xref: /linux/mm/zswap.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 
39 #include "swap.h"
40 #include "internal.h"
41 
42 /*********************************
43 * statistics
44 **********************************/
45 /* Total bytes used by the compressed storage */
46 u64 zswap_pool_total_size;
47 /* The number of compressed pages currently stored in zswap */
48 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
49 /* The number of same-value filled pages currently stored in zswap */
50 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
51 
52 /*
53  * The statistics below are not protected from concurrent access for
54  * performance reasons so they may not be a 100% accurate.  However,
55  * they do provide useful information on roughly how many times a
56  * certain event is occurring.
57 */
58 
59 /* Pool limit was hit (see zswap_max_pool_percent) */
60 static u64 zswap_pool_limit_hit;
61 /* Pages written back when pool limit was reached */
62 static u64 zswap_written_back_pages;
63 /* Store failed due to a reclaim failure after pool limit was reached */
64 static u64 zswap_reject_reclaim_fail;
65 /* Store failed due to compression algorithm failure */
66 static u64 zswap_reject_compress_fail;
67 /* Compressed page was too big for the allocator to (optimally) store */
68 static u64 zswap_reject_compress_poor;
69 /* Store failed because underlying allocator could not get memory */
70 static u64 zswap_reject_alloc_fail;
71 /* Store failed because the entry metadata could not be allocated (rare) */
72 static u64 zswap_reject_kmemcache_fail;
73 /* Duplicate store was encountered (rare) */
74 static u64 zswap_duplicate_entry;
75 
76 /* Shrinker work queue */
77 static struct workqueue_struct *shrink_wq;
78 /* Pool limit was hit, we need to calm down */
79 static bool zswap_pool_reached_full;
80 
81 /*********************************
82 * tunables
83 **********************************/
84 
85 #define ZSWAP_PARAM_UNSET ""
86 
87 static int zswap_setup(void);
88 
89 /* Enable/disable zswap */
90 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
91 static int zswap_enabled_param_set(const char *,
92 				   const struct kernel_param *);
93 static const struct kernel_param_ops zswap_enabled_param_ops = {
94 	.set =		zswap_enabled_param_set,
95 	.get =		param_get_bool,
96 };
97 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
98 
99 /* Crypto compressor to use */
100 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
101 static int zswap_compressor_param_set(const char *,
102 				      const struct kernel_param *);
103 static const struct kernel_param_ops zswap_compressor_param_ops = {
104 	.set =		zswap_compressor_param_set,
105 	.get =		param_get_charp,
106 	.free =		param_free_charp,
107 };
108 module_param_cb(compressor, &zswap_compressor_param_ops,
109 		&zswap_compressor, 0644);
110 
111 /* Compressed storage zpool to use */
112 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
113 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
114 static const struct kernel_param_ops zswap_zpool_param_ops = {
115 	.set =		zswap_zpool_param_set,
116 	.get =		param_get_charp,
117 	.free =		param_free_charp,
118 };
119 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
120 
121 /* The maximum percentage of memory that the compressed pool can occupy */
122 static unsigned int zswap_max_pool_percent = 20;
123 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
124 
125 /* The threshold for accepting new pages after the max_pool_percent was hit */
126 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
127 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
128 		   uint, 0644);
129 
130 /*
131  * Enable/disable handling same-value filled pages (enabled by default).
132  * If disabled every page is considered non-same-value filled.
133  */
134 static bool zswap_same_filled_pages_enabled = true;
135 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
136 		   bool, 0644);
137 
138 /* Enable/disable handling non-same-value filled pages (enabled by default) */
139 static bool zswap_non_same_filled_pages_enabled = true;
140 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
141 		   bool, 0644);
142 
143 static bool zswap_exclusive_loads_enabled = IS_ENABLED(
144 		CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
145 module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
146 
147 /* Number of zpools in zswap_pool (empirically determined for scalability) */
148 #define ZSWAP_NR_ZPOOLS 32
149 
150 /*********************************
151 * data structures
152 **********************************/
153 
154 struct crypto_acomp_ctx {
155 	struct crypto_acomp *acomp;
156 	struct acomp_req *req;
157 	struct crypto_wait wait;
158 	u8 *dstmem;
159 	struct mutex *mutex;
160 };
161 
162 /*
163  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
164  * The only case where lru_lock is not acquired while holding tree.lock is
165  * when a zswap_entry is taken off the lru for writeback, in that case it
166  * needs to be verified that it's still valid in the tree.
167  */
168 struct zswap_pool {
169 	struct zpool *zpools[ZSWAP_NR_ZPOOLS];
170 	struct crypto_acomp_ctx __percpu *acomp_ctx;
171 	struct kref kref;
172 	struct list_head list;
173 	struct work_struct release_work;
174 	struct work_struct shrink_work;
175 	struct hlist_node node;
176 	char tfm_name[CRYPTO_MAX_ALG_NAME];
177 	struct list_head lru;
178 	spinlock_t lru_lock;
179 };
180 
181 /*
182  * struct zswap_entry
183  *
184  * This structure contains the metadata for tracking a single compressed
185  * page within zswap.
186  *
187  * rbnode - links the entry into red-black tree for the appropriate swap type
188  * swpentry - associated swap entry, the offset indexes into the red-black tree
189  * refcount - the number of outstanding reference to the entry. This is needed
190  *            to protect against premature freeing of the entry by code
191  *            concurrent calls to load, invalidate, and writeback.  The lock
192  *            for the zswap_tree structure that contains the entry must
193  *            be held while changing the refcount.  Since the lock must
194  *            be held, there is no reason to also make refcount atomic.
195  * length - the length in bytes of the compressed page data.  Needed during
196  *          decompression. For a same value filled page length is 0, and both
197  *          pool and lru are invalid and must be ignored.
198  * pool - the zswap_pool the entry's data is in
199  * handle - zpool allocation handle that stores the compressed page data
200  * value - value of the same-value filled pages which have same content
201  * objcg - the obj_cgroup that the compressed memory is charged to
202  * lru - handle to the pool's lru used to evict pages.
