1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 35 #include <asm/page.h> 36 #include <asm/pgalloc.h> 37 #include <asm/tlb.h> 38 39 #include <linux/io.h> 40 #include <linux/hugetlb.h> 41 #include <linux/hugetlb_cgroup.h> 42 #include <linux/node.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 #include "hugetlb_vmemmap.h" 46 47 int hugetlb_max_hstate __read_mostly; 48 unsigned int default_hstate_idx; 49 struct hstate hstates[HUGE_MAX_HSTATE]; 50 51 #ifdef CONFIG_CMA 52 static struct cma *hugetlb_cma[MAX_NUMNODES]; 53 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 54 static bool hugetlb_cma_page(struct page *page, unsigned int order) 55 { 56 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 57 1 << order); 58 } 59 #else 60 static bool hugetlb_cma_page(struct page *page, unsigned int order) 61 { 62 return false; 63 } 64 #endif 65 static unsigned long hugetlb_cma_size __initdata; 66 67 /* 68 * Minimum page order among possible hugepage sizes, set to a proper value 69 * at boot time. 70 */ 71 static unsigned int minimum_order __read_mostly = UINT_MAX; 72 73 __initdata LIST_HEAD(huge_boot_pages); 74 75 /* for command line parsing */ 76 static struct hstate * __initdata parsed_hstate; 77 static unsigned long __initdata default_hstate_max_huge_pages; 78 static bool __initdata parsed_valid_hugepagesz = true; 79 static bool __initdata parsed_default_hugepagesz; 80 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 81 82 /* 83 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 84 * free_huge_pages, and surplus_huge_pages. 85 */ 86 DEFINE_SPINLOCK(hugetlb_lock); 87 88 /* 89 * Serializes faults on the same logical page. This is used to 90 * prevent spurious OOMs when the hugepage pool is fully utilized. 91 */ 92 static int num_fault_mutexes; 93 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 94 95 /* Forward declaration */ 96 static int hugetlb_acct_memory(struct hstate *h, long delta); 97 98 static inline bool subpool_is_free(struct hugepage_subpool *spool) 99 { 100 if (spool->count) 101 return false; 102 if (spool->max_hpages != -1) 103 return spool->used_hpages == 0; 104 if (spool->min_hpages != -1) 105 return spool->rsv_hpages == spool->min_hpages; 106 107 return true; 108 } 109 110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 111 unsigned long irq_flags) 112 { 113 spin_unlock_irqrestore(&spool->lock, irq_flags); 114 115 /* If no pages are used, and no other handles to the subpool 116 * remain, give up any reservations based on minimum size and 117 * free the subpool */ 118 if (subpool_is_free(spool)) { 119 if (spool->min_hpages != -1) 120 hugetlb_acct_memory(spool->hstate, 121 -spool->min_hpages); 122 kfree(spool); 123 } 124 } 125 126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 127 long min_hpages) 128 { 129 struct hugepage_subpool *spool; 130 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 132 if (!spool) 133 return NULL; 134 135 spin_lock_init(&spool->lock); 136 spool->count = 1; 137 spool->max_hpages = max_hpages; 138 spool->hstate = h; 139 spool->min_hpages = min_hpages; 140 141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 142 kfree(spool); 143 return NULL; 144 } 145 spool->rsv_hpages = min_hpages; 146 147 return spool; 148 } 149 150 void hugepage_put_subpool(struct hugepage_subpool *spool) 151 { 152 unsigned long flags; 153 154 spin_lock_irqsave(&spool->lock, flags); 155 BUG_ON(!spool->count); 156 spool->count--; 157 unlock_or_release_subpool(spool, flags); 158 } 159 160 /* 161 * Subpool accounting for allocating and reserving pages. 162 * Return -ENOMEM if there are not enough resources to satisfy the 163 * request. Otherwise, return the number of pages by which the 164 * global pools must be adjusted (upward). The returned value may 165 * only be different than the passed value (delta) in the case where 166 * a subpool minimum size must be maintained. 167 */ 168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 169 long delta) 170 { 171 long ret = delta; 172 173 if (!spool) 174 return ret; 175 176 spin_lock_irq(&spool->lock); 177 178 if (spool->max_hpages != -1) { /* maximum size accounting */ 179 if ((spool->used_hpages + delta) <= spool->max_hpages) 180 spool->used_hpages += delta; 181 else { 182 ret = -ENOMEM; 183 goto unlock_ret; 184 } 185 } 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->rsv_hpages) { 189 if (delta > spool->rsv_hpages) { 190 /* 191 * Asking for more reserves than those already taken on 192 * behalf of subpool. Return difference. 193 */ 194 ret = delta - spool->rsv_hpages; 195 spool->rsv_hpages = 0; 196 } else { 197 ret = 0; /* reserves already accounted for */ 198 spool->rsv_hpages -= delta; 199 } 200 } 201 202 unlock_ret: 203 spin_unlock_irq(&spool->lock); 204 return ret; 205 } 206 207 /* 208 * Subpool accounting for freeing and unreserving pages. 209 * Return the number of global page reservations that must be dropped. 210 * The return value may only be different than the passed value (delta) 211 * in the case where a subpool minimum size must be maintained. 212 */ 213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 214 long delta) 215 { 216 long ret = delta; 217 unsigned long flags; 218 219 if (!spool) 220 return delta; 221 222 spin_lock_irqsave(&spool->lock, flags); 223 224 if (spool->max_hpages != -1) /* maximum size accounting */ 225 spool->used_hpages -= delta; 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 229 if (spool->rsv_hpages + delta <= spool->min_hpages) 230 ret = 0; 231 else 232 ret = spool->rsv_hpages + delta - spool->min_hpages; 233 234 spool->rsv_hpages += delta; 235 if (spool->rsv_hpages > spool->min_hpages) 236 spool->rsv_hpages = spool->min_hpages; 237 } 238 239 /* 240 * If hugetlbfs_put_super couldn't free spool due to an outstanding 241 * quota reference, free it now. 242 */ 243 unlock_or_release_subpool(spool, flags); 244 245 return ret; 246 } 247 248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 249 { 250 return HUGETLBFS_SB(inode->i_sb)->spool; 251 } 252 253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 254 { 255 return subpool_inode(file_inode(vma->vm_file)); 256 } 257 258 /* Helper that removes a struct file_region from the resv_map cache and returns 259 * it for use. 260 */ 261 static struct file_region * 262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 263 { 264 struct file_region *nrg = NULL; 265 266 VM_BUG_ON(resv->region_cache_count <= 0); 267 268 resv->region_cache_count--; 269 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 270 list_del(&nrg->link); 271 272 nrg->from = from; 273 nrg->to = to; 274 275 return nrg; 276 } 277 278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 279 struct file_region *rg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 nrg->reservation_counter = rg->reservation_counter; 283 nrg->css = rg->css; 284 if (rg->css) 285 css_get(rg->css); 286 #endif 287 } 288 289 /* Helper that records hugetlb_cgroup uncharge info. */ 290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 291 struct hstate *h, 292 struct resv_map *resv, 293 struct file_region *nrg) 294 { 295 #ifdef CONFIG_CGROUP_HUGETLB 296 if (h_cg) { 297 nrg->reservation_counter = 298 &h_cg->rsvd_hugepage[hstate_index(h)]; 299 nrg->css = &h_cg->css; 300 /* 301 * The caller will hold exactly one h_cg->css reference for the 302 * whole contiguous reservation region. But this area might be 303 * scattered when there are already some file_regions reside in 304 * it. As a result, many file_regions may share only one css 305 * reference. In order to ensure that one file_region must hold 306 * exactly one h_cg->css reference, we should do css_get for 307 * each file_region and leave the reference held by caller 308 * untouched. 309 */ 310 css_get(&h_cg->css); 311 if (!resv->pages_per_hpage) 312 resv->pages_per_hpage = pages_per_huge_page(h); 313 /* pages_per_hpage should be the same for all entries in 314 * a resv_map. 315 */ 316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 317 } else { 318 nrg->reservation_counter = NULL; 319 nrg->css = NULL; 320 } 321 #endif 322 } 323 324 static void put_uncharge_info(struct file_region *rg) 325 { 326 #ifdef CONFIG_CGROUP_HUGETLB 327 if (rg->css) 328 css_put(rg->css); 329 #endif 330 } 331 332 static bool has_same_uncharge_info(struct file_region *rg, 333 struct file_region *org) 334 { 335 #ifdef CONFIG_CGROUP_HUGETLB 336 return rg->reservation_counter == org->reservation_counter && 337 rg->css == org->css; 338 339 #else 340 return true; 341 #endif 342 } 343 344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 345 { 346 struct file_region *nrg = NULL, *prg = NULL; 347 348 prg = list_prev_entry(rg, link); 349 if (&prg->link != &resv->regions && prg->to == rg->from && 350 has_same_uncharge_info(prg, rg)) { 351 prg->to = rg->to; 352 353 list_del(&rg->link); 354 put_uncharge_info(rg); 355 kfree(rg); 356 357 rg = prg; 358 } 359 360 nrg = list_next_entry(rg, link); 361 if (&nrg->link != &resv->regions && nrg->from == rg->to && 362 has_same_uncharge_info(nrg, rg)) { 363 nrg->from = rg->from; 364 365 list_del(&rg->link); 366 put_uncharge_info(rg); 367 kfree(rg); 368 } 369 } 370 371 static inline long 372 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, 373 long to, struct hstate *h, struct hugetlb_cgroup *cg, 374 long *regions_needed) 375 { 376 struct file_region *nrg; 377 378 if (!regions_needed) { 379 nrg = get_file_region_entry_from_cache(map, from, to); 380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 381 list_add(&nrg->link, rg->link.prev); 382 coalesce_file_region(map, nrg); 383 } else 384 *regions_needed += 1; 385 386 return to - from; 387 } 388 389 /* 390 * Must be called with resv->lock held. 391 * 392 * Calling this with regions_needed != NULL will count the number of pages 393 * to be added but will not modify the linked list. And regions_needed will 394 * indicate the number of file_regions needed in the cache to carry out to add 395 * the regions for this range. 396 */ 397 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 398 struct hugetlb_cgroup *h_cg, 399 struct hstate *h, long *regions_needed) 400 { 401 long add = 0; 402 struct list_head *head = &resv->regions; 403 long last_accounted_offset = f; 404 struct file_region *rg = NULL, *trg = NULL; 405 406 if (regions_needed) 407 *regions_needed = 0; 408 409 /* In this loop, we essentially handle an entry for the range 410 * [last_accounted_offset, rg->from), at every iteration, with some 411 * bounds checking. 412 */ 413 list_for_each_entry_safe(rg, trg, head, link) { 414 /* Skip irrelevant regions that start before our range. */ 415 if (rg->from < f) { 416 /* If this region ends after the last accounted offset, 417 * then we need to update last_accounted_offset. 418 */ 419 if (rg->to > last_accounted_offset) 420 last_accounted_offset = rg->to; 421 continue; 422 } 423 424 /* When we find a region that starts beyond our range, we've 425 * finished. 426 */ 427 if (rg->from >= t) 428 break; 429 430 /* Add an entry for last_accounted_offset -> rg->from, and 431 * update last_accounted_offset. 432 */ 433 if (rg->from > last_accounted_offset) 434 add += hugetlb_resv_map_add(resv, rg, 435 last_accounted_offset, 436 rg->from, h, h_cg, 437 regions_needed); 438 439 last_accounted_offset = rg->to; 440 } 441 442 /* Handle the case where our range extends beyond 443 * last_accounted_offset. 