xref: /linux/net/core/dev.c (revision 02000b55850deeadffe433e4b4930a8831f477de)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static seqcount_t devnet_rename_seq;
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235 	struct net *net = dev_net(dev);
236 
237 	ASSERT_RTNL();
238 
239 	write_lock_bh(&dev_base_lock);
240 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 	hlist_add_head_rcu(&dev->index_hlist,
243 			   dev_index_hash(net, dev->ifindex));
244 	write_unlock_bh(&dev_base_lock);
245 
246 	dev_base_seq_inc(net);
247 }
248 
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254 	ASSERT_RTNL();
255 
256 	/* Unlink dev from the device chain */
257 	write_lock_bh(&dev_base_lock);
258 	list_del_rcu(&dev->dev_list);
259 	hlist_del_rcu(&dev->name_hlist);
260 	hlist_del_rcu(&dev->index_hlist);
261 	write_unlock_bh(&dev_base_lock);
262 
263 	dev_base_seq_inc(dev_net(dev));
264 }
265 
266 /*
267  *	Our notifier list
268  */
269 
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271 
272 /*
273  *	Device drivers call our routines to queue packets here. We empty the
274  *	queue in the local softnet handler.
275  */
276 
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279 
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301 
302 static const char *const netdev_lock_name[] = {
303 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324 	int i;
325 
326 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327 		if (netdev_lock_type[i] == dev_type)
328 			return i;
329 	/* the last key is used by default */
330 	return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332 
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334 						 unsigned short dev_type)
335 {
336 	int i;
337 
338 	i = netdev_lock_pos(dev_type);
339 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340 				   netdev_lock_name[i]);
341 }
342 
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345 	int i;
346 
347 	i = netdev_lock_pos(dev->type);
348 	lockdep_set_class_and_name(&dev->addr_list_lock,
349 				   &netdev_addr_lock_key[i],
350 				   netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354 						 unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361 
362 /*******************************************************************************
363  *
364  *		Protocol management and registration routines
365  *
366  *******************************************************************************/
367 
368 
369 /*
370  *	Add a protocol ID to the list. Now that the input handler is
371  *	smarter we can dispense with all the messy stuff that used to be
372  *	here.
373  *
374  *	BEWARE!!! Protocol handlers, mangling input packets,
375  *	MUST BE last in hash buckets and checking protocol handlers
376  *	MUST start from promiscuous ptype_all chain in net_bh.
377  *	It is true now, do not change it.
378  *	Explanation follows: if protocol handler, mangling packet, will
379  *	be the first on list, it is not able to sense, that packet
380  *	is cloned and should be copied-on-write, so that it will
381  *	change it and subsequent readers will get broken packet.
382  *							--ANK (980803)
383  */
384 
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387 	if (pt->type == htons(ETH_P_ALL))
388 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389 	else
390 		return pt->dev ? &pt->dev->ptype_specific :
391 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393 
394 /**
395  *	dev_add_pack - add packet handler
396  *	@pt: packet type declaration
397  *
398  *	Add a protocol handler to the networking stack. The passed &packet_type
399  *	is linked into kernel lists and may not be freed until it has been
400  *	removed from the kernel lists.
401  *
402  *	This call does not sleep therefore it can not
403  *	guarantee all CPU's that are in middle of receiving packets
404  *	will see the new packet type (until the next received packet).
405  */
406 
407 void dev_add_pack(struct packet_type *pt)
408 {
409 	struct list_head *head = ptype_head(pt);
410 
411 	spin_lock(&ptype_lock);
412 	list_add_rcu(&pt->list, head);
413 	spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416 
417 /**
418  *	__dev_remove_pack	 - remove packet handler
419  *	@pt: packet type declaration
420  *
421  *	Remove a protocol handler that was previously added to the kernel
422  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *	from the kernel lists and can be freed or reused once this function
424  *	returns.
425  *
426  *      The packet type might still be in use by receivers
427  *	and must not be freed until after all the CPU's have gone
428  *	through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432 	struct list_head *head = ptype_head(pt);
433 	struct packet_type *pt1;
434 
435 	spin_lock(&ptype_lock);
436 
437 	list_for_each_entry(pt1, head, list) {
438 		if (pt == pt1) {
439 			list_del_rcu(&pt->list);
440 			goto out;
441 		}
442 	}
443 
444 	pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446 	spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449 
450 /**
451  *	dev_remove_pack	 - remove packet handler
452  *	@pt: packet type declaration
453  *
454  *	Remove a protocol handler that was previously added to the kernel
455  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *	from the kernel lists and can be freed or reused once this function
457  *	returns.
458  *
459  *	This call sleeps to guarantee that no CPU is looking at the packet
460  *	type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464 	__dev_remove_pack(pt);
465 
466 	synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469 
470 
471 /**
472  *	dev_add_offload - register offload handlers
473  *	@po: protocol offload declaration
474  *
475  *	Add protocol offload handlers to the networking stack. The passed
476  *	&proto_offload is linked into kernel lists and may not be freed until
477  *	it has been removed from the kernel lists.
478  *
479  *	This call does not sleep therefore it can not
480  *	guarantee all CPU's that are in middle of receiving packets
481  *	will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485 	struct packet_offload *elem;
486 
487 	spin_lock(&offload_lock);
488 	list_for_each_entry(elem, &offload_base, list) {
489 		if (po->priority < elem->priority)
490 			break;
491 	}
492 	list_add_rcu(&po->list, elem->list.prev);
493 	spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496 
497 /**
498  *	__dev_remove_offload	 - remove offload handler
499  *	@po: packet offload declaration
500  *
501  *	Remove a protocol offload handler that was previously added to the
502  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *	is removed from the kernel lists and can be freed or reused once this
504  *	function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *	and must not be freed until after all the CPU's have gone
508  *	through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512 	struct list_head *head = &offload_base;
513 	struct packet_offload *po1;
514 
515 	spin_lock(&offload_lock);
516 
517 	list_for_each_entry(po1, head, list) {
518 		if (po == po1) {
519 			list_del_rcu(&po->list);
520 			goto out;
521 		}
522 	}
523 
524 	pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526 	spin_unlock(&offload_lock);
527 }
528 
529 /**
530  *	dev_remove_offload	 - remove packet offload handler
531  *	@po: packet offload declaration
532  *
533  *	Remove a packet offload handler that was previously added to the kernel
534  *	offload handlers by dev_add_offload(). The passed &offload_type is
535  *	removed from the kernel lists and can be freed or reused once this
536  *	function returns.
537  *
538  *	This call sleeps to guarantee that no CPU is looking at the packet
539  *	type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543 	__dev_remove_offload(po);
544 
545 	synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548 
549 /******************************************************************************
550  *
551  *		      Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554 
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557 
558 /**
559  *	netdev_boot_setup_add	- add new setup entry
560  *	@name: name of the device
561  *	@map: configured settings for the device
562  *
563  *	Adds new setup entry to the dev_boot_setup list.  The function
564  *	returns 0 on error and 1 on success.  This is a generic routine to
565  *	all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569 	struct netdev_boot_setup *s;
570 	int i;
571 
572 	s = dev_boot_setup;
573 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575 			memset(s[i].name, 0, sizeof(s[i].name));
576 			strlcpy(s[i].name, name, IFNAMSIZ);
577 			memcpy(&s[i].map, map, sizeof(s[i].map));
578 			break;
579 		}
580 	}
581 
582 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584 
585 /**
586  * netdev_boot_setup_check	- check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596 	struct netdev_boot_setup *s = dev_boot_setup;
597 	int i;
598 
599 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601 		    !strcmp(dev->name, s[i].name)) {
602 			dev->irq = s[i].map.irq;
603 			dev->base_addr = s[i].map.base_addr;
604 			dev->mem_start = s[i].map.mem_start;
605 			dev->mem_end = s[i].map.mem_end;
606 			return 1;
607 		}
608 	}
609 	return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612 
613 
614 /**
615  * netdev_boot_base	- get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626 	const struct netdev_boot_setup *s = dev_boot_setup;
627 	char name[IFNAMSIZ];
628 	int i;
629 
630 	sprintf(name, "%s%d", prefix, unit);
631 
632 	/*
633 	 * If device already registered then return base of 1
634 	 * to indicate not to probe for this interface
635 	 */
636 	if (__dev_get_by_name(&init_net, name))
637 		return 1;
638 
639 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640 		if (!strcmp(name, s[i].name))
641 			return s[i].map.base_addr;
642 	return 0;
643 }
644 
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650 	int ints[5];
651 	struct ifmap map;
652 
653 	str = get_options(str, ARRAY_SIZE(ints), ints);
654 	if (!str || !*str)
655 		return 0;
656 
657 	/* Save settings */
658 	memset(&map, 0, sizeof(map));
659 	if (ints[0] > 0)
660 		map.irq = ints[1];
661 	if (ints[0] > 1)
662 		map.base_addr = ints[2];
663 	if (ints[0] > 2)
664 		map.mem_start = ints[3];
665 	if (ints[0] > 3)
666 		map.mem_end = ints[4];
667 
668 	/* Add new entry to the list */
669 	return netdev_boot_setup_add(str, &map);
670 }
671 
672 __setup("netdev=", netdev_boot_setup);
673 
674 /*******************************************************************************
675  *
676  *			    Device Interface Subroutines
677  *
678  *******************************************************************************/
679 
680 /**
681  *	dev_get_iflink	- get 'iflink' value of a interface
682  *	@dev: targeted interface
683  *
684  *	Indicates the ifindex the interface is linked to.
685  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687 
688 int dev_get_iflink(const struct net_device *dev)
689 {
690 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691 		return dev->netdev_ops->ndo_get_iflink(dev);
692 
693 	return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696 
697 /**
698  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *	@dev: targeted interface
700  *	@skb: The packet.
701  *
702  *	For better visibility of tunnel traffic OVS needs to retrieve
703  *	egress tunnel information for a packet. Following API allows
704  *	user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708 	struct ip_tunnel_info *info;
709 
710 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711 		return -EINVAL;
712 
713 	info = skb_tunnel_info_unclone(skb);
714 	if (!info)
715 		return -ENOMEM;
716 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717 		return -EINVAL;
718 
719 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722 
723 /**
724  *	__dev_get_by_name	- find a device by its name
725  *	@net: the applicable net namespace
726  *	@name: name to find
727  *
728  *	Find an interface by name. Must be called under RTNL semaphore
729  *	or @dev_base_lock. If the name is found a pointer to the device
730  *	is returned. If the name is not found then %NULL is returned. The
731  *	reference counters are not incremented so the caller must be
732  *	careful with locks.
733  */
734 
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737 	struct net_device *dev;
738 	struct hlist_head *head = dev_name_hash(net, name);
739 
740 	hlist_for_each_entry(dev, head, name_hlist)
741 		if (!strncmp(dev->name, name, IFNAMSIZ))
742 			return dev;
743 
744 	return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747 
748 /**
749  * dev_get_by_name_rcu	- find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759 
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762 	struct net_device *dev;
763 	struct hlist_head *head = dev_name_hash(net, name);
764 
765 	hlist_for_each_entry_rcu(dev, head, name_hlist)
766 		if (!strncmp(dev->name, name, IFNAMSIZ))
767 			return dev;
768 
769 	return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772 
773 /**
774  *	dev_get_by_name		- find a device by its name
775  *	@net: the applicable net namespace
776  *	@name: name to find
777  *
778  *	Find an interface by name. This can be called from any
779  *	context and does its own locking. The returned handle has
780  *	the usage count incremented and the caller must use dev_put() to
781  *	release it when it is no longer needed. %NULL is returned if no
782  *	matching device is found.
783  */
784 
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787 	struct net_device *dev;
788 
789 	rcu_read_lock();
790 	dev = dev_get_by_name_rcu(net, name);
791 	if (dev)
792 		dev_hold(dev);
793 	rcu_read_unlock();
794 	return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797 
798 /**
799  *	__dev_get_by_index - find a device by its ifindex
800  *	@net: the applicable net namespace
801  *	@ifindex: index of device
802  *
803  *	Search for an interface by index. Returns %NULL if the device
804  *	is not found or a pointer to the device. The device has not
805  *	had its reference counter increased so the caller must be careful
806  *	about locking. The caller must hold either the RTNL semaphore
807  *	or @dev_base_lock.
808  */
809 
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812 	struct net_device *dev;
813 	struct hlist_head *head = dev_index_hash(net, ifindex);
814 
815 	hlist_for_each_entry(dev, head, index_hlist)
816 		if (dev->ifindex == ifindex)
817 			return dev;
818 
819 	return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822 
823 /**
824  *	dev_get_by_index_rcu - find a device by its ifindex
825  *	@net: the applicable net namespace
826  *	@ifindex: index of device
827  *
828  *	Search for an interface by index. Returns %NULL if the device
829  *	is not found or a pointer to the device. The device has not
830  *	had its reference counter increased so the caller must be careful
831  *	about locking. The caller must hold RCU lock.
832  */
833 
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836 	struct net_device *dev;
837 	struct hlist_head *head = dev_index_hash(net, ifindex);
838 
839 	hlist_for_each_entry_rcu(dev, head, index_hlist)
840 		if (dev->ifindex == ifindex)
841 			return dev;
842 
843 	return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846 
847 
848 /**
849  *	dev_get_by_index - find a device by its ifindex
850  *	@net: the applicable net namespace
851  *	@ifindex: index of device
852  *
853  *	Search for an interface by index. Returns NULL if the device
854  *	is not found or a pointer to the device. The device returned has
855  *	had a reference added and the pointer is safe until the user calls
856  *	dev_put to indicate they have finished with it.
857  */
858 
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861 	struct net_device *dev;
862 
863 	rcu_read_lock();
864 	dev = dev_get_by_index_rcu(net, ifindex);
865 	if (dev)
866 		dev_hold(dev);
867 	rcu_read_unlock();
868 	return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871 
872 /**
873  *	dev_get_by_napi_id - find a device by napi_id
874  *	@napi_id: ID of the NAPI struct
875  *
876  *	Search for an interface by NAPI ID. Returns %NULL if the device
877  *	is not found or a pointer to the device. The device has not had
878  *	its reference counter increased so the caller must be careful
879  *	about locking. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884 	struct napi_struct *napi;
885 
886 	WARN_ON_ONCE(!rcu_read_lock_held());
887 
888 	if (napi_id < MIN_NAPI_ID)
889 		return NULL;
890 
891 	napi = napi_by_id(napi_id);
892 
893 	return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896 
897 /**
898  *	netdev_get_name - get a netdevice name, knowing its ifindex.
899  *	@net: network namespace
900  *	@name: a pointer to the buffer where the name will be stored.
901  *	@ifindex: the ifindex of the interface to get the name from.
902  *
903  *	The use of raw_seqcount_begin() and cond_resched() before
904  *	retrying is required as we want to give the writers a chance
905  *	to complete when CONFIG_PREEMPT is not set.
906  */
907 int netdev_get_name(struct net *net, char *name, int ifindex)
908 {
909 	struct net_device *dev;
910 	unsigned int seq;
911 
912 retry:
913 	seq = raw_seqcount_begin(&devnet_rename_seq);
914 	rcu_read_lock();
915 	dev = dev_get_by_index_rcu(net, ifindex);
916 	if (!dev) {
917 		rcu_read_unlock();
918 		return -ENODEV;
919 	}
920 
921 	strcpy(name, dev->name);
922 	rcu_read_unlock();
923 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924 		cond_resched();
925 		goto retry;
926 	}
927 
928 	return 0;
929 }
930 
931 /**
932  *	dev_getbyhwaddr_rcu - find a device by its hardware address
933  *	@net: the applicable net namespace
934  *	@type: media type of device
935  *	@ha: hardware address
936  *
937  *	Search for an interface by MAC address. Returns NULL if the device
938  *	is not found or a pointer to the device.
939  *	The caller must hold RCU or RTNL.
940  *	The returned device has not had its ref count increased
941  *	and the caller must therefore be careful about locking
942  *
943  */
944 
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946 				       const char *ha)
947 {
948 	struct net_device *dev;
949 
950 	for_each_netdev_rcu(net, dev)
951 		if (dev->type == type &&
952 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
953 			return dev;
954 
955 	return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958 
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961 	struct net_device *dev;
962 
963 	ASSERT_RTNL();
964 	for_each_netdev(net, dev)
965 		if (dev->type == type)
966 			return dev;
967 
968 	return NULL;
969 }
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971 
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974 	struct net_device *dev, *ret = NULL;
975 
976 	rcu_read_lock();
977 	for_each_netdev_rcu(net, dev)
978 		if (dev->type == type) {
979 			dev_hold(dev);
980 			ret = dev;
981 			break;
982 		}
983 	rcu_read_unlock();
984 	return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987 
988 /**
989  *	__dev_get_by_flags - find any device with given flags
990  *	@net: the applicable net namespace
991  *	@if_flags: IFF_* values
992  *	@mask: bitmask of bits in if_flags to check
993  *
994  *	Search for any interface with the given flags. Returns NULL if a device
995  *	is not found or a pointer to the device. Must be called inside
996  *	rtnl_lock(), and result refcount is unchanged.
997  */
998 
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 				      unsigned short mask)
1001 {
1002 	struct net_device *dev, *ret;
1003 
1004 	ASSERT_RTNL();
1005 
1006 	ret = NULL;
1007 	for_each_netdev(net, dev) {
1008 		if (((dev->flags ^ if_flags) & mask) == 0) {
1009 			ret = dev;
1010 			break;
1011 		}
1012 	}
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016 
1017 /**
1018  *	dev_valid_name - check if name is okay for network device
1019  *	@name: name string
1020  *
1021  *	Network device names need to be valid file names to
1022  *	to allow sysfs to work.  We also disallow any kind of
1023  *	whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027 	if (*name == '\0')
1028 		return false;
1029 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 		return false;
1031 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 		return false;
1033 
1034 	while (*name) {
1035 		if (*name == '/' || *name == ':' || isspace(*name))
1036 			return false;
1037 		name++;
1038 	}
1039 	return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042 
1043 /**
1044  *	__dev_alloc_name - allocate a name for a device
1045  *	@net: network namespace to allocate the device name in
1046  *	@name: name format string
1047  *	@buf:  scratch buffer and result name string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 {
1060 	int i = 0;
1061 	const char *p;
1062 	const int max_netdevices = 8*PAGE_SIZE;
1063 	unsigned long *inuse;
1064 	struct net_device *d;
1065 
1066 	if (!dev_valid_name(name))
1067 		return -EINVAL;
1068 
1069 	p = strchr(name, '%');
1070 	if (p) {
1071 		/*
1072 		 * Verify the string as this thing may have come from
1073 		 * the user.  There must be either one "%d" and no other "%"
1074 		 * characters.
1075 		 */
1076 		if (p[1] != 'd' || strchr(p + 2, '%'))
1077 			return -EINVAL;
1078 
1079 		/* Use one page as a bit array of possible slots */
1080 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081 		if (!inuse)
1082 			return -ENOMEM;
1083 
1084 		for_each_netdev(net, d) {
1085 			if (!sscanf(d->name, name, &i))
1086 				continue;
1087 			if (i < 0 || i >= max_netdevices)
1088 				continue;
1089 
1090 			/*  avoid cases where sscanf is not exact inverse of printf */
1091 			snprintf(buf, IFNAMSIZ, name, i);
1092 			if (!strncmp(buf, d->name, IFNAMSIZ))
1093 				set_bit(i, inuse);
1094 		}
1095 
1096 		i = find_first_zero_bit(inuse, max_netdevices);
1097 		free_page((unsigned long) inuse);
1098 	}
1099 
1100 	snprintf(buf, IFNAMSIZ, name, i);
1101 	if (!__dev_get_by_name(net, buf))
1102 		return i;
1103 
1104 	/* It is possible to run out of possible slots
1105 	 * when the name is long and there isn't enough space left
1106 	 * for the digits, or if all bits are used.
1107 	 */
1108 	return -ENFILE;
1109 }
1110 
1111 static int dev_alloc_name_ns(struct net *net,
1112 			     struct net_device *dev,
1113 			     const char *name)
1114 {
1115 	char buf[IFNAMSIZ];
1116 	int ret;
1117 
1118 	BUG_ON(!net);
1119 	ret = __dev_alloc_name(net, name, buf);
1120 	if (ret >= 0)
1121 		strlcpy(dev->name, buf, IFNAMSIZ);
1122 	return ret;
1123 }
1124 
1125 /**
1126  *	dev_alloc_name - allocate a name for a device
1127  *	@dev: device
1128  *	@name: name format string
1129  *
1130  *	Passed a format string - eg "lt%d" it will try and find a suitable
1131  *	id. It scans list of devices to build up a free map, then chooses
1132  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1133  *	while allocating the name and adding the device in order to avoid
1134  *	duplicates.
1135  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136  *	Returns the number of the unit assigned or a negative errno code.
1137  */
1138 
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1140 {
1141 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 }
1143 EXPORT_SYMBOL(dev_alloc_name);
1144 
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146 		       const char *name)
1147 {
1148 	BUG_ON(!net);
1149 
1150 	if (!dev_valid_name(name))
1151 		return -EINVAL;
1152 
1153 	if (strchr(name, '%'))
1154 		return dev_alloc_name_ns(net, dev, name);
1155 	else if (__dev_get_by_name(net, name))
1156 		return -EEXIST;
1157 	else if (dev->name != name)
1158 		strlcpy(dev->name, name, IFNAMSIZ);
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(dev_get_valid_name);
1163 
1164 /**
1165  *	dev_change_name - change name of a device
1166  *	@dev: device
1167  *	@newname: name (or format string) must be at least IFNAMSIZ
1168  *
1169  *	Change name of a device, can pass format strings "eth%d".
1170  *	for wildcarding.
1171  */
1172 int dev_change_name(struct net_device *dev, const char *newname)
1173 {
1174 	unsigned char old_assign_type;
1175 	char oldname[IFNAMSIZ];
1176 	int err = 0;
1177 	int ret;
1178 	struct net *net;
1179 
1180 	ASSERT_RTNL();
1181 	BUG_ON(!dev_net(dev));
1182 
1183 	net = dev_net(dev);
1184 	if (dev->flags & IFF_UP)
1185 		return -EBUSY;
1186 
1187 	write_seqcount_begin(&devnet_rename_seq);
1188 
1189 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1190 		write_seqcount_end(&devnet_rename_seq);
1191 		return 0;
1192 	}
1193 
1194 	memcpy(oldname, dev->name, IFNAMSIZ);
1195 
1196 	err = dev_get_valid_name(net, dev, newname);
1197 	if (err < 0) {
1198 		write_seqcount_end(&devnet_rename_seq);
1199 		return err;
1200 	}
1201 
1202 	if (oldname[0] && !strchr(oldname, '%'))
1203 		netdev_info(dev, "renamed from %s\n", oldname);
1204 
1205 	old_assign_type = dev->name_assign_type;
1206 	dev->name_assign_type = NET_NAME_RENAMED;
1207 
1208 rollback:
1209 	ret = device_rename(&dev->dev, dev->name);
1210 	if (ret) {
1211 		memcpy(dev->name, oldname, IFNAMSIZ);
1212 		dev->name_assign_type = old_assign_type;
1213 		write_seqcount_end(&devnet_rename_seq);
1214 		return ret;
1215 	}
1216 
1217 	write_seqcount_end(&devnet_rename_seq);
1218 
1219 	netdev_adjacent_rename_links(dev, oldname);
1220 
1221 	write_lock_bh(&dev_base_lock);
1222 	hlist_del_rcu(&dev->name_hlist);
1223 	write_unlock_bh(&dev_base_lock);
1224 
1225 	synchronize_rcu();
1226 
1227 	write_lock_bh(&dev_base_lock);
1228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1229 	write_unlock_bh(&dev_base_lock);
1230 
1231 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1232 	ret = notifier_to_errno(ret);
1233 
1234 	if (ret) {
1235 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1236 		if (err >= 0) {
1237 			err = ret;
1238 			write_seqcount_begin(&devnet_rename_seq);
1239 			memcpy(dev->name, oldname, IFNAMSIZ);
1240 			memcpy(oldname, newname, IFNAMSIZ);
1241 			dev->name_assign_type = old_assign_type;
1242 			old_assign_type = NET_NAME_RENAMED;
1243 			goto rollback;
1244 		} else {
1245 			pr_err("%s: name change rollback failed: %d\n",
1246 			       dev->name, ret);
1247 		}
1248 	}
1249 
1250 	return err;
1251 }
1252 
1253 /**
1254  *	dev_set_alias - change ifalias of a device
1255  *	@dev: device
1256  *	@alias: name up to IFALIASZ
1257  *	@len: limit of bytes to copy from info
1258  *
1259  *	Set ifalias for a device,
1260  */
1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262 {
1263 	struct dev_ifalias *new_alias = NULL;
1264 
1265 	if (len >= IFALIASZ)
1266 		return -EINVAL;
1267 
1268 	if (len) {
1269 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270 		if (!new_alias)
1271 			return -ENOMEM;
1272 
1273 		memcpy(new_alias->ifalias, alias, len);
1274 		new_alias->ifalias[len] = 0;
1275 	}
1276 
1277 	mutex_lock(&ifalias_mutex);
1278 	rcu_swap_protected(dev->ifalias, new_alias,
1279 			   mutex_is_locked(&ifalias_mutex));
1280 	mutex_unlock(&ifalias_mutex);
1281 
1282 	if (new_alias)
1283 		kfree_rcu(new_alias, rcuhead);
1284 
1285 	return len;
1286 }
1287 EXPORT_SYMBOL(dev_set_alias);
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val) 						\
1577 	case NETDEV_##val:				\
1578 		return "NETDEV_" __stringify(val);
1579 	switch (cmd) {
1580 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589 	}
1590 #undef N
1591 	return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594 
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596 				   struct net_device *dev)
1597 {
1598 	struct netdev_notifier_info info = {
1599 		.dev = dev,
1600 	};
1601 
1602 	return nb->notifier_call(nb, val, &info);
1603 }
1604 
1605 static int dev_boot_phase = 1;
1606 
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620 
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623 	struct net_device *dev;
1624 	struct net_device *last;
1625 	struct net *net;
1626 	int err;
1627 
1628 	/* Close race with setup_net() and cleanup_net() */
1629 	down_write(&pernet_ops_rwsem);
1630 	rtnl_lock();
1631 	err = raw_notifier_chain_register(&netdev_chain, nb);
1632 	if (err)
1633 		goto unlock;
1634 	if (dev_boot_phase)
1635 		goto unlock;
1636 	for_each_net(net) {
1637 		for_each_netdev(net, dev) {
1638 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 			err = notifier_to_errno(err);
1640 			if (err)
1641 				goto rollback;
1642 
1643 			if (!(dev->flags & IFF_UP))
1644 				continue;
1645 
1646 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 		}
1648 	}
1649 
1650 unlock:
1651 	rtnl_unlock();
1652 	up_write(&pernet_ops_rwsem);
1653 	return err;
1654 
1655 rollback:
1656 	last = dev;
1657 	for_each_net(net) {
1658 		for_each_netdev(net, dev) {
1659 			if (dev == last)
1660 				goto outroll;
1661 
1662 			if (dev->flags & IFF_UP) {
1663 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 							dev);
1665 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 			}
1667 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668 		}
1669 	}
1670 
1671 outroll:
1672 	raw_notifier_chain_unregister(&netdev_chain, nb);
1673 	goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676 
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690 
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693 	struct net_device *dev;
1694 	struct net *net;
1695 	int err;
1696 
1697 	/* Close race with setup_net() and cleanup_net() */
1698 	down_write(&pernet_ops_rwsem);
1699 	rtnl_lock();
1700 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701 	if (err)
1702 		goto unlock;
1703 
1704 	for_each_net(net) {
1705 		for_each_netdev(net, dev) {
1706 			if (dev->flags & IFF_UP) {
1707 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 							dev);
1709 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710 			}
1711 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712 		}
1713 	}
1714 unlock:
1715 	rtnl_unlock();
1716 	up_write(&pernet_ops_rwsem);
1717 	return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720 
1721 /**
1722  *	call_netdevice_notifiers_info - call all network notifier blocks
1723  *	@val: value passed unmodified to notifier function
1724  *	@info: notifier information data
1725  *
1726  *	Call all network notifier blocks.  Parameters and return value
1727  *	are as for raw_notifier_call_chain().
1728  */
1729 
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731 					 struct netdev_notifier_info *info)
1732 {
1733 	ASSERT_RTNL();
1734 	return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736 
1737 /**
1738  *	call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *	Call all network notifier blocks.  Parameters and return value
1743  *	are as for raw_notifier_call_chain().
1744  */
1745 
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748 	struct netdev_notifier_info info = {
1749 		.dev = dev,
1750 	};
1751 
1752 	return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755 
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1758 
1759 void net_inc_ingress_queue(void)
1760 {
1761 	static_branch_inc(&ingress_needed_key);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764 
1765 void net_dec_ingress_queue(void)
1766 {
1767 	static_branch_dec(&ingress_needed_key);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771 
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1774 
1775 void net_inc_egress_queue(void)
1776 {
1777 	static_branch_inc(&egress_needed_key);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780 
1781 void net_dec_egress_queue(void)
1782 {
1783 	static_branch_dec(&egress_needed_key);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787 
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795 	int wanted;
1796 
1797 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 	if (wanted > 0)
1799 		static_branch_enable(&netstamp_needed_key);
1800 	else
1801 		static_branch_disable(&netstamp_needed_key);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805 
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809 	int wanted;
1810 
1811 	while (1) {
1812 		wanted = atomic_read(&netstamp_wanted);
1813 		if (wanted <= 0)
1814 			break;
1815 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816 			return;
1817 	}
1818 	atomic_inc(&netstamp_needed_deferred);
1819 	schedule_work(&netstamp_work);
1820 #else
1821 	static_branch_inc(&netstamp_needed_key);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825 
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829 	int wanted;
1830 
1831 	while (1) {
1832 		wanted = atomic_read(&netstamp_wanted);
1833 		if (wanted <= 1)
1834 			break;
1835 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836 			return;
1837 	}
1838 	atomic_dec(&netstamp_needed_deferred);
1839 	schedule_work(&netstamp_work);
1840 #else
1841 	static_branch_dec(&netstamp_needed_key);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845 
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848 	skb->tstamp = 0;
1849 	if (static_branch_unlikely(&netstamp_needed_key))
1850 		__net_timestamp(skb);
1851 }
1852 
1853 #define net_timestamp_check(COND, SKB)				\
1854 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1855 		if ((COND) && !(SKB)->tstamp)			\
1856 			__net_timestamp(SKB);			\
1857 	}							\
1858 
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861 	unsigned int len;
1862 
1863 	if (!(dev->flags & IFF_UP))
1864 		return false;
1865 
1866 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867 	if (skb->len <= len)
1868 		return true;
1869 
1870 	/* if TSO is enabled, we don't care about the length as the packet
1871 	 * could be forwarded without being segmented before
1872 	 */
1873 	if (skb_is_gso(skb))
1874 		return true;
1875 
1876 	return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879 
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882 	int ret = ____dev_forward_skb(dev, skb);
1883 
1884 	if (likely(!ret)) {
1885 		skb->protocol = eth_type_trans(skb, dev);
1886 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887 	}
1888 
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892 
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *	NET_RX_SUCCESS	(no congestion)
1901  *	NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916 
1917 static inline int deliver_skb(struct sk_buff *skb,
1918 			      struct packet_type *pt_prev,
1919 			      struct net_device *orig_dev)
1920 {
1921 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922 		return -ENOMEM;
1923 	refcount_inc(&skb->users);
1924 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926 
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928 					  struct packet_type **pt,
1929 					  struct net_device *orig_dev,
1930 					  __be16 type,
1931 					  struct list_head *ptype_list)
1932 {
1933 	struct packet_type *ptype, *pt_prev = *pt;
1934 
1935 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 		if (ptype->type != type)
1937 			continue;
1938 		if (pt_prev)
1939 			deliver_skb(skb, pt_prev, orig_dev);
1940 		pt_prev = ptype;
1941 	}
1942 	*pt = pt_prev;
1943 }
1944 
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947 	if (!ptype->af_packet_priv || !skb->sk)
1948 		return false;
1949 
1950 	if (ptype->id_match)
1951 		return ptype->id_match(ptype, skb->sk);
1952 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953 		return true;
1954 
1955 	return false;
1956 }
1957 
1958 /*
1959  *	Support routine. Sends outgoing frames to any network
1960  *	taps currently in use.
