xref: /linux/mm/zswap.c (revision 06ba8020287f43fc13962b158d8dec2689448a5a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a backend for frontswap that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/frontswap.h>
24 #include <linux/rbtree.h>
25 #include <linux/swap.h>
26 #include <linux/crypto.h>
27 #include <linux/scatterlist.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 
39 #include "swap.h"
40 
41 /*********************************
42 * statistics
43 **********************************/
44 /* Total bytes used by the compressed storage */
45 u64 zswap_pool_total_size;
46 /* The number of compressed pages currently stored in zswap */
47 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
48 /* The number of same-value filled pages currently stored in zswap */
49 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
50 
51 /*
52  * The statistics below are not protected from concurrent access for
53  * performance reasons so they may not be a 100% accurate.  However,
54  * they do provide useful information on roughly how many times a
55  * certain event is occurring.
56 */
57 
58 /* Pool limit was hit (see zswap_max_pool_percent) */
59 static u64 zswap_pool_limit_hit;
60 /* Pages written back when pool limit was reached */
61 static u64 zswap_written_back_pages;
62 /* Store failed due to a reclaim failure after pool limit was reached */
63 static u64 zswap_reject_reclaim_fail;
64 /* Compressed page was too big for the allocator to (optimally) store */
65 static u64 zswap_reject_compress_poor;
66 /* Store failed because underlying allocator could not get memory */
67 static u64 zswap_reject_alloc_fail;
68 /* Store failed because the entry metadata could not be allocated (rare) */
69 static u64 zswap_reject_kmemcache_fail;
70 /* Duplicate store was encountered (rare) */
71 static u64 zswap_duplicate_entry;
72 
73 /* Shrinker work queue */
74 static struct workqueue_struct *shrink_wq;
75 /* Pool limit was hit, we need to calm down */
76 static bool zswap_pool_reached_full;
77 
78 /*********************************
79 * tunables
80 **********************************/
81 
82 #define ZSWAP_PARAM_UNSET ""
83 
84 static int zswap_setup(void);
85 
86 /* Enable/disable zswap */
87 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
88 static int zswap_enabled_param_set(const char *,
89 				   const struct kernel_param *);
90 static const struct kernel_param_ops zswap_enabled_param_ops = {
91 	.set =		zswap_enabled_param_set,
92 	.get =		param_get_bool,
93 };
94 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
95 
96 /* Crypto compressor to use */
97 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
98 static int zswap_compressor_param_set(const char *,
99 				      const struct kernel_param *);
100 static const struct kernel_param_ops zswap_compressor_param_ops = {
101 	.set =		zswap_compressor_param_set,
102 	.get =		param_get_charp,
103 	.free =		param_free_charp,
104 };
105 module_param_cb(compressor, &zswap_compressor_param_ops,
106 		&zswap_compressor, 0644);
107 
108 /* Compressed storage zpool to use */
109 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
110 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
111 static const struct kernel_param_ops zswap_zpool_param_ops = {
112 	.set =		zswap_zpool_param_set,
113 	.get =		param_get_charp,
114 	.free =		param_free_charp,
115 };
116 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
117 
118 /* The maximum percentage of memory that the compressed pool can occupy */
119 static unsigned int zswap_max_pool_percent = 20;
120 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
121 
122 /* The threshold for accepting new pages after the max_pool_percent was hit */
123 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
124 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
125 		   uint, 0644);
126 
127 /*
128  * Enable/disable handling same-value filled pages (enabled by default).
129  * If disabled every page is considered non-same-value filled.
130  */
131 static bool zswap_same_filled_pages_enabled = true;
132 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
133 		   bool, 0644);
134 
135 /* Enable/disable handling non-same-value filled pages (enabled by default) */
136 static bool zswap_non_same_filled_pages_enabled = true;
137 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
138 		   bool, 0644);
139 
140 /*********************************
141 * data structures
142 **********************************/
143 
144 struct crypto_acomp_ctx {
145 	struct crypto_acomp *acomp;
146 	struct acomp_req *req;
147 	struct crypto_wait wait;
148 	u8 *dstmem;
149 	struct mutex *mutex;
150 };
151 
152 struct zswap_pool {
153 	struct zpool *zpool;
154 	struct crypto_acomp_ctx __percpu *acomp_ctx;
155 	struct kref kref;
156 	struct list_head list;
157 	struct work_struct release_work;
158 	struct work_struct shrink_work;
159 	struct hlist_node node;
160 	char tfm_name[CRYPTO_MAX_ALG_NAME];
161 };
162 
163 /*
164  * struct zswap_entry
165  *
166  * This structure contains the metadata for tracking a single compressed
167  * page within zswap.
168  *
169  * rbnode - links the entry into red-black tree for the appropriate swap type
170  * offset - the swap offset for the entry.  Index into the red-black tree.
171  * refcount - the number of outstanding reference to the entry. This is needed
172  *            to protect against premature freeing of the entry by code
173  *            concurrent calls to load, invalidate, and writeback.  The lock
174  *            for the zswap_tree structure that contains the entry must
175  *            be held while changing the refcount.  Since the lock must
176  *            be held, there is no reason to also make refcount atomic.
177  * length - the length in bytes of the compressed page data.  Needed during
178  *          decompression. For a same value filled page length is 0.
