET 8 6081 6082 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6083 { 6084 int rc; 6085 6086 /* Busy polling means there is a high chance device driver hard irq 6087 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6088 * set in napi_schedule_prep(). 6089 * Since we are about to call napi->poll() once more, we can safely 6090 * clear NAPI_STATE_MISSED. 6091 * 6092 * Note: x86 could use a single "lock and ..." instruction 6093 * to perform these two clear_bit() 6094 */ 6095 clear_bit(NAPI_STATE_MISSED, &napi->state); 6096 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6097 6098 local_bh_disable(); 6099 6100 /* All we really want here is to re-enable device interrupts. 6101 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6102 */ 6103 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6104 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6105 netpoll_poll_unlock(have_poll_lock); 6106 if (rc == BUSY_POLL_BUDGET) 6107 __napi_schedule(napi); 6108 local_bh_enable(); 6109 } 6110 6111 void napi_busy_loop(unsigned int napi_id, 6112 bool (*loop_end)(void *, unsigned long), 6113 void *loop_end_arg) 6114 { 6115 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6116 int (*napi_poll)(struct napi_struct *napi, int budget); 6117 void *have_poll_lock = NULL; 6118 struct napi_struct *napi; 6119 6120 restart: 6121 napi_poll = NULL; 6122 6123 rcu_read_lock(); 6124 6125 napi = napi_by_id(napi_id); 6126 if (!napi) 6127 goto out; 6128 6129 preempt_disable(); 6130 for (;;) { 6131 int work = 0; 6132 6133 local_bh_disable(); 6134 if (!napi_poll) { 6135 unsigned long val = READ_ONCE(napi->state); 6136 6137 /* If multiple threads are competing for this napi, 6138 * we avoid dirtying napi->state as much as we can. 6139 */ 6140 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6141 NAPIF_STATE_IN_BUSY_POLL)) 6142 goto count; 6143 if (cmpxchg(&napi->state, val, 6144 val | NAPIF_STATE_IN_BUSY_POLL | 6145 NAPIF_STATE_SCHED) != val) 6146 goto count; 6147 have_poll_lock = netpoll_poll_lock(napi); 6148 napi_poll = napi->poll; 6149 } 6150 work = napi_poll(napi, BUSY_POLL_BUDGET); 6151 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6152 count: 6153 if (work > 0) 6154 __NET_ADD_STATS(dev_net(napi->dev), 6155 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6156 local_bh_enable(); 6157 6158 if (!loop_end || loop_end(loop_end_arg, start_time)) 6159 break; 6160 6161 if (unlikely(need_resched())) { 6162 if (napi_poll) 6163 busy_poll_stop(napi, have_poll_lock); 6164 preempt_enable(); 6165 rcu_read_unlock(); 6166 cond_resched(); 6167 if (loop_end(loop_end_arg, start_time)) 6168 return; 6169 goto restart; 6170 } 6171 cpu_relax(); 6172 } 6173 if (napi_poll) 6174 busy_poll_stop(napi, have_poll_lock); 6175 preempt_enable(); 6176 out: 6177 rcu_read_unlock(); 6178 } 6179 EXPORT_SYMBOL(napi_busy_loop); 6180 6181 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6182 6183 static void napi_hash_add(struct napi_struct *napi) 6184 { 6185 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6186 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6187 return; 6188 6189 spin_lock(&napi_hash_lock); 6190 6191 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6192 do { 6193 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6194 napi_gen_id = MIN_NAPI_ID; 6195 } while (napi_by_id(napi_gen_id)); 6196 napi->napi_id = napi_gen_id; 6197 6198 hlist_add_head_rcu(&napi->napi_hash_node, 6199 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6200 6201 spin_unlock(&napi_hash_lock); 6202 } 6203 6204 /* Warning : caller is responsible to make sure rcu grace period 6205 * is respected before freeing memory containing @napi 6206 */ 6207 bool napi_hash_del(struct napi_struct *napi) 6208 { 6209 bool rcu_sync_needed = false; 6210 6211 spin_lock(&napi_hash_lock); 6212 6213 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6214 rcu_sync_needed = true; 6215 hlist_del_rcu(&napi->napi_hash_node); 6216 } 6217 spin_unlock(&napi_hash_lock); 6218 return rcu_sync_needed; 6219 } 6220 EXPORT_SYMBOL_GPL(napi_hash_del); 6221 6222 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6223 { 6224 struct napi_struct *napi; 6225 6226 napi = container_of(timer, struct napi_struct, timer); 6227 6228 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6229 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6230 */ 6231 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6232 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6233 __napi_schedule_irqoff(napi); 6234 6235 return HRTIMER_NORESTART; 6236 } 6237 6238 static void init_gro_hash(struct napi_struct *napi) 6239 { 6240 int i; 6241 6242 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6243 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6244 napi->gro_hash[i].count = 0; 6245 } 6246 napi->gro_bitmask = 0; 6247 } 6248 6249 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6250 int (*poll)(struct napi_struct *, int), int weight) 6251 { 6252 INIT_LIST_HEAD(&napi->poll_list); 6253 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6254 napi->timer.function = napi_watchdog; 6255 init_gro_hash(napi); 6256 napi->skb = NULL; 6257 napi->poll = poll; 6258 if (weight > NAPI_POLL_WEIGHT) 6259 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6260 weight); 6261 napi->weight = weight; 6262 list_add(&napi->dev_list, &dev->napi_list); 6263 napi->dev = dev; 6264 #ifdef CONFIG_NETPOLL 6265 napi->poll_owner = -1; 6266 #endif 6267 set_bit(NAPI_STATE_SCHED, &napi->state); 6268 napi_hash_add(napi); 6269 } 6270 EXPORT_SYMBOL(netif_napi_add); 6271 6272 void napi_disable(struct napi_struct *n) 6273 { 6274 might_sleep(); 6275 set_bit(NAPI_STATE_DISABLE, &n->state); 6276 6277 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6278 msleep(1); 6279 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6280 msleep(1); 6281 6282 hrtimer_cancel(&n->timer); 6283 6284 clear_bit(NAPI_STATE_DISABLE, &n->state); 6285 } 6286 EXPORT_SYMBOL(napi_disable); 6287 6288 static void flush_gro_hash(struct napi_struct *napi) 6289 { 6290 int i; 6291 6292 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6293 struct sk_buff *skb, *n; 6294 6295 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6296 kfree_skb(skb); 6297 napi->gro_hash[i].count = 0; 6298 } 6299 } 6300 6301 /* Must be called in process context */ 6302 void netif_napi_del(struct napi_struct *napi) 6303 { 6304 might_sleep(); 6305 if (napi_hash_del(napi)) 6306 synchronize_net(); 6307 list_del_init(&napi->dev_list); 6308 napi_free_frags(napi); 6309 6310 flush_gro_hash(napi); 6311 napi->gro_bitmask = 0; 6312 } 6313 EXPORT_SYMBOL(netif_napi_del); 6314 6315 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6316 { 6317 void *have; 6318 int work, weight; 6319 6320 list_del_init(&n->poll_list); 6321 6322 have = netpoll_poll_lock(n); 6323 6324 weight = n->weight; 6325 6326 /* This NAPI_STATE_SCHED test is for avoiding a race 6327 * with netpoll's poll_napi(). Only the entity which 6328 * obtains the lock and sees NAPI_STATE_SCHED set will 6329 * actually make the ->poll() call. Therefore we avoid 6330 * accidentally calling ->poll() when NAPI is not scheduled. 6331 */ 6332 work = 0; 6333 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6334 work = n->poll(n, weight); 6335 trace_napi_poll(n, work, weight); 6336 } 6337 6338 WARN_ON_ONCE(work > weight); 6339 6340 if (likely(work < weight)) 6341 goto out_unlock; 6342 6343 /* Drivers must not modify the NAPI state if they 6344 * consume the entire weight. In such cases this code 6345 * still "owns" the NAPI instance and therefore can 6346 * move the instance around on the list at-will. 6347 */ 6348 if (unlikely(napi_disable_pending(n))) { 6349 napi_complete(n); 6350 goto out_unlock; 6351 } 6352 6353 if (n->gro_bitmask) { 6354 /* flush too old packets 6355 * If HZ < 1000, flush all packets. 6356 */ 6357 napi_gro_flush(n, HZ >= 1000); 6358 } 6359 6360 /* Some drivers may have called napi_schedule 6361 * prior to exhausting their budget. 6362 */ 6363 if (unlikely(!list_empty(&n->poll_list))) { 6364 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6365 n->dev ? n->dev->name : "backlog"); 6366 goto out_unlock; 6367 } 6368 6369 list_add_tail(&n->poll_list, repoll); 6370 6371 out_unlock: 6372 netpoll_poll_unlock(have); 6373 6374 return work; 6375 } 6376 6377 static __latent_entropy void net_rx_action(struct softirq_action *h) 6378 { 6379 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6380 unsigned long time_limit = jiffies + 6381 usecs_to_jiffies(netdev_budget_usecs); 6382 int budget = netdev_budget; 6383 LIST_HEAD(list); 6384 LIST_HEAD(repoll); 6385 6386 local_irq_disable(); 6387 list_splice_init(&sd->poll_list, &list); 6388 local_irq_enable(); 6389 6390 for (;;) { 6391 struct napi_struct *n; 6392 6393 if (list_empty(&list)) { 6394 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6395 goto out; 6396 break; 6397 } 6398 6399 n = list_first_entry(&list, struct napi_struct, poll_list); 6400 budget -= napi_poll(n, &repoll); 6401 6402 /* If softirq window is exhausted then punt. 6403 * Allow this to run for 2 jiffies since which will allow 6404 * an average latency of 1.5/HZ. 6405 */ 6406 if (unlikely(budget <= 0 || 6407 time_after_eq(jiffies, time_limit))) { 6408 sd->time_squeeze++; 6409 break; 6410 } 6411 } 6412 6413 local_irq_disable(); 6414 6415 list_splice_tail_init(&sd->poll_list, &list); 6416 list_splice_tail(&repoll, &list); 6417 list_splice(&list, &sd->poll_list); 6418 if (!list_empty(&sd->poll_list)) 6419 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6420 6421 net_rps_action_and_irq_enable(sd); 6422 out: 6423 __kfree_skb_flush(); 6424 } 6425 6426 struct netdev_adjacent { 6427 struct net_device *dev; 6428 6429 /* upper master flag, there can only be one master device per list */ 6430 bool master; 6431 6432 /* counter for the number of times this device was added to us */ 6433 u16 ref_nr; 6434 6435 /* private field for the users */ 6436 void *private; 6437 6438 struct list_head list; 6439 struct rcu_head rcu; 6440 }; 6441 6442 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6443 struct list_head *adj_list) 6444 { 6445 struct netdev_adjacent *adj; 6446 6447 list_for_each_entry(adj, adj_list, list) { 6448 if (adj->dev == adj_dev) 6449 return adj; 6450 } 6451 return NULL; 6452 } 6453 6454 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6455 { 6456 struct net_device *dev = data; 6457 6458 return upper_dev == dev; 6459 } 6460 6461 /** 6462 * netdev_has_upper_dev - Check if device is linked to an upper device 6463 * @dev: device 6464 * @upper_dev: upper device to check 6465 * 6466 * Find out if a device is linked to specified upper device and return true 6467 * in case it is. Note that this checks only immediate upper device, 6468 * not through a complete stack of devices. The caller must hold the RTNL lock. 6469 */ 6470 bool netdev_has_upper_dev(struct net_device *dev, 6471 struct net_device *upper_dev) 6472 { 6473 ASSERT_RTNL(); 6474 6475 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6476 upper_dev); 6477 } 6478 EXPORT_SYMBOL(netdev_has_upper_dev); 6479 6480 /** 6481 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6482 * @dev: device 6483 * @upper_dev: upper device to check 6484 * 6485 * Find out if a device is linked to specified upper device and return true 6486 * in case it is. Note that this checks the entire upper device chain. 