1 /* 2 * zswap.c - zswap driver file 3 * 4 * zswap is a backend for frontswap that takes pages that are in the process 5 * of being swapped out and attempts to compress and store them in a 6 * RAM-based memory pool. This can result in a significant I/O reduction on 7 * the swap device and, in the case where decompressing from RAM is faster 8 * than reading from the swap device, can also improve workload performance. 9 * 10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 2 15 * of the License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 */ 22 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/module.h> 26 #include <linux/cpu.h> 27 #include <linux/highmem.h> 28 #include <linux/slab.h> 29 #include <linux/spinlock.h> 30 #include <linux/types.h> 31 #include <linux/atomic.h> 32 #include <linux/frontswap.h> 33 #include <linux/rbtree.h> 34 #include <linux/swap.h> 35 #include <linux/crypto.h> 36 #include <linux/mempool.h> 37 #include <linux/zpool.h> 38 39 #include <linux/mm_types.h> 40 #include <linux/page-flags.h> 41 #include <linux/swapops.h> 42 #include <linux/writeback.h> 43 #include <linux/pagemap.h> 44 45 /********************************* 46 * statistics 47 **********************************/ 48 /* Total bytes used by the compressed storage */ 49 static u64 zswap_pool_total_size; 50 /* The number of compressed pages currently stored in zswap */ 51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0); 52 53 /* 54 * The statistics below are not protected from concurrent access for 55 * performance reasons so they may not be a 100% accurate. However, 56 * they do provide useful information on roughly how many times a 57 * certain event is occurring. 58 */ 59 60 /* Pool limit was hit (see zswap_max_pool_percent) */ 61 static u64 zswap_pool_limit_hit; 62 /* Pages written back when pool limit was reached */ 63 static u64 zswap_written_back_pages; 64 /* Store failed due to a reclaim failure after pool limit was reached */ 65 static u64 zswap_reject_reclaim_fail; 66 /* Compressed page was too big for the allocator to (optimally) store */ 67 static u64 zswap_reject_compress_poor; 68 /* Store failed because underlying allocator could not get memory */ 69 static u64 zswap_reject_alloc_fail; 70 /* Store failed because the entry metadata could not be allocated (rare) */ 71 static u64 zswap_reject_kmemcache_fail; 72 /* Duplicate store was encountered (rare) */ 73 static u64 zswap_duplicate_entry; 74 75 /********************************* 76 * tunables 77 **********************************/ 78 79 /* Enable/disable zswap (disabled by default) */ 80 static bool zswap_enabled; 81 static int zswap_enabled_param_set(const char *, 82 const struct kernel_param *); 83 static struct kernel_param_ops zswap_enabled_param_ops = { 84 .set = zswap_enabled_param_set, 85 .get = param_get_bool, 86 }; 87 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); 88 89 /* Crypto compressor to use */ 90 #define ZSWAP_COMPRESSOR_DEFAULT "lzo" 91 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; 92 static int zswap_compressor_param_set(const char *, 93 const struct kernel_param *); 94 static struct kernel_param_ops zswap_compressor_param_ops = { 95 .set = zswap_compressor_param_set, 96 .get = param_get_charp, 97 .free = param_free_charp, 98 }; 99 module_param_cb(compressor, &zswap_compressor_param_ops, 100 &zswap_compressor, 0644); 101 102 /* Compressed storage zpool to use */ 103 #define ZSWAP_ZPOOL_DEFAULT "zbud" 104 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT; 105 static int zswap_zpool_param_set(const char *, const struct kernel_param *); 106 static struct kernel_param_ops zswap_zpool_param_ops = { 107 .set = zswap_zpool_param_set, 108 .get = param_get_charp, 109 .free = param_free_charp, 110 }; 111 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); 112 113 /* The maximum percentage of memory that the compressed pool can occupy */ 114 static unsigned int zswap_max_pool_percent = 20; 115 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 116 117 /********************************* 118 * data structures 119 **********************************/ 120 121 struct zswap_pool { 122 struct zpool *zpool; 123 struct crypto_comp * __percpu *tfm; 124 struct kref kref; 125 struct list_head list; 126 struct work_struct work; 127 struct hlist_node node; 128 char tfm_name[CRYPTO_MAX_ALG_NAME]; 129 }; 130 131 /* 132 * struct zswap_entry 133 * 134 * This structure contains the metadata for tracking a single compressed 135 * page within zswap. 