1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * zswap.c - zswap driver file 4 * 5 * zswap is a cache that takes pages that are in the process 6 * of being swapped out and attempts to compress and store them in a 7 * RAM-based memory pool. This can result in a significant I/O reduction on 8 * the swap device and, in the case where decompressing from RAM is faster 9 * than reading from the swap device, can also improve workload performance. 10 * 11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/cpu.h> 18 #include <linux/highmem.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/types.h> 22 #include <linux/atomic.h> 23 #include <linux/swap.h> 24 #include <linux/crypto.h> 25 #include <linux/scatterlist.h> 26 #include <linux/mempolicy.h> 27 #include <linux/mempool.h> 28 #include <linux/zpool.h> 29 #include <crypto/acompress.h> 30 #include <linux/zswap.h> 31 #include <linux/mm_types.h> 32 #include <linux/page-flags.h> 33 #include <linux/swapops.h> 34 #include <linux/writeback.h> 35 #include <linux/pagemap.h> 36 #include <linux/workqueue.h> 37 #include <linux/list_lru.h> 38 39 #include "swap.h" 40 #include "internal.h" 41 42 /********************************* 43 * statistics 44 **********************************/ 45 /* The number of compressed pages currently stored in zswap */ 46 atomic_t zswap_stored_pages = ATOMIC_INIT(0); 47 /* The number of same-value filled pages currently stored in zswap */ 48 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0); 49 50 /* 51 * The statistics below are not protected from concurrent access for 52 * performance reasons so they may not be a 100% accurate. However, 53 * they do provide useful information on roughly how many times a 54 * certain event is occurring. 55 */ 56 57 /* Pool limit was hit (see zswap_max_pool_percent) */ 58 static u64 zswap_pool_limit_hit; 59 /* Pages written back when pool limit was reached */ 60 static u64 zswap_written_back_pages; 61 /* Store failed due to a reclaim failure after pool limit was reached */ 62 static u64 zswap_reject_reclaim_fail; 63 /* Store failed due to compression algorithm failure */ 64 static u64 zswap_reject_compress_fail; 65 /* Compressed page was too big for the allocator to (optimally) store */ 66 static u64 zswap_reject_compress_poor; 67 /* Store failed because underlying allocator could not get memory */ 68 static u64 zswap_reject_alloc_fail; 69 /* Store failed because the entry metadata could not be allocated (rare) */ 70 static u64 zswap_reject_kmemcache_fail; 71 72 /* Shrinker work queue */ 73 static struct workqueue_struct *shrink_wq; 74 /* Pool limit was hit, we need to calm down */ 75 static bool zswap_pool_reached_full; 76 77 /********************************* 78 * tunables 79 **********************************/ 80 81 #define ZSWAP_PARAM_UNSET "" 82 83 static int zswap_setup(void); 84 85 /* Enable/disable zswap */ 86 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled); 87 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); 88 static int zswap_enabled_param_set(const char *, 89 const struct kernel_param *); 90 static const struct kernel_param_ops zswap_enabled_param_ops = { 91 .set = zswap_enabled_param_set, 92 .get = param_get_bool, 93 }; 94 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); 95 96 /* Crypto compressor to use */ 97 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 98 static int zswap_compressor_param_set(const char *, 99 const struct kernel_param *); 100 static const struct kernel_param_ops zswap_compressor_param_ops = { 101 .set = zswap_compressor_param_set, 102 .get = param_get_charp, 103 .free = param_free_charp, 104 }; 105 module_param_cb(compressor, &zswap_compressor_param_ops, 106 &zswap_compressor, 0644); 107 108 /* Compressed storage zpool to use */ 109 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; 110 static int zswap_zpool_param_set(const char *, const struct kernel_param *); 111 static const struct kernel_param_ops zswap_zpool_param_ops = { 112 .set = zswap_zpool_param_set, 113 .get = param_get_charp, 114 .free = param_free_charp, 115 }; 116 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); 117 118 /* The maximum percentage of memory that the compressed pool can occupy */ 119 static unsigned int zswap_max_pool_percent = 20; 120 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 121 122 /* The threshold for accepting new pages after the max_pool_percent was hit */ 123 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ 124 module_param_named(accept_threshold_percent, zswap_accept_thr_percent, 125 uint, 0644); 126 127 /* Enable/disable memory pressure-based shrinker. */ 128 static bool zswap_shrinker_enabled = IS_ENABLED( 129 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); 130 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); 131 132 bool zswap_is_enabled(void) 133 { 134 return zswap_enabled; 135 } 136 137 bool zswap_never_enabled(void) 138 { 139 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled); 140 } 141 142 /********************************* 143 * data structures 144 **********************************/ 145 146 struct crypto_acomp_ctx { 147 struct crypto_acomp *acomp; 148 struct acomp_req *req; 149 struct crypto_wait wait; 150 u8 *buffer; 151 struct mutex mutex; 152 bool is_sleepable; 153 }; 154 155 /* 156 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. 157 * The only case where lru_lock is not acquired while holding tree.lock is 158 * when a zswap_entry is taken off the lru for writeback, in that case it 159 * needs to be verified that it's still valid in the tree. 160 */ 161 struct zswap_pool { 162 struct zpool *zpool; 163 struct crypto_acomp_ctx __percpu *acomp_ctx; 164 struct percpu_ref ref; 165 struct list_head list; 166 struct work_struct release_work; 167 struct hlist_node node; 168 char tfm_name[CRYPTO_MAX_ALG_NAME]; 169 }; 170 171 /* Global LRU lists shared by all zswap pools. */ 172 static struct list_lru zswap_list_lru; 173 174 /* The lock protects zswap_next_shrink updates. */ 175 static DEFINE_SPINLOCK(zswap_shrink_lock); 176 static struct mem_cgroup *zswap_next_shrink; 177 static struct work_struct zswap_shrink_work; 178 static struct shrinker *zswap_shrinker; 179 180 /* 181 * struct zswap_entry 182 * 183 * This structure contains the metadata for tracking a single compressed 184 * page within zswap. 185 * 186 * swpentry - associated swap entry, the offset indexes into the red-black tree 187 * length - the length in bytes of the compressed page data. Needed during 188 * decompression. For a same value filled page length is 0, and both 189 * pool and lru are invalid and must be ignored. 