203  */
204 struct zswap_entry {
205 	struct rb_node rbnode;
206 	swp_entry_t swpentry;
207 	int refcount;
208 	unsigned int length;
209 	struct zswap_pool *pool;
210 	union {
211 		unsigned long handle;
212 		unsigned long value;
213 	};
214 	struct obj_cgroup *objcg;
215 	struct list_head lru;
216 };
217 
218 /*
219  * The tree lock in the zswap_tree struct protects a few things:
220  * - the rbtree
221  * - the refcount field of each entry in the tree
222  */
223 struct zswap_tree {
224 	struct rb_root rbroot;
225 	spinlock_t lock;
226 };
227 
228 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
229 
230 /* RCU-protected iteration */
231 static LIST_HEAD(zswap_pools);
232 /* protects zswap_pools list modification */
233 static DEFINE_SPINLOCK(zswap_pools_lock);
234 /* pool counter to provide unique names to zpool */
235 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
236 
237 enum zswap_init_type {
238 	ZSWAP_UNINIT,
239 	ZSWAP_INIT_SUCCEED,
240 	ZSWAP_INIT_FAILED
241 };
242 
243 static enum zswap_init_type zswap_init_state;
244 
245 /* used to ensure the integrity of initialization */
246 static DEFINE_MUTEX(zswap_init_lock);
247 
248 /* init completed, but couldn't create the initial pool */
249 static bool zswap_has_pool;
250 
251 /*********************************
252 * helpers and fwd declarations
253 **********************************/
254 
255 #define zswap_pool_debug(msg, p)				\
256 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
257 		 zpool_get_type((p)->zpools[0]))
258 
259 static int zswap_writeback_entry(struct zswap_entry *entry,
260 				 struct zswap_tree *tree);
261 static int zswap_pool_get(struct zswap_pool *pool);
262 static void zswap_pool_put(struct zswap_pool *pool);
263 
264 static bool zswap_is_full(void)
265 {
266 	return totalram_pages() * zswap_max_pool_percent / 100 <
267 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
268 }
269 
270 static bool zswap_can_accept(void)
271 {
272 	return totalram_pages() * zswap_accept_thr_percent / 100 *
273 				zswap_max_pool_percent / 100 >
274 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
275 }
276 
277 static void zswap_update_total_size(void)
278 {
279 	struct zswap_pool *pool;
280 	u64 total = 0;
281 	int i;
282 
283 	rcu_read_lock();
284 
285 	list_for_each_entry_rcu(pool, &zswap_pools, list)
286 		for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
287 			total += zpool_get_total_size(pool->zpools[i]);
288 
289 	rcu_read_unlock();
290 
291 	zswap_pool_total_size = total;
292 }
293 
294 /*********************************
295 * zswap entry functions
296 **********************************/
297 static struct kmem_cache *zswap_entry_cache;
298 
299 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
300 {
301 	struct zswap_entry *entry;
302 	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
303 	if (!entry)
304 		return NULL;
305 	entry->refcount = 1;
306 	RB_CLEAR_NODE(&entry->rbnode);
307 	return entry;
308 }
309 
310 static void zswap_entry_cache_free(struct zswap_entry *entry)
311 {
312 	kmem_cache_free(zswap_entry_cache, entry);
313 }
314 
315 /*********************************
316 * rbtree functions
317 **********************************/
318 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
319 {
320 	struct rb_node *node = root->rb_node;
321 	struct zswap_entry *entry;
322 	pgoff_t entry_offset;
323 
324 	while (node) {
325 		entry = rb_entry(node, struct zswap_entry, rbnode);
326 		entry_offset = swp_offset(entry->swpentry);
327 		if (entry_offset > offset)
328 			node = node->rb_left;
329 		else if (entry_offset < offset)
330 			node = node->rb_right;
331 		else
332 			return entry;
333 	}
334 	return NULL;
335 }
336 
337 /*
338  * In the case that a entry with the same offset is found, a pointer to
339  * the existing entry is stored in dupentry and the function returns -EEXIST
340  */
341 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
342 			struct zswap_entry **dupentry)
343 {
344 	struct rb_node **link = &root->rb_node, *parent = NULL;
345 	struct zswap_entry *myentry;
346 	pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
347 
348 	while (*link) {
349 		parent = *link;
350 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
351 		myentry_offset = swp_offset(myentry->swpentry);
352 		if (myentry_offset > entry_offset)
353 			link = &(*link)->rb_left;
354 		else if (myentry_offset < entry_offset)
355 			link = &(*link)->rb_right;
356 		else {
357 			*dupentry = myentry;
358 			return -EEXIST;
359 		}
360 	}
361 	rb_link_node(&entry->rbnode, parent, link);
362 	rb_insert_color(&entry->rbnode, root);
363 	return 0;
364 }
365 
366 static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
367 {
368 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
369 		rb_erase(&entry->rbnode, root);
370 		RB_CLEAR_NODE(&entry->rbnode);
371 		return true;
372 	}
373 	return false;
374 }
375 
376 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
377 {
378 	int i = 0;
379 
380 	if (ZSWAP_NR_ZPOOLS > 1)
381 		i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
382 
383 	return entry->pool->zpools[i];
384 }
385 
386 /*
387  * Carries out the common pattern of freeing and entry's zpool allocation,
388  * freeing the entry itself, and decrementing the number of stored pages.
389  */
390 static void zswap_free_entry(struct zswap_entry *entry)
391 {
392 	if (entry->objcg) {
393 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
394 		obj_cgroup_put(entry->objcg);
395 	}
396 	if (!entry->length)
397 		atomic_dec(&zswap_same_filled_pages);
398 	else {
399 		spin_lock(&entry->pool->lru_lock);
400 		list_del(&entry->lru);
401 		spin_unlock(&entry->pool->lru_lock);
402 		zpool_free(zswap_find_zpool(entry), entry->handle);
403 		zswap_pool_put(entry->pool);
404 	}
405 	zswap_entry_cache_free(entry);
406 	atomic_dec(&zswap_stored_pages);
407 	zswap_update_total_size();
408 }
409 
410 /* caller must hold the tree lock */
411 static void zswap_entry_get(struct zswap_entry *entry)
412 {
413 	entry->refcount++;
414 }
415 
416 /* caller must hold the tree lock
417 * remove from the tree and free it, if nobody reference the entry
418 */
419 static void zswap_entry_put(struct zswap_tree *tree,
420 			struct zswap_entry *entry)
421 {
422 	int refcount = --entry->refcount;
423 
424 	WARN_ON_ONCE(refcount < 0);
425 	if (refcount == 0) {
426 		WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
427 		zswap_free_entry(entry);
428 	}
429 }
430 
431 /* caller must hold the tree lock */
432 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
433 				pgoff_t offset)
434 {
435 	struct zswap_entry *entry;
436 
437 	entry = zswap_rb_search(root, offset);
438 	if (entry)
439 		zswap_entry_get(entry);
440 
441 	return entry;
442 }
443 
444 /*********************************
445 * per-cpu code
446 **********************************/
447 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
448 /*
449  * If users dynamically change the zpool type and compressor at runtime, i.e.