136 * 137 * rbnode - links the entry into red-black tree for the appropriate swap type 138 * offset - the swap offset for the entry. Index into the red-black tree. 139 * refcount - the number of outstanding reference to the entry. This is needed 140 * to protect against premature freeing of the entry by code 141 * concurrent calls to load, invalidate, and writeback. The lock 142 * for the zswap_tree structure that contains the entry must 143 * be held while changing the refcount. Since the lock must 144 * be held, there is no reason to also make refcount atomic. 145 * length - the length in bytes of the compressed page data. Needed during 146 * decompression 147 * pool - the zswap_pool the entry's data is in 148 * handle - zpool allocation handle that stores the compressed page data 149 */ 150 struct zswap_entry { 151 struct rb_node rbnode; 152 pgoff_t offset; 153 int refcount; 154 unsigned int length; 155 struct zswap_pool *pool; 156 unsigned long handle; 157 }; 158 159 struct zswap_header { 160 swp_entry_t swpentry; 161 }; 162 163 /* 164 * The tree lock in the zswap_tree struct protects a few things: 165 * - the rbtree 166 * - the refcount field of each entry in the tree 167 */ 168 struct zswap_tree { 169 struct rb_root rbroot; 170 spinlock_t lock; 171 }; 172 173 static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; 174 175 /* RCU-protected iteration */ 176 static LIST_HEAD(zswap_pools); 177 /* protects zswap_pools list modification */ 178 static DEFINE_SPINLOCK(zswap_pools_lock); 179 /* pool counter to provide unique names to zpool */ 180 static atomic_t zswap_pools_count = ATOMIC_INIT(0); 181 182 /* used by param callback function */ 183 static bool zswap_init_started; 184 185 /* fatal error during init */ 186 static bool zswap_init_failed; 187 188 /********************************* 189 * helpers and fwd declarations 190 **********************************/ 191 192 #define zswap_pool_debug(msg, p) \ 193 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \ 194 zpool_get_type((p)->zpool)) 195 196 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle); 197 static int zswap_pool_get(struct zswap_pool *pool); 198 static void zswap_pool_put(struct zswap_pool *pool); 199 200 static const struct zpool_ops zswap_zpool_ops = { 201 .evict = zswap_writeback_entry 202 }; 203 204 static bool zswap_is_full(void) 205 { 206 return totalram_pages * zswap_max_pool_percent / 100 < 207 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); 208 } 209 210 static void zswap_update_total_size(void) 211 { 212 struct zswap_pool *pool; 213 u64 total = 0; 214 215 rcu_read_lock(); 216 217 list_for_each_entry_rcu(pool, &zswap_pools, list) 218 total += zpool_get_total_size(pool->zpool); 219 220 rcu_read_unlock(); 221 222 zswap_pool_total_size = total; 223 } 224 225 /********************************* 226 * zswap entry functions 227 **********************************/ 228 static struct kmem_cache *zswap_entry_cache; 229 230 static int __init zswap_entry_cache_create(void) 231 { 232 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 233 return zswap_entry_cache == NULL; 234 } 235 236 static void __init zswap_entry_cache_destroy(void) 237 { 238 kmem_cache_destroy(zswap_entry_cache); 239 } 240 241 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) 242 { 243 struct zswap_entry *entry; 244 entry = kmem_cache_alloc(zswap_entry_cache, gfp); 245 if (!entry) 246 return NULL; 247 entry->refcount = 1; 248 RB_CLEAR_NODE(&entry->rbnode); 249 return entry; 250 } 251 252 static void zswap_entry_cache_free(struct zswap_entry *entry) 253 { 254 kmem_cache_free(zswap_entry_cache, entry); 255 } 256 257 /********************************* 258 * rbtree functions 259 **********************************/ 260 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) 261 { 262 struct rb_node *node = root->rb_node; 263 struct zswap_entry *entry; 264 265 while (node) { 266 entry = rb_entry(node, struct zswap_entry, rbnode); 267 if (entry->offset > offset) 268 node = node->rb_left; 269 else if (entry->offset < offset) 270 node = node->rb_right; 271 else 272 return entry; 273 } 274 return NULL; 275 } 276 277 /* 278 * In the case that a entry with the same offset is found, a pointer to 279 * the existing