xref: /linux/mm/hugetlb.c (revision e6ebf01172185d74237193ca7bb6bdfc39f3eaeb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39 
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43 
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55 
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
hugetlb_cma_folio(struct folio * folio,unsigned int order)59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62 				1 << order);
63 }
64 #else
hugetlb_cma_folio(struct folio * folio,unsigned int order)65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67 	return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71 
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73 
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86 
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93 
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 		unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102 
subpool_is_free(struct hugepage_subpool * spool)103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105 	if (spool->count)
106 		return false;
107 	if (spool->max_hpages != -1)
108 		return spool->used_hpages == 0;
109 	if (spool->min_hpages != -1)
110 		return spool->rsv_hpages == spool->min_hpages;
111 
112 	return true;
113 }
114 
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 						unsigned long irq_flags)
117 {
118 	spin_unlock_irqrestore(&spool->lock, irq_flags);
119 
120 	/* If no pages are used, and no other handles to the subpool
121 	 * remain, give up any reservations based on minimum size and
122 	 * free the subpool */
123 	if (subpool_is_free(spool)) {
124 		if (spool->min_hpages != -1)
125 			hugetlb_acct_memory(spool->hstate,
126 						-spool->min_hpages);
127 		kfree(spool);
128 	}
129 }
130 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 						long min_hpages)
133 {
134 	struct hugepage_subpool *spool;
135 
136 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 	if (!spool)
138 		return NULL;
139 
140 	spin_lock_init(&spool->lock);
141 	spool->count = 1;
142 	spool->max_hpages = max_hpages;
143 	spool->hstate = h;
144 	spool->min_hpages = min_hpages;
145 
146 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 		kfree(spool);
148 		return NULL;
149 	}
150 	spool->rsv_hpages = min_hpages;
151 
152 	return spool;
153 }
154 
hugepage_put_subpool(struct hugepage_subpool * spool)155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&spool->lock, flags);
160 	BUG_ON(!spool->count);
161 	spool->count--;
162 	unlock_or_release_subpool(spool, flags);
163 }
164 
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174 				      long delta)
175 {
176 	long ret = delta;
177 
178 	if (!spool)
179 		return ret;
180 
181 	spin_lock_irq(&spool->lock);
182 
183 	if (spool->max_hpages != -1) {		/* maximum size accounting */
184 		if ((spool->used_hpages + delta) <= spool->max_hpages)
185 			spool->used_hpages += delta;
186 		else {
187 			ret = -ENOMEM;
188 			goto unlock_ret;
189 		}
190 	}
191 
192 	/* minimum size accounting */
193 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 		if (delta > spool->rsv_hpages) {
195 			/*
196 			 * Asking for more reserves than those already taken on
197 			 * behalf of subpool.  Return difference.
198 			 */
199 			ret = delta - spool->rsv_hpages;
200 			spool->rsv_hpages = 0;
201 		} else {
202 			ret = 0;	/* reserves already accounted for */
203 			spool->rsv_hpages -= delta;
204 		}
205 	}
206 
207 unlock_ret:
208 	spin_unlock_irq(&spool->lock);
209 	return ret;
210 }
211 
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219 				       long delta)
220 {
221 	long ret = delta;
222 	unsigned long flags;
223 
224 	if (!spool)
225 		return delta;
226 
227 	spin_lock_irqsave(&spool->lock, flags);
228 
229 	if (spool->max_hpages != -1)		/* maximum size accounting */
230 		spool->used_hpages -= delta;
231 
232 	 /* minimum size accounting */
233 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 		if (spool->rsv_hpages + delta <= spool->min_hpages)
235 			ret = 0;
236 		else
237 			ret = spool->rsv_hpages + delta - spool->min_hpages;
238 
239 		spool->rsv_hpages += delta;
240 		if (spool->rsv_hpages > spool->min_hpages)
241 			spool->rsv_hpages = spool->min_hpages;
242 	}
243 
244 	/*
245 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 	 * quota reference, free it now.
247 	 */
248 	unlock_or_release_subpool(spool, flags);
249 
250 	return ret;
251 }
252 
subpool_inode(struct inode * inode)253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255 	return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257 
subpool_vma(struct vm_area_struct * vma)258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260 	return subpool_inode(file_inode(vma->vm_file));
261 }
262 
263 /*
264  * hugetlb vma_lock helper routines
265  */
hugetlb_vma_lock_read(struct vm_area_struct * vma)266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268 	if (__vma_shareable_lock(vma)) {
269 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270 
271 		down_read(&vma_lock->rw_sema);
272 	} else if (__vma_private_lock(vma)) {
273 		struct resv_map *resv_map = vma_resv_map(vma);
274 
275 		down_read(&resv_map->rw_sema);
276 	}
277 }
278 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281 	if (__vma_shareable_lock(vma)) {
282 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283 
284 		up_read(&vma_lock->rw_sema);
285 	} else if (__vma_private_lock(vma)) {
286 		struct resv_map *resv_map = vma_resv_map(vma);
287 
288 		up_read(&resv_map->rw_sema);
289 	}
290 }
291 
hugetlb_vma_lock_write(struct vm_area_struct * vma)292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294 	if (__vma_shareable_lock(vma)) {
295 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 
297 		down_write(&vma_lock->rw_sema);
298 	} else if (__vma_private_lock(vma)) {
299 		struct resv_map *resv_map = vma_resv_map(vma);
300 
301 		down_write(&resv_map->rw_sema);
302 	}
303 }
304 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307 	if (__vma_shareable_lock(vma)) {
308 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309 
310 		up_write(&vma_lock->rw_sema);
311 	} else if (__vma_private_lock(vma)) {
312 		struct resv_map *resv_map = vma_resv_map(vma);
313 
314 		up_write(&resv_map->rw_sema);
315 	}
316 }
317 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320 
321 	if (__vma_shareable_lock(vma)) {
322 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323 
324 		return down_write_trylock(&vma_lock->rw_sema);
325 	} else if (__vma_private_lock(vma)) {
326 		struct resv_map *resv_map = vma_resv_map(vma);
327 
328 		return down_write_trylock(&resv_map->rw_sema);
329 	}
330 
331 	return 1;
332 }
333 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336 	if (__vma_shareable_lock(vma)) {
337 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338 
339 		lockdep_assert_held(&vma_lock->rw_sema);
340 	} else if (__vma_private_lock(vma)) {
341 		struct resv_map *resv_map = vma_resv_map(vma);
342 
343 		lockdep_assert_held(&resv_map->rw_sema);
344 	}
345 }
346 
hugetlb_vma_lock_release(struct kref * kref)347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 			struct hugetlb_vma_lock, refs);
351 
352 	kfree(vma_lock);
353 }
354 
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357 	struct vm_area_struct *vma = vma_lock->vma;
358 
359 	/*
360 	 * vma_lock structure may or not be released as a result of put,
361 	 * it certainly will no longer be attached to vma so clear pointer.
362 	 * Semaphore synchronizes access to vma_lock->vma field.
363 	 */
364 	vma_lock->vma = NULL;
365 	vma->vm_private_data = NULL;
366 	up_write(&vma_lock->rw_sema);
367 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369 
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372 	if (__vma_shareable_lock(vma)) {
373 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374 
375 		__hugetlb_vma_unlock_write_put(vma_lock);
376 	} else if (__vma_private_lock(vma)) {
377 		struct resv_map *resv_map = vma_resv_map(vma);
378 
379 		/* no free for anon vmas, but still need to unlock */
380 		up_write(&resv_map->rw_sema);
381 	}
382 }
383 
hugetlb_vma_lock_free(struct vm_area_struct * vma)384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386 	/*
387 	 * Only present in sharable vmas.
388 	 */
389 	if (!vma || !__vma_shareable_lock(vma))
390 		return;
391 
392 	if (vma->vm_private_data) {
393 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394 
395 		down_write(&vma_lock->rw_sema);
396 		__hugetlb_vma_unlock_write_put(vma_lock);
397 	}
398 }
399 
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402 	struct hugetlb_vma_lock *vma_lock;
403 
404 	/* Only establish in (flags) sharable vmas */
405 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406 		return;
407 
408 	/* Should never get here with non-NULL vm_private_data */
409 	if (vma->vm_private_data)
410 		return;
411 
412 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413 	if (!vma_lock) {
414 		/*
415 		 * If we can not allocate structure, then vma can not
416 		 * participate in pmd sharing.  This is only a possible
417 		 * performance enhancement and memory saving issue.
418 		 * However, the lock is also used to synchronize page
419 		 * faults with truncation.  If the lock is not present,
420 		 * unlikely races could leave pages in a file past i_size
421 		 * until the file is removed.  Warn in the unlikely case of
422 		 * allocation failure.
423 		 */
424 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425 		return;
426 	}
427 
428 	kref_init(&vma_lock->refs);
429 	init_rwsem(&vma_lock->rw_sema);
430 	vma_lock->vma = vma;
431 	vma->vm_private_data = vma_lock;
432 }
433 
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440 	struct file_region *nrg;
441 
442 	VM_BUG_ON(resv->region_cache_count <= 0);
443 
444 	resv->region_cache_count--;
445 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 	list_del(&nrg->link);
447 
448 	nrg->from = from;
449 	nrg->to = to;
450 
451 	return nrg;
452 }
453 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 					      struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458 	nrg->reservation_counter = rg->reservation_counter;
459 	nrg->css = rg->css;
460 	if (rg->css)
461 		css_get(rg->css);
462 #endif
463 }
464 
465 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 						struct hstate *h,
468 						struct resv_map *resv,
469 						struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472 	if (h_cg) {
473 		nrg->reservation_counter =
474 			&h_cg->rsvd_hugepage[hstate_index(h)];
475 		nrg->css = &h_cg->css;
476 		/*
477 		 * The caller will hold exactly one h_cg->css reference for the
478 		 * whole contiguous reservation region. But this area might be
479 		 * scattered when there are already some file_regions reside in
480 		 * it. As a result, many file_regions may share only one css
481 		 * reference. In order to ensure that one file_region must hold
482 		 * exactly one h_cg->css reference, we should do css_get for
483 		 * each file_region and leave the reference held by caller
484 		 * untouched.
485 		 */
486 		css_get(&h_cg->css);
487 		if (!resv->pages_per_hpage)
488 			resv->pages_per_hpage = pages_per_huge_page(h);
489 		/* pages_per_hpage should be the same for all entries in
490 		 * a resv_map.
491 		 */
492 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 	} else {
494 		nrg->reservation_counter = NULL;
495 		nrg->css = NULL;
496 	}
497 #endif
498 }
499 
put_uncharge_info(struct file_region * rg)500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503 	if (rg->css)
504 		css_put(rg->css);
505 #endif
506 }
507 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)508 static bool has_same_uncharge_info(struct file_region *rg,
509 				   struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512 	return rg->reservation_counter == org->reservation_counter &&
513 	       rg->css == org->css;
514 
515 #else
516 	return true;
517 #endif
518 }
519 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522 	struct file_region *nrg, *prg;
523 
524 	prg = list_prev_entry(rg, link);
525 	if (&prg->link != &resv->regions && prg->to == rg->from &&
526 	    has_same_uncharge_info(prg, rg)) {
527 		prg->to = rg->to;
528 
529 		list_del(&rg->link);
530 		put_uncharge_info(rg);
531 		kfree(rg);
532 
533 		rg = prg;
534 	}
535 
536 	nrg = list_next_entry(rg, link);
537 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 	    has_same_uncharge_info(nrg, rg)) {
539 		nrg->from = rg->from;
540 
541 		list_del(&rg->link);
542 		put_uncharge_info(rg);
543 		kfree(rg);
544 	}
545 }
546 
547 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 		     long *regions_needed)
551 {
552 	struct file_region *nrg;
553 
554 	if (!regions_needed) {
555 		nrg = get_file_region_entry_from_cache(map, from, to);
556 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 		list_add(&nrg->link, rg);
558 		coalesce_file_region(map, nrg);
559 	} else
560 		*regions_needed += 1;
561 
562 	return to - from;
563 }
564 
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 				     struct hugetlb_cgroup *h_cg,
575 				     struct hstate *h, long *regions_needed)
576 {
577 	long add = 0;
578 	struct list_head *head = &resv->regions;
579 	long last_accounted_offset = f;
580 	struct file_region *iter, *trg = NULL;
581 	struct list_head *rg = NULL;
582 
583 	if (regions_needed)
584 		*regions_needed = 0;
585 
586 	/* In this loop, we essentially handle an entry for the range
587 	 * [last_accounted_offset, iter->from), at every iteration, with some
588 	 * bounds checking.
589 	 */
590 	list_for_each_entry_safe(iter, trg, head, link) {
591 		/* Skip irrelevant regions that start before our range. */
592 		if (iter->from < f) {
593 			/* If this region ends after the last accounted offset,
594 			 * then we need to update last_accounted_offset.
595 			 */
596 			if (iter->to > last_accounted_offset)
597 				last_accounted_offset = iter->to;
598 			continue;
599 		}
600 
601 		/* When we find a region that starts beyond our range, we've
602 		 * finished.
603 		 */
604 		if (iter->from >= t) {
605 			rg = iter->link.prev;
606 			break;
607 		}
608 
609 		/* Add an entry for last_accounted_offset -> iter->from, and
610 		 * update last_accounted_offset.
611 		 */
612 		if (iter->from > last_accounted_offset)
613 			add += hugetlb_resv_map_add(resv, iter->link.prev,
614 						    last_accounted_offset,
615 						    iter->from, h, h_cg,
616 						    regions_needed);
617 
618 		last_accounted_offset = iter->to;
619 	}
620 
621 	/* Handle the case where our range extends beyond
622 	 * last_accounted_offset.
623 	 */
624 	if (!rg)
625 		rg = head->prev;
626 	if (last_accounted_offset < t)
627 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 					    t, h, h_cg, regions_needed);
629 
630 	return add;
631 }
632 
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)635 static int allocate_file_region_entries(struct resv_map *resv,
636 					int regions_needed)
637 	__must_hold(&resv->lock)
638 {
639 	LIST_HEAD(allocated_regions);
640 	int to_allocate = 0, i = 0;
641 	struct file_region *trg = NULL, *rg = NULL;
642 
643 	VM_BUG_ON(regions_needed < 0);
644 
645 	/*
646 	 * Check for sufficient descriptors in the cache to accommodate
647 	 * the number of in progress add operations plus regions_needed.
648 	 *
649 	 * This is a while loop because when we drop the lock, some other call
650 	 * to region_add or region_del may have consumed some region_entries,
651 	 * so we keep looping here until we finally have enough entries for
652 	 * (adds_in_progress + regions_needed).
653 	 */
654 	while (resv->region_cache_count <
655 	       (resv->adds_in_progress + regions_needed)) {
656 		to_allocate = resv->adds_in_progress + regions_needed -
657 			      resv->region_cache_count;
658 
659 		/* At this point, we should have enough entries in the cache
660 		 * for all the existing adds_in_progress. We should only be
661 		 * needing to allocate for regions_needed.
662 		 */
663 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664 
665 		spin_unlock(&resv->lock);
666 		for (i = 0; i < to_allocate; i++) {
667 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668 			if (!trg)
669 				goto out_of_memory;
670 			list_add(&trg->link, &allocated_regions);
671 		}
672 
673 		spin_lock(&resv->lock);
674 
675 		list_splice(&allocated_regions, &resv->region_cache);
676 		resv->region_cache_count += to_allocate;
677 	}
678 
679 	return 0;
680 
681 out_of_memory:
682 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683 		list_del(&rg->link);
684 		kfree(rg);
685 	}
686 	return -ENOMEM;
687 }
688 
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)706 static long region_add(struct resv_map *resv, long f, long t,
707 		       long in_regions_needed, struct hstate *h,
708 		       struct hugetlb_cgroup *h_cg)
709 {
710 	long add = 0, actual_regions_needed = 0;
711 
712 	spin_lock(&resv->lock);
713 retry:
714 
715 	/* Count how many regions are actually needed to execute this add. */
716 	add_reservation_in_range(resv, f, t, NULL, NULL,
717 				 &actual_regions_needed);
718 
719 	/*
720 	 * Check for sufficient descriptors in the cache to accommodate
721 	 * this add operation. Note that actual_regions_needed may be greater
722 	 * than in_regions_needed, as the resv_map may have been modified since
723 	 * the region_chg call. In this case, we need to make sure that we
724 	 * allocate extra entries, such that we have enough for all the
725 	 * existing adds_in_progress, plus the excess needed for this
726 	 * operation.
727 	 */
728 	if (actual_regions_needed > in_regions_needed &&
729 	    resv->region_cache_count <
730 		    resv->adds_in_progress +
731 			    (actual_regions_needed - in_regions_needed)) {
732 		/* region_add operation of range 1 should never need to
733 		 * allocate file_region entries.
734 		 */
735 		VM_BUG_ON(t - f <= 1);
736 
737 		if (allocate_file_region_entries(
738 			    resv, actual_regions_needed - in_regions_needed)) {
739 			return -ENOMEM;
740 		}
741 
742 		goto retry;
743 	}
744 
745 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746 
747 	resv->adds_in_progress -= in_regions_needed;
748 
749 	spin_unlock(&resv->lock);
750 	return add;
751 }
752 
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)773 static long region_chg(struct resv_map *resv, long f, long t,
774 		       long *out_regions_needed)
775 {
776 	long chg = 0;
777 
778 	spin_lock(&resv->lock);
779 
780 	/* Count how many hugepages in this range are NOT represented. */
781 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782 				       out_regions_needed);
783 
784 	if (*out_regions_needed == 0)
785 		*out_regions_needed = 1;
786 
787 	if (allocate_file_region_entries(resv, *out_regions_needed))
788 		return -ENOMEM;
789 
790 	resv->adds_in_progress += *out_regions_needed;
791 
792 	spin_unlock(&resv->lock);
793 	return chg;
794 }
795 
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)809 static void region_abort(struct resv_map *resv, long f, long t,
810 			 long regions_needed)
811 {
812 	spin_lock(&resv->lock);
813 	VM_BUG_ON(!resv->region_cache_count);
814 	resv->adds_in_progress -= regions_needed;
815 	spin_unlock(&resv->lock);
816 }
817 
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
region_del(struct resv_map * resv,long f,long t)832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834 	struct list_head *head = &resv->regions;
835 	struct file_region *rg, *trg;
836 	struct file_region *nrg = NULL;
837 	long del = 0;
838 
839 retry:
840 	spin_lock(&resv->lock);
841 	list_for_each_entry_safe(rg, trg, head, link) {
842 		/*
843 		 * Skip regions before the range to be deleted.  file_region
844 		 * ranges are normally of the form [from, to).  However, there
845 		 * may be a "placeholder" entry in the map which is of the form
846 		 * (from, to) with from == to.  Check for placeholder entries
847 		 * at the beginning of the range to be deleted.
848 		 */
849 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850 			continue;
851 
852 		if (rg->from >= t)
853 			break;
854 
855 		if (f > rg->from && t < rg->to) { /* Must split region */
856 			/*
857 			 * Check for an entry in the cache before dropping
858 			 * lock and attempting allocation.
859 			 */
860 			if (!nrg &&
861 			    resv->region_cache_count > resv->adds_in_progress) {
862 				nrg = list_first_entry(&resv->region_cache,
863 							struct file_region,
864 							link);
865 				list_del(&nrg->link);
866 				resv->region_cache_count--;
867 			}
868 
869 			if (!nrg) {
870 				spin_unlock(&resv->lock);
871 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872 				if (!nrg)
873 					return -ENOMEM;
874 				goto retry;
875 			}
876 
877 			del += t - f;
878 			hugetlb_cgroup_uncharge_file_region(
879 				resv, rg, t - f, false);
880 
881 			/* New entry for end of split region */
882 			nrg->from = t;
883 			nrg->to = rg->to;
884 
885 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886 
887 			INIT_LIST_HEAD(&nrg->link);
888 
889 			/* Original entry is trimmed */
890 			rg->to = f;
891 
892 			list_add(&nrg->link, &rg->link);
893 			nrg = NULL;
894 			break;
895 		}
896 
897 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 			del += rg->to - rg->from;
899 			hugetlb_cgroup_uncharge_file_region(resv, rg,
900 							    rg->to - rg->from, true);
901 			list_del(&rg->link);
902 			kfree(rg);
903 			continue;
904 		}
905 
906 		if (f <= rg->from) {	/* Trim beginning of region */
907 			hugetlb_cgroup_uncharge_file_region(resv, rg,
908 							    t - rg->from, false);
909 
910 			del += t - rg->from;
911 			rg->from = t;
912 		} else {		/* Trim end of region */
913 			hugetlb_cgroup_uncharge_file_region(resv, rg,
914 							    rg->to - f, false);
915 
916 			del += rg->to - f;
917 			rg->to = f;
918 		}
919 	}
920 
921 	spin_unlock(&resv->lock);
922 	kfree(nrg);
923 	return del;
924 }
925 
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
hugetlb_fix_reserve_counts(struct inode * inode)935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937 	struct hugepage_subpool *spool = subpool_inode(inode);
938 	long rsv_adjust;
939 	bool reserved = false;
940 
941 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 	if (rsv_adjust > 0) {
943 		struct hstate *h = hstate_inode(inode);
944 
945 		if (!hugetlb_acct_memory(h, 1))
946 			reserved = true;
947 	} else if (!rsv_adjust) {
948 		reserved = true;
949 	}
950 
951 	if (!reserved)
952 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954 
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
region_count(struct resv_map * resv,long f,long t)959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961 	struct list_head *head = &resv->regions;
962 	struct file_region *rg;
963 	long chg = 0;
964 
965 	spin_lock(&resv->lock);
966 	/* Locate each segment we overlap with, and count that overlap. */
967 	list_for_each_entry(rg, head, link) {
968 		long seg_from;
969 		long seg_to;
970 
971 		if (rg->to <= f)
972 			continue;
973 		if (rg->from >= t)
974 			break;
975 
976 		seg_from = max(rg->from, f);
977 		seg_to = min(rg->to, t);
978 
979 		chg += seg_to - seg_from;
980 	}
981 	spin_unlock(&resv->lock);
982 
983 	return chg;
984 }
985 
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991 			struct vm_area_struct *vma, unsigned long address)
992 {
993 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 			(vma->vm_pgoff >> huge_page_order(h));
995 }
996 
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
vma_kernel_pagesize(struct vm_area_struct * vma)1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008 	if (vma->vm_ops && vma->vm_ops->pagesize)
1009 		return vma->vm_ops->pagesize(vma);
1010 	return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013 
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
vma_mmu_pagesize(struct vm_area_struct * vma)1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022 	return vma_kernel_pagesize(vma);
1023 }
1024 
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033 
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
get_vma_private_data(struct vm_area_struct * vma)1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055 	return (unsigned long)vma->vm_private_data;
1056 }
1057 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059 							unsigned long value)
1060 {
1061 	vma->vm_private_data = (void *)value;
1062 }
1063 
1064 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 					  struct hugetlb_cgroup *h_cg,
1067 					  struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070 	if (!h_cg || !h) {
1071 		resv_map->reservation_counter = NULL;
1072 		resv_map->pages_per_hpage = 0;
1073 		resv_map->css = NULL;
1074 	} else {
1075 		resv_map->reservation_counter =
1076 			&h_cg->rsvd_hugepage[hstate_index(h)];
1077 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 		resv_map->css = &h_cg->css;
1079 	}
1080 #endif
1081 }
1082 
resv_map_alloc(void)1083 struct resv_map *resv_map_alloc(void)
1084 {
1085 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087 
1088 	if (!resv_map || !rg) {
1089 		kfree(resv_map);
1090 		kfree(rg);
1091 		return NULL;
1092 	}
1093 
1094 	kref_init(&resv_map->refs);
1095 	spin_lock_init(&resv_map->lock);
1096 	INIT_LIST_HEAD(&resv_map->regions);
1097 	init_rwsem(&resv_map->rw_sema);
1098 
1099 	resv_map->adds_in_progress = 0;
1100 	/*
1101 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 	 * fields don't do cgroup accounting. On private mappings, these will be
1103 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 	 * reservations are to be un-charged from here.
1105 	 */
1106 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107 
1108 	INIT_LIST_HEAD(&resv_map->region_cache);
1109 	list_add(&rg->link, &resv_map->region_cache);
1110 	resv_map->region_cache_count = 1;
1111 
1112 	return resv_map;
1113 }
1114 
resv_map_release(struct kref * ref)1115 void resv_map_release(struct kref *ref)
1116 {
1117 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 	struct list_head *head = &resv_map->region_cache;
1119 	struct file_region *rg, *trg;
1120 
1121 	/* Clear out any active regions before we release the map. */
1122 	region_del(resv_map, 0, LONG_MAX);
1123 
1124 	/* ... and any entries left in the cache */
1125 	list_for_each_entry_safe(rg, trg, head, link) {
1126 		list_del(&rg->link);
1127 		kfree(rg);
1128 	}
1129 
1130 	VM_BUG_ON(resv_map->adds_in_progress);
1131 
1132 	kfree(resv_map);
1133 }
1134 
inode_resv_map(struct inode * inode)1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137 	/*
1138 	 * At inode evict time, i_mapping may not point to the original
1139 	 * address space within the inode.  This original address space
1140 	 * contains the pointer to the resv_map.  So, always use the
1141 	 * address space embedded within the inode.
1142 	 * The VERY common case is inode->mapping == &inode->i_data but,
1143 	 * this may not be true for device special inodes.
1144 	 */
1145 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147 
vma_resv_map(struct vm_area_struct * vma)1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 	if (vma->vm_flags & VM_MAYSHARE) {
1152 		struct address_space *mapping = vma->vm_file->f_mapping;
1153 		struct inode *inode = mapping->host;
1154 
1155 		return inode_resv_map(inode);
1156 
1157 	} else {
1158 		return (struct resv_map *)(get_vma_private_data(vma) &
1159 							~HPAGE_RESV_MASK);
1160 	}
1161 }
1162 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167 
1168 	set_vma_private_data(vma, (unsigned long)map);
1169 }
1170 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175 
1176 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182 
1183 	return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185 
__vma_private_lock(struct vm_area_struct * vma)1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188 	return !(vma->vm_flags & VM_MAYSHARE) &&
1189 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192 
hugetlb_dup_vma_private(struct vm_area_struct * vma)1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 	/*
1197 	 * Clear vm_private_data
1198 	 * - For shared mappings this is a per-vma semaphore that may be
1199 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1200 	 *   Before clearing, make sure pointer is not associated with vma
1201 	 *   as this will leak the structure.  This is the case when called
1202 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 	 *   been called to allocate a new structure.
1204 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 	 *   not apply to children.  Faults generated by the children are
1206 	 *   not guaranteed to succeed, even if read-only.
1207 	 */
1208 	if (vma->vm_flags & VM_MAYSHARE) {
1209 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210 
1211 		if (vma_lock && vma_lock->vma != vma)
1212 			vma->vm_private_data = NULL;
1213 	} else
1214 		vma->vm_private_data = NULL;
1215 }
1216 
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226 	/*
1227 	 * Clear the old hugetlb private page reservation.
1228 	 * It has already been transferred to new_vma.
1229 	 *
1230 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 	 * which copies vma into new_vma and unmaps vma. After the copy
1232 	 * operation both new_vma and vma share a reference to the resv_map
1233 	 * struct, and at that point vma is about to be unmapped. We don't
1234 	 * want to return the reservation to the pool at unmap of vma because
1235 	 * the reservation still lives on in new_vma, so simply decrement the
1236 	 * ref here and remove the resv_map reference from this vma.
1237 	 */
1238 	struct resv_map *reservations = vma_resv_map(vma);
1239 
1240 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 		kref_put(&reservations->refs, resv_map_release);
1243 	}
1244 
1245 	hugetlb_dup_vma_private(vma);
1246 }
1247 
1248 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251 	if (vma->vm_flags & VM_NORESERVE) {
1252 		/*
1253 		 * This address is already reserved by other process(chg == 0),
1254 		 * so, we should decrement reserved count. Without decrementing,
1255 		 * reserve count remains after releasing inode, because this
1256 		 * allocated page will go into page cache and is regarded as
1257 		 * coming from reserved pool in releasing step.  Currently, we
1258 		 * don't have any other solution to deal with this situation
1259 		 * properly, so add work-around here.
1260 		 */
1261 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262 			return true;
1263 		else
1264 			return false;
1265 	}
1266 
1267 	/* Shared mappings always use reserves */
1268 	if (vma->vm_flags & VM_MAYSHARE) {
1269 		/*
1270 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271 		 * be a region map for all pages.  The only situation where
1272 		 * there is no region map is if a hole was punched via
1273 		 * fallocate.  In this case, there really are no reserves to
1274 		 * use.  This situation is indicated if chg != 0.
1275 		 */
1276 		if (chg)
1277 			return false;
1278 		else
1279 			return true;
1280 	}
1281 
1282 	/*
1283 	 * Only the process that called mmap() has reserves for
1284 	 * private mappings.
1285 	 */
1286 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287 		/*
1288 		 * Like the shared case above, a hole punch or truncate
1289 		 * could have been performed on the private mapping.
1290 		 * Examine the value of chg to determine if reserves
1291 		 * actually exist or were previously consumed.
1292 		 * Very Subtle - The value of chg comes from a previous
1293 		 * call to vma_needs_reserves().  The reserve map for
1294 		 * private mappings has different (opposite) semantics
1295 		 * than that of shared mappings.  vma_needs_reserves()
1296 		 * has already taken this difference in semantics into
1297 		 * account.  Therefore, the meaning of chg is the same
1298 		 * as in the shared case above.  Code could easily be
1299 		 * combined, but keeping it separate draws attention to
1300 		 * subtle differences.