179  * pool - the zswap_pool the entry's data is in
180  * handle - zpool allocation handle that stores the compressed page data
181  * value - value of the same-value filled pages which have same content
182  */
183 struct zswap_entry {
184 	struct rb_node rbnode;
185 	pgoff_t offset;
186 	int refcount;
187 	unsigned int length;
188 	struct zswap_pool *pool;
189 	union {
190 		unsigned long handle;
191 		unsigned long value;
192 	};
193 	struct obj_cgroup *objcg;
194 };
195 
196 struct zswap_header {
197 	swp_entry_t swpentry;
198 };
199 
200 /*
201  * The tree lock in the zswap_tree struct protects a few things:
202  * - the rbtree
203  * - the refcount field of each entry in the tree
204  */
205 struct zswap_tree {
206 	struct rb_root rbroot;
207 	spinlock_t lock;
208 };
209 
210 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
211 
212 /* RCU-protected iteration */
213 static LIST_HEAD(zswap_pools);
214 /* protects zswap_pools list modification */
215 static DEFINE_SPINLOCK(zswap_pools_lock);
216 /* pool counter to provide unique names to zpool */
217 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
218 
219 enum zswap_init_type {
220 	ZSWAP_UNINIT,
221 	ZSWAP_INIT_SUCCEED,
222 	ZSWAP_INIT_FAILED
223 };
224 
225 static enum zswap_init_type zswap_init_state;
226 
227 /* used to ensure the integrity of initialization */
228 static DEFINE_MUTEX(zswap_init_lock);
229 
230 /* init completed, but couldn't create the initial pool */
231 static bool zswap_has_pool;
232 
233 /*********************************
234 * helpers and fwd declarations
235 **********************************/
236 
237 #define zswap_pool_debug(msg, p)				\
238 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
239 		 zpool_get_type((p)->zpool))
240 
241 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
242 static int zswap_pool_get(struct zswap_pool *pool);
243 static void zswap_pool_put(struct zswap_pool *pool);
244 
245 static const struct zpool_ops zswap_zpool_ops = {
246 	.evict = zswap_writeback_entry
247 };
248 
249 static bool zswap_is_full(void)
250 {
251 	return totalram_pages() * zswap_max_pool_percent / 100 <
252 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
253 }
254 
255 static bool zswap_can_accept(void)
256 {
257 	return totalram_pages() * zswap_accept_thr_percent / 100 *
258 				zswap_max_pool_percent / 100 >
259 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
260 }
261 
262 static void zswap_update_total_size(void)
263 {
264 	struct zswap_pool *pool;
265 	u64 total = 0;
266 
267 	rcu_read_lock();
268 
269 	list_for_each_entry_rcu(pool, &zswap_pools, list)
270 		total += zpool_get_total_size(pool->zpool);
271 
272 	rcu_read_unlock();
273 
274 	zswap_pool_total_size = total;
275 }
276 
277 /*********************************
278 * zswap entry functions
279 **********************************/
280 static struct kmem_cache *zswap_entry_cache;
281 
282 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
283 {
284 	struct zswap_entry *entry;
285 	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
286 	if (!entry)
287 		return NULL;
288 	entry->refcount = 1;
289 	RB_CLEAR_NODE(&entry->rbnode);
290 	return entry;
291 }
292 
293 static void zswap_entry_cache_free(struct zswap_entry *entry)
294 {
295 	kmem_cache_free(zswap_entry_cache, entry);
296 }
297 
298 /*********************************
299 * rbtree functions
300 **********************************/
301 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
302 {
303 	struct rb_node *node = root->rb_node;
304 	struct zswap_entry *entry;
305 
306 	while (node) {
307 		entry = rb_entry(node, struct zswap_entry, rbnode);
308 		if (entry->offset > offset)
309 			node = node->rb_left;
310 		else if (entry->offset < offset)
311 			node = node->rb_right;
312 		else
313 			return entry;
314 	}
315 	return NULL;
316 }
317 
318 /*
319  * In the case that a entry with the same offset is found, a pointer to
320  * the existing entry is stored in dupentry and the function returns -EEXIST
321  */
322 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
323 			struct zswap_entry **dupentry)
324 {
325 	struct rb_node **link = &root->rb_node, *parent = NULL;
326 	struct zswap_entry *myentry;
327 
328 	while (*link) {
329 		parent = *link;
330 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
331 		if (myentry->offset > entry->offset)
332 			link = &(*link)->rb_left;
333 		else if (myentry->offset < entry->offset)
334 			link = &(*link)->rb_right;
335 		else {
336 			*dupentry = myentry;
337 			return -EEXIST;
338 		}
339 	}
340 	rb_link_node(&entry->rbnode, parent, link);
341 	rb_insert_color(&entry->rbnode, root);
342 	return 0;
343 }
344 
345 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
346 {
347 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
348 		rb_erase(&entry->rbnode, root);
349 		RB_CLEAR_NODE(&entry->rbnode);
350 	}
351 }
352 
353 /*
354  * Carries out the common pattern of freeing and entry's zpool allocation,
355  * freeing the entry itself, and decrementing the number of stored pages.
356  */
357 static void zswap_free_entry(struct zswap_entry *entry)
358 {
359 	if (entry->objcg) {
360 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
361 		obj_cgroup_put(entry->objcg);
362 	}
363 	if (!entry->length)
364 		atomic_dec(&zswap_same_filled_pages);
365 	else {
366 		zpool_free(entry->pool->zpool, entry->handle);
367 		zswap_pool_put(entry->pool);
368 	}
369 	zswap_entry_cache_free(entry);
370 	atomic_dec(&zswap_stored_pages);
371 	zswap_update_total_size();
372 }
373 
374 /* caller must hold the tree lock */
375 static void zswap_entry_get(struct zswap_entry *entry)
376 {
377 	entry->refcount++;
378 }
379 
380 /* caller must hold the tree lock
381 * remove from the tree and free it, if nobody reference the entry
382 */
383 static void zswap_entry_put(struct zswap_tree *tree,
384 			struct zswap_entry *entry)
385 {
386 	int refcount = --entry->refcount;
387 
388 	BUG_ON(refcount < 0);
389 	if (refcount == 0) {
390 		zswap_rb_erase(&tree->rbroot, entry);
391 		zswap_free_entry(entry);
392 	}
393 }
394 
395 /* caller must hold the tree lock */
396 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
397 				pgoff_t offset)
398 {
399 	struct zswap_entry *entry;
400 
401 	entry = zswap_rb_search(root, offset);
402 	if (entry)
403 		zswap_entry_get(entry);
404 
405 	return entry;
406 }
407 
408 /*********************************
409 * per-cpu code
410 **********************************/
411 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
412 /*
413  * If users dynamically change the zpool type and compressor at runtime, i.e.
414  * zswap is running, zswap can have more than one zpool on one cpu, but they
415  * are sharing dtsmem. So we need this mutex to be per-cpu.