entry is stored in dupentry and the function returns -EEXIST 280 */ 281 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, 282 struct zswap_entry **dupentry) 283 { 284 struct rb_node **link = &root->rb_node, *parent = NULL; 285 struct zswap_entry *myentry; 286 287 while (*link) { 288 parent = *link; 289 myentry = rb_entry(parent, struct zswap_entry, rbnode); 290 if (myentry->offset > entry->offset) 291 link = &(*link)->rb_left; 292 else if (myentry->offset < entry->offset) 293 link = &(*link)->rb_right; 294 else { 295 *dupentry = myentry; 296 return -EEXIST; 297 } 298 } 299 rb_link_node(&entry->rbnode, parent, link); 300 rb_insert_color(&entry->rbnode, root); 301 return 0; 302 } 303 304 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry) 305 { 306 if (!RB_EMPTY_NODE(&entry->rbnode)) { 307 rb_erase(&entry->rbnode, root); 308 RB_CLEAR_NODE(&entry->rbnode); 309 } 310 } 311 312 /* 313 * Carries out the common pattern of freeing and entry's zpool allocation, 314 * freeing the entry itself, and decrementing the number of stored pages. 315 */ 316 static void zswap_free_entry(struct zswap_entry *entry) 317 { 318 zpool_free(entry->pool->zpool, entry->handle); 319 zswap_pool_put(entry->pool); 320 zswap_entry_cache_free(entry); 321 atomic_dec(&zswap_stored_pages); 322 zswap_update_total_size(); 323 } 324 325 /* caller must hold the tree lock */ 326 static void zswap_entry_get(struct zswap_entry *entry) 327 { 328 entry->refcount++; 329 } 330 331 /* caller must hold the tree lock 332 * remove from the tree and free it, if nobody reference the entry 333 */ 334 static void zswap_entry_put(struct zswap_tree *tree, 335 struct zswap_entry *entry) 336 { 337 int refcount = --entry->refcount; 338 339 BUG_ON(refcount < 0); 340 if (refcount == 0) { 341 zswap_rb_erase(&tree->rbroot, entry); 342 zswap_free_entry(entry); 343 } 344 } 345 346 /* caller must hold the tree lock */ 347 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, 348 pgoff_t offset) 349 { 350 struct zswap_entry *entry; 351 352 entry = zswap_rb_search(root, offset); 353 if (entry) 354 zswap_entry_get(entry); 355 356 return entry; 357 } 358 359 /********************************* 360 * per-cpu code 361 **********************************/ 362 static DEFINE_PER_CPU(u8 *, zswap_dstmem); 363 364 static int zswap_dstmem_prepare(unsigned int cpu) 365 { 366 u8 *dst; 367 368 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); 369 if (!dst) { 370 pr_err("can't allocate compressor buffer\n"); 371 return -ENOMEM; 372 } 373 per_cpu(zswap_dstmem, cpu) = dst; 374 return 0; 375 } 376 377 static int zswap_dstmem_dead(unsigned int cpu) 378 { 379 u8 *dst; 380 381 dst = per_cpu(zswap_dstmem, cpu); 382 kfree(dst); 383 per_cpu(zswap_dstmem, cpu) = NULL; 384 385 return 0; 386 } 387 388 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) 389 { 390 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 391 struct crypto_comp *tfm; 392 393 if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu))) 394 return 0; 395 396 tfm = crypto_alloc_comp(pool->tfm_name, 0, 0); 397 if (IS_ERR_OR_NULL(tfm)) { 398 pr_err("could not alloc crypto comp %s : %ld\n", 399 pool->tfm_name, PTR_ERR(tfm)); 400 return -ENOMEM; 401 } 402 *per_cpu_ptr(pool->tfm, cpu) = tfm; 403 return 0; 404 } 405 406 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) 407 { 408 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 409 struct crypto_comp *tfm; 410 411 tfm = *per_cpu_ptr(pool->tfm, cpu); 412 if (!IS_ERR_OR_NULL(tfm)) 413 crypto_free_comp(tfm); 414 *per_cpu_ptr(pool->tfm, cpu) = NULL; 415 return 0; 416 } 417 418 /********************************* 419 * pool functions 420 **********************************/ 421 422 static struct zswap_pool *__zswap_pool_current(void) 423 { 424 struct zswap_pool *pool; 425 426 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 427 WARN_ON(!pool); 428 429 return pool; 430 } 431 432 static struct zswap_pool *zswap_pool_current(void) 433 { 434 assert_spin_locked(&zswap_pools_lock); 435 436 return __zswap_pool_current(); 437 } 438 439 static struct zswap_pool *zswap_pool_current_get(void) 440 { 441 struct zswap_pool *pool; 442 443 rcu_read_lock(); 444 445 pool = __zswap_pool_current(); 446 if (!pool || !zswap_pool_get(pool)) 447 pool = NULL; 448 449 rcu_read_unlock(); 450 451 return pool; 452 } 453 454 static struct zswap_pool *zswap_pool_last_get(void) 