xref: /linux/mm/zswap.c (revision a97f9c8fcc6ed16f956346368fde3b1198163f6c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 #include <linux/list_lru.h>
39 
40 #include "swap.h"
41 #include "internal.h"
42 
43 /*********************************
44 * statistics
45 **********************************/
46 /* Total bytes used by the compressed storage */
47 u64 zswap_pool_total_size;
48 /* The number of compressed pages currently stored in zswap */
49 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50 /* The number of same-value filled pages currently stored in zswap */
51 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52 
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59 
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Store failed due to compression algorithm failure */
67 static u64 zswap_reject_compress_fail;
68 /* Compressed page was too big for the allocator to (optimally) store */
69 static u64 zswap_reject_compress_poor;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
74 /* Duplicate store was encountered (rare) */
75 static u64 zswap_duplicate_entry;
76 
77 /* Shrinker work queue */
78 static struct workqueue_struct *shrink_wq;
79 /* Pool limit was hit, we need to calm down */
80 static bool zswap_pool_reached_full;
81 
82 /*********************************
83 * tunables
84 **********************************/
85 
86 #define ZSWAP_PARAM_UNSET ""
87 
88 static int zswap_setup(void);
89 
90 /* Enable/disable zswap */
91 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
92 static int zswap_enabled_param_set(const char *,
93 				   const struct kernel_param *);
94 static const struct kernel_param_ops zswap_enabled_param_ops = {
95 	.set =		zswap_enabled_param_set,
96 	.get =		param_get_bool,
97 };
98 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
99 
100 /* Crypto compressor to use */
101 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
102 static int zswap_compressor_param_set(const char *,
103 				      const struct kernel_param *);
104 static const struct kernel_param_ops zswap_compressor_param_ops = {
105 	.set =		zswap_compressor_param_set,
106 	.get =		param_get_charp,
107 	.free =		param_free_charp,
108 };
109 module_param_cb(compressor, &zswap_compressor_param_ops,
110 		&zswap_compressor, 0644);
111 
112 /* Compressed storage zpool to use */
113 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
114 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
115 static const struct kernel_param_ops zswap_zpool_param_ops = {
116 	.set =		zswap_zpool_param_set,
117 	.get =		param_get_charp,
118 	.free =		param_free_charp,
119 };
120 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
121 
122 /* The maximum percentage of memory that the compressed pool can occupy */
123 static unsigned int zswap_max_pool_percent = 20;
124 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
125 
126 /* The threshold for accepting new pages after the max_pool_percent was hit */
127 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
128 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
129 		   uint, 0644);
130 
131 /*
132  * Enable/disable handling same-value filled pages (enabled by default).
133  * If disabled every page is considered non-same-value filled.
134  */
135 static bool zswap_same_filled_pages_enabled = true;
136 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
137 		   bool, 0644);
138 
139 /* Enable/disable handling non-same-value filled pages (enabled by default) */
140 static bool zswap_non_same_filled_pages_enabled = true;
141 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
142 		   bool, 0644);
143 
144 static bool zswap_exclusive_loads_enabled = IS_ENABLED(
145 		CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
146 module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
147 
148 /* Number of zpools in zswap_pool (empirically determined for scalability) */
149 #define ZSWAP_NR_ZPOOLS 32
150 
151 /* Enable/disable memory pressure-based shrinker. */
152 static bool zswap_shrinker_enabled = IS_ENABLED(
153 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
154 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
155 
156 bool is_zswap_enabled(void)
157 {
158 	return zswap_enabled;
159 }
160 
161 /*********************************
162 * data structures
163 **********************************/
164 
165 struct crypto_acomp_ctx {
166 	struct crypto_acomp *acomp;
167 	struct acomp_req *req;
168 	struct crypto_wait wait;
169 	u8 *buffer;
170 	struct mutex mutex;
171 };
172 
173 /*
174  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
175  * The only case where lru_lock is not acquired while holding tree.lock is
176  * when a zswap_entry is taken off the lru for writeback, in that case it
177  * needs to be verified that it's still valid in the tree.
178  */
179 struct zswap_pool {
180 	struct zpool *zpools[ZSWAP_NR_ZPOOLS];
181 	struct crypto_acomp_ctx __percpu *acomp_ctx;
182 	struct kref kref;
183 	struct list_head list;
184 	struct work_struct release_work;
185 	struct work_struct shrink_work;
186 	struct hlist_node node;
187 	char tfm_name[CRYPTO_MAX_ALG_NAME];
188 	struct list_lru list_lru;
189 	struct mem_cgroup *next_shrink;
190 	struct shrinker *shrinker;
191 	atomic_t nr_stored;
192 };
193 
194 /*
195  * struct zswap_entry
196  *
197  * This structure contains the metadata for tracking a single compressed
198  * page within zswap.
199  *
200  * rbnode - links the entry into red-black tree for the appropriate swap type
201  * swpentry - associated swap entry, the offset indexes into the red-black tree
202  * refcount - the number of outstanding reference to the entry. This is needed
203  *            to protect against premature freeing of the entry by code
204  *            concurrent calls to load, invalidate, and writeback.  The lock
205  *            for the zswap_tree structure that contains the entry must
206  *            be held while changing the refcount.  Since the lock must
207  *            be held, there is no reason to also make refcount atomic.
208  * length - the length in bytes of the compressed page data.  Needed during
209  *          decompression. For a same value filled page length is 0, and both
210  *          pool and lru are invalid and must be ignored.
211  * pool - the zswap_pool the entry's data is in
212  * handle - zpool allocation handle that stores the compressed page data
213  * value - value of the same-value filled pages which have same content
214  * objcg - the obj_cgroup that the compressed memory is charged to
215  * lru - handle to the pool's lru used to evict pages.
