1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * zswap.c - zswap driver file 4 * 5 * zswap is a backend for frontswap that takes pages that are in the process 6 * of being swapped out and attempts to compress and store them in a 7 * RAM-based memory pool. This can result in a significant I/O reduction on 8 * the swap device and, in the case where decompressing from RAM is faster 9 * than reading from the swap device, can also improve workload performance. 10 * 11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/cpu.h> 18 #include <linux/highmem.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/types.h> 22 #include <linux/atomic.h> 23 #include <linux/frontswap.h> 24 #include <linux/rbtree.h> 25 #include <linux/swap.h> 26 #include <linux/crypto.h> 27 #include <linux/scatterlist.h> 28 #include <linux/mempool.h> 29 #include <linux/zpool.h> 30 #include <crypto/acompress.h> 31 32 #include <linux/mm_types.h> 33 #include <linux/page-flags.h> 34 #include <linux/swapops.h> 35 #include <linux/writeback.h> 36 #include <linux/pagemap.h> 37 #include <linux/workqueue.h> 38 39 /********************************* 40 * statistics 41 **********************************/ 42 /* Total bytes used by the compressed storage */ 43 static u64 zswap_pool_total_size; 44 /* The number of compressed pages currently stored in zswap */ 45 static atomic_t zswap_stored_pages = ATOMIC_INIT(0); 46 /* The number of same-value filled pages currently stored in zswap */ 47 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0); 48 49 /* 50 * The statistics below are not protected from concurrent access for 51 * performance reasons so they may not be a 100% accurate. However, 52 * they do provide useful information on roughly how many times a 53 * certain event is occurring. 54 */ 55 56 /* Pool limit was hit (see zswap_max_pool_percent) */ 57 static u64 zswap_pool_limit_hit; 58 /* Pages written back when pool limit was reached */ 59 static u64 zswap_written_back_pages; 60 /* Store failed due to a reclaim failure after pool limit was reached */ 61 static u64 zswap_reject_reclaim_fail; 62 /* Compressed page was too big for the allocator to (optimally) store */ 63 static u64 zswap_reject_compress_poor; 64 /* Store failed because underlying allocator could not get memory */ 65 static u64 zswap_reject_alloc_fail; 66 /* Store failed because the entry metadata could not be allocated (rare) */ 67 static u64 zswap_reject_kmemcache_fail; 68 /* Duplicate store was encountered (rare) */ 69 static u64 zswap_duplicate_entry; 70 71 /* Shrinker work queue */ 72 static struct workqueue_struct *shrink_wq; 73 /* Pool limit was hit, we need to calm down */ 74 static bool zswap_pool_reached_full; 75 76 /********************************* 77 * tunables 78 **********************************/ 79 80 #define ZSWAP_PARAM_UNSET "" 81 82 /* Enable/disable zswap */ 83 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); 84 static int zswap_enabled_param_set(const char *, 85 const struct kernel_param *); 86 static const struct kernel_param_ops zswap_enabled_param_ops = { 87 .set = zswap_enabled_param_set, 88 .get = param_get_bool, 89 }; 90 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); 91 92 /* Crypto compressor to use */ 93 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 94 static int zswap_compressor_param_set(const char *, 95 const struct kernel_param *); 96 static const struct kernel_param_ops zswap_compressor_param_ops = { 97 .set = zswap_compressor_param_set, 98 .get = param_get_charp, 99 .free = param_free_charp, 100 }; 101 module_param_cb(compressor, &zswap_compressor_param_ops, 102 &zswap_compressor, 0644); 103 104 /* Compressed storage zpool to use */ 105 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; 106 static int zswap_zpool_param_set(const char *, const struct kernel_param *); 107 static const struct kernel_param_ops zswap_zpool_param_ops = { 108 .set = zswap_zpool_param_set, 109 .get = param_get_charp, 110 .free = param_free_charp, 111 }; 112 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); 113 114 /* The maximum percentage of memory that the compressed pool can occupy */ 115 static unsigned int zswap_max_pool_percent = 20; 116 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 117 118 /* The threshold for accepting new pages after the max_pool_percent was hit */ 119 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ 120 module_param_named(accept_threshold_percent, zswap_accept_thr_percent, 121 uint, 0644); 122 123 /* Enable/disable handling same-value filled pages (enabled by default) */ 124 static bool zswap_same_filled_pages_enabled = true; 125 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled, 126 bool, 0644); 127 128 /********************************* 129 * data structures 130 **********************************/ 131 132 struct crypto_acomp_ctx { 133 struct crypto_acomp *acomp; 134 struct acomp_req *req; 135 struct crypto_wait wait; 136 u8 *dstmem; 137 struct mutex *mutex; 138 }; 139 140 struct zswap_pool { 141 struct zpool *zpool; 142 struct crypto_acomp_ctx __percpu *acomp_ctx; 143 struct kref kref; 144 struct list_head list; 145 struct work_struct release_work; 146 struct work_struct shrink_work; 147 struct hlist_node node; 148 char tfm_name[CRYPTO_MAX_ALG_NAME]; 149 }; 150 151 /* 152 * struct zswap_entry 153 * 154 * This structure contains the metadata for tracking a single compressed 155 * page within zswap. 