1 /* 2 * zswap.c - zswap driver file 3 * 4 * zswap is a backend for frontswap that takes pages that are in the process 5 * of being swapped out and attempts to compress and store them in a 6 * RAM-based memory pool. This can result in a significant I/O reduction on 7 * the swap device and, in the case where decompressing from RAM is faster 8 * than reading from the swap device, can also improve workload performance. 9 * 10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 2 15 * of the License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 */ 22 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/module.h> 26 #include <linux/cpu.h> 27 #include <linux/highmem.h> 28 #include <linux/slab.h> 29 #include <linux/spinlock.h> 30 #include <linux/types.h> 31 #include <linux/atomic.h> 32 #include <linux/frontswap.h> 33 #include <linux/rbtree.h> 34 #include <linux/swap.h> 35 #include <linux/crypto.h> 36 #include <linux/mempool.h> 37 #include <linux/zpool.h> 38 39 #include <linux/mm_types.h> 40 #include <linux/page-flags.h> 41 #include <linux/swapops.h> 42 #include <linux/writeback.h> 43 #include <linux/pagemap.h> 44 45 /********************************* 46 * statistics 47 **********************************/ 48 /* Total bytes used by the compressed storage */ 49 static u64 zswap_pool_total_size; 50 /* The number of compressed pages currently stored in zswap */ 51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0); 52 53 /* 54 * The statistics below are not protected from concurrent access for 55 * performance reasons so they may not be a 100% accurate. However, 56 * they do provide useful information on roughly how many times a 57 * certain event is occurring. 58 */ 59 60 /* Pool limit was hit (see zswap_max_pool_percent) */ 61 static u64 zswap_pool_limit_hit; 62 /* Pages written back when pool limit was reached */ 63 static u64 zswap_written_back_pages; 64 /* Store failed due to a reclaim failure after pool limit was reached */ 65 static u64 zswap_reject_reclaim_fail; 66 /* Compressed page was too big for the allocator to (optimally) store */ 67 static u64 zswap_reject_compress_poor; 68 /* Store failed because underlying allocator could not get memory */ 69 static u64 zswap_reject_alloc_fail; 70 /* Store failed because the entry metadata could not be allocated (rare) */ 71 static u64 zswap_reject_kmemcache_fail; 72 /* Duplicate store was encountered (rare) */ 73 static u64 zswap_duplicate_entry; 74 75 /********************************* 76 * tunables 77 **********************************/ 78 79 /* Enable/disable zswap (disabled by default) */ 80 static bool zswap_enabled; 81 module_param_named(enabled, zswap_enabled, bool, 0644); 82 83 /* Crypto compressor to use */ 84 #define ZSWAP_COMPRESSOR_DEFAULT "lzo" 85 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; 86 static int zswap_compressor_param_set(const char *, 87 const struct kernel_param *); 88 static struct kernel_param_ops zswap_compressor_param_ops = { 89 .set = zswap_compressor_param_set, 90 .get = param_get_charp, 91 .free = param_free_charp, 92 }; 93 module_param_cb(compressor, &zswap_compressor_param_ops, 94 &zswap_compressor, 0644); 95 96 /* Compressed storage zpool to use */ 97 #define ZSWAP_ZPOOL_DEFAULT "zbud" 98 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT; 99 static int zswap_zpool_param_set(const char *, const struct kernel_param *); 100 static struct kernel_param_ops zswap_zpool_param_ops = { 101 .set = zswap_zpool_param_set, 102 .get = param_get_charp, 103 .free = param_free_charp, 104 }; 105 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); 106 107 /* The maximum percentage of memory that the compressed pool can occupy */ 108 static unsigned int zswap_max_pool_percent = 20; 109 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 110 111 /********************************* 112 * data structures 113 **********************************/ 114 115 struct zswap_pool { 116 struct zpool *zpool; 117 struct crypto_comp * __percpu *tfm; 118 struct kref kref; 119 struct list_head list; 120 struct rcu_head rcu_head; 121 struct notifier_block notifier; 122 char tfm_name[CRYPTO_MAX_ALG_NAME]; 123 }; 124 125 /* 126 * struct zswap_entry 127 * 128 * This structure contains the metadata for tracking a single compressed 129 * page within zswap. 