xref: /linux/mm/zswap.c (revision 288440de9e5fdb4a3ff73864850f080c1250fc81)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a backend for frontswap that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/frontswap.h>
24 #include <linux/rbtree.h>
25 #include <linux/swap.h>
26 #include <linux/crypto.h>
27 #include <linux/scatterlist.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 
39 #include "swap.h"
40 
41 /*********************************
42 * statistics
43 **********************************/
44 /* Total bytes used by the compressed storage */
45 u64 zswap_pool_total_size;
46 /* The number of compressed pages currently stored in zswap */
47 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
48 /* The number of same-value filled pages currently stored in zswap */
49 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
50 
51 /*
52  * The statistics below are not protected from concurrent access for
53  * performance reasons so they may not be a 100% accurate.  However,
54  * they do provide useful information on roughly how many times a
55  * certain event is occurring.
56 */
57 
58 /* Pool limit was hit (see zswap_max_pool_percent) */
59 static u64 zswap_pool_limit_hit;
60 /* Pages written back when pool limit was reached */
61 static u64 zswap_written_back_pages;
62 /* Store failed due to a reclaim failure after pool limit was reached */
63 static u64 zswap_reject_reclaim_fail;
64 /* Compressed page was too big for the allocator to (optimally) store */
65 static u64 zswap_reject_compress_poor;
66 /* Store failed because underlying allocator could not get memory */
67 static u64 zswap_reject_alloc_fail;
68 /* Store failed because the entry metadata could not be allocated (rare) */
69 static u64 zswap_reject_kmemcache_fail;
70 /* Duplicate store was encountered (rare) */
71 static u64 zswap_duplicate_entry;
72 
73 /* Shrinker work queue */
74 static struct workqueue_struct *shrink_wq;
75 /* Pool limit was hit, we need to calm down */
76 static bool zswap_pool_reached_full;
77 
78 /*********************************
79 * tunables
80 **********************************/
81 
82 #define ZSWAP_PARAM_UNSET ""
83 
84 /* Enable/disable zswap */
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 				   const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 	.set =		zswap_enabled_param_set,
90 	.get =		param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93 
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 				      const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 	.set =		zswap_compressor_param_set,
100 	.get =		param_get_charp,
101 	.free =		param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 		&zswap_compressor, 0644);
105 
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 	.set =		zswap_zpool_param_set,
111 	.get =		param_get_charp,
112 	.free =		param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115 
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119 
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 		   uint, 0644);
124 
125 /*
126  * Enable/disable handling same-value filled pages (enabled by default).
127  * If disabled every page is considered non-same-value filled.
128  */
129 static bool zswap_same_filled_pages_enabled = true;
130 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
131 		   bool, 0644);
132 
133 /* Enable/disable handling non-same-value filled pages (enabled by default) */
134 static bool zswap_non_same_filled_pages_enabled = true;
135 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
136 		   bool, 0644);
137 
138 /*********************************
139 * data structures
140 **********************************/
141 
142 struct crypto_acomp_ctx {
143 	struct crypto_acomp *acomp;
144 	struct acomp_req *req;
145 	struct crypto_wait wait;
146 	u8 *dstmem;
147 	struct mutex *mutex;
148 };
149 
150 struct zswap_pool {
151 	struct zpool *zpool;
152 	struct crypto_acomp_ctx __percpu *acomp_ctx;
153 	struct kref kref;
154 	struct list_head list;
155 	struct work_struct release_work;
156 	struct work_struct shrink_work;
157 	struct hlist_node node;
158 	char tfm_name[CRYPTO_MAX_ALG_NAME];
159 };
160 
161 /*
162  * struct zswap_entry
163  *
164  * This structure contains the metadata for tracking a single compressed
165  * page within zswap.
166  *
167  * rbnode - links the entry into red-black tree for the appropriate swap type
168  * offset - the swap offset for the entry.  Index into the red-black tree.
169  * refcount - the number of outstanding reference to the entry. This is needed
170  *            to protect against premature freeing of the entry by code
171  *            concurrent calls to load, invalidate, and writeback.  The lock
172  *            for the zswap_tree structure that contains the entry must
173  *            be held while changing the refcount.  Since the lock must
174  *            be held, there is no reason to also make refcount atomic.
175  * length - the length in bytes of the compressed page data.  Needed during
176  *          decompression. For a same value filled page length is 0.
