xref: /linux/mm/hugetlb.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39 
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43 
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55 
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62 				1 << order);
63 }
64 #else
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67 	return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71 
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73 
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86 
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93 
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 		unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102 
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105 	if (spool->count)
106 		return false;
107 	if (spool->max_hpages != -1)
108 		return spool->used_hpages == 0;
109 	if (spool->min_hpages != -1)
110 		return spool->rsv_hpages == spool->min_hpages;
111 
112 	return true;
113 }
114 
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 						unsigned long irq_flags)
117 {
118 	spin_unlock_irqrestore(&spool->lock, irq_flags);
119 
120 	/* If no pages are used, and no other handles to the subpool
121 	 * remain, give up any reservations based on minimum size and
122 	 * free the subpool */
123 	if (subpool_is_free(spool)) {
124 		if (spool->min_hpages != -1)
125 			hugetlb_acct_memory(spool->hstate,
126 						-spool->min_hpages);
127 		kfree(spool);
128 	}
129 }
130 
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 						long min_hpages)
133 {
134 	struct hugepage_subpool *spool;
135 
136 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 	if (!spool)
138 		return NULL;
139 
140 	spin_lock_init(&spool->lock);
141 	spool->count = 1;
142 	spool->max_hpages = max_hpages;
143 	spool->hstate = h;
144 	spool->min_hpages = min_hpages;
145 
146 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 		kfree(spool);
148 		return NULL;
149 	}
150 	spool->rsv_hpages = min_hpages;
151 
152 	return spool;
153 }
154 
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&spool->lock, flags);
160 	BUG_ON(!spool->count);
161 	spool->count--;
162 	unlock_or_release_subpool(spool, flags);
163 }
164 
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174 				      long delta)
175 {
176 	long ret = delta;
177 
178 	if (!spool)
179 		return ret;
180 
181 	spin_lock_irq(&spool->lock);
182 
183 	if (spool->max_hpages != -1) {		/* maximum size accounting */
184 		if ((spool->used_hpages + delta) <= spool->max_hpages)
185 			spool->used_hpages += delta;
186 		else {
187 			ret = -ENOMEM;
188 			goto unlock_ret;
189 		}
190 	}
191 
192 	/* minimum size accounting */
193 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 		if (delta > spool->rsv_hpages) {
195 			/*
196 			 * Asking for more reserves than those already taken on
197 			 * behalf of subpool.  Return difference.
198 			 */
199 			ret = delta - spool->rsv_hpages;
200 			spool->rsv_hpages = 0;
201 		} else {
202 			ret = 0;	/* reserves already accounted for */
203 			spool->rsv_hpages -= delta;
204 		}
205 	}
206 
207 unlock_ret:
208 	spin_unlock_irq(&spool->lock);
209 	return ret;
210 }
211 
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219 				       long delta)
220 {
221 	long ret = delta;
222 	unsigned long flags;
223 
224 	if (!spool)
225 		return delta;
226 
227 	spin_lock_irqsave(&spool->lock, flags);
228 
229 	if (spool->max_hpages != -1)		/* maximum size accounting */
230 		spool->used_hpages -= delta;
231 
232 	 /* minimum size accounting */
233 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 		if (spool->rsv_hpages + delta <= spool->min_hpages)
235 			ret = 0;
236 		else
237 			ret = spool->rsv_hpages + delta - spool->min_hpages;
238 
239 		spool->rsv_hpages += delta;
240 		if (spool->rsv_hpages > spool->min_hpages)
241 			spool->rsv_hpages = spool->min_hpages;
242 	}
243 
244 	/*
245 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 	 * quota reference, free it now.
247 	 */
248 	unlock_or_release_subpool(spool, flags);
249 
250 	return ret;
251 }
252 
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255 	return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257 
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260 	return subpool_inode(file_inode(vma->vm_file));
261 }
262 
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268 	if (__vma_shareable_lock(vma)) {
269 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270 
271 		down_read(&vma_lock->rw_sema);
272 	} else if (__vma_private_lock(vma)) {
273 		struct resv_map *resv_map = vma_resv_map(vma);
274 
275 		down_read(&resv_map->rw_sema);
276 	}
277 }
278 
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281 	if (__vma_shareable_lock(vma)) {
282 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283 
284 		up_read(&vma_lock->rw_sema);
285 	} else if (__vma_private_lock(vma)) {
286 		struct resv_map *resv_map = vma_resv_map(vma);
287 
288 		up_read(&resv_map->rw_sema);
289 	}
290 }
291 
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294 	if (__vma_shareable_lock(vma)) {
295 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 
297 		down_write(&vma_lock->rw_sema);
298 	} else if (__vma_private_lock(vma)) {
299 		struct resv_map *resv_map = vma_resv_map(vma);
300 
301 		down_write(&resv_map->rw_sema);
302 	}
303 }
304 
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307 	if (__vma_shareable_lock(vma)) {
308 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309 
310 		up_write(&vma_lock->rw_sema);
311 	} else if (__vma_private_lock(vma)) {
312 		struct resv_map *resv_map = vma_resv_map(vma);
313 
314 		up_write(&resv_map->rw_sema);
315 	}
316 }
317 
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320 
321 	if (__vma_shareable_lock(vma)) {
322 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323 
324 		return down_write_trylock(&vma_lock->rw_sema);
325 	} else if (__vma_private_lock(vma)) {
326 		struct resv_map *resv_map = vma_resv_map(vma);
327 
328 		return down_write_trylock(&resv_map->rw_sema);
329 	}
330 
331 	return 1;
332 }
333 
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336 	if (__vma_shareable_lock(vma)) {
337 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338 
339 		lockdep_assert_held(&vma_lock->rw_sema);
340 	} else if (__vma_private_lock(vma)) {
341 		struct resv_map *resv_map = vma_resv_map(vma);
342 
343 		lockdep_assert_held(&resv_map->rw_sema);
344 	}
345 }
346 
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 			struct hugetlb_vma_lock, refs);
351 
352 	kfree(vma_lock);
353 }
354 
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357 	struct vm_area_struct *vma = vma_lock->vma;
358 
359 	/*
360 	 * vma_lock structure may or not be released as a result of put,
361 	 * it certainly will no longer be attached to vma so clear pointer.
362 	 * Semaphore synchronizes access to vma_lock->vma field.
363 	 */
364 	vma_lock->vma = NULL;
365 	vma->vm_private_data = NULL;
366 	up_write(&vma_lock->rw_sema);
367 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369 
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372 	if (__vma_shareable_lock(vma)) {
373 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374 
375 		__hugetlb_vma_unlock_write_put(vma_lock);
376 	} else if (__vma_private_lock(vma)) {
377 		struct resv_map *resv_map = vma_resv_map(vma);
378 
379 		/* no free for anon vmas, but still need to unlock */
380 		up_write(&resv_map->rw_sema);
381 	}
382 }
383 
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386 	/*
387 	 * Only present in sharable vmas.
388 	 */
389 	if (!vma || !__vma_shareable_lock(vma))
390 		return;
391 
392 	if (vma->vm_private_data) {
393 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394 
395 		down_write(&vma_lock->rw_sema);
396 		__hugetlb_vma_unlock_write_put(vma_lock);
397 	}
398 }
399 
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402 	struct hugetlb_vma_lock *vma_lock;
403 
404 	/* Only establish in (flags) sharable vmas */
405 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406 		return;
407 
408 	/* Should never get here with non-NULL vm_private_data */
409 	if (vma->vm_private_data)
410 		return;
411 
412 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413 	if (!vma_lock) {
414 		/*
415 		 * If we can not allocate structure, then vma can not
416 		 * participate in pmd sharing.  This is only a possible
417 		 * performance enhancement and memory saving issue.
418 		 * However, the lock is also used to synchronize page
419 		 * faults with truncation.  If the lock is not present,
420 		 * unlikely races could leave pages in a file past i_size
421 		 * until the file is removed.  Warn in the unlikely case of
422 		 * allocation failure.
423 		 */
424 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425 		return;
426 	}
427 
428 	kref_init(&vma_lock->refs);
429 	init_rwsem(&vma_lock->rw_sema);
430 	vma_lock->vma = vma;
431 	vma->vm_private_data = vma_lock;
432 }
433 
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440 	struct file_region *nrg;
441 
442 	VM_BUG_ON(resv->region_cache_count <= 0);
443 
444 	resv->region_cache_count--;
445 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 	list_del(&nrg->link);
447 
448 	nrg->from = from;
449 	nrg->to = to;
450 
451 	return nrg;
452 }
453 
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 					      struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458 	nrg->reservation_counter = rg->reservation_counter;
459 	nrg->css = rg->css;
460 	if (rg->css)
461 		css_get(rg->css);
462 #endif
463 }
464 
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 						struct hstate *h,
468 						struct resv_map *resv,
469 						struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472 	if (h_cg) {
473 		nrg->reservation_counter =
474 			&h_cg->rsvd_hugepage[hstate_index(h)];
475 		nrg->css = &h_cg->css;
476 		/*
477 		 * The caller will hold exactly one h_cg->css reference for the
478 		 * whole contiguous reservation region. But this area might be
479 		 * scattered when there are already some file_regions reside in
480 		 * it. As a result, many file_regions may share only one css
481 		 * reference. In order to ensure that one file_region must hold
482 		 * exactly one h_cg->css reference, we should do css_get for
483 		 * each file_region and leave the reference held by caller
484 		 * untouched.
485 		 */
486 		css_get(&h_cg->css);
487 		if (!resv->pages_per_hpage)
488 			resv->pages_per_hpage = pages_per_huge_page(h);
489 		/* pages_per_hpage should be the same for all entries in
490 		 * a resv_map.
491 		 */
492 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 	} else {
494 		nrg->reservation_counter = NULL;
495 		nrg->css = NULL;
496 	}
497 #endif
498 }
499 
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503 	if (rg->css)
504 		css_put(rg->css);
505 #endif
506 }
507 
508 static bool has_same_uncharge_info(struct file_region *rg,
509 				   struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512 	return rg->reservation_counter == org->reservation_counter &&
513 	       rg->css == org->css;
514 
515 #else
516 	return true;
517 #endif
518 }
519 
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522 	struct file_region *nrg, *prg;
523 
524 	prg = list_prev_entry(rg, link);
525 	if (&prg->link != &resv->regions && prg->to == rg->from &&
526 	    has_same_uncharge_info(prg, rg)) {
527 		prg->to = rg->to;
528 
529 		list_del(&rg->link);
530 		put_uncharge_info(rg);
531 		kfree(rg);
532 
533 		rg = prg;
534 	}
535 
536 	nrg = list_next_entry(rg, link);
537 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 	    has_same_uncharge_info(nrg, rg)) {
539 		nrg->from = rg->from;
540 
541 		list_del(&rg->link);
542 		put_uncharge_info(rg);
543 		kfree(rg);
544 	}
545 }
546 
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 		     long *regions_needed)
551 {
552 	struct file_region *nrg;
553 
554 	if (!regions_needed) {
555 		nrg = get_file_region_entry_from_cache(map, from, to);
556 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 		list_add(&nrg->link, rg);
558 		coalesce_file_region(map, nrg);
559 	} else
560 		*regions_needed += 1;
561 
562 	return to - from;
563 }
564 
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 				     struct hugetlb_cgroup *h_cg,
575 				     struct hstate *h, long *regions_needed)
576 {
577 	long add = 0;
578 	struct list_head *head = &resv->regions;
579 	long last_accounted_offset = f;
580 	struct file_region *iter, *trg = NULL;
581 	struct list_head *rg = NULL;
582 
583 	if (regions_needed)
584 		*regions_needed = 0;
585 
586 	/* In this loop, we essentially handle an entry for the range
587 	 * [last_accounted_offset, iter->from), at every iteration, with some
588 	 * bounds checking.
589 	 */
590 	list_for_each_entry_safe(iter, trg, head, link) {
591 		/* Skip irrelevant regions that start before our range. */
592 		if (iter->from < f) {
593 			/* If this region ends after the last accounted offset,
594 			 * then we need to update last_accounted_offset.
595 			 */
596 			if (iter->to > last_accounted_offset)
597 				last_accounted_offset = iter->to;
598 			continue;
599 		}
600 
601 		/* When we find a region that starts beyond our range, we've
602 		 * finished.
603 		 */
604 		if (iter->from >= t) {
605 			rg = iter->link.prev;
606 			break;
607 		}
608 
609 		/* Add an entry for last_accounted_offset -> iter->from, and
610 		 * update last_accounted_offset.
611 		 */
612 		if (iter->from > last_accounted_offset)
613 			add += hugetlb_resv_map_add(resv, iter->link.prev,
614 						    last_accounted_offset,
615 						    iter->from, h, h_cg,
616 						    regions_needed);
617 
618 		last_accounted_offset = iter->to;
619 	}
620 
621 	/* Handle the case where our range extends beyond
622 	 * last_accounted_offset.
623 	 */
624 	if (!rg)
625 		rg = head->prev;
626 	if (last_accounted_offset < t)
627 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 					    t, h, h_cg, regions_needed);
629 
630 	return add;
631 }
632 
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636 					int regions_needed)
637 	__must_hold(&resv->lock)
638 {
639 	LIST_HEAD(allocated_regions);
640 	int to_allocate = 0, i = 0;
641 	struct file_region *trg = NULL, *rg = NULL;
642 
643 	VM_BUG_ON(regions_needed < 0);
644 
645 	/*
646 	 * Check for sufficient descriptors in the cache to accommodate
647 	 * the number of in progress add operations plus regions_needed.
648 	 *
649 	 * This is a while loop because when we drop the lock, some other call
650 	 * to region_add or region_del may have consumed some region_entries,
651 	 * so we keep looping here until we finally have enough entries for
652 	 * (adds_in_progress + regions_needed).
653 	 */
654 	while (resv->region_cache_count <
655 	       (resv->adds_in_progress + regions_needed)) {
656 		to_allocate = resv->adds_in_progress + regions_needed -
657 			      resv->region_cache_count;
658 
659 		/* At this point, we should have enough entries in the cache
660 		 * for all the existing adds_in_progress. We should only be
661 		 * needing to allocate for regions_needed.
662 		 */
663 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664 
665 		spin_unlock(&resv->lock);
666 		for (i = 0; i < to_allocate; i++) {
667 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668 			if (!trg)
669 				goto out_of_memory;
670 			list_add(&trg->link, &allocated_regions);
671 		}
672 
673 		spin_lock(&resv->lock);
674 
675 		list_splice(&allocated_regions, &resv->region_cache);
676 		resv->region_cache_count += to_allocate;
677 	}
678 
679 	return 0;
680 
681 out_of_memory:
682 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683 		list_del(&rg->link);
684 		kfree(rg);
685 	}
686 	return -ENOMEM;
687 }
688 
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707 		       long in_regions_needed, struct hstate *h,
708 		       struct hugetlb_cgroup *h_cg)
709 {
710 	long add = 0, actual_regions_needed = 0;
711 
712 	spin_lock(&resv->lock);
713 retry:
714 
715 	/* Count how many regions are actually needed to execute this add. */
716 	add_reservation_in_range(resv, f, t, NULL, NULL,
717 				 &actual_regions_needed);
718 
719 	/*
720 	 * Check for sufficient descriptors in the cache to accommodate
721 	 * this add operation. Note that actual_regions_needed may be greater
722 	 * than in_regions_needed, as the resv_map may have been modified since
723 	 * the region_chg call. In this case, we need to make sure that we
724 	 * allocate extra entries, such that we have enough for all the
725 	 * existing adds_in_progress, plus the excess needed for this
726 	 * operation.
727 	 */
728 	if (actual_regions_needed > in_regions_needed &&
729 	    resv->region_cache_count <
730 		    resv->adds_in_progress +
731 			    (actual_regions_needed - in_regions_needed)) {
732 		/* region_add operation of range 1 should never need to
733 		 * allocate file_region entries.
734 		 */
735 		VM_BUG_ON(t - f <= 1);
736 
737 		if (allocate_file_region_entries(
738 			    resv, actual_regions_needed - in_regions_needed)) {
739 			return -ENOMEM;
740 		}
741 
742 		goto retry;
743 	}
744 
745 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746 
747 	resv->adds_in_progress -= in_regions_needed;
748 
749 	spin_unlock(&resv->lock);
750 	return add;
751 }
752 
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774 		       long *out_regions_needed)
775 {
776 	long chg = 0;
777 
778 	spin_lock(&resv->lock);
779 
780 	/* Count how many hugepages in this range are NOT represented. */
781 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782 				       out_regions_needed);
783 
784 	if (*out_regions_needed == 0)
785 		*out_regions_needed = 1;
786 
787 	if (allocate_file_region_entries(resv, *out_regions_needed))
788 		return -ENOMEM;
789 
790 	resv->adds_in_progress += *out_regions_needed;
791 
792 	spin_unlock(&resv->lock);
793 	return chg;
794 }
795 
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810 			 long regions_needed)
811 {
812 	spin_lock(&resv->lock);
813 	VM_BUG_ON(!resv->region_cache_count);
814 	resv->adds_in_progress -= regions_needed;
815 	spin_unlock(&resv->lock);
816 }
817 
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834 	struct list_head *head = &resv->regions;
835 	struct file_region *rg, *trg;
836 	struct file_region *nrg = NULL;
837 	long del = 0;
838 
839 retry:
840 	spin_lock(&resv->lock);
841 	list_for_each_entry_safe(rg, trg, head, link) {
842 		/*
843 		 * Skip regions before the range to be deleted.  file_region
844 		 * ranges are normally of the form [from, to).  However, there
845 		 * may be a "placeholder" entry in the map which is of the form
846 		 * (from, to) with from == to.  Check for placeholder entries
847 		 * at the beginning of the range to be deleted.
848 		 */
849 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850 			continue;
851 
852 		if (rg->from >= t)
853 			break;
854 
855 		if (f > rg->from && t < rg->to) { /* Must split region */
856 			/*
857 			 * Check for an entry in the cache before dropping
858 			 * lock and attempting allocation.
859 			 */
860 			if (!nrg &&
861 			    resv->region_cache_count > resv->adds_in_progress) {
862 				nrg = list_first_entry(&resv->region_cache,
863 							struct file_region,
864 							link);
865 				list_del(&nrg->link);
866 				resv->region_cache_count--;
867 			}
868 
869 			if (!nrg) {
870 				spin_unlock(&resv->lock);
871 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872 				if (!nrg)
873 					return -ENOMEM;
874 				goto retry;
875 			}
876 
877 			del += t - f;
878 			hugetlb_cgroup_uncharge_file_region(
879 				resv, rg, t - f, false);
880 
881 			/* New entry for end of split region */
882 			nrg->from = t;
883 			nrg->to = rg->to;
884 
885 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886 
887 			INIT_LIST_HEAD(&nrg->link);
888 
889 			/* Original entry is trimmed */
890 			rg->to = f;
891 
892 			list_add(&nrg->link, &rg->link);
893 			nrg = NULL;
894 			break;
895 		}
896 
897 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 			del += rg->to - rg->from;
899 			hugetlb_cgroup_uncharge_file_region(resv, rg,
900 							    rg->to - rg->from, true);
901 			list_del(&rg->link);
902 			kfree(rg);
903 			continue;
904 		}
905 
906 		if (f <= rg->from) {	/* Trim beginning of region */
907 			hugetlb_cgroup_uncharge_file_region(resv, rg,
908 							    t - rg->from, false);
909 
910 			del += t - rg->from;
911 			rg->from = t;
912 		} else {		/* Trim end of region */
913 			hugetlb_cgroup_uncharge_file_region(resv, rg,
914 							    rg->to - f, false);
915 
916 			del += rg->to - f;
917 			rg->to = f;
918 		}
919 	}
920 
921 	spin_unlock(&resv->lock);
922 	kfree(nrg);
923 	return del;
924 }
925 
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937 	struct hugepage_subpool *spool = subpool_inode(inode);
938 	long rsv_adjust;
939 	bool reserved = false;
940 
941 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 	if (rsv_adjust > 0) {
943 		struct hstate *h = hstate_inode(inode);
944 
945 		if (!hugetlb_acct_memory(h, 1))
946 			reserved = true;
947 	} else if (!rsv_adjust) {
948 		reserved = true;
949 	}
950 
951 	if (!reserved)
952 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954 
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961 	struct list_head *head = &resv->regions;
962 	struct file_region *rg;
963 	long chg = 0;
964 
965 	spin_lock(&resv->lock);
966 	/* Locate each segment we overlap with, and count that overlap. */
967 	list_for_each_entry(rg, head, link) {
968 		long seg_from;
969 		long seg_to;
970 
971 		if (rg->to <= f)
972 			continue;
973 		if (rg->from >= t)
974 			break;
975 
976 		seg_from = max(rg->from, f);
977 		seg_to = min(rg->to, t);
978 
979 		chg += seg_to - seg_from;
980 	}
981 	spin_unlock(&resv->lock);
982 
983 	return chg;
984 }
985 
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991 			struct vm_area_struct *vma, unsigned long address)
992 {
993 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 			(vma->vm_pgoff >> huge_page_order(h));
995 }
996 
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008 	if (vma->vm_ops && vma->vm_ops->pagesize)
1009 		return vma->vm_ops->pagesize(vma);
1010 	return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013 
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022 	return vma_kernel_pagesize(vma);
1023 }
1024 
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033 
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055 	return (unsigned long)vma->vm_private_data;
1056 }
1057 
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059 							unsigned long value)
1060 {
1061 	vma->vm_private_data = (void *)value;
1062 }
1063 
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 					  struct hugetlb_cgroup *h_cg,
1067 					  struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070 	if (!h_cg || !h) {
1071 		resv_map->reservation_counter = NULL;
1072 		resv_map->pages_per_hpage = 0;
1073 		resv_map->css = NULL;
1074 	} else {
1075 		resv_map->reservation_counter =
1076 			&h_cg->rsvd_hugepage[hstate_index(h)];
1077 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 		resv_map->css = &h_cg->css;
1079 	}
1080 #endif
1081 }
1082 
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087 
1088 	if (!resv_map || !rg) {
1089 		kfree(resv_map);
1090 		kfree(rg);
1091 		return NULL;
1092 	}
1093 
1094 	kref_init(&resv_map->refs);
1095 	spin_lock_init(&resv_map->lock);
1096 	INIT_LIST_HEAD(&resv_map->regions);
1097 	init_rwsem(&resv_map->rw_sema);
1098 
1099 	resv_map->adds_in_progress = 0;
1100 	/*
1101 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 	 * fields don't do cgroup accounting. On private mappings, these will be
1103 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 	 * reservations are to be un-charged from here.
1105 	 */
1106 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107 
1108 	INIT_LIST_HEAD(&resv_map->region_cache);
1109 	list_add(&rg->link, &resv_map->region_cache);
1110 	resv_map->region_cache_count = 1;
1111 
1112 	return resv_map;
1113 }
1114 
1115 void resv_map_release(struct kref *ref)
1116 {
1117 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 	struct list_head *head = &resv_map->region_cache;
1119 	struct file_region *rg, *trg;
1120 
1121 	/* Clear out any active regions before we release the map. */
1122 	region_del(resv_map, 0, LONG_MAX);
1123 
1124 	/* ... and any entries left in the cache */
1125 	list_for_each_entry_safe(rg, trg, head, link) {
1126 		list_del(&rg->link);
1127 		kfree(rg);
1128 	}
1129 
1130 	VM_BUG_ON(resv_map->adds_in_progress);
1131 
1132 	kfree(resv_map);
1133 }
1134 
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137 	/*
1138 	 * At inode evict time, i_mapping may not point to the original
1139 	 * address space within the inode.  This original address space
1140 	 * contains the pointer to the resv_map.  So, always use the
1141 	 * address space embedded within the inode.
1142 	 * The VERY common case is inode->mapping == &inode->i_data but,
1143 	 * this may not be true for device special inodes.
1144 	 */
1145 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147 
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 	if (vma->vm_flags & VM_MAYSHARE) {
1152 		struct address_space *mapping = vma->vm_file->f_mapping;
1153 		struct inode *inode = mapping->host;
1154 
1155 		return inode_resv_map(inode);
1156 
1157 	} else {
1158 		return (struct resv_map *)(get_vma_private_data(vma) &
1159 							~HPAGE_RESV_MASK);
1160 	}
1161 }
1162 
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167 
1168 	set_vma_private_data(vma, (unsigned long)map);
1169 }
1170 
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175 
1176 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178 
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182 
1183 	return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185 
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188 	return !(vma->vm_flags & VM_MAYSHARE) &&
1189 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192 
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 	/*
1197 	 * Clear vm_private_data
1198 	 * - For shared mappings this is a per-vma semaphore that may be
1199 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1200 	 *   Before clearing, make sure pointer is not associated with vma
1201 	 *   as this will leak the structure.  This is the case when called
1202 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 	 *   been called to allocate a new structure.
1204 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 	 *   not apply to children.  Faults generated by the children are
1206 	 *   not guaranteed to succeed, even if read-only.
1207 	 */
1208 	if (vma->vm_flags & VM_MAYSHARE) {
1209 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210 
1211 		if (vma_lock && vma_lock->vma != vma)
1212 			vma->vm_private_data = NULL;
1213 	} else
1214 		vma->vm_private_data = NULL;
1215 }
1216 
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226 	/*
1227 	 * Clear the old hugetlb private page reservation.
1228 	 * It has already been transferred to new_vma.
1229 	 *
1230 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 	 * which copies vma into new_vma and unmaps vma. After the copy
1232 	 * operation both new_vma and vma share a reference to the resv_map
1233 	 * struct, and at that point vma is about to be unmapped. We don't
1234 	 * want to return the reservation to the pool at unmap of vma because
1235 	 * the reservation still lives on in new_vma, so simply decrement the
1236 	 * ref here and remove the resv_map reference from this vma.
1237 	 */
1238 	struct resv_map *reservations = vma_resv_map(vma);
1239 
1240 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 		kref_put(&reservations->refs, resv_map_release);
1243 	}
1244 
1245 	hugetlb_dup_vma_private(vma);
1246 }
1247 
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251 	if (vma->vm_flags & VM_NORESERVE) {
1252 		/*
1253 		 * This address is already reserved by other process(chg == 0),
1254 		 * so, we should decrement reserved count. Without decrementing,
1255 		 * reserve count remains after releasing inode, because this
1256 		 * allocated page will go into page cache and is regarded as
1257 		 * coming from reserved pool in releasing step.  Currently, we
1258 		 * don't have any other solution to deal with this situation
1259 		 * properly, so add work-around here.
1260 		 */
1261 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262 			return true;
1263 		else
1264 			return false;
1265 	}
1266 
1267 	/* Shared mappings always use reserves */
1268 	if (vma->vm_flags & VM_MAYSHARE) {
1269 		/*
1270 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271 		 * be a region map for all pages.  The only situation where
1272 		 * there is no region map is if a hole was punched via
1273 		 * fallocate.  In this case, there really are no reserves to
1274 		 * use.  This situation is indicated if chg != 0.
1275 		 */
1276 		if (chg)
1277 			return false;
1278 		else
1279 			return true;
1280 	}
1281 
1282 	/*
1283 	 * Only the process that called mmap() has reserves for
1284 	 * private mappings.
1285 	 */
1286 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287 		/*
1288 		 * Like the shared case above, a hole punch or truncate
1289 		 * could have been performed on the private mapping.
1290 		 * Examine the value of chg to determine if reserves
1291 		 * actually exist or were previously consumed.
1292 		 * Very Subtle - The value of chg comes from a previous
1293 		 * call to vma_needs_reserves().  The reserve map for
1294 		 * private mappings has different (opposite) semantics
1295 		 * than that of shared mappings.  vma_needs_reserves()
1296 		 * has already taken this difference in semantics into
1297 		 * account.  Therefore, the meaning of chg is the same
1298 		 * as in the shared case above.  Code could easily be
1299 		 * combined, but keeping it separate draws attention to
1300 		 * subtle differences.
