xref: /linux/mm/hugetlb.c (revision ff9fbcafbaf13346c742c0d672a22f5ac20b9d92)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39 
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43 
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55 
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62 				1 << order);
63 }
64 #else
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67 	return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71 
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73 
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86 
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93 
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 		unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102 
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105 	if (spool->count)
106 		return false;
107 	if (spool->max_hpages != -1)
108 		return spool->used_hpages == 0;
109 	if (spool->min_hpages != -1)
110 		return spool->rsv_hpages == spool->min_hpages;
111 
112 	return true;
113 }
114 
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 						unsigned long irq_flags)
117 {
118 	spin_unlock_irqrestore(&spool->lock, irq_flags);
119 
120 	/* If no pages are used, and no other handles to the subpool
121 	 * remain, give up any reservations based on minimum size and
122 	 * free the subpool */
123 	if (subpool_is_free(spool)) {
124 		if (spool->min_hpages != -1)
125 			hugetlb_acct_memory(spool->hstate,
126 						-spool->min_hpages);
127 		kfree(spool);
128 	}
129 }
130 
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 						long min_hpages)
133 {
134 	struct hugepage_subpool *spool;
135 
136 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 	if (!spool)
138 		return NULL;
139 
140 	spin_lock_init(&spool->lock);
141 	spool->count = 1;
142 	spool->max_hpages = max_hpages;
143 	spool->hstate = h;
144 	spool->min_hpages = min_hpages;
145 
146 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 		kfree(spool);
148 		return NULL;
149 	}
150 	spool->rsv_hpages = min_hpages;
151 
152 	return spool;
153 }
154 
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&spool->lock, flags);
160 	BUG_ON(!spool->count);
161 	spool->count--;
162 	unlock_or_release_subpool(spool, flags);
163 }
164 
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174 				      long delta)
175 {
176 	long ret = delta;
177 
178 	if (!spool)
179 		return ret;
180 
181 	spin_lock_irq(&spool->lock);
182 
183 	if (spool->max_hpages != -1) {		/* maximum size accounting */
184 		if ((spool->used_hpages + delta) <= spool->max_hpages)
185 			spool->used_hpages += delta;
186 		else {
187 			ret = -ENOMEM;
188 			goto unlock_ret;
189 		}
190 	}
191 
192 	/* minimum size accounting */
193 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 		if (delta > spool->rsv_hpages) {
195 			/*
196 			 * Asking for more reserves than those already taken on
197 			 * behalf of subpool.  Return difference.
198 			 */
199 			ret = delta - spool->rsv_hpages;
200 			spool->rsv_hpages = 0;
201 		} else {
202 			ret = 0;	/* reserves already accounted for */
203 			spool->rsv_hpages -= delta;
204 		}
205 	}
206 
207 unlock_ret:
208 	spin_unlock_irq(&spool->lock);
209 	return ret;
210 }
211 
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219 				       long delta)
220 {
221 	long ret = delta;
222 	unsigned long flags;
223 
224 	if (!spool)
225 		return delta;
226 
227 	spin_lock_irqsave(&spool->lock, flags);
228 
229 	if (spool->max_hpages != -1)		/* maximum size accounting */
230 		spool->used_hpages -= delta;
231 
232 	 /* minimum size accounting */
233 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 		if (spool->rsv_hpages + delta <= spool->min_hpages)
235 			ret = 0;
236 		else
237 			ret = spool->rsv_hpages + delta - spool->min_hpages;
238 
239 		spool->rsv_hpages += delta;
240 		if (spool->rsv_hpages > spool->min_hpages)
241 			spool->rsv_hpages = spool->min_hpages;
242 	}
243 
244 	/*
245 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 	 * quota reference, free it now.
247 	 */
248 	unlock_or_release_subpool(spool, flags);
249 
250 	return ret;
251 }
252 
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255 	return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257 
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260 	return subpool_inode(file_inode(vma->vm_file));
261 }
262 
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268 	if (__vma_shareable_lock(vma)) {
269 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270 
271 		down_read(&vma_lock->rw_sema);
272 	} else if (__vma_private_lock(vma)) {
273 		struct resv_map *resv_map = vma_resv_map(vma);
274 
275 		down_read(&resv_map->rw_sema);
276 	}
277 }
278 
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281 	if (__vma_shareable_lock(vma)) {
282 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283 
284 		up_read(&vma_lock->rw_sema);
285 	} else if (__vma_private_lock(vma)) {
286 		struct resv_map *resv_map = vma_resv_map(vma);
287 
288 		up_read(&resv_map->rw_sema);
289 	}
290 }
291 
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294 	if (__vma_shareable_lock(vma)) {
295 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 
297 		down_write(&vma_lock->rw_sema);
298 	} else if (__vma_private_lock(vma)) {
299 		struct resv_map *resv_map = vma_resv_map(vma);
300 
301 		down_write(&resv_map->rw_sema);
302 	}
303 }
304 
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307 	if (__vma_shareable_lock(vma)) {
308 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309 
310 		up_write(&vma_lock->rw_sema);
311 	} else if (__vma_private_lock(vma)) {
312 		struct resv_map *resv_map = vma_resv_map(vma);
313 
314 		up_write(&resv_map->rw_sema);
315 	}
316 }
317 
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320 
321 	if (__vma_shareable_lock(vma)) {
322 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323 
324 		return down_write_trylock(&vma_lock->rw_sema);
325 	} else if (__vma_private_lock(vma)) {
326 		struct resv_map *resv_map = vma_resv_map(vma);
327 
328 		return down_write_trylock(&resv_map->rw_sema);
329 	}
330 
331 	return 1;
332 }
333 
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336 	if (__vma_shareable_lock(vma)) {
337 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338 
339 		lockdep_assert_held(&vma_lock->rw_sema);
340 	} else if (__vma_private_lock(vma)) {
341 		struct resv_map *resv_map = vma_resv_map(vma);
342 
343 		lockdep_assert_held(&resv_map->rw_sema);
344 	}
345 }
346 
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 			struct hugetlb_vma_lock, refs);
351 
352 	kfree(vma_lock);
353 }
354 
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357 	struct vm_area_struct *vma = vma_lock->vma;
358 
359 	/*
360 	 * vma_lock structure may or not be released as a result of put,
361 	 * it certainly will no longer be attached to vma so clear pointer.
362 	 * Semaphore synchronizes access to vma_lock->vma field.
363 	 */
364 	vma_lock->vma = NULL;
365 	vma->vm_private_data = NULL;
366 	up_write(&vma_lock->rw_sema);
367 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369 
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372 	if (__vma_shareable_lock(vma)) {
373 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374 
375 		__hugetlb_vma_unlock_write_put(vma_lock);
376 	} else if (__vma_private_lock(vma)) {
377 		struct resv_map *resv_map = vma_resv_map(vma);
378 
379 		/* no free for anon vmas, but still need to unlock */
380 		up_write(&resv_map->rw_sema);
381 	}
382 }
383 
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386 	/*
387 	 * Only present in sharable vmas.
388 	 */
389 	if (!vma || !__vma_shareable_lock(vma))
390 		return;
391 
392 	if (vma->vm_private_data) {
393 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394 
395 		down_write(&vma_lock->rw_sema);
396 		__hugetlb_vma_unlock_write_put(vma_lock);
397 	}
398 }
399 
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402 	struct hugetlb_vma_lock *vma_lock;
403 
404 	/* Only establish in (flags) sharable vmas */
405 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406 		return;
407 
408 	/* Should never get here with non-NULL vm_private_data */
409 	if (vma->vm_private_data)
410 		return;
411 
412 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413 	if (!vma_lock) {
414 		/*
415 		 * If we can not allocate structure, then vma can not
416 		 * participate in pmd sharing.  This is only a possible
417 		 * performance enhancement and memory saving issue.
418 		 * However, the lock is also used to synchronize page
419 		 * faults with truncation.  If the lock is not present,
420 		 * unlikely races could leave pages in a file past i_size
421 		 * until the file is removed.  Warn in the unlikely case of
422 		 * allocation failure.
423 		 */
424 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425 		return;
426 	}
427 
428 	kref_init(&vma_lock->refs);
429 	init_rwsem(&vma_lock->rw_sema);
430 	vma_lock->vma = vma;
431 	vma->vm_private_data = vma_lock;
432 }
433 
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440 	struct file_region *nrg;
441 
442 	VM_BUG_ON(resv->region_cache_count <= 0);
443 
444 	resv->region_cache_count--;
445 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 	list_del(&nrg->link);
447 
448 	nrg->from = from;
449 	nrg->to = to;
450 
451 	return nrg;
452 }
453 
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 					      struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458 	nrg->reservation_counter = rg->reservation_counter;
459 	nrg->css = rg->css;
460 	if (rg->css)
461 		css_get(rg->css);
462 #endif
463 }
464 
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 						struct hstate *h,
468 						struct resv_map *resv,
469 						struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472 	if (h_cg) {
473 		nrg->reservation_counter =
474 			&h_cg->rsvd_hugepage[hstate_index(h)];
475 		nrg->css = &h_cg->css;
476 		/*
477 		 * The caller will hold exactly one h_cg->css reference for the
478 		 * whole contiguous reservation region. But this area might be
479 		 * scattered when there are already some file_regions reside in
480 		 * it. As a result, many file_regions may share only one css
481 		 * reference. In order to ensure that one file_region must hold
482 		 * exactly one h_cg->css reference, we should do css_get for
483 		 * each file_region and leave the reference held by caller
484 		 * untouched.
485 		 */
486 		css_get(&h_cg->css);
487 		if (!resv->pages_per_hpage)
488 			resv->pages_per_hpage = pages_per_huge_page(h);
489 		/* pages_per_hpage should be the same for all entries in
490 		 * a resv_map.
491 		 */
492 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 	} else {
494 		nrg->reservation_counter = NULL;
495 		nrg->css = NULL;
496 	}
497 #endif
498 }
499 
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503 	if (rg->css)
504 		css_put(rg->css);
505 #endif
506 }
507 
508 static bool has_same_uncharge_info(struct file_region *rg,
509 				   struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512 	return rg->reservation_counter == org->reservation_counter &&
513 	       rg->css == org->css;
514 
515 #else
516 	return true;
517 #endif
518 }
519 
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522 	struct file_region *nrg, *prg;
523 
524 	prg = list_prev_entry(rg, link);
525 	if (&prg->link != &resv->regions && prg->to == rg->from &&
526 	    has_same_uncharge_info(prg, rg)) {
527 		prg->to = rg->to;
528 
529 		list_del(&rg->link);
530 		put_uncharge_info(rg);
531 		kfree(rg);
532 
533 		rg = prg;
534 	}
535 
536 	nrg = list_next_entry(rg, link);
537 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 	    has_same_uncharge_info(nrg, rg)) {
539 		nrg->from = rg->from;
540 
541 		list_del(&rg->link);
542 		put_uncharge_info(rg);
543 		kfree(rg);
544 	}
545 }
546 
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 		     long *regions_needed)
551 {
552 	struct file_region *nrg;
553 
554 	if (!regions_needed) {
555 		nrg = get_file_region_entry_from_cache(map, from, to);
556 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 		list_add(&nrg->link, rg);
558 		coalesce_file_region(map, nrg);
559 	} else
560 		*regions_needed += 1;
561 
562 	return to - from;
563 }
564 
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 				     struct hugetlb_cgroup *h_cg,
575 				     struct hstate *h, long *regions_needed)
576 {
577 	long add = 0;
578 	struct list_head *head = &resv->regions;
579 	long last_accounted_offset = f;
580 	struct file_region *iter, *trg = NULL;
581 	struct list_head *rg = NULL;
582 
583 	if (regions_needed)
584 		*regions_needed = 0;
585 
586 	/* In this loop, we essentially handle an entry for the range
587 	 * [last_accounted_offset, iter->from), at every iteration, with some
588 	 * bounds checking.
589 	 */
590 	list_for_each_entry_safe(iter, trg, head, link) {
591 		/* Skip irrelevant regions that start before our range. */
592 		if (iter->from < f) {
593 			/* If this region ends after the last accounted offset,
594 			 * then we need to update last_accounted_offset.
595 			 */
596 			if (iter->to > last_accounted_offset)
597 				last_accounted_offset = iter->to;
598 			continue;
599 		}
600 
601 		/* When we find a region that starts beyond our range, we've
602 		 * finished.
603 		 */
604 		if (iter->from >= t) {
605 			rg = iter->link.prev;
606 			break;
607 		}
608 
609 		/* Add an entry for last_accounted_offset -> iter->from, and
610 		 * update last_accounted_offset.
611 		 */
612 		if (iter->from > last_accounted_offset)
613 			add += hugetlb_resv_map_add(resv, iter->link.prev,
614 						    last_accounted_offset,
615 						    iter->from, h, h_cg,
616 						    regions_needed);
617 
618 		last_accounted_offset = iter->to;
619 	}
620 
621 	/* Handle the case where our range extends beyond
622 	 * last_accounted_offset.
623 	 */
624 	if (!rg)
625 		rg = head->prev;
626 	if (last_accounted_offset < t)
627 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 					    t, h, h_cg, regions_needed);
629 
630 	return add;
631 }
632 
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636 					int regions_needed)
637 	__must_hold(&resv->lock)
638 {
639 	LIST_HEAD(allocated_regions);
640 	int to_allocate = 0, i = 0;
641 	struct file_region *trg = NULL, *rg = NULL;
642 
643 	VM_BUG_ON(regions_needed < 0);
644 
645 	/*
646 	 * Check for sufficient descriptors in the cache to accommodate
647 	 * the number of in progress add operations plus regions_needed.
648 	 *
649 	 * This is a while loop because when we drop the lock, some other call
650 	 * to region_add or region_del may have consumed some region_entries,
651 	 * so we keep looping here until we finally have enough entries for
652 	 * (adds_in_progress + regions_needed).
653 	 */
654 	while (resv->region_cache_count <
655 	       (resv->adds_in_progress + regions_needed)) {
656 		to_allocate = resv->adds_in_progress + regions_needed -
657 			      resv->region_cache_count;
658 
659 		/* At this point, we should have enough entries in the cache
660 		 * for all the existing adds_in_progress. We should only be
661 		 * needing to allocate for regions_needed.
662 		 */
663 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664 
665 		spin_unlock(&resv->lock);
666 		for (i = 0; i < to_allocate; i++) {
667 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668 			if (!trg)
669 				goto out_of_memory;
670 			list_add(&trg->link, &allocated_regions);
671 		}
672 
673 		spin_lock(&resv->lock);
674 
675 		list_splice(&allocated_regions, &resv->region_cache);
676 		resv->region_cache_count += to_allocate;
677 	}
678 
679 	return 0;
680 
681 out_of_memory:
682 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683 		list_del(&rg->link);
684 		kfree(rg);
685 	}
686 	return -ENOMEM;
687 }
688 
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707 		       long in_regions_needed, struct hstate *h,
708 		       struct hugetlb_cgroup *h_cg)
709 {
710 	long add = 0, actual_regions_needed = 0;
711 
712 	spin_lock(&resv->lock);
713 retry:
714 
715 	/* Count how many regions are actually needed to execute this add. */
716 	add_reservation_in_range(resv, f, t, NULL, NULL,
717 				 &actual_regions_needed);
718 
719 	/*
720 	 * Check for sufficient descriptors in the cache to accommodate
721 	 * this add operation. Note that actual_regions_needed may be greater
722 	 * than in_regions_needed, as the resv_map may have been modified since
723 	 * the region_chg call. In this case, we need to make sure that we
724 	 * allocate extra entries, such that we have enough for all the
725 	 * existing adds_in_progress, plus the excess needed for this
726 	 * operation.
727 	 */
728 	if (actual_regions_needed > in_regions_needed &&
729 	    resv->region_cache_count <
730 		    resv->adds_in_progress +
731 			    (actual_regions_needed - in_regions_needed)) {
732 		/* region_add operation of range 1 should never need to
733 		 * allocate file_region entries.
734 		 */
735 		VM_BUG_ON(t - f <= 1);
736 
737 		if (allocate_file_region_entries(
738 			    resv, actual_regions_needed - in_regions_needed)) {
739 			return -ENOMEM;
740 		}
741 
742 		goto retry;
743 	}
744 
745 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746 
747 	resv->adds_in_progress -= in_regions_needed;
748 
749 	spin_unlock(&resv->lock);
750 	return add;
751 }
752 
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774 		       long *out_regions_needed)
775 {
776 	long chg = 0;
777 
778 	spin_lock(&resv->lock);
779 
780 	/* Count how many hugepages in this range are NOT represented. */
781 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782 				       out_regions_needed);
783 
784 	if (*out_regions_needed == 0)
785 		*out_regions_needed = 1;
786 
787 	if (allocate_file_region_entries(resv, *out_regions_needed))
788 		return -ENOMEM;
789 
790 	resv->adds_in_progress += *out_regions_needed;
791 
792 	spin_unlock(&resv->lock);
793 	return chg;
794 }
795 
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810 			 long regions_needed)
811 {
812 	spin_lock(&resv->lock);
813 	VM_BUG_ON(!resv->region_cache_count);
814 	resv->adds_in_progress -= regions_needed;
815 	spin_unlock(&resv->lock);
816 }
817 
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834 	struct list_head *head = &resv->regions;
835 	struct file_region *rg, *trg;
836 	struct file_region *nrg = NULL;
837 	long del = 0;
838 
839 retry:
840 	spin_lock(&resv->lock);
841 	list_for_each_entry_safe(rg, trg, head, link) {
842 		/*
843 		 * Skip regions before the range to be deleted.  file_region
844 		 * ranges are normally of the form [from, to).  However, there
845 		 * may be a "placeholder" entry in the map which is of the form
846 		 * (from, to) with from == to.  Check for placeholder entries
847 		 * at the beginning of the range to be deleted.
848 		 */
849 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850 			continue;
851 
852 		if (rg->from >= t)
853 			break;
854 
855 		if (f > rg->from && t < rg->to) { /* Must split region */
856 			/*
857 			 * Check for an entry in the cache before dropping
858 			 * lock and attempting allocation.
859 			 */
860 			if (!nrg &&
861 			    resv->region_cache_count > resv->adds_in_progress) {
862 				nrg = list_first_entry(&resv->region_cache,
863 							struct file_region,
864 							link);
865 				list_del(&nrg->link);
866 				resv->region_cache_count--;
867 			}
868 
869 			if (!nrg) {
870 				spin_unlock(&resv->lock);
871 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872 				if (!nrg)
873 					return -ENOMEM;
874 				goto retry;
875 			}
876 
877 			del += t - f;
878 			hugetlb_cgroup_uncharge_file_region(
879 				resv, rg, t - f, false);
880 
881 			/* New entry for end of split region */
882 			nrg->from = t;
883 			nrg->to = rg->to;
884 
885 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886 
887 			INIT_LIST_HEAD(&nrg->link);
888 
889 			/* Original entry is trimmed */
890 			rg->to = f;
891 
892 			list_add(&nrg->link, &rg->link);
893 			nrg = NULL;
894 			break;
895 		}
896 
897 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 			del += rg->to - rg->from;
899 			hugetlb_cgroup_uncharge_file_region(resv, rg,
900 							    rg->to - rg->from, true);
901 			list_del(&rg->link);
902 			kfree(rg);
903 			continue;
904 		}
905 
906 		if (f <= rg->from) {	/* Trim beginning of region */
907 			hugetlb_cgroup_uncharge_file_region(resv, rg,
908 							    t - rg->from, false);
909 
910 			del += t - rg->from;
911 			rg->from = t;
912 		} else {		/* Trim end of region */
913 			hugetlb_cgroup_uncharge_file_region(resv, rg,
914 							    rg->to - f, false);
915 
916 			del += rg->to - f;
917 			rg->to = f;
918 		}
919 	}
920 
921 	spin_unlock(&resv->lock);
922 	kfree(nrg);
923 	return del;
924 }
925 
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937 	struct hugepage_subpool *spool = subpool_inode(inode);
938 	long rsv_adjust;
939 	bool reserved = false;
940 
941 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 	if (rsv_adjust > 0) {
943 		struct hstate *h = hstate_inode(inode);
944 
945 		if (!hugetlb_acct_memory(h, 1))
946 			reserved = true;
947 	} else if (!rsv_adjust) {
948 		reserved = true;
949 	}
950 
951 	if (!reserved)
952 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954 
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961 	struct list_head *head = &resv->regions;
962 	struct file_region *rg;
963 	long chg = 0;
964 
965 	spin_lock(&resv->lock);
966 	/* Locate each segment we overlap with, and count that overlap. */
967 	list_for_each_entry(rg, head, link) {
968 		long seg_from;
969 		long seg_to;
970 
971 		if (rg->to <= f)
972 			continue;
973 		if (rg->from >= t)
974 			break;
975 
976 		seg_from = max(rg->from, f);
977 		seg_to = min(rg->to, t);
978 
979 		chg += seg_to - seg_from;
980 	}
981 	spin_unlock(&resv->lock);
982 
983 	return chg;
984 }
985 
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991 			struct vm_area_struct *vma, unsigned long address)
992 {
993 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 			(vma->vm_pgoff >> huge_page_order(h));
995 }
996 
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008 	if (vma->vm_ops && vma->vm_ops->pagesize)
1009 		return vma->vm_ops->pagesize(vma);
1010 	return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013 
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022 	return vma_kernel_pagesize(vma);
1023 }
1024 
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033 
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055 	return (unsigned long)vma->vm_private_data;
1056 }
1057 
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059 							unsigned long value)
1060 {
1061 	vma->vm_private_data = (void *)value;
1062 }
1063 
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 					  struct hugetlb_cgroup *h_cg,
1067 					  struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070 	if (!h_cg || !h) {
1071 		resv_map->reservation_counter = NULL;
1072 		resv_map->pages_per_hpage = 0;
1073 		resv_map->css = NULL;
1074 	} else {
1075 		resv_map->reservation_counter =
1076 			&h_cg->rsvd_hugepage[hstate_index(h)];
1077 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 		resv_map->css = &h_cg->css;
1079 	}
1080 #endif
1081 }
1082 
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087 
1088 	if (!resv_map || !rg) {
1089 		kfree(resv_map);
1090 		kfree(rg);
1091 		return NULL;
1092 	}
1093 
1094 	kref_init(&resv_map->refs);
1095 	spin_lock_init(&resv_map->lock);
1096 	INIT_LIST_HEAD(&resv_map->regions);
1097 	init_rwsem(&resv_map->rw_sema);
1098 
1099 	resv_map->adds_in_progress = 0;
1100 	/*
1101 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 	 * fields don't do cgroup accounting. On private mappings, these will be
1103 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 	 * reservations are to be un-charged from here.
1105 	 */
1106 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107 
1108 	INIT_LIST_HEAD(&resv_map->region_cache);
1109 	list_add(&rg->link, &resv_map->region_cache);
1110 	resv_map->region_cache_count = 1;
1111 
1112 	return resv_map;
1113 }
1114 
1115 void resv_map_release(struct kref *ref)
1116 {
1117 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 	struct list_head *head = &resv_map->region_cache;
1119 	struct file_region *rg, *trg;
1120 
1121 	/* Clear out any active regions before we release the map. */
1122 	region_del(resv_map, 0, LONG_MAX);
1123 
1124 	/* ... and any entries left in the cache */
1125 	list_for_each_entry_safe(rg, trg, head, link) {
1126 		list_del(&rg->link);
1127 		kfree(rg);
1128 	}
1129 
1130 	VM_BUG_ON(resv_map->adds_in_progress);
1131 
1132 	kfree(resv_map);
1133 }
1134 
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137 	/*
1138 	 * At inode evict time, i_mapping may not point to the original
1139 	 * address space within the inode.  This original address space
1140 	 * contains the pointer to the resv_map.  So, always use the
1141 	 * address space embedded within the inode.
1142 	 * The VERY common case is inode->mapping == &inode->i_data but,
1143 	 * this may not be true for device special inodes.
1144 	 */
1145 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147 
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 	if (vma->vm_flags & VM_MAYSHARE) {
1152 		struct address_space *mapping = vma->vm_file->f_mapping;
1153 		struct inode *inode = mapping->host;
1154 
1155 		return inode_resv_map(inode);
1156 
1157 	} else {
1158 		return (struct resv_map *)(get_vma_private_data(vma) &
1159 							~HPAGE_RESV_MASK);
1160 	}
1161 }
1162 
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167 
1168 	set_vma_private_data(vma, (unsigned long)map);
1169 }
1170 
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175 
1176 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178 
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182 
1183 	return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185 
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188 	return !(vma->vm_flags & VM_MAYSHARE) &&
1189 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192 
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 	/*
1197 	 * Clear vm_private_data
1198 	 * - For shared mappings this is a per-vma semaphore that may be
1199 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1200 	 *   Before clearing, make sure pointer is not associated with vma
1201 	 *   as this will leak the structure.  This is the case when called
1202 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 	 *   been called to allocate a new structure.
1204 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 	 *   not apply to children.  Faults generated by the children are
1206 	 *   not guaranteed to succeed, even if read-only.
1207 	 */
1208 	if (vma->vm_flags & VM_MAYSHARE) {
1209 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210 
1211 		if (vma_lock && vma_lock->vma != vma)
1212 			vma->vm_private_data = NULL;
1213 	} else
1214 		vma->vm_private_data = NULL;
1215 }
1216 
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226 	/*
1227 	 * Clear the old hugetlb private page reservation.
1228 	 * It has already been transferred to new_vma.
1229 	 *
1230 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 	 * which copies vma into new_vma and unmaps vma. After the copy
1232 	 * operation both new_vma and vma share a reference to the resv_map
1233 	 * struct, and at that point vma is about to be unmapped. We don't
1234 	 * want to return the reservation to the pool at unmap of vma because
1235 	 * the reservation still lives on in new_vma, so simply decrement the
1236 	 * ref here and remove the resv_map reference from this vma.
1237 	 */
1238 	struct resv_map *reservations = vma_resv_map(vma);
1239 
1240 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 		kref_put(&reservations->refs, resv_map_release);
1243 	}
1244 
1245 	hugetlb_dup_vma_private(vma);
1246 }
1247 
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251 	if (vma->vm_flags & VM_NORESERVE) {
1252 		/*
1253 		 * This address is already reserved by other process(chg == 0),
1254 		 * so, we should decrement reserved count. Without decrementing,
1255 		 * reserve count remains after releasing inode, because this
1256 		 * allocated page will go into page cache and is regarded as
1257 		 * coming from reserved pool in releasing step.  Currently, we
1258 		 * don't have any other solution to deal with this situation
1259 		 * properly, so add work-around here.
1260 		 */
1261 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262 			return true;
1263 		else
1264 			return false;
1265 	}
1266 
1267 	/* Shared mappings always use reserves */
1268 	if (vma->vm_flags & VM_MAYSHARE) {
1269 		/*
1270 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271 		 * be a region map for all pages.  The only situation where
1272 		 * there is no region map is if a hole was punched via
1273 		 * fallocate.  In this case, there really are no reserves to
1274 		 * use.  This situation is indicated if chg != 0.
1275 		 */
1276 		if (chg)
1277 			return false;
1278 		else
1279 			return true;
1280 	}
1281 
1282 	/*
1283 	 * Only the process that called mmap() has reserves for
1284 	 * private mappings.
1285 	 */
1286 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287 		/*
1288 		 * Like the shared case above, a hole punch or truncate
1289 		 * could have been performed on the private mapping.
1290 		 * Examine the value of chg to determine if reserves
1291 		 * actually exist or were previously consumed.
1292 		 * Very Subtle - The value of chg comes from a previous
1293 		 * call to vma_needs_reserves().  The reserve map for
1294 		 * private mappings has different (opposite) semantics
1295 		 * than that of shared mappings.  vma_needs_reserves()
1296 		 * has already taken this difference in semantics into
1297 		 * account.  Therefore, the meaning of chg is the same
1298 		 * as in the shared case above.  Code could easily be
1299 		 * combined, but keeping it separate draws attention to
1300 		 * subtle differences.
