xref: /linux/mm/zswap.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38 
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44 
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52 
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59 
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74 
75 /*********************************
76 * tunables
77 **********************************/
78 
79 /* Enable/disable zswap (disabled by default) */
80 static bool zswap_enabled;
81 module_param_named(enabled, zswap_enabled, bool, 0644);
82 
83 /* Crypto compressor to use */
84 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
85 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
86 static int zswap_compressor_param_set(const char *,
87 				      const struct kernel_param *);
88 static struct kernel_param_ops zswap_compressor_param_ops = {
89 	.set =		zswap_compressor_param_set,
90 	.get =		param_get_charp,
91 	.free =		param_free_charp,
92 };
93 module_param_cb(compressor, &zswap_compressor_param_ops,
94 		&zswap_compressor, 0644);
95 
96 /* Compressed storage zpool to use */
97 #define ZSWAP_ZPOOL_DEFAULT "zbud"
98 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
99 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
100 static struct kernel_param_ops zswap_zpool_param_ops = {
101 	.set =		zswap_zpool_param_set,
102 	.get =		param_get_charp,
103 	.free =		param_free_charp,
104 };
105 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
106 
107 /* The maximum percentage of memory that the compressed pool can occupy */
108 static unsigned int zswap_max_pool_percent = 20;
109 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
110 
111 /*********************************
112 * data structures
113 **********************************/
114 
115 struct zswap_pool {
116 	struct zpool *zpool;
117 	struct crypto_comp * __percpu *tfm;
118 	struct kref kref;
119 	struct list_head list;
120 	struct work_struct work;
121 	struct notifier_block notifier;
122 	char tfm_name[CRYPTO_MAX_ALG_NAME];
123 };
124 
125 /*
126  * struct zswap_entry
127  *
128  * This structure contains the metadata for tracking a single compressed
129  * page within zswap.
130  *
131  * rbnode - links the entry into red-black tree for the appropriate swap type
132  * offset - the swap offset for the entry.  Index into the red-black tree.
133  * refcount - the number of outstanding reference to the entry. This is needed
134  *            to protect against premature freeing of the entry by code
135  *            concurrent calls to load, invalidate, and writeback.  The lock
136  *            for the zswap_tree structure that contains the entry must
137  *            be held while changing the refcount.  Since the lock must
138  *            be held, there is no reason to also make refcount atomic.
139  * length - the length in bytes of the compressed page data.  Needed during
140  *          decompression
141  * pool - the zswap_pool the entry's data is in
142  * handle - zpool allocation handle that stores the compressed page data
143  */
144 struct zswap_entry {
145 	struct rb_node rbnode;
146 	pgoff_t offset;
147 	int refcount;
148 	unsigned int length;
149 	struct zswap_pool *pool;
150 	unsigned long handle;
151 };
152 
153 struct zswap_header {
154 	swp_entry_t swpentry;
155 };
156 
157 /*
158  * The tree lock in the zswap_tree struct protects a few things:
159  * - the rbtree
160  * - the refcount field of each entry in the tree
161  */
162 struct zswap_tree {
163 	struct rb_root rbroot;
164 	spinlock_t lock;
165 };
166 
167 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
168 
169 /* RCU-protected iteration */
170 static LIST_HEAD(zswap_pools);
171 /* protects zswap_pools list modification */
172 static DEFINE_SPINLOCK(zswap_pools_lock);
173 /* pool counter to provide unique names to zpool */
174 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
175 
176 /* used by param callback function */
177 static bool zswap_init_started;
178 
179 /*********************************
180 * helpers and fwd declarations
181 **********************************/
182 
183 #define zswap_pool_debug(msg, p)				\
184 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
185 		 zpool_get_type((p)->zpool))
186 
187 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
188 static int zswap_pool_get(struct zswap_pool *pool);
189 static void zswap_pool_put(struct zswap_pool *pool);
190 
191 static const struct zpool_ops zswap_zpool_ops = {
192 	.evict = zswap_writeback_entry
193 };
194 
195 static bool zswap_is_full(void)
196 {
197 	return totalram_pages * zswap_max_pool_percent / 100 <
198 		DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
199 }
200 
