xref: /linux/mm/zswap.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38 
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44 
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52 
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59 
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74 
75 /*********************************
76 * tunables
77 **********************************/
78 
79 /* Enable/disable zswap (disabled by default) */
80 static bool zswap_enabled;
81 module_param_named(enabled, zswap_enabled, bool, 0644);
82 
83 /* Crypto compressor to use */
84 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
85 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
86 static int zswap_compressor_param_set(const char *,
87 				      const struct kernel_param *);
88 static struct kernel_param_ops zswap_compressor_param_ops = {
89 	.set =		zswap_compressor_param_set,
90 	.get =		param_get_charp,
91 	.free =		param_free_charp,
92 };
93 module_param_cb(compressor, &zswap_compressor_param_ops,
94 		&zswap_compressor, 0644);
95 
96 /* Compressed storage zpool to use */
97 #define ZSWAP_ZPOOL_DEFAULT "zbud"
98 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
99 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
100 static struct kernel_param_ops zswap_zpool_param_ops = {
101 	.set =		zswap_zpool_param_set,
102 	.get =		param_get_charp,
103 	.free =		param_free_charp,
104 };
105 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
106 
107 /* The maximum percentage of memory that the compressed pool can occupy */
108 static unsigned int zswap_max_pool_percent = 20;
109 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
110 
111 /*********************************
112 * data structures
113 **********************************/
114 
115 struct zswap_pool {
116 	struct zpool *zpool;
117 	struct crypto_comp * __percpu *tfm;
118 	struct kref kref;
119 	struct list_head list;
120 	struct rcu_head rcu_head;
121 	struct notifier_block notifier;
122 	char tfm_name[CRYPTO_MAX_ALG_NAME];
123 };
124 
125 /*
126  * struct zswap_entry
127  *
128  * This structure contains the metadata for tracking a single compressed
129  * page within zswap.
130  *
131  * rbnode - links the entry into red-black tree for the appropriate swap type
132  * offset - the swap offset for the entry.  Index into the red-black tree.
133  * refcount - the number of outstanding reference to the entry. This is needed
134  *            to protect against premature freeing of the entry by code
135  *            concurrent calls to load, invalidate, and writeback.  The lock
136  *            for the zswap_tree structure that contains the entry must
137  *            be held while changing the refcount.  Since the lock must
138  *            be held, there is no reason to also make refcount atomic.
139  * length - the length in bytes of the compressed page data.  Needed during
140  *          decompression
141  * pool - the zswap_pool the entry's data is in
142  * handle - zpool allocation handle that stores the compressed page data
143  */
144 struct zswap_entry {
145 	struct rb_node rbnode;
146 	pgoff_t offset;
147 	int refcount;
148 	unsigned int length;
149 	struct zswap_pool *pool;
150 	unsigned long handle;
151 };
152 
153 struct zswap_header {
154 	swp_entry_t swpentry;
155 };
156 
157 /*
158  * The tree lock in the zswap_tree struct protects a few things:
159  * - the rbtree
160  * - the refcount field of each entry in the tree
161  */
162 struct zswap_tree {
163 	struct rb_root rbroot;
164 	spinlock_t lock;
165 };
166 
167 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
168 
169 /* RCU-protected iteration */
170 static LIST_HEAD(zswap_pools);
171 /* protects zswap_pools list modification */
172 static DEFINE_SPINLOCK(zswap_pools_lock);
173 
174 /* used by param callback function */
175 static bool zswap_init_started;
176 
177 /*********************************
178 * helpers and fwd declarations
179 **********************************/
180 
181 #define zswap_pool_debug(msg, p)				\
182 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
183 		 zpool_get_type((p)->zpool))
184 
185 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
186 static int zswap_pool_get(struct zswap_pool *pool);
187 static void zswap_pool_put(struct zswap_pool *pool);
188 
189 static const struct zpool_ops zswap_zpool_ops = {
190 	.evict = zswap_writeback_entry
191 };
192 
193 static bool zswap_is_full(void)
194 {
195 	return totalram_pages * zswap_max_pool_percent / 100 <
196 		DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
197 }
198 
199 static void zswap_update_total_size(void)