450  * zswap is running, zswap can have more than one zpool on one cpu, but they
451  * are sharing dtsmem. So we need this mutex to be per-cpu.
452  */
453 static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
454 
455 static int zswap_dstmem_prepare(unsigned int cpu)
456 {
457 	struct mutex *mutex;
458 	u8 *dst;
459 
460 	dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
461 	if (!dst)
462 		return -ENOMEM;
463 
464 	mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
465 	if (!mutex) {
466 		kfree(dst);
467 		return -ENOMEM;
468 	}
469 
470 	mutex_init(mutex);
471 	per_cpu(zswap_dstmem, cpu) = dst;
472 	per_cpu(zswap_mutex, cpu) = mutex;
473 	return 0;
474 }
475 
476 static int zswap_dstmem_dead(unsigned int cpu)
477 {
478 	struct mutex *mutex;
479 	u8 *dst;
480 
481 	mutex = per_cpu(zswap_mutex, cpu);
482 	kfree(mutex);
483 	per_cpu(zswap_mutex, cpu) = NULL;
484 
485 	dst = per_cpu(zswap_dstmem, cpu);
486 	kfree(dst);
487 	per_cpu(zswap_dstmem, cpu) = NULL;
488 
489 	return 0;
490 }
491 
492 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
493 {
494 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
495 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
496 	struct crypto_acomp *acomp;
497 	struct acomp_req *req;
498 
499 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
500 	if (IS_ERR(acomp)) {
501 		pr_err("could not alloc crypto acomp %s : %ld\n",
502 				pool->tfm_name, PTR_ERR(acomp));
503 		return PTR_ERR(acomp);
504 	}
505 	acomp_ctx->acomp = acomp;
506 
507 	req = acomp_request_alloc(acomp_ctx->acomp);
508 	if (!req) {
509 		pr_err("could not alloc crypto acomp_request %s\n",
510 		       pool->tfm_name);
511 		crypto_free_acomp(acomp_ctx->acomp);
512 		return -ENOMEM;
513 	}
514 	acomp_ctx->req = req;
515 
516 	crypto_init_wait(&acomp_ctx->wait);
517 	/*
518 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
519 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
520 	 * won't be called, crypto_wait_req() will return without blocking.
521 	 */
522 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523 				   crypto_req_done, &acomp_ctx->wait);
524 
525 	acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
526 	acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
527 
528 	return 0;
529 }
530 
531 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
532 {
533 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
534 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
535 
536 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
537 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
538 			acomp_request_free(acomp_ctx->req);
539 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
540 			crypto_free_acomp(acomp_ctx->acomp);
541 	}
542 
543 	return 0;
544 }
545 
546 /*********************************
547 * pool functions
548 **********************************/
549 
550 static struct zswap_pool *__zswap_pool_current(void)
551 {
552 	struct zswap_pool *pool;
553 
554 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
555 	WARN_ONCE(!pool && zswap_has_pool,
556 		  "%s: no page storage pool!\n", __func__);
557 
558 	return pool;
559 }
560 
561 static struct zswap_pool *zswap_pool_current(void)
562 {
563 	assert_spin_locked(&zswap_pools_lock);
564 
565 	return __zswap_pool_current();
566 }
567 
568 static struct zswap_pool *zswap_pool_current_get(void)
569 {
570 	struct zswap_pool *pool;
571 
572 	rcu_read_lock();
573 
574 	pool = __zswap_pool_current();
575 	if (!zswap_pool_get(pool))
576 		pool = NULL;
577 
578 	rcu_read_unlock();
579 
580 	return pool;
581 }
582 
583 static struct zswap_pool *zswap_pool_last_get(void)
584 {
585 	struct zswap_pool *pool, *last = NULL;
586 
587 	rcu_read_lock();
588 
589 	list_for_each_entry_rcu(pool, &zswap_pools, list)
590 		last = pool;
591 	WARN_ONCE(!last && zswap_has_pool,
592 		  "%s: no page storage pool!\n", __func__);
593 	if (!zswap_pool_get(last))
594 		last = NULL;
595 
596 	rcu_read_unlock();
597 
598 	return last;
599 }
600 
601 /* type and compressor must be null-terminated */
602 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
603 {
604 	struct zswap_pool *pool;
605 
606 	assert_spin_locked(&zswap_pools_lock);
607 
608 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
609 		if (strcmp(pool->tfm_name, compressor))
610 			continue;
611 		/* all zpools share the same type */
612 		if (strcmp(zpool_get_type(pool->zpools[0]), type))
613 			continue;
614 		/* if we can't get it, it's about to be destroyed */
615 		if (!zswap_pool_get(pool))
616 			continue;
617 		return pool;
618 	}
619 
620 	return NULL;
621 }
622 
623 /*
624  * If the entry is still valid in the tree, drop the initial ref and remove it
625  * from the tree. This function must be called with an additional ref held,
626  * otherwise it may race with another invalidation freeing the entry.
627  */
628 static void zswap_invalidate_entry(struct zswap_tree *tree,
629 				   struct zswap_entry *entry)
630 {
631 	if (zswap_rb_erase(&tree->rbroot, entry))
632 		zswap_entry_put(tree, entry);
633 }
634 
635 static int zswap_reclaim_entry(struct zswap_pool *pool)
636 {
637 	struct zswap_entry *entry;
638 	struct zswap_tree *tree;
639 	pgoff_t swpoffset;
640 	int ret;
641 
642 	/* Get an entry off the LRU */
643 	spin_lock(&pool->lru_lock);
644 	if (list_empty(&pool->lru)) {
645 		spin_unlock(&pool->lru_lock);
646 		return -EINVAL;
647 	}
648 	entry = list_last_entry(&pool->lru, struct zswap_entry, lru);
649 	list_del_init(&entry->lru);
650 	/*
651 	 * Once the lru lock is dropped, the entry might get freed. The
652 	 * swpoffset is copied to the stack, and entry isn't deref'd again
653 	 * until the entry is verified to still be alive in the tree.
654 	 */
655 	swpoffset = swp_offset(entry->swpentry);
656 	tree = zswap_trees[swp_type(entry->swpentry)];
657 	spin_unlock(&pool->lru_lock);
658 
659 	/* Check for invalidate() race */
660 	spin_lock(&tree->lock);
661 	if (entry != zswap_rb_search(&tree->rbroot, swpoffset)) {
662 		ret = -EAGAIN;
663 		goto unlock;
664 	}
665 	/* Hold a reference to prevent a free during writeback */
666 	zswap_entry_get(entry);
667 	spin_unlock(&tree->lock);
668 
669 	ret = zswap_writeback_entry(entry, tree);
670 
671 	spin_lock(&tree->lock);
672 	if (ret) {
673 		/* Writeback failed, put entry back on LRU */
674 		spin_lock(&pool->lru_lock);
675 		list_move(&entry->lru, &pool->lru);
676 		spin_unlock(&pool->lru_lock);
677 		goto put_unlock;
678 	}
679 
680 	/*
681 	 * Writeback started successfully, the page now belongs to the
682 	 * swapcache. Drop the entry from zswap - unless invalidate already
683 	 * took it out while we had the tree->lock released for IO.