1301 		 */
1302 		if (chg)
1303 			return false;
1304 		else
1305 			return true;
1306 	}
1307 
1308 	return false;
1309 }
1310 
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313 	int nid = folio_nid(folio);
1314 
1315 	lockdep_assert_held(&hugetlb_lock);
1316 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317 
1318 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 	h->free_huge_pages++;
1320 	h->free_huge_pages_node[nid]++;
1321 	folio_set_hugetlb_freed(folio);
1322 }
1323 
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325 								int nid)
1326 {
1327 	struct folio *folio;
1328 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329 
1330 	lockdep_assert_held(&hugetlb_lock);
1331 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 		if (pin && !folio_is_longterm_pinnable(folio))
1333 			continue;
1334 
1335 		if (folio_test_hwpoison(folio))
1336 			continue;
1337 
1338 		list_move(&folio->lru, &h->hugepage_activelist);
1339 		folio_ref_unfreeze(folio, 1);
1340 		folio_clear_hugetlb_freed(folio);
1341 		h->free_huge_pages--;
1342 		h->free_huge_pages_node[nid]--;
1343 		return folio;
1344 	}
1345 
1346 	return NULL;
1347 }
1348 
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 							int nid, nodemask_t *nmask)
1351 {
1352 	unsigned int cpuset_mems_cookie;
1353 	struct zonelist *zonelist;
1354 	struct zone *zone;
1355 	struct zoneref *z;
1356 	int node = NUMA_NO_NODE;
1357 
1358 	zonelist = node_zonelist(nid, gfp_mask);
1359 
1360 retry_cpuset:
1361 	cpuset_mems_cookie = read_mems_allowed_begin();
1362 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363 		struct folio *folio;
1364 
1365 		if (!cpuset_zone_allowed(zone, gfp_mask))
1366 			continue;
1367 		/*
1368 		 * no need to ask again on the same node. Pool is node rather than
1369 		 * zone aware
1370 		 */
1371 		if (zone_to_nid(zone) == node)
1372 			continue;
1373 		node = zone_to_nid(zone);
1374 
1375 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1376 		if (folio)
1377 			return folio;
1378 	}
1379 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380 		goto retry_cpuset;
1381 
1382 	return NULL;
1383 }
1384 
1385 static unsigned long available_huge_pages(struct hstate *h)
1386 {
1387 	return h->free_huge_pages - h->resv_huge_pages;
1388 }
1389 
1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391 				struct vm_area_struct *vma,
1392 				unsigned long address, int avoid_reserve,
1393 				long chg)
1394 {
1395 	struct folio *folio = NULL;
1396 	struct mempolicy *mpol;
1397 	gfp_t gfp_mask;
1398 	nodemask_t *nodemask;
1399 	int nid;
1400 
1401 	/*
1402 	 * A child process with MAP_PRIVATE mappings created by their parent
1403 	 * have no page reserves. This check ensures that reservations are
1404 	 * not "stolen". The child may still get SIGKILLed
1405 	 */
1406 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407 		goto err;
1408 
1409 	/* If reserves cannot be used, ensure enough pages are in the pool */
1410 	if (avoid_reserve && !available_huge_pages(h))
1411 		goto err;
1412 
1413 	gfp_mask = htlb_alloc_mask(h);
1414 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415 
1416 	if (mpol_is_preferred_many(mpol)) {
1417 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 							nid, nodemask);
1419 
1420 		/* Fallback to all nodes if page==NULL */
1421 		nodemask = NULL;
1422 	}
1423 
1424 	if (!folio)
1425 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 							nid, nodemask);
1427 
1428 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429 		folio_set_hugetlb_restore_reserve(folio);
1430 		h->resv_huge_pages--;
1431 	}
1432 
1433 	mpol_cond_put(mpol);
1434 	return folio;
1435 
1436 err:
1437 	return NULL;
1438 }
1439 
1440 /*
1441  * common helper functions for hstate_next_node_to_{alloc|free}.
1442  * We may have allocated or freed a huge page based on a different
1443  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444  * be outside of *nodes_allowed.  Ensure that we use an allowed
1445  * node for alloc or free.
1446  */
1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449 	nid = next_node_in(nid, *nodes_allowed);
1450 	VM_BUG_ON(nid >= MAX_NUMNODES);
1451 
1452 	return nid;
1453 }
1454 
1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 {
1457 	if (!node_isset(nid, *nodes_allowed))
1458 		nid = next_node_allowed(nid, nodes_allowed);
1459 	return nid;
1460 }
1461 
1462 /*
1463  * returns the previously saved node ["this node"] from which to
1464  * allocate a persistent huge page for the pool and advance the
1465  * next node from which to allocate, handling wrap at end of node
1466  * mask.
1467  */
1468 static int hstate_next_node_to_alloc(int *next_node,
1469 					nodemask_t *nodes_allowed)
1470 {
1471 	int nid;
1472 
1473 	VM_BUG_ON(!nodes_allowed);
1474 
1475 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 	*next_node = next_node_allowed(nid, nodes_allowed);
1477 
1478 	return nid;
1479 }
1480 
1481 /*
1482  * helper for remove_pool_hugetlb_folio() - return the previously saved
1483  * node ["this node"] from which to free a huge page.  Advance the
1484  * next node id whether or not we find a free huge page to free so
1485  * that the next attempt to free addresses the next node.
1486  */
1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488 {
1489 	int nid;
1490 
1491 	VM_BUG_ON(!nodes_allowed);
1492 
1493 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495 
1496 	return nid;
1497 }
1498 
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1500 	for (nr_nodes = nodes_weight(*mask);				\
1501 		nr_nodes > 0 &&						\
1502 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1503 		nr_nodes--)
1504 
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1506 	for (nr_nodes = nodes_weight(*mask);				\
1507 		nr_nodes > 0 &&						\
1508 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1509 		nr_nodes--)
1510 
1511 /* used to demote non-gigantic_huge pages as well */
1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513 					unsigned int order, bool demote)
1514 {
1515 	int i;
1516 	int nr_pages = 1 << order;
1517 	struct page *p;
1518 
1519 	atomic_set(&folio->_entire_mapcount, 0);
1520 	atomic_set(&folio->_large_mapcount, 0);
1521 	atomic_set(&folio->_pincount, 0);
1522 
1523 	for (i = 1; i < nr_pages; i++) {
1524 		p = folio_page(folio, i);
1525 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526 		p->mapping = NULL;
1527 		clear_compound_head(p);
1528 		if (!demote)
1529 			set_page_refcounted(p);
1530 	}
1531 
1532 	__folio_clear_head(folio);
1533 }
1534 
1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536 					unsigned int order)
1537 {
1538 	__destroy_compound_gigantic_folio(folio, order, true);
1539 }
1540 
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1543 					unsigned int order)
1544 {
1545 	__destroy_compound_gigantic_folio(folio, order, false);
1546 }
1547 
1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549 {
1550 	/*
1551 	 * If the page isn't allocated using the cma allocator,
1552 	 * cma_release() returns false.
1553 	 */
1554 #ifdef CONFIG_CMA
1555 	int nid = folio_nid(folio);
1556 
1557 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558 		return;
1559 #endif
1560 
1561 	free_contig_range(folio_pfn(folio), 1 << order);
1562 }
1563 
1564 #ifdef CONFIG_CONTIG_ALLOC
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 		int nid, nodemask_t *nodemask)
1567 {
1568 	struct page *page;
1569 	unsigned long nr_pages = pages_per_huge_page(h);
1570 	if (nid == NUMA_NO_NODE)
1571 		nid = numa_mem_id();
1572 
1573 #ifdef CONFIG_CMA
1574 	{
1575 		int node;
1576 
1577 		if (hugetlb_cma[nid]) {
1578 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579 					huge_page_order(h), true);
1580 			if (page)
1581 				return page_folio(page);
1582 		}
1583 
1584 		if (!(gfp_mask & __GFP_THISNODE)) {
1585 			for_each_node_mask(node, *nodemask) {
1586 				if (node == nid || !hugetlb_cma[node])
1587 					continue;
1588 
1589 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1590 						huge_page_order(h), true);
1591 				if (page)
1592 					return page_folio(page);
1593 			}
1594 		}
1595 	}
1596 #endif
1597 
1598 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599 	return page ? page_folio(page) : NULL;
1600 }
1601 
1602 #else /* !CONFIG_CONTIG_ALLOC */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604 					int nid, nodemask_t *nodemask)
1605 {
1606 	return NULL;
1607 }
1608 #endif /* CONFIG_CONTIG_ALLOC */
1609 
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612 					int nid, nodemask_t *nodemask)
1613 {
1614 	return NULL;
1615 }
1616 static inline void free_gigantic_folio(struct folio *folio,
1617 						unsigned int order) { }
1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619 						unsigned int order) { }
1620 #endif
1621 
1622 /*
1623  * Remove hugetlb folio from lists.
1624  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1625  * folio appears as just a compound page.  Otherwise, wait until after
1626  * allocating vmemmap to clear the flag.
1627  *
1628  * Must be called with hugetlb lock held.
1629  */
1630 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1631 							bool adjust_surplus)
1632 {
1633 	int nid = folio_nid(folio);
1634 
1635 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1636 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1637 
1638 	lockdep_assert_held(&hugetlb_lock);
1639 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1640 		return;
1641 
1642 	list_del(&folio->lru);
1643 
1644 	if (folio_test_hugetlb_freed(folio)) {
1645 		folio_clear_hugetlb_freed(folio);
1646 		h->free_huge_pages--;
1647 		h->free_huge_pages_node[nid]--;
1648 	}
1649 	if (adjust_surplus) {
1650 		h->surplus_huge_pages--;
1651 		h->surplus_huge_pages_node[nid]--;
1652 	}
1653 
1654 	/*
1655 	 * We can only clear the hugetlb flag after allocating vmemmap
1656 	 * pages.  Otherwise, someone (memory error handling) may try to write
1657 	 * to tail struct pages.
1658 	 */
1659 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1660 		__folio_clear_hugetlb(folio);
1661 
1662 	h->nr_huge_pages--;
1663 	h->nr_huge_pages_node[nid]--;
1664 }
1665 
1666 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1667 			     bool adjust_surplus)
1668 {
1669 	int nid = folio_nid(folio);
1670 
1671 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1672 
1673 	lockdep_assert_held(&hugetlb_lock);
1674 
1675 	INIT_LIST_HEAD(&folio->lru);
1676 	h->nr_huge_pages++;
1677 	h->nr_huge_pages_node[nid]++;
1678 
1679 	if (adjust_surplus) {
1680 		h->surplus_huge_pages++;
1681 		h->surplus_huge_pages_node[nid]++;
1682 	}
1683 
1684 	__folio_set_hugetlb(folio);
1685 	folio_change_private(folio, NULL);
1686 	/*
1687 	 * We have to set hugetlb_vmemmap_optimized again as above
1688 	 * folio_change_private(folio, NULL) cleared it.
1689 	 */
1690 	folio_set_hugetlb_vmemmap_optimized(folio);
1691 
1692 	arch_clear_hugetlb_flags(folio);
1693 	enqueue_hugetlb_folio(h, folio);
1694 }
1695 
1696 static void __update_and_free_hugetlb_folio(struct hstate *h,
1697 						struct folio *folio)
1698 {
1699 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1700 
1701 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1702 		return;
1703 
1704 	/*
1705 	 * If we don't know which subpages are hwpoisoned, we can't free
1706 	 * the hugepage, so it's leaked intentionally.
1707 	 */
1708 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1709 		return;
1710 
1711 	/*
1712 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1713 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1714 	 * can only be passed hugetlb pages and will BUG otherwise.
1715 	 */
1716 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1717 		spin_lock_irq(&hugetlb_lock);
1718 		/*
1719 		 * If we cannot allocate vmemmap pages, just refuse to free the
1720 		 * page and put the page back on the hugetlb free list and treat
1721 		 * as a surplus page.
1722 		 */
1723 		add_hugetlb_folio(h, folio, true);
1724 		spin_unlock_irq(&hugetlb_lock);
1725 		return;
1726 	}
1727 
1728 	/*
1729 	 * If vmemmap pages were allocated above, then we need to clear the
1730 	 * hugetlb flag under the hugetlb lock.
1731 	 */
1732 	if (folio_test_hugetlb(folio)) {
1733 		spin_lock_irq(&hugetlb_lock);
1734 		__folio_clear_hugetlb(folio);
1735 		spin_unlock_irq(&hugetlb_lock);
1736 	}
1737 
1738 	/*
1739 	 * Move PageHWPoison flag from head page to the raw error pages,
1740 	 * which makes any healthy subpages reusable.
1741 	 */
1742 	if (unlikely(folio_test_hwpoison(folio)))
1743 		folio_clear_hugetlb_hwpoison(folio);
1744 
1745 	folio_ref_unfreeze(folio, 1);
1746 
1747 	/*
1748 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 	 * need to be given back to CMA in free_gigantic_folio.
1750 	 */
1751 	if (hstate_is_gigantic(h) ||
1752 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 		free_gigantic_folio(folio, huge_page_order(h));
1755 	} else {
1756 		INIT_LIST_HEAD(&folio->_deferred_list);
1757 		folio_put(folio);
1758 	}
1759 }
1760 
1761 /*
1762  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1763  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1764  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1765  * the vmemmap pages.
1766  *
1767  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1768  * freed and frees them one-by-one. As the page->mapping pointer is going
1769  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1770  * structure of a lockless linked list of huge pages to be freed.
1771  */
1772 static LLIST_HEAD(hpage_freelist);
1773 
1774 static void free_hpage_workfn(struct work_struct *work)
1775 {
1776 	struct llist_node *node;
1777 
1778 	node = llist_del_all(&hpage_freelist);
1779 
1780 	while (node) {
1781 		struct folio *folio;
1782 		struct hstate *h;
1783 
1784 		folio = container_of((struct address_space **)node,
1785 				     struct folio, mapping);
1786 		node = node->next;
1787 		folio->mapping = NULL;
1788 		/*
1789 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1790 		 * folio_hstate() is going to trigger because a previous call to
1791 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1792 		 * not use folio_hstate() directly.
1793 		 */
1794 		h = size_to_hstate(folio_size(folio));
1795 
1796 		__update_and_free_hugetlb_folio(h, folio);
1797 
1798 		cond_resched();
1799 	}
1800 }
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802 
1803 static inline void flush_free_hpage_work(struct hstate *h)
1804 {
1805 	if (hugetlb_vmemmap_optimizable(h))
1806 		flush_work(&free_hpage_work);
1807 }
1808 
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810 				 bool atomic)
1811 {
1812 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 		__update_and_free_hugetlb_folio(h, folio);
1814 		return;
1815 	}
1816 
1817 	/*
1818 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819 	 *
1820 	 * Only call schedule_work() if hpage_freelist is previously
1821 	 * empty. Otherwise, schedule_work() had been called but the workfn
1822 	 * hasn't retrieved the list yet.
1823 	 */
1824 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 		schedule_work(&free_hpage_work);
1826 }
1827 
1828 static void bulk_vmemmap_restore_error(struct hstate *h,
1829 					struct list_head *folio_list,
1830 					struct list_head *non_hvo_folios)
1831 {
1832 	struct folio *folio, *t_folio;
1833 
1834 	if (!list_empty(non_hvo_folios)) {
1835 		/*
1836 		 * Free any restored hugetlb pages so that restore of the
1837 		 * entire list can be retried.
1838 		 * The idea is that in the common case of ENOMEM errors freeing
1839 		 * hugetlb pages with vmemmap we will free up memory so that we
1840 		 * can allocate vmemmap for more hugetlb pages.
1841 		 */
1842 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1843 			list_del(&folio->lru);
1844 			spin_lock_irq(&hugetlb_lock);
1845 			__folio_clear_hugetlb(folio);
1846 			spin_unlock_irq(&hugetlb_lock);
1847 			update_and_free_hugetlb_folio(h, folio, false);
1848 			cond_resched();
1849 		}
1850 	} else {
1851 		/*
1852 		 * In the case where there are no folios which can be
1853 		 * immediately freed, we loop through the list trying to restore
1854 		 * vmemmap individually in the hope that someone elsewhere may
1855 		 * have done something to cause success (such as freeing some
1856 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1857 		 * page is made a surplus page and removed from the list.
1858 		 * If are able to restore vmemmap and free one hugetlb page, we
1859 		 * quit processing the list to retry the bulk operation.
1860 		 */
1861 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1862 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1863 				list_del(&folio->lru);
1864 				spin_lock_irq(&hugetlb_lock);
1865 				add_hugetlb_folio(h, folio, true);
1866 				spin_unlock_irq(&hugetlb_lock);
1867 			} else {
1868 				list_del(&folio->lru);
1869 				spin_lock_irq(&hugetlb_lock);
1870 				__folio_clear_hugetlb(folio);
1871 				spin_unlock_irq(&hugetlb_lock);
1872 				update_and_free_hugetlb_folio(h, folio, false);
1873 				cond_resched();
1874 				break;
1875 			}
1876 	}
1877 }
1878 
1879 static void update_and_free_pages_bulk(struct hstate *h,
1880 						struct list_head *folio_list)
1881 {
1882 	long ret;
1883 	struct folio *folio, *t_folio;
1884 	LIST_HEAD(non_hvo_folios);
1885 
1886 	/*
1887 	 * First allocate required vmemmmap (if necessary) for all folios.
1888 	 * Carefully handle errors and free up any available hugetlb pages
1889 	 * in an effort to make forward progress.
1890 	 */
1891 retry:
1892 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1893 	if (ret < 0) {
1894 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1895 		goto retry;
1896 	}
1897 
1898 	/*
1899 	 * At this point, list should be empty, ret should be >= 0 and there
1900 	 * should only be pages on the non_hvo_folios list.
1901 	 * Do note that the non_hvo_folios list could be empty.
1902 	 * Without HVO enabled, ret will be 0 and there is no need to call
1903 	 * __folio_clear_hugetlb as this was done previously.
1904 	 */
1905 	VM_WARN_ON(!list_empty(folio_list));
1906 	VM_WARN_ON(ret < 0);
1907 	if (!list_empty(&non_hvo_folios) && ret) {
1908 		spin_lock_irq(&hugetlb_lock);
1909 		list_for_each_entry(folio, &non_hvo_folios, lru)
1910 			__folio_clear_hugetlb(folio);
1911 		spin_unlock_irq(&hugetlb_lock);
1912 	}
1913 
1914 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1915 		update_and_free_hugetlb_folio(h, folio, false);
1916 		cond_resched();
1917 	}
1918 }
1919 
1920 struct hstate *size_to_hstate(unsigned long size)
1921 {
1922 	struct hstate *h;
1923 
1924 	for_each_hstate(h) {
1925 		if (huge_page_size(h) == size)
1926 			return h;
1927 	}
1928 	return NULL;
1929 }
1930 
1931 void free_huge_folio(struct folio *folio)
1932 {
1933 	/*
1934 	 * Can't pass hstate in here because it is called from the
1935 	 * generic mm code.
1936 	 */
1937 	struct hstate *h = folio_hstate(folio);
1938 	int nid = folio_nid(folio);
1939 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1940 	bool restore_reserve;
1941 	unsigned long flags;
1942 
1943 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1944 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1945 
1946 	hugetlb_set_folio_subpool(folio, NULL);
1947 	if (folio_test_anon(folio))
1948 		__ClearPageAnonExclusive(&folio->page);
1949 	folio->mapping = NULL;
1950 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1951 	folio_clear_hugetlb_restore_reserve(folio);
1952 
1953 	/*
1954 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1955 	 * reservation.  If the page was associated with a subpool, there
1956 	 * would have been a page reserved in the subpool before allocation
1957 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1958 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1959 	 * remove the reserved page from the subpool.
1960 	 */
1961 	if (!restore_reserve) {
1962 		/*
1963 		 * A return code of zero implies that the subpool will be
1964 		 * under its minimum size if the reservation is not restored
1965 		 * after page is free.  Therefore, force restore_reserve
1966 		 * operation.
1967 		 */
1968 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1969 			restore_reserve = true;
1970 	}
1971 
1972 	spin_lock_irqsave(&hugetlb_lock, flags);
1973 	folio_clear_hugetlb_migratable(folio);
1974 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1975 				     pages_per_huge_page(h), folio);
1976 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1977 					  pages_per_huge_page(h), folio);
1978 	mem_cgroup_uncharge(folio);
1979 	if (restore_reserve)
1980 		h->resv_huge_pages++;
1981 
1982 	if (folio_test_hugetlb_temporary(folio)) {
1983 		remove_hugetlb_folio(h, folio, false);
1984 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1985 		update_and_free_hugetlb_folio(h, folio, true);
1986 	} else if (h->surplus_huge_pages_node[nid]) {
1987 		/* remove the page from active list */
1988 		remove_hugetlb_folio(h, folio, true);
1989 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1990 		update_and_free_hugetlb_folio(h, folio, true);
1991 	} else {
1992 		arch_clear_hugetlb_flags(folio);
1993 		enqueue_hugetlb_folio(h, folio);
1994 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1995 	}
1996 }
1997 
1998 /*
1999  * Must be called with the hugetlb lock held
2000  */
2001 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2002 {
2003 	lockdep_assert_held(&hugetlb_lock);
2004 	h->nr_huge_pages++;
2005 	h->nr_huge_pages_node[nid]++;
2006 }
2007 
2008 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2009 {
2010 	__folio_set_hugetlb(folio);
2011 	INIT_LIST_HEAD(&folio->lru);
2012 	hugetlb_set_folio_subpool(folio, NULL);
2013 	set_hugetlb_cgroup(folio, NULL);
2014 	set_hugetlb_cgroup_rsvd(folio, NULL);
2015 }
2016 
2017 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2018 {
2019 	init_new_hugetlb_folio(h, folio);
2020 	hugetlb_vmemmap_optimize_folio(h, folio);
2021 }
2022 
2023 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2024 {
2025 	__prep_new_hugetlb_folio(h, folio);
2026 	spin_lock_irq(&hugetlb_lock);
2027 	__prep_account_new_huge_page(h, nid);
2028 	spin_unlock_irq(&hugetlb_lock);
2029 }
2030 
2031 static bool __prep_compound_gigantic_folio(struct folio *folio,
2032 					unsigned int order, bool demote)
2033 {
2034 	int i, j;
2035 	int nr_pages = 1 << order;
2036 	struct page *p;
2037 
2038 	__folio_clear_reserved(folio);
2039 	for (i = 0; i < nr_pages; i++) {
2040 		p = folio_page(folio, i);
2041 
2042 		/*
2043 		 * For gigantic hugepages allocated through bootmem at
2044 		 * boot, it's safer to be consistent with the not-gigantic
2045 		 * hugepages and clear the PG_reserved bit from all tail pages
2046 		 * too.  Otherwise drivers using get_user_pages() to access tail
2047 		 * pages may get the reference counting wrong if they see
2048 		 * PG_reserved set on a tail page (despite the head page not
2049 		 * having PG_reserved set).  Enforcing this consistency between
2050 		 * head and tail pages allows drivers to optimize away a check
2051 		 * on the head page when they need know if put_page() is needed
2052 		 * after get_user_pages().
2053 		 */
2054 		if (i != 0)	/* head page cleared above */
2055 			__ClearPageReserved(p);
2056 		/*
2057 		 * Subtle and very unlikely
2058 		 *
2059 		 * Gigantic 'page allocators' such as memblock or cma will
2060 		 * return a set of pages with each page ref counted.  We need
2061 		 * to turn this set of pages into a compound page with tail
2062 		 * page ref counts set to zero.  Code such as speculative page
2063 		 * cache adding could take a ref on a 'to be' tail page.
2064 		 * We need to respect any increased ref count, and only set
2065 		 * the ref count to zero if count is currently 1.  If count
2066 		 * is not 1, we return an error.  An error return indicates
2067 		 * the set of pages can not be converted to a gigantic page.
2068 		 * The caller who allocated the pages should then discard the
2069 		 * pages using the appropriate free interface.
2070 		 *
2071 		 * In the case of demote, the ref count will be zero.
2072 		 */
2073 		if (!demote) {
2074 			if (!page_ref_freeze(p, 1)) {
2075 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2076 				goto out_error;
2077 			}
2078 		} else {
2079 			VM_BUG_ON_PAGE(page_count(p), p);
2080 		}
2081 		if (i != 0)
2082 			set_compound_head(p, &folio->page);
2083 	}
2084 	__folio_set_head(folio);
2085 	/* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2086 	folio_set_order(folio, order);
2087 	atomic_set(&folio->_entire_mapcount, -1);
2088 	atomic_set(&folio->_large_mapcount, -1);
2089 	atomic_set(&folio->_pincount, 0);
2090 	return true;
2091 
2092 out_error:
2093 	/* undo page modifications made above */
2094 	for (j = 0; j < i; j++) {
2095 		p = folio_page(folio, j);
2096 		if (j != 0)
2097 			clear_compound_head(p);
2098 		set_page_refcounted(p);
2099 	}
2100 	/* need to clear PG_reserved on remaining tail pages  */
2101 	for (; j < nr_pages; j++) {
2102 		p = folio_page(folio, j);
2103 		__ClearPageReserved(p);
2104 	}
2105 	return false;
2106 }
2107 
2108 static bool prep_compound_gigantic_folio(struct folio *folio,
2109 							unsigned int order)
2110 {
2111 	return __prep_compound_gigantic_folio(folio, order, false);
2112 }
2113 
2114 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2115 							unsigned int order)
2116 {
2117 	return __prep_compound_gigantic_folio(folio, order, true);
2118 }
2119 
2120 /*
2121  * Find and lock address space (mapping) in write mode.
2122  *
2123  * Upon entry, the folio is locked which means that folio_mapping() is
2124  * stable.  Due to locking order, we can only trylock_write.  If we can
2125  * not get the lock, simply return NULL to caller.
2126  */
2127 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
2128 {
2129 	struct address_space *mapping = folio_mapping(folio);
2130 
2131 	if (!mapping)
2132 		return mapping;
2133 
2134 	if (i_mmap_trylock_write(mapping))
2135 		return mapping;
2136 
2137 	return NULL;
2138 }
2139 
2140 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2141 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2142 		nodemask_t *node_alloc_noretry)
2143 {
2144 	int order = huge_page_order(h);
2145 	struct folio *folio;
2146 	bool alloc_try_hard = true;
2147 	bool retry = true;
2148 
2149 	/*
2150 	 * By default we always try hard to allocate the folio with
2151 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2152 	 * a loop (to adjust global huge page counts) and previous allocation
2153 	 * failed, do not continue to try hard on the same node.  Use the
2154 	 * node_alloc_noretry bitmap to manage this state information.
2155 	 */
2156 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2157 		alloc_try_hard = false;
2158 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2159 	if (alloc_try_hard)
2160 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2161 	if (nid == NUMA_NO_NODE)
2162 		nid = numa_mem_id();
2163 retry:
2164 	folio = __folio_alloc(gfp_mask, order, nid, nmask);
2165 	/* Ensure hugetlb folio won't have large_rmappable flag set. */
2166 	if (folio)
2167 		folio_clear_large_rmappable(folio);
2168 
2169 	if (folio && !folio_ref_freeze(folio, 1)) {
2170 		folio_put(folio);
2171 		if (retry) {	/* retry once */
2172 			retry = false;
2173 			goto retry;
2174 		}
2175 		/* WOW!  twice in a row. */
2176 		pr_warn("HugeTLB unexpected inflated folio ref count\n");
2177 		folio = NULL;
2178 	}
2179 
2180 	/*
2181 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2182 	 * folio this indicates an overall state change.  Clear bit so
2183 	 * that we resume normal 'try hard' allocations.
2184 	 */
2185 	if (node_alloc_noretry && folio && !alloc_try_hard)
2186 		node_clear(nid, *node_alloc_noretry);
2187 
2188 	/*
2189 	 * If we tried hard to get a folio but failed, set bit so that
2190 	 * subsequent attempts will not try as hard until there is an
2191 	 * overall state change.
2192 	 */
2193 	if (node_alloc_noretry && !folio && alloc_try_hard)
2194 		node_set(nid, *node_alloc_noretry);
2195 
2196 	if (!folio) {
2197 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2198 		return NULL;
2199 	}
2200 
2201 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2202 	return folio;
2203 }
2204 
2205 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2206 				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2207 				nodemask_t *node_alloc_noretry)
2208 {
2209 	struct folio *folio;
2210 	bool retry = false;
2211 
2212 retry:
2213 	if (hstate_is_gigantic(h))
2214 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2215 	else
2216 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2217 				nid, nmask, node_alloc_noretry);
2218 	if (!folio)
2219 		return NULL;
2220 
2221 	if (hstate_is_gigantic(h)) {
2222 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2223 			/*
2224 			 * Rare failure to convert pages to compound page.
2225 			 * Free pages and try again - ONCE!
2226 			 */
2227 			free_gigantic_folio(folio, huge_page_order(h));
2228 			if (!retry) {
2229 				retry = true;
2230 				goto retry;
2231 			}
2232 			return NULL;
2233 		}
2234 	}
2235 
2236 	return folio;
2237 }
2238 
2239 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2240 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2241 		nodemask_t *node_alloc_noretry)
2242 {
2243 	struct folio *folio;
2244 
2245 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2246 						node_alloc_noretry);
2247 	if (folio)
2248 		init_new_hugetlb_folio(h, folio);
2249 	return folio;
2250 }
2251 
2252 /*
2253  * Common helper to allocate a fresh hugetlb page. All specific allocators
2254  * should use this function to get new hugetlb pages
2255  *
2256  * Note that returned page is 'frozen':  ref count of head page and all tail
2257  * pages is zero.
2258  */
2259 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2260 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2261 		nodemask_t *node_alloc_noretry)
2262 {
2263 	struct folio *folio;
2264 
2265 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2266 						node_alloc_noretry);
2267 	if (!folio)
2268 		return NULL;
2269 
2270 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2271 	return folio;
2272 }
2273 
2274 static void prep_and_add_allocated_folios(struct hstate *h,
2275 					struct list_head *folio_list)
2276 {
2277 	unsigned long flags;
2278 	struct folio *folio, *tmp_f;
2279 
2280 	/* Send list for bulk vmemmap optimization processing */
2281 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2282 
2283 	/* Add all new pool pages to free lists in one lock cycle */
2284 	spin_lock_irqsave(&hugetlb_lock, flags);
2285 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2286 		__prep_account_new_huge_page(h, folio_nid(folio));
2287 		enqueue_hugetlb_folio(h, folio);
2288 	}
2289 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2290 }
2291 
2292 /*
2293  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2294  * will later be added to the appropriate hugetlb pool.
