xref: /linux/mm/zswap.c (revision d3d1556696c1a993eec54ac585fe5bf677e07474)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38 
39 #include "swap.h"
40 #include "internal.h"
41 
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
47 
48 /*
49  * The statistics below are not protected from concurrent access for
50  * performance reasons so they may not be a 100% accurate.  However,
51  * they do provide useful information on roughly how many times a
52  * certain event is occurring.
53 */
54 
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
69 
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
74 
75 /*********************************
76 * tunables
77 **********************************/
78 
79 #define ZSWAP_PARAM_UNSET ""
80 
81 static int zswap_setup(void);
82 
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 				   const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 	.set =		zswap_enabled_param_set,
90 	.get =		param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93 
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 				      const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 	.set =		zswap_compressor_param_set,
100 	.get =		param_get_charp,
101 	.free =		param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 		&zswap_compressor, 0644);
105 
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 	.set =		zswap_zpool_param_set,
111 	.get =		param_get_charp,
112 	.free =		param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115 
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119 
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 		   uint, 0644);
124 
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
129 
zswap_is_enabled(void)130 bool zswap_is_enabled(void)
131 {
132 	return zswap_enabled;
133 }
134 
zswap_never_enabled(void)135 bool zswap_never_enabled(void)
136 {
137 	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
138 }
139 
140 /*********************************
141 * data structures
142 **********************************/
143 
144 struct crypto_acomp_ctx {
145 	struct crypto_acomp *acomp;
146 	struct acomp_req *req;
147 	struct crypto_wait wait;
148 	u8 *buffer;
149 	struct mutex mutex;
150 	bool is_sleepable;
151 };
152 
153 /*
154  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155  * The only case where lru_lock is not acquired while holding tree.lock is
156  * when a zswap_entry is taken off the lru for writeback, in that case it
157  * needs to be verified that it's still valid in the tree.
158  */
159 struct zswap_pool {
160 	struct zpool *zpool;
161 	struct crypto_acomp_ctx __percpu *acomp_ctx;
162 	struct percpu_ref ref;
163 	struct list_head list;
164 	struct work_struct release_work;
165 	struct hlist_node node;
166 	char tfm_name[CRYPTO_MAX_ALG_NAME];
167 };
168 
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
171 
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
177 
178 /*
179  * struct zswap_entry
180  *
181  * This structure contains the metadata for tracking a single compressed
182  * page within zswap.
183  *
184  * swpentry - associated swap entry, the offset indexes into the red-black tree
185  * length - the length in bytes of the compressed page data.  Needed during
186  *          decompression.
187  * referenced - true if the entry recently entered the zswap pool. Unset by the
188  *              writeback logic. The entry is only reclaimed by the writeback
189  *              logic if referenced is unset. See comments in the shrinker
190  *              section for context.
191  * pool - the zswap_pool the entry's data is in
192  * handle - zpool allocation handle that stores the compressed page data
193  * objcg - the obj_cgroup that the compressed memory is charged to
194  * lru - handle to the pool's lru used to evict pages.
195  */
196 struct zswap_entry {
197 	swp_entry_t swpentry;
198 	unsigned int length;
199 	bool referenced;
200 	struct zswap_pool *pool;
201 	unsigned long handle;
202 	struct obj_cgroup *objcg;
203 	struct list_head lru;
204 };
205 
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
208 
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215 
216 enum zswap_init_type {
217 	ZSWAP_UNINIT,
218 	ZSWAP_INIT_SUCCEED,
219 	ZSWAP_INIT_FAILED
220 };
221 
222 static enum zswap_init_type zswap_init_state;
223 
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
226 
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
229 
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
233 
swap_zswap_tree(swp_entry_t swp)234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
235 {
236 	return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 		>> SWAP_ADDRESS_SPACE_SHIFT];
238 }
239 
240 #define zswap_pool_debug(msg, p)				\
241 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
242 		 zpool_get_type((p)->zpool))
243 
244 /*********************************
245 * pool functions
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
248 
zswap_pool_create(char * type,char * compressor)249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
250 {
251 	struct zswap_pool *pool;
252 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 	int ret;
255 
256 	if (!zswap_has_pool) {
257 		/* if either are unset, pool initialization failed, and we
258 		 * need both params to be set correctly before trying to
259 		 * create a pool.
260 		 */
261 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 			return NULL;
263 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 			return NULL;
265 	}
266 
267 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 	if (!pool)
269 		return NULL;
270 
271 	/* unique name for each pool specifically required by zsmalloc */
272 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 	pool->zpool = zpool_create_pool(type, name, gfp);
274 	if (!pool->zpool) {
275 		pr_err("%s zpool not available\n", type);
276 		goto error;
277 	}
278 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
279 
280 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
281 
282 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 	if (!pool->acomp_ctx) {
284 		pr_err("percpu alloc failed\n");
285 		goto error;
286 	}
287 
288 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
289 				       &pool->node);
290 	if (ret)
291 		goto error;
292 
293 	/* being the current pool takes 1 ref; this func expects the
294 	 * caller to always add the new pool as the current pool
295 	 */
296 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
297 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
298 	if (ret)
299 		goto ref_fail;
300 	INIT_LIST_HEAD(&pool->list);
301 
302 	zswap_pool_debug("created", pool);
303 
304 	return pool;
305 
306 ref_fail:
307 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
308 error:
309 	if (pool->acomp_ctx)
310 		free_percpu(pool->acomp_ctx);
311 	if (pool->zpool)
312 		zpool_destroy_pool(pool->zpool);
313 	kfree(pool);
314 	return NULL;
315 }
316 
__zswap_pool_create_fallback(void)317 static struct zswap_pool *__zswap_pool_create_fallback(void)
318 {
319 	bool has_comp, has_zpool;
320 
321 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
322 	if (!has_comp && strcmp(zswap_compressor,
323 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
324 		pr_err("compressor %s not available, using default %s\n",
325 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
326 		param_free_charp(&zswap_compressor);