6487 * The caller must hold rcu lock. 6488 */ 6489 6490 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6491 struct net_device *upper_dev) 6492 { 6493 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6494 upper_dev); 6495 } 6496 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6497 6498 /** 6499 * netdev_has_any_upper_dev - Check if device is linked to some device 6500 * @dev: device 6501 * 6502 * Find out if a device is linked to an upper device and return true in case 6503 * it is. The caller must hold the RTNL lock. 6504 */ 6505 bool netdev_has_any_upper_dev(struct net_device *dev) 6506 { 6507 ASSERT_RTNL(); 6508 6509 return !list_empty(&dev->adj_list.upper); 6510 } 6511 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6512 6513 /** 6514 * netdev_master_upper_dev_get - Get master upper device 6515 * @dev: device 6516 * 6517 * Find a master upper device and return pointer to it or NULL in case 6518 * it's not there. The caller must hold the RTNL lock. 6519 */ 6520 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6521 { 6522 struct netdev_adjacent *upper; 6523 6524 ASSERT_RTNL(); 6525 6526 if (list_empty(&dev->adj_list.upper)) 6527 return NULL; 6528 6529 upper = list_first_entry(&dev->adj_list.upper, 6530 struct netdev_adjacent, list); 6531 if (likely(upper->master)) 6532 return upper->dev; 6533 return NULL; 6534 } 6535 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6536 6537 /** 6538 * netdev_has_any_lower_dev - Check if device is linked to some device 6539 * @dev: device 6540 * 6541 * Find out if a device is linked to a lower device and return true in case 6542 * it is. The caller must hold the RTNL lock. 6543 */ 6544 static bool netdev_has_any_lower_dev(struct net_device *dev) 6545 { 6546 ASSERT_RTNL(); 6547 6548 return !list_empty(&dev->adj_list.lower); 6549 } 6550 6551 void *netdev_adjacent_get_private(struct list_head *adj_list) 6552 { 6553 struct netdev_adjacent *adj; 6554 6555 adj = list_entry(adj_list, struct netdev_adjacent, list); 6556 6557 return adj->private; 6558 } 6559 EXPORT_SYMBOL(netdev_adjacent_get_private); 6560 6561 /** 6562 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6563 * @dev: device 6564 * @iter: list_head ** of the current position 6565 * 6566 * Gets the next device from the dev's upper list, starting from iter 6567 * position. The caller must hold RCU read lock. 6568 */ 6569 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6570 struct list_head **iter) 6571 { 6572 struct netdev_adjacent *upper; 6573 6574 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6575 6576 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6577 6578 if (&upper->list == &dev->adj_list.upper) 6579 return NULL; 6580 6581 *iter = &upper->list; 6582 6583 return upper->dev; 6584 } 6585 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6586 6587 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6588 struct list_head **iter) 6589 { 6590 struct netdev_adjacent *upper; 6591 6592 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6593 6594 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6595 6596 if (&upper->list == &dev->adj_list.upper) 6597 return NULL; 6598 6599 *iter = &upper->list; 6600 6601 return upper->dev; 6602 } 6603 6604 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6605 int (*fn)(struct net_device *dev, 6606 void *data), 6607 void *data) 6608 { 6609 struct net_device *udev; 6610 struct list_head *iter; 6611 int ret; 6612 6613 for (iter = &dev->adj_list.upper, 6614 udev = netdev_next_upper_dev_rcu(dev, &iter); 6615 udev; 6616 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6617 /* first is the upper device itself */ 6618 ret = fn(udev, data); 6619 if (ret) 6620 return ret; 6621 6622 /* then look at all of its upper devices */ 6623 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6624 if (ret) 6625 return ret; 6626 } 6627 6628 return 0; 6629 } 6630 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6631 6632 /** 6633 * netdev_lower_get_next_private - Get the next ->private from the 6634 * lower neighbour list 6635 * @dev: device 6636 * @iter: list_head ** of the current position 6637 * 6638 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6639 * list, starting from iter position. The caller must hold either hold the 6640 * RTNL lock or its own locking that guarantees that the neighbour lower 6641 * list will remain unchanged. 6642 */ 6643 void *netdev_lower_get_next_private(struct net_device *dev, 6644 struct list_head **iter) 6645 { 6646 struct netdev_adjacent *lower; 6647 6648 lower = list_entry(*iter, struct netdev_adjacent, list); 6649 6650 if (&lower->list == &dev->adj_list.lower) 6651 return NULL; 6652 6653 *iter = lower->list.next; 6654 6655 return lower->private; 6656 } 6657 EXPORT_SYMBOL(netdev_lower_get_next_private); 6658 6659 /** 6660 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6661 * lower neighbour list, RCU 6662 * variant 6663 * @dev: device 6664 * @iter: list_head ** of the current position 6665 * 6666 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6667 * list, starting from iter position. The caller must hold RCU read lock. 6668 */ 6669 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6670 struct list_head **iter) 6671 { 6672 struct netdev_adjacent *lower; 6673 6674 WARN_ON_ONCE(!rcu_read_lock_held()); 6675 6676 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6677 6678 if (&lower->list == &dev->adj_list.lower) 6679 return NULL; 6680 6681 *iter = &lower->list; 6682 6683 return lower->private; 6684 } 6685 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6686 6687 /** 6688 * netdev_lower_get_next - Get the next device from the lower neighbour 6689 * list 6690 * @dev: device 6691 * @iter: list_head ** of the current position 6692 * 6693 * Gets the next netdev_adjacent from the dev's lower neighbour 6694 * list, starting from iter position. The caller must hold RTNL lock or 6695 * its own locking that guarantees that the neighbour lower 6696 * list will remain unchanged. 6697 */ 6698 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6699 { 6700 struct netdev_adjacent *lower; 6701 6702 lower = list_entry(*iter, struct netdev_adjacent, list); 6703 6704 if (&lower->list == &dev->adj_list.lower) 6705 return NULL; 6706 6707 *iter = lower->list.next; 6708 6709 return lower->dev; 6710 } 6711 EXPORT_SYMBOL(netdev_lower_get_next); 6712 6713 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6714 struct list_head **iter) 6715 { 6716 struct netdev_adjacent *lower; 6717 6718 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6719 6720 if (&lower->list == &dev->adj_list.lower) 6721 return NULL; 6722 6723 *iter = &lower->list; 6724 6725 return lower->dev; 6726 } 6727 6728 int netdev_walk_all_lower_dev(struct net_device *dev, 6729 int (*fn)(struct net_device *dev, 6730 void *data), 6731 void *data) 6732 { 6733 struct net_device *ldev; 6734 struct list_head *iter; 6735 int ret; 6736 6737 for (iter = &dev->adj_list.lower, 6738 ldev = netdev_next_lower_dev(dev, &iter); 6739 ldev; 6740 ldev = netdev_next_lower_dev(dev, &iter)) { 6741 /* first is the lower device itself */ 6742 ret = fn(ldev, data); 6743 if (ret) 6744 return ret; 6745 6746 /* then look at all of its lower devices */ 6747 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6748 if (ret) 6749 return ret; 6750 } 6751 6752 return 0; 6753 } 6754 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6755 6756 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6757 struct list_head **iter) 6758 { 6759 struct netdev_adjacent *lower; 6760 6761 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6762 if (&lower->list == &dev->adj_list.lower) 6763 return NULL; 6764 6765 *iter = &lower->list; 6766 6767 return lower->dev; 6768 } 6769 6770 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6771 int (*fn)(struct net_device *dev, 6772 void *data), 6773 void *data) 6774 { 6775 struct net_device *ldev; 6776 struct list_head *iter; 6777 int ret; 6778 6779 for (iter = &dev->adj_list.lower, 6780 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6781 ldev; 6782 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6783 /* first is the lower device itself */ 6784 ret = fn(ldev, data); 6785 if (ret) 6786 return ret; 6787 6788 /* then look at all of its lower devices */ 6789 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6790 if (ret) 6791 return ret; 6792 } 6793 6794 return 0; 6795 } 6796 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6797 6798 /** 6799 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6800 * lower neighbour list, RCU 6801 * variant 6802 * @dev: device 6803 * 6804 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6805 * list. The caller must hold RCU read lock. 6806 */ 6807 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6808 { 6809 struct netdev_adjacent *lower; 6810 6811 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6812 struct netdev_adjacent, list); 6813 if (lower) 6814 return lower->private; 6815 return NULL; 6816 } 6817 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6818 6819 /** 6820 * netdev_master_upper_dev_get_rcu - Get master upper device 6821 * @dev: device 6822 * 6823 * Find a master upper device and return pointer to it or NULL in case 6824 * it's not there. The caller must hold the RCU read lock. 6825 */ 6826 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6827 { 6828 struct netdev_adjacent *upper; 6829 6830 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6831 struct netdev_adjacent, list); 6832 if (upper && likely(upper->master)) 6833 return upper->dev; 6834 return NULL; 6835 } 6836 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6837 6838 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6839 struct net_device *adj_dev, 6840 struct list_head *dev_list) 6841 { 6842 char linkname[IFNAMSIZ+7]; 6843 6844 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6845 "upper_%s" : "lower_%s", adj_dev->name); 6846 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6847 linkname); 6848 } 6849 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6850 char *name, 6851 struct list_head *dev_list) 6852 { 6853 char linkname[IFNAMSIZ+7]; 6854 6855 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6856 "upper_%s" : "lower_%s", name); 6857 sysfs_remove_link(&(dev->dev.kobj), linkname); 6858 } 6859 6860 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6861 struct net_device *adj_dev, 6862 struct list_head *dev_list) 6863 { 6864 return (dev_list == &dev->adj_list.upper || 6865 dev_list == &dev->adj_list.lower) && 6866 net_eq(dev_net(dev), dev_net(adj_dev)); 6867 } 6868 6869 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6870 struct net_device *adj_dev, 6871 struct list_head *dev_list, 6872 void *private, bool master) 6873 { 6874 struct netdev_adjacent *adj; 6875 int ret; 6876 6877 adj = __netdev_find_adj(adj_dev, dev_list); 6878 6879 if (adj) { 6880 adj->ref_nr += 1; 6881 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6882 dev->name, adj_dev->name, adj->ref_nr); 6883 6884 return 0; 6885 } 6886 6887 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6888 if (!adj) 6889 return -ENOMEM; 6890 6891 adj->dev = adj_dev; 6892 adj->master = master; 6893 adj->ref_nr = 1; 6894 adj->private = private; 6895 dev_hold(adj_dev); 6896 6897 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6898 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6899 6900 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6901 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6902 if (ret) 6903 goto free_adj; 6904 } 6905 6906 /* Ensure that master link is always the first item in list. */ 6907 if (master) { 6908 ret = sysfs_create_link(&(dev->dev.kobj), 6909 &(adj_dev->dev.kobj), "master"); 6910 if (ret) 6911 goto remove_symlinks; 6912 6913 list_add_rcu(&adj->list, dev_list); 6914 } else { 6915 list_add_tail_rcu(&adj->list, dev_list); 6916 } 6917 6918 return 0; 6919 6920 remove_symlinks: 6921 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6922 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6923 free_adj: 6924 kfree(adj); 6925 dev_put(adj_dev); 6926 6927 return ret; 6928 } 6929 6930 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6931 struct net_device *adj_dev, 6932 u16 ref_nr, 6933 struct list_head *dev_list) 6934 { 6935 struct netdev_adjacent *adj; 6936 6937 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6938 dev->name, adj_dev->name, ref_nr); 6939 6940 adj = __netdev_find_adj(adj_dev, dev_list); 6941 6942 if (!adj) { 6943 pr_err("Adjacency does not exist for device %s from %s\n", 6944 dev->name, adj_dev->name); 6945 WARN_ON(1); 6946 return; 6947 } 6948 6949 if (adj->ref_nr > ref_nr) { 6950 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6951 dev->name, adj_dev->name, ref_nr, 6952 adj->ref_nr - ref_nr); 6953 adj->ref_nr -= ref_nr; 6954 return; 6955 } 6956 6957 if (adj->master) 6958 sysfs_remove_link(&(dev->dev.kobj), "master"); 6959 6960 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6961 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6962 6963 list_del_rcu(&adj->list); 6964 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6965 adj_dev->name, dev->name, adj_dev->name); 6966 dev_put(adj_dev); 6967 kfree_rcu(adj, rcu); 6968 } 6969 6970 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6971 struct net_device *upper_dev, 6972 struct list_head *up_list, 6973 struct list_head *down_list, 6974 void *private, bool master) 6975 { 6976 int ret; 6977 6978 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6979 private, master); 6980 if (ret) 6981 return ret; 6982 6983 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6984 private, false); 6985 if (ret) { 6986 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6987 return ret; 6988 } 6989 6990 return 0; 6991 } 6992 6993 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6994 struct net_device *upper_dev, 6995 u16 ref_nr, 6996 struct list_head *up_list, 6997 struct list_head *down_list) 6998 { 6999 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7000 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7001 } 7002 7003 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7004 struct net_device *upper_dev, 7005 void *private, bool master) 7006 { 7007 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7008 &dev->adj_list.upper, 7009 &upper_dev->adj_list.lower, 7010 private, master); 7011 } 7012 7013 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7014 struct net_device *upper_dev) 7015 { 7016 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7017 &dev->adj_list.upper, 7018 &upper_dev->adj_list.lower); 7019 } 7020 7021 static int __netdev_upper_dev_link(struct net_device *dev, 7022 struct net_device *upper_dev, bool master, 7023 void *upper_priv, void *upper_info, 7024 struct netlink_ext_ack *extack) 7025 { 7026 struct netdev_notifier_changeupper_info changeupper_info = { 7027 .info = { 7028 .dev = dev, 7029 .extack = extack, 7030 }, 7031 .upper_dev = upper_dev, 7032 .master = master, 7033 .linking = true, 7034 .upper_info = upper_info, 7035 }; 7036 struct net_device *master_dev; 7037 int ret = 0; 7038 7039 ASSERT_RTNL(); 7040 7041 if (dev == upper_dev) 7042 return -EBUSY; 7043 7044 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7045 if (netdev_has_upper_dev(upper_dev, dev)) 7046 return -EBUSY; 7047 7048 if (!master) { 7049 if (netdev_has_upper_dev(dev, upper_dev)) 7050 return -EEXIST; 7051 } else { 7052 master_dev = netdev_master_upper_dev_get(dev); 7053 if (master_dev) 7054 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7055 } 7056 7057 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7058 &changeupper_info.info); 7059 ret = notifier_to_errno(ret); 7060 if (ret) 7061 return ret; 7062 7063 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7064 master); 7065 if (ret) 7066 return ret; 7067 7068 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7069 &changeupper_info.info); 7070 ret = notifier_to_errno(ret); 7071 if (ret) 7072 goto rollback; 7073 7074 return 0; 7075 7076 rollback: 7077 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7078 7079 return ret; 7080 } 7081 7082 /** 7083 * netdev_upper_dev_link - Add a link to the upper device 7084 * @dev: device 7085 * @upper_dev: new upper device 7086 * @extack: netlink extended ack 7087 * 7088 * Adds a link to device which is upper to this one. The caller must hold 7089 * the RTNL lock. On a failure a negative errno code is returned. 