xref: /linux/mm/zswap.c (revision 4adfc94d4aeca1177e1188ba83c20ed581523fe1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 #include <linux/list_lru.h>
39 
40 #include "swap.h"
41 #include "internal.h"
42 
43 /*********************************
44 * statistics
45 **********************************/
46 /* Total bytes used by the compressed storage */
47 u64 zswap_pool_total_size;
48 /* The number of compressed pages currently stored in zswap */
49 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50 /* The number of same-value filled pages currently stored in zswap */
51 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52 
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59 
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Store failed due to compression algorithm failure */
67 static u64 zswap_reject_compress_fail;
68 /* Compressed page was too big for the allocator to (optimally) store */
69 static u64 zswap_reject_compress_poor;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
74 /* Duplicate store was encountered (rare) */
75 static u64 zswap_duplicate_entry;
76 
77 /* Shrinker work queue */
78 static struct workqueue_struct *shrink_wq;
79 /* Pool limit was hit, we need to calm down */
80 static bool zswap_pool_reached_full;
81 
82 /*********************************
83 * tunables
84 **********************************/
85 
86 #define ZSWAP_PARAM_UNSET ""
87 
88 static int zswap_setup(void);
89 
90 /* Enable/disable zswap */
91 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
92 static int zswap_enabled_param_set(const char *,
93 				   const struct kernel_param *);
94 static const struct kernel_param_ops zswap_enabled_param_ops = {
95 	.set =		zswap_enabled_param_set,
96 	.get =		param_get_bool,
97 };
98 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
99 
100 /* Crypto compressor to use */
101 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
102 static int zswap_compressor_param_set(const char *,
103 				      const struct kernel_param *);
104 static const struct kernel_param_ops zswap_compressor_param_ops = {
105 	.set =		zswap_compressor_param_set,
106 	.get =		param_get_charp,
107 	.free =		param_free_charp,
108 };
109 module_param_cb(compressor, &zswap_compressor_param_ops,
110 		&zswap_compressor, 0644);
111 
112 /* Compressed storage zpool to use */
113 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
114 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
115 static const struct kernel_param_ops zswap_zpool_param_ops = {
116 	.set =		zswap_zpool_param_set,
117 	.get =		param_get_charp,
118 	.free =		param_free_charp,
119 };
120 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
121 
122 /* The maximum percentage of memory that the compressed pool can occupy */
123 static unsigned int zswap_max_pool_percent = 20;
124 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
125 
126 /* The threshold for accepting new pages after the max_pool_percent was hit */
127 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
128 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
129 		   uint, 0644);
130 
131 /*
132  * Enable/disable handling same-value filled pages (enabled by default).
133  * If disabled every page is considered non-same-value filled.
134  */
135 static bool zswap_same_filled_pages_enabled = true;
136 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
137 		   bool, 0644);
138 
139 /* Enable/disable handling non-same-value filled pages (enabled by default) */
140 static bool zswap_non_same_filled_pages_enabled = true;
141 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
142 		   bool, 0644);
143 
144 static bool zswap_exclusive_loads_enabled = IS_ENABLED(
145 		CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
146 module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
147 
148 /* Number of zpools in zswap_pool (empirically determined for scalability) */
149 #define ZSWAP_NR_ZPOOLS 32
150 
151 /* Enable/disable memory pressure-based shrinker. */
152 static bool zswap_shrinker_enabled = IS_ENABLED(
153 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
154 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
155 
156 bool is_zswap_enabled(void)
157 {
158 	return zswap_enabled;
159 }
160 
161 /*********************************
162 * data structures
163 **********************************/
164 
165 struct crypto_acomp_ctx {
166 	struct crypto_acomp *acomp;
167 	struct acomp_req *req;
168 	struct crypto_wait wait;
169 	u8 *buffer;
170 	struct mutex mutex;
171 };
172 
173 /*
174  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
175  * The only case where lru_lock is not acquired while holding tree.lock is
176  * when a zswap_entry is taken off the lru for writeback, in that case it
177  * needs to be verified that it's still valid in the tree.
178  */
179 struct zswap_pool {
180 	struct zpool *zpools[ZSWAP_NR_ZPOOLS];
181 	struct crypto_acomp_ctx __percpu *acomp_ctx;
182 	struct kref kref;
183 	struct list_head list;
184 	struct work_struct release_work;
185 	struct work_struct shrink_work;
186 	struct hlist_node node;
187 	char tfm_name[CRYPTO_MAX_ALG_NAME];
188 	struct list_lru list_lru;
189 	struct mem_cgroup *next_shrink;
190 	struct shrinker *shrinker;
191 	atomic_t nr_stored;
192 };
193 
194 /*
195  * struct zswap_entry
196  *
197  * This structure contains the metadata for tracking a single compressed
198  * page within zswap.
199  *
200  * rbnode - links the entry into red-black tree for the appropriate swap type
201  * swpentry - associated swap entry, the offset indexes into the red-black tree
202  * refcount - the number of outstanding reference to the entry. This is needed
203  *            to protect against premature freeing of the entry by code
204  *            concurrent calls to load, invalidate, and writeback.  The lock
205  *            for the zswap_tree structure that contains the entry must
206  *            be held while changing the refcount.  Since the lock must
207  *            be held, there is no reason to also make refcount atomic.
208  * length - the length in bytes of the compressed page data.  Needed during
209  *          decompression. For a same value filled page length is 0, and both
210  *          pool and lru are invalid and must be ignored.
211  * pool - the zswap_pool the entry's data is in
212  * handle - zpool allocation handle that stores the compressed page data
213  * value - value of the same-value filled pages which have same content
214  * objcg - the obj_cgroup that the compressed memory is charged to
215  * lru - handle to the pool's lru used to evict pages.