1961  */
1962 
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965 	struct packet_type *ptype;
1966 	struct sk_buff *skb2 = NULL;
1967 	struct packet_type *pt_prev = NULL;
1968 	struct list_head *ptype_list = &ptype_all;
1969 
1970 	rcu_read_lock();
1971 again:
1972 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1973 		/* Never send packets back to the socket
1974 		 * they originated from - MvS (miquels@drinkel.ow.org)
1975 		 */
1976 		if (skb_loop_sk(ptype, skb))
1977 			continue;
1978 
1979 		if (pt_prev) {
1980 			deliver_skb(skb2, pt_prev, skb->dev);
1981 			pt_prev = ptype;
1982 			continue;
1983 		}
1984 
1985 		/* need to clone skb, done only once */
1986 		skb2 = skb_clone(skb, GFP_ATOMIC);
1987 		if (!skb2)
1988 			goto out_unlock;
1989 
1990 		net_timestamp_set(skb2);
1991 
1992 		/* skb->nh should be correctly
1993 		 * set by sender, so that the second statement is
1994 		 * just protection against buggy protocols.
1995 		 */
1996 		skb_reset_mac_header(skb2);
1997 
1998 		if (skb_network_header(skb2) < skb2->data ||
1999 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 					     ntohs(skb2->protocol),
2002 					     dev->name);
2003 			skb_reset_network_header(skb2);
2004 		}
2005 
2006 		skb2->transport_header = skb2->network_header;
2007 		skb2->pkt_type = PACKET_OUTGOING;
2008 		pt_prev = ptype;
2009 	}
2010 
2011 	if (ptype_list == &ptype_all) {
2012 		ptype_list = &dev->ptype_all;
2013 		goto again;
2014 	}
2015 out_unlock:
2016 	if (pt_prev) {
2017 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019 		else
2020 			kfree_skb(skb2);
2021 	}
2022 	rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025 
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041 	int i;
2042 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043 
2044 	/* If TC0 is invalidated disable TC mapping */
2045 	if (tc->offset + tc->count > txq) {
2046 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047 		dev->num_tc = 0;
2048 		return;
2049 	}
2050 
2051 	/* Invalidated prio to tc mappings set to TC0 */
2052 	for (i = 1; i < TC_BITMASK + 1; i++) {
2053 		int q = netdev_get_prio_tc_map(dev, i);
2054 
2055 		tc = &dev->tc_to_txq[q];
2056 		if (tc->offset + tc->count > txq) {
2057 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 				i, q);
2059 			netdev_set_prio_tc_map(dev, i, 0);
2060 		}
2061 	}
2062 }
2063 
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066 	if (dev->num_tc) {
2067 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068 		int i;
2069 
2070 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071 			if ((txq - tc->offset) < tc->count)
2072 				return i;
2073 		}
2074 
2075 		return -1;
2076 	}
2077 
2078 	return 0;
2079 }
2080 EXPORT_SYMBOL(netdev_txq_to_tc);
2081 
2082 #ifdef CONFIG_XPS
2083 struct static_key xps_needed __read_mostly;
2084 EXPORT_SYMBOL(xps_needed);
2085 struct static_key xps_rxqs_needed __read_mostly;
2086 EXPORT_SYMBOL(xps_rxqs_needed);
2087 static DEFINE_MUTEX(xps_map_mutex);
2088 #define xmap_dereference(P)		\
2089 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2090 
2091 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2092 			     int tci, u16 index)
2093 {
2094 	struct xps_map *map = NULL;
2095 	int pos;
2096 
2097 	if (dev_maps)
2098 		map = xmap_dereference(dev_maps->attr_map[tci]);
2099 	if (!map)
2100 		return false;
2101 
2102 	for (pos = map->len; pos--;) {
2103 		if (map->queues[pos] != index)
2104 			continue;
2105 
2106 		if (map->len > 1) {
2107 			map->queues[pos] = map->queues[--map->len];
2108 			break;
2109 		}
2110 
2111 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2112 		kfree_rcu(map, rcu);
2113 		return false;
2114 	}
2115 
2116 	return true;
2117 }
2118 
2119 static bool remove_xps_queue_cpu(struct net_device *dev,
2120 				 struct xps_dev_maps *dev_maps,
2121 				 int cpu, u16 offset, u16 count)
2122 {
2123 	int num_tc = dev->num_tc ? : 1;
2124 	bool active = false;
2125 	int tci;
2126 
2127 	for (tci = cpu * num_tc; num_tc--; tci++) {
2128 		int i, j;
2129 
2130 		for (i = count, j = offset; i--; j++) {
2131 			if (!remove_xps_queue(dev_maps, tci, j))
2132 				break;
2133 		}
2134 
2135 		active |= i < 0;
2136 	}
2137 
2138 	return active;
2139 }
2140 
2141 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2142 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2143 			   u16 offset, u16 count, bool is_rxqs_map)
2144 {
2145 	bool active = false;
2146 	int i, j;
2147 
2148 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2149 	     j < nr_ids;)
2150 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2151 					       count);
2152 	if (!active) {
2153 		if (is_rxqs_map) {
2154 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2155 		} else {
2156 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2157 
2158 			for (i = offset + (count - 1); count--; i--)
2159 				netdev_queue_numa_node_write(
2160 					netdev_get_tx_queue(dev, i),
2161 							NUMA_NO_NODE);
2162 		}
2163 		kfree_rcu(dev_maps, rcu);
2164 	}
2165 }
2166 
2167 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2168 				   u16 count)
2169 {
2170 	const unsigned long *possible_mask = NULL;
2171 	struct xps_dev_maps *dev_maps;
2172 	unsigned int nr_ids;
2173 
2174 	if (!static_key_false(&xps_needed))
2175 		return;
2176 
2177 	mutex_lock(&xps_map_mutex);
2178 
2179 	if (static_key_false(&xps_rxqs_needed)) {
2180 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2181 		if (dev_maps) {
2182 			nr_ids = dev->num_rx_queues;
2183 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2184 				       offset, count, true);
2185 		}
2186 	}
2187 
2188 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2189 	if (!dev_maps)
2190 		goto out_no_maps;
2191 
2192 	if (num_possible_cpus() > 1)
2193 		possible_mask = cpumask_bits(cpu_possible_mask);
2194 	nr_ids = nr_cpu_ids;
2195 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2196 		       false);
2197 
2198 out_no_maps:
2199 	if (static_key_enabled(&xps_rxqs_needed))
2200 		static_key_slow_dec(&xps_rxqs_needed);
2201 
2202 	static_key_slow_dec(&xps_needed);
2203 	mutex_unlock(&xps_map_mutex);
2204 }
2205 
2206 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2207 {
2208 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2209 }
2210 
2211 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2212 				      u16 index, bool is_rxqs_map)
2213 {
2214 	struct xps_map *new_map;
2215 	int alloc_len = XPS_MIN_MAP_ALLOC;
2216 	int i, pos;
2217 
2218 	for (pos = 0; map && pos < map->len; pos++) {
2219 		if (map->queues[pos] != index)
2220 			continue;
2221 		return map;
2222 	}
2223 
2224 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2225 	if (map) {
2226 		if (pos < map->alloc_len)
2227 			return map;
2228 
2229 		alloc_len = map->alloc_len * 2;
2230 	}
2231 
2232 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2233 	 *  map
2234 	 */
2235 	if (is_rxqs_map)
2236 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2237 	else
2238 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2239 				       cpu_to_node(attr_index));
2240 	if (!new_map)
2241 		return NULL;
2242 
2243 	for (i = 0; i < pos; i++)
2244 		new_map->queues[i] = map->queues[i];
2245 	new_map->alloc_len = alloc_len;
2246 	new_map->len = pos;
2247 
2248 	return new_map;
2249 }
2250 
2251 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2252 			  u16 index, bool is_rxqs_map)
2253 {
2254 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2255 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2256 	int i, j, tci, numa_node_id = -2;
2257 	int maps_sz, num_tc = 1, tc = 0;
2258 	struct xps_map *map, *new_map;
2259 	bool active = false;
2260 	unsigned int nr_ids;
2261 
2262 	if (dev->num_tc) {
2263 		num_tc = dev->num_tc;
2264 		tc = netdev_txq_to_tc(dev, index);
2265 		if (tc < 0)
2266 			return -EINVAL;
2267 	}
2268 
2269 	mutex_lock(&xps_map_mutex);
2270 	if (is_rxqs_map) {
2271 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2272 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2273 		nr_ids = dev->num_rx_queues;
2274 	} else {
2275 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2276 		if (num_possible_cpus() > 1) {
2277 			online_mask = cpumask_bits(cpu_online_mask);
2278 			possible_mask = cpumask_bits(cpu_possible_mask);
2279 		}
2280 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2281 		nr_ids = nr_cpu_ids;
2282 	}
2283 
2284 	if (maps_sz < L1_CACHE_BYTES)
2285 		maps_sz = L1_CACHE_BYTES;
2286 
2287 	/* allocate memory for queue storage */
2288 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2289 	     j < nr_ids;) {
2290 		if (!new_dev_maps)
2291 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2292 		if (!new_dev_maps) {
2293 			mutex_unlock(&xps_map_mutex);
2294 			return -ENOMEM;
2295 		}
2296 
2297 		tci = j * num_tc + tc;
2298 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2299 				 NULL;
2300 
2301 		map = expand_xps_map(map, j, index, is_rxqs_map);
2302 		if (!map)
2303 			goto error;
2304 
2305 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2306 	}
2307 
2308 	if (!new_dev_maps)
2309 		goto out_no_new_maps;
2310 
2311 	static_key_slow_inc(&xps_needed);
2312 	if (is_rxqs_map)
2313 		static_key_slow_inc(&xps_rxqs_needed);
2314 
2315 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2316 	     j < nr_ids;) {
2317 		/* copy maps belonging to foreign traffic classes */
2318 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2319 			/* fill in the new device map from the old device map */
2320 			map = xmap_dereference(dev_maps->attr_map[tci]);
2321 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2322 		}
2323 
2324 		/* We need to explicitly update tci as prevous loop
2325 		 * could break out early if dev_maps is NULL.
2326 		 */
2327 		tci = j * num_tc + tc;
2328 
2329 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2330 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2331 			/* add tx-queue to CPU/rx-queue maps */
2332 			int pos = 0;
2333 
2334 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2335 			while ((pos < map->len) && (map->queues[pos] != index))
2336 				pos++;
2337 
2338 			if (pos == map->len)
2339 				map->queues[map->len++] = index;
2340 #ifdef CONFIG_NUMA
2341 			if (!is_rxqs_map) {
2342 				if (numa_node_id == -2)
2343 					numa_node_id = cpu_to_node(j);
2344 				else if (numa_node_id != cpu_to_node(j))
2345 					numa_node_id = -1;
2346 			}
2347 #endif
2348 		} else if (dev_maps) {
2349 			/* fill in the new device map from the old device map */
2350 			map = xmap_dereference(dev_maps->attr_map[tci]);
2351 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2352 		}
2353 
2354 		/* copy maps belonging to foreign traffic classes */
2355 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2356 			/* fill in the new device map from the old device map */
2357 			map = xmap_dereference(dev_maps->attr_map[tci]);
2358 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2359 		}
2360 	}
2361 
2362 	if (is_rxqs_map)
2363 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2364 	else
2365 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2366 
2367 	/* Cleanup old maps */
2368 	if (!dev_maps)
2369 		goto out_no_old_maps;
2370 
2371 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2372 	     j < nr_ids;) {
2373 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2374 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2375 			map = xmap_dereference(dev_maps->attr_map[tci]);
2376 			if (map && map != new_map)
2377 				kfree_rcu(map, rcu);
2378 		}
2379 	}
2380 
2381 	kfree_rcu(dev_maps, rcu);
2382 
2383 out_no_old_maps:
2384 	dev_maps = new_dev_maps;
2385 	active = true;
2386 
2387 out_no_new_maps:
2388 	if (!is_rxqs_map) {
2389 		/* update Tx queue numa node */
2390 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2391 					     (numa_node_id >= 0) ?
2392 					     numa_node_id : NUMA_NO_NODE);
2393 	}
2394 
2395 	if (!dev_maps)
2396 		goto out_no_maps;
2397 
2398 	/* removes tx-queue from unused CPUs/rx-queues */
2399 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2400 	     j < nr_ids;) {
2401 		for (i = tc, tci = j * num_tc; i--; tci++)
2402 			active |= remove_xps_queue(dev_maps, tci, index);
2403 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2404 		    !netif_attr_test_online(j, online_mask, nr_ids))
2405 			active |= remove_xps_queue(dev_maps, tci, index);
2406 		for (i = num_tc - tc, tci++; --i; tci++)
2407 			active |= remove_xps_queue(dev_maps, tci, index);
2408 	}
2409 
2410 	/* free map if not active */
2411 	if (!active) {
2412 		if (is_rxqs_map)
2413 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2414 		else
2415 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2416 		kfree_rcu(dev_maps, rcu);
2417 	}
2418 
2419 out_no_maps:
2420 	mutex_unlock(&xps_map_mutex);
2421 
2422 	return 0;
2423 error:
2424 	/* remove any maps that we added */
2425 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2426 	     j < nr_ids;) {
2427 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2428 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2429 			map = dev_maps ?
2430 			      xmap_dereference(dev_maps->attr_map[tci]) :
2431 			      NULL;
2432 			if (new_map && new_map != map)
2433 				kfree(new_map);
2434 		}
2435 	}
2436 
2437 	mutex_unlock(&xps_map_mutex);
2438 
2439 	kfree(new_dev_maps);
2440 	return -ENOMEM;
2441 }
2442 
2443 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2444 			u16 index)
2445 {
2446 	return __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2447 }
2448 EXPORT_SYMBOL(netif_set_xps_queue);
2449 
2450 #endif
2451 void netdev_reset_tc(struct net_device *dev)
2452 {
2453 #ifdef CONFIG_XPS
2454 	netif_reset_xps_queues_gt(dev, 0);
2455 #endif
2456 	dev->num_tc = 0;
2457 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2458 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2459 }
2460 EXPORT_SYMBOL(netdev_reset_tc);
2461 
2462 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2463 {
2464 	if (tc >= dev->num_tc)
2465 		return -EINVAL;
2466 
2467 #ifdef CONFIG_XPS
2468 	netif_reset_xps_queues(dev, offset, count);
2469 #endif
2470 	dev->tc_to_txq[tc].count = count;
2471 	dev->tc_to_txq[tc].offset = offset;
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL(netdev_set_tc_queue);
2475 
2476 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2477 {
2478 	if (num_tc > TC_MAX_QUEUE)
2479 		return -EINVAL;
2480 
2481 #ifdef CONFIG_XPS
2482 	netif_reset_xps_queues_gt(dev, 0);
2483 #endif
2484 	dev->num_tc = num_tc;
2485 	return 0;
2486 }
2487 EXPORT_SYMBOL(netdev_set_num_tc);
2488 
2489 /*
2490  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2491  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2492  */
2493 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2494 {
2495 	bool disabling;
2496 	int rc;
2497 
2498 	disabling = txq < dev->real_num_tx_queues;
2499 
2500 	if (txq < 1 || txq > dev->num_tx_queues)
2501 		return -EINVAL;
2502 
2503 	if (dev->reg_state == NETREG_REGISTERED ||
2504 	    dev->reg_state == NETREG_UNREGISTERING) {
2505 		ASSERT_RTNL();
2506 
2507 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2508 						  txq);
2509 		if (rc)
2510 			return rc;
2511 
2512 		if (dev->num_tc)
2513 			netif_setup_tc(dev, txq);
2514 
2515 		dev->real_num_tx_queues = txq;
2516 
2517 		if (disabling) {
2518 			synchronize_net();
2519 			qdisc_reset_all_tx_gt(dev, txq);
2520 #ifdef CONFIG_XPS
2521 			netif_reset_xps_queues_gt(dev, txq);
2522 #endif
2523 		}
2524 	} else {
2525 		dev->real_num_tx_queues = txq;
2526 	}
2527 
2528 	return 0;
2529 }
2530 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2531 
2532 #ifdef CONFIG_SYSFS
2533 /**
2534  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2535  *	@dev: Network device
2536  *	@rxq: Actual number of RX queues
2537  *
2538  *	This must be called either with the rtnl_lock held or before
2539  *	registration of the net device.  Returns 0 on success, or a
2540  *	negative error code.  If called before registration, it always
2541  *	succeeds.
2542  */
2543 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2544 {
2545 	int rc;
2546 
2547 	if (rxq < 1 || rxq > dev->num_rx_queues)
2548 		return -EINVAL;
2549 
2550 	if (dev->reg_state == NETREG_REGISTERED) {
2551 		ASSERT_RTNL();
2552 
2553 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2554 						  rxq);
2555 		if (rc)
2556 			return rc;
2557 	}
2558 
2559 	dev->real_num_rx_queues = rxq;
2560 	return 0;
2561 }
2562 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2563 #endif
2564 
2565 /**
2566  * netif_get_num_default_rss_queues - default number of RSS queues
2567  *
2568  * This routine should set an upper limit on the number of RSS queues
2569  * used by default by multiqueue devices.
2570  */
2571 int netif_get_num_default_rss_queues(void)
2572 {
2573 	return is_kdump_kernel() ?
2574 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2575 }
2576 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2577 
2578 static void __netif_reschedule(struct Qdisc *q)
2579 {
2580 	struct softnet_data *sd;
2581 	unsigned long flags;
2582 
2583 	local_irq_save(flags);
2584 	sd = this_cpu_ptr(&softnet_data);
2585 	q->next_sched = NULL;
2586 	*sd->output_queue_tailp = q;
2587 	sd->output_queue_tailp = &q->next_sched;
2588 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2589 	local_irq_restore(flags);
2590 }
2591 
2592 void __netif_schedule(struct Qdisc *q)
2593 {
2594 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2595 		__netif_reschedule(q);
2596 }
2597 EXPORT_SYMBOL(__netif_schedule);
2598 
2599 struct dev_kfree_skb_cb {
2600 	enum skb_free_reason reason;
2601 };
2602 
2603 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2604 {
2605 	return (struct dev_kfree_skb_cb *)skb->cb;
2606 }
2607 
2608 void netif_schedule_queue(struct netdev_queue *txq)
2609 {
2610 	rcu_read_lock();
2611 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2612 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2613 
2614 		__netif_schedule(q);
2615 	}
2616 	rcu_read_unlock();
2617 }
2618 EXPORT_SYMBOL(netif_schedule_queue);
2619 
2620 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2621 {
2622 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2623 		struct Qdisc *q;
2624 
2625 		rcu_read_lock();
2626 		q = rcu_dereference(dev_queue->qdisc);
2627 		__netif_schedule(q);
2628 		rcu_read_unlock();
2629 	}
2630 }
2631 EXPORT_SYMBOL(netif_tx_wake_queue);
2632 
2633 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2634 {
2635 	unsigned long flags;
2636 
2637 	if (unlikely(!skb))
2638 		return;
2639 
2640 	if (likely(refcount_read(&skb->users) == 1)) {
2641 		smp_rmb();
2642 		refcount_set(&skb->users, 0);
2643 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2644 		return;
2645 	}
2646 	get_kfree_skb_cb(skb)->reason = reason;
2647 	local_irq_save(flags);
2648 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2649 	__this_cpu_write(softnet_data.completion_queue, skb);
2650 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2651 	local_irq_restore(flags);
2652 }
2653 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2654 
2655 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2656 {
2657 	if (in_irq() || irqs_disabled())
2658 		__dev_kfree_skb_irq(skb, reason);
2659 	else
2660 		dev_kfree_skb(skb);
2661 }
2662 EXPORT_SYMBOL(__dev_kfree_skb_any);
2663 
2664 
2665 /**
2666  * netif_device_detach - mark device as removed
2667  * @dev: network device
2668  *
2669  * Mark device as removed from system and therefore no longer available.
2670  */
2671 void netif_device_detach(struct net_device *dev)
2672 {
2673 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2674 	    netif_running(dev)) {
2675 		netif_tx_stop_all_queues(dev);
2676 	}
2677 }
2678 EXPORT_SYMBOL(netif_device_detach);
2679 
2680 /**
2681  * netif_device_attach - mark device as attached
2682  * @dev: network device
2683  *
2684  * Mark device as attached from system and restart if needed.
2685  */
2686 void netif_device_attach(struct net_device *dev)
2687 {
2688 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2689 	    netif_running(dev)) {
2690 		netif_tx_wake_all_queues(dev);
2691 		__netdev_watchdog_up(dev);
2692 	}
2693 }
2694 EXPORT_SYMBOL(netif_device_attach);
2695 
2696 /*
2697  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2698  * to be used as a distribution range.
2699  */
2700 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2701 {
2702 	u32 hash;
2703 	u16 qoffset = 0;
2704 	u16 qcount = dev->real_num_tx_queues;
2705 
2706 	if (skb_rx_queue_recorded(skb)) {
2707 		hash = skb_get_rx_queue(skb);
2708 		while (unlikely(hash >= qcount))
2709 			hash -= qcount;
2710 		return hash;
2711 	}
2712 
2713 	if (dev->num_tc) {
2714 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2715 
2716 		qoffset = dev->tc_to_txq[tc].offset;
2717 		qcount = dev->tc_to_txq[tc].count;
2718 	}
2719 
2720 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2721 }
2722 
2723 static void skb_warn_bad_offload(const struct sk_buff *skb)
2724 {
2725 	static const netdev_features_t null_features;
2726 	struct net_device *dev = skb->dev;
2727 	const char *name = "";
2728 
2729 	if (!net_ratelimit())
2730 		return;
2731 
2732 	if (dev) {
2733 		if (dev->dev.parent)
2734 			name = dev_driver_string(dev->dev.parent);
2735 		else
2736 			name = netdev_name(dev);
2737 	}
2738 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2739 	     "gso_type=%d ip_summed=%d\n",
2740 	     name, dev ? &dev->features : &null_features,
2741 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2742 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2743 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2744 }
2745 
2746 /*
2747  * Invalidate hardware checksum when packet is to be mangled, and
2748  * complete checksum manually on outgoing path.
2749  */
2750 int skb_checksum_help(struct sk_buff *skb)
2751 {
2752 	__wsum csum;
2753 	int ret = 0, offset;
2754 
2755 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2756 		goto out_set_summed;
2757 
2758 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2759 		skb_warn_bad_offload(skb);
2760 		return -EINVAL;
2761 	}
2762 
2763 	/* Before computing a checksum, we should make sure no frag could
2764 	 * be modified by an external entity : checksum could be wrong.
2765 	 */
2766 	if (skb_has_shared_frag(skb)) {
2767 		ret = __skb_linearize(skb);
2768 		if (ret)
2769 			goto out;
2770 	}
2771 
2772 	offset = skb_checksum_start_offset(skb);
2773 	BUG_ON(offset >= skb_headlen(skb));
2774 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2775 
2776 	offset += skb->csum_offset;
2777 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2778 
2779 	if (skb_cloned(skb) &&
2780 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2781 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2782 		if (ret)
2783 			goto out;
2784 	}
2785 
2786 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2787 out_set_summed:
2788 	skb->ip_summed = CHECKSUM_NONE;
2789 out:
2790 	return ret;
2791 }
2792 EXPORT_SYMBOL(skb_checksum_help);
2793 
2794 int skb_crc32c_csum_help(struct sk_buff *skb)
2795 {
2796 	__le32 crc32c_csum;
2797 	int ret = 0, offset, start;
2798 
2799 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2800 		goto out;
2801 
2802 	if (unlikely(skb_is_gso(skb)))
2803 		goto out;
2804 
2805 	/* Before computing a checksum, we should make sure no frag could
2806 	 * be modified by an external entity : checksum could be wrong.
2807 	 */
2808 	if (unlikely(skb_has_shared_frag(skb))) {
2809 		ret = __skb_linearize(skb);
2810 		if (ret)
2811 			goto out;
2812 	}
2813 	start = skb_checksum_start_offset(skb);
2814 	offset = start + offsetof(struct sctphdr, checksum);
2815 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2816 		ret = -EINVAL;
2817 		goto out;
2818 	}
2819 	if (skb_cloned(skb) &&
2820 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2821 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2822 		if (ret)
2823 			goto out;
2824 	}
2825 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2826 						  skb->len - start, ~(__u32)0,
2827 						  crc32c_csum_stub));
2828 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2829 	skb->ip_summed = CHECKSUM_NONE;
2830 	skb->csum_not_inet = 0;
2831 out:
2832 	return ret;
2833 }
2834 
2835 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2836 {
2837 	__be16 type = skb->protocol;
2838 
2839 	/* Tunnel gso handlers can set protocol to ethernet. */
2840 	if (type == htons(ETH_P_TEB)) {
2841 		struct ethhdr *eth;
2842 
2843 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2844 			return 0;
2845 
2846 		eth = (struct ethhdr *)skb->data;
2847 		type = eth->h_proto;
2848 	}
2849 
2850 	return __vlan_get_protocol(skb, type, depth);
2851 }
2852 
2853 /**
2854  *	skb_mac_gso_segment - mac layer segmentation handler.
2855  *	@skb: buffer to segment
2856  *	@features: features for the output path (see dev->features)
2857  */
2858 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2859 				    netdev_features_t features)
2860 {
2861 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2862 	struct packet_offload *ptype;
2863 	int vlan_depth = skb->mac_len;
2864 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2865 
2866 	if (unlikely(!type))
2867 		return ERR_PTR(-EINVAL);
2868 
2869 	__skb_pull(skb, vlan_depth);
2870 
2871 	rcu_read_lock();
2872 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2873 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2874 			segs = ptype->callbacks.gso_segment(skb, features);
2875 			break;
2876 		}
2877 	}
2878 	rcu_read_unlock();
2879 
2880 	__skb_push(skb, skb->data - skb_mac_header(skb));
2881 
2882 	return segs;
2883 }
2884 EXPORT_SYMBOL(skb_mac_gso_segment);
2885 
2886 
2887 /* openvswitch calls this on rx path, so we need a different check.
2888  */
2889 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2890 {
2891 	if (tx_path)
2892 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2893 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2894 
2895 	return skb->ip_summed == CHECKSUM_NONE;
2896 }
2897 
2898 /**
2899  *	__skb_gso_segment - Perform segmentation on skb.
2900  *	@skb: buffer to segment
2901  *	@features: features for the output path (see dev->features)
2902  *	@tx_path: whether it is called in TX path
2903  *
2904  *	This function segments the given skb and returns a list of segments.
2905  *
2906  *	It may return NULL if the skb requires no segmentation.  This is
2907  *	only possible when GSO is used for verifying header integrity.
2908  *
2909  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2910  */
2911 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2912 				  netdev_features_t features, bool tx_path)
2913 {
2914 	struct sk_buff *segs;
2915 
2916 	if (unlikely(skb_needs_check(skb, tx_path))) {
2917 		int err;
2918 
2919 		/* We're going to init ->check field in TCP or UDP header */
2920 		err = skb_cow_head(skb, 0);
2921 		if (err < 0)
2922 			return ERR_PTR(err);
2923 	}
2924 
2925 	/* Only report GSO partial support if it will enable us to
2926 	 * support segmentation on this frame without needing additional
2927 	 * work.
2928 	 */
2929 	if (features & NETIF_F_GSO_PARTIAL) {
2930 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2931 		struct net_device *dev = skb->dev;
2932 
2933 		partial_features |= dev->features & dev->gso_partial_features;
2934 		if (!skb_gso_ok(skb, features | partial_features))
2935 			features &= ~NETIF_F_GSO_PARTIAL;
2936 	}
2937 
2938 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2939 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2940 
2941 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2942 	SKB_GSO_CB(skb)->encap_level = 0;
2943 
2944 	skb_reset_mac_header(skb);
2945 	skb_reset_mac_len(skb);
2946 
2947 	segs = skb_mac_gso_segment(skb, features);
2948 
2949 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2950 		skb_warn_bad_offload(skb);
2951 
2952 	return segs;
2953 }
2954 EXPORT_SYMBOL(__skb_gso_segment);
2955 
2956 /* Take action when hardware reception checksum errors are detected. */
2957 #ifdef CONFIG_BUG
2958 void netdev_rx_csum_fault(struct net_device *dev)
2959 {
2960 	if (net_ratelimit()) {
2961 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2962 		dump_stack();
2963 	}
2964 }
2965 EXPORT_SYMBOL(netdev_rx_csum_fault);
2966 #endif
2967 
2968 /* XXX: check that highmem exists at all on the given machine. */
2969 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2970 {
2971 #ifdef CONFIG_HIGHMEM
2972 	int i;
2973 
2974 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2975 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2976 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2977 
2978 			if (PageHighMem(skb_frag_page(frag)))
2979 				return 1;
2980 		}
2981 	}
2982 #endif
2983 	return 0;
2984 }
2985 
2986 /* If MPLS offload request, verify we are testing hardware MPLS features
2987  * instead of standard features for the netdev.
2988  */
2989 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2990 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2991 					   netdev_features_t features,
2992 					   __be16 type)
2993 {
2994 	if (eth_p_mpls(type))
2995 		features &= skb->dev->mpls_features;
2996 
2997 	return features;
2998 }
2999 #else
3000 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3001 					   netdev_features_t features,
3002 					   __be16 type)
3003 {
3004 	return features;
3005 }
3006 #endif
3007 
3008 static netdev_features_t harmonize_features(struct sk_buff *skb,
3009 	netdev_features_t features)
3010 {
3011 	int tmp;
3012 	__be16 type;
3013 
3014 	type = skb_network_protocol(skb, &tmp);
3015 	features = net_mpls_features(skb, features, type);
3016 
3017 	if (skb->ip_summed != CHECKSUM_NONE &&
3018 	    !can_checksum_protocol(features, type)) {
3019 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3020 	}
3021 	if (illegal_highdma(skb->dev, skb))
3022 		features &= ~NETIF_F_SG;
3023 
3024 	return features;
3025 }
3026 
3027 netdev_features_t passthru_features_check(struct sk_buff *skb,
3028 					  struct net_device *dev,
3029 					  netdev_features_t features)
3030 {
3031 	return features;
3032 }
3033 EXPORT_SYMBOL(passthru_features_check);
3034 
3035 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3036 					     struct net_device *dev,
3037 					     netdev_features_t features)
3038 {
3039 	return vlan_features_check(skb, features);
3040 }
3041 
3042 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3043 					    struct net_device *dev,
3044 					    netdev_features_t features)
3045 {
3046 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3047 
3048 	if (gso_segs > dev->gso_max_segs)
3049 		return features & ~NETIF_F_GSO_MASK;
3050 
3051 	/* Support for GSO partial features requires software
3052 	 * intervention before we can actually process the packets
3053 	 * so we need to strip support for any partial features now
3054 	 * and we can pull them back in after we have partially
3055 	 * segmented the frame.
3056 	 */
3057 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3058 		features &= ~dev->gso_partial_features;
3059 
3060 	/* Make sure to clear the IPv4 ID mangling feature if the
3061 	 * IPv4 header has the potential to be fragmented.
3062 	 */
3063 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3064 		struct iphdr *iph = skb->encapsulation ?