201 static void zswap_update_total_size(void)
202 {
203 	struct zswap_pool *pool;
204 	u64 total = 0;
205 
206 	rcu_read_lock();
207 
208 	list_for_each_entry_rcu(pool, &zswap_pools, list)
209 		total += zpool_get_total_size(pool->zpool);
210 
211 	rcu_read_unlock();
212 
213 	zswap_pool_total_size = total;
214 }
215 
216 /*********************************
217 * zswap entry functions
218 **********************************/
219 static struct kmem_cache *zswap_entry_cache;
220 
221 static int __init zswap_entry_cache_create(void)
222 {
223 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
224 	return zswap_entry_cache == NULL;
225 }
226 
227 static void __init zswap_entry_cache_destroy(void)
228 {
229 	kmem_cache_destroy(zswap_entry_cache);
230 }
231 
232 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
233 {
234 	struct zswap_entry *entry;
235 	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
236 	if (!entry)
237 		return NULL;
238 	entry->refcount = 1;
239 	RB_CLEAR_NODE(&entry->rbnode);
240 	return entry;
241 }
242 
243 static void zswap_entry_cache_free(struct zswap_entry *entry)
244 {
245 	kmem_cache_free(zswap_entry_cache, entry);
246 }
247 
248 /*********************************
249 * rbtree functions
250 **********************************/
251 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
252 {
253 	struct rb_node *node = root->rb_node;
254 	struct zswap_entry *entry;
255 
256 	while (node) {
257 		entry = rb_entry(node, struct zswap_entry, rbnode);
258 		if (entry->offset > offset)
259 			node = node->rb_left;
260 		else if (entry->offset < offset)
261 			node = node->rb_right;
262 		else
263 			return entry;
264 	}
265 	return NULL;
266 }
267 
268 /*
269  * In the case that a entry with the same offset is found, a pointer to
270  * the existing entry is stored in dupentry and the function returns -EEXIST
271  */
272 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
273 			struct zswap_entry **dupentry)
274 {
275 	struct rb_node **link = &root->rb_node, *parent = NULL;
276 	struct zswap_entry *myentry;
277 
278 	while (*link) {
279 		parent = *link;
280 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
281 		if (myentry->offset > entry->offset)
282 			link = &(*link)->rb_left;
283 		else if (myentry->offset < entry->offset)
284 			link = &(*link)->rb_right;
285 		else {
286 			*dupentry = myentry;
287 			return -EEXIST;
288 		}
289 	}
290 	rb_link_node(&entry->rbnode, parent, link);
291 	rb_insert_color(&entry->rbnode, root);
292 	return 0;
293 }
294 
295 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
296 {
297 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
298 		rb_erase(&entry->rbnode, root);
299 		RB_CLEAR_NODE(&entry->rbnode);
300 	}
301 }
302 
303 /*
304  * Carries out the common pattern of freeing and entry's zpool allocation,
305  * freeing the entry itself, and decrementing the number of stored pages.
306  */
307 static void zswap_free_entry(struct zswap_entry *entry)
308 {
309 	zpool_free(entry->pool->zpool, entry->handle);
310 	zswap_pool_put(entry->pool);
311 	zswap_entry_cache_free(entry);
312 	atomic_dec(&zswap_stored_pages);
313 	zswap_update_total_size();
314 }
315 
316 /* caller must hold the tree lock */
317 static void zswap_entry_get(struct zswap_entry *entry)
318 {
319 	entry->refcount++;
320 }
321 
322 /* caller must hold the tree lock
323 * remove from the tree and free it, if nobody reference the entry
324 */
325 static void zswap_entry_put(struct zswap_tree *tree,
326 			struct zswap_entry *entry)
327 {
328 	int refcount = --entry->refcount;
329 
330 	BUG_ON(refcount < 0);
331 	if (refcount == 0) {
332 		zswap_rb_erase(&tree->rbroot, entry);
333 		zswap_free_entry(entry);
334 	}
335 }
336 
337 /* caller must hold the tree lock */
338 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
339 				pgoff_t offset)
340 {
341 	struct zswap_entry *entry;
342 
343 	entry = zswap_rb_search(root, offset);
344 	if (entry)
345 		zswap_entry_get(entry);
346 
347 	return entry;
348 }
349 
350 /*********************************
351 * per-cpu code
352 **********************************/
353 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
354 
355 static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu)
356 {
357 	u8 *dst;
358 
359 	switch (action) {
360 	case CPU_UP_PREPARE:
361 		dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
362 		if (!dst) {
363 			pr_err("can't allocate compressor buffer\n");
364 			return NOTIFY_BAD;
365 		}
366 		per_cpu(zswap_dstmem, cpu) = dst;
367 		break;
368 	case CPU_DEAD:
369 	case CPU_UP_CANCELED:
370 		dst = per_cpu(zswap_dstmem, cpu);
371 		kfree(dst);
372 		per_cpu(zswap_dstmem, cpu) = NULL;
373 		break;
374 	default:
