1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 52 int hugetlb_max_hstate __read_mostly; 53 unsigned int default_hstate_idx; 54 struct hstate hstates[HUGE_MAX_HSTATE]; 55 56 #ifdef CONFIG_CMA 57 static struct cma *hugetlb_cma[MAX_NUMNODES]; 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 60 { 61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 62 1 << order); 63 } 64 #else 65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 66 { 67 return false; 68 } 69 #endif 70 static unsigned long hugetlb_cma_size __initdata; 71 72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 73 74 /* for command line parsing */ 75 static struct hstate * __initdata parsed_hstate; 76 static unsigned long __initdata default_hstate_max_huge_pages; 77 static bool __initdata parsed_valid_hugepagesz = true; 78 static bool __initdata parsed_default_hugepagesz; 79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 80 81 /* 82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 83 * free_huge_pages, and surplus_huge_pages. 84 */ 85 DEFINE_SPINLOCK(hugetlb_lock); 86 87 /* 88 * Serializes faults on the same logical page. This is used to 89 * prevent spurious OOMs when the hugepage pool is fully utilized. 90 */ 91 static int num_fault_mutexes; 92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 93 94 /* Forward declaration */ 95 static int hugetlb_acct_memory(struct hstate *h, long delta); 96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 100 unsigned long start, unsigned long end); 101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 102 103 static inline bool subpool_is_free(struct hugepage_subpool *spool) 104 { 105 if (spool->count) 106 return false; 107 if (spool->max_hpages != -1) 108 return spool->used_hpages == 0; 109 if (spool->min_hpages != -1) 110 return spool->rsv_hpages == spool->min_hpages; 111 112 return true; 113 } 114 115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 116 unsigned long irq_flags) 117 { 118 spin_unlock_irqrestore(&spool->lock, irq_flags); 119 120 /* If no pages are used, and no other handles to the subpool 121 * remain, give up any reservations based on minimum size and 122 * free the subpool */ 123 if (subpool_is_free(spool)) { 124 if (spool->min_hpages != -1) 125 hugetlb_acct_memory(spool->hstate, 126 -spool->min_hpages); 127 kfree(spool); 128 } 129 } 130 131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 132 long min_hpages) 133 { 134 struct hugepage_subpool *spool; 135 136 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 137 if (!spool) 138 return NULL; 139 140 spin_lock_init(&spool->lock); 141 spool->count = 1; 142 spool->max_hpages = max_hpages; 143 spool->hstate = h; 144 spool->min_hpages = min_hpages; 145 146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 147 kfree(spool); 148 return NULL; 149 } 150 spool->rsv_hpages = min_hpages; 151 152 return spool; 153 } 154 155 void hugepage_put_subpool(struct hugepage_subpool *spool) 156 { 157 unsigned long flags; 158 159 spin_lock_irqsave(&spool->lock, flags); 160 BUG_ON(!spool->count); 161 spool->count--; 162 unlock_or_release_subpool(spool, flags); 163 } 164 165 /* 166 * Subpool accounting for allocating and reserving pages. 167 * Return -ENOMEM if there are not enough resources to satisfy the 168 * request. Otherwise, return the number of pages by which the 169 * global pools must be adjusted (upward). The returned value may 170 * only be different than the passed value (delta) in the case where 171 * a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return ret; 180 181 spin_lock_irq(&spool->lock); 182 183 if (spool->max_hpages != -1) { /* maximum size accounting */ 184 if ((spool->used_hpages + delta) <= spool->max_hpages) 185 spool->used_hpages += delta; 186 else { 187 ret = -ENOMEM; 188 goto unlock_ret; 189 } 190 } 191 192 /* minimum size accounting */ 193 if (spool->min_hpages != -1 && spool->rsv_hpages) { 194 if (delta > spool->rsv_hpages) { 195 /* 196 * Asking for more reserves than those already taken on 197 * behalf of subpool. Return difference. 198 */ 199 ret = delta - spool->rsv_hpages; 200 spool->rsv_hpages = 0; 201 } else { 202 ret = 0; /* reserves already accounted for */ 203 spool->rsv_hpages -= delta; 204 } 205 } 206 207 unlock_ret: 208 spin_unlock_irq(&spool->lock); 209 return ret; 210 } 211 212 /* 213 * Subpool accounting for freeing and unreserving pages. 214 * Return the number of global page reservations that must be dropped. 215 * The return value may only be different than the passed value (delta) 216 * in the case where a subpool minimum size must be maintained. 217 */ 218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 219 long delta) 220 { 221 long ret = delta; 222 unsigned long flags; 223 224 if (!spool) 225 return delta; 226 227 spin_lock_irqsave(&spool->lock, flags); 228 229 if (spool->max_hpages != -1) /* maximum size accounting */ 230 spool->used_hpages -= delta; 231 232 /* minimum size accounting */ 233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 234 if (spool->rsv_hpages + delta <= spool->min_hpages) 235 ret = 0; 236 else 237 ret = spool->rsv_hpages + delta - spool->min_hpages; 238 239 spool->rsv_hpages += delta; 240 if (spool->rsv_hpages > spool->min_hpages) 241 spool->rsv_hpages = spool->min_hpages; 242 } 243 244 /* 245 * If hugetlbfs_put_super couldn't free spool due to an outstanding 246 * quota reference, free it now. 247 */ 248 unlock_or_release_subpool(spool, flags); 249 250 return ret; 251 } 252 253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 254 { 255 return HUGETLBFS_SB(inode->i_sb)->spool; 256 } 257 258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 259 { 260 return subpool_inode(file_inode(vma->vm_file)); 261 } 262 263 /* 264 * hugetlb vma_lock helper routines 265 */ 266 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 267 { 268 if (__vma_shareable_lock(vma)) { 269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 270 271 down_read(&vma_lock->rw_sema); 272 } else if (__vma_private_lock(vma)) { 273 struct resv_map *resv_map = vma_resv_map(vma); 274 275 down_read(&resv_map->rw_sema); 276 } 277 } 278 279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 280 { 281 if (__vma_shareable_lock(vma)) { 282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 283 284 up_read(&vma_lock->rw_sema); 285 } else if (__vma_private_lock(vma)) { 286 struct resv_map *resv_map = vma_resv_map(vma); 287 288 up_read(&resv_map->rw_sema); 289 } 290 } 291 292 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 293 { 294 if (__vma_shareable_lock(vma)) { 295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 296 297 down_write(&vma_lock->rw_sema); 298 } else if (__vma_private_lock(vma)) { 299 struct resv_map *resv_map = vma_resv_map(vma); 300 301 down_write(&resv_map->rw_sema); 302 } 303 } 304 305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 306 { 307 if (__vma_shareable_lock(vma)) { 308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 309 310 up_write(&vma_lock->rw_sema); 311 } else if (__vma_private_lock(vma)) { 312 struct resv_map *resv_map = vma_resv_map(vma); 313 314 up_write(&resv_map->rw_sema); 315 } 316 } 317 318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 319 { 320 321 if (__vma_shareable_lock(vma)) { 322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 323 324 return down_write_trylock(&vma_lock->rw_sema); 325 } else if (__vma_private_lock(vma)) { 326 struct resv_map *resv_map = vma_resv_map(vma); 327 328 return down_write_trylock(&resv_map->rw_sema); 329 } 330 331 return 1; 332 } 333 334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 335 { 336 if (__vma_shareable_lock(vma)) { 337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 338 339 lockdep_assert_held(&vma_lock->rw_sema); 340 } else if (__vma_private_lock(vma)) { 341 struct resv_map *resv_map = vma_resv_map(vma); 342 343 lockdep_assert_held(&resv_map->rw_sema); 344 } 345 } 346 347 void hugetlb_vma_lock_release(struct kref *kref) 348 { 349 struct hugetlb_vma_lock *vma_lock = container_of(kref, 350 struct hugetlb_vma_lock, refs); 351 352 kfree(vma_lock); 353 } 354 355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 356 { 357 struct vm_area_struct *vma = vma_lock->vma; 358 359 /* 360 * vma_lock structure may or not be released as a result of put, 361 * it certainly will no longer be attached to vma so clear pointer. 362 * Semaphore synchronizes access to vma_lock->vma field. 363 */ 364 vma_lock->vma = NULL; 365 vma->vm_private_data = NULL; 366 up_write(&vma_lock->rw_sema); 367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 368 } 369 370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 371 { 372 if (__vma_shareable_lock(vma)) { 373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 374 375 __hugetlb_vma_unlock_write_put(vma_lock); 376 } else if (__vma_private_lock(vma)) { 377 struct resv_map *resv_map = vma_resv_map(vma); 378 379 /* no free for anon vmas, but still need to unlock */ 380 up_write(&resv_map->rw_sema); 381 } 382 } 383 384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 385 { 386 /* 387 * Only present in sharable vmas. 388 */ 389 if (!vma || !__vma_shareable_lock(vma)) 390 return; 391 392 if (vma->vm_private_data) { 393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 394 395 down_write(&vma_lock->rw_sema); 396 __hugetlb_vma_unlock_write_put(vma_lock); 397 } 398 } 399 400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 401 { 402 struct hugetlb_vma_lock *vma_lock; 403 404 /* Only establish in (flags) sharable vmas */ 405 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 406 return; 407 408 /* Should never get here with non-NULL vm_private_data */ 409 if (vma->vm_private_data) 410 return; 411 412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 413 if (!vma_lock) { 414 /* 415 * If we can not allocate structure, then vma can not 416 * participate in pmd sharing. This is only a possible 417 * performance enhancement and memory saving issue. 418 * However, the lock is also used to synchronize page 419 * faults with truncation. If the lock is not present, 420 * unlikely races could leave pages in a file past i_size 421 * until the file is removed. Warn in the unlikely case of 422 * allocation failure. 423 */ 424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 425 return; 426 } 427 428 kref_init(&vma_lock->refs); 429 init_rwsem(&vma_lock->rw_sema); 430 vma_lock->vma = vma; 431 vma->vm_private_data = vma_lock; 432 } 433 434 /* Helper that removes a struct file_region from the resv_map cache and returns 435 * it for use. 436 */ 437 static struct file_region * 438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 439 { 440 struct file_region *nrg; 441 442 VM_BUG_ON(resv->region_cache_count <= 0); 443 444 resv->region_cache_count--; 445 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 446 list_del(&nrg->link); 447 448 nrg->from = from; 449 nrg->to = to; 450 451 return nrg; 452 } 453 454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 455 struct file_region *rg) 456 { 457 #ifdef CONFIG_CGROUP_HUGETLB 458 nrg->reservation_counter = rg->reservation_counter; 459 nrg->css = rg->css; 460 if (rg->css) 461 css_get(rg->css); 462 #endif 463 } 464 465 /* Helper that records hugetlb_cgroup uncharge info. */ 466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 467 struct hstate *h, 468 struct resv_map *resv, 469 struct file_region *nrg) 470 { 471 #ifdef CONFIG_CGROUP_HUGETLB 472 if (h_cg) { 473 nrg->reservation_counter = 474 &h_cg->rsvd_hugepage[hstate_index(h)]; 475 nrg->css = &h_cg->css; 476 /* 477 * The caller will hold exactly one h_cg->css reference for the 478 * whole contiguous reservation region. But this area might be 479 * scattered when there are already some file_regions reside in 480 * it. As a result, many file_regions may share only one css 481 * reference. In order to ensure that one file_region must hold 482 * exactly one h_cg->css reference, we should do css_get for 483 * each file_region and leave the reference held by caller 484 * untouched. 485 */ 486 css_get(&h_cg->css); 487 if (!resv->pages_per_hpage) 488 resv->pages_per_hpage = pages_per_huge_page(h); 489 /* pages_per_hpage should be the same for all entries in 490 * a resv_map. 491 */ 492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 493 } else { 494 nrg->reservation_counter = NULL; 495 nrg->css = NULL; 496 } 497 #endif 498 } 499 500 static void put_uncharge_info(struct file_region *rg) 501 { 502 #ifdef CONFIG_CGROUP_HUGETLB 503 if (rg->css) 504 css_put(rg->css); 505 #endif 506 } 507 508 static bool has_same_uncharge_info(struct file_region *rg, 509 struct file_region *org) 510 { 511 #ifdef CONFIG_CGROUP_HUGETLB 512 return rg->reservation_counter == org->reservation_counter && 513 rg->css == org->css; 514 515 #else 516 return true; 517 #endif 518 } 519 520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 521 { 522 struct file_region *nrg, *prg; 523 524 prg = list_prev_entry(rg, link); 525 if (&prg->link != &resv->regions && prg->to == rg->from && 526 has_same_uncharge_info(prg, rg)) { 527 prg->to = rg->to; 528 529 list_del(&rg->link); 530 put_uncharge_info(rg); 531 kfree(rg); 532 533 rg = prg; 534 } 535 536 nrg = list_next_entry(rg, link); 537 if (&nrg->link != &resv->regions && nrg->from == rg->to && 538 has_same_uncharge_info(nrg, rg)) { 539 nrg->from = rg->from; 540 541 list_del(&rg->link); 542 put_uncharge_info(rg); 543 kfree(rg); 544 } 545 } 546 547 static inline long 548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 549 long to, struct hstate *h, struct hugetlb_cgroup *cg, 550 long *regions_needed) 551 { 552 struct file_region *nrg; 553 554 if (!regions_needed) { 555 nrg = get_file_region_entry_from_cache(map, from, to); 556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 557 list_add(&nrg->link, rg); 558 coalesce_file_region(map, nrg); 559 } else 560 *regions_needed += 1; 561 562 return to - from; 563 } 564 565 /* 566 * Must be called with resv->lock held. 567 * 568 * Calling this with regions_needed != NULL will count the number of pages 569 * to be added but will not modify the linked list. And regions_needed will 570 * indicate the number of file_regions needed in the cache to carry out to add 571 * the regions for this range. 572 */ 573 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 574 struct hugetlb_cgroup *h_cg, 575 struct hstate *h, long *regions_needed) 576 { 577 long add = 0; 578 struct list_head *head = &resv->regions; 579 long last_accounted_offset = f; 580 struct file_region *iter, *trg = NULL; 581 struct list_head *rg = NULL; 582 583 if (regions_needed) 584 *regions_needed = 0; 585 586 /* In this loop, we essentially handle an entry for the range 587 * [last_accounted_offset, iter->from), at every iteration, with some 588 * bounds checking. 589 */ 590 list_for_each_entry_safe(iter, trg, head, link) { 591 /* Skip irrelevant regions that start before our range. */ 592 if (iter->from < f) { 593 /* If this region ends after the last accounted offset, 594 * then we need to update last_accounted_offset. 595 */ 596 if (iter->to > last_accounted_offset) 597 last_accounted_offset = iter->to; 598 continue; 599 } 600 601 /* When we find a region that starts beyond our range, we've 602 * finished. 603 */ 604 if (iter->from >= t) { 605 rg = iter->link.prev; 606 break; 607 } 608 609 /* Add an entry for last_accounted_offset -> iter->from, and 610 * update last_accounted_offset. 611 */ 612 if (iter->from > last_accounted_offset) 613 add += hugetlb_resv_map_add(resv, iter->link.prev, 614 last_accounted_offset, 615 iter->from, h, h_cg, 616 regions_needed); 617 618 last_accounted_offset = iter->to; 619 } 620 621 /* Handle the case where our range extends beyond 622 * last_accounted_offset. 623 */ 624 if (!rg) 625 rg = head->prev; 626 if (last_accounted_offset < t) 627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 628 t, h, h_cg, regions_needed); 629 630 return add; 631 } 632 633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 634 */ 635 static int allocate_file_region_entries(struct resv_map *resv, 636 int regions_needed) 637 __must_hold(&resv->lock) 638 { 639 LIST_HEAD(allocated_regions); 640 int to_allocate = 0, i = 0; 641 struct file_region *trg = NULL, *rg = NULL; 642 643 VM_BUG_ON(regions_needed < 0); 644 645 /* 646 * Check for sufficient descriptors in the cache to accommodate 647 * the number of in progress add operations plus regions_needed. 648 * 649 * This is a while loop because when we drop the lock, some other call 650 * to region_add or region_del may have consumed some region_entries, 651 * so we keep looping here until we finally have enough entries for 652 * (adds_in_progress + regions_needed). 653 */ 654 while (resv->region_cache_count < 655 (resv->adds_in_progress + regions_needed)) { 656 to_allocate = resv->adds_in_progress + regions_needed - 657 resv->region_cache_count; 658 659 /* At this point, we should have enough entries in the cache 660 * for all the existing adds_in_progress. We should only be 661 * needing to allocate for regions_needed. 662 */ 663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 664 665 spin_unlock(&resv->lock); 666 for (i = 0; i < to_allocate; i++) { 667 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 668 if (!trg) 669 goto out_of_memory; 670 list_add(&trg->link, &allocated_regions); 671 } 672 673 spin_lock(&resv->lock); 674 675 list_splice(&allocated_regions, &resv->region_cache); 676 resv->region_cache_count += to_allocate; 677 } 678 679 return 0; 680 681 out_of_memory: 682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 683 list_del(&rg->link); 684 kfree(rg); 685 } 686 return -ENOMEM; 687 } 688 689 /* 690 * Add the huge page range represented by [f, t) to the reserve 691 * map. Regions will be taken from the cache to fill in this range. 692 * Sufficient regions should exist in the cache due to the previous 693 * call to region_chg with the same range, but in some cases the cache will not 694 * have sufficient entries due to races with other code doing region_add or 695 * region_del. The extra needed entries will be allocated. 696 * 697 * regions_needed is the out value provided by a previous call to region_chg. 698 * 699 * Return the number of new huge pages added to the map. This number is greater 700 * than or equal to zero. If file_region entries needed to be allocated for 701 * this operation and we were not able to allocate, it returns -ENOMEM. 702 * region_add of regions of length 1 never allocate file_regions and cannot 703 * fail; region_chg will always allocate at least 1 entry and a region_add for 704 * 1 page will only require at most 1 entry. 705 */ 706 static long region_add(struct resv_map *resv, long f, long t, 707 long in_regions_needed, struct hstate *h, 708 struct hugetlb_cgroup *h_cg) 709 { 710 long add = 0, actual_regions_needed = 0; 711 712 spin_lock(&resv->lock); 713 retry: 714 715 /* Count how many regions are actually needed to execute this add. */ 716 add_reservation_in_range(resv, f, t, NULL, NULL, 717 &actual_regions_needed); 718 719 /* 720 * Check for sufficient descriptors in the cache to accommodate 721 * this add operation. Note that actual_regions_needed may be greater 722 * than in_regions_needed, as the resv_map may have been modified since 723 * the region_chg call. In this case, we need to make sure that we 724 * allocate extra entries, such that we have enough for all the 725 * existing adds_in_progress, plus the excess needed for this 726 * operation. 727 */ 728 if (actual_regions_needed > in_regions_needed && 729 resv->region_cache_count < 730 resv->adds_in_progress + 731 (actual_regions_needed - in_regions_needed)) { 732 /* region_add operation of range 1 should never need to 733 * allocate file_region entries. 734 */ 735 VM_BUG_ON(t - f <= 1); 736 737 if (allocate_file_region_entries( 738 resv, actual_regions_needed - in_regions_needed)) { 739 return -ENOMEM; 740 } 741 742 goto retry; 743 } 744 745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 746 747 resv->adds_in_progress -= in_regions_needed; 748 749 spin_unlock(&resv->lock); 750 return add; 751 } 752 753 /* 754 * Examine the existing reserve map and determine how many 755 * huge pages in the specified range [f, t) are NOT currently 756 * represented. This routine is called before a subsequent 757 * call to region_add that will actually modify the reserve 758 * map to add the specified range [f, t). region_chg does 759 * not change the number of huge pages represented by the 760 * map. A number of new file_region structures is added to the cache as a 761 * placeholder, for the subsequent region_add call to use. At least 1 762 * file_region structure is added. 763 * 764 * out_regions_needed is the number of regions added to the 765 * resv->adds_in_progress. This value needs to be provided to a follow up call 766 * to region_add or region_abort for proper accounting. 767 * 768 * Returns the number of huge pages that need to be added to the existing 769 * reservation map for the range [f, t). This number is greater or equal to 770 * zero. -ENOMEM is returned if a new file_region structure or cache entry 771 * is needed and can not be allocated. 772 */ 773 static long region_chg(struct resv_map *resv, long f, long t, 774 long *out_regions_needed) 775 { 776 long chg = 0; 777 778 spin_lock(&resv->lock); 779 780 /* Count how many hugepages in this range are NOT represented. */ 781 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 782 out_regions_needed); 783 784 if (*out_regions_needed == 0) 785 *out_regions_needed = 1; 786 787 if (allocate_file_region_entries(resv, *out_regions_needed)) 788 return -ENOMEM; 789 790 resv->adds_in_progress += *out_regions_needed; 791 792 spin_unlock(&resv->lock); 793 return chg; 794 } 795 796 /* 797 * Abort the in progress add operation. The adds_in_progress field 798 * of the resv_map keeps track of the operations in progress between 799 * calls to region_chg and region_add. Operations are sometimes 800 * aborted after the call to region_chg. In such cases, region_abort 801 * is called to decrement the adds_in_progress counter. regions_needed 802 * is the value returned by the region_chg call, it is used to decrement 803 * the adds_in_progress counter. 804 * 805 * NOTE: The range arguments [f, t) are not needed or used in this 806 * routine. They are kept to make reading the calling code easier as 807 * arguments will match the associated region_chg call. 808 */ 809 static void region_abort(struct resv_map *resv, long f, long t, 810 long regions_needed) 811 { 812 spin_lock(&resv->lock); 813 VM_BUG_ON(!resv->region_cache_count); 814 resv->adds_in_progress -= regions_needed; 815 spin_unlock(&resv->lock); 816 } 817 818 /* 819 * Delete the specified range [f, t) from the reserve map. If the 820 * t parameter is LONG_MAX, this indicates that ALL regions after f 821 * should be deleted. Locate the regions which intersect [f, t) 822 * and either trim, delete or split the existing regions. 823 * 824 * Returns the number of huge pages deleted from the reserve map. 825 * In the normal case, the return value is zero or more. In the 826 * case where a region must be split, a new region descriptor must 827 * be allocated. If the allocation fails, -ENOMEM will be returned. 828 * NOTE: If the parameter t == LONG_MAX, then we will never split 829 * a region and possibly return -ENOMEM. Callers specifying 830 * t == LONG_MAX do not need to check for -ENOMEM error. 831 */ 832 static long region_del(struct resv_map *resv, long f, long t) 833 { 834 struct list_head *head = &resv->regions; 835 struct file_region *rg, *trg; 836 struct file_region *nrg = NULL; 837 long del = 0; 838 839 retry: 840 spin_lock(&resv->lock); 841 list_for_each_entry_safe(rg, trg, head, link) { 842 /* 843 * Skip regions before the range to be deleted. file_region 844 * ranges are normally of the form [from, to). However, there 845 * may be a "placeholder" entry in the map which is of the form 846 * (from, to) with from == to. Check for placeholder entries 847 * at the beginning of the range to be deleted. 848 */ 849 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 850 continue; 851 852 if (rg->from >= t) 853 break; 854 855 if (f > rg->from && t < rg->to) { /* Must split region */ 856 /* 857 * Check for an entry in the cache before dropping 858 * lock and attempting allocation. 859 */ 860 if (!nrg && 861 resv->region_cache_count > resv->adds_in_progress) { 862 nrg = list_first_entry(&resv->region_cache, 863 struct file_region, 864 link); 865 list_del(&nrg->link); 866 resv->region_cache_count--; 867 } 868 869 if (!nrg) { 870 spin_unlock(&resv->lock); 871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 872 if (!nrg) 873 return -ENOMEM; 874 goto retry; 875 } 876 877 del += t - f; 878 hugetlb_cgroup_uncharge_file_region( 879 resv, rg, t - f, false); 880 881 /* New entry for end of split region */ 882 nrg->from = t; 883 nrg->to = rg->to; 884 885 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 886 887 INIT_LIST_HEAD(&nrg->link); 888 889 /* Original entry is trimmed */ 890 rg->to = f; 891 892 list_add(&nrg->link, &rg->link); 893 nrg = NULL; 894 break; 895 } 896 897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 898 del += rg->to - rg->from; 899 hugetlb_cgroup_uncharge_file_region(resv, rg, 900 rg->to - rg->from, true); 901 list_del(&rg->link); 902 kfree(rg); 903 continue; 904 } 905 906 if (f <= rg->from) { /* Trim beginning of region */ 907 hugetlb_cgroup_uncharge_file_region(resv, rg, 908 t - rg->from, false); 909 910 del += t - rg->from; 911 rg->from = t; 912 } else { /* Trim end of region */ 913 hugetlb_cgroup_uncharge_file_region(resv, rg, 914 rg->to - f, false); 915 916 del += rg->to - f; 917 rg->to = f; 918 } 919 } 920 921 spin_unlock(&resv->lock); 922 kfree(nrg); 923 return del; 924 } 925 926 /* 927 * A rare out of memory error was encountered which prevented removal of 928 * the reserve map region for a page. The huge page itself was free'ed 929 * and removed from the page cache. This routine will adjust the subpool 930 * usage count, and the global reserve count if needed. By incrementing 931 * these counts, the reserve map entry which could not be deleted will 932 * appear as a "reserved" entry instead of simply dangling with incorrect 933 * counts. 934 */ 935 void hugetlb_fix_reserve_counts(struct inode *inode) 936 { 937 struct hugepage_subpool *spool = subpool_inode(inode); 938 long rsv_adjust; 939 bool reserved = false; 940 941 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 942 if (rsv_adjust > 0) { 943 struct hstate *h = hstate_inode(inode); 944 945 if (!hugetlb_acct_memory(h, 1)) 946 reserved = true; 947 } else if (!rsv_adjust) { 948 reserved = true; 949 } 950 951 if (!reserved) 952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 953 } 954 955 /* 956 * Count and return the number of huge pages in the reserve map 957 * that intersect with the range [f, t). 958 */ 959 static long region_count(struct resv_map *resv, long f, long t) 960 { 961 struct list_head *head = &resv->regions; 962 struct file_region *rg; 963 long chg = 0; 964 965 spin_lock(&resv->lock); 966 /* Locate each segment we overlap with, and count that overlap. */ 967 list_for_each_entry(rg, head, link) { 968 long seg_from; 969 long seg_to; 970 971 if (rg->to <= f) 972 continue; 973 if (rg->from >= t) 974 break; 975 976 seg_from = max(rg->from, f); 977 seg_to = min(rg->to, t); 978 979 chg += seg_to - seg_from; 980 } 981 spin_unlock(&resv->lock); 982 983 return chg; 984 } 985 986 /* 987 * Convert the address within this vma to the page offset within 988 * the mapping, huge page units here. 989 */ 990 static pgoff_t vma_hugecache_offset(struct hstate *h, 991 struct vm_area_struct *vma, unsigned long address) 992 { 993 return ((address - vma->vm_start) >> huge_page_shift(h)) + 994 (vma->vm_pgoff >> huge_page_order(h)); 995 } 996 997 /** 998 * vma_kernel_pagesize - Page size granularity for this VMA. 999 * @vma: The user mapping. 1000 * 1001 * Folios in this VMA will be aligned to, and at least the size of the 1002 * number of bytes returned by this function. 1003 * 1004 * Return: The default size of the folios allocated when backing a VMA. 1005 */ 1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1007 { 1008 if (vma->vm_ops && vma->vm_ops->pagesize) 1009 return vma->vm_ops->pagesize(vma); 1010 return PAGE_SIZE; 1011 } 1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1013 1014 /* 1015 * Return the page size being used by the MMU to back a VMA. In the majority 1016 * of cases, the page size used by the kernel matches the MMU size. On 1017 * architectures where it differs, an architecture-specific 'strong' 1018 * version of this symbol is required. 1019 */ 1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1021 { 1022 return vma_kernel_pagesize(vma); 1023 } 1024 1025 /* 1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1027 * bits of the reservation map pointer, which are always clear due to 1028 * alignment. 1029 */ 1030 #define HPAGE_RESV_OWNER (1UL << 0) 1031 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1033 1034 /* 1035 * These helpers are used to track how many pages are reserved for 1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1037 * is guaranteed to have their future faults succeed. 1038 * 1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1040 * the reserve counters are updated with the hugetlb_lock held. It is safe 1041 * to reset the VMA at fork() time as it is not in use yet and there is no 1042 * chance of the global counters getting corrupted as a result of the values. 