200 {
201 	struct zswap_pool *pool;
202 	u64 total = 0;
203 
204 	rcu_read_lock();
205 
206 	list_for_each_entry_rcu(pool, &zswap_pools, list)
207 		total += zpool_get_total_size(pool->zpool);
208 
209 	rcu_read_unlock();
210 
211 	zswap_pool_total_size = total;
212 }
213 
214 /*********************************
215 * zswap entry functions
216 **********************************/
217 static struct kmem_cache *zswap_entry_cache;
218 
219 static int __init zswap_entry_cache_create(void)
220 {
221 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
222 	return zswap_entry_cache == NULL;
223 }
224 
225 static void __init zswap_entry_cache_destroy(void)
226 {
227 	kmem_cache_destroy(zswap_entry_cache);
228 }
229 
230 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
231 {
232 	struct zswap_entry *entry;
233 	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
234 	if (!entry)
235 		return NULL;
236 	entry->refcount = 1;
237 	RB_CLEAR_NODE(&entry->rbnode);
238 	return entry;
239 }
240 
241 static void zswap_entry_cache_free(struct zswap_entry *entry)
242 {
243 	kmem_cache_free(zswap_entry_cache, entry);
244 }
245 
246 /*********************************
247 * rbtree functions
248 **********************************/
249 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
250 {
251 	struct rb_node *node = root->rb_node;
252 	struct zswap_entry *entry;
253 
254 	while (node) {
255 		entry = rb_entry(node, struct zswap_entry, rbnode);
256 		if (entry->offset > offset)
257 			node = node->rb_left;
258 		else if (entry->offset < offset)
259 			node = node->rb_right;
260 		else
261 			return entry;
262 	}
263 	return NULL;
264 }
265 
266 /*
267  * In the case that a entry with the same offset is found, a pointer to
268  * the existing entry is stored in dupentry and the function returns -EEXIST
269  */
270 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
271 			struct zswap_entry **dupentry)
272 {
273 	struct rb_node **link = &root->rb_node, *parent = NULL;
274 	struct zswap_entry *myentry;
275 
276 	while (*link) {
277 		parent = *link;
278 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
279 		if (myentry->offset > entry->offset)
280 			link = &(*link)->rb_left;
281 		else if (myentry->offset < entry->offset)
282 			link = &(*link)->rb_right;
283 		else {
284 			*dupentry = myentry;
285 			return -EEXIST;
286 		}
287 	}
288 	rb_link_node(&entry->rbnode, parent, link);
289 	rb_insert_color(&entry->rbnode, root);
290 	return 0;
291 }
292 
293 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
294 {
295 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
296 		rb_erase(&entry->rbnode, root);
297 		RB_CLEAR_NODE(&entry->rbnode);
298 	}
299 }
300 
301 /*
302  * Carries out the common pattern of freeing and entry's zpool allocation,
303  * freeing the entry itself, and decrementing the number of stored pages.
304  */
305 static void zswap_free_entry(struct zswap_entry *entry)
306 {
307 	zpool_free(entry->pool->zpool, entry->handle);
308 	zswap_pool_put(entry->pool);
309 	zswap_entry_cache_free(entry);
310 	atomic_dec(&zswap_stored_pages);
311 	zswap_update_total_size();
312 }
313 
314 /* caller must hold the tree lock */
315 static void zswap_entry_get(struct zswap_entry *entry)
316 {
317 	entry->refcount++;
318 }
319 
320 /* caller must hold the tree lock
321 * remove from the tree and free it, if nobody reference the entry
322 */
323 static void zswap_entry_put(struct zswap_tree *tree,
324 			struct zswap_entry *entry)
325 {
326 	int refcount = --entry->refcount;
327 
328 	BUG_ON(refcount < 0);
329 	if (refcount == 0) {
330 		zswap_rb_erase(&tree->rbroot, entry);
331 		zswap_free_entry(entry);
332 	}
333 }
334 
335 /* caller must hold the tree lock */
336 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
337 				pgoff_t offset)
338 {
339 	struct zswap_entry *entry;
340 
341 	entry = zswap_rb_search(root, offset);
342 	if (entry)
343 		zswap_entry_get(entry);
344 
345 	return entry;
346 }
347 
348 /*********************************
349 * per-cpu code
350 **********************************/
351 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
352 
353 static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu)
354 {
355 	u8 *dst;
356 
357 	switch (action) {
358 	case CPU_UP_PREPARE:
359 		dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
360 		if (!dst) {
361 			pr_err("can't allocate compressor buffer\n");
362 			return NOTIFY_BAD;
363 		}
364 		per_cpu(zswap_dstmem, cpu) = dst;
365 		break;
366 	case CPU_DEAD:
367 	case CPU_UP_CANCELED:
368 		dst = per_cpu(zswap_dstmem, cpu);
369 		kfree(dst);