216  */
217 struct zswap_entry {
218 	struct rb_node rbnode;
219 	swp_entry_t swpentry;
220 	int refcount;
221 	unsigned int length;
222 	struct zswap_pool *pool;
223 	union {
224 		unsigned long handle;
225 		unsigned long value;
226 	};
227 	struct obj_cgroup *objcg;
228 	struct list_head lru;
229 };
230 
231 /*
232  * The tree lock in the zswap_tree struct protects a few things:
233  * - the rbtree
234  * - the refcount field of each entry in the tree
235  */
236 struct zswap_tree {
237 	struct rb_root rbroot;
238 	spinlock_t lock;
239 };
240 
241 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
242 
243 /* RCU-protected iteration */
244 static LIST_HEAD(zswap_pools);
245 /* protects zswap_pools list modification */
246 static DEFINE_SPINLOCK(zswap_pools_lock);
247 /* pool counter to provide unique names to zpool */
248 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
249 
250 enum zswap_init_type {
251 	ZSWAP_UNINIT,
252 	ZSWAP_INIT_SUCCEED,
253 	ZSWAP_INIT_FAILED
254 };
255 
256 static enum zswap_init_type zswap_init_state;
257 
258 /* used to ensure the integrity of initialization */
259 static DEFINE_MUTEX(zswap_init_lock);
260 
261 /* init completed, but couldn't create the initial pool */
262 static bool zswap_has_pool;
263 
264 /*********************************
265 * helpers and fwd declarations
266 **********************************/
267 
268 #define zswap_pool_debug(msg, p)				\
269 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
270 		 zpool_get_type((p)->zpools[0]))
271 
272 static int zswap_writeback_entry(struct zswap_entry *entry,
273 				 struct zswap_tree *tree);
274 static int zswap_pool_get(struct zswap_pool *pool);
275 static void zswap_pool_put(struct zswap_pool *pool);
276 
277 static bool zswap_is_full(void)
278 {
279 	return totalram_pages() * zswap_max_pool_percent / 100 <
280 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
281 }
282 
283 static bool zswap_can_accept(void)
284 {
285 	return totalram_pages() * zswap_accept_thr_percent / 100 *
286 				zswap_max_pool_percent / 100 >
287 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
288 }
289 
290 static u64 get_zswap_pool_size(struct zswap_pool *pool)
291 {
292 	u64 pool_size = 0;
293 	int i;
294 
295 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
296 		pool_size += zpool_get_total_size(pool->zpools[i]);
297 
298 	return pool_size;
299 }
300 
301 static void zswap_update_total_size(void)
302 {
303 	struct zswap_pool *pool;
304 	u64 total = 0;
305 
306 	rcu_read_lock();
307 
308 	list_for_each_entry_rcu(pool, &zswap_pools, list)
309 		total += get_zswap_pool_size(pool);
310 
311 	rcu_read_unlock();
312 
313 	zswap_pool_total_size = total;
314 }
315 
316 /* should be called under RCU */
317 #ifdef CONFIG_MEMCG
318 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
319 {
320 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
321 }
322 #else
323 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
324 {
325 	return NULL;
326 }
327 #endif
328 
329 static inline int entry_to_nid(struct zswap_entry *entry)
330 {
331 	return page_to_nid(virt_to_page(entry));
332 }
333 
334 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
335 {
336 	struct zswap_pool *pool;
337 
338 	/* lock out zswap pools list modification */
339 	spin_lock(&zswap_pools_lock);
340 	list_for_each_entry(pool, &zswap_pools, list) {
341 		if (pool->next_shrink == memcg)
342 			pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
343 	}
344 	spin_unlock(&zswap_pools_lock);
345 }
346 
347 /*********************************
348 * zswap entry functions
349 **********************************/
350 static struct kmem_cache *zswap_entry_cache;
351 
352 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
353 {
354 	struct zswap_entry *entry;
355 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
356 	if (!entry)
357 		return NULL;
358 	entry->refcount = 1;
359 	RB_CLEAR_NODE(&entry->rbnode);
360 	return entry;
361 }
362 
363 static void zswap_entry_cache_free(struct zswap_entry *entry)
364 {
365 	kmem_cache_free(zswap_entry_cache, entry);
366 }
367 
368 /*********************************
369 * zswap lruvec functions
370 **********************************/
371 void zswap_lruvec_state_init(struct lruvec *lruvec)
372 {
373 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
374 }
375 
376 void zswap_folio_swapin(struct folio *folio)
377 {
378 	struct lruvec *lruvec;
379 
380 	if (folio) {
381 		lruvec = folio_lruvec(folio);
382 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
383 	}
384 }
385 
386 /*********************************
387 * lru functions
388 **********************************/
389 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
390 {
391 	atomic_long_t *nr_zswap_protected;
392 	unsigned long lru_size, old, new;
393 	int nid = entry_to_nid(entry);
394 	struct mem_cgroup *memcg;
395 	struct lruvec *lruvec;
396 
397 	/*
398 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
399 	 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
400 	 * used in list_lru lookup, only two scenarios are possible:
401 	 *
402 	 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
403 	 *    new entry will be reparented to memcg's parent's list_lru.
404 	 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
405 	 *    new entry will be added directly to memcg's parent's list_lru.
406 	 *
407 	 * Similar reasoning holds for list_lru_del() and list_lru_putback().
408 	 */
409 	rcu_read_lock();
410 	memcg = mem_cgroup_from_entry(entry);
411 	/* will always succeed */
412 	list_lru_add(list_lru, &entry->lru, nid, memcg);
413 
414 	/* Update the protection area */
415 	lru_size = list_lru_count_one(list_lru, nid, memcg);
416 	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
417 	nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
418 	old = atomic_long_inc_return(nr_zswap_protected);
419 	/*
420 	 * Decay to avoid overflow and adapt to changing workloads.
421 	 * This is based on LRU reclaim cost decaying heuristics.
422 	 */
423 	do {
424 		new = old > lru_size / 4 ? old / 2 : old;
425 	} while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
426 	rcu_read_unlock();
427 }
428 
429 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
430 {
431 	int nid = entry_to_nid(entry);
432 	struct mem_cgroup *memcg;
433 
434 	rcu_read_lock();
435 	memcg = mem_cgroup_from_entry(entry);
436 	/* will always succeed */
437 	list_lru_del(list_lru, &entry->lru, nid, memcg);
438 	rcu_read_unlock();
439 }
440 
441 static void zswap_lru_putback(struct list_lru *list_lru,
442 		struct zswap_entry *entry)
443 {
444 	int nid = entry_to_nid(entry);
445 	spinlock_t *lock = &list_lru->node[nid].lock;
446 	struct mem_cgroup *memcg;
447 	struct lruvec *lruvec;
448 
449 	rcu_read_lock();
450 	memcg = mem_cgroup_from_entry(entry);
451 	spin_lock(lock);
452 	/* we cannot use list_lru_add here, because it increments node's lru count */
453 	list_lru_putback(list_lru, &entry->lru, nid, memcg);
454 	spin_unlock(lock);
455 
456 	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
457 	/* increment the protection area to account for the LRU rotation. */
458 	atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
459 	rcu_read_unlock();
460 }
461 
462 /*********************************
463 * rbtree functions
464 **********************************/
465 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
466 {
467 	struct rb_node *node = root->rb_node;
468 	struct zswap_entry *entry;
469 	pgoff_t entry_offset;
470 
471 	while (node) {
472 		entry = rb_entry(node, struct zswap_entry, rbnode);
473 		entry_offset = swp_offset(entry->swpentry);
474 		if (entry_offset > offset)
475 			node = node->rb_left;
476 		else if (entry_offset < offset)
477 			node = node->rb_right;
478 		else
479 			return entry;
480 	}
481 	return NULL;
482 }
483 
484 /*
485  * In the case that a entry with the same offset is found, a pointer to
486  * the existing entry is stored in dupentry and the function returns -EEXIST
487  */
488 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
489 			struct zswap_entry **dupentry)
490 {
491 	struct rb_node **link = &root->rb_node, *parent = NULL;
492 	struct zswap_entry *myentry;
493 	pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
494 
495 	while (*link) {
496 		parent = *link;
497 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
498 		myentry_offset = swp_offset(myentry->swpentry);
499 		if (myentry_offset > entry_offset)
500 			link = &(*link)->rb_left;
501 		else if (myentry_offset < entry_offset)
502 			link = &(*link)->rb_right;
503 		else {
504 			*dupentry = myentry;
505 			return -EEXIST;
506 		}
507 	}
508 	rb_link_node(&entry->rbnode, parent, link);
509 	rb_insert_color(&entry->rbnode, root);
510 	return 0;
511 }
512 
513 static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
514 {
515 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
516 		rb_erase(&entry->rbnode, root);
517 		RB_CLEAR_NODE(&entry->rbnode);
518 		return true;
519 	}
520 	return false;
521 }
522 
523 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
524 {
525 	int i = 0;
526 
527 	if (ZSWAP_NR_ZPOOLS > 1)
528 		i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
529 
530 	return entry->pool->zpools[i];
531 }
532 
533 /*
534  * Carries out the common pattern of freeing and entry's zpool allocation,
535  * freeing the entry itself, and decrementing the number of stored pages.
