1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 25 #include <asm/page.h> 26 #include <asm/pgtable.h> 27 #include <linux/io.h> 28 29 #include <linux/hugetlb.h> 30 #include <linux/node.h> 31 #include "internal.h" 32 33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 35 unsigned long hugepages_treat_as_movable; 36 37 static int max_hstate; 38 unsigned int default_hstate_idx; 39 struct hstate hstates[HUGE_MAX_HSTATE]; 40 41 __initdata LIST_HEAD(huge_boot_pages); 42 43 /* for command line parsing */ 44 static struct hstate * __initdata parsed_hstate; 45 static unsigned long __initdata default_hstate_max_huge_pages; 46 static unsigned long __initdata default_hstate_size; 47 48 #define for_each_hstate(h) \ 49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 50 51 /* 52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 53 */ 54 static DEFINE_SPINLOCK(hugetlb_lock); 55 56 /* 57 * Region tracking -- allows tracking of reservations and instantiated pages 58 * across the pages in a mapping. 59 * 60 * The region data structures are protected by a combination of the mmap_sem 61 * and the hugetlb_instantion_mutex. To access or modify a region the caller 62 * must either hold the mmap_sem for write, or the mmap_sem for read and 63 * the hugetlb_instantiation mutex: 64 * 65 * down_write(&mm->mmap_sem); 66 * or 67 * down_read(&mm->mmap_sem); 68 * mutex_lock(&hugetlb_instantiation_mutex); 69 */ 70 struct file_region { 71 struct list_head link; 72 long from; 73 long to; 74 }; 75 76 static long region_add(struct list_head *head, long f, long t) 77 { 78 struct file_region *rg, *nrg, *trg; 79 80 /* Locate the region we are either in or before. */ 81 list_for_each_entry(rg, head, link) 82 if (f <= rg->to) 83 break; 84 85 /* Round our left edge to the current segment if it encloses us. */ 86 if (f > rg->from) 87 f = rg->from; 88 89 /* Check for and consume any regions we now overlap with. */ 90 nrg = rg; 91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 92 if (&rg->link == head) 93 break; 94 if (rg->from > t) 95 break; 96 97 /* If this area reaches higher then extend our area to 98 * include it completely. If this is not the first area 99 * which we intend to reuse, free it. */ 100 if (rg->to > t) 101 t = rg->to; 102 if (rg != nrg) { 103 list_del(&rg->link); 104 kfree(rg); 105 } 106 } 107 nrg->from = f; 108 nrg->to = t; 109 return 0; 110 } 111 112 static long region_chg(struct list_head *head, long f, long t) 113 { 114 struct file_region *rg, *nrg; 115 long chg = 0; 116 117 /* Locate the region we are before or in. */ 118 list_for_each_entry(rg, head, link) 119 if (f <= rg->to) 120 break; 121 122 /* If we are below the current region then a new region is required. 123 * Subtle, allocate a new region at the position but make it zero 124 * size such that we can guarantee to record the reservation. */ 125 if (&rg->link == head || t < rg->from) { 126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 127 if (!nrg) 128 return -ENOMEM; 129 nrg->from = f; 130 nrg->to = f; 131 INIT_LIST_HEAD(&nrg->link); 132 list_add(&nrg->link, rg->link.prev); 133 134 return t - f; 135 } 136 137 /* Round our left edge to the current segment if it encloses us. */ 138 if (f > rg->from) 139 f = rg->from; 140 chg = t - f; 141 142 /* Check for and consume any regions we now overlap with. */ 143 list_for_each_entry(rg, rg->link.prev, link) { 144 if (&rg->link == head) 145 break; 146 if (rg->from > t) 147 return chg; 148 149 /* We overlap with this area, if it extends further than 150 * us then we must extend ourselves. Account for its 151 * existing reservation. */ 152 if (rg->to > t) { 153 chg += rg->to - t; 154 t = rg->to; 155 } 156 chg -= rg->to - rg->from; 157 } 158 return chg; 159 } 160 161 static long region_truncate(struct list_head *head, long end) 162 { 163 struct file_region *rg, *trg; 164 long chg = 0; 165 166 /* Locate the region we are either in or before. */ 167 list_for_each_entry(rg, head, link) 168 if (end <= rg->to) 169 break; 170 if (&rg->link == head) 171 return 0; 172 173 /* If we are in the middle of a region then adjust it. */ 174 if (end > rg->from) { 175 chg = rg->to - end; 176 rg->to = end; 177 rg = list_entry(rg->link.next, typeof(*rg), link); 178 } 179 180 /* Drop any remaining regions. */ 181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 182 if (&rg->link == head) 183 break; 184 chg += rg->to - rg->from; 185 list_del(&rg->link); 186 kfree(rg); 187 } 188 return chg; 189 } 190 191 static long region_count(struct list_head *head, long f, long t) 192 { 193 struct file_region *rg; 194 long chg = 0; 195 196 /* Locate each segment we overlap with, and count that overlap. */ 197 list_for_each_entry(rg, head, link) { 198 int seg_from; 199 int seg_to; 200 201 if (rg->to <= f) 202 continue; 203 if (rg->from >= t) 204 break; 205 206 seg_from = max(rg->from, f); 207 seg_to = min(rg->to, t); 208 209 chg += seg_to - seg_from; 210 } 211 212 return chg; 213 } 214 215 /* 216 * Convert the address within this vma to the page offset within 217 * the mapping, in pagecache page units; huge pages here. 218 */ 219 static pgoff_t vma_hugecache_offset(struct hstate *h, 220 struct vm_area_struct *vma, unsigned long address) 221 { 222 return ((address - vma->vm_start) >> huge_page_shift(h)) + 223 (vma->vm_pgoff >> huge_page_order(h)); 224 } 225 226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 227 unsigned long address) 228 { 229 return vma_hugecache_offset(hstate_vma(vma), vma, address); 230 } 231 232 /* 233 * Return the size of the pages allocated when backing a VMA. In the majority 234 * cases this will be same size as used by the page table entries. 235 */ 236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 237 { 238 struct hstate *hstate; 239 240 if (!is_vm_hugetlb_page(vma)) 241 return PAGE_SIZE; 242 243 hstate = hstate_vma(vma); 244 245 return 1UL << (hstate->order + PAGE_SHIFT); 246 } 247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 248 249 /* 250 * Return the page size being used by the MMU to back a VMA. In the majority 251 * of cases, the page size used by the kernel matches the MMU size. On 252 * architectures where it differs, an architecture-specific version of this 253 * function is required. 254 */ 255 #ifndef vma_mmu_pagesize 256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 257 { 258 return vma_kernel_pagesize(vma); 259 } 260 #endif 261 262 /* 263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 264 * bits of the reservation map pointer, which are always clear due to 265 * alignment. 266 */ 267 #define HPAGE_RESV_OWNER (1UL << 0) 268 #define HPAGE_RESV_UNMAPPED (1UL << 1) 269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 270 271 /* 272 * These helpers are used to track how many pages are reserved for 273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 274 * is guaranteed to have their future faults succeed. 275 * 276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 277 * the reserve counters are updated with the hugetlb_lock held. It is safe 278 * to reset the VMA at fork() time as it is not in use yet and there is no 279 * chance of the global counters getting corrupted as a result of the values. 280 * 281 * The private mapping reservation is represented in a subtly different 282 * manner to a shared mapping. A shared mapping has a region map associated 283 * with the underlying file, this region map represents the backing file 284 * pages which have ever had a reservation assigned which this persists even 285 * after the page is instantiated. A private mapping has a region map 286 * associated with the original mmap which is attached to all VMAs which 287 * reference it, this region map represents those offsets which have consumed 288 * reservation ie. where pages have been instantiated. 289 */ 290 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 291 { 292 return (unsigned long)vma->vm_private_data; 293 } 294 295 static void set_vma_private_data(struct vm_area_struct *vma, 296 unsigned long value) 297 { 298 vma->vm_private_data = (void *)value; 299 } 300 301 struct resv_map { 302 struct kref refs; 303 struct list_head regions; 304 }; 305 306 static struct resv_map *resv_map_alloc(void) 307 { 308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 309 if (!resv_map) 310 return NULL; 311 312 kref_init(&resv_map->refs); 313 INIT_LIST_HEAD(&resv_map->regions); 314 315 return resv_map; 316 } 317 318 static void resv_map_release(struct kref *ref) 319 { 320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 321 322 /* Clear out any active regions before we release the map. */ 323 region_truncate(&resv_map->regions, 0); 324 kfree(resv_map); 325 } 326 327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 328 { 329 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 330 if (!(vma->vm_flags & VM_MAYSHARE)) 331 return (struct resv_map *)(get_vma_private_data(vma) & 332 ~HPAGE_RESV_MASK); 333 return NULL; 334 } 335 336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 337 { 338 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 340 341 set_vma_private_data(vma, (get_vma_private_data(vma) & 342 HPAGE_RESV_MASK) | (unsigned long)map); 343 } 344 345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 346 { 347 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 349 350 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 351 } 352 353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 354 { 355 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 356 357 return (get_vma_private_data(vma) & flag) != 0; 358 } 359 360 /* Decrement the reserved pages in the hugepage pool by one */ 361 static void decrement_hugepage_resv_vma(struct hstate *h, 362 struct vm_area_struct *vma) 363 { 364 if (vma->vm_flags & VM_NORESERVE) 365 return; 366 367 if (vma->vm_flags & VM_MAYSHARE) { 368 /* Shared mappings always use reserves */ 369 h->resv_huge_pages--; 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 371 /* 372 * Only the process that called mmap() has reserves for 373 * private mappings. 374 */ 375 h->resv_huge_pages--; 376 } 377 } 378 379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 381 { 382 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 383 if (!