xref: /linux/mm/zswap.c (revision 868ade323e9deff67b8be3e93876596e4d2c71d3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38 
39 #include "swap.h"
40 #include "internal.h"
41 
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of pages currently stored in zswap */
46 atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0);
47 /* The number of incompressible pages currently stored in zswap */
48 static atomic_long_t zswap_stored_incompressible_pages = ATOMIC_LONG_INIT(0);
49 
50 /*
51  * The statistics below are not protected from concurrent access for
52  * performance reasons so they may not be a 100% accurate.  However,
53  * they do provide useful information on roughly how many times a
54  * certain event is occurring.
55 */
56 
57 /* Pool limit was hit (see zswap_max_pool_percent) */
58 static u64 zswap_pool_limit_hit;
59 /* Pages written back when pool limit was reached */
60 static u64 zswap_written_back_pages;
61 /* Store failed due to a reclaim failure after pool limit was reached */
62 static u64 zswap_reject_reclaim_fail;
63 /* Store failed due to compression algorithm failure */
64 static u64 zswap_reject_compress_fail;
65 /* Compressed page was too big for the allocator to (optimally) store */
66 static u64 zswap_reject_compress_poor;
67 /* Load or writeback failed due to decompression failure */
68 static u64 zswap_decompress_fail;
69 /* Store failed because underlying allocator could not get memory */
70 static u64 zswap_reject_alloc_fail;
71 /* Store failed because the entry metadata could not be allocated (rare) */
72 static u64 zswap_reject_kmemcache_fail;
73 
74 /* Shrinker work queue */
75 static struct workqueue_struct *shrink_wq;
76 /* Pool limit was hit, we need to calm down */
77 static bool zswap_pool_reached_full;
78 
79 /*********************************
80 * tunables
81 **********************************/
82 
83 #define ZSWAP_PARAM_UNSET ""
84 
85 static int zswap_setup(void);
86 
87 /* Enable/disable zswap */
88 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
89 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
90 static int zswap_enabled_param_set(const char *,
91 				   const struct kernel_param *);
92 static const struct kernel_param_ops zswap_enabled_param_ops = {
93 	.set =		zswap_enabled_param_set,
94 	.get =		param_get_bool,
95 };
96 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
97 
98 /* Crypto compressor to use */
99 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
100 static int zswap_compressor_param_set(const char *,
101 				      const struct kernel_param *);
102 static const struct kernel_param_ops zswap_compressor_param_ops = {
103 	.set =		zswap_compressor_param_set,
104 	.get =		param_get_charp,
105 	.free =		param_free_charp,
106 };
107 module_param_cb(compressor, &zswap_compressor_param_ops,
108 		&zswap_compressor, 0644);
109 
110 /* Compressed storage zpool to use */
111 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
112 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
113 static const struct kernel_param_ops zswap_zpool_param_ops = {
114 	.set =		zswap_zpool_param_set,
115 	.get =		param_get_charp,
116 	.free =		param_free_charp,
117 };
118 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
119 
120 /* The maximum percentage of memory that the compressed pool can occupy */
121 static unsigned int zswap_max_pool_percent = 20;
122 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
123 
124 /* The threshold for accepting new pages after the max_pool_percent was hit */
125 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
126 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
127 		   uint, 0644);
128 
129 /* Enable/disable memory pressure-based shrinker. */
130 static bool zswap_shrinker_enabled = IS_ENABLED(
131 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
132 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
133 
134 bool zswap_is_enabled(void)
135 {
136 	return zswap_enabled;
137 }
138 
139 bool zswap_never_enabled(void)
140 {
141 	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
142 }
143 
144 /*********************************
145 * data structures
146 **********************************/
147 
148 struct crypto_acomp_ctx {
149 	struct crypto_acomp *acomp;
150 	struct acomp_req *req;
151 	struct crypto_wait wait;
152 	u8 *buffer;
153 	struct mutex mutex;
154 	bool is_sleepable;
155 };
156 
157 /*
158  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
159  * The only case where lru_lock is not acquired while holding tree.lock is
160  * when a zswap_entry is taken off the lru for writeback, in that case it
161  * needs to be verified that it's still valid in the tree.
162  */
163 struct zswap_pool {
164 	struct zpool *zpool;
165 	struct crypto_acomp_ctx __percpu *acomp_ctx;
166 	struct percpu_ref ref;
167 	struct list_head list;
168 	struct work_struct release_work;
169 	struct hlist_node node;
170 	char tfm_name[CRYPTO_MAX_ALG_NAME];
171 };
172 
173 /* Global LRU lists shared by all zswap pools. */
174 static struct list_lru zswap_list_lru;
175 
176 /* The lock protects zswap_next_shrink updates. */
177 static DEFINE_SPINLOCK(zswap_shrink_lock);
178 static struct mem_cgroup *zswap_next_shrink;
179 static struct work_struct zswap_shrink_work;
180 static struct shrinker *zswap_shrinker;
181 
182 /*
183  * struct zswap_entry
184  *
185  * This structure contains the metadata for tracking a single compressed
186  * page within zswap.
187  *
188  * swpentry - associated swap entry, the offset indexes into the red-black tree
189  * length - the length in bytes of the compressed page data.  Needed during
190  *          decompression.
191  * referenced - true if the entry recently entered the zswap pool. Unset by the
192  *              writeback logic. The entry is only reclaimed by the writeback
193  *              logic if referenced is unset. See comments in the shrinker
194  *              section for context.
195  * pool - the zswap_pool the entry's data is in
196  * handle - zpool allocation handle that stores the compressed page data
197  * objcg - the obj_cgroup that the compressed memory is charged to
198  * lru - handle to the pool's lru used to evict pages.
199  */
200 struct zswap_entry {
201 	swp_entry_t swpentry;
202 	unsigned int length;
203 	bool referenced;
204 	struct zswap_pool *pool;
205 	unsigned long handle;
206 	struct obj_cgroup *objcg;
207 	struct list_head lru;
208 };
209 
210 static struct xarray *zswap_trees[MAX_SWAPFILES];
211 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
212 
213 /* RCU-protected iteration */
214 static LIST_HEAD(zswap_pools);
215 /* protects zswap_pools list modification */
216 static DEFINE_SPINLOCK(zswap_pools_lock);
217 /* pool counter to provide unique names to zpool */
218 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
219 
220 enum zswap_init_type {
221 	ZSWAP_UNINIT,
222 	ZSWAP_INIT_SUCCEED,
223 	ZSWAP_INIT_FAILED
224 };
225 
226 static enum zswap_init_type zswap_init_state;
227 
228 /* used to ensure the integrity of initialization */
229 static DEFINE_MUTEX(zswap_init_lock);
230 
231 /* init completed, but couldn't create the initial pool */
232 static bool zswap_has_pool;
233 
234 /*********************************
235 * helpers and fwd declarations
236 **********************************/
237 
238 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
239 {
240 	return &zswap_trees[swp_type(swp)][swp_offset(swp)
241 		>> SWAP_ADDRESS_SPACE_SHIFT];
242 }
243 
244 #define zswap_pool_debug(msg, p)				\
245 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
246 		 zpool_get_type((p)->zpool))
247 
248 /*********************************
249 * pool functions
250 **********************************/
251 static void __zswap_pool_empty(struct percpu_ref *ref);
252 
253 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
254 {
255 	struct zswap_pool *pool;
256 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
257 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
258 	int ret, cpu;
259 
260 	if (!zswap_has_pool) {
261 		/* if either are unset, pool initialization failed, and we
262 		 * need both params to be set correctly before trying to
263 		 * create a pool.