455 { 456 struct zswap_pool *pool, *last = NULL; 457 458 rcu_read_lock(); 459 460 list_for_each_entry_rcu(pool, &zswap_pools, list) 461 last = pool; 462 if (!WARN_ON(!last) && !zswap_pool_get(last)) 463 last = NULL; 464 465 rcu_read_unlock(); 466 467 return last; 468 } 469 470 /* type and compressor must be null-terminated */ 471 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) 472 { 473 struct zswap_pool *pool; 474 475 assert_spin_locked(&zswap_pools_lock); 476 477 list_for_each_entry_rcu(pool, &zswap_pools, list) { 478 if (strcmp(pool->tfm_name, compressor)) 479 continue; 480 if (strcmp(zpool_get_type(pool->zpool), type)) 481 continue; 482 /* if we can't get it, it's about to be destroyed */ 483 if (!zswap_pool_get(pool)) 484 continue; 485 return pool; 486 } 487 488 return NULL; 489 } 490 491 static struct zswap_pool *zswap_pool_create(char *type, char *compressor) 492 { 493 struct zswap_pool *pool; 494 char name[38]; /* 'zswap' + 32 char (max) num + \0 */ 495 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; 496 int ret; 497 498 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 499 if (!pool) { 500 pr_err("pool alloc failed\n"); 501 return NULL; 502 } 503 504 /* unique name for each pool specifically required by zsmalloc */ 505 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); 506 507 pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops); 508 if (!pool->zpool) { 509 pr_err("%s zpool not available\n", type); 510 goto error; 511 } 512 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); 513 514 strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 515 pool->tfm = alloc_percpu(struct crypto_comp *); 516 if (!pool->tfm) { 517 pr_err("percpu alloc failed\n"); 518 goto error; 519 } 520 521 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, 522 &pool->node); 523 if (ret) 524 goto error; 525 pr_debug("using %s compressor\n", pool->tfm_name); 526 527 /* being the current pool takes 1 ref; this func expects the 528 * caller to always add the new pool as the current pool 529 */ 530 kref_init(&pool->kref); 531 INIT_LIST_HEAD(&pool->list); 532 533 zswap_pool_debug("created", pool); 534 535 return pool; 536 537 error: 538 free_percpu(pool->tfm); 539 if (pool->zpool) 540 zpool_destroy_pool(pool->zpool); 541 kfree(pool); 542 return NULL; 543 } 544 545 static __init struct zswap_pool *__zswap_pool_create_fallback(void) 546 { 547 if (!crypto_has_comp(zswap_compressor, 0, 0)) { 548 if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) { 549 pr_err("default compressor %s not available\n", 550 zswap_compressor); 551 return NULL; 552 } 553 pr_err("compressor %s not available, using default %s\n", 554 zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT); 555 param_free_charp(&zswap_compressor); 556 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; 557 } 558 if (!zpool_has_pool(zswap_zpool_type)) { 559 if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) { 560 pr_err("default zpool %s not available\n", 561 zswap_zpool_type); 562 return NULL; 563 } 564 pr_err("zpool %s not available, using default %s\n", 565 zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT); 566 param_free_charp(&zswap_zpool_type); 567 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT; 568 } 569 570 return zswap_pool_create(zswap_zpool_type, zswap_compressor); 571 } 572 573 static void zswap_pool_destroy(struct zswap_pool *pool) 574 { 575 zswap_pool_debug("destroying", pool); 576 577 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 578 free_percpu(pool->tfm); 579 zpool_destroy_pool(pool->zpool); 580 kfree(pool); 581 } 582 583 static int __must_check zswap_pool_get(struct zswap_pool *pool) 584 { 585 return kref_get_unless_zero(&pool->kref); 586 } 587 588 static void __zswap_pool_release(struct work_struct *work) 589 { 590 struct zswap_pool *pool = container_of(work, typeof(*pool), work); 591 592 synchronize_rcu(); 593 594 /* nobody should have been able to get a kref... */ 595 WARN_ON(kref_get_unless_zero(&pool->kref)); 596 597 /* pool is now off zswap_pools list and has no references. */ 598 zswap_pool_destroy(pool); 599 } 600 601 static void __zswap_pool_empty(struct kref *kref) 602 { 603 struct zswap_pool *pool; 604 605 pool = container_of(kref, typeof(*pool), kref); 606 607 spin_lock(&zswap_pools_lock); 608 609 WARN_ON(pool == zswap_pool_current()); 610 611 list_del_rcu(&pool->list); 