177  * pool - the zswap_pool the entry's data is in
178  * handle - zpool allocation handle that stores the compressed page data
179  * value - value of the same-value filled pages which have same content
180  */
181 struct zswap_entry {
182 	struct rb_node rbnode;
183 	pgoff_t offset;
184 	int refcount;
185 	unsigned int length;
186 	struct zswap_pool *pool;
187 	union {
188 		unsigned long handle;
189 		unsigned long value;
190 	};
191 	struct obj_cgroup *objcg;
192 };
193 
194 struct zswap_header {
195 	swp_entry_t swpentry;
196 };
197 
198 /*
199  * The tree lock in the zswap_tree struct protects a few things:
200  * - the rbtree
201  * - the refcount field of each entry in the tree
202  */
203 struct zswap_tree {
204 	struct rb_root rbroot;
205 	spinlock_t lock;
206 };
207 
208 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
209 
210 /* RCU-protected iteration */
211 static LIST_HEAD(zswap_pools);
212 /* protects zswap_pools list modification */
213 static DEFINE_SPINLOCK(zswap_pools_lock);
214 /* pool counter to provide unique names to zpool */
215 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
216 
217 /* used by param callback function */
218 static bool zswap_init_started;
219 
220 /* fatal error during init */
221 static bool zswap_init_failed;
222 
223 /* init completed, but couldn't create the initial pool */
224 static bool zswap_has_pool;
225 
226 /*********************************
227 * helpers and fwd declarations
228 **********************************/
229 
230 #define zswap_pool_debug(msg, p)				\
231 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
232 		 zpool_get_type((p)->zpool))
233 
234 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
235 static int zswap_pool_get(struct zswap_pool *pool);
236 static void zswap_pool_put(struct zswap_pool *pool);
237 
238 static const struct zpool_ops zswap_zpool_ops = {
239 	.evict = zswap_writeback_entry
240 };
241 
242 static bool zswap_is_full(void)
243 {
244 	return totalram_pages() * zswap_max_pool_percent / 100 <
245 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
246 }
247 
248 static bool zswap_can_accept(void)
249 {
250 	return totalram_pages() * zswap_accept_thr_percent / 100 *
251 				zswap_max_pool_percent / 100 >
252 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
253 }
254 
255 static void zswap_update_total_size(void)
256 {
257 	struct zswap_pool *pool;
258 	u64 total = 0;
259 
260 	rcu_read_lock();
261 
262 	list_for_each_entry_rcu(pool, &zswap_pools, list)
263 		total += zpool_get_total_size(pool->zpool);
264 
265 	rcu_read_unlock();
266 
267 	zswap_pool_total_size = total;
268 }
269 
270 /*********************************
271 * zswap entry functions
272 **********************************/
273 static struct kmem_cache *zswap_entry_cache;
274 
275 static int __init zswap_entry_cache_create(void)
276 {
277 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
278 	return zswap_entry_cache == NULL;
279 }
280 
281 static void __init zswap_entry_cache_destroy(void)
282 {
283 	kmem_cache_destroy(zswap_entry_cache);
284 }
285 
286 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
287 {
288 	struct zswap_entry *entry;
289 	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
290 	if (!entry)
291 		return NULL;
292 	entry->refcount = 1;
293 	RB_CLEAR_NODE(&entry->rbnode);
294 	return entry;
295 }
296 
297 static void zswap_entry_cache_free(struct zswap_entry *entry)
298 {
299 	kmem_cache_free(zswap_entry_cache, entry);
300 }
301 
302 /*********************************
303 * rbtree functions
304 **********************************/
305 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
306 {
307 	struct rb_node *node = root->rb_node;
308 	struct zswap_entry *entry;
309 
310 	while (node) {
311 		entry = rb_entry(node, struct zswap_entry, rbnode);
312 		if (entry->offset > offset)
313 			node = node->rb_left;
314 		else if (entry->offset < offset)
315 			node = node->rb_right;
316 		else
317 			return entry;
318 	}
319 	return NULL;
320 }
321 
322 /*
323  * In the case that a entry with the same offset is found, a pointer to
324  * the existing entry is stored in dupentry and the function returns -EEXIST
325  */
326 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
327 			struct zswap_entry **dupentry)
328 {
329 	struct rb_node **link = &root->rb_node, *parent = NULL;
330 	struct zswap_entry *myentry;
331 
332 	while (*link) {
333 		parent = *link;
334 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
335 		if (myentry->offset > entry->offset)
336 			link = &(*link)->rb_left;
337 		else if (myentry->offset < entry->offset)
338 			link = &(*link)->rb_right;
339 		else {
340 			*dupentry = myentry;
341 			return -EEXIST;
342 		}
343 	}
344 	rb_link_node(&entry->rbnode, parent, link);
345 	rb_insert_color(&entry->rbnode, root);
346 	return 0;
347 }
348 
349 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
350 {
351 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
352 		rb_erase(&entry->rbnode, root);
353 		RB_CLEAR_NODE(&entry->rbnode);
354 	}
355 }
356 
357 /*
358  * Carries out the common pattern of freeing and entry's zpool allocation,
359  * freeing the entry itself, and decrementing the number of stored pages.
360  */
361 static void zswap_free_entry(struct zswap_entry *entry)
362 {
363 	if (entry->objcg) {
364 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
365 		obj_cgroup_put(entry->objcg);
366 	}
367 	if (!entry->length)
368 		atomic_dec(&zswap_same_filled_pages);
369 	else {
370 		zpool_free(entry->pool->zpool, entry->handle);
371 		zswap_pool_put(entry->pool);
372 	}
373 	zswap_entry_cache_free(entry);
374 	atomic_dec(&zswap_stored_pages);
375 	zswap_update_total_size();
376 }
377 
378 /* caller must hold the tree lock */
379 static void zswap_entry_get(struct zswap_entry *entry)
380 {
381 	entry->refcount++;
382 }
383 
384 /* caller must hold the tree lock
385 * remove from the tree and free it, if nobody reference the entry
386 */
387 static void zswap_entry_put(struct zswap_tree *tree,
388 			struct zswap_entry *entry)
389 {
390 	int refcount = --entry->refcount;
391 
392 	BUG_ON(refcount < 0);
393 	if (refcount == 0) {
394 		zswap_rb_erase(&tree->rbroot, entry);
395 		zswap_free_entry(entry);
396 	}
397 }
398 
399 /* caller must hold the tree lock */
400 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
401 				pgoff_t offset)
402 {
403 	struct zswap_entry *entry;
404 
405 	entry = zswap_rb_search(root, offset);
406 	if (entry)
407 		zswap_entry_get(entry);
408 
409 	return entry;
410 }
411 
412 /*********************************
413 * per-cpu code
414 **********************************/
415 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
416 /*
417  * If users dynamically change the zpool type and compressor at runtime, i.e.
418  * zswap is running, zswap can have more than one zpool on one cpu, but they
419  * are sharing dtsmem. So we need this mutex to be per-cpu.