684 	 */
685 	zswap_invalidate_entry(tree, entry);
686 
687 put_unlock:
688 	/* Drop local reference */
689 	zswap_entry_put(tree, entry);
690 unlock:
691 	spin_unlock(&tree->lock);
692 	return ret ? -EAGAIN : 0;
693 }
694 
695 static void shrink_worker(struct work_struct *w)
696 {
697 	struct zswap_pool *pool = container_of(w, typeof(*pool),
698 						shrink_work);
699 	int ret, failures = 0;
700 
701 	do {
702 		ret = zswap_reclaim_entry(pool);
703 		if (ret) {
704 			zswap_reject_reclaim_fail++;
705 			if (ret != -EAGAIN)
706 				break;
707 			if (++failures == MAX_RECLAIM_RETRIES)
708 				break;
709 		}
710 		cond_resched();
711 	} while (!zswap_can_accept());
712 	zswap_pool_put(pool);
713 }
714 
715 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
716 {
717 	int i;
718 	struct zswap_pool *pool;
719 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
720 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
721 	int ret;
722 
723 	if (!zswap_has_pool) {
724 		/* if either are unset, pool initialization failed, and we
725 		 * need both params to be set correctly before trying to
726 		 * create a pool.
727 		 */
728 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
729 			return NULL;
730 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
731 			return NULL;
732 	}
733 
734 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
735 	if (!pool)
736 		return NULL;
737 
738 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
739 		/* unique name for each pool specifically required by zsmalloc */
740 		snprintf(name, 38, "zswap%x",
741 			 atomic_inc_return(&zswap_pools_count));
742 
743 		pool->zpools[i] = zpool_create_pool(type, name, gfp);
744 		if (!pool->zpools[i]) {
745 			pr_err("%s zpool not available\n", type);
746 			goto error;
747 		}
748 	}
749 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
750 
751 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
752 
753 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
754 	if (!pool->acomp_ctx) {
755 		pr_err("percpu alloc failed\n");
756 		goto error;
757 	}
758 
759 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
760 				       &pool->node);
761 	if (ret)
762 		goto error;
763 	pr_debug("using %s compressor\n", pool->tfm_name);
764 
765 	/* being the current pool takes 1 ref; this func expects the
766 	 * caller to always add the new pool as the current pool
767 	 */
768 	kref_init(&pool->kref);
769 	INIT_LIST_HEAD(&pool->list);
770 	INIT_LIST_HEAD(&pool->lru);
771 	spin_lock_init(&pool->lru_lock);
772 	INIT_WORK(&pool->shrink_work, shrink_worker);
773 
774 	zswap_pool_debug("created", pool);
775 
776 	return pool;
777 
778 error:
779 	if (pool->acomp_ctx)
780 		free_percpu(pool->acomp_ctx);
781 	while (i--)
782 		zpool_destroy_pool(pool->zpools[i]);
783 	kfree(pool);
784 	return NULL;
785 }
786 
787 static struct zswap_pool *__zswap_pool_create_fallback(void)
788 {
789 	bool has_comp, has_zpool;
790 
791 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
792 	if (!has_comp && strcmp(zswap_compressor,
793 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
794 		pr_err("compressor %s not available, using default %s\n",
795 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
796 		param_free_charp(&zswap_compressor);
797 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
798 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
799 	}
800 	if (!has_comp) {
801 		pr_err("default compressor %s not available\n",
802 		       zswap_compressor);
803 		param_free_charp(&zswap_compressor);
804 		zswap_compressor = ZSWAP_PARAM_UNSET;
805 	}
806 
807 	has_zpool = zpool_has_pool(zswap_zpool_type);
808 	if (!has_zpool && strcmp(zswap_zpool_type,
809 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
810 		pr_err("zpool %s not available, using default %s\n",
811 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
812 		param_free_charp(&zswap_zpool_type);
813 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
814 		has_zpool = zpool_has_pool(zswap_zpool_type);
815 	}
816 	if (!has_zpool) {
817 		pr_err("default zpool %s not available\n",
818 		       zswap_zpool_type);
819 		param_free_charp(&zswap_zpool_type);
820 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
821 	}
822 
823 	if (!has_comp || !has_zpool)
824 		return NULL;
825 
826 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
827 }
828 
829 static void zswap_pool_destroy(struct zswap_pool *pool)
830 {
831 	int i;
832 
833 	zswap_pool_debug("destroying", pool);
834 
835 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
836 	free_percpu(pool->acomp_ctx);
837 	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
838 		zpool_destroy_pool(pool->zpools[i]);
839 	kfree(pool);
840 }
841 
842 static int __must_check zswap_pool_get(struct zswap_pool *pool)
843 {
844 	if (!pool)
845 		return 0;
846 
847 	return kref_get_unless_zero(&pool->kref);
848 }
849 
850 static void __zswap_pool_release(struct work_struct *work)
851 {
852 	struct zswap_pool *pool = container_of(work, typeof(*pool),
853 						release_work);
854 
855 	synchronize_rcu();
856 
857 	/* nobody should have been able to get a kref... */
858 	WARN_ON(kref_get_unless_zero(&pool->kref));
859 
860 	/* pool is now off zswap_pools list and has no references. */
861 	zswap_pool_destroy(pool);
862 }
863 
864 static void __zswap_pool_empty(struct kref *kref)
865 {
866 	struct zswap_pool *pool;
867 
868 	pool = container_of(kref, typeof(*pool), kref);
869 
870 	spin_lock(&zswap_pools_lock);
871 
872 	WARN_ON(pool == zswap_pool_current());
873 
874 	list_del_rcu(&pool->list);
875 
876 	INIT_WORK(&pool->release_work, __zswap_pool_release);
877 	schedule_work(&pool->release_work);
878 
879 	spin_unlock(&zswap_pools_lock);
880 }
881 
882 static void zswap_pool_put(struct zswap_pool *pool)
883 {
884 	kref_put(&pool->kref, __zswap_pool_empty);
885 }
886 
887 /*********************************
888 * param callbacks
889 **********************************/
890 
891 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
892 {
893 	/* no change required */
894 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
895 		return false;
896 	return true;
897 }
898 
899 /* val must be a null-terminated string */
900 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
901 			     char *type, char *compressor)
902 {
903 	struct zswap_pool *pool, *put_pool = NULL;
904 	char *s = strstrip((char *)val);
905 	int ret = 0;
906 	bool new_pool = false;
907 
908 	mutex_lock(&zswap_init_lock);
909 	switch (zswap_init_state) {
910 	case ZSWAP_UNINIT:
911 		/* if this is load-time (pre-init) param setting,
912 		 * don't create a pool; that's done during init.