375 		break;
376 	}
377 	return NOTIFY_OK;
378 }
379 
380 static int zswap_cpu_dstmem_notifier(struct notifier_block *nb,
381 				     unsigned long action, void *pcpu)
382 {
383 	return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu);
384 }
385 
386 static struct notifier_block zswap_dstmem_notifier = {
387 	.notifier_call =	zswap_cpu_dstmem_notifier,
388 };
389 
390 static int __init zswap_cpu_dstmem_init(void)
391 {
392 	unsigned long cpu;
393 
394 	cpu_notifier_register_begin();
395 	for_each_online_cpu(cpu)
396 		if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) ==
397 		    NOTIFY_BAD)
398 			goto cleanup;
399 	__register_cpu_notifier(&zswap_dstmem_notifier);
400 	cpu_notifier_register_done();
401 	return 0;
402 
403 cleanup:
404 	for_each_online_cpu(cpu)
405 		__zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
406 	cpu_notifier_register_done();
407 	return -ENOMEM;
408 }
409 
410 static void zswap_cpu_dstmem_destroy(void)
411 {
412 	unsigned long cpu;
413 
414 	cpu_notifier_register_begin();
415 	for_each_online_cpu(cpu)
416 		__zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
417 	__unregister_cpu_notifier(&zswap_dstmem_notifier);
418 	cpu_notifier_register_done();
419 }
420 
421 static int __zswap_cpu_comp_notifier(struct zswap_pool *pool,
422 				     unsigned long action, unsigned long cpu)
423 {
424 	struct crypto_comp *tfm;
425 
426 	switch (action) {
427 	case CPU_UP_PREPARE:
428 		if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
429 			break;
430 		tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
431 		if (IS_ERR_OR_NULL(tfm)) {
432 			pr_err("could not alloc crypto comp %s : %ld\n",
433 			       pool->tfm_name, PTR_ERR(tfm));
434 			return NOTIFY_BAD;
435 		}
436 		*per_cpu_ptr(pool->tfm, cpu) = tfm;
437 		break;
438 	case CPU_DEAD:
439 	case CPU_UP_CANCELED:
440 		tfm = *per_cpu_ptr(pool->tfm, cpu);
441 		if (!IS_ERR_OR_NULL(tfm))
442 			crypto_free_comp(tfm);
443 		*per_cpu_ptr(pool->tfm, cpu) = NULL;
444 		break;
445 	default:
446 		break;
447 	}
448 	return NOTIFY_OK;
449 }
450 
451 static int zswap_cpu_comp_notifier(struct notifier_block *nb,
452 				   unsigned long action, void *pcpu)
453 {
454 	unsigned long cpu = (unsigned long)pcpu;
455 	struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier);
456 
457 	return __zswap_cpu_comp_notifier(pool, action, cpu);
458 }
459 
460 static int zswap_cpu_comp_init(struct zswap_pool *pool)
461 {
462 	unsigned long cpu;
463 
464 	memset(&pool->notifier, 0, sizeof(pool->notifier));
465 	pool->notifier.notifier_call = zswap_cpu_comp_notifier;
466 
467 	cpu_notifier_register_begin();
468 	for_each_online_cpu(cpu)
469 		if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) ==
470 		    NOTIFY_BAD)
471 			goto cleanup;
472 	__register_cpu_notifier(&pool->notifier);
473 	cpu_notifier_register_done();
474 	return 0;
475 
476 cleanup:
477 	for_each_online_cpu(cpu)
478 		__zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
479 	cpu_notifier_register_done();
480 	return -ENOMEM;
481 }
482 
483 static void zswap_cpu_comp_destroy(struct zswap_pool *pool)
484 {
485 	unsigned long cpu;
486 
487 	cpu_notifier_register_begin();
488 	for_each_online_cpu(cpu)
489 		__zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
490 	__unregister_cpu_notifier(&pool->notifier);
491 	cpu_notifier_register_done();
492 }
493 
494 /*********************************
495 * pool functions
496 **********************************/
497 
498 static struct zswap_pool *__zswap_pool_current(void)
499 {
500 	struct zswap_pool *pool;
501 
502 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
503 	WARN_ON(!pool);
504 
505 	return pool;
506 }
507 
508 static struct zswap_pool *zswap_pool_current(void)
509 {
510 	assert_spin_locked(&zswap_pools_lock);
511 
512 	return __zswap_pool_current();
513 }
514 
515 static struct zswap_pool *zswap_pool_current_get(void)
516 {
517 	struct zswap_pool *pool;
518 
519 	rcu_read_lock();
520 
521 	pool = __zswap_pool_current();
522 	if (!pool || !zswap_pool_get(pool))
523 		pool = NULL;
524 
525 	rcu_read_unlock();
526 
527 	return pool;
528 }
529 
530 static struct zswap_pool *zswap_pool_last_get(void)
531 {
532 	struct zswap_pool *pool, *last = NULL;
533 
534 	rcu_read_lock();
535 
536 	list_for_each_entry_rcu(pool, &zswap_pools, list)
537 		last = pool;
538 	if (!WARN_ON(!last) && !zswap_pool_get(last))
539 		last = NULL;
540 
541 	rcu_read_unlock();
542 
543 	return last;
544 }
545 
546 /* type and compressor must be null-terminated */
547 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
548 {
549 	struct zswap_pool *pool;
550 
551 	assert_spin_locked(&zswap_pools_lock);
552 
553 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