612 613 INIT_WORK(&pool->work, __zswap_pool_release); 614 schedule_work(&pool->work); 615 616 spin_unlock(&zswap_pools_lock); 617 } 618 619 static void zswap_pool_put(struct zswap_pool *pool) 620 { 621 kref_put(&pool->kref, __zswap_pool_empty); 622 } 623 624 /********************************* 625 * param callbacks 626 **********************************/ 627 628 /* val must be a null-terminated string */ 629 static int __zswap_param_set(const char *val, const struct kernel_param *kp, 630 char *type, char *compressor) 631 { 632 struct zswap_pool *pool, *put_pool = NULL; 633 char *s = strstrip((char *)val); 634 int ret; 635 636 if (zswap_init_failed) { 637 pr_err("can't set param, initialization failed\n"); 638 return -ENODEV; 639 } 640 641 /* no change required */ 642 if (!strcmp(s, *(char **)kp->arg)) 643 return 0; 644 645 /* if this is load-time (pre-init) param setting, 646 * don't create a pool; that's done during init. 647 */ 648 if (!zswap_init_started) 649 return param_set_charp(s, kp); 650 651 if (!type) { 652 if (!zpool_has_pool(s)) { 653 pr_err("zpool %s not available\n", s); 654 return -ENOENT; 655 } 656 type = s; 657 } else if (!compressor) { 658 if (!crypto_has_comp(s, 0, 0)) { 659 pr_err("compressor %s not available\n", s); 660 return -ENOENT; 661 } 662 compressor = s; 663 } else { 664 WARN_ON(1); 665 return -EINVAL; 666 } 667 668 spin_lock(&zswap_pools_lock); 669 670 pool = zswap_pool_find_get(type, compressor); 671 if (pool) { 672 zswap_pool_debug("using existing", pool); 673 list_del_rcu(&pool->list); 674 } else { 675 spin_unlock(&zswap_pools_lock); 676 pool = zswap_pool_create(type, compressor); 677 spin_lock(&zswap_pools_lock); 678 } 679 680 if (pool) 681 ret = param_set_charp(s, kp); 682 else 683 ret = -EINVAL; 684 685 if (!ret) { 686 put_pool = zswap_pool_current(); 687 list_add_rcu(&pool->list, &zswap_pools); 688 } else if (pool) { 689 /* add the possibly pre-existing pool to the end of the pools 690 * list; if it's new (and empty) then it'll be removed and 691 * destroyed by the put after we drop the lock 692 */ 693 list_add_tail_rcu(&pool->list, &zswap_pools); 694 put_pool = pool; 695 } 696 697 spin_unlock(&zswap_pools_lock); 698 699 /* drop the ref from either the old current pool, 700 * or the new pool we failed to add 701 */ 702 if (put_pool) 703 zswap_pool_put(put_pool); 704 705 return ret; 706 } 707 708 static int zswap_compressor_param_set(const char *val, 709 const struct kernel_param *kp) 710 { 711 return __zswap_param_set(val, kp, zswap_zpool_type, NULL); 712 } 713 714 static int zswap_zpool_param_set(const char *val, 715 const struct kernel_param *kp) 716 { 717 return __zswap_param_set(val, kp, NULL, zswap_compressor); 718 } 719 720 static int zswap_enabled_param_set(const char *val, 721 const struct kernel_param *kp) 722 { 723 if (zswap_init_failed) { 724 pr_err("can't enable, initialization failed\n"); 725 return -ENODEV; 726 } 727 728 return param_set_bool(val, kp); 729 } 730 731 /********************************* 732 * writeback code 733 **********************************/ 734 /* return enum for zswap_get_swap_cache_page */ 735 enum zswap_get_swap_ret { 736 ZSWAP_SWAPCACHE_NEW, 737 ZSWAP_SWAPCACHE_EXIST, 738 ZSWAP_SWAPCACHE_FAIL, 739 }; 740 741 /* 742 * zswap_get_swap_cache_page 743 * 744 * This is an adaption of read_swap_cache_async() 745 * 746 * This function tries to find a page with the given swap entry 747 * in the swapper_space address space (the swap cache). If the page 748 * is found, it is returned in retpage. Otherwise, a page is allocated, 749 * added to the swap cache, and returned in retpage. 750 * 751 * If success, the swap cache page is returned in retpage 752 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache 753 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated, 754 * the new page is added to swapcache and locked 755 * Returns ZSWAP_SWAPCACHE_FAIL on error 756 */ 757 static int zswap_get_swap_cache_page(swp_entry_t entry, 758 struct page **retpage) 759 { 760 bool page_was_allocated; 761 762 *retpage = __read_swap_cache_async(entry, GFP_KERNEL, 763 NULL, 0, &page_was_allocated); 764 if (page_was_allocated) 765 return ZSWAP_SWAPCACHE_NEW; 766 if (!*retpage) 767 return ZSWAP_SWAPCACHE_FAIL; 768 return ZSWAP_SWAPCACHE_EXIST; 769 } 770 771 /* 772 * Attempts to free an entry by adding a page to the swap cache, 773 * decompressing the entry data into the page, and issuing a 774 * bio write to write the page back to the swap device. 