1301 		 */
1302 		if (chg)
1303 			return false;
1304 		else
1305 			return true;
1306 	}
1307 
1308 	return false;
1309 }
1310 
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313 	int nid = folio_nid(folio);
1314 
1315 	lockdep_assert_held(&hugetlb_lock);
1316 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317 
1318 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 	h->free_huge_pages++;
1320 	h->free_huge_pages_node[nid]++;
1321 	folio_set_hugetlb_freed(folio);
1322 }
1323 
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325 								int nid)
1326 {
1327 	struct folio *folio;
1328 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329 
1330 	lockdep_assert_held(&hugetlb_lock);
1331 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 		if (pin && !folio_is_longterm_pinnable(folio))
1333 			continue;
1334 
1335 		if (folio_test_hwpoison(folio))
1336 			continue;
1337 
1338 		list_move(&folio->lru, &h->hugepage_activelist);
1339 		folio_ref_unfreeze(folio, 1);
1340 		folio_clear_hugetlb_freed(folio);
1341 		h->free_huge_pages--;
1342 		h->free_huge_pages_node[nid]--;
1343 		return folio;
1344 	}
1345 
1346 	return NULL;
1347 }
1348 
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 							int nid, nodemask_t *nmask)
1351 {
1352 	unsigned int cpuset_mems_cookie;
1353 	struct zonelist *zonelist;
1354 	struct zone *zone;
1355 	struct zoneref *z;
1356 	int node = NUMA_NO_NODE;
1357 
1358 	zonelist = node_zonelist(nid, gfp_mask);
1359 
1360 retry_cpuset:
1361 	cpuset_mems_cookie = read_mems_allowed_begin();
1362 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363 		struct folio *folio;
1364 
1365 		if (!cpuset_zone_allowed(zone, gfp_mask))
1366 			continue;
1367 		/*
1368 		 * no need to ask again on the same node. Pool is node rather than
1369 		 * zone aware
1370 		 */
1371 		if (zone_to_nid(zone) == node)
1372 			continue;
1373 		node = zone_to_nid(zone);
1374 
1375 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1376 		if (folio)
1377 			return folio;
1378 	}
1379 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380 		goto retry_cpuset;
1381 
1382 	return NULL;
1383 }
1384 
available_huge_pages(struct hstate * h)1385 static unsigned long available_huge_pages(struct hstate *h)
1386 {
1387 	return h->free_huge_pages - h->resv_huge_pages;
1388 }
1389 
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391 				struct vm_area_struct *vma,
1392 				unsigned long address, int avoid_reserve,
1393 				long chg)
1394 {
1395 	struct folio *folio = NULL;
1396 	struct mempolicy *mpol;
1397 	gfp_t gfp_mask;
1398 	nodemask_t *nodemask;
1399 	int nid;
1400 
1401 	/*
1402 	 * A child process with MAP_PRIVATE mappings created by their parent
1403 	 * have no page reserves. This check ensures that reservations are
1404 	 * not "stolen". The child may still get SIGKILLed
1405 	 */
1406 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407 		goto err;
1408 
1409 	/* If reserves cannot be used, ensure enough pages are in the pool */
1410 	if (avoid_reserve && !available_huge_pages(h))
1411 		goto err;
1412 
1413 	gfp_mask = htlb_alloc_mask(h);
1414 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415 
1416 	if (mpol_is_preferred_many(mpol)) {
1417 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 							nid, nodemask);
1419 
1420 		/* Fallback to all nodes if page==NULL */
1421 		nodemask = NULL;
1422 	}
1423 
1424 	if (!folio)
1425 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 							nid, nodemask);
1427 
1428 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429 		folio_set_hugetlb_restore_reserve(folio);
1430 		h->resv_huge_pages--;
1431 	}
1432 
1433 	mpol_cond_put(mpol);
1434 	return folio;
1435 
1436 err:
1437 	return NULL;
1438 }
1439 
1440 /*
1441  * common helper functions for hstate_next_node_to_{alloc|free}.
1442  * We may have allocated or freed a huge page based on a different
1443  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444  * be outside of *nodes_allowed.  Ensure that we use an allowed
1445  * node for alloc or free.
1446  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449 	nid = next_node_in(nid, *nodes_allowed);
1450 	VM_BUG_ON(nid >= MAX_NUMNODES);
1451 
1452 	return nid;
1453 }
1454 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 {
1457 	if (!node_isset(nid, *nodes_allowed))
1458 		nid = next_node_allowed(nid, nodes_allowed);
1459 	return nid;
1460 }
1461 
1462 /*
1463  * returns the previously saved node ["this node"] from which to
1464  * allocate a persistent huge page for the pool and advance the
1465  * next node from which to allocate, handling wrap at end of node
1466  * mask.
1467  */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1468 static int hstate_next_node_to_alloc(int *next_node,
1469 					nodemask_t *nodes_allowed)
1470 {
1471 	int nid;
1472 
1473 	VM_BUG_ON(!nodes_allowed);
1474 
1475 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 	*next_node = next_node_allowed(nid, nodes_allowed);
1477 
1478 	return nid;
1479 }
1480 
1481 /*
1482  * helper for remove_pool_hugetlb_folio() - return the previously saved
1483  * node ["this node"] from which to free a huge page.  Advance the
1484  * next node id whether or not we find a free huge page to free so
1485  * that the next attempt to free addresses the next node.
1486  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488 {
1489 	int nid;
1490 
1491 	VM_BUG_ON(!nodes_allowed);
1492 
1493 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495 
1496 	return nid;
1497 }
1498 
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1500 	for (nr_nodes = nodes_weight(*mask);				\
1501 		nr_nodes > 0 &&						\
1502 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1503 		nr_nodes--)
1504 
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1506 	for (nr_nodes = nodes_weight(*mask);				\
1507 		nr_nodes > 0 &&						\
1508 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1509 		nr_nodes--)
1510 
1511 /* used to demote non-gigantic_huge pages as well */
__destroy_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513 					unsigned int order, bool demote)
1514 {
1515 	int i;
1516 	int nr_pages = 1 << order;
1517 	struct page *p;
1518 
1519 	atomic_set(&folio->_entire_mapcount, 0);
1520 	atomic_set(&folio->_nr_pages_mapped, 0);
1521 	atomic_set(&folio->_pincount, 0);
1522 
1523 	for (i = 1; i < nr_pages; i++) {
1524 		p = folio_page(folio, i);
1525 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526 		p->mapping = NULL;
1527 		clear_compound_head(p);
1528 		if (!demote)
1529 			set_page_refcounted(p);
1530 	}
1531 
1532 	__folio_clear_head(folio);
1533 }
1534 
destroy_compound_hugetlb_folio_for_demote(struct folio * folio,unsigned int order)1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536 					unsigned int order)
1537 {
1538 	__destroy_compound_gigantic_folio(folio, order, true);
1539 }
1540 
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1543 					unsigned int order)
1544 {
1545 	__destroy_compound_gigantic_folio(folio, order, false);
1546 }
1547 
free_gigantic_folio(struct folio * folio,unsigned int order)1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549 {
1550 	/*
1551 	 * If the page isn't allocated using the cma allocator,
1552 	 * cma_release() returns false.
1553 	 */
1554 #ifdef CONFIG_CMA
1555 	int nid = folio_nid(folio);
1556 
1557 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558 		return;
1559 #endif
1560 
1561 	free_contig_range(folio_pfn(folio), 1 << order);
1562 }
1563 
1564 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 		int nid, nodemask_t *nodemask)
1567 {
1568 	struct page *page;
1569 	unsigned long nr_pages = pages_per_huge_page(h);
1570 	if (nid == NUMA_NO_NODE)
1571 		nid = numa_mem_id();
1572 
1573 #ifdef CONFIG_CMA
1574 	{
1575 		int node;
1576 
1577 		if (hugetlb_cma[nid]) {
1578 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579 					huge_page_order(h), true);
1580 			if (page)
1581 				return page_folio(page);
1582 		}
1583 
1584 		if (!(gfp_mask & __GFP_THISNODE)) {
1585 			for_each_node_mask(node, *nodemask) {
1586 				if (node == nid || !hugetlb_cma[node])
1587 					continue;
1588 
1589 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1590 						huge_page_order(h), true);
1591 				if (page)
1592 					return page_folio(page);
1593 			}
1594 		}
1595 	}
1596 #endif
1597 
1598 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599 	return page ? page_folio(page) : NULL;
1600 }
1601 
1602 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604 					int nid, nodemask_t *nodemask)
1605 {
1606 	return NULL;
1607 }
1608 #endif /* CONFIG_CONTIG_ALLOC */
1609 
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612 					int nid, nodemask_t *nodemask)
1613 {
1614 	return NULL;
1615 }
free_gigantic_folio(struct folio * folio,unsigned int order)1616 static inline void free_gigantic_folio(struct folio *folio,
1617 						unsigned int order) { }
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619 						unsigned int order) { }
1620 #endif
1621 
__clear_hugetlb_destructor(struct hstate * h,struct folio * folio)1622 static inline void __clear_hugetlb_destructor(struct hstate *h,
1623 						struct folio *folio)
1624 {
1625 	lockdep_assert_held(&hugetlb_lock);
1626 
1627 	__folio_clear_hugetlb(folio);
1628 }
1629 
1630 /*
1631  * Remove hugetlb folio from lists.
1632  * If vmemmap exists for the folio, update dtor so that the folio appears
1633  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1634  * to update dtor.
1635  *
1636  * A reference is held on the folio, except in the case of demote.
1637  *
1638  * Must be called with hugetlb lock held.
1639  */
__remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus,bool demote)1640 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1641 							bool adjust_surplus,
1642 							bool demote)
1643 {
1644 	int nid = folio_nid(folio);
1645 
1646 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1647 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1648 
1649 	lockdep_assert_held(&hugetlb_lock);
1650 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1651 		return;
1652 
1653 	list_del(&folio->lru);
1654 
1655 	if (folio_test_hugetlb_freed(folio)) {
1656 		h->free_huge_pages--;
1657 		h->free_huge_pages_node[nid]--;
1658 	}
1659 	if (adjust_surplus) {
1660 		h->surplus_huge_pages--;
1661 		h->surplus_huge_pages_node[nid]--;
1662 	}
1663 
1664 	/*
1665 	 * We can only clear the hugetlb destructor after allocating vmemmap
1666 	 * pages.  Otherwise, someone (memory error handling) may try to write
1667 	 * to tail struct pages.
1668 	 */
1669 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1670 		__clear_hugetlb_destructor(h, folio);
1671 
1672 	 /*
1673 	  * In the case of demote we do not ref count the page as it will soon
1674 	  * be turned into a page of smaller size.
1675 	 */
1676 	if (!demote)
1677 		folio_ref_unfreeze(folio, 1);
1678 
1679 	h->nr_huge_pages--;
1680 	h->nr_huge_pages_node[nid]--;
1681 }
1682 
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1683 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1684 							bool adjust_surplus)
1685 {
1686 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1687 }
1688 
remove_hugetlb_folio_for_demote(struct hstate * h,struct folio * folio,bool adjust_surplus)1689 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1690 							bool adjust_surplus)
1691 {
1692 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1693 }
1694 
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1695 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1696 			     bool adjust_surplus)
1697 {
1698 	int zeroed;
1699 	int nid = folio_nid(folio);
1700 
1701 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1702 
1703 	lockdep_assert_held(&hugetlb_lock);
1704 
1705 	INIT_LIST_HEAD(&folio->lru);
1706 	h->nr_huge_pages++;
1707 	h->nr_huge_pages_node[nid]++;
1708 
1709 	if (adjust_surplus) {
1710 		h->surplus_huge_pages++;
1711 		h->surplus_huge_pages_node[nid]++;
1712 	}
1713 
1714 	__folio_set_hugetlb(folio);
1715 	folio_change_private(folio, NULL);
1716 	/*
1717 	 * We have to set hugetlb_vmemmap_optimized again as above
1718 	 * folio_change_private(folio, NULL) cleared it.
1719 	 */
1720 	folio_set_hugetlb_vmemmap_optimized(folio);
1721 
1722 	/*
1723 	 * This folio is about to be managed by the hugetlb allocator and
1724 	 * should have no users.  Drop our reference, and check for others
1725 	 * just in case.
1726 	 */
1727 	zeroed = folio_put_testzero(folio);
1728 	if (unlikely(!zeroed))
1729 		/*
1730 		 * It is VERY unlikely soneone else has taken a ref
1731 		 * on the folio.  In this case, we simply return as
1732 		 * free_huge_folio() will be called when this other ref
1733 		 * is dropped.
1734 		 */
1735 		return;
1736 
1737 	arch_clear_hugepage_flags(&folio->page);
1738 	enqueue_hugetlb_folio(h, folio);
1739 }
1740 
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1741 static void __update_and_free_hugetlb_folio(struct hstate *h,
1742 						struct folio *folio)
1743 {
1744 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1745 
1746 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1747 		return;
1748 
1749 	/*
1750 	 * If we don't know which subpages are hwpoisoned, we can't free
1751 	 * the hugepage, so it's leaked intentionally.
1752 	 */
1753 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1754 		return;
1755 
1756 	/*
1757 	 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1758 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1759 	 * can only be passed hugetlb pages and will BUG otherwise.
1760 	 */
1761 	if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1762 		spin_lock_irq(&hugetlb_lock);
1763 		/*
1764 		 * If we cannot allocate vmemmap pages, just refuse to free the
1765 		 * page and put the page back on the hugetlb free list and treat
1766 		 * as a surplus page.
1767 		 */
1768 		add_hugetlb_folio(h, folio, true);
1769 		spin_unlock_irq(&hugetlb_lock);
1770 		return;
1771 	}
1772 
1773 	/*
1774 	 * Move PageHWPoison flag from head page to the raw error pages,
1775 	 * which makes any healthy subpages reusable.
1776 	 */
1777 	if (unlikely(folio_test_hwpoison(folio)))
1778 		folio_clear_hugetlb_hwpoison(folio);
1779 
1780 	/*
1781 	 * If vmemmap pages were allocated above, then we need to clear the
1782 	 * hugetlb destructor under the hugetlb lock.
1783 	 */
1784 	if (folio_test_hugetlb(folio)) {
1785 		spin_lock_irq(&hugetlb_lock);
1786 		__clear_hugetlb_destructor(h, folio);
1787 		spin_unlock_irq(&hugetlb_lock);
1788 	}
1789 
1790 	/*
1791 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1792 	 * need to be given back to CMA in free_gigantic_folio.
1793 	 */
1794 	if (hstate_is_gigantic(h) ||
1795 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1796 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1797 		free_gigantic_folio(folio, huge_page_order(h));
1798 	} else {
1799 		__free_pages(&folio->page, huge_page_order(h));
1800 	}
1801 }
1802 
1803 /*
1804  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807  * the vmemmap pages.
1808  *
1809  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810  * freed and frees them one-by-one. As the page->mapping pointer is going
1811  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812  * structure of a lockless linked list of huge pages to be freed.
1813  */
1814 static LLIST_HEAD(hpage_freelist);
1815 
free_hpage_workfn(struct work_struct * work)1816 static void free_hpage_workfn(struct work_struct *work)
1817 {
1818 	struct llist_node *node;
1819 
1820 	node = llist_del_all(&hpage_freelist);
1821 
1822 	while (node) {
1823 		struct folio *folio;
1824 		struct hstate *h;
1825 
1826 		folio = container_of((struct address_space **)node,
1827 				     struct folio, mapping);
1828 		node = node->next;
1829 		folio->mapping = NULL;
1830 		/*
1831 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832 		 * folio_hstate() is going to trigger because a previous call to
1833 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834 		 * not use folio_hstate() directly.
1835 		 */
1836 		h = size_to_hstate(folio_size(folio));
1837 
1838 		__update_and_free_hugetlb_folio(h, folio);
1839 
1840 		cond_resched();
1841 	}
1842 }
1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1844 
flush_free_hpage_work(struct hstate * h)1845 static inline void flush_free_hpage_work(struct hstate *h)
1846 {
1847 	if (hugetlb_vmemmap_optimizable(h))
1848 		flush_work(&free_hpage_work);
1849 }
1850 
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1852 				 bool atomic)
1853 {
1854 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855 		__update_and_free_hugetlb_folio(h, folio);
1856 		return;
1857 	}
1858 
1859 	/*
1860 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1861 	 *
1862 	 * Only call schedule_work() if hpage_freelist is previously
1863 	 * empty. Otherwise, schedule_work() had been called but the workfn
1864 	 * hasn't retrieved the list yet.
1865 	 */
1866 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867 		schedule_work(&free_hpage_work);
1868 }
1869 
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1870 static void bulk_vmemmap_restore_error(struct hstate *h,
1871 					struct list_head *folio_list,
1872 					struct list_head *non_hvo_folios)
1873 {
1874 	struct folio *folio, *t_folio;
1875 
1876 	if (!list_empty(non_hvo_folios)) {
1877 		/*
1878 		 * Free any restored hugetlb pages so that restore of the
1879 		 * entire list can be retried.
1880 		 * The idea is that in the common case of ENOMEM errors freeing
1881 		 * hugetlb pages with vmemmap we will free up memory so that we
1882 		 * can allocate vmemmap for more hugetlb pages.
1883 		 */
1884 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1885 			list_del(&folio->lru);
1886 			spin_lock_irq(&hugetlb_lock);
1887 			__clear_hugetlb_destructor(h, folio);
1888 			spin_unlock_irq(&hugetlb_lock);
1889 			update_and_free_hugetlb_folio(h, folio, false);
1890 			cond_resched();
1891 		}
1892 	} else {
1893 		/*
1894 		 * In the case where there are no folios which can be
1895 		 * immediately freed, we loop through the list trying to restore
1896 		 * vmemmap individually in the hope that someone elsewhere may
1897 		 * have done something to cause success (such as freeing some
1898 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1899 		 * page is made a surplus page and removed from the list.
1900 		 * If are able to restore vmemmap and free one hugetlb page, we
1901 		 * quit processing the list to retry the bulk operation.
1902 		 */
1903 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1904 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1905 				list_del(&folio->lru);
1906 				spin_lock_irq(&hugetlb_lock);
1907 				add_hugetlb_folio(h, folio, true);
1908 				spin_unlock_irq(&hugetlb_lock);
1909 			} else {
1910 				list_del(&folio->lru);
1911 				spin_lock_irq(&hugetlb_lock);
1912 				__clear_hugetlb_destructor(h, folio);
1913 				spin_unlock_irq(&hugetlb_lock);
1914 				update_and_free_hugetlb_folio(h, folio, false);
1915 				cond_resched();
1916 				break;
1917 			}
1918 	}
1919 }
1920 
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1921 static void update_and_free_pages_bulk(struct hstate *h,
1922 						struct list_head *folio_list)
1923 {
1924 	long ret;
1925 	struct folio *folio, *t_folio;
1926 	LIST_HEAD(non_hvo_folios);
1927 
1928 	/*
1929 	 * First allocate required vmemmmap (if necessary) for all folios.
1930 	 * Carefully handle errors and free up any available hugetlb pages
1931 	 * in an effort to make forward progress.
1932 	 */
1933 retry:
1934 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1935 	if (ret < 0) {
1936 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1937 		goto retry;
1938 	}
1939 
1940 	/*
1941 	 * At this point, list should be empty, ret should be >= 0 and there
1942 	 * should only be pages on the non_hvo_folios list.
1943 	 * Do note that the non_hvo_folios list could be empty.
1944 	 * Without HVO enabled, ret will be 0 and there is no need to call
1945 	 * __clear_hugetlb_destructor as this was done previously.
1946 	 */
1947 	VM_WARN_ON(!list_empty(folio_list));
1948 	VM_WARN_ON(ret < 0);
1949 	if (!list_empty(&non_hvo_folios) && ret) {
1950 		spin_lock_irq(&hugetlb_lock);
1951 		list_for_each_entry(folio, &non_hvo_folios, lru)
1952 			__clear_hugetlb_destructor(h, folio);
1953 		spin_unlock_irq(&hugetlb_lock);
1954 	}
1955 
1956 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1957 		update_and_free_hugetlb_folio(h, folio, false);
1958 		cond_resched();
1959 	}
1960 }
1961 
size_to_hstate(unsigned long size)1962 struct hstate *size_to_hstate(unsigned long size)
1963 {
1964 	struct hstate *h;
1965 
1966 	for_each_hstate(h) {
1967 		if (huge_page_size(h) == size)
1968 			return h;
1969 	}
1970 	return NULL;
1971 }
1972 
free_huge_folio(struct folio * folio)1973 void free_huge_folio(struct folio *folio)
1974 {
1975 	/*
1976 	 * Can't pass hstate in here because it is called from the
1977 	 * compound page destructor.
1978 	 */
1979 	struct hstate *h = folio_hstate(folio);
1980 	int nid = folio_nid(folio);
1981 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1982 	bool restore_reserve;
1983 	unsigned long flags;
1984 
1985 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1986 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1987 
1988 	hugetlb_set_folio_subpool(folio, NULL);
1989 	if (folio_test_anon(folio))
1990 		__ClearPageAnonExclusive(&folio->page);
1991 	folio->mapping = NULL;
1992 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1993 	folio_clear_hugetlb_restore_reserve(folio);
1994 
1995 	/*
1996 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1997 	 * reservation.  If the page was associated with a subpool, there
1998 	 * would have been a page reserved in the subpool before allocation
1999 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
2000 	 * reservation, do not call hugepage_subpool_put_pages() as this will
2001 	 * remove the reserved page from the subpool.
2002 	 */
2003 	if (!restore_reserve) {
2004 		/*
2005 		 * A return code of zero implies that the subpool will be
2006 		 * under its minimum size if the reservation is not restored
2007 		 * after page is free.  Therefore, force restore_reserve
2008 		 * operation.
2009 		 */
2010 		if (hugepage_subpool_put_pages(spool, 1) == 0)
2011 			restore_reserve = true;
2012 	}
2013 
2014 	spin_lock_irqsave(&hugetlb_lock, flags);
2015 	folio_clear_hugetlb_migratable(folio);
2016 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
2017 				     pages_per_huge_page(h), folio);
2018 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2019 					  pages_per_huge_page(h), folio);
2020 	mem_cgroup_uncharge(folio);
2021 	if (restore_reserve)
2022 		h->resv_huge_pages++;
2023 
2024 	if (folio_test_hugetlb_temporary(folio)) {
2025 		remove_hugetlb_folio(h, folio, false);
2026 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2027 		update_and_free_hugetlb_folio(h, folio, true);
2028 	} else if (h->surplus_huge_pages_node[nid]) {
2029 		/* remove the page from active list */
2030 		remove_hugetlb_folio(h, folio, true);
2031 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2032 		update_and_free_hugetlb_folio(h, folio, true);
2033 	} else {
2034 		arch_clear_hugepage_flags(&folio->page);
2035 		enqueue_hugetlb_folio(h, folio);
2036 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2037 	}
2038 }
2039 
2040 /*
2041  * Must be called with the hugetlb lock held
2042  */
__prep_account_new_huge_page(struct hstate * h,int nid)2043 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2044 {
2045 	lockdep_assert_held(&hugetlb_lock);
2046 	h->nr_huge_pages++;
2047 	h->nr_huge_pages_node[nid]++;
2048 }
2049 
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)2050 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2051 {
2052 	__folio_set_hugetlb(folio);
2053 	INIT_LIST_HEAD(&folio->lru);
2054 	hugetlb_set_folio_subpool(folio, NULL);
2055 	set_hugetlb_cgroup(folio, NULL);
2056 	set_hugetlb_cgroup_rsvd(folio, NULL);
2057 }
2058 
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)2059 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2060 {
2061 	init_new_hugetlb_folio(h, folio);
2062 	hugetlb_vmemmap_optimize_folio(h, folio);
2063 }
2064 
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)2065 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2066 {
2067 	__prep_new_hugetlb_folio(h, folio);
2068 	spin_lock_irq(&hugetlb_lock);
2069 	__prep_account_new_huge_page(h, nid);
2070 	spin_unlock_irq(&hugetlb_lock);
2071 }
2072 
__prep_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)2073 static bool __prep_compound_gigantic_folio(struct folio *folio,
2074 					unsigned int order, bool demote)
2075 {
2076 	int i, j;
2077 	int nr_pages = 1 << order;
2078 	struct page *p;
2079 
2080 	__folio_clear_reserved(folio);
2081 	for (i = 0; i < nr_pages; i++) {
2082 		p = folio_page(folio, i);
2083 
2084 		/*
2085 		 * For gigantic hugepages allocated through bootmem at
2086 		 * boot, it's safer to be consistent with the not-gigantic
2087 		 * hugepages and clear the PG_reserved bit from all tail pages
2088 		 * too.  Otherwise drivers using get_user_pages() to access tail
2089 		 * pages may get the reference counting wrong if they see
2090 		 * PG_reserved set on a tail page (despite the head page not
2091 		 * having PG_reserved set).  Enforcing this consistency between
2092 		 * head and tail pages allows drivers to optimize away a check
2093 		 * on the head page when they need know if put_page() is needed
2094 		 * after get_user_pages().
2095 		 */
2096 		if (i != 0)	/* head page cleared above */
2097 			__ClearPageReserved(p);
2098 		/*
2099 		 * Subtle and very unlikely
2100 		 *
2101 		 * Gigantic 'page allocators' such as memblock or cma will
2102 		 * return a set of pages with each page ref counted.  We need
2103 		 * to turn this set of pages into a compound page with tail
2104 		 * page ref counts set to zero.  Code such as speculative page
2105 		 * cache adding could take a ref on a 'to be' tail page.
2106 		 * We need to respect any increased ref count, and only set
2107 		 * the ref count to zero if count is currently 1.  If count
2108 		 * is not 1, we return an error.  An error return indicates
2109 		 * the set of pages can not be converted to a gigantic page.
2110 		 * The caller who allocated the pages should then discard the
2111 		 * pages using the appropriate free interface.
2112 		 *
2113 		 * In the case of demote, the ref count will be zero.
2114 		 */
2115 		if (!demote) {
2116 			if (!page_ref_freeze(p, 1)) {
2117 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2118 				goto out_error;
2119 			}
2120 		} else {
2121 			VM_BUG_ON_PAGE(page_count(p), p);
2122 		}
2123 		if (i != 0)
2124 			set_compound_head(p, &folio->page);
2125 	}
2126 	__folio_set_head(folio);
2127 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2128 	folio_set_order(folio, order);
2129 	atomic_set(&folio->_entire_mapcount, -1);
2130 	atomic_set(&folio->_nr_pages_mapped, 0);
2131 	atomic_set(&folio->_pincount, 0);
2132 	return true;
2133 
2134 out_error:
2135 	/* undo page modifications made above */
2136 	for (j = 0; j < i; j++) {
2137 		p = folio_page(folio, j);
2138 		if (j != 0)
2139 			clear_compound_head(p);
2140 		set_page_refcounted(p);
2141 	}
2142 	/* need to clear PG_reserved on remaining tail pages  */
2143 	for (; j < nr_pages; j++) {
2144 		p = folio_page(folio, j);
2145 		__ClearPageReserved(p);
2146 	}
2147 	return false;
2148 }
2149 
prep_compound_gigantic_folio(struct folio * folio,unsigned int order)2150 static bool prep_compound_gigantic_folio(struct folio *folio,
2151 							unsigned int order)
2152 {
2153 	return __prep_compound_gigantic_folio(folio, order, false);
2154 }
2155 
prep_compound_gigantic_folio_for_demote(struct folio * folio,unsigned int order)2156 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2157 							unsigned int order)
2158 {
2159 	return __prep_compound_gigantic_folio(folio, order, true);
2160 }
2161 
2162 /*
2163  * Find and lock address space (mapping) in write mode.
2164  *
2165  * Upon entry, the page is locked which means that page_mapping() is
2166  * stable.  Due to locking order, we can only trylock_write.  If we can
2167  * not get the lock, simply return NULL to caller.
2168  */
hugetlb_page_mapping_lock_write(struct page * hpage)2169 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2170 {
2171 	struct address_space *mapping = page_mapping(hpage);
2172 
2173 	if (!mapping)
2174 		return mapping;
2175 
2176 	if (i_mmap_trylock_write(mapping))
2177 		return mapping;
2178 
2179 	return NULL;
2180 }
2181 
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2182 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2183 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2184 		nodemask_t *node_alloc_noretry)
2185 {
2186 	int order = huge_page_order(h);
2187 	struct page *page;
2188 	bool alloc_try_hard = true;
2189 	bool retry = true;
2190 
2191 	/*
2192 	 * By default we always try hard to allocate the page with
2193 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2194 	 * a loop (to adjust global huge page counts) and previous allocation
2195 	 * failed, do not continue to try hard on the same node.  Use the
2196 	 * node_alloc_noretry bitmap to manage this state information.
2197 	 */
2198 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2199 		alloc_try_hard = false;
2200 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2201 	if (alloc_try_hard)
2202 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2203 	if (nid == NUMA_NO_NODE)
2204 		nid = numa_mem_id();
2205 retry:
2206 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2207 
2208 	/* Freeze head page */
2209 	if (page && !page_ref_freeze(page, 1)) {
2210 		__free_pages(page, order);
2211 		if (retry) {	/* retry once */
2212 			retry = false;
2213 			goto retry;
2214 		}
2215 		/* WOW!  twice in a row. */
2216 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2217 		page = NULL;
2218 	}
2219 
2220 	/*
2221 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2222 	 * indicates an overall state change.  Clear bit so that we resume
2223 	 * normal 'try hard' allocations.
2224 	 */
2225 	if (node_alloc_noretry && page && !alloc_try_hard)
2226 		node_clear(nid, *node_alloc_noretry);
2227 
2228 	/*
2229 	 * If we tried hard to get a page but failed, set bit so that
2230 	 * subsequent attempts will not try as hard until there is an
2231 	 * overall state change.
2232 	 */
2233 	if (node_alloc_noretry && !page && alloc_try_hard)
2234 		node_set(nid, *node_alloc_noretry);
2235 
2236 	if (!page) {
2237 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2238 		return NULL;
2239 	}
2240 
2241 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2242 	return page_folio(page);
2243 }
2244 
__alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2245 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2246 				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2247 				nodemask_t *node_alloc_noretry)
2248 {
2249 	struct folio *folio;
2250 	bool retry = false;
2251 
2252 retry:
2253 	if (hstate_is_gigantic(h))
2254 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2255 	else
2256 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2257 				nid, nmask, node_alloc_noretry);
2258 	if (!folio)
2259 		return NULL;
2260 
2261 	if (hstate_is_gigantic(h)) {
2262 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2263 			/*
2264 			 * Rare failure to convert pages to compound page.
2265 			 * Free pages and try again - ONCE!