(vma->vm_flags & VM_MAYSHARE)) 384 vma->vm_private_data = (void *)0; 385 } 386 387 /* Returns true if the VMA has associated reserve pages */ 388 static int vma_has_reserves(struct vm_area_struct *vma) 389 { 390 if (vma->vm_flags & VM_MAYSHARE) 391 return 1; 392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 393 return 1; 394 return 0; 395 } 396 397 static void copy_gigantic_page(struct page *dst, struct page *src) 398 { 399 int i; 400 struct hstate *h = page_hstate(src); 401 struct page *dst_base = dst; 402 struct page *src_base = src; 403 404 for (i = 0; i < pages_per_huge_page(h); ) { 405 cond_resched(); 406 copy_highpage(dst, src); 407 408 i++; 409 dst = mem_map_next(dst, dst_base, i); 410 src = mem_map_next(src, src_base, i); 411 } 412 } 413 414 void copy_huge_page(struct page *dst, struct page *src) 415 { 416 int i; 417 struct hstate *h = page_hstate(src); 418 419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 420 copy_gigantic_page(dst, src); 421 return; 422 } 423 424 might_sleep(); 425 for (i = 0; i < pages_per_huge_page(h); i++) { 426 cond_resched(); 427 copy_highpage(dst + i, src + i); 428 } 429 } 430 431 static void enqueue_huge_page(struct hstate *h, struct page *page) 432 { 433 int nid = page_to_nid(page); 434 list_add(&page->lru, &h->hugepage_freelists[nid]); 435 h->free_huge_pages++; 436 h->free_huge_pages_node[nid]++; 437 } 438 439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 440 { 441 struct page *page; 442 443 if (list_empty(&h->hugepage_freelists[nid])) 444 return NULL; 445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); 446 list_del(&page->lru); 447 set_page_refcounted(page); 448 h->free_huge_pages--; 449 h->free_huge_pages_node[nid]--; 450 return page; 451 } 452 453 static struct page *dequeue_huge_page_vma(struct hstate *h, 454 struct vm_area_struct *vma, 455 unsigned long address, int avoid_reserve) 456 { 457 struct page *page = NULL; 458 struct mempolicy *mpol; 459 nodemask_t *nodemask; 460 struct zonelist *zonelist; 461 struct zone *zone; 462 struct zoneref *z; 463 464 get_mems_allowed(); 465 zonelist = huge_zonelist(vma, address, 466 htlb_alloc_mask, &mpol, &nodemask); 467 /* 468 * A child process with MAP_PRIVATE mappings created by their parent 469 * have no page reserves. This check ensures that reservations are 470 * not "stolen". The child may still get SIGKILLed 471 */ 472 if (!vma_has_reserves(vma) && 473 h->free_huge_pages - h->resv_huge_pages == 0) 474 goto err; 475 476 /* If reserves cannot be used, ensure enough pages are in the pool */ 477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 478 goto err; 479 480 for_each_zone_zonelist_nodemask(zone, z, zonelist, 481 MAX_NR_ZONES - 1, nodemask) { 482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { 483 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 484 if (page) { 485 if (!avoid_reserve) 486 decrement_hugepage_resv_vma(h, vma); 487 break; 488 } 489 } 490 } 491 err: 492 mpol_cond_put(mpol); 493 put_mems_allowed(); 494 return page; 495 } 496 497 static void update_and_free_page(struct hstate *h, struct page *page) 498 { 499 int i; 500 501 VM_BUG_ON(h->order >= MAX_ORDER); 502 503 h->nr_huge_pages--; 504 h->nr_huge_pages_node[page_to_nid(page)]--; 505 for (i = 0; i < pages_per_huge_page(h); i++) { 506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 507 1 << PG_referenced | 1 << PG_dirty | 508 1 << PG_active | 1 << PG_reserved | 509 1 << PG_private | 1 << PG_writeback); 510 } 511 set_compound_page_dtor(page, NULL); 512 set_page_refcounted(page); 513 arch_release_hugepage(page); 514 __free_pages(page, huge_page_order(h)); 515 } 516 517 struct hstate *size_to_hstate(unsigned long size) 518 { 519 struct hstate *h; 520 521 for_each_hstate(h) { 522 if (huge_page_size(h) == size) 523 return h; 524 } 525 return NULL; 526 } 527 528 static void free_huge_page(struct page *page) 529 { 530 /* 531 * Can't pass hstate in here because it is called from the 532 * compound page destructor. 533 */ 534 struct hstate *h = page_hstate(page); 535 int nid = page_to_nid(page); 536 struct address_space *mapping; 537 538 mapping = (struct address_space *) page_private(page); 539 set_page_private(page, 0); 540 page->mapping = NULL; 541 BUG_ON(page_count(page)); 542 BUG_ON(page_mapcount(page)); 543 INIT_LIST_HEAD(&page->lru); 544 545 spin_lock(&hugetlb_lock); 546 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 547 update_and_free_page(h, page); 548 h->surplus_huge_pages--; 549 h->surplus_huge_pages_node[nid]--; 550 } else { 551 enqueue_huge_page(h, page); 552 } 553 spin_unlock(&hugetlb_lock); 554 if (mapping) 555 hugetlb_put_quota(mapping, 1); 556 } 557 558 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 559 { 560 set_compound_page_dtor(page, free_huge_page); 561 spin_lock(&hugetlb_lock); 562 h->nr_huge_pages++; 563 h->nr_huge_pages_node[nid]++; 564 spin_unlock(&hugetlb_lock); 565 put_page(page); /* free it into the hugepage allocator */ 566 } 567 568 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 569 { 570 int i; 571 int nr_pages = 1 << order; 572 struct page *p = page + 1; 573 574 /* we rely on prep_new_huge_page to set the destructor */ 575 set_compound_order(page, order); 576 __SetPageHead(page); 577 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 578 __SetPageTail(p); 579 p->first_page = page; 580 } 581 } 582 583 int PageHuge(struct page *page) 584 { 585 compound_page_dtor *dtor; 586 587 if (!PageCompound(page)) 588 return 0; 589 590 page = compound_head(page); 591 dtor = get_compound_page_dtor(page); 592 593 return dtor == free_huge_page; 594 } 595 EXPORT_SYMBOL_GPL(PageHuge); 596 597 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 598 { 599 struct page *page; 600 601 if (h->order >= MAX_ORDER) 602 return NULL; 603 604 page = alloc_pages_exact_node(nid, 605 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 606 __GFP_REPEAT|__GFP_NOWARN, 607 huge_page_order(h)); 608 if (page) { 609 if (arch_prepare_hugepage(page)) { 610 __free_pages(page, huge_page_order(h)); 611 return NULL; 612 } 613 prep_new_huge_page(h, page, nid); 614 } 615 616 return page; 617 } 618 619 /* 620 * common helper functions for hstate_next_node_to_{alloc|free}. 621 * We may have allocated or freed a huge page based on a different 622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 623 * be outside of *nodes_allowed. Ensure that we use an allowed 624 * node for alloc or free. 625 */ 626 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 627 { 628 nid = next_node(nid, *nodes_allowed); 629 if (nid == MAX_NUMNODES) 630 nid = first_node(*nodes_allowed); 631 VM_BUG_ON(nid >= MAX_NUMNODES); 632 633 return nid; 634 } 635 636 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 637 { 638 if (!node_isset(nid, *nodes_allowed)) 639 nid = next_node_allowed(nid, nodes_allowed); 640 return nid; 641 } 642 643 /* 644 * returns the previously saved node ["this node"] from which to 645 * allocate a persistent huge page for the pool and advance the 646 * next node from which to allocate, handling wrap at end of node 647 * mask. 648 */ 649 static int hstate_next_node_to_alloc(struct hstate *h, 650 nodemask_t *nodes_allowed) 651 { 652 int nid; 653 654 VM_BUG_ON(!nodes_allowed); 655 656 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 657 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 658 659 return nid; 660 } 661 662 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 663 { 664 struct page *page; 665 int start_nid; 666 int next_nid; 667 int ret = 0; 668 669 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 670 next_nid = start_nid; 671 672 do { 673 page = alloc_fresh_huge_page_node(h, next_nid); 674 if (page) { 675 ret = 1; 676 break; 677 } 678 next_nid = hstate_next_node_to_alloc(h, nodes_allowed); 679 } while (next_nid != start_nid); 680 681 if (ret) 682 count_vm_event(HTLB_BUDDY_PGALLOC); 683 else 684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 685 686 return ret; 687 } 688 689 /* 690 * helper for free_pool_huge_page() - return the previously saved 691 * node ["this node"] from which to free a huge page. Advance the 692 * next node id whether or not we find a free huge page to free so 693 * that the next attempt to free addresses the next node. 694 */ 695 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 696 { 697 int nid; 698 699 VM_BUG_ON(!nodes_allowed); 700 701 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 702 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 703 704 return nid; 705 } 706 707 /* 708 * Free huge page from pool from next node to free. 709 * Attempt to keep persistent huge pages more or less 710 * balanced over allowed nodes. 711 * Called with hugetlb_lock locked. 712 */ 713 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 714 bool acct_surplus) 715 { 716 int start_nid; 717 int next_nid; 718 int ret = 0; 719 720 start_nid = hstate_next_node_to_free(h, nodes_allowed); 721 next_nid = start_nid; 722 723 do { 724 /* 725 * If we're returning unused surplus pages, only examine 726 * nodes with surplus pages. 727 */ 728 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && 729 !list_empty(&h->hugepage_freelists[next_nid])) { 730 struct page *page = 731 list_entry(h->hugepage_freelists[next_nid].next, 732 struct page, lru); 733 list_del(&page->lru); 734 h->free_huge_pages--; 735 h->free_huge_pages_node[next_nid]--; 736 if (acct_surplus) { 737 h->surplus_huge_pages--; 738 h->surplus_huge_pages_node[next_nid]--; 739 } 740 update_and_free_page(h, page); 741 ret = 1; 742 break; 743 } 744 next_nid = hstate_next_node_to_free(h, nodes_allowed); 745 } while (next_nid != start_nid); 746 747 return ret; 748 } 749 750 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 751 { 752 struct page *page; 753 unsigned int r_nid; 754 755 if (h->order >= MAX_ORDER) 756 return NULL; 757 758 /* 759 * Assume we will successfully allocate the surplus page to 760 * prevent racing processes from causing the surplus to exceed 761 * overcommit 762 * 763 * This however introduces a different race, where a process B 764 * tries to grow the static hugepage pool while alloc_pages() is 765 * called by process A. B will only examine the per-node 766 * counters in determining if surplus huge pages can be 767 * converted to normal huge pages in adjust_pool_surplus(). A 768 * won't be able to increment the per-node counter, until the 769 * lock is dropped by B, but B doesn't drop hugetlb_lock until 770 * no more huge pages can be converted from surplus to normal 771 * state (and doesn't try to convert again). Thus, we have a 772 * case where a surplus huge page exists, the pool is grown, and 773 * the surplus huge page still exists after, even though it 774 * should just have been converted to a normal huge page. This 775 * does not leak memory, though, as the hugepage will be freed 776 * once it is out of use. It also does not allow the counters to 777 * go out of whack in adjust_pool_surplus() as we don't modify 778 * the node values until we've gotten the hugepage and only the 779 * per-node value is checked there. 