xref: /linux/mm/zswap.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38 
39 #include "swap.h"
40 #include "internal.h"
41 
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_long_t zswap_stored_pages = ATOMIC_INIT(0);
47 
48 /*
49  * The statistics below are not protected from concurrent access for
50  * performance reasons so they may not be a 100% accurate.  However,
51  * they do provide useful information on roughly how many times a
52  * certain event is occurring.
53 */
54 
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
69 
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
74 
75 /*********************************
76 * tunables
77 **********************************/
78 
79 #define ZSWAP_PARAM_UNSET ""
80 
81 static int zswap_setup(void);
82 
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 				   const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 	.set =		zswap_enabled_param_set,
90 	.get =		param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93 
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 				      const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 	.set =		zswap_compressor_param_set,
100 	.get =		param_get_charp,
101 	.free =		param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 		&zswap_compressor, 0644);
105 
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 	.set =		zswap_zpool_param_set,
111 	.get =		param_get_charp,
112 	.free =		param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115 
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119 
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 		   uint, 0644);
124 
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
129 
130 bool zswap_is_enabled(void)
131 {
132 	return zswap_enabled;
133 }
134 
135 bool zswap_never_enabled(void)
136 {
137 	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
138 }
139 
140 /*********************************
141 * data structures
142 **********************************/
143 
144 struct crypto_acomp_ctx {
145 	struct crypto_acomp *acomp;
146 	struct acomp_req *req;
147 	struct crypto_wait wait;
148 	u8 *buffer;
149 	struct mutex mutex;
150 	bool is_sleepable;
151 };
152 
153 /*
154  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155  * The only case where lru_lock is not acquired while holding tree.lock is
156  * when a zswap_entry is taken off the lru for writeback, in that case it
157  * needs to be verified that it's still valid in the tree.
158  */
159 struct zswap_pool {
160 	struct zpool *zpool;
161 	struct crypto_acomp_ctx __percpu *acomp_ctx;
162 	struct percpu_ref ref;
163 	struct list_head list;
164 	struct work_struct release_work;
165 	struct hlist_node node;
166 	char tfm_name[CRYPTO_MAX_ALG_NAME];
167 };
168 
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
171 
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
177 
178 /*
179  * struct zswap_entry
180  *
181  * This structure contains the metadata for tracking a single compressed
182  * page within zswap.
183  *
184  * swpentry - associated swap entry, the offset indexes into the red-black tree
185  * length - the length in bytes of the compressed page data.  Needed during
186  *          decompression.
187  * referenced - true if the entry recently entered the zswap pool. Unset by the
188  *              writeback logic. The entry is only reclaimed by the writeback
189  *              logic if referenced is unset. See comments in the shrinker
190  *              section for context.
191  * pool - the zswap_pool the entry's data is in
192  * handle - zpool allocation handle that stores the compressed page data
193  * objcg - the obj_cgroup that the compressed memory is charged to
194  * lru - handle to the pool's lru used to evict pages.
195  */
196 struct zswap_entry {
197 	swp_entry_t swpentry;
198 	unsigned int length;
199 	bool referenced;
200 	struct zswap_pool *pool;
201 	unsigned long handle;
202 	struct obj_cgroup *objcg;
203 	struct list_head lru;
204 };
205 
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
208 
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215 
216 enum zswap_init_type {
217 	ZSWAP_UNINIT,
218 	ZSWAP_INIT_SUCCEED,
219 	ZSWAP_INIT_FAILED
220 };
221 
222 static enum zswap_init_type zswap_init_state;
223 
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
226 
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
229 
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
233 
234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
235 {
236 	return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 		>> SWAP_ADDRESS_SPACE_SHIFT];
238 }
239 
240 #define zswap_pool_debug(msg, p)				\
241 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
242 		 zpool_get_type((p)->zpool))
243 
244 /*********************************
245 * pool functions
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
248 
249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
250 {
251 	struct zswap_pool *pool;
252 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 	int ret;
255 
256 	if (!zswap_has_pool) {
257 		/* if either are unset, pool initialization failed, and we
258 		 * need both params to be set correctly before trying to
259 		 * create a pool.
260 		 */
261 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 			return NULL;
263 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 			return NULL;
265 	}
266 
267 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 	if (!pool)
269 		return NULL;
270 
271 	/* unique name for each pool specifically required by zsmalloc */
272 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 	pool->zpool = zpool_create_pool(type, name, gfp);
274 	if (!pool->zpool) {
275 		pr_err("%s zpool not available\n", type);
276 		goto error;
277 	}
278 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
279 
280 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
281 
282 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 	if (!pool->acomp_ctx) {
284 		pr_err("percpu alloc failed\n");
285 		goto error;
286 	}
287 
288 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
289 				       &pool->node);
290 	if (ret)
291 		goto error;
292 
293 	/* being the current pool takes 1 ref; this func expects the
294 	 * caller to always add the new pool as the current pool
295 	 */
296 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
297 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
298 	if (ret)
299 		goto ref_fail;
300 	INIT_LIST_HEAD(&pool->list);
301 
302 	zswap_pool_debug("created", pool);
303 
304 	return pool;
305 
306 ref_fail:
307 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
308 error:
309 	if (pool->acomp_ctx)
310 		free_percpu(pool->acomp_ctx);
311 	if (pool->zpool)
312 		zpool_destroy_pool(pool->zpool);
313 	kfree(pool);
314 	return NULL;
315 }
316 
317 static struct zswap_pool *__zswap_pool_create_fallback(void)
318 {
319 	bool has_comp, has_zpool;
320 
321 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
322 	if (!has_comp && strcmp(zswap_compressor,
323 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
324 		pr_err("compressor %s not available, using default %s\n",
325 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