156 * 157 * rbnode - links the entry into red-black tree for the appropriate swap type 158 * offset - the swap offset for the entry. Index into the red-black tree. 159 * refcount - the number of outstanding reference to the entry. This is needed 160 * to protect against premature freeing of the entry by code 161 * concurrent calls to load, invalidate, and writeback. The lock 162 * for the zswap_tree structure that contains the entry must 163 * be held while changing the refcount. Since the lock must 164 * be held, there is no reason to also make refcount atomic. 165 * length - the length in bytes of the compressed page data. Needed during 166 * decompression. For a same value filled page length is 0. 167 * pool - the zswap_pool the entry's data is in 168 * handle - zpool allocation handle that stores the compressed page data 169 * value - value of the same-value filled pages which have same content 170 */ 171 struct zswap_entry { 172 struct rb_node rbnode; 173 pgoff_t offset; 174 int refcount; 175 unsigned int length; 176 struct zswap_pool *pool; 177 union { 178 unsigned long handle; 179 unsigned long value; 180 }; 181 }; 182 183 struct zswap_header { 184 swp_entry_t swpentry; 185 }; 186 187 /* 188 * The tree lock in the zswap_tree struct protects a few things: 189 * - the rbtree 190 * - the refcount field of each entry in the tree 191 */ 192 struct zswap_tree { 193 struct rb_root rbroot; 194 spinlock_t lock; 195 }; 196 197 static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; 198 199 /* RCU-protected iteration */ 200 static LIST_HEAD(zswap_pools); 201 /* protects zswap_pools list modification */ 202 static DEFINE_SPINLOCK(zswap_pools_lock); 203 /* pool counter to provide unique names to zpool */ 204 static atomic_t zswap_pools_count = ATOMIC_INIT(0); 205 206 /* used by param callback function */ 207 static bool zswap_init_started; 208 209 /* fatal error during init */ 210 static bool zswap_init_failed; 211 212 /* init completed, but couldn't create the initial pool */ 213 static bool zswap_has_pool; 214 215 /********************************* 216 * helpers and fwd declarations 217 **********************************/ 218 219 #define zswap_pool_debug(msg, p) \ 220 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \ 221 zpool_get_type((p)->zpool)) 222 223 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle); 224 static int zswap_pool_get(struct zswap_pool *pool); 225 static void zswap_pool_put(struct zswap_pool *pool); 226 227 static const struct zpool_ops zswap_zpool_ops = { 228 .evict = zswap_writeback_entry 229 }; 230 231 static bool zswap_is_full(void) 232 { 233 return totalram_pages() * zswap_max_pool_percent / 100 < 234 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); 235 } 236 237 static bool zswap_can_accept(void) 238 { 239 return totalram_pages() * zswap_accept_thr_percent / 100 * 240 zswap_max_pool_percent / 100 > 241 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); 242 } 243 244 static void zswap_update_total_size(void) 245 { 246 struct zswap_pool *pool; 247 u64 total = 0; 248 249 rcu_read_lock(); 250 251 list_for_each_entry_rcu(pool, &zswap_pools, list) 252 total += zpool_get_total_size(pool->zpool); 253 254 rcu_read_unlock(); 255 256 zswap_pool_total_size = total; 257 } 258 259 /********************************* 260 * zswap entry functions 261 **********************************/ 262 static struct kmem_cache *zswap_entry_cache; 263 264 static int __init zswap_entry_cache_create(void) 265 { 266 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 267 return zswap_entry_cache == NULL; 268 } 269 270 static void __init zswap_entry_cache_destroy(void) 271 { 272 kmem_cache_destroy(zswap_entry_cache); 273 } 274 275 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) 276 { 277 struct zswap_entry *entry; 278 entry = kmem_cache_alloc(zswap_entry_cache, gfp); 279 if (!entry) 280 return NULL; 281 entry->refcount = 1; 282 RB_CLEAR_NODE(&entry->rbnode); 283 return entry; 284 } 285 286 static void zswap_entry_cache_free(struct zswap_entry *entry) 287 { 288 kmem_cache_free(zswap_entry_cache, entry); 289 } 290 291 /********************************* 292 * rbtree functions 293 **********************************/ 294 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) 295 { 296 struct rb_node *node = root->rb_node; 297 struct zswap_entry *entry; 298 299 while (node) { 300 entry = rb_entry(node, struct zswap_entry, rbnode); 301 if (entry->offset > offset) 302 node = node->rb_left; 303 else if (entry->offset < offset) 304 node = node->rb_right; 305 else 306 return entry; 307 } 308 return NULL; 309 } 310 311 /* 312 * In the case that a entry with the same offset is found, a pointer to 313 * the existing entry is stored in dupentry and the function returns -EEXIST 314 */ 315 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, 316 struct zswap_entry **dupentry) 317 { 318 struct rb_node **link = &root->rb_node, *parent = NULL; 319 struct zswap_entry *myentry; 320 321 while (*link) { 322 parent = *link; 323 myentry = rb_entry(parent, struct zswap_entry, rbnode); 324 if (myentry->offset > entry->offset) 325 link = &(*link)->rb_left; 326 else if (myentry->offset < entry->offset) 327 link = &(*link)->rb_right; 328 else { 329 *dupentry = myentry; 330 return -EEXIST; 331 } 332 } 333 rb_link_node(&entry->rbnode, parent, link); 334 rb_insert_color(&entry->rbnode, root); 335 return 0; 336 } 337 338 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry) 339 { 340 if (!RB_EMPTY_NODE(&entry->rbnode)) { 341 rb_erase(&entry->rbnode, root); 342 RB_CLEAR_NODE(&entry->rbnode); 343 } 344 } 345 346 /* 347 * Carries out the common pattern of freeing and entry's zpool allocation, 348 * freeing the entry itself, and decrementing the number of stored pages. 