190 * pool - the zswap_pool the entry's data is in 191 * handle - zpool allocation handle that stores the compressed page data 192 * value - value of the same-value filled pages which have same content 193 * objcg - the obj_cgroup that the compressed memory is charged to 194 * lru - handle to the pool's lru used to evict pages. 195 */ 196 struct zswap_entry { 197 swp_entry_t swpentry; 198 unsigned int length; 199 struct zswap_pool *pool; 200 union { 201 unsigned long handle; 202 unsigned long value; 203 }; 204 struct obj_cgroup *objcg; 205 struct list_head lru; 206 }; 207 208 static struct xarray *zswap_trees[MAX_SWAPFILES]; 209 static unsigned int nr_zswap_trees[MAX_SWAPFILES]; 210 211 /* RCU-protected iteration */ 212 static LIST_HEAD(zswap_pools); 213 /* protects zswap_pools list modification */ 214 static DEFINE_SPINLOCK(zswap_pools_lock); 215 /* pool counter to provide unique names to zpool */ 216 static atomic_t zswap_pools_count = ATOMIC_INIT(0); 217 218 enum zswap_init_type { 219 ZSWAP_UNINIT, 220 ZSWAP_INIT_SUCCEED, 221 ZSWAP_INIT_FAILED 222 }; 223 224 static enum zswap_init_type zswap_init_state; 225 226 /* used to ensure the integrity of initialization */ 227 static DEFINE_MUTEX(zswap_init_lock); 228 229 /* init completed, but couldn't create the initial pool */ 230 static bool zswap_has_pool; 231 232 /********************************* 233 * helpers and fwd declarations 234 **********************************/ 235 236 static inline struct xarray *swap_zswap_tree(swp_entry_t swp) 237 { 238 return &zswap_trees[swp_type(swp)][swp_offset(swp) 239 >> SWAP_ADDRESS_SPACE_SHIFT]; 240 } 241 242 #define zswap_pool_debug(msg, p) \ 243 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \ 244 zpool_get_type((p)->zpool)) 245 246 /********************************* 247 * pool functions 248 **********************************/ 249 static void __zswap_pool_empty(struct percpu_ref *ref); 250 251 static struct zswap_pool *zswap_pool_create(char *type, char *compressor) 252 { 253 struct zswap_pool *pool; 254 char name[38]; /* 'zswap' + 32 char (max) num + \0 */ 255 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; 256 int ret; 257 258 if (!zswap_has_pool) { 259 /* if either are unset, pool initialization failed, and we 260 * need both params to be set correctly before trying to 261 * create a pool. 262 */ 263 if (!strcmp(type, ZSWAP_PARAM_UNSET)) 264 return NULL; 265 if (!strcmp(compressor, ZSWAP_PARAM_UNSET)) 266 return NULL; 267 } 268 269 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 270 if (!pool) 271 return NULL; 272 273 /* unique name for each pool specifically required by zsmalloc */ 274 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); 275 pool->zpool = zpool_create_pool(type, name, gfp); 276 if (!pool->zpool) { 277 pr_err("%s zpool not available\n", type); 278 goto error; 279 } 280 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); 281 282 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 283 284 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); 285 if (!pool->acomp_ctx) { 286 pr_err("percpu alloc failed\n"); 287 goto error; 288 } 289 290 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, 291 &pool->node); 292 if (ret) 293 goto error; 294 295 /* being the current pool takes 1 ref; this func expects the 296 * caller to always add the new pool as the current pool 297 */ 298 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty, 299 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 300 if (ret) 301 goto ref_fail; 302 INIT_LIST_HEAD(&pool->list); 303 304 zswap_pool_debug("created", pool); 305 306 return pool; 307 308 ref_fail: 309 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 310 error: 311 if (pool->acomp_ctx) 312 free_percpu(pool->acomp_ctx); 313 if (pool->zpool) 314 zpool_destroy_pool(pool->zpool); 315 kfree(pool); 316 return NULL; 317 } 318 319 static struct zswap_pool *__zswap_pool_create_fallback(void) 320 { 321 bool has_comp, has_zpool; 322 323 has_comp = crypto_has_acomp(zswap_compressor, 0, 0); 324 if (!has_comp && strcmp(zswap_compressor, 325 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { 326 pr_err("compressor %s not available, using default %s\n", 327 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); 328 param_free_charp(&zswap_compressor); 329 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 330 has_comp = crypto_has_acomp(zswap_compressor, 0, 0); 331 } 332 if (!has_comp) { 333 pr_err("default compressor %s not available\n", 334 zswap_compressor); 335 param_free_charp(&zswap_compressor); 336 zswap_compressor = ZSWAP_PARAM_UNSET; 337 } 338 339 has_zpool = zpool_has_pool(zswap_zpool_type); 340 if (!has_zpool && strcmp(zswap_zpool_type, 341 CONFIG_ZSWAP_ZPOOL_DEFAULT)) { 342 pr_err("zpool %s not available, using default %s\n", 343 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT); 344 param_free_charp(&zswap_zpool_type); 345 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; 346 has_zpool = zpool_has_pool(zswap_zpool_type); 347 } 348 if (!has_zpool) { 349 pr_err("default zpool %s not available\n", 350 zswap_zpool_type); 351 param_free_charp(&zswap_zpool_type); 352 zswap_zpool_type = ZSWAP_PARAM_UNSET; 353 } 354 355 if (!has_comp || !has_zpool) 356 return NULL; 357 358 return zswap_pool_create(zswap_zpool_type, zswap_compressor); 359 } 360 361 static void zswap_pool_destroy(struct zswap_pool *pool) 362 { 363 zswap_pool_debug("destroying", pool); 364 365 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 366 free_percpu(pool->acomp_ctx); 367 368 zpool_destroy_pool(pool->zpool); 369 kfree(pool); 370 } 371 372 static void __zswap_pool_release(struct work_struct *work) 373 { 374 struct zswap_pool *pool = container_of(work, typeof(*pool), 375 release_work); 376 377 synchronize_rcu(); 378 379 /* nobody should have been able to get a ref... */ 380 WARN_ON(!percpu_ref_is_zero(&pool->ref)); 381 percpu_ref_exit(&pool->ref); 382 383 /* pool is now off zswap_pools list and has no references. */ 384 zswap_pool_destroy(pool); 385 } 386 387 static struct zswap_pool *zswap_pool_current(void); 388 389 static void __zswap_pool_empty(struct percpu_ref *ref) 390 { 391 struct zswap_pool *pool; 392 393 pool = container_of(ref, typeof(*pool), ref); 394 395 spin_lock_bh(&zswap_pools_lock); 396 397 WARN_ON(pool == zswap_pool_current()); 398 399 list_del_rcu(&pool->list); 400 401 INIT_WORK(&pool->release_work, __zswap_pool_release); 402 schedule_work(&pool->release_work); 403 404 spin_unlock_bh(&zswap_pools_lock); 405 } 406 407 static int __must_check zswap_pool_get(struct zswap_pool *pool) 408 { 409 if (!pool) 410 return 0; 411 412 return percpu_ref_tryget(&pool->ref); 413 } 414 415 static void zswap_pool_put(struct zswap_pool *pool) 416 { 417 percpu_ref_put(&pool->ref); 418 } 419 420 static struct zswap_pool *__zswap_pool_current(void) 421 { 422 struct zswap_pool *pool; 423 424 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 425 WARN_ONCE(!pool && zswap_has_pool, 426 "%s: no page storage pool!