264 		 */
265 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
266 			return NULL;
267 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
268 			return NULL;
269 	}
270 
271 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
272 	if (!pool)
273 		return NULL;
274 
275 	/* unique name for each pool specifically required by zsmalloc */
276 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
277 	pool->zpool = zpool_create_pool(type, name, gfp);
278 	if (!pool->zpool) {
279 		pr_err("%s zpool not available\n", type);
280 		goto error;
281 	}
282 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
283 
284 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
285 
286 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
287 	if (!pool->acomp_ctx) {
288 		pr_err("percpu alloc failed\n");
289 		goto error;
290 	}
291 
292 	for_each_possible_cpu(cpu)
293 		mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
294 
295 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
296 				       &pool->node);
297 	if (ret)
298 		goto error;
299 
300 	/* being the current pool takes 1 ref; this func expects the
301 	 * caller to always add the new pool as the current pool
302 	 */
303 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
304 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
305 	if (ret)
306 		goto ref_fail;
307 	INIT_LIST_HEAD(&pool->list);
308 
309 	zswap_pool_debug("created", pool);
310 
311 	return pool;
312 
313 ref_fail:
314 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
315 error:
316 	if (pool->acomp_ctx)
317 		free_percpu(pool->acomp_ctx);
318 	if (pool->zpool)
319 		zpool_destroy_pool(pool->zpool);
320 	kfree(pool);
321 	return NULL;
322 }
323 
324 static struct zswap_pool *__zswap_pool_create_fallback(void)
325 {
326 	bool has_comp, has_zpool;
327 
328 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
329 	if (!has_comp && strcmp(zswap_compressor,
330 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
331 		pr_err("compressor %s not available, using default %s\n",
332 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
333 		param_free_charp(&zswap_compressor);
334 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
335 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
336 	}
337 	if (!has_comp) {
338 		pr_err("default compressor %s not available\n",
339 		       zswap_compressor);
340 		param_free_charp(&zswap_compressor);
341 		zswap_compressor = ZSWAP_PARAM_UNSET;
342 	}
343 
344 	has_zpool = zpool_has_pool(zswap_zpool_type);
345 	if (!has_zpool && strcmp(zswap_zpool_type,
346 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
347 		pr_err("zpool %s not available, using default %s\n",
348 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
349 		param_free_charp(&zswap_zpool_type);
350 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
351 		has_zpool = zpool_has_pool(zswap_zpool_type);
352 	}
353 	if (!has_zpool) {
354 		pr_err("default zpool %s not available\n",
355 		       zswap_zpool_type);
356 		param_free_charp(&zswap_zpool_type);
357 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
358 	}
359 
360 	if (!has_comp || !has_zpool)
361 		return NULL;
362 
363 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
364 }
365 
366 static void zswap_pool_destroy(struct zswap_pool *pool)
367 {
368 	zswap_pool_debug("destroying", pool);
369 
370 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
371 	free_percpu(pool->acomp_ctx);
372 
373 	zpool_destroy_pool(pool->zpool);
374 	kfree(pool);
375 }
376 
377 static void __zswap_pool_release(struct work_struct *work)
378 {
379 	struct zswap_pool *pool = container_of(work, typeof(*pool),
380 						release_work);
381 
382 	synchronize_rcu();
383 
384 	/* nobody should have been able to get a ref... */
385 	WARN_ON(!percpu_ref_is_zero(&pool->ref));
386 	percpu_ref_exit(&pool->ref);
387 
388 	/* pool is now off zswap_pools list and has no references. */
389 	zswap_pool_destroy(pool);
390 }
391 
392 static struct zswap_pool *zswap_pool_current(void);
393 
394 static void __zswap_pool_empty(struct percpu_ref *ref)
395 {
396 	struct zswap_pool *pool;
397 
398 	pool = container_of(ref, typeof(*pool), ref);
399 
400 	spin_lock_bh(&zswap_pools_lock);
401 
402 	WARN_ON(pool == zswap_pool_current());
403 
404 	list_del_rcu(&pool->list);
405 
406 	INIT_WORK(&pool->release_work, __zswap_pool_release);
407 	schedule_work(&pool->release_work);
408 
409 	spin_unlock_bh(&zswap_pools_lock);
410 }
411 
412 static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
413 {
414 	if (!pool)
415 		return 0;
416 
417 	return percpu_ref_tryget(&pool->ref);
418 }
419 
420 /* The caller must already have a reference. */
421 static void zswap_pool_get(struct zswap_pool *pool)
422 {
423 	percpu_ref_get(&pool->ref);
424 }
425 
426 static void zswap_pool_put(struct zswap_pool *pool)
427 {
428 	percpu_ref_put(&pool->ref);
429 }
430 
431 static struct zswap_pool *__zswap_pool_current(void)
432 {
433 	struct zswap_pool *pool;
434 
435 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
436 	WARN_ONCE(!pool && zswap_has_pool,
437 		  "%s: no page storage pool!\n", __func__);
438 
439 	return pool;
440 }
441 
442 static struct zswap_pool *zswap_pool_current(void)
443 {
444 	assert_spin_locked(&zswap_pools_lock);
445 
446 	return __zswap_pool_current();
447 }
448 
449 static struct zswap_pool *zswap_pool_current_get(void)
450 {
451 	struct zswap_pool *pool;
452 
453 	rcu_read_lock();
454 
455 	pool = __zswap_pool_current();
456 	if (!zswap_pool_tryget(pool))
457 		pool = NULL;
458 
459 	rcu_read_unlock();
460 
461 	return pool;
462 }
463 
464 /* type and compressor must be null-terminated */
465 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
466 {
467 	struct zswap_pool *pool;
468 
469 	assert_spin_locked(&zswap_pools_lock);
470 
471 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
472 		if (strcmp(pool->tfm_name, compressor))
473 			continue;
474 		if (strcmp(zpool_get_type(pool->zpool), type))
475 			continue;
476 		/* if we can't get it, it's about to be destroyed */
477 		if (!zswap_pool_tryget(pool))
478 			continue;
479 		return pool;
480 	}
481 
482 	return NULL;
483 }
484 
485 static unsigned long zswap_max_pages(void)
486 {
487 	return totalram_pages() * zswap_max_pool_percent / 100;
488 }
489 
490 static unsigned long zswap_accept_thr_pages(void)
491 {
492 	return zswap_max_pages() * zswap_accept_thr_percent / 100;
493 }
494 
495 unsigned long zswap_total_pages(void)
496 {
497 	struct zswap_pool *pool;
498 	unsigned long total = 0;
499 
500 	rcu_read_lock();
501 	list_for_each_entry_rcu(pool, &zswap_pools, list)
502 		total += zpool_get_total_pages(pool->zpool);
503 	rcu_read_unlock();
504 
505 	return total;
506 }
507 
508 static bool zswap_check_limits(void)
509 {
510 	unsigned long cur_pages = zswap_total_pages();
511 	unsigned long max_pages = zswap_max_pages();
512 
513 	if (cur_pages >= max_pages) {
514 		zswap_pool_limit_hit++;
515 		zswap_pool_reached_full = true;
516 	} else if (zswap_pool_reached_full &&
517 		   cur_pages <= zswap_accept_thr_pages()) {
518 			zswap_pool_reached_full = false;
519 	}
520 	return zswap_pool_reached_full;
521 }
522 
523 /*********************************
524 * param callbacks
525 **********************************/
526 
527 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
528 {
529 	/* no change required */
530 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
531 		return false;
532 	return true;
533 }
534 
535 /* val must be a null-terminated string */
536 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
537 			     char *type, char *compressor)
538 {
539 	struct zswap_pool *pool, *put_pool = NULL;
540 	char *s = strstrip((char *)val);
541 	int ret = 0;
542 	bool new_pool = false;
543 
544 	mutex_lock(&zswap_init_lock);
545 	switch (zswap_init_state) {
546 	case ZSWAP_UNINIT:
547 		/* if this is load-time (pre-init) param setting,
548 		 * don't create a pool; that's done during init.