3065 				    inner_ip_hdr(skb) : ip_hdr(skb);
3066 
3067 		if (!(iph->frag_off & htons(IP_DF)))
3068 			features &= ~NETIF_F_TSO_MANGLEID;
3069 	}
3070 
3071 	return features;
3072 }
3073 
3074 netdev_features_t netif_skb_features(struct sk_buff *skb)
3075 {
3076 	struct net_device *dev = skb->dev;
3077 	netdev_features_t features = dev->features;
3078 
3079 	if (skb_is_gso(skb))
3080 		features = gso_features_check(skb, dev, features);
3081 
3082 	/* If encapsulation offload request, verify we are testing
3083 	 * hardware encapsulation features instead of standard
3084 	 * features for the netdev
3085 	 */
3086 	if (skb->encapsulation)
3087 		features &= dev->hw_enc_features;
3088 
3089 	if (skb_vlan_tagged(skb))
3090 		features = netdev_intersect_features(features,
3091 						     dev->vlan_features |
3092 						     NETIF_F_HW_VLAN_CTAG_TX |
3093 						     NETIF_F_HW_VLAN_STAG_TX);
3094 
3095 	if (dev->netdev_ops->ndo_features_check)
3096 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3097 								features);
3098 	else
3099 		features &= dflt_features_check(skb, dev, features);
3100 
3101 	return harmonize_features(skb, features);
3102 }
3103 EXPORT_SYMBOL(netif_skb_features);
3104 
3105 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3106 		    struct netdev_queue *txq, bool more)
3107 {
3108 	unsigned int len;
3109 	int rc;
3110 
3111 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3112 		dev_queue_xmit_nit(skb, dev);
3113 
3114 	len = skb->len;
3115 	trace_net_dev_start_xmit(skb, dev);
3116 	rc = netdev_start_xmit(skb, dev, txq, more);
3117 	trace_net_dev_xmit(skb, rc, dev, len);
3118 
3119 	return rc;
3120 }
3121 
3122 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3123 				    struct netdev_queue *txq, int *ret)
3124 {
3125 	struct sk_buff *skb = first;
3126 	int rc = NETDEV_TX_OK;
3127 
3128 	while (skb) {
3129 		struct sk_buff *next = skb->next;
3130 
3131 		skb->next = NULL;
3132 		rc = xmit_one(skb, dev, txq, next != NULL);
3133 		if (unlikely(!dev_xmit_complete(rc))) {
3134 			skb->next = next;
3135 			goto out;
3136 		}
3137 
3138 		skb = next;
3139 		if (netif_xmit_stopped(txq) && skb) {
3140 			rc = NETDEV_TX_BUSY;
3141 			break;
3142 		}
3143 	}
3144 
3145 out:
3146 	*ret = rc;
3147 	return skb;
3148 }
3149 
3150 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3151 					  netdev_features_t features)
3152 {
3153 	if (skb_vlan_tag_present(skb) &&
3154 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3155 		skb = __vlan_hwaccel_push_inside(skb);
3156 	return skb;
3157 }
3158 
3159 int skb_csum_hwoffload_help(struct sk_buff *skb,
3160 			    const netdev_features_t features)
3161 {
3162 	if (unlikely(skb->csum_not_inet))
3163 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3164 			skb_crc32c_csum_help(skb);
3165 
3166 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3167 }
3168 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3169 
3170 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3171 {
3172 	netdev_features_t features;
3173 
3174 	features = netif_skb_features(skb);
3175 	skb = validate_xmit_vlan(skb, features);
3176 	if (unlikely(!skb))
3177 		goto out_null;
3178 
3179 	skb = sk_validate_xmit_skb(skb, dev);
3180 	if (unlikely(!skb))
3181 		goto out_null;
3182 
3183 	if (netif_needs_gso(skb, features)) {
3184 		struct sk_buff *segs;
3185 
3186 		segs = skb_gso_segment(skb, features);
3187 		if (IS_ERR(segs)) {
3188 			goto out_kfree_skb;
3189 		} else if (segs) {
3190 			consume_skb(skb);
3191 			skb = segs;
3192 		}
3193 	} else {
3194 		if (skb_needs_linearize(skb, features) &&
3195 		    __skb_linearize(skb))
3196 			goto out_kfree_skb;
3197 
3198 		/* If packet is not checksummed and device does not
3199 		 * support checksumming for this protocol, complete
3200 		 * checksumming here.
3201 		 */
3202 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3203 			if (skb->encapsulation)
3204 				skb_set_inner_transport_header(skb,
3205 							       skb_checksum_start_offset(skb));
3206 			else
3207 				skb_set_transport_header(skb,
3208 							 skb_checksum_start_offset(skb));
3209 			if (skb_csum_hwoffload_help(skb, features))
3210 				goto out_kfree_skb;
3211 		}
3212 	}
3213 
3214 	skb = validate_xmit_xfrm(skb, features, again);
3215 
3216 	return skb;
3217 
3218 out_kfree_skb:
3219 	kfree_skb(skb);
3220 out_null:
3221 	atomic_long_inc(&dev->tx_dropped);
3222 	return NULL;
3223 }
3224 
3225 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3226 {
3227 	struct sk_buff *next, *head = NULL, *tail;
3228 
3229 	for (; skb != NULL; skb = next) {
3230 		next = skb->next;
3231 		skb->next = NULL;
3232 
3233 		/* in case skb wont be segmented, point to itself */
3234 		skb->prev = skb;
3235 
3236 		skb = validate_xmit_skb(skb, dev, again);
3237 		if (!skb)
3238 			continue;
3239 
3240 		if (!head)
3241 			head = skb;
3242 		else
3243 			tail->next = skb;
3244 		/* If skb was segmented, skb->prev points to
3245 		 * the last segment. If not, it still contains skb.
3246 		 */
3247 		tail = skb->prev;
3248 	}
3249 	return head;
3250 }
3251 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3252 
3253 static void qdisc_pkt_len_init(struct sk_buff *skb)
3254 {
3255 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3256 
3257 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3258 
3259 	/* To get more precise estimation of bytes sent on wire,
3260 	 * we add to pkt_len the headers size of all segments
3261 	 */
3262 	if (shinfo->gso_size)  {
3263 		unsigned int hdr_len;
3264 		u16 gso_segs = shinfo->gso_segs;
3265 
3266 		/* mac layer + network layer */
3267 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3268 
3269 		/* + transport layer */
3270 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3271 			const struct tcphdr *th;
3272 			struct tcphdr _tcphdr;
3273 
3274 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3275 						sizeof(_tcphdr), &_tcphdr);
3276 			if (likely(th))
3277 				hdr_len += __tcp_hdrlen(th);
3278 		} else {
3279 			struct udphdr _udphdr;
3280 
3281 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3282 					       sizeof(_udphdr), &_udphdr))
3283 				hdr_len += sizeof(struct udphdr);
3284 		}
3285 
3286 		if (shinfo->gso_type & SKB_GSO_DODGY)
3287 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3288 						shinfo->gso_size);
3289 
3290 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3291 	}
3292 }
3293 
3294 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3295 				 struct net_device *dev,
3296 				 struct netdev_queue *txq)
3297 {
3298 	spinlock_t *root_lock = qdisc_lock(q);
3299 	struct sk_buff *to_free = NULL;
3300 	bool contended;
3301 	int rc;
3302 
3303 	qdisc_calculate_pkt_len(skb, q);
3304 
3305 	if (q->flags & TCQ_F_NOLOCK) {
3306 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3307 			__qdisc_drop(skb, &to_free);
3308 			rc = NET_XMIT_DROP;
3309 		} else {
3310 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3311 			qdisc_run(q);
3312 		}
3313 
3314 		if (unlikely(to_free))
3315 			kfree_skb_list(to_free);
3316 		return rc;
3317 	}
3318 
3319 	/*
3320 	 * Heuristic to force contended enqueues to serialize on a
3321 	 * separate lock before trying to get qdisc main lock.
3322 	 * This permits qdisc->running owner to get the lock more
3323 	 * often and dequeue packets faster.
3324 	 */
3325 	contended = qdisc_is_running(q);
3326 	if (unlikely(contended))
3327 		spin_lock(&q->busylock);
3328 
3329 	spin_lock(root_lock);
3330 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3331 		__qdisc_drop(skb, &to_free);
3332 		rc = NET_XMIT_DROP;
3333 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3334 		   qdisc_run_begin(q)) {
3335 		/*
3336 		 * This is a work-conserving queue; there are no old skbs
3337 		 * waiting to be sent out; and the qdisc is not running -
3338 		 * xmit the skb directly.
3339 		 */
3340 
3341 		qdisc_bstats_update(q, skb);
3342 
3343 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3344 			if (unlikely(contended)) {
3345 				spin_unlock(&q->busylock);
3346 				contended = false;
3347 			}
3348 			__qdisc_run(q);
3349 		}
3350 
3351 		qdisc_run_end(q);
3352 		rc = NET_XMIT_SUCCESS;
3353 	} else {
3354 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3355 		if (qdisc_run_begin(q)) {
3356 			if (unlikely(contended)) {
3357 				spin_unlock(&q->busylock);
3358 				contended = false;
3359 			}
3360 			__qdisc_run(q);
3361 			qdisc_run_end(q);
3362 		}
3363 	}
3364 	spin_unlock(root_lock);
3365 	if (unlikely(to_free))
3366 		kfree_skb_list(to_free);
3367 	if (unlikely(contended))
3368 		spin_unlock(&q->busylock);
3369 	return rc;
3370 }
3371 
3372 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3373 static void skb_update_prio(struct sk_buff *skb)
3374 {
3375 	const struct netprio_map *map;
3376 	const struct sock *sk;
3377 	unsigned int prioidx;
3378 
3379 	if (skb->priority)
3380 		return;
3381 	map = rcu_dereference_bh(skb->dev->priomap);
3382 	if (!map)
3383 		return;
3384 	sk = skb_to_full_sk(skb);
3385 	if (!sk)
3386 		return;
3387 
3388 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3389 
3390 	if (prioidx < map->priomap_len)
3391 		skb->priority = map->priomap[prioidx];
3392 }
3393 #else
3394 #define skb_update_prio(skb)
3395 #endif
3396 
3397 DEFINE_PER_CPU(int, xmit_recursion);
3398 EXPORT_SYMBOL(xmit_recursion);
3399 
3400 /**
3401  *	dev_loopback_xmit - loop back @skb
3402  *	@net: network namespace this loopback is happening in
3403  *	@sk:  sk needed to be a netfilter okfn
3404  *	@skb: buffer to transmit
3405  */
3406 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3407 {
3408 	skb_reset_mac_header(skb);
3409 	__skb_pull(skb, skb_network_offset(skb));
3410 	skb->pkt_type = PACKET_LOOPBACK;
3411 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3412 	WARN_ON(!skb_dst(skb));
3413 	skb_dst_force(skb);
3414 	netif_rx_ni(skb);
3415 	return 0;
3416 }
3417 EXPORT_SYMBOL(dev_loopback_xmit);
3418 
3419 #ifdef CONFIG_NET_EGRESS
3420 static struct sk_buff *
3421 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3422 {
3423 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3424 	struct tcf_result cl_res;
3425 
3426 	if (!miniq)
3427 		return skb;
3428 
3429 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3430 	mini_qdisc_bstats_cpu_update(miniq, skb);
3431 
3432 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3433 	case TC_ACT_OK:
3434 	case TC_ACT_RECLASSIFY:
3435 		skb->tc_index = TC_H_MIN(cl_res.classid);
3436 		break;
3437 	case TC_ACT_SHOT:
3438 		mini_qdisc_qstats_cpu_drop(miniq);
3439 		*ret = NET_XMIT_DROP;
3440 		kfree_skb(skb);
3441 		return NULL;
3442 	case TC_ACT_STOLEN:
3443 	case TC_ACT_QUEUED:
3444 	case TC_ACT_TRAP:
3445 		*ret = NET_XMIT_SUCCESS;
3446 		consume_skb(skb);
3447 		return NULL;
3448 	case TC_ACT_REDIRECT:
3449 		/* No need to push/pop skb's mac_header here on egress! */
3450 		skb_do_redirect(skb);
3451 		*ret = NET_XMIT_SUCCESS;
3452 		return NULL;
3453 	default:
3454 		break;
3455 	}
3456 
3457 	return skb;
3458 }
3459 #endif /* CONFIG_NET_EGRESS */
3460 
3461 #ifdef CONFIG_XPS
3462 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3463 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3464 {
3465 	struct xps_map *map;
3466 	int queue_index = -1;
3467 
3468 	if (dev->num_tc) {
3469 		tci *= dev->num_tc;
3470 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3471 	}
3472 
3473 	map = rcu_dereference(dev_maps->attr_map[tci]);
3474 	if (map) {
3475 		if (map->len == 1)
3476 			queue_index = map->queues[0];
3477 		else
3478 			queue_index = map->queues[reciprocal_scale(
3479 						skb_get_hash(skb), map->len)];
3480 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3481 			queue_index = -1;
3482 	}
3483 	return queue_index;
3484 }
3485 #endif
3486 
3487 static int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3488 {
3489 #ifdef CONFIG_XPS
3490 	struct xps_dev_maps *dev_maps;
3491 	struct sock *sk = skb->sk;
3492 	int queue_index = -1;
3493 
3494 	if (!static_key_false(&xps_needed))
3495 		return -1;
3496 
3497 	rcu_read_lock();
3498 	if (!static_key_false(&xps_rxqs_needed))
3499 		goto get_cpus_map;
3500 
3501 	dev_maps = rcu_dereference(dev->xps_rxqs_map);
3502 	if (dev_maps) {
3503 		int tci = sk_rx_queue_get(sk);
3504 
3505 		if (tci >= 0 && tci < dev->num_rx_queues)
3506 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3507 							  tci);
3508 	}
3509 
3510 get_cpus_map:
3511 	if (queue_index < 0) {
3512 		dev_maps = rcu_dereference(dev->xps_cpus_map);
3513 		if (dev_maps) {
3514 			unsigned int tci = skb->sender_cpu - 1;
3515 
3516 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3517 							  tci);
3518 		}
3519 	}
3520 	rcu_read_unlock();
3521 
3522 	return queue_index;
3523 #else
3524 	return -1;
3525 #endif
3526 }
3527 
3528 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3529 {
3530 	struct sock *sk = skb->sk;
3531 	int queue_index = sk_tx_queue_get(sk);
3532 
3533 	if (queue_index < 0 || skb->ooo_okay ||
3534 	    queue_index >= dev->real_num_tx_queues) {
3535 		int new_index = get_xps_queue(dev, skb);
3536 
3537 		if (new_index < 0)
3538 			new_index = skb_tx_hash(dev, skb);
3539 
3540 		if (queue_index != new_index && sk &&
3541 		    sk_fullsock(sk) &&
3542 		    rcu_access_pointer(sk->sk_dst_cache))
3543 			sk_tx_queue_set(sk, new_index);
3544 
3545 		queue_index = new_index;
3546 	}
3547 
3548 	return queue_index;
3549 }
3550 
3551 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3552 				    struct sk_buff *skb,
3553 				    void *accel_priv)
3554 {
3555 	int queue_index = 0;
3556 
3557 #ifdef CONFIG_XPS
3558 	u32 sender_cpu = skb->sender_cpu - 1;
3559 
3560 	if (sender_cpu >= (u32)NR_CPUS)
3561 		skb->sender_cpu = raw_smp_processor_id() + 1;
3562 #endif
3563 
3564 	if (dev->real_num_tx_queues != 1) {
3565 		const struct net_device_ops *ops = dev->netdev_ops;
3566 
3567 		if (ops->ndo_select_queue)
3568 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3569 							    __netdev_pick_tx);
3570 		else
3571 			queue_index = __netdev_pick_tx(dev, skb);
3572 
3573 		queue_index = netdev_cap_txqueue(dev, queue_index);
3574 	}
3575 
3576 	skb_set_queue_mapping(skb, queue_index);
3577 	return netdev_get_tx_queue(dev, queue_index);
3578 }
3579 
3580 /**
3581  *	__dev_queue_xmit - transmit a buffer
3582  *	@skb: buffer to transmit
3583  *	@accel_priv: private data used for L2 forwarding offload
3584  *
3585  *	Queue a buffer for transmission to a network device. The caller must
3586  *	have set the device and priority and built the buffer before calling
3587  *	this function. The function can be called from an interrupt.
3588  *
3589  *	A negative errno code is returned on a failure. A success does not
3590  *	guarantee the frame will be transmitted as it may be dropped due
3591  *	to congestion or traffic shaping.
3592  *
3593  * -----------------------------------------------------------------------------------
3594  *      I notice this method can also return errors from the queue disciplines,
3595  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3596  *      be positive.
3597  *
3598  *      Regardless of the return value, the skb is consumed, so it is currently
3599  *      difficult to retry a send to this method.  (You can bump the ref count
3600  *      before sending to hold a reference for retry if you are careful.)
3601  *
3602  *      When calling this method, interrupts MUST be enabled.  This is because
3603  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3604  *          --BLG
3605  */
3606 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3607 {
3608 	struct net_device *dev = skb->dev;
3609 	struct netdev_queue *txq;
3610 	struct Qdisc *q;
3611 	int rc = -ENOMEM;
3612 	bool again = false;
3613 
3614 	skb_reset_mac_header(skb);
3615 
3616 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3617 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3618 
3619 	/* Disable soft irqs for various locks below. Also
3620 	 * stops preemption for RCU.
3621 	 */
3622 	rcu_read_lock_bh();
3623 
3624 	skb_update_prio(skb);
3625 
3626 	qdisc_pkt_len_init(skb);
3627 #ifdef CONFIG_NET_CLS_ACT
3628 	skb->tc_at_ingress = 0;
3629 # ifdef CONFIG_NET_EGRESS
3630 	if (static_branch_unlikely(&egress_needed_key)) {
3631 		skb = sch_handle_egress(skb, &rc, dev);
3632 		if (!skb)
3633 			goto out;
3634 	}
3635 # endif
3636 #endif
3637 	/* If device/qdisc don't need skb->dst, release it right now while
3638 	 * its hot in this cpu cache.
3639 	 */
3640 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3641 		skb_dst_drop(skb);
3642 	else
3643 		skb_dst_force(skb);
3644 
3645 	txq = netdev_pick_tx(dev, skb, accel_priv);
3646 	q = rcu_dereference_bh(txq->qdisc);
3647 
3648 	trace_net_dev_queue(skb);
3649 	if (q->enqueue) {
3650 		rc = __dev_xmit_skb(skb, q, dev, txq);
3651 		goto out;
3652 	}
3653 
3654 	/* The device has no queue. Common case for software devices:
3655 	 * loopback, all the sorts of tunnels...
3656 
3657 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3658 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3659 	 * counters.)
3660 	 * However, it is possible, that they rely on protection
3661 	 * made by us here.
3662 
3663 	 * Check this and shot the lock. It is not prone from deadlocks.
3664 	 *Either shot noqueue qdisc, it is even simpler 8)
3665 	 */
3666 	if (dev->flags & IFF_UP) {
3667 		int cpu = smp_processor_id(); /* ok because BHs are off */
3668 
3669 		if (txq->xmit_lock_owner != cpu) {
3670 			if (unlikely(__this_cpu_read(xmit_recursion) >
3671 				     XMIT_RECURSION_LIMIT))
3672 				goto recursion_alert;
3673 
3674 			skb = validate_xmit_skb(skb, dev, &again);
3675 			if (!skb)
3676 				goto out;
3677 
3678 			HARD_TX_LOCK(dev, txq, cpu);
3679 
3680 			if (!netif_xmit_stopped(txq)) {
3681 				__this_cpu_inc(xmit_recursion);
3682 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3683 				__this_cpu_dec(xmit_recursion);
3684 				if (dev_xmit_complete(rc)) {
3685 					HARD_TX_UNLOCK(dev, txq);
3686 					goto out;
3687 				}
3688 			}
3689 			HARD_TX_UNLOCK(dev, txq);
3690 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3691 					     dev->name);
3692 		} else {
3693 			/* Recursion is detected! It is possible,
3694 			 * unfortunately
3695 			 */
3696 recursion_alert:
3697 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3698 					     dev->name);
3699 		}
3700 	}
3701 
3702 	rc = -ENETDOWN;
3703 	rcu_read_unlock_bh();
3704 
3705 	atomic_long_inc(&dev->tx_dropped);
3706 	kfree_skb_list(skb);
3707 	return rc;
3708 out:
3709 	rcu_read_unlock_bh();
3710 	return rc;
3711 }
3712 
3713 int dev_queue_xmit(struct sk_buff *skb)
3714 {
3715 	return __dev_queue_xmit(skb, NULL);
3716 }
3717 EXPORT_SYMBOL(dev_queue_xmit);
3718 
3719 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3720 {
3721 	return __dev_queue_xmit(skb, accel_priv);
3722 }
3723 EXPORT_SYMBOL(dev_queue_xmit_accel);
3724 
3725 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3726 {
3727 	struct net_device *dev = skb->dev;
3728 	struct sk_buff *orig_skb = skb;
3729 	struct netdev_queue *txq;
3730 	int ret = NETDEV_TX_BUSY;
3731 	bool again = false;
3732 
3733 	if (unlikely(!netif_running(dev) ||
3734 		     !netif_carrier_ok(dev)))
3735 		goto drop;
3736 
3737 	skb = validate_xmit_skb_list(skb, dev, &again);
3738 	if (skb != orig_skb)
3739 		goto drop;
3740 
3741 	skb_set_queue_mapping(skb, queue_id);
3742 	txq = skb_get_tx_queue(dev, skb);
3743 
3744 	local_bh_disable();
3745 
3746 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3747 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3748 		ret = netdev_start_xmit(skb, dev, txq, false);
3749 	HARD_TX_UNLOCK(dev, txq);
3750 
3751 	local_bh_enable();
3752 
3753 	if (!dev_xmit_complete(ret))
3754 		kfree_skb(skb);
3755 
3756 	return ret;
3757 drop:
3758 	atomic_long_inc(&dev->tx_dropped);
3759 	kfree_skb_list(skb);
3760 	return NET_XMIT_DROP;
3761 }
3762 EXPORT_SYMBOL(dev_direct_xmit);
3763 
3764 /*************************************************************************
3765  *			Receiver routines
3766  *************************************************************************/
3767 
3768 int netdev_max_backlog __read_mostly = 1000;
3769 EXPORT_SYMBOL(netdev_max_backlog);
3770 
3771 int netdev_tstamp_prequeue __read_mostly = 1;
3772 int netdev_budget __read_mostly = 300;
3773 unsigned int __read_mostly netdev_budget_usecs = 2000;
3774 int weight_p __read_mostly = 64;           /* old backlog weight */
3775 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3776 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3777 int dev_rx_weight __read_mostly = 64;
3778 int dev_tx_weight __read_mostly = 64;
3779 
3780 /* Called with irq disabled */
3781 static inline void ____napi_schedule(struct softnet_data *sd,
3782 				     struct napi_struct *napi)
3783 {
3784 	list_add_tail(&napi->poll_list, &sd->poll_list);
3785 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3786 }
3787 
3788 #ifdef CONFIG_RPS
3789 
3790 /* One global table that all flow-based protocols share. */
3791 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3792 EXPORT_SYMBOL(rps_sock_flow_table);
3793 u32 rps_cpu_mask __read_mostly;
3794 EXPORT_SYMBOL(rps_cpu_mask);
3795 
3796 struct static_key rps_needed __read_mostly;
3797 EXPORT_SYMBOL(rps_needed);
3798 struct static_key rfs_needed __read_mostly;
3799 EXPORT_SYMBOL(rfs_needed);
3800 
3801 static struct rps_dev_flow *
3802 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3803 	    struct rps_dev_flow *rflow, u16 next_cpu)
3804 {
3805 	if (next_cpu < nr_cpu_ids) {
3806 #ifdef CONFIG_RFS_ACCEL
3807 		struct netdev_rx_queue *rxqueue;
3808 		struct rps_dev_flow_table *flow_table;
3809 		struct rps_dev_flow *old_rflow;
3810 		u32 flow_id;
3811 		u16 rxq_index;
3812 		int rc;
3813 
3814 		/* Should we steer this flow to a different hardware queue? */
3815 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3816 		    !(dev->features & NETIF_F_NTUPLE))
3817 			goto out;
3818 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3819 		if (rxq_index == skb_get_rx_queue(skb))
3820 			goto out;
3821 
3822 		rxqueue = dev->_rx + rxq_index;
3823 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3824 		if (!flow_table)
3825 			goto out;
3826 		flow_id = skb_get_hash(skb) & flow_table->mask;
3827 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3828 							rxq_index, flow_id);
3829 		if (rc < 0)
3830 			goto out;
3831 		old_rflow = rflow;
3832 		rflow = &flow_table->flows[flow_id];
3833 		rflow->filter = rc;
3834 		if (old_rflow->filter == rflow->filter)
3835 			old_rflow->filter = RPS_NO_FILTER;
3836 	out:
3837 #endif
3838 		rflow->last_qtail =
3839 			per_cpu(softnet_data, next_cpu).input_queue_head;
3840 	}
3841 
3842 	rflow->cpu = next_cpu;
3843 	return rflow;
3844 }
3845 
3846 /*
3847  * get_rps_cpu is called from netif_receive_skb and returns the target
3848  * CPU from the RPS map of the receiving queue for a given skb.
3849  * rcu_read_lock must be held on entry.
3850  */
3851 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3852 		       struct rps_dev_flow **rflowp)
3853 {
3854 	const struct rps_sock_flow_table *sock_flow_table;
3855 	struct netdev_rx_queue *rxqueue = dev->_rx;
3856 	struct rps_dev_flow_table *flow_table;
3857 	struct rps_map *map;
3858 	int cpu = -1;
3859 	u32 tcpu;
3860 	u32 hash;
3861 
3862 	if (skb_rx_queue_recorded(skb)) {
3863 		u16 index = skb_get_rx_queue(skb);
3864 
3865 		if (unlikely(index >= dev->real_num_rx_queues)) {
3866 			WARN_ONCE(dev->real_num_rx_queues > 1,
3867 				  "%s received packet on queue %u, but number "
3868 				  "of RX queues is %u\n",
3869 				  dev->name, index, dev->real_num_rx_queues);
3870 			goto done;
3871 		}
3872 		rxqueue += index;
3873 	}
3874 
3875 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3876 
3877 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3878 	map = rcu_dereference(rxqueue->rps_map);
3879 	if (!flow_table && !map)
3880 		goto done;
3881 
3882 	skb_reset_network_header(skb);
3883 	hash = skb_get_hash(skb);
3884 	if (!hash)
3885 		goto done;
3886 
3887 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3888 	if (flow_table && sock_flow_table) {
3889 		struct rps_dev_flow *rflow;
3890 		u32 next_cpu;
3891 		u32 ident;
3892 
3893 		/* First check into global flow table if there is a match */
3894 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3895 		if ((ident ^ hash) & ~rps_cpu_mask)
3896 			goto try_rps;
3897 
3898 		next_cpu = ident & rps_cpu_mask;
3899 
3900 		/* OK, now we know there is a match,
3901 		 * we can look at the local (per receive queue) flow table
3902 		 */
3903 		rflow = &flow_table->flows[hash & flow_table->mask];
3904 		tcpu = rflow->cpu;
3905 
3906 		/*
3907 		 * If the desired CPU (where last recvmsg was done) is
3908 		 * different from current CPU (one in the rx-queue flow
3909 		 * table entry), switch if one of the following holds:
3910 		 *   - Current CPU is unset (>= nr_cpu_ids).
3911 		 *   - Current CPU is offline.
3912 		 *   - The current CPU's queue tail has advanced beyond the
3913 		 *     last packet that was enqueued using this table entry.
3914 		 *     This guarantees that all previous packets for the flow
3915 		 *     have been dequeued, thus preserving in order delivery.
3916 		 */
3917 		if (unlikely(tcpu != next_cpu) &&
3918 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3919 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3920 		      rflow->last_qtail)) >= 0)) {
3921 			tcpu = next_cpu;
3922 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3923 		}
3924 
3925 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3926 			*rflowp = rflow;
3927 			cpu = tcpu;
3928 			goto done;
3929 		}
3930 	}
3931 
3932 try_rps:
3933 
3934 	if (map) {
3935 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3936 		if (cpu_online(tcpu)) {
3937 			cpu = tcpu;
3938 			goto done;
3939 		}
3940 	}
3941 
3942 done:
3943 	return cpu;
3944 }
3945 
3946 #ifdef CONFIG_RFS_ACCEL
3947 
3948 /**
3949  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3950  * @dev: Device on which the filter was set
3951  * @rxq_index: RX queue index
3952  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3953  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3954  *
3955  * Drivers that implement ndo_rx_flow_steer() should periodically call
3956  * this function for each installed filter and remove the filters for
3957  * which it returns %true.
3958  */
3959 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3960 			 u32 flow_id, u16 filter_id)
3961 {
3962 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3963 	struct rps_dev_flow_table *flow_table;
3964 	struct rps_dev_flow *rflow;
3965 	bool expire = true;
3966 	unsigned int cpu;
3967 
3968 	rcu_read_lock();
3969 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3970 	if (flow_table && flow_id <= flow_table->mask) {
3971 		rflow = &flow_table->flows[flow_id];
3972 		cpu = READ_ONCE(rflow->cpu);
3973 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3974 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3975 			   rflow->last_qtail) <
3976 		     (int)(10 * flow_table->mask)))
3977 			expire = false;
3978 	}
3979 	rcu_read_unlock();
3980 	return expire;
3981 }
3982 EXPORT_SYMBOL(rps_may_expire_flow);
3983 
3984 #endif /* CONFIG_RFS_ACCEL */
3985 
3986 /* Called from hardirq (IPI) context */
3987 static void rps_trigger_softirq(void *data)
3988 {
3989 	struct softnet_data *sd = data;
3990 
3991 	____napi_schedule(sd, &sd->backlog);
3992 	sd->received_rps++;
3993 }
3994 
3995 #endif /* CONFIG_RPS */
3996 
3997 /*
3998  * Check if this softnet_data structure is another cpu one
3999  * If yes, queue it to our IPI list and return 1
4000  * If no, return 0
4001  */
4002 static int rps_ipi_queued(struct softnet_data *sd)
4003 {
4004 #ifdef CONFIG_RPS
4005 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4006 
4007 	if (sd != mysd) {
4008 		sd->rps_ipi_next = mysd->rps_ipi_list;
4009 		mysd->rps_ipi_list = sd;
4010 
4011 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4012 		return 1;
4013 	}
4014 #endif /* CONFIG_RPS */
4015 	return 0;
4016 }
4017 
4018 #ifdef CONFIG_NET_FLOW_LIMIT
4019 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4020 #endif
4021 
4022 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4023 {
4024 #ifdef CONFIG_NET_FLOW_LIMIT
4025 	struct sd_flow_limit *fl;
4026 	struct softnet_data *sd;
4027 	unsigned int old_flow, new_flow;
4028 
4029 	if (qlen < (netdev_max_backlog >> 1))
4030 		return false;
4031 
4032 	sd = this_cpu_ptr(&softnet_data);
4033 
4034 	rcu_read_lock();
4035 	fl = rcu_dereference(sd->flow_limit);
4036 	if (fl) {
4037 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4038 		old_flow = fl->history[fl->history_head];
4039 		fl->history[fl->history_head] = new_flow;
4040 
4041 		fl->history_head++;
4042 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4043 
4044 		if (likely(fl->buckets[old_flow]))
4045 			fl->buckets[old_flow]--;
4046 
4047 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4048 			fl->count++;
4049 			rcu_read_unlock();
4050 			return true;
4051 		}
4052 	}
4053 	rcu_read_unlock();
4054 #endif
4055 	return false;
4056 }
4057 
4058 /*
4059  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4060  * queue (may be a remote CPU queue).
4061  */
4062 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4063 			      unsigned int *qtail)
4064 {
4065 	struct softnet_data *sd;
4066 	unsigned long flags;
4067 	unsigned int qlen;
4068 
4069 	sd = &per_cpu(softnet_data, cpu);
4070 
4071 	local_irq_save(flags);
4072 
4073 	rps_lock(sd);
4074 	if (!netif_running(skb->dev))
4075 		goto drop;
4076 	qlen = skb_queue_len(&sd->input_pkt_queue);
4077 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4078 		if (qlen) {
4079 enqueue:
4080 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4081 			input_queue_tail_incr_save(sd, qtail);
4082 			rps_unlock(sd);
4083 			local_irq_restore(flags);
4084 			return NET_RX_SUCCESS;
4085 		}
4086 
4087 		/* Schedule NAPI for backlog device
4088 		 * We can use non atomic operation since we own the queue lock
4089 		 */
4090 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4091 			if (!rps_ipi_queued(sd))
4092 				____napi_schedule(sd, &sd->backlog);
4093 		}
4094 		goto enqueue;
4095 	}
4096 
4097 drop:
4098 	sd->dropped++;
4099 	rps_unlock(sd);
4100 
4101 	local_irq_restore(flags);
4102 
4103 	atomic_long_inc(&skb->dev->rx_dropped);
4104 	kfree_skb(skb);
4105 	return NET_RX_DROP;
4106 }
4107 
4108 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4109 {
4110 	struct net_device *dev = skb->dev;
4111 	struct netdev_rx_queue *rxqueue;
4112 
4113 	rxqueue = dev->_rx;
4114 
4115 	if (skb_rx_queue_recorded(skb)) {
4116 		u16 index = skb_get_rx_queue(skb);
4117 
4118 		if (unlikely(index >= dev->real_num_rx_queues)) {
4119 			WARN_ONCE(dev->real_num_rx_queues > 1,
4120 				  "%s received packet on queue %u, but number "
4121 				  "of RX queues is %u\n",
4122 				  dev->name, index, dev->real_num_rx_queues);
4123 
4124 			return rxqueue; /* Return first rxqueue */
4125 		}
4126 		rxqueue += index;
4127 	}
4128 	return rxqueue;
4129 }
4130 
4131 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4132 				     struct xdp_buff *xdp,
4133 				     struct bpf_prog *xdp_prog)
4134 {
4135 	struct netdev_rx_queue *rxqueue;
4136 	void *orig_data, *orig_data_end;
4137 	u32 metalen, act = XDP_DROP;
4138 	int hlen, off;
4139 	u32 mac_len;
4140 
4141 	/* Reinjected packets coming from act_mirred or similar should
4142 	 * not get XDP generic processing.