130 * 131 * rbnode - links the entry into red-black tree for the appropriate swap type 132 * offset - the swap offset for the entry. Index into the red-black tree. 133 * refcount - the number of outstanding reference to the entry. This is needed 134 * to protect against premature freeing of the entry by code 135 * concurrent calls to load, invalidate, and writeback. The lock 136 * for the zswap_tree structure that contains the entry must 137 * be held while changing the refcount. Since the lock must 138 * be held, there is no reason to also make refcount atomic. 139 * length - the length in bytes of the compressed page data. Needed during 140 * decompression 141 * pool - the zswap_pool the entry's data is in 142 * handle - zpool allocation handle that stores the compressed page data 143 */ 144 struct zswap_entry { 145 struct rb_node rbnode; 146 pgoff_t offset; 147 int refcount; 148 unsigned int length; 149 struct zswap_pool *pool; 150 unsigned long handle; 151 }; 152 153 struct zswap_header { 154 swp_entry_t swpentry; 155 }; 156 157 /* 158 * The tree lock in the zswap_tree struct protects a few things: 159 * - the rbtree 160 * - the refcount field of each entry in the tree 161 */ 162 struct zswap_tree { 163 struct rb_root rbroot; 164 spinlock_t lock; 165 }; 166 167 static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; 168 169 /* RCU-protected iteration */ 170 static LIST_HEAD(zswap_pools); 171 /* protects zswap_pools list modification */ 172 static DEFINE_SPINLOCK(zswap_pools_lock); 173 174 /* used by param callback function */ 175 static bool zswap_init_started; 176 177 /********************************* 178 * helpers and fwd declarations 179 **********************************/ 180 181 #define zswap_pool_debug(msg, p) \ 182 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \ 183 zpool_get_type((p)->zpool)) 184 185 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle); 186 static int zswap_pool_get(struct zswap_pool *pool); 187 static void zswap_pool_put(struct zswap_pool *pool); 188 189 static const struct zpool_ops zswap_zpool_ops = { 190 .evict = zswap_writeback_entry 191 }; 192 193 static bool zswap_is_full(void) 194 { 195 return totalram_pages * zswap_max_pool_percent / 100 < 196 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); 197 } 198 199 static void zswap_update_total_size(void) 200 { 201 struct zswap_pool *pool; 202 u64 total = 0; 203 204 rcu_read_lock(); 205 206 list_for_each_entry_rcu(pool, &zswap_pools, list) 207 total += zpool_get_total_size(pool->zpool); 208 209 rcu_read_unlock(); 210 211 zswap_pool_total_size = total; 212 } 213 214 /********************************* 215 * zswap entry functions 216 **********************************/ 217 static struct kmem_cache *zswap_entry_cache; 218 219 static int __init zswap_entry_cache_create(void) 220 { 221 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 222 return zswap_entry_cache == NULL; 223 } 224 225 static void __init zswap_entry_cache_destroy(void) 226 { 227 kmem_cache_destroy(zswap_entry_cache); 228 } 229 230 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) 231 { 232 struct zswap_entry *entry; 233 entry = kmem_cache_alloc(zswap_entry_cache, gfp); 234 if (!entry) 235 return NULL; 236 entry->refcount = 1; 237 RB_CLEAR_NODE(&entry->rbnode); 238 return entry; 239 } 240 241 static void zswap_entry_cache_free(struct zswap_entry *entry) 242 { 243 kmem_cache_free(zswap_entry_cache, entry); 244 } 245 246 /********************************* 247 * rbtree functions 248 **********************************/ 249 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) 250 { 251 struct rb_node *node = root->rb_node; 252 struct zswap_entry *entry; 253 254 while (node) { 255 entry = rb_entry(node, struct zswap_entry, rbnode); 256 if (entry->offset > offset) 257 node = node->rb_left; 258 else if (entry->offset < offset) 259 node = node->rb_right; 260 else 261 return entry; 262 } 263 return NULL; 264 } 265 266 /* 267 * In the case that a entry with the same offset is found, a pointer to 268 * the existing entry is stored in dupentry and the function returns -EEXIST 269 */ 270 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, 271 struct zswap_entry **dupentry) 272 { 273 struct rb_node **link = &root->rb_node, *parent = NULL; 274 struct zswap_entry *myentry; 275 276 while (*link) { 277 parent = *link; 278 myentry = rb_entry(parent, struct zswap_entry, rbnode); 279 if (myentry->offset > entry->offset) 280 link = &(*link)->rb_left; 281 else if (myentry->offset < entry->offset) 282 link = &(*link)->rb_right; 283 else { 284 *dupentry = myentry; 285 return -EEXIST; 286 } 287 } 288 rb_link_node(&entry->rbnode, parent, link); 289 rb_insert_color(&entry->rbnode, root); 290 return 0; 291 } 292 293 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry) 294 { 295 if (!RB_EMPTY_NODE(&entry->rbnode)) { 296 rb_erase(&entry->rbnode, root); 297 RB_CLEAR_NODE(&entry->rbnode); 298 } 299 } 300 301 /* 302 * Carries out the common pattern of freeing and entry's zpool allocation, 303 * freeing the entry itself, and decrementing the number of stored pages. 