549 		 */
550 		ret = param_set_charp(s, kp);
551 		break;
552 	case ZSWAP_INIT_SUCCEED:
553 		new_pool = zswap_pool_changed(s, kp);
554 		break;
555 	case ZSWAP_INIT_FAILED:
556 		pr_err("can't set param, initialization failed\n");
557 		ret = -ENODEV;
558 	}
559 	mutex_unlock(&zswap_init_lock);
560 
561 	/* no need to create a new pool, return directly */
562 	if (!new_pool)
563 		return ret;
564 
565 	if (!type) {
566 		if (!zpool_has_pool(s)) {
567 			pr_err("zpool %s not available\n", s);
568 			return -ENOENT;
569 		}
570 		type = s;
571 	} else if (!compressor) {
572 		if (!crypto_has_acomp(s, 0, 0)) {
573 			pr_err("compressor %s not available\n", s);
574 			return -ENOENT;
575 		}
576 		compressor = s;
577 	} else {
578 		WARN_ON(1);
579 		return -EINVAL;
580 	}
581 
582 	spin_lock_bh(&zswap_pools_lock);
583 
584 	pool = zswap_pool_find_get(type, compressor);
585 	if (pool) {
586 		zswap_pool_debug("using existing", pool);
587 		WARN_ON(pool == zswap_pool_current());
588 		list_del_rcu(&pool->list);
589 	}
590 
591 	spin_unlock_bh(&zswap_pools_lock);
592 
593 	if (!pool)
594 		pool = zswap_pool_create(type, compressor);
595 	else {
596 		/*
597 		 * Restore the initial ref dropped by percpu_ref_kill()
598 		 * when the pool was decommissioned and switch it again
599 		 * to percpu mode.
600 		 */
601 		percpu_ref_resurrect(&pool->ref);
602 
603 		/* Drop the ref from zswap_pool_find_get(). */
604 		zswap_pool_put(pool);
605 	}
606 
607 	if (pool)
608 		ret = param_set_charp(s, kp);
609 	else
610 		ret = -EINVAL;
611 
612 	spin_lock_bh(&zswap_pools_lock);
613 
614 	if (!ret) {
615 		put_pool = zswap_pool_current();
616 		list_add_rcu(&pool->list, &zswap_pools);
617 		zswap_has_pool = true;
618 	} else if (pool) {
619 		/* add the possibly pre-existing pool to the end of the pools
620 		 * list; if it's new (and empty) then it'll be removed and
621 		 * destroyed by the put after we drop the lock
622 		 */
623 		list_add_tail_rcu(&pool->list, &zswap_pools);
624 		put_pool = pool;
625 	}
626 
627 	spin_unlock_bh(&zswap_pools_lock);
628 
629 	if (!zswap_has_pool && !pool) {
630 		/* if initial pool creation failed, and this pool creation also
631 		 * failed, maybe both compressor and zpool params were bad.
632 		 * Allow changing this param, so pool creation will succeed
633 		 * when the other param is changed. We already verified this
634 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
635 		 * checks above.
636 		 */
637 		ret = param_set_charp(s, kp);
638 	}
639 
640 	/* drop the ref from either the old current pool,
641 	 * or the new pool we failed to add
642 	 */
643 	if (put_pool)
644 		percpu_ref_kill(&put_pool->ref);
645 
646 	return ret;
647 }
648 
649 static int zswap_compressor_param_set(const char *val,
650 				      const struct kernel_param *kp)
651 {
652 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
653 }
654 
655 static int zswap_zpool_param_set(const char *val,
656 				 const struct kernel_param *kp)
657 {
658 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
659 }
660 
661 static int zswap_enabled_param_set(const char *val,
662 				   const struct kernel_param *kp)
663 {
664 	int ret = -ENODEV;
665 
666 	/* if this is load-time (pre-init) param setting, only set param. */
667 	if (system_state != SYSTEM_RUNNING)
668 		return param_set_bool(val, kp);
669 
670 	mutex_lock(&zswap_init_lock);
671 	switch (zswap_init_state) {
672 	case ZSWAP_UNINIT:
673 		if (zswap_setup())
674 			break;
675 		fallthrough;
676 	case ZSWAP_INIT_SUCCEED:
677 		if (!zswap_has_pool)
678 			pr_err("can't enable, no pool configured\n");
679 		else
680 			ret = param_set_bool(val, kp);
681 		break;
682 	case ZSWAP_INIT_FAILED:
683 		pr_err("can't enable, initialization failed\n");
684 	}
685 	mutex_unlock(&zswap_init_lock);
686 
687 	return ret;
688 }
689 
690 /*********************************
691 * lru functions
692 **********************************/
693 
694 /* should be called under RCU */
695 #ifdef CONFIG_MEMCG
696 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
697 {
698 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
699 }
700 #else
701 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
702 {
703 	return NULL;
704 }
705 #endif
706 
707 static inline int entry_to_nid(struct zswap_entry *entry)
708 {
709 	return page_to_nid(virt_to_page(entry));
710 }
711 
712 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
713 {
714 	int nid = entry_to_nid(entry);
715 	struct mem_cgroup *memcg;
716 
717 	/*
718 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
719 	 * concurrent memcg offlining:
720 	 *
721 	 * 1. list_lru_add() is called before list_lru_one is dead. The
722 	 *    new entry will be reparented to memcg's parent's list_lru.
723 	 * 2. list_lru_add() is called after list_lru_one is dead. The
724 	 *    new entry will be added directly to memcg's parent's list_lru.
725 	 *
726 	 * Similar reasoning holds for list_lru_del().
727 	 */
728 	rcu_read_lock();
729 	memcg = mem_cgroup_from_entry(entry);
730 	/* will always succeed */
731 	list_lru_add(list_lru, &entry->lru, nid, memcg);
732 	rcu_read_unlock();
733 }
734 
735 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
736 {
737 	int nid = entry_to_nid(entry);
738 	struct mem_cgroup *memcg;
739 
740 	rcu_read_lock();
741 	memcg = mem_cgroup_from_entry(entry);
742 	/* will always succeed */
743 	list_lru_del(list_lru, &entry->lru, nid, memcg);
744 	rcu_read_unlock();
745 }
746 
747 void zswap_lruvec_state_init(struct lruvec *lruvec)
748 {
749 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
750 }
751 
752 void zswap_folio_swapin(struct folio *folio)
753 {
754 	struct lruvec *lruvec;
755 
756 	if (folio) {
757 		lruvec = folio_lruvec(folio);
758 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
759 	}
760 }
761 
762 /*
763  * This function should be called when a memcg is being offlined.
764  *
765  * Since the global shrinker shrink_worker() may hold a reference
766  * of the memcg, we must check and release the reference in
767  * zswap_next_shrink.
768  *
769  * shrink_worker() must handle the case where this function releases
770  * the reference of memcg being shrunk.
771  */
772 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
773 {
774 	/* lock out zswap shrinker walking memcg tree */
775 	spin_lock(&zswap_shrink_lock);
776 	if (zswap_next_shrink == memcg) {
777 		do {
778 			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
779 		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
780 	}
781 	spin_unlock(&zswap_shrink_lock);
782 }
783 
784 /*********************************
785 * zswap entry functions
786 **********************************/
787 static struct kmem_cache *zswap_entry_cache;
788 
789 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
790 {
791 	struct zswap_entry *entry;
792 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
793 	if (!entry)
794 		return NULL;
795 	return entry;
796 }
797 
798 static void zswap_entry_cache_free(struct zswap_entry *entry)
799 {
800 	kmem_cache_free(zswap_entry_cache, entry);
801 }
802 
803 /*
804  * Carries out the common pattern of freeing and entry's zpool allocation,
805  * freeing the entry itself, and decrementing the number of stored pages.
806  */
807 static void zswap_entry_free(struct zswap_entry *entry)
808 {
809 	zswap_lru_del(&zswap_list_lru, entry);
810 	zpool_free(entry->pool->zpool, entry->handle);
811 	zswap_pool_put(entry->pool);
812 	if (entry->objcg) {
813 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
814 		obj_cgroup_put(entry->objcg);
815 	}
816 	if (entry->length == PAGE_SIZE)
817 		atomic_long_dec(&zswap_stored_incompressible_pages);
818 	zswap_entry_cache_free(entry);
819 	atomic_long_dec(&zswap_stored_pages);
820 }
821 
822 /*********************************
823 * compressed storage functions
824 **********************************/
825 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
826 {
827 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
828 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
829 	struct crypto_acomp *acomp = NULL;
830 	struct acomp_req *req = NULL;
831 	u8 *buffer = NULL;
832 	int ret;
833 
834 	buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
835 	if (!buffer) {
836 		ret = -ENOMEM;
837 		goto fail;
838 	}
839 
840 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
841 	if (IS_ERR(acomp)) {
842 		pr_err("could not alloc crypto acomp %s : %ld\n",
843 				pool->tfm_name, PTR_ERR(acomp));
844 		ret = PTR_ERR(acomp);
845 		goto fail;
846 	}
847 
848 	req = acomp_request_alloc(acomp);
849 	if (!req) {
850 		pr_err("could not alloc crypto acomp_request %s\n",
851 		       pool->tfm_name);
852 		ret = -ENOMEM;
853 		goto fail;
854 	}
855 
856 	/*
857 	 * Only hold the mutex after completing allocations, otherwise we may
858 	 * recurse into zswap through reclaim and attempt to hold the mutex
859 	 * again resulting in a deadlock.