1301 		 */
1302 		if (chg)
1303 			return false;
1304 		else
1305 			return true;
1306 	}
1307 
1308 	return false;
1309 }
1310 
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313 	int nid = folio_nid(folio);
1314 
1315 	lockdep_assert_held(&hugetlb_lock);
1316 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317 
1318 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 	h->free_huge_pages++;
1320 	h->free_huge_pages_node[nid]++;
1321 	folio_set_hugetlb_freed(folio);
1322 }
1323 
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325 								int nid)
1326 {
1327 	struct folio *folio;
1328 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329 
1330 	lockdep_assert_held(&hugetlb_lock);
1331 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 		if (pin && !folio_is_longterm_pinnable(folio))
1333 			continue;
1334 
1335 		if (folio_test_hwpoison(folio))
1336 			continue;
1337 
1338 		list_move(&folio->lru, &h->hugepage_activelist);
1339 		folio_ref_unfreeze(folio, 1);
1340 		folio_clear_hugetlb_freed(folio);
1341 		h->free_huge_pages--;
1342 		h->free_huge_pages_node[nid]--;
1343 		return folio;
1344 	}
1345 
1346 	return NULL;
1347 }
1348 
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 							int nid, nodemask_t *nmask)
1351 {
1352 	unsigned int cpuset_mems_cookie;
1353 	struct zonelist *zonelist;
1354 	struct zone *zone;
1355 	struct zoneref *z;
1356 	int node = NUMA_NO_NODE;
1357 
1358 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1359 	if (nid == NUMA_NO_NODE)
1360 		nid = numa_node_id();
1361 
1362 	zonelist = node_zonelist(nid, gfp_mask);
1363 
1364 retry_cpuset:
1365 	cpuset_mems_cookie = read_mems_allowed_begin();
1366 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1367 		struct folio *folio;
1368 
1369 		if (!cpuset_zone_allowed(zone, gfp_mask))
1370 			continue;
1371 		/*
1372 		 * no need to ask again on the same node. Pool is node rather than
1373 		 * zone aware
1374 		 */
1375 		if (zone_to_nid(zone) == node)
1376 			continue;
1377 		node = zone_to_nid(zone);
1378 
1379 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1380 		if (folio)
1381 			return folio;
1382 	}
1383 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1384 		goto retry_cpuset;
1385 
1386 	return NULL;
1387 }
1388 
1389 static unsigned long available_huge_pages(struct hstate *h)
1390 {
1391 	return h->free_huge_pages - h->resv_huge_pages;
1392 }
1393 
1394 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1395 				struct vm_area_struct *vma,
1396 				unsigned long address, int avoid_reserve,
1397 				long chg)
1398 {
1399 	struct folio *folio = NULL;
1400 	struct mempolicy *mpol;
1401 	gfp_t gfp_mask;
1402 	nodemask_t *nodemask;
1403 	int nid;
1404 
1405 	/*
1406 	 * A child process with MAP_PRIVATE mappings created by their parent
1407 	 * have no page reserves. This check ensures that reservations are
1408 	 * not "stolen". The child may still get SIGKILLed
1409 	 */
1410 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1411 		goto err;
1412 
1413 	/* If reserves cannot be used, ensure enough pages are in the pool */
1414 	if (avoid_reserve && !available_huge_pages(h))
1415 		goto err;
1416 
1417 	gfp_mask = htlb_alloc_mask(h);
1418 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1419 
1420 	if (mpol_is_preferred_many(mpol)) {
1421 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1422 							nid, nodemask);
1423 
1424 		/* Fallback to all nodes if page==NULL */
1425 		nodemask = NULL;
1426 	}
1427 
1428 	if (!folio)
1429 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1430 							nid, nodemask);
1431 
1432 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1433 		folio_set_hugetlb_restore_reserve(folio);
1434 		h->resv_huge_pages--;
1435 	}
1436 
1437 	mpol_cond_put(mpol);
1438 	return folio;
1439 
1440 err:
1441 	return NULL;
1442 }
1443 
1444 /*
1445  * common helper functions for hstate_next_node_to_{alloc|free}.
1446  * We may have allocated or freed a huge page based on a different
1447  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1448  * be outside of *nodes_allowed.  Ensure that we use an allowed
1449  * node for alloc or free.
1450  */
1451 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1452 {
1453 	nid = next_node_in(nid, *nodes_allowed);
1454 	VM_BUG_ON(nid >= MAX_NUMNODES);
1455 
1456 	return nid;
1457 }
1458 
1459 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1460 {
1461 	if (!node_isset(nid, *nodes_allowed))
1462 		nid = next_node_allowed(nid, nodes_allowed);
1463 	return nid;
1464 }
1465 
1466 /*
1467  * returns the previously saved node ["this node"] from which to
1468  * allocate a persistent huge page for the pool and advance the
1469  * next node from which to allocate, handling wrap at end of node
1470  * mask.
1471  */
1472 static int hstate_next_node_to_alloc(int *next_node,
1473 					nodemask_t *nodes_allowed)
1474 {
1475 	int nid;
1476 
1477 	VM_BUG_ON(!nodes_allowed);
1478 
1479 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1480 	*next_node = next_node_allowed(nid, nodes_allowed);
1481 
1482 	return nid;
1483 }
1484 
1485 /*
1486  * helper for remove_pool_hugetlb_folio() - return the previously saved
1487  * node ["this node"] from which to free a huge page.  Advance the
1488  * next node id whether or not we find a free huge page to free so
1489  * that the next attempt to free addresses the next node.
1490  */
1491 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1492 {
1493 	int nid;
1494 
1495 	VM_BUG_ON(!nodes_allowed);
1496 
1497 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1498 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1499 
1500 	return nid;
1501 }
1502 
1503 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1504 	for (nr_nodes = nodes_weight(*mask);				\
1505 		nr_nodes > 0 &&						\
1506 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1507 		nr_nodes--)
1508 
1509 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1510 	for (nr_nodes = nodes_weight(*mask);				\
1511 		nr_nodes > 0 &&						\
1512 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1513 		nr_nodes--)
1514 
1515 /* used to demote non-gigantic_huge pages as well */
1516 static void __destroy_compound_gigantic_folio(struct folio *folio,
1517 					unsigned int order, bool demote)
1518 {
1519 	int i;
1520 	int nr_pages = 1 << order;
1521 	struct page *p;
1522 
1523 	atomic_set(&folio->_entire_mapcount, 0);
1524 	atomic_set(&folio->_large_mapcount, 0);
1525 	atomic_set(&folio->_pincount, 0);
1526 
1527 	for (i = 1; i < nr_pages; i++) {
1528 		p = folio_page(folio, i);
1529 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1530 		p->mapping = NULL;
1531 		clear_compound_head(p);
1532 		if (!demote)
1533 			set_page_refcounted(p);
1534 	}
1535 
1536 	__folio_clear_head(folio);
1537 }
1538 
1539 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1540 					unsigned int order)
1541 {
1542 	__destroy_compound_gigantic_folio(folio, order, true);
1543 }
1544 
1545 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1546 static void destroy_compound_gigantic_folio(struct folio *folio,
1547 					unsigned int order)
1548 {
1549 	__destroy_compound_gigantic_folio(folio, order, false);
1550 }
1551 
1552 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1553 {
1554 	/*
1555 	 * If the page isn't allocated using the cma allocator,
1556 	 * cma_release() returns false.
1557 	 */
1558 #ifdef CONFIG_CMA
1559 	int nid = folio_nid(folio);
1560 
1561 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1562 		return;
1563 #endif
1564 
1565 	free_contig_range(folio_pfn(folio), 1 << order);
1566 }
1567 
1568 #ifdef CONFIG_CONTIG_ALLOC
1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1570 		int nid, nodemask_t *nodemask)
1571 {
1572 	struct page *page;
1573 	unsigned long nr_pages = pages_per_huge_page(h);
1574 	if (nid == NUMA_NO_NODE)
1575 		nid = numa_mem_id();
1576 
1577 #ifdef CONFIG_CMA
1578 	{
1579 		int node;
1580 
1581 		if (hugetlb_cma[nid]) {
1582 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1583 					huge_page_order(h), true);
1584 			if (page)
1585 				return page_folio(page);
1586 		}
1587 
1588 		if (!(gfp_mask & __GFP_THISNODE)) {
1589 			for_each_node_mask(node, *nodemask) {
1590 				if (node == nid || !hugetlb_cma[node])
1591 					continue;
1592 
1593 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1594 						huge_page_order(h), true);
1595 				if (page)
1596 					return page_folio(page);
1597 			}
1598 		}
1599 	}
1600 #endif
1601 
1602 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1603 	return page ? page_folio(page) : NULL;
1604 }
1605 
1606 #else /* !CONFIG_CONTIG_ALLOC */
1607 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1608 					int nid, nodemask_t *nodemask)
1609 {
1610 	return NULL;
1611 }
1612 #endif /* CONFIG_CONTIG_ALLOC */
1613 
1614 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1615 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1616 					int nid, nodemask_t *nodemask)
1617 {
1618 	return NULL;
1619 }
1620 static inline void free_gigantic_folio(struct folio *folio,
1621 						unsigned int order) { }
1622 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1623 						unsigned int order) { }
1624 #endif
1625 
1626 /*
1627  * Remove hugetlb folio from lists.
1628  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1629  * folio appears as just a compound page.  Otherwise, wait until after
1630  * allocating vmemmap to clear the flag.
1631  *
1632  * Must be called with hugetlb lock held.
1633  */
1634 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1635 							bool adjust_surplus)
1636 {
1637 	int nid = folio_nid(folio);
1638 
1639 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1640 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1641 
1642 	lockdep_assert_held(&hugetlb_lock);
1643 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1644 		return;
1645 
1646 	list_del(&folio->lru);
1647 
1648 	if (folio_test_hugetlb_freed(folio)) {
1649 		folio_clear_hugetlb_freed(folio);
1650 		h->free_huge_pages--;
1651 		h->free_huge_pages_node[nid]--;
1652 	}
1653 	if (adjust_surplus) {
1654 		h->surplus_huge_pages--;
1655 		h->surplus_huge_pages_node[nid]--;
1656 	}
1657 
1658 	/*
1659 	 * We can only clear the hugetlb flag after allocating vmemmap
1660 	 * pages.  Otherwise, someone (memory error handling) may try to write
1661 	 * to tail struct pages.
1662 	 */
1663 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1664 		__folio_clear_hugetlb(folio);
1665 
1666 	h->nr_huge_pages--;
1667 	h->nr_huge_pages_node[nid]--;
1668 }
1669 
1670 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1671 			     bool adjust_surplus)
1672 {
1673 	int nid = folio_nid(folio);
1674 
1675 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1676 
1677 	lockdep_assert_held(&hugetlb_lock);
1678 
1679 	INIT_LIST_HEAD(&folio->lru);
1680 	h->nr_huge_pages++;
1681 	h->nr_huge_pages_node[nid]++;
1682 
1683 	if (adjust_surplus) {
1684 		h->surplus_huge_pages++;
1685 		h->surplus_huge_pages_node[nid]++;
1686 	}
1687 
1688 	__folio_set_hugetlb(folio);
1689 	folio_change_private(folio, NULL);
1690 	/*
1691 	 * We have to set hugetlb_vmemmap_optimized again as above
1692 	 * folio_change_private(folio, NULL) cleared it.
1693 	 */
1694 	folio_set_hugetlb_vmemmap_optimized(folio);
1695 
1696 	arch_clear_hugetlb_flags(folio);
1697 	enqueue_hugetlb_folio(h, folio);
1698 }
1699 
1700 static void __update_and_free_hugetlb_folio(struct hstate *h,
1701 						struct folio *folio)
1702 {
1703 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1704 
1705 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1706 		return;
1707 
1708 	/*
1709 	 * If we don't know which subpages are hwpoisoned, we can't free
1710 	 * the hugepage, so it's leaked intentionally.
1711 	 */
1712 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1713 		return;
1714 
1715 	/*
1716 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1717 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1718 	 * can only be passed hugetlb pages and will BUG otherwise.
1719 	 */
1720 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1721 		spin_lock_irq(&hugetlb_lock);
1722 		/*
1723 		 * If we cannot allocate vmemmap pages, just refuse to free the
1724 		 * page and put the page back on the hugetlb free list and treat
1725 		 * as a surplus page.
1726 		 */
1727 		add_hugetlb_folio(h, folio, true);
1728 		spin_unlock_irq(&hugetlb_lock);
1729 		return;
1730 	}
1731 
1732 	/*
1733 	 * If vmemmap pages were allocated above, then we need to clear the
1734 	 * hugetlb flag under the hugetlb lock.
1735 	 */
1736 	if (folio_test_hugetlb(folio)) {
1737 		spin_lock_irq(&hugetlb_lock);
1738 		__folio_clear_hugetlb(folio);
1739 		spin_unlock_irq(&hugetlb_lock);
1740 	}
1741 
1742 	/*
1743 	 * Move PageHWPoison flag from head page to the raw error pages,
1744 	 * which makes any healthy subpages reusable.
1745 	 */
1746 	if (unlikely(folio_test_hwpoison(folio)))
1747 		folio_clear_hugetlb_hwpoison(folio);
1748 
1749 	folio_ref_unfreeze(folio, 1);
1750 
1751 	/*
1752 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1753 	 * need to be given back to CMA in free_gigantic_folio.
1754 	 */
1755 	if (hstate_is_gigantic(h) ||
1756 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1757 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1758 		free_gigantic_folio(folio, huge_page_order(h));
1759 	} else {
1760 		INIT_LIST_HEAD(&folio->_deferred_list);
1761 		folio_put(folio);
1762 	}
1763 }
1764 
1765 /*
1766  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1767  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1768  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1769  * the vmemmap pages.
1770  *
1771  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1772  * freed and frees them one-by-one. As the page->mapping pointer is going
1773  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1774  * structure of a lockless linked list of huge pages to be freed.
1775  */
1776 static LLIST_HEAD(hpage_freelist);
1777 
1778 static void free_hpage_workfn(struct work_struct *work)
1779 {
1780 	struct llist_node *node;
1781 
1782 	node = llist_del_all(&hpage_freelist);
1783 
1784 	while (node) {
1785 		struct folio *folio;
1786 		struct hstate *h;
1787 
1788 		folio = container_of((struct address_space **)node,
1789 				     struct folio, mapping);
1790 		node = node->next;
1791 		folio->mapping = NULL;
1792 		/*
1793 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1794 		 * folio_hstate() is going to trigger because a previous call to
1795 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1796 		 * not use folio_hstate() directly.
1797 		 */
1798 		h = size_to_hstate(folio_size(folio));
1799 
1800 		__update_and_free_hugetlb_folio(h, folio);
1801 
1802 		cond_resched();
1803 	}
1804 }
1805 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1806 
1807 static inline void flush_free_hpage_work(struct hstate *h)
1808 {
1809 	if (hugetlb_vmemmap_optimizable(h))
1810 		flush_work(&free_hpage_work);
1811 }
1812 
1813 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1814 				 bool atomic)
1815 {
1816 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1817 		__update_and_free_hugetlb_folio(h, folio);
1818 		return;
1819 	}
1820 
1821 	/*
1822 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1823 	 *
1824 	 * Only call schedule_work() if hpage_freelist is previously
1825 	 * empty. Otherwise, schedule_work() had been called but the workfn
1826 	 * hasn't retrieved the list yet.
1827 	 */
1828 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1829 		schedule_work(&free_hpage_work);
1830 }
1831 
1832 static void bulk_vmemmap_restore_error(struct hstate *h,
1833 					struct list_head *folio_list,
1834 					struct list_head *non_hvo_folios)
1835 {
1836 	struct folio *folio, *t_folio;
1837 
1838 	if (!list_empty(non_hvo_folios)) {
1839 		/*
1840 		 * Free any restored hugetlb pages so that restore of the
1841 		 * entire list can be retried.
1842 		 * The idea is that in the common case of ENOMEM errors freeing
1843 		 * hugetlb pages with vmemmap we will free up memory so that we
1844 		 * can allocate vmemmap for more hugetlb pages.
1845 		 */
1846 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1847 			list_del(&folio->lru);
1848 			spin_lock_irq(&hugetlb_lock);
1849 			__folio_clear_hugetlb(folio);
1850 			spin_unlock_irq(&hugetlb_lock);
1851 			update_and_free_hugetlb_folio(h, folio, false);
1852 			cond_resched();
1853 		}
1854 	} else {
1855 		/*
1856 		 * In the case where there are no folios which can be
1857 		 * immediately freed, we loop through the list trying to restore
1858 		 * vmemmap individually in the hope that someone elsewhere may
1859 		 * have done something to cause success (such as freeing some
1860 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1861 		 * page is made a surplus page and removed from the list.
1862 		 * If are able to restore vmemmap and free one hugetlb page, we
1863 		 * quit processing the list to retry the bulk operation.
1864 		 */
1865 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1866 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1867 				list_del(&folio->lru);
1868 				spin_lock_irq(&hugetlb_lock);
1869 				add_hugetlb_folio(h, folio, true);
1870 				spin_unlock_irq(&hugetlb_lock);
1871 			} else {
1872 				list_del(&folio->lru);
1873 				spin_lock_irq(&hugetlb_lock);
1874 				__folio_clear_hugetlb(folio);
1875 				spin_unlock_irq(&hugetlb_lock);
1876 				update_and_free_hugetlb_folio(h, folio, false);
1877 				cond_resched();
1878 				break;
1879 			}
1880 	}
1881 }
1882 
1883 static void update_and_free_pages_bulk(struct hstate *h,
1884 						struct list_head *folio_list)
1885 {
1886 	long ret;
1887 	struct folio *folio, *t_folio;
1888 	LIST_HEAD(non_hvo_folios);
1889 
1890 	/*
1891 	 * First allocate required vmemmmap (if necessary) for all folios.
1892 	 * Carefully handle errors and free up any available hugetlb pages
1893 	 * in an effort to make forward progress.
1894 	 */
1895 retry:
1896 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1897 	if (ret < 0) {
1898 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1899 		goto retry;
1900 	}
1901 
1902 	/*
1903 	 * At this point, list should be empty, ret should be >= 0 and there
1904 	 * should only be pages on the non_hvo_folios list.
1905 	 * Do note that the non_hvo_folios list could be empty.
1906 	 * Without HVO enabled, ret will be 0 and there is no need to call
1907 	 * __folio_clear_hugetlb as this was done previously.
1908 	 */
1909 	VM_WARN_ON(!list_empty(folio_list));
1910 	VM_WARN_ON(ret < 0);
1911 	if (!list_empty(&non_hvo_folios) && ret) {
1912 		spin_lock_irq(&hugetlb_lock);
1913 		list_for_each_entry(folio, &non_hvo_folios, lru)
1914 			__folio_clear_hugetlb(folio);
1915 		spin_unlock_irq(&hugetlb_lock);
1916 	}
1917 
1918 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1919 		update_and_free_hugetlb_folio(h, folio, false);
1920 		cond_resched();
1921 	}
1922 }
1923 
1924 struct hstate *size_to_hstate(unsigned long size)
1925 {
1926 	struct hstate *h;
1927 
1928 	for_each_hstate(h) {
1929 		if (huge_page_size(h) == size)
1930 			return h;
1931 	}
1932 	return NULL;
1933 }
1934 
1935 void free_huge_folio(struct folio *folio)
1936 {
1937 	/*
1938 	 * Can't pass hstate in here because it is called from the
1939 	 * generic mm code.
1940 	 */
1941 	struct hstate *h = folio_hstate(folio);
1942 	int nid = folio_nid(folio);
1943 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1944 	bool restore_reserve;
1945 	unsigned long flags;
1946 
1947 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1948 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1949 
1950 	hugetlb_set_folio_subpool(folio, NULL);
1951 	if (folio_test_anon(folio))
1952 		__ClearPageAnonExclusive(&folio->page);
1953 	folio->mapping = NULL;
1954 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1955 	folio_clear_hugetlb_restore_reserve(folio);
1956 
1957 	/*
1958 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1959 	 * reservation.  If the page was associated with a subpool, there
1960 	 * would have been a page reserved in the subpool before allocation
1961 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1962 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1963 	 * remove the reserved page from the subpool.
1964 	 */
1965 	if (!restore_reserve) {
1966 		/*
1967 		 * A return code of zero implies that the subpool will be
1968 		 * under its minimum size if the reservation is not restored
1969 		 * after page is free.  Therefore, force restore_reserve
1970 		 * operation.
1971 		 */
1972 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1973 			restore_reserve = true;
1974 	}
1975 
1976 	spin_lock_irqsave(&hugetlb_lock, flags);
1977 	folio_clear_hugetlb_migratable(folio);
1978 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1979 				     pages_per_huge_page(h), folio);
1980 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1981 					  pages_per_huge_page(h), folio);
1982 	mem_cgroup_uncharge(folio);
1983 	if (restore_reserve)
1984 		h->resv_huge_pages++;
1985 
1986 	if (folio_test_hugetlb_temporary(folio)) {
1987 		remove_hugetlb_folio(h, folio, false);
1988 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1989 		update_and_free_hugetlb_folio(h, folio, true);
1990 	} else if (h->surplus_huge_pages_node[nid]) {
1991 		/* remove the page from active list */
1992 		remove_hugetlb_folio(h, folio, true);
1993 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1994 		update_and_free_hugetlb_folio(h, folio, true);
1995 	} else {
1996 		arch_clear_hugetlb_flags(folio);
1997 		enqueue_hugetlb_folio(h, folio);
1998 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1999 	}
2000 }
2001 
2002 /*
2003  * Must be called with the hugetlb lock held
2004  */
2005 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2006 {
2007 	lockdep_assert_held(&hugetlb_lock);
2008 	h->nr_huge_pages++;
2009 	h->nr_huge_pages_node[nid]++;
2010 }
2011 
2012 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2013 {
2014 	__folio_set_hugetlb(folio);
2015 	INIT_LIST_HEAD(&folio->lru);
2016 	hugetlb_set_folio_subpool(folio, NULL);
2017 	set_hugetlb_cgroup(folio, NULL);
2018 	set_hugetlb_cgroup_rsvd(folio, NULL);
2019 }
2020 
2021 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2022 {
2023 	init_new_hugetlb_folio(h, folio);
2024 	hugetlb_vmemmap_optimize_folio(h, folio);
2025 }
2026 
2027 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2028 {
2029 	__prep_new_hugetlb_folio(h, folio);
2030 	spin_lock_irq(&hugetlb_lock);
2031 	__prep_account_new_huge_page(h, nid);
2032 	spin_unlock_irq(&hugetlb_lock);
2033 }
2034 
2035 static bool __prep_compound_gigantic_folio(struct folio *folio,
2036 					unsigned int order, bool demote)
2037 {
2038 	int i, j;
2039 	int nr_pages = 1 << order;
2040 	struct page *p;
2041 
2042 	__folio_clear_reserved(folio);
2043 	for (i = 0; i < nr_pages; i++) {
2044 		p = folio_page(folio, i);
2045 
2046 		/*
2047 		 * For gigantic hugepages allocated through bootmem at
2048 		 * boot, it's safer to be consistent with the not-gigantic
2049 		 * hugepages and clear the PG_reserved bit from all tail pages
2050 		 * too.  Otherwise drivers using get_user_pages() to access tail
2051 		 * pages may get the reference counting wrong if they see
2052 		 * PG_reserved set on a tail page (despite the head page not
2053 		 * having PG_reserved set).  Enforcing this consistency between
2054 		 * head and tail pages allows drivers to optimize away a check
2055 		 * on the head page when they need know if put_page() is needed
2056 		 * after get_user_pages().
2057 		 */
2058 		if (i != 0)	/* head page cleared above */
2059 			__ClearPageReserved(p);
2060 		/*
2061 		 * Subtle and very unlikely
2062 		 *
2063 		 * Gigantic 'page allocators' such as memblock or cma will
2064 		 * return a set of pages with each page ref counted.  We need
2065 		 * to turn this set of pages into a compound page with tail
2066 		 * page ref counts set to zero.  Code such as speculative page
2067 		 * cache adding could take a ref on a 'to be' tail page.
2068 		 * We need to respect any increased ref count, and only set
2069 		 * the ref count to zero if count is currently 1.  If count
2070 		 * is not 1, we return an error.  An error return indicates
2071 		 * the set of pages can not be converted to a gigantic page.
2072 		 * The caller who allocated the pages should then discard the
2073 		 * pages using the appropriate free interface.
2074 		 *
2075 		 * In the case of demote, the ref count will be zero.
2076 		 */
2077 		if (!demote) {
2078 			if (!page_ref_freeze(p, 1)) {
2079 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2080 				goto out_error;
2081 			}
2082 		} else {
2083 			VM_BUG_ON_PAGE(page_count(p), p);
2084 		}
2085 		if (i != 0)
2086 			set_compound_head(p, &folio->page);
2087 	}
2088 	__folio_set_head(folio);
2089 	/* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2090 	folio_set_order(folio, order);
2091 	atomic_set(&folio->_entire_mapcount, -1);
2092 	atomic_set(&folio->_large_mapcount, -1);
2093 	atomic_set(&folio->_pincount, 0);
2094 	return true;
2095 
2096 out_error:
2097 	/* undo page modifications made above */
2098 	for (j = 0; j < i; j++) {
2099 		p = folio_page(folio, j);
2100 		if (j != 0)
2101 			clear_compound_head(p);
2102 		set_page_refcounted(p);
2103 	}
2104 	/* need to clear PG_reserved on remaining tail pages  */
2105 	for (; j < nr_pages; j++) {
2106 		p = folio_page(folio, j);
2107 		__ClearPageReserved(p);
2108 	}
2109 	return false;
2110 }
2111 
2112 static bool prep_compound_gigantic_folio(struct folio *folio,
2113 							unsigned int order)
2114 {
2115 	return __prep_compound_gigantic_folio(folio, order, false);
2116 }
2117 
2118 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2119 							unsigned int order)
2120 {
2121 	return __prep_compound_gigantic_folio(folio, order, true);
2122 }
2123 
2124 /*
2125  * Find and lock address space (mapping) in write mode.
2126  *
2127  * Upon entry, the folio is locked which means that folio_mapping() is
2128  * stable.  Due to locking order, we can only trylock_write.  If we can
2129  * not get the lock, simply return NULL to caller.
2130  */
2131 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
2132 {
2133 	struct address_space *mapping = folio_mapping(folio);
2134 
2135 	if (!mapping)
2136 		return mapping;
2137 
2138 	if (i_mmap_trylock_write(mapping))
2139 		return mapping;
2140 
2141 	return NULL;
2142 }
2143 
2144 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2145 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2146 		nodemask_t *node_alloc_noretry)
2147 {
2148 	int order = huge_page_order(h);
2149 	struct folio *folio;
2150 	bool alloc_try_hard = true;
2151 	bool retry = true;
2152 
2153 	/*
2154 	 * By default we always try hard to allocate the folio with
2155 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2156 	 * a loop (to adjust global huge page counts) and previous allocation
2157 	 * failed, do not continue to try hard on the same node.  Use the
2158 	 * node_alloc_noretry bitmap to manage this state information.
2159 	 */
2160 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2161 		alloc_try_hard = false;
2162 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2163 	if (alloc_try_hard)
2164 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2165 	if (nid == NUMA_NO_NODE)
2166 		nid = numa_mem_id();
2167 retry:
2168 	folio = __folio_alloc(gfp_mask, order, nid, nmask);
2169 	/* Ensure hugetlb folio won't have large_rmappable flag set. */
2170 	if (folio)
2171 		folio_clear_large_rmappable(folio);
2172 
2173 	if (folio && !folio_ref_freeze(folio, 1)) {
2174 		folio_put(folio);
2175 		if (retry) {	/* retry once */
2176 			retry = false;
2177 			goto retry;
2178 		}
2179 		/* WOW!  twice in a row. */
2180 		pr_warn("HugeTLB unexpected inflated folio ref count\n");
2181 		folio = NULL;
2182 	}
2183 
2184 	/*
2185 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2186 	 * folio this indicates an overall state change.  Clear bit so
2187 	 * that we resume normal 'try hard' allocations.
2188 	 */
2189 	if (node_alloc_noretry && folio && !alloc_try_hard)
2190 		node_clear(nid, *node_alloc_noretry);
2191 
2192 	/*
2193 	 * If we tried hard to get a folio but failed, set bit so that
2194 	 * subsequent attempts will not try as hard until there is an
2195 	 * overall state change.
2196 	 */
2197 	if (node_alloc_noretry && !folio && alloc_try_hard)
2198 		node_set(nid, *node_alloc_noretry);
2199 
2200 	if (!folio) {
2201 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2202 		return NULL;
2203 	}
2204 
2205 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2206 	return folio;
2207 }
2208 
2209 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2210 				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2211 				nodemask_t *node_alloc_noretry)
2212 {
2213 	struct folio *folio;
2214 	bool retry = false;
2215 
2216 retry:
2217 	if (hstate_is_gigantic(h))
2218 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2219 	else
2220 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2221 				nid, nmask, node_alloc_noretry);
2222 	if (!folio)
2223 		return NULL;
2224 
2225 	if (hstate_is_gigantic(h)) {
2226 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2227 			/*
2228 			 * Rare failure to convert pages to compound page.
2229 			 * Free pages and try again - ONCE!
2230 			 */
2231 			free_gigantic_folio(folio, huge_page_order(h));
2232 			if (!retry) {
2233 				retry = true;
2234 				goto retry;
2235 			}
2236 			return NULL;
2237 		}
2238 	}
2239 
2240 	return folio;
2241 }
2242 
2243 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2244 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2245 		nodemask_t *node_alloc_noretry)
2246 {
2247 	struct folio *folio;
2248 
2249 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2250 						node_alloc_noretry);
2251 	if (folio)
2252 		init_new_hugetlb_folio(h, folio);
2253 	return folio;
2254 }
2255 
2256 /*
2257  * Common helper to allocate a fresh hugetlb page. All specific allocators
2258  * should use this function to get new hugetlb pages
2259  *
2260  * Note that returned page is 'frozen':  ref count of head page and all tail
2261  * pages is zero.
2262  */
2263 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2264 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2265 {
2266 	struct folio *folio;
2267 
2268 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2269 	if (!folio)
2270 		return NULL;
2271 
2272 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2273 	return folio;
2274 }
2275 
2276 static void prep_and_add_allocated_folios(struct hstate *h,
2277 					struct list_head *folio_list)
2278 {
2279 	unsigned long flags;
2280 	struct folio *folio, *tmp_f;
2281 
2282 	/* Send list for bulk vmemmap optimization processing */
2283 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2284 
2285 	/* Add all new pool pages to free lists in one lock cycle */
2286 	spin_lock_irqsave(&hugetlb_lock, flags);
2287 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2288 		__prep_account_new_huge_page(h, folio_nid(folio));
2289 		enqueue_hugetlb_folio(h, folio);
2290 	}
2291 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2292 }
2293 
2294 /*
2295  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2296  * will later be added to the appropriate hugetlb pool.