304 */ 305 static void zswap_free_entry(struct zswap_entry *entry) 306 { 307 zpool_free(entry->pool->zpool, entry->handle); 308 zswap_pool_put(entry->pool); 309 zswap_entry_cache_free(entry); 310 atomic_dec(&zswap_stored_pages); 311 zswap_update_total_size(); 312 } 313 314 /* caller must hold the tree lock */ 315 static void zswap_entry_get(struct zswap_entry *entry) 316 { 317 entry->refcount++; 318 } 319 320 /* caller must hold the tree lock 321 * remove from the tree and free it, if nobody reference the entry 322 */ 323 static void zswap_entry_put(struct zswap_tree *tree, 324 struct zswap_entry *entry) 325 { 326 int refcount = --entry->refcount; 327 328 BUG_ON(refcount < 0); 329 if (refcount == 0) { 330 zswap_rb_erase(&tree->rbroot, entry); 331 zswap_free_entry(entry); 332 } 333 } 334 335 /* caller must hold the tree lock */ 336 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, 337 pgoff_t offset) 338 { 339 struct zswap_entry *entry; 340 341 entry = zswap_rb_search(root, offset); 342 if (entry) 343 zswap_entry_get(entry); 344 345 return entry; 346 } 347 348 /********************************* 349 * per-cpu code 350 **********************************/ 351 static DEFINE_PER_CPU(u8 *, zswap_dstmem); 352 353 static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu) 354 { 355 u8 *dst; 356 357 switch (action) { 358 case CPU_UP_PREPARE: 359 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); 360 if (!dst) { 361 pr_err("can't allocate compressor buffer\n"); 362 return NOTIFY_BAD; 363 } 364 per_cpu(zswap_dstmem, cpu) = dst; 365 break; 366 case CPU_DEAD: 367 case CPU_UP_CANCELED: 368 dst = per_cpu(zswap_dstmem, cpu); 369 kfree(dst); 370 per_cpu(zswap_dstmem, cpu) = NULL; 371 break; 372 default: 373 break; 374 } 375 return NOTIFY_OK; 376 } 377 378 static int zswap_cpu_dstmem_notifier(struct notifier_block *nb, 379 unsigned long action, void *pcpu) 380 { 381 return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu); 382 } 383 384 static struct notifier_block zswap_dstmem_notifier = { 385 .notifier_call = zswap_cpu_dstmem_notifier, 386 }; 387 388 static int __init zswap_cpu_dstmem_init(void) 389 { 390 unsigned long cpu; 391 392 cpu_notifier_register_begin(); 393 for_each_online_cpu(cpu) 394 if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) == 395 NOTIFY_BAD) 396 goto cleanup; 397 __register_cpu_notifier(&zswap_dstmem_notifier); 398 cpu_notifier_register_done(); 399 return 0; 400 401 cleanup: 402 for_each_online_cpu(cpu) 403 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu); 404 cpu_notifier_register_done(); 405 return -ENOMEM; 406 } 407 408 static void zswap_cpu_dstmem_destroy(void) 409 { 410 unsigned long cpu; 411 412 cpu_notifier_register_begin(); 413 for_each_online_cpu(cpu) 414 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu); 415 __unregister_cpu_notifier(&zswap_dstmem_notifier); 416 cpu_notifier_register_done(); 417 } 418 419 static int __zswap_cpu_comp_notifier(struct zswap_pool *pool, 420 unsigned long action, unsigned long cpu) 421 { 422 struct crypto_comp *tfm; 423 424 switch (action) { 425 case CPU_UP_PREPARE: 426 if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu))) 427 break; 428 tfm = crypto_alloc_comp(pool->tfm_name, 0, 0); 429 if (IS_ERR_OR_NULL(tfm)) { 430 pr_err("could not alloc crypto comp %s : %ld\n", 431 pool->tfm_name, PTR_ERR(tfm)); 432 return NOTIFY_BAD; 433 } 434 *per_cpu_ptr(pool->tfm, cpu) = tfm; 435 break; 436 case CPU_DEAD: 437 case CPU_UP_CANCELED: 438 tfm = *per_cpu_ptr(pool->tfm, cpu); 439 if (!IS_ERR_OR_NULL(tfm)) 440 crypto_free_comp(tfm); 441 *per_cpu_ptr(pool->tfm, cpu) = NULL; 442 break; 443 default: 444 break; 445 } 446 return NOTIFY_OK; 447 } 448 449 static int zswap_cpu_comp_notifier(struct notifier_block *nb, 450 unsigned long action, void *pcpu) 451 { 452 unsigned long cpu = (unsigned long)pcpu; 453 struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier); 454 455 return __zswap_cpu_comp_notifier(pool, action, cpu); 456 } 457 458 static int zswap_cpu_comp_init(struct zswap_pool *pool) 459 { 460 unsigned long cpu; 461 462 memset(&pool->notifier, 0, sizeof(pool->notifier)); 463 pool->notifier.notifier_call = zswap_cpu_comp_notifier; 464 465 cpu_notifier_register_begin(); 466 for_each_online_cpu(cpu) 467 if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) == 468 NOTIFY_BAD) 469 goto cleanup; 470 __register_cpu_notifier(&pool->notifier); 471 cpu_notifier_register_done(); 472 return 0; 473 474 cleanup: 475 for_each_online_cpu(cpu) 476 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu); 477 cpu_notifier_register_done(); 478 return -ENOMEM; 479 } 480 481 static void zswap_cpu_comp_destroy(struct zswap_pool *pool) 482 { 483 unsigned long cpu; 484 485 cpu_notifier_register_begin(); 486 for_each_online_cpu(cpu) 487 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu); 488 __unregister_cpu_notifier(&pool->notifier); 489 cpu_notifier_register_done(); 490 } 491 492 /********************************* 493 * pool functions 494 **********************************/ 495 496 static struct zswap_pool *__zswap_pool_current(void) 497 { 498 struct zswap_pool *pool; 499 500 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 501 WARN_ON(!pool); 502 503 return pool; 504 } 505 506 static struct zswap_pool *zswap_pool_current(void) 507 { 508 assert_spin_locked(&zswap_pools_lock); 509 510 return __zswap_pool_current(); 511 } 512 513 static struct zswap_pool *zswap_pool_current_get(void) 514 { 515 struct zswap_pool *pool; 516 517 rcu_read_lock(); 518 519 pool = __zswap_pool_current(); 520 if (!pool || !zswap_pool_get(pool)) 521 pool = NULL; 522 523 rcu_read_unlock(); 524 525 return pool; 526 } 527 528 static struct zswap_pool *zswap_pool_last_get(void) 529 { 530 struct zswap_pool *pool, *last = NULL; 531 532 rcu_read_lock(); 533 534 list_for_each_entry_rcu(pool, &zswap_pools, list) 535 last = pool; 536 if (!WARN_ON(!last) && !zswap_pool_get(last)) 537 last = NULL; 538 539 rcu_read_unlock(); 540 541 return last; 542 } 543 544 /* type and compressor must be null-terminated */ 545 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) 546 { 547 struct zswap_pool *pool; 548 549 assert_spin_locked(&zswap_pools_lock); 550 551 list_for_each_entry_rcu(pool, &zswap_pools, list) { 552 if (strcmp(pool->tfm_name, compressor)) 553 continue; 554 if (strcmp(zpool_get_type(pool->zpool), type)) 555 continue; 556 /* if we can't get it, it's about to be destroyed */ 557 if (!zswap_pool_get(pool)) 558 continue; 559 return pool; 560 } 561 562 return NULL; 563 } 564 565 static struct zswap_pool *zswap_pool_create(char *type, char *compressor) 566 { 567 struct zswap_pool *pool; 568 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; 569 570 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 571 if (!pool) { 572 pr_err("pool alloc failed\n"); 573 return NULL; 574 } 575 576 pool->zpool = zpool_create_pool(type, "zswap", gfp, &zswap_zpool_ops); 577 if (!pool->zpool) { 578 pr_err("%s zpool not available\n", type); 579 goto error; 580 } 581 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); 582 583 strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 584 pool->tfm = alloc_percpu(struct crypto_comp *); 585 if (!pool->tfm) { 586 pr_err("percpu alloc failed\n"); 587 goto error; 588 } 589 590 if (zswap_cpu_comp_init(pool)) 591 goto error; 592 pr_debug("using %s compressor\n", pool->tfm_name); 593 594 /* being the current pool takes 1 ref; this func expects the 595 * caller to always add the new pool as the current pool 596 */ 597 kref_init(&pool->kref); 598 INIT_LIST_HEAD(&pool->list); 599 600 zswap_pool_debug("created", pool); 601 602 return pool; 603 604 error: 605 free_percpu(pool->tfm); 606 if (pool->zpool) 607 zpool_destroy_pool(pool->zpool); 608 kfree(pool); 609 return NULL; 610 } 611 612 static __init struct zswap_pool *__zswap_pool_create_fallback(void) 613 { 614 if (!crypto_has_comp(zswap_compressor, 0, 0)) { 615 if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) { 616 pr_err("default compressor %s not available\n", 617 zswap_compressor); 618 return NULL; 619 } 620 pr_err("compressor %s not available, using default %s\n", 621 zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT); 622 param_free_charp(&zswap_compressor); 623 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; 624 } 625 if (!zpool_has_pool(zswap_zpool_type)) { 626 if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) { 627 pr_err("default zpool %s not available\n", 628 zswap_zpool_type); 629 return NULL; 