327 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
328 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
329 	}
330 	if (!has_comp) {
331 		pr_err("default compressor %s not available\n",
332 		       zswap_compressor);
333 		param_free_charp(&zswap_compressor);
334 		zswap_compressor = ZSWAP_PARAM_UNSET;
335 	}
336 
337 	has_zpool = zpool_has_pool(zswap_zpool_type);
338 	if (!has_zpool && strcmp(zswap_zpool_type,
339 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
340 		pr_err("zpool %s not available, using default %s\n",
341 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
342 		param_free_charp(&zswap_zpool_type);
343 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
344 		has_zpool = zpool_has_pool(zswap_zpool_type);
345 	}
346 	if (!has_zpool) {
347 		pr_err("default zpool %s not available\n",
348 		       zswap_zpool_type);
349 		param_free_charp(&zswap_zpool_type);
350 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
351 	}
352 
353 	if (!has_comp || !has_zpool)
354 		return NULL;
355 
356 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
357 }
358 
zswap_pool_destroy(struct zswap_pool * pool)359 static void zswap_pool_destroy(struct zswap_pool *pool)
360 {
361 	zswap_pool_debug("destroying", pool);
362 
363 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
364 	free_percpu(pool->acomp_ctx);
365 
366 	zpool_destroy_pool(pool->zpool);
367 	kfree(pool);
368 }
369 
__zswap_pool_release(struct work_struct * work)370 static void __zswap_pool_release(struct work_struct *work)
371 {
372 	struct zswap_pool *pool = container_of(work, typeof(*pool),
373 						release_work);
374 
375 	synchronize_rcu();
376 
377 	/* nobody should have been able to get a ref... */
378 	WARN_ON(!percpu_ref_is_zero(&pool->ref));
379 	percpu_ref_exit(&pool->ref);
380 
381 	/* pool is now off zswap_pools list and has no references. */
382 	zswap_pool_destroy(pool);
383 }
384 
385 static struct zswap_pool *zswap_pool_current(void);
386 
__zswap_pool_empty(struct percpu_ref * ref)387 static void __zswap_pool_empty(struct percpu_ref *ref)
388 {
389 	struct zswap_pool *pool;
390 
391 	pool = container_of(ref, typeof(*pool), ref);
392 
393 	spin_lock_bh(&zswap_pools_lock);
394 
395 	WARN_ON(pool == zswap_pool_current());
396 
397 	list_del_rcu(&pool->list);
398 
399 	INIT_WORK(&pool->release_work, __zswap_pool_release);
400 	schedule_work(&pool->release_work);
401 
402 	spin_unlock_bh(&zswap_pools_lock);
403 }
404 
zswap_pool_get(struct zswap_pool * pool)405 static int __must_check zswap_pool_get(struct zswap_pool *pool)
406 {
407 	if (!pool)
408 		return 0;
409 
410 	return percpu_ref_tryget(&pool->ref);
411 }
412 
zswap_pool_put(struct zswap_pool * pool)413 static void zswap_pool_put(struct zswap_pool *pool)
414 {
415 	percpu_ref_put(&pool->ref);
416 }
417 
__zswap_pool_current(void)418 static struct zswap_pool *__zswap_pool_current(void)
419 {
420 	struct zswap_pool *pool;
421 
422 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
423 	WARN_ONCE(!pool && zswap_has_pool,
424 		  "%s: no page storage pool!\n", __func__);
425 
426 	return pool;
427 }
428 
zswap_pool_current(void)429 static struct zswap_pool *zswap_pool_current(void)
430 {
431 	assert_spin_locked(&zswap_pools_lock);
432 
433 	return __zswap_pool_current();
434 }
435 
zswap_pool_current_get(void)436 static struct zswap_pool *zswap_pool_current_get(void)
437 {
438 	struct zswap_pool *pool;
439 
440 	rcu_read_lock();
441 
442 	pool = __zswap_pool_current();
443 	if (!zswap_pool_get(pool))
444 		pool = NULL;
445 
446 	rcu_read_unlock();
447 
448 	return pool;
449 }
450 
451 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)452 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
453 {
454 	struct zswap_pool *pool;
455 
456 	assert_spin_locked(&zswap_pools_lock);
457 
458 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
459 		if (strcmp(pool->tfm_name, compressor))
460 			continue;
461 		if (strcmp(zpool_get_type(pool->zpool), type))
462 			continue;
463 		/* if we can't get it, it's about to be destroyed */
464 		if (!zswap_pool_get(pool))
465 			continue;
466 		return pool;
467 	}
468 
469 	return NULL;
470 }
471 
zswap_max_pages(void)472 static unsigned long zswap_max_pages(void)
473 {
474 	return totalram_pages() * zswap_max_pool_percent / 100;
475 }
476 
zswap_accept_thr_pages(void)477 static unsigned long zswap_accept_thr_pages(void)
478 {
479 	return zswap_max_pages() * zswap_accept_thr_percent / 100;
480 }
481 
zswap_total_pages(void)482 unsigned long zswap_total_pages(void)
483 {
484 	struct zswap_pool *pool;
485 	unsigned long total = 0;
486 
487 	rcu_read_lock();
488 	list_for_each_entry_rcu(pool, &zswap_pools, list)
489 		total += zpool_get_total_pages(pool->zpool);
490 	rcu_read_unlock();
491 
492 	return total;
493 }
494 
zswap_check_limits(void)495 static bool zswap_check_limits(void)
496 {
497 	unsigned long cur_pages = zswap_total_pages();
498 	unsigned long max_pages = zswap_max_pages();
499 
500 	if (cur_pages >= max_pages) {
501 		zswap_pool_limit_hit++;
502 		zswap_pool_reached_full = true;
503 	} else if (zswap_pool_reached_full &&
504 		   cur_pages <= zswap_accept_thr_pages()) {
505 			zswap_pool_reached_full = false;
506 	}
507 	return zswap_pool_reached_full;
508 }
509 
510 /*********************************
511 * param callbacks
512 **********************************/
513 
zswap_pool_changed(const char * s,const struct kernel_param * kp)514 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
515 {
516 	/* no change required */
517 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
518 		return false;
519 	return true;
520 }
521 
522 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)523 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
524 			     char *type, char *compressor)
525 {
526 	struct zswap_pool *pool, *put_pool = NULL;
527 	char *s = strstrip((char *)val);
528 	int ret = 0;
529 	bool new_pool = false;
530 
531 	mutex_lock(&zswap_init_lock);
532 	switch (zswap_init_state) {
533 	case ZSWAP_UNINIT:
534 		/* if this is load-time (pre-init) param setting,
535 		 * don't create a pool; that's done during init.
536 		 */
537 		ret = param_set_charp(s, kp);
538 		break;
539 	case ZSWAP_INIT_SUCCEED:
540 		new_pool = zswap_pool_changed(s, kp);
541 		break;
542 	case ZSWAP_INIT_FAILED:
543 		pr_err("can't set param, initialization failed\n");
544 		ret = -ENODEV;
545 	}
546 	mutex_unlock(&zswap_init_lock);
547 
548 	/* no need to create a new pool, return directly */
549 	if (!new_pool)
550 		return ret;
551 
552 	if (!type) {
553 		if (!zpool_has_pool(s)) {
554 			pr_err("zpool %s not available\n", s);
555 			return -ENOENT;
556 		}
557 		type = s;
558 	} else if (!compressor) {
559 		if (!crypto_has_acomp(s, 0, 0)) {
560 			pr_err("compressor %s not available\n", s);
561 			return -ENOENT;
562 		}
563 		compressor = s;
564 	} else {
565 		WARN_ON(1);
566 		return -EINVAL;
567 	}
568 
569 	spin_lock_bh(&zswap_pools_lock);
570 
571 	pool = zswap_pool_find_get(type, compressor);
572 	if (pool) {
573 		zswap_pool_debug("using existing", pool);
574 		WARN_ON(pool == zswap_pool_current());
575 		list_del_rcu(&pool->list);
576 	}
577 
578 	spin_unlock_bh(&zswap_pools_lock);
579 
580 	if (!pool)
581 		pool = zswap_pool_create(type, compressor);
582 	else {
583 		/*
584 		 * Restore the initial ref dropped by percpu_ref_kill()
585 		 * when the pool was decommissioned and switch it again
586 		 * to percpu mode.
