1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/gfp.h> 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/cpuset.h> 16 #include <linux/mutex.h> 17 18 #include <asm/page.h> 19 #include <asm/pgtable.h> 20 21 #include <linux/hugetlb.h> 22 #include "internal.h" 23 24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 25 static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages; 26 unsigned long max_huge_pages; 27 static struct list_head hugepage_freelists[MAX_NUMNODES]; 28 static unsigned int nr_huge_pages_node[MAX_NUMNODES]; 29 static unsigned int free_huge_pages_node[MAX_NUMNODES]; 30 /* 31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 32 */ 33 static DEFINE_SPINLOCK(hugetlb_lock); 34 35 static void clear_huge_page(struct page *page, unsigned long addr) 36 { 37 int i; 38 39 might_sleep(); 40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { 41 cond_resched(); 42 clear_user_highpage(page + i, addr); 43 } 44 } 45 46 static void copy_huge_page(struct page *dst, struct page *src, 47 unsigned long addr) 48 { 49 int i; 50 51 might_sleep(); 52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { 53 cond_resched(); 54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE); 55 } 56 } 57 58 static void enqueue_huge_page(struct page *page) 59 { 60 int nid = page_to_nid(page); 61 list_add(&page->lru, &hugepage_freelists[nid]); 62 free_huge_pages++; 63 free_huge_pages_node[nid]++; 64 } 65 66 static struct page *dequeue_huge_page(struct vm_area_struct *vma, 67 unsigned long address) 68 { 69 int nid = numa_node_id(); 70 struct page *page = NULL; 71 struct zonelist *zonelist = huge_zonelist(vma, address); 72 struct zone **z; 73 74 for (z = zonelist->zones; *z; z++) { 75 nid = (*z)->zone_pgdat->node_id; 76 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) && 77 !list_empty(&hugepage_freelists[nid])) 78 break; 79 } 80 81 if (*z) { 82 page = list_entry(hugepage_freelists[nid].next, 83 struct page, lru); 84 list_del(&page->lru); 85 free_huge_pages--; 86 free_huge_pages_node[nid]--; 87 } 88 return page; 89 } 90 91 static void free_huge_page(struct page *page) 92 { 93 BUG_ON(page_count(page)); 94 95 INIT_LIST_HEAD(&page->lru); 96 97 spin_lock(&hugetlb_lock); 98 enqueue_huge_page(page); 99 spin_unlock(&hugetlb_lock); 100 } 101 102 static int alloc_fresh_huge_page(void) 103 { 104 static int nid = 0; 105 struct page *page; 106 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN, 107 HUGETLB_PAGE_ORDER); 108 nid = next_node(nid, node_online_map); 109 if (nid == MAX_NUMNODES) 110 nid = first_node(node_online_map); 111 if (page) { 112 page[1].lru.next = (void *)free_huge_page; /* dtor */ 113 spin_lock(&hugetlb_lock); 114 nr_huge_pages++; 115 nr_huge_pages_node[page_to_nid(page)]++; 116 spin_unlock(&hugetlb_lock); 117 put_page(page); /* free it into the hugepage allocator */ 118 return 1; 119 } 120 return 0; 121 } 122 123 static struct page *alloc_huge_page(struct vm_area_struct *vma, 124 unsigned long addr) 125 { 126 struct inode *inode = vma->vm_file->f_dentry->d_inode; 127 struct page *page; 128 int use_reserve = 0; 129 unsigned long idx; 130 131 spin_lock(&hugetlb_lock); 132 133 if (vma->vm_flags & VM_MAYSHARE) { 134 135 /* idx = radix tree index, i.e. offset into file in 136 * HPAGE_SIZE units */ 137 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT) 138 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); 139 140 /* The hugetlbfs specific inode info stores the number 141 * of "guaranteed available" (huge) pages. That is, 142 * the first 'prereserved_hpages' pages of the inode 143 * are either already instantiated, or have been 144 * pre-reserved (by hugetlb_reserve_for_inode()). Here 145 * we're in the process of instantiating the page, so 146 * we use this to determine whether to draw from the 147 * pre-reserved pool or the truly free pool. */ 148 if (idx < HUGETLBFS_I(inode)->prereserved_hpages) 149 use_reserve = 1; 150 } 151 152 if (!use_reserve) { 153 if (free_huge_pages <= reserved_huge_pages) 154 goto fail; 