860 	 */
861 	mutex_lock(&acomp_ctx->mutex);
862 	crypto_init_wait(&acomp_ctx->wait);
863 
864 	/*
865 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
866 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
867 	 * won't be called, crypto_wait_req() will return without blocking.
868 	 */
869 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
870 				   crypto_req_done, &acomp_ctx->wait);
871 
872 	acomp_ctx->buffer = buffer;
873 	acomp_ctx->acomp = acomp;
874 	acomp_ctx->is_sleepable = acomp_is_async(acomp);
875 	acomp_ctx->req = req;
876 	mutex_unlock(&acomp_ctx->mutex);
877 	return 0;
878 
879 fail:
880 	if (acomp)
881 		crypto_free_acomp(acomp);
882 	kfree(buffer);
883 	return ret;
884 }
885 
886 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
887 {
888 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
889 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
890 	struct acomp_req *req;
891 	struct crypto_acomp *acomp;
892 	u8 *buffer;
893 
894 	if (IS_ERR_OR_NULL(acomp_ctx))
895 		return 0;
896 
897 	mutex_lock(&acomp_ctx->mutex);
898 	req = acomp_ctx->req;
899 	acomp = acomp_ctx->acomp;
900 	buffer = acomp_ctx->buffer;
901 	acomp_ctx->req = NULL;
902 	acomp_ctx->acomp = NULL;
903 	acomp_ctx->buffer = NULL;
904 	mutex_unlock(&acomp_ctx->mutex);
905 
906 	/*
907 	 * Do the actual freeing after releasing the mutex to avoid subtle
908 	 * locking dependencies causing deadlocks.
909 	 */
910 	if (!IS_ERR_OR_NULL(req))
911 		acomp_request_free(req);
912 	if (!IS_ERR_OR_NULL(acomp))
913 		crypto_free_acomp(acomp);
914 	kfree(buffer);
915 
916 	return 0;
917 }
918 
919 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
920 {
921 	struct crypto_acomp_ctx *acomp_ctx;
922 
923 	for (;;) {
924 		acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
925 		mutex_lock(&acomp_ctx->mutex);
926 		if (likely(acomp_ctx->req))
927 			return acomp_ctx;
928 		/*
929 		 * It is possible that we were migrated to a different CPU after
930 		 * getting the per-CPU ctx but before the mutex was acquired. If
931 		 * the old CPU got offlined, zswap_cpu_comp_dead() could have
932 		 * already freed ctx->req (among other things) and set it to
933 		 * NULL. Just try again on the new CPU that we ended up on.
934 		 */
935 		mutex_unlock(&acomp_ctx->mutex);
936 	}
937 }
938 
939 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx)
940 {
941 	mutex_unlock(&acomp_ctx->mutex);
942 }
943 
944 static bool zswap_compress(struct page *page, struct zswap_entry *entry,
945 			   struct zswap_pool *pool)
946 {
947 	struct crypto_acomp_ctx *acomp_ctx;
948 	struct scatterlist input, output;
949 	int comp_ret = 0, alloc_ret = 0;
950 	unsigned int dlen = PAGE_SIZE;
951 	unsigned long handle;
952 	struct zpool *zpool;
953 	gfp_t gfp;
954 	u8 *dst;
955 	bool mapped = false;
956 
957 	acomp_ctx = acomp_ctx_get_cpu_lock(pool);
958 	dst = acomp_ctx->buffer;
959 	sg_init_table(&input, 1);
960 	sg_set_page(&input, page, PAGE_SIZE, 0);
961 
962 	/*
963 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
964 	 * and hardware-accelerators may won't check the dst buffer size, so
965 	 * giving the dst buffer with enough length to avoid buffer overflow.
966 	 */
967 	sg_init_one(&output, dst, PAGE_SIZE * 2);
968 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
969 
970 	/*
971 	 * it maybe looks a little bit silly that we send an asynchronous request,
972 	 * then wait for its completion synchronously. This makes the process look
973 	 * synchronous in fact.
974 	 * Theoretically, acomp supports users send multiple acomp requests in one
975 	 * acomp instance, then get those requests done simultaneously. but in this
976 	 * case, zswap actually does store and load page by page, there is no
977 	 * existing method to send the second page before the first page is done
978 	 * in one thread doing zwap.
979 	 * but in different threads running on different cpu, we have different
980 	 * acomp instance, so multiple threads can do (de)compression in parallel.
981 	 */
982 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
983 	dlen = acomp_ctx->req->dlen;
984 
985 	/*
986 	 * If a page cannot be compressed into a size smaller than PAGE_SIZE,
987 	 * save the content as is without a compression, to keep the LRU order
988 	 * of writebacks.  If writeback is disabled, reject the page since it
989 	 * only adds metadata overhead.  swap_writeout() will put the page back
990 	 * to the active LRU list in the case.
991 	 */
992 	if (comp_ret || !dlen || dlen >= PAGE_SIZE) {
993 		dlen = PAGE_SIZE;
994 		if (!mem_cgroup_zswap_writeback_enabled(
995 					folio_memcg(page_folio(page)))) {
996 			comp_ret = comp_ret ? comp_ret : -EINVAL;
997 			goto unlock;
998 		}
999 		comp_ret = 0;
1000 		dlen = PAGE_SIZE;
1001 		dst = kmap_local_page(page);
1002 		mapped = true;
1003 	}
1004 
1005 	zpool = pool->zpool;
1006 	gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE;
1007 	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle, page_to_nid(page));
1008 	if (alloc_ret)
1009 		goto unlock;
1010 
1011 	zpool_obj_write(zpool, handle, dst, dlen);
1012 	entry->handle = handle;
1013 	entry->length = dlen;
1014 
1015 unlock:
1016 	if (mapped)
1017 		kunmap_local(dst);
1018 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
1019 		zswap_reject_compress_poor++;
1020 	else if (comp_ret)
1021 		zswap_reject_compress_fail++;
1022 	else if (alloc_ret)
1023 		zswap_reject_alloc_fail++;
1024 
1025 	acomp_ctx_put_unlock(acomp_ctx);
1026 	return comp_ret == 0 && alloc_ret == 0;
1027 }
1028 
1029 static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio)
1030 {
1031 	struct zpool *zpool = entry->pool->zpool;
1032 	struct scatterlist input, output;
1033 	struct crypto_acomp_ctx *acomp_ctx;
1034 	int decomp_ret = 0, dlen = PAGE_SIZE;
1035 	u8 *src, *obj;
1036 
1037 	acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool);
1038 	obj = zpool_obj_read_begin(zpool, entry->handle, acomp_ctx->buffer);
1039 
1040 	/* zswap entries of length PAGE_SIZE are not compressed. */
1041 	if (entry->length == PAGE_SIZE) {
1042 		memcpy_to_folio(folio, 0, obj, entry->length);
1043 		goto read_done;
1044 	}
1045 
1046 	/*
1047 	 * zpool_obj_read_begin() might return a kmap address of highmem when
1048 	 * acomp_ctx->buffer is not used.  However, sg_init_one() does not
1049 	 * handle highmem addresses, so copy the object to acomp_ctx->buffer.
