1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 static DEFINE_MUTEX(ifalias_mutex); 191 192 /* protects napi_hash addition/deletion and napi_gen_id */ 193 static DEFINE_SPINLOCK(napi_hash_lock); 194 195 static unsigned int napi_gen_id = NR_CPUS; 196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 197 198 static seqcount_t devnet_rename_seq; 199 200 static inline void dev_base_seq_inc(struct net *net) 201 { 202 while (++net->dev_base_seq == 0) 203 ; 204 } 205 206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207 { 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 209 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_lock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 static inline void rps_unlock(struct softnet_data *sd) 226 { 227 #ifdef CONFIG_RPS 228 spin_unlock(&sd->input_pkt_queue.lock); 229 #endif 230 } 231 232 /* Device list insertion */ 233 static void list_netdevice(struct net_device *dev) 234 { 235 struct net *net = dev_net(dev); 236 237 ASSERT_RTNL(); 238 239 write_lock_bh(&dev_base_lock); 240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 242 hlist_add_head_rcu(&dev->index_hlist, 243 dev_index_hash(net, dev->ifindex)); 244 write_unlock_bh(&dev_base_lock); 245 246 dev_base_seq_inc(net); 247 } 248 249 /* Device list removal 250 * caller must respect a RCU grace period before freeing/reusing dev 251 */ 252 static void unlist_netdevice(struct net_device *dev) 253 { 254 ASSERT_RTNL(); 255 256 /* Unlink dev from the device chain */ 257 write_lock_bh(&dev_base_lock); 258 list_del_rcu(&dev->dev_list); 259 hlist_del_rcu(&dev->name_hlist); 260 hlist_del_rcu(&dev->index_hlist); 261 write_unlock_bh(&dev_base_lock); 262 263 dev_base_seq_inc(dev_net(dev)); 264 } 265 266 /* 267 * Our notifier list 268 */ 269 270 static RAW_NOTIFIER_HEAD(netdev_chain); 271 272 /* 273 * Device drivers call our routines to queue packets here. We empty the 274 * queue in the local softnet handler. 275 */ 276 277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 278 EXPORT_PER_CPU_SYMBOL(softnet_data); 279 280 #ifdef CONFIG_LOCKDEP 281 /* 282 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 283 * according to dev->type 284 */ 285 static const unsigned short netdev_lock_type[] = { 286 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 287 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 288 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 289 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 290 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 291 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 292 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 293 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 294 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 295 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 296 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 297 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 298 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 299 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 300 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 301 302 static const char *const netdev_lock_name[] = { 303 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 304 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 305 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 306 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 307 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 308 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 309 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 310 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 311 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 312 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 313 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 314 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 315 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 316 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 317 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 318 319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 322 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 323 { 324 int i; 325 326 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 327 if (netdev_lock_type[i] == dev_type) 328 return i; 329 /* the last key is used by default */ 330 return ARRAY_SIZE(netdev_lock_type) - 1; 331 } 332 333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 334 unsigned short dev_type) 335 { 336 int i; 337 338 i = netdev_lock_pos(dev_type); 339 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 340 netdev_lock_name[i]); 341 } 342 343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 344 { 345 int i; 346 347 i = netdev_lock_pos(dev->type); 348 lockdep_set_class_and_name(&dev->addr_list_lock, 349 &netdev_addr_lock_key[i], 350 netdev_lock_name[i]); 351 } 352 #else 353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 354 unsigned short dev_type) 355 { 356 } 357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 358 { 359 } 360 #endif 361 362 /******************************************************************************* 363 * 364 * Protocol management and registration routines 365 * 366 *******************************************************************************/ 367 368 369 /* 370 * Add a protocol ID to the list. Now that the input handler is 371 * smarter we can dispense with all the messy stuff that used to be 372 * here. 373 * 374 * BEWARE!!! Protocol handlers, mangling input packets, 375 * MUST BE last in hash buckets and checking protocol handlers 376 * MUST start from promiscuous ptype_all chain in net_bh. 377 * It is true now, do not change it. 378 * Explanation follows: if protocol handler, mangling packet, will 379 * be the first on list, it is not able to sense, that packet 380 * is cloned and should be copied-on-write, so that it will 381 * change it and subsequent readers will get broken packet. 382 * --ANK (980803) 383 */ 384 385 static inline struct list_head *ptype_head(const struct packet_type *pt) 386 { 387 if (pt->type == htons(ETH_P_ALL)) 388 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 389 else 390 return pt->dev ? &pt->dev->ptype_specific : 391 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 392 } 393 394 /** 395 * dev_add_pack - add packet handler 396 * @pt: packet type declaration 397 * 398 * Add a protocol handler to the networking stack. The passed &packet_type 399 * is linked into kernel lists and may not be freed until it has been 400 * removed from the kernel lists. 401 * 402 * This call does not sleep therefore it can not 403 * guarantee all CPU's that are in middle of receiving packets 404 * will see the new packet type (until the next received packet). 405 */ 406 407 void dev_add_pack(struct packet_type *pt) 408 { 409 struct list_head *head = ptype_head(pt); 410 411 spin_lock(&ptype_lock); 412 list_add_rcu(&pt->list, head); 413 spin_unlock(&ptype_lock); 414 } 415 EXPORT_SYMBOL(dev_add_pack); 416 417 /** 418 * __dev_remove_pack - remove packet handler 419 * @pt: packet type declaration 420 * 421 * Remove a protocol handler that was previously added to the kernel 422 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 423 * from the kernel lists and can be freed or reused once this function 424 * returns. 425 * 426 * The packet type might still be in use by receivers 427 * and must not be freed until after all the CPU's have gone 428 * through a quiescent state. 429 */ 430 void __dev_remove_pack(struct packet_type *pt) 431 { 432 struct list_head *head = ptype_head(pt); 433 struct packet_type *pt1; 434 435 spin_lock(&ptype_lock); 436 437 list_for_each_entry(pt1, head, list) { 438 if (pt == pt1) { 439 list_del_rcu(&pt->list); 440 goto out; 441 } 442 } 443 444 pr_warn("dev_remove_pack: %p not found\n", pt); 445 out: 446 spin_unlock(&ptype_lock); 447 } 448 EXPORT_SYMBOL(__dev_remove_pack); 449 450 /** 451 * dev_remove_pack - remove packet handler 452 * @pt: packet type declaration 453 * 454 * Remove a protocol handler that was previously added to the kernel 455 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 456 * from the kernel lists and can be freed or reused once this function 457 * returns. 458 * 459 * This call sleeps to guarantee that no CPU is looking at the packet 460 * type after return. 461 */ 462 void dev_remove_pack(struct packet_type *pt) 463 { 464 __dev_remove_pack(pt); 465 466 synchronize_net(); 467 } 468 EXPORT_SYMBOL(dev_remove_pack); 469 470 471 /** 472 * dev_add_offload - register offload handlers 473 * @po: protocol offload declaration 474 * 475 * Add protocol offload handlers to the networking stack. The passed 476 * &proto_offload is linked into kernel lists and may not be freed until 477 * it has been removed from the kernel lists. 478 * 479 * This call does not sleep therefore it can not 480 * guarantee all CPU's that are in middle of receiving packets 481 * will see the new offload handlers (until the next received packet). 482 */ 483 void dev_add_offload(struct packet_offload *po) 484 { 485 struct packet_offload *elem; 486 487 spin_lock(&offload_lock); 488 list_for_each_entry(elem, &offload_base, list) { 489 if (po->priority < elem->priority) 490 break; 491 } 492 list_add_rcu(&po->list, elem->list.prev); 493 spin_unlock(&offload_lock); 494 } 495 EXPORT_SYMBOL(dev_add_offload); 496 497 /** 498 * __dev_remove_offload - remove offload handler 499 * @po: packet offload declaration 500 * 501 * Remove a protocol offload handler that was previously added to the 502 * kernel offload handlers by dev_add_offload(). The passed &offload_type 503 * is removed from the kernel lists and can be freed or reused once this 504 * function returns. 505 * 506 * The packet type might still be in use by receivers 507 * and must not be freed until after all the CPU's have gone 508 * through a quiescent state. 509 */ 510 static void __dev_remove_offload(struct packet_offload *po) 511 { 512 struct list_head *head = &offload_base; 513 struct packet_offload *po1; 514 515 spin_lock(&offload_lock); 516 517 list_for_each_entry(po1, head, list) { 518 if (po == po1) { 519 list_del_rcu(&po->list); 520 goto out; 521 } 522 } 523 524 pr_warn("dev_remove_offload: %p not found\n", po); 525 out: 526 spin_unlock(&offload_lock); 527 } 528 529 /** 530 * dev_remove_offload - remove packet offload handler 531 * @po: packet offload declaration 532 * 533 * Remove a packet offload handler that was previously added to the kernel 534 * offload handlers by dev_add_offload(). The passed &offload_type is 535 * removed from the kernel lists and can be freed or reused once this 536 * function returns. 537 * 538 * This call sleeps to guarantee that no CPU is looking at the packet 539 * type after return. 540 */ 541 void dev_remove_offload(struct packet_offload *po) 542 { 543 __dev_remove_offload(po); 544 545 synchronize_net(); 546 } 547 EXPORT_SYMBOL(dev_remove_offload); 548 549 /****************************************************************************** 550 * 551 * Device Boot-time Settings Routines 552 * 553 ******************************************************************************/ 554 555 /* Boot time configuration table */ 556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 557 558 /** 559 * netdev_boot_setup_add - add new setup entry 560 * @name: name of the device 561 * @map: configured settings for the device 562 * 563 * Adds new setup entry to the dev_boot_setup list. The function 564 * returns 0 on error and 1 on success. This is a generic routine to 565 * all netdevices. 566 */ 567 static int netdev_boot_setup_add(char *name, struct ifmap *map) 568 { 569 struct netdev_boot_setup *s; 570 int i; 571 572 s = dev_boot_setup; 573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 574 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 575 memset(s[i].name, 0, sizeof(s[i].name)); 576 strlcpy(s[i].name, name, IFNAMSIZ); 577 memcpy(&s[i].map, map, sizeof(s[i].map)); 578 break; 579 } 580 } 581 582 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 583 } 584 585 /** 586 * netdev_boot_setup_check - check boot time settings 587 * @dev: the netdevice 588 * 589 * Check boot time settings for the device. 590 * The found settings are set for the device to be used 591 * later in the device probing. 592 * Returns 0 if no settings found, 1 if they are. 593 */ 594 int netdev_boot_setup_check(struct net_device *dev) 595 { 596 struct netdev_boot_setup *s = dev_boot_setup; 597 int i; 598 599 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 600 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 601 !strcmp(dev->name, s[i].name)) { 602 dev->irq = s[i].map.irq; 603 dev->base_addr = s[i].map.base_addr; 604 dev->mem_start = s[i].map.mem_start; 605 dev->mem_end = s[i].map.mem_end; 606 return 1; 607 } 608 } 609 return 0; 610 } 611 EXPORT_SYMBOL(netdev_boot_setup_check); 612 613 614 /** 615 * netdev_boot_base - get address from boot time settings 616 * @prefix: prefix for network device 617 * @unit: id for network device 618 * 619 * Check boot time settings for the base address of device. 620 * The found settings are set for the device to be used 621 * later in the device probing. 622 * Returns 0 if no settings found. 623 */ 624 unsigned long netdev_boot_base(const char *prefix, int unit) 625 { 626 const struct netdev_boot_setup *s = dev_boot_setup; 627 char name[IFNAMSIZ]; 628 int i; 629 630 sprintf(name, "%s%d", prefix, unit); 631 632 /* 633 * If device already registered then return base of 1 634 * to indicate not to probe for this interface 635 */ 636 if (__dev_get_by_name(&init_net, name)) 637 return 1; 638 639 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 640 if (!strcmp(name, s[i].name)) 641 return s[i].map.base_addr; 642 return 0; 643 } 644 645 /* 646 * Saves at boot time configured settings for any netdevice. 647 */ 648 int __init netdev_boot_setup(char *str) 649 { 650 int ints[5]; 651 struct ifmap map; 652 653 str = get_options(str, ARRAY_SIZE(ints), ints); 654 if (!str || !*str) 655 return 0; 656 657 /* Save settings */ 658 memset(&map, 0, sizeof(map)); 659 if (ints[0] > 0) 660 map.irq = ints[1]; 661 if (ints[0] > 1) 662 map.base_addr = ints[2]; 663 if (ints[0] > 2) 664 map.mem_start = ints[3]; 665 if (ints[0] > 3) 666 map.mem_end = ints[4]; 667 668 /* Add new entry to the list */ 669 return netdev_boot_setup_add(str, &map); 670 } 671 672 __setup("netdev=", netdev_boot_setup); 673 674 /******************************************************************************* 675 * 676 * Device Interface Subroutines 677 * 678 *******************************************************************************/ 679 680 /** 681 * dev_get_iflink - get 'iflink' value of a interface 682 * @dev: targeted interface 683 * 684 * Indicates the ifindex the interface is linked to. 685 * Physical interfaces have the same 'ifindex' and 'iflink' values. 686 */ 687 688 int dev_get_iflink(const struct net_device *dev) 689 { 690 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 691 return dev->netdev_ops->ndo_get_iflink(dev); 692 693 return dev->ifindex; 694 } 695 EXPORT_SYMBOL(dev_get_iflink); 696 697 /** 698 * dev_fill_metadata_dst - Retrieve tunnel egress information. 699 * @dev: targeted interface 700 * @skb: The packet. 701 * 702 * For better visibility of tunnel traffic OVS needs to retrieve 703 * egress tunnel information for a packet. Following API allows 704 * user to get this info. 705 */ 706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 707 { 708 struct ip_tunnel_info *info; 709 710 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 711 return -EINVAL; 712 713 info = skb_tunnel_info_unclone(skb); 714 if (!info) 715 return -ENOMEM; 716 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 717 return -EINVAL; 718 719 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 720 } 721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 722 723 /** 724 * __dev_get_by_name - find a device by its name 725 * @net: the applicable net namespace 726 * @name: name to find 727 * 728 * Find an interface by name. Must be called under RTNL semaphore 729 * or @dev_base_lock. If the name is found a pointer to the device 730 * is returned. If the name is not found then %NULL is returned. The 731 * reference counters are not incremented so the caller must be 732 * careful with locks. 733 */ 734 735 struct net_device *__dev_get_by_name(struct net *net, const char *name) 736 { 737 struct net_device *dev; 738 struct hlist_head *head = dev_name_hash(net, name); 739 740 hlist_for_each_entry(dev, head, name_hlist) 741 if (!strncmp(dev->name, name, IFNAMSIZ)) 742 return dev; 743 744 return NULL; 745 } 746 EXPORT_SYMBOL(__dev_get_by_name); 747 748 /** 749 * dev_get_by_name_rcu - find a device by its name 750 * @net: the applicable net namespace 751 * @name: name to find 752 * 753 * Find an interface by name. 754 * If the name is found a pointer to the device is returned. 755 * If the name is not found then %NULL is returned. 756 * The reference counters are not incremented so the caller must be 757 * careful with locks. The caller must hold RCU lock. 758 */ 759 760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 761 { 762 struct net_device *dev; 763 struct hlist_head *head = dev_name_hash(net, name); 764 765 hlist_for_each_entry_rcu(dev, head, name_hlist) 766 if (!strncmp(dev->name, name, IFNAMSIZ)) 767 return dev; 768 769 return NULL; 770 } 771 EXPORT_SYMBOL(dev_get_by_name_rcu); 772 773 /** 774 * dev_get_by_name - find a device by its name 775 * @net: the applicable net namespace 776 * @name: name to find 777 * 778 * Find an interface by name. This can be called from any 779 * context and does its own locking. The returned handle has 780 * the usage count incremented and the caller must use dev_put() to 781 * release it when it is no longer needed. %NULL is returned if no 782 * matching device is found. 783 */ 784 785 struct net_device *dev_get_by_name(struct net *net, const char *name) 786 { 787 struct net_device *dev; 788 789 rcu_read_lock(); 790 dev = dev_get_by_name_rcu(net, name); 791 if (dev) 792 dev_hold(dev); 793 rcu_read_unlock(); 794 return dev; 795 } 796 EXPORT_SYMBOL(dev_get_by_name); 797 798 /** 799 * __dev_get_by_index - find a device by its ifindex 800 * @net: the applicable net namespace 801 * @ifindex: index of device 802 * 803 * Search for an interface by index. Returns %NULL if the device 804 * is not found or a pointer to the device. The device has not 805 * had its reference counter increased so the caller must be careful 806 * about locking. The caller must hold either the RTNL semaphore 807 * or @dev_base_lock. 808 */ 809 810 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 811 { 812 struct net_device *dev; 813 struct hlist_head *head = dev_index_hash(net, ifindex); 814 815 hlist_for_each_entry(dev, head, index_hlist) 816 if (dev->ifindex == ifindex) 817 return dev; 818 819 return NULL; 820 } 821 EXPORT_SYMBOL(__dev_get_by_index); 822 823 /** 824 * dev_get_by_index_rcu - find a device by its ifindex 825 * @net: the applicable net namespace 826 * @ifindex: index of device 827 * 828 * Search for an interface by index. Returns %NULL if the device 829 * is not found or a pointer to the device. The device has not 830 * had its reference counter increased so the caller must be careful 831 * about locking. The caller must hold RCU lock. 832 */ 833 834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 835 { 836 struct net_device *dev; 837 struct hlist_head *head = dev_index_hash(net, ifindex); 838 839 hlist_for_each_entry_rcu(dev, head, index_hlist) 840 if (dev->ifindex == ifindex) 841 return dev; 842 843 return NULL; 844 } 845 EXPORT_SYMBOL(dev_get_by_index_rcu); 846 847 848 /** 849 * dev_get_by_index - find a device by its ifindex 850 * @net: the applicable net namespace 851 * @ifindex: index of device 852 * 853 * Search for an interface by index. Returns NULL if the device 854 * is not found or a pointer to the device. The device returned has 855 * had a reference added and the pointer is safe until the user calls 856 * dev_put to indicate they have finished with it. 857 */ 858 859 struct net_device *dev_get_by_index(struct net *net, int ifindex) 860 { 861 struct net_device *dev; 862 863 rcu_read_lock(); 864 dev = dev_get_by_index_rcu(net, ifindex); 865 if (dev) 866 dev_hold(dev); 867 rcu_read_unlock(); 868 return dev; 869 } 870 EXPORT_SYMBOL(dev_get_by_index); 871 872 /** 873 * dev_get_by_napi_id - find a device by napi_id 874 * @napi_id: ID of the NAPI struct 875 * 876 * Search for an interface by NAPI ID. Returns %NULL if the device 877 * is not found or a pointer to the device. The device has not had 878 * its reference counter increased so the caller must be careful 879 * about locking. The caller must hold RCU lock. 880 */ 881 882 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 883 { 884 struct napi_struct *napi; 885 886 WARN_ON_ONCE(!rcu_read_lock_held()); 887 888 if (napi_id < MIN_NAPI_ID) 889 return NULL; 890 891 napi = napi_by_id(napi_id); 892 893 return napi ? napi->dev : NULL; 894 } 895 EXPORT_SYMBOL(dev_get_by_napi_id); 896 897 /** 898 * netdev_get_name - get a netdevice name, knowing its ifindex. 899 * @net: network namespace 900 * @name: a pointer to the buffer where the name will be stored. 901 * @ifindex: the ifindex of the interface to get the name from. 902 * 903 * The use of raw_seqcount_begin() and cond_resched() before 904 * retrying is required as we want to give the writers a chance 905 * to complete when CONFIG_PREEMPT is not set. 906 */ 907 int netdev_get_name(struct net *net, char *name, int ifindex) 908 { 909 struct net_device *dev; 910 unsigned int seq; 911 912 retry: 913 seq = raw_seqcount_begin(&devnet_rename_seq); 914 rcu_read_lock(); 915 dev = dev_get_by_index_rcu(net, ifindex); 916 if (!dev) { 917 rcu_read_unlock(); 918 return -ENODEV; 919 } 920 921 strcpy(name, dev->name); 922 rcu_read_unlock(); 923 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 924 cond_resched(); 925 goto retry; 926 } 927 928 return 0; 929 } 930 931 /** 932 * dev_getbyhwaddr_rcu - find a device by its hardware address 933 * @net: the applicable net namespace 934 * @type: media type of device 935 * @ha: hardware address 936 * 937 * Search for an interface by MAC address. Returns NULL if the device 938 * is not found or a pointer to the device. 939 * The caller must hold RCU or RTNL. 940 * The returned device has not had its ref count increased 941 * and the caller must therefore be careful about locking 942 * 943 */ 944 945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 946 const char *ha) 947 { 948 struct net_device *dev; 949 950 for_each_netdev_rcu(net, dev) 951 if (dev->type == type && 952 !memcmp(dev->dev_addr, ha, dev->addr_len)) 953 return dev; 954 955 return NULL; 956 } 957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 958 959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 960 { 961 struct net_device *dev; 962 963 ASSERT_RTNL(); 964 for_each_netdev(net, dev) 965 if (dev->type == type) 966 return dev; 967 968 return NULL; 969 } 970 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 971 972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 973 { 974 struct net_device *dev, *ret = NULL; 975 976 rcu_read_lock(); 977 for_each_netdev_rcu(net, dev) 978 if (dev->type == type) { 979 dev_hold(dev); 980 ret = dev; 981 break; 982 } 983 rcu_read_unlock(); 984 return ret; 985 } 986 EXPORT_SYMBOL(dev_getfirstbyhwtype); 987 988 /** 989 * __dev_get_by_flags - find any device with given flags 990 * @net: the applicable net namespace 991 * @if_flags: IFF_* values 992 * @mask: bitmask of bits in if_flags to check 993 * 994 * Search for any interface with the given flags. Returns NULL if a device 995 * is not found or a pointer to the device. Must be called inside 996 * rtnl_lock(), and result refcount is unchanged. 997 */ 998 999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1000 unsigned short mask) 1001 { 1002 struct net_device *dev, *ret; 1003 1004 ASSERT_RTNL(); 1005 1006 ret = NULL; 1007 for_each_netdev(net, dev) { 1008 if (((dev->flags ^ if_flags) & mask) == 0) { 1009 ret = dev; 1010 break; 1011 } 1012 } 1013 return ret; 1014 } 1015 EXPORT_SYMBOL(__dev_get_by_flags); 1016 1017 /** 1018 * dev_valid_name - check if name is okay for network device 1019 * @name: name string 1020 * 1021 * Network device names need to be valid file names to 1022 * to allow sysfs to work. We also disallow any kind of 1023 * whitespace. 1024 */ 1025 bool dev_valid_name(const char *name) 1026 { 1027 if (*name == '\0') 1028 return false; 1029 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1030 return false; 1031 if (!strcmp(name, ".") || !strcmp(name, "..")) 1032 return false; 1033 1034 while (*name) { 1035 if (*name == '/' || *name == ':' || isspace(*name)) 1036 return false; 1037 name++; 1038 } 1039 return true; 1040 } 1041 EXPORT_SYMBOL(dev_valid_name); 1042 1043 /** 1044 * __dev_alloc_name - allocate a name for a device 1045 * @net: network namespace to allocate the device name in 1046 * @name: name format string 1047 * @buf: scratch buffer and result name string 1048 * 1049 * Passed a format string - eg "lt%d" it will try and find a suitable 1050 * id. It scans list of devices to build up a free map, then chooses 1051 * the first empty slot. The caller must hold the dev_base or rtnl lock 1052 * while allocating the name and adding the device in order to avoid 1053 * duplicates. 1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1055 * Returns the number of the unit assigned or a negative errno code. 1056 */ 1057 1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1059 { 1060 int i = 0; 1061 const char *p; 1062 const int max_netdevices = 8*PAGE_SIZE; 1063 unsigned long *inuse; 1064 struct net_device *d; 1065 1066 if (!dev_valid_name(name)) 1067 return -EINVAL; 1068 1069 p = strchr(name, '%'); 1070 if (p) { 1071 /* 1072 * Verify the string as this thing may have come from 1073 * the user. There must be either one "%d" and no other "%" 1074 * characters. 1075 */ 1076 if (p[1] != 'd' || strchr(p + 2, '%')) 1077 return -EINVAL; 1078 1079 /* Use one page as a bit array of possible slots */ 1080 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1081 if (!inuse) 1082 return -ENOMEM; 1083 1084 for_each_netdev(net, d) { 1085 if (!sscanf(d->name, name, &i)) 1086 continue; 1087 if (i < 0 || i >= max_netdevices) 1088 continue; 1089 1090 /* avoid cases where sscanf is not exact inverse of printf */ 1091 snprintf(buf, IFNAMSIZ, name, i); 1092 if (!strncmp(buf, d->name, IFNAMSIZ)) 1093 set_bit(i, inuse); 1094 } 1095 1096 i = find_first_zero_bit(inuse, max_netdevices); 1097 free_page((unsigned long) inuse); 1098 } 1099 1100 snprintf(buf, IFNAMSIZ, name, i); 1101 if (!__dev_get_by_name(net, buf)) 1102 return i; 1103 1104 /* It is possible to run out of possible slots 1105 * when the name is long and there isn't enough space left 1106 * for the digits, or if all bits are used. 1107 */ 1108 return -ENFILE; 1109 } 1110 1111 static int dev_alloc_name_ns(struct net *net, 1112 struct net_device *dev, 1113 const char *name) 1114 { 1115 char buf[IFNAMSIZ]; 1116 int ret; 1117 1118 BUG_ON(!net); 1119 ret = __dev_alloc_name(net, name, buf); 1120 if (ret >= 0) 1121 strlcpy(dev->name, buf, IFNAMSIZ); 1122 return ret; 1123 } 1124 1125 /** 1126 * dev_alloc_name - allocate a name for a device 1127 * @dev: device 1128 * @name: name format string 1129 * 1130 * Passed a format string - eg "lt%d" it will try and find a suitable 1131 * id. It scans list of devices to build up a free map, then chooses 1132 * the first empty slot. The caller must hold the dev_base or rtnl lock 1133 * while allocating the name and adding the device in order to avoid 1134 * duplicates. 1135 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1136 * Returns the number of the unit assigned or a negative errno code. 1137 */ 1138 1139 int dev_alloc_name(struct net_device *dev, const char *name) 1140 { 1141 return dev_alloc_name_ns(dev_net(dev), dev, name); 1142 } 1143 EXPORT_SYMBOL(dev_alloc_name); 1144 1145 int dev_get_valid_name(struct net *net, struct net_device *dev, 1146 const char *name) 1147 { 1148 BUG_ON(!net); 1149 1150 if (!dev_valid_name(name)) 1151 return -EINVAL; 1152 1153 if (strchr(name, '%')) 1154 return dev_alloc_name_ns(net, dev, name); 1155 else if (__dev_get_by_name(net, name)) 1156 return -EEXIST; 1157 else if (dev->name != name) 1158 strlcpy(dev->name, name, IFNAMSIZ); 1159 1160 return 0; 1161 } 1162 EXPORT_SYMBOL(dev_get_valid_name); 1163 1164 /** 1165 * dev_change_name - change name of a device 1166 * @dev: device 1167 * @newname: name (or format string) must be at least IFNAMSIZ 1168 * 1169 * Change name of a device, can pass format strings "eth%d". 1170 * for wildcarding. 1171 */ 1172 int dev_change_name(struct net_device *dev, const char *newname) 1173 { 1174 unsigned char old_assign_type; 1175 char oldname[IFNAMSIZ]; 1176 int err = 0; 1177 int ret; 1178 struct net *net; 1179 1180 ASSERT_RTNL(); 1181 BUG_ON(!dev_net(dev)); 1182 1183 net = dev_net(dev); 1184 if (dev->flags & IFF_UP) 1185 return -EBUSY; 1186 1187 write_seqcount_begin(&devnet_rename_seq); 1188 1189 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1190 write_seqcount_end(&devnet_rename_seq); 1191 return 0; 1192 } 1193 1194 memcpy(oldname, dev->name, IFNAMSIZ); 1195 1196 err = dev_get_valid_name(net, dev, newname); 1197 if (err < 0) { 1198 write_seqcount_end(&devnet_rename_seq); 1199 return err; 1200 } 1201 1202 if (oldname[0] && !strchr(oldname, '%')) 1203 netdev_info(dev, "renamed from %s\n", oldname); 1204 1205 old_assign_type = dev->name_assign_type; 1206 dev->name_assign_type = NET_NAME_RENAMED; 1207 1208 rollback: 1209 ret = device_rename(&dev->dev, dev->name); 1210 if (ret) { 1211 memcpy(dev->name, oldname, IFNAMSIZ); 1212 dev->name_assign_type = old_assign_type; 1213 write_seqcount_end(&devnet_rename_seq); 1214 return ret; 1215 } 1216 1217 write_seqcount_end(&devnet_rename_seq); 1218 1219 netdev_adjacent_rename_links(dev, oldname); 1220 1221 write_lock_bh(&dev_base_lock); 1222 hlist_del_rcu(&dev->name_hlist); 1223 write_unlock_bh(&dev_base_lock); 1224 1225 synchronize_rcu(); 1226 1227 write_lock_bh(&dev_base_lock); 1228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1229 write_unlock_bh(&dev_base_lock); 1230 1231 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1232 ret = notifier_to_errno(ret); 1233 1234 if (ret) { 1235 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1236 if (err >= 0) { 1237 err = ret; 1238 write_seqcount_begin(&devnet_rename_seq); 1239 memcpy(dev->name, oldname, IFNAMSIZ); 1240 memcpy(oldname, newname, IFNAMSIZ); 1241 dev->name_assign_type = old_assign_type; 1242 old_assign_type = NET_NAME_RENAMED; 1243 goto rollback; 1244 } else { 1245 pr_err("%s: name change rollback failed: %d\n", 1246 dev->name, ret); 1247 } 1248 } 1249 1250 return err; 1251 } 1252 1253 /** 1254 * dev_set_alias - change ifalias of a device 1255 * @dev: device 1256 * @alias: name up to IFALIASZ 1257 * @len: limit of bytes to copy from info 1258 * 1259 * Set ifalias for a device, 1260 */ 1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1262 { 1263 struct dev_ifalias *new_alias = NULL; 1264 1265 if (len >= IFALIASZ) 1266 return -EINVAL; 1267 1268 if (len) { 1269 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1270 if (!new_alias) 1271 return -ENOMEM; 1272 1273 memcpy(new_alias->ifalias, alias, len); 1274 new_alias->ifalias[len] = 0; 1275 } 1276 1277 mutex_lock(&ifalias_mutex); 1278 rcu_swap_protected(dev->ifalias, new_alias, 1279 mutex_is_locked(&ifalias_mutex)); 1280 mutex_unlock(&ifalias_mutex); 1281 1282 if (new_alias) 1283 kfree_rcu(new_alias, rcuhead); 1284 1285 return len; 1286 } 1287 EXPORT_SYMBOL(dev_set_alias); 1288 1289 /** 1290 * dev_get_alias - get ifalias of a device 1291 * @dev: device 1292 * @name: buffer to store name of ifalias 1293 * @len: size of buffer 1294 * 1295 * get ifalias for a device. Caller must make sure dev cannot go 1296 * away, e.g. rcu read lock or own a reference count to device. 1297 */ 1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1299 { 1300 const struct dev_ifalias *alias; 1301 int ret = 0; 1302 1303 rcu_read_lock(); 1304 alias = rcu_dereference(dev->ifalias); 1305 if (alias) 1306 ret = snprintf(name, len, "%s", alias->ifalias); 1307 rcu_read_unlock(); 1308 1309 return ret; 1310 } 1311 1312 /** 1313 * netdev_features_change - device changes features 1314 * @dev: device to cause notification 1315 * 1316 * Called to indicate a device has changed features. 