587 		 */
588 		percpu_ref_resurrect(&pool->ref);
589 
590 		/* Drop the ref from zswap_pool_find_get(). */
591 		zswap_pool_put(pool);
592 	}
593 
594 	if (pool)
595 		ret = param_set_charp(s, kp);
596 	else
597 		ret = -EINVAL;
598 
599 	spin_lock_bh(&zswap_pools_lock);
600 
601 	if (!ret) {
602 		put_pool = zswap_pool_current();
603 		list_add_rcu(&pool->list, &zswap_pools);
604 		zswap_has_pool = true;
605 	} else if (pool) {
606 		/* add the possibly pre-existing pool to the end of the pools
607 		 * list; if it's new (and empty) then it'll be removed and
608 		 * destroyed by the put after we drop the lock
609 		 */
610 		list_add_tail_rcu(&pool->list, &zswap_pools);
611 		put_pool = pool;
612 	}
613 
614 	spin_unlock_bh(&zswap_pools_lock);
615 
616 	if (!zswap_has_pool && !pool) {
617 		/* if initial pool creation failed, and this pool creation also
618 		 * failed, maybe both compressor and zpool params were bad.
619 		 * Allow changing this param, so pool creation will succeed
620 		 * when the other param is changed. We already verified this
621 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
622 		 * checks above.
623 		 */
624 		ret = param_set_charp(s, kp);
625 	}
626 
627 	/* drop the ref from either the old current pool,
628 	 * or the new pool we failed to add
629 	 */
630 	if (put_pool)
631 		percpu_ref_kill(&put_pool->ref);
632 
633 	return ret;
634 }
635 
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)636 static int zswap_compressor_param_set(const char *val,
637 				      const struct kernel_param *kp)
638 {
639 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
640 }
641 
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)642 static int zswap_zpool_param_set(const char *val,
643 				 const struct kernel_param *kp)
644 {
645 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
646 }
647 
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)648 static int zswap_enabled_param_set(const char *val,
649 				   const struct kernel_param *kp)
650 {
651 	int ret = -ENODEV;
652 
653 	/* if this is load-time (pre-init) param setting, only set param. */
654 	if (system_state != SYSTEM_RUNNING)
655 		return param_set_bool(val, kp);
656 
657 	mutex_lock(&zswap_init_lock);
658 	switch (zswap_init_state) {
659 	case ZSWAP_UNINIT:
660 		if (zswap_setup())
661 			break;
662 		fallthrough;
663 	case ZSWAP_INIT_SUCCEED:
664 		if (!zswap_has_pool)
665 			pr_err("can't enable, no pool configured\n");
666 		else
667 			ret = param_set_bool(val, kp);
668 		break;
669 	case ZSWAP_INIT_FAILED:
670 		pr_err("can't enable, initialization failed\n");
671 	}
672 	mutex_unlock(&zswap_init_lock);
673 
674 	return ret;
675 }
676 
677 /*********************************
678 * lru functions
679 **********************************/
680 
681 /* should be called under RCU */
682 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)683 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
684 {
685 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
686 }
687 #else
mem_cgroup_from_entry(struct zswap_entry * entry)688 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
689 {
690 	return NULL;
691 }
692 #endif
693 
entry_to_nid(struct zswap_entry * entry)694 static inline int entry_to_nid(struct zswap_entry *entry)
695 {
696 	return page_to_nid(virt_to_page(entry));
697 }
698 
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)699 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
700 {
701 	int nid = entry_to_nid(entry);
702 	struct mem_cgroup *memcg;
703 
704 	/*
705 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
706 	 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
707 	 * used in list_lru lookup, only two scenarios are possible:
708 	 *
709 	 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
710 	 *    new entry will be reparented to memcg's parent's list_lru.
711 	 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
712 	 *    new entry will be added directly to memcg's parent's list_lru.
713 	 *
714 	 * Similar reasoning holds for list_lru_del().
715 	 */
716 	rcu_read_lock();
717 	memcg = mem_cgroup_from_entry(entry);
718 	/* will always succeed */
719 	list_lru_add(list_lru, &entry->lru, nid, memcg);
720 	rcu_read_unlock();
721 }
722 
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)723 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
724 {
725 	int nid = entry_to_nid(entry);
726 	struct mem_cgroup *memcg;
727 
728 	rcu_read_lock();
729 	memcg = mem_cgroup_from_entry(entry);
730 	/* will always succeed */
731 	list_lru_del(list_lru, &entry->lru, nid, memcg);
732 	rcu_read_unlock();
733 }
734 
zswap_lruvec_state_init(struct lruvec * lruvec)735 void zswap_lruvec_state_init(struct lruvec *lruvec)
736 {
737 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
738 }
739 
zswap_folio_swapin(struct folio * folio)740 void zswap_folio_swapin(struct folio *folio)
741 {
742 	struct lruvec *lruvec;
743 
744 	if (folio) {
745 		lruvec = folio_lruvec(folio);
746 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
747 	}
748 }
749 
750 /*
751  * This function should be called when a memcg is being offlined.
752  *
753  * Since the global shrinker shrink_worker() may hold a reference
754  * of the memcg, we must check and release the reference in
755  * zswap_next_shrink.
756  *
757  * shrink_worker() must handle the case where this function releases
758  * the reference of memcg being shrunk.
759  */
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)760 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
761 {
762 	/* lock out zswap shrinker walking memcg tree */
763 	spin_lock(&zswap_shrink_lock);
764 	if (zswap_next_shrink == memcg) {
765 		do {
766 			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
767 		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
768 	}
769 	spin_unlock(&zswap_shrink_lock);
770 }
771 
772 /*********************************
773 * zswap entry functions
774 **********************************/
775 static struct kmem_cache *zswap_entry_cache;
776 
zswap_entry_cache_alloc(gfp_t gfp,int nid)777 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
778 {
779 	struct zswap_entry *entry;
780 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
781 	if (!entry)
782 		return NULL;
783 	return entry;
784 }
785 
zswap_entry_cache_free(struct zswap_entry * entry)786 static void zswap_entry_cache_free(struct zswap_entry *entry)
787 {
788 	kmem_cache_free(zswap_entry_cache, entry);
789 }
790 
791 /*
792  * Carries out the common pattern of freeing and entry's zpool allocation,
793  * freeing the entry itself, and decrementing the number of stored pages.