216  */
217 struct zswap_entry {
218 	struct rb_node rbnode;
219 	swp_entry_t swpentry;
220 	int refcount;
221 	unsigned int length;
222 	struct zswap_pool *pool;
223 	union {
224 		unsigned long handle;
225 		unsigned long value;
226 	};
227 	struct obj_cgroup *objcg;
228 	struct list_head lru;
229 };
230 
231 /*
232  * The tree lock in the zswap_tree struct protects a few things:
233  * - the rbtree
234  * - the refcount field of each entry in the tree
235  */
236 struct zswap_tree {
237 	struct rb_root rbroot;
238 	spinlock_t lock;
239 };
240 
241 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
242 
243 /* RCU-protected iteration */
244 static LIST_HEAD(zswap_pools);
245 /* protects zswap_pools list modification */
246 static DEFINE_SPINLOCK(zswap_pools_lock);
247 /* pool counter to provide unique names to zpool */
248 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
249 
250 enum zswap_init_type {
251 	ZSWAP_UNINIT,
252 	ZSWAP_INIT_SUCCEED,
253 	ZSWAP_INIT_FAILED
254 };
255 
256 static enum zswap_init_type zswap_init_state;
257 
258 /* used to ensure the integrity of initialization */
259 static DEFINE_MUTEX(zswap_init_lock);
260 
261 /* init completed, but couldn't create the initial pool */
262 static bool zswap_has_pool;
263 
264 /*********************************
265 * helpers and fwd declarations
266 **********************************/
267 
268 #define zswap_pool_debug(msg, p)				\
269 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
270 		 zpool_get_type((p)->zpools[0]))
271 
272 static int zswap_writeback_entry(struct zswap_entry *entry,
273 				 struct zswap_tree *tree);
274 static int zswap_pool_get(struct zswap_pool *pool);
275 static void zswap_pool_put(struct zswap_pool *pool);
276 
277 static bool zswap_is_full(void)
278 {
279 	return totalram_pages() * zswap_max_pool_percent / 100 <
280 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
281 }
282 
283 static bool zswap_can_accept(void)
284 {
285 	return totalram_pages() * zswap_accept_thr_percent / 100 *
286 				zswap_max_pool_percent / 100 >
287 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
288 }
289 
290 static u64 get_zswap_pool_size(struct zswap_pool *pool)
291 {
292 	u64 pool_size = 0;
293 	int i;
294 
295 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
296 		pool_size += zpool_get_total_size(pool->zpools[i]);
297 
298 	return pool_size;
299 }
300 
301 static void zswap_update_total_size(void)
302 {
303 	struct zswap_pool *pool;
304 	u64 total = 0;
305 
306 	rcu_read_lock();
307 
308 	list_for_each_entry_rcu(pool, &zswap_pools, list)
309 		total += get_zswap_pool_size(pool);
310 
311 	rcu_read_unlock();
312 
313 	zswap_pool_total_size = total;
314 }
315 
316 /* should be called under RCU */
317 #ifdef CONFIG_MEMCG
318 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
319 {
320 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
321 }
322 #else
323 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
324 {
325 	return NULL;
326 }
327 #endif
328 
329 static inline int entry_to_nid(struct zswap_entry *entry)
330 {
331 	return page_to_nid(virt_to_page(entry));
332 }
333 
334 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
335 {
336 	struct zswap_pool *pool;
337 
338 	/* lock out zswap pools list modification */
339 	spin_lock(&zswap_pools_lock);
340 	list_for_each_entry(pool, &zswap_pools, list) {
341 		if (pool->next_shrink == memcg)
342 			pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
343 	}
344 	spin_unlock(&zswap_pools_lock);
345 }
346 
347 /*********************************
348 * zswap entry functions
349 **********************************/
350 static struct kmem_cache *zswap_entry_cache;
351 
352 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
353 {
354 	struct zswap_entry *entry;
355 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
356 	if (!entry)
357 		return NULL;
358 	entry->refcount = 1;
359 	RB_CLEAR_NODE(&entry->rbnode);
360 	return entry;
361 }
362 
363 static void zswap_entry_cache_free(struct zswap_entry *entry)
364 {
365 	kmem_cache_free(zswap_entry_cache, entry);
366 }
367 
368 /*********************************
369 * zswap lruvec functions
370 **********************************/
371 void zswap_lruvec_state_init(struct lruvec *lruvec)
372 {
373 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
374 }
375 
376 void zswap_folio_swapin(struct folio *folio)
377 {
378 	struct lruvec *lruvec;
379 
380 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
381 	lruvec = folio_lruvec(folio);
382 	atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
383 }
384 
385 /*********************************
386 * lru functions
387 **********************************/
388 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
389 {
390 	atomic_long_t *nr_zswap_protected;
391 	unsigned long lru_size, old, new;
392 	int nid = entry_to_nid(entry);
393 	struct mem_cgroup *memcg;
394 	struct lruvec *lruvec;
395 
396 	/*
397 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
398 	 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
399 	 * used in list_lru lookup, only two scenarios are possible:
400 	 *
401 	 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
402 	 *    new entry will be reparented to memcg's parent's list_lru.
403 	 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
404 	 *    new entry will be added directly to memcg's parent's list_lru.
405 	 *
406 	 * Similar reasoning holds for list_lru_del() and list_lru_putback().
407 	 */
408 	rcu_read_lock();
409 	memcg = mem_cgroup_from_entry(entry);
410 	/* will always succeed */
411 	list_lru_add(list_lru, &entry->lru, nid, memcg);
412 
413 	/* Update the protection area */
414 	lru_size = list_lru_count_one(list_lru, nid, memcg);
415 	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
416 	nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
417 	old = atomic_long_inc_return(nr_zswap_protected);
418 	/*
419 	 * Decay to avoid overflow and adapt to changing workloads.
420 	 * This is based on LRU reclaim cost decaying heuristics.
421 	 */
422 	do {
423 		new = old > lru_size / 4 ? old / 2 : old;
424 	} while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
425 	rcu_read_unlock();
426 }
427 
428 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
429 {
430 	int nid = entry_to_nid(entry);
431 	struct mem_cgroup *memcg;
432 
433 	rcu_read_lock();
434 	memcg = mem_cgroup_from_entry(entry);
435 	/* will always succeed */
436 	list_lru_del(list_lru, &entry->lru, nid, memcg);
437 	rcu_read_unlock();
438 }
439 
440 static void zswap_lru_putback(struct list_lru *list_lru,
441 		struct zswap_entry *entry)
442 {
443 	int nid = entry_to_nid(entry);
444 	spinlock_t *lock = &list_lru->node[nid].lock;
445 	struct mem_cgroup *memcg;
446 	struct lruvec *lruvec;
447 
448 	rcu_read_lock();
449 	memcg = mem_cgroup_from_entry(entry);
450 	spin_lock(lock);
451 	/* we cannot use list_lru_add here, because it increments node's lru count */
452 	list_lru_putback(list_lru, &entry->lru, nid, memcg);
453 	spin_unlock(lock);
454 
455 	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
456 	/* increment the protection area to account for the LRU rotation. */
457 	atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
458 	rcu_read_unlock();
459 }
460 
461 /*********************************
462 * rbtree functions
463 **********************************/
464 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
465 {
466 	struct rb_node *node = root->rb_node;
467 	struct zswap_entry *entry;
468 	pgoff_t entry_offset;
469 
470 	while (node) {
471 		entry = rb_entry(node, struct zswap_entry, rbnode);
472 		entry_offset = swp_offset(entry->swpentry);
473 		if (entry_offset > offset)
474 			node = node->rb_left;
475 		else if (entry_offset < offset)
476 			node = node->rb_right;
477 		else
478 			return entry;
479 	}
480 	return NULL;
481 }
482 
483 /*
484  * In the case that a entry with the same offset is found, a pointer to
485  * the existing entry is stored in dupentry and the function returns -EEXIST
486  */
487 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
488 			struct zswap_entry **dupentry)
489 {
490 	struct rb_node **link = &root->rb_node, *parent = NULL;
491 	struct zswap_entry *myentry;
492 	pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
493 
494 	while (*link) {
495 		parent = *link;
496 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
497 		myentry_offset = swp_offset(myentry->swpentry);
498 		if (myentry_offset > entry_offset)
499 			link = &(*link)->rb_left;
500 		else if (myentry_offset < entry_offset)
501 			link = &(*link)->rb_right;
502 		else {
503 			*dupentry = myentry;
504 			return -EEXIST;
505 		}
506 	}
507 	rb_link_node(&entry->rbnode, parent, link);
508 	rb_insert_color(&entry->rbnode, root);
509 	return 0;
510 }
511 
512 static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
513 {
514 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
515 		rb_erase(&entry->rbnode, root);
516 		RB_CLEAR_NODE(&entry->rbnode);
517 		return true;
518 	}
519 	return false;
520 }
521 
522 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
523 {
524 	int i = 0;
525 
526 	if (ZSWAP_NR_ZPOOLS > 1)
527 		i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
528 
529 	return entry->pool->zpools[i];
530 }
531 
532 /*
533  * Carries out the common pattern of freeing and entry's zpool allocation,
534  * freeing the entry itself, and decrementing the number of stored pages.