7090 * On success the reference counts are adjusted and the function 7091 * returns zero. 7092 */ 7093 int netdev_upper_dev_link(struct net_device *dev, 7094 struct net_device *upper_dev, 7095 struct netlink_ext_ack *extack) 7096 { 7097 return __netdev_upper_dev_link(dev, upper_dev, false, 7098 NULL, NULL, extack); 7099 } 7100 EXPORT_SYMBOL(netdev_upper_dev_link); 7101 7102 /** 7103 * netdev_master_upper_dev_link - Add a master link to the upper device 7104 * @dev: device 7105 * @upper_dev: new upper device 7106 * @upper_priv: upper device private 7107 * @upper_info: upper info to be passed down via notifier 7108 * @extack: netlink extended ack 7109 * 7110 * Adds a link to device which is upper to this one. In this case, only 7111 * one master upper device can be linked, although other non-master devices 7112 * might be linked as well. The caller must hold the RTNL lock. 7113 * On a failure a negative errno code is returned. On success the reference 7114 * counts are adjusted and the function returns zero. 7115 */ 7116 int netdev_master_upper_dev_link(struct net_device *dev, 7117 struct net_device *upper_dev, 7118 void *upper_priv, void *upper_info, 7119 struct netlink_ext_ack *extack) 7120 { 7121 return __netdev_upper_dev_link(dev, upper_dev, true, 7122 upper_priv, upper_info, extack); 7123 } 7124 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7125 7126 /** 7127 * netdev_upper_dev_unlink - Removes a link to upper device 7128 * @dev: device 7129 * @upper_dev: new upper device 7130 * 7131 * Removes a link to device which is upper to this one. The caller must hold 7132 * the RTNL lock. 7133 */ 7134 void netdev_upper_dev_unlink(struct net_device *dev, 7135 struct net_device *upper_dev) 7136 { 7137 struct netdev_notifier_changeupper_info changeupper_info = { 7138 .info = { 7139 .dev = dev, 7140 }, 7141 .upper_dev = upper_dev, 7142 .linking = false, 7143 }; 7144 7145 ASSERT_RTNL(); 7146 7147 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7148 7149 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7150 &changeupper_info.info); 7151 7152 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7153 7154 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7155 &changeupper_info.info); 7156 } 7157 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7158 7159 /** 7160 * netdev_bonding_info_change - Dispatch event about slave change 7161 * @dev: device 7162 * @bonding_info: info to dispatch 7163 * 7164 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7165 * The caller must hold the RTNL lock. 7166 */ 7167 void netdev_bonding_info_change(struct net_device *dev, 7168 struct netdev_bonding_info *bonding_info) 7169 { 7170 struct netdev_notifier_bonding_info info = { 7171 .info.dev = dev, 7172 }; 7173 7174 memcpy(&info.bonding_info, bonding_info, 7175 sizeof(struct netdev_bonding_info)); 7176 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7177 &info.info); 7178 } 7179 EXPORT_SYMBOL(netdev_bonding_info_change); 7180 7181 static void netdev_adjacent_add_links(struct net_device *dev) 7182 { 7183 struct netdev_adjacent *iter; 7184 7185 struct net *net = dev_net(dev); 7186 7187 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7188 if (!net_eq(net, dev_net(iter->dev))) 7189 continue; 7190 netdev_adjacent_sysfs_add(iter->dev, dev, 7191 &iter->dev->adj_list.lower); 7192 netdev_adjacent_sysfs_add(dev, iter->dev, 7193 &dev->adj_list.upper); 7194 } 7195 7196 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7197 if (!net_eq(net, dev_net(iter->dev))) 7198 continue; 7199 netdev_adjacent_sysfs_add(iter->dev, dev, 7200 &iter->dev->adj_list.upper); 7201 netdev_adjacent_sysfs_add(dev, iter->dev, 7202 &dev->adj_list.lower); 7203 } 7204 } 7205 7206 static void netdev_adjacent_del_links(struct net_device *dev) 7207 { 7208 struct netdev_adjacent *iter; 7209 7210 struct net *net = dev_net(dev); 7211 7212 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7213 if (!net_eq(net, dev_net(iter->dev))) 7214 continue; 7215 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7216 &iter->dev->adj_list.lower); 7217 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7218 &dev->adj_list.upper); 7219 } 7220 7221 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7222 if (!net_eq(net, dev_net(iter->dev))) 7223 continue; 7224 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7225 &iter->dev->adj_list.upper); 7226 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7227 &dev->adj_list.lower); 7228 } 7229 } 7230 7231 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7232 { 7233 struct netdev_adjacent *iter; 7234 7235 struct net *net = dev_net(dev); 7236 7237 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7238 if (!net_eq(net, dev_net(iter->dev))) 7239 continue; 7240 netdev_adjacent_sysfs_del(iter->dev, oldname, 7241 &iter->dev->adj_list.lower); 7242 netdev_adjacent_sysfs_add(iter->dev, dev, 7243 &iter->dev->adj_list.lower); 7244 } 7245 7246 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7247 if (!net_eq(net, dev_net(iter->dev))) 7248 continue; 7249 netdev_adjacent_sysfs_del(iter->dev, oldname, 7250 &iter->dev->adj_list.upper); 7251 netdev_adjacent_sysfs_add(iter->dev, dev, 7252 &iter->dev->adj_list.upper); 7253 } 7254 } 7255 7256 void *netdev_lower_dev_get_private(struct net_device *dev, 7257 struct net_device *lower_dev) 7258 { 7259 struct netdev_adjacent *lower; 7260 7261 if (!lower_dev) 7262 return NULL; 7263 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7264 if (!lower) 7265 return NULL; 7266 7267 return lower->private; 7268 } 7269 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7270 7271 7272 int dev_get_nest_level(struct net_device *dev) 7273 { 7274 struct net_device *lower = NULL; 7275 struct list_head *iter; 7276 int max_nest = -1; 7277 int nest; 7278 7279 ASSERT_RTNL(); 7280 7281 netdev_for_each_lower_dev(dev, lower, iter) { 7282 nest = dev_get_nest_level(lower); 7283 if (max_nest < nest) 7284 max_nest = nest; 7285 } 7286 7287 return max_nest + 1; 7288 } 7289 EXPORT_SYMBOL(dev_get_nest_level); 7290 7291 /** 7292 * netdev_lower_change - Dispatch event about lower device state change 7293 * @lower_dev: device 7294 * @lower_state_info: state to dispatch 7295 * 7296 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7297 * The caller must hold the RTNL lock. 7298 */ 7299 void netdev_lower_state_changed(struct net_device *lower_dev, 7300 void *lower_state_info) 7301 { 7302 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7303 .info.dev = lower_dev, 7304 }; 7305 7306 ASSERT_RTNL(); 7307 changelowerstate_info.lower_state_info = lower_state_info; 7308 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7309 &changelowerstate_info.info); 7310 } 7311 EXPORT_SYMBOL(netdev_lower_state_changed); 7312 7313 static void dev_change_rx_flags(struct net_device *dev, int flags) 7314 { 7315 const struct net_device_ops *ops = dev->netdev_ops; 7316 7317 if (ops->ndo_change_rx_flags) 7318 ops->ndo_change_rx_flags(dev, flags); 7319 } 7320 7321 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7322 { 7323 unsigned int old_flags = dev->flags; 7324 kuid_t uid; 7325 kgid_t gid; 7326 7327 ASSERT_RTNL(); 7328 7329 dev->flags |= IFF_PROMISC; 7330 dev->promiscuity += inc; 7331 if (dev->promiscuity == 0) { 7332 /* 7333 * Avoid overflow. 7334 * If inc causes overflow, untouch promisc and return error. 7335 */ 7336 if (inc < 0) 7337 dev->flags &= ~IFF_PROMISC; 7338 else { 7339 dev->promiscuity -= inc; 7340 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7341 dev->name); 7342 return -EOVERFLOW; 7343 } 7344 } 7345 if (dev->flags != old_flags) { 7346 pr_info("device %s %s promiscuous mode\n", 7347 dev->name, 7348 dev->flags & IFF_PROMISC ? "entered" : "left"); 7349 if (audit_enabled) { 7350 current_uid_gid(&uid, &gid); 7351 audit_log(audit_context(), GFP_ATOMIC, 7352 AUDIT_ANOM_PROMISCUOUS, 7353 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7354 dev->name, (dev->flags & IFF_PROMISC), 7355 (old_flags & IFF_PROMISC), 7356 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7357 from_kuid(&init_user_ns, uid), 7358 from_kgid(&init_user_ns, gid), 7359 audit_get_sessionid(current)); 7360 } 7361 7362 dev_change_rx_flags(dev, IFF_PROMISC); 7363 } 7364 if (notify) 7365 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7366 return 0; 7367 } 7368 7369 /** 7370 * dev_set_promiscuity - update promiscuity count on a device 7371 * @dev: device 7372 * @inc: modifier 7373 * 7374 * Add or remove promiscuity from a device. While the count in the device 7375 * remains above zero the interface remains promiscuous. Once it hits zero 7376 * the device reverts back to normal filtering operation. A negative inc 7377 * value is used to drop promiscuity on the device. 7378 * Return 0 if successful or a negative errno code on error. 7379 */ 7380 int dev_set_promiscuity(struct net_device *dev, int inc) 7381 { 7382 unsigned int old_flags = dev->flags; 7383 int err; 7384 7385 err = __dev_set_promiscuity(dev, inc, true); 7386 if (err < 0) 7387 return err; 7388 if (dev->flags != old_flags) 7389 dev_set_rx_mode(dev); 7390 return err; 7391 } 7392 EXPORT_SYMBOL(dev_set_promiscuity); 7393 7394 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7395 { 7396 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7397 7398 ASSERT_RTNL(); 7399 7400 dev->flags |= IFF_ALLMULTI; 7401 dev->allmulti += inc; 7402 if (dev->allmulti == 0) { 7403 /* 7404 * Avoid overflow. 7405 * If inc causes overflow, untouch allmulti and return error. 7406 */ 7407 if (inc < 0) 7408 dev->flags &= ~IFF_ALLMULTI; 7409 else { 7410 dev->allmulti -= inc; 7411 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7412 dev->name); 7413 return -EOVERFLOW; 7414 } 7415 } 7416 if (dev->flags ^ old_flags) { 7417 dev_change_rx_flags(dev, IFF_ALLMULTI); 7418 dev_set_rx_mode(dev); 7419 if (notify) 7420 __dev_notify_flags(dev, old_flags, 7421 dev->gflags ^ old_gflags); 7422 } 7423 return 0; 7424 } 7425 7426 /** 7427 * dev_set_allmulti - update allmulti count on a device 7428 * @dev: device 7429 * @inc: modifier 7430 * 7431 * Add or remove reception of all multicast frames to a device. While the 7432 * count in the device remains above zero the interface remains listening 7433 * to all interfaces. Once it hits zero the device reverts back to normal 7434 * filtering operation. A negative @inc value is used to drop the counter 7435 * when releasing a resource needing all multicasts. 7436 * Return 0 if successful or a negative errno code on error. 7437 */ 7438 7439 int dev_set_allmulti(struct net_device *dev, int inc) 7440 { 7441 return __dev_set_allmulti(dev, inc, true); 7442 } 7443 EXPORT_SYMBOL(dev_set_allmulti); 7444 7445 /* 7446 * Upload unicast and multicast address lists to device and 7447 * configure RX filtering. When the device doesn't support unicast 7448 * filtering it is put in promiscuous mode while unicast addresses 7449 * are present. 7450 */ 7451 void __dev_set_rx_mode(struct net_device *dev) 7452 { 7453 const struct net_device_ops *ops = dev->netdev_ops; 7454 7455 /* dev_open will call this function so the list will stay sane. */ 7456 if (!(dev->flags&IFF_UP)) 7457 return; 7458 7459 if (!netif_device_present(dev)) 7460 return; 7461 7462 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7463 /* Unicast addresses changes may only happen under the rtnl, 7464 * therefore calling __dev_set_promiscuity here is safe. 7465 */ 7466 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7467 __dev_set_promiscuity(dev, 1, false); 7468 dev->uc_promisc = true; 7469 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7470 __dev_set_promiscuity(dev, -1, false); 7471 dev->uc_promisc = false; 7472 } 7473 } 7474 7475 if (ops->ndo_set_rx_mode) 7476 ops->ndo_set_rx_mode(dev); 7477 } 7478 7479 void dev_set_rx_mode(struct net_device *dev) 7480 { 7481 netif_addr_lock_bh(dev); 7482 __dev_set_rx_mode(dev); 7483 netif_addr_unlock_bh(dev); 7484 } 7485 7486 /** 7487 * dev_get_flags - get flags reported to userspace 7488 * @dev: device 7489 * 7490 * Get the combination of flag bits exported through APIs to userspace. 