794  */
zswap_entry_free(struct zswap_entry * entry)795 static void zswap_entry_free(struct zswap_entry *entry)
796 {
797 	zswap_lru_del(&zswap_list_lru, entry);
798 	zpool_free(entry->pool->zpool, entry->handle);
799 	zswap_pool_put(entry->pool);
800 	if (entry->objcg) {
801 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
802 		obj_cgroup_put(entry->objcg);
803 	}
804 	zswap_entry_cache_free(entry);
805 	atomic_dec(&zswap_stored_pages);
806 }
807 
808 /*********************************
809 * compressed storage functions
810 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)811 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
812 {
813 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
814 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
815 	struct crypto_acomp *acomp;
816 	struct acomp_req *req;
817 	int ret;
818 
819 	mutex_init(&acomp_ctx->mutex);
820 
821 	acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
822 	if (!acomp_ctx->buffer)
823 		return -ENOMEM;
824 
825 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
826 	if (IS_ERR(acomp)) {
827 		pr_err("could not alloc crypto acomp %s : %ld\n",
828 				pool->tfm_name, PTR_ERR(acomp));
829 		ret = PTR_ERR(acomp);
830 		goto acomp_fail;
831 	}
832 	acomp_ctx->acomp = acomp;
833 	acomp_ctx->is_sleepable = acomp_is_async(acomp);
834 
835 	req = acomp_request_alloc(acomp_ctx->acomp);
836 	if (!req) {
837 		pr_err("could not alloc crypto acomp_request %s\n",
838 		       pool->tfm_name);
839 		ret = -ENOMEM;
840 		goto req_fail;
841 	}
842 	acomp_ctx->req = req;
843 
844 	crypto_init_wait(&acomp_ctx->wait);
845 	/*
846 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
847 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
848 	 * won't be called, crypto_wait_req() will return without blocking.
849 	 */
850 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
851 				   crypto_req_done, &acomp_ctx->wait);
852 
853 	return 0;
854 
855 req_fail:
856 	crypto_free_acomp(acomp_ctx->acomp);
857 acomp_fail:
858 	kfree(acomp_ctx->buffer);
859 	return ret;
860 }
861 
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)862 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
863 {
864 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
865 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
866 
867 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
868 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
869 			acomp_request_free(acomp_ctx->req);
870 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
871 			crypto_free_acomp(acomp_ctx->acomp);
872 		kfree(acomp_ctx->buffer);
873 	}
874 
875 	return 0;
876 }
877 
zswap_compress(struct folio * folio,struct zswap_entry * entry)878 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
879 {
880 	struct crypto_acomp_ctx *acomp_ctx;
881 	struct scatterlist input, output;
882 	int comp_ret = 0, alloc_ret = 0;
883 	unsigned int dlen = PAGE_SIZE;
884 	unsigned long handle;
885 	struct zpool *zpool;
886 	char *buf;
887 	gfp_t gfp;
888 	u8 *dst;
889 
890 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
891 
892 	mutex_lock(&acomp_ctx->mutex);
893 
894 	dst = acomp_ctx->buffer;
895 	sg_init_table(&input, 1);
896 	sg_set_folio(&input, folio, PAGE_SIZE, 0);
897 
898 	/*
899 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
900 	 * and hardware-accelerators may won't check the dst buffer size, so
901 	 * giving the dst buffer with enough length to avoid buffer overflow.
902 	 */
903 	sg_init_one(&output, dst, PAGE_SIZE * 2);
904 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
905 
906 	/*
907 	 * it maybe looks a little bit silly that we send an asynchronous request,
908 	 * then wait for its completion synchronously. This makes the process look
909 	 * synchronous in fact.
910 	 * Theoretically, acomp supports users send multiple acomp requests in one
911 	 * acomp instance, then get those requests done simultaneously. but in this
912 	 * case, zswap actually does store and load page by page, there is no
913 	 * existing method to send the second page before the first page is done
914 	 * in one thread doing zwap.
915 	 * but in different threads running on different cpu, we have different
916 	 * acomp instance, so multiple threads can do (de)compression in parallel.
917 	 */
918 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
919 	dlen = acomp_ctx->req->dlen;
920 	if (comp_ret)
921 		goto unlock;
922 
923 	zpool = entry->pool->zpool;
924 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
925 	if (zpool_malloc_support_movable(zpool))
926 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
927 	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
928 	if (alloc_ret)
929 		goto unlock;
930 
931 	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
932 	memcpy(buf, dst, dlen);
933 	zpool_unmap_handle(zpool, handle);
934 
935 	entry->handle = handle;
936 	entry->length = dlen;
937 
938 unlock:
939 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
940 		zswap_reject_compress_poor++;
941 	else if (comp_ret)
942 		zswap_reject_compress_fail++;
943 	else if (alloc_ret)
944 		zswap_reject_alloc_fail++;
945 
946 	mutex_unlock(&acomp_ctx->mutex);
947 	return comp_ret == 0 && alloc_ret == 0;
948 }
949 
zswap_decompress(struct zswap_entry * entry,struct folio * folio)950 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
951 {
952 	struct zpool *zpool = entry->pool->zpool;
953 	struct scatterlist input, output;
954 	struct crypto_acomp_ctx *acomp_ctx;
955 	u8 *src;
956 
957 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
958 	mutex_lock(&acomp_ctx->mutex);
959 
960 	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
961 	/*
962 	 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
963 	 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
964 	 * resort to copying the buffer to a temporary one.
965 	 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
966 	 * such as a kmap address of high memory or even ever a vmap address.
967 	 * However, sg_init_one is only equipped to handle linearly mapped low memory.
968 	 * In such cases, we also must copy the buffer to a temporary and lowmem one.
969 	 */
970 	if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
971 	    !virt_addr_valid(src)) {
972 		memcpy(acomp_ctx->buffer, src, entry->length);
973 		src = acomp_ctx->buffer;
974 		zpool_unmap_handle(zpool, entry->handle);
975 	}
976 
977 	sg_init_one(&input, src, entry->length);
978 	sg_init_table(&output, 1);
979 	sg_set_folio(&output, folio, PAGE_SIZE, 0);
980 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
981 	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
982 	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
983 	mutex_unlock(&acomp_ctx->mutex);
984 
985 	if (src != acomp_ctx->buffer)
986 		zpool_unmap_handle(zpool, entry->handle);
987 }
988 
989 /*********************************
990 * writeback code
991 **********************************/
992 /*
993  * Attempts to free an entry by adding a folio to the swap cache,
994  * decompressing the entry data into the folio, and issuing a
995  * bio write to write the folio back to the swap device.
996  *
997  * This can be thought of as a "resumed writeback" of the folio
998  * to the swap device.  We are basically resuming the same swap
999  * writeback path that was intercepted with the zswap_store()
1000  * in the first place.  After the folio has been decompressed into
1001  * the swap cache, the compressed version stored by zswap can be
1002  * freed.
