1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * zswap.c - zswap driver file 4 * 5 * zswap is a cache that takes pages that are in the process 6 * of being swapped out and attempts to compress and store them in a 7 * RAM-based memory pool. This can result in a significant I/O reduction on 8 * the swap device and, in the case where decompressing from RAM is faster 9 * than reading from the swap device, can also improve workload performance. 10 * 11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/cpu.h> 18 #include <linux/highmem.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/types.h> 22 #include <linux/atomic.h> 23 #include <linux/swap.h> 24 #include <linux/crypto.h> 25 #include <linux/scatterlist.h> 26 #include <linux/mempolicy.h> 27 #include <linux/mempool.h> 28 #include <crypto/acompress.h> 29 #include <linux/zswap.h> 30 #include <linux/mm_types.h> 31 #include <linux/page-flags.h> 32 #include <linux/swapops.h> 33 #include <linux/writeback.h> 34 #include <linux/pagemap.h> 35 #include <linux/workqueue.h> 36 #include <linux/list_lru.h> 37 #include <linux/zsmalloc.h> 38 39 #include "swap.h" 40 #include "internal.h" 41 42 /********************************* 43 * statistics 44 **********************************/ 45 /* The number of pages currently stored in zswap */ 46 atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0); 47 /* The number of incompressible pages currently stored in zswap */ 48 static atomic_long_t zswap_stored_incompressible_pages = ATOMIC_LONG_INIT(0); 49 50 /* 51 * The statistics below are not protected from concurrent access for 52 * performance reasons so they may not be a 100% accurate. However, 53 * they do provide useful information on roughly how many times a 54 * certain event is occurring. 55 */ 56 57 /* Pool limit was hit (see zswap_max_pool_percent) */ 58 static u64 zswap_pool_limit_hit; 59 /* Pages written back when pool limit was reached */ 60 static u64 zswap_written_back_pages; 61 /* Store failed due to a reclaim failure after pool limit was reached */ 62 static u64 zswap_reject_reclaim_fail; 63 /* Store failed due to compression algorithm failure */ 64 static u64 zswap_reject_compress_fail; 65 /* Compressed page was too big for the allocator to (optimally) store */ 66 static u64 zswap_reject_compress_poor; 67 /* Load or writeback failed due to decompression failure */ 68 static u64 zswap_decompress_fail; 69 /* Store failed because underlying allocator could not get memory */ 70 static u64 zswap_reject_alloc_fail; 71 /* Store failed because the entry metadata could not be allocated (rare) */ 72 static u64 zswap_reject_kmemcache_fail; 73 74 /* Shrinker work queue */ 75 static struct workqueue_struct *shrink_wq; 76 /* Pool limit was hit, we need to calm down */ 77 static bool zswap_pool_reached_full; 78 79 /********************************* 80 * tunables 81 **********************************/ 82 83 #define ZSWAP_PARAM_UNSET "" 84 85 static int zswap_setup(void); 86 87 /* Enable/disable zswap */ 88 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled); 89 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); 90 static int zswap_enabled_param_set(const char *, 91 const struct kernel_param *); 92 static const struct kernel_param_ops zswap_enabled_param_ops = { 93 .set = zswap_enabled_param_set, 94 .get = param_get_bool, 95 }; 96 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); 97 98 /* Crypto compressor to use */ 99 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 100 static int zswap_compressor_param_set(const char *, 101 const struct kernel_param *); 102 static const struct kernel_param_ops zswap_compressor_param_ops = { 103 .set = zswap_compressor_param_set, 104 .get = param_get_charp, 105 .free = param_free_charp, 106 }; 107 module_param_cb(compressor, &zswap_compressor_param_ops, 108 &zswap_compressor, 0644); 109 110 /* The maximum percentage of memory that the compressed pool can occupy */ 111 static unsigned int zswap_max_pool_percent = 20; 112 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 113 114 /* The threshold for accepting new pages after the max_pool_percent was hit */ 115 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ 116 module_param_named(accept_threshold_percent, zswap_accept_thr_percent, 117 uint, 0644); 118 119 /* Enable/disable memory pressure-based shrinker. */ 120 static bool zswap_shrinker_enabled = IS_ENABLED( 121 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); 122 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); 123 124 bool zswap_is_enabled(void) 125 { 126 return zswap_enabled; 127 } 128 129 bool zswap_never_enabled(void) 130 { 131 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled); 132 } 133 134 /********************************* 135 * data structures 136 **********************************/ 137 138 struct crypto_acomp_ctx { 139 struct crypto_acomp *acomp; 140 struct acomp_req *req; 141 struct crypto_wait wait; 142 u8 *buffer; 143 struct mutex mutex; 144 bool is_sleepable; 145 }; 146 147 /* 148 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. 149 * The only case where lru_lock is not acquired while holding tree.lock is 150 * when a zswap_entry is taken off the lru for writeback, in that case it 151 * needs to be verified that it's still valid in the tree. 152 */ 153 struct zswap_pool { 154 struct zs_pool *zs_pool; 155 struct crypto_acomp_ctx __percpu *acomp_ctx; 156 struct percpu_ref ref; 157 struct list_head list; 158 struct work_struct release_work; 159 struct hlist_node node; 160 char tfm_name[CRYPTO_MAX_ALG_NAME]; 161 }; 162 163 /* Global LRU lists shared by all zswap pools. */ 164 static struct list_lru zswap_list_lru; 165 166 /* The lock protects zswap_next_shrink updates. */ 167 static DEFINE_SPINLOCK(zswap_shrink_lock); 168 static struct mem_cgroup *zswap_next_shrink; 169 static struct work_struct zswap_shrink_work; 170 static struct shrinker *zswap_shrinker; 171 172 /* 173 * struct zswap_entry 174 * 175 * This structure contains the metadata for tracking a single compressed 176 * page within zswap. 177 * 178 * swpentry - associated swap entry, the offset indexes into the red-black tree 179 * length - the length in bytes of the compressed page data. Needed during 180 * decompression. 181 * referenced - true if the entry recently entered the zswap pool. Unset by the 182 * writeback logic. The entry is only reclaimed by the writeback 183 * logic if referenced is unset. See comments in the shrinker 184 * section for context. 185 * pool - the zswap_pool the entry's data is in 186 * handle - zsmalloc allocation handle that stores the compressed page data 187 * objcg - the obj_cgroup that the compressed memory is charged to 188 * lru - handle to the pool's lru used to evict pages. 