4143 	 */
4144 	if (skb_cloned(skb))
4145 		return XDP_PASS;
4146 
4147 	/* XDP packets must be linear and must have sufficient headroom
4148 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4149 	 * native XDP provides, thus we need to do it here as well.
4150 	 */
4151 	if (skb_is_nonlinear(skb) ||
4152 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4153 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4154 		int troom = skb->tail + skb->data_len - skb->end;
4155 
4156 		/* In case we have to go down the path and also linearize,
4157 		 * then lets do the pskb_expand_head() work just once here.
4158 		 */
4159 		if (pskb_expand_head(skb,
4160 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4161 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4162 			goto do_drop;
4163 		if (skb_linearize(skb))
4164 			goto do_drop;
4165 	}
4166 
4167 	/* The XDP program wants to see the packet starting at the MAC
4168 	 * header.
4169 	 */
4170 	mac_len = skb->data - skb_mac_header(skb);
4171 	hlen = skb_headlen(skb) + mac_len;
4172 	xdp->data = skb->data - mac_len;
4173 	xdp->data_meta = xdp->data;
4174 	xdp->data_end = xdp->data + hlen;
4175 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4176 	orig_data_end = xdp->data_end;
4177 	orig_data = xdp->data;
4178 
4179 	rxqueue = netif_get_rxqueue(skb);
4180 	xdp->rxq = &rxqueue->xdp_rxq;
4181 
4182 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4183 
4184 	off = xdp->data - orig_data;
4185 	if (off > 0)
4186 		__skb_pull(skb, off);
4187 	else if (off < 0)
4188 		__skb_push(skb, -off);
4189 	skb->mac_header += off;
4190 
4191 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4192 	 * pckt.
4193 	 */
4194 	off = orig_data_end - xdp->data_end;
4195 	if (off != 0) {
4196 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4197 		skb->len -= off;
4198 
4199 	}
4200 
4201 	switch (act) {
4202 	case XDP_REDIRECT:
4203 	case XDP_TX:
4204 		__skb_push(skb, mac_len);
4205 		break;
4206 	case XDP_PASS:
4207 		metalen = xdp->data - xdp->data_meta;
4208 		if (metalen)
4209 			skb_metadata_set(skb, metalen);
4210 		break;
4211 	default:
4212 		bpf_warn_invalid_xdp_action(act);
4213 		/* fall through */
4214 	case XDP_ABORTED:
4215 		trace_xdp_exception(skb->dev, xdp_prog, act);
4216 		/* fall through */
4217 	case XDP_DROP:
4218 	do_drop:
4219 		kfree_skb(skb);
4220 		break;
4221 	}
4222 
4223 	return act;
4224 }
4225 
4226 /* When doing generic XDP we have to bypass the qdisc layer and the
4227  * network taps in order to match in-driver-XDP behavior.
4228  */
4229 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4230 {
4231 	struct net_device *dev = skb->dev;
4232 	struct netdev_queue *txq;
4233 	bool free_skb = true;
4234 	int cpu, rc;
4235 
4236 	txq = netdev_pick_tx(dev, skb, NULL);
4237 	cpu = smp_processor_id();
4238 	HARD_TX_LOCK(dev, txq, cpu);
4239 	if (!netif_xmit_stopped(txq)) {
4240 		rc = netdev_start_xmit(skb, dev, txq, 0);
4241 		if (dev_xmit_complete(rc))
4242 			free_skb = false;
4243 	}
4244 	HARD_TX_UNLOCK(dev, txq);
4245 	if (free_skb) {
4246 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4247 		kfree_skb(skb);
4248 	}
4249 }
4250 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4251 
4252 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4253 
4254 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4255 {
4256 	if (xdp_prog) {
4257 		struct xdp_buff xdp;
4258 		u32 act;
4259 		int err;
4260 
4261 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4262 		if (act != XDP_PASS) {
4263 			switch (act) {
4264 			case XDP_REDIRECT:
4265 				err = xdp_do_generic_redirect(skb->dev, skb,
4266 							      &xdp, xdp_prog);
4267 				if (err)
4268 					goto out_redir;
4269 				break;
4270 			case XDP_TX:
4271 				generic_xdp_tx(skb, xdp_prog);
4272 				break;
4273 			}
4274 			return XDP_DROP;
4275 		}
4276 	}
4277 	return XDP_PASS;
4278 out_redir:
4279 	kfree_skb(skb);
4280 	return XDP_DROP;
4281 }
4282 EXPORT_SYMBOL_GPL(do_xdp_generic);
4283 
4284 static int netif_rx_internal(struct sk_buff *skb)
4285 {
4286 	int ret;
4287 
4288 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4289 
4290 	trace_netif_rx(skb);
4291 
4292 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4293 		int ret;
4294 
4295 		preempt_disable();
4296 		rcu_read_lock();
4297 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4298 		rcu_read_unlock();
4299 		preempt_enable();
4300 
4301 		/* Consider XDP consuming the packet a success from
4302 		 * the netdev point of view we do not want to count
4303 		 * this as an error.
4304 		 */
4305 		if (ret != XDP_PASS)
4306 			return NET_RX_SUCCESS;
4307 	}
4308 
4309 #ifdef CONFIG_RPS
4310 	if (static_key_false(&rps_needed)) {
4311 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4312 		int cpu;
4313 
4314 		preempt_disable();
4315 		rcu_read_lock();
4316 
4317 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4318 		if (cpu < 0)
4319 			cpu = smp_processor_id();
4320 
4321 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4322 
4323 		rcu_read_unlock();
4324 		preempt_enable();
4325 	} else
4326 #endif
4327 	{
4328 		unsigned int qtail;
4329 
4330 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4331 		put_cpu();
4332 	}
4333 	return ret;
4334 }
4335 
4336 /**
4337  *	netif_rx	-	post buffer to the network code
4338  *	@skb: buffer to post
4339  *
4340  *	This function receives a packet from a device driver and queues it for
4341  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4342  *	may be dropped during processing for congestion control or by the
4343  *	protocol layers.
4344  *
4345  *	return values:
4346  *	NET_RX_SUCCESS	(no congestion)
4347  *	NET_RX_DROP     (packet was dropped)
4348  *
4349  */
4350 
4351 int netif_rx(struct sk_buff *skb)
4352 {
4353 	trace_netif_rx_entry(skb);
4354 
4355 	return netif_rx_internal(skb);
4356 }
4357 EXPORT_SYMBOL(netif_rx);
4358 
4359 int netif_rx_ni(struct sk_buff *skb)
4360 {
4361 	int err;
4362 
4363 	trace_netif_rx_ni_entry(skb);
4364 
4365 	preempt_disable();
4366 	err = netif_rx_internal(skb);
4367 	if (local_softirq_pending())
4368 		do_softirq();
4369 	preempt_enable();
4370 
4371 	return err;
4372 }
4373 EXPORT_SYMBOL(netif_rx_ni);
4374 
4375 static __latent_entropy void net_tx_action(struct softirq_action *h)
4376 {
4377 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4378 
4379 	if (sd->completion_queue) {
4380 		struct sk_buff *clist;
4381 
4382 		local_irq_disable();
4383 		clist = sd->completion_queue;
4384 		sd->completion_queue = NULL;
4385 		local_irq_enable();
4386 
4387 		while (clist) {
4388 			struct sk_buff *skb = clist;
4389 
4390 			clist = clist->next;
4391 
4392 			WARN_ON(refcount_read(&skb->users));
4393 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4394 				trace_consume_skb(skb);
4395 			else
4396 				trace_kfree_skb(skb, net_tx_action);
4397 
4398 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4399 				__kfree_skb(skb);
4400 			else
4401 				__kfree_skb_defer(skb);
4402 		}
4403 
4404 		__kfree_skb_flush();
4405 	}
4406 
4407 	if (sd->output_queue) {
4408 		struct Qdisc *head;
4409 
4410 		local_irq_disable();
4411 		head = sd->output_queue;
4412 		sd->output_queue = NULL;
4413 		sd->output_queue_tailp = &sd->output_queue;
4414 		local_irq_enable();
4415 
4416 		while (head) {
4417 			struct Qdisc *q = head;
4418 			spinlock_t *root_lock = NULL;
4419 
4420 			head = head->next_sched;
4421 
4422 			if (!(q->flags & TCQ_F_NOLOCK)) {
4423 				root_lock = qdisc_lock(q);
4424 				spin_lock(root_lock);
4425 			}
4426 			/* We need to make sure head->next_sched is read
4427 			 * before clearing __QDISC_STATE_SCHED
4428 			 */
4429 			smp_mb__before_atomic();
4430 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4431 			qdisc_run(q);
4432 			if (root_lock)
4433 				spin_unlock(root_lock);
4434 		}
4435 	}
4436 
4437 	xfrm_dev_backlog(sd);
4438 }
4439 
4440 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4441 /* This hook is defined here for ATM LANE */
4442 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4443 			     unsigned char *addr) __read_mostly;
4444 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4445 #endif
4446 
4447 static inline struct sk_buff *
4448 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4449 		   struct net_device *orig_dev)
4450 {
4451 #ifdef CONFIG_NET_CLS_ACT
4452 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4453 	struct tcf_result cl_res;
4454 
4455 	/* If there's at least one ingress present somewhere (so
4456 	 * we get here via enabled static key), remaining devices
4457 	 * that are not configured with an ingress qdisc will bail
4458 	 * out here.
4459 	 */
4460 	if (!miniq)
4461 		return skb;
4462 
4463 	if (*pt_prev) {
4464 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4465 		*pt_prev = NULL;
4466 	}
4467 
4468 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4469 	skb->tc_at_ingress = 1;
4470 	mini_qdisc_bstats_cpu_update(miniq, skb);
4471 
4472 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4473 	case TC_ACT_OK:
4474 	case TC_ACT_RECLASSIFY:
4475 		skb->tc_index = TC_H_MIN(cl_res.classid);
4476 		break;
4477 	case TC_ACT_SHOT:
4478 		mini_qdisc_qstats_cpu_drop(miniq);
4479 		kfree_skb(skb);
4480 		return NULL;
4481 	case TC_ACT_STOLEN:
4482 	case TC_ACT_QUEUED:
4483 	case TC_ACT_TRAP:
4484 		consume_skb(skb);
4485 		return NULL;
4486 	case TC_ACT_REDIRECT:
4487 		/* skb_mac_header check was done by cls/act_bpf, so
4488 		 * we can safely push the L2 header back before
4489 		 * redirecting to another netdev
4490 		 */
4491 		__skb_push(skb, skb->mac_len);
4492 		skb_do_redirect(skb);
4493 		return NULL;
4494 	default:
4495 		break;
4496 	}
4497 #endif /* CONFIG_NET_CLS_ACT */
4498 	return skb;
4499 }
4500 
4501 /**
4502  *	netdev_is_rx_handler_busy - check if receive handler is registered
4503  *	@dev: device to check
4504  *
4505  *	Check if a receive handler is already registered for a given device.
4506  *	Return true if there one.
4507  *
4508  *	The caller must hold the rtnl_mutex.
4509  */
4510 bool netdev_is_rx_handler_busy(struct net_device *dev)
4511 {
4512 	ASSERT_RTNL();
4513 	return dev && rtnl_dereference(dev->rx_handler);
4514 }
4515 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4516 
4517 /**
4518  *	netdev_rx_handler_register - register receive handler
4519  *	@dev: device to register a handler for
4520  *	@rx_handler: receive handler to register
4521  *	@rx_handler_data: data pointer that is used by rx handler
4522  *
4523  *	Register a receive handler for a device. This handler will then be
4524  *	called from __netif_receive_skb. A negative errno code is returned
4525  *	on a failure.
4526  *
4527  *	The caller must hold the rtnl_mutex.
4528  *
4529  *	For a general description of rx_handler, see enum rx_handler_result.
4530  */
4531 int netdev_rx_handler_register(struct net_device *dev,
4532 			       rx_handler_func_t *rx_handler,
4533 			       void *rx_handler_data)
4534 {
4535 	if (netdev_is_rx_handler_busy(dev))
4536 		return -EBUSY;
4537 
4538 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4539 		return -EINVAL;
4540 
4541 	/* Note: rx_handler_data must be set before rx_handler */
4542 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4543 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4544 
4545 	return 0;
4546 }
4547 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4548 
4549 /**
4550  *	netdev_rx_handler_unregister - unregister receive handler
4551  *	@dev: device to unregister a handler from
4552  *
4553  *	Unregister a receive handler from a device.
4554  *
4555  *	The caller must hold the rtnl_mutex.
4556  */
4557 void netdev_rx_handler_unregister(struct net_device *dev)
4558 {
4559 
4560 	ASSERT_RTNL();
4561 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4562 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4563 	 * section has a guarantee to see a non NULL rx_handler_data
4564 	 * as well.
4565 	 */
4566 	synchronize_net();
4567 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4568 }
4569 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4570 
4571 /*
4572  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4573  * the special handling of PFMEMALLOC skbs.
4574  */
4575 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4576 {
4577 	switch (skb->protocol) {
4578 	case htons(ETH_P_ARP):
4579 	case htons(ETH_P_IP):
4580 	case htons(ETH_P_IPV6):
4581 	case htons(ETH_P_8021Q):
4582 	case htons(ETH_P_8021AD):
4583 		return true;
4584 	default:
4585 		return false;
4586 	}
4587 }
4588 
4589 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4590 			     int *ret, struct net_device *orig_dev)
4591 {
4592 #ifdef CONFIG_NETFILTER_INGRESS
4593 	if (nf_hook_ingress_active(skb)) {
4594 		int ingress_retval;
4595 
4596 		if (*pt_prev) {
4597 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4598 			*pt_prev = NULL;
4599 		}
4600 
4601 		rcu_read_lock();
4602 		ingress_retval = nf_hook_ingress(skb);
4603 		rcu_read_unlock();
4604 		return ingress_retval;
4605 	}
4606 #endif /* CONFIG_NETFILTER_INGRESS */
4607 	return 0;
4608 }
4609 
4610 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4611 				    struct packet_type **ppt_prev)
4612 {
4613 	struct packet_type *ptype, *pt_prev;
4614 	rx_handler_func_t *rx_handler;
4615 	struct net_device *orig_dev;
4616 	bool deliver_exact = false;
4617 	int ret = NET_RX_DROP;
4618 	__be16 type;
4619 
4620 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4621 
4622 	trace_netif_receive_skb(skb);
4623 
4624 	orig_dev = skb->dev;
4625 
4626 	skb_reset_network_header(skb);
4627 	if (!skb_transport_header_was_set(skb))
4628 		skb_reset_transport_header(skb);
4629 	skb_reset_mac_len(skb);
4630 
4631 	pt_prev = NULL;
4632 
4633 another_round:
4634 	skb->skb_iif = skb->dev->ifindex;
4635 
4636 	__this_cpu_inc(softnet_data.processed);
4637 
4638 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4639 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4640 		skb = skb_vlan_untag(skb);
4641 		if (unlikely(!skb))
4642 			goto out;
4643 	}
4644 
4645 	if (skb_skip_tc_classify(skb))
4646 		goto skip_classify;
4647 
4648 	if (pfmemalloc)
4649 		goto skip_taps;
4650 
4651 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4652 		if (pt_prev)
4653 			ret = deliver_skb(skb, pt_prev, orig_dev);
4654 		pt_prev = ptype;
4655 	}
4656 
4657 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4658 		if (pt_prev)
4659 			ret = deliver_skb(skb, pt_prev, orig_dev);
4660 		pt_prev = ptype;
4661 	}
4662 
4663 skip_taps:
4664 #ifdef CONFIG_NET_INGRESS
4665 	if (static_branch_unlikely(&ingress_needed_key)) {
4666 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4667 		if (!skb)
4668 			goto out;
4669 
4670 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4671 			goto out;
4672 	}
4673 #endif
4674 	skb_reset_tc(skb);
4675 skip_classify:
4676 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4677 		goto drop;
4678 
4679 	if (skb_vlan_tag_present(skb)) {
4680 		if (pt_prev) {
4681 			ret = deliver_skb(skb, pt_prev, orig_dev);
4682 			pt_prev = NULL;
4683 		}
4684 		if (vlan_do_receive(&skb))
4685 			goto another_round;
4686 		else if (unlikely(!skb))
4687 			goto out;
4688 	}
4689 
4690 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4691 	if (rx_handler) {
4692 		if (pt_prev) {
4693 			ret = deliver_skb(skb, pt_prev, orig_dev);
4694 			pt_prev = NULL;
4695 		}
4696 		switch (rx_handler(&skb)) {
4697 		case RX_HANDLER_CONSUMED:
4698 			ret = NET_RX_SUCCESS;
4699 			goto out;
4700 		case RX_HANDLER_ANOTHER:
4701 			goto another_round;
4702 		case RX_HANDLER_EXACT:
4703 			deliver_exact = true;
4704 		case RX_HANDLER_PASS:
4705 			break;
4706 		default:
4707 			BUG();
4708 		}
4709 	}
4710 
4711 	if (unlikely(skb_vlan_tag_present(skb))) {
4712 		if (skb_vlan_tag_get_id(skb))
4713 			skb->pkt_type = PACKET_OTHERHOST;
4714 		/* Note: we might in the future use prio bits
4715 		 * and set skb->priority like in vlan_do_receive()
4716 		 * For the time being, just ignore Priority Code Point
4717 		 */
4718 		skb->vlan_tci = 0;
4719 	}
4720 
4721 	type = skb->protocol;
4722 
4723 	/* deliver only exact match when indicated */
4724 	if (likely(!deliver_exact)) {
4725 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4726 				       &ptype_base[ntohs(type) &
4727 						   PTYPE_HASH_MASK]);
4728 	}
4729 
4730 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4731 			       &orig_dev->ptype_specific);
4732 
4733 	if (unlikely(skb->dev != orig_dev)) {
4734 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4735 				       &skb->dev->ptype_specific);
4736 	}
4737 
4738 	if (pt_prev) {
4739 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4740 			goto drop;
4741 		*ppt_prev = pt_prev;
4742 	} else {
4743 drop:
4744 		if (!deliver_exact)
4745 			atomic_long_inc(&skb->dev->rx_dropped);
4746 		else
4747 			atomic_long_inc(&skb->dev->rx_nohandler);
4748 		kfree_skb(skb);
4749 		/* Jamal, now you will not able to escape explaining
4750 		 * me how you were going to use this. :-)
4751 		 */
4752 		ret = NET_RX_DROP;
4753 	}
4754 
4755 out:
4756 	return ret;
4757 }
4758 
4759 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4760 {
4761 	struct net_device *orig_dev = skb->dev;
4762 	struct packet_type *pt_prev = NULL;
4763 	int ret;
4764 
4765 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4766 	if (pt_prev)
4767 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4768 	return ret;
4769 }
4770 
4771 /**
4772  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4773  *	@skb: buffer to process
4774  *
4775  *	More direct receive version of netif_receive_skb().  It should
4776  *	only be used by callers that have a need to skip RPS and Generic XDP.
4777  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4778  *
4779  *	This function may only be called from softirq context and interrupts
4780  *	should be enabled.
4781  *
4782  *	Return values (usually ignored):
4783  *	NET_RX_SUCCESS: no congestion
4784  *	NET_RX_DROP: packet was dropped
4785  */
4786 int netif_receive_skb_core(struct sk_buff *skb)
4787 {
4788 	int ret;
4789 
4790 	rcu_read_lock();
4791 	ret = __netif_receive_skb_one_core(skb, false);
4792 	rcu_read_unlock();
4793 
4794 	return ret;
4795 }
4796 EXPORT_SYMBOL(netif_receive_skb_core);
4797 
4798 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4799 						  struct packet_type *pt_prev,
4800 						  struct net_device *orig_dev)
4801 {
4802 	struct sk_buff *skb, *next;
4803 
4804 	if (!pt_prev)
4805 		return;
4806 	if (list_empty(head))
4807 		return;
4808 	if (pt_prev->list_func != NULL)
4809 		pt_prev->list_func(head, pt_prev, orig_dev);
4810 	else
4811 		list_for_each_entry_safe(skb, next, head, list)
4812 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4813 }
4814 
4815 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4816 {
4817 	/* Fast-path assumptions:
4818 	 * - There is no RX handler.
4819 	 * - Only one packet_type matches.
4820 	 * If either of these fails, we will end up doing some per-packet
4821 	 * processing in-line, then handling the 'last ptype' for the whole
4822 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4823 	 * because the 'last ptype' must be constant across the sublist, and all
4824 	 * other ptypes are handled per-packet.
4825 	 */
4826 	/* Current (common) ptype of sublist */
4827 	struct packet_type *pt_curr = NULL;
4828 	/* Current (common) orig_dev of sublist */
4829 	struct net_device *od_curr = NULL;
4830 	struct list_head sublist;
4831 	struct sk_buff *skb, *next;
4832 
4833 	list_for_each_entry_safe(skb, next, head, list) {
4834 		struct net_device *orig_dev = skb->dev;
4835 		struct packet_type *pt_prev = NULL;
4836 
4837 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4838 		if (pt_curr != pt_prev || od_curr != orig_dev) {
4839 			/* dispatch old sublist */
4840 			list_cut_before(&sublist, head, &skb->list);
4841 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4842 			/* start new sublist */
4843 			pt_curr = pt_prev;
4844 			od_curr = orig_dev;
4845 		}
4846 	}
4847 
4848 	/* dispatch final sublist */
4849 	__netif_receive_skb_list_ptype(head, pt_curr, od_curr);
4850 }
4851 
4852 static int __netif_receive_skb(struct sk_buff *skb)
4853 {
4854 	int ret;
4855 
4856 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4857 		unsigned int noreclaim_flag;
4858 
4859 		/*
4860 		 * PFMEMALLOC skbs are special, they should
4861 		 * - be delivered to SOCK_MEMALLOC sockets only
4862 		 * - stay away from userspace
4863 		 * - have bounded memory usage
4864 		 *
4865 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4866 		 * context down to all allocation sites.
4867 		 */
4868 		noreclaim_flag = memalloc_noreclaim_save();
4869 		ret = __netif_receive_skb_one_core(skb, true);
4870 		memalloc_noreclaim_restore(noreclaim_flag);
4871 	} else
4872 		ret = __netif_receive_skb_one_core(skb, false);
4873 
4874 	return ret;
4875 }
4876 
4877 static void __netif_receive_skb_list(struct list_head *head)
4878 {
4879 	unsigned long noreclaim_flag = 0;
4880 	struct sk_buff *skb, *next;
4881 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
4882 
4883 	list_for_each_entry_safe(skb, next, head, list) {
4884 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
4885 			struct list_head sublist;
4886 
4887 			/* Handle the previous sublist */
4888 			list_cut_before(&sublist, head, &skb->list);
4889 			if (!list_empty(&sublist))
4890 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
4891 			pfmemalloc = !pfmemalloc;
4892 			/* See comments in __netif_receive_skb */
4893 			if (pfmemalloc)
4894 				noreclaim_flag = memalloc_noreclaim_save();
4895 			else
4896 				memalloc_noreclaim_restore(noreclaim_flag);
4897 		}
4898 	}
4899 	/* Handle the remaining sublist */
4900 	if (!list_empty(head))
4901 		__netif_receive_skb_list_core(head, pfmemalloc);
4902 	/* Restore pflags */
4903 	if (pfmemalloc)
4904 		memalloc_noreclaim_restore(noreclaim_flag);
4905 }
4906 
4907 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4908 {
4909 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4910 	struct bpf_prog *new = xdp->prog;
4911 	int ret = 0;
4912 
4913 	switch (xdp->command) {
4914 	case XDP_SETUP_PROG:
4915 		rcu_assign_pointer(dev->xdp_prog, new);
4916 		if (old)
4917 			bpf_prog_put(old);
4918 
4919 		if (old && !new) {
4920 			static_branch_dec(&generic_xdp_needed_key);
4921 		} else if (new && !old) {
4922 			static_branch_inc(&generic_xdp_needed_key);
4923 			dev_disable_lro(dev);
4924 			dev_disable_gro_hw(dev);
4925 		}
4926 		break;
4927 
4928 	case XDP_QUERY_PROG:
4929 		xdp->prog_attached = !!old;
4930 		xdp->prog_id = old ? old->aux->id : 0;
4931 		break;
4932 
4933 	default:
4934 		ret = -EINVAL;
4935 		break;
4936 	}
4937 
4938 	return ret;
4939 }
4940 
4941 static int netif_receive_skb_internal(struct sk_buff *skb)
4942 {
4943 	int ret;
4944 
4945 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4946 
4947 	if (skb_defer_rx_timestamp(skb))
4948 		return NET_RX_SUCCESS;
4949 
4950 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4951 		int ret;
4952 
4953 		preempt_disable();
4954 		rcu_read_lock();
4955 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4956 		rcu_read_unlock();
4957 		preempt_enable();
4958 
4959 		if (ret != XDP_PASS)
4960 			return NET_RX_DROP;
4961 	}
4962 
4963 	rcu_read_lock();
4964 #ifdef CONFIG_RPS
4965 	if (static_key_false(&rps_needed)) {
4966 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4967 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4968 
4969 		if (cpu >= 0) {
4970 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4971 			rcu_read_unlock();
4972 			return ret;
4973 		}
4974 	}
4975 #endif
4976 	ret = __netif_receive_skb(skb);
4977 	rcu_read_unlock();
4978 	return ret;
4979 }
4980 
4981 static void netif_receive_skb_list_internal(struct list_head *head)
4982 {
4983 	struct bpf_prog *xdp_prog = NULL;
4984 	struct sk_buff *skb, *next;
4985 
4986 	list_for_each_entry_safe(skb, next, head, list) {
4987 		net_timestamp_check(netdev_tstamp_prequeue, skb);
4988 		if (skb_defer_rx_timestamp(skb))
4989 			/* Handled, remove from list */
4990 			list_del(&skb->list);
4991 	}
4992 
4993 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4994 		preempt_disable();
4995 		rcu_read_lock();
4996 		list_for_each_entry_safe(skb, next, head, list) {
4997 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4998 			if (do_xdp_generic(xdp_prog, skb) != XDP_PASS)
4999 				/* Dropped, remove from list */
5000 				list_del(&skb->list);
5001 		}
5002 		rcu_read_unlock();
5003 		preempt_enable();
5004 	}
5005 
5006 	rcu_read_lock();
5007 #ifdef CONFIG_RPS
5008 	if (static_key_false(&rps_needed)) {
5009 		list_for_each_entry_safe(skb, next, head, list) {
5010 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5011 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5012 
5013 			if (cpu >= 0) {
5014 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5015 				/* Handled, remove from list */
5016 				list_del(&skb->list);
5017 			}
5018 		}
5019 	}
5020 #endif
5021 	__netif_receive_skb_list(head);
5022 	rcu_read_unlock();
5023 }
5024 
5025 /**
5026  *	netif_receive_skb - process receive buffer from network
5027  *	@skb: buffer to process
5028  *
5029  *	netif_receive_skb() is the main receive data processing function.
5030  *	It always succeeds. The buffer may be dropped during processing
5031  *	for congestion control or by the protocol layers.
5032  *
5033  *	This function may only be called from softirq context and interrupts
5034  *	should be enabled.
5035  *
5036  *	Return values (usually ignored):
5037  *	NET_RX_SUCCESS: no congestion
5038  *	NET_RX_DROP: packet was dropped
5039  */
5040 int netif_receive_skb(struct sk_buff *skb)
5041 {
5042 	trace_netif_receive_skb_entry(skb);
5043 
5044 	return netif_receive_skb_internal(skb);
5045 }
5046 EXPORT_SYMBOL(netif_receive_skb);
5047 
5048 /**
5049  *	netif_receive_skb_list - process many receive buffers from network
5050  *	@head: list of skbs to process.
5051  *
5052  *	Since return value of netif_receive_skb() is normally ignored, and
5053  *	wouldn't be meaningful for a list, this function returns void.
5054  *
5055  *	This function may only be called from softirq context and interrupts
5056  *	should be enabled.
5057  */
5058 void netif_receive_skb_list(struct list_head *head)
5059 {
5060 	struct sk_buff *skb;
5061 
5062 	if (list_empty(head))
5063 		return;
5064 	list_for_each_entry(skb, head, list)
5065 		trace_netif_receive_skb_list_entry(skb);
5066 	netif_receive_skb_list_internal(head);
5067 }
5068 EXPORT_SYMBOL(netif_receive_skb_list);
5069 
5070 DEFINE_PER_CPU(struct work_struct, flush_works);
5071 
5072 /* Network device is going away, flush any packets still pending */
5073 static void flush_backlog(struct work_struct *work)
5074 {
5075 	struct sk_buff *skb, *tmp;
5076 	struct softnet_data *sd;
5077 
5078 	local_bh_disable();
5079 	sd = this_cpu_ptr(&softnet_data);
5080 
5081 	local_irq_disable();
5082 	rps_lock(sd);
5083 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5084 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5085 			__skb_unlink(skb, &sd->input_pkt_queue);
5086 			kfree_skb(skb);
5087 			input_queue_head_incr(sd);
5088 		}
5089 	}
5090 	rps_unlock(sd);
5091 	local_irq_enable();
5092 
5093 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5094 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5095 			__skb_unlink(skb, &sd->process_queue);
5096 			kfree_skb(skb);
5097 			input_queue_head_incr(sd);
5098 		}
5099 	}
5100 	local_bh_enable();
5101 }
5102 
5103 static void flush_all_backlogs(void)
5104 {
5105 	unsigned int cpu;
5106 
5107 	get_online_cpus();
5108 
5109 	for_each_online_cpu(cpu)
5110 		queue_work_on(cpu, system_highpri_wq,
5111 			      per_cpu_ptr(&flush_works, cpu));
5112 
5113 	for_each_online_cpu(cpu)
5114 		flush_work(per_cpu_ptr(&flush_works, cpu));
5115 
5116 	put_online_cpus();
5117 }
5118 
5119 static int napi_gro_complete(struct sk_buff *skb)
5120 {
5121 	struct packet_offload *ptype;
5122 	__be16 type = skb->protocol;
5123 	struct list_head *head = &offload_base;
5124 	int err = -ENOENT;
5125 
5126 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5127 
5128 	if (NAPI_GRO_CB(skb)->count == 1) {
5129 		skb_shinfo(skb)->gso_size = 0;
5130 		goto out;
5131 	}
5132 
5133 	rcu_read_lock();
5134 	list_for_each_entry_rcu(ptype, head, list) {
5135 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5136 			continue;
5137 
5138 		err = ptype->callbacks.gro_complete(skb, 0);
5139 		break;
5140 	}
5141 	rcu_read_unlock();
5142 
5143 	if (err) {
5144 		WARN_ON(&ptype->list == head);
5145 		kfree_skb(skb);
5146 		return NET_RX_SUCCESS;
5147 	}
5148 
5149 out:
5150 	return netif_receive_skb_internal(skb);
5151 }
5152 
5153 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5154 				   bool flush_old)
5155 {
5156 	struct list_head *head = &napi->gro_hash[index].list;
5157 	struct sk_buff *skb, *p;
5158 
5159 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5160 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5161 			return;
5162 		list_del_init(&skb->list);
5163 		napi_gro_complete(skb);
5164 		napi->gro_count--;
5165 		napi->gro_hash[index].count--;
5166 	}
5167 }
5168 
5169 /* napi->gro_hash[].list contains packets ordered by age.
5170  * youngest packets at the head of it.
5171  * Complete skbs in reverse order to reduce latencies.