1043 * 1044 * The private mapping reservation is represented in a subtly different 1045 * manner to a shared mapping. A shared mapping has a region map associated 1046 * with the underlying file, this region map represents the backing file 1047 * pages which have ever had a reservation assigned which this persists even 1048 * after the page is instantiated. A private mapping has a region map 1049 * associated with the original mmap which is attached to all VMAs which 1050 * reference it, this region map represents those offsets which have consumed 1051 * reservation ie. where pages have been instantiated. 1052 */ 1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1054 { 1055 return (unsigned long)vma->vm_private_data; 1056 } 1057 1058 static void set_vma_private_data(struct vm_area_struct *vma, 1059 unsigned long value) 1060 { 1061 vma->vm_private_data = (void *)value; 1062 } 1063 1064 static void 1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1066 struct hugetlb_cgroup *h_cg, 1067 struct hstate *h) 1068 { 1069 #ifdef CONFIG_CGROUP_HUGETLB 1070 if (!h_cg || !h) { 1071 resv_map->reservation_counter = NULL; 1072 resv_map->pages_per_hpage = 0; 1073 resv_map->css = NULL; 1074 } else { 1075 resv_map->reservation_counter = 1076 &h_cg->rsvd_hugepage[hstate_index(h)]; 1077 resv_map->pages_per_hpage = pages_per_huge_page(h); 1078 resv_map->css = &h_cg->css; 1079 } 1080 #endif 1081 } 1082 1083 struct resv_map *resv_map_alloc(void) 1084 { 1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1087 1088 if (!resv_map || !rg) { 1089 kfree(resv_map); 1090 kfree(rg); 1091 return NULL; 1092 } 1093 1094 kref_init(&resv_map->refs); 1095 spin_lock_init(&resv_map->lock); 1096 INIT_LIST_HEAD(&resv_map->regions); 1097 init_rwsem(&resv_map->rw_sema); 1098 1099 resv_map->adds_in_progress = 0; 1100 /* 1101 * Initialize these to 0. On shared mappings, 0's here indicate these 1102 * fields don't do cgroup accounting. On private mappings, these will be 1103 * re-initialized to the proper values, to indicate that hugetlb cgroup 1104 * reservations are to be un-charged from here. 1105 */ 1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1107 1108 INIT_LIST_HEAD(&resv_map->region_cache); 1109 list_add(&rg->link, &resv_map->region_cache); 1110 resv_map->region_cache_count = 1; 1111 1112 return resv_map; 1113 } 1114 1115 void resv_map_release(struct kref *ref) 1116 { 1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1118 struct list_head *head = &resv_map->region_cache; 1119 struct file_region *rg, *trg; 1120 1121 /* Clear out any active regions before we release the map. */ 1122 region_del(resv_map, 0, LONG_MAX); 1123 1124 /* ... and any entries left in the cache */ 1125 list_for_each_entry_safe(rg, trg, head, link) { 1126 list_del(&rg->link); 1127 kfree(rg); 1128 } 1129 1130 VM_BUG_ON(resv_map->adds_in_progress); 1131 1132 kfree(resv_map); 1133 } 1134 1135 static inline struct resv_map *inode_resv_map(struct inode *inode) 1136 { 1137 /* 1138 * At inode evict time, i_mapping may not point to the original 1139 * address space within the inode. This original address space 1140 * contains the pointer to the resv_map. So, always use the 1141 * address space embedded within the inode. 1142 * The VERY common case is inode->mapping == &inode->i_data but, 1143 * this may not be true for device special inodes. 1144 */ 1145 return (struct resv_map *)(&inode->i_data)->i_private_data; 1146 } 1147 1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1149 { 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1151 if (vma->vm_flags & VM_MAYSHARE) { 1152 struct address_space *mapping = vma->vm_file->f_mapping; 1153 struct inode *inode = mapping->host; 1154 1155 return inode_resv_map(inode); 1156 1157 } else { 1158 return (struct resv_map *)(get_vma_private_data(vma) & 1159 ~HPAGE_RESV_MASK); 1160 } 1161 } 1162 1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1164 { 1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1167 1168 set_vma_private_data(vma, (unsigned long)map); 1169 } 1170 1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1172 { 1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1175 1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1177 } 1178 1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1180 { 1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1182 1183 return (get_vma_private_data(vma) & flag) != 0; 1184 } 1185 1186 bool __vma_private_lock(struct vm_area_struct *vma) 1187 { 1188 return !(vma->vm_flags & VM_MAYSHARE) && 1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1191 } 1192 1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 /* 1197 * Clear vm_private_data 1198 * - For shared mappings this is a per-vma semaphore that may be 1199 * allocated in a subsequent call to hugetlb_vm_op_open. 1200 * Before clearing, make sure pointer is not associated with vma 1201 * as this will leak the structure. This is the case when called 1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1203 * been called to allocate a new structure. 1204 * - For MAP_PRIVATE mappings, this is the reserve map which does 1205 * not apply to children. Faults generated by the children are 1206 * not guaranteed to succeed, even if read-only. 1207 */ 1208 if (vma->vm_flags & VM_MAYSHARE) { 1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1210 1211 if (vma_lock && vma_lock->vma != vma) 1212 vma->vm_private_data = NULL; 1213 } else 1214 vma->vm_private_data = NULL; 1215 } 1216 1217 /* 1218 * Reset and decrement one ref on hugepage private reservation. 1219 * Called with mm->mmap_lock writer semaphore held. 1220 * This function should be only used by move_vma() and operate on 1221 * same sized vma. It should never come here with last ref on the 1222 * reservation. 1223 */ 1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1225 { 1226 /* 1227 * Clear the old hugetlb private page reservation. 1228 * It has already been transferred to new_vma. 1229 * 1230 * During a mremap() operation of a hugetlb vma we call move_vma() 1231 * which copies vma into new_vma and unmaps vma. After the copy 1232 * operation both new_vma and vma share a reference to the resv_map 1233 * struct, and at that point vma is about to be unmapped. We don't 1234 * want to return the reservation to the pool at unmap of vma because 1235 * the reservation still lives on in new_vma, so simply decrement the 1236 * ref here and remove the resv_map reference from this vma. 1237 */ 1238 struct resv_map *reservations = vma_resv_map(vma); 1239 1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1242 kref_put(&reservations->refs, resv_map_release); 1243 } 1244 1245 hugetlb_dup_vma_private(vma); 1246 } 1247 1248 /* Returns true if the VMA has associated reserve pages */ 1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1250 { 1251 if (vma->vm_flags & VM_NORESERVE) { 1252 /* 1253 * This address is already reserved by other process(chg == 0), 1254 * so, we should decrement reserved count. Without decrementing, 1255 * reserve count remains after releasing inode, because this 1256 * allocated page will go into page cache and is regarded as 1257 * coming from reserved pool in releasing step. Currently, we 1258 * don't have any other solution to deal with this situation 1259 * properly, so add work-around here. 1260 */ 1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1262 return true; 1263 else 1264 return false; 1265 } 1266 1267 /* Shared mappings always use reserves */ 1268 if (vma->vm_flags & VM_MAYSHARE) { 1269 /* 1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1271 * be a region map for all pages. The only situation where 1272 * there is no region map is if a hole was punched via 1273 * fallocate. In this case, there really are no reserves to 1274 * use. This situation is indicated if chg != 0. 1275 */ 1276 if (chg) 1277 return false; 1278 else 1279 return true; 1280 } 1281 1282 /* 1283 * Only the process that called mmap() has reserves for 1284 * private mappings. 1285 */ 1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1287 /* 1288 * Like the shared case above, a hole punch or truncate 1289 * could have been performed on the private mapping. 1290 * Examine the value of chg to determine if reserves 1291 * actually exist or were previously consumed. 1292 * Very Subtle - The value of chg comes from a previous 1293 * call to vma_needs_reserves(). The reserve map for 1294 * private mappings has different (opposite) semantics 1295 * than that of shared mappings. vma_needs_reserves() 1296 * has already taken this difference in semantics into 1297 * account. Therefore, the meaning of chg is the same 1298 * as in the shared case above. Code could easily be 1299 * combined, but keeping it separate draws attention to 1300 * subtle differences. 1301 */ 1302 if (chg) 1303 return false; 1304 else 1305 return true; 1306 } 1307 1308 return false; 1309 } 1310 1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1312 { 1313 int nid = folio_nid(folio); 1314 1315 lockdep_assert_held(&hugetlb_lock); 1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1317 1318 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1319 h->free_huge_pages++; 1320 h->free_huge_pages_node[nid]++; 1321 folio_set_hugetlb_freed(folio); 1322 } 1323 1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1325 int nid) 1326 { 1327 struct folio *folio; 1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1329 1330 lockdep_assert_held(&hugetlb_lock); 1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1332 if (pin && !folio_is_longterm_pinnable(folio)) 1333 continue; 1334 1335 if (folio_test_hwpoison(folio)) 1336 continue; 1337 1338 list_move(&folio->lru, &h->hugepage_activelist); 1339 folio_ref_unfreeze(folio, 1); 1340 folio_clear_hugetlb_freed(folio); 1341 h->free_huge_pages--; 1342 h->free_huge_pages_node[nid]--; 1343 return folio; 1344 } 1345 1346 return NULL; 1347 } 1348 1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1350 int nid, nodemask_t *nmask) 1351 { 1352 unsigned int cpuset_mems_cookie; 1353 struct zonelist *zonelist; 1354 struct zone *zone; 1355 struct zoneref *z; 1356 int node = NUMA_NO_NODE; 1357 1358 zonelist = node_zonelist(nid, gfp_mask); 1359 1360 retry_cpuset: 1361 cpuset_mems_cookie = read_mems_allowed_begin(); 1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1363 struct folio *folio; 1364 1365 if (!cpuset_zone_allowed(zone, gfp_mask)) 1366 continue; 1367 /* 1368 * no need to ask again on the same node. Pool is node rather than 1369 * zone aware 1370 */ 1371 if (zone_to_nid(zone) == node) 1372 continue; 1373 node = zone_to_nid(zone); 1374 1375 folio = dequeue_hugetlb_folio_node_exact(h, node); 1376 if (folio) 1377 return folio; 1378 } 1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1380 goto retry_cpuset; 1381 1382 return NULL; 1383 } 1384 1385 static unsigned long available_huge_pages(struct hstate *h) 1386 { 1387 return h->free_huge_pages - h->resv_huge_pages; 1388 } 1389 1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1391 struct vm_area_struct *vma, 1392 unsigned long address, int avoid_reserve, 1393 long chg) 1394 { 1395 struct folio *folio = NULL; 1396 struct mempolicy *mpol; 1397 gfp_t gfp_mask; 1398 nodemask_t *nodemask; 1399 int nid; 1400 1401 /* 1402 * A child process with MAP_PRIVATE mappings created by their parent 1403 * have no page reserves. This check ensures that reservations are 1404 * not "stolen". The child may still get SIGKILLed 1405 */ 1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1407 goto err; 1408 1409 /* If reserves cannot be used, ensure enough pages are in the pool */ 1410 if (avoid_reserve && !available_huge_pages(h)) 1411 goto err; 1412 1413 gfp_mask = htlb_alloc_mask(h); 1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1415 1416 if (mpol_is_preferred_many(mpol)) { 1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1418 nid, nodemask); 1419 1420 /* Fallback to all nodes if page==NULL */ 1421 nodemask = NULL; 1422 } 1423 1424 if (!folio) 1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1426 nid, nodemask); 1427 1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1429 folio_set_hugetlb_restore_reserve(folio); 1430 h->resv_huge_pages--; 1431 } 1432 1433 mpol_cond_put(mpol); 1434 return folio; 1435 1436 err: 1437 return NULL; 1438 } 1439 1440 /* 1441 * common helper functions for hstate_next_node_to_{alloc|free}. 1442 * We may have allocated or freed a huge page based on a different 1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1444 * be outside of *nodes_allowed. Ensure that we use an allowed 1445 * node for alloc or free. 1446 */ 1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1448 { 1449 nid = next_node_in(nid, *nodes_allowed); 1450 VM_BUG_ON(nid >= MAX_NUMNODES); 1451 1452 return nid; 1453 } 1454 1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1456 { 1457 if (!node_isset(nid, *nodes_allowed)) 1458 nid = next_node_allowed(nid, nodes_allowed); 1459 return nid; 1460 } 1461 1462 /* 1463 * returns the previously saved node ["this node"] from which to 1464 * allocate a persistent huge page for the pool and advance the 1465 * next node from which to allocate, handling wrap at end of node 1466 * mask. 1467 */ 1468 static int hstate_next_node_to_alloc(int *next_node, 1469 nodemask_t *nodes_allowed) 1470 { 1471 int nid; 1472 1473 VM_BUG_ON(!nodes_allowed); 1474 1475 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1476 *next_node = next_node_allowed(nid, nodes_allowed); 1477 1478 return nid; 1479 } 1480 1481 /* 1482 * helper for remove_pool_hugetlb_folio() - return the previously saved 1483 * node ["this node"] from which to free a huge page. Advance the 1484 * next node id whether or not we find a free huge page to free so 1485 * that the next attempt to free addresses the next node. 1486 */ 1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1488 { 1489 int nid; 1490 1491 VM_BUG_ON(!nodes_allowed); 1492 1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1495 1496 return nid; 1497 } 1498 1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1500 for (nr_nodes = nodes_weight(*mask); \ 1501 nr_nodes > 0 && \ 1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1503 nr_nodes--) 1504 1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 /* used to demote non-gigantic_huge pages as well */ 1512 static void __destroy_compound_gigantic_folio(struct folio *folio, 1513 unsigned int order, bool demote) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p; 1518 1519 atomic_set(&folio->_entire_mapcount, 0); 1520 atomic_set(&folio->_large_mapcount, 0); 1521 atomic_set(&folio->_pincount, 0); 1522 1523 for (i = 1; i < nr_pages; i++) { 1524 p = folio_page(folio, i); 1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1526 p->mapping = NULL; 1527 clear_compound_head(p); 1528 if (!demote) 1529 set_page_refcounted(p); 1530 } 1531 1532 __folio_clear_head(folio); 1533 } 1534 1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1536 unsigned int order) 1537 { 1538 __destroy_compound_gigantic_folio(folio, order, true); 1539 } 1540 1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1542 static void destroy_compound_gigantic_folio(struct folio *folio, 1543 unsigned int order) 1544 { 1545 __destroy_compound_gigantic_folio(folio, order, false); 1546 } 1547 1548 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1549 { 1550 /* 1551 * If the page isn't allocated using the cma allocator, 1552 * cma_release() returns false. 1553 */ 1554 #ifdef CONFIG_CMA 1555 int nid = folio_nid(folio); 1556 1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1558 return; 1559 #endif 1560 1561 free_contig_range(folio_pfn(folio), 1 << order); 1562 } 1563 1564 #ifdef CONFIG_CONTIG_ALLOC 1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1566 int nid, nodemask_t *nodemask) 1567 { 1568 struct page *page; 1569 unsigned long nr_pages = pages_per_huge_page(h); 1570 if (nid == NUMA_NO_NODE) 1571 nid = numa_mem_id(); 1572 1573 #ifdef CONFIG_CMA 1574 { 1575 int node; 1576 1577 if (hugetlb_cma[nid]) { 1578 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1579 huge_page_order(h), true); 1580 if (page) 1581 return page_folio(page); 1582 } 1583 1584 if (!(gfp_mask & __GFP_THISNODE)) { 1585 for_each_node_mask(node, *nodemask) { 1586 if (node == nid || !hugetlb_cma[node]) 1587 continue; 1588 1589 page = cma_alloc(hugetlb_cma[node], nr_pages, 1590 huge_page_order(h), true); 1591 if (page) 1592 return page_folio(page); 1593 } 1594 } 1595 } 1596 #endif 1597 1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1599 return page ? page_folio(page) : NULL; 1600 } 1601 1602 #else /* !CONFIG_CONTIG_ALLOC */ 1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1604 int nid, nodemask_t *nodemask) 1605 { 1606 return NULL; 1607 } 1608 #endif /* CONFIG_CONTIG_ALLOC */ 1609 1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1612 int nid, nodemask_t *nodemask) 1613 { 1614 return NULL; 1615 } 1616 static inline void free_gigantic_folio(struct folio *folio, 1617 unsigned int order) { } 1618 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1619 unsigned int order) { } 1620 #endif 1621 1622 /* 1623 * Remove hugetlb folio from lists. 1624 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1625 * folio appears as just a compound page. Otherwise, wait until after 1626 * allocating vmemmap to clear the flag. 1627 * 1628 * Must be called with hugetlb lock held. 1629 */ 1630 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1631 bool adjust_surplus) 1632 { 1633 int nid = folio_nid(folio); 1634 1635 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1636 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1637 1638 lockdep_assert_held(&hugetlb_lock); 1639 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1640 return; 1641 1642 list_del(&folio->lru); 1643 1644 if (folio_test_hugetlb_freed(folio)) { 1645 folio_clear_hugetlb_freed(folio); 1646 h->free_huge_pages--; 1647 h->free_huge_pages_node[nid]--; 1648 } 1649 if (adjust_surplus) { 1650 h->surplus_huge_pages--; 1651 h->surplus_huge_pages_node[nid]--; 1652 } 1653 1654 /* 1655 * We can only clear the hugetlb flag after allocating vmemmap 1656 * pages. Otherwise, someone (memory error handling) may try to write 1657 * to tail struct pages. 1658 */ 1659 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1660 __folio_clear_hugetlb(folio); 1661 1662 h->nr_huge_pages--; 1663 h->nr_huge_pages_node[nid]--; 1664 } 1665 1666 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1667 bool adjust_surplus) 1668 { 1669 int nid = folio_nid(folio); 1670 1671 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1672 1673 lockdep_assert_held(&hugetlb_lock); 1674 1675 INIT_LIST_HEAD(&folio->lru); 1676 h->nr_huge_pages++; 1677 h->nr_huge_pages_node[nid]++; 1678 1679 if (adjust_surplus) { 1680 h->surplus_huge_pages++; 1681 h->surplus_huge_pages_node[nid]++; 1682 } 1683 1684 __folio_set_hugetlb(folio); 1685 folio_change_private(folio, NULL); 1686 /* 1687 * We have to set hugetlb_vmemmap_optimized again as above 1688 * folio_change_private(folio, NULL) cleared it. 1689 */ 1690 folio_set_hugetlb_vmemmap_optimized(folio); 1691 1692 arch_clear_hugetlb_flags(folio); 1693 enqueue_hugetlb_folio(h, folio); 1694 } 1695 1696 static void __update_and_free_hugetlb_folio(struct hstate *h, 1697 struct folio *folio) 1698 { 1699 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1700 1701 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1702 return; 1703 1704 /* 1705 * If we don't know which subpages are hwpoisoned, we can't free 1706 * the hugepage, so it's leaked intentionally. 1707 */ 1708 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1709 return; 1710 1711 /* 1712 * If folio is not vmemmap optimized (!clear_flag), then the folio 1713 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1714 * can only be passed hugetlb pages and will BUG otherwise. 1715 */ 1716 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1717 spin_lock_irq(&hugetlb_lock); 1718 /* 1719 * If we cannot allocate vmemmap pages, just refuse to free the 1720 * page and put the page back on the hugetlb free list and treat 1721 * as a surplus page. 1722 */ 1723 add_hugetlb_folio(h, folio, true); 1724 spin_unlock_irq(&hugetlb_lock); 1725 return; 1726 } 1727 1728 /* 1729 * If vmemmap pages were allocated above, then we need to clear the 1730 * hugetlb flag under the hugetlb lock. 1731 */ 1732 if (folio_test_hugetlb(folio)) { 1733 spin_lock_irq(&hugetlb_lock); 1734 __folio_clear_hugetlb(folio); 1735 spin_unlock_irq(&hugetlb_lock); 1736 } 1737 1738 /* 1739 * Move PageHWPoison flag from head page to the raw error pages, 1740 * which makes any healthy subpages reusable. 1741 */ 1742 if (unlikely(folio_test_hwpoison(folio))) 1743 folio_clear_hugetlb_hwpoison(folio); 1744 1745 folio_ref_unfreeze(folio, 1); 1746 1747 /* 1748 * Non-gigantic pages demoted from CMA allocated gigantic pages 1749 * need to be given back to CMA in free_gigantic_folio. 1750 */ 1751 if (hstate_is_gigantic(h) || 1752 hugetlb_cma_folio(folio, huge_page_order(h))) { 1753 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1754 free_gigantic_folio(folio, huge_page_order(h)); 1755 } else { 1756 INIT_LIST_HEAD(&folio->_deferred_list); 1757 folio_put(folio); 1758 } 1759 } 1760 1761 /* 1762 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1763 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1764 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1765 * the vmemmap pages. 1766 * 1767 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1768 * freed and frees them one-by-one. As the page->mapping pointer is going 1769 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1770 * structure of a lockless linked list of huge pages to be freed. 1771 */ 1772 static LLIST_HEAD(hpage_freelist); 1773 1774 static void free_hpage_workfn(struct work_struct *work) 1775 { 1776 struct llist_node *node; 1777 1778 node = llist_del_all(&hpage_freelist); 1779 1780 while (node) { 1781 struct folio *folio; 1782 struct hstate *h; 1783 1784 folio = container_of((struct address_space **)node, 1785 struct folio, mapping); 1786 node = node->next; 1787 folio->mapping = NULL; 1788 /* 1789 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1790 * folio_hstate() is going to trigger because a previous call to 1791 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1792 * not use folio_hstate() directly. 1793 */ 1794 h = size_to_hstate(folio_size(folio)); 1795 1796 __update_and_free_hugetlb_folio(h, folio); 1797 1798 cond_resched(); 1799 } 1800 } 1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1802 1803 static inline void flush_free_hpage_work(struct hstate *h) 1804 { 1805 if (hugetlb_vmemmap_optimizable(h)) 1806 flush_work(&free_hpage_work); 1807 } 1808 1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1810 bool atomic) 1811 { 1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1813 __update_and_free_hugetlb_folio(h, folio); 1814 return; 1815 } 1816 1817 /* 1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1819 * 1820 * Only call schedule_work() if hpage_freelist is previously 1821 * empty. Otherwise, schedule_work() had been called but the workfn 1822 * hasn't retrieved the list yet. 1823 */ 1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1825 schedule_work(&free_hpage_work); 1826 } 1827 1828 static void bulk_vmemmap_restore_error(struct hstate *h, 1829 struct list_head *folio_list, 1830 struct list_head *non_hvo_folios) 1831 { 1832 struct folio *folio, *t_folio; 1833 1834 if (!list_empty(non_hvo_folios)) { 1835 /* 1836 * Free any restored hugetlb pages so that restore of the 1837 * entire list can be retried. 1838 * The idea is that in the common case of ENOMEM errors freeing 1839 * hugetlb pages with vmemmap we will free up memory so that we 1840 * can allocate vmemmap for more hugetlb pages. 1841 */ 1842 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1843 list_del(&folio->lru); 1844 spin_lock_irq(&hugetlb_lock); 1845 __folio_clear_hugetlb(folio); 1846 spin_unlock_irq(&hugetlb_lock); 1847 update_and_free_hugetlb_folio(h, folio, false); 1848 cond_resched(); 1849 } 1850 } else { 1851 /* 1852 * In the case where there are no folios which can be 1853 * immediately freed, we loop through the list trying to restore 1854 * vmemmap individually in the hope that someone elsewhere may 1855 * have done something to cause success (such as freeing some 1856 * memory). If unable to restore a hugetlb page, the hugetlb 1857 * page is made a surplus page and removed from the list. 1858 * If are able to restore vmemmap and free one hugetlb page, we 1859 * quit processing the list to retry the bulk operation. 1860 */ 1861 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1862 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1863 list_del(&folio->lru); 1864 spin_lock_irq(&hugetlb_lock); 1865 add_hugetlb_folio(h, folio, true); 1866 spin_unlock_irq(&hugetlb_lock); 1867 } else { 1868 list_del(&folio->lru); 1869 spin_lock_irq(&hugetlb_lock); 1870 __folio_clear_hugetlb(folio); 1871 spin_unlock_irq(&hugetlb_lock); 1872 update_and_free_hugetlb_folio(h, folio, false); 1873 cond_resched(); 1874 break; 1875 } 1876 } 1877 } 1878 1879 static void update_and_free_pages_bulk(struct hstate *h, 1880 struct list_head *folio_list) 1881 { 1882 long ret; 1883 struct folio *folio, *t_folio; 1884 LIST_HEAD(non_hvo_folios); 1885 1886 /* 1887 * First allocate required vmemmmap (if necessary) for all folios. 1888 * Carefully handle errors and free up any available hugetlb pages 1889 * in an effort to make forward progress. 1890 */ 1891 retry: 1892 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1893 if (ret < 0) { 1894 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1895 goto retry; 1896 } 1897 1898 /* 1899 * At this point, list should be empty, ret should be >= 0 and there 1900 * should only be pages on the non_hvo_folios list. 1901 * Do note that the non_hvo_folios list could be empty. 1902 * Without HVO enabled, ret will be 0 and there is no need to call 1903 * __folio_clear_hugetlb as this was done previously. 1904 */ 1905 VM_WARN_ON(!list_empty(folio_list)); 1906 VM_WARN_ON(ret < 0); 1907 if (!list_empty(&non_hvo_folios) && ret) { 1908 spin_lock_irq(&hugetlb_lock); 1909 list_for_each_entry(folio, &non_hvo_folios, lru) 1910 __folio_clear_hugetlb(folio); 1911 spin_unlock_irq(&hugetlb_lock); 1912 } 1913 1914 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1915 update_and_free_hugetlb_folio(h, folio, false); 1916 cond_resched(); 1917 } 1918 } 1919 1920 struct hstate *size_to_hstate(unsigned long size) 1921 { 1922 struct hstate *h; 1923 1924 for_each_hstate(h) { 1925 if (huge_page_size(h) == size) 1926 return h; 1927 } 1928 return NULL; 1929 } 1930 1931 void free_huge_folio(struct folio *folio) 1932 { 1933 /* 1934 * Can't pass hstate in here because it is called from the 1935 * generic mm code. 1936 */ 1937 struct hstate *h = folio_hstate(folio); 1938 int nid = folio_nid(folio); 1939 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1940 bool restore_reserve; 1941 unsigned long flags; 1942 1943 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1944 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1945 1946 hugetlb_set_folio_subpool(folio, NULL); 1947 if (folio_test_anon(folio)) 1948 __ClearPageAnonExclusive(&folio->page); 1949 folio->mapping = NULL; 1950 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1951 folio_clear_hugetlb_restore_reserve(folio); 1952 1953 /* 1954 * If HPageRestoreReserve was set on page, page allocation consumed a 1955 * reservation. If the page was associated with a subpool, there 1956 * would have been a page reserved in the subpool before allocation 1957 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1958 * reservation, do not call hugepage_subpool_put_pages() as this will 1959 * remove the reserved page from the subpool. 1960 */ 1961 if (!restore_reserve) { 1962 /* 1963 * A return code of zero implies that the subpool will be 1964 * under its minimum size if the reservation is not restored 1965 * after page is free. Therefore, force restore_reserve 1966 * operation. 1967 */ 1968 if (hugepage_subpool_put_pages(spool, 1) == 0) 1969 restore_reserve = true; 1970 } 1971 1972 spin_lock_irqsave(&hugetlb_lock, flags); 1973 folio_clear_hugetlb_migratable(folio); 1974 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1975 pages_per_huge_page(h), folio); 1976 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1977 pages_per_huge_page(h), folio); 1978 mem_cgroup_uncharge(folio); 1979 if (restore_reserve) 1980 h->resv_huge_pages++; 1981 1982 if (folio_test_hugetlb_temporary(folio)) { 1983 remove_hugetlb_folio(h, folio, false); 1984 spin_unlock_irqrestore(&hugetlb_lock, flags); 1985 update_and_free_hugetlb_folio(h, folio, true); 1986 } else if (h->surplus_huge_pages_node[nid]) { 1987 /* remove the page from active list */ 1988 remove_hugetlb_folio(h, folio, true); 1989 spin_unlock_irqrestore(&hugetlb_lock, flags); 1990 update_and_free_hugetlb_folio(h, folio, true); 1991 } else { 1992 arch_clear_hugetlb_flags(folio); 1993 enqueue_hugetlb_folio(h, folio); 1994 spin_unlock_irqrestore(&hugetlb_lock, flags); 1995 } 1996 } 1997 1998 /* 1999 * Must be called with the hugetlb lock held 2000 */ 2001 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2002 { 2003 lockdep_assert_held(&hugetlb_lock); 2004 h->nr_huge_pages++; 2005 h->nr_huge_pages_node[nid]++; 2006 } 2007 2008 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2009 { 2010 __folio_set_hugetlb(folio); 2011 INIT_LIST_HEAD(&folio->lru); 2012 hugetlb_set_folio_subpool(folio, NULL); 2013 set_hugetlb_cgroup(folio, NULL); 2014 set_hugetlb_cgroup_rsvd(folio, NULL); 2015 } 2016 2017 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2018 { 2019 init_new_hugetlb_folio(h, folio); 2020 hugetlb_vmemmap_optimize_folio(h, folio); 2021 } 2022 2023 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2024 { 2025 __prep_new_hugetlb_folio(h, folio); 2026 spin_lock_irq(&hugetlb_lock); 2027 __prep_account_new_huge_page(h, nid); 2028 spin_unlock_irq(&hugetlb_lock); 2029 } 2030 2031 static bool __prep_compound_gigantic_folio(struct folio *folio, 2032 unsigned int order, bool demote) 2033 { 2034 int i, j; 2035 int nr_pages = 1 << order; 2036 struct page *p; 2037 2038 __folio_clear_reserved(folio); 2039 for (i = 0; i < nr_pages; i++) { 2040 p = folio_page(folio, i); 2041 2042 /* 2043 * For gigantic hugepages allocated through bootmem at 2044 * boot, it's safer to be consistent with the not-gigantic 2045 * hugepages and clear the PG_reserved bit from all tail pages 2046 * too. Otherwise drivers using get_user_pages() to access tail 2047 * pages may get the reference counting wrong if they see 2048 * PG_reserved set on a tail page (despite the head page not 2049 * having PG_reserved set). Enforcing this consistency between 2050 * head and tail pages allows drivers to optimize away a check 2051 * on the head page when they need know if put_page() is needed 2052 * after get_user_pages(). 