189 */ 190 struct zswap_entry { 191 swp_entry_t swpentry; 192 unsigned int length; 193 bool referenced; 194 struct zswap_pool *pool; 195 unsigned long handle; 196 struct obj_cgroup *objcg; 197 struct list_head lru; 198 }; 199 200 static struct xarray *zswap_trees[MAX_SWAPFILES]; 201 static unsigned int nr_zswap_trees[MAX_SWAPFILES]; 202 203 /* RCU-protected iteration */ 204 static LIST_HEAD(zswap_pools); 205 /* protects zswap_pools list modification */ 206 static DEFINE_SPINLOCK(zswap_pools_lock); 207 /* pool counter to provide unique names to zsmalloc */ 208 static atomic_t zswap_pools_count = ATOMIC_INIT(0); 209 210 enum zswap_init_type { 211 ZSWAP_UNINIT, 212 ZSWAP_INIT_SUCCEED, 213 ZSWAP_INIT_FAILED 214 }; 215 216 static enum zswap_init_type zswap_init_state; 217 218 /* used to ensure the integrity of initialization */ 219 static DEFINE_MUTEX(zswap_init_lock); 220 221 /* init completed, but couldn't create the initial pool */ 222 static bool zswap_has_pool; 223 224 /********************************* 225 * helpers and fwd declarations 226 **********************************/ 227 228 static inline struct xarray *swap_zswap_tree(swp_entry_t swp) 229 { 230 return &zswap_trees[swp_type(swp)][swp_offset(swp) 231 >> SWAP_ADDRESS_SPACE_SHIFT]; 232 } 233 234 #define zswap_pool_debug(msg, p) \ 235 pr_debug("%s pool %s\n", msg, (p)->tfm_name) 236 237 /********************************* 238 * pool functions 239 **********************************/ 240 static void __zswap_pool_empty(struct percpu_ref *ref); 241 242 static struct zswap_pool *zswap_pool_create(char *compressor) 243 { 244 struct zswap_pool *pool; 245 char name[38]; /* 'zswap' + 32 char (max) num + \0 */ 246 int ret, cpu; 247 248 if (!zswap_has_pool && !strcmp(compressor, ZSWAP_PARAM_UNSET)) 249 return NULL; 250 251 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 252 if (!pool) 253 return NULL; 254 255 /* unique name for each pool specifically required by zsmalloc */ 256 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); 257 pool->zs_pool = zs_create_pool(name); 258 if (!pool->zs_pool) 259 goto error; 260 261 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 262 263 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); 264 if (!pool->acomp_ctx) { 265 pr_err("percpu alloc failed\n"); 266 goto error; 267 } 268 269 for_each_possible_cpu(cpu) 270 mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex); 271 272 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, 273 &pool->node); 274 if (ret) 275 goto error; 276 277 /* being the current pool takes 1 ref; this func expects the 278 * caller to always add the new pool as the current pool 279 */ 280 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty, 281 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 282 if (ret) 283 goto ref_fail; 284 INIT_LIST_HEAD(&pool->list); 285 286 zswap_pool_debug("created", pool); 287 288 return pool; 289 290 ref_fail: 291 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 292 error: 293 if (pool->acomp_ctx) 294 free_percpu(pool->acomp_ctx); 295 if (pool->zs_pool) 296 zs_destroy_pool(pool->zs_pool); 297 kfree(pool); 298 return NULL; 299 } 300 301 static struct zswap_pool *__zswap_pool_create_fallback(void) 302 { 303 if (!crypto_has_acomp(zswap_compressor, 0, 0) && 304 strcmp(zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { 305 pr_err("compressor %s not available, using default %s\n", 306 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); 307 param_free_charp(&zswap_compressor); 308 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 309 } 310 311 /* Default compressor should be available. Kconfig bug? */ 312 if (WARN_ON_ONCE(!crypto_has_acomp(zswap_compressor, 0, 0))) { 313 zswap_compressor = ZSWAP_PARAM_UNSET; 314 return NULL; 315 } 316 317 return zswap_pool_create(zswap_compressor); 318 } 319 320 static void zswap_pool_destroy(struct zswap_pool *pool) 321 { 322 zswap_pool_debug("destroying", pool); 323 324 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 325 free_percpu(pool->acomp_ctx); 326 327 zs_destroy_pool(pool->zs_pool); 328 kfree(pool); 329 } 330 331 static void __zswap_pool_release(struct work_struct *work) 332 { 333 struct zswap_pool *pool = container_of(work, typeof(*pool), 334 release_work); 335 336 synchronize_rcu(); 337 338 /* nobody should have been able to get a ref... */ 339 WARN_ON(!percpu_ref_is_zero(&pool->ref)); 340 percpu_ref_exit(&pool->ref); 341 342 /* pool is now off zswap_pools list and has no references. */ 343 zswap_pool_destroy(pool); 344 } 345 346 static struct zswap_pool *zswap_pool_current(void); 347 348 static void __zswap_pool_empty(struct percpu_ref *ref) 349 { 350 struct zswap_pool *pool; 351 352 pool = container_of(ref, typeof(*pool), ref); 353 354 spin_lock_bh(&zswap_pools_lock); 355 356 WARN_ON(pool == zswap_pool_current()); 357 358 list_del_rcu(&pool->list); 359 360 INIT_WORK(&pool->release_work, __zswap_pool_release); 361 schedule_work(&pool->release_work); 362 363 spin_unlock_bh(&zswap_pools_lock); 364 } 365 366 static int __must_check zswap_pool_tryget(struct zswap_pool *pool) 367 { 368 if (!pool) 369 return 0; 370 371 return percpu_ref_tryget(&pool->ref); 372 } 373 374 /* The caller must already have a reference. */ 375 static void zswap_pool_get(struct zswap_pool *pool) 376 { 377 percpu_ref_get(&pool->ref); 378 } 379 380 static void zswap_pool_put(struct zswap_pool *pool) 381 { 382 percpu_ref_put(&pool->ref); 383 } 384 385 static struct zswap_pool *__zswap_pool_current(void) 386 { 387 struct zswap_pool *pool; 388 389 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 390 WARN_ONCE(!pool && zswap_has_pool, 391 "%s: no page storage pool!\n", __func__); 392 393 return pool; 394 } 395 396 static struct zswap_pool *zswap_pool_current(void) 397 { 398 assert_spin_locked(&zswap_pools_lock); 399 400 return __zswap_pool_current(); 401 } 402 403 static struct zswap_pool *zswap_pool_current_get(void) 404 { 405 struct zswap_pool *pool; 406 407 rcu_read_lock(); 408 409 pool = __zswap_pool_current(); 410 if (!zswap_pool_tryget(pool)) 411 pool = NULL; 412 413 rcu_read_unlock(); 414 415 return pool; 416 } 417 418 /* type and compressor must be null-terminated */ 419 static struct zswap_pool *zswap_pool_find_get(char *compressor) 420 { 421 struct zswap_pool *pool; 422 423 assert_spin_locked(&zswap_pools_lock); 424 425 list_for_each_entry_rcu(pool, &zswap_pools, list) { 426 if (strcmp(pool->tfm_name, compressor)) 427 continue; 428 /* if we can't get it, it's about to be destroyed */ 429 if (!zswap_pool_tryget(pool)) 430 continue; 431 return pool; 432 } 433 434 return NULL; 435 } 436 437 static unsigned long zswap_max_pages(void) 438 { 439 return totalram_pages() * zswap_max_pool_percent / 100; 440 } 441 442 static unsigned long zswap_accept_thr_pages(void) 443 { 444 return zswap_max_pages() * zswap_accept_thr_percent / 100; 445 } 446 447 unsigned long zswap_total_pages(void) 448 { 449 struct zswap_pool *pool; 450 unsigned long total = 0; 451 452 rcu_read_lock(); 453 list_for_each_entry_rcu(pool, &zswap_pools, list) 454 total += zs_get_total_pages(pool->zs_pool); 455 rcu_read_unlock(); 456 457 return total; 458 } 459 460 static bool zswap_check_limits(void) 461 { 462 unsigned long cur_pages = zswap_total_pages(); 463 unsigned long max_pages = zswap_max_pages(); 464 465 if (cur_pages >= max_pages) { 466 zswap_pool_limit_hit++; 467 zswap_pool_reached_full = true; 468 } else if (zswap_pool_reached_full && 469 cur_pages <= zswap_accept_thr_pages()) { 