\n", __func__); 427 428 return pool; 429 } 430 431 static struct zswap_pool *zswap_pool_current(void) 432 { 433 assert_spin_locked(&zswap_pools_lock); 434 435 return __zswap_pool_current(); 436 } 437 438 static struct zswap_pool *zswap_pool_current_get(void) 439 { 440 struct zswap_pool *pool; 441 442 rcu_read_lock(); 443 444 pool = __zswap_pool_current(); 445 if (!zswap_pool_get(pool)) 446 pool = NULL; 447 448 rcu_read_unlock(); 449 450 return pool; 451 } 452 453 /* type and compressor must be null-terminated */ 454 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) 455 { 456 struct zswap_pool *pool; 457 458 assert_spin_locked(&zswap_pools_lock); 459 460 list_for_each_entry_rcu(pool, &zswap_pools, list) { 461 if (strcmp(pool->tfm_name, compressor)) 462 continue; 463 if (strcmp(zpool_get_type(pool->zpool), type)) 464 continue; 465 /* if we can't get it, it's about to be destroyed */ 466 if (!zswap_pool_get(pool)) 467 continue; 468 return pool; 469 } 470 471 return NULL; 472 } 473 474 static unsigned long zswap_max_pages(void) 475 { 476 return totalram_pages() * zswap_max_pool_percent / 100; 477 } 478 479 static unsigned long zswap_accept_thr_pages(void) 480 { 481 return zswap_max_pages() * zswap_accept_thr_percent / 100; 482 } 483 484 unsigned long zswap_total_pages(void) 485 { 486 struct zswap_pool *pool; 487 unsigned long total = 0; 488 489 rcu_read_lock(); 490 list_for_each_entry_rcu(pool, &zswap_pools, list) 491 total += zpool_get_total_pages(pool->zpool); 492 rcu_read_unlock(); 493 494 return total; 495 } 496 497 static bool zswap_check_limits(void) 498 { 499 unsigned long cur_pages = zswap_total_pages(); 500 unsigned long max_pages = zswap_max_pages(); 501 502 if (cur_pages >= max_pages) { 503 zswap_pool_limit_hit++; 504 zswap_pool_reached_full = true; 505 } else if (zswap_pool_reached_full && 506 cur_pages <= zswap_accept_thr_pages()) { 507 zswap_pool_reached_full = false; 508 } 509 return zswap_pool_reached_full; 510 } 511 512 /********************************* 513 * param callbacks 514 **********************************/ 515 516 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp) 517 { 518 /* no change required */ 519 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool) 520 return false; 521 return true; 522 } 523 524 /* val must be a null-terminated string */ 525 static int __zswap_param_set(const char *val, const struct kernel_param *kp, 526 char *type, char *compressor) 527 { 528 struct zswap_pool *pool, *put_pool = NULL; 529 char *s = strstrip((char *)val); 530 int ret = 0; 531 bool new_pool = false; 532 533 mutex_lock(&zswap_init_lock); 534 switch (zswap_init_state) { 535 case ZSWAP_UNINIT: 536 /* if this is load-time (pre-init) param setting, 537 * don't create a pool; that's done during init. 538 */ 539 ret = param_set_charp(s, kp); 540 break; 541 case ZSWAP_INIT_SUCCEED: 542 new_pool = zswap_pool_changed(s, kp); 543 break; 544 case ZSWAP_INIT_FAILED: 545 pr_err("can't set param, initialization failed\n"); 546 ret = -ENODEV; 547 } 548 mutex_unlock(&zswap_init_lock); 549 550 /* no need to create a new pool, return directly */ 551 if (!new_pool) 552 return ret; 553 554 if (!type) { 555 if (!zpool_has_pool(s)) { 556 pr_err("zpool %s not available\n", s); 557 return -ENOENT; 558 } 559 type = s; 560 } else if (!compressor) { 561 if (!crypto_has_acomp(s, 0, 0)) { 562 pr_err("compressor %s not available\n", s); 563 return -ENOENT; 564 } 565 compressor = s; 566 } else { 567 WARN_ON(1); 568 return -EINVAL; 569 } 570 571 spin_lock_bh(&zswap_pools_lock); 572 573 pool = zswap_pool_find_get(type, compressor); 574 if (pool) { 575 zswap_pool_debug("using existing", pool); 576 WARN_ON(pool == zswap_pool_current()); 577 list_del_rcu(&pool->list); 578 } 579 580 spin_unlock_bh(&zswap_pools_lock); 581 582 if (!pool) 583 pool = zswap_pool_create(type, compressor); 584 else { 585 /* 586 * Restore the initial ref dropped by percpu_ref_kill() 587 * when the pool was decommissioned and switch it again 588 * to percpu mode. 589 */ 590 percpu_ref_resurrect(&pool->ref); 591 592 /* Drop the ref from zswap_pool_find_get(). */ 593 zswap_pool_put(pool); 594 } 595 596 if (pool) 597 ret = param_set_charp(s, kp); 598 else 599 ret = -EINVAL; 600 601 spin_lock_bh(&zswap_pools_lock); 602 603 if (!ret) { 604 put_pool = zswap_pool_current(); 605 list_add_rcu(&pool->list, &zswap_pools); 606 zswap_has_pool = true; 607 } else if (pool) { 608 /* add the possibly pre-existing pool to the end of the pools 609 * list; if it's new (and empty) then it'll be removed and 610 * destroyed by the put after we drop the lock 611 */ 612 list_add_tail_rcu(&pool->list, &zswap_pools); 613 put_pool = pool; 614 } 615 616 spin_unlock_bh(&zswap_pools_lock); 617 618 if (!zswap_has_pool && !pool) { 619 /* if initial pool creation failed, and this pool creation also 620 * failed, maybe both compressor and zpool params were bad. 621 * Allow changing this param, so pool creation will succeed 622 * when the other param is changed. We already verified this 623 * param is ok in the zpool_has_pool() or crypto_has_acomp() 624 * checks above. 625 */ 626 ret = param_set_charp(s, kp); 627 } 628 629 /* drop the ref from either the old current pool, 630 * or the new pool we failed to add 631 */ 632 if (put_pool) 633 percpu_ref_kill(&put_pool->ref); 634 635 return ret; 636 } 637 638 static int zswap_compressor_param_set(const char *val, 639 const struct kernel_param *kp) 640 { 641 return __zswap_param_set(val, kp, zswap_zpool_type, NULL); 642 } 643 644 static int zswap_zpool_param_set(const char *val, 645 const struct kernel_param *kp) 646 { 647 return __zswap_param_set(val, kp, NULL, zswap_compressor); 648 } 649 650 static int zswap_enabled_param_set(const char *val, 651 const struct kernel_param *kp) 652 { 653 int ret = -ENODEV; 654 655 /* if this is load-time (pre-init) param setting, only set param. */ 656 if (system_state != SYSTEM_RUNNING) 657 return param_set_bool(val, kp); 658 659 mutex_lock(&zswap_init_lock); 660 switch (zswap_init_state) { 661 case ZSWAP_UNINIT: 662 if (zswap_setup()) 663 break; 664 fallthrough; 665 case ZSWAP_INIT_SUCCEED: 666 if (!zswap_has_pool) 667 pr_err("can't enable, no pool configured\n"); 668 else 669 ret = param_set_bool(val, kp); 670 break; 671 case ZSWAP_INIT_FAILED: 672 pr_err("can't enable, initialization failed\n"); 673 } 674 mutex_unlock(&zswap_init_lock); 675 676 return ret; 677 } 678 679 /********************************* 680 * lru functions 681 **********************************/ 682 683 /* should be called under RCU */ 684 #ifdef CONFIG_MEMCG 685 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) 686 { 687 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; 688 } 689 #else 690 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) 691 { 692 return NULL; 693 } 694 #endif 695 696 static inline int entry_to_nid(struct zswap_entry *entry) 697 { 698 return page_to_nid(virt_to_page(entry)); 699 } 700 701 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) 702 { 703 atomic_long_t *nr_zswap_protected; 704 unsigned long lru_size, old, new; 705 int nid = entry_to_nid(entry); 706 struct mem_cgroup *memcg; 707 struct lruvec *lruvec; 708 709 /* 710 * Note that it is safe to use rcu_read_lock() here, even in the face of 711 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection 712 * used in list_lru lookup, only two scenarios are possible: 713 * 714 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The 715 * new entry will be reparented to memcg's parent's list_lru. 716 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The 717 * new entry will be added directly to memcg's parent's list_lru. 718 * 719 * Similar reasoning holds for list_lru_del(). 