2266 			 */
2267 			free_gigantic_folio(folio, huge_page_order(h));
2268 			if (!retry) {
2269 				retry = true;
2270 				goto retry;
2271 			}
2272 			return NULL;
2273 		}
2274 	}
2275 
2276 	return folio;
2277 }
2278 
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2279 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2280 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2281 		nodemask_t *node_alloc_noretry)
2282 {
2283 	struct folio *folio;
2284 
2285 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2286 						node_alloc_noretry);
2287 	if (folio)
2288 		init_new_hugetlb_folio(h, folio);
2289 	return folio;
2290 }
2291 
2292 /*
2293  * Common helper to allocate a fresh hugetlb page. All specific allocators
2294  * should use this function to get new hugetlb pages
2295  *
2296  * Note that returned page is 'frozen':  ref count of head page and all tail
2297  * pages is zero.
2298  */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2299 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2300 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2301 		nodemask_t *node_alloc_noretry)
2302 {
2303 	struct folio *folio;
2304 
2305 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2306 						node_alloc_noretry);
2307 	if (!folio)
2308 		return NULL;
2309 
2310 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2311 	return folio;
2312 }
2313 
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2314 static void prep_and_add_allocated_folios(struct hstate *h,
2315 					struct list_head *folio_list)
2316 {
2317 	unsigned long flags;
2318 	struct folio *folio, *tmp_f;
2319 
2320 	/* Send list for bulk vmemmap optimization processing */
2321 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2322 
2323 	/* Add all new pool pages to free lists in one lock cycle */
2324 	spin_lock_irqsave(&hugetlb_lock, flags);
2325 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2326 		__prep_account_new_huge_page(h, folio_nid(folio));
2327 		enqueue_hugetlb_folio(h, folio);
2328 	}
2329 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2330 }
2331 
2332 /*
2333  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2334  * will later be added to the appropriate hugetlb pool.
2335  */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2336 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2337 					nodemask_t *nodes_allowed,
2338 					nodemask_t *node_alloc_noretry,
2339 					int *next_node)
2340 {
2341 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2342 	int nr_nodes, node;
2343 
2344 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2345 		struct folio *folio;
2346 
2347 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2348 					nodes_allowed, node_alloc_noretry);
2349 		if (folio)
2350 			return folio;
2351 	}
2352 
2353 	return NULL;
2354 }
2355 
2356 /*
2357  * Remove huge page from pool from next node to free.  Attempt to keep
2358  * persistent huge pages more or less balanced over allowed nodes.
2359  * This routine only 'removes' the hugetlb page.  The caller must make
2360  * an additional call to free the page to low level allocators.
2361  * Called with hugetlb_lock locked.
2362  */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2363 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2364 		nodemask_t *nodes_allowed, bool acct_surplus)
2365 {
2366 	int nr_nodes, node;
2367 	struct folio *folio = NULL;
2368 
2369 	lockdep_assert_held(&hugetlb_lock);
2370 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2371 		/*
2372 		 * If we're returning unused surplus pages, only examine
2373 		 * nodes with surplus pages.
2374 		 */
2375 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2376 		    !list_empty(&h->hugepage_freelists[node])) {
2377 			folio = list_entry(h->hugepage_freelists[node].next,
2378 					  struct folio, lru);
2379 			remove_hugetlb_folio(h, folio, acct_surplus);
2380 			break;
2381 		}
2382 	}
2383 
2384 	return folio;
2385 }
2386 
2387 /*
2388  * Dissolve a given free hugepage into free buddy pages. This function does
2389  * nothing for in-use hugepages and non-hugepages.
2390  * This function returns values like below:
2391  *
2392  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2393  *           when the system is under memory pressure and the feature of
2394  *           freeing unused vmemmap pages associated with each hugetlb page
2395  *           is enabled.
2396  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2397  *           (allocated or reserved.)
2398  *       0:  successfully dissolved free hugepages or the page is not a
2399  *           hugepage (considered as already dissolved)
2400  */
dissolve_free_huge_page(struct page * page)2401 int dissolve_free_huge_page(struct page *page)
2402 {
2403 	int rc = -EBUSY;
2404 	struct folio *folio = page_folio(page);
2405 
2406 retry:
2407 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2408 	if (!folio_test_hugetlb(folio))
2409 		return 0;
2410 
2411 	spin_lock_irq(&hugetlb_lock);
2412 	if (!folio_test_hugetlb(folio)) {
2413 		rc = 0;
2414 		goto out;
2415 	}
2416 
2417 	if (!folio_ref_count(folio)) {
2418 		struct hstate *h = folio_hstate(folio);
2419 		if (!available_huge_pages(h))
2420 			goto out;
2421 
2422 		/*
2423 		 * We should make sure that the page is already on the free list
2424 		 * when it is dissolved.
2425 		 */
2426 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2427 			spin_unlock_irq(&hugetlb_lock);
2428 			cond_resched();
2429 
2430 			/*
2431 			 * Theoretically, we should return -EBUSY when we
2432 			 * encounter this race. In fact, we have a chance
2433 			 * to successfully dissolve the page if we do a
2434 			 * retry. Because the race window is quite small.
2435 			 * If we seize this opportunity, it is an optimization
2436 			 * for increasing the success rate of dissolving page.
2437 			 */
2438 			goto retry;
2439 		}
2440 
2441 		remove_hugetlb_folio(h, folio, false);
2442 		h->max_huge_pages--;
2443 		spin_unlock_irq(&hugetlb_lock);
2444 
2445 		/*
2446 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2447 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2448 		 * free the page if it can not allocate required vmemmap.  We
2449 		 * need to adjust max_huge_pages if the page is not freed.
2450 		 * Attempt to allocate vmemmmap here so that we can take
2451 		 * appropriate action on failure.
2452 		 *
2453 		 * The folio_test_hugetlb check here is because
2454 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2455 		 * non-vmemmap optimized hugetlb folios.
2456 		 */
2457 		if (folio_test_hugetlb(folio)) {
2458 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2459 			if (rc) {
2460 				spin_lock_irq(&hugetlb_lock);
2461 				add_hugetlb_folio(h, folio, false);
2462 				h->max_huge_pages++;
2463 				goto out;
2464 			}
2465 		} else
2466 			rc = 0;
2467 
2468 		update_and_free_hugetlb_folio(h, folio, false);
2469 		return rc;
2470 	}
2471 out:
2472 	spin_unlock_irq(&hugetlb_lock);
2473 	return rc;
2474 }
2475 
2476 /*
2477  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2478  * make specified memory blocks removable from the system.
2479  * Note that this will dissolve a free gigantic hugepage completely, if any
2480  * part of it lies within the given range.
2481  * Also note that if dissolve_free_huge_page() returns with an error, all
2482  * free hugepages that were dissolved before that error are lost.
2483  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2484 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2485 {
2486 	unsigned long pfn;
2487 	struct page *page;
2488 	int rc = 0;
2489 	unsigned int order;
2490 	struct hstate *h;
2491 
2492 	if (!hugepages_supported())
2493 		return rc;
2494 
2495 	order = huge_page_order(&default_hstate);
2496 	for_each_hstate(h)
2497 		order = min(order, huge_page_order(h));
2498 
2499 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2500 		page = pfn_to_page(pfn);
2501 		rc = dissolve_free_huge_page(page);
2502 		if (rc)
2503 			break;
2504 	}
2505 
2506 	return rc;
2507 }
2508 
2509 /*
2510  * Allocates a fresh surplus page from the page allocator.
2511  */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2512 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2513 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2514 {
2515 	struct folio *folio = NULL;
2516 
2517 	if (hstate_is_gigantic(h))
2518 		return NULL;
2519 
2520 	spin_lock_irq(&hugetlb_lock);
2521 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2522 		goto out_unlock;
2523 	spin_unlock_irq(&hugetlb_lock);
2524 
2525 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2526 	if (!folio)
2527 		return NULL;
2528 
2529 	spin_lock_irq(&hugetlb_lock);
2530 	/*
2531 	 * We could have raced with the pool size change.
2532 	 * Double check that and simply deallocate the new page
2533 	 * if we would end up overcommiting the surpluses. Abuse
2534 	 * temporary page to workaround the nasty free_huge_folio
2535 	 * codeflow
2536 	 */
2537 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2538 		folio_set_hugetlb_temporary(folio);
2539 		spin_unlock_irq(&hugetlb_lock);
2540 		free_huge_folio(folio);
2541 		return NULL;
2542 	}
2543 
2544 	h->surplus_huge_pages++;
2545 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2546 
2547 out_unlock:
2548 	spin_unlock_irq(&hugetlb_lock);
2549 
2550 	return folio;
2551 }
2552 
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2553 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2554 				     int nid, nodemask_t *nmask)
2555 {
2556 	struct folio *folio;
2557 
2558 	if (hstate_is_gigantic(h))
2559 		return NULL;
2560 
2561 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2562 	if (!folio)
2563 		return NULL;
2564 
2565 	/* fresh huge pages are frozen */
2566 	folio_ref_unfreeze(folio, 1);
2567 	/*
2568 	 * We do not account these pages as surplus because they are only
2569 	 * temporary and will be released properly on the last reference
2570 	 */
2571 	folio_set_hugetlb_temporary(folio);
2572 
2573 	return folio;
2574 }
2575 
2576 /*
2577  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2578  */
2579 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2580 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2581 		struct vm_area_struct *vma, unsigned long addr)
2582 {
2583 	struct folio *folio = NULL;
2584 	struct mempolicy *mpol;
2585 	gfp_t gfp_mask = htlb_alloc_mask(h);
2586 	int nid;
2587 	nodemask_t *nodemask;
2588 
2589 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2590 	if (mpol_is_preferred_many(mpol)) {
2591 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2592 
2593 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2594 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2595 
2596 		/* Fallback to all nodes if page==NULL */
2597 		nodemask = NULL;
2598 	}
2599 
2600 	if (!folio)
2601 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2602 	mpol_cond_put(mpol);
2603 	return folio;
2604 }
2605 
2606 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2607 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2608 		nodemask_t *nmask, gfp_t gfp_mask)
2609 {
2610 	spin_lock_irq(&hugetlb_lock);
2611 	if (available_huge_pages(h)) {
2612 		struct folio *folio;
2613 
2614 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2615 						preferred_nid, nmask);
2616 		if (folio) {
2617 			spin_unlock_irq(&hugetlb_lock);
2618 			return folio;
2619 		}
2620 	}
2621 	spin_unlock_irq(&hugetlb_lock);
2622 
2623 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2624 }
2625 
2626 /*
2627  * Increase the hugetlb pool such that it can accommodate a reservation
2628  * of size 'delta'.
2629  */
gather_surplus_pages(struct hstate * h,long delta)2630 static int gather_surplus_pages(struct hstate *h, long delta)
2631 	__must_hold(&hugetlb_lock)
2632 {
2633 	LIST_HEAD(surplus_list);
2634 	struct folio *folio, *tmp;
2635 	int ret;
2636 	long i;
2637 	long needed, allocated;
2638 	bool alloc_ok = true;
2639 
2640 	lockdep_assert_held(&hugetlb_lock);
2641 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2642 	if (needed <= 0) {
2643 		h->resv_huge_pages += delta;
2644 		return 0;
2645 	}
2646 
2647 	allocated = 0;
2648 
2649 	ret = -ENOMEM;
2650 retry:
2651 	spin_unlock_irq(&hugetlb_lock);
2652 	for (i = 0; i < needed; i++) {
2653 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2654 				NUMA_NO_NODE, NULL);
2655 		if (!folio) {
2656 			alloc_ok = false;
2657 			break;
2658 		}
2659 		list_add(&folio->lru, &surplus_list);
2660 		cond_resched();
2661 	}
2662 	allocated += i;
2663 
2664 	/*
2665 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2666 	 * because either resv_huge_pages or free_huge_pages may have changed.
2667 	 */
2668 	spin_lock_irq(&hugetlb_lock);
2669 	needed = (h->resv_huge_pages + delta) -
2670 			(h->free_huge_pages + allocated);
2671 	if (needed > 0) {
2672 		if (alloc_ok)
2673 			goto retry;
2674 		/*
2675 		 * We were not able to allocate enough pages to
2676 		 * satisfy the entire reservation so we free what
2677 		 * we've allocated so far.
2678 		 */
2679 		goto free;
2680 	}
2681 	/*
2682 	 * The surplus_list now contains _at_least_ the number of extra pages
2683 	 * needed to accommodate the reservation.  Add the appropriate number
2684 	 * of pages to the hugetlb pool and free the extras back to the buddy
2685 	 * allocator.  Commit the entire reservation here to prevent another
2686 	 * process from stealing the pages as they are added to the pool but
2687 	 * before they are reserved.
2688 	 */
2689 	needed += allocated;
2690 	h->resv_huge_pages += delta;
2691 	ret = 0;
2692 
2693 	/* Free the needed pages to the hugetlb pool */
2694 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2695 		if ((--needed) < 0)
2696 			break;
2697 		/* Add the page to the hugetlb allocator */
2698 		enqueue_hugetlb_folio(h, folio);
2699 	}
2700 free:
2701 	spin_unlock_irq(&hugetlb_lock);
2702 
2703 	/*
2704 	 * Free unnecessary surplus pages to the buddy allocator.
2705 	 * Pages have no ref count, call free_huge_folio directly.
2706 	 */
2707 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2708 		free_huge_folio(folio);
2709 	spin_lock_irq(&hugetlb_lock);
2710 
2711 	return ret;
2712 }
2713 
2714 /*
2715  * This routine has two main purposes:
2716  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2717  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2718  *    to the associated reservation map.
2719  * 2) Free any unused surplus pages that may have been allocated to satisfy
2720  *    the reservation.  As many as unused_resv_pages may be freed.
2721  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2722 static void return_unused_surplus_pages(struct hstate *h,
2723 					unsigned long unused_resv_pages)
2724 {
2725 	unsigned long nr_pages;
2726 	LIST_HEAD(page_list);
2727 
2728 	lockdep_assert_held(&hugetlb_lock);
2729 	/* Uncommit the reservation */
2730 	h->resv_huge_pages -= unused_resv_pages;
2731 
2732 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2733 		goto out;
2734 
2735 	/*
2736 	 * Part (or even all) of the reservation could have been backed
2737 	 * by pre-allocated pages. Only free surplus pages.
2738 	 */
2739 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2740 
2741 	/*
2742 	 * We want to release as many surplus pages as possible, spread
2743 	 * evenly across all nodes with memory. Iterate across these nodes
2744 	 * until we can no longer free unreserved surplus pages. This occurs
2745 	 * when the nodes with surplus pages have no free pages.
2746 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2747 	 * on-line nodes with memory and will handle the hstate accounting.
2748 	 */
2749 	while (nr_pages--) {
2750 		struct folio *folio;
2751 
2752 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2753 		if (!folio)
2754 			goto out;
2755 
2756 		list_add(&folio->lru, &page_list);
2757 	}
2758 
2759 out:
2760 	spin_unlock_irq(&hugetlb_lock);
2761 	update_and_free_pages_bulk(h, &page_list);
2762 	spin_lock_irq(&hugetlb_lock);
2763 }
2764 
2765 
2766 /*
2767  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2768  * are used by the huge page allocation routines to manage reservations.
2769  *
2770  * vma_needs_reservation is called to determine if the huge page at addr
2771  * within the vma has an associated reservation.  If a reservation is
2772  * needed, the value 1 is returned.  The caller is then responsible for
2773  * managing the global reservation and subpool usage counts.  After
2774  * the huge page has been allocated, vma_commit_reservation is called
2775  * to add the page to the reservation map.  If the page allocation fails,
2776  * the reservation must be ended instead of committed.  vma_end_reservation
2777  * is called in such cases.
2778  *
2779  * In the normal case, vma_commit_reservation returns the same value
2780  * as the preceding vma_needs_reservation call.  The only time this
2781  * is not the case is if a reserve map was changed between calls.  It
2782  * is the responsibility of the caller to notice the difference and
2783  * take appropriate action.
2784  *
2785  * vma_add_reservation is used in error paths where a reservation must
2786  * be restored when a newly allocated huge page must be freed.  It is
2787  * to be called after calling vma_needs_reservation to determine if a
2788  * reservation exists.
2789  *
2790  * vma_del_reservation is used in error paths where an entry in the reserve
2791  * map was created during huge page allocation and must be removed.  It is to
2792  * be called after calling vma_needs_reservation to determine if a reservation
2793  * exists.
2794  */
2795 enum vma_resv_mode {
2796 	VMA_NEEDS_RESV,
2797 	VMA_COMMIT_RESV,
2798 	VMA_END_RESV,
2799 	VMA_ADD_RESV,
2800 	VMA_DEL_RESV,
2801 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2802 static long __vma_reservation_common(struct hstate *h,
2803 				struct vm_area_struct *vma, unsigned long addr,
2804 				enum vma_resv_mode mode)
2805 {
2806 	struct resv_map *resv;
2807 	pgoff_t idx;
2808 	long ret;
2809 	long dummy_out_regions_needed;
2810 
2811 	resv = vma_resv_map(vma);
2812 	if (!resv)
2813 		return 1;
2814 
2815 	idx = vma_hugecache_offset(h, vma, addr);
2816 	switch (mode) {
2817 	case VMA_NEEDS_RESV:
2818 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2819 		/* We assume that vma_reservation_* routines always operate on
2820 		 * 1 page, and that adding to resv map a 1 page entry can only
2821 		 * ever require 1 region.
2822 		 */
2823 		VM_BUG_ON(dummy_out_regions_needed != 1);
2824 		break;
2825 	case VMA_COMMIT_RESV:
2826 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2827 		/* region_add calls of range 1 should never fail. */
2828 		VM_BUG_ON(ret < 0);
2829 		break;
2830 	case VMA_END_RESV:
2831 		region_abort(resv, idx, idx + 1, 1);
2832 		ret = 0;
2833 		break;
2834 	case VMA_ADD_RESV:
2835 		if (vma->vm_flags & VM_MAYSHARE) {
2836 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2837 			/* region_add calls of range 1 should never fail. */
2838 			VM_BUG_ON(ret < 0);
2839 		} else {
2840 			region_abort(resv, idx, idx + 1, 1);
2841 			ret = region_del(resv, idx, idx + 1);
2842 		}
2843 		break;
2844 	case VMA_DEL_RESV:
2845 		if (vma->vm_flags & VM_MAYSHARE) {
2846 			region_abort(resv, idx, idx + 1, 1);
2847 			ret = region_del(resv, idx, idx + 1);
2848 		} else {
2849 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2850 			/* region_add calls of range 1 should never fail. */
2851 			VM_BUG_ON(ret < 0);
2852 		}
2853 		break;
2854 	default:
2855 		BUG();
2856 	}
2857 
2858 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2859 		return ret;
2860 	/*
2861 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2862 	 *
2863 	 * In most cases, reserves always exist for private mappings.
2864 	 * However, a file associated with mapping could have been
2865 	 * hole punched or truncated after reserves were consumed.
2866 	 * As subsequent fault on such a range will not use reserves.
2867 	 * Subtle - The reserve map for private mappings has the
2868 	 * opposite meaning than that of shared mappings.  If NO
2869 	 * entry is in the reserve map, it means a reservation exists.
2870 	 * If an entry exists in the reserve map, it means the
2871 	 * reservation has already been consumed.  As a result, the
2872 	 * return value of this routine is the opposite of the
2873 	 * value returned from reserve map manipulation routines above.
2874 	 */
2875 	if (ret > 0)
2876 		return 0;
2877 	if (ret == 0)
2878 		return 1;
2879 	return ret;
2880 }
2881 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2882 static long vma_needs_reservation(struct hstate *h,
2883 			struct vm_area_struct *vma, unsigned long addr)
2884 {
2885 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2886 }
2887 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2888 static long vma_commit_reservation(struct hstate *h,
2889 			struct vm_area_struct *vma, unsigned long addr)
2890 {
2891 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2892 }
2893 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2894 static void vma_end_reservation(struct hstate *h,
2895 			struct vm_area_struct *vma, unsigned long addr)
2896 {
2897 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2898 }
2899 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2900 static long vma_add_reservation(struct hstate *h,
2901 			struct vm_area_struct *vma, unsigned long addr)
2902 {
2903 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2904 }
2905 
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2906 static long vma_del_reservation(struct hstate *h,
2907 			struct vm_area_struct *vma, unsigned long addr)
2908 {
2909 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2910 }
2911 
2912 /*
2913  * This routine is called to restore reservation information on error paths.
2914  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2915  * and the hugetlb mutex should remain held when calling this routine.
2916  *
2917  * It handles two specific cases:
2918  * 1) A reservation was in place and the folio consumed the reservation.
2919  *    hugetlb_restore_reserve is set in the folio.
2920  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2921  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2922  *
2923  * In case 1, free_huge_folio later in the error path will increment the
2924  * global reserve count.  But, free_huge_folio does not have enough context
2925  * to adjust the reservation map.  This case deals primarily with private
2926  * mappings.  Adjust the reserve map here to be consistent with global
2927  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2928  * reserve map indicates there is a reservation present.
2929  *
2930  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2931  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2932 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2933 			unsigned long address, struct folio *folio)
2934 {
2935 	long rc = vma_needs_reservation(h, vma, address);
2936 
2937 	if (folio_test_hugetlb_restore_reserve(folio)) {
2938 		if (unlikely(rc < 0))
2939 			/*
2940 			 * Rare out of memory condition in reserve map
2941 			 * manipulation.  Clear hugetlb_restore_reserve so
2942 			 * that global reserve count will not be incremented
2943 			 * by free_huge_folio.  This will make it appear
2944 			 * as though the reservation for this folio was
2945 			 * consumed.  This may prevent the task from
2946 			 * faulting in the folio at a later time.  This
2947 			 * is better than inconsistent global huge page
2948 			 * accounting of reserve counts.
2949 			 */
2950 			folio_clear_hugetlb_restore_reserve(folio);
2951 		else if (rc)
2952 			(void)vma_add_reservation(h, vma, address);
2953 		else
2954 			vma_end_reservation(h, vma, address);
2955 	} else {
2956 		if (!rc) {
2957 			/*
2958 			 * This indicates there is an entry in the reserve map
2959 			 * not added by alloc_hugetlb_folio.  We know it was added
2960 			 * before the alloc_hugetlb_folio call, otherwise
2961 			 * hugetlb_restore_reserve would be set on the folio.
2962 			 * Remove the entry so that a subsequent allocation
2963 			 * does not consume a reservation.
2964 			 */
2965 			rc = vma_del_reservation(h, vma, address);
2966 			if (rc < 0)
2967 				/*
2968 				 * VERY rare out of memory condition.  Since
2969 				 * we can not delete the entry, set
2970 				 * hugetlb_restore_reserve so that the reserve
2971 				 * count will be incremented when the folio
2972 				 * is freed.  This reserve will be consumed
2973 				 * on a subsequent allocation.
2974 				 */
2975 				folio_set_hugetlb_restore_reserve(folio);
2976 		} else if (rc < 0) {
2977 			/*
2978 			 * Rare out of memory condition from
2979 			 * vma_needs_reservation call.  Memory allocation is
2980 			 * only attempted if a new entry is needed.  Therefore,
2981 			 * this implies there is not an entry in the
2982 			 * reserve map.
2983 			 *
2984 			 * For shared mappings, no entry in the map indicates
2985 			 * no reservation.  We are done.
2986 			 */
2987 			if (!(vma->vm_flags & VM_MAYSHARE))
2988 				/*
2989 				 * For private mappings, no entry indicates
2990 				 * a reservation is present.  Since we can
2991 				 * not add an entry, set hugetlb_restore_reserve
2992 				 * on the folio so reserve count will be
2993 				 * incremented when freed.  This reserve will
2994 				 * be consumed on a subsequent allocation.
2995 				 */
2996 				folio_set_hugetlb_restore_reserve(folio);
2997 		} else
2998 			/*
2999 			 * No reservation present, do nothing
3000 			 */
3001 			 vma_end_reservation(h, vma, address);
3002 	}
3003 }
3004 
3005 /*
3006  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3007  * the old one
3008  * @h: struct hstate old page belongs to
3009  * @old_folio: Old folio to dissolve
3010  * @list: List to isolate the page in case we need to
3011  * Returns 0 on success, otherwise negated error.
3012  */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)3013 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3014 			struct folio *old_folio, struct list_head *list)
3015 {
3016 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3017 	int nid = folio_nid(old_folio);
3018 	struct folio *new_folio = NULL;
3019 	int ret = 0;
3020 
3021 retry:
3022 	spin_lock_irq(&hugetlb_lock);
3023 	if (!folio_test_hugetlb(old_folio)) {
3024 		/*
3025 		 * Freed from under us. Drop new_folio too.
3026 		 */
3027 		goto free_new;
3028 	} else if (folio_ref_count(old_folio)) {
3029 		bool isolated;
3030 
3031 		/*
3032 		 * Someone has grabbed the folio, try to isolate it here.
3033 		 * Fail with -EBUSY if not possible.
3034 		 */
3035 		spin_unlock_irq(&hugetlb_lock);
3036 		isolated = isolate_hugetlb(old_folio, list);
3037 		ret = isolated ? 0 : -EBUSY;
3038 		spin_lock_irq(&hugetlb_lock);
3039 		goto free_new;
3040 	} else if (!folio_test_hugetlb_freed(old_folio)) {
3041 		/*
3042 		 * Folio's refcount is 0 but it has not been enqueued in the
3043 		 * freelist yet. Race window is small, so we can succeed here if
3044 		 * we retry.
3045 		 */
3046 		spin_unlock_irq(&hugetlb_lock);
3047 		cond_resched();
3048 		goto retry;
3049 	} else {
3050 		if (!new_folio) {
3051 			spin_unlock_irq(&hugetlb_lock);
3052 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3053 							      NULL, NULL);
3054 			if (!new_folio)
3055 				return -ENOMEM;
3056 			__prep_new_hugetlb_folio(h, new_folio);
3057 			goto retry;
3058 		}
3059 
3060 		/*
3061 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3062 		 * the freelist and decrease the counters. These will be
3063 		 * incremented again when calling __prep_account_new_huge_page()
3064 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3065 		 * remain stable since this happens under the lock.
3066 		 */
3067 		remove_hugetlb_folio(h, old_folio, false);
3068 
3069 		/*
3070 		 * Ref count on new_folio is already zero as it was dropped
3071 		 * earlier.  It can be directly added to the pool free list.
3072 		 */
3073 		__prep_account_new_huge_page(h, nid);
3074 		enqueue_hugetlb_folio(h, new_folio);
3075 
3076 		/*
3077 		 * Folio has been replaced, we can safely free the old one.
3078 		 */
3079 		spin_unlock_irq(&hugetlb_lock);
3080 		update_and_free_hugetlb_folio(h, old_folio, false);
3081 	}
3082 
3083 	return ret;
3084 
3085 free_new:
3086 	spin_unlock_irq(&hugetlb_lock);
3087 	if (new_folio) {
3088 		/* Folio has a zero ref count, but needs a ref to be freed */
3089 		folio_ref_unfreeze(new_folio, 1);
3090 		update_and_free_hugetlb_folio(h, new_folio, false);
3091 	}
3092 
3093 	return ret;
3094 }
3095 
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)3096 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3097 {
3098 	struct hstate *h;
3099 	struct folio *folio = page_folio(page);
3100 	int ret = -EBUSY;
3101 
3102 	/*
3103 	 * The page might have been dissolved from under our feet, so make sure
3104 	 * to carefully check the state under the lock.
3105 	 * Return success when racing as if we dissolved the page ourselves.
3106 	 */
3107 	spin_lock_irq(&hugetlb_lock);
3108 	if (folio_test_hugetlb(folio)) {
3109 		h = folio_hstate(folio);
3110 	} else {
3111 		spin_unlock_irq(&hugetlb_lock);
3112 		return 0;
3113 	}
3114 	spin_unlock_irq(&hugetlb_lock);
3115 
3116 	/*
3117 	 * Fence off gigantic pages as there is a cyclic dependency between
3118 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3119 	 * of bailing out right away without further retrying.
3120 	 */
3121 	if (hstate_is_gigantic(h))
3122 		return -ENOMEM;
3123 
3124 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3125 		ret = 0;
3126 	else if (!folio_ref_count(folio))
3127 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3128 
3129 	return ret;
3130 }
3131 
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)3132 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3133 				    unsigned long addr, int avoid_reserve)
3134 {
3135 	struct hugepage_subpool *spool = subpool_vma(vma);
3136 	struct hstate *h = hstate_vma(vma);
3137 	struct folio *folio;
3138 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3139 	long gbl_chg;
3140 	int memcg_charge_ret, ret, idx;
3141 	struct hugetlb_cgroup *h_cg = NULL;
3142 	struct mem_cgroup *memcg;
3143 	bool deferred_reserve;
3144 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3145 
3146 	memcg = get_mem_cgroup_from_current();
3147 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3148 	if (memcg_charge_ret == -ENOMEM) {
3149 		mem_cgroup_put(memcg);
3150 		return ERR_PTR(-ENOMEM);
3151 	}
3152 
3153 	idx = hstate_index(h);
3154 	/*
3155 	 * Examine the region/reserve map to determine if the process
3156 	 * has a reservation for the page to be allocated.  A return
3157 	 * code of zero indicates a reservation exists (no change).
3158 	 */
3159 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3160 	if (map_chg < 0) {
3161 		if (!memcg_charge_ret)
3162 			mem_cgroup_cancel_charge(memcg, nr_pages);
3163 		mem_cgroup_put(memcg);
3164 		return ERR_PTR(-ENOMEM);
3165 	}
3166 
3167 	/*
3168 	 * Processes that did not create the mapping will have no
3169 	 * reserves as indicated by the region/reserve map. Check
3170 	 * that the allocation will not exceed the subpool limit.
3171 	 * Allocations for MAP_NORESERVE mappings also need to be
3172 	 * checked against any subpool limit.
3173 	 */
3174 	if (map_chg || avoid_reserve) {
3175 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3176 		if (gbl_chg < 0)
3177 			goto out_end_reservation;
3178 
3179 		/*
3180 		 * Even though there was no reservation in the region/reserve
3181 		 * map, there could be reservations associated with the
3182 		 * subpool that can be used.  This would be indicated if the
3183 		 * return value of hugepage_subpool_get_pages() is zero.