1050 	 */
1051 	if (virt_addr_valid(obj)) {
1052 		src = obj;
1053 	} else {
1054 		WARN_ON_ONCE(obj == acomp_ctx->buffer);
1055 		memcpy(acomp_ctx->buffer, obj, entry->length);
1056 		src = acomp_ctx->buffer;
1057 	}
1058 
1059 	sg_init_one(&input, src, entry->length);
1060 	sg_init_table(&output, 1);
1061 	sg_set_folio(&output, folio, PAGE_SIZE, 0);
1062 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1063 	decomp_ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1064 	dlen = acomp_ctx->req->dlen;
1065 
1066 read_done:
1067 	zpool_obj_read_end(zpool, entry->handle, obj);
1068 	acomp_ctx_put_unlock(acomp_ctx);
1069 
1070 	if (!decomp_ret && dlen == PAGE_SIZE)
1071 		return true;
1072 
1073 	zswap_decompress_fail++;
1074 	pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n",
1075 						swp_type(entry->swpentry),
1076 						swp_offset(entry->swpentry),
1077 						entry->pool->tfm_name, entry->length, dlen);
1078 	return false;
1079 }
1080 
1081 /*********************************
1082 * writeback code
1083 **********************************/
1084 /*
1085  * Attempts to free an entry by adding a folio to the swap cache,
1086  * decompressing the entry data into the folio, and issuing a
1087  * bio write to write the folio back to the swap device.
1088  *
1089  * This can be thought of as a "resumed writeback" of the folio
1090  * to the swap device.  We are basically resuming the same swap
1091  * writeback path that was intercepted with the zswap_store()
1092  * in the first place.  After the folio has been decompressed into
1093  * the swap cache, the compressed version stored by zswap can be
1094  * freed.
1095  */
1096 static int zswap_writeback_entry(struct zswap_entry *entry,
1097 				 swp_entry_t swpentry)
1098 {
1099 	struct xarray *tree;
1100 	pgoff_t offset = swp_offset(swpentry);
1101 	struct folio *folio;
1102 	struct mempolicy *mpol;
1103 	bool folio_was_allocated;
1104 	struct swap_info_struct *si;
1105 	int ret = 0;
1106 
1107 	/* try to allocate swap cache folio */
1108 	si = get_swap_device(swpentry);
1109 	if (!si)
1110 		return -EEXIST;
1111 
1112 	mpol = get_task_policy(current);
1113 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1114 			NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1115 	put_swap_device(si);
1116 	if (!folio)
1117 		return -ENOMEM;
1118 
1119 	/*
1120 	 * Found an existing folio, we raced with swapin or concurrent
1121 	 * shrinker. We generally writeback cold folios from zswap, and
1122 	 * swapin means the folio just became hot, so skip this folio.
1123 	 * For unlikely concurrent shrinker case, it will be unlinked
1124 	 * and freed when invalidated by the concurrent shrinker anyway.
1125 	 */
1126 	if (!folio_was_allocated) {
1127 		ret = -EEXIST;
1128 		goto out;
1129 	}
1130 
1131 	/*
1132 	 * folio is locked, and the swapcache is now secured against
1133 	 * concurrent swapping to and from the slot, and concurrent
1134 	 * swapoff so we can safely dereference the zswap tree here.
1135 	 * Verify that the swap entry hasn't been invalidated and recycled
1136 	 * behind our backs, to avoid overwriting a new swap folio with
1137 	 * old compressed data. Only when this is successful can the entry
1138 	 * be dereferenced.
1139 	 */
1140 	tree = swap_zswap_tree(swpentry);
1141 	if (entry != xa_load(tree, offset)) {
1142 		ret = -ENOMEM;
1143 		goto out;
1144 	}
1145 
1146 	if (!zswap_decompress(entry, folio)) {
1147 		ret = -EIO;
1148 		goto out;
1149 	}
1150 
1151 	xa_erase(tree, offset);
1152 
1153 	count_vm_event(ZSWPWB);
1154 	if (entry->objcg)
1155 		count_objcg_events(entry->objcg, ZSWPWB, 1);
1156 
1157 	zswap_entry_free(entry);
1158 
1159 	/* folio is up to date */
1160 	folio_mark_uptodate(folio);
1161 
1162 	/* move it to the tail of the inactive list after end_writeback */
1163 	folio_set_reclaim(folio);
1164 
1165 	/* start writeback */
1166 	__swap_writepage(folio, NULL);
1167 
1168 out:
1169 	if (ret && ret != -EEXIST) {
1170 		delete_from_swap_cache(folio);
1171 		folio_unlock(folio);
1172 	}
1173 	folio_put(folio);
1174 	return ret;
1175 }
1176 
1177 /*********************************
1178 * shrinker functions
1179 **********************************/
1180 /*
1181  * The dynamic shrinker is modulated by the following factors:
1182  *
1183  * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1184  *    the entry a second chance) before rotating it in the LRU list. If the
1185  *    entry is considered again by the shrinker, with its referenced bit unset,
1186  *    it is written back. The writeback rate as a result is dynamically
1187  *    adjusted by the pool activities - if the pool is dominated by new entries
1188  *    (i.e lots of recent zswapouts), these entries will be protected and
1189  *    the writeback rate will slow down. On the other hand, if the pool has a
1190  *    lot of stagnant entries, these entries will be reclaimed immediately,
1191  *    effectively increasing the writeback rate.
1192  *
1193  * 2. Swapins counter: If we observe swapins, it is a sign that we are
1194  *    overshrinking and should slow down. We maintain a swapins counter, which
1195  *    is consumed and subtract from the number of eligible objects on the LRU
1196  *    in zswap_shrinker_count().
1197  *
1198  * 3. Compression ratio. The better the workload compresses, the less gains we
1199  *    can expect from writeback. We scale down the number of objects available
1200  *    for reclaim by this ratio.
1201  */
1202 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1203 				       void *arg)
1204 {
1205 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1206 	bool *encountered_page_in_swapcache = (bool *)arg;
1207 	swp_entry_t swpentry;
1208 	enum lru_status ret = LRU_REMOVED_RETRY;
1209 	int writeback_result;
1210 
1211 	/*
1212 	 * Second chance algorithm: if the entry has its referenced bit set, give it
1213 	 * a second chance. Only clear the referenced bit and rotate it in the
1214 	 * zswap's LRU list.
1215 	 */
1216 	if (entry->referenced) {
1217 		entry->referenced = false;
1218 		return LRU_ROTATE;
1219 	}
1220 
1221 	/*
1222 	 * As soon as we drop the LRU lock, the entry can be freed by
1223 	 * a concurrent invalidation. This means the following:
1224 	 *
1225 	 * 1. We extract the swp_entry_t to the stack, allowing
1226 	 *    zswap_writeback_entry() to pin the swap entry and
1227 	 *    then validate the zwap entry against that swap entry's
1228 	 *    tree using pointer value comparison. Only when that
1229 	 *    is successful can the entry be dereferenced.
1230 	 *
1231 	 * 2. Usually, objects are taken off the LRU for reclaim. In
1232 	 *    this case this isn't possible, because if reclaim fails
1233 	 *    for whatever reason, we have no means of knowing if the
1234 	 *    entry is alive to put it back on the LRU.
1235 	 *
1236 	 *    So rotate it before dropping the lock. If the entry is
1237 	 *    written back or invalidated, the free path will unlink
1238 	 *    it. For failures, rotation is the right thing as well.
1239 	 *
1240 	 *    Temporary failures, where the same entry should be tried
1241 	 *    again immediately, almost never happen for this shrinker.
1242 	 *    We don't do any trylocking; -ENOMEM comes closest,
1243 	 *    but that's extremely rare and doesn't happen spuriously
1244 	 *    either. Don't bother distinguishing this case.
1245 	 */
1246 	list_move_tail(item, &l->list);
1247 
1248 	/*
1249 	 * Once the lru lock is dropped, the entry might get freed. The
1250 	 * swpentry is copied to the stack, and entry isn't deref'd again
1251 	 * until the entry is verified to still be alive in the tree.
1252 	 */
1253 	swpentry = entry->swpentry;
1254 
1255 	/*
1256 	 * It's safe to drop the lock here because we return either
1257 	 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP.