720 */ 721 rcu_read_lock(); 722 memcg = mem_cgroup_from_entry(entry); 723 /* will always succeed */ 724 list_lru_add(list_lru, &entry->lru, nid, memcg); 725 726 /* Update the protection area */ 727 lru_size = list_lru_count_one(list_lru, nid, memcg); 728 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 729 nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected; 730 old = atomic_long_inc_return(nr_zswap_protected); 731 /* 732 * Decay to avoid overflow and adapt to changing workloads. 733 * This is based on LRU reclaim cost decaying heuristics. 734 */ 735 do { 736 new = old > lru_size / 4 ? old / 2 : old; 737 } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new)); 738 rcu_read_unlock(); 739 } 740 741 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) 742 { 743 int nid = entry_to_nid(entry); 744 struct mem_cgroup *memcg; 745 746 rcu_read_lock(); 747 memcg = mem_cgroup_from_entry(entry); 748 /* will always succeed */ 749 list_lru_del(list_lru, &entry->lru, nid, memcg); 750 rcu_read_unlock(); 751 } 752 753 void zswap_lruvec_state_init(struct lruvec *lruvec) 754 { 755 atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0); 756 } 757 758 void zswap_folio_swapin(struct folio *folio) 759 { 760 struct lruvec *lruvec; 761 762 if (folio) { 763 lruvec = folio_lruvec(folio); 764 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected); 765 } 766 } 767 768 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) 769 { 770 /* lock out zswap shrinker walking memcg tree */ 771 spin_lock(&zswap_shrink_lock); 772 if (zswap_next_shrink == memcg) 773 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); 774 spin_unlock(&zswap_shrink_lock); 775 } 776 777 /********************************* 778 * zswap entry functions 779 **********************************/ 780 static struct kmem_cache *zswap_entry_cache; 781 782 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) 783 { 784 struct zswap_entry *entry; 785 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); 786 if (!entry) 787 return NULL; 788 return entry; 789 } 790 791 static void zswap_entry_cache_free(struct zswap_entry *entry) 792 { 793 kmem_cache_free(zswap_entry_cache, entry); 794 } 795 796 /* 797 * Carries out the common pattern of freeing and entry's zpool allocation, 798 * freeing the entry itself, and decrementing the number of stored pages. 799 */ 800 static void zswap_entry_free(struct zswap_entry *entry) 801 { 802 if (!entry->length) 803 atomic_dec(&zswap_same_filled_pages); 804 else { 805 zswap_lru_del(&zswap_list_lru, entry); 806 zpool_free(entry->pool->zpool, entry->handle); 807 zswap_pool_put(entry->pool); 808 } 809 if (entry->objcg) { 810 obj_cgroup_uncharge_zswap(entry->objcg, entry->length); 811 obj_cgroup_put(entry->objcg); 812 } 813 zswap_entry_cache_free(entry); 814 atomic_dec(&zswap_stored_pages); 815 } 816 817 /********************************* 818 * compressed storage functions 819 **********************************/ 820 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) 821 { 822 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 823 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 824 struct crypto_acomp *acomp; 825 struct acomp_req *req; 826 int ret; 827 828 mutex_init(&acomp_ctx->mutex); 829 830 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); 831 if (!acomp_ctx->buffer) 832 return -ENOMEM; 833 834 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); 835 if (IS_ERR(acomp)) { 836 pr_err("could not alloc crypto acomp %s : %ld\n", 837 pool->tfm_name, PTR_ERR(acomp)); 838 ret = PTR_ERR(acomp); 839 goto acomp_fail; 840 } 841 acomp_ctx->acomp = acomp; 842 acomp_ctx->is_sleepable = acomp_is_async(acomp); 843 844 req = acomp_request_alloc(acomp_ctx->acomp); 845 if (!req) { 846 pr_err("could not alloc crypto acomp_request %s\n", 847 pool->tfm_name); 848 ret = -ENOMEM; 849 goto req_fail; 850 } 851 acomp_ctx->req = req; 852 853 crypto_init_wait(&acomp_ctx->wait); 854 /* 855 * if the backend of acomp is async zip, crypto_req_done() will wakeup 856 * crypto_wait_req(); if the backend of acomp is scomp, the callback 857 * won't be called, crypto_wait_req() will return without blocking. 858 */ 859 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 860 crypto_req_done, &acomp_ctx->wait); 861 862 return 0; 863 864 req_fail: 865 crypto_free_acomp(acomp_ctx->acomp); 866 acomp_fail: 867 kfree(acomp_ctx->buffer); 868 return ret; 869 } 870 871 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) 872 { 873 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 874 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 875 876 if (!IS_ERR_OR_NULL(acomp_ctx)) { 877 if (!IS_ERR_OR_NULL(acomp_ctx->req)) 878 acomp_request_free(acomp_ctx->req); 879 if (!IS_ERR_OR_NULL(acomp_ctx->acomp)) 880 crypto_free_acomp(acomp_ctx->acomp); 881 kfree(acomp_ctx->buffer); 882 } 883 884 return 0; 885 } 886 887 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry) 888 { 889 struct crypto_acomp_ctx *acomp_ctx; 890 struct scatterlist input, output; 891 int comp_ret = 0, alloc_ret = 0; 892 unsigned int dlen = PAGE_SIZE; 893 unsigned long handle; 894 struct zpool *zpool; 895 char *buf; 896 gfp_t gfp; 897 u8 *dst; 898 899 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); 900 901 mutex_lock(&acomp_ctx->mutex); 902 903 dst = acomp_ctx->buffer; 904 sg_init_table(&input, 1); 905 sg_set_folio(&input, folio, PAGE_SIZE, 0); 906 907 /* 908 * We need PAGE_SIZE * 2 here since there maybe over-compression case, 909 * and hardware-accelerators may won't check the dst buffer size, so 910 * giving the dst buffer with enough length to avoid buffer overflow. 