xref: /linux/mm/hugetlb.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28 
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32 
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40 
41 __initdata LIST_HEAD(huge_boot_pages);
42 
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47 
48 #define for_each_hstate(h) \
49 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50 
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55 
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  *	down_write(&mm->mmap_sem);
66  * or
67  *	down_read(&mm->mmap_sem);
68  *	mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71 	struct list_head link;
72 	long from;
73 	long to;
74 };
75 
76 static long region_add(struct list_head *head, long f, long t)
77 {
78 	struct file_region *rg, *nrg, *trg;
79 
80 	/* Locate the region we are either in or before. */
81 	list_for_each_entry(rg, head, link)
82 		if (f <= rg->to)
83 			break;
84 
85 	/* Round our left edge to the current segment if it encloses us. */
86 	if (f > rg->from)
87 		f = rg->from;
88 
89 	/* Check for and consume any regions we now overlap with. */
90 	nrg = rg;
91 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 		if (&rg->link == head)
93 			break;
94 		if (rg->from > t)
95 			break;
96 
97 		/* If this area reaches higher then extend our area to
98 		 * include it completely.  If this is not the first area
99 		 * which we intend to reuse, free it. */
100 		if (rg->to > t)
101 			t = rg->to;
102 		if (rg != nrg) {
103 			list_del(&rg->link);
104 			kfree(rg);
105 		}
106 	}
107 	nrg->from = f;
108 	nrg->to = t;
109 	return 0;
110 }
111 
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114 	struct file_region *rg, *nrg;
115 	long chg = 0;
116 
117 	/* Locate the region we are before or in. */
118 	list_for_each_entry(rg, head, link)
119 		if (f <= rg->to)
120 			break;
121 
122 	/* If we are below the current region then a new region is required.
123 	 * Subtle, allocate a new region at the position but make it zero
124 	 * size such that we can guarantee to record the reservation. */
125 	if (&rg->link == head || t < rg->from) {
126 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 		if (!nrg)
128 			return -ENOMEM;
129 		nrg->from = f;
130 		nrg->to   = f;
131 		INIT_LIST_HEAD(&nrg->link);
132 		list_add(&nrg->link, rg->link.prev);
133 
134 		return t - f;
135 	}
136 
137 	/* Round our left edge to the current segment if it encloses us. */
138 	if (f > rg->from)
139 		f = rg->from;
140 	chg = t - f;
141 
142 	/* Check for and consume any regions we now overlap with. */
143 	list_for_each_entry(rg, rg->link.prev, link) {
144 		if (&rg->link == head)
145 			break;
146 		if (rg->from > t)
147 			return chg;
148 
149 		/* We overlap with this area, if it extends further than
150 		 * us then we must extend ourselves.  Account for its
151 		 * existing reservation. */
152 		if (rg->to > t) {
153 			chg += rg->to - t;
154 			t = rg->to;
155 		}
156 		chg -= rg->to - rg->from;
157 	}
158 	return chg;
159 }
160 
161 static long region_truncate(struct list_head *head, long end)
162 {
163 	struct file_region *rg, *trg;
164 	long chg = 0;
165 
166 	/* Locate the region we are either in or before. */
167 	list_for_each_entry(rg, head, link)
168 		if (end <= rg->to)
169 			break;
170 	if (&rg->link == head)
171 		return 0;
172 
173 	/* If we are in the middle of a region then adjust it. */
174 	if (end > rg->from) {
175 		chg = rg->to - end;
176 		rg->to = end;
177 		rg = list_entry(rg->link.next, typeof(*rg), link);
178 	}
179 
180 	/* Drop any remaining regions. */
181 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 		if (&rg->link == head)
183 			break;
184 		chg += rg->to - rg->from;
185 		list_del(&rg->link);
186 		kfree(rg);
187 	}
188 	return chg;
189 }
190 
191 static long region_count(struct list_head *head, long f, long t)
192 {
193 	struct file_region *rg;
194 	long chg = 0;
195 
196 	/* Locate each segment we overlap with, and count that overlap. */
197 	list_for_each_entry(rg, head, link) {
198 		int seg_from;
199 		int seg_to;
200 
201 		if (rg->to <= f)
202 			continue;
203 		if (rg->from >= t)
204 			break;
205 
206 		seg_from = max(rg->from, f);
207 		seg_to = min(rg->to, t);
208 
209 		chg += seg_to - seg_from;
210 	}
211 
212 	return chg;
213 }
214 
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 			struct vm_area_struct *vma, unsigned long address)
221 {
222 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 			(vma->vm_pgoff >> huge_page_order(h));
224 }
225 
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 				     unsigned long address)
228 {
229 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231 
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238 	struct hstate *hstate;
239 
240 	if (!is_vm_hugetlb_page(vma))
241 		return PAGE_SIZE;
242 
243 	hstate = hstate_vma(vma);
244 
245 	return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248 
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258 	return vma_kernel_pagesize(vma);
259 }
260 #endif
261 
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270 
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292 	return (unsigned long)vma->vm_private_data;
293 }
294 
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 							unsigned long value)
297 {
298 	vma->vm_private_data = (void *)value;
299 }
300 
301 struct resv_map {
302 	struct kref refs;
303 	struct list_head regions;
304 };
305 
306 static struct resv_map *resv_map_alloc(void)
307 {
308 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 	if (!resv_map)
310 		return NULL;
311 
312 	kref_init(&resv_map->refs);
313 	INIT_LIST_HEAD(&resv_map->regions);
314 
315 	return resv_map;
316 }
317 
318 static void resv_map_release(struct kref *ref)
319 {
320 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321 
322 	/* Clear out any active regions before we release the map. */
323 	region_truncate(&resv_map->regions, 0);
324 	kfree(resv_map);
325 }
326 
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 	if (!(vma->vm_flags & VM_MAYSHARE))
331 		return (struct resv_map *)(get_vma_private_data(vma) &
332 							~HPAGE_RESV_MASK);
333 	return NULL;
334 }
335 
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 
341 	set_vma_private_data(vma, (get_vma_private_data(vma) &
342 				HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344 
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 
350 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352 
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 
357 	return (get_vma_private_data(vma) & flag) != 0;
358 }
359 
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 			struct vm_area_struct *vma)
363 {
364 	if (vma->vm_flags & VM_NORESERVE)
365 		return;
366 
367 	if (vma->vm_flags & VM_MAYSHARE) {
368 		/* Shared mappings always use reserves */
369 		h->resv_huge_pages--;
370 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 		/*
372 		 * Only the process that called mmap() has reserves for
373 		 * private mappings.
374 		 */
375 		h->resv_huge_pages--;
376 	}
377 }
378 
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 	if (!(vma->vm_flags & VM_MAYSHARE))
384 		vma->vm_private_data = (void *)0;
385 }
386 
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390 	if (vma->vm_flags & VM_MAYSHARE)
391 		return 1;
392 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 		return 1;
394 	return 0;
395 }
396 
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399 	int i;
400 	struct hstate *h = page_hstate(src);
401 	struct page *dst_base = dst;
402 	struct page *src_base = src;
403 
404 	for (i = 0; i < pages_per_huge_page(h); ) {
405 		cond_resched();
406 		copy_highpage(dst, src);
407 
408 		i++;
409 		dst = mem_map_next(dst, dst_base, i);
410 		src = mem_map_next(src, src_base, i);
411 	}
412 }
413 
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416 	int i;
417 	struct hstate *h = page_hstate(src);
418 
419 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 		copy_gigantic_page(dst, src);
421 		return;
422 	}
423 
424 	might_sleep();
425 	for (i = 0; i < pages_per_huge_page(h); i++) {
426 		cond_resched();
427 		copy_highpage(dst + i, src + i);
428 	}
429 }
430 
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433 	int nid = page_to_nid(page);
434 	list_add(&page->lru, &h->hugepage_freelists[nid]);
435 	h->free_huge_pages++;
436 	h->free_huge_pages_node[nid]++;
437 }
438 
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441 	struct page *page;
442 
443 	if (list_empty(&h->hugepage_freelists[nid]))
444 		return NULL;
445 	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 	list_del(&page->lru);
447 	set_page_refcounted(page);
448 	h->free_huge_pages--;
449 	h->free_huge_pages_node[nid]--;
450 	return page;
451 }
452 
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454 				struct vm_area_struct *vma,
455 				unsigned long address, int avoid_reserve)
456 {
457 	struct page *page = NULL;
458 	struct mempolicy *mpol;
459 	nodemask_t *nodemask;
460 	struct zonelist *zonelist;
461 	struct zone *zone;
462 	struct zoneref *z;
463 
464 	get_mems_allowed();
465 	zonelist = huge_zonelist(vma, address,
466 					htlb_alloc_mask, &mpol, &nodemask);
467 	/*
468 	 * A child process with MAP_PRIVATE mappings created by their parent
469 	 * have no page reserves. This check ensures that reservations are
470 	 * not "stolen". The child may still get SIGKILLed
471 	 */
472 	if (!vma_has_reserves(vma) &&
473 			h->free_huge_pages - h->resv_huge_pages == 0)
474 		goto err;
475 
476 	/* If reserves cannot be used, ensure enough pages are in the pool */
477 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478 		goto err;
479 
480 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 						MAX_NR_ZONES - 1, nodemask) {
482 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 			if (page) {
485 				if (!avoid_reserve)
486 					decrement_hugepage_resv_vma(h, vma);
487 				break;
488 			}
489 		}
490 	}
491 err:
492 	mpol_cond_put(mpol);
493 	put_mems_allowed();
494 	return page;
495 }
496 
497 static void update_and_free_page(struct hstate *h, struct page *page)
498 {
499 	int i;
500 
501 	VM_BUG_ON(h->order >= MAX_ORDER);
502 
503 	h->nr_huge_pages--;
504 	h->nr_huge_pages_node[page_to_nid(page)]--;
505 	for (i = 0; i < pages_per_huge_page(h); i++) {
506 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
507 				1 << PG_referenced | 1 << PG_dirty |
508 				1 << PG_active | 1 << PG_reserved |
509 				1 << PG_private | 1 << PG_writeback);
510 	}
511 	set_compound_page_dtor(page, NULL);
512 	set_page_refcounted(page);
513 	arch_release_hugepage(page);
514 	__free_pages(page, huge_page_order(h));
515 }
516 
517 struct hstate *size_to_hstate(unsigned long size)
518 {
519 	struct hstate *h;
520 
521 	for_each_hstate(h) {
522 		if (huge_page_size(h) == size)
523 			return h;
524 	}
525 	return NULL;
526 }
527 
528 static void free_huge_page(struct page *page)
529 {
530 	/*
531 	 * Can't pass hstate in here because it is called from the
532 	 * compound page destructor.