2053 */ 2054 if (i != 0) /* head page cleared above */ 2055 __ClearPageReserved(p); 2056 /* 2057 * Subtle and very unlikely 2058 * 2059 * Gigantic 'page allocators' such as memblock or cma will 2060 * return a set of pages with each page ref counted. We need 2061 * to turn this set of pages into a compound page with tail 2062 * page ref counts set to zero. Code such as speculative page 2063 * cache adding could take a ref on a 'to be' tail page. 2064 * We need to respect any increased ref count, and only set 2065 * the ref count to zero if count is currently 1. If count 2066 * is not 1, we return an error. An error return indicates 2067 * the set of pages can not be converted to a gigantic page. 2068 * The caller who allocated the pages should then discard the 2069 * pages using the appropriate free interface. 2070 * 2071 * In the case of demote, the ref count will be zero. 2072 */ 2073 if (!demote) { 2074 if (!page_ref_freeze(p, 1)) { 2075 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2076 goto out_error; 2077 } 2078 } else { 2079 VM_BUG_ON_PAGE(page_count(p), p); 2080 } 2081 if (i != 0) 2082 set_compound_head(p, &folio->page); 2083 } 2084 __folio_set_head(folio); 2085 /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */ 2086 folio_set_order(folio, order); 2087 atomic_set(&folio->_entire_mapcount, -1); 2088 atomic_set(&folio->_large_mapcount, -1); 2089 atomic_set(&folio->_pincount, 0); 2090 return true; 2091 2092 out_error: 2093 /* undo page modifications made above */ 2094 for (j = 0; j < i; j++) { 2095 p = folio_page(folio, j); 2096 if (j != 0) 2097 clear_compound_head(p); 2098 set_page_refcounted(p); 2099 } 2100 /* need to clear PG_reserved on remaining tail pages */ 2101 for (; j < nr_pages; j++) { 2102 p = folio_page(folio, j); 2103 __ClearPageReserved(p); 2104 } 2105 return false; 2106 } 2107 2108 static bool prep_compound_gigantic_folio(struct folio *folio, 2109 unsigned int order) 2110 { 2111 return __prep_compound_gigantic_folio(folio, order, false); 2112 } 2113 2114 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2115 unsigned int order) 2116 { 2117 return __prep_compound_gigantic_folio(folio, order, true); 2118 } 2119 2120 /* 2121 * Find and lock address space (mapping) in write mode. 2122 * 2123 * Upon entry, the folio is locked which means that folio_mapping() is 2124 * stable. Due to locking order, we can only trylock_write. If we can 2125 * not get the lock, simply return NULL to caller. 2126 */ 2127 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 2128 { 2129 struct address_space *mapping = folio_mapping(folio); 2130 2131 if (!mapping) 2132 return mapping; 2133 2134 if (i_mmap_trylock_write(mapping)) 2135 return mapping; 2136 2137 return NULL; 2138 } 2139 2140 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2141 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2142 nodemask_t *node_alloc_noretry) 2143 { 2144 int order = huge_page_order(h); 2145 struct folio *folio; 2146 bool alloc_try_hard = true; 2147 bool retry = true; 2148 2149 /* 2150 * By default we always try hard to allocate the folio with 2151 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 2152 * a loop (to adjust global huge page counts) and previous allocation 2153 * failed, do not continue to try hard on the same node. Use the 2154 * node_alloc_noretry bitmap to manage this state information. 2155 */ 2156 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2157 alloc_try_hard = false; 2158 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2159 if (alloc_try_hard) 2160 gfp_mask |= __GFP_RETRY_MAYFAIL; 2161 if (nid == NUMA_NO_NODE) 2162 nid = numa_mem_id(); 2163 retry: 2164 folio = __folio_alloc(gfp_mask, order, nid, nmask); 2165 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 2166 if (folio) 2167 folio_clear_large_rmappable(folio); 2168 2169 if (folio && !folio_ref_freeze(folio, 1)) { 2170 folio_put(folio); 2171 if (retry) { /* retry once */ 2172 retry = false; 2173 goto retry; 2174 } 2175 /* WOW! twice in a row. */ 2176 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 2177 folio = NULL; 2178 } 2179 2180 /* 2181 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 2182 * folio this indicates an overall state change. Clear bit so 2183 * that we resume normal 'try hard' allocations. 2184 */ 2185 if (node_alloc_noretry && folio && !alloc_try_hard) 2186 node_clear(nid, *node_alloc_noretry); 2187 2188 /* 2189 * If we tried hard to get a folio but failed, set bit so that 2190 * subsequent attempts will not try as hard until there is an 2191 * overall state change. 2192 */ 2193 if (node_alloc_noretry && !folio && alloc_try_hard) 2194 node_set(nid, *node_alloc_noretry); 2195 2196 if (!folio) { 2197 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2198 return NULL; 2199 } 2200 2201 __count_vm_event(HTLB_BUDDY_PGALLOC); 2202 return folio; 2203 } 2204 2205 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2206 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2207 nodemask_t *node_alloc_noretry) 2208 { 2209 struct folio *folio; 2210 bool retry = false; 2211 2212 retry: 2213 if (hstate_is_gigantic(h)) 2214 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2215 else 2216 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2217 nid, nmask, node_alloc_noretry); 2218 if (!folio) 2219 return NULL; 2220 2221 if (hstate_is_gigantic(h)) { 2222 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2223 /* 2224 * Rare failure to convert pages to compound page. 2225 * Free pages and try again - ONCE! 2226 */ 2227 free_gigantic_folio(folio, huge_page_order(h)); 2228 if (!retry) { 2229 retry = true; 2230 goto retry; 2231 } 2232 return NULL; 2233 } 2234 } 2235 2236 return folio; 2237 } 2238 2239 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2240 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2241 nodemask_t *node_alloc_noretry) 2242 { 2243 struct folio *folio; 2244 2245 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2246 node_alloc_noretry); 2247 if (folio) 2248 init_new_hugetlb_folio(h, folio); 2249 return folio; 2250 } 2251 2252 /* 2253 * Common helper to allocate a fresh hugetlb page. All specific allocators 2254 * should use this function to get new hugetlb pages 2255 * 2256 * Note that returned page is 'frozen': ref count of head page and all tail 2257 * pages is zero. 2258 */ 2259 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2260 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2261 nodemask_t *node_alloc_noretry) 2262 { 2263 struct folio *folio; 2264 2265 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2266 node_alloc_noretry); 2267 if (!folio) 2268 return NULL; 2269 2270 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2271 return folio; 2272 } 2273 2274 static void prep_and_add_allocated_folios(struct hstate *h, 2275 struct list_head *folio_list) 2276 { 2277 unsigned long flags; 2278 struct folio *folio, *tmp_f; 2279 2280 /* Send list for bulk vmemmap optimization processing */ 2281 hugetlb_vmemmap_optimize_folios(h, folio_list); 2282 2283 /* Add all new pool pages to free lists in one lock cycle */ 2284 spin_lock_irqsave(&hugetlb_lock, flags); 2285 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2286 __prep_account_new_huge_page(h, folio_nid(folio)); 2287 enqueue_hugetlb_folio(h, folio); 2288 } 2289 spin_unlock_irqrestore(&hugetlb_lock, flags); 2290 } 2291 2292 /* 2293 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2294 * will later be added to the appropriate hugetlb pool. 2295 */ 2296 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2297 nodemask_t *nodes_allowed, 2298 nodemask_t *node_alloc_noretry, 2299 int *next_node) 2300 { 2301 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2302 int nr_nodes, node; 2303 2304 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2305 struct folio *folio; 2306 2307 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2308 nodes_allowed, node_alloc_noretry); 2309 if (folio) 2310 return folio; 2311 } 2312 2313 return NULL; 2314 } 2315 2316 /* 2317 * Remove huge page from pool from next node to free. Attempt to keep 2318 * persistent huge pages more or less balanced over allowed nodes. 2319 * This routine only 'removes' the hugetlb page. The caller must make 2320 * an additional call to free the page to low level allocators. 2321 * Called with hugetlb_lock locked. 2322 */ 2323 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2324 nodemask_t *nodes_allowed, bool acct_surplus) 2325 { 2326 int nr_nodes, node; 2327 struct folio *folio = NULL; 2328 2329 lockdep_assert_held(&hugetlb_lock); 2330 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2331 /* 2332 * If we're returning unused surplus pages, only examine 2333 * nodes with surplus pages. 2334 */ 2335 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2336 !list_empty(&h->hugepage_freelists[node])) { 2337 folio = list_entry(h->hugepage_freelists[node].next, 2338 struct folio, lru); 2339 remove_hugetlb_folio(h, folio, acct_surplus); 2340 break; 2341 } 2342 } 2343 2344 return folio; 2345 } 2346 2347 /* 2348 * Dissolve a given free hugetlb folio into free buddy pages. This function 2349 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2350 * This function returns values like below: 2351 * 2352 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2353 * when the system is under memory pressure and the feature of 2354 * freeing unused vmemmap pages associated with each hugetlb page 2355 * is enabled. 2356 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2357 * (allocated or reserved.) 2358 * 0: successfully dissolved free hugepages or the page is not a 2359 * hugepage (considered as already dissolved) 2360 */ 2361 int dissolve_free_hugetlb_folio(struct folio *folio) 2362 { 2363 int rc = -EBUSY; 2364 2365 retry: 2366 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2367 if (!folio_test_hugetlb(folio)) 2368 return 0; 2369 2370 spin_lock_irq(&hugetlb_lock); 2371 if (!folio_test_hugetlb(folio)) { 2372 rc = 0; 2373 goto out; 2374 } 2375 2376 if (!folio_ref_count(folio)) { 2377 struct hstate *h = folio_hstate(folio); 2378 if (!available_huge_pages(h)) 2379 goto out; 2380 2381 /* 2382 * We should make sure that the page is already on the free list 2383 * when it is dissolved. 2384 */ 2385 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2386 spin_unlock_irq(&hugetlb_lock); 2387 cond_resched(); 2388 2389 /* 2390 * Theoretically, we should return -EBUSY when we 2391 * encounter this race. In fact, we have a chance 2392 * to successfully dissolve the page if we do a 2393 * retry. Because the race window is quite small. 2394 * If we seize this opportunity, it is an optimization 2395 * for increasing the success rate of dissolving page. 2396 */ 2397 goto retry; 2398 } 2399 2400 remove_hugetlb_folio(h, folio, false); 2401 h->max_huge_pages--; 2402 spin_unlock_irq(&hugetlb_lock); 2403 2404 /* 2405 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2406 * before freeing the page. update_and_free_hugtlb_folio will fail to 2407 * free the page if it can not allocate required vmemmap. We 2408 * need to adjust max_huge_pages if the page is not freed. 2409 * Attempt to allocate vmemmmap here so that we can take 2410 * appropriate action on failure. 2411 * 2412 * The folio_test_hugetlb check here is because 2413 * remove_hugetlb_folio will clear hugetlb folio flag for 2414 * non-vmemmap optimized hugetlb folios. 2415 */ 2416 if (folio_test_hugetlb(folio)) { 2417 rc = hugetlb_vmemmap_restore_folio(h, folio); 2418 if (rc) { 2419 spin_lock_irq(&hugetlb_lock); 2420 add_hugetlb_folio(h, folio, false); 2421 h->max_huge_pages++; 2422 goto out; 2423 } 2424 } else 2425 rc = 0; 2426 2427 update_and_free_hugetlb_folio(h, folio, false); 2428 return rc; 2429 } 2430 out: 2431 spin_unlock_irq(&hugetlb_lock); 2432 return rc; 2433 } 2434 2435 /* 2436 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2437 * make specified memory blocks removable from the system. 2438 * Note that this will dissolve a free gigantic hugepage completely, if any 2439 * part of it lies within the given range. 2440 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2441 * free hugetlb folios that were dissolved before that error are lost. 2442 */ 2443 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2444 { 2445 unsigned long pfn; 2446 struct folio *folio; 2447 int rc = 0; 2448 unsigned int order; 2449 struct hstate *h; 2450 2451 if (!hugepages_supported()) 2452 return rc; 2453 2454 order = huge_page_order(&default_hstate); 2455 for_each_hstate(h) 2456 order = min(order, huge_page_order(h)); 2457 2458 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2459 folio = pfn_folio(pfn); 2460 rc = dissolve_free_hugetlb_folio(folio); 2461 if (rc) 2462 break; 2463 } 2464 2465 return rc; 2466 } 2467 2468 /* 2469 * Allocates a fresh surplus page from the page allocator. 2470 */ 2471 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2472 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2473 { 2474 struct folio *folio = NULL; 2475 2476 if (hstate_is_gigantic(h)) 2477 return NULL; 2478 2479 spin_lock_irq(&hugetlb_lock); 2480 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2481 goto out_unlock; 2482 spin_unlock_irq(&hugetlb_lock); 2483 2484 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2485 if (!folio) 2486 return NULL; 2487 2488 spin_lock_irq(&hugetlb_lock); 2489 /* 2490 * We could have raced with the pool size change. 2491 * Double check that and simply deallocate the new page 2492 * if we would end up overcommiting the surpluses. Abuse 2493 * temporary page to workaround the nasty free_huge_folio 2494 * codeflow 2495 */ 2496 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2497 folio_set_hugetlb_temporary(folio); 2498 spin_unlock_irq(&hugetlb_lock); 2499 free_huge_folio(folio); 2500 return NULL; 2501 } 2502 2503 h->surplus_huge_pages++; 2504 h->surplus_huge_pages_node[folio_nid(folio)]++; 2505 2506 out_unlock: 2507 spin_unlock_irq(&hugetlb_lock); 2508 2509 return folio; 2510 } 2511 2512 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2513 int nid, nodemask_t *nmask) 2514 { 2515 struct folio *folio; 2516 2517 if (hstate_is_gigantic(h)) 2518 return NULL; 2519 2520 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2521 if (!folio) 2522 return NULL; 2523 2524 /* fresh huge pages are frozen */ 2525 folio_ref_unfreeze(folio, 1); 2526 /* 2527 * We do not account these pages as surplus because they are only 2528 * temporary and will be released properly on the last reference 2529 */ 2530 folio_set_hugetlb_temporary(folio); 2531 2532 return folio; 2533 } 2534 2535 /* 2536 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2537 */ 2538 static 2539 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2540 struct vm_area_struct *vma, unsigned long addr) 2541 { 2542 struct folio *folio = NULL; 2543 struct mempolicy *mpol; 2544 gfp_t gfp_mask = htlb_alloc_mask(h); 2545 int nid; 2546 nodemask_t *nodemask; 2547 2548 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2549 if (mpol_is_preferred_many(mpol)) { 2550 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2551 2552 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2553 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2554 2555 /* Fallback to all nodes if page==NULL */ 2556 nodemask = NULL; 2557 } 2558 2559 if (!folio) 2560 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2561 mpol_cond_put(mpol); 2562 return folio; 2563 } 2564 2565 /* folio migration callback function */ 2566 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2567 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2568 { 2569 spin_lock_irq(&hugetlb_lock); 2570 if (available_huge_pages(h)) { 2571 struct folio *folio; 2572 2573 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2574 preferred_nid, nmask); 2575 if (folio) { 2576 spin_unlock_irq(&hugetlb_lock); 2577 return folio; 2578 } 2579 } 2580 spin_unlock_irq(&hugetlb_lock); 2581 2582 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2583 if (!allow_alloc_fallback) 2584 gfp_mask |= __GFP_THISNODE; 2585 2586 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2587 } 2588 2589 /* 2590 * Increase the hugetlb pool such that it can accommodate a reservation 2591 * of size 'delta'. 2592 */ 2593 static int gather_surplus_pages(struct hstate *h, long delta) 2594 __must_hold(&hugetlb_lock) 2595 { 2596 LIST_HEAD(surplus_list); 2597 struct folio *folio, *tmp; 2598 int ret; 2599 long i; 2600 long needed, allocated; 2601 bool alloc_ok = true; 2602 2603 lockdep_assert_held(&hugetlb_lock); 2604 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2605 if (needed <= 0) { 2606 h->resv_huge_pages += delta; 2607 return 0; 2608 } 2609 2610 allocated = 0; 2611 2612 ret = -ENOMEM; 2613 retry: 2614 spin_unlock_irq(&hugetlb_lock); 2615 for (i = 0; i < needed; i++) { 2616 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2617 NUMA_NO_NODE, NULL); 2618 if (!folio) { 2619 alloc_ok = false; 2620 break; 2621 } 2622 list_add(&folio->lru, &surplus_list); 2623 cond_resched(); 2624 } 2625 allocated += i; 2626 2627 /* 2628 * After retaking hugetlb_lock, we need to recalculate 'needed' 2629 * because either resv_huge_pages or free_huge_pages may have changed. 2630 */ 2631 spin_lock_irq(&hugetlb_lock); 2632 needed = (h->resv_huge_pages + delta) - 2633 (h->free_huge_pages + allocated); 2634 if (needed > 0) { 2635 if (alloc_ok) 2636 goto retry; 2637 /* 2638 * We were not able to allocate enough pages to 2639 * satisfy the entire reservation so we free what 2640 * we've allocated so far. 2641 */ 2642 goto free; 2643 } 2644 /* 2645 * The surplus_list now contains _at_least_ the number of extra pages 2646 * needed to accommodate the reservation. Add the appropriate number 2647 * of pages to the hugetlb pool and free the extras back to the buddy 2648 * allocator. Commit the entire reservation here to prevent another 2649 * process from stealing the pages as they are added to the pool but 2650 * before they are reserved. 2651 */ 2652 needed += allocated; 2653 h->resv_huge_pages += delta; 2654 ret = 0; 2655 2656 /* Free the needed pages to the hugetlb pool */ 2657 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2658 if ((--needed) < 0) 2659 break; 2660 /* Add the page to the hugetlb allocator */ 2661 enqueue_hugetlb_folio(h, folio); 2662 } 2663 free: 2664 spin_unlock_irq(&hugetlb_lock); 2665 2666 /* 2667 * Free unnecessary surplus pages to the buddy allocator. 2668 * Pages have no ref count, call free_huge_folio directly. 2669 */ 2670 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2671 free_huge_folio(folio); 2672 spin_lock_irq(&hugetlb_lock); 2673 2674 return ret; 2675 } 2676 2677 /* 2678 * This routine has two main purposes: 2679 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2680 * in unused_resv_pages. This corresponds to the prior adjustments made 2681 * to the associated reservation map. 2682 * 2) Free any unused surplus pages that may have been allocated to satisfy 2683 * the reservation. As many as unused_resv_pages may be freed. 2684 */ 2685 static void return_unused_surplus_pages(struct hstate *h, 2686 unsigned long unused_resv_pages) 2687 { 2688 unsigned long nr_pages; 2689 LIST_HEAD(page_list); 2690 2691 lockdep_assert_held(&hugetlb_lock); 2692 /* Uncommit the reservation */ 2693 h->resv_huge_pages -= unused_resv_pages; 2694 2695 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2696 goto out; 2697 2698 /* 2699 * Part (or even all) of the reservation could have been backed 2700 * by pre-allocated pages. Only free surplus pages. 2701 */ 2702 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2703 2704 /* 2705 * We want to release as many surplus pages as possible, spread 2706 * evenly across all nodes with memory. Iterate across these nodes 2707 * until we can no longer free unreserved surplus pages. This occurs 2708 * when the nodes with surplus pages have no free pages. 2709 * remove_pool_hugetlb_folio() will balance the freed pages across the 2710 * on-line nodes with memory and will handle the hstate accounting. 2711 */ 2712 while (nr_pages--) { 2713 struct folio *folio; 2714 2715 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2716 if (!folio) 2717 goto out; 2718 2719 list_add(&folio->lru, &page_list); 2720 } 2721 2722 out: 2723 spin_unlock_irq(&hugetlb_lock); 2724 update_and_free_pages_bulk(h, &page_list); 2725 spin_lock_irq(&hugetlb_lock); 2726 } 2727 2728 2729 /* 2730 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2731 * are used by the huge page allocation routines to manage reservations. 2732 * 2733 * vma_needs_reservation is called to determine if the huge page at addr 2734 * within the vma has an associated reservation. If a reservation is 2735 * needed, the value 1 is returned. The caller is then responsible for 2736 * managing the global reservation and subpool usage counts. After 2737 * the huge page has been allocated, vma_commit_reservation is called 2738 * to add the page to the reservation map. If the page allocation fails, 2739 * the reservation must be ended instead of committed. vma_end_reservation 2740 * is called in such cases. 2741 * 2742 * In the normal case, vma_commit_reservation returns the same value 2743 * as the preceding vma_needs_reservation call. The only time this 2744 * is not the case is if a reserve map was changed between calls. It 2745 * is the responsibility of the caller to notice the difference and 2746 * take appropriate action. 2747 * 2748 * vma_add_reservation is used in error paths where a reservation must 2749 * be restored when a newly allocated huge page must be freed. It is 2750 * to be called after calling vma_needs_reservation to determine if a 2751 * reservation exists. 2752 * 2753 * vma_del_reservation is used in error paths where an entry in the reserve 2754 * map was created during huge page allocation and must be removed. It is to 2755 * be called after calling vma_needs_reservation to determine if a reservation 2756 * exists. 2757 */ 2758 enum vma_resv_mode { 2759 VMA_NEEDS_RESV, 2760 VMA_COMMIT_RESV, 2761 VMA_END_RESV, 2762 VMA_ADD_RESV, 2763 VMA_DEL_RESV, 2764 }; 2765 static long __vma_reservation_common(struct hstate *h, 2766 struct vm_area_struct *vma, unsigned long addr, 2767 enum vma_resv_mode mode) 2768 { 2769 struct resv_map *resv; 2770 pgoff_t idx; 2771 long ret; 2772 long dummy_out_regions_needed; 2773 2774 resv = vma_resv_map(vma); 2775 if (!resv) 2776 return 1; 2777 2778 idx = vma_hugecache_offset(h, vma, addr); 2779 switch (mode) { 2780 case VMA_NEEDS_RESV: 2781 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2782 /* We assume that vma_reservation_* routines always operate on 2783 * 1 page, and that adding to resv map a 1 page entry can only 2784 * ever require 1 region. 2785 */ 2786 VM_BUG_ON(dummy_out_regions_needed != 1); 2787 break; 2788 case VMA_COMMIT_RESV: 2789 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2790 /* region_add calls of range 1 should never fail. */ 2791 VM_BUG_ON(ret < 0); 2792 break; 2793 case VMA_END_RESV: 2794 region_abort(resv, idx, idx + 1, 1); 2795 ret = 0; 2796 break; 2797 case VMA_ADD_RESV: 2798 if (vma->vm_flags & VM_MAYSHARE) { 2799 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2800 /* region_add calls of range 1 should never fail. */ 2801 VM_BUG_ON(ret < 0); 2802 } else { 2803 region_abort(resv, idx, idx + 1, 1); 2804 ret = region_del(resv, idx, idx + 1); 2805 } 2806 break; 2807 case VMA_DEL_RESV: 2808 if (vma->vm_flags & VM_MAYSHARE) { 2809 region_abort(resv, idx, idx + 1, 1); 2810 ret = region_del(resv, idx, idx + 1); 2811 } else { 2812 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2813 /* region_add calls of range 1 should never fail. */ 2814 VM_BUG_ON(ret < 0); 2815 } 2816 break; 2817 default: 2818 BUG(); 2819 } 2820 2821 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2822 return ret; 2823 /* 2824 * We know private mapping must have HPAGE_RESV_OWNER set. 2825 * 2826 * In most cases, reserves always exist for private mappings. 2827 * However, a file associated with mapping could have been 2828 * hole punched or truncated after reserves were consumed. 2829 * As subsequent fault on such a range will not use reserves. 2830 * Subtle - The reserve map for private mappings has the 2831 * opposite meaning than that of shared mappings. If NO 2832 * entry is in the reserve map, it means a reservation exists. 2833 * If an entry exists in the reserve map, it means the 2834 * reservation has already been consumed. As a result, the 2835 * return value of this routine is the opposite of the 2836 * value returned from reserve map manipulation routines above. 2837 */ 2838 if (ret > 0) 2839 return 0; 2840 if (ret == 0) 2841 return 1; 2842 return ret; 2843 } 2844 2845 static long vma_needs_reservation(struct hstate *h, 2846 struct vm_area_struct *vma, unsigned long addr) 2847 { 2848 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2849 } 2850 2851 static long vma_commit_reservation(struct hstate *h, 2852 struct vm_area_struct *vma, unsigned long addr) 2853 { 2854 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2855 } 2856 2857 static void vma_end_reservation(struct hstate *h, 2858 struct vm_area_struct *vma, unsigned long addr) 2859 { 2860 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2861 } 2862 2863 static long vma_add_reservation(struct hstate *h, 2864 struct vm_area_struct *vma, unsigned long addr) 2865 { 2866 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2867 } 2868 2869 static long vma_del_reservation(struct hstate *h, 2870 struct vm_area_struct *vma, unsigned long addr) 2871 { 2872 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2873 } 2874 2875 /* 2876 * This routine is called to restore reservation information on error paths. 2877 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2878 * and the hugetlb mutex should remain held when calling this routine. 2879 * 2880 * It handles two specific cases: 2881 * 1) A reservation was in place and the folio consumed the reservation. 2882 * hugetlb_restore_reserve is set in the folio. 2883 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2884 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2885 * 2886 * In case 1, free_huge_folio later in the error path will increment the 2887 * global reserve count. But, free_huge_folio does not have enough context 2888 * to adjust the reservation map. This case deals primarily with private 2889 * mappings. Adjust the reserve map here to be consistent with global 2890 * reserve count adjustments to be made by free_huge_folio. Make sure the 2891 * reserve map indicates there is a reservation present. 2892 * 2893 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2894 */ 2895 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2896 unsigned long address, struct folio *folio) 2897 { 2898 long rc = vma_needs_reservation(h, vma, address); 2899 2900 if (folio_test_hugetlb_restore_reserve(folio)) { 2901 if (unlikely(rc < 0)) 2902 /* 2903 * Rare out of memory condition in reserve map 2904 * manipulation. Clear hugetlb_restore_reserve so 2905 * that global reserve count will not be incremented 2906 * by free_huge_folio. This will make it appear 2907 * as though the reservation for this folio was 2908 * consumed. This may prevent the task from 2909 * faulting in the folio at a later time. This 2910 * is better than inconsistent global huge page 2911 * accounting of reserve counts. 2912 */ 2913 folio_clear_hugetlb_restore_reserve(folio); 2914 else if (rc) 2915 (void)vma_add_reservation(h, vma, address); 2916 else 2917 vma_end_reservation(h, vma, address); 2918 } else { 2919 if (!rc) { 2920 /* 2921 * This indicates there is an entry in the reserve map 2922 * not added by alloc_hugetlb_folio. We know it was added 2923 * before the alloc_hugetlb_folio call, otherwise 2924 * hugetlb_restore_reserve would be set on the folio. 2925 * Remove the entry so that a subsequent allocation 2926 * does not consume a reservation. 2927 */ 2928 rc = vma_del_reservation(h, vma, address); 2929 if (rc < 0) 2930 /* 2931 * VERY rare out of memory condition. Since 2932 * we can not delete the entry, set 2933 * hugetlb_restore_reserve so that the reserve 2934 * count will be incremented when the folio 2935 * is freed. This reserve will be consumed 2936 * on a subsequent allocation. 2937 */ 2938 folio_set_hugetlb_restore_reserve(folio); 2939 } else if (rc < 0) { 2940 /* 2941 * Rare out of memory condition from 2942 * vma_needs_reservation call. Memory allocation is 2943 * only attempted if a new entry is needed. Therefore, 2944 * this implies there is not an entry in the 2945 * reserve map. 2946 * 2947 * For shared mappings, no entry in the map indicates 2948 * no reservation. We are done. 2949 */ 2950 if (!