1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * zswap.c - zswap driver file 4 * 5 * zswap is a cache that takes pages that are in the process 6 * of being swapped out and attempts to compress and store them in a 7 * RAM-based memory pool. This can result in a significant I/O reduction on 8 * the swap device and, in the case where decompressing from RAM is faster 9 * than reading from the swap device, can also improve workload performance. 10 * 11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/cpu.h> 18 #include <linux/highmem.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/types.h> 22 #include <linux/atomic.h> 23 #include <linux/swap.h> 24 #include <linux/crypto.h> 25 #include <linux/scatterlist.h> 26 #include <linux/mempolicy.h> 27 #include <linux/mempool.h> 28 #include <crypto/acompress.h> 29 #include <linux/zswap.h> 30 #include <linux/mm_types.h> 31 #include <linux/page-flags.h> 32 #include <linux/swapops.h> 33 #include <linux/writeback.h> 34 #include <linux/pagemap.h> 35 #include <linux/workqueue.h> 36 #include <linux/list_lru.h> 37 #include <linux/zsmalloc.h> 38 39 #include "swap.h" 40 #include "internal.h" 41 42 /********************************* 43 * statistics 44 **********************************/ 45 /* The number of pages currently stored in zswap */ 46 atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0); 47 /* The number of incompressible pages currently stored in zswap */ 48 static atomic_long_t zswap_stored_incompressible_pages = ATOMIC_LONG_INIT(0); 49 50 /* 51 * The statistics below are not protected from concurrent access for 52 * performance reasons so they may not be a 100% accurate. However, 53 * they do provide useful information on roughly how many times a 54 * certain event is occurring. 55 */ 56 57 /* Pool limit was hit (see zswap_max_pool_percent) */ 58 static u64 zswap_pool_limit_hit; 59 /* Pages written back when pool limit was reached */ 60 static u64 zswap_written_back_pages; 61 /* Store failed due to a reclaim failure after pool limit was reached */ 62 static u64 zswap_reject_reclaim_fail; 63 /* Store failed due to compression algorithm failure */ 64 static u64 zswap_reject_compress_fail; 65 /* Compressed page was too big for the allocator to (optimally) store */ 66 static u64 zswap_reject_compress_poor; 67 /* Load or writeback failed due to decompression failure */ 68 static u64 zswap_decompress_fail; 69 /* Store failed because underlying allocator could not get memory */ 70 static u64 zswap_reject_alloc_fail; 71 /* Store failed because the entry metadata could not be allocated (rare) */ 72 static u64 zswap_reject_kmemcache_fail; 73 74 /* Shrinker work queue */ 75 static struct workqueue_struct *shrink_wq; 76 /* Pool limit was hit, we need to calm down */ 77 static bool zswap_pool_reached_full; 78 79 /********************************* 80 * tunables 81 **********************************/ 82 83 #define ZSWAP_PARAM_UNSET "" 84 85 static int zswap_setup(void); 86 87 /* Enable/disable zswap */ 88 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled); 89 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); 90 static int zswap_enabled_param_set(const char *, 91 const struct kernel_param *); 92 static const struct kernel_param_ops zswap_enabled_param_ops = { 93 .set = zswap_enabled_param_set, 94 .get = param_get_bool, 95 }; 96 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); 97 98 /* Crypto compressor to use */ 99 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 100 static int zswap_compressor_param_set(const char *, 101 const struct kernel_param *); 102 static const struct kernel_param_ops zswap_compressor_param_ops = { 103 .set = zswap_compressor_param_set, 104 .get = param_get_charp, 105 .free = param_free_charp, 106 }; 107 module_param_cb(compressor, &zswap_compressor_param_ops, 108 &zswap_compressor, 0644); 109 110 /* The maximum percentage of memory that the compressed pool can occupy */ 111 static unsigned int zswap_max_pool_percent = 20; 112 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 113 114 /* The threshold for accepting new pages after the max_pool_percent was hit */ 115 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ 116 module_param_named(accept_threshold_percent, zswap_accept_thr_percent, 117 uint, 0644); 118 119 /* Enable/disable memory pressure-based shrinker. */ 120 static bool zswap_shrinker_enabled = IS_ENABLED( 121 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); 122 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); 123 124 bool zswap_is_enabled(void) 125 { 126 return zswap_enabled; 127 } 128 129 bool zswap_never_enabled(void) 130 { 131 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled); 132 } 133 134 /********************************* 135 * data structures 136 **********************************/ 137 138 struct crypto_acomp_ctx { 139 struct crypto_acomp *acomp; 140 struct acomp_req *req; 141 struct crypto_wait wait; 142 u8 *buffer; 143 struct mutex mutex; 144 bool is_sleepable; 145 }; 146 147 /* 148 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. 149 * The only case where lru_lock is not acquired while holding tree.lock is 150 * when a zswap_entry is taken off the lru for writeback, in that case it 151 * needs to be verified that it's still valid in the tree. 152 */ 153 struct zswap_pool { 154 struct zs_pool *zs_pool; 155 struct crypto_acomp_ctx __percpu *acomp_ctx; 156 struct percpu_ref ref; 157 struct list_head list; 158 struct work_struct release_work; 159 struct hlist_node node; 160 char tfm_name[CRYPTO_MAX_ALG_NAME]; 161 }; 162 163 /* Global LRU lists shared by all zswap pools. */ 164 static struct list_lru zswap_list_lru; 165 166 /* The lock protects zswap_next_shrink updates. */ 167 static DEFINE_SPINLOCK(zswap_shrink_lock); 168 static struct mem_cgroup *zswap_next_shrink; 169 static struct work_struct zswap_shrink_work; 170 static struct shrinker *zswap_shrinker; 171 172 /* 173 * struct zswap_entry 174 * 175 * This structure contains the metadata for tracking a single compressed 176 * page within zswap. 177 * 178 * swpentry - associated swap entry, the offset indexes into the red-black tree 179 * length - the length in bytes of the compressed page data. Needed during 180 * decompression. 181 * referenced - true if the entry recently entered the zswap pool. Unset by the 182 * writeback logic. The entry is only reclaimed by the writeback 183 * logic if referenced is unset. See comments in the shrinker 184 * section for context. 185 * pool - the zswap_pool the entry's data is in 186 * handle - zsmalloc allocation handle that stores the compressed page data 187 * objcg - the obj_cgroup that the compressed memory is charged to 188 * lru - handle to the pool's lru used to evict pages. 