420  */
421 static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
422 
423 static int zswap_dstmem_prepare(unsigned int cpu)
424 {
425 	struct mutex *mutex;
426 	u8 *dst;
427 
428 	dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
429 	if (!dst)
430 		return -ENOMEM;
431 
432 	mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
433 	if (!mutex) {
434 		kfree(dst);
435 		return -ENOMEM;
436 	}
437 
438 	mutex_init(mutex);
439 	per_cpu(zswap_dstmem, cpu) = dst;
440 	per_cpu(zswap_mutex, cpu) = mutex;
441 	return 0;
442 }
443 
444 static int zswap_dstmem_dead(unsigned int cpu)
445 {
446 	struct mutex *mutex;
447 	u8 *dst;
448 
449 	mutex = per_cpu(zswap_mutex, cpu);
450 	kfree(mutex);
451 	per_cpu(zswap_mutex, cpu) = NULL;
452 
453 	dst = per_cpu(zswap_dstmem, cpu);
454 	kfree(dst);
455 	per_cpu(zswap_dstmem, cpu) = NULL;
456 
457 	return 0;
458 }
459 
460 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
461 {
462 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
463 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
464 	struct crypto_acomp *acomp;
465 	struct acomp_req *req;
466 
467 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
468 	if (IS_ERR(acomp)) {
469 		pr_err("could not alloc crypto acomp %s : %ld\n",
470 				pool->tfm_name, PTR_ERR(acomp));
471 		return PTR_ERR(acomp);
472 	}
473 	acomp_ctx->acomp = acomp;
474 
475 	req = acomp_request_alloc(acomp_ctx->acomp);
476 	if (!req) {
477 		pr_err("could not alloc crypto acomp_request %s\n",
478 		       pool->tfm_name);
479 		crypto_free_acomp(acomp_ctx->acomp);
480 		return -ENOMEM;
481 	}
482 	acomp_ctx->req = req;
483 
484 	crypto_init_wait(&acomp_ctx->wait);
485 	/*
486 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
487 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
488 	 * won't be called, crypto_wait_req() will return without blocking.
489 	 */
490 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
491 				   crypto_req_done, &acomp_ctx->wait);
492 
493 	acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
494 	acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
495 
496 	return 0;
497 }
498 
499 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
500 {
501 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
502 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
503 
504 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
505 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
506 			acomp_request_free(acomp_ctx->req);
507 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
508 			crypto_free_acomp(acomp_ctx->acomp);
509 	}
510 
511 	return 0;
512 }
513 
514 /*********************************
515 * pool functions
516 **********************************/
517 
518 static struct zswap_pool *__zswap_pool_current(void)
519 {
520 	struct zswap_pool *pool;
521 
522 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
523 	WARN_ONCE(!pool && zswap_has_pool,
524 		  "%s: no page storage pool!\n", __func__);
525 
526 	return pool;
527 }
528 
529 static struct zswap_pool *zswap_pool_current(void)
530 {
531 	assert_spin_locked(&zswap_pools_lock);
532 
533 	return __zswap_pool_current();
534 }
535 
536 static struct zswap_pool *zswap_pool_current_get(void)
537 {
538 	struct zswap_pool *pool;
539 
540 	rcu_read_lock();
541 
542 	pool = __zswap_pool_current();
543 	if (!zswap_pool_get(pool))
544 		pool = NULL;
545 
546 	rcu_read_unlock();
547 
548 	return pool;
549 }
550 
551 static struct zswap_pool *zswap_pool_last_get(void)
552 {
553 	struct zswap_pool *pool, *last = NULL;
554 
555 	rcu_read_lock();
556 
557 	list_for_each_entry_rcu(pool, &zswap_pools, list)
558 		last = pool;
559 	WARN_ONCE(!last && zswap_has_pool,
560 		  "%s: no page storage pool!\n", __func__);
561 	if (!zswap_pool_get(last))
562 		last = NULL;
563 
564 	rcu_read_unlock();
565 
566 	return last;
567 }
568 
569 /* type and compressor must be null-terminated */
570 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
571 {
572 	struct zswap_pool *pool;
573 
574 	assert_spin_locked(&zswap_pools_lock);
575 
576 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
577 		if (strcmp(pool->tfm_name, compressor))
578 			continue;
579 		if (strcmp(zpool_get_type(pool->zpool), type))
580 			continue;
581 		/* if we can't get it, it's about to be destroyed */
582 		if (!zswap_pool_get(pool))
583 			continue;
584 		return pool;
585 	}
586 
587 	return NULL;
588 }
589 
590 static void shrink_worker(struct work_struct *w)
591 {
592 	struct zswap_pool *pool = container_of(w, typeof(*pool),
593 						shrink_work);
594 
595 	if (zpool_shrink(pool->zpool, 1, NULL))
596 		zswap_reject_reclaim_fail++;
597 	zswap_pool_put(pool);
598 }
599 
600 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
601 {
602 	struct zswap_pool *pool;
603 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
604 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
605 	int ret;
606 
607 	if (!zswap_has_pool) {
608 		/* if either are unset, pool initialization failed, and we
609 		 * need both params to be set correctly before trying to
610 		 * create a pool.