326 		param_free_charp(&zswap_compressor);
327 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
328 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
329 	}
330 	if (!has_comp) {
331 		pr_err("default compressor %s not available\n",
332 		       zswap_compressor);
333 		param_free_charp(&zswap_compressor);
334 		zswap_compressor = ZSWAP_PARAM_UNSET;
335 	}
336 
337 	has_zpool = zpool_has_pool(zswap_zpool_type);
338 	if (!has_zpool && strcmp(zswap_zpool_type,
339 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
340 		pr_err("zpool %s not available, using default %s\n",
341 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
342 		param_free_charp(&zswap_zpool_type);
343 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
344 		has_zpool = zpool_has_pool(zswap_zpool_type);
345 	}
346 	if (!has_zpool) {
347 		pr_err("default zpool %s not available\n",
348 		       zswap_zpool_type);
349 		param_free_charp(&zswap_zpool_type);
350 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
351 	}
352 
353 	if (!has_comp || !has_zpool)
354 		return NULL;
355 
356 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
357 }
358 
359 static void zswap_pool_destroy(struct zswap_pool *pool)
360 {
361 	zswap_pool_debug("destroying", pool);
362 
363 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
364 	free_percpu(pool->acomp_ctx);
365 
366 	zpool_destroy_pool(pool->zpool);
367 	kfree(pool);
368 }
369 
370 static void __zswap_pool_release(struct work_struct *work)
371 {
372 	struct zswap_pool *pool = container_of(work, typeof(*pool),
373 						release_work);
374 
375 	synchronize_rcu();
376 
377 	/* nobody should have been able to get a ref... */
378 	WARN_ON(!percpu_ref_is_zero(&pool->ref));
379 	percpu_ref_exit(&pool->ref);
380 
381 	/* pool is now off zswap_pools list and has no references. */
382 	zswap_pool_destroy(pool);
383 }
384 
385 static struct zswap_pool *zswap_pool_current(void);
386 
387 static void __zswap_pool_empty(struct percpu_ref *ref)
388 {
389 	struct zswap_pool *pool;
390 
391 	pool = container_of(ref, typeof(*pool), ref);
392 
393 	spin_lock_bh(&zswap_pools_lock);
394 
395 	WARN_ON(pool == zswap_pool_current());
396 
397 	list_del_rcu(&pool->list);
398 
399 	INIT_WORK(&pool->release_work, __zswap_pool_release);
400 	schedule_work(&pool->release_work);
401 
402 	spin_unlock_bh(&zswap_pools_lock);
403 }
404 
405 static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
406 {
407 	if (!pool)
408 		return 0;
409 
410 	return percpu_ref_tryget(&pool->ref);
411 }
412 
413 /* The caller must already have a reference. */
414 static void zswap_pool_get(struct zswap_pool *pool)
415 {
416 	percpu_ref_get(&pool->ref);
417 }
418 
419 static void zswap_pool_put(struct zswap_pool *pool)
420 {
421 	percpu_ref_put(&pool->ref);
422 }
423 
424 static struct zswap_pool *__zswap_pool_current(void)
425 {
426 	struct zswap_pool *pool;
427 
428 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
429 	WARN_ONCE(!pool && zswap_has_pool,
430 		  "%s: no page storage pool!\n", __func__);
431 
432 	return pool;
433 }
434 
435 static struct zswap_pool *zswap_pool_current(void)
436 {
437 	assert_spin_locked(&zswap_pools_lock);
438 
439 	return __zswap_pool_current();
440 }
441 
442 static struct zswap_pool *zswap_pool_current_get(void)
443 {
444 	struct zswap_pool *pool;
445 
446 	rcu_read_lock();
447 
448 	pool = __zswap_pool_current();
449 	if (!zswap_pool_tryget(pool))
450 		pool = NULL;
451 
452 	rcu_read_unlock();
453 
454 	return pool;
455 }
456 
457 /* type and compressor must be null-terminated */
458 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
459 {
460 	struct zswap_pool *pool;
461 
462 	assert_spin_locked(&zswap_pools_lock);
463 
464 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
465 		if (strcmp(pool->tfm_name, compressor))
466 			continue;
467 		if (strcmp(zpool_get_type(pool->zpool), type))
468 			continue;
469 		/* if we can't get it, it's about to be destroyed */
470 		if (!zswap_pool_tryget(pool))
471 			continue;
472 		return pool;
473 	}
474 
475 	return NULL;
476 }
477 
478 static unsigned long zswap_max_pages(void)
479 {
480 	return totalram_pages() * zswap_max_pool_percent / 100;
481 }
482 
483 static unsigned long zswap_accept_thr_pages(void)
484 {
485 	return zswap_max_pages() * zswap_accept_thr_percent / 100;
486 }
487 
488 unsigned long zswap_total_pages(void)
489 {
490 	struct zswap_pool *pool;
491 	unsigned long total = 0;
492 
493 	rcu_read_lock();
494 	list_for_each_entry_rcu(pool, &zswap_pools, list)
495 		total += zpool_get_total_pages(pool->zpool);
496 	rcu_read_unlock();
497 
498 	return total;
499 }
500 
501 static bool zswap_check_limits(void)
502 {
503 	unsigned long cur_pages = zswap_total_pages();
504 	unsigned long max_pages = zswap_max_pages();
505 
506 	if (cur_pages >= max_pages) {
507 		zswap_pool_limit_hit++;
508 		zswap_pool_reached_full = true;
509 	} else if (zswap_pool_reached_full &&
510 		   cur_pages <= zswap_accept_thr_pages()) {
511 			zswap_pool_reached_full = false;
512 	}
513 	return zswap_pool_reached_full;
514 }
515 
516 /*********************************
517 * param callbacks
518 **********************************/
519 
520 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
521 {
522 	/* no change required */
523 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
524 		return false;
525 	return true;
526 }
527 
528 /* val must be a null-terminated string */
529 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
530 			     char *type, char *compressor)
531 {
532 	struct zswap_pool *pool, *put_pool = NULL;
533 	char *s = strstrip((char *)val);
534 	int ret = 0;
535 	bool new_pool = false;
536 
537 	mutex_lock(&zswap_init_lock);
538 	switch (zswap_init_state) {
539 	case ZSWAP_UNINIT:
540 		/* if this is load-time (pre-init) param setting,
541 		 * don't create a pool; that's done during init.
542 		 */
543 		ret = param_set_charp(s, kp);
544 		break;
545 	case ZSWAP_INIT_SUCCEED:
546 		new_pool = zswap_pool_changed(s, kp);
547 		break;
548 	case ZSWAP_INIT_FAILED:
549 		pr_err("can't set param, initialization failed\n");
550 		ret = -ENODEV;
551 	}
552 	mutex_unlock(&zswap_init_lock);
553 
554 	/* no need to create a new pool, return directly */
555 	if (!new_pool)
556 		return ret;
557 
558 	if (!type) {
559 		if (!zpool_has_pool(s)) {
560 			pr_err("zpool %s not available\n", s);
561 			return -ENOENT;
562 		}
563 		type = s;
564 	} else if (!compressor) {
565 		if (!crypto_has_acomp(s, 0, 0)) {
566 			pr_err("compressor %s not available\n", s);
567 			return -ENOENT;
568 		}
569 		compressor = s;
570 	} else {
571 		WARN_ON(1);
572 		return -EINVAL;
573 	}
574 
575 	spin_lock_bh(&zswap_pools_lock);
576 
577 	pool = zswap_pool_find_get(type, compressor);
578 	if (pool) {
579 		zswap_pool_debug("using existing", pool);
580 		WARN_ON(pool == zswap_pool_current());
581 		list_del_rcu(&pool->list);
582 	}
583 
584 	spin_unlock_bh(&zswap_pools_lock);
585 
586 	if (!pool)
587 		pool = zswap_pool_create(type, compressor);
588 	else {
589 		/*
590 		 * Restore the initial ref dropped by percpu_ref_kill()
591 		 * when the pool was decommissioned and switch it again
592 		 * to percpu mode.