1317 */ 1318 void netdev_features_change(struct net_device *dev) 1319 { 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1321 } 1322 EXPORT_SYMBOL(netdev_features_change); 1323 1324 /** 1325 * netdev_state_change - device changes state 1326 * @dev: device to cause notification 1327 * 1328 * Called to indicate a device has changed state. This function calls 1329 * the notifier chains for netdev_chain and sends a NEWLINK message 1330 * to the routing socket. 1331 */ 1332 void netdev_state_change(struct net_device *dev) 1333 { 1334 if (dev->flags & IFF_UP) { 1335 struct netdev_notifier_change_info change_info = { 1336 .info.dev = dev, 1337 }; 1338 1339 call_netdevice_notifiers_info(NETDEV_CHANGE, 1340 &change_info.info); 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1342 } 1343 } 1344 EXPORT_SYMBOL(netdev_state_change); 1345 1346 /** 1347 * netdev_notify_peers - notify network peers about existence of @dev 1348 * @dev: network device 1349 * 1350 * Generate traffic such that interested network peers are aware of 1351 * @dev, such as by generating a gratuitous ARP. This may be used when 1352 * a device wants to inform the rest of the network about some sort of 1353 * reconfiguration such as a failover event or virtual machine 1354 * migration. 1355 */ 1356 void netdev_notify_peers(struct net_device *dev) 1357 { 1358 rtnl_lock(); 1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1361 rtnl_unlock(); 1362 } 1363 EXPORT_SYMBOL(netdev_notify_peers); 1364 1365 static int __dev_open(struct net_device *dev) 1366 { 1367 const struct net_device_ops *ops = dev->netdev_ops; 1368 int ret; 1369 1370 ASSERT_RTNL(); 1371 1372 if (!netif_device_present(dev)) 1373 return -ENODEV; 1374 1375 /* Block netpoll from trying to do any rx path servicing. 1376 * If we don't do this there is a chance ndo_poll_controller 1377 * or ndo_poll may be running while we open the device 1378 */ 1379 netpoll_poll_disable(dev); 1380 1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1382 ret = notifier_to_errno(ret); 1383 if (ret) 1384 return ret; 1385 1386 set_bit(__LINK_STATE_START, &dev->state); 1387 1388 if (ops->ndo_validate_addr) 1389 ret = ops->ndo_validate_addr(dev); 1390 1391 if (!ret && ops->ndo_open) 1392 ret = ops->ndo_open(dev); 1393 1394 netpoll_poll_enable(dev); 1395 1396 if (ret) 1397 clear_bit(__LINK_STATE_START, &dev->state); 1398 else { 1399 dev->flags |= IFF_UP; 1400 dev_set_rx_mode(dev); 1401 dev_activate(dev); 1402 add_device_randomness(dev->dev_addr, dev->addr_len); 1403 } 1404 1405 return ret; 1406 } 1407 1408 /** 1409 * dev_open - prepare an interface for use. 1410 * @dev: device to open 1411 * 1412 * Takes a device from down to up state. The device's private open 1413 * function is invoked and then the multicast lists are loaded. Finally 1414 * the device is moved into the up state and a %NETDEV_UP message is 1415 * sent to the netdev notifier chain. 1416 * 1417 * Calling this function on an active interface is a nop. On a failure 1418 * a negative errno code is returned. 1419 */ 1420 int dev_open(struct net_device *dev) 1421 { 1422 int ret; 1423 1424 if (dev->flags & IFF_UP) 1425 return 0; 1426 1427 ret = __dev_open(dev); 1428 if (ret < 0) 1429 return ret; 1430 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1432 call_netdevice_notifiers(NETDEV_UP, dev); 1433 1434 return ret; 1435 } 1436 EXPORT_SYMBOL(dev_open); 1437 1438 static void __dev_close_many(struct list_head *head) 1439 { 1440 struct net_device *dev; 1441 1442 ASSERT_RTNL(); 1443 might_sleep(); 1444 1445 list_for_each_entry(dev, head, close_list) { 1446 /* Temporarily disable netpoll until the interface is down */ 1447 netpoll_poll_disable(dev); 1448 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1450 1451 clear_bit(__LINK_STATE_START, &dev->state); 1452 1453 /* Synchronize to scheduled poll. We cannot touch poll list, it 1454 * can be even on different cpu. So just clear netif_running(). 1455 * 1456 * dev->stop() will invoke napi_disable() on all of it's 1457 * napi_struct instances on this device. 1458 */ 1459 smp_mb__after_atomic(); /* Commit netif_running(). */ 1460 } 1461 1462 dev_deactivate_many(head); 1463 1464 list_for_each_entry(dev, head, close_list) { 1465 const struct net_device_ops *ops = dev->netdev_ops; 1466 1467 /* 1468 * Call the device specific close. This cannot fail. 1469 * Only if device is UP 1470 * 1471 * We allow it to be called even after a DETACH hot-plug 1472 * event. 1473 */ 1474 if (ops->ndo_stop) 1475 ops->ndo_stop(dev); 1476 1477 dev->flags &= ~IFF_UP; 1478 netpoll_poll_enable(dev); 1479 } 1480 } 1481 1482 static void __dev_close(struct net_device *dev) 1483 { 1484 LIST_HEAD(single); 1485 1486 list_add(&dev->close_list, &single); 1487 __dev_close_many(&single); 1488 list_del(&single); 1489 } 1490 1491 void dev_close_many(struct list_head *head, bool unlink) 1492 { 1493 struct net_device *dev, *tmp; 1494 1495 /* Remove the devices that don't need to be closed */ 1496 list_for_each_entry_safe(dev, tmp, head, close_list) 1497 if (!(dev->flags & IFF_UP)) 1498 list_del_init(&dev->close_list); 1499 1500 __dev_close_many(head); 1501 1502 list_for_each_entry_safe(dev, tmp, head, close_list) { 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1504 call_netdevice_notifiers(NETDEV_DOWN, dev); 1505 if (unlink) 1506 list_del_init(&dev->close_list); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close_many); 1510 1511 /** 1512 * dev_close - shutdown an interface. 1513 * @dev: device to shutdown 1514 * 1515 * This function moves an active device into down state. A 1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1518 * chain. 1519 */ 1520 void dev_close(struct net_device *dev) 1521 { 1522 if (dev->flags & IFF_UP) { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 dev_close_many(&single, true); 1527 list_del(&single); 1528 } 1529 } 1530 EXPORT_SYMBOL(dev_close); 1531 1532 1533 /** 1534 * dev_disable_lro - disable Large Receive Offload on a device 1535 * @dev: device 1536 * 1537 * Disable Large Receive Offload (LRO) on a net device. Must be 1538 * called under RTNL. This is needed if received packets may be 1539 * forwarded to another interface. 1540 */ 1541 void dev_disable_lro(struct net_device *dev) 1542 { 1543 struct net_device *lower_dev; 1544 struct list_head *iter; 1545 1546 dev->wanted_features &= ~NETIF_F_LRO; 1547 netdev_update_features(dev); 1548 1549 if (unlikely(dev->features & NETIF_F_LRO)) 1550 netdev_WARN(dev, "failed to disable LRO!\n"); 1551 1552 netdev_for_each_lower_dev(dev, lower_dev, iter) 1553 dev_disable_lro(lower_dev); 1554 } 1555 EXPORT_SYMBOL(dev_disable_lro); 1556 1557 /** 1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1559 * @dev: device 1560 * 1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1562 * called under RTNL. This is needed if Generic XDP is installed on 1563 * the device. 1564 */ 1565 static void dev_disable_gro_hw(struct net_device *dev) 1566 { 1567 dev->wanted_features &= ~NETIF_F_GRO_HW; 1568 netdev_update_features(dev); 1569 1570 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1571 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1572 } 1573 1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1575 { 1576 #define N(val) \ 1577 case NETDEV_##val: \ 1578 return "NETDEV_" __stringify(val); 1579 switch (cmd) { 1580 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1581 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1582 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1583 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1584 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1585 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1586 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1587 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1588 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1589 } 1590 #undef N 1591 return "UNKNOWN_NETDEV_EVENT"; 1592 } 1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1594 1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1596 struct net_device *dev) 1597 { 1598 struct netdev_notifier_info info = { 1599 .dev = dev, 1600 }; 1601 1602 return nb->notifier_call(nb, val, &info); 1603 } 1604 1605 static int dev_boot_phase = 1; 1606 1607 /** 1608 * register_netdevice_notifier - register a network notifier block 1609 * @nb: notifier 1610 * 1611 * Register a notifier to be called when network device events occur. 1612 * The notifier passed is linked into the kernel structures and must 1613 * not be reused until it has been unregistered. A negative errno code 1614 * is returned on a failure. 1615 * 1616 * When registered all registration and up events are replayed 1617 * to the new notifier to allow device to have a race free 1618 * view of the network device list. 1619 */ 1620 1621 int register_netdevice_notifier(struct notifier_block *nb) 1622 { 1623 struct net_device *dev; 1624 struct net_device *last; 1625 struct net *net; 1626 int err; 1627 1628 /* Close race with setup_net() and cleanup_net() */ 1629 down_write(&pernet_ops_rwsem); 1630 rtnl_lock(); 1631 err = raw_notifier_chain_register(&netdev_chain, nb); 1632 if (err) 1633 goto unlock; 1634 if (dev_boot_phase) 1635 goto unlock; 1636 for_each_net(net) { 1637 for_each_netdev(net, dev) { 1638 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1639 err = notifier_to_errno(err); 1640 if (err) 1641 goto rollback; 1642 1643 if (!(dev->flags & IFF_UP)) 1644 continue; 1645 1646 call_netdevice_notifier(nb, NETDEV_UP, dev); 1647 } 1648 } 1649 1650 unlock: 1651 rtnl_unlock(); 1652 up_write(&pernet_ops_rwsem); 1653 return err; 1654 1655 rollback: 1656 last = dev; 1657 for_each_net(net) { 1658 for_each_netdev(net, dev) { 1659 if (dev == last) 1660 goto outroll; 1661 1662 if (dev->flags & IFF_UP) { 1663 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1664 dev); 1665 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1666 } 1667 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1668 } 1669 } 1670 1671 outroll: 1672 raw_notifier_chain_unregister(&netdev_chain, nb); 1673 goto unlock; 1674 } 1675 EXPORT_SYMBOL(register_netdevice_notifier); 1676 1677 /** 1678 * unregister_netdevice_notifier - unregister a network notifier block 1679 * @nb: notifier 1680 * 1681 * Unregister a notifier previously registered by 1682 * register_netdevice_notifier(). The notifier is unlinked into the 1683 * kernel structures and may then be reused. A negative errno code 1684 * is returned on a failure. 1685 * 1686 * After unregistering unregister and down device events are synthesized 1687 * for all devices on the device list to the removed notifier to remove 1688 * the need for special case cleanup code. 1689 */ 1690 1691 int unregister_netdevice_notifier(struct notifier_block *nb) 1692 { 1693 struct net_device *dev; 1694 struct net *net; 1695 int err; 1696 1697 /* Close race with setup_net() and cleanup_net() */ 1698 down_write(&pernet_ops_rwsem); 1699 rtnl_lock(); 1700 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1701 if (err) 1702 goto unlock; 1703 1704 for_each_net(net) { 1705 for_each_netdev(net, dev) { 1706 if (dev->flags & IFF_UP) { 1707 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1708 dev); 1709 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1710 } 1711 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1712 } 1713 } 1714 unlock: 1715 rtnl_unlock(); 1716 up_write(&pernet_ops_rwsem); 1717 return err; 1718 } 1719 EXPORT_SYMBOL(unregister_netdevice_notifier); 1720 1721 /** 1722 * call_netdevice_notifiers_info - call all network notifier blocks 1723 * @val: value passed unmodified to notifier function 1724 * @info: notifier information data 1725 * 1726 * Call all network notifier blocks. Parameters and return value 1727 * are as for raw_notifier_call_chain(). 1728 */ 1729 1730 static int call_netdevice_notifiers_info(unsigned long val, 1731 struct netdev_notifier_info *info) 1732 { 1733 ASSERT_RTNL(); 1734 return raw_notifier_call_chain(&netdev_chain, val, info); 1735 } 1736 1737 /** 1738 * call_netdevice_notifiers - call all network notifier blocks 1739 * @val: value passed unmodified to notifier function 1740 * @dev: net_device pointer passed unmodified to notifier function 1741 * 1742 * Call all network notifier blocks. Parameters and return value 1743 * are as for raw_notifier_call_chain(). 1744 */ 1745 1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1747 { 1748 struct netdev_notifier_info info = { 1749 .dev = dev, 1750 }; 1751 1752 return call_netdevice_notifiers_info(val, &info); 1753 } 1754 EXPORT_SYMBOL(call_netdevice_notifiers); 1755 1756 #ifdef CONFIG_NET_INGRESS 1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1758 1759 void net_inc_ingress_queue(void) 1760 { 1761 static_branch_inc(&ingress_needed_key); 1762 } 1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1764 1765 void net_dec_ingress_queue(void) 1766 { 1767 static_branch_dec(&ingress_needed_key); 1768 } 1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1770 #endif 1771 1772 #ifdef CONFIG_NET_EGRESS 1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1774 1775 void net_inc_egress_queue(void) 1776 { 1777 static_branch_inc(&egress_needed_key); 1778 } 1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1780 1781 void net_dec_egress_queue(void) 1782 { 1783 static_branch_dec(&egress_needed_key); 1784 } 1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1786 #endif 1787 1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1789 #ifdef HAVE_JUMP_LABEL 1790 static atomic_t netstamp_needed_deferred; 1791 static atomic_t netstamp_wanted; 1792 static void netstamp_clear(struct work_struct *work) 1793 { 1794 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1795 int wanted; 1796 1797 wanted = atomic_add_return(deferred, &netstamp_wanted); 1798 if (wanted > 0) 1799 static_branch_enable(&netstamp_needed_key); 1800 else 1801 static_branch_disable(&netstamp_needed_key); 1802 } 1803 static DECLARE_WORK(netstamp_work, netstamp_clear); 1804 #endif 1805 1806 void net_enable_timestamp(void) 1807 { 1808 #ifdef HAVE_JUMP_LABEL 1809 int wanted; 1810 1811 while (1) { 1812 wanted = atomic_read(&netstamp_wanted); 1813 if (wanted <= 0) 1814 break; 1815 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1816 return; 1817 } 1818 atomic_inc(&netstamp_needed_deferred); 1819 schedule_work(&netstamp_work); 1820 #else 1821 static_branch_inc(&netstamp_needed_key); 1822 #endif 1823 } 1824 EXPORT_SYMBOL(net_enable_timestamp); 1825 1826 void net_disable_timestamp(void) 1827 { 1828 #ifdef HAVE_JUMP_LABEL 1829 int wanted; 1830 1831 while (1) { 1832 wanted = atomic_read(&netstamp_wanted); 1833 if (wanted <= 1) 1834 break; 1835 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1836 return; 1837 } 1838 atomic_dec(&netstamp_needed_deferred); 1839 schedule_work(&netstamp_work); 1840 #else 1841 static_branch_dec(&netstamp_needed_key); 1842 #endif 1843 } 1844 EXPORT_SYMBOL(net_disable_timestamp); 1845 1846 static inline void net_timestamp_set(struct sk_buff *skb) 1847 { 1848 skb->tstamp = 0; 1849 if (static_branch_unlikely(&netstamp_needed_key)) 1850 __net_timestamp(skb); 1851 } 1852 1853 #define net_timestamp_check(COND, SKB) \ 1854 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1855 if ((COND) && !(SKB)->tstamp) \ 1856 __net_timestamp(SKB); \ 1857 } \ 1858 1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1860 { 1861 unsigned int len; 1862 1863 if (!(dev->flags & IFF_UP)) 1864 return false; 1865 1866 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1867 if (skb->len <= len) 1868 return true; 1869 1870 /* if TSO is enabled, we don't care about the length as the packet 1871 * could be forwarded without being segmented before 1872 */ 1873 if (skb_is_gso(skb)) 1874 return true; 1875 1876 return false; 1877 } 1878 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1879 1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1881 { 1882 int ret = ____dev_forward_skb(dev, skb); 1883 1884 if (likely(!ret)) { 1885 skb->protocol = eth_type_trans(skb, dev); 1886 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1887 } 1888 1889 return ret; 1890 } 1891 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1892 1893 /** 1894 * dev_forward_skb - loopback an skb to another netif 1895 * 1896 * @dev: destination network device 1897 * @skb: buffer to forward 1898 * 1899 * return values: 1900 * NET_RX_SUCCESS (no congestion) 1901 * NET_RX_DROP (packet was dropped, but freed) 1902 * 1903 * dev_forward_skb can be used for injecting an skb from the 1904 * start_xmit function of one device into the receive queue 1905 * of another device. 1906 * 1907 * The receiving device may be in another namespace, so 1908 * we have to clear all information in the skb that could 1909 * impact namespace isolation. 1910 */ 1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1912 { 1913 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1914 } 1915 EXPORT_SYMBOL_GPL(dev_forward_skb); 1916 1917 static inline int deliver_skb(struct sk_buff *skb, 1918 struct packet_type *pt_prev, 1919 struct net_device *orig_dev) 1920 { 1921 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1922 return -ENOMEM; 1923 refcount_inc(&skb->users); 1924 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1925 } 1926 1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1928 struct packet_type **pt, 1929 struct net_device *orig_dev, 1930 __be16 type, 1931 struct list_head *ptype_list) 1932 { 1933 struct packet_type *ptype, *pt_prev = *pt; 1934 1935 list_for_each_entry_rcu(ptype, ptype_list, list) { 1936 if (ptype->type != type) 1937 continue; 1938 if (pt_prev) 1939 deliver_skb(skb, pt_prev, orig_dev); 1940 pt_prev = ptype; 1941 } 1942 *pt = pt_prev; 1943 } 1944 1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1946 { 1947 if (!ptype->af_packet_priv || !skb->sk) 1948 return false; 1949 1950 if (ptype->id_match) 1951 return ptype->id_match(ptype, skb->sk); 1952 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1953 return true; 1954 1955 return false; 1956 } 1957 1958 /* 1959 * Support routine. Sends outgoing frames to any network 1960 * taps currently in use. 1961 */ 1962 1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1964 { 1965 struct packet_type *ptype; 1966 struct sk_buff *skb2 = NULL; 1967 struct packet_type *pt_prev = NULL; 1968 struct list_head *ptype_list = &ptype_all; 1969 1970 rcu_read_lock(); 1971 again: 1972 list_for_each_entry_rcu(ptype, ptype_list, list) { 1973 /* Never send packets back to the socket 1974 * they originated from - MvS (miquels@drinkel.ow.org) 1975 */ 1976 if (skb_loop_sk(ptype, skb)) 1977 continue; 1978 1979 if (pt_prev) { 1980 deliver_skb(skb2, pt_prev, skb->dev); 1981 pt_prev = ptype; 1982 continue; 1983 } 1984 1985 /* need to clone skb, done only once */ 1986 skb2 = skb_clone(skb, GFP_ATOMIC); 1987 if (!skb2) 1988 goto out_unlock; 1989 1990 net_timestamp_set(skb2); 1991 1992 /* skb->nh should be correctly 1993 * set by sender, so that the second statement is 1994 * just protection against buggy protocols. 1995 */ 1996 skb_reset_mac_header(skb2); 1997 1998 if (skb_network_header(skb2) < skb2->data || 1999 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2000 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2001 ntohs(skb2->protocol), 2002 dev->name); 2003 skb_reset_network_header(skb2); 2004 } 2005 2006 skb2->transport_header = skb2->network_header; 2007 skb2->pkt_type = PACKET_OUTGOING; 2008 pt_prev = ptype; 2009 } 2010 2011 if (ptype_list == &ptype_all) { 2012 ptype_list = &dev->ptype_all; 2013 goto again; 2014 } 2015 out_unlock: 2016 if (pt_prev) { 2017 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2018 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2019 else 2020 kfree_skb(skb2); 2021 } 2022 rcu_read_unlock(); 2023 } 2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2025 2026 /** 2027 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2028 * @dev: Network device 2029 * @txq: number of queues available 2030 * 2031 * If real_num_tx_queues is changed the tc mappings may no longer be 2032 * valid. To resolve this verify the tc mapping remains valid and if 2033 * not NULL the mapping. With no priorities mapping to this 2034 * offset/count pair it will no longer be used. In the worst case TC0 2035 * is invalid nothing can be done so disable priority mappings. If is 2036 * expected that drivers will fix this mapping if they can before 2037 * calling netif_set_real_num_tx_queues. 2038 */ 2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2040 { 2041 int i; 2042 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2043 2044 /* If TC0 is invalidated disable TC mapping */ 2045 if (tc->offset + tc->count > txq) { 2046 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2047 dev->num_tc = 0; 2048 return; 2049 } 2050 2051 /* Invalidated prio to tc mappings set to TC0 */ 2052 for (i = 1; i < TC_BITMASK + 1; i++) { 2053 int q = netdev_get_prio_tc_map(dev, i); 2054 2055 tc = &dev->tc_to_txq[q]; 2056 if (tc->offset + tc->count > txq) { 2057 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2058 i, q); 2059 netdev_set_prio_tc_map(dev, i, 0); 2060 } 2061 } 2062 } 2063 2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2065 { 2066 if (dev->num_tc) { 2067 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2068 int i; 2069 2070 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2071 if ((txq - tc->offset) < tc->count) 2072 return i; 2073 } 2074 2075 return -1; 2076 } 2077 2078 return 0; 2079 } 2080 EXPORT_SYMBOL(netdev_txq_to_tc); 2081 2082 #ifdef CONFIG_XPS 2083 struct static_key xps_needed __read_mostly; 2084 EXPORT_SYMBOL(xps_needed); 2085 struct static_key xps_rxqs_needed __read_mostly; 2086 EXPORT_SYMBOL(xps_rxqs_needed); 2087 static DEFINE_MUTEX(xps_map_mutex); 2088 #define xmap_dereference(P) \ 2089 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2090 2091 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2092 int tci, u16 index) 2093 { 2094 struct xps_map *map = NULL; 2095 int pos; 2096 2097 if (dev_maps) 2098 map = xmap_dereference(dev_maps->attr_map[tci]); 2099 if (!map) 2100 return false; 2101 2102 for (pos = map->len; pos--;) { 2103 if (map->queues[pos] != index) 2104 continue; 2105 2106 if (map->len > 1) { 2107 map->queues[pos] = map->queues[--map->len]; 2108 break; 2109 } 2110 2111 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2112 kfree_rcu(map, rcu); 2113 return false; 2114 } 2115 2116 return true; 2117 } 2118 2119 static bool remove_xps_queue_cpu(struct net_device *dev, 2120 struct xps_dev_maps *dev_maps, 2121 int cpu, u16 offset, u16 count) 2122 { 2123 int num_tc = dev->num_tc ? : 1; 2124 bool active = false; 2125 int tci; 2126 2127 for (tci = cpu * num_tc; num_tc--; tci++) { 2128 int i, j; 2129 2130 for (i = count, j = offset; i--; j++) { 2131 if (!remove_xps_queue(dev_maps, tci, j)) 2132 break; 2133 } 2134 2135 active |= i < 0; 2136 } 2137 2138 return active; 2139 } 2140 2141 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2142 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2143 u16 offset, u16 count, bool is_rxqs_map) 2144 { 2145 bool active = false; 2146 int i, j; 2147 2148 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2149 j < nr_ids;) 2150 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2151 count); 2152 if (!active) { 2153 if (is_rxqs_map) { 2154 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2155 } else { 2156 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2157 2158 for (i = offset + (count - 1); count--; i--) 2159 netdev_queue_numa_node_write( 2160 netdev_get_tx_queue(dev, i), 2161 NUMA_NO_NODE); 2162 } 2163 kfree_rcu(dev_maps, rcu); 2164 } 2165 } 2166 2167 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2168 u16 count) 2169 { 2170 const unsigned long *possible_mask = NULL; 2171 struct xps_dev_maps *dev_maps; 2172 unsigned int nr_ids; 2173 2174 if (!static_key_false(&xps_needed)) 2175 return; 2176 2177 mutex_lock(&xps_map_mutex); 2178 2179 if (static_key_false(&xps_rxqs_needed)) { 2180 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2181 if (dev_maps) { 2182 nr_ids = dev->num_rx_queues; 2183 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2184 offset, count, true); 2185 } 2186 } 2187 2188 dev_maps = xmap_dereference(dev->xps_cpus_map); 2189 if (!dev_maps) 2190 goto out_no_maps; 2191 2192 if (num_possible_cpus() > 1) 2193 possible_mask = cpumask_bits(cpu_possible_mask); 2194 nr_ids = nr_cpu_ids; 2195 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2196 false); 2197 2198 out_no_maps: 2199 if (static_key_enabled(&xps_rxqs_needed)) 2200 static_key_slow_dec(&xps_rxqs_needed); 2201 2202 static_key_slow_dec(&xps_needed); 2203 mutex_unlock(&xps_map_mutex); 2204 } 2205 2206 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2207 { 2208 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2209 } 2210 2211 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2212 u16 index, bool is_rxqs_map) 2213 { 2214 struct xps_map *new_map; 2215 int alloc_len = XPS_MIN_MAP_ALLOC; 2216 int i, pos; 2217 2218 for (pos = 0; map && pos < map->len; pos++) { 2219 if (map->queues[pos] != index) 2220 continue; 2221 return map; 2222 } 2223 2224 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2225 if (map) { 2226 if (pos < map->alloc_len) 2227 return map; 2228 2229 alloc_len = map->alloc_len * 2; 2230 } 2231 2232 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2233 * map 2234 */ 2235 if (is_rxqs_map) 2236 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2237 else 2238 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2239 cpu_to_node(attr_index)); 2240 if (!new_map) 2241 return NULL; 2242 2243 for (i = 0; i < pos; i++) 2244 new_map->queues[i] = map->queues[i]; 2245 new_map->alloc_len = alloc_len; 2246 new_map->len = pos; 2247 2248 return new_map; 2249 } 2250 2251 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2252 u16 index, bool is_rxqs_map) 2253 { 2254 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2255 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2256 int i, j, tci, numa_node_id = -2; 2257 int maps_sz, num_tc = 1, tc = 0; 2258 struct xps_map *map, *new_map; 2259 bool active = false; 2260 unsigned int nr_ids; 2261 2262 if (dev->num_tc) { 2263 num_tc = dev->num_tc; 2264 tc = netdev_txq_to_tc(dev, index); 2265 if (tc < 0) 2266 return -EINVAL; 2267 } 2268 2269 mutex_lock(&xps_map_mutex); 2270 if (is_rxqs_map) { 2271 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2272 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2273 nr_ids = dev->num_rx_queues; 2274 } else { 2275 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2276 if (num_possible_cpus() > 1) { 2277 online_mask = cpumask_bits(cpu_online_mask); 2278 possible_mask = cpumask_bits(cpu_possible_mask); 2279 } 2280 dev_maps = xmap_dereference(dev->xps_cpus_map); 2281 nr_ids = nr_cpu_ids; 2282 } 2283 2284 if (maps_sz < L1_CACHE_BYTES) 2285 maps_sz = L1_CACHE_BYTES; 2286 2287 /* allocate memory for queue storage */ 2288 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2289 j < nr_ids;) { 2290 if (!new_dev_maps) 2291 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2292 if (!new_dev_maps) { 2293 mutex_unlock(&xps_map_mutex); 2294 return -ENOMEM; 2295 } 2296 2297 tci = j * num_tc + tc; 2298 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2299 NULL; 2300 2301 map = expand_xps_map(map, j, index, is_rxqs_map); 2302 if (!map) 2303 goto error; 2304 2305 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2306 } 2307 2308 if (!new_dev_maps) 2309 goto out_no_new_maps; 2310 2311 static_key_slow_inc(&xps_needed); 2312 if (is_rxqs_map) 2313 static_key_slow_inc(&xps_rxqs_needed); 2314 2315 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2316 j < nr_ids;) { 2317 /* copy maps belonging to foreign traffic classes */ 2318 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2319 /* fill in the new device map from the old device map */ 2320 map = xmap_dereference(dev_maps->attr_map[tci]); 2321 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2322 } 2323 2324 /* We need to explicitly update tci as prevous loop 2325 * could break out early if dev_maps is NULL. 2326 */ 2327 tci = j * num_tc + tc; 2328 2329 if (netif_attr_test_mask(j, mask, nr_ids) && 2330 netif_attr_test_online(j, online_mask, nr_ids)) { 2331 /* add tx-queue to CPU/rx-queue maps */ 2332 int pos = 0; 2333 2334 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2335 while ((pos < map->len) && (map->queues[pos] != index)) 2336 pos++; 2337 2338 if (pos == map->len) 2339 map->queues[map->len++] = index; 2340 #ifdef CONFIG_NUMA 2341 if (!is_rxqs_map) { 2342 if (numa_node_id == -2) 2343 numa_node_id = cpu_to_node(j); 2344 else if (numa_node_id != cpu_to_node(j)) 2345 numa_node_id = -1; 2346 } 2347 #endif 2348 } else if (dev_maps) { 2349 /* fill in the new device map from the old device map */ 2350 map = xmap_dereference(dev_maps->attr_map[tci]); 2351 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2352 } 2353 2354 /* copy maps belonging to foreign traffic classes */ 2355 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2356 /* fill in the new device map from the old device map */ 2357 map = xmap_dereference(dev_maps->attr_map[tci]); 2358 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2359 } 2360 } 2361 2362 if (is_rxqs_map) 2363 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2364 else 2365 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2366 2367 /* Cleanup old maps */ 2368 if (!dev_maps) 2369 goto out_no_old_maps; 2370 2371 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2372 j < nr_ids;) { 2373 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2374 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2375 map = xmap_dereference(dev_maps->attr_map[tci]); 2376 if (map && map != new_map) 2377 kfree_rcu(map, rcu); 2378 } 2379 } 2380 2381 kfree_rcu(dev_maps, rcu); 2382 2383 out_no_old_maps: 2384 dev_maps = new_dev_maps; 2385 active = true; 2386 2387 out_no_new_maps: 2388 if (!is_rxqs_map) { 2389 /* update Tx queue numa node */ 2390 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2391 (numa_node_id >= 0) ? 2392 numa_node_id : NUMA_NO_NODE); 2393 } 2394 2395 if (!dev_maps) 2396 goto out_no_maps; 2397 2398 /* removes tx-queue from unused CPUs/rx-queues */ 2399 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2400 j < nr_ids;) { 2401 for (i = tc, tci = j * num_tc; i--; tci++) 2402 active |= remove_xps_queue(dev_maps, tci, index); 2403 if (!netif_attr_test_mask(j, mask, nr_ids) || 2404 !netif_attr_test_online(j, online_mask, nr_ids)) 2405 active |= remove_xps_queue(dev_maps, tci, index); 2406 for (i = num_tc - tc, tci++; --i; tci++) 2407 active |= remove_xps_queue(dev_maps, tci, index); 2408 } 2409 2410 /* free map if not active */ 2411 if (!active) { 2412 if (is_rxqs_map) 2413 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2414 else 2415 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2416 kfree_rcu(dev_maps, rcu); 2417 } 2418 2419 out_no_maps: 2420 mutex_unlock(&xps_map_mutex); 2421 2422 return 0; 2423 error: 2424 /* remove any maps that we added */ 2425 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2426 j < nr_ids;) { 2427 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2428 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2429 map = dev_maps ? 2430 xmap_dereference(dev_maps->attr_map[tci]) : 2431 NULL; 2432 if (new_map && new_map != map) 2433 kfree(new_map); 2434 } 2435 } 2436 2437 mutex_unlock(&xps_map_mutex); 2438 2439 kfree(new_dev_maps); 2440 return -ENOMEM; 2441 } 2442 2443 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2444 u16 index) 2445 { 2446 return __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2447 } 2448 EXPORT_SYMBOL(netif_set_xps_queue); 2449 2450 #endif 2451 void netdev_reset_tc(struct net_device *dev) 2452 { 2453 #ifdef CONFIG_XPS 2454 netif_reset_xps_queues_gt(dev, 0); 2455 #endif 2456 dev->num_tc = 0; 2457 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2458 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2459 } 2460 EXPORT_SYMBOL(netdev_reset_tc); 2461 2462 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2463 { 2464 if (tc >= dev->num_tc) 2465 return -EINVAL; 2466 2467 #ifdef CONFIG_XPS 2468 netif_reset_xps_queues(dev, offset, count); 2469 #endif 2470 dev->tc_to_txq[tc].count = count; 2471 dev->tc_to_txq[tc].offset = offset; 2472 return 0; 2473 } 2474 EXPORT_SYMBOL(netdev_set_tc_queue); 2475 2476 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2477 { 2478 if (num_tc > TC_MAX_QUEUE) 2479 return -EINVAL; 2480 2481 #ifdef CONFIG_XPS 2482 netif_reset_xps_queues_gt(dev, 0); 2483 #endif 2484 dev->num_tc = num_tc; 2485 return 0; 2486 } 2487 EXPORT_SYMBOL(netdev_set_num_tc); 2488 2489 /* 2490 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2491 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2492 */ 2493 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2494 { 2495 bool disabling; 2496 int rc; 2497 2498 disabling = txq < dev->real_num_tx_queues; 2499 2500 if (txq < 1 || txq > dev->num_tx_queues) 2501 return -EINVAL; 2502 2503 if (dev->reg_state == NETREG_REGISTERED || 2504 dev->reg_state == NETREG_UNREGISTERING) { 2505 ASSERT_RTNL(); 2506 2507 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2508 txq); 2509 if (rc) 2510 return rc; 2511 2512 if (dev->num_tc) 2513 netif_setup_tc(dev, txq); 2514 2515 dev->real_num_tx_queues = txq; 2516 2517 if (disabling) { 2518 synchronize_net(); 2519 qdisc_reset_all_tx_gt(dev, txq); 2520 #ifdef CONFIG_XPS 2521 netif_reset_xps_queues_gt(dev, txq); 2522 #endif 2523 } 2524 } else { 2525 dev->real_num_tx_queues = txq; 2526 } 2527 2528 return 0; 2529 } 2530 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2531 2532 #ifdef CONFIG_SYSFS 2533 /** 2534 * netif_set_real_num_rx_queues - set actual number of RX queues used 2535 * @dev: Network device 2536 * @rxq: Actual number of RX queues 2537 * 2538 * This must be called either with the rtnl_lock held or before 2539 * registration of the net device. Returns 0 on success, or a 2540 * negative error code. If called before registration, it always 2541 * succeeds. 