349 */ 350 static void zswap_free_entry(struct zswap_entry *entry) 351 { 352 if (!entry->length) 353 atomic_dec(&zswap_same_filled_pages); 354 else { 355 zpool_free(entry->pool->zpool, entry->handle); 356 zswap_pool_put(entry->pool); 357 } 358 zswap_entry_cache_free(entry); 359 atomic_dec(&zswap_stored_pages); 360 zswap_update_total_size(); 361 } 362 363 /* caller must hold the tree lock */ 364 static void zswap_entry_get(struct zswap_entry *entry) 365 { 366 entry->refcount++; 367 } 368 369 /* caller must hold the tree lock 370 * remove from the tree and free it, if nobody reference the entry 371 */ 372 static void zswap_entry_put(struct zswap_tree *tree, 373 struct zswap_entry *entry) 374 { 375 int refcount = --entry->refcount; 376 377 BUG_ON(refcount < 0); 378 if (refcount == 0) { 379 zswap_rb_erase(&tree->rbroot, entry); 380 zswap_free_entry(entry); 381 } 382 } 383 384 /* caller must hold the tree lock */ 385 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, 386 pgoff_t offset) 387 { 388 struct zswap_entry *entry; 389 390 entry = zswap_rb_search(root, offset); 391 if (entry) 392 zswap_entry_get(entry); 393 394 return entry; 395 } 396 397 /********************************* 398 * per-cpu code 399 **********************************/ 400 static DEFINE_PER_CPU(u8 *, zswap_dstmem); 401 /* 402 * If users dynamically change the zpool type and compressor at runtime, i.e. 403 * zswap is running, zswap can have more than one zpool on one cpu, but they 404 * are sharing dtsmem. So we need this mutex to be per-cpu. 405 */ 406 static DEFINE_PER_CPU(struct mutex *, zswap_mutex); 407 408 static int zswap_dstmem_prepare(unsigned int cpu) 409 { 410 struct mutex *mutex; 411 u8 *dst; 412 413 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); 414 if (!dst) 415 return -ENOMEM; 416 417 mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu)); 418 if (!mutex) { 419 kfree(dst); 420 return -ENOMEM; 421 } 422 423 mutex_init(mutex); 424 per_cpu(zswap_dstmem, cpu) = dst; 425 per_cpu(zswap_mutex, cpu) = mutex; 426 return 0; 427 } 428 429 static int zswap_dstmem_dead(unsigned int cpu) 430 { 431 struct mutex *mutex; 432 u8 *dst; 433 434 mutex = per_cpu(zswap_mutex, cpu); 435 kfree(mutex); 436 per_cpu(zswap_mutex, cpu) = NULL; 437 438 dst = per_cpu(zswap_dstmem, cpu); 439 kfree(dst); 440 per_cpu(zswap_dstmem, cpu) = NULL; 441 442 return 0; 443 } 444 445 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) 446 { 447 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 448 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 449 struct crypto_acomp *acomp; 450 struct acomp_req *req; 451 452 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); 453 if (IS_ERR(acomp)) { 454 pr_err("could not alloc crypto acomp %s : %ld\n", 455 pool->tfm_name, PTR_ERR(acomp)); 456 return PTR_ERR(acomp); 457 } 458 acomp_ctx->acomp = acomp; 459 460 req = acomp_request_alloc(acomp_ctx->acomp); 461 if (!req) { 462 pr_err("could not alloc crypto acomp_request %s\n", 463 pool->tfm_name); 464 crypto_free_acomp(acomp_ctx->acomp); 465 return -ENOMEM; 466 } 467 acomp_ctx->req = req; 468 469 crypto_init_wait(&acomp_ctx->wait); 470 /* 471 * if the backend of acomp is async zip, crypto_req_done() will wakeup 472 * crypto_wait_req(); if the backend of acomp is scomp, the callback 473 * won't be called, crypto_wait_req() will return without blocking. 474 */ 475 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 476 crypto_req_done, &acomp_ctx->wait); 477 478 acomp_ctx->mutex = per_cpu(zswap_mutex, cpu); 479 acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu); 480 481 return 0; 482 } 483 484 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) 485 { 486 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 487 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 488 489 if (!IS_ERR_OR_NULL(acomp_ctx)) { 490 if (!IS_ERR_OR_NULL(acomp_ctx->req)) 491 acomp_request_free(acomp_ctx->req); 492 if (!IS_ERR_OR_NULL(acomp_ctx->acomp)) 493 crypto_free_acomp(acomp_ctx->acomp); 494 } 495 496 return 0; 497 } 498 499 /********************************* 500 * pool functions 501 **********************************/ 502 503 static struct zswap_pool *__zswap_pool_current(void) 504 { 505 struct zswap_pool *pool; 506 507 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 508 WARN_ONCE(!pool && zswap_has_pool, 509 "%s: no page storage pool!\n", __func__); 510 511 return pool; 512 } 513 514 static struct zswap_pool *zswap_pool_current(void) 515 { 516 assert_spin_locked(&zswap_pools_lock); 517 518 return __zswap_pool_current(); 519 } 520 521 static struct zswap_pool *zswap_pool_current_get(void) 522 { 523 struct zswap_pool *pool; 524 525 rcu_read_lock(); 526 527 pool = __zswap_pool_current(); 528 if (!zswap_pool_get(pool)) 529 pool = NULL; 530 531 rcu_read_unlock(); 532 533 return pool; 534 } 535 536 static struct zswap_pool *zswap_pool_last_get(void) 537 { 538 struct zswap_pool *pool, *last = NULL; 539 540 rcu_read_lock(); 541 542 list_for_each_entry_rcu(pool, &zswap_pools, list) 543 last = pool; 544 WARN_ONCE(!last && zswap_has_pool, 545 "%s: no page storage pool!