370 		per_cpu(zswap_dstmem, cpu) = NULL;
371 		break;
372 	default:
373 		break;
374 	}
375 	return NOTIFY_OK;
376 }
377 
378 static int zswap_cpu_dstmem_notifier(struct notifier_block *nb,
379 				     unsigned long action, void *pcpu)
380 {
381 	return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu);
382 }
383 
384 static struct notifier_block zswap_dstmem_notifier = {
385 	.notifier_call =	zswap_cpu_dstmem_notifier,
386 };
387 
388 static int __init zswap_cpu_dstmem_init(void)
389 {
390 	unsigned long cpu;
391 
392 	cpu_notifier_register_begin();
393 	for_each_online_cpu(cpu)
394 		if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) ==
395 		    NOTIFY_BAD)
396 			goto cleanup;
397 	__register_cpu_notifier(&zswap_dstmem_notifier);
398 	cpu_notifier_register_done();
399 	return 0;
400 
401 cleanup:
402 	for_each_online_cpu(cpu)
403 		__zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
404 	cpu_notifier_register_done();
405 	return -ENOMEM;
406 }
407 
408 static void zswap_cpu_dstmem_destroy(void)
409 {
410 	unsigned long cpu;
411 
412 	cpu_notifier_register_begin();
413 	for_each_online_cpu(cpu)
414 		__zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
415 	__unregister_cpu_notifier(&zswap_dstmem_notifier);
416 	cpu_notifier_register_done();
417 }
418 
419 static int __zswap_cpu_comp_notifier(struct zswap_pool *pool,
420 				     unsigned long action, unsigned long cpu)
421 {
422 	struct crypto_comp *tfm;
423 
424 	switch (action) {
425 	case CPU_UP_PREPARE:
426 		if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
427 			break;
428 		tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
429 		if (IS_ERR_OR_NULL(tfm)) {
430 			pr_err("could not alloc crypto comp %s : %ld\n",
431 			       pool->tfm_name, PTR_ERR(tfm));
432 			return NOTIFY_BAD;
433 		}
434 		*per_cpu_ptr(pool->tfm, cpu) = tfm;
435 		break;
436 	case CPU_DEAD:
437 	case CPU_UP_CANCELED:
438 		tfm = *per_cpu_ptr(pool->tfm, cpu);
439 		if (!IS_ERR_OR_NULL(tfm))
440 			crypto_free_comp(tfm);
441 		*per_cpu_ptr(pool->tfm, cpu) = NULL;
442 		break;
443 	default:
444 		break;
445 	}
446 	return NOTIFY_OK;
447 }
448 
449 static int zswap_cpu_comp_notifier(struct notifier_block *nb,
450 				   unsigned long action, void *pcpu)
451 {
452 	unsigned long cpu = (unsigned long)pcpu;
453 	struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier);
454 
455 	return __zswap_cpu_comp_notifier(pool, action, cpu);
456 }
457 
458 static int zswap_cpu_comp_init(struct zswap_pool *pool)
459 {
460 	unsigned long cpu;
461 
462 	memset(&pool->notifier, 0, sizeof(pool->notifier));
463 	pool->notifier.notifier_call = zswap_cpu_comp_notifier;
464 
465 	cpu_notifier_register_begin();
466 	for_each_online_cpu(cpu)
467 		if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) ==
468 		    NOTIFY_BAD)
469 			goto cleanup;
470 	__register_cpu_notifier(&pool->notifier);
471 	cpu_notifier_register_done();
472 	return 0;
473 
474 cleanup:
475 	for_each_online_cpu(cpu)
476 		__zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
477 	cpu_notifier_register_done();
478 	return -ENOMEM;
479 }
480 
481 static void zswap_cpu_comp_destroy(struct zswap_pool *pool)
482 {
483 	unsigned long cpu;
484 
485 	cpu_notifier_register_begin();
486 	for_each_online_cpu(cpu)
487 		__zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
488 	__unregister_cpu_notifier(&pool->notifier);
489 	cpu_notifier_register_done();
490 }
491 
492 /*********************************
493 * pool functions
494 **********************************/
495 
496 static struct zswap_pool *__zswap_pool_current(void)
497 {
498 	struct zswap_pool *pool;
499 
500 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
501 	WARN_ON(!pool);
502 
503 	return pool;
504 }
505 
506 static struct zswap_pool *zswap_pool_current(void)
507 {
508 	assert_spin_locked(&zswap_pools_lock);
509 
510 	return __zswap_pool_current();
511 }
512 
513 static struct zswap_pool *zswap_pool_current_get(void)
514 {
515 	struct zswap_pool *pool;
516 
517 	rcu_read_lock();
518 
519 	pool = __zswap_pool_current();
520 	if (!pool || !zswap_pool_get(pool))
521 		pool = NULL;
522 
523 	rcu_read_unlock();
524 
525 	return pool;
526 }
527 
528 static struct zswap_pool *zswap_pool_last_get(void)
529 {
530 	struct zswap_pool *pool, *last = NULL;
531 
532 	rcu_read_lock();
533 
534 	list_for_each_entry_rcu(pool, &zswap_pools, list)
535 		last = pool;
536 	if (!WARN_ON(!last) && !zswap_pool_get(last))
537 		last = NULL;
538 
539 	rcu_read_unlock();
540 
541 	return last;
542 }
543 
544 /* type and compressor must be null-terminated */
545 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