780 */ 781 spin_lock(&hugetlb_lock); 782 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 783 spin_unlock(&hugetlb_lock); 784 return NULL; 785 } else { 786 h->nr_huge_pages++; 787 h->surplus_huge_pages++; 788 } 789 spin_unlock(&hugetlb_lock); 790 791 if (nid == NUMA_NO_NODE) 792 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 793 __GFP_REPEAT|__GFP_NOWARN, 794 huge_page_order(h)); 795 else 796 page = alloc_pages_exact_node(nid, 797 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 798 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 799 800 if (page && arch_prepare_hugepage(page)) { 801 __free_pages(page, huge_page_order(h)); 802 return NULL; 803 } 804 805 spin_lock(&hugetlb_lock); 806 if (page) { 807 r_nid = page_to_nid(page); 808 set_compound_page_dtor(page, free_huge_page); 809 /* 810 * We incremented the global counters already 811 */ 812 h->nr_huge_pages_node[r_nid]++; 813 h->surplus_huge_pages_node[r_nid]++; 814 __count_vm_event(HTLB_BUDDY_PGALLOC); 815 } else { 816 h->nr_huge_pages--; 817 h->surplus_huge_pages--; 818 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 819 } 820 spin_unlock(&hugetlb_lock); 821 822 return page; 823 } 824 825 /* 826 * This allocation function is useful in the context where vma is irrelevant. 827 * E.g. soft-offlining uses this function because it only cares physical 828 * address of error page. 829 */ 830 struct page *alloc_huge_page_node(struct hstate *h, int nid) 831 { 832 struct page *page; 833 834 spin_lock(&hugetlb_lock); 835 page = dequeue_huge_page_node(h, nid); 836 spin_unlock(&hugetlb_lock); 837 838 if (!page) 839 page = alloc_buddy_huge_page(h, nid); 840 841 return page; 842 } 843 844 /* 845 * Increase the hugetlb pool such that it can accommodate a reservation 846 * of size 'delta'. 847 */ 848 static int gather_surplus_pages(struct hstate *h, int delta) 849 { 850 struct list_head surplus_list; 851 struct page *page, *tmp; 852 int ret, i; 853 int needed, allocated; 854 855 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 856 if (needed <= 0) { 857 h->resv_huge_pages += delta; 858 return 0; 859 } 860 861 allocated = 0; 862 INIT_LIST_HEAD(&surplus_list); 863 864 ret = -ENOMEM; 865 retry: 866 spin_unlock(&hugetlb_lock); 867 for (i = 0; i < needed; i++) { 868 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 869 if (!page) 870 /* 871 * We were not able to allocate enough pages to 872 * satisfy the entire reservation so we free what 873 * we've allocated so far. 874 */ 875 goto free; 876 877 list_add(&page->lru, &surplus_list); 878 } 879 allocated += needed; 880 881 /* 882 * After retaking hugetlb_lock, we need to recalculate 'needed' 883 * because either resv_huge_pages or free_huge_pages may have changed. 884 */ 885 spin_lock(&hugetlb_lock); 886 needed = (h->resv_huge_pages + delta) - 887 (h->free_huge_pages + allocated); 888 if (needed > 0) 889 goto retry; 890 891 /* 892 * The surplus_list now contains _at_least_ the number of extra pages 893 * needed to accommodate the reservation. Add the appropriate number 894 * of pages to the hugetlb pool and free the extras back to the buddy 895 * allocator. Commit the entire reservation here to prevent another 896 * process from stealing the pages as they are added to the pool but 897 * before they are reserved. 898 */ 899 needed += allocated; 900 h->resv_huge_pages += delta; 901 ret = 0; 902 903 spin_unlock(&hugetlb_lock); 904 /* Free the needed pages to the hugetlb pool */ 905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 906 if ((--needed) < 0) 907 break; 908 list_del(&page->lru); 909 /* 910 * This page is now managed by the hugetlb allocator and has 911 * no users -- drop the buddy allocator's reference. 912 */ 913 put_page_testzero(page); 914 VM_BUG_ON(page_count(page)); 915 enqueue_huge_page(h, page); 916 } 917 918 /* Free unnecessary surplus pages to the buddy allocator */ 919 free: 920 if (!list_empty(&surplus_list)) { 921 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 922 list_del(&page->lru); 923 put_page(page); 924 } 925 } 926 spin_lock(&hugetlb_lock); 927 928 return ret; 929 } 930 931 /* 932 * When releasing a hugetlb pool reservation, any surplus pages that were 933 * allocated to satisfy the reservation must be explicitly freed if they were 934 * never used. 935 * Called with hugetlb_lock held. 936 */ 937 static void return_unused_surplus_pages(struct hstate *h, 938 unsigned long unused_resv_pages) 939 { 940 unsigned long nr_pages; 941 942 /* Uncommit the reservation */ 943 h->resv_huge_pages -= unused_resv_pages; 944 945 /* Cannot return gigantic pages currently */ 946 if (h->order >= MAX_ORDER) 947 return; 948 949 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 950 951 /* 952 * We want to release as many surplus pages as possible, spread 953 * evenly across all nodes with memory. Iterate across these nodes 954 * until we can no longer free unreserved surplus pages. This occurs 955 * when the nodes with surplus pages have no free pages. 956 * free_pool_huge_page() will balance the the freed pages across the 957 * on-line nodes with memory and will handle the hstate accounting. 958 */ 959 while (nr_pages--) { 960 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) 961 break; 962 } 963 } 964 965 /* 966 * Determine if the huge page at addr within the vma has an associated 967 * reservation. Where it does not we will need to logically increase 968 * reservation and actually increase quota before an allocation can occur. 969 * Where any new reservation would be required the reservation change is 970 * prepared, but not committed. Once the page has been quota'd allocated 971 * an instantiated the change should be committed via vma_commit_reservation. 972 * No action is required on failure. 973 */ 974 static long vma_needs_reservation(struct hstate *h, 975 struct vm_area_struct *vma, unsigned long addr) 976 { 977 struct address_space *mapping = vma->vm_file->f_mapping; 978 struct inode *inode = mapping->host; 979 980 if (vma->vm_flags & VM_MAYSHARE) { 981 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 982 return region_chg(&inode->i_mapping->private_list, 983 idx, idx + 1); 984 985 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 986 return 1; 987 988 } else { 989 long err; 990 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 991 struct resv_map *reservations = vma_resv_map(vma); 992 993 err = region_chg(&reservations->regions, idx, idx + 1); 994 if (err < 0) 995 return err; 996 return 0; 997 } 998 } 999 static void vma_commit_reservation(struct hstate *h, 1000 struct vm_area_struct *vma, unsigned long addr) 1001 { 1002 struct address_space *mapping = vma->vm_file->f_mapping; 1003 struct inode *inode = mapping->host; 1004 1005 if (vma->vm_flags & VM_MAYSHARE) { 1006 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1007 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1008 1009 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1010 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1011 struct resv_map *reservations = vma_resv_map(vma); 1012 1013 /* Mark this page used in the map. */ 1014 region_add(&reservations->regions, idx, idx + 1); 1015 } 1016 } 1017 1018 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1019 unsigned long addr, int avoid_reserve) 1020 { 1021 struct hstate *h = hstate_vma(vma); 1022 struct page *page; 1023 struct address_space *mapping = vma->vm_file->f_mapping; 1024 struct inode *inode = mapping->host; 1025 long chg; 1026 1027 /* 1028 * Processes that did not create the mapping will have no reserves and 1029 * will not have accounted against quota. Check that the quota can be 1030 * made before satisfying the allocation 1031 * MAP_NORESERVE mappings may also need pages and quota allocated 1032 * if no reserve mapping overlaps. 1033 */ 1034 chg = vma_needs_reservation(h, vma, addr); 1035 if (chg < 0) 1036 return ERR_PTR(-VM_FAULT_OOM); 1037 if (chg) 1038 if (hugetlb_get_quota(inode->i_mapping, chg)) 1039 return ERR_PTR(-VM_FAULT_SIGBUS); 1040 1041 spin_lock(&hugetlb_lock); 1042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 1043 spin_unlock(&hugetlb_lock); 1044 1045 if (!page) { 1046 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1047 if (!page) { 1048 hugetlb_put_quota(inode->i_mapping, chg); 1049 return ERR_PTR(-VM_FAULT_SIGBUS); 1050 } 1051 } 1052 1053 set_page_private(page, (unsigned long) mapping); 1054 1055 vma_commit_reservation(h, vma, addr); 1056 1057 return page; 1058 } 1059 1060 int __weak alloc_bootmem_huge_page(struct hstate *h) 1061 { 1062 struct huge_bootmem_page *m; 1063 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 1064 1065 while (nr_nodes) { 1066 void *addr; 1067 1068 addr = __alloc_bootmem_node_nopanic( 1069 NODE_DATA(hstate_next_node_to_alloc(h, 1070 &node_states[N_HIGH_MEMORY])), 1071 huge_page_size(h), huge_page_size(h), 0); 1072 1073 if (addr) { 1074 /* 1075 * Use the beginning of the huge page to store the 1076 * huge_bootmem_page struct (until gather_bootmem 1077 * puts them into the mem_map). 1078 */ 1079 m = addr; 1080 goto found; 1081 } 1082 nr_nodes--; 1083 } 1084 return 0; 1085 1086 found: 1087 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1088 /* Put them into a private list first because mem_map is not up yet */ 1089 list_add(&m->list, &huge_boot_pages); 1090 m->hstate = h; 1091 return 1; 1092 } 1093 1094 static void prep_compound_huge_page(struct page *page, int order) 1095 { 1096 if (unlikely(order > (MAX_ORDER - 1))) 1097 prep_compound_gigantic_page(page, order); 1098 else 1099 prep_compound_page(page, order); 1100 } 1101 1102 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1103 static void __init gather_bootmem_prealloc(void) 1104 { 1105 struct huge_bootmem_page *m; 1106 1107 list_for_each_entry(m, &huge_boot_pages, list) { 1108 struct hstate *h = m->hstate; 1109 struct page *page; 1110 1111 #ifdef CONFIG_HIGHMEM 1112 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1113 free_bootmem_late((unsigned long)m, 1114 sizeof(struct huge_bootmem_page)); 1115 #else 1116 page = virt_to_page(m); 1117 #endif 1118 __ClearPageReserved(page); 1119 WARN_ON(page_count(page) != 1); 1120 prep_compound_huge_page(page, h->order); 1121 prep_new_huge_page(h, page, page_to_nid(page)); 1122 /* 1123 * If we had gigantic hugepages allocated at boot time, we need 1124 * to restore the 'stolen' pages to totalram_pages in order to 1125 * fix confusing memory reports from free(1) and another 1126 * side-effects, like CommitLimit going negative. 