1003  */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1004 static int zswap_writeback_entry(struct zswap_entry *entry,
1005 				 swp_entry_t swpentry)
1006 {
1007 	struct xarray *tree;
1008 	pgoff_t offset = swp_offset(swpentry);
1009 	struct folio *folio;
1010 	struct mempolicy *mpol;
1011 	bool folio_was_allocated;
1012 	struct writeback_control wbc = {
1013 		.sync_mode = WB_SYNC_NONE,
1014 	};
1015 
1016 	/* try to allocate swap cache folio */
1017 	mpol = get_task_policy(current);
1018 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1019 				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1020 	if (!folio)
1021 		return -ENOMEM;
1022 
1023 	/*
1024 	 * Found an existing folio, we raced with swapin or concurrent
1025 	 * shrinker. We generally writeback cold folios from zswap, and
1026 	 * swapin means the folio just became hot, so skip this folio.
1027 	 * For unlikely concurrent shrinker case, it will be unlinked
1028 	 * and freed when invalidated by the concurrent shrinker anyway.
1029 	 */
1030 	if (!folio_was_allocated) {
1031 		folio_put(folio);
1032 		return -EEXIST;
1033 	}
1034 
1035 	/*
1036 	 * folio is locked, and the swapcache is now secured against
1037 	 * concurrent swapping to and from the slot, and concurrent
1038 	 * swapoff so we can safely dereference the zswap tree here.
1039 	 * Verify that the swap entry hasn't been invalidated and recycled
1040 	 * behind our backs, to avoid overwriting a new swap folio with
1041 	 * old compressed data. Only when this is successful can the entry
1042 	 * be dereferenced.
1043 	 */
1044 	tree = swap_zswap_tree(swpentry);
1045 	if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1046 		delete_from_swap_cache(folio);
1047 		folio_unlock(folio);
1048 		folio_put(folio);
1049 		return -ENOMEM;
1050 	}
1051 
1052 	zswap_decompress(entry, folio);
1053 
1054 	count_vm_event(ZSWPWB);
1055 	if (entry->objcg)
1056 		count_objcg_event(entry->objcg, ZSWPWB);
1057 
1058 	zswap_entry_free(entry);
1059 
1060 	/* folio is up to date */
1061 	folio_mark_uptodate(folio);
1062 
1063 	/* move it to the tail of the inactive list after end_writeback */
1064 	folio_set_reclaim(folio);
1065 
1066 	/* start writeback */
1067 	__swap_writepage(folio, &wbc);
1068 	folio_put(folio);
1069 
1070 	return 0;
1071 }
1072 
1073 /*********************************
1074 * shrinker functions
1075 **********************************/
1076 /*
1077  * The dynamic shrinker is modulated by the following factors:
1078  *
1079  * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1080  *    the entry a second chance) before rotating it in the LRU list. If the
1081  *    entry is considered again by the shrinker, with its referenced bit unset,
1082  *    it is written back. The writeback rate as a result is dynamically
1083  *    adjusted by the pool activities - if the pool is dominated by new entries
1084  *    (i.e lots of recent zswapouts), these entries will be protected and
1085  *    the writeback rate will slow down. On the other hand, if the pool has a
1086  *    lot of stagnant entries, these entries will be reclaimed immediately,
1087  *    effectively increasing the writeback rate.
1088  *
1089  * 2. Swapins counter: If we observe swapins, it is a sign that we are
1090  *    overshrinking and should slow down. We maintain a swapins counter, which
1091  *    is consumed and subtract from the number of eligible objects on the LRU
1092  *    in zswap_shrinker_count().
1093  *
1094  * 3. Compression ratio. The better the workload compresses, the less gains we
1095  *    can expect from writeback. We scale down the number of objects available
1096  *    for reclaim by this ratio.
1097  */
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,spinlock_t * lock,void * arg)1098 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1099 				       spinlock_t *lock, void *arg)
1100 {
1101 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1102 	bool *encountered_page_in_swapcache = (bool *)arg;
1103 	swp_entry_t swpentry;
1104 	enum lru_status ret = LRU_REMOVED_RETRY;
1105 	int writeback_result;
1106 
1107 	/*
1108 	 * Second chance algorithm: if the entry has its referenced bit set, give it
1109 	 * a second chance. Only clear the referenced bit and rotate it in the
1110 	 * zswap's LRU list.
1111 	 */
1112 	if (entry->referenced) {
1113 		entry->referenced = false;
1114 		return LRU_ROTATE;
1115 	}
1116 
1117 	/*
1118 	 * As soon as we drop the LRU lock, the entry can be freed by
1119 	 * a concurrent invalidation. This means the following:
1120 	 *
1121 	 * 1. We extract the swp_entry_t to the stack, allowing
1122 	 *    zswap_writeback_entry() to pin the swap entry and
1123 	 *    then validate the zwap entry against that swap entry's
1124 	 *    tree using pointer value comparison. Only when that
1125 	 *    is successful can the entry be dereferenced.
1126 	 *
1127 	 * 2. Usually, objects are taken off the LRU for reclaim. In
1128 	 *    this case this isn't possible, because if reclaim fails
1129 	 *    for whatever reason, we have no means of knowing if the
1130 	 *    entry is alive to put it back on the LRU.
1131 	 *
1132 	 *    So rotate it before dropping the lock. If the entry is
1133 	 *    written back or invalidated, the free path will unlink
1134 	 *    it. For failures, rotation is the right thing as well.
1135 	 *
1136 	 *    Temporary failures, where the same entry should be tried
1137 	 *    again immediately, almost never happen for this shrinker.
1138 	 *    We don't do any trylocking; -ENOMEM comes closest,
1139 	 *    but that's extremely rare and doesn't happen spuriously
1140 	 *    either. Don't bother distinguishing this case.
1141 	 */
1142 	list_move_tail(item, &l->list);
1143 
1144 	/*
1145 	 * Once the lru lock is dropped, the entry might get freed. The
1146 	 * swpentry is copied to the stack, and entry isn't deref'd again
1147 	 * until the entry is verified to still be alive in the tree.
1148 	 */
1149 	swpentry = entry->swpentry;
1150 
1151 	/*
1152 	 * It's safe to drop the lock here because we return either
1153 	 * LRU_REMOVED_RETRY or LRU_RETRY.
1154 	 */
1155 	spin_unlock(lock);
1156 
1157 	writeback_result = zswap_writeback_entry(entry, swpentry);
1158 
1159 	if (writeback_result) {
1160 		zswap_reject_reclaim_fail++;
1161 		ret = LRU_RETRY;
1162 
1163 		/*
1164 		 * Encountering a page already in swap cache is a sign that we are shrinking
1165 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1166 		 * shrinker context).