546 {
547 	struct zswap_pool *pool;
548 
549 	assert_spin_locked(&zswap_pools_lock);
550 
551 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
552 		if (strcmp(pool->tfm_name, compressor))
553 			continue;
554 		if (strcmp(zpool_get_type(pool->zpool), type))
555 			continue;
556 		/* if we can't get it, it's about to be destroyed */
557 		if (!zswap_pool_get(pool))
558 			continue;
559 		return pool;
560 	}
561 
562 	return NULL;
563 }
564 
565 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
566 {
567 	struct zswap_pool *pool;
568 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
569 
570 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
571 	if (!pool) {
572 		pr_err("pool alloc failed\n");
573 		return NULL;
574 	}
575 
576 	pool->zpool = zpool_create_pool(type, "zswap", gfp, &zswap_zpool_ops);
577 	if (!pool->zpool) {
578 		pr_err("%s zpool not available\n", type);
579 		goto error;
580 	}
581 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
582 
583 	strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
584 	pool->tfm = alloc_percpu(struct crypto_comp *);
585 	if (!pool->tfm) {
586 		pr_err("percpu alloc failed\n");
587 		goto error;
588 	}
589 
590 	if (zswap_cpu_comp_init(pool))
591 		goto error;
592 	pr_debug("using %s compressor\n", pool->tfm_name);
593 
594 	/* being the current pool takes 1 ref; this func expects the
595 	 * caller to always add the new pool as the current pool
596 	 */
597 	kref_init(&pool->kref);
598 	INIT_LIST_HEAD(&pool->list);
599 
600 	zswap_pool_debug("created", pool);
601 
602 	return pool;
603 
604 error:
605 	free_percpu(pool->tfm);
606 	if (pool->zpool)
607 		zpool_destroy_pool(pool->zpool);
608 	kfree(pool);
609 	return NULL;
610 }
611 
612 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
613 {
614 	if (!crypto_has_comp(zswap_compressor, 0, 0)) {
615 		if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
616 			pr_err("default compressor %s not available\n",
617 			       zswap_compressor);
618 			return NULL;
619 		}
620 		pr_err("compressor %s not available, using default %s\n",
621 		       zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
622 		param_free_charp(&zswap_compressor);
623 		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
624 	}
625 	if (!zpool_has_pool(zswap_zpool_type)) {
626 		if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
627 			pr_err("default zpool %s not available\n",
628 			       zswap_zpool_type);
629 			return NULL;
630 		}
631 		pr_err("zpool %s not available, using default %s\n",
632 		       zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
633 		param_free_charp(&zswap_zpool_type);
634 		zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
635 	}
636 
637 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
638 }
639 
640 static void zswap_pool_destroy(struct zswap_pool *pool)
641 {
642 	zswap_pool_debug("destroying", pool);
643 
644 	zswap_cpu_comp_destroy(pool);
645 	free_percpu(pool->tfm);
646 	zpool_destroy_pool(pool->zpool);
647 	kfree(pool);
648 }
649 
650 static int __must_check zswap_pool_get(struct zswap_pool *pool)
651 {
652 	return kref_get_unless_zero(&pool->kref);
653 }
654 
655 static void __zswap_pool_release(struct rcu_head *head)
656 {
657 	struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head);
658 
659 	/* nobody should have been able to get a kref... */
660 	WARN_ON(kref_get_unless_zero(&pool->kref));
661 
662 	/* pool is now off zswap_pools list and has no references. */
663 	zswap_pool_destroy(pool);
664 }
665 
666 static void __zswap_pool_empty(struct kref *kref)
667 {
668 	struct zswap_pool *pool;
669 
670 	pool = container_of(kref, typeof(*pool), kref);
671 
672 	spin_lock(&zswap_pools_lock);
673 
674 	WARN_ON(pool == zswap_pool_current());
675 
676 	list_del_rcu(&pool->list);
677 	call_rcu(&pool->rcu_head, __zswap_pool_release);
678 
679 	spin_unlock(&zswap_pools_lock);
680 }
681 
682 static void zswap_pool_put(struct zswap_pool *pool)
683 {
684 	kref_put(&pool->kref, __zswap_pool_empty);
685 }
686 
687 /*********************************
688 * param callbacks
689 **********************************/
690 
691 /* val must be a null-terminated string */
692 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
693 			     char *type, char *compressor)
694 {
695 	struct zswap_pool *pool, *put_pool = NULL;
696 	char *s = strstrip((char *)val);
697 	int ret;
698 
699 	/* no change required */
700 	if (!strcmp(s, *(char **)kp->arg))
701 		return 0;
702 
703 	/* if this is load-time (pre-init) param setting,
704 	 * don't create a pool; that's done during init.