1127 */ 1128 if (h->order > (MAX_ORDER - 1)) 1129 totalram_pages += 1 << h->order; 1130 } 1131 } 1132 1133 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1134 { 1135 unsigned long i; 1136 1137 for (i = 0; i < h->max_huge_pages; ++i) { 1138 if (h->order >= MAX_ORDER) { 1139 if (!alloc_bootmem_huge_page(h)) 1140 break; 1141 } else if (!alloc_fresh_huge_page(h, 1142 &node_states[N_HIGH_MEMORY])) 1143 break; 1144 } 1145 h->max_huge_pages = i; 1146 } 1147 1148 static void __init hugetlb_init_hstates(void) 1149 { 1150 struct hstate *h; 1151 1152 for_each_hstate(h) { 1153 /* oversize hugepages were init'ed in early boot */ 1154 if (h->order < MAX_ORDER) 1155 hugetlb_hstate_alloc_pages(h); 1156 } 1157 } 1158 1159 static char * __init memfmt(char *buf, unsigned long n) 1160 { 1161 if (n >= (1UL << 30)) 1162 sprintf(buf, "%lu GB", n >> 30); 1163 else if (n >= (1UL << 20)) 1164 sprintf(buf, "%lu MB", n >> 20); 1165 else 1166 sprintf(buf, "%lu KB", n >> 10); 1167 return buf; 1168 } 1169 1170 static void __init report_hugepages(void) 1171 { 1172 struct hstate *h; 1173 1174 for_each_hstate(h) { 1175 char buf[32]; 1176 printk(KERN_INFO "HugeTLB registered %s page size, " 1177 "pre-allocated %ld pages\n", 1178 memfmt(buf, huge_page_size(h)), 1179 h->free_huge_pages); 1180 } 1181 } 1182 1183 #ifdef CONFIG_HIGHMEM 1184 static void try_to_free_low(struct hstate *h, unsigned long count, 1185 nodemask_t *nodes_allowed) 1186 { 1187 int i; 1188 1189 if (h->order >= MAX_ORDER) 1190 return; 1191 1192 for_each_node_mask(i, *nodes_allowed) { 1193 struct page *page, *next; 1194 struct list_head *freel = &h->hugepage_freelists[i]; 1195 list_for_each_entry_safe(page, next, freel, lru) { 1196 if (count >= h->nr_huge_pages) 1197 return; 1198 if (PageHighMem(page)) 1199 continue; 1200 list_del(&page->lru); 1201 update_and_free_page(h, page); 1202 h->free_huge_pages--; 1203 h->free_huge_pages_node[page_to_nid(page)]--; 1204 } 1205 } 1206 } 1207 #else 1208 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1209 nodemask_t *nodes_allowed) 1210 { 1211 } 1212 #endif 1213 1214 /* 1215 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1216 * balanced by operating on them in a round-robin fashion. 1217 * Returns 1 if an adjustment was made. 1218 */ 1219 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1220 int delta) 1221 { 1222 int start_nid, next_nid; 1223 int ret = 0; 1224 1225 VM_BUG_ON(delta != -1 && delta != 1); 1226 1227 if (delta < 0) 1228 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 1229 else 1230 start_nid = hstate_next_node_to_free(h, nodes_allowed); 1231 next_nid = start_nid; 1232 1233 do { 1234 int nid = next_nid; 1235 if (delta < 0) { 1236 /* 1237 * To shrink on this node, there must be a surplus page 1238 */ 1239 if (!h->surplus_huge_pages_node[nid]) { 1240 next_nid = hstate_next_node_to_alloc(h, 1241 nodes_allowed); 1242 continue; 1243 } 1244 } 1245 if (delta > 0) { 1246 /* 1247 * Surplus cannot exceed the total number of pages 1248 */ 1249 if (h->surplus_huge_pages_node[nid] >= 1250 h->nr_huge_pages_node[nid]) { 1251 next_nid = hstate_next_node_to_free(h, 1252 nodes_allowed); 1253 continue; 1254 } 1255 } 1256 1257 h->surplus_huge_pages += delta; 1258 h->surplus_huge_pages_node[nid] += delta; 1259 ret = 1; 1260 break; 1261 } while (next_nid != start_nid); 1262 1263 return ret; 1264 } 1265 1266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1267 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1268 nodemask_t *nodes_allowed) 1269 { 1270 unsigned long min_count, ret; 1271 1272 if (h->order >= MAX_ORDER) 1273 return h->max_huge_pages; 1274 1275 /* 1276 * Increase the pool size 1277 * First take pages out of surplus state. Then make up the 1278 * remaining difference by allocating fresh huge pages. 1279 * 1280 * We might race with alloc_buddy_huge_page() here and be unable 1281 * to convert a surplus huge page to a normal huge page. That is 1282 * not critical, though, it just means the overall size of the 1283 * pool might be one hugepage larger than it needs to be, but 1284 * within all the constraints specified by the sysctls. 1285 */ 1286 spin_lock(&hugetlb_lock); 1287 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1288 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1289 break; 1290 } 1291 1292 while (count > persistent_huge_pages(h)) { 1293 /* 1294 * If this allocation races such that we no longer need the 1295 * page, free_huge_page will handle it by freeing the page 1296 * and reducing the surplus. 1297 */ 1298 spin_unlock(&hugetlb_lock); 1299 ret = alloc_fresh_huge_page(h, nodes_allowed); 1300 spin_lock(&hugetlb_lock); 1301 if (!ret) 1302 goto out; 1303 1304 /* Bail for signals. Probably ctrl-c from user */ 1305 if (signal_pending(current)) 1306 goto out; 1307 } 1308 1309 /* 1310 * Decrease the pool size 1311 * First return free pages to the buddy allocator (being careful 1312 * to keep enough around to satisfy reservations). Then place 1313 * pages into surplus state as needed so the pool will shrink 1314 * to the desired size as pages become free. 1315 * 1316 * By placing pages into the surplus state independent of the 1317 * overcommit value, we are allowing the surplus pool size to 1318 * exceed overcommit. There are few sane options here. Since 1319 * alloc_buddy_huge_page() is checking the global counter, 1320 * though, we'll note that we're not allowed to exceed surplus 1321 * and won't grow the pool anywhere else. Not until one of the 1322 * sysctls are changed, or the surplus pages go out of use. 1323 */ 1324 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1325 min_count = max(count, min_count); 1326 try_to_free_low(h, min_count, nodes_allowed); 1327 while (min_count < persistent_huge_pages(h)) { 1328 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1329 break; 1330 } 1331 while (count < persistent_huge_pages(h)) { 1332 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1333 break; 1334 } 1335 out: 1336 ret = persistent_huge_pages(h); 1337 spin_unlock(&hugetlb_lock); 1338 return ret; 1339 } 1340 1341 #define HSTATE_ATTR_RO(_name) \ 1342 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1343 1344 #define HSTATE_ATTR(_name) \ 1345 static struct kobj_attribute _name##_attr = \ 1346 __ATTR(_name, 0644, _name##_show, _name##_store) 1347 1348 static struct kobject *hugepages_kobj; 1349 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1350 1351 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1352 1353 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1354 { 1355 int i; 1356 1357 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1358 if (hstate_kobjs[i] == kobj) { 1359 if (nidp) 1360 *nidp = NUMA_NO_NODE; 1361 return &hstates[i]; 1362 } 1363 1364 return kobj_to_node_hstate(kobj, nidp); 1365 } 1366 1367 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1368 struct kobj_attribute *attr, char *buf) 1369 { 1370 struct hstate *h; 1371 unsigned long nr_huge_pages; 1372 int nid; 1373 1374 h = kobj_to_hstate(kobj, &nid); 1375 if (nid == NUMA_NO_NODE) 1376 nr_huge_pages = h->nr_huge_pages; 1377 else 1378 nr_huge_pages = h->nr_huge_pages_node[nid]; 1379 1380 return sprintf(buf, "%lu\n", nr_huge_pages); 1381 } 1382 1383 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1384 struct kobject *kobj, struct kobj_attribute *attr, 1385 const char *buf, size_t len) 1386 { 1387 int err; 1388 int nid; 1389 unsigned long count; 1390 struct hstate *h; 1391 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1392 1393 err = strict_strtoul(buf, 10, &count); 1394 if (err) 1395 goto out; 1396 1397 h = kobj_to_hstate(kobj, &nid); 1398 if (h->order >= MAX_ORDER) { 1399 err = -EINVAL; 1400 goto out; 1401 } 1402 1403 if (nid == NUMA_NO_NODE) { 1404 /* 1405 * global hstate attribute 1406 */ 1407 if (!(obey_mempolicy && 1408 init_nodemask_of_mempolicy(nodes_allowed))) { 1409 NODEMASK_FREE(nodes_allowed); 1410 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1411 } 1412 } else if (nodes_allowed) { 1413 /* 1414 * per node hstate attribute: adjust count to global, 1415 * but restrict alloc/free to the specified node. 1416 */ 1417 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1418 init_nodemask_of_node(nodes_allowed, nid); 1419 } else 1420 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1421 1422 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1423 1424 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1425 NODEMASK_FREE(nodes_allowed); 1426 1427 return len; 1428 out: 1429 NODEMASK_FREE(nodes_allowed); 1430 return err; 1431 } 1432 1433 static ssize_t nr_hugepages_show(struct kobject *kobj, 1434 struct kobj_attribute *attr, char *buf) 1435 { 1436 return nr_hugepages_show_common(kobj, attr, buf); 1437 } 1438 1439 static ssize_t nr_hugepages_store(struct kobject *kobj, 1440 struct kobj_attribute *attr, const char *buf, size_t len) 1441 { 1442 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1443 } 1444 HSTATE_ATTR(nr_hugepages); 1445 1446 #ifdef CONFIG_NUMA 1447 1448 /* 1449 * hstate attribute for optionally mempolicy-based constraint on persistent 1450 * huge page alloc/free. 1451 */ 1452 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1453 struct kobj_attribute *attr, char *buf) 1454 { 1455 return nr_hugepages_show_common(kobj, attr, buf); 1456 } 1457 1458 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1459 struct kobj_attribute *attr, const char *buf, size_t len) 1460 { 1461 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1462 } 1463 HSTATE_ATTR(nr_hugepages_mempolicy); 1464 #endif 1465 1466 1467 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1468 struct kobj_attribute *attr, char *buf) 1469 { 1470 struct hstate *h = kobj_to_hstate(kobj, NULL); 1471 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1472 } 1473 1474 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1475 struct kobj_attribute *attr, const char *buf, size_t count) 1476 { 1477 int err; 1478 unsigned long input; 1479 struct hstate *h = kobj_to_hstate(kobj, NULL); 1480 1481 if (h->order >= MAX_ORDER) 1482 return -EINVAL; 1483 1484 err = strict_strtoul(buf, 10, &input); 1485 if (err) 1486 return err; 1487 1488 spin_lock(&hugetlb_lock); 1489 h->nr_overcommit_huge_pages = input; 1490 spin_unlock(&hugetlb_lock); 1491 1492 return count; 1493 } 1494 HSTATE_ATTR(nr_overcommit_hugepages); 1495 1496 static ssize_t free_hugepages_show(struct kobject *kobj, 1497 struct kobj_attribute *attr, char *buf) 1498 { 1499 struct hstate *h; 1500 unsigned long free_huge_pages; 1501 int nid; 1502 1503 h = kobj_to_hstate(kobj, &nid); 1504 if (nid == NUMA_NO_NODE) 1505 free_huge_pages = h->free_huge_pages; 1506 else 1507 free_huge_pages = h->free_huge_pages_node[nid]; 1508 1509 return sprintf(buf, "%lu\n", free_huge_pages); 1510 } 1511 HSTATE_ATTR_RO(free_hugepages); 1512 1513 static ssize_t resv_hugepages_show(struct kobject *kobj, 1514 struct kobj_attribute *attr, char *buf) 1515 { 1516 struct hstate *h = kobj_to_hstate(kobj, NULL); 1517 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1518 } 1519 HSTATE_ATTR_RO(resv_hugepages); 1520 1521 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1522 struct kobj_attribute *attr, char *buf) 1523 { 1524 struct hstate *h; 1525 unsigned long surplus_huge_pages; 1526 int nid; 1527 1528 h = kobj_to_hstate(kobj, &nid); 1529 if (nid == NUMA_NO_NODE) 1530 surplus_huge_pages = h->surplus_huge_pages; 1531 else 1532 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1533 1534 return sprintf(buf, "%lu\n", surplus_huge_pages); 1535 } 1536 HSTATE_ATTR_RO(surplus_hugepages); 1537 1538 static struct attribute *hstate_attrs[] = { 1539 &nr_hugepages_attr.attr, 1540 &nr_overcommit_hugepages_attr.attr, 1541 &free_hugepages_attr.attr, 1542 &resv_hugepages_attr.attr, 1543 &surplus_hugepages_attr.attr, 1544 #ifdef CONFIG_NUMA 1545 &nr_hugepages_mempolicy_attr.attr, 1546 #endif 1547 NULL, 1548 }; 1549 1550 static struct attribute_group hstate_attr_group = { 1551 .attrs = hstate_attrs, 1552 }; 1553 1554 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1555 struct kobject **hstate_kobjs, 1556 struct attribute_group *hstate_attr_group) 1557 { 1558 int retval; 1559 int hi = h - hstates; 1560 1561 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1562 if (!hstate_kobjs[hi]) 1563 return -ENOMEM; 1564 1565 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1566 if (retval) 1567 kobject_put(hstate_kobjs[hi]); 1568 1569 return retval; 1570 } 1571 1572 static void __init hugetlb_sysfs_init(void) 1573 { 1574 struct hstate *h; 1575 int err; 1576 1577 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1578 if (!hugepages_kobj) 1579 return; 1580 1581 for_each_hstate(h) { 1582 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1583 hstate_kobjs, &hstate_attr_group); 1584 if (err) 1585 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1586 h->name); 1587 } 1588 } 1589 1590 #ifdef CONFIG_NUMA 1591 1592 /* 1593 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1594 * with node sysdevs in node_devices[] using a parallel array. The array 1595 * index of a node sysdev or _hstate == node id. 1596 * This is here to avoid any static dependency of the node sysdev driver, in 1597 * the base kernel, on the hugetlb module. 1598 */ 1599 struct node_hstate { 1600 struct kobject *hugepages_kobj; 1601 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1602 }; 1603 struct node_hstate node_hstates[MAX_NUMNODES]; 1604 1605 /* 1606 * A subset of global hstate attributes for node sysdevs 1607 */ 1608 static struct attribute *per_node_hstate_attrs[] = { 1609 &nr_hugepages_attr.attr, 1610 &free_hugepages_attr.attr, 1611 &surplus_hugepages_attr.attr, 1612 NULL, 1613 }; 1614 1615 static struct attribute_group per_node_hstate_attr_group = { 1616 .attrs = per_node_hstate_attrs, 1617 }; 1618 1619 /* 1620 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj. 1621 * Returns node id via non-NULL nidp. 1622 */ 1623 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1624 { 1625 int nid; 1626 1627 for (nid = 0; nid < nr_node_ids; nid++) { 1628 struct node_hstate *nhs = &node_hstates[nid]; 1629 int i; 1630 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1631 if (nhs->hstate_kobjs[i] == kobj) { 1632 if (nidp) 1633 *nidp = nid; 1634 return &hstates[i]; 1635 } 1636 } 1637 1638 BUG(); 1639 return NULL; 1640 } 1641 1642 /* 1643 * Unregister hstate attributes from a single node sysdev. 1644 * No-op if no hstate attributes attached. 1645 */ 1646 void hugetlb_unregister_node(struct node *node) 1647 { 1648 struct hstate *h; 1649 struct node_hstate *nhs = &node_hstates[node->sysdev.id]; 1650 1651 if (!nhs->hugepages_kobj) 1652 return; /* no hstate attributes */ 1653 1654 for_each_hstate(h) 1655 if (nhs->hstate_kobjs[h - hstates]) { 1656 kobject_put(nhs->hstate_kobjs[h - hstates]); 1657 nhs->hstate_kobjs[h - hstates] = NULL; 1658 } 1659 1660 kobject_put(nhs->hugepages_kobj); 1661 nhs->hugepages_kobj = NULL; 1662 } 1663 1664 /* 1665 * hugetlb module exit: unregister hstate attributes from node sysdevs 1666 * that have them. 1667 */ 1668 static void hugetlb_unregister_all_nodes(void) 1669 { 1670 int nid; 1671 1672 /* 1673 * disable node sysdev registrations. 1674 */ 1675 register_hugetlbfs_with_node(NULL, NULL); 1676 1677 /* 1678 * remove hstate attributes from any nodes that have them. 1679 */ 1680 for (nid = 0; nid < nr_node_ids; nid++) 1681 hugetlb_unregister_node(&node_devices[nid]); 1682 } 1683 1684 /* 1685 * Register hstate attributes for a single node sysdev. 1686 * No-op if attributes already registered. 1687 */ 1688 void hugetlb_register_node(struct node *node) 1689 { 1690 struct hstate *h; 1691 struct node_hstate *nhs = &node_hstates[node->sysdev.id]; 1692 int err; 1693 1694 if (nhs->hugepages_kobj) 1695 return; /* already allocated */ 1696 1697 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1698 &node->sysdev.kobj); 1699 if (!nhs->hugepages_kobj) 1700 return; 1701 1702 for_each_hstate(h) { 1703 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1704 nhs->hstate_kobjs, 1705 &per_node_hstate_attr_group); 1706 if (err) { 1707 printk(KERN_ERR "Hugetlb: Unable to add hstate %s" 1708 " for node %d\n", 1709 h->name, node->sysdev.id); 1710 hugetlb_unregister_node(node); 1711 break; 1712 } 1713 } 1714 } 1715 1716 /* 1717 * hugetlb init time: register hstate attributes for all registered node 1718 * sysdevs of nodes that have memory. All on-line nodes should have 1719 * registered their associated sysdev by this time. 1720 */ 1721 static void hugetlb_register_all_nodes(void) 1722 { 1723 int nid; 1724 1725 for_each_node_state(nid, N_HIGH_MEMORY) { 1726 struct node *node = &node_devices[nid]; 1727 if (node->sysdev.id == nid) 1728 hugetlb_register_node(node); 1729 } 1730 1731 /* 1732 * Let the node sysdev driver know we're here so it can 1733 * [un]register hstate attributes on node hotplug. 1734 */ 1735 register_hugetlbfs_with_node(hugetlb_register_node, 1736 hugetlb_unregister_node); 1737 } 1738 #else /* !CONFIG_NUMA */ 1739 1740 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1741 { 1742 BUG(); 1743 if (nidp) 1744 *nidp = -1; 1745 return NULL; 1746 } 1747 1748 static void hugetlb_unregister_all_nodes(void) { } 1749 1750 static void hugetlb_register_all_nodes(void) { } 1751 1752 #endif 1753 1754 static void __exit hugetlb_exit(void) 1755 { 1756 struct hstate *h; 1757 1758 hugetlb_unregister_all_nodes(); 1759 1760 for_each_hstate(h) { 1761 kobject_put(hstate_kobjs[h - hstates]); 1762 } 1763 1764 kobject_put(hugepages_kobj); 1765 } 1766 module_exit(hugetlb_exit); 1767 1768 static int __init hugetlb_init(void) 1769 { 1770 /* Some platform decide whether they support huge pages at boot 1771 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1772 * there is no such support 1773 */ 1774 if (HPAGE_SHIFT == 0) 1775 return 0; 1776 1777 if (!size_to_hstate(default_hstate_size)) { 1778 default_hstate_size = HPAGE_SIZE; 1779 if (!size_to_hstate(default_hstate_size)) 1780 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1781 } 1782 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1783 if (default_hstate_max_huge_pages) 1784 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1785 1786 hugetlb_init_hstates(); 1787 1788 gather_bootmem_prealloc(); 1789 1790 report_hugepages(); 1791 1792 hugetlb_sysfs_init(); 1793 1794 hugetlb_register_all_nodes(); 1795 1796 return 0; 1797 } 1798 module_init(hugetlb_init); 1799 1800 /* Should be called on processing a hugepagesz=... option */ 1801 void __init hugetlb_add_hstate(unsigned order) 1802 { 1803 struct hstate *h; 1804 unsigned long i; 1805 1806 if (size_to_hstate(PAGE_SIZE << order)) { 1807 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1808 return; 1809 } 1810 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1811 BUG_ON(order == 0); 1812 h = &hstates[max_hstate++]; 1813 h->order = order; 1814 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1815 h->nr_huge_pages = 0; 1816 h->free_huge_pages = 0; 1817 for (i = 0; i < MAX_NUMNODES; ++i) 1818 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1819 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); 1820 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); 1821 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1822 huge_page_size(h)/1024); 1823 1824 parsed_hstate = h; 1825 } 1826 1827 static int __init hugetlb_nrpages_setup(char *s) 1828 { 1829 unsigned long *mhp; 1830 static unsigned long *last_mhp; 1831 1832 /* 1833 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1834 * so this hugepages= parameter goes to the "default hstate". 1835 */ 1836 if (!max_hstate) 1837 mhp = &default_hstate_max_huge_pages; 1838 else 1839 mhp = &parsed_hstate->max_huge_pages; 1840 1841 if (mhp == last_mhp) { 1842 printk(KERN_WARNING "hugepages= specified twice without " 1843 "interleaving hugepagesz=, ignoring\n"); 1844 return 1; 1845 } 1846 1847 if (sscanf(s, "%lu", mhp) <= 0) 1848 *mhp = 0; 1849 1850 /* 1851 * Global state is always initialized later in hugetlb_init. 1852 * But we need to allocate >= MAX_ORDER hstates here early to still 1853 * use the bootmem allocator. 1854 */ 1855 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1856 hugetlb_hstate_alloc_pages(parsed_hstate); 1857 1858 last_mhp = mhp; 1859 1860 return 1; 1861 } 1862 __setup("hugepages=", hugetlb_nrpages_setup); 1863 1864 static int __init hugetlb_default_setup(char *s) 1865 { 1866 default_hstate_size = memparse(s, &s); 1867 return 1; 1868 } 1869 __setup("default_hugepagesz=", hugetlb_default_setup); 1870 1871 static unsigned int cpuset_mems_nr(unsigned int *array) 1872 { 1873 int node; 1874 unsigned int nr = 0; 1875 1876 for_each_node_mask(node, cpuset_current_mems_allowed) 1877 nr += array[node]; 1878 1879 return nr; 1880 } 1881 1882 #ifdef CONFIG_SYSCTL 1883 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 1884 struct ctl_table *table, int write, 1885 void __user *buffer, size_t *length, loff_t *ppos) 1886 { 1887 struct hstate *h = &default_hstate; 1888 unsigned long tmp; 1889 int ret; 1890 1891 tmp = h->max_huge_pages; 1892 1893 if (write && h->order >= MAX_ORDER) 1894 return -EINVAL; 1895 1896 table->data = &tmp; 1897 table->maxlen = sizeof(unsigned long); 1898 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 1899 if (ret) 1900 goto out; 1901 1902 if (write) { 1903 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 1904 GFP_KERNEL | __GFP_NORETRY); 1905 if (!