611 		 */
612 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
613 			return NULL;
614 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
615 			return NULL;
616 	}
617 
618 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
619 	if (!pool)
620 		return NULL;
621 
622 	/* unique name for each pool specifically required by zsmalloc */
623 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
624 
625 	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
626 	if (!pool->zpool) {
627 		pr_err("%s zpool not available\n", type);
628 		goto error;
629 	}
630 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
631 
632 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
633 
634 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
635 	if (!pool->acomp_ctx) {
636 		pr_err("percpu alloc failed\n");
637 		goto error;
638 	}
639 
640 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
641 				       &pool->node);
642 	if (ret)
643 		goto error;
644 	pr_debug("using %s compressor\n", pool->tfm_name);
645 
646 	/* being the current pool takes 1 ref; this func expects the
647 	 * caller to always add the new pool as the current pool
648 	 */
649 	kref_init(&pool->kref);
650 	INIT_LIST_HEAD(&pool->list);
651 	INIT_WORK(&pool->shrink_work, shrink_worker);
652 
653 	zswap_pool_debug("created", pool);
654 
655 	return pool;
656 
657 error:
658 	if (pool->acomp_ctx)
659 		free_percpu(pool->acomp_ctx);
660 	if (pool->zpool)
661 		zpool_destroy_pool(pool->zpool);
662 	kfree(pool);
663 	return NULL;
664 }
665 
666 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
667 {
668 	bool has_comp, has_zpool;
669 
670 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
671 	if (!has_comp && strcmp(zswap_compressor,
672 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
673 		pr_err("compressor %s not available, using default %s\n",
674 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
675 		param_free_charp(&zswap_compressor);
676 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
677 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
678 	}
679 	if (!has_comp) {
680 		pr_err("default compressor %s not available\n",
681 		       zswap_compressor);
682 		param_free_charp(&zswap_compressor);
683 		zswap_compressor = ZSWAP_PARAM_UNSET;
684 	}
685 
686 	has_zpool = zpool_has_pool(zswap_zpool_type);
687 	if (!has_zpool && strcmp(zswap_zpool_type,
688 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
689 		pr_err("zpool %s not available, using default %s\n",
690 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
691 		param_free_charp(&zswap_zpool_type);
692 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
693 		has_zpool = zpool_has_pool(zswap_zpool_type);
694 	}
695 	if (!has_zpool) {
696 		pr_err("default zpool %s not available\n",
697 		       zswap_zpool_type);
698 		param_free_charp(&zswap_zpool_type);
699 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
700 	}
701 
702 	if (!has_comp || !has_zpool)
703 		return NULL;
704 
705 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
706 }
707 
708 static void zswap_pool_destroy(struct zswap_pool *pool)
709 {
710 	zswap_pool_debug("destroying", pool);
711 
712 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
713 	free_percpu(pool->acomp_ctx);
714 	zpool_destroy_pool(pool->zpool);
715 	kfree(pool);
716 }
717 
718 static int __must_check zswap_pool_get(struct zswap_pool *pool)
719 {
720 	if (!pool)
721 		return 0;
722 
723 	return kref_get_unless_zero(&pool->kref);
724 }
725 
726 static void __zswap_pool_release(struct work_struct *work)
727 {
728 	struct zswap_pool *pool = container_of(work, typeof(*pool),
729 						release_work);
730 
731 	synchronize_rcu();
732 
733 	/* nobody should have been able to get a kref... */
734 	WARN_ON(kref_get_unless_zero(&pool->kref));
735 
736 	/* pool is now off zswap_pools list and has no references. */
737 	zswap_pool_destroy(pool);
738 }
739 
740 static void __zswap_pool_empty(struct kref *kref)
741 {
742 	struct zswap_pool *pool;
743 
744 	pool = container_of(kref, typeof(*pool), kref);
745 
746 	spin_lock(&zswap_pools_lock);
747 
748 	WARN_ON(pool == zswap_pool_current());
749 
750 	list_del_rcu(&pool->list);
751 
752 	INIT_WORK(&pool->release_work, __zswap_pool_release);
753 	schedule_work(&pool->release_work);
754 
755 	spin_unlock(&zswap_pools_lock);
756 }
757 
758 static void zswap_pool_put(struct zswap_pool *pool)
759 {
760 	kref_put(&pool->kref, __zswap_pool_empty);
761 }
762 
763 /*********************************
764 * param callbacks
765 **********************************/
766 
767 /* val must be a null-terminated string */
768 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
769 			     char *type, char *compressor)
770 {
771 	struct zswap_pool *pool, *put_pool = NULL;
772 	char *s = strstrip((char *)val);
773 	int ret;
774 
775 	if (zswap_init_failed) {
776 		pr_err("can't set param, initialization failed\n");
777 		return -ENODEV;
778 	}
779 
780 	/* no change required */
781 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
782 		return 0;
783 
784 	/* if this is load-time (pre-init) param setting,
785 	 * don't create a pool; that's done during init.
786 	 */
787 	if (!zswap_init_started)
788 		return param_set_charp(s, kp);
789 
790 	if (!type) {
791 		if (!zpool_has_pool(s)) {
792 			pr_err("zpool %s not available\n", s);
793 			return -ENOENT;
794 		}
795 		type = s;
796 	} else if (!compressor) {
797 		if (!crypto_has_acomp(s, 0, 0)) {
798 			pr_err("compressor %s not available\n", s);
799 			return -ENOENT;
800 		}
801 		compressor = s;
802 	} else {
803 		WARN_ON(1);
804 		return -EINVAL;
805 	}
806 
807 	spin_lock(&zswap_pools_lock);
808 
809 	pool = zswap_pool_find_get(type, compressor);
810 	if (pool) {
811 		zswap_pool_debug("using existing", pool);
812 		WARN_ON(pool == zswap_pool_current());
813 		list_del_rcu(&pool->list);
814 	}
815 
816 	spin_unlock(&zswap_pools_lock);
817 
818 	if (!pool)
819 		pool = zswap_pool_create(type, compressor);
820 
821 	if (pool)
822 		ret = param_set_charp(s, kp);
823 	else
824 		ret = -EINVAL;
825 
826 	spin_lock(&zswap_pools_lock);
827 
828 	if (!ret) {
829 		put_pool = zswap_pool_current();
830 		list_add_rcu(&pool->list, &zswap_pools);
831 		zswap_has_pool = true;
832 	} else if (pool) {
833 		/* add the possibly pre-existing pool to the end of the pools
834 		 * list; if it's new (and empty) then it'll be removed and
835 		 * destroyed by the put after we drop the lock
836 		 */
837 		list_add_tail_rcu(&pool->list, &zswap_pools);
838 		put_pool = pool;
839 	}
840 
841 	spin_unlock(&zswap_pools_lock);
842 
843 	if (!zswap_has_pool && !pool) {
844 		/* if initial pool creation failed, and this pool creation also
845 		 * failed, maybe both compressor and zpool params were bad.
846 		 * Allow changing this param, so pool creation will succeed
847 		 * when the other param is changed. We already verified this
848 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
849 		 * checks above.