(vma->vm_flags & VM_MAYSHARE)) 2951 /* 2952 * For private mappings, no entry indicates 2953 * a reservation is present. Since we can 2954 * not add an entry, set hugetlb_restore_reserve 2955 * on the folio so reserve count will be 2956 * incremented when freed. This reserve will 2957 * be consumed on a subsequent allocation. 2958 */ 2959 folio_set_hugetlb_restore_reserve(folio); 2960 } else 2961 /* 2962 * No reservation present, do nothing 2963 */ 2964 vma_end_reservation(h, vma, address); 2965 } 2966 } 2967 2968 /* 2969 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2970 * the old one 2971 * @h: struct hstate old page belongs to 2972 * @old_folio: Old folio to dissolve 2973 * @list: List to isolate the page in case we need to 2974 * Returns 0 on success, otherwise negated error. 2975 */ 2976 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2977 struct folio *old_folio, struct list_head *list) 2978 { 2979 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2980 int nid = folio_nid(old_folio); 2981 struct folio *new_folio = NULL; 2982 int ret = 0; 2983 2984 retry: 2985 spin_lock_irq(&hugetlb_lock); 2986 if (!folio_test_hugetlb(old_folio)) { 2987 /* 2988 * Freed from under us. Drop new_folio too. 2989 */ 2990 goto free_new; 2991 } else if (folio_ref_count(old_folio)) { 2992 bool isolated; 2993 2994 /* 2995 * Someone has grabbed the folio, try to isolate it here. 2996 * Fail with -EBUSY if not possible. 2997 */ 2998 spin_unlock_irq(&hugetlb_lock); 2999 isolated = isolate_hugetlb(old_folio, list); 3000 ret = isolated ? 0 : -EBUSY; 3001 spin_lock_irq(&hugetlb_lock); 3002 goto free_new; 3003 } else if (!folio_test_hugetlb_freed(old_folio)) { 3004 /* 3005 * Folio's refcount is 0 but it has not been enqueued in the 3006 * freelist yet. Race window is small, so we can succeed here if 3007 * we retry. 3008 */ 3009 spin_unlock_irq(&hugetlb_lock); 3010 cond_resched(); 3011 goto retry; 3012 } else { 3013 if (!new_folio) { 3014 spin_unlock_irq(&hugetlb_lock); 3015 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 3016 NULL, NULL); 3017 if (!new_folio) 3018 return -ENOMEM; 3019 __prep_new_hugetlb_folio(h, new_folio); 3020 goto retry; 3021 } 3022 3023 /* 3024 * Ok, old_folio is still a genuine free hugepage. Remove it from 3025 * the freelist and decrease the counters. These will be 3026 * incremented again when calling __prep_account_new_huge_page() 3027 * and enqueue_hugetlb_folio() for new_folio. The counters will 3028 * remain stable since this happens under the lock. 3029 */ 3030 remove_hugetlb_folio(h, old_folio, false); 3031 3032 /* 3033 * Ref count on new_folio is already zero as it was dropped 3034 * earlier. It can be directly added to the pool free list. 3035 */ 3036 __prep_account_new_huge_page(h, nid); 3037 enqueue_hugetlb_folio(h, new_folio); 3038 3039 /* 3040 * Folio has been replaced, we can safely free the old one. 3041 */ 3042 spin_unlock_irq(&hugetlb_lock); 3043 update_and_free_hugetlb_folio(h, old_folio, false); 3044 } 3045 3046 return ret; 3047 3048 free_new: 3049 spin_unlock_irq(&hugetlb_lock); 3050 if (new_folio) 3051 update_and_free_hugetlb_folio(h, new_folio, false); 3052 3053 return ret; 3054 } 3055 3056 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3057 { 3058 struct hstate *h; 3059 struct folio *folio = page_folio(page); 3060 int ret = -EBUSY; 3061 3062 /* 3063 * The page might have been dissolved from under our feet, so make sure 3064 * to carefully check the state under the lock. 3065 * Return success when racing as if we dissolved the page ourselves. 3066 */ 3067 spin_lock_irq(&hugetlb_lock); 3068 if (folio_test_hugetlb(folio)) { 3069 h = folio_hstate(folio); 3070 } else { 3071 spin_unlock_irq(&hugetlb_lock); 3072 return 0; 3073 } 3074 spin_unlock_irq(&hugetlb_lock); 3075 3076 /* 3077 * Fence off gigantic pages as there is a cyclic dependency between 3078 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3079 * of bailing out right away without further retrying. 3080 */ 3081 if (hstate_is_gigantic(h)) 3082 return -ENOMEM; 3083 3084 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3085 ret = 0; 3086 else if (!folio_ref_count(folio)) 3087 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3088 3089 return ret; 3090 } 3091 3092 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3093 unsigned long addr, int avoid_reserve) 3094 { 3095 struct hugepage_subpool *spool = subpool_vma(vma); 3096 struct hstate *h = hstate_vma(vma); 3097 struct folio *folio; 3098 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3099 long gbl_chg; 3100 int memcg_charge_ret, ret, idx; 3101 struct hugetlb_cgroup *h_cg = NULL; 3102 struct mem_cgroup *memcg; 3103 bool deferred_reserve; 3104 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3105 3106 memcg = get_mem_cgroup_from_current(); 3107 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3108 if (memcg_charge_ret == -ENOMEM) { 3109 mem_cgroup_put(memcg); 3110 return ERR_PTR(-ENOMEM); 3111 } 3112 3113 idx = hstate_index(h); 3114 /* 3115 * Examine the region/reserve map to determine if the process 3116 * has a reservation for the page to be allocated. A return 3117 * code of zero indicates a reservation exists (no change). 3118 */ 3119 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3120 if (map_chg < 0) { 3121 if (!memcg_charge_ret) 3122 mem_cgroup_cancel_charge(memcg, nr_pages); 3123 mem_cgroup_put(memcg); 3124 return ERR_PTR(-ENOMEM); 3125 } 3126 3127 /* 3128 * Processes that did not create the mapping will have no 3129 * reserves as indicated by the region/reserve map. Check 3130 * that the allocation will not exceed the subpool limit. 3131 * Allocations for MAP_NORESERVE mappings also need to be 3132 * checked against any subpool limit. 3133 */ 3134 if (map_chg || avoid_reserve) { 3135 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3136 if (gbl_chg < 0) 3137 goto out_end_reservation; 3138 3139 /* 3140 * Even though there was no reservation in the region/reserve 3141 * map, there could be reservations associated with the 3142 * subpool that can be used. This would be indicated if the 3143 * return value of hugepage_subpool_get_pages() is zero. 3144 * However, if avoid_reserve is specified we still avoid even 3145 * the subpool reservations. 3146 */ 3147 if (avoid_reserve) 3148 gbl_chg = 1; 3149 } 3150 3151 /* If this allocation is not consuming a reservation, charge it now. 3152 */ 3153 deferred_reserve = map_chg || avoid_reserve; 3154 if (deferred_reserve) { 3155 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3156 idx, pages_per_huge_page(h), &h_cg); 3157 if (ret) 3158 goto out_subpool_put; 3159 } 3160 3161 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3162 if (ret) 3163 goto out_uncharge_cgroup_reservation; 3164 3165 spin_lock_irq(&hugetlb_lock); 3166 /* 3167 * glb_chg is passed to indicate whether or not a page must be taken 3168 * from the global free pool (global change). gbl_chg == 0 indicates 3169 * a reservation exists for the allocation. 3170 */ 3171 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3172 if (!folio) { 3173 spin_unlock_irq(&hugetlb_lock); 3174 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3175 if (!folio) 3176 goto out_uncharge_cgroup; 3177 spin_lock_irq(&hugetlb_lock); 3178 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3179 folio_set_hugetlb_restore_reserve(folio); 3180 h->resv_huge_pages--; 3181 } 3182 list_add(&folio->lru, &h->hugepage_activelist); 3183 folio_ref_unfreeze(folio, 1); 3184 /* Fall through */ 3185 } 3186 3187 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3188 /* If allocation is not consuming a reservation, also store the 3189 * hugetlb_cgroup pointer on the page. 3190 */ 3191 if (deferred_reserve) { 3192 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3193 h_cg, folio); 3194 } 3195 3196 spin_unlock_irq(&hugetlb_lock); 3197 3198 hugetlb_set_folio_subpool(folio, spool); 3199 3200 map_commit = vma_commit_reservation(h, vma, addr); 3201 if (unlikely(map_chg > map_commit)) { 3202 /* 3203 * The page was added to the reservation map between 3204 * vma_needs_reservation and vma_commit_reservation. 3205 * This indicates a race with hugetlb_reserve_pages. 3206 * Adjust for the subpool count incremented above AND 3207 * in hugetlb_reserve_pages for the same page. Also, 3208 * the reservation count added in hugetlb_reserve_pages 3209 * no longer applies. 3210 */ 3211 long rsv_adjust; 3212 3213 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3214 hugetlb_acct_memory(h, -rsv_adjust); 3215 if (deferred_reserve) { 3216 spin_lock_irq(&hugetlb_lock); 3217 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3218 pages_per_huge_page(h), folio); 3219 spin_unlock_irq(&hugetlb_lock); 3220 } 3221 } 3222 3223 if (!memcg_charge_ret) 3224 mem_cgroup_commit_charge(folio, memcg); 3225 mem_cgroup_put(memcg); 3226 3227 return folio; 3228 3229 out_uncharge_cgroup: 3230 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3231 out_uncharge_cgroup_reservation: 3232 if (deferred_reserve) 3233 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3234 h_cg); 3235 out_subpool_put: 3236 if (map_chg || avoid_reserve) 3237 hugepage_subpool_put_pages(spool, 1); 3238 out_end_reservation: 3239 vma_end_reservation(h, vma, addr); 3240 if (!memcg_charge_ret) 3241 mem_cgroup_cancel_charge(memcg, nr_pages); 3242 mem_cgroup_put(memcg); 3243 return ERR_PTR(-ENOSPC); 3244 } 3245 3246 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3247 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3248 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3249 { 3250 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3251 int nr_nodes, node = nid; 3252 3253 /* do node specific alloc */ 3254 if (nid != NUMA_NO_NODE) { 3255 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3256 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3257 if (!m) 3258 return 0; 3259 goto found; 3260 } 3261 /* allocate from next node when distributing huge pages */ 3262 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3263 m = memblock_alloc_try_nid_raw( 3264 huge_page_size(h), huge_page_size(h), 3265 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3266 /* 3267 * Use the beginning of the huge page to store the 3268 * huge_bootmem_page struct (until gather_bootmem 3269 * puts them into the mem_map). 3270 */ 3271 if (!m) 3272 return 0; 3273 goto found; 3274 } 3275 3276 found: 3277 3278 /* 3279 * Only initialize the head struct page in memmap_init_reserved_pages, 3280 * rest of the struct pages will be initialized by the HugeTLB 3281 * subsystem itself. 3282 * The head struct page is used to get folio information by the HugeTLB 3283 * subsystem like zone id and node id. 3284 */ 3285 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3286 huge_page_size(h) - PAGE_SIZE); 3287 /* Put them into a private list first because mem_map is not up yet */ 3288 INIT_LIST_HEAD(&m->list); 3289 list_add(&m->list, &huge_boot_pages[node]); 3290 m->hstate = h; 3291 return 1; 3292 } 3293 3294 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3295 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3296 unsigned long start_page_number, 3297 unsigned long end_page_number) 3298 { 3299 enum zone_type zone = zone_idx(folio_zone(folio)); 3300 int nid = folio_nid(folio); 3301 unsigned long head_pfn = folio_pfn(folio); 3302 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3303 int ret; 3304 3305 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3306 struct page *page = pfn_to_page(pfn); 3307 3308 __init_single_page(page, pfn, zone, nid); 3309 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3310 ret = page_ref_freeze(page, 1); 3311 VM_BUG_ON(!ret); 3312 } 3313 } 3314 3315 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3316 struct hstate *h, 3317 unsigned long nr_pages) 3318 { 3319 int ret; 3320 3321 /* Prepare folio head */ 3322 __folio_clear_reserved(folio); 3323 __folio_set_head(folio); 3324 ret = folio_ref_freeze(folio, 1); 3325 VM_BUG_ON(!ret); 3326 /* Initialize the necessary tail struct pages */ 3327 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3328 prep_compound_head((struct page *)folio, huge_page_order(h)); 3329 } 3330 3331 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3332 struct list_head *folio_list) 3333 { 3334 unsigned long flags; 3335 struct folio *folio, *tmp_f; 3336 3337 /* Send list for bulk vmemmap optimization processing */ 3338 hugetlb_vmemmap_optimize_folios(h, folio_list); 3339 3340 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3341 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3342 /* 3343 * If HVO fails, initialize all tail struct pages 3344 * We do not worry about potential long lock hold 3345 * time as this is early in boot and there should 3346 * be no contention. 3347 */ 3348 hugetlb_folio_init_tail_vmemmap(folio, 3349 HUGETLB_VMEMMAP_RESERVE_PAGES, 3350 pages_per_huge_page(h)); 3351 } 3352 /* Subdivide locks to achieve better parallel performance */ 3353 spin_lock_irqsave(&hugetlb_lock, flags); 3354 __prep_account_new_huge_page(h, folio_nid(folio)); 3355 enqueue_hugetlb_folio(h, folio); 3356 spin_unlock_irqrestore(&hugetlb_lock, flags); 3357 } 3358 } 3359 3360 /* 3361 * Put bootmem huge pages into the standard lists after mem_map is up. 3362 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3363 */ 3364 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3365 { 3366 LIST_HEAD(folio_list); 3367 struct huge_bootmem_page *m; 3368 struct hstate *h = NULL, *prev_h = NULL; 3369 3370 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3371 struct page *page = virt_to_page(m); 3372 struct folio *folio = (void *)page; 3373 3374 h = m->hstate; 3375 /* 3376 * It is possible to have multiple huge page sizes (hstates) 3377 * in this list. If so, process each size separately. 3378 */ 3379 if (h != prev_h && prev_h != NULL) 3380 prep_and_add_bootmem_folios(prev_h, &folio_list); 3381 prev_h = h; 3382 3383 VM_BUG_ON(!hstate_is_gigantic(h)); 3384 WARN_ON(folio_ref_count(folio) != 1); 3385 3386 hugetlb_folio_init_vmemmap(folio, h, 3387 HUGETLB_VMEMMAP_RESERVE_PAGES); 3388 init_new_hugetlb_folio(h, folio); 3389 list_add(&folio->lru, &folio_list); 3390 3391 /* 3392 * We need to restore the 'stolen' pages to totalram_pages 3393 * in order to fix confusing memory reports from free(1) and 3394 * other side-effects, like CommitLimit going negative. 3395 */ 3396 adjust_managed_page_count(page, pages_per_huge_page(h)); 3397 cond_resched(); 3398 } 3399 3400 prep_and_add_bootmem_folios(h, &folio_list); 3401 } 3402 3403 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3404 unsigned long end, void *arg) 3405 { 3406 int nid; 3407 3408 for (nid = start; nid < end; nid++) 3409 gather_bootmem_prealloc_node(nid); 3410 } 3411 3412 static void __init gather_bootmem_prealloc(void) 3413 { 3414 struct padata_mt_job job = { 3415 .thread_fn = gather_bootmem_prealloc_parallel, 3416 .fn_arg = NULL, 3417 .start = 0, 3418 .size = num_node_state(N_MEMORY), 3419 .align = 1, 3420 .min_chunk = 1, 3421 .max_threads = num_node_state(N_MEMORY), 3422 .numa_aware = true, 3423 }; 3424 3425 padata_do_multithreaded(&job); 3426 } 3427 3428 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3429 { 3430 unsigned long i; 3431 char buf[32]; 3432 3433 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3434 if (hstate_is_gigantic(h)) { 3435 if (!alloc_bootmem_huge_page(h, nid)) 3436 break; 3437 } else { 3438 struct folio *folio; 3439 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3440 3441 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3442 &node_states[N_MEMORY], NULL); 3443 if (!folio) 3444 break; 3445 free_huge_folio(folio); /* free it into the hugepage allocator */ 3446 } 3447 cond_resched(); 3448 } 3449 if (i == h->max_huge_pages_node[nid]) 3450 return; 3451 3452 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3453 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3454 h->max_huge_pages_node[nid], buf, nid, i); 3455 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3456 h->max_huge_pages_node[nid] = i; 3457 } 3458 3459 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3460 { 3461 int i; 3462 bool node_specific_alloc = false; 3463 3464 for_each_online_node(i) { 3465 if (h->max_huge_pages_node[i] > 0) { 3466 hugetlb_hstate_alloc_pages_onenode(h, i); 3467 node_specific_alloc = true; 3468 } 3469 } 3470 3471 return node_specific_alloc; 3472 } 3473 3474 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3475 { 3476 if (allocated < h->max_huge_pages) { 3477 char buf[32]; 3478 3479 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3480 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3481 h->max_huge_pages, buf, allocated); 3482 h->max_huge_pages = allocated; 3483 } 3484 } 3485 3486 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3487 { 3488 struct hstate *h = (struct hstate *)arg; 3489 int i, num = end - start; 3490 nodemask_t node_alloc_noretry; 3491 LIST_HEAD(folio_list); 3492 int next_node = first_online_node; 3493 3494 /* Bit mask controlling how hard we retry per-node allocations.*/ 3495 nodes_clear(node_alloc_noretry); 3496 3497 for (i = 0; i < num; ++i) { 3498 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3499 &node_alloc_noretry, &next_node); 3500 if (!folio) 3501 break; 3502 3503 list_move(&folio->lru, &folio_list); 3504 cond_resched(); 3505 } 3506 3507 prep_and_add_allocated_folios(h, &folio_list); 3508 } 3509 3510 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3511 { 3512 unsigned long i; 3513 3514 for (i = 0; i < h->max_huge_pages; ++i) { 3515 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3516 break; 3517 cond_resched(); 3518 } 3519 3520 return i; 3521 } 3522 3523 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3524 { 3525 struct padata_mt_job job = { 3526 .fn_arg = h, 3527 .align = 1, 3528 .numa_aware = true 3529 }; 3530 3531 job.thread_fn = hugetlb_pages_alloc_boot_node; 3532 job.start = 0; 3533 job.size = h->max_huge_pages; 3534 3535 /* 3536 * job.max_threads is twice the num_node_state(N_MEMORY), 3537 * 3538 * Tests below indicate that a multiplier of 2 significantly improves 3539 * performance, and although larger values also provide improvements, 3540 * the gains are marginal. 3541 * 3542 * Therefore, choosing 2 as the multiplier strikes a good balance between 3543 * enhancing parallel processing capabilities and maintaining efficient 3544 * resource management. 3545 * 3546 * +------------+-------+-------+-------+-------+-------+ 3547 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3548 * +------------+-------+-------+-------+-------+-------+ 3549 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3550 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3551 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3552 * +------------+-------+-------+-------+-------+-------+ 3553 */ 3554 job.max_threads = num_node_state(N_MEMORY) * 2; 3555 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3556 padata_do_multithreaded(&job); 3557 3558 return h->nr_huge_pages; 3559 } 3560 3561 /* 3562 * NOTE: this routine is called in different contexts for gigantic and 3563 * non-gigantic pages. 3564 * - For gigantic pages, this is called early in the boot process and 3565 * pages are allocated from memblock allocated or something similar. 3566 * Gigantic pages are actually added to pools later with the routine 3567 * gather_bootmem_prealloc. 3568 * - For non-gigantic pages, this is called later in the boot process after 3569 * all of mm is up and functional. Pages are allocated from buddy and 3570 * then added to hugetlb pools. 3571 */ 3572 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3573 { 3574 unsigned long allocated; 3575 static bool initialized __initdata; 3576 3577 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3578 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3579 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3580 return; 3581 } 3582 3583 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3584 if (!initialized) { 3585 int i = 0; 3586 3587 for (i = 0; i < MAX_NUMNODES; i++) 3588 INIT_LIST_HEAD(&huge_boot_pages[i]); 3589 initialized = true; 3590 } 3591 3592 /* do node specific alloc */ 3593 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3594 return; 3595 3596 /* below will do all node balanced alloc */ 3597 if (hstate_is_gigantic(h)) 3598 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3599 else 3600 allocated = hugetlb_pages_alloc_boot(h); 3601 3602 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3603 } 3604 3605 static void __init hugetlb_init_hstates(void) 3606 { 3607 struct hstate *h, *h2; 3608 3609 for_each_hstate(h) { 3610 /* oversize hugepages were init'ed in early boot */ 3611 if (!hstate_is_gigantic(h)) 3612 hugetlb_hstate_alloc_pages(h); 3613 3614 /* 3615 * Set demote order for each hstate. Note that 3616 * h->demote_order is initially 0. 3617 * - We can not demote gigantic pages if runtime freeing 3618 * is not supported, so skip this. 3619 * - If CMA allocation is possible, we can not demote 3620 * HUGETLB_PAGE_ORDER or smaller size pages. 3621 */ 3622 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3623 continue; 3624 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3625 continue; 3626 for_each_hstate(h2) { 3627 if (h2 == h) 3628 continue; 3629 if (h2->order < h->order && 3630 h2->order > h->demote_order) 3631 h->demote_order = h2->order; 3632 } 3633 } 3634 } 3635 3636 static void __init report_hugepages(void) 3637 { 3638 struct hstate *h; 3639 3640 for_each_hstate(h) { 3641 char buf[32]; 3642 3643 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3644 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3645 buf, h->free_huge_pages); 3646 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3647 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3648 } 3649 } 3650 3651 #ifdef CONFIG_HIGHMEM 3652 static void try_to_free_low(struct hstate *h, unsigned long count, 3653 nodemask_t *nodes_allowed) 3654 { 3655 int i; 3656 LIST_HEAD(page_list); 3657 3658 lockdep_assert_held(&hugetlb_lock); 3659 if (hstate_is_gigantic(h)) 3660 return; 3661 3662 /* 3663 * Collect pages to be freed on a list, and free after dropping lock 3664 */ 3665 for_each_node_mask(i, *nodes_allowed) { 3666 struct folio *folio, *next; 3667 struct list_head *freel = &h->hugepage_freelists[i]; 3668 list_for_each_entry_safe(folio, next, freel, lru) { 3669 if (count >= h->nr_huge_pages) 3670 goto out; 3671 if (folio_test_highmem(folio)) 3672 continue; 3673 remove_hugetlb_folio(h, folio, false); 3674 list_add(&folio->lru, &page_list); 3675 } 3676 } 3677 3678 out: 3679 spin_unlock_irq(&hugetlb_lock); 3680 update_and_free_pages_bulk(h, &page_list); 3681 spin_lock_irq(&hugetlb_lock); 3682 } 3683 #else 3684 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3685 nodemask_t *nodes_allowed) 3686 { 3687 } 3688 #endif 3689 3690 /* 3691 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3692 * balanced by operating on them in a round-robin fashion. 3693 * Returns 1 if an adjustment was made. 3694 */ 3695 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3696 int delta) 3697 { 3698 int nr_nodes, node; 3699 3700 lockdep_assert_held(&hugetlb_lock); 3701 VM_BUG_ON(delta != -1 && delta != 1); 3702 3703 if (delta < 0) { 3704 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3705 if (h->surplus_huge_pages_node[node]) 3706 goto found; 3707 } 3708 } else { 3709 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3710 if (h->surplus_huge_pages_node[node] < 3711 h->nr_huge_pages_node[node]) 3712 goto found; 3713 } 3714 } 3715 return 0; 3716 3717 found: 3718 h->surplus_huge_pages += delta; 3719 h->surplus_huge_pages_node[node] += delta; 3720 return 1; 3721 } 3722 3723 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3724 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3725 nodemask_t *nodes_allowed) 3726 { 3727 unsigned long min_count; 3728 unsigned long allocated; 3729 struct folio *folio; 3730 LIST_HEAD(page_list); 3731 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3732 3733 /* 3734 * Bit mask controlling how hard we retry per-node allocations. 3735 * If we can not allocate the bit mask, do not attempt to allocate 3736 * the requested huge pages. 3737 */ 3738 if (node_alloc_noretry) 3739 nodes_clear(*node_alloc_noretry); 3740 else 3741 return -ENOMEM; 3742 3743 /* 3744 * resize_lock mutex prevents concurrent adjustments to number of 3745 * pages in hstate via the proc/sysfs interfaces. 3746 */ 3747 mutex_lock(&h->resize_lock); 3748 flush_free_hpage_work(h); 3749 spin_lock_irq(&hugetlb_lock); 3750 3751 /* 3752 * Check for a node specific request. 3753 * Changing node specific huge page count may require a corresponding 3754 * change to the global count. In any case, the passed node mask 3755 * (nodes_allowed) will restrict alloc/free to the specified node. 3756 */ 3757 if (nid != NUMA_NO_NODE) { 3758 unsigned long old_count = count; 3759 3760 count += persistent_huge_pages(h) - 3761 (h->nr_huge_pages_node[nid] - 3762 h->surplus_huge_pages_node[nid]); 3763 /* 3764 * User may have specified a large count value which caused the 3765 * above calculation to overflow. In this case, they wanted 3766 * to allocate as many huge pages as possible. Set count to 3767 * largest possible value to align with their intention. 3768 */ 3769 if (count < old_count) 3770 count = ULONG_MAX; 3771 } 3772 3773 /* 3774 * Gigantic pages runtime allocation depend on the capability for large 3775 * page range allocation. 3776 * If the system does not provide this feature, return an error when 3777 * the user tries to allocate gigantic pages but let the user free the 3778 * boottime allocated gigantic pages. 3779 */ 3780 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3781 if (count > persistent_huge_pages(h)) { 3782 spin_unlock_irq(&hugetlb_lock); 3783 mutex_unlock(&h->resize_lock); 3784 NODEMASK_FREE(node_alloc_noretry); 3785 return -EINVAL; 3786 } 3787 /* Fall through to decrease pool */ 3788 } 3789 3790 /* 3791 * Increase the pool size 3792 * First take pages out of surplus state. Then make up the 3793 * remaining difference by allocating fresh huge pages. 3794 * 3795 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3796 * to convert a surplus huge page to a normal huge page. That is 3797 * not critical, though, it just means the overall size of the 3798 * pool might be one hugepage larger than it needs to be, but 3799 * within all the constraints specified by the sysctls. 3800 */ 3801 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3802 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3803 break; 3804 } 3805 3806 allocated = 0; 3807 while (count > (persistent_huge_pages(h) + allocated)) { 3808 /* 3809 * If this allocation races such that we no longer need the 3810 * page, free_huge_folio will handle it by freeing the page 3811 * and reducing the surplus. 3812 */ 3813 spin_unlock_irq(&hugetlb_lock); 3814 3815 /* yield cpu to avoid soft lockup */ 3816 cond_resched(); 3817 3818 folio = alloc_pool_huge_folio(h, nodes_allowed, 3819 node_alloc_noretry, 3820 &h->next_nid_to_alloc); 3821 if (!folio) { 3822 prep_and_add_allocated_folios(h, &page_list); 3823 spin_lock_irq(&hugetlb_lock); 3824 goto out; 3825 } 3826 3827 list_add(&folio->lru, &page_list); 3828 allocated++; 3829 3830 /* Bail for signals. Probably ctrl-c from user */ 3831 if (signal_pending(current)) { 3832 prep_and_add_allocated_folios(h, &page_list); 3833 spin_lock_irq(&hugetlb_lock); 3834 goto out; 3835 } 3836 3837 spin_lock_irq(&hugetlb_lock); 3838 } 3839 3840 /* Add allocated pages to the pool */ 3841 if (!list_empty(&page_list)) { 3842 spin_unlock_irq(&hugetlb_lock); 3843 prep_and_add_allocated_folios(h, &page_list); 3844 spin_lock_irq(&hugetlb_lock); 3845 } 3846 3847 /* 3848 * Decrease the pool size 3849 * First return free pages to the buddy allocator (being careful 3850 * to keep enough around to satisfy reservations). Then place 3851 * pages into surplus state as needed so the pool will shrink 3852 * to the desired size as pages become free. 3853 * 3854 * By placing pages into the surplus state independent of the 3855 * overcommit value, we are allowing the surplus pool size to 3856 * exceed overcommit. There are few sane options here. Since 3857 * alloc_surplus_hugetlb_folio() is checking the global counter, 3858 * though, we'll note that we're not allowed to exceed surplus 3859 * and won't grow the pool anywhere else. Not until one of the 3860 * sysctls are changed, or the surplus pages go out of use. 3861 */ 3862 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3863 min_count = max(count, min_count); 3864 try_to_free_low(h, min_count, nodes_allowed); 3865 3866 /* 3867 * Collect pages to be removed on list without dropping lock 3868 */ 3869 while (min_count < persistent_huge_pages(h)) { 3870 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3871 if (!folio) 3872 break; 3873 3874 list_add(&folio->lru, &page_list); 3875 } 3876 /* free the pages after dropping lock */ 3877 spin_unlock_irq(&hugetlb_lock); 3878 update_and_free_pages_bulk(h, &page_list); 3879 flush_free_hpage_work(h); 3880 spin_lock_irq(&hugetlb_lock); 3881 3882 while (count < persistent_huge_pages(h)) { 3883 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3884 break; 3885 } 3886 out: 3887 h->max_huge_pages = persistent_huge_pages(h); 3888 spin_unlock_irq(&hugetlb_lock); 3889 mutex_unlock(&h->resize_lock); 3890 3891 NODEMASK_FREE(node_alloc_noretry); 3892 3893 return 0; 3894 } 3895 3896 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3897 { 3898 int i, nid = folio_nid(folio); 3899 struct hstate *target_hstate; 3900 struct page *subpage; 3901 struct folio *inner_folio; 3902 int rc = 0; 3903 3904 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3905 3906 remove_hugetlb_folio(h, folio, false); 3907 spin_unlock_irq(&hugetlb_lock); 3908 3909 /* 3910 * If vmemmap already existed for folio, the remove routine above would 3911 * have cleared the hugetlb folio flag. Hence the folio is technically 3912 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be 3913 * passed hugetlb folios and will BUG otherwise. 