2297  */
2298 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2299 					nodemask_t *nodes_allowed,
2300 					nodemask_t *node_alloc_noretry,
2301 					int *next_node)
2302 {
2303 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2304 	int nr_nodes, node;
2305 
2306 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2307 		struct folio *folio;
2308 
2309 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2310 					nodes_allowed, node_alloc_noretry);
2311 		if (folio)
2312 			return folio;
2313 	}
2314 
2315 	return NULL;
2316 }
2317 
2318 /*
2319  * Remove huge page from pool from next node to free.  Attempt to keep
2320  * persistent huge pages more or less balanced over allowed nodes.
2321  * This routine only 'removes' the hugetlb page.  The caller must make
2322  * an additional call to free the page to low level allocators.
2323  * Called with hugetlb_lock locked.
2324  */
2325 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2326 		nodemask_t *nodes_allowed, bool acct_surplus)
2327 {
2328 	int nr_nodes, node;
2329 	struct folio *folio = NULL;
2330 
2331 	lockdep_assert_held(&hugetlb_lock);
2332 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2333 		/*
2334 		 * If we're returning unused surplus pages, only examine
2335 		 * nodes with surplus pages.
2336 		 */
2337 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2338 		    !list_empty(&h->hugepage_freelists[node])) {
2339 			folio = list_entry(h->hugepage_freelists[node].next,
2340 					  struct folio, lru);
2341 			remove_hugetlb_folio(h, folio, acct_surplus);
2342 			break;
2343 		}
2344 	}
2345 
2346 	return folio;
2347 }
2348 
2349 /*
2350  * Dissolve a given free hugetlb folio into free buddy pages. This function
2351  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2352  * This function returns values like below:
2353  *
2354  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2355  *           when the system is under memory pressure and the feature of
2356  *           freeing unused vmemmap pages associated with each hugetlb page
2357  *           is enabled.
2358  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2359  *           (allocated or reserved.)
2360  *       0:  successfully dissolved free hugepages or the page is not a
2361  *           hugepage (considered as already dissolved)
2362  */
2363 int dissolve_free_hugetlb_folio(struct folio *folio)
2364 {
2365 	int rc = -EBUSY;
2366 
2367 retry:
2368 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2369 	if (!folio_test_hugetlb(folio))
2370 		return 0;
2371 
2372 	spin_lock_irq(&hugetlb_lock);
2373 	if (!folio_test_hugetlb(folio)) {
2374 		rc = 0;
2375 		goto out;
2376 	}
2377 
2378 	if (!folio_ref_count(folio)) {
2379 		struct hstate *h = folio_hstate(folio);
2380 		if (!available_huge_pages(h))
2381 			goto out;
2382 
2383 		/*
2384 		 * We should make sure that the page is already on the free list
2385 		 * when it is dissolved.
2386 		 */
2387 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2388 			spin_unlock_irq(&hugetlb_lock);
2389 			cond_resched();
2390 
2391 			/*
2392 			 * Theoretically, we should return -EBUSY when we
2393 			 * encounter this race. In fact, we have a chance
2394 			 * to successfully dissolve the page if we do a
2395 			 * retry. Because the race window is quite small.
2396 			 * If we seize this opportunity, it is an optimization
2397 			 * for increasing the success rate of dissolving page.
2398 			 */
2399 			goto retry;
2400 		}
2401 
2402 		remove_hugetlb_folio(h, folio, false);
2403 		h->max_huge_pages--;
2404 		spin_unlock_irq(&hugetlb_lock);
2405 
2406 		/*
2407 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2408 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2409 		 * free the page if it can not allocate required vmemmap.  We
2410 		 * need to adjust max_huge_pages if the page is not freed.
2411 		 * Attempt to allocate vmemmmap here so that we can take
2412 		 * appropriate action on failure.
2413 		 *
2414 		 * The folio_test_hugetlb check here is because
2415 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2416 		 * non-vmemmap optimized hugetlb folios.
2417 		 */
2418 		if (folio_test_hugetlb(folio)) {
2419 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2420 			if (rc) {
2421 				spin_lock_irq(&hugetlb_lock);
2422 				add_hugetlb_folio(h, folio, false);
2423 				h->max_huge_pages++;
2424 				goto out;
2425 			}
2426 		} else
2427 			rc = 0;
2428 
2429 		update_and_free_hugetlb_folio(h, folio, false);
2430 		return rc;
2431 	}
2432 out:
2433 	spin_unlock_irq(&hugetlb_lock);
2434 	return rc;
2435 }
2436 
2437 /*
2438  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2439  * make specified memory blocks removable from the system.
2440  * Note that this will dissolve a free gigantic hugepage completely, if any
2441  * part of it lies within the given range.
2442  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2443  * free hugetlb folios that were dissolved before that error are lost.
2444  */
2445 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2446 {
2447 	unsigned long pfn;
2448 	struct folio *folio;
2449 	int rc = 0;
2450 	unsigned int order;
2451 	struct hstate *h;
2452 
2453 	if (!hugepages_supported())
2454 		return rc;
2455 
2456 	order = huge_page_order(&default_hstate);
2457 	for_each_hstate(h)
2458 		order = min(order, huge_page_order(h));
2459 
2460 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2461 		folio = pfn_folio(pfn);
2462 		rc = dissolve_free_hugetlb_folio(folio);
2463 		if (rc)
2464 			break;
2465 	}
2466 
2467 	return rc;
2468 }
2469 
2470 /*
2471  * Allocates a fresh surplus page from the page allocator.
2472  */
2473 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2474 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2475 {
2476 	struct folio *folio = NULL;
2477 
2478 	if (hstate_is_gigantic(h))
2479 		return NULL;
2480 
2481 	spin_lock_irq(&hugetlb_lock);
2482 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2483 		goto out_unlock;
2484 	spin_unlock_irq(&hugetlb_lock);
2485 
2486 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2487 	if (!folio)
2488 		return NULL;
2489 
2490 	spin_lock_irq(&hugetlb_lock);
2491 	/*
2492 	 * We could have raced with the pool size change.
2493 	 * Double check that and simply deallocate the new page
2494 	 * if we would end up overcommiting the surpluses. Abuse
2495 	 * temporary page to workaround the nasty free_huge_folio
2496 	 * codeflow
2497 	 */
2498 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2499 		folio_set_hugetlb_temporary(folio);
2500 		spin_unlock_irq(&hugetlb_lock);
2501 		free_huge_folio(folio);
2502 		return NULL;
2503 	}
2504 
2505 	h->surplus_huge_pages++;
2506 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2507 
2508 out_unlock:
2509 	spin_unlock_irq(&hugetlb_lock);
2510 
2511 	return folio;
2512 }
2513 
2514 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2515 				     int nid, nodemask_t *nmask)
2516 {
2517 	struct folio *folio;
2518 
2519 	if (hstate_is_gigantic(h))
2520 		return NULL;
2521 
2522 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2523 	if (!folio)
2524 		return NULL;
2525 
2526 	/* fresh huge pages are frozen */
2527 	folio_ref_unfreeze(folio, 1);
2528 	/*
2529 	 * We do not account these pages as surplus because they are only
2530 	 * temporary and will be released properly on the last reference
2531 	 */
2532 	folio_set_hugetlb_temporary(folio);
2533 
2534 	return folio;
2535 }
2536 
2537 /*
2538  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2539  */
2540 static
2541 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2542 		struct vm_area_struct *vma, unsigned long addr)
2543 {
2544 	struct folio *folio = NULL;
2545 	struct mempolicy *mpol;
2546 	gfp_t gfp_mask = htlb_alloc_mask(h);
2547 	int nid;
2548 	nodemask_t *nodemask;
2549 
2550 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2551 	if (mpol_is_preferred_many(mpol)) {
2552 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2553 
2554 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2555 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2556 
2557 		/* Fallback to all nodes if page==NULL */
2558 		nodemask = NULL;
2559 	}
2560 
2561 	if (!folio)
2562 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2563 	mpol_cond_put(mpol);
2564 	return folio;
2565 }
2566 
2567 /* folio migration callback function */
2568 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2569 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2570 {
2571 	spin_lock_irq(&hugetlb_lock);
2572 	if (available_huge_pages(h)) {
2573 		struct folio *folio;
2574 
2575 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2576 						preferred_nid, nmask);
2577 		if (folio) {
2578 			spin_unlock_irq(&hugetlb_lock);
2579 			return folio;
2580 		}
2581 	}
2582 	spin_unlock_irq(&hugetlb_lock);
2583 
2584 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2585 	if (!allow_alloc_fallback)
2586 		gfp_mask |= __GFP_THISNODE;
2587 
2588 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2589 }
2590 
2591 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2592 {
2593 #ifdef CONFIG_NUMA
2594 	struct mempolicy *mpol = get_task_policy(current);
2595 
2596 	/*
2597 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2598 	 * (from policy_nodemask) specifically for hugetlb case
2599 	 */
2600 	if (mpol->mode == MPOL_BIND &&
2601 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2602 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2603 		return &mpol->nodes;
2604 #endif
2605 	return NULL;
2606 }
2607 
2608 /*
2609  * Increase the hugetlb pool such that it can accommodate a reservation
2610  * of size 'delta'.
2611  */
2612 static int gather_surplus_pages(struct hstate *h, long delta)
2613 	__must_hold(&hugetlb_lock)
2614 {
2615 	LIST_HEAD(surplus_list);
2616 	struct folio *folio, *tmp;
2617 	int ret;
2618 	long i;
2619 	long needed, allocated;
2620 	bool alloc_ok = true;
2621 	int node;
2622 	nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2623 
2624 	lockdep_assert_held(&hugetlb_lock);
2625 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2626 	if (needed <= 0) {
2627 		h->resv_huge_pages += delta;
2628 		return 0;
2629 	}
2630 
2631 	allocated = 0;
2632 
2633 	ret = -ENOMEM;
2634 retry:
2635 	spin_unlock_irq(&hugetlb_lock);
2636 	for (i = 0; i < needed; i++) {
2637 		folio = NULL;
2638 		for_each_node_mask(node, cpuset_current_mems_allowed) {
2639 			if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2640 				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2641 						node, NULL);
2642 				if (folio)
2643 					break;
2644 			}
2645 		}
2646 		if (!folio) {
2647 			alloc_ok = false;
2648 			break;
2649 		}
2650 		list_add(&folio->lru, &surplus_list);
2651 		cond_resched();
2652 	}
2653 	allocated += i;
2654 
2655 	/*
2656 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2657 	 * because either resv_huge_pages or free_huge_pages may have changed.
2658 	 */
2659 	spin_lock_irq(&hugetlb_lock);
2660 	needed = (h->resv_huge_pages + delta) -
2661 			(h->free_huge_pages + allocated);
2662 	if (needed > 0) {
2663 		if (alloc_ok)
2664 			goto retry;
2665 		/*
2666 		 * We were not able to allocate enough pages to
2667 		 * satisfy the entire reservation so we free what
2668 		 * we've allocated so far.
2669 		 */
2670 		goto free;
2671 	}
2672 	/*
2673 	 * The surplus_list now contains _at_least_ the number of extra pages
2674 	 * needed to accommodate the reservation.  Add the appropriate number
2675 	 * of pages to the hugetlb pool and free the extras back to the buddy
2676 	 * allocator.  Commit the entire reservation here to prevent another
2677 	 * process from stealing the pages as they are added to the pool but
2678 	 * before they are reserved.
2679 	 */
2680 	needed += allocated;
2681 	h->resv_huge_pages += delta;
2682 	ret = 0;
2683 
2684 	/* Free the needed pages to the hugetlb pool */
2685 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2686 		if ((--needed) < 0)
2687 			break;
2688 		/* Add the page to the hugetlb allocator */
2689 		enqueue_hugetlb_folio(h, folio);
2690 	}
2691 free:
2692 	spin_unlock_irq(&hugetlb_lock);
2693 
2694 	/*
2695 	 * Free unnecessary surplus pages to the buddy allocator.
2696 	 * Pages have no ref count, call free_huge_folio directly.
2697 	 */
2698 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2699 		free_huge_folio(folio);
2700 	spin_lock_irq(&hugetlb_lock);
2701 
2702 	return ret;
2703 }
2704 
2705 /*
2706  * This routine has two main purposes:
2707  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2708  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2709  *    to the associated reservation map.
2710  * 2) Free any unused surplus pages that may have been allocated to satisfy
2711  *    the reservation.  As many as unused_resv_pages may be freed.
2712  */
2713 static void return_unused_surplus_pages(struct hstate *h,
2714 					unsigned long unused_resv_pages)
2715 {
2716 	unsigned long nr_pages;
2717 	LIST_HEAD(page_list);
2718 
2719 	lockdep_assert_held(&hugetlb_lock);
2720 	/* Uncommit the reservation */
2721 	h->resv_huge_pages -= unused_resv_pages;
2722 
2723 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2724 		goto out;
2725 
2726 	/*
2727 	 * Part (or even all) of the reservation could have been backed
2728 	 * by pre-allocated pages. Only free surplus pages.
2729 	 */
2730 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2731 
2732 	/*
2733 	 * We want to release as many surplus pages as possible, spread
2734 	 * evenly across all nodes with memory. Iterate across these nodes
2735 	 * until we can no longer free unreserved surplus pages. This occurs
2736 	 * when the nodes with surplus pages have no free pages.
2737 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2738 	 * on-line nodes with memory and will handle the hstate accounting.
2739 	 */
2740 	while (nr_pages--) {
2741 		struct folio *folio;
2742 
2743 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2744 		if (!folio)
2745 			goto out;
2746 
2747 		list_add(&folio->lru, &page_list);
2748 	}
2749 
2750 out:
2751 	spin_unlock_irq(&hugetlb_lock);
2752 	update_and_free_pages_bulk(h, &page_list);
2753 	spin_lock_irq(&hugetlb_lock);
2754 }
2755 
2756 
2757 /*
2758  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2759  * are used by the huge page allocation routines to manage reservations.
2760  *
2761  * vma_needs_reservation is called to determine if the huge page at addr
2762  * within the vma has an associated reservation.  If a reservation is
2763  * needed, the value 1 is returned.  The caller is then responsible for
2764  * managing the global reservation and subpool usage counts.  After
2765  * the huge page has been allocated, vma_commit_reservation is called
2766  * to add the page to the reservation map.  If the page allocation fails,
2767  * the reservation must be ended instead of committed.  vma_end_reservation
2768  * is called in such cases.
2769  *
2770  * In the normal case, vma_commit_reservation returns the same value
2771  * as the preceding vma_needs_reservation call.  The only time this
2772  * is not the case is if a reserve map was changed between calls.  It
2773  * is the responsibility of the caller to notice the difference and
2774  * take appropriate action.
2775  *
2776  * vma_add_reservation is used in error paths where a reservation must
2777  * be restored when a newly allocated huge page must be freed.  It is
2778  * to be called after calling vma_needs_reservation to determine if a
2779  * reservation exists.
2780  *
2781  * vma_del_reservation is used in error paths where an entry in the reserve
2782  * map was created during huge page allocation and must be removed.  It is to
2783  * be called after calling vma_needs_reservation to determine if a reservation
2784  * exists.
2785  */
2786 enum vma_resv_mode {
2787 	VMA_NEEDS_RESV,
2788 	VMA_COMMIT_RESV,
2789 	VMA_END_RESV,
2790 	VMA_ADD_RESV,
2791 	VMA_DEL_RESV,
2792 };
2793 static long __vma_reservation_common(struct hstate *h,
2794 				struct vm_area_struct *vma, unsigned long addr,
2795 				enum vma_resv_mode mode)
2796 {
2797 	struct resv_map *resv;
2798 	pgoff_t idx;
2799 	long ret;
2800 	long dummy_out_regions_needed;
2801 
2802 	resv = vma_resv_map(vma);
2803 	if (!resv)
2804 		return 1;
2805 
2806 	idx = vma_hugecache_offset(h, vma, addr);
2807 	switch (mode) {
2808 	case VMA_NEEDS_RESV:
2809 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2810 		/* We assume that vma_reservation_* routines always operate on
2811 		 * 1 page, and that adding to resv map a 1 page entry can only
2812 		 * ever require 1 region.
2813 		 */
2814 		VM_BUG_ON(dummy_out_regions_needed != 1);
2815 		break;
2816 	case VMA_COMMIT_RESV:
2817 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2818 		/* region_add calls of range 1 should never fail. */
2819 		VM_BUG_ON(ret < 0);
2820 		break;
2821 	case VMA_END_RESV:
2822 		region_abort(resv, idx, idx + 1, 1);
2823 		ret = 0;
2824 		break;
2825 	case VMA_ADD_RESV:
2826 		if (vma->vm_flags & VM_MAYSHARE) {
2827 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2828 			/* region_add calls of range 1 should never fail. */
2829 			VM_BUG_ON(ret < 0);
2830 		} else {
2831 			region_abort(resv, idx, idx + 1, 1);
2832 			ret = region_del(resv, idx, idx + 1);
2833 		}
2834 		break;
2835 	case VMA_DEL_RESV:
2836 		if (vma->vm_flags & VM_MAYSHARE) {
2837 			region_abort(resv, idx, idx + 1, 1);
2838 			ret = region_del(resv, idx, idx + 1);
2839 		} else {
2840 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2841 			/* region_add calls of range 1 should never fail. */
2842 			VM_BUG_ON(ret < 0);
2843 		}
2844 		break;
2845 	default:
2846 		BUG();
2847 	}
2848 
2849 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2850 		return ret;
2851 	/*
2852 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2853 	 *
2854 	 * In most cases, reserves always exist for private mappings.
2855 	 * However, a file associated with mapping could have been
2856 	 * hole punched or truncated after reserves were consumed.
2857 	 * As subsequent fault on such a range will not use reserves.
2858 	 * Subtle - The reserve map for private mappings has the
2859 	 * opposite meaning than that of shared mappings.  If NO
2860 	 * entry is in the reserve map, it means a reservation exists.
2861 	 * If an entry exists in the reserve map, it means the
2862 	 * reservation has already been consumed.  As a result, the
2863 	 * return value of this routine is the opposite of the
2864 	 * value returned from reserve map manipulation routines above.
2865 	 */
2866 	if (ret > 0)
2867 		return 0;
2868 	if (ret == 0)
2869 		return 1;
2870 	return ret;
2871 }
2872 
2873 static long vma_needs_reservation(struct hstate *h,
2874 			struct vm_area_struct *vma, unsigned long addr)
2875 {
2876 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2877 }
2878 
2879 static long vma_commit_reservation(struct hstate *h,
2880 			struct vm_area_struct *vma, unsigned long addr)
2881 {
2882 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2883 }
2884 
2885 static void vma_end_reservation(struct hstate *h,
2886 			struct vm_area_struct *vma, unsigned long addr)
2887 {
2888 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2889 }
2890 
2891 static long vma_add_reservation(struct hstate *h,
2892 			struct vm_area_struct *vma, unsigned long addr)
2893 {
2894 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2895 }
2896 
2897 static long vma_del_reservation(struct hstate *h,
2898 			struct vm_area_struct *vma, unsigned long addr)
2899 {
2900 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2901 }
2902 
2903 /*
2904  * This routine is called to restore reservation information on error paths.
2905  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2906  * and the hugetlb mutex should remain held when calling this routine.
2907  *
2908  * It handles two specific cases:
2909  * 1) A reservation was in place and the folio consumed the reservation.
2910  *    hugetlb_restore_reserve is set in the folio.
2911  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2912  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2913  *
2914  * In case 1, free_huge_folio later in the error path will increment the
2915  * global reserve count.  But, free_huge_folio does not have enough context
2916  * to adjust the reservation map.  This case deals primarily with private
2917  * mappings.  Adjust the reserve map here to be consistent with global
2918  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2919  * reserve map indicates there is a reservation present.
2920  *
2921  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2922  */
2923 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2924 			unsigned long address, struct folio *folio)
2925 {
2926 	long rc = vma_needs_reservation(h, vma, address);
2927 
2928 	if (folio_test_hugetlb_restore_reserve(folio)) {
2929 		if (unlikely(rc < 0))
2930 			/*
2931 			 * Rare out of memory condition in reserve map
2932 			 * manipulation.  Clear hugetlb_restore_reserve so
2933 			 * that global reserve count will not be incremented
2934 			 * by free_huge_folio.  This will make it appear
2935 			 * as though the reservation for this folio was
2936 			 * consumed.  This may prevent the task from
2937 			 * faulting in the folio at a later time.  This
2938 			 * is better than inconsistent global huge page
2939 			 * accounting of reserve counts.
2940 			 */
2941 			folio_clear_hugetlb_restore_reserve(folio);
2942 		else if (rc)
2943 			(void)vma_add_reservation(h, vma, address);
2944 		else
2945 			vma_end_reservation(h, vma, address);
2946 	} else {
2947 		if (!rc) {
2948 			/*
2949 			 * This indicates there is an entry in the reserve map
2950 			 * not added by alloc_hugetlb_folio.  We know it was added
2951 			 * before the alloc_hugetlb_folio call, otherwise
2952 			 * hugetlb_restore_reserve would be set on the folio.
2953 			 * Remove the entry so that a subsequent allocation
2954 			 * does not consume a reservation.
2955 			 */
2956 			rc = vma_del_reservation(h, vma, address);
2957 			if (rc < 0)
2958 				/*
2959 				 * VERY rare out of memory condition.  Since
2960 				 * we can not delete the entry, set
2961 				 * hugetlb_restore_reserve so that the reserve
2962 				 * count will be incremented when the folio
2963 				 * is freed.  This reserve will be consumed
2964 				 * on a subsequent allocation.
2965 				 */
2966 				folio_set_hugetlb_restore_reserve(folio);
2967 		} else if (rc < 0) {
2968 			/*
2969 			 * Rare out of memory condition from
2970 			 * vma_needs_reservation call.  Memory allocation is
2971 			 * only attempted if a new entry is needed.  Therefore,
2972 			 * this implies there is not an entry in the
2973 			 * reserve map.
2974 			 *
2975 			 * For shared mappings, no entry in the map indicates
2976 			 * no reservation.  We are done.
2977 			 */
2978 			if (!(vma->vm_flags & VM_MAYSHARE))
2979 				/*
2980 				 * For private mappings, no entry indicates
2981 				 * a reservation is present.  Since we can
2982 				 * not add an entry, set hugetlb_restore_reserve
2983 				 * on the folio so reserve count will be
2984 				 * incremented when freed.  This reserve will
2985 				 * be consumed on a subsequent allocation.
2986 				 */
2987 				folio_set_hugetlb_restore_reserve(folio);
2988 		} else
2989 			/*
2990 			 * No reservation present, do nothing
2991 			 */
2992 			 vma_end_reservation(h, vma, address);
2993 	}
2994 }
2995 
2996 /*
2997  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2998  * the old one
2999  * @h: struct hstate old page belongs to
3000  * @old_folio: Old folio to dissolve
3001  * @list: List to isolate the page in case we need to
3002  * Returns 0 on success, otherwise negated error.
3003  */
3004 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3005 			struct folio *old_folio, struct list_head *list)
3006 {
3007 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3008 	int nid = folio_nid(old_folio);
3009 	struct folio *new_folio = NULL;
3010 	int ret = 0;
3011 
3012 retry:
3013 	spin_lock_irq(&hugetlb_lock);
3014 	if (!folio_test_hugetlb(old_folio)) {
3015 		/*
3016 		 * Freed from under us. Drop new_folio too.
3017 		 */
3018 		goto free_new;
3019 	} else if (folio_ref_count(old_folio)) {
3020 		bool isolated;
3021 
3022 		/*
3023 		 * Someone has grabbed the folio, try to isolate it here.
3024 		 * Fail with -EBUSY if not possible.
3025 		 */
3026 		spin_unlock_irq(&hugetlb_lock);
3027 		isolated = isolate_hugetlb(old_folio, list);
3028 		ret = isolated ? 0 : -EBUSY;
3029 		spin_lock_irq(&hugetlb_lock);
3030 		goto free_new;
3031 	} else if (!folio_test_hugetlb_freed(old_folio)) {
3032 		/*
3033 		 * Folio's refcount is 0 but it has not been enqueued in the
3034 		 * freelist yet. Race window is small, so we can succeed here if
3035 		 * we retry.
3036 		 */
3037 		spin_unlock_irq(&hugetlb_lock);
3038 		cond_resched();
3039 		goto retry;
3040 	} else {
3041 		if (!new_folio) {
3042 			spin_unlock_irq(&hugetlb_lock);
3043 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3044 							      NULL, NULL);
3045 			if (!new_folio)
3046 				return -ENOMEM;
3047 			__prep_new_hugetlb_folio(h, new_folio);
3048 			goto retry;
3049 		}
3050 
3051 		/*
3052 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3053 		 * the freelist and decrease the counters. These will be
3054 		 * incremented again when calling __prep_account_new_huge_page()
3055 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3056 		 * remain stable since this happens under the lock.
3057 		 */
3058 		remove_hugetlb_folio(h, old_folio, false);
3059 
3060 		/*
3061 		 * Ref count on new_folio is already zero as it was dropped
3062 		 * earlier.  It can be directly added to the pool free list.
3063 		 */
3064 		__prep_account_new_huge_page(h, nid);
3065 		enqueue_hugetlb_folio(h, new_folio);
3066 
3067 		/*
3068 		 * Folio has been replaced, we can safely free the old one.
3069 		 */
3070 		spin_unlock_irq(&hugetlb_lock);
3071 		update_and_free_hugetlb_folio(h, old_folio, false);
3072 	}
3073 
3074 	return ret;
3075 
3076 free_new:
3077 	spin_unlock_irq(&hugetlb_lock);
3078 	if (new_folio)
3079 		update_and_free_hugetlb_folio(h, new_folio, false);
3080 
3081 	return ret;
3082 }
3083 
3084 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3085 {
3086 	struct hstate *h;
3087 	struct folio *folio = page_folio(page);
3088 	int ret = -EBUSY;
3089 
3090 	/*
3091 	 * The page might have been dissolved from under our feet, so make sure
3092 	 * to carefully check the state under the lock.
3093 	 * Return success when racing as if we dissolved the page ourselves.
3094 	 */
3095 	spin_lock_irq(&hugetlb_lock);
3096 	if (folio_test_hugetlb(folio)) {
3097 		h = folio_hstate(folio);
3098 	} else {
3099 		spin_unlock_irq(&hugetlb_lock);
3100 		return 0;
3101 	}
3102 	spin_unlock_irq(&hugetlb_lock);
3103 
3104 	/*
3105 	 * Fence off gigantic pages as there is a cyclic dependency between
3106 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3107 	 * of bailing out right away without further retrying.
3108 	 */
3109 	if (hstate_is_gigantic(h))
3110 		return -ENOMEM;
3111 
3112 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3113 		ret = 0;
3114 	else if (!folio_ref_count(folio))
3115 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3116 
3117 	return ret;
3118 }
3119 
3120 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3121 				    unsigned long addr, int avoid_reserve)
3122 {
3123 	struct hugepage_subpool *spool = subpool_vma(vma);
3124 	struct hstate *h = hstate_vma(vma);
3125 	struct folio *folio;
3126 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3127 	long gbl_chg;
3128 	int memcg_charge_ret, ret, idx;
3129 	struct hugetlb_cgroup *h_cg = NULL;
3130 	struct mem_cgroup *memcg;
3131 	bool deferred_reserve;
3132 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3133 
3134 	memcg = get_mem_cgroup_from_current();
3135 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3136 	if (memcg_charge_ret == -ENOMEM) {
3137 		mem_cgroup_put(memcg);
3138 		return ERR_PTR(-ENOMEM);
3139 	}
3140 
3141 	idx = hstate_index(h);
3142 	/*
3143 	 * Examine the region/reserve map to determine if the process
3144 	 * has a reservation for the page to be allocated.  A return
3145 	 * code of zero indicates a reservation exists (no change).
3146 	 */
3147 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3148 	if (map_chg < 0) {
3149 		if (!memcg_charge_ret)
3150 			mem_cgroup_cancel_charge(memcg, nr_pages);
3151 		mem_cgroup_put(memcg);
3152 		return ERR_PTR(-ENOMEM);
3153 	}
3154 
3155 	/*
3156 	 * Processes that did not create the mapping will have no
3157 	 * reserves as indicated by the region/reserve map. Check
3158 	 * that the allocation will not exceed the subpool limit.
3159 	 * Allocations for MAP_NORESERVE mappings also need to be
3160 	 * checked against any subpool limit.
3161 	 */
3162 	if (map_chg || avoid_reserve) {
3163 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3164 		if (gbl_chg < 0)
3165 			goto out_end_reservation;
3166 
3167 		/*
3168 		 * Even though there was no reservation in the region/reserve
3169 		 * map, there could be reservations associated with the
3170 		 * subpool that can be used.  This would be indicated if the
3171 		 * return value of hugepage_subpool_get_pages() is zero.