189 */ 190 struct zswap_entry { 191 swp_entry_t swpentry; 192 unsigned int length; 193 bool referenced; 194 struct zswap_pool *pool; 195 unsigned long handle; 196 struct obj_cgroup *objcg; 197 struct list_head lru; 198 }; 199 200 static struct xarray *zswap_trees[MAX_SWAPFILES]; 201 static unsigned int nr_zswap_trees[MAX_SWAPFILES]; 202 203 /* RCU-protected iteration */ 204 static LIST_HEAD(zswap_pools); 205 /* protects zswap_pools list modification */ 206 static DEFINE_SPINLOCK(zswap_pools_lock); 207 /* pool counter to provide unique names to zsmalloc */ 208 static atomic_t zswap_pools_count = ATOMIC_INIT(0); 209 210 enum zswap_init_type { 211 ZSWAP_UNINIT, 212 ZSWAP_INIT_SUCCEED, 213 ZSWAP_INIT_FAILED 214 }; 215 216 static enum zswap_init_type zswap_init_state; 217 218 /* used to ensure the integrity of initialization */ 219 static DEFINE_MUTEX(zswap_init_lock); 220 221 /* init completed, but couldn't create the initial pool */ 222 static bool zswap_has_pool; 223 224 /********************************* 225 * helpers and fwd declarations 226 **********************************/ 227 228 /* One swap address space for each 64M swap space */ 229 #define ZSWAP_ADDRESS_SPACE_SHIFT 14 230 #define ZSWAP_ADDRESS_SPACE_PAGES (1 << ZSWAP_ADDRESS_SPACE_SHIFT) 231 static inline struct xarray *swap_zswap_tree(swp_entry_t swp) 232 { 233 return &zswap_trees[swp_type(swp)][swp_offset(swp) 234 >> ZSWAP_ADDRESS_SPACE_SHIFT]; 235 } 236 237 #define zswap_pool_debug(msg, p) \ 238 pr_debug("%s pool %s\n", msg, (p)->tfm_name) 239 240 /********************************* 241 * pool functions 242 **********************************/ 243 static void __zswap_pool_empty(struct percpu_ref *ref); 244 245 static struct zswap_pool *zswap_pool_create(char *compressor) 246 { 247 struct zswap_pool *pool; 248 char name[38]; /* 'zswap' + 32 char (max) num + \0 */ 249 int ret, cpu; 250 251 if (!zswap_has_pool && !strcmp(compressor, ZSWAP_PARAM_UNSET)) 252 return NULL; 253 254 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 255 if (!pool) 256 return NULL; 257 258 /* unique name for each pool specifically required by zsmalloc */ 259 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); 260 pool->zs_pool = zs_create_pool(name); 261 if (!pool->zs_pool) 262 goto error; 263 264 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 265 266 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); 267 if (!pool->acomp_ctx) { 268 pr_err("percpu alloc failed\n"); 269 goto error; 270 } 271 272 for_each_possible_cpu(cpu) 273 mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex); 274 275 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, 276 &pool->node); 277 if (ret) 278 goto error; 279 280 /* being the current pool takes 1 ref; this func expects the 281 * caller to always add the new pool as the current pool 282 */ 283 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty, 284 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 285 if (ret) 286 goto ref_fail; 287 INIT_LIST_HEAD(&pool->list); 288 289 zswap_pool_debug("created", pool); 290 291 return pool; 292 293 ref_fail: 294 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 295 error: 296 if (pool->acomp_ctx) 297 free_percpu(pool->acomp_ctx); 298 if (pool->zs_pool) 299 zs_destroy_pool(pool->zs_pool); 300 kfree(pool); 301 return NULL; 302 } 303 304 static struct zswap_pool *__zswap_pool_create_fallback(void) 305 { 306 if (!crypto_has_acomp(zswap_compressor, 0, 0) && 307 strcmp(zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { 308 pr_err("compressor %s not available, using default %s\n", 309 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); 310 param_free_charp(&zswap_compressor); 311 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 312 } 313 314 /* Default compressor should be available. Kconfig bug? */ 315 if (WARN_ON_ONCE(!crypto_has_acomp(zswap_compressor, 0, 0))) { 316 zswap_compressor = ZSWAP_PARAM_UNSET; 317 return NULL; 318 } 319 320 return zswap_pool_create(zswap_compressor); 321 } 322 323 static void zswap_pool_destroy(struct zswap_pool *pool) 324 { 325 zswap_pool_debug("destroying", pool); 326 327 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 328 free_percpu(pool->acomp_ctx); 329 330 zs_destroy_pool(pool->zs_pool); 331 kfree(pool); 332 } 333 334 static void __zswap_pool_release(struct work_struct *work) 335 { 336 struct zswap_pool *pool = container_of(work, typeof(*pool), 337 release_work); 338 339 synchronize_rcu(); 340 341 /* nobody should have been able to get a ref... */ 342 WARN_ON(!percpu_ref_is_zero(&pool->ref)); 343 percpu_ref_exit(&pool->ref); 344 345 /* pool is now off zswap_pools list and has no references. */ 346 zswap_pool_destroy(pool); 347 } 348 349 static struct zswap_pool *zswap_pool_current(void); 350 351 static void __zswap_pool_empty(struct percpu_ref *ref) 352 { 353 struct zswap_pool *pool; 354 355 pool = container_of(ref, typeof(*pool), ref); 356 357 spin_lock_bh(&zswap_pools_lock); 358 359 WARN_ON(pool == zswap_pool_current()); 360 361 list_del_rcu(&pool->list); 362 363 INIT_WORK(&pool->release_work, __zswap_pool_release); 364 schedule_work(&pool->release_work); 365 366 spin_unlock_bh(&zswap_pools_lock); 367 } 368 369 static int __must_check zswap_pool_tryget(struct zswap_pool *pool) 370 { 371 if (!pool) 372 return 0; 373 374 return percpu_ref_tryget(&pool->ref); 375 } 376 377 /* The caller must already have a reference. */ 378 static void zswap_pool_get(struct zswap_pool *pool) 379 { 380 percpu_ref_get(&pool->ref); 381 } 382 383 static void zswap_pool_put(struct zswap_pool *pool) 384 { 385 percpu_ref_put(&pool->ref); 386 } 387 388 static struct zswap_pool *__zswap_pool_current(void) 389 { 390 struct zswap_pool *pool; 391 392 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 393 WARN_ONCE(!pool && zswap_has_pool, 394 "%s: no page storage pool!\n", __func__); 395 396 return pool; 397 } 398 399 static struct zswap_pool *zswap_pool_current(void) 400 { 401 assert_spin_locked(&zswap_pools_lock); 402 403 return __zswap_pool_current(); 404 } 405 406 static struct zswap_pool *zswap_pool_current_get(void) 407 { 408 struct zswap_pool *pool; 409 410 rcu_read_lock(); 411 412 pool = __zswap_pool_current(); 413 if (!zswap_pool_tryget(pool)) 414 pool = NULL; 415 416 rcu_read_unlock(); 417 418 return pool; 419 } 420 421 /* type and compressor must be null-terminated */ 422 static struct zswap_pool *zswap_pool_find_get(char *compressor) 423 { 424 struct zswap_pool *pool; 425 426 assert_spin_locked(&zswap_pools_lock); 427 428 list_for_each_entry_rcu(pool, &zswap_pools, list) { 429 if (strcmp(pool->tfm_name, compressor)) 430 continue; 431 /* if we can't get it, it's about to be destroyed */ 432 if (!zswap_pool_tryget(pool)) 433 continue; 434 return pool; 435 } 436 437 return NULL; 438 } 439 440 static unsigned long zswap_max_pages(void) 441 { 442 return totalram_pages() * zswap_max_pool_percent / 100; 443 } 444 445 static unsigned long zswap_accept_thr_pages(void) 446 { 447 return zswap_max_pages() * zswap_accept_thr_percent / 100; 448 } 449 450 unsigned long zswap_total_pages(void) 451 { 452 struct zswap_pool *pool; 453 unsigned long total = 0; 454 455 rcu_read_lock(); 456 list_for_each_entry_rcu(pool, &zswap_pools, list) 457 total += zs_get_total_pages(pool->zs_pool); 458 rcu_read_unlock(); 459 460 return total; 461 } 462 463 static bool zswap_check_limits(void) 464 { 465 unsigned long cur_pages = zswap_total_pages(); 466 unsigned long max_pages = zswap_max_pages(); 467 468 if (cur_pages >= max_pages) { 469 