3914 */ 3915 if (folio_test_hugetlb(folio)) { 3916 rc = hugetlb_vmemmap_restore_folio(h, folio); 3917 if (rc) { 3918 /* Allocation of vmemmmap failed, we can not demote folio */ 3919 spin_lock_irq(&hugetlb_lock); 3920 add_hugetlb_folio(h, folio, false); 3921 return rc; 3922 } 3923 } 3924 3925 /* 3926 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3927 * sizes as it will not ref count folios. 3928 */ 3929 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3930 3931 /* 3932 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3933 * Without the mutex, pages added to target hstate could be marked 3934 * as surplus. 3935 * 3936 * Note that we already hold h->resize_lock. To prevent deadlock, 3937 * use the convention of always taking larger size hstate mutex first. 3938 */ 3939 mutex_lock(&target_hstate->resize_lock); 3940 for (i = 0; i < pages_per_huge_page(h); 3941 i += pages_per_huge_page(target_hstate)) { 3942 subpage = folio_page(folio, i); 3943 inner_folio = page_folio(subpage); 3944 if (hstate_is_gigantic(target_hstate)) 3945 prep_compound_gigantic_folio_for_demote(inner_folio, 3946 target_hstate->order); 3947 else 3948 prep_compound_page(subpage, target_hstate->order); 3949 folio_change_private(inner_folio, NULL); 3950 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3951 free_huge_folio(inner_folio); 3952 } 3953 mutex_unlock(&target_hstate->resize_lock); 3954 3955 spin_lock_irq(&hugetlb_lock); 3956 3957 /* 3958 * Not absolutely necessary, but for consistency update max_huge_pages 3959 * based on pool changes for the demoted page. 3960 */ 3961 h->max_huge_pages--; 3962 target_hstate->max_huge_pages += 3963 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3964 3965 return rc; 3966 } 3967 3968 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3969 __must_hold(&hugetlb_lock) 3970 { 3971 int nr_nodes, node; 3972 struct folio *folio; 3973 3974 lockdep_assert_held(&hugetlb_lock); 3975 3976 /* We should never get here if no demote order */ 3977 if (!h->demote_order) { 3978 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3979 return -EINVAL; /* internal error */ 3980 } 3981 3982 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3983 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3984 if (folio_test_hwpoison(folio)) 3985 continue; 3986 return demote_free_hugetlb_folio(h, folio); 3987 } 3988 } 3989 3990 /* 3991 * Only way to get here is if all pages on free lists are poisoned. 3992 * Return -EBUSY so that caller will not retry. 3993 */ 3994 return -EBUSY; 3995 } 3996 3997 #define HSTATE_ATTR_RO(_name) \ 3998 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3999 4000 #define HSTATE_ATTR_WO(_name) \ 4001 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4002 4003 #define HSTATE_ATTR(_name) \ 4004 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4005 4006 static struct kobject *hugepages_kobj; 4007 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4008 4009 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4010 4011 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4012 { 4013 int i; 4014 4015 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4016 if (hstate_kobjs[i] == kobj) { 4017 if (nidp) 4018 *nidp = NUMA_NO_NODE; 4019 return &hstates[i]; 4020 } 4021 4022 return kobj_to_node_hstate(kobj, nidp); 4023 } 4024 4025 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4026 struct kobj_attribute *attr, char *buf) 4027 { 4028 struct hstate *h; 4029 unsigned long nr_huge_pages; 4030 int nid; 4031 4032 h = kobj_to_hstate(kobj, &nid); 4033 if (nid == NUMA_NO_NODE) 4034 nr_huge_pages = h->nr_huge_pages; 4035 else 4036 nr_huge_pages = h->nr_huge_pages_node[nid]; 4037 4038 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4039 } 4040 4041 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4042 struct hstate *h, int nid, 4043 unsigned long count, size_t len) 4044 { 4045 int err; 4046 nodemask_t nodes_allowed, *n_mask; 4047 4048 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4049 return -EINVAL; 4050 4051 if (nid == NUMA_NO_NODE) { 4052 /* 4053 * global hstate attribute 4054 */ 4055 if (!(obey_mempolicy && 4056 init_nodemask_of_mempolicy(&nodes_allowed))) 4057 n_mask = &node_states[N_MEMORY]; 4058 else 4059 n_mask = &nodes_allowed; 4060 } else { 4061 /* 4062 * Node specific request. count adjustment happens in 4063 * set_max_huge_pages() after acquiring hugetlb_lock. 4064 */ 4065 init_nodemask_of_node(&nodes_allowed, nid); 4066 n_mask = &nodes_allowed; 4067 } 4068 4069 err = set_max_huge_pages(h, count, nid, n_mask); 4070 4071 return err ? err : len; 4072 } 4073 4074 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4075 struct kobject *kobj, const char *buf, 4076 size_t len) 4077 { 4078 struct hstate *h; 4079 unsigned long count; 4080 int nid; 4081 int err; 4082 4083 err = kstrtoul(buf, 10, &count); 4084 if (err) 4085 return err; 4086 4087 h = kobj_to_hstate(kobj, &nid); 4088 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4089 } 4090 4091 static ssize_t nr_hugepages_show(struct kobject *kobj, 4092 struct kobj_attribute *attr, char *buf) 4093 { 4094 return nr_hugepages_show_common(kobj, attr, buf); 4095 } 4096 4097 static ssize_t nr_hugepages_store(struct kobject *kobj, 4098 struct kobj_attribute *attr, const char *buf, size_t len) 4099 { 4100 return nr_hugepages_store_common(false, kobj, buf, len); 4101 } 4102 HSTATE_ATTR(nr_hugepages); 4103 4104 #ifdef CONFIG_NUMA 4105 4106 /* 4107 * hstate attribute for optionally mempolicy-based constraint on persistent 4108 * huge page alloc/free. 4109 */ 4110 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4111 struct kobj_attribute *attr, 4112 char *buf) 4113 { 4114 return nr_hugepages_show_common(kobj, attr, buf); 4115 } 4116 4117 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4118 struct kobj_attribute *attr, const char *buf, size_t len) 4119 { 4120 return nr_hugepages_store_common(true, kobj, buf, len); 4121 } 4122 HSTATE_ATTR(nr_hugepages_mempolicy); 4123 #endif 4124 4125 4126 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4127 struct kobj_attribute *attr, char *buf) 4128 { 4129 struct hstate *h = kobj_to_hstate(kobj, NULL); 4130 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4131 } 4132 4133 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4134 struct kobj_attribute *attr, const char *buf, size_t count) 4135 { 4136 int err; 4137 unsigned long input; 4138 struct hstate *h = kobj_to_hstate(kobj, NULL); 4139 4140 if (hstate_is_gigantic(h)) 4141 return -EINVAL; 4142 4143 err = kstrtoul(buf, 10, &input); 4144 if (err) 4145 return err; 4146 4147 spin_lock_irq(&hugetlb_lock); 4148 h->nr_overcommit_huge_pages = input; 4149 spin_unlock_irq(&hugetlb_lock); 4150 4151 return count; 4152 } 4153 HSTATE_ATTR(nr_overcommit_hugepages); 4154 4155 static ssize_t free_hugepages_show(struct kobject *kobj, 4156 struct kobj_attribute *attr, char *buf) 4157 { 4158 struct hstate *h; 4159 unsigned long free_huge_pages; 4160 int nid; 4161 4162 h = kobj_to_hstate(kobj, &nid); 4163 if (nid == NUMA_NO_NODE) 4164 free_huge_pages = h->free_huge_pages; 4165 else 4166 free_huge_pages = h->free_huge_pages_node[nid]; 4167 4168 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4169 } 4170 HSTATE_ATTR_RO(free_hugepages); 4171 4172 static ssize_t resv_hugepages_show(struct kobject *kobj, 4173 struct kobj_attribute *attr, char *buf) 4174 { 4175 struct hstate *h = kobj_to_hstate(kobj, NULL); 4176 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4177 } 4178 HSTATE_ATTR_RO(resv_hugepages); 4179 4180 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4181 struct kobj_attribute *attr, char *buf) 4182 { 4183 struct hstate *h; 4184 unsigned long surplus_huge_pages; 4185 int nid; 4186 4187 h = kobj_to_hstate(kobj, &nid); 4188 if (nid == NUMA_NO_NODE) 4189 surplus_huge_pages = h->surplus_huge_pages; 4190 else 4191 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4192 4193 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4194 } 4195 HSTATE_ATTR_RO(surplus_hugepages); 4196 4197 static ssize_t demote_store(struct kobject *kobj, 4198 struct kobj_attribute *attr, const char *buf, size_t len) 4199 { 4200 unsigned long nr_demote; 4201 unsigned long nr_available; 4202 nodemask_t nodes_allowed, *n_mask; 4203 struct hstate *h; 4204 int err; 4205 int nid; 4206 4207 err = kstrtoul(buf, 10, &nr_demote); 4208 if (err) 4209 return err; 4210 h = kobj_to_hstate(kobj, &nid); 4211 4212 if (nid != NUMA_NO_NODE) { 4213 init_nodemask_of_node(&nodes_allowed, nid); 4214 n_mask = &nodes_allowed; 4215 } else { 4216 n_mask = &node_states[N_MEMORY]; 4217 } 4218 4219 /* Synchronize with other sysfs operations modifying huge pages */ 4220 mutex_lock(&h->resize_lock); 4221 spin_lock_irq(&hugetlb_lock); 4222 4223 while (nr_demote) { 4224 /* 4225 * Check for available pages to demote each time thorough the 4226 * loop as demote_pool_huge_page will drop hugetlb_lock. 4227 */ 4228 if (nid != NUMA_NO_NODE) 4229 nr_available = h->free_huge_pages_node[nid]; 4230 else 4231 nr_available = h->free_huge_pages; 4232 nr_available -= h->resv_huge_pages; 4233 if (!nr_available) 4234 break; 4235 4236 err = demote_pool_huge_page(h, n_mask); 4237 if (err) 4238 break; 4239 4240 nr_demote--; 4241 } 4242 4243 spin_unlock_irq(&hugetlb_lock); 4244 mutex_unlock(&h->resize_lock); 4245 4246 if (err) 4247 return err; 4248 return len; 4249 } 4250 HSTATE_ATTR_WO(demote); 4251 4252 static ssize_t demote_size_show(struct kobject *kobj, 4253 struct kobj_attribute *attr, char *buf) 4254 { 4255 struct hstate *h = kobj_to_hstate(kobj, NULL); 4256 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4257 4258 return sysfs_emit(buf, "%lukB\n", demote_size); 4259 } 4260 4261 static ssize_t demote_size_store(struct kobject *kobj, 4262 struct kobj_attribute *attr, 4263 const char *buf, size_t count) 4264 { 4265 struct hstate *h, *demote_hstate; 4266 unsigned long demote_size; 4267 unsigned int demote_order; 4268 4269 demote_size = (unsigned long)memparse(buf, NULL); 4270 4271 demote_hstate = size_to_hstate(demote_size); 4272 if (!demote_hstate) 4273 return -EINVAL; 4274 demote_order = demote_hstate->order; 4275 if (demote_order < HUGETLB_PAGE_ORDER) 4276 return -EINVAL; 4277 4278 /* demote order must be smaller than hstate order */ 4279 h = kobj_to_hstate(kobj, NULL); 4280 if (demote_order >= h->order) 4281 return -EINVAL; 4282 4283 /* resize_lock synchronizes access to demote size and writes */ 4284 mutex_lock(&h->resize_lock); 4285 h->demote_order = demote_order; 4286 mutex_unlock(&h->resize_lock); 4287 4288 return count; 4289 } 4290 HSTATE_ATTR(demote_size); 4291 4292 static struct attribute *hstate_attrs[] = { 4293 &nr_hugepages_attr.attr, 4294 &nr_overcommit_hugepages_attr.attr, 4295 &free_hugepages_attr.attr, 4296 &resv_hugepages_attr.attr, 4297 &surplus_hugepages_attr.attr, 4298 #ifdef CONFIG_NUMA 4299 &nr_hugepages_mempolicy_attr.attr, 4300 #endif 4301 NULL, 4302 }; 4303 4304 static const struct attribute_group hstate_attr_group = { 4305 .attrs = hstate_attrs, 4306 }; 4307 4308 static struct attribute *hstate_demote_attrs[] = { 4309 &demote_size_attr.attr, 4310 &demote_attr.attr, 4311 NULL, 4312 }; 4313 4314 static const struct attribute_group hstate_demote_attr_group = { 4315 .attrs = hstate_demote_attrs, 4316 }; 4317 4318 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4319 struct kobject **hstate_kobjs, 4320 const struct attribute_group *hstate_attr_group) 4321 { 4322 int retval; 4323 int hi = hstate_index(h); 4324 4325 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4326 if (!hstate_kobjs[hi]) 4327 return -ENOMEM; 4328 4329 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4330 if (retval) { 4331 kobject_put(hstate_kobjs[hi]); 4332 hstate_kobjs[hi] = NULL; 4333 return retval; 4334 } 4335 4336 if (h->demote_order) { 4337 retval = sysfs_create_group(hstate_kobjs[hi], 4338 &hstate_demote_attr_group); 4339 if (retval) { 4340 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4341 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4342 kobject_put(hstate_kobjs[hi]); 4343 hstate_kobjs[hi] = NULL; 4344 return retval; 4345 } 4346 } 4347 4348 return 0; 4349 } 4350 4351 #ifdef CONFIG_NUMA 4352 static bool hugetlb_sysfs_initialized __ro_after_init; 4353 4354 /* 4355 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4356 * with node devices in node_devices[] using a parallel array. The array 4357 * index of a node device or _hstate == node id. 4358 * This is here to avoid any static dependency of the node device driver, in 4359 * the base kernel, on the hugetlb module. 4360 */ 4361 struct node_hstate { 4362 struct kobject *hugepages_kobj; 4363 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4364 }; 4365 static struct node_hstate node_hstates[MAX_NUMNODES]; 4366 4367 /* 4368 * A subset of global hstate attributes for node devices 4369 */ 4370 static struct attribute *per_node_hstate_attrs[] = { 4371 &nr_hugepages_attr.attr, 4372 &free_hugepages_attr.attr, 4373 &surplus_hugepages_attr.attr, 4374 NULL, 4375 }; 4376 4377 static const struct attribute_group per_node_hstate_attr_group = { 4378 .attrs = per_node_hstate_attrs, 4379 }; 4380 4381 /* 4382 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4383 * Returns node id via non-NULL nidp. 4384 */ 4385 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4386 { 4387 int nid; 4388 4389 for (nid = 0; nid < nr_node_ids; nid++) { 4390 struct node_hstate *nhs = &node_hstates[nid]; 4391 int i; 4392 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4393 if (nhs->hstate_kobjs[i] == kobj) { 4394 if (nidp) 4395 *nidp = nid; 4396 return &hstates[i]; 4397 } 4398 } 4399 4400 BUG(); 4401 return NULL; 4402 } 4403 4404 /* 4405 * Unregister hstate attributes from a single node device. 4406 * No-op if no hstate attributes attached. 4407 */ 4408 void hugetlb_unregister_node(struct node *node) 4409 { 4410 struct hstate *h; 4411 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4412 4413 if (!nhs->hugepages_kobj) 4414 return; /* no hstate attributes */ 4415 4416 for_each_hstate(h) { 4417 int idx = hstate_index(h); 4418 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4419 4420 if (!hstate_kobj) 4421 continue; 4422 if (h->demote_order) 4423 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4424 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4425 kobject_put(hstate_kobj); 4426 nhs->hstate_kobjs[idx] = NULL; 4427 } 4428 4429 kobject_put(nhs->hugepages_kobj); 4430 nhs->hugepages_kobj = NULL; 4431 } 4432 4433 4434 /* 4435 * Register hstate attributes for a single node device. 4436 * No-op if attributes already registered. 4437 */ 4438 void hugetlb_register_node(struct node *node) 4439 { 4440 struct hstate *h; 4441 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4442 int err; 4443 4444 if (!hugetlb_sysfs_initialized) 4445 return; 4446 4447 if (nhs->hugepages_kobj) 4448 return; /* already allocated */ 4449 4450 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4451 &node->dev.kobj); 4452 if (!nhs->hugepages_kobj) 4453 return; 4454 4455 for_each_hstate(h) { 4456 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4457 nhs->hstate_kobjs, 4458 &per_node_hstate_attr_group); 4459 if (err) { 4460 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4461 h->name, node->dev.id); 4462 hugetlb_unregister_node(node); 4463 break; 4464 } 4465 } 4466 } 4467 4468 /* 4469 * hugetlb init time: register hstate attributes for all registered node 4470 * devices of nodes that have memory. All on-line nodes should have 4471 * registered their associated device by this time. 4472 */ 4473 static void __init hugetlb_register_all_nodes(void) 4474 { 4475 int nid; 4476 4477 for_each_online_node(nid) 4478 hugetlb_register_node(node_devices[nid]); 4479 } 4480 #else /* !CONFIG_NUMA */ 4481 4482 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4483 { 4484 BUG(); 4485 if (nidp) 4486 *nidp = -1; 4487 return NULL; 4488 } 4489 4490 static void hugetlb_register_all_nodes(void) { } 4491 4492 #endif 4493 4494 #ifdef CONFIG_CMA 4495 static void __init hugetlb_cma_check(void); 4496 #else 4497 static inline __init void hugetlb_cma_check(void) 4498 { 4499 } 4500 #endif 4501 4502 static void __init hugetlb_sysfs_init(void) 4503 { 4504 struct hstate *h; 4505 int err; 4506 4507 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4508 if (!hugepages_kobj) 4509 return; 4510 4511 for_each_hstate(h) { 4512 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4513 hstate_kobjs, &hstate_attr_group); 4514 if (err) 4515 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4516 } 4517 4518 #ifdef CONFIG_NUMA 4519 hugetlb_sysfs_initialized = true; 4520 #endif 4521 hugetlb_register_all_nodes(); 4522 } 4523 4524 #ifdef CONFIG_SYSCTL 4525 static void hugetlb_sysctl_init(void); 4526 #else 4527 static inline void hugetlb_sysctl_init(void) { } 4528 #endif 4529 4530 static int __init hugetlb_init(void) 4531 { 4532 int i; 4533 4534 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4535 __NR_HPAGEFLAGS); 4536 4537 if (!hugepages_supported()) { 4538 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4539 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4540 return 0; 4541 } 4542 4543 /* 4544 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4545 * architectures depend on setup being done here. 4546 */ 4547 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4548 if (!parsed_default_hugepagesz) { 4549 /* 4550 * If we did not parse a default huge page size, set 4551 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4552 * number of huge pages for this default size was implicitly 4553 * specified, set that here as well. 4554 * Note that the implicit setting will overwrite an explicit 4555 * setting. A warning will be printed in this case. 4556 */ 4557 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4558 if (default_hstate_max_huge_pages) { 4559 if (default_hstate.max_huge_pages) { 4560 char buf[32]; 4561 4562 string_get_size(huge_page_size(&default_hstate), 4563 1, STRING_UNITS_2, buf, 32); 4564 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4565 default_hstate.max_huge_pages, buf); 4566 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4567 default_hstate_max_huge_pages); 4568 } 4569 default_hstate.max_huge_pages = 4570 default_hstate_max_huge_pages; 4571 4572 for_each_online_node(i) 4573 default_hstate.max_huge_pages_node[i] = 4574 default_hugepages_in_node[i]; 4575 } 4576 } 4577 4578 hugetlb_cma_check(); 4579 hugetlb_init_hstates(); 4580 gather_bootmem_prealloc(); 4581 report_hugepages(); 4582 4583 hugetlb_sysfs_init(); 4584 hugetlb_cgroup_file_init(); 4585 hugetlb_sysctl_init(); 4586 4587 #ifdef CONFIG_SMP 4588 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4589 #else 4590 num_fault_mutexes = 1; 4591 #endif 4592 hugetlb_fault_mutex_table = 4593 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4594 GFP_KERNEL); 4595 BUG_ON(!hugetlb_fault_mutex_table); 4596 4597 for (i = 0; i < num_fault_mutexes; i++) 4598 mutex_init(&hugetlb_fault_mutex_table[i]); 4599 return 0; 4600 } 4601 subsys_initcall(hugetlb_init); 4602 4603 /* Overwritten by architectures with more huge page sizes */ 4604 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4605 { 4606 return size == HPAGE_SIZE; 4607 } 4608 4609 void __init hugetlb_add_hstate(unsigned int order) 4610 { 4611 struct hstate *h; 4612 unsigned long i; 4613 4614 if (size_to_hstate(PAGE_SIZE << order)) { 4615 return; 4616 } 4617 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4618 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4619 h = &hstates[hugetlb_max_hstate++]; 4620 mutex_init(&h->resize_lock); 4621 h->order = order; 4622 h->mask = ~(huge_page_size(h) - 1); 4623 for (i = 0; i < MAX_NUMNODES; ++i) 4624 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4625 INIT_LIST_HEAD(&h->hugepage_activelist); 4626 h->next_nid_to_alloc = first_memory_node; 4627 h->next_nid_to_free = first_memory_node; 4628 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4629 huge_page_size(h)/SZ_1K); 4630 4631 parsed_hstate = h; 4632 } 4633 4634 bool __init __weak hugetlb_node_alloc_supported(void) 4635 { 4636 return true; 4637 } 4638 4639 static void __init hugepages_clear_pages_in_node(void) 4640 { 4641 if (!hugetlb_max_hstate) { 4642 default_hstate_max_huge_pages = 0; 4643 memset(default_hugepages_in_node, 0, 4644 sizeof(default_hugepages_in_node)); 4645 } else { 4646 parsed_hstate->max_huge_pages = 0; 4647 memset(parsed_hstate->max_huge_pages_node, 0, 4648 sizeof(parsed_hstate->max_huge_pages_node)); 4649 } 4650 } 4651 4652 /* 4653 * hugepages command line processing 4654 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4655 * specification. If not, ignore the hugepages value. hugepages can also 4656 * be the first huge page command line option in which case it implicitly 4657 * specifies the number of huge pages for the default size. 4658 */ 4659 static int __init hugepages_setup(char *s) 4660 { 4661 unsigned long *mhp; 4662 static unsigned long *last_mhp; 4663 int node = NUMA_NO_NODE; 4664 int count; 4665 unsigned long tmp; 4666 char *p = s; 4667 4668 if (!parsed_valid_hugepagesz) { 4669 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4670 parsed_valid_hugepagesz = true; 4671 return 1; 4672 } 4673 4674 /* 4675 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4676 * yet, so this hugepages= parameter goes to the "default hstate". 4677 * Otherwise, it goes with the previously parsed hugepagesz or 4678 * default_hugepagesz. 4679 */ 4680 else if (!hugetlb_max_hstate) 4681 mhp = &default_hstate_max_huge_pages; 4682 else 4683 mhp = &parsed_hstate->max_huge_pages; 4684 4685 if (mhp == last_mhp) { 4686 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4687 return 1; 4688 } 4689 4690 while (*p) { 4691 count = 0; 4692 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4693 goto invalid; 4694 /* Parameter is node format */ 4695 if (p[count] == ':') { 4696 if (!hugetlb_node_alloc_supported()) { 4697 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4698 return 1; 4699 } 4700 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4701 goto invalid; 4702 node = array_index_nospec(tmp, MAX_NUMNODES); 4703 p += count + 1; 4704 /* Parse hugepages */ 4705 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4706 goto invalid; 4707 if (!hugetlb_max_hstate) 4708 default_hugepages_in_node[node] = tmp; 4709 else 4710 parsed_hstate->max_huge_pages_node[node] = tmp; 4711 *mhp += tmp; 4712 /* Go to parse next node*/ 4713 if (p[count] == ',') 4714 p += count + 1; 4715 else 4716 break; 4717 } else { 4718 if (p != s) 4719 goto invalid; 4720 *mhp = tmp; 4721 break; 4722 } 4723 } 4724 4725 /* 4726 * Global state is always initialized later in hugetlb_init. 4727 * But we need to allocate gigantic hstates here early to still 4728 * use the bootmem allocator. 4729 */ 4730 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4731 hugetlb_hstate_alloc_pages(parsed_hstate); 4732 4733 last_mhp = mhp; 4734 4735 return 1; 4736 4737 invalid: 4738 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4739 hugepages_clear_pages_in_node(); 4740 return 1; 4741 } 4742 __setup("hugepages=", hugepages_setup); 4743 4744 /* 4745 * hugepagesz command line processing 4746 * A specific huge page size can only be specified once with hugepagesz. 4747 * hugepagesz is followed by hugepages on the command line. The global 4748 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4749 * hugepagesz argument was valid. 4750 */ 4751 static int __init hugepagesz_setup(char *s) 4752 { 4753 unsigned long size; 4754 struct hstate *h; 4755 4756 parsed_valid_hugepagesz = false; 4757 size = (unsigned long)memparse(s, NULL); 4758 4759 if (!arch_hugetlb_valid_size(size)) { 4760 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4761 return 1; 4762 } 4763 4764 h = size_to_hstate(size); 4765 if (h) { 4766 /* 4767 * hstate for this size already exists. This is normally 4768 * an error, but is allowed if the existing hstate is the 4769 * default hstate. More specifically, it is only allowed if 4770 * the number of huge pages for the default hstate was not 4771 * previously specified. 4772 */ 4773 if (!parsed_default_hugepagesz || h != &default_hstate || 4774 default_hstate.max_huge_pages) { 4775 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4776 return 1; 4777 } 4778 4779 /* 4780 * No need to call hugetlb_add_hstate() as hstate already 4781 * exists. But, do set parsed_hstate so that a following 4782 * hugepages= parameter will be applied to this hstate. 4783 */ 4784 parsed_hstate = h; 4785 parsed_valid_hugepagesz = true; 4786 return 1; 4787 } 4788 4789 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4790 parsed_valid_hugepagesz = true; 4791 return 1; 4792 } 4793 __setup("hugepagesz=", hugepagesz_setup); 4794 4795 /* 4796 * default_hugepagesz command line input 4797 * Only one instance of default_hugepagesz allowed on command line. 4798 */ 4799 static int __init default_hugepagesz_setup(char *s) 4800 { 4801 unsigned long size; 4802 int i; 4803 4804 parsed_valid_hugepagesz = false; 4805 if (parsed_default_hugepagesz) { 4806 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4807 return 1; 4808 } 4809 4810 size = (unsigned long)memparse(s, NULL); 4811 4812 if (!arch_hugetlb_valid_size(size)) { 4813 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4814 return 1; 4815 } 4816 4817 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4818 parsed_valid_hugepagesz = true; 4819 parsed_default_hugepagesz = true; 4820 default_hstate_idx = hstate_index(size_to_hstate(size)); 4821 4822 /* 4823 * The number of default huge pages (for this size) could have been 4824 * specified as the first hugetlb parameter: hugepages=X. If so, 4825 * then default_hstate_max_huge_pages is set. If the default huge 4826 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4827 * allocated here from bootmem allocator. 