3184 		 * However, if avoid_reserve is specified we still avoid even
3185 		 * the subpool reservations.
3186 		 */
3187 		if (avoid_reserve)
3188 			gbl_chg = 1;
3189 	}
3190 
3191 	/* If this allocation is not consuming a reservation, charge it now.
3192 	 */
3193 	deferred_reserve = map_chg || avoid_reserve;
3194 	if (deferred_reserve) {
3195 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3196 			idx, pages_per_huge_page(h), &h_cg);
3197 		if (ret)
3198 			goto out_subpool_put;
3199 	}
3200 
3201 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3202 	if (ret)
3203 		goto out_uncharge_cgroup_reservation;
3204 
3205 	spin_lock_irq(&hugetlb_lock);
3206 	/*
3207 	 * glb_chg is passed to indicate whether or not a page must be taken
3208 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3209 	 * a reservation exists for the allocation.
3210 	 */
3211 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3212 	if (!folio) {
3213 		spin_unlock_irq(&hugetlb_lock);
3214 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3215 		if (!folio)
3216 			goto out_uncharge_cgroup;
3217 		spin_lock_irq(&hugetlb_lock);
3218 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3219 			folio_set_hugetlb_restore_reserve(folio);
3220 			h->resv_huge_pages--;
3221 		}
3222 		list_add(&folio->lru, &h->hugepage_activelist);
3223 		folio_ref_unfreeze(folio, 1);
3224 		/* Fall through */
3225 	}
3226 
3227 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3228 	/* If allocation is not consuming a reservation, also store the
3229 	 * hugetlb_cgroup pointer on the page.
3230 	 */
3231 	if (deferred_reserve) {
3232 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3233 						  h_cg, folio);
3234 	}
3235 
3236 	spin_unlock_irq(&hugetlb_lock);
3237 
3238 	hugetlb_set_folio_subpool(folio, spool);
3239 
3240 	map_commit = vma_commit_reservation(h, vma, addr);
3241 	if (unlikely(map_chg > map_commit)) {
3242 		/*
3243 		 * The page was added to the reservation map between
3244 		 * vma_needs_reservation and vma_commit_reservation.
3245 		 * This indicates a race with hugetlb_reserve_pages.
3246 		 * Adjust for the subpool count incremented above AND
3247 		 * in hugetlb_reserve_pages for the same page.  Also,
3248 		 * the reservation count added in hugetlb_reserve_pages
3249 		 * no longer applies.
3250 		 */
3251 		long rsv_adjust;
3252 
3253 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3254 		hugetlb_acct_memory(h, -rsv_adjust);
3255 		if (deferred_reserve) {
3256 			spin_lock_irq(&hugetlb_lock);
3257 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3258 					pages_per_huge_page(h), folio);
3259 			spin_unlock_irq(&hugetlb_lock);
3260 		}
3261 	}
3262 
3263 	if (!memcg_charge_ret)
3264 		mem_cgroup_commit_charge(folio, memcg);
3265 	mem_cgroup_put(memcg);
3266 
3267 	return folio;
3268 
3269 out_uncharge_cgroup:
3270 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3271 out_uncharge_cgroup_reservation:
3272 	if (deferred_reserve)
3273 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3274 						    h_cg);
3275 out_subpool_put:
3276 	if (map_chg || avoid_reserve)
3277 		hugepage_subpool_put_pages(spool, 1);
3278 out_end_reservation:
3279 	vma_end_reservation(h, vma, addr);
3280 	if (!memcg_charge_ret)
3281 		mem_cgroup_cancel_charge(memcg, nr_pages);
3282 	mem_cgroup_put(memcg);
3283 	return ERR_PTR(-ENOSPC);
3284 }
3285 
3286 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3287 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3288 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3289 {
3290 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3291 	int nr_nodes, node = nid;
3292 
3293 	/* do node specific alloc */
3294 	if (nid != NUMA_NO_NODE) {
3295 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3296 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3297 		if (!m)
3298 			return 0;
3299 		goto found;
3300 	}
3301 	/* allocate from next node when distributing huge pages */
3302 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3303 		m = memblock_alloc_try_nid_raw(
3304 				huge_page_size(h), huge_page_size(h),
3305 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3306 		/*
3307 		 * Use the beginning of the huge page to store the
3308 		 * huge_bootmem_page struct (until gather_bootmem
3309 		 * puts them into the mem_map).
3310 		 */
3311 		if (!m)
3312 			return 0;
3313 		goto found;
3314 	}
3315 
3316 found:
3317 
3318 	/*
3319 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3320 	 * rest of the struct pages will be initialized by the HugeTLB
3321 	 * subsystem itself.
3322 	 * The head struct page is used to get folio information by the HugeTLB
3323 	 * subsystem like zone id and node id.
3324 	 */
3325 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3326 		huge_page_size(h) - PAGE_SIZE);
3327 	/* Put them into a private list first because mem_map is not up yet */
3328 	INIT_LIST_HEAD(&m->list);
3329 	list_add(&m->list, &huge_boot_pages[node]);
3330 	m->hstate = h;
3331 	return 1;
3332 }
3333 
3334 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3335 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3336 					unsigned long start_page_number,
3337 					unsigned long end_page_number)
3338 {
3339 	enum zone_type zone = zone_idx(folio_zone(folio));
3340 	int nid = folio_nid(folio);
3341 	unsigned long head_pfn = folio_pfn(folio);
3342 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3343 	int ret;
3344 
3345 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3346 		struct page *page = pfn_to_page(pfn);
3347 
3348 		__init_single_page(page, pfn, zone, nid);
3349 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3350 		ret = page_ref_freeze(page, 1);
3351 		VM_BUG_ON(!ret);
3352 	}
3353 }
3354 
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3355 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3356 					      struct hstate *h,
3357 					      unsigned long nr_pages)
3358 {
3359 	int ret;
3360 
3361 	/* Prepare folio head */
3362 	__folio_clear_reserved(folio);
3363 	__folio_set_head(folio);
3364 	ret = folio_ref_freeze(folio, 1);
3365 	VM_BUG_ON(!ret);
3366 	/* Initialize the necessary tail struct pages */
3367 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3368 	prep_compound_head((struct page *)folio, huge_page_order(h));
3369 }
3370 
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3371 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3372 					struct list_head *folio_list)
3373 {
3374 	unsigned long flags;
3375 	struct folio *folio, *tmp_f;
3376 
3377 	/* Send list for bulk vmemmap optimization processing */
3378 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3379 
3380 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3381 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3382 			/*
3383 			 * If HVO fails, initialize all tail struct pages
3384 			 * We do not worry about potential long lock hold
3385 			 * time as this is early in boot and there should
3386 			 * be no contention.
3387 			 */
3388 			hugetlb_folio_init_tail_vmemmap(folio,
3389 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3390 					pages_per_huge_page(h));
3391 		}
3392 		/* Subdivide locks to achieve better parallel performance */
3393 		spin_lock_irqsave(&hugetlb_lock, flags);
3394 		__prep_account_new_huge_page(h, folio_nid(folio));
3395 		enqueue_hugetlb_folio(h, folio);
3396 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3397 	}
3398 }
3399 
3400 /*
3401  * Put bootmem huge pages into the standard lists after mem_map is up.
3402  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3403  */
gather_bootmem_prealloc_node(unsigned long nid)3404 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3405 {
3406 	LIST_HEAD(folio_list);
3407 	struct huge_bootmem_page *m;
3408 	struct hstate *h = NULL, *prev_h = NULL;
3409 
3410 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3411 		struct page *page = virt_to_page(m);
3412 		struct folio *folio = (void *)page;
3413 
3414 		h = m->hstate;
3415 		/*
3416 		 * It is possible to have multiple huge page sizes (hstates)
3417 		 * in this list.  If so, process each size separately.
3418 		 */
3419 		if (h != prev_h && prev_h != NULL)
3420 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3421 		prev_h = h;
3422 
3423 		VM_BUG_ON(!hstate_is_gigantic(h));
3424 		WARN_ON(folio_ref_count(folio) != 1);
3425 
3426 		hugetlb_folio_init_vmemmap(folio, h,
3427 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3428 		init_new_hugetlb_folio(h, folio);
3429 		list_add(&folio->lru, &folio_list);
3430 
3431 		/*
3432 		 * We need to restore the 'stolen' pages to totalram_pages
3433 		 * in order to fix confusing memory reports from free(1) and
3434 		 * other side-effects, like CommitLimit going negative.
3435 		 */
3436 		adjust_managed_page_count(page, pages_per_huge_page(h));
3437 		cond_resched();
3438 	}
3439 
3440 	prep_and_add_bootmem_folios(h, &folio_list);
3441 }
3442 
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3443 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3444 						    unsigned long end, void *arg)
3445 {
3446 	int nid;
3447 
3448 	for (nid = start; nid < end; nid++)
3449 		gather_bootmem_prealloc_node(nid);
3450 }
3451 
gather_bootmem_prealloc(void)3452 static void __init gather_bootmem_prealloc(void)
3453 {
3454 	struct padata_mt_job job = {
3455 		.thread_fn	= gather_bootmem_prealloc_parallel,
3456 		.fn_arg		= NULL,
3457 		.start		= 0,
3458 		.size		= num_node_state(N_MEMORY),
3459 		.align		= 1,
3460 		.min_chunk	= 1,
3461 		.max_threads	= num_node_state(N_MEMORY),
3462 		.numa_aware	= true,
3463 	};
3464 
3465 	padata_do_multithreaded(&job);
3466 }
3467 
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3468 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3469 {
3470 	unsigned long i;
3471 	char buf[32];
3472 
3473 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3474 		if (hstate_is_gigantic(h)) {
3475 			if (!alloc_bootmem_huge_page(h, nid))
3476 				break;
3477 		} else {
3478 			struct folio *folio;
3479 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3480 
3481 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3482 					&node_states[N_MEMORY], NULL);
3483 			if (!folio)
3484 				break;
3485 			free_huge_folio(folio); /* free it into the hugepage allocator */
3486 		}
3487 		cond_resched();
3488 	}
3489 	if (i == h->max_huge_pages_node[nid])
3490 		return;
3491 
3492 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3493 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3494 		h->max_huge_pages_node[nid], buf, nid, i);
3495 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3496 	h->max_huge_pages_node[nid] = i;
3497 }
3498 
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3499 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3500 {
3501 	int i;
3502 	bool node_specific_alloc = false;
3503 
3504 	for_each_online_node(i) {
3505 		if (h->max_huge_pages_node[i] > 0) {
3506 			hugetlb_hstate_alloc_pages_onenode(h, i);
3507 			node_specific_alloc = true;
3508 		}
3509 	}
3510 
3511 	return node_specific_alloc;
3512 }
3513 
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3514 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3515 {
3516 	if (allocated < h->max_huge_pages) {
3517 		char buf[32];
3518 
3519 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3520 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3521 			h->max_huge_pages, buf, allocated);
3522 		h->max_huge_pages = allocated;
3523 	}
3524 }
3525 
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3526 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3527 {
3528 	struct hstate *h = (struct hstate *)arg;
3529 	int i, num = end - start;
3530 	nodemask_t node_alloc_noretry;
3531 	LIST_HEAD(folio_list);
3532 	int next_node = first_online_node;
3533 
3534 	/* Bit mask controlling how hard we retry per-node allocations.*/
3535 	nodes_clear(node_alloc_noretry);
3536 
3537 	for (i = 0; i < num; ++i) {
3538 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3539 						&node_alloc_noretry, &next_node);
3540 		if (!folio)
3541 			break;
3542 
3543 		list_move(&folio->lru, &folio_list);
3544 		cond_resched();
3545 	}
3546 
3547 	prep_and_add_allocated_folios(h, &folio_list);
3548 }
3549 
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3550 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3551 {
3552 	unsigned long i;
3553 
3554 	for (i = 0; i < h->max_huge_pages; ++i) {
3555 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3556 			break;
3557 		cond_resched();
3558 	}
3559 
3560 	return i;
3561 }
3562 
hugetlb_pages_alloc_boot(struct hstate * h)3563 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3564 {
3565 	struct padata_mt_job job = {
3566 		.fn_arg		= h,
3567 		.align		= 1,
3568 		.numa_aware	= true
3569 	};
3570 
3571 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3572 	job.start	= 0;
3573 	job.size	= h->max_huge_pages;
3574 
3575 	/*
3576 	 * job.max_threads is twice the num_node_state(N_MEMORY),
3577 	 *
3578 	 * Tests below indicate that a multiplier of 2 significantly improves
3579 	 * performance, and although larger values also provide improvements,
3580 	 * the gains are marginal.
3581 	 *
3582 	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3583 	 * enhancing parallel processing capabilities and maintaining efficient
3584 	 * resource management.
3585 	 *
3586 	 * +------------+-------+-------+-------+-------+-------+
3587 	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3588 	 * +------------+-------+-------+-------+-------+-------+
3589 	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3590 	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3591 	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3592 	 * +------------+-------+-------+-------+-------+-------+
3593 	 */
3594 	job.max_threads	= num_node_state(N_MEMORY) * 2;
3595 	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3596 	padata_do_multithreaded(&job);
3597 
3598 	return h->nr_huge_pages;
3599 }
3600 
3601 /*
3602  * NOTE: this routine is called in different contexts for gigantic and
3603  * non-gigantic pages.
3604  * - For gigantic pages, this is called early in the boot process and
3605  *   pages are allocated from memblock allocated or something similar.
3606  *   Gigantic pages are actually added to pools later with the routine
3607  *   gather_bootmem_prealloc.
3608  * - For non-gigantic pages, this is called later in the boot process after
3609  *   all of mm is up and functional.  Pages are allocated from buddy and
3610  *   then added to hugetlb pools.
3611  */
hugetlb_hstate_alloc_pages(struct hstate * h)3612 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3613 {
3614 	unsigned long allocated;
3615 	static bool initialized __initdata;
3616 
3617 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3618 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3619 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3620 		return;
3621 	}
3622 
3623 	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3624 	if (!initialized) {
3625 		int i = 0;
3626 
3627 		for (i = 0; i < MAX_NUMNODES; i++)
3628 			INIT_LIST_HEAD(&huge_boot_pages[i]);
3629 		initialized = true;
3630 	}
3631 
3632 	/* do node specific alloc */
3633 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3634 		return;
3635 
3636 	/* below will do all node balanced alloc */
3637 	if (hstate_is_gigantic(h))
3638 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3639 	else
3640 		allocated = hugetlb_pages_alloc_boot(h);
3641 
3642 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3643 }
3644 
hugetlb_init_hstates(void)3645 static void __init hugetlb_init_hstates(void)
3646 {
3647 	struct hstate *h, *h2;
3648 
3649 	for_each_hstate(h) {
3650 		/* oversize hugepages were init'ed in early boot */
3651 		if (!hstate_is_gigantic(h))
3652 			hugetlb_hstate_alloc_pages(h);
3653 
3654 		/*
3655 		 * Set demote order for each hstate.  Note that
3656 		 * h->demote_order is initially 0.
3657 		 * - We can not demote gigantic pages if runtime freeing
3658 		 *   is not supported, so skip this.
3659 		 * - If CMA allocation is possible, we can not demote
3660 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3661 		 */
3662 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3663 			continue;
3664 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3665 			continue;
3666 		for_each_hstate(h2) {
3667 			if (h2 == h)
3668 				continue;
3669 			if (h2->order < h->order &&
3670 			    h2->order > h->demote_order)
3671 				h->demote_order = h2->order;
3672 		}
3673 	}
3674 }
3675 
report_hugepages(void)3676 static void __init report_hugepages(void)
3677 {
3678 	struct hstate *h;
3679 
3680 	for_each_hstate(h) {
3681 		char buf[32];
3682 
3683 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3684 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3685 			buf, h->free_huge_pages);
3686 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3687 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3688 	}
3689 }
3690 
3691 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3692 static void try_to_free_low(struct hstate *h, unsigned long count,
3693 						nodemask_t *nodes_allowed)
3694 {
3695 	int i;
3696 	LIST_HEAD(page_list);
3697 
3698 	lockdep_assert_held(&hugetlb_lock);
3699 	if (hstate_is_gigantic(h))
3700 		return;
3701 
3702 	/*
3703 	 * Collect pages to be freed on a list, and free after dropping lock
3704 	 */
3705 	for_each_node_mask(i, *nodes_allowed) {
3706 		struct folio *folio, *next;
3707 		struct list_head *freel = &h->hugepage_freelists[i];
3708 		list_for_each_entry_safe(folio, next, freel, lru) {
3709 			if (count >= h->nr_huge_pages)
3710 				goto out;
3711 			if (folio_test_highmem(folio))
3712 				continue;
3713 			remove_hugetlb_folio(h, folio, false);
3714 			list_add(&folio->lru, &page_list);
3715 		}
3716 	}
3717 
3718 out:
3719 	spin_unlock_irq(&hugetlb_lock);
3720 	update_and_free_pages_bulk(h, &page_list);
3721 	spin_lock_irq(&hugetlb_lock);
3722 }
3723 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3724 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3725 						nodemask_t *nodes_allowed)
3726 {
3727 }
3728 #endif
3729 
3730 /*
3731  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3732  * balanced by operating on them in a round-robin fashion.
3733  * Returns 1 if an adjustment was made.
3734  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3735 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3736 				int delta)
3737 {
3738 	int nr_nodes, node;
3739 
3740 	lockdep_assert_held(&hugetlb_lock);
3741 	VM_BUG_ON(delta != -1 && delta != 1);
3742 
3743 	if (delta < 0) {
3744 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3745 			if (h->surplus_huge_pages_node[node])
3746 				goto found;
3747 		}
3748 	} else {
3749 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3750 			if (h->surplus_huge_pages_node[node] <
3751 					h->nr_huge_pages_node[node])
3752 				goto found;
3753 		}
3754 	}
3755 	return 0;
3756 
3757 found:
3758 	h->surplus_huge_pages += delta;
3759 	h->surplus_huge_pages_node[node] += delta;
3760 	return 1;
3761 }
3762 
3763 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3764 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3765 			      nodemask_t *nodes_allowed)
3766 {
3767 	unsigned long min_count;
3768 	unsigned long allocated;
3769 	struct folio *folio;
3770 	LIST_HEAD(page_list);
3771 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3772 
3773 	/*
3774 	 * Bit mask controlling how hard we retry per-node allocations.
3775 	 * If we can not allocate the bit mask, do not attempt to allocate
3776 	 * the requested huge pages.
3777 	 */
3778 	if (node_alloc_noretry)
3779 		nodes_clear(*node_alloc_noretry);
3780 	else
3781 		return -ENOMEM;
3782 
3783 	/*
3784 	 * resize_lock mutex prevents concurrent adjustments to number of
3785 	 * pages in hstate via the proc/sysfs interfaces.
3786 	 */
3787 	mutex_lock(&h->resize_lock);
3788 	flush_free_hpage_work(h);
3789 	spin_lock_irq(&hugetlb_lock);
3790 
3791 	/*
3792 	 * Check for a node specific request.
3793 	 * Changing node specific huge page count may require a corresponding
3794 	 * change to the global count.  In any case, the passed node mask
3795 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3796 	 */
3797 	if (nid != NUMA_NO_NODE) {
3798 		unsigned long old_count = count;
3799 
3800 		count += persistent_huge_pages(h) -
3801 			 (h->nr_huge_pages_node[nid] -
3802 			  h->surplus_huge_pages_node[nid]);
3803 		/*
3804 		 * User may have specified a large count value which caused the
3805 		 * above calculation to overflow.  In this case, they wanted
3806 		 * to allocate as many huge pages as possible.  Set count to
3807 		 * largest possible value to align with their intention.
3808 		 */
3809 		if (count < old_count)
3810 			count = ULONG_MAX;
3811 	}
3812 
3813 	/*
3814 	 * Gigantic pages runtime allocation depend on the capability for large
3815 	 * page range allocation.
3816 	 * If the system does not provide this feature, return an error when
3817 	 * the user tries to allocate gigantic pages but let the user free the
3818 	 * boottime allocated gigantic pages.
3819 	 */
3820 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3821 		if (count > persistent_huge_pages(h)) {
3822 			spin_unlock_irq(&hugetlb_lock);
3823 			mutex_unlock(&h->resize_lock);
3824 			NODEMASK_FREE(node_alloc_noretry);
3825 			return -EINVAL;
3826 		}
3827 		/* Fall through to decrease pool */
3828 	}
3829 
3830 	/*
3831 	 * Increase the pool size
3832 	 * First take pages out of surplus state.  Then make up the
3833 	 * remaining difference by allocating fresh huge pages.
3834 	 *
3835 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3836 	 * to convert a surplus huge page to a normal huge page. That is
3837 	 * not critical, though, it just means the overall size of the
3838 	 * pool might be one hugepage larger than it needs to be, but
3839 	 * within all the constraints specified by the sysctls.
3840 	 */
3841 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3842 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3843 			break;
3844 	}
3845 
3846 	allocated = 0;
3847 	while (count > (persistent_huge_pages(h) + allocated)) {
3848 		/*
3849 		 * If this allocation races such that we no longer need the
3850 		 * page, free_huge_folio will handle it by freeing the page
3851 		 * and reducing the surplus.
3852 		 */
3853 		spin_unlock_irq(&hugetlb_lock);
3854 
3855 		/* yield cpu to avoid soft lockup */
3856 		cond_resched();
3857 
3858 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3859 						node_alloc_noretry,
3860 						&h->next_nid_to_alloc);
3861 		if (!folio) {
3862 			prep_and_add_allocated_folios(h, &page_list);
3863 			spin_lock_irq(&hugetlb_lock);
3864 			goto out;
3865 		}
3866 
3867 		list_add(&folio->lru, &page_list);
3868 		allocated++;
3869 
3870 		/* Bail for signals. Probably ctrl-c from user */
3871 		if (signal_pending(current)) {
3872 			prep_and_add_allocated_folios(h, &page_list);
3873 			spin_lock_irq(&hugetlb_lock);
3874 			goto out;
3875 		}
3876 
3877 		spin_lock_irq(&hugetlb_lock);
3878 	}
3879 
3880 	/* Add allocated pages to the pool */
3881 	if (!list_empty(&page_list)) {
3882 		spin_unlock_irq(&hugetlb_lock);
3883 		prep_and_add_allocated_folios(h, &page_list);
3884 		spin_lock_irq(&hugetlb_lock);
3885 	}
3886 
3887 	/*
3888 	 * Decrease the pool size
3889 	 * First return free pages to the buddy allocator (being careful
3890 	 * to keep enough around to satisfy reservations).  Then place
3891 	 * pages into surplus state as needed so the pool will shrink
3892 	 * to the desired size as pages become free.
3893 	 *
3894 	 * By placing pages into the surplus state independent of the
3895 	 * overcommit value, we are allowing the surplus pool size to
3896 	 * exceed overcommit. There are few sane options here. Since
3897 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3898 	 * though, we'll note that we're not allowed to exceed surplus
3899 	 * and won't grow the pool anywhere else. Not until one of the
3900 	 * sysctls are changed, or the surplus pages go out of use.
3901 	 */
3902 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3903 	min_count = max(count, min_count);
3904 	try_to_free_low(h, min_count, nodes_allowed);
3905 
3906 	/*
3907 	 * Collect pages to be removed on list without dropping lock
3908 	 */
3909 	while (min_count < persistent_huge_pages(h)) {
3910 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3911 		if (!folio)
3912 			break;
3913 
3914 		list_add(&folio->lru, &page_list);
3915 	}
3916 	/* free the pages after dropping lock */
3917 	spin_unlock_irq(&hugetlb_lock);
3918 	update_and_free_pages_bulk(h, &page_list);
3919 	flush_free_hpage_work(h);
3920 	spin_lock_irq(&hugetlb_lock);
3921 
3922 	while (count < persistent_huge_pages(h)) {
3923 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3924 			break;
3925 	}
3926 out:
3927 	h->max_huge_pages = persistent_huge_pages(h);
3928 	spin_unlock_irq(&hugetlb_lock);
3929 	mutex_unlock(&h->resize_lock);
3930 
3931 	NODEMASK_FREE(node_alloc_noretry);
3932 
3933 	return 0;
3934 }
3935 
demote_free_hugetlb_folio(struct hstate * h,struct folio * folio)3936 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3937 {
3938 	int i, nid = folio_nid(folio);
3939 	struct hstate *target_hstate;
3940 	struct page *subpage;
3941 	struct folio *inner_folio;
3942 	int rc = 0;
3943 
3944 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3945 
3946 	remove_hugetlb_folio_for_demote(h, folio, false);
3947 	spin_unlock_irq(&hugetlb_lock);
3948 
3949 	/*
3950 	 * If vmemmap already existed for folio, the remove routine above would
3951 	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3952 	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3953 	 * passed hugetlb folios and will BUG otherwise.
3954 	 */
3955 	if (folio_test_hugetlb(folio)) {
3956 		rc = hugetlb_vmemmap_restore_folio(h, folio);
3957 		if (rc) {
3958 			/* Allocation of vmemmmap failed, we can not demote folio */
3959 			spin_lock_irq(&hugetlb_lock);
3960 			folio_ref_unfreeze(folio, 1);
3961 			add_hugetlb_folio(h, folio, false);
3962 			return rc;
3963 		}
3964 	}
3965 
3966 	/*
3967 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3968 	 * sizes as it will not ref count folios.
3969 	 */
3970 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3971 
3972 	/*
3973 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3974 	 * Without the mutex, pages added to target hstate could be marked
3975 	 * as surplus.
3976 	 *
3977 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3978 	 * use the convention of always taking larger size hstate mutex first.
3979 	 */
3980 	mutex_lock(&target_hstate->resize_lock);
3981 	for (i = 0; i < pages_per_huge_page(h);
3982 				i += pages_per_huge_page(target_hstate)) {
3983 		subpage = folio_page(folio, i);
3984 		inner_folio = page_folio(subpage);
3985 		if (hstate_is_gigantic(target_hstate))
3986 			prep_compound_gigantic_folio_for_demote(inner_folio,
3987 							target_hstate->order);
3988 		else
3989 			prep_compound_page(subpage, target_hstate->order);
3990 		folio_change_private(inner_folio, NULL);
3991 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3992 		free_huge_folio(inner_folio);
3993 	}
3994 	mutex_unlock(&target_hstate->resize_lock);
3995 
3996 	spin_lock_irq(&hugetlb_lock);
3997 
3998 	/*
3999 	 * Not absolutely necessary, but for consistency update max_huge_pages
4000 	 * based on pool changes for the demoted page.
4001 	 */
4002 	h->max_huge_pages--;
4003 	target_hstate->max_huge_pages +=
4004 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4005 
4006 	return rc;
4007 }
4008 
demote_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed)4009 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4010 	__must_hold(&hugetlb_lock)
4011 {
4012 	int nr_nodes, node;
4013 	struct folio *folio;
4014 
4015 	lockdep_assert_held(&hugetlb_lock);
4016 
4017 	/* We should never get here if no demote order */
4018 	if (!h->demote_order) {
4019 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4020 		return -EINVAL;		/* internal error */
4021 	}
4022 
4023 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4024 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4025 			if (folio_test_hwpoison(folio))
4026 				continue;
4027 			return demote_free_hugetlb_folio(h, folio);
4028 		}
4029 	}
4030 
4031 	/*
4032 	 * Only way to get here is if all pages on free lists are poisoned.
4033 	 * Return -EBUSY so that caller will not retry.
4034 	 */
4035 	return -EBUSY;
4036 }
4037 
4038 #define HSTATE_ATTR_RO(_name) \
4039 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4040 
4041 #define HSTATE_ATTR_WO(_name) \
4042 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4043 
4044 #define HSTATE_ATTR(_name) \
4045 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4046 
4047 static struct kobject *hugepages_kobj;
4048 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4049 
4050 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4051 
kobj_to_hstate(struct kobject * kobj,int * nidp)4052 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4053 {
4054 	int i;
4055 
4056 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4057 		if (hstate_kobjs[i] == kobj) {
4058 			if (nidp)
4059 				*nidp = NUMA_NO_NODE;
4060 			return &hstates[i];
4061 		}
4062 
4063 	return kobj_to_node_hstate(kobj, nidp);
4064 }
4065 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4066 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4067 					struct kobj_attribute *attr, char *buf)
4068 {
4069 	struct hstate *h;
4070 	unsigned long nr_huge_pages;
4071 	int nid;
4072 
4073 	h = kobj_to_hstate(kobj, &nid);
4074 	if (nid == NUMA_NO_NODE)
4075 		nr_huge_pages = h->nr_huge_pages;
4076 	else
4077 		nr_huge_pages = h->nr_huge_pages_node[nid];
4078 
4079 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4080 }
4081 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4082 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4083 					   struct hstate *h, int nid,
4084 					   unsigned long count, size_t len)
4085 {
4086 	int err;
4087 	nodemask_t nodes_allowed, *n_mask;
4088 
4089 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4090 		return -EINVAL;
4091 
4092 	if (nid == NUMA_NO_NODE) {
4093 		/*
4094 		 * global hstate attribute
4095 		 */
4096 		if (!(obey_mempolicy &&
4097 				init_nodemask_of_mempolicy(&nodes_allowed)))
4098 			n_mask = &node_states[N_MEMORY];
4099 		else
4100 			n_mask = &nodes_allowed;
4101 	} else {
4102 		/*
4103 		 * Node specific request.  count adjustment happens in
4104 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4105 		 */
4106 		init_nodemask_of_node(&nodes_allowed, nid);
4107 		n_mask = &nodes_allowed;
4108 	}
4109 
4110 	err = set_max_huge_pages(h, count, nid, n_mask);
4111 
4112 	return err ? err : len;
4113 }
4114 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4115 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4116 					 struct kobject *kobj, const char *buf,
4117 					 size_t len)
4118 {
4119 	struct hstate *h;
4120 	unsigned long count;
4121 	int nid;
4122 	int err;
4123 
4124 	err = kstrtoul(buf, 10, &count);
4125 	if (err)
4126 		return err;
4127 
4128 	h = kobj_to_hstate(kobj, &nid);
4129 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4130 }
4131 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4132 static ssize_t nr_hugepages_show(struct kobject *kobj,
4133 				       struct kobj_attribute *attr, char *buf)
4134 {
4135 	return nr_hugepages_show_common(kobj, attr, buf);
4136 }
4137 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4138 static ssize_t nr_hugepages_store(struct kobject *kobj,
4139 	       struct kobj_attribute *attr, const char *buf, size_t len)
4140 {
4141 	return nr_hugepages_store_common(false, kobj, buf, len);
4142 }
4143 HSTATE_ATTR(nr_hugepages);
4144 
4145 #ifdef CONFIG_NUMA
4146 
4147 /*
4148  * hstate attribute for optionally mempolicy-based constraint on persistent
4149  * huge page alloc/free.