416  */
417 static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
418 
419 static int zswap_dstmem_prepare(unsigned int cpu)
420 {
421 	struct mutex *mutex;
422 	u8 *dst;
423 
424 	dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
425 	if (!dst)
426 		return -ENOMEM;
427 
428 	mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
429 	if (!mutex) {
430 		kfree(dst);
431 		return -ENOMEM;
432 	}
433 
434 	mutex_init(mutex);
435 	per_cpu(zswap_dstmem, cpu) = dst;
436 	per_cpu(zswap_mutex, cpu) = mutex;
437 	return 0;
438 }
439 
440 static int zswap_dstmem_dead(unsigned int cpu)
441 {
442 	struct mutex *mutex;
443 	u8 *dst;
444 
445 	mutex = per_cpu(zswap_mutex, cpu);
446 	kfree(mutex);
447 	per_cpu(zswap_mutex, cpu) = NULL;
448 
449 	dst = per_cpu(zswap_dstmem, cpu);
450 	kfree(dst);
451 	per_cpu(zswap_dstmem, cpu) = NULL;
452 
453 	return 0;
454 }
455 
456 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
457 {
458 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
459 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
460 	struct crypto_acomp *acomp;
461 	struct acomp_req *req;
462 
463 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
464 	if (IS_ERR(acomp)) {
465 		pr_err("could not alloc crypto acomp %s : %ld\n",
466 				pool->tfm_name, PTR_ERR(acomp));
467 		return PTR_ERR(acomp);
468 	}
469 	acomp_ctx->acomp = acomp;
470 
471 	req = acomp_request_alloc(acomp_ctx->acomp);
472 	if (!req) {
473 		pr_err("could not alloc crypto acomp_request %s\n",
474 		       pool->tfm_name);
475 		crypto_free_acomp(acomp_ctx->acomp);
476 		return -ENOMEM;
477 	}
478 	acomp_ctx->req = req;
479 
480 	crypto_init_wait(&acomp_ctx->wait);
481 	/*
482 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
483 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
484 	 * won't be called, crypto_wait_req() will return without blocking.
485 	 */
486 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
487 				   crypto_req_done, &acomp_ctx->wait);
488 
489 	acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
490 	acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
491 
492 	return 0;
493 }
494 
495 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
496 {
497 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
498 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
499 
500 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
501 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
502 			acomp_request_free(acomp_ctx->req);
503 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
504 			crypto_free_acomp(acomp_ctx->acomp);
505 	}
506 
507 	return 0;
508 }
509 
510 /*********************************
511 * pool functions
512 **********************************/
513 
514 static struct zswap_pool *__zswap_pool_current(void)
515 {
516 	struct zswap_pool *pool;
517 
518 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
519 	WARN_ONCE(!pool && zswap_has_pool,
520 		  "%s: no page storage pool!\n", __func__);
521 
522 	return pool;
523 }
524 
525 static struct zswap_pool *zswap_pool_current(void)
526 {
527 	assert_spin_locked(&zswap_pools_lock);
528 
529 	return __zswap_pool_current();
530 }
531 
532 static struct zswap_pool *zswap_pool_current_get(void)
533 {
534 	struct zswap_pool *pool;
535 
536 	rcu_read_lock();
537 
538 	pool = __zswap_pool_current();
539 	if (!zswap_pool_get(pool))
540 		pool = NULL;
541 
542 	rcu_read_unlock();
543 
544 	return pool;
545 }
546 
547 static struct zswap_pool *zswap_pool_last_get(void)
548 {
549 	struct zswap_pool *pool, *last = NULL;
550 
551 	rcu_read_lock();
552 
553 	list_for_each_entry_rcu(pool, &zswap_pools, list)
554 		last = pool;
555 	WARN_ONCE(!last && zswap_has_pool,
556 		  "%s: no page storage pool!\n", __func__);
557 	if (!zswap_pool_get(last))
558 		last = NULL;
559 
560 	rcu_read_unlock();
561 
562 	return last;
563 }
564 
565 /* type and compressor must be null-terminated */
566 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
567 {
568 	struct zswap_pool *pool;
569 
570 	assert_spin_locked(&zswap_pools_lock);
571 
572 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
573 		if (strcmp(pool->tfm_name, compressor))
574 			continue;
575 		if (strcmp(zpool_get_type(pool->zpool), type))
576 			continue;
577 		/* if we can't get it, it's about to be destroyed */
578 		if (!zswap_pool_get(pool))
579 			continue;
580 		return pool;
581 	}
582 
583 	return NULL;
584 }
585 
586 static void shrink_worker(struct work_struct *w)
587 {
588 	struct zswap_pool *pool = container_of(w, typeof(*pool),
589 						shrink_work);
590 
591 	if (zpool_shrink(pool->zpool, 1, NULL))
592 		zswap_reject_reclaim_fail++;
593 	zswap_pool_put(pool);
594 }
595 
596 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
597 {
598 	struct zswap_pool *pool;
599 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
600 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
601 	int ret;
602 
603 	if (!zswap_has_pool) {
604 		/* if either are unset, pool initialization failed, and we
605 		 * need both params to be set correctly before trying to
606 		 * create a pool.