zswap_pool_limit_hit++; 470 zswap_pool_reached_full = true; 471 } else if (zswap_pool_reached_full && 472 cur_pages <= zswap_accept_thr_pages()) { 473 zswap_pool_reached_full = false; 474 } 475 return zswap_pool_reached_full; 476 } 477 478 /********************************* 479 * param callbacks 480 **********************************/ 481 482 static int zswap_compressor_param_set(const char *val, const struct kernel_param *kp) 483 { 484 struct zswap_pool *pool, *put_pool = NULL; 485 char *s = strstrip((char *)val); 486 bool create_pool = false; 487 int ret = 0; 488 489 mutex_lock(&zswap_init_lock); 490 switch (zswap_init_state) { 491 case ZSWAP_UNINIT: 492 /* Handled in zswap_setup() */ 493 ret = param_set_charp(s, kp); 494 break; 495 case ZSWAP_INIT_SUCCEED: 496 if (!zswap_has_pool || strcmp(s, *(char **)kp->arg)) 497 create_pool = true; 498 break; 499 case ZSWAP_INIT_FAILED: 500 pr_err("can't set param, initialization failed\n"); 501 ret = -ENODEV; 502 } 503 mutex_unlock(&zswap_init_lock); 504 505 if (!create_pool) 506 return ret; 507 508 if (!crypto_has_acomp(s, 0, 0)) { 509 pr_err("compressor %s not available\n", s); 510 return -ENOENT; 511 } 512 513 spin_lock_bh(&zswap_pools_lock); 514 515 pool = zswap_pool_find_get(s); 516 if (pool) { 517 zswap_pool_debug("using existing", pool); 518 WARN_ON(pool == zswap_pool_current()); 519 list_del_rcu(&pool->list); 520 } 521 522 spin_unlock_bh(&zswap_pools_lock); 523 524 if (!pool) 525 pool = zswap_pool_create(s); 526 else { 527 /* 528 * Restore the initial ref dropped by percpu_ref_kill() 529 * when the pool was decommissioned and switch it again 530 * to percpu mode. 531 */ 532 percpu_ref_resurrect(&pool->ref); 533 534 /* Drop the ref from zswap_pool_find_get(). */ 535 zswap_pool_put(pool); 536 } 537 538 if (pool) 539 ret = param_set_charp(s, kp); 540 else 541 ret = -EINVAL; 542 543 spin_lock_bh(&zswap_pools_lock); 544 545 if (!ret) { 546 put_pool = zswap_pool_current(); 547 list_add_rcu(&pool->list, &zswap_pools); 548 zswap_has_pool = true; 549 } else if (pool) { 550 /* 551 * Add the possibly pre-existing pool to the end of the pools 552 * list; if it's new (and empty) then it'll be removed and 553 * destroyed by the put after we drop the lock 554 */ 555 list_add_tail_rcu(&pool->list, &zswap_pools); 556 put_pool = pool; 557 } 558 559 spin_unlock_bh(&zswap_pools_lock); 560 561 /* 562 * Drop the ref from either the old current pool, 563 * or the new pool we failed to add 564 */ 565 if (put_pool) 566 percpu_ref_kill(&put_pool->ref); 567 568 return ret; 569 } 570 571 static int zswap_enabled_param_set(const char *val, 572 const struct kernel_param *kp) 573 { 574 int ret = -ENODEV; 575 576 /* if this is load-time (pre-init) param setting, only set param. */ 577 if (system_state != SYSTEM_RUNNING) 578 return param_set_bool(val, kp); 579 580 mutex_lock(&zswap_init_lock); 581 switch (zswap_init_state) { 582 case ZSWAP_UNINIT: 583 if (zswap_setup()) 584 break; 585 fallthrough; 586 case ZSWAP_INIT_SUCCEED: 587 if (!zswap_has_pool) 588 pr_err("can't enable, no pool configured\n"); 589 else 590 ret = param_set_bool(val, kp); 591 break; 592 case ZSWAP_INIT_FAILED: 593 pr_err("can't enable, initialization failed\n"); 594 } 595 mutex_unlock(&zswap_init_lock); 596 597 return ret; 598 } 599 600 /********************************* 601 * lru functions 602 **********************************/ 603 604 /* should be called under RCU */ 605 #ifdef CONFIG_MEMCG 606 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) 607 { 608 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; 609 } 610 #else 611 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) 612 { 613 return NULL; 614 } 615 #endif 616 617 static inline int entry_to_nid(struct zswap_entry *entry) 618 { 619 return page_to_nid(virt_to_page(entry)); 620 } 621 622 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) 623 { 624 int nid = entry_to_nid(entry); 625 struct mem_cgroup *memcg; 626 627 /* 628 * Note that it is safe to use rcu_read_lock() here, even in the face of 629 * concurrent memcg offlining: 630 * 631 * 1. list_lru_add() is called before list_lru_one is dead. The 632 * new entry will be reparented to memcg's parent's list_lru. 633 * 2. list_lru_add() is called after list_lru_one is dead. The 634 * new entry will be added directly to memcg's parent's list_lru. 635 * 636 * Similar reasoning holds for list_lru_del(). 637 */ 638 rcu_read_lock(); 639 memcg = mem_cgroup_from_entry(entry); 640 /* will always succeed */ 641 list_lru_add(list_lru, &entry->lru, nid, memcg); 642 rcu_read_unlock(); 643 } 644 645 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) 646 { 647 int nid = entry_to_nid(entry); 648 struct mem_cgroup *memcg; 649 650 rcu_read_lock(); 651 memcg = mem_cgroup_from_entry(entry); 652 /* will always succeed */ 653 list_lru_del(list_lru, &entry->lru, nid, memcg); 654 rcu_read_unlock(); 655 } 656 657 void zswap_lruvec_state_init(struct lruvec *lruvec) 658 { 659 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0); 660 } 661 662 void zswap_folio_swapin(struct folio *folio) 663 { 664 struct lruvec *lruvec; 665 666 if (folio) { 667 lruvec = folio_lruvec(folio); 668 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins); 669 } 670 } 671 672 /* 673 * This function should be called when a memcg is being offlined. 674 * 675 * Since the global shrinker shrink_worker() may hold a reference 676 * of the memcg, we must check and release the reference in 677 * zswap_next_shrink. 678 * 679 * shrink_worker() must handle the case where this function releases 680 * the reference of memcg being shrunk. 681 */ 682 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) 683 { 684 /* lock out zswap shrinker walking memcg tree */ 685 spin_lock(&zswap_shrink_lock); 686 if (zswap_next_shrink == memcg) { 687 do { 688 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); 689 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink)); 690 } 691 spin_unlock(&zswap_shrink_lock); 692 } 693 694 /********************************* 695 * zswap entry functions 696 **********************************/ 697 static struct kmem_cache *zswap_entry_cache; 698 699 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) 700 { 701 struct zswap_entry *entry; 702 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); 703 if (!entry) 704 return NULL; 705 return entry; 706 } 707 708 static void zswap_entry_cache_free(struct zswap_entry *entry) 709 { 710 kmem_cache_free(zswap_entry_cache, entry); 711 } 712 713 /* 714 * Carries out the common pattern of freeing an entry's zsmalloc allocation, 715 * freeing the entry itself, and decrementing the number of stored pages. 