705 	 */
706 	if (!zswap_init_started)
707 		return param_set_charp(s, kp);
708 
709 	if (!type) {
710 		if (!zpool_has_pool(s)) {
711 			pr_err("zpool %s not available\n", s);
712 			return -ENOENT;
713 		}
714 		type = s;
715 	} else if (!compressor) {
716 		if (!crypto_has_comp(s, 0, 0)) {
717 			pr_err("compressor %s not available\n", s);
718 			return -ENOENT;
719 		}
720 		compressor = s;
721 	} else {
722 		WARN_ON(1);
723 		return -EINVAL;
724 	}
725 
726 	spin_lock(&zswap_pools_lock);
727 
728 	pool = zswap_pool_find_get(type, compressor);
729 	if (pool) {
730 		zswap_pool_debug("using existing", pool);
731 		list_del_rcu(&pool->list);
732 	} else {
733 		spin_unlock(&zswap_pools_lock);
734 		pool = zswap_pool_create(type, compressor);
735 		spin_lock(&zswap_pools_lock);
736 	}
737 
738 	if (pool)
739 		ret = param_set_charp(s, kp);
740 	else
741 		ret = -EINVAL;
742 
743 	if (!ret) {
744 		put_pool = zswap_pool_current();
745 		list_add_rcu(&pool->list, &zswap_pools);
746 	} else if (pool) {
747 		/* add the possibly pre-existing pool to the end of the pools
748 		 * list; if it's new (and empty) then it'll be removed and
749 		 * destroyed by the put after we drop the lock
750 		 */
751 		list_add_tail_rcu(&pool->list, &zswap_pools);
752 		put_pool = pool;
753 	}
754 
755 	spin_unlock(&zswap_pools_lock);
756 
757 	/* drop the ref from either the old current pool,
758 	 * or the new pool we failed to add
759 	 */
760 	if (put_pool)
761 		zswap_pool_put(put_pool);
762 
763 	return ret;
764 }
765 
766 static int zswap_compressor_param_set(const char *val,
767 				      const struct kernel_param *kp)
768 {
769 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
770 }
771 
772 static int zswap_zpool_param_set(const char *val,
773 				 const struct kernel_param *kp)
774 {
775 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
776 }
777 
778 /*********************************
779 * writeback code
780 **********************************/
781 /* return enum for zswap_get_swap_cache_page */
782 enum zswap_get_swap_ret {
783 	ZSWAP_SWAPCACHE_NEW,
784 	ZSWAP_SWAPCACHE_EXIST,
785 	ZSWAP_SWAPCACHE_FAIL,
786 };
787 
788 /*
789  * zswap_get_swap_cache_page
790  *
791  * This is an adaption of read_swap_cache_async()
792  *
793  * This function tries to find a page with the given swap entry
794  * in the swapper_space address space (the swap cache).  If the page
795  * is found, it is returned in retpage.  Otherwise, a page is allocated,
796  * added to the swap cache, and returned in retpage.
797  *
798  * If success, the swap cache page is returned in retpage
799  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
800  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
801  *     the new page is added to swapcache and locked
802  * Returns ZSWAP_SWAPCACHE_FAIL on error
803  */
804 static int zswap_get_swap_cache_page(swp_entry_t entry,
805 				struct page **retpage)
806 {
807 	bool page_was_allocated;
808 
809 	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
810 			NULL, 0, &page_was_allocated);
811 	if (page_was_allocated)
812 		return ZSWAP_SWAPCACHE_NEW;
813 	if (!*retpage)
814 		return ZSWAP_SWAPCACHE_FAIL;
815 	return ZSWAP_SWAPCACHE_EXIST;
816 }
817 
818 /*
819  * Attempts to free an entry by adding a page to the swap cache,
820  * decompressing the entry data into the page, and issuing a
821  * bio write to write the page back to the swap device.
822  *
823  * This can be thought of as a "resumed writeback" of the page
824  * to the swap device.  We are basically resuming the same swap
825  * writeback path that was intercepted with the frontswap_store()
826  * in the first place.  After the page has been decompressed into
827  * the swap cache, the compressed version stored by zswap can be
828  * freed.