7491 */ 7492 unsigned int dev_get_flags(const struct net_device *dev) 7493 { 7494 unsigned int flags; 7495 7496 flags = (dev->flags & ~(IFF_PROMISC | 7497 IFF_ALLMULTI | 7498 IFF_RUNNING | 7499 IFF_LOWER_UP | 7500 IFF_DORMANT)) | 7501 (dev->gflags & (IFF_PROMISC | 7502 IFF_ALLMULTI)); 7503 7504 if (netif_running(dev)) { 7505 if (netif_oper_up(dev)) 7506 flags |= IFF_RUNNING; 7507 if (netif_carrier_ok(dev)) 7508 flags |= IFF_LOWER_UP; 7509 if (netif_dormant(dev)) 7510 flags |= IFF_DORMANT; 7511 } 7512 7513 return flags; 7514 } 7515 EXPORT_SYMBOL(dev_get_flags); 7516 7517 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7518 struct netlink_ext_ack *extack) 7519 { 7520 unsigned int old_flags = dev->flags; 7521 int ret; 7522 7523 ASSERT_RTNL(); 7524 7525 /* 7526 * Set the flags on our device. 7527 */ 7528 7529 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7530 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7531 IFF_AUTOMEDIA)) | 7532 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7533 IFF_ALLMULTI)); 7534 7535 /* 7536 * Load in the correct multicast list now the flags have changed. 7537 */ 7538 7539 if ((old_flags ^ flags) & IFF_MULTICAST) 7540 dev_change_rx_flags(dev, IFF_MULTICAST); 7541 7542 dev_set_rx_mode(dev); 7543 7544 /* 7545 * Have we downed the interface. We handle IFF_UP ourselves 7546 * according to user attempts to set it, rather than blindly 7547 * setting it. 7548 */ 7549 7550 ret = 0; 7551 if ((old_flags ^ flags) & IFF_UP) { 7552 if (old_flags & IFF_UP) 7553 __dev_close(dev); 7554 else 7555 ret = __dev_open(dev, extack); 7556 } 7557 7558 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7559 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7560 unsigned int old_flags = dev->flags; 7561 7562 dev->gflags ^= IFF_PROMISC; 7563 7564 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7565 if (dev->flags != old_flags) 7566 dev_set_rx_mode(dev); 7567 } 7568 7569 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7570 * is important. Some (broken) drivers set IFF_PROMISC, when 7571 * IFF_ALLMULTI is requested not asking us and not reporting. 7572 */ 7573 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7574 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7575 7576 dev->gflags ^= IFF_ALLMULTI; 7577 __dev_set_allmulti(dev, inc, false); 7578 } 7579 7580 return ret; 7581 } 7582 7583 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7584 unsigned int gchanges) 7585 { 7586 unsigned int changes = dev->flags ^ old_flags; 7587 7588 if (gchanges) 7589 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7590 7591 if (changes & IFF_UP) { 7592 if (dev->flags & IFF_UP) 7593 call_netdevice_notifiers(NETDEV_UP, dev); 7594 else 7595 call_netdevice_notifiers(NETDEV_DOWN, dev); 7596 } 7597 7598 if (dev->flags & IFF_UP && 7599 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7600 struct netdev_notifier_change_info change_info = { 7601 .info = { 7602 .dev = dev, 7603 }, 7604 .flags_changed = changes, 7605 }; 7606 7607 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7608 } 7609 } 7610 7611 /** 7612 * dev_change_flags - change device settings 7613 * @dev: device 7614 * @flags: device state flags 7615 * @extack: netlink extended ack 7616 * 7617 * Change settings on device based state flags. The flags are 7618 * in the userspace exported format. 7619 */ 7620 int dev_change_flags(struct net_device *dev, unsigned int flags, 7621 struct netlink_ext_ack *extack) 7622 { 7623 int ret; 7624 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7625 7626 ret = __dev_change_flags(dev, flags, extack); 7627 if (ret < 0) 7628 return ret; 7629 7630 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7631 __dev_notify_flags(dev, old_flags, changes); 7632 return ret; 7633 } 7634 EXPORT_SYMBOL(dev_change_flags); 7635 7636 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7637 { 7638 const struct net_device_ops *ops = dev->netdev_ops; 7639 7640 if (ops->ndo_change_mtu) 7641 return ops->ndo_change_mtu(dev, new_mtu); 7642 7643 dev->mtu = new_mtu; 7644 return 0; 7645 } 7646 EXPORT_SYMBOL(__dev_set_mtu); 7647 7648 /** 7649 * dev_set_mtu_ext - Change maximum transfer unit 7650 * @dev: device 7651 * @new_mtu: new transfer unit 7652 * @extack: netlink extended ack 7653 * 7654 * Change the maximum transfer size of the network device. 7655 */ 7656 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7657 struct netlink_ext_ack *extack) 7658 { 7659 int err, orig_mtu; 7660 7661 if (new_mtu == dev->mtu) 7662 return 0; 7663 7664 /* MTU must be positive, and in range */ 7665 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7666 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7667 return -EINVAL; 7668 } 7669 7670 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7671 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7672 return -EINVAL; 7673 } 7674 7675 if (!netif_device_present(dev)) 7676 return -ENODEV; 7677 7678 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7679 err = notifier_to_errno(err); 7680 if (err) 7681 return err; 7682 7683 orig_mtu = dev->mtu; 7684 err = __dev_set_mtu(dev, new_mtu); 7685 7686 if (!err) { 7687 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7688 orig_mtu); 7689 err = notifier_to_errno(err); 7690 if (err) { 7691 /* setting mtu back and notifying everyone again, 7692 * so that they have a chance to revert changes. 7693 */ 7694 __dev_set_mtu(dev, orig_mtu); 7695 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7696 new_mtu); 7697 } 7698 } 7699 return err; 7700 } 7701 7702 int dev_set_mtu(struct net_device *dev, int new_mtu) 7703 { 7704 struct netlink_ext_ack extack; 7705 int err; 7706 7707 memset(&extack, 0, sizeof(extack)); 7708 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7709 if (err && extack._msg) 7710 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7711 return err; 7712 } 7713 EXPORT_SYMBOL(dev_set_mtu); 7714 7715 /** 7716 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7717 * @dev: device 7718 * @new_len: new tx queue length 7719 */ 7720 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7721 { 7722 unsigned int orig_len = dev->tx_queue_len; 7723 int res; 7724 7725 if (new_len != (unsigned int)new_len) 7726 return -ERANGE; 7727 7728 if (new_len != orig_len) { 7729 dev->tx_queue_len = new_len; 7730 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7731 res = notifier_to_errno(res); 7732 if (res) 7733 goto err_rollback; 7734 res = dev_qdisc_change_tx_queue_len(dev); 7735 if (res) 7736 goto err_rollback; 7737 } 7738 7739 return 0; 7740 7741 err_rollback: 7742 netdev_err(dev, "refused to change device tx_queue_len\n"); 7743 dev->tx_queue_len = orig_len; 7744 return res; 7745 } 7746 7747 /** 7748 * dev_set_group - Change group this device belongs to 7749 * @dev: device 7750 * @new_group: group this device should belong to 7751 */ 7752 void dev_set_group(struct net_device *dev, int new_group) 7753 { 7754 dev->group = new_group; 7755 } 7756 EXPORT_SYMBOL(dev_set_group); 7757 7758 /** 7759 * dev_set_mac_address - Change Media Access Control Address 7760 * @dev: device 7761 * @sa: new address 7762 * 7763 * Change the hardware (MAC) address of the device 7764 */ 7765 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7766 { 7767 const struct net_device_ops *ops = dev->netdev_ops; 7768 int err; 7769 7770 if (!ops->ndo_set_mac_address) 7771 return -EOPNOTSUPP; 7772 if (sa->sa_family != dev->type) 7773 return -EINVAL; 7774 if (!netif_device_present(dev)) 7775 return -ENODEV; 7776 err = ops->ndo_set_mac_address(dev, sa); 7777 if (err) 7778 return err; 7779 dev->addr_assign_type = NET_ADDR_SET; 7780 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7781 add_device_randomness(dev->dev_addr, dev->addr_len); 7782 return 0; 7783 } 7784 EXPORT_SYMBOL(dev_set_mac_address); 7785 7786 /** 7787 * dev_change_carrier - Change device carrier 7788 * @dev: device 7789 * @new_carrier: new value 7790 * 7791 * Change device carrier 7792 */ 7793 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7794 { 7795 const struct net_device_ops *ops = dev->netdev_ops; 7796 7797 if (!ops->ndo_change_carrier) 7798 return -EOPNOTSUPP; 7799 if (!netif_device_present(dev)) 7800 return -ENODEV; 7801 return ops->ndo_change_carrier(dev, new_carrier); 7802 } 7803 EXPORT_SYMBOL(dev_change_carrier); 7804 7805 /** 7806 * dev_get_phys_port_id - Get device physical port ID 7807 * @dev: device 7808 * @ppid: port ID 7809 * 7810 * Get device physical port ID 7811 */ 7812 int dev_get_phys_port_id(struct net_device *dev, 7813 struct netdev_phys_item_id *ppid) 7814 { 7815 const struct net_device_ops *ops = dev->netdev_ops; 7816 7817 if (!ops->ndo_get_phys_port_id) 7818 return -EOPNOTSUPP; 7819 return ops->ndo_get_phys_port_id(dev, ppid); 7820 } 7821 EXPORT_SYMBOL(dev_get_phys_port_id); 7822 7823 /** 7824 * dev_get_phys_port_name - Get device physical port name 7825 * @dev: device 7826 * @name: port name 7827 * @len: limit of bytes to copy to name 7828 * 7829 * Get device physical port name 7830 */ 7831 int dev_get_phys_port_name(struct net_device *dev, 7832 char *name, size_t len) 7833 { 7834 const struct net_device_ops *ops = dev->netdev_ops; 7835 7836 if (!ops->ndo_get_phys_port_name) 7837 return -EOPNOTSUPP; 7838 return ops->ndo_get_phys_port_name(dev, name, len); 7839 } 7840 EXPORT_SYMBOL(dev_get_phys_port_name); 7841 7842 /** 7843 * dev_change_proto_down - update protocol port state information 7844 * @dev: device 7845 * @proto_down: new value 7846 * 7847 * This info can be used by switch drivers to set the phys state of the 7848 * port. 7849 */ 7850 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7851 { 7852 const struct net_device_ops *ops = dev->netdev_ops; 7853 7854 if (!ops->ndo_change_proto_down) 7855 return -EOPNOTSUPP; 7856 if (!netif_device_present(dev)) 7857 return -ENODEV; 7858 return ops->ndo_change_proto_down(dev, proto_down); 7859 } 7860 EXPORT_SYMBOL(dev_change_proto_down); 7861 7862 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7863 enum bpf_netdev_command cmd) 7864 { 7865 struct netdev_bpf xdp; 7866 7867 if (!bpf_op) 7868 return 0; 7869 7870 memset(&xdp, 0, sizeof(xdp)); 7871 xdp.command = cmd; 7872 7873 /* Query must always succeed. */ 7874 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 7875 7876 return xdp.prog_id; 7877 } 7878 7879 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7880 struct netlink_ext_ack *extack, u32 flags, 7881 struct bpf_prog *prog) 7882 { 7883 struct netdev_bpf xdp; 7884 7885 memset(&xdp, 0, sizeof(xdp)); 7886 if (flags & XDP_FLAGS_HW_MODE) 7887 xdp.command = XDP_SETUP_PROG_HW; 7888 else 7889 xdp.command = XDP_SETUP_PROG; 7890 xdp.extack = extack; 7891 xdp.flags = flags; 7892 xdp.prog = prog; 7893 7894 return bpf_op(dev, &xdp); 7895 } 7896 7897 static void dev_xdp_uninstall(struct net_device *dev) 7898 { 7899 struct netdev_bpf xdp; 7900 bpf_op_t ndo_bpf; 7901 7902 /* Remove generic XDP */ 7903 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7904 7905 /* Remove from the driver */ 7906 ndo_bpf = dev->netdev_ops->ndo_bpf; 7907 if (!ndo_bpf) 7908 return; 7909 7910 memset(&xdp, 0, sizeof(xdp)); 7911 xdp.command = XDP_QUERY_PROG; 7912 WARN_ON(ndo_bpf(dev, &xdp)); 7913 if (xdp.prog_id) 7914 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7915 NULL)); 7916 7917 /* Remove HW offload */ 7918 memset(&xdp, 0, sizeof(xdp)); 7919 xdp.command = XDP_QUERY_PROG_HW; 7920 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 7921 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7922 NULL)); 7923 } 7924 7925 /** 7926 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7927 * @dev: device 7928 * @extack: netlink extended ack 7929 * @fd: new program fd or negative value to clear 7930 * @flags: xdp-related flags 7931 * 7932 * Set or clear a bpf program for a device 7933 */ 7934 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7935 int fd, u32 flags) 7936 { 7937 const struct net_device_ops *ops = dev->netdev_ops; 7938 enum bpf_netdev_command query; 7939 struct bpf_prog *prog = NULL; 7940 bpf_op_t bpf_op, bpf_chk; 7941 int err; 7942 7943 ASSERT_RTNL(); 7944 7945 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 7946 7947 bpf_op = bpf_chk = ops->ndo_bpf; 7948 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7949 return -EOPNOTSUPP; 7950 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7951 bpf_op = generic_xdp_install; 7952 if (bpf_op == bpf_chk) 7953 bpf_chk = generic_xdp_install; 7954 7955 if (fd >= 0) { 7956 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) || 7957 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW)) 7958 return -EEXIST; 7959 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7960 __dev_xdp_query(dev, bpf_op, query)) 7961 return -EBUSY; 7962 7963 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7964 bpf_op == ops->ndo_bpf); 7965 if (IS_ERR(prog)) 7966 return PTR_ERR(prog); 7967 7968 if (!