535  */
536 static void zswap_free_entry(struct zswap_entry *entry)
537 {
538 	if (!entry->length)
539 		atomic_dec(&zswap_same_filled_pages);
540 	else {
541 		zswap_lru_del(&entry->pool->list_lru, entry);
542 		zpool_free(zswap_find_zpool(entry), entry->handle);
543 		atomic_dec(&entry->pool->nr_stored);
544 		zswap_pool_put(entry->pool);
545 	}
546 	if (entry->objcg) {
547 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
548 		obj_cgroup_put(entry->objcg);
549 	}
550 	zswap_entry_cache_free(entry);
551 	atomic_dec(&zswap_stored_pages);
552 	zswap_update_total_size();
553 }
554 
555 /* caller must hold the tree lock */
556 static void zswap_entry_get(struct zswap_entry *entry)
557 {
558 	entry->refcount++;
559 }
560 
561 /* caller must hold the tree lock
562 * remove from the tree and free it, if nobody reference the entry
563 */
564 static void zswap_entry_put(struct zswap_tree *tree,
565 			struct zswap_entry *entry)
566 {
567 	int refcount = --entry->refcount;
568 
569 	WARN_ON_ONCE(refcount < 0);
570 	if (refcount == 0) {
571 		WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
572 		zswap_free_entry(entry);
573 	}
574 }
575 
576 /* caller must hold the tree lock */
577 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
578 				pgoff_t offset)
579 {
580 	struct zswap_entry *entry;
581 
582 	entry = zswap_rb_search(root, offset);
583 	if (entry)
584 		zswap_entry_get(entry);
585 
586 	return entry;
587 }
588 
589 /*********************************
590 * shrinker functions
591 **********************************/
592 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
593 				       spinlock_t *lock, void *arg);
594 
595 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
596 		struct shrink_control *sc)
597 {
598 	struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
599 	unsigned long shrink_ret, nr_protected, lru_size;
600 	struct zswap_pool *pool = shrinker->private_data;
601 	bool encountered_page_in_swapcache = false;
602 
603 	if (!zswap_shrinker_enabled ||
604 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
605 		sc->nr_scanned = 0;
606 		return SHRINK_STOP;
607 	}
608 
609 	nr_protected =
610 		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
611 	lru_size = list_lru_shrink_count(&pool->list_lru, sc);
612 
613 	/*
614 	 * Abort if we are shrinking into the protected region.
615 	 *
616 	 * This short-circuiting is necessary because if we have too many multiple
617 	 * concurrent reclaimers getting the freeable zswap object counts at the
618 	 * same time (before any of them made reasonable progress), the total
619 	 * number of reclaimed objects might be more than the number of unprotected
620 	 * objects (i.e the reclaimers will reclaim into the protected area of the
621 	 * zswap LRU).
622 	 */
623 	if (nr_protected >= lru_size - sc->nr_to_scan) {
624 		sc->nr_scanned = 0;
625 		return SHRINK_STOP;
626 	}
627 
628 	shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
629 		&encountered_page_in_swapcache);
630 
631 	if (encountered_page_in_swapcache)
632 		return SHRINK_STOP;
633 
634 	return shrink_ret ? shrink_ret : SHRINK_STOP;
635 }
636 
637 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
638 		struct shrink_control *sc)
639 {
640 	struct zswap_pool *pool = shrinker->private_data;
641 	struct mem_cgroup *memcg = sc->memcg;
642 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
643 	unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
644 
645 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
646 		return 0;
647 
648 #ifdef CONFIG_MEMCG_KMEM
649 	mem_cgroup_flush_stats(memcg);
650 	nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
651 	nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
652 #else
653 	/* use pool stats instead of memcg stats */
654 	nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
655 	nr_stored = atomic_read(&pool->nr_stored);
656 #endif
657 
658 	if (!nr_stored)
659 		return 0;
660 
661 	nr_protected =
662 		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
663 	nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
664 	/*
665 	 * Subtract the lru size by an estimate of the number of pages
666 	 * that should be protected.
667 	 */
668 	nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
669 
670 	/*
671 	 * Scale the number of freeable pages by the memory saving factor.
672 	 * This ensures that the better zswap compresses memory, the fewer
673 	 * pages we will evict to swap (as it will otherwise incur IO for
674 	 * relatively small memory saving).
675 	 */
676 	return mult_frac(nr_freeable, nr_backing, nr_stored);
677 }
678 
679 static void zswap_alloc_shrinker(struct zswap_pool *pool)
680 {
681 	pool->shrinker =
682 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
683 	if (!pool->shrinker)
684 		return;
685 
686 	pool->shrinker->private_data = pool;
687 	pool->shrinker->scan_objects = zswap_shrinker_scan;
688 	pool->shrinker->count_objects = zswap_shrinker_count;
689 	pool->shrinker->batch = 0;
690 	pool->shrinker->seeks = DEFAULT_SEEKS;
691 }
692 
693 /*********************************
694 * per-cpu code
695 **********************************/
696 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
697 {
698 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
699 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
700 	struct crypto_acomp *acomp;
701 	struct acomp_req *req;
702 	int ret;
703 
704 	mutex_init(&acomp_ctx->mutex);
705 
706 	acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
707 	if (!acomp_ctx->buffer)
708 		return -ENOMEM;
709 
710 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
711 	if (IS_ERR(acomp)) {
712 		pr_err("could not alloc crypto acomp %s : %ld\n",
713 				pool->tfm_name, PTR_ERR(acomp));
714 		ret = PTR_ERR(acomp);
715 		goto acomp_fail;
716 	}
717 	acomp_ctx->acomp = acomp;
718 
719 	req = acomp_request_alloc(acomp_ctx->acomp);
720 	if (!req) {
721 		pr_err("could not alloc crypto acomp_request %s\n",
722 		       pool->tfm_name);
723 		ret = -ENOMEM;
724 		goto req_fail;
725 	}
726 	acomp_ctx->req = req;
727 
728 	crypto_init_wait(&acomp_ctx->wait);
729 	/*
730 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
731 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
732 	 * won't be called, crypto_wait_req() will return without blocking.
733 	 */
734 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
735 				   crypto_req_done, &acomp_ctx->wait);
736 
737 	return 0;
738 
739 req_fail:
740 	crypto_free_acomp(acomp_ctx->acomp);
741 acomp_fail:
742 	kfree(acomp_ctx->buffer);
743 	return ret;
744 }
745 
746 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
747 {
748 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
749 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
750 
751 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
752 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
753 			acomp_request_free(acomp_ctx->req);
754 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
755 			crypto_free_acomp(acomp_ctx->acomp);
756 		kfree(acomp_ctx->buffer);
757 	}
758 
759 	return 0;
760 }
761 
762 /*********************************
763 * pool functions
764 **********************************/
765 
766 static struct zswap_pool *__zswap_pool_current(void)
767 {
768 	struct zswap_pool *pool;
769 
770 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
771 	WARN_ONCE(!pool && zswap_has_pool,
772 		  "%s: no page storage pool!\n", __func__);
773 
774 	return pool;
775 }
776 
777 static struct zswap_pool *zswap_pool_current(void)
778 {
779 	assert_spin_locked(&zswap_pools_lock);
780 
781 	return __zswap_pool_current();
782 }
783 
784 static struct zswap_pool *zswap_pool_current_get(void)
785 {
786 	struct zswap_pool *pool;
787 
788 	rcu_read_lock();
789 
790 	pool = __zswap_pool_current();
791 	if (!zswap_pool_get(pool))
792 		pool = NULL;
793 
794 	rcu_read_unlock();
795 
796 	return pool;
797 }
798 
799 static struct zswap_pool *zswap_pool_last_get(void)
800 {
801 	struct zswap_pool *pool, *last = NULL;
802 
803 	rcu_read_lock();
804 
805 	list_for_each_entry_rcu(pool, &zswap_pools, list)
806 		last = pool;
807 	WARN_ONCE(!last && zswap_has_pool,
808 		  "%s: no page storage pool!\n", __func__);
809 	if (!zswap_pool_get(last))
810 		last = NULL;
811 
812 	rcu_read_unlock();
813 
814 	return last;
815 }
816 
817 /* type and compressor must be null-terminated */
818 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
819 {
820 	struct zswap_pool *pool;
821 
822 	assert_spin_locked(&zswap_pools_lock);
823 
824 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
825 		if (strcmp(pool->tfm_name, compressor))
826 			continue;
827 		/* all zpools share the same type */
828 		if (strcmp(zpool_get_type(pool->zpools[0]), type))
829 			continue;
830 		/* if we can't get it, it's about to be destroyed */
831 		if (!zswap_pool_get(pool))
832 			continue;
833 		return pool;
834 	}
835 
836 	return NULL;
837 }
838 
839 /*
840  * If the entry is still valid in the tree, drop the initial ref and remove it
841  * from the tree. This function must be called with an additional ref held,
842  * otherwise it may race with another invalidation freeing the entry.