(obey_mempolicy && 1906 init_nodemask_of_mempolicy(nodes_allowed))) { 1907 NODEMASK_FREE(nodes_allowed); 1908 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1909 } 1910 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 1911 1912 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1913 NODEMASK_FREE(nodes_allowed); 1914 } 1915 out: 1916 return ret; 1917 } 1918 1919 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1920 void __user *buffer, size_t *length, loff_t *ppos) 1921 { 1922 1923 return hugetlb_sysctl_handler_common(false, table, write, 1924 buffer, length, ppos); 1925 } 1926 1927 #ifdef CONFIG_NUMA 1928 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 1929 void __user *buffer, size_t *length, loff_t *ppos) 1930 { 1931 return hugetlb_sysctl_handler_common(true, table, write, 1932 buffer, length, ppos); 1933 } 1934 #endif /* CONFIG_NUMA */ 1935 1936 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 1937 void __user *buffer, 1938 size_t *length, loff_t *ppos) 1939 { 1940 proc_dointvec(table, write, buffer, length, ppos); 1941 if (hugepages_treat_as_movable) 1942 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 1943 else 1944 htlb_alloc_mask = GFP_HIGHUSER; 1945 return 0; 1946 } 1947 1948 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 1949 void __user *buffer, 1950 size_t *length, loff_t *ppos) 1951 { 1952 struct hstate *h = &default_hstate; 1953 unsigned long tmp; 1954 int ret; 1955 1956 tmp = h->nr_overcommit_huge_pages; 1957 1958 if (write && h->order >= MAX_ORDER) 1959 return -EINVAL; 1960 1961 table->data = &tmp; 1962 table->maxlen = sizeof(unsigned long); 1963 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 1964 if (ret) 1965 goto out; 1966 1967 if (write) { 1968 spin_lock(&hugetlb_lock); 1969 h->nr_overcommit_huge_pages = tmp; 1970 spin_unlock(&hugetlb_lock); 1971 } 1972 out: 1973 return ret; 1974 } 1975 1976 #endif /* CONFIG_SYSCTL */ 1977 1978 void hugetlb_report_meminfo(struct seq_file *m) 1979 { 1980 struct hstate *h = &default_hstate; 1981 seq_printf(m, 1982 "HugePages_Total: %5lu\n" 1983 "HugePages_Free: %5lu\n" 1984 "HugePages_Rsvd: %5lu\n" 1985 "HugePages_Surp: %5lu\n" 1986 "Hugepagesize: %8lu kB\n", 1987 h->nr_huge_pages, 1988 h->free_huge_pages, 1989 h->resv_huge_pages, 1990 h->surplus_huge_pages, 1991 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 1992 } 1993 1994 int hugetlb_report_node_meminfo(int nid, char *buf) 1995 { 1996 struct hstate *h = &default_hstate; 1997 return sprintf(buf, 1998 "Node %d HugePages_Total: %5u\n" 1999 "Node %d HugePages_Free: %5u\n" 2000 "Node %d HugePages_Surp: %5u\n", 2001 nid, h->nr_huge_pages_node[nid], 2002 nid, h->free_huge_pages_node[nid], 2003 nid, h->surplus_huge_pages_node[nid]); 2004 } 2005 2006 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2007 unsigned long hugetlb_total_pages(void) 2008 { 2009 struct hstate *h = &default_hstate; 2010 return h->nr_huge_pages * pages_per_huge_page(h); 2011 } 2012 2013 static int hugetlb_acct_memory(struct hstate *h, long delta) 2014 { 2015 int ret = -ENOMEM; 2016 2017 spin_lock(&hugetlb_lock); 2018 /* 2019 * When cpuset is configured, it breaks the strict hugetlb page 2020 * reservation as the accounting is done on a global variable. Such 2021 * reservation is completely rubbish in the presence of cpuset because 2022 * the reservation is not checked against page availability for the 2023 * current cpuset. Application can still potentially OOM'ed by kernel 2024 * with lack of free htlb page in cpuset that the task is in. 2025 * Attempt to enforce strict accounting with cpuset is almost 2026 * impossible (or too ugly) because cpuset is too fluid that 2027 * task or memory node can be dynamically moved between cpusets. 2028 * 2029 * The change of semantics for shared hugetlb mapping with cpuset is 2030 * undesirable. However, in order to preserve some of the semantics, 2031 * we fall back to check against current free page availability as 2032 * a best attempt and hopefully to minimize the impact of changing 2033 * semantics that cpuset has. 2034 */ 2035 if (delta > 0) { 2036 if (gather_surplus_pages(h, delta) < 0) 2037 goto out; 2038 2039 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2040 return_unused_surplus_pages(h, delta); 2041 goto out; 2042 } 2043 } 2044 2045 ret = 0; 2046 if (delta < 0) 2047 return_unused_surplus_pages(h, (unsigned long) -delta); 2048 2049 out: 2050 spin_unlock(&hugetlb_lock); 2051 return ret; 2052 } 2053 2054 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2055 { 2056 struct resv_map *reservations = vma_resv_map(vma); 2057 2058 /* 2059 * This new VMA should share its siblings reservation map if present. 2060 * The VMA will only ever have a valid reservation map pointer where 2061 * it is being copied for another still existing VMA. As that VMA 2062 * has a reference to the reservation map it cannot disappear until 2063 * after this open call completes. It is therefore safe to take a 2064 * new reference here without additional locking. 2065 */ 2066 if (reservations) 2067 kref_get(&reservations->refs); 2068 } 2069 2070 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2071 { 2072 struct hstate *h = hstate_vma(vma); 2073 struct resv_map *reservations = vma_resv_map(vma); 2074 unsigned long reserve; 2075 unsigned long start; 2076 unsigned long end; 2077 2078 if (reservations) { 2079 start = vma_hugecache_offset(h, vma, vma->vm_start); 2080 end = vma_hugecache_offset(h, vma, vma->vm_end); 2081 2082 reserve = (end - start) - 2083 region_count(&reservations->regions, start, end); 2084 2085 kref_put(&reservations->refs, resv_map_release); 2086 2087 if (reserve) { 2088 hugetlb_acct_memory(h, -reserve); 2089 hugetlb_put_quota(vma->vm_file->f_mapping, reserve); 2090 } 2091 } 2092 } 2093 2094 /* 2095 * We cannot handle pagefaults against hugetlb pages at all. They cause 2096 * handle_mm_fault() to try to instantiate regular-sized pages in the 2097 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2098 * this far. 2099 */ 2100 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2101 { 2102 BUG(); 2103 return 0; 2104 } 2105 2106 const struct vm_operations_struct hugetlb_vm_ops = { 2107 .fault = hugetlb_vm_op_fault, 2108 .open = hugetlb_vm_op_open, 2109 .close = hugetlb_vm_op_close, 2110 }; 2111 2112 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2113 int writable) 2114 { 2115 pte_t entry; 2116 2117 if (writable) { 2118 entry = 2119 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 2120 } else { 2121 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 2122 } 2123 entry = pte_mkyoung(entry); 2124 entry = pte_mkhuge(entry); 2125 2126 return entry; 2127 } 2128 2129 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2130 unsigned long address, pte_t *ptep) 2131 { 2132 pte_t entry; 2133 2134 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 2135 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2136 update_mmu_cache(vma, address, ptep); 2137 } 2138 2139 2140 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2141 struct vm_area_struct *vma) 2142 { 2143 pte_t *src_pte, *dst_pte, entry; 2144 struct page *ptepage; 2145 unsigned long addr; 2146 int cow; 2147 struct hstate *h = hstate_vma(vma); 2148 unsigned long sz = huge_page_size(h); 2149 2150 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2151 2152 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2153 src_pte = huge_pte_offset(src, addr); 2154 if (!src_pte) 2155 continue; 2156 dst_pte = huge_pte_alloc(dst, addr, sz); 2157 if (!dst_pte) 2158 goto nomem; 2159 2160 /* If the pagetables are shared don't copy or take references */ 2161 if (dst_pte == src_pte) 2162 continue; 2163 2164 spin_lock(&dst->page_table_lock); 2165 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 2166 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2167 if (cow) 2168 huge_ptep_set_wrprotect(src, addr, src_pte); 2169 entry = huge_ptep_get(src_pte); 2170 ptepage = pte_page(entry); 2171 get_page(ptepage); 2172 page_dup_rmap(ptepage); 2173 set_huge_pte_at(dst, addr, dst_pte, entry); 2174 } 2175 spin_unlock(&src->page_table_lock); 2176 spin_unlock(&dst->page_table_lock); 2177 } 2178 return 0; 2179 2180 nomem: 2181 return -ENOMEM; 2182 } 2183 2184 static int is_hugetlb_entry_migration(pte_t pte) 2185 { 2186 swp_entry_t swp; 2187 2188 if (huge_pte_none(pte) || pte_present(pte)) 2189 return 0; 2190 swp = pte_to_swp_entry(pte); 2191 if (non_swap_entry(swp) && is_migration_entry(swp)) 2192 return 1; 2193 else 2194 return 0; 2195 } 2196 2197 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2198 { 2199 swp_entry_t swp; 2200 2201 if (huge_pte_none(pte) || pte_present(pte)) 2202 return 0; 2203 swp = pte_to_swp_entry(pte); 2204 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2205 return 1; 2206 else 2207 return 0; 2208 } 2209 2210 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2211 unsigned long end, struct page *ref_page) 2212 { 2213 struct mm_struct *mm = vma->vm_mm; 2214 unsigned long address; 2215 pte_t *ptep; 2216 pte_t pte; 2217 struct page *page; 2218 struct page *tmp; 2219 struct hstate *h = hstate_vma(vma); 2220 unsigned long sz = huge_page_size(h); 2221 2222 /* 2223 * A page gathering list, protected by per file i_mmap_mutex. The 2224 * lock is used to avoid list corruption from multiple unmapping 2225 * of the same page since we are using page->lru. 2226 */ 2227 LIST_HEAD(page_list); 2228 2229 WARN_ON(!is_vm_hugetlb_page(vma)); 2230 BUG_ON(start & ~huge_page_mask(h)); 2231 BUG_ON(end & ~huge_page_mask(h)); 2232 2233 mmu_notifier_invalidate_range_start(mm, start, end); 2234 spin_lock(&mm->page_table_lock); 2235 for (address = start; address < end; address += sz) { 2236 ptep = huge_pte_offset(mm, address); 2237 if (!ptep) 2238 continue; 2239 2240 if (huge_pmd_unshare(mm, &address, ptep)) 2241 continue; 2242 2243 /* 2244 * If a reference page is supplied, it is because a specific 2245 * page is being unmapped, not a range. Ensure the page we 2246 * are about to unmap is the actual page of interest. 2247 */ 2248 if (ref_page) { 2249 pte = huge_ptep_get(ptep); 2250 if (huge_pte_none(pte)) 2251 continue; 2252 page = pte_page(pte); 2253 if (page != ref_page) 2254 continue; 2255 2256 /* 2257 * Mark the VMA as having unmapped its page so that 2258 * future faults in this VMA will fail rather than 2259 * looking like data was lost 2260 */ 2261 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2262 } 2263 2264 pte = huge_ptep_get_and_clear(mm, address, ptep); 2265 if (huge_pte_none(pte)) 2266 continue; 2267 2268 /* 2269 * HWPoisoned hugepage is already unmapped and dropped reference 2270 */ 2271 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) 2272 continue; 2273 2274 page = pte_page(pte); 2275 if (pte_dirty(pte)) 2276 set_page_dirty(page); 2277 list_add(&page->lru, &page_list); 2278 } 2279 spin_unlock(&mm->page_table_lock); 2280 flush_tlb_range(vma, start, end); 2281 mmu_notifier_invalidate_range_end(mm, start, end); 2282 list_for_each_entry_safe(page, tmp, &page_list, lru) { 2283 page_remove_rmap(page); 2284 list_del(&page->lru); 2285 put_page(page); 2286 } 2287 } 2288 2289 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2290 unsigned long end, struct page *ref_page) 2291 { 2292 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 2293 __unmap_hugepage_range(vma, start, end, ref_page); 2294 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 2295 } 2296 2297 /* 2298 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2299 * mappping it owns the reserve page for. The intention is to unmap the page 2300 * from other VMAs and let the children be SIGKILLed if they are faulting the 2301 * same region. 