716 */ 717 static void zswap_entry_free(struct zswap_entry *entry) 718 { 719 zswap_lru_del(&zswap_list_lru, entry); 720 zs_free(entry->pool->zs_pool, entry->handle); 721 zswap_pool_put(entry->pool); 722 if (entry->objcg) { 723 obj_cgroup_uncharge_zswap(entry->objcg, entry->length); 724 obj_cgroup_put(entry->objcg); 725 } 726 if (entry->length == PAGE_SIZE) 727 atomic_long_dec(&zswap_stored_incompressible_pages); 728 zswap_entry_cache_free(entry); 729 atomic_long_dec(&zswap_stored_pages); 730 } 731 732 /********************************* 733 * compressed storage functions 734 **********************************/ 735 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) 736 { 737 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 738 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 739 struct crypto_acomp *acomp = NULL; 740 struct acomp_req *req = NULL; 741 u8 *buffer = NULL; 742 int ret; 743 744 buffer = kmalloc_node(PAGE_SIZE, GFP_KERNEL, cpu_to_node(cpu)); 745 if (!buffer) { 746 ret = -ENOMEM; 747 goto fail; 748 } 749 750 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); 751 if (IS_ERR(acomp)) { 752 pr_err("could not alloc crypto acomp %s : %ld\n", 753 pool->tfm_name, PTR_ERR(acomp)); 754 ret = PTR_ERR(acomp); 755 goto fail; 756 } 757 758 req = acomp_request_alloc(acomp); 759 if (!req) { 760 pr_err("could not alloc crypto acomp_request %s\n", 761 pool->tfm_name); 762 ret = -ENOMEM; 763 goto fail; 764 } 765 766 /* 767 * Only hold the mutex after completing allocations, otherwise we may 768 * recurse into zswap through reclaim and attempt to hold the mutex 769 * again resulting in a deadlock. 770 */ 771 mutex_lock(&acomp_ctx->mutex); 772 crypto_init_wait(&acomp_ctx->wait); 773 774 /* 775 * if the backend of acomp is async zip, crypto_req_done() will wakeup 776 * crypto_wait_req(); if the backend of acomp is scomp, the callback 777 * won't be called, crypto_wait_req() will return without blocking. 778 */ 779 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 780 crypto_req_done, &acomp_ctx->wait); 781 782 acomp_ctx->buffer = buffer; 783 acomp_ctx->acomp = acomp; 784 acomp_ctx->is_sleepable = acomp_is_async(acomp); 785 acomp_ctx->req = req; 786 mutex_unlock(&acomp_ctx->mutex); 787 return 0; 788 789 fail: 790 if (acomp) 791 crypto_free_acomp(acomp); 792 kfree(buffer); 793 return ret; 794 } 795 796 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) 797 { 798 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 799 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 800 struct acomp_req *req; 801 struct crypto_acomp *acomp; 802 u8 *buffer; 803 804 if (IS_ERR_OR_NULL(acomp_ctx)) 805 return 0; 806 807 mutex_lock(&acomp_ctx->mutex); 808 req = acomp_ctx->req; 809 acomp = acomp_ctx->acomp; 810 buffer = acomp_ctx->buffer; 811 acomp_ctx->req = NULL; 812 acomp_ctx->acomp = NULL; 813 acomp_ctx->buffer = NULL; 814 mutex_unlock(&acomp_ctx->mutex); 815 816 /* 817 * Do the actual freeing after releasing the mutex to avoid subtle 818 * locking dependencies causing deadlocks. 819 */ 820 if (!IS_ERR_OR_NULL(req)) 821 acomp_request_free(req); 822 if (!IS_ERR_OR_NULL(acomp)) 823 crypto_free_acomp(acomp); 824 kfree(buffer); 825 826 return 0; 827 } 828 829 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool) 830 { 831 struct crypto_acomp_ctx *acomp_ctx; 832 833 for (;;) { 834 acomp_ctx = raw_cpu_ptr(pool->acomp_ctx); 835 mutex_lock(&acomp_ctx->mutex); 836 if (likely(acomp_ctx->req)) 837 return acomp_ctx; 838 /* 839 * It is possible that we were migrated to a different CPU after 840 * getting the per-CPU ctx but before the mutex was acquired. If 841 * the old CPU got offlined, zswap_cpu_comp_dead() could have 842 * already freed ctx->req (among other things) and set it to 843 * NULL. Just try again on the new CPU that we ended up on. 844 */ 845 mutex_unlock(&acomp_ctx->mutex); 846 } 847 } 848 849 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx) 850 { 851 mutex_unlock(&acomp_ctx->mutex); 852 } 853 854 static bool zswap_compress(struct page *page, struct zswap_entry *entry, 855 struct zswap_pool *pool) 856 { 857 struct crypto_acomp_ctx *acomp_ctx; 858 struct scatterlist input, output; 859 int comp_ret = 0, alloc_ret = 0; 860 unsigned int dlen = PAGE_SIZE; 861 unsigned long handle; 862 gfp_t gfp; 863 u8 *dst; 864 bool mapped = false; 865 866 acomp_ctx = acomp_ctx_get_cpu_lock(pool); 867 dst = acomp_ctx->buffer; 868 sg_init_table(&input, 1); 869 sg_set_page(&input, page, PAGE_SIZE, 0); 870 871 sg_init_one(&output, dst, PAGE_SIZE); 872 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); 873 874 /* 875 * it maybe looks a little bit silly that we send an asynchronous request, 876 * then wait for its completion synchronously. This makes the process look 877 * synchronous in fact. 878 * Theoretically, acomp supports users send multiple acomp requests in one 879 * acomp instance, then get those requests done simultaneously. but in this 880 * case, zswap actually does store and load page by page, there is no 881 * existing method to send the second page before the first page is done 882 * in one thread doing zwap. 883 * but in different threads running on different cpu, we have different 884 * acomp instance, so multiple threads can do (de)compression in parallel. 885 */ 886 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); 887 dlen = acomp_ctx->req->dlen; 888 889 /* 890 * If a page cannot be compressed into a size smaller than PAGE_SIZE, 891 * save the content as is without a compression, to keep the LRU order 892 * of writebacks. If writeback is disabled, reject the page since it 893 * only adds metadata overhead. swap_writeout() will put the page back 894 * to the active LRU list in the case. 895 */ 896 if (comp_ret || !dlen || dlen >= PAGE_SIZE) { 897 dlen = PAGE_SIZE; 898 if (!mem_cgroup_zswap_writeback_enabled( 899 folio_memcg(page_folio(page)))) { 900 comp_ret = comp_ret ? comp_ret : -EINVAL; 901 goto unlock; 902 } 903 comp_ret = 0; 904 dlen = PAGE_SIZE; 905 dst = kmap_local_page(page); 906 mapped = true; 907 } 908 909 gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE; 910 handle = zs_malloc(pool->zs_pool, dlen, gfp, page_to_nid(page)); 911 if (IS_ERR_VALUE(handle)) { 912 alloc_ret = PTR_ERR((void *)handle); 913 goto unlock; 914 } 915 916 zs_obj_write(pool->zs_pool, handle, dst, dlen); 917 entry->handle = handle; 918 entry->length = dlen; 919 920 unlock: 921 if (mapped) 922 kunmap_local(dst); 923 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC) 924 zswap_reject_compress_poor++; 925 else if (comp_ret) 926 zswap_reject_compress_fail++; 927 else if (alloc_ret) 928 zswap_reject_alloc_fail++; 929 930 acomp_ctx_put_unlock(acomp_ctx); 931 return comp_ret == 0 && alloc_ret == 0; 932 } 933 934 static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio) 935 { 936 struct zswap_pool *pool = entry->pool; 937 struct scatterlist input, output; 938 struct crypto_acomp_ctx *acomp_ctx; 939 int decomp_ret = 0, dlen = PAGE_SIZE; 940 u8 *src, *obj; 941 942 acomp_ctx = acomp_ctx_get_cpu_lock(pool); 943 obj = zs_obj_read_begin(pool->zs_pool, entry->handle, acomp_ctx->buffer); 944 945 /* zswap entries of length PAGE_SIZE are not compressed. */ 946 if (entry->length == PAGE_SIZE) { 947 memcpy_to_folio(folio, 0, obj, entry->length); 948 goto read_done; 949 } 950 951 /* 952 * zs_obj_read_begin() might return a kmap address of highmem when 953 * acomp_ctx->buffer is not used. However, sg_init_one() does not 954 * handle highmem addresses, so copy the object to acomp_ctx->buffer. 