4828 */ 4829 if (default_hstate_max_huge_pages) { 4830 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4831 for_each_online_node(i) 4832 default_hstate.max_huge_pages_node[i] = 4833 default_hugepages_in_node[i]; 4834 if (hstate_is_gigantic(&default_hstate)) 4835 hugetlb_hstate_alloc_pages(&default_hstate); 4836 default_hstate_max_huge_pages = 0; 4837 } 4838 4839 return 1; 4840 } 4841 __setup("default_hugepagesz=", default_hugepagesz_setup); 4842 4843 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4844 { 4845 #ifdef CONFIG_NUMA 4846 struct mempolicy *mpol = get_task_policy(current); 4847 4848 /* 4849 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4850 * (from policy_nodemask) specifically for hugetlb case 4851 */ 4852 if (mpol->mode == MPOL_BIND && 4853 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4854 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4855 return &mpol->nodes; 4856 #endif 4857 return NULL; 4858 } 4859 4860 static unsigned int allowed_mems_nr(struct hstate *h) 4861 { 4862 int node; 4863 unsigned int nr = 0; 4864 nodemask_t *mbind_nodemask; 4865 unsigned int *array = h->free_huge_pages_node; 4866 gfp_t gfp_mask = htlb_alloc_mask(h); 4867 4868 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4869 for_each_node_mask(node, cpuset_current_mems_allowed) { 4870 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4871 nr += array[node]; 4872 } 4873 4874 return nr; 4875 } 4876 4877 #ifdef CONFIG_SYSCTL 4878 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4879 void *buffer, size_t *length, 4880 loff_t *ppos, unsigned long *out) 4881 { 4882 struct ctl_table dup_table; 4883 4884 /* 4885 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4886 * can duplicate the @table and alter the duplicate of it. 4887 */ 4888 dup_table = *table; 4889 dup_table.data = out; 4890 4891 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4892 } 4893 4894 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4895 struct ctl_table *table, int write, 4896 void *buffer, size_t *length, loff_t *ppos) 4897 { 4898 struct hstate *h = &default_hstate; 4899 unsigned long tmp = h->max_huge_pages; 4900 int ret; 4901 4902 if (!hugepages_supported()) 4903 return -EOPNOTSUPP; 4904 4905 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4906 &tmp); 4907 if (ret) 4908 goto out; 4909 4910 if (write) 4911 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4912 NUMA_NO_NODE, tmp, *length); 4913 out: 4914 return ret; 4915 } 4916 4917 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4918 void *buffer, size_t *length, loff_t *ppos) 4919 { 4920 4921 return hugetlb_sysctl_handler_common(false, table, write, 4922 buffer, length, ppos); 4923 } 4924 4925 #ifdef CONFIG_NUMA 4926 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4927 void *buffer, size_t *length, loff_t *ppos) 4928 { 4929 return hugetlb_sysctl_handler_common(true, table, write, 4930 buffer, length, ppos); 4931 } 4932 #endif /* CONFIG_NUMA */ 4933 4934 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4935 void *buffer, size_t *length, loff_t *ppos) 4936 { 4937 struct hstate *h = &default_hstate; 4938 unsigned long tmp; 4939 int ret; 4940 4941 if (!hugepages_supported()) 4942 return -EOPNOTSUPP; 4943 4944 tmp = h->nr_overcommit_huge_pages; 4945 4946 if (write && hstate_is_gigantic(h)) 4947 return -EINVAL; 4948 4949 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4950 &tmp); 4951 if (ret) 4952 goto out; 4953 4954 if (write) { 4955 spin_lock_irq(&hugetlb_lock); 4956 h->nr_overcommit_huge_pages = tmp; 4957 spin_unlock_irq(&hugetlb_lock); 4958 } 4959 out: 4960 return ret; 4961 } 4962 4963 static struct ctl_table hugetlb_table[] = { 4964 { 4965 .procname = "nr_hugepages", 4966 .data = NULL, 4967 .maxlen = sizeof(unsigned long), 4968 .mode = 0644, 4969 .proc_handler = hugetlb_sysctl_handler, 4970 }, 4971 #ifdef CONFIG_NUMA 4972 { 4973 .procname = "nr_hugepages_mempolicy", 4974 .data = NULL, 4975 .maxlen = sizeof(unsigned long), 4976 .mode = 0644, 4977 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4978 }, 4979 #endif 4980 { 4981 .procname = "hugetlb_shm_group", 4982 .data = &sysctl_hugetlb_shm_group, 4983 .maxlen = sizeof(gid_t), 4984 .mode = 0644, 4985 .proc_handler = proc_dointvec, 4986 }, 4987 { 4988 .procname = "nr_overcommit_hugepages", 4989 .data = NULL, 4990 .maxlen = sizeof(unsigned long), 4991 .mode = 0644, 4992 .proc_handler = hugetlb_overcommit_handler, 4993 }, 4994 }; 4995 4996 static void hugetlb_sysctl_init(void) 4997 { 4998 register_sysctl_init("vm", hugetlb_table); 4999 } 5000 #endif /* CONFIG_SYSCTL */ 5001 5002 void hugetlb_report_meminfo(struct seq_file *m) 5003 { 5004 struct hstate *h; 5005 unsigned long total = 0; 5006 5007 if (!hugepages_supported()) 5008 return; 5009 5010 for_each_hstate(h) { 5011 unsigned long count = h->nr_huge_pages; 5012 5013 total += huge_page_size(h) * count; 5014 5015 if (h == &default_hstate) 5016 seq_printf(m, 5017 "HugePages_Total: %5lu\n" 5018 "HugePages_Free: %5lu\n" 5019 "HugePages_Rsvd: %5lu\n" 5020 "HugePages_Surp: %5lu\n" 5021 "Hugepagesize: %8lu kB\n", 5022 count, 5023 h->free_huge_pages, 5024 h->resv_huge_pages, 5025 h->surplus_huge_pages, 5026 huge_page_size(h) / SZ_1K); 5027 } 5028 5029 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5030 } 5031 5032 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5033 { 5034 struct hstate *h = &default_hstate; 5035 5036 if (!hugepages_supported()) 5037 return 0; 5038 5039 return sysfs_emit_at(buf, len, 5040 "Node %d HugePages_Total: %5u\n" 5041 "Node %d HugePages_Free: %5u\n" 5042 "Node %d HugePages_Surp: %5u\n", 5043 nid, h->nr_huge_pages_node[nid], 5044 nid, h->free_huge_pages_node[nid], 5045 nid, h->surplus_huge_pages_node[nid]); 5046 } 5047 5048 void hugetlb_show_meminfo_node(int nid) 5049 { 5050 struct hstate *h; 5051 5052 if (!hugepages_supported()) 5053 return; 5054 5055 for_each_hstate(h) 5056 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5057 nid, 5058 h->nr_huge_pages_node[nid], 5059 h->free_huge_pages_node[nid], 5060 h->surplus_huge_pages_node[nid], 5061 huge_page_size(h) / SZ_1K); 5062 } 5063 5064 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5065 { 5066 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5067 K(atomic_long_read(&mm->hugetlb_usage))); 5068 } 5069 5070 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5071 unsigned long hugetlb_total_pages(void) 5072 { 5073 struct hstate *h; 5074 unsigned long nr_total_pages = 0; 5075 5076 for_each_hstate(h) 5077 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5078 return nr_total_pages; 5079 } 5080 5081 static int hugetlb_acct_memory(struct hstate *h, long delta) 5082 { 5083 int ret = -ENOMEM; 5084 5085 if (!delta) 5086 return 0; 5087 5088 spin_lock_irq(&hugetlb_lock); 5089 /* 5090 * When cpuset is configured, it breaks the strict hugetlb page 5091 * reservation as the accounting is done on a global variable. Such 5092 * reservation is completely rubbish in the presence of cpuset because 5093 * the reservation is not checked against page availability for the 5094 * current cpuset. Application can still potentially OOM'ed by kernel 5095 * with lack of free htlb page in cpuset that the task is in. 5096 * Attempt to enforce strict accounting with cpuset is almost 5097 * impossible (or too ugly) because cpuset is too fluid that 5098 * task or memory node can be dynamically moved between cpusets. 5099 * 5100 * The change of semantics for shared hugetlb mapping with cpuset is 5101 * undesirable. However, in order to preserve some of the semantics, 5102 * we fall back to check against current free page availability as 5103 * a best attempt and hopefully to minimize the impact of changing 5104 * semantics that cpuset has. 5105 * 5106 * Apart from cpuset, we also have memory policy mechanism that 5107 * also determines from which node the kernel will allocate memory 5108 * in a NUMA system. So similar to cpuset, we also should consider 5109 * the memory policy of the current task. Similar to the description 5110 * above. 5111 */ 5112 if (delta > 0) { 5113 if (gather_surplus_pages(h, delta) < 0) 5114 goto out; 5115 5116 if (delta > allowed_mems_nr(h)) { 5117 return_unused_surplus_pages(h, delta); 5118 goto out; 5119 } 5120 } 5121 5122 ret = 0; 5123 if (delta < 0) 5124 return_unused_surplus_pages(h, (unsigned long) -delta); 5125 5126 out: 5127 spin_unlock_irq(&hugetlb_lock); 5128 return ret; 5129 } 5130 5131 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5132 { 5133 struct resv_map *resv = vma_resv_map(vma); 5134 5135 /* 5136 * HPAGE_RESV_OWNER indicates a private mapping. 5137 * This new VMA should share its siblings reservation map if present. 5138 * The VMA will only ever have a valid reservation map pointer where 5139 * it is being copied for another still existing VMA. As that VMA 5140 * has a reference to the reservation map it cannot disappear until 5141 * after this open call completes. It is therefore safe to take a 5142 * new reference here without additional locking. 5143 */ 5144 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5145 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5146 kref_get(&resv->refs); 5147 } 5148 5149 /* 5150 * vma_lock structure for sharable mappings is vma specific. 5151 * Clear old pointer (if copied via vm_area_dup) and allocate 5152 * new structure. Before clearing, make sure vma_lock is not 5153 * for this vma. 5154 */ 5155 if (vma->vm_flags & VM_MAYSHARE) { 5156 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5157 5158 if (vma_lock) { 5159 if (vma_lock->vma != vma) { 5160 vma->vm_private_data = NULL; 5161 hugetlb_vma_lock_alloc(vma); 5162 } else 5163 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5164 } else 5165 hugetlb_vma_lock_alloc(vma); 5166 } 5167 } 5168 5169 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5170 { 5171 struct hstate *h = hstate_vma(vma); 5172 struct resv_map *resv; 5173 struct hugepage_subpool *spool = subpool_vma(vma); 5174 unsigned long reserve, start, end; 5175 long gbl_reserve; 5176 5177 hugetlb_vma_lock_free(vma); 5178 5179 resv = vma_resv_map(vma); 5180 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5181 return; 5182 5183 start = vma_hugecache_offset(h, vma, vma->vm_start); 5184 end = vma_hugecache_offset(h, vma, vma->vm_end); 5185 5186 reserve = (end - start) - region_count(resv, start, end); 5187 hugetlb_cgroup_uncharge_counter(resv, start, end); 5188 if (reserve) { 5189 /* 5190 * Decrement reserve counts. The global reserve count may be 5191 * adjusted if the subpool has a minimum size. 5192 */ 5193 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5194 hugetlb_acct_memory(h, -gbl_reserve); 5195 } 5196 5197 kref_put(&resv->refs, resv_map_release); 5198 } 5199 5200 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5201 { 5202 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5203 return -EINVAL; 5204 5205 /* 5206 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5207 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5208 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5209 */ 5210 if (addr & ~PUD_MASK) { 5211 /* 5212 * hugetlb_vm_op_split is called right before we attempt to 5213 * split the VMA. We will need to unshare PMDs in the old and 5214 * new VMAs, so let's unshare before we split. 5215 */ 5216 unsigned long floor = addr & PUD_MASK; 5217 unsigned long ceil = floor + PUD_SIZE; 5218 5219 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5220 hugetlb_unshare_pmds(vma, floor, ceil); 5221 } 5222 5223 return 0; 5224 } 5225 5226 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5227 { 5228 return huge_page_size(hstate_vma(vma)); 5229 } 5230 5231 /* 5232 * We cannot handle pagefaults against hugetlb pages at all. They cause 5233 * handle_mm_fault() to try to instantiate regular-sized pages in the 5234 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5235 * this far. 5236 */ 5237 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5238 { 5239 BUG(); 5240 return 0; 5241 } 5242 5243 /* 5244 * When a new function is introduced to vm_operations_struct and added 5245 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5246 * This is because under System V memory model, mappings created via 5247 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5248 * their original vm_ops are overwritten with shm_vm_ops. 5249 */ 5250 const struct vm_operations_struct hugetlb_vm_ops = { 5251 .fault = hugetlb_vm_op_fault, 5252 .open = hugetlb_vm_op_open, 5253 .close = hugetlb_vm_op_close, 5254 .may_split = hugetlb_vm_op_split, 5255 .pagesize = hugetlb_vm_op_pagesize, 5256 }; 5257 5258 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5259 int writable) 5260 { 5261 pte_t entry; 5262 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5263 5264 if (writable) { 5265 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5266 vma->vm_page_prot))); 5267 } else { 5268 entry = huge_pte_wrprotect(mk_huge_pte(page, 5269 vma->vm_page_prot)); 5270 } 5271 entry = pte_mkyoung(entry); 5272 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5273 5274 return entry; 5275 } 5276 5277 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5278 unsigned long address, pte_t *ptep) 5279 { 5280 pte_t entry; 5281 5282 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 5283 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5284 update_mmu_cache(vma, address, ptep); 5285 } 5286 5287 bool is_hugetlb_entry_migration(pte_t pte) 5288 { 5289 swp_entry_t swp; 5290 5291 if (huge_pte_none(pte) || pte_present(pte)) 5292 return false; 5293 swp = pte_to_swp_entry(pte); 5294 if (is_migration_entry(swp)) 5295 return true; 5296 else 5297 return false; 5298 } 5299 5300 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5301 { 5302 swp_entry_t swp; 5303 5304 if (huge_pte_none(pte) || pte_present(pte)) 5305 return false; 5306 swp = pte_to_swp_entry(pte); 5307 if (is_hwpoison_entry(swp)) 5308 return true; 5309 else 5310 return false; 5311 } 5312 5313 static void 5314 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5315 struct folio *new_folio, pte_t old, unsigned long sz) 5316 { 5317 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5318 5319 __folio_mark_uptodate(new_folio); 5320 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5321 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5322 newpte = huge_pte_mkuffd_wp(newpte); 5323 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5324 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5325 folio_set_hugetlb_migratable(new_folio); 5326 } 5327 5328 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5329 struct vm_area_struct *dst_vma, 5330 struct vm_area_struct *src_vma) 5331 { 5332 pte_t *src_pte, *dst_pte, entry; 5333 struct folio *pte_folio; 5334 unsigned long addr; 5335 bool cow = is_cow_mapping(src_vma->vm_flags); 5336 struct hstate *h = hstate_vma(src_vma); 5337 unsigned long sz = huge_page_size(h); 5338 unsigned long npages = pages_per_huge_page(h); 5339 struct mmu_notifier_range range; 5340 unsigned long last_addr_mask; 5341 int ret = 0; 5342 5343 if (cow) { 5344 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5345 src_vma->vm_start, 5346 src_vma->vm_end); 5347 mmu_notifier_invalidate_range_start(&range); 5348 vma_assert_write_locked(src_vma); 5349 raw_write_seqcount_begin(&src->write_protect_seq); 5350 } else { 5351 /* 5352 * For shared mappings the vma lock must be held before 5353 * calling hugetlb_walk() in the src vma. Otherwise, the 5354 * returned ptep could go away if part of a shared pmd and 5355 * another thread calls huge_pmd_unshare. 5356 */ 5357 hugetlb_vma_lock_read(src_vma); 5358 } 5359 5360 last_addr_mask = hugetlb_mask_last_page(h); 5361 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5362 spinlock_t *src_ptl, *dst_ptl; 5363 src_pte = hugetlb_walk(src_vma, addr, sz); 5364 if (!src_pte) { 5365 addr |= last_addr_mask; 5366 continue; 5367 } 5368 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5369 if (!dst_pte) { 5370 ret = -ENOMEM; 5371 break; 5372 } 5373 5374 /* 5375 * If the pagetables are shared don't copy or take references. 5376 * 5377 * dst_pte == src_pte is the common case of src/dest sharing. 5378 * However, src could have 'unshared' and dst shares with 5379 * another vma. So page_count of ptep page is checked instead 5380 * to reliably determine whether pte is shared. 5381 */ 5382 if (page_count(virt_to_page(dst_pte)) > 1) { 5383 addr |= last_addr_mask; 5384 continue; 5385 } 5386 5387 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5388 src_ptl = huge_pte_lockptr(h, src, src_pte); 5389 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5390 entry = huge_ptep_get(src_pte); 5391 again: 5392 if (huge_pte_none(entry)) { 5393 /* 5394 * Skip if src entry none. 5395 */ 5396 ; 5397 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5398 if (!userfaultfd_wp(dst_vma)) 5399 entry = huge_pte_clear_uffd_wp(entry); 5400 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5401 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5402 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5403 bool uffd_wp = pte_swp_uffd_wp(entry); 5404 5405 if (!is_readable_migration_entry(swp_entry) && cow) { 5406 /* 5407 * COW mappings require pages in both 5408 * parent and child to be set to read. 5409 */ 5410 swp_entry = make_readable_migration_entry( 5411 swp_offset(swp_entry)); 5412 entry = swp_entry_to_pte(swp_entry); 5413 if (userfaultfd_wp(src_vma) && uffd_wp) 5414 entry = pte_swp_mkuffd_wp(entry); 5415 set_huge_pte_at(src, addr, src_pte, entry, sz); 5416 } 5417 if (!userfaultfd_wp(dst_vma)) 5418 entry = huge_pte_clear_uffd_wp(entry); 5419 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5420 } else if (unlikely(is_pte_marker(entry))) { 5421 pte_marker marker = copy_pte_marker( 5422 pte_to_swp_entry(entry), dst_vma); 5423 5424 if (marker) 5425 set_huge_pte_at(dst, addr, dst_pte, 5426 make_pte_marker(marker), sz); 5427 } else { 5428 entry = huge_ptep_get(src_pte); 5429 pte_folio = page_folio(pte_page(entry)); 5430 folio_get(pte_folio); 5431 5432 /* 5433 * Failing to duplicate the anon rmap is a rare case 5434 * where we see pinned hugetlb pages while they're 5435 * prone to COW. We need to do the COW earlier during 5436 * fork. 5437 * 5438 * When pre-allocating the page or copying data, we 5439 * need to be without the pgtable locks since we could 5440 * sleep during the process. 5441 */ 5442 if (!folio_test_anon(pte_folio)) { 5443 hugetlb_add_file_rmap(pte_folio); 5444 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5445 pte_t src_pte_old = entry; 5446 struct folio *new_folio; 5447 5448 spin_unlock(src_ptl); 5449 spin_unlock(dst_ptl); 5450 /* Do not use reserve as it's private owned */ 5451 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5452 if (IS_ERR(new_folio)) { 5453 folio_put(pte_folio); 5454 ret = PTR_ERR(new_folio); 5455 break; 5456 } 5457 ret = copy_user_large_folio(new_folio, 5458 pte_folio, 5459 addr, dst_vma); 5460 folio_put(pte_folio); 5461 if (ret) { 5462 folio_put(new_folio); 5463 break; 5464 } 5465 5466 /* Install the new hugetlb folio if src pte stable */ 5467 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5468 src_ptl = huge_pte_lockptr(h, src, src_pte); 5469 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5470 entry = huge_ptep_get(src_pte); 5471 if (!pte_same(src_pte_old, entry)) { 5472 restore_reserve_on_error(h, dst_vma, addr, 5473 new_folio); 5474 folio_put(new_folio); 5475 /* huge_ptep of dst_pte won't change as in child */ 5476 goto again; 5477 } 5478 hugetlb_install_folio(dst_vma, dst_pte, addr, 5479 new_folio, src_pte_old, sz); 5480 spin_unlock(src_ptl); 5481 spin_unlock(dst_ptl); 5482 continue; 5483 } 5484 5485 if (cow) { 5486 /* 5487 * No need to notify as we are downgrading page 5488 * table protection not changing it to point 5489 * to a new page. 5490 * 5491 * See Documentation/mm/mmu_notifier.rst 5492 */ 5493 huge_ptep_set_wrprotect(src, addr, src_pte); 5494 entry = huge_pte_wrprotect(entry); 5495 } 5496 5497 if (!userfaultfd_wp(dst_vma)) 5498 entry = huge_pte_clear_uffd_wp(entry); 5499 5500 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5501 hugetlb_count_add(npages, dst); 5502 } 5503 spin_unlock(src_ptl); 5504 spin_unlock(dst_ptl); 5505 } 5506 5507 if (cow) { 5508 raw_write_seqcount_end(&src->write_protect_seq); 5509 mmu_notifier_invalidate_range_end(&range); 5510 } else { 5511 hugetlb_vma_unlock_read(src_vma); 5512 } 5513 5514 return ret; 5515 } 5516 5517 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5518 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5519 unsigned long sz) 5520 { 5521 struct hstate *h = hstate_vma(vma); 5522 struct mm_struct *mm = vma->vm_mm; 5523 spinlock_t *src_ptl, *dst_ptl; 5524 pte_t pte; 5525 5526 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5527 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5528 5529 /* 5530 * We don't have to worry about the ordering of src and dst ptlocks 5531 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5532 */ 5533 if (src_ptl != dst_ptl) 5534 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5535 5536 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5537 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5538 5539 if (src_ptl != dst_ptl) 5540 spin_unlock(src_ptl); 5541 spin_unlock(dst_ptl); 5542 } 5543 5544 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5545 struct vm_area_struct *new_vma, 5546 unsigned long old_addr, unsigned long new_addr, 5547 unsigned long len) 5548 { 5549 struct hstate *h = hstate_vma(vma); 5550 struct address_space *mapping = vma->vm_file->f_mapping; 5551 unsigned long sz = huge_page_size(h); 5552 struct mm_struct *mm = vma->vm_mm; 5553 unsigned long old_end = old_addr + len; 5554 unsigned long last_addr_mask; 5555 pte_t *src_pte, *dst_pte; 5556 struct mmu_notifier_range range; 5557 bool shared_pmd = false; 5558 5559 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5560 old_end); 5561 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5562 /* 5563 * In case of shared PMDs, we should cover the maximum possible 5564 * range. 5565 */ 5566 flush_cache_range(vma, range.start, range.end); 5567 5568 mmu_notifier_invalidate_range_start(&range); 5569 last_addr_mask = hugetlb_mask_last_page(h); 5570 /* Prevent race with file truncation */ 5571 hugetlb_vma_lock_write(vma); 5572 i_mmap_lock_write(mapping); 5573 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5574 src_pte = hugetlb_walk(vma, old_addr, sz); 5575 if (!src_pte) { 5576 old_addr |= last_addr_mask; 5577 new_addr |= last_addr_mask; 5578 continue; 5579 } 5580 if (huge_pte_none(huge_ptep_get(src_pte))) 5581 continue; 5582 5583 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5584 shared_pmd = true; 5585 old_addr |= last_addr_mask; 5586 new_addr |= last_addr_mask; 5587 continue; 5588 } 5589 5590 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5591 if (!dst_pte) 5592 break; 5593 5594 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5595 } 5596 5597 if (shared_pmd) 5598 flush_hugetlb_tlb_range(vma, range.start, range.end); 5599 else 5600 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5601 mmu_notifier_invalidate_range_end(&range); 5602 i_mmap_unlock_write(mapping); 5603 hugetlb_vma_unlock_write(vma); 5604 5605 return len + old_addr - old_end; 5606 } 5607 5608 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5609 unsigned long start, unsigned long end, 5610 struct page *ref_page, zap_flags_t zap_flags) 5611 { 5612 struct mm_struct *mm = vma->vm_mm; 5613 unsigned long address; 5614 pte_t *ptep; 5615 pte_t pte; 5616 spinlock_t *ptl; 5617 struct page *page; 5618 struct hstate *h = hstate_vma(vma); 5619 unsigned long sz = huge_page_size(h); 5620 bool adjust_reservation = false; 5621 unsigned long last_addr_mask; 5622 bool force_flush = false; 5623 5624 WARN_ON(!is_vm_hugetlb_page(vma)); 5625 BUG_ON(start & ~huge_page_mask(h)); 5626 BUG_ON(end & ~huge_page_mask(h)); 5627 5628 /* 5629 * This is a hugetlb vma, all the pte entries should point 5630 * to huge page. 5631 */ 5632 tlb_change_page_size(tlb, sz); 5633 tlb_start_vma(tlb, vma); 5634 5635 last_addr_mask = hugetlb_mask_last_page(h); 5636 address = start; 5637 for (; address < end; address += sz) { 5638 ptep = hugetlb_walk(vma, address, sz); 5639 if (!ptep) { 5640 address |= last_addr_mask; 5641 continue; 5642 } 5643 5644 ptl = huge_pte_lock(h, mm, ptep); 5645 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5646 spin_unlock(ptl); 5647 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5648 force_flush = true; 5649 address |= last_addr_mask; 5650 continue; 5651 } 5652 5653 pte = huge_ptep_get(ptep); 5654 if (huge_pte_none(pte)) { 5655 spin_unlock(ptl); 5656 continue; 5657 } 5658 5659 /* 5660 * Migrating hugepage or HWPoisoned hugepage is already 5661 * unmapped and its refcount is dropped, so just clear pte here. 5662 */ 5663 if (unlikely(!pte_present(pte))) { 5664 /* 5665 * If the pte was wr-protected by uffd-wp in any of the 5666 * swap forms, meanwhile the caller does not want to 5667 * drop the uffd-wp bit in this zap, then replace the 5668 * pte with a marker. 5669 */ 5670 if (pte_swp_uffd_wp_any(pte) && 5671 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5672 set_huge_pte_at(mm, address, ptep, 5673 make_pte_marker(PTE_MARKER_UFFD_WP), 5674 sz); 5675 else 5676 huge_pte_clear(mm, address, ptep, sz); 5677 spin_unlock(ptl); 5678 continue; 5679 } 5680 5681 page = pte_page(pte); 5682 /* 5683 * If a reference page is supplied, it is because a specific 5684 * page is being unmapped, not a range. Ensure the page we 5685 * are about to unmap is the actual page of interest. 5686 */ 5687 if (ref_page) { 5688 if (page != ref_page) { 5689 spin_unlock(ptl); 5690 continue; 5691 } 5692 /* 5693 * Mark the VMA as having unmapped its page so that 5694 * future faults in this VMA will fail rather than 5695 * looking like data was lost 5696 */ 5697 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5698 } 5699 5700 pte = huge_ptep_get_and_clear(mm, address, ptep); 5701 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5702 if (huge_pte_dirty(pte)) 5703 set_page_dirty(page); 5704 /* Leave a uffd-wp pte marker if needed */ 5705 if (huge_pte_uffd_wp(pte) && 5706 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5707 set_huge_pte_at(mm, address, ptep, 5708 make_pte_marker(PTE_MARKER_UFFD_WP), 5709 sz); 5710 hugetlb_count_sub(pages_per_huge_page(h), mm); 5711 hugetlb_remove_rmap(page_folio(page)); 5712 5713 /* 5714 * Restore the reservation for anonymous page, otherwise the 5715 * backing page could be stolen by someone. 5716 * If there we are freeing a surplus, do not set the restore 5717 * reservation bit. 5718 */ 5719 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5720 folio_test_anon(page_folio(page))) { 5721 folio_set_hugetlb_restore_reserve(page_folio(page)); 5722 /* Reservation to be adjusted after the spin lock */ 5723 adjust_reservation = true; 5724 } 5725 5726 spin_unlock(ptl); 5727 5728 /* 5729 * Adjust the reservation for the region that will have the 5730 * reserve restored. Keep in mind that vma_needs_reservation() changes 5731 * resv->adds_in_progress if it succeeds. If this is not done, 5732 * do_exit() will not see it, and will keep the reservation 5733 * forever. 5734 */ 5735 if (adjust_reservation) { 5736 int rc = vma_needs_reservation(h, vma, address); 5737 5738 if (rc < 0) 5739 /* Pressumably allocate_file_region_entries failed 5740 * to allocate a file_region struct. Clear 5741 * hugetlb_restore_reserve so that global reserve 5742 * count will not be incremented by free_huge_folio. 5743 * Act as if we consumed the reservation. 5744 */ 5745 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5746 else if (rc) 5747 vma_add_reservation(h, vma, address); 5748 } 5749 5750 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5751 /* 5752 * Bail out after unmapping reference page if supplied 5753 */ 5754 if (ref_page) 5755 break; 5756 } 5757 tlb_end_vma(tlb, vma); 5758 5759 /* 5760 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5761 * could defer the flush until now, since by holding i_mmap_rwsem we 5762 * guaranteed that the last refernece would not be dropped. But we must 5763 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5764 * dropped and the last reference to the shared PMDs page might be 5765 * dropped as well. 5766 * 5767 * In theory we could defer the freeing of the PMD pages as well, but 5768 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5769 * detect sharing, so we cannot defer the release of the page either. 5770 * Instead, do flush now. 5771 */ 5772 if (force_flush) 5773 tlb_flush_mmu_tlbonly(tlb); 5774 } 5775 5776 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5777 unsigned long *start, unsigned long *end) 5778 { 5779 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5780 return; 5781 5782 adjust_range_if_pmd_sharing_possible(vma, start, end); 5783 hugetlb_vma_lock_write(vma); 5784 if (vma->vm_file) 5785 i_mmap_lock_write(vma->vm_file->f_mapping); 5786 } 5787 5788 void __hugetlb_zap_end(struct vm_area_struct *vma, 5789 struct zap_details *details) 5790 { 5791 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5792 5793 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5794 return; 5795 5796 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5797 /* 5798 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5799 * When the vma_lock is freed, this makes the vma ineligible 5800 * for pmd sharing. And, i_mmap_rwsem is required to set up 5801 * pmd sharing. This is important as page tables for this 5802 * unmapped range will be asynchrously deleted. If the page 5803 * tables are shared, there will be issues when accessed by 5804 * someone else. 5805 */ 5806 __hugetlb_vma_unlock_write_free(vma); 5807 } else { 5808 hugetlb_vma_unlock_write(vma); 5809 } 5810 5811 if (vma->vm_file) 5812 i_mmap_unlock_write(vma->vm_file->f_mapping); 5813 } 5814 5815 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5816 unsigned long end, struct page *ref_page, 5817 zap_flags_t zap_flags) 5818 { 5819 struct mmu_notifier_range range; 5820 struct mmu_gather tlb; 5821 5822 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5823 start, end); 5824 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5825 mmu_notifier_invalidate_range_start(&range); 5826 tlb_gather_mmu(&tlb, vma->vm_mm); 5827 5828 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5829 5830 mmu_notifier_invalidate_range_end(&range); 5831 tlb_finish_mmu(&tlb); 5832 } 5833 5834 /* 5835 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5836 * mapping it owns the reserve page for. The intention is to unmap the page 5837 * from other VMAs and let the children be SIGKILLed if they are faulting the 5838 * same region. 5839 */ 5840 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5841 struct page *page, unsigned long address) 5842 { 5843 struct hstate *h = hstate_vma(vma); 5844 struct vm_area_struct *iter_vma; 5845 struct address_space *mapping; 5846 pgoff_t pgoff; 5847 5848 /* 5849 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5850 * from page cache lookup which is in HPAGE_SIZE units. 5851 */ 5852 address = address & huge_page_mask(h); 5853 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5854 vma->vm_pgoff; 5855 mapping = vma->vm_file->f_mapping; 5856 5857 /* 5858 * Take the mapping lock for the duration of the table walk. As 5859 * this mapping should be shared between all the VMAs, 5860 * __unmap_hugepage_range() is called as the lock is already held 5861 */ 5862 i_mmap_lock_write(mapping); 5863 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5864 /* Do not unmap the current VMA */ 5865 if (iter_vma == vma) 5866 continue; 5867 5868 /* 5869 * Shared VMAs have their own reserves and do not affect 5870 * MAP_PRIVATE accounting but it is possible that a shared 5871 * VMA is using the same page so check and skip such VMAs. 5872 */ 5873 if (iter_vma->vm_flags & VM_MAYSHARE) 5874 continue; 5875 5876 /* 5877 * Unmap the page from other VMAs without their own reserves. 5878 * They get marked to be SIGKILLed if they fault in these 5879 * areas. This is because a future no-page fault on this VMA 5880 * could insert a zeroed page instead of the data existing 5881 * from the time of fork. This would look like data corruption 5882 */ 5883 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5884 unmap_hugepage_range(iter_vma, address, 5885 address + huge_page_size(h), page, 0); 5886 } 5887 i_mmap_unlock_write(mapping); 5888 } 5889 5890 /* 5891 * hugetlb_wp() should be called with page lock of the original hugepage held. 5892 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5893 * cannot race with other handlers or page migration. 5894 * Keep the pte_same checks anyway to make transition from the mutex easier. 