554 		if (strcmp(pool->tfm_name, compressor))
555 			continue;
556 		if (strcmp(zpool_get_type(pool->zpool), type))
557 			continue;
558 		/* if we can't get it, it's about to be destroyed */
559 		if (!zswap_pool_get(pool))
560 			continue;
561 		return pool;
562 	}
563 
564 	return NULL;
565 }
566 
567 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
568 {
569 	struct zswap_pool *pool;
570 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
571 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
572 
573 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
574 	if (!pool) {
575 		pr_err("pool alloc failed\n");
576 		return NULL;
577 	}
578 
579 	/* unique name for each pool specifically required by zsmalloc */
580 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
581 
582 	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
583 	if (!pool->zpool) {
584 		pr_err("%s zpool not available\n", type);
585 		goto error;
586 	}
587 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
588 
589 	strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
590 	pool->tfm = alloc_percpu(struct crypto_comp *);
591 	if (!pool->tfm) {
592 		pr_err("percpu alloc failed\n");
593 		goto error;
594 	}
595 
596 	if (zswap_cpu_comp_init(pool))
597 		goto error;
598 	pr_debug("using %s compressor\n", pool->tfm_name);
599 
600 	/* being the current pool takes 1 ref; this func expects the
601 	 * caller to always add the new pool as the current pool
602 	 */
603 	kref_init(&pool->kref);
604 	INIT_LIST_HEAD(&pool->list);
605 
606 	zswap_pool_debug("created", pool);
607 
608 	return pool;
609 
610 error:
611 	free_percpu(pool->tfm);
612 	if (pool->zpool)
613 		zpool_destroy_pool(pool->zpool);
614 	kfree(pool);
615 	return NULL;
616 }
617 
618 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
619 {
620 	if (!crypto_has_comp(zswap_compressor, 0, 0)) {
621 		if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
622 			pr_err("default compressor %s not available\n",
623 			       zswap_compressor);
624 			return NULL;
625 		}
626 		pr_err("compressor %s not available, using default %s\n",
627 		       zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
628 		param_free_charp(&zswap_compressor);
629 		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
630 	}
631 	if (!zpool_has_pool(zswap_zpool_type)) {
632 		if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
633 			pr_err("default zpool %s not available\n",
634 			       zswap_zpool_type);
635 			return NULL;
636 		}
637 		pr_err("zpool %s not available, using default %s\n",
638 		       zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
639 		param_free_charp(&zswap_zpool_type);
640 		zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
641 	}
642 
643 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
644 }
645 
646 static void zswap_pool_destroy(struct zswap_pool *pool)
647 {
648 	zswap_pool_debug("destroying", pool);
649 
650 	zswap_cpu_comp_destroy(pool);
651 	free_percpu(pool->tfm);
652 	zpool_destroy_pool(pool->zpool);
653 	kfree(pool);
654 }
655 
656 static int __must_check zswap_pool_get(struct zswap_pool *pool)
657 {
658 	return kref_get_unless_zero(&pool->kref);
659 }
660 
661 static void __zswap_pool_release(struct work_struct *work)
662 {
663 	struct zswap_pool *pool = container_of(work, typeof(*pool), work);
664 
665 	synchronize_rcu();
666 
667 	/* nobody should have been able to get a kref... */
668 	WARN_ON(kref_get_unless_zero(&pool->kref));
669 
670 	/* pool is now off zswap_pools list and has no references. */
671 	zswap_pool_destroy(pool);
672 }
673 
674 static void __zswap_pool_empty(struct kref *kref)
675 {
676 	struct zswap_pool *pool;
677 
678 	pool = container_of(kref, typeof(*pool), kref);
679 
680 	spin_lock(&zswap_pools_lock);
681 
682 	WARN_ON(pool == zswap_pool_current());
683 
684 	list_del_rcu(&pool->list);
685 
686 	INIT_WORK(&pool->work, __zswap_pool_release);
687 	schedule_work(&pool->work);
688 
689 	spin_unlock(&zswap_pools_lock);
690 }
691 
692 static void zswap_pool_put(struct zswap_pool *pool)
693 {
694 	kref_put(&pool->kref, __zswap_pool_empty);
695 }
696 
697 /*********************************
698 * param callbacks
699 **********************************/
700 
701 /* val must be a null-terminated string */
702 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
703 			     char *type, char *compressor)
704 {
705 	struct zswap_pool *pool, *put_pool = NULL;
706 	char *s = strstrip((char *)val);
707 	int ret;
708 
709 	/* no change required */
710 	if (!strcmp(s, *(char **)kp->arg))
711 		return 0;
712 
713 	/* if this is load-time (pre-init) param setting,
714 	 * don't create a pool; that's done during init.