(flags & XDP_FLAGS_HW_MODE) && 7969 bpf_prog_is_dev_bound(prog->aux)) { 7970 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7971 bpf_prog_put(prog); 7972 return -EINVAL; 7973 } 7974 } 7975 7976 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7977 if (err < 0 && prog) 7978 bpf_prog_put(prog); 7979 7980 return err; 7981 } 7982 7983 /** 7984 * dev_new_index - allocate an ifindex 7985 * @net: the applicable net namespace 7986 * 7987 * Returns a suitable unique value for a new device interface 7988 * number. The caller must hold the rtnl semaphore or the 7989 * dev_base_lock to be sure it remains unique. 7990 */ 7991 static int dev_new_index(struct net *net) 7992 { 7993 int ifindex = net->ifindex; 7994 7995 for (;;) { 7996 if (++ifindex <= 0) 7997 ifindex = 1; 7998 if (!__dev_get_by_index(net, ifindex)) 7999 return net->ifindex = ifindex; 8000 } 8001 } 8002 8003 /* Delayed registration/unregisteration */ 8004 static LIST_HEAD(net_todo_list); 8005 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8006 8007 static void net_set_todo(struct net_device *dev) 8008 { 8009 list_add_tail(&dev->todo_list, &net_todo_list); 8010 dev_net(dev)->dev_unreg_count++; 8011 } 8012 8013 static void rollback_registered_many(struct list_head *head) 8014 { 8015 struct net_device *dev, *tmp; 8016 LIST_HEAD(close_head); 8017 8018 BUG_ON(dev_boot_phase); 8019 ASSERT_RTNL(); 8020 8021 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8022 /* Some devices call without registering 8023 * for initialization unwind. Remove those 8024 * devices and proceed with the remaining. 8025 */ 8026 if (dev->reg_state == NETREG_UNINITIALIZED) { 8027 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8028 dev->name, dev); 8029 8030 WARN_ON(1); 8031 list_del(&dev->unreg_list); 8032 continue; 8033 } 8034 dev->dismantle = true; 8035 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8036 } 8037 8038 /* If device is running, close it first. */ 8039 list_for_each_entry(dev, head, unreg_list) 8040 list_add_tail(&dev->close_list, &close_head); 8041 dev_close_many(&close_head, true); 8042 8043 list_for_each_entry(dev, head, unreg_list) { 8044 /* And unlink it from device chain. */ 8045 unlist_netdevice(dev); 8046 8047 dev->reg_state = NETREG_UNREGISTERING; 8048 } 8049 flush_all_backlogs(); 8050 8051 synchronize_net(); 8052 8053 list_for_each_entry(dev, head, unreg_list) { 8054 struct sk_buff *skb = NULL; 8055 8056 /* Shutdown queueing discipline. */ 8057 dev_shutdown(dev); 8058 8059 dev_xdp_uninstall(dev); 8060 8061 /* Notify protocols, that we are about to destroy 8062 * this device. They should clean all the things. 8063 */ 8064 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8065 8066 if (!dev->rtnl_link_ops || 8067 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8068 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8069 GFP_KERNEL, NULL, 0); 8070 8071 /* 8072 * Flush the unicast and multicast chains 8073 */ 8074 dev_uc_flush(dev); 8075 dev_mc_flush(dev); 8076 8077 if (dev->netdev_ops->ndo_uninit) 8078 dev->netdev_ops->ndo_uninit(dev); 8079 8080 if (skb) 8081 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8082 8083 /* Notifier chain MUST detach us all upper devices. */ 8084 WARN_ON(netdev_has_any_upper_dev(dev)); 8085 WARN_ON(netdev_has_any_lower_dev(dev)); 8086 8087 /* Remove entries from kobject tree */ 8088 netdev_unregister_kobject(dev); 8089 #ifdef CONFIG_XPS 8090 /* Remove XPS queueing entries */ 8091 netif_reset_xps_queues_gt(dev, 0); 8092 #endif 8093 } 8094 8095 synchronize_net(); 8096 8097 list_for_each_entry(dev, head, unreg_list) 8098 dev_put(dev); 8099 } 8100 8101 static void rollback_registered(struct net_device *dev) 8102 { 8103 LIST_HEAD(single); 8104 8105 list_add(&dev->unreg_list, &single); 8106 rollback_registered_many(&single); 8107 list_del(&single); 8108 } 8109 8110 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8111 struct net_device *upper, netdev_features_t features) 8112 { 8113 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8114 netdev_features_t feature; 8115 int feature_bit; 8116 8117 for_each_netdev_feature(&upper_disables, feature_bit) { 8118 feature = __NETIF_F_BIT(feature_bit); 8119 if (!(upper->wanted_features & feature) 8120 && (features & feature)) { 8121 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8122 &feature, upper->name); 8123 features &= ~feature; 8124 } 8125 } 8126 8127 return features; 8128 } 8129 8130 static void netdev_sync_lower_features(struct net_device *upper, 8131 struct net_device *lower, netdev_features_t features) 8132 { 8133 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8134 netdev_features_t feature; 8135 int feature_bit; 8136 8137 for_each_netdev_feature(&upper_disables, feature_bit) { 8138 feature = __NETIF_F_BIT(feature_bit); 8139 if (!(features & feature) && (lower->features & feature)) { 8140 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8141 &feature, lower->name); 8142 lower->wanted_features &= ~feature; 8143 netdev_update_features(lower); 8144 8145 if (unlikely(lower->features & feature)) 8146 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8147 &feature, lower->name); 8148 } 8149 } 8150 } 8151 8152 static netdev_features_t netdev_fix_features(struct net_device *dev, 8153 netdev_features_t features) 8154 { 8155 /* Fix illegal checksum combinations */ 8156 if ((features & NETIF_F_HW_CSUM) && 8157 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8158 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8159 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8160 } 8161 8162 /* TSO requires that SG is present as well. */ 8163 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8164 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8165 features &= ~NETIF_F_ALL_TSO; 8166 } 8167 8168 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8169 !(features & NETIF_F_IP_CSUM)) { 8170 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8171 features &= ~NETIF_F_TSO; 8172 features &= ~NETIF_F_TSO_ECN; 8173 } 8174 8175 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8176 !(features & NETIF_F_IPV6_CSUM)) { 8177 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8178 features &= ~NETIF_F_TSO6; 8179 } 8180 8181 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8182 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8183 features &= ~NETIF_F_TSO_MANGLEID; 8184 8185 /* TSO ECN requires that TSO is present as well. */ 8186 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8187 features &= ~NETIF_F_TSO_ECN; 8188 8189 /* Software GSO depends on SG. */ 8190 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8191 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8192 features &= ~NETIF_F_GSO; 8193 } 8194 8195 /* GSO partial features require GSO partial be set */ 8196 if ((features & dev->gso_partial_features) && 8197 !(features & NETIF_F_GSO_PARTIAL)) { 8198 netdev_dbg(dev, 8199 "Dropping partially supported GSO features since no GSO partial.\n"); 8200 features &= ~dev->gso_partial_features; 8201 } 8202 8203 if (!(features & NETIF_F_RXCSUM)) { 8204 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8205 * successfully merged by hardware must also have the 8206 * checksum verified by hardware. If the user does not 8207 * want to enable RXCSUM, logically, we should disable GRO_HW. 8208 */ 8209 if (features & NETIF_F_GRO_HW) { 8210 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8211 features &= ~NETIF_F_GRO_HW; 8212 } 8213 } 8214 8215 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8216 if (features & NETIF_F_RXFCS) { 8217 if (features & NETIF_F_LRO) { 8218 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8219 features &= ~NETIF_F_LRO; 8220 } 8221 8222 if (features & NETIF_F_GRO_HW) { 8223 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8224 features &= ~NETIF_F_GRO_HW; 8225 } 8226 } 8227 8228 return features; 8229 } 8230 8231 int __netdev_update_features(struct net_device *dev) 8232 { 8233 struct net_device *upper, *lower; 8234 netdev_features_t features; 8235 struct list_head *iter; 8236 int err = -1; 8237 8238 ASSERT_RTNL(); 8239 8240 features = netdev_get_wanted_features(dev); 8241 8242 if (dev->netdev_ops->ndo_fix_features) 8243 features = dev->netdev_ops->ndo_fix_features(dev, features); 8244 8245 /* driver might be less strict about feature dependencies */ 8246 features = netdev_fix_features(dev, features); 8247 8248 /* some features can't be enabled if they're off an an upper device */ 8249 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8250 features = netdev_sync_upper_features(dev, upper, features); 8251 8252 if (dev->features == features) 8253 goto sync_lower; 8254 8255 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8256 &dev->features, &features); 8257 8258 if (dev->netdev_ops->ndo_set_features) 8259 err = dev->netdev_ops->ndo_set_features(dev, features); 8260 else 8261 err = 0; 8262 8263 if (unlikely(err < 0)) { 8264 netdev_err(dev, 8265 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8266 err, &features, &dev->features); 8267 /* return non-0 since some features might have changed and 8268 * it's better to fire a spurious notification than miss it 8269 */ 8270 return -1; 8271 } 8272 8273 sync_lower: 8274 /* some features must be disabled on lower devices when disabled 8275 * on an upper device (think: bonding master or bridge) 8276 */ 8277 netdev_for_each_lower_dev(dev, lower, iter) 8278 netdev_sync_lower_features(dev, lower, features); 8279 8280 if (!err) { 8281 netdev_features_t diff = features ^ dev->features; 8282 8283 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8284 /* udp_tunnel_{get,drop}_rx_info both need 8285 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8286 * device, or they won't do anything. 8287 * Thus we need to update dev->features 8288 * *before* calling udp_tunnel_get_rx_info, 8289 * but *after* calling udp_tunnel_drop_rx_info. 8290 */ 8291 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8292 dev->features = features; 8293 udp_tunnel_get_rx_info(dev); 8294 } else { 8295 udp_tunnel_drop_rx_info(dev); 8296 } 8297 } 8298 8299 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8300 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8301 dev->features = features; 8302 err |= vlan_get_rx_ctag_filter_info(dev); 8303 } else { 8304 vlan_drop_rx_ctag_filter_info(dev); 8305 } 8306 } 8307 8308 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8309 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8310 dev->features = features; 8311 err |= vlan_get_rx_stag_filter_info(dev); 8312 } else { 8313 vlan_drop_rx_stag_filter_info(dev); 8314 } 8315 } 8316 8317 dev->features = features; 8318 } 8319 8320 return err < 0 ? 0 : 1; 8321 } 8322 8323 /** 8324 * netdev_update_features - recalculate device features 8325 * @dev: the device to check 8326 * 8327 * Recalculate dev->features set and send notifications if it 8328 * has changed. Should be called after driver or hardware dependent 8329 * conditions might have changed that influence the features. 8330 */ 8331 void netdev_update_features(struct net_device *dev) 8332 { 8333 if (__netdev_update_features(dev)) 8334 netdev_features_change(dev); 8335 } 8336 EXPORT_SYMBOL(netdev_update_features); 8337 8338 /** 8339 * netdev_change_features - recalculate device features 8340 * @dev: the device to check 8341 * 8342 * Recalculate dev->features set and send notifications even 8343 * if they have not changed. Should be called instead of 8344 * netdev_update_features() if also dev->vlan_features might 8345 * have changed to allow the changes to be propagated to stacked 8346 * VLAN devices. 8347 */ 8348 void netdev_change_features(struct net_device *dev) 8349 { 8350 __netdev_update_features(dev); 8351 netdev_features_change(dev); 8352 } 8353 EXPORT_SYMBOL(netdev_change_features); 8354 8355 /** 8356 * netif_stacked_transfer_operstate - transfer operstate 8357 * @rootdev: the root or lower level device to transfer state from 8358 * @dev: the device to transfer operstate to 8359 * 8360 * Transfer operational state from root to device. This is normally 8361 * called when a stacking relationship exists between the root 8362 * device and the device(a leaf device). 