593 		 */
594 		percpu_ref_resurrect(&pool->ref);
595 
596 		/* Drop the ref from zswap_pool_find_get(). */
597 		zswap_pool_put(pool);
598 	}
599 
600 	if (pool)
601 		ret = param_set_charp(s, kp);
602 	else
603 		ret = -EINVAL;
604 
605 	spin_lock_bh(&zswap_pools_lock);
606 
607 	if (!ret) {
608 		put_pool = zswap_pool_current();
609 		list_add_rcu(&pool->list, &zswap_pools);
610 		zswap_has_pool = true;
611 	} else if (pool) {
612 		/* add the possibly pre-existing pool to the end of the pools
613 		 * list; if it's new (and empty) then it'll be removed and
614 		 * destroyed by the put after we drop the lock
615 		 */
616 		list_add_tail_rcu(&pool->list, &zswap_pools);
617 		put_pool = pool;
618 	}
619 
620 	spin_unlock_bh(&zswap_pools_lock);
621 
622 	if (!zswap_has_pool && !pool) {
623 		/* if initial pool creation failed, and this pool creation also
624 		 * failed, maybe both compressor and zpool params were bad.
625 		 * Allow changing this param, so pool creation will succeed
626 		 * when the other param is changed. We already verified this
627 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
628 		 * checks above.
629 		 */
630 		ret = param_set_charp(s, kp);
631 	}
632 
633 	/* drop the ref from either the old current pool,
634 	 * or the new pool we failed to add
635 	 */
636 	if (put_pool)
637 		percpu_ref_kill(&put_pool->ref);
638 
639 	return ret;
640 }
641 
642 static int zswap_compressor_param_set(const char *val,
643 				      const struct kernel_param *kp)
644 {
645 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
646 }
647 
648 static int zswap_zpool_param_set(const char *val,
649 				 const struct kernel_param *kp)
650 {
651 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
652 }
653 
654 static int zswap_enabled_param_set(const char *val,
655 				   const struct kernel_param *kp)
656 {
657 	int ret = -ENODEV;
658 
659 	/* if this is load-time (pre-init) param setting, only set param. */
660 	if (system_state != SYSTEM_RUNNING)
661 		return param_set_bool(val, kp);
662 
663 	mutex_lock(&zswap_init_lock);
664 	switch (zswap_init_state) {
665 	case ZSWAP_UNINIT:
666 		if (zswap_setup())
667 			break;
668 		fallthrough;
669 	case ZSWAP_INIT_SUCCEED:
670 		if (!zswap_has_pool)
671 			pr_err("can't enable, no pool configured\n");
672 		else
673 			ret = param_set_bool(val, kp);
674 		break;
675 	case ZSWAP_INIT_FAILED:
676 		pr_err("can't enable, initialization failed\n");
677 	}
678 	mutex_unlock(&zswap_init_lock);
679 
680 	return ret;
681 }
682 
683 /*********************************
684 * lru functions
685 **********************************/
686 
687 /* should be called under RCU */
688 #ifdef CONFIG_MEMCG
689 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
690 {
691 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
692 }
693 #else
694 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
695 {
696 	return NULL;
697 }
698 #endif
699 
700 static inline int entry_to_nid(struct zswap_entry *entry)
701 {
702 	return page_to_nid(virt_to_page(entry));
703 }
704 
705 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
706 {
707 	int nid = entry_to_nid(entry);
708 	struct mem_cgroup *memcg;
709 
710 	/*
711 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
712 	 * concurrent memcg offlining:
713 	 *
714 	 * 1. list_lru_add() is called before list_lru_one is dead. The
715 	 *    new entry will be reparented to memcg's parent's list_lru.
716 	 * 2. list_lru_add() is called after list_lru_one is dead. The
717 	 *    new entry will be added directly to memcg's parent's list_lru.
718 	 *
719 	 * Similar reasoning holds for list_lru_del().
720 	 */
721 	rcu_read_lock();
722 	memcg = mem_cgroup_from_entry(entry);
723 	/* will always succeed */
724 	list_lru_add(list_lru, &entry->lru, nid, memcg);
725 	rcu_read_unlock();
726 }
727 
728 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
729 {
730 	int nid = entry_to_nid(entry);
731 	struct mem_cgroup *memcg;
732 
733 	rcu_read_lock();
734 	memcg = mem_cgroup_from_entry(entry);
735 	/* will always succeed */
736 	list_lru_del(list_lru, &entry->lru, nid, memcg);
737 	rcu_read_unlock();
738 }
739 
740 void zswap_lruvec_state_init(struct lruvec *lruvec)
741 {
742 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
743 }
744 
745 void zswap_folio_swapin(struct folio *folio)
746 {
747 	struct lruvec *lruvec;
748 
749 	if (folio) {
750 		lruvec = folio_lruvec(folio);
751 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
752 	}
753 }
754 
755 /*
756  * This function should be called when a memcg is being offlined.
757  *
758  * Since the global shrinker shrink_worker() may hold a reference
759  * of the memcg, we must check and release the reference in
760  * zswap_next_shrink.
761  *
762  * shrink_worker() must handle the case where this function releases
763  * the reference of memcg being shrunk.
764  */
765 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
766 {
767 	/* lock out zswap shrinker walking memcg tree */
768 	spin_lock(&zswap_shrink_lock);
769 	if (zswap_next_shrink == memcg) {
770 		do {
771 			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
772 		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
773 	}
774 	spin_unlock(&zswap_shrink_lock);
775 }
776 
777 /*********************************
778 * zswap entry functions
779 **********************************/
780 static struct kmem_cache *zswap_entry_cache;
781 
782 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
783 {
784 	struct zswap_entry *entry;
785 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
786 	if (!entry)
787 		return NULL;
788 	return entry;
789 }
790 
791 static void zswap_entry_cache_free(struct zswap_entry *entry)
792 {
793 	kmem_cache_free(zswap_entry_cache, entry);
794 }
795 
796 /*
797  * Carries out the common pattern of freeing and entry's zpool allocation,
798  * freeing the entry itself, and decrementing the number of stored pages.
799  */
800 static void zswap_entry_free(struct zswap_entry *entry)
801 {
802 	zswap_lru_del(&zswap_list_lru, entry);
803 	zpool_free(entry->pool->zpool, entry->handle);
804 	zswap_pool_put(entry->pool);
805 	if (entry->objcg) {
806 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
807 		obj_cgroup_put(entry->objcg);
808 	}
809 	zswap_entry_cache_free(entry);
810 	atomic_long_dec(&zswap_stored_pages);
811 }
812 
813 /*********************************
814 * compressed storage functions
815 **********************************/
816 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
817 {
818 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
819 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
820 	struct crypto_acomp *acomp;
821 	struct acomp_req *req;
822 	int ret;
823 
824 	mutex_init(&acomp_ctx->mutex);
825 
826 	acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
827 	if (!acomp_ctx->buffer)
828 		return -ENOMEM;
829 
830 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
831 	if (IS_ERR(acomp)) {
832 		pr_err("could not alloc crypto acomp %s : %ld\n",
833 				pool->tfm_name, PTR_ERR(acomp));
834 		ret = PTR_ERR(acomp);
835 		goto acomp_fail;
836 	}
837 	acomp_ctx->acomp = acomp;
838 	acomp_ctx->is_sleepable = acomp_is_async(acomp);
839 
840 	req = acomp_request_alloc(acomp_ctx->acomp);
841 	if (!req) {
842 		pr_err("could not alloc crypto acomp_request %s\n",
843 		       pool->tfm_name);
844 		ret = -ENOMEM;
845 		goto req_fail;
846 	}
847 	acomp_ctx->req = req;
848 
849 	crypto_init_wait(&acomp_ctx->wait);
850 	/*
851 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
852 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
853 	 * won't be called, crypto_wait_req() will return without blocking.