775 * 776 * This can be thought of as a "resumed writeback" of the page 777 * to the swap device. We are basically resuming the same swap 778 * writeback path that was intercepted with the frontswap_store() 779 * in the first place. After the page has been decompressed into 780 * the swap cache, the compressed version stored by zswap can be 781 * freed. 782 */ 783 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) 784 { 785 struct zswap_header *zhdr; 786 swp_entry_t swpentry; 787 struct zswap_tree *tree; 788 pgoff_t offset; 789 struct zswap_entry *entry; 790 struct page *page; 791 struct crypto_comp *tfm; 792 u8 *src, *dst; 793 unsigned int dlen; 794 int ret; 795 struct writeback_control wbc = { 796 .sync_mode = WB_SYNC_NONE, 797 }; 798 799 /* extract swpentry from data */ 800 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO); 801 swpentry = zhdr->swpentry; /* here */ 802 zpool_unmap_handle(pool, handle); 803 tree = zswap_trees[swp_type(swpentry)]; 804 offset = swp_offset(swpentry); 805 806 /* find and ref zswap entry */ 807 spin_lock(&tree->lock); 808 entry = zswap_entry_find_get(&tree->rbroot, offset); 809 if (!entry) { 810 /* entry was invalidated */ 811 spin_unlock(&tree->lock); 812 return 0; 813 } 814 spin_unlock(&tree->lock); 815 BUG_ON(offset != entry->offset); 816 817 /* try to allocate swap cache page */ 818 switch (zswap_get_swap_cache_page(swpentry, &page)) { 819 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */ 820 ret = -ENOMEM; 821 goto fail; 822 823 case ZSWAP_SWAPCACHE_EXIST: 824 /* page is already in the swap cache, ignore for now */ 825 put_page(page); 826 ret = -EEXIST; 827 goto fail; 828 829 case ZSWAP_SWAPCACHE_NEW: /* page is locked */ 830 /* decompress */ 831 dlen = PAGE_SIZE; 832 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle, 833 ZPOOL_MM_RO) + sizeof(struct zswap_header); 834 dst = kmap_atomic(page); 835 tfm = *get_cpu_ptr(entry->pool->tfm); 836 ret = crypto_comp_decompress(tfm, src, entry->length, 837 dst, &dlen); 838 put_cpu_ptr(entry->pool->tfm); 839 kunmap_atomic(dst); 840 zpool_unmap_handle(entry->pool->zpool, entry->handle); 841 BUG_ON(ret); 842 BUG_ON(dlen != PAGE_SIZE); 843 844 /* page is up to date */ 845 SetPageUptodate(page); 846 } 847 848 /* move it to the tail of the inactive list after end_writeback */ 849 SetPageReclaim(page); 850 851 /* start writeback */ 852 __swap_writepage(page, &wbc, end_swap_bio_write); 853 put_page(page); 854 zswap_written_back_pages++; 855 856 spin_lock(&tree->lock); 857 /* drop local reference */ 858 zswap_entry_put(tree, entry); 859 860 /* 861 * There are two possible situations for entry here: 862 * (1) refcount is 1(normal case), entry is valid and on the tree 863 * (2) refcount is 0, entry is freed and not on the tree 864 * because invalidate happened during writeback 865 * search the tree and free the entry if find entry 866 */ 867 if (entry == zswap_rb_search(&tree->rbroot, offset)) 868 zswap_entry_put(tree, entry); 869 spin_unlock(&tree->lock); 870 871 goto end; 872 873 /* 874 * if we get here due to ZSWAP_SWAPCACHE_EXIST 875 * a load may happening concurrently 876 * it is safe and okay to not free the entry 877 * if we free the entry in the following put 878 * it it either okay to return !0 879 */ 880 fail: 881 spin_lock(&tree->lock); 882 zswap_entry_put(tree, entry); 883 spin_unlock(&tree->lock); 884 885 end: 886 return ret; 887 } 888 889 static int zswap_shrink(void) 890 { 891 struct zswap_pool *pool; 892 int ret; 893 894 pool = zswap_pool_last_get(); 895 if (!pool) 896 return -ENOENT; 897 898 ret = zpool_shrink(pool->zpool, 1, NULL); 899 900 zswap_pool_put(pool); 901 902 return ret; 903 } 904 905 /********************************* 906 * frontswap hooks 907 **********************************/ 908 /* attempts to compress and store an single page */ 909 static int zswap_frontswap_store(unsigned type, pgoff_t offset, 910 struct page *page) 911 { 912 struct zswap_tree *tree = zswap_trees[type]; 913 struct zswap_entry *entry, *dupentry; 914 struct crypto_comp *tfm; 915 int ret; 916 unsigned int dlen = PAGE_SIZE, len; 917 unsigned long handle; 918 char *buf; 919 u8 *src, *dst; 920 struct zswap_header *zhdr; 921 922 if (!zswap_enabled || !tree) { 923 ret = -ENODEV; 924 goto reject; 925 } 926 