444 */ 445 if (last_accounted_offset < t) 446 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 447 t, h, h_cg, regions_needed); 448 449 return add; 450 } 451 452 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 453 */ 454 static int allocate_file_region_entries(struct resv_map *resv, 455 int regions_needed) 456 __must_hold(&resv->lock) 457 { 458 struct list_head allocated_regions; 459 int to_allocate = 0, i = 0; 460 struct file_region *trg = NULL, *rg = NULL; 461 462 VM_BUG_ON(regions_needed < 0); 463 464 INIT_LIST_HEAD(&allocated_regions); 465 466 /* 467 * Check for sufficient descriptors in the cache to accommodate 468 * the number of in progress add operations plus regions_needed. 469 * 470 * This is a while loop because when we drop the lock, some other call 471 * to region_add or region_del may have consumed some region_entries, 472 * so we keep looping here until we finally have enough entries for 473 * (adds_in_progress + regions_needed). 474 */ 475 while (resv->region_cache_count < 476 (resv->adds_in_progress + regions_needed)) { 477 to_allocate = resv->adds_in_progress + regions_needed - 478 resv->region_cache_count; 479 480 /* At this point, we should have enough entries in the cache 481 * for all the existing adds_in_progress. We should only be 482 * needing to allocate for regions_needed. 483 */ 484 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 485 486 spin_unlock(&resv->lock); 487 for (i = 0; i < to_allocate; i++) { 488 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 489 if (!trg) 490 goto out_of_memory; 491 list_add(&trg->link, &allocated_regions); 492 } 493 494 spin_lock(&resv->lock); 495 496 list_splice(&allocated_regions, &resv->region_cache); 497 resv->region_cache_count += to_allocate; 498 } 499 500 return 0; 501 502 out_of_memory: 503 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 504 list_del(&rg->link); 505 kfree(rg); 506 } 507 return -ENOMEM; 508 } 509 510 /* 511 * Add the huge page range represented by [f, t) to the reserve 512 * map. Regions will be taken from the cache to fill in this range. 513 * Sufficient regions should exist in the cache due to the previous 514 * call to region_chg with the same range, but in some cases the cache will not 515 * have sufficient entries due to races with other code doing region_add or 516 * region_del. The extra needed entries will be allocated. 517 * 518 * regions_needed is the out value provided by a previous call to region_chg. 519 * 520 * Return the number of new huge pages added to the map. This number is greater 521 * than or equal to zero. If file_region entries needed to be allocated for 522 * this operation and we were not able to allocate, it returns -ENOMEM. 523 * region_add of regions of length 1 never allocate file_regions and cannot 524 * fail; region_chg will always allocate at least 1 entry and a region_add for 525 * 1 page will only require at most 1 entry. 526 */ 527 static long region_add(struct resv_map *resv, long f, long t, 528 long in_regions_needed, struct hstate *h, 529 struct hugetlb_cgroup *h_cg) 530 { 531 long add = 0, actual_regions_needed = 0; 532 533 spin_lock(&resv->lock); 534 retry: 535 536 /* Count how many regions are actually needed to execute this add. */ 537 add_reservation_in_range(resv, f, t, NULL, NULL, 538 &actual_regions_needed); 539 540 /* 541 * Check for sufficient descriptors in the cache to accommodate 542 * this add operation. Note that actual_regions_needed may be greater 543 * than in_regions_needed, as the resv_map may have been modified since 544 * the region_chg call. In this case, we need to make sure that we 545 * allocate extra entries, such that we have enough for all the 546 * existing adds_in_progress, plus the excess needed for this 547 * operation. 548 */ 549 if (actual_regions_needed > in_regions_needed && 550 resv->region_cache_count < 551 resv->adds_in_progress + 552 (actual_regions_needed - in_regions_needed)) { 553 /* region_add operation of range 1 should never need to 554 * allocate file_region entries. 555 */ 556 VM_BUG_ON(t - f <= 1); 557 558 if (allocate_file_region_entries( 559 resv, actual_regions_needed - in_regions_needed)) { 560 return -ENOMEM; 561 } 562 563 goto retry; 564 } 565 566 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 567 568 resv->adds_in_progress -= in_regions_needed; 569 570 spin_unlock(&resv->lock); 571 return add; 572 } 573 574 /* 575 * Examine the existing reserve map and determine how many 576 * huge pages in the specified range [f, t) are NOT currently 577 * represented. This routine is called before a subsequent 578 * call to region_add that will actually modify the reserve 579 * map to add the specified range [f, t). region_chg does 580 * not change the number of huge pages represented by the 581 * map. A number of new file_region structures is added to the cache as a 582 * placeholder, for the subsequent region_add call to use. At least 1 583 * file_region structure is added. 584 * 585 * out_regions_needed is the number of regions added to the 586 * resv->adds_in_progress. This value needs to be provided to a follow up call 587 * to region_add or region_abort for proper accounting. 588 * 589 * Returns the number of huge pages that need to be added to the existing 590 * reservation map for the range [f, t). This number is greater or equal to 591 * zero. -ENOMEM is returned if a new file_region structure or cache entry 592 * is needed and can not be allocated. 593 */ 594 static long region_chg(struct resv_map *resv, long f, long t, 595 long *out_regions_needed) 596 { 597 long chg = 0; 598 599 spin_lock(&resv->lock); 600 601 /* Count how many hugepages in this range are NOT represented. */ 602 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 603 out_regions_needed); 604 605 if (*out_regions_needed == 0) 606 *out_regions_needed = 1; 607 608 if (allocate_file_region_entries(resv, *out_regions_needed)) 609 return -ENOMEM; 610 611 resv->adds_in_progress += *out_regions_needed; 612 613 spin_unlock(&resv->lock); 614 return chg; 615 } 616 617 /* 618 * Abort the in progress add operation. The adds_in_progress field 619 * of the resv_map keeps track of the operations in progress between 620 * calls to region_chg and region_add. Operations are sometimes 621 * aborted after the call to region_chg. In such cases, region_abort 622 * is called to decrement the adds_in_progress counter. regions_needed 623 * is the value returned by the region_chg call, it is used to decrement 624 * the adds_in_progress counter. 625 * 626 * NOTE: The range arguments [f, t) are not needed or used in this 627 * routine. They are kept to make reading the calling code easier as 628 * arguments will match the associated region_chg call. 629 */ 630 static void region_abort(struct resv_map *resv, long f, long t, 631 long regions_needed) 632 { 633 spin_lock(&resv->lock); 634 VM_BUG_ON(!resv->region_cache_count); 635 resv->adds_in_progress -= regions_needed; 636 spin_unlock(&resv->lock); 637 } 638 639 /* 640 * Delete the specified range [f, t) from the reserve map. If the 641 * t parameter is LONG_MAX, this indicates that ALL regions after f 642 * should be deleted. Locate the regions which intersect [f, t) 643 * and either trim, delete or split the existing regions. 644 * 645 * Returns the number of huge pages deleted from the reserve map. 646 * In the normal case, the return value is zero or more. In the 647 * case where a region must be split, a new region descriptor must 648 * be allocated. If the allocation fails, -ENOMEM will be returned. 649 * NOTE: If the parameter t == LONG_MAX, then we will never split 650 * a region and possibly return -ENOMEM. Callers specifying 651 * t == LONG_MAX do not need to check for -ENOMEM error. 652 */ 653 static long region_del(struct resv_map *resv, long f, long t) 654 { 655 struct list_head *head = &resv->regions; 656 struct file_region *rg, *trg; 657 struct file_region *nrg = NULL; 658 long del = 0; 659 660 retry: 661 spin_lock(&resv->lock); 662 list_for_each_entry_safe(rg, trg, head, link) { 663 /* 664 * Skip regions before the range to be deleted. file_region 665 * ranges are normally of the form [from, to). However, there 666 * may be a "placeholder" entry in the map which is of the form 667 * (from, to) with from == to. Check for placeholder entries 668 * at the beginning of the range to be deleted. 669 */ 670 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 671 continue; 672 673 if (rg->from >= t) 674 break; 675 676 if (f > rg->from && t < rg->to) { /* Must split region */ 677 /* 678 * Check for an entry in the cache before dropping 679 * lock and attempting allocation. 680 */ 681 if (!nrg && 682 resv->region_cache_count > resv->adds_in_progress) { 683 nrg = list_first_entry(&resv->region_cache, 684 struct file_region, 685 link); 686 list_del(&nrg->link); 687 resv->region_cache_count--; 688 } 689 690 if (!nrg) { 691 spin_unlock(&resv->lock); 692 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 693 if (!nrg) 694 return -ENOMEM; 695 goto retry; 696 } 697 698 del += t - f; 699 hugetlb_cgroup_uncharge_file_region( 700 resv, rg, t - f, false); 701 702 /* New entry for end of split region */ 703 nrg->from = t; 704 nrg->to = rg->to; 705 706 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 707 708 INIT_LIST_HEAD(&nrg->link); 709 710 /* Original entry is trimmed */ 711 rg->to = f; 712 713 list_add(&nrg->link, &rg->link); 714 nrg = NULL; 715 break; 716 } 717 718 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 719 del += rg->to - rg->from; 720 hugetlb_cgroup_uncharge_file_region(resv, rg, 721 rg->to - rg->from, true); 722 list_del(&rg->link); 723 kfree(rg); 724 continue; 725 } 726 727 if (f <= rg->from) { /* Trim beginning of region */ 728 hugetlb_cgroup_uncharge_file_region(resv, rg, 729 t - rg->from, false); 730 731 del += t - rg->from; 732 rg->from = t; 733 } else { /* Trim end of region */ 734 hugetlb_cgroup_uncharge_file_region(resv, rg, 735 rg->to - f, false); 736 737 del += rg->to - f; 738 rg->to = f; 739 } 740 } 741 742 spin_unlock(&resv->lock); 743 kfree(nrg); 744 return del; 745 } 746 747 /* 748 * A rare out of memory error was encountered which prevented removal of 749 * the reserve map region for a page. The huge page itself was free'ed 750 * and removed from the page cache. This routine will adjust the subpool 751 * usage count, and the global reserve count if needed. By incrementing 752 * these counts, the reserve map entry which could not be deleted will 753 * appear as a "reserved" entry instead of simply dangling with incorrect 754 * counts. 755 */ 756 void hugetlb_fix_reserve_counts(struct inode *inode) 757 { 758 struct hugepage_subpool *spool = subpool_inode(inode); 759 long rsv_adjust; 760 bool reserved = false; 761 762 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 763 if (rsv_adjust > 0) { 764 struct hstate *h = hstate_inode(inode); 765 766 if (!hugetlb_acct_memory(h, 1)) 767 reserved = true; 768 } else if (!rsv_adjust) { 769 reserved = true; 770 } 771 772 if (!reserved) 773 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 774 } 775 776 /* 777 * Count and return the number of huge pages in the reserve map 778 * that intersect with the range [f, t). 