911 */ 912 sg_init_one(&output, dst, PAGE_SIZE * 2); 913 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); 914 915 /* 916 * it maybe looks a little bit silly that we send an asynchronous request, 917 * then wait for its completion synchronously. This makes the process look 918 * synchronous in fact. 919 * Theoretically, acomp supports users send multiple acomp requests in one 920 * acomp instance, then get those requests done simultaneously. but in this 921 * case, zswap actually does store and load page by page, there is no 922 * existing method to send the second page before the first page is done 923 * in one thread doing zwap. 924 * but in different threads running on different cpu, we have different 925 * acomp instance, so multiple threads can do (de)compression in parallel. 926 */ 927 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); 928 dlen = acomp_ctx->req->dlen; 929 if (comp_ret) 930 goto unlock; 931 932 zpool = entry->pool->zpool; 933 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; 934 if (zpool_malloc_support_movable(zpool)) 935 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE; 936 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle); 937 if (alloc_ret) 938 goto unlock; 939 940 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO); 941 memcpy(buf, dst, dlen); 942 zpool_unmap_handle(zpool, handle); 943 944 entry->handle = handle; 945 entry->length = dlen; 946 947 unlock: 948 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC) 949 zswap_reject_compress_poor++; 950 else if (comp_ret) 951 zswap_reject_compress_fail++; 952 else if (alloc_ret) 953 zswap_reject_alloc_fail++; 954 955 mutex_unlock(&acomp_ctx->mutex); 956 return comp_ret == 0 && alloc_ret == 0; 957 } 958 959 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio) 960 { 961 struct zpool *zpool = entry->pool->zpool; 962 struct scatterlist input, output; 963 struct crypto_acomp_ctx *acomp_ctx; 964 u8 *src; 965 966 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); 967 mutex_lock(&acomp_ctx->mutex); 968 969 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO); 970 /* 971 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer 972 * to do crypto_acomp_decompress() which might sleep. In such cases, we must 973 * resort to copying the buffer to a temporary one. 974 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer, 975 * such as a kmap address of high memory or even ever a vmap address. 976 * However, sg_init_one is only equipped to handle linearly mapped low memory. 977 * In such cases, we also must copy the buffer to a temporary and lowmem one. 978 */ 979 if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) || 980 !virt_addr_valid(src)) { 981 memcpy(acomp_ctx->buffer, src, entry->length); 982 src = acomp_ctx->buffer; 983 zpool_unmap_handle(zpool, entry->handle); 984 } 985 986 sg_init_one(&input, src, entry->length); 987 sg_init_table(&output, 1); 988 sg_set_folio(&output, folio, PAGE_SIZE, 0); 989 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); 990 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait)); 991 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE); 992 mutex_unlock(&acomp_ctx->mutex); 993 994 if (src != acomp_ctx->buffer) 995 zpool_unmap_handle(zpool, entry->handle); 996 } 997 998 /********************************* 999 * writeback code 1000 **********************************/ 1001 /* 1002 * Attempts to free an entry by adding a folio to the swap cache, 1003 * decompressing the entry data into the folio, and issuing a 1004 * bio write to write the folio back to the swap device. 1005 * 1006 * This can be thought of as a "resumed writeback" of the folio 1007 * to the swap device. We are basically resuming the same swap 1008 * writeback path that was intercepted with the zswap_store() 1009 * in the first place. After the folio has been decompressed into 1010 * the swap cache, the compressed version stored by zswap can be 1011 * freed. 1012 */ 1013 static int zswap_writeback_entry(struct zswap_entry *entry, 1014 swp_entry_t swpentry) 1015 { 1016 struct xarray *tree; 1017 pgoff_t offset = swp_offset(swpentry); 1018 struct folio *folio; 1019 struct mempolicy *mpol; 1020 bool folio_was_allocated; 1021 struct writeback_control wbc = { 1022 .sync_mode = WB_SYNC_NONE, 1023 }; 1024 1025 /* try to allocate swap cache folio */ 1026 mpol = get_task_policy(current); 1027 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, 1028 NO_INTERLEAVE_INDEX, &folio_was_allocated, true); 1029 if (!folio) 1030 return -ENOMEM; 1031 1032 /* 1033 * Found an existing folio, we raced with swapin or concurrent 1034 * shrinker. We generally writeback cold folios from zswap, and 1035 * swapin means the folio just became hot, so skip this folio. 1036 * For unlikely concurrent shrinker case, it will be unlinked 1037 * and freed when invalidated by the concurrent shrinker anyway. 1038 */ 1039 if (!folio_was_allocated) { 1040 folio_put(folio); 1041 return -EEXIST; 1042 } 1043 1044 /* 1045 * folio is locked, and the swapcache is now secured against 1046 * concurrent swapping to and from the slot, and concurrent 1047 * swapoff so we can safely dereference the zswap tree here. 1048 * Verify that the swap entry hasn't been invalidated and recycled 1049 * behind our backs, to avoid overwriting a new swap folio with 1050 * old compressed data. Only when this is successful can the entry 1051 * be dereferenced. 1052 */ 1053 tree = swap_zswap_tree(swpentry); 1054 if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) { 1055 delete_from_swap_cache(folio); 1056 folio_unlock(folio); 1057 folio_put(folio); 1058 return -ENOMEM; 1059 } 1060 1061 zswap_decompress(entry, folio); 1062 1063 count_vm_event(ZSWPWB); 1064 if (entry->objcg) 1065 count_objcg_event(entry->objcg, ZSWPWB); 1066 1067 zswap_entry_free(entry); 1068 1069 /* folio is up to date */ 1070 folio_mark_uptodate(folio); 1071 1072 /* move it to the tail of the inactive list after end_writeback */ 1073 folio_set_reclaim(folio); 1074 1075 /* start writeback */ 1076 __swap_writepage(folio, &wbc); 1077 folio_put(folio); 1078 1079 return 0; 1080 } 1081 1082 /********************************* 1083 * shrinker functions 1084 **********************************/ 1085 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, 1086 spinlock_t *lock, void *arg) 1087 { 1088 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); 1089 bool *encountered_page_in_swapcache = (bool *)arg; 1090 swp_entry_t swpentry; 1091 enum lru_status ret = LRU_REMOVED_RETRY; 1092 int writeback_result; 1093 1094 /* 1095 * As soon as we drop the LRU lock, the entry can be freed by 1096 * a concurrent invalidation. This means the following: 1097 * 1098 * 1. We extract the swp_entry_t to the stack, allowing 1099 * zswap_writeback_entry() to pin the swap entry and 1100 * then validate the zwap entry against that swap entry's 1101 * tree using pointer value comparison. Only when that 1102 * is successful can the entry be dereferenced. 