536  */
537 static void zswap_free_entry(struct zswap_entry *entry)
538 {
539 	if (!entry->length)
540 		atomic_dec(&zswap_same_filled_pages);
541 	else {
542 		zswap_lru_del(&entry->pool->list_lru, entry);
543 		zpool_free(zswap_find_zpool(entry), entry->handle);
544 		atomic_dec(&entry->pool->nr_stored);
545 		zswap_pool_put(entry->pool);
546 	}
547 	if (entry->objcg) {
548 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
549 		obj_cgroup_put(entry->objcg);
550 	}
551 	zswap_entry_cache_free(entry);
552 	atomic_dec(&zswap_stored_pages);
553 	zswap_update_total_size();
554 }
555 
556 /* caller must hold the tree lock */
557 static void zswap_entry_get(struct zswap_entry *entry)
558 {
559 	entry->refcount++;
560 }
561 
562 /* caller must hold the tree lock
563 * remove from the tree and free it, if nobody reference the entry
564 */
565 static void zswap_entry_put(struct zswap_tree *tree,
566 			struct zswap_entry *entry)
567 {
568 	int refcount = --entry->refcount;
569 
570 	WARN_ON_ONCE(refcount < 0);
571 	if (refcount == 0) {
572 		WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
573 		zswap_free_entry(entry);
574 	}
575 }
576 
577 /* caller must hold the tree lock */
578 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
579 				pgoff_t offset)
580 {
581 	struct zswap_entry *entry;
582 
583 	entry = zswap_rb_search(root, offset);
584 	if (entry)
585 		zswap_entry_get(entry);
586 
587 	return entry;
588 }
589 
590 /*********************************
591 * shrinker functions
592 **********************************/
593 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
594 				       spinlock_t *lock, void *arg);
595 
596 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
597 		struct shrink_control *sc)
598 {
599 	struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
600 	unsigned long shrink_ret, nr_protected, lru_size;
601 	struct zswap_pool *pool = shrinker->private_data;
602 	bool encountered_page_in_swapcache = false;
603 
604 	if (!zswap_shrinker_enabled ||
605 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
606 		sc->nr_scanned = 0;
607 		return SHRINK_STOP;
608 	}
609 
610 	nr_protected =
611 		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
612 	lru_size = list_lru_shrink_count(&pool->list_lru, sc);
613 
614 	/*
615 	 * Abort if we are shrinking into the protected region.
616 	 *
617 	 * This short-circuiting is necessary because if we have too many multiple
618 	 * concurrent reclaimers getting the freeable zswap object counts at the
619 	 * same time (before any of them made reasonable progress), the total
620 	 * number of reclaimed objects might be more than the number of unprotected
621 	 * objects (i.e the reclaimers will reclaim into the protected area of the
622 	 * zswap LRU).
623 	 */
624 	if (nr_protected >= lru_size - sc->nr_to_scan) {
625 		sc->nr_scanned = 0;
626 		return SHRINK_STOP;
627 	}
628 
629 	shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
630 		&encountered_page_in_swapcache);
631 
632 	if (encountered_page_in_swapcache)
633 		return SHRINK_STOP;
634 
635 	return shrink_ret ? shrink_ret : SHRINK_STOP;
636 }
637 
638 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
639 		struct shrink_control *sc)
640 {
641 	struct zswap_pool *pool = shrinker->private_data;
642 	struct mem_cgroup *memcg = sc->memcg;
643 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
644 	unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
645 
646 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
647 		return 0;
648 
649 #ifdef CONFIG_MEMCG_KMEM
650 	mem_cgroup_flush_stats(memcg);
651 	nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
652 	nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
653 #else
654 	/* use pool stats instead of memcg stats */
655 	nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
656 	nr_stored = atomic_read(&pool->nr_stored);
657 #endif
658 
659 	if (!nr_stored)
660 		return 0;
661 
662 	nr_protected =
663 		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
664 	nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
665 	/*
666 	 * Subtract the lru size by an estimate of the number of pages
667 	 * that should be protected.
668 	 */
669 	nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
670 
671 	/*
672 	 * Scale the number of freeable pages by the memory saving factor.
673 	 * This ensures that the better zswap compresses memory, the fewer
674 	 * pages we will evict to swap (as it will otherwise incur IO for
675 	 * relatively small memory saving).
676 	 */
677 	return mult_frac(nr_freeable, nr_backing, nr_stored);
678 }
679 
680 static void zswap_alloc_shrinker(struct zswap_pool *pool)
681 {
682 	pool->shrinker =
683 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
684 	if (!pool->shrinker)
685 		return;
686 
687 	pool->shrinker->private_data = pool;
688 	pool->shrinker->scan_objects = zswap_shrinker_scan;
689 	pool->shrinker->count_objects = zswap_shrinker_count;
690 	pool->shrinker->batch = 0;
691 	pool->shrinker->seeks = DEFAULT_SEEKS;
692 }
693 
694 /*********************************
695 * per-cpu code
696 **********************************/
697 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
698 {
699 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
700 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
701 	struct crypto_acomp *acomp;
702 	struct acomp_req *req;
703 	int ret;
704 
705 	mutex_init(&acomp_ctx->mutex);
706 
707 	acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
708 	if (!acomp_ctx->buffer)
709 		return -ENOMEM;
710 
711 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
712 	if (IS_ERR(acomp)) {
713 		pr_err("could not alloc crypto acomp %s : %ld\n",
714 				pool->tfm_name, PTR_ERR(acomp));
715 		ret = PTR_ERR(acomp);
716 		goto acomp_fail;
717 	}
718 	acomp_ctx->acomp = acomp;
719 
720 	req = acomp_request_alloc(acomp_ctx->acomp);
721 	if (!req) {
722 		pr_err("could not alloc crypto acomp_request %s\n",
723 		       pool->tfm_name);
724 		ret = -ENOMEM;
725 		goto req_fail;
726 	}
727 	acomp_ctx->req = req;
728 
729 	crypto_init_wait(&acomp_ctx->wait);
730 	/*
731 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
732 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
733 	 * won't be called, crypto_wait_req() will return without blocking.
734 	 */
735 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
736 				   crypto_req_done, &acomp_ctx->wait);
737 
738 	return 0;
739 
740 req_fail:
741 	crypto_free_acomp(acomp_ctx->acomp);
742 acomp_fail:
743 	kfree(acomp_ctx->buffer);
744 	return ret;
745 }
746 
747 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
748 {
749 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
750 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
751 
752 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
753 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
754 			acomp_request_free(acomp_ctx->req);
755 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
756 			crypto_free_acomp(acomp_ctx->acomp);
757 		kfree(acomp_ctx->buffer);
758 	}
759 
760 	return 0;
761 }
762 
763 /*********************************
764 * pool functions
765 **********************************/
766 
767 static struct zswap_pool *__zswap_pool_current(void)
768 {
769 	struct zswap_pool *pool;
770 
771 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
772 	WARN_ONCE(!pool && zswap_has_pool,
773 		  "%s: no page storage pool!\n", __func__);
774 
775 	return pool;
776 }
777 
778 static struct zswap_pool *zswap_pool_current(void)
779 {
780 	assert_spin_locked(&zswap_pools_lock);
781 
782 	return __zswap_pool_current();
783 }
784 
785 static struct zswap_pool *zswap_pool_current_get(void)
786 {
787 	struct zswap_pool *pool;
788 
789 	rcu_read_lock();
790 
791 	pool = __zswap_pool_current();
792 	if (!zswap_pool_get(pool))
793 		pool = NULL;
794 
795 	rcu_read_unlock();
796 
797 	return pool;
798 }
799 
800 static struct zswap_pool *zswap_pool_last_get(void)
801 {
802 	struct zswap_pool *pool, *last = NULL;
803 
804 	rcu_read_lock();
805 
806 	list_for_each_entry_rcu(pool, &zswap_pools, list)
807 		last = pool;
808 	WARN_ONCE(!last && zswap_has_pool,
809 		  "%s: no page storage pool!\n", __func__);
810 	if (!zswap_pool_get(last))
811 		last = NULL;
812 
813 	rcu_read_unlock();
814 
815 	return last;
816 }
817 
818 /* type and compressor must be null-terminated */
819 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
820 {
821 	struct zswap_pool *pool;
822 
823 	assert_spin_locked(&zswap_pools_lock);
824 
825 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
826 		if (strcmp(pool->tfm_name, compressor))
827 			continue;
828 		/* all zpools share the same type */
829 		if (strcmp(zpool_get_type(pool->zpools[0]), type))
830 			continue;
831 		/* if we can't get it, it's about to be destroyed */
832 		if (!zswap_pool_get(pool))
833 			continue;
834 		return pool;
835 	}
836 
837 	return NULL;
838 }
839 
840 /*
841  * If the entry is still valid in the tree, drop the initial ref and remove it
842  * from the tree. This function must be called with an additional ref held,
843  * otherwise it may race with another invalidation freeing the entry.