850 		 */
851 		ret = param_set_charp(s, kp);
852 	}
853 
854 	/* drop the ref from either the old current pool,
855 	 * or the new pool we failed to add
856 	 */
857 	if (put_pool)
858 		zswap_pool_put(put_pool);
859 
860 	return ret;
861 }
862 
863 static int zswap_compressor_param_set(const char *val,
864 				      const struct kernel_param *kp)
865 {
866 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
867 }
868 
869 static int zswap_zpool_param_set(const char *val,
870 				 const struct kernel_param *kp)
871 {
872 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
873 }
874 
875 static int zswap_enabled_param_set(const char *val,
876 				   const struct kernel_param *kp)
877 {
878 	if (zswap_init_failed) {
879 		pr_err("can't enable, initialization failed\n");
880 		return -ENODEV;
881 	}
882 	if (!zswap_has_pool && zswap_init_started) {
883 		pr_err("can't enable, no pool configured\n");
884 		return -ENODEV;
885 	}
886 
887 	return param_set_bool(val, kp);
888 }
889 
890 /*********************************
891 * writeback code
892 **********************************/
893 /* return enum for zswap_get_swap_cache_page */
894 enum zswap_get_swap_ret {
895 	ZSWAP_SWAPCACHE_NEW,
896 	ZSWAP_SWAPCACHE_EXIST,
897 	ZSWAP_SWAPCACHE_FAIL,
898 };
899 
900 /*
901  * zswap_get_swap_cache_page
902  *
903  * This is an adaption of read_swap_cache_async()
904  *
905  * This function tries to find a page with the given swap entry
906  * in the swapper_space address space (the swap cache).  If the page
907  * is found, it is returned in retpage.  Otherwise, a page is allocated,
908  * added to the swap cache, and returned in retpage.
909  *
910  * If success, the swap cache page is returned in retpage
911  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
912  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
913  *     the new page is added to swapcache and locked
914  * Returns ZSWAP_SWAPCACHE_FAIL on error
915  */
916 static int zswap_get_swap_cache_page(swp_entry_t entry,
917 				struct page **retpage)
918 {
919 	bool page_was_allocated;
920 
921 	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
922 			NULL, 0, &page_was_allocated);
923 	if (page_was_allocated)
924 		return ZSWAP_SWAPCACHE_NEW;
925 	if (!*retpage)
926 		return ZSWAP_SWAPCACHE_FAIL;
927 	return ZSWAP_SWAPCACHE_EXIST;
928 }
929 
930 /*
931  * Attempts to free an entry by adding a page to the swap cache,
932  * decompressing the entry data into the page, and issuing a
933  * bio write to write the page back to the swap device.
934  *
935  * This can be thought of as a "resumed writeback" of the page
936  * to the swap device.  We are basically resuming the same swap
937  * writeback path that was intercepted with the frontswap_store()
938  * in the first place.  After the page has been decompressed into
939  * the swap cache, the compressed version stored by zswap can be
940  * freed.
941  */
942 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
943 {
944 	struct zswap_header *zhdr;
945 	swp_entry_t swpentry;
946 	struct zswap_tree *tree;
947 	pgoff_t offset;
948 	struct zswap_entry *entry;
949 	struct page *page;
950 	struct scatterlist input, output;
951 	struct crypto_acomp_ctx *acomp_ctx;
952 
953 	u8 *src, *tmp = NULL;
954 	unsigned int dlen;
955 	int ret;
956 	struct writeback_control wbc = {
957 		.sync_mode = WB_SYNC_NONE,
958 	};
959 
960 	if (!zpool_can_sleep_mapped(pool)) {
961 		tmp = kmalloc(PAGE_SIZE, GFP_ATOMIC);
962 		if (!tmp)
963 			return -ENOMEM;
964 	}
965 
966 	/* extract swpentry from data */
967 	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
968 	swpentry = zhdr->swpentry; /* here */
969 	tree = zswap_trees[swp_type(swpentry)];
970 	offset = swp_offset(swpentry);
971 
972 	/* find and ref zswap entry */
973 	spin_lock(&tree->lock);
974 	entry = zswap_entry_find_get(&tree->rbroot, offset);
975 	if (!entry) {
976 		/* entry was invalidated */
977 		spin_unlock(&tree->lock);
978 		zpool_unmap_handle(pool, handle);
979 		kfree(tmp);
980 		return 0;
981 	}
982 	spin_unlock(&tree->lock);
983 	BUG_ON(offset != entry->offset);
984 
985 	src = (u8 *)zhdr + sizeof(struct zswap_header);
986 	if (!zpool_can_sleep_mapped(pool)) {
987 		memcpy(tmp, src, entry->length);
988 		src = tmp;
989 		zpool_unmap_handle(pool, handle);
990 	}
991 
992 	/* try to allocate swap cache page */
993 	switch (zswap_get_swap_cache_page(swpentry, &page)) {
994 	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
995 		ret = -ENOMEM;
996 		goto fail;
997 
998 	case ZSWAP_SWAPCACHE_EXIST:
999 		/* page is already in the swap cache, ignore for now */
1000 		put_page(page);
1001 		ret = -EEXIST;
1002 		goto fail;
1003 
1004 	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
1005 		/* decompress */
1006 		acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1007 		dlen = PAGE_SIZE;
1008 
1009 		mutex_lock(acomp_ctx->mutex);
1010 		sg_init_one(&input, src, entry->length);
1011 		sg_init_table(&output, 1);
1012 		sg_set_page(&output, page, PAGE_SIZE, 0);
1013 		acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1014 		ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1015 		dlen = acomp_ctx->req->dlen;
1016 		mutex_unlock(acomp_ctx->mutex);
1017 
1018 		BUG_ON(ret);
1019 		BUG_ON(dlen != PAGE_SIZE);
1020 
1021 		/* page is up to date */
1022 		SetPageUptodate(page);
1023 	}
1024 
1025 	/* move it to the tail of the inactive list after end_writeback */
1026 	SetPageReclaim(page);
1027 
1028 	/* start writeback */
1029 	__swap_writepage(page, &wbc, end_swap_bio_write);
1030 	put_page(page);
1031 	zswap_written_back_pages++;
1032 
1033 	spin_lock(&tree->lock);
1034 	/* drop local reference */
1035 	zswap_entry_put(tree, entry);
1036 
1037 	/*
1038 	* There are two possible situations for entry here:
1039 	* (1) refcount is 1(normal case),  entry is valid and on the tree
1040 	* (2) refcount is 0, entry is freed and not on the tree
1041 	*     because invalidate happened during writeback
1042 	*  search the tree and free the entry if find entry
1043 	*/
1044 	if (entry == zswap_rb_search(&tree->rbroot, offset))
1045 		zswap_entry_put(tree, entry);
1046 	spin_unlock(&tree->lock);
1047 
1048 	goto end;
1049 
1050 	/*
1051 	* if we get here due to ZSWAP_SWAPCACHE_EXIST
1052 	* a load may be happening concurrently.