3172 		 * However, if avoid_reserve is specified we still avoid even
3173 		 * the subpool reservations.
3174 		 */
3175 		if (avoid_reserve)
3176 			gbl_chg = 1;
3177 	}
3178 
3179 	/* If this allocation is not consuming a reservation, charge it now.
3180 	 */
3181 	deferred_reserve = map_chg || avoid_reserve;
3182 	if (deferred_reserve) {
3183 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3184 			idx, pages_per_huge_page(h), &h_cg);
3185 		if (ret)
3186 			goto out_subpool_put;
3187 	}
3188 
3189 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3190 	if (ret)
3191 		goto out_uncharge_cgroup_reservation;
3192 
3193 	spin_lock_irq(&hugetlb_lock);
3194 	/*
3195 	 * glb_chg is passed to indicate whether or not a page must be taken
3196 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3197 	 * a reservation exists for the allocation.
3198 	 */
3199 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3200 	if (!folio) {
3201 		spin_unlock_irq(&hugetlb_lock);
3202 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3203 		if (!folio)
3204 			goto out_uncharge_cgroup;
3205 		spin_lock_irq(&hugetlb_lock);
3206 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3207 			folio_set_hugetlb_restore_reserve(folio);
3208 			h->resv_huge_pages--;
3209 		}
3210 		list_add(&folio->lru, &h->hugepage_activelist);
3211 		folio_ref_unfreeze(folio, 1);
3212 		/* Fall through */
3213 	}
3214 
3215 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3216 	/* If allocation is not consuming a reservation, also store the
3217 	 * hugetlb_cgroup pointer on the page.
3218 	 */
3219 	if (deferred_reserve) {
3220 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3221 						  h_cg, folio);
3222 	}
3223 
3224 	spin_unlock_irq(&hugetlb_lock);
3225 
3226 	hugetlb_set_folio_subpool(folio, spool);
3227 
3228 	map_commit = vma_commit_reservation(h, vma, addr);
3229 	if (unlikely(map_chg > map_commit)) {
3230 		/*
3231 		 * The page was added to the reservation map between
3232 		 * vma_needs_reservation and vma_commit_reservation.
3233 		 * This indicates a race with hugetlb_reserve_pages.
3234 		 * Adjust for the subpool count incremented above AND
3235 		 * in hugetlb_reserve_pages for the same page.  Also,
3236 		 * the reservation count added in hugetlb_reserve_pages
3237 		 * no longer applies.
3238 		 */
3239 		long rsv_adjust;
3240 
3241 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3242 		hugetlb_acct_memory(h, -rsv_adjust);
3243 		if (deferred_reserve) {
3244 			spin_lock_irq(&hugetlb_lock);
3245 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3246 					pages_per_huge_page(h), folio);
3247 			spin_unlock_irq(&hugetlb_lock);
3248 		}
3249 	}
3250 
3251 	if (!memcg_charge_ret)
3252 		mem_cgroup_commit_charge(folio, memcg);
3253 	mem_cgroup_put(memcg);
3254 
3255 	return folio;
3256 
3257 out_uncharge_cgroup:
3258 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3259 out_uncharge_cgroup_reservation:
3260 	if (deferred_reserve)
3261 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3262 						    h_cg);
3263 out_subpool_put:
3264 	if (map_chg || avoid_reserve)
3265 		hugepage_subpool_put_pages(spool, 1);
3266 out_end_reservation:
3267 	vma_end_reservation(h, vma, addr);
3268 	if (!memcg_charge_ret)
3269 		mem_cgroup_cancel_charge(memcg, nr_pages);
3270 	mem_cgroup_put(memcg);
3271 	return ERR_PTR(-ENOSPC);
3272 }
3273 
3274 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3275 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3276 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3277 {
3278 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3279 	int nr_nodes, node = nid;
3280 
3281 	/* do node specific alloc */
3282 	if (nid != NUMA_NO_NODE) {
3283 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3284 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3285 		if (!m)
3286 			return 0;
3287 		goto found;
3288 	}
3289 	/* allocate from next node when distributing huge pages */
3290 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3291 		m = memblock_alloc_try_nid_raw(
3292 				huge_page_size(h), huge_page_size(h),
3293 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3294 		/*
3295 		 * Use the beginning of the huge page to store the
3296 		 * huge_bootmem_page struct (until gather_bootmem
3297 		 * puts them into the mem_map).
3298 		 */
3299 		if (!m)
3300 			return 0;
3301 		goto found;
3302 	}
3303 
3304 found:
3305 
3306 	/*
3307 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3308 	 * rest of the struct pages will be initialized by the HugeTLB
3309 	 * subsystem itself.
3310 	 * The head struct page is used to get folio information by the HugeTLB
3311 	 * subsystem like zone id and node id.
3312 	 */
3313 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3314 		huge_page_size(h) - PAGE_SIZE);
3315 	/* Put them into a private list first because mem_map is not up yet */
3316 	INIT_LIST_HEAD(&m->list);
3317 	list_add(&m->list, &huge_boot_pages[node]);
3318 	m->hstate = h;
3319 	return 1;
3320 }
3321 
3322 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3323 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3324 					unsigned long start_page_number,
3325 					unsigned long end_page_number)
3326 {
3327 	enum zone_type zone = zone_idx(folio_zone(folio));
3328 	int nid = folio_nid(folio);
3329 	unsigned long head_pfn = folio_pfn(folio);
3330 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3331 	int ret;
3332 
3333 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3334 		struct page *page = pfn_to_page(pfn);
3335 
3336 		__init_single_page(page, pfn, zone, nid);
3337 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3338 		ret = page_ref_freeze(page, 1);
3339 		VM_BUG_ON(!ret);
3340 	}
3341 }
3342 
3343 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3344 					      struct hstate *h,
3345 					      unsigned long nr_pages)
3346 {
3347 	int ret;
3348 
3349 	/* Prepare folio head */
3350 	__folio_clear_reserved(folio);
3351 	__folio_set_head(folio);
3352 	ret = folio_ref_freeze(folio, 1);
3353 	VM_BUG_ON(!ret);
3354 	/* Initialize the necessary tail struct pages */
3355 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3356 	prep_compound_head((struct page *)folio, huge_page_order(h));
3357 }
3358 
3359 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3360 					struct list_head *folio_list)
3361 {
3362 	unsigned long flags;
3363 	struct folio *folio, *tmp_f;
3364 
3365 	/* Send list for bulk vmemmap optimization processing */
3366 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3367 
3368 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3369 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3370 			/*
3371 			 * If HVO fails, initialize all tail struct pages
3372 			 * We do not worry about potential long lock hold
3373 			 * time as this is early in boot and there should
3374 			 * be no contention.
3375 			 */
3376 			hugetlb_folio_init_tail_vmemmap(folio,
3377 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3378 					pages_per_huge_page(h));
3379 		}
3380 		/* Subdivide locks to achieve better parallel performance */
3381 		spin_lock_irqsave(&hugetlb_lock, flags);
3382 		__prep_account_new_huge_page(h, folio_nid(folio));
3383 		enqueue_hugetlb_folio(h, folio);
3384 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3385 	}
3386 }
3387 
3388 /*
3389  * Put bootmem huge pages into the standard lists after mem_map is up.
3390  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3391  */
3392 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3393 {
3394 	LIST_HEAD(folio_list);
3395 	struct huge_bootmem_page *m;
3396 	struct hstate *h = NULL, *prev_h = NULL;
3397 
3398 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3399 		struct page *page = virt_to_page(m);
3400 		struct folio *folio = (void *)page;
3401 
3402 		h = m->hstate;
3403 		/*
3404 		 * It is possible to have multiple huge page sizes (hstates)
3405 		 * in this list.  If so, process each size separately.
3406 		 */
3407 		if (h != prev_h && prev_h != NULL)
3408 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3409 		prev_h = h;
3410 
3411 		VM_BUG_ON(!hstate_is_gigantic(h));
3412 		WARN_ON(folio_ref_count(folio) != 1);
3413 
3414 		hugetlb_folio_init_vmemmap(folio, h,
3415 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3416 		init_new_hugetlb_folio(h, folio);
3417 		list_add(&folio->lru, &folio_list);
3418 
3419 		/*
3420 		 * We need to restore the 'stolen' pages to totalram_pages
3421 		 * in order to fix confusing memory reports from free(1) and
3422 		 * other side-effects, like CommitLimit going negative.
3423 		 */
3424 		adjust_managed_page_count(page, pages_per_huge_page(h));
3425 		cond_resched();
3426 	}
3427 
3428 	prep_and_add_bootmem_folios(h, &folio_list);
3429 }
3430 
3431 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3432 						    unsigned long end, void *arg)
3433 {
3434 	int nid;
3435 
3436 	for (nid = start; nid < end; nid++)
3437 		gather_bootmem_prealloc_node(nid);
3438 }
3439 
3440 static void __init gather_bootmem_prealloc(void)
3441 {
3442 	struct padata_mt_job job = {
3443 		.thread_fn	= gather_bootmem_prealloc_parallel,
3444 		.fn_arg		= NULL,
3445 		.start		= 0,
3446 		.size		= num_node_state(N_MEMORY),
3447 		.align		= 1,
3448 		.min_chunk	= 1,
3449 		.max_threads	= num_node_state(N_MEMORY),
3450 		.numa_aware	= true,
3451 	};
3452 
3453 	padata_do_multithreaded(&job);
3454 }
3455 
3456 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3457 {
3458 	unsigned long i;
3459 	char buf[32];
3460 
3461 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3462 		if (hstate_is_gigantic(h)) {
3463 			if (!alloc_bootmem_huge_page(h, nid))
3464 				break;
3465 		} else {
3466 			struct folio *folio;
3467 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3468 
3469 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3470 					&node_states[N_MEMORY]);
3471 			if (!folio)
3472 				break;
3473 			free_huge_folio(folio); /* free it into the hugepage allocator */
3474 		}
3475 		cond_resched();
3476 	}
3477 	if (i == h->max_huge_pages_node[nid])
3478 		return;
3479 
3480 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3481 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3482 		h->max_huge_pages_node[nid], buf, nid, i);
3483 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3484 	h->max_huge_pages_node[nid] = i;
3485 }
3486 
3487 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3488 {
3489 	int i;
3490 	bool node_specific_alloc = false;
3491 
3492 	for_each_online_node(i) {
3493 		if (h->max_huge_pages_node[i] > 0) {
3494 			hugetlb_hstate_alloc_pages_onenode(h, i);
3495 			node_specific_alloc = true;
3496 		}
3497 	}
3498 
3499 	return node_specific_alloc;
3500 }
3501 
3502 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3503 {
3504 	if (allocated < h->max_huge_pages) {
3505 		char buf[32];
3506 
3507 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3508 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3509 			h->max_huge_pages, buf, allocated);
3510 		h->max_huge_pages = allocated;
3511 	}
3512 }
3513 
3514 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3515 {
3516 	struct hstate *h = (struct hstate *)arg;
3517 	int i, num = end - start;
3518 	nodemask_t node_alloc_noretry;
3519 	LIST_HEAD(folio_list);
3520 	int next_node = first_online_node;
3521 
3522 	/* Bit mask controlling how hard we retry per-node allocations.*/
3523 	nodes_clear(node_alloc_noretry);
3524 
3525 	for (i = 0; i < num; ++i) {
3526 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3527 						&node_alloc_noretry, &next_node);
3528 		if (!folio)
3529 			break;
3530 
3531 		list_move(&folio->lru, &folio_list);
3532 		cond_resched();
3533 	}
3534 
3535 	prep_and_add_allocated_folios(h, &folio_list);
3536 }
3537 
3538 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3539 {
3540 	unsigned long i;
3541 
3542 	for (i = 0; i < h->max_huge_pages; ++i) {
3543 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3544 			break;
3545 		cond_resched();
3546 	}
3547 
3548 	return i;
3549 }
3550 
3551 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3552 {
3553 	struct padata_mt_job job = {
3554 		.fn_arg		= h,
3555 		.align		= 1,
3556 		.numa_aware	= true
3557 	};
3558 
3559 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3560 	job.start	= 0;
3561 	job.size	= h->max_huge_pages;
3562 
3563 	/*
3564 	 * job.max_threads is twice the num_node_state(N_MEMORY),
3565 	 *
3566 	 * Tests below indicate that a multiplier of 2 significantly improves
3567 	 * performance, and although larger values also provide improvements,
3568 	 * the gains are marginal.
3569 	 *
3570 	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3571 	 * enhancing parallel processing capabilities and maintaining efficient
3572 	 * resource management.
3573 	 *
3574 	 * +------------+-------+-------+-------+-------+-------+
3575 	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3576 	 * +------------+-------+-------+-------+-------+-------+
3577 	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3578 	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3579 	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3580 	 * +------------+-------+-------+-------+-------+-------+
3581 	 */
3582 	job.max_threads	= num_node_state(N_MEMORY) * 2;
3583 	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3584 	padata_do_multithreaded(&job);
3585 
3586 	return h->nr_huge_pages;
3587 }
3588 
3589 /*
3590  * NOTE: this routine is called in different contexts for gigantic and
3591  * non-gigantic pages.
3592  * - For gigantic pages, this is called early in the boot process and
3593  *   pages are allocated from memblock allocated or something similar.
3594  *   Gigantic pages are actually added to pools later with the routine
3595  *   gather_bootmem_prealloc.
3596  * - For non-gigantic pages, this is called later in the boot process after
3597  *   all of mm is up and functional.  Pages are allocated from buddy and
3598  *   then added to hugetlb pools.
3599  */
3600 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3601 {
3602 	unsigned long allocated;
3603 	static bool initialized __initdata;
3604 
3605 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3606 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3607 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3608 		return;
3609 	}
3610 
3611 	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3612 	if (!initialized) {
3613 		int i = 0;
3614 
3615 		for (i = 0; i < MAX_NUMNODES; i++)
3616 			INIT_LIST_HEAD(&huge_boot_pages[i]);
3617 		initialized = true;
3618 	}
3619 
3620 	/* do node specific alloc */
3621 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3622 		return;
3623 
3624 	/* below will do all node balanced alloc */
3625 	if (hstate_is_gigantic(h))
3626 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3627 	else
3628 		allocated = hugetlb_pages_alloc_boot(h);
3629 
3630 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3631 }
3632 
3633 static void __init hugetlb_init_hstates(void)
3634 {
3635 	struct hstate *h, *h2;
3636 
3637 	for_each_hstate(h) {
3638 		/* oversize hugepages were init'ed in early boot */
3639 		if (!hstate_is_gigantic(h))
3640 			hugetlb_hstate_alloc_pages(h);
3641 
3642 		/*
3643 		 * Set demote order for each hstate.  Note that
3644 		 * h->demote_order is initially 0.
3645 		 * - We can not demote gigantic pages if runtime freeing
3646 		 *   is not supported, so skip this.
3647 		 * - If CMA allocation is possible, we can not demote
3648 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3649 		 */
3650 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3651 			continue;
3652 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3653 			continue;
3654 		for_each_hstate(h2) {
3655 			if (h2 == h)
3656 				continue;
3657 			if (h2->order < h->order &&
3658 			    h2->order > h->demote_order)
3659 				h->demote_order = h2->order;
3660 		}
3661 	}
3662 }
3663 
3664 static void __init report_hugepages(void)
3665 {
3666 	struct hstate *h;
3667 
3668 	for_each_hstate(h) {
3669 		char buf[32];
3670 
3671 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3672 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3673 			buf, h->free_huge_pages);
3674 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3675 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3676 	}
3677 }
3678 
3679 #ifdef CONFIG_HIGHMEM
3680 static void try_to_free_low(struct hstate *h, unsigned long count,
3681 						nodemask_t *nodes_allowed)
3682 {
3683 	int i;
3684 	LIST_HEAD(page_list);
3685 
3686 	lockdep_assert_held(&hugetlb_lock);
3687 	if (hstate_is_gigantic(h))
3688 		return;
3689 
3690 	/*
3691 	 * Collect pages to be freed on a list, and free after dropping lock
3692 	 */
3693 	for_each_node_mask(i, *nodes_allowed) {
3694 		struct folio *folio, *next;
3695 		struct list_head *freel = &h->hugepage_freelists[i];
3696 		list_for_each_entry_safe(folio, next, freel, lru) {
3697 			if (count >= h->nr_huge_pages)
3698 				goto out;
3699 			if (folio_test_highmem(folio))
3700 				continue;
3701 			remove_hugetlb_folio(h, folio, false);
3702 			list_add(&folio->lru, &page_list);
3703 		}
3704 	}
3705 
3706 out:
3707 	spin_unlock_irq(&hugetlb_lock);
3708 	update_and_free_pages_bulk(h, &page_list);
3709 	spin_lock_irq(&hugetlb_lock);
3710 }
3711 #else
3712 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3713 						nodemask_t *nodes_allowed)
3714 {
3715 }
3716 #endif
3717 
3718 /*
3719  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3720  * balanced by operating on them in a round-robin fashion.
3721  * Returns 1 if an adjustment was made.
3722  */
3723 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3724 				int delta)
3725 {
3726 	int nr_nodes, node;
3727 
3728 	lockdep_assert_held(&hugetlb_lock);
3729 	VM_BUG_ON(delta != -1 && delta != 1);
3730 
3731 	if (delta < 0) {
3732 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3733 			if (h->surplus_huge_pages_node[node])
3734 				goto found;
3735 		}
3736 	} else {
3737 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3738 			if (h->surplus_huge_pages_node[node] <
3739 					h->nr_huge_pages_node[node])
3740 				goto found;
3741 		}
3742 	}
3743 	return 0;
3744 
3745 found:
3746 	h->surplus_huge_pages += delta;
3747 	h->surplus_huge_pages_node[node] += delta;
3748 	return 1;
3749 }
3750 
3751 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3752 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3753 			      nodemask_t *nodes_allowed)
3754 {
3755 	unsigned long min_count;
3756 	unsigned long allocated;
3757 	struct folio *folio;
3758 	LIST_HEAD(page_list);
3759 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3760 
3761 	/*
3762 	 * Bit mask controlling how hard we retry per-node allocations.
3763 	 * If we can not allocate the bit mask, do not attempt to allocate
3764 	 * the requested huge pages.
3765 	 */
3766 	if (node_alloc_noretry)
3767 		nodes_clear(*node_alloc_noretry);
3768 	else
3769 		return -ENOMEM;
3770 
3771 	/*
3772 	 * resize_lock mutex prevents concurrent adjustments to number of
3773 	 * pages in hstate via the proc/sysfs interfaces.
3774 	 */
3775 	mutex_lock(&h->resize_lock);
3776 	flush_free_hpage_work(h);
3777 	spin_lock_irq(&hugetlb_lock);
3778 
3779 	/*
3780 	 * Check for a node specific request.
3781 	 * Changing node specific huge page count may require a corresponding
3782 	 * change to the global count.  In any case, the passed node mask
3783 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3784 	 */
3785 	if (nid != NUMA_NO_NODE) {
3786 		unsigned long old_count = count;
3787 
3788 		count += persistent_huge_pages(h) -
3789 			 (h->nr_huge_pages_node[nid] -
3790 			  h->surplus_huge_pages_node[nid]);
3791 		/*
3792 		 * User may have specified a large count value which caused the
3793 		 * above calculation to overflow.  In this case, they wanted
3794 		 * to allocate as many huge pages as possible.  Set count to
3795 		 * largest possible value to align with their intention.
3796 		 */
3797 		if (count < old_count)
3798 			count = ULONG_MAX;
3799 	}
3800 
3801 	/*
3802 	 * Gigantic pages runtime allocation depend on the capability for large
3803 	 * page range allocation.
3804 	 * If the system does not provide this feature, return an error when
3805 	 * the user tries to allocate gigantic pages but let the user free the
3806 	 * boottime allocated gigantic pages.
3807 	 */
3808 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3809 		if (count > persistent_huge_pages(h)) {
3810 			spin_unlock_irq(&hugetlb_lock);
3811 			mutex_unlock(&h->resize_lock);
3812 			NODEMASK_FREE(node_alloc_noretry);
3813 			return -EINVAL;
3814 		}
3815 		/* Fall through to decrease pool */
3816 	}
3817 
3818 	/*
3819 	 * Increase the pool size
3820 	 * First take pages out of surplus state.  Then make up the
3821 	 * remaining difference by allocating fresh huge pages.
3822 	 *
3823 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3824 	 * to convert a surplus huge page to a normal huge page. That is
3825 	 * not critical, though, it just means the overall size of the
3826 	 * pool might be one hugepage larger than it needs to be, but
3827 	 * within all the constraints specified by the sysctls.
3828 	 */
3829 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3830 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3831 			break;
3832 	}
3833 
3834 	allocated = 0;
3835 	while (count > (persistent_huge_pages(h) + allocated)) {
3836 		/*
3837 		 * If this allocation races such that we no longer need the
3838 		 * page, free_huge_folio will handle it by freeing the page
3839 		 * and reducing the surplus.
3840 		 */
3841 		spin_unlock_irq(&hugetlb_lock);
3842 
3843 		/* yield cpu to avoid soft lockup */
3844 		cond_resched();
3845 
3846 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3847 						node_alloc_noretry,
3848 						&h->next_nid_to_alloc);
3849 		if (!folio) {
3850 			prep_and_add_allocated_folios(h, &page_list);
3851 			spin_lock_irq(&hugetlb_lock);
3852 			goto out;
3853 		}
3854 
3855 		list_add(&folio->lru, &page_list);
3856 		allocated++;
3857 
3858 		/* Bail for signals. Probably ctrl-c from user */
3859 		if (signal_pending(current)) {
3860 			prep_and_add_allocated_folios(h, &page_list);
3861 			spin_lock_irq(&hugetlb_lock);
3862 			goto out;
3863 		}
3864 
3865 		spin_lock_irq(&hugetlb_lock);
3866 	}
3867 
3868 	/* Add allocated pages to the pool */
3869 	if (!list_empty(&page_list)) {
3870 		spin_unlock_irq(&hugetlb_lock);
3871 		prep_and_add_allocated_folios(h, &page_list);
3872 		spin_lock_irq(&hugetlb_lock);
3873 	}
3874 
3875 	/*
3876 	 * Decrease the pool size
3877 	 * First return free pages to the buddy allocator (being careful
3878 	 * to keep enough around to satisfy reservations).  Then place
3879 	 * pages into surplus state as needed so the pool will shrink
3880 	 * to the desired size as pages become free.
3881 	 *
3882 	 * By placing pages into the surplus state independent of the
3883 	 * overcommit value, we are allowing the surplus pool size to
3884 	 * exceed overcommit. There are few sane options here. Since
3885 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3886 	 * though, we'll note that we're not allowed to exceed surplus
3887 	 * and won't grow the pool anywhere else. Not until one of the
3888 	 * sysctls are changed, or the surplus pages go out of use.
3889 	 */
3890 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3891 	min_count = max(count, min_count);
3892 	try_to_free_low(h, min_count, nodes_allowed);
3893 
3894 	/*
3895 	 * Collect pages to be removed on list without dropping lock
3896 	 */
3897 	while (min_count < persistent_huge_pages(h)) {
3898 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3899 		if (!folio)
3900 			break;
3901 
3902 		list_add(&folio->lru, &page_list);
3903 	}
3904 	/* free the pages after dropping lock */
3905 	spin_unlock_irq(&hugetlb_lock);
3906 	update_and_free_pages_bulk(h, &page_list);
3907 	flush_free_hpage_work(h);
3908 	spin_lock_irq(&hugetlb_lock);
3909 
3910 	while (count < persistent_huge_pages(h)) {
3911 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3912 			break;
3913 	}
3914 out:
3915 	h->max_huge_pages = persistent_huge_pages(h);
3916 	spin_unlock_irq(&hugetlb_lock);
3917 	mutex_unlock(&h->resize_lock);
3918 
3919 	NODEMASK_FREE(node_alloc_noretry);
3920 
3921 	return 0;
3922 }
3923 
3924 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3925 {
3926 	int i, nid = folio_nid(folio);
3927 	struct hstate *target_hstate;
3928 	struct page *subpage;
3929 	struct folio *inner_folio;
3930 	int rc = 0;
3931 
3932 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3933 
3934 	remove_hugetlb_folio(h, folio, false);
3935 	spin_unlock_irq(&hugetlb_lock);
3936 
3937 	/*
3938 	 * If vmemmap already existed for folio, the remove routine above would
3939 	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3940 	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3941 	 * passed hugetlb folios and will BUG otherwise.
3942 	 */
3943 	if (folio_test_hugetlb(folio)) {
3944 		rc = hugetlb_vmemmap_restore_folio(h, folio);
3945 		if (rc) {
3946 			/* Allocation of vmemmmap failed, we can not demote folio */
3947 			spin_lock_irq(&hugetlb_lock);
3948 			add_hugetlb_folio(h, folio, false);
3949 			return rc;
3950 		}
3951 	}
3952 
3953 	/*
3954 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3955 	 * sizes as it will not ref count folios.
3956 	 */
3957 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3958 
3959 	/*
3960 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3961 	 * Without the mutex, pages added to target hstate could be marked
3962 	 * as surplus.
3963 	 *
3964 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3965 	 * use the convention of always taking larger size hstate mutex first.
3966 	 */
3967 	mutex_lock(&target_hstate->resize_lock);
3968 	for (i = 0; i < pages_per_huge_page(h);
3969 				i += pages_per_huge_page(target_hstate)) {
3970 		subpage = folio_page(folio, i);
3971 		inner_folio = page_folio(subpage);
3972 		if (hstate_is_gigantic(target_hstate))
3973 			prep_compound_gigantic_folio_for_demote(inner_folio,
3974 							target_hstate->order);
3975 		else
3976 			prep_compound_page(subpage, target_hstate->order);
3977 		folio_change_private(inner_folio, NULL);
3978 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3979 		free_huge_folio(inner_folio);
3980 	}
3981 	mutex_unlock(&target_hstate->resize_lock);
3982 
3983 	spin_lock_irq(&hugetlb_lock);
3984 
3985 	/*
3986 	 * Not absolutely necessary, but for consistency update max_huge_pages
3987 	 * based on pool changes for the demoted page.
3988 	 */
3989 	h->max_huge_pages--;
3990 	target_hstate->max_huge_pages +=
3991 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3992 
3993 	return rc;
3994 }
3995 
3996 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3997 	__must_hold(&hugetlb_lock)
3998 {
3999 	int nr_nodes, node;
4000 	struct folio *folio;
4001 
4002 	lockdep_assert_held(&hugetlb_lock);
4003 
4004 	/* We should never get here if no demote order */
4005 	if (!h->demote_order) {
4006 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4007 		return -EINVAL;		/* internal error */
4008 	}
4009 
4010 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4011 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4012 			if (folio_test_hwpoison(folio))
4013 				continue;
4014 			return demote_free_hugetlb_folio(h, folio);
4015 		}
4016 	}
4017 
4018 	/*
4019 	 * Only way to get here is if all pages on free lists are poisoned.
4020 	 * Return -EBUSY so that caller will not retry.
4021 	 */
4022 	return -EBUSY;
4023 }
4024 
4025 #define HSTATE_ATTR_RO(_name) \
4026 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4027 
4028 #define HSTATE_ATTR_WO(_name) \
4029 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4030 
4031 #define HSTATE_ATTR(_name) \
4032 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4033 
4034 static struct kobject *hugepages_kobj;
4035 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4036 
4037 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4038 
4039 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4040 {
4041 	int i;
4042 
4043 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4044 		if (hstate_kobjs[i] == kobj) {
4045 			if (nidp)
4046 				*nidp = NUMA_NO_NODE;
4047 			return &hstates[i];
4048 		}
4049 
4050 	return kobj_to_node_hstate(kobj, nidp);
4051 }
4052 
4053 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4054 					struct kobj_attribute *attr, char *buf)
4055 {
4056 	struct hstate *h;
4057 	unsigned long nr_huge_pages;
4058 	int nid;
4059 
4060 	h = kobj_to_hstate(kobj, &nid);
4061 	if (nid == NUMA_NO_NODE)
4062 		nr_huge_pages = h->nr_huge_pages;
4063 	else
4064 		nr_huge_pages = h->nr_huge_pages_node[nid];
4065 
4066 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4067 }
4068 
4069 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4070 					   struct hstate *h, int nid,
4071 					   unsigned long count, size_t len)
4072 {
4073 	int err;
4074 	nodemask_t nodes_allowed, *n_mask;
4075 
4076 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4077 		return -EINVAL;
4078 
4079 	if (nid == NUMA_NO_NODE) {
4080 		/*
4081 		 * global hstate attribute
4082 		 */
4083 		if (!(obey_mempolicy &&
4084 				init_nodemask_of_mempolicy(&nodes_allowed)))
4085 			n_mask = &node_states[N_MEMORY];
4086 		else
4087 			n_mask = &nodes_allowed;
4088 	} else {
4089 		/*
4090 		 * Node specific request.  count adjustment happens in
4091 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4092 		 */
4093 		init_nodemask_of_node(&nodes_allowed, nid);
4094 		n_mask = &nodes_allowed;
4095 	}
4096 
4097 	err = set_max_huge_pages(h, count, nid, n_mask);
4098 
4099 	return err ? err : len;
4100 }
4101 
4102 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4103 					 struct kobject *kobj, const char *buf,
4104 					 size_t len)
4105 {
4106 	struct hstate *h;
4107 	unsigned long count;
4108 	int nid;
4109 	int err;
4110 
4111 	err = kstrtoul(buf, 10, &count);
4112 	if (err)
4113 		return err;
4114 
4115 	h = kobj_to_hstate(kobj, &nid);
4116 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4117 }
4118 
4119 static ssize_t nr_hugepages_show(struct kobject *kobj,
4120 				       struct kobj_attribute *attr, char *buf)
4121 {
4122 	return nr_hugepages_show_common(kobj, attr, buf);
4123 }
4124 
4125 static ssize_t nr_hugepages_store(struct kobject *kobj,
4126 	       struct kobj_attribute *attr, const char *buf, size_t len)
4127 {
4128 	return nr_hugepages_store_common(false, kobj, buf, len);
4129 }
4130 HSTATE_ATTR(nr_hugepages);
4131 
4132 #ifdef CONFIG_NUMA
4133 
4134 /*
4135  * hstate attribute for optionally mempolicy-based constraint on persistent
4136  * huge page alloc/free.