155 } else { 156 BUG_ON(reserved_huge_pages == 0); 157 reserved_huge_pages--; 158 } 159 160 page = dequeue_huge_page(vma, addr); 161 if (!page) 162 goto fail; 163 164 spin_unlock(&hugetlb_lock); 165 set_page_refcounted(page); 166 return page; 167 168 fail: 169 WARN_ON(use_reserve); /* reserved allocations shouldn't fail */ 170 spin_unlock(&hugetlb_lock); 171 return NULL; 172 } 173 174 /* hugetlb_extend_reservation() 175 * 176 * Ensure that at least 'atleast' hugepages are, and will remain, 177 * available to instantiate the first 'atleast' pages of the given 178 * inode. If the inode doesn't already have this many pages reserved 179 * or instantiated, set aside some hugepages in the reserved pool to 180 * satisfy later faults (or fail now if there aren't enough, rather 181 * than getting the SIGBUS later). 182 */ 183 int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info, 184 unsigned long atleast) 185 { 186 struct inode *inode = &info->vfs_inode; 187 unsigned long change_in_reserve = 0; 188 int ret = 0; 189 190 spin_lock(&hugetlb_lock); 191 read_lock_irq(&inode->i_mapping->tree_lock); 192 193 if (info->prereserved_hpages >= atleast) 194 goto out; 195 196 /* Because we always call this on shared mappings, none of the 197 * pages beyond info->prereserved_hpages can have been 198 * instantiated, so we need to reserve all of them now. */ 199 change_in_reserve = atleast - info->prereserved_hpages; 200 201 if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) { 202 ret = -ENOMEM; 203 goto out; 204 } 205 206 reserved_huge_pages += change_in_reserve; 207 info->prereserved_hpages = atleast; 208 209 out: 210 read_unlock_irq(&inode->i_mapping->tree_lock); 211 spin_unlock(&hugetlb_lock); 212 213 return ret; 214 } 215 216 /* hugetlb_truncate_reservation() 217 * 218 * This returns pages reserved for the given inode to the general free 219 * hugepage pool. If the inode has any pages prereserved, but not 220 * instantiated, beyond offset (atmost << HPAGE_SIZE), then release 221 * them. 222 */ 223 void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info, 224 unsigned long atmost) 225 { 226 struct inode *inode = &info->vfs_inode; 227 struct address_space *mapping = inode->i_mapping; 228 unsigned long idx; 229 unsigned long change_in_reserve = 0; 230 struct page *page; 231 232 spin_lock(&hugetlb_lock); 233 read_lock_irq(&inode->i_mapping->tree_lock); 234 235 if (info->prereserved_hpages <= atmost) 236 goto out; 237 238 /* Count pages which were reserved, but not instantiated, and 239 * which we can now release. */ 240 for (idx = atmost; idx < info->prereserved_hpages; idx++) { 241 page = radix_tree_lookup(&mapping->page_tree, idx); 242 if (!page) 243 /* Pages which are already instantiated can't 244 * be unreserved (and in fact have already 245 * been removed from the reserved pool) */ 246 change_in_reserve++; 247 } 248 249 BUG_ON(reserved_huge_pages < change_in_reserve); 250 reserved_huge_pages -= change_in_reserve; 251 info->prereserved_hpages = atmost; 252 253 out: 254 read_unlock_irq(&inode->i_mapping->tree_lock); 255 spin_unlock(&hugetlb_lock); 256 } 257 258 static int __init hugetlb_init(void) 259 { 260 unsigned long i; 261 262 if (HPAGE_SHIFT == 0) 263 return 0; 264 265 for (i = 0; i < MAX_NUMNODES; ++i) 266 INIT_LIST_HEAD(&hugepage_freelists[i]); 267 268 for (i = 0; i < max_huge_pages; ++i) { 269 if (!alloc_fresh_huge_page()) 270 break; 271 } 272 max_huge_pages = free_huge_pages = nr_huge_pages = i; 273 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); 274 return 0; 275 } 276 module_init(hugetlb_init); 277 278 static int __init hugetlb_setup(char *s) 279 { 280 if (sscanf(s, "%lu", &max_huge_pages) <= 0) 281 max_huge_pages = 0; 282 return 1; 283 } 284 __setup("hugepages=", hugetlb_setup); 285 286 #ifdef CONFIG_SYSCTL 287 static void update_and_free_page(struct page *page) 288 { 289 int i; 290 nr_huge_pages--; 291 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--; 292 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { 293 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 294 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 295 1 << PG_private | 1<< PG_writeback); 296 } 297 page[1].lru.next = NULL; 298 set_page_refcounted(page); 299 __free_pages(page, HUGETLB_PAGE_ORDER); 300 } 301 302 #ifdef CONFIG_HIGHMEM 303 static void try_to_free_low(unsigned long count) 304 { 305 int i, nid; 306 for (i = 0; i < MAX_NUMNODES; ++i) { 307 struct page *page, *next; 308 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { 309 if (PageHighMem(page)) 310 continue; 311 list_del(&page->lru); 312 update_and_free_page(page); 313 nid = page_zone(page)->zone_pgdat->node_id; 314 free_huge_pages--; 315 free_huge_pages_node[nid]--; 316 if (count >= nr_huge_pages) 317 return; 318 } 319 } 320 } 321 #else 322 static inline void try_to_free_low(unsigned long count) 323 { 324 } 325 #endif 326 327 static unsigned long set_max_huge_pages(unsigned long count) 328 { 329 while (count > nr_huge_pages) { 330 if (!alloc_fresh_huge_page()) 331 return nr_huge_pages; 332 } 333 if (count >= nr_huge_pages) 334 return nr_huge_pages; 335 336 spin_lock(&hugetlb_lock); 337 count = max(count, reserved_huge_pages); 338 try_to_free_low(count); 339 while (count < nr_huge_pages) { 340 struct page *page = dequeue_huge_page(NULL, 0); 341 if (!page) 342 break; 343 update_and_free_page(page); 344 } 345 spin_unlock(&hugetlb_lock); 346 return nr_huge_pages; 347 } 348 349 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 350 struct file *file, void __user *buffer, 351 size_t *length, loff_t *ppos) 352 { 353 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 354 max_huge_pages = set_max_huge_pages(max_huge_pages); 355 return 0; 356 } 357 #endif /* CONFIG_SYSCTL */ 358 359 int hugetlb_report_meminfo(char *buf) 360 { 361 return sprintf(buf, 362 "HugePages_Total: %5lu\n" 363 "HugePages_Free: %5lu\n" 364 "HugePages_Rsvd: %5lu\n" 365 "Hugepagesize: %5lu kB\n", 366 nr_huge_pages, 367 free_huge_pages, 368 reserved_huge_pages, 369 HPAGE_SIZE/1024); 370 } 371 372 int hugetlb_report_node_meminfo(int nid, char *buf) 373 { 374 return sprintf(buf, 375 "Node %d HugePages_Total: %5u\n" 376 "Node %d HugePages_Free: %5u\n", 377 nid, nr_huge_pages_node[nid], 378 nid, free_huge_pages_node[nid]); 379 } 380 381 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 382 unsigned long hugetlb_total_pages(void) 383 { 384 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); 385 } 386 387 /* 388 * We cannot handle pagefaults against hugetlb pages at all. They cause 389 * handle_mm_fault() to try to instantiate regular-sized pages in the 390 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 391 * this far. 392 */ 393 static struct page *hugetlb_nopage(struct vm_area_struct *vma, 394 unsigned long address, int *unused) 395 { 396 BUG(); 397 return NULL; 398 } 399 400 struct vm_operations_struct hugetlb_vm_ops = { 401 .nopage = hugetlb_nopage, 402 }; 403 404 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 405 int writable) 406 { 407 pte_t entry; 408 409 if (writable) { 410 entry = 411 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 412 } else { 413 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 414 } 415 entry = pte_mkyoung(entry); 416 entry = pte_mkhuge(entry); 417 418 return entry; 419 } 420 421 static void set_huge_ptep_writable(struct vm_area_struct *vma, 422 unsigned long address, pte_t *ptep) 423 { 424 pte_t entry; 425 426 entry = pte_mkwrite(pte_mkdirty(*ptep)); 427 ptep_set_access_flags(vma, address, ptep, entry, 1); 428 update_mmu_cache(vma, address, entry); 429 lazy_mmu_prot_update(entry); 430 } 431 432 433 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 434 struct vm_area_struct *vma) 435 { 436 pte_t *src_pte, *dst_pte, entry; 437 struct page *ptepage; 438 unsigned long addr; 439 int cow; 440 441 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 442 443 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { 444 src_pte = huge_pte_offset(src, addr); 445 if (!src_pte) 