470 zswap_pool_reached_full = false; 471 } 472 return zswap_pool_reached_full; 473 } 474 475 /********************************* 476 * param callbacks 477 **********************************/ 478 479 static int zswap_compressor_param_set(const char *val, const struct kernel_param *kp) 480 { 481 struct zswap_pool *pool, *put_pool = NULL; 482 char *s = strstrip((char *)val); 483 bool create_pool = false; 484 int ret = 0; 485 486 mutex_lock(&zswap_init_lock); 487 switch (zswap_init_state) { 488 case ZSWAP_UNINIT: 489 /* Handled in zswap_setup() */ 490 ret = param_set_charp(s, kp); 491 break; 492 case ZSWAP_INIT_SUCCEED: 493 if (!zswap_has_pool || strcmp(s, *(char **)kp->arg)) 494 create_pool = true; 495 break; 496 case ZSWAP_INIT_FAILED: 497 pr_err("can't set param, initialization failed\n"); 498 ret = -ENODEV; 499 } 500 mutex_unlock(&zswap_init_lock); 501 502 if (!create_pool) 503 return ret; 504 505 if (!crypto_has_acomp(s, 0, 0)) { 506 pr_err("compressor %s not available\n", s); 507 return -ENOENT; 508 } 509 510 spin_lock_bh(&zswap_pools_lock); 511 512 pool = zswap_pool_find_get(s); 513 if (pool) { 514 zswap_pool_debug("using existing", pool); 515 WARN_ON(pool == zswap_pool_current()); 516 list_del_rcu(&pool->list); 517 } 518 519 spin_unlock_bh(&zswap_pools_lock); 520 521 if (!pool) 522 pool = zswap_pool_create(s); 523 else { 524 /* 525 * Restore the initial ref dropped by percpu_ref_kill() 526 * when the pool was decommissioned and switch it again 527 * to percpu mode. 528 */ 529 percpu_ref_resurrect(&pool->ref); 530 531 /* Drop the ref from zswap_pool_find_get(). */ 532 zswap_pool_put(pool); 533 } 534 535 if (pool) 536 ret = param_set_charp(s, kp); 537 else 538 ret = -EINVAL; 539 540 spin_lock_bh(&zswap_pools_lock); 541 542 if (!ret) { 543 put_pool = zswap_pool_current(); 544 list_add_rcu(&pool->list, &zswap_pools); 545 zswap_has_pool = true; 546 } else if (pool) { 547 /* 548 * Add the possibly pre-existing pool to the end of the pools 549 * list; if it's new (and empty) then it'll be removed and 550 * destroyed by the put after we drop the lock 551 */ 552 list_add_tail_rcu(&pool->list, &zswap_pools); 553 put_pool = pool; 554 } 555 556 spin_unlock_bh(&zswap_pools_lock); 557 558 /* 559 * Drop the ref from either the old current pool, 560 * or the new pool we failed to add 561 */ 562 if (put_pool) 563 percpu_ref_kill(&put_pool->ref); 564 565 return ret; 566 } 567 568 static int zswap_enabled_param_set(const char *val, 569 const struct kernel_param *kp) 570 { 571 int ret = -ENODEV; 572 573 /* if this is load-time (pre-init) param setting, only set param. */ 574 if (system_state != SYSTEM_RUNNING) 575 return param_set_bool(val, kp); 576 577 mutex_lock(&zswap_init_lock); 578 switch (zswap_init_state) { 579 case ZSWAP_UNINIT: 580 if (zswap_setup()) 581 break; 582 fallthrough; 583 case ZSWAP_INIT_SUCCEED: 584 if (!zswap_has_pool) 585 pr_err("can't enable, no pool configured\n"); 586 else 587 ret = param_set_bool(val, kp); 588 break; 589 case ZSWAP_INIT_FAILED: 590 pr_err("can't enable, initialization failed\n"); 591 } 592 mutex_unlock(&zswap_init_lock); 593 594 return ret; 595 } 596 597 /********************************* 598 * lru functions 599 **********************************/ 600 601 /* should be called under RCU */ 602 #ifdef CONFIG_MEMCG 603 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) 604 { 605 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; 606 } 607 #else 608 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) 609 { 610 return NULL; 611 } 612 #endif 613 614 static inline int entry_to_nid(struct zswap_entry *entry) 615 { 616 return page_to_nid(virt_to_page(entry)); 617 } 618 619 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) 620 { 621 int nid = entry_to_nid(entry); 622 struct mem_cgroup *memcg; 623 624 /* 625 * Note that it is safe to use rcu_read_lock() here, even in the face of 626 * concurrent memcg offlining: 627 * 628 * 1. list_lru_add() is called before list_lru_one is dead. The 629 * new entry will be reparented to memcg's parent's list_lru. 630 * 2. list_lru_add() is called after list_lru_one is dead. The 631 * new entry will be added directly to memcg's parent's list_lru. 632 * 633 * Similar reasoning holds for list_lru_del(). 634 */ 635 rcu_read_lock(); 636 memcg = mem_cgroup_from_entry(entry); 637 /* will always succeed */ 638 list_lru_add(list_lru, &entry->lru, nid, memcg); 639 rcu_read_unlock(); 640 } 641 642 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) 643 { 644 int nid = entry_to_nid(entry); 645 struct mem_cgroup *memcg; 646 647 rcu_read_lock(); 648 memcg = mem_cgroup_from_entry(entry); 649 /* will always succeed */ 650 list_lru_del(list_lru, &entry->lru, nid, memcg); 651 rcu_read_unlock(); 652 } 653 654 void zswap_lruvec_state_init(struct lruvec *lruvec) 655 { 656 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0); 657 } 658 659 void zswap_folio_swapin(struct folio *folio) 660 { 661 struct lruvec *lruvec; 662 663 if (folio) { 664 lruvec = folio_lruvec(folio); 665 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins); 666 } 667 } 668 669 /* 670 * This function should be called when a memcg is being offlined. 671 * 672 * Since the global shrinker shrink_worker() may hold a reference 673 * of the memcg, we must check and release the reference in 674 * zswap_next_shrink. 675 * 676 * shrink_worker() must handle the case where this function releases 677 * the reference of memcg being shrunk. 678 */ 679 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) 680 { 681 /* lock out zswap shrinker walking memcg tree */ 682 spin_lock(&zswap_shrink_lock); 683 if (zswap_next_shrink == memcg) { 684 do { 685 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); 686 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink)); 687 } 688 spin_unlock(&zswap_shrink_lock); 689 } 690 691 /********************************* 692 * zswap entry functions 693 **********************************/ 694 static struct kmem_cache *zswap_entry_cache; 695 696 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) 697 { 698 struct zswap_entry *entry; 699 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); 700 if (!entry) 701 return NULL; 702 return entry; 703 } 704 705 static void zswap_entry_cache_free(struct zswap_entry *entry) 706 { 707 kmem_cache_free(zswap_entry_cache, entry); 708 } 709 710 /* 711 * Carries out the common pattern of freeing an entry's zsmalloc allocation, 712 * freeing the entry itself, and decrementing the number of stored pages. 