779 */ 780 static long region_count(struct resv_map *resv, long f, long t) 781 { 782 struct list_head *head = &resv->regions; 783 struct file_region *rg; 784 long chg = 0; 785 786 spin_lock(&resv->lock); 787 /* Locate each segment we overlap with, and count that overlap. */ 788 list_for_each_entry(rg, head, link) { 789 long seg_from; 790 long seg_to; 791 792 if (rg->to <= f) 793 continue; 794 if (rg->from >= t) 795 break; 796 797 seg_from = max(rg->from, f); 798 seg_to = min(rg->to, t); 799 800 chg += seg_to - seg_from; 801 } 802 spin_unlock(&resv->lock); 803 804 return chg; 805 } 806 807 /* 808 * Convert the address within this vma to the page offset within 809 * the mapping, in pagecache page units; huge pages here. 810 */ 811 static pgoff_t vma_hugecache_offset(struct hstate *h, 812 struct vm_area_struct *vma, unsigned long address) 813 { 814 return ((address - vma->vm_start) >> huge_page_shift(h)) + 815 (vma->vm_pgoff >> huge_page_order(h)); 816 } 817 818 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 819 unsigned long address) 820 { 821 return vma_hugecache_offset(hstate_vma(vma), vma, address); 822 } 823 EXPORT_SYMBOL_GPL(linear_hugepage_index); 824 825 /* 826 * Return the size of the pages allocated when backing a VMA. In the majority 827 * cases this will be same size as used by the page table entries. 828 */ 829 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 830 { 831 if (vma->vm_ops && vma->vm_ops->pagesize) 832 return vma->vm_ops->pagesize(vma); 833 return PAGE_SIZE; 834 } 835 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 836 837 /* 838 * Return the page size being used by the MMU to back a VMA. In the majority 839 * of cases, the page size used by the kernel matches the MMU size. On 840 * architectures where it differs, an architecture-specific 'strong' 841 * version of this symbol is required. 842 */ 843 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 844 { 845 return vma_kernel_pagesize(vma); 846 } 847 848 /* 849 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 850 * bits of the reservation map pointer, which are always clear due to 851 * alignment. 852 */ 853 #define HPAGE_RESV_OWNER (1UL << 0) 854 #define HPAGE_RESV_UNMAPPED (1UL << 1) 855 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 856 857 /* 858 * These helpers are used to track how many pages are reserved for 859 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 860 * is guaranteed to have their future faults succeed. 861 * 862 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 863 * the reserve counters are updated with the hugetlb_lock held. It is safe 864 * to reset the VMA at fork() time as it is not in use yet and there is no 865 * chance of the global counters getting corrupted as a result of the values. 866 * 867 * The private mapping reservation is represented in a subtly different 868 * manner to a shared mapping. A shared mapping has a region map associated 869 * with the underlying file, this region map represents the backing file 870 * pages which have ever had a reservation assigned which this persists even 871 * after the page is instantiated. A private mapping has a region map 872 * associated with the original mmap which is attached to all VMAs which 873 * reference it, this region map represents those offsets which have consumed 874 * reservation ie. where pages have been instantiated. 875 */ 876 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 877 { 878 return (unsigned long)vma->vm_private_data; 879 } 880 881 static void set_vma_private_data(struct vm_area_struct *vma, 882 unsigned long value) 883 { 884 vma->vm_private_data = (void *)value; 885 } 886 887 static void 888 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 889 struct hugetlb_cgroup *h_cg, 890 struct hstate *h) 891 { 892 #ifdef CONFIG_CGROUP_HUGETLB 893 if (!h_cg || !h) { 894 resv_map->reservation_counter = NULL; 895 resv_map->pages_per_hpage = 0; 896 resv_map->css = NULL; 897 } else { 898 resv_map->reservation_counter = 899 &h_cg->rsvd_hugepage[hstate_index(h)]; 900 resv_map->pages_per_hpage = pages_per_huge_page(h); 901 resv_map->css = &h_cg->css; 902 } 903 #endif 904 } 905 906 struct resv_map *resv_map_alloc(void) 907 { 908 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 909 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 910 911 if (!resv_map || !rg) { 912 kfree(resv_map); 913 kfree(rg); 914 return NULL; 915 } 916 917 kref_init(&resv_map->refs); 918 spin_lock_init(&resv_map->lock); 919 INIT_LIST_HEAD(&resv_map->regions); 920 921 resv_map->adds_in_progress = 0; 922 /* 923 * Initialize these to 0. On shared mappings, 0's here indicate these 924 * fields don't do cgroup accounting. On private mappings, these will be 925 * re-initialized to the proper values, to indicate that hugetlb cgroup 926 * reservations are to be un-charged from here. 927 */ 928 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 929 930 INIT_LIST_HEAD(&resv_map->region_cache); 931 list_add(&rg->link, &resv_map->region_cache); 932 resv_map->region_cache_count = 1; 933 934 return resv_map; 935 } 936 937 void resv_map_release(struct kref *ref) 938 { 939 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 940 struct list_head *head = &resv_map->region_cache; 941 struct file_region *rg, *trg; 942 943 /* Clear out any active regions before we release the map. */ 944 region_del(resv_map, 0, LONG_MAX); 945 946 /* ... and any entries left in the cache */ 947 list_for_each_entry_safe(rg, trg, head, link) { 948 list_del(&rg->link); 949 kfree(rg); 950 } 951 952 VM_BUG_ON(resv_map->adds_in_progress); 953 954 kfree(resv_map); 955 } 956 957 static inline struct resv_map *inode_resv_map(struct inode *inode) 958 { 959 /* 960 * At inode evict time, i_mapping may not point to the original 961 * address space within the inode. This original address space 962 * contains the pointer to the resv_map. So, always use the 963 * address space embedded within the inode. 964 * The VERY common case is inode->mapping == &inode->i_data but, 965 * this may not be true for device special inodes. 966 */ 967 return (struct resv_map *)(&inode->i_data)->private_data; 968 } 969 970 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 971 { 972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 973 if (vma->vm_flags & VM_MAYSHARE) { 974 struct address_space *mapping = vma->vm_file->f_mapping; 975 struct inode *inode = mapping->host; 976 977 return inode_resv_map(inode); 978 979 } else { 980 return (struct resv_map *)(get_vma_private_data(vma) & 981 ~HPAGE_RESV_MASK); 982 } 983 } 984 985 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 986 { 987 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 988 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 989 990 set_vma_private_data(vma, (get_vma_private_data(vma) & 991 HPAGE_RESV_MASK) | (unsigned long)map); 992 } 993 994 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 995 { 996 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 997 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 998 999 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1000 } 1001 1002 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1003 { 1004 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1005 1006 return (get_vma_private_data(vma) & flag) != 0; 1007 } 1008 1009 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 1010 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 1011 { 1012 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1013 if (!(vma->vm_flags & VM_MAYSHARE)) 1014 vma->vm_private_data = (void *)0; 1015 } 1016 1017 /* 1018 * Reset and decrement one ref on hugepage private reservation. 1019 * Called with mm->mmap_sem writer semaphore held. 1020 * This function should be only used by move_vma() and operate on 1021 * same sized vma. It should never come here with last ref on the 1022 * reservation. 1023 */ 1024 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1025 { 1026 /* 1027 * Clear the old hugetlb private page reservation. 1028 * It has already been transferred to new_vma. 1029 * 1030 * During a mremap() operation of a hugetlb vma we call move_vma() 1031 * which copies vma into new_vma and unmaps vma. After the copy 1032 * operation both new_vma and vma share a reference to the resv_map 1033 * struct, and at that point vma is about to be unmapped. We don't 1034 * want to return the reservation to the pool at unmap of vma because 1035 * the reservation still lives on in new_vma, so simply decrement the 1036 * ref here and remove the resv_map reference from this vma. 1037 */ 1038 struct resv_map *reservations = vma_resv_map(vma); 1039 1040 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 1041 kref_put(&reservations->refs, resv_map_release); 1042 1043 reset_vma_resv_huge_pages(vma); 1044 } 1045 1046 /* Returns true if the VMA has associated reserve pages */ 1047 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1048 { 1049 if (vma->vm_flags & VM_NORESERVE) { 1050 /* 1051 * This address is already reserved by other process(chg == 0), 1052 * so, we should decrement reserved count. Without decrementing, 1053 * reserve count remains after releasing inode, because this 1054 * allocated page will go into page cache and is regarded as 1055 * coming from reserved pool in releasing step. Currently, we 1056 * don't have any other solution to deal with this situation 1057 * properly, so add work-around here. 1058 */ 1059 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1060 return true; 1061 else 1062 return false; 1063 } 1064 1065 /* Shared mappings always use reserves */ 1066 if (vma->vm_flags & VM_MAYSHARE) { 1067 /* 1068 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1069 * be a region map for all pages. The only situation where 1070 * there is no region map is if a hole was punched via 1071 * fallocate. In this case, there really are no reserves to 1072 * use. This situation is indicated if chg != 0. 1073 */ 1074 if (chg) 1075 return false; 1076 else 1077 return true; 1078 } 1079 1080 /* 1081 * Only the process that called mmap() has reserves for 1082 * private mappings. 1083 */ 1084 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1085 /* 1086 * Like the shared case above, a hole punch or truncate 1087 * could have been performed on the private mapping. 1088 * Examine the value of chg to determine if reserves 1089 * actually exist or were previously consumed. 1090 * Very Subtle - The value of chg comes from a previous 1091 * call to vma_needs_reserves(). The reserve map for 1092 * private mappings has different (opposite) semantics 1093 * than that of shared mappings. vma_needs_reserves() 1094 * has already taken this difference in semantics into 1095 * account. Therefore, the meaning of chg is the same 1096 * as in the shared case above. Code could easily be 1097 * combined, but keeping it separate draws attention to 1098 * subtle differences. 