1103 * 1104 * 2. Usually, objects are taken off the LRU for reclaim. In 1105 * this case this isn't possible, because if reclaim fails 1106 * for whatever reason, we have no means of knowing if the 1107 * entry is alive to put it back on the LRU. 1108 * 1109 * So rotate it before dropping the lock. If the entry is 1110 * written back or invalidated, the free path will unlink 1111 * it. For failures, rotation is the right thing as well. 1112 * 1113 * Temporary failures, where the same entry should be tried 1114 * again immediately, almost never happen for this shrinker. 1115 * We don't do any trylocking; -ENOMEM comes closest, 1116 * but that's extremely rare and doesn't happen spuriously 1117 * either. Don't bother distinguishing this case. 1118 */ 1119 list_move_tail(item, &l->list); 1120 1121 /* 1122 * Once the lru lock is dropped, the entry might get freed. The 1123 * swpentry is copied to the stack, and entry isn't deref'd again 1124 * until the entry is verified to still be alive in the tree. 1125 */ 1126 swpentry = entry->swpentry; 1127 1128 /* 1129 * It's safe to drop the lock here because we return either 1130 * LRU_REMOVED_RETRY or LRU_RETRY. 1131 */ 1132 spin_unlock(lock); 1133 1134 writeback_result = zswap_writeback_entry(entry, swpentry); 1135 1136 if (writeback_result) { 1137 zswap_reject_reclaim_fail++; 1138 ret = LRU_RETRY; 1139 1140 /* 1141 * Encountering a page already in swap cache is a sign that we are shrinking 1142 * into the warmer region. We should terminate shrinking (if we're in the dynamic 1143 * shrinker context). 1144 */ 1145 if (writeback_result == -EEXIST && encountered_page_in_swapcache) { 1146 ret = LRU_STOP; 1147 *encountered_page_in_swapcache = true; 1148 } 1149 } else { 1150 zswap_written_back_pages++; 1151 } 1152 1153 spin_lock(lock); 1154 return ret; 1155 } 1156 1157 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, 1158 struct shrink_control *sc) 1159 { 1160 struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid)); 1161 unsigned long shrink_ret, nr_protected, lru_size; 1162 bool encountered_page_in_swapcache = false; 1163 1164 if (!zswap_shrinker_enabled || 1165 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) { 1166 sc->nr_scanned = 0; 1167 return SHRINK_STOP; 1168 } 1169 1170 nr_protected = 1171 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected); 1172 lru_size = list_lru_shrink_count(&zswap_list_lru, sc); 1173 1174 /* 1175 * Abort if we are shrinking into the protected region. 1176 * 1177 * This short-circuiting is necessary because if we have too many multiple 1178 * concurrent reclaimers getting the freeable zswap object counts at the 1179 * same time (before any of them made reasonable progress), the total 1180 * number of reclaimed objects might be more than the number of unprotected 1181 * objects (i.e the reclaimers will reclaim into the protected area of the 1182 * zswap LRU). 1183 */ 1184 if (nr_protected >= lru_size - sc->nr_to_scan) { 1185 sc->nr_scanned = 0; 1186 return SHRINK_STOP; 1187 } 1188 1189 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb, 1190 &encountered_page_in_swapcache); 1191 1192 if (encountered_page_in_swapcache) 1193 return SHRINK_STOP; 1194 1195 return shrink_ret ? shrink_ret : SHRINK_STOP; 1196 } 1197 1198 static unsigned long zswap_shrinker_count(struct shrinker *shrinker, 1199 struct shrink_control *sc) 1200 { 1201 struct mem_cgroup *memcg = sc->memcg; 1202 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); 1203 unsigned long nr_backing, nr_stored, nr_freeable, nr_protected; 1204 1205 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) 1206 return 0; 1207 1208 /* 1209 * The shrinker resumes swap writeback, which will enter block 1210 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS 1211 * rules (may_enter_fs()), which apply on a per-folio basis. 1212 */ 1213 if (!gfp_has_io_fs(sc->gfp_mask)) 1214 return 0; 1215 1216 /* 1217 * For memcg, use the cgroup-wide ZSWAP stats since we don't 1218 * have them per-node and thus per-lruvec. Careful if memcg is 1219 * runtime-disabled: we can get sc->memcg == NULL, which is ok 1220 * for the lruvec, but not for memcg_page_state(). 1221 * 1222 * Without memcg, use the zswap pool-wide metrics. 1223 */ 1224 if (!mem_cgroup_disabled()) { 1225 mem_cgroup_flush_stats(memcg); 1226 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; 1227 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); 1228 } else { 1229 nr_backing = zswap_total_pages(); 1230 nr_stored = atomic_read(&zswap_stored_pages); 1231 } 1232 1233 if (!nr_stored) 1234 return 0; 1235 1236 nr_protected = 1237 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected); 1238 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc); 1239 /* 1240 * Subtract the lru size by an estimate of the number of pages 1241 * that should be protected. 1242 */ 1243 nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0; 1244 1245 /* 1246 * Scale the number of freeable pages by the memory saving factor. 1247 * This ensures that the better zswap compresses memory, the fewer 1248 * pages we will evict to swap (as it will otherwise incur IO for 1249 * relatively small memory saving). 1250 * 1251 * The memory saving factor calculated here takes same-filled pages into 1252 * account, but those are not freeable since they almost occupy no 1253 * space. Hence, we may scale nr_freeable down a little bit more than we 1254 * should if we have a lot of same-filled pages. 1255 */ 1256 return mult_frac(nr_freeable, nr_backing, nr_stored); 1257 } 1258 1259 static struct shrinker *zswap_alloc_shrinker(void) 1260 { 1261 struct shrinker *shrinker; 1262 1263 shrinker = 1264 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); 1265 if (!shrinker) 1266 return NULL; 1267 1268 shrinker->scan_objects = zswap_shrinker_scan; 1269 shrinker->count_objects = zswap_shrinker_count; 1270 shrinker->batch = 0; 1271 shrinker->seeks = DEFAULT_SEEKS; 1272 return shrinker; 1273 } 1274 1275 static int shrink_memcg(struct mem_cgroup *memcg) 1276 { 1277 int nid, shrunk = 0; 1278 1279 if (!mem_cgroup_zswap_writeback_enabled(memcg)) 1280 return -EINVAL; 1281 1282 /* 1283 * Skip zombies because their LRUs are reparented and we would be 1284 * reclaiming from the parent instead of the dead memcg. 1285 */ 1286 if (memcg && !mem_cgroup_online(memcg)) 1287 return -ENOENT; 1288 1289 for_each_node_state(nid, N_NORMAL_MEMORY) { 1290 unsigned long nr_to_walk = 1; 1291 1292 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg, 1293 &shrink_memcg_cb, NULL, &nr_to_walk); 1294 } 1295 return shrunk ? 