713 */ 714 static void zswap_entry_free(struct zswap_entry *entry) 715 { 716 zswap_lru_del(&zswap_list_lru, entry); 717 zs_free(entry->pool->zs_pool, entry->handle); 718 zswap_pool_put(entry->pool); 719 if (entry->objcg) { 720 obj_cgroup_uncharge_zswap(entry->objcg, entry->length); 721 obj_cgroup_put(entry->objcg); 722 } 723 if (entry->length == PAGE_SIZE) 724 atomic_long_dec(&zswap_stored_incompressible_pages); 725 zswap_entry_cache_free(entry); 726 atomic_long_dec(&zswap_stored_pages); 727 } 728 729 /********************************* 730 * compressed storage functions 731 **********************************/ 732 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) 733 { 734 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 735 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 736 struct crypto_acomp *acomp = NULL; 737 struct acomp_req *req = NULL; 738 u8 *buffer = NULL; 739 int ret; 740 741 buffer = kmalloc_node(PAGE_SIZE, GFP_KERNEL, cpu_to_node(cpu)); 742 if (!buffer) { 743 ret = -ENOMEM; 744 goto fail; 745 } 746 747 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); 748 if (IS_ERR(acomp)) { 749 pr_err("could not alloc crypto acomp %s : %ld\n", 750 pool->tfm_name, PTR_ERR(acomp)); 751 ret = PTR_ERR(acomp); 752 goto fail; 753 } 754 755 req = acomp_request_alloc(acomp); 756 if (!req) { 757 pr_err("could not alloc crypto acomp_request %s\n", 758 pool->tfm_name); 759 ret = -ENOMEM; 760 goto fail; 761 } 762 763 /* 764 * Only hold the mutex after completing allocations, otherwise we may 765 * recurse into zswap through reclaim and attempt to hold the mutex 766 * again resulting in a deadlock. 767 */ 768 mutex_lock(&acomp_ctx->mutex); 769 crypto_init_wait(&acomp_ctx->wait); 770 771 /* 772 * if the backend of acomp is async zip, crypto_req_done() will wakeup 773 * crypto_wait_req(); if the backend of acomp is scomp, the callback 774 * won't be called, crypto_wait_req() will return without blocking. 775 */ 776 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 777 crypto_req_done, &acomp_ctx->wait); 778 779 acomp_ctx->buffer = buffer; 780 acomp_ctx->acomp = acomp; 781 acomp_ctx->is_sleepable = acomp_is_async(acomp); 782 acomp_ctx->req = req; 783 mutex_unlock(&acomp_ctx->mutex); 784 return 0; 785 786 fail: 787 if (acomp) 788 crypto_free_acomp(acomp); 789 kfree(buffer); 790 return ret; 791 } 792 793 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) 794 { 795 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 796 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 797 struct acomp_req *req; 798 struct crypto_acomp *acomp; 799 u8 *buffer; 800 801 if (IS_ERR_OR_NULL(acomp_ctx)) 802 return 0; 803 804 mutex_lock(&acomp_ctx->mutex); 805 req = acomp_ctx->req; 806 acomp = acomp_ctx->acomp; 807 buffer = acomp_ctx->buffer; 808 acomp_ctx->req = NULL; 809 acomp_ctx->acomp = NULL; 810 acomp_ctx->buffer = NULL; 811 mutex_unlock(&acomp_ctx->mutex); 812 813 /* 814 * Do the actual freeing after releasing the mutex to avoid subtle 815 * locking dependencies causing deadlocks. 816 */ 817 if (!IS_ERR_OR_NULL(req)) 818 acomp_request_free(req); 819 if (!IS_ERR_OR_NULL(acomp)) 820 crypto_free_acomp(acomp); 821 kfree(buffer); 822 823 return 0; 824 } 825 826 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool) 827 { 828 struct crypto_acomp_ctx *acomp_ctx; 829 830 for (;;) { 831 acomp_ctx = raw_cpu_ptr(pool->acomp_ctx); 832 mutex_lock(&acomp_ctx->mutex); 833 if (likely(acomp_ctx->req)) 834 return acomp_ctx; 835 /* 836 * It is possible that we were migrated to a different CPU after 837 * getting the per-CPU ctx but before the mutex was acquired. If 838 * the old CPU got offlined, zswap_cpu_comp_dead() could have 839 * already freed ctx->req (among other things) and set it to 840 * NULL. Just try again on the new CPU that we ended up on. 841 */ 842 mutex_unlock(&acomp_ctx->mutex); 843 } 844 } 845 846 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx) 847 { 848 mutex_unlock(&acomp_ctx->mutex); 849 } 850 851 static bool zswap_compress(struct page *page, struct zswap_entry *entry, 852 struct zswap_pool *pool) 853 { 854 struct crypto_acomp_ctx *acomp_ctx; 855 struct scatterlist input, output; 856 int comp_ret = 0, alloc_ret = 0; 857 unsigned int dlen = PAGE_SIZE; 858 unsigned long handle; 859 gfp_t gfp; 860 u8 *dst; 861 bool mapped = false; 862 863 acomp_ctx = acomp_ctx_get_cpu_lock(pool); 864 dst = acomp_ctx->buffer; 865 sg_init_table(&input, 1); 866 sg_set_page(&input, page, PAGE_SIZE, 0); 867 868 sg_init_one(&output, dst, PAGE_SIZE); 869 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); 870 871 /* 872 * it maybe looks a little bit silly that we send an asynchronous request, 873 * then wait for its completion synchronously. This makes the process look 874 * synchronous in fact. 875 * Theoretically, acomp supports users send multiple acomp requests in one 876 * acomp instance, then get those requests done simultaneously. but in this 877 * case, zswap actually does store and load page by page, there is no 878 * existing method to send the second page before the first page is done 879 * in one thread doing zwap. 880 * but in different threads running on different cpu, we have different 881 * acomp instance, so multiple threads can do (de)compression in parallel. 882 */ 883 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); 884 dlen = acomp_ctx->req->dlen; 885 886 /* 887 * If a page cannot be compressed into a size smaller than PAGE_SIZE, 888 * save the content as is without a compression, to keep the LRU order 889 * of writebacks. If writeback is disabled, reject the page since it 890 * only adds metadata overhead. swap_writeout() will put the page back 891 * to the active LRU list in the case. 892 */ 893 if (comp_ret || !dlen || dlen >= PAGE_SIZE) { 894 dlen = PAGE_SIZE; 895 if (!mem_cgroup_zswap_writeback_enabled( 896 folio_memcg(page_folio(page)))) { 897 comp_ret = comp_ret ? comp_ret : -EINVAL; 898 goto unlock; 899 } 900 comp_ret = 0; 901 dlen = PAGE_SIZE; 902 dst = kmap_local_page(page); 903 mapped = true; 904 } 905 906 gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE; 907 handle = zs_malloc(pool->zs_pool, dlen, gfp, page_to_nid(page)); 908 if (IS_ERR_VALUE(handle)) { 909 alloc_ret = PTR_ERR((void *)handle); 910 goto unlock; 911 } 912 913 zs_obj_write(pool->zs_pool, handle, dst, dlen); 914 entry->handle = handle; 915 entry->length = dlen; 916 917 unlock: 918 if (mapped) 919 kunmap_local(dst); 920 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC) 921 zswap_reject_compress_poor++; 922 else if (comp_ret) 923 zswap_reject_compress_fail++; 924 else if (alloc_ret) 925 zswap_reject_alloc_fail++; 926 927 acomp_ctx_put_unlock(acomp_ctx); 928 return comp_ret == 0 && alloc_ret == 0; 929 } 930 931 static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio) 932 { 933 struct zswap_pool *pool = entry->pool; 934 struct scatterlist input, output; 935 struct crypto_acomp_ctx *acomp_ctx; 936 int decomp_ret = 0, dlen = PAGE_SIZE; 937 u8 *src, *obj; 938 939 acomp_ctx = acomp_ctx_get_cpu_lock(pool); 940 obj = zs_obj_read_begin(pool->zs_pool, entry->handle, acomp_ctx->buffer); 941 942 /* zswap entries of length PAGE_SIZE are not compressed. */ 943 if (entry->length == PAGE_SIZE) { 944 memcpy_to_folio(folio, 0, obj, entry->length); 945 goto read_done; 946 } 947 948 /* 949 * zs_obj_read_begin() might return a kmap address of highmem when 950 * acomp_ctx->buffer is not used. However, sg_init_one() does not 951 * handle highmem addresses, so copy the object to acomp_ctx->buffer. 