843  */
844 static void zswap_invalidate_entry(struct zswap_tree *tree,
845 				   struct zswap_entry *entry)
846 {
847 	if (zswap_rb_erase(&tree->rbroot, entry))
848 		zswap_entry_put(tree, entry);
849 }
850 
851 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
852 				       spinlock_t *lock, void *arg)
853 {
854 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
855 	bool *encountered_page_in_swapcache = (bool *)arg;
856 	struct zswap_tree *tree;
857 	pgoff_t swpoffset;
858 	enum lru_status ret = LRU_REMOVED_RETRY;
859 	int writeback_result;
860 
861 	/*
862 	 * Once the lru lock is dropped, the entry might get freed. The
863 	 * swpoffset is copied to the stack, and entry isn't deref'd again
864 	 * until the entry is verified to still be alive in the tree.
865 	 */
866 	swpoffset = swp_offset(entry->swpentry);
867 	tree = zswap_trees[swp_type(entry->swpentry)];
868 	list_lru_isolate(l, item);
869 	/*
870 	 * It's safe to drop the lock here because we return either
871 	 * LRU_REMOVED_RETRY or LRU_RETRY.
872 	 */
873 	spin_unlock(lock);
874 
875 	/* Check for invalidate() race */
876 	spin_lock(&tree->lock);
877 	if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
878 		goto unlock;
879 
880 	/* Hold a reference to prevent a free during writeback */
881 	zswap_entry_get(entry);
882 	spin_unlock(&tree->lock);
883 
884 	writeback_result = zswap_writeback_entry(entry, tree);
885 
886 	spin_lock(&tree->lock);
887 	if (writeback_result) {
888 		zswap_reject_reclaim_fail++;
889 		zswap_lru_putback(&entry->pool->list_lru, entry);
890 		ret = LRU_RETRY;
891 
892 		/*
893 		 * Encountering a page already in swap cache is a sign that we are shrinking
894 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
895 		 * shrinker context).
896 		 */
897 		if (writeback_result == -EEXIST && encountered_page_in_swapcache)
898 			*encountered_page_in_swapcache = true;
899 
900 		goto put_unlock;
901 	}
902 	zswap_written_back_pages++;
903 
904 	if (entry->objcg)
905 		count_objcg_event(entry->objcg, ZSWPWB);
906 
907 	count_vm_event(ZSWPWB);
908 	/*
909 	 * Writeback started successfully, the page now belongs to the
910 	 * swapcache. Drop the entry from zswap - unless invalidate already
911 	 * took it out while we had the tree->lock released for IO.
912 	 */
913 	zswap_invalidate_entry(tree, entry);
914 
915 put_unlock:
916 	/* Drop local reference */
917 	zswap_entry_put(tree, entry);
918 unlock:
919 	spin_unlock(&tree->lock);
920 	spin_lock(lock);
921 	return ret;
922 }
923 
924 static int shrink_memcg(struct mem_cgroup *memcg)
925 {
926 	struct zswap_pool *pool;
927 	int nid, shrunk = 0;
928 
929 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
930 		return -EINVAL;
931 
932 	/*
933 	 * Skip zombies because their LRUs are reparented and we would be
934 	 * reclaiming from the parent instead of the dead memcg.
935 	 */
936 	if (memcg && !mem_cgroup_online(memcg))
937 		return -ENOENT;
938 
939 	pool = zswap_pool_current_get();
940 	if (!pool)
941 		return -EINVAL;
942 
943 	for_each_node_state(nid, N_NORMAL_MEMORY) {
944 		unsigned long nr_to_walk = 1;
945 
946 		shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
947 					    &shrink_memcg_cb, NULL, &nr_to_walk);
948 	}
949 	zswap_pool_put(pool);
950 	return shrunk ? 0 : -EAGAIN;
951 }
952 
953 static void shrink_worker(struct work_struct *w)
954 {
955 	struct zswap_pool *pool = container_of(w, typeof(*pool),
956 						shrink_work);
957 	struct mem_cgroup *memcg;
958 	int ret, failures = 0;
959 
960 	/* global reclaim will select cgroup in a round-robin fashion. */
961 	do {
962 		spin_lock(&zswap_pools_lock);
963 		pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
964 		memcg = pool->next_shrink;
965 
966 		/*
967 		 * We need to retry if we have gone through a full round trip, or if we
968 		 * got an offline memcg (or else we risk undoing the effect of the
969 		 * zswap memcg offlining cleanup callback). This is not catastrophic
970 		 * per se, but it will keep the now offlined memcg hostage for a while.
971 		 *
972 		 * Note that if we got an online memcg, we will keep the extra
973 		 * reference in case the original reference obtained by mem_cgroup_iter
974 		 * is dropped by the zswap memcg offlining callback, ensuring that the
975 		 * memcg is not killed when we are reclaiming.
976 		 */
977 		if (!memcg) {
978 			spin_unlock(&zswap_pools_lock);
979 			if (++failures == MAX_RECLAIM_RETRIES)
980 				break;
981 
982 			goto resched;
983 		}
984 
985 		if (!mem_cgroup_tryget_online(memcg)) {
986 			/* drop the reference from mem_cgroup_iter() */
987 			mem_cgroup_iter_break(NULL, memcg);
988 			pool->next_shrink = NULL;
989 			spin_unlock(&zswap_pools_lock);
990 
991 			if (++failures == MAX_RECLAIM_RETRIES)
992 				break;
993 
994 			goto resched;
995 		}
996 		spin_unlock(&zswap_pools_lock);
997 
998 		ret = shrink_memcg(memcg);
999 		/* drop the extra reference */
1000 		mem_cgroup_put(memcg);
1001 
1002 		if (ret == -EINVAL)
1003 			break;
1004 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1005 			break;
1006 
1007 resched:
1008 		cond_resched();
1009 	} while (!zswap_can_accept());
1010 	zswap_pool_put(pool);
1011 }
1012 
1013 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
1014 {
1015 	int i;
1016 	struct zswap_pool *pool;
1017 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
1018 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1019 	int ret;
1020 
1021 	if (!zswap_has_pool) {
1022 		/* if either are unset, pool initialization failed, and we
1023 		 * need both params to be set correctly before trying to
1024 		 * create a pool.