5172  */
5173 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5174 {
5175 	u32 i;
5176 
5177 	for (i = 0; i < GRO_HASH_BUCKETS; i++)
5178 		__napi_gro_flush_chain(napi, i, flush_old);
5179 }
5180 EXPORT_SYMBOL(napi_gro_flush);
5181 
5182 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5183 					  struct sk_buff *skb)
5184 {
5185 	unsigned int maclen = skb->dev->hard_header_len;
5186 	u32 hash = skb_get_hash_raw(skb);
5187 	struct list_head *head;
5188 	struct sk_buff *p;
5189 
5190 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5191 	list_for_each_entry(p, head, list) {
5192 		unsigned long diffs;
5193 
5194 		NAPI_GRO_CB(p)->flush = 0;
5195 
5196 		if (hash != skb_get_hash_raw(p)) {
5197 			NAPI_GRO_CB(p)->same_flow = 0;
5198 			continue;
5199 		}
5200 
5201 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5202 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5203 		diffs |= skb_metadata_dst_cmp(p, skb);
5204 		diffs |= skb_metadata_differs(p, skb);
5205 		if (maclen == ETH_HLEN)
5206 			diffs |= compare_ether_header(skb_mac_header(p),
5207 						      skb_mac_header(skb));
5208 		else if (!diffs)
5209 			diffs = memcmp(skb_mac_header(p),
5210 				       skb_mac_header(skb),
5211 				       maclen);
5212 		NAPI_GRO_CB(p)->same_flow = !diffs;
5213 	}
5214 
5215 	return head;
5216 }
5217 
5218 static void skb_gro_reset_offset(struct sk_buff *skb)
5219 {
5220 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5221 	const skb_frag_t *frag0 = &pinfo->frags[0];
5222 
5223 	NAPI_GRO_CB(skb)->data_offset = 0;
5224 	NAPI_GRO_CB(skb)->frag0 = NULL;
5225 	NAPI_GRO_CB(skb)->frag0_len = 0;
5226 
5227 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5228 	    pinfo->nr_frags &&
5229 	    !PageHighMem(skb_frag_page(frag0))) {
5230 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5231 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5232 						    skb_frag_size(frag0),
5233 						    skb->end - skb->tail);
5234 	}
5235 }
5236 
5237 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5238 {
5239 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5240 
5241 	BUG_ON(skb->end - skb->tail < grow);
5242 
5243 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5244 
5245 	skb->data_len -= grow;
5246 	skb->tail += grow;
5247 
5248 	pinfo->frags[0].page_offset += grow;
5249 	skb_frag_size_sub(&pinfo->frags[0], grow);
5250 
5251 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5252 		skb_frag_unref(skb, 0);
5253 		memmove(pinfo->frags, pinfo->frags + 1,
5254 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5255 	}
5256 }
5257 
5258 static void gro_flush_oldest(struct list_head *head)
5259 {
5260 	struct sk_buff *oldest;
5261 
5262 	oldest = list_last_entry(head, struct sk_buff, list);
5263 
5264 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5265 	 * impossible.
5266 	 */
5267 	if (WARN_ON_ONCE(!oldest))
5268 		return;
5269 
5270 	/* Do not adjust napi->gro_count, caller is adding a new SKB to
5271 	 * the chain.
5272 	 */
5273 	list_del(&oldest->list);
5274 	napi_gro_complete(oldest);
5275 }
5276 
5277 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5278 {
5279 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5280 	struct list_head *head = &offload_base;
5281 	struct packet_offload *ptype;
5282 	__be16 type = skb->protocol;
5283 	struct list_head *gro_head;
5284 	struct sk_buff *pp = NULL;
5285 	enum gro_result ret;
5286 	int same_flow;
5287 	int grow;
5288 
5289 	if (netif_elide_gro(skb->dev))
5290 		goto normal;
5291 
5292 	gro_head = gro_list_prepare(napi, skb);
5293 
5294 	rcu_read_lock();
5295 	list_for_each_entry_rcu(ptype, head, list) {
5296 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5297 			continue;
5298 
5299 		skb_set_network_header(skb, skb_gro_offset(skb));
5300 		skb_reset_mac_len(skb);
5301 		NAPI_GRO_CB(skb)->same_flow = 0;
5302 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5303 		NAPI_GRO_CB(skb)->free = 0;
5304 		NAPI_GRO_CB(skb)->encap_mark = 0;
5305 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5306 		NAPI_GRO_CB(skb)->is_fou = 0;
5307 		NAPI_GRO_CB(skb)->is_atomic = 1;
5308 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5309 
5310 		/* Setup for GRO checksum validation */
5311 		switch (skb->ip_summed) {
5312 		case CHECKSUM_COMPLETE:
5313 			NAPI_GRO_CB(skb)->csum = skb->csum;
5314 			NAPI_GRO_CB(skb)->csum_valid = 1;
5315 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5316 			break;
5317 		case CHECKSUM_UNNECESSARY:
5318 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5319 			NAPI_GRO_CB(skb)->csum_valid = 0;
5320 			break;
5321 		default:
5322 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5323 			NAPI_GRO_CB(skb)->csum_valid = 0;
5324 		}
5325 
5326 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5327 		break;
5328 	}
5329 	rcu_read_unlock();
5330 
5331 	if (&ptype->list == head)
5332 		goto normal;
5333 
5334 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5335 		ret = GRO_CONSUMED;
5336 		goto ok;
5337 	}
5338 
5339 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5340 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5341 
5342 	if (pp) {
5343 		list_del_init(&pp->list);
5344 		napi_gro_complete(pp);
5345 		napi->gro_count--;
5346 		napi->gro_hash[hash].count--;
5347 	}
5348 
5349 	if (same_flow)
5350 		goto ok;
5351 
5352 	if (NAPI_GRO_CB(skb)->flush)
5353 		goto normal;
5354 
5355 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5356 		gro_flush_oldest(gro_head);
5357 	} else {
5358 		napi->gro_count++;
5359 		napi->gro_hash[hash].count++;
5360 	}
5361 	NAPI_GRO_CB(skb)->count = 1;
5362 	NAPI_GRO_CB(skb)->age = jiffies;
5363 	NAPI_GRO_CB(skb)->last = skb;
5364 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5365 	list_add(&skb->list, gro_head);
5366 	ret = GRO_HELD;
5367 
5368 pull:
5369 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5370 	if (grow > 0)
5371 		gro_pull_from_frag0(skb, grow);
5372 ok:
5373 	return ret;
5374 
5375 normal:
5376 	ret = GRO_NORMAL;
5377 	goto pull;
5378 }
5379 
5380 struct packet_offload *gro_find_receive_by_type(__be16 type)
5381 {
5382 	struct list_head *offload_head = &offload_base;
5383 	struct packet_offload *ptype;
5384 
5385 	list_for_each_entry_rcu(ptype, offload_head, list) {
5386 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5387 			continue;
5388 		return ptype;
5389 	}
5390 	return NULL;
5391 }
5392 EXPORT_SYMBOL(gro_find_receive_by_type);
5393 
5394 struct packet_offload *gro_find_complete_by_type(__be16 type)
5395 {
5396 	struct list_head *offload_head = &offload_base;
5397 	struct packet_offload *ptype;
5398 
5399 	list_for_each_entry_rcu(ptype, offload_head, list) {
5400 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5401 			continue;
5402 		return ptype;
5403 	}
5404 	return NULL;
5405 }
5406 EXPORT_SYMBOL(gro_find_complete_by_type);
5407 
5408 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5409 {
5410 	skb_dst_drop(skb);
5411 	secpath_reset(skb);
5412 	kmem_cache_free(skbuff_head_cache, skb);
5413 }
5414 
5415 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5416 {
5417 	switch (ret) {
5418 	case GRO_NORMAL:
5419 		if (netif_receive_skb_internal(skb))
5420 			ret = GRO_DROP;
5421 		break;
5422 
5423 	case GRO_DROP:
5424 		kfree_skb(skb);
5425 		break;
5426 
5427 	case GRO_MERGED_FREE:
5428 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5429 			napi_skb_free_stolen_head(skb);
5430 		else
5431 			__kfree_skb(skb);
5432 		break;
5433 
5434 	case GRO_HELD:
5435 	case GRO_MERGED:
5436 	case GRO_CONSUMED:
5437 		break;
5438 	}
5439 
5440 	return ret;
5441 }
5442 
5443 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5444 {
5445 	skb_mark_napi_id(skb, napi);
5446 	trace_napi_gro_receive_entry(skb);
5447 
5448 	skb_gro_reset_offset(skb);
5449 
5450 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5451 }
5452 EXPORT_SYMBOL(napi_gro_receive);
5453 
5454 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5455 {
5456 	if (unlikely(skb->pfmemalloc)) {
5457 		consume_skb(skb);
5458 		return;
5459 	}
5460 	__skb_pull(skb, skb_headlen(skb));
5461 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5462 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5463 	skb->vlan_tci = 0;
5464 	skb->dev = napi->dev;
5465 	skb->skb_iif = 0;
5466 	skb->encapsulation = 0;
5467 	skb_shinfo(skb)->gso_type = 0;
5468 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5469 	secpath_reset(skb);
5470 
5471 	napi->skb = skb;
5472 }
5473 
5474 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5475 {
5476 	struct sk_buff *skb = napi->skb;
5477 
5478 	if (!skb) {
5479 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5480 		if (skb) {
5481 			napi->skb = skb;
5482 			skb_mark_napi_id(skb, napi);
5483 		}
5484 	}
5485 	return skb;
5486 }
5487 EXPORT_SYMBOL(napi_get_frags);
5488 
5489 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5490 				      struct sk_buff *skb,
5491 				      gro_result_t ret)
5492 {
5493 	switch (ret) {
5494 	case GRO_NORMAL:
5495 	case GRO_HELD:
5496 		__skb_push(skb, ETH_HLEN);
5497 		skb->protocol = eth_type_trans(skb, skb->dev);
5498 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5499 			ret = GRO_DROP;
5500 		break;
5501 
5502 	case GRO_DROP:
5503 		napi_reuse_skb(napi, skb);
5504 		break;
5505 
5506 	case GRO_MERGED_FREE:
5507 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5508 			napi_skb_free_stolen_head(skb);
5509 		else
5510 			napi_reuse_skb(napi, skb);
5511 		break;
5512 
5513 	case GRO_MERGED:
5514 	case GRO_CONSUMED:
5515 		break;
5516 	}
5517 
5518 	return ret;
5519 }
5520 
5521 /* Upper GRO stack assumes network header starts at gro_offset=0
5522  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5523  * We copy ethernet header into skb->data to have a common layout.
5524  */
5525 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5526 {
5527 	struct sk_buff *skb = napi->skb;
5528 	const struct ethhdr *eth;
5529 	unsigned int hlen = sizeof(*eth);
5530 
5531 	napi->skb = NULL;
5532 
5533 	skb_reset_mac_header(skb);
5534 	skb_gro_reset_offset(skb);
5535 
5536 	eth = skb_gro_header_fast(skb, 0);
5537 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5538 		eth = skb_gro_header_slow(skb, hlen, 0);
5539 		if (unlikely(!eth)) {
5540 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5541 					     __func__, napi->dev->name);
5542 			napi_reuse_skb(napi, skb);
5543 			return NULL;
5544 		}
5545 	} else {
5546 		gro_pull_from_frag0(skb, hlen);
5547 		NAPI_GRO_CB(skb)->frag0 += hlen;
5548 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5549 	}
5550 	__skb_pull(skb, hlen);
5551 
5552 	/*
5553 	 * This works because the only protocols we care about don't require
5554 	 * special handling.
5555 	 * We'll fix it up properly in napi_frags_finish()
5556 	 */
5557 	skb->protocol = eth->h_proto;
5558 
5559 	return skb;
5560 }
5561 
5562 gro_result_t napi_gro_frags(struct napi_struct *napi)
5563 {
5564 	struct sk_buff *skb = napi_frags_skb(napi);
5565 
5566 	if (!skb)
5567 		return GRO_DROP;
5568 
5569 	trace_napi_gro_frags_entry(skb);
5570 
5571 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5572 }
5573 EXPORT_SYMBOL(napi_gro_frags);
5574 
5575 /* Compute the checksum from gro_offset and return the folded value
5576  * after adding in any pseudo checksum.
5577  */
5578 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5579 {
5580 	__wsum wsum;
5581 	__sum16 sum;
5582 
5583 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5584 
5585 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5586 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5587 	if (likely(!sum)) {
5588 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5589 		    !skb->csum_complete_sw)
5590 			netdev_rx_csum_fault(skb->dev);
5591 	}
5592 
5593 	NAPI_GRO_CB(skb)->csum = wsum;
5594 	NAPI_GRO_CB(skb)->csum_valid = 1;
5595 
5596 	return sum;
5597 }
5598 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5599 
5600 static void net_rps_send_ipi(struct softnet_data *remsd)
5601 {
5602 #ifdef CONFIG_RPS
5603 	while (remsd) {
5604 		struct softnet_data *next = remsd->rps_ipi_next;
5605 
5606 		if (cpu_online(remsd->cpu))
5607 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5608 		remsd = next;
5609 	}
5610 #endif
5611 }
5612 
5613 /*
5614  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5615  * Note: called with local irq disabled, but exits with local irq enabled.
5616  */
5617 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5618 {
5619 #ifdef CONFIG_RPS
5620 	struct softnet_data *remsd = sd->rps_ipi_list;
5621 
5622 	if (remsd) {
5623 		sd->rps_ipi_list = NULL;
5624 
5625 		local_irq_enable();
5626 
5627 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5628 		net_rps_send_ipi(remsd);
5629 	} else
5630 #endif
5631 		local_irq_enable();
5632 }
5633 
5634 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5635 {
5636 #ifdef CONFIG_RPS
5637 	return sd->rps_ipi_list != NULL;
5638 #else
5639 	return false;
5640 #endif
5641 }
5642 
5643 static int process_backlog(struct napi_struct *napi, int quota)
5644 {
5645 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5646 	bool again = true;
5647 	int work = 0;
5648 
5649 	/* Check if we have pending ipi, its better to send them now,
5650 	 * not waiting net_rx_action() end.
5651 	 */
5652 	if (sd_has_rps_ipi_waiting(sd)) {
5653 		local_irq_disable();
5654 		net_rps_action_and_irq_enable(sd);
5655 	}
5656 
5657 	napi->weight = dev_rx_weight;
5658 	while (again) {
5659 		struct sk_buff *skb;
5660 
5661 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5662 			rcu_read_lock();
5663 			__netif_receive_skb(skb);
5664 			rcu_read_unlock();
5665 			input_queue_head_incr(sd);
5666 			if (++work >= quota)
5667 				return work;
5668 
5669 		}
5670 
5671 		local_irq_disable();
5672 		rps_lock(sd);
5673 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5674 			/*
5675 			 * Inline a custom version of __napi_complete().
5676 			 * only current cpu owns and manipulates this napi,
5677 			 * and NAPI_STATE_SCHED is the only possible flag set
5678 			 * on backlog.
5679 			 * We can use a plain write instead of clear_bit(),
5680 			 * and we dont need an smp_mb() memory barrier.
5681 			 */
5682 			napi->state = 0;
5683 			again = false;
5684 		} else {
5685 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5686 						   &sd->process_queue);
5687 		}
5688 		rps_unlock(sd);
5689 		local_irq_enable();
5690 	}
5691 
5692 	return work;
5693 }
5694 
5695 /**
5696  * __napi_schedule - schedule for receive
5697  * @n: entry to schedule
5698  *
5699  * The entry's receive function will be scheduled to run.
5700  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5701  */
5702 void __napi_schedule(struct napi_struct *n)
5703 {
5704 	unsigned long flags;
5705 
5706 	local_irq_save(flags);
5707 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5708 	local_irq_restore(flags);
5709 }
5710 EXPORT_SYMBOL(__napi_schedule);
5711 
5712 /**
5713  *	napi_schedule_prep - check if napi can be scheduled
5714  *	@n: napi context
5715  *
5716  * Test if NAPI routine is already running, and if not mark
5717  * it as running.  This is used as a condition variable
5718  * insure only one NAPI poll instance runs.  We also make
5719  * sure there is no pending NAPI disable.
5720  */
5721 bool napi_schedule_prep(struct napi_struct *n)
5722 {
5723 	unsigned long val, new;
5724 
5725 	do {
5726 		val = READ_ONCE(n->state);
5727 		if (unlikely(val & NAPIF_STATE_DISABLE))
5728 			return false;
5729 		new = val | NAPIF_STATE_SCHED;
5730 
5731 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5732 		 * This was suggested by Alexander Duyck, as compiler
5733 		 * emits better code than :
5734 		 * if (val & NAPIF_STATE_SCHED)
5735 		 *     new |= NAPIF_STATE_MISSED;
5736 		 */
5737 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5738 						   NAPIF_STATE_MISSED;
5739 	} while (cmpxchg(&n->state, val, new) != val);
5740 
5741 	return !(val & NAPIF_STATE_SCHED);
5742 }
5743 EXPORT_SYMBOL(napi_schedule_prep);
5744 
5745 /**
5746  * __napi_schedule_irqoff - schedule for receive
5747  * @n: entry to schedule
5748  *
5749  * Variant of __napi_schedule() assuming hard irqs are masked
5750  */
5751 void __napi_schedule_irqoff(struct napi_struct *n)
5752 {
5753 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5754 }
5755 EXPORT_SYMBOL(__napi_schedule_irqoff);
5756 
5757 bool napi_complete_done(struct napi_struct *n, int work_done)
5758 {
5759 	unsigned long flags, val, new;
5760 
5761 	/*
5762 	 * 1) Don't let napi dequeue from the cpu poll list
5763 	 *    just in case its running on a different cpu.
5764 	 * 2) If we are busy polling, do nothing here, we have
5765 	 *    the guarantee we will be called later.
5766 	 */
5767 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5768 				 NAPIF_STATE_IN_BUSY_POLL)))
5769 		return false;
5770 
5771 	if (n->gro_count) {
5772 		unsigned long timeout = 0;
5773 
5774 		if (work_done)
5775 			timeout = n->dev->gro_flush_timeout;
5776 
5777 		if (timeout)
5778 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5779 				      HRTIMER_MODE_REL_PINNED);
5780 		else
5781 			napi_gro_flush(n, false);
5782 	}
5783 	if (unlikely(!list_empty(&n->poll_list))) {
5784 		/* If n->poll_list is not empty, we need to mask irqs */
5785 		local_irq_save(flags);
5786 		list_del_init(&n->poll_list);
5787 		local_irq_restore(flags);
5788 	}
5789 
5790 	do {
5791 		val = READ_ONCE(n->state);
5792 
5793 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5794 
5795 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5796 
5797 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5798 		 * because we will call napi->poll() one more time.
5799 		 * This C code was suggested by Alexander Duyck to help gcc.
5800 		 */
5801 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5802 						    NAPIF_STATE_SCHED;
5803 	} while (cmpxchg(&n->state, val, new) != val);
5804 
5805 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5806 		__napi_schedule(n);
5807 		return false;
5808 	}
5809 
5810 	return true;
5811 }
5812 EXPORT_SYMBOL(napi_complete_done);
5813 
5814 /* must be called under rcu_read_lock(), as we dont take a reference */
5815 static struct napi_struct *napi_by_id(unsigned int napi_id)
5816 {
5817 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5818 	struct napi_struct *napi;
5819 
5820 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5821 		if (napi->napi_id == napi_id)
5822 			return napi;
5823 
5824 	return NULL;
5825 }
5826 
5827 #if defined(CONFIG_NET_RX_BUSY_POLL)
5828 
5829 #define BUSY_POLL_BUDGET 8
5830 
5831 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5832 {
5833 	int rc;
5834 
5835 	/* Busy polling means there is a high chance device driver hard irq
5836 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5837 	 * set in napi_schedule_prep().
5838 	 * Since we are about to call napi->poll() once more, we can safely
5839 	 * clear NAPI_STATE_MISSED.
5840 	 *
5841 	 * Note: x86 could use a single "lock and ..." instruction
5842 	 * to perform these two clear_bit()
5843 	 */
5844 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5845 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5846 
5847 	local_bh_disable();
5848 
5849 	/* All we really want here is to re-enable device interrupts.
5850 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5851 	 */
5852 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5853 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5854 	netpoll_poll_unlock(have_poll_lock);
5855 	if (rc == BUSY_POLL_BUDGET)
5856 		__napi_schedule(napi);
5857 	local_bh_enable();
5858 }
5859 
5860 void napi_busy_loop(unsigned int napi_id,
5861 		    bool (*loop_end)(void *, unsigned long),
5862 		    void *loop_end_arg)
5863 {
5864 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5865 	int (*napi_poll)(struct napi_struct *napi, int budget);
5866 	void *have_poll_lock = NULL;
5867 	struct napi_struct *napi;
5868 
5869 restart:
5870 	napi_poll = NULL;
5871 
5872 	rcu_read_lock();
5873 
5874 	napi = napi_by_id(napi_id);
5875 	if (!napi)
5876 		goto out;
5877 
5878 	preempt_disable();
5879 	for (;;) {
5880 		int work = 0;
5881 
5882 		local_bh_disable();
5883 		if (!napi_poll) {
5884 			unsigned long val = READ_ONCE(napi->state);
5885 
5886 			/* If multiple threads are competing for this napi,
5887 			 * we avoid dirtying napi->state as much as we can.
5888 			 */
5889 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5890 				   NAPIF_STATE_IN_BUSY_POLL))
5891 				goto count;
5892 			if (cmpxchg(&napi->state, val,
5893 				    val | NAPIF_STATE_IN_BUSY_POLL |
5894 					  NAPIF_STATE_SCHED) != val)
5895 				goto count;
5896 			have_poll_lock = netpoll_poll_lock(napi);
5897 			napi_poll = napi->poll;
5898 		}
5899 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5900 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5901 count:
5902 		if (work > 0)
5903 			__NET_ADD_STATS(dev_net(napi->dev),
5904 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5905 		local_bh_enable();
5906 
5907 		if (!loop_end || loop_end(loop_end_arg, start_time))
5908 			break;
5909 
5910 		if (unlikely(need_resched())) {
5911 			if (napi_poll)
5912 				busy_poll_stop(napi, have_poll_lock);
5913 			preempt_enable();
5914 			rcu_read_unlock();
5915 			cond_resched();
5916 			if (loop_end(loop_end_arg, start_time))
5917 				return;
5918 			goto restart;
5919 		}
5920 		cpu_relax();
5921 	}
5922 	if (napi_poll)
5923 		busy_poll_stop(napi, have_poll_lock);
5924 	preempt_enable();
5925 out:
5926 	rcu_read_unlock();
5927 }
5928 EXPORT_SYMBOL(napi_busy_loop);
5929 
5930 #endif /* CONFIG_NET_RX_BUSY_POLL */
5931 
5932 static void napi_hash_add(struct napi_struct *napi)
5933 {
5934 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5935 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5936 		return;
5937 
5938 	spin_lock(&napi_hash_lock);
5939 
5940 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5941 	do {
5942 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5943 			napi_gen_id = MIN_NAPI_ID;
5944 	} while (napi_by_id(napi_gen_id));
5945 	napi->napi_id = napi_gen_id;
5946 
5947 	hlist_add_head_rcu(&napi->napi_hash_node,
5948 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5949 
5950 	spin_unlock(&napi_hash_lock);
5951 }
5952 
5953 /* Warning : caller is responsible to make sure rcu grace period
5954  * is respected before freeing memory containing @napi
5955  */
5956 bool napi_hash_del(struct napi_struct *napi)
5957 {
5958 	bool rcu_sync_needed = false;
5959 
5960 	spin_lock(&napi_hash_lock);
5961 
5962 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5963 		rcu_sync_needed = true;
5964 		hlist_del_rcu(&napi->napi_hash_node);
5965 	}
5966 	spin_unlock(&napi_hash_lock);
5967 	return rcu_sync_needed;
5968 }
5969 EXPORT_SYMBOL_GPL(napi_hash_del);
5970 
5971 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5972 {
5973 	struct napi_struct *napi;
5974 
5975 	napi = container_of(timer, struct napi_struct, timer);
5976 
5977 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5978 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5979 	 */
5980 	if (napi->gro_count && !napi_disable_pending(napi) &&
5981 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5982 		__napi_schedule_irqoff(napi);
5983 
5984 	return HRTIMER_NORESTART;
5985 }
5986 
5987 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5988 		    int (*poll)(struct napi_struct *, int), int weight)
5989 {
5990 	int i;
5991 
5992 	INIT_LIST_HEAD(&napi->poll_list);
5993 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5994 	napi->timer.function = napi_watchdog;
5995 	napi->gro_count = 0;
5996 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5997 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
5998 		napi->gro_hash[i].count = 0;
5999 	}
6000 	napi->skb = NULL;
6001 	napi->poll = poll;
6002 	if (weight > NAPI_POLL_WEIGHT)
6003 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6004 			    weight, dev->name);
6005 	napi->weight = weight;
6006 	list_add(&napi->dev_list, &dev->napi_list);
6007 	napi->dev = dev;
6008 #ifdef CONFIG_NETPOLL
6009 	napi->poll_owner = -1;
6010 #endif
6011 	set_bit(NAPI_STATE_SCHED, &napi->state);
6012 	napi_hash_add(napi);
6013 }
6014 EXPORT_SYMBOL(netif_napi_add);
6015 
6016 void napi_disable(struct napi_struct *n)
6017 {
6018 	might_sleep();
6019 	set_bit(NAPI_STATE_DISABLE, &n->state);
6020 
6021 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6022 		msleep(1);
6023 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6024 		msleep(1);
6025 
6026 	hrtimer_cancel(&n->timer);
6027 
6028 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6029 }
6030 EXPORT_SYMBOL(napi_disable);
6031 
6032 static void flush_gro_hash(struct napi_struct *napi)
6033 {
6034 	int i;
6035 
6036 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6037 		struct sk_buff *skb, *n;
6038 
6039 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6040 			kfree_skb(skb);
6041 		napi->gro_hash[i].count = 0;
6042 	}
6043 }
6044 
6045 /* Must be called in process context */
6046 void netif_napi_del(struct napi_struct *napi)
6047 {
6048 	might_sleep();
6049 	if (napi_hash_del(napi))
6050 		synchronize_net();
6051 	list_del_init(&napi->dev_list);
6052 	napi_free_frags(napi);
6053 
6054 	flush_gro_hash(napi);
6055 	napi->gro_count = 0;
6056 }
6057 EXPORT_SYMBOL(netif_napi_del);
6058 
6059 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6060 {
6061 	void *have;
6062 	int work, weight;
6063 
6064 	list_del_init(&n->poll_list);
6065 
6066 	have = netpoll_poll_lock(n);
6067 
6068 	weight = n->weight;
6069 
6070 	/* This NAPI_STATE_SCHED test is for avoiding a race
6071 	 * with netpoll's poll_napi().  Only the entity which
6072 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6073 	 * actually make the ->poll() call.  Therefore we avoid
6074 	 * accidentally calling ->poll() when NAPI is not scheduled.
6075 	 */
6076 	work = 0;
6077 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6078 		work = n->poll(n, weight);
6079 		trace_napi_poll(n, work, weight);
6080 	}
6081 
6082 	WARN_ON_ONCE(work > weight);
6083 
6084 	if (likely(work < weight))
6085 		goto out_unlock;
6086 
6087 	/* Drivers must not modify the NAPI state if they
6088 	 * consume the entire weight.  In such cases this code
6089 	 * still "owns" the NAPI instance and therefore can
6090 	 * move the instance around on the list at-will.
6091 	 */
6092 	if (unlikely(napi_disable_pending(n))) {
6093 		napi_complete(n);
6094 		goto out_unlock;
6095 	}
6096 
6097 	if (n->gro_count) {
6098 		/* flush too old packets
6099 		 * If HZ < 1000, flush all packets.
6100 		 */
6101 		napi_gro_flush(n, HZ >= 1000);
6102 	}
6103 
6104 	/* Some drivers may have called napi_schedule
6105 	 * prior to exhausting their budget.
6106 	 */
6107 	if (unlikely(!list_empty(&n->poll_list))) {
6108 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6109 			     n->dev ? n->dev->name : "backlog");
6110 		goto out_unlock;
6111 	}
6112 
6113 	list_add_tail(&n->poll_list, repoll);
6114 
6115 out_unlock:
6116 	netpoll_poll_unlock(have);
6117 
6118 	return work;
6119 }
6120 
6121 static __latent_entropy void net_rx_action(struct softirq_action *h)
6122 {
6123 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6124 	unsigned long time_limit = jiffies +
6125 		usecs_to_jiffies(netdev_budget_usecs);
6126 	int budget = netdev_budget;
6127 	LIST_HEAD(list);
6128 	LIST_HEAD(repoll);
6129 
6130 	local_irq_disable();
6131 	list_splice_init(&sd->poll_list, &list);
6132 	local_irq_enable();
6133 
6134 	for (;;) {
6135 		struct napi_struct *n;
6136 
6137 		if (list_empty(&list)) {
6138 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6139 				goto out;
6140 			break;
6141 		}
6142 
6143 		n = list_first_entry(&list, struct napi_struct, poll_list);
6144 		budget -= napi_poll(n, &repoll);
6145 
6146 		/* If softirq window is exhausted then punt.
6147 		 * Allow this to run for 2 jiffies since which will allow
6148 		 * an average latency of 1.5/HZ.
6149 		 */
6150 		if (unlikely(budget <= 0 ||
6151 			     time_after_eq(jiffies, time_limit))) {
6152 			sd->time_squeeze++;
6153 			break;
6154 		}
6155 	}
6156 
6157 	local_irq_disable();
6158 
6159 	list_splice_tail_init(&sd->poll_list, &list);
6160 	list_splice_tail(&repoll, &list);
6161 	list_splice(&list, &sd->poll_list);
6162 	if (!list_empty(&sd->poll_list))
6163 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6164 
6165 	net_rps_action_and_irq_enable(sd);
6166 out:
6167 	__kfree_skb_flush();
6168 }
6169 
6170 struct netdev_adjacent {
6171 	struct net_device *dev;
6172 
6173 	/* upper master flag, there can only be one master device per list */
6174 	bool master;
6175 
6176 	/* counter for the number of times this device was added to us */
6177 	u16 ref_nr;
6178 
6179 	/* private field for the users */
6180 	void *private;
6181 
6182 	struct list_head list;
6183 	struct rcu_head rcu;
6184 };
6185 
6186 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6187 						 struct list_head *adj_list)
6188 {
6189 	struct netdev_adjacent *adj;
6190 
6191 	list_for_each_entry(adj, adj_list, list) {
6192 		if (adj->dev == adj_dev)
6193 			return adj;
6194 	}
6195 	return NULL;
6196 }
6197 
6198 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6199 {
6200 	struct net_device *dev = data;
6201 
6202 	return upper_dev == dev;
6203 }
6204 
6205 /**
6206  * netdev_has_upper_dev - Check if device is linked to an upper device
6207  * @dev: device
6208  * @upper_dev: upper device to check
6209  *
6210  * Find out if a device is linked to specified upper device and return true
6211  * in case it is. Note that this checks only immediate upper device,
6212  * not through a complete stack of devices. The caller must hold the RTNL lock.
6213  */
6214 bool netdev_has_upper_dev(struct net_device *dev,
6215 			  struct net_device *upper_dev)
6216 {
6217 	ASSERT_RTNL();
6218 
6219 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6220 					     upper_dev);
6221 }
6222 EXPORT_SYMBOL(netdev_has_upper_dev);
6223 
6224 /**
6225  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6226  * @dev: device
6227  * @upper_dev: upper device to check
6228  *
6229  * Find out if a device is linked to specified upper device and return true
6230  * in case it is. Note that this checks the entire upper device chain.
6231  * The caller must hold rcu lock.
6232  */
6233 
6234 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6235 				  struct net_device *upper_dev)
6236 {
6237 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6238 					       upper_dev);
6239 }
6240 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6241 
6242 /**
6243  * netdev_has_any_upper_dev - Check if device is linked to some device
6244  * @dev: device
6245  *
6246  * Find out if a device is linked to an upper device and return true in case
6247  * it is. The caller must hold the RTNL lock.
6248  */
6249 bool netdev_has_any_upper_dev(struct net_device *dev)
6250 {
6251 	ASSERT_RTNL();
6252 
6253 	return !list_empty(&dev->adj_list.upper);
6254 }
6255 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6256 
6257 /**
6258  * netdev_master_upper_dev_get - Get master upper device
6259  * @dev: device
6260  *
6261  * Find a master upper device and return pointer to it or NULL in case
6262  * it's not there. The caller must hold the RTNL lock.