4137  */
4138 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4139 					   struct kobj_attribute *attr,
4140 					   char *buf)
4141 {
4142 	return nr_hugepages_show_common(kobj, attr, buf);
4143 }
4144 
4145 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4146 	       struct kobj_attribute *attr, const char *buf, size_t len)
4147 {
4148 	return nr_hugepages_store_common(true, kobj, buf, len);
4149 }
4150 HSTATE_ATTR(nr_hugepages_mempolicy);
4151 #endif
4152 
4153 
4154 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4155 					struct kobj_attribute *attr, char *buf)
4156 {
4157 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4158 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4159 }
4160 
4161 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4162 		struct kobj_attribute *attr, const char *buf, size_t count)
4163 {
4164 	int err;
4165 	unsigned long input;
4166 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4167 
4168 	if (hstate_is_gigantic(h))
4169 		return -EINVAL;
4170 
4171 	err = kstrtoul(buf, 10, &input);
4172 	if (err)
4173 		return err;
4174 
4175 	spin_lock_irq(&hugetlb_lock);
4176 	h->nr_overcommit_huge_pages = input;
4177 	spin_unlock_irq(&hugetlb_lock);
4178 
4179 	return count;
4180 }
4181 HSTATE_ATTR(nr_overcommit_hugepages);
4182 
4183 static ssize_t free_hugepages_show(struct kobject *kobj,
4184 					struct kobj_attribute *attr, char *buf)
4185 {
4186 	struct hstate *h;
4187 	unsigned long free_huge_pages;
4188 	int nid;
4189 
4190 	h = kobj_to_hstate(kobj, &nid);
4191 	if (nid == NUMA_NO_NODE)
4192 		free_huge_pages = h->free_huge_pages;
4193 	else
4194 		free_huge_pages = h->free_huge_pages_node[nid];
4195 
4196 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4197 }
4198 HSTATE_ATTR_RO(free_hugepages);
4199 
4200 static ssize_t resv_hugepages_show(struct kobject *kobj,
4201 					struct kobj_attribute *attr, char *buf)
4202 {
4203 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4204 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4205 }
4206 HSTATE_ATTR_RO(resv_hugepages);
4207 
4208 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4209 					struct kobj_attribute *attr, char *buf)
4210 {
4211 	struct hstate *h;
4212 	unsigned long surplus_huge_pages;
4213 	int nid;
4214 
4215 	h = kobj_to_hstate(kobj, &nid);
4216 	if (nid == NUMA_NO_NODE)
4217 		surplus_huge_pages = h->surplus_huge_pages;
4218 	else
4219 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4220 
4221 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4222 }
4223 HSTATE_ATTR_RO(surplus_hugepages);
4224 
4225 static ssize_t demote_store(struct kobject *kobj,
4226 	       struct kobj_attribute *attr, const char *buf, size_t len)
4227 {
4228 	unsigned long nr_demote;
4229 	unsigned long nr_available;
4230 	nodemask_t nodes_allowed, *n_mask;
4231 	struct hstate *h;
4232 	int err;
4233 	int nid;
4234 
4235 	err = kstrtoul(buf, 10, &nr_demote);
4236 	if (err)
4237 		return err;
4238 	h = kobj_to_hstate(kobj, &nid);
4239 
4240 	if (nid != NUMA_NO_NODE) {
4241 		init_nodemask_of_node(&nodes_allowed, nid);
4242 		n_mask = &nodes_allowed;
4243 	} else {
4244 		n_mask = &node_states[N_MEMORY];
4245 	}
4246 
4247 	/* Synchronize with other sysfs operations modifying huge pages */
4248 	mutex_lock(&h->resize_lock);
4249 	spin_lock_irq(&hugetlb_lock);
4250 
4251 	while (nr_demote) {
4252 		/*
4253 		 * Check for available pages to demote each time thorough the
4254 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4255 		 */
4256 		if (nid != NUMA_NO_NODE)
4257 			nr_available = h->free_huge_pages_node[nid];
4258 		else
4259 			nr_available = h->free_huge_pages;
4260 		nr_available -= h->resv_huge_pages;
4261 		if (!nr_available)
4262 			break;
4263 
4264 		err = demote_pool_huge_page(h, n_mask);
4265 		if (err)
4266 			break;
4267 
4268 		nr_demote--;
4269 	}
4270 
4271 	spin_unlock_irq(&hugetlb_lock);
4272 	mutex_unlock(&h->resize_lock);
4273 
4274 	if (err)
4275 		return err;
4276 	return len;
4277 }
4278 HSTATE_ATTR_WO(demote);
4279 
4280 static ssize_t demote_size_show(struct kobject *kobj,
4281 					struct kobj_attribute *attr, char *buf)
4282 {
4283 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4284 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4285 
4286 	return sysfs_emit(buf, "%lukB\n", demote_size);
4287 }
4288 
4289 static ssize_t demote_size_store(struct kobject *kobj,
4290 					struct kobj_attribute *attr,
4291 					const char *buf, size_t count)
4292 {
4293 	struct hstate *h, *demote_hstate;
4294 	unsigned long demote_size;
4295 	unsigned int demote_order;
4296 
4297 	demote_size = (unsigned long)memparse(buf, NULL);
4298 
4299 	demote_hstate = size_to_hstate(demote_size);
4300 	if (!demote_hstate)
4301 		return -EINVAL;
4302 	demote_order = demote_hstate->order;
4303 	if (demote_order < HUGETLB_PAGE_ORDER)
4304 		return -EINVAL;
4305 
4306 	/* demote order must be smaller than hstate order */
4307 	h = kobj_to_hstate(kobj, NULL);
4308 	if (demote_order >= h->order)
4309 		return -EINVAL;
4310 
4311 	/* resize_lock synchronizes access to demote size and writes */
4312 	mutex_lock(&h->resize_lock);
4313 	h->demote_order = demote_order;
4314 	mutex_unlock(&h->resize_lock);
4315 
4316 	return count;
4317 }
4318 HSTATE_ATTR(demote_size);
4319 
4320 static struct attribute *hstate_attrs[] = {
4321 	&nr_hugepages_attr.attr,
4322 	&nr_overcommit_hugepages_attr.attr,
4323 	&free_hugepages_attr.attr,
4324 	&resv_hugepages_attr.attr,
4325 	&surplus_hugepages_attr.attr,
4326 #ifdef CONFIG_NUMA
4327 	&nr_hugepages_mempolicy_attr.attr,
4328 #endif
4329 	NULL,
4330 };
4331 
4332 static const struct attribute_group hstate_attr_group = {
4333 	.attrs = hstate_attrs,
4334 };
4335 
4336 static struct attribute *hstate_demote_attrs[] = {
4337 	&demote_size_attr.attr,
4338 	&demote_attr.attr,
4339 	NULL,
4340 };
4341 
4342 static const struct attribute_group hstate_demote_attr_group = {
4343 	.attrs = hstate_demote_attrs,
4344 };
4345 
4346 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4347 				    struct kobject **hstate_kobjs,
4348 				    const struct attribute_group *hstate_attr_group)
4349 {
4350 	int retval;
4351 	int hi = hstate_index(h);
4352 
4353 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4354 	if (!hstate_kobjs[hi])
4355 		return -ENOMEM;
4356 
4357 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4358 	if (retval) {
4359 		kobject_put(hstate_kobjs[hi]);
4360 		hstate_kobjs[hi] = NULL;
4361 		return retval;
4362 	}
4363 
4364 	if (h->demote_order) {
4365 		retval = sysfs_create_group(hstate_kobjs[hi],
4366 					    &hstate_demote_attr_group);
4367 		if (retval) {
4368 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4369 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4370 			kobject_put(hstate_kobjs[hi]);
4371 			hstate_kobjs[hi] = NULL;
4372 			return retval;
4373 		}
4374 	}
4375 
4376 	return 0;
4377 }
4378 
4379 #ifdef CONFIG_NUMA
4380 static bool hugetlb_sysfs_initialized __ro_after_init;
4381 
4382 /*
4383  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4384  * with node devices in node_devices[] using a parallel array.  The array
4385  * index of a node device or _hstate == node id.
4386  * This is here to avoid any static dependency of the node device driver, in
4387  * the base kernel, on the hugetlb module.
4388  */
4389 struct node_hstate {
4390 	struct kobject		*hugepages_kobj;
4391 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4392 };
4393 static struct node_hstate node_hstates[MAX_NUMNODES];
4394 
4395 /*
4396  * A subset of global hstate attributes for node devices
4397  */
4398 static struct attribute *per_node_hstate_attrs[] = {
4399 	&nr_hugepages_attr.attr,
4400 	&free_hugepages_attr.attr,
4401 	&surplus_hugepages_attr.attr,
4402 	NULL,
4403 };
4404 
4405 static const struct attribute_group per_node_hstate_attr_group = {
4406 	.attrs = per_node_hstate_attrs,
4407 };
4408 
4409 /*
4410  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4411  * Returns node id via non-NULL nidp.
4412  */
4413 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4414 {
4415 	int nid;
4416 
4417 	for (nid = 0; nid < nr_node_ids; nid++) {
4418 		struct node_hstate *nhs = &node_hstates[nid];
4419 		int i;
4420 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4421 			if (nhs->hstate_kobjs[i] == kobj) {
4422 				if (nidp)
4423 					*nidp = nid;
4424 				return &hstates[i];
4425 			}
4426 	}
4427 
4428 	BUG();
4429 	return NULL;
4430 }
4431 
4432 /*
4433  * Unregister hstate attributes from a single node device.
4434  * No-op if no hstate attributes attached.
4435  */
4436 void hugetlb_unregister_node(struct node *node)
4437 {
4438 	struct hstate *h;
4439 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4440 
4441 	if (!nhs->hugepages_kobj)
4442 		return;		/* no hstate attributes */
4443 
4444 	for_each_hstate(h) {
4445 		int idx = hstate_index(h);
4446 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4447 
4448 		if (!hstate_kobj)
4449 			continue;
4450 		if (h->demote_order)
4451 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4452 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4453 		kobject_put(hstate_kobj);
4454 		nhs->hstate_kobjs[idx] = NULL;
4455 	}
4456 
4457 	kobject_put(nhs->hugepages_kobj);
4458 	nhs->hugepages_kobj = NULL;
4459 }
4460 
4461 
4462 /*
4463  * Register hstate attributes for a single node device.
4464  * No-op if attributes already registered.
4465  */
4466 void hugetlb_register_node(struct node *node)
4467 {
4468 	struct hstate *h;
4469 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4470 	int err;
4471 
4472 	if (!hugetlb_sysfs_initialized)
4473 		return;
4474 
4475 	if (nhs->hugepages_kobj)
4476 		return;		/* already allocated */
4477 
4478 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4479 							&node->dev.kobj);
4480 	if (!nhs->hugepages_kobj)
4481 		return;
4482 
4483 	for_each_hstate(h) {
4484 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4485 						nhs->hstate_kobjs,
4486 						&per_node_hstate_attr_group);
4487 		if (err) {
4488 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4489 				h->name, node->dev.id);
4490 			hugetlb_unregister_node(node);
4491 			break;
4492 		}
4493 	}
4494 }
4495 
4496 /*
4497  * hugetlb init time:  register hstate attributes for all registered node
4498  * devices of nodes that have memory.  All on-line nodes should have
4499  * registered their associated device by this time.
4500  */
4501 static void __init hugetlb_register_all_nodes(void)
4502 {
4503 	int nid;
4504 
4505 	for_each_online_node(nid)
4506 		hugetlb_register_node(node_devices[nid]);
4507 }
4508 #else	/* !CONFIG_NUMA */
4509 
4510 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4511 {
4512 	BUG();
4513 	if (nidp)
4514 		*nidp = -1;
4515 	return NULL;
4516 }
4517 
4518 static void hugetlb_register_all_nodes(void) { }
4519 
4520 #endif
4521 
4522 #ifdef CONFIG_CMA
4523 static void __init hugetlb_cma_check(void);
4524 #else
4525 static inline __init void hugetlb_cma_check(void)
4526 {
4527 }
4528 #endif
4529 
4530 static void __init hugetlb_sysfs_init(void)
4531 {
4532 	struct hstate *h;
4533 	int err;
4534 
4535 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4536 	if (!hugepages_kobj)
4537 		return;
4538 
4539 	for_each_hstate(h) {
4540 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4541 					 hstate_kobjs, &hstate_attr_group);
4542 		if (err)
4543 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4544 	}
4545 
4546 #ifdef CONFIG_NUMA
4547 	hugetlb_sysfs_initialized = true;
4548 #endif
4549 	hugetlb_register_all_nodes();
4550 }
4551 
4552 #ifdef CONFIG_SYSCTL
4553 static void hugetlb_sysctl_init(void);
4554 #else
4555 static inline void hugetlb_sysctl_init(void) { }
4556 #endif
4557 
4558 static int __init hugetlb_init(void)
4559 {
4560 	int i;
4561 
4562 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4563 			__NR_HPAGEFLAGS);
4564 
4565 	if (!hugepages_supported()) {
4566 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4567 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4568 		return 0;
4569 	}
4570 
4571 	/*
4572 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4573 	 * architectures depend on setup being done here.
4574 	 */
4575 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4576 	if (!parsed_default_hugepagesz) {
4577 		/*
4578 		 * If we did not parse a default huge page size, set
4579 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4580 		 * number of huge pages for this default size was implicitly
4581 		 * specified, set that here as well.
4582 		 * Note that the implicit setting will overwrite an explicit
4583 		 * setting.  A warning will be printed in this case.
4584 		 */
4585 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4586 		if (default_hstate_max_huge_pages) {
4587 			if (default_hstate.max_huge_pages) {
4588 				char buf[32];
4589 
4590 				string_get_size(huge_page_size(&default_hstate),
4591 					1, STRING_UNITS_2, buf, 32);
4592 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4593 					default_hstate.max_huge_pages, buf);
4594 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4595 					default_hstate_max_huge_pages);
4596 			}
4597 			default_hstate.max_huge_pages =
4598 				default_hstate_max_huge_pages;
4599 
4600 			for_each_online_node(i)
4601 				default_hstate.max_huge_pages_node[i] =
4602 					default_hugepages_in_node[i];
4603 		}
4604 	}
4605 
4606 	hugetlb_cma_check();
4607 	hugetlb_init_hstates();
4608 	gather_bootmem_prealloc();
4609 	report_hugepages();
4610 
4611 	hugetlb_sysfs_init();
4612 	hugetlb_cgroup_file_init();
4613 	hugetlb_sysctl_init();
4614 
4615 #ifdef CONFIG_SMP
4616 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4617 #else
4618 	num_fault_mutexes = 1;
4619 #endif
4620 	hugetlb_fault_mutex_table =
4621 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4622 			      GFP_KERNEL);
4623 	BUG_ON(!hugetlb_fault_mutex_table);
4624 
4625 	for (i = 0; i < num_fault_mutexes; i++)
4626 		mutex_init(&hugetlb_fault_mutex_table[i]);
4627 	return 0;
4628 }
4629 subsys_initcall(hugetlb_init);
4630 
4631 /* Overwritten by architectures with more huge page sizes */
4632 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4633 {
4634 	return size == HPAGE_SIZE;
4635 }
4636 
4637 void __init hugetlb_add_hstate(unsigned int order)
4638 {
4639 	struct hstate *h;
4640 	unsigned long i;
4641 
4642 	if (size_to_hstate(PAGE_SIZE << order)) {
4643 		return;
4644 	}
4645 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4646 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4647 	h = &hstates[hugetlb_max_hstate++];
4648 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4649 	h->order = order;
4650 	h->mask = ~(huge_page_size(h) - 1);
4651 	for (i = 0; i < MAX_NUMNODES; ++i)
4652 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4653 	INIT_LIST_HEAD(&h->hugepage_activelist);
4654 	h->next_nid_to_alloc = first_memory_node;
4655 	h->next_nid_to_free = first_memory_node;
4656 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4657 					huge_page_size(h)/SZ_1K);
4658 
4659 	parsed_hstate = h;
4660 }
4661 
4662 bool __init __weak hugetlb_node_alloc_supported(void)
4663 {
4664 	return true;
4665 }
4666 
4667 static void __init hugepages_clear_pages_in_node(void)
4668 {
4669 	if (!hugetlb_max_hstate) {
4670 		default_hstate_max_huge_pages = 0;
4671 		memset(default_hugepages_in_node, 0,
4672 			sizeof(default_hugepages_in_node));
4673 	} else {
4674 		parsed_hstate->max_huge_pages = 0;
4675 		memset(parsed_hstate->max_huge_pages_node, 0,
4676 			sizeof(parsed_hstate->max_huge_pages_node));
4677 	}
4678 }
4679 
4680 /*
4681  * hugepages command line processing
4682  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4683  * specification.  If not, ignore the hugepages value.  hugepages can also
4684  * be the first huge page command line  option in which case it implicitly
4685  * specifies the number of huge pages for the default size.
4686  */
4687 static int __init hugepages_setup(char *s)
4688 {
4689 	unsigned long *mhp;
4690 	static unsigned long *last_mhp;
4691 	int node = NUMA_NO_NODE;
4692 	int count;
4693 	unsigned long tmp;
4694 	char *p = s;
4695 
4696 	if (!parsed_valid_hugepagesz) {
4697 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4698 		parsed_valid_hugepagesz = true;
4699 		return 1;
4700 	}
4701 
4702 	/*
4703 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4704 	 * yet, so this hugepages= parameter goes to the "default hstate".
4705 	 * Otherwise, it goes with the previously parsed hugepagesz or
4706 	 * default_hugepagesz.
4707 	 */
4708 	else if (!hugetlb_max_hstate)
4709 		mhp = &default_hstate_max_huge_pages;
4710 	else
4711 		mhp = &parsed_hstate->max_huge_pages;
4712 
4713 	if (mhp == last_mhp) {
4714 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4715 		return 1;
4716 	}
4717 
4718 	while (*p) {
4719 		count = 0;
4720 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4721 			goto invalid;
4722 		/* Parameter is node format */
4723 		if (p[count] == ':') {
4724 			if (!hugetlb_node_alloc_supported()) {
4725 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4726 				return 1;
4727 			}
4728 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4729 				goto invalid;
4730 			node = array_index_nospec(tmp, MAX_NUMNODES);
4731 			p += count + 1;
4732 			/* Parse hugepages */
4733 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4734 				goto invalid;
4735 			if (!hugetlb_max_hstate)
4736 				default_hugepages_in_node[node] = tmp;
4737 			else
4738 				parsed_hstate->max_huge_pages_node[node] = tmp;
4739 			*mhp += tmp;
4740 			/* Go to parse next node*/
4741 			if (p[count] == ',')
4742 				p += count + 1;
4743 			else
4744 				break;
4745 		} else {
4746 			if (p != s)
4747 				goto invalid;
4748 			*mhp = tmp;
4749 			break;
4750 		}
4751 	}
4752 
4753 	/*
4754 	 * Global state is always initialized later in hugetlb_init.
4755 	 * But we need to allocate gigantic hstates here early to still
4756 	 * use the bootmem allocator.
4757 	 */
4758 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4759 		hugetlb_hstate_alloc_pages(parsed_hstate);
4760 
4761 	last_mhp = mhp;
4762 
4763 	return 1;
4764 
4765 invalid:
4766 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4767 	hugepages_clear_pages_in_node();
4768 	return 1;
4769 }
4770 __setup("hugepages=", hugepages_setup);
4771 
4772 /*
4773  * hugepagesz command line processing
4774  * A specific huge page size can only be specified once with hugepagesz.
4775  * hugepagesz is followed by hugepages on the command line.  The global
4776  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4777  * hugepagesz argument was valid.
4778  */
4779 static int __init hugepagesz_setup(char *s)
4780 {
4781 	unsigned long size;
4782 	struct hstate *h;
4783 
4784 	parsed_valid_hugepagesz = false;
4785 	size = (unsigned long)memparse(s, NULL);
4786 
4787 	if (!arch_hugetlb_valid_size(size)) {
4788 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4789 		return 1;
4790 	}
4791 
4792 	h = size_to_hstate(size);
4793 	if (h) {
4794 		/*
4795 		 * hstate for this size already exists.  This is normally
4796 		 * an error, but is allowed if the existing hstate is the
4797 		 * default hstate.  More specifically, it is only allowed if
4798 		 * the number of huge pages for the default hstate was not
4799 		 * previously specified.
4800 		 */
4801 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4802 		    default_hstate.max_huge_pages) {
4803 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4804 			return 1;
4805 		}
4806 
4807 		/*
4808 		 * No need to call hugetlb_add_hstate() as hstate already
4809 		 * exists.  But, do set parsed_hstate so that a following
4810 		 * hugepages= parameter will be applied to this hstate.
4811 		 */
4812 		parsed_hstate = h;
4813 		parsed_valid_hugepagesz = true;
4814 		return 1;
4815 	}
4816 
4817 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4818 	parsed_valid_hugepagesz = true;
4819 	return 1;
4820 }
4821 __setup("hugepagesz=", hugepagesz_setup);
4822 
4823 /*
4824  * default_hugepagesz command line input
4825  * Only one instance of default_hugepagesz allowed on command line.
4826  */
4827 static int __init default_hugepagesz_setup(char *s)
4828 {
4829 	unsigned long size;
4830 	int i;
4831 
4832 	parsed_valid_hugepagesz = false;
4833 	if (parsed_default_hugepagesz) {
4834 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4835 		return 1;
4836 	}
4837 
4838 	size = (unsigned long)memparse(s, NULL);
4839 
4840 	if (!arch_hugetlb_valid_size(size)) {
4841 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4842 		return 1;
4843 	}
4844 
4845 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4846 	parsed_valid_hugepagesz = true;
4847 	parsed_default_hugepagesz = true;
4848 	default_hstate_idx = hstate_index(size_to_hstate(size));
4849 
4850 	/*
4851 	 * The number of default huge pages (for this size) could have been
4852 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4853 	 * then default_hstate_max_huge_pages is set.  If the default huge
4854 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4855 	 * allocated here from bootmem allocator.
4856 	 */
4857 	if (default_hstate_max_huge_pages) {
4858 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4859 		for_each_online_node(i)
4860 			default_hstate.max_huge_pages_node[i] =
4861 				default_hugepages_in_node[i];
4862 		if (hstate_is_gigantic(&default_hstate))
4863 			hugetlb_hstate_alloc_pages(&default_hstate);
4864 		default_hstate_max_huge_pages = 0;
4865 	}
4866 
4867 	return 1;
4868 }
4869 __setup("default_hugepagesz=", default_hugepagesz_setup);
4870 
4871 static unsigned int allowed_mems_nr(struct hstate *h)
4872 {
4873 	int node;
4874 	unsigned int nr = 0;
4875 	nodemask_t *mbind_nodemask;
4876 	unsigned int *array = h->free_huge_pages_node;
4877 	gfp_t gfp_mask = htlb_alloc_mask(h);
4878 
4879 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4880 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4881 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4882 			nr += array[node];
4883 	}
4884 
4885 	return nr;
4886 }
4887 
4888 #ifdef CONFIG_SYSCTL
4889 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4890 					  void *buffer, size_t *length,
4891 					  loff_t *ppos, unsigned long *out)
4892 {
4893 	struct ctl_table dup_table;
4894 
4895 	/*
4896 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4897 	 * can duplicate the @table and alter the duplicate of it.
4898 	 */
4899 	dup_table = *table;
4900 	dup_table.data = out;
4901 
4902 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4903 }
4904 
4905 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4906 			 const struct ctl_table *table, int write,
4907 			 void *buffer, size_t *length, loff_t *ppos)
4908 {
4909 	struct hstate *h = &default_hstate;
4910 	unsigned long tmp = h->max_huge_pages;
4911 	int ret;
4912 
4913 	if (!hugepages_supported())
4914 		return -EOPNOTSUPP;
4915 
4916 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4917 					     &tmp);
4918 	if (ret)
4919 		goto out;
4920 
4921 	if (write)
4922 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4923 						  NUMA_NO_NODE, tmp, *length);
4924 out:
4925 	return ret;
4926 }
4927 
4928 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4929 			  void *buffer, size_t *length, loff_t *ppos)
4930 {
4931 
4932 	return hugetlb_sysctl_handler_common(false, table, write,
4933 							buffer, length, ppos);
4934 }
4935 
4936 #ifdef CONFIG_NUMA
4937 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4938 			  void *buffer, size_t *length, loff_t *ppos)
4939 {
4940 	return hugetlb_sysctl_handler_common(true, table, write,
4941 							buffer, length, ppos);
4942 }
4943 #endif /* CONFIG_NUMA */
4944 
4945 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4946 		void *buffer, size_t *length, loff_t *ppos)
4947 {
4948 	struct hstate *h = &default_hstate;
4949 	unsigned long tmp;
4950 	int ret;
4951 
4952 	if (!hugepages_supported())
4953 		return -EOPNOTSUPP;
4954 
4955 	tmp = h->nr_overcommit_huge_pages;
4956 
4957 	if (write && hstate_is_gigantic(h))
4958 		return -EINVAL;
4959 
4960 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4961 					     &tmp);
4962 	if (ret)
4963 		goto out;
4964 
4965 	if (write) {
4966 		spin_lock_irq(&hugetlb_lock);
4967 		h->nr_overcommit_huge_pages = tmp;
4968 		spin_unlock_irq(&hugetlb_lock);
4969 	}
4970 out:
4971 	return ret;
4972 }
4973 
4974 static struct ctl_table hugetlb_table[] = {
4975 	{
4976 		.procname	= "nr_hugepages",
4977 		.data		= NULL,
4978 		.maxlen		= sizeof(unsigned long),
4979 		.mode		= 0644,
4980 		.proc_handler	= hugetlb_sysctl_handler,
4981 	},
4982 #ifdef CONFIG_NUMA
4983 	{
4984 		.procname       = "nr_hugepages_mempolicy",
4985 		.data           = NULL,
4986 		.maxlen         = sizeof(unsigned long),
4987 		.mode           = 0644,
4988 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4989 	},
4990 #endif
4991 	{
4992 		.procname	= "hugetlb_shm_group",
4993 		.data		= &sysctl_hugetlb_shm_group,
4994 		.maxlen		= sizeof(gid_t),
4995 		.mode		= 0644,
4996 		.proc_handler	= proc_dointvec,
4997 	},
4998 	{
4999 		.procname	= "nr_overcommit_hugepages",
5000 		.data		= NULL,
5001 		.maxlen		= sizeof(unsigned long),
5002 		.mode		= 0644,
5003 		.proc_handler	= hugetlb_overcommit_handler,
5004 	},
5005 };
5006 
5007 static void hugetlb_sysctl_init(void)
5008 {
5009 	register_sysctl_init("vm", hugetlb_table);
5010 }
5011 #endif /* CONFIG_SYSCTL */
5012 
5013 void hugetlb_report_meminfo(struct seq_file *m)
5014 {
5015 	struct hstate *h;
5016 	unsigned long total = 0;
5017 
5018 	if (!hugepages_supported())
5019 		return;
5020 
5021 	for_each_hstate(h) {
5022 		unsigned long count = h->nr_huge_pages;
5023 
5024 		total += huge_page_size(h) * count;
5025 
5026 		if (h == &default_hstate)
5027 			seq_printf(m,
5028 				   "HugePages_Total:   %5lu\n"
5029 				   "HugePages_Free:    %5lu\n"
5030 				   "HugePages_Rsvd:    %5lu\n"
5031 				   "HugePages_Surp:    %5lu\n"
5032 				   "Hugepagesize:   %8lu kB\n",
5033 				   count,
5034 				   h->free_huge_pages,
5035 				   h->resv_huge_pages,
5036 				   h->surplus_huge_pages,
5037 				   huge_page_size(h) / SZ_1K);
5038 	}
5039 
5040 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5041 }
5042 
5043 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5044 {
5045 	struct hstate *h = &default_hstate;
5046 
5047 	if (!hugepages_supported())
5048 		return 0;
5049 
5050 	return sysfs_emit_at(buf, len,
5051 			     "Node %d HugePages_Total: %5u\n"
5052 			     "Node %d HugePages_Free:  %5u\n"
5053 			     "Node %d HugePages_Surp:  %5u\n",
5054 			     nid, h->nr_huge_pages_node[nid],
5055 			     nid, h->free_huge_pages_node[nid],
5056 			     nid, h->surplus_huge_pages_node[nid]);
5057 }
5058 
5059 void hugetlb_show_meminfo_node(int nid)
5060 {
5061 	struct hstate *h;
5062 
5063 	if (!hugepages_supported())
5064 		return;
5065 
5066 	for_each_hstate(h)
5067 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5068 			nid,
5069 			h->nr_huge_pages_node[nid],
5070 			h->free_huge_pages_node[nid],
5071 			h->surplus_huge_pages_node[nid],
5072 			huge_page_size(h) / SZ_1K);
5073 }
5074 
5075 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5076 {
5077 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5078 		   K(atomic_long_read(&mm->hugetlb_usage)));
5079 }
5080 
5081 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5082 unsigned long hugetlb_total_pages(void)
5083 {
5084 	struct hstate *h;
5085 	unsigned long nr_total_pages = 0;
5086 
5087 	for_each_hstate(h)
5088 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5089 	return nr_total_pages;
5090 }
5091 
5092 static int hugetlb_acct_memory(struct hstate *h, long delta)
5093 {
5094 	int ret = -ENOMEM;
5095 
5096 	if (!delta)
5097 		return 0;
5098 
5099 	spin_lock_irq(&hugetlb_lock);
5100 	/*
5101 	 * When cpuset is configured, it breaks the strict hugetlb page
5102 	 * reservation as the accounting is done on a global variable. Such
5103 	 * reservation is completely rubbish in the presence of cpuset because
5104 	 * the reservation is not checked against page availability for the
5105 	 * current cpuset. Application can still potentially OOM'ed by kernel
5106 	 * with lack of free htlb page in cpuset that the task is in.