715 	 */
716 	if (!zswap_init_started)
717 		return param_set_charp(s, kp);
718 
719 	if (!type) {
720 		if (!zpool_has_pool(s)) {
721 			pr_err("zpool %s not available\n", s);
722 			return -ENOENT;
723 		}
724 		type = s;
725 	} else if (!compressor) {
726 		if (!crypto_has_comp(s, 0, 0)) {
727 			pr_err("compressor %s not available\n", s);
728 			return -ENOENT;
729 		}
730 		compressor = s;
731 	} else {
732 		WARN_ON(1);
733 		return -EINVAL;
734 	}
735 
736 	spin_lock(&zswap_pools_lock);
737 
738 	pool = zswap_pool_find_get(type, compressor);
739 	if (pool) {
740 		zswap_pool_debug("using existing", pool);
741 		list_del_rcu(&pool->list);
742 	} else {
743 		spin_unlock(&zswap_pools_lock);
744 		pool = zswap_pool_create(type, compressor);
745 		spin_lock(&zswap_pools_lock);
746 	}
747 
748 	if (pool)
749 		ret = param_set_charp(s, kp);
750 	else
751 		ret = -EINVAL;
752 
753 	if (!ret) {
754 		put_pool = zswap_pool_current();
755 		list_add_rcu(&pool->list, &zswap_pools);
756 	} else if (pool) {
757 		/* add the possibly pre-existing pool to the end of the pools
758 		 * list; if it's new (and empty) then it'll be removed and
759 		 * destroyed by the put after we drop the lock
760 		 */
761 		list_add_tail_rcu(&pool->list, &zswap_pools);
762 		put_pool = pool;
763 	}
764 
765 	spin_unlock(&zswap_pools_lock);
766 
767 	/* drop the ref from either the old current pool,
768 	 * or the new pool we failed to add
769 	 */
770 	if (put_pool)
771 		zswap_pool_put(put_pool);
772 
773 	return ret;
774 }
775 
776 static int zswap_compressor_param_set(const char *val,
777 				      const struct kernel_param *kp)
778 {
779 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
780 }
781 
782 static int zswap_zpool_param_set(const char *val,
783 				 const struct kernel_param *kp)
784 {
785 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
786 }
787 
788 /*********************************
789 * writeback code
790 **********************************/
791 /* return enum for zswap_get_swap_cache_page */
792 enum zswap_get_swap_ret {
793 	ZSWAP_SWAPCACHE_NEW,
794 	ZSWAP_SWAPCACHE_EXIST,
795 	ZSWAP_SWAPCACHE_FAIL,
796 };
797 
798 /*
799  * zswap_get_swap_cache_page
800  *
801  * This is an adaption of read_swap_cache_async()
802  *
803  * This function tries to find a page with the given swap entry
804  * in the swapper_space address space (the swap cache).  If the page
805  * is found, it is returned in retpage.  Otherwise, a page is allocated,
806  * added to the swap cache, and returned in retpage.
807  *
808  * If success, the swap cache page is returned in retpage
809  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
810  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
811  *     the new page is added to swapcache and locked
812  * Returns ZSWAP_SWAPCACHE_FAIL on error
813  */
814 static int zswap_get_swap_cache_page(swp_entry_t entry,
815 				struct page **retpage)
816 {
817 	bool page_was_allocated;
818 
819 	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
820 			NULL, 0, &page_was_allocated);
821 	if (page_was_allocated)
822 		return ZSWAP_SWAPCACHE_NEW;
823 	if (!*retpage)
824 		return ZSWAP_SWAPCACHE_FAIL;
825 	return ZSWAP_SWAPCACHE_EXIST;
826 }
827 
828 /*
829  * Attempts to free an entry by adding a page to the swap cache,
830  * decompressing the entry data into the page, and issuing a
831  * bio write to write the page back to the swap device.
832  *
833  * This can be thought of as a "resumed writeback" of the page
834  * to the swap device.  We are basically resuming the same swap
835  * writeback path that was intercepted with the frontswap_store()
836  * in the first place.  After the page has been decompressed into
837  * the swap cache, the compressed version stored by zswap can be
838  * freed.