\n", __func__); 546 if (!zswap_pool_get(last)) 547 last = NULL; 548 549 rcu_read_unlock(); 550 551 return last; 552 } 553 554 /* type and compressor must be null-terminated */ 555 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) 556 { 557 struct zswap_pool *pool; 558 559 assert_spin_locked(&zswap_pools_lock); 560 561 list_for_each_entry_rcu(pool, &zswap_pools, list) { 562 if (strcmp(pool->tfm_name, compressor)) 563 continue; 564 if (strcmp(zpool_get_type(pool->zpool), type)) 565 continue; 566 /* if we can't get it, it's about to be destroyed */ 567 if (!zswap_pool_get(pool)) 568 continue; 569 return pool; 570 } 571 572 return NULL; 573 } 574 575 static void shrink_worker(struct work_struct *w) 576 { 577 struct zswap_pool *pool = container_of(w, typeof(*pool), 578 shrink_work); 579 580 if (zpool_shrink(pool->zpool, 1, NULL)) 581 zswap_reject_reclaim_fail++; 582 zswap_pool_put(pool); 583 } 584 585 static struct zswap_pool *zswap_pool_create(char *type, char *compressor) 586 { 587 struct zswap_pool *pool; 588 char name[38]; /* 'zswap' + 32 char (max) num + \0 */ 589 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; 590 int ret; 591 592 if (!zswap_has_pool) { 593 /* if either are unset, pool initialization failed, and we 594 * need both params to be set correctly before trying to 595 * create a pool. 596 */ 597 if (!strcmp(type, ZSWAP_PARAM_UNSET)) 598 return NULL; 599 if (!strcmp(compressor, ZSWAP_PARAM_UNSET)) 600 return NULL; 601 } 602 603 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 604 if (!pool) 605 return NULL; 606 607 /* unique name for each pool specifically required by zsmalloc */ 608 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); 609 610 pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops); 611 if (!pool->zpool) { 612 pr_err("%s zpool not available\n", type); 613 goto error; 614 } 615 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); 616 617 strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 618 619 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); 620 if (!pool->acomp_ctx) { 621 pr_err("percpu alloc failed\n"); 622 goto error; 623 } 624 625 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, 626 &pool->node); 627 if (ret) 628 goto error; 629 pr_debug("using %s compressor\n", pool->tfm_name); 630 631 /* being the current pool takes 1 ref; this func expects the 632 * caller to always add the new pool as the current pool 633 */ 634 kref_init(&pool->kref); 635 INIT_LIST_HEAD(&pool->list); 636 INIT_WORK(&pool->shrink_work, shrink_worker); 637 638 zswap_pool_debug("created", pool); 639 640 return pool; 641 642 error: 643 if (pool->acomp_ctx) 644 free_percpu(pool->acomp_ctx); 645 if (pool->zpool) 646 zpool_destroy_pool(pool->zpool); 647 kfree(pool); 648 return NULL; 649 } 650 651 static __init struct zswap_pool *__zswap_pool_create_fallback(void) 652 { 653 bool has_comp, has_zpool; 654 655 has_comp = crypto_has_acomp(zswap_compressor, 0, 0); 656 if (!has_comp && strcmp(zswap_compressor, 657 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { 658 pr_err("compressor %s not available, using default %s\n", 659 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); 660 param_free_charp(&zswap_compressor); 661 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 662 has_comp = crypto_has_acomp(zswap_compressor, 0, 0); 663 } 664 if (!has_comp) { 665 pr_err("default compressor %s not available\n", 666 zswap_compressor); 667 param_free_charp(&zswap_compressor); 668 zswap_compressor = ZSWAP_PARAM_UNSET; 669 } 670 671 has_zpool = zpool_has_pool(zswap_zpool_type); 672 if (!has_zpool && strcmp(zswap_zpool_type, 673 CONFIG_ZSWAP_ZPOOL_DEFAULT)) { 674 pr_err("zpool %s not available, using default %s\n", 675 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT); 676 param_free_charp(&zswap_zpool_type); 677 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; 678 has_zpool = zpool_has_pool(zswap_zpool_type); 679 } 680 if (!has_zpool) { 681 pr_err("default zpool %s not available\n", 682 zswap_zpool_type); 683 param_free_charp(&zswap_zpool_type); 684 zswap_zpool_type = ZSWAP_PARAM_UNSET; 685 } 686 687 if (!has_comp || !has_zpool) 688 return NULL; 689 690 return zswap_pool_create(zswap_zpool_type, zswap_compressor); 691 } 692 693 static void zswap_pool_destroy(struct zswap_pool *pool) 694 { 695 zswap_pool_debug("destroying", pool); 696 697 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 698 free_percpu(pool->acomp_ctx); 699 zpool_destroy_pool(pool->zpool); 700 kfree(pool); 701 } 702 703 static int __must_check zswap_pool_get(struct zswap_pool *pool) 704 { 705 if (!pool) 706 return 0; 707 708 return kref_get_unless_zero(&pool->kref); 709 } 710 711 static void __zswap_pool_release(struct work_struct *work) 712 { 713 struct zswap_pool *pool = container_of(work, typeof(*pool), 714 release_work); 715 716 synchronize_rcu(); 717 718 /* nobody should have been able to get a kref... */ 719 WARN_ON(kref_get_unless_zero(&pool->kref)); 720 721 /* pool is now off zswap_pools list and has no references. */ 722 zswap_pool_destroy(pool); 723 } 724 725 static void __zswap_pool_empty(struct kref *kref) 726 { 727 struct zswap_pool *pool; 728 729 pool = container_of(kref, typeof(*pool), kref); 730 731 spin_lock(&zswap_pools_lock); 732 733 WARN_ON(pool == zswap_pool_current()); 734 735 list_del_rcu(&pool->list); 736 737 INIT_WORK(&pool->release_work, __zswap_pool_release); 738 schedule_work(&pool->release_work); 739 740 spin_unlock(&zswap_pools_lock); 741 } 742 743 static void zswap_pool_put(struct zswap_pool *pool) 744 { 745 kref_put(&pool->kref, __zswap_pool_empty); 746 } 747 