952 */ 953 if (virt_addr_valid(obj)) { 954 src = obj; 955 } else { 956 WARN_ON_ONCE(obj == acomp_ctx->buffer); 957 memcpy(acomp_ctx->buffer, obj, entry->length); 958 src = acomp_ctx->buffer; 959 } 960 961 sg_init_one(&input, src, entry->length); 962 sg_init_table(&output, 1); 963 sg_set_folio(&output, folio, PAGE_SIZE, 0); 964 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); 965 decomp_ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); 966 dlen = acomp_ctx->req->dlen; 967 968 read_done: 969 zs_obj_read_end(pool->zs_pool, entry->handle, obj); 970 acomp_ctx_put_unlock(acomp_ctx); 971 972 if (!decomp_ret && dlen == PAGE_SIZE) 973 return true; 974 975 zswap_decompress_fail++; 976 pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n", 977 swp_type(entry->swpentry), 978 swp_offset(entry->swpentry), 979 entry->pool->tfm_name, entry->length, dlen); 980 return false; 981 } 982 983 /********************************* 984 * writeback code 985 **********************************/ 986 /* 987 * Attempts to free an entry by adding a folio to the swap cache, 988 * decompressing the entry data into the folio, and issuing a 989 * bio write to write the folio back to the swap device. 990 * 991 * This can be thought of as a "resumed writeback" of the folio 992 * to the swap device. We are basically resuming the same swap 993 * writeback path that was intercepted with the zswap_store() 994 * in the first place. After the folio has been decompressed into 995 * the swap cache, the compressed version stored by zswap can be 996 * freed. 997 */ 998 static int zswap_writeback_entry(struct zswap_entry *entry, 999 swp_entry_t swpentry) 1000 { 1001 struct xarray *tree; 1002 pgoff_t offset = swp_offset(swpentry); 1003 struct folio *folio; 1004 struct mempolicy *mpol; 1005 bool folio_was_allocated; 1006 struct swap_info_struct *si; 1007 int ret = 0; 1008 1009 /* try to allocate swap cache folio */ 1010 si = get_swap_device(swpentry); 1011 if (!si) 1012 return -EEXIST; 1013 1014 mpol = get_task_policy(current); 1015 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, 1016 NO_INTERLEAVE_INDEX, &folio_was_allocated, true); 1017 put_swap_device(si); 1018 if (!folio) 1019 return -ENOMEM; 1020 1021 /* 1022 * Found an existing folio, we raced with swapin or concurrent 1023 * shrinker. We generally writeback cold folios from zswap, and 1024 * swapin means the folio just became hot, so skip this folio. 1025 * For unlikely concurrent shrinker case, it will be unlinked 1026 * and freed when invalidated by the concurrent shrinker anyway. 1027 */ 1028 if (!folio_was_allocated) { 1029 ret = -EEXIST; 1030 goto out; 1031 } 1032 1033 /* 1034 * folio is locked, and the swapcache is now secured against 1035 * concurrent swapping to and from the slot, and concurrent 1036 * swapoff so we can safely dereference the zswap tree here. 1037 * Verify that the swap entry hasn't been invalidated and recycled 1038 * behind our backs, to avoid overwriting a new swap folio with 1039 * old compressed data. Only when this is successful can the entry 1040 * be dereferenced. 1041 */ 1042 tree = swap_zswap_tree(swpentry); 1043 if (entry != xa_load(tree, offset)) { 1044 ret = -ENOMEM; 1045 goto out; 1046 } 1047 1048 if (!zswap_decompress(entry, folio)) { 1049 ret = -EIO; 1050 goto out; 1051 } 1052 1053 xa_erase(tree, offset); 1054 1055 count_vm_event(ZSWPWB); 1056 if (entry->objcg) 1057 count_objcg_events(entry->objcg, ZSWPWB, 1); 1058 1059 zswap_entry_free(entry); 1060 1061 /* folio is up to date */ 1062 folio_mark_uptodate(folio); 1063 1064 /* move it to the tail of the inactive list after end_writeback */ 1065 folio_set_reclaim(folio); 1066 1067 /* start writeback */ 1068 __swap_writepage(folio, NULL); 1069 1070 out: 1071 if (ret && ret != -EEXIST) { 1072 delete_from_swap_cache(folio); 1073 folio_unlock(folio); 1074 } 1075 folio_put(folio); 1076 return ret; 1077 } 1078 1079 /********************************* 1080 * shrinker functions 1081 **********************************/ 1082 /* 1083 * The dynamic shrinker is modulated by the following factors: 1084 * 1085 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving 1086 * the entry a second chance) before rotating it in the LRU list. If the 1087 * entry is considered again by the shrinker, with its referenced bit unset, 1088 * it is written back. The writeback rate as a result is dynamically 1089 * adjusted by the pool activities - if the pool is dominated by new entries 1090 * (i.e lots of recent zswapouts), these entries will be protected and 1091 * the writeback rate will slow down. On the other hand, if the pool has a 1092 * lot of stagnant entries, these entries will be reclaimed immediately, 1093 * effectively increasing the writeback rate. 1094 * 1095 * 2. Swapins counter: If we observe swapins, it is a sign that we are 1096 * overshrinking and should slow down. We maintain a swapins counter, which 1097 * is consumed and subtract from the number of eligible objects on the LRU 1098 * in zswap_shrinker_count(). 1099 * 1100 * 3. Compression ratio. The better the workload compresses, the less gains we 1101 * can expect from writeback. We scale down the number of objects available 1102 * for reclaim by this ratio. 1103 */ 1104 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, 1105 void *arg) 1106 { 1107 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); 1108 bool *encountered_page_in_swapcache = (bool *)arg; 1109 swp_entry_t swpentry; 1110 enum lru_status ret = LRU_REMOVED_RETRY; 1111 int writeback_result; 1112 1113 /* 1114 * Second chance algorithm: if the entry has its referenced bit set, give it 1115 * a second chance. Only clear the referenced bit and rotate it in the 1116 * zswap's LRU list. 1117 */ 1118 if (entry->referenced) { 1119 entry->referenced = false; 1120 return LRU_ROTATE; 1121 } 1122 1123 /* 1124 * As soon as we drop the LRU lock, the entry can be freed by 1125 * a concurrent invalidation. This means the following: 1126 * 1127 * 1. We extract the swp_entry_t to the stack, allowing 1128 * zswap_writeback_entry() to pin the swap entry and 1129 * then validate the zwap entry against that swap entry's 1130 * tree using pointer value comparison. Only when that 1131 * is successful can the entry be dereferenced. 1132 * 1133 * 2. Usually, objects are taken off the LRU for reclaim. In 1134 * this case this isn't possible, because if reclaim fails 1135 * for whatever reason, we have no means of knowing if the 1136 * entry is alive to put it back on the LRU. 1137 * 1138 * So rotate it before dropping the lock. If the entry is 1139 * written back or invalidated, the free path will unlink 1140 * it. For failures, rotation is the right thing as well. 1141 * 1142 * Temporary failures, where the same entry should be tried 1143 * again immediately, almost never happen for this shrinker. 