607 		 */
608 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
609 			return NULL;
610 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
611 			return NULL;
612 	}
613 
614 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
615 	if (!pool)
616 		return NULL;
617 
618 	/* unique name for each pool specifically required by zsmalloc */
619 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
620 
621 	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
622 	if (!pool->zpool) {
623 		pr_err("%s zpool not available\n", type);
624 		goto error;
625 	}
626 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
627 
628 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
629 
630 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
631 	if (!pool->acomp_ctx) {
632 		pr_err("percpu alloc failed\n");
633 		goto error;
634 	}
635 
636 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
637 				       &pool->node);
638 	if (ret)
639 		goto error;
640 	pr_debug("using %s compressor\n", pool->tfm_name);
641 
642 	/* being the current pool takes 1 ref; this func expects the
643 	 * caller to always add the new pool as the current pool
644 	 */
645 	kref_init(&pool->kref);
646 	INIT_LIST_HEAD(&pool->list);
647 	INIT_WORK(&pool->shrink_work, shrink_worker);
648 
649 	zswap_pool_debug("created", pool);
650 
651 	return pool;
652 
653 error:
654 	if (pool->acomp_ctx)
655 		free_percpu(pool->acomp_ctx);
656 	if (pool->zpool)
657 		zpool_destroy_pool(pool->zpool);
658 	kfree(pool);
659 	return NULL;
660 }
661 
662 static struct zswap_pool *__zswap_pool_create_fallback(void)
663 {
664 	bool has_comp, has_zpool;
665 
666 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
667 	if (!has_comp && strcmp(zswap_compressor,
668 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
669 		pr_err("compressor %s not available, using default %s\n",
670 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
671 		param_free_charp(&zswap_compressor);
672 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
673 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
674 	}
675 	if (!has_comp) {
676 		pr_err("default compressor %s not available\n",
677 		       zswap_compressor);
678 		param_free_charp(&zswap_compressor);
679 		zswap_compressor = ZSWAP_PARAM_UNSET;
680 	}
681 
682 	has_zpool = zpool_has_pool(zswap_zpool_type);
683 	if (!has_zpool && strcmp(zswap_zpool_type,
684 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
685 		pr_err("zpool %s not available, using default %s\n",
686 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
687 		param_free_charp(&zswap_zpool_type);
688 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
689 		has_zpool = zpool_has_pool(zswap_zpool_type);
690 	}
691 	if (!has_zpool) {
692 		pr_err("default zpool %s not available\n",
693 		       zswap_zpool_type);
694 		param_free_charp(&zswap_zpool_type);
695 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
696 	}
697 
698 	if (!has_comp || !has_zpool)
699 		return NULL;
700 
701 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
702 }
703 
704 static void zswap_pool_destroy(struct zswap_pool *pool)
705 {
706 	zswap_pool_debug("destroying", pool);
707 
708 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
709 	free_percpu(pool->acomp_ctx);
710 	zpool_destroy_pool(pool->zpool);
711 	kfree(pool);
712 }
713 
714 static int __must_check zswap_pool_get(struct zswap_pool *pool)
715 {
716 	if (!pool)
717 		return 0;
718 
719 	return kref_get_unless_zero(&pool->kref);
720 }
721 
722 static void __zswap_pool_release(struct work_struct *work)
723 {
724 	struct zswap_pool *pool = container_of(work, typeof(*pool),
725 						release_work);
726 
727 	synchronize_rcu();
728 
729 	/* nobody should have been able to get a kref... */
730 	WARN_ON(kref_get_unless_zero(&pool->kref));
731 
732 	/* pool is now off zswap_pools list and has no references. */
733 	zswap_pool_destroy(pool);
734 }
735 
736 static void __zswap_pool_empty(struct kref *kref)
737 {
738 	struct zswap_pool *pool;
739 
740 	pool = container_of(kref, typeof(*pool), kref);
741 
742 	spin_lock(&zswap_pools_lock);
743 
744 	WARN_ON(pool == zswap_pool_current());
745 
746 	list_del_rcu(&pool->list);
747 
748 	INIT_WORK(&pool->release_work, __zswap_pool_release);
749 	schedule_work(&pool->release_work);
750 
751 	spin_unlock(&zswap_pools_lock);
752 }
753 
754 static void zswap_pool_put(struct zswap_pool *pool)
755 {
756 	kref_put(&pool->kref, __zswap_pool_empty);
757 }
758 
759 /*********************************
760 * param callbacks
761 **********************************/
762 
763 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
764 {
765 	/* no change required */
766 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
767 		return false;
768 	return true;
769 }
770 
771 /* val must be a null-terminated string */
772 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
773 			     char *type, char *compressor)
774 {
775 	struct zswap_pool *pool, *put_pool = NULL;
776 	char *s = strstrip((char *)val);
777 	int ret = 0;
778 	bool new_pool = false;
779 
780 	mutex_lock(&zswap_init_lock);
781 	switch (zswap_init_state) {
782 	case ZSWAP_UNINIT:
783 		/* if this is load-time (pre-init) param setting,
784 		 * don't create a pool; that's done during init.
785 		 */
786 		ret = param_set_charp(s, kp);
787 		break;
788 	case ZSWAP_INIT_SUCCEED:
789 		new_pool = zswap_pool_changed(s, kp);
790 		break;
791 	case ZSWAP_INIT_FAILED:
792 		pr_err("can't set param, initialization failed\n");
793 		ret = -ENODEV;
794 	}
795 	mutex_unlock(&zswap_init_lock);
796 
797 	/* no need to create a new pool, return directly */
798 	if (!new_pool)
799 		return ret;
800 
801 	if (!type) {
802 		if (!zpool_has_pool(s)) {
803 			pr_err("zpool %s not available\n", s);
804 			return -ENOENT;
805 		}
806 		type = s;
807 	} else if (!compressor) {
808 		if (!crypto_has_acomp(s, 0, 0)) {
809 			pr_err("compressor %s not available\n", s);
810 			return -ENOENT;
811 		}
812 		compressor = s;
813 	} else {
814 		WARN_ON(1);
815 		return -EINVAL;
816 	}
817 
818 	spin_lock(&zswap_pools_lock);
819 
820 	pool = zswap_pool_find_get(type, compressor);
821 	if (pool) {
822 		zswap_pool_debug("using existing", pool);
823 		WARN_ON(pool == zswap_pool_current());
824 		list_del_rcu(&pool->list);
825 	}
826 
827 	spin_unlock(&zswap_pools_lock);
828 
829 	if (!pool)
830 		pool = zswap_pool_create(type, compressor);
831 
832 	if (pool)
833 		ret = param_set_charp(s, kp);
834 	else
835 		ret = -EINVAL;
836 
837 	spin_lock(&zswap_pools_lock);
838 
839 	if (!ret) {
840 		put_pool = zswap_pool_current();
841 		list_add_rcu(&pool->list, &zswap_pools);
842 		zswap_has_pool = true;
843 	} else if (pool) {
844 		/* add the possibly pre-existing pool to the end of the pools
845 		 * list; if it's new (and empty) then it'll be removed and
846 		 * destroyed by the put after we drop the lock
847 		 */
848 		list_add_tail_rcu(&pool->list, &zswap_pools);
849 		put_pool = pool;
850 	}
851 
852 	spin_unlock(&zswap_pools_lock);
853 
854 	if (!zswap_has_pool && !pool) {
855 		/* if initial pool creation failed, and this pool creation also
856 		 * failed, maybe both compressor and zpool params were bad.