2302 */ 2303 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2304 struct page *page, unsigned long address) 2305 { 2306 struct hstate *h = hstate_vma(vma); 2307 struct vm_area_struct *iter_vma; 2308 struct address_space *mapping; 2309 struct prio_tree_iter iter; 2310 pgoff_t pgoff; 2311 2312 /* 2313 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2314 * from page cache lookup which is in HPAGE_SIZE units. 2315 */ 2316 address = address & huge_page_mask(h); 2317 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) 2318 + (vma->vm_pgoff >> PAGE_SHIFT); 2319 mapping = (struct address_space *)page_private(page); 2320 2321 /* 2322 * Take the mapping lock for the duration of the table walk. As 2323 * this mapping should be shared between all the VMAs, 2324 * __unmap_hugepage_range() is called as the lock is already held 2325 */ 2326 mutex_lock(&mapping->i_mmap_mutex); 2327 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 2328 /* Do not unmap the current VMA */ 2329 if (iter_vma == vma) 2330 continue; 2331 2332 /* 2333 * Unmap the page from other VMAs without their own reserves. 2334 * They get marked to be SIGKILLed if they fault in these 2335 * areas. This is because a future no-page fault on this VMA 2336 * could insert a zeroed page instead of the data existing 2337 * from the time of fork. This would look like data corruption 2338 */ 2339 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2340 __unmap_hugepage_range(iter_vma, 2341 address, address + huge_page_size(h), 2342 page); 2343 } 2344 mutex_unlock(&mapping->i_mmap_mutex); 2345 2346 return 1; 2347 } 2348 2349 /* 2350 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2351 */ 2352 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2353 unsigned long address, pte_t *ptep, pte_t pte, 2354 struct page *pagecache_page) 2355 { 2356 struct hstate *h = hstate_vma(vma); 2357 struct page *old_page, *new_page; 2358 int avoidcopy; 2359 int outside_reserve = 0; 2360 2361 old_page = pte_page(pte); 2362 2363 retry_avoidcopy: 2364 /* If no-one else is actually using this page, avoid the copy 2365 * and just make the page writable */ 2366 avoidcopy = (page_mapcount(old_page) == 1); 2367 if (avoidcopy) { 2368 if (PageAnon(old_page)) 2369 page_move_anon_rmap(old_page, vma, address); 2370 set_huge_ptep_writable(vma, address, ptep); 2371 return 0; 2372 } 2373 2374 /* 2375 * If the process that created a MAP_PRIVATE mapping is about to 2376 * perform a COW due to a shared page count, attempt to satisfy 2377 * the allocation without using the existing reserves. The pagecache 2378 * page is used to determine if the reserve at this address was 2379 * consumed or not. If reserves were used, a partial faulted mapping 2380 * at the time of fork() could consume its reserves on COW instead 2381 * of the full address range. 2382 */ 2383 if (!(vma->vm_flags & VM_MAYSHARE) && 2384 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2385 old_page != pagecache_page) 2386 outside_reserve = 1; 2387 2388 page_cache_get(old_page); 2389 2390 /* Drop page_table_lock as buddy allocator may be called */ 2391 spin_unlock(&mm->page_table_lock); 2392 new_page = alloc_huge_page(vma, address, outside_reserve); 2393 2394 if (IS_ERR(new_page)) { 2395 page_cache_release(old_page); 2396 2397 /* 2398 * If a process owning a MAP_PRIVATE mapping fails to COW, 2399 * it is due to references held by a child and an insufficient 2400 * huge page pool. To guarantee the original mappers 2401 * reliability, unmap the page from child processes. The child 2402 * may get SIGKILLed if it later faults. 2403 */ 2404 if (outside_reserve) { 2405 BUG_ON(huge_pte_none(pte)); 2406 if (unmap_ref_private(mm, vma, old_page, address)) { 2407 BUG_ON(page_count(old_page) != 1); 2408 BUG_ON(huge_pte_none(pte)); 2409 spin_lock(&mm->page_table_lock); 2410 goto retry_avoidcopy; 2411 } 2412 WARN_ON_ONCE(1); 2413 } 2414 2415 /* Caller expects lock to be held */ 2416 spin_lock(&mm->page_table_lock); 2417 return -PTR_ERR(new_page); 2418 } 2419 2420 /* 2421 * When the original hugepage is shared one, it does not have 2422 * anon_vma prepared. 2423 */ 2424 if (unlikely(anon_vma_prepare(vma))) { 2425 /* Caller expects lock to be held */ 2426 spin_lock(&mm->page_table_lock); 2427 return VM_FAULT_OOM; 2428 } 2429 2430 copy_user_huge_page(new_page, old_page, address, vma, 2431 pages_per_huge_page(h)); 2432 __SetPageUptodate(new_page); 2433 2434 /* 2435 * Retake the page_table_lock to check for racing updates 2436 * before the page tables are altered 2437 */ 2438 spin_lock(&mm->page_table_lock); 2439 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2440 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2441 /* Break COW */ 2442 mmu_notifier_invalidate_range_start(mm, 2443 address & huge_page_mask(h), 2444 (address & huge_page_mask(h)) + huge_page_size(h)); 2445 huge_ptep_clear_flush(vma, address, ptep); 2446 set_huge_pte_at(mm, address, ptep, 2447 make_huge_pte(vma, new_page, 1)); 2448 page_remove_rmap(old_page); 2449 hugepage_add_new_anon_rmap(new_page, vma, address); 2450 /* Make the old page be freed below */ 2451 new_page = old_page; 2452 mmu_notifier_invalidate_range_end(mm, 2453 address & huge_page_mask(h), 2454 (address & huge_page_mask(h)) + huge_page_size(h)); 2455 } 2456 page_cache_release(new_page); 2457 page_cache_release(old_page); 2458 return 0; 2459 } 2460 2461 /* Return the pagecache page at a given address within a VMA */ 2462 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2463 struct vm_area_struct *vma, unsigned long address) 2464 { 2465 struct address_space *mapping; 2466 pgoff_t idx; 2467 2468 mapping = vma->vm_file->f_mapping; 2469 idx = vma_hugecache_offset(h, vma, address); 2470 2471 return find_lock_page(mapping, idx); 2472 } 2473 2474 /* 2475 * Return whether there is a pagecache page to back given address within VMA. 2476 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2477 */ 2478 static bool hugetlbfs_pagecache_present(struct hstate *h, 2479 struct vm_area_struct *vma, unsigned long address) 2480 { 2481 struct address_space *mapping; 2482 pgoff_t idx; 2483 struct page *page; 2484 2485 mapping = vma->vm_file->f_mapping; 2486 idx = vma_hugecache_offset(h, vma, address); 2487 2488 page = find_get_page(mapping, idx); 2489 if (page) 2490 put_page(page); 2491 return page != NULL; 2492 } 2493 2494 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2495 unsigned long address, pte_t *ptep, unsigned int flags) 2496 { 2497 struct hstate *h = hstate_vma(vma); 2498 int ret = VM_FAULT_SIGBUS; 2499 pgoff_t idx; 2500 unsigned long size; 2501 struct page *page; 2502 struct address_space *mapping; 2503 pte_t new_pte; 2504 2505 /* 2506 * Currently, we are forced to kill the process in the event the 2507 * original mapper has unmapped pages from the child due to a failed 2508 * COW. Warn that such a situation has occurred as it may not be obvious 2509 */ 2510 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2511 printk(KERN_WARNING 2512 "PID %d killed due to inadequate hugepage pool\n", 2513 current->pid); 2514 return ret; 2515 } 2516 2517 mapping = vma->vm_file->f_mapping; 2518 idx = vma_hugecache_offset(h, vma, address); 2519 2520 /* 2521 * Use page lock to guard against racing truncation 2522 * before we get page_table_lock. 2523 */ 2524 retry: 2525 page = find_lock_page(mapping, idx); 2526 if (!page) { 2527 size = i_size_read(mapping->host) >> huge_page_shift(h); 2528 if (idx >= size) 2529 goto out; 2530 page = alloc_huge_page(vma, address, 0); 2531 if (IS_ERR(page)) { 2532 ret = -PTR_ERR(page); 2533 goto out; 2534 } 2535 clear_huge_page(page, address, pages_per_huge_page(h)); 2536 __SetPageUptodate(page); 2537 2538 if (vma->vm_flags & VM_MAYSHARE) { 2539 int err; 2540 struct inode *inode = mapping->host; 2541 2542 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2543 if (err) { 2544 put_page(page); 2545 if (err == -EEXIST) 2546 goto retry; 2547 goto out; 2548 } 2549 2550 spin_lock(&inode->i_lock); 2551 inode->i_blocks += blocks_per_huge_page(h); 2552 spin_unlock(&inode->i_lock); 2553 page_dup_rmap(page); 2554 } else { 2555 lock_page(page); 2556 if (unlikely(anon_vma_prepare(vma))) { 2557 ret = VM_FAULT_OOM; 2558 goto backout_unlocked; 2559 } 2560 hugepage_add_new_anon_rmap(page, vma, address); 2561 } 2562 } else { 2563 /* 2564 * If memory error occurs between mmap() and fault, some process 2565 * don't have hwpoisoned swap entry for errored virtual address. 2566 * So we need to block hugepage fault by PG_hwpoison bit check. 2567 */ 2568 if (unlikely(PageHWPoison(page))) { 2569 ret = VM_FAULT_HWPOISON | 2570 VM_FAULT_SET_HINDEX(h - hstates); 2571 goto backout_unlocked; 2572 } 2573 page_dup_rmap(page); 2574 } 2575 2576 /* 2577 * If we are going to COW a private mapping later, we examine the 2578 * pending reservations for this page now. This will ensure that 2579 * any allocations necessary to record that reservation occur outside 2580 * the spinlock. 