2295  */
2296 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2297 					nodemask_t *nodes_allowed,
2298 					nodemask_t *node_alloc_noretry,
2299 					int *next_node)
2300 {
2301 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2302 	int nr_nodes, node;
2303 
2304 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2305 		struct folio *folio;
2306 
2307 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2308 					nodes_allowed, node_alloc_noretry);
2309 		if (folio)
2310 			return folio;
2311 	}
2312 
2313 	return NULL;
2314 }
2315 
2316 /*
2317  * Remove huge page from pool from next node to free.  Attempt to keep
2318  * persistent huge pages more or less balanced over allowed nodes.
2319  * This routine only 'removes' the hugetlb page.  The caller must make
2320  * an additional call to free the page to low level allocators.
2321  * Called with hugetlb_lock locked.
2322  */
2323 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2324 		nodemask_t *nodes_allowed, bool acct_surplus)
2325 {
2326 	int nr_nodes, node;
2327 	struct folio *folio = NULL;
2328 
2329 	lockdep_assert_held(&hugetlb_lock);
2330 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2331 		/*
2332 		 * If we're returning unused surplus pages, only examine
2333 		 * nodes with surplus pages.
2334 		 */
2335 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2336 		    !list_empty(&h->hugepage_freelists[node])) {
2337 			folio = list_entry(h->hugepage_freelists[node].next,
2338 					  struct folio, lru);
2339 			remove_hugetlb_folio(h, folio, acct_surplus);
2340 			break;
2341 		}
2342 	}
2343 
2344 	return folio;
2345 }
2346 
2347 /*
2348  * Dissolve a given free hugetlb folio into free buddy pages. This function
2349  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2350  * This function returns values like below:
2351  *
2352  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2353  *           when the system is under memory pressure and the feature of
2354  *           freeing unused vmemmap pages associated with each hugetlb page
2355  *           is enabled.
2356  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2357  *           (allocated or reserved.)
2358  *       0:  successfully dissolved free hugepages or the page is not a
2359  *           hugepage (considered as already dissolved)
2360  */
2361 int dissolve_free_hugetlb_folio(struct folio *folio)
2362 {
2363 	int rc = -EBUSY;
2364 
2365 retry:
2366 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2367 	if (!folio_test_hugetlb(folio))
2368 		return 0;
2369 
2370 	spin_lock_irq(&hugetlb_lock);
2371 	if (!folio_test_hugetlb(folio)) {
2372 		rc = 0;
2373 		goto out;
2374 	}
2375 
2376 	if (!folio_ref_count(folio)) {
2377 		struct hstate *h = folio_hstate(folio);
2378 		if (!available_huge_pages(h))
2379 			goto out;
2380 
2381 		/*
2382 		 * We should make sure that the page is already on the free list
2383 		 * when it is dissolved.
2384 		 */
2385 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2386 			spin_unlock_irq(&hugetlb_lock);
2387 			cond_resched();
2388 
2389 			/*
2390 			 * Theoretically, we should return -EBUSY when we
2391 			 * encounter this race. In fact, we have a chance
2392 			 * to successfully dissolve the page if we do a
2393 			 * retry. Because the race window is quite small.
2394 			 * If we seize this opportunity, it is an optimization
2395 			 * for increasing the success rate of dissolving page.
2396 			 */
2397 			goto retry;
2398 		}
2399 
2400 		remove_hugetlb_folio(h, folio, false);
2401 		h->max_huge_pages--;
2402 		spin_unlock_irq(&hugetlb_lock);
2403 
2404 		/*
2405 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2406 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2407 		 * free the page if it can not allocate required vmemmap.  We
2408 		 * need to adjust max_huge_pages if the page is not freed.
2409 		 * Attempt to allocate vmemmmap here so that we can take
2410 		 * appropriate action on failure.
2411 		 *
2412 		 * The folio_test_hugetlb check here is because
2413 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2414 		 * non-vmemmap optimized hugetlb folios.
2415 		 */
2416 		if (folio_test_hugetlb(folio)) {
2417 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2418 			if (rc) {
2419 				spin_lock_irq(&hugetlb_lock);
2420 				add_hugetlb_folio(h, folio, false);
2421 				h->max_huge_pages++;
2422 				goto out;
2423 			}
2424 		} else
2425 			rc = 0;
2426 
2427 		update_and_free_hugetlb_folio(h, folio, false);
2428 		return rc;
2429 	}
2430 out:
2431 	spin_unlock_irq(&hugetlb_lock);
2432 	return rc;
2433 }
2434 
2435 /*
2436  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2437  * make specified memory blocks removable from the system.
2438  * Note that this will dissolve a free gigantic hugepage completely, if any
2439  * part of it lies within the given range.
2440  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2441  * free hugetlb folios that were dissolved before that error are lost.
2442  */
2443 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2444 {
2445 	unsigned long pfn;
2446 	struct folio *folio;
2447 	int rc = 0;
2448 	unsigned int order;
2449 	struct hstate *h;
2450 
2451 	if (!hugepages_supported())
2452 		return rc;
2453 
2454 	order = huge_page_order(&default_hstate);
2455 	for_each_hstate(h)
2456 		order = min(order, huge_page_order(h));
2457 
2458 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2459 		folio = pfn_folio(pfn);
2460 		rc = dissolve_free_hugetlb_folio(folio);
2461 		if (rc)
2462 			break;
2463 	}
2464 
2465 	return rc;
2466 }
2467 
2468 /*
2469  * Allocates a fresh surplus page from the page allocator.
2470  */
2471 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2472 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2473 {
2474 	struct folio *folio = NULL;
2475 
2476 	if (hstate_is_gigantic(h))
2477 		return NULL;
2478 
2479 	spin_lock_irq(&hugetlb_lock);
2480 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2481 		goto out_unlock;
2482 	spin_unlock_irq(&hugetlb_lock);
2483 
2484 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2485 	if (!folio)
2486 		return NULL;
2487 
2488 	spin_lock_irq(&hugetlb_lock);
2489 	/*
2490 	 * We could have raced with the pool size change.
2491 	 * Double check that and simply deallocate the new page
2492 	 * if we would end up overcommiting the surpluses. Abuse
2493 	 * temporary page to workaround the nasty free_huge_folio
2494 	 * codeflow
2495 	 */
2496 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2497 		folio_set_hugetlb_temporary(folio);
2498 		spin_unlock_irq(&hugetlb_lock);
2499 		free_huge_folio(folio);
2500 		return NULL;
2501 	}
2502 
2503 	h->surplus_huge_pages++;
2504 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2505 
2506 out_unlock:
2507 	spin_unlock_irq(&hugetlb_lock);
2508 
2509 	return folio;
2510 }
2511 
2512 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2513 				     int nid, nodemask_t *nmask)
2514 {
2515 	struct folio *folio;
2516 
2517 	if (hstate_is_gigantic(h))
2518 		return NULL;
2519 
2520 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2521 	if (!folio)
2522 		return NULL;
2523 
2524 	/* fresh huge pages are frozen */
2525 	folio_ref_unfreeze(folio, 1);
2526 	/*
2527 	 * We do not account these pages as surplus because they are only
2528 	 * temporary and will be released properly on the last reference
2529 	 */
2530 	folio_set_hugetlb_temporary(folio);
2531 
2532 	return folio;
2533 }
2534 
2535 /*
2536  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2537  */
2538 static
2539 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2540 		struct vm_area_struct *vma, unsigned long addr)
2541 {
2542 	struct folio *folio = NULL;
2543 	struct mempolicy *mpol;
2544 	gfp_t gfp_mask = htlb_alloc_mask(h);
2545 	int nid;
2546 	nodemask_t *nodemask;
2547 
2548 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2549 	if (mpol_is_preferred_many(mpol)) {
2550 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2551 
2552 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2553 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2554 
2555 		/* Fallback to all nodes if page==NULL */
2556 		nodemask = NULL;
2557 	}
2558 
2559 	if (!folio)
2560 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2561 	mpol_cond_put(mpol);
2562 	return folio;
2563 }
2564 
2565 /* folio migration callback function */
2566 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2567 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2568 {
2569 	spin_lock_irq(&hugetlb_lock);
2570 	if (available_huge_pages(h)) {
2571 		struct folio *folio;
2572 
2573 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2574 						preferred_nid, nmask);
2575 		if (folio) {
2576 			spin_unlock_irq(&hugetlb_lock);
2577 			return folio;
2578 		}
2579 	}
2580 	spin_unlock_irq(&hugetlb_lock);
2581 
2582 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2583 	if (!allow_alloc_fallback)
2584 		gfp_mask |= __GFP_THISNODE;
2585 
2586 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2587 }
2588 
2589 /*
2590  * Increase the hugetlb pool such that it can accommodate a reservation
2591  * of size 'delta'.
2592  */
2593 static int gather_surplus_pages(struct hstate *h, long delta)
2594 	__must_hold(&hugetlb_lock)
2595 {
2596 	LIST_HEAD(surplus_list);
2597 	struct folio *folio, *tmp;
2598 	int ret;
2599 	long i;
2600 	long needed, allocated;
2601 	bool alloc_ok = true;
2602 
2603 	lockdep_assert_held(&hugetlb_lock);
2604 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2605 	if (needed <= 0) {
2606 		h->resv_huge_pages += delta;
2607 		return 0;
2608 	}
2609 
2610 	allocated = 0;
2611 
2612 	ret = -ENOMEM;
2613 retry:
2614 	spin_unlock_irq(&hugetlb_lock);
2615 	for (i = 0; i < needed; i++) {
2616 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2617 				NUMA_NO_NODE, NULL);
2618 		if (!folio) {
2619 			alloc_ok = false;
2620 			break;
2621 		}
2622 		list_add(&folio->lru, &surplus_list);
2623 		cond_resched();
2624 	}
2625 	allocated += i;
2626 
2627 	/*
2628 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2629 	 * because either resv_huge_pages or free_huge_pages may have changed.
2630 	 */
2631 	spin_lock_irq(&hugetlb_lock);
2632 	needed = (h->resv_huge_pages + delta) -
2633 			(h->free_huge_pages + allocated);
2634 	if (needed > 0) {
2635 		if (alloc_ok)
2636 			goto retry;
2637 		/*
2638 		 * We were not able to allocate enough pages to
2639 		 * satisfy the entire reservation so we free what
2640 		 * we've allocated so far.
2641 		 */
2642 		goto free;
2643 	}
2644 	/*
2645 	 * The surplus_list now contains _at_least_ the number of extra pages
2646 	 * needed to accommodate the reservation.  Add the appropriate number
2647 	 * of pages to the hugetlb pool and free the extras back to the buddy
2648 	 * allocator.  Commit the entire reservation here to prevent another
2649 	 * process from stealing the pages as they are added to the pool but
2650 	 * before they are reserved.
2651 	 */
2652 	needed += allocated;
2653 	h->resv_huge_pages += delta;
2654 	ret = 0;
2655 
2656 	/* Free the needed pages to the hugetlb pool */
2657 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2658 		if ((--needed) < 0)
2659 			break;
2660 		/* Add the page to the hugetlb allocator */
2661 		enqueue_hugetlb_folio(h, folio);
2662 	}
2663 free:
2664 	spin_unlock_irq(&hugetlb_lock);
2665 
2666 	/*
2667 	 * Free unnecessary surplus pages to the buddy allocator.
2668 	 * Pages have no ref count, call free_huge_folio directly.
2669 	 */
2670 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2671 		free_huge_folio(folio);
2672 	spin_lock_irq(&hugetlb_lock);
2673 
2674 	return ret;
2675 }
2676 
2677 /*
2678  * This routine has two main purposes:
2679  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2680  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2681  *    to the associated reservation map.
2682  * 2) Free any unused surplus pages that may have been allocated to satisfy
2683  *    the reservation.  As many as unused_resv_pages may be freed.
2684  */
2685 static void return_unused_surplus_pages(struct hstate *h,
2686 					unsigned long unused_resv_pages)
2687 {
2688 	unsigned long nr_pages;
2689 	LIST_HEAD(page_list);
2690 
2691 	lockdep_assert_held(&hugetlb_lock);
2692 	/* Uncommit the reservation */
2693 	h->resv_huge_pages -= unused_resv_pages;
2694 
2695 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2696 		goto out;
2697 
2698 	/*
2699 	 * Part (or even all) of the reservation could have been backed
2700 	 * by pre-allocated pages. Only free surplus pages.
2701 	 */
2702 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2703 
2704 	/*
2705 	 * We want to release as many surplus pages as possible, spread
2706 	 * evenly across all nodes with memory. Iterate across these nodes
2707 	 * until we can no longer free unreserved surplus pages. This occurs
2708 	 * when the nodes with surplus pages have no free pages.
2709 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2710 	 * on-line nodes with memory and will handle the hstate accounting.
2711 	 */
2712 	while (nr_pages--) {
2713 		struct folio *folio;
2714 
2715 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2716 		if (!folio)
2717 			goto out;
2718 
2719 		list_add(&folio->lru, &page_list);
2720 	}
2721 
2722 out:
2723 	spin_unlock_irq(&hugetlb_lock);
2724 	update_and_free_pages_bulk(h, &page_list);
2725 	spin_lock_irq(&hugetlb_lock);
2726 }
2727 
2728 
2729 /*
2730  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2731  * are used by the huge page allocation routines to manage reservations.
2732  *
2733  * vma_needs_reservation is called to determine if the huge page at addr
2734  * within the vma has an associated reservation.  If a reservation is
2735  * needed, the value 1 is returned.  The caller is then responsible for
2736  * managing the global reservation and subpool usage counts.  After
2737  * the huge page has been allocated, vma_commit_reservation is called
2738  * to add the page to the reservation map.  If the page allocation fails,
2739  * the reservation must be ended instead of committed.  vma_end_reservation
2740  * is called in such cases.
2741  *
2742  * In the normal case, vma_commit_reservation returns the same value
2743  * as the preceding vma_needs_reservation call.  The only time this
2744  * is not the case is if a reserve map was changed between calls.  It
2745  * is the responsibility of the caller to notice the difference and
2746  * take appropriate action.
2747  *
2748  * vma_add_reservation is used in error paths where a reservation must
2749  * be restored when a newly allocated huge page must be freed.  It is
2750  * to be called after calling vma_needs_reservation to determine if a
2751  * reservation exists.
2752  *
2753  * vma_del_reservation is used in error paths where an entry in the reserve
2754  * map was created during huge page allocation and must be removed.  It is to
2755  * be called after calling vma_needs_reservation to determine if a reservation
2756  * exists.
2757  */
2758 enum vma_resv_mode {
2759 	VMA_NEEDS_RESV,
2760 	VMA_COMMIT_RESV,
2761 	VMA_END_RESV,
2762 	VMA_ADD_RESV,
2763 	VMA_DEL_RESV,
2764 };
2765 static long __vma_reservation_common(struct hstate *h,
2766 				struct vm_area_struct *vma, unsigned long addr,
2767 				enum vma_resv_mode mode)
2768 {
2769 	struct resv_map *resv;
2770 	pgoff_t idx;
2771 	long ret;
2772 	long dummy_out_regions_needed;
2773 
2774 	resv = vma_resv_map(vma);
2775 	if (!resv)
2776 		return 1;
2777 
2778 	idx = vma_hugecache_offset(h, vma, addr);
2779 	switch (mode) {
2780 	case VMA_NEEDS_RESV:
2781 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2782 		/* We assume that vma_reservation_* routines always operate on
2783 		 * 1 page, and that adding to resv map a 1 page entry can only
2784 		 * ever require 1 region.
2785 		 */
2786 		VM_BUG_ON(dummy_out_regions_needed != 1);
2787 		break;
2788 	case VMA_COMMIT_RESV:
2789 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2790 		/* region_add calls of range 1 should never fail. */
2791 		VM_BUG_ON(ret < 0);
2792 		break;
2793 	case VMA_END_RESV:
2794 		region_abort(resv, idx, idx + 1, 1);
2795 		ret = 0;
2796 		break;
2797 	case VMA_ADD_RESV:
2798 		if (vma->vm_flags & VM_MAYSHARE) {
2799 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2800 			/* region_add calls of range 1 should never fail. */
2801 			VM_BUG_ON(ret < 0);
2802 		} else {
2803 			region_abort(resv, idx, idx + 1, 1);
2804 			ret = region_del(resv, idx, idx + 1);
2805 		}
2806 		break;
2807 	case VMA_DEL_RESV:
2808 		if (vma->vm_flags & VM_MAYSHARE) {
2809 			region_abort(resv, idx, idx + 1, 1);
2810 			ret = region_del(resv, idx, idx + 1);
2811 		} else {
2812 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2813 			/* region_add calls of range 1 should never fail. */
2814 			VM_BUG_ON(ret < 0);
2815 		}
2816 		break;
2817 	default:
2818 		BUG();
2819 	}
2820 
2821 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2822 		return ret;
2823 	/*
2824 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2825 	 *
2826 	 * In most cases, reserves always exist for private mappings.
2827 	 * However, a file associated with mapping could have been
2828 	 * hole punched or truncated after reserves were consumed.
2829 	 * As subsequent fault on such a range will not use reserves.
2830 	 * Subtle - The reserve map for private mappings has the
2831 	 * opposite meaning than that of shared mappings.  If NO
2832 	 * entry is in the reserve map, it means a reservation exists.
2833 	 * If an entry exists in the reserve map, it means the
2834 	 * reservation has already been consumed.  As a result, the
2835 	 * return value of this routine is the opposite of the
2836 	 * value returned from reserve map manipulation routines above.
2837 	 */
2838 	if (ret > 0)
2839 		return 0;
2840 	if (ret == 0)
2841 		return 1;
2842 	return ret;
2843 }
2844 
2845 static long vma_needs_reservation(struct hstate *h,
2846 			struct vm_area_struct *vma, unsigned long addr)
2847 {
2848 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2849 }
2850 
2851 static long vma_commit_reservation(struct hstate *h,
2852 			struct vm_area_struct *vma, unsigned long addr)
2853 {
2854 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2855 }
2856 
2857 static void vma_end_reservation(struct hstate *h,
2858 			struct vm_area_struct *vma, unsigned long addr)
2859 {
2860 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2861 }
2862 
2863 static long vma_add_reservation(struct hstate *h,
2864 			struct vm_area_struct *vma, unsigned long addr)
2865 {
2866 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2867 }
2868 
2869 static long vma_del_reservation(struct hstate *h,
2870 			struct vm_area_struct *vma, unsigned long addr)
2871 {
2872 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2873 }
2874 
2875 /*
2876  * This routine is called to restore reservation information on error paths.
2877  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2878  * and the hugetlb mutex should remain held when calling this routine.
2879  *
2880  * It handles two specific cases:
2881  * 1) A reservation was in place and the folio consumed the reservation.
2882  *    hugetlb_restore_reserve is set in the folio.
2883  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2884  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2885  *
2886  * In case 1, free_huge_folio later in the error path will increment the
2887  * global reserve count.  But, free_huge_folio does not have enough context
2888  * to adjust the reservation map.  This case deals primarily with private
2889  * mappings.  Adjust the reserve map here to be consistent with global
2890  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2891  * reserve map indicates there is a reservation present.
2892  *
2893  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2894  */
2895 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2896 			unsigned long address, struct folio *folio)
2897 {
2898 	long rc = vma_needs_reservation(h, vma, address);
2899 
2900 	if (folio_test_hugetlb_restore_reserve(folio)) {
2901 		if (unlikely(rc < 0))
2902 			/*
2903 			 * Rare out of memory condition in reserve map
2904 			 * manipulation.  Clear hugetlb_restore_reserve so
2905 			 * that global reserve count will not be incremented
2906 			 * by free_huge_folio.  This will make it appear
2907 			 * as though the reservation for this folio was
2908 			 * consumed.  This may prevent the task from
2909 			 * faulting in the folio at a later time.  This
2910 			 * is better than inconsistent global huge page
2911 			 * accounting of reserve counts.
2912 			 */
2913 			folio_clear_hugetlb_restore_reserve(folio);
2914 		else if (rc)
2915 			(void)vma_add_reservation(h, vma, address);
2916 		else
2917 			vma_end_reservation(h, vma, address);
2918 	} else {
2919 		if (!rc) {
2920 			/*
2921 			 * This indicates there is an entry in the reserve map
2922 			 * not added by alloc_hugetlb_folio.  We know it was added
2923 			 * before the alloc_hugetlb_folio call, otherwise
2924 			 * hugetlb_restore_reserve would be set on the folio.
2925 			 * Remove the entry so that a subsequent allocation
2926 			 * does not consume a reservation.
2927 			 */
2928 			rc = vma_del_reservation(h, vma, address);
2929 			if (rc < 0)
2930 				/*
2931 				 * VERY rare out of memory condition.  Since
2932 				 * we can not delete the entry, set
2933 				 * hugetlb_restore_reserve so that the reserve
2934 				 * count will be incremented when the folio
2935 				 * is freed.  This reserve will be consumed
2936 				 * on a subsequent allocation.
2937 				 */
2938 				folio_set_hugetlb_restore_reserve(folio);
2939 		} else if (rc < 0) {
2940 			/*
2941 			 * Rare out of memory condition from
2942 			 * vma_needs_reservation call.  Memory allocation is
2943 			 * only attempted if a new entry is needed.  Therefore,
2944 			 * this implies there is not an entry in the
2945 			 * reserve map.
2946 			 *
2947 			 * For shared mappings, no entry in the map indicates
2948 			 * no reservation.  We are done.
2949 			 */
2950 			if (!(vma->vm_flags & VM_MAYSHARE))
2951 				/*
2952 				 * For private mappings, no entry indicates
2953 				 * a reservation is present.  Since we can
2954 				 * not add an entry, set hugetlb_restore_reserve
2955 				 * on the folio so reserve count will be
2956 				 * incremented when freed.  This reserve will
2957 				 * be consumed on a subsequent allocation.
2958 				 */
2959 				folio_set_hugetlb_restore_reserve(folio);
2960 		} else
2961 			/*
2962 			 * No reservation present, do nothing
2963 			 */
2964 			 vma_end_reservation(h, vma, address);
2965 	}
2966 }
2967 
2968 /*
2969  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2970  * the old one
2971  * @h: struct hstate old page belongs to
2972  * @old_folio: Old folio to dissolve
2973  * @list: List to isolate the page in case we need to
2974  * Returns 0 on success, otherwise negated error.
2975  */
2976 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2977 			struct folio *old_folio, struct list_head *list)
2978 {
2979 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2980 	int nid = folio_nid(old_folio);
2981 	struct folio *new_folio = NULL;
2982 	int ret = 0;
2983 
2984 retry:
2985 	spin_lock_irq(&hugetlb_lock);
2986 	if (!folio_test_hugetlb(old_folio)) {
2987 		/*
2988 		 * Freed from under us. Drop new_folio too.
2989 		 */
2990 		goto free_new;
2991 	} else if (folio_ref_count(old_folio)) {
2992 		bool isolated;
2993 
2994 		/*
2995 		 * Someone has grabbed the folio, try to isolate it here.
2996 		 * Fail with -EBUSY if not possible.
2997 		 */
2998 		spin_unlock_irq(&hugetlb_lock);
2999 		isolated = isolate_hugetlb(old_folio, list);
3000 		ret = isolated ? 0 : -EBUSY;
3001 		spin_lock_irq(&hugetlb_lock);
3002 		goto free_new;
3003 	} else if (!folio_test_hugetlb_freed(old_folio)) {
3004 		/*
3005 		 * Folio's refcount is 0 but it has not been enqueued in the
3006 		 * freelist yet. Race window is small, so we can succeed here if
3007 		 * we retry.
3008 		 */
3009 		spin_unlock_irq(&hugetlb_lock);
3010 		cond_resched();
3011 		goto retry;
3012 	} else {
3013 		if (!new_folio) {
3014 			spin_unlock_irq(&hugetlb_lock);
3015 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3016 							      NULL, NULL);
3017 			if (!new_folio)
3018 				return -ENOMEM;
3019 			__prep_new_hugetlb_folio(h, new_folio);
3020 			goto retry;
3021 		}
3022 
3023 		/*
3024 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3025 		 * the freelist and decrease the counters. These will be
3026 		 * incremented again when calling __prep_account_new_huge_page()
3027 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3028 		 * remain stable since this happens under the lock.
3029 		 */
3030 		remove_hugetlb_folio(h, old_folio, false);
3031 
3032 		/*
3033 		 * Ref count on new_folio is already zero as it was dropped
3034 		 * earlier.  It can be directly added to the pool free list.
3035 		 */
3036 		__prep_account_new_huge_page(h, nid);
3037 		enqueue_hugetlb_folio(h, new_folio);
3038 
3039 		/*
3040 		 * Folio has been replaced, we can safely free the old one.
3041 		 */
3042 		spin_unlock_irq(&hugetlb_lock);
3043 		update_and_free_hugetlb_folio(h, old_folio, false);
3044 	}
3045 
3046 	return ret;
3047 
3048 free_new:
3049 	spin_unlock_irq(&hugetlb_lock);
3050 	if (new_folio)
3051 		update_and_free_hugetlb_folio(h, new_folio, false);
3052 
3053 	return ret;
3054 }
3055 
3056 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3057 {
3058 	struct hstate *h;
3059 	struct folio *folio = page_folio(page);
3060 	int ret = -EBUSY;
3061 
3062 	/*
3063 	 * The page might have been dissolved from under our feet, so make sure
3064 	 * to carefully check the state under the lock.
3065 	 * Return success when racing as if we dissolved the page ourselves.
3066 	 */
3067 	spin_lock_irq(&hugetlb_lock);
3068 	if (folio_test_hugetlb(folio)) {
3069 		h = folio_hstate(folio);
3070 	} else {
3071 		spin_unlock_irq(&hugetlb_lock);
3072 		return 0;
3073 	}
3074 	spin_unlock_irq(&hugetlb_lock);
3075 
3076 	/*
3077 	 * Fence off gigantic pages as there is a cyclic dependency between
3078 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3079 	 * of bailing out right away without further retrying.
3080 	 */
3081 	if (hstate_is_gigantic(h))
3082 		return -ENOMEM;
3083 
3084 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3085 		ret = 0;
3086 	else if (!folio_ref_count(folio))
3087 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3088 
3089 	return ret;
3090 }
3091 
3092 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3093 				    unsigned long addr, int avoid_reserve)
3094 {
3095 	struct hugepage_subpool *spool = subpool_vma(vma);
3096 	struct hstate *h = hstate_vma(vma);
3097 	struct folio *folio;
3098 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3099 	long gbl_chg;
3100 	int memcg_charge_ret, ret, idx;
3101 	struct hugetlb_cgroup *h_cg = NULL;
3102 	struct mem_cgroup *memcg;
3103 	bool deferred_reserve;
3104 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3105 
3106 	memcg = get_mem_cgroup_from_current();
3107 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3108 	if (memcg_charge_ret == -ENOMEM) {
3109 		mem_cgroup_put(memcg);
3110 		return ERR_PTR(-ENOMEM);
3111 	}
3112 
3113 	idx = hstate_index(h);
3114 	/*
3115 	 * Examine the region/reserve map to determine if the process
3116 	 * has a reservation for the page to be allocated.  A return
3117 	 * code of zero indicates a reservation exists (no change).
3118 	 */
3119 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3120 	if (map_chg < 0) {
3121 		if (!memcg_charge_ret)
3122 			mem_cgroup_cancel_charge(memcg, nr_pages);
3123 		mem_cgroup_put(memcg);
3124 		return ERR_PTR(-ENOMEM);
3125 	}
3126 
3127 	/*
3128 	 * Processes that did not create the mapping will have no
3129 	 * reserves as indicated by the region/reserve map. Check
3130 	 * that the allocation will not exceed the subpool limit.
3131 	 * Allocations for MAP_NORESERVE mappings also need to be
3132 	 * checked against any subpool limit.
3133 	 */
3134 	if (map_chg || avoid_reserve) {
3135 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3136 		if (gbl_chg < 0)
3137 			goto out_end_reservation;
3138 
3139 		/*
3140 		 * Even though there was no reservation in the region/reserve
3141 		 * map, there could be reservations associated with the
3142 		 * subpool that can be used.  This would be indicated if the
3143 		 * return value of hugepage_subpool_get_pages() is zero.
3144 		 * However, if avoid_reserve is specified we still avoid even
3145 		 * the subpool reservations.
3146 		 */
3147 		if (avoid_reserve)
3148 			gbl_chg = 1;
3149 	}
3150 
3151 	/* If this allocation is not consuming a reservation, charge it now.
3152 	 */
3153 	deferred_reserve = map_chg || avoid_reserve;
3154 	if (deferred_reserve) {
3155 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3156 			idx, pages_per_huge_page(h), &h_cg);
3157 		if (ret)
3158 			goto out_subpool_put;
3159 	}
3160 
3161 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3162 	if (ret)
3163 		goto out_uncharge_cgroup_reservation;
3164 
3165 	spin_lock_irq(&hugetlb_lock);
3166 	/*
3167 	 * glb_chg is passed to indicate whether or not a page must be taken
3168 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3169 	 * a reservation exists for the allocation.