6263  */
6264 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6265 {
6266 	struct netdev_adjacent *upper;
6267 
6268 	ASSERT_RTNL();
6269 
6270 	if (list_empty(&dev->adj_list.upper))
6271 		return NULL;
6272 
6273 	upper = list_first_entry(&dev->adj_list.upper,
6274 				 struct netdev_adjacent, list);
6275 	if (likely(upper->master))
6276 		return upper->dev;
6277 	return NULL;
6278 }
6279 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6280 
6281 /**
6282  * netdev_has_any_lower_dev - Check if device is linked to some device
6283  * @dev: device
6284  *
6285  * Find out if a device is linked to a lower device and return true in case
6286  * it is. The caller must hold the RTNL lock.
6287  */
6288 static bool netdev_has_any_lower_dev(struct net_device *dev)
6289 {
6290 	ASSERT_RTNL();
6291 
6292 	return !list_empty(&dev->adj_list.lower);
6293 }
6294 
6295 void *netdev_adjacent_get_private(struct list_head *adj_list)
6296 {
6297 	struct netdev_adjacent *adj;
6298 
6299 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6300 
6301 	return adj->private;
6302 }
6303 EXPORT_SYMBOL(netdev_adjacent_get_private);
6304 
6305 /**
6306  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6307  * @dev: device
6308  * @iter: list_head ** of the current position
6309  *
6310  * Gets the next device from the dev's upper list, starting from iter
6311  * position. The caller must hold RCU read lock.
6312  */
6313 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6314 						 struct list_head **iter)
6315 {
6316 	struct netdev_adjacent *upper;
6317 
6318 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6319 
6320 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6321 
6322 	if (&upper->list == &dev->adj_list.upper)
6323 		return NULL;
6324 
6325 	*iter = &upper->list;
6326 
6327 	return upper->dev;
6328 }
6329 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6330 
6331 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6332 						    struct list_head **iter)
6333 {
6334 	struct netdev_adjacent *upper;
6335 
6336 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6337 
6338 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6339 
6340 	if (&upper->list == &dev->adj_list.upper)
6341 		return NULL;
6342 
6343 	*iter = &upper->list;
6344 
6345 	return upper->dev;
6346 }
6347 
6348 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6349 				  int (*fn)(struct net_device *dev,
6350 					    void *data),
6351 				  void *data)
6352 {
6353 	struct net_device *udev;
6354 	struct list_head *iter;
6355 	int ret;
6356 
6357 	for (iter = &dev->adj_list.upper,
6358 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6359 	     udev;
6360 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6361 		/* first is the upper device itself */
6362 		ret = fn(udev, data);
6363 		if (ret)
6364 			return ret;
6365 
6366 		/* then look at all of its upper devices */
6367 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6368 		if (ret)
6369 			return ret;
6370 	}
6371 
6372 	return 0;
6373 }
6374 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6375 
6376 /**
6377  * netdev_lower_get_next_private - Get the next ->private from the
6378  *				   lower neighbour list
6379  * @dev: device
6380  * @iter: list_head ** of the current position
6381  *
6382  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6383  * list, starting from iter position. The caller must hold either hold the
6384  * RTNL lock or its own locking that guarantees that the neighbour lower
6385  * list will remain unchanged.
6386  */
6387 void *netdev_lower_get_next_private(struct net_device *dev,
6388 				    struct list_head **iter)
6389 {
6390 	struct netdev_adjacent *lower;
6391 
6392 	lower = list_entry(*iter, struct netdev_adjacent, list);
6393 
6394 	if (&lower->list == &dev->adj_list.lower)
6395 		return NULL;
6396 
6397 	*iter = lower->list.next;
6398 
6399 	return lower->private;
6400 }
6401 EXPORT_SYMBOL(netdev_lower_get_next_private);
6402 
6403 /**
6404  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6405  *				       lower neighbour list, RCU
6406  *				       variant
6407  * @dev: device
6408  * @iter: list_head ** of the current position
6409  *
6410  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6411  * list, starting from iter position. The caller must hold RCU read lock.
6412  */
6413 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6414 					struct list_head **iter)
6415 {
6416 	struct netdev_adjacent *lower;
6417 
6418 	WARN_ON_ONCE(!rcu_read_lock_held());
6419 
6420 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6421 
6422 	if (&lower->list == &dev->adj_list.lower)
6423 		return NULL;
6424 
6425 	*iter = &lower->list;
6426 
6427 	return lower->private;
6428 }
6429 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6430 
6431 /**
6432  * netdev_lower_get_next - Get the next device from the lower neighbour
6433  *                         list
6434  * @dev: device
6435  * @iter: list_head ** of the current position
6436  *
6437  * Gets the next netdev_adjacent from the dev's lower neighbour
6438  * list, starting from iter position. The caller must hold RTNL lock or
6439  * its own locking that guarantees that the neighbour lower
6440  * list will remain unchanged.
6441  */
6442 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6443 {
6444 	struct netdev_adjacent *lower;
6445 
6446 	lower = list_entry(*iter, struct netdev_adjacent, list);
6447 
6448 	if (&lower->list == &dev->adj_list.lower)
6449 		return NULL;
6450 
6451 	*iter = lower->list.next;
6452 
6453 	return lower->dev;
6454 }
6455 EXPORT_SYMBOL(netdev_lower_get_next);
6456 
6457 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6458 						struct list_head **iter)
6459 {
6460 	struct netdev_adjacent *lower;
6461 
6462 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6463 
6464 	if (&lower->list == &dev->adj_list.lower)
6465 		return NULL;
6466 
6467 	*iter = &lower->list;
6468 
6469 	return lower->dev;
6470 }
6471 
6472 int netdev_walk_all_lower_dev(struct net_device *dev,
6473 			      int (*fn)(struct net_device *dev,
6474 					void *data),
6475 			      void *data)
6476 {
6477 	struct net_device *ldev;
6478 	struct list_head *iter;
6479 	int ret;
6480 
6481 	for (iter = &dev->adj_list.lower,
6482 	     ldev = netdev_next_lower_dev(dev, &iter);
6483 	     ldev;
6484 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6485 		/* first is the lower device itself */
6486 		ret = fn(ldev, data);
6487 		if (ret)
6488 			return ret;
6489 
6490 		/* then look at all of its lower devices */
6491 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6492 		if (ret)
6493 			return ret;
6494 	}
6495 
6496 	return 0;
6497 }
6498 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6499 
6500 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6501 						    struct list_head **iter)
6502 {
6503 	struct netdev_adjacent *lower;
6504 
6505 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6506 	if (&lower->list == &dev->adj_list.lower)
6507 		return NULL;
6508 
6509 	*iter = &lower->list;
6510 
6511 	return lower->dev;
6512 }
6513 
6514 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6515 				  int (*fn)(struct net_device *dev,
6516 					    void *data),
6517 				  void *data)
6518 {
6519 	struct net_device *ldev;
6520 	struct list_head *iter;
6521 	int ret;
6522 
6523 	for (iter = &dev->adj_list.lower,
6524 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6525 	     ldev;
6526 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6527 		/* first is the lower device itself */
6528 		ret = fn(ldev, data);
6529 		if (ret)
6530 			return ret;
6531 
6532 		/* then look at all of its lower devices */
6533 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6534 		if (ret)
6535 			return ret;
6536 	}
6537 
6538 	return 0;
6539 }
6540 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6541 
6542 /**
6543  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6544  *				       lower neighbour list, RCU
6545  *				       variant
6546  * @dev: device
6547  *
6548  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6549  * list. The caller must hold RCU read lock.
6550  */
6551 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6552 {
6553 	struct netdev_adjacent *lower;
6554 
6555 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6556 			struct netdev_adjacent, list);
6557 	if (lower)
6558 		return lower->private;
6559 	return NULL;
6560 }
6561 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6562 
6563 /**
6564  * netdev_master_upper_dev_get_rcu - Get master upper device
6565  * @dev: device
6566  *
6567  * Find a master upper device and return pointer to it or NULL in case
6568  * it's not there. The caller must hold the RCU read lock.
6569  */
6570 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6571 {
6572 	struct netdev_adjacent *upper;
6573 
6574 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6575 				       struct netdev_adjacent, list);
6576 	if (upper && likely(upper->master))
6577 		return upper->dev;
6578 	return NULL;
6579 }
6580 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6581 
6582 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6583 			      struct net_device *adj_dev,
6584 			      struct list_head *dev_list)
6585 {
6586 	char linkname[IFNAMSIZ+7];
6587 
6588 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6589 		"upper_%s" : "lower_%s", adj_dev->name);
6590 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6591 				 linkname);
6592 }
6593 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6594 			       char *name,
6595 			       struct list_head *dev_list)
6596 {
6597 	char linkname[IFNAMSIZ+7];
6598 
6599 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6600 		"upper_%s" : "lower_%s", name);
6601 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6602 }
6603 
6604 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6605 						 struct net_device *adj_dev,
6606 						 struct list_head *dev_list)
6607 {
6608 	return (dev_list == &dev->adj_list.upper ||
6609 		dev_list == &dev->adj_list.lower) &&
6610 		net_eq(dev_net(dev), dev_net(adj_dev));
6611 }
6612 
6613 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6614 					struct net_device *adj_dev,
6615 					struct list_head *dev_list,
6616 					void *private, bool master)
6617 {
6618 	struct netdev_adjacent *adj;
6619 	int ret;
6620 
6621 	adj = __netdev_find_adj(adj_dev, dev_list);
6622 
6623 	if (adj) {
6624 		adj->ref_nr += 1;
6625 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6626 			 dev->name, adj_dev->name, adj->ref_nr);
6627 
6628 		return 0;
6629 	}
6630 
6631 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6632 	if (!adj)
6633 		return -ENOMEM;
6634 
6635 	adj->dev = adj_dev;
6636 	adj->master = master;
6637 	adj->ref_nr = 1;
6638 	adj->private = private;
6639 	dev_hold(adj_dev);
6640 
6641 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6642 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6643 
6644 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6645 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6646 		if (ret)
6647 			goto free_adj;
6648 	}
6649 
6650 	/* Ensure that master link is always the first item in list. */
6651 	if (master) {
6652 		ret = sysfs_create_link(&(dev->dev.kobj),
6653 					&(adj_dev->dev.kobj), "master");
6654 		if (ret)
6655 			goto remove_symlinks;
6656 
6657 		list_add_rcu(&adj->list, dev_list);
6658 	} else {
6659 		list_add_tail_rcu(&adj->list, dev_list);
6660 	}
6661 
6662 	return 0;
6663 
6664 remove_symlinks:
6665 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6666 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6667 free_adj:
6668 	kfree(adj);
6669 	dev_put(adj_dev);
6670 
6671 	return ret;
6672 }
6673 
6674 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6675 					 struct net_device *adj_dev,
6676 					 u16 ref_nr,
6677 					 struct list_head *dev_list)
6678 {
6679 	struct netdev_adjacent *adj;
6680 
6681 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6682 		 dev->name, adj_dev->name, ref_nr);
6683 
6684 	adj = __netdev_find_adj(adj_dev, dev_list);
6685 
6686 	if (!adj) {
6687 		pr_err("Adjacency does not exist for device %s from %s\n",
6688 		       dev->name, adj_dev->name);
6689 		WARN_ON(1);
6690 		return;
6691 	}
6692 
6693 	if (adj->ref_nr > ref_nr) {
6694 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6695 			 dev->name, adj_dev->name, ref_nr,
6696 			 adj->ref_nr - ref_nr);
6697 		adj->ref_nr -= ref_nr;
6698 		return;
6699 	}
6700 
6701 	if (adj->master)
6702 		sysfs_remove_link(&(dev->dev.kobj), "master");
6703 
6704 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6705 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6706 
6707 	list_del_rcu(&adj->list);
6708 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6709 		 adj_dev->name, dev->name, adj_dev->name);
6710 	dev_put(adj_dev);
6711 	kfree_rcu(adj, rcu);
6712 }
6713 
6714 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6715 					    struct net_device *upper_dev,
6716 					    struct list_head *up_list,
6717 					    struct list_head *down_list,
6718 					    void *private, bool master)
6719 {
6720 	int ret;
6721 
6722 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6723 					   private, master);
6724 	if (ret)
6725 		return ret;
6726 
6727 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6728 					   private, false);
6729 	if (ret) {
6730 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6731 		return ret;
6732 	}
6733 
6734 	return 0;
6735 }
6736 
6737 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6738 					       struct net_device *upper_dev,
6739 					       u16 ref_nr,
6740 					       struct list_head *up_list,
6741 					       struct list_head *down_list)
6742 {
6743 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6744 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6745 }
6746 
6747 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6748 						struct net_device *upper_dev,
6749 						void *private, bool master)
6750 {
6751 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6752 						&dev->adj_list.upper,
6753 						&upper_dev->adj_list.lower,
6754 						private, master);
6755 }
6756 
6757 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6758 						   struct net_device *upper_dev)
6759 {
6760 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6761 					   &dev->adj_list.upper,
6762 					   &upper_dev->adj_list.lower);
6763 }
6764 
6765 static int __netdev_upper_dev_link(struct net_device *dev,
6766 				   struct net_device *upper_dev, bool master,
6767 				   void *upper_priv, void *upper_info,
6768 				   struct netlink_ext_ack *extack)
6769 {
6770 	struct netdev_notifier_changeupper_info changeupper_info = {
6771 		.info = {
6772 			.dev = dev,
6773 			.extack = extack,
6774 		},
6775 		.upper_dev = upper_dev,
6776 		.master = master,
6777 		.linking = true,
6778 		.upper_info = upper_info,
6779 	};
6780 	struct net_device *master_dev;
6781 	int ret = 0;
6782 
6783 	ASSERT_RTNL();
6784 
6785 	if (dev == upper_dev)
6786 		return -EBUSY;
6787 
6788 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6789 	if (netdev_has_upper_dev(upper_dev, dev))
6790 		return -EBUSY;
6791 
6792 	if (!master) {
6793 		if (netdev_has_upper_dev(dev, upper_dev))
6794 			return -EEXIST;
6795 	} else {
6796 		master_dev = netdev_master_upper_dev_get(dev);
6797 		if (master_dev)
6798 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6799 	}
6800 
6801 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6802 					    &changeupper_info.info);
6803 	ret = notifier_to_errno(ret);
6804 	if (ret)
6805 		return ret;
6806 
6807 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6808 						   master);
6809 	if (ret)
6810 		return ret;
6811 
6812 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6813 					    &changeupper_info.info);
6814 	ret = notifier_to_errno(ret);
6815 	if (ret)
6816 		goto rollback;
6817 
6818 	return 0;
6819 
6820 rollback:
6821 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6822 
6823 	return ret;
6824 }
6825 
6826 /**
6827  * netdev_upper_dev_link - Add a link to the upper device
6828  * @dev: device
6829  * @upper_dev: new upper device
6830  * @extack: netlink extended ack
6831  *
6832  * Adds a link to device which is upper to this one. The caller must hold
6833  * the RTNL lock. On a failure a negative errno code is returned.
6834  * On success the reference counts are adjusted and the function
6835  * returns zero.
6836  */
6837 int netdev_upper_dev_link(struct net_device *dev,
6838 			  struct net_device *upper_dev,
6839 			  struct netlink_ext_ack *extack)
6840 {
6841 	return __netdev_upper_dev_link(dev, upper_dev, false,
6842 				       NULL, NULL, extack);
6843 }
6844 EXPORT_SYMBOL(netdev_upper_dev_link);
6845 
6846 /**
6847  * netdev_master_upper_dev_link - Add a master link to the upper device
6848  * @dev: device
6849  * @upper_dev: new upper device
6850  * @upper_priv: upper device private
6851  * @upper_info: upper info to be passed down via notifier
6852  * @extack: netlink extended ack
6853  *
6854  * Adds a link to device which is upper to this one. In this case, only
6855  * one master upper device can be linked, although other non-master devices
6856  * might be linked as well. The caller must hold the RTNL lock.
6857  * On a failure a negative errno code is returned. On success the reference
6858  * counts are adjusted and the function returns zero.
6859  */
6860 int netdev_master_upper_dev_link(struct net_device *dev,
6861 				 struct net_device *upper_dev,
6862 				 void *upper_priv, void *upper_info,
6863 				 struct netlink_ext_ack *extack)
6864 {
6865 	return __netdev_upper_dev_link(dev, upper_dev, true,
6866 				       upper_priv, upper_info, extack);
6867 }
6868 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6869 
6870 /**
6871  * netdev_upper_dev_unlink - Removes a link to upper device
6872  * @dev: device
6873  * @upper_dev: new upper device
6874  *
6875  * Removes a link to device which is upper to this one. The caller must hold
6876  * the RTNL lock.
6877  */
6878 void netdev_upper_dev_unlink(struct net_device *dev,
6879 			     struct net_device *upper_dev)
6880 {
6881 	struct netdev_notifier_changeupper_info changeupper_info = {
6882 		.info = {
6883 			.dev = dev,
6884 		},
6885 		.upper_dev = upper_dev,
6886 		.linking = false,
6887 	};
6888 
6889 	ASSERT_RTNL();
6890 
6891 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6892 
6893 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6894 				      &changeupper_info.info);
6895 
6896 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6897 
6898 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6899 				      &changeupper_info.info);
6900 }
6901 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6902 
6903 /**
6904  * netdev_bonding_info_change - Dispatch event about slave change
6905  * @dev: device
6906  * @bonding_info: info to dispatch
6907  *
6908  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6909  * The caller must hold the RTNL lock.
6910  */
6911 void netdev_bonding_info_change(struct net_device *dev,
6912 				struct netdev_bonding_info *bonding_info)
6913 {
6914 	struct netdev_notifier_bonding_info info = {
6915 		.info.dev = dev,
6916 	};
6917 
6918 	memcpy(&info.bonding_info, bonding_info,
6919 	       sizeof(struct netdev_bonding_info));
6920 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6921 				      &info.info);
6922 }
6923 EXPORT_SYMBOL(netdev_bonding_info_change);
6924 
6925 static void netdev_adjacent_add_links(struct net_device *dev)
6926 {
6927 	struct netdev_adjacent *iter;
6928 
6929 	struct net *net = dev_net(dev);
6930 
6931 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6932 		if (!net_eq(net, dev_net(iter->dev)))
6933 			continue;
6934 		netdev_adjacent_sysfs_add(iter->dev, dev,
6935 					  &iter->dev->adj_list.lower);
6936 		netdev_adjacent_sysfs_add(dev, iter->dev,
6937 					  &dev->adj_list.upper);
6938 	}
6939 
6940 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6941 		if (!net_eq(net, dev_net(iter->dev)))
6942 			continue;
6943 		netdev_adjacent_sysfs_add(iter->dev, dev,
6944 					  &iter->dev->adj_list.upper);
6945 		netdev_adjacent_sysfs_add(dev, iter->dev,
6946 					  &dev->adj_list.lower);
6947 	}
6948 }
6949 
6950 static void netdev_adjacent_del_links(struct net_device *dev)
6951 {
6952 	struct netdev_adjacent *iter;
6953 
6954 	struct net *net = dev_net(dev);
6955 
6956 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6957 		if (!net_eq(net, dev_net(iter->dev)))
6958 			continue;
6959 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6960 					  &iter->dev->adj_list.lower);
6961 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6962 					  &dev->adj_list.upper);
6963 	}
6964 
6965 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6966 		if (!net_eq(net, dev_net(iter->dev)))
6967 			continue;
6968 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6969 					  &iter->dev->adj_list.upper);
6970 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6971 					  &dev->adj_list.lower);
6972 	}
6973 }
6974 
6975 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6976 {
6977 	struct netdev_adjacent *iter;
6978 
6979 	struct net *net = dev_net(dev);
6980 
6981 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6982 		if (!net_eq(net, dev_net(iter->dev)))
6983 			continue;
6984 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6985 					  &iter->dev->adj_list.lower);
6986 		netdev_adjacent_sysfs_add(iter->dev, dev,
6987 					  &iter->dev->adj_list.lower);
6988 	}
6989 
6990 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6991 		if (!net_eq(net, dev_net(iter->dev)))
6992 			continue;
6993 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6994 					  &iter->dev->adj_list.upper);
6995 		netdev_adjacent_sysfs_add(iter->dev, dev,
6996 					  &iter->dev->adj_list.upper);
6997 	}
6998 }
6999 
7000 void *netdev_lower_dev_get_private(struct net_device *dev,
7001 				   struct net_device *lower_dev)
7002 {
7003 	struct netdev_adjacent *lower;
7004 
7005 	if (!lower_dev)
7006 		return NULL;
7007 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7008 	if (!lower)
7009 		return NULL;
7010 
7011 	return lower->private;
7012 }
7013 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7014 
7015 
7016 int dev_get_nest_level(struct net_device *dev)
7017 {
7018 	struct net_device *lower = NULL;
7019 	struct list_head *iter;
7020 	int max_nest = -1;
7021 	int nest;
7022 
7023 	ASSERT_RTNL();
7024 
7025 	netdev_for_each_lower_dev(dev, lower, iter) {
7026 		nest = dev_get_nest_level(lower);
7027 		if (max_nest < nest)
7028 			max_nest = nest;
7029 	}
7030 
7031 	return max_nest + 1;
7032 }
7033 EXPORT_SYMBOL(dev_get_nest_level);
7034 
7035 /**
7036  * netdev_lower_change - Dispatch event about lower device state change
7037  * @lower_dev: device
7038  * @lower_state_info: state to dispatch
7039  *
7040  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7041  * The caller must hold the RTNL lock.
7042  */
7043 void netdev_lower_state_changed(struct net_device *lower_dev,
7044 				void *lower_state_info)
7045 {
7046 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7047 		.info.dev = lower_dev,
7048 	};
7049 
7050 	ASSERT_RTNL();
7051 	changelowerstate_info.lower_state_info = lower_state_info;
7052 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7053 				      &changelowerstate_info.info);
7054 }
7055 EXPORT_SYMBOL(netdev_lower_state_changed);
7056 
7057 static void dev_change_rx_flags(struct net_device *dev, int flags)
7058 {
7059 	const struct net_device_ops *ops = dev->netdev_ops;
7060 
7061 	if (ops->ndo_change_rx_flags)
7062 		ops->ndo_change_rx_flags(dev, flags);
7063 }
7064 
7065 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7066 {
7067 	unsigned int old_flags = dev->flags;
7068 	kuid_t uid;
7069 	kgid_t gid;
7070 
7071 	ASSERT_RTNL();
7072 
7073 	dev->flags |= IFF_PROMISC;
7074 	dev->promiscuity += inc;
7075 	if (dev->promiscuity == 0) {
7076 		/*
7077 		 * Avoid overflow.
7078 		 * If inc causes overflow, untouch promisc and return error.
7079 		 */
7080 		if (inc < 0)
7081 			dev->flags &= ~IFF_PROMISC;
7082 		else {
7083 			dev->promiscuity -= inc;
7084 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7085 				dev->name);
7086 			return -EOVERFLOW;
7087 		}
7088 	}
7089 	if (dev->flags != old_flags) {
7090 		pr_info("device %s %s promiscuous mode\n",
7091 			dev->name,
7092 			dev->flags & IFF_PROMISC ? "entered" : "left");
7093 		if (audit_enabled) {
7094 			current_uid_gid(&uid, &gid);
7095 			audit_log(audit_context(), GFP_ATOMIC,
7096 				  AUDIT_ANOM_PROMISCUOUS,
7097 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7098 				  dev->name, (dev->flags & IFF_PROMISC),
7099 				  (old_flags & IFF_PROMISC),
7100 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7101 				  from_kuid(&init_user_ns, uid),
7102 				  from_kgid(&init_user_ns, gid),
7103 				  audit_get_sessionid(current));
7104 		}
7105 
7106 		dev_change_rx_flags(dev, IFF_PROMISC);
7107 	}
7108 	if (notify)
7109 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7110 	return 0;
7111 }
7112 
7113 /**
7114  *	dev_set_promiscuity	- update promiscuity count on a device
7115  *	@dev: device
7116  *	@inc: modifier
7117  *
7118  *	Add or remove promiscuity from a device. While the count in the device
7119  *	remains above zero the interface remains promiscuous. Once it hits zero
7120  *	the device reverts back to normal filtering operation. A negative inc
7121  *	value is used to drop promiscuity on the device.
7122  *	Return 0 if successful or a negative errno code on error.
7123  */
7124 int dev_set_promiscuity(struct net_device *dev, int inc)
7125 {
7126 	unsigned int old_flags = dev->flags;
7127 	int err;
7128 
7129 	err = __dev_set_promiscuity(dev, inc, true);
7130 	if (err < 0)
7131 		return err;
7132 	if (dev->flags != old_flags)
7133 		dev_set_rx_mode(dev);
7134 	return err;
7135 }
7136 EXPORT_SYMBOL(dev_set_promiscuity);
7137 
7138 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7139 {
7140 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7141 
7142 	ASSERT_RTNL();
7143 
7144 	dev->flags |= IFF_ALLMULTI;
7145 	dev->allmulti += inc;
7146 	if (dev->allmulti == 0) {
7147 		/*
7148 		 * Avoid overflow.
7149 		 * If inc causes overflow, untouch allmulti and return error.
7150 		 */
7151 		if (inc < 0)
7152 			dev->flags &= ~IFF_ALLMULTI;
7153 		else {
7154 			dev->allmulti -= inc;
7155 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7156 				dev->name);
7157 			return -EOVERFLOW;
7158 		}
7159 	}
7160 	if (dev->flags ^ old_flags) {
7161 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7162 		dev_set_rx_mode(dev);
7163 		if (notify)
7164 			__dev_notify_flags(dev, old_flags,
7165 					   dev->gflags ^ old_gflags);
7166 	}
7167 	return 0;
7168 }
7169 
7170 /**
7171  *	dev_set_allmulti	- update allmulti count on a device
7172  *	@dev: device
7173  *	@inc: modifier
7174  *
7175  *	Add or remove reception of all multicast frames to a device. While the
7176  *	count in the device remains above zero the interface remains listening
7177  *	to all interfaces. Once it hits zero the device reverts back to normal
7178  *	filtering operation. A negative @inc value is used to drop the counter
7179  *	when releasing a resource needing all multicasts.
7180  *	Return 0 if successful or a negative errno code on error.
7181  */
7182 
7183 int dev_set_allmulti(struct net_device *dev, int inc)
7184 {
7185 	return __dev_set_allmulti(dev, inc, true);
7186 }
7187 EXPORT_SYMBOL(dev_set_allmulti);
7188 
7189 /*
7190  *	Upload unicast and multicast address lists to device and
7191  *	configure RX filtering. When the device doesn't support unicast
7192  *	filtering it is put in promiscuous mode while unicast addresses
7193  *	are present.
7194  */
7195 void __dev_set_rx_mode(struct net_device *dev)
7196 {
7197 	const struct net_device_ops *ops = dev->netdev_ops;
7198 
7199 	/* dev_open will call this function so the list will stay sane. */
7200 	if (!(dev->flags&IFF_UP))
7201 		return;
7202 
7203 	if (!netif_device_present(dev))
7204 		return;
7205 
7206 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7207 		/* Unicast addresses changes may only happen under the rtnl,
7208 		 * therefore calling __dev_set_promiscuity here is safe.
7209 		 */
7210 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7211 			__dev_set_promiscuity(dev, 1, false);
7212 			dev->uc_promisc = true;
7213 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7214 			__dev_set_promiscuity(dev, -1, false);
7215 			dev->uc_promisc = false;
7216 		}
7217 	}
7218 
7219 	if (ops->ndo_set_rx_mode)
7220 		ops->ndo_set_rx_mode(dev);
7221 }
7222 
7223 void dev_set_rx_mode(struct net_device *dev)
7224 {
7225 	netif_addr_lock_bh(dev);
7226 	__dev_set_rx_mode(dev);
7227 	netif_addr_unlock_bh(dev);
7228 }
7229 
7230 /**
7231  *	dev_get_flags - get flags reported to userspace
7232  *	@dev: device
7233  *
7234  *	Get the combination of flag bits exported through APIs to userspace.
7235  */
7236 unsigned int dev_get_flags(const struct net_device *dev)
7237 {
7238 	unsigned int flags;
7239 
7240 	flags = (dev->flags & ~(IFF_PROMISC |
7241 				IFF_ALLMULTI |
7242 				IFF_RUNNING |
7243 				IFF_LOWER_UP |
7244 				IFF_DORMANT)) |
7245 		(dev->gflags & (IFF_PROMISC |
7246 				IFF_ALLMULTI));
7247 
7248 	if (netif_running(dev)) {
7249 		if (netif_oper_up(dev))
7250 			flags |= IFF_RUNNING;
7251 		if (netif_carrier_ok(dev))
7252 			flags |= IFF_LOWER_UP;
7253 		if (netif_dormant(dev))
7254 			flags |= IFF_DORMANT;
7255 	}
7256 
7257 	return flags;
7258 }
7259 EXPORT_SYMBOL(dev_get_flags);
7260 
7261 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7262 {
7263 	unsigned int old_flags = dev->flags;
7264 	int ret;
7265 
7266 	ASSERT_RTNL();
7267 
7268 	/*
7269 	 *	Set the flags on our device.
7270 	 */
7271 
7272 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7273 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7274 			       IFF_AUTOMEDIA)) |
7275 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7276 				    IFF_ALLMULTI));
7277 
7278 	/*
7279 	 *	Load in the correct multicast list now the flags have changed.
7280 	 */
7281 
7282 	if ((old_flags ^ flags) & IFF_MULTICAST)
7283 		dev_change_rx_flags(dev, IFF_MULTICAST);
7284 
7285 	dev_set_rx_mode(dev);
7286 
7287 	/*
7288 	 *	Have we downed the interface. We handle IFF_UP ourselves
7289 	 *	according to user attempts to set it, rather than blindly
7290 	 *	setting it.
7291 	 */
7292 
7293 	ret = 0;
7294 	if ((old_flags ^ flags) & IFF_UP) {
7295 		if (old_flags & IFF_UP)
7296 			__dev_close(dev);
7297 		else
7298 			ret = __dev_open(dev);
7299 	}
7300 
7301 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7302 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7303 		unsigned int old_flags = dev->flags;
7304 
7305 		dev->gflags ^= IFF_PROMISC;
7306 
7307 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7308 			if (dev->flags != old_flags)
7309 				dev_set_rx_mode(dev);
7310 	}
7311 
7312 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7313 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7314 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7315 	 */
7316 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7317 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7318 
7319 		dev->gflags ^= IFF_ALLMULTI;
7320 		__dev_set_allmulti(dev, inc, false);
7321 	}
7322 
7323 	return ret;
7324 }
7325 
7326 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7327 			unsigned int gchanges)
7328 {
7329 	unsigned int changes = dev->flags ^ old_flags;
7330 
7331 	if (gchanges)
7332 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7333 
7334 	if (changes & IFF_UP) {
7335 		if (dev->flags & IFF_UP)
7336 			call_netdevice_notifiers(NETDEV_UP, dev);
7337 		else
7338 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7339 	}
7340 
7341 	if (dev->flags & IFF_UP &&
7342 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7343 		struct netdev_notifier_change_info change_info = {
7344 			.info = {
7345 				.dev = dev,
7346 			},
7347 			.flags_changed = changes,
7348 		};
7349 
7350 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7351 	}
7352 }
7353 
7354 /**
7355  *	dev_change_flags - change device settings
7356  *	@dev: device
7357  *	@flags: device state flags
7358  *
7359  *	Change settings on device based state flags. The flags are
7360  *	in the userspace exported format.
7361  */
7362 int dev_change_flags(struct net_device *dev, unsigned int flags)
7363 {
7364 	int ret;
7365 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7366 
7367 	ret = __dev_change_flags(dev, flags);
7368 	if (ret < 0)
7369 		return ret;
7370 
7371 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7372 	__dev_notify_flags(dev, old_flags, changes);
7373 	return ret;
7374 }
7375 EXPORT_SYMBOL(dev_change_flags);
7376 
7377 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7378 {
7379 	const struct net_device_ops *ops = dev->netdev_ops;
7380 
7381 	if (ops->ndo_change_mtu)
7382 		return ops->ndo_change_mtu(dev, new_mtu);
7383 
7384 	dev->mtu = new_mtu;
7385 	return 0;
7386 }
7387 EXPORT_SYMBOL(__dev_set_mtu);
7388 
7389 /**
7390  *	dev_set_mtu - Change maximum transfer unit
7391  *	@dev: device
7392  *	@new_mtu: new transfer unit
7393  *
7394  *	Change the maximum transfer size of the network device.