2581 */ 2582 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2583 if (vma_needs_reservation(h, vma, address) < 0) { 2584 ret = VM_FAULT_OOM; 2585 goto backout_unlocked; 2586 } 2587 2588 spin_lock(&mm->page_table_lock); 2589 size = i_size_read(mapping->host) >> huge_page_shift(h); 2590 if (idx >= size) 2591 goto backout; 2592 2593 ret = 0; 2594 if (!huge_pte_none(huge_ptep_get(ptep))) 2595 goto backout; 2596 2597 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2598 && (vma->vm_flags & VM_SHARED))); 2599 set_huge_pte_at(mm, address, ptep, new_pte); 2600 2601 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2602 /* Optimization, do the COW without a second fault */ 2603 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2604 } 2605 2606 spin_unlock(&mm->page_table_lock); 2607 unlock_page(page); 2608 out: 2609 return ret; 2610 2611 backout: 2612 spin_unlock(&mm->page_table_lock); 2613 backout_unlocked: 2614 unlock_page(page); 2615 put_page(page); 2616 goto out; 2617 } 2618 2619 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2620 unsigned long address, unsigned int flags) 2621 { 2622 pte_t *ptep; 2623 pte_t entry; 2624 int ret; 2625 struct page *page = NULL; 2626 struct page *pagecache_page = NULL; 2627 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2628 struct hstate *h = hstate_vma(vma); 2629 2630 ptep = huge_pte_offset(mm, address); 2631 if (ptep) { 2632 entry = huge_ptep_get(ptep); 2633 if (unlikely(is_hugetlb_entry_migration(entry))) { 2634 migration_entry_wait(mm, (pmd_t *)ptep, address); 2635 return 0; 2636 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2637 return VM_FAULT_HWPOISON_LARGE | 2638 VM_FAULT_SET_HINDEX(h - hstates); 2639 } 2640 2641 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2642 if (!ptep) 2643 return VM_FAULT_OOM; 2644 2645 /* 2646 * Serialize hugepage allocation and instantiation, so that we don't 2647 * get spurious allocation failures if two CPUs race to instantiate 2648 * the same page in the page cache. 2649 */ 2650 mutex_lock(&hugetlb_instantiation_mutex); 2651 entry = huge_ptep_get(ptep); 2652 if (huge_pte_none(entry)) { 2653 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2654 goto out_mutex; 2655 } 2656 2657 ret = 0; 2658 2659 /* 2660 * If we are going to COW the mapping later, we examine the pending 2661 * reservations for this page now. This will ensure that any 2662 * allocations necessary to record that reservation occur outside the 2663 * spinlock. For private mappings, we also lookup the pagecache 2664 * page now as it is used to determine if a reservation has been 2665 * consumed. 2666 */ 2667 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { 2668 if (vma_needs_reservation(h, vma, address) < 0) { 2669 ret = VM_FAULT_OOM; 2670 goto out_mutex; 2671 } 2672 2673 if (!(vma->vm_flags & VM_MAYSHARE)) 2674 pagecache_page = hugetlbfs_pagecache_page(h, 2675 vma, address); 2676 } 2677 2678 /* 2679 * hugetlb_cow() requires page locks of pte_page(entry) and 2680 * pagecache_page, so here we need take the former one 2681 * when page != pagecache_page or !pagecache_page. 2682 * Note that locking order is always pagecache_page -> page, 2683 * so no worry about deadlock. 2684 */ 2685 page = pte_page(entry); 2686 if (page != pagecache_page) 2687 lock_page(page); 2688 2689 spin_lock(&mm->page_table_lock); 2690 /* Check for a racing update before calling hugetlb_cow */ 2691 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2692 goto out_page_table_lock; 2693 2694 2695 if (flags & FAULT_FLAG_WRITE) { 2696 if (!pte_write(entry)) { 2697 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2698 pagecache_page); 2699 goto out_page_table_lock; 2700 } 2701 entry = pte_mkdirty(entry); 2702 } 2703 entry = pte_mkyoung(entry); 2704 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2705 flags & FAULT_FLAG_WRITE)) 2706 update_mmu_cache(vma, address, ptep); 2707 2708 out_page_table_lock: 2709 spin_unlock(&mm->page_table_lock); 2710 2711 if (pagecache_page) { 2712 unlock_page(pagecache_page); 2713 put_page(pagecache_page); 2714 } 2715 if (page != pagecache_page) 2716 unlock_page(page); 2717 2718 out_mutex: 2719 mutex_unlock(&hugetlb_instantiation_mutex); 2720 2721 return ret; 2722 } 2723 2724 /* Can be overriden by architectures */ 2725 __attribute__((weak)) struct page * 2726 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2727 pud_t *pud, int write) 2728 { 2729 BUG(); 2730 return NULL; 2731 } 2732 2733 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2734 struct page **pages, struct vm_area_struct **vmas, 2735 unsigned long *position, int *length, int i, 2736 unsigned int flags) 2737 { 2738 unsigned long pfn_offset; 2739 unsigned long vaddr = *position; 2740 int remainder = *length; 2741 struct hstate *h = hstate_vma(vma); 2742 2743 spin_lock(&mm->page_table_lock); 2744 while (vaddr < vma->vm_end && remainder) { 2745 pte_t *pte; 2746 int absent; 2747 struct page *page; 2748 2749 /* 2750 * Some archs (sparc64, sh*) have multiple pte_ts to 2751 * each hugepage. We have to make sure we get the 2752 * first, for the page indexing below to work. 2753 */ 2754 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2755 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 2756 2757 /* 2758 * When coredumping, it suits get_dump_page if we just return 2759 * an error where there's an empty slot with no huge pagecache 2760 * to back it. This way, we avoid allocating a hugepage, and 2761 * the sparse dumpfile avoids allocating disk blocks, but its 2762 * huge holes still show up with zeroes where they need to be. 2763 */ 2764 if (absent && (flags & FOLL_DUMP) && 2765 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 2766 remainder = 0; 2767 break; 2768 } 2769 2770 if (absent || 2771 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { 2772 int ret; 2773 2774 spin_unlock(&mm->page_table_lock); 2775 ret = hugetlb_fault(mm, vma, vaddr, 2776 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 2777 spin_lock(&mm->page_table_lock); 2778 if (!(ret & VM_FAULT_ERROR)) 2779 continue; 2780 2781 remainder = 0; 2782 break; 2783 } 2784 2785 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2786 page = pte_page(huge_ptep_get(pte)); 2787 same_page: 2788 if (pages) { 2789 pages[i] = mem_map_offset(page, pfn_offset); 2790 get_page(pages[i]); 2791 } 2792 2793 if (vmas) 2794 vmas[i] = vma; 2795 2796 vaddr += PAGE_SIZE; 2797 ++pfn_offset; 2798 --remainder; 2799 ++i; 2800 if (vaddr < vma->vm_end && remainder && 2801 pfn_offset < pages_per_huge_page(h)) { 2802 /* 2803 * We use pfn_offset to avoid touching the pageframes 2804 * of this compound page. 2805 */ 2806 goto same_page; 2807 } 2808 } 2809 spin_unlock(&mm->page_table_lock); 2810 *length = remainder; 2811 *position = vaddr; 2812 2813 return i ? i : -EFAULT; 2814 } 2815 2816 void hugetlb_change_protection(struct vm_area_struct *vma, 2817 unsigned long address, unsigned long end, pgprot_t newprot) 2818 { 2819 struct mm_struct *mm = vma->vm_mm; 2820 unsigned long start = address; 2821 pte_t *ptep; 2822 pte_t pte; 2823 struct hstate *h = hstate_vma(vma); 2824 2825 BUG_ON(address >= end); 2826 flush_cache_range(vma, address, end); 2827 2828 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 2829 spin_lock(&mm->page_table_lock); 2830 for (; address < end; address += huge_page_size(h)) { 2831 ptep = huge_pte_offset(mm, address); 2832 if (!ptep) 2833 continue; 2834 if (huge_pmd_unshare(mm, &address, ptep)) 2835 continue; 2836 if (!huge_pte_none(huge_ptep_get(ptep))) { 2837 pte = huge_ptep_get_and_clear(mm, address, ptep); 2838 pte = pte_mkhuge(pte_modify(pte, newprot)); 2839 set_huge_pte_at(mm, address, ptep, pte); 2840 } 2841 } 2842 spin_unlock(&mm->page_table_lock); 2843 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 2844 2845 flush_tlb_range(vma, start, end); 2846 } 2847 2848 int hugetlb_reserve_pages(struct inode *inode, 2849 long from, long to, 2850 struct vm_area_struct *vma, 2851 vm_flags_t vm_flags) 2852 { 2853 long ret, chg; 2854 struct hstate *h = hstate_inode(inode); 2855 2856 /* 2857 * Only apply hugepage reservation if asked. At fault time, an 2858 * attempt will be made for VM_NORESERVE to allocate a page 2859 * and filesystem quota without using reserves 2860 */ 2861 if (vm_flags & VM_NORESERVE) 2862 return 0; 2863 2864 /* 2865 * Shared mappings base their reservation on the number of pages that 2866 * are already allocated on behalf of the file. Private mappings need 2867 * to reserve the full area even if read-only as mprotect() may be 2868 * called to make the mapping read-write. Assume !vma is a shm mapping 2869 */ 2870 if (!vma || vma->vm_flags & VM_MAYSHARE) 2871 chg = region_chg(&inode->i_mapping->private_list, from, to); 2872 else { 2873 struct resv_map *resv_map = resv_map_alloc(); 2874 if (!resv_map) 2875 return -ENOMEM; 2876 2877 chg = to - from; 2878 2879 set_vma_resv_map(vma, resv_map); 2880 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 2881 } 2882 2883 if (chg < 0) 2884 return chg; 2885 2886 /* There must be enough filesystem quota for the mapping */ 2887 if (hugetlb_get_quota(inode->i_mapping, chg)) 2888 return -ENOSPC; 2889 2890 /* 2891 * Check enough hugepages are available for the reservation. 2892 * Hand back the quota if there are not 2893 */ 2894 ret = hugetlb_acct_memory(h, chg); 2895 if (ret < 0) { 2896 hugetlb_put_quota(inode->i_mapping, chg); 2897 return ret; 2898 } 2899 2900 /* 2901 * Account for the reservations made. Shared mappings record regions 2902 * that have reservations as they are shared by multiple VMAs. 2903 * When the last VMA disappears, the region map says how much 2904 * the reservation was and the page cache tells how much of 2905 * the reservation was consumed. Private mappings are per-VMA and 2906 * only the consumed reservations are tracked. When the VMA 2907 * disappears, the original reservation is the VMA size and the 2908 * consumed reservations are stored in the map. Hence, nothing 2909 * else has to be done for private mappings here 2910 */ 2911 if (!vma || vma->vm_flags & VM_MAYSHARE) 2912 region_add(&inode->i_mapping->private_list, from, to); 2913 return 0; 2914 } 2915 2916 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2917 { 2918 struct hstate *h = hstate_inode(inode); 2919 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2920 2921 spin_lock(&inode->i_lock); 2922 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 2923 spin_unlock(&inode->i_lock); 2924 2925 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2926 hugetlb_acct_memory(h, -(chg - freed)); 2927 } 2928 2929 #ifdef CONFIG_MEMORY_FAILURE 2930 2931 /* Should be called in hugetlb_lock */ 2932 static int is_hugepage_on_freelist(struct page *hpage) 2933 { 2934 struct page *page; 2935 struct page *tmp; 2936 struct hstate *h = page_hstate(hpage); 2937 int nid = page_to_nid(hpage); 2938 2939 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 2940 if (page == hpage) 2941 return 1; 2942 return 0; 2943 } 2944 2945 /* 2946 * This function is called from memory failure code. 2947 * Assume the caller holds page lock of the head page. 2948 */ 2949 int dequeue_hwpoisoned_huge_page(struct page *hpage) 2950 { 2951 struct hstate *h = page_hstate(hpage); 2952 int nid = page_to_nid(hpage); 2953 int ret = -EBUSY; 2954 2955 spin_lock(&hugetlb_lock); 2956 if (is_hugepage_on_freelist(hpage)) { 2957 list_del(&hpage->lru); 2958 set_page_refcounted(hpage); 2959 h->free_huge_pages--; 2960 h->free_huge_pages_node[nid]--; 2961 ret = 0; 2962 } 2963 spin_unlock(&hugetlb_lock); 2964 return ret; 2965 } 2966 #endif 2967