3170 	 */
3171 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3172 	if (!folio) {
3173 		spin_unlock_irq(&hugetlb_lock);
3174 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3175 		if (!folio)
3176 			goto out_uncharge_cgroup;
3177 		spin_lock_irq(&hugetlb_lock);
3178 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3179 			folio_set_hugetlb_restore_reserve(folio);
3180 			h->resv_huge_pages--;
3181 		}
3182 		list_add(&folio->lru, &h->hugepage_activelist);
3183 		folio_ref_unfreeze(folio, 1);
3184 		/* Fall through */
3185 	}
3186 
3187 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3188 	/* If allocation is not consuming a reservation, also store the
3189 	 * hugetlb_cgroup pointer on the page.
3190 	 */
3191 	if (deferred_reserve) {
3192 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3193 						  h_cg, folio);
3194 	}
3195 
3196 	spin_unlock_irq(&hugetlb_lock);
3197 
3198 	hugetlb_set_folio_subpool(folio, spool);
3199 
3200 	map_commit = vma_commit_reservation(h, vma, addr);
3201 	if (unlikely(map_chg > map_commit)) {
3202 		/*
3203 		 * The page was added to the reservation map between
3204 		 * vma_needs_reservation and vma_commit_reservation.
3205 		 * This indicates a race with hugetlb_reserve_pages.
3206 		 * Adjust for the subpool count incremented above AND
3207 		 * in hugetlb_reserve_pages for the same page.  Also,
3208 		 * the reservation count added in hugetlb_reserve_pages
3209 		 * no longer applies.
3210 		 */
3211 		long rsv_adjust;
3212 
3213 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3214 		hugetlb_acct_memory(h, -rsv_adjust);
3215 		if (deferred_reserve) {
3216 			spin_lock_irq(&hugetlb_lock);
3217 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3218 					pages_per_huge_page(h), folio);
3219 			spin_unlock_irq(&hugetlb_lock);
3220 		}
3221 	}
3222 
3223 	if (!memcg_charge_ret)
3224 		mem_cgroup_commit_charge(folio, memcg);
3225 	mem_cgroup_put(memcg);
3226 
3227 	return folio;
3228 
3229 out_uncharge_cgroup:
3230 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3231 out_uncharge_cgroup_reservation:
3232 	if (deferred_reserve)
3233 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3234 						    h_cg);
3235 out_subpool_put:
3236 	if (map_chg || avoid_reserve)
3237 		hugepage_subpool_put_pages(spool, 1);
3238 out_end_reservation:
3239 	vma_end_reservation(h, vma, addr);
3240 	if (!memcg_charge_ret)
3241 		mem_cgroup_cancel_charge(memcg, nr_pages);
3242 	mem_cgroup_put(memcg);
3243 	return ERR_PTR(-ENOSPC);
3244 }
3245 
3246 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3247 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3248 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3249 {
3250 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3251 	int nr_nodes, node = nid;
3252 
3253 	/* do node specific alloc */
3254 	if (nid != NUMA_NO_NODE) {
3255 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3256 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3257 		if (!m)
3258 			return 0;
3259 		goto found;
3260 	}
3261 	/* allocate from next node when distributing huge pages */
3262 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3263 		m = memblock_alloc_try_nid_raw(
3264 				huge_page_size(h), huge_page_size(h),
3265 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3266 		/*
3267 		 * Use the beginning of the huge page to store the
3268 		 * huge_bootmem_page struct (until gather_bootmem
3269 		 * puts them into the mem_map).
3270 		 */
3271 		if (!m)
3272 			return 0;
3273 		goto found;
3274 	}
3275 
3276 found:
3277 
3278 	/*
3279 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3280 	 * rest of the struct pages will be initialized by the HugeTLB
3281 	 * subsystem itself.
3282 	 * The head struct page is used to get folio information by the HugeTLB
3283 	 * subsystem like zone id and node id.
3284 	 */
3285 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3286 		huge_page_size(h) - PAGE_SIZE);
3287 	/* Put them into a private list first because mem_map is not up yet */
3288 	INIT_LIST_HEAD(&m->list);
3289 	list_add(&m->list, &huge_boot_pages[node]);
3290 	m->hstate = h;
3291 	return 1;
3292 }
3293 
3294 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3295 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3296 					unsigned long start_page_number,
3297 					unsigned long end_page_number)
3298 {
3299 	enum zone_type zone = zone_idx(folio_zone(folio));
3300 	int nid = folio_nid(folio);
3301 	unsigned long head_pfn = folio_pfn(folio);
3302 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3303 	int ret;
3304 
3305 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3306 		struct page *page = pfn_to_page(pfn);
3307 
3308 		__init_single_page(page, pfn, zone, nid);
3309 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3310 		ret = page_ref_freeze(page, 1);
3311 		VM_BUG_ON(!ret);
3312 	}
3313 }
3314 
3315 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3316 					      struct hstate *h,
3317 					      unsigned long nr_pages)
3318 {
3319 	int ret;
3320 
3321 	/* Prepare folio head */
3322 	__folio_clear_reserved(folio);
3323 	__folio_set_head(folio);
3324 	ret = folio_ref_freeze(folio, 1);
3325 	VM_BUG_ON(!ret);
3326 	/* Initialize the necessary tail struct pages */
3327 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3328 	prep_compound_head((struct page *)folio, huge_page_order(h));
3329 }
3330 
3331 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3332 					struct list_head *folio_list)
3333 {
3334 	unsigned long flags;
3335 	struct folio *folio, *tmp_f;
3336 
3337 	/* Send list for bulk vmemmap optimization processing */
3338 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3339 
3340 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3341 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3342 			/*
3343 			 * If HVO fails, initialize all tail struct pages
3344 			 * We do not worry about potential long lock hold
3345 			 * time as this is early in boot and there should
3346 			 * be no contention.
3347 			 */
3348 			hugetlb_folio_init_tail_vmemmap(folio,
3349 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3350 					pages_per_huge_page(h));
3351 		}
3352 		/* Subdivide locks to achieve better parallel performance */
3353 		spin_lock_irqsave(&hugetlb_lock, flags);
3354 		__prep_account_new_huge_page(h, folio_nid(folio));
3355 		enqueue_hugetlb_folio(h, folio);
3356 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3357 	}
3358 }
3359 
3360 /*
3361  * Put bootmem huge pages into the standard lists after mem_map is up.
3362  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3363  */
3364 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3365 {
3366 	LIST_HEAD(folio_list);
3367 	struct huge_bootmem_page *m;
3368 	struct hstate *h = NULL, *prev_h = NULL;
3369 
3370 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3371 		struct page *page = virt_to_page(m);
3372 		struct folio *folio = (void *)page;
3373 
3374 		h = m->hstate;
3375 		/*
3376 		 * It is possible to have multiple huge page sizes (hstates)
3377 		 * in this list.  If so, process each size separately.
3378 		 */
3379 		if (h != prev_h && prev_h != NULL)
3380 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3381 		prev_h = h;
3382 
3383 		VM_BUG_ON(!hstate_is_gigantic(h));
3384 		WARN_ON(folio_ref_count(folio) != 1);
3385 
3386 		hugetlb_folio_init_vmemmap(folio, h,
3387 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3388 		init_new_hugetlb_folio(h, folio);
3389 		list_add(&folio->lru, &folio_list);
3390 
3391 		/*
3392 		 * We need to restore the 'stolen' pages to totalram_pages
3393 		 * in order to fix confusing memory reports from free(1) and
3394 		 * other side-effects, like CommitLimit going negative.
3395 		 */
3396 		adjust_managed_page_count(page, pages_per_huge_page(h));
3397 		cond_resched();
3398 	}
3399 
3400 	prep_and_add_bootmem_folios(h, &folio_list);
3401 }
3402 
3403 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3404 						    unsigned long end, void *arg)
3405 {
3406 	int nid;
3407 
3408 	for (nid = start; nid < end; nid++)
3409 		gather_bootmem_prealloc_node(nid);
3410 }
3411 
3412 static void __init gather_bootmem_prealloc(void)
3413 {
3414 	struct padata_mt_job job = {
3415 		.thread_fn	= gather_bootmem_prealloc_parallel,
3416 		.fn_arg		= NULL,
3417 		.start		= 0,
3418 		.size		= num_node_state(N_MEMORY),
3419 		.align		= 1,
3420 		.min_chunk	= 1,
3421 		.max_threads	= num_node_state(N_MEMORY),
3422 		.numa_aware	= true,
3423 	};
3424 
3425 	padata_do_multithreaded(&job);
3426 }
3427 
3428 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3429 {
3430 	unsigned long i;
3431 	char buf[32];
3432 
3433 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3434 		if (hstate_is_gigantic(h)) {
3435 			if (!alloc_bootmem_huge_page(h, nid))
3436 				break;
3437 		} else {
3438 			struct folio *folio;
3439 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3440 
3441 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3442 					&node_states[N_MEMORY], NULL);
3443 			if (!folio)
3444 				break;
3445 			free_huge_folio(folio); /* free it into the hugepage allocator */
3446 		}
3447 		cond_resched();
3448 	}
3449 	if (i == h->max_huge_pages_node[nid])
3450 		return;
3451 
3452 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3453 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3454 		h->max_huge_pages_node[nid], buf, nid, i);
3455 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3456 	h->max_huge_pages_node[nid] = i;
3457 }
3458 
3459 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3460 {
3461 	int i;
3462 	bool node_specific_alloc = false;
3463 
3464 	for_each_online_node(i) {
3465 		if (h->max_huge_pages_node[i] > 0) {
3466 			hugetlb_hstate_alloc_pages_onenode(h, i);
3467 			node_specific_alloc = true;
3468 		}
3469 	}
3470 
3471 	return node_specific_alloc;
3472 }
3473 
3474 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3475 {
3476 	if (allocated < h->max_huge_pages) {
3477 		char buf[32];
3478 
3479 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3480 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3481 			h->max_huge_pages, buf, allocated);
3482 		h->max_huge_pages = allocated;
3483 	}
3484 }
3485 
3486 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3487 {
3488 	struct hstate *h = (struct hstate *)arg;
3489 	int i, num = end - start;
3490 	nodemask_t node_alloc_noretry;
3491 	LIST_HEAD(folio_list);
3492 	int next_node = first_online_node;
3493 
3494 	/* Bit mask controlling how hard we retry per-node allocations.*/
3495 	nodes_clear(node_alloc_noretry);
3496 
3497 	for (i = 0; i < num; ++i) {
3498 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3499 						&node_alloc_noretry, &next_node);
3500 		if (!folio)
3501 			break;
3502 
3503 		list_move(&folio->lru, &folio_list);
3504 		cond_resched();
3505 	}
3506 
3507 	prep_and_add_allocated_folios(h, &folio_list);
3508 }
3509 
3510 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3511 {
3512 	unsigned long i;
3513 
3514 	for (i = 0; i < h->max_huge_pages; ++i) {
3515 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3516 			break;
3517 		cond_resched();
3518 	}
3519 
3520 	return i;
3521 }
3522 
3523 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3524 {
3525 	struct padata_mt_job job = {
3526 		.fn_arg		= h,
3527 		.align		= 1,
3528 		.numa_aware	= true
3529 	};
3530 
3531 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3532 	job.start	= 0;
3533 	job.size	= h->max_huge_pages;
3534 
3535 	/*
3536 	 * job.max_threads is twice the num_node_state(N_MEMORY),
3537 	 *
3538 	 * Tests below indicate that a multiplier of 2 significantly improves
3539 	 * performance, and although larger values also provide improvements,
3540 	 * the gains are marginal.
3541 	 *
3542 	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3543 	 * enhancing parallel processing capabilities and maintaining efficient
3544 	 * resource management.
3545 	 *
3546 	 * +------------+-------+-------+-------+-------+-------+
3547 	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3548 	 * +------------+-------+-------+-------+-------+-------+
3549 	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3550 	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3551 	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3552 	 * +------------+-------+-------+-------+-------+-------+
3553 	 */
3554 	job.max_threads	= num_node_state(N_MEMORY) * 2;
3555 	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3556 	padata_do_multithreaded(&job);
3557 
3558 	return h->nr_huge_pages;
3559 }
3560 
3561 /*
3562  * NOTE: this routine is called in different contexts for gigantic and
3563  * non-gigantic pages.
3564  * - For gigantic pages, this is called early in the boot process and
3565  *   pages are allocated from memblock allocated or something similar.
3566  *   Gigantic pages are actually added to pools later with the routine
3567  *   gather_bootmem_prealloc.
3568  * - For non-gigantic pages, this is called later in the boot process after
3569  *   all of mm is up and functional.  Pages are allocated from buddy and
3570  *   then added to hugetlb pools.
3571  */
3572 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3573 {
3574 	unsigned long allocated;
3575 	static bool initialized __initdata;
3576 
3577 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3578 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3579 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3580 		return;
3581 	}
3582 
3583 	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3584 	if (!initialized) {
3585 		int i = 0;
3586 
3587 		for (i = 0; i < MAX_NUMNODES; i++)
3588 			INIT_LIST_HEAD(&huge_boot_pages[i]);
3589 		initialized = true;
3590 	}
3591 
3592 	/* do node specific alloc */
3593 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3594 		return;
3595 
3596 	/* below will do all node balanced alloc */
3597 	if (hstate_is_gigantic(h))
3598 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3599 	else
3600 		allocated = hugetlb_pages_alloc_boot(h);
3601 
3602 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3603 }
3604 
3605 static void __init hugetlb_init_hstates(void)
3606 {
3607 	struct hstate *h, *h2;
3608 
3609 	for_each_hstate(h) {
3610 		/* oversize hugepages were init'ed in early boot */
3611 		if (!hstate_is_gigantic(h))
3612 			hugetlb_hstate_alloc_pages(h);
3613 
3614 		/*
3615 		 * Set demote order for each hstate.  Note that
3616 		 * h->demote_order is initially 0.
3617 		 * - We can not demote gigantic pages if runtime freeing
3618 		 *   is not supported, so skip this.
3619 		 * - If CMA allocation is possible, we can not demote
3620 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3621 		 */
3622 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3623 			continue;
3624 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3625 			continue;
3626 		for_each_hstate(h2) {
3627 			if (h2 == h)
3628 				continue;
3629 			if (h2->order < h->order &&
3630 			    h2->order > h->demote_order)
3631 				h->demote_order = h2->order;
3632 		}
3633 	}
3634 }
3635 
3636 static void __init report_hugepages(void)
3637 {
3638 	struct hstate *h;
3639 
3640 	for_each_hstate(h) {
3641 		char buf[32];
3642 
3643 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3644 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3645 			buf, h->free_huge_pages);
3646 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3647 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3648 	}
3649 }
3650 
3651 #ifdef CONFIG_HIGHMEM
3652 static void try_to_free_low(struct hstate *h, unsigned long count,
3653 						nodemask_t *nodes_allowed)
3654 {
3655 	int i;
3656 	LIST_HEAD(page_list);
3657 
3658 	lockdep_assert_held(&hugetlb_lock);
3659 	if (hstate_is_gigantic(h))
3660 		return;
3661 
3662 	/*
3663 	 * Collect pages to be freed on a list, and free after dropping lock
3664 	 */
3665 	for_each_node_mask(i, *nodes_allowed) {
3666 		struct folio *folio, *next;
3667 		struct list_head *freel = &h->hugepage_freelists[i];
3668 		list_for_each_entry_safe(folio, next, freel, lru) {
3669 			if (count >= h->nr_huge_pages)
3670 				goto out;
3671 			if (folio_test_highmem(folio))
3672 				continue;
3673 			remove_hugetlb_folio(h, folio, false);
3674 			list_add(&folio->lru, &page_list);
3675 		}
3676 	}
3677 
3678 out:
3679 	spin_unlock_irq(&hugetlb_lock);
3680 	update_and_free_pages_bulk(h, &page_list);
3681 	spin_lock_irq(&hugetlb_lock);
3682 }
3683 #else
3684 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3685 						nodemask_t *nodes_allowed)
3686 {
3687 }
3688 #endif
3689 
3690 /*
3691  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3692  * balanced by operating on them in a round-robin fashion.
3693  * Returns 1 if an adjustment was made.
3694  */
3695 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3696 				int delta)
3697 {
3698 	int nr_nodes, node;
3699 
3700 	lockdep_assert_held(&hugetlb_lock);
3701 	VM_BUG_ON(delta != -1 && delta != 1);
3702 
3703 	if (delta < 0) {
3704 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3705 			if (h->surplus_huge_pages_node[node])
3706 				goto found;
3707 		}
3708 	} else {
3709 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3710 			if (h->surplus_huge_pages_node[node] <
3711 					h->nr_huge_pages_node[node])
3712 				goto found;
3713 		}
3714 	}
3715 	return 0;
3716 
3717 found:
3718 	h->surplus_huge_pages += delta;
3719 	h->surplus_huge_pages_node[node] += delta;
3720 	return 1;
3721 }
3722 
3723 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3724 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3725 			      nodemask_t *nodes_allowed)
3726 {
3727 	unsigned long min_count;
3728 	unsigned long allocated;
3729 	struct folio *folio;
3730 	LIST_HEAD(page_list);
3731 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3732 
3733 	/*
3734 	 * Bit mask controlling how hard we retry per-node allocations.
3735 	 * If we can not allocate the bit mask, do not attempt to allocate
3736 	 * the requested huge pages.
3737 	 */
3738 	if (node_alloc_noretry)
3739 		nodes_clear(*node_alloc_noretry);
3740 	else
3741 		return -ENOMEM;
3742 
3743 	/*
3744 	 * resize_lock mutex prevents concurrent adjustments to number of
3745 	 * pages in hstate via the proc/sysfs interfaces.
3746 	 */
3747 	mutex_lock(&h->resize_lock);
3748 	flush_free_hpage_work(h);
3749 	spin_lock_irq(&hugetlb_lock);
3750 
3751 	/*
3752 	 * Check for a node specific request.
3753 	 * Changing node specific huge page count may require a corresponding
3754 	 * change to the global count.  In any case, the passed node mask
3755 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3756 	 */
3757 	if (nid != NUMA_NO_NODE) {
3758 		unsigned long old_count = count;
3759 
3760 		count += persistent_huge_pages(h) -
3761 			 (h->nr_huge_pages_node[nid] -
3762 			  h->surplus_huge_pages_node[nid]);
3763 		/*
3764 		 * User may have specified a large count value which caused the
3765 		 * above calculation to overflow.  In this case, they wanted
3766 		 * to allocate as many huge pages as possible.  Set count to
3767 		 * largest possible value to align with their intention.
3768 		 */
3769 		if (count < old_count)
3770 			count = ULONG_MAX;
3771 	}
3772 
3773 	/*
3774 	 * Gigantic pages runtime allocation depend on the capability for large
3775 	 * page range allocation.
3776 	 * If the system does not provide this feature, return an error when
3777 	 * the user tries to allocate gigantic pages but let the user free the
3778 	 * boottime allocated gigantic pages.
3779 	 */
3780 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3781 		if (count > persistent_huge_pages(h)) {
3782 			spin_unlock_irq(&hugetlb_lock);
3783 			mutex_unlock(&h->resize_lock);
3784 			NODEMASK_FREE(node_alloc_noretry);
3785 			return -EINVAL;
3786 		}
3787 		/* Fall through to decrease pool */
3788 	}
3789 
3790 	/*
3791 	 * Increase the pool size
3792 	 * First take pages out of surplus state.  Then make up the
3793 	 * remaining difference by allocating fresh huge pages.
3794 	 *
3795 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3796 	 * to convert a surplus huge page to a normal huge page. That is
3797 	 * not critical, though, it just means the overall size of the
3798 	 * pool might be one hugepage larger than it needs to be, but
3799 	 * within all the constraints specified by the sysctls.
3800 	 */
3801 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3802 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3803 			break;
3804 	}
3805 
3806 	allocated = 0;
3807 	while (count > (persistent_huge_pages(h) + allocated)) {
3808 		/*
3809 		 * If this allocation races such that we no longer need the
3810 		 * page, free_huge_folio will handle it by freeing the page
3811 		 * and reducing the surplus.
3812 		 */
3813 		spin_unlock_irq(&hugetlb_lock);
3814 
3815 		/* yield cpu to avoid soft lockup */
3816 		cond_resched();
3817 
3818 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3819 						node_alloc_noretry,
3820 						&h->next_nid_to_alloc);
3821 		if (!folio) {
3822 			prep_and_add_allocated_folios(h, &page_list);
3823 			spin_lock_irq(&hugetlb_lock);
3824 			goto out;
3825 		}
3826 
3827 		list_add(&folio->lru, &page_list);
3828 		allocated++;
3829 
3830 		/* Bail for signals. Probably ctrl-c from user */
3831 		if (signal_pending(current)) {
3832 			prep_and_add_allocated_folios(h, &page_list);
3833 			spin_lock_irq(&hugetlb_lock);
3834 			goto out;
3835 		}
3836 
3837 		spin_lock_irq(&hugetlb_lock);
3838 	}
3839 
3840 	/* Add allocated pages to the pool */
3841 	if (!list_empty(&page_list)) {
3842 		spin_unlock_irq(&hugetlb_lock);
3843 		prep_and_add_allocated_folios(h, &page_list);
3844 		spin_lock_irq(&hugetlb_lock);
3845 	}
3846 
3847 	/*
3848 	 * Decrease the pool size
3849 	 * First return free pages to the buddy allocator (being careful
3850 	 * to keep enough around to satisfy reservations).  Then place
3851 	 * pages into surplus state as needed so the pool will shrink
3852 	 * to the desired size as pages become free.
3853 	 *
3854 	 * By placing pages into the surplus state independent of the
3855 	 * overcommit value, we are allowing the surplus pool size to
3856 	 * exceed overcommit. There are few sane options here. Since
3857 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3858 	 * though, we'll note that we're not allowed to exceed surplus
3859 	 * and won't grow the pool anywhere else. Not until one of the
3860 	 * sysctls are changed, or the surplus pages go out of use.
3861 	 */
3862 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3863 	min_count = max(count, min_count);
3864 	try_to_free_low(h, min_count, nodes_allowed);
3865 
3866 	/*
3867 	 * Collect pages to be removed on list without dropping lock
3868 	 */
3869 	while (min_count < persistent_huge_pages(h)) {
3870 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3871 		if (!folio)
3872 			break;
3873 
3874 		list_add(&folio->lru, &page_list);
3875 	}
3876 	/* free the pages after dropping lock */
3877 	spin_unlock_irq(&hugetlb_lock);
3878 	update_and_free_pages_bulk(h, &page_list);
3879 	flush_free_hpage_work(h);
3880 	spin_lock_irq(&hugetlb_lock);
3881 
3882 	while (count < persistent_huge_pages(h)) {
3883 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3884 			break;
3885 	}
3886 out:
3887 	h->max_huge_pages = persistent_huge_pages(h);
3888 	spin_unlock_irq(&hugetlb_lock);
3889 	mutex_unlock(&h->resize_lock);
3890 
3891 	NODEMASK_FREE(node_alloc_noretry);
3892 
3893 	return 0;
3894 }
3895 
3896 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3897 {
3898 	int i, nid = folio_nid(folio);
3899 	struct hstate *target_hstate;
3900 	struct page *subpage;
3901 	struct folio *inner_folio;
3902 	int rc = 0;
3903 
3904 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3905 
3906 	remove_hugetlb_folio(h, folio, false);
3907 	spin_unlock_irq(&hugetlb_lock);
3908 
3909 	/*
3910 	 * If vmemmap already existed for folio, the remove routine above would
3911 	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3912 	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3913 	 * passed hugetlb folios and will BUG otherwise.
3914 	 */
3915 	if (folio_test_hugetlb(folio)) {
3916 		rc = hugetlb_vmemmap_restore_folio(h, folio);
3917 		if (rc) {
3918 			/* Allocation of vmemmmap failed, we can not demote folio */
3919 			spin_lock_irq(&hugetlb_lock);
3920 			add_hugetlb_folio(h, folio, false);
3921 			return rc;
3922 		}
3923 	}
3924 
3925 	/*
3926 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3927 	 * sizes as it will not ref count folios.
3928 	 */
3929 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3930 
3931 	/*
3932 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3933 	 * Without the mutex, pages added to target hstate could be marked
3934 	 * as surplus.
3935 	 *
3936 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3937 	 * use the convention of always taking larger size hstate mutex first.
3938 	 */
3939 	mutex_lock(&target_hstate->resize_lock);
3940 	for (i = 0; i < pages_per_huge_page(h);
3941 				i += pages_per_huge_page(target_hstate)) {
3942 		subpage = folio_page(folio, i);
3943 		inner_folio = page_folio(subpage);
3944 		if (hstate_is_gigantic(target_hstate))
3945 			prep_compound_gigantic_folio_for_demote(inner_folio,
3946 							target_hstate->order);
3947 		else
3948 			prep_compound_page(subpage, target_hstate->order);
3949 		folio_change_private(inner_folio, NULL);
3950 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3951 		free_huge_folio(inner_folio);
3952 	}
3953 	mutex_unlock(&target_hstate->resize_lock);
3954 
3955 	spin_lock_irq(&hugetlb_lock);
3956 
3957 	/*
3958 	 * Not absolutely necessary, but for consistency update max_huge_pages
3959 	 * based on pool changes for the demoted page.
3960 	 */
3961 	h->max_huge_pages--;
3962 	target_hstate->max_huge_pages +=
3963 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3964 
3965 	return rc;
3966 }
3967 
3968 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3969 	__must_hold(&hugetlb_lock)
3970 {
3971 	int nr_nodes, node;
3972 	struct folio *folio;
3973 
3974 	lockdep_assert_held(&hugetlb_lock);
3975 
3976 	/* We should never get here if no demote order */
3977 	if (!h->demote_order) {
3978 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3979 		return -EINVAL;		/* internal error */
3980 	}
3981 
3982 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3983 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3984 			if (folio_test_hwpoison(folio))
3985 				continue;
3986 			return demote_free_hugetlb_folio(h, folio);
3987 		}
3988 	}
3989 
3990 	/*
3991 	 * Only way to get here is if all pages on free lists are poisoned.
3992 	 * Return -EBUSY so that caller will not retry.
3993 	 */
3994 	return -EBUSY;
3995 }
3996 
3997 #define HSTATE_ATTR_RO(_name) \
3998 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3999 
4000 #define HSTATE_ATTR_WO(_name) \
4001 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4002 
4003 #define HSTATE_ATTR(_name) \
4004 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4005 
4006 static struct kobject *hugepages_kobj;
4007 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4008 
4009 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4010 
4011 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4012 {
4013 	int i;
4014 
4015 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4016 		if (hstate_kobjs[i] == kobj) {
4017 			if (nidp)
4018 				*nidp = NUMA_NO_NODE;
4019 			return &hstates[i];
4020 		}
4021 
4022 	return kobj_to_node_hstate(kobj, nidp);
4023 }
4024 
4025 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4026 					struct kobj_attribute *attr, char *buf)
4027 {
4028 	struct hstate *h;
4029 	unsigned long nr_huge_pages;
4030 	int nid;
4031 
4032 	h = kobj_to_hstate(kobj, &nid);
4033 	if (nid == NUMA_NO_NODE)
4034 		nr_huge_pages = h->nr_huge_pages;
4035 	else
4036 		nr_huge_pages = h->nr_huge_pages_node[nid];
4037 
4038 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4039 }
4040 
4041 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4042 					   struct hstate *h, int nid,
4043 					   unsigned long count, size_t len)
4044 {
4045 	int err;
4046 	nodemask_t nodes_allowed, *n_mask;
4047 
4048 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4049 		return -EINVAL;
4050 
4051 	if (nid == NUMA_NO_NODE) {
4052 		/*
4053 		 * global hstate attribute
4054 		 */
4055 		if (!(obey_mempolicy &&
4056 				init_nodemask_of_mempolicy(&nodes_allowed)))
4057 			n_mask = &node_states[N_MEMORY];
4058 		else
4059 			n_mask = &nodes_allowed;
4060 	} else {
4061 		/*
4062 		 * Node specific request.  count adjustment happens in
4063 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4064 		 */
4065 		init_nodemask_of_node(&nodes_allowed, nid);
4066 		n_mask = &nodes_allowed;
4067 	}
4068 
4069 	err = set_max_huge_pages(h, count, nid, n_mask);
4070 
4071 	return err ? err : len;
4072 }
4073 
4074 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4075 					 struct kobject *kobj, const char *buf,
4076 					 size_t len)
4077 {
4078 	struct hstate *h;
4079 	unsigned long count;
4080 	int nid;
4081 	int err;
4082 
4083 	err = kstrtoul(buf, 10, &count);
4084 	if (err)
4085 		return err;
4086 
4087 	h = kobj_to_hstate(kobj, &nid);
4088 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4089 }
4090 
4091 static ssize_t nr_hugepages_show(struct kobject *kobj,
4092 				       struct kobj_attribute *attr, char *buf)
4093 {
4094 	return nr_hugepages_show_common(kobj, attr, buf);
4095 }
4096 
4097 static ssize_t nr_hugepages_store(struct kobject *kobj,
4098 	       struct kobj_attribute *attr, const char *buf, size_t len)
4099 {
4100 	return nr_hugepages_store_common(false, kobj, buf, len);
4101 }
4102 HSTATE_ATTR(nr_hugepages);
4103 
4104 #ifdef CONFIG_NUMA
4105 
4106 /*
4107  * hstate attribute for optionally mempolicy-based constraint on persistent
4108  * huge page alloc/free.