1025 		 */
1026 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
1027 			return NULL;
1028 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
1029 			return NULL;
1030 	}
1031 
1032 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1033 	if (!pool)
1034 		return NULL;
1035 
1036 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
1037 		/* unique name for each pool specifically required by zsmalloc */
1038 		snprintf(name, 38, "zswap%x",
1039 			 atomic_inc_return(&zswap_pools_count));
1040 
1041 		pool->zpools[i] = zpool_create_pool(type, name, gfp);
1042 		if (!pool->zpools[i]) {
1043 			pr_err("%s zpool not available\n", type);
1044 			goto error;
1045 		}
1046 	}
1047 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
1048 
1049 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
1050 
1051 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
1052 	if (!pool->acomp_ctx) {
1053 		pr_err("percpu alloc failed\n");
1054 		goto error;
1055 	}
1056 
1057 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
1058 				       &pool->node);
1059 	if (ret)
1060 		goto error;
1061 
1062 	zswap_alloc_shrinker(pool);
1063 	if (!pool->shrinker)
1064 		goto error;
1065 
1066 	pr_debug("using %s compressor\n", pool->tfm_name);
1067 
1068 	/* being the current pool takes 1 ref; this func expects the
1069 	 * caller to always add the new pool as the current pool
1070 	 */
1071 	kref_init(&pool->kref);
1072 	INIT_LIST_HEAD(&pool->list);
1073 	if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
1074 		goto lru_fail;
1075 	shrinker_register(pool->shrinker);
1076 	INIT_WORK(&pool->shrink_work, shrink_worker);
1077 	atomic_set(&pool->nr_stored, 0);
1078 
1079 	zswap_pool_debug("created", pool);
1080 
1081 	return pool;
1082 
1083 lru_fail:
1084 	list_lru_destroy(&pool->list_lru);
1085 	shrinker_free(pool->shrinker);
1086 error:
1087 	if (pool->acomp_ctx)
1088 		free_percpu(pool->acomp_ctx);
1089 	while (i--)
1090 		zpool_destroy_pool(pool->zpools[i]);
1091 	kfree(pool);
1092 	return NULL;
1093 }
1094 
1095 static struct zswap_pool *__zswap_pool_create_fallback(void)
1096 {
1097 	bool has_comp, has_zpool;
1098 
1099 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1100 	if (!has_comp && strcmp(zswap_compressor,
1101 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
1102 		pr_err("compressor %s not available, using default %s\n",
1103 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
1104 		param_free_charp(&zswap_compressor);
1105 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
1106 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1107 	}
1108 	if (!has_comp) {
1109 		pr_err("default compressor %s not available\n",
1110 		       zswap_compressor);
1111 		param_free_charp(&zswap_compressor);
1112 		zswap_compressor = ZSWAP_PARAM_UNSET;
1113 	}
1114 
1115 	has_zpool = zpool_has_pool(zswap_zpool_type);
1116 	if (!has_zpool && strcmp(zswap_zpool_type,
1117 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
1118 		pr_err("zpool %s not available, using default %s\n",
1119 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
1120 		param_free_charp(&zswap_zpool_type);
1121 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
1122 		has_zpool = zpool_has_pool(zswap_zpool_type);
1123 	}
1124 	if (!has_zpool) {
1125 		pr_err("default zpool %s not available\n",
1126 		       zswap_zpool_type);
1127 		param_free_charp(&zswap_zpool_type);
1128 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
1129 	}
1130 
1131 	if (!has_comp || !has_zpool)
1132 		return NULL;
1133 
1134 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
1135 }
1136 
1137 static void zswap_pool_destroy(struct zswap_pool *pool)
1138 {
1139 	int i;
1140 
1141 	zswap_pool_debug("destroying", pool);
1142 
1143 	shrinker_free(pool->shrinker);
1144 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
1145 	free_percpu(pool->acomp_ctx);
1146 	list_lru_destroy(&pool->list_lru);
1147 
1148 	spin_lock(&zswap_pools_lock);
1149 	mem_cgroup_iter_break(NULL, pool->next_shrink);
1150 	pool->next_shrink = NULL;
1151 	spin_unlock(&zswap_pools_lock);
1152 
1153 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
1154 		zpool_destroy_pool(pool->zpools[i]);
1155 	kfree(pool);
1156 }
1157 
1158 static int __must_check zswap_pool_get(struct zswap_pool *pool)
1159 {
1160 	if (!pool)
1161 		return 0;
1162 
1163 	return kref_get_unless_zero(&pool->kref);
1164 }
1165 
1166 static void __zswap_pool_release(struct work_struct *work)
1167 {
1168 	struct zswap_pool *pool = container_of(work, typeof(*pool),
1169 						release_work);
1170 
1171 	synchronize_rcu();
1172 
1173 	/* nobody should have been able to get a kref... */
1174 	WARN_ON(kref_get_unless_zero(&pool->kref));
1175 
1176 	/* pool is now off zswap_pools list and has no references. */
1177 	zswap_pool_destroy(pool);
1178 }
1179 
1180 static void __zswap_pool_empty(struct kref *kref)
1181 {
1182 	struct zswap_pool *pool;
1183 
1184 	pool = container_of(kref, typeof(*pool), kref);
1185 
1186 	spin_lock(&zswap_pools_lock);
1187 
1188 	WARN_ON(pool == zswap_pool_current());
1189 
1190 	list_del_rcu(&pool->list);
1191 
1192 	INIT_WORK(&pool->release_work, __zswap_pool_release);
1193 	schedule_work(&pool->release_work);
1194 
1195 	spin_unlock(&zswap_pools_lock);
1196 }
1197 
1198 static void zswap_pool_put(struct zswap_pool *pool)
1199 {
1200 	kref_put(&pool->kref, __zswap_pool_empty);
1201 }
1202 
1203 /*********************************
1204 * param callbacks
1205 **********************************/
1206 
1207 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
1208 {
1209 	/* no change required */
1210 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
1211 		return false;
1212 	return true;
1213 }
1214 
1215 /* val must be a null-terminated string */
1216 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
1217 			     char *type, char *compressor)
1218 {
1219 	struct zswap_pool *pool, *put_pool = NULL;
1220 	char *s = strstrip((char *)val);
1221 	int ret = 0;
1222 	bool new_pool = false;
1223 
1224 	mutex_lock(&zswap_init_lock);
1225 	switch (zswap_init_state) {
1226 	case ZSWAP_UNINIT:
1227 		/* if this is load-time (pre-init) param setting,
1228 		 * don't create a pool; that's done during init.