1144 * We don't do any trylocking; -ENOMEM comes closest, 1145 * but that's extremely rare and doesn't happen spuriously 1146 * either. Don't bother distinguishing this case. 1147 */ 1148 list_move_tail(item, &l->list); 1149 1150 /* 1151 * Once the lru lock is dropped, the entry might get freed. The 1152 * swpentry is copied to the stack, and entry isn't deref'd again 1153 * until the entry is verified to still be alive in the tree. 1154 */ 1155 swpentry = entry->swpentry; 1156 1157 /* 1158 * It's safe to drop the lock here because we return either 1159 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP. 1160 */ 1161 spin_unlock(&l->lock); 1162 1163 writeback_result = zswap_writeback_entry(entry, swpentry); 1164 1165 if (writeback_result) { 1166 zswap_reject_reclaim_fail++; 1167 ret = LRU_RETRY; 1168 1169 /* 1170 * Encountering a page already in swap cache is a sign that we are shrinking 1171 * into the warmer region. We should terminate shrinking (if we're in the dynamic 1172 * shrinker context). 1173 */ 1174 if (writeback_result == -EEXIST && encountered_page_in_swapcache) { 1175 ret = LRU_STOP; 1176 *encountered_page_in_swapcache = true; 1177 } 1178 } else { 1179 zswap_written_back_pages++; 1180 } 1181 1182 return ret; 1183 } 1184 1185 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, 1186 struct shrink_control *sc) 1187 { 1188 unsigned long shrink_ret; 1189 bool encountered_page_in_swapcache = false; 1190 1191 if (!zswap_shrinker_enabled || 1192 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) { 1193 sc->nr_scanned = 0; 1194 return SHRINK_STOP; 1195 } 1196 1197 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb, 1198 &encountered_page_in_swapcache); 1199 1200 if (encountered_page_in_swapcache) 1201 return SHRINK_STOP; 1202 1203 return shrink_ret ? shrink_ret : SHRINK_STOP; 1204 } 1205 1206 static unsigned long zswap_shrinker_count(struct shrinker *shrinker, 1207 struct shrink_control *sc) 1208 { 1209 struct mem_cgroup *memcg = sc->memcg; 1210 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); 1211 atomic_long_t *nr_disk_swapins = 1212 &lruvec->zswap_lruvec_state.nr_disk_swapins; 1213 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur, 1214 nr_remain; 1215 1216 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) 1217 return 0; 1218 1219 /* 1220 * The shrinker resumes swap writeback, which will enter block 1221 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS 1222 * rules (may_enter_fs()), which apply on a per-folio basis. 1223 */ 1224 if (!gfp_has_io_fs(sc->gfp_mask)) 1225 return 0; 1226 1227 /* 1228 * For memcg, use the cgroup-wide ZSWAP stats since we don't 1229 * have them per-node and thus per-lruvec. Careful if memcg is 1230 * runtime-disabled: we can get sc->memcg == NULL, which is ok 1231 * for the lruvec, but not for memcg_page_state(). 1232 * 1233 * Without memcg, use the zswap pool-wide metrics. 1234 */ 1235 if (!mem_cgroup_disabled()) { 1236 mem_cgroup_flush_stats(memcg); 1237 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; 1238 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); 1239 } else { 1240 nr_backing = zswap_total_pages(); 1241 nr_stored = atomic_long_read(&zswap_stored_pages); 1242 } 1243 1244 if (!nr_stored) 1245 return 0; 1246 1247 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc); 1248 if (!nr_freeable) 1249 return 0; 1250 1251 /* 1252 * Subtract from the lru size the number of pages that are recently swapped 1253 * in from disk. The idea is that had we protect the zswap's LRU by this 1254 * amount of pages, these disk swapins would not have happened. 1255 */ 1256 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins); 1257 do { 1258 if (nr_freeable >= nr_disk_swapins_cur) 1259 nr_remain = 0; 1260 else 1261 nr_remain = nr_disk_swapins_cur - nr_freeable; 1262 } while (!atomic_long_try_cmpxchg( 1263 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain)); 1264 1265 nr_freeable -= nr_disk_swapins_cur - nr_remain; 1266 if (!nr_freeable) 1267 return 0; 1268 1269 /* 1270 * Scale the number of freeable pages by the memory saving factor. 1271 * This ensures that the better zswap compresses memory, the fewer 1272 * pages we will evict to swap (as it will otherwise incur IO for 1273 * relatively small memory saving). 1274 */ 1275 return mult_frac(nr_freeable, nr_backing, nr_stored); 1276 } 1277 1278 static struct shrinker *zswap_alloc_shrinker(void) 1279 { 1280 struct shrinker *shrinker; 1281 1282 shrinker = 1283 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); 1284 if (!shrinker) 1285 return NULL; 1286 1287 shrinker->scan_objects = zswap_shrinker_scan; 1288 shrinker->count_objects = zswap_shrinker_count; 1289 shrinker->batch = 0; 1290 shrinker->seeks = DEFAULT_SEEKS; 1291 return shrinker; 1292 } 1293 1294 static int shrink_memcg(struct mem_cgroup *memcg) 1295 { 1296 int nid, shrunk = 0, scanned = 0; 1297 1298 if (!mem_cgroup_zswap_writeback_enabled(memcg)) 1299 return -ENOENT; 1300 1301 /* 1302 * Skip zombies because their LRUs are reparented and we would be 1303 * reclaiming from the parent instead of the dead memcg. 1304 */ 1305 if (memcg && !mem_cgroup_online(memcg)) 1306 return -ENOENT; 1307 1308 for_each_node_state(nid, N_NORMAL_MEMORY) { 1309 unsigned long nr_to_walk = 1; 1310 1311 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg, 1312 &shrink_memcg_cb, NULL, &nr_to_walk); 1313 scanned += 1 - nr_to_walk; 1314 } 1315 1316 if (!scanned) 1317 return -ENOENT; 1318 1319 return shrunk ? 0 : -EAGAIN; 1320 } 1321 1322 static void shrink_worker(struct work_struct *w) 1323 { 1324 struct mem_cgroup *memcg; 1325 int ret, failures = 0, attempts = 0; 1326 unsigned long thr; 1327 1328 /* Reclaim down to the accept threshold */ 1329 thr = zswap_accept_thr_pages(); 1330 1331 /* 1332 * Global reclaim will select cgroup in a round-robin fashion from all 1333 * online memcgs, but memcgs that have no pages in zswap and 1334 * writeback-disabled memcgs (memory.zswap.writeback=0) are not 1335 * candidates for shrinking. 1336 * 1337 * Shrinking will be aborted if we encounter the following 1338 * MAX_RECLAIM_RETRIES times: 1339 * - No writeback-candidate memcgs found in a memcg tree walk. 1340 * - Shrinking a writeback-candidate memcg failed. 1341 * 1342 * We save iteration cursor memcg into zswap_next_shrink, 1343 * which can be modified by the offline memcg cleaner 1344 * zswap_memcg_offline_cleanup(). 1345 * 1346 * Since the offline cleaner is called only once, we cannot leave an 1347 * offline memcg reference in zswap_next_shrink. 1348 * We can rely on the cleaner only if we get online memcg under lock. 1349 * 1350 * If we get an offline memcg, we cannot determine if the cleaner has 1351 * already been called or will be called later. We must put back the 1352 * reference before returning from this function. Otherwise, the 1353 * offline memcg left in zswap_next_shrink will hold the reference 1354 * until the next run of shrink_worker(). 1355 */ 1356 do { 1357 /* 1358 * Start shrinking from the next memcg after zswap_next_shrink. 1359 * When the offline cleaner has already advanced the cursor, 1360 * advancing the cursor here overlooks one memcg, but this 1361 * should be negligibly rare. 1362 * 1363 * If we get an online memcg, keep the extra reference in case 1364 * the original one obtained by mem_cgroup_iter() is dropped by 1365 * zswap_memcg_offline_cleanup() while we are shrinking the 1366 * memcg. 