446 continue; 447 dst_pte = huge_pte_alloc(dst, addr); 448 if (!dst_pte) 449 goto nomem; 450 spin_lock(&dst->page_table_lock); 451 spin_lock(&src->page_table_lock); 452 if (!pte_none(*src_pte)) { 453 if (cow) 454 ptep_set_wrprotect(src, addr, src_pte); 455 entry = *src_pte; 456 ptepage = pte_page(entry); 457 get_page(ptepage); 458 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE); 459 set_huge_pte_at(dst, addr, dst_pte, entry); 460 } 461 spin_unlock(&src->page_table_lock); 462 spin_unlock(&dst->page_table_lock); 463 } 464 return 0; 465 466 nomem: 467 return -ENOMEM; 468 } 469 470 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 471 unsigned long end) 472 { 473 struct mm_struct *mm = vma->vm_mm; 474 unsigned long address; 475 pte_t *ptep; 476 pte_t pte; 477 struct page *page; 478 479 WARN_ON(!is_vm_hugetlb_page(vma)); 480 BUG_ON(start & ~HPAGE_MASK); 481 BUG_ON(end & ~HPAGE_MASK); 482 483 spin_lock(&mm->page_table_lock); 484 485 /* Update high watermark before we lower rss */ 486 update_hiwater_rss(mm); 487 488 for (address = start; address < end; address += HPAGE_SIZE) { 489 ptep = huge_pte_offset(mm, address); 490 if (!ptep) 491 continue; 492 493 pte = huge_ptep_get_and_clear(mm, address, ptep); 494 if (pte_none(pte)) 495 continue; 496 497 page = pte_page(pte); 498 put_page(page); 499 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE)); 500 } 501 502 spin_unlock(&mm->page_table_lock); 503 flush_tlb_range(vma, start, end); 504 } 505 506 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 507 unsigned long address, pte_t *ptep, pte_t pte) 508 { 509 struct page *old_page, *new_page; 510 int avoidcopy; 511 512 old_page = pte_page(pte); 513 514 /* If no-one else is actually using this page, avoid the copy 515 * and just make the page writable */ 516 avoidcopy = (page_count(old_page) == 1); 517 if (avoidcopy) { 518 set_huge_ptep_writable(vma, address, ptep); 519 return VM_FAULT_MINOR; 520 } 521 522 page_cache_get(old_page); 523 new_page = alloc_huge_page(vma, address); 524 525 if (!new_page) { 526 page_cache_release(old_page); 527 return VM_FAULT_OOM; 528 } 529 530 spin_unlock(&mm->page_table_lock); 531 copy_huge_page(new_page, old_page, address); 532 spin_lock(&mm->page_table_lock); 533 534 ptep = huge_pte_offset(mm, address & HPAGE_MASK); 535 if (likely(pte_same(*ptep, pte))) { 536 /* Break COW */ 537 set_huge_pte_at(mm, address, ptep, 538 make_huge_pte(vma, new_page, 1)); 539 /* Make the old page be freed below */ 540 new_page = old_page; 541 } 542 page_cache_release(new_page); 543 page_cache_release(old_page); 544 return VM_FAULT_MINOR; 545 } 546 547 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 548 unsigned long address, pte_t *ptep, int write_access) 549 { 550 int ret = VM_FAULT_SIGBUS; 551 unsigned long idx; 552 unsigned long size; 553 struct page *page; 554 struct address_space *mapping; 555 pte_t new_pte; 556 557 mapping = vma->vm_file->f_mapping; 558 idx = ((address - vma->vm_start) >> HPAGE_SHIFT) 559 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); 560 561 /* 562 * Use page lock to guard against racing truncation 563 * before we get page_table_lock. 564 */ 565 retry: 566 page = find_lock_page(mapping, idx); 567 if (!page) { 568 if (hugetlb_get_quota(mapping)) 569 goto out; 570 page = alloc_huge_page(vma, address); 571 if (!page) { 572 hugetlb_put_quota(mapping); 573 ret = VM_FAULT_OOM; 574 goto out; 575 } 576 clear_huge_page(page, address); 577 578 if (vma->vm_flags & VM_SHARED) { 579 int err; 580 581 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 582 if (err) { 583 put_page(page); 584 hugetlb_put_quota(mapping); 585 if (err == -EEXIST) 586 goto retry; 587 goto out; 588 } 589 } else 590 lock_page(page); 591 } 592 593 spin_lock(&mm->page_table_lock); 594 size = i_size_read(mapping->host) >> HPAGE_SHIFT; 595 if (idx >= size) 596 goto backout; 597 598 ret = VM_FAULT_MINOR; 599 if (!pte_none(*ptep)) 600 goto backout; 601 602 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE); 603 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 604 && (vma->vm_flags & VM_SHARED))); 605 set_huge_pte_at(mm, address, ptep, new_pte); 606 607 if (write_access && !