1099 */ 1100 if (chg) 1101 return false; 1102 else 1103 return true; 1104 } 1105 1106 return false; 1107 } 1108 1109 static void enqueue_huge_page(struct hstate *h, struct page *page) 1110 { 1111 int nid = page_to_nid(page); 1112 1113 lockdep_assert_held(&hugetlb_lock); 1114 VM_BUG_ON_PAGE(page_count(page), page); 1115 1116 list_move(&page->lru, &h->hugepage_freelists[nid]); 1117 h->free_huge_pages++; 1118 h->free_huge_pages_node[nid]++; 1119 SetHPageFreed(page); 1120 } 1121 1122 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1123 { 1124 struct page *page; 1125 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1126 1127 lockdep_assert_held(&hugetlb_lock); 1128 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1129 if (pin && !is_pinnable_page(page)) 1130 continue; 1131 1132 if (PageHWPoison(page)) 1133 continue; 1134 1135 list_move(&page->lru, &h->hugepage_activelist); 1136 set_page_refcounted(page); 1137 ClearHPageFreed(page); 1138 h->free_huge_pages--; 1139 h->free_huge_pages_node[nid]--; 1140 return page; 1141 } 1142 1143 return NULL; 1144 } 1145 1146 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1147 nodemask_t *nmask) 1148 { 1149 unsigned int cpuset_mems_cookie; 1150 struct zonelist *zonelist; 1151 struct zone *zone; 1152 struct zoneref *z; 1153 int node = NUMA_NO_NODE; 1154 1155 zonelist = node_zonelist(nid, gfp_mask); 1156 1157 retry_cpuset: 1158 cpuset_mems_cookie = read_mems_allowed_begin(); 1159 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1160 struct page *page; 1161 1162 if (!cpuset_zone_allowed(zone, gfp_mask)) 1163 continue; 1164 /* 1165 * no need to ask again on the same node. Pool is node rather than 1166 * zone aware 1167 */ 1168 if (zone_to_nid(zone) == node) 1169 continue; 1170 node = zone_to_nid(zone); 1171 1172 page = dequeue_huge_page_node_exact(h, node); 1173 if (page) 1174 return page; 1175 } 1176 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1177 goto retry_cpuset; 1178 1179 return NULL; 1180 } 1181 1182 static struct page *dequeue_huge_page_vma(struct hstate *h, 1183 struct vm_area_struct *vma, 1184 unsigned long address, int avoid_reserve, 1185 long chg) 1186 { 1187 struct page *page = NULL; 1188 struct mempolicy *mpol; 1189 gfp_t gfp_mask; 1190 nodemask_t *nodemask; 1191 int nid; 1192 1193 /* 1194 * A child process with MAP_PRIVATE mappings created by their parent 1195 * have no page reserves. This check ensures that reservations are 1196 * not "stolen". The child may still get SIGKILLed 1197 */ 1198 if (!vma_has_reserves(vma, chg) && 1199 h->free_huge_pages - h->resv_huge_pages == 0) 1200 goto err; 1201 1202 /* If reserves cannot be used, ensure enough pages are in the pool */ 1203 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1204 goto err; 1205 1206 gfp_mask = htlb_alloc_mask(h); 1207 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1208 1209 if (mpol_is_preferred_many(mpol)) { 1210 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1211 1212 /* Fallback to all nodes if page==NULL */ 1213 nodemask = NULL; 1214 } 1215 1216 if (!page) 1217 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1218 1219 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1220 SetHPageRestoreReserve(page); 1221 h->resv_huge_pages--; 1222 } 1223 1224 mpol_cond_put(mpol); 1225 return page; 1226 1227 err: 1228 return NULL; 1229 } 1230 1231 /* 1232 * common helper functions for hstate_next_node_to_{alloc|free}. 1233 * We may have allocated or freed a huge page based on a different 1234 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1235 * be outside of *nodes_allowed. Ensure that we use an allowed 1236 * node for alloc or free. 1237 */ 1238 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1239 { 1240 nid = next_node_in(nid, *nodes_allowed); 1241 VM_BUG_ON(nid >= MAX_NUMNODES); 1242 1243 return nid; 1244 } 1245 1246 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1247 { 1248 if (!node_isset(nid, *nodes_allowed)) 1249 nid = next_node_allowed(nid, nodes_allowed); 1250 return nid; 1251 } 1252 1253 /* 1254 * returns the previously saved node ["this node"] from which to 1255 * allocate a persistent huge page for the pool and advance the 1256 * next node from which to allocate, handling wrap at end of node 1257 * mask. 1258 */ 1259 static int hstate_next_node_to_alloc(struct hstate *h, 1260 nodemask_t *nodes_allowed) 1261 { 1262 int nid; 1263 1264 VM_BUG_ON(!nodes_allowed); 1265 1266 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1267 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1268 1269 return nid; 1270 } 1271 1272 /* 1273 * helper for remove_pool_huge_page() - return the previously saved 1274 * node ["this node"] from which to free a huge page. Advance the 1275 * next node id whether or not we find a free huge page to free so 1276 * that the next attempt to free addresses the next node. 1277 */ 1278 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1279 { 1280 int nid; 1281 1282 VM_BUG_ON(!nodes_allowed); 1283 1284 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1285 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1286 1287 return nid; 1288 } 1289 1290 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1291 for (nr_nodes = nodes_weight(*mask); \ 1292 nr_nodes > 0 && \ 1293 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1294 nr_nodes--) 1295 1296 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1297 for (nr_nodes = nodes_weight(*mask); \ 1298 nr_nodes > 0 && \ 1299 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1300 nr_nodes--) 1301 1302 /* used to demote non-gigantic_huge pages as well */ 1303 static void __destroy_compound_gigantic_page(struct page *page, 1304 unsigned int order, bool demote) 1305 { 1306 int i; 1307 int nr_pages = 1 << order; 1308 struct page *p = page + 1; 1309 1310 atomic_set(compound_mapcount_ptr(page), 0); 1311 atomic_set(compound_pincount_ptr(page), 0); 1312 1313 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1314 p->mapping = NULL; 1315 clear_compound_head(p); 1316 if (!demote) 1317 set_page_refcounted(p); 1318 } 1319 1320 set_compound_order(page, 0); 1321 page[1].compound_nr = 0; 1322 __ClearPageHead(page); 1323 } 1324 1325 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1326 unsigned int order) 1327 { 1328 __destroy_compound_gigantic_page(page, order, true); 1329 } 1330 1331 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1332 static void destroy_compound_gigantic_page(struct page *page, 1333 unsigned int order) 1334 { 1335 __destroy_compound_gigantic_page(page, order, false); 1336 } 1337 1338 static void free_gigantic_page(struct page *page, unsigned int order) 1339 { 1340 /* 1341 * If the page isn't allocated using the cma allocator, 1342 * cma_release() returns false. 1343 */ 1344 #ifdef CONFIG_CMA 1345 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1346 return; 1347 #endif 1348 1349 free_contig_range(page_to_pfn(page), 1 << order); 1350 } 1351 1352 #ifdef CONFIG_CONTIG_ALLOC 1353 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1354 int nid, nodemask_t *nodemask) 1355 { 1356 unsigned long nr_pages = pages_per_huge_page(h); 1357 if (nid == NUMA_NO_NODE) 1358 nid = numa_mem_id(); 1359 1360 #ifdef CONFIG_CMA 1361 { 1362 struct page *page; 1363 int node; 1364 1365 if (hugetlb_cma[nid]) { 1366 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1367 huge_page_order(h), true); 1368 if (page) 1369 return page; 1370 } 1371 1372 if (!(gfp_mask & __GFP_THISNODE)) { 1373 for_each_node_mask(node, *nodemask) { 1374 if (node == nid || !hugetlb_cma[node]) 1375 continue; 1376 1377 page = cma_alloc(hugetlb_cma[node], nr_pages, 1378 huge_page_order(h), true); 1379 if (page) 1380 return page; 1381 } 1382 } 1383 } 1384 #endif 1385 1386 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1387 } 1388 1389 #else /* !CONFIG_CONTIG_ALLOC */ 1390 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1391 int nid, nodemask_t *nodemask) 1392 { 1393 return NULL; 1394 } 1395 #endif /* CONFIG_CONTIG_ALLOC */ 1396 1397 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1398 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1399 int nid, nodemask_t *nodemask) 1400 { 1401 return NULL; 1402 } 1403 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1404 static inline void destroy_compound_gigantic_page(struct page *page, 1405 unsigned int order) { } 1406 #endif 1407 1408 /* 1409 * Remove hugetlb page from lists, and update dtor so that page appears 1410 * as just a compound page. 1411 * 1412 * A reference is held on the page, except in the case of demote. 1413 * 1414 * Must be called with hugetlb lock held. 1415 */ 1416 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1417 bool adjust_surplus, 1418 bool demote) 1419 { 1420 int nid = page_to_nid(page); 1421 1422 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1423 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1424 1425 lockdep_assert_held(&hugetlb_lock); 1426 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1427 return; 1428 1429 list_del(&page->lru); 1430 1431 if (HPageFreed(page)) { 1432 h->free_huge_pages--; 1433 h->free_huge_pages_node[nid]--; 1434 } 1435 if (adjust_surplus) { 1436 h->surplus_huge_pages--; 1437 h->surplus_huge_pages_node[nid]--; 1438 } 1439 1440 /* 1441 * Very subtle 1442 * 1443 * For non-gigantic pages set the destructor to the normal compound 1444 * page dtor. This is needed in case someone takes an additional 1445 * temporary ref to the page, and freeing is delayed until they drop 1446 * their reference. 1447 * 1448 * For gigantic pages set the destructor to the null dtor. This 1449 * destructor will never be called. Before freeing the gigantic 1450 * page destroy_compound_gigantic_page will turn the compound page 1451 * into a simple group of pages. After this the destructor does not 1452 * apply. 1453 * 1454 * This handles the case where more than one ref is held when and 1455 * after update_and_free_page is called. 1456 * 1457 * In the case of demote we do not ref count the page as it will soon 1458 * be turned into a page of smaller size. 1459 */ 1460 if (!demote) 1461 set_page_refcounted(page); 1462 if (hstate_is_gigantic(h)) 1463 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1464 else 1465 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1466 1467 h->nr_huge_pages--; 1468 h->nr_huge_pages_node[nid]--; 1469 } 1470 1471 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1472 bool adjust_surplus) 1473 { 1474 __remove_hugetlb_page(h, page, adjust_surplus, false); 1475 } 1476 1477 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1478 bool adjust_surplus) 1479 { 1480 __remove_hugetlb_page(h, page, adjust_surplus, true); 1481 } 1482 1483 static void add_hugetlb_page(struct hstate *h, struct page *page, 1484 bool adjust_surplus) 1485 { 1486 int zeroed; 1487 int nid = page_to_nid(page); 1488 1489 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1490 1491 lockdep_assert_held(&hugetlb_lock); 1492 1493 INIT_LIST_HEAD(&page->lru); 1494 h->nr_huge_pages++; 1495 h->nr_huge_pages_node[nid]++; 1496 1497 if (adjust_surplus) { 1498 h->surplus_huge_pages++; 1499 h->surplus_huge_pages_node[nid]++; 1500 } 1501 1502 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1503 set_page_private(page, 0); 1504 SetHPageVmemmapOptimized(page); 1505 1506 /* 1507 * This page is about to be managed by the hugetlb allocator and 1508 * should have no users. Drop our reference, and check for others 1509 * just in case. 1510 */ 1511 zeroed = put_page_testzero(page); 1512 if (!zeroed) 1513 /* 1514 * It is VERY unlikely soneone else has taken a ref on 1515 * the page. In this case, we simply return as the 1516 * hugetlb destructor (free_huge_page) will be called 1517 * when this other ref is dropped. 1518 */ 1519 return; 1520 1521 arch_clear_hugepage_flags(page); 1522 enqueue_huge_page(h, page); 1523 } 1524 1525 static void __update_and_free_page(struct hstate *h, struct page *page) 1526 { 1527 int i; 1528 struct page *subpage = page; 1529 1530 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1531 return; 1532 1533 if (alloc_huge_page_vmemmap(h, page)) { 1534 spin_lock_irq(&hugetlb_lock); 1535 /* 1536 * If we cannot allocate vmemmap pages, just refuse to free the 1537 * page and put the page back on the hugetlb free list and treat 1538 * as a surplus page. 1539 */ 1540 add_hugetlb_page(h, page, true); 1541 spin_unlock_irq(&hugetlb_lock); 1542 return; 1543 } 1544 1545 for (i = 0; i < pages_per_huge_page(h); 1546 i++, subpage = mem_map_next(subpage, page, i)) { 1547 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1548 1 << PG_referenced | 1 << PG_dirty | 1549 1 << PG_active | 1 << PG_private | 1550 1 << PG_writeback); 1551 } 1552 1553 /* 1554 * Non-gigantic pages demoted from CMA allocated gigantic pages 1555 * need to be given back to CMA in free_gigantic_page. 1556 */ 1557 if (hstate_is_gigantic(h) || 1558 hugetlb_cma_page(page, huge_page_order(h))) { 1559 destroy_compound_gigantic_page(page, huge_page_order(h)); 1560 free_gigantic_page(page, huge_page_order(h)); 1561 } else { 1562 __free_pages(page, huge_page_order(h)); 1563 } 1564 } 1565 1566 /* 1567 * As update_and_free_page() can be called under any context, so we cannot 1568 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1569 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1570 * the vmemmap pages. 