1258 	 */
1259 	spin_unlock(&l->lock);
1260 
1261 	writeback_result = zswap_writeback_entry(entry, swpentry);
1262 
1263 	if (writeback_result) {
1264 		zswap_reject_reclaim_fail++;
1265 		ret = LRU_RETRY;
1266 
1267 		/*
1268 		 * Encountering a page already in swap cache is a sign that we are shrinking
1269 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1270 		 * shrinker context).
1271 		 */
1272 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1273 			ret = LRU_STOP;
1274 			*encountered_page_in_swapcache = true;
1275 		}
1276 	} else {
1277 		zswap_written_back_pages++;
1278 	}
1279 
1280 	return ret;
1281 }
1282 
1283 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1284 		struct shrink_control *sc)
1285 {
1286 	unsigned long shrink_ret;
1287 	bool encountered_page_in_swapcache = false;
1288 
1289 	if (!zswap_shrinker_enabled ||
1290 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1291 		sc->nr_scanned = 0;
1292 		return SHRINK_STOP;
1293 	}
1294 
1295 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1296 		&encountered_page_in_swapcache);
1297 
1298 	if (encountered_page_in_swapcache)
1299 		return SHRINK_STOP;
1300 
1301 	return shrink_ret ? shrink_ret : SHRINK_STOP;
1302 }
1303 
1304 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1305 		struct shrink_control *sc)
1306 {
1307 	struct mem_cgroup *memcg = sc->memcg;
1308 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1309 	atomic_long_t *nr_disk_swapins =
1310 		&lruvec->zswap_lruvec_state.nr_disk_swapins;
1311 	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1312 		nr_remain;
1313 
1314 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1315 		return 0;
1316 
1317 	/*
1318 	 * The shrinker resumes swap writeback, which will enter block
1319 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1320 	 * rules (may_enter_fs()), which apply on a per-folio basis.
1321 	 */
1322 	if (!gfp_has_io_fs(sc->gfp_mask))
1323 		return 0;
1324 
1325 	/*
1326 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1327 	 * have them per-node and thus per-lruvec. Careful if memcg is
1328 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1329 	 * for the lruvec, but not for memcg_page_state().
1330 	 *
1331 	 * Without memcg, use the zswap pool-wide metrics.
1332 	 */
1333 	if (!mem_cgroup_disabled()) {
1334 		mem_cgroup_flush_stats(memcg);
1335 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1336 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1337 	} else {
1338 		nr_backing = zswap_total_pages();
1339 		nr_stored = atomic_long_read(&zswap_stored_pages);
1340 	}
1341 
1342 	if (!nr_stored)
1343 		return 0;
1344 
1345 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1346 	if (!nr_freeable)
1347 		return 0;
1348 
1349 	/*
1350 	 * Subtract from the lru size the number of pages that are recently swapped
1351 	 * in from disk. The idea is that had we protect the zswap's LRU by this
1352 	 * amount of pages, these disk swapins would not have happened.
1353 	 */
1354 	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1355 	do {
1356 		if (nr_freeable >= nr_disk_swapins_cur)
1357 			nr_remain = 0;
1358 		else
1359 			nr_remain = nr_disk_swapins_cur - nr_freeable;
1360 	} while (!atomic_long_try_cmpxchg(
1361 		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1362 
1363 	nr_freeable -= nr_disk_swapins_cur - nr_remain;
1364 	if (!nr_freeable)
1365 		return 0;
1366 
1367 	/*
1368 	 * Scale the number of freeable pages by the memory saving factor.
1369 	 * This ensures that the better zswap compresses memory, the fewer
1370 	 * pages we will evict to swap (as it will otherwise incur IO for
1371 	 * relatively small memory saving).
1372 	 */
1373 	return mult_frac(nr_freeable, nr_backing, nr_stored);
1374 }
1375 
1376 static struct shrinker *zswap_alloc_shrinker(void)
1377 {
1378 	struct shrinker *shrinker;
1379 
1380 	shrinker =
1381 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1382 	if (!shrinker)
1383 		return NULL;
1384 
1385 	shrinker->scan_objects = zswap_shrinker_scan;
1386 	shrinker->count_objects = zswap_shrinker_count;
1387 	shrinker->batch = 0;
1388 	shrinker->seeks = DEFAULT_SEEKS;
1389 	return shrinker;
1390 }
1391 
1392 static int shrink_memcg(struct mem_cgroup *memcg)
1393 {
1394 	int nid, shrunk = 0, scanned = 0;
1395 
1396 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1397 		return -ENOENT;
1398 
1399 	/*
1400 	 * Skip zombies because their LRUs are reparented and we would be
1401 	 * reclaiming from the parent instead of the dead memcg.
1402 	 */
1403 	if (memcg && !mem_cgroup_online(memcg))
1404 		return -ENOENT;
1405 
1406 	for_each_node_state(nid, N_NORMAL_MEMORY) {
1407 		unsigned long nr_to_walk = 1;
1408 
1409 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1410 					    &shrink_memcg_cb, NULL, &nr_to_walk);
1411 		scanned += 1 - nr_to_walk;
1412 	}
1413 
1414 	if (!scanned)
1415 		return -ENOENT;
1416 
1417 	return shrunk ? 0 : -EAGAIN;
1418 }
1419 
1420 static void shrink_worker(struct work_struct *w)
1421 {
1422 	struct mem_cgroup *memcg;
1423 	int ret, failures = 0, attempts = 0;
1424 	unsigned long thr;
1425 
1426 	/* Reclaim down to the accept threshold */
1427 	thr = zswap_accept_thr_pages();
1428 
1429 	/*
1430 	 * Global reclaim will select cgroup in a round-robin fashion from all
1431 	 * online memcgs, but memcgs that have no pages in zswap and
1432 	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1433 	 * candidates for shrinking.
1434 	 *
1435 	 * Shrinking will be aborted if we encounter the following
1436 	 * MAX_RECLAIM_RETRIES times:
1437 	 * - No writeback-candidate memcgs found in a memcg tree walk.
1438 	 * - Shrinking a writeback-candidate memcg failed.
1439 	 *
1440 	 * We save iteration cursor memcg into zswap_next_shrink,
1441 	 * which can be modified by the offline memcg cleaner
1442 	 * zswap_memcg_offline_cleanup().
1443 	 *
1444 	 * Since the offline cleaner is called only once, we cannot leave an
1445 	 * offline memcg reference in zswap_next_shrink.
1446 	 * We can rely on the cleaner only if we get online memcg under lock.
1447 	 *
1448 	 * If we get an offline memcg, we cannot determine if the cleaner has
1449 	 * already been called or will be called later. We must put back the
1450 	 * reference before returning from this function. Otherwise, the
1451 	 * offline memcg left in zswap_next_shrink will hold the reference
1452 	 * until the next run of shrink_worker().
1453 	 */
1454 	do {
1455 		/*
1456 		 * Start shrinking from the next memcg after zswap_next_shrink.
1457 		 * When the offline cleaner has already advanced the cursor,
1458 		 * advancing the cursor here overlooks one memcg, but this
1459 		 * should be negligibly rare.
1460 		 *
1461 		 * If we get an online memcg, keep the extra reference in case
1462 		 * the original one obtained by mem_cgroup_iter() is dropped by
1463 		 * zswap_memcg_offline_cleanup() while we are shrinking the
1464 		 * memcg.
1465 		 */
1466 		spin_lock(&zswap_shrink_lock);
1467 		do {
1468 			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1469 			zswap_next_shrink = memcg;
1470 		} while (memcg && !mem_cgroup_tryget_online(memcg));
1471 		spin_unlock(&zswap_shrink_lock);
1472 
1473 		if (!memcg) {
1474 			/*
1475 			 * Continue shrinking without incrementing failures if
1476 			 * we found candidate memcgs in the last tree walk.
1477 			 */
1478 			if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1479 				break;
1480 
1481 			attempts = 0;
1482 			goto resched;
1483 		}
1484 
1485 		ret = shrink_memcg(memcg);
1486 		/* drop the extra reference */
1487 		mem_cgroup_put(memcg);
1488 
1489 		/*
1490 		 * There are no writeback-candidate pages in the memcg.