844  */
845 static void zswap_invalidate_entry(struct zswap_tree *tree,
846 				   struct zswap_entry *entry)
847 {
848 	if (zswap_rb_erase(&tree->rbroot, entry))
849 		zswap_entry_put(tree, entry);
850 }
851 
852 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
853 				       spinlock_t *lock, void *arg)
854 {
855 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
856 	bool *encountered_page_in_swapcache = (bool *)arg;
857 	struct zswap_tree *tree;
858 	pgoff_t swpoffset;
859 	enum lru_status ret = LRU_REMOVED_RETRY;
860 	int writeback_result;
861 
862 	/*
863 	 * Once the lru lock is dropped, the entry might get freed. The
864 	 * swpoffset is copied to the stack, and entry isn't deref'd again
865 	 * until the entry is verified to still be alive in the tree.
866 	 */
867 	swpoffset = swp_offset(entry->swpentry);
868 	tree = zswap_trees[swp_type(entry->swpentry)];
869 	list_lru_isolate(l, item);
870 	/*
871 	 * It's safe to drop the lock here because we return either
872 	 * LRU_REMOVED_RETRY or LRU_RETRY.
873 	 */
874 	spin_unlock(lock);
875 
876 	/* Check for invalidate() race */
877 	spin_lock(&tree->lock);
878 	if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
879 		goto unlock;
880 
881 	/* Hold a reference to prevent a free during writeback */
882 	zswap_entry_get(entry);
883 	spin_unlock(&tree->lock);
884 
885 	writeback_result = zswap_writeback_entry(entry, tree);
886 
887 	spin_lock(&tree->lock);
888 	if (writeback_result) {
889 		zswap_reject_reclaim_fail++;
890 		zswap_lru_putback(&entry->pool->list_lru, entry);
891 		ret = LRU_RETRY;
892 
893 		/*
894 		 * Encountering a page already in swap cache is a sign that we are shrinking
895 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
896 		 * shrinker context).
897 		 */
898 		if (writeback_result == -EEXIST && encountered_page_in_swapcache)
899 			*encountered_page_in_swapcache = true;
900 
901 		goto put_unlock;
902 	}
903 	zswap_written_back_pages++;
904 
905 	if (entry->objcg)
906 		count_objcg_event(entry->objcg, ZSWPWB);
907 
908 	count_vm_event(ZSWPWB);
909 	/*
910 	 * Writeback started successfully, the page now belongs to the
911 	 * swapcache. Drop the entry from zswap - unless invalidate already
912 	 * took it out while we had the tree->lock released for IO.
913 	 */
914 	zswap_invalidate_entry(tree, entry);
915 
916 put_unlock:
917 	/* Drop local reference */
918 	zswap_entry_put(tree, entry);
919 unlock:
920 	spin_unlock(&tree->lock);
921 	spin_lock(lock);
922 	return ret;
923 }
924 
925 static int shrink_memcg(struct mem_cgroup *memcg)
926 {
927 	struct zswap_pool *pool;
928 	int nid, shrunk = 0;
929 
930 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
931 		return -EINVAL;
932 
933 	/*
934 	 * Skip zombies because their LRUs are reparented and we would be
935 	 * reclaiming from the parent instead of the dead memcg.
936 	 */
937 	if (memcg && !mem_cgroup_online(memcg))
938 		return -ENOENT;
939 
940 	pool = zswap_pool_current_get();
941 	if (!pool)
942 		return -EINVAL;
943 
944 	for_each_node_state(nid, N_NORMAL_MEMORY) {
945 		unsigned long nr_to_walk = 1;
946 
947 		shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
948 					    &shrink_memcg_cb, NULL, &nr_to_walk);
949 	}
950 	zswap_pool_put(pool);
951 	return shrunk ? 0 : -EAGAIN;
952 }
953 
954 static void shrink_worker(struct work_struct *w)
955 {
956 	struct zswap_pool *pool = container_of(w, typeof(*pool),
957 						shrink_work);
958 	struct mem_cgroup *memcg;
959 	int ret, failures = 0;
960 
961 	/* global reclaim will select cgroup in a round-robin fashion. */
962 	do {
963 		spin_lock(&zswap_pools_lock);
964 		pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
965 		memcg = pool->next_shrink;
966 
967 		/*
968 		 * We need to retry if we have gone through a full round trip, or if we
969 		 * got an offline memcg (or else we risk undoing the effect of the
970 		 * zswap memcg offlining cleanup callback). This is not catastrophic
971 		 * per se, but it will keep the now offlined memcg hostage for a while.
972 		 *
973 		 * Note that if we got an online memcg, we will keep the extra
974 		 * reference in case the original reference obtained by mem_cgroup_iter
975 		 * is dropped by the zswap memcg offlining callback, ensuring that the
976 		 * memcg is not killed when we are reclaiming.
977 		 */
978 		if (!memcg) {
979 			spin_unlock(&zswap_pools_lock);
980 			if (++failures == MAX_RECLAIM_RETRIES)
981 				break;
982 
983 			goto resched;
984 		}
985 
986 		if (!mem_cgroup_tryget_online(memcg)) {
987 			/* drop the reference from mem_cgroup_iter() */
988 			mem_cgroup_iter_break(NULL, memcg);
989 			pool->next_shrink = NULL;
990 			spin_unlock(&zswap_pools_lock);
991 
992 			if (++failures == MAX_RECLAIM_RETRIES)
993 				break;
994 
995 			goto resched;
996 		}
997 		spin_unlock(&zswap_pools_lock);
998 
999 		ret = shrink_memcg(memcg);
1000 		/* drop the extra reference */
1001 		mem_cgroup_put(memcg);
1002 
1003 		if (ret == -EINVAL)
1004 			break;
1005 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1006 			break;
1007 
1008 resched:
1009 		cond_resched();
1010 	} while (!zswap_can_accept());
1011 	zswap_pool_put(pool);
1012 }
1013 
1014 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
1015 {
1016 	int i;
1017 	struct zswap_pool *pool;
1018 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
1019 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1020 	int ret;
1021 
1022 	if (!zswap_has_pool) {
1023 		/* if either are unset, pool initialization failed, and we
1024 		 * need both params to be set correctly before trying to
1025 		 * create a pool.