2542 */ 2543 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2544 { 2545 int rc; 2546 2547 if (rxq < 1 || rxq > dev->num_rx_queues) 2548 return -EINVAL; 2549 2550 if (dev->reg_state == NETREG_REGISTERED) { 2551 ASSERT_RTNL(); 2552 2553 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2554 rxq); 2555 if (rc) 2556 return rc; 2557 } 2558 2559 dev->real_num_rx_queues = rxq; 2560 return 0; 2561 } 2562 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2563 #endif 2564 2565 /** 2566 * netif_get_num_default_rss_queues - default number of RSS queues 2567 * 2568 * This routine should set an upper limit on the number of RSS queues 2569 * used by default by multiqueue devices. 2570 */ 2571 int netif_get_num_default_rss_queues(void) 2572 { 2573 return is_kdump_kernel() ? 2574 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2575 } 2576 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2577 2578 static void __netif_reschedule(struct Qdisc *q) 2579 { 2580 struct softnet_data *sd; 2581 unsigned long flags; 2582 2583 local_irq_save(flags); 2584 sd = this_cpu_ptr(&softnet_data); 2585 q->next_sched = NULL; 2586 *sd->output_queue_tailp = q; 2587 sd->output_queue_tailp = &q->next_sched; 2588 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2589 local_irq_restore(flags); 2590 } 2591 2592 void __netif_schedule(struct Qdisc *q) 2593 { 2594 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2595 __netif_reschedule(q); 2596 } 2597 EXPORT_SYMBOL(__netif_schedule); 2598 2599 struct dev_kfree_skb_cb { 2600 enum skb_free_reason reason; 2601 }; 2602 2603 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2604 { 2605 return (struct dev_kfree_skb_cb *)skb->cb; 2606 } 2607 2608 void netif_schedule_queue(struct netdev_queue *txq) 2609 { 2610 rcu_read_lock(); 2611 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2612 struct Qdisc *q = rcu_dereference(txq->qdisc); 2613 2614 __netif_schedule(q); 2615 } 2616 rcu_read_unlock(); 2617 } 2618 EXPORT_SYMBOL(netif_schedule_queue); 2619 2620 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2621 { 2622 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2623 struct Qdisc *q; 2624 2625 rcu_read_lock(); 2626 q = rcu_dereference(dev_queue->qdisc); 2627 __netif_schedule(q); 2628 rcu_read_unlock(); 2629 } 2630 } 2631 EXPORT_SYMBOL(netif_tx_wake_queue); 2632 2633 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2634 { 2635 unsigned long flags; 2636 2637 if (unlikely(!skb)) 2638 return; 2639 2640 if (likely(refcount_read(&skb->users) == 1)) { 2641 smp_rmb(); 2642 refcount_set(&skb->users, 0); 2643 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2644 return; 2645 } 2646 get_kfree_skb_cb(skb)->reason = reason; 2647 local_irq_save(flags); 2648 skb->next = __this_cpu_read(softnet_data.completion_queue); 2649 __this_cpu_write(softnet_data.completion_queue, skb); 2650 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2651 local_irq_restore(flags); 2652 } 2653 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2654 2655 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2656 { 2657 if (in_irq() || irqs_disabled()) 2658 __dev_kfree_skb_irq(skb, reason); 2659 else 2660 dev_kfree_skb(skb); 2661 } 2662 EXPORT_SYMBOL(__dev_kfree_skb_any); 2663 2664 2665 /** 2666 * netif_device_detach - mark device as removed 2667 * @dev: network device 2668 * 2669 * Mark device as removed from system and therefore no longer available. 2670 */ 2671 void netif_device_detach(struct net_device *dev) 2672 { 2673 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2674 netif_running(dev)) { 2675 netif_tx_stop_all_queues(dev); 2676 } 2677 } 2678 EXPORT_SYMBOL(netif_device_detach); 2679 2680 /** 2681 * netif_device_attach - mark device as attached 2682 * @dev: network device 2683 * 2684 * Mark device as attached from system and restart if needed. 2685 */ 2686 void netif_device_attach(struct net_device *dev) 2687 { 2688 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2689 netif_running(dev)) { 2690 netif_tx_wake_all_queues(dev); 2691 __netdev_watchdog_up(dev); 2692 } 2693 } 2694 EXPORT_SYMBOL(netif_device_attach); 2695 2696 /* 2697 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2698 * to be used as a distribution range. 2699 */ 2700 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb) 2701 { 2702 u32 hash; 2703 u16 qoffset = 0; 2704 u16 qcount = dev->real_num_tx_queues; 2705 2706 if (skb_rx_queue_recorded(skb)) { 2707 hash = skb_get_rx_queue(skb); 2708 while (unlikely(hash >= qcount)) 2709 hash -= qcount; 2710 return hash; 2711 } 2712 2713 if (dev->num_tc) { 2714 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2715 2716 qoffset = dev->tc_to_txq[tc].offset; 2717 qcount = dev->tc_to_txq[tc].count; 2718 } 2719 2720 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2721 } 2722 2723 static void skb_warn_bad_offload(const struct sk_buff *skb) 2724 { 2725 static const netdev_features_t null_features; 2726 struct net_device *dev = skb->dev; 2727 const char *name = ""; 2728 2729 if (!net_ratelimit()) 2730 return; 2731 2732 if (dev) { 2733 if (dev->dev.parent) 2734 name = dev_driver_string(dev->dev.parent); 2735 else 2736 name = netdev_name(dev); 2737 } 2738 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2739 "gso_type=%d ip_summed=%d\n", 2740 name, dev ? &dev->features : &null_features, 2741 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2742 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2743 skb_shinfo(skb)->gso_type, skb->ip_summed); 2744 } 2745 2746 /* 2747 * Invalidate hardware checksum when packet is to be mangled, and 2748 * complete checksum manually on outgoing path. 2749 */ 2750 int skb_checksum_help(struct sk_buff *skb) 2751 { 2752 __wsum csum; 2753 int ret = 0, offset; 2754 2755 if (skb->ip_summed == CHECKSUM_COMPLETE) 2756 goto out_set_summed; 2757 2758 if (unlikely(skb_shinfo(skb)->gso_size)) { 2759 skb_warn_bad_offload(skb); 2760 return -EINVAL; 2761 } 2762 2763 /* Before computing a checksum, we should make sure no frag could 2764 * be modified by an external entity : checksum could be wrong. 2765 */ 2766 if (skb_has_shared_frag(skb)) { 2767 ret = __skb_linearize(skb); 2768 if (ret) 2769 goto out; 2770 } 2771 2772 offset = skb_checksum_start_offset(skb); 2773 BUG_ON(offset >= skb_headlen(skb)); 2774 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2775 2776 offset += skb->csum_offset; 2777 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2778 2779 if (skb_cloned(skb) && 2780 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2781 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2782 if (ret) 2783 goto out; 2784 } 2785 2786 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2787 out_set_summed: 2788 skb->ip_summed = CHECKSUM_NONE; 2789 out: 2790 return ret; 2791 } 2792 EXPORT_SYMBOL(skb_checksum_help); 2793 2794 int skb_crc32c_csum_help(struct sk_buff *skb) 2795 { 2796 __le32 crc32c_csum; 2797 int ret = 0, offset, start; 2798 2799 if (skb->ip_summed != CHECKSUM_PARTIAL) 2800 goto out; 2801 2802 if (unlikely(skb_is_gso(skb))) 2803 goto out; 2804 2805 /* Before computing a checksum, we should make sure no frag could 2806 * be modified by an external entity : checksum could be wrong. 2807 */ 2808 if (unlikely(skb_has_shared_frag(skb))) { 2809 ret = __skb_linearize(skb); 2810 if (ret) 2811 goto out; 2812 } 2813 start = skb_checksum_start_offset(skb); 2814 offset = start + offsetof(struct sctphdr, checksum); 2815 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2816 ret = -EINVAL; 2817 goto out; 2818 } 2819 if (skb_cloned(skb) && 2820 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2821 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2822 if (ret) 2823 goto out; 2824 } 2825 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2826 skb->len - start, ~(__u32)0, 2827 crc32c_csum_stub)); 2828 *(__le32 *)(skb->data + offset) = crc32c_csum; 2829 skb->ip_summed = CHECKSUM_NONE; 2830 skb->csum_not_inet = 0; 2831 out: 2832 return ret; 2833 } 2834 2835 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2836 { 2837 __be16 type = skb->protocol; 2838 2839 /* Tunnel gso handlers can set protocol to ethernet. */ 2840 if (type == htons(ETH_P_TEB)) { 2841 struct ethhdr *eth; 2842 2843 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2844 return 0; 2845 2846 eth = (struct ethhdr *)skb->data; 2847 type = eth->h_proto; 2848 } 2849 2850 return __vlan_get_protocol(skb, type, depth); 2851 } 2852 2853 /** 2854 * skb_mac_gso_segment - mac layer segmentation handler. 2855 * @skb: buffer to segment 2856 * @features: features for the output path (see dev->features) 2857 */ 2858 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2859 netdev_features_t features) 2860 { 2861 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2862 struct packet_offload *ptype; 2863 int vlan_depth = skb->mac_len; 2864 __be16 type = skb_network_protocol(skb, &vlan_depth); 2865 2866 if (unlikely(!type)) 2867 return ERR_PTR(-EINVAL); 2868 2869 __skb_pull(skb, vlan_depth); 2870 2871 rcu_read_lock(); 2872 list_for_each_entry_rcu(ptype, &offload_base, list) { 2873 if (ptype->type == type && ptype->callbacks.gso_segment) { 2874 segs = ptype->callbacks.gso_segment(skb, features); 2875 break; 2876 } 2877 } 2878 rcu_read_unlock(); 2879 2880 __skb_push(skb, skb->data - skb_mac_header(skb)); 2881 2882 return segs; 2883 } 2884 EXPORT_SYMBOL(skb_mac_gso_segment); 2885 2886 2887 /* openvswitch calls this on rx path, so we need a different check. 2888 */ 2889 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2890 { 2891 if (tx_path) 2892 return skb->ip_summed != CHECKSUM_PARTIAL && 2893 skb->ip_summed != CHECKSUM_UNNECESSARY; 2894 2895 return skb->ip_summed == CHECKSUM_NONE; 2896 } 2897 2898 /** 2899 * __skb_gso_segment - Perform segmentation on skb. 2900 * @skb: buffer to segment 2901 * @features: features for the output path (see dev->features) 2902 * @tx_path: whether it is called in TX path 2903 * 2904 * This function segments the given skb and returns a list of segments. 2905 * 2906 * It may return NULL if the skb requires no segmentation. This is 2907 * only possible when GSO is used for verifying header integrity. 2908 * 2909 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2910 */ 2911 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2912 netdev_features_t features, bool tx_path) 2913 { 2914 struct sk_buff *segs; 2915 2916 if (unlikely(skb_needs_check(skb, tx_path))) { 2917 int err; 2918 2919 /* We're going to init ->check field in TCP or UDP header */ 2920 err = skb_cow_head(skb, 0); 2921 if (err < 0) 2922 return ERR_PTR(err); 2923 } 2924 2925 /* Only report GSO partial support if it will enable us to 2926 * support segmentation on this frame without needing additional 2927 * work. 2928 */ 2929 if (features & NETIF_F_GSO_PARTIAL) { 2930 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2931 struct net_device *dev = skb->dev; 2932 2933 partial_features |= dev->features & dev->gso_partial_features; 2934 if (!skb_gso_ok(skb, features | partial_features)) 2935 features &= ~NETIF_F_GSO_PARTIAL; 2936 } 2937 2938 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2939 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2940 2941 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2942 SKB_GSO_CB(skb)->encap_level = 0; 2943 2944 skb_reset_mac_header(skb); 2945 skb_reset_mac_len(skb); 2946 2947 segs = skb_mac_gso_segment(skb, features); 2948 2949 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2950 skb_warn_bad_offload(skb); 2951 2952 return segs; 2953 } 2954 EXPORT_SYMBOL(__skb_gso_segment); 2955 2956 /* Take action when hardware reception checksum errors are detected. */ 2957 #ifdef CONFIG_BUG 2958 void netdev_rx_csum_fault(struct net_device *dev) 2959 { 2960 if (net_ratelimit()) { 2961 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2962 dump_stack(); 2963 } 2964 } 2965 EXPORT_SYMBOL(netdev_rx_csum_fault); 2966 #endif 2967 2968 /* XXX: check that highmem exists at all on the given machine. */ 2969 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2970 { 2971 #ifdef CONFIG_HIGHMEM 2972 int i; 2973 2974 if (!(dev->features & NETIF_F_HIGHDMA)) { 2975 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2976 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2977 2978 if (PageHighMem(skb_frag_page(frag))) 2979 return 1; 2980 } 2981 } 2982 #endif 2983 return 0; 2984 } 2985 2986 /* If MPLS offload request, verify we are testing hardware MPLS features 2987 * instead of standard features for the netdev. 2988 */ 2989 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2990 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2991 netdev_features_t features, 2992 __be16 type) 2993 { 2994 if (eth_p_mpls(type)) 2995 features &= skb->dev->mpls_features; 2996 2997 return features; 2998 } 2999 #else 3000 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3001 netdev_features_t features, 3002 __be16 type) 3003 { 3004 return features; 3005 } 3006 #endif 3007 3008 static netdev_features_t harmonize_features(struct sk_buff *skb, 3009 netdev_features_t features) 3010 { 3011 int tmp; 3012 __be16 type; 3013 3014 type = skb_network_protocol(skb, &tmp); 3015 features = net_mpls_features(skb, features, type); 3016 3017 if (skb->ip_summed != CHECKSUM_NONE && 3018 !can_checksum_protocol(features, type)) { 3019 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3020 } 3021 if (illegal_highdma(skb->dev, skb)) 3022 features &= ~NETIF_F_SG; 3023 3024 return features; 3025 } 3026 3027 netdev_features_t passthru_features_check(struct sk_buff *skb, 3028 struct net_device *dev, 3029 netdev_features_t features) 3030 { 3031 return features; 3032 } 3033 EXPORT_SYMBOL(passthru_features_check); 3034 3035 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3036 struct net_device *dev, 3037 netdev_features_t features) 3038 { 3039 return vlan_features_check(skb, features); 3040 } 3041 3042 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3043 struct net_device *dev, 3044 netdev_features_t features) 3045 { 3046 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3047 3048 if (gso_segs > dev->gso_max_segs) 3049 return features & ~NETIF_F_GSO_MASK; 3050 3051 /* Support for GSO partial features requires software 3052 * intervention before we can actually process the packets 3053 * so we need to strip support for any partial features now 3054 * and we can pull them back in after we have partially 3055 * segmented the frame. 3056 */ 3057 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3058 features &= ~dev->gso_partial_features; 3059 3060 /* Make sure to clear the IPv4 ID mangling feature if the 3061 * IPv4 header has the potential to be fragmented. 3062 */ 3063 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3064 struct iphdr *iph = skb->encapsulation ? 3065 inner_ip_hdr(skb) : ip_hdr(skb); 3066 3067 if (!(iph->frag_off & htons(IP_DF))) 3068 features &= ~NETIF_F_TSO_MANGLEID; 3069 } 3070 3071 return features; 3072 } 3073 3074 netdev_features_t netif_skb_features(struct sk_buff *skb) 3075 { 3076 struct net_device *dev = skb->dev; 3077 netdev_features_t features = dev->features; 3078 3079 if (skb_is_gso(skb)) 3080 features = gso_features_check(skb, dev, features); 3081 3082 /* If encapsulation offload request, verify we are testing 3083 * hardware encapsulation features instead of standard 3084 * features for the netdev 3085 */ 3086 if (skb->encapsulation) 3087 features &= dev->hw_enc_features; 3088 3089 if (skb_vlan_tagged(skb)) 3090 features = netdev_intersect_features(features, 3091 dev->vlan_features | 3092 NETIF_F_HW_VLAN_CTAG_TX | 3093 NETIF_F_HW_VLAN_STAG_TX); 3094 3095 if (dev->netdev_ops->ndo_features_check) 3096 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3097 features); 3098 else 3099 features &= dflt_features_check(skb, dev, features); 3100 3101 return harmonize_features(skb, features); 3102 } 3103 EXPORT_SYMBOL(netif_skb_features); 3104 3105 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3106 struct netdev_queue *txq, bool more) 3107 { 3108 unsigned int len; 3109 int rc; 3110 3111 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3112 dev_queue_xmit_nit(skb, dev); 3113 3114 len = skb->len; 3115 trace_net_dev_start_xmit(skb, dev); 3116 rc = netdev_start_xmit(skb, dev, txq, more); 3117 trace_net_dev_xmit(skb, rc, dev, len); 3118 3119 return rc; 3120 } 3121 3122 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3123 struct netdev_queue *txq, int *ret) 3124 { 3125 struct sk_buff *skb = first; 3126 int rc = NETDEV_TX_OK; 3127 3128 while (skb) { 3129 struct sk_buff *next = skb->next; 3130 3131 skb->next = NULL; 3132 rc = xmit_one(skb, dev, txq, next != NULL); 3133 if (unlikely(!dev_xmit_complete(rc))) { 3134 skb->next = next; 3135 goto out; 3136 } 3137 3138 skb = next; 3139 if (netif_xmit_stopped(txq) && skb) { 3140 rc = NETDEV_TX_BUSY; 3141 break; 3142 } 3143 } 3144 3145 out: 3146 *ret = rc; 3147 return skb; 3148 } 3149 3150 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3151 netdev_features_t features) 3152 { 3153 if (skb_vlan_tag_present(skb) && 3154 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3155 skb = __vlan_hwaccel_push_inside(skb); 3156 return skb; 3157 } 3158 3159 int skb_csum_hwoffload_help(struct sk_buff *skb, 3160 const netdev_features_t features) 3161 { 3162 if (unlikely(skb->csum_not_inet)) 3163 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3164 skb_crc32c_csum_help(skb); 3165 3166 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3167 } 3168 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3169 3170 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3171 { 3172 netdev_features_t features; 3173 3174 features = netif_skb_features(skb); 3175 skb = validate_xmit_vlan(skb, features); 3176 if (unlikely(!skb)) 3177 goto out_null; 3178 3179 skb = sk_validate_xmit_skb(skb, dev); 3180 if (unlikely(!skb)) 3181 goto out_null; 3182 3183 if (netif_needs_gso(skb, features)) { 3184 struct sk_buff *segs; 3185 3186 segs = skb_gso_segment(skb, features); 3187 if (IS_ERR(segs)) { 3188 goto out_kfree_skb; 3189 } else if (segs) { 3190 consume_skb(skb); 3191 skb = segs; 3192 } 3193 } else { 3194 if (skb_needs_linearize(skb, features) && 3195 __skb_linearize(skb)) 3196 goto out_kfree_skb; 3197 3198 /* If packet is not checksummed and device does not 3199 * support checksumming for this protocol, complete 3200 * checksumming here. 3201 */ 3202 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3203 if (skb->encapsulation) 3204 skb_set_inner_transport_header(skb, 3205 skb_checksum_start_offset(skb)); 3206 else 3207 skb_set_transport_header(skb, 3208 skb_checksum_start_offset(skb)); 3209 if (skb_csum_hwoffload_help(skb, features)) 3210 goto out_kfree_skb; 3211 } 3212 } 3213 3214 skb = validate_xmit_xfrm(skb, features, again); 3215 3216 return skb; 3217 3218 out_kfree_skb: 3219 kfree_skb(skb); 3220 out_null: 3221 atomic_long_inc(&dev->tx_dropped); 3222 return NULL; 3223 } 3224 3225 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3226 { 3227 struct sk_buff *next, *head = NULL, *tail; 3228 3229 for (; skb != NULL; skb = next) { 3230 next = skb->next; 3231 skb->next = NULL; 3232 3233 /* in case skb wont be segmented, point to itself */ 3234 skb->prev = skb; 3235 3236 skb = validate_xmit_skb(skb, dev, again); 3237 if (!skb) 3238 continue; 3239 3240 if (!head) 3241 head = skb; 3242 else 3243 tail->next = skb; 3244 /* If skb was segmented, skb->prev points to 3245 * the last segment. If not, it still contains skb. 3246 */ 3247 tail = skb->prev; 3248 } 3249 return head; 3250 } 3251 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3252 3253 static void qdisc_pkt_len_init(struct sk_buff *skb) 3254 { 3255 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3256 3257 qdisc_skb_cb(skb)->pkt_len = skb->len; 3258 3259 /* To get more precise estimation of bytes sent on wire, 3260 * we add to pkt_len the headers size of all segments 3261 */ 3262 if (shinfo->gso_size) { 3263 unsigned int hdr_len; 3264 u16 gso_segs = shinfo->gso_segs; 3265 3266 /* mac layer + network layer */ 3267 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3268 3269 /* + transport layer */ 3270 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3271 const struct tcphdr *th; 3272 struct tcphdr _tcphdr; 3273 3274 th = skb_header_pointer(skb, skb_transport_offset(skb), 3275 sizeof(_tcphdr), &_tcphdr); 3276 if (likely(th)) 3277 hdr_len += __tcp_hdrlen(th); 3278 } else { 3279 struct udphdr _udphdr; 3280 3281 if (skb_header_pointer(skb, skb_transport_offset(skb), 3282 sizeof(_udphdr), &_udphdr)) 3283 hdr_len += sizeof(struct udphdr); 3284 } 3285 3286 if (shinfo->gso_type & SKB_GSO_DODGY) 3287 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3288 shinfo->gso_size); 3289 3290 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3291 } 3292 } 3293 3294 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3295 struct net_device *dev, 3296 struct netdev_queue *txq) 3297 { 3298 spinlock_t *root_lock = qdisc_lock(q); 3299 struct sk_buff *to_free = NULL; 3300 bool contended; 3301 int rc; 3302 3303 qdisc_calculate_pkt_len(skb, q); 3304 3305 if (q->flags & TCQ_F_NOLOCK) { 3306 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3307 __qdisc_drop(skb, &to_free); 3308 rc = NET_XMIT_DROP; 3309 } else { 3310 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3311 qdisc_run(q); 3312 } 3313 3314 if (unlikely(to_free)) 3315 kfree_skb_list(to_free); 3316 return rc; 3317 } 3318 3319 /* 3320 * Heuristic to force contended enqueues to serialize on a 3321 * separate lock before trying to get qdisc main lock. 3322 * This permits qdisc->running owner to get the lock more 3323 * often and dequeue packets faster. 3324 */ 3325 contended = qdisc_is_running(q); 3326 if (unlikely(contended)) 3327 spin_lock(&q->busylock); 3328 3329 spin_lock(root_lock); 3330 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3331 __qdisc_drop(skb, &to_free); 3332 rc = NET_XMIT_DROP; 3333 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3334 qdisc_run_begin(q)) { 3335 /* 3336 * This is a work-conserving queue; there are no old skbs 3337 * waiting to be sent out; and the qdisc is not running - 3338 * xmit the skb directly. 3339 */ 3340 3341 qdisc_bstats_update(q, skb); 3342 3343 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3344 if (unlikely(contended)) { 3345 spin_unlock(&q->busylock); 3346 contended = false; 3347 } 3348 __qdisc_run(q); 3349 } 3350 3351 qdisc_run_end(q); 3352 rc = NET_XMIT_SUCCESS; 3353 } else { 3354 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3355 if (qdisc_run_begin(q)) { 3356 if (unlikely(contended)) { 3357 spin_unlock(&q->busylock); 3358 contended = false; 3359 } 3360 __qdisc_run(q); 3361 qdisc_run_end(q); 3362 } 3363 } 3364 spin_unlock(root_lock); 3365 if (unlikely(to_free)) 3366 kfree_skb_list(to_free); 3367 if (unlikely(contended)) 3368 spin_unlock(&q->busylock); 3369 return rc; 3370 } 3371 3372 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3373 static void skb_update_prio(struct sk_buff *skb) 3374 { 3375 const struct netprio_map *map; 3376 const struct sock *sk; 3377 unsigned int prioidx; 3378 3379 if (skb->priority) 3380 return; 3381 map = rcu_dereference_bh(skb->dev->priomap); 3382 if (!map) 3383 return; 3384 sk = skb_to_full_sk(skb); 3385 if (!sk) 3386 return; 3387 3388 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3389 3390 if (prioidx < map->priomap_len) 3391 skb->priority = map->priomap[prioidx]; 3392 } 3393 #else 3394 #define skb_update_prio(skb) 3395 #endif 3396 3397 DEFINE_PER_CPU(int, xmit_recursion); 3398 EXPORT_SYMBOL(xmit_recursion); 3399 3400 /** 3401 * dev_loopback_xmit - loop back @skb 3402 * @net: network namespace this loopback is happening in 3403 * @sk: sk needed to be a netfilter okfn 3404 * @skb: buffer to transmit 3405 */ 3406 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3407 { 3408 skb_reset_mac_header(skb); 3409 __skb_pull(skb, skb_network_offset(skb)); 3410 skb->pkt_type = PACKET_LOOPBACK; 3411 skb->ip_summed = CHECKSUM_UNNECESSARY; 3412 WARN_ON(!skb_dst(skb)); 3413 skb_dst_force(skb); 3414 netif_rx_ni(skb); 3415 return 0; 3416 } 3417 EXPORT_SYMBOL(dev_loopback_xmit); 3418 3419 #ifdef CONFIG_NET_EGRESS 3420 static struct sk_buff * 3421 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3422 { 3423 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3424 struct tcf_result cl_res; 3425 3426 if (!miniq) 3427 return skb; 3428 3429 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3430 mini_qdisc_bstats_cpu_update(miniq, skb); 3431 3432 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3433 case TC_ACT_OK: 3434 case TC_ACT_RECLASSIFY: 3435 skb->tc_index = TC_H_MIN(cl_res.classid); 3436 break; 3437 case TC_ACT_SHOT: 3438 mini_qdisc_qstats_cpu_drop(miniq); 3439 *ret = NET_XMIT_DROP; 3440 kfree_skb(skb); 3441 return NULL; 3442 case TC_ACT_STOLEN: 3443 case TC_ACT_QUEUED: 3444 case TC_ACT_TRAP: 3445 *ret = NET_XMIT_SUCCESS; 3446 consume_skb(skb); 3447 return NULL; 3448 case TC_ACT_REDIRECT: 3449 /* No need to push/pop skb's mac_header here on egress! */ 3450 skb_do_redirect(skb); 3451 *ret = NET_XMIT_SUCCESS; 3452 return NULL; 3453 default: 3454 break; 3455 } 3456 3457 return skb; 3458 } 3459 #endif /* CONFIG_NET_EGRESS */ 3460 3461 #ifdef CONFIG_XPS 3462 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3463 struct xps_dev_maps *dev_maps, unsigned int tci) 3464 { 3465 struct xps_map *map; 3466 int queue_index = -1; 3467 3468 if (dev->num_tc) { 3469 tci *= dev->num_tc; 3470 tci += netdev_get_prio_tc_map(dev, skb->priority); 3471 } 3472 3473 map = rcu_dereference(dev_maps->attr_map[tci]); 3474 if (map) { 3475 if (map->len == 1) 3476 queue_index = map->queues[0]; 3477 else 3478 queue_index = map->queues[reciprocal_scale( 3479 skb_get_hash(skb), map->len)]; 3480 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3481 queue_index = -1; 3482 } 3483 return queue_index; 3484 } 3485 #endif 3486 3487 static int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3488 { 3489 #ifdef CONFIG_XPS 3490 struct xps_dev_maps *dev_maps; 3491 struct sock *sk = skb->sk; 3492 int queue_index = -1; 3493 3494 if (!static_key_false(&xps_needed)) 3495 return -1; 3496 3497 rcu_read_lock(); 3498 if (!static_key_false(&xps_rxqs_needed)) 3499 goto get_cpus_map; 3500 3501 dev_maps = rcu_dereference(dev->xps_rxqs_map); 3502 if (dev_maps) { 3503 int tci = sk_rx_queue_get(sk); 3504 3505 if (tci >= 0 && tci < dev->num_rx_queues) 3506 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3507 tci); 3508 } 3509 3510 get_cpus_map: 3511 if (queue_index < 0) { 3512 dev_maps = rcu_dereference(dev->xps_cpus_map); 3513 if (dev_maps) { 3514 unsigned int tci = skb->sender_cpu - 1; 3515 3516 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3517 tci); 3518 } 3519 } 3520 rcu_read_unlock(); 3521 3522 return queue_index; 3523 #else 3524 return -1; 3525 #endif 3526 } 3527 3528 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3529 { 3530 struct sock *sk = skb->sk; 3531 int queue_index = sk_tx_queue_get(sk); 3532 3533 if (queue_index < 0 || skb->ooo_okay || 3534 queue_index >= dev->real_num_tx_queues) { 3535 int new_index = get_xps_queue(dev, skb); 3536 3537 if (new_index < 0) 3538 new_index = skb_tx_hash(dev, skb); 3539 3540 if (queue_index != new_index && sk && 3541 sk_fullsock(sk) && 3542 rcu_access_pointer(sk->sk_dst_cache)) 3543 sk_tx_queue_set(sk, new_index); 3544 3545 queue_index = new_index; 3546 } 3547 3548 return queue_index; 3549 } 3550 3551 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3552 struct sk_buff *skb, 3553 void *accel_priv) 3554 { 3555 int queue_index = 0; 3556 3557 #ifdef CONFIG_XPS 3558 u32 sender_cpu = skb->sender_cpu - 1; 3559 3560 if (sender_cpu >= (u32)NR_CPUS) 3561 skb->sender_cpu = raw_smp_processor_id() + 1; 3562 #endif 3563 3564 if (dev->real_num_tx_queues != 1) { 3565 const struct net_device_ops *ops = dev->netdev_ops; 3566 3567 if (ops->ndo_select_queue) 3568 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3569 __netdev_pick_tx); 3570 else 3571 queue_index = __netdev_pick_tx(dev, skb); 3572 3573 queue_index = netdev_cap_txqueue(dev, queue_index); 3574 } 3575 3576 skb_set_queue_mapping(skb, queue_index); 3577 return netdev_get_tx_queue(dev, queue_index); 3578 } 3579 3580 /** 3581 * __dev_queue_xmit - transmit a buffer 3582 * @skb: buffer to transmit 3583 * @accel_priv: private data used for L2 forwarding offload 3584 * 3585 * Queue a buffer for transmission to a network device. The caller must 3586 * have set the device and priority and built the buffer before calling 3587 * this function. The function can be called from an interrupt. 3588 * 3589 * A negative errno code is returned on a failure. A success does not 3590 * guarantee the frame will be transmitted as it may be dropped due 3591 * to congestion or traffic shaping. 3592 * 3593 * ----------------------------------------------------------------------------------- 3594 * I notice this method can also return errors from the queue disciplines, 3595 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3596 * be positive. 3597 * 3598 * Regardless of the return value, the skb is consumed, so it is currently 3599 * difficult to retry a send to this method. (You can bump the ref count 3600 * before sending to hold a reference for retry if you are careful.) 3601 * 3602 * When calling this method, interrupts MUST be enabled. This is because 3603 * the BH enable code must have IRQs enabled so that it will not deadlock. 3604 * --BLG 3605 */ 3606 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3607 { 3608 struct net_device *dev = skb->dev; 3609 struct netdev_queue *txq; 3610 struct Qdisc *q; 3611 int rc = -ENOMEM; 3612 bool again = false; 3613 3614 skb_reset_mac_header(skb); 3615 3616 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3617 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3618 3619 /* Disable soft irqs for various locks below. Also 3620 * stops preemption for RCU. 3621 */ 3622 rcu_read_lock_bh(); 3623 3624 skb_update_prio(skb); 3625 3626 qdisc_pkt_len_init(skb); 3627 #ifdef CONFIG_NET_CLS_ACT 3628 skb->tc_at_ingress = 0; 3629 # ifdef CONFIG_NET_EGRESS 3630 if (static_branch_unlikely(&egress_needed_key)) { 3631 skb = sch_handle_egress(skb, &rc, dev); 3632 if (!skb) 3633 goto out; 3634 } 3635 # endif 3636 #endif 3637 /* If device/qdisc don't need skb->dst, release it right now while 3638 * its hot in this cpu cache. 3639 */ 3640 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3641 skb_dst_drop(skb); 3642 else 3643 skb_dst_force(skb); 3644 3645 txq = netdev_pick_tx(dev, skb, accel_priv); 3646 q = rcu_dereference_bh(txq->qdisc); 3647 3648 trace_net_dev_queue(skb); 3649 if (q->enqueue) { 3650 rc = __dev_xmit_skb(skb, q, dev, txq); 3651 goto out; 3652 } 3653 3654 /* The device has no queue. Common case for software devices: 3655 * loopback, all the sorts of tunnels... 3656 3657 * Really, it is unlikely that netif_tx_lock protection is necessary 3658 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3659 * counters.) 3660 * However, it is possible, that they rely on protection 3661 * made by us here. 3662 3663 * Check this and shot the lock. It is not prone from deadlocks. 