630 } 631 pr_err("zpool %s not available, using default %s\n", 632 zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT); 633 param_free_charp(&zswap_zpool_type); 634 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT; 635 } 636 637 return zswap_pool_create(zswap_zpool_type, zswap_compressor); 638 } 639 640 static void zswap_pool_destroy(struct zswap_pool *pool) 641 { 642 zswap_pool_debug("destroying", pool); 643 644 zswap_cpu_comp_destroy(pool); 645 free_percpu(pool->tfm); 646 zpool_destroy_pool(pool->zpool); 647 kfree(pool); 648 } 649 650 static int __must_check zswap_pool_get(struct zswap_pool *pool) 651 { 652 return kref_get_unless_zero(&pool->kref); 653 } 654 655 static void __zswap_pool_release(struct rcu_head *head) 656 { 657 struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head); 658 659 /* nobody should have been able to get a kref... */ 660 WARN_ON(kref_get_unless_zero(&pool->kref)); 661 662 /* pool is now off zswap_pools list and has no references. */ 663 zswap_pool_destroy(pool); 664 } 665 666 static void __zswap_pool_empty(struct kref *kref) 667 { 668 struct zswap_pool *pool; 669 670 pool = container_of(kref, typeof(*pool), kref); 671 672 spin_lock(&zswap_pools_lock); 673 674 WARN_ON(pool == zswap_pool_current()); 675 676 list_del_rcu(&pool->list); 677 call_rcu(&pool->rcu_head, __zswap_pool_release); 678 679 spin_unlock(&zswap_pools_lock); 680 } 681 682 static void zswap_pool_put(struct zswap_pool *pool) 683 { 684 kref_put(&pool->kref, __zswap_pool_empty); 685 } 686 687 /********************************* 688 * param callbacks 689 **********************************/ 690 691 /* val must be a null-terminated string */ 692 static int __zswap_param_set(const char *val, const struct kernel_param *kp, 693 char *type, char *compressor) 694 { 695 struct zswap_pool *pool, *put_pool = NULL; 696 char *s = strstrip((char *)val); 697 int ret; 698 699 /* no change required */ 700 if (!strcmp(s, *(char **)kp->arg)) 701 return 0; 702 703 /* if this is load-time (pre-init) param setting, 704 * don't create a pool; that's done during init. 705 */ 706 if (!zswap_init_started) 707 return param_set_charp(s, kp); 708 709 if (!type) { 710 if (!zpool_has_pool(s)) { 711 pr_err("zpool %s not available\n", s); 712 return -ENOENT; 713 } 714 type = s; 715 } else if (!compressor) { 716 if (!crypto_has_comp(s, 0, 0)) { 717 pr_err("compressor %s not available\n", s); 718 return -ENOENT; 719 } 720 compressor = s; 721 } else { 722 WARN_ON(1); 723 return -EINVAL; 724 } 725 726 spin_lock(&zswap_pools_lock); 727 728 pool = zswap_pool_find_get(type, compressor); 729 if (pool) { 730 zswap_pool_debug("using existing", pool); 731 list_del_rcu(&pool->list); 732 } else { 733 spin_unlock(&zswap_pools_lock); 734 pool = zswap_pool_create(type, compressor); 735 spin_lock(&zswap_pools_lock); 736 } 737 738 if (pool) 739 ret = param_set_charp(s, kp); 740 else 741 ret = -EINVAL; 742 743 if (!ret) { 744 put_pool = zswap_pool_current(); 745 list_add_rcu(&pool->list, &zswap_pools); 746 } else if (pool) { 747 /* add the possibly pre-existing pool to the end of the pools 748 * list; if it's new (and empty) then it'll be removed and 749 * destroyed by the put after we drop the lock 750 */ 751 list_add_tail_rcu(&pool->list, &zswap_pools); 752 put_pool = pool; 753 } 754 755 spin_unlock(&zswap_pools_lock); 756 757 /* drop the ref from either the old current pool, 758 * or the new pool we failed to add 759 */ 760 if (put_pool) 761 zswap_pool_put(put_pool); 762 763 return ret; 764 } 765 766 static int zswap_compressor_param_set(const char *val, 767 const struct kernel_param *kp) 768 { 769 return __zswap_param_set(val, kp, zswap_zpool_type, NULL); 770 } 771 772 static int zswap_zpool_param_set(const char *val, 773 const struct kernel_param *kp) 774 { 775 return __zswap_param_set(val, kp, NULL, zswap_compressor); 776 } 777 778 /********************************* 779 * writeback code 780 **********************************/ 781 /* return enum for zswap_get_swap_cache_page */ 782 enum zswap_get_swap_ret { 783 ZSWAP_SWAPCACHE_NEW, 784 ZSWAP_SWAPCACHE_EXIST, 785 ZSWAP_SWAPCACHE_FAIL, 786 }; 787 788 /* 789 * zswap_get_swap_cache_page 790 * 791 * This is an adaption of read_swap_cache_async() 792 * 793 * This function tries to find a page with the given swap entry 794 * in the swapper_space address space (the swap cache). If the page 795 * is found, it is returned in retpage. Otherwise, a page is allocated, 796 * added to the swap cache, and returned in retpage. 