913 		 */
914 		ret = param_set_charp(s, kp);
915 		break;
916 	case ZSWAP_INIT_SUCCEED:
917 		new_pool = zswap_pool_changed(s, kp);
918 		break;
919 	case ZSWAP_INIT_FAILED:
920 		pr_err("can't set param, initialization failed\n");
921 		ret = -ENODEV;
922 	}
923 	mutex_unlock(&zswap_init_lock);
924 
925 	/* no need to create a new pool, return directly */
926 	if (!new_pool)
927 		return ret;
928 
929 	if (!type) {
930 		if (!zpool_has_pool(s)) {
931 			pr_err("zpool %s not available\n", s);
932 			return -ENOENT;
933 		}
934 		type = s;
935 	} else if (!compressor) {
936 		if (!crypto_has_acomp(s, 0, 0)) {
937 			pr_err("compressor %s not available\n", s);
938 			return -ENOENT;
939 		}
940 		compressor = s;
941 	} else {
942 		WARN_ON(1);
943 		return -EINVAL;
944 	}
945 
946 	spin_lock(&zswap_pools_lock);
947 
948 	pool = zswap_pool_find_get(type, compressor);
949 	if (pool) {
950 		zswap_pool_debug("using existing", pool);
951 		WARN_ON(pool == zswap_pool_current());
952 		list_del_rcu(&pool->list);
953 	}
954 
955 	spin_unlock(&zswap_pools_lock);
956 
957 	if (!pool)
958 		pool = zswap_pool_create(type, compressor);
959 
960 	if (pool)
961 		ret = param_set_charp(s, kp);
962 	else
963 		ret = -EINVAL;
964 
965 	spin_lock(&zswap_pools_lock);
966 
967 	if (!ret) {
968 		put_pool = zswap_pool_current();
969 		list_add_rcu(&pool->list, &zswap_pools);
970 		zswap_has_pool = true;
971 	} else if (pool) {
972 		/* add the possibly pre-existing pool to the end of the pools
973 		 * list; if it's new (and empty) then it'll be removed and
974 		 * destroyed by the put after we drop the lock
975 		 */
976 		list_add_tail_rcu(&pool->list, &zswap_pools);
977 		put_pool = pool;
978 	}
979 
980 	spin_unlock(&zswap_pools_lock);
981 
982 	if (!zswap_has_pool && !pool) {
983 		/* if initial pool creation failed, and this pool creation also
984 		 * failed, maybe both compressor and zpool params were bad.
985 		 * Allow changing this param, so pool creation will succeed
986 		 * when the other param is changed. We already verified this
987 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
988 		 * checks above.
989 		 */
990 		ret = param_set_charp(s, kp);
991 	}
992 
993 	/* drop the ref from either the old current pool,
994 	 * or the new pool we failed to add
995 	 */
996 	if (put_pool)
997 		zswap_pool_put(put_pool);
998 
999 	return ret;
1000 }
1001 
1002 static int zswap_compressor_param_set(const char *val,
1003 				      const struct kernel_param *kp)
1004 {
1005 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1006 }
1007 
1008 static int zswap_zpool_param_set(const char *val,
1009 				 const struct kernel_param *kp)
1010 {
1011 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
1012 }
1013 
1014 static int zswap_enabled_param_set(const char *val,
1015 				   const struct kernel_param *kp)
1016 {
1017 	int ret = -ENODEV;
1018 
1019 	/* if this is load-time (pre-init) param setting, only set param. */
1020 	if (system_state != SYSTEM_RUNNING)
1021 		return param_set_bool(val, kp);
1022 
1023 	mutex_lock(&zswap_init_lock);
1024 	switch (zswap_init_state) {
1025 	case ZSWAP_UNINIT:
1026 		if (zswap_setup())
1027 			break;
1028 		fallthrough;
1029 	case ZSWAP_INIT_SUCCEED:
1030 		if (!zswap_has_pool)
1031 			pr_err("can't enable, no pool configured\n");
1032 		else
1033 			ret = param_set_bool(val, kp);
1034 		break;
1035 	case ZSWAP_INIT_FAILED:
1036 		pr_err("can't enable, initialization failed\n");
1037 	}
1038 	mutex_unlock(&zswap_init_lock);
1039 
1040 	return ret;
1041 }
1042 
1043 /*********************************
1044 * writeback code
1045 **********************************/
1046 /*
1047  * Attempts to free an entry by adding a page to the swap cache,
1048  * decompressing the entry data into the page, and issuing a
1049  * bio write to write the page back to the swap device.
1050  *
1051  * This can be thought of as a "resumed writeback" of the page
1052  * to the swap device.  We are basically resuming the same swap
1053  * writeback path that was intercepted with the zswap_store()
1054  * in the first place.  After the page has been decompressed into
1055  * the swap cache, the compressed version stored by zswap can be
1056  * freed.
1057  */
1058 static int zswap_writeback_entry(struct zswap_entry *entry,
1059 				 struct zswap_tree *tree)
1060 {
1061 	swp_entry_t swpentry = entry->swpentry;
1062 	struct page *page;
1063 	struct mempolicy *mpol;
1064 	struct scatterlist input, output;
1065 	struct crypto_acomp_ctx *acomp_ctx;
1066 	struct zpool *pool = zswap_find_zpool(entry);
1067 	bool page_was_allocated;
1068 	u8 *src, *tmp = NULL;
1069 	unsigned int dlen;
1070 	int ret;
1071 	struct writeback_control wbc = {
1072 		.sync_mode = WB_SYNC_NONE,
1073 	};
1074 
1075 	if (!zpool_can_sleep_mapped(pool)) {
1076 		tmp = kmalloc(PAGE_SIZE, GFP_KERNEL);
1077 		if (!tmp)
1078 			return -ENOMEM;
1079 	}
1080 
1081 	/* try to allocate swap cache page */
1082 	mpol = get_task_policy(current);
1083 	page = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1084 				NO_INTERLEAVE_INDEX, &page_was_allocated);
1085 	if (!page) {
1086 		ret = -ENOMEM;
1087 		goto fail;
1088 	}
1089 
1090 	/* Found an existing page, we raced with load/swapin */
1091 	if (!page_was_allocated) {
1092 		put_page(page);
1093 		ret = -EEXIST;
1094 		goto fail;
1095 	}
1096 
1097 	/*
1098 	 * Page is locked, and the swapcache is now secured against
1099 	 * concurrent swapping to and from the slot. Verify that the
1100 	 * swap entry hasn't been invalidated and recycled behind our
1101 	 * backs (our zswap_entry reference doesn't prevent that), to
1102 	 * avoid overwriting a new swap page with old compressed data.