829  */
830 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
831 {
832 	struct zswap_header *zhdr;
833 	swp_entry_t swpentry;
834 	struct zswap_tree *tree;
835 	pgoff_t offset;
836 	struct zswap_entry *entry;
837 	struct page *page;
838 	struct crypto_comp *tfm;
839 	u8 *src, *dst;
840 	unsigned int dlen;
841 	int ret;
842 	struct writeback_control wbc = {
843 		.sync_mode = WB_SYNC_NONE,
844 	};
845 
846 	/* extract swpentry from data */
847 	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
848 	swpentry = zhdr->swpentry; /* here */
849 	zpool_unmap_handle(pool, handle);
850 	tree = zswap_trees[swp_type(swpentry)];
851 	offset = swp_offset(swpentry);
852 
853 	/* find and ref zswap entry */
854 	spin_lock(&tree->lock);
855 	entry = zswap_entry_find_get(&tree->rbroot, offset);
856 	if (!entry) {
857 		/* entry was invalidated */
858 		spin_unlock(&tree->lock);
859 		return 0;
860 	}
861 	spin_unlock(&tree->lock);
862 	BUG_ON(offset != entry->offset);
863 
864 	/* try to allocate swap cache page */
865 	switch (zswap_get_swap_cache_page(swpentry, &page)) {
866 	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
867 		ret = -ENOMEM;
868 		goto fail;
869 
870 	case ZSWAP_SWAPCACHE_EXIST:
871 		/* page is already in the swap cache, ignore for now */
872 		put_page(page);
873 		ret = -EEXIST;
874 		goto fail;
875 
876 	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
877 		/* decompress */
878 		dlen = PAGE_SIZE;
879 		src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
880 				ZPOOL_MM_RO) + sizeof(struct zswap_header);
881 		dst = kmap_atomic(page);
882 		tfm = *get_cpu_ptr(entry->pool->tfm);
883 		ret = crypto_comp_decompress(tfm, src, entry->length,
884 					     dst, &dlen);
885 		put_cpu_ptr(entry->pool->tfm);
886 		kunmap_atomic(dst);
887 		zpool_unmap_handle(entry->pool->zpool, entry->handle);
888 		BUG_ON(ret);
889 		BUG_ON(dlen != PAGE_SIZE);
890 
891 		/* page is up to date */
892 		SetPageUptodate(page);
893 	}
894 
895 	/* move it to the tail of the inactive list after end_writeback */
896 	SetPageReclaim(page);
897 
898 	/* start writeback */
899 	__swap_writepage(page, &wbc, end_swap_bio_write);
900 	put_page(page);
901 	zswap_written_back_pages++;
902 
903 	spin_lock(&tree->lock);
904 	/* drop local reference */
905 	zswap_entry_put(tree, entry);
906 
907 	/*
908 	* There are two possible situations for entry here:
909 	* (1) refcount is 1(normal case),  entry is valid and on the tree
910 	* (2) refcount is 0, entry is freed and not on the tree
911 	*     because invalidate happened during writeback
912 	*  search the tree and free the entry if find entry
913 	*/
914 	if (entry == zswap_rb_search(&tree->rbroot, offset))
915 		zswap_entry_put(tree, entry);
916 	spin_unlock(&tree->lock);
917 
918 	goto end;
919 
920 	/*
921 	* if we get here due to ZSWAP_SWAPCACHE_EXIST
922 	* a load may happening concurrently
923 	* it is safe and okay to not free the entry
924 	* if we free the entry in the following put
925 	* it it either okay to return !0
926 	*/
927 fail:
928 	spin_lock(&tree->lock);
929 	zswap_entry_put(tree, entry);
930 	spin_unlock(&tree->lock);
931 
932 end:
933 	return ret;
934 }
935 
936 static int zswap_shrink(void)
937 {
938 	struct zswap_pool *pool;
939 	int ret;
940 
941 	pool = zswap_pool_last_get();
942 	if (!pool)
943 		return -ENOENT;
944 
945 	ret = zpool_shrink(pool->zpool, 1, NULL);
946 
947 	zswap_pool_put(pool);
948 
949 	return ret;
950 }
951 
952 /*********************************
953 * frontswap hooks
954 **********************************/
955 /* attempts to compress and store an single page */
956 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
957 				struct page *page)
958 {
959 	struct zswap_tree *tree = zswap_trees[type];
960 	struct zswap_entry *entry, *dupentry;
961 	struct crypto_comp *tfm;
962 	int ret;
963 	unsigned int dlen = PAGE_SIZE, len;
964 	unsigned long handle;
965 	char *buf;
966 	u8 *src, *dst;
967 	struct zswap_header *zhdr;
968 
969 	if (!zswap_enabled || !tree) {
970 		ret = -ENODEV;
971 		goto reject;
972 	}
973 
974 	/* reclaim space if needed */
975 	if (zswap_is_full()) {
976 		zswap_pool_limit_hit++;
977 		if (zswap_shrink()) {