1026 		 */
1027 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
1028 			return NULL;
1029 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
1030 			return NULL;
1031 	}
1032 
1033 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1034 	if (!pool)
1035 		return NULL;
1036 
1037 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
1038 		/* unique name for each pool specifically required by zsmalloc */
1039 		snprintf(name, 38, "zswap%x",
1040 			 atomic_inc_return(&zswap_pools_count));
1041 
1042 		pool->zpools[i] = zpool_create_pool(type, name, gfp);
1043 		if (!pool->zpools[i]) {
1044 			pr_err("%s zpool not available\n", type);
1045 			goto error;
1046 		}
1047 	}
1048 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
1049 
1050 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
1051 
1052 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
1053 	if (!pool->acomp_ctx) {
1054 		pr_err("percpu alloc failed\n");
1055 		goto error;
1056 	}
1057 
1058 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
1059 				       &pool->node);
1060 	if (ret)
1061 		goto error;
1062 
1063 	zswap_alloc_shrinker(pool);
1064 	if (!pool->shrinker)
1065 		goto error;
1066 
1067 	pr_debug("using %s compressor\n", pool->tfm_name);
1068 
1069 	/* being the current pool takes 1 ref; this func expects the
1070 	 * caller to always add the new pool as the current pool
1071 	 */
1072 	kref_init(&pool->kref);
1073 	INIT_LIST_HEAD(&pool->list);
1074 	if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
1075 		goto lru_fail;
1076 	shrinker_register(pool->shrinker);
1077 	INIT_WORK(&pool->shrink_work, shrink_worker);
1078 	atomic_set(&pool->nr_stored, 0);
1079 
1080 	zswap_pool_debug("created", pool);
1081 
1082 	return pool;
1083 
1084 lru_fail:
1085 	list_lru_destroy(&pool->list_lru);
1086 	shrinker_free(pool->shrinker);
1087 error:
1088 	if (pool->acomp_ctx)
1089 		free_percpu(pool->acomp_ctx);
1090 	while (i--)
1091 		zpool_destroy_pool(pool->zpools[i]);
1092 	kfree(pool);
1093 	return NULL;
1094 }
1095 
1096 static struct zswap_pool *__zswap_pool_create_fallback(void)
1097 {
1098 	bool has_comp, has_zpool;
1099 
1100 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1101 	if (!has_comp && strcmp(zswap_compressor,
1102 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
1103 		pr_err("compressor %s not available, using default %s\n",
1104 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
1105 		param_free_charp(&zswap_compressor);
1106 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
1107 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1108 	}
1109 	if (!has_comp) {
1110 		pr_err("default compressor %s not available\n",
1111 		       zswap_compressor);
1112 		param_free_charp(&zswap_compressor);
1113 		zswap_compressor = ZSWAP_PARAM_UNSET;
1114 	}
1115 
1116 	has_zpool = zpool_has_pool(zswap_zpool_type);
1117 	if (!has_zpool && strcmp(zswap_zpool_type,
1118 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
1119 		pr_err("zpool %s not available, using default %s\n",
1120 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
1121 		param_free_charp(&zswap_zpool_type);
1122 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
1123 		has_zpool = zpool_has_pool(zswap_zpool_type);
1124 	}
1125 	if (!has_zpool) {
1126 		pr_err("default zpool %s not available\n",
1127 		       zswap_zpool_type);
1128 		param_free_charp(&zswap_zpool_type);
1129 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
1130 	}
1131 
1132 	if (!has_comp || !has_zpool)
1133 		return NULL;
1134 
1135 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
1136 }
1137 
1138 static void zswap_pool_destroy(struct zswap_pool *pool)
1139 {
1140 	int i;
1141 
1142 	zswap_pool_debug("destroying", pool);
1143 
1144 	shrinker_free(pool->shrinker);
1145 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
1146 	free_percpu(pool->acomp_ctx);
1147 	list_lru_destroy(&pool->list_lru);
1148 
1149 	spin_lock(&zswap_pools_lock);
1150 	mem_cgroup_iter_break(NULL, pool->next_shrink);
1151 	pool->next_shrink = NULL;
1152 	spin_unlock(&zswap_pools_lock);
1153 
1154 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
1155 		zpool_destroy_pool(pool->zpools[i]);
1156 	kfree(pool);
1157 }
1158 
1159 static int __must_check zswap_pool_get(struct zswap_pool *pool)
1160 {
1161 	if (!pool)
1162 		return 0;
1163 
1164 	return kref_get_unless_zero(&pool->kref);
1165 }
1166 
1167 static void __zswap_pool_release(struct work_struct *work)
1168 {
1169 	struct zswap_pool *pool = container_of(work, typeof(*pool),
1170 						release_work);
1171 
1172 	synchronize_rcu();
1173 
1174 	/* nobody should have been able to get a kref... */
1175 	WARN_ON(kref_get_unless_zero(&pool->kref));
1176 
1177 	/* pool is now off zswap_pools list and has no references. */
1178 	zswap_pool_destroy(pool);
1179 }
1180 
1181 static void __zswap_pool_empty(struct kref *kref)
1182 {
1183 	struct zswap_pool *pool;
1184 
1185 	pool = container_of(kref, typeof(*pool), kref);
1186 
1187 	spin_lock(&zswap_pools_lock);
1188 
1189 	WARN_ON(pool == zswap_pool_current());
1190 
1191 	list_del_rcu(&pool->list);
1192 
1193 	INIT_WORK(&pool->release_work, __zswap_pool_release);
1194 	schedule_work(&pool->release_work);
1195 
1196 	spin_unlock(&zswap_pools_lock);
1197 }
1198 
1199 static void zswap_pool_put(struct zswap_pool *pool)
1200 {
1201 	kref_put(&pool->kref, __zswap_pool_empty);
1202 }
1203 
1204 /*********************************
1205 * param callbacks
1206 **********************************/
1207 
1208 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
1209 {
1210 	/* no change required */
1211 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
1212 		return false;
1213 	return true;
1214 }
1215 
1216 /* val must be a null-terminated string */
1217 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
1218 			     char *type, char *compressor)
1219 {
1220 	struct zswap_pool *pool, *put_pool = NULL;
1221 	char *s = strstrip((char *)val);
1222 	int ret = 0;
1223 	bool new_pool = false;
1224 
1225 	mutex_lock(&zswap_init_lock);
1226 	switch (zswap_init_state) {
1227 	case ZSWAP_UNINIT:
1228 		/* if this is load-time (pre-init) param setting,
1229 		 * don't create a pool; that's done during init.