0 : -EAGAIN; 1296 } 1297 1298 static void shrink_worker(struct work_struct *w) 1299 { 1300 struct mem_cgroup *memcg; 1301 int ret, failures = 0; 1302 unsigned long thr; 1303 1304 /* Reclaim down to the accept threshold */ 1305 thr = zswap_accept_thr_pages(); 1306 1307 /* global reclaim will select cgroup in a round-robin fashion. */ 1308 do { 1309 spin_lock(&zswap_shrink_lock); 1310 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); 1311 memcg = zswap_next_shrink; 1312 1313 /* 1314 * We need to retry if we have gone through a full round trip, or if we 1315 * got an offline memcg (or else we risk undoing the effect of the 1316 * zswap memcg offlining cleanup callback). This is not catastrophic 1317 * per se, but it will keep the now offlined memcg hostage for a while. 1318 * 1319 * Note that if we got an online memcg, we will keep the extra 1320 * reference in case the original reference obtained by mem_cgroup_iter 1321 * is dropped by the zswap memcg offlining callback, ensuring that the 1322 * memcg is not killed when we are reclaiming. 1323 */ 1324 if (!memcg) { 1325 spin_unlock(&zswap_shrink_lock); 1326 if (++failures == MAX_RECLAIM_RETRIES) 1327 break; 1328 1329 goto resched; 1330 } 1331 1332 if (!mem_cgroup_tryget_online(memcg)) { 1333 /* drop the reference from mem_cgroup_iter() */ 1334 mem_cgroup_iter_break(NULL, memcg); 1335 zswap_next_shrink = NULL; 1336 spin_unlock(&zswap_shrink_lock); 1337 1338 if (++failures == MAX_RECLAIM_RETRIES) 1339 break; 1340 1341 goto resched; 1342 } 1343 spin_unlock(&zswap_shrink_lock); 1344 1345 ret = shrink_memcg(memcg); 1346 /* drop the extra reference */ 1347 mem_cgroup_put(memcg); 1348 1349 if (ret == -EINVAL) 1350 break; 1351 if (ret && ++failures == MAX_RECLAIM_RETRIES) 1352 break; 1353 resched: 1354 cond_resched(); 1355 } while (zswap_total_pages() > thr); 1356 } 1357 1358 /********************************* 1359 * same-filled functions 1360 **********************************/ 1361 static bool zswap_is_folio_same_filled(struct folio *folio, unsigned long *value) 1362 { 1363 unsigned long *data; 1364 unsigned long val; 1365 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*data) - 1; 1366 bool ret = false; 1367 1368 data = kmap_local_folio(folio, 0); 1369 val = data[0]; 1370 1371 if (val != data[last_pos]) 1372 goto out; 1373 1374 for (pos = 1; pos < last_pos; pos++) { 1375 if (val != data[pos]) 1376 goto out; 1377 } 1378 1379 *value = val; 1380 ret = true; 1381 out: 1382 kunmap_local(data); 1383 return ret; 1384 } 1385 1386 static void zswap_fill_folio(struct folio *folio, unsigned long value) 1387 { 1388 unsigned long *data = kmap_local_folio(folio, 0); 1389 1390 memset_l(data, value, PAGE_SIZE / sizeof(unsigned long)); 1391 kunmap_local(data); 1392 } 1393 1394 /********************************* 1395 * main API 1396 **********************************/ 1397 bool zswap_store(struct folio *folio) 1398 { 1399 swp_entry_t swp = folio->swap; 1400 pgoff_t offset = swp_offset(swp); 1401 struct xarray *tree = swap_zswap_tree(swp); 1402 struct zswap_entry *entry, *old; 1403 struct obj_cgroup *objcg = NULL; 1404 struct mem_cgroup *memcg = NULL; 1405 unsigned long value; 1406 1407 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 1408 VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); 1409 1410 /* Large folios aren't supported */ 1411 if (folio_test_large(folio)) 1412 return false; 1413 1414 if (!zswap_enabled) 1415 goto check_old; 1416 1417 /* Check cgroup limits */ 1418 objcg = get_obj_cgroup_from_folio(folio); 1419 if (objcg && !obj_cgroup_may_zswap(objcg)) { 1420 memcg = get_mem_cgroup_from_objcg(objcg); 1421 if (shrink_memcg(memcg)) { 1422 mem_cgroup_put(memcg); 1423 goto reject; 1424 } 1425 mem_cgroup_put(memcg); 1426 } 1427 1428 if (zswap_check_limits()) 1429 goto reject; 1430 1431 /* allocate entry */ 1432 entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio)); 1433 if (!entry) { 1434 zswap_reject_kmemcache_fail++; 1435 goto reject; 1436 } 1437 1438 if (zswap_is_folio_same_filled(folio, &value)) { 1439 entry->length = 0; 1440 entry->value = value; 1441 atomic_inc(&zswap_same_filled_pages); 1442 goto store_entry; 1443 } 1444 1445 /* if entry is successfully added, it keeps the reference */ 1446 entry->pool = zswap_pool_current_get(); 1447 if (!entry->pool) 1448 goto freepage; 1449 1450 if (objcg) { 1451 memcg = get_mem_cgroup_from_objcg(objcg); 1452 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) { 1453 mem_cgroup_put(memcg); 1454 goto put_pool; 1455 } 1456 mem_cgroup_put(memcg); 1457 } 1458 1459 if (!zswap_compress(folio, entry)) 1460 goto put_pool; 1461 1462 store_entry: 1463 entry->swpentry = swp; 1464 entry->objcg = objcg; 1465 1466 old = xa_store(tree, offset, entry, GFP_KERNEL); 1467 if (xa_is_err(old)) { 1468 int err = xa_err(old); 1469 1470 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err); 1471 zswap_reject_alloc_fail++; 1472 goto store_failed; 1473 } 1474 1475 /* 1476 * We may have had an existing entry that became stale when 1477 * the folio was redirtied and now the new version is being 1478 * swapped out. Get rid of the old. 1479 */ 1480 if (old) 1481 zswap_entry_free(old); 1482 1483 if (objcg) { 1484 obj_cgroup_charge_zswap(objcg, entry->length); 1485 count_objcg_event(objcg, ZSWPOUT); 1486 } 1487 1488 /* 1489 * We finish initializing the entry while it's already in xarray. 1490 * This is safe because: 1491 * 1492 * 1. Concurrent stores and invalidations are excluded by folio lock. 1493 * 1494 * 2. Writeback is excluded by the entry not being on the LRU yet. 1495 * The publishing order matters to prevent writeback from seeing 1496 * an incoherent entry. 1497 */ 1498 if (entry->length) { 1499 INIT_LIST_HEAD(&entry->lru); 1500 zswap_lru_add(&zswap_list_lru, entry); 1501 } 1502 1503 /* update stats */ 1504 atomic_inc(&zswap_stored_pages); 1505 count_vm_event(ZSWPOUT); 1506 1507 return true; 1508 1509 store_failed: 1510 if (!entry->length) 1511 atomic_dec(&zswap_same_filled_pages); 1512 else { 1513 zpool_free(entry->pool->zpool, entry->handle); 1514 put_pool: 1515 zswap_pool_put(entry->pool); 1516 } 1517 freepage: 1518 zswap_entry_cache_free(entry); 1519 reject: 1520 obj_cgroup_put(objcg); 1521 if (zswap_pool_reached_full) 1522 queue_work(shrink_wq, &zswap_shrink_work); 1523 check_old: 1524 /* 1525 * If the zswap store fails or zswap is disabled, we must invalidate the 1526 * possibly stale entry which was previously stored at this offset. 1527 * Otherwise, writeback could overwrite the new data in the swapfile. 1528 */ 1529 entry = xa_erase(tree, offset); 1530 if (entry) 1531 zswap_entry_free(entry); 1532 return false; 1533 } 1534 1535 bool zswap_load(struct folio *folio) 1536 { 1537 swp_entry_t swp = folio->swap; 1538 pgoff_t offset = swp_offset(swp); 1539 bool swapcache = folio_test_swapcache(folio); 1540 struct xarray *tree = swap_zswap_tree(swp); 1541 struct zswap_entry *entry; 1542 1543 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 1544 1545 if (zswap_never_enabled()) 1546 return false; 1547 1548 /* 1549 * Large folios should not be swapped in while zswap is being used, as 1550 * they are not properly handled. Zswap does not properly load large 1551 * folios, and a large folio may only be partially in zswap. 