857 		 * Allow changing this param, so pool creation will succeed
858 		 * when the other param is changed. We already verified this
859 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
860 		 * checks above.
861 		 */
862 		ret = param_set_charp(s, kp);
863 	}
864 
865 	/* drop the ref from either the old current pool,
866 	 * or the new pool we failed to add
867 	 */
868 	if (put_pool)
869 		zswap_pool_put(put_pool);
870 
871 	return ret;
872 }
873 
874 static int zswap_compressor_param_set(const char *val,
875 				      const struct kernel_param *kp)
876 {
877 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
878 }
879 
880 static int zswap_zpool_param_set(const char *val,
881 				 const struct kernel_param *kp)
882 {
883 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
884 }
885 
886 static int zswap_enabled_param_set(const char *val,
887 				   const struct kernel_param *kp)
888 {
889 	int ret = -ENODEV;
890 
891 	/* if this is load-time (pre-init) param setting, only set param. */
892 	if (system_state != SYSTEM_RUNNING)
893 		return param_set_bool(val, kp);
894 
895 	mutex_lock(&zswap_init_lock);
896 	switch (zswap_init_state) {
897 	case ZSWAP_UNINIT:
898 		if (zswap_setup())
899 			break;
900 		fallthrough;
901 	case ZSWAP_INIT_SUCCEED:
902 		if (!zswap_has_pool)
903 			pr_err("can't enable, no pool configured\n");
904 		else
905 			ret = param_set_bool(val, kp);
906 		break;
907 	case ZSWAP_INIT_FAILED:
908 		pr_err("can't enable, initialization failed\n");
909 	}
910 	mutex_unlock(&zswap_init_lock);
911 
912 	return ret;
913 }
914 
915 /*********************************
916 * writeback code
917 **********************************/
918 /* return enum for zswap_get_swap_cache_page */
919 enum zswap_get_swap_ret {
920 	ZSWAP_SWAPCACHE_NEW,
921 	ZSWAP_SWAPCACHE_EXIST,
922 	ZSWAP_SWAPCACHE_FAIL,
923 };
924 
925 /*
926  * zswap_get_swap_cache_page
927  *
928  * This is an adaption of read_swap_cache_async()
929  *
930  * This function tries to find a page with the given swap entry
931  * in the swapper_space address space (the swap cache).  If the page
932  * is found, it is returned in retpage.  Otherwise, a page is allocated,
933  * added to the swap cache, and returned in retpage.
934  *
935  * If success, the swap cache page is returned in retpage
936  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
937  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
938  *     the new page is added to swapcache and locked
939  * Returns ZSWAP_SWAPCACHE_FAIL on error
940  */
941 static int zswap_get_swap_cache_page(swp_entry_t entry,
942 				struct page **retpage)
943 {
944 	bool page_was_allocated;
945 
946 	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
947 			NULL, 0, &page_was_allocated);
948 	if (page_was_allocated)
949 		return ZSWAP_SWAPCACHE_NEW;
950 	if (!*retpage)
951 		return ZSWAP_SWAPCACHE_FAIL;
952 	return ZSWAP_SWAPCACHE_EXIST;
953 }
954 
955 /*
956  * Attempts to free an entry by adding a page to the swap cache,
957  * decompressing the entry data into the page, and issuing a
958  * bio write to write the page back to the swap device.
959  *
960  * This can be thought of as a "resumed writeback" of the page
961  * to the swap device.  We are basically resuming the same swap
962  * writeback path that was intercepted with the frontswap_store()
963  * in the first place.  After the page has been decompressed into
964  * the swap cache, the compressed version stored by zswap can be
965  * freed.
966  */
967 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
968 {
969 	struct zswap_header *zhdr;
970 	swp_entry_t swpentry;
971 	struct zswap_tree *tree;
972 	pgoff_t offset;
973 	struct zswap_entry *entry;
974 	struct page *page;
975 	struct scatterlist input, output;
976 	struct crypto_acomp_ctx *acomp_ctx;
977 
978 	u8 *src, *tmp = NULL;
979 	unsigned int dlen;
980 	int ret;
981 	struct writeback_control wbc = {
982 		.sync_mode = WB_SYNC_NONE,
983 	};
984 
985 	if (!zpool_can_sleep_mapped(pool)) {
986 		tmp = kmalloc(PAGE_SIZE, GFP_KERNEL);
987 		if (!tmp)
988 			return -ENOMEM;
989 	}
990 
991 	/* extract swpentry from data */
992 	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
993 	swpentry = zhdr->swpentry; /* here */
994 	tree = zswap_trees[swp_type(swpentry)];
995 	offset = swp_offset(swpentry);
996 	zpool_unmap_handle(pool, handle);
997 
998 	/* find and ref zswap entry */
999 	spin_lock(&tree->lock);
1000 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1001 	if (!entry) {
1002 		/* entry was invalidated */
1003 		spin_unlock(&tree->lock);
1004 		kfree(tmp);
1005 		return 0;
1006 	}
1007 	spin_unlock(&tree->lock);
1008 	BUG_ON(offset != entry->offset);
1009 
1010 	/* try to allocate swap cache page */
1011 	switch (zswap_get_swap_cache_page(swpentry, &page)) {
1012 	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
1013 		ret = -ENOMEM;
1014 		goto fail;
1015 
1016 	case ZSWAP_SWAPCACHE_EXIST:
1017 		/* page is already in the swap cache, ignore for now */
1018 		put_page(page);
1019 		ret = -EEXIST;
1020 		goto fail;
1021 
1022 	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
1023 		/* decompress */
1024 		acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1025 		dlen = PAGE_SIZE;
1026 
1027 		zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
1028 		src = (u8 *)zhdr + sizeof(struct zswap_header);
1029 		if (!zpool_can_sleep_mapped(pool)) {
1030 			memcpy(tmp, src, entry->length);
1031 			src = tmp;
1032 			zpool_unmap_handle(pool, handle);