533 	 */
534 	struct hstate *h = page_hstate(page);
535 	int nid = page_to_nid(page);
536 	struct address_space *mapping;
537 
538 	mapping = (struct address_space *) page_private(page);
539 	set_page_private(page, 0);
540 	page->mapping = NULL;
541 	BUG_ON(page_count(page));
542 	BUG_ON(page_mapcount(page));
543 	INIT_LIST_HEAD(&page->lru);
544 
545 	spin_lock(&hugetlb_lock);
546 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
547 		update_and_free_page(h, page);
548 		h->surplus_huge_pages--;
549 		h->surplus_huge_pages_node[nid]--;
550 	} else {
551 		enqueue_huge_page(h, page);
552 	}
553 	spin_unlock(&hugetlb_lock);
554 	if (mapping)
555 		hugetlb_put_quota(mapping, 1);
556 }
557 
558 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 {
560 	set_compound_page_dtor(page, free_huge_page);
561 	spin_lock(&hugetlb_lock);
562 	h->nr_huge_pages++;
563 	h->nr_huge_pages_node[nid]++;
564 	spin_unlock(&hugetlb_lock);
565 	put_page(page); /* free it into the hugepage allocator */
566 }
567 
568 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569 {
570 	int i;
571 	int nr_pages = 1 << order;
572 	struct page *p = page + 1;
573 
574 	/* we rely on prep_new_huge_page to set the destructor */
575 	set_compound_order(page, order);
576 	__SetPageHead(page);
577 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
578 		__SetPageTail(p);
579 		p->first_page = page;
580 	}
581 }
582 
583 int PageHuge(struct page *page)
584 {
585 	compound_page_dtor *dtor;
586 
587 	if (!PageCompound(page))
588 		return 0;
589 
590 	page = compound_head(page);
591 	dtor = get_compound_page_dtor(page);
592 
593 	return dtor == free_huge_page;
594 }
595 EXPORT_SYMBOL_GPL(PageHuge);
596 
597 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
598 {
599 	struct page *page;
600 
601 	if (h->order >= MAX_ORDER)
602 		return NULL;
603 
604 	page = alloc_pages_exact_node(nid,
605 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
606 						__GFP_REPEAT|__GFP_NOWARN,
607 		huge_page_order(h));
608 	if (page) {
609 		if (arch_prepare_hugepage(page)) {
610 			__free_pages(page, huge_page_order(h));
611 			return NULL;
612 		}
613 		prep_new_huge_page(h, page, nid);
614 	}
615 
616 	return page;
617 }
618 
619 /*
620  * common helper functions for hstate_next_node_to_{alloc|free}.
621  * We may have allocated or freed a huge page based on a different
622  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623  * be outside of *nodes_allowed.  Ensure that we use an allowed
624  * node for alloc or free.
625  */
626 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
627 {
628 	nid = next_node(nid, *nodes_allowed);
629 	if (nid == MAX_NUMNODES)
630 		nid = first_node(*nodes_allowed);
631 	VM_BUG_ON(nid >= MAX_NUMNODES);
632 
633 	return nid;
634 }
635 
636 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
637 {
638 	if (!node_isset(nid, *nodes_allowed))
639 		nid = next_node_allowed(nid, nodes_allowed);
640 	return nid;
641 }
642 
643 /*
644  * returns the previously saved node ["this node"] from which to
645  * allocate a persistent huge page for the pool and advance the
646  * next node from which to allocate, handling wrap at end of node
647  * mask.
648  */
649 static int hstate_next_node_to_alloc(struct hstate *h,
650 					nodemask_t *nodes_allowed)
651 {
652 	int nid;
653 
654 	VM_BUG_ON(!nodes_allowed);
655 
656 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
657 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
658 
659 	return nid;
660 }
661 
662 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
663 {
664 	struct page *page;
665 	int start_nid;
666 	int next_nid;
667 	int ret = 0;
668 
669 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
670 	next_nid = start_nid;
671 
672 	do {
673 		page = alloc_fresh_huge_page_node(h, next_nid);
674 		if (page) {
675 			ret = 1;
676 			break;
677 		}
678 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
679 	} while (next_nid != start_nid);
680 
681 	if (ret)
682 		count_vm_event(HTLB_BUDDY_PGALLOC);
683 	else
684 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
685 
686 	return ret;
687 }
688 
689 /*
690  * helper for free_pool_huge_page() - return the previously saved
691  * node ["this node"] from which to free a huge page.  Advance the
692  * next node id whether or not we find a free huge page to free so
693  * that the next attempt to free addresses the next node.
694  */
695 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
696 {
697 	int nid;
698 
699 	VM_BUG_ON(!nodes_allowed);
700 
701 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
702 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
703 
704 	return nid;
705 }
706 
707 /*
708  * Free huge page from pool from next node to free.
709  * Attempt to keep persistent huge pages more or less
710  * balanced over allowed nodes.
711  * Called with hugetlb_lock locked.
712  */
713 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
714 							 bool acct_surplus)
715 {
716 	int start_nid;
717 	int next_nid;
718 	int ret = 0;
719 
720 	start_nid = hstate_next_node_to_free(h, nodes_allowed);
721 	next_nid = start_nid;
722 
723 	do {
724 		/*
725 		 * If we're returning unused surplus pages, only examine
726 		 * nodes with surplus pages.
727 		 */
728 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
729 		    !list_empty(&h->hugepage_freelists[next_nid])) {
730 			struct page *page =
731 				list_entry(h->hugepage_freelists[next_nid].next,
732 					  struct page, lru);
733 			list_del(&page->lru);
734 			h->free_huge_pages--;
735 			h->free_huge_pages_node[next_nid]--;
736 			if (acct_surplus) {
737 				h->surplus_huge_pages--;
738 				h->surplus_huge_pages_node[next_nid]--;
739 			}
740 			update_and_free_page(h, page);
741 			ret = 1;
742 			break;
743 		}
744 		next_nid = hstate_next_node_to_free(h, nodes_allowed);
745 	} while (next_nid != start_nid);
746 
747 	return ret;
748 }
749 
750 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
751 {
752 	struct page *page;
753 	unsigned int r_nid;
754 
755 	if (h->order >= MAX_ORDER)
756 		return NULL;
757 
758 	/*
759 	 * Assume we will successfully allocate the surplus page to
760 	 * prevent racing processes from causing the surplus to exceed
761 	 * overcommit
762 	 *
763 	 * This however introduces a different race, where a process B
764 	 * tries to grow the static hugepage pool while alloc_pages() is
765 	 * called by process A. B will only examine the per-node
766 	 * counters in determining if surplus huge pages can be
767 	 * converted to normal huge pages in adjust_pool_surplus(). A
768 	 * won't be able to increment the per-node counter, until the
769 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
770 	 * no more huge pages can be converted from surplus to normal
771 	 * state (and doesn't try to convert again). Thus, we have a
772 	 * case where a surplus huge page exists, the pool is grown, and
773 	 * the surplus huge page still exists after, even though it
774 	 * should just have been converted to a normal huge page. This
775 	 * does not leak memory, though, as the hugepage will be freed
776 	 * once it is out of use. It also does not allow the counters to
777 	 * go out of whack in adjust_pool_surplus() as we don't modify
778 	 * the node values until we've gotten the hugepage and only the
779 	 * per-node value is checked there.
780 	 */
781 	spin_lock(&hugetlb_lock);
782 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
783 		spin_unlock(&hugetlb_lock);
784 		return NULL;
785 	} else {
786 		h->nr_huge_pages++;
787 		h->surplus_huge_pages++;
788 	}
789 	spin_unlock(&hugetlb_lock);
790 
791 	if (nid == NUMA_NO_NODE)
792 		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
793 				   __GFP_REPEAT|__GFP_NOWARN,
794 				   huge_page_order(h));
795 	else
796 		page = alloc_pages_exact_node(nid,
797 			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
798 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
799 
800 	if (page && arch_prepare_hugepage(page)) {
801 		__free_pages(page, huge_page_order(h));
802 		return NULL;
803 	}
804 
805 	spin_lock(&hugetlb_lock);
806 	if (page) {
807 		r_nid = page_to_nid(page);
808 		set_compound_page_dtor(page, free_huge_page);
809 		/*
810 		 * We incremented the global counters already
811 		 */
812 		h->nr_huge_pages_node[r_nid]++;
813 		h->surplus_huge_pages_node[r_nid]++;
814 		__count_vm_event(HTLB_BUDDY_PGALLOC);
815 	} else {
816 		h->nr_huge_pages--;
817 		h->surplus_huge_pages--;
818 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
819 	}
820 	spin_unlock(&hugetlb_lock);
821 
822 	return page;
823 }
824 
825 /*
826  * This allocation function is useful in the context where vma is irrelevant.
827  * E.g. soft-offlining uses this function because it only cares physical
828  * address of error page.
829  */
830 struct page *alloc_huge_page_node(struct hstate *h, int nid)
831 {
832 	struct page *page;
833 
834 	spin_lock(&hugetlb_lock);
835 	page = dequeue_huge_page_node(h, nid);
836 	spin_unlock(&hugetlb_lock);
837 
838 	if (!page)
839 		page = alloc_buddy_huge_page(h, nid);
840 
841 	return page;
842 }
843 
844 /*
845  * Increase the hugetlb pool such that it can accommodate a reservation
846  * of size 'delta'.
847  */
848 static int gather_surplus_pages(struct hstate *h, int delta)
849 {
850 	struct list_head surplus_list;
851 	struct page *page, *tmp;
852 	int ret, i;
853 	int needed, allocated;
854 
855 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
856 	if (needed <= 0) {
857 		h->resv_huge_pages += delta;
858 		return 0;
859 	}
860 
861 	allocated = 0;
862 	INIT_LIST_HEAD(&surplus_list);
863 
864 	ret = -ENOMEM;
865 retry:
866 	spin_unlock(&hugetlb_lock);
867 	for (i = 0; i < needed; i++) {
868 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
869 		if (!page)
870 			/*
871 			 * We were not able to allocate enough pages to
872 			 * satisfy the entire reservation so we free what
873 			 * we've allocated so far.
874 			 */
875 			goto free;
876 
877 		list_add(&page->lru, &surplus_list);
878 	}
879 	allocated += needed;
880 
881 	/*
882 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
883 	 * because either resv_huge_pages or free_huge_pages may have changed.
884 	 */
885 	spin_lock(&hugetlb_lock);
886 	needed = (h->resv_huge_pages + delta) -
887 			(h->free_huge_pages + allocated);
888 	if (needed > 0)
889 		goto retry;
890 
891 	/*
892 	 * The surplus_list now contains _at_least_ the number of extra pages
893 	 * needed to accommodate the reservation.  Add the appropriate number
894 	 * of pages to the hugetlb pool and free the extras back to the buddy
895 	 * allocator.  Commit the entire reservation here to prevent another
896 	 * process from stealing the pages as they are added to the pool but
897 	 * before they are reserved.
898 	 */
899 	needed += allocated;
900 	h->resv_huge_pages += delta;
901 	ret = 0;
902 
903 	spin_unlock(&hugetlb_lock);
904 	/* Free the needed pages to the hugetlb pool */
905 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 		if ((--needed) < 0)
907 			break;
908 		list_del(&page->lru);
909 		/*
910 		 * This page is now managed by the hugetlb allocator and has
911 		 * no users -- drop the buddy allocator's reference.