927 /* reclaim space if needed */ 928 if (zswap_is_full()) { 929 zswap_pool_limit_hit++; 930 if (zswap_shrink()) { 931 zswap_reject_reclaim_fail++; 932 ret = -ENOMEM; 933 goto reject; 934 } 935 } 936 937 /* allocate entry */ 938 entry = zswap_entry_cache_alloc(GFP_KERNEL); 939 if (!entry) { 940 zswap_reject_kmemcache_fail++; 941 ret = -ENOMEM; 942 goto reject; 943 } 944 945 /* if entry is successfully added, it keeps the reference */ 946 entry->pool = zswap_pool_current_get(); 947 if (!entry->pool) { 948 ret = -EINVAL; 949 goto freepage; 950 } 951 952 /* compress */ 953 dst = get_cpu_var(zswap_dstmem); 954 tfm = *get_cpu_ptr(entry->pool->tfm); 955 src = kmap_atomic(page); 956 ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen); 957 kunmap_atomic(src); 958 put_cpu_ptr(entry->pool->tfm); 959 if (ret) { 960 ret = -EINVAL; 961 goto put_dstmem; 962 } 963 964 /* store */ 965 len = dlen + sizeof(struct zswap_header); 966 ret = zpool_malloc(entry->pool->zpool, len, 967 __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM, 968 &handle); 969 if (ret == -ENOSPC) { 970 zswap_reject_compress_poor++; 971 goto put_dstmem; 972 } 973 if (ret) { 974 zswap_reject_alloc_fail++; 975 goto put_dstmem; 976 } 977 zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW); 978 zhdr->swpentry = swp_entry(type, offset); 979 buf = (u8 *)(zhdr + 1); 980 memcpy(buf, dst, dlen); 981 zpool_unmap_handle(entry->pool->zpool, handle); 982 put_cpu_var(zswap_dstmem); 983 984 /* populate entry */ 985 entry->offset = offset; 986 entry->handle = handle; 987 entry->length = dlen; 988 989 /* map */ 990 spin_lock(&tree->lock); 991 do { 992 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); 993 if (ret == -EEXIST) { 994 zswap_duplicate_entry++; 995 /* remove from rbtree */ 996 zswap_rb_erase(&tree->rbroot, dupentry); 997 zswap_entry_put(tree, dupentry); 998 } 999 } while (ret == -EEXIST); 1000 spin_unlock(&tree->lock); 1001 1002 /* update stats */ 1003 atomic_inc(&zswap_stored_pages); 1004 zswap_update_total_size(); 1005 1006 return 0; 1007 1008 put_dstmem: 1009 put_cpu_var(zswap_dstmem); 1010 zswap_pool_put(entry->pool); 1011 freepage: 1012 zswap_entry_cache_free(entry); 1013 reject: 1014 return ret; 1015 } 1016 1017 /* 1018 * returns 0 if the page was successfully decompressed 1019 * return -1 on entry not found or error 1020 */ 1021 static int zswap_frontswap_load(unsigned type, pgoff_t offset, 1022 struct page *page) 1023 { 1024 struct zswap_tree *tree = zswap_trees[type]; 1025 struct zswap_entry *entry; 1026 struct crypto_comp *tfm; 1027 u8 *src, *dst; 1028 unsigned int dlen; 1029 int ret; 1030 1031 /* find */ 1032 spin_lock(&tree->lock); 1033 entry = zswap_entry_find_get(&tree->rbroot, offset); 1034 if (!entry) { 1035 /* entry was written back */ 1036 spin_unlock(&tree->lock); 1037 return -1; 1038 } 1039 spin_unlock(&tree->lock); 1040 1041 /* decompress */ 1042 dlen = PAGE_SIZE; 1043 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle, 1044 ZPOOL_MM_RO) + sizeof(struct zswap_header); 1045 dst = kmap_atomic(page); 1046 tfm = *get_cpu_ptr(entry->pool->tfm); 1047 ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen); 1048 put_cpu_ptr(entry->pool->tfm); 1049 kunmap_atomic(dst); 1050 zpool_unmap_handle(entry->pool->zpool, entry->handle); 1051 BUG_ON(ret); 1052 1053 spin_lock(&tree->lock); 1054 zswap_entry_put(tree, entry); 1055 spin_unlock(&tree->lock); 1056 1057 return 0; 1058 } 1059 1060 /* frees an entry in zswap */ 1061 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) 1062 { 1063 struct zswap_tree *tree = zswap_trees[type]; 1064 struct zswap_entry *entry; 1065 1066 /* find */ 1067 spin_lock(&tree->lock); 1068 entry = zswap_rb_search(&tree->rbroot, offset); 1069 if (!entry) { 1070 /* entry was written back */ 1071 spin_unlock(&tree->lock); 1072 return; 1073 } 1074 1075 /* remove from rbtree */ 1076 zswap_rb_erase(&tree->rbroot, entry); 1077 1078 /* drop the initial reference from entry creation */ 1079 zswap_entry_put(tree, entry); 1080 1081 spin_unlock(&tree->lock); 1082 } 1083 1084 /* frees all zswap entries for the given swap type */ 1085 static void zswap_frontswap_invalidate_area(unsigned type) 1086 { 1087 struct zswap_tree *tree = zswap_trees[type]; 1088 struct zswap_entry *entry, *n; 1089 1090 if (!tree) 1091 return; 1092 1093 /* walk the tree and free everything */ 1094 spin_lock(&tree->lock); 1095 