1229 		 */
1230 		ret = param_set_charp(s, kp);
1231 		break;
1232 	case ZSWAP_INIT_SUCCEED:
1233 		new_pool = zswap_pool_changed(s, kp);
1234 		break;
1235 	case ZSWAP_INIT_FAILED:
1236 		pr_err("can't set param, initialization failed\n");
1237 		ret = -ENODEV;
1238 	}
1239 	mutex_unlock(&zswap_init_lock);
1240 
1241 	/* no need to create a new pool, return directly */
1242 	if (!new_pool)
1243 		return ret;
1244 
1245 	if (!type) {
1246 		if (!zpool_has_pool(s)) {
1247 			pr_err("zpool %s not available\n", s);
1248 			return -ENOENT;
1249 		}
1250 		type = s;
1251 	} else if (!compressor) {
1252 		if (!crypto_has_acomp(s, 0, 0)) {
1253 			pr_err("compressor %s not available\n", s);
1254 			return -ENOENT;
1255 		}
1256 		compressor = s;
1257 	} else {
1258 		WARN_ON(1);
1259 		return -EINVAL;
1260 	}
1261 
1262 	spin_lock(&zswap_pools_lock);
1263 
1264 	pool = zswap_pool_find_get(type, compressor);
1265 	if (pool) {
1266 		zswap_pool_debug("using existing", pool);
1267 		WARN_ON(pool == zswap_pool_current());
1268 		list_del_rcu(&pool->list);
1269 	}
1270 
1271 	spin_unlock(&zswap_pools_lock);
1272 
1273 	if (!pool)
1274 		pool = zswap_pool_create(type, compressor);
1275 
1276 	if (pool)
1277 		ret = param_set_charp(s, kp);
1278 	else
1279 		ret = -EINVAL;
1280 
1281 	spin_lock(&zswap_pools_lock);
1282 
1283 	if (!ret) {
1284 		put_pool = zswap_pool_current();
1285 		list_add_rcu(&pool->list, &zswap_pools);
1286 		zswap_has_pool = true;
1287 	} else if (pool) {
1288 		/* add the possibly pre-existing pool to the end of the pools
1289 		 * list; if it's new (and empty) then it'll be removed and
1290 		 * destroyed by the put after we drop the lock
1291 		 */
1292 		list_add_tail_rcu(&pool->list, &zswap_pools);
1293 		put_pool = pool;
1294 	}
1295 
1296 	spin_unlock(&zswap_pools_lock);
1297 
1298 	if (!zswap_has_pool && !pool) {
1299 		/* if initial pool creation failed, and this pool creation also
1300 		 * failed, maybe both compressor and zpool params were bad.
1301 		 * Allow changing this param, so pool creation will succeed
1302 		 * when the other param is changed. We already verified this
1303 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
1304 		 * checks above.
1305 		 */
1306 		ret = param_set_charp(s, kp);
1307 	}
1308 
1309 	/* drop the ref from either the old current pool,
1310 	 * or the new pool we failed to add
1311 	 */
1312 	if (put_pool)
1313 		zswap_pool_put(put_pool);
1314 
1315 	return ret;
1316 }
1317 
1318 static int zswap_compressor_param_set(const char *val,
1319 				      const struct kernel_param *kp)
1320 {
1321 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1322 }
1323 
1324 static int zswap_zpool_param_set(const char *val,
1325 				 const struct kernel_param *kp)
1326 {
1327 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
1328 }
1329 
1330 static int zswap_enabled_param_set(const char *val,
1331 				   const struct kernel_param *kp)
1332 {
1333 	int ret = -ENODEV;
1334 
1335 	/* if this is load-time (pre-init) param setting, only set param. */
1336 	if (system_state != SYSTEM_RUNNING)
1337 		return param_set_bool(val, kp);
1338 
1339 	mutex_lock(&zswap_init_lock);
1340 	switch (zswap_init_state) {
1341 	case ZSWAP_UNINIT:
1342 		if (zswap_setup())
1343 			break;
1344 		fallthrough;
1345 	case ZSWAP_INIT_SUCCEED:
1346 		if (!zswap_has_pool)
1347 			pr_err("can't enable, no pool configured\n");
1348 		else
1349 			ret = param_set_bool(val, kp);
1350 		break;
1351 	case ZSWAP_INIT_FAILED:
1352 		pr_err("can't enable, initialization failed\n");
1353 	}
1354 	mutex_unlock(&zswap_init_lock);
1355 
1356 	return ret;
1357 }
1358 
1359 static void __zswap_load(struct zswap_entry *entry, struct page *page)
1360 {
1361 	struct zpool *zpool = zswap_find_zpool(entry);
1362 	struct scatterlist input, output;
1363 	struct crypto_acomp_ctx *acomp_ctx;
1364 	u8 *src;
1365 
1366 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1367 	mutex_lock(&acomp_ctx->mutex);
1368 
1369 	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1370 	if (!zpool_can_sleep_mapped(zpool)) {
1371 		memcpy(acomp_ctx->buffer, src, entry->length);
1372 		src = acomp_ctx->buffer;
1373 		zpool_unmap_handle(zpool, entry->handle);
1374 	}
1375 
1376 	sg_init_one(&input, src, entry->length);
1377 	sg_init_table(&output, 1);
1378 	sg_set_page(&output, page, PAGE_SIZE, 0);
1379 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1380 	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1381 	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1382 	mutex_unlock(&acomp_ctx->mutex);
1383 
1384 	if (zpool_can_sleep_mapped(zpool))
1385 		zpool_unmap_handle(zpool, entry->handle);
1386 }
1387 
1388 /*********************************
1389 * writeback code
1390 **********************************/
1391 /*
1392  * Attempts to free an entry by adding a folio to the swap cache,
1393  * decompressing the entry data into the folio, and issuing a
1394  * bio write to write the folio back to the swap device.
1395  *
1396  * This can be thought of as a "resumed writeback" of the folio
1397  * to the swap device.  We are basically resuming the same swap
1398  * writeback path that was intercepted with the zswap_store()
1399  * in the first place.  After the folio has been decompressed into
1400  * the swap cache, the compressed version stored by zswap can be
1401  * freed.
1402  */
1403 static int zswap_writeback_entry(struct zswap_entry *entry,
1404 				 struct zswap_tree *tree)
1405 {
1406 	swp_entry_t swpentry = entry->swpentry;
1407 	struct folio *folio;
1408 	struct mempolicy *mpol;
1409 	bool folio_was_allocated;
1410 	struct writeback_control wbc = {
1411 		.sync_mode = WB_SYNC_NONE,
1412 	};
1413 
1414 	/* try to allocate swap cache folio */
1415 	mpol = get_task_policy(current);
1416 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1417 				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1418 	if (!folio)
1419 		return -ENOMEM;
1420 
1421 	/*
1422 	 * Found an existing folio, we raced with load/swapin. We generally
1423 	 * writeback cold folios from zswap, and swapin means the folio just
1424 	 * became hot. Skip this folio and let the caller find another one.
1425 	 */
1426 	if (!folio_was_allocated) {
1427 		folio_put(folio);
1428 		return -EEXIST;
1429 	}
1430 
1431 	/*
1432 	 * folio is locked, and the swapcache is now secured against
1433 	 * concurrent swapping to and from the slot. Verify that the
1434 	 * swap entry hasn't been invalidated and recycled behind our
1435 	 * backs (our zswap_entry reference doesn't prevent that), to
1436 	 * avoid overwriting a new swap folio with old compressed data.