1033 		}
1034 
1035 		mutex_lock(acomp_ctx->mutex);
1036 		sg_init_one(&input, src, entry->length);
1037 		sg_init_table(&output, 1);
1038 		sg_set_page(&output, page, PAGE_SIZE, 0);
1039 		acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1040 		ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1041 		dlen = acomp_ctx->req->dlen;
1042 		mutex_unlock(acomp_ctx->mutex);
1043 
1044 		if (!zpool_can_sleep_mapped(pool))
1045 			kfree(tmp);
1046 		else
1047 			zpool_unmap_handle(pool, handle);
1048 
1049 		BUG_ON(ret);
1050 		BUG_ON(dlen != PAGE_SIZE);
1051 
1052 		/* page is up to date */
1053 		SetPageUptodate(page);
1054 	}
1055 
1056 	/* move it to the tail of the inactive list after end_writeback */
1057 	SetPageReclaim(page);
1058 
1059 	/* start writeback */
1060 	__swap_writepage(page, &wbc);
1061 	put_page(page);
1062 	zswap_written_back_pages++;
1063 
1064 	spin_lock(&tree->lock);
1065 	/* drop local reference */
1066 	zswap_entry_put(tree, entry);
1067 
1068 	/*
1069 	* There are two possible situations for entry here:
1070 	* (1) refcount is 1(normal case),  entry is valid and on the tree
1071 	* (2) refcount is 0, entry is freed and not on the tree
1072 	*     because invalidate happened during writeback
1073 	*  search the tree and free the entry if find entry
1074 	*/
1075 	if (entry == zswap_rb_search(&tree->rbroot, offset))
1076 		zswap_entry_put(tree, entry);
1077 	spin_unlock(&tree->lock);
1078 
1079 	return ret;
1080 
1081 fail:
1082 	if (!zpool_can_sleep_mapped(pool))
1083 		kfree(tmp);
1084 
1085 	/*
1086 	* if we get here due to ZSWAP_SWAPCACHE_EXIST
1087 	* a load may be happening concurrently.
1088 	* it is safe and okay to not free the entry.
1089 	* if we free the entry in the following put
1090 	* it is also okay to return !0
1091 	*/
1092 	spin_lock(&tree->lock);
1093 	zswap_entry_put(tree, entry);
1094 	spin_unlock(&tree->lock);
1095 
1096 	return ret;
1097 }
1098 
1099 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1100 {
1101 	unsigned long *page;
1102 	unsigned long val;
1103 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1104 
1105 	page = (unsigned long *)ptr;
1106 	val = page[0];
1107 
1108 	if (val != page[last_pos])
1109 		return 0;
1110 
1111 	for (pos = 1; pos < last_pos; pos++) {
1112 		if (val != page[pos])
1113 			return 0;
1114 	}
1115 
1116 	*value = val;
1117 
1118 	return 1;
1119 }
1120 
1121 static void zswap_fill_page(void *ptr, unsigned long value)
1122 {
1123 	unsigned long *page;
1124 
1125 	page = (unsigned long *)ptr;
1126 	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1127 }
1128 
1129 /*********************************
1130 * frontswap hooks
1131 **********************************/
1132 /* attempts to compress and store an single page */
1133 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
1134 				struct page *page)
1135 {
1136 	struct zswap_tree *tree = zswap_trees[type];
1137 	struct zswap_entry *entry, *dupentry;
1138 	struct scatterlist input, output;
1139 	struct crypto_acomp_ctx *acomp_ctx;
1140 	struct obj_cgroup *objcg = NULL;
1141 	struct zswap_pool *pool;
1142 	int ret;
1143 	unsigned int hlen, dlen = PAGE_SIZE;
1144 	unsigned long handle, value;
1145 	char *buf;
1146 	u8 *src, *dst;
1147 	struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
1148 	gfp_t gfp;
1149 
1150 	/* THP isn't supported */
1151 	if (PageTransHuge(page)) {
1152 		ret = -EINVAL;
1153 		goto reject;
1154 	}
1155 
1156 	if (!zswap_enabled || !tree) {
1157 		ret = -ENODEV;
1158 		goto reject;
1159 	}
1160 
1161 	objcg = get_obj_cgroup_from_page(page);
1162 	if (objcg && !obj_cgroup_may_zswap(objcg))
1163 		goto shrink;
1164 
1165 	/* reclaim space if needed */
1166 	if (zswap_is_full()) {
1167 		zswap_pool_limit_hit++;
1168 		zswap_pool_reached_full = true;
1169 		goto shrink;
1170 	}
1171 
1172 	if (zswap_pool_reached_full) {
1173 	       if (!zswap_can_accept()) {
1174 			ret = -ENOMEM;
1175 			goto reject;
1176 		} else
1177 			zswap_pool_reached_full = false;
1178 	}
1179 
1180 	/* allocate entry */
1181 	entry = zswap_entry_cache_alloc(GFP_KERNEL);
1182 	if (!entry) {
1183 		zswap_reject_kmemcache_fail++;
1184 		ret = -ENOMEM;
1185 		goto reject;
1186 	}
1187 
1188 	if (zswap_same_filled_pages_enabled) {
1189 		src = kmap_atomic(page);
1190 		if (zswap_is_page_same_filled(src, &value)) {
1191 			kunmap_atomic(src);
1192 			entry->offset = offset;
1193 			entry->length = 0;
1194 			entry->value = value;
1195 			atomic_inc(&zswap_same_filled_pages);
1196 			goto insert_entry;
1197 		}
1198 		kunmap_atomic(src);
1199 	}
1200 
1201 	if (!zswap_non_same_filled_pages_enabled) {
1202 		ret = -EINVAL;
1203 		goto freepage;
1204 	}
1205 
1206 	/* if entry is successfully added, it keeps the reference */
1207 	entry->pool = zswap_pool_current_get();
1208 	if (!entry->pool) {
1209 		ret = -EINVAL;
1210 		goto freepage;
1211 	}
1212 
1213 	/* compress */
1214 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1215 
1216 	mutex_lock(acomp_ctx->mutex);
1217 
1218 	dst = acomp_ctx->dstmem;
1219 	sg_init_table(&input, 1);
1220 	sg_set_page(&input, page, PAGE_SIZE, 0);
1221 
1222 	/* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1223 	sg_init_one(&output, dst, PAGE_SIZE * 2);
1224 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1225 	/*
1226 	 * it maybe looks a little bit silly that we send an asynchronous request,
1227 	 * then wait for its completion synchronously. This makes the process look
1228 	 * synchronous in fact.