912 		 */
913 		put_page_testzero(page);
914 		VM_BUG_ON(page_count(page));
915 		enqueue_huge_page(h, page);
916 	}
917 
918 	/* Free unnecessary surplus pages to the buddy allocator */
919 free:
920 	if (!list_empty(&surplus_list)) {
921 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922 			list_del(&page->lru);
923 			put_page(page);
924 		}
925 	}
926 	spin_lock(&hugetlb_lock);
927 
928 	return ret;
929 }
930 
931 /*
932  * When releasing a hugetlb pool reservation, any surplus pages that were
933  * allocated to satisfy the reservation must be explicitly freed if they were
934  * never used.
935  * Called with hugetlb_lock held.
936  */
937 static void return_unused_surplus_pages(struct hstate *h,
938 					unsigned long unused_resv_pages)
939 {
940 	unsigned long nr_pages;
941 
942 	/* Uncommit the reservation */
943 	h->resv_huge_pages -= unused_resv_pages;
944 
945 	/* Cannot return gigantic pages currently */
946 	if (h->order >= MAX_ORDER)
947 		return;
948 
949 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
950 
951 	/*
952 	 * We want to release as many surplus pages as possible, spread
953 	 * evenly across all nodes with memory. Iterate across these nodes
954 	 * until we can no longer free unreserved surplus pages. This occurs
955 	 * when the nodes with surplus pages have no free pages.
956 	 * free_pool_huge_page() will balance the the freed pages across the
957 	 * on-line nodes with memory and will handle the hstate accounting.
958 	 */
959 	while (nr_pages--) {
960 		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
961 			break;
962 	}
963 }
964 
965 /*
966  * Determine if the huge page at addr within the vma has an associated
967  * reservation.  Where it does not we will need to logically increase
968  * reservation and actually increase quota before an allocation can occur.
969  * Where any new reservation would be required the reservation change is
970  * prepared, but not committed.  Once the page has been quota'd allocated
971  * an instantiated the change should be committed via vma_commit_reservation.
972  * No action is required on failure.
973  */
974 static long vma_needs_reservation(struct hstate *h,
975 			struct vm_area_struct *vma, unsigned long addr)
976 {
977 	struct address_space *mapping = vma->vm_file->f_mapping;
978 	struct inode *inode = mapping->host;
979 
980 	if (vma->vm_flags & VM_MAYSHARE) {
981 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982 		return region_chg(&inode->i_mapping->private_list,
983 							idx, idx + 1);
984 
985 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
986 		return 1;
987 
988 	} else  {
989 		long err;
990 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 		struct resv_map *reservations = vma_resv_map(vma);
992 
993 		err = region_chg(&reservations->regions, idx, idx + 1);
994 		if (err < 0)
995 			return err;
996 		return 0;
997 	}
998 }
999 static void vma_commit_reservation(struct hstate *h,
1000 			struct vm_area_struct *vma, unsigned long addr)
1001 {
1002 	struct address_space *mapping = vma->vm_file->f_mapping;
1003 	struct inode *inode = mapping->host;
1004 
1005 	if (vma->vm_flags & VM_MAYSHARE) {
1006 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1008 
1009 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011 		struct resv_map *reservations = vma_resv_map(vma);
1012 
1013 		/* Mark this page used in the map. */
1014 		region_add(&reservations->regions, idx, idx + 1);
1015 	}
1016 }
1017 
1018 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019 				    unsigned long addr, int avoid_reserve)
1020 {
1021 	struct hstate *h = hstate_vma(vma);
1022 	struct page *page;
1023 	struct address_space *mapping = vma->vm_file->f_mapping;
1024 	struct inode *inode = mapping->host;
1025 	long chg;
1026 
1027 	/*
1028 	 * Processes that did not create the mapping will have no reserves and
1029 	 * will not have accounted against quota. Check that the quota can be
1030 	 * made before satisfying the allocation
1031 	 * MAP_NORESERVE mappings may also need pages and quota allocated
1032 	 * if no reserve mapping overlaps.
1033 	 */
1034 	chg = vma_needs_reservation(h, vma, addr);
1035 	if (chg < 0)
1036 		return ERR_PTR(-VM_FAULT_OOM);
1037 	if (chg)
1038 		if (hugetlb_get_quota(inode->i_mapping, chg))
1039 			return ERR_PTR(-VM_FAULT_SIGBUS);
1040 
1041 	spin_lock(&hugetlb_lock);
1042 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1043 	spin_unlock(&hugetlb_lock);
1044 
1045 	if (!page) {
1046 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1047 		if (!page) {
1048 			hugetlb_put_quota(inode->i_mapping, chg);
1049 			return ERR_PTR(-VM_FAULT_SIGBUS);
1050 		}
1051 	}
1052 
1053 	set_page_private(page, (unsigned long) mapping);
1054 
1055 	vma_commit_reservation(h, vma, addr);
1056 
1057 	return page;
1058 }
1059 
1060 int __weak alloc_bootmem_huge_page(struct hstate *h)
1061 {
1062 	struct huge_bootmem_page *m;
1063 	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1064 
1065 	while (nr_nodes) {
1066 		void *addr;
1067 
1068 		addr = __alloc_bootmem_node_nopanic(
1069 				NODE_DATA(hstate_next_node_to_alloc(h,
1070 						&node_states[N_HIGH_MEMORY])),
1071 				huge_page_size(h), huge_page_size(h), 0);
1072 
1073 		if (addr) {
1074 			/*
1075 			 * Use the beginning of the huge page to store the
1076 			 * huge_bootmem_page struct (until gather_bootmem
1077 			 * puts them into the mem_map).
1078 			 */
1079 			m = addr;
1080 			goto found;
1081 		}
1082 		nr_nodes--;
1083 	}
1084 	return 0;
1085 
1086 found:
1087 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1088 	/* Put them into a private list first because mem_map is not up yet */
1089 	list_add(&m->list, &huge_boot_pages);
1090 	m->hstate = h;
1091 	return 1;
1092 }
1093 
1094 static void prep_compound_huge_page(struct page *page, int order)
1095 {
1096 	if (unlikely(order > (MAX_ORDER - 1)))
1097 		prep_compound_gigantic_page(page, order);
1098 	else
1099 		prep_compound_page(page, order);
1100 }
1101 
1102 /* Put bootmem huge pages into the standard lists after mem_map is up */
1103 static void __init gather_bootmem_prealloc(void)
1104 {
1105 	struct huge_bootmem_page *m;
1106 
1107 	list_for_each_entry(m, &huge_boot_pages, list) {
1108 		struct hstate *h = m->hstate;
1109 		struct page *page;
1110 
1111 #ifdef CONFIG_HIGHMEM
1112 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1113 		free_bootmem_late((unsigned long)m,
1114 				  sizeof(struct huge_bootmem_page));
1115 #else
1116 		page = virt_to_page(m);
1117 #endif
1118 		__ClearPageReserved(page);
1119 		WARN_ON(page_count(page) != 1);
1120 		prep_compound_huge_page(page, h->order);
1121 		prep_new_huge_page(h, page, page_to_nid(page));
1122 		/*
1123 		 * If we had gigantic hugepages allocated at boot time, we need
1124 		 * to restore the 'stolen' pages to totalram_pages in order to
1125 		 * fix confusing memory reports from free(1) and another
1126 		 * side-effects, like CommitLimit going negative.
1127 		 */
1128 		if (h->order > (MAX_ORDER - 1))
1129 			totalram_pages += 1 << h->order;
1130 	}
1131 }
1132 
1133 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1134 {
1135 	unsigned long i;
1136 
1137 	for (i = 0; i < h->max_huge_pages; ++i) {
1138 		if (h->order >= MAX_ORDER) {
1139 			if (!alloc_bootmem_huge_page(h))
1140 				break;
1141 		} else if (!alloc_fresh_huge_page(h,
1142 					 &node_states[N_HIGH_MEMORY]))
1143 			break;
1144 	}
1145 	h->max_huge_pages = i;
1146 }
1147 
1148 static void __init hugetlb_init_hstates(void)
1149 {
1150 	struct hstate *h;
1151 
1152 	for_each_hstate(h) {
1153 		/* oversize hugepages were init'ed in early boot */
1154 		if (h->order < MAX_ORDER)
1155 			hugetlb_hstate_alloc_pages(h);
1156 	}
1157 }
1158 
1159 static char * __init memfmt(char *buf, unsigned long n)
1160 {
1161 	if (n >= (1UL << 30))
1162 		sprintf(buf, "%lu GB", n >> 30);
1163 	else if (n >= (1UL << 20))
1164 		sprintf(buf, "%lu MB", n >> 20);
1165 	else
1166 		sprintf(buf, "%lu KB", n >> 10);
1167 	return buf;
1168 }
1169 
1170 static void __init report_hugepages(void)
1171 {
1172 	struct hstate *h;
1173 
1174 	for_each_hstate(h) {
1175 		char buf[32];
1176 		printk(KERN_INFO "HugeTLB registered %s page size, "
1177 				 "pre-allocated %ld pages\n",
1178 			memfmt(buf, huge_page_size(h)),
1179 			h->free_huge_pages);
1180 	}
1181 }
1182 
1183 #ifdef CONFIG_HIGHMEM
1184 static void try_to_free_low(struct hstate *h, unsigned long count,
1185 						nodemask_t *nodes_allowed)
1186 {
1187 	int i;
1188 
1189 	if (h->order >= MAX_ORDER)
1190 		return;
1191 
1192 	for_each_node_mask(i, *nodes_allowed) {
1193 		struct page *page, *next;
1194 		struct list_head *freel = &h->hugepage_freelists[i];
1195 		list_for_each_entry_safe(page, next, freel, lru) {
1196 			if (count >= h->nr_huge_pages)
1197 				return;
1198 			if (PageHighMem(page))
1199 				continue;
1200 			list_del(&page->lru);
1201 			update_and_free_page(h, page);
1202 			h->free_huge_pages--;
1203 			h->free_huge_pages_node[page_to_nid(page)]--;
1204 		}
1205 	}
1206 }
1207 #else
1208 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1209 						nodemask_t *nodes_allowed)
1210 {
1211 }
1212 #endif
1213 
1214 /*
1215  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1216  * balanced by operating on them in a round-robin fashion.
1217  * Returns 1 if an adjustment was made.
1218  */
1219 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1220 				int delta)
1221 {
1222 	int start_nid, next_nid;
1223 	int ret = 0;
1224 
1225 	VM_BUG_ON(delta != -1 && delta != 1);
1226 
1227 	if (delta < 0)
1228 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1229 	else
1230 		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1231 	next_nid = start_nid;
1232 
1233 	do {
1234 		int nid = next_nid;
1235 		if (delta < 0)  {
1236 			/*
1237 			 * To shrink on this node, there must be a surplus page
1238 			 */
1239 			if (!h->surplus_huge_pages_node[nid]) {
1240 				next_nid = hstate_next_node_to_alloc(h,
1241 								nodes_allowed);
1242 				continue;
1243 			}
1244 		}
1245 		if (delta > 0) {
1246 			/*
1247 			 * Surplus cannot exceed the total number of pages
1248 			 */
1249 			if (h->surplus_huge_pages_node[nid] >=
1250 						h->nr_huge_pages_node[nid]) {
1251 				next_nid = hstate_next_node_to_free(h,
1252 								nodes_allowed);
1253 				continue;
1254 			}
1255 		}
1256 
1257 		h->surplus_huge_pages += delta;
1258 		h->surplus_huge_pages_node[nid] += delta;
1259 		ret = 1;
1260 		break;
1261 	} while (next_nid != start_nid);
1262 
1263 	return ret;
1264 }
1265 
1266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1267 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1268 						nodemask_t *nodes_allowed)
1269 {
1270 	unsigned long min_count, ret;
1271 
1272 	if (h->order >= MAX_ORDER)
1273 		return h->max_huge_pages;
1274 
1275 	/*
1276 	 * Increase the pool size
1277 	 * First take pages out of surplus state.  Then make up the
1278 	 * remaining difference by allocating fresh huge pages.