4109  */
4110 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4111 					   struct kobj_attribute *attr,
4112 					   char *buf)
4113 {
4114 	return nr_hugepages_show_common(kobj, attr, buf);
4115 }
4116 
4117 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4118 	       struct kobj_attribute *attr, const char *buf, size_t len)
4119 {
4120 	return nr_hugepages_store_common(true, kobj, buf, len);
4121 }
4122 HSTATE_ATTR(nr_hugepages_mempolicy);
4123 #endif
4124 
4125 
4126 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4127 					struct kobj_attribute *attr, char *buf)
4128 {
4129 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4130 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4131 }
4132 
4133 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4134 		struct kobj_attribute *attr, const char *buf, size_t count)
4135 {
4136 	int err;
4137 	unsigned long input;
4138 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4139 
4140 	if (hstate_is_gigantic(h))
4141 		return -EINVAL;
4142 
4143 	err = kstrtoul(buf, 10, &input);
4144 	if (err)
4145 		return err;
4146 
4147 	spin_lock_irq(&hugetlb_lock);
4148 	h->nr_overcommit_huge_pages = input;
4149 	spin_unlock_irq(&hugetlb_lock);
4150 
4151 	return count;
4152 }
4153 HSTATE_ATTR(nr_overcommit_hugepages);
4154 
4155 static ssize_t free_hugepages_show(struct kobject *kobj,
4156 					struct kobj_attribute *attr, char *buf)
4157 {
4158 	struct hstate *h;
4159 	unsigned long free_huge_pages;
4160 	int nid;
4161 
4162 	h = kobj_to_hstate(kobj, &nid);
4163 	if (nid == NUMA_NO_NODE)
4164 		free_huge_pages = h->free_huge_pages;
4165 	else
4166 		free_huge_pages = h->free_huge_pages_node[nid];
4167 
4168 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4169 }
4170 HSTATE_ATTR_RO(free_hugepages);
4171 
4172 static ssize_t resv_hugepages_show(struct kobject *kobj,
4173 					struct kobj_attribute *attr, char *buf)
4174 {
4175 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4176 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4177 }
4178 HSTATE_ATTR_RO(resv_hugepages);
4179 
4180 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4181 					struct kobj_attribute *attr, char *buf)
4182 {
4183 	struct hstate *h;
4184 	unsigned long surplus_huge_pages;
4185 	int nid;
4186 
4187 	h = kobj_to_hstate(kobj, &nid);
4188 	if (nid == NUMA_NO_NODE)
4189 		surplus_huge_pages = h->surplus_huge_pages;
4190 	else
4191 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4192 
4193 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4194 }
4195 HSTATE_ATTR_RO(surplus_hugepages);
4196 
4197 static ssize_t demote_store(struct kobject *kobj,
4198 	       struct kobj_attribute *attr, const char *buf, size_t len)
4199 {
4200 	unsigned long nr_demote;
4201 	unsigned long nr_available;
4202 	nodemask_t nodes_allowed, *n_mask;
4203 	struct hstate *h;
4204 	int err;
4205 	int nid;
4206 
4207 	err = kstrtoul(buf, 10, &nr_demote);
4208 	if (err)
4209 		return err;
4210 	h = kobj_to_hstate(kobj, &nid);
4211 
4212 	if (nid != NUMA_NO_NODE) {
4213 		init_nodemask_of_node(&nodes_allowed, nid);
4214 		n_mask = &nodes_allowed;
4215 	} else {
4216 		n_mask = &node_states[N_MEMORY];
4217 	}
4218 
4219 	/* Synchronize with other sysfs operations modifying huge pages */
4220 	mutex_lock(&h->resize_lock);
4221 	spin_lock_irq(&hugetlb_lock);
4222 
4223 	while (nr_demote) {
4224 		/*
4225 		 * Check for available pages to demote each time thorough the
4226 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4227 		 */
4228 		if (nid != NUMA_NO_NODE)
4229 			nr_available = h->free_huge_pages_node[nid];
4230 		else
4231 			nr_available = h->free_huge_pages;
4232 		nr_available -= h->resv_huge_pages;
4233 		if (!nr_available)
4234 			break;
4235 
4236 		err = demote_pool_huge_page(h, n_mask);
4237 		if (err)
4238 			break;
4239 
4240 		nr_demote--;
4241 	}
4242 
4243 	spin_unlock_irq(&hugetlb_lock);
4244 	mutex_unlock(&h->resize_lock);
4245 
4246 	if (err)
4247 		return err;
4248 	return len;
4249 }
4250 HSTATE_ATTR_WO(demote);
4251 
4252 static ssize_t demote_size_show(struct kobject *kobj,
4253 					struct kobj_attribute *attr, char *buf)
4254 {
4255 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4256 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4257 
4258 	return sysfs_emit(buf, "%lukB\n", demote_size);
4259 }
4260 
4261 static ssize_t demote_size_store(struct kobject *kobj,
4262 					struct kobj_attribute *attr,
4263 					const char *buf, size_t count)
4264 {
4265 	struct hstate *h, *demote_hstate;
4266 	unsigned long demote_size;
4267 	unsigned int demote_order;
4268 
4269 	demote_size = (unsigned long)memparse(buf, NULL);
4270 
4271 	demote_hstate = size_to_hstate(demote_size);
4272 	if (!demote_hstate)
4273 		return -EINVAL;
4274 	demote_order = demote_hstate->order;
4275 	if (demote_order < HUGETLB_PAGE_ORDER)
4276 		return -EINVAL;
4277 
4278 	/* demote order must be smaller than hstate order */
4279 	h = kobj_to_hstate(kobj, NULL);
4280 	if (demote_order >= h->order)
4281 		return -EINVAL;
4282 
4283 	/* resize_lock synchronizes access to demote size and writes */
4284 	mutex_lock(&h->resize_lock);
4285 	h->demote_order = demote_order;
4286 	mutex_unlock(&h->resize_lock);
4287 
4288 	return count;
4289 }
4290 HSTATE_ATTR(demote_size);
4291 
4292 static struct attribute *hstate_attrs[] = {
4293 	&nr_hugepages_attr.attr,
4294 	&nr_overcommit_hugepages_attr.attr,
4295 	&free_hugepages_attr.attr,
4296 	&resv_hugepages_attr.attr,
4297 	&surplus_hugepages_attr.attr,
4298 #ifdef CONFIG_NUMA
4299 	&nr_hugepages_mempolicy_attr.attr,
4300 #endif
4301 	NULL,
4302 };
4303 
4304 static const struct attribute_group hstate_attr_group = {
4305 	.attrs = hstate_attrs,
4306 };
4307 
4308 static struct attribute *hstate_demote_attrs[] = {
4309 	&demote_size_attr.attr,
4310 	&demote_attr.attr,
4311 	NULL,
4312 };
4313 
4314 static const struct attribute_group hstate_demote_attr_group = {
4315 	.attrs = hstate_demote_attrs,
4316 };
4317 
4318 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4319 				    struct kobject **hstate_kobjs,
4320 				    const struct attribute_group *hstate_attr_group)
4321 {
4322 	int retval;
4323 	int hi = hstate_index(h);
4324 
4325 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4326 	if (!hstate_kobjs[hi])
4327 		return -ENOMEM;
4328 
4329 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4330 	if (retval) {
4331 		kobject_put(hstate_kobjs[hi]);
4332 		hstate_kobjs[hi] = NULL;
4333 		return retval;
4334 	}
4335 
4336 	if (h->demote_order) {
4337 		retval = sysfs_create_group(hstate_kobjs[hi],
4338 					    &hstate_demote_attr_group);
4339 		if (retval) {
4340 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4341 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4342 			kobject_put(hstate_kobjs[hi]);
4343 			hstate_kobjs[hi] = NULL;
4344 			return retval;
4345 		}
4346 	}
4347 
4348 	return 0;
4349 }
4350 
4351 #ifdef CONFIG_NUMA
4352 static bool hugetlb_sysfs_initialized __ro_after_init;
4353 
4354 /*
4355  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4356  * with node devices in node_devices[] using a parallel array.  The array
4357  * index of a node device or _hstate == node id.
4358  * This is here to avoid any static dependency of the node device driver, in
4359  * the base kernel, on the hugetlb module.
4360  */
4361 struct node_hstate {
4362 	struct kobject		*hugepages_kobj;
4363 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4364 };
4365 static struct node_hstate node_hstates[MAX_NUMNODES];
4366 
4367 /*
4368  * A subset of global hstate attributes for node devices
4369  */
4370 static struct attribute *per_node_hstate_attrs[] = {
4371 	&nr_hugepages_attr.attr,
4372 	&free_hugepages_attr.attr,
4373 	&surplus_hugepages_attr.attr,
4374 	NULL,
4375 };
4376 
4377 static const struct attribute_group per_node_hstate_attr_group = {
4378 	.attrs = per_node_hstate_attrs,
4379 };
4380 
4381 /*
4382  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4383  * Returns node id via non-NULL nidp.
4384  */
4385 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4386 {
4387 	int nid;
4388 
4389 	for (nid = 0; nid < nr_node_ids; nid++) {
4390 		struct node_hstate *nhs = &node_hstates[nid];
4391 		int i;
4392 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4393 			if (nhs->hstate_kobjs[i] == kobj) {
4394 				if (nidp)
4395 					*nidp = nid;
4396 				return &hstates[i];
4397 			}
4398 	}
4399 
4400 	BUG();
4401 	return NULL;
4402 }
4403 
4404 /*
4405  * Unregister hstate attributes from a single node device.
4406  * No-op if no hstate attributes attached.
4407  */
4408 void hugetlb_unregister_node(struct node *node)
4409 {
4410 	struct hstate *h;
4411 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4412 
4413 	if (!nhs->hugepages_kobj)
4414 		return;		/* no hstate attributes */
4415 
4416 	for_each_hstate(h) {
4417 		int idx = hstate_index(h);
4418 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4419 
4420 		if (!hstate_kobj)
4421 			continue;
4422 		if (h->demote_order)
4423 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4424 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4425 		kobject_put(hstate_kobj);
4426 		nhs->hstate_kobjs[idx] = NULL;
4427 	}
4428 
4429 	kobject_put(nhs->hugepages_kobj);
4430 	nhs->hugepages_kobj = NULL;
4431 }
4432 
4433 
4434 /*
4435  * Register hstate attributes for a single node device.
4436  * No-op if attributes already registered.
4437  */
4438 void hugetlb_register_node(struct node *node)
4439 {
4440 	struct hstate *h;
4441 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4442 	int err;
4443 
4444 	if (!hugetlb_sysfs_initialized)
4445 		return;
4446 
4447 	if (nhs->hugepages_kobj)
4448 		return;		/* already allocated */
4449 
4450 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4451 							&node->dev.kobj);
4452 	if (!nhs->hugepages_kobj)
4453 		return;
4454 
4455 	for_each_hstate(h) {
4456 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4457 						nhs->hstate_kobjs,
4458 						&per_node_hstate_attr_group);
4459 		if (err) {
4460 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4461 				h->name, node->dev.id);
4462 			hugetlb_unregister_node(node);
4463 			break;
4464 		}
4465 	}
4466 }
4467 
4468 /*
4469  * hugetlb init time:  register hstate attributes for all registered node
4470  * devices of nodes that have memory.  All on-line nodes should have
4471  * registered their associated device by this time.
4472  */
4473 static void __init hugetlb_register_all_nodes(void)
4474 {
4475 	int nid;
4476 
4477 	for_each_online_node(nid)
4478 		hugetlb_register_node(node_devices[nid]);
4479 }
4480 #else	/* !CONFIG_NUMA */
4481 
4482 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4483 {
4484 	BUG();
4485 	if (nidp)
4486 		*nidp = -1;
4487 	return NULL;
4488 }
4489 
4490 static void hugetlb_register_all_nodes(void) { }
4491 
4492 #endif
4493 
4494 #ifdef CONFIG_CMA
4495 static void __init hugetlb_cma_check(void);
4496 #else
4497 static inline __init void hugetlb_cma_check(void)
4498 {
4499 }
4500 #endif
4501 
4502 static void __init hugetlb_sysfs_init(void)
4503 {
4504 	struct hstate *h;
4505 	int err;
4506 
4507 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4508 	if (!hugepages_kobj)
4509 		return;
4510 
4511 	for_each_hstate(h) {
4512 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4513 					 hstate_kobjs, &hstate_attr_group);
4514 		if (err)
4515 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4516 	}
4517 
4518 #ifdef CONFIG_NUMA
4519 	hugetlb_sysfs_initialized = true;
4520 #endif
4521 	hugetlb_register_all_nodes();
4522 }
4523 
4524 #ifdef CONFIG_SYSCTL
4525 static void hugetlb_sysctl_init(void);
4526 #else
4527 static inline void hugetlb_sysctl_init(void) { }
4528 #endif
4529 
4530 static int __init hugetlb_init(void)
4531 {
4532 	int i;
4533 
4534 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4535 			__NR_HPAGEFLAGS);
4536 
4537 	if (!hugepages_supported()) {
4538 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4539 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4540 		return 0;
4541 	}
4542 
4543 	/*
4544 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4545 	 * architectures depend on setup being done here.
4546 	 */
4547 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4548 	if (!parsed_default_hugepagesz) {
4549 		/*
4550 		 * If we did not parse a default huge page size, set
4551 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4552 		 * number of huge pages for this default size was implicitly
4553 		 * specified, set that here as well.
4554 		 * Note that the implicit setting will overwrite an explicit
4555 		 * setting.  A warning will be printed in this case.
4556 		 */
4557 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4558 		if (default_hstate_max_huge_pages) {
4559 			if (default_hstate.max_huge_pages) {
4560 				char buf[32];
4561 
4562 				string_get_size(huge_page_size(&default_hstate),
4563 					1, STRING_UNITS_2, buf, 32);
4564 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4565 					default_hstate.max_huge_pages, buf);
4566 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4567 					default_hstate_max_huge_pages);
4568 			}
4569 			default_hstate.max_huge_pages =
4570 				default_hstate_max_huge_pages;
4571 
4572 			for_each_online_node(i)
4573 				default_hstate.max_huge_pages_node[i] =
4574 					default_hugepages_in_node[i];
4575 		}
4576 	}
4577 
4578 	hugetlb_cma_check();
4579 	hugetlb_init_hstates();
4580 	gather_bootmem_prealloc();
4581 	report_hugepages();
4582 
4583 	hugetlb_sysfs_init();
4584 	hugetlb_cgroup_file_init();
4585 	hugetlb_sysctl_init();
4586 
4587 #ifdef CONFIG_SMP
4588 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4589 #else
4590 	num_fault_mutexes = 1;
4591 #endif
4592 	hugetlb_fault_mutex_table =
4593 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4594 			      GFP_KERNEL);
4595 	BUG_ON(!hugetlb_fault_mutex_table);
4596 
4597 	for (i = 0; i < num_fault_mutexes; i++)
4598 		mutex_init(&hugetlb_fault_mutex_table[i]);
4599 	return 0;
4600 }
4601 subsys_initcall(hugetlb_init);
4602 
4603 /* Overwritten by architectures with more huge page sizes */
4604 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4605 {
4606 	return size == HPAGE_SIZE;
4607 }
4608 
4609 void __init hugetlb_add_hstate(unsigned int order)
4610 {
4611 	struct hstate *h;
4612 	unsigned long i;
4613 
4614 	if (size_to_hstate(PAGE_SIZE << order)) {
4615 		return;
4616 	}
4617 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4618 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4619 	h = &hstates[hugetlb_max_hstate++];
4620 	mutex_init(&h->resize_lock);
4621 	h->order = order;
4622 	h->mask = ~(huge_page_size(h) - 1);
4623 	for (i = 0; i < MAX_NUMNODES; ++i)
4624 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4625 	INIT_LIST_HEAD(&h->hugepage_activelist);
4626 	h->next_nid_to_alloc = first_memory_node;
4627 	h->next_nid_to_free = first_memory_node;
4628 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4629 					huge_page_size(h)/SZ_1K);
4630 
4631 	parsed_hstate = h;
4632 }
4633 
4634 bool __init __weak hugetlb_node_alloc_supported(void)
4635 {
4636 	return true;
4637 }
4638 
4639 static void __init hugepages_clear_pages_in_node(void)
4640 {
4641 	if (!hugetlb_max_hstate) {
4642 		default_hstate_max_huge_pages = 0;
4643 		memset(default_hugepages_in_node, 0,
4644 			sizeof(default_hugepages_in_node));
4645 	} else {
4646 		parsed_hstate->max_huge_pages = 0;
4647 		memset(parsed_hstate->max_huge_pages_node, 0,
4648 			sizeof(parsed_hstate->max_huge_pages_node));
4649 	}
4650 }
4651 
4652 /*
4653  * hugepages command line processing
4654  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4655  * specification.  If not, ignore the hugepages value.  hugepages can also
4656  * be the first huge page command line  option in which case it implicitly
4657  * specifies the number of huge pages for the default size.
4658  */
4659 static int __init hugepages_setup(char *s)
4660 {
4661 	unsigned long *mhp;
4662 	static unsigned long *last_mhp;
4663 	int node = NUMA_NO_NODE;
4664 	int count;
4665 	unsigned long tmp;
4666 	char *p = s;
4667 
4668 	if (!parsed_valid_hugepagesz) {
4669 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4670 		parsed_valid_hugepagesz = true;
4671 		return 1;
4672 	}
4673 
4674 	/*
4675 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4676 	 * yet, so this hugepages= parameter goes to the "default hstate".
4677 	 * Otherwise, it goes with the previously parsed hugepagesz or
4678 	 * default_hugepagesz.
4679 	 */
4680 	else if (!hugetlb_max_hstate)
4681 		mhp = &default_hstate_max_huge_pages;
4682 	else
4683 		mhp = &parsed_hstate->max_huge_pages;
4684 
4685 	if (mhp == last_mhp) {
4686 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4687 		return 1;
4688 	}
4689 
4690 	while (*p) {
4691 		count = 0;
4692 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4693 			goto invalid;
4694 		/* Parameter is node format */
4695 		if (p[count] == ':') {
4696 			if (!hugetlb_node_alloc_supported()) {
4697 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4698 				return 1;
4699 			}
4700 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4701 				goto invalid;
4702 			node = array_index_nospec(tmp, MAX_NUMNODES);
4703 			p += count + 1;
4704 			/* Parse hugepages */
4705 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4706 				goto invalid;
4707 			if (!hugetlb_max_hstate)
4708 				default_hugepages_in_node[node] = tmp;
4709 			else
4710 				parsed_hstate->max_huge_pages_node[node] = tmp;
4711 			*mhp += tmp;
4712 			/* Go to parse next node*/
4713 			if (p[count] == ',')
4714 				p += count + 1;
4715 			else
4716 				break;
4717 		} else {
4718 			if (p != s)
4719 				goto invalid;
4720 			*mhp = tmp;
4721 			break;
4722 		}
4723 	}
4724 
4725 	/*
4726 	 * Global state is always initialized later in hugetlb_init.
4727 	 * But we need to allocate gigantic hstates here early to still
4728 	 * use the bootmem allocator.
4729 	 */
4730 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4731 		hugetlb_hstate_alloc_pages(parsed_hstate);
4732 
4733 	last_mhp = mhp;
4734 
4735 	return 1;
4736 
4737 invalid:
4738 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4739 	hugepages_clear_pages_in_node();
4740 	return 1;
4741 }
4742 __setup("hugepages=", hugepages_setup);
4743 
4744 /*
4745  * hugepagesz command line processing
4746  * A specific huge page size can only be specified once with hugepagesz.
4747  * hugepagesz is followed by hugepages on the command line.  The global
4748  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4749  * hugepagesz argument was valid.
4750  */
4751 static int __init hugepagesz_setup(char *s)
4752 {
4753 	unsigned long size;
4754 	struct hstate *h;
4755 
4756 	parsed_valid_hugepagesz = false;
4757 	size = (unsigned long)memparse(s, NULL);
4758 
4759 	if (!arch_hugetlb_valid_size(size)) {
4760 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4761 		return 1;
4762 	}
4763 
4764 	h = size_to_hstate(size);
4765 	if (h) {
4766 		/*
4767 		 * hstate for this size already exists.  This is normally
4768 		 * an error, but is allowed if the existing hstate is the
4769 		 * default hstate.  More specifically, it is only allowed if
4770 		 * the number of huge pages for the default hstate was not
4771 		 * previously specified.
4772 		 */
4773 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4774 		    default_hstate.max_huge_pages) {
4775 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4776 			return 1;
4777 		}
4778 
4779 		/*
4780 		 * No need to call hugetlb_add_hstate() as hstate already
4781 		 * exists.  But, do set parsed_hstate so that a following
4782 		 * hugepages= parameter will be applied to this hstate.
4783 		 */
4784 		parsed_hstate = h;
4785 		parsed_valid_hugepagesz = true;
4786 		return 1;
4787 	}
4788 
4789 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4790 	parsed_valid_hugepagesz = true;
4791 	return 1;
4792 }
4793 __setup("hugepagesz=", hugepagesz_setup);
4794 
4795 /*
4796  * default_hugepagesz command line input
4797  * Only one instance of default_hugepagesz allowed on command line.
4798  */
4799 static int __init default_hugepagesz_setup(char *s)
4800 {
4801 	unsigned long size;
4802 	int i;
4803 
4804 	parsed_valid_hugepagesz = false;
4805 	if (parsed_default_hugepagesz) {
4806 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4807 		return 1;
4808 	}
4809 
4810 	size = (unsigned long)memparse(s, NULL);
4811 
4812 	if (!arch_hugetlb_valid_size(size)) {
4813 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4814 		return 1;
4815 	}
4816 
4817 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4818 	parsed_valid_hugepagesz = true;
4819 	parsed_default_hugepagesz = true;
4820 	default_hstate_idx = hstate_index(size_to_hstate(size));
4821 
4822 	/*
4823 	 * The number of default huge pages (for this size) could have been
4824 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4825 	 * then default_hstate_max_huge_pages is set.  If the default huge
4826 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4827 	 * allocated here from bootmem allocator.
4828 	 */
4829 	if (default_hstate_max_huge_pages) {
4830 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4831 		for_each_online_node(i)
4832 			default_hstate.max_huge_pages_node[i] =
4833 				default_hugepages_in_node[i];
4834 		if (hstate_is_gigantic(&default_hstate))
4835 			hugetlb_hstate_alloc_pages(&default_hstate);
4836 		default_hstate_max_huge_pages = 0;
4837 	}
4838 
4839 	return 1;
4840 }
4841 __setup("default_hugepagesz=", default_hugepagesz_setup);
4842 
4843 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4844 {
4845 #ifdef CONFIG_NUMA
4846 	struct mempolicy *mpol = get_task_policy(current);
4847 
4848 	/*
4849 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4850 	 * (from policy_nodemask) specifically for hugetlb case
4851 	 */
4852 	if (mpol->mode == MPOL_BIND &&
4853 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4854 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4855 		return &mpol->nodes;
4856 #endif
4857 	return NULL;
4858 }
4859 
4860 static unsigned int allowed_mems_nr(struct hstate *h)
4861 {
4862 	int node;
4863 	unsigned int nr = 0;
4864 	nodemask_t *mbind_nodemask;
4865 	unsigned int *array = h->free_huge_pages_node;
4866 	gfp_t gfp_mask = htlb_alloc_mask(h);
4867 
4868 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4869 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4870 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4871 			nr += array[node];
4872 	}
4873 
4874 	return nr;
4875 }
4876 
4877 #ifdef CONFIG_SYSCTL
4878 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4879 					  void *buffer, size_t *length,
4880 					  loff_t *ppos, unsigned long *out)
4881 {
4882 	struct ctl_table dup_table;
4883 
4884 	/*
4885 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4886 	 * can duplicate the @table and alter the duplicate of it.
4887 	 */
4888 	dup_table = *table;
4889 	dup_table.data = out;
4890 
4891 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4892 }
4893 
4894 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4895 			 struct ctl_table *table, int write,
4896 			 void *buffer, size_t *length, loff_t *ppos)
4897 {
4898 	struct hstate *h = &default_hstate;
4899 	unsigned long tmp = h->max_huge_pages;
4900 	int ret;
4901 
4902 	if (!hugepages_supported())
4903 		return -EOPNOTSUPP;
4904 
4905 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4906 					     &tmp);
4907 	if (ret)
4908 		goto out;
4909 
4910 	if (write)
4911 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4912 						  NUMA_NO_NODE, tmp, *length);
4913 out:
4914 	return ret;
4915 }
4916 
4917 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4918 			  void *buffer, size_t *length, loff_t *ppos)
4919 {
4920 
4921 	return hugetlb_sysctl_handler_common(false, table, write,
4922 							buffer, length, ppos);
4923 }
4924 
4925 #ifdef CONFIG_NUMA
4926 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4927 			  void *buffer, size_t *length, loff_t *ppos)
4928 {
4929 	return hugetlb_sysctl_handler_common(true, table, write,
4930 							buffer, length, ppos);
4931 }
4932 #endif /* CONFIG_NUMA */
4933 
4934 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4935 		void *buffer, size_t *length, loff_t *ppos)
4936 {
4937 	struct hstate *h = &default_hstate;
4938 	unsigned long tmp;
4939 	int ret;
4940 
4941 	if (!hugepages_supported())
4942 		return -EOPNOTSUPP;
4943 
4944 	tmp = h->nr_overcommit_huge_pages;
4945 
4946 	if (write && hstate_is_gigantic(h))
4947 		return -EINVAL;
4948 
4949 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4950 					     &tmp);
4951 	if (ret)
4952 		goto out;
4953 
4954 	if (write) {
4955 		spin_lock_irq(&hugetlb_lock);
4956 		h->nr_overcommit_huge_pages = tmp;
4957 		spin_unlock_irq(&hugetlb_lock);
4958 	}
4959 out:
4960 	return ret;
4961 }
4962 
4963 static struct ctl_table hugetlb_table[] = {
4964 	{
4965 		.procname	= "nr_hugepages",
4966 		.data		= NULL,
4967 		.maxlen		= sizeof(unsigned long),
4968 		.mode		= 0644,
4969 		.proc_handler	= hugetlb_sysctl_handler,
4970 	},
4971 #ifdef CONFIG_NUMA
4972 	{
4973 		.procname       = "nr_hugepages_mempolicy",
4974 		.data           = NULL,
4975 		.maxlen         = sizeof(unsigned long),
4976 		.mode           = 0644,
4977 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4978 	},
4979 #endif
4980 	{
4981 		.procname	= "hugetlb_shm_group",
4982 		.data		= &sysctl_hugetlb_shm_group,
4983 		.maxlen		= sizeof(gid_t),
4984 		.mode		= 0644,
4985 		.proc_handler	= proc_dointvec,
4986 	},
4987 	{
4988 		.procname	= "nr_overcommit_hugepages",
4989 		.data		= NULL,
4990 		.maxlen		= sizeof(unsigned long),
4991 		.mode		= 0644,
4992 		.proc_handler	= hugetlb_overcommit_handler,
4993 	},
4994 };
4995 
4996 static void hugetlb_sysctl_init(void)
4997 {
4998 	register_sysctl_init("vm", hugetlb_table);
4999 }
5000 #endif /* CONFIG_SYSCTL */
5001 
5002 void hugetlb_report_meminfo(struct seq_file *m)
5003 {
5004 	struct hstate *h;
5005 	unsigned long total = 0;
5006 
5007 	if (!hugepages_supported())
5008 		return;
5009 
5010 	for_each_hstate(h) {
5011 		unsigned long count = h->nr_huge_pages;
5012 
5013 		total += huge_page_size(h) * count;
5014 
5015 		if (h == &default_hstate)
5016 			seq_printf(m,
5017 				   "HugePages_Total:   %5lu\n"
5018 				   "HugePages_Free:    %5lu\n"
5019 				   "HugePages_Rsvd:    %5lu\n"
5020 				   "HugePages_Surp:    %5lu\n"
5021 				   "Hugepagesize:   %8lu kB\n",
5022 				   count,
5023 				   h->free_huge_pages,
5024 				   h->resv_huge_pages,
5025 				   h->surplus_huge_pages,
5026 				   huge_page_size(h) / SZ_1K);
5027 	}
5028 
5029 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5030 }
5031 
5032 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5033 {
5034 	struct hstate *h = &default_hstate;
5035 
5036 	if (!hugepages_supported())
5037 		return 0;
5038 
5039 	return sysfs_emit_at(buf, len,
5040 			     "Node %d HugePages_Total: %5u\n"
5041 			     "Node %d HugePages_Free:  %5u\n"
5042 			     "Node %d HugePages_Surp:  %5u\n",
5043 			     nid, h->nr_huge_pages_node[nid],
5044 			     nid, h->free_huge_pages_node[nid],
5045 			     nid, h->surplus_huge_pages_node[nid]);
5046 }
5047 
5048 void hugetlb_show_meminfo_node(int nid)
5049 {
5050 	struct hstate *h;
5051 
5052 	if (!hugepages_supported())
5053 		return;
5054 
5055 	for_each_hstate(h)
5056 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5057 			nid,
5058 			h->nr_huge_pages_node[nid],
5059 			h->free_huge_pages_node[nid],
5060 			h->surplus_huge_pages_node[nid],
5061 			huge_page_size(h) / SZ_1K);
5062 }
5063 
5064 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5065 {
5066 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5067 		   K(atomic_long_read(&mm->hugetlb_usage)));
5068 }
5069 
5070 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5071 unsigned long hugetlb_total_pages(void)
5072 {
5073 	struct hstate *h;
5074 	unsigned long nr_total_pages = 0;
5075 
5076 	for_each_hstate(h)
5077 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5078 	return nr_total_pages;
5079 }
5080 
5081 static int hugetlb_acct_memory(struct hstate *h, long delta)
5082 {
5083 	int ret = -ENOMEM;
5084 
5085 	if (!delta)
5086 		return 0;
5087 
5088 	spin_lock_irq(&hugetlb_lock);
5089 	/*
5090 	 * When cpuset is configured, it breaks the strict hugetlb page
5091 	 * reservation as the accounting is done on a global variable. Such
5092 	 * reservation is completely rubbish in the presence of cpuset because
5093 	 * the reservation is not checked against page availability for the
5094 	 * current cpuset. Application can still potentially OOM'ed by kernel
5095 	 * with lack of free htlb page in cpuset that the task is in.