5895 */ 5896 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 5897 struct vm_fault *vmf) 5898 { 5899 struct vm_area_struct *vma = vmf->vma; 5900 struct mm_struct *mm = vma->vm_mm; 5901 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5902 pte_t pte = huge_ptep_get(vmf->pte); 5903 struct hstate *h = hstate_vma(vma); 5904 struct folio *old_folio; 5905 struct folio *new_folio; 5906 int outside_reserve = 0; 5907 vm_fault_t ret = 0; 5908 struct mmu_notifier_range range; 5909 5910 /* 5911 * Never handle CoW for uffd-wp protected pages. It should be only 5912 * handled when the uffd-wp protection is removed. 5913 * 5914 * Note that only the CoW optimization path (in hugetlb_no_page()) 5915 * can trigger this, because hugetlb_fault() will always resolve 5916 * uffd-wp bit first. 5917 */ 5918 if (!unshare && huge_pte_uffd_wp(pte)) 5919 return 0; 5920 5921 /* 5922 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5923 * PTE mapped R/O such as maybe_mkwrite() would do. 5924 */ 5925 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5926 return VM_FAULT_SIGSEGV; 5927 5928 /* Let's take out MAP_SHARED mappings first. */ 5929 if (vma->vm_flags & VM_MAYSHARE) { 5930 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5931 return 0; 5932 } 5933 5934 old_folio = page_folio(pte_page(pte)); 5935 5936 delayacct_wpcopy_start(); 5937 5938 retry_avoidcopy: 5939 /* 5940 * If no-one else is actually using this page, we're the exclusive 5941 * owner and can reuse this page. 5942 * 5943 * Note that we don't rely on the (safer) folio refcount here, because 5944 * copying the hugetlb folio when there are unexpected (temporary) 5945 * folio references could harm simple fork()+exit() users when 5946 * we run out of free hugetlb folios: we would have to kill processes 5947 * in scenarios that used to work. As a side effect, there can still 5948 * be leaks between processes, for example, with FOLL_GET users. 5949 */ 5950 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5951 if (!PageAnonExclusive(&old_folio->page)) { 5952 folio_move_anon_rmap(old_folio, vma); 5953 SetPageAnonExclusive(&old_folio->page); 5954 } 5955 if (likely(!unshare)) 5956 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5957 5958 delayacct_wpcopy_end(); 5959 return 0; 5960 } 5961 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5962 PageAnonExclusive(&old_folio->page), &old_folio->page); 5963 5964 /* 5965 * If the process that created a MAP_PRIVATE mapping is about to 5966 * perform a COW due to a shared page count, attempt to satisfy 5967 * the allocation without using the existing reserves. The pagecache 5968 * page is used to determine if the reserve at this address was 5969 * consumed or not. If reserves were used, a partial faulted mapping 5970 * at the time of fork() could consume its reserves on COW instead 5971 * of the full address range. 5972 */ 5973 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5974 old_folio != pagecache_folio) 5975 outside_reserve = 1; 5976 5977 folio_get(old_folio); 5978 5979 /* 5980 * Drop page table lock as buddy allocator may be called. It will 5981 * be acquired again before returning to the caller, as expected. 5982 */ 5983 spin_unlock(vmf->ptl); 5984 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve); 5985 5986 if (IS_ERR(new_folio)) { 5987 /* 5988 * If a process owning a MAP_PRIVATE mapping fails to COW, 5989 * it is due to references held by a child and an insufficient 5990 * huge page pool. To guarantee the original mappers 5991 * reliability, unmap the page from child processes. The child 5992 * may get SIGKILLed if it later faults. 5993 */ 5994 if (outside_reserve) { 5995 struct address_space *mapping = vma->vm_file->f_mapping; 5996 pgoff_t idx; 5997 u32 hash; 5998 5999 folio_put(old_folio); 6000 /* 6001 * Drop hugetlb_fault_mutex and vma_lock before 6002 * unmapping. unmapping needs to hold vma_lock 6003 * in write mode. Dropping vma_lock in read mode 6004 * here is OK as COW mappings do not interact with 6005 * PMD sharing. 6006 * 6007 * Reacquire both after unmap operation. 6008 */ 6009 idx = vma_hugecache_offset(h, vma, vmf->address); 6010 hash = hugetlb_fault_mutex_hash(mapping, idx); 6011 hugetlb_vma_unlock_read(vma); 6012 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6013 6014 unmap_ref_private(mm, vma, &old_folio->page, 6015 vmf->address); 6016 6017 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6018 hugetlb_vma_lock_read(vma); 6019 spin_lock(vmf->ptl); 6020 vmf->pte = hugetlb_walk(vma, vmf->address, 6021 huge_page_size(h)); 6022 if (likely(vmf->pte && 6023 pte_same(huge_ptep_get(vmf->pte), pte))) 6024 goto retry_avoidcopy; 6025 /* 6026 * race occurs while re-acquiring page table 6027 * lock, and our job is done. 6028 */ 6029 delayacct_wpcopy_end(); 6030 return 0; 6031 } 6032 6033 ret = vmf_error(PTR_ERR(new_folio)); 6034 goto out_release_old; 6035 } 6036 6037 /* 6038 * When the original hugepage is shared one, it does not have 6039 * anon_vma prepared. 6040 */ 6041 ret = vmf_anon_prepare(vmf); 6042 if (unlikely(ret)) 6043 goto out_release_all; 6044 6045 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6046 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6047 goto out_release_all; 6048 } 6049 __folio_mark_uptodate(new_folio); 6050 6051 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6052 vmf->address + huge_page_size(h)); 6053 mmu_notifier_invalidate_range_start(&range); 6054 6055 /* 6056 * Retake the page table lock to check for racing updates 6057 * before the page tables are altered 6058 */ 6059 spin_lock(vmf->ptl); 6060 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6061 if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) { 6062 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6063 6064 /* Break COW or unshare */ 6065 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6066 hugetlb_remove_rmap(old_folio); 6067 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6068 if (huge_pte_uffd_wp(pte)) 6069 newpte = huge_pte_mkuffd_wp(newpte); 6070 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6071 huge_page_size(h)); 6072 folio_set_hugetlb_migratable(new_folio); 6073 /* Make the old page be freed below */ 6074 new_folio = old_folio; 6075 } 6076 spin_unlock(vmf->ptl); 6077 mmu_notifier_invalidate_range_end(&range); 6078 out_release_all: 6079 /* 6080 * No restore in case of successful pagetable update (Break COW or 6081 * unshare) 6082 */ 6083 if (new_folio != old_folio) 6084 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6085 folio_put(new_folio); 6086 out_release_old: 6087 folio_put(old_folio); 6088 6089 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6090 6091 delayacct_wpcopy_end(); 6092 return ret; 6093 } 6094 6095 /* 6096 * Return whether there is a pagecache page to back given address within VMA. 6097 */ 6098 bool hugetlbfs_pagecache_present(struct hstate *h, 6099 struct vm_area_struct *vma, unsigned long address) 6100 { 6101 struct address_space *mapping = vma->vm_file->f_mapping; 6102 pgoff_t idx = linear_page_index(vma, address); 6103 struct folio *folio; 6104 6105 folio = filemap_get_folio(mapping, idx); 6106 if (IS_ERR(folio)) 6107 return false; 6108 folio_put(folio); 6109 return true; 6110 } 6111 6112 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6113 pgoff_t idx) 6114 { 6115 struct inode *inode = mapping->host; 6116 struct hstate *h = hstate_inode(inode); 6117 int err; 6118 6119 idx <<= huge_page_order(h); 6120 __folio_set_locked(folio); 6121 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6122 6123 if (unlikely(err)) { 6124 __folio_clear_locked(folio); 6125 return err; 6126 } 6127 folio_clear_hugetlb_restore_reserve(folio); 6128 6129 /* 6130 * mark folio dirty so that it will not be removed from cache/file 6131 * by non-hugetlbfs specific code paths. 6132 */ 6133 folio_mark_dirty(folio); 6134 6135 spin_lock(&inode->i_lock); 6136 inode->i_blocks += blocks_per_huge_page(h); 6137 spin_unlock(&inode->i_lock); 6138 return 0; 6139 } 6140 6141 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6142 struct address_space *mapping, 6143 unsigned long reason) 6144 { 6145 u32 hash; 6146 6147 /* 6148 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6149 * userfault. Also mmap_lock could be dropped due to handling 6150 * userfault, any vma operation should be careful from here. 6151 */ 6152 hugetlb_vma_unlock_read(vmf->vma); 6153 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6154 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6155 return handle_userfault(vmf, reason); 6156 } 6157 6158 /* 6159 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6160 * false if pte changed or is changing. 6161 */ 6162 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 6163 pte_t *ptep, pte_t old_pte) 6164 { 6165 spinlock_t *ptl; 6166 bool same; 6167 6168 ptl = huge_pte_lock(h, mm, ptep); 6169 same = pte_same(huge_ptep_get(ptep), old_pte); 6170 spin_unlock(ptl); 6171 6172 return same; 6173 } 6174 6175 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6176 struct vm_fault *vmf) 6177 { 6178 struct vm_area_struct *vma = vmf->vma; 6179 struct mm_struct *mm = vma->vm_mm; 6180 struct hstate *h = hstate_vma(vma); 6181 vm_fault_t ret = VM_FAULT_SIGBUS; 6182 int anon_rmap = 0; 6183 unsigned long size; 6184 struct folio *folio; 6185 pte_t new_pte; 6186 bool new_folio, new_pagecache_folio = false; 6187 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6188 6189 /* 6190 * Currently, we are forced to kill the process in the event the 6191 * original mapper has unmapped pages from the child due to a failed 6192 * COW/unsharing. Warn that such a situation has occurred as it may not 6193 * be obvious. 6194 */ 6195 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6196 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6197 current->pid); 6198 goto out; 6199 } 6200 6201 /* 6202 * Use page lock to guard against racing truncation 6203 * before we get page_table_lock. 6204 */ 6205 new_folio = false; 6206 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6207 if (IS_ERR(folio)) { 6208 size = i_size_read(mapping->host) >> huge_page_shift(h); 6209 if (vmf->pgoff >= size) 6210 goto out; 6211 /* Check for page in userfault range */ 6212 if (userfaultfd_missing(vma)) { 6213 /* 6214 * Since hugetlb_no_page() was examining pte 6215 * without pgtable lock, we need to re-test under 6216 * lock because the pte may not be stable and could 6217 * have changed from under us. Try to detect 6218 * either changed or during-changing ptes and retry 6219 * properly when needed. 6220 * 6221 * Note that userfaultfd is actually fine with 6222 * false positives (e.g. caused by pte changed), 6223 * but not wrong logical events (e.g. caused by 6224 * reading a pte during changing). The latter can 6225 * confuse the userspace, so the strictness is very 6226 * much preferred. E.g., MISSING event should 6227 * never happen on the page after UFFDIO_COPY has 6228 * correctly installed the page and returned. 6229 */ 6230 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) { 6231 ret = 0; 6232 goto out; 6233 } 6234 6235 return hugetlb_handle_userfault(vmf, mapping, 6236 VM_UFFD_MISSING); 6237 } 6238 6239 if (!(vma->vm_flags & VM_MAYSHARE)) { 6240 ret = vmf_anon_prepare(vmf); 6241 if (unlikely(ret)) 6242 goto out; 6243 } 6244 6245 folio = alloc_hugetlb_folio(vma, vmf->address, 0); 6246 if (IS_ERR(folio)) { 6247 /* 6248 * Returning error will result in faulting task being 6249 * sent SIGBUS. The hugetlb fault mutex prevents two 6250 * tasks from racing to fault in the same page which 6251 * could result in false unable to allocate errors. 6252 * Page migration does not take the fault mutex, but 6253 * does a clear then write of pte's under page table 6254 * lock. Page fault code could race with migration, 6255 * notice the clear pte and try to allocate a page 6256 * here. Before returning error, get ptl and make 6257 * sure there really is no pte entry. 6258 */ 6259 if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) 6260 ret = vmf_error(PTR_ERR(folio)); 6261 else 6262 ret = 0; 6263 goto out; 6264 } 6265 clear_huge_page(&folio->page, vmf->real_address, 6266 pages_per_huge_page(h)); 6267 __folio_mark_uptodate(folio); 6268 new_folio = true; 6269 6270 if (vma->vm_flags & VM_MAYSHARE) { 6271 int err = hugetlb_add_to_page_cache(folio, mapping, 6272 vmf->pgoff); 6273 if (err) { 6274 /* 6275 * err can't be -EEXIST which implies someone 6276 * else consumed the reservation since hugetlb 6277 * fault mutex is held when add a hugetlb page 6278 * to the page cache. So it's safe to call 6279 * restore_reserve_on_error() here. 6280 */ 6281 restore_reserve_on_error(h, vma, vmf->address, 6282 folio); 6283 folio_put(folio); 6284 ret = VM_FAULT_SIGBUS; 6285 goto out; 6286 } 6287 new_pagecache_folio = true; 6288 } else { 6289 folio_lock(folio); 6290 anon_rmap = 1; 6291 } 6292 } else { 6293 /* 6294 * If memory error occurs between mmap() and fault, some process 6295 * don't have hwpoisoned swap entry for errored virtual address. 6296 * So we need to block hugepage fault by PG_hwpoison bit check. 6297 */ 6298 if (unlikely(folio_test_hwpoison(folio))) { 6299 ret = VM_FAULT_HWPOISON_LARGE | 6300 VM_FAULT_SET_HINDEX(hstate_index(h)); 6301 goto backout_unlocked; 6302 } 6303 6304 /* Check for page in userfault range. */ 6305 if (userfaultfd_minor(vma)) { 6306 folio_unlock(folio); 6307 folio_put(folio); 6308 /* See comment in userfaultfd_missing() block above */ 6309 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) { 6310 ret = 0; 6311 goto out; 6312 } 6313 return hugetlb_handle_userfault(vmf, mapping, 6314 VM_UFFD_MINOR); 6315 } 6316 } 6317 6318 /* 6319 * If we are going to COW a private mapping later, we examine the 6320 * pending reservations for this page now. This will ensure that 6321 * any allocations necessary to record that reservation occur outside 6322 * the spinlock. 6323 */ 6324 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6325 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6326 ret = VM_FAULT_OOM; 6327 goto backout_unlocked; 6328 } 6329 /* Just decrements count, does not deallocate */ 6330 vma_end_reservation(h, vma, vmf->address); 6331 } 6332 6333 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6334 ret = 0; 6335 /* If pte changed from under us, retry */ 6336 if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte)) 6337 goto backout; 6338 6339 if (anon_rmap) 6340 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6341 else 6342 hugetlb_add_file_rmap(folio); 6343 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6344 && (vma->vm_flags & VM_SHARED))); 6345 /* 6346 * If this pte was previously wr-protected, keep it wr-protected even 6347 * if populated. 6348 */ 6349 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6350 new_pte = huge_pte_mkuffd_wp(new_pte); 6351 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6352 6353 hugetlb_count_add(pages_per_huge_page(h), mm); 6354 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6355 /* Optimization, do the COW without a second fault */ 6356 ret = hugetlb_wp(folio, vmf); 6357 } 6358 6359 spin_unlock(vmf->ptl); 6360 6361 /* 6362 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6363 * found in the pagecache may not have hugetlb_migratable if they have 6364 * been isolated for migration. 6365 */ 6366 if (new_folio) 6367 folio_set_hugetlb_migratable(folio); 6368 6369 folio_unlock(folio); 6370 out: 6371 hugetlb_vma_unlock_read(vma); 6372 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6373 return ret; 6374 6375 backout: 6376 spin_unlock(vmf->ptl); 6377 backout_unlocked: 6378 if (new_folio && !new_pagecache_folio) 6379 restore_reserve_on_error(h, vma, vmf->address, folio); 6380 6381 folio_unlock(folio); 6382 folio_put(folio); 6383 goto out; 6384 } 6385 6386 #ifdef CONFIG_SMP 6387 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6388 { 6389 unsigned long key[2]; 6390 u32 hash; 6391 6392 key[0] = (unsigned long) mapping; 6393 key[1] = idx; 6394 6395 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6396 6397 return hash & (num_fault_mutexes - 1); 6398 } 6399 #else 6400 /* 6401 * For uniprocessor systems we always use a single mutex, so just 6402 * return 0 and avoid the hashing overhead. 6403 */ 6404 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6405 { 6406 return 0; 6407 } 6408 #endif 6409 6410 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6411 unsigned long address, unsigned int flags) 6412 { 6413 vm_fault_t ret; 6414 u32 hash; 6415 struct folio *folio = NULL; 6416 struct folio *pagecache_folio = NULL; 6417 struct hstate *h = hstate_vma(vma); 6418 struct address_space *mapping; 6419 int need_wait_lock = 0; 6420 struct vm_fault vmf = { 6421 .vma = vma, 6422 .address = address & huge_page_mask(h), 6423 .real_address = address, 6424 .flags = flags, 6425 .pgoff = vma_hugecache_offset(h, vma, 6426 address & huge_page_mask(h)), 6427 /* TODO: Track hugetlb faults using vm_fault */ 6428 6429 /* 6430 * Some fields may not be initialized, be careful as it may 6431 * be hard to debug if called functions make assumptions 6432 */ 6433 }; 6434 6435 /* 6436 * Serialize hugepage allocation and instantiation, so that we don't 6437 * get spurious allocation failures if two CPUs race to instantiate 6438 * the same page in the page cache. 6439 */ 6440 mapping = vma->vm_file->f_mapping; 6441 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6442 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6443 6444 /* 6445 * Acquire vma lock before calling huge_pte_alloc and hold 6446 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6447 * being called elsewhere and making the vmf.pte no longer valid. 6448 */ 6449 hugetlb_vma_lock_read(vma); 6450 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6451 if (!vmf.pte) { 6452 hugetlb_vma_unlock_read(vma); 6453 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6454 return VM_FAULT_OOM; 6455 } 6456 6457 vmf.orig_pte = huge_ptep_get(vmf.pte); 6458 if (huge_pte_none_mostly(vmf.orig_pte)) { 6459 if (is_pte_marker(vmf.orig_pte)) { 6460 pte_marker marker = 6461 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6462 6463 if (marker & PTE_MARKER_POISONED) { 6464 ret = VM_FAULT_HWPOISON_LARGE | 6465 VM_FAULT_SET_HINDEX(hstate_index(h)); 6466 goto out_mutex; 6467 } 6468 } 6469 6470 /* 6471 * Other PTE markers should be handled the same way as none PTE. 6472 * 6473 * hugetlb_no_page will drop vma lock and hugetlb fault 6474 * mutex internally, which make us return immediately. 6475 */ 6476 return hugetlb_no_page(mapping, &vmf); 6477 } 6478 6479 ret = 0; 6480 6481 /* 6482 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6483 * point, so this check prevents the kernel from going below assuming 6484 * that we have an active hugepage in pagecache. This goto expects 6485 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6486 * check will properly handle it. 6487 */ 6488 if (!pte_present(vmf.orig_pte)) { 6489 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6490 /* 6491 * Release the hugetlb fault lock now, but retain 6492 * the vma lock, because it is needed to guard the 6493 * huge_pte_lockptr() later in 6494 * migration_entry_wait_huge(). The vma lock will 6495 * be released there. 6496 */ 6497 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6498 migration_entry_wait_huge(vma, vmf.pte); 6499 return 0; 6500 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6501 ret = VM_FAULT_HWPOISON_LARGE | 6502 VM_FAULT_SET_HINDEX(hstate_index(h)); 6503 goto out_mutex; 6504 } 6505 6506 /* 6507 * If we are going to COW/unshare the mapping later, we examine the 6508 * pending reservations for this page now. This will ensure that any 6509 * allocations necessary to record that reservation occur outside the 6510 * spinlock. Also lookup the pagecache page now as it is used to 6511 * determine if a reservation has been consumed. 6512 */ 6513 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6514 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6515 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6516 ret = VM_FAULT_OOM; 6517 goto out_mutex; 6518 } 6519 /* Just decrements count, does not deallocate */ 6520 vma_end_reservation(h, vma, vmf.address); 6521 6522 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6523 vmf.pgoff); 6524 if (IS_ERR(pagecache_folio)) 6525 pagecache_folio = NULL; 6526 } 6527 6528 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6529 6530 /* Check for a racing update before calling hugetlb_wp() */ 6531 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte)))) 6532 goto out_ptl; 6533 6534 /* Handle userfault-wp first, before trying to lock more pages */ 6535 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) && 6536 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6537 if (!userfaultfd_wp_async(vma)) { 6538 spin_unlock(vmf.ptl); 6539 if (pagecache_folio) { 6540 folio_unlock(pagecache_folio); 6541 folio_put(pagecache_folio); 6542 } 6543 hugetlb_vma_unlock_read(vma); 6544 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6545 return handle_userfault(&vmf, VM_UFFD_WP); 6546 } 6547 6548 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6549 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6550 huge_page_size(hstate_vma(vma))); 6551 /* Fallthrough to CoW */ 6552 } 6553 6554 /* 6555 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6556 * pagecache_folio, so here we need take the former one 6557 * when folio != pagecache_folio or !pagecache_folio. 6558 */ 6559 folio = page_folio(pte_page(vmf.orig_pte)); 6560 if (folio != pagecache_folio) 6561 if (!folio_trylock(folio)) { 6562 need_wait_lock = 1; 6563 goto out_ptl; 6564 } 6565 6566 folio_get(folio); 6567 6568 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6569 if (!huge_pte_write(vmf.orig_pte)) { 6570 ret = hugetlb_wp(pagecache_folio, &vmf); 6571 goto out_put_page; 6572 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6573 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6574 } 6575 } 6576 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6577 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6578 flags & FAULT_FLAG_WRITE)) 6579 update_mmu_cache(vma, vmf.address, vmf.pte); 6580 out_put_page: 6581 if (folio != pagecache_folio) 6582 folio_unlock(folio); 6583 folio_put(folio); 6584 out_ptl: 6585 spin_unlock(vmf.ptl); 6586 6587 if (pagecache_folio) { 6588 folio_unlock(pagecache_folio); 6589 folio_put(pagecache_folio); 6590 } 6591 out_mutex: 6592 hugetlb_vma_unlock_read(vma); 6593 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6594 /* 6595 * Generally it's safe to hold refcount during waiting page lock. But 6596 * here we just wait to defer the next page fault to avoid busy loop and 6597 * the page is not used after unlocked before returning from the current 6598 * page fault. So we are safe from accessing freed page, even if we wait 6599 * here without taking refcount. 6600 */ 6601 if (need_wait_lock) 6602 folio_wait_locked(folio); 6603 return ret; 6604 } 6605 6606 #ifdef CONFIG_USERFAULTFD 6607 /* 6608 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6609 */ 6610 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6611 struct vm_area_struct *vma, unsigned long address) 6612 { 6613 struct mempolicy *mpol; 6614 nodemask_t *nodemask; 6615 struct folio *folio; 6616 gfp_t gfp_mask; 6617 int node; 6618 6619 gfp_mask = htlb_alloc_mask(h); 6620 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6621 /* 6622 * This is used to allocate a temporary hugetlb to hold the copied 6623 * content, which will then be copied again to the final hugetlb 6624 * consuming a reservation. Set the alloc_fallback to false to indicate 6625 * that breaking the per-node hugetlb pool is not allowed in this case. 6626 */ 6627 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6628 mpol_cond_put(mpol); 6629 6630 return folio; 6631 } 6632 6633 /* 6634 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6635 * with modifications for hugetlb pages. 6636 */ 6637 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6638 struct vm_area_struct *dst_vma, 6639 unsigned long dst_addr, 6640 unsigned long src_addr, 6641 uffd_flags_t flags, 6642 struct folio **foliop) 6643 { 6644 struct mm_struct *dst_mm = dst_vma->vm_mm; 6645 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6646 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6647 struct hstate *h = hstate_vma(dst_vma); 6648 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6649 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6650 unsigned long size; 6651 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6652 pte_t _dst_pte; 6653 spinlock_t *ptl; 6654 int ret = -ENOMEM; 6655 struct folio *folio; 6656 int writable; 6657 bool folio_in_pagecache = false; 6658 6659 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6660 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6661 6662 /* Don't overwrite any existing PTEs (even markers) */ 6663 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6664 spin_unlock(ptl); 6665 return -EEXIST; 6666 } 6667 6668 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6669 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6670 huge_page_size(h)); 6671 6672 /* No need to invalidate - it was non-present before */ 6673 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6674 6675 spin_unlock(ptl); 6676 return 0; 6677 } 6678 6679 if (is_continue) { 6680 ret = -EFAULT; 6681 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6682 if (IS_ERR(folio)) 6683 goto out; 6684 folio_in_pagecache = true; 6685 } else if (!*foliop) { 6686 /* If a folio already exists, then it's UFFDIO_COPY for 6687 * a non-missing case. Return -EEXIST. 6688 */ 6689 if (vm_shared && 6690 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6691 ret = -EEXIST; 6692 goto out; 6693 } 6694 6695 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6696 if (IS_ERR(folio)) { 6697 ret = -ENOMEM; 6698 goto out; 6699 } 6700 6701 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6702 false); 6703 6704 /* fallback to copy_from_user outside mmap_lock */ 6705 if (unlikely(ret)) { 6706 ret = -ENOENT; 6707 /* Free the allocated folio which may have 6708 * consumed a reservation. 6709 */ 6710 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6711 folio_put(folio); 6712 6713 /* Allocate a temporary folio to hold the copied 6714 * contents. 6715 */ 6716 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6717 if (!folio) { 6718 ret = -ENOMEM; 6719 goto out; 6720 } 6721 *foliop = folio; 6722 /* Set the outparam foliop and return to the caller to 6723 * copy the contents outside the lock. Don't free the 6724 * folio. 6725 */ 6726 goto out; 6727 } 6728 } else { 6729 if (vm_shared && 6730 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6731 folio_put(*foliop); 6732 ret = -EEXIST; 6733 *foliop = NULL; 6734 goto out; 6735 } 6736 6737 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6738 if (IS_ERR(folio)) { 6739 folio_put(*foliop); 6740 ret = -ENOMEM; 6741 *foliop = NULL; 6742 goto out; 6743 } 6744 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6745 folio_put(*foliop); 6746 *foliop = NULL; 6747 if (ret) { 6748 folio_put(folio); 6749 goto out; 6750 } 6751 } 6752 6753 /* 6754 * If we just allocated a new page, we need a memory barrier to ensure 6755 * that preceding stores to the page become visible before the 6756 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6757 * is what we need. 6758 * 6759 * In the case where we have not allocated a new page (is_continue), 6760 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6761 * an earlier smp_wmb() to ensure that prior stores will be visible 6762 * before the set_pte_at() write. 6763 */ 6764 if (!is_continue) 6765 __folio_mark_uptodate(folio); 6766 else 6767 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6768 6769 /* Add shared, newly allocated pages to the page cache. */ 6770 if (vm_shared && !is_continue) { 6771 size = i_size_read(mapping->host) >> huge_page_shift(h); 6772 ret = -EFAULT; 6773 if (idx >= size) 6774 goto out_release_nounlock; 6775 6776 /* 6777 * Serialization between remove_inode_hugepages() and 6778 * hugetlb_add_to_page_cache() below happens through the 6779 * hugetlb_fault_mutex_table that here must be hold by 6780 * the caller. 6781 */ 6782 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6783 if (ret) 6784 goto out_release_nounlock; 6785 folio_in_pagecache = true; 6786 } 6787 6788 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6789 6790 ret = -EIO; 6791 if (folio_test_hwpoison(folio)) 6792 goto out_release_unlock; 6793 6794 /* 6795 * We allow to overwrite a pte marker: consider when both MISSING|WP 6796 * registered, we firstly wr-protect a none pte which has no page cache 6797 * page backing it, then access the page. 6798 */ 6799 ret = -EEXIST; 6800 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6801 goto out_release_unlock; 6802 6803 if (folio_in_pagecache) 6804 hugetlb_add_file_rmap(folio); 6805 else 6806 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6807 6808 /* 6809 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6810 * with wp flag set, don't set pte write bit. 6811 */ 6812 if (wp_enabled || (is_continue && !vm_shared)) 6813 writable = 0; 6814 else 6815 writable = dst_vma->vm_flags & VM_WRITE; 6816 6817 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6818 /* 6819 * Always mark UFFDIO_COPY page dirty; note that this may not be 6820 * extremely important for hugetlbfs for now since swapping is not 6821 * supported, but we should still be clear in that this page cannot be 6822 * thrown away at will, even if write bit not set. 6823 */ 6824 _dst_pte = huge_pte_mkdirty(_dst_pte); 6825 _dst_pte = pte_mkyoung(_dst_pte); 6826 6827 if (wp_enabled) 6828 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6829 6830 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6831 6832 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6833 6834 /* No need to invalidate - it was non-present before */ 6835 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6836 6837 spin_unlock(ptl); 6838 if (!is_continue) 6839 folio_set_hugetlb_migratable(folio); 6840 if (vm_shared || is_continue) 6841 folio_unlock(folio); 6842 ret = 0; 6843 out: 6844 return ret; 6845 out_release_unlock: 6846 spin_unlock(ptl); 6847 if (vm_shared || is_continue) 6848 folio_unlock(folio); 6849 out_release_nounlock: 6850 if (!folio_in_pagecache) 6851 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6852 folio_put(folio); 6853 goto out; 6854 } 6855 #endif /* CONFIG_USERFAULTFD */ 6856 6857 long hugetlb_change_protection(struct vm_area_struct *vma, 6858 unsigned long address, unsigned long end, 6859 pgprot_t newprot, unsigned long cp_flags) 6860 { 6861 struct mm_struct *mm = vma->vm_mm; 6862 unsigned long start = address; 6863 pte_t *ptep; 6864 pte_t pte; 6865 struct hstate *h = hstate_vma(vma); 6866 long pages = 0, psize = huge_page_size(h); 6867 bool shared_pmd = false; 6868 struct mmu_notifier_range range; 6869 unsigned long last_addr_mask; 6870 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6871 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6872 6873 /* 6874 * In the case of shared PMDs, the area to flush could be beyond 6875 * start/end. Set range.start/range.end to cover the maximum possible 6876 * range if PMD sharing is possible. 