1279 	 *
1280 	 * We might race with alloc_buddy_huge_page() here and be unable
1281 	 * to convert a surplus huge page to a normal huge page. That is
1282 	 * not critical, though, it just means the overall size of the
1283 	 * pool might be one hugepage larger than it needs to be, but
1284 	 * within all the constraints specified by the sysctls.
1285 	 */
1286 	spin_lock(&hugetlb_lock);
1287 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1288 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1289 			break;
1290 	}
1291 
1292 	while (count > persistent_huge_pages(h)) {
1293 		/*
1294 		 * If this allocation races such that we no longer need the
1295 		 * page, free_huge_page will handle it by freeing the page
1296 		 * and reducing the surplus.
1297 		 */
1298 		spin_unlock(&hugetlb_lock);
1299 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1300 		spin_lock(&hugetlb_lock);
1301 		if (!ret)
1302 			goto out;
1303 
1304 		/* Bail for signals. Probably ctrl-c from user */
1305 		if (signal_pending(current))
1306 			goto out;
1307 	}
1308 
1309 	/*
1310 	 * Decrease the pool size
1311 	 * First return free pages to the buddy allocator (being careful
1312 	 * to keep enough around to satisfy reservations).  Then place
1313 	 * pages into surplus state as needed so the pool will shrink
1314 	 * to the desired size as pages become free.
1315 	 *
1316 	 * By placing pages into the surplus state independent of the
1317 	 * overcommit value, we are allowing the surplus pool size to
1318 	 * exceed overcommit. There are few sane options here. Since
1319 	 * alloc_buddy_huge_page() is checking the global counter,
1320 	 * though, we'll note that we're not allowed to exceed surplus
1321 	 * and won't grow the pool anywhere else. Not until one of the
1322 	 * sysctls are changed, or the surplus pages go out of use.
1323 	 */
1324 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1325 	min_count = max(count, min_count);
1326 	try_to_free_low(h, min_count, nodes_allowed);
1327 	while (min_count < persistent_huge_pages(h)) {
1328 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1329 			break;
1330 	}
1331 	while (count < persistent_huge_pages(h)) {
1332 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1333 			break;
1334 	}
1335 out:
1336 	ret = persistent_huge_pages(h);
1337 	spin_unlock(&hugetlb_lock);
1338 	return ret;
1339 }
1340 
1341 #define HSTATE_ATTR_RO(_name) \
1342 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1343 
1344 #define HSTATE_ATTR(_name) \
1345 	static struct kobj_attribute _name##_attr = \
1346 		__ATTR(_name, 0644, _name##_show, _name##_store)
1347 
1348 static struct kobject *hugepages_kobj;
1349 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1350 
1351 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1352 
1353 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1354 {
1355 	int i;
1356 
1357 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1358 		if (hstate_kobjs[i] == kobj) {
1359 			if (nidp)
1360 				*nidp = NUMA_NO_NODE;
1361 			return &hstates[i];
1362 		}
1363 
1364 	return kobj_to_node_hstate(kobj, nidp);
1365 }
1366 
1367 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1368 					struct kobj_attribute *attr, char *buf)
1369 {
1370 	struct hstate *h;
1371 	unsigned long nr_huge_pages;
1372 	int nid;
1373 
1374 	h = kobj_to_hstate(kobj, &nid);
1375 	if (nid == NUMA_NO_NODE)
1376 		nr_huge_pages = h->nr_huge_pages;
1377 	else
1378 		nr_huge_pages = h->nr_huge_pages_node[nid];
1379 
1380 	return sprintf(buf, "%lu\n", nr_huge_pages);
1381 }
1382 
1383 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1384 			struct kobject *kobj, struct kobj_attribute *attr,
1385 			const char *buf, size_t len)
1386 {
1387 	int err;
1388 	int nid;
1389 	unsigned long count;
1390 	struct hstate *h;
1391 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1392 
1393 	err = strict_strtoul(buf, 10, &count);
1394 	if (err)
1395 		goto out;
1396 
1397 	h = kobj_to_hstate(kobj, &nid);
1398 	if (h->order >= MAX_ORDER) {
1399 		err = -EINVAL;
1400 		goto out;
1401 	}
1402 
1403 	if (nid == NUMA_NO_NODE) {
1404 		/*
1405 		 * global hstate attribute
1406 		 */
1407 		if (!(obey_mempolicy &&
1408 				init_nodemask_of_mempolicy(nodes_allowed))) {
1409 			NODEMASK_FREE(nodes_allowed);
1410 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1411 		}
1412 	} else if (nodes_allowed) {
1413 		/*
1414 		 * per node hstate attribute: adjust count to global,
1415 		 * but restrict alloc/free to the specified node.
1416 		 */
1417 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1418 		init_nodemask_of_node(nodes_allowed, nid);
1419 	} else
1420 		nodes_allowed = &node_states[N_HIGH_MEMORY];
1421 
1422 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1423 
1424 	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1425 		NODEMASK_FREE(nodes_allowed);
1426 
1427 	return len;
1428 out:
1429 	NODEMASK_FREE(nodes_allowed);
1430 	return err;
1431 }
1432 
1433 static ssize_t nr_hugepages_show(struct kobject *kobj,
1434 				       struct kobj_attribute *attr, char *buf)
1435 {
1436 	return nr_hugepages_show_common(kobj, attr, buf);
1437 }
1438 
1439 static ssize_t nr_hugepages_store(struct kobject *kobj,
1440 	       struct kobj_attribute *attr, const char *buf, size_t len)
1441 {
1442 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1443 }
1444 HSTATE_ATTR(nr_hugepages);
1445 
1446 #ifdef CONFIG_NUMA
1447 
1448 /*
1449  * hstate attribute for optionally mempolicy-based constraint on persistent
1450  * huge page alloc/free.
1451  */
1452 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1453 				       struct kobj_attribute *attr, char *buf)
1454 {
1455 	return nr_hugepages_show_common(kobj, attr, buf);
1456 }
1457 
1458 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1459 	       struct kobj_attribute *attr, const char *buf, size_t len)
1460 {
1461 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1462 }
1463 HSTATE_ATTR(nr_hugepages_mempolicy);
1464 #endif
1465 
1466 
1467 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1468 					struct kobj_attribute *attr, char *buf)
1469 {
1470 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1471 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1472 }
1473 
1474 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1475 		struct kobj_attribute *attr, const char *buf, size_t count)
1476 {
1477 	int err;
1478 	unsigned long input;
1479 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1480 
1481 	if (h->order >= MAX_ORDER)
1482 		return -EINVAL;
1483 
1484 	err = strict_strtoul(buf, 10, &input);
1485 	if (err)
1486 		return err;
1487 
1488 	spin_lock(&hugetlb_lock);
1489 	h->nr_overcommit_huge_pages = input;
1490 	spin_unlock(&hugetlb_lock);
1491 
1492 	return count;
1493 }
1494 HSTATE_ATTR(nr_overcommit_hugepages);
1495 
1496 static ssize_t free_hugepages_show(struct kobject *kobj,
1497 					struct kobj_attribute *attr, char *buf)
1498 {
1499 	struct hstate *h;
1500 	unsigned long free_huge_pages;
1501 	int nid;
1502 
1503 	h = kobj_to_hstate(kobj, &nid);
1504 	if (nid == NUMA_NO_NODE)
1505 		free_huge_pages = h->free_huge_pages;
1506 	else
1507 		free_huge_pages = h->free_huge_pages_node[nid];
1508 
1509 	return sprintf(buf, "%lu\n", free_huge_pages);
1510 }
1511 HSTATE_ATTR_RO(free_hugepages);
1512 
1513 static ssize_t resv_hugepages_show(struct kobject *kobj,
1514 					struct kobj_attribute *attr, char *buf)
1515 {
1516 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1517 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1518 }
1519 HSTATE_ATTR_RO(resv_hugepages);
1520 
1521 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1522 					struct kobj_attribute *attr, char *buf)
1523 {
1524 	struct hstate *h;
1525 	unsigned long surplus_huge_pages;
1526 	int nid;
1527 
1528 	h = kobj_to_hstate(kobj, &nid);
1529 	if (nid == NUMA_NO_NODE)
1530 		surplus_huge_pages = h->surplus_huge_pages;
1531 	else
1532 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1533 
1534 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1535 }
1536 HSTATE_ATTR_RO(surplus_hugepages);
1537 
1538 static struct attribute *hstate_attrs[] = {
1539 	&nr_hugepages_attr.attr,
1540 	&nr_overcommit_hugepages_attr.attr,
1541 	&free_hugepages_attr.attr,
1542 	&resv_hugepages_attr.attr,
1543 	&surplus_hugepages_attr.attr,
1544 #ifdef CONFIG_NUMA
1545 	&nr_hugepages_mempolicy_attr.attr,
1546 #endif
1547 	NULL,
1548 };
1549 
1550 static struct attribute_group hstate_attr_group = {
1551 	.attrs = hstate_attrs,
1552 };
1553 
1554 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1555 				    struct kobject **hstate_kobjs,
1556 				    struct attribute_group *hstate_attr_group)
1557 {
1558 	int retval;
1559 	int hi = h - hstates;
1560 
1561 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1562 	if (!hstate_kobjs[hi])
1563 		return -ENOMEM;
1564 
1565 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1566 	if (retval)
1567 		kobject_put(hstate_kobjs[hi]);
1568 
1569 	return retval;
1570 }
1571 
1572 static void __init hugetlb_sysfs_init(void)
1573 {
1574 	struct hstate *h;
1575 	int err;
1576 
1577 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1578 	if (!hugepages_kobj)
1579 		return;
1580 
1581 	for_each_hstate(h) {
1582 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1583 					 hstate_kobjs, &hstate_attr_group);
1584 		if (err)
1585 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1586 								h->name);
1587 	}
1588 }
1589 
1590 #ifdef CONFIG_NUMA
1591 
1592 /*
1593  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1594  * with node sysdevs in node_devices[] using a parallel array.  The array
1595  * index of a node sysdev or _hstate == node id.
1596  * This is here to avoid any static dependency of the node sysdev driver, in
1597  * the base kernel, on the hugetlb module.