5096 	 * Attempt to enforce strict accounting with cpuset is almost
5097 	 * impossible (or too ugly) because cpuset is too fluid that
5098 	 * task or memory node can be dynamically moved between cpusets.
5099 	 *
5100 	 * The change of semantics for shared hugetlb mapping with cpuset is
5101 	 * undesirable. However, in order to preserve some of the semantics,
5102 	 * we fall back to check against current free page availability as
5103 	 * a best attempt and hopefully to minimize the impact of changing
5104 	 * semantics that cpuset has.
5105 	 *
5106 	 * Apart from cpuset, we also have memory policy mechanism that
5107 	 * also determines from which node the kernel will allocate memory
5108 	 * in a NUMA system. So similar to cpuset, we also should consider
5109 	 * the memory policy of the current task. Similar to the description
5110 	 * above.
5111 	 */
5112 	if (delta > 0) {
5113 		if (gather_surplus_pages(h, delta) < 0)
5114 			goto out;
5115 
5116 		if (delta > allowed_mems_nr(h)) {
5117 			return_unused_surplus_pages(h, delta);
5118 			goto out;
5119 		}
5120 	}
5121 
5122 	ret = 0;
5123 	if (delta < 0)
5124 		return_unused_surplus_pages(h, (unsigned long) -delta);
5125 
5126 out:
5127 	spin_unlock_irq(&hugetlb_lock);
5128 	return ret;
5129 }
5130 
5131 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5132 {
5133 	struct resv_map *resv = vma_resv_map(vma);
5134 
5135 	/*
5136 	 * HPAGE_RESV_OWNER indicates a private mapping.
5137 	 * This new VMA should share its siblings reservation map if present.
5138 	 * The VMA will only ever have a valid reservation map pointer where
5139 	 * it is being copied for another still existing VMA.  As that VMA
5140 	 * has a reference to the reservation map it cannot disappear until
5141 	 * after this open call completes.  It is therefore safe to take a
5142 	 * new reference here without additional locking.
5143 	 */
5144 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5145 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5146 		kref_get(&resv->refs);
5147 	}
5148 
5149 	/*
5150 	 * vma_lock structure for sharable mappings is vma specific.
5151 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5152 	 * new structure.  Before clearing, make sure vma_lock is not
5153 	 * for this vma.
5154 	 */
5155 	if (vma->vm_flags & VM_MAYSHARE) {
5156 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5157 
5158 		if (vma_lock) {
5159 			if (vma_lock->vma != vma) {
5160 				vma->vm_private_data = NULL;
5161 				hugetlb_vma_lock_alloc(vma);
5162 			} else
5163 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5164 		} else
5165 			hugetlb_vma_lock_alloc(vma);
5166 	}
5167 }
5168 
5169 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5170 {
5171 	struct hstate *h = hstate_vma(vma);
5172 	struct resv_map *resv;
5173 	struct hugepage_subpool *spool = subpool_vma(vma);
5174 	unsigned long reserve, start, end;
5175 	long gbl_reserve;
5176 
5177 	hugetlb_vma_lock_free(vma);
5178 
5179 	resv = vma_resv_map(vma);
5180 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5181 		return;
5182 
5183 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5184 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5185 
5186 	reserve = (end - start) - region_count(resv, start, end);
5187 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5188 	if (reserve) {
5189 		/*
5190 		 * Decrement reserve counts.  The global reserve count may be
5191 		 * adjusted if the subpool has a minimum size.
5192 		 */
5193 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5194 		hugetlb_acct_memory(h, -gbl_reserve);
5195 	}
5196 
5197 	kref_put(&resv->refs, resv_map_release);
5198 }
5199 
5200 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5201 {
5202 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5203 		return -EINVAL;
5204 
5205 	/*
5206 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5207 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5208 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5209 	 */
5210 	if (addr & ~PUD_MASK) {
5211 		/*
5212 		 * hugetlb_vm_op_split is called right before we attempt to
5213 		 * split the VMA. We will need to unshare PMDs in the old and
5214 		 * new VMAs, so let's unshare before we split.
5215 		 */
5216 		unsigned long floor = addr & PUD_MASK;
5217 		unsigned long ceil = floor + PUD_SIZE;
5218 
5219 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5220 			hugetlb_unshare_pmds(vma, floor, ceil);
5221 	}
5222 
5223 	return 0;
5224 }
5225 
5226 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5227 {
5228 	return huge_page_size(hstate_vma(vma));
5229 }
5230 
5231 /*
5232  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5233  * handle_mm_fault() to try to instantiate regular-sized pages in the
5234  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5235  * this far.
5236  */
5237 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5238 {
5239 	BUG();
5240 	return 0;
5241 }
5242 
5243 /*
5244  * When a new function is introduced to vm_operations_struct and added
5245  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5246  * This is because under System V memory model, mappings created via
5247  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5248  * their original vm_ops are overwritten with shm_vm_ops.
5249  */
5250 const struct vm_operations_struct hugetlb_vm_ops = {
5251 	.fault = hugetlb_vm_op_fault,
5252 	.open = hugetlb_vm_op_open,
5253 	.close = hugetlb_vm_op_close,
5254 	.may_split = hugetlb_vm_op_split,
5255 	.pagesize = hugetlb_vm_op_pagesize,
5256 };
5257 
5258 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5259 				int writable)
5260 {
5261 	pte_t entry;
5262 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5263 
5264 	if (writable) {
5265 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5266 					 vma->vm_page_prot)));
5267 	} else {
5268 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5269 					   vma->vm_page_prot));
5270 	}
5271 	entry = pte_mkyoung(entry);
5272 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5273 
5274 	return entry;
5275 }
5276 
5277 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5278 				   unsigned long address, pte_t *ptep)
5279 {
5280 	pte_t entry;
5281 
5282 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5283 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5284 		update_mmu_cache(vma, address, ptep);
5285 }
5286 
5287 bool is_hugetlb_entry_migration(pte_t pte)
5288 {
5289 	swp_entry_t swp;
5290 
5291 	if (huge_pte_none(pte) || pte_present(pte))
5292 		return false;
5293 	swp = pte_to_swp_entry(pte);
5294 	if (is_migration_entry(swp))
5295 		return true;
5296 	else
5297 		return false;
5298 }
5299 
5300 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5301 {
5302 	swp_entry_t swp;
5303 
5304 	if (huge_pte_none(pte) || pte_present(pte))
5305 		return false;
5306 	swp = pte_to_swp_entry(pte);
5307 	if (is_hwpoison_entry(swp))
5308 		return true;
5309 	else
5310 		return false;
5311 }
5312 
5313 static void
5314 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5315 		      struct folio *new_folio, pte_t old, unsigned long sz)
5316 {
5317 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5318 
5319 	__folio_mark_uptodate(new_folio);
5320 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5321 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5322 		newpte = huge_pte_mkuffd_wp(newpte);
5323 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5324 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5325 	folio_set_hugetlb_migratable(new_folio);
5326 }
5327 
5328 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5329 			    struct vm_area_struct *dst_vma,
5330 			    struct vm_area_struct *src_vma)
5331 {
5332 	pte_t *src_pte, *dst_pte, entry;
5333 	struct folio *pte_folio;
5334 	unsigned long addr;
5335 	bool cow = is_cow_mapping(src_vma->vm_flags);
5336 	struct hstate *h = hstate_vma(src_vma);
5337 	unsigned long sz = huge_page_size(h);
5338 	unsigned long npages = pages_per_huge_page(h);
5339 	struct mmu_notifier_range range;
5340 	unsigned long last_addr_mask;
5341 	int ret = 0;
5342 
5343 	if (cow) {
5344 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5345 					src_vma->vm_start,
5346 					src_vma->vm_end);
5347 		mmu_notifier_invalidate_range_start(&range);
5348 		vma_assert_write_locked(src_vma);
5349 		raw_write_seqcount_begin(&src->write_protect_seq);
5350 	} else {
5351 		/*
5352 		 * For shared mappings the vma lock must be held before
5353 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5354 		 * returned ptep could go away if part of a shared pmd and
5355 		 * another thread calls huge_pmd_unshare.
5356 		 */
5357 		hugetlb_vma_lock_read(src_vma);
5358 	}
5359 
5360 	last_addr_mask = hugetlb_mask_last_page(h);
5361 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5362 		spinlock_t *src_ptl, *dst_ptl;
5363 		src_pte = hugetlb_walk(src_vma, addr, sz);
5364 		if (!src_pte) {
5365 			addr |= last_addr_mask;
5366 			continue;
5367 		}
5368 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5369 		if (!dst_pte) {
5370 			ret = -ENOMEM;
5371 			break;
5372 		}
5373 
5374 		/*
5375 		 * If the pagetables are shared don't copy or take references.
5376 		 *
5377 		 * dst_pte == src_pte is the common case of src/dest sharing.
5378 		 * However, src could have 'unshared' and dst shares with
5379 		 * another vma. So page_count of ptep page is checked instead
5380 		 * to reliably determine whether pte is shared.
5381 		 */
5382 		if (page_count(virt_to_page(dst_pte)) > 1) {
5383 			addr |= last_addr_mask;
5384 			continue;
5385 		}
5386 
5387 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5388 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5389 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5390 		entry = huge_ptep_get(src_pte);
5391 again:
5392 		if (huge_pte_none(entry)) {
5393 			/*
5394 			 * Skip if src entry none.
5395 			 */
5396 			;
5397 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5398 			if (!userfaultfd_wp(dst_vma))
5399 				entry = huge_pte_clear_uffd_wp(entry);
5400 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5401 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5402 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5403 			bool uffd_wp = pte_swp_uffd_wp(entry);
5404 
5405 			if (!is_readable_migration_entry(swp_entry) && cow) {
5406 				/*
5407 				 * COW mappings require pages in both
5408 				 * parent and child to be set to read.
5409 				 */
5410 				swp_entry = make_readable_migration_entry(
5411 							swp_offset(swp_entry));
5412 				entry = swp_entry_to_pte(swp_entry);
5413 				if (userfaultfd_wp(src_vma) && uffd_wp)
5414 					entry = pte_swp_mkuffd_wp(entry);
5415 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5416 			}
5417 			if (!userfaultfd_wp(dst_vma))
5418 				entry = huge_pte_clear_uffd_wp(entry);
5419 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5420 		} else if (unlikely(is_pte_marker(entry))) {
5421 			pte_marker marker = copy_pte_marker(
5422 				pte_to_swp_entry(entry), dst_vma);
5423 
5424 			if (marker)
5425 				set_huge_pte_at(dst, addr, dst_pte,
5426 						make_pte_marker(marker), sz);
5427 		} else {
5428 			entry = huge_ptep_get(src_pte);
5429 			pte_folio = page_folio(pte_page(entry));
5430 			folio_get(pte_folio);
5431 
5432 			/*
5433 			 * Failing to duplicate the anon rmap is a rare case
5434 			 * where we see pinned hugetlb pages while they're
5435 			 * prone to COW. We need to do the COW earlier during
5436 			 * fork.
5437 			 *
5438 			 * When pre-allocating the page or copying data, we
5439 			 * need to be without the pgtable locks since we could
5440 			 * sleep during the process.
5441 			 */
5442 			if (!folio_test_anon(pte_folio)) {
5443 				hugetlb_add_file_rmap(pte_folio);
5444 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5445 				pte_t src_pte_old = entry;
5446 				struct folio *new_folio;
5447 
5448 				spin_unlock(src_ptl);
5449 				spin_unlock(dst_ptl);
5450 				/* Do not use reserve as it's private owned */
5451 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5452 				if (IS_ERR(new_folio)) {
5453 					folio_put(pte_folio);
5454 					ret = PTR_ERR(new_folio);
5455 					break;
5456 				}
5457 				ret = copy_user_large_folio(new_folio,
5458 							    pte_folio,
5459 							    addr, dst_vma);
5460 				folio_put(pte_folio);
5461 				if (ret) {
5462 					folio_put(new_folio);
5463 					break;
5464 				}
5465 
5466 				/* Install the new hugetlb folio if src pte stable */
5467 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5468 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5469 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5470 				entry = huge_ptep_get(src_pte);
5471 				if (!pte_same(src_pte_old, entry)) {
5472 					restore_reserve_on_error(h, dst_vma, addr,
5473 								new_folio);
5474 					folio_put(new_folio);
5475 					/* huge_ptep of dst_pte won't change as in child */
5476 					goto again;
5477 				}
5478 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5479 						      new_folio, src_pte_old, sz);
5480 				spin_unlock(src_ptl);
5481 				spin_unlock(dst_ptl);
5482 				continue;
5483 			}
5484 
5485 			if (cow) {
5486 				/*
5487 				 * No need to notify as we are downgrading page
5488 				 * table protection not changing it to point
5489 				 * to a new page.
5490 				 *
5491 				 * See Documentation/mm/mmu_notifier.rst
5492 				 */
5493 				huge_ptep_set_wrprotect(src, addr, src_pte);
5494 				entry = huge_pte_wrprotect(entry);
5495 			}
5496 
5497 			if (!userfaultfd_wp(dst_vma))
5498 				entry = huge_pte_clear_uffd_wp(entry);
5499 
5500 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5501 			hugetlb_count_add(npages, dst);
5502 		}
5503 		spin_unlock(src_ptl);
5504 		spin_unlock(dst_ptl);
5505 	}
5506 
5507 	if (cow) {
5508 		raw_write_seqcount_end(&src->write_protect_seq);
5509 		mmu_notifier_invalidate_range_end(&range);
5510 	} else {
5511 		hugetlb_vma_unlock_read(src_vma);
5512 	}
5513 
5514 	return ret;
5515 }
5516 
5517 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5518 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5519 			  unsigned long sz)
5520 {
5521 	struct hstate *h = hstate_vma(vma);
5522 	struct mm_struct *mm = vma->vm_mm;
5523 	spinlock_t *src_ptl, *dst_ptl;
5524 	pte_t pte;
5525 
5526 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5527 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5528 
5529 	/*
5530 	 * We don't have to worry about the ordering of src and dst ptlocks
5531 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5532 	 */
5533 	if (src_ptl != dst_ptl)
5534 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5535 
5536 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5537 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5538 
5539 	if (src_ptl != dst_ptl)
5540 		spin_unlock(src_ptl);
5541 	spin_unlock(dst_ptl);
5542 }
5543 
5544 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5545 			     struct vm_area_struct *new_vma,
5546 			     unsigned long old_addr, unsigned long new_addr,
5547 			     unsigned long len)
5548 {
5549 	struct hstate *h = hstate_vma(vma);
5550 	struct address_space *mapping = vma->vm_file->f_mapping;
5551 	unsigned long sz = huge_page_size(h);
5552 	struct mm_struct *mm = vma->vm_mm;
5553 	unsigned long old_end = old_addr + len;
5554 	unsigned long last_addr_mask;
5555 	pte_t *src_pte, *dst_pte;
5556 	struct mmu_notifier_range range;
5557 	bool shared_pmd = false;
5558 
5559 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5560 				old_end);
5561 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5562 	/*
5563 	 * In case of shared PMDs, we should cover the maximum possible
5564 	 * range.
5565 	 */
5566 	flush_cache_range(vma, range.start, range.end);
5567 
5568 	mmu_notifier_invalidate_range_start(&range);
5569 	last_addr_mask = hugetlb_mask_last_page(h);
5570 	/* Prevent race with file truncation */
5571 	hugetlb_vma_lock_write(vma);
5572 	i_mmap_lock_write(mapping);
5573 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5574 		src_pte = hugetlb_walk(vma, old_addr, sz);
5575 		if (!src_pte) {
5576 			old_addr |= last_addr_mask;
5577 			new_addr |= last_addr_mask;
5578 			continue;
5579 		}
5580 		if (huge_pte_none(huge_ptep_get(src_pte)))
5581 			continue;
5582 
5583 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5584 			shared_pmd = true;
5585 			old_addr |= last_addr_mask;
5586 			new_addr |= last_addr_mask;
5587 			continue;
5588 		}
5589 
5590 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5591 		if (!dst_pte)
5592 			break;
5593 
5594 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5595 	}
5596 
5597 	if (shared_pmd)
5598 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5599 	else
5600 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5601 	mmu_notifier_invalidate_range_end(&range);
5602 	i_mmap_unlock_write(mapping);
5603 	hugetlb_vma_unlock_write(vma);
5604 
5605 	return len + old_addr - old_end;
5606 }
5607 
5608 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5609 			    unsigned long start, unsigned long end,
5610 			    struct page *ref_page, zap_flags_t zap_flags)
5611 {
5612 	struct mm_struct *mm = vma->vm_mm;
5613 	unsigned long address;
5614 	pte_t *ptep;
5615 	pte_t pte;
5616 	spinlock_t *ptl;
5617 	struct page *page;
5618 	struct hstate *h = hstate_vma(vma);
5619 	unsigned long sz = huge_page_size(h);
5620 	bool adjust_reservation = false;
5621 	unsigned long last_addr_mask;
5622 	bool force_flush = false;
5623 
5624 	WARN_ON(!is_vm_hugetlb_page(vma));
5625 	BUG_ON(start & ~huge_page_mask(h));
5626 	BUG_ON(end & ~huge_page_mask(h));
5627 
5628 	/*
5629 	 * This is a hugetlb vma, all the pte entries should point
5630 	 * to huge page.
5631 	 */
5632 	tlb_change_page_size(tlb, sz);
5633 	tlb_start_vma(tlb, vma);
5634 
5635 	last_addr_mask = hugetlb_mask_last_page(h);
5636 	address = start;
5637 	for (; address < end; address += sz) {
5638 		ptep = hugetlb_walk(vma, address, sz);
5639 		if (!ptep) {
5640 			address |= last_addr_mask;
5641 			continue;
5642 		}
5643 
5644 		ptl = huge_pte_lock(h, mm, ptep);
5645 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5646 			spin_unlock(ptl);
5647 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5648 			force_flush = true;
5649 			address |= last_addr_mask;
5650 			continue;
5651 		}
5652 
5653 		pte = huge_ptep_get(ptep);
5654 		if (huge_pte_none(pte)) {
5655 			spin_unlock(ptl);
5656 			continue;
5657 		}
5658 
5659 		/*
5660 		 * Migrating hugepage or HWPoisoned hugepage is already
5661 		 * unmapped and its refcount is dropped, so just clear pte here.
5662 		 */
5663 		if (unlikely(!pte_present(pte))) {
5664 			/*
5665 			 * If the pte was wr-protected by uffd-wp in any of the
5666 			 * swap forms, meanwhile the caller does not want to
5667 			 * drop the uffd-wp bit in this zap, then replace the
5668 			 * pte with a marker.
5669 			 */
5670 			if (pte_swp_uffd_wp_any(pte) &&
5671 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5672 				set_huge_pte_at(mm, address, ptep,
5673 						make_pte_marker(PTE_MARKER_UFFD_WP),
5674 						sz);
5675 			else
5676 				huge_pte_clear(mm, address, ptep, sz);
5677 			spin_unlock(ptl);
5678 			continue;
5679 		}
5680 
5681 		page = pte_page(pte);
5682 		/*
5683 		 * If a reference page is supplied, it is because a specific
5684 		 * page is being unmapped, not a range. Ensure the page we
5685 		 * are about to unmap is the actual page of interest.
5686 		 */
5687 		if (ref_page) {
5688 			if (page != ref_page) {
5689 				spin_unlock(ptl);
5690 				continue;
5691 			}
5692 			/*
5693 			 * Mark the VMA as having unmapped its page so that
5694 			 * future faults in this VMA will fail rather than
5695 			 * looking like data was lost
5696 			 */
5697 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5698 		}
5699 
5700 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5701 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5702 		if (huge_pte_dirty(pte))
5703 			set_page_dirty(page);
5704 		/* Leave a uffd-wp pte marker if needed */
5705 		if (huge_pte_uffd_wp(pte) &&
5706 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5707 			set_huge_pte_at(mm, address, ptep,
5708 					make_pte_marker(PTE_MARKER_UFFD_WP),
5709 					sz);
5710 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5711 		hugetlb_remove_rmap(page_folio(page));
5712 
5713 		/*
5714 		 * Restore the reservation for anonymous page, otherwise the
5715 		 * backing page could be stolen by someone.
5716 		 * If there we are freeing a surplus, do not set the restore
5717 		 * reservation bit.
5718 		 */
5719 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5720 		    folio_test_anon(page_folio(page))) {
5721 			folio_set_hugetlb_restore_reserve(page_folio(page));
5722 			/* Reservation to be adjusted after the spin lock */
5723 			adjust_reservation = true;
5724 		}
5725 
5726 		spin_unlock(ptl);
5727 
5728 		/*
5729 		 * Adjust the reservation for the region that will have the
5730 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5731 		 * resv->adds_in_progress if it succeeds. If this is not done,
5732 		 * do_exit() will not see it, and will keep the reservation
5733 		 * forever.
5734 		 */
5735 		if (adjust_reservation) {
5736 			int rc = vma_needs_reservation(h, vma, address);
5737 
5738 			if (rc < 0)
5739 				/* Pressumably allocate_file_region_entries failed
5740 				 * to allocate a file_region struct. Clear
5741 				 * hugetlb_restore_reserve so that global reserve
5742 				 * count will not be incremented by free_huge_folio.
5743 				 * Act as if we consumed the reservation.
5744 				 */
5745 				folio_clear_hugetlb_restore_reserve(page_folio(page));
5746 			else if (rc)
5747 				vma_add_reservation(h, vma, address);
5748 		}
5749 
5750 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5751 		/*
5752 		 * Bail out after unmapping reference page if supplied
5753 		 */
5754 		if (ref_page)
5755 			break;
5756 	}
5757 	tlb_end_vma(tlb, vma);
5758 
5759 	/*
5760 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5761 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5762 	 * guaranteed that the last refernece would not be dropped. But we must
5763 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5764 	 * dropped and the last reference to the shared PMDs page might be
5765 	 * dropped as well.
5766 	 *
5767 	 * In theory we could defer the freeing of the PMD pages as well, but
5768 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5769 	 * detect sharing, so we cannot defer the release of the page either.
5770 	 * Instead, do flush now.
5771 	 */
5772 	if (force_flush)
5773 		tlb_flush_mmu_tlbonly(tlb);
5774 }
5775 
5776 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5777 			 unsigned long *start, unsigned long *end)
5778 {
5779 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5780 		return;
5781 
5782 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5783 	hugetlb_vma_lock_write(vma);
5784 	if (vma->vm_file)
5785 		i_mmap_lock_write(vma->vm_file->f_mapping);
5786 }
5787 
5788 void __hugetlb_zap_end(struct vm_area_struct *vma,
5789 		       struct zap_details *details)
5790 {
5791 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5792 
5793 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5794 		return;
5795 
5796 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5797 		/*
5798 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5799 		 * When the vma_lock is freed, this makes the vma ineligible
5800 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5801 		 * pmd sharing.  This is important as page tables for this
5802 		 * unmapped range will be asynchrously deleted.  If the page
5803 		 * tables are shared, there will be issues when accessed by
5804 		 * someone else.
5805 		 */
5806 		__hugetlb_vma_unlock_write_free(vma);
5807 	} else {
5808 		hugetlb_vma_unlock_write(vma);
5809 	}
5810 
5811 	if (vma->vm_file)
5812 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5813 }
5814 
5815 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5816 			  unsigned long end, struct page *ref_page,
5817 			  zap_flags_t zap_flags)
5818 {
5819 	struct mmu_notifier_range range;
5820 	struct mmu_gather tlb;
5821 
5822 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5823 				start, end);
5824 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5825 	mmu_notifier_invalidate_range_start(&range);
5826 	tlb_gather_mmu(&tlb, vma->vm_mm);
5827 
5828 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5829 
5830 	mmu_notifier_invalidate_range_end(&range);
5831 	tlb_finish_mmu(&tlb);
5832 }
5833 
5834 /*
5835  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5836  * mapping it owns the reserve page for. The intention is to unmap the page
5837  * from other VMAs and let the children be SIGKILLed if they are faulting the
5838  * same region.
5839  */
5840 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5841 			      struct page *page, unsigned long address)
5842 {
5843 	struct hstate *h = hstate_vma(vma);
5844 	struct vm_area_struct *iter_vma;
5845 	struct address_space *mapping;
5846 	pgoff_t pgoff;
5847 
5848 	/*
5849 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5850 	 * from page cache lookup which is in HPAGE_SIZE units.
5851 	 */
5852 	address = address & huge_page_mask(h);
5853 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5854 			vma->vm_pgoff;
5855 	mapping = vma->vm_file->f_mapping;
5856 
5857 	/*
5858 	 * Take the mapping lock for the duration of the table walk. As
5859 	 * this mapping should be shared between all the VMAs,
5860 	 * __unmap_hugepage_range() is called as the lock is already held
5861 	 */
5862 	i_mmap_lock_write(mapping);
5863 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5864 		/* Do not unmap the current VMA */
5865 		if (iter_vma == vma)
5866 			continue;
5867 
5868 		/*
5869 		 * Shared VMAs have their own reserves and do not affect
5870 		 * MAP_PRIVATE accounting but it is possible that a shared
5871 		 * VMA is using the same page so check and skip such VMAs.
5872 		 */
5873 		if (iter_vma->vm_flags & VM_MAYSHARE)
5874 			continue;
5875 
5876 		/*
5877 		 * Unmap the page from other VMAs without their own reserves.
5878 		 * They get marked to be SIGKILLed if they fault in these
5879 		 * areas. This is because a future no-page fault on this VMA
5880 		 * could insert a zeroed page instead of the data existing
5881 		 * from the time of fork. This would look like data corruption
5882 		 */
5883 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5884 			unmap_hugepage_range(iter_vma, address,
5885 					     address + huge_page_size(h), page, 0);
5886 	}
5887 	i_mmap_unlock_write(mapping);
5888 }
5889 
5890 /*
5891  * hugetlb_wp() should be called with page lock of the original hugepage held.
5892  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5893  * cannot race with other handlers or page migration.
5894  * Keep the pte_same checks anyway to make transition from the mutex easier.
5895  */
5896 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5897 		       struct vm_fault *vmf)
5898 {
5899 	struct vm_area_struct *vma = vmf->vma;
5900 	struct mm_struct *mm = vma->vm_mm;
5901 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5902 	pte_t pte = huge_ptep_get(vmf->pte);
5903 	struct hstate *h = hstate_vma(vma);
5904 	struct folio *old_folio;
5905 	struct folio *new_folio;
5906 	int outside_reserve = 0;
5907 	vm_fault_t ret = 0;
5908 	struct mmu_notifier_range range;
5909 
5910 	/*
5911 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5912 	 * handled when the uffd-wp protection is removed.
5913 	 *
5914 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5915 	 * can trigger this, because hugetlb_fault() will always resolve
5916 	 * uffd-wp bit first.
5917 	 */
5918 	if (!unshare && huge_pte_uffd_wp(pte))
5919 		return 0;
5920 
5921 	/*
5922 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5923 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5924 	 */
5925 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5926 		return VM_FAULT_SIGSEGV;
5927 
5928 	/* Let's take out MAP_SHARED mappings first. */
5929 	if (vma->vm_flags & VM_MAYSHARE) {
5930 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5931 		return 0;
5932 	}
5933 
5934 	old_folio = page_folio(pte_page(pte));
5935 
5936 	delayacct_wpcopy_start();
5937 
5938 retry_avoidcopy:
5939 	/*
5940 	 * If no-one else is actually using this page, we're the exclusive
5941 	 * owner and can reuse this page.
5942 	 *
5943 	 * Note that we don't rely on the (safer) folio refcount here, because
5944 	 * copying the hugetlb folio when there are unexpected (temporary)
5945 	 * folio references could harm simple fork()+exit() users when
5946 	 * we run out of free hugetlb folios: we would have to kill processes
5947 	 * in scenarios that used to work. As a side effect, there can still
5948 	 * be leaks between processes, for example, with FOLL_GET users.