839  */
840 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
841 {
842 	struct zswap_header *zhdr;
843 	swp_entry_t swpentry;
844 	struct zswap_tree *tree;
845 	pgoff_t offset;
846 	struct zswap_entry *entry;
847 	struct page *page;
848 	struct crypto_comp *tfm;
849 	u8 *src, *dst;
850 	unsigned int dlen;
851 	int ret;
852 	struct writeback_control wbc = {
853 		.sync_mode = WB_SYNC_NONE,
854 	};
855 
856 	/* extract swpentry from data */
857 	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
858 	swpentry = zhdr->swpentry; /* here */
859 	zpool_unmap_handle(pool, handle);
860 	tree = zswap_trees[swp_type(swpentry)];
861 	offset = swp_offset(swpentry);
862 
863 	/* find and ref zswap entry */
864 	spin_lock(&tree->lock);
865 	entry = zswap_entry_find_get(&tree->rbroot, offset);
866 	if (!entry) {
867 		/* entry was invalidated */
868 		spin_unlock(&tree->lock);
869 		return 0;
870 	}
871 	spin_unlock(&tree->lock);
872 	BUG_ON(offset != entry->offset);
873 
874 	/* try to allocate swap cache page */
875 	switch (zswap_get_swap_cache_page(swpentry, &page)) {
876 	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
877 		ret = -ENOMEM;
878 		goto fail;
879 
880 	case ZSWAP_SWAPCACHE_EXIST:
881 		/* page is already in the swap cache, ignore for now */
882 		put_page(page);
883 		ret = -EEXIST;
884 		goto fail;
885 
886 	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
887 		/* decompress */
888 		dlen = PAGE_SIZE;
889 		src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
890 				ZPOOL_MM_RO) + sizeof(struct zswap_header);
891 		dst = kmap_atomic(page);
892 		tfm = *get_cpu_ptr(entry->pool->tfm);
893 		ret = crypto_comp_decompress(tfm, src, entry->length,
894 					     dst, &dlen);
895 		put_cpu_ptr(entry->pool->tfm);
896 		kunmap_atomic(dst);
897 		zpool_unmap_handle(entry->pool->zpool, entry->handle);
898 		BUG_ON(ret);
899 		BUG_ON(dlen != PAGE_SIZE);
900 
901 		/* page is up to date */
902 		SetPageUptodate(page);
903 	}
904 
905 	/* move it to the tail of the inactive list after end_writeback */
906 	SetPageReclaim(page);
907 
908 	/* start writeback */
909 	__swap_writepage(page, &wbc, end_swap_bio_write);
910 	put_page(page);
911 	zswap_written_back_pages++;
912 
913 	spin_lock(&tree->lock);
914 	/* drop local reference */
915 	zswap_entry_put(tree, entry);
916 
917 	/*
918 	* There are two possible situations for entry here:
919 	* (1) refcount is 1(normal case),  entry is valid and on the tree
920 	* (2) refcount is 0, entry is freed and not on the tree
921 	*     because invalidate happened during writeback
922 	*  search the tree and free the entry if find entry
923 	*/
924 	if (entry == zswap_rb_search(&tree->rbroot, offset))
925 		zswap_entry_put(tree, entry);
926 	spin_unlock(&tree->lock);
927 
928 	goto end;
929 
930 	/*
931 	* if we get here due to ZSWAP_SWAPCACHE_EXIST
932 	* a load may happening concurrently
933 	* it is safe and okay to not free the entry
934 	* if we free the entry in the following put
935 	* it it either okay to return !0
936 	*/
937 fail:
938 	spin_lock(&tree->lock);
939 	zswap_entry_put(tree, entry);
940 	spin_unlock(&tree->lock);
941 
942 end:
943 	return ret;
944 }
945 
946 static int zswap_shrink(void)
947 {
948 	struct zswap_pool *pool;
949 	int ret;
950 
951 	pool = zswap_pool_last_get();
952 	if (!pool)
953 		return -ENOENT;
954 
955 	ret = zpool_shrink(pool->zpool, 1, NULL);
956 
957 	zswap_pool_put(pool);
958 
959 	return ret;
960 }
961 
962 /*********************************
963 * frontswap hooks
964 **********************************/
965 /* attempts to compress and store an single page */
966 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
967 				struct page *page)
968 {
969 	struct zswap_tree *tree = zswap_trees[type];
970 	struct zswap_entry *entry, *dupentry;
971 	struct crypto_comp *tfm;
972 	int ret;
973 	unsigned int dlen = PAGE_SIZE, len;
974 	unsigned long handle;
975 	char *buf;
976 	u8 *src, *dst;
977 	struct zswap_header *zhdr;
978 
979 	if (!zswap_enabled || !tree) {
980 		ret = -ENODEV;
981 		goto reject;
982 	}
983 
984 	/* reclaim space if needed */
985 	if (zswap_is_full()) {
986 		zswap_pool_limit_hit++;
987 		if (zswap_shrink()) {
988 			zswap_reject_reclaim_fail++;