4150  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4151 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4152 					   struct kobj_attribute *attr,
4153 					   char *buf)
4154 {
4155 	return nr_hugepages_show_common(kobj, attr, buf);
4156 }
4157 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4158 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4159 	       struct kobj_attribute *attr, const char *buf, size_t len)
4160 {
4161 	return nr_hugepages_store_common(true, kobj, buf, len);
4162 }
4163 HSTATE_ATTR(nr_hugepages_mempolicy);
4164 #endif
4165 
4166 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4167 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4168 					struct kobj_attribute *attr, char *buf)
4169 {
4170 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4171 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4172 }
4173 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4174 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4175 		struct kobj_attribute *attr, const char *buf, size_t count)
4176 {
4177 	int err;
4178 	unsigned long input;
4179 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4180 
4181 	if (hstate_is_gigantic(h))
4182 		return -EINVAL;
4183 
4184 	err = kstrtoul(buf, 10, &input);
4185 	if (err)
4186 		return err;
4187 
4188 	spin_lock_irq(&hugetlb_lock);
4189 	h->nr_overcommit_huge_pages = input;
4190 	spin_unlock_irq(&hugetlb_lock);
4191 
4192 	return count;
4193 }
4194 HSTATE_ATTR(nr_overcommit_hugepages);
4195 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4196 static ssize_t free_hugepages_show(struct kobject *kobj,
4197 					struct kobj_attribute *attr, char *buf)
4198 {
4199 	struct hstate *h;
4200 	unsigned long free_huge_pages;
4201 	int nid;
4202 
4203 	h = kobj_to_hstate(kobj, &nid);
4204 	if (nid == NUMA_NO_NODE)
4205 		free_huge_pages = h->free_huge_pages;
4206 	else
4207 		free_huge_pages = h->free_huge_pages_node[nid];
4208 
4209 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4210 }
4211 HSTATE_ATTR_RO(free_hugepages);
4212 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4213 static ssize_t resv_hugepages_show(struct kobject *kobj,
4214 					struct kobj_attribute *attr, char *buf)
4215 {
4216 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4217 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4218 }
4219 HSTATE_ATTR_RO(resv_hugepages);
4220 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4221 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4222 					struct kobj_attribute *attr, char *buf)
4223 {
4224 	struct hstate *h;
4225 	unsigned long surplus_huge_pages;
4226 	int nid;
4227 
4228 	h = kobj_to_hstate(kobj, &nid);
4229 	if (nid == NUMA_NO_NODE)
4230 		surplus_huge_pages = h->surplus_huge_pages;
4231 	else
4232 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4233 
4234 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4235 }
4236 HSTATE_ATTR_RO(surplus_hugepages);
4237 
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4238 static ssize_t demote_store(struct kobject *kobj,
4239 	       struct kobj_attribute *attr, const char *buf, size_t len)
4240 {
4241 	unsigned long nr_demote;
4242 	unsigned long nr_available;
4243 	nodemask_t nodes_allowed, *n_mask;
4244 	struct hstate *h;
4245 	int err;
4246 	int nid;
4247 
4248 	err = kstrtoul(buf, 10, &nr_demote);
4249 	if (err)
4250 		return err;
4251 	h = kobj_to_hstate(kobj, &nid);
4252 
4253 	if (nid != NUMA_NO_NODE) {
4254 		init_nodemask_of_node(&nodes_allowed, nid);
4255 		n_mask = &nodes_allowed;
4256 	} else {
4257 		n_mask = &node_states[N_MEMORY];
4258 	}
4259 
4260 	/* Synchronize with other sysfs operations modifying huge pages */
4261 	mutex_lock(&h->resize_lock);
4262 	spin_lock_irq(&hugetlb_lock);
4263 
4264 	while (nr_demote) {
4265 		/*
4266 		 * Check for available pages to demote each time thorough the
4267 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4268 		 */
4269 		if (nid != NUMA_NO_NODE)
4270 			nr_available = h->free_huge_pages_node[nid];
4271 		else
4272 			nr_available = h->free_huge_pages;
4273 		nr_available -= h->resv_huge_pages;
4274 		if (!nr_available)
4275 			break;
4276 
4277 		err = demote_pool_huge_page(h, n_mask);
4278 		if (err)
4279 			break;
4280 
4281 		nr_demote--;
4282 	}
4283 
4284 	spin_unlock_irq(&hugetlb_lock);
4285 	mutex_unlock(&h->resize_lock);
4286 
4287 	if (err)
4288 		return err;
4289 	return len;
4290 }
4291 HSTATE_ATTR_WO(demote);
4292 
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4293 static ssize_t demote_size_show(struct kobject *kobj,
4294 					struct kobj_attribute *attr, char *buf)
4295 {
4296 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4297 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4298 
4299 	return sysfs_emit(buf, "%lukB\n", demote_size);
4300 }
4301 
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4302 static ssize_t demote_size_store(struct kobject *kobj,
4303 					struct kobj_attribute *attr,
4304 					const char *buf, size_t count)
4305 {
4306 	struct hstate *h, *demote_hstate;
4307 	unsigned long demote_size;
4308 	unsigned int demote_order;
4309 
4310 	demote_size = (unsigned long)memparse(buf, NULL);
4311 
4312 	demote_hstate = size_to_hstate(demote_size);
4313 	if (!demote_hstate)
4314 		return -EINVAL;
4315 	demote_order = demote_hstate->order;
4316 	if (demote_order < HUGETLB_PAGE_ORDER)
4317 		return -EINVAL;
4318 
4319 	/* demote order must be smaller than hstate order */
4320 	h = kobj_to_hstate(kobj, NULL);
4321 	if (demote_order >= h->order)
4322 		return -EINVAL;
4323 
4324 	/* resize_lock synchronizes access to demote size and writes */
4325 	mutex_lock(&h->resize_lock);
4326 	h->demote_order = demote_order;
4327 	mutex_unlock(&h->resize_lock);
4328 
4329 	return count;
4330 }
4331 HSTATE_ATTR(demote_size);
4332 
4333 static struct attribute *hstate_attrs[] = {
4334 	&nr_hugepages_attr.attr,
4335 	&nr_overcommit_hugepages_attr.attr,
4336 	&free_hugepages_attr.attr,
4337 	&resv_hugepages_attr.attr,
4338 	&surplus_hugepages_attr.attr,
4339 #ifdef CONFIG_NUMA
4340 	&nr_hugepages_mempolicy_attr.attr,
4341 #endif
4342 	NULL,
4343 };
4344 
4345 static const struct attribute_group hstate_attr_group = {
4346 	.attrs = hstate_attrs,
4347 };
4348 
4349 static struct attribute *hstate_demote_attrs[] = {
4350 	&demote_size_attr.attr,
4351 	&demote_attr.attr,
4352 	NULL,
4353 };
4354 
4355 static const struct attribute_group hstate_demote_attr_group = {
4356 	.attrs = hstate_demote_attrs,
4357 };
4358 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4359 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4360 				    struct kobject **hstate_kobjs,
4361 				    const struct attribute_group *hstate_attr_group)
4362 {
4363 	int retval;
4364 	int hi = hstate_index(h);
4365 
4366 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4367 	if (!hstate_kobjs[hi])
4368 		return -ENOMEM;
4369 
4370 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4371 	if (retval) {
4372 		kobject_put(hstate_kobjs[hi]);
4373 		hstate_kobjs[hi] = NULL;
4374 		return retval;
4375 	}
4376 
4377 	if (h->demote_order) {
4378 		retval = sysfs_create_group(hstate_kobjs[hi],
4379 					    &hstate_demote_attr_group);
4380 		if (retval) {
4381 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4382 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4383 			kobject_put(hstate_kobjs[hi]);
4384 			hstate_kobjs[hi] = NULL;
4385 			return retval;
4386 		}
4387 	}
4388 
4389 	return 0;
4390 }
4391 
4392 #ifdef CONFIG_NUMA
4393 static bool hugetlb_sysfs_initialized __ro_after_init;
4394 
4395 /*
4396  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4397  * with node devices in node_devices[] using a parallel array.  The array
4398  * index of a node device or _hstate == node id.
4399  * This is here to avoid any static dependency of the node device driver, in
4400  * the base kernel, on the hugetlb module.
4401  */
4402 struct node_hstate {
4403 	struct kobject		*hugepages_kobj;
4404 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4405 };
4406 static struct node_hstate node_hstates[MAX_NUMNODES];
4407 
4408 /*
4409  * A subset of global hstate attributes for node devices
4410  */
4411 static struct attribute *per_node_hstate_attrs[] = {
4412 	&nr_hugepages_attr.attr,
4413 	&free_hugepages_attr.attr,
4414 	&surplus_hugepages_attr.attr,
4415 	NULL,
4416 };
4417 
4418 static const struct attribute_group per_node_hstate_attr_group = {
4419 	.attrs = per_node_hstate_attrs,
4420 };
4421 
4422 /*
4423  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4424  * Returns node id via non-NULL nidp.
4425  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4426 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4427 {
4428 	int nid;
4429 
4430 	for (nid = 0; nid < nr_node_ids; nid++) {
4431 		struct node_hstate *nhs = &node_hstates[nid];
4432 		int i;
4433 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4434 			if (nhs->hstate_kobjs[i] == kobj) {
4435 				if (nidp)
4436 					*nidp = nid;
4437 				return &hstates[i];
4438 			}
4439 	}
4440 
4441 	BUG();
4442 	return NULL;
4443 }
4444 
4445 /*
4446  * Unregister hstate attributes from a single node device.
4447  * No-op if no hstate attributes attached.
4448  */
hugetlb_unregister_node(struct node * node)4449 void hugetlb_unregister_node(struct node *node)
4450 {
4451 	struct hstate *h;
4452 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4453 
4454 	if (!nhs->hugepages_kobj)
4455 		return;		/* no hstate attributes */
4456 
4457 	for_each_hstate(h) {
4458 		int idx = hstate_index(h);
4459 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4460 
4461 		if (!hstate_kobj)
4462 			continue;
4463 		if (h->demote_order)
4464 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4465 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4466 		kobject_put(hstate_kobj);
4467 		nhs->hstate_kobjs[idx] = NULL;
4468 	}
4469 
4470 	kobject_put(nhs->hugepages_kobj);
4471 	nhs->hugepages_kobj = NULL;
4472 }
4473 
4474 
4475 /*
4476  * Register hstate attributes for a single node device.
4477  * No-op if attributes already registered.
4478  */
hugetlb_register_node(struct node * node)4479 void hugetlb_register_node(struct node *node)
4480 {
4481 	struct hstate *h;
4482 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4483 	int err;
4484 
4485 	if (!hugetlb_sysfs_initialized)
4486 		return;
4487 
4488 	if (nhs->hugepages_kobj)
4489 		return;		/* already allocated */
4490 
4491 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4492 							&node->dev.kobj);
4493 	if (!nhs->hugepages_kobj)
4494 		return;
4495 
4496 	for_each_hstate(h) {
4497 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4498 						nhs->hstate_kobjs,
4499 						&per_node_hstate_attr_group);
4500 		if (err) {
4501 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4502 				h->name, node->dev.id);
4503 			hugetlb_unregister_node(node);
4504 			break;
4505 		}
4506 	}
4507 }
4508 
4509 /*
4510  * hugetlb init time:  register hstate attributes for all registered node
4511  * devices of nodes that have memory.  All on-line nodes should have
4512  * registered their associated device by this time.
4513  */
hugetlb_register_all_nodes(void)4514 static void __init hugetlb_register_all_nodes(void)
4515 {
4516 	int nid;
4517 
4518 	for_each_online_node(nid)
4519 		hugetlb_register_node(node_devices[nid]);
4520 }
4521 #else	/* !CONFIG_NUMA */
4522 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4523 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4524 {
4525 	BUG();
4526 	if (nidp)
4527 		*nidp = -1;
4528 	return NULL;
4529 }
4530 
hugetlb_register_all_nodes(void)4531 static void hugetlb_register_all_nodes(void) { }
4532 
4533 #endif
4534 
4535 #ifdef CONFIG_CMA
4536 static void __init hugetlb_cma_check(void);
4537 #else
hugetlb_cma_check(void)4538 static inline __init void hugetlb_cma_check(void)
4539 {
4540 }
4541 #endif
4542 
hugetlb_sysfs_init(void)4543 static void __init hugetlb_sysfs_init(void)
4544 {
4545 	struct hstate *h;
4546 	int err;
4547 
4548 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4549 	if (!hugepages_kobj)
4550 		return;
4551 
4552 	for_each_hstate(h) {
4553 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4554 					 hstate_kobjs, &hstate_attr_group);
4555 		if (err)
4556 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4557 	}
4558 
4559 #ifdef CONFIG_NUMA
4560 	hugetlb_sysfs_initialized = true;
4561 #endif
4562 	hugetlb_register_all_nodes();
4563 }
4564 
4565 #ifdef CONFIG_SYSCTL
4566 static void hugetlb_sysctl_init(void);
4567 #else
hugetlb_sysctl_init(void)4568 static inline void hugetlb_sysctl_init(void) { }
4569 #endif
4570 
hugetlb_init(void)4571 static int __init hugetlb_init(void)
4572 {
4573 	int i;
4574 
4575 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4576 			__NR_HPAGEFLAGS);
4577 
4578 	if (!hugepages_supported()) {
4579 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4580 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4581 		return 0;
4582 	}
4583 
4584 	/*
4585 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4586 	 * architectures depend on setup being done here.
4587 	 */
4588 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4589 	if (!parsed_default_hugepagesz) {
4590 		/*
4591 		 * If we did not parse a default huge page size, set
4592 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4593 		 * number of huge pages for this default size was implicitly
4594 		 * specified, set that here as well.
4595 		 * Note that the implicit setting will overwrite an explicit
4596 		 * setting.  A warning will be printed in this case.
4597 		 */
4598 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4599 		if (default_hstate_max_huge_pages) {
4600 			if (default_hstate.max_huge_pages) {
4601 				char buf[32];
4602 
4603 				string_get_size(huge_page_size(&default_hstate),
4604 					1, STRING_UNITS_2, buf, 32);
4605 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4606 					default_hstate.max_huge_pages, buf);
4607 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4608 					default_hstate_max_huge_pages);
4609 			}
4610 			default_hstate.max_huge_pages =
4611 				default_hstate_max_huge_pages;
4612 
4613 			for_each_online_node(i)
4614 				default_hstate.max_huge_pages_node[i] =
4615 					default_hugepages_in_node[i];
4616 		}
4617 	}
4618 
4619 	hugetlb_cma_check();
4620 	hugetlb_init_hstates();
4621 	gather_bootmem_prealloc();
4622 	report_hugepages();
4623 
4624 	hugetlb_sysfs_init();
4625 	hugetlb_cgroup_file_init();
4626 	hugetlb_sysctl_init();
4627 
4628 #ifdef CONFIG_SMP
4629 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4630 #else
4631 	num_fault_mutexes = 1;
4632 #endif
4633 	hugetlb_fault_mutex_table =
4634 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4635 			      GFP_KERNEL);
4636 	BUG_ON(!hugetlb_fault_mutex_table);
4637 
4638 	for (i = 0; i < num_fault_mutexes; i++)
4639 		mutex_init(&hugetlb_fault_mutex_table[i]);
4640 	return 0;
4641 }
4642 subsys_initcall(hugetlb_init);
4643 
4644 /* Overwritten by architectures with more huge page sizes */
__init(weak)4645 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4646 {
4647 	return size == HPAGE_SIZE;
4648 }
4649 
hugetlb_add_hstate(unsigned int order)4650 void __init hugetlb_add_hstate(unsigned int order)
4651 {
4652 	struct hstate *h;
4653 	unsigned long i;
4654 
4655 	if (size_to_hstate(PAGE_SIZE << order)) {
4656 		return;
4657 	}
4658 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4659 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4660 	h = &hstates[hugetlb_max_hstate++];
4661 	mutex_init(&h->resize_lock);
4662 	h->order = order;
4663 	h->mask = ~(huge_page_size(h) - 1);
4664 	for (i = 0; i < MAX_NUMNODES; ++i)
4665 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4666 	INIT_LIST_HEAD(&h->hugepage_activelist);
4667 	h->next_nid_to_alloc = first_memory_node;
4668 	h->next_nid_to_free = first_memory_node;
4669 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4670 					huge_page_size(h)/SZ_1K);
4671 
4672 	parsed_hstate = h;
4673 }
4674 
hugetlb_node_alloc_supported(void)4675 bool __init __weak hugetlb_node_alloc_supported(void)
4676 {
4677 	return true;
4678 }
4679 
hugepages_clear_pages_in_node(void)4680 static void __init hugepages_clear_pages_in_node(void)
4681 {
4682 	if (!hugetlb_max_hstate) {
4683 		default_hstate_max_huge_pages = 0;
4684 		memset(default_hugepages_in_node, 0,
4685 			sizeof(default_hugepages_in_node));
4686 	} else {
4687 		parsed_hstate->max_huge_pages = 0;
4688 		memset(parsed_hstate->max_huge_pages_node, 0,
4689 			sizeof(parsed_hstate->max_huge_pages_node));
4690 	}
4691 }
4692 
4693 /*
4694  * hugepages command line processing
4695  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4696  * specification.  If not, ignore the hugepages value.  hugepages can also
4697  * be the first huge page command line  option in which case it implicitly
4698  * specifies the number of huge pages for the default size.
4699  */
hugepages_setup(char * s)4700 static int __init hugepages_setup(char *s)
4701 {
4702 	unsigned long *mhp;
4703 	static unsigned long *last_mhp;
4704 	int node = NUMA_NO_NODE;
4705 	int count;
4706 	unsigned long tmp;
4707 	char *p = s;
4708 
4709 	if (!parsed_valid_hugepagesz) {
4710 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4711 		parsed_valid_hugepagesz = true;
4712 		return 1;
4713 	}
4714 
4715 	/*
4716 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4717 	 * yet, so this hugepages= parameter goes to the "default hstate".
4718 	 * Otherwise, it goes with the previously parsed hugepagesz or
4719 	 * default_hugepagesz.
4720 	 */
4721 	else if (!hugetlb_max_hstate)
4722 		mhp = &default_hstate_max_huge_pages;
4723 	else
4724 		mhp = &parsed_hstate->max_huge_pages;
4725 
4726 	if (mhp == last_mhp) {
4727 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4728 		return 1;
4729 	}
4730 
4731 	while (*p) {
4732 		count = 0;
4733 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4734 			goto invalid;
4735 		/* Parameter is node format */
4736 		if (p[count] == ':') {
4737 			if (!hugetlb_node_alloc_supported()) {
4738 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4739 				return 1;
4740 			}
4741 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4742 				goto invalid;
4743 			node = array_index_nospec(tmp, MAX_NUMNODES);
4744 			p += count + 1;
4745 			/* Parse hugepages */
4746 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4747 				goto invalid;
4748 			if (!hugetlb_max_hstate)
4749 				default_hugepages_in_node[node] = tmp;
4750 			else
4751 				parsed_hstate->max_huge_pages_node[node] = tmp;
4752 			*mhp += tmp;
4753 			/* Go to parse next node*/
4754 			if (p[count] == ',')
4755 				p += count + 1;
4756 			else
4757 				break;
4758 		} else {
4759 			if (p != s)
4760 				goto invalid;
4761 			*mhp = tmp;
4762 			break;
4763 		}
4764 	}
4765 
4766 	/*
4767 	 * Global state is always initialized later in hugetlb_init.
4768 	 * But we need to allocate gigantic hstates here early to still
4769 	 * use the bootmem allocator.
4770 	 */
4771 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4772 		hugetlb_hstate_alloc_pages(parsed_hstate);
4773 
4774 	last_mhp = mhp;
4775 
4776 	return 1;
4777 
4778 invalid:
4779 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4780 	hugepages_clear_pages_in_node();
4781 	return 1;
4782 }
4783 __setup("hugepages=", hugepages_setup);
4784 
4785 /*
4786  * hugepagesz command line processing
4787  * A specific huge page size can only be specified once with hugepagesz.
4788  * hugepagesz is followed by hugepages on the command line.  The global
4789  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4790  * hugepagesz argument was valid.
4791  */
hugepagesz_setup(char * s)4792 static int __init hugepagesz_setup(char *s)
4793 {
4794 	unsigned long size;
4795 	struct hstate *h;
4796 
4797 	parsed_valid_hugepagesz = false;
4798 	size = (unsigned long)memparse(s, NULL);
4799 
4800 	if (!arch_hugetlb_valid_size(size)) {
4801 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4802 		return 1;
4803 	}
4804 
4805 	h = size_to_hstate(size);
4806 	if (h) {
4807 		/*
4808 		 * hstate for this size already exists.  This is normally
4809 		 * an error, but is allowed if the existing hstate is the
4810 		 * default hstate.  More specifically, it is only allowed if
4811 		 * the number of huge pages for the default hstate was not
4812 		 * previously specified.
4813 		 */
4814 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4815 		    default_hstate.max_huge_pages) {
4816 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4817 			return 1;
4818 		}
4819 
4820 		/*
4821 		 * No need to call hugetlb_add_hstate() as hstate already
4822 		 * exists.  But, do set parsed_hstate so that a following
4823 		 * hugepages= parameter will be applied to this hstate.
4824 		 */
4825 		parsed_hstate = h;
4826 		parsed_valid_hugepagesz = true;
4827 		return 1;
4828 	}
4829 
4830 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4831 	parsed_valid_hugepagesz = true;
4832 	return 1;
4833 }
4834 __setup("hugepagesz=", hugepagesz_setup);
4835 
4836 /*
4837  * default_hugepagesz command line input
4838  * Only one instance of default_hugepagesz allowed on command line.
4839  */
default_hugepagesz_setup(char * s)4840 static int __init default_hugepagesz_setup(char *s)
4841 {
4842 	unsigned long size;
4843 	int i;
4844 
4845 	parsed_valid_hugepagesz = false;
4846 	if (parsed_default_hugepagesz) {
4847 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4848 		return 1;
4849 	}
4850 
4851 	size = (unsigned long)memparse(s, NULL);
4852 
4853 	if (!arch_hugetlb_valid_size(size)) {
4854 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4855 		return 1;
4856 	}
4857 
4858 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4859 	parsed_valid_hugepagesz = true;
4860 	parsed_default_hugepagesz = true;
4861 	default_hstate_idx = hstate_index(size_to_hstate(size));
4862 
4863 	/*
4864 	 * The number of default huge pages (for this size) could have been
4865 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4866 	 * then default_hstate_max_huge_pages is set.  If the default huge
4867 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4868 	 * allocated here from bootmem allocator.
4869 	 */
4870 	if (default_hstate_max_huge_pages) {
4871 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4872 		for_each_online_node(i)
4873 			default_hstate.max_huge_pages_node[i] =
4874 				default_hugepages_in_node[i];
4875 		if (hstate_is_gigantic(&default_hstate))
4876 			hugetlb_hstate_alloc_pages(&default_hstate);
4877 		default_hstate_max_huge_pages = 0;
4878 	}
4879 
4880 	return 1;
4881 }
4882 __setup("default_hugepagesz=", default_hugepagesz_setup);
4883 
policy_mbind_nodemask(gfp_t gfp)4884 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4885 {
4886 #ifdef CONFIG_NUMA
4887 	struct mempolicy *mpol = get_task_policy(current);
4888 
4889 	/*
4890 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4891 	 * (from policy_nodemask) specifically for hugetlb case
4892 	 */
4893 	if (mpol->mode == MPOL_BIND &&
4894 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4895 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4896 		return &mpol->nodes;
4897 #endif
4898 	return NULL;
4899 }
4900 
allowed_mems_nr(struct hstate * h)4901 static unsigned int allowed_mems_nr(struct hstate *h)
4902 {
4903 	int node;
4904 	unsigned int nr = 0;
4905 	nodemask_t *mbind_nodemask;
4906 	unsigned int *array = h->free_huge_pages_node;
4907 	gfp_t gfp_mask = htlb_alloc_mask(h);
4908 
4909 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4910 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4911 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4912 			nr += array[node];
4913 	}
4914 
4915 	return nr;
4916 }
4917 
4918 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4919 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4920 					  void *buffer, size_t *length,
4921 					  loff_t *ppos, unsigned long *out)
4922 {
4923 	struct ctl_table dup_table;
4924 
4925 	/*
4926 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4927 	 * can duplicate the @table and alter the duplicate of it.
4928 	 */
4929 	dup_table = *table;
4930 	dup_table.data = out;
4931 
4932 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4933 }
4934 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4935 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4936 			 struct ctl_table *table, int write,
4937 			 void *buffer, size_t *length, loff_t *ppos)
4938 {
4939 	struct hstate *h = &default_hstate;
4940 	unsigned long tmp = h->max_huge_pages;
4941 	int ret;
4942 
4943 	if (!hugepages_supported())
4944 		return -EOPNOTSUPP;
4945 
4946 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4947 					     &tmp);
4948 	if (ret)
4949 		goto out;
4950 
4951 	if (write)
4952 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4953 						  NUMA_NO_NODE, tmp, *length);
4954 out:
4955 	return ret;
4956 }
4957 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4958 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4959 			  void *buffer, size_t *length, loff_t *ppos)
4960 {
4961 
4962 	return hugetlb_sysctl_handler_common(false, table, write,
4963 							buffer, length, ppos);
4964 }
4965 
4966 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4967 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4968 			  void *buffer, size_t *length, loff_t *ppos)
4969 {
4970 	return hugetlb_sysctl_handler_common(true, table, write,
4971 							buffer, length, ppos);
4972 }
4973 #endif /* CONFIG_NUMA */
4974 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4975 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4976 		void *buffer, size_t *length, loff_t *ppos)
4977 {
4978 	struct hstate *h = &default_hstate;
4979 	unsigned long tmp;
4980 	int ret;
4981 
4982 	if (!hugepages_supported())
4983 		return -EOPNOTSUPP;
4984 
4985 	tmp = h->nr_overcommit_huge_pages;
4986 
4987 	if (write && hstate_is_gigantic(h))
4988 		return -EINVAL;
4989 
4990 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4991 					     &tmp);
4992 	if (ret)
4993 		goto out;
4994 
4995 	if (write) {
4996 		spin_lock_irq(&hugetlb_lock);
4997 		h->nr_overcommit_huge_pages = tmp;
4998 		spin_unlock_irq(&hugetlb_lock);
4999 	}
5000 out:
5001 	return ret;
5002 }
5003 
5004 static struct ctl_table hugetlb_table[] = {
5005 	{
5006 		.procname	= "nr_hugepages",
5007 		.data		= NULL,
5008 		.maxlen		= sizeof(unsigned long),
5009 		.mode		= 0644,
5010 		.proc_handler	= hugetlb_sysctl_handler,
5011 	},
5012 #ifdef CONFIG_NUMA
5013 	{
5014 		.procname       = "nr_hugepages_mempolicy",
5015 		.data           = NULL,
5016 		.maxlen         = sizeof(unsigned long),
5017 		.mode           = 0644,
5018 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5019 	},
5020 #endif
5021 	{
5022 		.procname	= "hugetlb_shm_group",
5023 		.data		= &sysctl_hugetlb_shm_group,
5024 		.maxlen		= sizeof(gid_t),
5025 		.mode		= 0644,
5026 		.proc_handler	= proc_dointvec,
5027 	},
5028 	{
5029 		.procname	= "nr_overcommit_hugepages",
5030 		.data		= NULL,
5031 		.maxlen		= sizeof(unsigned long),
5032 		.mode		= 0644,
5033 		.proc_handler	= hugetlb_overcommit_handler,
5034 	},
5035 	{ }
5036 };
5037 
hugetlb_sysctl_init(void)5038 static void hugetlb_sysctl_init(void)
5039 {
5040 	register_sysctl_init("vm", hugetlb_table);
5041 }
5042 #endif /* CONFIG_SYSCTL */
5043 
hugetlb_report_meminfo(struct seq_file * m)5044 void hugetlb_report_meminfo(struct seq_file *m)
5045 {
5046 	struct hstate *h;
5047 	unsigned long total = 0;
5048 
5049 	if (!hugepages_supported())
5050 		return;
5051 
5052 	for_each_hstate(h) {
5053 		unsigned long count = h->nr_huge_pages;
5054 
5055 		total += huge_page_size(h) * count;
5056 
5057 		if (h == &default_hstate)
5058 			seq_printf(m,
5059 				   "HugePages_Total:   %5lu\n"
5060 				   "HugePages_Free:    %5lu\n"
5061 				   "HugePages_Rsvd:    %5lu\n"
5062 				   "HugePages_Surp:    %5lu\n"
5063 				   "Hugepagesize:   %8lu kB\n",
5064 				   count,
5065 				   h->free_huge_pages,
5066 				   h->resv_huge_pages,
5067 				   h->surplus_huge_pages,
5068 				   huge_page_size(h) / SZ_1K);
5069 	}
5070 
5071 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5072 }
5073 
hugetlb_report_node_meminfo(char * buf,int len,int nid)5074 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5075 {
5076 	struct hstate *h = &default_hstate;
5077 
5078 	if (!hugepages_supported())
5079 		return 0;
5080 
5081 	return sysfs_emit_at(buf, len,
5082 			     "Node %d HugePages_Total: %5u\n"
5083 			     "Node %d HugePages_Free:  %5u\n"
5084 			     "Node %d HugePages_Surp:  %5u\n",
5085 			     nid, h->nr_huge_pages_node[nid],
5086 			     nid, h->free_huge_pages_node[nid],
5087 			     nid, h->surplus_huge_pages_node[nid]);
5088 }
5089 
hugetlb_show_meminfo_node(int nid)5090 void hugetlb_show_meminfo_node(int nid)
5091 {
5092 	struct hstate *h;
5093 
5094 	if (!hugepages_supported())
5095 		return;
5096 
5097 	for_each_hstate(h)
5098 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5099 			nid,
5100 			h->nr_huge_pages_node[nid],
5101 			h->free_huge_pages_node[nid],
5102 			h->surplus_huge_pages_node[nid],
5103 			huge_page_size(h) / SZ_1K);
5104 }
5105 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5106 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5107 {
5108 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5109 		   K(atomic_long_read(&mm->hugetlb_usage)));
5110 }
5111 
5112 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5113 unsigned long hugetlb_total_pages(void)
5114 {
5115 	struct hstate *h;
5116 	unsigned long nr_total_pages = 0;
5117 
5118 	for_each_hstate(h)
5119 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5120 	return nr_total_pages;
5121 }
5122 
hugetlb_acct_memory(struct hstate * h,long delta)5123 static int hugetlb_acct_memory(struct hstate *h, long delta)
5124 {
5125 	int ret = -ENOMEM;
5126 
5127 	if (!delta)
5128 		return 0;
5129 
5130 	spin_lock_irq(&hugetlb_lock);
5131 	/*
5132 	 * When cpuset is configured, it breaks the strict hugetlb page
5133 	 * reservation as the accounting is done on a global variable. Such
5134 	 * reservation is completely rubbish in the presence of cpuset because
5135 	 * the reservation is not checked against page availability for the
5136 	 * current cpuset. Application can still potentially OOM'ed by kernel
5137 	 * with lack of free htlb page in cpuset that the task is in.