1053 	* it is safe and okay to not free the entry.
1054 	* if we free the entry in the following put
1055 	* it is also okay to return !0
1056 	*/
1057 fail:
1058 	spin_lock(&tree->lock);
1059 	zswap_entry_put(tree, entry);
1060 	spin_unlock(&tree->lock);
1061 
1062 end:
1063 	if (zpool_can_sleep_mapped(pool))
1064 		zpool_unmap_handle(pool, handle);
1065 	else
1066 		kfree(tmp);
1067 
1068 	return ret;
1069 }
1070 
1071 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1072 {
1073 	unsigned int pos;
1074 	unsigned long *page;
1075 
1076 	page = (unsigned long *)ptr;
1077 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
1078 		if (page[pos] != page[0])
1079 			return 0;
1080 	}
1081 	*value = page[0];
1082 	return 1;
1083 }
1084 
1085 static void zswap_fill_page(void *ptr, unsigned long value)
1086 {
1087 	unsigned long *page;
1088 
1089 	page = (unsigned long *)ptr;
1090 	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1091 }
1092 
1093 /*********************************
1094 * frontswap hooks
1095 **********************************/
1096 /* attempts to compress and store an single page */
1097 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
1098 				struct page *page)
1099 {
1100 	struct zswap_tree *tree = zswap_trees[type];
1101 	struct zswap_entry *entry, *dupentry;
1102 	struct scatterlist input, output;
1103 	struct crypto_acomp_ctx *acomp_ctx;
1104 	struct obj_cgroup *objcg = NULL;
1105 	struct zswap_pool *pool;
1106 	int ret;
1107 	unsigned int hlen, dlen = PAGE_SIZE;
1108 	unsigned long handle, value;
1109 	char *buf;
1110 	u8 *src, *dst;
1111 	struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
1112 	gfp_t gfp;
1113 
1114 	/* THP isn't supported */
1115 	if (PageTransHuge(page)) {
1116 		ret = -EINVAL;
1117 		goto reject;
1118 	}
1119 
1120 	if (!zswap_enabled || !tree) {
1121 		ret = -ENODEV;
1122 		goto reject;
1123 	}
1124 
1125 	objcg = get_obj_cgroup_from_page(page);
1126 	if (objcg && !obj_cgroup_may_zswap(objcg))
1127 		goto shrink;
1128 
1129 	/* reclaim space if needed */
1130 	if (zswap_is_full()) {
1131 		zswap_pool_limit_hit++;
1132 		zswap_pool_reached_full = true;
1133 		goto shrink;
1134 	}
1135 
1136 	if (zswap_pool_reached_full) {
1137 	       if (!zswap_can_accept()) {
1138 			ret = -ENOMEM;
1139 			goto reject;
1140 		} else
1141 			zswap_pool_reached_full = false;
1142 	}
1143 
1144 	/* allocate entry */
1145 	entry = zswap_entry_cache_alloc(GFP_KERNEL);
1146 	if (!entry) {
1147 		zswap_reject_kmemcache_fail++;
1148 		ret = -ENOMEM;
1149 		goto reject;
1150 	}
1151 
1152 	if (zswap_same_filled_pages_enabled) {
1153 		src = kmap_atomic(page);
1154 		if (zswap_is_page_same_filled(src, &value)) {
1155 			kunmap_atomic(src);
1156 			entry->offset = offset;
1157 			entry->length = 0;
1158 			entry->value = value;
1159 			atomic_inc(&zswap_same_filled_pages);
1160 			goto insert_entry;
1161 		}
1162 		kunmap_atomic(src);
1163 	}
1164 
1165 	if (!zswap_non_same_filled_pages_enabled) {
1166 		ret = -EINVAL;
1167 		goto freepage;
1168 	}
1169 
1170 	/* if entry is successfully added, it keeps the reference */
1171 	entry->pool = zswap_pool_current_get();
1172 	if (!entry->pool) {
1173 		ret = -EINVAL;
1174 		goto freepage;
1175 	}
1176 
1177 	/* compress */
1178 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1179 
1180 	mutex_lock(acomp_ctx->mutex);
1181 
1182 	dst = acomp_ctx->dstmem;
1183 	sg_init_table(&input, 1);
1184 	sg_set_page(&input, page, PAGE_SIZE, 0);
1185 
1186 	/* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1187 	sg_init_one(&output, dst, PAGE_SIZE * 2);
1188 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1189 	/*
1190 	 * it maybe looks a little bit silly that we send an asynchronous request,
1191 	 * then wait for its completion synchronously. This makes the process look
1192 	 * synchronous in fact.
1193 	 * Theoretically, acomp supports users send multiple acomp requests in one
1194 	 * acomp instance, then get those requests done simultaneously. but in this
1195 	 * case, frontswap actually does store and load page by page, there is no
1196 	 * existing method to send the second page before the first page is done
1197 	 * in one thread doing frontswap.