1571 * 1572 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1573 * freed and frees them one-by-one. As the page->mapping pointer is going 1574 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1575 * structure of a lockless linked list of huge pages to be freed. 1576 */ 1577 static LLIST_HEAD(hpage_freelist); 1578 1579 static void free_hpage_workfn(struct work_struct *work) 1580 { 1581 struct llist_node *node; 1582 1583 node = llist_del_all(&hpage_freelist); 1584 1585 while (node) { 1586 struct page *page; 1587 struct hstate *h; 1588 1589 page = container_of((struct address_space **)node, 1590 struct page, mapping); 1591 node = node->next; 1592 page->mapping = NULL; 1593 /* 1594 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1595 * is going to trigger because a previous call to 1596 * remove_hugetlb_page() will set_compound_page_dtor(page, 1597 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1598 */ 1599 h = size_to_hstate(page_size(page)); 1600 1601 __update_and_free_page(h, page); 1602 1603 cond_resched(); 1604 } 1605 } 1606 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1607 1608 static inline void flush_free_hpage_work(struct hstate *h) 1609 { 1610 if (free_vmemmap_pages_per_hpage(h)) 1611 flush_work(&free_hpage_work); 1612 } 1613 1614 static void update_and_free_page(struct hstate *h, struct page *page, 1615 bool atomic) 1616 { 1617 if (!HPageVmemmapOptimized(page) || !atomic) { 1618 __update_and_free_page(h, page); 1619 return; 1620 } 1621 1622 /* 1623 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1624 * 1625 * Only call schedule_work() if hpage_freelist is previously 1626 * empty. Otherwise, schedule_work() had been called but the workfn 1627 * hasn't retrieved the list yet. 1628 */ 1629 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1630 schedule_work(&free_hpage_work); 1631 } 1632 1633 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1634 { 1635 struct page *page, *t_page; 1636 1637 list_for_each_entry_safe(page, t_page, list, lru) { 1638 update_and_free_page(h, page, false); 1639 cond_resched(); 1640 } 1641 } 1642 1643 struct hstate *size_to_hstate(unsigned long size) 1644 { 1645 struct hstate *h; 1646 1647 for_each_hstate(h) { 1648 if (huge_page_size(h) == size) 1649 return h; 1650 } 1651 return NULL; 1652 } 1653 1654 void free_huge_page(struct page *page) 1655 { 1656 /* 1657 * Can't pass hstate in here because it is called from the 1658 * compound page destructor. 1659 */ 1660 struct hstate *h = page_hstate(page); 1661 int nid = page_to_nid(page); 1662 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1663 bool restore_reserve; 1664 unsigned long flags; 1665 1666 VM_BUG_ON_PAGE(page_count(page), page); 1667 VM_BUG_ON_PAGE(page_mapcount(page), page); 1668 1669 hugetlb_set_page_subpool(page, NULL); 1670 page->mapping = NULL; 1671 restore_reserve = HPageRestoreReserve(page); 1672 ClearHPageRestoreReserve(page); 1673 1674 /* 1675 * If HPageRestoreReserve was set on page, page allocation consumed a 1676 * reservation. If the page was associated with a subpool, there 1677 * would have been a page reserved in the subpool before allocation 1678 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1679 * reservation, do not call hugepage_subpool_put_pages() as this will 1680 * remove the reserved page from the subpool. 1681 */ 1682 if (!restore_reserve) { 1683 /* 1684 * A return code of zero implies that the subpool will be 1685 * under its minimum size if the reservation is not restored 1686 * after page is free. Therefore, force restore_reserve 1687 * operation. 1688 */ 1689 if (hugepage_subpool_put_pages(spool, 1) == 0) 1690 restore_reserve = true; 1691 } 1692 1693 spin_lock_irqsave(&hugetlb_lock, flags); 1694 ClearHPageMigratable(page); 1695 hugetlb_cgroup_uncharge_page(hstate_index(h), 1696 pages_per_huge_page(h), page); 1697 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1698 pages_per_huge_page(h), page); 1699 if (restore_reserve) 1700 h->resv_huge_pages++; 1701 1702 if (HPageTemporary(page)) { 1703 remove_hugetlb_page(h, page, false); 1704 spin_unlock_irqrestore(&hugetlb_lock, flags); 1705 update_and_free_page(h, page, true); 1706 } else if (h->surplus_huge_pages_node[nid]) { 1707 /* remove the page from active list */ 1708 remove_hugetlb_page(h, page, true); 1709 spin_unlock_irqrestore(&hugetlb_lock, flags); 1710 update_and_free_page(h, page, true); 1711 } else { 1712 arch_clear_hugepage_flags(page); 1713 enqueue_huge_page(h, page); 1714 spin_unlock_irqrestore(&hugetlb_lock, flags); 1715 } 1716 } 1717 1718 /* 1719 * Must be called with the hugetlb lock held 1720 */ 1721 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1722 { 1723 lockdep_assert_held(&hugetlb_lock); 1724 h->nr_huge_pages++; 1725 h->nr_huge_pages_node[nid]++; 1726 } 1727 1728 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1729 { 1730 free_huge_page_vmemmap(h, page); 1731 INIT_LIST_HEAD(&page->lru); 1732 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1733 hugetlb_set_page_subpool(page, NULL); 1734 set_hugetlb_cgroup(page, NULL); 1735 set_hugetlb_cgroup_rsvd(page, NULL); 1736 } 1737 1738 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1739 { 1740 __prep_new_huge_page(h, page); 1741 spin_lock_irq(&hugetlb_lock); 1742 __prep_account_new_huge_page(h, nid); 1743 spin_unlock_irq(&hugetlb_lock); 1744 } 1745 1746 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1747 bool demote) 1748 { 1749 int i, j; 1750 int nr_pages = 1 << order; 1751 struct page *p = page + 1; 1752 1753 /* we rely on prep_new_huge_page to set the destructor */ 1754 set_compound_order(page, order); 1755 __ClearPageReserved(page); 1756 __SetPageHead(page); 1757 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1758 /* 1759 * For gigantic hugepages allocated through bootmem at 1760 * boot, it's safer to be consistent with the not-gigantic 1761 * hugepages and clear the PG_reserved bit from all tail pages 1762 * too. Otherwise drivers using get_user_pages() to access tail 1763 * pages may get the reference counting wrong if they see 1764 * PG_reserved set on a tail page (despite the head page not 1765 * having PG_reserved set). Enforcing this consistency between 1766 * head and tail pages allows drivers to optimize away a check 1767 * on the head page when they need know if put_page() is needed 1768 * after get_user_pages(). 1769 */ 1770 __ClearPageReserved(p); 1771 /* 1772 * Subtle and very unlikely 1773 * 1774 * Gigantic 'page allocators' such as memblock or cma will 1775 * return a set of pages with each page ref counted. We need 1776 * to turn this set of pages into a compound page with tail 1777 * page ref counts set to zero. Code such as speculative page 1778 * cache adding could take a ref on a 'to be' tail page. 1779 * We need to respect any increased ref count, and only set 1780 * the ref count to zero if count is currently 1. If count 1781 * is not 1, we return an error. An error return indicates 1782 * the set of pages can not be converted to a gigantic page. 1783 * The caller who allocated the pages should then discard the 1784 * pages using the appropriate free interface. 1785 * 1786 * In the case of demote, the ref count will be zero. 1787 */ 1788 if (!demote) { 1789 if (!page_ref_freeze(p, 1)) { 1790 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1791 goto out_error; 1792 } 1793 } else { 1794 VM_BUG_ON_PAGE(page_count(p), p); 1795 } 1796 set_compound_head(p, page); 1797 } 1798 atomic_set(compound_mapcount_ptr(page), -1); 1799 atomic_set(compound_pincount_ptr(page), 0); 1800 return true; 1801 1802 out_error: 1803 /* undo tail page modifications made above */ 1804 p = page + 1; 1805 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) { 1806 clear_compound_head(p); 1807 set_page_refcounted(p); 1808 } 1809 /* need to clear PG_reserved on remaining tail pages */ 1810 for (; j < nr_pages; j++, p = mem_map_next(p, page, j)) 1811 __ClearPageReserved(p); 1812 set_compound_order(page, 0); 1813 page[1].compound_nr = 0; 1814 __ClearPageHead(page); 1815 return false; 1816 } 1817 1818 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1819 { 1820 return __prep_compound_gigantic_page(page, order, false); 1821 } 1822 1823 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1824 unsigned int order) 1825 { 1826 return __prep_compound_gigantic_page(page, order, true); 1827 } 1828 1829 /* 1830 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1831 * transparent huge pages. See the PageTransHuge() documentation for more 1832 * details. 1833 */ 1834 int PageHuge(struct page *page) 1835 { 1836 if (!PageCompound(page)) 1837 return 0; 1838 1839 page = compound_head(page); 1840 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1841 } 1842 EXPORT_SYMBOL_GPL(PageHuge); 1843 1844 /* 1845 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1846 * normal or transparent huge pages. 1847 */ 1848 int PageHeadHuge(struct page *page_head) 1849 { 1850 if (!PageHead(page_head)) 1851 return 0; 1852 1853 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1854 } 1855 1856 /* 1857 * Find and lock address space (mapping) in write mode. 1858 * 1859 * Upon entry, the page is locked which means that page_mapping() is 1860 * stable. Due to locking order, we can only trylock_write. If we can 1861 * not get the lock, simply return NULL to caller. 1862 */ 1863 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1864 { 1865 struct address_space *mapping = page_mapping(hpage); 1866 1867 if (!mapping) 1868 return mapping; 1869 1870 if (i_mmap_trylock_write(mapping)) 1871 return mapping; 1872 1873 return NULL; 1874 } 1875 1876 pgoff_t hugetlb_basepage_index(struct page *page) 1877 { 1878 struct page *page_head = compound_head(page); 1879 pgoff_t index = page_index(page_head); 1880 unsigned long compound_idx; 1881 1882 if (compound_order(page_head) >= MAX_ORDER) 1883 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1884 else 1885 compound_idx = page - page_head; 1886 1887 return (index << compound_order(page_head)) + compound_idx; 1888 } 1889 1890 static struct page *alloc_buddy_huge_page(struct hstate *h, 1891 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1892 nodemask_t *node_alloc_noretry) 1893 { 1894 int order = huge_page_order(h); 1895 struct page *page; 1896 bool alloc_try_hard = true; 1897 1898 /* 1899 * By default we always try hard to allocate the page with 1900 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1901 * a loop (to adjust global huge page counts) and previous allocation 1902 * failed, do not continue to try hard on the same node. Use the 1903 * node_alloc_noretry bitmap to manage this state information. 