1598  */
1599 struct node_hstate {
1600 	struct kobject		*hugepages_kobj;
1601 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1602 };
1603 struct node_hstate node_hstates[MAX_NUMNODES];
1604 
1605 /*
1606  * A subset of global hstate attributes for node sysdevs
1607  */
1608 static struct attribute *per_node_hstate_attrs[] = {
1609 	&nr_hugepages_attr.attr,
1610 	&free_hugepages_attr.attr,
1611 	&surplus_hugepages_attr.attr,
1612 	NULL,
1613 };
1614 
1615 static struct attribute_group per_node_hstate_attr_group = {
1616 	.attrs = per_node_hstate_attrs,
1617 };
1618 
1619 /*
1620  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1621  * Returns node id via non-NULL nidp.
1622  */
1623 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1624 {
1625 	int nid;
1626 
1627 	for (nid = 0; nid < nr_node_ids; nid++) {
1628 		struct node_hstate *nhs = &node_hstates[nid];
1629 		int i;
1630 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1631 			if (nhs->hstate_kobjs[i] == kobj) {
1632 				if (nidp)
1633 					*nidp = nid;
1634 				return &hstates[i];
1635 			}
1636 	}
1637 
1638 	BUG();
1639 	return NULL;
1640 }
1641 
1642 /*
1643  * Unregister hstate attributes from a single node sysdev.
1644  * No-op if no hstate attributes attached.
1645  */
1646 void hugetlb_unregister_node(struct node *node)
1647 {
1648 	struct hstate *h;
1649 	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1650 
1651 	if (!nhs->hugepages_kobj)
1652 		return;		/* no hstate attributes */
1653 
1654 	for_each_hstate(h)
1655 		if (nhs->hstate_kobjs[h - hstates]) {
1656 			kobject_put(nhs->hstate_kobjs[h - hstates]);
1657 			nhs->hstate_kobjs[h - hstates] = NULL;
1658 		}
1659 
1660 	kobject_put(nhs->hugepages_kobj);
1661 	nhs->hugepages_kobj = NULL;
1662 }
1663 
1664 /*
1665  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1666  * that have them.
1667  */
1668 static void hugetlb_unregister_all_nodes(void)
1669 {
1670 	int nid;
1671 
1672 	/*
1673 	 * disable node sysdev registrations.
1674 	 */
1675 	register_hugetlbfs_with_node(NULL, NULL);
1676 
1677 	/*
1678 	 * remove hstate attributes from any nodes that have them.
1679 	 */
1680 	for (nid = 0; nid < nr_node_ids; nid++)
1681 		hugetlb_unregister_node(&node_devices[nid]);
1682 }
1683 
1684 /*
1685  * Register hstate attributes for a single node sysdev.
1686  * No-op if attributes already registered.
1687  */
1688 void hugetlb_register_node(struct node *node)
1689 {
1690 	struct hstate *h;
1691 	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1692 	int err;
1693 
1694 	if (nhs->hugepages_kobj)
1695 		return;		/* already allocated */
1696 
1697 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1698 							&node->sysdev.kobj);
1699 	if (!nhs->hugepages_kobj)
1700 		return;
1701 
1702 	for_each_hstate(h) {
1703 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1704 						nhs->hstate_kobjs,
1705 						&per_node_hstate_attr_group);
1706 		if (err) {
1707 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1708 					" for node %d\n",
1709 						h->name, node->sysdev.id);
1710 			hugetlb_unregister_node(node);
1711 			break;
1712 		}
1713 	}
1714 }
1715 
1716 /*
1717  * hugetlb init time:  register hstate attributes for all registered node
1718  * sysdevs of nodes that have memory.  All on-line nodes should have
1719  * registered their associated sysdev by this time.
1720  */
1721 static void hugetlb_register_all_nodes(void)
1722 {
1723 	int nid;
1724 
1725 	for_each_node_state(nid, N_HIGH_MEMORY) {
1726 		struct node *node = &node_devices[nid];
1727 		if (node->sysdev.id == nid)
1728 			hugetlb_register_node(node);
1729 	}
1730 
1731 	/*
1732 	 * Let the node sysdev driver know we're here so it can
1733 	 * [un]register hstate attributes on node hotplug.
1734 	 */
1735 	register_hugetlbfs_with_node(hugetlb_register_node,
1736 				     hugetlb_unregister_node);
1737 }
1738 #else	/* !CONFIG_NUMA */
1739 
1740 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1741 {
1742 	BUG();
1743 	if (nidp)
1744 		*nidp = -1;
1745 	return NULL;
1746 }
1747 
1748 static void hugetlb_unregister_all_nodes(void) { }
1749 
1750 static void hugetlb_register_all_nodes(void) { }
1751 
1752 #endif
1753 
1754 static void __exit hugetlb_exit(void)
1755 {
1756 	struct hstate *h;
1757 
1758 	hugetlb_unregister_all_nodes();
1759 
1760 	for_each_hstate(h) {
1761 		kobject_put(hstate_kobjs[h - hstates]);
1762 	}
1763 
1764 	kobject_put(hugepages_kobj);
1765 }
1766 module_exit(hugetlb_exit);
1767 
1768 static int __init hugetlb_init(void)
1769 {
1770 	/* Some platform decide whether they support huge pages at boot
1771 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1772 	 * there is no such support
1773 	 */
1774 	if (HPAGE_SHIFT == 0)
1775 		return 0;
1776 
1777 	if (!size_to_hstate(default_hstate_size)) {
1778 		default_hstate_size = HPAGE_SIZE;
1779 		if (!size_to_hstate(default_hstate_size))
1780 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1781 	}
1782 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1783 	if (default_hstate_max_huge_pages)
1784 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1785 
1786 	hugetlb_init_hstates();
1787 
1788 	gather_bootmem_prealloc();
1789 
1790 	report_hugepages();
1791 
1792 	hugetlb_sysfs_init();
1793 
1794 	hugetlb_register_all_nodes();
1795 
1796 	return 0;
1797 }
1798 module_init(hugetlb_init);
1799 
1800 /* Should be called on processing a hugepagesz=... option */
1801 void __init hugetlb_add_hstate(unsigned order)
1802 {
1803 	struct hstate *h;
1804 	unsigned long i;
1805 
1806 	if (size_to_hstate(PAGE_SIZE << order)) {
1807 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1808 		return;
1809 	}
1810 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1811 	BUG_ON(order == 0);
1812 	h = &hstates[max_hstate++];
1813 	h->order = order;
1814 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1815 	h->nr_huge_pages = 0;
1816 	h->free_huge_pages = 0;
1817 	for (i = 0; i < MAX_NUMNODES; ++i)
1818 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1819 	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1820 	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1821 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1822 					huge_page_size(h)/1024);
1823 
1824 	parsed_hstate = h;
1825 }
1826 
1827 static int __init hugetlb_nrpages_setup(char *s)
1828 {
1829 	unsigned long *mhp;
1830 	static unsigned long *last_mhp;
1831 
1832 	/*
1833 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1834 	 * so this hugepages= parameter goes to the "default hstate".
1835 	 */
1836 	if (!max_hstate)
1837 		mhp = &default_hstate_max_huge_pages;
1838 	else
1839 		mhp = &parsed_hstate->max_huge_pages;
1840 
1841 	if (mhp == last_mhp) {
1842 		printk(KERN_WARNING "hugepages= specified twice without "
1843 			"interleaving hugepagesz=, ignoring\n");
1844 		return 1;
1845 	}
1846 
1847 	if (sscanf(s, "%lu", mhp) <= 0)
1848 		*mhp = 0;
1849 
1850 	/*
1851 	 * Global state is always initialized later in hugetlb_init.
1852 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1853 	 * use the bootmem allocator.
1854 	 */
1855 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1856 		hugetlb_hstate_alloc_pages(parsed_hstate);
1857 
1858 	last_mhp = mhp;
1859 
1860 	return 1;
1861 }
1862 __setup("hugepages=", hugetlb_nrpages_setup);
1863 
1864 static int __init hugetlb_default_setup(char *s)
1865 {
1866 	default_hstate_size = memparse(s, &s);
1867 	return 1;
1868 }
1869 __setup("default_hugepagesz=", hugetlb_default_setup);
1870 
1871 static unsigned int cpuset_mems_nr(unsigned int *array)
1872 {
1873 	int node;
1874 	unsigned int nr = 0;
1875 
1876 	for_each_node_mask(node, cpuset_current_mems_allowed)
1877 		nr += array[node];
1878 
1879 	return nr;
1880 }
1881 
1882 #ifdef CONFIG_SYSCTL
1883 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1884 			 struct ctl_table *table, int write,
1885 			 void __user *buffer, size_t *length, loff_t *ppos)
1886 {
1887 	struct hstate *h = &default_hstate;
1888 	unsigned long tmp;
1889 	int ret;
1890 
1891 	tmp = h->max_huge_pages;
1892 
1893 	if (write && h->order >= MAX_ORDER)
1894 		return -EINVAL;
1895 
1896 	table->data = &tmp;
1897 	table->maxlen = sizeof(unsigned long);
1898 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1899 	if (ret)
1900 		goto out;
1901 
1902 	if (write) {
1903 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1904 						GFP_KERNEL | __GFP_NORETRY);
1905 		if (!(obey_mempolicy &&
1906 			       init_nodemask_of_mempolicy(nodes_allowed))) {
1907 			NODEMASK_FREE(nodes_allowed);
1908 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1909 		}
1910 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1911 
1912 		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1913 			NODEMASK_FREE(nodes_allowed);
1914 	}
1915 out:
1916 	return ret;
1917 }
1918 
1919 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1920 			  void __user *buffer, size_t *length, loff_t *ppos)
1921 {
1922 
1923 	return hugetlb_sysctl_handler_common(false, table, write,
1924 							buffer, length, ppos);
1925 }
1926 
1927 #ifdef CONFIG_NUMA
1928 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1929 			  void __user *buffer, size_t *length, loff_t *ppos)
1930 {
1931 	return hugetlb_sysctl_handler_common(true, table, write,
1932 							buffer, length, ppos);
1933 }
1934 #endif /* CONFIG_NUMA */
1935 
1936 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1937 			void __user *buffer,
1938 			size_t *length, loff_t *ppos)
1939 {
1940 	proc_dointvec(table, write, buffer, length, ppos);
1941 	if (hugepages_treat_as_movable)
1942 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1943 	else
1944 		htlb_alloc_mask = GFP_HIGHUSER;
1945 	return 0;
1946 }
1947 
1948 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1949 			void __user *buffer,
1950 			size_t *length, loff_t *ppos)
1951 {
1952 	struct hstate *h = &default_hstate;
1953 	unsigned long tmp;
1954 	int ret;
1955 
1956 	tmp = h->nr_overcommit_huge_pages;
1957 
1958 	if (write && h->order >= MAX_ORDER)
1959 		return -EINVAL;
1960 
1961 	table->data = &tmp;
1962 	table->maxlen = sizeof(unsigned long);
1963 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1964 	if (ret)
1965 		goto out;
1966 
1967 	if (write) {
1968 		spin_lock(&hugetlb_lock);
1969 		h->nr_overcommit_huge_pages = tmp;
1970 		spin_unlock(&hugetlb_lock);
1971 	}
1972 out:
1973 	return ret;
1974 }
1975 
1976 #endif /* CONFIG_SYSCTL */
1977 
1978 void hugetlb_report_meminfo(struct seq_file *m)
1979 {
1980 	struct hstate *h = &default_hstate;
1981 	seq_printf(m,
1982 			"HugePages_Total:   %5lu\n"
1983 			"HugePages_Free:    %5lu\n"
1984 			"HugePages_Rsvd:    %5lu\n"
1985 			"HugePages_Surp:    %5lu\n"
1986 			"Hugepagesize:   %8lu kB\n",
1987 			h->nr_huge_pages,
1988 			h->free_huge_pages,
1989 			h->resv_huge_pages,
1990 			h->surplus_huge_pages,
1991 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1992 }
1993 
1994 int hugetlb_report_node_meminfo(int nid, char *buf)
1995 {
1996 	struct hstate *h = &default_hstate;
1997 	return sprintf(buf,
1998 		"Node %d HugePages_Total: %5u\n"
1999 		"Node %d HugePages_Free:  %5u\n"
2000 		"Node %d HugePages_Surp:  %5u\n",
2001 		nid, h->nr_huge_pages_node[nid],
2002 		nid, h->free_huge_pages_node[nid],
2003 		nid, h->surplus_huge_pages_node[nid]);
2004 }
2005 
2006 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2007 unsigned long hugetlb_total_pages(void)
2008 {
2009 	struct hstate *h = &default_hstate;
2010 	return h->nr_huge_pages * pages_per_huge_page(h);
2011 }
2012 
2013 static int hugetlb_acct_memory(struct hstate *h, long delta)
2014 {
2015 	int ret = -ENOMEM;
2016 
2017 	spin_lock(&hugetlb_lock);
2018 	/*
2019 	 * When cpuset is configured, it breaks the strict hugetlb page
2020 	 * reservation as the accounting is done on a global variable. Such
2021 	 * reservation is completely rubbish in the presence of cpuset because
2022 	 * the reservation is not checked against page availability for the
2023 	 * current cpuset. Application can still potentially OOM'ed by kernel
2024 	 * with lack of free htlb page in cpuset that the task is in.