854 	 */
855 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
856 				   crypto_req_done, &acomp_ctx->wait);
857 
858 	return 0;
859 
860 req_fail:
861 	crypto_free_acomp(acomp_ctx->acomp);
862 acomp_fail:
863 	kfree(acomp_ctx->buffer);
864 	return ret;
865 }
866 
867 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
868 {
869 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
870 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
871 
872 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
873 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
874 			acomp_request_free(acomp_ctx->req);
875 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
876 			crypto_free_acomp(acomp_ctx->acomp);
877 		kfree(acomp_ctx->buffer);
878 	}
879 
880 	return 0;
881 }
882 
883 /* Prevent CPU hotplug from freeing up the per-CPU acomp_ctx resources */
884 static struct crypto_acomp_ctx *acomp_ctx_get_cpu(struct crypto_acomp_ctx __percpu *acomp_ctx)
885 {
886 	cpus_read_lock();
887 	return raw_cpu_ptr(acomp_ctx);
888 }
889 
890 static void acomp_ctx_put_cpu(void)
891 {
892 	cpus_read_unlock();
893 }
894 
895 static bool zswap_compress(struct page *page, struct zswap_entry *entry,
896 			   struct zswap_pool *pool)
897 {
898 	struct crypto_acomp_ctx *acomp_ctx;
899 	struct scatterlist input, output;
900 	int comp_ret = 0, alloc_ret = 0;
901 	unsigned int dlen = PAGE_SIZE;
902 	unsigned long handle;
903 	struct zpool *zpool;
904 	char *buf;
905 	gfp_t gfp;
906 	u8 *dst;
907 
908 	acomp_ctx = acomp_ctx_get_cpu(pool->acomp_ctx);
909 	mutex_lock(&acomp_ctx->mutex);
910 
911 	dst = acomp_ctx->buffer;
912 	sg_init_table(&input, 1);
913 	sg_set_page(&input, page, PAGE_SIZE, 0);
914 
915 	/*
916 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
917 	 * and hardware-accelerators may won't check the dst buffer size, so
918 	 * giving the dst buffer with enough length to avoid buffer overflow.
919 	 */
920 	sg_init_one(&output, dst, PAGE_SIZE * 2);
921 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
922 
923 	/*
924 	 * it maybe looks a little bit silly that we send an asynchronous request,
925 	 * then wait for its completion synchronously. This makes the process look
926 	 * synchronous in fact.
927 	 * Theoretically, acomp supports users send multiple acomp requests in one
928 	 * acomp instance, then get those requests done simultaneously. but in this
929 	 * case, zswap actually does store and load page by page, there is no
930 	 * existing method to send the second page before the first page is done
931 	 * in one thread doing zwap.
932 	 * but in different threads running on different cpu, we have different
933 	 * acomp instance, so multiple threads can do (de)compression in parallel.
934 	 */
935 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
936 	dlen = acomp_ctx->req->dlen;
937 	if (comp_ret)
938 		goto unlock;
939 
940 	zpool = pool->zpool;
941 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
942 	if (zpool_malloc_support_movable(zpool))
943 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
944 	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
945 	if (alloc_ret)
946 		goto unlock;
947 
948 	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
949 	memcpy(buf, dst, dlen);
950 	zpool_unmap_handle(zpool, handle);
951 
952 	entry->handle = handle;
953 	entry->length = dlen;
954 
955 unlock:
956 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
957 		zswap_reject_compress_poor++;
958 	else if (comp_ret)
959 		zswap_reject_compress_fail++;
960 	else if (alloc_ret)
961 		zswap_reject_alloc_fail++;
962 
963 	mutex_unlock(&acomp_ctx->mutex);
964 	acomp_ctx_put_cpu();
965 	return comp_ret == 0 && alloc_ret == 0;
966 }
967 
968 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
969 {
970 	struct zpool *zpool = entry->pool->zpool;
971 	struct scatterlist input, output;
972 	struct crypto_acomp_ctx *acomp_ctx;
973 	u8 *src;
974 
975 	acomp_ctx = acomp_ctx_get_cpu(entry->pool->acomp_ctx);
976 	mutex_lock(&acomp_ctx->mutex);
977 
978 	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
979 	/*
980 	 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
981 	 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
982 	 * resort to copying the buffer to a temporary one.
983 	 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
984 	 * such as a kmap address of high memory or even ever a vmap address.
985 	 * However, sg_init_one is only equipped to handle linearly mapped low memory.
986 	 * In such cases, we also must copy the buffer to a temporary and lowmem one.
987 	 */
988 	if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
989 	    !virt_addr_valid(src)) {
990 		memcpy(acomp_ctx->buffer, src, entry->length);
991 		src = acomp_ctx->buffer;
992 		zpool_unmap_handle(zpool, entry->handle);
993 	}
994 
995 	sg_init_one(&input, src, entry->length);
996 	sg_init_table(&output, 1);
997 	sg_set_folio(&output, folio, PAGE_SIZE, 0);
998 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
999 	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1000 	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1001 	mutex_unlock(&acomp_ctx->mutex);
1002 
1003 	if (src != acomp_ctx->buffer)
1004 		zpool_unmap_handle(zpool, entry->handle);
1005 	acomp_ctx_put_cpu();
1006 }
1007 
1008 /*********************************
1009 * writeback code
1010 **********************************/
1011 /*
1012  * Attempts to free an entry by adding a folio to the swap cache,
1013  * decompressing the entry data into the folio, and issuing a
1014  * bio write to write the folio back to the swap device.
1015  *
1016  * This can be thought of as a "resumed writeback" of the folio
1017  * to the swap device.  We are basically resuming the same swap
1018  * writeback path that was intercepted with the zswap_store()
1019  * in the first place.  After the folio has been decompressed into
1020  * the swap cache, the compressed version stored by zswap can be
1021  * freed.
1022  */
1023 static int zswap_writeback_entry(struct zswap_entry *entry,
1024 				 swp_entry_t swpentry)
1025 {
1026 	struct xarray *tree;
1027 	pgoff_t offset = swp_offset(swpentry);
1028 	struct folio *folio;
1029 	struct mempolicy *mpol;
1030 	bool folio_was_allocated;
1031 	struct writeback_control wbc = {
1032 		.sync_mode = WB_SYNC_NONE,
1033 	};
1034 
1035 	/* try to allocate swap cache folio */
1036 	mpol = get_task_policy(current);
1037 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1038 				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1039 	if (!folio)
1040 		return -ENOMEM;
1041 
1042 	/*
1043 	 * Found an existing folio, we raced with swapin or concurrent
1044 	 * shrinker. We generally writeback cold folios from zswap, and
1045 	 * swapin means the folio just became hot, so skip this folio.