1904 */ 1905 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1906 alloc_try_hard = false; 1907 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1908 if (alloc_try_hard) 1909 gfp_mask |= __GFP_RETRY_MAYFAIL; 1910 if (nid == NUMA_NO_NODE) 1911 nid = numa_mem_id(); 1912 page = __alloc_pages(gfp_mask, order, nid, nmask); 1913 if (page) 1914 __count_vm_event(HTLB_BUDDY_PGALLOC); 1915 else 1916 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1917 1918 /* 1919 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1920 * indicates an overall state change. Clear bit so that we resume 1921 * normal 'try hard' allocations. 1922 */ 1923 if (node_alloc_noretry && page && !alloc_try_hard) 1924 node_clear(nid, *node_alloc_noretry); 1925 1926 /* 1927 * If we tried hard to get a page but failed, set bit so that 1928 * subsequent attempts will not try as hard until there is an 1929 * overall state change. 1930 */ 1931 if (node_alloc_noretry && !page && alloc_try_hard) 1932 node_set(nid, *node_alloc_noretry); 1933 1934 return page; 1935 } 1936 1937 /* 1938 * Common helper to allocate a fresh hugetlb page. All specific allocators 1939 * should use this function to get new hugetlb pages 1940 */ 1941 static struct page *alloc_fresh_huge_page(struct hstate *h, 1942 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1943 nodemask_t *node_alloc_noretry) 1944 { 1945 struct page *page; 1946 bool retry = false; 1947 1948 retry: 1949 if (hstate_is_gigantic(h)) 1950 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1951 else 1952 page = alloc_buddy_huge_page(h, gfp_mask, 1953 nid, nmask, node_alloc_noretry); 1954 if (!page) 1955 return NULL; 1956 1957 if (hstate_is_gigantic(h)) { 1958 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 1959 /* 1960 * Rare failure to convert pages to compound page. 1961 * Free pages and try again - ONCE! 1962 */ 1963 free_gigantic_page(page, huge_page_order(h)); 1964 if (!retry) { 1965 retry = true; 1966 goto retry; 1967 } 1968 return NULL; 1969 } 1970 } 1971 prep_new_huge_page(h, page, page_to_nid(page)); 1972 1973 return page; 1974 } 1975 1976 /* 1977 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1978 * manner. 1979 */ 1980 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1981 nodemask_t *node_alloc_noretry) 1982 { 1983 struct page *page; 1984 int nr_nodes, node; 1985 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1986 1987 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1988 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1989 node_alloc_noretry); 1990 if (page) 1991 break; 1992 } 1993 1994 if (!page) 1995 return 0; 1996 1997 put_page(page); /* free it into the hugepage allocator */ 1998 1999 return 1; 2000 } 2001 2002 /* 2003 * Remove huge page from pool from next node to free. Attempt to keep 2004 * persistent huge pages more or less balanced over allowed nodes. 2005 * This routine only 'removes' the hugetlb page. The caller must make 2006 * an additional call to free the page to low level allocators. 2007 * Called with hugetlb_lock locked. 2008 */ 2009 static struct page *remove_pool_huge_page(struct hstate *h, 2010 nodemask_t *nodes_allowed, 2011 bool acct_surplus) 2012 { 2013 int nr_nodes, node; 2014 struct page *page = NULL; 2015 2016 lockdep_assert_held(&hugetlb_lock); 2017 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2018 /* 2019 * If we're returning unused surplus pages, only examine 2020 * nodes with surplus pages. 2021 */ 2022 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2023 !list_empty(&h->hugepage_freelists[node])) { 2024 page = list_entry(h->hugepage_freelists[node].next, 2025 struct page, lru); 2026 remove_hugetlb_page(h, page, acct_surplus); 2027 break; 2028 } 2029 } 2030 2031 return page; 2032 } 2033 2034 /* 2035 * Dissolve a given free hugepage into free buddy pages. This function does 2036 * nothing for in-use hugepages and non-hugepages. 2037 * This function returns values like below: 2038 * 2039 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2040 * when the system is under memory pressure and the feature of 2041 * freeing unused vmemmap pages associated with each hugetlb page 2042 * is enabled. 2043 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2044 * (allocated or reserved.) 2045 * 0: successfully dissolved free hugepages or the page is not a 2046 * hugepage (considered as already dissolved) 2047 */ 2048 int dissolve_free_huge_page(struct page *page) 2049 { 2050 int rc = -EBUSY; 2051 2052 retry: 2053 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2054 if (!PageHuge(page)) 2055 return 0; 2056 2057 spin_lock_irq(&hugetlb_lock); 2058 if (!PageHuge(page)) { 2059 rc = 0; 2060 goto out; 2061 } 2062 2063 if (!page_count(page)) { 2064 struct page *head = compound_head(page); 2065 struct hstate *h = page_hstate(head); 2066 if (h->free_huge_pages - h->resv_huge_pages == 0) 2067 goto out; 2068 2069 /* 2070 * We should make sure that the page is already on the free list 2071 * when it is dissolved. 2072 */ 2073 if (unlikely(!HPageFreed(head))) { 2074 spin_unlock_irq(&hugetlb_lock); 2075 cond_resched(); 2076 2077 /* 2078 * Theoretically, we should return -EBUSY when we 2079 * encounter this race. In fact, we have a chance 2080 * to successfully dissolve the page if we do a 2081 * retry. Because the race window is quite small. 2082 * If we seize this opportunity, it is an optimization 2083 * for increasing the success rate of dissolving page. 2084 */ 2085 goto retry; 2086 } 2087 2088 remove_hugetlb_page(h, head, false); 2089 h->max_huge_pages--; 2090 spin_unlock_irq(&hugetlb_lock); 2091 2092 /* 2093 * Normally update_and_free_page will allocate required vmemmmap 2094 * before freeing the page. update_and_free_page will fail to 2095 * free the page if it can not allocate required vmemmap. We 2096 * need to adjust max_huge_pages if the page is not freed. 2097 * Attempt to allocate vmemmmap here so that we can take 2098 * appropriate action on failure. 2099 */ 2100 rc = alloc_huge_page_vmemmap(h, head); 2101 if (!rc) { 2102 /* 2103 * Move PageHWPoison flag from head page to the raw 2104 * error page, which makes any subpages rather than 2105 * the error page reusable. 2106 */ 2107 if (PageHWPoison(head) && page != head) { 2108 SetPageHWPoison(page); 2109 ClearPageHWPoison(head); 2110 } 2111 update_and_free_page(h, head, false); 2112 } else { 2113 spin_lock_irq(&hugetlb_lock); 2114 add_hugetlb_page(h, head, false); 2115 h->max_huge_pages++; 2116 spin_unlock_irq(&hugetlb_lock); 2117 } 2118 2119 return rc; 2120 } 2121 out: 2122 spin_unlock_irq(&hugetlb_lock); 2123 return rc; 2124 } 2125 2126 /* 2127 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2128 * make specified memory blocks removable from the system. 2129 * Note that this will dissolve a free gigantic hugepage completely, if any 2130 * part of it lies within the given range. 2131 * Also note that if dissolve_free_huge_page() returns with an error, all 2132 * free hugepages that were dissolved before that error are lost. 2133 */ 2134 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2135 { 2136 unsigned long pfn; 2137 struct page *page; 2138 int rc = 0; 2139 2140 if (!hugepages_supported()) 2141 return rc; 2142 2143 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 2144 page = pfn_to_page(pfn); 2145 rc = dissolve_free_huge_page(page); 2146 if (rc) 2147 break; 2148 } 2149 2150 return rc; 2151 } 2152 2153 /* 2154 * Allocates a fresh surplus page from the page allocator. 2155 */ 2156 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2157 int nid, nodemask_t *nmask, bool zero_ref) 2158 { 2159 struct page *page = NULL; 2160 bool retry = false; 2161 2162 if (hstate_is_gigantic(h)) 2163 return NULL; 2164 2165 spin_lock_irq(&hugetlb_lock); 2166 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2167 goto out_unlock; 2168 spin_unlock_irq(&hugetlb_lock); 2169 2170 retry: 2171 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2172 if (!page) 2173 return NULL; 2174 2175 spin_lock_irq(&hugetlb_lock); 2176 /* 2177 * We could have raced with the pool size change. 2178 * Double check that and simply deallocate the new page 2179 * if we would end up overcommiting the surpluses. Abuse 2180 * temporary page to workaround the nasty free_huge_page 2181 * codeflow 2182 */ 2183 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2184 SetHPageTemporary(page); 2185 spin_unlock_irq(&hugetlb_lock); 2186 put_page(page); 2187 return NULL; 2188 } 2189 2190 if (zero_ref) { 2191 /* 2192 * Caller requires a page with zero ref count. 2193 * We will drop ref count here. If someone else is holding 2194 * a ref, the page will be freed when they drop it. Abuse 2195 * temporary page flag to accomplish this. 2196 */ 2197 SetHPageTemporary(page); 2198 if (!put_page_testzero(page)) { 2199 /* 2200 * Unexpected inflated ref count on freshly allocated 2201 * huge. Retry once. 2202 */ 2203 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n"); 2204 spin_unlock_irq(&hugetlb_lock); 2205 if (retry) 2206 return NULL; 2207 2208 retry = true; 2209 goto retry; 2210 } 2211 ClearHPageTemporary(page); 2212 } 2213 2214 h->surplus_huge_pages++; 2215 h->surplus_huge_pages_node[page_to_nid(page)]++; 2216 2217 out_unlock: 2218 spin_unlock_irq(&hugetlb_lock); 2219 2220 return page; 2221 } 2222 2223 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2224 int nid, nodemask_t *nmask) 2225 { 2226 struct page *page; 2227 2228 if (hstate_is_gigantic(h)) 2229 return NULL; 2230 2231 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2232 if (!page) 2233 return NULL; 2234 2235 /* 2236 * We do not account these pages as surplus because they are only 2237 * temporary and will be released properly on the last reference 2238 */ 2239 SetHPageTemporary(page); 2240 2241 return page; 2242 } 2243 2244 /* 2245 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2246 */ 2247 static 2248 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2249 struct vm_area_struct *vma, unsigned long addr) 2250 { 2251 struct page *page = NULL; 2252 struct mempolicy *mpol; 2253 gfp_t gfp_mask = htlb_alloc_mask(h); 2254 int nid; 2255 nodemask_t *nodemask; 2256 2257 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2258 if (mpol_is_preferred_many(mpol)) { 2259 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2260 2261 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2262 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false); 2263 2264 /* Fallback to all nodes if page==NULL */ 2265 nodemask = NULL; 2266 } 2267 2268 if (!page) 2269 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false); 2270 mpol_cond_put(mpol); 2271 return page; 2272 } 2273 2274 /* page migration callback function */ 2275 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2276 nodemask_t *nmask, gfp_t gfp_mask) 2277 { 2278 spin_lock_irq(&hugetlb_lock); 2279 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2280 struct page *page; 2281 2282 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2283 if (page) { 2284 spin_unlock_irq(&hugetlb_lock); 2285 return page; 2286 } 2287 } 2288 spin_unlock_irq(&hugetlb_lock); 2289 2290 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2291 } 2292 2293 /* mempolicy aware migration callback */ 2294 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2295 unsigned long address) 2296 { 2297 struct mempolicy *mpol; 2298 nodemask_t *nodemask; 2299 struct page *page; 2300 gfp_t gfp_mask; 2301 int node; 2302 2303 gfp_mask = htlb_alloc_mask(h); 2304 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2305 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2306 mpol_cond_put(mpol); 2307 2308 return page; 2309 } 2310 2311 /* 2312 * Increase the hugetlb pool such that it can accommodate a reservation 2313 * of size 'delta'. 