989 			ret = -ENOMEM;
990 			goto reject;
991 		}
992 	}
993 
994 	/* allocate entry */
995 	entry = zswap_entry_cache_alloc(GFP_KERNEL);
996 	if (!entry) {
997 		zswap_reject_kmemcache_fail++;
998 		ret = -ENOMEM;
999 		goto reject;
1000 	}
1001 
1002 	/* if entry is successfully added, it keeps the reference */
1003 	entry->pool = zswap_pool_current_get();
1004 	if (!entry->pool) {
1005 		ret = -EINVAL;
1006 		goto freepage;
1007 	}
1008 
1009 	/* compress */
1010 	dst = get_cpu_var(zswap_dstmem);
1011 	tfm = *get_cpu_ptr(entry->pool->tfm);
1012 	src = kmap_atomic(page);
1013 	ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1014 	kunmap_atomic(src);
1015 	put_cpu_ptr(entry->pool->tfm);
1016 	if (ret) {
1017 		ret = -EINVAL;
1018 		goto put_dstmem;
1019 	}
1020 
1021 	/* store */
1022 	len = dlen + sizeof(struct zswap_header);
1023 	ret = zpool_malloc(entry->pool->zpool, len,
1024 			   __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
1025 			   &handle);
1026 	if (ret == -ENOSPC) {
1027 		zswap_reject_compress_poor++;
1028 		goto put_dstmem;
1029 	}
1030 	if (ret) {
1031 		zswap_reject_alloc_fail++;
1032 		goto put_dstmem;
1033 	}
1034 	zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1035 	zhdr->swpentry = swp_entry(type, offset);
1036 	buf = (u8 *)(zhdr + 1);
1037 	memcpy(buf, dst, dlen);
1038 	zpool_unmap_handle(entry->pool->zpool, handle);
1039 	put_cpu_var(zswap_dstmem);
1040 
1041 	/* populate entry */
1042 	entry->offset = offset;
1043 	entry->handle = handle;
1044 	entry->length = dlen;
1045 
1046 	/* map */
1047 	spin_lock(&tree->lock);
1048 	do {
1049 		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1050 		if (ret == -EEXIST) {
1051 			zswap_duplicate_entry++;
1052 			/* remove from rbtree */
1053 			zswap_rb_erase(&tree->rbroot, dupentry);
1054 			zswap_entry_put(tree, dupentry);
1055 		}
1056 	} while (ret == -EEXIST);
1057 	spin_unlock(&tree->lock);
1058 
1059 	/* update stats */
1060 	atomic_inc(&zswap_stored_pages);
1061 	zswap_update_total_size();
1062 
1063 	return 0;
1064 
1065 put_dstmem:
1066 	put_cpu_var(zswap_dstmem);
1067 	zswap_pool_put(entry->pool);
1068 freepage:
1069 	zswap_entry_cache_free(entry);
1070 reject:
1071 	return ret;
1072 }
1073 
1074 /*
1075  * returns 0 if the page was successfully decompressed
1076  * return -1 on entry not found or error
1077 */
1078 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1079 				struct page *page)
1080 {
1081 	struct zswap_tree *tree = zswap_trees[type];
1082 	struct zswap_entry *entry;
1083 	struct crypto_comp *tfm;
1084 	u8 *src, *dst;
1085 	unsigned int dlen;
1086 	int ret;
1087 
1088 	/* find */
1089 	spin_lock(&tree->lock);
1090 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1091 	if (!entry) {
1092 		/* entry was written back */
1093 		spin_unlock(&tree->lock);
1094 		return -1;
1095 	}
1096 	spin_unlock(&tree->lock);
1097 
1098 	/* decompress */
1099 	dlen = PAGE_SIZE;
1100 	src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
1101 			ZPOOL_MM_RO) + sizeof(struct zswap_header);
1102 	dst = kmap_atomic(page);
1103 	tfm = *get_cpu_ptr(entry->pool->tfm);
1104 	ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1105 	put_cpu_ptr(entry->pool->tfm);
1106 	kunmap_atomic(dst);
1107 	zpool_unmap_handle(entry->pool->zpool, entry->handle);
1108 	BUG_ON(ret);
1109 
1110 	spin_lock(&tree->lock);
1111 	zswap_entry_put(tree, entry);
1112 	spin_unlock(&tree->lock);
1113 
1114 	return 0;
1115 }
1116 
1117 /* frees an entry in zswap */
1118 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1119 {
1120 	struct zswap_tree *tree = zswap_trees[type];
1121 	struct zswap_entry *entry;
1122 
1123 	/* find */
1124 	spin_lock(&tree->lock);
1125 	entry = zswap_rb_search(&tree->rbroot, offset);
1126 	if (!entry) {
1127 		/* entry was written back */
1128 		spin_unlock(&tree->lock);
1129 		return;
1130 	}
1131 
1132 	/* remove from rbtree */
1133 	zswap_rb_erase(&tree->rbroot, entry);
1134 
1135 	/* drop the initial reference from entry creation */
1136 	zswap_entry_put(tree, entry);
1137 
1138 	spin_unlock(&tree->lock);
1139 }
1140 
1141 /* frees all zswap entries for the given swap type */
1142 static void zswap_frontswap_invalidate_area(unsigned type)