5949 	 */
5950 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5951 		if (!PageAnonExclusive(&old_folio->page)) {
5952 			folio_move_anon_rmap(old_folio, vma);
5953 			SetPageAnonExclusive(&old_folio->page);
5954 		}
5955 		if (likely(!unshare))
5956 			set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5957 
5958 		delayacct_wpcopy_end();
5959 		return 0;
5960 	}
5961 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5962 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5963 
5964 	/*
5965 	 * If the process that created a MAP_PRIVATE mapping is about to
5966 	 * perform a COW due to a shared page count, attempt to satisfy
5967 	 * the allocation without using the existing reserves. The pagecache
5968 	 * page is used to determine if the reserve at this address was
5969 	 * consumed or not. If reserves were used, a partial faulted mapping
5970 	 * at the time of fork() could consume its reserves on COW instead
5971 	 * of the full address range.
5972 	 */
5973 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5974 			old_folio != pagecache_folio)
5975 		outside_reserve = 1;
5976 
5977 	folio_get(old_folio);
5978 
5979 	/*
5980 	 * Drop page table lock as buddy allocator may be called. It will
5981 	 * be acquired again before returning to the caller, as expected.
5982 	 */
5983 	spin_unlock(vmf->ptl);
5984 	new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5985 
5986 	if (IS_ERR(new_folio)) {
5987 		/*
5988 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5989 		 * it is due to references held by a child and an insufficient
5990 		 * huge page pool. To guarantee the original mappers
5991 		 * reliability, unmap the page from child processes. The child
5992 		 * may get SIGKILLed if it later faults.
5993 		 */
5994 		if (outside_reserve) {
5995 			struct address_space *mapping = vma->vm_file->f_mapping;
5996 			pgoff_t idx;
5997 			u32 hash;
5998 
5999 			folio_put(old_folio);
6000 			/*
6001 			 * Drop hugetlb_fault_mutex and vma_lock before
6002 			 * unmapping.  unmapping needs to hold vma_lock
6003 			 * in write mode.  Dropping vma_lock in read mode
6004 			 * here is OK as COW mappings do not interact with
6005 			 * PMD sharing.
6006 			 *
6007 			 * Reacquire both after unmap operation.
6008 			 */
6009 			idx = vma_hugecache_offset(h, vma, vmf->address);
6010 			hash = hugetlb_fault_mutex_hash(mapping, idx);
6011 			hugetlb_vma_unlock_read(vma);
6012 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013 
6014 			unmap_ref_private(mm, vma, &old_folio->page,
6015 					vmf->address);
6016 
6017 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6018 			hugetlb_vma_lock_read(vma);
6019 			spin_lock(vmf->ptl);
6020 			vmf->pte = hugetlb_walk(vma, vmf->address,
6021 					huge_page_size(h));
6022 			if (likely(vmf->pte &&
6023 				   pte_same(huge_ptep_get(vmf->pte), pte)))
6024 				goto retry_avoidcopy;
6025 			/*
6026 			 * race occurs while re-acquiring page table
6027 			 * lock, and our job is done.
6028 			 */
6029 			delayacct_wpcopy_end();
6030 			return 0;
6031 		}
6032 
6033 		ret = vmf_error(PTR_ERR(new_folio));
6034 		goto out_release_old;
6035 	}
6036 
6037 	/*
6038 	 * When the original hugepage is shared one, it does not have
6039 	 * anon_vma prepared.
6040 	 */
6041 	ret = vmf_anon_prepare(vmf);
6042 	if (unlikely(ret))
6043 		goto out_release_all;
6044 
6045 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6046 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6047 		goto out_release_all;
6048 	}
6049 	__folio_mark_uptodate(new_folio);
6050 
6051 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6052 				vmf->address + huge_page_size(h));
6053 	mmu_notifier_invalidate_range_start(&range);
6054 
6055 	/*
6056 	 * Retake the page table lock to check for racing updates
6057 	 * before the page tables are altered
6058 	 */
6059 	spin_lock(vmf->ptl);
6060 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6061 	if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) {
6062 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6063 
6064 		/* Break COW or unshare */
6065 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6066 		hugetlb_remove_rmap(old_folio);
6067 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6068 		if (huge_pte_uffd_wp(pte))
6069 			newpte = huge_pte_mkuffd_wp(newpte);
6070 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6071 				huge_page_size(h));
6072 		folio_set_hugetlb_migratable(new_folio);
6073 		/* Make the old page be freed below */
6074 		new_folio = old_folio;
6075 	}
6076 	spin_unlock(vmf->ptl);
6077 	mmu_notifier_invalidate_range_end(&range);
6078 out_release_all:
6079 	/*
6080 	 * No restore in case of successful pagetable update (Break COW or
6081 	 * unshare)
6082 	 */
6083 	if (new_folio != old_folio)
6084 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
6085 	folio_put(new_folio);
6086 out_release_old:
6087 	folio_put(old_folio);
6088 
6089 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
6090 
6091 	delayacct_wpcopy_end();
6092 	return ret;
6093 }
6094 
6095 /*
6096  * Return whether there is a pagecache page to back given address within VMA.
6097  */
6098 bool hugetlbfs_pagecache_present(struct hstate *h,
6099 				 struct vm_area_struct *vma, unsigned long address)
6100 {
6101 	struct address_space *mapping = vma->vm_file->f_mapping;
6102 	pgoff_t idx = linear_page_index(vma, address);
6103 	struct folio *folio;
6104 
6105 	folio = filemap_get_folio(mapping, idx);
6106 	if (IS_ERR(folio))
6107 		return false;
6108 	folio_put(folio);
6109 	return true;
6110 }
6111 
6112 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6113 			   pgoff_t idx)
6114 {
6115 	struct inode *inode = mapping->host;
6116 	struct hstate *h = hstate_inode(inode);
6117 	int err;
6118 
6119 	idx <<= huge_page_order(h);
6120 	__folio_set_locked(folio);
6121 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6122 
6123 	if (unlikely(err)) {
6124 		__folio_clear_locked(folio);
6125 		return err;
6126 	}
6127 	folio_clear_hugetlb_restore_reserve(folio);
6128 
6129 	/*
6130 	 * mark folio dirty so that it will not be removed from cache/file
6131 	 * by non-hugetlbfs specific code paths.
6132 	 */
6133 	folio_mark_dirty(folio);
6134 
6135 	spin_lock(&inode->i_lock);
6136 	inode->i_blocks += blocks_per_huge_page(h);
6137 	spin_unlock(&inode->i_lock);
6138 	return 0;
6139 }
6140 
6141 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6142 						  struct address_space *mapping,
6143 						  unsigned long reason)
6144 {
6145 	u32 hash;
6146 
6147 	/*
6148 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6149 	 * userfault. Also mmap_lock could be dropped due to handling
6150 	 * userfault, any vma operation should be careful from here.
6151 	 */
6152 	hugetlb_vma_unlock_read(vmf->vma);
6153 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6154 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6155 	return handle_userfault(vmf, reason);
6156 }
6157 
6158 /*
6159  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6160  * false if pte changed or is changing.
6161  */
6162 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6163 			       pte_t *ptep, pte_t old_pte)
6164 {
6165 	spinlock_t *ptl;
6166 	bool same;
6167 
6168 	ptl = huge_pte_lock(h, mm, ptep);
6169 	same = pte_same(huge_ptep_get(ptep), old_pte);
6170 	spin_unlock(ptl);
6171 
6172 	return same;
6173 }
6174 
6175 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6176 			struct vm_fault *vmf)
6177 {
6178 	struct vm_area_struct *vma = vmf->vma;
6179 	struct mm_struct *mm = vma->vm_mm;
6180 	struct hstate *h = hstate_vma(vma);
6181 	vm_fault_t ret = VM_FAULT_SIGBUS;
6182 	int anon_rmap = 0;
6183 	unsigned long size;
6184 	struct folio *folio;
6185 	pte_t new_pte;
6186 	bool new_folio, new_pagecache_folio = false;
6187 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6188 
6189 	/*
6190 	 * Currently, we are forced to kill the process in the event the
6191 	 * original mapper has unmapped pages from the child due to a failed
6192 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6193 	 * be obvious.
6194 	 */
6195 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6196 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6197 			   current->pid);
6198 		goto out;
6199 	}
6200 
6201 	/*
6202 	 * Use page lock to guard against racing truncation
6203 	 * before we get page_table_lock.
6204 	 */
6205 	new_folio = false;
6206 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6207 	if (IS_ERR(folio)) {
6208 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6209 		if (vmf->pgoff >= size)
6210 			goto out;
6211 		/* Check for page in userfault range */
6212 		if (userfaultfd_missing(vma)) {
6213 			/*
6214 			 * Since hugetlb_no_page() was examining pte
6215 			 * without pgtable lock, we need to re-test under
6216 			 * lock because the pte may not be stable and could
6217 			 * have changed from under us.  Try to detect
6218 			 * either changed or during-changing ptes and retry
6219 			 * properly when needed.
6220 			 *
6221 			 * Note that userfaultfd is actually fine with
6222 			 * false positives (e.g. caused by pte changed),
6223 			 * but not wrong logical events (e.g. caused by
6224 			 * reading a pte during changing).  The latter can
6225 			 * confuse the userspace, so the strictness is very
6226 			 * much preferred.  E.g., MISSING event should
6227 			 * never happen on the page after UFFDIO_COPY has
6228 			 * correctly installed the page and returned.
6229 			 */
6230 			if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6231 				ret = 0;
6232 				goto out;
6233 			}
6234 
6235 			return hugetlb_handle_userfault(vmf, mapping,
6236 							VM_UFFD_MISSING);
6237 		}
6238 
6239 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6240 			ret = vmf_anon_prepare(vmf);
6241 			if (unlikely(ret))
6242 				goto out;
6243 		}
6244 
6245 		folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6246 		if (IS_ERR(folio)) {
6247 			/*
6248 			 * Returning error will result in faulting task being
6249 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6250 			 * tasks from racing to fault in the same page which
6251 			 * could result in false unable to allocate errors.
6252 			 * Page migration does not take the fault mutex, but
6253 			 * does a clear then write of pte's under page table
6254 			 * lock.  Page fault code could race with migration,
6255 			 * notice the clear pte and try to allocate a page
6256 			 * here.  Before returning error, get ptl and make
6257 			 * sure there really is no pte entry.
6258 			 */
6259 			if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte))
6260 				ret = vmf_error(PTR_ERR(folio));
6261 			else
6262 				ret = 0;
6263 			goto out;
6264 		}
6265 		clear_huge_page(&folio->page, vmf->real_address,
6266 				pages_per_huge_page(h));
6267 		__folio_mark_uptodate(folio);
6268 		new_folio = true;
6269 
6270 		if (vma->vm_flags & VM_MAYSHARE) {
6271 			int err = hugetlb_add_to_page_cache(folio, mapping,
6272 							vmf->pgoff);
6273 			if (err) {
6274 				/*
6275 				 * err can't be -EEXIST which implies someone
6276 				 * else consumed the reservation since hugetlb
6277 				 * fault mutex is held when add a hugetlb page
6278 				 * to the page cache. So it's safe to call
6279 				 * restore_reserve_on_error() here.
6280 				 */
6281 				restore_reserve_on_error(h, vma, vmf->address,
6282 							folio);
6283 				folio_put(folio);
6284 				ret = VM_FAULT_SIGBUS;
6285 				goto out;
6286 			}
6287 			new_pagecache_folio = true;
6288 		} else {
6289 			folio_lock(folio);
6290 			anon_rmap = 1;
6291 		}
6292 	} else {
6293 		/*
6294 		 * If memory error occurs between mmap() and fault, some process
6295 		 * don't have hwpoisoned swap entry for errored virtual address.
6296 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6297 		 */
6298 		if (unlikely(folio_test_hwpoison(folio))) {
6299 			ret = VM_FAULT_HWPOISON_LARGE |
6300 				VM_FAULT_SET_HINDEX(hstate_index(h));
6301 			goto backout_unlocked;
6302 		}
6303 
6304 		/* Check for page in userfault range. */
6305 		if (userfaultfd_minor(vma)) {
6306 			folio_unlock(folio);
6307 			folio_put(folio);
6308 			/* See comment in userfaultfd_missing() block above */
6309 			if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6310 				ret = 0;
6311 				goto out;
6312 			}
6313 			return hugetlb_handle_userfault(vmf, mapping,
6314 							VM_UFFD_MINOR);
6315 		}
6316 	}
6317 
6318 	/*
6319 	 * If we are going to COW a private mapping later, we examine the
6320 	 * pending reservations for this page now. This will ensure that
6321 	 * any allocations necessary to record that reservation occur outside
6322 	 * the spinlock.
6323 	 */
6324 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6325 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6326 			ret = VM_FAULT_OOM;
6327 			goto backout_unlocked;
6328 		}
6329 		/* Just decrements count, does not deallocate */
6330 		vma_end_reservation(h, vma, vmf->address);
6331 	}
6332 
6333 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6334 	ret = 0;
6335 	/* If pte changed from under us, retry */
6336 	if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte))
6337 		goto backout;
6338 
6339 	if (anon_rmap)
6340 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6341 	else
6342 		hugetlb_add_file_rmap(folio);
6343 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6344 				&& (vma->vm_flags & VM_SHARED)));
6345 	/*
6346 	 * If this pte was previously wr-protected, keep it wr-protected even
6347 	 * if populated.
6348 	 */
6349 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6350 		new_pte = huge_pte_mkuffd_wp(new_pte);
6351 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6352 
6353 	hugetlb_count_add(pages_per_huge_page(h), mm);
6354 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6355 		/* Optimization, do the COW without a second fault */
6356 		ret = hugetlb_wp(folio, vmf);
6357 	}
6358 
6359 	spin_unlock(vmf->ptl);
6360 
6361 	/*
6362 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6363 	 * found in the pagecache may not have hugetlb_migratable if they have
6364 	 * been isolated for migration.
6365 	 */
6366 	if (new_folio)
6367 		folio_set_hugetlb_migratable(folio);
6368 
6369 	folio_unlock(folio);
6370 out:
6371 	hugetlb_vma_unlock_read(vma);
6372 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6373 	return ret;
6374 
6375 backout:
6376 	spin_unlock(vmf->ptl);
6377 backout_unlocked:
6378 	if (new_folio && !new_pagecache_folio)
6379 		restore_reserve_on_error(h, vma, vmf->address, folio);
6380 
6381 	folio_unlock(folio);
6382 	folio_put(folio);
6383 	goto out;
6384 }
6385 
6386 #ifdef CONFIG_SMP
6387 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6388 {
6389 	unsigned long key[2];
6390 	u32 hash;
6391 
6392 	key[0] = (unsigned long) mapping;
6393 	key[1] = idx;
6394 
6395 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6396 
6397 	return hash & (num_fault_mutexes - 1);
6398 }
6399 #else
6400 /*
6401  * For uniprocessor systems we always use a single mutex, so just
6402  * return 0 and avoid the hashing overhead.
6403  */
6404 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6405 {
6406 	return 0;
6407 }
6408 #endif
6409 
6410 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6411 			unsigned long address, unsigned int flags)
6412 {
6413 	vm_fault_t ret;
6414 	u32 hash;
6415 	struct folio *folio = NULL;
6416 	struct folio *pagecache_folio = NULL;
6417 	struct hstate *h = hstate_vma(vma);
6418 	struct address_space *mapping;
6419 	int need_wait_lock = 0;
6420 	struct vm_fault vmf = {
6421 		.vma = vma,
6422 		.address = address & huge_page_mask(h),
6423 		.real_address = address,
6424 		.flags = flags,
6425 		.pgoff = vma_hugecache_offset(h, vma,
6426 				address & huge_page_mask(h)),
6427 		/* TODO: Track hugetlb faults using vm_fault */
6428 
6429 		/*
6430 		 * Some fields may not be initialized, be careful as it may
6431 		 * be hard to debug if called functions make assumptions
6432 		 */
6433 	};
6434 
6435 	/*
6436 	 * Serialize hugepage allocation and instantiation, so that we don't
6437 	 * get spurious allocation failures if two CPUs race to instantiate
6438 	 * the same page in the page cache.
6439 	 */
6440 	mapping = vma->vm_file->f_mapping;
6441 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6442 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6443 
6444 	/*
6445 	 * Acquire vma lock before calling huge_pte_alloc and hold
6446 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6447 	 * being called elsewhere and making the vmf.pte no longer valid.
6448 	 */
6449 	hugetlb_vma_lock_read(vma);
6450 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6451 	if (!vmf.pte) {
6452 		hugetlb_vma_unlock_read(vma);
6453 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6454 		return VM_FAULT_OOM;
6455 	}
6456 
6457 	vmf.orig_pte = huge_ptep_get(vmf.pte);
6458 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6459 		if (is_pte_marker(vmf.orig_pte)) {
6460 			pte_marker marker =
6461 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6462 
6463 			if (marker & PTE_MARKER_POISONED) {
6464 				ret = VM_FAULT_HWPOISON_LARGE |
6465 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6466 				goto out_mutex;
6467 			}
6468 		}
6469 
6470 		/*
6471 		 * Other PTE markers should be handled the same way as none PTE.
6472 		 *
6473 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6474 		 * mutex internally, which make us return immediately.
6475 		 */
6476 		return hugetlb_no_page(mapping, &vmf);
6477 	}
6478 
6479 	ret = 0;
6480 
6481 	/*
6482 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6483 	 * point, so this check prevents the kernel from going below assuming
6484 	 * that we have an active hugepage in pagecache. This goto expects
6485 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6486 	 * check will properly handle it.
6487 	 */
6488 	if (!pte_present(vmf.orig_pte)) {
6489 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6490 			/*
6491 			 * Release the hugetlb fault lock now, but retain
6492 			 * the vma lock, because it is needed to guard the
6493 			 * huge_pte_lockptr() later in
6494 			 * migration_entry_wait_huge(). The vma lock will
6495 			 * be released there.
6496 			 */
6497 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6498 			migration_entry_wait_huge(vma, vmf.pte);
6499 			return 0;
6500 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6501 			ret = VM_FAULT_HWPOISON_LARGE |
6502 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6503 		goto out_mutex;
6504 	}
6505 
6506 	/*
6507 	 * If we are going to COW/unshare the mapping later, we examine the
6508 	 * pending reservations for this page now. This will ensure that any
6509 	 * allocations necessary to record that reservation occur outside the
6510 	 * spinlock. Also lookup the pagecache page now as it is used to
6511 	 * determine if a reservation has been consumed.
6512 	 */
6513 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6514 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6515 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6516 			ret = VM_FAULT_OOM;
6517 			goto out_mutex;
6518 		}
6519 		/* Just decrements count, does not deallocate */
6520 		vma_end_reservation(h, vma, vmf.address);
6521 
6522 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6523 							     vmf.pgoff);
6524 		if (IS_ERR(pagecache_folio))
6525 			pagecache_folio = NULL;
6526 	}
6527 
6528 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6529 
6530 	/* Check for a racing update before calling hugetlb_wp() */
6531 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte))))
6532 		goto out_ptl;
6533 
6534 	/* Handle userfault-wp first, before trying to lock more pages */
6535 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) &&
6536 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6537 		if (!userfaultfd_wp_async(vma)) {
6538 			spin_unlock(vmf.ptl);
6539 			if (pagecache_folio) {
6540 				folio_unlock(pagecache_folio);
6541 				folio_put(pagecache_folio);
6542 			}
6543 			hugetlb_vma_unlock_read(vma);
6544 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6545 			return handle_userfault(&vmf, VM_UFFD_WP);
6546 		}
6547 
6548 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6549 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6550 				huge_page_size(hstate_vma(vma)));
6551 		/* Fallthrough to CoW */
6552 	}
6553 
6554 	/*
6555 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6556 	 * pagecache_folio, so here we need take the former one
6557 	 * when folio != pagecache_folio or !pagecache_folio.
6558 	 */
6559 	folio = page_folio(pte_page(vmf.orig_pte));
6560 	if (folio != pagecache_folio)
6561 		if (!folio_trylock(folio)) {
6562 			need_wait_lock = 1;
6563 			goto out_ptl;
6564 		}
6565 
6566 	folio_get(folio);
6567 
6568 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6569 		if (!huge_pte_write(vmf.orig_pte)) {
6570 			ret = hugetlb_wp(pagecache_folio, &vmf);
6571 			goto out_put_page;
6572 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6573 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6574 		}
6575 	}
6576 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6577 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6578 						flags & FAULT_FLAG_WRITE))
6579 		update_mmu_cache(vma, vmf.address, vmf.pte);
6580 out_put_page:
6581 	if (folio != pagecache_folio)
6582 		folio_unlock(folio);
6583 	folio_put(folio);
6584 out_ptl:
6585 	spin_unlock(vmf.ptl);
6586 
6587 	if (pagecache_folio) {
6588 		folio_unlock(pagecache_folio);
6589 		folio_put(pagecache_folio);
6590 	}
6591 out_mutex:
6592 	hugetlb_vma_unlock_read(vma);
6593 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6594 	/*
6595 	 * Generally it's safe to hold refcount during waiting page lock. But
6596 	 * here we just wait to defer the next page fault to avoid busy loop and
6597 	 * the page is not used after unlocked before returning from the current
6598 	 * page fault. So we are safe from accessing freed page, even if we wait
6599 	 * here without taking refcount.
6600 	 */
6601 	if (need_wait_lock)
6602 		folio_wait_locked(folio);
6603 	return ret;
6604 }
6605 
6606 #ifdef CONFIG_USERFAULTFD
6607 /*
6608  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6609  */
6610 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6611 		struct vm_area_struct *vma, unsigned long address)
6612 {
6613 	struct mempolicy *mpol;
6614 	nodemask_t *nodemask;
6615 	struct folio *folio;
6616 	gfp_t gfp_mask;
6617 	int node;
6618 
6619 	gfp_mask = htlb_alloc_mask(h);
6620 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6621 	/*
6622 	 * This is used to allocate a temporary hugetlb to hold the copied
6623 	 * content, which will then be copied again to the final hugetlb
6624 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6625 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6626 	 */
6627 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6628 	mpol_cond_put(mpol);
6629 
6630 	return folio;
6631 }
6632 
6633 /*
6634  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6635  * with modifications for hugetlb pages.
6636  */
6637 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6638 			     struct vm_area_struct *dst_vma,
6639 			     unsigned long dst_addr,
6640 			     unsigned long src_addr,
6641 			     uffd_flags_t flags,
6642 			     struct folio **foliop)
6643 {
6644 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6645 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6646 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6647 	struct hstate *h = hstate_vma(dst_vma);
6648 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6649 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6650 	unsigned long size;
6651 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6652 	pte_t _dst_pte;
6653 	spinlock_t *ptl;
6654 	int ret = -ENOMEM;
6655 	struct folio *folio;
6656 	int writable;
6657 	bool folio_in_pagecache = false;
6658 
6659 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6660 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6661 
6662 		/* Don't overwrite any existing PTEs (even markers) */
6663 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6664 			spin_unlock(ptl);
6665 			return -EEXIST;
6666 		}
6667 
6668 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6669 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6670 				huge_page_size(h));
6671 
6672 		/* No need to invalidate - it was non-present before */
6673 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6674 
6675 		spin_unlock(ptl);
6676 		return 0;
6677 	}
6678 
6679 	if (is_continue) {
6680 		ret = -EFAULT;
6681 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6682 		if (IS_ERR(folio))
6683 			goto out;
6684 		folio_in_pagecache = true;
6685 	} else if (!*foliop) {
6686 		/* If a folio already exists, then it's UFFDIO_COPY for
6687 		 * a non-missing case. Return -EEXIST.
6688 		 */
6689 		if (vm_shared &&
6690 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6691 			ret = -EEXIST;
6692 			goto out;
6693 		}
6694 
6695 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6696 		if (IS_ERR(folio)) {
6697 			ret = -ENOMEM;
6698 			goto out;
6699 		}
6700 
6701 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6702 					   false);
6703 
6704 		/* fallback to copy_from_user outside mmap_lock */
6705 		if (unlikely(ret)) {
6706 			ret = -ENOENT;
6707 			/* Free the allocated folio which may have
6708 			 * consumed a reservation.
6709 			 */
6710 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6711 			folio_put(folio);
6712 
6713 			/* Allocate a temporary folio to hold the copied
6714 			 * contents.
6715 			 */
6716 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6717 			if (!folio) {
6718 				ret = -ENOMEM;
6719 				goto out;
6720 			}
6721 			*foliop = folio;
6722 			/* Set the outparam foliop and return to the caller to
6723 			 * copy the contents outside the lock. Don't free the
6724 			 * folio.
6725 			 */
6726 			goto out;
6727 		}
6728 	} else {
6729 		if (vm_shared &&
6730 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6731 			folio_put(*foliop);
6732 			ret = -EEXIST;
6733 			*foliop = NULL;
6734 			goto out;
6735 		}
6736 
6737 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6738 		if (IS_ERR(folio)) {
6739 			folio_put(*foliop);
6740 			ret = -ENOMEM;
6741 			*foliop = NULL;
6742 			goto out;
6743 		}
6744 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6745 		folio_put(*foliop);
6746 		*foliop = NULL;
6747 		if (ret) {
6748 			folio_put(folio);
6749 			goto out;
6750 		}
6751 	}
6752 
6753 	/*
6754 	 * If we just allocated a new page, we need a memory barrier to ensure
6755 	 * that preceding stores to the page become visible before the
6756 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6757 	 * is what we need.
6758 	 *
6759 	 * In the case where we have not allocated a new page (is_continue),
6760 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6761 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6762 	 * before the set_pte_at() write.
6763 	 */
6764 	if (!is_continue)
6765 		__folio_mark_uptodate(folio);
6766 	else
6767 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6768 
6769 	/* Add shared, newly allocated pages to the page cache. */
6770 	if (vm_shared && !is_continue) {
6771 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6772 		ret = -EFAULT;
6773 		if (idx >= size)
6774 			goto out_release_nounlock;
6775 
6776 		/*
6777 		 * Serialization between remove_inode_hugepages() and
6778 		 * hugetlb_add_to_page_cache() below happens through the
6779 		 * hugetlb_fault_mutex_table that here must be hold by
6780 		 * the caller.
6781 		 */
6782 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6783 		if (ret)
6784 			goto out_release_nounlock;
6785 		folio_in_pagecache = true;
6786 	}
6787 
6788 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6789 
6790 	ret = -EIO;
6791 	if (folio_test_hwpoison(folio))
6792 		goto out_release_unlock;
6793 
6794 	/*
6795 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6796 	 * registered, we firstly wr-protect a none pte which has no page cache
6797 	 * page backing it, then access the page.
6798 	 */
6799 	ret = -EEXIST;
6800 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6801 		goto out_release_unlock;
6802 
6803 	if (folio_in_pagecache)
6804 		hugetlb_add_file_rmap(folio);
6805 	else
6806 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6807 
6808 	/*
6809 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6810 	 * with wp flag set, don't set pte write bit.
6811 	 */
6812 	if (wp_enabled || (is_continue && !vm_shared))
6813 		writable = 0;
6814 	else
6815 		writable = dst_vma->vm_flags & VM_WRITE;
6816 
6817 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6818 	/*
6819 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6820 	 * extremely important for hugetlbfs for now since swapping is not
6821 	 * supported, but we should still be clear in that this page cannot be
6822 	 * thrown away at will, even if write bit not set.
6823 	 */
6824 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6825 	_dst_pte = pte_mkyoung(_dst_pte);
6826 
6827 	if (wp_enabled)
6828 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6829 
6830 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6831 
6832 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6833 
6834 	/* No need to invalidate - it was non-present before */
6835 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6836 
6837 	spin_unlock(ptl);
6838 	if (!is_continue)
6839 		folio_set_hugetlb_migratable(folio);
6840 	if (vm_shared || is_continue)
6841 		folio_unlock(folio);
6842 	ret = 0;
6843 out:
6844 	return ret;
6845 out_release_unlock:
6846 	spin_unlock(ptl);
6847 	if (vm_shared || is_continue)
6848 		folio_unlock(folio);
6849 out_release_nounlock:
6850 	if (!folio_in_pagecache)
6851 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6852 	folio_put(folio);
6853 	goto out;
6854 }
6855 #endif /* CONFIG_USERFAULTFD */
6856 
6857 long hugetlb_change_protection(struct vm_area_struct *vma,
6858 		unsigned long address, unsigned long end,
6859 		pgprot_t newprot, unsigned long cp_flags)
6860 {
6861 	struct mm_struct *mm = vma->vm_mm;
6862 	unsigned long start = address;
6863 	pte_t *ptep;
6864 	pte_t pte;
6865 	struct hstate *h = hstate_vma(vma);
6866 	long pages = 0, psize = huge_page_size(h);
6867 	bool shared_pmd = false;
6868 	struct mmu_notifier_range range;
6869 	unsigned long last_addr_mask;
6870 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6871 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6872 
6873 	/*
6874 	 * In the case of shared PMDs, the area to flush could be beyond
6875 	 * start/end.  Set range.start/range.end to cover the maximum possible
6876 	 * range if PMD sharing is possible.