1198 	 * but in different threads running on different cpu, we have different
1199 	 * acomp instance, so multiple threads can do (de)compression in parallel.
1200 	 */
1201 	ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1202 	dlen = acomp_ctx->req->dlen;
1203 
1204 	if (ret) {
1205 		ret = -EINVAL;
1206 		goto put_dstmem;
1207 	}
1208 
1209 	/* store */
1210 	hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1211 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1212 	if (zpool_malloc_support_movable(entry->pool->zpool))
1213 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1214 	ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1215 	if (ret == -ENOSPC) {
1216 		zswap_reject_compress_poor++;
1217 		goto put_dstmem;
1218 	}
1219 	if (ret) {
1220 		zswap_reject_alloc_fail++;
1221 		goto put_dstmem;
1222 	}
1223 	buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO);
1224 	memcpy(buf, &zhdr, hlen);
1225 	memcpy(buf + hlen, dst, dlen);
1226 	zpool_unmap_handle(entry->pool->zpool, handle);
1227 	mutex_unlock(acomp_ctx->mutex);
1228 
1229 	/* populate entry */
1230 	entry->offset = offset;
1231 	entry->handle = handle;
1232 	entry->length = dlen;
1233 
1234 insert_entry:
1235 	entry->objcg = objcg;
1236 	if (objcg) {
1237 		obj_cgroup_charge_zswap(objcg, entry->length);
1238 		/* Account before objcg ref is moved to tree */
1239 		count_objcg_event(objcg, ZSWPOUT);
1240 	}
1241 
1242 	/* map */
1243 	spin_lock(&tree->lock);
1244 	do {
1245 		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1246 		if (ret == -EEXIST) {
1247 			zswap_duplicate_entry++;
1248 			/* remove from rbtree */
1249 			zswap_rb_erase(&tree->rbroot, dupentry);
1250 			zswap_entry_put(tree, dupentry);
1251 		}
1252 	} while (ret == -EEXIST);
1253 	spin_unlock(&tree->lock);
1254 
1255 	/* update stats */
1256 	atomic_inc(&zswap_stored_pages);
1257 	zswap_update_total_size();
1258 	count_vm_event(ZSWPOUT);
1259 
1260 	return 0;
1261 
1262 put_dstmem:
1263 	mutex_unlock(acomp_ctx->mutex);
1264 	zswap_pool_put(entry->pool);
1265 freepage:
1266 	zswap_entry_cache_free(entry);
1267 reject:
1268 	if (objcg)
1269 		obj_cgroup_put(objcg);
1270 	return ret;
1271 
1272 shrink:
1273 	pool = zswap_pool_last_get();
1274 	if (pool)
1275 		queue_work(shrink_wq, &pool->shrink_work);
1276 	ret = -ENOMEM;
1277 	goto reject;
1278 }
1279 
1280 /*
1281  * returns 0 if the page was successfully decompressed
1282  * return -1 on entry not found or error
1283 */
1284 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1285 				struct page *page)
1286 {
1287 	struct zswap_tree *tree = zswap_trees[type];
1288 	struct zswap_entry *entry;
1289 	struct scatterlist input, output;
1290 	struct crypto_acomp_ctx *acomp_ctx;
1291 	u8 *src, *dst, *tmp;
1292 	unsigned int dlen;
1293 	int ret;
1294 
1295 	/* find */
1296 	spin_lock(&tree->lock);
1297 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1298 	if (!entry) {
1299 		/* entry was written back */
1300 		spin_unlock(&tree->lock);
1301 		return -1;
1302 	}
1303 	spin_unlock(&tree->lock);
1304 
1305 	if (!entry->length) {
1306 		dst = kmap_atomic(page);
1307 		zswap_fill_page(dst, entry->value);
1308 		kunmap_atomic(dst);
1309 		ret = 0;
1310 		goto stats;
1311 	}
1312 
1313 	if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1314 		tmp = kmalloc(entry->length, GFP_ATOMIC);
1315 		if (!tmp) {
1316 			ret = -ENOMEM;
1317 			goto freeentry;
1318 		}
1319 	}
1320 
1321 	/* decompress */
1322 	dlen = PAGE_SIZE;
1323 	src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1324 	if (zpool_evictable(entry->pool->zpool))
1325 		src += sizeof(struct zswap_header);
1326 
1327 	if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1328 		memcpy(tmp, src, entry->length);
1329 		src = tmp;
1330 		zpool_unmap_handle(entry->pool->zpool, entry->handle);
1331 	}
1332 
1333 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1334 	mutex_lock(acomp_ctx->mutex);
1335 	sg_init_one(&input, src, entry->length);
1336 	sg_init_table(&output, 1);
1337 	sg_set_page(&output, page, PAGE_SIZE, 0);
1338 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1339 	ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1340 	mutex_unlock(acomp_ctx->mutex);
1341 
1342 	if (zpool_can_sleep_mapped(entry->pool->zpool))
1343 		zpool_unmap_handle(entry->pool->zpool, entry->handle);
1344 	else
1345 		kfree(tmp);
1346 
1347 	BUG_ON(ret);
1348 stats:
1349 	count_vm_event(ZSWPIN);
1350 	if (entry->objcg)
1351 		count_objcg_event(entry->objcg, ZSWPIN);
1352 freeentry:
1353 	spin_lock(&tree->lock);
1354 	zswap_entry_put(tree, entry);
1355 	spin_unlock(&tree->lock);
1356 
1357 	return ret;
1358 }
1359 
1360 /* frees an entry in zswap */
1361 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1362 {
1363 	struct zswap_tree *tree = zswap_trees[type];
1364 	struct zswap_entry *entry;
1365 
1366 	/* find */
1367 	spin_lock(&tree->lock);
1368 	entry = zswap_rb_search(&tree->rbroot, offset);
1369 	if (!entry) {
1370 		/* entry was written back */
1371 		spin_unlock(&tree->lock);
1372 		return;
1373 	}
1374 
1375 	/* remove from rbtree */
1376 	zswap_rb_erase(&tree->rbroot, entry);