1046 	 * For unlikely concurrent shrinker case, it will be unlinked
1047 	 * and freed when invalidated by the concurrent shrinker anyway.
1048 	 */
1049 	if (!folio_was_allocated) {
1050 		folio_put(folio);
1051 		return -EEXIST;
1052 	}
1053 
1054 	/*
1055 	 * folio is locked, and the swapcache is now secured against
1056 	 * concurrent swapping to and from the slot, and concurrent
1057 	 * swapoff so we can safely dereference the zswap tree here.
1058 	 * Verify that the swap entry hasn't been invalidated and recycled
1059 	 * behind our backs, to avoid overwriting a new swap folio with
1060 	 * old compressed data. Only when this is successful can the entry
1061 	 * be dereferenced.
1062 	 */
1063 	tree = swap_zswap_tree(swpentry);
1064 	if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1065 		delete_from_swap_cache(folio);
1066 		folio_unlock(folio);
1067 		folio_put(folio);
1068 		return -ENOMEM;
1069 	}
1070 
1071 	zswap_decompress(entry, folio);
1072 
1073 	count_vm_event(ZSWPWB);
1074 	if (entry->objcg)
1075 		count_objcg_events(entry->objcg, ZSWPWB, 1);
1076 
1077 	zswap_entry_free(entry);
1078 
1079 	/* folio is up to date */
1080 	folio_mark_uptodate(folio);
1081 
1082 	/* move it to the tail of the inactive list after end_writeback */
1083 	folio_set_reclaim(folio);
1084 
1085 	/* start writeback */
1086 	__swap_writepage(folio, &wbc);
1087 	folio_put(folio);
1088 
1089 	return 0;
1090 }
1091 
1092 /*********************************
1093 * shrinker functions
1094 **********************************/
1095 /*
1096  * The dynamic shrinker is modulated by the following factors:
1097  *
1098  * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1099  *    the entry a second chance) before rotating it in the LRU list. If the
1100  *    entry is considered again by the shrinker, with its referenced bit unset,
1101  *    it is written back. The writeback rate as a result is dynamically
1102  *    adjusted by the pool activities - if the pool is dominated by new entries
1103  *    (i.e lots of recent zswapouts), these entries will be protected and
1104  *    the writeback rate will slow down. On the other hand, if the pool has a
1105  *    lot of stagnant entries, these entries will be reclaimed immediately,
1106  *    effectively increasing the writeback rate.
1107  *
1108  * 2. Swapins counter: If we observe swapins, it is a sign that we are
1109  *    overshrinking and should slow down. We maintain a swapins counter, which
1110  *    is consumed and subtract from the number of eligible objects on the LRU
1111  *    in zswap_shrinker_count().
1112  *
1113  * 3. Compression ratio. The better the workload compresses, the less gains we
1114  *    can expect from writeback. We scale down the number of objects available
1115  *    for reclaim by this ratio.
1116  */
1117 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1118 				       void *arg)
1119 {
1120 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1121 	bool *encountered_page_in_swapcache = (bool *)arg;
1122 	swp_entry_t swpentry;
1123 	enum lru_status ret = LRU_REMOVED_RETRY;
1124 	int writeback_result;
1125 
1126 	/*
1127 	 * Second chance algorithm: if the entry has its referenced bit set, give it
1128 	 * a second chance. Only clear the referenced bit and rotate it in the
1129 	 * zswap's LRU list.
1130 	 */
1131 	if (entry->referenced) {
1132 		entry->referenced = false;
1133 		return LRU_ROTATE;
1134 	}
1135 
1136 	/*
1137 	 * As soon as we drop the LRU lock, the entry can be freed by
1138 	 * a concurrent invalidation. This means the following:
1139 	 *
1140 	 * 1. We extract the swp_entry_t to the stack, allowing
1141 	 *    zswap_writeback_entry() to pin the swap entry and
1142 	 *    then validate the zwap entry against that swap entry's
1143 	 *    tree using pointer value comparison. Only when that
1144 	 *    is successful can the entry be dereferenced.
1145 	 *
1146 	 * 2. Usually, objects are taken off the LRU for reclaim. In
1147 	 *    this case this isn't possible, because if reclaim fails
1148 	 *    for whatever reason, we have no means of knowing if the
1149 	 *    entry is alive to put it back on the LRU.
1150 	 *
1151 	 *    So rotate it before dropping the lock. If the entry is
1152 	 *    written back or invalidated, the free path will unlink
1153 	 *    it. For failures, rotation is the right thing as well.
1154 	 *
1155 	 *    Temporary failures, where the same entry should be tried
1156 	 *    again immediately, almost never happen for this shrinker.
1157 	 *    We don't do any trylocking; -ENOMEM comes closest,
1158 	 *    but that's extremely rare and doesn't happen spuriously
1159 	 *    either. Don't bother distinguishing this case.
1160 	 */
1161 	list_move_tail(item, &l->list);
1162 
1163 	/*
1164 	 * Once the lru lock is dropped, the entry might get freed. The
1165 	 * swpentry is copied to the stack, and entry isn't deref'd again
1166 	 * until the entry is verified to still be alive in the tree.
1167 	 */
1168 	swpentry = entry->swpentry;
1169 
1170 	/*
1171 	 * It's safe to drop the lock here because we return either
1172 	 * LRU_REMOVED_RETRY or LRU_RETRY.
1173 	 */
1174 	spin_unlock(&l->lock);
1175 
1176 	writeback_result = zswap_writeback_entry(entry, swpentry);
1177 
1178 	if (writeback_result) {
1179 		zswap_reject_reclaim_fail++;
1180 		ret = LRU_RETRY;
1181 
1182 		/*
1183 		 * Encountering a page already in swap cache is a sign that we are shrinking
1184 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1185 		 * shrinker context).
1186 		 */
1187 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1188 			ret = LRU_STOP;
1189 			*encountered_page_in_swapcache = true;
1190 		}
1191 	} else {
1192 		zswap_written_back_pages++;
1193 	}
1194 
1195 	return ret;
1196 }
1197 
1198 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1199 		struct shrink_control *sc)
1200 {
1201 	unsigned long shrink_ret;
1202 	bool encountered_page_in_swapcache = false;
1203 
1204 	if (!zswap_shrinker_enabled ||
1205 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1206 		sc->nr_scanned = 0;
1207 		return SHRINK_STOP;
1208 	}
1209 
1210 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1211 		&encountered_page_in_swapcache);
1212 
1213 	if (encountered_page_in_swapcache)
1214 		return SHRINK_STOP;
1215 
1216 	return shrink_ret ? shrink_ret : SHRINK_STOP;
1217 }
1218 
1219 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1220 		struct shrink_control *sc)
1221 {
1222 	struct mem_cgroup *memcg = sc->memcg;
1223 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1224 	atomic_long_t *nr_disk_swapins =
1225 		&lruvec->zswap_lruvec_state.nr_disk_swapins;
1226 	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1227 		nr_remain;
1228 
1229 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1230 		return 0;
1231 
1232 	/*
1233 	 * The shrinker resumes swap writeback, which will enter block
1234 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1235 	 * rules (may_enter_fs()), which apply on a per-folio basis.