5107 	 * Attempt to enforce strict accounting with cpuset is almost
5108 	 * impossible (or too ugly) because cpuset is too fluid that
5109 	 * task or memory node can be dynamically moved between cpusets.
5110 	 *
5111 	 * The change of semantics for shared hugetlb mapping with cpuset is
5112 	 * undesirable. However, in order to preserve some of the semantics,
5113 	 * we fall back to check against current free page availability as
5114 	 * a best attempt and hopefully to minimize the impact of changing
5115 	 * semantics that cpuset has.
5116 	 *
5117 	 * Apart from cpuset, we also have memory policy mechanism that
5118 	 * also determines from which node the kernel will allocate memory
5119 	 * in a NUMA system. So similar to cpuset, we also should consider
5120 	 * the memory policy of the current task. Similar to the description
5121 	 * above.
5122 	 */
5123 	if (delta > 0) {
5124 		if (gather_surplus_pages(h, delta) < 0)
5125 			goto out;
5126 
5127 		if (delta > allowed_mems_nr(h)) {
5128 			return_unused_surplus_pages(h, delta);
5129 			goto out;
5130 		}
5131 	}
5132 
5133 	ret = 0;
5134 	if (delta < 0)
5135 		return_unused_surplus_pages(h, (unsigned long) -delta);
5136 
5137 out:
5138 	spin_unlock_irq(&hugetlb_lock);
5139 	return ret;
5140 }
5141 
5142 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5143 {
5144 	struct resv_map *resv = vma_resv_map(vma);
5145 
5146 	/*
5147 	 * HPAGE_RESV_OWNER indicates a private mapping.
5148 	 * This new VMA should share its siblings reservation map if present.
5149 	 * The VMA will only ever have a valid reservation map pointer where
5150 	 * it is being copied for another still existing VMA.  As that VMA
5151 	 * has a reference to the reservation map it cannot disappear until
5152 	 * after this open call completes.  It is therefore safe to take a
5153 	 * new reference here without additional locking.
5154 	 */
5155 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5156 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5157 		kref_get(&resv->refs);
5158 	}
5159 
5160 	/*
5161 	 * vma_lock structure for sharable mappings is vma specific.
5162 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5163 	 * new structure.  Before clearing, make sure vma_lock is not
5164 	 * for this vma.
5165 	 */
5166 	if (vma->vm_flags & VM_MAYSHARE) {
5167 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5168 
5169 		if (vma_lock) {
5170 			if (vma_lock->vma != vma) {
5171 				vma->vm_private_data = NULL;
5172 				hugetlb_vma_lock_alloc(vma);
5173 			} else
5174 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5175 		} else
5176 			hugetlb_vma_lock_alloc(vma);
5177 	}
5178 }
5179 
5180 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5181 {
5182 	struct hstate *h = hstate_vma(vma);
5183 	struct resv_map *resv;
5184 	struct hugepage_subpool *spool = subpool_vma(vma);
5185 	unsigned long reserve, start, end;
5186 	long gbl_reserve;
5187 
5188 	hugetlb_vma_lock_free(vma);
5189 
5190 	resv = vma_resv_map(vma);
5191 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5192 		return;
5193 
5194 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5195 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5196 
5197 	reserve = (end - start) - region_count(resv, start, end);
5198 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5199 	if (reserve) {
5200 		/*
5201 		 * Decrement reserve counts.  The global reserve count may be
5202 		 * adjusted if the subpool has a minimum size.
5203 		 */
5204 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5205 		hugetlb_acct_memory(h, -gbl_reserve);
5206 	}
5207 
5208 	kref_put(&resv->refs, resv_map_release);
5209 }
5210 
5211 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5212 {
5213 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5214 		return -EINVAL;
5215 
5216 	/*
5217 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5218 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5219 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5220 	 */
5221 	if (addr & ~PUD_MASK) {
5222 		/*
5223 		 * hugetlb_vm_op_split is called right before we attempt to
5224 		 * split the VMA. We will need to unshare PMDs in the old and
5225 		 * new VMAs, so let's unshare before we split.
5226 		 */
5227 		unsigned long floor = addr & PUD_MASK;
5228 		unsigned long ceil = floor + PUD_SIZE;
5229 
5230 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5231 			hugetlb_unshare_pmds(vma, floor, ceil);
5232 	}
5233 
5234 	return 0;
5235 }
5236 
5237 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5238 {
5239 	return huge_page_size(hstate_vma(vma));
5240 }
5241 
5242 /*
5243  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5244  * handle_mm_fault() to try to instantiate regular-sized pages in the
5245  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5246  * this far.
5247  */
5248 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5249 {
5250 	BUG();
5251 	return 0;
5252 }
5253 
5254 /*
5255  * When a new function is introduced to vm_operations_struct and added
5256  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5257  * This is because under System V memory model, mappings created via
5258  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5259  * their original vm_ops are overwritten with shm_vm_ops.
5260  */
5261 const struct vm_operations_struct hugetlb_vm_ops = {
5262 	.fault = hugetlb_vm_op_fault,
5263 	.open = hugetlb_vm_op_open,
5264 	.close = hugetlb_vm_op_close,
5265 	.may_split = hugetlb_vm_op_split,
5266 	.pagesize = hugetlb_vm_op_pagesize,
5267 };
5268 
5269 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5270 				int writable)
5271 {
5272 	pte_t entry;
5273 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5274 
5275 	if (writable) {
5276 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5277 					 vma->vm_page_prot)));
5278 	} else {
5279 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5280 					   vma->vm_page_prot));
5281 	}
5282 	entry = pte_mkyoung(entry);
5283 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5284 
5285 	return entry;
5286 }
5287 
5288 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5289 				   unsigned long address, pte_t *ptep)
5290 {
5291 	pte_t entry;
5292 
5293 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5294 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5295 		update_mmu_cache(vma, address, ptep);
5296 }
5297 
5298 bool is_hugetlb_entry_migration(pte_t pte)
5299 {
5300 	swp_entry_t swp;
5301 
5302 	if (huge_pte_none(pte) || pte_present(pte))
5303 		return false;
5304 	swp = pte_to_swp_entry(pte);
5305 	if (is_migration_entry(swp))
5306 		return true;
5307 	else
5308 		return false;
5309 }
5310 
5311 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5312 {
5313 	swp_entry_t swp;
5314 
5315 	if (huge_pte_none(pte) || pte_present(pte))
5316 		return false;
5317 	swp = pte_to_swp_entry(pte);
5318 	if (is_hwpoison_entry(swp))
5319 		return true;
5320 	else
5321 		return false;
5322 }
5323 
5324 static void
5325 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5326 		      struct folio *new_folio, pte_t old, unsigned long sz)
5327 {
5328 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5329 
5330 	__folio_mark_uptodate(new_folio);
5331 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5332 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5333 		newpte = huge_pte_mkuffd_wp(newpte);
5334 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5335 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5336 	folio_set_hugetlb_migratable(new_folio);
5337 }
5338 
5339 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5340 			    struct vm_area_struct *dst_vma,
5341 			    struct vm_area_struct *src_vma)
5342 {
5343 	pte_t *src_pte, *dst_pte, entry;
5344 	struct folio *pte_folio;
5345 	unsigned long addr;
5346 	bool cow = is_cow_mapping(src_vma->vm_flags);
5347 	struct hstate *h = hstate_vma(src_vma);
5348 	unsigned long sz = huge_page_size(h);
5349 	unsigned long npages = pages_per_huge_page(h);
5350 	struct mmu_notifier_range range;
5351 	unsigned long last_addr_mask;
5352 	int ret = 0;
5353 
5354 	if (cow) {
5355 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5356 					src_vma->vm_start,
5357 					src_vma->vm_end);
5358 		mmu_notifier_invalidate_range_start(&range);
5359 		vma_assert_write_locked(src_vma);
5360 		raw_write_seqcount_begin(&src->write_protect_seq);
5361 	} else {
5362 		/*
5363 		 * For shared mappings the vma lock must be held before
5364 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5365 		 * returned ptep could go away if part of a shared pmd and
5366 		 * another thread calls huge_pmd_unshare.
5367 		 */
5368 		hugetlb_vma_lock_read(src_vma);
5369 	}
5370 
5371 	last_addr_mask = hugetlb_mask_last_page(h);
5372 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5373 		spinlock_t *src_ptl, *dst_ptl;
5374 		src_pte = hugetlb_walk(src_vma, addr, sz);
5375 		if (!src_pte) {
5376 			addr |= last_addr_mask;
5377 			continue;
5378 		}
5379 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5380 		if (!dst_pte) {
5381 			ret = -ENOMEM;
5382 			break;
5383 		}
5384 
5385 		/*
5386 		 * If the pagetables are shared don't copy or take references.
5387 		 *
5388 		 * dst_pte == src_pte is the common case of src/dest sharing.
5389 		 * However, src could have 'unshared' and dst shares with
5390 		 * another vma. So page_count of ptep page is checked instead
5391 		 * to reliably determine whether pte is shared.
5392 		 */
5393 		if (page_count(virt_to_page(dst_pte)) > 1) {
5394 			addr |= last_addr_mask;
5395 			continue;
5396 		}
5397 
5398 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5399 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5400 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5401 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5402 again:
5403 		if (huge_pte_none(entry)) {
5404 			/*
5405 			 * Skip if src entry none.
5406 			 */
5407 			;
5408 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5409 			if (!userfaultfd_wp(dst_vma))
5410 				entry = huge_pte_clear_uffd_wp(entry);
5411 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5412 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5413 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5414 			bool uffd_wp = pte_swp_uffd_wp(entry);
5415 
5416 			if (!is_readable_migration_entry(swp_entry) && cow) {
5417 				/*
5418 				 * COW mappings require pages in both
5419 				 * parent and child to be set to read.
5420 				 */
5421 				swp_entry = make_readable_migration_entry(
5422 							swp_offset(swp_entry));
5423 				entry = swp_entry_to_pte(swp_entry);
5424 				if (userfaultfd_wp(src_vma) && uffd_wp)
5425 					entry = pte_swp_mkuffd_wp(entry);
5426 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5427 			}
5428 			if (!userfaultfd_wp(dst_vma))
5429 				entry = huge_pte_clear_uffd_wp(entry);
5430 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5431 		} else if (unlikely(is_pte_marker(entry))) {
5432 			pte_marker marker = copy_pte_marker(
5433 				pte_to_swp_entry(entry), dst_vma);
5434 
5435 			if (marker)
5436 				set_huge_pte_at(dst, addr, dst_pte,
5437 						make_pte_marker(marker), sz);
5438 		} else {
5439 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5440 			pte_folio = page_folio(pte_page(entry));
5441 			folio_get(pte_folio);
5442 
5443 			/*
5444 			 * Failing to duplicate the anon rmap is a rare case
5445 			 * where we see pinned hugetlb pages while they're
5446 			 * prone to COW. We need to do the COW earlier during
5447 			 * fork.
5448 			 *
5449 			 * When pre-allocating the page or copying data, we
5450 			 * need to be without the pgtable locks since we could
5451 			 * sleep during the process.
5452 			 */
5453 			if (!folio_test_anon(pte_folio)) {
5454 				hugetlb_add_file_rmap(pte_folio);
5455 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5456 				pte_t src_pte_old = entry;
5457 				struct folio *new_folio;
5458 
5459 				spin_unlock(src_ptl);
5460 				spin_unlock(dst_ptl);
5461 				/* Do not use reserve as it's private owned */
5462 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5463 				if (IS_ERR(new_folio)) {
5464 					folio_put(pte_folio);
5465 					ret = PTR_ERR(new_folio);
5466 					break;
5467 				}
5468 				ret = copy_user_large_folio(new_folio, pte_folio,
5469 						ALIGN_DOWN(addr, sz), dst_vma);
5470 				folio_put(pte_folio);
5471 				if (ret) {
5472 					folio_put(new_folio);
5473 					break;
5474 				}
5475 
5476 				/* Install the new hugetlb folio if src pte stable */
5477 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5478 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5479 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5480 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5481 				if (!pte_same(src_pte_old, entry)) {
5482 					restore_reserve_on_error(h, dst_vma, addr,
5483 								new_folio);
5484 					folio_put(new_folio);
5485 					/* huge_ptep of dst_pte won't change as in child */
5486 					goto again;
5487 				}
5488 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5489 						      new_folio, src_pte_old, sz);
5490 				spin_unlock(src_ptl);
5491 				spin_unlock(dst_ptl);
5492 				continue;
5493 			}
5494 
5495 			if (cow) {
5496 				/*
5497 				 * No need to notify as we are downgrading page
5498 				 * table protection not changing it to point
5499 				 * to a new page.
5500 				 *
5501 				 * See Documentation/mm/mmu_notifier.rst
5502 				 */
5503 				huge_ptep_set_wrprotect(src, addr, src_pte);
5504 				entry = huge_pte_wrprotect(entry);
5505 			}
5506 
5507 			if (!userfaultfd_wp(dst_vma))
5508 				entry = huge_pte_clear_uffd_wp(entry);
5509 
5510 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5511 			hugetlb_count_add(npages, dst);
5512 		}
5513 		spin_unlock(src_ptl);
5514 		spin_unlock(dst_ptl);
5515 	}
5516 
5517 	if (cow) {
5518 		raw_write_seqcount_end(&src->write_protect_seq);
5519 		mmu_notifier_invalidate_range_end(&range);
5520 	} else {
5521 		hugetlb_vma_unlock_read(src_vma);
5522 	}
5523 
5524 	return ret;
5525 }
5526 
5527 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5528 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5529 			  unsigned long sz)
5530 {
5531 	struct hstate *h = hstate_vma(vma);
5532 	struct mm_struct *mm = vma->vm_mm;
5533 	spinlock_t *src_ptl, *dst_ptl;
5534 	pte_t pte;
5535 
5536 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5537 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5538 
5539 	/*
5540 	 * We don't have to worry about the ordering of src and dst ptlocks
5541 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5542 	 */
5543 	if (src_ptl != dst_ptl)
5544 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5545 
5546 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5547 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5548 
5549 	if (src_ptl != dst_ptl)
5550 		spin_unlock(src_ptl);
5551 	spin_unlock(dst_ptl);
5552 }
5553 
5554 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5555 			     struct vm_area_struct *new_vma,
5556 			     unsigned long old_addr, unsigned long new_addr,
5557 			     unsigned long len)
5558 {
5559 	struct hstate *h = hstate_vma(vma);
5560 	struct address_space *mapping = vma->vm_file->f_mapping;
5561 	unsigned long sz = huge_page_size(h);
5562 	struct mm_struct *mm = vma->vm_mm;
5563 	unsigned long old_end = old_addr + len;
5564 	unsigned long last_addr_mask;
5565 	pte_t *src_pte, *dst_pte;
5566 	struct mmu_notifier_range range;
5567 	bool shared_pmd = false;
5568 
5569 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5570 				old_end);
5571 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5572 	/*
5573 	 * In case of shared PMDs, we should cover the maximum possible
5574 	 * range.
5575 	 */
5576 	flush_cache_range(vma, range.start, range.end);
5577 
5578 	mmu_notifier_invalidate_range_start(&range);
5579 	last_addr_mask = hugetlb_mask_last_page(h);
5580 	/* Prevent race with file truncation */
5581 	hugetlb_vma_lock_write(vma);
5582 	i_mmap_lock_write(mapping);
5583 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5584 		src_pte = hugetlb_walk(vma, old_addr, sz);
5585 		if (!src_pte) {
5586 			old_addr |= last_addr_mask;
5587 			new_addr |= last_addr_mask;
5588 			continue;
5589 		}
5590 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5591 			continue;
5592 
5593 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5594 			shared_pmd = true;
5595 			old_addr |= last_addr_mask;
5596 			new_addr |= last_addr_mask;
5597 			continue;
5598 		}
5599 
5600 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5601 		if (!dst_pte)
5602 			break;
5603 
5604 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5605 	}
5606 
5607 	if (shared_pmd)
5608 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5609 	else
5610 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5611 	mmu_notifier_invalidate_range_end(&range);
5612 	i_mmap_unlock_write(mapping);
5613 	hugetlb_vma_unlock_write(vma);
5614 
5615 	return len + old_addr - old_end;
5616 }
5617 
5618 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5619 			    unsigned long start, unsigned long end,
5620 			    struct page *ref_page, zap_flags_t zap_flags)
5621 {
5622 	struct mm_struct *mm = vma->vm_mm;
5623 	unsigned long address;
5624 	pte_t *ptep;
5625 	pte_t pte;
5626 	spinlock_t *ptl;
5627 	struct page *page;
5628 	struct hstate *h = hstate_vma(vma);
5629 	unsigned long sz = huge_page_size(h);
5630 	bool adjust_reservation = false;
5631 	unsigned long last_addr_mask;
5632 	bool force_flush = false;
5633 
5634 	WARN_ON(!is_vm_hugetlb_page(vma));
5635 	BUG_ON(start & ~huge_page_mask(h));
5636 	BUG_ON(end & ~huge_page_mask(h));
5637 
5638 	/*
5639 	 * This is a hugetlb vma, all the pte entries should point
5640 	 * to huge page.
5641 	 */
5642 	tlb_change_page_size(tlb, sz);
5643 	tlb_start_vma(tlb, vma);
5644 
5645 	last_addr_mask = hugetlb_mask_last_page(h);
5646 	address = start;
5647 	for (; address < end; address += sz) {
5648 		ptep = hugetlb_walk(vma, address, sz);
5649 		if (!ptep) {
5650 			address |= last_addr_mask;
5651 			continue;
5652 		}
5653 
5654 		ptl = huge_pte_lock(h, mm, ptep);
5655 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5656 			spin_unlock(ptl);
5657 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5658 			force_flush = true;
5659 			address |= last_addr_mask;
5660 			continue;
5661 		}
5662 
5663 		pte = huge_ptep_get(mm, address, ptep);
5664 		if (huge_pte_none(pte)) {
5665 			spin_unlock(ptl);
5666 			continue;
5667 		}
5668 
5669 		/*
5670 		 * Migrating hugepage or HWPoisoned hugepage is already
5671 		 * unmapped and its refcount is dropped, so just clear pte here.
5672 		 */
5673 		if (unlikely(!pte_present(pte))) {
5674 			/*
5675 			 * If the pte was wr-protected by uffd-wp in any of the
5676 			 * swap forms, meanwhile the caller does not want to
5677 			 * drop the uffd-wp bit in this zap, then replace the
5678 			 * pte with a marker.
5679 			 */
5680 			if (pte_swp_uffd_wp_any(pte) &&
5681 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5682 				set_huge_pte_at(mm, address, ptep,
5683 						make_pte_marker(PTE_MARKER_UFFD_WP),
5684 						sz);
5685 			else
5686 				huge_pte_clear(mm, address, ptep, sz);
5687 			spin_unlock(ptl);
5688 			continue;
5689 		}
5690 
5691 		page = pte_page(pte);
5692 		/*
5693 		 * If a reference page is supplied, it is because a specific
5694 		 * page is being unmapped, not a range. Ensure the page we
5695 		 * are about to unmap is the actual page of interest.
5696 		 */
5697 		if (ref_page) {
5698 			if (page != ref_page) {
5699 				spin_unlock(ptl);
5700 				continue;
5701 			}
5702 			/*
5703 			 * Mark the VMA as having unmapped its page so that
5704 			 * future faults in this VMA will fail rather than
5705 			 * looking like data was lost
5706 			 */
5707 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5708 		}
5709 
5710 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5711 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5712 		if (huge_pte_dirty(pte))
5713 			set_page_dirty(page);
5714 		/* Leave a uffd-wp pte marker if needed */
5715 		if (huge_pte_uffd_wp(pte) &&
5716 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5717 			set_huge_pte_at(mm, address, ptep,
5718 					make_pte_marker(PTE_MARKER_UFFD_WP),
5719 					sz);
5720 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5721 		hugetlb_remove_rmap(page_folio(page));
5722 
5723 		/*
5724 		 * Restore the reservation for anonymous page, otherwise the
5725 		 * backing page could be stolen by someone.
5726 		 * If there we are freeing a surplus, do not set the restore
5727 		 * reservation bit.
5728 		 */
5729 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5730 		    folio_test_anon(page_folio(page))) {
5731 			folio_set_hugetlb_restore_reserve(page_folio(page));
5732 			/* Reservation to be adjusted after the spin lock */
5733 			adjust_reservation = true;
5734 		}
5735 
5736 		spin_unlock(ptl);
5737 
5738 		/*
5739 		 * Adjust the reservation for the region that will have the
5740 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5741 		 * resv->adds_in_progress if it succeeds. If this is not done,
5742 		 * do_exit() will not see it, and will keep the reservation
5743 		 * forever.
5744 		 */
5745 		if (adjust_reservation) {
5746 			int rc = vma_needs_reservation(h, vma, address);
5747 
5748 			if (rc < 0)
5749 				/* Pressumably allocate_file_region_entries failed
5750 				 * to allocate a file_region struct. Clear
5751 				 * hugetlb_restore_reserve so that global reserve
5752 				 * count will not be incremented by free_huge_folio.
5753 				 * Act as if we consumed the reservation.
5754 				 */
5755 				folio_clear_hugetlb_restore_reserve(page_folio(page));
5756 			else if (rc)
5757 				vma_add_reservation(h, vma, address);
5758 		}
5759 
5760 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5761 		/*
5762 		 * Bail out after unmapping reference page if supplied
5763 		 */
5764 		if (ref_page)
5765 			break;
5766 	}
5767 	tlb_end_vma(tlb, vma);
5768 
5769 	/*
5770 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5771 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5772 	 * guaranteed that the last refernece would not be dropped. But we must
5773 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5774 	 * dropped and the last reference to the shared PMDs page might be
5775 	 * dropped as well.
5776 	 *
5777 	 * In theory we could defer the freeing of the PMD pages as well, but
5778 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5779 	 * detect sharing, so we cannot defer the release of the page either.
5780 	 * Instead, do flush now.
5781 	 */
5782 	if (force_flush)
5783 		tlb_flush_mmu_tlbonly(tlb);
5784 }
5785 
5786 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5787 			 unsigned long *start, unsigned long *end)
5788 {
5789 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5790 		return;
5791 
5792 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5793 	hugetlb_vma_lock_write(vma);
5794 	if (vma->vm_file)
5795 		i_mmap_lock_write(vma->vm_file->f_mapping);
5796 }
5797 
5798 void __hugetlb_zap_end(struct vm_area_struct *vma,
5799 		       struct zap_details *details)
5800 {
5801 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5802 
5803 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5804 		return;
5805 
5806 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5807 		/*
5808 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5809 		 * When the vma_lock is freed, this makes the vma ineligible
5810 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5811 		 * pmd sharing.  This is important as page tables for this
5812 		 * unmapped range will be asynchrously deleted.  If the page
5813 		 * tables are shared, there will be issues when accessed by
5814 		 * someone else.
5815 		 */
5816 		__hugetlb_vma_unlock_write_free(vma);
5817 	} else {
5818 		hugetlb_vma_unlock_write(vma);
5819 	}
5820 
5821 	if (vma->vm_file)
5822 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5823 }
5824 
5825 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5826 			  unsigned long end, struct page *ref_page,
5827 			  zap_flags_t zap_flags)
5828 {
5829 	struct mmu_notifier_range range;
5830 	struct mmu_gather tlb;
5831 
5832 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5833 				start, end);
5834 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5835 	mmu_notifier_invalidate_range_start(&range);
5836 	tlb_gather_mmu(&tlb, vma->vm_mm);
5837 
5838 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5839 
5840 	mmu_notifier_invalidate_range_end(&range);
5841 	tlb_finish_mmu(&tlb);
5842 }
5843 
5844 /*
5845  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5846  * mapping it owns the reserve page for. The intention is to unmap the page
5847  * from other VMAs and let the children be SIGKILLed if they are faulting the
5848  * same region.
5849  */
5850 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5851 			      struct page *page, unsigned long address)
5852 {
5853 	struct hstate *h = hstate_vma(vma);
5854 	struct vm_area_struct *iter_vma;
5855 	struct address_space *mapping;
5856 	pgoff_t pgoff;
5857 
5858 	/*
5859 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5860 	 * from page cache lookup which is in HPAGE_SIZE units.
5861 	 */
5862 	address = address & huge_page_mask(h);
5863 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5864 			vma->vm_pgoff;
5865 	mapping = vma->vm_file->f_mapping;
5866 
5867 	/*
5868 	 * Take the mapping lock for the duration of the table walk. As
5869 	 * this mapping should be shared between all the VMAs,
5870 	 * __unmap_hugepage_range() is called as the lock is already held
5871 	 */
5872 	i_mmap_lock_write(mapping);
5873 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5874 		/* Do not unmap the current VMA */
5875 		if (iter_vma == vma)
5876 			continue;
5877 
5878 		/*
5879 		 * Shared VMAs have their own reserves and do not affect
5880 		 * MAP_PRIVATE accounting but it is possible that a shared
5881 		 * VMA is using the same page so check and skip such VMAs.
5882 		 */
5883 		if (iter_vma->vm_flags & VM_MAYSHARE)
5884 			continue;
5885 
5886 		/*
5887 		 * Unmap the page from other VMAs without their own reserves.
5888 		 * They get marked to be SIGKILLed if they fault in these
5889 		 * areas. This is because a future no-page fault on this VMA
5890 		 * could insert a zeroed page instead of the data existing
5891 		 * from the time of fork. This would look like data corruption
5892 		 */
5893 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5894 			unmap_hugepage_range(iter_vma, address,
5895 					     address + huge_page_size(h), page, 0);
5896 	}
5897 	i_mmap_unlock_write(mapping);
5898 }
5899 
5900 /*
5901  * hugetlb_wp() should be called with page lock of the original hugepage held.
5902  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5903  * cannot race with other handlers or page migration.
5904  * Keep the pte_same checks anyway to make transition from the mutex easier.
5905  */
5906 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5907 		       struct vm_fault *vmf)
5908 {
5909 	struct vm_area_struct *vma = vmf->vma;
5910 	struct mm_struct *mm = vma->vm_mm;
5911 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5912 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5913 	struct hstate *h = hstate_vma(vma);
5914 	struct folio *old_folio;
5915 	struct folio *new_folio;
5916 	int outside_reserve = 0;
5917 	vm_fault_t ret = 0;
5918 	struct mmu_notifier_range range;
5919 
5920 	/*
5921 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5922 	 * handled when the uffd-wp protection is removed.
5923 	 *
5924 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5925 	 * can trigger this, because hugetlb_fault() will always resolve
5926 	 * uffd-wp bit first.
5927 	 */
5928 	if (!unshare && huge_pte_uffd_wp(pte))
5929 		return 0;
5930 
5931 	/*
5932 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5933 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5934 	 */
5935 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5936 		return VM_FAULT_SIGSEGV;
5937 
5938 	/* Let's take out MAP_SHARED mappings first. */
5939 	if (vma->vm_flags & VM_MAYSHARE) {
5940 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5941 		return 0;
5942 	}
5943 
5944 	old_folio = page_folio(pte_page(pte));
5945 
5946 	delayacct_wpcopy_start();
5947 
5948 retry_avoidcopy:
5949 	/*
5950 	 * If no-one else is actually using this page, we're the exclusive
5951 	 * owner and can reuse this page.
5952 	 *
5953 	 * Note that we don't rely on the (safer) folio refcount here, because
5954 	 * copying the hugetlb folio when there are unexpected (temporary)
5955 	 * folio references could harm simple fork()+exit() users when
5956 	 * we run out of free hugetlb folios: we would have to kill processes
5957 	 * in scenarios that used to work. As a side effect, there can still
5958 	 * be leaks between processes, for example, with FOLL_GET users.