748 /********************************* 749 * param callbacks 750 **********************************/ 751 752 /* val must be a null-terminated string */ 753 static int __zswap_param_set(const char *val, const struct kernel_param *kp, 754 char *type, char *compressor) 755 { 756 struct zswap_pool *pool, *put_pool = NULL; 757 char *s = strstrip((char *)val); 758 int ret; 759 760 if (zswap_init_failed) { 761 pr_err("can't set param, initialization failed\n"); 762 return -ENODEV; 763 } 764 765 /* no change required */ 766 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool) 767 return 0; 768 769 /* if this is load-time (pre-init) param setting, 770 * don't create a pool; that's done during init. 771 */ 772 if (!zswap_init_started) 773 return param_set_charp(s, kp); 774 775 if (!type) { 776 if (!zpool_has_pool(s)) { 777 pr_err("zpool %s not available\n", s); 778 return -ENOENT; 779 } 780 type = s; 781 } else if (!compressor) { 782 if (!crypto_has_acomp(s, 0, 0)) { 783 pr_err("compressor %s not available\n", s); 784 return -ENOENT; 785 } 786 compressor = s; 787 } else { 788 WARN_ON(1); 789 return -EINVAL; 790 } 791 792 spin_lock(&zswap_pools_lock); 793 794 pool = zswap_pool_find_get(type, compressor); 795 if (pool) { 796 zswap_pool_debug("using existing", pool); 797 WARN_ON(pool == zswap_pool_current()); 798 list_del_rcu(&pool->list); 799 } 800 801 spin_unlock(&zswap_pools_lock); 802 803 if (!pool) 804 pool = zswap_pool_create(type, compressor); 805 806 if (pool) 807 ret = param_set_charp(s, kp); 808 else 809 ret = -EINVAL; 810 811 spin_lock(&zswap_pools_lock); 812 813 if (!ret) { 814 put_pool = zswap_pool_current(); 815 list_add_rcu(&pool->list, &zswap_pools); 816 zswap_has_pool = true; 817 } else if (pool) { 818 /* add the possibly pre-existing pool to the end of the pools 819 * list; if it's new (and empty) then it'll be removed and 820 * destroyed by the put after we drop the lock 821 */ 822 list_add_tail_rcu(&pool->list, &zswap_pools); 823 put_pool = pool; 824 } 825 826 spin_unlock(&zswap_pools_lock); 827 828 if (!zswap_has_pool && !pool) { 829 /* if initial pool creation failed, and this pool creation also 830 * failed, maybe both compressor and zpool params were bad. 831 * Allow changing this param, so pool creation will succeed 832 * when the other param is changed. We already verified this 833 * param is ok in the zpool_has_pool() or crypto_has_acomp() 834 * checks above. 835 */ 836 ret = param_set_charp(s, kp); 837 } 838 839 /* drop the ref from either the old current pool, 840 * or the new pool we failed to add 841 */ 842 if (put_pool) 843 zswap_pool_put(put_pool); 844 845 return ret; 846 } 847 848 static int zswap_compressor_param_set(const char *val, 849 const struct kernel_param *kp) 850 { 851 return __zswap_param_set(val, kp, zswap_zpool_type, NULL); 852 } 853 854 static int zswap_zpool_param_set(const char *val, 855 const struct kernel_param *kp) 856 { 857 return __zswap_param_set(val, kp, NULL, zswap_compressor); 858 } 859 860 static int zswap_enabled_param_set(const char *val, 861 const struct kernel_param *kp) 862 { 863 if (zswap_init_failed) { 864 pr_err("can't enable, initialization failed\n"); 865 return -ENODEV; 866 } 867 if (!zswap_has_pool && zswap_init_started) { 868 pr_err("can't enable, no pool configured\n"); 869 return -ENODEV; 870 } 871 872 return param_set_bool(val, kp); 873 } 874 875 /********************************* 876 * writeback code 877 **********************************/ 878 /* return enum for zswap_get_swap_cache_page */ 879 enum zswap_get_swap_ret { 880 ZSWAP_SWAPCACHE_NEW, 881 ZSWAP_SWAPCACHE_EXIST, 882 ZSWAP_SWAPCACHE_FAIL, 883 }; 884 885 /* 886 * zswap_get_swap_cache_page 887 * 888 * This is an adaption of read_swap_cache_async() 889 * 890 * This function tries to find a page with the given swap entry 891 * in the swapper_space address space (the swap cache). If the page 892 * is found, it is returned in retpage. Otherwise, a page is allocated, 893 * added to the swap cache, and returned in retpage. 894 * 895 * If success, the swap cache page is returned in retpage 896 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache 897 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated, 898 * the new page is added to swapcache and locked 899 * Returns ZSWAP_SWAPCACHE_FAIL on error 900 */ 901 static int zswap_get_swap_cache_page(swp_entry_t entry, 902 struct page **retpage) 903 { 904 bool page_was_allocated; 905 906 *retpage = __read_swap_cache_async(entry, GFP_KERNEL, 907 NULL, 0, &page_was_allocated); 908 if (page_was_allocated) 909 return ZSWAP_SWAPCACHE_NEW; 910 if (!*retpage) 911 return ZSWAP_SWAPCACHE_FAIL; 912 return ZSWAP_SWAPCACHE_EXIST; 913 } 914 915 /* 916 * Attempts to free an entry by adding a page to the swap cache, 917 * decompressing the entry data into the page, and issuing a 918 * bio write to write the page back to the swap device. 919 * 920 * This can be thought of as a "resumed writeback" of the page 921 * to the swap device. We are basically resuming the same swap 922 * writeback path that was intercepted with the frontswap_store() 923 * in the first place. After the page has been decompressed into 924 * the swap cache, the compressed version stored by zswap can be 925 * freed. 