1491 		 * This is not an issue as long as we can find another memcg
1492 		 * with pages in zswap. Skip this without incrementing attempts
1493 		 * and failures.
1494 		 */
1495 		if (ret == -ENOENT)
1496 			continue;
1497 		++attempts;
1498 
1499 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1500 			break;
1501 resched:
1502 		cond_resched();
1503 	} while (zswap_total_pages() > thr);
1504 }
1505 
1506 /*********************************
1507 * main API
1508 **********************************/
1509 
1510 static bool zswap_store_page(struct page *page,
1511 			     struct obj_cgroup *objcg,
1512 			     struct zswap_pool *pool)
1513 {
1514 	swp_entry_t page_swpentry = page_swap_entry(page);
1515 	struct zswap_entry *entry, *old;
1516 
1517 	/* allocate entry */
1518 	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1519 	if (!entry) {
1520 		zswap_reject_kmemcache_fail++;
1521 		return false;
1522 	}
1523 
1524 	if (!zswap_compress(page, entry, pool))
1525 		goto compress_failed;
1526 
1527 	old = xa_store(swap_zswap_tree(page_swpentry),
1528 		       swp_offset(page_swpentry),
1529 		       entry, GFP_KERNEL);
1530 	if (xa_is_err(old)) {
1531 		int err = xa_err(old);
1532 
1533 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1534 		zswap_reject_alloc_fail++;
1535 		goto store_failed;
1536 	}
1537 
1538 	/*
1539 	 * We may have had an existing entry that became stale when
1540 	 * the folio was redirtied and now the new version is being
1541 	 * swapped out. Get rid of the old.
1542 	 */
1543 	if (old)
1544 		zswap_entry_free(old);
1545 
1546 	/*
1547 	 * The entry is successfully compressed and stored in the tree, there is
1548 	 * no further possibility of failure. Grab refs to the pool and objcg,
1549 	 * charge zswap memory, and increment zswap_stored_pages.
1550 	 * The opposite actions will be performed by zswap_entry_free()
1551 	 * when the entry is removed from the tree.
1552 	 */
1553 	zswap_pool_get(pool);
1554 	if (objcg) {
1555 		obj_cgroup_get(objcg);
1556 		obj_cgroup_charge_zswap(objcg, entry->length);
1557 	}
1558 	atomic_long_inc(&zswap_stored_pages);
1559 	if (entry->length == PAGE_SIZE)
1560 		atomic_long_inc(&zswap_stored_incompressible_pages);
1561 
1562 	/*
1563 	 * We finish initializing the entry while it's already in xarray.
1564 	 * This is safe because:
1565 	 *
1566 	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1567 	 *
1568 	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1569 	 *    The publishing order matters to prevent writeback from seeing
1570 	 *    an incoherent entry.
1571 	 */
1572 	entry->pool = pool;
1573 	entry->swpentry = page_swpentry;
1574 	entry->objcg = objcg;
1575 	entry->referenced = true;
1576 	if (entry->length) {
1577 		INIT_LIST_HEAD(&entry->lru);
1578 		zswap_lru_add(&zswap_list_lru, entry);
1579 	}
1580 
1581 	return true;
1582 
1583 store_failed:
1584 	zpool_free(pool->zpool, entry->handle);
1585 compress_failed:
1586 	zswap_entry_cache_free(entry);
1587 	return false;
1588 }
1589 
1590 bool zswap_store(struct folio *folio)
1591 {
1592 	long nr_pages = folio_nr_pages(folio);
1593 	swp_entry_t swp = folio->swap;
1594 	struct obj_cgroup *objcg = NULL;
1595 	struct mem_cgroup *memcg = NULL;
1596 	struct zswap_pool *pool;
1597 	bool ret = false;
1598 	long index;
1599 
1600 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1601 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1602 
1603 	if (!zswap_enabled)
1604 		goto check_old;
1605 
1606 	objcg = get_obj_cgroup_from_folio(folio);
1607 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1608 		memcg = get_mem_cgroup_from_objcg(objcg);
1609 		if (shrink_memcg(memcg)) {
1610 			mem_cgroup_put(memcg);
1611 			goto put_objcg;
1612 		}
1613 		mem_cgroup_put(memcg);
1614 	}
1615 
1616 	if (zswap_check_limits())
1617 		goto put_objcg;
1618 
1619 	pool = zswap_pool_current_get();
1620 	if (!pool)
1621 		goto put_objcg;
1622 
1623 	if (objcg) {
1624 		memcg = get_mem_cgroup_from_objcg(objcg);
1625 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1626 			mem_cgroup_put(memcg);
1627 			goto put_pool;
1628 		}
1629 		mem_cgroup_put(memcg);
1630 	}
1631 
1632 	for (index = 0; index < nr_pages; ++index) {
1633 		struct page *page = folio_page(folio, index);
1634 
1635 		if (!zswap_store_page(page, objcg, pool))
1636 			goto put_pool;
1637 	}
1638 
1639 	if (objcg)
1640 		count_objcg_events(objcg, ZSWPOUT, nr_pages);
1641 
1642 	count_vm_events(ZSWPOUT, nr_pages);
1643 
1644 	ret = true;
1645 
1646 put_pool:
1647 	zswap_pool_put(pool);
1648 put_objcg:
1649 	obj_cgroup_put(objcg);
1650 	if (!ret && zswap_pool_reached_full)
1651 		queue_work(shrink_wq, &zswap_shrink_work);
1652 check_old:
1653 	/*
1654 	 * If the zswap store fails or zswap is disabled, we must invalidate
1655 	 * the possibly stale entries which were previously stored at the
1656 	 * offsets corresponding to each page of the folio. Otherwise,
1657 	 * writeback could overwrite the new data in the swapfile.
1658 	 */
1659 	if (!ret) {
1660 		unsigned type = swp_type(swp);
1661 		pgoff_t offset = swp_offset(swp);
1662 		struct zswap_entry *entry;
1663 		struct xarray *tree;
1664 
1665 		for (index = 0; index < nr_pages; ++index) {
1666 			tree = swap_zswap_tree(swp_entry(type, offset + index));
1667 			entry = xa_erase(tree, offset + index);
1668 			if (entry)
1669 				zswap_entry_free(entry);
1670 		}
1671 	}
1672 
1673 	return ret;
1674 }
1675 
1676 /**
1677  * zswap_load() - load a folio from zswap
1678  * @folio: folio to load
1679  *
1680  * Return: 0 on success, with the folio unlocked and marked up-to-date, or one
1681  * of the following error codes:
1682  *
1683  *  -EIO: if the swapped out content was in zswap, but could not be loaded
1684  *  into the page due to a decompression failure. The folio is unlocked, but
1685  *  NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page()
1686  *  will SIGBUS).
1687  *
1688  *  -EINVAL: if the swapped out content was in zswap, but the page belongs
1689  *  to a large folio, which is not supported by zswap. The folio is unlocked,
1690  *  but NOT marked up-to-date, so that an IO error is emitted (e.g.
1691  *  do_swap_page() will SIGBUS).
1692  *
1693  *  -ENOENT: if the swapped out content was not in zswap. The folio remains
1694  *  locked on return.
1695  */
1696 int zswap_load(struct folio *folio)
1697 {
1698 	swp_entry_t swp = folio->swap;
1699 	pgoff_t offset = swp_offset(swp);
1700 	bool swapcache = folio_test_swapcache(folio);
1701 	struct xarray *tree = swap_zswap_tree(swp);
1702 	struct zswap_entry *entry;
1703 
1704 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1705 
1706 	if (zswap_never_enabled())
1707 		return -ENOENT;
1708 
1709 	/*
1710 	 * Large folios should not be swapped in while zswap is being used, as
1711 	 * they are not properly handled. Zswap does not properly load large
1712 	 * folios, and a large folio may only be partially in zswap.