6877 */ 6878 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6879 0, mm, start, end); 6880 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6881 6882 BUG_ON(address >= end); 6883 flush_cache_range(vma, range.start, range.end); 6884 6885 mmu_notifier_invalidate_range_start(&range); 6886 hugetlb_vma_lock_write(vma); 6887 i_mmap_lock_write(vma->vm_file->f_mapping); 6888 last_addr_mask = hugetlb_mask_last_page(h); 6889 for (; address < end; address += psize) { 6890 spinlock_t *ptl; 6891 ptep = hugetlb_walk(vma, address, psize); 6892 if (!ptep) { 6893 if (!uffd_wp) { 6894 address |= last_addr_mask; 6895 continue; 6896 } 6897 /* 6898 * Userfaultfd wr-protect requires pgtable 6899 * pre-allocations to install pte markers. 6900 */ 6901 ptep = huge_pte_alloc(mm, vma, address, psize); 6902 if (!ptep) { 6903 pages = -ENOMEM; 6904 break; 6905 } 6906 } 6907 ptl = huge_pte_lock(h, mm, ptep); 6908 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6909 /* 6910 * When uffd-wp is enabled on the vma, unshare 6911 * shouldn't happen at all. Warn about it if it 6912 * happened due to some reason. 6913 */ 6914 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6915 pages++; 6916 spin_unlock(ptl); 6917 shared_pmd = true; 6918 address |= last_addr_mask; 6919 continue; 6920 } 6921 pte = huge_ptep_get(ptep); 6922 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6923 /* Nothing to do. */ 6924 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6925 swp_entry_t entry = pte_to_swp_entry(pte); 6926 struct page *page = pfn_swap_entry_to_page(entry); 6927 pte_t newpte = pte; 6928 6929 if (is_writable_migration_entry(entry)) { 6930 if (PageAnon(page)) 6931 entry = make_readable_exclusive_migration_entry( 6932 swp_offset(entry)); 6933 else 6934 entry = make_readable_migration_entry( 6935 swp_offset(entry)); 6936 newpte = swp_entry_to_pte(entry); 6937 pages++; 6938 } 6939 6940 if (uffd_wp) 6941 newpte = pte_swp_mkuffd_wp(newpte); 6942 else if (uffd_wp_resolve) 6943 newpte = pte_swp_clear_uffd_wp(newpte); 6944 if (!pte_same(pte, newpte)) 6945 set_huge_pte_at(mm, address, ptep, newpte, psize); 6946 } else if (unlikely(is_pte_marker(pte))) { 6947 /* 6948 * Do nothing on a poison marker; page is 6949 * corrupted, permissons do not apply. Here 6950 * pte_marker_uffd_wp()==true implies !poison 6951 * because they're mutual exclusive. 6952 */ 6953 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6954 /* Safe to modify directly (non-present->none). */ 6955 huge_pte_clear(mm, address, ptep, psize); 6956 } else if (!huge_pte_none(pte)) { 6957 pte_t old_pte; 6958 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6959 6960 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6961 pte = huge_pte_modify(old_pte, newprot); 6962 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6963 if (uffd_wp) 6964 pte = huge_pte_mkuffd_wp(pte); 6965 else if (uffd_wp_resolve) 6966 pte = huge_pte_clear_uffd_wp(pte); 6967 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6968 pages++; 6969 } else { 6970 /* None pte */ 6971 if (unlikely(uffd_wp)) 6972 /* Safe to modify directly (none->non-present). */ 6973 set_huge_pte_at(mm, address, ptep, 6974 make_pte_marker(PTE_MARKER_UFFD_WP), 6975 psize); 6976 } 6977 spin_unlock(ptl); 6978 } 6979 /* 6980 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6981 * may have cleared our pud entry and done put_page on the page table: 6982 * once we release i_mmap_rwsem, another task can do the final put_page 6983 * and that page table be reused and filled with junk. If we actually 6984 * did unshare a page of pmds, flush the range corresponding to the pud. 6985 */ 6986 if (shared_pmd) 6987 flush_hugetlb_tlb_range(vma, range.start, range.end); 6988 else 6989 flush_hugetlb_tlb_range(vma, start, end); 6990 /* 6991 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6992 * downgrading page table protection not changing it to point to a new 6993 * page. 6994 * 6995 * See Documentation/mm/mmu_notifier.rst 6996 */ 6997 i_mmap_unlock_write(vma->vm_file->f_mapping); 6998 hugetlb_vma_unlock_write(vma); 6999 mmu_notifier_invalidate_range_end(&range); 7000 7001 return pages > 0 ? (pages << h->order) : pages; 7002 } 7003 7004 /* Return true if reservation was successful, false otherwise. */ 7005 bool hugetlb_reserve_pages(struct inode *inode, 7006 long from, long to, 7007 struct vm_area_struct *vma, 7008 vm_flags_t vm_flags) 7009 { 7010 long chg = -1, add = -1; 7011 struct hstate *h = hstate_inode(inode); 7012 struct hugepage_subpool *spool = subpool_inode(inode); 7013 struct resv_map *resv_map; 7014 struct hugetlb_cgroup *h_cg = NULL; 7015 long gbl_reserve, regions_needed = 0; 7016 7017 /* This should never happen */ 7018 if (from > to) { 7019 VM_WARN(1, "%s called with a negative range\n", __func__); 7020 return false; 7021 } 7022 7023 /* 7024 * vma specific semaphore used for pmd sharing and fault/truncation 7025 * synchronization 7026 */ 7027 hugetlb_vma_lock_alloc(vma); 7028 7029 /* 7030 * Only apply hugepage reservation if asked. At fault time, an 7031 * attempt will be made for VM_NORESERVE to allocate a page 7032 * without using reserves 7033 */ 7034 if (vm_flags & VM_NORESERVE) 7035 return true; 7036 7037 /* 7038 * Shared mappings base their reservation on the number of pages that 7039 * are already allocated on behalf of the file. Private mappings need 7040 * to reserve the full area even if read-only as mprotect() may be 7041 * called to make the mapping read-write. Assume !vma is a shm mapping 7042 */ 7043 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7044 /* 7045 * resv_map can not be NULL as hugetlb_reserve_pages is only 7046 * called for inodes for which resv_maps were created (see 7047 * hugetlbfs_get_inode). 7048 */ 7049 resv_map = inode_resv_map(inode); 7050 7051 chg = region_chg(resv_map, from, to, ®ions_needed); 7052 } else { 7053 /* Private mapping. */ 7054 resv_map = resv_map_alloc(); 7055 if (!resv_map) 7056 goto out_err; 7057 7058 chg = to - from; 7059 7060 set_vma_resv_map(vma, resv_map); 7061 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7062 } 7063 7064 if (chg < 0) 7065 goto out_err; 7066 7067 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7068 chg * pages_per_huge_page(h), &h_cg) < 0) 7069 goto out_err; 7070 7071 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7072 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7073 * of the resv_map. 7074 */ 7075 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7076 } 7077 7078 /* 7079 * There must be enough pages in the subpool for the mapping. If 7080 * the subpool has a minimum size, there may be some global 7081 * reservations already in place (gbl_reserve). 7082 */ 7083 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7084 if (gbl_reserve < 0) 7085 goto out_uncharge_cgroup; 7086 7087 /* 7088 * Check enough hugepages are available for the reservation. 7089 * Hand the pages back to the subpool if there are not 7090 */ 7091 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7092 goto out_put_pages; 7093 7094 /* 7095 * Account for the reservations made. Shared mappings record regions 7096 * that have reservations as they are shared by multiple VMAs. 7097 * When the last VMA disappears, the region map says how much 7098 * the reservation was and the page cache tells how much of 7099 * the reservation was consumed. Private mappings are per-VMA and 7100 * only the consumed reservations are tracked. When the VMA 7101 * disappears, the original reservation is the VMA size and the 7102 * consumed reservations are stored in the map. Hence, nothing 7103 * else has to be done for private mappings here 7104 */ 7105 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7106 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7107 7108 if (unlikely(add < 0)) { 7109 hugetlb_acct_memory(h, -gbl_reserve); 7110 goto out_put_pages; 7111 } else if (unlikely(chg > add)) { 7112 /* 7113 * pages in this range were added to the reserve 7114 * map between region_chg and region_add. This 7115 * indicates a race with alloc_hugetlb_folio. Adjust 7116 * the subpool and reserve counts modified above 7117 * based on the difference. 7118 */ 7119 long rsv_adjust; 7120 7121 /* 7122 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7123 * reference to h_cg->css. See comment below for detail. 7124 */ 7125 hugetlb_cgroup_uncharge_cgroup_rsvd( 7126 hstate_index(h), 7127 (chg - add) * pages_per_huge_page(h), h_cg); 7128 7129 rsv_adjust = hugepage_subpool_put_pages(spool, 7130 chg - add); 7131 hugetlb_acct_memory(h, -rsv_adjust); 7132 } else if (h_cg) { 7133 /* 7134 * The file_regions will hold their own reference to 7135 * h_cg->css. So we should release the reference held 7136 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7137 * done. 7138 */ 7139 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7140 } 7141 } 7142 return true; 7143 7144 out_put_pages: 7145 /* put back original number of pages, chg */ 7146 (void)hugepage_subpool_put_pages(spool, chg); 7147 out_uncharge_cgroup: 7148 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7149 chg * pages_per_huge_page(h), h_cg); 7150 out_err: 7151 hugetlb_vma_lock_free(vma); 7152 if (!vma || vma->vm_flags & VM_MAYSHARE) 7153 /* Only call region_abort if the region_chg succeeded but the 7154 * region_add failed or didn't run. 7155 */ 7156 if (chg >= 0 && add < 0) 7157 region_abort(resv_map, from, to, regions_needed); 7158 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7159 kref_put(&resv_map->refs, resv_map_release); 7160 set_vma_resv_map(vma, NULL); 7161 } 7162 return false; 7163 } 7164 7165 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7166 long freed) 7167 { 7168 struct hstate *h = hstate_inode(inode); 7169 struct resv_map *resv_map = inode_resv_map(inode); 7170 long chg = 0; 7171 struct hugepage_subpool *spool = subpool_inode(inode); 7172 long gbl_reserve; 7173 7174 /* 7175 * Since this routine can be called in the evict inode path for all 7176 * hugetlbfs inodes, resv_map could be NULL. 7177 */ 7178 if (resv_map) { 7179 chg = region_del(resv_map, start, end); 7180 /* 7181 * region_del() can fail in the rare case where a region 7182 * must be split and another region descriptor can not be 7183 * allocated. If end == LONG_MAX, it will not fail. 7184 */ 7185 if (chg < 0) 7186 return chg; 7187 } 7188 7189 spin_lock(&inode->i_lock); 7190 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7191 spin_unlock(&inode->i_lock); 7192 7193 /* 7194 * If the subpool has a minimum size, the number of global 7195 * reservations to be released may be adjusted. 7196 * 7197 * Note that !resv_map implies freed == 0. So (chg - freed) 7198 * won't go negative. 7199 */ 7200 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7201 hugetlb_acct_memory(h, -gbl_reserve); 7202 7203 return 0; 7204 } 7205 7206 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7207 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7208 struct vm_area_struct *vma, 7209 unsigned long addr, pgoff_t idx) 7210 { 7211 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7212 svma->vm_start; 7213 unsigned long sbase = saddr & PUD_MASK; 7214 unsigned long s_end = sbase + PUD_SIZE; 7215 7216 /* Allow segments to share if only one is marked locked */ 7217 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7218 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7219 7220 /* 7221 * match the virtual addresses, permission and the alignment of the 7222 * page table page. 7223 * 7224 * Also, vma_lock (vm_private_data) is required for sharing. 7225 */ 7226 if (pmd_index(addr) != pmd_index(saddr) || 7227 vm_flags != svm_flags || 7228 !range_in_vma(svma, sbase, s_end) || 7229 !svma->vm_private_data) 7230 return 0; 7231 7232 return saddr; 7233 } 7234 7235 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7236 { 7237 unsigned long start = addr & PUD_MASK; 7238 unsigned long end = start + PUD_SIZE; 7239 7240 #ifdef CONFIG_USERFAULTFD 7241 if (uffd_disable_huge_pmd_share(vma)) 7242 return false; 7243 #endif 7244 /* 7245 * check on proper vm_flags and page table alignment 7246 */ 7247 if (!(vma->vm_flags & VM_MAYSHARE)) 7248 return false; 7249 if (!vma->vm_private_data) /* vma lock required for sharing */ 7250 return false; 7251 if (!range_in_vma(vma, start, end)) 7252 return false; 7253 return true; 7254 } 7255 7256 /* 7257 * Determine if start,end range within vma could be mapped by shared pmd. 7258 * If yes, adjust start and end to cover range associated with possible 7259 * shared pmd mappings. 7260 */ 7261 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7262 unsigned long *start, unsigned long *end) 7263 { 7264 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7265 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7266 7267 /* 7268 * vma needs to span at least one aligned PUD size, and the range 7269 * must be at least partially within in. 7270 */ 7271 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7272 (*end <= v_start) || (*start >= v_end)) 7273 return; 7274 7275 /* Extend the range to be PUD aligned for a worst case scenario */ 7276 if (*start > v_start) 7277 *start = ALIGN_DOWN(*start, PUD_SIZE); 7278 7279 if (*end < v_end) 7280 *end = ALIGN(*end, PUD_SIZE); 7281 } 7282 7283 /* 7284 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7285 * and returns the corresponding pte. While this is not necessary for the 7286 * !shared pmd case because we can allocate the pmd later as well, it makes the 7287 * code much cleaner. pmd allocation is essential for the shared case because 7288 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7289 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7290 * bad pmd for sharing. 7291 */ 7292 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7293 unsigned long addr, pud_t *pud) 7294 { 7295 struct address_space *mapping = vma->vm_file->f_mapping; 7296 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7297 vma->vm_pgoff; 7298 struct vm_area_struct *svma; 7299 unsigned long saddr; 7300 pte_t *spte = NULL; 7301 pte_t *pte; 7302 7303 i_mmap_lock_read(mapping); 7304 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7305 if (svma == vma) 7306 continue; 7307 7308 saddr = page_table_shareable(svma, vma, addr, idx); 7309 if (saddr) { 7310 spte = hugetlb_walk(svma, saddr, 7311 vma_mmu_pagesize(svma)); 7312 if (spte) { 7313 get_page(virt_to_page(spte)); 7314 break; 7315 } 7316 } 7317 } 7318 7319 if (!spte) 7320 goto out; 7321 7322 spin_lock(&mm->page_table_lock); 7323 if (pud_none(*pud)) { 7324 pud_populate(mm, pud, 7325 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7326 mm_inc_nr_pmds(mm); 7327 } else { 7328 put_page(virt_to_page(spte)); 7329 } 7330 spin_unlock(&mm->page_table_lock); 7331 out: 7332 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7333 i_mmap_unlock_read(mapping); 7334 return pte; 7335 } 7336 7337 /* 7338 * unmap huge page backed by shared pte. 7339 * 7340 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7341 * indicated by page_count > 1, unmap is achieved by clearing pud and 7342 * decrementing the ref count. If count == 1, the pte page is not shared. 7343 * 7344 * Called with page table lock held. 7345 * 7346 * returns: 1 successfully unmapped a shared pte page 7347 * 0 the underlying pte page is not shared, or it is the last user 7348 */ 7349 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7350 unsigned long addr, pte_t *ptep) 7351 { 7352 pgd_t *pgd = pgd_offset(mm, addr); 7353 p4d_t *p4d = p4d_offset(pgd, addr); 7354 pud_t *pud = pud_offset(p4d, addr); 7355 7356 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7357 hugetlb_vma_assert_locked(vma); 7358 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7359 if (page_count(virt_to_page(ptep)) == 1) 7360 return 0; 7361 7362 pud_clear(pud); 7363 put_page(virt_to_page(ptep)); 7364 mm_dec_nr_pmds(mm); 7365 return 1; 7366 } 7367 7368 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7369 7370 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7371 unsigned long addr, pud_t *pud) 7372 { 7373 return NULL; 7374 } 7375 7376 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7377 unsigned long addr, pte_t *ptep) 7378 { 7379 return 0; 7380 } 7381 7382 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7383 unsigned long *start, unsigned long *end) 7384 { 7385 } 7386 7387 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7388 { 7389 return false; 7390 } 7391 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7392 7393 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7394 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7395 unsigned long addr, unsigned long sz) 7396 { 7397 pgd_t *pgd; 7398 p4d_t *p4d; 7399 pud_t *pud; 7400 pte_t *pte = NULL; 7401 7402 pgd = pgd_offset(mm, addr); 7403 p4d = p4d_alloc(mm, pgd, addr); 7404 if (!p4d) 7405 return NULL; 7406 pud = pud_alloc(mm, p4d, addr); 7407 if (pud) { 7408 if (sz == PUD_SIZE) { 7409 pte = (pte_t *)pud; 7410 } else { 7411 BUG_ON(sz != PMD_SIZE); 7412 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7413 pte = huge_pmd_share(mm, vma, addr, pud); 7414 else 7415 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7416 } 7417 } 7418 7419 if (pte) { 7420 pte_t pteval = ptep_get_lockless(pte); 7421 7422 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7423 } 7424 7425 return pte; 7426 } 7427 7428 /* 7429 * huge_pte_offset() - Walk the page table to resolve the hugepage 7430 * entry at address @addr 7431 * 7432 * Return: Pointer to page table entry (PUD or PMD) for 7433 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7434 * size @sz doesn't match the hugepage size at this level of the page 7435 * table. 7436 */ 7437 pte_t *huge_pte_offset(struct mm_struct *mm, 7438 unsigned long addr, unsigned long sz) 7439 { 7440 pgd_t *pgd; 7441 p4d_t *p4d; 7442 pud_t *pud; 7443 pmd_t *pmd; 7444 7445 pgd = pgd_offset(mm, addr); 7446 if (!pgd_present(*pgd)) 7447 return NULL; 7448 p4d = p4d_offset(pgd, addr); 7449 if (!p4d_present(*p4d)) 7450 return NULL; 7451 7452 pud = pud_offset(p4d, addr); 7453 if (sz == PUD_SIZE) 7454 /* must be pud huge, non-present or none */ 7455 return (pte_t *)pud; 7456 if (!pud_present(*pud)) 7457 return NULL; 7458 /* must have a valid entry and size to go further */ 7459 7460 pmd = pmd_offset(pud, addr); 7461 /* must be pmd huge, non-present or none */ 7462 return (pte_t *)pmd; 7463 } 7464 7465 /* 7466 * Return a mask that can be used to update an address to the last huge 7467 * page in a page table page mapping size. Used to skip non-present 7468 * page table entries when linearly scanning address ranges. Architectures 7469 * with unique huge page to page table relationships can define their own 7470 * version of this routine. 7471 */ 7472 unsigned long hugetlb_mask_last_page(struct hstate *h) 7473 { 7474 unsigned long hp_size = huge_page_size(h); 7475 7476 if (hp_size == PUD_SIZE) 7477 return P4D_SIZE - PUD_SIZE; 7478 else if (hp_size == PMD_SIZE) 7479 return PUD_SIZE - PMD_SIZE; 7480 else 7481 return 0UL; 7482 } 7483 7484 #else 7485 7486 /* See description above. Architectures can provide their own version. */ 7487 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7488 { 7489 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7490 if (huge_page_size(h) == PMD_SIZE) 7491 return PUD_SIZE - PMD_SIZE; 7492 #endif 7493 return 0UL; 7494 } 7495 7496 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7497 7498 /* 7499 * These functions are overwritable if your architecture needs its own 7500 * behavior. 7501 */ 7502 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7503 { 7504 bool ret = true; 7505 7506 spin_lock_irq(&hugetlb_lock); 7507 if (!folio_test_hugetlb(folio) || 7508 !folio_test_hugetlb_migratable(folio) || 7509 !folio_try_get(folio)) { 7510 ret = false; 7511 goto unlock; 7512 } 7513 folio_clear_hugetlb_migratable(folio); 7514 list_move_tail(&folio->lru, list); 7515 unlock: 7516 spin_unlock_irq(&hugetlb_lock); 7517 return ret; 7518 } 7519 7520 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7521 { 7522 int ret = 0; 7523 7524 *hugetlb = false; 7525 spin_lock_irq(&hugetlb_lock); 7526 if (folio_test_hugetlb(folio)) { 7527 *hugetlb = true; 7528 if (folio_test_hugetlb_freed(folio)) 7529 ret = 0; 7530 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7531 ret = folio_try_get(folio); 7532 else 7533 ret = -EBUSY; 7534 } 7535 spin_unlock_irq(&hugetlb_lock); 7536 return ret; 7537 } 7538 7539 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7540 bool *migratable_cleared) 7541 { 7542 int ret; 7543 7544 spin_lock_irq(&hugetlb_lock); 7545 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7546 spin_unlock_irq(&hugetlb_lock); 7547 return ret; 7548 } 7549 7550 void folio_putback_active_hugetlb(struct folio *folio) 7551 { 7552 spin_lock_irq(&hugetlb_lock); 7553 folio_set_hugetlb_migratable(folio); 7554 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7555 spin_unlock_irq(&hugetlb_lock); 7556 folio_put(folio); 7557 } 7558 7559 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7560 { 7561 struct hstate *h = folio_hstate(old_folio); 7562 7563 hugetlb_cgroup_migrate(old_folio, new_folio); 7564 set_page_owner_migrate_reason(&new_folio->page, reason); 7565 7566 /* 7567 * transfer temporary state of the new hugetlb folio. This is 7568 * reverse to other transitions because the newpage is going to 7569 * be final while the old one will be freed so it takes over 7570 * the temporary status. 7571 * 7572 * Also note that we have to transfer the per-node surplus state 7573 * here as well otherwise the global surplus count will not match 7574 * the per-node's. 7575 */ 7576 if (folio_test_hugetlb_temporary(new_folio)) { 7577 int old_nid = folio_nid(old_folio); 7578 int new_nid = folio_nid(new_folio); 7579 7580 folio_set_hugetlb_temporary(old_folio); 7581 folio_clear_hugetlb_temporary(new_folio); 7582 7583 7584 /* 7585 * There is no need to transfer the per-node surplus state 7586 * when we do not cross the node. 7587 */ 7588 if (new_nid == old_nid) 7589 return; 7590 spin_lock_irq(&hugetlb_lock); 7591 if (h->surplus_huge_pages_node[old_nid]) { 7592 h->surplus_huge_pages_node[old_nid]--; 7593 h->surplus_huge_pages_node[new_nid]++; 7594 } 7595 spin_unlock_irq(&hugetlb_lock); 7596 } 7597 } 7598 7599 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7600 unsigned long start, 7601 unsigned long end) 7602 { 7603 struct hstate *h = hstate_vma(vma); 7604 unsigned long sz = huge_page_size(h); 7605 struct mm_struct *mm = vma->vm_mm; 7606 struct mmu_notifier_range range; 7607 unsigned long address; 7608 spinlock_t *ptl; 7609 pte_t *ptep; 7610 7611 if (!(vma->vm_flags & VM_MAYSHARE)) 7612 return; 7613 7614 if (start >= end) 7615 return; 7616 7617 flush_cache_range(vma, start, end); 7618 /* 7619 * No need to call adjust_range_if_pmd_sharing_possible(), because 7620 * we have already done the PUD_SIZE alignment. 7621 */ 7622 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7623 start, end); 7624 mmu_notifier_invalidate_range_start(&range); 7625 hugetlb_vma_lock_write(vma); 7626 i_mmap_lock_write(vma->vm_file->f_mapping); 7627 for (address = start; address < end; address += PUD_SIZE) { 7628 ptep = hugetlb_walk(vma, address, sz); 7629 if (!ptep) 7630 continue; 7631 ptl = huge_pte_lock(h, mm, ptep); 7632 huge_pmd_unshare(mm, vma, address, ptep); 7633 spin_unlock(ptl); 7634 } 7635 flush_hugetlb_tlb_range(vma, start, end); 7636 i_mmap_unlock_write(vma->vm_file->f_mapping); 7637 hugetlb_vma_unlock_write(vma); 7638 /* 7639 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7640 * Documentation/mm/mmu_notifier.rst. 7641 */ 7642 mmu_notifier_invalidate_range_end(&range); 7643 } 7644 7645 /* 7646 * This function will unconditionally remove all the shared pmd pgtable entries 7647 * within the specific vma for a hugetlbfs memory range. 7648 */ 7649 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7650 { 7651 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7652 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7653 } 7654 7655 #ifdef CONFIG_CMA 7656 static bool cma_reserve_called __initdata; 7657 7658 static int __init cmdline_parse_hugetlb_cma(char *p) 7659 { 7660 int nid, count = 0; 7661 unsigned long tmp; 7662 char *s = p; 7663 7664 while (*s) { 7665 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7666 break; 7667 7668 if (s[count] == ':') { 7669 if (tmp >= MAX_NUMNODES) 7670 break; 7671 nid = array_index_nospec(tmp, MAX_NUMNODES); 7672 7673 s += count + 1; 7674 tmp = memparse(s, &s); 7675 hugetlb_cma_size_in_node[nid] = tmp; 7676 hugetlb_cma_size += tmp; 7677 7678 /* 7679 * Skip the separator if have one, otherwise 7680 * break the parsing. 7681 */ 7682 if (*s == ',') 7683 s++; 7684 else 7685 break; 7686 } else { 7687 hugetlb_cma_size = memparse(p, &p); 7688 break; 7689 } 7690 } 7691 7692 return 0; 7693 } 7694 7695 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7696 7697 void __init hugetlb_cma_reserve(int order) 7698 { 7699 unsigned long size, reserved, per_node; 7700 bool node_specific_cma_alloc = false; 7701 int nid; 7702 7703 /* 7704 * HugeTLB CMA reservation is required for gigantic 7705 * huge pages which could not be allocated via the 7706 * page allocator. Just warn if there is any change 7707 * breaking this assumption. 7708 */ 7709 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7710 cma_reserve_called = true; 7711 7712 if (!hugetlb_cma_size) 7713 return; 7714 7715 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7716 if (hugetlb_cma_size_in_node[nid] == 0) 7717 continue; 7718 7719 if (!node_online(nid)) { 7720 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7721 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7722 hugetlb_cma_size_in_node[nid] = 0; 7723 continue; 7724 } 7725 7726 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7727 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7728 nid, (PAGE_SIZE << order) / SZ_1M); 7729 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7730 hugetlb_cma_size_in_node[nid] = 0; 7731 } else { 7732 node_specific_cma_alloc = true; 7733 } 7734 } 7735 7736 /* Validate the CMA size again in case some invalid nodes specified. */ 7737 if (!hugetlb_cma_size) 7738 return; 7739 7740 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7741 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7742 (PAGE_SIZE << order) / SZ_1M); 7743 hugetlb_cma_size = 0; 7744 return; 7745 } 7746 7747 if (!node_specific_cma_alloc) { 7748 /* 7749 * If 3 GB area is requested on a machine with 4 numa nodes, 7750 * let's allocate 1 GB on first three nodes and ignore the last one. 7751 */ 7752 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7753 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7754 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7755 } 7756 7757 reserved = 0; 7758 for_each_online_node(nid) { 7759 int res; 7760 char name[CMA_MAX_NAME]; 7761 7762 if (node_specific_cma_alloc) { 7763 if (hugetlb_cma_size_in_node[nid] == 0) 7764 continue; 7765 7766 size = hugetlb_cma_size_in_node[nid]; 7767 } else { 7768 size = min(per_node, hugetlb_cma_size - reserved); 7769 } 7770 7771 size = round_up(size, PAGE_SIZE << order); 7772 7773 snprintf(name, sizeof(name), "hugetlb%d", nid); 7774 /* 7775 * Note that 'order per bit' is based on smallest size that 7776 * may be returned to CMA allocator in the case of 7777 * huge page demotion. 7778 */ 7779 res = cma_declare_contiguous_nid(0, size, 0, 7780 PAGE_SIZE << order, 7781 HUGETLB_PAGE_ORDER, false, name, 7782 &hugetlb_cma[nid], nid); 7783 if (res) { 7784 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7785 res, nid); 7786 continue; 7787 } 7788 7789 reserved += size; 7790 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7791 size / SZ_1M, nid); 7792 7793 if (reserved >= hugetlb_cma_size) 7794 break; 7795 } 7796 7797 if (!reserved) 7798 /* 7799 * hugetlb_cma_size is used to determine if allocations from 7800 * cma are possible. Set to zero if no cma regions are set up. 7801 */ 7802 hugetlb_cma_size = 0; 7803 } 7804 7805 static void __init hugetlb_cma_check(void) 7806 { 7807 if (!hugetlb_cma_size || cma_reserve_called) 7808 return; 7809 7810 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7811 } 7812 7813 #endif /* CONFIG_CMA */ 7814