5959 	 */
5960 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5961 		if (!PageAnonExclusive(&old_folio->page)) {
5962 			folio_move_anon_rmap(old_folio, vma);
5963 			SetPageAnonExclusive(&old_folio->page);
5964 		}
5965 		if (likely(!unshare))
5966 			set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5967 
5968 		delayacct_wpcopy_end();
5969 		return 0;
5970 	}
5971 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5972 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5973 
5974 	/*
5975 	 * If the process that created a MAP_PRIVATE mapping is about to
5976 	 * perform a COW due to a shared page count, attempt to satisfy
5977 	 * the allocation without using the existing reserves. The pagecache
5978 	 * page is used to determine if the reserve at this address was
5979 	 * consumed or not. If reserves were used, a partial faulted mapping
5980 	 * at the time of fork() could consume its reserves on COW instead
5981 	 * of the full address range.
5982 	 */
5983 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5984 			old_folio != pagecache_folio)
5985 		outside_reserve = 1;
5986 
5987 	folio_get(old_folio);
5988 
5989 	/*
5990 	 * Drop page table lock as buddy allocator may be called. It will
5991 	 * be acquired again before returning to the caller, as expected.
5992 	 */
5993 	spin_unlock(vmf->ptl);
5994 	new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5995 
5996 	if (IS_ERR(new_folio)) {
5997 		/*
5998 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5999 		 * it is due to references held by a child and an insufficient
6000 		 * huge page pool. To guarantee the original mappers
6001 		 * reliability, unmap the page from child processes. The child
6002 		 * may get SIGKILLed if it later faults.
6003 		 */
6004 		if (outside_reserve) {
6005 			struct address_space *mapping = vma->vm_file->f_mapping;
6006 			pgoff_t idx;
6007 			u32 hash;
6008 
6009 			folio_put(old_folio);
6010 			/*
6011 			 * Drop hugetlb_fault_mutex and vma_lock before
6012 			 * unmapping.  unmapping needs to hold vma_lock
6013 			 * in write mode.  Dropping vma_lock in read mode
6014 			 * here is OK as COW mappings do not interact with
6015 			 * PMD sharing.
6016 			 *
6017 			 * Reacquire both after unmap operation.
6018 			 */
6019 			idx = vma_hugecache_offset(h, vma, vmf->address);
6020 			hash = hugetlb_fault_mutex_hash(mapping, idx);
6021 			hugetlb_vma_unlock_read(vma);
6022 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6023 
6024 			unmap_ref_private(mm, vma, &old_folio->page,
6025 					vmf->address);
6026 
6027 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6028 			hugetlb_vma_lock_read(vma);
6029 			spin_lock(vmf->ptl);
6030 			vmf->pte = hugetlb_walk(vma, vmf->address,
6031 					huge_page_size(h));
6032 			if (likely(vmf->pte &&
6033 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6034 				goto retry_avoidcopy;
6035 			/*
6036 			 * race occurs while re-acquiring page table
6037 			 * lock, and our job is done.
6038 			 */
6039 			delayacct_wpcopy_end();
6040 			return 0;
6041 		}
6042 
6043 		ret = vmf_error(PTR_ERR(new_folio));
6044 		goto out_release_old;
6045 	}
6046 
6047 	/*
6048 	 * When the original hugepage is shared one, it does not have
6049 	 * anon_vma prepared.
6050 	 */
6051 	ret = vmf_anon_prepare(vmf);
6052 	if (unlikely(ret))
6053 		goto out_release_all;
6054 
6055 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6056 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6057 		goto out_release_all;
6058 	}
6059 	__folio_mark_uptodate(new_folio);
6060 
6061 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6062 				vmf->address + huge_page_size(h));
6063 	mmu_notifier_invalidate_range_start(&range);
6064 
6065 	/*
6066 	 * Retake the page table lock to check for racing updates
6067 	 * before the page tables are altered
6068 	 */
6069 	spin_lock(vmf->ptl);
6070 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6071 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6072 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6073 
6074 		/* Break COW or unshare */
6075 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6076 		hugetlb_remove_rmap(old_folio);
6077 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6078 		if (huge_pte_uffd_wp(pte))
6079 			newpte = huge_pte_mkuffd_wp(newpte);
6080 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6081 				huge_page_size(h));
6082 		folio_set_hugetlb_migratable(new_folio);
6083 		/* Make the old page be freed below */
6084 		new_folio = old_folio;
6085 	}
6086 	spin_unlock(vmf->ptl);
6087 	mmu_notifier_invalidate_range_end(&range);
6088 out_release_all:
6089 	/*
6090 	 * No restore in case of successful pagetable update (Break COW or
6091 	 * unshare)
6092 	 */
6093 	if (new_folio != old_folio)
6094 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
6095 	folio_put(new_folio);
6096 out_release_old:
6097 	folio_put(old_folio);
6098 
6099 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
6100 
6101 	delayacct_wpcopy_end();
6102 	return ret;
6103 }
6104 
6105 /*
6106  * Return whether there is a pagecache page to back given address within VMA.
6107  */
6108 bool hugetlbfs_pagecache_present(struct hstate *h,
6109 				 struct vm_area_struct *vma, unsigned long address)
6110 {
6111 	struct address_space *mapping = vma->vm_file->f_mapping;
6112 	pgoff_t idx = linear_page_index(vma, address);
6113 	struct folio *folio;
6114 
6115 	folio = filemap_get_folio(mapping, idx);
6116 	if (IS_ERR(folio))
6117 		return false;
6118 	folio_put(folio);
6119 	return true;
6120 }
6121 
6122 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6123 			   pgoff_t idx)
6124 {
6125 	struct inode *inode = mapping->host;
6126 	struct hstate *h = hstate_inode(inode);
6127 	int err;
6128 
6129 	idx <<= huge_page_order(h);
6130 	__folio_set_locked(folio);
6131 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6132 
6133 	if (unlikely(err)) {
6134 		__folio_clear_locked(folio);
6135 		return err;
6136 	}
6137 	folio_clear_hugetlb_restore_reserve(folio);
6138 
6139 	/*
6140 	 * mark folio dirty so that it will not be removed from cache/file
6141 	 * by non-hugetlbfs specific code paths.
6142 	 */
6143 	folio_mark_dirty(folio);
6144 
6145 	spin_lock(&inode->i_lock);
6146 	inode->i_blocks += blocks_per_huge_page(h);
6147 	spin_unlock(&inode->i_lock);
6148 	return 0;
6149 }
6150 
6151 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6152 						  struct address_space *mapping,
6153 						  unsigned long reason)
6154 {
6155 	u32 hash;
6156 
6157 	/*
6158 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6159 	 * userfault. Also mmap_lock could be dropped due to handling
6160 	 * userfault, any vma operation should be careful from here.
6161 	 */
6162 	hugetlb_vma_unlock_read(vmf->vma);
6163 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6164 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6165 	return handle_userfault(vmf, reason);
6166 }
6167 
6168 /*
6169  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6170  * false if pte changed or is changing.
6171  */
6172 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6173 			       pte_t *ptep, pte_t old_pte)
6174 {
6175 	spinlock_t *ptl;
6176 	bool same;
6177 
6178 	ptl = huge_pte_lock(h, mm, ptep);
6179 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6180 	spin_unlock(ptl);
6181 
6182 	return same;
6183 }
6184 
6185 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6186 			struct vm_fault *vmf)
6187 {
6188 	struct vm_area_struct *vma = vmf->vma;
6189 	struct mm_struct *mm = vma->vm_mm;
6190 	struct hstate *h = hstate_vma(vma);
6191 	vm_fault_t ret = VM_FAULT_SIGBUS;
6192 	int anon_rmap = 0;
6193 	unsigned long size;
6194 	struct folio *folio;
6195 	pte_t new_pte;
6196 	bool new_folio, new_pagecache_folio = false;
6197 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6198 
6199 	/*
6200 	 * Currently, we are forced to kill the process in the event the
6201 	 * original mapper has unmapped pages from the child due to a failed
6202 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6203 	 * be obvious.
6204 	 */
6205 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6206 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6207 			   current->pid);
6208 		goto out;
6209 	}
6210 
6211 	/*
6212 	 * Use page lock to guard against racing truncation
6213 	 * before we get page_table_lock.
6214 	 */
6215 	new_folio = false;
6216 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6217 	if (IS_ERR(folio)) {
6218 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6219 		if (vmf->pgoff >= size)
6220 			goto out;
6221 		/* Check for page in userfault range */
6222 		if (userfaultfd_missing(vma)) {
6223 			/*
6224 			 * Since hugetlb_no_page() was examining pte
6225 			 * without pgtable lock, we need to re-test under
6226 			 * lock because the pte may not be stable and could
6227 			 * have changed from under us.  Try to detect
6228 			 * either changed or during-changing ptes and retry
6229 			 * properly when needed.
6230 			 *
6231 			 * Note that userfaultfd is actually fine with
6232 			 * false positives (e.g. caused by pte changed),
6233 			 * but not wrong logical events (e.g. caused by
6234 			 * reading a pte during changing).  The latter can
6235 			 * confuse the userspace, so the strictness is very
6236 			 * much preferred.  E.g., MISSING event should
6237 			 * never happen on the page after UFFDIO_COPY has
6238 			 * correctly installed the page and returned.
6239 			 */
6240 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6241 				ret = 0;
6242 				goto out;
6243 			}
6244 
6245 			return hugetlb_handle_userfault(vmf, mapping,
6246 							VM_UFFD_MISSING);
6247 		}
6248 
6249 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6250 			ret = vmf_anon_prepare(vmf);
6251 			if (unlikely(ret))
6252 				goto out;
6253 		}
6254 
6255 		folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6256 		if (IS_ERR(folio)) {
6257 			/*
6258 			 * Returning error will result in faulting task being
6259 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6260 			 * tasks from racing to fault in the same page which
6261 			 * could result in false unable to allocate errors.
6262 			 * Page migration does not take the fault mutex, but
6263 			 * does a clear then write of pte's under page table
6264 			 * lock.  Page fault code could race with migration,
6265 			 * notice the clear pte and try to allocate a page
6266 			 * here.  Before returning error, get ptl and make
6267 			 * sure there really is no pte entry.
6268 			 */
6269 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6270 				ret = vmf_error(PTR_ERR(folio));
6271 			else
6272 				ret = 0;
6273 			goto out;
6274 		}
6275 		folio_zero_user(folio, vmf->real_address);
6276 		__folio_mark_uptodate(folio);
6277 		new_folio = true;
6278 
6279 		if (vma->vm_flags & VM_MAYSHARE) {
6280 			int err = hugetlb_add_to_page_cache(folio, mapping,
6281 							vmf->pgoff);
6282 			if (err) {
6283 				/*
6284 				 * err can't be -EEXIST which implies someone
6285 				 * else consumed the reservation since hugetlb
6286 				 * fault mutex is held when add a hugetlb page
6287 				 * to the page cache. So it's safe to call
6288 				 * restore_reserve_on_error() here.
6289 				 */
6290 				restore_reserve_on_error(h, vma, vmf->address,
6291 							folio);
6292 				folio_put(folio);
6293 				ret = VM_FAULT_SIGBUS;
6294 				goto out;
6295 			}
6296 			new_pagecache_folio = true;
6297 		} else {
6298 			folio_lock(folio);
6299 			anon_rmap = 1;
6300 		}
6301 	} else {
6302 		/*
6303 		 * If memory error occurs between mmap() and fault, some process
6304 		 * don't have hwpoisoned swap entry for errored virtual address.
6305 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6306 		 */
6307 		if (unlikely(folio_test_hwpoison(folio))) {
6308 			ret = VM_FAULT_HWPOISON_LARGE |
6309 				VM_FAULT_SET_HINDEX(hstate_index(h));
6310 			goto backout_unlocked;
6311 		}
6312 
6313 		/* Check for page in userfault range. */
6314 		if (userfaultfd_minor(vma)) {
6315 			folio_unlock(folio);
6316 			folio_put(folio);
6317 			/* See comment in userfaultfd_missing() block above */
6318 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6319 				ret = 0;
6320 				goto out;
6321 			}
6322 			return hugetlb_handle_userfault(vmf, mapping,
6323 							VM_UFFD_MINOR);
6324 		}
6325 	}
6326 
6327 	/*
6328 	 * If we are going to COW a private mapping later, we examine the
6329 	 * pending reservations for this page now. This will ensure that
6330 	 * any allocations necessary to record that reservation occur outside
6331 	 * the spinlock.
6332 	 */
6333 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6334 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6335 			ret = VM_FAULT_OOM;
6336 			goto backout_unlocked;
6337 		}
6338 		/* Just decrements count, does not deallocate */
6339 		vma_end_reservation(h, vma, vmf->address);
6340 	}
6341 
6342 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6343 	ret = 0;
6344 	/* If pte changed from under us, retry */
6345 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6346 		goto backout;
6347 
6348 	if (anon_rmap)
6349 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6350 	else
6351 		hugetlb_add_file_rmap(folio);
6352 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6353 				&& (vma->vm_flags & VM_SHARED)));
6354 	/*
6355 	 * If this pte was previously wr-protected, keep it wr-protected even
6356 	 * if populated.
6357 	 */
6358 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6359 		new_pte = huge_pte_mkuffd_wp(new_pte);
6360 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6361 
6362 	hugetlb_count_add(pages_per_huge_page(h), mm);
6363 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6364 		/* Optimization, do the COW without a second fault */
6365 		ret = hugetlb_wp(folio, vmf);
6366 	}
6367 
6368 	spin_unlock(vmf->ptl);
6369 
6370 	/*
6371 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6372 	 * found in the pagecache may not have hugetlb_migratable if they have
6373 	 * been isolated for migration.
6374 	 */
6375 	if (new_folio)
6376 		folio_set_hugetlb_migratable(folio);
6377 
6378 	folio_unlock(folio);
6379 out:
6380 	hugetlb_vma_unlock_read(vma);
6381 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6382 	return ret;
6383 
6384 backout:
6385 	spin_unlock(vmf->ptl);
6386 backout_unlocked:
6387 	if (new_folio && !new_pagecache_folio)
6388 		restore_reserve_on_error(h, vma, vmf->address, folio);
6389 
6390 	folio_unlock(folio);
6391 	folio_put(folio);
6392 	goto out;
6393 }
6394 
6395 #ifdef CONFIG_SMP
6396 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6397 {
6398 	unsigned long key[2];
6399 	u32 hash;
6400 
6401 	key[0] = (unsigned long) mapping;
6402 	key[1] = idx;
6403 
6404 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6405 
6406 	return hash & (num_fault_mutexes - 1);
6407 }
6408 #else
6409 /*
6410  * For uniprocessor systems we always use a single mutex, so just
6411  * return 0 and avoid the hashing overhead.
6412  */
6413 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6414 {
6415 	return 0;
6416 }
6417 #endif
6418 
6419 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6420 			unsigned long address, unsigned int flags)
6421 {
6422 	vm_fault_t ret;
6423 	u32 hash;
6424 	struct folio *folio = NULL;
6425 	struct folio *pagecache_folio = NULL;
6426 	struct hstate *h = hstate_vma(vma);
6427 	struct address_space *mapping;
6428 	int need_wait_lock = 0;
6429 	struct vm_fault vmf = {
6430 		.vma = vma,
6431 		.address = address & huge_page_mask(h),
6432 		.real_address = address,
6433 		.flags = flags,
6434 		.pgoff = vma_hugecache_offset(h, vma,
6435 				address & huge_page_mask(h)),
6436 		/* TODO: Track hugetlb faults using vm_fault */
6437 
6438 		/*
6439 		 * Some fields may not be initialized, be careful as it may
6440 		 * be hard to debug if called functions make assumptions
6441 		 */
6442 	};
6443 
6444 	/*
6445 	 * Serialize hugepage allocation and instantiation, so that we don't
6446 	 * get spurious allocation failures if two CPUs race to instantiate
6447 	 * the same page in the page cache.
6448 	 */
6449 	mapping = vma->vm_file->f_mapping;
6450 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6451 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6452 
6453 	/*
6454 	 * Acquire vma lock before calling huge_pte_alloc and hold
6455 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6456 	 * being called elsewhere and making the vmf.pte no longer valid.
6457 	 */
6458 	hugetlb_vma_lock_read(vma);
6459 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6460 	if (!vmf.pte) {
6461 		hugetlb_vma_unlock_read(vma);
6462 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6463 		return VM_FAULT_OOM;
6464 	}
6465 
6466 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6467 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6468 		if (is_pte_marker(vmf.orig_pte)) {
6469 			pte_marker marker =
6470 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6471 
6472 			if (marker & PTE_MARKER_POISONED) {
6473 				ret = VM_FAULT_HWPOISON_LARGE |
6474 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6475 				goto out_mutex;
6476 			}
6477 		}
6478 
6479 		/*
6480 		 * Other PTE markers should be handled the same way as none PTE.
6481 		 *
6482 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6483 		 * mutex internally, which make us return immediately.
6484 		 */
6485 		return hugetlb_no_page(mapping, &vmf);
6486 	}
6487 
6488 	ret = 0;
6489 
6490 	/*
6491 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6492 	 * point, so this check prevents the kernel from going below assuming
6493 	 * that we have an active hugepage in pagecache. This goto expects
6494 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6495 	 * check will properly handle it.
6496 	 */
6497 	if (!pte_present(vmf.orig_pte)) {
6498 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6499 			/*
6500 			 * Release the hugetlb fault lock now, but retain
6501 			 * the vma lock, because it is needed to guard the
6502 			 * huge_pte_lockptr() later in
6503 			 * migration_entry_wait_huge(). The vma lock will
6504 			 * be released there.
6505 			 */
6506 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6507 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6508 			return 0;
6509 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6510 			ret = VM_FAULT_HWPOISON_LARGE |
6511 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6512 		goto out_mutex;
6513 	}
6514 
6515 	/*
6516 	 * If we are going to COW/unshare the mapping later, we examine the
6517 	 * pending reservations for this page now. This will ensure that any
6518 	 * allocations necessary to record that reservation occur outside the
6519 	 * spinlock. Also lookup the pagecache page now as it is used to
6520 	 * determine if a reservation has been consumed.
6521 	 */
6522 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6523 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6524 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6525 			ret = VM_FAULT_OOM;
6526 			goto out_mutex;
6527 		}
6528 		/* Just decrements count, does not deallocate */
6529 		vma_end_reservation(h, vma, vmf.address);
6530 
6531 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6532 							     vmf.pgoff);
6533 		if (IS_ERR(pagecache_folio))
6534 			pagecache_folio = NULL;
6535 	}
6536 
6537 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6538 
6539 	/* Check for a racing update before calling hugetlb_wp() */
6540 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6541 		goto out_ptl;
6542 
6543 	/* Handle userfault-wp first, before trying to lock more pages */
6544 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6545 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6546 		if (!userfaultfd_wp_async(vma)) {
6547 			spin_unlock(vmf.ptl);
6548 			if (pagecache_folio) {
6549 				folio_unlock(pagecache_folio);
6550 				folio_put(pagecache_folio);
6551 			}
6552 			hugetlb_vma_unlock_read(vma);
6553 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6554 			return handle_userfault(&vmf, VM_UFFD_WP);
6555 		}
6556 
6557 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6558 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6559 				huge_page_size(hstate_vma(vma)));
6560 		/* Fallthrough to CoW */
6561 	}
6562 
6563 	/*
6564 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6565 	 * pagecache_folio, so here we need take the former one
6566 	 * when folio != pagecache_folio or !pagecache_folio.
6567 	 */
6568 	folio = page_folio(pte_page(vmf.orig_pte));
6569 	if (folio != pagecache_folio)
6570 		if (!folio_trylock(folio)) {
6571 			need_wait_lock = 1;
6572 			goto out_ptl;
6573 		}
6574 
6575 	folio_get(folio);
6576 
6577 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6578 		if (!huge_pte_write(vmf.orig_pte)) {
6579 			ret = hugetlb_wp(pagecache_folio, &vmf);
6580 			goto out_put_page;
6581 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6582 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6583 		}
6584 	}
6585 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6586 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6587 						flags & FAULT_FLAG_WRITE))
6588 		update_mmu_cache(vma, vmf.address, vmf.pte);
6589 out_put_page:
6590 	if (folio != pagecache_folio)
6591 		folio_unlock(folio);
6592 	folio_put(folio);
6593 out_ptl:
6594 	spin_unlock(vmf.ptl);
6595 
6596 	if (pagecache_folio) {
6597 		folio_unlock(pagecache_folio);
6598 		folio_put(pagecache_folio);
6599 	}
6600 out_mutex:
6601 	hugetlb_vma_unlock_read(vma);
6602 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6603 	/*
6604 	 * Generally it's safe to hold refcount during waiting page lock. But
6605 	 * here we just wait to defer the next page fault to avoid busy loop and
6606 	 * the page is not used after unlocked before returning from the current
6607 	 * page fault. So we are safe from accessing freed page, even if we wait
6608 	 * here without taking refcount.
6609 	 */
6610 	if (need_wait_lock)
6611 		folio_wait_locked(folio);
6612 	return ret;
6613 }
6614 
6615 #ifdef CONFIG_USERFAULTFD
6616 /*
6617  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6618  */
6619 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6620 		struct vm_area_struct *vma, unsigned long address)
6621 {
6622 	struct mempolicy *mpol;
6623 	nodemask_t *nodemask;
6624 	struct folio *folio;
6625 	gfp_t gfp_mask;
6626 	int node;
6627 
6628 	gfp_mask = htlb_alloc_mask(h);
6629 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6630 	/*
6631 	 * This is used to allocate a temporary hugetlb to hold the copied
6632 	 * content, which will then be copied again to the final hugetlb
6633 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6634 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6635 	 */
6636 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6637 	mpol_cond_put(mpol);
6638 
6639 	return folio;
6640 }
6641 
6642 /*
6643  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6644  * with modifications for hugetlb pages.
6645  */
6646 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6647 			     struct vm_area_struct *dst_vma,
6648 			     unsigned long dst_addr,
6649 			     unsigned long src_addr,
6650 			     uffd_flags_t flags,
6651 			     struct folio **foliop)
6652 {
6653 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6654 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6655 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6656 	struct hstate *h = hstate_vma(dst_vma);
6657 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6658 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6659 	unsigned long size = huge_page_size(h);
6660 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6661 	pte_t _dst_pte;
6662 	spinlock_t *ptl;
6663 	int ret = -ENOMEM;
6664 	struct folio *folio;
6665 	int writable;
6666 	bool folio_in_pagecache = false;
6667 
6668 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6669 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6670 
6671 		/* Don't overwrite any existing PTEs (even markers) */
6672 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6673 			spin_unlock(ptl);
6674 			return -EEXIST;
6675 		}
6676 
6677 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6678 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6679 
6680 		/* No need to invalidate - it was non-present before */
6681 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6682 
6683 		spin_unlock(ptl);
6684 		return 0;
6685 	}
6686 
6687 	if (is_continue) {
6688 		ret = -EFAULT;
6689 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6690 		if (IS_ERR(folio))
6691 			goto out;
6692 		folio_in_pagecache = true;
6693 	} else if (!*foliop) {
6694 		/* If a folio already exists, then it's UFFDIO_COPY for
6695 		 * a non-missing case. Return -EEXIST.
6696 		 */
6697 		if (vm_shared &&
6698 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6699 			ret = -EEXIST;
6700 			goto out;
6701 		}
6702 
6703 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6704 		if (IS_ERR(folio)) {
6705 			ret = -ENOMEM;
6706 			goto out;
6707 		}
6708 
6709 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6710 					   false);
6711 
6712 		/* fallback to copy_from_user outside mmap_lock */
6713 		if (unlikely(ret)) {
6714 			ret = -ENOENT;
6715 			/* Free the allocated folio which may have
6716 			 * consumed a reservation.
6717 			 */
6718 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6719 			folio_put(folio);
6720 
6721 			/* Allocate a temporary folio to hold the copied
6722 			 * contents.
6723 			 */
6724 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6725 			if (!folio) {
6726 				ret = -ENOMEM;
6727 				goto out;
6728 			}
6729 			*foliop = folio;
6730 			/* Set the outparam foliop and return to the caller to
6731 			 * copy the contents outside the lock. Don't free the
6732 			 * folio.
6733 			 */
6734 			goto out;
6735 		}
6736 	} else {
6737 		if (vm_shared &&
6738 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6739 			folio_put(*foliop);
6740 			ret = -EEXIST;
6741 			*foliop = NULL;
6742 			goto out;
6743 		}
6744 
6745 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6746 		if (IS_ERR(folio)) {
6747 			folio_put(*foliop);
6748 			ret = -ENOMEM;
6749 			*foliop = NULL;
6750 			goto out;
6751 		}
6752 		ret = copy_user_large_folio(folio, *foliop,
6753 					    ALIGN_DOWN(dst_addr, size), dst_vma);
6754 		folio_put(*foliop);
6755 		*foliop = NULL;
6756 		if (ret) {
6757 			folio_put(folio);
6758 			goto out;
6759 		}
6760 	}
6761 
6762 	/*
6763 	 * If we just allocated a new page, we need a memory barrier to ensure
6764 	 * that preceding stores to the page become visible before the
6765 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6766 	 * is what we need.
6767 	 *
6768 	 * In the case where we have not allocated a new page (is_continue),
6769 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6770 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6771 	 * before the set_pte_at() write.
6772 	 */
6773 	if (!is_continue)
6774 		__folio_mark_uptodate(folio);
6775 	else
6776 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6777 
6778 	/* Add shared, newly allocated pages to the page cache. */
6779 	if (vm_shared && !is_continue) {
6780 		ret = -EFAULT;
6781 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6782 			goto out_release_nounlock;
6783 
6784 		/*
6785 		 * Serialization between remove_inode_hugepages() and
6786 		 * hugetlb_add_to_page_cache() below happens through the
6787 		 * hugetlb_fault_mutex_table that here must be hold by
6788 		 * the caller.
6789 		 */
6790 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6791 		if (ret)
6792 			goto out_release_nounlock;
6793 		folio_in_pagecache = true;
6794 	}
6795 
6796 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6797 
6798 	ret = -EIO;
6799 	if (folio_test_hwpoison(folio))
6800 		goto out_release_unlock;
6801 
6802 	/*
6803 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6804 	 * registered, we firstly wr-protect a none pte which has no page cache
6805 	 * page backing it, then access the page.
6806 	 */
6807 	ret = -EEXIST;
6808 	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6809 		goto out_release_unlock;
6810 
6811 	if (folio_in_pagecache)
6812 		hugetlb_add_file_rmap(folio);
6813 	else
6814 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6815 
6816 	/*
6817 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6818 	 * with wp flag set, don't set pte write bit.
6819 	 */
6820 	if (wp_enabled || (is_continue && !vm_shared))
6821 		writable = 0;
6822 	else
6823 		writable = dst_vma->vm_flags & VM_WRITE;
6824 
6825 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6826 	/*
6827 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6828 	 * extremely important for hugetlbfs for now since swapping is not
6829 	 * supported, but we should still be clear in that this page cannot be
6830 	 * thrown away at will, even if write bit not set.
6831 	 */
6832 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6833 	_dst_pte = pte_mkyoung(_dst_pte);
6834 
6835 	if (wp_enabled)
6836 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6837 
6838 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6839 
6840 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6841 
6842 	/* No need to invalidate - it was non-present before */
6843 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6844 
6845 	spin_unlock(ptl);
6846 	if (!is_continue)
6847 		folio_set_hugetlb_migratable(folio);
6848 	if (vm_shared || is_continue)
6849 		folio_unlock(folio);
6850 	ret = 0;
6851 out:
6852 	return ret;
6853 out_release_unlock:
6854 	spin_unlock(ptl);
6855 	if (vm_shared || is_continue)
6856 		folio_unlock(folio);
6857 out_release_nounlock:
6858 	if (!folio_in_pagecache)
6859 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6860 	folio_put(folio);
6861 	goto out;
6862 }
6863 #endif /* CONFIG_USERFAULTFD */
6864 
6865 long hugetlb_change_protection(struct vm_area_struct *vma,
6866 		unsigned long address, unsigned long end,
6867 		pgprot_t newprot, unsigned long cp_flags)
6868 {
6869 	struct mm_struct *mm = vma->vm_mm;
6870 	unsigned long start = address;
6871 	pte_t *ptep;
6872 	pte_t pte;
6873 	struct hstate *h = hstate_vma(vma);
6874 	long pages = 0, psize = huge_page_size(h);
6875 	bool shared_pmd = false;
6876 	struct mmu_notifier_range range;
6877 	unsigned long last_addr_mask;
6878 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6879 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6880 
6881 	/*
6882 	 * In the case of shared PMDs, the area to flush could be beyond
6883 	 * start/end.  Set range.start/range.end to cover the maximum possible
6884 	 * range if PMD sharing is possible.