1367 */ 1368 spin_lock(&zswap_shrink_lock); 1369 do { 1370 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); 1371 zswap_next_shrink = memcg; 1372 } while (memcg && !mem_cgroup_tryget_online(memcg)); 1373 spin_unlock(&zswap_shrink_lock); 1374 1375 if (!memcg) { 1376 /* 1377 * Continue shrinking without incrementing failures if 1378 * we found candidate memcgs in the last tree walk. 1379 */ 1380 if (!attempts && ++failures == MAX_RECLAIM_RETRIES) 1381 break; 1382 1383 attempts = 0; 1384 goto resched; 1385 } 1386 1387 ret = shrink_memcg(memcg); 1388 /* drop the extra reference */ 1389 mem_cgroup_put(memcg); 1390 1391 /* 1392 * There are no writeback-candidate pages in the memcg. 1393 * This is not an issue as long as we can find another memcg 1394 * with pages in zswap. Skip this without incrementing attempts 1395 * and failures. 1396 */ 1397 if (ret == -ENOENT) 1398 continue; 1399 ++attempts; 1400 1401 if (ret && ++failures == MAX_RECLAIM_RETRIES) 1402 break; 1403 resched: 1404 cond_resched(); 1405 } while (zswap_total_pages() > thr); 1406 } 1407 1408 /********************************* 1409 * main API 1410 **********************************/ 1411 1412 static bool zswap_store_page(struct page *page, 1413 struct obj_cgroup *objcg, 1414 struct zswap_pool *pool) 1415 { 1416 swp_entry_t page_swpentry = page_swap_entry(page); 1417 struct zswap_entry *entry, *old; 1418 1419 /* allocate entry */ 1420 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page)); 1421 if (!entry) { 1422 zswap_reject_kmemcache_fail++; 1423 return false; 1424 } 1425 1426 if (!zswap_compress(page, entry, pool)) 1427 goto compress_failed; 1428 1429 old = xa_store(swap_zswap_tree(page_swpentry), 1430 swp_offset(page_swpentry), 1431 entry, GFP_KERNEL); 1432 if (xa_is_err(old)) { 1433 int err = xa_err(old); 1434 1435 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err); 1436 zswap_reject_alloc_fail++; 1437 goto store_failed; 1438 } 1439 1440 /* 1441 * We may have had an existing entry that became stale when 1442 * the folio was redirtied and now the new version is being 1443 * swapped out. Get rid of the old. 1444 */ 1445 if (old) 1446 zswap_entry_free(old); 1447 1448 /* 1449 * The entry is successfully compressed and stored in the tree, there is 1450 * no further possibility of failure. Grab refs to the pool and objcg, 1451 * charge zswap memory, and increment zswap_stored_pages. 1452 * The opposite actions will be performed by zswap_entry_free() 1453 * when the entry is removed from the tree. 1454 */ 1455 zswap_pool_get(pool); 1456 if (objcg) { 1457 obj_cgroup_get(objcg); 1458 obj_cgroup_charge_zswap(objcg, entry->length); 1459 } 1460 atomic_long_inc(&zswap_stored_pages); 1461 if (entry->length == PAGE_SIZE) 1462 atomic_long_inc(&zswap_stored_incompressible_pages); 1463 1464 /* 1465 * We finish initializing the entry while it's already in xarray. 1466 * This is safe because: 1467 * 1468 * 1. Concurrent stores and invalidations are excluded by folio lock. 1469 * 1470 * 2. Writeback is excluded by the entry not being on the LRU yet. 1471 * The publishing order matters to prevent writeback from seeing 1472 * an incoherent entry. 1473 */ 1474 entry->pool = pool; 1475 entry->swpentry = page_swpentry; 1476 entry->objcg = objcg; 1477 entry->referenced = true; 1478 if (entry->length) { 1479 INIT_LIST_HEAD(&entry->lru); 1480 zswap_lru_add(&zswap_list_lru, entry); 1481 } 1482 1483 return true; 1484 1485 store_failed: 1486 zs_free(pool->zs_pool, entry->handle); 1487 compress_failed: 1488 zswap_entry_cache_free(entry); 1489 return false; 1490 } 1491 1492 bool zswap_store(struct folio *folio) 1493 { 1494 long nr_pages = folio_nr_pages(folio); 1495 swp_entry_t swp = folio->swap; 1496 struct obj_cgroup *objcg = NULL; 1497 struct mem_cgroup *memcg = NULL; 1498 struct zswap_pool *pool; 1499 bool ret = false; 1500 long index; 1501 1502 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 1503 VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); 1504 1505 if (!zswap_enabled) 1506 goto check_old; 1507 1508 objcg = get_obj_cgroup_from_folio(folio); 1509 if (objcg && !obj_cgroup_may_zswap(objcg)) { 1510 memcg = get_mem_cgroup_from_objcg(objcg); 1511 if (shrink_memcg(memcg)) { 1512 mem_cgroup_put(memcg); 1513 goto put_objcg; 1514 } 1515 mem_cgroup_put(memcg); 1516 } 1517 1518 if (zswap_check_limits()) 1519 goto put_objcg; 1520 1521 pool = zswap_pool_current_get(); 1522 if (!pool) 1523 goto put_objcg; 1524 1525 if (objcg) { 1526 memcg = get_mem_cgroup_from_objcg(objcg); 1527 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) { 1528 mem_cgroup_put(memcg); 1529 goto put_pool; 1530 } 1531 mem_cgroup_put(memcg); 1532 } 1533 1534 for (index = 0; index < nr_pages; ++index) { 1535 struct page *page = folio_page(folio, index); 1536 1537 if (!zswap_store_page(page, objcg, pool)) 1538 goto put_pool; 1539 } 1540 1541 if (objcg) 1542 count_objcg_events(objcg, ZSWPOUT, nr_pages); 1543 1544 count_vm_events(ZSWPOUT, nr_pages); 1545 1546 ret = true; 1547 1548 put_pool: 1549 zswap_pool_put(pool); 1550 put_objcg: 1551 obj_cgroup_put(objcg); 1552 if (!ret && zswap_pool_reached_full) 1553 queue_work(shrink_wq, &zswap_shrink_work); 1554 check_old: 1555 /* 1556 * If the zswap store fails or zswap is disabled, we must invalidate 1557 * the possibly stale entries which were previously stored at the 1558 * offsets corresponding to each page of the folio. Otherwise, 1559 * writeback could overwrite the new data in the swapfile. 1560 */ 1561 if (!ret) { 1562 unsigned type = swp_type(swp); 1563 pgoff_t offset = swp_offset(swp); 1564 struct zswap_entry *entry; 1565 struct xarray *tree; 1566 1567 for (index = 0; index < nr_pages; ++index) { 1568 tree = swap_zswap_tree(swp_entry(type, offset + index)); 1569 entry = xa_erase(tree, offset + index); 1570 if (entry) 1571 zswap_entry_free(entry); 1572 } 1573 } 1574 1575 return ret; 1576 } 1577 1578 /** 1579 * zswap_load() - load a folio from zswap 1580 * @folio: folio to load 1581 * 1582 * Return: 0 on success, with the folio unlocked and marked up-to-date, or one 1583 * of the following error codes: 1584 * 1585 * -EIO: if the swapped out content was in zswap, but could not be loaded 1586 * into the page due to a decompression failure. The folio is unlocked, but 1587 * NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page() 1588 * will SIGBUS). 1589 * 1590 * -EINVAL: if the swapped out content was in zswap, but the page belongs 1591 * to a large folio, which is not supported by zswap. The folio is unlocked, 1592 * but NOT marked up-to-date, so that an IO error is emitted (e.g. 1593 * do_swap_page() will SIGBUS). 1594 * 1595 * -ENOENT: if the swapped out content was not in zswap. The folio remains 1596 * locked on return. 1597 */ 1598 int zswap_load(struct folio *folio) 1599 { 1600 swp_entry_t swp = folio->swap; 1601 pgoff_t offset = swp_offset(swp); 1602 bool swapcache = folio_test_swapcache(folio); 1603 struct xarray *tree = swap_zswap_tree(swp); 1604 struct zswap_entry *entry; 1605 1606 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 1607 1608 if (zswap_never_enabled()) 1609 return -ENOENT; 1610 1611 /* 1612 * Large folios should not be swapped in while zswap is being used, as 1613 * they are not properly handled. Zswap does not properly load large 1614 * folios, and a large folio may only be partially in zswap. 