2025 	 * Attempt to enforce strict accounting with cpuset is almost
2026 	 * impossible (or too ugly) because cpuset is too fluid that
2027 	 * task or memory node can be dynamically moved between cpusets.
2028 	 *
2029 	 * The change of semantics for shared hugetlb mapping with cpuset is
2030 	 * undesirable. However, in order to preserve some of the semantics,
2031 	 * we fall back to check against current free page availability as
2032 	 * a best attempt and hopefully to minimize the impact of changing
2033 	 * semantics that cpuset has.
2034 	 */
2035 	if (delta > 0) {
2036 		if (gather_surplus_pages(h, delta) < 0)
2037 			goto out;
2038 
2039 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2040 			return_unused_surplus_pages(h, delta);
2041 			goto out;
2042 		}
2043 	}
2044 
2045 	ret = 0;
2046 	if (delta < 0)
2047 		return_unused_surplus_pages(h, (unsigned long) -delta);
2048 
2049 out:
2050 	spin_unlock(&hugetlb_lock);
2051 	return ret;
2052 }
2053 
2054 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2055 {
2056 	struct resv_map *reservations = vma_resv_map(vma);
2057 
2058 	/*
2059 	 * This new VMA should share its siblings reservation map if present.
2060 	 * The VMA will only ever have a valid reservation map pointer where
2061 	 * it is being copied for another still existing VMA.  As that VMA
2062 	 * has a reference to the reservation map it cannot disappear until
2063 	 * after this open call completes.  It is therefore safe to take a
2064 	 * new reference here without additional locking.
2065 	 */
2066 	if (reservations)
2067 		kref_get(&reservations->refs);
2068 }
2069 
2070 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2071 {
2072 	struct hstate *h = hstate_vma(vma);
2073 	struct resv_map *reservations = vma_resv_map(vma);
2074 	unsigned long reserve;
2075 	unsigned long start;
2076 	unsigned long end;
2077 
2078 	if (reservations) {
2079 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2080 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2081 
2082 		reserve = (end - start) -
2083 			region_count(&reservations->regions, start, end);
2084 
2085 		kref_put(&reservations->refs, resv_map_release);
2086 
2087 		if (reserve) {
2088 			hugetlb_acct_memory(h, -reserve);
2089 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2090 		}
2091 	}
2092 }
2093 
2094 /*
2095  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2096  * handle_mm_fault() to try to instantiate regular-sized pages in the
2097  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2098  * this far.
2099  */
2100 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2101 {
2102 	BUG();
2103 	return 0;
2104 }
2105 
2106 const struct vm_operations_struct hugetlb_vm_ops = {
2107 	.fault = hugetlb_vm_op_fault,
2108 	.open = hugetlb_vm_op_open,
2109 	.close = hugetlb_vm_op_close,
2110 };
2111 
2112 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2113 				int writable)
2114 {
2115 	pte_t entry;
2116 
2117 	if (writable) {
2118 		entry =
2119 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2120 	} else {
2121 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2122 	}
2123 	entry = pte_mkyoung(entry);
2124 	entry = pte_mkhuge(entry);
2125 
2126 	return entry;
2127 }
2128 
2129 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2130 				   unsigned long address, pte_t *ptep)
2131 {
2132 	pte_t entry;
2133 
2134 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2135 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2136 		update_mmu_cache(vma, address, ptep);
2137 }
2138 
2139 
2140 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2141 			    struct vm_area_struct *vma)
2142 {
2143 	pte_t *src_pte, *dst_pte, entry;
2144 	struct page *ptepage;
2145 	unsigned long addr;
2146 	int cow;
2147 	struct hstate *h = hstate_vma(vma);
2148 	unsigned long sz = huge_page_size(h);
2149 
2150 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2151 
2152 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2153 		src_pte = huge_pte_offset(src, addr);
2154 		if (!src_pte)
2155 			continue;
2156 		dst_pte = huge_pte_alloc(dst, addr, sz);
2157 		if (!dst_pte)
2158 			goto nomem;
2159 
2160 		/* If the pagetables are shared don't copy or take references */
2161 		if (dst_pte == src_pte)
2162 			continue;
2163 
2164 		spin_lock(&dst->page_table_lock);
2165 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2166 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2167 			if (cow)
2168 				huge_ptep_set_wrprotect(src, addr, src_pte);
2169 			entry = huge_ptep_get(src_pte);
2170 			ptepage = pte_page(entry);
2171 			get_page(ptepage);
2172 			page_dup_rmap(ptepage);
2173 			set_huge_pte_at(dst, addr, dst_pte, entry);
2174 		}
2175 		spin_unlock(&src->page_table_lock);
2176 		spin_unlock(&dst->page_table_lock);
2177 	}
2178 	return 0;
2179 
2180 nomem:
2181 	return -ENOMEM;
2182 }
2183 
2184 static int is_hugetlb_entry_migration(pte_t pte)
2185 {
2186 	swp_entry_t swp;
2187 
2188 	if (huge_pte_none(pte) || pte_present(pte))
2189 		return 0;
2190 	swp = pte_to_swp_entry(pte);
2191 	if (non_swap_entry(swp) && is_migration_entry(swp))
2192 		return 1;
2193 	else
2194 		return 0;
2195 }
2196 
2197 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2198 {
2199 	swp_entry_t swp;
2200 
2201 	if (huge_pte_none(pte) || pte_present(pte))
2202 		return 0;
2203 	swp = pte_to_swp_entry(pte);
2204 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2205 		return 1;
2206 	else
2207 		return 0;
2208 }
2209 
2210 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2211 			    unsigned long end, struct page *ref_page)
2212 {
2213 	struct mm_struct *mm = vma->vm_mm;
2214 	unsigned long address;
2215 	pte_t *ptep;
2216 	pte_t pte;
2217 	struct page *page;
2218 	struct page *tmp;
2219 	struct hstate *h = hstate_vma(vma);
2220 	unsigned long sz = huge_page_size(h);
2221 
2222 	/*
2223 	 * A page gathering list, protected by per file i_mmap_mutex. The
2224 	 * lock is used to avoid list corruption from multiple unmapping
2225 	 * of the same page since we are using page->lru.
2226 	 */
2227 	LIST_HEAD(page_list);
2228 
2229 	WARN_ON(!is_vm_hugetlb_page(vma));
2230 	BUG_ON(start & ~huge_page_mask(h));
2231 	BUG_ON(end & ~huge_page_mask(h));
2232 
2233 	mmu_notifier_invalidate_range_start(mm, start, end);
2234 	spin_lock(&mm->page_table_lock);
2235 	for (address = start; address < end; address += sz) {
2236 		ptep = huge_pte_offset(mm, address);
2237 		if (!ptep)
2238 			continue;
2239 
2240 		if (huge_pmd_unshare(mm, &address, ptep))
2241 			continue;
2242 
2243 		/*
2244 		 * If a reference page is supplied, it is because a specific
2245 		 * page is being unmapped, not a range. Ensure the page we
2246 		 * are about to unmap is the actual page of interest.
2247 		 */
2248 		if (ref_page) {
2249 			pte = huge_ptep_get(ptep);
2250 			if (huge_pte_none(pte))
2251 				continue;
2252 			page = pte_page(pte);
2253 			if (page != ref_page)
2254 				continue;
2255 
2256 			/*
2257 			 * Mark the VMA as having unmapped its page so that
2258 			 * future faults in this VMA will fail rather than
2259 			 * looking like data was lost
2260 			 */
2261 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2262 		}
2263 
2264 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2265 		if (huge_pte_none(pte))
2266 			continue;
2267 
2268 		/*
2269 		 * HWPoisoned hugepage is already unmapped and dropped reference
2270 		 */
2271 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2272 			continue;
2273 
2274 		page = pte_page(pte);
2275 		if (pte_dirty(pte))
2276 			set_page_dirty(page);
2277 		list_add(&page->lru, &page_list);
2278 	}
2279 	spin_unlock(&mm->page_table_lock);
2280 	flush_tlb_range(vma, start, end);
2281 	mmu_notifier_invalidate_range_end(mm, start, end);
2282 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2283 		page_remove_rmap(page);
2284 		list_del(&page->lru);
2285 		put_page(page);
2286 	}
2287 }
2288 
2289 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2290 			  unsigned long end, struct page *ref_page)
2291 {
2292 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2293 	__unmap_hugepage_range(vma, start, end, ref_page);
2294 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2295 }
2296 
2297 /*
2298  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2299  * mappping it owns the reserve page for. The intention is to unmap the page
2300  * from other VMAs and let the children be SIGKILLed if they are faulting the
2301  * same region.
2302  */
2303 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2304 				struct page *page, unsigned long address)
2305 {
2306 	struct hstate *h = hstate_vma(vma);
2307 	struct vm_area_struct *iter_vma;
2308 	struct address_space *mapping;
2309 	struct prio_tree_iter iter;
2310 	pgoff_t pgoff;
2311 
2312 	/*
2313 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2314 	 * from page cache lookup which is in HPAGE_SIZE units.