955 */ 956 if (virt_addr_valid(obj)) { 957 src = obj; 958 } else { 959 WARN_ON_ONCE(obj == acomp_ctx->buffer); 960 memcpy(acomp_ctx->buffer, obj, entry->length); 961 src = acomp_ctx->buffer; 962 } 963 964 sg_init_one(&input, src, entry->length); 965 sg_init_table(&output, 1); 966 sg_set_folio(&output, folio, PAGE_SIZE, 0); 967 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); 968 decomp_ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); 969 dlen = acomp_ctx->req->dlen; 970 971 read_done: 972 zs_obj_read_end(pool->zs_pool, entry->handle, obj); 973 acomp_ctx_put_unlock(acomp_ctx); 974 975 if (!decomp_ret && dlen == PAGE_SIZE) 976 return true; 977 978 zswap_decompress_fail++; 979 pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n", 980 swp_type(entry->swpentry), 981 swp_offset(entry->swpentry), 982 entry->pool->tfm_name, entry->length, dlen); 983 return false; 984 } 985 986 /********************************* 987 * writeback code 988 **********************************/ 989 /* 990 * Attempts to free an entry by adding a folio to the swap cache, 991 * decompressing the entry data into the folio, and issuing a 992 * bio write to write the folio back to the swap device. 993 * 994 * This can be thought of as a "resumed writeback" of the folio 995 * to the swap device. We are basically resuming the same swap 996 * writeback path that was intercepted with the zswap_store() 997 * in the first place. After the folio has been decompressed into 998 * the swap cache, the compressed version stored by zswap can be 999 * freed. 1000 */ 1001 static int zswap_writeback_entry(struct zswap_entry *entry, 1002 swp_entry_t swpentry) 1003 { 1004 struct xarray *tree; 1005 pgoff_t offset = swp_offset(swpentry); 1006 struct folio *folio; 1007 struct mempolicy *mpol; 1008 bool folio_was_allocated; 1009 struct swap_info_struct *si; 1010 int ret = 0; 1011 1012 /* try to allocate swap cache folio */ 1013 si = get_swap_device(swpentry); 1014 if (!si) 1015 return -EEXIST; 1016 1017 mpol = get_task_policy(current); 1018 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, 1019 NO_INTERLEAVE_INDEX, &folio_was_allocated, true); 1020 put_swap_device(si); 1021 if (!folio) 1022 return -ENOMEM; 1023 1024 /* 1025 * Found an existing folio, we raced with swapin or concurrent 1026 * shrinker. We generally writeback cold folios from zswap, and 1027 * swapin means the folio just became hot, so skip this folio. 1028 * For unlikely concurrent shrinker case, it will be unlinked 1029 * and freed when invalidated by the concurrent shrinker anyway. 1030 */ 1031 if (!folio_was_allocated) { 1032 ret = -EEXIST; 1033 goto out; 1034 } 1035 1036 /* 1037 * folio is locked, and the swapcache is now secured against 1038 * concurrent swapping to and from the slot, and concurrent 1039 * swapoff so we can safely dereference the zswap tree here. 1040 * Verify that the swap entry hasn't been invalidated and recycled 1041 * behind our backs, to avoid overwriting a new swap folio with 1042 * old compressed data. Only when this is successful can the entry 1043 * be dereferenced. 1044 */ 1045 tree = swap_zswap_tree(swpentry); 1046 if (entry != xa_load(tree, offset)) { 1047 ret = -ENOMEM; 1048 goto out; 1049 } 1050 1051 if (!zswap_decompress(entry, folio)) { 1052 ret = -EIO; 1053 goto out; 1054 } 1055 1056 xa_erase(tree, offset); 1057 1058 count_vm_event(ZSWPWB); 1059 if (entry->objcg) 1060 count_objcg_events(entry->objcg, ZSWPWB, 1); 1061 1062 zswap_entry_free(entry); 1063 1064 /* folio is up to date */ 1065 folio_mark_uptodate(folio); 1066 1067 /* move it to the tail of the inactive list after end_writeback */ 1068 folio_set_reclaim(folio); 1069 1070 /* start writeback */ 1071 __swap_writepage(folio, NULL); 1072 1073 out: 1074 if (ret && ret != -EEXIST) { 1075 swap_cache_del_folio(folio); 1076 folio_unlock(folio); 1077 } 1078 folio_put(folio); 1079 return ret; 1080 } 1081 1082 /********************************* 1083 * shrinker functions 1084 **********************************/ 1085 /* 1086 * The dynamic shrinker is modulated by the following factors: 1087 * 1088 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving 1089 * the entry a second chance) before rotating it in the LRU list. If the 1090 * entry is considered again by the shrinker, with its referenced bit unset, 1091 * it is written back. The writeback rate as a result is dynamically 1092 * adjusted by the pool activities - if the pool is dominated by new entries 1093 * (i.e lots of recent zswapouts), these entries will be protected and 1094 * the writeback rate will slow down. On the other hand, if the pool has a 1095 * lot of stagnant entries, these entries will be reclaimed immediately, 1096 * effectively increasing the writeback rate. 1097 * 1098 * 2. Swapins counter: If we observe swapins, it is a sign that we are 1099 * overshrinking and should slow down. We maintain a swapins counter, which 1100 * is consumed and subtract from the number of eligible objects on the LRU 1101 * in zswap_shrinker_count(). 1102 * 1103 * 3. Compression ratio. The better the workload compresses, the less gains we 1104 * can expect from writeback. We scale down the number of objects available 1105 * for reclaim by this ratio. 1106 */ 1107 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, 1108 void *arg) 1109 { 1110 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); 1111 bool *encountered_page_in_swapcache = (bool *)arg; 1112 swp_entry_t swpentry; 1113 enum lru_status ret = LRU_REMOVED_RETRY; 1114 int writeback_result; 1115 1116 /* 1117 * Second chance algorithm: if the entry has its referenced bit set, give it 1118 * a second chance. Only clear the referenced bit and rotate it in the 1119 * zswap's LRU list. 1120 */ 1121 if (entry->referenced) { 1122 entry->referenced = false; 1123 return LRU_ROTATE; 1124 } 1125 1126 /* 1127 * As soon as we drop the LRU lock, the entry can be freed by 1128 * a concurrent invalidation. This means the following: 1129 * 1130 * 1. We extract the swp_entry_t to the stack, allowing 1131 * zswap_writeback_entry() to pin the swap entry and 1132 * then validate the zwap entry against that swap entry's 1133 * tree using pointer value comparison. Only when that 1134 * is successful can the entry be dereferenced. 1135 * 1136 * 2. Usually, objects are taken off the LRU for reclaim. In 1137 * this case this isn't possible, because if reclaim fails 1138 * for whatever reason, we have no means of knowing if the 1139 * entry is alive to put it back on the LRU. 1140 * 1141 * So rotate it before dropping the lock. If the entry is 1142 * written back or invalidated, the free path will unlink 1143 * it. For failures, rotation is the right thing as well. 1144 * 1145 * Temporary failures, where the same entry should be tried 1146 * again immediately, almost never happen for this shrinker. 