1167 		 */
1168 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1169 			ret = LRU_STOP;
1170 			*encountered_page_in_swapcache = true;
1171 		}
1172 	} else {
1173 		zswap_written_back_pages++;
1174 	}
1175 
1176 	spin_lock(lock);
1177 	return ret;
1178 }
1179 
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1180 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1181 		struct shrink_control *sc)
1182 {
1183 	unsigned long shrink_ret;
1184 	bool encountered_page_in_swapcache = false;
1185 
1186 	if (!zswap_shrinker_enabled ||
1187 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1188 		sc->nr_scanned = 0;
1189 		return SHRINK_STOP;
1190 	}
1191 
1192 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1193 		&encountered_page_in_swapcache);
1194 
1195 	if (encountered_page_in_swapcache)
1196 		return SHRINK_STOP;
1197 
1198 	return shrink_ret ? shrink_ret : SHRINK_STOP;
1199 }
1200 
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1201 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1202 		struct shrink_control *sc)
1203 {
1204 	struct mem_cgroup *memcg = sc->memcg;
1205 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1206 	atomic_long_t *nr_disk_swapins =
1207 		&lruvec->zswap_lruvec_state.nr_disk_swapins;
1208 	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1209 		nr_remain;
1210 
1211 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1212 		return 0;
1213 
1214 	/*
1215 	 * The shrinker resumes swap writeback, which will enter block
1216 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1217 	 * rules (may_enter_fs()), which apply on a per-folio basis.
1218 	 */
1219 	if (!gfp_has_io_fs(sc->gfp_mask))
1220 		return 0;
1221 
1222 	/*
1223 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1224 	 * have them per-node and thus per-lruvec. Careful if memcg is
1225 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1226 	 * for the lruvec, but not for memcg_page_state().
1227 	 *
1228 	 * Without memcg, use the zswap pool-wide metrics.
1229 	 */
1230 	if (!mem_cgroup_disabled()) {
1231 		mem_cgroup_flush_stats(memcg);
1232 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1233 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1234 	} else {
1235 		nr_backing = zswap_total_pages();
1236 		nr_stored = atomic_read(&zswap_stored_pages);
1237 	}
1238 
1239 	if (!nr_stored)
1240 		return 0;
1241 
1242 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1243 	if (!nr_freeable)
1244 		return 0;
1245 
1246 	/*
1247 	 * Subtract from the lru size the number of pages that are recently swapped
1248 	 * in from disk. The idea is that had we protect the zswap's LRU by this
1249 	 * amount of pages, these disk swapins would not have happened.
1250 	 */
1251 	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1252 	do {
1253 		if (nr_freeable >= nr_disk_swapins_cur)
1254 			nr_remain = 0;
1255 		else
1256 			nr_remain = nr_disk_swapins_cur - nr_freeable;
1257 	} while (!atomic_long_try_cmpxchg(
1258 		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1259 
1260 	nr_freeable -= nr_disk_swapins_cur - nr_remain;
1261 	if (!nr_freeable)
1262 		return 0;
1263 
1264 	/*
1265 	 * Scale the number of freeable pages by the memory saving factor.
1266 	 * This ensures that the better zswap compresses memory, the fewer
1267 	 * pages we will evict to swap (as it will otherwise incur IO for
1268 	 * relatively small memory saving).
1269 	 */
1270 	return mult_frac(nr_freeable, nr_backing, nr_stored);
1271 }
1272 
zswap_alloc_shrinker(void)1273 static struct shrinker *zswap_alloc_shrinker(void)
1274 {
1275 	struct shrinker *shrinker;
1276 
1277 	shrinker =
1278 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1279 	if (!shrinker)
1280 		return NULL;
1281 
1282 	shrinker->scan_objects = zswap_shrinker_scan;
1283 	shrinker->count_objects = zswap_shrinker_count;
1284 	shrinker->batch = 0;
1285 	shrinker->seeks = DEFAULT_SEEKS;
1286 	return shrinker;
1287 }
1288 
shrink_memcg(struct mem_cgroup * memcg)1289 static int shrink_memcg(struct mem_cgroup *memcg)
1290 {
1291 	int nid, shrunk = 0, scanned = 0;
1292 
1293 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1294 		return -ENOENT;
1295 
1296 	/*
1297 	 * Skip zombies because their LRUs are reparented and we would be
1298 	 * reclaiming from the parent instead of the dead memcg.
1299 	 */
1300 	if (memcg && !mem_cgroup_online(memcg))
1301 		return -ENOENT;
1302 
1303 	for_each_node_state(nid, N_NORMAL_MEMORY) {
1304 		unsigned long nr_to_walk = 1;
1305 
1306 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1307 					    &shrink_memcg_cb, NULL, &nr_to_walk);
1308 		scanned += 1 - nr_to_walk;
1309 	}
1310 
1311 	if (!scanned)
1312 		return -ENOENT;
1313 
1314 	return shrunk ? 0 : -EAGAIN;
1315 }
1316 
shrink_worker(struct work_struct * w)1317 static void shrink_worker(struct work_struct *w)
1318 {
1319 	struct mem_cgroup *memcg;
1320 	int ret, failures = 0, attempts = 0;
1321 	unsigned long thr;
1322 
1323 	/* Reclaim down to the accept threshold */
1324 	thr = zswap_accept_thr_pages();
1325 
1326 	/*
1327 	 * Global reclaim will select cgroup in a round-robin fashion from all
1328 	 * online memcgs, but memcgs that have no pages in zswap and
1329 	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1330 	 * candidates for shrinking.
1331 	 *
1332 	 * Shrinking will be aborted if we encounter the following
1333 	 * MAX_RECLAIM_RETRIES times:
1334 	 * - No writeback-candidate memcgs found in a memcg tree walk.
1335 	 * - Shrinking a writeback-candidate memcg failed.
1336 	 *
1337 	 * We save iteration cursor memcg into zswap_next_shrink,
1338 	 * which can be modified by the offline memcg cleaner
1339 	 * zswap_memcg_offline_cleanup().
1340 	 *
1341 	 * Since the offline cleaner is called only once, we cannot leave an
1342 	 * offline memcg reference in zswap_next_shrink.
1343 	 * We can rely on the cleaner only if we get online memcg under lock.
1344 	 *
1345 	 * If we get an offline memcg, we cannot determine if the cleaner has
1346 	 * already been called or will be called later. We must put back the
1347 	 * reference before returning from this function. Otherwise, the
1348 	 * offline memcg left in zswap_next_shrink will hold the reference
1349 	 * until the next run of shrink_worker().
1350 	 */
1351 	do {
1352 		/*
1353 		 * Start shrinking from the next memcg after zswap_next_shrink.
1354 		 * When the offline cleaner has already advanced the cursor,
1355 		 * advancing the cursor here overlooks one memcg, but this
1356 		 * should be negligibly rare.
1357 		 *
1358 		 * If we get an online memcg, keep the extra reference in case
1359 		 * the original one obtained by mem_cgroup_iter() is dropped by
1360 		 * zswap_memcg_offline_cleanup() while we are shrinking the
1361 		 * memcg.