3664 *Either shot noqueue qdisc, it is even simpler 8) 3665 */ 3666 if (dev->flags & IFF_UP) { 3667 int cpu = smp_processor_id(); /* ok because BHs are off */ 3668 3669 if (txq->xmit_lock_owner != cpu) { 3670 if (unlikely(__this_cpu_read(xmit_recursion) > 3671 XMIT_RECURSION_LIMIT)) 3672 goto recursion_alert; 3673 3674 skb = validate_xmit_skb(skb, dev, &again); 3675 if (!skb) 3676 goto out; 3677 3678 HARD_TX_LOCK(dev, txq, cpu); 3679 3680 if (!netif_xmit_stopped(txq)) { 3681 __this_cpu_inc(xmit_recursion); 3682 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3683 __this_cpu_dec(xmit_recursion); 3684 if (dev_xmit_complete(rc)) { 3685 HARD_TX_UNLOCK(dev, txq); 3686 goto out; 3687 } 3688 } 3689 HARD_TX_UNLOCK(dev, txq); 3690 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3691 dev->name); 3692 } else { 3693 /* Recursion is detected! It is possible, 3694 * unfortunately 3695 */ 3696 recursion_alert: 3697 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3698 dev->name); 3699 } 3700 } 3701 3702 rc = -ENETDOWN; 3703 rcu_read_unlock_bh(); 3704 3705 atomic_long_inc(&dev->tx_dropped); 3706 kfree_skb_list(skb); 3707 return rc; 3708 out: 3709 rcu_read_unlock_bh(); 3710 return rc; 3711 } 3712 3713 int dev_queue_xmit(struct sk_buff *skb) 3714 { 3715 return __dev_queue_xmit(skb, NULL); 3716 } 3717 EXPORT_SYMBOL(dev_queue_xmit); 3718 3719 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3720 { 3721 return __dev_queue_xmit(skb, accel_priv); 3722 } 3723 EXPORT_SYMBOL(dev_queue_xmit_accel); 3724 3725 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3726 { 3727 struct net_device *dev = skb->dev; 3728 struct sk_buff *orig_skb = skb; 3729 struct netdev_queue *txq; 3730 int ret = NETDEV_TX_BUSY; 3731 bool again = false; 3732 3733 if (unlikely(!netif_running(dev) || 3734 !netif_carrier_ok(dev))) 3735 goto drop; 3736 3737 skb = validate_xmit_skb_list(skb, dev, &again); 3738 if (skb != orig_skb) 3739 goto drop; 3740 3741 skb_set_queue_mapping(skb, queue_id); 3742 txq = skb_get_tx_queue(dev, skb); 3743 3744 local_bh_disable(); 3745 3746 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3747 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3748 ret = netdev_start_xmit(skb, dev, txq, false); 3749 HARD_TX_UNLOCK(dev, txq); 3750 3751 local_bh_enable(); 3752 3753 if (!dev_xmit_complete(ret)) 3754 kfree_skb(skb); 3755 3756 return ret; 3757 drop: 3758 atomic_long_inc(&dev->tx_dropped); 3759 kfree_skb_list(skb); 3760 return NET_XMIT_DROP; 3761 } 3762 EXPORT_SYMBOL(dev_direct_xmit); 3763 3764 /************************************************************************* 3765 * Receiver routines 3766 *************************************************************************/ 3767 3768 int netdev_max_backlog __read_mostly = 1000; 3769 EXPORT_SYMBOL(netdev_max_backlog); 3770 3771 int netdev_tstamp_prequeue __read_mostly = 1; 3772 int netdev_budget __read_mostly = 300; 3773 unsigned int __read_mostly netdev_budget_usecs = 2000; 3774 int weight_p __read_mostly = 64; /* old backlog weight */ 3775 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3776 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3777 int dev_rx_weight __read_mostly = 64; 3778 int dev_tx_weight __read_mostly = 64; 3779 3780 /* Called with irq disabled */ 3781 static inline void ____napi_schedule(struct softnet_data *sd, 3782 struct napi_struct *napi) 3783 { 3784 list_add_tail(&napi->poll_list, &sd->poll_list); 3785 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3786 } 3787 3788 #ifdef CONFIG_RPS 3789 3790 /* One global table that all flow-based protocols share. */ 3791 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3792 EXPORT_SYMBOL(rps_sock_flow_table); 3793 u32 rps_cpu_mask __read_mostly; 3794 EXPORT_SYMBOL(rps_cpu_mask); 3795 3796 struct static_key rps_needed __read_mostly; 3797 EXPORT_SYMBOL(rps_needed); 3798 struct static_key rfs_needed __read_mostly; 3799 EXPORT_SYMBOL(rfs_needed); 3800 3801 static struct rps_dev_flow * 3802 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3803 struct rps_dev_flow *rflow, u16 next_cpu) 3804 { 3805 if (next_cpu < nr_cpu_ids) { 3806 #ifdef CONFIG_RFS_ACCEL 3807 struct netdev_rx_queue *rxqueue; 3808 struct rps_dev_flow_table *flow_table; 3809 struct rps_dev_flow *old_rflow; 3810 u32 flow_id; 3811 u16 rxq_index; 3812 int rc; 3813 3814 /* Should we steer this flow to a different hardware queue? */ 3815 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3816 !(dev->features & NETIF_F_NTUPLE)) 3817 goto out; 3818 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3819 if (rxq_index == skb_get_rx_queue(skb)) 3820 goto out; 3821 3822 rxqueue = dev->_rx + rxq_index; 3823 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3824 if (!flow_table) 3825 goto out; 3826 flow_id = skb_get_hash(skb) & flow_table->mask; 3827 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3828 rxq_index, flow_id); 3829 if (rc < 0) 3830 goto out; 3831 old_rflow = rflow; 3832 rflow = &flow_table->flows[flow_id]; 3833 rflow->filter = rc; 3834 if (old_rflow->filter == rflow->filter) 3835 old_rflow->filter = RPS_NO_FILTER; 3836 out: 3837 #endif 3838 rflow->last_qtail = 3839 per_cpu(softnet_data, next_cpu).input_queue_head; 3840 } 3841 3842 rflow->cpu = next_cpu; 3843 return rflow; 3844 } 3845 3846 /* 3847 * get_rps_cpu is called from netif_receive_skb and returns the target 3848 * CPU from the RPS map of the receiving queue for a given skb. 3849 * rcu_read_lock must be held on entry. 3850 */ 3851 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3852 struct rps_dev_flow **rflowp) 3853 { 3854 const struct rps_sock_flow_table *sock_flow_table; 3855 struct netdev_rx_queue *rxqueue = dev->_rx; 3856 struct rps_dev_flow_table *flow_table; 3857 struct rps_map *map; 3858 int cpu = -1; 3859 u32 tcpu; 3860 u32 hash; 3861 3862 if (skb_rx_queue_recorded(skb)) { 3863 u16 index = skb_get_rx_queue(skb); 3864 3865 if (unlikely(index >= dev->real_num_rx_queues)) { 3866 WARN_ONCE(dev->real_num_rx_queues > 1, 3867 "%s received packet on queue %u, but number " 3868 "of RX queues is %u\n", 3869 dev->name, index, dev->real_num_rx_queues); 3870 goto done; 3871 } 3872 rxqueue += index; 3873 } 3874 3875 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3876 3877 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3878 map = rcu_dereference(rxqueue->rps_map); 3879 if (!flow_table && !map) 3880 goto done; 3881 3882 skb_reset_network_header(skb); 3883 hash = skb_get_hash(skb); 3884 if (!hash) 3885 goto done; 3886 3887 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3888 if (flow_table && sock_flow_table) { 3889 struct rps_dev_flow *rflow; 3890 u32 next_cpu; 3891 u32 ident; 3892 3893 /* First check into global flow table if there is a match */ 3894 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3895 if ((ident ^ hash) & ~rps_cpu_mask) 3896 goto try_rps; 3897 3898 next_cpu = ident & rps_cpu_mask; 3899 3900 /* OK, now we know there is a match, 3901 * we can look at the local (per receive queue) flow table 3902 */ 3903 rflow = &flow_table->flows[hash & flow_table->mask]; 3904 tcpu = rflow->cpu; 3905 3906 /* 3907 * If the desired CPU (where last recvmsg was done) is 3908 * different from current CPU (one in the rx-queue flow 3909 * table entry), switch if one of the following holds: 3910 * - Current CPU is unset (>= nr_cpu_ids). 3911 * - Current CPU is offline. 3912 * - The current CPU's queue tail has advanced beyond the 3913 * last packet that was enqueued using this table entry. 3914 * This guarantees that all previous packets for the flow 3915 * have been dequeued, thus preserving in order delivery. 3916 */ 3917 if (unlikely(tcpu != next_cpu) && 3918 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3919 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3920 rflow->last_qtail)) >= 0)) { 3921 tcpu = next_cpu; 3922 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3923 } 3924 3925 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3926 *rflowp = rflow; 3927 cpu = tcpu; 3928 goto done; 3929 } 3930 } 3931 3932 try_rps: 3933 3934 if (map) { 3935 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3936 if (cpu_online(tcpu)) { 3937 cpu = tcpu; 3938 goto done; 3939 } 3940 } 3941 3942 done: 3943 return cpu; 3944 } 3945 3946 #ifdef CONFIG_RFS_ACCEL 3947 3948 /** 3949 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3950 * @dev: Device on which the filter was set 3951 * @rxq_index: RX queue index 3952 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3953 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3954 * 3955 * Drivers that implement ndo_rx_flow_steer() should periodically call 3956 * this function for each installed filter and remove the filters for 3957 * which it returns %true. 3958 */ 3959 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3960 u32 flow_id, u16 filter_id) 3961 { 3962 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3963 struct rps_dev_flow_table *flow_table; 3964 struct rps_dev_flow *rflow; 3965 bool expire = true; 3966 unsigned int cpu; 3967 3968 rcu_read_lock(); 3969 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3970 if (flow_table && flow_id <= flow_table->mask) { 3971 rflow = &flow_table->flows[flow_id]; 3972 cpu = READ_ONCE(rflow->cpu); 3973 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3974 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3975 rflow->last_qtail) < 3976 (int)(10 * flow_table->mask))) 3977 expire = false; 3978 } 3979 rcu_read_unlock(); 3980 return expire; 3981 } 3982 EXPORT_SYMBOL(rps_may_expire_flow); 3983 3984 #endif /* CONFIG_RFS_ACCEL */ 3985 3986 /* Called from hardirq (IPI) context */ 3987 static void rps_trigger_softirq(void *data) 3988 { 3989 struct softnet_data *sd = data; 3990 3991 ____napi_schedule(sd, &sd->backlog); 3992 sd->received_rps++; 3993 } 3994 3995 #endif /* CONFIG_RPS */ 3996 3997 /* 3998 * Check if this softnet_data structure is another cpu one 3999 * If yes, queue it to our IPI list and return 1 4000 * If no, return 0 4001 */ 4002 static int rps_ipi_queued(struct softnet_data *sd) 4003 { 4004 #ifdef CONFIG_RPS 4005 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4006 4007 if (sd != mysd) { 4008 sd->rps_ipi_next = mysd->rps_ipi_list; 4009 mysd->rps_ipi_list = sd; 4010 4011 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4012 return 1; 4013 } 4014 #endif /* CONFIG_RPS */ 4015 return 0; 4016 } 4017 4018 #ifdef CONFIG_NET_FLOW_LIMIT 4019 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4020 #endif 4021 4022 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4023 { 4024 #ifdef CONFIG_NET_FLOW_LIMIT 4025 struct sd_flow_limit *fl; 4026 struct softnet_data *sd; 4027 unsigned int old_flow, new_flow; 4028 4029 if (qlen < (netdev_max_backlog >> 1)) 4030 return false; 4031 4032 sd = this_cpu_ptr(&softnet_data); 4033 4034 rcu_read_lock(); 4035 fl = rcu_dereference(sd->flow_limit); 4036 if (fl) { 4037 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4038 old_flow = fl->history[fl->history_head]; 4039 fl->history[fl->history_head] = new_flow; 4040 4041 fl->history_head++; 4042 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4043 4044 if (likely(fl->buckets[old_flow])) 4045 fl->buckets[old_flow]--; 4046 4047 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4048 fl->count++; 4049 rcu_read_unlock(); 4050 return true; 4051 } 4052 } 4053 rcu_read_unlock(); 4054 #endif 4055 return false; 4056 } 4057 4058 /* 4059 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4060 * queue (may be a remote CPU queue). 4061 */ 4062 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4063 unsigned int *qtail) 4064 { 4065 struct softnet_data *sd; 4066 unsigned long flags; 4067 unsigned int qlen; 4068 4069 sd = &per_cpu(softnet_data, cpu); 4070 4071 local_irq_save(flags); 4072 4073 rps_lock(sd); 4074 if (!netif_running(skb->dev)) 4075 goto drop; 4076 qlen = skb_queue_len(&sd->input_pkt_queue); 4077 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4078 if (qlen) { 4079 enqueue: 4080 __skb_queue_tail(&sd->input_pkt_queue, skb); 4081 input_queue_tail_incr_save(sd, qtail); 4082 rps_unlock(sd); 4083 local_irq_restore(flags); 4084 return NET_RX_SUCCESS; 4085 } 4086 4087 /* Schedule NAPI for backlog device 4088 * We can use non atomic operation since we own the queue lock 4089 */ 4090 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4091 if (!rps_ipi_queued(sd)) 4092 ____napi_schedule(sd, &sd->backlog); 4093 } 4094 goto enqueue; 4095 } 4096 4097 drop: 4098 sd->dropped++; 4099 rps_unlock(sd); 4100 4101 local_irq_restore(flags); 4102 4103 atomic_long_inc(&skb->dev->rx_dropped); 4104 kfree_skb(skb); 4105 return NET_RX_DROP; 4106 } 4107 4108 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4109 { 4110 struct net_device *dev = skb->dev; 4111 struct netdev_rx_queue *rxqueue; 4112 4113 rxqueue = dev->_rx; 4114 4115 if (skb_rx_queue_recorded(skb)) { 4116 u16 index = skb_get_rx_queue(skb); 4117 4118 if (unlikely(index >= dev->real_num_rx_queues)) { 4119 WARN_ONCE(dev->real_num_rx_queues > 1, 4120 "%s received packet on queue %u, but number " 4121 "of RX queues is %u\n", 4122 dev->name, index, dev->real_num_rx_queues); 4123 4124 return rxqueue; /* Return first rxqueue */ 4125 } 4126 rxqueue += index; 4127 } 4128 return rxqueue; 4129 } 4130 4131 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4132 struct xdp_buff *xdp, 4133 struct bpf_prog *xdp_prog) 4134 { 4135 struct netdev_rx_queue *rxqueue; 4136 void *orig_data, *orig_data_end; 4137 u32 metalen, act = XDP_DROP; 4138 int hlen, off; 4139 u32 mac_len; 4140 4141 /* Reinjected packets coming from act_mirred or similar should 4142 * not get XDP generic processing. 4143 */ 4144 if (skb_cloned(skb)) 4145 return XDP_PASS; 4146 4147 /* XDP packets must be linear and must have sufficient headroom 4148 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4149 * native XDP provides, thus we need to do it here as well. 4150 */ 4151 if (skb_is_nonlinear(skb) || 4152 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4153 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4154 int troom = skb->tail + skb->data_len - skb->end; 4155 4156 /* In case we have to go down the path and also linearize, 4157 * then lets do the pskb_expand_head() work just once here. 4158 */ 4159 if (pskb_expand_head(skb, 4160 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4161 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4162 goto do_drop; 4163 if (skb_linearize(skb)) 4164 goto do_drop; 4165 } 4166 4167 /* The XDP program wants to see the packet starting at the MAC 4168 * header. 4169 */ 4170 mac_len = skb->data - skb_mac_header(skb); 4171 hlen = skb_headlen(skb) + mac_len; 4172 xdp->data = skb->data - mac_len; 4173 xdp->data_meta = xdp->data; 4174 xdp->data_end = xdp->data + hlen; 4175 xdp->data_hard_start = skb->data - skb_headroom(skb); 4176 orig_data_end = xdp->data_end; 4177 orig_data = xdp->data; 4178 4179 rxqueue = netif_get_rxqueue(skb); 4180 xdp->rxq = &rxqueue->xdp_rxq; 4181 4182 act = bpf_prog_run_xdp(xdp_prog, xdp); 4183 4184 off = xdp->data - orig_data; 4185 if (off > 0) 4186 __skb_pull(skb, off); 4187 else if (off < 0) 4188 __skb_push(skb, -off); 4189 skb->mac_header += off; 4190 4191 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4192 * pckt. 4193 */ 4194 off = orig_data_end - xdp->data_end; 4195 if (off != 0) { 4196 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4197 skb->len -= off; 4198 4199 } 4200 4201 switch (act) { 4202 case XDP_REDIRECT: 4203 case XDP_TX: 4204 __skb_push(skb, mac_len); 4205 break; 4206 case XDP_PASS: 4207 metalen = xdp->data - xdp->data_meta; 4208 if (metalen) 4209 skb_metadata_set(skb, metalen); 4210 break; 4211 default: 4212 bpf_warn_invalid_xdp_action(act); 4213 /* fall through */ 4214 case XDP_ABORTED: 4215 trace_xdp_exception(skb->dev, xdp_prog, act); 4216 /* fall through */ 4217 case XDP_DROP: 4218 do_drop: 4219 kfree_skb(skb); 4220 break; 4221 } 4222 4223 return act; 4224 } 4225 4226 /* When doing generic XDP we have to bypass the qdisc layer and the 4227 * network taps in order to match in-driver-XDP behavior. 4228 */ 4229 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4230 { 4231 struct net_device *dev = skb->dev; 4232 struct netdev_queue *txq; 4233 bool free_skb = true; 4234 int cpu, rc; 4235 4236 txq = netdev_pick_tx(dev, skb, NULL); 4237 cpu = smp_processor_id(); 4238 HARD_TX_LOCK(dev, txq, cpu); 4239 if (!netif_xmit_stopped(txq)) { 4240 rc = netdev_start_xmit(skb, dev, txq, 0); 4241 if (dev_xmit_complete(rc)) 4242 free_skb = false; 4243 } 4244 HARD_TX_UNLOCK(dev, txq); 4245 if (free_skb) { 4246 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4247 kfree_skb(skb); 4248 } 4249 } 4250 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4251 4252 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4253 4254 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4255 { 4256 if (xdp_prog) { 4257 struct xdp_buff xdp; 4258 u32 act; 4259 int err; 4260 4261 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4262 if (act != XDP_PASS) { 4263 switch (act) { 4264 case XDP_REDIRECT: 4265 err = xdp_do_generic_redirect(skb->dev, skb, 4266 &xdp, xdp_prog); 4267 if (err) 4268 goto out_redir; 4269 break; 4270 case XDP_TX: 4271 generic_xdp_tx(skb, xdp_prog); 4272 break; 4273 } 4274 return XDP_DROP; 4275 } 4276 } 4277 return XDP_PASS; 4278 out_redir: 4279 kfree_skb(skb); 4280 return XDP_DROP; 4281 } 4282 EXPORT_SYMBOL_GPL(do_xdp_generic); 4283 4284 static int netif_rx_internal(struct sk_buff *skb) 4285 { 4286 int ret; 4287 4288 net_timestamp_check(netdev_tstamp_prequeue, skb); 4289 4290 trace_netif_rx(skb); 4291 4292 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4293 int ret; 4294 4295 preempt_disable(); 4296 rcu_read_lock(); 4297 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4298 rcu_read_unlock(); 4299 preempt_enable(); 4300 4301 /* Consider XDP consuming the packet a success from 4302 * the netdev point of view we do not want to count 4303 * this as an error. 4304 */ 4305 if (ret != XDP_PASS) 4306 return NET_RX_SUCCESS; 4307 } 4308 4309 #ifdef CONFIG_RPS 4310 if (static_key_false(&rps_needed)) { 4311 struct rps_dev_flow voidflow, *rflow = &voidflow; 4312 int cpu; 4313 4314 preempt_disable(); 4315 rcu_read_lock(); 4316 4317 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4318 if (cpu < 0) 4319 cpu = smp_processor_id(); 4320 4321 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4322 4323 rcu_read_unlock(); 4324 preempt_enable(); 4325 } else 4326 #endif 4327 { 4328 unsigned int qtail; 4329 4330 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4331 put_cpu(); 4332 } 4333 return ret; 4334 } 4335 4336 /** 4337 * netif_rx - post buffer to the network code 4338 * @skb: buffer to post 4339 * 4340 * This function receives a packet from a device driver and queues it for 4341 * the upper (protocol) levels to process. It always succeeds. The buffer 4342 * may be dropped during processing for congestion control or by the 4343 * protocol layers. 4344 * 4345 * return values: 4346 * NET_RX_SUCCESS (no congestion) 4347 * NET_RX_DROP (packet was dropped) 4348 * 4349 */ 4350 4351 int netif_rx(struct sk_buff *skb) 4352 { 4353 trace_netif_rx_entry(skb); 4354 4355 return netif_rx_internal(skb); 4356 } 4357 EXPORT_SYMBOL(netif_rx); 4358 4359 int netif_rx_ni(struct sk_buff *skb) 4360 { 4361 int err; 4362 4363 trace_netif_rx_ni_entry(skb); 4364 4365 preempt_disable(); 4366 err = netif_rx_internal(skb); 4367 if (local_softirq_pending()) 4368 do_softirq(); 4369 preempt_enable(); 4370 4371 return err; 4372 } 4373 EXPORT_SYMBOL(netif_rx_ni); 4374 4375 static __latent_entropy void net_tx_action(struct softirq_action *h) 4376 { 4377 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4378 4379 if (sd->completion_queue) { 4380 struct sk_buff *clist; 4381 4382 local_irq_disable(); 4383 clist = sd->completion_queue; 4384 sd->completion_queue = NULL; 4385 local_irq_enable(); 4386 4387 while (clist) { 4388 struct sk_buff *skb = clist; 4389 4390 clist = clist->next; 4391 4392 WARN_ON(refcount_read(&skb->users)); 4393 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4394 trace_consume_skb(skb); 4395 else 4396 trace_kfree_skb(skb, net_tx_action); 4397 4398 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4399 __kfree_skb(skb); 4400 else 4401 __kfree_skb_defer(skb); 4402 } 4403 4404 __kfree_skb_flush(); 4405 } 4406 4407 if (sd->output_queue) { 4408 struct Qdisc *head; 4409 4410 local_irq_disable(); 4411 head = sd->output_queue; 4412 sd->output_queue = NULL; 4413 sd->output_queue_tailp = &sd->output_queue; 4414 local_irq_enable(); 4415 4416 while (head) { 4417 struct Qdisc *q = head; 4418 spinlock_t *root_lock = NULL; 4419 4420 head = head->next_sched; 4421 4422 if (!(q->flags & TCQ_F_NOLOCK)) { 4423 root_lock = qdisc_lock(q); 4424 spin_lock(root_lock); 4425 } 4426 /* We need to make sure head->next_sched is read 4427 * before clearing __QDISC_STATE_SCHED 4428 */ 4429 smp_mb__before_atomic(); 4430 clear_bit(__QDISC_STATE_SCHED, &q->state); 4431 qdisc_run(q); 4432 if (root_lock) 4433 spin_unlock(root_lock); 4434 } 4435 } 4436 4437 xfrm_dev_backlog(sd); 4438 } 4439 4440 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4441 /* This hook is defined here for ATM LANE */ 4442 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4443 unsigned char *addr) __read_mostly; 4444 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4445 #endif 4446 4447 static inline struct sk_buff * 4448 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4449 struct net_device *orig_dev) 4450 { 4451 #ifdef CONFIG_NET_CLS_ACT 4452 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4453 struct tcf_result cl_res; 4454 4455 /* If there's at least one ingress present somewhere (so 4456 * we get here via enabled static key), remaining devices 4457 * that are not configured with an ingress qdisc will bail 4458 * out here. 4459 */ 4460 if (!miniq) 4461 return skb; 4462 4463 if (*pt_prev) { 4464 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4465 *pt_prev = NULL; 4466 } 4467 4468 qdisc_skb_cb(skb)->pkt_len = skb->len; 4469 skb->tc_at_ingress = 1; 4470 mini_qdisc_bstats_cpu_update(miniq, skb); 4471 4472 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4473 case TC_ACT_OK: 4474 case TC_ACT_RECLASSIFY: 4475 skb->tc_index = TC_H_MIN(cl_res.classid); 4476 break; 4477 case TC_ACT_SHOT: 4478 mini_qdisc_qstats_cpu_drop(miniq); 4479 kfree_skb(skb); 4480 return NULL; 4481 case TC_ACT_STOLEN: 4482 case TC_ACT_QUEUED: 4483 case TC_ACT_TRAP: 4484 consume_skb(skb); 4485 return NULL; 4486 case TC_ACT_REDIRECT: 4487 /* skb_mac_header check was done by cls/act_bpf, so 4488 * we can safely push the L2 header back before 4489 * redirecting to another netdev 4490 */ 4491 __skb_push(skb, skb->mac_len); 4492 skb_do_redirect(skb); 4493 return NULL; 4494 default: 4495 break; 4496 } 4497 #endif /* CONFIG_NET_CLS_ACT */ 4498 return skb; 4499 } 4500 4501 /** 4502 * netdev_is_rx_handler_busy - check if receive handler is registered 4503 * @dev: device to check 4504 * 4505 * Check if a receive handler is already registered for a given device. 4506 * Return true if there one. 4507 * 4508 * The caller must hold the rtnl_mutex. 4509 */ 4510 bool netdev_is_rx_handler_busy(struct net_device *dev) 4511 { 4512 ASSERT_RTNL(); 4513 return dev && rtnl_dereference(dev->rx_handler); 4514 } 4515 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4516 4517 /** 4518 * netdev_rx_handler_register - register receive handler 4519 * @dev: device to register a handler for 4520 * @rx_handler: receive handler to register 4521 * @rx_handler_data: data pointer that is used by rx handler 4522 * 4523 * Register a receive handler for a device. This handler will then be 4524 * called from __netif_receive_skb. A negative errno code is returned 4525 * on a failure. 4526 * 4527 * The caller must hold the rtnl_mutex. 4528 * 4529 * For a general description of rx_handler, see enum rx_handler_result. 4530 */ 4531 int netdev_rx_handler_register(struct net_device *dev, 4532 rx_handler_func_t *rx_handler, 4533 void *rx_handler_data) 4534 { 4535 if (netdev_is_rx_handler_busy(dev)) 4536 return -EBUSY; 4537 4538 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4539 return -EINVAL; 4540 4541 /* Note: rx_handler_data must be set before rx_handler */ 4542 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4543 rcu_assign_pointer(dev->rx_handler, rx_handler); 4544 4545 return 0; 4546 } 4547 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4548 4549 /** 4550 * netdev_rx_handler_unregister - unregister receive handler 4551 * @dev: device to unregister a handler from 4552 * 4553 * Unregister a receive handler from a device. 4554 * 4555 * The caller must hold the rtnl_mutex. 4556 */ 4557 void netdev_rx_handler_unregister(struct net_device *dev) 4558 { 4559 4560 ASSERT_RTNL(); 4561 RCU_INIT_POINTER(dev->rx_handler, NULL); 4562 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4563 * section has a guarantee to see a non NULL rx_handler_data 4564 * as well. 4565 */ 4566 synchronize_net(); 4567 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4568 } 4569 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4570 4571 /* 4572 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4573 * the special handling of PFMEMALLOC skbs. 4574 */ 4575 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4576 { 4577 switch (skb->protocol) { 4578 case htons(ETH_P_ARP): 4579 case htons(ETH_P_IP): 4580 case htons(ETH_P_IPV6): 4581 case htons(ETH_P_8021Q): 4582 case htons(ETH_P_8021AD): 4583 return true; 4584 default: 4585 return false; 4586 } 4587 } 4588 4589 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4590 int *ret, struct net_device *orig_dev) 4591 { 4592 #ifdef CONFIG_NETFILTER_INGRESS 4593 if (nf_hook_ingress_active(skb)) { 4594 int ingress_retval; 4595 4596 if (*pt_prev) { 4597 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4598 *pt_prev = NULL; 4599 } 4600 4601 rcu_read_lock(); 4602 ingress_retval = nf_hook_ingress(skb); 4603 rcu_read_unlock(); 4604 return ingress_retval; 4605 } 4606 #endif /* CONFIG_NETFILTER_INGRESS */ 4607 return 0; 4608 } 4609 4610 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4611 struct packet_type **ppt_prev) 4612 { 4613 struct packet_type *ptype, *pt_prev; 4614 rx_handler_func_t *rx_handler; 4615 struct net_device *orig_dev; 4616 bool deliver_exact = false; 4617 int ret = NET_RX_DROP; 4618 __be16 type; 4619 4620 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4621 4622 trace_netif_receive_skb(skb); 4623 4624 orig_dev = skb->dev; 4625 4626 skb_reset_network_header(skb); 4627 if (!skb_transport_header_was_set(skb)) 4628 skb_reset_transport_header(skb); 4629 skb_reset_mac_len(skb); 4630 4631 pt_prev = NULL; 4632 4633 another_round: 4634 skb->skb_iif = skb->dev->ifindex; 4635 4636 __this_cpu_inc(softnet_data.processed); 4637 4638 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4639 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4640 skb = skb_vlan_untag(skb); 4641 if (unlikely(!skb)) 4642 goto out; 4643 } 4644 4645 if (skb_skip_tc_classify(skb)) 4646 goto skip_classify; 4647 4648 if (pfmemalloc) 4649 goto skip_taps; 4650 4651 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4652 if (pt_prev) 4653 ret = deliver_skb(skb, pt_prev, orig_dev); 4654 pt_prev = ptype; 4655 } 4656 4657 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4658 if (pt_prev) 4659 ret = deliver_skb(skb, pt_prev, orig_dev); 4660 pt_prev = ptype; 4661 } 4662 4663 skip_taps: 4664 #ifdef CONFIG_NET_INGRESS 4665 if (static_branch_unlikely(&ingress_needed_key)) { 4666 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4667 if (!skb) 4668 goto out; 4669 4670 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4671 goto out; 4672 } 4673 #endif 4674 skb_reset_tc(skb); 4675 skip_classify: 4676 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4677 goto drop; 4678 4679 if (skb_vlan_tag_present(skb)) { 4680 if (pt_prev) { 4681 ret = deliver_skb(skb, pt_prev, orig_dev); 4682 pt_prev = NULL; 4683 } 4684 if (vlan_do_receive(&skb)) 4685 goto another_round; 4686 else if (unlikely(!skb)) 4687 goto out; 4688 } 4689 4690 rx_handler = rcu_dereference(skb->dev->rx_handler); 4691 if (rx_handler) { 4692 if (pt_prev) { 4693 ret = deliver_skb(skb, pt_prev, orig_dev); 4694 pt_prev = NULL; 4695 } 4696 switch (rx_handler(&skb)) { 4697 case RX_HANDLER_CONSUMED: 4698 ret = NET_RX_SUCCESS; 4699 goto out; 4700 case RX_HANDLER_ANOTHER: 4701 goto another_round; 4702 case RX_HANDLER_EXACT: 4703 deliver_exact = true; 4704 case RX_HANDLER_PASS: 4705 break; 4706 default: 4707 BUG(); 4708 } 4709 } 4710 4711 if (unlikely(skb_vlan_tag_present(skb))) { 4712 if (skb_vlan_tag_get_id(skb)) 4713 skb->pkt_type = PACKET_OTHERHOST; 4714 /* Note: we might in the future use prio bits 4715 * and set skb->priority like in vlan_do_receive() 4716 * For the time being, just ignore Priority Code Point 4717 */ 4718 skb->vlan_tci = 0; 4719 } 4720 4721 type = skb->protocol; 4722 4723 /* deliver only exact match when indicated */ 4724 if (likely(!deliver_exact)) { 4725 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4726 &ptype_base[ntohs(type) & 4727 PTYPE_HASH_MASK]); 4728 } 4729 4730 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4731 &orig_dev->ptype_specific); 4732 4733 if (unlikely(skb->dev != orig_dev)) { 4734 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4735 &skb->dev->ptype_specific); 4736 } 4737 4738 if (pt_prev) { 4739 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4740 goto drop; 4741 *ppt_prev = pt_prev; 4742 } else { 4743 drop: 4744 if (!deliver_exact) 4745 atomic_long_inc(&skb->dev->rx_dropped); 4746 else 4747 atomic_long_inc(&skb->dev->rx_nohandler); 4748 kfree_skb(skb); 4749 /* Jamal, now you will not able to escape explaining 4750 * me how you were going to use this. :-) 4751 */ 4752 ret = NET_RX_DROP; 4753 } 4754 4755 out: 4756 return ret; 4757 } 4758 4759 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4760 { 4761 struct net_device *orig_dev = skb->dev; 4762 struct packet_type *pt_prev = NULL; 4763 int ret; 4764 4765 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4766 if (pt_prev) 4767 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4768 return ret; 4769 } 4770 4771 /** 4772 * netif_receive_skb_core - special purpose version of netif_receive_skb 4773 * @skb: buffer to process 4774 * 4775 * More direct receive version of netif_receive_skb(). It should 4776 * only be used by callers that have a need to skip RPS and Generic XDP. 4777 * Caller must also take care of handling if (page_is_)pfmemalloc. 4778 * 4779 * This function may only be called from softirq context and interrupts 4780 * should be enabled. 4781 * 4782 * Return values (usually ignored): 4783 * NET_RX_SUCCESS: no congestion 4784 * NET_RX_DROP: packet was dropped 4785 */ 4786 int netif_receive_skb_core(struct sk_buff *skb) 4787 { 4788 int ret; 4789 4790 rcu_read_lock(); 4791 ret = __netif_receive_skb_one_core(skb, false); 4792 rcu_read_unlock(); 4793 4794 return ret; 4795 } 4796 EXPORT_SYMBOL(netif_receive_skb_core); 4797 4798 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 4799 struct packet_type *pt_prev, 4800 struct net_device *orig_dev) 4801 { 4802 struct sk_buff *skb, *next; 4803 4804 if (!pt_prev) 4805 return; 4806 if (list_empty(head)) 4807 return; 4808 if (pt_prev->list_func != NULL) 4809 pt_prev->list_func(head, pt_prev, orig_dev); 4810 else 4811 list_for_each_entry_safe(skb, next, head, list) 4812 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4813 } 4814 4815 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 4816 { 4817 /* Fast-path assumptions: 4818 * - There is no RX handler. 4819 * - Only one packet_type matches. 4820 * If either of these fails, we will end up doing some per-packet 4821 * processing in-line, then handling the 'last ptype' for the whole 4822 * sublist. This can't cause out-of-order delivery to any single ptype, 4823 * because the 'last ptype' must be constant across the sublist, and all 4824 * other ptypes are handled per-packet. 4825 */ 4826 /* Current (common) ptype of sublist */ 4827 struct packet_type *pt_curr = NULL; 4828 /* Current (common) orig_dev of sublist */ 4829 struct net_device *od_curr = NULL; 4830 struct list_head sublist; 4831 struct sk_buff *skb, *next; 4832 4833 list_for_each_entry_safe(skb, next, head, list) { 4834 struct net_device *orig_dev = skb->dev; 4835 struct packet_type *pt_prev = NULL; 4836 4837 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4838 if (pt_curr != pt_prev || od_curr != orig_dev) { 4839 /* dispatch old sublist */ 4840 list_cut_before(&sublist, head, &skb->list); 4841 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 4842 /* start new sublist */ 4843 pt_curr = pt_prev; 4844 od_curr = orig_dev; 4845 } 4846 } 4847 4848 /* dispatch final sublist */ 4849 __netif_receive_skb_list_ptype(head, pt_curr, od_curr); 4850 } 4851 4852 static int __netif_receive_skb(struct sk_buff *skb) 4853 { 4854 int ret; 4855 4856 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4857 unsigned int noreclaim_flag; 4858 4859 /* 4860 * PFMEMALLOC skbs are special, they should 4861 * - be delivered to SOCK_MEMALLOC sockets only 4862 * - stay away from userspace 4863 * - have bounded memory usage 4864 * 4865 * Use PF_MEMALLOC as this saves us from propagating the allocation 4866 * context down to all allocation sites. 