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) 1096 zswap_free_entry(entry); 1097 tree->rbroot = RB_ROOT; 1098 spin_unlock(&tree->lock); 1099 kfree(tree); 1100 zswap_trees[type] = NULL; 1101 } 1102 1103 static void zswap_frontswap_init(unsigned type) 1104 { 1105 struct zswap_tree *tree; 1106 1107 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); 1108 if (!tree) { 1109 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1110 return; 1111 } 1112 1113 tree->rbroot = RB_ROOT; 1114 spin_lock_init(&tree->lock); 1115 zswap_trees[type] = tree; 1116 } 1117 1118 static struct frontswap_ops zswap_frontswap_ops = { 1119 .store = zswap_frontswap_store, 1120 .load = zswap_frontswap_load, 1121 .invalidate_page = zswap_frontswap_invalidate_page, 1122 .invalidate_area = zswap_frontswap_invalidate_area, 1123 .init = zswap_frontswap_init 1124 }; 1125 1126 /********************************* 1127 * debugfs functions 1128 **********************************/ 1129 #ifdef CONFIG_DEBUG_FS 1130 #include <linux/debugfs.h> 1131 1132 static struct dentry *zswap_debugfs_root; 1133 1134 static int __init zswap_debugfs_init(void) 1135 { 1136 if (!debugfs_initialized()) 1137 return -ENODEV; 1138 1139 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1140 if (!zswap_debugfs_root) 1141 return -ENOMEM; 1142 1143 debugfs_create_u64("pool_limit_hit", S_IRUGO, 1144 zswap_debugfs_root, &zswap_pool_limit_hit); 1145 debugfs_create_u64("reject_reclaim_fail", S_IRUGO, 1146 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1147 debugfs_create_u64("reject_alloc_fail", S_IRUGO, 1148 zswap_debugfs_root, &zswap_reject_alloc_fail); 1149 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, 1150 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1151 debugfs_create_u64("reject_compress_poor", S_IRUGO, 1152 zswap_debugfs_root, &zswap_reject_compress_poor); 1153 debugfs_create_u64("written_back_pages", S_IRUGO, 1154 zswap_debugfs_root, &zswap_written_back_pages); 1155 debugfs_create_u64("duplicate_entry", S_IRUGO, 1156 zswap_debugfs_root, &zswap_duplicate_entry); 1157 debugfs_create_u64("pool_total_size", S_IRUGO, 1158 zswap_debugfs_root, &zswap_pool_total_size); 1159 debugfs_create_atomic_t("stored_pages", S_IRUGO, 1160 zswap_debugfs_root, &zswap_stored_pages); 1161 1162 return 0; 1163 } 1164 1165 static void __exit zswap_debugfs_exit(void) 1166 { 1167 debugfs_remove_recursive(zswap_debugfs_root); 1168 } 1169 #else 1170 static int __init zswap_debugfs_init(void) 1171 { 1172 return 0; 1173 } 1174 1175 static void __exit zswap_debugfs_exit(void) { } 1176 #endif 1177 1178 /********************************* 1179 * module init and exit 1180 **********************************/ 1181 static int __init init_zswap(void) 1182 { 1183 struct zswap_pool *pool; 1184 int ret; 1185 1186 zswap_init_started = true; 1187 1188 if (zswap_entry_cache_create()) { 1189 pr_err("entry cache creation failed\n"); 1190 goto cache_fail; 1191 } 1192 1193 ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare", 1194 zswap_dstmem_prepare, zswap_dstmem_dead); 1195 if (ret) { 1196 pr_err("dstmem alloc failed\n"); 1197 goto dstmem_fail; 1198 } 1199 1200 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, 1201 "mm/zswap_pool:prepare", 1202 zswap_cpu_comp_prepare, 1203 zswap_cpu_comp_dead); 1204 if (ret) 1205 goto hp_fail; 1206 1207 pool = __zswap_pool_create_fallback(); 1208 if (!pool) { 1209 pr_err("pool creation failed\n"); 1210 goto pool_fail; 1211 } 1212 pr_info("loaded using pool %s/%s\n", pool->tfm_name, 1213 zpool_get_type(pool->zpool)); 1214 1215 list_add(&pool->list, &zswap_pools); 1216 1217 frontswap_register_ops(&zswap_frontswap_ops); 1218 if (zswap_debugfs_init()) 1219 pr_warn("debugfs initialization failed\n"); 1220 return 0; 1221 1222 pool_fail: 1223 cpuhp_remove_state_nocalls(CPUHP_MM_ZSWP_POOL_PREPARE); 1224 hp_fail: 1225 cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE); 1226 dstmem_fail: 1227 zswap_entry_cache_destroy(); 1228 cache_fail: 1229 /* if built-in, we aren't unloaded on failure; don't allow use */ 1230 zswap_init_failed = true; 1231 zswap_enabled = false; 1232 return -ENOMEM; 1233 } 1234 /* must be late so crypto has time to come up */ 1235 late_initcall(init_zswap); 1236 1237 MODULE_LICENSE("GPL"); 1238 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1239 MODULE_DESCRIPTION("Compressed cache for swap pages"); 1240