1229 	 * Theoretically, acomp supports users send multiple acomp requests in one
1230 	 * acomp instance, then get those requests done simultaneously. but in this
1231 	 * case, frontswap actually does store and load page by page, there is no
1232 	 * existing method to send the second page before the first page is done
1233 	 * in one thread doing frontswap.
1234 	 * but in different threads running on different cpu, we have different
1235 	 * acomp instance, so multiple threads can do (de)compression in parallel.
1236 	 */
1237 	ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1238 	dlen = acomp_ctx->req->dlen;
1239 
1240 	if (ret) {
1241 		ret = -EINVAL;
1242 		goto put_dstmem;
1243 	}
1244 
1245 	/* store */
1246 	hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1247 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1248 	if (zpool_malloc_support_movable(entry->pool->zpool))
1249 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1250 	ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1251 	if (ret == -ENOSPC) {
1252 		zswap_reject_compress_poor++;
1253 		goto put_dstmem;
1254 	}
1255 	if (ret) {
1256 		zswap_reject_alloc_fail++;
1257 		goto put_dstmem;
1258 	}
1259 	buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO);
1260 	memcpy(buf, &zhdr, hlen);
1261 	memcpy(buf + hlen, dst, dlen);
1262 	zpool_unmap_handle(entry->pool->zpool, handle);
1263 	mutex_unlock(acomp_ctx->mutex);
1264 
1265 	/* populate entry */
1266 	entry->offset = offset;
1267 	entry->handle = handle;
1268 	entry->length = dlen;
1269 
1270 insert_entry:
1271 	entry->objcg = objcg;
1272 	if (objcg) {
1273 		obj_cgroup_charge_zswap(objcg, entry->length);
1274 		/* Account before objcg ref is moved to tree */
1275 		count_objcg_event(objcg, ZSWPOUT);
1276 	}
1277 
1278 	/* map */
1279 	spin_lock(&tree->lock);
1280 	do {
1281 		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1282 		if (ret == -EEXIST) {
1283 			zswap_duplicate_entry++;
1284 			/* remove from rbtree */
1285 			zswap_rb_erase(&tree->rbroot, dupentry);
1286 			zswap_entry_put(tree, dupentry);
1287 		}
1288 	} while (ret == -EEXIST);
1289 	spin_unlock(&tree->lock);
1290 
1291 	/* update stats */
1292 	atomic_inc(&zswap_stored_pages);
1293 	zswap_update_total_size();
1294 	count_vm_event(ZSWPOUT);
1295 
1296 	return 0;
1297 
1298 put_dstmem:
1299 	mutex_unlock(acomp_ctx->mutex);
1300 	zswap_pool_put(entry->pool);
1301 freepage:
1302 	zswap_entry_cache_free(entry);
1303 reject:
1304 	if (objcg)
1305 		obj_cgroup_put(objcg);
1306 	return ret;
1307 
1308 shrink:
1309 	pool = zswap_pool_last_get();
1310 	if (pool)
1311 		queue_work(shrink_wq, &pool->shrink_work);
1312 	ret = -ENOMEM;
1313 	goto reject;
1314 }
1315 
1316 /*
1317  * returns 0 if the page was successfully decompressed
1318  * return -1 on entry not found or error
1319 */
1320 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1321 				struct page *page)
1322 {
1323 	struct zswap_tree *tree = zswap_trees[type];
1324 	struct zswap_entry *entry;
1325 	struct scatterlist input, output;
1326 	struct crypto_acomp_ctx *acomp_ctx;
1327 	u8 *src, *dst, *tmp;
1328 	unsigned int dlen;
1329 	int ret;
1330 
1331 	/* find */
1332 	spin_lock(&tree->lock);
1333 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1334 	if (!entry) {
1335 		/* entry was written back */
1336 		spin_unlock(&tree->lock);
1337 		return -1;
1338 	}
1339 	spin_unlock(&tree->lock);
1340 
1341 	if (!entry->length) {
1342 		dst = kmap_atomic(page);
1343 		zswap_fill_page(dst, entry->value);
1344 		kunmap_atomic(dst);
1345 		ret = 0;
1346 		goto stats;
1347 	}
1348 
1349 	if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1350 		tmp = kmalloc(entry->length, GFP_KERNEL);
1351 		if (!tmp) {
1352 			ret = -ENOMEM;
1353 			goto freeentry;
1354 		}
1355 	}
1356 
1357 	/* decompress */
1358 	dlen = PAGE_SIZE;
1359 	src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1360 	if (zpool_evictable(entry->pool->zpool))
1361 		src += sizeof(struct zswap_header);
1362 
1363 	if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1364 		memcpy(tmp, src, entry->length);
1365 		src = tmp;
1366 		zpool_unmap_handle(entry->pool->zpool, entry->handle);
1367 	}
1368 
1369 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1370 	mutex_lock(acomp_ctx->mutex);
1371 	sg_init_one(&input, src, entry->length);
1372 	sg_init_table(&output, 1);
1373 	sg_set_page(&output, page, PAGE_SIZE, 0);
1374 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1375 	ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1376 	mutex_unlock(acomp_ctx->mutex);
1377 
1378 	if (zpool_can_sleep_mapped(entry->pool->zpool))
1379 		zpool_unmap_handle(entry->pool->zpool, entry->handle);
1380 	else
1381 		kfree(tmp);
1382 
1383 	BUG_ON(ret);
1384 stats:
1385 	count_vm_event(ZSWPIN);
1386 	if (entry->objcg)
1387 		count_objcg_event(entry->objcg, ZSWPIN);
1388 freeentry:
1389 	spin_lock(&tree->lock);
1390 	zswap_entry_put(tree, entry);
1391 	spin_unlock(&tree->lock);
1392 
1393 	return ret;
1394 }
1395 
1396 /* frees an entry in zswap */
1397 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1398 {
1399 	struct zswap_tree *tree = zswap_trees[type];
1400 	struct zswap_entry *entry;
1401 
1402 	/* find */
1403 	spin_lock(&tree->lock);
1404 	entry = zswap_rb_search(&tree->rbroot, offset);
1405 	if (!entry) {
1406 		/* entry was written back */
1407 		spin_unlock(&tree->lock);