1103 	 */
1104 	spin_lock(&tree->lock);
1105 	if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
1106 		spin_unlock(&tree->lock);
1107 		delete_from_swap_cache(page_folio(page));
1108 		ret = -ENOMEM;
1109 		goto fail;
1110 	}
1111 	spin_unlock(&tree->lock);
1112 
1113 	/* decompress */
1114 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1115 	dlen = PAGE_SIZE;
1116 
1117 	src = zpool_map_handle(pool, entry->handle, ZPOOL_MM_RO);
1118 	if (!zpool_can_sleep_mapped(pool)) {
1119 		memcpy(tmp, src, entry->length);
1120 		src = tmp;
1121 		zpool_unmap_handle(pool, entry->handle);
1122 	}
1123 
1124 	mutex_lock(acomp_ctx->mutex);
1125 	sg_init_one(&input, src, entry->length);
1126 	sg_init_table(&output, 1);
1127 	sg_set_page(&output, page, PAGE_SIZE, 0);
1128 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1129 	ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1130 	dlen = acomp_ctx->req->dlen;
1131 	mutex_unlock(acomp_ctx->mutex);
1132 
1133 	if (!zpool_can_sleep_mapped(pool))
1134 		kfree(tmp);
1135 	else
1136 		zpool_unmap_handle(pool, entry->handle);
1137 
1138 	BUG_ON(ret);
1139 	BUG_ON(dlen != PAGE_SIZE);
1140 
1141 	/* page is up to date */
1142 	SetPageUptodate(page);
1143 
1144 	/* move it to the tail of the inactive list after end_writeback */
1145 	SetPageReclaim(page);
1146 
1147 	/* start writeback */
1148 	__swap_writepage(page, &wbc);
1149 	put_page(page);
1150 	zswap_written_back_pages++;
1151 
1152 	return ret;
1153 
1154 fail:
1155 	if (!zpool_can_sleep_mapped(pool))
1156 		kfree(tmp);
1157 
1158 	/*
1159 	 * If we get here because the page is already in swapcache, a
1160 	 * load may be happening concurrently. It is safe and okay to
1161 	 * not free the entry. It is also okay to return !0.
1162 	 */
1163 	return ret;
1164 }
1165 
1166 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1167 {
1168 	unsigned long *page;
1169 	unsigned long val;
1170 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1171 
1172 	page = (unsigned long *)ptr;
1173 	val = page[0];
1174 
1175 	if (val != page[last_pos])
1176 		return 0;
1177 
1178 	for (pos = 1; pos < last_pos; pos++) {
1179 		if (val != page[pos])
1180 			return 0;
1181 	}
1182 
1183 	*value = val;
1184 
1185 	return 1;
1186 }
1187 
1188 static void zswap_fill_page(void *ptr, unsigned long value)
1189 {
1190 	unsigned long *page;
1191 
1192 	page = (unsigned long *)ptr;
1193 	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1194 }
1195 
1196 bool zswap_store(struct folio *folio)
1197 {
1198 	swp_entry_t swp = folio->swap;
1199 	int type = swp_type(swp);
1200 	pgoff_t offset = swp_offset(swp);
1201 	struct page *page = &folio->page;
1202 	struct zswap_tree *tree = zswap_trees[type];
1203 	struct zswap_entry *entry, *dupentry;
1204 	struct scatterlist input, output;
1205 	struct crypto_acomp_ctx *acomp_ctx;
1206 	struct obj_cgroup *objcg = NULL;
1207 	struct zswap_pool *pool;
1208 	struct zpool *zpool;
1209 	unsigned int dlen = PAGE_SIZE;
1210 	unsigned long handle, value;
1211 	char *buf;
1212 	u8 *src, *dst;
1213 	gfp_t gfp;
1214 	int ret;
1215 
1216 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1217 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1218 
1219 	/* Large folios aren't supported */
1220 	if (folio_test_large(folio))
1221 		return false;
1222 
1223 	if (!zswap_enabled || !tree)
1224 		return false;
1225 
1226 	/*
1227 	 * If this is a duplicate, it must be removed before attempting to store
1228 	 * it, otherwise, if the store fails the old page won't be removed from
1229 	 * the tree, and it might be written back overriding the new data.
1230 	 */
1231 	spin_lock(&tree->lock);
1232 	dupentry = zswap_rb_search(&tree->rbroot, offset);
1233 	if (dupentry) {
1234 		zswap_duplicate_entry++;
1235 		zswap_invalidate_entry(tree, dupentry);
1236 	}
1237 	spin_unlock(&tree->lock);
1238 
1239 	/*
1240 	 * XXX: zswap reclaim does not work with cgroups yet. Without a
1241 	 * cgroup-aware entry LRU, we will push out entries system-wide based on
1242 	 * local cgroup limits.
1243 	 */
1244 	objcg = get_obj_cgroup_from_folio(folio);
1245 	if (objcg && !obj_cgroup_may_zswap(objcg))
1246 		goto reject;
1247 
1248 	/* reclaim space if needed */
1249 	if (zswap_is_full()) {
1250 		zswap_pool_limit_hit++;
1251 		zswap_pool_reached_full = true;
1252 		goto shrink;
1253 	}
1254 
1255 	if (zswap_pool_reached_full) {
1256 	       if (!zswap_can_accept())
1257 			goto shrink;
1258 		else
1259 			zswap_pool_reached_full = false;
1260 	}
1261 
1262 	/* allocate entry */
1263 	entry = zswap_entry_cache_alloc(GFP_KERNEL);
1264 	if (!entry) {
1265 		zswap_reject_kmemcache_fail++;
1266 		goto reject;
1267 	}
1268 
1269 	if (zswap_same_filled_pages_enabled) {
1270 		src = kmap_atomic(page);
1271 		if (zswap_is_page_same_filled(src, &value)) {
1272 			kunmap_atomic(src);
1273 			entry->swpentry = swp_entry(type, offset);
1274 			entry->length = 0;
1275 			entry->value = value;
1276 			atomic_inc(&zswap_same_filled_pages);
1277 			goto insert_entry;
1278 		}
1279 		kunmap_atomic(src);
1280 	}
1281 
1282 	if (!zswap_non_same_filled_pages_enabled)
1283 		goto freepage;
1284 
1285 	/* if entry is successfully added, it keeps the reference */
1286 	entry->pool = zswap_pool_current_get();
1287 	if (!entry->pool)
1288 		goto freepage;
1289 
1290 	/* compress */
1291 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1292 
1293 	mutex_lock(acomp_ctx->mutex);
1294 
1295 	dst = acomp_ctx->dstmem;
1296 	sg_init_table(&input, 1);
1297 	sg_set_page(&input, page, PAGE_SIZE, 0);
1298 
1299 	/* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1300 	sg_init_one(&output, dst, PAGE_SIZE * 2);
1301 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1302 	/*
1303 	 * it maybe looks a little bit silly that we send an asynchronous request,
1304 	 * then wait for its completion synchronously. This makes the process look
1305 	 * synchronous in fact.