1437 	 */
1438 	spin_lock(&tree->lock);
1439 	if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
1440 		spin_unlock(&tree->lock);
1441 		delete_from_swap_cache(folio);
1442 		folio_unlock(folio);
1443 		folio_put(folio);
1444 		return -ENOMEM;
1445 	}
1446 	spin_unlock(&tree->lock);
1447 
1448 	__zswap_load(entry, &folio->page);
1449 
1450 	/* folio is up to date */
1451 	folio_mark_uptodate(folio);
1452 
1453 	/* move it to the tail of the inactive list after end_writeback */
1454 	folio_set_reclaim(folio);
1455 
1456 	/* start writeback */
1457 	__swap_writepage(folio, &wbc);
1458 	folio_put(folio);
1459 
1460 	return 0;
1461 }
1462 
1463 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1464 {
1465 	unsigned long *page;
1466 	unsigned long val;
1467 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1468 
1469 	page = (unsigned long *)ptr;
1470 	val = page[0];
1471 
1472 	if (val != page[last_pos])
1473 		return 0;
1474 
1475 	for (pos = 1; pos < last_pos; pos++) {
1476 		if (val != page[pos])
1477 			return 0;
1478 	}
1479 
1480 	*value = val;
1481 
1482 	return 1;
1483 }
1484 
1485 static void zswap_fill_page(void *ptr, unsigned long value)
1486 {
1487 	unsigned long *page;
1488 
1489 	page = (unsigned long *)ptr;
1490 	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1491 }
1492 
1493 bool zswap_store(struct folio *folio)
1494 {
1495 	swp_entry_t swp = folio->swap;
1496 	int type = swp_type(swp);
1497 	pgoff_t offset = swp_offset(swp);
1498 	struct page *page = &folio->page;
1499 	struct zswap_tree *tree = zswap_trees[type];
1500 	struct zswap_entry *entry, *dupentry;
1501 	struct scatterlist input, output;
1502 	struct crypto_acomp_ctx *acomp_ctx;
1503 	struct obj_cgroup *objcg = NULL;
1504 	struct mem_cgroup *memcg = NULL;
1505 	struct zswap_pool *pool;
1506 	struct zpool *zpool;
1507 	unsigned int dlen = PAGE_SIZE;
1508 	unsigned long handle, value;
1509 	char *buf;
1510 	u8 *src, *dst;
1511 	gfp_t gfp;
1512 	int ret;
1513 
1514 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1515 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1516 
1517 	/* Large folios aren't supported */
1518 	if (folio_test_large(folio))
1519 		return false;
1520 
1521 	if (!tree)
1522 		return false;
1523 
1524 	/*
1525 	 * If this is a duplicate, it must be removed before attempting to store
1526 	 * it, otherwise, if the store fails the old page won't be removed from
1527 	 * the tree, and it might be written back overriding the new data.
1528 	 */
1529 	spin_lock(&tree->lock);
1530 	dupentry = zswap_rb_search(&tree->rbroot, offset);
1531 	if (dupentry) {
1532 		zswap_duplicate_entry++;
1533 		zswap_invalidate_entry(tree, dupentry);
1534 	}
1535 	spin_unlock(&tree->lock);
1536 
1537 	if (!zswap_enabled)
1538 		return false;
1539 
1540 	objcg = get_obj_cgroup_from_folio(folio);
1541 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1542 		memcg = get_mem_cgroup_from_objcg(objcg);
1543 		if (shrink_memcg(memcg)) {
1544 			mem_cgroup_put(memcg);
1545 			goto reject;
1546 		}
1547 		mem_cgroup_put(memcg);
1548 	}
1549 
1550 	/* reclaim space if needed */
1551 	if (zswap_is_full()) {
1552 		zswap_pool_limit_hit++;
1553 		zswap_pool_reached_full = true;
1554 		goto shrink;
1555 	}
1556 
1557 	if (zswap_pool_reached_full) {
1558 	       if (!zswap_can_accept())
1559 			goto shrink;
1560 		else
1561 			zswap_pool_reached_full = false;
1562 	}
1563 
1564 	/* allocate entry */
1565 	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1566 	if (!entry) {
1567 		zswap_reject_kmemcache_fail++;
1568 		goto reject;
1569 	}
1570 
1571 	if (zswap_same_filled_pages_enabled) {
1572 		src = kmap_local_page(page);
1573 		if (zswap_is_page_same_filled(src, &value)) {
1574 			kunmap_local(src);
1575 			entry->swpentry = swp_entry(type, offset);
1576 			entry->length = 0;
1577 			entry->value = value;
1578 			atomic_inc(&zswap_same_filled_pages);
1579 			goto insert_entry;
1580 		}
1581 		kunmap_local(src);
1582 	}
1583 
1584 	if (!zswap_non_same_filled_pages_enabled)
1585 		goto freepage;
1586 
1587 	/* if entry is successfully added, it keeps the reference */
1588 	entry->pool = zswap_pool_current_get();
1589 	if (!entry->pool)
1590 		goto freepage;
1591 
1592 	if (objcg) {
1593 		memcg = get_mem_cgroup_from_objcg(objcg);
1594 		if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
1595 			mem_cgroup_put(memcg);
1596 			goto put_pool;
1597 		}
1598 		mem_cgroup_put(memcg);
1599 	}
1600 
1601 	/* compress */
1602 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1603 
1604 	mutex_lock(&acomp_ctx->mutex);
1605 
1606 	dst = acomp_ctx->buffer;
1607 	sg_init_table(&input, 1);
1608 	sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1609 
1610 	/*
1611 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1612 	 * and hardware-accelerators may won't check the dst buffer size, so
1613 	 * giving the dst buffer with enough length to avoid buffer overflow.
1614 	 */
1615 	sg_init_one(&output, dst, PAGE_SIZE * 2);
1616 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1617 	/*
1618 	 * it maybe looks a little bit silly that we send an asynchronous request,
1619 	 * then wait for its completion synchronously. This makes the process look
1620 	 * synchronous in fact.
1621 	 * Theoretically, acomp supports users send multiple acomp requests in one
1622 	 * acomp instance, then get those requests done simultaneously. but in this
1623 	 * case, zswap actually does store and load page by page, there is no
1624 	 * existing method to send the second page before the first page is done
1625 	 * in one thread doing zwap.
1626 	 * but in different threads running on different cpu, we have different
1627 	 * acomp instance, so multiple threads can do (de)compression in parallel.
1628 	 */
1629 	ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1630 	dlen = acomp_ctx->req->dlen;
1631 
1632 	if (ret) {
1633 		zswap_reject_compress_fail++;
1634 		goto put_dstmem;
1635 	}
1636 
1637 	/* store */
1638 	zpool = zswap_find_zpool(entry);
1639 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1640 	if (zpool_malloc_support_movable(zpool))
1641 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1642 	ret = zpool_malloc(zpool, dlen, gfp, &handle);
1643 	if (ret == -ENOSPC) {
1644 		zswap_reject_compress_poor++;
1645 		goto put_dstmem;
1646 	}
1647 	if (ret) {
1648 		zswap_reject_alloc_fail++;
1649 		goto put_dstmem;
1650 	}
1651 	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1652 	memcpy(buf, dst, dlen);
1653 	zpool_unmap_handle(zpool, handle);
1654 	mutex_unlock(&acomp_ctx->mutex);
1655 
1656 	/* populate entry */
1657 	entry->swpentry = swp_entry(type, offset);
1658 	entry->handle = handle;
1659 	entry->length = dlen;
1660 
1661 insert_entry:
1662 	entry->objcg = objcg;
1663 	if (objcg) {
1664 		obj_cgroup_charge_zswap(objcg, entry->length);
1665 		/* Account before objcg ref is moved to tree */
1666 		count_objcg_event(objcg, ZSWPOUT);
1667 	}
1668 
1669 	/* map */
1670 	spin_lock(&tree->lock);
1671 	/*
1672 	 * A duplicate entry should have been removed at the beginning of this
1673 	 * function. Since the swap entry should be pinned, if a duplicate is
1674 	 * found again here it means that something went wrong in the swap
1675 	 * cache.