1615 */ 1616 if (WARN_ON_ONCE(folio_test_large(folio))) { 1617 folio_unlock(folio); 1618 return -EINVAL; 1619 } 1620 1621 entry = xa_load(tree, offset); 1622 if (!entry) 1623 return -ENOENT; 1624 1625 if (!zswap_decompress(entry, folio)) { 1626 folio_unlock(folio); 1627 return -EIO; 1628 } 1629 1630 folio_mark_uptodate(folio); 1631 1632 count_vm_event(ZSWPIN); 1633 if (entry->objcg) 1634 count_objcg_events(entry->objcg, ZSWPIN, 1); 1635 1636 /* 1637 * When reading into the swapcache, invalidate our entry. The 1638 * swapcache can be the authoritative owner of the page and 1639 * its mappings, and the pressure that results from having two 1640 * in-memory copies outweighs any benefits of caching the 1641 * compression work. 1642 * 1643 * (Most swapins go through the swapcache. The notable 1644 * exception is the singleton fault on SWP_SYNCHRONOUS_IO 1645 * files, which reads into a private page and may free it if 1646 * the fault fails. We remain the primary owner of the entry.) 1647 */ 1648 if (swapcache) { 1649 folio_mark_dirty(folio); 1650 xa_erase(tree, offset); 1651 zswap_entry_free(entry); 1652 } 1653 1654 folio_unlock(folio); 1655 return 0; 1656 } 1657 1658 void zswap_invalidate(swp_entry_t swp) 1659 { 1660 pgoff_t offset = swp_offset(swp); 1661 struct xarray *tree = swap_zswap_tree(swp); 1662 struct zswap_entry *entry; 1663 1664 if (xa_empty(tree)) 1665 return; 1666 1667 entry = xa_erase(tree, offset); 1668 if (entry) 1669 zswap_entry_free(entry); 1670 } 1671 1672 int zswap_swapon(int type, unsigned long nr_pages) 1673 { 1674 struct xarray *trees, *tree; 1675 unsigned int nr, i; 1676 1677 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 1678 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL); 1679 if (!trees) { 1680 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1681 return -ENOMEM; 1682 } 1683 1684 for (i = 0; i < nr; i++) 1685 xa_init(trees + i); 1686 1687 nr_zswap_trees[type] = nr; 1688 zswap_trees[type] = trees; 1689 return 0; 1690 } 1691 1692 void zswap_swapoff(int type) 1693 { 1694 struct xarray *trees = zswap_trees[type]; 1695 unsigned int i; 1696 1697 if (!trees) 1698 return; 1699 1700 /* try_to_unuse() invalidated all the entries already */ 1701 for (i = 0; i < nr_zswap_trees[type]; i++) 1702 WARN_ON_ONCE(!xa_empty(trees + i)); 1703 1704 kvfree(trees); 1705 nr_zswap_trees[type] = 0; 1706 zswap_trees[type] = NULL; 1707 } 1708 1709 /********************************* 1710 * debugfs functions 1711 **********************************/ 1712 #ifdef CONFIG_DEBUG_FS 1713 #include <linux/debugfs.h> 1714 1715 static struct dentry *zswap_debugfs_root; 1716 1717 static int debugfs_get_total_size(void *data, u64 *val) 1718 { 1719 *val = zswap_total_pages() * PAGE_SIZE; 1720 return 0; 1721 } 1722 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n"); 1723 1724 static int debugfs_get_stored_pages(void *data, u64 *val) 1725 { 1726 *val = atomic_long_read(&zswap_stored_pages); 1727 return 0; 1728 } 1729 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n"); 1730 1731 static int debugfs_get_stored_incompressible_pages(void *data, u64 *val) 1732 { 1733 *val = atomic_long_read(&zswap_stored_incompressible_pages); 1734 return 0; 1735 } 1736 DEFINE_DEBUGFS_ATTRIBUTE(stored_incompressible_pages_fops, 1737 debugfs_get_stored_incompressible_pages, NULL, "%llu\n"); 1738 1739 static int zswap_debugfs_init(void) 1740 { 1741 if (!debugfs_initialized()) 1742 return -ENODEV; 1743 1744 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1745 1746 debugfs_create_u64("pool_limit_hit", 0444, 1747 zswap_debugfs_root, &zswap_pool_limit_hit); 1748 debugfs_create_u64("reject_reclaim_fail", 0444, 1749 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1750 debugfs_create_u64("reject_alloc_fail", 0444, 1751 zswap_debugfs_root, &zswap_reject_alloc_fail); 1752 debugfs_create_u64("reject_kmemcache_fail", 0444, 1753 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1754 debugfs_create_u64("reject_compress_fail", 0444, 1755 zswap_debugfs_root, &zswap_reject_compress_fail); 1756 debugfs_create_u64("reject_compress_poor", 0444, 1757 zswap_debugfs_root, &zswap_reject_compress_poor); 1758 debugfs_create_u64("decompress_fail", 0444, 1759 zswap_debugfs_root, &zswap_decompress_fail); 1760 debugfs_create_u64("written_back_pages", 0444, 1761 zswap_debugfs_root, &zswap_written_back_pages); 1762 debugfs_create_file("pool_total_size", 0444, 1763 zswap_debugfs_root, NULL, &total_size_fops); 1764 debugfs_create_file("stored_pages", 0444, 1765 zswap_debugfs_root, NULL, &stored_pages_fops); 1766 debugfs_create_file("stored_incompressible_pages", 0444, 1767 zswap_debugfs_root, NULL, 1768 &stored_incompressible_pages_fops); 1769 1770 return 0; 1771 } 1772 #else 1773 static int zswap_debugfs_init(void) 1774 { 1775 return 0; 1776 } 1777 #endif 1778 1779 /********************************* 1780 * module init and exit 1781 **********************************/ 1782 static int zswap_setup(void) 1783 { 1784 struct zswap_pool *pool; 1785 int ret; 1786 1787 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 1788 if (!zswap_entry_cache) { 1789 pr_err("entry cache creation failed\n"); 1790 goto cache_fail; 1791 } 1792 1793 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, 1794 "mm/zswap_pool:prepare", 1795 zswap_cpu_comp_prepare, 1796 zswap_cpu_comp_dead); 1797 if (ret) 1798 goto hp_fail; 1799 1800 shrink_wq = alloc_workqueue("zswap-shrink", 1801 WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 1802 if (!shrink_wq) 1803 goto shrink_wq_fail; 1804 1805 zswap_shrinker = zswap_alloc_shrinker(); 1806 if (!zswap_shrinker) 1807 goto shrinker_fail; 1808 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker)) 1809 goto lru_fail; 1810 shrinker_register(zswap_shrinker); 1811 1812 INIT_WORK(&zswap_shrink_work, shrink_worker); 1813 1814 pool = __zswap_pool_create_fallback(); 1815 if (pool) { 1816 pr_info("loaded using pool %s\n", pool->tfm_name); 1817 list_add(&pool->list, &zswap_pools); 1818 zswap_has_pool = true; 1819 static_branch_enable(&zswap_ever_enabled); 1820 } else { 1821 pr_err("pool creation failed\n"); 1822 zswap_enabled = false; 1823 } 1824 1825 if (zswap_debugfs_init()) 1826 pr_warn("debugfs initialization failed\n"); 1827 zswap_init_state = ZSWAP_INIT_SUCCEED; 1828 return 0; 1829 1830 lru_fail: 1831 shrinker_free(zswap_shrinker); 1832 shrinker_fail: 1833 destroy_workqueue(shrink_wq); 1834 shrink_wq_fail: 1835 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE); 1836 hp_fail: 1837 kmem_cache_destroy(zswap_entry_cache); 1838 cache_fail: 1839 /* if built-in, we aren't unloaded on failure; don't allow use */ 1840 zswap_init_state = ZSWAP_INIT_FAILED; 1841 zswap_enabled = false; 1842 return -ENOMEM; 1843 } 1844 1845 static int __init zswap_init(void) 1846 { 1847 if (!zswap_enabled) 1848 return 0; 1849 return zswap_setup(); 1850 } 1851 /* must be late so crypto has time to come up */ 1852 late_initcall(zswap_init); 1853 1854 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1855 MODULE_DESCRIPTION("Compressed cache for swap pages"); 1856