1377 
1378 	/* drop the initial reference from entry creation */
1379 	zswap_entry_put(tree, entry);
1380 
1381 	spin_unlock(&tree->lock);
1382 }
1383 
1384 /* frees all zswap entries for the given swap type */
1385 static void zswap_frontswap_invalidate_area(unsigned type)
1386 {
1387 	struct zswap_tree *tree = zswap_trees[type];
1388 	struct zswap_entry *entry, *n;
1389 
1390 	if (!tree)
1391 		return;
1392 
1393 	/* walk the tree and free everything */
1394 	spin_lock(&tree->lock);
1395 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1396 		zswap_free_entry(entry);
1397 	tree->rbroot = RB_ROOT;
1398 	spin_unlock(&tree->lock);
1399 	kfree(tree);
1400 	zswap_trees[type] = NULL;
1401 }
1402 
1403 static void zswap_frontswap_init(unsigned type)
1404 {
1405 	struct zswap_tree *tree;
1406 
1407 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1408 	if (!tree) {
1409 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1410 		return;
1411 	}
1412 
1413 	tree->rbroot = RB_ROOT;
1414 	spin_lock_init(&tree->lock);
1415 	zswap_trees[type] = tree;
1416 }
1417 
1418 static const struct frontswap_ops zswap_frontswap_ops = {
1419 	.store = zswap_frontswap_store,
1420 	.load = zswap_frontswap_load,
1421 	.invalidate_page = zswap_frontswap_invalidate_page,
1422 	.invalidate_area = zswap_frontswap_invalidate_area,
1423 	.init = zswap_frontswap_init
1424 };
1425 
1426 /*********************************
1427 * debugfs functions
1428 **********************************/
1429 #ifdef CONFIG_DEBUG_FS
1430 #include <linux/debugfs.h>
1431 
1432 static struct dentry *zswap_debugfs_root;
1433 
1434 static int __init zswap_debugfs_init(void)
1435 {
1436 	if (!debugfs_initialized())
1437 		return -ENODEV;
1438 
1439 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1440 
1441 	debugfs_create_u64("pool_limit_hit", 0444,
1442 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1443 	debugfs_create_u64("reject_reclaim_fail", 0444,
1444 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1445 	debugfs_create_u64("reject_alloc_fail", 0444,
1446 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1447 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1448 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1449 	debugfs_create_u64("reject_compress_poor", 0444,
1450 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1451 	debugfs_create_u64("written_back_pages", 0444,
1452 			   zswap_debugfs_root, &zswap_written_back_pages);
1453 	debugfs_create_u64("duplicate_entry", 0444,
1454 			   zswap_debugfs_root, &zswap_duplicate_entry);
1455 	debugfs_create_u64("pool_total_size", 0444,
1456 			   zswap_debugfs_root, &zswap_pool_total_size);
1457 	debugfs_create_atomic_t("stored_pages", 0444,
1458 				zswap_debugfs_root, &zswap_stored_pages);
1459 	debugfs_create_atomic_t("same_filled_pages", 0444,
1460 				zswap_debugfs_root, &zswap_same_filled_pages);
1461 
1462 	return 0;
1463 }
1464 #else
1465 static int __init zswap_debugfs_init(void)
1466 {
1467 	return 0;
1468 }
1469 #endif
1470 
1471 /*********************************
1472 * module init and exit
1473 **********************************/
1474 static int __init init_zswap(void)
1475 {
1476 	struct zswap_pool *pool;
1477 	int ret;
1478 
1479 	zswap_init_started = true;
1480 
1481 	if (zswap_entry_cache_create()) {
1482 		pr_err("entry cache creation failed\n");
1483 		goto cache_fail;
1484 	}
1485 
1486 	ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1487 				zswap_dstmem_prepare, zswap_dstmem_dead);
1488 	if (ret) {
1489 		pr_err("dstmem alloc failed\n");
1490 		goto dstmem_fail;
1491 	}
1492 
1493 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1494 				      "mm/zswap_pool:prepare",
1495 				      zswap_cpu_comp_prepare,
1496 				      zswap_cpu_comp_dead);
1497 	if (ret)
1498 		goto hp_fail;
1499 
1500 	pool = __zswap_pool_create_fallback();
1501 	if (pool) {
1502 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1503 			zpool_get_type(pool->zpool));
1504 		list_add(&pool->list, &zswap_pools);
1505 		zswap_has_pool = true;
1506 	} else {
1507 		pr_err("pool creation failed\n");
1508 		zswap_enabled = false;
1509 	}
1510 
1511 	shrink_wq = create_workqueue("zswap-shrink");
1512 	if (!shrink_wq)
1513 		goto fallback_fail;
1514 
1515 	ret = frontswap_register_ops(&zswap_frontswap_ops);
1516 	if (ret)
1517 		goto destroy_wq;
1518 	if (zswap_debugfs_init())
1519 		pr_warn("debugfs initialization failed\n");
1520 	return 0;
1521 
1522 destroy_wq:
1523 	destroy_workqueue(shrink_wq);
1524 fallback_fail:
1525 	if (pool)
1526 		zswap_pool_destroy(pool);
1527 hp_fail:
1528 	cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1529 dstmem_fail:
1530 	zswap_entry_cache_destroy();
1531 cache_fail:
1532 	/* if built-in, we aren't unloaded on failure; don't allow use */
1533 	zswap_init_failed = true;
1534 	zswap_enabled = false;
1535 	return -ENOMEM;
1536 }
1537 /* must be late so crypto has time to come up */
1538 late_initcall(init_zswap);
1539 
1540 MODULE_LICENSE("GPL");
1541 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1542 MODULE_DESCRIPTION("Compressed cache for swap pages");
1543