978 			zswap_reject_reclaim_fail++;
979 			ret = -ENOMEM;
980 			goto reject;
981 		}
982 	}
983 
984 	/* allocate entry */
985 	entry = zswap_entry_cache_alloc(GFP_KERNEL);
986 	if (!entry) {
987 		zswap_reject_kmemcache_fail++;
988 		ret = -ENOMEM;
989 		goto reject;
990 	}
991 
992 	/* if entry is successfully added, it keeps the reference */
993 	entry->pool = zswap_pool_current_get();
994 	if (!entry->pool) {
995 		ret = -EINVAL;
996 		goto freepage;
997 	}
998 
999 	/* compress */
1000 	dst = get_cpu_var(zswap_dstmem);
1001 	tfm = *get_cpu_ptr(entry->pool->tfm);
1002 	src = kmap_atomic(page);
1003 	ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1004 	kunmap_atomic(src);
1005 	put_cpu_ptr(entry->pool->tfm);
1006 	if (ret) {
1007 		ret = -EINVAL;
1008 		goto put_dstmem;
1009 	}
1010 
1011 	/* store */
1012 	len = dlen + sizeof(struct zswap_header);
1013 	ret = zpool_malloc(entry->pool->zpool, len,
1014 			   __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
1015 			   &handle);
1016 	if (ret == -ENOSPC) {
1017 		zswap_reject_compress_poor++;
1018 		goto put_dstmem;
1019 	}
1020 	if (ret) {
1021 		zswap_reject_alloc_fail++;
1022 		goto put_dstmem;
1023 	}
1024 	zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1025 	zhdr->swpentry = swp_entry(type, offset);
1026 	buf = (u8 *)(zhdr + 1);
1027 	memcpy(buf, dst, dlen);
1028 	zpool_unmap_handle(entry->pool->zpool, handle);
1029 	put_cpu_var(zswap_dstmem);
1030 
1031 	/* populate entry */
1032 	entry->offset = offset;
1033 	entry->handle = handle;
1034 	entry->length = dlen;
1035 
1036 	/* map */
1037 	spin_lock(&tree->lock);
1038 	do {
1039 		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1040 		if (ret == -EEXIST) {
1041 			zswap_duplicate_entry++;
1042 			/* remove from rbtree */
1043 			zswap_rb_erase(&tree->rbroot, dupentry);
1044 			zswap_entry_put(tree, dupentry);
1045 		}
1046 	} while (ret == -EEXIST);
1047 	spin_unlock(&tree->lock);
1048 
1049 	/* update stats */
1050 	atomic_inc(&zswap_stored_pages);
1051 	zswap_update_total_size();
1052 
1053 	return 0;
1054 
1055 put_dstmem:
1056 	put_cpu_var(zswap_dstmem);
1057 	zswap_pool_put(entry->pool);
1058 freepage:
1059 	zswap_entry_cache_free(entry);
1060 reject:
1061 	return ret;
1062 }
1063 
1064 /*
1065  * returns 0 if the page was successfully decompressed
1066  * return -1 on entry not found or error
1067 */
1068 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1069 				struct page *page)
1070 {
1071 	struct zswap_tree *tree = zswap_trees[type];
1072 	struct zswap_entry *entry;
1073 	struct crypto_comp *tfm;
1074 	u8 *src, *dst;
1075 	unsigned int dlen;
1076 	int ret;
1077 
1078 	/* find */
1079 	spin_lock(&tree->lock);
1080 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1081 	if (!entry) {
1082 		/* entry was written back */
1083 		spin_unlock(&tree->lock);
1084 		return -1;
1085 	}
1086 	spin_unlock(&tree->lock);
1087 
1088 	/* decompress */
1089 	dlen = PAGE_SIZE;
1090 	src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
1091 			ZPOOL_MM_RO) + sizeof(struct zswap_header);
1092 	dst = kmap_atomic(page);
1093 	tfm = *get_cpu_ptr(entry->pool->tfm);
1094 	ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1095 	put_cpu_ptr(entry->pool->tfm);
1096 	kunmap_atomic(dst);
1097 	zpool_unmap_handle(entry->pool->zpool, entry->handle);
1098 	BUG_ON(ret);
1099 
1100 	spin_lock(&tree->lock);
1101 	zswap_entry_put(tree, entry);
1102 	spin_unlock(&tree->lock);
1103 
1104 	return 0;
1105 }
1106 
1107 /* frees an entry in zswap */
1108 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1109 {
1110 	struct zswap_tree *tree = zswap_trees[type];
1111 	struct zswap_entry *entry;
1112 
1113 	/* find */
1114 	spin_lock(&tree->lock);
1115 	entry = zswap_rb_search(&tree->rbroot, offset);
1116 	if (!entry) {
1117 		/* entry was written back */
1118 		spin_unlock(&tree->lock);
1119 		return;
1120 	}
1121 
1122 	/* remove from rbtree */
1123 	zswap_rb_erase(&tree->rbroot, entry);
1124 
1125 	/* drop the initial reference from entry creation */
1126 	zswap_entry_put(tree, entry);
1127 
1128 	spin_unlock(&tree->lock);
1129 }
1130 
1131 /* frees all zswap entries for the given swap type */
1132 static void zswap_frontswap_invalidate_area(unsigned type)