5138 	 * Attempt to enforce strict accounting with cpuset is almost
5139 	 * impossible (or too ugly) because cpuset is too fluid that
5140 	 * task or memory node can be dynamically moved between cpusets.
5141 	 *
5142 	 * The change of semantics for shared hugetlb mapping with cpuset is
5143 	 * undesirable. However, in order to preserve some of the semantics,
5144 	 * we fall back to check against current free page availability as
5145 	 * a best attempt and hopefully to minimize the impact of changing
5146 	 * semantics that cpuset has.
5147 	 *
5148 	 * Apart from cpuset, we also have memory policy mechanism that
5149 	 * also determines from which node the kernel will allocate memory
5150 	 * in a NUMA system. So similar to cpuset, we also should consider
5151 	 * the memory policy of the current task. Similar to the description
5152 	 * above.
5153 	 */
5154 	if (delta > 0) {
5155 		if (gather_surplus_pages(h, delta) < 0)
5156 			goto out;
5157 
5158 		if (delta > allowed_mems_nr(h)) {
5159 			return_unused_surplus_pages(h, delta);
5160 			goto out;
5161 		}
5162 	}
5163 
5164 	ret = 0;
5165 	if (delta < 0)
5166 		return_unused_surplus_pages(h, (unsigned long) -delta);
5167 
5168 out:
5169 	spin_unlock_irq(&hugetlb_lock);
5170 	return ret;
5171 }
5172 
hugetlb_vm_op_open(struct vm_area_struct * vma)5173 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5174 {
5175 	struct resv_map *resv = vma_resv_map(vma);
5176 
5177 	/*
5178 	 * HPAGE_RESV_OWNER indicates a private mapping.
5179 	 * This new VMA should share its siblings reservation map if present.
5180 	 * The VMA will only ever have a valid reservation map pointer where
5181 	 * it is being copied for another still existing VMA.  As that VMA
5182 	 * has a reference to the reservation map it cannot disappear until
5183 	 * after this open call completes.  It is therefore safe to take a
5184 	 * new reference here without additional locking.
5185 	 */
5186 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5187 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5188 		kref_get(&resv->refs);
5189 	}
5190 
5191 	/*
5192 	 * vma_lock structure for sharable mappings is vma specific.
5193 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5194 	 * new structure.  Before clearing, make sure vma_lock is not
5195 	 * for this vma.
5196 	 */
5197 	if (vma->vm_flags & VM_MAYSHARE) {
5198 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5199 
5200 		if (vma_lock) {
5201 			if (vma_lock->vma != vma) {
5202 				vma->vm_private_data = NULL;
5203 				hugetlb_vma_lock_alloc(vma);
5204 			} else
5205 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5206 		} else
5207 			hugetlb_vma_lock_alloc(vma);
5208 	}
5209 }
5210 
hugetlb_vm_op_close(struct vm_area_struct * vma)5211 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5212 {
5213 	struct hstate *h = hstate_vma(vma);
5214 	struct resv_map *resv;
5215 	struct hugepage_subpool *spool = subpool_vma(vma);
5216 	unsigned long reserve, start, end;
5217 	long gbl_reserve;
5218 
5219 	hugetlb_vma_lock_free(vma);
5220 
5221 	resv = vma_resv_map(vma);
5222 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5223 		return;
5224 
5225 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5226 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5227 
5228 	reserve = (end - start) - region_count(resv, start, end);
5229 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5230 	if (reserve) {
5231 		/*
5232 		 * Decrement reserve counts.  The global reserve count may be
5233 		 * adjusted if the subpool has a minimum size.
5234 		 */
5235 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5236 		hugetlb_acct_memory(h, -gbl_reserve);
5237 	}
5238 
5239 	kref_put(&resv->refs, resv_map_release);
5240 }
5241 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5242 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5243 {
5244 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5245 		return -EINVAL;
5246 
5247 	/*
5248 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5249 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5250 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5251 	 */
5252 	if (addr & ~PUD_MASK) {
5253 		/*
5254 		 * hugetlb_vm_op_split is called right before we attempt to
5255 		 * split the VMA. We will need to unshare PMDs in the old and
5256 		 * new VMAs, so let's unshare before we split.
5257 		 */
5258 		unsigned long floor = addr & PUD_MASK;
5259 		unsigned long ceil = floor + PUD_SIZE;
5260 
5261 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5262 			hugetlb_unshare_pmds(vma, floor, ceil);
5263 	}
5264 
5265 	return 0;
5266 }
5267 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5268 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5269 {
5270 	return huge_page_size(hstate_vma(vma));
5271 }
5272 
5273 /*
5274  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5275  * handle_mm_fault() to try to instantiate regular-sized pages in the
5276  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5277  * this far.
5278  */
hugetlb_vm_op_fault(struct vm_fault * vmf)5279 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5280 {
5281 	BUG();
5282 	return 0;
5283 }
5284 
5285 /*
5286  * When a new function is introduced to vm_operations_struct and added
5287  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5288  * This is because under System V memory model, mappings created via
5289  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5290  * their original vm_ops are overwritten with shm_vm_ops.
5291  */
5292 const struct vm_operations_struct hugetlb_vm_ops = {
5293 	.fault = hugetlb_vm_op_fault,
5294 	.open = hugetlb_vm_op_open,
5295 	.close = hugetlb_vm_op_close,
5296 	.may_split = hugetlb_vm_op_split,
5297 	.pagesize = hugetlb_vm_op_pagesize,
5298 };
5299 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)5300 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5301 				int writable)
5302 {
5303 	pte_t entry;
5304 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5305 
5306 	if (writable) {
5307 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5308 					 vma->vm_page_prot)));
5309 	} else {
5310 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5311 					   vma->vm_page_prot));
5312 	}
5313 	entry = pte_mkyoung(entry);
5314 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5315 
5316 	return entry;
5317 }
5318 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5319 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5320 				   unsigned long address, pte_t *ptep)
5321 {
5322 	pte_t entry;
5323 
5324 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5325 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5326 		update_mmu_cache(vma, address, ptep);
5327 }
5328 
is_hugetlb_entry_migration(pte_t pte)5329 bool is_hugetlb_entry_migration(pte_t pte)
5330 {
5331 	swp_entry_t swp;
5332 
5333 	if (huge_pte_none(pte) || pte_present(pte))
5334 		return false;
5335 	swp = pte_to_swp_entry(pte);
5336 	if (is_migration_entry(swp))
5337 		return true;
5338 	else
5339 		return false;
5340 }
5341 
is_hugetlb_entry_hwpoisoned(pte_t pte)5342 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5343 {
5344 	swp_entry_t swp;
5345 
5346 	if (huge_pte_none(pte) || pte_present(pte))
5347 		return false;
5348 	swp = pte_to_swp_entry(pte);
5349 	if (is_hwpoison_entry(swp))
5350 		return true;
5351 	else
5352 		return false;
5353 }
5354 
5355 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5356 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5357 		      struct folio *new_folio, pte_t old, unsigned long sz)
5358 {
5359 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5360 
5361 	__folio_mark_uptodate(new_folio);
5362 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5363 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5364 		newpte = huge_pte_mkuffd_wp(newpte);
5365 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5366 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5367 	folio_set_hugetlb_migratable(new_folio);
5368 }
5369 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5370 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5371 			    struct vm_area_struct *dst_vma,
5372 			    struct vm_area_struct *src_vma)
5373 {
5374 	pte_t *src_pte, *dst_pte, entry;
5375 	struct folio *pte_folio;
5376 	unsigned long addr;
5377 	bool cow = is_cow_mapping(src_vma->vm_flags);
5378 	struct hstate *h = hstate_vma(src_vma);
5379 	unsigned long sz = huge_page_size(h);
5380 	unsigned long npages = pages_per_huge_page(h);
5381 	struct mmu_notifier_range range;
5382 	unsigned long last_addr_mask;
5383 	int ret = 0;
5384 
5385 	if (cow) {
5386 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5387 					src_vma->vm_start,
5388 					src_vma->vm_end);
5389 		mmu_notifier_invalidate_range_start(&range);
5390 		vma_assert_write_locked(src_vma);
5391 		raw_write_seqcount_begin(&src->write_protect_seq);
5392 	} else {
5393 		/*
5394 		 * For shared mappings the vma lock must be held before
5395 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5396 		 * returned ptep could go away if part of a shared pmd and
5397 		 * another thread calls huge_pmd_unshare.
5398 		 */
5399 		hugetlb_vma_lock_read(src_vma);
5400 	}
5401 
5402 	last_addr_mask = hugetlb_mask_last_page(h);
5403 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5404 		spinlock_t *src_ptl, *dst_ptl;
5405 		src_pte = hugetlb_walk(src_vma, addr, sz);
5406 		if (!src_pte) {
5407 			addr |= last_addr_mask;
5408 			continue;
5409 		}
5410 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5411 		if (!dst_pte) {
5412 			ret = -ENOMEM;
5413 			break;
5414 		}
5415 
5416 		/*
5417 		 * If the pagetables are shared don't copy or take references.
5418 		 *
5419 		 * dst_pte == src_pte is the common case of src/dest sharing.
5420 		 * However, src could have 'unshared' and dst shares with
5421 		 * another vma. So page_count of ptep page is checked instead
5422 		 * to reliably determine whether pte is shared.
5423 		 */
5424 		if (page_count(virt_to_page(dst_pte)) > 1) {
5425 			addr |= last_addr_mask;
5426 			continue;
5427 		}
5428 
5429 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5430 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5431 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5432 		entry = huge_ptep_get(src_pte);
5433 again:
5434 		if (huge_pte_none(entry)) {
5435 			/*
5436 			 * Skip if src entry none.
5437 			 */
5438 			;
5439 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5440 			if (!userfaultfd_wp(dst_vma))
5441 				entry = huge_pte_clear_uffd_wp(entry);
5442 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5443 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5444 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5445 			bool uffd_wp = pte_swp_uffd_wp(entry);
5446 
5447 			if (!is_readable_migration_entry(swp_entry) && cow) {
5448 				/*
5449 				 * COW mappings require pages in both
5450 				 * parent and child to be set to read.
5451 				 */
5452 				swp_entry = make_readable_migration_entry(
5453 							swp_offset(swp_entry));
5454 				entry = swp_entry_to_pte(swp_entry);
5455 				if (userfaultfd_wp(src_vma) && uffd_wp)
5456 					entry = pte_swp_mkuffd_wp(entry);
5457 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5458 			}
5459 			if (!userfaultfd_wp(dst_vma))
5460 				entry = huge_pte_clear_uffd_wp(entry);
5461 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5462 		} else if (unlikely(is_pte_marker(entry))) {
5463 			pte_marker marker = copy_pte_marker(
5464 				pte_to_swp_entry(entry), dst_vma);
5465 
5466 			if (marker)
5467 				set_huge_pte_at(dst, addr, dst_pte,
5468 						make_pte_marker(marker), sz);
5469 		} else {
5470 			entry = huge_ptep_get(src_pte);
5471 			pte_folio = page_folio(pte_page(entry));
5472 			folio_get(pte_folio);
5473 
5474 			/*
5475 			 * Failing to duplicate the anon rmap is a rare case
5476 			 * where we see pinned hugetlb pages while they're
5477 			 * prone to COW. We need to do the COW earlier during
5478 			 * fork.
5479 			 *
5480 			 * When pre-allocating the page or copying data, we
5481 			 * need to be without the pgtable locks since we could
5482 			 * sleep during the process.
5483 			 */
5484 			if (!folio_test_anon(pte_folio)) {
5485 				hugetlb_add_file_rmap(pte_folio);
5486 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5487 				pte_t src_pte_old = entry;
5488 				struct folio *new_folio;
5489 
5490 				spin_unlock(src_ptl);
5491 				spin_unlock(dst_ptl);
5492 				/* Do not use reserve as it's private owned */
5493 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5494 				if (IS_ERR(new_folio)) {
5495 					folio_put(pte_folio);
5496 					ret = PTR_ERR(new_folio);
5497 					break;
5498 				}
5499 				ret = copy_user_large_folio(new_folio,
5500 							    pte_folio,
5501 							    addr, dst_vma);
5502 				folio_put(pte_folio);
5503 				if (ret) {
5504 					folio_put(new_folio);
5505 					break;
5506 				}
5507 
5508 				/* Install the new hugetlb folio if src pte stable */
5509 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5510 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5511 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5512 				entry = huge_ptep_get(src_pte);
5513 				if (!pte_same(src_pte_old, entry)) {
5514 					restore_reserve_on_error(h, dst_vma, addr,
5515 								new_folio);
5516 					folio_put(new_folio);
5517 					/* huge_ptep of dst_pte won't change as in child */
5518 					goto again;
5519 				}
5520 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5521 						      new_folio, src_pte_old, sz);
5522 				spin_unlock(src_ptl);
5523 				spin_unlock(dst_ptl);
5524 				continue;
5525 			}
5526 
5527 			if (cow) {
5528 				/*
5529 				 * No need to notify as we are downgrading page
5530 				 * table protection not changing it to point
5531 				 * to a new page.
5532 				 *
5533 				 * See Documentation/mm/mmu_notifier.rst
5534 				 */
5535 				huge_ptep_set_wrprotect(src, addr, src_pte);
5536 				entry = huge_pte_wrprotect(entry);
5537 			}
5538 
5539 			if (!userfaultfd_wp(dst_vma))
5540 				entry = huge_pte_clear_uffd_wp(entry);
5541 
5542 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5543 			hugetlb_count_add(npages, dst);
5544 		}
5545 		spin_unlock(src_ptl);
5546 		spin_unlock(dst_ptl);
5547 	}
5548 
5549 	if (cow) {
5550 		raw_write_seqcount_end(&src->write_protect_seq);
5551 		mmu_notifier_invalidate_range_end(&range);
5552 	} else {
5553 		hugetlb_vma_unlock_read(src_vma);
5554 	}
5555 
5556 	return ret;
5557 }
5558 
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5559 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5560 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5561 			  unsigned long sz)
5562 {
5563 	struct hstate *h = hstate_vma(vma);
5564 	struct mm_struct *mm = vma->vm_mm;
5565 	spinlock_t *src_ptl, *dst_ptl;
5566 	pte_t pte;
5567 
5568 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5569 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5570 
5571 	/*
5572 	 * We don't have to worry about the ordering of src and dst ptlocks
5573 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5574 	 */
5575 	if (src_ptl != dst_ptl)
5576 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5577 
5578 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5579 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5580 
5581 	if (src_ptl != dst_ptl)
5582 		spin_unlock(src_ptl);
5583 	spin_unlock(dst_ptl);
5584 }
5585 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5586 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5587 			     struct vm_area_struct *new_vma,
5588 			     unsigned long old_addr, unsigned long new_addr,
5589 			     unsigned long len)
5590 {
5591 	struct hstate *h = hstate_vma(vma);
5592 	struct address_space *mapping = vma->vm_file->f_mapping;
5593 	unsigned long sz = huge_page_size(h);
5594 	struct mm_struct *mm = vma->vm_mm;
5595 	unsigned long old_end = old_addr + len;
5596 	unsigned long last_addr_mask;
5597 	pte_t *src_pte, *dst_pte;
5598 	struct mmu_notifier_range range;
5599 	bool shared_pmd = false;
5600 
5601 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5602 				old_end);
5603 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5604 	/*
5605 	 * In case of shared PMDs, we should cover the maximum possible
5606 	 * range.
5607 	 */
5608 	flush_cache_range(vma, range.start, range.end);
5609 
5610 	mmu_notifier_invalidate_range_start(&range);
5611 	last_addr_mask = hugetlb_mask_last_page(h);
5612 	/* Prevent race with file truncation */
5613 	hugetlb_vma_lock_write(vma);
5614 	i_mmap_lock_write(mapping);
5615 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5616 		src_pte = hugetlb_walk(vma, old_addr, sz);
5617 		if (!src_pte) {
5618 			old_addr |= last_addr_mask;
5619 			new_addr |= last_addr_mask;
5620 			continue;
5621 		}
5622 		if (huge_pte_none(huge_ptep_get(src_pte)))
5623 			continue;
5624 
5625 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5626 			shared_pmd = true;
5627 			old_addr |= last_addr_mask;
5628 			new_addr |= last_addr_mask;
5629 			continue;
5630 		}
5631 
5632 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5633 		if (!dst_pte)
5634 			break;
5635 
5636 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5637 	}
5638 
5639 	if (shared_pmd)
5640 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5641 	else
5642 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5643 	mmu_notifier_invalidate_range_end(&range);
5644 	i_mmap_unlock_write(mapping);
5645 	hugetlb_vma_unlock_write(vma);
5646 
5647 	return len + old_addr - old_end;
5648 }
5649 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5650 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5651 			    unsigned long start, unsigned long end,
5652 			    struct page *ref_page, zap_flags_t zap_flags)
5653 {
5654 	struct mm_struct *mm = vma->vm_mm;
5655 	unsigned long address;
5656 	pte_t *ptep;
5657 	pte_t pte;
5658 	spinlock_t *ptl;
5659 	struct page *page;
5660 	struct hstate *h = hstate_vma(vma);
5661 	unsigned long sz = huge_page_size(h);
5662 	bool adjust_reservation = false;
5663 	unsigned long last_addr_mask;
5664 	bool force_flush = false;
5665 
5666 	WARN_ON(!is_vm_hugetlb_page(vma));
5667 	BUG_ON(start & ~huge_page_mask(h));
5668 	BUG_ON(end & ~huge_page_mask(h));
5669 
5670 	/*
5671 	 * This is a hugetlb vma, all the pte entries should point
5672 	 * to huge page.
5673 	 */
5674 	tlb_change_page_size(tlb, sz);
5675 	tlb_start_vma(tlb, vma);
5676 
5677 	last_addr_mask = hugetlb_mask_last_page(h);
5678 	address = start;
5679 	for (; address < end; address += sz) {
5680 		ptep = hugetlb_walk(vma, address, sz);
5681 		if (!ptep) {
5682 			address |= last_addr_mask;
5683 			continue;
5684 		}
5685 
5686 		ptl = huge_pte_lock(h, mm, ptep);
5687 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5688 			spin_unlock(ptl);
5689 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5690 			force_flush = true;
5691 			address |= last_addr_mask;
5692 			continue;
5693 		}
5694 
5695 		pte = huge_ptep_get(ptep);
5696 		if (huge_pte_none(pte)) {
5697 			spin_unlock(ptl);
5698 			continue;
5699 		}
5700 
5701 		/*
5702 		 * Migrating hugepage or HWPoisoned hugepage is already
5703 		 * unmapped and its refcount is dropped, so just clear pte here.
5704 		 */
5705 		if (unlikely(!pte_present(pte))) {
5706 			/*
5707 			 * If the pte was wr-protected by uffd-wp in any of the
5708 			 * swap forms, meanwhile the caller does not want to
5709 			 * drop the uffd-wp bit in this zap, then replace the
5710 			 * pte with a marker.
5711 			 */
5712 			if (pte_swp_uffd_wp_any(pte) &&
5713 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5714 				set_huge_pte_at(mm, address, ptep,
5715 						make_pte_marker(PTE_MARKER_UFFD_WP),
5716 						sz);
5717 			else
5718 				huge_pte_clear(mm, address, ptep, sz);
5719 			spin_unlock(ptl);
5720 			continue;
5721 		}
5722 
5723 		page = pte_page(pte);
5724 		/*
5725 		 * If a reference page is supplied, it is because a specific
5726 		 * page is being unmapped, not a range. Ensure the page we
5727 		 * are about to unmap is the actual page of interest.
5728 		 */
5729 		if (ref_page) {
5730 			if (page != ref_page) {
5731 				spin_unlock(ptl);
5732 				continue;
5733 			}
5734 			/*
5735 			 * Mark the VMA as having unmapped its page so that
5736 			 * future faults in this VMA will fail rather than
5737 			 * looking like data was lost
5738 			 */
5739 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5740 		}
5741 
5742 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5743 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5744 		if (huge_pte_dirty(pte))
5745 			set_page_dirty(page);
5746 		/* Leave a uffd-wp pte marker if needed */
5747 		if (huge_pte_uffd_wp(pte) &&
5748 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5749 			set_huge_pte_at(mm, address, ptep,
5750 					make_pte_marker(PTE_MARKER_UFFD_WP),
5751 					sz);
5752 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5753 		hugetlb_remove_rmap(page_folio(page));
5754 
5755 		/*
5756 		 * Restore the reservation for anonymous page, otherwise the
5757 		 * backing page could be stolen by someone.
5758 		 * If there we are freeing a surplus, do not set the restore
5759 		 * reservation bit.
5760 		 */
5761 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5762 		    folio_test_anon(page_folio(page))) {
5763 			folio_set_hugetlb_restore_reserve(page_folio(page));
5764 			/* Reservation to be adjusted after the spin lock */
5765 			adjust_reservation = true;
5766 		}
5767 
5768 		spin_unlock(ptl);
5769 
5770 		/*
5771 		 * Adjust the reservation for the region that will have the
5772 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5773 		 * resv->adds_in_progress if it succeeds. If this is not done,
5774 		 * do_exit() will not see it, and will keep the reservation
5775 		 * forever.
5776 		 */
5777 		if (adjust_reservation && vma_needs_reservation(h, vma, address))
5778 			vma_add_reservation(h, vma, address);
5779 
5780 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5781 		/*
5782 		 * Bail out after unmapping reference page if supplied
5783 		 */
5784 		if (ref_page)
5785 			break;
5786 	}
5787 	tlb_end_vma(tlb, vma);
5788 
5789 	/*
5790 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5791 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5792 	 * guaranteed that the last refernece would not be dropped. But we must
5793 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5794 	 * dropped and the last reference to the shared PMDs page might be
5795 	 * dropped as well.
5796 	 *
5797 	 * In theory we could defer the freeing of the PMD pages as well, but
5798 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5799 	 * detect sharing, so we cannot defer the release of the page either.
5800 	 * Instead, do flush now.
5801 	 */
5802 	if (force_flush)
5803 		tlb_flush_mmu_tlbonly(tlb);
5804 }
5805 
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5806 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5807 			 unsigned long *start, unsigned long *end)
5808 {
5809 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5810 		return;
5811 
5812 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5813 	hugetlb_vma_lock_write(vma);
5814 	if (vma->vm_file)
5815 		i_mmap_lock_write(vma->vm_file->f_mapping);
5816 }
5817 
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5818 void __hugetlb_zap_end(struct vm_area_struct *vma,
5819 		       struct zap_details *details)
5820 {
5821 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5822 
5823 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5824 		return;
5825 
5826 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5827 		/*
5828 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5829 		 * When the vma_lock is freed, this makes the vma ineligible
5830 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5831 		 * pmd sharing.  This is important as page tables for this
5832 		 * unmapped range will be asynchrously deleted.  If the page
5833 		 * tables are shared, there will be issues when accessed by
5834 		 * someone else.
5835 		 */
5836 		__hugetlb_vma_unlock_write_free(vma);
5837 	} else {
5838 		hugetlb_vma_unlock_write(vma);
5839 	}
5840 
5841 	if (vma->vm_file)
5842 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5843 }
5844 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5845 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5846 			  unsigned long end, struct page *ref_page,
5847 			  zap_flags_t zap_flags)
5848 {
5849 	struct mmu_notifier_range range;
5850 	struct mmu_gather tlb;
5851 
5852 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5853 				start, end);
5854 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5855 	mmu_notifier_invalidate_range_start(&range);
5856 	tlb_gather_mmu(&tlb, vma->vm_mm);
5857 
5858 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5859 
5860 	mmu_notifier_invalidate_range_end(&range);
5861 	tlb_finish_mmu(&tlb);
5862 }
5863 
5864 /*
5865  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5866  * mapping it owns the reserve page for. The intention is to unmap the page
5867  * from other VMAs and let the children be SIGKILLed if they are faulting the
5868  * same region.
5869  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5870 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5871 			      struct page *page, unsigned long address)
5872 {
5873 	struct hstate *h = hstate_vma(vma);
5874 	struct vm_area_struct *iter_vma;
5875 	struct address_space *mapping;
5876 	pgoff_t pgoff;
5877 
5878 	/*
5879 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5880 	 * from page cache lookup which is in HPAGE_SIZE units.
5881 	 */
5882 	address = address & huge_page_mask(h);
5883 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5884 			vma->vm_pgoff;
5885 	mapping = vma->vm_file->f_mapping;
5886 
5887 	/*
5888 	 * Take the mapping lock for the duration of the table walk. As
5889 	 * this mapping should be shared between all the VMAs,
5890 	 * __unmap_hugepage_range() is called as the lock is already held
5891 	 */
5892 	i_mmap_lock_write(mapping);
5893 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5894 		/* Do not unmap the current VMA */
5895 		if (iter_vma == vma)
5896 			continue;
5897 
5898 		/*
5899 		 * Shared VMAs have their own reserves and do not affect
5900 		 * MAP_PRIVATE accounting but it is possible that a shared
5901 		 * VMA is using the same page so check and skip such VMAs.
5902 		 */
5903 		if (iter_vma->vm_flags & VM_MAYSHARE)
5904 			continue;
5905 
5906 		/*
5907 		 * Unmap the page from other VMAs without their own reserves.
5908 		 * They get marked to be SIGKILLed if they fault in these
5909 		 * areas. This is because a future no-page fault on this VMA
5910 		 * could insert a zeroed page instead of the data existing
5911 		 * from the time of fork. This would look like data corruption
5912 		 */
5913 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5914 			unmap_hugepage_range(iter_vma, address,
5915 					     address + huge_page_size(h), page, 0);
5916 	}
5917 	i_mmap_unlock_write(mapping);
5918 }
5919 
5920 /*
5921  * hugetlb_wp() should be called with page lock of the original hugepage held.
5922  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5923  * cannot race with other handlers or page migration.
5924  * Keep the pte_same checks anyway to make transition from the mutex easier.
5925  */
hugetlb_wp(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int flags,struct folio * pagecache_folio,spinlock_t * ptl,struct vm_fault * vmf)5926 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5927 		       unsigned long address, pte_t *ptep, unsigned int flags,
5928 		       struct folio *pagecache_folio, spinlock_t *ptl,
5929 		       struct vm_fault *vmf)
5930 {
5931 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5932 	pte_t pte = huge_ptep_get(ptep);
5933 	struct hstate *h = hstate_vma(vma);
5934 	struct folio *old_folio;
5935 	struct folio *new_folio;
5936 	int outside_reserve = 0;
5937 	vm_fault_t ret = 0;
5938 	unsigned long haddr = address & huge_page_mask(h);
5939 	struct mmu_notifier_range range;
5940 
5941 	/*
5942 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5943 	 * handled when the uffd-wp protection is removed.
5944 	 *
5945 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5946 	 * can trigger this, because hugetlb_fault() will always resolve
5947 	 * uffd-wp bit first.
5948 	 */
5949 	if (!unshare && huge_pte_uffd_wp(pte))
5950 		return 0;
5951 
5952 	/*
5953 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5954 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5955 	 */
5956 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5957 		return VM_FAULT_SIGSEGV;
5958 
5959 	/* Let's take out MAP_SHARED mappings first. */
5960 	if (vma->vm_flags & VM_MAYSHARE) {
5961 		set_huge_ptep_writable(vma, haddr, ptep);
5962 		return 0;
5963 	}
5964 
5965 	old_folio = page_folio(pte_page(pte));
5966 
5967 	delayacct_wpcopy_start();
5968 
5969 retry_avoidcopy:
5970 	/*
5971 	 * If no-one else is actually using this page, we're the exclusive
5972 	 * owner and can reuse this page.
5973 	 */
5974 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5975 		if (!PageAnonExclusive(&old_folio->page)) {
5976 			folio_move_anon_rmap(old_folio, vma);
5977 			SetPageAnonExclusive(&old_folio->page);
5978 		}
5979 		if (likely(!unshare))
5980 			set_huge_ptep_writable(vma, haddr, ptep);
5981 
5982 		delayacct_wpcopy_end();
5983 		return 0;
5984 	}
5985 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5986 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5987 
5988 	/*
5989 	 * If the process that created a MAP_PRIVATE mapping is about to
5990 	 * perform a COW due to a shared page count, attempt to satisfy
5991 	 * the allocation without using the existing reserves. The pagecache
5992 	 * page is used to determine if the reserve at this address was
5993 	 * consumed or not. If reserves were used, a partial faulted mapping
5994 	 * at the time of fork() could consume its reserves on COW instead
5995 	 * of the full address range.
5996 	 */
5997 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5998 			old_folio != pagecache_folio)
5999 		outside_reserve = 1;
6000 
6001 	folio_get(old_folio);
6002 
6003 	/*
6004 	 * Drop page table lock as buddy allocator may be called. It will
6005 	 * be acquired again before returning to the caller, as expected.