926 */ 927 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) 928 { 929 struct zswap_header *zhdr; 930 swp_entry_t swpentry; 931 struct zswap_tree *tree; 932 pgoff_t offset; 933 struct zswap_entry *entry; 934 struct page *page; 935 struct scatterlist input, output; 936 struct crypto_acomp_ctx *acomp_ctx; 937 938 u8 *src, *tmp = NULL; 939 unsigned int dlen; 940 int ret; 941 struct writeback_control wbc = { 942 .sync_mode = WB_SYNC_NONE, 943 }; 944 945 if (!zpool_can_sleep_mapped(pool)) { 946 tmp = kmalloc(PAGE_SIZE, GFP_ATOMIC); 947 if (!tmp) 948 return -ENOMEM; 949 } 950 951 /* extract swpentry from data */ 952 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO); 953 swpentry = zhdr->swpentry; /* here */ 954 tree = zswap_trees[swp_type(swpentry)]; 955 offset = swp_offset(swpentry); 956 957 /* find and ref zswap entry */ 958 spin_lock(&tree->lock); 959 entry = zswap_entry_find_get(&tree->rbroot, offset); 960 if (!entry) { 961 /* entry was invalidated */ 962 spin_unlock(&tree->lock); 963 zpool_unmap_handle(pool, handle); 964 kfree(tmp); 965 return 0; 966 } 967 spin_unlock(&tree->lock); 968 BUG_ON(offset != entry->offset); 969 970 /* try to allocate swap cache page */ 971 switch (zswap_get_swap_cache_page(swpentry, &page)) { 972 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */ 973 ret = -ENOMEM; 974 goto fail; 975 976 case ZSWAP_SWAPCACHE_EXIST: 977 /* page is already in the swap cache, ignore for now */ 978 put_page(page); 979 ret = -EEXIST; 980 goto fail; 981 982 case ZSWAP_SWAPCACHE_NEW: /* page is locked */ 983 /* decompress */ 984 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); 985 986 dlen = PAGE_SIZE; 987 src = (u8 *)zhdr + sizeof(struct zswap_header); 988 989 if (!zpool_can_sleep_mapped(pool)) { 990 991 memcpy(tmp, src, entry->length); 992 src = tmp; 993 994 zpool_unmap_handle(pool, handle); 995 } 996 997 mutex_lock(acomp_ctx->mutex); 998 sg_init_one(&input, src, entry->length); 999 sg_init_table(&output, 1); 1000 sg_set_page(&output, page, PAGE_SIZE, 0); 1001 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen); 1002 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); 1003 dlen = acomp_ctx->req->dlen; 1004 mutex_unlock(acomp_ctx->mutex); 1005 1006 BUG_ON(ret); 1007 BUG_ON(dlen != PAGE_SIZE); 1008 1009 /* page is up to date */ 1010 SetPageUptodate(page); 1011 } 1012 1013 /* move it to the tail of the inactive list after end_writeback */ 1014 SetPageReclaim(page); 1015 1016 /* start writeback */ 1017 __swap_writepage(page, &wbc, end_swap_bio_write); 1018 put_page(page); 1019 zswap_written_back_pages++; 1020 1021 spin_lock(&tree->lock); 1022 /* drop local reference */ 1023 zswap_entry_put(tree, entry); 1024 1025 /* 1026 * There are two possible situations for entry here: 1027 * (1) refcount is 1(normal case), entry is valid and on the tree 1028 * (2) refcount is 0, entry is freed and not on the tree 1029 * because invalidate happened during writeback 1030 * search the tree and free the entry if find entry 1031 */ 1032 if (entry == zswap_rb_search(&tree->rbroot, offset)) 1033 zswap_entry_put(tree, entry); 1034 spin_unlock(&tree->lock); 1035 1036 goto end; 1037 1038 /* 1039 * if we get here due to ZSWAP_SWAPCACHE_EXIST 1040 * a load may be happening concurrently. 1041 * it is safe and okay to not free the entry. 1042 * if we free the entry in the following put 1043 * it is also okay to return !0 1044 */ 1045 fail: 1046 spin_lock(&tree->lock); 1047 zswap_entry_put(tree, entry); 1048 spin_unlock(&tree->lock); 1049 1050 end: 1051 if (zpool_can_sleep_mapped(pool)) 1052 zpool_unmap_handle(pool, handle); 1053 else 1054 kfree(tmp); 1055 1056 return ret; 1057 } 1058 1059 static int zswap_is_page_same_filled(void *ptr, unsigned long *value) 1060 { 1061 unsigned int pos; 1062 unsigned long *page; 1063 1064 page = (unsigned long *)ptr; 1065 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) { 1066 if (page[pos] != page[0]) 1067 return 0; 1068 } 1069 *value = page[0]; 1070 return 1; 1071 } 1072 1073 static void zswap_fill_page(void *ptr, unsigned long value) 1074 { 1075 unsigned long *page; 1076 1077 page = (unsigned long *)ptr; 1078 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long)); 1079 } 1080 1081 /********************************* 1082 * frontswap hooks 1083 **********************************/ 1084 /* attempts to compress and store an single page */ 1085 static int zswap_frontswap_store(unsigned type, pgoff_t offset, 1086 struct page *page) 1087 { 1088 struct zswap_tree *tree = zswap_trees[type]; 1089 struct zswap_entry *entry, *dupentry; 1090 struct scatterlist input, output; 1091 struct crypto_acomp_ctx *acomp_ctx; 1092 int ret; 1093 unsigned int hlen, dlen = PAGE_SIZE; 1094 unsigned long handle, value; 1095 char *buf; 1096 u8 *src, *dst; 1097 struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) }; 1098 gfp_t gfp; 1099 1100 /* THP isn't supported */ 1101 if (PageTransHuge(page)) { 1102 ret = -EINVAL; 1103 goto reject; 1104 } 1105 1106 if (!zswap_enabled || !tree) { 1107 ret = -ENODEV; 1108 goto reject; 1109 } 1110 1111 /* reclaim space if needed */ 1112 if (zswap_is_full()) { 1113 struct zswap_pool *pool; 1114 1115 zswap_pool_limit_hit++; 1116 zswap_pool_reached_full = true; 1117 pool = zswap_pool_last_get(); 1118 if (pool) 1119 queue_work(shrink_wq, &pool->shrink_work); 1120 ret = -ENOMEM; 1121 goto reject; 1122 } 1123 1124 if (zswap_pool_reached_full) { 1125 if (!zswap_can_accept()) { 1126 ret = -ENOMEM; 1127 goto reject; 1128 } else 1129 zswap_pool_reached_full = false; 1130 } 1131 1132 /* allocate entry */ 1133 entry = zswap_entry_cache_alloc(GFP_KERNEL); 1134 if (!entry) { 1135 zswap_reject_kmemcache_fail++; 1136 ret = -ENOMEM; 1137 goto reject; 1138 } 