1230 		 */
1231 		ret = param_set_charp(s, kp);
1232 		break;
1233 	case ZSWAP_INIT_SUCCEED:
1234 		new_pool = zswap_pool_changed(s, kp);
1235 		break;
1236 	case ZSWAP_INIT_FAILED:
1237 		pr_err("can't set param, initialization failed\n");
1238 		ret = -ENODEV;
1239 	}
1240 	mutex_unlock(&zswap_init_lock);
1241 
1242 	/* no need to create a new pool, return directly */
1243 	if (!new_pool)
1244 		return ret;
1245 
1246 	if (!type) {
1247 		if (!zpool_has_pool(s)) {
1248 			pr_err("zpool %s not available\n", s);
1249 			return -ENOENT;
1250 		}
1251 		type = s;
1252 	} else if (!compressor) {
1253 		if (!crypto_has_acomp(s, 0, 0)) {
1254 			pr_err("compressor %s not available\n", s);
1255 			return -ENOENT;
1256 		}
1257 		compressor = s;
1258 	} else {
1259 		WARN_ON(1);
1260 		return -EINVAL;
1261 	}
1262 
1263 	spin_lock(&zswap_pools_lock);
1264 
1265 	pool = zswap_pool_find_get(type, compressor);
1266 	if (pool) {
1267 		zswap_pool_debug("using existing", pool);
1268 		WARN_ON(pool == zswap_pool_current());
1269 		list_del_rcu(&pool->list);
1270 	}
1271 
1272 	spin_unlock(&zswap_pools_lock);
1273 
1274 	if (!pool)
1275 		pool = zswap_pool_create(type, compressor);
1276 
1277 	if (pool)
1278 		ret = param_set_charp(s, kp);
1279 	else
1280 		ret = -EINVAL;
1281 
1282 	spin_lock(&zswap_pools_lock);
1283 
1284 	if (!ret) {
1285 		put_pool = zswap_pool_current();
1286 		list_add_rcu(&pool->list, &zswap_pools);
1287 		zswap_has_pool = true;
1288 	} else if (pool) {
1289 		/* add the possibly pre-existing pool to the end of the pools
1290 		 * list; if it's new (and empty) then it'll be removed and
1291 		 * destroyed by the put after we drop the lock
1292 		 */
1293 		list_add_tail_rcu(&pool->list, &zswap_pools);
1294 		put_pool = pool;
1295 	}
1296 
1297 	spin_unlock(&zswap_pools_lock);
1298 
1299 	if (!zswap_has_pool && !pool) {
1300 		/* if initial pool creation failed, and this pool creation also
1301 		 * failed, maybe both compressor and zpool params were bad.
1302 		 * Allow changing this param, so pool creation will succeed
1303 		 * when the other param is changed. We already verified this
1304 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
1305 		 * checks above.
1306 		 */
1307 		ret = param_set_charp(s, kp);
1308 	}
1309 
1310 	/* drop the ref from either the old current pool,
1311 	 * or the new pool we failed to add
1312 	 */
1313 	if (put_pool)
1314 		zswap_pool_put(put_pool);
1315 
1316 	return ret;
1317 }
1318 
1319 static int zswap_compressor_param_set(const char *val,
1320 				      const struct kernel_param *kp)
1321 {
1322 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1323 }
1324 
1325 static int zswap_zpool_param_set(const char *val,
1326 				 const struct kernel_param *kp)
1327 {
1328 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
1329 }
1330 
1331 static int zswap_enabled_param_set(const char *val,
1332 				   const struct kernel_param *kp)
1333 {
1334 	int ret = -ENODEV;
1335 
1336 	/* if this is load-time (pre-init) param setting, only set param. */
1337 	if (system_state != SYSTEM_RUNNING)
1338 		return param_set_bool(val, kp);
1339 
1340 	mutex_lock(&zswap_init_lock);
1341 	switch (zswap_init_state) {
1342 	case ZSWAP_UNINIT:
1343 		if (zswap_setup())
1344 			break;
1345 		fallthrough;
1346 	case ZSWAP_INIT_SUCCEED:
1347 		if (!zswap_has_pool)
1348 			pr_err("can't enable, no pool configured\n");
1349 		else
1350 			ret = param_set_bool(val, kp);
1351 		break;
1352 	case ZSWAP_INIT_FAILED:
1353 		pr_err("can't enable, initialization failed\n");
1354 	}
1355 	mutex_unlock(&zswap_init_lock);
1356 
1357 	return ret;
1358 }
1359 
1360 static void __zswap_load(struct zswap_entry *entry, struct page *page)
1361 {
1362 	struct zpool *zpool = zswap_find_zpool(entry);
1363 	struct scatterlist input, output;
1364 	struct crypto_acomp_ctx *acomp_ctx;
1365 	u8 *src;
1366 
1367 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1368 	mutex_lock(&acomp_ctx->mutex);
1369 
1370 	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1371 	if (!zpool_can_sleep_mapped(zpool)) {
1372 		memcpy(acomp_ctx->buffer, src, entry->length);
1373 		src = acomp_ctx->buffer;
1374 		zpool_unmap_handle(zpool, entry->handle);
1375 	}
1376 
1377 	sg_init_one(&input, src, entry->length);
1378 	sg_init_table(&output, 1);
1379 	sg_set_page(&output, page, PAGE_SIZE, 0);
1380 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1381 	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1382 	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1383 	mutex_unlock(&acomp_ctx->mutex);
1384 
1385 	if (zpool_can_sleep_mapped(zpool))
1386 		zpool_unmap_handle(zpool, entry->handle);
1387 }
1388 
1389 /*********************************
1390 * writeback code
1391 **********************************/
1392 /*
1393  * Attempts to free an entry by adding a folio to the swap cache,
1394  * decompressing the entry data into the folio, and issuing a
1395  * bio write to write the folio back to the swap device.
1396  *
1397  * This can be thought of as a "resumed writeback" of the folio
1398  * to the swap device.  We are basically resuming the same swap
1399  * writeback path that was intercepted with the zswap_store()
1400  * in the first place.  After the folio has been decompressed into
1401  * the swap cache, the compressed version stored by zswap can be
1402  * freed.
1403  */
1404 static int zswap_writeback_entry(struct zswap_entry *entry,
1405 				 struct zswap_tree *tree)
1406 {
1407 	swp_entry_t swpentry = entry->swpentry;
1408 	struct folio *folio;
1409 	struct mempolicy *mpol;
1410 	bool folio_was_allocated;
1411 	struct writeback_control wbc = {
1412 		.sync_mode = WB_SYNC_NONE,
1413 	};
1414 
1415 	/* try to allocate swap cache folio */
1416 	mpol = get_task_policy(current);
1417 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1418 				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1419 	if (!folio)
1420 		return -ENOMEM;
1421 
1422 	/*
1423 	 * Found an existing folio, we raced with load/swapin. We generally
1424 	 * writeback cold folios from zswap, and swapin means the folio just
1425 	 * became hot. Skip this folio and let the caller find another one.
1426 	 */
1427 	if (!folio_was_allocated) {
1428 		folio_put(folio);
1429 		return -EEXIST;
1430 	}
1431 
1432 	/*
1433 	 * folio is locked, and the swapcache is now secured against
1434 	 * concurrent swapping to and from the slot. Verify that the
1435 	 * swap entry hasn't been invalidated and recycled behind our
1436 	 * backs (our zswap_entry reference doesn't prevent that), to
1437 	 * avoid overwriting a new swap folio with old compressed data.