6006 	 */
6007 	spin_unlock(ptl);
6008 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
6009 
6010 	if (IS_ERR(new_folio)) {
6011 		/*
6012 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
6013 		 * it is due to references held by a child and an insufficient
6014 		 * huge page pool. To guarantee the original mappers
6015 		 * reliability, unmap the page from child processes. The child
6016 		 * may get SIGKILLed if it later faults.
6017 		 */
6018 		if (outside_reserve) {
6019 			struct address_space *mapping = vma->vm_file->f_mapping;
6020 			pgoff_t idx;
6021 			u32 hash;
6022 
6023 			folio_put(old_folio);
6024 			/*
6025 			 * Drop hugetlb_fault_mutex and vma_lock before
6026 			 * unmapping.  unmapping needs to hold vma_lock
6027 			 * in write mode.  Dropping vma_lock in read mode
6028 			 * here is OK as COW mappings do not interact with
6029 			 * PMD sharing.
6030 			 *
6031 			 * Reacquire both after unmap operation.
6032 			 */
6033 			idx = vma_hugecache_offset(h, vma, haddr);
6034 			hash = hugetlb_fault_mutex_hash(mapping, idx);
6035 			hugetlb_vma_unlock_read(vma);
6036 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037 
6038 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
6039 
6040 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6041 			hugetlb_vma_lock_read(vma);
6042 			spin_lock(ptl);
6043 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6044 			if (likely(ptep &&
6045 				   pte_same(huge_ptep_get(ptep), pte)))
6046 				goto retry_avoidcopy;
6047 			/*
6048 			 * race occurs while re-acquiring page table
6049 			 * lock, and our job is done.
6050 			 */
6051 			delayacct_wpcopy_end();
6052 			return 0;
6053 		}
6054 
6055 		ret = vmf_error(PTR_ERR(new_folio));
6056 		goto out_release_old;
6057 	}
6058 
6059 	/*
6060 	 * When the original hugepage is shared one, it does not have
6061 	 * anon_vma prepared.
6062 	 */
6063 	ret = vmf_anon_prepare(vmf);
6064 	if (unlikely(ret))
6065 		goto out_release_all;
6066 
6067 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
6068 		ret = VM_FAULT_HWPOISON_LARGE;
6069 		goto out_release_all;
6070 	}
6071 	__folio_mark_uptodate(new_folio);
6072 
6073 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6074 				haddr + huge_page_size(h));
6075 	mmu_notifier_invalidate_range_start(&range);
6076 
6077 	/*
6078 	 * Retake the page table lock to check for racing updates
6079 	 * before the page tables are altered
6080 	 */
6081 	spin_lock(ptl);
6082 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6083 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
6084 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6085 
6086 		/* Break COW or unshare */
6087 		huge_ptep_clear_flush(vma, haddr, ptep);
6088 		hugetlb_remove_rmap(old_folio);
6089 		hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
6090 		if (huge_pte_uffd_wp(pte))
6091 			newpte = huge_pte_mkuffd_wp(newpte);
6092 		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
6093 		folio_set_hugetlb_migratable(new_folio);
6094 		/* Make the old page be freed below */
6095 		new_folio = old_folio;
6096 	}
6097 	spin_unlock(ptl);
6098 	mmu_notifier_invalidate_range_end(&range);
6099 out_release_all:
6100 	/*
6101 	 * No restore in case of successful pagetable update (Break COW or
6102 	 * unshare)
6103 	 */
6104 	if (new_folio != old_folio)
6105 		restore_reserve_on_error(h, vma, haddr, new_folio);
6106 	folio_put(new_folio);
6107 out_release_old:
6108 	folio_put(old_folio);
6109 
6110 	spin_lock(ptl); /* Caller expects lock to be held */
6111 
6112 	delayacct_wpcopy_end();
6113 	return ret;
6114 }
6115 
6116 /*
6117  * Return whether there is a pagecache page to back given address within VMA.
6118  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6119 static bool hugetlbfs_pagecache_present(struct hstate *h,
6120 			struct vm_area_struct *vma, unsigned long address)
6121 {
6122 	struct address_space *mapping = vma->vm_file->f_mapping;
6123 	pgoff_t idx = linear_page_index(vma, address);
6124 	struct folio *folio;
6125 
6126 	folio = filemap_get_folio(mapping, idx);
6127 	if (IS_ERR(folio))
6128 		return false;
6129 	folio_put(folio);
6130 	return true;
6131 }
6132 
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6133 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6134 			   pgoff_t idx)
6135 {
6136 	struct inode *inode = mapping->host;
6137 	struct hstate *h = hstate_inode(inode);
6138 	int err;
6139 
6140 	idx <<= huge_page_order(h);
6141 	__folio_set_locked(folio);
6142 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6143 
6144 	if (unlikely(err)) {
6145 		__folio_clear_locked(folio);
6146 		return err;
6147 	}
6148 	folio_clear_hugetlb_restore_reserve(folio);
6149 
6150 	/*
6151 	 * mark folio dirty so that it will not be removed from cache/file
6152 	 * by non-hugetlbfs specific code paths.
6153 	 */
6154 	folio_mark_dirty(folio);
6155 
6156 	spin_lock(&inode->i_lock);
6157 	inode->i_blocks += blocks_per_huge_page(h);
6158 	spin_unlock(&inode->i_lock);
6159 	return 0;
6160 }
6161 
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6162 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6163 						  struct address_space *mapping,
6164 						  unsigned long reason)
6165 {
6166 	u32 hash;
6167 
6168 	/*
6169 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6170 	 * userfault. Also mmap_lock could be dropped due to handling
6171 	 * userfault, any vma operation should be careful from here.
6172 	 */
6173 	hugetlb_vma_unlock_read(vmf->vma);
6174 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6175 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6176 	return handle_userfault(vmf, reason);
6177 }
6178 
6179 /*
6180  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6181  * false if pte changed or is changing.
6182  */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,pte_t * ptep,pte_t old_pte)6183 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6184 			       pte_t *ptep, pte_t old_pte)
6185 {
6186 	spinlock_t *ptl;
6187 	bool same;
6188 
6189 	ptl = huge_pte_lock(h, mm, ptep);
6190 	same = pte_same(huge_ptep_get(ptep), old_pte);
6191 	spin_unlock(ptl);
6192 
6193 	return same;
6194 }
6195 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,pte_t old_pte,unsigned int flags,struct vm_fault * vmf)6196 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6197 			struct vm_area_struct *vma,
6198 			struct address_space *mapping, pgoff_t idx,
6199 			unsigned long address, pte_t *ptep,
6200 			pte_t old_pte, unsigned int flags,
6201 			struct vm_fault *vmf)
6202 {
6203 	struct hstate *h = hstate_vma(vma);
6204 	vm_fault_t ret = VM_FAULT_SIGBUS;
6205 	int anon_rmap = 0;
6206 	unsigned long size;
6207 	struct folio *folio;
6208 	pte_t new_pte;
6209 	spinlock_t *ptl;
6210 	unsigned long haddr = address & huge_page_mask(h);
6211 	bool new_folio, new_pagecache_folio = false;
6212 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6213 
6214 	/*
6215 	 * Currently, we are forced to kill the process in the event the
6216 	 * original mapper has unmapped pages from the child due to a failed
6217 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6218 	 * be obvious.
6219 	 */
6220 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6221 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6222 			   current->pid);
6223 		goto out;
6224 	}
6225 
6226 	/*
6227 	 * Use page lock to guard against racing truncation
6228 	 * before we get page_table_lock.
6229 	 */
6230 	new_folio = false;
6231 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6232 	if (IS_ERR(folio)) {
6233 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6234 		if (idx >= size)
6235 			goto out;
6236 		/* Check for page in userfault range */
6237 		if (userfaultfd_missing(vma)) {
6238 			/*
6239 			 * Since hugetlb_no_page() was examining pte
6240 			 * without pgtable lock, we need to re-test under
6241 			 * lock because the pte may not be stable and could
6242 			 * have changed from under us.  Try to detect
6243 			 * either changed or during-changing ptes and retry
6244 			 * properly when needed.
6245 			 *
6246 			 * Note that userfaultfd is actually fine with
6247 			 * false positives (e.g. caused by pte changed),
6248 			 * but not wrong logical events (e.g. caused by
6249 			 * reading a pte during changing).  The latter can
6250 			 * confuse the userspace, so the strictness is very
6251 			 * much preferred.  E.g., MISSING event should
6252 			 * never happen on the page after UFFDIO_COPY has
6253 			 * correctly installed the page and returned.
6254 			 */
6255 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6256 				ret = 0;
6257 				goto out;
6258 			}
6259 
6260 			return hugetlb_handle_userfault(vmf, mapping,
6261 							VM_UFFD_MISSING);
6262 		}
6263 
6264 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6265 			ret = vmf_anon_prepare(vmf);
6266 			if (unlikely(ret))
6267 				goto out;
6268 		}
6269 
6270 		folio = alloc_hugetlb_folio(vma, haddr, 0);
6271 		if (IS_ERR(folio)) {
6272 			/*
6273 			 * Returning error will result in faulting task being
6274 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6275 			 * tasks from racing to fault in the same page which
6276 			 * could result in false unable to allocate errors.
6277 			 * Page migration does not take the fault mutex, but
6278 			 * does a clear then write of pte's under page table
6279 			 * lock.  Page fault code could race with migration,
6280 			 * notice the clear pte and try to allocate a page
6281 			 * here.  Before returning error, get ptl and make
6282 			 * sure there really is no pte entry.
6283 			 */
6284 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6285 				ret = vmf_error(PTR_ERR(folio));
6286 			else
6287 				ret = 0;
6288 			goto out;
6289 		}
6290 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6291 		__folio_mark_uptodate(folio);
6292 		new_folio = true;
6293 
6294 		if (vma->vm_flags & VM_MAYSHARE) {
6295 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6296 			if (err) {
6297 				/*
6298 				 * err can't be -EEXIST which implies someone
6299 				 * else consumed the reservation since hugetlb
6300 				 * fault mutex is held when add a hugetlb page
6301 				 * to the page cache. So it's safe to call
6302 				 * restore_reserve_on_error() here.
6303 				 */
6304 				restore_reserve_on_error(h, vma, haddr, folio);
6305 				folio_put(folio);
6306 				ret = VM_FAULT_SIGBUS;
6307 				goto out;
6308 			}
6309 			new_pagecache_folio = true;
6310 		} else {
6311 			folio_lock(folio);
6312 			anon_rmap = 1;
6313 		}
6314 	} else {
6315 		/*
6316 		 * If memory error occurs between mmap() and fault, some process
6317 		 * don't have hwpoisoned swap entry for errored virtual address.
6318 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6319 		 */
6320 		if (unlikely(folio_test_hwpoison(folio))) {
6321 			ret = VM_FAULT_HWPOISON_LARGE |
6322 				VM_FAULT_SET_HINDEX(hstate_index(h));
6323 			goto backout_unlocked;
6324 		}
6325 
6326 		/* Check for page in userfault range. */
6327 		if (userfaultfd_minor(vma)) {
6328 			folio_unlock(folio);
6329 			folio_put(folio);
6330 			/* See comment in userfaultfd_missing() block above */
6331 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6332 				ret = 0;
6333 				goto out;
6334 			}
6335 			return hugetlb_handle_userfault(vmf, mapping,
6336 							VM_UFFD_MINOR);
6337 		}
6338 	}
6339 
6340 	/*
6341 	 * If we are going to COW a private mapping later, we examine the
6342 	 * pending reservations for this page now. This will ensure that
6343 	 * any allocations necessary to record that reservation occur outside
6344 	 * the spinlock.
6345 	 */
6346 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6347 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6348 			ret = VM_FAULT_OOM;
6349 			goto backout_unlocked;
6350 		}
6351 		/* Just decrements count, does not deallocate */
6352 		vma_end_reservation(h, vma, haddr);
6353 	}
6354 
6355 	ptl = huge_pte_lock(h, mm, ptep);
6356 	ret = 0;
6357 	/* If pte changed from under us, retry */
6358 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6359 		goto backout;
6360 
6361 	if (anon_rmap)
6362 		hugetlb_add_new_anon_rmap(folio, vma, haddr);
6363 	else
6364 		hugetlb_add_file_rmap(folio);
6365 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6366 				&& (vma->vm_flags & VM_SHARED)));
6367 	/*
6368 	 * If this pte was previously wr-protected, keep it wr-protected even
6369 	 * if populated.
6370 	 */
6371 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6372 		new_pte = huge_pte_mkuffd_wp(new_pte);
6373 	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6374 
6375 	hugetlb_count_add(pages_per_huge_page(h), mm);
6376 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6377 		/* Optimization, do the COW without a second fault */
6378 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
6379 	}
6380 
6381 	spin_unlock(ptl);
6382 
6383 	/*
6384 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6385 	 * found in the pagecache may not have hugetlb_migratable if they have
6386 	 * been isolated for migration.
6387 	 */
6388 	if (new_folio)
6389 		folio_set_hugetlb_migratable(folio);
6390 
6391 	folio_unlock(folio);
6392 out:
6393 	hugetlb_vma_unlock_read(vma);
6394 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6395 	return ret;
6396 
6397 backout:
6398 	spin_unlock(ptl);
6399 backout_unlocked:
6400 	if (new_folio && !new_pagecache_folio)
6401 		restore_reserve_on_error(h, vma, haddr, folio);
6402 
6403 	folio_unlock(folio);
6404 	folio_put(folio);
6405 	goto out;
6406 }
6407 
6408 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6409 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6410 {
6411 	unsigned long key[2];
6412 	u32 hash;
6413 
6414 	key[0] = (unsigned long) mapping;
6415 	key[1] = idx;
6416 
6417 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6418 
6419 	return hash & (num_fault_mutexes - 1);
6420 }
6421 #else
6422 /*
6423  * For uniprocessor systems we always use a single mutex, so just
6424  * return 0 and avoid the hashing overhead.
6425  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6426 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6427 {
6428 	return 0;
6429 }
6430 #endif
6431 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6432 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6433 			unsigned long address, unsigned int flags)
6434 {
6435 	pte_t *ptep, entry;
6436 	spinlock_t *ptl;
6437 	vm_fault_t ret;
6438 	u32 hash;
6439 	struct folio *folio = NULL;
6440 	struct folio *pagecache_folio = NULL;
6441 	struct hstate *h = hstate_vma(vma);
6442 	struct address_space *mapping;
6443 	int need_wait_lock = 0;
6444 	unsigned long haddr = address & huge_page_mask(h);
6445 	struct vm_fault vmf = {
6446 		.vma = vma,
6447 		.address = haddr,
6448 		.real_address = address,
6449 		.flags = flags,
6450 		.pgoff = vma_hugecache_offset(h, vma, haddr),
6451 		/* TODO: Track hugetlb faults using vm_fault */
6452 
6453 		/*
6454 		 * Some fields may not be initialized, be careful as it may
6455 		 * be hard to debug if called functions make assumptions
6456 		 */
6457 	};
6458 
6459 	/*
6460 	 * Serialize hugepage allocation and instantiation, so that we don't
6461 	 * get spurious allocation failures if two CPUs race to instantiate
6462 	 * the same page in the page cache.
6463 	 */
6464 	mapping = vma->vm_file->f_mapping;
6465 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6466 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6467 
6468 	/*
6469 	 * Acquire vma lock before calling huge_pte_alloc and hold
6470 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6471 	 * being called elsewhere and making the ptep no longer valid.
6472 	 */
6473 	hugetlb_vma_lock_read(vma);
6474 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6475 	if (!ptep) {
6476 		hugetlb_vma_unlock_read(vma);
6477 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6478 		return VM_FAULT_OOM;
6479 	}
6480 
6481 	entry = huge_ptep_get(ptep);
6482 	if (huge_pte_none_mostly(entry)) {
6483 		if (is_pte_marker(entry)) {
6484 			pte_marker marker =
6485 				pte_marker_get(pte_to_swp_entry(entry));
6486 
6487 			if (marker & PTE_MARKER_POISONED) {
6488 				ret = VM_FAULT_HWPOISON_LARGE;
6489 				goto out_mutex;
6490 			}
6491 		}
6492 
6493 		/*
6494 		 * Other PTE markers should be handled the same way as none PTE.
6495 		 *
6496 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6497 		 * mutex internally, which make us return immediately.
6498 		 */
6499 		return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
6500 					ptep, entry, flags, &vmf);
6501 	}
6502 
6503 	ret = 0;
6504 
6505 	/*
6506 	 * entry could be a migration/hwpoison entry at this point, so this
6507 	 * check prevents the kernel from going below assuming that we have
6508 	 * an active hugepage in pagecache. This goto expects the 2nd page
6509 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6510 	 * properly handle it.
6511 	 */
6512 	if (!pte_present(entry)) {
6513 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6514 			/*
6515 			 * Release the hugetlb fault lock now, but retain
6516 			 * the vma lock, because it is needed to guard the
6517 			 * huge_pte_lockptr() later in
6518 			 * migration_entry_wait_huge(). The vma lock will
6519 			 * be released there.
6520 			 */
6521 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6522 			migration_entry_wait_huge(vma, ptep);
6523 			return 0;
6524 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6525 			ret = VM_FAULT_HWPOISON_LARGE |
6526 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6527 		goto out_mutex;
6528 	}
6529 
6530 	/*
6531 	 * If we are going to COW/unshare the mapping later, we examine the
6532 	 * pending reservations for this page now. This will ensure that any
6533 	 * allocations necessary to record that reservation occur outside the
6534 	 * spinlock. Also lookup the pagecache page now as it is used to
6535 	 * determine if a reservation has been consumed.
6536 	 */
6537 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6538 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6539 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6540 			ret = VM_FAULT_OOM;
6541 			goto out_mutex;
6542 		}
6543 		/* Just decrements count, does not deallocate */
6544 		vma_end_reservation(h, vma, haddr);
6545 
6546 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6547 							     vmf.pgoff);
6548 		if (IS_ERR(pagecache_folio))
6549 			pagecache_folio = NULL;
6550 	}
6551 
6552 	ptl = huge_pte_lock(h, mm, ptep);
6553 
6554 	/* Check for a racing update before calling hugetlb_wp() */
6555 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6556 		goto out_ptl;
6557 
6558 	/* Handle userfault-wp first, before trying to lock more pages */
6559 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6560 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6561 		if (!userfaultfd_wp_async(vma)) {
6562 			spin_unlock(ptl);
6563 			if (pagecache_folio) {
6564 				folio_unlock(pagecache_folio);
6565 				folio_put(pagecache_folio);
6566 			}
6567 			hugetlb_vma_unlock_read(vma);
6568 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6569 			return handle_userfault(&vmf, VM_UFFD_WP);
6570 		}
6571 
6572 		entry = huge_pte_clear_uffd_wp(entry);
6573 		set_huge_pte_at(mm, haddr, ptep, entry,
6574 				huge_page_size(hstate_vma(vma)));
6575 		/* Fallthrough to CoW */
6576 	}
6577 
6578 	/*
6579 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6580 	 * pagecache_folio, so here we need take the former one
6581 	 * when folio != pagecache_folio or !pagecache_folio.
6582 	 */
6583 	folio = page_folio(pte_page(entry));
6584 	if (folio != pagecache_folio)
6585 		if (!folio_trylock(folio)) {
6586 			need_wait_lock = 1;
6587 			goto out_ptl;
6588 		}
6589 
6590 	folio_get(folio);
6591 
6592 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6593 		if (!huge_pte_write(entry)) {
6594 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6595 					 pagecache_folio, ptl, &vmf);
6596 			goto out_put_page;
6597 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6598 			entry = huge_pte_mkdirty(entry);
6599 		}
6600 	}
6601 	entry = pte_mkyoung(entry);
6602 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6603 						flags & FAULT_FLAG_WRITE))
6604 		update_mmu_cache(vma, haddr, ptep);
6605 out_put_page:
6606 	if (folio != pagecache_folio)
6607 		folio_unlock(folio);
6608 	folio_put(folio);
6609 out_ptl:
6610 	spin_unlock(ptl);
6611 
6612 	if (pagecache_folio) {
6613 		folio_unlock(pagecache_folio);
6614 		folio_put(pagecache_folio);
6615 	}
6616 out_mutex:
6617 	hugetlb_vma_unlock_read(vma);
6618 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6619 	/*
6620 	 * Generally it's safe to hold refcount during waiting page lock. But
6621 	 * here we just wait to defer the next page fault to avoid busy loop and
6622 	 * the page is not used after unlocked before returning from the current
6623 	 * page fault. So we are safe from accessing freed page, even if we wait
6624 	 * here without taking refcount.
6625 	 */
6626 	if (need_wait_lock)
6627 		folio_wait_locked(folio);
6628 	return ret;
6629 }
6630 
6631 #ifdef CONFIG_USERFAULTFD
6632 /*
6633  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6634  */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6635 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6636 		struct vm_area_struct *vma, unsigned long address)
6637 {
6638 	struct mempolicy *mpol;
6639 	nodemask_t *nodemask;
6640 	struct folio *folio;
6641 	gfp_t gfp_mask;
6642 	int node;
6643 
6644 	gfp_mask = htlb_alloc_mask(h);
6645 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6646 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6647 	mpol_cond_put(mpol);
6648 
6649 	return folio;
6650 }
6651 
6652 /*
6653  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6654  * with modifications for hugetlb pages.
6655  */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6656 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6657 			     struct vm_area_struct *dst_vma,
6658 			     unsigned long dst_addr,
6659 			     unsigned long src_addr,
6660 			     uffd_flags_t flags,
6661 			     struct folio **foliop)
6662 {
6663 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6664 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6665 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6666 	struct hstate *h = hstate_vma(dst_vma);
6667 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6668 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6669 	unsigned long size;
6670 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6671 	pte_t _dst_pte;
6672 	spinlock_t *ptl;
6673 	int ret = -ENOMEM;
6674 	struct folio *folio;
6675 	int writable;
6676 	bool folio_in_pagecache = false;
6677 
6678 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6679 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6680 
6681 		/* Don't overwrite any existing PTEs (even markers) */
6682 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6683 			spin_unlock(ptl);
6684 			return -EEXIST;
6685 		}
6686 
6687 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6688 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6689 				huge_page_size(h));
6690 
6691 		/* No need to invalidate - it was non-present before */
6692 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6693 
6694 		spin_unlock(ptl);
6695 		return 0;
6696 	}
6697 
6698 	if (is_continue) {
6699 		ret = -EFAULT;
6700 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6701 		if (IS_ERR(folio))
6702 			goto out;
6703 		folio_in_pagecache = true;
6704 	} else if (!*foliop) {
6705 		/* If a folio already exists, then it's UFFDIO_COPY for
6706 		 * a non-missing case. Return -EEXIST.
6707 		 */
6708 		if (vm_shared &&
6709 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6710 			ret = -EEXIST;
6711 			goto out;
6712 		}
6713 
6714 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6715 		if (IS_ERR(folio)) {
6716 			ret = -ENOMEM;
6717 			goto out;
6718 		}
6719 
6720 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6721 					   false);
6722 
6723 		/* fallback to copy_from_user outside mmap_lock */
6724 		if (unlikely(ret)) {
6725 			ret = -ENOENT;
6726 			/* Free the allocated folio which may have
6727 			 * consumed a reservation.
6728 			 */
6729 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6730 			folio_put(folio);
6731 
6732 			/* Allocate a temporary folio to hold the copied
6733 			 * contents.
6734 			 */
6735 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6736 			if (!folio) {
6737 				ret = -ENOMEM;
6738 				goto out;
6739 			}
6740 			*foliop = folio;
6741 			/* Set the outparam foliop and return to the caller to
6742 			 * copy the contents outside the lock. Don't free the
6743 			 * folio.
6744 			 */
6745 			goto out;
6746 		}
6747 	} else {
6748 		if (vm_shared &&
6749 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6750 			folio_put(*foliop);
6751 			ret = -EEXIST;
6752 			*foliop = NULL;
6753 			goto out;
6754 		}
6755 
6756 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6757 		if (IS_ERR(folio)) {
6758 			folio_put(*foliop);
6759 			ret = -ENOMEM;
6760 			*foliop = NULL;
6761 			goto out;
6762 		}
6763 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6764 		folio_put(*foliop);
6765 		*foliop = NULL;
6766 		if (ret) {
6767 			folio_put(folio);
6768 			goto out;
6769 		}
6770 	}
6771 
6772 	/*
6773 	 * If we just allocated a new page, we need a memory barrier to ensure
6774 	 * that preceding stores to the page become visible before the
6775 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6776 	 * is what we need.
6777 	 *
6778 	 * In the case where we have not allocated a new page (is_continue),
6779 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6780 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6781 	 * before the set_pte_at() write.
6782 	 */
6783 	if (!is_continue)
6784 		__folio_mark_uptodate(folio);
6785 	else
6786 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6787 
6788 	/* Add shared, newly allocated pages to the page cache. */
6789 	if (vm_shared && !is_continue) {
6790 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6791 		ret = -EFAULT;
6792 		if (idx >= size)
6793 			goto out_release_nounlock;
6794 
6795 		/*
6796 		 * Serialization between remove_inode_hugepages() and
6797 		 * hugetlb_add_to_page_cache() below happens through the
6798 		 * hugetlb_fault_mutex_table that here must be hold by
6799 		 * the caller.
6800 		 */
6801 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6802 		if (ret)
6803 			goto out_release_nounlock;
6804 		folio_in_pagecache = true;
6805 	}
6806 
6807 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6808 
6809 	ret = -EIO;
6810 	if (folio_test_hwpoison(folio))
6811 		goto out_release_unlock;
6812 
6813 	/*
6814 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6815 	 * registered, we firstly wr-protect a none pte which has no page cache
6816 	 * page backing it, then access the page.
6817 	 */
6818 	ret = -EEXIST;
6819 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6820 		goto out_release_unlock;
6821 
6822 	if (folio_in_pagecache)
6823 		hugetlb_add_file_rmap(folio);
6824 	else
6825 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6826 
6827 	/*
6828 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6829 	 * with wp flag set, don't set pte write bit.
6830 	 */
6831 	if (wp_enabled || (is_continue && !vm_shared))
6832 		writable = 0;
6833 	else
6834 		writable = dst_vma->vm_flags & VM_WRITE;
6835 
6836 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6837 	/*
6838 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6839 	 * extremely important for hugetlbfs for now since swapping is not
6840 	 * supported, but we should still be clear in that this page cannot be
6841 	 * thrown away at will, even if write bit not set.
6842 	 */
6843 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6844 	_dst_pte = pte_mkyoung(_dst_pte);
6845 
6846 	if (wp_enabled)
6847 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6848 
6849 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6850 
6851 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6852 
6853 	/* No need to invalidate - it was non-present before */
6854 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6855 
6856 	spin_unlock(ptl);
6857 	if (!is_continue)
6858 		folio_set_hugetlb_migratable(folio);
6859 	if (vm_shared || is_continue)
6860 		folio_unlock(folio);
6861 	ret = 0;
6862 out:
6863 	return ret;
6864 out_release_unlock:
6865 	spin_unlock(ptl);
6866 	if (vm_shared || is_continue)
6867 		folio_unlock(folio);
6868 out_release_nounlock:
6869 	if (!folio_in_pagecache)
6870 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6871 	folio_put(folio);
6872 	goto out;
6873 }
6874 #endif /* CONFIG_USERFAULTFD */
6875 
hugetlb_follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)6876 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6877 				      unsigned long address, unsigned int flags,
6878 				      unsigned int *page_mask)
6879 {
6880 	struct hstate *h = hstate_vma(vma);
6881 	struct mm_struct *mm = vma->vm_mm;
6882 	unsigned long haddr = address & huge_page_mask(h);
6883 	struct page *page = NULL;
6884 	spinlock_t *ptl;
6885 	pte_t *pte, entry;
6886 	int ret;
6887 
6888 	hugetlb_vma_lock_read(vma);
6889 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6890 	if (!pte)
6891 		goto out_unlock;
6892 
6893 	ptl = huge_pte_lock(h, mm, pte);
6894 	entry = huge_ptep_get(pte);
6895 	if (pte_present(entry)) {
6896 		page = pte_page(entry);
6897 
6898 		if (!huge_pte_write(entry)) {
6899 			if (flags & FOLL_WRITE) {
6900 				page = NULL;
6901 				goto out;
6902 			}
6903 
6904 			if (gup_must_unshare(vma, flags, page)) {
6905 				/* Tell the caller to do unsharing */
6906 				page = ERR_PTR(-EMLINK);
6907 				goto out;
6908 			}
6909 		}
6910 
6911 		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6912 
6913 		/*
6914 		 * Note that page may be a sub-page, and with vmemmap
6915 		 * optimizations the page struct may be read only.
6916 		 * try_grab_page() will increase the ref count on the
6917 		 * head page, so this will be OK.
6918 		 *
6919 		 * try_grab_page() should always be able to get the page here,
6920 		 * because we hold the ptl lock and have verified pte_present().
6921 		 */
6922 		ret = try_grab_page(page, flags);
6923 
6924 		if (WARN_ON_ONCE(ret)) {
6925 			page = ERR_PTR(ret);
6926 			goto out;
6927 		}
6928 
6929 		*page_mask = (1U << huge_page_order(h)) - 1;
6930 	}
6931 out:
6932 	spin_unlock(ptl);
6933 out_unlock:
6934 	hugetlb_vma_unlock_read(vma);
6935 
6936 	/*
6937 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6938 	 * don't try to allocate a new page but just skip it.
6939 	 */
6940 	if (!page && (flags & FOLL_DUMP) &&
6941 	    !hugetlbfs_pagecache_present(h, vma, address))
6942 		page = ERR_PTR(-EFAULT);
6943 
6944 	return page;
6945 }
6946 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6947 long hugetlb_change_protection(struct vm_area_struct *vma,
6948 		unsigned long address, unsigned long end,
6949 		pgprot_t newprot, unsigned long cp_flags)
6950 {
6951 	struct mm_struct *mm = vma->vm_mm;
6952 	unsigned long start = address;
6953 	pte_t *ptep;
6954 	pte_t pte;
6955 	struct hstate *h = hstate_vma(vma);
6956 	long pages = 0, psize = huge_page_size(h);
6957 	bool shared_pmd = false;
6958 	struct mmu_notifier_range range;
6959 	unsigned long last_addr_mask;
6960 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6961 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6962 
6963 	/*
6964 	 * In the case of shared PMDs, the area to flush could be beyond
6965 	 * start/end.  Set range.start/range.end to cover the maximum possible
6966 	 * range if PMD sharing is possible.