1139 1140 if (zswap_same_filled_pages_enabled) { 1141 src = kmap_atomic(page); 1142 if (zswap_is_page_same_filled(src, &value)) { 1143 kunmap_atomic(src); 1144 entry->offset = offset; 1145 entry->length = 0; 1146 entry->value = value; 1147 atomic_inc(&zswap_same_filled_pages); 1148 goto insert_entry; 1149 } 1150 kunmap_atomic(src); 1151 } 1152 1153 /* if entry is successfully added, it keeps the reference */ 1154 entry->pool = zswap_pool_current_get(); 1155 if (!entry->pool) { 1156 ret = -EINVAL; 1157 goto freepage; 1158 } 1159 1160 /* compress */ 1161 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); 1162 1163 mutex_lock(acomp_ctx->mutex); 1164 1165 dst = acomp_ctx->dstmem; 1166 sg_init_table(&input, 1); 1167 sg_set_page(&input, page, PAGE_SIZE, 0); 1168 1169 /* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */ 1170 sg_init_one(&output, dst, PAGE_SIZE * 2); 1171 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); 1172 /* 1173 * it maybe looks a little bit silly that we send an asynchronous request, 1174 * then wait for its completion synchronously. This makes the process look 1175 * synchronous in fact. 1176 * Theoretically, acomp supports users send multiple acomp requests in one 1177 * acomp instance, then get those requests done simultaneously. but in this 1178 * case, frontswap actually does store and load page by page, there is no 1179 * existing method to send the second page before the first page is done 1180 * in one thread doing frontswap. 1181 * but in different threads running on different cpu, we have different 1182 * acomp instance, so multiple threads can do (de)compression in parallel. 1183 */ 1184 ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); 1185 dlen = acomp_ctx->req->dlen; 1186 1187 if (ret) { 1188 ret = -EINVAL; 1189 goto put_dstmem; 1190 } 1191 1192 /* store */ 1193 hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0; 1194 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; 1195 if (zpool_malloc_support_movable(entry->pool->zpool)) 1196 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE; 1197 ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle); 1198 if (ret == -ENOSPC) { 1199 zswap_reject_compress_poor++; 1200 goto put_dstmem; 1201 } 1202 if (ret) { 1203 zswap_reject_alloc_fail++; 1204 goto put_dstmem; 1205 } 1206 buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW); 1207 memcpy(buf, &zhdr, hlen); 1208 memcpy(buf + hlen, dst, dlen); 1209 zpool_unmap_handle(entry->pool->zpool, handle); 1210 mutex_unlock(acomp_ctx->mutex); 1211 1212 /* populate entry */ 1213 entry->offset = offset; 1214 entry->handle = handle; 1215 entry->length = dlen; 1216 1217 insert_entry: 1218 /* map */ 1219 spin_lock(&tree->lock); 1220 do { 1221 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); 1222 if (ret == -EEXIST) { 1223 zswap_duplicate_entry++; 1224 /* remove from rbtree */ 1225 zswap_rb_erase(&tree->rbroot, dupentry); 1226 zswap_entry_put(tree, dupentry); 1227 } 1228 } while (ret == -EEXIST); 1229 spin_unlock(&tree->lock); 1230 1231 /* update stats */ 1232 atomic_inc(&zswap_stored_pages); 1233 zswap_update_total_size(); 1234 1235 return 0; 1236 1237 put_dstmem: 1238 mutex_unlock(acomp_ctx->mutex); 1239 zswap_pool_put(entry->pool); 1240 freepage: 1241 zswap_entry_cache_free(entry); 1242 reject: 1243 return ret; 1244 } 1245 1246 /* 1247 * returns 0 if the page was successfully decompressed 1248 * return -1 on entry not found or error 1249 */ 1250 static int zswap_frontswap_load(unsigned type, pgoff_t offset, 1251 struct page *page) 1252 { 1253 struct zswap_tree *tree = zswap_trees[type]; 1254 struct zswap_entry *entry; 1255 struct scatterlist input, output; 1256 struct crypto_acomp_ctx *acomp_ctx; 1257 u8 *src, *dst, *tmp; 1258 unsigned int dlen; 1259 int ret; 1260 1261 /* find */ 1262 spin_lock(&tree->lock); 1263 entry = zswap_entry_find_get(&tree->rbroot, offset); 1264 if (!entry) { 1265 /* entry was written back */ 1266 spin_unlock(&tree->lock); 1267 return -1; 1268 } 1269 spin_unlock(&tree->lock); 1270 1271 if (!entry->length) { 1272 dst = kmap_atomic(page); 1273 zswap_fill_page(dst, entry->value); 1274 kunmap_atomic(dst); 1275 ret = 0; 1276 goto freeentry; 1277 } 1278 1279 if (!zpool_can_sleep_mapped(entry->pool->zpool)) { 1280 1281 tmp = kmalloc(entry->length, GFP_ATOMIC); 1282 if (!tmp) { 1283 ret = -ENOMEM; 1284 goto freeentry; 1285 } 1286 } 1287 1288 /* decompress */ 1289 dlen = PAGE_SIZE; 1290 src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO); 1291 if (zpool_evictable(entry->pool->zpool)) 1292 src += sizeof(struct zswap_header); 1293 1294 if (!zpool_can_sleep_mapped(entry->pool->zpool)) { 1295 1296 memcpy(tmp, src, entry->length); 1297 src = tmp; 1298 1299 zpool_unmap_handle(entry->pool->zpool, entry->handle); 1300 } 1301 1302 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); 1303 mutex_lock(acomp_ctx->mutex); 1304 sg_init_one(&input, src, entry->length); 1305 sg_init_table(&output, 1); 1306 sg_set_page(&output, page, PAGE_SIZE, 0); 1307 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen); 1308 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); 1309 mutex_unlock(acomp_ctx->mutex); 1310 1311 if (zpool_can_sleep_mapped(entry->pool->zpool)) 1312 zpool_unmap_handle(entry->pool->zpool, entry->handle); 1313 else 1314 kfree(tmp); 1315 1316 BUG_ON(ret); 1317 1318 freeentry: 1319 spin_lock(&tree->lock); 1320 zswap_entry_put(tree, entry); 1321 spin_unlock(&tree->lock); 1322 1323 return ret; 1324 } 