8363 */ 8364 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8365 struct net_device *dev) 8366 { 8367 if (rootdev->operstate == IF_OPER_DORMANT) 8368 netif_dormant_on(dev); 8369 else 8370 netif_dormant_off(dev); 8371 8372 if (netif_carrier_ok(rootdev)) 8373 netif_carrier_on(dev); 8374 else 8375 netif_carrier_off(dev); 8376 } 8377 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8378 8379 static int netif_alloc_rx_queues(struct net_device *dev) 8380 { 8381 unsigned int i, count = dev->num_rx_queues; 8382 struct netdev_rx_queue *rx; 8383 size_t sz = count * sizeof(*rx); 8384 int err = 0; 8385 8386 BUG_ON(count < 1); 8387 8388 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8389 if (!rx) 8390 return -ENOMEM; 8391 8392 dev->_rx = rx; 8393 8394 for (i = 0; i < count; i++) { 8395 rx[i].dev = dev; 8396 8397 /* XDP RX-queue setup */ 8398 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8399 if (err < 0) 8400 goto err_rxq_info; 8401 } 8402 return 0; 8403 8404 err_rxq_info: 8405 /* Rollback successful reg's and free other resources */ 8406 while (i--) 8407 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8408 kvfree(dev->_rx); 8409 dev->_rx = NULL; 8410 return err; 8411 } 8412 8413 static void netif_free_rx_queues(struct net_device *dev) 8414 { 8415 unsigned int i, count = dev->num_rx_queues; 8416 8417 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8418 if (!dev->_rx) 8419 return; 8420 8421 for (i = 0; i < count; i++) 8422 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8423 8424 kvfree(dev->_rx); 8425 } 8426 8427 static void netdev_init_one_queue(struct net_device *dev, 8428 struct netdev_queue *queue, void *_unused) 8429 { 8430 /* Initialize queue lock */ 8431 spin_lock_init(&queue->_xmit_lock); 8432 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8433 queue->xmit_lock_owner = -1; 8434 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8435 queue->dev = dev; 8436 #ifdef CONFIG_BQL 8437 dql_init(&queue->dql, HZ); 8438 #endif 8439 } 8440 8441 static void netif_free_tx_queues(struct net_device *dev) 8442 { 8443 kvfree(dev->_tx); 8444 } 8445 8446 static int netif_alloc_netdev_queues(struct net_device *dev) 8447 { 8448 unsigned int count = dev->num_tx_queues; 8449 struct netdev_queue *tx; 8450 size_t sz = count * sizeof(*tx); 8451 8452 if (count < 1 || count > 0xffff) 8453 return -EINVAL; 8454 8455 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8456 if (!tx) 8457 return -ENOMEM; 8458 8459 dev->_tx = tx; 8460 8461 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8462 spin_lock_init(&dev->tx_global_lock); 8463 8464 return 0; 8465 } 8466 8467 void netif_tx_stop_all_queues(struct net_device *dev) 8468 { 8469 unsigned int i; 8470 8471 for (i = 0; i < dev->num_tx_queues; i++) { 8472 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8473 8474 netif_tx_stop_queue(txq); 8475 } 8476 } 8477 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8478 8479 /** 8480 * register_netdevice - register a network device 8481 * @dev: device to register 8482 * 8483 * Take a completed network device structure and add it to the kernel 8484 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8485 * chain. 0 is returned on success. A negative errno code is returned 8486 * on a failure to set up the device, or if the name is a duplicate. 8487 * 8488 * Callers must hold the rtnl semaphore. You may want 8489 * register_netdev() instead of this. 8490 * 8491 * BUGS: 8492 * The locking appears insufficient to guarantee two parallel registers 8493 * will not get the same name. 8494 */ 8495 8496 int register_netdevice(struct net_device *dev) 8497 { 8498 int ret; 8499 struct net *net = dev_net(dev); 8500 8501 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8502 NETDEV_FEATURE_COUNT); 8503 BUG_ON(dev_boot_phase); 8504 ASSERT_RTNL(); 8505 8506 might_sleep(); 8507 8508 /* When net_device's are persistent, this will be fatal. */ 8509 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8510 BUG_ON(!net); 8511 8512 spin_lock_init(&dev->addr_list_lock); 8513 netdev_set_addr_lockdep_class(dev); 8514 8515 ret = dev_get_valid_name(net, dev, dev->name); 8516 if (ret < 0) 8517 goto out; 8518 8519 /* Init, if this function is available */ 8520 if (dev->netdev_ops->ndo_init) { 8521 ret = dev->netdev_ops->ndo_init(dev); 8522 if (ret) { 8523 if (ret > 0) 8524 ret = -EIO; 8525 goto out; 8526 } 8527 } 8528 8529 if (((dev->hw_features | dev->features) & 8530 NETIF_F_HW_VLAN_CTAG_FILTER) && 8531 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8532 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8533 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8534 ret = -EINVAL; 8535 goto err_uninit; 8536 } 8537 8538 ret = -EBUSY; 8539 if (!dev->ifindex) 8540 dev->ifindex = dev_new_index(net); 8541 else if (__dev_get_by_index(net, dev->ifindex)) 8542 goto err_uninit; 8543 8544 /* Transfer changeable features to wanted_features and enable 8545 * software offloads (GSO and GRO). 8546 */ 8547 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8548 dev->features |= NETIF_F_SOFT_FEATURES; 8549 8550 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8551 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8552 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8553 } 8554 8555 dev->wanted_features = dev->features & dev->hw_features; 8556 8557 if (!(dev->flags & IFF_LOOPBACK)) 8558 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8559 8560 /* If IPv4 TCP segmentation offload is supported we should also 8561 * allow the device to enable segmenting the frame with the option 8562 * of ignoring a static IP ID value. This doesn't enable the 8563 * feature itself but allows the user to enable it later. 8564 */ 8565 if (dev->hw_features & NETIF_F_TSO) 8566 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8567 if (dev->vlan_features & NETIF_F_TSO) 8568 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8569 if (dev->mpls_features & NETIF_F_TSO) 8570 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8571 if (dev->hw_enc_features & NETIF_F_TSO) 8572 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8573 8574 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8575 */ 8576 dev->vlan_features |= NETIF_F_HIGHDMA; 8577 8578 /* Make NETIF_F_SG inheritable to tunnel devices. 8579 */ 8580 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8581 8582 /* Make NETIF_F_SG inheritable to MPLS. 8583 */ 8584 dev->mpls_features |= NETIF_F_SG; 8585 8586 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8587 ret = notifier_to_errno(ret); 8588 if (ret) 8589 goto err_uninit; 8590 8591 ret = netdev_register_kobject(dev); 8592 if (ret) 8593 goto err_uninit; 8594 dev->reg_state = NETREG_REGISTERED; 8595 8596 __netdev_update_features(dev); 8597 8598 /* 8599 * Default initial state at registry is that the 8600 * device is present. 8601 */ 8602 8603 set_bit(__LINK_STATE_PRESENT, &dev->state); 8604 8605 linkwatch_init_dev(dev); 8606 8607 dev_init_scheduler(dev); 8608 dev_hold(dev); 8609 list_netdevice(dev); 8610 add_device_randomness(dev->dev_addr, dev->addr_len); 8611 8612 /* If the device has permanent device address, driver should 8613 * set dev_addr and also addr_assign_type should be set to 8614 * NET_ADDR_PERM (default value). 8615 */ 8616 if (dev->addr_assign_type == NET_ADDR_PERM) 8617 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8618 8619 /* Notify protocols, that a new device appeared. */ 8620 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8621 ret = notifier_to_errno(ret); 8622 if (ret) { 8623 rollback_registered(dev); 8624 dev->reg_state = NETREG_UNREGISTERED; 8625 } 8626 /* 8627 * Prevent userspace races by waiting until the network 8628 * device is fully setup before sending notifications. 8629 */ 8630 if (!dev->rtnl_link_ops || 8631 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8632 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8633 8634 out: 8635 return ret; 8636 8637 err_uninit: 8638 if (dev->netdev_ops->ndo_uninit) 8639 dev->netdev_ops->ndo_uninit(dev); 8640 if (dev->priv_destructor) 8641 dev->priv_destructor(dev); 8642 goto out; 8643 } 8644 EXPORT_SYMBOL(register_netdevice); 8645 8646 /** 8647 * init_dummy_netdev - init a dummy network device for NAPI 8648 * @dev: device to init 8649 * 8650 * This takes a network device structure and initialize the minimum 8651 * amount of fields so it can be used to schedule NAPI polls without 8652 * registering a full blown interface. This is to be used by drivers 8653 * that need to tie several hardware interfaces to a single NAPI 8654 * poll scheduler due to HW limitations. 8655 */ 8656 int init_dummy_netdev(struct net_device *dev) 8657 { 8658 /* Clear everything. Note we don't initialize spinlocks 8659 * are they aren't supposed to be taken by any of the 8660 * NAPI code and this dummy netdev is supposed to be 8661 * only ever used for NAPI polls 8662 */ 8663 memset(dev, 0, sizeof(struct net_device)); 8664 8665 /* make sure we BUG if trying to hit standard 8666 * register/unregister code path 8667 */ 8668 dev->reg_state = NETREG_DUMMY; 8669 8670 /* NAPI wants this */ 8671 INIT_LIST_HEAD(&dev->napi_list); 8672 8673 /* a dummy interface is started by default */ 8674 set_bit(__LINK_STATE_PRESENT, &dev->state); 8675 set_bit(__LINK_STATE_START, &dev->state); 8676 8677 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8678 * because users of this 'device' dont need to change 8679 * its refcount. 8680 */ 8681 8682 return 0; 8683 } 8684 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8685 8686 8687 /** 8688 * register_netdev - register a network device 8689 * @dev: device to register 8690 * 8691 * Take a completed network device structure and add it to the kernel 8692 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8693 * chain. 0 is returned on success. A negative errno code is returned 8694 * on a failure to set up the device, or if the name is a duplicate. 8695 * 8696 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8697 * and expands the device name if you passed a format string to 8698 * alloc_netdev. 8699 */ 8700 int register_netdev(struct net_device *dev) 8701 { 8702 int err; 8703 8704 if (rtnl_lock_killable()) 8705 return -EINTR; 8706 err = register_netdevice(dev); 8707 rtnl_unlock(); 8708 return err; 8709 } 8710 EXPORT_SYMBOL(register_netdev); 8711 8712 int netdev_refcnt_read(const struct net_device *dev) 8713 { 8714 int i, refcnt = 0; 8715 8716 for_each_possible_cpu(i) 8717 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8718 return refcnt; 8719 } 8720 EXPORT_SYMBOL(netdev_refcnt_read); 8721 8722 /** 8723 * netdev_wait_allrefs - wait until all references are gone. 8724 * @dev: target net_device 8725 * 8726 * This is called when unregistering network devices. 8727 * 8728 * Any protocol or device that holds a reference should register 8729 * for netdevice notification, and cleanup and put back the 8730 * reference if they receive an UNREGISTER event. 8731 * We can get stuck here if buggy protocols don't correctly 8732 * call dev_put. 8733 */ 8734 static void netdev_wait_allrefs(struct net_device *dev) 8735 { 8736 unsigned long rebroadcast_time, warning_time; 8737 int refcnt; 8738 8739 linkwatch_forget_dev(dev); 8740 8741 rebroadcast_time = warning_time = jiffies; 8742 refcnt = netdev_refcnt_read(dev); 8743 8744 while (refcnt != 0) { 8745 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8746 rtnl_lock(); 8747 8748 /* Rebroadcast unregister notification */ 8749 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8750 8751 __rtnl_unlock(); 8752 rcu_barrier(); 8753 rtnl_lock(); 8754 8755 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8756 &dev->state)) { 8757 /* We must not have linkwatch events 8758 * pending on unregister. If this 8759 * happens, we simply run the queue 8760 * unscheduled, resulting in a noop 8761 * for this device. 8762 */ 8763 linkwatch_run_queue(); 8764 } 8765 8766 __rtnl_unlock(); 8767 8768 rebroadcast_time = jiffies; 8769 } 8770 8771 msleep(250); 8772 8773 refcnt = netdev_refcnt_read(dev); 8774 8775 if (time_after(jiffies, warning_time + 10 * HZ)) { 8776 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8777 dev->name, refcnt); 8778 warning_time = jiffies; 8779 } 8780 } 8781 } 8782 8783 /* The sequence is: 8784 * 8785 * rtnl_lock(); 8786 * ... 8787 * register_netdevice(x1); 8788 * register_netdevice(x2); 8789 * ... 8790 * unregister_netdevice(y1); 8791 * unregister_netdevice(y2); 8792 * ... 8793 * rtnl_unlock(); 8794 * free_netdev(y1); 8795 * free_netdev(y2); 8796 * 8797 * We are invoked by rtnl_unlock(). 8798 * This allows us to deal with problems: 8799 * 1) We can delete sysfs objects which invoke hotplug 8800 * without deadlocking with linkwatch via keventd. 8801 * 2) Since we run with the RTNL semaphore not held, we can sleep 8802 * safely in order to wait for the netdev refcnt to drop to zero. 8803 * 8804 * We must not return until all unregister events added during 8805 * the interval the lock was held have been completed. 8806 */ 8807 void netdev_run_todo(void) 8808 { 8809 struct list_head list; 8810 8811 /* Snapshot list, allow later requests */ 8812 list_replace_init(&net_todo_list, &list); 8813 8814 __rtnl_unlock(); 8815 8816 8817 /* Wait for rcu callbacks to finish before next phase */ 8818 if (!list_empty(&list)) 8819 rcu_barrier(); 8820 8821 while (!list_empty(&list)) { 8822 struct net_device *dev 8823 = list_first_entry(&list, struct net_device, todo_list); 8824 list_del(&dev->todo_list); 8825 8826 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8827 pr_err("network todo '%s' but state %d\n", 8828 dev->name, dev->reg_state); 8829 dump_stack(); 8830 continue; 8831 } 8832 8833 dev->reg_state = NETREG_UNREGISTERED; 8834 8835 netdev_wait_allrefs(dev); 8836 8837 /* paranoia */ 8838 BUG_ON(netdev_refcnt_read(dev)); 8839 BUG_ON(!list_empty(&dev->ptype_all)); 8840 BUG_ON(!list_empty(&dev->ptype_specific)); 8841 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8842 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8843 #if IS_ENABLED(CONFIG_DECNET) 8844 WARN_ON(dev->dn_ptr); 8845 #endif 8846 if (dev->priv_destructor) 8847 dev->priv_destructor(dev); 8848 if (dev->needs_free_netdev) 8849 free_netdev(dev); 8850 8851 /* Report a network device has been unregistered */ 8852 rtnl_lock(); 8853 dev_net(dev)->dev_unreg_count--; 8854 __rtnl_unlock(); 8855 wake_up(&netdev_unregistering_wq); 8856 8857 /* Free network device */ 8858 kobject_put(&dev->dev.kobj); 8859 } 8860 } 8861 8862 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8863 * all the same fields in the same order as net_device_stats, with only 8864 * the type differing, but rtnl_link_stats64 may have additional fields 8865 * at the end for newer counters. 