6967 	 */
6968 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6969 				0, mm, start, end);
6970 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6971 
6972 	BUG_ON(address >= end);
6973 	flush_cache_range(vma, range.start, range.end);
6974 
6975 	mmu_notifier_invalidate_range_start(&range);
6976 	hugetlb_vma_lock_write(vma);
6977 	i_mmap_lock_write(vma->vm_file->f_mapping);
6978 	last_addr_mask = hugetlb_mask_last_page(h);
6979 	for (; address < end; address += psize) {
6980 		spinlock_t *ptl;
6981 		ptep = hugetlb_walk(vma, address, psize);
6982 		if (!ptep) {
6983 			if (!uffd_wp) {
6984 				address |= last_addr_mask;
6985 				continue;
6986 			}
6987 			/*
6988 			 * Userfaultfd wr-protect requires pgtable
6989 			 * pre-allocations to install pte markers.
6990 			 */
6991 			ptep = huge_pte_alloc(mm, vma, address, psize);
6992 			if (!ptep) {
6993 				pages = -ENOMEM;
6994 				break;
6995 			}
6996 		}
6997 		ptl = huge_pte_lock(h, mm, ptep);
6998 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6999 			/*
7000 			 * When uffd-wp is enabled on the vma, unshare
7001 			 * shouldn't happen at all.  Warn about it if it
7002 			 * happened due to some reason.
7003 			 */
7004 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7005 			pages++;
7006 			spin_unlock(ptl);
7007 			shared_pmd = true;
7008 			address |= last_addr_mask;
7009 			continue;
7010 		}
7011 		pte = huge_ptep_get(ptep);
7012 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7013 			/* Nothing to do. */
7014 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
7015 			swp_entry_t entry = pte_to_swp_entry(pte);
7016 			struct page *page = pfn_swap_entry_to_page(entry);
7017 			pte_t newpte = pte;
7018 
7019 			if (is_writable_migration_entry(entry)) {
7020 				if (PageAnon(page))
7021 					entry = make_readable_exclusive_migration_entry(
7022 								swp_offset(entry));
7023 				else
7024 					entry = make_readable_migration_entry(
7025 								swp_offset(entry));
7026 				newpte = swp_entry_to_pte(entry);
7027 				pages++;
7028 			}
7029 
7030 			if (uffd_wp)
7031 				newpte = pte_swp_mkuffd_wp(newpte);
7032 			else if (uffd_wp_resolve)
7033 				newpte = pte_swp_clear_uffd_wp(newpte);
7034 			if (!pte_same(pte, newpte))
7035 				set_huge_pte_at(mm, address, ptep, newpte, psize);
7036 		} else if (unlikely(is_pte_marker(pte))) {
7037 			/*
7038 			 * Do nothing on a poison marker; page is
7039 			 * corrupted, permissons do not apply.  Here
7040 			 * pte_marker_uffd_wp()==true implies !poison
7041 			 * because they're mutual exclusive.
7042 			 */
7043 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7044 				/* Safe to modify directly (non-present->none). */
7045 				huge_pte_clear(mm, address, ptep, psize);
7046 		} else if (!huge_pte_none(pte)) {
7047 			pte_t old_pte;
7048 			unsigned int shift = huge_page_shift(hstate_vma(vma));
7049 
7050 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7051 			pte = huge_pte_modify(old_pte, newprot);
7052 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7053 			if (uffd_wp)
7054 				pte = huge_pte_mkuffd_wp(pte);
7055 			else if (uffd_wp_resolve)
7056 				pte = huge_pte_clear_uffd_wp(pte);
7057 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7058 			pages++;
7059 		} else {
7060 			/* None pte */
7061 			if (unlikely(uffd_wp))
7062 				/* Safe to modify directly (none->non-present). */
7063 				set_huge_pte_at(mm, address, ptep,
7064 						make_pte_marker(PTE_MARKER_UFFD_WP),
7065 						psize);
7066 		}
7067 		spin_unlock(ptl);
7068 	}
7069 	/*
7070 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7071 	 * may have cleared our pud entry and done put_page on the page table:
7072 	 * once we release i_mmap_rwsem, another task can do the final put_page
7073 	 * and that page table be reused and filled with junk.  If we actually
7074 	 * did unshare a page of pmds, flush the range corresponding to the pud.
7075 	 */
7076 	if (shared_pmd)
7077 		flush_hugetlb_tlb_range(vma, range.start, range.end);
7078 	else
7079 		flush_hugetlb_tlb_range(vma, start, end);
7080 	/*
7081 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7082 	 * downgrading page table protection not changing it to point to a new
7083 	 * page.
7084 	 *
7085 	 * See Documentation/mm/mmu_notifier.rst
7086 	 */
7087 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7088 	hugetlb_vma_unlock_write(vma);
7089 	mmu_notifier_invalidate_range_end(&range);
7090 
7091 	return pages > 0 ? (pages << h->order) : pages;
7092 }
7093 
7094 /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7095 bool hugetlb_reserve_pages(struct inode *inode,
7096 					long from, long to,
7097 					struct vm_area_struct *vma,
7098 					vm_flags_t vm_flags)
7099 {
7100 	long chg = -1, add = -1;
7101 	struct hstate *h = hstate_inode(inode);
7102 	struct hugepage_subpool *spool = subpool_inode(inode);
7103 	struct resv_map *resv_map;
7104 	struct hugetlb_cgroup *h_cg = NULL;
7105 	long gbl_reserve, regions_needed = 0;
7106 
7107 	/* This should never happen */
7108 	if (from > to) {
7109 		VM_WARN(1, "%s called with a negative range\n", __func__);
7110 		return false;
7111 	}
7112 
7113 	/*
7114 	 * vma specific semaphore used for pmd sharing and fault/truncation
7115 	 * synchronization
7116 	 */
7117 	hugetlb_vma_lock_alloc(vma);
7118 
7119 	/*
7120 	 * Only apply hugepage reservation if asked. At fault time, an
7121 	 * attempt will be made for VM_NORESERVE to allocate a page
7122 	 * without using reserves
7123 	 */
7124 	if (vm_flags & VM_NORESERVE)
7125 		return true;
7126 
7127 	/*
7128 	 * Shared mappings base their reservation on the number of pages that
7129 	 * are already allocated on behalf of the file. Private mappings need
7130 	 * to reserve the full area even if read-only as mprotect() may be
7131 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7132 	 */
7133 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7134 		/*
7135 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7136 		 * called for inodes for which resv_maps were created (see
7137 		 * hugetlbfs_get_inode).
7138 		 */
7139 		resv_map = inode_resv_map(inode);
7140 
7141 		chg = region_chg(resv_map, from, to, &regions_needed);
7142 	} else {
7143 		/* Private mapping. */
7144 		resv_map = resv_map_alloc();
7145 		if (!resv_map)
7146 			goto out_err;
7147 
7148 		chg = to - from;
7149 
7150 		set_vma_resv_map(vma, resv_map);
7151 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7152 	}
7153 
7154 	if (chg < 0)
7155 		goto out_err;
7156 
7157 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7158 				chg * pages_per_huge_page(h), &h_cg) < 0)
7159 		goto out_err;
7160 
7161 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7162 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7163 		 * of the resv_map.
7164 		 */
7165 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7166 	}
7167 
7168 	/*
7169 	 * There must be enough pages in the subpool for the mapping. If
7170 	 * the subpool has a minimum size, there may be some global
7171 	 * reservations already in place (gbl_reserve).
7172 	 */
7173 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7174 	if (gbl_reserve < 0)
7175 		goto out_uncharge_cgroup;
7176 
7177 	/*
7178 	 * Check enough hugepages are available for the reservation.
7179 	 * Hand the pages back to the subpool if there are not
7180 	 */
7181 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7182 		goto out_put_pages;
7183 
7184 	/*
7185 	 * Account for the reservations made. Shared mappings record regions
7186 	 * that have reservations as they are shared by multiple VMAs.
7187 	 * When the last VMA disappears, the region map says how much
7188 	 * the reservation was and the page cache tells how much of
7189 	 * the reservation was consumed. Private mappings are per-VMA and
7190 	 * only the consumed reservations are tracked. When the VMA
7191 	 * disappears, the original reservation is the VMA size and the
7192 	 * consumed reservations are stored in the map. Hence, nothing
7193 	 * else has to be done for private mappings here
7194 	 */
7195 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7196 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7197 
7198 		if (unlikely(add < 0)) {
7199 			hugetlb_acct_memory(h, -gbl_reserve);
7200 			goto out_put_pages;
7201 		} else if (unlikely(chg > add)) {
7202 			/*
7203 			 * pages in this range were added to the reserve
7204 			 * map between region_chg and region_add.  This
7205 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7206 			 * the subpool and reserve counts modified above
7207 			 * based on the difference.
7208 			 */
7209 			long rsv_adjust;
7210 
7211 			/*
7212 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7213 			 * reference to h_cg->css. See comment below for detail.
7214 			 */
7215 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7216 				hstate_index(h),
7217 				(chg - add) * pages_per_huge_page(h), h_cg);
7218 
7219 			rsv_adjust = hugepage_subpool_put_pages(spool,
7220 								chg - add);
7221 			hugetlb_acct_memory(h, -rsv_adjust);
7222 		} else if (h_cg) {
7223 			/*
7224 			 * The file_regions will hold their own reference to
7225 			 * h_cg->css. So we should release the reference held
7226 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7227 			 * done.
7228 			 */
7229 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7230 		}
7231 	}
7232 	return true;
7233 
7234 out_put_pages:
7235 	/* put back original number of pages, chg */
7236 	(void)hugepage_subpool_put_pages(spool, chg);
7237 out_uncharge_cgroup:
7238 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7239 					    chg * pages_per_huge_page(h), h_cg);
7240 out_err:
7241 	hugetlb_vma_lock_free(vma);
7242 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7243 		/* Only call region_abort if the region_chg succeeded but the
7244 		 * region_add failed or didn't run.
7245 		 */
7246 		if (chg >= 0 && add < 0)
7247 			region_abort(resv_map, from, to, regions_needed);
7248 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7249 		kref_put(&resv_map->refs, resv_map_release);
7250 		set_vma_resv_map(vma, NULL);
7251 	}
7252 	return false;
7253 }
7254 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7255 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7256 								long freed)
7257 {
7258 	struct hstate *h = hstate_inode(inode);
7259 	struct resv_map *resv_map = inode_resv_map(inode);
7260 	long chg = 0;
7261 	struct hugepage_subpool *spool = subpool_inode(inode);
7262 	long gbl_reserve;
7263 
7264 	/*
7265 	 * Since this routine can be called in the evict inode path for all
7266 	 * hugetlbfs inodes, resv_map could be NULL.
7267 	 */
7268 	if (resv_map) {
7269 		chg = region_del(resv_map, start, end);
7270 		/*
7271 		 * region_del() can fail in the rare case where a region
7272 		 * must be split and another region descriptor can not be
7273 		 * allocated.  If end == LONG_MAX, it will not fail.
7274 		 */
7275 		if (chg < 0)
7276 			return chg;
7277 	}
7278 
7279 	spin_lock(&inode->i_lock);
7280 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7281 	spin_unlock(&inode->i_lock);
7282 
7283 	/*
7284 	 * If the subpool has a minimum size, the number of global
7285 	 * reservations to be released may be adjusted.
7286 	 *
7287 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7288 	 * won't go negative.
7289 	 */
7290 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7291 	hugetlb_acct_memory(h, -gbl_reserve);
7292 
7293 	return 0;
7294 }
7295 
7296 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7297 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7298 				struct vm_area_struct *vma,
7299 				unsigned long addr, pgoff_t idx)
7300 {
7301 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7302 				svma->vm_start;
7303 	unsigned long sbase = saddr & PUD_MASK;
7304 	unsigned long s_end = sbase + PUD_SIZE;
7305 
7306 	/* Allow segments to share if only one is marked locked */
7307 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7308 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7309 
7310 	/*
7311 	 * match the virtual addresses, permission and the alignment of the
7312 	 * page table page.
7313 	 *
7314 	 * Also, vma_lock (vm_private_data) is required for sharing.
7315 	 */
7316 	if (pmd_index(addr) != pmd_index(saddr) ||
7317 	    vm_flags != svm_flags ||
7318 	    !range_in_vma(svma, sbase, s_end) ||
7319 	    !svma->vm_private_data)
7320 		return 0;
7321 
7322 	return saddr;
7323 }
7324 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7325 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7326 {
7327 	unsigned long start = addr & PUD_MASK;
7328 	unsigned long end = start + PUD_SIZE;
7329 
7330 #ifdef CONFIG_USERFAULTFD
7331 	if (uffd_disable_huge_pmd_share(vma))
7332 		return false;
7333 #endif
7334 	/*
7335 	 * check on proper vm_flags and page table alignment
7336 	 */
7337 	if (!(vma->vm_flags & VM_MAYSHARE))
7338 		return false;
7339 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7340 		return false;
7341 	if (!range_in_vma(vma, start, end))
7342 		return false;
7343 	return true;
7344 }
7345 
7346 /*
7347  * Determine if start,end range within vma could be mapped by shared pmd.
7348  * If yes, adjust start and end to cover range associated with possible
7349  * shared pmd mappings.
7350  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7351 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7352 				unsigned long *start, unsigned long *end)
7353 {
7354 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7355 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7356 
7357 	/*
7358 	 * vma needs to span at least one aligned PUD size, and the range
7359 	 * must be at least partially within in.
7360 	 */
7361 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7362 		(*end <= v_start) || (*start >= v_end))
7363 		return;
7364 
7365 	/* Extend the range to be PUD aligned for a worst case scenario */
7366 	if (*start > v_start)
7367 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7368 
7369 	if (*end < v_end)
7370 		*end = ALIGN(*end, PUD_SIZE);
7371 }
7372 
7373 /*
7374  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7375  * and returns the corresponding pte. While this is not necessary for the
7376  * !shared pmd case because we can allocate the pmd later as well, it makes the
7377  * code much cleaner. pmd allocation is essential for the shared case because
7378  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7379  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7380  * bad pmd for sharing.
7381  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7382 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7383 		      unsigned long addr, pud_t *pud)
7384 {
7385 	struct address_space *mapping = vma->vm_file->f_mapping;
7386 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7387 			vma->vm_pgoff;
7388 	struct vm_area_struct *svma;
7389 	unsigned long saddr;
7390 	pte_t *spte = NULL;
7391 	pte_t *pte;
7392 
7393 	i_mmap_lock_read(mapping);
7394 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7395 		if (svma == vma)
7396 			continue;
7397 
7398 		saddr = page_table_shareable(svma, vma, addr, idx);
7399 		if (saddr) {
7400 			spte = hugetlb_walk(svma, saddr,
7401 					    vma_mmu_pagesize(svma));
7402 			if (spte) {
7403 				get_page(virt_to_page(spte));
7404 				break;
7405 			}
7406 		}
7407 	}
7408 
7409 	if (!spte)
7410 		goto out;
7411 
7412 	spin_lock(&mm->page_table_lock);
7413 	if (pud_none(*pud)) {
7414 		pud_populate(mm, pud,
7415 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7416 		mm_inc_nr_pmds(mm);
7417 	} else {
7418 		put_page(virt_to_page(spte));
7419 	}
7420 	spin_unlock(&mm->page_table_lock);
7421 out:
7422 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7423 	i_mmap_unlock_read(mapping);
7424 	return pte;
7425 }
7426 
7427 /*
7428  * unmap huge page backed by shared pte.
7429  *
7430  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7431  * indicated by page_count > 1, unmap is achieved by clearing pud and
7432  * decrementing the ref count. If count == 1, the pte page is not shared.
7433  *
7434  * Called with page table lock held.
7435  *
7436  * returns: 1 successfully unmapped a shared pte page
7437  *	    0 the underlying pte page is not shared, or it is the last user
7438  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7439 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7440 					unsigned long addr, pte_t *ptep)
7441 {
7442 	pgd_t *pgd = pgd_offset(mm, addr);
7443 	p4d_t *p4d = p4d_offset(pgd, addr);
7444 	pud_t *pud = pud_offset(p4d, addr);
7445 
7446 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7447 	hugetlb_vma_assert_locked(vma);
7448 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7449 	if (page_count(virt_to_page(ptep)) == 1)
7450 		return 0;
7451 
7452 	pud_clear(pud);
7453 	put_page(virt_to_page(ptep));
7454 	mm_dec_nr_pmds(mm);
7455 	return 1;
7456 }
7457 
7458 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7459 
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7460 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7461 		      unsigned long addr, pud_t *pud)
7462 {
7463 	return NULL;
7464 }
7465 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7466 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7467 				unsigned long addr, pte_t *ptep)
7468 {
7469 	return 0;
7470 }
7471 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7472 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7473 				unsigned long *start, unsigned long *end)
7474 {
7475 }
7476 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7477 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7478 {
7479 	return false;
7480 }
7481 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7482 
7483 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7484 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7485 			unsigned long addr, unsigned long sz)
7486 {
7487 	pgd_t *pgd;
7488 	p4d_t *p4d;
7489 	pud_t *pud;
7490 	pte_t *pte = NULL;
7491 
7492 	pgd = pgd_offset(mm, addr);
7493 	p4d = p4d_alloc(mm, pgd, addr);
7494 	if (!p4d)
7495 		return NULL;
7496 	pud = pud_alloc(mm, p4d, addr);
7497 	if (pud) {
7498 		if (sz == PUD_SIZE) {
7499 			pte = (pte_t *)pud;
7500 		} else {
7501 			BUG_ON(sz != PMD_SIZE);
7502 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7503 				pte = huge_pmd_share(mm, vma, addr, pud);
7504 			else
7505 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7506 		}
7507 	}
7508 
7509 	if (pte) {
7510 		pte_t pteval = ptep_get_lockless(pte);
7511 
7512 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7513 	}
7514 
7515 	return pte;
7516 }
7517 
7518 /*
7519  * huge_pte_offset() - Walk the page table to resolve the hugepage
7520  * entry at address @addr
7521  *
7522  * Return: Pointer to page table entry (PUD or PMD) for
7523  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7524  * size @sz doesn't match the hugepage size at this level of the page
7525  * table.
7526  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7527 pte_t *huge_pte_offset(struct mm_struct *mm,
7528 		       unsigned long addr, unsigned long sz)
7529 {
7530 	pgd_t *pgd;
7531 	p4d_t *p4d;
7532 	pud_t *pud;
7533 	pmd_t *pmd;
7534 
7535 	pgd = pgd_offset(mm, addr);
7536 	if (!pgd_present(*pgd))
7537 		return NULL;
7538 	p4d = p4d_offset(pgd, addr);
7539 	if (!p4d_present(*p4d))
7540 		return NULL;
7541 
7542 	pud = pud_offset(p4d, addr);
7543 	if (sz == PUD_SIZE)
7544 		/* must be pud huge, non-present or none */
7545 		return (pte_t *)pud;
7546 	if (!pud_present(*pud))
7547 		return NULL;
7548 	/* must have a valid entry and size to go further */
7549 
7550 	pmd = pmd_offset(pud, addr);
7551 	/* must be pmd huge, non-present or none */
7552 	return (pte_t *)pmd;
7553 }
7554 
7555 /*
7556  * Return a mask that can be used to update an address to the last huge
7557  * page in a page table page mapping size.  Used to skip non-present
7558  * page table entries when linearly scanning address ranges.  Architectures
7559  * with unique huge page to page table relationships can define their own
7560  * version of this routine.
7561  */
hugetlb_mask_last_page(struct hstate * h)7562 unsigned long hugetlb_mask_last_page(struct hstate *h)
7563 {
7564 	unsigned long hp_size = huge_page_size(h);
7565 
7566 	if (hp_size == PUD_SIZE)
7567 		return P4D_SIZE - PUD_SIZE;
7568 	else if (hp_size == PMD_SIZE)
7569 		return PUD_SIZE - PMD_SIZE;
7570 	else
7571 		return 0UL;
7572 }
7573 
7574 #else
7575 
7576 /* See description above.  Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7577 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7578 {
7579 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7580 	if (huge_page_size(h) == PMD_SIZE)
7581 		return PUD_SIZE - PMD_SIZE;
7582 #endif
7583 	return 0UL;
7584 }
7585 
7586 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7587 
7588 /*
7589  * These functions are overwritable if your architecture needs its own
7590  * behavior.
7591  */
isolate_hugetlb(struct folio * folio,struct list_head * list)7592 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7593 {
7594 	bool ret = true;
7595 
7596 	spin_lock_irq(&hugetlb_lock);
7597 	if (!folio_test_hugetlb(folio) ||
7598 	    !folio_test_hugetlb_migratable(folio) ||
7599 	    !folio_try_get(folio)) {
7600 		ret = false;
7601 		goto unlock;
7602 	}
7603 	folio_clear_hugetlb_migratable(folio);
7604 	list_move_tail(&folio->lru, list);
7605 unlock:
7606 	spin_unlock_irq(&hugetlb_lock);
7607 	return ret;
7608 }
7609 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7610 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7611 {
7612 	int ret = 0;
7613 
7614 	*hugetlb = false;
7615 	spin_lock_irq(&hugetlb_lock);
7616 	if (folio_test_hugetlb(folio)) {
7617 		*hugetlb = true;
7618 		if (folio_test_hugetlb_freed(folio))
7619 			ret = 0;
7620 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7621 			ret = folio_try_get(folio);
7622 		else
7623 			ret = -EBUSY;
7624 	}
7625 	spin_unlock_irq(&hugetlb_lock);
7626 	return ret;
7627 }
7628 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7629 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7630 				bool *migratable_cleared)
7631 {
7632 	int ret;
7633 
7634 	spin_lock_irq(&hugetlb_lock);
7635 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7636 	spin_unlock_irq(&hugetlb_lock);
7637 	return ret;
7638 }
7639 
folio_putback_active_hugetlb(struct folio * folio)7640 void folio_putback_active_hugetlb(struct folio *folio)
7641 {
7642 	spin_lock_irq(&hugetlb_lock);
7643 	folio_set_hugetlb_migratable(folio);
7644 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7645 	spin_unlock_irq(&hugetlb_lock);
7646 	folio_put(folio);
7647 }
7648 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7649 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7650 {
7651 	struct hstate *h = folio_hstate(old_folio);
7652 
7653 	hugetlb_cgroup_migrate(old_folio, new_folio);
7654 	set_page_owner_migrate_reason(&new_folio->page, reason);
7655 
7656 	/*
7657 	 * transfer temporary state of the new hugetlb folio. This is
7658 	 * reverse to other transitions because the newpage is going to
7659 	 * be final while the old one will be freed so it takes over
7660 	 * the temporary status.
7661 	 *
7662 	 * Also note that we have to transfer the per-node surplus state
7663 	 * here as well otherwise the global surplus count will not match
7664 	 * the per-node's.
7665 	 */
7666 	if (folio_test_hugetlb_temporary(new_folio)) {
7667 		int old_nid = folio_nid(old_folio);
7668 		int new_nid = folio_nid(new_folio);
7669 
7670 		folio_set_hugetlb_temporary(old_folio);
7671 		folio_clear_hugetlb_temporary(new_folio);
7672 
7673 
7674 		/*
7675 		 * There is no need to transfer the per-node surplus state
7676 		 * when we do not cross the node.
7677 		 */
7678 		if (new_nid == old_nid)
7679 			return;
7680 		spin_lock_irq(&hugetlb_lock);
7681 		if (h->surplus_huge_pages_node[old_nid]) {
7682 			h->surplus_huge_pages_node[old_nid]--;
7683 			h->surplus_huge_pages_node[new_nid]++;
7684 		}
7685 		spin_unlock_irq(&hugetlb_lock);
7686 	}
7687 }
7688 
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7689 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7690 				   unsigned long start,
7691 				   unsigned long end)
7692 {
7693 	struct hstate *h = hstate_vma(vma);
7694 	unsigned long sz = huge_page_size(h);
7695 	struct mm_struct *mm = vma->vm_mm;
7696 	struct mmu_notifier_range range;
7697 	unsigned long address;
7698 	spinlock_t *ptl;
7699 	pte_t *ptep;
7700 
7701 	if (!(vma->vm_flags & VM_MAYSHARE))
7702 		return;
7703 
7704 	if (start >= end)
7705 		return;
7706 
7707 	flush_cache_range(vma, start, end);
7708 	/*
7709 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7710 	 * we have already done the PUD_SIZE alignment.
7711 	 */
7712 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7713 				start, end);
7714 	mmu_notifier_invalidate_range_start(&range);
7715 	hugetlb_vma_lock_write(vma);
7716 	i_mmap_lock_write(vma->vm_file->f_mapping);
7717 	for (address = start; address < end; address += PUD_SIZE) {
7718 		ptep = hugetlb_walk(vma, address, sz);
7719 		if (!ptep)
7720 			continue;
7721 		ptl = huge_pte_lock(h, mm, ptep);
7722 		huge_pmd_unshare(mm, vma, address, ptep);
7723 		spin_unlock(ptl);
7724 	}
7725 	flush_hugetlb_tlb_range(vma, start, end);
7726 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7727 	hugetlb_vma_unlock_write(vma);
7728 	/*
7729 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7730 	 * Documentation/mm/mmu_notifier.rst.
7731 	 */
7732 	mmu_notifier_invalidate_range_end(&range);
7733 }
7734 
7735 /*
7736  * This function will unconditionally remove all the shared pmd pgtable entries
7737  * within the specific vma for a hugetlbfs memory range.
7738  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7739 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7740 {
7741 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7742 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7743 }
7744 
7745 #ifdef CONFIG_CMA
7746 static bool cma_reserve_called __initdata;
7747 
cmdline_parse_hugetlb_cma(char * p)7748 static int __init cmdline_parse_hugetlb_cma(char *p)
7749 {
7750 	int nid, count = 0;
7751 	unsigned long tmp;
7752 	char *s = p;
7753 
7754 	while (*s) {
7755 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7756 			break;
7757 
7758 		if (s[count] == ':') {
7759 			if (tmp >= MAX_NUMNODES)
7760 				break;
7761 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7762 
7763 			s += count + 1;
7764 			tmp = memparse(s, &s);
7765 			hugetlb_cma_size_in_node[nid] = tmp;
7766 			hugetlb_cma_size += tmp;
7767 
7768 			/*
7769 			 * Skip the separator if have one, otherwise
7770 			 * break the parsing.
7771 			 */
7772 			if (*s == ',')
7773 				s++;
7774 			else
7775 				break;
7776 		} else {
7777 			hugetlb_cma_size = memparse(p, &p);
7778 			break;
7779 		}
7780 	}
7781 
7782 	return 0;
7783 }
7784 
7785 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7786 
hugetlb_cma_reserve(int order)7787 void __init hugetlb_cma_reserve(int order)
7788 {
7789 	unsigned long size, reserved, per_node;
7790 	bool node_specific_cma_alloc = false;
7791 	int nid;
7792 
7793 	/*
7794 	 * HugeTLB CMA reservation is required for gigantic
7795 	 * huge pages which could not be allocated via the
7796 	 * page allocator. Just warn if there is any change
7797 	 * breaking this assumption.
7798 	 */
7799 	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7800 	cma_reserve_called = true;
7801 
7802 	if (!hugetlb_cma_size)
7803 		return;
7804 
7805 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7806 		if (hugetlb_cma_size_in_node[nid] == 0)
7807 			continue;
7808 
7809 		if (!node_online(nid)) {
7810 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7811 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7812 			hugetlb_cma_size_in_node[nid] = 0;
7813 			continue;
7814 		}
7815 
7816 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7817 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7818 				nid, (PAGE_SIZE << order) / SZ_1M);
7819 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7820 			hugetlb_cma_size_in_node[nid] = 0;
7821 		} else {
7822 			node_specific_cma_alloc = true;
7823 		}
7824 	}
7825 
7826 	/* Validate the CMA size again in case some invalid nodes specified. */
7827 	if (!hugetlb_cma_size)
7828 		return;
7829 
7830 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7831 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7832 			(PAGE_SIZE << order) / SZ_1M);
7833 		hugetlb_cma_size = 0;
7834 		return;
7835 	}
7836 
7837 	if (!node_specific_cma_alloc) {
7838 		/*
7839 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7840 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7841 		 */
7842 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7843 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7844 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7845 	}
7846 
7847 	reserved = 0;
7848 	for_each_online_node(nid) {
7849 		int res;
7850 		char name[CMA_MAX_NAME];
7851 
7852 		if (node_specific_cma_alloc) {
7853 			if (hugetlb_cma_size_in_node[nid] == 0)
7854 				continue;
7855 
7856 			size = hugetlb_cma_size_in_node[nid];
7857 		} else {
7858 			size = min(per_node, hugetlb_cma_size - reserved);
7859 		}
7860 
7861 		size = round_up(size, PAGE_SIZE << order);
7862 
7863 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7864 		/*
7865 		 * Note that 'order per bit' is based on smallest size that
7866 		 * may be returned to CMA allocator in the case of
7867 		 * huge page demotion.
7868 		 */
7869 		res = cma_declare_contiguous_nid(0, size, 0,
7870 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7871 						 0, false, name,
7872 						 &hugetlb_cma[nid], nid);
7873 		if (res) {
7874 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7875 				res, nid);
7876 			continue;
7877 		}
7878 
7879 		reserved += size;
7880 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7881 			size / SZ_1M, nid);
7882 
7883 		if (reserved >= hugetlb_cma_size)
7884 			break;
7885 	}
7886 
7887 	if (!reserved)
7888 		/*
7889 		 * hugetlb_cma_size is used to determine if allocations from
7890 		 * cma are possible.  Set to zero if no cma regions are set up.
7891 		 */
7892 		hugetlb_cma_size = 0;
7893 }
7894 
hugetlb_cma_check(void)7895 static void __init hugetlb_cma_check(void)
7896 {
7897 	if (!hugetlb_cma_size || cma_reserve_called)
7898 		return;
7899 
7900 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7901 }
7902 
7903 #endif /* CONFIG_CMA */
7904