(vma->vm_flags & VM_SHARED)) { 608 /* Optimization, do the COW without a second fault */ 609 ret = hugetlb_cow(mm, vma, address, ptep, new_pte); 610 } 611 612 spin_unlock(&mm->page_table_lock); 613 unlock_page(page); 614 out: 615 return ret; 616 617 backout: 618 spin_unlock(&mm->page_table_lock); 619 hugetlb_put_quota(mapping); 620 unlock_page(page); 621 put_page(page); 622 goto out; 623 } 624 625 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 626 unsigned long address, int write_access) 627 { 628 pte_t *ptep; 629 pte_t entry; 630 int ret; 631 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 632 633 ptep = huge_pte_alloc(mm, address); 634 if (!ptep) 635 return VM_FAULT_OOM; 636 637 /* 638 * Serialize hugepage allocation and instantiation, so that we don't 639 * get spurious allocation failures if two CPUs race to instantiate 640 * the same page in the page cache. 641 */ 642 mutex_lock(&hugetlb_instantiation_mutex); 643 entry = *ptep; 644 if (pte_none(entry)) { 645 ret = hugetlb_no_page(mm, vma, address, ptep, write_access); 646 mutex_unlock(&hugetlb_instantiation_mutex); 647 return ret; 648 } 649 650 ret = VM_FAULT_MINOR; 651 652 spin_lock(&mm->page_table_lock); 653 /* Check for a racing update before calling hugetlb_cow */ 654 if (likely(pte_same(entry, *ptep))) 655 if (write_access && !pte_write(entry)) 656 ret = hugetlb_cow(mm, vma, address, ptep, entry); 657 spin_unlock(&mm->page_table_lock); 658 mutex_unlock(&hugetlb_instantiation_mutex); 659 660 return ret; 661 } 662 663 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 664 struct page **pages, struct vm_area_struct **vmas, 665 unsigned long *position, int *length, int i) 666 { 667 unsigned long pfn_offset; 668 unsigned long vaddr = *position; 669 int remainder = *length; 670 671 spin_lock(&mm->page_table_lock); 672 while (vaddr < vma->vm_end && remainder) { 673 pte_t *pte; 674 struct page *page; 675 676 /* 677 * Some archs (sparc64, sh*) have multiple pte_ts to 678 * each hugepage. We have to make * sure we get the 679 * first, for the page indexing below to work. 680 */ 681 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); 682 683 if (!pte || pte_none(*pte)) { 684 int ret; 685 686 spin_unlock(&mm->page_table_lock); 687 ret = hugetlb_fault(mm, vma, vaddr, 0); 688 spin_lock(&mm->page_table_lock); 689 if (ret == VM_FAULT_MINOR) 690 continue; 691 692 remainder = 0; 693 if (!i) 694 i = -EFAULT; 695 break; 696 } 697 698 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; 699 page = pte_page(*pte); 700 same_page: 701 if (pages) { 702 get_page(page); 703 pages[i] = page + pfn_offset; 704 } 705 706 if (vmas) 707 vmas[i] = vma; 708 709 vaddr += PAGE_SIZE; 710 ++pfn_offset; 711 --remainder; 712 ++i; 713 if (vaddr < vma->vm_end && remainder && 714 pfn_offset < HPAGE_SIZE/PAGE_SIZE) { 715 /* 716 * We use pfn_offset to avoid touching the pageframes 717 * of this compound page. 718 */ 719 goto same_page; 720 } 721 } 722 spin_unlock(&mm->page_table_lock); 723 *length = remainder; 724 *position = vaddr; 725 726 return i; 727 } 728 729 void hugetlb_change_protection(struct vm_area_struct *vma, 730 unsigned long address, unsigned long end, pgprot_t newprot) 731 { 732 struct mm_struct *mm = vma->vm_mm; 733 unsigned long start = address; 734 pte_t *ptep; 735 pte_t pte; 736 737 BUG_ON(address >= end); 738 flush_cache_range(vma, address, end); 739 740 spin_lock(&mm->page_table_lock); 741 for (; address < end; address += HPAGE_SIZE) { 742 ptep = huge_pte_offset(mm, address); 743 if (!ptep) 744 continue; 745 if (!pte_none(*ptep)) { 746 pte = huge_ptep_get_and_clear(mm, address, ptep); 747 pte = pte_mkhuge(pte_modify(pte, newprot)); 748 set_huge_pte_at(mm, address, ptep, pte); 749 lazy_mmu_prot_update(pte); 750 } 751 } 752 spin_unlock(&mm->page_table_lock); 753 754 flush_tlb_range(vma, start, end); 755 } 756 757