4867 */ 4868 noreclaim_flag = memalloc_noreclaim_save(); 4869 ret = __netif_receive_skb_one_core(skb, true); 4870 memalloc_noreclaim_restore(noreclaim_flag); 4871 } else 4872 ret = __netif_receive_skb_one_core(skb, false); 4873 4874 return ret; 4875 } 4876 4877 static void __netif_receive_skb_list(struct list_head *head) 4878 { 4879 unsigned long noreclaim_flag = 0; 4880 struct sk_buff *skb, *next; 4881 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 4882 4883 list_for_each_entry_safe(skb, next, head, list) { 4884 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 4885 struct list_head sublist; 4886 4887 /* Handle the previous sublist */ 4888 list_cut_before(&sublist, head, &skb->list); 4889 if (!list_empty(&sublist)) 4890 __netif_receive_skb_list_core(&sublist, pfmemalloc); 4891 pfmemalloc = !pfmemalloc; 4892 /* See comments in __netif_receive_skb */ 4893 if (pfmemalloc) 4894 noreclaim_flag = memalloc_noreclaim_save(); 4895 else 4896 memalloc_noreclaim_restore(noreclaim_flag); 4897 } 4898 } 4899 /* Handle the remaining sublist */ 4900 if (!list_empty(head)) 4901 __netif_receive_skb_list_core(head, pfmemalloc); 4902 /* Restore pflags */ 4903 if (pfmemalloc) 4904 memalloc_noreclaim_restore(noreclaim_flag); 4905 } 4906 4907 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4908 { 4909 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4910 struct bpf_prog *new = xdp->prog; 4911 int ret = 0; 4912 4913 switch (xdp->command) { 4914 case XDP_SETUP_PROG: 4915 rcu_assign_pointer(dev->xdp_prog, new); 4916 if (old) 4917 bpf_prog_put(old); 4918 4919 if (old && !new) { 4920 static_branch_dec(&generic_xdp_needed_key); 4921 } else if (new && !old) { 4922 static_branch_inc(&generic_xdp_needed_key); 4923 dev_disable_lro(dev); 4924 dev_disable_gro_hw(dev); 4925 } 4926 break; 4927 4928 case XDP_QUERY_PROG: 4929 xdp->prog_attached = !!old; 4930 xdp->prog_id = old ? old->aux->id : 0; 4931 break; 4932 4933 default: 4934 ret = -EINVAL; 4935 break; 4936 } 4937 4938 return ret; 4939 } 4940 4941 static int netif_receive_skb_internal(struct sk_buff *skb) 4942 { 4943 int ret; 4944 4945 net_timestamp_check(netdev_tstamp_prequeue, skb); 4946 4947 if (skb_defer_rx_timestamp(skb)) 4948 return NET_RX_SUCCESS; 4949 4950 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4951 int ret; 4952 4953 preempt_disable(); 4954 rcu_read_lock(); 4955 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4956 rcu_read_unlock(); 4957 preempt_enable(); 4958 4959 if (ret != XDP_PASS) 4960 return NET_RX_DROP; 4961 } 4962 4963 rcu_read_lock(); 4964 #ifdef CONFIG_RPS 4965 if (static_key_false(&rps_needed)) { 4966 struct rps_dev_flow voidflow, *rflow = &voidflow; 4967 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4968 4969 if (cpu >= 0) { 4970 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4971 rcu_read_unlock(); 4972 return ret; 4973 } 4974 } 4975 #endif 4976 ret = __netif_receive_skb(skb); 4977 rcu_read_unlock(); 4978 return ret; 4979 } 4980 4981 static void netif_receive_skb_list_internal(struct list_head *head) 4982 { 4983 struct bpf_prog *xdp_prog = NULL; 4984 struct sk_buff *skb, *next; 4985 4986 list_for_each_entry_safe(skb, next, head, list) { 4987 net_timestamp_check(netdev_tstamp_prequeue, skb); 4988 if (skb_defer_rx_timestamp(skb)) 4989 /* Handled, remove from list */ 4990 list_del(&skb->list); 4991 } 4992 4993 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4994 preempt_disable(); 4995 rcu_read_lock(); 4996 list_for_each_entry_safe(skb, next, head, list) { 4997 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 4998 if (do_xdp_generic(xdp_prog, skb) != XDP_PASS) 4999 /* Dropped, remove from list */ 5000 list_del(&skb->list); 5001 } 5002 rcu_read_unlock(); 5003 preempt_enable(); 5004 } 5005 5006 rcu_read_lock(); 5007 #ifdef CONFIG_RPS 5008 if (static_key_false(&rps_needed)) { 5009 list_for_each_entry_safe(skb, next, head, list) { 5010 struct rps_dev_flow voidflow, *rflow = &voidflow; 5011 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5012 5013 if (cpu >= 0) { 5014 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5015 /* Handled, remove from list */ 5016 list_del(&skb->list); 5017 } 5018 } 5019 } 5020 #endif 5021 __netif_receive_skb_list(head); 5022 rcu_read_unlock(); 5023 } 5024 5025 /** 5026 * netif_receive_skb - process receive buffer from network 5027 * @skb: buffer to process 5028 * 5029 * netif_receive_skb() is the main receive data processing function. 5030 * It always succeeds. The buffer may be dropped during processing 5031 * for congestion control or by the protocol layers. 5032 * 5033 * This function may only be called from softirq context and interrupts 5034 * should be enabled. 5035 * 5036 * Return values (usually ignored): 5037 * NET_RX_SUCCESS: no congestion 5038 * NET_RX_DROP: packet was dropped 5039 */ 5040 int netif_receive_skb(struct sk_buff *skb) 5041 { 5042 trace_netif_receive_skb_entry(skb); 5043 5044 return netif_receive_skb_internal(skb); 5045 } 5046 EXPORT_SYMBOL(netif_receive_skb); 5047 5048 /** 5049 * netif_receive_skb_list - process many receive buffers from network 5050 * @head: list of skbs to process. 5051 * 5052 * Since return value of netif_receive_skb() is normally ignored, and 5053 * wouldn't be meaningful for a list, this function returns void. 5054 * 5055 * This function may only be called from softirq context and interrupts 5056 * should be enabled. 5057 */ 5058 void netif_receive_skb_list(struct list_head *head) 5059 { 5060 struct sk_buff *skb; 5061 5062 if (list_empty(head)) 5063 return; 5064 list_for_each_entry(skb, head, list) 5065 trace_netif_receive_skb_list_entry(skb); 5066 netif_receive_skb_list_internal(head); 5067 } 5068 EXPORT_SYMBOL(netif_receive_skb_list); 5069 5070 DEFINE_PER_CPU(struct work_struct, flush_works); 5071 5072 /* Network device is going away, flush any packets still pending */ 5073 static void flush_backlog(struct work_struct *work) 5074 { 5075 struct sk_buff *skb, *tmp; 5076 struct softnet_data *sd; 5077 5078 local_bh_disable(); 5079 sd = this_cpu_ptr(&softnet_data); 5080 5081 local_irq_disable(); 5082 rps_lock(sd); 5083 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5084 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5085 __skb_unlink(skb, &sd->input_pkt_queue); 5086 kfree_skb(skb); 5087 input_queue_head_incr(sd); 5088 } 5089 } 5090 rps_unlock(sd); 5091 local_irq_enable(); 5092 5093 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5094 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5095 __skb_unlink(skb, &sd->process_queue); 5096 kfree_skb(skb); 5097 input_queue_head_incr(sd); 5098 } 5099 } 5100 local_bh_enable(); 5101 } 5102 5103 static void flush_all_backlogs(void) 5104 { 5105 unsigned int cpu; 5106 5107 get_online_cpus(); 5108 5109 for_each_online_cpu(cpu) 5110 queue_work_on(cpu, system_highpri_wq, 5111 per_cpu_ptr(&flush_works, cpu)); 5112 5113 for_each_online_cpu(cpu) 5114 flush_work(per_cpu_ptr(&flush_works, cpu)); 5115 5116 put_online_cpus(); 5117 } 5118 5119 static int napi_gro_complete(struct sk_buff *skb) 5120 { 5121 struct packet_offload *ptype; 5122 __be16 type = skb->protocol; 5123 struct list_head *head = &offload_base; 5124 int err = -ENOENT; 5125 5126 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5127 5128 if (NAPI_GRO_CB(skb)->count == 1) { 5129 skb_shinfo(skb)->gso_size = 0; 5130 goto out; 5131 } 5132 5133 rcu_read_lock(); 5134 list_for_each_entry_rcu(ptype, head, list) { 5135 if (ptype->type != type || !ptype->callbacks.gro_complete) 5136 continue; 5137 5138 err = ptype->callbacks.gro_complete(skb, 0); 5139 break; 5140 } 5141 rcu_read_unlock(); 5142 5143 if (err) { 5144 WARN_ON(&ptype->list == head); 5145 kfree_skb(skb); 5146 return NET_RX_SUCCESS; 5147 } 5148 5149 out: 5150 return netif_receive_skb_internal(skb); 5151 } 5152 5153 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5154 bool flush_old) 5155 { 5156 struct list_head *head = &napi->gro_hash[index].list; 5157 struct sk_buff *skb, *p; 5158 5159 list_for_each_entry_safe_reverse(skb, p, head, list) { 5160 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5161 return; 5162 list_del_init(&skb->list); 5163 napi_gro_complete(skb); 5164 napi->gro_count--; 5165 napi->gro_hash[index].count--; 5166 } 5167 } 5168 5169 /* napi->gro_hash[].list contains packets ordered by age. 5170 * youngest packets at the head of it. 5171 * Complete skbs in reverse order to reduce latencies. 5172 */ 5173 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5174 { 5175 u32 i; 5176 5177 for (i = 0; i < GRO_HASH_BUCKETS; i++) 5178 __napi_gro_flush_chain(napi, i, flush_old); 5179 } 5180 EXPORT_SYMBOL(napi_gro_flush); 5181 5182 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5183 struct sk_buff *skb) 5184 { 5185 unsigned int maclen = skb->dev->hard_header_len; 5186 u32 hash = skb_get_hash_raw(skb); 5187 struct list_head *head; 5188 struct sk_buff *p; 5189 5190 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5191 list_for_each_entry(p, head, list) { 5192 unsigned long diffs; 5193 5194 NAPI_GRO_CB(p)->flush = 0; 5195 5196 if (hash != skb_get_hash_raw(p)) { 5197 NAPI_GRO_CB(p)->same_flow = 0; 5198 continue; 5199 } 5200 5201 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5202 diffs |= p->vlan_tci ^ skb->vlan_tci; 5203 diffs |= skb_metadata_dst_cmp(p, skb); 5204 diffs |= skb_metadata_differs(p, skb); 5205 if (maclen == ETH_HLEN) 5206 diffs |= compare_ether_header(skb_mac_header(p), 5207 skb_mac_header(skb)); 5208 else if (!diffs) 5209 diffs = memcmp(skb_mac_header(p), 5210 skb_mac_header(skb), 5211 maclen); 5212 NAPI_GRO_CB(p)->same_flow = !diffs; 5213 } 5214 5215 return head; 5216 } 5217 5218 static void skb_gro_reset_offset(struct sk_buff *skb) 5219 { 5220 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5221 const skb_frag_t *frag0 = &pinfo->frags[0]; 5222 5223 NAPI_GRO_CB(skb)->data_offset = 0; 5224 NAPI_GRO_CB(skb)->frag0 = NULL; 5225 NAPI_GRO_CB(skb)->frag0_len = 0; 5226 5227 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5228 pinfo->nr_frags && 5229 !PageHighMem(skb_frag_page(frag0))) { 5230 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5231 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5232 skb_frag_size(frag0), 5233 skb->end - skb->tail); 5234 } 5235 } 5236 5237 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5238 { 5239 struct skb_shared_info *pinfo = skb_shinfo(skb); 5240 5241 BUG_ON(skb->end - skb->tail < grow); 5242 5243 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5244 5245 skb->data_len -= grow; 5246 skb->tail += grow; 5247 5248 pinfo->frags[0].page_offset += grow; 5249 skb_frag_size_sub(&pinfo->frags[0], grow); 5250 5251 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5252 skb_frag_unref(skb, 0); 5253 memmove(pinfo->frags, pinfo->frags + 1, 5254 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5255 } 5256 } 5257 5258 static void gro_flush_oldest(struct list_head *head) 5259 { 5260 struct sk_buff *oldest; 5261 5262 oldest = list_last_entry(head, struct sk_buff, list); 5263 5264 /* We are called with head length >= MAX_GRO_SKBS, so this is 5265 * impossible. 5266 */ 5267 if (WARN_ON_ONCE(!oldest)) 5268 return; 5269 5270 /* Do not adjust napi->gro_count, caller is adding a new SKB to 5271 * the chain. 5272 */ 5273 list_del(&oldest->list); 5274 napi_gro_complete(oldest); 5275 } 5276 5277 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5278 { 5279 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5280 struct list_head *head = &offload_base; 5281 struct packet_offload *ptype; 5282 __be16 type = skb->protocol; 5283 struct list_head *gro_head; 5284 struct sk_buff *pp = NULL; 5285 enum gro_result ret; 5286 int same_flow; 5287 int grow; 5288 5289 if (netif_elide_gro(skb->dev)) 5290 goto normal; 5291 5292 gro_head = gro_list_prepare(napi, skb); 5293 5294 rcu_read_lock(); 5295 list_for_each_entry_rcu(ptype, head, list) { 5296 if (ptype->type != type || !ptype->callbacks.gro_receive) 5297 continue; 5298 5299 skb_set_network_header(skb, skb_gro_offset(skb)); 5300 skb_reset_mac_len(skb); 5301 NAPI_GRO_CB(skb)->same_flow = 0; 5302 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5303 NAPI_GRO_CB(skb)->free = 0; 5304 NAPI_GRO_CB(skb)->encap_mark = 0; 5305 NAPI_GRO_CB(skb)->recursion_counter = 0; 5306 NAPI_GRO_CB(skb)->is_fou = 0; 5307 NAPI_GRO_CB(skb)->is_atomic = 1; 5308 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5309 5310 /* Setup for GRO checksum validation */ 5311 switch (skb->ip_summed) { 5312 case CHECKSUM_COMPLETE: 5313 NAPI_GRO_CB(skb)->csum = skb->csum; 5314 NAPI_GRO_CB(skb)->csum_valid = 1; 5315 NAPI_GRO_CB(skb)->csum_cnt = 0; 5316 break; 5317 case CHECKSUM_UNNECESSARY: 5318 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5319 NAPI_GRO_CB(skb)->csum_valid = 0; 5320 break; 5321 default: 5322 NAPI_GRO_CB(skb)->csum_cnt = 0; 5323 NAPI_GRO_CB(skb)->csum_valid = 0; 5324 } 5325 5326 pp = ptype->callbacks.gro_receive(gro_head, skb); 5327 break; 5328 } 5329 rcu_read_unlock(); 5330 5331 if (&ptype->list == head) 5332 goto normal; 5333 5334 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5335 ret = GRO_CONSUMED; 5336 goto ok; 5337 } 5338 5339 same_flow = NAPI_GRO_CB(skb)->same_flow; 5340 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5341 5342 if (pp) { 5343 list_del_init(&pp->list); 5344 napi_gro_complete(pp); 5345 napi->gro_count--; 5346 napi->gro_hash[hash].count--; 5347 } 5348 5349 if (same_flow) 5350 goto ok; 5351 5352 if (NAPI_GRO_CB(skb)->flush) 5353 goto normal; 5354 5355 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5356 gro_flush_oldest(gro_head); 5357 } else { 5358 napi->gro_count++; 5359 napi->gro_hash[hash].count++; 5360 } 5361 NAPI_GRO_CB(skb)->count = 1; 5362 NAPI_GRO_CB(skb)->age = jiffies; 5363 NAPI_GRO_CB(skb)->last = skb; 5364 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5365 list_add(&skb->list, gro_head); 5366 ret = GRO_HELD; 5367 5368 pull: 5369 grow = skb_gro_offset(skb) - skb_headlen(skb); 5370 if (grow > 0) 5371 gro_pull_from_frag0(skb, grow); 5372 ok: 5373 return ret; 5374 5375 normal: 5376 ret = GRO_NORMAL; 5377 goto pull; 5378 } 5379 5380 struct packet_offload *gro_find_receive_by_type(__be16 type) 5381 { 5382 struct list_head *offload_head = &offload_base; 5383 struct packet_offload *ptype; 5384 5385 list_for_each_entry_rcu(ptype, offload_head, list) { 5386 if (ptype->type != type || !ptype->callbacks.gro_receive) 5387 continue; 5388 return ptype; 5389 } 5390 return NULL; 5391 } 5392 EXPORT_SYMBOL(gro_find_receive_by_type); 5393 5394 struct packet_offload *gro_find_complete_by_type(__be16 type) 5395 { 5396 struct list_head *offload_head = &offload_base; 5397 struct packet_offload *ptype; 5398 5399 list_for_each_entry_rcu(ptype, offload_head, list) { 5400 if (ptype->type != type || !ptype->callbacks.gro_complete) 5401 continue; 5402 return ptype; 5403 } 5404 return NULL; 5405 } 5406 EXPORT_SYMBOL(gro_find_complete_by_type); 5407 5408 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5409 { 5410 skb_dst_drop(skb); 5411 secpath_reset(skb); 5412 kmem_cache_free(skbuff_head_cache, skb); 5413 } 5414 5415 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5416 { 5417 switch (ret) { 5418 case GRO_NORMAL: 5419 if (netif_receive_skb_internal(skb)) 5420 ret = GRO_DROP; 5421 break; 5422 5423 case GRO_DROP: 5424 kfree_skb(skb); 5425 break; 5426 5427 case GRO_MERGED_FREE: 5428 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5429 napi_skb_free_stolen_head(skb); 5430 else 5431 __kfree_skb(skb); 5432 break; 5433 5434 case GRO_HELD: 5435 case GRO_MERGED: 5436 case GRO_CONSUMED: 5437 break; 5438 } 5439 5440 return ret; 5441 } 5442 5443 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5444 { 5445 skb_mark_napi_id(skb, napi); 5446 trace_napi_gro_receive_entry(skb); 5447 5448 skb_gro_reset_offset(skb); 5449 5450 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5451 } 5452 EXPORT_SYMBOL(napi_gro_receive); 5453 5454 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5455 { 5456 if (unlikely(skb->pfmemalloc)) { 5457 consume_skb(skb); 5458 return; 5459 } 5460 __skb_pull(skb, skb_headlen(skb)); 5461 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5462 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5463 skb->vlan_tci = 0; 5464 skb->dev = napi->dev; 5465 skb->skb_iif = 0; 5466 skb->encapsulation = 0; 5467 skb_shinfo(skb)->gso_type = 0; 5468 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5469 secpath_reset(skb); 5470 5471 napi->skb = skb; 5472 } 5473 5474 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5475 { 5476 struct sk_buff *skb = napi->skb; 5477 5478 if (!skb) { 5479 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5480 if (skb) { 5481 napi->skb = skb; 5482 skb_mark_napi_id(skb, napi); 5483 } 5484 } 5485 return skb; 5486 } 5487 EXPORT_SYMBOL(napi_get_frags); 5488 5489 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5490 struct sk_buff *skb, 5491 gro_result_t ret) 5492 { 5493 switch (ret) { 5494 case GRO_NORMAL: 5495 case GRO_HELD: 5496 __skb_push(skb, ETH_HLEN); 5497 skb->protocol = eth_type_trans(skb, skb->dev); 5498 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5499 ret = GRO_DROP; 5500 break; 5501 5502 case GRO_DROP: 5503 napi_reuse_skb(napi, skb); 5504 break; 5505 5506 case GRO_MERGED_FREE: 5507 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5508 napi_skb_free_stolen_head(skb); 5509 else 5510 napi_reuse_skb(napi, skb); 5511 break; 5512 5513 case GRO_MERGED: 5514 case GRO_CONSUMED: 5515 break; 5516 } 5517 5518 return ret; 5519 } 5520 5521 /* Upper GRO stack assumes network header starts at gro_offset=0 5522 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5523 * We copy ethernet header into skb->data to have a common layout. 5524 */ 5525 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5526 { 5527 struct sk_buff *skb = napi->skb; 5528 const struct ethhdr *eth; 5529 unsigned int hlen = sizeof(*eth); 5530 5531 napi->skb = NULL; 5532 5533 skb_reset_mac_header(skb); 5534 skb_gro_reset_offset(skb); 5535 5536 eth = skb_gro_header_fast(skb, 0); 5537 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5538 eth = skb_gro_header_slow(skb, hlen, 0); 5539 if (unlikely(!eth)) { 5540 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5541 __func__, napi->dev->name); 5542 napi_reuse_skb(napi, skb); 5543 return NULL; 5544 } 5545 } else { 5546 gro_pull_from_frag0(skb, hlen); 5547 NAPI_GRO_CB(skb)->frag0 += hlen; 5548 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5549 } 5550 __skb_pull(skb, hlen); 5551 5552 /* 5553 * This works because the only protocols we care about don't require 5554 * special handling. 5555 * We'll fix it up properly in napi_frags_finish() 5556 */ 5557 skb->protocol = eth->h_proto; 5558 5559 return skb; 5560 } 5561 5562 gro_result_t napi_gro_frags(struct napi_struct *napi) 5563 { 5564 struct sk_buff *skb = napi_frags_skb(napi); 5565 5566 if (!skb) 5567 return GRO_DROP; 5568 5569 trace_napi_gro_frags_entry(skb); 5570 5571 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5572 } 5573 EXPORT_SYMBOL(napi_gro_frags); 5574 5575 /* Compute the checksum from gro_offset and return the folded value 5576 * after adding in any pseudo checksum. 5577 */ 5578 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5579 { 5580 __wsum wsum; 5581 __sum16 sum; 5582 5583 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5584 5585 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5586 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5587 if (likely(!sum)) { 5588 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5589 !skb->csum_complete_sw) 5590 netdev_rx_csum_fault(skb->dev); 5591 } 5592 5593 NAPI_GRO_CB(skb)->csum = wsum; 5594 NAPI_GRO_CB(skb)->csum_valid = 1; 5595 5596 return sum; 5597 } 5598 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5599 5600 static void net_rps_send_ipi(struct softnet_data *remsd) 5601 { 5602 #ifdef CONFIG_RPS 5603 while (remsd) { 5604 struct softnet_data *next = remsd->rps_ipi_next; 5605 5606 if (cpu_online(remsd->cpu)) 5607 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5608 remsd = next; 5609 } 5610 #endif 5611 } 5612 5613 /* 5614 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5615 * Note: called with local irq disabled, but exits with local irq enabled. 5616 */ 5617 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5618 { 5619 #ifdef CONFIG_RPS 5620 struct softnet_data *remsd = sd->rps_ipi_list; 5621 5622 if (remsd) { 5623 sd->rps_ipi_list = NULL; 5624 5625 local_irq_enable(); 5626 5627 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5628 net_rps_send_ipi(remsd); 5629 } else 5630 #endif 5631 local_irq_enable(); 5632 } 5633 5634 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5635 { 5636 #ifdef CONFIG_RPS 5637 return sd->rps_ipi_list != NULL; 5638 #else 5639 return false; 5640 #endif 5641 } 5642 5643 static int process_backlog(struct napi_struct *napi, int quota) 5644 { 5645 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5646 bool again = true; 5647 int work = 0; 5648 5649 /* Check if we have pending ipi, its better to send them now, 5650 * not waiting net_rx_action() end. 5651 */ 5652 if (sd_has_rps_ipi_waiting(sd)) { 5653 local_irq_disable(); 5654 net_rps_action_and_irq_enable(sd); 5655 } 5656 5657 napi->weight = dev_rx_weight; 5658 while (again) { 5659 struct sk_buff *skb; 5660 5661 while ((skb = __skb_dequeue(&sd->process_queue))) { 5662 rcu_read_lock(); 5663 __netif_receive_skb(skb); 5664 rcu_read_unlock(); 5665 input_queue_head_incr(sd); 5666 if (++work >= quota) 5667 return work; 5668 5669 } 5670 5671 local_irq_disable(); 5672 rps_lock(sd); 5673 if (skb_queue_empty(&sd->input_pkt_queue)) { 5674 /* 5675 * Inline a custom version of __napi_complete(). 5676 * only current cpu owns and manipulates this napi, 5677 * and NAPI_STATE_SCHED is the only possible flag set 5678 * on backlog. 5679 * We can use a plain write instead of clear_bit(), 5680 * and we dont need an smp_mb() memory barrier. 5681 */ 5682 napi->state = 0; 5683 again = false; 5684 } else { 5685 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5686 &sd->process_queue); 5687 } 5688 rps_unlock(sd); 5689 local_irq_enable(); 5690 } 5691 5692 return work; 5693 } 5694 5695 /** 5696 * __napi_schedule - schedule for receive 5697 * @n: entry to schedule 5698 * 5699 * The entry's receive function will be scheduled to run. 5700 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5701 */ 5702 void __napi_schedule(struct napi_struct *n) 5703 { 5704 unsigned long flags; 5705 5706 local_irq_save(flags); 5707 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5708 local_irq_restore(flags); 5709 } 5710 EXPORT_SYMBOL(__napi_schedule); 5711 5712 /** 5713 * napi_schedule_prep - check if napi can be scheduled 5714 * @n: napi context 5715 * 5716 * Test if NAPI routine is already running, and if not mark 5717 * it as running. This is used as a condition variable 5718 * insure only one NAPI poll instance runs. We also make 5719 * sure there is no pending NAPI disable. 5720 */ 5721 bool napi_schedule_prep(struct napi_struct *n) 5722 { 5723 unsigned long val, new; 5724 5725 do { 5726 val = READ_ONCE(n->state); 5727 if (unlikely(val & NAPIF_STATE_DISABLE)) 5728 return false; 5729 new = val | NAPIF_STATE_SCHED; 5730 5731 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5732 * This was suggested by Alexander Duyck, as compiler 5733 * emits better code than : 5734 * if (val & NAPIF_STATE_SCHED) 5735 * new |= NAPIF_STATE_MISSED; 5736 */ 5737 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5738 NAPIF_STATE_MISSED; 5739 } while (cmpxchg(&n->state, val, new) != val); 5740 5741 return !(val & NAPIF_STATE_SCHED); 5742 } 5743 EXPORT_SYMBOL(napi_schedule_prep); 5744 5745 /** 5746 * __napi_schedule_irqoff - schedule for receive 5747 * @n: entry to schedule 5748 * 5749 * Variant of __napi_schedule() assuming hard irqs are masked 5750 */ 5751 void __napi_schedule_irqoff(struct napi_struct *n) 5752 { 5753 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5754 } 5755 EXPORT_SYMBOL(__napi_schedule_irqoff); 5756 5757 bool napi_complete_done(struct napi_struct *n, int work_done) 5758 { 5759 unsigned long flags, val, new; 5760 5761 /* 5762 * 1) Don't let napi dequeue from the cpu poll list 5763 * just in case its running on a different cpu. 5764 * 2) If we are busy polling, do nothing here, we have 5765 * the guarantee we will be called later. 5766 */ 5767 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5768 NAPIF_STATE_IN_BUSY_POLL))) 5769 return false; 5770 5771 if (n->gro_count) { 5772 unsigned long timeout = 0; 5773 5774 if (work_done) 5775 timeout = n->dev->gro_flush_timeout; 5776 5777 if (timeout) 5778 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5779 HRTIMER_MODE_REL_PINNED); 5780 else 5781 napi_gro_flush(n, false); 5782 } 5783 if (unlikely(!list_empty(&n->poll_list))) { 5784 /* If n->poll_list is not empty, we need to mask irqs */ 5785 local_irq_save(flags); 5786 list_del_init(&n->poll_list); 5787 local_irq_restore(flags); 5788 } 5789 5790 do { 5791 val = READ_ONCE(n->state); 5792 5793 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5794 5795 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5796 5797 /* If STATE_MISSED was set, leave STATE_SCHED set, 5798 * because we will call napi->poll() one more time. 5799 * This C code was suggested by Alexander Duyck to help gcc. 5800 */ 5801 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5802 NAPIF_STATE_SCHED; 5803 } while (cmpxchg(&n->state, val, new) != val); 5804 5805 if (unlikely(val & NAPIF_STATE_MISSED)) { 5806 __napi_schedule(n); 5807 return false; 5808 } 5809 5810 return true; 5811 } 5812 EXPORT_SYMBOL(napi_complete_done); 5813 5814 /* must be called under rcu_read_lock(), as we dont take a reference */ 5815 static struct napi_struct *napi_by_id(unsigned int napi_id) 5816 { 5817 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5818 struct napi_struct *napi; 5819 5820 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5821 if (napi->napi_id == napi_id) 5822 return napi; 5823 5824 return NULL; 5825 } 5826 5827 #if defined(CONFIG_NET_RX_BUSY_POLL) 5828 5829 #define BUSY_POLL_BUDGET 8 5830 5831 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5832 { 5833 int rc; 5834 5835 /* Busy polling means there is a high chance device driver hard irq 5836 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5837 * set in napi_schedule_prep(). 5838 * Since we are about to call napi->poll() once more, we can safely 5839 * clear NAPI_STATE_MISSED. 5840 * 5841 * Note: x86 could use a single "lock and ..." instruction 5842 * to perform these two clear_bit() 5843 */ 5844 clear_bit(NAPI_STATE_MISSED, &napi->state); 5845 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5846 5847 local_bh_disable(); 5848 5849 /* All we really want here is to re-enable device interrupts. 5850 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5851 */ 5852 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5853 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5854 netpoll_poll_unlock(have_poll_lock); 5855 if (rc == BUSY_POLL_BUDGET) 5856 __napi_schedule(napi); 5857 local_bh_enable(); 5858 } 5859 5860 void napi_busy_loop(unsigned int napi_id, 5861 bool (*loop_end)(void *, unsigned long), 5862 void *loop_end_arg) 5863 { 5864 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5865 int (*napi_poll)(struct napi_struct *napi, int budget); 5866 void *have_poll_lock = NULL; 5867 struct napi_struct *napi; 5868 5869 restart: 5870 napi_poll = NULL; 5871 5872 rcu_read_lock(); 5873 5874 napi = napi_by_id(napi_id); 5875 if (!napi) 5876 goto out; 5877 5878 preempt_disable(); 5879 for (;;) { 5880 int work = 0; 5881 5882 local_bh_disable(); 5883 if (!napi_poll) { 5884 unsigned long val = READ_ONCE(napi->state); 5885 5886 /* If multiple threads are competing for this napi, 5887 * we avoid dirtying napi->state as much as we can. 5888 */ 5889 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5890 NAPIF_STATE_IN_BUSY_POLL)) 5891 goto count; 5892 if (cmpxchg(&napi->state, val, 5893 val | NAPIF_STATE_IN_BUSY_POLL | 5894 NAPIF_STATE_SCHED) != val) 5895 goto count; 5896 have_poll_lock = netpoll_poll_lock(napi); 5897 napi_poll = napi->poll; 5898 } 5899 work = napi_poll(napi, BUSY_POLL_BUDGET); 5900 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5901 count: 5902 if (work > 0) 5903 __NET_ADD_STATS(dev_net(napi->dev), 5904 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5905 local_bh_enable(); 5906 5907 if (!loop_end || loop_end(loop_end_arg, start_time)) 5908 break; 5909 5910 if (unlikely(need_resched())) { 5911 if (napi_poll) 5912 busy_poll_stop(napi, have_poll_lock); 5913 preempt_enable(); 5914 rcu_read_unlock(); 5915 cond_resched(); 5916 if (loop_end(loop_end_arg, start_time)) 5917 return; 5918 goto restart; 5919 } 5920 cpu_relax(); 5921 } 5922 if (napi_poll) 5923 busy_poll_stop(napi, have_poll_lock); 5924 preempt_enable(); 5925 out: 5926 rcu_read_unlock(); 5927 } 5928 EXPORT_SYMBOL(napi_busy_loop); 5929 5930 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5931 5932 static void napi_hash_add(struct napi_struct *napi) 5933 { 5934 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5935 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5936 return; 5937 5938 spin_lock(&napi_hash_lock); 5939 5940 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5941 do { 5942 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5943 napi_gen_id = MIN_NAPI_ID; 5944 } while (napi_by_id(napi_gen_id)); 5945 napi->napi_id = napi_gen_id; 5946 5947 hlist_add_head_rcu(&napi->napi_hash_node, 5948 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5949 5950 spin_unlock(&napi_hash_lock); 5951 } 5952 5953 /* Warning : caller is responsible to make sure rcu grace period 5954 * is respected before freeing memory containing @napi 5955 */ 5956 bool napi_hash_del(struct napi_struct *napi) 5957 { 5958 bool rcu_sync_needed = false; 5959 5960 spin_lock(&napi_hash_lock); 5961 5962 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5963 rcu_sync_needed = true; 5964 hlist_del_rcu(&napi->napi_hash_node); 5965 } 5966 spin_unlock(&napi_hash_lock); 5967 return rcu_sync_needed; 5968 } 5969 EXPORT_SYMBOL_GPL(napi_hash_del); 5970 5971 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5972 { 5973 struct napi_struct *napi; 5974 5975 napi = container_of(timer, struct napi_struct, timer); 5976 5977 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5978 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5979 */ 5980 if (napi->gro_count && !napi_disable_pending(napi) && 5981 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5982 __napi_schedule_irqoff(napi); 5983 5984 return HRTIMER_NORESTART; 5985 } 5986 5987 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5988 int (*poll)(struct napi_struct *, int), int weight) 5989 { 5990 int i; 5991 5992 INIT_LIST_HEAD(&napi->poll_list); 5993 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5994 napi->timer.function = napi_watchdog; 5995 napi->gro_count = 0; 5996 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 5997 INIT_LIST_HEAD(&napi->gro_hash[i].list); 5998 napi->gro_hash[i].count = 0; 5999 } 6000 napi->skb = NULL; 6001 napi->poll = poll; 6002 if (weight > NAPI_POLL_WEIGHT) 6003 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 6004 weight, dev->name); 6005 napi->weight = weight; 6006 list_add(&napi->dev_list, &dev->napi_list); 6007 napi->dev = dev; 6008 #ifdef CONFIG_NETPOLL 6009 napi->poll_owner = -1; 6010 #endif 6011 set_bit(NAPI_STATE_SCHED, &napi->state); 6012 napi_hash_add(napi); 6013 } 6014 EXPORT_SYMBOL(netif_napi_add); 6015 6016 void napi_disable(struct napi_struct *n) 6017 { 6018 might_sleep(); 6019 set_bit(NAPI_STATE_DISABLE, &n->state); 6020 6021 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6022 msleep(1); 6023 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6024 msleep(1); 6025 6026 hrtimer_cancel(&n->timer); 6027 6028 clear_bit(NAPI_STATE_DISABLE, &n->state); 6029 } 6030 EXPORT_SYMBOL(napi_disable); 6031 6032 static void flush_gro_hash(struct napi_struct *napi) 6033 { 6034 int i; 6035 6036 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6037 struct sk_buff *skb, *n; 6038 6039 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6040 kfree_skb(skb); 6041 napi->gro_hash[i].count = 0; 6042 } 6043 } 6044 6045 /* Must be called in process context */ 6046 void netif_napi_del(struct napi_struct *napi) 6047 { 6048 might_sleep(); 6049 if (napi_hash_del(napi)) 6050 synchronize_net(); 6051 list_del_init(&napi->dev_list); 6052 napi_free_frags(napi); 6053 6054 flush_gro_hash(napi); 6055 napi->gro_count = 0; 6056 } 6057 EXPORT_SYMBOL(netif_napi_del); 6058 6059 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6060 { 6061 void *have; 6062 int work, weight; 6063 6064 list_del_init(&n->poll_list); 6065 6066 have = netpoll_poll_lock(n); 6067 6068 weight = n->weight; 6069 6070 /* This NAPI_STATE_SCHED test is for avoiding a race 6071 * with netpoll's poll_napi(). Only the entity which 6072 * obtains the lock and sees NAPI_STATE_SCHED set will 6073 * actually make the ->poll() call. Therefore we avoid 6074 * accidentally calling ->poll() when NAPI is not scheduled. 