1236 	 */
1237 	if (!gfp_has_io_fs(sc->gfp_mask))
1238 		return 0;
1239 
1240 	/*
1241 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1242 	 * have them per-node and thus per-lruvec. Careful if memcg is
1243 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1244 	 * for the lruvec, but not for memcg_page_state().
1245 	 *
1246 	 * Without memcg, use the zswap pool-wide metrics.
1247 	 */
1248 	if (!mem_cgroup_disabled()) {
1249 		mem_cgroup_flush_stats(memcg);
1250 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1251 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1252 	} else {
1253 		nr_backing = zswap_total_pages();
1254 		nr_stored = atomic_long_read(&zswap_stored_pages);
1255 	}
1256 
1257 	if (!nr_stored)
1258 		return 0;
1259 
1260 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1261 	if (!nr_freeable)
1262 		return 0;
1263 
1264 	/*
1265 	 * Subtract from the lru size the number of pages that are recently swapped
1266 	 * in from disk. The idea is that had we protect the zswap's LRU by this
1267 	 * amount of pages, these disk swapins would not have happened.
1268 	 */
1269 	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1270 	do {
1271 		if (nr_freeable >= nr_disk_swapins_cur)
1272 			nr_remain = 0;
1273 		else
1274 			nr_remain = nr_disk_swapins_cur - nr_freeable;
1275 	} while (!atomic_long_try_cmpxchg(
1276 		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1277 
1278 	nr_freeable -= nr_disk_swapins_cur - nr_remain;
1279 	if (!nr_freeable)
1280 		return 0;
1281 
1282 	/*
1283 	 * Scale the number of freeable pages by the memory saving factor.
1284 	 * This ensures that the better zswap compresses memory, the fewer
1285 	 * pages we will evict to swap (as it will otherwise incur IO for
1286 	 * relatively small memory saving).
1287 	 */
1288 	return mult_frac(nr_freeable, nr_backing, nr_stored);
1289 }
1290 
1291 static struct shrinker *zswap_alloc_shrinker(void)
1292 {
1293 	struct shrinker *shrinker;
1294 
1295 	shrinker =
1296 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1297 	if (!shrinker)
1298 		return NULL;
1299 
1300 	shrinker->scan_objects = zswap_shrinker_scan;
1301 	shrinker->count_objects = zswap_shrinker_count;
1302 	shrinker->batch = 0;
1303 	shrinker->seeks = DEFAULT_SEEKS;
1304 	return shrinker;
1305 }
1306 
1307 static int shrink_memcg(struct mem_cgroup *memcg)
1308 {
1309 	int nid, shrunk = 0, scanned = 0;
1310 
1311 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1312 		return -ENOENT;
1313 
1314 	/*
1315 	 * Skip zombies because their LRUs are reparented and we would be
1316 	 * reclaiming from the parent instead of the dead memcg.
1317 	 */
1318 	if (memcg && !mem_cgroup_online(memcg))
1319 		return -ENOENT;
1320 
1321 	for_each_node_state(nid, N_NORMAL_MEMORY) {
1322 		unsigned long nr_to_walk = 1;
1323 
1324 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1325 					    &shrink_memcg_cb, NULL, &nr_to_walk);
1326 		scanned += 1 - nr_to_walk;
1327 	}
1328 
1329 	if (!scanned)
1330 		return -ENOENT;
1331 
1332 	return shrunk ? 0 : -EAGAIN;
1333 }
1334 
1335 static void shrink_worker(struct work_struct *w)
1336 {
1337 	struct mem_cgroup *memcg;
1338 	int ret, failures = 0, attempts = 0;
1339 	unsigned long thr;
1340 
1341 	/* Reclaim down to the accept threshold */
1342 	thr = zswap_accept_thr_pages();
1343 
1344 	/*
1345 	 * Global reclaim will select cgroup in a round-robin fashion from all
1346 	 * online memcgs, but memcgs that have no pages in zswap and
1347 	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1348 	 * candidates for shrinking.
1349 	 *
1350 	 * Shrinking will be aborted if we encounter the following
1351 	 * MAX_RECLAIM_RETRIES times:
1352 	 * - No writeback-candidate memcgs found in a memcg tree walk.
1353 	 * - Shrinking a writeback-candidate memcg failed.
1354 	 *
1355 	 * We save iteration cursor memcg into zswap_next_shrink,
1356 	 * which can be modified by the offline memcg cleaner
1357 	 * zswap_memcg_offline_cleanup().
1358 	 *
1359 	 * Since the offline cleaner is called only once, we cannot leave an
1360 	 * offline memcg reference in zswap_next_shrink.
1361 	 * We can rely on the cleaner only if we get online memcg under lock.
1362 	 *
1363 	 * If we get an offline memcg, we cannot determine if the cleaner has
1364 	 * already been called or will be called later. We must put back the
1365 	 * reference before returning from this function. Otherwise, the
1366 	 * offline memcg left in zswap_next_shrink will hold the reference
1367 	 * until the next run of shrink_worker().
1368 	 */
1369 	do {
1370 		/*
1371 		 * Start shrinking from the next memcg after zswap_next_shrink.
1372 		 * When the offline cleaner has already advanced the cursor,
1373 		 * advancing the cursor here overlooks one memcg, but this
1374 		 * should be negligibly rare.
1375 		 *
1376 		 * If we get an online memcg, keep the extra reference in case
1377 		 * the original one obtained by mem_cgroup_iter() is dropped by
1378 		 * zswap_memcg_offline_cleanup() while we are shrinking the
1379 		 * memcg.
1380 		 */
1381 		spin_lock(&zswap_shrink_lock);
1382 		do {
1383 			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1384 			zswap_next_shrink = memcg;
1385 		} while (memcg && !mem_cgroup_tryget_online(memcg));
1386 		spin_unlock(&zswap_shrink_lock);
1387 
1388 		if (!memcg) {
1389 			/*
1390 			 * Continue shrinking without incrementing failures if
1391 			 * we found candidate memcgs in the last tree walk.
1392 			 */
1393 			if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1394 				break;
1395 
1396 			attempts = 0;
1397 			goto resched;
1398 		}
1399 
1400 		ret = shrink_memcg(memcg);
1401 		/* drop the extra reference */
1402 		mem_cgroup_put(memcg);
1403 
1404 		/*
1405 		 * There are no writeback-candidate pages in the memcg.
1406 		 * This is not an issue as long as we can find another memcg
1407 		 * with pages in zswap. Skip this without incrementing attempts
1408 		 * and failures.