8866 */ 8867 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8868 const struct net_device_stats *netdev_stats) 8869 { 8870 #if BITS_PER_LONG == 64 8871 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8872 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8873 /* zero out counters that only exist in rtnl_link_stats64 */ 8874 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8875 sizeof(*stats64) - sizeof(*netdev_stats)); 8876 #else 8877 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8878 const unsigned long *src = (const unsigned long *)netdev_stats; 8879 u64 *dst = (u64 *)stats64; 8880 8881 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8882 for (i = 0; i < n; i++) 8883 dst[i] = src[i]; 8884 /* zero out counters that only exist in rtnl_link_stats64 */ 8885 memset((char *)stats64 + n * sizeof(u64), 0, 8886 sizeof(*stats64) - n * sizeof(u64)); 8887 #endif 8888 } 8889 EXPORT_SYMBOL(netdev_stats_to_stats64); 8890 8891 /** 8892 * dev_get_stats - get network device statistics 8893 * @dev: device to get statistics from 8894 * @storage: place to store stats 8895 * 8896 * Get network statistics from device. Return @storage. 8897 * The device driver may provide its own method by setting 8898 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8899 * otherwise the internal statistics structure is used. 8900 */ 8901 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8902 struct rtnl_link_stats64 *storage) 8903 { 8904 const struct net_device_ops *ops = dev->netdev_ops; 8905 8906 if (ops->ndo_get_stats64) { 8907 memset(storage, 0, sizeof(*storage)); 8908 ops->ndo_get_stats64(dev, storage); 8909 } else if (ops->ndo_get_stats) { 8910 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8911 } else { 8912 netdev_stats_to_stats64(storage, &dev->stats); 8913 } 8914 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8915 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8916 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8917 return storage; 8918 } 8919 EXPORT_SYMBOL(dev_get_stats); 8920 8921 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8922 { 8923 struct netdev_queue *queue = dev_ingress_queue(dev); 8924 8925 #ifdef CONFIG_NET_CLS_ACT 8926 if (queue) 8927 return queue; 8928 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8929 if (!queue) 8930 return NULL; 8931 netdev_init_one_queue(dev, queue, NULL); 8932 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8933 queue->qdisc_sleeping = &noop_qdisc; 8934 rcu_assign_pointer(dev->ingress_queue, queue); 8935 #endif 8936 return queue; 8937 } 8938 8939 static const struct ethtool_ops default_ethtool_ops; 8940 8941 void netdev_set_default_ethtool_ops(struct net_device *dev, 8942 const struct ethtool_ops *ops) 8943 { 8944 if (dev->ethtool_ops == &default_ethtool_ops) 8945 dev->ethtool_ops = ops; 8946 } 8947 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8948 8949 void netdev_freemem(struct net_device *dev) 8950 { 8951 char *addr = (char *)dev - dev->padded; 8952 8953 kvfree(addr); 8954 } 8955 8956 /** 8957 * alloc_netdev_mqs - allocate network device 8958 * @sizeof_priv: size of private data to allocate space for 8959 * @name: device name format string 8960 * @name_assign_type: origin of device name 8961 * @setup: callback to initialize device 8962 * @txqs: the number of TX subqueues to allocate 8963 * @rxqs: the number of RX subqueues to allocate 8964 * 8965 * Allocates a struct net_device with private data area for driver use 8966 * and performs basic initialization. Also allocates subqueue structs 8967 * for each queue on the device. 8968 */ 8969 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8970 unsigned char name_assign_type, 8971 void (*setup)(struct net_device *), 8972 unsigned int txqs, unsigned int rxqs) 8973 { 8974 struct net_device *dev; 8975 unsigned int alloc_size; 8976 struct net_device *p; 8977 8978 BUG_ON(strlen(name) >= sizeof(dev->name)); 8979 8980 if (txqs < 1) { 8981 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8982 return NULL; 8983 } 8984 8985 if (rxqs < 1) { 8986 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8987 return NULL; 8988 } 8989 8990 alloc_size = sizeof(struct net_device); 8991 if (sizeof_priv) { 8992 /* ensure 32-byte alignment of private area */ 8993 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8994 alloc_size += sizeof_priv; 8995 } 8996 /* ensure 32-byte alignment of whole construct */ 8997 alloc_size += NETDEV_ALIGN - 1; 8998 8999 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9000 if (!p) 9001 return NULL; 9002 9003 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9004 dev->padded = (char *)dev - (char *)p; 9005 9006 dev->pcpu_refcnt = alloc_percpu(int); 9007 if (!dev->pcpu_refcnt) 9008 goto free_dev; 9009 9010 if (dev_addr_init(dev)) 9011 goto free_pcpu; 9012 9013 dev_mc_init(dev); 9014 dev_uc_init(dev); 9015 9016 dev_net_set(dev, &init_net); 9017 9018 dev->gso_max_size = GSO_MAX_SIZE; 9019 dev->gso_max_segs = GSO_MAX_SEGS; 9020 9021 INIT_LIST_HEAD(&dev->napi_list); 9022 INIT_LIST_HEAD(&dev->unreg_list); 9023 INIT_LIST_HEAD(&dev->close_list); 9024 INIT_LIST_HEAD(&dev->link_watch_list); 9025 INIT_LIST_HEAD(&dev->adj_list.upper); 9026 INIT_LIST_HEAD(&dev->adj_list.lower); 9027 INIT_LIST_HEAD(&dev->ptype_all); 9028 INIT_LIST_HEAD(&dev->ptype_specific); 9029 #ifdef CONFIG_NET_SCHED 9030 hash_init(dev->qdisc_hash); 9031 #endif 9032 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9033 setup(dev); 9034 9035 if (!dev->tx_queue_len) { 9036 dev->priv_flags |= IFF_NO_QUEUE; 9037 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9038 } 9039 9040 dev->num_tx_queues = txqs; 9041 dev->real_num_tx_queues = txqs; 9042 if (netif_alloc_netdev_queues(dev)) 9043 goto free_all; 9044 9045 dev->num_rx_queues = rxqs; 9046 dev->real_num_rx_queues = rxqs; 9047 if (netif_alloc_rx_queues(dev)) 9048 goto free_all; 9049 9050 strcpy(dev->name, name); 9051 dev->name_assign_type = name_assign_type; 9052 dev->group = INIT_NETDEV_GROUP; 9053 if (!dev->ethtool_ops) 9054 dev->ethtool_ops = &default_ethtool_ops; 9055 9056 nf_hook_ingress_init(dev); 9057 9058 return dev; 9059 9060 free_all: 9061 free_netdev(dev); 9062 return NULL; 9063 9064 free_pcpu: 9065 free_percpu(dev->pcpu_refcnt); 9066 free_dev: 9067 netdev_freemem(dev); 9068 return NULL; 9069 } 9070 EXPORT_SYMBOL(alloc_netdev_mqs); 9071 9072 /** 9073 * free_netdev - free network device 9074 * @dev: device 9075 * 9076 * This function does the last stage of destroying an allocated device 9077 * interface. The reference to the device object is released. If this 9078 * is the last reference then it will be freed.Must be called in process 9079 * context. 9080 */ 9081 void free_netdev(struct net_device *dev) 9082 { 9083 struct napi_struct *p, *n; 9084 9085 might_sleep(); 9086 netif_free_tx_queues(dev); 9087 netif_free_rx_queues(dev); 9088 9089 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9090 9091 /* Flush device addresses */ 9092 dev_addr_flush(dev); 9093 9094 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9095 netif_napi_del(p); 9096 9097 free_percpu(dev->pcpu_refcnt); 9098 dev->pcpu_refcnt = NULL; 9099 9100 /* Compatibility with error handling in drivers */ 9101 if (dev->reg_state == NETREG_UNINITIALIZED) { 9102 netdev_freemem(dev); 9103 return; 9104 } 9105 9106 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9107 dev->reg_state = NETREG_RELEASED; 9108 9109 /* will free via device release */ 9110 put_device(&dev->dev); 9111 } 9112 EXPORT_SYMBOL(free_netdev); 9113 9114 /** 9115 * synchronize_net - Synchronize with packet receive processing 9116 * 9117 * Wait for packets currently being received to be done. 9118 * Does not block later packets from starting. 9119 */ 9120 void synchronize_net(void) 9121 { 9122 might_sleep(); 9123 if (rtnl_is_locked()) 9124 synchronize_rcu_expedited(); 9125 else 9126 synchronize_rcu(); 9127 } 9128 EXPORT_SYMBOL(synchronize_net); 9129 9130 /** 9131 * unregister_netdevice_queue - remove device from the kernel 9132 * @dev: device 9133 * @head: list 9134 * 9135 * This function shuts down a device interface and removes it 9136 * from the kernel tables. 9137 * If head not NULL, device is queued to be unregistered later. 9138 * 9139 * Callers must hold the rtnl semaphore. You may want 9140 * unregister_netdev() instead of this. 9141 */ 9142 9143 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9144 { 9145 ASSERT_RTNL(); 9146 9147 if (head) { 9148 list_move_tail(&dev->unreg_list, head); 9149 } else { 9150 rollback_registered(dev); 9151 /* Finish processing unregister after unlock */ 9152 net_set_todo(dev); 9153 } 9154 } 9155 EXPORT_SYMBOL(unregister_netdevice_queue); 9156 9157 /** 9158 * unregister_netdevice_many - unregister many devices 9159 * @head: list of devices 9160 * 9161 * Note: As most callers use a stack allocated list_head, 9162 * we force a list_del() to make sure stack wont be corrupted later. 9163 */ 9164 void unregister_netdevice_many(struct list_head *head) 9165 { 9166 struct net_device *dev; 9167 9168 if (!list_empty(head)) { 9169 rollback_registered_many(head); 9170 list_for_each_entry(dev, head, unreg_list) 9171 net_set_todo(dev); 9172 list_del(head); 9173 } 9174 } 9175 EXPORT_SYMBOL(unregister_netdevice_many); 9176 9177 /** 9178 * unregister_netdev - remove device from the kernel 9179 * @dev: device 9180 * 9181 * This function shuts down a device interface and removes it 9182 * from the kernel tables. 9183 * 9184 * This is just a wrapper for unregister_netdevice that takes 9185 * the rtnl semaphore. In general you want to use this and not 9186 * unregister_netdevice. 9187 */ 9188 void unregister_netdev(struct net_device *dev) 9189 { 9190 rtnl_lock(); 9191 unregister_netdevice(dev); 9192 rtnl_unlock(); 9193 } 9194 EXPORT_SYMBOL(unregister_netdev); 9195 9196 /** 9197 * dev_change_net_namespace - move device to different nethost namespace 9198 * @dev: device 9199 * @net: network namespace 9200 * @pat: If not NULL name pattern to try if the current device name 9201 * is already taken in the destination network namespace. 9202 * 9203 * This function shuts down a device interface and moves it 9204 * to a new network namespace. On success 0 is returned, on 9205 * a failure a netagive errno code is returned. 9206 * 9207 * Callers must hold the rtnl semaphore. 9208 */ 9209 9210 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9211 { 9212 int err, new_nsid, new_ifindex; 9213 9214 ASSERT_RTNL(); 9215 9216 /* Don't allow namespace local devices to be moved. */ 9217 err = -EINVAL; 9218 if (dev->features & NETIF_F_NETNS_LOCAL) 9219 goto out; 9220 9221 /* Ensure the device has been registrered */ 9222 if (dev->reg_state != NETREG_REGISTERED) 9223 goto out; 9224 9225 /* Get out if there is nothing todo */ 9226 err = 0; 9227 if (net_eq(dev_net(dev), net)) 9228 goto out; 9229 9230 /* Pick the destination device name, and ensure 9231 * we can use it in the destination network namespace. 9232 */ 9233 err = -EEXIST; 9234 if (__dev_get_by_name(net, dev->name)) { 9235 /* We get here if we can't use the current device name */ 9236 if (!pat) 9237 goto out; 9238 err = dev_get_valid_name(net, dev, pat); 9239 if (err < 0) 9240 goto out; 9241 } 9242 9243 /* 9244 * And now a mini version of register_netdevice unregister_netdevice. 9245 */ 9246 9247 /* If device is running close it first. */ 9248 dev_close(dev); 9249 9250 /* And unlink it from device chain */ 9251 unlist_netdevice(dev); 9252 9253 synchronize_net(); 9254 9255 /* Shutdown queueing discipline. */ 9256 dev_shutdown(dev); 9257 9258 /* Notify protocols, that we are about to destroy 9259 * this device. They should clean all the things. 9260 * 9261 * Note that dev->reg_state stays at NETREG_REGISTERED. 9262 * This is wanted because this way 8021q and macvlan know 9263 * the device is just moving and can keep their slaves up. 9264 */ 9265 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9266 rcu_barrier(); 9267 9268 new_nsid = peernet2id_alloc(dev_net(dev), net); 9269 /* If there is an ifindex conflict assign a new one */ 9270 if (__dev_get_by_index(net, dev->ifindex)) 9271 new_ifindex = dev_new_index(net); 9272 else 9273 new_ifindex = dev->ifindex; 9274 9275 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9276 new_ifindex); 9277 9278 /* 9279 * Flush the unicast and multicast chains 9280 */ 9281 dev_uc_flush(dev); 9282 dev_mc_flush(dev); 9283 9284 /* Send a netdev-removed uevent to the old namespace */ 9285 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9286 netdev_adjacent_del_links(dev); 9287 9288 /* Actually switch the network namespace */ 9289 dev_net_set(dev, net); 9290 dev->ifindex = new_ifindex; 9291 9292 /* Send a netdev-add uevent to the new namespace */ 9293 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9294 netdev_adjacent_add_links(dev); 9295 9296 /* Fixup kobjects */ 9297 err = device_rename(&dev->dev, dev->name); 9298 WARN_ON(err); 9299 9300 /* Add the device back in the hashes */ 9301 list_netdevice(dev); 9302 9303 /* Notify protocols, that a new device appeared. */ 9304 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9305 9306 /* 9307 * Prevent userspace races by waiting until the network 9308 * device is fully setup before sending notifications. 