1713 	 */
1714 	if (WARN_ON_ONCE(folio_test_large(folio))) {
1715 		folio_unlock(folio);
1716 		return -EINVAL;
1717 	}
1718 
1719 	entry = xa_load(tree, offset);
1720 	if (!entry)
1721 		return -ENOENT;
1722 
1723 	if (!zswap_decompress(entry, folio)) {
1724 		folio_unlock(folio);
1725 		return -EIO;
1726 	}
1727 
1728 	folio_mark_uptodate(folio);
1729 
1730 	count_vm_event(ZSWPIN);
1731 	if (entry->objcg)
1732 		count_objcg_events(entry->objcg, ZSWPIN, 1);
1733 
1734 	/*
1735 	 * When reading into the swapcache, invalidate our entry. The
1736 	 * swapcache can be the authoritative owner of the page and
1737 	 * its mappings, and the pressure that results from having two
1738 	 * in-memory copies outweighs any benefits of caching the
1739 	 * compression work.
1740 	 *
1741 	 * (Most swapins go through the swapcache. The notable
1742 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1743 	 * files, which reads into a private page and may free it if
1744 	 * the fault fails. We remain the primary owner of the entry.)
1745 	 */
1746 	if (swapcache) {
1747 		folio_mark_dirty(folio);
1748 		xa_erase(tree, offset);
1749 		zswap_entry_free(entry);
1750 	}
1751 
1752 	folio_unlock(folio);
1753 	return 0;
1754 }
1755 
1756 void zswap_invalidate(swp_entry_t swp)
1757 {
1758 	pgoff_t offset = swp_offset(swp);
1759 	struct xarray *tree = swap_zswap_tree(swp);
1760 	struct zswap_entry *entry;
1761 
1762 	if (xa_empty(tree))
1763 		return;
1764 
1765 	entry = xa_erase(tree, offset);
1766 	if (entry)
1767 		zswap_entry_free(entry);
1768 }
1769 
1770 int zswap_swapon(int type, unsigned long nr_pages)
1771 {
1772 	struct xarray *trees, *tree;
1773 	unsigned int nr, i;
1774 
1775 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1776 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1777 	if (!trees) {
1778 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1779 		return -ENOMEM;
1780 	}
1781 
1782 	for (i = 0; i < nr; i++)
1783 		xa_init(trees + i);
1784 
1785 	nr_zswap_trees[type] = nr;
1786 	zswap_trees[type] = trees;
1787 	return 0;
1788 }
1789 
1790 void zswap_swapoff(int type)
1791 {
1792 	struct xarray *trees = zswap_trees[type];
1793 	unsigned int i;
1794 
1795 	if (!trees)
1796 		return;
1797 
1798 	/* try_to_unuse() invalidated all the entries already */
1799 	for (i = 0; i < nr_zswap_trees[type]; i++)
1800 		WARN_ON_ONCE(!xa_empty(trees + i));
1801 
1802 	kvfree(trees);
1803 	nr_zswap_trees[type] = 0;
1804 	zswap_trees[type] = NULL;
1805 }
1806 
1807 /*********************************
1808 * debugfs functions
1809 **********************************/
1810 #ifdef CONFIG_DEBUG_FS
1811 #include <linux/debugfs.h>
1812 
1813 static struct dentry *zswap_debugfs_root;
1814 
1815 static int debugfs_get_total_size(void *data, u64 *val)
1816 {
1817 	*val = zswap_total_pages() * PAGE_SIZE;
1818 	return 0;
1819 }
1820 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1821 
1822 static int debugfs_get_stored_pages(void *data, u64 *val)
1823 {
1824 	*val = atomic_long_read(&zswap_stored_pages);
1825 	return 0;
1826 }
1827 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1828 
1829 static int debugfs_get_stored_incompressible_pages(void *data, u64 *val)
1830 {
1831 	*val = atomic_long_read(&zswap_stored_incompressible_pages);
1832 	return 0;
1833 }
1834 DEFINE_DEBUGFS_ATTRIBUTE(stored_incompressible_pages_fops,
1835 		debugfs_get_stored_incompressible_pages, NULL, "%llu\n");
1836 
1837 static int zswap_debugfs_init(void)
1838 {
1839 	if (!debugfs_initialized())
1840 		return -ENODEV;
1841 
1842 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1843 
1844 	debugfs_create_u64("pool_limit_hit", 0444,
1845 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1846 	debugfs_create_u64("reject_reclaim_fail", 0444,
1847 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1848 	debugfs_create_u64("reject_alloc_fail", 0444,
1849 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1850 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1851 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1852 	debugfs_create_u64("reject_compress_fail", 0444,
1853 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1854 	debugfs_create_u64("reject_compress_poor", 0444,
1855 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1856 	debugfs_create_u64("decompress_fail", 0444,
1857 			   zswap_debugfs_root, &zswap_decompress_fail);
1858 	debugfs_create_u64("written_back_pages", 0444,
1859 			   zswap_debugfs_root, &zswap_written_back_pages);
1860 	debugfs_create_file("pool_total_size", 0444,
1861 			    zswap_debugfs_root, NULL, &total_size_fops);
1862 	debugfs_create_file("stored_pages", 0444,
1863 			    zswap_debugfs_root, NULL, &stored_pages_fops);
1864 	debugfs_create_file("stored_incompressible_pages", 0444,
1865 			    zswap_debugfs_root, NULL,
1866 			    &stored_incompressible_pages_fops);
1867 
1868 	return 0;
1869 }
1870 #else
1871 static int zswap_debugfs_init(void)
1872 {
1873 	return 0;
1874 }
1875 #endif
1876 
1877 /*********************************
1878 * module init and exit
1879 **********************************/
1880 static int zswap_setup(void)
1881 {
1882 	struct zswap_pool *pool;
1883 	int ret;
1884 
1885 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1886 	if (!zswap_entry_cache) {
1887 		pr_err("entry cache creation failed\n");
1888 		goto cache_fail;
1889 	}
1890 
1891 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1892 				      "mm/zswap_pool:prepare",
1893 				      zswap_cpu_comp_prepare,
1894 				      zswap_cpu_comp_dead);
1895 	if (ret)
1896 		goto hp_fail;
1897 
1898 	shrink_wq = alloc_workqueue("zswap-shrink",
1899 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1900 	if (!shrink_wq)
1901 		goto shrink_wq_fail;
1902 
1903 	zswap_shrinker = zswap_alloc_shrinker();
1904 	if (!zswap_shrinker)
1905 		goto shrinker_fail;
1906 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1907 		goto lru_fail;
1908 	shrinker_register(zswap_shrinker);
1909 
1910 	INIT_WORK(&zswap_shrink_work, shrink_worker);
1911 
1912 	pool = __zswap_pool_create_fallback();
1913 	if (pool) {
1914 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1915 			zpool_get_type(pool->zpool));
1916 		list_add(&pool->list, &zswap_pools);
1917 		zswap_has_pool = true;
1918 		static_branch_enable(&zswap_ever_enabled);
1919 	} else {
1920 		pr_err("pool creation failed\n");
1921 		zswap_enabled = false;
1922 	}
1923 
1924 	if (zswap_debugfs_init())
1925 		pr_warn("debugfs initialization failed\n");
1926 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1927 	return 0;
1928 
1929 lru_fail:
1930 	shrinker_free(zswap_shrinker);
1931 shrinker_fail:
1932 	destroy_workqueue(shrink_wq);
1933 shrink_wq_fail:
1934 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1935 hp_fail:
1936 	kmem_cache_destroy(zswap_entry_cache);
1937 cache_fail:
1938 	/* if built-in, we aren't unloaded on failure; don't allow use */
1939 	zswap_init_state = ZSWAP_INIT_FAILED;
1940 	zswap_enabled = false;
1941 	return -ENOMEM;
1942 }
1943 
1944 static int __init zswap_init(void)
1945 {
1946 	if (!zswap_enabled)
1947 		return 0;
1948 	return zswap_setup();
1949 }
1950 /* must be late so crypto has time to come up */
1951 late_initcall(zswap_init);
1952 
1953 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1954 MODULE_DESCRIPTION("Compressed cache for swap pages");
1955