1409 		 */
1410 		if (ret == -ENOENT)
1411 			continue;
1412 		++attempts;
1413 
1414 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1415 			break;
1416 resched:
1417 		cond_resched();
1418 	} while (zswap_total_pages() > thr);
1419 }
1420 
1421 /*********************************
1422 * main API
1423 **********************************/
1424 
1425 static ssize_t zswap_store_page(struct page *page,
1426 				struct obj_cgroup *objcg,
1427 				struct zswap_pool *pool)
1428 {
1429 	swp_entry_t page_swpentry = page_swap_entry(page);
1430 	struct zswap_entry *entry, *old;
1431 
1432 	/* allocate entry */
1433 	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1434 	if (!entry) {
1435 		zswap_reject_kmemcache_fail++;
1436 		return -EINVAL;
1437 	}
1438 
1439 	if (!zswap_compress(page, entry, pool))
1440 		goto compress_failed;
1441 
1442 	old = xa_store(swap_zswap_tree(page_swpentry),
1443 		       swp_offset(page_swpentry),
1444 		       entry, GFP_KERNEL);
1445 	if (xa_is_err(old)) {
1446 		int err = xa_err(old);
1447 
1448 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1449 		zswap_reject_alloc_fail++;
1450 		goto store_failed;
1451 	}
1452 
1453 	/*
1454 	 * We may have had an existing entry that became stale when
1455 	 * the folio was redirtied and now the new version is being
1456 	 * swapped out. Get rid of the old.
1457 	 */
1458 	if (old)
1459 		zswap_entry_free(old);
1460 
1461 	/*
1462 	 * The entry is successfully compressed and stored in the tree, there is
1463 	 * no further possibility of failure. Grab refs to the pool and objcg.
1464 	 * These refs will be dropped by zswap_entry_free() when the entry is
1465 	 * removed from the tree.
1466 	 */
1467 	zswap_pool_get(pool);
1468 	if (objcg)
1469 		obj_cgroup_get(objcg);
1470 
1471 	/*
1472 	 * We finish initializing the entry while it's already in xarray.
1473 	 * This is safe because:
1474 	 *
1475 	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1476 	 *
1477 	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1478 	 *    The publishing order matters to prevent writeback from seeing
1479 	 *    an incoherent entry.
1480 	 */
1481 	entry->pool = pool;
1482 	entry->swpentry = page_swpentry;
1483 	entry->objcg = objcg;
1484 	entry->referenced = true;
1485 	if (entry->length) {
1486 		INIT_LIST_HEAD(&entry->lru);
1487 		zswap_lru_add(&zswap_list_lru, entry);
1488 	}
1489 
1490 	return entry->length;
1491 
1492 store_failed:
1493 	zpool_free(pool->zpool, entry->handle);
1494 compress_failed:
1495 	zswap_entry_cache_free(entry);
1496 	return -EINVAL;
1497 }
1498 
1499 bool zswap_store(struct folio *folio)
1500 {
1501 	long nr_pages = folio_nr_pages(folio);
1502 	swp_entry_t swp = folio->swap;
1503 	struct obj_cgroup *objcg = NULL;
1504 	struct mem_cgroup *memcg = NULL;
1505 	struct zswap_pool *pool;
1506 	size_t compressed_bytes = 0;
1507 	bool ret = false;
1508 	long index;
1509 
1510 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1511 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1512 
1513 	if (!zswap_enabled)
1514 		goto check_old;
1515 
1516 	objcg = get_obj_cgroup_from_folio(folio);
1517 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1518 		memcg = get_mem_cgroup_from_objcg(objcg);
1519 		if (shrink_memcg(memcg)) {
1520 			mem_cgroup_put(memcg);
1521 			goto put_objcg;
1522 		}
1523 		mem_cgroup_put(memcg);
1524 	}
1525 
1526 	if (zswap_check_limits())
1527 		goto put_objcg;
1528 
1529 	pool = zswap_pool_current_get();
1530 	if (!pool)
1531 		goto put_objcg;
1532 
1533 	if (objcg) {
1534 		memcg = get_mem_cgroup_from_objcg(objcg);
1535 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1536 			mem_cgroup_put(memcg);
1537 			goto put_pool;
1538 		}
1539 		mem_cgroup_put(memcg);
1540 	}
1541 
1542 	for (index = 0; index < nr_pages; ++index) {
1543 		struct page *page = folio_page(folio, index);
1544 		ssize_t bytes;
1545 
1546 		bytes = zswap_store_page(page, objcg, pool);
1547 		if (bytes < 0)
1548 			goto put_pool;
1549 		compressed_bytes += bytes;
1550 	}
1551 
1552 	if (objcg) {
1553 		obj_cgroup_charge_zswap(objcg, compressed_bytes);
1554 		count_objcg_events(objcg, ZSWPOUT, nr_pages);
1555 	}
1556 
1557 	atomic_long_add(nr_pages, &zswap_stored_pages);
1558 	count_vm_events(ZSWPOUT, nr_pages);
1559 
1560 	ret = true;
1561 
1562 put_pool:
1563 	zswap_pool_put(pool);
1564 put_objcg:
1565 	obj_cgroup_put(objcg);
1566 	if (!ret && zswap_pool_reached_full)
1567 		queue_work(shrink_wq, &zswap_shrink_work);
1568 check_old:
1569 	/*
1570 	 * If the zswap store fails or zswap is disabled, we must invalidate
1571 	 * the possibly stale entries which were previously stored at the
1572 	 * offsets corresponding to each page of the folio. Otherwise,
1573 	 * writeback could overwrite the new data in the swapfile.
1574 	 */
1575 	if (!ret) {
1576 		unsigned type = swp_type(swp);
1577 		pgoff_t offset = swp_offset(swp);
1578 		struct zswap_entry *entry;
1579 		struct xarray *tree;
1580 
1581 		for (index = 0; index < nr_pages; ++index) {
1582 			tree = swap_zswap_tree(swp_entry(type, offset + index));
1583 			entry = xa_erase(tree, offset + index);
1584 			if (entry)
1585 				zswap_entry_free(entry);
1586 		}
1587 	}
1588 
1589 	return ret;
1590 }
1591 
1592 bool zswap_load(struct folio *folio)
1593 {
1594 	swp_entry_t swp = folio->swap;
1595 	pgoff_t offset = swp_offset(swp);
1596 	bool swapcache = folio_test_swapcache(folio);
1597 	struct xarray *tree = swap_zswap_tree(swp);
1598 	struct zswap_entry *entry;
1599 
1600 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1601 
1602 	if (zswap_never_enabled())
1603 		return false;
1604 
1605 	/*
1606 	 * Large folios should not be swapped in while zswap is being used, as
1607 	 * they are not properly handled. Zswap does not properly load large
1608 	 * folios, and a large folio may only be partially in zswap.
1609 	 *
1610 	 * Return true without marking the folio uptodate so that an IO error is
1611 	 * emitted (e.g. do_swap_page() will sigbus).
1612 	 */
1613 	if (WARN_ON_ONCE(folio_test_large(folio)))
1614 		return true;
1615 
1616 	/*
1617 	 * When reading into the swapcache, invalidate our entry. The
1618 	 * swapcache can be the authoritative owner of the page and
1619 	 * its mappings, and the pressure that results from having two
1620 	 * in-memory copies outweighs any benefits of caching the
1621 	 * compression work.