1306 	 * Theoretically, acomp supports users send multiple acomp requests in one
1307 	 * acomp instance, then get those requests done simultaneously. but in this
1308 	 * case, zswap actually does store and load page by page, there is no
1309 	 * existing method to send the second page before the first page is done
1310 	 * in one thread doing zwap.
1311 	 * but in different threads running on different cpu, we have different
1312 	 * acomp instance, so multiple threads can do (de)compression in parallel.
1313 	 */
1314 	ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1315 	dlen = acomp_ctx->req->dlen;
1316 
1317 	if (ret) {
1318 		zswap_reject_compress_fail++;
1319 		goto put_dstmem;
1320 	}
1321 
1322 	/* store */
1323 	zpool = zswap_find_zpool(entry);
1324 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1325 	if (zpool_malloc_support_movable(zpool))
1326 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1327 	ret = zpool_malloc(zpool, dlen, gfp, &handle);
1328 	if (ret == -ENOSPC) {
1329 		zswap_reject_compress_poor++;
1330 		goto put_dstmem;
1331 	}
1332 	if (ret) {
1333 		zswap_reject_alloc_fail++;
1334 		goto put_dstmem;
1335 	}
1336 	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1337 	memcpy(buf, dst, dlen);
1338 	zpool_unmap_handle(zpool, handle);
1339 	mutex_unlock(acomp_ctx->mutex);
1340 
1341 	/* populate entry */
1342 	entry->swpentry = swp_entry(type, offset);
1343 	entry->handle = handle;
1344 	entry->length = dlen;
1345 
1346 insert_entry:
1347 	entry->objcg = objcg;
1348 	if (objcg) {
1349 		obj_cgroup_charge_zswap(objcg, entry->length);
1350 		/* Account before objcg ref is moved to tree */
1351 		count_objcg_event(objcg, ZSWPOUT);
1352 	}
1353 
1354 	/* map */
1355 	spin_lock(&tree->lock);
1356 	/*
1357 	 * A duplicate entry should have been removed at the beginning of this
1358 	 * function. Since the swap entry should be pinned, if a duplicate is
1359 	 * found again here it means that something went wrong in the swap
1360 	 * cache.
1361 	 */
1362 	while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1363 		WARN_ON(1);
1364 		zswap_duplicate_entry++;
1365 		zswap_invalidate_entry(tree, dupentry);
1366 	}
1367 	if (entry->length) {
1368 		spin_lock(&entry->pool->lru_lock);
1369 		list_add(&entry->lru, &entry->pool->lru);
1370 		spin_unlock(&entry->pool->lru_lock);
1371 	}
1372 	spin_unlock(&tree->lock);
1373 
1374 	/* update stats */
1375 	atomic_inc(&zswap_stored_pages);
1376 	zswap_update_total_size();
1377 	count_vm_event(ZSWPOUT);
1378 
1379 	return true;
1380 
1381 put_dstmem:
1382 	mutex_unlock(acomp_ctx->mutex);
1383 	zswap_pool_put(entry->pool);
1384 freepage:
1385 	zswap_entry_cache_free(entry);
1386 reject:
1387 	if (objcg)
1388 		obj_cgroup_put(objcg);
1389 	return false;
1390 
1391 shrink:
1392 	pool = zswap_pool_last_get();
1393 	if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1394 		zswap_pool_put(pool);
1395 	goto reject;
1396 }
1397 
1398 bool zswap_load(struct folio *folio)
1399 {
1400 	swp_entry_t swp = folio->swap;
1401 	int type = swp_type(swp);
1402 	pgoff_t offset = swp_offset(swp);
1403 	struct page *page = &folio->page;
1404 	struct zswap_tree *tree = zswap_trees[type];
1405 	struct zswap_entry *entry;
1406 	struct scatterlist input, output;
1407 	struct crypto_acomp_ctx *acomp_ctx;
1408 	u8 *src, *dst, *tmp;
1409 	struct zpool *zpool;
1410 	unsigned int dlen;
1411 	bool ret;
1412 
1413 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1414 
1415 	/* find */
1416 	spin_lock(&tree->lock);
1417 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1418 	if (!entry) {
1419 		spin_unlock(&tree->lock);
1420 		return false;
1421 	}
1422 	spin_unlock(&tree->lock);
1423 
1424 	if (!entry->length) {
1425 		dst = kmap_atomic(page);
1426 		zswap_fill_page(dst, entry->value);
1427 		kunmap_atomic(dst);
1428 		ret = true;
1429 		goto stats;
1430 	}
1431 
1432 	zpool = zswap_find_zpool(entry);
1433 	if (!zpool_can_sleep_mapped(zpool)) {
1434 		tmp = kmalloc(entry->length, GFP_KERNEL);
1435 		if (!tmp) {
1436 			ret = false;
1437 			goto freeentry;
1438 		}
1439 	}
1440 
1441 	/* decompress */
1442 	dlen = PAGE_SIZE;
1443 	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1444 
1445 	if (!zpool_can_sleep_mapped(zpool)) {
1446 		memcpy(tmp, src, entry->length);
1447 		src = tmp;
1448 		zpool_unmap_handle(zpool, entry->handle);
1449 	}
1450 
1451 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1452 	mutex_lock(acomp_ctx->mutex);
1453 	sg_init_one(&input, src, entry->length);
1454 	sg_init_table(&output, 1);
1455 	sg_set_page(&output, page, PAGE_SIZE, 0);
1456 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1457 	if (crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait))
1458 		WARN_ON(1);
1459 	mutex_unlock(acomp_ctx->mutex);
1460 
1461 	if (zpool_can_sleep_mapped(zpool))
1462 		zpool_unmap_handle(zpool, entry->handle);
1463 	else
1464 		kfree(tmp);
1465 
1466 	ret = true;
1467 stats:
1468 	count_vm_event(ZSWPIN);
1469 	if (entry->objcg)
1470 		count_objcg_event(entry->objcg, ZSWPIN);
1471 freeentry:
1472 	spin_lock(&tree->lock);
1473 	if (ret && zswap_exclusive_loads_enabled) {
1474 		zswap_invalidate_entry(tree, entry);
1475 		folio_mark_dirty(folio);
1476 	} else if (entry->length) {
1477 		spin_lock(&entry->pool->lru_lock);
1478 		list_move(&entry->lru, &entry->pool->lru);