7395  */
7396 int dev_set_mtu(struct net_device *dev, int new_mtu)
7397 {
7398 	int err, orig_mtu;
7399 
7400 	if (new_mtu == dev->mtu)
7401 		return 0;
7402 
7403 	/* MTU must be positive, and in range */
7404 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7405 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7406 				    dev->name, new_mtu, dev->min_mtu);
7407 		return -EINVAL;
7408 	}
7409 
7410 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7411 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7412 				    dev->name, new_mtu, dev->max_mtu);
7413 		return -EINVAL;
7414 	}
7415 
7416 	if (!netif_device_present(dev))
7417 		return -ENODEV;
7418 
7419 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7420 	err = notifier_to_errno(err);
7421 	if (err)
7422 		return err;
7423 
7424 	orig_mtu = dev->mtu;
7425 	err = __dev_set_mtu(dev, new_mtu);
7426 
7427 	if (!err) {
7428 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7429 		err = notifier_to_errno(err);
7430 		if (err) {
7431 			/* setting mtu back and notifying everyone again,
7432 			 * so that they have a chance to revert changes.
7433 			 */
7434 			__dev_set_mtu(dev, orig_mtu);
7435 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7436 		}
7437 	}
7438 	return err;
7439 }
7440 EXPORT_SYMBOL(dev_set_mtu);
7441 
7442 /**
7443  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7444  *	@dev: device
7445  *	@new_len: new tx queue length
7446  */
7447 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7448 {
7449 	unsigned int orig_len = dev->tx_queue_len;
7450 	int res;
7451 
7452 	if (new_len != (unsigned int)new_len)
7453 		return -ERANGE;
7454 
7455 	if (new_len != orig_len) {
7456 		dev->tx_queue_len = new_len;
7457 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7458 		res = notifier_to_errno(res);
7459 		if (res) {
7460 			netdev_err(dev,
7461 				   "refused to change device tx_queue_len\n");
7462 			dev->tx_queue_len = orig_len;
7463 			return res;
7464 		}
7465 		return dev_qdisc_change_tx_queue_len(dev);
7466 	}
7467 
7468 	return 0;
7469 }
7470 
7471 /**
7472  *	dev_set_group - Change group this device belongs to
7473  *	@dev: device
7474  *	@new_group: group this device should belong to
7475  */
7476 void dev_set_group(struct net_device *dev, int new_group)
7477 {
7478 	dev->group = new_group;
7479 }
7480 EXPORT_SYMBOL(dev_set_group);
7481 
7482 /**
7483  *	dev_set_mac_address - Change Media Access Control Address
7484  *	@dev: device
7485  *	@sa: new address
7486  *
7487  *	Change the hardware (MAC) address of the device
7488  */
7489 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7490 {
7491 	const struct net_device_ops *ops = dev->netdev_ops;
7492 	int err;
7493 
7494 	if (!ops->ndo_set_mac_address)
7495 		return -EOPNOTSUPP;
7496 	if (sa->sa_family != dev->type)
7497 		return -EINVAL;
7498 	if (!netif_device_present(dev))
7499 		return -ENODEV;
7500 	err = ops->ndo_set_mac_address(dev, sa);
7501 	if (err)
7502 		return err;
7503 	dev->addr_assign_type = NET_ADDR_SET;
7504 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7505 	add_device_randomness(dev->dev_addr, dev->addr_len);
7506 	return 0;
7507 }
7508 EXPORT_SYMBOL(dev_set_mac_address);
7509 
7510 /**
7511  *	dev_change_carrier - Change device carrier
7512  *	@dev: device
7513  *	@new_carrier: new value
7514  *
7515  *	Change device carrier
7516  */
7517 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7518 {
7519 	const struct net_device_ops *ops = dev->netdev_ops;
7520 
7521 	if (!ops->ndo_change_carrier)
7522 		return -EOPNOTSUPP;
7523 	if (!netif_device_present(dev))
7524 		return -ENODEV;
7525 	return ops->ndo_change_carrier(dev, new_carrier);
7526 }
7527 EXPORT_SYMBOL(dev_change_carrier);
7528 
7529 /**
7530  *	dev_get_phys_port_id - Get device physical port ID
7531  *	@dev: device
7532  *	@ppid: port ID
7533  *
7534  *	Get device physical port ID
7535  */
7536 int dev_get_phys_port_id(struct net_device *dev,
7537 			 struct netdev_phys_item_id *ppid)
7538 {
7539 	const struct net_device_ops *ops = dev->netdev_ops;
7540 
7541 	if (!ops->ndo_get_phys_port_id)
7542 		return -EOPNOTSUPP;
7543 	return ops->ndo_get_phys_port_id(dev, ppid);
7544 }
7545 EXPORT_SYMBOL(dev_get_phys_port_id);
7546 
7547 /**
7548  *	dev_get_phys_port_name - Get device physical port name
7549  *	@dev: device
7550  *	@name: port name
7551  *	@len: limit of bytes to copy to name
7552  *
7553  *	Get device physical port name
7554  */
7555 int dev_get_phys_port_name(struct net_device *dev,
7556 			   char *name, size_t len)
7557 {
7558 	const struct net_device_ops *ops = dev->netdev_ops;
7559 
7560 	if (!ops->ndo_get_phys_port_name)
7561 		return -EOPNOTSUPP;
7562 	return ops->ndo_get_phys_port_name(dev, name, len);
7563 }
7564 EXPORT_SYMBOL(dev_get_phys_port_name);
7565 
7566 /**
7567  *	dev_change_proto_down - update protocol port state information
7568  *	@dev: device
7569  *	@proto_down: new value
7570  *
7571  *	This info can be used by switch drivers to set the phys state of the
7572  *	port.
7573  */
7574 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7575 {
7576 	const struct net_device_ops *ops = dev->netdev_ops;
7577 
7578 	if (!ops->ndo_change_proto_down)
7579 		return -EOPNOTSUPP;
7580 	if (!netif_device_present(dev))
7581 		return -ENODEV;
7582 	return ops->ndo_change_proto_down(dev, proto_down);
7583 }
7584 EXPORT_SYMBOL(dev_change_proto_down);
7585 
7586 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7587 		     struct netdev_bpf *xdp)
7588 {
7589 	memset(xdp, 0, sizeof(*xdp));
7590 	xdp->command = XDP_QUERY_PROG;
7591 
7592 	/* Query must always succeed. */
7593 	WARN_ON(bpf_op(dev, xdp) < 0);
7594 }
7595 
7596 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7597 {
7598 	struct netdev_bpf xdp;
7599 
7600 	__dev_xdp_query(dev, bpf_op, &xdp);
7601 
7602 	return xdp.prog_attached;
7603 }
7604 
7605 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7606 			   struct netlink_ext_ack *extack, u32 flags,
7607 			   struct bpf_prog *prog)
7608 {
7609 	struct netdev_bpf xdp;
7610 
7611 	memset(&xdp, 0, sizeof(xdp));
7612 	if (flags & XDP_FLAGS_HW_MODE)
7613 		xdp.command = XDP_SETUP_PROG_HW;
7614 	else
7615 		xdp.command = XDP_SETUP_PROG;
7616 	xdp.extack = extack;
7617 	xdp.flags = flags;
7618 	xdp.prog = prog;
7619 
7620 	return bpf_op(dev, &xdp);
7621 }
7622 
7623 static void dev_xdp_uninstall(struct net_device *dev)
7624 {
7625 	struct netdev_bpf xdp;
7626 	bpf_op_t ndo_bpf;
7627 
7628 	/* Remove generic XDP */
7629 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7630 
7631 	/* Remove from the driver */
7632 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7633 	if (!ndo_bpf)
7634 		return;
7635 
7636 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7637 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7638 		return;
7639 
7640 	/* Program removal should always succeed */
7641 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7642 }
7643 
7644 /**
7645  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7646  *	@dev: device
7647  *	@extack: netlink extended ack
7648  *	@fd: new program fd or negative value to clear
7649  *	@flags: xdp-related flags
7650  *
7651  *	Set or clear a bpf program for a device
7652  */
7653 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7654 		      int fd, u32 flags)
7655 {
7656 	const struct net_device_ops *ops = dev->netdev_ops;
7657 	struct bpf_prog *prog = NULL;
7658 	bpf_op_t bpf_op, bpf_chk;
7659 	int err;
7660 
7661 	ASSERT_RTNL();
7662 
7663 	bpf_op = bpf_chk = ops->ndo_bpf;
7664 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7665 		return -EOPNOTSUPP;
7666 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7667 		bpf_op = generic_xdp_install;
7668 	if (bpf_op == bpf_chk)
7669 		bpf_chk = generic_xdp_install;
7670 
7671 	if (fd >= 0) {
7672 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7673 			return -EEXIST;
7674 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7675 		    __dev_xdp_attached(dev, bpf_op))
7676 			return -EBUSY;
7677 
7678 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7679 					     bpf_op == ops->ndo_bpf);
7680 		if (IS_ERR(prog))
7681 			return PTR_ERR(prog);
7682 
7683 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7684 		    bpf_prog_is_dev_bound(prog->aux)) {
7685 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7686 			bpf_prog_put(prog);
7687 			return -EINVAL;
7688 		}
7689 	}
7690 
7691 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7692 	if (err < 0 && prog)
7693 		bpf_prog_put(prog);
7694 
7695 	return err;
7696 }
7697 
7698 /**
7699  *	dev_new_index	-	allocate an ifindex
7700  *	@net: the applicable net namespace
7701  *
7702  *	Returns a suitable unique value for a new device interface
7703  *	number.  The caller must hold the rtnl semaphore or the
7704  *	dev_base_lock to be sure it remains unique.
7705  */
7706 static int dev_new_index(struct net *net)
7707 {
7708 	int ifindex = net->ifindex;
7709 
7710 	for (;;) {
7711 		if (++ifindex <= 0)
7712 			ifindex = 1;
7713 		if (!__dev_get_by_index(net, ifindex))
7714 			return net->ifindex = ifindex;
7715 	}
7716 }
7717 
7718 /* Delayed registration/unregisteration */
7719 static LIST_HEAD(net_todo_list);
7720 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7721 
7722 static void net_set_todo(struct net_device *dev)
7723 {
7724 	list_add_tail(&dev->todo_list, &net_todo_list);
7725 	dev_net(dev)->dev_unreg_count++;
7726 }
7727 
7728 static void rollback_registered_many(struct list_head *head)
7729 {
7730 	struct net_device *dev, *tmp;
7731 	LIST_HEAD(close_head);
7732 
7733 	BUG_ON(dev_boot_phase);
7734 	ASSERT_RTNL();
7735 
7736 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7737 		/* Some devices call without registering
7738 		 * for initialization unwind. Remove those
7739 		 * devices and proceed with the remaining.
7740 		 */
7741 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7742 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7743 				 dev->name, dev);
7744 
7745 			WARN_ON(1);
7746 			list_del(&dev->unreg_list);
7747 			continue;
7748 		}
7749 		dev->dismantle = true;
7750 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7751 	}
7752 
7753 	/* If device is running, close it first. */
7754 	list_for_each_entry(dev, head, unreg_list)
7755 		list_add_tail(&dev->close_list, &close_head);
7756 	dev_close_many(&close_head, true);
7757 
7758 	list_for_each_entry(dev, head, unreg_list) {
7759 		/* And unlink it from device chain. */
7760 		unlist_netdevice(dev);
7761 
7762 		dev->reg_state = NETREG_UNREGISTERING;
7763 	}
7764 	flush_all_backlogs();
7765 
7766 	synchronize_net();
7767 
7768 	list_for_each_entry(dev, head, unreg_list) {
7769 		struct sk_buff *skb = NULL;
7770 
7771 		/* Shutdown queueing discipline. */
7772 		dev_shutdown(dev);
7773 
7774 		dev_xdp_uninstall(dev);
7775 
7776 		/* Notify protocols, that we are about to destroy
7777 		 * this device. They should clean all the things.
7778 		 */
7779 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7780 
7781 		if (!dev->rtnl_link_ops ||
7782 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7783 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7784 						     GFP_KERNEL, NULL, 0);
7785 
7786 		/*
7787 		 *	Flush the unicast and multicast chains
7788 		 */
7789 		dev_uc_flush(dev);
7790 		dev_mc_flush(dev);
7791 
7792 		if (dev->netdev_ops->ndo_uninit)
7793 			dev->netdev_ops->ndo_uninit(dev);
7794 
7795 		if (skb)
7796 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7797 
7798 		/* Notifier chain MUST detach us all upper devices. */
7799 		WARN_ON(netdev_has_any_upper_dev(dev));
7800 		WARN_ON(netdev_has_any_lower_dev(dev));
7801 
7802 		/* Remove entries from kobject tree */
7803 		netdev_unregister_kobject(dev);
7804 #ifdef CONFIG_XPS
7805 		/* Remove XPS queueing entries */
7806 		netif_reset_xps_queues_gt(dev, 0);
7807 #endif
7808 	}
7809 
7810 	synchronize_net();
7811 
7812 	list_for_each_entry(dev, head, unreg_list)
7813 		dev_put(dev);
7814 }
7815 
7816 static void rollback_registered(struct net_device *dev)
7817 {
7818 	LIST_HEAD(single);
7819 
7820 	list_add(&dev->unreg_list, &single);
7821 	rollback_registered_many(&single);
7822 	list_del(&single);
7823 }
7824 
7825 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7826 	struct net_device *upper, netdev_features_t features)
7827 {
7828 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7829 	netdev_features_t feature;
7830 	int feature_bit;
7831 
7832 	for_each_netdev_feature(&upper_disables, feature_bit) {
7833 		feature = __NETIF_F_BIT(feature_bit);
7834 		if (!(upper->wanted_features & feature)
7835 		    && (features & feature)) {
7836 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7837 				   &feature, upper->name);
7838 			features &= ~feature;
7839 		}
7840 	}
7841 
7842 	return features;
7843 }
7844 
7845 static void netdev_sync_lower_features(struct net_device *upper,
7846 	struct net_device *lower, netdev_features_t features)
7847 {
7848 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7849 	netdev_features_t feature;
7850 	int feature_bit;
7851 
7852 	for_each_netdev_feature(&upper_disables, feature_bit) {
7853 		feature = __NETIF_F_BIT(feature_bit);
7854 		if (!(features & feature) && (lower->features & feature)) {
7855 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7856 				   &feature, lower->name);
7857 			lower->wanted_features &= ~feature;
7858 			netdev_update_features(lower);
7859 
7860 			if (unlikely(lower->features & feature))
7861 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7862 					    &feature, lower->name);
7863 		}
7864 	}
7865 }
7866 
7867 static netdev_features_t netdev_fix_features(struct net_device *dev,
7868 	netdev_features_t features)
7869 {
7870 	/* Fix illegal checksum combinations */
7871 	if ((features & NETIF_F_HW_CSUM) &&
7872 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7873 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7874 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7875 	}
7876 
7877 	/* TSO requires that SG is present as well. */
7878 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7879 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7880 		features &= ~NETIF_F_ALL_TSO;
7881 	}
7882 
7883 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7884 					!(features & NETIF_F_IP_CSUM)) {
7885 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7886 		features &= ~NETIF_F_TSO;
7887 		features &= ~NETIF_F_TSO_ECN;
7888 	}
7889 
7890 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7891 					 !(features & NETIF_F_IPV6_CSUM)) {
7892 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7893 		features &= ~NETIF_F_TSO6;
7894 	}
7895 
7896 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7897 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7898 		features &= ~NETIF_F_TSO_MANGLEID;
7899 
7900 	/* TSO ECN requires that TSO is present as well. */
7901 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7902 		features &= ~NETIF_F_TSO_ECN;
7903 
7904 	/* Software GSO depends on SG. */
7905 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7906 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7907 		features &= ~NETIF_F_GSO;
7908 	}
7909 
7910 	/* GSO partial features require GSO partial be set */
7911 	if ((features & dev->gso_partial_features) &&
7912 	    !(features & NETIF_F_GSO_PARTIAL)) {
7913 		netdev_dbg(dev,
7914 			   "Dropping partially supported GSO features since no GSO partial.\n");
7915 		features &= ~dev->gso_partial_features;
7916 	}
7917 
7918 	if (!(features & NETIF_F_RXCSUM)) {
7919 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7920 		 * successfully merged by hardware must also have the
7921 		 * checksum verified by hardware.  If the user does not
7922 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7923 		 */
7924 		if (features & NETIF_F_GRO_HW) {
7925 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7926 			features &= ~NETIF_F_GRO_HW;
7927 		}
7928 	}
7929 
7930 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
7931 	if (features & NETIF_F_RXFCS) {
7932 		if (features & NETIF_F_LRO) {
7933 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7934 			features &= ~NETIF_F_LRO;
7935 		}
7936 
7937 		if (features & NETIF_F_GRO_HW) {
7938 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7939 			features &= ~NETIF_F_GRO_HW;
7940 		}
7941 	}
7942 
7943 	return features;
7944 }
7945 
7946 int __netdev_update_features(struct net_device *dev)
7947 {
7948 	struct net_device *upper, *lower;
7949 	netdev_features_t features;
7950 	struct list_head *iter;
7951 	int err = -1;
7952 
7953 	ASSERT_RTNL();
7954 
7955 	features = netdev_get_wanted_features(dev);
7956 
7957 	if (dev->netdev_ops->ndo_fix_features)
7958 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7959 
7960 	/* driver might be less strict about feature dependencies */
7961 	features = netdev_fix_features(dev, features);
7962 
7963 	/* some features can't be enabled if they're off an an upper device */
7964 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7965 		features = netdev_sync_upper_features(dev, upper, features);
7966 
7967 	if (dev->features == features)
7968 		goto sync_lower;
7969 
7970 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7971 		&dev->features, &features);
7972 
7973 	if (dev->netdev_ops->ndo_set_features)
7974 		err = dev->netdev_ops->ndo_set_features(dev, features);
7975 	else
7976 		err = 0;
7977 
7978 	if (unlikely(err < 0)) {
7979 		netdev_err(dev,
7980 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7981 			err, &features, &dev->features);
7982 		/* return non-0 since some features might have changed and
7983 		 * it's better to fire a spurious notification than miss it
7984 		 */
7985 		return -1;
7986 	}
7987 
7988 sync_lower:
7989 	/* some features must be disabled on lower devices when disabled
7990 	 * on an upper device (think: bonding master or bridge)
7991 	 */
7992 	netdev_for_each_lower_dev(dev, lower, iter)
7993 		netdev_sync_lower_features(dev, lower, features);
7994 
7995 	if (!err) {
7996 		netdev_features_t diff = features ^ dev->features;
7997 
7998 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7999 			/* udp_tunnel_{get,drop}_rx_info both need
8000 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8001 			 * device, or they won't do anything.
8002 			 * Thus we need to update dev->features
8003 			 * *before* calling udp_tunnel_get_rx_info,
8004 			 * but *after* calling udp_tunnel_drop_rx_info.
8005 			 */
8006 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8007 				dev->features = features;
8008 				udp_tunnel_get_rx_info(dev);
8009 			} else {
8010 				udp_tunnel_drop_rx_info(dev);
8011 			}
8012 		}
8013 
8014 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8015 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8016 				dev->features = features;
8017 				err |= vlan_get_rx_ctag_filter_info(dev);
8018 			} else {
8019 				vlan_drop_rx_ctag_filter_info(dev);
8020 			}
8021 		}
8022 
8023 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8024 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8025 				dev->features = features;
8026 				err |= vlan_get_rx_stag_filter_info(dev);
8027 			} else {
8028 				vlan_drop_rx_stag_filter_info(dev);
8029 			}
8030 		}
8031 
8032 		dev->features = features;
8033 	}
8034 
8035 	return err < 0 ? 0 : 1;
8036 }
8037 
8038 /**
8039  *	netdev_update_features - recalculate device features
8040  *	@dev: the device to check
8041  *
8042  *	Recalculate dev->features set and send notifications if it
8043  *	has changed. Should be called after driver or hardware dependent
8044  *	conditions might have changed that influence the features.
8045  */
8046 void netdev_update_features(struct net_device *dev)
8047 {
8048 	if (__netdev_update_features(dev))
8049 		netdev_features_change(dev);
8050 }
8051 EXPORT_SYMBOL(netdev_update_features);
8052 
8053 /**
8054  *	netdev_change_features - recalculate device features
8055  *	@dev: the device to check
8056  *
8057  *	Recalculate dev->features set and send notifications even
8058  *	if they have not changed. Should be called instead of
8059  *	netdev_update_features() if also dev->vlan_features might
8060  *	have changed to allow the changes to be propagated to stacked
8061  *	VLAN devices.
8062  */
8063 void netdev_change_features(struct net_device *dev)
8064 {
8065 	__netdev_update_features(dev);
8066 	netdev_features_change(dev);
8067 }
8068 EXPORT_SYMBOL(netdev_change_features);
8069 
8070 /**
8071  *	netif_stacked_transfer_operstate -	transfer operstate
8072  *	@rootdev: the root or lower level device to transfer state from
8073  *	@dev: the device to transfer operstate to
8074  *
8075  *	Transfer operational state from root to device. This is normally
8076  *	called when a stacking relationship exists between the root
8077  *	device and the device(a leaf device).
8078  */
8079 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8080 					struct net_device *dev)
8081 {
8082 	if (rootdev->operstate == IF_OPER_DORMANT)
8083 		netif_dormant_on(dev);
8084 	else
8085 		netif_dormant_off(dev);
8086 
8087 	if (netif_carrier_ok(rootdev))
8088 		netif_carrier_on(dev);
8089 	else
8090 		netif_carrier_off(dev);
8091 }
8092 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8093 
8094 static int netif_alloc_rx_queues(struct net_device *dev)
8095 {
8096 	unsigned int i, count = dev->num_rx_queues;
8097 	struct netdev_rx_queue *rx;
8098 	size_t sz = count * sizeof(*rx);
8099 	int err = 0;
8100 
8101 	BUG_ON(count < 1);
8102 
8103 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8104 	if (!rx)
8105 		return -ENOMEM;
8106 
8107 	dev->_rx = rx;
8108 
8109 	for (i = 0; i < count; i++) {
8110 		rx[i].dev = dev;
8111 
8112 		/* XDP RX-queue setup */
8113 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8114 		if (err < 0)
8115 			goto err_rxq_info;
8116 	}
8117 	return 0;
8118 
8119 err_rxq_info:
8120 	/* Rollback successful reg's and free other resources */
8121 	while (i--)
8122 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8123 	kvfree(dev->_rx);
8124 	dev->_rx = NULL;
8125 	return err;
8126 }
8127 
8128 static void netif_free_rx_queues(struct net_device *dev)
8129 {
8130 	unsigned int i, count = dev->num_rx_queues;
8131 
8132 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8133 	if (!dev->_rx)
8134 		return;
8135 
8136 	for (i = 0; i < count; i++)
8137 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8138 
8139 	kvfree(dev->_rx);
8140 }
8141 
8142 static void netdev_init_one_queue(struct net_device *dev,
8143 				  struct netdev_queue *queue, void *_unused)
8144 {
8145 	/* Initialize queue lock */
8146 	spin_lock_init(&queue->_xmit_lock);
8147 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8148 	queue->xmit_lock_owner = -1;
8149 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8150 	queue->dev = dev;
8151 #ifdef CONFIG_BQL
8152 	dql_init(&queue->dql, HZ);
8153 #endif
8154 }
8155 
8156 static void netif_free_tx_queues(struct net_device *dev)
8157 {
8158 	kvfree(dev->_tx);
8159 }
8160 
8161 static int netif_alloc_netdev_queues(struct net_device *dev)
8162 {
8163 	unsigned int count = dev->num_tx_queues;
8164 	struct netdev_queue *tx;
8165 	size_t sz = count * sizeof(*tx);
8166 
8167 	if (count < 1 || count > 0xffff)
8168 		return -EINVAL;
8169 
8170 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8171 	if (!tx)
8172 		return -ENOMEM;
8173 
8174 	dev->_tx = tx;
8175 
8176 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8177 	spin_lock_init(&dev->tx_global_lock);
8178 
8179 	return 0;
8180 }
8181 
8182 void netif_tx_stop_all_queues(struct net_device *dev)
8183 {
8184 	unsigned int i;
8185 
8186 	for (i = 0; i < dev->num_tx_queues; i++) {
8187 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8188 
8189 		netif_tx_stop_queue(txq);
8190 	}
8191 }
8192 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8193 
8194 /**
8195  *	register_netdevice	- register a network device
8196  *	@dev: device to register
8197  *
8198  *	Take a completed network device structure and add it to the kernel
8199  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8200  *	chain. 0 is returned on success. A negative errno code is returned
8201  *	on a failure to set up the device, or if the name is a duplicate.
8202  *
8203  *	Callers must hold the rtnl semaphore. You may want
8204  *	register_netdev() instead of this.
8205  *
8206  *	BUGS:
8207  *	The locking appears insufficient to guarantee two parallel registers
8208  *	will not get the same name.
8209  */
8210 
8211 int register_netdevice(struct net_device *dev)
8212 {
8213 	int ret;
8214 	struct net *net = dev_net(dev);
8215 
8216 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8217 		     NETDEV_FEATURE_COUNT);
8218 	BUG_ON(dev_boot_phase);
8219 	ASSERT_RTNL();
8220 
8221 	might_sleep();
8222 
8223 	/* When net_device's are persistent, this will be fatal. */
8224 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8225 	BUG_ON(!net);
8226 
8227 	spin_lock_init(&dev->addr_list_lock);
8228 	netdev_set_addr_lockdep_class(dev);
8229 
8230 	ret = dev_get_valid_name(net, dev, dev->name);
8231 	if (ret < 0)
8232 		goto out;
8233 
8234 	/* Init, if this function is available */
8235 	if (dev->netdev_ops->ndo_init) {
8236 		ret = dev->netdev_ops->ndo_init(dev);
8237 		if (ret) {
8238 			if (ret > 0)
8239 				ret = -EIO;
8240 			goto out;
8241 		}
8242 	}
8243 
8244 	if (((dev->hw_features | dev->features) &
8245 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8246 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8247 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8248 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8249 		ret = -EINVAL;
8250 		goto err_uninit;
8251 	}
8252 
8253 	ret = -EBUSY;
8254 	if (!dev->ifindex)
8255 		dev->ifindex = dev_new_index(net);
8256 	else if (__dev_get_by_index(net, dev->ifindex))
8257 		goto err_uninit;
8258 
8259 	/* Transfer changeable features to wanted_features and enable
8260 	 * software offloads (GSO and GRO).
8261 	 */
8262 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8263 	dev->features |= NETIF_F_SOFT_FEATURES;
8264 
8265 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8266 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8267 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8268 	}
8269 
8270 	dev->wanted_features = dev->features & dev->hw_features;
8271 
8272 	if (!(dev->flags & IFF_LOOPBACK))
8273 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8274 
8275 	/* If IPv4 TCP segmentation offload is supported we should also
8276 	 * allow the device to enable segmenting the frame with the option
8277 	 * of ignoring a static IP ID value.  This doesn't enable the
8278 	 * feature itself but allows the user to enable it later.
8279 	 */
8280 	if (dev->hw_features & NETIF_F_TSO)
8281 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8282 	if (dev->vlan_features & NETIF_F_TSO)
8283 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8284 	if (dev->mpls_features & NETIF_F_TSO)
8285 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8286 	if (dev->hw_enc_features & NETIF_F_TSO)
8287 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8288 
8289 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8290 	 */
8291 	dev->vlan_features |= NETIF_F_HIGHDMA;
8292 
8293 	/* Make NETIF_F_SG inheritable to tunnel devices.
8294 	 */
8295 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8296 
8297 	/* Make NETIF_F_SG inheritable to MPLS.
8298 	 */
8299 	dev->mpls_features |= NETIF_F_SG;
8300 
8301 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8302 	ret = notifier_to_errno(ret);
8303 	if (ret)
8304 		goto err_uninit;
8305 
8306 	ret = netdev_register_kobject(dev);
8307 	if (ret)
8308 		goto err_uninit;
8309 	dev->reg_state = NETREG_REGISTERED;
8310 
8311 	__netdev_update_features(dev);
8312 
8313 	/*
8314 	 *	Default initial state at registry is that the
8315 	 *	device is present.
8316 	 */
8317 
8318 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8319 
8320 	linkwatch_init_dev(dev);
8321 
8322 	dev_init_scheduler(dev);
8323 	dev_hold(dev);
8324 	list_netdevice(dev);
8325 	add_device_randomness(dev->dev_addr, dev->addr_len);
8326 
8327 	/* If the device has permanent device address, driver should
8328 	 * set dev_addr and also addr_assign_type should be set to
8329 	 * NET_ADDR_PERM (default value).
8330 	 */
8331 	if (dev->addr_assign_type == NET_ADDR_PERM)
8332 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8333 
8334 	/* Notify protocols, that a new device appeared. */
8335 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8336 	ret = notifier_to_errno(ret);
8337 	if (ret) {
8338 		rollback_registered(dev);
8339 		dev->reg_state = NETREG_UNREGISTERED;
8340 	}
8341 	/*
8342 	 *	Prevent userspace races by waiting until the network
8343 	 *	device is fully setup before sending notifications.
8344 	 */
8345 	if (!dev->rtnl_link_ops ||
8346 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8347 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8348 
8349 out:
8350 	return ret;
8351 
8352 err_uninit:
8353 	if (dev->netdev_ops->ndo_uninit)
8354 		dev->netdev_ops->ndo_uninit(dev);
8355 	if (dev->priv_destructor)
8356 		dev->priv_destructor(dev);
8357 	goto out;
8358 }
8359 EXPORT_SYMBOL(register_netdevice);
8360 
8361 /**
8362  *	init_dummy_netdev	- init a dummy network device for NAPI
8363  *	@dev: device to init
8364  *
8365  *	This takes a network device structure and initialize the minimum
8366  *	amount of fields so it can be used to schedule NAPI polls without
8367  *	registering a full blown interface. This is to be used by drivers
8368  *	that need to tie several hardware interfaces to a single NAPI
8369  *	poll scheduler due to HW limitations.
8370  */
8371 int init_dummy_netdev(struct net_device *dev)
8372 {
8373 	/* Clear everything. Note we don't initialize spinlocks
8374 	 * are they aren't supposed to be taken by any of the
8375 	 * NAPI code and this dummy netdev is supposed to be
8376 	 * only ever used for NAPI polls
8377 	 */
8378 	memset(dev, 0, sizeof(struct net_device));
8379 
8380 	/* make sure we BUG if trying to hit standard
8381 	 * register/unregister code path
8382 	 */
8383 	dev->reg_state = NETREG_DUMMY;
8384 
8385 	/* NAPI wants this */
8386 	INIT_LIST_HEAD(&dev->napi_list);
8387 
8388 	/* a dummy interface is started by default */
8389 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8390 	set_bit(__LINK_STATE_START, &dev->state);
8391 
8392 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8393 	 * because users of this 'device' dont need to change
8394 	 * its refcount.
8395 	 */
8396 
8397 	return 0;
8398 }
8399 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8400 
8401 
8402 /**
8403  *	register_netdev	- register a network device
8404  *	@dev: device to register
8405  *
8406  *	Take a completed network device structure and add it to the kernel
8407  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8408  *	chain. 0 is returned on success. A negative errno code is returned
8409  *	on a failure to set up the device, or if the name is a duplicate.
8410  *
8411  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8412  *	and expands the device name if you passed a format string to
8413  *	alloc_netdev.
8414  */
8415 int register_netdev(struct net_device *dev)
8416 {
8417 	int err;
8418 
8419 	if (rtnl_lock_killable())
8420 		return -EINTR;
8421 	err = register_netdevice(dev);
8422 	rtnl_unlock();
8423 	return err;
8424 }
8425 EXPORT_SYMBOL(register_netdev);
8426 
8427 int netdev_refcnt_read(const struct net_device *dev)
8428 {
8429 	int i, refcnt = 0;
8430 
8431 	for_each_possible_cpu(i)
8432 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8433 	return refcnt;
8434 }
8435 EXPORT_SYMBOL(netdev_refcnt_read);
8436 
8437 /**
8438  * netdev_wait_allrefs - wait until all references are gone.