2314 */ 2315 static int gather_surplus_pages(struct hstate *h, long delta) 2316 __must_hold(&hugetlb_lock) 2317 { 2318 struct list_head surplus_list; 2319 struct page *page, *tmp; 2320 int ret; 2321 long i; 2322 long needed, allocated; 2323 bool alloc_ok = true; 2324 2325 lockdep_assert_held(&hugetlb_lock); 2326 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2327 if (needed <= 0) { 2328 h->resv_huge_pages += delta; 2329 return 0; 2330 } 2331 2332 allocated = 0; 2333 INIT_LIST_HEAD(&surplus_list); 2334 2335 ret = -ENOMEM; 2336 retry: 2337 spin_unlock_irq(&hugetlb_lock); 2338 for (i = 0; i < needed; i++) { 2339 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2340 NUMA_NO_NODE, NULL, true); 2341 if (!page) { 2342 alloc_ok = false; 2343 break; 2344 } 2345 list_add(&page->lru, &surplus_list); 2346 cond_resched(); 2347 } 2348 allocated += i; 2349 2350 /* 2351 * After retaking hugetlb_lock, we need to recalculate 'needed' 2352 * because either resv_huge_pages or free_huge_pages may have changed. 2353 */ 2354 spin_lock_irq(&hugetlb_lock); 2355 needed = (h->resv_huge_pages + delta) - 2356 (h->free_huge_pages + allocated); 2357 if (needed > 0) { 2358 if (alloc_ok) 2359 goto retry; 2360 /* 2361 * We were not able to allocate enough pages to 2362 * satisfy the entire reservation so we free what 2363 * we've allocated so far. 2364 */ 2365 goto free; 2366 } 2367 /* 2368 * The surplus_list now contains _at_least_ the number of extra pages 2369 * needed to accommodate the reservation. Add the appropriate number 2370 * of pages to the hugetlb pool and free the extras back to the buddy 2371 * allocator. Commit the entire reservation here to prevent another 2372 * process from stealing the pages as they are added to the pool but 2373 * before they are reserved. 2374 */ 2375 needed += allocated; 2376 h->resv_huge_pages += delta; 2377 ret = 0; 2378 2379 /* Free the needed pages to the hugetlb pool */ 2380 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2381 if ((--needed) < 0) 2382 break; 2383 /* Add the page to the hugetlb allocator */ 2384 enqueue_huge_page(h, page); 2385 } 2386 free: 2387 spin_unlock_irq(&hugetlb_lock); 2388 2389 /* 2390 * Free unnecessary surplus pages to the buddy allocator. 2391 * Pages have no ref count, call free_huge_page directly. 2392 */ 2393 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2394 free_huge_page(page); 2395 spin_lock_irq(&hugetlb_lock); 2396 2397 return ret; 2398 } 2399 2400 /* 2401 * This routine has two main purposes: 2402 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2403 * in unused_resv_pages. This corresponds to the prior adjustments made 2404 * to the associated reservation map. 2405 * 2) Free any unused surplus pages that may have been allocated to satisfy 2406 * the reservation. As many as unused_resv_pages may be freed. 2407 */ 2408 static void return_unused_surplus_pages(struct hstate *h, 2409 unsigned long unused_resv_pages) 2410 { 2411 unsigned long nr_pages; 2412 struct page *page; 2413 LIST_HEAD(page_list); 2414 2415 lockdep_assert_held(&hugetlb_lock); 2416 /* Uncommit the reservation */ 2417 h->resv_huge_pages -= unused_resv_pages; 2418 2419 /* Cannot return gigantic pages currently */ 2420 if (hstate_is_gigantic(h)) 2421 goto out; 2422 2423 /* 2424 * Part (or even all) of the reservation could have been backed 2425 * by pre-allocated pages. Only free surplus pages. 2426 */ 2427 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2428 2429 /* 2430 * We want to release as many surplus pages as possible, spread 2431 * evenly across all nodes with memory. Iterate across these nodes 2432 * until we can no longer free unreserved surplus pages. This occurs 2433 * when the nodes with surplus pages have no free pages. 2434 * remove_pool_huge_page() will balance the freed pages across the 2435 * on-line nodes with memory and will handle the hstate accounting. 2436 */ 2437 while (nr_pages--) { 2438 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2439 if (!page) 2440 goto out; 2441 2442 list_add(&page->lru, &page_list); 2443 } 2444 2445 out: 2446 spin_unlock_irq(&hugetlb_lock); 2447 update_and_free_pages_bulk(h, &page_list); 2448 spin_lock_irq(&hugetlb_lock); 2449 } 2450 2451 2452 /* 2453 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2454 * are used by the huge page allocation routines to manage reservations. 2455 * 2456 * vma_needs_reservation is called to determine if the huge page at addr 2457 * within the vma has an associated reservation. If a reservation is 2458 * needed, the value 1 is returned. The caller is then responsible for 2459 * managing the global reservation and subpool usage counts. After 2460 * the huge page has been allocated, vma_commit_reservation is called 2461 * to add the page to the reservation map. If the page allocation fails, 2462 * the reservation must be ended instead of committed. vma_end_reservation 2463 * is called in such cases. 2464 * 2465 * In the normal case, vma_commit_reservation returns the same value 2466 * as the preceding vma_needs_reservation call. The only time this 2467 * is not the case is if a reserve map was changed between calls. It 2468 * is the responsibility of the caller to notice the difference and 2469 * take appropriate action. 2470 * 2471 * vma_add_reservation is used in error paths where a reservation must 2472 * be restored when a newly allocated huge page must be freed. It is 2473 * to be called after calling vma_needs_reservation to determine if a 2474 * reservation exists. 2475 * 2476 * vma_del_reservation is used in error paths where an entry in the reserve 2477 * map was created during huge page allocation and must be removed. It is to 2478 * be called after calling vma_needs_reservation to determine if a reservation 2479 * exists. 2480 */ 2481 enum vma_resv_mode { 2482 VMA_NEEDS_RESV, 2483 VMA_COMMIT_RESV, 2484 VMA_END_RESV, 2485 VMA_ADD_RESV, 2486 VMA_DEL_RESV, 2487 }; 2488 static long __vma_reservation_common(struct hstate *h, 2489 struct vm_area_struct *vma, unsigned long addr, 2490 enum vma_resv_mode mode) 2491 { 2492 struct resv_map *resv; 2493 pgoff_t idx; 2494 long ret; 2495 long dummy_out_regions_needed; 2496 2497 resv = vma_resv_map(vma); 2498 if (!resv) 2499 return 1; 2500 2501 idx = vma_hugecache_offset(h, vma, addr); 2502 switch (mode) { 2503 case VMA_NEEDS_RESV: 2504 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2505 /* We assume that vma_reservation_* routines always operate on 2506 * 1 page, and that adding to resv map a 1 page entry can only 2507 * ever require 1 region. 2508 */ 2509 VM_BUG_ON(dummy_out_regions_needed != 1); 2510 break; 2511 case VMA_COMMIT_RESV: 2512 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2513 /* region_add calls of range 1 should never fail. */ 2514 VM_BUG_ON(ret < 0); 2515 break; 2516 case VMA_END_RESV: 2517 region_abort(resv, idx, idx + 1, 1); 2518 ret = 0; 2519 break; 2520 case VMA_ADD_RESV: 2521 if (vma->vm_flags & VM_MAYSHARE) { 2522 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2523 /* region_add calls of range 1 should never fail. */ 2524 VM_BUG_ON(ret < 0); 2525 } else { 2526 region_abort(resv, idx, idx + 1, 1); 2527 ret = region_del(resv, idx, idx + 1); 2528 } 2529 break; 2530 case VMA_DEL_RESV: 2531 if (vma->vm_flags & VM_MAYSHARE) { 2532 region_abort(resv, idx, idx + 1, 1); 2533 ret = region_del(resv, idx, idx + 1); 2534 } else { 2535 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2536 /* region_add calls of range 1 should never fail. */ 2537 VM_BUG_ON(ret < 0); 2538 } 2539 break; 2540 default: 2541 BUG(); 2542 } 2543 2544 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2545 return ret; 2546 /* 2547 * We know private mapping must have HPAGE_RESV_OWNER set. 2548 * 2549 * In most cases, reserves always exist for private mappings. 2550 * However, a file associated with mapping could have been 2551 * hole punched or truncated after reserves were consumed. 2552 * As subsequent fault on such a range will not use reserves. 2553 * Subtle - The reserve map for private mappings has the 2554 * opposite meaning than that of shared mappings. If NO 2555 * entry is in the reserve map, it means a reservation exists. 2556 * If an entry exists in the reserve map, it means the 2557 * reservation has already been consumed. As a result, the 2558 * return value of this routine is the opposite of the 2559 * value returned from reserve map manipulation routines above. 2560 */ 2561 if (ret > 0) 2562 return 0; 2563 if (ret == 0) 2564 return 1; 2565 return ret; 2566 } 2567 2568 static long vma_needs_reservation(struct hstate *h, 2569 struct vm_area_struct *vma, unsigned long addr) 2570 { 2571 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2572 } 2573 2574 static long vma_commit_reservation(struct hstate *h, 2575 struct vm_area_struct *vma, unsigned long addr) 2576 { 2577 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2578 } 2579 2580 static void vma_end_reservation(struct hstate *h, 2581 struct vm_area_struct *vma, unsigned long addr) 2582 { 2583 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2584 } 2585 2586 static long vma_add_reservation(struct hstate *h, 2587 struct vm_area_struct *vma, unsigned long addr) 2588 { 2589 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2590 } 2591 2592 static long vma_del_reservation(struct hstate *h, 2593 struct vm_area_struct *vma, unsigned long addr) 2594 { 2595 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2596 } 2597 2598 /* 2599 * This routine is called to restore reservation information on error paths. 2600 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2601 * the hugetlb mutex should remain held when calling this routine. 2602 * 2603 * It handles two specific cases: 2604 * 1) A reservation was in place and the page consumed the reservation. 2605 * HPageRestoreReserve is set in the page. 2606 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2607 * not set. However, alloc_huge_page always updates the reserve map. 2608 * 2609 * In case 1, free_huge_page later in the error path will increment the 2610 * global reserve count. But, free_huge_page does not have enough context 2611 * to adjust the reservation map. This case deals primarily with private 2612 * mappings. Adjust the reserve map here to be consistent with global 2613 * reserve count adjustments to be made by free_huge_page. Make sure the 2614 * reserve map indicates there is a reservation present. 2615 * 2616 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2617 */ 2618 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2619 unsigned long address, struct page *page) 2620 { 2621 long rc = vma_needs_reservation(h, vma, address); 2622 2623 if (HPageRestoreReserve(page)) { 2624 if (unlikely(rc < 0)) 2625 /* 2626 * Rare out of memory condition in reserve map 2627 * manipulation. Clear HPageRestoreReserve so that 2628 * global reserve count will not be incremented 2629 * by free_huge_page. This will make it appear 2630 * as though the reservation for this page was 2631 * consumed. This may prevent the task from 2632 * faulting in the page at a later time. This 2633 * is better than inconsistent global huge page 2634 * accounting of reserve counts. 