1479 		spin_unlock(&entry->pool->lru_lock);
1480 	}
1481 	zswap_entry_put(tree, entry);
1482 	spin_unlock(&tree->lock);
1483 
1484 	return ret;
1485 }
1486 
1487 void zswap_invalidate(int type, pgoff_t offset)
1488 {
1489 	struct zswap_tree *tree = zswap_trees[type];
1490 	struct zswap_entry *entry;
1491 
1492 	/* find */
1493 	spin_lock(&tree->lock);
1494 	entry = zswap_rb_search(&tree->rbroot, offset);
1495 	if (!entry) {
1496 		/* entry was written back */
1497 		spin_unlock(&tree->lock);
1498 		return;
1499 	}
1500 	zswap_invalidate_entry(tree, entry);
1501 	spin_unlock(&tree->lock);
1502 }
1503 
1504 void zswap_swapon(int type)
1505 {
1506 	struct zswap_tree *tree;
1507 
1508 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1509 	if (!tree) {
1510 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1511 		return;
1512 	}
1513 
1514 	tree->rbroot = RB_ROOT;
1515 	spin_lock_init(&tree->lock);
1516 	zswap_trees[type] = tree;
1517 }
1518 
1519 void zswap_swapoff(int type)
1520 {
1521 	struct zswap_tree *tree = zswap_trees[type];
1522 	struct zswap_entry *entry, *n;
1523 
1524 	if (!tree)
1525 		return;
1526 
1527 	/* walk the tree and free everything */
1528 	spin_lock(&tree->lock);
1529 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1530 		zswap_free_entry(entry);
1531 	tree->rbroot = RB_ROOT;
1532 	spin_unlock(&tree->lock);
1533 	kfree(tree);
1534 	zswap_trees[type] = NULL;
1535 }
1536 
1537 /*********************************
1538 * debugfs functions
1539 **********************************/
1540 #ifdef CONFIG_DEBUG_FS
1541 #include <linux/debugfs.h>
1542 
1543 static struct dentry *zswap_debugfs_root;
1544 
1545 static int zswap_debugfs_init(void)
1546 {
1547 	if (!debugfs_initialized())
1548 		return -ENODEV;
1549 
1550 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1551 
1552 	debugfs_create_u64("pool_limit_hit", 0444,
1553 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1554 	debugfs_create_u64("reject_reclaim_fail", 0444,
1555 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1556 	debugfs_create_u64("reject_alloc_fail", 0444,
1557 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1558 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1559 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1560 	debugfs_create_u64("reject_compress_fail", 0444,
1561 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1562 	debugfs_create_u64("reject_compress_poor", 0444,
1563 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1564 	debugfs_create_u64("written_back_pages", 0444,
1565 			   zswap_debugfs_root, &zswap_written_back_pages);
1566 	debugfs_create_u64("duplicate_entry", 0444,
1567 			   zswap_debugfs_root, &zswap_duplicate_entry);
1568 	debugfs_create_u64("pool_total_size", 0444,
1569 			   zswap_debugfs_root, &zswap_pool_total_size);
1570 	debugfs_create_atomic_t("stored_pages", 0444,
1571 				zswap_debugfs_root, &zswap_stored_pages);
1572 	debugfs_create_atomic_t("same_filled_pages", 0444,
1573 				zswap_debugfs_root, &zswap_same_filled_pages);
1574 
1575 	return 0;
1576 }
1577 #else
1578 static int zswap_debugfs_init(void)
1579 {
1580 	return 0;
1581 }
1582 #endif
1583 
1584 /*********************************
1585 * module init and exit
1586 **********************************/
1587 static int zswap_setup(void)
1588 {
1589 	struct zswap_pool *pool;
1590 	int ret;
1591 
1592 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1593 	if (!zswap_entry_cache) {
1594 		pr_err("entry cache creation failed\n");
1595 		goto cache_fail;
1596 	}
1597 
1598 	ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1599 				zswap_dstmem_prepare, zswap_dstmem_dead);
1600 	if (ret) {
1601 		pr_err("dstmem alloc failed\n");
1602 		goto dstmem_fail;
1603 	}
1604 
1605 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1606 				      "mm/zswap_pool:prepare",
1607 				      zswap_cpu_comp_prepare,
1608 				      zswap_cpu_comp_dead);
1609 	if (ret)
1610 		goto hp_fail;
1611 
1612 	pool = __zswap_pool_create_fallback();
1613 	if (pool) {
1614 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1615 			zpool_get_type(pool->zpools[0]));
1616 		list_add(&pool->list, &zswap_pools);
1617 		zswap_has_pool = true;
1618 	} else {
1619 		pr_err("pool creation failed\n");
1620 		zswap_enabled = false;
1621 	}
1622 
1623 	shrink_wq = create_workqueue("zswap-shrink");
1624 	if (!shrink_wq)
1625 		goto fallback_fail;
1626 
1627 	if (zswap_debugfs_init())
1628 		pr_warn("debugfs initialization failed\n");
1629 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1630 	return 0;
1631 
1632 fallback_fail:
1633 	if (pool)
1634 		zswap_pool_destroy(pool);
1635 hp_fail:
1636 	cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1637 dstmem_fail:
1638 	kmem_cache_destroy(zswap_entry_cache);
1639 cache_fail:
1640 	/* if built-in, we aren't unloaded on failure; don't allow use */
1641 	zswap_init_state = ZSWAP_INIT_FAILED;
1642 	zswap_enabled = false;
1643 	return -ENOMEM;
1644 }
1645 
1646 static int __init zswap_init(void)
1647 {
1648 	if (!zswap_enabled)
1649 		return 0;
1650 	return zswap_setup();
1651 }
1652 /* must be late so crypto has time to come up */
1653 late_initcall(zswap_init);
1654 
1655 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1656 MODULE_DESCRIPTION("Compressed cache for swap pages");
1657