2315 	 */
2316 	address = address & huge_page_mask(h);
2317 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2318 		+ (vma->vm_pgoff >> PAGE_SHIFT);
2319 	mapping = (struct address_space *)page_private(page);
2320 
2321 	/*
2322 	 * Take the mapping lock for the duration of the table walk. As
2323 	 * this mapping should be shared between all the VMAs,
2324 	 * __unmap_hugepage_range() is called as the lock is already held
2325 	 */
2326 	mutex_lock(&mapping->i_mmap_mutex);
2327 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2328 		/* Do not unmap the current VMA */
2329 		if (iter_vma == vma)
2330 			continue;
2331 
2332 		/*
2333 		 * Unmap the page from other VMAs without their own reserves.
2334 		 * They get marked to be SIGKILLed if they fault in these
2335 		 * areas. This is because a future no-page fault on this VMA
2336 		 * could insert a zeroed page instead of the data existing
2337 		 * from the time of fork. This would look like data corruption
2338 		 */
2339 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2340 			__unmap_hugepage_range(iter_vma,
2341 				address, address + huge_page_size(h),
2342 				page);
2343 	}
2344 	mutex_unlock(&mapping->i_mmap_mutex);
2345 
2346 	return 1;
2347 }
2348 
2349 /*
2350  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2351  */
2352 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2353 			unsigned long address, pte_t *ptep, pte_t pte,
2354 			struct page *pagecache_page)
2355 {
2356 	struct hstate *h = hstate_vma(vma);
2357 	struct page *old_page, *new_page;
2358 	int avoidcopy;
2359 	int outside_reserve = 0;
2360 
2361 	old_page = pte_page(pte);
2362 
2363 retry_avoidcopy:
2364 	/* If no-one else is actually using this page, avoid the copy
2365 	 * and just make the page writable */
2366 	avoidcopy = (page_mapcount(old_page) == 1);
2367 	if (avoidcopy) {
2368 		if (PageAnon(old_page))
2369 			page_move_anon_rmap(old_page, vma, address);
2370 		set_huge_ptep_writable(vma, address, ptep);
2371 		return 0;
2372 	}
2373 
2374 	/*
2375 	 * If the process that created a MAP_PRIVATE mapping is about to
2376 	 * perform a COW due to a shared page count, attempt to satisfy
2377 	 * the allocation without using the existing reserves. The pagecache
2378 	 * page is used to determine if the reserve at this address was
2379 	 * consumed or not. If reserves were used, a partial faulted mapping
2380 	 * at the time of fork() could consume its reserves on COW instead
2381 	 * of the full address range.
2382 	 */
2383 	if (!(vma->vm_flags & VM_MAYSHARE) &&
2384 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2385 			old_page != pagecache_page)
2386 		outside_reserve = 1;
2387 
2388 	page_cache_get(old_page);
2389 
2390 	/* Drop page_table_lock as buddy allocator may be called */
2391 	spin_unlock(&mm->page_table_lock);
2392 	new_page = alloc_huge_page(vma, address, outside_reserve);
2393 
2394 	if (IS_ERR(new_page)) {
2395 		page_cache_release(old_page);
2396 
2397 		/*
2398 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2399 		 * it is due to references held by a child and an insufficient
2400 		 * huge page pool. To guarantee the original mappers
2401 		 * reliability, unmap the page from child processes. The child
2402 		 * may get SIGKILLed if it later faults.
2403 		 */
2404 		if (outside_reserve) {
2405 			BUG_ON(huge_pte_none(pte));
2406 			if (unmap_ref_private(mm, vma, old_page, address)) {
2407 				BUG_ON(page_count(old_page) != 1);
2408 				BUG_ON(huge_pte_none(pte));
2409 				spin_lock(&mm->page_table_lock);
2410 				goto retry_avoidcopy;
2411 			}
2412 			WARN_ON_ONCE(1);
2413 		}
2414 
2415 		/* Caller expects lock to be held */
2416 		spin_lock(&mm->page_table_lock);
2417 		return -PTR_ERR(new_page);
2418 	}
2419 
2420 	/*
2421 	 * When the original hugepage is shared one, it does not have
2422 	 * anon_vma prepared.
2423 	 */
2424 	if (unlikely(anon_vma_prepare(vma))) {
2425 		/* Caller expects lock to be held */
2426 		spin_lock(&mm->page_table_lock);
2427 		return VM_FAULT_OOM;
2428 	}
2429 
2430 	copy_user_huge_page(new_page, old_page, address, vma,
2431 			    pages_per_huge_page(h));
2432 	__SetPageUptodate(new_page);
2433 
2434 	/*
2435 	 * Retake the page_table_lock to check for racing updates
2436 	 * before the page tables are altered
2437 	 */
2438 	spin_lock(&mm->page_table_lock);
2439 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2440 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2441 		/* Break COW */
2442 		mmu_notifier_invalidate_range_start(mm,
2443 			address & huge_page_mask(h),
2444 			(address & huge_page_mask(h)) + huge_page_size(h));
2445 		huge_ptep_clear_flush(vma, address, ptep);
2446 		set_huge_pte_at(mm, address, ptep,
2447 				make_huge_pte(vma, new_page, 1));
2448 		page_remove_rmap(old_page);
2449 		hugepage_add_new_anon_rmap(new_page, vma, address);
2450 		/* Make the old page be freed below */
2451 		new_page = old_page;
2452 		mmu_notifier_invalidate_range_end(mm,
2453 			address & huge_page_mask(h),
2454 			(address & huge_page_mask(h)) + huge_page_size(h));
2455 	}
2456 	page_cache_release(new_page);
2457 	page_cache_release(old_page);
2458 	return 0;
2459 }
2460 
2461 /* Return the pagecache page at a given address within a VMA */
2462 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2463 			struct vm_area_struct *vma, unsigned long address)
2464 {
2465 	struct address_space *mapping;
2466 	pgoff_t idx;
2467 
2468 	mapping = vma->vm_file->f_mapping;
2469 	idx = vma_hugecache_offset(h, vma, address);
2470 
2471 	return find_lock_page(mapping, idx);
2472 }
2473 
2474 /*
2475  * Return whether there is a pagecache page to back given address within VMA.
2476  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2477  */
2478 static bool hugetlbfs_pagecache_present(struct hstate *h,
2479 			struct vm_area_struct *vma, unsigned long address)
2480 {
2481 	struct address_space *mapping;
2482 	pgoff_t idx;
2483 	struct page *page;
2484 
2485 	mapping = vma->vm_file->f_mapping;
2486 	idx = vma_hugecache_offset(h, vma, address);
2487 
2488 	page = find_get_page(mapping, idx);
2489 	if (page)
2490 		put_page(page);
2491 	return page != NULL;
2492 }
2493 
2494 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2495 			unsigned long address, pte_t *ptep, unsigned int flags)
2496 {
2497 	struct hstate *h = hstate_vma(vma);
2498 	int ret = VM_FAULT_SIGBUS;
2499 	pgoff_t idx;
2500 	unsigned long size;
2501 	struct page *page;
2502 	struct address_space *mapping;
2503 	pte_t new_pte;
2504 
2505 	/*
2506 	 * Currently, we are forced to kill the process in the event the
2507 	 * original mapper has unmapped pages from the child due to a failed
2508 	 * COW. Warn that such a situation has occurred as it may not be obvious
2509 	 */
2510 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2511 		printk(KERN_WARNING
2512 			"PID %d killed due to inadequate hugepage pool\n",
2513 			current->pid);
2514 		return ret;
2515 	}
2516 
2517 	mapping = vma->vm_file->f_mapping;
2518 	idx = vma_hugecache_offset(h, vma, address);
2519 
2520 	/*
2521 	 * Use page lock to guard against racing truncation
2522 	 * before we get page_table_lock.
2523 	 */
2524 retry:
2525 	page = find_lock_page(mapping, idx);
2526 	if (!page) {
2527 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2528 		if (idx >= size)
2529 			goto out;
2530 		page = alloc_huge_page(vma, address, 0);
2531 		if (IS_ERR(page)) {
2532 			ret = -PTR_ERR(page);
2533 			goto out;
2534 		}
2535 		clear_huge_page(page, address, pages_per_huge_page(h));
2536 		__SetPageUptodate(page);
2537 
2538 		if (vma->vm_flags & VM_MAYSHARE) {
2539 			int err;
2540 			struct inode *inode = mapping->host;
2541 
2542 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2543 			if (err) {
2544 				put_page(page);
2545 				if (err == -EEXIST)
2546 					goto retry;
2547 				goto out;
2548 			}
2549 
2550 			spin_lock(&inode->i_lock);
2551 			inode->i_blocks += blocks_per_huge_page(h);
2552 			spin_unlock(&inode->i_lock);
2553 			page_dup_rmap(page);
2554 		} else {
2555 			lock_page(page);
2556 			if (unlikely(anon_vma_prepare(vma))) {
2557 				ret = VM_FAULT_OOM;
2558 				goto backout_unlocked;
2559 			}
2560 			hugepage_add_new_anon_rmap(page, vma, address);
2561 		}
2562 	} else {
2563 		/*
2564 		 * If memory error occurs between mmap() and fault, some process
2565 		 * don't have hwpoisoned swap entry for errored virtual address.
2566 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2567 		 */
2568 		if (unlikely(PageHWPoison(page))) {
2569 			ret = VM_FAULT_HWPOISON |
2570 			      VM_FAULT_SET_HINDEX(h - hstates);
2571 			goto backout_unlocked;
2572 		}
2573 		page_dup_rmap(page);
2574 	}
2575 
2576 	/*
2577 	 * If we are going to COW a private mapping later, we examine the
2578 	 * pending reservations for this page now. This will ensure that
2579 	 * any allocations necessary to record that reservation occur outside
2580 	 * the spinlock.
2581 	 */
2582 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2583 		if (vma_needs_reservation(h, vma, address) < 0) {
2584 			ret = VM_FAULT_OOM;
2585 			goto backout_unlocked;
2586 		}
2587 
2588 	spin_lock(&mm->page_table_lock);
2589 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2590 	if (idx >= size)
2591 		goto backout;
2592 
2593 	ret = 0;
2594 	if (!huge_pte_none(huge_ptep_get(ptep)))
2595 		goto backout;
2596 
2597 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2598 				&& (vma->vm_flags & VM_SHARED)));
2599 	set_huge_pte_at(mm, address, ptep, new_pte);
2600 
2601 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2602 		/* Optimization, do the COW without a second fault */
2603 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2604 	}
2605 
2606 	spin_unlock(&mm->page_table_lock);
2607 	unlock_page(page);
2608 out:
2609 	return ret;
2610 
2611 backout:
2612 	spin_unlock(&mm->page_table_lock);
2613 backout_unlocked:
2614 	unlock_page(page);
2615 	put_page(page);
2616 	goto out;
2617 }
2618 
2619 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2620 			unsigned long address, unsigned int flags)
2621 {
2622 	pte_t *ptep;
2623 	pte_t entry;
2624 	int ret;
2625 	struct page *page = NULL;
2626 	struct page *pagecache_page = NULL;
2627 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2628 	struct hstate *h = hstate_vma(vma);
2629 
2630 	ptep = huge_pte_offset(mm, address);
2631 	if (ptep) {
2632 		entry = huge_ptep_get(ptep);
2633 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2634 			migration_entry_wait(mm, (pmd_t *)ptep, address);
2635 			return 0;
2636 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2637 			return VM_FAULT_HWPOISON_LARGE |
2638 			       VM_FAULT_SET_HINDEX(h - hstates);
2639 	}
2640 
2641 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2642 	if (!ptep)
2643 		return VM_FAULT_OOM;
2644 
2645 	/*
2646 	 * Serialize hugepage allocation and instantiation, so that we don't
2647 	 * get spurious allocation failures if two CPUs race to instantiate
2648 	 * the same page in the page cache.