1143 {
1144 	struct zswap_tree *tree = zswap_trees[type];
1145 	struct zswap_entry *entry, *n;
1146 
1147 	if (!tree)
1148 		return;
1149 
1150 	/* walk the tree and free everything */
1151 	spin_lock(&tree->lock);
1152 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1153 		zswap_free_entry(entry);
1154 	tree->rbroot = RB_ROOT;
1155 	spin_unlock(&tree->lock);
1156 	kfree(tree);
1157 	zswap_trees[type] = NULL;
1158 }
1159 
1160 static void zswap_frontswap_init(unsigned type)
1161 {
1162 	struct zswap_tree *tree;
1163 
1164 	tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1165 	if (!tree) {
1166 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1167 		return;
1168 	}
1169 
1170 	tree->rbroot = RB_ROOT;
1171 	spin_lock_init(&tree->lock);
1172 	zswap_trees[type] = tree;
1173 }
1174 
1175 static struct frontswap_ops zswap_frontswap_ops = {
1176 	.store = zswap_frontswap_store,
1177 	.load = zswap_frontswap_load,
1178 	.invalidate_page = zswap_frontswap_invalidate_page,
1179 	.invalidate_area = zswap_frontswap_invalidate_area,
1180 	.init = zswap_frontswap_init
1181 };
1182 
1183 /*********************************
1184 * debugfs functions
1185 **********************************/
1186 #ifdef CONFIG_DEBUG_FS
1187 #include <linux/debugfs.h>
1188 
1189 static struct dentry *zswap_debugfs_root;
1190 
1191 static int __init zswap_debugfs_init(void)
1192 {
1193 	if (!debugfs_initialized())
1194 		return -ENODEV;
1195 
1196 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1197 	if (!zswap_debugfs_root)
1198 		return -ENOMEM;
1199 
1200 	debugfs_create_u64("pool_limit_hit", S_IRUGO,
1201 			zswap_debugfs_root, &zswap_pool_limit_hit);
1202 	debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1203 			zswap_debugfs_root, &zswap_reject_reclaim_fail);
1204 	debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1205 			zswap_debugfs_root, &zswap_reject_alloc_fail);
1206 	debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1207 			zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1208 	debugfs_create_u64("reject_compress_poor", S_IRUGO,
1209 			zswap_debugfs_root, &zswap_reject_compress_poor);
1210 	debugfs_create_u64("written_back_pages", S_IRUGO,
1211 			zswap_debugfs_root, &zswap_written_back_pages);
1212 	debugfs_create_u64("duplicate_entry", S_IRUGO,
1213 			zswap_debugfs_root, &zswap_duplicate_entry);
1214 	debugfs_create_u64("pool_total_size", S_IRUGO,
1215 			zswap_debugfs_root, &zswap_pool_total_size);
1216 	debugfs_create_atomic_t("stored_pages", S_IRUGO,
1217 			zswap_debugfs_root, &zswap_stored_pages);
1218 
1219 	return 0;
1220 }
1221 
1222 static void __exit zswap_debugfs_exit(void)
1223 {
1224 	debugfs_remove_recursive(zswap_debugfs_root);
1225 }
1226 #else
1227 static int __init zswap_debugfs_init(void)
1228 {
1229 	return 0;
1230 }
1231 
1232 static void __exit zswap_debugfs_exit(void) { }
1233 #endif
1234 
1235 /*********************************
1236 * module init and exit
1237 **********************************/
1238 static int __init init_zswap(void)
1239 {
1240 	struct zswap_pool *pool;
1241 
1242 	zswap_init_started = true;
1243 
1244 	if (zswap_entry_cache_create()) {
1245 		pr_err("entry cache creation failed\n");
1246 		goto cache_fail;
1247 	}
1248 
1249 	if (zswap_cpu_dstmem_init()) {
1250 		pr_err("dstmem alloc failed\n");
1251 		goto dstmem_fail;
1252 	}
1253 
1254 	pool = __zswap_pool_create_fallback();
1255 	if (!pool) {
1256 		pr_err("pool creation failed\n");
1257 		goto pool_fail;
1258 	}
1259 	pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1260 		zpool_get_type(pool->zpool));
1261 
1262 	list_add(&pool->list, &zswap_pools);
1263 
1264 	frontswap_register_ops(&zswap_frontswap_ops);
1265 	if (zswap_debugfs_init())
1266 		pr_warn("debugfs initialization failed\n");
1267 	return 0;
1268 
1269 pool_fail:
1270 	zswap_cpu_dstmem_destroy();
1271 dstmem_fail:
1272 	zswap_entry_cache_destroy();
1273 cache_fail:
1274 	return -ENOMEM;
1275 }
1276 /* must be late so crypto has time to come up */
1277 late_initcall(init_zswap);
1278 
1279 MODULE_LICENSE("GPL");
1280 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1281 MODULE_DESCRIPTION("Compressed cache for swap pages");
1282