6075 */ 6076 work = 0; 6077 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6078 work = n->poll(n, weight); 6079 trace_napi_poll(n, work, weight); 6080 } 6081 6082 WARN_ON_ONCE(work > weight); 6083 6084 if (likely(work < weight)) 6085 goto out_unlock; 6086 6087 /* Drivers must not modify the NAPI state if they 6088 * consume the entire weight. In such cases this code 6089 * still "owns" the NAPI instance and therefore can 6090 * move the instance around on the list at-will. 6091 */ 6092 if (unlikely(napi_disable_pending(n))) { 6093 napi_complete(n); 6094 goto out_unlock; 6095 } 6096 6097 if (n->gro_count) { 6098 /* flush too old packets 6099 * If HZ < 1000, flush all packets. 6100 */ 6101 napi_gro_flush(n, HZ >= 1000); 6102 } 6103 6104 /* Some drivers may have called napi_schedule 6105 * prior to exhausting their budget. 6106 */ 6107 if (unlikely(!list_empty(&n->poll_list))) { 6108 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6109 n->dev ? n->dev->name : "backlog"); 6110 goto out_unlock; 6111 } 6112 6113 list_add_tail(&n->poll_list, repoll); 6114 6115 out_unlock: 6116 netpoll_poll_unlock(have); 6117 6118 return work; 6119 } 6120 6121 static __latent_entropy void net_rx_action(struct softirq_action *h) 6122 { 6123 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6124 unsigned long time_limit = jiffies + 6125 usecs_to_jiffies(netdev_budget_usecs); 6126 int budget = netdev_budget; 6127 LIST_HEAD(list); 6128 LIST_HEAD(repoll); 6129 6130 local_irq_disable(); 6131 list_splice_init(&sd->poll_list, &list); 6132 local_irq_enable(); 6133 6134 for (;;) { 6135 struct napi_struct *n; 6136 6137 if (list_empty(&list)) { 6138 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6139 goto out; 6140 break; 6141 } 6142 6143 n = list_first_entry(&list, struct napi_struct, poll_list); 6144 budget -= napi_poll(n, &repoll); 6145 6146 /* If softirq window is exhausted then punt. 6147 * Allow this to run for 2 jiffies since which will allow 6148 * an average latency of 1.5/HZ. 6149 */ 6150 if (unlikely(budget <= 0 || 6151 time_after_eq(jiffies, time_limit))) { 6152 sd->time_squeeze++; 6153 break; 6154 } 6155 } 6156 6157 local_irq_disable(); 6158 6159 list_splice_tail_init(&sd->poll_list, &list); 6160 list_splice_tail(&repoll, &list); 6161 list_splice(&list, &sd->poll_list); 6162 if (!list_empty(&sd->poll_list)) 6163 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6164 6165 net_rps_action_and_irq_enable(sd); 6166 out: 6167 __kfree_skb_flush(); 6168 } 6169 6170 struct netdev_adjacent { 6171 struct net_device *dev; 6172 6173 /* upper master flag, there can only be one master device per list */ 6174 bool master; 6175 6176 /* counter for the number of times this device was added to us */ 6177 u16 ref_nr; 6178 6179 /* private field for the users */ 6180 void *private; 6181 6182 struct list_head list; 6183 struct rcu_head rcu; 6184 }; 6185 6186 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6187 struct list_head *adj_list) 6188 { 6189 struct netdev_adjacent *adj; 6190 6191 list_for_each_entry(adj, adj_list, list) { 6192 if (adj->dev == adj_dev) 6193 return adj; 6194 } 6195 return NULL; 6196 } 6197 6198 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6199 { 6200 struct net_device *dev = data; 6201 6202 return upper_dev == dev; 6203 } 6204 6205 /** 6206 * netdev_has_upper_dev - Check if device is linked to an upper device 6207 * @dev: device 6208 * @upper_dev: upper device to check 6209 * 6210 * Find out if a device is linked to specified upper device and return true 6211 * in case it is. Note that this checks only immediate upper device, 6212 * not through a complete stack of devices. The caller must hold the RTNL lock. 6213 */ 6214 bool netdev_has_upper_dev(struct net_device *dev, 6215 struct net_device *upper_dev) 6216 { 6217 ASSERT_RTNL(); 6218 6219 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6220 upper_dev); 6221 } 6222 EXPORT_SYMBOL(netdev_has_upper_dev); 6223 6224 /** 6225 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6226 * @dev: device 6227 * @upper_dev: upper device to check 6228 * 6229 * Find out if a device is linked to specified upper device and return true 6230 * in case it is. Note that this checks the entire upper device chain. 6231 * The caller must hold rcu lock. 6232 */ 6233 6234 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6235 struct net_device *upper_dev) 6236 { 6237 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6238 upper_dev); 6239 } 6240 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6241 6242 /** 6243 * netdev_has_any_upper_dev - Check if device is linked to some device 6244 * @dev: device 6245 * 6246 * Find out if a device is linked to an upper device and return true in case 6247 * it is. The caller must hold the RTNL lock. 6248 */ 6249 bool netdev_has_any_upper_dev(struct net_device *dev) 6250 { 6251 ASSERT_RTNL(); 6252 6253 return !list_empty(&dev->adj_list.upper); 6254 } 6255 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6256 6257 /** 6258 * netdev_master_upper_dev_get - Get master upper device 6259 * @dev: device 6260 * 6261 * Find a master upper device and return pointer to it or NULL in case 6262 * it's not there. The caller must hold the RTNL lock. 6263 */ 6264 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6265 { 6266 struct netdev_adjacent *upper; 6267 6268 ASSERT_RTNL(); 6269 6270 if (list_empty(&dev->adj_list.upper)) 6271 return NULL; 6272 6273 upper = list_first_entry(&dev->adj_list.upper, 6274 struct netdev_adjacent, list); 6275 if (likely(upper->master)) 6276 return upper->dev; 6277 return NULL; 6278 } 6279 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6280 6281 /** 6282 * netdev_has_any_lower_dev - Check if device is linked to some device 6283 * @dev: device 6284 * 6285 * Find out if a device is linked to a lower device and return true in case 6286 * it is. The caller must hold the RTNL lock. 6287 */ 6288 static bool netdev_has_any_lower_dev(struct net_device *dev) 6289 { 6290 ASSERT_RTNL(); 6291 6292 return !list_empty(&dev->adj_list.lower); 6293 } 6294 6295 void *netdev_adjacent_get_private(struct list_head *adj_list) 6296 { 6297 struct netdev_adjacent *adj; 6298 6299 adj = list_entry(adj_list, struct netdev_adjacent, list); 6300 6301 return adj->private; 6302 } 6303 EXPORT_SYMBOL(netdev_adjacent_get_private); 6304 6305 /** 6306 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6307 * @dev: device 6308 * @iter: list_head ** of the current position 6309 * 6310 * Gets the next device from the dev's upper list, starting from iter 6311 * position. The caller must hold RCU read lock. 6312 */ 6313 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6314 struct list_head **iter) 6315 { 6316 struct netdev_adjacent *upper; 6317 6318 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6319 6320 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6321 6322 if (&upper->list == &dev->adj_list.upper) 6323 return NULL; 6324 6325 *iter = &upper->list; 6326 6327 return upper->dev; 6328 } 6329 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6330 6331 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6332 struct list_head **iter) 6333 { 6334 struct netdev_adjacent *upper; 6335 6336 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6337 6338 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6339 6340 if (&upper->list == &dev->adj_list.upper) 6341 return NULL; 6342 6343 *iter = &upper->list; 6344 6345 return upper->dev; 6346 } 6347 6348 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6349 int (*fn)(struct net_device *dev, 6350 void *data), 6351 void *data) 6352 { 6353 struct net_device *udev; 6354 struct list_head *iter; 6355 int ret; 6356 6357 for (iter = &dev->adj_list.upper, 6358 udev = netdev_next_upper_dev_rcu(dev, &iter); 6359 udev; 6360 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6361 /* first is the upper device itself */ 6362 ret = fn(udev, data); 6363 if (ret) 6364 return ret; 6365 6366 /* then look at all of its upper devices */ 6367 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6368 if (ret) 6369 return ret; 6370 } 6371 6372 return 0; 6373 } 6374 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6375 6376 /** 6377 * netdev_lower_get_next_private - Get the next ->private from the 6378 * lower neighbour list 6379 * @dev: device 6380 * @iter: list_head ** of the current position 6381 * 6382 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6383 * list, starting from iter position. The caller must hold either hold the 6384 * RTNL lock or its own locking that guarantees that the neighbour lower 6385 * list will remain unchanged. 6386 */ 6387 void *netdev_lower_get_next_private(struct net_device *dev, 6388 struct list_head **iter) 6389 { 6390 struct netdev_adjacent *lower; 6391 6392 lower = list_entry(*iter, struct netdev_adjacent, list); 6393 6394 if (&lower->list == &dev->adj_list.lower) 6395 return NULL; 6396 6397 *iter = lower->list.next; 6398 6399 return lower->private; 6400 } 6401 EXPORT_SYMBOL(netdev_lower_get_next_private); 6402 6403 /** 6404 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6405 * lower neighbour list, RCU 6406 * variant 6407 * @dev: device 6408 * @iter: list_head ** of the current position 6409 * 6410 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6411 * list, starting from iter position. The caller must hold RCU read lock. 6412 */ 6413 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6414 struct list_head **iter) 6415 { 6416 struct netdev_adjacent *lower; 6417 6418 WARN_ON_ONCE(!rcu_read_lock_held()); 6419 6420 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6421 6422 if (&lower->list == &dev->adj_list.lower) 6423 return NULL; 6424 6425 *iter = &lower->list; 6426 6427 return lower->private; 6428 } 6429 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6430 6431 /** 6432 * netdev_lower_get_next - Get the next device from the lower neighbour 6433 * list 6434 * @dev: device 6435 * @iter: list_head ** of the current position 6436 * 6437 * Gets the next netdev_adjacent from the dev's lower neighbour 6438 * list, starting from iter position. The caller must hold RTNL lock or 6439 * its own locking that guarantees that the neighbour lower 6440 * list will remain unchanged. 6441 */ 6442 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6443 { 6444 struct netdev_adjacent *lower; 6445 6446 lower = list_entry(*iter, struct netdev_adjacent, list); 6447 6448 if (&lower->list == &dev->adj_list.lower) 6449 return NULL; 6450 6451 *iter = lower->list.next; 6452 6453 return lower->dev; 6454 } 6455 EXPORT_SYMBOL(netdev_lower_get_next); 6456 6457 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6458 struct list_head **iter) 6459 { 6460 struct netdev_adjacent *lower; 6461 6462 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6463 6464 if (&lower->list == &dev->adj_list.lower) 6465 return NULL; 6466 6467 *iter = &lower->list; 6468 6469 return lower->dev; 6470 } 6471 6472 int netdev_walk_all_lower_dev(struct net_device *dev, 6473 int (*fn)(struct net_device *dev, 6474 void *data), 6475 void *data) 6476 { 6477 struct net_device *ldev; 6478 struct list_head *iter; 6479 int ret; 6480 6481 for (iter = &dev->adj_list.lower, 6482 ldev = netdev_next_lower_dev(dev, &iter); 6483 ldev; 6484 ldev = netdev_next_lower_dev(dev, &iter)) { 6485 /* first is the lower device itself */ 6486 ret = fn(ldev, data); 6487 if (ret) 6488 return ret; 6489 6490 /* then look at all of its lower devices */ 6491 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6492 if (ret) 6493 return ret; 6494 } 6495 6496 return 0; 6497 } 6498 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6499 6500 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6501 struct list_head **iter) 6502 { 6503 struct netdev_adjacent *lower; 6504 6505 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6506 if (&lower->list == &dev->adj_list.lower) 6507 return NULL; 6508 6509 *iter = &lower->list; 6510 6511 return lower->dev; 6512 } 6513 6514 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6515 int (*fn)(struct net_device *dev, 6516 void *data), 6517 void *data) 6518 { 6519 struct net_device *ldev; 6520 struct list_head *iter; 6521 int ret; 6522 6523 for (iter = &dev->adj_list.lower, 6524 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6525 ldev; 6526 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6527 /* first is the lower device itself */ 6528 ret = fn(ldev, data); 6529 if (ret) 6530 return ret; 6531 6532 /* then look at all of its lower devices */ 6533 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6534 if (ret) 6535 return ret; 6536 } 6537 6538 return 0; 6539 } 6540 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6541 6542 /** 6543 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6544 * lower neighbour list, RCU 6545 * variant 6546 * @dev: device 6547 * 6548 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6549 * list. The caller must hold RCU read lock. 6550 */ 6551 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6552 { 6553 struct netdev_adjacent *lower; 6554 6555 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6556 struct netdev_adjacent, list); 6557 if (lower) 6558 return lower->private; 6559 return NULL; 6560 } 6561 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6562 6563 /** 6564 * netdev_master_upper_dev_get_rcu - Get master upper device 6565 * @dev: device 6566 * 6567 * Find a master upper device and return pointer to it or NULL in case 6568 * it's not there. The caller must hold the RCU read lock. 6569 */ 6570 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6571 { 6572 struct netdev_adjacent *upper; 6573 6574 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6575 struct netdev_adjacent, list); 6576 if (upper && likely(upper->master)) 6577 return upper->dev; 6578 return NULL; 6579 } 6580 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6581 6582 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6583 struct net_device *adj_dev, 6584 struct list_head *dev_list) 6585 { 6586 char linkname[IFNAMSIZ+7]; 6587 6588 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6589 "upper_%s" : "lower_%s", adj_dev->name); 6590 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6591 linkname); 6592 } 6593 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6594 char *name, 6595 struct list_head *dev_list) 6596 { 6597 char linkname[IFNAMSIZ+7]; 6598 6599 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6600 "upper_%s" : "lower_%s", name); 6601 sysfs_remove_link(&(dev->dev.kobj), linkname); 6602 } 6603 6604 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6605 struct net_device *adj_dev, 6606 struct list_head *dev_list) 6607 { 6608 return (dev_list == &dev->adj_list.upper || 6609 dev_list == &dev->adj_list.lower) && 6610 net_eq(dev_net(dev), dev_net(adj_dev)); 6611 } 6612 6613 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6614 struct net_device *adj_dev, 6615 struct list_head *dev_list, 6616 void *private, bool master) 6617 { 6618 struct netdev_adjacent *adj; 6619 int ret; 6620 6621 adj = __netdev_find_adj(adj_dev, dev_list); 6622 6623 if (adj) { 6624 adj->ref_nr += 1; 6625 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6626 dev->name, adj_dev->name, adj->ref_nr); 6627 6628 return 0; 6629 } 6630 6631 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6632 if (!adj) 6633 return -ENOMEM; 6634 6635 adj->dev = adj_dev; 6636 adj->master = master; 6637 adj->ref_nr = 1; 6638 adj->private = private; 6639 dev_hold(adj_dev); 6640 6641 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6642 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6643 6644 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6645 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6646 if (ret) 6647 goto free_adj; 6648 } 6649 6650 /* Ensure that master link is always the first item in list. */ 6651 if (master) { 6652 ret = sysfs_create_link(&(dev->dev.kobj), 6653 &(adj_dev->dev.kobj), "master"); 6654 if (ret) 6655 goto remove_symlinks; 6656 6657 list_add_rcu(&adj->list, dev_list); 6658 } else { 6659 list_add_tail_rcu(&adj->list, dev_list); 6660 } 6661 6662 return 0; 6663 6664 remove_symlinks: 6665 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6666 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6667 free_adj: 6668 kfree(adj); 6669 dev_put(adj_dev); 6670 6671 return ret; 6672 } 6673 6674 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6675 struct net_device *adj_dev, 6676 u16 ref_nr, 6677 struct list_head *dev_list) 6678 { 6679 struct netdev_adjacent *adj; 6680 6681 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6682 dev->name, adj_dev->name, ref_nr); 6683 6684 adj = __netdev_find_adj(adj_dev, dev_list); 6685 6686 if (!adj) { 6687 pr_err("Adjacency does not exist for device %s from %s\n", 6688 dev->name, adj_dev->name); 6689 WARN_ON(1); 6690 return; 6691 } 6692 6693 if (adj->ref_nr > ref_nr) { 6694 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6695 dev->name, adj_dev->name, ref_nr, 6696 adj->ref_nr - ref_nr); 6697 adj->ref_nr -= ref_nr; 6698 return; 6699 } 6700 6701 if (adj->master) 6702 sysfs_remove_link(&(dev->dev.kobj), "master"); 6703 6704 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6705 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6706 6707 list_del_rcu(&adj->list); 6708 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6709 adj_dev->name, dev->name, adj_dev->name); 6710 dev_put(adj_dev); 6711 kfree_rcu(adj, rcu); 6712 } 6713 6714 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6715 struct net_device *upper_dev, 6716 struct list_head *up_list, 6717 struct list_head *down_list, 6718 void *private, bool master) 6719 { 6720 int ret; 6721 6722 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6723 private, master); 6724 if (ret) 6725 return ret; 6726 6727 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6728 private, false); 6729 if (ret) { 6730 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6731 return ret; 6732 } 6733 6734 return 0; 6735 } 6736 6737 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6738 struct net_device *upper_dev, 6739 u16 ref_nr, 6740 struct list_head *up_list, 6741 struct list_head *down_list) 6742 { 6743 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6744 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6745 } 6746 6747 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6748 struct net_device *upper_dev, 6749 void *private, bool master) 6750 { 6751 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6752 &dev->adj_list.upper, 6753 &upper_dev->adj_list.lower, 6754 private, master); 6755 } 6756 6757 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6758 struct net_device *upper_dev) 6759 { 6760 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6761 &dev->adj_list.upper, 6762 &upper_dev->adj_list.lower); 6763 } 6764 6765 static int __netdev_upper_dev_link(struct net_device *dev, 6766 struct net_device *upper_dev, bool master, 6767 void *upper_priv, void *upper_info, 6768 struct netlink_ext_ack *extack) 6769 { 6770 struct netdev_notifier_changeupper_info changeupper_info = { 6771 .info = { 6772 .dev = dev, 6773 .extack = extack, 6774 }, 6775 .upper_dev = upper_dev, 6776 .master = master, 6777 .linking = true, 6778 .upper_info = upper_info, 6779 }; 6780 struct net_device *master_dev; 6781 int ret = 0; 6782 6783 ASSERT_RTNL(); 6784 6785 if (dev == upper_dev) 6786 return -EBUSY; 6787 6788 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6789 if (netdev_has_upper_dev(upper_dev, dev)) 6790 return -EBUSY; 6791 6792 if (!master) { 6793 if (netdev_has_upper_dev(dev, upper_dev)) 6794 return -EEXIST; 6795 } else { 6796 master_dev = netdev_master_upper_dev_get(dev); 6797 if (master_dev) 6798 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6799 } 6800 6801 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6802 &changeupper_info.info); 6803 ret = notifier_to_errno(ret); 6804 if (ret) 6805 return ret; 6806 6807 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6808 master); 6809 if (ret) 6810 return ret; 6811 6812 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6813 &changeupper_info.info); 6814 ret = notifier_to_errno(ret); 6815 if (ret) 6816 goto rollback; 6817 6818 return 0; 6819 6820 rollback: 6821 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6822 6823 return ret; 6824 } 6825 6826 /** 6827 * netdev_upper_dev_link - Add a link to the upper device 6828 * @dev: device 6829 * @upper_dev: new upper device 6830 * @extack: netlink extended ack 6831 * 6832 * Adds a link to device which is upper to this one. The caller must hold 6833 * the RTNL lock. On a failure a negative errno code is returned. 6834 * On success the reference counts are adjusted and the function 6835 * returns zero. 6836 */ 6837 int netdev_upper_dev_link(struct net_device *dev, 6838 struct net_device *upper_dev, 6839 struct netlink_ext_ack *extack) 6840 { 6841 return __netdev_upper_dev_link(dev, upper_dev, false, 6842 NULL, NULL, extack); 6843 } 6844 EXPORT_SYMBOL(netdev_upper_dev_link); 6845 6846 /** 6847 * netdev_master_upper_dev_link - Add a master link to the upper device 6848 * @dev: device 6849 * @upper_dev: new upper device 6850 * @upper_priv: upper device private 6851 * @upper_info: upper info to be passed down via notifier 6852 * @extack: netlink extended ack 6853 * 6854 * Adds a link to device which is upper to this one. In this case, only 6855 * one master upper device can be linked, although other non-master devices 6856 * might be linked as well. The caller must hold the RTNL lock. 6857 * On a failure a negative errno code is returned. On success the reference 6858 * counts are adjusted and the function returns zero. 6859 */ 6860 int netdev_master_upper_dev_link(struct net_device *dev, 6861 struct net_device *upper_dev, 6862 void *upper_priv, void *upper_info, 6863 struct netlink_ext_ack *extack) 6864 { 6865 return __netdev_upper_dev_link(dev, upper_dev, true, 6866 upper_priv, upper_info, extack); 6867 } 6868 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6869 6870 /** 6871 * netdev_upper_dev_unlink - Removes a link to upper device 6872 * @dev: device 6873 * @upper_dev: new upper device 6874 * 6875 * Removes a link to device which is upper to this one. The caller must hold 6876 * the RTNL lock. 6877 */ 6878 void netdev_upper_dev_unlink(struct net_device *dev, 6879 struct net_device *upper_dev) 6880 { 6881 struct netdev_notifier_changeupper_info changeupper_info = { 6882 .info = { 6883 .dev = dev, 6884 }, 6885 .upper_dev = upper_dev, 6886 .linking = false, 6887 }; 6888 6889 ASSERT_RTNL(); 6890 6891 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6892 6893 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6894 &changeupper_info.info); 6895 6896 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6897 6898 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6899 &changeupper_info.info); 6900 } 6901 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6902 6903 /** 6904 * netdev_bonding_info_change - Dispatch event about slave change 6905 * @dev: device 6906 * @bonding_info: info to dispatch 6907 * 6908 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6909 * The caller must hold the RTNL lock. 6910 */ 6911 void netdev_bonding_info_change(struct net_device *dev, 6912 struct netdev_bonding_info *bonding_info) 6913 { 6914 struct netdev_notifier_bonding_info info = { 6915 .info.dev = dev, 6916 }; 6917 6918 memcpy(&info.bonding_info, bonding_info, 6919 sizeof(struct netdev_bonding_info)); 6920 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6921 &info.info); 6922 } 6923 EXPORT_SYMBOL(netdev_bonding_info_change); 6924 6925 static void netdev_adjacent_add_links(struct net_device *dev) 6926 { 6927 struct netdev_adjacent *iter; 6928 6929 struct net *net = dev_net(dev); 6930 6931 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6932 if (!net_eq(net, dev_net(iter->dev))) 6933 continue; 6934 netdev_adjacent_sysfs_add(iter->dev, dev, 6935 &iter->dev->adj_list.lower); 6936 netdev_adjacent_sysfs_add(dev, iter->dev, 6937 &dev->adj_list.upper); 6938 } 6939 6940 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6941 if (!net_eq(net, dev_net(iter->dev))) 6942 continue; 6943 netdev_adjacent_sysfs_add(iter->dev, dev, 6944 &iter->dev->adj_list.upper); 6945 netdev_adjacent_sysfs_add(dev, iter->dev, 6946 &dev->adj_list.lower); 6947 } 6948 } 6949 6950 static void netdev_adjacent_del_links(struct net_device *dev) 6951 { 6952 struct netdev_adjacent *iter; 6953 6954 struct net *net = dev_net(dev); 6955 6956 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6957 if (!net_eq(net, dev_net(iter->dev))) 6958 continue; 6959 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6960 &iter->dev->adj_list.lower); 6961 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6962 &dev->adj_list.upper); 6963 } 6964 6965 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6966 if (!net_eq(net, dev_net(iter->dev))) 6967 continue; 6968 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6969 &iter->dev->adj_list.upper); 6970 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6971 &dev->adj_list.lower); 6972 } 6973 } 6974 6975 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6976 { 6977 struct netdev_adjacent *iter; 6978 6979 struct net *net = dev_net(dev); 6980 6981 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6982 if (!net_eq(net, dev_net(iter->dev))) 6983 continue; 6984 netdev_adjacent_sysfs_del(iter->dev, oldname, 6985 &iter->dev->adj_list.lower); 6986 netdev_adjacent_sysfs_add(iter->dev, dev, 6987 &iter->dev->adj_list.lower); 6988 } 6989 6990 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6991 if (!net_eq(net, dev_net(iter->dev))) 6992 continue; 6993 netdev_adjacent_sysfs_del(iter->dev, oldname, 6994 &iter->dev->adj_list.upper); 6995 netdev_adjacent_sysfs_add(iter->dev, dev, 6996 &iter->dev->adj_list.upper); 6997 } 6998 } 6999 7000 void *netdev_lower_dev_get_private(struct net_device *dev, 7001 struct net_device *lower_dev) 7002 { 7003 struct netdev_adjacent *lower; 7004 7005 if (!lower_dev) 7006 return NULL; 7007 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7008 if (!lower) 7009 return NULL; 7010 7011 return lower->private; 7012 } 7013 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7014 7015 7016 int dev_get_nest_level(struct net_device *dev) 7017 { 7018 struct net_device *lower = NULL; 7019 struct list_head *iter; 7020 int max_nest = -1; 7021 int nest; 7022 7023 ASSERT_RTNL(); 7024 7025 netdev_for_each_lower_dev(dev, lower, iter) { 7026 nest = dev_get_nest_level(lower); 7027 if (max_nest < nest) 7028 max_nest = nest; 7029 } 7030 7031 return max_nest + 1; 7032 } 7033 EXPORT_SYMBOL(dev_get_nest_level); 7034 7035 /** 7036 * netdev_lower_change - Dispatch event about lower device state change 7037 * @lower_dev: device 7038 * @lower_state_info: state to dispatch 7039 * 7040 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7041 * The caller must hold the RTNL lock. 7042 */ 7043 void netdev_lower_state_changed(struct net_device *lower_dev, 7044 void *lower_state_info) 7045 { 7046 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7047 .info.dev = lower_dev, 7048 }; 7049 7050 ASSERT_RTNL(); 7051 changelowerstate_info.lower_state_info = lower_state_info; 7052 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7053 &changelowerstate_info.info); 7054 } 7055 EXPORT_SYMBOL(netdev_lower_state_changed); 7056 7057 static void dev_change_rx_flags(struct net_device *dev, int flags) 7058 { 7059 const struct net_device_ops *ops = dev->netdev_ops; 7060 7061 if (ops->ndo_change_rx_flags) 7062 ops->ndo_change_rx_flags(dev, flags); 7063 } 7064 7065 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7066 { 7067 unsigned int old_flags = dev->flags; 7068 kuid_t uid; 7069 kgid_t gid; 7070 7071 ASSERT_RTNL(); 7072 7073 dev->flags |= IFF_PROMISC; 7074 dev->promiscuity += inc; 7075 if (dev->promiscuity == 0) { 7076 /* 7077 * Avoid overflow. 7078 * If inc causes overflow, untouch promisc and return error. 7079 */ 7080 if (inc < 0) 7081 dev->flags &= ~IFF_PROMISC; 7082 else { 7083 dev->promiscuity -= inc; 7084 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7085 dev->name); 7086 return -EOVERFLOW; 7087 } 7088 } 7089 if (dev->flags != old_flags) { 7090 pr_info("device %s %s promiscuous mode\n", 7091 dev->name, 7092 dev->flags & IFF_PROMISC ? "entered" : "left"); 7093 if (audit_enabled) { 7094 current_uid_gid(&uid, &gid); 7095 audit_log(audit_context(), GFP_ATOMIC, 7096 AUDIT_ANOM_PROMISCUOUS, 7097 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7098 dev->name, (dev->flags & IFF_PROMISC), 7099 (old_flags & IFF_PROMISC), 7100 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7101 from_kuid(&init_user_ns, uid), 7102 from_kgid(&init_user_ns, gid), 7103 audit_get_sessionid(current)); 7104 } 7105 7106 dev_change_rx_flags(dev, IFF_PROMISC); 7107 } 7108 if (notify) 7109 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7110 return 0; 7111 } 7112 7113 /** 7114 * dev_set_promiscuity - update promiscuity count on a device 7115 * @dev: device 7116 * @inc: modifier 7117 * 7118 * Add or remove promiscuity from a device. While the count in the device 7119 * remains above zero the interface remains promiscuous. Once it hits zero 7120 * the device reverts back to normal filtering operation. A negative inc 7121 * value is used to drop promiscuity on the device. 7122 * Return 0 if successful or a negative errno code on error. 7123 */ 7124 int dev_set_promiscuity(struct net_device *dev, int inc) 7125 { 7126 unsigned int old_flags = dev->flags; 7127 int err; 7128 7129 err = __dev_set_promiscuity(dev, inc, true); 7130 if (err < 0) 7131 return err; 7132 if (dev->flags != old_flags) 7133 dev_set_rx_mode(dev); 7134 return err; 7135 } 7136 EXPORT_SYMBOL(dev_set_promiscuity); 7137 7138 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7139 { 7140 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7141 7142 ASSERT_RTNL(); 7143 7144 dev->flags |= IFF_ALLMULTI; 7145 dev->allmulti += inc; 7146 if (dev->allmulti == 0) { 7147 /* 7148 * Avoid overflow. 7149 * If inc causes overflow, untouch allmulti and return error. 7150 */ 7151 if (inc < 0) 7152 dev->flags &= ~IFF_ALLMULTI; 7153 else { 7154 dev->allmulti -= inc; 7155 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7156 dev->name); 7157 return -EOVERFLOW; 7158 } 7159 } 7160 if (dev->flags ^ old_flags) { 7161 dev_change_rx_flags(dev, IFF_ALLMULTI); 7162 dev_set_rx_mode(dev); 7163 if (notify) 7164 __dev_notify_flags(dev, old_flags, 7165 dev->gflags ^ old_gflags); 7166 } 7167 return 0; 7168 } 7169 7170 /** 7171 * dev_set_allmulti - update allmulti count on a device 7172 * @dev: device 7173 * @inc: modifier 7174 * 7175 * Add or remove reception of all multicast frames to a device. While the 7176 * count in the device remains above zero the interface remains listening 7177 * to all interfaces. Once it hits zero the device reverts back to normal 7178 * filtering operation. A negative @inc value is used to drop the counter 7179 * when releasing a resource needing all multicasts. 7180 * Return 0 if successful or a negative errno code on error. 7181 */ 7182 7183 int dev_set_allmulti(struct net_device *dev, int inc) 7184 { 7185 return __dev_set_allmulti(dev, inc, true); 7186 } 7187 EXPORT_SYMBOL(dev_set_allmulti); 7188 7189 /* 7190 * Upload unicast and multicast address lists to device and 7191 * configure RX filtering. When the device doesn't support unicast 7192 * filtering it is put in promiscuous mode while unicast addresses 7193 * are present. 7194 */ 7195 void __dev_set_rx_mode(struct net_device *dev) 7196 { 7197 const struct net_device_ops *ops = dev->netdev_ops; 7198 7199 /* dev_open will call this function so the list will stay sane. */ 7200 if (!