1552 * 1553 * Return true without marking the folio uptodate so that an IO error is 1554 * emitted (e.g. do_swap_page() will sigbus). 1555 */ 1556 if (WARN_ON_ONCE(folio_test_large(folio))) 1557 return true; 1558 1559 /* 1560 * When reading into the swapcache, invalidate our entry. The 1561 * swapcache can be the authoritative owner of the page and 1562 * its mappings, and the pressure that results from having two 1563 * in-memory copies outweighs any benefits of caching the 1564 * compression work. 1565 * 1566 * (Most swapins go through the swapcache. The notable 1567 * exception is the singleton fault on SWP_SYNCHRONOUS_IO 1568 * files, which reads into a private page and may free it if 1569 * the fault fails. We remain the primary owner of the entry.) 1570 */ 1571 if (swapcache) 1572 entry = xa_erase(tree, offset); 1573 else 1574 entry = xa_load(tree, offset); 1575 1576 if (!entry) 1577 return false; 1578 1579 if (entry->length) 1580 zswap_decompress(entry, folio); 1581 else 1582 zswap_fill_folio(folio, entry->value); 1583 1584 count_vm_event(ZSWPIN); 1585 if (entry->objcg) 1586 count_objcg_event(entry->objcg, ZSWPIN); 1587 1588 if (swapcache) { 1589 zswap_entry_free(entry); 1590 folio_mark_dirty(folio); 1591 } 1592 1593 folio_mark_uptodate(folio); 1594 return true; 1595 } 1596 1597 void zswap_invalidate(swp_entry_t swp) 1598 { 1599 pgoff_t offset = swp_offset(swp); 1600 struct xarray *tree = swap_zswap_tree(swp); 1601 struct zswap_entry *entry; 1602 1603 entry = xa_erase(tree, offset); 1604 if (entry) 1605 zswap_entry_free(entry); 1606 } 1607 1608 int zswap_swapon(int type, unsigned long nr_pages) 1609 { 1610 struct xarray *trees, *tree; 1611 unsigned int nr, i; 1612 1613 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 1614 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL); 1615 if (!trees) { 1616 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1617 return -ENOMEM; 1618 } 1619 1620 for (i = 0; i < nr; i++) 1621 xa_init(trees + i); 1622 1623 nr_zswap_trees[type] = nr; 1624 zswap_trees[type] = trees; 1625 return 0; 1626 } 1627 1628 void zswap_swapoff(int type) 1629 { 1630 struct xarray *trees = zswap_trees[type]; 1631 unsigned int i; 1632 1633 if (!trees) 1634 return; 1635 1636 /* try_to_unuse() invalidated all the entries already */ 1637 for (i = 0; i < nr_zswap_trees[type]; i++) 1638 WARN_ON_ONCE(!xa_empty(trees + i)); 1639 1640 kvfree(trees); 1641 nr_zswap_trees[type] = 0; 1642 zswap_trees[type] = NULL; 1643 } 1644 1645 /********************************* 1646 * debugfs functions 1647 **********************************/ 1648 #ifdef CONFIG_DEBUG_FS 1649 #include <linux/debugfs.h> 1650 1651 static struct dentry *zswap_debugfs_root; 1652 1653 static int debugfs_get_total_size(void *data, u64 *val) 1654 { 1655 *val = zswap_total_pages() * PAGE_SIZE; 1656 return 0; 1657 } 1658 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n"); 1659 1660 static int zswap_debugfs_init(void) 1661 { 1662 if (!debugfs_initialized()) 1663 return -ENODEV; 1664 1665 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1666 1667 debugfs_create_u64("pool_limit_hit", 0444, 1668 zswap_debugfs_root, &zswap_pool_limit_hit); 1669 debugfs_create_u64("reject_reclaim_fail", 0444, 1670 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1671 debugfs_create_u64("reject_alloc_fail", 0444, 1672 zswap_debugfs_root, &zswap_reject_alloc_fail); 1673 debugfs_create_u64("reject_kmemcache_fail", 0444, 1674 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1675 debugfs_create_u64("reject_compress_fail", 0444, 1676 zswap_debugfs_root, &zswap_reject_compress_fail); 1677 debugfs_create_u64("reject_compress_poor", 0444, 1678 zswap_debugfs_root, &zswap_reject_compress_poor); 1679 debugfs_create_u64("written_back_pages", 0444, 1680 zswap_debugfs_root, &zswap_written_back_pages); 1681 debugfs_create_file("pool_total_size", 0444, 1682 zswap_debugfs_root, NULL, &total_size_fops); 1683 debugfs_create_atomic_t("stored_pages", 0444, 1684 zswap_debugfs_root, &zswap_stored_pages); 1685 debugfs_create_atomic_t("same_filled_pages", 0444, 1686 zswap_debugfs_root, &zswap_same_filled_pages); 1687 1688 return 0; 1689 } 1690 #else 1691 static int zswap_debugfs_init(void) 1692 { 1693 return 0; 1694 } 1695 #endif 1696 1697 /********************************* 1698 * module init and exit 1699 **********************************/ 1700 static int zswap_setup(void) 1701 { 1702 struct zswap_pool *pool; 1703 int ret; 1704 1705 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 1706 if (!zswap_entry_cache) { 1707 pr_err("entry cache creation failed\n"); 1708 goto cache_fail; 1709 } 1710 1711 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, 1712 "mm/zswap_pool:prepare", 1713 zswap_cpu_comp_prepare, 1714 zswap_cpu_comp_dead); 1715 if (ret) 1716 goto hp_fail; 1717 1718 shrink_wq = alloc_workqueue("zswap-shrink", 1719 WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 1720 if (!shrink_wq) 1721 goto shrink_wq_fail; 1722 1723 zswap_shrinker = zswap_alloc_shrinker(); 1724 if (!zswap_shrinker) 1725 goto shrinker_fail; 1726 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker)) 1727 goto lru_fail; 1728 shrinker_register(zswap_shrinker); 1729 1730 INIT_WORK(&zswap_shrink_work, shrink_worker); 1731 1732 pool = __zswap_pool_create_fallback(); 1733 if (pool) { 1734 pr_info("loaded using pool %s/%s\n", pool->tfm_name, 1735 zpool_get_type(pool->zpool)); 1736 list_add(&pool->list, &zswap_pools); 1737 zswap_has_pool = true; 1738 static_branch_enable(&zswap_ever_enabled); 1739 } else { 1740 pr_err("pool creation failed\n"); 1741 zswap_enabled = false; 1742 } 1743 1744 if (zswap_debugfs_init()) 1745 pr_warn("debugfs initialization failed\n"); 1746 zswap_init_state = ZSWAP_INIT_SUCCEED; 1747 return 0; 1748 1749 lru_fail: 1750 shrinker_free(zswap_shrinker); 1751 shrinker_fail: 1752 destroy_workqueue(shrink_wq); 1753 shrink_wq_fail: 1754 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE); 1755 hp_fail: 1756 kmem_cache_destroy(zswap_entry_cache); 1757 cache_fail: 1758 /* if built-in, we aren't unloaded on failure; don't allow use */ 1759 zswap_init_state = ZSWAP_INIT_FAILED; 1760 zswap_enabled = false; 1761 return -ENOMEM; 1762 } 1763 1764 static int __init zswap_init(void) 1765 { 1766 if (!zswap_enabled) 1767 return 0; 1768 return zswap_setup(); 1769 } 1770 /* must be late so crypto has time to come up */ 1771 late_initcall(zswap_init); 1772 1773 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1774 MODULE_DESCRIPTION("Compressed cache for swap pages"); 1775