1325 1326 /* frees an entry in zswap */ 1327 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) 1328 { 1329 struct zswap_tree *tree = zswap_trees[type]; 1330 struct zswap_entry *entry; 1331 1332 /* find */ 1333 spin_lock(&tree->lock); 1334 entry = zswap_rb_search(&tree->rbroot, offset); 1335 if (!entry) { 1336 /* entry was written back */ 1337 spin_unlock(&tree->lock); 1338 return; 1339 } 1340 1341 /* remove from rbtree */ 1342 zswap_rb_erase(&tree->rbroot, entry); 1343 1344 /* drop the initial reference from entry creation */ 1345 zswap_entry_put(tree, entry); 1346 1347 spin_unlock(&tree->lock); 1348 } 1349 1350 /* frees all zswap entries for the given swap type */ 1351 static void zswap_frontswap_invalidate_area(unsigned type) 1352 { 1353 struct zswap_tree *tree = zswap_trees[type]; 1354 struct zswap_entry *entry, *n; 1355 1356 if (!tree) 1357 return; 1358 1359 /* walk the tree and free everything */ 1360 spin_lock(&tree->lock); 1361 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) 1362 zswap_free_entry(entry); 1363 tree->rbroot = RB_ROOT; 1364 spin_unlock(&tree->lock); 1365 kfree(tree); 1366 zswap_trees[type] = NULL; 1367 } 1368 1369 static void zswap_frontswap_init(unsigned type) 1370 { 1371 struct zswap_tree *tree; 1372 1373 tree = kzalloc(sizeof(*tree), GFP_KERNEL); 1374 if (!tree) { 1375 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1376 return; 1377 } 1378 1379 tree->rbroot = RB_ROOT; 1380 spin_lock_init(&tree->lock); 1381 zswap_trees[type] = tree; 1382 } 1383 1384 static struct frontswap_ops zswap_frontswap_ops = { 1385 .store = zswap_frontswap_store, 1386 .load = zswap_frontswap_load, 1387 .invalidate_page = zswap_frontswap_invalidate_page, 1388 .invalidate_area = zswap_frontswap_invalidate_area, 1389 .init = zswap_frontswap_init 1390 }; 1391 1392 /********************************* 1393 * debugfs functions 1394 **********************************/ 1395 #ifdef CONFIG_DEBUG_FS 1396 #include <linux/debugfs.h> 1397 1398 static struct dentry *zswap_debugfs_root; 1399 1400 static int __init zswap_debugfs_init(void) 1401 { 1402 if (!debugfs_initialized()) 1403 return -ENODEV; 1404 1405 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1406 1407 debugfs_create_u64("pool_limit_hit", 0444, 1408 zswap_debugfs_root, &zswap_pool_limit_hit); 1409 debugfs_create_u64("reject_reclaim_fail", 0444, 1410 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1411 debugfs_create_u64("reject_alloc_fail", 0444, 1412 zswap_debugfs_root, &zswap_reject_alloc_fail); 1413 debugfs_create_u64("reject_kmemcache_fail", 0444, 1414 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1415 debugfs_create_u64("reject_compress_poor", 0444, 1416 zswap_debugfs_root, &zswap_reject_compress_poor); 1417 debugfs_create_u64("written_back_pages", 0444, 1418 zswap_debugfs_root, &zswap_written_back_pages); 1419 debugfs_create_u64("duplicate_entry", 0444, 1420 zswap_debugfs_root, &zswap_duplicate_entry); 1421 debugfs_create_u64("pool_total_size", 0444, 1422 zswap_debugfs_root, &zswap_pool_total_size); 1423 debugfs_create_atomic_t("stored_pages", 0444, 1424 zswap_debugfs_root, &zswap_stored_pages); 1425 debugfs_create_atomic_t("same_filled_pages", 0444, 1426 zswap_debugfs_root, &zswap_same_filled_pages); 1427 1428 return 0; 1429 } 1430 1431 static void __exit zswap_debugfs_exit(void) 1432 { 1433 debugfs_remove_recursive(zswap_debugfs_root); 1434 } 1435 #else 1436 static int __init zswap_debugfs_init(void) 1437 { 1438 return 0; 1439 } 1440 1441 static void __exit zswap_debugfs_exit(void) { } 1442 #endif 1443 1444 /********************************* 1445 * module init and exit 1446 **********************************/ 1447 static int __init init_zswap(void) 1448 { 1449 struct zswap_pool *pool; 1450 int ret; 1451 1452 zswap_init_started = true; 1453 1454 if (zswap_entry_cache_create()) { 1455 pr_err("entry cache creation failed\n"); 1456 goto cache_fail; 1457 } 1458 1459 ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare", 1460 zswap_dstmem_prepare, zswap_dstmem_dead); 1461 if (ret) { 1462 pr_err("dstmem alloc failed\n"); 1463 goto dstmem_fail; 1464 } 1465 1466 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, 1467 "mm/zswap_pool:prepare", 1468 zswap_cpu_comp_prepare, 1469 zswap_cpu_comp_dead); 1470 if (ret) 1471 goto hp_fail; 1472 1473 pool = __zswap_pool_create_fallback(); 1474 if (pool) { 1475 pr_info("loaded using pool %s/%s\n", pool->tfm_name, 1476 zpool_get_type(pool->zpool)); 1477 list_add(&pool->list, &zswap_pools); 1478 zswap_has_pool = true; 1479 } else { 1480 pr_err("pool creation failed\n"); 1481 zswap_enabled = false; 1482 } 1483 1484 shrink_wq = create_workqueue("zswap-shrink"); 1485 if (!shrink_wq) 1486 goto fallback_fail; 1487 1488 frontswap_register_ops(&zswap_frontswap_ops); 1489 if (zswap_debugfs_init()) 1490 pr_warn("debugfs initialization failed\n"); 1491 return 0; 1492 1493 fallback_fail: 1494 if (pool) 1495 zswap_pool_destroy(pool); 1496 hp_fail: 1497 cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE); 1498 dstmem_fail: 1499 zswap_entry_cache_destroy(); 1500 cache_fail: 1501 /* if built-in, we aren't unloaded on failure; don't allow use */ 1502 zswap_init_failed = true; 1503 zswap_enabled = false; 1504 return -ENOMEM; 1505 } 1506 /* must be late so crypto has time to come up */ 1507 late_initcall(init_zswap); 1508 1509 MODULE_LICENSE("GPL"); 1510 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1511 MODULE_DESCRIPTION("Compressed cache for swap pages"); 1512