(dev->flags&IFF_UP)) 7201 return; 7202 7203 if (!netif_device_present(dev)) 7204 return; 7205 7206 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7207 /* Unicast addresses changes may only happen under the rtnl, 7208 * therefore calling __dev_set_promiscuity here is safe. 7209 */ 7210 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7211 __dev_set_promiscuity(dev, 1, false); 7212 dev->uc_promisc = true; 7213 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7214 __dev_set_promiscuity(dev, -1, false); 7215 dev->uc_promisc = false; 7216 } 7217 } 7218 7219 if (ops->ndo_set_rx_mode) 7220 ops->ndo_set_rx_mode(dev); 7221 } 7222 7223 void dev_set_rx_mode(struct net_device *dev) 7224 { 7225 netif_addr_lock_bh(dev); 7226 __dev_set_rx_mode(dev); 7227 netif_addr_unlock_bh(dev); 7228 } 7229 7230 /** 7231 * dev_get_flags - get flags reported to userspace 7232 * @dev: device 7233 * 7234 * Get the combination of flag bits exported through APIs to userspace. 7235 */ 7236 unsigned int dev_get_flags(const struct net_device *dev) 7237 { 7238 unsigned int flags; 7239 7240 flags = (dev->flags & ~(IFF_PROMISC | 7241 IFF_ALLMULTI | 7242 IFF_RUNNING | 7243 IFF_LOWER_UP | 7244 IFF_DORMANT)) | 7245 (dev->gflags & (IFF_PROMISC | 7246 IFF_ALLMULTI)); 7247 7248 if (netif_running(dev)) { 7249 if (netif_oper_up(dev)) 7250 flags |= IFF_RUNNING; 7251 if (netif_carrier_ok(dev)) 7252 flags |= IFF_LOWER_UP; 7253 if (netif_dormant(dev)) 7254 flags |= IFF_DORMANT; 7255 } 7256 7257 return flags; 7258 } 7259 EXPORT_SYMBOL(dev_get_flags); 7260 7261 int __dev_change_flags(struct net_device *dev, unsigned int flags) 7262 { 7263 unsigned int old_flags = dev->flags; 7264 int ret; 7265 7266 ASSERT_RTNL(); 7267 7268 /* 7269 * Set the flags on our device. 7270 */ 7271 7272 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7273 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7274 IFF_AUTOMEDIA)) | 7275 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7276 IFF_ALLMULTI)); 7277 7278 /* 7279 * Load in the correct multicast list now the flags have changed. 7280 */ 7281 7282 if ((old_flags ^ flags) & IFF_MULTICAST) 7283 dev_change_rx_flags(dev, IFF_MULTICAST); 7284 7285 dev_set_rx_mode(dev); 7286 7287 /* 7288 * Have we downed the interface. We handle IFF_UP ourselves 7289 * according to user attempts to set it, rather than blindly 7290 * setting it. 7291 */ 7292 7293 ret = 0; 7294 if ((old_flags ^ flags) & IFF_UP) { 7295 if (old_flags & IFF_UP) 7296 __dev_close(dev); 7297 else 7298 ret = __dev_open(dev); 7299 } 7300 7301 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7302 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7303 unsigned int old_flags = dev->flags; 7304 7305 dev->gflags ^= IFF_PROMISC; 7306 7307 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7308 if (dev->flags != old_flags) 7309 dev_set_rx_mode(dev); 7310 } 7311 7312 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7313 * is important. Some (broken) drivers set IFF_PROMISC, when 7314 * IFF_ALLMULTI is requested not asking us and not reporting. 7315 */ 7316 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7317 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7318 7319 dev->gflags ^= IFF_ALLMULTI; 7320 __dev_set_allmulti(dev, inc, false); 7321 } 7322 7323 return ret; 7324 } 7325 7326 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7327 unsigned int gchanges) 7328 { 7329 unsigned int changes = dev->flags ^ old_flags; 7330 7331 if (gchanges) 7332 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7333 7334 if (changes & IFF_UP) { 7335 if (dev->flags & IFF_UP) 7336 call_netdevice_notifiers(NETDEV_UP, dev); 7337 else 7338 call_netdevice_notifiers(NETDEV_DOWN, dev); 7339 } 7340 7341 if (dev->flags & IFF_UP && 7342 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7343 struct netdev_notifier_change_info change_info = { 7344 .info = { 7345 .dev = dev, 7346 }, 7347 .flags_changed = changes, 7348 }; 7349 7350 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7351 } 7352 } 7353 7354 /** 7355 * dev_change_flags - change device settings 7356 * @dev: device 7357 * @flags: device state flags 7358 * 7359 * Change settings on device based state flags. The flags are 7360 * in the userspace exported format. 7361 */ 7362 int dev_change_flags(struct net_device *dev, unsigned int flags) 7363 { 7364 int ret; 7365 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7366 7367 ret = __dev_change_flags(dev, flags); 7368 if (ret < 0) 7369 return ret; 7370 7371 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7372 __dev_notify_flags(dev, old_flags, changes); 7373 return ret; 7374 } 7375 EXPORT_SYMBOL(dev_change_flags); 7376 7377 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7378 { 7379 const struct net_device_ops *ops = dev->netdev_ops; 7380 7381 if (ops->ndo_change_mtu) 7382 return ops->ndo_change_mtu(dev, new_mtu); 7383 7384 dev->mtu = new_mtu; 7385 return 0; 7386 } 7387 EXPORT_SYMBOL(__dev_set_mtu); 7388 7389 /** 7390 * dev_set_mtu - Change maximum transfer unit 7391 * @dev: device 7392 * @new_mtu: new transfer unit 7393 * 7394 * Change the maximum transfer size of the network device. 7395 */ 7396 int dev_set_mtu(struct net_device *dev, int new_mtu) 7397 { 7398 int err, orig_mtu; 7399 7400 if (new_mtu == dev->mtu) 7401 return 0; 7402 7403 /* MTU must be positive, and in range */ 7404 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7405 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7406 dev->name, new_mtu, dev->min_mtu); 7407 return -EINVAL; 7408 } 7409 7410 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7411 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7412 dev->name, new_mtu, dev->max_mtu); 7413 return -EINVAL; 7414 } 7415 7416 if (!netif_device_present(dev)) 7417 return -ENODEV; 7418 7419 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7420 err = notifier_to_errno(err); 7421 if (err) 7422 return err; 7423 7424 orig_mtu = dev->mtu; 7425 err = __dev_set_mtu(dev, new_mtu); 7426 7427 if (!err) { 7428 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7429 err = notifier_to_errno(err); 7430 if (err) { 7431 /* setting mtu back and notifying everyone again, 7432 * so that they have a chance to revert changes. 7433 */ 7434 __dev_set_mtu(dev, orig_mtu); 7435 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7436 } 7437 } 7438 return err; 7439 } 7440 EXPORT_SYMBOL(dev_set_mtu); 7441 7442 /** 7443 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7444 * @dev: device 7445 * @new_len: new tx queue length 7446 */ 7447 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7448 { 7449 unsigned int orig_len = dev->tx_queue_len; 7450 int res; 7451 7452 if (new_len != (unsigned int)new_len) 7453 return -ERANGE; 7454 7455 if (new_len != orig_len) { 7456 dev->tx_queue_len = new_len; 7457 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7458 res = notifier_to_errno(res); 7459 if (res) { 7460 netdev_err(dev, 7461 "refused to change device tx_queue_len\n"); 7462 dev->tx_queue_len = orig_len; 7463 return res; 7464 } 7465 return dev_qdisc_change_tx_queue_len(dev); 7466 } 7467 7468 return 0; 7469 } 7470 7471 /** 7472 * dev_set_group - Change group this device belongs to 7473 * @dev: device 7474 * @new_group: group this device should belong to 7475 */ 7476 void dev_set_group(struct net_device *dev, int new_group) 7477 { 7478 dev->group = new_group; 7479 } 7480 EXPORT_SYMBOL(dev_set_group); 7481 7482 /** 7483 * dev_set_mac_address - Change Media Access Control Address 7484 * @dev: device 7485 * @sa: new address 7486 * 7487 * Change the hardware (MAC) address of the device 7488 */ 7489 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7490 { 7491 const struct net_device_ops *ops = dev->netdev_ops; 7492 int err; 7493 7494 if (!ops->ndo_set_mac_address) 7495 return -EOPNOTSUPP; 7496 if (sa->sa_family != dev->type) 7497 return -EINVAL; 7498 if (!netif_device_present(dev)) 7499 return -ENODEV; 7500 err = ops->ndo_set_mac_address(dev, sa); 7501 if (err) 7502 return err; 7503 dev->addr_assign_type = NET_ADDR_SET; 7504 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7505 add_device_randomness(dev->dev_addr, dev->addr_len); 7506 return 0; 7507 } 7508 EXPORT_SYMBOL(dev_set_mac_address); 7509 7510 /** 7511 * dev_change_carrier - Change device carrier 7512 * @dev: device 7513 * @new_carrier: new value 7514 * 7515 * Change device carrier 7516 */ 7517 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7518 { 7519 const struct net_device_ops *ops = dev->netdev_ops; 7520 7521 if (!ops->ndo_change_carrier) 7522 return -EOPNOTSUPP; 7523 if (!netif_device_present(dev)) 7524 return -ENODEV; 7525 return ops->ndo_change_carrier(dev, new_carrier); 7526 } 7527 EXPORT_SYMBOL(dev_change_carrier); 7528 7529 /** 7530 * dev_get_phys_port_id - Get device physical port ID 7531 * @dev: device 7532 * @ppid: port ID 7533 * 7534 * Get device physical port ID 7535 */ 7536 int dev_get_phys_port_id(struct net_device *dev, 7537 struct netdev_phys_item_id *ppid) 7538 { 7539 const struct net_device_ops *ops = dev->netdev_ops; 7540 7541 if (!ops->ndo_get_phys_port_id) 7542 return -EOPNOTSUPP; 7543 return ops->ndo_get_phys_port_id(dev, ppid); 7544 } 7545 EXPORT_SYMBOL(dev_get_phys_port_id); 7546 7547 /** 7548 * dev_get_phys_port_name - Get device physical port name 7549 * @dev: device 7550 * @name: port name 7551 * @len: limit of bytes to copy to name 7552 * 7553 * Get device physical port name 7554 */ 7555 int dev_get_phys_port_name(struct net_device *dev, 7556 char *name, size_t len) 7557 { 7558 const struct net_device_ops *ops = dev->netdev_ops; 7559 7560 if (!ops->ndo_get_phys_port_name) 7561 return -EOPNOTSUPP; 7562 return ops->ndo_get_phys_port_name(dev, name, len); 7563 } 7564 EXPORT_SYMBOL(dev_get_phys_port_name); 7565 7566 /** 7567 * dev_change_proto_down - update protocol port state information 7568 * @dev: device 7569 * @proto_down: new value 7570 * 7571 * This info can be used by switch drivers to set the phys state of the 7572 * port. 7573 */ 7574 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7575 { 7576 const struct net_device_ops *ops = dev->netdev_ops; 7577 7578 if (!ops->ndo_change_proto_down) 7579 return -EOPNOTSUPP; 7580 if (!netif_device_present(dev)) 7581 return -ENODEV; 7582 return ops->ndo_change_proto_down(dev, proto_down); 7583 } 7584 EXPORT_SYMBOL(dev_change_proto_down); 7585 7586 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7587 struct netdev_bpf *xdp) 7588 { 7589 memset(xdp, 0, sizeof(*xdp)); 7590 xdp->command = XDP_QUERY_PROG; 7591 7592 /* Query must always succeed. */ 7593 WARN_ON(bpf_op(dev, xdp) < 0); 7594 } 7595 7596 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7597 { 7598 struct netdev_bpf xdp; 7599 7600 __dev_xdp_query(dev, bpf_op, &xdp); 7601 7602 return xdp.prog_attached; 7603 } 7604 7605 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7606 struct netlink_ext_ack *extack, u32 flags, 7607 struct bpf_prog *prog) 7608 { 7609 struct netdev_bpf xdp; 7610 7611 memset(&xdp, 0, sizeof(xdp)); 7612 if (flags & XDP_FLAGS_HW_MODE) 7613 xdp.command = XDP_SETUP_PROG_HW; 7614 else 7615 xdp.command = XDP_SETUP_PROG; 7616 xdp.extack = extack; 7617 xdp.flags = flags; 7618 xdp.prog = prog; 7619 7620 return bpf_op(dev, &xdp); 7621 } 7622 7623 static void dev_xdp_uninstall(struct net_device *dev) 7624 { 7625 struct netdev_bpf xdp; 7626 bpf_op_t ndo_bpf; 7627 7628 /* Remove generic XDP */ 7629 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7630 7631 /* Remove from the driver */ 7632 ndo_bpf = dev->netdev_ops->ndo_bpf; 7633 if (!ndo_bpf) 7634 return; 7635 7636 __dev_xdp_query(dev, ndo_bpf, &xdp); 7637 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7638 return; 7639 7640 /* Program removal should always succeed */ 7641 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7642 } 7643 7644 /** 7645 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7646 * @dev: device 7647 * @extack: netlink extended ack 7648 * @fd: new program fd or negative value to clear 7649 * @flags: xdp-related flags 7650 * 7651 * Set or clear a bpf program for a device 7652 */ 7653 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7654 int fd, u32 flags) 7655 { 7656 const struct net_device_ops *ops = dev->netdev_ops; 7657 struct bpf_prog *prog = NULL; 7658 bpf_op_t bpf_op, bpf_chk; 7659 int err; 7660 7661 ASSERT_RTNL(); 7662 7663 bpf_op = bpf_chk = ops->ndo_bpf; 7664 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7665 return -EOPNOTSUPP; 7666 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7667 bpf_op = generic_xdp_install; 7668 if (bpf_op == bpf_chk) 7669 bpf_chk = generic_xdp_install; 7670 7671 if (fd >= 0) { 7672 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7673 return -EEXIST; 7674 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7675 __dev_xdp_attached(dev, bpf_op)) 7676 return -EBUSY; 7677 7678 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7679 bpf_op == ops->ndo_bpf); 7680 if (IS_ERR(prog)) 7681 return PTR_ERR(prog); 7682 7683 if (!(flags & XDP_FLAGS_HW_MODE) && 7684 bpf_prog_is_dev_bound(prog->aux)) { 7685 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7686 bpf_prog_put(prog); 7687 return -EINVAL; 7688 } 7689 } 7690 7691 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7692 if (err < 0 && prog) 7693 bpf_prog_put(prog); 7694 7695 return err; 7696 } 7697 7698 /** 7699 * dev_new_index - allocate an ifindex 7700 * @net: the applicable net namespace 7701 * 7702 * Returns a suitable unique value for a new device interface 7703 * number. The caller must hold the rtnl semaphore or the 7704 * dev_base_lock to be sure it remains unique. 7705 */ 7706 static int dev_new_index(struct net *net) 7707 { 7708 int ifindex = net->ifindex; 7709 7710 for (;;) { 7711 if (++ifindex <= 0) 7712 ifindex = 1; 7713 if (!__dev_get_by_index(net, ifindex)) 7714 return net->ifindex = ifindex; 7715 } 7716 } 7717 7718 /* Delayed registration/unregisteration */ 7719 static LIST_HEAD(net_todo_list); 7720 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7721 7722 static void net_set_todo(struct net_device *dev) 7723 { 7724 list_add_tail(&dev->todo_list, &net_todo_list); 7725 dev_net(dev)->dev_unreg_count++; 7726 } 7727 7728 static void rollback_registered_many(struct list_head *head) 7729 { 7730 struct net_device *dev, *tmp; 7731 LIST_HEAD(close_head); 7732 7733 BUG_ON(dev_boot_phase); 7734 ASSERT_RTNL(); 7735 7736 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7737 /* Some devices call without registering 7738 * for initialization unwind. Remove those 7739 * devices and proceed with the remaining. 7740 */ 7741 if (dev->reg_state == NETREG_UNINITIALIZED) { 7742 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7743 dev->name, dev); 7744 7745 WARN_ON(1); 7746 list_del(&dev->unreg_list); 7747 continue; 7748 } 7749 dev->dismantle = true; 7750 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7751 } 7752 7753 /* If device is running, close it first. */ 7754 list_for_each_entry(dev, head, unreg_list) 7755 list_add_tail(&dev->close_list, &close_head); 7756 dev_close_many(&close_head, true); 7757 7758 list_for_each_entry(dev, head, unreg_list) { 7759 /* And unlink it from device chain. */ 7760 unlist_netdevice(dev); 7761 7762 dev->reg_state = NETREG_UNREGISTERING; 7763 } 7764 flush_all_backlogs(); 7765 7766 synchronize_net(); 7767 7768 list_for_each_entry(dev, head, unreg_list) { 7769 struct sk_buff *skb = NULL; 7770 7771 /* Shutdown queueing discipline. */ 7772 dev_shutdown(dev); 7773 7774 dev_xdp_uninstall(dev); 7775 7776 /* Notify protocols, that we are about to destroy 7777 * this device. They should clean all the things. 7778 */ 7779 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7780 7781 if (!dev->rtnl_link_ops || 7782 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7783 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7784 GFP_KERNEL, NULL, 0); 7785 7786 /* 7787 * Flush the unicast and multicast chains 7788 */ 7789 dev_uc_flush(dev); 7790 dev_mc_flush(dev); 7791 7792 if (dev->netdev_ops->ndo_uninit) 7793 dev->netdev_ops->ndo_uninit(dev); 7794 7795 if (skb) 7796 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7797 7798 /* Notifier chain MUST detach us all upper devices. */ 7799 WARN_ON(netdev_has_any_upper_dev(dev)); 7800 WARN_ON(netdev_has_any_lower_dev(dev)); 7801 7802 /* Remove entries from kobject tree */ 7803 netdev_unregister_kobject(dev); 7804 #ifdef CONFIG_XPS 7805 /* Remove XPS queueing entries */ 7806 netif_reset_xps_queues_gt(dev, 0); 7807 #endif 7808 } 7809 7810 synchronize_net(); 7811 7812 list_for_each_entry(dev, head, unreg_list) 7813 dev_put(dev); 7814 } 7815 7816 static void rollback_registered(struct net_device *dev) 7817 { 7818 LIST_HEAD(single); 7819 7820 list_add(&dev->unreg_list, &single); 7821 rollback_registered_many(&single); 7822 list_del(&single); 7823 } 7824 7825 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7826 struct net_device *upper, netdev_features_t features) 7827 { 7828 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7829 netdev_features_t feature; 7830 int feature_bit; 7831 7832 for_each_netdev_feature(&upper_disables, feature_bit) { 7833 feature = __NETIF_F_BIT(feature_bit); 7834 if (!(upper->wanted_features & feature) 7835 && (features & feature)) { 7836 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7837 &feature, upper->name); 7838 features &= ~feature; 7839 } 7840 } 7841 7842 return features; 7843 } 7844 7845 static void netdev_sync_lower_features(struct net_device *upper, 7846 struct net_device *lower, netdev_features_t features) 7847 { 7848 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7849 netdev_features_t feature; 7850 int feature_bit; 7851 7852 for_each_netdev_feature(&upper_disables, feature_bit) { 7853 feature = __NETIF_F_BIT(feature_bit); 7854 if (!(features & feature) && (lower->features & feature)) { 7855 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7856 &feature, lower->name); 7857 lower->wanted_features &= ~feature; 7858 netdev_update_features(lower); 7859 7860 if (unlikely(lower->features & feature)) 7861 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7862 &feature, lower->name); 7863 } 7864 } 7865 } 7866 7867 static netdev_features_t netdev_fix_features(struct net_device *dev, 7868 netdev_features_t features) 7869 { 7870 /* Fix illegal checksum combinations */ 7871 if ((features & NETIF_F_HW_CSUM) && 7872 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7873 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7874 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7875 } 7876 7877 /* TSO requires that SG is present as well. */ 7878 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7879 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7880 features &= ~NETIF_F_ALL_TSO; 7881 } 7882 7883 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7884 !(features & NETIF_F_IP_CSUM)) { 7885 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7886 features &= ~NETIF_F_TSO; 7887 features &= ~NETIF_F_TSO_ECN; 7888 } 7889 7890 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7891 !(features & NETIF_F_IPV6_CSUM)) { 7892 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7893 features &= ~NETIF_F_TSO6; 7894 } 7895 7896 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7897 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7898 features &= ~NETIF_F_TSO_MANGLEID; 7899 7900 /* TSO ECN requires that TSO is present as well. */ 7901 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7902 features &= ~NETIF_F_TSO_ECN; 7903 7904 /* Software GSO depends on SG. */ 7905 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7906 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7907 features &= ~NETIF_F_GSO; 7908 } 7909 7910 /* GSO partial features require GSO partial be set */ 7911 if ((features & dev->gso_partial_features) && 7912 !(features & NETIF_F_GSO_PARTIAL)) { 7913 netdev_dbg(dev, 7914 "Dropping partially supported GSO features since no GSO partial.\n"); 7915 features &= ~dev->gso_partial_features; 7916 } 7917 7918 if (!(features & NETIF_F_RXCSUM)) { 7919 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7920 * successfully merged by hardware must also have the 7921 * checksum verified by hardware. If the user does not 7922 * want to enable RXCSUM, logically, we should disable GRO_HW. 7923 */ 7924 if (features & NETIF_F_GRO_HW) { 7925 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7926 features &= ~NETIF_F_GRO_HW; 7927 } 7928 } 7929 7930 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 7931 if (features & NETIF_F_RXFCS) { 7932 if (features & NETIF_F_LRO) { 7933 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 7934 features &= ~NETIF_F_LRO; 7935 } 7936 7937 if (features & NETIF_F_GRO_HW) { 7938 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 7939 features &= ~NETIF_F_GRO_HW; 7940 } 7941 } 7942 7943 return features; 7944 } 7945 7946 int __netdev_update_features(struct net_device *dev) 7947 { 7948 struct net_device *upper, *lower; 7949 netdev_features_t features; 7950 struct list_head *iter; 7951 int err = -1; 7952 7953 ASSERT_RTNL(); 7954 7955 features = netdev_get_wanted_features(dev); 7956 7957 if (dev->netdev_ops->ndo_fix_features) 7958 features = dev->netdev_ops->ndo_fix_features(dev, features); 7959 7960 /* driver might be less strict about feature dependencies */ 7961 features = netdev_fix_features(dev, features); 7962 7963 /* some features can't be enabled if they're off an an upper device */ 7964 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7965 features = netdev_sync_upper_features(dev, upper, features); 7966 7967 if (dev->features == features) 7968 goto sync_lower; 7969 7970 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7971 &dev->features, &features); 7972 7973 if (dev->netdev_ops->ndo_set_features) 7974 err = dev->netdev_ops->ndo_set_features(dev, features); 7975 else 7976 err = 0; 7977 7978 if (unlikely(err < 0)) { 7979 netdev_err(dev, 7980 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7981 err, &features, &dev->features); 7982 /* return non-0 since some features might have changed and 7983 * it's better to fire a spurious notification than miss it 7984 */ 7985 return -1; 7986 } 7987 7988 sync_lower: 7989 /* some features must be disabled on lower devices when disabled 7990 * on an upper device (think: bonding master or bridge) 7991 */ 7992 netdev_for_each_lower_dev(dev, lower, iter) 7993 netdev_sync_lower_features(dev, lower, features); 7994 7995 if (!err) { 7996 netdev_features_t diff = features ^ dev->features; 7997 7998 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7999 /* udp_tunnel_{get,drop}_rx_info both need 8000 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8001 * device, or they won't do anything. 8002 * Thus we need to update dev->features 8003 * *before* calling udp_tunnel_get_rx_info, 8004 * but *after* calling udp_tunnel_drop_rx_info. 8005 */ 8006 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8007 dev->features = features; 8008 udp_tunnel_get_rx_info(dev); 8009 } else { 8010 udp_tunnel_drop_rx_info(dev); 8011 } 8012 } 8013 8014 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8015 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8016 dev->features = features; 8017 err |= vlan_get_rx_ctag_filter_info(dev); 8018 } else { 8019 vlan_drop_rx_ctag_filter_info(dev); 8020 } 8021 } 8022 8023 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8024 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8025 dev->features = features; 8026 err |= vlan_get_rx_stag_filter_info(dev); 8027 } else { 8028 vlan_drop_rx_stag_filter_info(dev); 8029 } 8030 } 8031 8032 dev->features = features; 8033 } 8034 8035 return err < 0 ? 0 : 1; 8036 } 8037 8038 /** 8039 * netdev_update_features - recalculate device features 8040 * @dev: the device to check 8041 * 8042 * Recalculate dev->features set and send notifications if it 8043 * has changed. Should be called after driver or hardware dependent 8044 * conditions might have changed that influence the features. 8045 */ 8046 void netdev_update_features(struct net_device *dev) 8047 { 8048 if (__netdev_update_features(dev)) 8049 netdev_features_change(dev); 8050 } 8051 EXPORT_SYMBOL(netdev_update_features); 8052 8053 /** 8054 * netdev_change_features - recalculate device features 8055 * @dev: the device to check 8056 * 8057 * Recalculate dev->features set and send notifications even 8058 * if they have not changed. Should be called instead of 8059 * netdev_update_features() if also dev->vlan_features might 8060 * have changed to allow the changes to be propagated to stacked 8061 * VLAN devices. 8062 */ 8063 void netdev_change_features(struct net_device *dev) 8064 { 8065 __netdev_update_features(dev); 8066 netdev_features_change(dev); 8067 } 8068 EXPORT_SYMBOL(netdev_change_features); 8069 8070 /** 8071 * netif_stacked_transfer_operstate - transfer operstate 8072 * @rootdev: the root or lower level device to transfer state from 8073 * @dev: the device to transfer operstate to 8074 * 8075 * Transfer operational state from root to device. This is normally 8076 * called when a stacking relationship exists between the root 8077 * device and the device(a leaf device). 8078 */ 8079 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8080 struct net_device *dev) 8081 { 8082 if (rootdev->operstate == IF_OPER_DORMANT) 8083 netif_dormant_on(dev); 8084 else 8085 netif_dormant_off(dev); 8086 8087 if (netif_carrier_ok(rootdev)) 8088 netif_carrier_on(dev); 8089 else 8090 netif_carrier_off(dev); 8091 } 8092 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8093 8094 static int netif_alloc_rx_queues(struct net_device *dev) 8095 { 8096 unsigned int i, count = dev->num_rx_queues; 8097 struct netdev_rx_queue *rx; 8098 size_t sz = count * sizeof(*rx); 8099 int err = 0; 8100 8101 BUG_ON(count < 1); 8102 8103 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8104 if (!rx) 8105 return -ENOMEM; 8106 8107 dev->_rx = rx; 8108 8109 for (i = 0; i < count; i++) { 8110 rx[i].dev = dev; 8111 8112 /* XDP RX-queue setup */ 8113 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8114 if (err < 0) 8115 goto err_rxq_info; 8116 } 8117 return 0; 8118 8119 err_rxq_info: 8120 /* Rollback successful reg's and free other resources */ 8121 while (i--) 8122 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8123 kvfree(dev->_rx); 8124 dev->_rx = NULL; 8125 return err; 8126 } 8127 8128 static void netif_free_rx_queues(struct net_device *dev) 8129 { 8130 unsigned int i, count = dev->num_rx_queues; 8131 8132 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8133 if (!dev->_rx) 8134 return; 8135 8136 for (i = 0; i < count; i++) 8137 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8138 8139 kvfree(dev->_rx); 8140 } 8141 8142 static void netdev_init_one_queue(struct net_device *dev, 8143 struct netdev_queue *queue, void *_unused) 8144 { 8145 /* Initialize queue lock */ 8146 spin_lock_init(&queue->_xmit_lock); 8147 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8148 queue->xmit_lock_owner = -1; 8149 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8150 queue->dev = dev; 8151 #ifdef CONFIG_BQL 8152 dql_init(&queue->dql, HZ); 8153 #endif 8154 } 8155 8156 static void netif_free_tx_queues(struct net_device *dev) 8157 { 8158 kvfree(dev->_tx); 8159 } 8160 8161 static int netif_alloc_netdev_queues(struct net_device *dev) 8162 { 8163 unsigned int count = dev->num_tx_queues; 8164 struct netdev_queue *tx; 8165 size_t sz = count * sizeof(*tx); 8166 8167 if (count < 1 || count > 0xffff) 8168 return -EINVAL; 8169 8170 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8171 if (!tx) 8172 return -ENOMEM; 8173 8174 dev->_tx = tx; 8175 8176 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8177 spin_lock_init(&dev->tx_global_lock); 8178 8179 return 0; 8180 } 8181 8182 void netif_tx_stop_all_queues(struct net_device *dev) 8183 { 8184 unsigned int i; 8185 8186 for (i = 0; i < dev->num_tx_queues; i++) { 8187 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8188 8189 netif_tx_stop_queue(txq); 8190 } 8191 } 8192 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8193 8194 /** 8195 * register_netdevice - register a network device 8196 * @dev: device to register 8197 * 8198 * Take a completed network device structure and add it to the kernel 8199 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8200 * chain. 0 is returned on success. A negative errno code is returned 8201 * on a failure to set up the device, or if the name is a duplicate. 8202 * 8203 * Callers must hold the rtnl semaphore. You may want 8204 * register_netdev() instead of this. 8205 * 8206 * BUGS: 8207 * The locking appears insufficient to guarantee two parallel registers 8208 * will not get the same name. 8209 */ 8210 8211 int register_netdevice(struct net_device *dev) 8212 { 8213 int ret; 8214 struct net *net = dev_net(dev); 8215 8216 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8217 NETDEV_FEATURE_COUNT); 8218 BUG_ON(dev_boot_phase); 8219 ASSERT_RTNL(); 8220 8221 might_sleep(); 8222 8223 /* When net_device's are persistent, this will be fatal. */ 8224 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8225 BUG_ON(!net); 8226 8227 spin_lock_init(&dev->addr_list_lock); 8228 netdev_set_addr_lockdep_class(dev); 8229 8230 ret = dev_get_valid_name(net, dev, dev->name); 8231 if (ret < 0) 8232 goto out; 8233 8234 /* Init, if this function is available */ 8235 if (dev->netdev_ops->ndo_init) { 8236 ret = dev->netdev_ops->ndo_init(dev); 8237 if (ret) { 8238 if (ret > 0) 8239 ret = -EIO; 8240 goto out; 8241 } 8242 } 8243 8244 if (((dev->hw_features | dev->features) & 8245 NETIF_F_HW_VLAN_CTAG_FILTER) && 8246 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8247 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8248 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8249 ret = -EINVAL; 8250 goto err_uninit; 8251 } 8252 8253 ret = -EBUSY; 8254 if (!dev->ifindex) 8255 dev->ifindex = dev_new_index(net); 8256 else if (__dev_get_by_index(net, dev->ifindex)) 8257 goto err_uninit; 8258 8259 /* Transfer changeable features to wanted_features and enable 8260 * software offloads (GSO and GRO). 8261 */ 8262 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8263 dev->features |= NETIF_F_SOFT_FEATURES; 8264 8265 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8266 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8267 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8268 } 8269 8270 dev->wanted_features = dev->features & dev->hw_features; 8271 8272 if (!(dev->flags & IFF_LOOPBACK)) 8273 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8274 8275 /* If IPv4 TCP segmentation offload is supported we should also 8276 * allow the device to enable segmenting the frame with the option 8277 * of ignoring a static IP ID value. This doesn't enable the 8278 * feature itself but allows the user to enable it later. 8279 */ 8280 if (dev->hw_features & NETIF_F_TSO) 8281 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8282 if (dev->vlan_features & NETIF_F_TSO) 8283 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8284 if (dev->mpls_features & NETIF_F_TSO) 8285 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8286 if (dev->hw_enc_features & NETIF_F_TSO) 8287 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8288 8289 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8290 */ 8291 dev->vlan_features |= NETIF_F_HIGHDMA; 8292 8293 /* Make NETIF_F_SG inheritable to tunnel devices. 8294 */ 8295 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8296 8297 /* Make NETIF_F_SG inheritable to MPLS. 8298 */ 8299 dev->mpls_features |= NETIF_F_SG; 8300 8301 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8302 ret = notifier_to_errno(ret); 8303 if (ret) 8304 goto err_uninit; 8305 8306 ret = netdev_register_kobject(dev); 8307 if (ret) 8308 goto err_uninit; 8309 dev->reg_state = NETREG_REGISTERED; 8310 8311 __netdev_update_features(dev); 8312 8313 /* 8314 * Default initial state at registry is that the 8315 * device is present. 8316 */ 8317 8318 set_bit(__LINK_STATE_PRESENT, &dev->state); 8319 8320 linkwatch_init_dev(dev); 8321 8322 dev_init_scheduler(dev); 8323 dev_hold(dev); 8324 list_netdevice(dev); 8325 add_device_randomness(dev->dev_addr, dev->addr_len); 8326 8327 /* If the device has permanent device address, driver should 8328 * set dev_addr and also addr_assign_type should be set to 8329 * NET_ADDR_PERM (default value). 8330 */ 8331 if (dev->addr_assign_type == NET_ADDR_PERM) 8332 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8333 8334 /* Notify protocols, that a new device appeared. */ 8335 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8336 ret = notifier_to_errno(ret); 8337 if (ret) { 8338 rollback_registered(dev); 8339 dev->reg_state = NETREG_UNREGISTERED; 8340 } 8341 /* 8342 * Prevent userspace races by waiting until the network 8343 * device is fully setup before sending notifications. 