1438 	 */
1439 	spin_lock(&tree->lock);
1440 	if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
1441 		spin_unlock(&tree->lock);
1442 		delete_from_swap_cache(folio);
1443 		return -ENOMEM;
1444 	}
1445 	spin_unlock(&tree->lock);
1446 
1447 	__zswap_load(entry, &folio->page);
1448 
1449 	/* folio is up to date */
1450 	folio_mark_uptodate(folio);
1451 
1452 	/* move it to the tail of the inactive list after end_writeback */
1453 	folio_set_reclaim(folio);
1454 
1455 	/* start writeback */
1456 	__swap_writepage(folio, &wbc);
1457 	folio_put(folio);
1458 
1459 	return 0;
1460 }
1461 
1462 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1463 {
1464 	unsigned long *page;
1465 	unsigned long val;
1466 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1467 
1468 	page = (unsigned long *)ptr;
1469 	val = page[0];
1470 
1471 	if (val != page[last_pos])
1472 		return 0;
1473 
1474 	for (pos = 1; pos < last_pos; pos++) {
1475 		if (val != page[pos])
1476 			return 0;
1477 	}
1478 
1479 	*value = val;
1480 
1481 	return 1;
1482 }
1483 
1484 static void zswap_fill_page(void *ptr, unsigned long value)
1485 {
1486 	unsigned long *page;
1487 
1488 	page = (unsigned long *)ptr;
1489 	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1490 }
1491 
1492 bool zswap_store(struct folio *folio)
1493 {
1494 	swp_entry_t swp = folio->swap;
1495 	int type = swp_type(swp);
1496 	pgoff_t offset = swp_offset(swp);
1497 	struct page *page = &folio->page;
1498 	struct zswap_tree *tree = zswap_trees[type];
1499 	struct zswap_entry *entry, *dupentry;
1500 	struct scatterlist input, output;
1501 	struct crypto_acomp_ctx *acomp_ctx;
1502 	struct obj_cgroup *objcg = NULL;
1503 	struct mem_cgroup *memcg = NULL;
1504 	struct zswap_pool *pool;
1505 	struct zpool *zpool;
1506 	unsigned int dlen = PAGE_SIZE;
1507 	unsigned long handle, value;
1508 	char *buf;
1509 	u8 *src, *dst;
1510 	gfp_t gfp;
1511 	int ret;
1512 
1513 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1514 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1515 
1516 	/* Large folios aren't supported */
1517 	if (folio_test_large(folio))
1518 		return false;
1519 
1520 	if (!zswap_enabled || !tree)
1521 		return false;
1522 
1523 	/*
1524 	 * If this is a duplicate, it must be removed before attempting to store
1525 	 * it, otherwise, if the store fails the old page won't be removed from
1526 	 * the tree, and it might be written back overriding the new data.
1527 	 */
1528 	spin_lock(&tree->lock);
1529 	dupentry = zswap_rb_search(&tree->rbroot, offset);
1530 	if (dupentry) {
1531 		zswap_duplicate_entry++;
1532 		zswap_invalidate_entry(tree, dupentry);
1533 	}
1534 	spin_unlock(&tree->lock);
1535 	objcg = get_obj_cgroup_from_folio(folio);
1536 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1537 		memcg = get_mem_cgroup_from_objcg(objcg);
1538 		if (shrink_memcg(memcg)) {
1539 			mem_cgroup_put(memcg);
1540 			goto reject;
1541 		}
1542 		mem_cgroup_put(memcg);
1543 	}
1544 
1545 	/* reclaim space if needed */
1546 	if (zswap_is_full()) {
1547 		zswap_pool_limit_hit++;
1548 		zswap_pool_reached_full = true;
1549 		goto shrink;
1550 	}
1551 
1552 	if (zswap_pool_reached_full) {
1553 	       if (!zswap_can_accept())
1554 			goto shrink;
1555 		else
1556 			zswap_pool_reached_full = false;
1557 	}
1558 
1559 	/* allocate entry */
1560 	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1561 	if (!entry) {
1562 		zswap_reject_kmemcache_fail++;
1563 		goto reject;
1564 	}
1565 
1566 	if (zswap_same_filled_pages_enabled) {
1567 		src = kmap_local_page(page);
1568 		if (zswap_is_page_same_filled(src, &value)) {
1569 			kunmap_local(src);
1570 			entry->swpentry = swp_entry(type, offset);
1571 			entry->length = 0;
1572 			entry->value = value;
1573 			atomic_inc(&zswap_same_filled_pages);
1574 			goto insert_entry;
1575 		}
1576 		kunmap_local(src);
1577 	}
1578 
1579 	if (!zswap_non_same_filled_pages_enabled)
1580 		goto freepage;
1581 
1582 	/* if entry is successfully added, it keeps the reference */
1583 	entry->pool = zswap_pool_current_get();
1584 	if (!entry->pool)
1585 		goto freepage;
1586 
1587 	if (objcg) {
1588 		memcg = get_mem_cgroup_from_objcg(objcg);
1589 		if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
1590 			mem_cgroup_put(memcg);
1591 			goto put_pool;
1592 		}
1593 		mem_cgroup_put(memcg);
1594 	}
1595 
1596 	/* compress */
1597 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1598 
1599 	mutex_lock(&acomp_ctx->mutex);
1600 
1601 	dst = acomp_ctx->buffer;
1602 	sg_init_table(&input, 1);
1603 	sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1604 
1605 	/*
1606 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1607 	 * and hardware-accelerators may won't check the dst buffer size, so
1608 	 * giving the dst buffer with enough length to avoid buffer overflow.
1609 	 */
1610 	sg_init_one(&output, dst, PAGE_SIZE * 2);
1611 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1612 	/*
1613 	 * it maybe looks a little bit silly that we send an asynchronous request,
1614 	 * then wait for its completion synchronously. This makes the process look
1615 	 * synchronous in fact.
1616 	 * Theoretically, acomp supports users send multiple acomp requests in one
1617 	 * acomp instance, then get those requests done simultaneously. but in this
1618 	 * case, zswap actually does store and load page by page, there is no
1619 	 * existing method to send the second page before the first page is done
1620 	 * in one thread doing zwap.
1621 	 * but in different threads running on different cpu, we have different
1622 	 * acomp instance, so multiple threads can do (de)compression in parallel.
1623 	 */
1624 	ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1625 	dlen = acomp_ctx->req->dlen;
1626 
1627 	if (ret) {
1628 		zswap_reject_compress_fail++;
1629 		goto put_dstmem;
1630 	}
1631 
1632 	/* store */
1633 	zpool = zswap_find_zpool(entry);
1634 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1635 	if (zpool_malloc_support_movable(zpool))
1636 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1637 	ret = zpool_malloc(zpool, dlen, gfp, &handle);
1638 	if (ret == -ENOSPC) {
1639 		zswap_reject_compress_poor++;
1640 		goto put_dstmem;
1641 	}
1642 	if (ret) {
1643 		zswap_reject_alloc_fail++;
1644 		goto put_dstmem;
1645 	}
1646 	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1647 	memcpy(buf, dst, dlen);
1648 	zpool_unmap_handle(zpool, handle);
1649 	mutex_unlock(&acomp_ctx->mutex);
1650 
1651 	/* populate entry */
1652 	entry->swpentry = swp_entry(type, offset);
1653 	entry->handle = handle;
1654 	entry->length = dlen;
1655 
1656 insert_entry:
1657 	entry->objcg = objcg;
1658 	if (objcg) {
1659 		obj_cgroup_charge_zswap(objcg, entry->length);
1660 		/* Account before objcg ref is moved to tree */
1661 		count_objcg_event(objcg, ZSWPOUT);
1662 	}
1663 
1664 	/* map */
1665 	spin_lock(&tree->lock);
1666 	/*
1667 	 * A duplicate entry should have been removed at the beginning of this
1668 	 * function. Since the swap entry should be pinned, if a duplicate is
1669 	 * found again here it means that something went wrong in the swap
1670 	 * cache.