6885 	 */
6886 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6887 				0, mm, start, end);
6888 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6889 
6890 	BUG_ON(address >= end);
6891 	flush_cache_range(vma, range.start, range.end);
6892 
6893 	mmu_notifier_invalidate_range_start(&range);
6894 	hugetlb_vma_lock_write(vma);
6895 	i_mmap_lock_write(vma->vm_file->f_mapping);
6896 	last_addr_mask = hugetlb_mask_last_page(h);
6897 	for (; address < end; address += psize) {
6898 		spinlock_t *ptl;
6899 		ptep = hugetlb_walk(vma, address, psize);
6900 		if (!ptep) {
6901 			if (!uffd_wp) {
6902 				address |= last_addr_mask;
6903 				continue;
6904 			}
6905 			/*
6906 			 * Userfaultfd wr-protect requires pgtable
6907 			 * pre-allocations to install pte markers.
6908 			 */
6909 			ptep = huge_pte_alloc(mm, vma, address, psize);
6910 			if (!ptep) {
6911 				pages = -ENOMEM;
6912 				break;
6913 			}
6914 		}
6915 		ptl = huge_pte_lock(h, mm, ptep);
6916 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6917 			/*
6918 			 * When uffd-wp is enabled on the vma, unshare
6919 			 * shouldn't happen at all.  Warn about it if it
6920 			 * happened due to some reason.
6921 			 */
6922 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6923 			pages++;
6924 			spin_unlock(ptl);
6925 			shared_pmd = true;
6926 			address |= last_addr_mask;
6927 			continue;
6928 		}
6929 		pte = huge_ptep_get(mm, address, ptep);
6930 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6931 			/* Nothing to do. */
6932 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6933 			swp_entry_t entry = pte_to_swp_entry(pte);
6934 			struct page *page = pfn_swap_entry_to_page(entry);
6935 			pte_t newpte = pte;
6936 
6937 			if (is_writable_migration_entry(entry)) {
6938 				if (PageAnon(page))
6939 					entry = make_readable_exclusive_migration_entry(
6940 								swp_offset(entry));
6941 				else
6942 					entry = make_readable_migration_entry(
6943 								swp_offset(entry));
6944 				newpte = swp_entry_to_pte(entry);
6945 				pages++;
6946 			}
6947 
6948 			if (uffd_wp)
6949 				newpte = pte_swp_mkuffd_wp(newpte);
6950 			else if (uffd_wp_resolve)
6951 				newpte = pte_swp_clear_uffd_wp(newpte);
6952 			if (!pte_same(pte, newpte))
6953 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6954 		} else if (unlikely(is_pte_marker(pte))) {
6955 			/*
6956 			 * Do nothing on a poison marker; page is
6957 			 * corrupted, permissons do not apply.  Here
6958 			 * pte_marker_uffd_wp()==true implies !poison
6959 			 * because they're mutual exclusive.
6960 			 */
6961 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6962 				/* Safe to modify directly (non-present->none). */
6963 				huge_pte_clear(mm, address, ptep, psize);
6964 		} else if (!huge_pte_none(pte)) {
6965 			pte_t old_pte;
6966 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6967 
6968 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6969 			pte = huge_pte_modify(old_pte, newprot);
6970 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6971 			if (uffd_wp)
6972 				pte = huge_pte_mkuffd_wp(pte);
6973 			else if (uffd_wp_resolve)
6974 				pte = huge_pte_clear_uffd_wp(pte);
6975 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6976 			pages++;
6977 		} else {
6978 			/* None pte */
6979 			if (unlikely(uffd_wp))
6980 				/* Safe to modify directly (none->non-present). */
6981 				set_huge_pte_at(mm, address, ptep,
6982 						make_pte_marker(PTE_MARKER_UFFD_WP),
6983 						psize);
6984 		}
6985 		spin_unlock(ptl);
6986 	}
6987 	/*
6988 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6989 	 * may have cleared our pud entry and done put_page on the page table:
6990 	 * once we release i_mmap_rwsem, another task can do the final put_page
6991 	 * and that page table be reused and filled with junk.  If we actually
6992 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6993 	 */
6994 	if (shared_pmd)
6995 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6996 	else
6997 		flush_hugetlb_tlb_range(vma, start, end);
6998 	/*
6999 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7000 	 * downgrading page table protection not changing it to point to a new
7001 	 * page.
7002 	 *
7003 	 * See Documentation/mm/mmu_notifier.rst
7004 	 */
7005 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7006 	hugetlb_vma_unlock_write(vma);
7007 	mmu_notifier_invalidate_range_end(&range);
7008 
7009 	return pages > 0 ? (pages << h->order) : pages;
7010 }
7011 
7012 /* Return true if reservation was successful, false otherwise.  */
7013 bool hugetlb_reserve_pages(struct inode *inode,
7014 					long from, long to,
7015 					struct vm_area_struct *vma,
7016 					vm_flags_t vm_flags)
7017 {
7018 	long chg = -1, add = -1;
7019 	struct hstate *h = hstate_inode(inode);
7020 	struct hugepage_subpool *spool = subpool_inode(inode);
7021 	struct resv_map *resv_map;
7022 	struct hugetlb_cgroup *h_cg = NULL;
7023 	long gbl_reserve, regions_needed = 0;
7024 
7025 	/* This should never happen */
7026 	if (from > to) {
7027 		VM_WARN(1, "%s called with a negative range\n", __func__);
7028 		return false;
7029 	}
7030 
7031 	/*
7032 	 * vma specific semaphore used for pmd sharing and fault/truncation
7033 	 * synchronization
7034 	 */
7035 	hugetlb_vma_lock_alloc(vma);
7036 
7037 	/*
7038 	 * Only apply hugepage reservation if asked. At fault time, an
7039 	 * attempt will be made for VM_NORESERVE to allocate a page
7040 	 * without using reserves
7041 	 */
7042 	if (vm_flags & VM_NORESERVE)
7043 		return true;
7044 
7045 	/*
7046 	 * Shared mappings base their reservation on the number of pages that
7047 	 * are already allocated on behalf of the file. Private mappings need
7048 	 * to reserve the full area even if read-only as mprotect() may be
7049 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7050 	 */
7051 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7052 		/*
7053 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7054 		 * called for inodes for which resv_maps were created (see
7055 		 * hugetlbfs_get_inode).
7056 		 */
7057 		resv_map = inode_resv_map(inode);
7058 
7059 		chg = region_chg(resv_map, from, to, &regions_needed);
7060 	} else {
7061 		/* Private mapping. */
7062 		resv_map = resv_map_alloc();
7063 		if (!resv_map)
7064 			goto out_err;
7065 
7066 		chg = to - from;
7067 
7068 		set_vma_resv_map(vma, resv_map);
7069 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7070 	}
7071 
7072 	if (chg < 0)
7073 		goto out_err;
7074 
7075 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7076 				chg * pages_per_huge_page(h), &h_cg) < 0)
7077 		goto out_err;
7078 
7079 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7080 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7081 		 * of the resv_map.
7082 		 */
7083 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7084 	}
7085 
7086 	/*
7087 	 * There must be enough pages in the subpool for the mapping. If
7088 	 * the subpool has a minimum size, there may be some global
7089 	 * reservations already in place (gbl_reserve).
7090 	 */
7091 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7092 	if (gbl_reserve < 0)
7093 		goto out_uncharge_cgroup;
7094 
7095 	/*
7096 	 * Check enough hugepages are available for the reservation.
7097 	 * Hand the pages back to the subpool if there are not
7098 	 */
7099 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7100 		goto out_put_pages;
7101 
7102 	/*
7103 	 * Account for the reservations made. Shared mappings record regions
7104 	 * that have reservations as they are shared by multiple VMAs.
7105 	 * When the last VMA disappears, the region map says how much
7106 	 * the reservation was and the page cache tells how much of
7107 	 * the reservation was consumed. Private mappings are per-VMA and
7108 	 * only the consumed reservations are tracked. When the VMA
7109 	 * disappears, the original reservation is the VMA size and the
7110 	 * consumed reservations are stored in the map. Hence, nothing
7111 	 * else has to be done for private mappings here
7112 	 */
7113 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7114 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7115 
7116 		if (unlikely(add < 0)) {
7117 			hugetlb_acct_memory(h, -gbl_reserve);
7118 			goto out_put_pages;
7119 		} else if (unlikely(chg > add)) {
7120 			/*
7121 			 * pages in this range were added to the reserve
7122 			 * map between region_chg and region_add.  This
7123 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7124 			 * the subpool and reserve counts modified above
7125 			 * based on the difference.
7126 			 */
7127 			long rsv_adjust;
7128 
7129 			/*
7130 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7131 			 * reference to h_cg->css. See comment below for detail.
7132 			 */
7133 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7134 				hstate_index(h),
7135 				(chg - add) * pages_per_huge_page(h), h_cg);
7136 
7137 			rsv_adjust = hugepage_subpool_put_pages(spool,
7138 								chg - add);
7139 			hugetlb_acct_memory(h, -rsv_adjust);
7140 		} else if (h_cg) {
7141 			/*
7142 			 * The file_regions will hold their own reference to
7143 			 * h_cg->css. So we should release the reference held
7144 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7145 			 * done.
7146 			 */
7147 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7148 		}
7149 	}
7150 	return true;
7151 
7152 out_put_pages:
7153 	/* put back original number of pages, chg */
7154 	(void)hugepage_subpool_put_pages(spool, chg);
7155 out_uncharge_cgroup:
7156 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7157 					    chg * pages_per_huge_page(h), h_cg);
7158 out_err:
7159 	hugetlb_vma_lock_free(vma);
7160 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7161 		/* Only call region_abort if the region_chg succeeded but the
7162 		 * region_add failed or didn't run.
7163 		 */
7164 		if (chg >= 0 && add < 0)
7165 			region_abort(resv_map, from, to, regions_needed);
7166 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7167 		kref_put(&resv_map->refs, resv_map_release);
7168 		set_vma_resv_map(vma, NULL);
7169 	}
7170 	return false;
7171 }
7172 
7173 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7174 								long freed)
7175 {
7176 	struct hstate *h = hstate_inode(inode);
7177 	struct resv_map *resv_map = inode_resv_map(inode);
7178 	long chg = 0;
7179 	struct hugepage_subpool *spool = subpool_inode(inode);
7180 	long gbl_reserve;
7181 
7182 	/*
7183 	 * Since this routine can be called in the evict inode path for all
7184 	 * hugetlbfs inodes, resv_map could be NULL.
7185 	 */
7186 	if (resv_map) {
7187 		chg = region_del(resv_map, start, end);
7188 		/*
7189 		 * region_del() can fail in the rare case where a region
7190 		 * must be split and another region descriptor can not be
7191 		 * allocated.  If end == LONG_MAX, it will not fail.
7192 		 */
7193 		if (chg < 0)
7194 			return chg;
7195 	}
7196 
7197 	spin_lock(&inode->i_lock);
7198 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7199 	spin_unlock(&inode->i_lock);
7200 
7201 	/*
7202 	 * If the subpool has a minimum size, the number of global
7203 	 * reservations to be released may be adjusted.
7204 	 *
7205 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7206 	 * won't go negative.
7207 	 */
7208 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7209 	hugetlb_acct_memory(h, -gbl_reserve);
7210 
7211 	return 0;
7212 }
7213 
7214 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7215 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7216 				struct vm_area_struct *vma,
7217 				unsigned long addr, pgoff_t idx)
7218 {
7219 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7220 				svma->vm_start;
7221 	unsigned long sbase = saddr & PUD_MASK;
7222 	unsigned long s_end = sbase + PUD_SIZE;
7223 
7224 	/* Allow segments to share if only one is marked locked */
7225 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7226 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7227 
7228 	/*
7229 	 * match the virtual addresses, permission and the alignment of the
7230 	 * page table page.
7231 	 *
7232 	 * Also, vma_lock (vm_private_data) is required for sharing.
7233 	 */
7234 	if (pmd_index(addr) != pmd_index(saddr) ||
7235 	    vm_flags != svm_flags ||
7236 	    !range_in_vma(svma, sbase, s_end) ||
7237 	    !svma->vm_private_data)
7238 		return 0;
7239 
7240 	return saddr;
7241 }
7242 
7243 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7244 {
7245 	unsigned long start = addr & PUD_MASK;
7246 	unsigned long end = start + PUD_SIZE;
7247 
7248 #ifdef CONFIG_USERFAULTFD
7249 	if (uffd_disable_huge_pmd_share(vma))
7250 		return false;
7251 #endif
7252 	/*
7253 	 * check on proper vm_flags and page table alignment
7254 	 */
7255 	if (!(vma->vm_flags & VM_MAYSHARE))
7256 		return false;
7257 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7258 		return false;
7259 	if (!range_in_vma(vma, start, end))
7260 		return false;
7261 	return true;
7262 }
7263 
7264 /*
7265  * Determine if start,end range within vma could be mapped by shared pmd.
7266  * If yes, adjust start and end to cover range associated with possible
7267  * shared pmd mappings.
7268  */
7269 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7270 				unsigned long *start, unsigned long *end)
7271 {
7272 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7273 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7274 
7275 	/*
7276 	 * vma needs to span at least one aligned PUD size, and the range
7277 	 * must be at least partially within in.
7278 	 */
7279 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7280 		(*end <= v_start) || (*start >= v_end))
7281 		return;
7282 
7283 	/* Extend the range to be PUD aligned for a worst case scenario */
7284 	if (*start > v_start)
7285 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7286 
7287 	if (*end < v_end)
7288 		*end = ALIGN(*end, PUD_SIZE);
7289 }
7290 
7291 /*
7292  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7293  * and returns the corresponding pte. While this is not necessary for the
7294  * !shared pmd case because we can allocate the pmd later as well, it makes the
7295  * code much cleaner. pmd allocation is essential for the shared case because
7296  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7297  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7298  * bad pmd for sharing.
7299  */
7300 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7301 		      unsigned long addr, pud_t *pud)
7302 {
7303 	struct address_space *mapping = vma->vm_file->f_mapping;
7304 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7305 			vma->vm_pgoff;
7306 	struct vm_area_struct *svma;
7307 	unsigned long saddr;
7308 	pte_t *spte = NULL;
7309 	pte_t *pte;
7310 
7311 	i_mmap_lock_read(mapping);
7312 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7313 		if (svma == vma)
7314 			continue;
7315 
7316 		saddr = page_table_shareable(svma, vma, addr, idx);
7317 		if (saddr) {
7318 			spte = hugetlb_walk(svma, saddr,
7319 					    vma_mmu_pagesize(svma));
7320 			if (spte) {
7321 				get_page(virt_to_page(spte));
7322 				break;
7323 			}
7324 		}
7325 	}
7326 
7327 	if (!spte)
7328 		goto out;
7329 
7330 	spin_lock(&mm->page_table_lock);
7331 	if (pud_none(*pud)) {
7332 		pud_populate(mm, pud,
7333 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7334 		mm_inc_nr_pmds(mm);
7335 	} else {
7336 		put_page(virt_to_page(spte));
7337 	}
7338 	spin_unlock(&mm->page_table_lock);
7339 out:
7340 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7341 	i_mmap_unlock_read(mapping);
7342 	return pte;
7343 }
7344 
7345 /*
7346  * unmap huge page backed by shared pte.
7347  *
7348  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7349  * indicated by page_count > 1, unmap is achieved by clearing pud and
7350  * decrementing the ref count. If count == 1, the pte page is not shared.
7351  *
7352  * Called with page table lock held.
7353  *
7354  * returns: 1 successfully unmapped a shared pte page
7355  *	    0 the underlying pte page is not shared, or it is the last user
7356  */
7357 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7358 					unsigned long addr, pte_t *ptep)
7359 {
7360 	pgd_t *pgd = pgd_offset(mm, addr);
7361 	p4d_t *p4d = p4d_offset(pgd, addr);
7362 	pud_t *pud = pud_offset(p4d, addr);
7363 
7364 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7365 	hugetlb_vma_assert_locked(vma);
7366 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7367 	if (page_count(virt_to_page(ptep)) == 1)
7368 		return 0;
7369 
7370 	pud_clear(pud);
7371 	put_page(virt_to_page(ptep));
7372 	mm_dec_nr_pmds(mm);
7373 	return 1;
7374 }
7375 
7376 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7377 
7378 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7379 		      unsigned long addr, pud_t *pud)
7380 {
7381 	return NULL;
7382 }
7383 
7384 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7385 				unsigned long addr, pte_t *ptep)
7386 {
7387 	return 0;
7388 }
7389 
7390 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7391 				unsigned long *start, unsigned long *end)
7392 {
7393 }
7394 
7395 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7396 {
7397 	return false;
7398 }
7399 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7400 
7401 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7402 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7403 			unsigned long addr, unsigned long sz)
7404 {
7405 	pgd_t *pgd;
7406 	p4d_t *p4d;
7407 	pud_t *pud;
7408 	pte_t *pte = NULL;
7409 
7410 	pgd = pgd_offset(mm, addr);
7411 	p4d = p4d_alloc(mm, pgd, addr);
7412 	if (!p4d)
7413 		return NULL;
7414 	pud = pud_alloc(mm, p4d, addr);
7415 	if (pud) {
7416 		if (sz == PUD_SIZE) {
7417 			pte = (pte_t *)pud;
7418 		} else {
7419 			BUG_ON(sz != PMD_SIZE);
7420 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7421 				pte = huge_pmd_share(mm, vma, addr, pud);
7422 			else
7423 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7424 		}
7425 	}
7426 
7427 	if (pte) {
7428 		pte_t pteval = ptep_get_lockless(pte);
7429 
7430 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7431 	}
7432 
7433 	return pte;
7434 }
7435 
7436 /*
7437  * huge_pte_offset() - Walk the page table to resolve the hugepage
7438  * entry at address @addr
7439  *
7440  * Return: Pointer to page table entry (PUD or PMD) for
7441  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7442  * size @sz doesn't match the hugepage size at this level of the page
7443  * table.
7444  */
7445 pte_t *huge_pte_offset(struct mm_struct *mm,
7446 		       unsigned long addr, unsigned long sz)
7447 {
7448 	pgd_t *pgd;
7449 	p4d_t *p4d;
7450 	pud_t *pud;
7451 	pmd_t *pmd;
7452 
7453 	pgd = pgd_offset(mm, addr);
7454 	if (!pgd_present(*pgd))
7455 		return NULL;
7456 	p4d = p4d_offset(pgd, addr);
7457 	if (!p4d_present(*p4d))
7458 		return NULL;
7459 
7460 	pud = pud_offset(p4d, addr);
7461 	if (sz == PUD_SIZE)
7462 		/* must be pud huge, non-present or none */
7463 		return (pte_t *)pud;
7464 	if (!pud_present(*pud))
7465 		return NULL;
7466 	/* must have a valid entry and size to go further */
7467 
7468 	pmd = pmd_offset(pud, addr);
7469 	/* must be pmd huge, non-present or none */
7470 	return (pte_t *)pmd;
7471 }
7472 
7473 /*
7474  * Return a mask that can be used to update an address to the last huge
7475  * page in a page table page mapping size.  Used to skip non-present
7476  * page table entries when linearly scanning address ranges.  Architectures
7477  * with unique huge page to page table relationships can define their own
7478  * version of this routine.
7479  */
7480 unsigned long hugetlb_mask_last_page(struct hstate *h)
7481 {
7482 	unsigned long hp_size = huge_page_size(h);
7483 
7484 	if (hp_size == PUD_SIZE)
7485 		return P4D_SIZE - PUD_SIZE;
7486 	else if (hp_size == PMD_SIZE)
7487 		return PUD_SIZE - PMD_SIZE;
7488 	else
7489 		return 0UL;
7490 }
7491 
7492 #else
7493 
7494 /* See description above.  Architectures can provide their own version. */
7495 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7496 {
7497 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7498 	if (huge_page_size(h) == PMD_SIZE)
7499 		return PUD_SIZE - PMD_SIZE;
7500 #endif
7501 	return 0UL;
7502 }
7503 
7504 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7505 
7506 /*
7507  * These functions are overwritable if your architecture needs its own
7508  * behavior.
7509  */
7510 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7511 {
7512 	bool ret = true;
7513 
7514 	spin_lock_irq(&hugetlb_lock);
7515 	if (!folio_test_hugetlb(folio) ||
7516 	    !folio_test_hugetlb_migratable(folio) ||
7517 	    !folio_try_get(folio)) {
7518 		ret = false;
7519 		goto unlock;
7520 	}
7521 	folio_clear_hugetlb_migratable(folio);
7522 	list_move_tail(&folio->lru, list);
7523 unlock:
7524 	spin_unlock_irq(&hugetlb_lock);
7525 	return ret;
7526 }
7527 
7528 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7529 {
7530 	int ret = 0;
7531 
7532 	*hugetlb = false;
7533 	spin_lock_irq(&hugetlb_lock);
7534 	if (folio_test_hugetlb(folio)) {
7535 		*hugetlb = true;
7536 		if (folio_test_hugetlb_freed(folio))
7537 			ret = 0;
7538 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7539 			ret = folio_try_get(folio);
7540 		else
7541 			ret = -EBUSY;
7542 	}
7543 	spin_unlock_irq(&hugetlb_lock);
7544 	return ret;
7545 }
7546 
7547 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7548 				bool *migratable_cleared)
7549 {
7550 	int ret;
7551 
7552 	spin_lock_irq(&hugetlb_lock);
7553 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7554 	spin_unlock_irq(&hugetlb_lock);
7555 	return ret;
7556 }
7557 
7558 void folio_putback_active_hugetlb(struct folio *folio)
7559 {
7560 	spin_lock_irq(&hugetlb_lock);
7561 	folio_set_hugetlb_migratable(folio);
7562 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7563 	spin_unlock_irq(&hugetlb_lock);
7564 	folio_put(folio);
7565 }
7566 
7567 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7568 {
7569 	struct hstate *h = folio_hstate(old_folio);
7570 
7571 	hugetlb_cgroup_migrate(old_folio, new_folio);
7572 	set_page_owner_migrate_reason(&new_folio->page, reason);
7573 
7574 	/*
7575 	 * transfer temporary state of the new hugetlb folio. This is
7576 	 * reverse to other transitions because the newpage is going to
7577 	 * be final while the old one will be freed so it takes over
7578 	 * the temporary status.
7579 	 *
7580 	 * Also note that we have to transfer the per-node surplus state
7581 	 * here as well otherwise the global surplus count will not match
7582 	 * the per-node's.
7583 	 */
7584 	if (folio_test_hugetlb_temporary(new_folio)) {
7585 		int old_nid = folio_nid(old_folio);
7586 		int new_nid = folio_nid(new_folio);
7587 
7588 		folio_set_hugetlb_temporary(old_folio);
7589 		folio_clear_hugetlb_temporary(new_folio);
7590 
7591 
7592 		/*
7593 		 * There is no need to transfer the per-node surplus state
7594 		 * when we do not cross the node.
7595 		 */
7596 		if (new_nid == old_nid)
7597 			return;
7598 		spin_lock_irq(&hugetlb_lock);
7599 		if (h->surplus_huge_pages_node[old_nid]) {
7600 			h->surplus_huge_pages_node[old_nid]--;
7601 			h->surplus_huge_pages_node[new_nid]++;
7602 		}
7603 		spin_unlock_irq(&hugetlb_lock);
7604 	}
7605 }
7606 
7607 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7608 				   unsigned long start,
7609 				   unsigned long end)
7610 {
7611 	struct hstate *h = hstate_vma(vma);
7612 	unsigned long sz = huge_page_size(h);
7613 	struct mm_struct *mm = vma->vm_mm;
7614 	struct mmu_notifier_range range;
7615 	unsigned long address;
7616 	spinlock_t *ptl;
7617 	pte_t *ptep;
7618 
7619 	if (!(vma->vm_flags & VM_MAYSHARE))
7620 		return;
7621 
7622 	if (start >= end)
7623 		return;
7624 
7625 	flush_cache_range(vma, start, end);
7626 	/*
7627 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7628 	 * we have already done the PUD_SIZE alignment.
7629 	 */
7630 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7631 				start, end);
7632 	mmu_notifier_invalidate_range_start(&range);
7633 	hugetlb_vma_lock_write(vma);
7634 	i_mmap_lock_write(vma->vm_file->f_mapping);
7635 	for (address = start; address < end; address += PUD_SIZE) {
7636 		ptep = hugetlb_walk(vma, address, sz);
7637 		if (!ptep)
7638 			continue;
7639 		ptl = huge_pte_lock(h, mm, ptep);
7640 		huge_pmd_unshare(mm, vma, address, ptep);
7641 		spin_unlock(ptl);
7642 	}
7643 	flush_hugetlb_tlb_range(vma, start, end);
7644 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7645 	hugetlb_vma_unlock_write(vma);
7646 	/*
7647 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7648 	 * Documentation/mm/mmu_notifier.rst.
7649 	 */
7650 	mmu_notifier_invalidate_range_end(&range);
7651 }
7652 
7653 /*
7654  * This function will unconditionally remove all the shared pmd pgtable entries
7655  * within the specific vma for a hugetlbfs memory range.
7656  */
7657 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7658 {
7659 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7660 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7661 }
7662 
7663 #ifdef CONFIG_CMA
7664 static bool cma_reserve_called __initdata;
7665 
7666 static int __init cmdline_parse_hugetlb_cma(char *p)
7667 {
7668 	int nid, count = 0;
7669 	unsigned long tmp;
7670 	char *s = p;
7671 
7672 	while (*s) {
7673 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7674 			break;
7675 
7676 		if (s[count] == ':') {
7677 			if (tmp >= MAX_NUMNODES)
7678 				break;
7679 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7680 
7681 			s += count + 1;
7682 			tmp = memparse(s, &s);
7683 			hugetlb_cma_size_in_node[nid] = tmp;
7684 			hugetlb_cma_size += tmp;
7685 
7686 			/*
7687 			 * Skip the separator if have one, otherwise
7688 			 * break the parsing.
7689 			 */
7690 			if (*s == ',')
7691 				s++;
7692 			else
7693 				break;
7694 		} else {
7695 			hugetlb_cma_size = memparse(p, &p);
7696 			break;
7697 		}
7698 	}
7699 
7700 	return 0;
7701 }
7702 
7703 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7704 
7705 void __init hugetlb_cma_reserve(int order)
7706 {
7707 	unsigned long size, reserved, per_node;
7708 	bool node_specific_cma_alloc = false;
7709 	int nid;
7710 
7711 	/*
7712 	 * HugeTLB CMA reservation is required for gigantic
7713 	 * huge pages which could not be allocated via the
7714 	 * page allocator. Just warn if there is any change
7715 	 * breaking this assumption.
7716 	 */
7717 	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7718 	cma_reserve_called = true;
7719 
7720 	if (!hugetlb_cma_size)
7721 		return;
7722 
7723 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7724 		if (hugetlb_cma_size_in_node[nid] == 0)
7725 			continue;
7726 
7727 		if (!node_online(nid)) {
7728 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7729 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7730 			hugetlb_cma_size_in_node[nid] = 0;
7731 			continue;
7732 		}
7733 
7734 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7735 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7736 				nid, (PAGE_SIZE << order) / SZ_1M);
7737 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7738 			hugetlb_cma_size_in_node[nid] = 0;
7739 		} else {
7740 			node_specific_cma_alloc = true;
7741 		}
7742 	}
7743 
7744 	/* Validate the CMA size again in case some invalid nodes specified. */
7745 	if (!hugetlb_cma_size)
7746 		return;
7747 
7748 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7749 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7750 			(PAGE_SIZE << order) / SZ_1M);
7751 		hugetlb_cma_size = 0;
7752 		return;
7753 	}
7754 
7755 	if (!node_specific_cma_alloc) {
7756 		/*
7757 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7758 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7759 		 */
7760 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7761 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7762 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7763 	}
7764 
7765 	reserved = 0;
7766 	for_each_online_node(nid) {
7767 		int res;
7768 		char name[CMA_MAX_NAME];
7769 
7770 		if (node_specific_cma_alloc) {
7771 			if (hugetlb_cma_size_in_node[nid] == 0)
7772 				continue;
7773 
7774 			size = hugetlb_cma_size_in_node[nid];
7775 		} else {
7776 			size = min(per_node, hugetlb_cma_size - reserved);
7777 		}
7778 
7779 		size = round_up(size, PAGE_SIZE << order);
7780 
7781 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7782 		/*
7783 		 * Note that 'order per bit' is based on smallest size that
7784 		 * may be returned to CMA allocator in the case of
7785 		 * huge page demotion.
7786 		 */
7787 		res = cma_declare_contiguous_nid(0, size, 0,
7788 					PAGE_SIZE << order,
7789 					HUGETLB_PAGE_ORDER, false, name,
7790 					&hugetlb_cma[nid], nid);
7791 		if (res) {
7792 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7793 				res, nid);
7794 			continue;
7795 		}
7796 
7797 		reserved += size;
7798 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7799 			size / SZ_1M, nid);
7800 
7801 		if (reserved >= hugetlb_cma_size)
7802 			break;
7803 	}
7804 
7805 	if (!reserved)
7806 		/*
7807 		 * hugetlb_cma_size is used to determine if allocations from
7808 		 * cma are possible.  Set to zero if no cma regions are set up.
7809 		 */
7810 		hugetlb_cma_size = 0;
7811 }
7812 
7813 static void __init hugetlb_cma_check(void)
7814 {
7815 	if (!hugetlb_cma_size || cma_reserve_called)
7816 		return;
7817 
7818 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7819 }
7820 
7821 #endif /* CONFIG_CMA */
7822