8344 */ 8345 if (!dev->rtnl_link_ops || 8346 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8347 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8348 8349 out: 8350 return ret; 8351 8352 err_uninit: 8353 if (dev->netdev_ops->ndo_uninit) 8354 dev->netdev_ops->ndo_uninit(dev); 8355 if (dev->priv_destructor) 8356 dev->priv_destructor(dev); 8357 goto out; 8358 } 8359 EXPORT_SYMBOL(register_netdevice); 8360 8361 /** 8362 * init_dummy_netdev - init a dummy network device for NAPI 8363 * @dev: device to init 8364 * 8365 * This takes a network device structure and initialize the minimum 8366 * amount of fields so it can be used to schedule NAPI polls without 8367 * registering a full blown interface. This is to be used by drivers 8368 * that need to tie several hardware interfaces to a single NAPI 8369 * poll scheduler due to HW limitations. 8370 */ 8371 int init_dummy_netdev(struct net_device *dev) 8372 { 8373 /* Clear everything. Note we don't initialize spinlocks 8374 * are they aren't supposed to be taken by any of the 8375 * NAPI code and this dummy netdev is supposed to be 8376 * only ever used for NAPI polls 8377 */ 8378 memset(dev, 0, sizeof(struct net_device)); 8379 8380 /* make sure we BUG if trying to hit standard 8381 * register/unregister code path 8382 */ 8383 dev->reg_state = NETREG_DUMMY; 8384 8385 /* NAPI wants this */ 8386 INIT_LIST_HEAD(&dev->napi_list); 8387 8388 /* a dummy interface is started by default */ 8389 set_bit(__LINK_STATE_PRESENT, &dev->state); 8390 set_bit(__LINK_STATE_START, &dev->state); 8391 8392 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8393 * because users of this 'device' dont need to change 8394 * its refcount. 8395 */ 8396 8397 return 0; 8398 } 8399 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8400 8401 8402 /** 8403 * register_netdev - register a network device 8404 * @dev: device to register 8405 * 8406 * Take a completed network device structure and add it to the kernel 8407 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8408 * chain. 0 is returned on success. A negative errno code is returned 8409 * on a failure to set up the device, or if the name is a duplicate. 8410 * 8411 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8412 * and expands the device name if you passed a format string to 8413 * alloc_netdev. 8414 */ 8415 int register_netdev(struct net_device *dev) 8416 { 8417 int err; 8418 8419 if (rtnl_lock_killable()) 8420 return -EINTR; 8421 err = register_netdevice(dev); 8422 rtnl_unlock(); 8423 return err; 8424 } 8425 EXPORT_SYMBOL(register_netdev); 8426 8427 int netdev_refcnt_read(const struct net_device *dev) 8428 { 8429 int i, refcnt = 0; 8430 8431 for_each_possible_cpu(i) 8432 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8433 return refcnt; 8434 } 8435 EXPORT_SYMBOL(netdev_refcnt_read); 8436 8437 /** 8438 * netdev_wait_allrefs - wait until all references are gone. 8439 * @dev: target net_device 8440 * 8441 * This is called when unregistering network devices. 8442 * 8443 * Any protocol or device that holds a reference should register 8444 * for netdevice notification, and cleanup and put back the 8445 * reference if they receive an UNREGISTER event. 8446 * We can get stuck here if buggy protocols don't correctly 8447 * call dev_put. 8448 */ 8449 static void netdev_wait_allrefs(struct net_device *dev) 8450 { 8451 unsigned long rebroadcast_time, warning_time; 8452 int refcnt; 8453 8454 linkwatch_forget_dev(dev); 8455 8456 rebroadcast_time = warning_time = jiffies; 8457 refcnt = netdev_refcnt_read(dev); 8458 8459 while (refcnt != 0) { 8460 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8461 rtnl_lock(); 8462 8463 /* Rebroadcast unregister notification */ 8464 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8465 8466 __rtnl_unlock(); 8467 rcu_barrier(); 8468 rtnl_lock(); 8469 8470 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8471 &dev->state)) { 8472 /* We must not have linkwatch events 8473 * pending on unregister. If this 8474 * happens, we simply run the queue 8475 * unscheduled, resulting in a noop 8476 * for this device. 8477 */ 8478 linkwatch_run_queue(); 8479 } 8480 8481 __rtnl_unlock(); 8482 8483 rebroadcast_time = jiffies; 8484 } 8485 8486 msleep(250); 8487 8488 refcnt = netdev_refcnt_read(dev); 8489 8490 if (time_after(jiffies, warning_time + 10 * HZ)) { 8491 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8492 dev->name, refcnt); 8493 warning_time = jiffies; 8494 } 8495 } 8496 } 8497 8498 /* The sequence is: 8499 * 8500 * rtnl_lock(); 8501 * ... 8502 * register_netdevice(x1); 8503 * register_netdevice(x2); 8504 * ... 8505 * unregister_netdevice(y1); 8506 * unregister_netdevice(y2); 8507 * ... 8508 * rtnl_unlock(); 8509 * free_netdev(y1); 8510 * free_netdev(y2); 8511 * 8512 * We are invoked by rtnl_unlock(). 8513 * This allows us to deal with problems: 8514 * 1) We can delete sysfs objects which invoke hotplug 8515 * without deadlocking with linkwatch via keventd. 8516 * 2) Since we run with the RTNL semaphore not held, we can sleep 8517 * safely in order to wait for the netdev refcnt to drop to zero. 8518 * 8519 * We must not return until all unregister events added during 8520 * the interval the lock was held have been completed. 8521 */ 8522 void netdev_run_todo(void) 8523 { 8524 struct list_head list; 8525 8526 /* Snapshot list, allow later requests */ 8527 list_replace_init(&net_todo_list, &list); 8528 8529 __rtnl_unlock(); 8530 8531 8532 /* Wait for rcu callbacks to finish before next phase */ 8533 if (!list_empty(&list)) 8534 rcu_barrier(); 8535 8536 while (!list_empty(&list)) { 8537 struct net_device *dev 8538 = list_first_entry(&list, struct net_device, todo_list); 8539 list_del(&dev->todo_list); 8540 8541 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8542 pr_err("network todo '%s' but state %d\n", 8543 dev->name, dev->reg_state); 8544 dump_stack(); 8545 continue; 8546 } 8547 8548 dev->reg_state = NETREG_UNREGISTERED; 8549 8550 netdev_wait_allrefs(dev); 8551 8552 /* paranoia */ 8553 BUG_ON(netdev_refcnt_read(dev)); 8554 BUG_ON(!list_empty(&dev->ptype_all)); 8555 BUG_ON(!list_empty(&dev->ptype_specific)); 8556 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8557 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8558 #if IS_ENABLED(CONFIG_DECNET) 8559 WARN_ON(dev->dn_ptr); 8560 #endif 8561 if (dev->priv_destructor) 8562 dev->priv_destructor(dev); 8563 if (dev->needs_free_netdev) 8564 free_netdev(dev); 8565 8566 /* Report a network device has been unregistered */ 8567 rtnl_lock(); 8568 dev_net(dev)->dev_unreg_count--; 8569 __rtnl_unlock(); 8570 wake_up(&netdev_unregistering_wq); 8571 8572 /* Free network device */ 8573 kobject_put(&dev->dev.kobj); 8574 } 8575 } 8576 8577 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8578 * all the same fields in the same order as net_device_stats, with only 8579 * the type differing, but rtnl_link_stats64 may have additional fields 8580 * at the end for newer counters. 8581 */ 8582 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8583 const struct net_device_stats *netdev_stats) 8584 { 8585 #if BITS_PER_LONG == 64 8586 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8587 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8588 /* zero out counters that only exist in rtnl_link_stats64 */ 8589 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8590 sizeof(*stats64) - sizeof(*netdev_stats)); 8591 #else 8592 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8593 const unsigned long *src = (const unsigned long *)netdev_stats; 8594 u64 *dst = (u64 *)stats64; 8595 8596 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8597 for (i = 0; i < n; i++) 8598 dst[i] = src[i]; 8599 /* zero out counters that only exist in rtnl_link_stats64 */ 8600 memset((char *)stats64 + n * sizeof(u64), 0, 8601 sizeof(*stats64) - n * sizeof(u64)); 8602 #endif 8603 } 8604 EXPORT_SYMBOL(netdev_stats_to_stats64); 8605 8606 /** 8607 * dev_get_stats - get network device statistics 8608 * @dev: device to get statistics from 8609 * @storage: place to store stats 8610 * 8611 * Get network statistics from device. Return @storage. 8612 * The device driver may provide its own method by setting 8613 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8614 * otherwise the internal statistics structure is used. 8615 */ 8616 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8617 struct rtnl_link_stats64 *storage) 8618 { 8619 const struct net_device_ops *ops = dev->netdev_ops; 8620 8621 if (ops->ndo_get_stats64) { 8622 memset(storage, 0, sizeof(*storage)); 8623 ops->ndo_get_stats64(dev, storage); 8624 } else if (ops->ndo_get_stats) { 8625 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8626 } else { 8627 netdev_stats_to_stats64(storage, &dev->stats); 8628 } 8629 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8630 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8631 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8632 return storage; 8633 } 8634 EXPORT_SYMBOL(dev_get_stats); 8635 8636 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8637 { 8638 struct netdev_queue *queue = dev_ingress_queue(dev); 8639 8640 #ifdef CONFIG_NET_CLS_ACT 8641 if (queue) 8642 return queue; 8643 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8644 if (!queue) 8645 return NULL; 8646 netdev_init_one_queue(dev, queue, NULL); 8647 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8648 queue->qdisc_sleeping = &noop_qdisc; 8649 rcu_assign_pointer(dev->ingress_queue, queue); 8650 #endif 8651 return queue; 8652 } 8653 8654 static const struct ethtool_ops default_ethtool_ops; 8655 8656 void netdev_set_default_ethtool_ops(struct net_device *dev, 8657 const struct ethtool_ops *ops) 8658 { 8659 if (dev->ethtool_ops == &default_ethtool_ops) 8660 dev->ethtool_ops = ops; 8661 } 8662 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8663 8664 void netdev_freemem(struct net_device *dev) 8665 { 8666 char *addr = (char *)dev - dev->padded; 8667 8668 kvfree(addr); 8669 } 8670 8671 /** 8672 * alloc_netdev_mqs - allocate network device 8673 * @sizeof_priv: size of private data to allocate space for 8674 * @name: device name format string 8675 * @name_assign_type: origin of device name 8676 * @setup: callback to initialize device 8677 * @txqs: the number of TX subqueues to allocate 8678 * @rxqs: the number of RX subqueues to allocate 8679 * 8680 * Allocates a struct net_device with private data area for driver use 8681 * and performs basic initialization. Also allocates subqueue structs 8682 * for each queue on the device. 8683 */ 8684 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8685 unsigned char name_assign_type, 8686 void (*setup)(struct net_device *), 8687 unsigned int txqs, unsigned int rxqs) 8688 { 8689 struct net_device *dev; 8690 unsigned int alloc_size; 8691 struct net_device *p; 8692 8693 BUG_ON(strlen(name) >= sizeof(dev->name)); 8694 8695 if (txqs < 1) { 8696 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8697 return NULL; 8698 } 8699 8700 if (rxqs < 1) { 8701 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8702 return NULL; 8703 } 8704 8705 alloc_size = sizeof(struct net_device); 8706 if (sizeof_priv) { 8707 /* ensure 32-byte alignment of private area */ 8708 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8709 alloc_size += sizeof_priv; 8710 } 8711 /* ensure 32-byte alignment of whole construct */ 8712 alloc_size += NETDEV_ALIGN - 1; 8713 8714 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8715 if (!p) 8716 return NULL; 8717 8718 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8719 dev->padded = (char *)dev - (char *)p; 8720 8721 dev->pcpu_refcnt = alloc_percpu(int); 8722 if (!dev->pcpu_refcnt) 8723 goto free_dev; 8724 8725 if (dev_addr_init(dev)) 8726 goto free_pcpu; 8727 8728 dev_mc_init(dev); 8729 dev_uc_init(dev); 8730 8731 dev_net_set(dev, &init_net); 8732 8733 dev->gso_max_size = GSO_MAX_SIZE; 8734 dev->gso_max_segs = GSO_MAX_SEGS; 8735 8736 INIT_LIST_HEAD(&dev->napi_list); 8737 INIT_LIST_HEAD(&dev->unreg_list); 8738 INIT_LIST_HEAD(&dev->close_list); 8739 INIT_LIST_HEAD(&dev->link_watch_list); 8740 INIT_LIST_HEAD(&dev->adj_list.upper); 8741 INIT_LIST_HEAD(&dev->adj_list.lower); 8742 INIT_LIST_HEAD(&dev->ptype_all); 8743 INIT_LIST_HEAD(&dev->ptype_specific); 8744 #ifdef CONFIG_NET_SCHED 8745 hash_init(dev->qdisc_hash); 8746 #endif 8747 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8748 setup(dev); 8749 8750 if (!dev->tx_queue_len) { 8751 dev->priv_flags |= IFF_NO_QUEUE; 8752 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8753 } 8754 8755 dev->num_tx_queues = txqs; 8756 dev->real_num_tx_queues = txqs; 8757 if (netif_alloc_netdev_queues(dev)) 8758 goto free_all; 8759 8760 dev->num_rx_queues = rxqs; 8761 dev->real_num_rx_queues = rxqs; 8762 if (netif_alloc_rx_queues(dev)) 8763 goto free_all; 8764 8765 strcpy(dev->name, name); 8766 dev->name_assign_type = name_assign_type; 8767 dev->group = INIT_NETDEV_GROUP; 8768 if (!dev->ethtool_ops) 8769 dev->ethtool_ops = &default_ethtool_ops; 8770 8771 nf_hook_ingress_init(dev); 8772 8773 return dev; 8774 8775 free_all: 8776 free_netdev(dev); 8777 return NULL; 8778 8779 free_pcpu: 8780 free_percpu(dev->pcpu_refcnt); 8781 free_dev: 8782 netdev_freemem(dev); 8783 return NULL; 8784 } 8785 EXPORT_SYMBOL(alloc_netdev_mqs); 8786 8787 /** 8788 * free_netdev - free network device 8789 * @dev: device 8790 * 8791 * This function does the last stage of destroying an allocated device 8792 * interface. The reference to the device object is released. If this 8793 * is the last reference then it will be freed.Must be called in process 8794 * context. 8795 */ 8796 void free_netdev(struct net_device *dev) 8797 { 8798 struct napi_struct *p, *n; 8799 8800 might_sleep(); 8801 netif_free_tx_queues(dev); 8802 netif_free_rx_queues(dev); 8803 8804 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8805 8806 /* Flush device addresses */ 8807 dev_addr_flush(dev); 8808 8809 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8810 netif_napi_del(p); 8811 8812 free_percpu(dev->pcpu_refcnt); 8813 dev->pcpu_refcnt = NULL; 8814 8815 /* Compatibility with error handling in drivers */ 8816 if (dev->reg_state == NETREG_UNINITIALIZED) { 8817 netdev_freemem(dev); 8818 return; 8819 } 8820 8821 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8822 dev->reg_state = NETREG_RELEASED; 8823 8824 /* will free via device release */ 8825 put_device(&dev->dev); 8826 } 8827 EXPORT_SYMBOL(free_netdev); 8828 8829 /** 8830 * synchronize_net - Synchronize with packet receive processing 8831 * 8832 * Wait for packets currently being received to be done. 8833 * Does not block later packets from starting. 8834 */ 8835 void synchronize_net(void) 8836 { 8837 might_sleep(); 8838 if (rtnl_is_locked()) 8839 synchronize_rcu_expedited(); 8840 else 8841 synchronize_rcu(); 8842 } 8843 EXPORT_SYMBOL(synchronize_net); 8844 8845 /** 8846 * unregister_netdevice_queue - remove device from the kernel 8847 * @dev: device 8848 * @head: list 8849 * 8850 * This function shuts down a device interface and removes it 8851 * from the kernel tables. 8852 * If head not NULL, device is queued to be unregistered later. 8853 * 8854 * Callers must hold the rtnl semaphore. You may want 8855 * unregister_netdev() instead of this. 8856 */ 8857 8858 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8859 { 8860 ASSERT_RTNL(); 8861 8862 if (head) { 8863 list_move_tail(&dev->unreg_list, head); 8864 } else { 8865 rollback_registered(dev); 8866 /* Finish processing unregister after unlock */ 8867 net_set_todo(dev); 8868 } 8869 } 8870 EXPORT_SYMBOL(unregister_netdevice_queue); 8871 8872 /** 8873 * unregister_netdevice_many - unregister many devices 8874 * @head: list of devices 8875 * 8876 * Note: As most callers use a stack allocated list_head, 8877 * we force a list_del() to make sure stack wont be corrupted later. 8878 */ 8879 void unregister_netdevice_many(struct list_head *head) 8880 { 8881 struct net_device *dev; 8882 8883 if (!list_empty(head)) { 8884 rollback_registered_many(head); 8885 list_for_each_entry(dev, head, unreg_list) 8886 net_set_todo(dev); 8887 list_del(head); 8888 } 8889 } 8890 EXPORT_SYMBOL(unregister_netdevice_many); 8891 8892 /** 8893 * unregister_netdev - remove device from the kernel 8894 * @dev: device 8895 * 8896 * This function shuts down a device interface and removes it 8897 * from the kernel tables. 8898 * 8899 * This is just a wrapper for unregister_netdevice that takes 8900 * the rtnl semaphore. In general you want to use this and not 8901 * unregister_netdevice. 8902 */ 8903 void unregister_netdev(struct net_device *dev) 8904 { 8905 rtnl_lock(); 8906 unregister_netdevice(dev); 8907 rtnl_unlock(); 8908 } 8909 EXPORT_SYMBOL(unregister_netdev); 8910 8911 /** 8912 * dev_change_net_namespace - move device to different nethost namespace 8913 * @dev: device 8914 * @net: network namespace 8915 * @pat: If not NULL name pattern to try if the current device name 8916 * is already taken in the destination network namespace. 8917 * 8918 * This function shuts down a device interface and moves it 8919 * to a new network namespace. On success 0 is returned, on 8920 * a failure a netagive errno code is returned. 8921 * 8922 * Callers must hold the rtnl semaphore. 8923 */ 8924 8925 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8926 { 8927 int err, new_nsid, new_ifindex; 8928 8929 ASSERT_RTNL(); 8930 8931 /* Don't allow namespace local devices to be moved. */ 8932 err = -EINVAL; 8933 if (dev->features & NETIF_F_NETNS_LOCAL) 8934 goto out; 8935 8936 /* Ensure the device has been registrered */ 8937 if (dev->reg_state != NETREG_REGISTERED) 8938 goto out; 8939 8940 /* Get out if there is nothing todo */ 8941 err = 0; 8942 if (net_eq(dev_net(dev), net)) 8943 goto out; 8944 8945 /* Pick the destination device name, and ensure 8946 * we can use it in the destination network namespace. 8947 */ 8948 err = -EEXIST; 8949 if (__dev_get_by_name(net, dev->name)) { 8950 /* We get here if we can't use the current device name */ 8951 if (!pat) 8952 goto out; 8953 err = dev_get_valid_name(net, dev, pat); 8954 if (err < 0) 8955 goto out; 8956 } 8957 8958 /* 8959 * And now a mini version of register_netdevice unregister_netdevice. 8960 */ 8961 8962 /* If device is running close it first. */ 8963 dev_close(dev); 8964 8965 /* And unlink it from device chain */ 8966 unlist_netdevice(dev); 8967 8968 synchronize_net(); 8969 8970 /* Shutdown queueing discipline. */ 8971 dev_shutdown(dev); 8972 8973 /* Notify protocols, that we are about to destroy 8974 * this device. They should clean all the things. 8975 * 8976 * Note that dev->reg_state stays at NETREG_REGISTERED. 8977 * This is wanted because this way 8021q and macvlan know 8978 * the device is just moving and can keep their slaves up. 8979 */ 8980 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8981 rcu_barrier(); 8982 8983 new_nsid = peernet2id_alloc(dev_net(dev), net); 8984 /* If there is an ifindex conflict assign a new one */ 8985 if (__dev_get_by_index(net, dev->ifindex)) 8986 new_ifindex = dev_new_index(net); 8987 else 8988 new_ifindex = dev->ifindex; 8989 8990 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8991 new_ifindex); 8992 8993 /* 8994 * Flush the unicast and multicast chains 8995 */ 8996 dev_uc_flush(dev); 8997 dev_mc_flush(dev); 8998 8999 /* Send a netdev-removed uevent to the old namespace */ 9000 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9001 netdev_adjacent_del_links(dev); 9002 9003 /* Actually switch the network namespace */ 9004 dev_net_set(dev, net); 9005 dev->ifindex = new_ifindex; 9006 9007 /* Send a netdev-add uevent to the new namespace */ 9008 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9009 netdev_adjacent_add_links(dev); 9010 9011 /* Fixup kobjects */ 9012 err = device_rename(&dev->dev, dev->name); 9013 WARN_ON(err); 9014 9015 /* Add the device back in the hashes */ 9016 list_netdevice(dev); 9017 9018 /* Notify protocols, that a new device appeared. */ 9019 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9020 9021 /* 9022 * Prevent userspace races by waiting until the network 9023 * device is fully setup before sending notifications. 9024 */ 9025 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9026 9027 synchronize_net(); 9028 err = 0; 9029 out: 9030 return err; 9031 } 9032 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9033 9034 static int dev_cpu_dead(unsigned int oldcpu) 9035 { 9036 struct sk_buff **list_skb; 9037 struct sk_buff *skb; 9038 unsigned int cpu; 9039 struct softnet_data *sd, *oldsd, *remsd = NULL; 9040 9041 local_irq_disable(); 9042 cpu = smp_processor_id(); 9043 sd = &per_cpu(softnet_data, cpu); 9044 oldsd = &per_cpu(softnet_data, oldcpu); 9045 9046 /* Find end of our completion_queue. */ 9047 list_skb = &sd->completion_queue; 9048 while (*list_skb) 9049 list_skb = &(*list_skb)->next; 9050 /* Append completion queue from offline CPU. */ 9051 *list_skb = oldsd->completion_queue; 9052 oldsd->completion_queue = NULL; 9053 9054 /* Append output queue from offline CPU. */ 9055 if (oldsd->output_queue) { 9056 *sd->output_queue_tailp = oldsd->output_queue; 9057 sd->output_queue_tailp = oldsd->output_queue_tailp; 9058 oldsd->output_queue = NULL; 9059 oldsd->output_queue_tailp = &oldsd->output_queue; 9060 } 9061 /* Append NAPI poll list from offline CPU, with one exception : 9062 * process_backlog() must be called by cpu owning percpu backlog. 9063 * We properly handle process_queue & input_pkt_queue later. 9064 */ 9065 while (!list_empty(&oldsd->poll_list)) { 9066 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9067 struct napi_struct, 9068 poll_list); 9069 9070 list_del_init(&napi->poll_list); 9071 if (napi->poll == process_backlog) 9072 napi->state = 0; 9073 else 9074 ____napi_schedule(sd, napi); 9075 } 9076 9077 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9078 local_irq_enable(); 9079 9080 #ifdef CONFIG_RPS 9081 remsd = oldsd->rps_ipi_list; 9082 oldsd->rps_ipi_list = NULL; 9083 #endif 9084 /* send out pending IPI's on offline CPU */ 9085 net_rps_send_ipi(remsd); 9086 9087 /* Process offline CPU's input_pkt_queue */ 9088 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9089 netif_rx_ni(skb); 9090 input_queue_head_incr(oldsd); 9091 } 9092 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9093 netif_rx_ni(skb); 9094 input_queue_head_incr(oldsd); 9095 } 9096 9097 return 0; 9098 } 9099 9100 /** 9101 * netdev_increment_features - increment feature set by one 9102 * @all: current feature set 9103 * @one: new feature set 9104 * @mask: mask feature set 9105 * 9106 * Computes a new feature set after adding a device with feature set 9107 * @one to the master device with current feature set @all. Will not 9108 * enable anything that is off in @mask. Returns the new feature set. 9109 */ 9110 netdev_features_t netdev_increment_features(netdev_features_t all, 9111 netdev_features_t one, netdev_features_t mask) 9112 { 9113 if (mask & NETIF_F_HW_CSUM) 9114 mask |= NETIF_F_CSUM_MASK; 9115 mask |= NETIF_F_VLAN_CHALLENGED; 9116 9117 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9118 all &= one | ~NETIF_F_ALL_FOR_ALL; 9119 9120 /* If one device supports hw checksumming, set for all. */ 9121 if (all & NETIF_F_HW_CSUM) 9122 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9123 9124 return all; 9125 } 9126 EXPORT_SYMBOL(netdev_increment_features); 9127 9128 static struct hlist_head * __net_init netdev_create_hash(void) 9129 { 9130 int i; 9131 struct hlist_head *hash; 9132 9133 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9134 if (hash != NULL) 9135 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9136 INIT_HLIST_HEAD(&hash[i]); 9137 9138 return hash; 9139 } 9140 9141 /* Initialize per network namespace state */ 9142 static int __net_init netdev_init(struct net *net) 9143 { 9144 if (net != &init_net) 9145 INIT_LIST_HEAD(&net->dev_base_head); 9146 9147 net->dev_name_head = netdev_create_hash(); 9148 if (net->dev_name_head == NULL) 9149 goto err_name; 9150 9151 net->dev_index_head = netdev_create_hash(); 9152 if (net->dev_index_head == NULL) 9153 goto err_idx; 9154 9155 return 0; 9156 9157 err_idx: 9158 kfree(net->dev_name_head); 9159 err_name: 9160 return -ENOMEM; 9161 } 9162 9163 /** 9164 * netdev_drivername - network driver for the device 9165 * @dev: network device 9166 * 9167 * Determine network driver for device. 9168 */ 9169 const char *netdev_drivername(const struct net_device *dev) 9170 { 9171 const struct device_driver *driver; 9172 const struct device *parent; 9173 const char *empty = ""; 9174 9175 parent = dev->dev.parent; 9176 if (!parent) 9177 return empty; 9178 9179 driver = parent->driver; 9180 if (driver && driver->name) 9181 return driver->name; 9182 return empty; 9183 } 9184 9185 static void __netdev_printk(const char *level, const struct net_device *dev, 9186 struct va_format *vaf) 9187 { 9188 if (dev && dev->dev.parent) { 9189 dev_printk_emit(level[1] - '0', 9190 dev->dev.parent, 9191 "%s %s %s%s: %pV", 9192 dev_driver_string(dev->dev.parent), 9193 dev_name(dev->dev.parent), 9194 netdev_name(dev), netdev_reg_state(dev), 9195 vaf); 9196 } else if (dev) { 9197 printk("%s%s%s: %pV", 9198 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9199 } else { 9200 printk("%s(NULL net_device): %pV", level, vaf); 9201 } 9202 } 9203 9204 void netdev_printk(const char *level, const struct net_device *dev, 9205 const char *format, ...) 9206 { 9207 struct va_format vaf; 9208 va_list args; 9209 9210 va_start(args, format); 9211 9212 vaf.fmt = format; 9213 vaf.va = &args; 9214 9215 __netdev_printk(level, dev, &vaf); 9216 9217 va_end(args); 9218 } 9219 EXPORT_SYMBOL(netdev_printk); 9220 9221 #define define_netdev_printk_level(func, level) \ 9222 void func(const struct net_device *dev, const char *fmt, ...) \ 9223 { \ 9224 struct va_format vaf; \ 9225 va_list args; \ 9226 \ 9227 va_start(args, fmt); \ 9228 \ 9229 vaf.fmt = fmt; \ 9230 vaf.va = &args; \ 9231 \ 9232 __netdev_printk(level, dev, &vaf); \ 9233 \ 9234 va_end(args); \ 9235 } \ 9236 EXPORT_SYMBOL(func); 9237 9238 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9239 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9240 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9241 define_netdev_printk_level(netdev_err, KERN_ERR); 9242 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9243 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9244 define_netdev_printk_level(netdev_info, KERN_INFO); 9245 9246 static void __net_exit netdev_exit(struct net *net) 9247 { 9248 kfree(net->dev_name_head); 9249 kfree(net->dev_index_head); 9250 if (net != &init_net) 9251 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9252 } 9253 9254 static struct pernet_operations __net_initdata netdev_net_ops = { 9255 .init = netdev_init, 9256 .exit = netdev_exit, 9257 }; 9258 9259 static void __net_exit default_device_exit(struct net *net) 9260 { 9261 struct net_device *dev, *aux; 9262 /* 9263 * Push all migratable network devices back to the 9264 * initial network namespace 9265 */ 9266 rtnl_lock(); 9267 for_each_netdev_safe(net, dev, aux) { 9268 int err; 9269 char fb_name[IFNAMSIZ]; 9270 9271 /* Ignore unmoveable devices (i.e. loopback) */ 9272 if (dev->features & NETIF_F_NETNS_LOCAL) 9273 continue; 9274 9275 /* Leave virtual devices for the generic cleanup */ 9276 if (dev->rtnl_link_ops) 9277 continue; 9278 9279 /* Push remaining network devices to init_net */ 9280 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9281 err = dev_change_net_namespace(dev, &init_net, fb_name); 9282 if (err) { 9283 pr_emerg("%s: failed to move %s to init_net: %d\n", 9284 __func__, dev->name, err); 9285 BUG(); 9286 } 9287 } 9288 rtnl_unlock(); 9289 } 9290 9291 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9292 { 9293 /* Return with the rtnl_lock held when there are no network 9294 * devices unregistering in any network namespace in net_list. 9295 */ 9296 struct net *net; 9297 bool unregistering; 9298 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9299 9300 add_wait_queue(&netdev_unregistering_wq, &wait); 9301 for (;;) { 9302 unregistering = false; 9303 rtnl_lock(); 9304 list_for_each_entry(net, net_list, exit_list) { 9305 if (net->dev_unreg_count > 0) { 9306 unregistering = true; 9307 break; 9308 } 9309 } 9310 if (!unregistering) 9311 break; 9312 __rtnl_unlock(); 9313 9314 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9315 } 9316 remove_wait_queue(&netdev_unregistering_wq, &wait); 9317 } 9318 9319 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9320 { 9321 /* At exit all network devices most be removed from a network 9322 * namespace. Do this in the reverse order of registration. 9323 * Do this across as many network namespaces as possible to 9324 * improve batching efficiency. 9325 */ 9326 struct net_device *dev; 9327 struct net *net; 9328 LIST_HEAD(dev_kill_list); 9329 9330 /* To prevent network device cleanup code from dereferencing 9331 * loopback devices or network devices that have been freed 9332 * wait here for all pending unregistrations to complete, 9333 * before unregistring the loopback device and allowing the 9334 * network namespace be freed. 9335 * 9336 * The netdev todo list containing all network devices 9337 * unregistrations that happen in default_device_exit_batch 9338 * will run in the rtnl_unlock() at the end of 9339 * default_device_exit_batch. 9340 */ 9341 rtnl_lock_unregistering(net_list); 9342 list_for_each_entry(net, net_list, exit_list) { 9343 for_each_netdev_reverse(net, dev) { 9344 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9345 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9346 else 9347 unregister_netdevice_queue(dev, &dev_kill_list); 9348 } 9349 } 9350 unregister_netdevice_many(&dev_kill_list); 9351 rtnl_unlock(); 9352 } 9353 9354 static struct pernet_operations __net_initdata default_device_ops = { 9355 .exit = default_device_exit, 9356 .exit_batch = default_device_exit_batch, 9357 }; 9358 9359 /* 9360 * Initialize the DEV module. At boot time this walks the device list and 9361 * unhooks any devices that fail to initialise (normally hardware not 9362 * present) and leaves us with a valid list of present and active devices. 9363 * 9364 */ 9365 9366 /* 9367 * This is called single threaded during boot, so no need 9368 * to take the rtnl semaphore. 9369 */ 9370 static int __init net_dev_init(void) 9371 { 9372 int i, rc = -ENOMEM; 9373 9374 BUG_ON(!dev_boot_phase); 9375 9376 if (dev_proc_init()) 9377 goto out; 9378 9379 if (netdev_kobject_init()) 9380 goto out; 9381 9382 INIT_LIST_HEAD(&ptype_all); 9383 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9384 INIT_LIST_HEAD(&ptype_base[i]); 9385 9386 INIT_LIST_HEAD(&offload_base); 9387 9388 if (register_pernet_subsys(&netdev_net_ops)) 9389 goto out; 9390 9391 /* 9392 * Initialise the packet receive queues. 9393 */ 9394 9395 for_each_possible_cpu(i) { 9396 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9397 struct softnet_data *sd = &per_cpu(softnet_data, i); 9398 9399 INIT_WORK(flush, flush_backlog); 9400 9401 skb_queue_head_init(&sd->input_pkt_queue); 9402 skb_queue_head_init(&sd->process_queue); 9403 #ifdef CONFIG_XFRM_OFFLOAD 9404 skb_queue_head_init(&sd->xfrm_backlog); 9405 #endif 9406 INIT_LIST_HEAD(&sd->poll_list); 9407 sd->output_queue_tailp = &sd->output_queue; 9408 #ifdef CONFIG_RPS 9409 sd->csd.func = rps_trigger_softirq; 9410 sd->csd.info = sd; 9411 sd->cpu = i; 9412 #endif 9413 9414 sd->backlog.poll = process_backlog; 9415 sd->backlog.weight = weight_p; 9416 } 9417 9418 dev_boot_phase = 0; 9419 9420 /* The loopback device is special if any other network devices 9421 * is present in a network namespace the loopback device must 9422 * be present. Since we now dynamically allocate and free the 9423 * loopback device ensure this invariant is maintained by 9424 * keeping the loopback device as the first device on the 9425 * list of network devices. Ensuring the loopback devices 9426 * is the first device that appears and the last network device 9427 * that disappears. 9428 */ 9429 if (register_pernet_device(&loopback_net_ops)) 9430 goto out; 9431 9432 if (register_pernet_device(&default_device_ops)) 9433 goto out; 9434 9435 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9436 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9437 9438 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9439 NULL, dev_cpu_dead); 9440 WARN_ON(rc < 0); 9441 rc = 0; 9442 out: 9443 return rc; 9444 } 9445 9446 subsys_initcall(net_dev_init); 9447