1147 * We don't do any trylocking; -ENOMEM comes closest, 1148 * but that's extremely rare and doesn't happen spuriously 1149 * either. Don't bother distinguishing this case. 1150 */ 1151 list_move_tail(item, &l->list); 1152 1153 /* 1154 * Once the lru lock is dropped, the entry might get freed. The 1155 * swpentry is copied to the stack, and entry isn't deref'd again 1156 * until the entry is verified to still be alive in the tree. 1157 */ 1158 swpentry = entry->swpentry; 1159 1160 /* 1161 * It's safe to drop the lock here because we return either 1162 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP. 1163 */ 1164 spin_unlock(&l->lock); 1165 1166 writeback_result = zswap_writeback_entry(entry, swpentry); 1167 1168 if (writeback_result) { 1169 zswap_reject_reclaim_fail++; 1170 ret = LRU_RETRY; 1171 1172 /* 1173 * Encountering a page already in swap cache is a sign that we are shrinking 1174 * into the warmer region. We should terminate shrinking (if we're in the dynamic 1175 * shrinker context). 1176 */ 1177 if (writeback_result == -EEXIST && encountered_page_in_swapcache) { 1178 ret = LRU_STOP; 1179 *encountered_page_in_swapcache = true; 1180 } 1181 } else { 1182 zswap_written_back_pages++; 1183 } 1184 1185 return ret; 1186 } 1187 1188 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, 1189 struct shrink_control *sc) 1190 { 1191 unsigned long shrink_ret; 1192 bool encountered_page_in_swapcache = false; 1193 1194 if (!zswap_shrinker_enabled || 1195 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) { 1196 sc->nr_scanned = 0; 1197 return SHRINK_STOP; 1198 } 1199 1200 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb, 1201 &encountered_page_in_swapcache); 1202 1203 if (encountered_page_in_swapcache) 1204 return SHRINK_STOP; 1205 1206 return shrink_ret ? shrink_ret : SHRINK_STOP; 1207 } 1208 1209 static unsigned long zswap_shrinker_count(struct shrinker *shrinker, 1210 struct shrink_control *sc) 1211 { 1212 struct mem_cgroup *memcg = sc->memcg; 1213 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); 1214 atomic_long_t *nr_disk_swapins = 1215 &lruvec->zswap_lruvec_state.nr_disk_swapins; 1216 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur, 1217 nr_remain; 1218 1219 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) 1220 return 0; 1221 1222 /* 1223 * The shrinker resumes swap writeback, which will enter block 1224 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS 1225 * rules (may_enter_fs()), which apply on a per-folio basis. 1226 */ 1227 if (!gfp_has_io_fs(sc->gfp_mask)) 1228 return 0; 1229 1230 /* 1231 * For memcg, use the cgroup-wide ZSWAP stats since we don't 1232 * have them per-node and thus per-lruvec. Careful if memcg is 1233 * runtime-disabled: we can get sc->memcg == NULL, which is ok 1234 * for the lruvec, but not for memcg_page_state(). 1235 * 1236 * Without memcg, use the zswap pool-wide metrics. 1237 */ 1238 if (!mem_cgroup_disabled()) { 1239 mem_cgroup_flush_stats(memcg); 1240 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; 1241 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); 1242 } else { 1243 nr_backing = zswap_total_pages(); 1244 nr_stored = atomic_long_read(&zswap_stored_pages); 1245 } 1246 1247 if (!nr_stored) 1248 return 0; 1249 1250 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc); 1251 if (!nr_freeable) 1252 return 0; 1253 1254 /* 1255 * Subtract from the lru size the number of pages that are recently swapped 1256 * in from disk. The idea is that had we protect the zswap's LRU by this 1257 * amount of pages, these disk swapins would not have happened. 1258 */ 1259 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins); 1260 do { 1261 if (nr_freeable >= nr_disk_swapins_cur) 1262 nr_remain = 0; 1263 else 1264 nr_remain = nr_disk_swapins_cur - nr_freeable; 1265 } while (!atomic_long_try_cmpxchg( 1266 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain)); 1267 1268 nr_freeable -= nr_disk_swapins_cur - nr_remain; 1269 if (!nr_freeable) 1270 return 0; 1271 1272 /* 1273 * Scale the number of freeable pages by the memory saving factor. 1274 * This ensures that the better zswap compresses memory, the fewer 1275 * pages we will evict to swap (as it will otherwise incur IO for 1276 * relatively small memory saving). 1277 */ 1278 return mult_frac(nr_freeable, nr_backing, nr_stored); 1279 } 1280 1281 static struct shrinker *zswap_alloc_shrinker(void) 1282 { 1283 struct shrinker *shrinker; 1284 1285 shrinker = 1286 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); 1287 if (!shrinker) 1288 return NULL; 1289 1290 shrinker->scan_objects = zswap_shrinker_scan; 1291 shrinker->count_objects = zswap_shrinker_count; 1292 shrinker->batch = 0; 1293 shrinker->seeks = DEFAULT_SEEKS; 1294 return shrinker; 1295 } 1296 1297 static int shrink_memcg(struct mem_cgroup *memcg) 1298 { 1299 int nid, shrunk = 0, scanned = 0; 1300 1301 if (!mem_cgroup_zswap_writeback_enabled(memcg)) 1302 return -ENOENT; 1303 1304 /* 1305 * Skip zombies because their LRUs are reparented and we would be 1306 * reclaiming from the parent instead of the dead memcg. 1307 */ 1308 if (memcg && !mem_cgroup_online(memcg)) 1309 return -ENOENT; 1310 1311 for_each_node_state(nid, N_NORMAL_MEMORY) { 1312 unsigned long nr_to_walk = 1; 1313 1314 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg, 1315 &shrink_memcg_cb, NULL, &nr_to_walk); 1316 scanned += 1 - nr_to_walk; 1317 } 1318 1319 if (!scanned) 1320 return -ENOENT; 1321 1322 return shrunk ? 0 : -EAGAIN; 1323 } 1324 1325 static void shrink_worker(struct work_struct *w) 1326 { 1327 struct mem_cgroup *memcg; 1328 int ret, failures = 0, attempts = 0; 1329 unsigned long thr; 1330 1331 /* Reclaim down to the accept threshold */ 1332 thr = zswap_accept_thr_pages(); 1333 1334 /* 1335 * Global reclaim will select cgroup in a round-robin fashion from all 1336 * online memcgs, but memcgs that have no pages in zswap and 1337 * writeback-disabled memcgs (memory.zswap.writeback=0) are not 1338 * candidates for shrinking. 1339 * 1340 * Shrinking will be aborted if we encounter the following 1341 * MAX_RECLAIM_RETRIES times: 1342 * - No writeback-candidate memcgs found in a memcg tree walk. 1343 * - Shrinking a writeback-candidate memcg failed. 1344 * 1345 * We save iteration cursor memcg into zswap_next_shrink, 1346 * which can be modified by the offline memcg cleaner 1347 * zswap_memcg_offline_cleanup(). 1348 * 1349 * Since the offline cleaner is called only once, we cannot leave an 1350 * offline memcg reference in zswap_next_shrink. 1351 * We can rely on the cleaner only if we get online memcg under lock. 1352 * 1353 * If we get an offline memcg, we cannot determine if the cleaner has 1354 * already been called or will be called later. We must put back the 1355 * reference before returning from this function. Otherwise, the 1356 * offline memcg left in zswap_next_shrink will hold the reference 1357 * until the next run of shrink_worker(). 1358 */ 1359 do { 1360 /* 1361 * Start shrinking from the next memcg after zswap_next_shrink. 1362 * When the offline cleaner has already advanced the cursor, 1363 * advancing the cursor here overlooks one memcg, but this 1364 * should be negligibly rare. 1365 * 1366 * If we get an online memcg, keep the extra reference in case 1367 * the original one obtained by mem_cgroup_iter() is dropped by 1368 * zswap_memcg_offline_cleanup() while we are shrinking the 1369 * memcg. 