2649 	 */
2650 	mutex_lock(&hugetlb_instantiation_mutex);
2651 	entry = huge_ptep_get(ptep);
2652 	if (huge_pte_none(entry)) {
2653 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2654 		goto out_mutex;
2655 	}
2656 
2657 	ret = 0;
2658 
2659 	/*
2660 	 * If we are going to COW the mapping later, we examine the pending
2661 	 * reservations for this page now. This will ensure that any
2662 	 * allocations necessary to record that reservation occur outside the
2663 	 * spinlock. For private mappings, we also lookup the pagecache
2664 	 * page now as it is used to determine if a reservation has been
2665 	 * consumed.
2666 	 */
2667 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2668 		if (vma_needs_reservation(h, vma, address) < 0) {
2669 			ret = VM_FAULT_OOM;
2670 			goto out_mutex;
2671 		}
2672 
2673 		if (!(vma->vm_flags & VM_MAYSHARE))
2674 			pagecache_page = hugetlbfs_pagecache_page(h,
2675 								vma, address);
2676 	}
2677 
2678 	/*
2679 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2680 	 * pagecache_page, so here we need take the former one
2681 	 * when page != pagecache_page or !pagecache_page.
2682 	 * Note that locking order is always pagecache_page -> page,
2683 	 * so no worry about deadlock.
2684 	 */
2685 	page = pte_page(entry);
2686 	if (page != pagecache_page)
2687 		lock_page(page);
2688 
2689 	spin_lock(&mm->page_table_lock);
2690 	/* Check for a racing update before calling hugetlb_cow */
2691 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2692 		goto out_page_table_lock;
2693 
2694 
2695 	if (flags & FAULT_FLAG_WRITE) {
2696 		if (!pte_write(entry)) {
2697 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2698 							pagecache_page);
2699 			goto out_page_table_lock;
2700 		}
2701 		entry = pte_mkdirty(entry);
2702 	}
2703 	entry = pte_mkyoung(entry);
2704 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2705 						flags & FAULT_FLAG_WRITE))
2706 		update_mmu_cache(vma, address, ptep);
2707 
2708 out_page_table_lock:
2709 	spin_unlock(&mm->page_table_lock);
2710 
2711 	if (pagecache_page) {
2712 		unlock_page(pagecache_page);
2713 		put_page(pagecache_page);
2714 	}
2715 	if (page != pagecache_page)
2716 		unlock_page(page);
2717 
2718 out_mutex:
2719 	mutex_unlock(&hugetlb_instantiation_mutex);
2720 
2721 	return ret;
2722 }
2723 
2724 /* Can be overriden by architectures */
2725 __attribute__((weak)) struct page *
2726 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2727 	       pud_t *pud, int write)
2728 {
2729 	BUG();
2730 	return NULL;
2731 }
2732 
2733 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2734 			struct page **pages, struct vm_area_struct **vmas,
2735 			unsigned long *position, int *length, int i,
2736 			unsigned int flags)
2737 {
2738 	unsigned long pfn_offset;
2739 	unsigned long vaddr = *position;
2740 	int remainder = *length;
2741 	struct hstate *h = hstate_vma(vma);
2742 
2743 	spin_lock(&mm->page_table_lock);
2744 	while (vaddr < vma->vm_end && remainder) {
2745 		pte_t *pte;
2746 		int absent;
2747 		struct page *page;
2748 
2749 		/*
2750 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2751 		 * each hugepage.  We have to make sure we get the
2752 		 * first, for the page indexing below to work.
2753 		 */
2754 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2755 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2756 
2757 		/*
2758 		 * When coredumping, it suits get_dump_page if we just return
2759 		 * an error where there's an empty slot with no huge pagecache
2760 		 * to back it.  This way, we avoid allocating a hugepage, and
2761 		 * the sparse dumpfile avoids allocating disk blocks, but its
2762 		 * huge holes still show up with zeroes where they need to be.
2763 		 */
2764 		if (absent && (flags & FOLL_DUMP) &&
2765 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2766 			remainder = 0;
2767 			break;
2768 		}
2769 
2770 		if (absent ||
2771 		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2772 			int ret;
2773 
2774 			spin_unlock(&mm->page_table_lock);
2775 			ret = hugetlb_fault(mm, vma, vaddr,
2776 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2777 			spin_lock(&mm->page_table_lock);
2778 			if (!(ret & VM_FAULT_ERROR))
2779 				continue;
2780 
2781 			remainder = 0;
2782 			break;
2783 		}
2784 
2785 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2786 		page = pte_page(huge_ptep_get(pte));
2787 same_page:
2788 		if (pages) {
2789 			pages[i] = mem_map_offset(page, pfn_offset);
2790 			get_page(pages[i]);
2791 		}
2792 
2793 		if (vmas)
2794 			vmas[i] = vma;
2795 
2796 		vaddr += PAGE_SIZE;
2797 		++pfn_offset;
2798 		--remainder;
2799 		++i;
2800 		if (vaddr < vma->vm_end && remainder &&
2801 				pfn_offset < pages_per_huge_page(h)) {
2802 			/*
2803 			 * We use pfn_offset to avoid touching the pageframes
2804 			 * of this compound page.
2805 			 */
2806 			goto same_page;
2807 		}
2808 	}
2809 	spin_unlock(&mm->page_table_lock);
2810 	*length = remainder;
2811 	*position = vaddr;
2812 
2813 	return i ? i : -EFAULT;
2814 }
2815 
2816 void hugetlb_change_protection(struct vm_area_struct *vma,
2817 		unsigned long address, unsigned long end, pgprot_t newprot)
2818 {
2819 	struct mm_struct *mm = vma->vm_mm;
2820 	unsigned long start = address;
2821 	pte_t *ptep;
2822 	pte_t pte;
2823 	struct hstate *h = hstate_vma(vma);
2824 
2825 	BUG_ON(address >= end);
2826 	flush_cache_range(vma, address, end);
2827 
2828 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2829 	spin_lock(&mm->page_table_lock);
2830 	for (; address < end; address += huge_page_size(h)) {
2831 		ptep = huge_pte_offset(mm, address);
2832 		if (!ptep)
2833 			continue;
2834 		if (huge_pmd_unshare(mm, &address, ptep))
2835 			continue;
2836 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2837 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2838 			pte = pte_mkhuge(pte_modify(pte, newprot));
2839 			set_huge_pte_at(mm, address, ptep, pte);
2840 		}
2841 	}
2842 	spin_unlock(&mm->page_table_lock);
2843 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2844 
2845 	flush_tlb_range(vma, start, end);
2846 }
2847 
2848 int hugetlb_reserve_pages(struct inode *inode,
2849 					long from, long to,
2850 					struct vm_area_struct *vma,
2851 					vm_flags_t vm_flags)
2852 {
2853 	long ret, chg;
2854 	struct hstate *h = hstate_inode(inode);
2855 
2856 	/*
2857 	 * Only apply hugepage reservation if asked. At fault time, an
2858 	 * attempt will be made for VM_NORESERVE to allocate a page
2859 	 * and filesystem quota without using reserves
2860 	 */
2861 	if (vm_flags & VM_NORESERVE)
2862 		return 0;
2863 
2864 	/*
2865 	 * Shared mappings base their reservation on the number of pages that
2866 	 * are already allocated on behalf of the file. Private mappings need
2867 	 * to reserve the full area even if read-only as mprotect() may be
2868 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2869 	 */
2870 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2871 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2872 	else {
2873 		struct resv_map *resv_map = resv_map_alloc();
2874 		if (!resv_map)
2875 			return -ENOMEM;
2876 
2877 		chg = to - from;
2878 
2879 		set_vma_resv_map(vma, resv_map);
2880 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2881 	}
2882 
2883 	if (chg < 0)
2884 		return chg;
2885 
2886 	/* There must be enough filesystem quota for the mapping */
2887 	if (hugetlb_get_quota(inode->i_mapping, chg))
2888 		return -ENOSPC;
2889 
2890 	/*
2891 	 * Check enough hugepages are available for the reservation.
2892 	 * Hand back the quota if there are not
2893 	 */
2894 	ret = hugetlb_acct_memory(h, chg);
2895 	if (ret < 0) {
2896 		hugetlb_put_quota(inode->i_mapping, chg);
2897 		return ret;
2898 	}
2899 
2900 	/*
2901 	 * Account for the reservations made. Shared mappings record regions
2902 	 * that have reservations as they are shared by multiple VMAs.
2903 	 * When the last VMA disappears, the region map says how much
2904 	 * the reservation was and the page cache tells how much of
2905 	 * the reservation was consumed. Private mappings are per-VMA and
2906 	 * only the consumed reservations are tracked. When the VMA
2907 	 * disappears, the original reservation is the VMA size and the
2908 	 * consumed reservations are stored in the map. Hence, nothing
2909 	 * else has to be done for private mappings here
2910 	 */
2911 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2912 		region_add(&inode->i_mapping->private_list, from, to);
2913 	return 0;
2914 }
2915 
2916 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2917 {
2918 	struct hstate *h = hstate_inode(inode);
2919 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2920 
2921 	spin_lock(&inode->i_lock);
2922 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2923 	spin_unlock(&inode->i_lock);
2924 
2925 	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2926 	hugetlb_acct_memory(h, -(chg - freed));
2927 }
2928 
2929 #ifdef CONFIG_MEMORY_FAILURE
2930 
2931 /* Should be called in hugetlb_lock */
2932 static int is_hugepage_on_freelist(struct page *hpage)
2933 {
2934 	struct page *page;
2935 	struct page *tmp;
2936 	struct hstate *h = page_hstate(hpage);
2937 	int nid = page_to_nid(hpage);
2938 
2939 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2940 		if (page == hpage)
2941 			return 1;
2942 	return 0;
2943 }
2944 
2945 /*
2946  * This function is called from memory failure code.
2947  * Assume the caller holds page lock of the head page.
2948  */
2949 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2950 {
2951 	struct hstate *h = page_hstate(hpage);
2952 	int nid = page_to_nid(hpage);
2953 	int ret = -EBUSY;
2954 
2955 	spin_lock(&hugetlb_lock);
2956 	if (is_hugepage_on_freelist(hpage)) {
2957 		list_del(&hpage->lru);
2958 		set_page_refcounted(hpage);
2959 		h->free_huge_pages--;
2960 		h->free_huge_pages_node[nid]--;
2961 		ret = 0;
2962 	}
2963 	spin_unlock(&hugetlb_lock);
2964 	return ret;
2965 }
2966 #endif
2967