1676 	 */
1677 	while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1678 		WARN_ON(1);
1679 		zswap_duplicate_entry++;
1680 		zswap_invalidate_entry(tree, dupentry);
1681 	}
1682 	if (entry->length) {
1683 		INIT_LIST_HEAD(&entry->lru);
1684 		zswap_lru_add(&entry->pool->list_lru, entry);
1685 		atomic_inc(&entry->pool->nr_stored);
1686 	}
1687 	spin_unlock(&tree->lock);
1688 
1689 	/* update stats */
1690 	atomic_inc(&zswap_stored_pages);
1691 	zswap_update_total_size();
1692 	count_vm_event(ZSWPOUT);
1693 
1694 	return true;
1695 
1696 put_dstmem:
1697 	mutex_unlock(&acomp_ctx->mutex);
1698 put_pool:
1699 	zswap_pool_put(entry->pool);
1700 freepage:
1701 	zswap_entry_cache_free(entry);
1702 reject:
1703 	if (objcg)
1704 		obj_cgroup_put(objcg);
1705 	return false;
1706 
1707 shrink:
1708 	pool = zswap_pool_last_get();
1709 	if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1710 		zswap_pool_put(pool);
1711 	goto reject;
1712 }
1713 
1714 bool zswap_load(struct folio *folio)
1715 {
1716 	swp_entry_t swp = folio->swap;
1717 	int type = swp_type(swp);
1718 	pgoff_t offset = swp_offset(swp);
1719 	struct page *page = &folio->page;
1720 	struct zswap_tree *tree = zswap_trees[type];
1721 	struct zswap_entry *entry;
1722 	u8 *dst;
1723 
1724 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1725 
1726 	/* find */
1727 	spin_lock(&tree->lock);
1728 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1729 	if (!entry) {
1730 		spin_unlock(&tree->lock);
1731 		return false;
1732 	}
1733 	spin_unlock(&tree->lock);
1734 
1735 	if (entry->length)
1736 		__zswap_load(entry, page);
1737 	else {
1738 		dst = kmap_local_page(page);
1739 		zswap_fill_page(dst, entry->value);
1740 		kunmap_local(dst);
1741 	}
1742 
1743 	count_vm_event(ZSWPIN);
1744 	if (entry->objcg)
1745 		count_objcg_event(entry->objcg, ZSWPIN);
1746 
1747 	spin_lock(&tree->lock);
1748 	if (zswap_exclusive_loads_enabled) {
1749 		zswap_invalidate_entry(tree, entry);
1750 		folio_mark_dirty(folio);
1751 	} else if (entry->length) {
1752 		zswap_lru_del(&entry->pool->list_lru, entry);
1753 		zswap_lru_add(&entry->pool->list_lru, entry);
1754 	}
1755 	zswap_entry_put(tree, entry);
1756 	spin_unlock(&tree->lock);
1757 
1758 	return true;
1759 }
1760 
1761 void zswap_invalidate(int type, pgoff_t offset)
1762 {
1763 	struct zswap_tree *tree = zswap_trees[type];
1764 	struct zswap_entry *entry;
1765 
1766 	/* find */
1767 	spin_lock(&tree->lock);
1768 	entry = zswap_rb_search(&tree->rbroot, offset);
1769 	if (!entry) {
1770 		/* entry was written back */
1771 		spin_unlock(&tree->lock);
1772 		return;
1773 	}
1774 	zswap_invalidate_entry(tree, entry);
1775 	spin_unlock(&tree->lock);
1776 }
1777 
1778 void zswap_swapon(int type)
1779 {
1780 	struct zswap_tree *tree;
1781 
1782 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1783 	if (!tree) {
1784 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1785 		return;
1786 	}
1787 
1788 	tree->rbroot = RB_ROOT;
1789 	spin_lock_init(&tree->lock);
1790 	zswap_trees[type] = tree;
1791 }
1792 
1793 void zswap_swapoff(int type)
1794 {
1795 	struct zswap_tree *tree = zswap_trees[type];
1796 	struct zswap_entry *entry, *n;
1797 
1798 	if (!tree)
1799 		return;
1800 
1801 	/* walk the tree and free everything */
1802 	spin_lock(&tree->lock);
1803 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1804 		zswap_free_entry(entry);
1805 	tree->rbroot = RB_ROOT;
1806 	spin_unlock(&tree->lock);
1807 	kfree(tree);
1808 	zswap_trees[type] = NULL;
1809 }
1810 
1811 /*********************************
1812 * debugfs functions
1813 **********************************/
1814 #ifdef CONFIG_DEBUG_FS
1815 #include <linux/debugfs.h>
1816 
1817 static struct dentry *zswap_debugfs_root;
1818 
1819 static int zswap_debugfs_init(void)
1820 {
1821 	if (!debugfs_initialized())
1822 		return -ENODEV;
1823 
1824 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1825 
1826 	debugfs_create_u64("pool_limit_hit", 0444,
1827 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1828 	debugfs_create_u64("reject_reclaim_fail", 0444,
1829 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1830 	debugfs_create_u64("reject_alloc_fail", 0444,
1831 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1832 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1833 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1834 	debugfs_create_u64("reject_compress_fail", 0444,
1835 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1836 	debugfs_create_u64("reject_compress_poor", 0444,
1837 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1838 	debugfs_create_u64("written_back_pages", 0444,
1839 			   zswap_debugfs_root, &zswap_written_back_pages);
1840 	debugfs_create_u64("duplicate_entry", 0444,
1841 			   zswap_debugfs_root, &zswap_duplicate_entry);
1842 	debugfs_create_u64("pool_total_size", 0444,
1843 			   zswap_debugfs_root, &zswap_pool_total_size);
1844 	debugfs_create_atomic_t("stored_pages", 0444,
1845 				zswap_debugfs_root, &zswap_stored_pages);
1846 	debugfs_create_atomic_t("same_filled_pages", 0444,
1847 				zswap_debugfs_root, &zswap_same_filled_pages);
1848 
1849 	return 0;
1850 }
1851 #else
1852 static int zswap_debugfs_init(void)
1853 {
1854 	return 0;
1855 }
1856 #endif
1857 
1858 /*********************************
1859 * module init and exit
1860 **********************************/
1861 static int zswap_setup(void)
1862 {
1863 	struct zswap_pool *pool;
1864 	int ret;
1865 
1866 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1867 	if (!zswap_entry_cache) {
1868 		pr_err("entry cache creation failed\n");
1869 		goto cache_fail;
1870 	}
1871 
1872 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1873 				      "mm/zswap_pool:prepare",
1874 				      zswap_cpu_comp_prepare,
1875 				      zswap_cpu_comp_dead);
1876 	if (ret)
1877 		goto hp_fail;
1878 
1879 	pool = __zswap_pool_create_fallback();
1880 	if (pool) {
1881 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1882 			zpool_get_type(pool->zpools[0]));
1883 		list_add(&pool->list, &zswap_pools);
1884 		zswap_has_pool = true;
1885 	} else {
1886 		pr_err("pool creation failed\n");
1887 		zswap_enabled = false;
1888 	}
1889 
1890 	shrink_wq = create_workqueue("zswap-shrink");
1891 	if (!shrink_wq)
1892 		goto fallback_fail;
1893 
1894 	if (zswap_debugfs_init())
1895 		pr_warn("debugfs initialization failed\n");
1896 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1897 	return 0;
1898 
1899 fallback_fail:
1900 	if (pool)
1901 		zswap_pool_destroy(pool);
1902 hp_fail:
1903 	kmem_cache_destroy(zswap_entry_cache);
1904 cache_fail:
1905 	/* if built-in, we aren't unloaded on failure; don't allow use */
1906 	zswap_init_state = ZSWAP_INIT_FAILED;
1907 	zswap_enabled = false;
1908 	return -ENOMEM;
1909 }
1910 
1911 static int __init zswap_init(void)
1912 {
1913 	if (!zswap_enabled)
1914 		return 0;
1915 	return zswap_setup();
1916 }
1917 /* must be late so crypto has time to come up */
1918 late_initcall(zswap_init);
1919 
1920 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1921 MODULE_DESCRIPTION("Compressed cache for swap pages");
1922