6877 	 */
6878 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6879 				0, mm, start, end);
6880 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6881 
6882 	BUG_ON(address >= end);
6883 	flush_cache_range(vma, range.start, range.end);
6884 
6885 	mmu_notifier_invalidate_range_start(&range);
6886 	hugetlb_vma_lock_write(vma);
6887 	i_mmap_lock_write(vma->vm_file->f_mapping);
6888 	last_addr_mask = hugetlb_mask_last_page(h);
6889 	for (; address < end; address += psize) {
6890 		spinlock_t *ptl;
6891 		ptep = hugetlb_walk(vma, address, psize);
6892 		if (!ptep) {
6893 			if (!uffd_wp) {
6894 				address |= last_addr_mask;
6895 				continue;
6896 			}
6897 			/*
6898 			 * Userfaultfd wr-protect requires pgtable
6899 			 * pre-allocations to install pte markers.
6900 			 */
6901 			ptep = huge_pte_alloc(mm, vma, address, psize);
6902 			if (!ptep) {
6903 				pages = -ENOMEM;
6904 				break;
6905 			}
6906 		}
6907 		ptl = huge_pte_lock(h, mm, ptep);
6908 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6909 			/*
6910 			 * When uffd-wp is enabled on the vma, unshare
6911 			 * shouldn't happen at all.  Warn about it if it
6912 			 * happened due to some reason.
6913 			 */
6914 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6915 			pages++;
6916 			spin_unlock(ptl);
6917 			shared_pmd = true;
6918 			address |= last_addr_mask;
6919 			continue;
6920 		}
6921 		pte = huge_ptep_get(ptep);
6922 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6923 			/* Nothing to do. */
6924 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6925 			swp_entry_t entry = pte_to_swp_entry(pte);
6926 			struct page *page = pfn_swap_entry_to_page(entry);
6927 			pte_t newpte = pte;
6928 
6929 			if (is_writable_migration_entry(entry)) {
6930 				if (PageAnon(page))
6931 					entry = make_readable_exclusive_migration_entry(
6932 								swp_offset(entry));
6933 				else
6934 					entry = make_readable_migration_entry(
6935 								swp_offset(entry));
6936 				newpte = swp_entry_to_pte(entry);
6937 				pages++;
6938 			}
6939 
6940 			if (uffd_wp)
6941 				newpte = pte_swp_mkuffd_wp(newpte);
6942 			else if (uffd_wp_resolve)
6943 				newpte = pte_swp_clear_uffd_wp(newpte);
6944 			if (!pte_same(pte, newpte))
6945 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6946 		} else if (unlikely(is_pte_marker(pte))) {
6947 			/*
6948 			 * Do nothing on a poison marker; page is
6949 			 * corrupted, permissons do not apply.  Here
6950 			 * pte_marker_uffd_wp()==true implies !poison
6951 			 * because they're mutual exclusive.
6952 			 */
6953 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6954 				/* Safe to modify directly (non-present->none). */
6955 				huge_pte_clear(mm, address, ptep, psize);
6956 		} else if (!huge_pte_none(pte)) {
6957 			pte_t old_pte;
6958 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6959 
6960 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6961 			pte = huge_pte_modify(old_pte, newprot);
6962 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6963 			if (uffd_wp)
6964 				pte = huge_pte_mkuffd_wp(pte);
6965 			else if (uffd_wp_resolve)
6966 				pte = huge_pte_clear_uffd_wp(pte);
6967 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6968 			pages++;
6969 		} else {
6970 			/* None pte */
6971 			if (unlikely(uffd_wp))
6972 				/* Safe to modify directly (none->non-present). */
6973 				set_huge_pte_at(mm, address, ptep,
6974 						make_pte_marker(PTE_MARKER_UFFD_WP),
6975 						psize);
6976 		}
6977 		spin_unlock(ptl);
6978 	}
6979 	/*
6980 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6981 	 * may have cleared our pud entry and done put_page on the page table:
6982 	 * once we release i_mmap_rwsem, another task can do the final put_page
6983 	 * and that page table be reused and filled with junk.  If we actually
6984 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6985 	 */
6986 	if (shared_pmd)
6987 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6988 	else
6989 		flush_hugetlb_tlb_range(vma, start, end);
6990 	/*
6991 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6992 	 * downgrading page table protection not changing it to point to a new
6993 	 * page.
6994 	 *
6995 	 * See Documentation/mm/mmu_notifier.rst
6996 	 */
6997 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6998 	hugetlb_vma_unlock_write(vma);
6999 	mmu_notifier_invalidate_range_end(&range);
7000 
7001 	return pages > 0 ? (pages << h->order) : pages;
7002 }
7003 
7004 /* Return true if reservation was successful, false otherwise.  */
7005 bool hugetlb_reserve_pages(struct inode *inode,
7006 					long from, long to,
7007 					struct vm_area_struct *vma,
7008 					vm_flags_t vm_flags)
7009 {
7010 	long chg = -1, add = -1;
7011 	struct hstate *h = hstate_inode(inode);
7012 	struct hugepage_subpool *spool = subpool_inode(inode);
7013 	struct resv_map *resv_map;
7014 	struct hugetlb_cgroup *h_cg = NULL;
7015 	long gbl_reserve, regions_needed = 0;
7016 
7017 	/* This should never happen */
7018 	if (from > to) {
7019 		VM_WARN(1, "%s called with a negative range\n", __func__);
7020 		return false;
7021 	}
7022 
7023 	/*
7024 	 * vma specific semaphore used for pmd sharing and fault/truncation
7025 	 * synchronization
7026 	 */
7027 	hugetlb_vma_lock_alloc(vma);
7028 
7029 	/*
7030 	 * Only apply hugepage reservation if asked. At fault time, an
7031 	 * attempt will be made for VM_NORESERVE to allocate a page
7032 	 * without using reserves
7033 	 */
7034 	if (vm_flags & VM_NORESERVE)
7035 		return true;
7036 
7037 	/*
7038 	 * Shared mappings base their reservation on the number of pages that
7039 	 * are already allocated on behalf of the file. Private mappings need
7040 	 * to reserve the full area even if read-only as mprotect() may be
7041 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7042 	 */
7043 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7044 		/*
7045 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7046 		 * called for inodes for which resv_maps were created (see
7047 		 * hugetlbfs_get_inode).
7048 		 */
7049 		resv_map = inode_resv_map(inode);
7050 
7051 		chg = region_chg(resv_map, from, to, &regions_needed);
7052 	} else {
7053 		/* Private mapping. */
7054 		resv_map = resv_map_alloc();
7055 		if (!resv_map)
7056 			goto out_err;
7057 
7058 		chg = to - from;
7059 
7060 		set_vma_resv_map(vma, resv_map);
7061 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7062 	}
7063 
7064 	if (chg < 0)
7065 		goto out_err;
7066 
7067 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7068 				chg * pages_per_huge_page(h), &h_cg) < 0)
7069 		goto out_err;
7070 
7071 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7072 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7073 		 * of the resv_map.
7074 		 */
7075 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7076 	}
7077 
7078 	/*
7079 	 * There must be enough pages in the subpool for the mapping. If
7080 	 * the subpool has a minimum size, there may be some global
7081 	 * reservations already in place (gbl_reserve).
7082 	 */
7083 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7084 	if (gbl_reserve < 0)
7085 		goto out_uncharge_cgroup;
7086 
7087 	/*
7088 	 * Check enough hugepages are available for the reservation.
7089 	 * Hand the pages back to the subpool if there are not
7090 	 */
7091 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7092 		goto out_put_pages;
7093 
7094 	/*
7095 	 * Account for the reservations made. Shared mappings record regions
7096 	 * that have reservations as they are shared by multiple VMAs.
7097 	 * When the last VMA disappears, the region map says how much
7098 	 * the reservation was and the page cache tells how much of
7099 	 * the reservation was consumed. Private mappings are per-VMA and
7100 	 * only the consumed reservations are tracked. When the VMA
7101 	 * disappears, the original reservation is the VMA size and the
7102 	 * consumed reservations are stored in the map. Hence, nothing
7103 	 * else has to be done for private mappings here
7104 	 */
7105 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7106 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7107 
7108 		if (unlikely(add < 0)) {
7109 			hugetlb_acct_memory(h, -gbl_reserve);
7110 			goto out_put_pages;
7111 		} else if (unlikely(chg > add)) {
7112 			/*
7113 			 * pages in this range were added to the reserve
7114 			 * map between region_chg and region_add.  This
7115 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7116 			 * the subpool and reserve counts modified above
7117 			 * based on the difference.
7118 			 */
7119 			long rsv_adjust;
7120 
7121 			/*
7122 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7123 			 * reference to h_cg->css. See comment below for detail.
7124 			 */
7125 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7126 				hstate_index(h),
7127 				(chg - add) * pages_per_huge_page(h), h_cg);
7128 
7129 			rsv_adjust = hugepage_subpool_put_pages(spool,
7130 								chg - add);
7131 			hugetlb_acct_memory(h, -rsv_adjust);
7132 		} else if (h_cg) {
7133 			/*
7134 			 * The file_regions will hold their own reference to
7135 			 * h_cg->css. So we should release the reference held
7136 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7137 			 * done.
7138 			 */
7139 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7140 		}
7141 	}
7142 	return true;
7143 
7144 out_put_pages:
7145 	/* put back original number of pages, chg */
7146 	(void)hugepage_subpool_put_pages(spool, chg);
7147 out_uncharge_cgroup:
7148 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7149 					    chg * pages_per_huge_page(h), h_cg);
7150 out_err:
7151 	hugetlb_vma_lock_free(vma);
7152 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7153 		/* Only call region_abort if the region_chg succeeded but the
7154 		 * region_add failed or didn't run.
7155 		 */
7156 		if (chg >= 0 && add < 0)
7157 			region_abort(resv_map, from, to, regions_needed);
7158 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7159 		kref_put(&resv_map->refs, resv_map_release);
7160 		set_vma_resv_map(vma, NULL);
7161 	}
7162 	return false;
7163 }
7164 
7165 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7166 								long freed)
7167 {
7168 	struct hstate *h = hstate_inode(inode);
7169 	struct resv_map *resv_map = inode_resv_map(inode);
7170 	long chg = 0;
7171 	struct hugepage_subpool *spool = subpool_inode(inode);
7172 	long gbl_reserve;
7173 
7174 	/*
7175 	 * Since this routine can be called in the evict inode path for all
7176 	 * hugetlbfs inodes, resv_map could be NULL.
7177 	 */
7178 	if (resv_map) {
7179 		chg = region_del(resv_map, start, end);
7180 		/*
7181 		 * region_del() can fail in the rare case where a region
7182 		 * must be split and another region descriptor can not be
7183 		 * allocated.  If end == LONG_MAX, it will not fail.
7184 		 */
7185 		if (chg < 0)
7186 			return chg;
7187 	}
7188 
7189 	spin_lock(&inode->i_lock);
7190 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7191 	spin_unlock(&inode->i_lock);
7192 
7193 	/*
7194 	 * If the subpool has a minimum size, the number of global
7195 	 * reservations to be released may be adjusted.
7196 	 *
7197 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7198 	 * won't go negative.
7199 	 */
7200 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7201 	hugetlb_acct_memory(h, -gbl_reserve);
7202 
7203 	return 0;
7204 }
7205 
7206 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7207 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7208 				struct vm_area_struct *vma,
7209 				unsigned long addr, pgoff_t idx)
7210 {
7211 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7212 				svma->vm_start;
7213 	unsigned long sbase = saddr & PUD_MASK;
7214 	unsigned long s_end = sbase + PUD_SIZE;
7215 
7216 	/* Allow segments to share if only one is marked locked */
7217 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7218 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7219 
7220 	/*
7221 	 * match the virtual addresses, permission and the alignment of the
7222 	 * page table page.
7223 	 *
7224 	 * Also, vma_lock (vm_private_data) is required for sharing.
7225 	 */
7226 	if (pmd_index(addr) != pmd_index(saddr) ||
7227 	    vm_flags != svm_flags ||
7228 	    !range_in_vma(svma, sbase, s_end) ||
7229 	    !svma->vm_private_data)
7230 		return 0;
7231 
7232 	return saddr;
7233 }
7234 
7235 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7236 {
7237 	unsigned long start = addr & PUD_MASK;
7238 	unsigned long end = start + PUD_SIZE;
7239 
7240 #ifdef CONFIG_USERFAULTFD
7241 	if (uffd_disable_huge_pmd_share(vma))
7242 		return false;
7243 #endif
7244 	/*
7245 	 * check on proper vm_flags and page table alignment
7246 	 */
7247 	if (!(vma->vm_flags & VM_MAYSHARE))
7248 		return false;
7249 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7250 		return false;
7251 	if (!range_in_vma(vma, start, end))
7252 		return false;
7253 	return true;
7254 }
7255 
7256 /*
7257  * Determine if start,end range within vma could be mapped by shared pmd.
7258  * If yes, adjust start and end to cover range associated with possible
7259  * shared pmd mappings.
7260  */
7261 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7262 				unsigned long *start, unsigned long *end)
7263 {
7264 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7265 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7266 
7267 	/*
7268 	 * vma needs to span at least one aligned PUD size, and the range
7269 	 * must be at least partially within in.
7270 	 */
7271 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7272 		(*end <= v_start) || (*start >= v_end))
7273 		return;
7274 
7275 	/* Extend the range to be PUD aligned for a worst case scenario */
7276 	if (*start > v_start)
7277 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7278 
7279 	if (*end < v_end)
7280 		*end = ALIGN(*end, PUD_SIZE);
7281 }
7282 
7283 /*
7284  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7285  * and returns the corresponding pte. While this is not necessary for the
7286  * !shared pmd case because we can allocate the pmd later as well, it makes the
7287  * code much cleaner. pmd allocation is essential for the shared case because
7288  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7289  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7290  * bad pmd for sharing.
7291  */
7292 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7293 		      unsigned long addr, pud_t *pud)
7294 {
7295 	struct address_space *mapping = vma->vm_file->f_mapping;
7296 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7297 			vma->vm_pgoff;
7298 	struct vm_area_struct *svma;
7299 	unsigned long saddr;
7300 	pte_t *spte = NULL;
7301 	pte_t *pte;
7302 
7303 	i_mmap_lock_read(mapping);
7304 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7305 		if (svma == vma)
7306 			continue;
7307 
7308 		saddr = page_table_shareable(svma, vma, addr, idx);
7309 		if (saddr) {
7310 			spte = hugetlb_walk(svma, saddr,
7311 					    vma_mmu_pagesize(svma));
7312 			if (spte) {
7313 				get_page(virt_to_page(spte));
7314 				break;
7315 			}
7316 		}
7317 	}
7318 
7319 	if (!spte)
7320 		goto out;
7321 
7322 	spin_lock(&mm->page_table_lock);
7323 	if (pud_none(*pud)) {
7324 		pud_populate(mm, pud,
7325 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7326 		mm_inc_nr_pmds(mm);
7327 	} else {
7328 		put_page(virt_to_page(spte));
7329 	}
7330 	spin_unlock(&mm->page_table_lock);
7331 out:
7332 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7333 	i_mmap_unlock_read(mapping);
7334 	return pte;
7335 }
7336 
7337 /*
7338  * unmap huge page backed by shared pte.
7339  *
7340  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7341  * indicated by page_count > 1, unmap is achieved by clearing pud and
7342  * decrementing the ref count. If count == 1, the pte page is not shared.
7343  *
7344  * Called with page table lock held.
7345  *
7346  * returns: 1 successfully unmapped a shared pte page
7347  *	    0 the underlying pte page is not shared, or it is the last user
7348  */
7349 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7350 					unsigned long addr, pte_t *ptep)
7351 {
7352 	pgd_t *pgd = pgd_offset(mm, addr);
7353 	p4d_t *p4d = p4d_offset(pgd, addr);
7354 	pud_t *pud = pud_offset(p4d, addr);
7355 
7356 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7357 	hugetlb_vma_assert_locked(vma);
7358 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7359 	if (page_count(virt_to_page(ptep)) == 1)
7360 		return 0;
7361 
7362 	pud_clear(pud);
7363 	put_page(virt_to_page(ptep));
7364 	mm_dec_nr_pmds(mm);
7365 	return 1;
7366 }
7367 
7368 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7369 
7370 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7371 		      unsigned long addr, pud_t *pud)
7372 {
7373 	return NULL;
7374 }
7375 
7376 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7377 				unsigned long addr, pte_t *ptep)
7378 {
7379 	return 0;
7380 }
7381 
7382 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7383 				unsigned long *start, unsigned long *end)
7384 {
7385 }
7386 
7387 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7388 {
7389 	return false;
7390 }
7391 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7392 
7393 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7394 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7395 			unsigned long addr, unsigned long sz)
7396 {
7397 	pgd_t *pgd;
7398 	p4d_t *p4d;
7399 	pud_t *pud;
7400 	pte_t *pte = NULL;
7401 
7402 	pgd = pgd_offset(mm, addr);
7403 	p4d = p4d_alloc(mm, pgd, addr);
7404 	if (!p4d)
7405 		return NULL;
7406 	pud = pud_alloc(mm, p4d, addr);
7407 	if (pud) {
7408 		if (sz == PUD_SIZE) {
7409 			pte = (pte_t *)pud;
7410 		} else {
7411 			BUG_ON(sz != PMD_SIZE);
7412 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7413 				pte = huge_pmd_share(mm, vma, addr, pud);
7414 			else
7415 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7416 		}
7417 	}
7418 
7419 	if (pte) {
7420 		pte_t pteval = ptep_get_lockless(pte);
7421 
7422 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7423 	}
7424 
7425 	return pte;
7426 }
7427 
7428 /*
7429  * huge_pte_offset() - Walk the page table to resolve the hugepage
7430  * entry at address @addr
7431  *
7432  * Return: Pointer to page table entry (PUD or PMD) for
7433  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7434  * size @sz doesn't match the hugepage size at this level of the page
7435  * table.
7436  */
7437 pte_t *huge_pte_offset(struct mm_struct *mm,
7438 		       unsigned long addr, unsigned long sz)
7439 {
7440 	pgd_t *pgd;
7441 	p4d_t *p4d;
7442 	pud_t *pud;
7443 	pmd_t *pmd;
7444 
7445 	pgd = pgd_offset(mm, addr);
7446 	if (!pgd_present(*pgd))
7447 		return NULL;
7448 	p4d = p4d_offset(pgd, addr);
7449 	if (!p4d_present(*p4d))
7450 		return NULL;
7451 
7452 	pud = pud_offset(p4d, addr);
7453 	if (sz == PUD_SIZE)
7454 		/* must be pud huge, non-present or none */
7455 		return (pte_t *)pud;
7456 	if (!pud_present(*pud))
7457 		return NULL;
7458 	/* must have a valid entry and size to go further */
7459 
7460 	pmd = pmd_offset(pud, addr);
7461 	/* must be pmd huge, non-present or none */
7462 	return (pte_t *)pmd;
7463 }
7464 
7465 /*
7466  * Return a mask that can be used to update an address to the last huge
7467  * page in a page table page mapping size.  Used to skip non-present
7468  * page table entries when linearly scanning address ranges.  Architectures
7469  * with unique huge page to page table relationships can define their own
7470  * version of this routine.
7471  */
7472 unsigned long hugetlb_mask_last_page(struct hstate *h)
7473 {
7474 	unsigned long hp_size = huge_page_size(h);
7475 
7476 	if (hp_size == PUD_SIZE)
7477 		return P4D_SIZE - PUD_SIZE;
7478 	else if (hp_size == PMD_SIZE)
7479 		return PUD_SIZE - PMD_SIZE;
7480 	else
7481 		return 0UL;
7482 }
7483 
7484 #else
7485 
7486 /* See description above.  Architectures can provide their own version. */
7487 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7488 {
7489 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7490 	if (huge_page_size(h) == PMD_SIZE)
7491 		return PUD_SIZE - PMD_SIZE;
7492 #endif
7493 	return 0UL;
7494 }
7495 
7496 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7497 
7498 /*
7499  * These functions are overwritable if your architecture needs its own
7500  * behavior.
7501  */
7502 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7503 {
7504 	bool ret = true;
7505 
7506 	spin_lock_irq(&hugetlb_lock);
7507 	if (!folio_test_hugetlb(folio) ||
7508 	    !folio_test_hugetlb_migratable(folio) ||
7509 	    !folio_try_get(folio)) {
7510 		ret = false;
7511 		goto unlock;
7512 	}
7513 	folio_clear_hugetlb_migratable(folio);
7514 	list_move_tail(&folio->lru, list);
7515 unlock:
7516 	spin_unlock_irq(&hugetlb_lock);
7517 	return ret;
7518 }
7519 
7520 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7521 {
7522 	int ret = 0;
7523 
7524 	*hugetlb = false;
7525 	spin_lock_irq(&hugetlb_lock);
7526 	if (folio_test_hugetlb(folio)) {
7527 		*hugetlb = true;
7528 		if (folio_test_hugetlb_freed(folio))
7529 			ret = 0;
7530 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7531 			ret = folio_try_get(folio);
7532 		else
7533 			ret = -EBUSY;
7534 	}
7535 	spin_unlock_irq(&hugetlb_lock);
7536 	return ret;
7537 }
7538 
7539 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7540 				bool *migratable_cleared)
7541 {
7542 	int ret;
7543 
7544 	spin_lock_irq(&hugetlb_lock);
7545 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7546 	spin_unlock_irq(&hugetlb_lock);
7547 	return ret;
7548 }
7549 
7550 void folio_putback_active_hugetlb(struct folio *folio)
7551 {
7552 	spin_lock_irq(&hugetlb_lock);
7553 	folio_set_hugetlb_migratable(folio);
7554 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7555 	spin_unlock_irq(&hugetlb_lock);
7556 	folio_put(folio);
7557 }
7558 
7559 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7560 {
7561 	struct hstate *h = folio_hstate(old_folio);
7562 
7563 	hugetlb_cgroup_migrate(old_folio, new_folio);
7564 	set_page_owner_migrate_reason(&new_folio->page, reason);
7565 
7566 	/*
7567 	 * transfer temporary state of the new hugetlb folio. This is
7568 	 * reverse to other transitions because the newpage is going to
7569 	 * be final while the old one will be freed so it takes over
7570 	 * the temporary status.
7571 	 *
7572 	 * Also note that we have to transfer the per-node surplus state
7573 	 * here as well otherwise the global surplus count will not match
7574 	 * the per-node's.
7575 	 */
7576 	if (folio_test_hugetlb_temporary(new_folio)) {
7577 		int old_nid = folio_nid(old_folio);
7578 		int new_nid = folio_nid(new_folio);
7579 
7580 		folio_set_hugetlb_temporary(old_folio);
7581 		folio_clear_hugetlb_temporary(new_folio);
7582 
7583 
7584 		/*
7585 		 * There is no need to transfer the per-node surplus state
7586 		 * when we do not cross the node.
7587 		 */
7588 		if (new_nid == old_nid)
7589 			return;
7590 		spin_lock_irq(&hugetlb_lock);
7591 		if (h->surplus_huge_pages_node[old_nid]) {
7592 			h->surplus_huge_pages_node[old_nid]--;
7593 			h->surplus_huge_pages_node[new_nid]++;
7594 		}
7595 		spin_unlock_irq(&hugetlb_lock);
7596 	}
7597 }
7598 
7599 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7600 				   unsigned long start,
7601 				   unsigned long end)
7602 {
7603 	struct hstate *h = hstate_vma(vma);
7604 	unsigned long sz = huge_page_size(h);
7605 	struct mm_struct *mm = vma->vm_mm;
7606 	struct mmu_notifier_range range;
7607 	unsigned long address;
7608 	spinlock_t *ptl;
7609 	pte_t *ptep;
7610 
7611 	if (!(vma->vm_flags & VM_MAYSHARE))
7612 		return;
7613 
7614 	if (start >= end)
7615 		return;
7616 
7617 	flush_cache_range(vma, start, end);
7618 	/*
7619 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7620 	 * we have already done the PUD_SIZE alignment.
7621 	 */
7622 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7623 				start, end);
7624 	mmu_notifier_invalidate_range_start(&range);
7625 	hugetlb_vma_lock_write(vma);
7626 	i_mmap_lock_write(vma->vm_file->f_mapping);
7627 	for (address = start; address < end; address += PUD_SIZE) {
7628 		ptep = hugetlb_walk(vma, address, sz);
7629 		if (!ptep)
7630 			continue;
7631 		ptl = huge_pte_lock(h, mm, ptep);
7632 		huge_pmd_unshare(mm, vma, address, ptep);
7633 		spin_unlock(ptl);
7634 	}
7635 	flush_hugetlb_tlb_range(vma, start, end);
7636 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7637 	hugetlb_vma_unlock_write(vma);
7638 	/*
7639 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7640 	 * Documentation/mm/mmu_notifier.rst.
7641 	 */
7642 	mmu_notifier_invalidate_range_end(&range);
7643 }
7644 
7645 /*
7646  * This function will unconditionally remove all the shared pmd pgtable entries
7647  * within the specific vma for a hugetlbfs memory range.
7648  */
7649 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7650 {
7651 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7652 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7653 }
7654 
7655 #ifdef CONFIG_CMA
7656 static bool cma_reserve_called __initdata;
7657 
7658 static int __init cmdline_parse_hugetlb_cma(char *p)
7659 {
7660 	int nid, count = 0;
7661 	unsigned long tmp;
7662 	char *s = p;
7663 
7664 	while (*s) {
7665 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7666 			break;
7667 
7668 		if (s[count] == ':') {
7669 			if (tmp >= MAX_NUMNODES)
7670 				break;
7671 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7672 
7673 			s += count + 1;
7674 			tmp = memparse(s, &s);
7675 			hugetlb_cma_size_in_node[nid] = tmp;
7676 			hugetlb_cma_size += tmp;
7677 
7678 			/*
7679 			 * Skip the separator if have one, otherwise
7680 			 * break the parsing.
7681 			 */
7682 			if (*s == ',')
7683 				s++;
7684 			else
7685 				break;
7686 		} else {
7687 			hugetlb_cma_size = memparse(p, &p);
7688 			break;
7689 		}
7690 	}
7691 
7692 	return 0;
7693 }
7694 
7695 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7696 
7697 void __init hugetlb_cma_reserve(int order)
7698 {
7699 	unsigned long size, reserved, per_node;
7700 	bool node_specific_cma_alloc = false;
7701 	int nid;
7702 
7703 	/*
7704 	 * HugeTLB CMA reservation is required for gigantic
7705 	 * huge pages which could not be allocated via the
7706 	 * page allocator. Just warn if there is any change
7707 	 * breaking this assumption.
7708 	 */
7709 	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7710 	cma_reserve_called = true;
7711 
7712 	if (!hugetlb_cma_size)
7713 		return;
7714 
7715 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7716 		if (hugetlb_cma_size_in_node[nid] == 0)
7717 			continue;
7718 
7719 		if (!node_online(nid)) {
7720 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7721 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7722 			hugetlb_cma_size_in_node[nid] = 0;
7723 			continue;
7724 		}
7725 
7726 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7727 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7728 				nid, (PAGE_SIZE << order) / SZ_1M);
7729 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7730 			hugetlb_cma_size_in_node[nid] = 0;
7731 		} else {
7732 			node_specific_cma_alloc = true;
7733 		}
7734 	}
7735 
7736 	/* Validate the CMA size again in case some invalid nodes specified. */
7737 	if (!hugetlb_cma_size)
7738 		return;
7739 
7740 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7741 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7742 			(PAGE_SIZE << order) / SZ_1M);
7743 		hugetlb_cma_size = 0;
7744 		return;
7745 	}
7746 
7747 	if (!node_specific_cma_alloc) {
7748 		/*
7749 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7750 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7751 		 */
7752 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7753 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7754 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7755 	}
7756 
7757 	reserved = 0;
7758 	for_each_online_node(nid) {
7759 		int res;
7760 		char name[CMA_MAX_NAME];
7761 
7762 		if (node_specific_cma_alloc) {
7763 			if (hugetlb_cma_size_in_node[nid] == 0)
7764 				continue;
7765 
7766 			size = hugetlb_cma_size_in_node[nid];
7767 		} else {
7768 			size = min(per_node, hugetlb_cma_size - reserved);
7769 		}
7770 
7771 		size = round_up(size, PAGE_SIZE << order);
7772 
7773 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7774 		/*
7775 		 * Note that 'order per bit' is based on smallest size that
7776 		 * may be returned to CMA allocator in the case of
7777 		 * huge page demotion.
7778 		 */
7779 		res = cma_declare_contiguous_nid(0, size, 0,
7780 					PAGE_SIZE << order,
7781 					HUGETLB_PAGE_ORDER, false, name,
7782 					&hugetlb_cma[nid], nid);
7783 		if (res) {
7784 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7785 				res, nid);
7786 			continue;
7787 		}
7788 
7789 		reserved += size;
7790 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7791 			size / SZ_1M, nid);
7792 
7793 		if (reserved >= hugetlb_cma_size)
7794 			break;
7795 	}
7796 
7797 	if (!reserved)
7798 		/*
7799 		 * hugetlb_cma_size is used to determine if allocations from
7800 		 * cma are possible.  Set to zero if no cma regions are set up.
7801 		 */
7802 		hugetlb_cma_size = 0;
7803 }
7804 
7805 static void __init hugetlb_cma_check(void)
7806 {
7807 	if (!hugetlb_cma_size || cma_reserve_called)
7808 		return;
7809 
7810 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7811 }
7812 
7813 #endif /* CONFIG_CMA */
7814