1362 		 */
1363 		spin_lock(&zswap_shrink_lock);
1364 		do {
1365 			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1366 			zswap_next_shrink = memcg;
1367 		} while (memcg && !mem_cgroup_tryget_online(memcg));
1368 		spin_unlock(&zswap_shrink_lock);
1369 
1370 		if (!memcg) {
1371 			/*
1372 			 * Continue shrinking without incrementing failures if
1373 			 * we found candidate memcgs in the last tree walk.
1374 			 */
1375 			if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1376 				break;
1377 
1378 			attempts = 0;
1379 			goto resched;
1380 		}
1381 
1382 		ret = shrink_memcg(memcg);
1383 		/* drop the extra reference */
1384 		mem_cgroup_put(memcg);
1385 
1386 		/*
1387 		 * There are no writeback-candidate pages in the memcg.
1388 		 * This is not an issue as long as we can find another memcg
1389 		 * with pages in zswap. Skip this without incrementing attempts
1390 		 * and failures.
1391 		 */
1392 		if (ret == -ENOENT)
1393 			continue;
1394 		++attempts;
1395 
1396 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1397 			break;
1398 resched:
1399 		cond_resched();
1400 	} while (zswap_total_pages() > thr);
1401 }
1402 
1403 /*********************************
1404 * main API
1405 **********************************/
zswap_store(struct folio * folio)1406 bool zswap_store(struct folio *folio)
1407 {
1408 	swp_entry_t swp = folio->swap;
1409 	pgoff_t offset = swp_offset(swp);
1410 	struct xarray *tree = swap_zswap_tree(swp);
1411 	struct zswap_entry *entry, *old;
1412 	struct obj_cgroup *objcg = NULL;
1413 	struct mem_cgroup *memcg = NULL;
1414 
1415 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1416 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1417 
1418 	/* Large folios aren't supported */
1419 	if (folio_test_large(folio))
1420 		return false;
1421 
1422 	if (!zswap_enabled)
1423 		goto check_old;
1424 
1425 	/* Check cgroup limits */
1426 	objcg = get_obj_cgroup_from_folio(folio);
1427 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1428 		memcg = get_mem_cgroup_from_objcg(objcg);
1429 		if (shrink_memcg(memcg)) {
1430 			mem_cgroup_put(memcg);
1431 			goto reject;
1432 		}
1433 		mem_cgroup_put(memcg);
1434 	}
1435 
1436 	if (zswap_check_limits())
1437 		goto reject;
1438 
1439 	/* allocate entry */
1440 	entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1441 	if (!entry) {
1442 		zswap_reject_kmemcache_fail++;
1443 		goto reject;
1444 	}
1445 
1446 	/* if entry is successfully added, it keeps the reference */
1447 	entry->pool = zswap_pool_current_get();
1448 	if (!entry->pool)
1449 		goto freepage;
1450 
1451 	if (objcg) {
1452 		memcg = get_mem_cgroup_from_objcg(objcg);
1453 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1454 			mem_cgroup_put(memcg);
1455 			goto put_pool;
1456 		}
1457 		mem_cgroup_put(memcg);
1458 	}
1459 
1460 	if (!zswap_compress(folio, entry))
1461 		goto put_pool;
1462 
1463 	entry->swpentry = swp;
1464 	entry->objcg = objcg;
1465 	entry->referenced = true;
1466 
1467 	old = xa_store(tree, offset, entry, GFP_KERNEL);
1468 	if (xa_is_err(old)) {
1469 		int err = xa_err(old);
1470 
1471 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1472 		zswap_reject_alloc_fail++;
1473 		goto store_failed;
1474 	}
1475 
1476 	/*
1477 	 * We may have had an existing entry that became stale when
1478 	 * the folio was redirtied and now the new version is being
1479 	 * swapped out. Get rid of the old.
1480 	 */
1481 	if (old)
1482 		zswap_entry_free(old);
1483 
1484 	if (objcg) {
1485 		obj_cgroup_charge_zswap(objcg, entry->length);
1486 		count_objcg_event(objcg, ZSWPOUT);
1487 	}
1488 
1489 	/*
1490 	 * We finish initializing the entry while it's already in xarray.
1491 	 * This is safe because:
1492 	 *
1493 	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1494 	 *
1495 	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1496 	 *    The publishing order matters to prevent writeback from seeing
1497 	 *    an incoherent entry.
1498 	 */
1499 	if (entry->length) {
1500 		INIT_LIST_HEAD(&entry->lru);
1501 		zswap_lru_add(&zswap_list_lru, entry);
1502 	}
1503 
1504 	/* update stats */
1505 	atomic_inc(&zswap_stored_pages);
1506 	count_vm_event(ZSWPOUT);
1507 
1508 	return true;
1509 
1510 store_failed:
1511 	zpool_free(entry->pool->zpool, entry->handle);
1512 put_pool:
1513 	zswap_pool_put(entry->pool);
1514 freepage:
1515 	zswap_entry_cache_free(entry);
1516 reject:
1517 	obj_cgroup_put(objcg);
1518 	if (zswap_pool_reached_full)
1519 		queue_work(shrink_wq, &zswap_shrink_work);
1520 check_old:
1521 	/*
1522 	 * If the zswap store fails or zswap is disabled, we must invalidate the
1523 	 * possibly stale entry which was previously stored at this offset.
1524 	 * Otherwise, writeback could overwrite the new data in the swapfile.
1525 	 */
1526 	entry = xa_erase(tree, offset);
1527 	if (entry)
1528 		zswap_entry_free(entry);
1529 	return false;
1530 }
1531 
zswap_load(struct folio * folio)1532 bool zswap_load(struct folio *folio)
1533 {
1534 	swp_entry_t swp = folio->swap;
1535 	pgoff_t offset = swp_offset(swp);
1536 	bool swapcache = folio_test_swapcache(folio);
1537 	struct xarray *tree = swap_zswap_tree(swp);
1538 	struct zswap_entry *entry;
1539 
1540 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1541 
1542 	if (zswap_never_enabled())
1543 		return false;
1544 
1545 	/*
1546 	 * Large folios should not be swapped in while zswap is being used, as
1547 	 * they are not properly handled. Zswap does not properly load large
1548 	 * folios, and a large folio may only be partially in zswap.
1549 	 *
1550 	 * Return true without marking the folio uptodate so that an IO error is
1551 	 * emitted (e.g. do_swap_page() will sigbus).
1552 	 */
1553 	if (WARN_ON_ONCE(folio_test_large(folio)))
1554 		return true;
1555 
1556 	/*
1557 	 * When reading into the swapcache, invalidate our entry. The
1558 	 * swapcache can be the authoritative owner of the page and
1559 	 * its mappings, and the pressure that results from having two
1560 	 * in-memory copies outweighs any benefits of caching the
1561 	 * compression work.