797 * 798 * If success, the swap cache page is returned in retpage 799 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache 800 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated, 801 * the new page is added to swapcache and locked 802 * Returns ZSWAP_SWAPCACHE_FAIL on error 803 */ 804 static int zswap_get_swap_cache_page(swp_entry_t entry, 805 struct page **retpage) 806 { 807 bool page_was_allocated; 808 809 *retpage = __read_swap_cache_async(entry, GFP_KERNEL, 810 NULL, 0, &page_was_allocated); 811 if (page_was_allocated) 812 return ZSWAP_SWAPCACHE_NEW; 813 if (!*retpage) 814 return ZSWAP_SWAPCACHE_FAIL; 815 return ZSWAP_SWAPCACHE_EXIST; 816 } 817 818 /* 819 * Attempts to free an entry by adding a page to the swap cache, 820 * decompressing the entry data into the page, and issuing a 821 * bio write to write the page back to the swap device. 822 * 823 * This can be thought of as a "resumed writeback" of the page 824 * to the swap device. We are basically resuming the same swap 825 * writeback path that was intercepted with the frontswap_store() 826 * in the first place. After the page has been decompressed into 827 * the swap cache, the compressed version stored by zswap can be 828 * freed. 829 */ 830 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) 831 { 832 struct zswap_header *zhdr; 833 swp_entry_t swpentry; 834 struct zswap_tree *tree; 835 pgoff_t offset; 836 struct zswap_entry *entry; 837 struct page *page; 838 struct crypto_comp *tfm; 839 u8 *src, *dst; 840 unsigned int dlen; 841 int ret; 842 struct writeback_control wbc = { 843 .sync_mode = WB_SYNC_NONE, 844 }; 845 846 /* extract swpentry from data */ 847 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO); 848 swpentry = zhdr->swpentry; /* here */ 849 zpool_unmap_handle(pool, handle); 850 tree = zswap_trees[swp_type(swpentry)]; 851 offset = swp_offset(swpentry); 852 853 /* find and ref zswap entry */ 854 spin_lock(&tree->lock); 855 entry = zswap_entry_find_get(&tree->rbroot, offset); 856 if (!entry) { 857 /* entry was invalidated */ 858 spin_unlock(&tree->lock); 859 return 0; 860 } 861 spin_unlock(&tree->lock); 862 BUG_ON(offset != entry->offset); 863 864 /* try to allocate swap cache page */ 865 switch (zswap_get_swap_cache_page(swpentry, &page)) { 866 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */ 867 ret = -ENOMEM; 868 goto fail; 869 870 case ZSWAP_SWAPCACHE_EXIST: 871 /* page is already in the swap cache, ignore for now */ 872 put_page(page); 873 ret = -EEXIST; 874 goto fail; 875 876 case ZSWAP_SWAPCACHE_NEW: /* page is locked */ 877 /* decompress */ 878 dlen = PAGE_SIZE; 879 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle, 880 ZPOOL_MM_RO) + sizeof(struct zswap_header); 881 dst = kmap_atomic(page); 882 tfm = *get_cpu_ptr(entry->pool->tfm); 883 ret = crypto_comp_decompress(tfm, src, entry->length, 884 dst, &dlen); 885 put_cpu_ptr(entry->pool->tfm); 886 kunmap_atomic(dst); 887 zpool_unmap_handle(entry->pool->zpool, entry->handle); 888 BUG_ON(ret); 889 BUG_ON(dlen != PAGE_SIZE); 890 891 /* page is up to date */ 892 SetPageUptodate(page); 893 } 894 895 /* move it to the tail of the inactive list after end_writeback */ 896 SetPageReclaim(page); 897 898 /* start writeback */ 899 __swap_writepage(page, &wbc, end_swap_bio_write); 900 put_page(page); 901 zswap_written_back_pages++; 902 903 spin_lock(&tree->lock); 904 /* drop local reference */ 905 zswap_entry_put(tree, entry); 906 907 /* 908 * There are two possible situations for entry here: 909 * (1) refcount is 1(normal case), entry is valid and on the tree 910 * (2) refcount is 0, entry is freed and not on the tree 911 * because invalidate happened during writeback 912 * search the tree and free the entry if find entry 913 */ 914 if (entry == zswap_rb_search(&tree->rbroot, offset)) 915 zswap_entry_put(tree, entry); 916 spin_unlock(&tree->lock); 917 918 goto end; 919 920 /* 921 * if we get here due to ZSWAP_SWAPCACHE_EXIST 922 * a load may happening concurrently 923 * it is safe and okay to not free the entry 924 * if we free the entry in the following put 925 * it it either okay to return !0 926 */ 927 fail: 928 spin_lock(&tree->lock); 929 zswap_entry_put(tree, entry); 930 spin_unlock(&tree->lock); 931 932 end: 933 return ret; 934 } 935 936 static int zswap_shrink(void) 937 { 938 struct zswap_pool *pool; 939 int ret; 940 941 pool = zswap_pool_last_get(); 942 if (!pool) 943 return -ENOENT; 944 945 ret = zpool_shrink(pool->zpool, 