8439  * @dev: target net_device
8440  *
8441  * This is called when unregistering network devices.
8442  *
8443  * Any protocol or device that holds a reference should register
8444  * for netdevice notification, and cleanup and put back the
8445  * reference if they receive an UNREGISTER event.
8446  * We can get stuck here if buggy protocols don't correctly
8447  * call dev_put.
8448  */
8449 static void netdev_wait_allrefs(struct net_device *dev)
8450 {
8451 	unsigned long rebroadcast_time, warning_time;
8452 	int refcnt;
8453 
8454 	linkwatch_forget_dev(dev);
8455 
8456 	rebroadcast_time = warning_time = jiffies;
8457 	refcnt = netdev_refcnt_read(dev);
8458 
8459 	while (refcnt != 0) {
8460 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8461 			rtnl_lock();
8462 
8463 			/* Rebroadcast unregister notification */
8464 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8465 
8466 			__rtnl_unlock();
8467 			rcu_barrier();
8468 			rtnl_lock();
8469 
8470 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8471 				     &dev->state)) {
8472 				/* We must not have linkwatch events
8473 				 * pending on unregister. If this
8474 				 * happens, we simply run the queue
8475 				 * unscheduled, resulting in a noop
8476 				 * for this device.
8477 				 */
8478 				linkwatch_run_queue();
8479 			}
8480 
8481 			__rtnl_unlock();
8482 
8483 			rebroadcast_time = jiffies;
8484 		}
8485 
8486 		msleep(250);
8487 
8488 		refcnt = netdev_refcnt_read(dev);
8489 
8490 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8491 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8492 				 dev->name, refcnt);
8493 			warning_time = jiffies;
8494 		}
8495 	}
8496 }
8497 
8498 /* The sequence is:
8499  *
8500  *	rtnl_lock();
8501  *	...
8502  *	register_netdevice(x1);
8503  *	register_netdevice(x2);
8504  *	...
8505  *	unregister_netdevice(y1);
8506  *	unregister_netdevice(y2);
8507  *      ...
8508  *	rtnl_unlock();
8509  *	free_netdev(y1);
8510  *	free_netdev(y2);
8511  *
8512  * We are invoked by rtnl_unlock().
8513  * This allows us to deal with problems:
8514  * 1) We can delete sysfs objects which invoke hotplug
8515  *    without deadlocking with linkwatch via keventd.
8516  * 2) Since we run with the RTNL semaphore not held, we can sleep
8517  *    safely in order to wait for the netdev refcnt to drop to zero.
8518  *
8519  * We must not return until all unregister events added during
8520  * the interval the lock was held have been completed.
8521  */
8522 void netdev_run_todo(void)
8523 {
8524 	struct list_head list;
8525 
8526 	/* Snapshot list, allow later requests */
8527 	list_replace_init(&net_todo_list, &list);
8528 
8529 	__rtnl_unlock();
8530 
8531 
8532 	/* Wait for rcu callbacks to finish before next phase */
8533 	if (!list_empty(&list))
8534 		rcu_barrier();
8535 
8536 	while (!list_empty(&list)) {
8537 		struct net_device *dev
8538 			= list_first_entry(&list, struct net_device, todo_list);
8539 		list_del(&dev->todo_list);
8540 
8541 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8542 			pr_err("network todo '%s' but state %d\n",
8543 			       dev->name, dev->reg_state);
8544 			dump_stack();
8545 			continue;
8546 		}
8547 
8548 		dev->reg_state = NETREG_UNREGISTERED;
8549 
8550 		netdev_wait_allrefs(dev);
8551 
8552 		/* paranoia */
8553 		BUG_ON(netdev_refcnt_read(dev));
8554 		BUG_ON(!list_empty(&dev->ptype_all));
8555 		BUG_ON(!list_empty(&dev->ptype_specific));
8556 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8557 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8558 #if IS_ENABLED(CONFIG_DECNET)
8559 		WARN_ON(dev->dn_ptr);
8560 #endif
8561 		if (dev->priv_destructor)
8562 			dev->priv_destructor(dev);
8563 		if (dev->needs_free_netdev)
8564 			free_netdev(dev);
8565 
8566 		/* Report a network device has been unregistered */
8567 		rtnl_lock();
8568 		dev_net(dev)->dev_unreg_count--;
8569 		__rtnl_unlock();
8570 		wake_up(&netdev_unregistering_wq);
8571 
8572 		/* Free network device */
8573 		kobject_put(&dev->dev.kobj);
8574 	}
8575 }
8576 
8577 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8578  * all the same fields in the same order as net_device_stats, with only
8579  * the type differing, but rtnl_link_stats64 may have additional fields
8580  * at the end for newer counters.
8581  */
8582 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8583 			     const struct net_device_stats *netdev_stats)
8584 {
8585 #if BITS_PER_LONG == 64
8586 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8587 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8588 	/* zero out counters that only exist in rtnl_link_stats64 */
8589 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8590 	       sizeof(*stats64) - sizeof(*netdev_stats));
8591 #else
8592 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8593 	const unsigned long *src = (const unsigned long *)netdev_stats;
8594 	u64 *dst = (u64 *)stats64;
8595 
8596 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8597 	for (i = 0; i < n; i++)
8598 		dst[i] = src[i];
8599 	/* zero out counters that only exist in rtnl_link_stats64 */
8600 	memset((char *)stats64 + n * sizeof(u64), 0,
8601 	       sizeof(*stats64) - n * sizeof(u64));
8602 #endif
8603 }
8604 EXPORT_SYMBOL(netdev_stats_to_stats64);
8605 
8606 /**
8607  *	dev_get_stats	- get network device statistics
8608  *	@dev: device to get statistics from
8609  *	@storage: place to store stats
8610  *
8611  *	Get network statistics from device. Return @storage.
8612  *	The device driver may provide its own method by setting
8613  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8614  *	otherwise the internal statistics structure is used.
8615  */
8616 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8617 					struct rtnl_link_stats64 *storage)
8618 {
8619 	const struct net_device_ops *ops = dev->netdev_ops;
8620 
8621 	if (ops->ndo_get_stats64) {
8622 		memset(storage, 0, sizeof(*storage));
8623 		ops->ndo_get_stats64(dev, storage);
8624 	} else if (ops->ndo_get_stats) {
8625 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8626 	} else {
8627 		netdev_stats_to_stats64(storage, &dev->stats);
8628 	}
8629 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8630 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8631 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8632 	return storage;
8633 }
8634 EXPORT_SYMBOL(dev_get_stats);
8635 
8636 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8637 {
8638 	struct netdev_queue *queue = dev_ingress_queue(dev);
8639 
8640 #ifdef CONFIG_NET_CLS_ACT
8641 	if (queue)
8642 		return queue;
8643 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8644 	if (!queue)
8645 		return NULL;
8646 	netdev_init_one_queue(dev, queue, NULL);
8647 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8648 	queue->qdisc_sleeping = &noop_qdisc;
8649 	rcu_assign_pointer(dev->ingress_queue, queue);
8650 #endif
8651 	return queue;
8652 }
8653 
8654 static const struct ethtool_ops default_ethtool_ops;
8655 
8656 void netdev_set_default_ethtool_ops(struct net_device *dev,
8657 				    const struct ethtool_ops *ops)
8658 {
8659 	if (dev->ethtool_ops == &default_ethtool_ops)
8660 		dev->ethtool_ops = ops;
8661 }
8662 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8663 
8664 void netdev_freemem(struct net_device *dev)
8665 {
8666 	char *addr = (char *)dev - dev->padded;
8667 
8668 	kvfree(addr);
8669 }
8670 
8671 /**
8672  * alloc_netdev_mqs - allocate network device
8673  * @sizeof_priv: size of private data to allocate space for
8674  * @name: device name format string
8675  * @name_assign_type: origin of device name
8676  * @setup: callback to initialize device
8677  * @txqs: the number of TX subqueues to allocate
8678  * @rxqs: the number of RX subqueues to allocate
8679  *
8680  * Allocates a struct net_device with private data area for driver use
8681  * and performs basic initialization.  Also allocates subqueue structs
8682  * for each queue on the device.
8683  */
8684 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8685 		unsigned char name_assign_type,
8686 		void (*setup)(struct net_device *),
8687 		unsigned int txqs, unsigned int rxqs)
8688 {
8689 	struct net_device *dev;
8690 	unsigned int alloc_size;
8691 	struct net_device *p;
8692 
8693 	BUG_ON(strlen(name) >= sizeof(dev->name));
8694 
8695 	if (txqs < 1) {
8696 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8697 		return NULL;
8698 	}
8699 
8700 	if (rxqs < 1) {
8701 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8702 		return NULL;
8703 	}
8704 
8705 	alloc_size = sizeof(struct net_device);
8706 	if (sizeof_priv) {
8707 		/* ensure 32-byte alignment of private area */
8708 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8709 		alloc_size += sizeof_priv;
8710 	}
8711 	/* ensure 32-byte alignment of whole construct */
8712 	alloc_size += NETDEV_ALIGN - 1;
8713 
8714 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8715 	if (!p)
8716 		return NULL;
8717 
8718 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8719 	dev->padded = (char *)dev - (char *)p;
8720 
8721 	dev->pcpu_refcnt = alloc_percpu(int);
8722 	if (!dev->pcpu_refcnt)
8723 		goto free_dev;
8724 
8725 	if (dev_addr_init(dev))
8726 		goto free_pcpu;
8727 
8728 	dev_mc_init(dev);
8729 	dev_uc_init(dev);
8730 
8731 	dev_net_set(dev, &init_net);
8732 
8733 	dev->gso_max_size = GSO_MAX_SIZE;
8734 	dev->gso_max_segs = GSO_MAX_SEGS;
8735 
8736 	INIT_LIST_HEAD(&dev->napi_list);
8737 	INIT_LIST_HEAD(&dev->unreg_list);
8738 	INIT_LIST_HEAD(&dev->close_list);
8739 	INIT_LIST_HEAD(&dev->link_watch_list);
8740 	INIT_LIST_HEAD(&dev->adj_list.upper);
8741 	INIT_LIST_HEAD(&dev->adj_list.lower);
8742 	INIT_LIST_HEAD(&dev->ptype_all);
8743 	INIT_LIST_HEAD(&dev->ptype_specific);
8744 #ifdef CONFIG_NET_SCHED
8745 	hash_init(dev->qdisc_hash);
8746 #endif
8747 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8748 	setup(dev);
8749 
8750 	if (!dev->tx_queue_len) {
8751 		dev->priv_flags |= IFF_NO_QUEUE;
8752 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8753 	}
8754 
8755 	dev->num_tx_queues = txqs;
8756 	dev->real_num_tx_queues = txqs;
8757 	if (netif_alloc_netdev_queues(dev))
8758 		goto free_all;
8759 
8760 	dev->num_rx_queues = rxqs;
8761 	dev->real_num_rx_queues = rxqs;
8762 	if (netif_alloc_rx_queues(dev))
8763 		goto free_all;
8764 
8765 	strcpy(dev->name, name);
8766 	dev->name_assign_type = name_assign_type;
8767 	dev->group = INIT_NETDEV_GROUP;
8768 	if (!dev->ethtool_ops)
8769 		dev->ethtool_ops = &default_ethtool_ops;
8770 
8771 	nf_hook_ingress_init(dev);
8772 
8773 	return dev;
8774 
8775 free_all:
8776 	free_netdev(dev);
8777 	return NULL;
8778 
8779 free_pcpu:
8780 	free_percpu(dev->pcpu_refcnt);
8781 free_dev:
8782 	netdev_freemem(dev);
8783 	return NULL;
8784 }
8785 EXPORT_SYMBOL(alloc_netdev_mqs);
8786 
8787 /**
8788  * free_netdev - free network device
8789  * @dev: device
8790  *
8791  * This function does the last stage of destroying an allocated device
8792  * interface. The reference to the device object is released. If this
8793  * is the last reference then it will be freed.Must be called in process
8794  * context.
8795  */
8796 void free_netdev(struct net_device *dev)
8797 {
8798 	struct napi_struct *p, *n;
8799 
8800 	might_sleep();
8801 	netif_free_tx_queues(dev);
8802 	netif_free_rx_queues(dev);
8803 
8804 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8805 
8806 	/* Flush device addresses */
8807 	dev_addr_flush(dev);
8808 
8809 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8810 		netif_napi_del(p);
8811 
8812 	free_percpu(dev->pcpu_refcnt);
8813 	dev->pcpu_refcnt = NULL;
8814 
8815 	/*  Compatibility with error handling in drivers */
8816 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8817 		netdev_freemem(dev);
8818 		return;
8819 	}
8820 
8821 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8822 	dev->reg_state = NETREG_RELEASED;
8823 
8824 	/* will free via device release */
8825 	put_device(&dev->dev);
8826 }
8827 EXPORT_SYMBOL(free_netdev);
8828 
8829 /**
8830  *	synchronize_net -  Synchronize with packet receive processing
8831  *
8832  *	Wait for packets currently being received to be done.
8833  *	Does not block later packets from starting.
8834  */
8835 void synchronize_net(void)
8836 {
8837 	might_sleep();
8838 	if (rtnl_is_locked())
8839 		synchronize_rcu_expedited();
8840 	else
8841 		synchronize_rcu();
8842 }
8843 EXPORT_SYMBOL(synchronize_net);
8844 
8845 /**
8846  *	unregister_netdevice_queue - remove device from the kernel
8847  *	@dev: device
8848  *	@head: list
8849  *
8850  *	This function shuts down a device interface and removes it
8851  *	from the kernel tables.
8852  *	If head not NULL, device is queued to be unregistered later.
8853  *
8854  *	Callers must hold the rtnl semaphore.  You may want
8855  *	unregister_netdev() instead of this.
8856  */
8857 
8858 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8859 {
8860 	ASSERT_RTNL();
8861 
8862 	if (head) {
8863 		list_move_tail(&dev->unreg_list, head);
8864 	} else {
8865 		rollback_registered(dev);
8866 		/* Finish processing unregister after unlock */
8867 		net_set_todo(dev);
8868 	}
8869 }
8870 EXPORT_SYMBOL(unregister_netdevice_queue);
8871 
8872 /**
8873  *	unregister_netdevice_many - unregister many devices
8874  *	@head: list of devices
8875  *
8876  *  Note: As most callers use a stack allocated list_head,
8877  *  we force a list_del() to make sure stack wont be corrupted later.
8878  */
8879 void unregister_netdevice_many(struct list_head *head)
8880 {
8881 	struct net_device *dev;
8882 
8883 	if (!list_empty(head)) {
8884 		rollback_registered_many(head);
8885 		list_for_each_entry(dev, head, unreg_list)
8886 			net_set_todo(dev);
8887 		list_del(head);
8888 	}
8889 }
8890 EXPORT_SYMBOL(unregister_netdevice_many);
8891 
8892 /**
8893  *	unregister_netdev - remove device from the kernel
8894  *	@dev: device
8895  *
8896  *	This function shuts down a device interface and removes it
8897  *	from the kernel tables.
8898  *
8899  *	This is just a wrapper for unregister_netdevice that takes
8900  *	the rtnl semaphore.  In general you want to use this and not
8901  *	unregister_netdevice.
8902  */
8903 void unregister_netdev(struct net_device *dev)
8904 {
8905 	rtnl_lock();
8906 	unregister_netdevice(dev);
8907 	rtnl_unlock();
8908 }
8909 EXPORT_SYMBOL(unregister_netdev);
8910 
8911 /**
8912  *	dev_change_net_namespace - move device to different nethost namespace
8913  *	@dev: device
8914  *	@net: network namespace
8915  *	@pat: If not NULL name pattern to try if the current device name
8916  *	      is already taken in the destination network namespace.
8917  *
8918  *	This function shuts down a device interface and moves it
8919  *	to a new network namespace. On success 0 is returned, on
8920  *	a failure a netagive errno code is returned.
8921  *
8922  *	Callers must hold the rtnl semaphore.
8923  */
8924 
8925 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8926 {
8927 	int err, new_nsid, new_ifindex;
8928 
8929 	ASSERT_RTNL();
8930 
8931 	/* Don't allow namespace local devices to be moved. */
8932 	err = -EINVAL;
8933 	if (dev->features & NETIF_F_NETNS_LOCAL)
8934 		goto out;
8935 
8936 	/* Ensure the device has been registrered */
8937 	if (dev->reg_state != NETREG_REGISTERED)
8938 		goto out;
8939 
8940 	/* Get out if there is nothing todo */
8941 	err = 0;
8942 	if (net_eq(dev_net(dev), net))
8943 		goto out;
8944 
8945 	/* Pick the destination device name, and ensure
8946 	 * we can use it in the destination network namespace.
8947 	 */
8948 	err = -EEXIST;
8949 	if (__dev_get_by_name(net, dev->name)) {
8950 		/* We get here if we can't use the current device name */
8951 		if (!pat)
8952 			goto out;
8953 		err = dev_get_valid_name(net, dev, pat);
8954 		if (err < 0)
8955 			goto out;
8956 	}
8957 
8958 	/*
8959 	 * And now a mini version of register_netdevice unregister_netdevice.
8960 	 */
8961 
8962 	/* If device is running close it first. */
8963 	dev_close(dev);
8964 
8965 	/* And unlink it from device chain */
8966 	unlist_netdevice(dev);
8967 
8968 	synchronize_net();
8969 
8970 	/* Shutdown queueing discipline. */
8971 	dev_shutdown(dev);
8972 
8973 	/* Notify protocols, that we are about to destroy
8974 	 * this device. They should clean all the things.
8975 	 *
8976 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8977 	 * This is wanted because this way 8021q and macvlan know
8978 	 * the device is just moving and can keep their slaves up.
8979 	 */
8980 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8981 	rcu_barrier();
8982 
8983 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8984 	/* If there is an ifindex conflict assign a new one */
8985 	if (__dev_get_by_index(net, dev->ifindex))
8986 		new_ifindex = dev_new_index(net);
8987 	else
8988 		new_ifindex = dev->ifindex;
8989 
8990 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8991 			    new_ifindex);
8992 
8993 	/*
8994 	 *	Flush the unicast and multicast chains
8995 	 */
8996 	dev_uc_flush(dev);
8997 	dev_mc_flush(dev);
8998 
8999 	/* Send a netdev-removed uevent to the old namespace */
9000 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9001 	netdev_adjacent_del_links(dev);
9002 
9003 	/* Actually switch the network namespace */
9004 	dev_net_set(dev, net);
9005 	dev->ifindex = new_ifindex;
9006 
9007 	/* Send a netdev-add uevent to the new namespace */
9008 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9009 	netdev_adjacent_add_links(dev);
9010 
9011 	/* Fixup kobjects */
9012 	err = device_rename(&dev->dev, dev->name);
9013 	WARN_ON(err);
9014 
9015 	/* Add the device back in the hashes */
9016 	list_netdevice(dev);
9017 
9018 	/* Notify protocols, that a new device appeared. */
9019 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9020 
9021 	/*
9022 	 *	Prevent userspace races by waiting until the network
9023 	 *	device is fully setup before sending notifications.
9024 	 */
9025 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9026 
9027 	synchronize_net();
9028 	err = 0;
9029 out:
9030 	return err;
9031 }
9032 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9033 
9034 static int dev_cpu_dead(unsigned int oldcpu)
9035 {
9036 	struct sk_buff **list_skb;
9037 	struct sk_buff *skb;
9038 	unsigned int cpu;
9039 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9040 
9041 	local_irq_disable();
9042 	cpu = smp_processor_id();
9043 	sd = &per_cpu(softnet_data, cpu);
9044 	oldsd = &per_cpu(softnet_data, oldcpu);
9045 
9046 	/* Find end of our completion_queue. */
9047 	list_skb = &sd->completion_queue;
9048 	while (*list_skb)
9049 		list_skb = &(*list_skb)->next;
9050 	/* Append completion queue from offline CPU. */
9051 	*list_skb = oldsd->completion_queue;
9052 	oldsd->completion_queue = NULL;
9053 
9054 	/* Append output queue from offline CPU. */
9055 	if (oldsd->output_queue) {
9056 		*sd->output_queue_tailp = oldsd->output_queue;
9057 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9058 		oldsd->output_queue = NULL;
9059 		oldsd->output_queue_tailp = &oldsd->output_queue;
9060 	}
9061 	/* Append NAPI poll list from offline CPU, with one exception :
9062 	 * process_backlog() must be called by cpu owning percpu backlog.
9063 	 * We properly handle process_queue & input_pkt_queue later.
9064 	 */
9065 	while (!list_empty(&oldsd->poll_list)) {
9066 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9067 							    struct napi_struct,
9068 							    poll_list);
9069 
9070 		list_del_init(&napi->poll_list);
9071 		if (napi->poll == process_backlog)
9072 			napi->state = 0;
9073 		else
9074 			____napi_schedule(sd, napi);
9075 	}
9076 
9077 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9078 	local_irq_enable();
9079 
9080 #ifdef CONFIG_RPS
9081 	remsd = oldsd->rps_ipi_list;
9082 	oldsd->rps_ipi_list = NULL;
9083 #endif
9084 	/* send out pending IPI's on offline CPU */
9085 	net_rps_send_ipi(remsd);
9086 
9087 	/* Process offline CPU's input_pkt_queue */
9088 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9089 		netif_rx_ni(skb);
9090 		input_queue_head_incr(oldsd);
9091 	}
9092 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9093 		netif_rx_ni(skb);
9094 		input_queue_head_incr(oldsd);
9095 	}
9096 
9097 	return 0;
9098 }
9099 
9100 /**
9101  *	netdev_increment_features - increment feature set by one
9102  *	@all: current feature set
9103  *	@one: new feature set
9104  *	@mask: mask feature set
9105  *
9106  *	Computes a new feature set after adding a device with feature set
9107  *	@one to the master device with current feature set @all.  Will not
9108  *	enable anything that is off in @mask. Returns the new feature set.
9109  */
9110 netdev_features_t netdev_increment_features(netdev_features_t all,
9111 	netdev_features_t one, netdev_features_t mask)
9112 {
9113 	if (mask & NETIF_F_HW_CSUM)
9114 		mask |= NETIF_F_CSUM_MASK;
9115 	mask |= NETIF_F_VLAN_CHALLENGED;
9116 
9117 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9118 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9119 
9120 	/* If one device supports hw checksumming, set for all. */
9121 	if (all & NETIF_F_HW_CSUM)
9122 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9123 
9124 	return all;
9125 }
9126 EXPORT_SYMBOL(netdev_increment_features);
9127 
9128 static struct hlist_head * __net_init netdev_create_hash(void)
9129 {
9130 	int i;
9131 	struct hlist_head *hash;
9132 
9133 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9134 	if (hash != NULL)
9135 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9136 			INIT_HLIST_HEAD(&hash[i]);
9137 
9138 	return hash;
9139 }
9140 
9141 /* Initialize per network namespace state */
9142 static int __net_init netdev_init(struct net *net)
9143 {
9144 	if (net != &init_net)
9145 		INIT_LIST_HEAD(&net->dev_base_head);
9146 
9147 	net->dev_name_head = netdev_create_hash();
9148 	if (net->dev_name_head == NULL)
9149 		goto err_name;
9150 
9151 	net->dev_index_head = netdev_create_hash();
9152 	if (net->dev_index_head == NULL)
9153 		goto err_idx;
9154 
9155 	return 0;
9156 
9157 err_idx:
9158 	kfree(net->dev_name_head);
9159 err_name:
9160 	return -ENOMEM;
9161 }
9162 
9163 /**
9164  *	netdev_drivername - network driver for the device
9165  *	@dev: network device
9166  *
9167  *	Determine network driver for device.
9168  */
9169 const char *netdev_drivername(const struct net_device *dev)
9170 {
9171 	const struct device_driver *driver;
9172 	const struct device *parent;
9173 	const char *empty = "";
9174 
9175 	parent = dev->dev.parent;
9176 	if (!parent)
9177 		return empty;
9178 
9179 	driver = parent->driver;
9180 	if (driver && driver->name)
9181 		return driver->name;
9182 	return empty;
9183 }
9184 
9185 static void __netdev_printk(const char *level, const struct net_device *dev,
9186 			    struct va_format *vaf)
9187 {
9188 	if (dev && dev->dev.parent) {
9189 		dev_printk_emit(level[1] - '0',
9190 				dev->dev.parent,
9191 				"%s %s %s%s: %pV",
9192 				dev_driver_string(dev->dev.parent),
9193 				dev_name(dev->dev.parent),
9194 				netdev_name(dev), netdev_reg_state(dev),
9195 				vaf);
9196 	} else if (dev) {
9197 		printk("%s%s%s: %pV",
9198 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9199 	} else {
9200 		printk("%s(NULL net_device): %pV", level, vaf);
9201 	}
9202 }
9203 
9204 void netdev_printk(const char *level, const struct net_device *dev,
9205 		   const char *format, ...)
9206 {
9207 	struct va_format vaf;
9208 	va_list args;
9209 
9210 	va_start(args, format);
9211 
9212 	vaf.fmt = format;
9213 	vaf.va = &args;
9214 
9215 	__netdev_printk(level, dev, &vaf);
9216 
9217 	va_end(args);
9218 }
9219 EXPORT_SYMBOL(netdev_printk);
9220 
9221 #define define_netdev_printk_level(func, level)			\
9222 void func(const struct net_device *dev, const char *fmt, ...)	\
9223 {								\
9224 	struct va_format vaf;					\
9225 	va_list args;						\
9226 								\
9227 	va_start(args, fmt);					\
9228 								\
9229 	vaf.fmt = fmt;						\
9230 	vaf.va = &args;						\
9231 								\
9232 	__netdev_printk(level, dev, &vaf);			\
9233 								\
9234 	va_end(args);						\
9235 }								\
9236 EXPORT_SYMBOL(func);
9237 
9238 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9239 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9240 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9241 define_netdev_printk_level(netdev_err, KERN_ERR);
9242 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9243 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9244 define_netdev_printk_level(netdev_info, KERN_INFO);
9245 
9246 static void __net_exit netdev_exit(struct net *net)
9247 {
9248 	kfree(net->dev_name_head);
9249 	kfree(net->dev_index_head);
9250 	if (net != &init_net)
9251 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9252 }
9253 
9254 static struct pernet_operations __net_initdata netdev_net_ops = {
9255 	.init = netdev_init,
9256 	.exit = netdev_exit,
9257 };
9258 
9259 static void __net_exit default_device_exit(struct net *net)
9260 {
9261 	struct net_device *dev, *aux;
9262 	/*
9263 	 * Push all migratable network devices back to the
9264 	 * initial network namespace
9265 	 */
9266 	rtnl_lock();
9267 	for_each_netdev_safe(net, dev, aux) {
9268 		int err;
9269 		char fb_name[IFNAMSIZ];
9270 
9271 		/* Ignore unmoveable devices (i.e. loopback) */
9272 		if (dev->features & NETIF_F_NETNS_LOCAL)
9273 			continue;
9274 
9275 		/* Leave virtual devices for the generic cleanup */
9276 		if (dev->rtnl_link_ops)
9277 			continue;
9278 
9279 		/* Push remaining network devices to init_net */
9280 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9281 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9282 		if (err) {
9283 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9284 				 __func__, dev->name, err);
9285 			BUG();
9286 		}
9287 	}
9288 	rtnl_unlock();
9289 }
9290 
9291 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9292 {
9293 	/* Return with the rtnl_lock held when there are no network
9294 	 * devices unregistering in any network namespace in net_list.
9295 	 */
9296 	struct net *net;
9297 	bool unregistering;
9298 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9299 
9300 	add_wait_queue(&netdev_unregistering_wq, &wait);
9301 	for (;;) {
9302 		unregistering = false;
9303 		rtnl_lock();
9304 		list_for_each_entry(net, net_list, exit_list) {
9305 			if (net->dev_unreg_count > 0) {
9306 				unregistering = true;
9307 				break;
9308 			}
9309 		}
9310 		if (!unregistering)
9311 			break;
9312 		__rtnl_unlock();
9313 
9314 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9315 	}
9316 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9317 }
9318 
9319 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9320 {
9321 	/* At exit all network devices most be removed from a network
9322 	 * namespace.  Do this in the reverse order of registration.
9323 	 * Do this across as many network namespaces as possible to
9324 	 * improve batching efficiency.
9325 	 */
9326 	struct net_device *dev;
9327 	struct net *net;
9328 	LIST_HEAD(dev_kill_list);
9329 
9330 	/* To prevent network device cleanup code from dereferencing
9331 	 * loopback devices or network devices that have been freed
9332 	 * wait here for all pending unregistrations to complete,
9333 	 * before unregistring the loopback device and allowing the
9334 	 * network namespace be freed.
9335 	 *
9336 	 * The netdev todo list containing all network devices
9337 	 * unregistrations that happen in default_device_exit_batch
9338 	 * will run in the rtnl_unlock() at the end of
9339 	 * default_device_exit_batch.
9340 	 */
9341 	rtnl_lock_unregistering(net_list);
9342 	list_for_each_entry(net, net_list, exit_list) {
9343 		for_each_netdev_reverse(net, dev) {
9344 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9345 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9346 			else
9347 				unregister_netdevice_queue(dev, &dev_kill_list);
9348 		}
9349 	}
9350 	unregister_netdevice_many(&dev_kill_list);
9351 	rtnl_unlock();
9352 }
9353 
9354 static struct pernet_operations __net_initdata default_device_ops = {
9355 	.exit = default_device_exit,
9356 	.exit_batch = default_device_exit_batch,
9357 };
9358 
9359 /*
9360  *	Initialize the DEV module. At boot time this walks the device list and
9361  *	unhooks any devices that fail to initialise (normally hardware not
9362  *	present) and leaves us with a valid list of present and active devices.
9363  *
9364  */
9365 
9366 /*
9367  *       This is called single threaded during boot, so no need
9368  *       to take the rtnl semaphore.
9369  */
9370 static int __init net_dev_init(void)
9371 {
9372 	int i, rc = -ENOMEM;
9373 
9374 	BUG_ON(!dev_boot_phase);
9375 
9376 	if (dev_proc_init())
9377 		goto out;
9378 
9379 	if (netdev_kobject_init())
9380 		goto out;
9381 
9382 	INIT_LIST_HEAD(&ptype_all);
9383 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9384 		INIT_LIST_HEAD(&ptype_base[i]);
9385 
9386 	INIT_LIST_HEAD(&offload_base);
9387 
9388 	if (register_pernet_subsys(&netdev_net_ops))
9389 		goto out;
9390 
9391 	/*
9392 	 *	Initialise the packet receive queues.
9393 	 */
9394 
9395 	for_each_possible_cpu(i) {
9396 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9397 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9398 
9399 		INIT_WORK(flush, flush_backlog);
9400 
9401 		skb_queue_head_init(&sd->input_pkt_queue);
9402 		skb_queue_head_init(&sd->process_queue);
9403 #ifdef CONFIG_XFRM_OFFLOAD
9404 		skb_queue_head_init(&sd->xfrm_backlog);
9405 #endif
9406 		INIT_LIST_HEAD(&sd->poll_list);
9407 		sd->output_queue_tailp = &sd->output_queue;
9408 #ifdef CONFIG_RPS
9409 		sd->csd.func = rps_trigger_softirq;
9410 		sd->csd.info = sd;
9411 		sd->cpu = i;
9412 #endif
9413 
9414 		sd->backlog.poll = process_backlog;
9415 		sd->backlog.weight = weight_p;
9416 	}
9417 
9418 	dev_boot_phase = 0;
9419 
9420 	/* The loopback device is special if any other network devices
9421 	 * is present in a network namespace the loopback device must
9422 	 * be present. Since we now dynamically allocate and free the
9423 	 * loopback device ensure this invariant is maintained by
9424 	 * keeping the loopback device as the first device on the
9425 	 * list of network devices.  Ensuring the loopback devices
9426 	 * is the first device that appears and the last network device
9427 	 * that disappears.
9428 	 */
9429 	if (register_pernet_device(&loopback_net_ops))
9430 		goto out;
9431 
9432 	if (register_pernet_device(&default_device_ops))
9433 		goto out;
9434 
9435 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9436 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9437 
9438 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9439 				       NULL, dev_cpu_dead);
9440 	WARN_ON(rc < 0);
9441 	rc = 0;
9442 out:
9443 	return rc;
9444 }
9445 
9446 subsys_initcall(net_dev_init);
9447