1562 	 *
1563 	 * (Most swapins go through the swapcache. The notable
1564 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1565 	 * files, which reads into a private page and may free it if
1566 	 * the fault fails. We remain the primary owner of the entry.)
1567 	 */
1568 	if (swapcache)
1569 		entry = xa_erase(tree, offset);
1570 	else
1571 		entry = xa_load(tree, offset);
1572 
1573 	if (!entry)
1574 		return false;
1575 
1576 	zswap_decompress(entry, folio);
1577 
1578 	count_vm_event(ZSWPIN);
1579 	if (entry->objcg)
1580 		count_objcg_event(entry->objcg, ZSWPIN);
1581 
1582 	if (swapcache) {
1583 		zswap_entry_free(entry);
1584 		folio_mark_dirty(folio);
1585 	}
1586 
1587 	folio_mark_uptodate(folio);
1588 	return true;
1589 }
1590 
zswap_invalidate(swp_entry_t swp)1591 void zswap_invalidate(swp_entry_t swp)
1592 {
1593 	pgoff_t offset = swp_offset(swp);
1594 	struct xarray *tree = swap_zswap_tree(swp);
1595 	struct zswap_entry *entry;
1596 
1597 	entry = xa_erase(tree, offset);
1598 	if (entry)
1599 		zswap_entry_free(entry);
1600 }
1601 
zswap_swapon(int type,unsigned long nr_pages)1602 int zswap_swapon(int type, unsigned long nr_pages)
1603 {
1604 	struct xarray *trees, *tree;
1605 	unsigned int nr, i;
1606 
1607 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1608 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1609 	if (!trees) {
1610 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1611 		return -ENOMEM;
1612 	}
1613 
1614 	for (i = 0; i < nr; i++)
1615 		xa_init(trees + i);
1616 
1617 	nr_zswap_trees[type] = nr;
1618 	zswap_trees[type] = trees;
1619 	return 0;
1620 }
1621 
zswap_swapoff(int type)1622 void zswap_swapoff(int type)
1623 {
1624 	struct xarray *trees = zswap_trees[type];
1625 	unsigned int i;
1626 
1627 	if (!trees)
1628 		return;
1629 
1630 	/* try_to_unuse() invalidated all the entries already */
1631 	for (i = 0; i < nr_zswap_trees[type]; i++)
1632 		WARN_ON_ONCE(!xa_empty(trees + i));
1633 
1634 	kvfree(trees);
1635 	nr_zswap_trees[type] = 0;
1636 	zswap_trees[type] = NULL;
1637 }
1638 
1639 /*********************************
1640 * debugfs functions
1641 **********************************/
1642 #ifdef CONFIG_DEBUG_FS
1643 #include <linux/debugfs.h>
1644 
1645 static struct dentry *zswap_debugfs_root;
1646 
debugfs_get_total_size(void * data,u64 * val)1647 static int debugfs_get_total_size(void *data, u64 *val)
1648 {
1649 	*val = zswap_total_pages() * PAGE_SIZE;
1650 	return 0;
1651 }
1652 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1653 
zswap_debugfs_init(void)1654 static int zswap_debugfs_init(void)
1655 {
1656 	if (!debugfs_initialized())
1657 		return -ENODEV;
1658 
1659 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1660 
1661 	debugfs_create_u64("pool_limit_hit", 0444,
1662 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1663 	debugfs_create_u64("reject_reclaim_fail", 0444,
1664 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1665 	debugfs_create_u64("reject_alloc_fail", 0444,
1666 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1667 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1668 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1669 	debugfs_create_u64("reject_compress_fail", 0444,
1670 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1671 	debugfs_create_u64("reject_compress_poor", 0444,
1672 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1673 	debugfs_create_u64("written_back_pages", 0444,
1674 			   zswap_debugfs_root, &zswap_written_back_pages);
1675 	debugfs_create_file("pool_total_size", 0444,
1676 			    zswap_debugfs_root, NULL, &total_size_fops);
1677 	debugfs_create_atomic_t("stored_pages", 0444,
1678 				zswap_debugfs_root, &zswap_stored_pages);
1679 
1680 	return 0;
1681 }
1682 #else
zswap_debugfs_init(void)1683 static int zswap_debugfs_init(void)
1684 {
1685 	return 0;
1686 }
1687 #endif
1688 
1689 /*********************************
1690 * module init and exit
1691 **********************************/
zswap_setup(void)1692 static int zswap_setup(void)
1693 {
1694 	struct zswap_pool *pool;
1695 	int ret;
1696 
1697 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1698 	if (!zswap_entry_cache) {
1699 		pr_err("entry cache creation failed\n");
1700 		goto cache_fail;
1701 	}
1702 
1703 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1704 				      "mm/zswap_pool:prepare",
1705 				      zswap_cpu_comp_prepare,
1706 				      zswap_cpu_comp_dead);
1707 	if (ret)
1708 		goto hp_fail;
1709 
1710 	shrink_wq = alloc_workqueue("zswap-shrink",
1711 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1712 	if (!shrink_wq)
1713 		goto shrink_wq_fail;
1714 
1715 	zswap_shrinker = zswap_alloc_shrinker();
1716 	if (!zswap_shrinker)
1717 		goto shrinker_fail;
1718 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1719 		goto lru_fail;
1720 	shrinker_register(zswap_shrinker);
1721 
1722 	INIT_WORK(&zswap_shrink_work, shrink_worker);
1723 
1724 	pool = __zswap_pool_create_fallback();
1725 	if (pool) {
1726 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1727 			zpool_get_type(pool->zpool));
1728 		list_add(&pool->list, &zswap_pools);
1729 		zswap_has_pool = true;
1730 		static_branch_enable(&zswap_ever_enabled);
1731 	} else {
1732 		pr_err("pool creation failed\n");
1733 		zswap_enabled = false;
1734 	}
1735 
1736 	if (zswap_debugfs_init())
1737 		pr_warn("debugfs initialization failed\n");
1738 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1739 	return 0;
1740 
1741 lru_fail:
1742 	shrinker_free(zswap_shrinker);
1743 shrinker_fail:
1744 	destroy_workqueue(shrink_wq);
1745 shrink_wq_fail:
1746 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1747 hp_fail:
1748 	kmem_cache_destroy(zswap_entry_cache);
1749 cache_fail:
1750 	/* if built-in, we aren't unloaded on failure; don't allow use */
1751 	zswap_init_state = ZSWAP_INIT_FAILED;
1752 	zswap_enabled = false;
1753 	return -ENOMEM;
1754 }
1755 
zswap_init(void)1756 static int __init zswap_init(void)
1757 {
1758 	if (!zswap_enabled)
1759 		return 0;
1760 	return zswap_setup();
1761 }
1762 /* must be late so crypto has time to come up */
1763 late_initcall(zswap_init);
1764 
1765 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1766 MODULE_DESCRIPTION("Compressed cache for swap pages");
1767