1, NULL); 946 947 zswap_pool_put(pool); 948 949 return ret; 950 } 951 952 /********************************* 953 * frontswap hooks 954 **********************************/ 955 /* attempts to compress and store an single page */ 956 static int zswap_frontswap_store(unsigned type, pgoff_t offset, 957 struct page *page) 958 { 959 struct zswap_tree *tree = zswap_trees[type]; 960 struct zswap_entry *entry, *dupentry; 961 struct crypto_comp *tfm; 962 int ret; 963 unsigned int dlen = PAGE_SIZE, len; 964 unsigned long handle; 965 char *buf; 966 u8 *src, *dst; 967 struct zswap_header *zhdr; 968 969 if (!zswap_enabled || !tree) { 970 ret = -ENODEV; 971 goto reject; 972 } 973 974 /* reclaim space if needed */ 975 if (zswap_is_full()) { 976 zswap_pool_limit_hit++; 977 if (zswap_shrink()) { 978 zswap_reject_reclaim_fail++; 979 ret = -ENOMEM; 980 goto reject; 981 } 982 } 983 984 /* allocate entry */ 985 entry = zswap_entry_cache_alloc(GFP_KERNEL); 986 if (!entry) { 987 zswap_reject_kmemcache_fail++; 988 ret = -ENOMEM; 989 goto reject; 990 } 991 992 /* if entry is successfully added, it keeps the reference */ 993 entry->pool = zswap_pool_current_get(); 994 if (!entry->pool) { 995 ret = -EINVAL; 996 goto freepage; 997 } 998 999 /* compress */ 1000 dst = get_cpu_var(zswap_dstmem); 1001 tfm = *get_cpu_ptr(entry->pool->tfm); 1002 src = kmap_atomic(page); 1003 ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen); 1004 kunmap_atomic(src); 1005 put_cpu_ptr(entry->pool->tfm); 1006 if (ret) { 1007 ret = -EINVAL; 1008 goto put_dstmem; 1009 } 1010 1011 /* store */ 1012 len = dlen + sizeof(struct zswap_header); 1013 ret = zpool_malloc(entry->pool->zpool, len, 1014 __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM, 1015 &handle); 1016 if (ret == -ENOSPC) { 1017 zswap_reject_compress_poor++; 1018 goto put_dstmem; 1019 } 1020 if (ret) { 1021 zswap_reject_alloc_fail++; 1022 goto put_dstmem; 1023 } 1024 zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW); 1025 zhdr->swpentry = swp_entry(type, offset); 1026 buf = (u8 *)(zhdr + 1); 1027 memcpy(buf, dst, dlen); 1028 zpool_unmap_handle(entry->pool->zpool, handle); 1029 put_cpu_var(zswap_dstmem); 1030 1031 /* populate entry */ 1032 entry->offset = offset; 1033 entry->handle = handle; 1034 entry->length = dlen; 1035 1036 /* map */ 1037 spin_lock(&tree->lock); 1038 do { 1039 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); 1040 if (ret == -EEXIST) { 1041 zswap_duplicate_entry++; 1042 /* remove from rbtree */ 1043 zswap_rb_erase(&tree->rbroot, dupentry); 1044 zswap_entry_put(tree, dupentry); 1045 } 1046 } while (ret == -EEXIST); 1047 spin_unlock(&tree->lock); 1048 1049 /* update stats */ 1050 atomic_inc(&zswap_stored_pages); 1051 zswap_update_total_size(); 1052 1053 return 0; 1054 1055 put_dstmem: 1056 put_cpu_var(zswap_dstmem); 1057 zswap_pool_put(entry->pool); 1058 freepage: 1059 zswap_entry_cache_free(entry); 1060 reject: 1061 return ret; 1062 } 1063 1064 /* 1065 * returns 0 if the page was successfully decompressed 1066 * return -1 on entry not found or error 1067 */ 1068 static int zswap_frontswap_load(unsigned type, pgoff_t offset, 1069 struct page *page) 1070 { 1071 struct zswap_tree *tree = zswap_trees[type]; 1072 struct zswap_entry *entry; 1073 struct crypto_comp *tfm; 1074 u8 *src, *dst; 1075 unsigned int dlen; 1076 int ret; 1077 1078 /* find */ 1079 spin_lock(&tree->lock); 1080 entry = zswap_entry_find_get(&tree->rbroot, offset); 1081 if (!entry) { 1082 /* entry was written back */ 1083 spin_unlock(&tree->lock); 1084 return -1; 1085 } 1086 spin_unlock(&tree->lock); 1087 1088 /* decompress */ 1089 dlen = PAGE_SIZE; 1090 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle, 1091 ZPOOL_MM_RO) + sizeof(struct zswap_header); 1092 dst = kmap_atomic(page); 1093 tfm = *get_cpu_ptr(entry->pool->tfm); 1094 ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen); 1095 put_cpu_ptr(entry->pool->tfm); 1096 kunmap_atomic(dst); 1097 zpool_unmap_handle(entry->pool->zpool, entry->handle); 1098 BUG_ON(ret); 1099 1100 spin_lock(&tree->lock); 1101 zswap_entry_put(tree, entry); 1102 spin_unlock(&tree->lock); 1103 1104 return 0; 1105 } 1106 1107 /* frees an entry in zswap */ 1108 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) 1109 { 1110 struct zswap_tree *tree = zswap_trees[type]; 1111 struct zswap_entry *entry; 1112 1113 /* find */ 1114 spin_lock(&tree->lock); 1115 entry = zswap_rb_search(&tree->rbroot, offset); 1116 if (!entry) { 1117 /* entry was