1622 	 *
1623 	 * (Most swapins go through the swapcache. The notable
1624 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1625 	 * files, which reads into a private page and may free it if
1626 	 * the fault fails. We remain the primary owner of the entry.)
1627 	 */
1628 	if (swapcache)
1629 		entry = xa_erase(tree, offset);
1630 	else
1631 		entry = xa_load(tree, offset);
1632 
1633 	if (!entry)
1634 		return false;
1635 
1636 	zswap_decompress(entry, folio);
1637 
1638 	count_vm_event(ZSWPIN);
1639 	if (entry->objcg)
1640 		count_objcg_events(entry->objcg, ZSWPIN, 1);
1641 
1642 	if (swapcache) {
1643 		zswap_entry_free(entry);
1644 		folio_mark_dirty(folio);
1645 	}
1646 
1647 	folio_mark_uptodate(folio);
1648 	return true;
1649 }
1650 
1651 void zswap_invalidate(swp_entry_t swp)
1652 {
1653 	pgoff_t offset = swp_offset(swp);
1654 	struct xarray *tree = swap_zswap_tree(swp);
1655 	struct zswap_entry *entry;
1656 
1657 	if (xa_empty(tree))
1658 		return;
1659 
1660 	entry = xa_erase(tree, offset);
1661 	if (entry)
1662 		zswap_entry_free(entry);
1663 }
1664 
1665 int zswap_swapon(int type, unsigned long nr_pages)
1666 {
1667 	struct xarray *trees, *tree;
1668 	unsigned int nr, i;
1669 
1670 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1671 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1672 	if (!trees) {
1673 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1674 		return -ENOMEM;
1675 	}
1676 
1677 	for (i = 0; i < nr; i++)
1678 		xa_init(trees + i);
1679 
1680 	nr_zswap_trees[type] = nr;
1681 	zswap_trees[type] = trees;
1682 	return 0;
1683 }
1684 
1685 void zswap_swapoff(int type)
1686 {
1687 	struct xarray *trees = zswap_trees[type];
1688 	unsigned int i;
1689 
1690 	if (!trees)
1691 		return;
1692 
1693 	/* try_to_unuse() invalidated all the entries already */
1694 	for (i = 0; i < nr_zswap_trees[type]; i++)
1695 		WARN_ON_ONCE(!xa_empty(trees + i));
1696 
1697 	kvfree(trees);
1698 	nr_zswap_trees[type] = 0;
1699 	zswap_trees[type] = NULL;
1700 }
1701 
1702 /*********************************
1703 * debugfs functions
1704 **********************************/
1705 #ifdef CONFIG_DEBUG_FS
1706 #include <linux/debugfs.h>
1707 
1708 static struct dentry *zswap_debugfs_root;
1709 
1710 static int debugfs_get_total_size(void *data, u64 *val)
1711 {
1712 	*val = zswap_total_pages() * PAGE_SIZE;
1713 	return 0;
1714 }
1715 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1716 
1717 static int debugfs_get_stored_pages(void *data, u64 *val)
1718 {
1719 	*val = atomic_long_read(&zswap_stored_pages);
1720 	return 0;
1721 }
1722 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1723 
1724 static int zswap_debugfs_init(void)
1725 {
1726 	if (!debugfs_initialized())
1727 		return -ENODEV;
1728 
1729 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1730 
1731 	debugfs_create_u64("pool_limit_hit", 0444,
1732 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1733 	debugfs_create_u64("reject_reclaim_fail", 0444,
1734 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1735 	debugfs_create_u64("reject_alloc_fail", 0444,
1736 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1737 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1738 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1739 	debugfs_create_u64("reject_compress_fail", 0444,
1740 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1741 	debugfs_create_u64("reject_compress_poor", 0444,
1742 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1743 	debugfs_create_u64("written_back_pages", 0444,
1744 			   zswap_debugfs_root, &zswap_written_back_pages);
1745 	debugfs_create_file("pool_total_size", 0444,
1746 			    zswap_debugfs_root, NULL, &total_size_fops);
1747 	debugfs_create_file("stored_pages", 0444,
1748 			    zswap_debugfs_root, NULL, &stored_pages_fops);
1749 
1750 	return 0;
1751 }
1752 #else
1753 static int zswap_debugfs_init(void)
1754 {
1755 	return 0;
1756 }
1757 #endif
1758 
1759 /*********************************
1760 * module init and exit
1761 **********************************/
1762 static int zswap_setup(void)
1763 {
1764 	struct zswap_pool *pool;
1765 	int ret;
1766 
1767 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1768 	if (!zswap_entry_cache) {
1769 		pr_err("entry cache creation failed\n");
1770 		goto cache_fail;
1771 	}
1772 
1773 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1774 				      "mm/zswap_pool:prepare",
1775 				      zswap_cpu_comp_prepare,
1776 				      zswap_cpu_comp_dead);
1777 	if (ret)
1778 		goto hp_fail;
1779 
1780 	shrink_wq = alloc_workqueue("zswap-shrink",
1781 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1782 	if (!shrink_wq)
1783 		goto shrink_wq_fail;
1784 
1785 	zswap_shrinker = zswap_alloc_shrinker();
1786 	if (!zswap_shrinker)
1787 		goto shrinker_fail;
1788 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1789 		goto lru_fail;
1790 	shrinker_register(zswap_shrinker);
1791 
1792 	INIT_WORK(&zswap_shrink_work, shrink_worker);
1793 
1794 	pool = __zswap_pool_create_fallback();
1795 	if (pool) {
1796 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1797 			zpool_get_type(pool->zpool));
1798 		list_add(&pool->list, &zswap_pools);
1799 		zswap_has_pool = true;
1800 		static_branch_enable(&zswap_ever_enabled);
1801 	} else {
1802 		pr_err("pool creation failed\n");
1803 		zswap_enabled = false;
1804 	}
1805 
1806 	if (zswap_debugfs_init())
1807 		pr_warn("debugfs initialization failed\n");
1808 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1809 	return 0;
1810 
1811 lru_fail:
1812 	shrinker_free(zswap_shrinker);
1813 shrinker_fail:
1814 	destroy_workqueue(shrink_wq);
1815 shrink_wq_fail:
1816 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1817 hp_fail:
1818 	kmem_cache_destroy(zswap_entry_cache);
1819 cache_fail:
1820 	/* if built-in, we aren't unloaded on failure; don't allow use */
1821 	zswap_init_state = ZSWAP_INIT_FAILED;
1822 	zswap_enabled = false;
1823 	return -ENOMEM;
1824 }
1825 
1826 static int __init zswap_init(void)
1827 {
1828 	if (!zswap_enabled)
1829 		return 0;
1830 	return zswap_setup();
1831 }
1832 /* must be late so crypto has time to come up */
1833 late_initcall(zswap_init);
1834 
1835 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1836 MODULE_DESCRIPTION("Compressed cache for swap pages");
1837