1408 		return;
1409 	}
1410 
1411 	/* remove from rbtree */
1412 	zswap_rb_erase(&tree->rbroot, entry);
1413 
1414 	/* drop the initial reference from entry creation */
1415 	zswap_entry_put(tree, entry);
1416 
1417 	spin_unlock(&tree->lock);
1418 }
1419 
1420 /* frees all zswap entries for the given swap type */
1421 static void zswap_frontswap_invalidate_area(unsigned type)
1422 {
1423 	struct zswap_tree *tree = zswap_trees[type];
1424 	struct zswap_entry *entry, *n;
1425 
1426 	if (!tree)
1427 		return;
1428 
1429 	/* walk the tree and free everything */
1430 	spin_lock(&tree->lock);
1431 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1432 		zswap_free_entry(entry);
1433 	tree->rbroot = RB_ROOT;
1434 	spin_unlock(&tree->lock);
1435 	kfree(tree);
1436 	zswap_trees[type] = NULL;
1437 }
1438 
1439 static void zswap_frontswap_init(unsigned type)
1440 {
1441 	struct zswap_tree *tree;
1442 
1443 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1444 	if (!tree) {
1445 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1446 		return;
1447 	}
1448 
1449 	tree->rbroot = RB_ROOT;
1450 	spin_lock_init(&tree->lock);
1451 	zswap_trees[type] = tree;
1452 }
1453 
1454 static const struct frontswap_ops zswap_frontswap_ops = {
1455 	.store = zswap_frontswap_store,
1456 	.load = zswap_frontswap_load,
1457 	.invalidate_page = zswap_frontswap_invalidate_page,
1458 	.invalidate_area = zswap_frontswap_invalidate_area,
1459 	.init = zswap_frontswap_init
1460 };
1461 
1462 /*********************************
1463 * debugfs functions
1464 **********************************/
1465 #ifdef CONFIG_DEBUG_FS
1466 #include <linux/debugfs.h>
1467 
1468 static struct dentry *zswap_debugfs_root;
1469 
1470 static int zswap_debugfs_init(void)
1471 {
1472 	if (!debugfs_initialized())
1473 		return -ENODEV;
1474 
1475 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1476 
1477 	debugfs_create_u64("pool_limit_hit", 0444,
1478 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1479 	debugfs_create_u64("reject_reclaim_fail", 0444,
1480 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1481 	debugfs_create_u64("reject_alloc_fail", 0444,
1482 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1483 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1484 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1485 	debugfs_create_u64("reject_compress_poor", 0444,
1486 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1487 	debugfs_create_u64("written_back_pages", 0444,
1488 			   zswap_debugfs_root, &zswap_written_back_pages);
1489 	debugfs_create_u64("duplicate_entry", 0444,
1490 			   zswap_debugfs_root, &zswap_duplicate_entry);
1491 	debugfs_create_u64("pool_total_size", 0444,
1492 			   zswap_debugfs_root, &zswap_pool_total_size);
1493 	debugfs_create_atomic_t("stored_pages", 0444,
1494 				zswap_debugfs_root, &zswap_stored_pages);
1495 	debugfs_create_atomic_t("same_filled_pages", 0444,
1496 				zswap_debugfs_root, &zswap_same_filled_pages);
1497 
1498 	return 0;
1499 }
1500 #else
1501 static int zswap_debugfs_init(void)
1502 {
1503 	return 0;
1504 }
1505 #endif
1506 
1507 /*********************************
1508 * module init and exit
1509 **********************************/
1510 static int zswap_setup(void)
1511 {
1512 	struct zswap_pool *pool;
1513 	int ret;
1514 
1515 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1516 	if (!zswap_entry_cache) {
1517 		pr_err("entry cache creation failed\n");
1518 		goto cache_fail;
1519 	}
1520 
1521 	ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1522 				zswap_dstmem_prepare, zswap_dstmem_dead);
1523 	if (ret) {
1524 		pr_err("dstmem alloc failed\n");
1525 		goto dstmem_fail;
1526 	}
1527 
1528 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1529 				      "mm/zswap_pool:prepare",
1530 				      zswap_cpu_comp_prepare,
1531 				      zswap_cpu_comp_dead);
1532 	if (ret)
1533 		goto hp_fail;
1534 
1535 	pool = __zswap_pool_create_fallback();
1536 	if (pool) {
1537 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1538 			zpool_get_type(pool->zpool));
1539 		list_add(&pool->list, &zswap_pools);
1540 		zswap_has_pool = true;
1541 	} else {
1542 		pr_err("pool creation failed\n");
1543 		zswap_enabled = false;
1544 	}
1545 
1546 	shrink_wq = create_workqueue("zswap-shrink");
1547 	if (!shrink_wq)
1548 		goto fallback_fail;
1549 
1550 	ret = frontswap_register_ops(&zswap_frontswap_ops);
1551 	if (ret)
1552 		goto destroy_wq;
1553 	if (zswap_debugfs_init())
1554 		pr_warn("debugfs initialization failed\n");
1555 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1556 	return 0;
1557 
1558 destroy_wq:
1559 	destroy_workqueue(shrink_wq);
1560 fallback_fail:
1561 	if (pool)
1562 		zswap_pool_destroy(pool);
1563 hp_fail:
1564 	cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1565 dstmem_fail:
1566 	kmem_cache_destroy(zswap_entry_cache);
1567 cache_fail:
1568 	/* if built-in, we aren't unloaded on failure; don't allow use */
1569 	zswap_init_state = ZSWAP_INIT_FAILED;
1570 	zswap_enabled = false;
1571 	return -ENOMEM;
1572 }
1573 
1574 static int __init zswap_init(void)
1575 {
1576 	if (!zswap_enabled)
1577 		return 0;
1578 	return zswap_setup();
1579 }
1580 /* must be late so crypto has time to come up */
1581 late_initcall(zswap_init);
1582 
1583 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1584 MODULE_DESCRIPTION("Compressed cache for swap pages");
1585