9309 */ 9310 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9311 9312 synchronize_net(); 9313 err = 0; 9314 out: 9315 return err; 9316 } 9317 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9318 9319 static int dev_cpu_dead(unsigned int oldcpu) 9320 { 9321 struct sk_buff **list_skb; 9322 struct sk_buff *skb; 9323 unsigned int cpu; 9324 struct softnet_data *sd, *oldsd, *remsd = NULL; 9325 9326 local_irq_disable(); 9327 cpu = smp_processor_id(); 9328 sd = &per_cpu(softnet_data, cpu); 9329 oldsd = &per_cpu(softnet_data, oldcpu); 9330 9331 /* Find end of our completion_queue. */ 9332 list_skb = &sd->completion_queue; 9333 while (*list_skb) 9334 list_skb = &(*list_skb)->next; 9335 /* Append completion queue from offline CPU. */ 9336 *list_skb = oldsd->completion_queue; 9337 oldsd->completion_queue = NULL; 9338 9339 /* Append output queue from offline CPU. */ 9340 if (oldsd->output_queue) { 9341 *sd->output_queue_tailp = oldsd->output_queue; 9342 sd->output_queue_tailp = oldsd->output_queue_tailp; 9343 oldsd->output_queue = NULL; 9344 oldsd->output_queue_tailp = &oldsd->output_queue; 9345 } 9346 /* Append NAPI poll list from offline CPU, with one exception : 9347 * process_backlog() must be called by cpu owning percpu backlog. 9348 * We properly handle process_queue & input_pkt_queue later. 9349 */ 9350 while (!list_empty(&oldsd->poll_list)) { 9351 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9352 struct napi_struct, 9353 poll_list); 9354 9355 list_del_init(&napi->poll_list); 9356 if (napi->poll == process_backlog) 9357 napi->state = 0; 9358 else 9359 ____napi_schedule(sd, napi); 9360 } 9361 9362 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9363 local_irq_enable(); 9364 9365 #ifdef CONFIG_RPS 9366 remsd = oldsd->rps_ipi_list; 9367 oldsd->rps_ipi_list = NULL; 9368 #endif 9369 /* send out pending IPI's on offline CPU */ 9370 net_rps_send_ipi(remsd); 9371 9372 /* Process offline CPU's input_pkt_queue */ 9373 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9374 netif_rx_ni(skb); 9375 input_queue_head_incr(oldsd); 9376 } 9377 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9378 netif_rx_ni(skb); 9379 input_queue_head_incr(oldsd); 9380 } 9381 9382 return 0; 9383 } 9384 9385 /** 9386 * netdev_increment_features - increment feature set by one 9387 * @all: current feature set 9388 * @one: new feature set 9389 * @mask: mask feature set 9390 * 9391 * Computes a new feature set after adding a device with feature set 9392 * @one to the master device with current feature set @all. Will not 9393 * enable anything that is off in @mask. Returns the new feature set. 9394 */ 9395 netdev_features_t netdev_increment_features(netdev_features_t all, 9396 netdev_features_t one, netdev_features_t mask) 9397 { 9398 if (mask & NETIF_F_HW_CSUM) 9399 mask |= NETIF_F_CSUM_MASK; 9400 mask |= NETIF_F_VLAN_CHALLENGED; 9401 9402 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9403 all &= one | ~NETIF_F_ALL_FOR_ALL; 9404 9405 /* If one device supports hw checksumming, set for all. */ 9406 if (all & NETIF_F_HW_CSUM) 9407 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9408 9409 return all; 9410 } 9411 EXPORT_SYMBOL(netdev_increment_features); 9412 9413 static struct hlist_head * __net_init netdev_create_hash(void) 9414 { 9415 int i; 9416 struct hlist_head *hash; 9417 9418 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9419 if (hash != NULL) 9420 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9421 INIT_HLIST_HEAD(&hash[i]); 9422 9423 return hash; 9424 } 9425 9426 /* Initialize per network namespace state */ 9427 static int __net_init netdev_init(struct net *net) 9428 { 9429 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9430 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9431 9432 if (net != &init_net) 9433 INIT_LIST_HEAD(&net->dev_base_head); 9434 9435 net->dev_name_head = netdev_create_hash(); 9436 if (net->dev_name_head == NULL) 9437 goto err_name; 9438 9439 net->dev_index_head = netdev_create_hash(); 9440 if (net->dev_index_head == NULL) 9441 goto err_idx; 9442 9443 return 0; 9444 9445 err_idx: 9446 kfree(net->dev_name_head); 9447 err_name: 9448 return -ENOMEM; 9449 } 9450 9451 /** 9452 * netdev_drivername - network driver for the device 9453 * @dev: network device 9454 * 9455 * Determine network driver for device. 9456 */ 9457 const char *netdev_drivername(const struct net_device *dev) 9458 { 9459 const struct device_driver *driver; 9460 const struct device *parent; 9461 const char *empty = ""; 9462 9463 parent = dev->dev.parent; 9464 if (!parent) 9465 return empty; 9466 9467 driver = parent->driver; 9468 if (driver && driver->name) 9469 return driver->name; 9470 return empty; 9471 } 9472 9473 static void __netdev_printk(const char *level, const struct net_device *dev, 9474 struct va_format *vaf) 9475 { 9476 if (dev && dev->dev.parent) { 9477 dev_printk_emit(level[1] - '0', 9478 dev->dev.parent, 9479 "%s %s %s%s: %pV", 9480 dev_driver_string(dev->dev.parent), 9481 dev_name(dev->dev.parent), 9482 netdev_name(dev), netdev_reg_state(dev), 9483 vaf); 9484 } else if (dev) { 9485 printk("%s%s%s: %pV", 9486 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9487 } else { 9488 printk("%s(NULL net_device): %pV", level, vaf); 9489 } 9490 } 9491 9492 void netdev_printk(const char *level, const struct net_device *dev, 9493 const char *format, ...) 9494 { 9495 struct va_format vaf; 9496 va_list args; 9497 9498 va_start(args, format); 9499 9500 vaf.fmt = format; 9501 vaf.va = &args; 9502 9503 __netdev_printk(level, dev, &vaf); 9504 9505 va_end(args); 9506 } 9507 EXPORT_SYMBOL(netdev_printk); 9508 9509 #define define_netdev_printk_level(func, level) \ 9510 void func(const struct net_device *dev, const char *fmt, ...) \ 9511 { \ 9512 struct va_format vaf; \ 9513 va_list args; \ 9514 \ 9515 va_start(args, fmt); \ 9516 \ 9517 vaf.fmt = fmt; \ 9518 vaf.va = &args; \ 9519 \ 9520 __netdev_printk(level, dev, &vaf); \ 9521 \ 9522 va_end(args); \ 9523 } \ 9524 EXPORT_SYMBOL(func); 9525 9526 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9527 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9528 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9529 define_netdev_printk_level(netdev_err, KERN_ERR); 9530 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9531 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9532 define_netdev_printk_level(netdev_info, KERN_INFO); 9533 9534 static void __net_exit netdev_exit(struct net *net) 9535 { 9536 kfree(net->dev_name_head); 9537 kfree(net->dev_index_head); 9538 if (net != &init_net) 9539 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9540 } 9541 9542 static struct pernet_operations __net_initdata netdev_net_ops = { 9543 .init = netdev_init, 9544 .exit = netdev_exit, 9545 }; 9546 9547 static void __net_exit default_device_exit(struct net *net) 9548 { 9549 struct net_device *dev, *aux; 9550 /* 9551 * Push all migratable network devices back to the 9552 * initial network namespace 9553 */ 9554 rtnl_lock(); 9555 for_each_netdev_safe(net, dev, aux) { 9556 int err; 9557 char fb_name[IFNAMSIZ]; 9558 9559 /* Ignore unmoveable devices (i.e. loopback) */ 9560 if (dev->features & NETIF_F_NETNS_LOCAL) 9561 continue; 9562 9563 /* Leave virtual devices for the generic cleanup */ 9564 if (dev->rtnl_link_ops) 9565 continue; 9566 9567 /* Push remaining network devices to init_net */ 9568 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9569 err = dev_change_net_namespace(dev, &init_net, fb_name); 9570 if (err) { 9571 pr_emerg("%s: failed to move %s to init_net: %d\n", 9572 __func__, dev->name, err); 9573 BUG(); 9574 } 9575 } 9576 rtnl_unlock(); 9577 } 9578 9579 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9580 { 9581 /* Return with the rtnl_lock held when there are no network 9582 * devices unregistering in any network namespace in net_list. 9583 */ 9584 struct net *net; 9585 bool unregistering; 9586 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9587 9588 add_wait_queue(&netdev_unregistering_wq, &wait); 9589 for (;;) { 9590 unregistering = false; 9591 rtnl_lock(); 9592 list_for_each_entry(net, net_list, exit_list) { 9593 if (net->dev_unreg_count > 0) { 9594 unregistering = true; 9595 break; 9596 } 9597 } 9598 if (!unregistering) 9599 break; 9600 __rtnl_unlock(); 9601 9602 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9603 } 9604 remove_wait_queue(&netdev_unregistering_wq, &wait); 9605 } 9606 9607 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9608 { 9609 /* At exit all network devices most be removed from a network 9610 * namespace. Do this in the reverse order of registration. 9611 * Do this across as many network namespaces as possible to 9612 * improve batching efficiency. 9613 */ 9614 struct net_device *dev; 9615 struct net *net; 9616 LIST_HEAD(dev_kill_list); 9617 9618 /* To prevent network device cleanup code from dereferencing 9619 * loopback devices or network devices that have been freed 9620 * wait here for all pending unregistrations to complete, 9621 * before unregistring the loopback device and allowing the 9622 * network namespace be freed. 9623 * 9624 * The netdev todo list containing all network devices 9625 * unregistrations that happen in default_device_exit_batch 9626 * will run in the rtnl_unlock() at the end of 9627 * default_device_exit_batch. 9628 */ 9629 rtnl_lock_unregistering(net_list); 9630 list_for_each_entry(net, net_list, exit_list) { 9631 for_each_netdev_reverse(net, dev) { 9632 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9633 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9634 else 9635 unregister_netdevice_queue(dev, &dev_kill_list); 9636 } 9637 } 9638 unregister_netdevice_many(&dev_kill_list); 9639 rtnl_unlock(); 9640 } 9641 9642 static struct pernet_operations __net_initdata default_device_ops = { 9643 .exit = default_device_exit, 9644 .exit_batch = default_device_exit_batch, 9645 }; 9646 9647 /* 9648 * Initialize the DEV module. At boot time this walks the device list and 9649 * unhooks any devices that fail to initialise (normally hardware not 9650 * present) and leaves us with a valid list of present and active devices. 9651 * 9652 */ 9653 9654 /* 9655 * This is called single threaded during boot, so no need 9656 * to take the rtnl semaphore. 9657 */ 9658 static int __init net_dev_init(void) 9659 { 9660 int i, rc = -ENOMEM; 9661 9662 BUG_ON(!dev_boot_phase); 9663 9664 if (dev_proc_init()) 9665 goto out; 9666 9667 if (netdev_kobject_init()) 9668 goto out; 9669 9670 INIT_LIST_HEAD(&ptype_all); 9671 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9672 INIT_LIST_HEAD(&ptype_base[i]); 9673 9674 INIT_LIST_HEAD(&offload_base); 9675 9676 if (register_pernet_subsys(&netdev_net_ops)) 9677 goto out; 9678 9679 /* 9680 * Initialise the packet receive queues. 9681 */ 9682 9683 for_each_possible_cpu(i) { 9684 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9685 struct softnet_data *sd = &per_cpu(softnet_data, i); 9686 9687 INIT_WORK(flush, flush_backlog); 9688 9689 skb_queue_head_init(&sd->input_pkt_queue); 9690 skb_queue_head_init(&sd->process_queue); 9691 #ifdef CONFIG_XFRM_OFFLOAD 9692 skb_queue_head_init(&sd->xfrm_backlog); 9693 #endif 9694 INIT_LIST_HEAD(&sd->poll_list); 9695 sd->output_queue_tailp = &sd->output_queue; 9696 #ifdef CONFIG_RPS 9697 sd->csd.func = rps_trigger_softirq; 9698 sd->csd.info = sd; 9699 sd->cpu = i; 9700 #endif 9701 9702 init_gro_hash(&sd->backlog); 9703 sd->backlog.poll = process_backlog; 9704 sd->backlog.weight = weight_p; 9705 } 9706 9707 dev_boot_phase = 0; 9708 9709 /* The loopback device is special if any other network devices 9710 * is present in a network namespace the loopback device must 9711 * be present. Since we now dynamically allocate and free the 9712 * loopback device ensure this invariant is maintained by 9713 * keeping the loopback device as the first device on the 9714 * list of network devices. Ensuring the loopback devices 9715 * is the first device that appears and the last network device 9716 * that disappears. 9717 */ 9718 if (register_pernet_device(&loopback_net_ops)) 9719 goto out; 9720 9721 if (register_pernet_device(&default_device_ops)) 9722 goto out; 9723 9724 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9725 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9726 9727 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9728 NULL, dev_cpu_dead); 9729 WARN_ON(rc < 0); 9730 rc = 0; 9731 out: 9732 return rc; 9733 } 9734 9735 subsys_initcall(net_dev_init); 9736