1671 	 */
1672 	while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1673 		WARN_ON(1);
1674 		zswap_duplicate_entry++;
1675 		zswap_invalidate_entry(tree, dupentry);
1676 	}
1677 	if (entry->length) {
1678 		INIT_LIST_HEAD(&entry->lru);
1679 		zswap_lru_add(&entry->pool->list_lru, entry);
1680 		atomic_inc(&entry->pool->nr_stored);
1681 	}
1682 	spin_unlock(&tree->lock);
1683 
1684 	/* update stats */
1685 	atomic_inc(&zswap_stored_pages);
1686 	zswap_update_total_size();
1687 	count_vm_event(ZSWPOUT);
1688 
1689 	return true;
1690 
1691 put_dstmem:
1692 	mutex_unlock(&acomp_ctx->mutex);
1693 put_pool:
1694 	zswap_pool_put(entry->pool);
1695 freepage:
1696 	zswap_entry_cache_free(entry);
1697 reject:
1698 	if (objcg)
1699 		obj_cgroup_put(objcg);
1700 	return false;
1701 
1702 shrink:
1703 	pool = zswap_pool_last_get();
1704 	if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1705 		zswap_pool_put(pool);
1706 	goto reject;
1707 }
1708 
1709 bool zswap_load(struct folio *folio)
1710 {
1711 	swp_entry_t swp = folio->swap;
1712 	int type = swp_type(swp);
1713 	pgoff_t offset = swp_offset(swp);
1714 	struct page *page = &folio->page;
1715 	struct zswap_tree *tree = zswap_trees[type];
1716 	struct zswap_entry *entry;
1717 	u8 *dst;
1718 
1719 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1720 
1721 	/* find */
1722 	spin_lock(&tree->lock);
1723 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1724 	if (!entry) {
1725 		spin_unlock(&tree->lock);
1726 		return false;
1727 	}
1728 	spin_unlock(&tree->lock);
1729 
1730 	if (entry->length)
1731 		__zswap_load(entry, page);
1732 	else {
1733 		dst = kmap_local_page(page);
1734 		zswap_fill_page(dst, entry->value);
1735 		kunmap_local(dst);
1736 	}
1737 
1738 	count_vm_event(ZSWPIN);
1739 	if (entry->objcg)
1740 		count_objcg_event(entry->objcg, ZSWPIN);
1741 
1742 	spin_lock(&tree->lock);
1743 	if (zswap_exclusive_loads_enabled) {
1744 		zswap_invalidate_entry(tree, entry);
1745 		folio_mark_dirty(folio);
1746 	} else if (entry->length) {
1747 		zswap_lru_del(&entry->pool->list_lru, entry);
1748 		zswap_lru_add(&entry->pool->list_lru, entry);
1749 	}
1750 	zswap_entry_put(tree, entry);
1751 	spin_unlock(&tree->lock);
1752 
1753 	return true;
1754 }
1755 
1756 void zswap_invalidate(int type, pgoff_t offset)
1757 {
1758 	struct zswap_tree *tree = zswap_trees[type];
1759 	struct zswap_entry *entry;
1760 
1761 	/* find */
1762 	spin_lock(&tree->lock);
1763 	entry = zswap_rb_search(&tree->rbroot, offset);
1764 	if (!entry) {
1765 		/* entry was written back */
1766 		spin_unlock(&tree->lock);
1767 		return;
1768 	}
1769 	zswap_invalidate_entry(tree, entry);
1770 	spin_unlock(&tree->lock);
1771 }
1772 
1773 void zswap_swapon(int type)
1774 {
1775 	struct zswap_tree *tree;
1776 
1777 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1778 	if (!tree) {
1779 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1780 		return;
1781 	}
1782 
1783 	tree->rbroot = RB_ROOT;
1784 	spin_lock_init(&tree->lock);
1785 	zswap_trees[type] = tree;
1786 }
1787 
1788 void zswap_swapoff(int type)
1789 {
1790 	struct zswap_tree *tree = zswap_trees[type];
1791 	struct zswap_entry *entry, *n;
1792 
1793 	if (!tree)
1794 		return;
1795 
1796 	/* walk the tree and free everything */
1797 	spin_lock(&tree->lock);
1798 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1799 		zswap_free_entry(entry);
1800 	tree->rbroot = RB_ROOT;
1801 	spin_unlock(&tree->lock);
1802 	kfree(tree);
1803 	zswap_trees[type] = NULL;
1804 }
1805 
1806 /*********************************
1807 * debugfs functions
1808 **********************************/
1809 #ifdef CONFIG_DEBUG_FS
1810 #include <linux/debugfs.h>
1811 
1812 static struct dentry *zswap_debugfs_root;
1813 
1814 static int zswap_debugfs_init(void)
1815 {
1816 	if (!debugfs_initialized())
1817 		return -ENODEV;
1818 
1819 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1820 
1821 	debugfs_create_u64("pool_limit_hit", 0444,
1822 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1823 	debugfs_create_u64("reject_reclaim_fail", 0444,
1824 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1825 	debugfs_create_u64("reject_alloc_fail", 0444,
1826 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1827 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1828 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1829 	debugfs_create_u64("reject_compress_fail", 0444,
1830 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1831 	debugfs_create_u64("reject_compress_poor", 0444,
1832 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1833 	debugfs_create_u64("written_back_pages", 0444,
1834 			   zswap_debugfs_root, &zswap_written_back_pages);
1835 	debugfs_create_u64("duplicate_entry", 0444,
1836 			   zswap_debugfs_root, &zswap_duplicate_entry);
1837 	debugfs_create_u64("pool_total_size", 0444,
1838 			   zswap_debugfs_root, &zswap_pool_total_size);
1839 	debugfs_create_atomic_t("stored_pages", 0444,
1840 				zswap_debugfs_root, &zswap_stored_pages);
1841 	debugfs_create_atomic_t("same_filled_pages", 0444,
1842 				zswap_debugfs_root, &zswap_same_filled_pages);
1843 
1844 	return 0;
1845 }
1846 #else
1847 static int zswap_debugfs_init(void)
1848 {
1849 	return 0;
1850 }
1851 #endif
1852 
1853 /*********************************
1854 * module init and exit
1855 **********************************/
1856 static int zswap_setup(void)
1857 {
1858 	struct zswap_pool *pool;
1859 	int ret;
1860 
1861 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1862 	if (!zswap_entry_cache) {
1863 		pr_err("entry cache creation failed\n");
1864 		goto cache_fail;
1865 	}
1866 
1867 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1868 				      "mm/zswap_pool:prepare",
1869 				      zswap_cpu_comp_prepare,
1870 				      zswap_cpu_comp_dead);
1871 	if (ret)
1872 		goto hp_fail;
1873 
1874 	pool = __zswap_pool_create_fallback();
1875 	if (pool) {
1876 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1877 			zpool_get_type(pool->zpools[0]));
1878 		list_add(&pool->list, &zswap_pools);
1879 		zswap_has_pool = true;
1880 	} else {
1881 		pr_err("pool creation failed\n");
1882 		zswap_enabled = false;
1883 	}
1884 
1885 	shrink_wq = create_workqueue("zswap-shrink");
1886 	if (!shrink_wq)
1887 		goto fallback_fail;
1888 
1889 	if (zswap_debugfs_init())
1890 		pr_warn("debugfs initialization failed\n");
1891 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1892 	return 0;
1893 
1894 fallback_fail:
1895 	if (pool)
1896 		zswap_pool_destroy(pool);
1897 hp_fail:
1898 	kmem_cache_destroy(zswap_entry_cache);
1899 cache_fail:
1900 	/* if built-in, we aren't unloaded on failure; don't allow use */
1901 	zswap_init_state = ZSWAP_INIT_FAILED;
1902 	zswap_enabled = false;
1903 	return -ENOMEM;
1904 }
1905 
1906 static int __init zswap_init(void)
1907 {
1908 	if (!zswap_enabled)
1909 		return 0;
1910 	return zswap_setup();
1911 }
1912 /* must be late so crypto has time to come up */
1913 late_initcall(zswap_init);
1914 
1915 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1916 MODULE_DESCRIPTION("Compressed cache for swap pages");
1917