1133 {
1134 	struct zswap_tree *tree = zswap_trees[type];
1135 	struct zswap_entry *entry, *n;
1136 
1137 	if (!tree)
1138 		return;
1139 
1140 	/* walk the tree and free everything */
1141 	spin_lock(&tree->lock);
1142 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1143 		zswap_free_entry(entry);
1144 	tree->rbroot = RB_ROOT;
1145 	spin_unlock(&tree->lock);
1146 	kfree(tree);
1147 	zswap_trees[type] = NULL;
1148 }
1149 
1150 static void zswap_frontswap_init(unsigned type)
1151 {
1152 	struct zswap_tree *tree;
1153 
1154 	tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1155 	if (!tree) {
1156 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1157 		return;
1158 	}
1159 
1160 	tree->rbroot = RB_ROOT;
1161 	spin_lock_init(&tree->lock);
1162 	zswap_trees[type] = tree;
1163 }
1164 
1165 static struct frontswap_ops zswap_frontswap_ops = {
1166 	.store = zswap_frontswap_store,
1167 	.load = zswap_frontswap_load,
1168 	.invalidate_page = zswap_frontswap_invalidate_page,
1169 	.invalidate_area = zswap_frontswap_invalidate_area,
1170 	.init = zswap_frontswap_init
1171 };
1172 
1173 /*********************************
1174 * debugfs functions
1175 **********************************/
1176 #ifdef CONFIG_DEBUG_FS
1177 #include <linux/debugfs.h>
1178 
1179 static struct dentry *zswap_debugfs_root;
1180 
1181 static int __init zswap_debugfs_init(void)
1182 {
1183 	if (!debugfs_initialized())
1184 		return -ENODEV;
1185 
1186 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1187 	if (!zswap_debugfs_root)
1188 		return -ENOMEM;
1189 
1190 	debugfs_create_u64("pool_limit_hit", S_IRUGO,
1191 			zswap_debugfs_root, &zswap_pool_limit_hit);
1192 	debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1193 			zswap_debugfs_root, &zswap_reject_reclaim_fail);
1194 	debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1195 			zswap_debugfs_root, &zswap_reject_alloc_fail);
1196 	debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1197 			zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1198 	debugfs_create_u64("reject_compress_poor", S_IRUGO,
1199 			zswap_debugfs_root, &zswap_reject_compress_poor);
1200 	debugfs_create_u64("written_back_pages", S_IRUGO,
1201 			zswap_debugfs_root, &zswap_written_back_pages);
1202 	debugfs_create_u64("duplicate_entry", S_IRUGO,
1203 			zswap_debugfs_root, &zswap_duplicate_entry);
1204 	debugfs_create_u64("pool_total_size", S_IRUGO,
1205 			zswap_debugfs_root, &zswap_pool_total_size);
1206 	debugfs_create_atomic_t("stored_pages", S_IRUGO,
1207 			zswap_debugfs_root, &zswap_stored_pages);
1208 
1209 	return 0;
1210 }
1211 
1212 static void __exit zswap_debugfs_exit(void)
1213 {
1214 	debugfs_remove_recursive(zswap_debugfs_root);
1215 }
1216 #else
1217 static int __init zswap_debugfs_init(void)
1218 {
1219 	return 0;
1220 }
1221 
1222 static void __exit zswap_debugfs_exit(void) { }
1223 #endif
1224 
1225 /*********************************
1226 * module init and exit
1227 **********************************/
1228 static int __init init_zswap(void)
1229 {
1230 	struct zswap_pool *pool;
1231 
1232 	zswap_init_started = true;
1233 
1234 	if (zswap_entry_cache_create()) {
1235 		pr_err("entry cache creation failed\n");
1236 		goto cache_fail;
1237 	}
1238 
1239 	if (zswap_cpu_dstmem_init()) {
1240 		pr_err("dstmem alloc failed\n");
1241 		goto dstmem_fail;
1242 	}
1243 
1244 	pool = __zswap_pool_create_fallback();
1245 	if (!pool) {
1246 		pr_err("pool creation failed\n");
1247 		goto pool_fail;
1248 	}
1249 	pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1250 		zpool_get_type(pool->zpool));
1251 
1252 	list_add(&pool->list, &zswap_pools);
1253 
1254 	frontswap_register_ops(&zswap_frontswap_ops);
1255 	if (zswap_debugfs_init())
1256 		pr_warn("debugfs initialization failed\n");
1257 	return 0;
1258 
1259 pool_fail:
1260 	zswap_cpu_dstmem_destroy();
1261 dstmem_fail:
1262 	zswap_entry_cache_destroy();
1263 cache_fail:
1264 	return -ENOMEM;
1265 }
1266 /* must be late so crypto has time to come up */
1267 late_initcall(init_zswap);
1268 
1269 MODULE_LICENSE("GPL");
1270 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1271 MODULE_DESCRIPTION("Compressed cache for swap pages");
1272