1370 */ 1371 spin_lock(&zswap_shrink_lock); 1372 do { 1373 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); 1374 zswap_next_shrink = memcg; 1375 } while (memcg && !mem_cgroup_tryget_online(memcg)); 1376 spin_unlock(&zswap_shrink_lock); 1377 1378 if (!memcg) { 1379 /* 1380 * Continue shrinking without incrementing failures if 1381 * we found candidate memcgs in the last tree walk. 1382 */ 1383 if (!attempts && ++failures == MAX_RECLAIM_RETRIES) 1384 break; 1385 1386 attempts = 0; 1387 goto resched; 1388 } 1389 1390 ret = shrink_memcg(memcg); 1391 /* drop the extra reference */ 1392 mem_cgroup_put(memcg); 1393 1394 /* 1395 * There are no writeback-candidate pages in the memcg. 1396 * This is not an issue as long as we can find another memcg 1397 * with pages in zswap. Skip this without incrementing attempts 1398 * and failures. 1399 */ 1400 if (ret == -ENOENT) 1401 continue; 1402 ++attempts; 1403 1404 if (ret && ++failures == MAX_RECLAIM_RETRIES) 1405 break; 1406 resched: 1407 cond_resched(); 1408 } while (zswap_total_pages() > thr); 1409 } 1410 1411 /********************************* 1412 * main API 1413 **********************************/ 1414 1415 static bool zswap_store_page(struct page *page, 1416 struct obj_cgroup *objcg, 1417 struct zswap_pool *pool) 1418 { 1419 swp_entry_t page_swpentry = page_swap_entry(page); 1420 struct zswap_entry *entry, *old; 1421 1422 /* allocate entry */ 1423 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page)); 1424 if (!entry) { 1425 zswap_reject_kmemcache_fail++; 1426 return false; 1427 } 1428 1429 if (!zswap_compress(page, entry, pool)) 1430 goto compress_failed; 1431 1432 old = xa_store(swap_zswap_tree(page_swpentry), 1433 swp_offset(page_swpentry), 1434 entry, GFP_KERNEL); 1435 if (xa_is_err(old)) { 1436 int err = xa_err(old); 1437 1438 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err); 1439 zswap_reject_alloc_fail++; 1440 goto store_failed; 1441 } 1442 1443 /* 1444 * We may have had an existing entry that became stale when 1445 * the folio was redirtied and now the new version is being 1446 * swapped out. Get rid of the old. 1447 */ 1448 if (old) 1449 zswap_entry_free(old); 1450 1451 /* 1452 * The entry is successfully compressed and stored in the tree, there is 1453 * no further possibility of failure. Grab refs to the pool and objcg, 1454 * charge zswap memory, and increment zswap_stored_pages. 1455 * The opposite actions will be performed by zswap_entry_free() 1456 * when the entry is removed from the tree. 1457 */ 1458 zswap_pool_get(pool); 1459 if (objcg) { 1460 obj_cgroup_get(objcg); 1461 obj_cgroup_charge_zswap(objcg, entry->length); 1462 } 1463 atomic_long_inc(&zswap_stored_pages); 1464 if (entry->length == PAGE_SIZE) 1465 atomic_long_inc(&zswap_stored_incompressible_pages); 1466 1467 /* 1468 * We finish initializing the entry while it's already in xarray. 1469 * This is safe because: 1470 * 1471 * 1. Concurrent stores and invalidations are excluded by folio lock. 1472 * 1473 * 2. Writeback is excluded by the entry not being on the LRU yet. 1474 * The publishing order matters to prevent writeback from seeing 1475 * an incoherent entry. 1476 */ 1477 entry->pool = pool; 1478 entry->swpentry = page_swpentry; 1479 entry->objcg = objcg; 1480 entry->referenced = true; 1481 if (entry->length) { 1482 INIT_LIST_HEAD(&entry->lru); 1483 zswap_lru_add(&zswap_list_lru, entry); 1484 } 1485 1486 return true; 1487 1488 store_failed: 1489 zs_free(pool->zs_pool, entry->handle); 1490 compress_failed: 1491 zswap_entry_cache_free(entry); 1492 return false; 1493 } 1494 1495 bool zswap_store(struct folio *folio) 1496 { 1497 long nr_pages = folio_nr_pages(folio); 1498 swp_entry_t swp = folio->swap; 1499 struct obj_cgroup *objcg = NULL; 1500 struct mem_cgroup *memcg = NULL; 1501 struct zswap_pool *pool; 1502 bool ret = false; 1503 long index; 1504 1505 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 1506 VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); 1507 1508 if (!zswap_enabled) 1509 goto check_old; 1510 1511 objcg = get_obj_cgroup_from_folio(folio); 1512 if (objcg && !obj_cgroup_may_zswap(objcg)) { 1513 memcg = get_mem_cgroup_from_objcg(objcg); 1514 if (shrink_memcg(memcg)) { 1515 mem_cgroup_put(memcg); 1516 goto put_objcg; 1517 } 1518 mem_cgroup_put(memcg); 1519 } 1520 1521 if (zswap_check_limits()) 1522 goto put_objcg; 1523 1524 pool = zswap_pool_current_get(); 1525 if (!pool) 1526 goto put_objcg; 1527 1528 if (objcg) { 1529 memcg = get_mem_cgroup_from_objcg(objcg); 1530 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) { 1531 mem_cgroup_put(memcg); 1532 goto put_pool; 1533 } 1534 mem_cgroup_put(memcg); 1535 } 1536 1537 for (index = 0; index < nr_pages; ++index) { 1538 struct page *page = folio_page(folio, index); 1539 1540 if (!zswap_store_page(page, objcg, pool)) 1541 goto put_pool; 1542 } 1543 1544 if (objcg) 1545 count_objcg_events(objcg, ZSWPOUT, nr_pages); 1546 1547 count_vm_events(ZSWPOUT, nr_pages); 1548 1549 ret = true; 1550 1551 put_pool: 1552 zswap_pool_put(pool); 1553 put_objcg: 1554 obj_cgroup_put(objcg); 1555 if (!ret && zswap_pool_reached_full) 1556 queue_work(shrink_wq, &zswap_shrink_work); 1557 check_old: 1558 /* 1559 * If the zswap store fails or zswap is disabled, we must invalidate 1560 * the possibly stale entries which were previously stored at the 1561 * offsets corresponding to each page of the folio. Otherwise, 1562 * writeback could overwrite the new data in the swapfile. 1563 */ 1564 if (!ret) { 1565 unsigned type = swp_type(swp); 1566 pgoff_t offset = swp_offset(swp); 1567 struct zswap_entry *entry; 1568 struct xarray *tree; 1569 1570 for (index = 0; index < nr_pages; ++index) { 1571 tree = swap_zswap_tree(swp_entry(type, offset + index)); 1572 entry = xa_erase(tree, offset + index); 1573 if (entry) 1574 zswap_entry_free(entry); 1575 } 1576 } 1577 1578 return ret; 1579 } 1580 1581 /** 1582 * zswap_load() - load a folio from zswap 1583 * @folio: folio to load 1584 * 1585 * Return: 0 on success, with the folio unlocked and marked up-to-date, or one 1586 * of the following error codes: 1587 * 1588 * -EIO: if the swapped out content was in zswap, but could not be loaded 1589 * into the page due to a decompression failure. The folio is unlocked, but 1590 * NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page() 1591 * will SIGBUS). 1592 * 1593 * -EINVAL: if the swapped out content was in zswap, but the page belongs 1594 * to a large folio, which is not supported by zswap. The folio is unlocked, 1595 * but NOT marked up-to-date, so that an IO error is emitted (e.g. 1596 * do_swap_page() will SIGBUS). 1597 * 1598 * -ENOENT: if the swapped out content was not in zswap. The folio remains 1599 * locked on return. 1600 */ 1601 int zswap_load(struct folio *folio) 1602 { 1603 swp_entry_t swp = folio->swap; 1604 pgoff_t offset = swp_offset(swp); 1605 bool swapcache = folio_test_swapcache(folio); 1606 struct xarray *tree = swap_zswap_tree(swp); 1607 struct zswap_entry *entry; 1608 1609 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 1610 1611 if (zswap_never_enabled()) 1612 return -ENOENT; 1613 1614 /* 1615 * Large folios should not be swapped in while zswap is being used, as 1616 * they are not properly handled. Zswap does not properly load large 1617 * folios, and a large folio may only be partially in zswap. 