written back */ 1118 spin_unlock(&tree->lock); 1119 return; 1120 } 1121 1122 /* remove from rbtree */ 1123 zswap_rb_erase(&tree->rbroot, entry); 1124 1125 /* drop the initial reference from entry creation */ 1126 zswap_entry_put(tree, entry); 1127 1128 spin_unlock(&tree->lock); 1129 } 1130 1131 /* frees all zswap entries for the given swap type */ 1132 static void zswap_frontswap_invalidate_area(unsigned type) 1133 { 1134 struct zswap_tree *tree = zswap_trees[type]; 1135 struct zswap_entry *entry, *n; 1136 1137 if (!tree) 1138 return; 1139 1140 /* walk the tree and free everything */ 1141 spin_lock(&tree->lock); 1142 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) 1143 zswap_free_entry(entry); 1144 tree->rbroot = RB_ROOT; 1145 spin_unlock(&tree->lock); 1146 kfree(tree); 1147 zswap_trees[type] = NULL; 1148 } 1149 1150 static void zswap_frontswap_init(unsigned type) 1151 { 1152 struct zswap_tree *tree; 1153 1154 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); 1155 if (!tree) { 1156 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1157 return; 1158 } 1159 1160 tree->rbroot = RB_ROOT; 1161 spin_lock_init(&tree->lock); 1162 zswap_trees[type] = tree; 1163 } 1164 1165 static struct frontswap_ops zswap_frontswap_ops = { 1166 .store = zswap_frontswap_store, 1167 .load = zswap_frontswap_load, 1168 .invalidate_page = zswap_frontswap_invalidate_page, 1169 .invalidate_area = zswap_frontswap_invalidate_area, 1170 .init = zswap_frontswap_init 1171 }; 1172 1173 /********************************* 1174 * debugfs functions 1175 **********************************/ 1176 #ifdef CONFIG_DEBUG_FS 1177 #include <linux/debugfs.h> 1178 1179 static struct dentry *zswap_debugfs_root; 1180 1181 static int __init zswap_debugfs_init(void) 1182 { 1183 if (!debugfs_initialized()) 1184 return -ENODEV; 1185 1186 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1187 if (!zswap_debugfs_root) 1188 return -ENOMEM; 1189 1190 debugfs_create_u64("pool_limit_hit", S_IRUGO, 1191 zswap_debugfs_root, &zswap_pool_limit_hit); 1192 debugfs_create_u64("reject_reclaim_fail", S_IRUGO, 1193 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1194 debugfs_create_u64("reject_alloc_fail", S_IRUGO, 1195 zswap_debugfs_root, &zswap_reject_alloc_fail); 1196 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, 1197 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1198 debugfs_create_u64("reject_compress_poor", S_IRUGO, 1199 zswap_debugfs_root, &zswap_reject_compress_poor); 1200 debugfs_create_u64("written_back_pages", S_IRUGO, 1201 zswap_debugfs_root, &zswap_written_back_pages); 1202 debugfs_create_u64("duplicate_entry", S_IRUGO, 1203 zswap_debugfs_root, &zswap_duplicate_entry); 1204 debugfs_create_u64("pool_total_size", S_IRUGO, 1205 zswap_debugfs_root, &zswap_pool_total_size); 1206 debugfs_create_atomic_t("stored_pages", S_IRUGO, 1207 zswap_debugfs_root, &zswap_stored_pages); 1208 1209 return 0; 1210 } 1211 1212 static void __exit zswap_debugfs_exit(void) 1213 { 1214 debugfs_remove_recursive(zswap_debugfs_root); 1215 } 1216 #else 1217 static int __init zswap_debugfs_init(void) 1218 { 1219 return 0; 1220 } 1221 1222 static void __exit zswap_debugfs_exit(void) { } 1223 #endif 1224 1225 /********************************* 1226 * module init and exit 1227 **********************************/ 1228 static int __init init_zswap(void) 1229 { 1230 struct zswap_pool *pool; 1231 1232 zswap_init_started = true; 1233 1234 if (zswap_entry_cache_create()) { 1235 pr_err("entry cache creation failed\n"); 1236 goto cache_fail; 1237 } 1238 1239 if (zswap_cpu_dstmem_init()) { 1240 pr_err("dstmem alloc failed\n"); 1241 goto dstmem_fail; 1242 } 1243 1244 pool = __zswap_pool_create_fallback(); 1245 if (!pool) { 1246 pr_err("pool creation failed\n"); 1247 goto pool_fail; 1248 } 1249 pr_info("loaded using pool %s/%s\n", pool->tfm_name, 1250 zpool_get_type(pool->zpool)); 1251 1252 list_add(&pool->list, &zswap_pools); 1253 1254 frontswap_register_ops(&zswap_frontswap_ops); 1255 if (zswap_debugfs_init()) 1256 pr_warn("debugfs initialization failed\n"); 1257 return 0; 1258 1259 pool_fail: 1260 zswap_cpu_dstmem_destroy(); 1261 dstmem_fail: 1262 zswap_entry_cache_destroy(); 1263 cache_fail: 1264 return -ENOMEM; 1265 } 1266 /* must be late so crypto has time to come up */ 1267 late_initcall(init_zswap); 1268 1269 MODULE_LICENSE("GPL"); 1270 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1271 MODULE_DESCRIPTION("Compressed cache for swap pages"); 1272