1618 */ 1619 if (WARN_ON_ONCE(folio_test_large(folio))) { 1620 folio_unlock(folio); 1621 return -EINVAL; 1622 } 1623 1624 entry = xa_load(tree, offset); 1625 if (!entry) 1626 return -ENOENT; 1627 1628 if (!zswap_decompress(entry, folio)) { 1629 folio_unlock(folio); 1630 return -EIO; 1631 } 1632 1633 folio_mark_uptodate(folio); 1634 1635 count_vm_event(ZSWPIN); 1636 if (entry->objcg) 1637 count_objcg_events(entry->objcg, ZSWPIN, 1); 1638 1639 /* 1640 * When reading into the swapcache, invalidate our entry. The 1641 * swapcache can be the authoritative owner of the page and 1642 * its mappings, and the pressure that results from having two 1643 * in-memory copies outweighs any benefits of caching the 1644 * compression work. 1645 * 1646 * (Most swapins go through the swapcache. The notable 1647 * exception is the singleton fault on SWP_SYNCHRONOUS_IO 1648 * files, which reads into a private page and may free it if 1649 * the fault fails. We remain the primary owner of the entry.) 1650 */ 1651 if (swapcache) { 1652 folio_mark_dirty(folio); 1653 xa_erase(tree, offset); 1654 zswap_entry_free(entry); 1655 } 1656 1657 folio_unlock(folio); 1658 return 0; 1659 } 1660 1661 void zswap_invalidate(swp_entry_t swp) 1662 { 1663 pgoff_t offset = swp_offset(swp); 1664 struct xarray *tree = swap_zswap_tree(swp); 1665 struct zswap_entry *entry; 1666 1667 if (xa_empty(tree)) 1668 return; 1669 1670 entry = xa_erase(tree, offset); 1671 if (entry) 1672 zswap_entry_free(entry); 1673 } 1674 1675 int zswap_swapon(int type, unsigned long nr_pages) 1676 { 1677 struct xarray *trees, *tree; 1678 unsigned int nr, i; 1679 1680 nr = DIV_ROUND_UP(nr_pages, ZSWAP_ADDRESS_SPACE_PAGES); 1681 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL); 1682 if (!trees) { 1683 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1684 return -ENOMEM; 1685 } 1686 1687 for (i = 0; i < nr; i++) 1688 xa_init(trees + i); 1689 1690 nr_zswap_trees[type] = nr; 1691 zswap_trees[type] = trees; 1692 return 0; 1693 } 1694 1695 void zswap_swapoff(int type) 1696 { 1697 struct xarray *trees = zswap_trees[type]; 1698 unsigned int i; 1699 1700 if (!trees) 1701 return; 1702 1703 /* try_to_unuse() invalidated all the entries already */ 1704 for (i = 0; i < nr_zswap_trees[type]; i++) 1705 WARN_ON_ONCE(!xa_empty(trees + i)); 1706 1707 kvfree(trees); 1708 nr_zswap_trees[type] = 0; 1709 zswap_trees[type] = NULL; 1710 } 1711 1712 /********************************* 1713 * debugfs functions 1714 **********************************/ 1715 #ifdef CONFIG_DEBUG_FS 1716 #include <linux/debugfs.h> 1717 1718 static struct dentry *zswap_debugfs_root; 1719 1720 static int debugfs_get_total_size(void *data, u64 *val) 1721 { 1722 *val = zswap_total_pages() * PAGE_SIZE; 1723 return 0; 1724 } 1725 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n"); 1726 1727 static int debugfs_get_stored_pages(void *data, u64 *val) 1728 { 1729 *val = atomic_long_read(&zswap_stored_pages); 1730 return 0; 1731 } 1732 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n"); 1733 1734 static int debugfs_get_stored_incompressible_pages(void *data, u64 *val) 1735 { 1736 *val = atomic_long_read(&zswap_stored_incompressible_pages); 1737 return 0; 1738 } 1739 DEFINE_DEBUGFS_ATTRIBUTE(stored_incompressible_pages_fops, 1740 debugfs_get_stored_incompressible_pages, NULL, "%llu\n"); 1741 1742 static int zswap_debugfs_init(void) 1743 { 1744 if (!debugfs_initialized()) 1745 return -ENODEV; 1746 1747 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1748 1749 debugfs_create_u64("pool_limit_hit", 0444, 1750 zswap_debugfs_root, &zswap_pool_limit_hit); 1751 debugfs_create_u64("reject_reclaim_fail", 0444, 1752 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1753 debugfs_create_u64("reject_alloc_fail", 0444, 1754 zswap_debugfs_root, &zswap_reject_alloc_fail); 1755 debugfs_create_u64("reject_kmemcache_fail", 0444, 1756 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1757 debugfs_create_u64("reject_compress_fail", 0444, 1758 zswap_debugfs_root, &zswap_reject_compress_fail); 1759 debugfs_create_u64("reject_compress_poor", 0444, 1760 zswap_debugfs_root, &zswap_reject_compress_poor); 1761 debugfs_create_u64("decompress_fail", 0444, 1762 zswap_debugfs_root, &zswap_decompress_fail); 1763 debugfs_create_u64("written_back_pages", 0444, 1764 zswap_debugfs_root, &zswap_written_back_pages); 1765 debugfs_create_file("pool_total_size", 0444, 1766 zswap_debugfs_root, NULL, &total_size_fops); 1767 debugfs_create_file("stored_pages", 0444, 1768 zswap_debugfs_root, NULL, &stored_pages_fops); 1769 debugfs_create_file("stored_incompressible_pages", 0444, 1770 zswap_debugfs_root, NULL, 1771 &stored_incompressible_pages_fops); 1772 1773 return 0; 1774 } 1775 #else 1776 static int zswap_debugfs_init(void) 1777 { 1778 return 0; 1779 } 1780 #endif 1781 1782 /********************************* 1783 * module init and exit 1784 **********************************/ 1785 static int zswap_setup(void) 1786 { 1787 struct zswap_pool *pool; 1788 int ret; 1789 1790 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 1791 if (!zswap_entry_cache) { 1792 pr_err("entry cache creation failed\n"); 1793 goto cache_fail; 1794 } 1795 1796 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, 1797 "mm/zswap_pool:prepare", 1798 zswap_cpu_comp_prepare, 1799 zswap_cpu_comp_dead); 1800 if (ret) 1801 goto hp_fail; 1802 1803 shrink_wq = alloc_workqueue("zswap-shrink", 1804 WQ_UNBOUND|WQ_MEM_RECLAIM, 1); 1805 if (!shrink_wq) 1806 goto shrink_wq_fail; 1807 1808 zswap_shrinker = zswap_alloc_shrinker(); 1809 if (!zswap_shrinker) 1810 goto shrinker_fail; 1811 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker)) 1812 goto lru_fail; 1813 shrinker_register(zswap_shrinker); 1814 1815 INIT_WORK(&zswap_shrink_work, shrink_worker); 1816 1817 pool = __zswap_pool_create_fallback(); 1818 if (pool) { 1819 pr_info("loaded using pool %s\n", pool->tfm_name); 1820 list_add(&pool->list, &zswap_pools); 1821 zswap_has_pool = true; 1822 static_branch_enable(&zswap_ever_enabled); 1823 } else { 1824 pr_err("pool creation failed\n"); 1825 zswap_enabled = false; 1826 } 1827 1828 if (zswap_debugfs_init()) 1829 pr_warn("debugfs initialization failed\n"); 1830 zswap_init_state = ZSWAP_INIT_SUCCEED; 1831 return 0; 1832 1833 lru_fail: 1834 shrinker_free(zswap_shrinker); 1835 shrinker_fail: 1836 destroy_workqueue(shrink_wq); 1837 shrink_wq_fail: 1838 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE); 1839 hp_fail: 1840 kmem_cache_destroy(zswap_entry_cache); 1841 cache_fail: 1842 /* if built-in, we aren't unloaded on failure; don't allow use */ 1843 zswap_init_state = ZSWAP_INIT_FAILED; 1844 zswap_enabled = false; 1845 return -ENOMEM; 1846 } 1847 1848 static int __init zswap_init(void) 1849 { 1850 if (!zswap_enabled) 1851 return 0; 1852 return zswap_setup(); 1853 } 1854 /* must be late so crypto has time to come up */ 1855 late_initcall(zswap_init); 1856 1857 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1858 MODULE_DESCRIPTION("Compressed cache for swap pages"); 1859