2635 */ 2636 ClearHPageRestoreReserve(page); 2637 else if (rc) 2638 (void)vma_add_reservation(h, vma, address); 2639 else 2640 vma_end_reservation(h, vma, address); 2641 } else { 2642 if (!rc) { 2643 /* 2644 * This indicates there is an entry in the reserve map 2645 * not added by alloc_huge_page. We know it was added 2646 * before the alloc_huge_page call, otherwise 2647 * HPageRestoreReserve would be set on the page. 2648 * Remove the entry so that a subsequent allocation 2649 * does not consume a reservation. 2650 */ 2651 rc = vma_del_reservation(h, vma, address); 2652 if (rc < 0) 2653 /* 2654 * VERY rare out of memory condition. Since 2655 * we can not delete the entry, set 2656 * HPageRestoreReserve so that the reserve 2657 * count will be incremented when the page 2658 * is freed. This reserve will be consumed 2659 * on a subsequent allocation. 2660 */ 2661 SetHPageRestoreReserve(page); 2662 } else if (rc < 0) { 2663 /* 2664 * Rare out of memory condition from 2665 * vma_needs_reservation call. Memory allocation is 2666 * only attempted if a new entry is needed. Therefore, 2667 * this implies there is not an entry in the 2668 * reserve map. 2669 * 2670 * For shared mappings, no entry in the map indicates 2671 * no reservation. We are done. 2672 */ 2673 if (!(vma->vm_flags & VM_MAYSHARE)) 2674 /* 2675 * For private mappings, no entry indicates 2676 * a reservation is present. Since we can 2677 * not add an entry, set SetHPageRestoreReserve 2678 * on the page so reserve count will be 2679 * incremented when freed. This reserve will 2680 * be consumed on a subsequent allocation. 2681 */ 2682 SetHPageRestoreReserve(page); 2683 } else 2684 /* 2685 * No reservation present, do nothing 2686 */ 2687 vma_end_reservation(h, vma, address); 2688 } 2689 } 2690 2691 /* 2692 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2693 * @h: struct hstate old page belongs to 2694 * @old_page: Old page to dissolve 2695 * @list: List to isolate the page in case we need to 2696 * Returns 0 on success, otherwise negated error. 2697 */ 2698 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2699 struct list_head *list) 2700 { 2701 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2702 int nid = page_to_nid(old_page); 2703 bool alloc_retry = false; 2704 struct page *new_page; 2705 int ret = 0; 2706 2707 /* 2708 * Before dissolving the page, we need to allocate a new one for the 2709 * pool to remain stable. Here, we allocate the page and 'prep' it 2710 * by doing everything but actually updating counters and adding to 2711 * the pool. This simplifies and let us do most of the processing 2712 * under the lock. 2713 */ 2714 alloc_retry: 2715 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2716 if (!new_page) 2717 return -ENOMEM; 2718 /* 2719 * If all goes well, this page will be directly added to the free 2720 * list in the pool. For this the ref count needs to be zero. 2721 * Attempt to drop now, and retry once if needed. It is VERY 2722 * unlikely there is another ref on the page. 2723 * 2724 * If someone else has a reference to the page, it will be freed 2725 * when they drop their ref. Abuse temporary page flag to accomplish 2726 * this. Retry once if there is an inflated ref count. 2727 */ 2728 SetHPageTemporary(new_page); 2729 if (!put_page_testzero(new_page)) { 2730 if (alloc_retry) 2731 return -EBUSY; 2732 2733 alloc_retry = true; 2734 goto alloc_retry; 2735 } 2736 ClearHPageTemporary(new_page); 2737 2738 __prep_new_huge_page(h, new_page); 2739 2740 retry: 2741 spin_lock_irq(&hugetlb_lock); 2742 if (!PageHuge(old_page)) { 2743 /* 2744 * Freed from under us. Drop new_page too. 2745 */ 2746 goto free_new; 2747 } else if (page_count(old_page)) { 2748 /* 2749 * Someone has grabbed the page, try to isolate it here. 2750 * Fail with -EBUSY if not possible. 2751 */ 2752 spin_unlock_irq(&hugetlb_lock); 2753 if (!isolate_huge_page(old_page, list)) 2754 ret = -EBUSY; 2755 spin_lock_irq(&hugetlb_lock); 2756 goto free_new; 2757 } else if (!HPageFreed(old_page)) { 2758 /* 2759 * Page's refcount is 0 but it has not been enqueued in the 2760 * freelist yet. Race window is small, so we can succeed here if 2761 * we retry. 2762 */ 2763 spin_unlock_irq(&hugetlb_lock); 2764 cond_resched(); 2765 goto retry; 2766 } else { 2767 /* 2768 * Ok, old_page is still a genuine free hugepage. Remove it from 2769 * the freelist and decrease the counters. These will be 2770 * incremented again when calling __prep_account_new_huge_page() 2771 * and enqueue_huge_page() for new_page. The counters will remain 2772 * stable since this happens under the lock. 2773 */ 2774 remove_hugetlb_page(h, old_page, false); 2775 2776 /* 2777 * Ref count on new page is already zero as it was dropped 2778 * earlier. It can be directly added to the pool free list. 2779 */ 2780 __prep_account_new_huge_page(h, nid); 2781 enqueue_huge_page(h, new_page); 2782 2783 /* 2784 * Pages have been replaced, we can safely free the old one. 2785 */ 2786 spin_unlock_irq(&hugetlb_lock); 2787 update_and_free_page(h, old_page, false); 2788 } 2789 2790 return ret; 2791 2792 free_new: 2793 spin_unlock_irq(&hugetlb_lock); 2794 /* Page has a zero ref count, but needs a ref to be freed */ 2795 set_page_refcounted(new_page); 2796 update_and_free_page(h, new_page, false); 2797 2798 return ret; 2799 } 2800 2801 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2802 { 2803 struct hstate *h; 2804 struct page *head; 2805 int ret = -EBUSY; 2806 2807 /* 2808 * The page might have been dissolved from under our feet, so make sure 2809 * to carefully check the state under the lock. 2810 * Return success when racing as if we dissolved the page ourselves. 2811 */ 2812 spin_lock_irq(&hugetlb_lock); 2813 if (PageHuge(page)) { 2814 head = compound_head(page); 2815 h = page_hstate(head); 2816 } else { 2817 spin_unlock_irq(&hugetlb_lock); 2818 return 0; 2819 } 2820 spin_unlock_irq(&hugetlb_lock); 2821 2822 /* 2823 * Fence off gigantic pages as there is a cyclic dependency between 2824 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2825 * of bailing out right away without further retrying. 2826 */ 2827 if (hstate_is_gigantic(h)) 2828 return -ENOMEM; 2829 2830 if (page_count(head) && isolate_huge_page(head, list)) 2831 ret = 0; 2832 else if (!page_count(head)) 2833 ret = alloc_and_dissolve_huge_page(h, head, list); 2834 2835 return ret; 2836 } 2837 2838 struct page *alloc_huge_page(struct vm_area_struct *vma, 2839 unsigned long addr, int avoid_reserve) 2840 { 2841 struct hugepage_subpool *spool = subpool_vma(vma); 2842 struct hstate *h = hstate_vma(vma); 2843 struct page *page; 2844 long map_chg, map_commit; 2845 long gbl_chg; 2846 int ret, idx; 2847 struct hugetlb_cgroup *h_cg; 2848 bool deferred_reserve; 2849 2850 idx = hstate_index(h); 2851 /* 2852 * Examine the region/reserve map to determine if the process 2853 * has a reservation for the page to be allocated. A return 2854 * code of zero indicates a reservation exists (no change). 2855 */ 2856 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2857 if (map_chg < 0) 2858 return ERR_PTR(-ENOMEM); 2859 2860 /* 2861 * Processes that did not create the mapping will have no 2862 * reserves as indicated by the region/reserve map. Check 2863 * that the allocation will not exceed the subpool limit. 2864 * Allocations for MAP_NORESERVE mappings also need to be 2865 * checked against any subpool limit. 2866 */ 2867 if (map_chg || avoid_reserve) { 2868 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2869 if (gbl_chg < 0) { 2870 vma_end_reservation(h, vma, addr); 2871 return ERR_PTR(-ENOSPC); 2872 } 2873 2874 /* 2875 * Even though there was no reservation in the region/reserve 2876 * map, there could be reservations associated with the 2877 * subpool that can be used. This would be indicated if the 2878 * return value of hugepage_subpool_get_pages() is zero. 2879 * However, if avoid_reserve is specified we still avoid even 2880 * the subpool reservations. 2881 */ 2882 if (avoid_reserve) 2883 gbl_chg = 1; 2884 } 2885 2886 /* If this allocation is not consuming a reservation, charge it now. 2887 */ 2888 deferred_reserve = map_chg || avoid_reserve; 2889 if (deferred_reserve) { 2890 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2891 idx, pages_per_huge_page(h), &h_cg); 2892 if (ret) 2893 goto out_subpool_put; 2894 } 2895 2896 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2897 if (ret) 2898 goto out_uncharge_cgroup_reservation; 2899 2900 spin_lock_irq(&hugetlb_lock); 2901 /* 2902 * glb_chg is passed to indicate whether or not a page must be taken 2903 * from the global free pool (global change). gbl_chg == 0 indicates 2904 * a reservation exists for the allocation. 2905 */ 2906 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2907 if (!page) { 2908 spin_unlock_irq(&hugetlb_lock); 2909 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2910 if (!page) 2911 goto out_uncharge_cgroup; 2912 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2913 SetHPageRestoreReserve(page); 2914 h->resv_huge_pages--; 2915 } 2916 spin_lock_irq(&hugetlb_lock); 2917 list_add(&page->lru, &h->hugepage_activelist); 2918 /* Fall through */ 2919 } 2920 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2921 /* If allocation is not consuming a reservation, also store the 2922 * hugetlb_cgroup pointer on the page. 2923 */ 2924 if (deferred_reserve) { 2925 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2926 h_cg, page); 2927 } 2928 2929 spin_unlock_irq(&hugetlb_lock); 2930 2931 hugetlb_set_page_subpool(page, spool); 2932 2933 map_commit = vma_commit_reservation(h, vma, addr); 2934 if (unlikely(map_chg > map_commit)) { 2935 /* 2936 * The page was added to the reservation map between 2937 * vma_needs_reservation and vma_commit_reservation. 2938 * This indicates a race with hugetlb_reserve_pages. 2939 * Adjust for the subpool count incremented above AND 2940 * in hugetlb_reserve_pages for the same page. Also, 2941 * the reservation count added in hugetlb_reserve_pages 2942 * no longer applies. 2943 */ 2944 long rsv_adjust; 2945 2946 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2947 hugetlb_acct_memory(h, -rsv_adjust); 2948 if (deferred_reserve) 2949 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2950 pages_per_huge_page(h), page); 2951 } 2952 return page; 2953 2954 out_uncharge_cgroup: 2955 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2956 out_uncharge_cgroup_reservation: 2957 if (deferred_reserve) 2958 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2959 h_cg); 2960 out_subpool_put: 2961 if (map_chg || avoid_reserve) 2962 hugepage_subpool_put_pages(spool, 1); 2963 vma_end_reservation(h, vma, addr); 2964 return ERR_PTR(-ENOSPC); 2965 } 2966 2967 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2968 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2969 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2970 { 2971 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2972 int nr_nodes, node; 2973 2974 if (nid >= nr_online_nodes) 2975 return 0; 2976 /* do node specific alloc */ 2977 if (nid != NUMA_NO_NODE) { 2978 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 2979 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 2980 if (!m) 2981 return 0; 2982 goto found; 2983 } 2984 /* allocate from next node when distributing huge pages */ 2985 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2986 m = memblock_alloc_try_nid_raw( 2987 huge_page_size(h), huge_page_size(h), 2988 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2989 /* 2990 * Use the beginning of the huge page to store the 2991 * huge_bootmem_page struct (until gather_bootmem 2992 * puts them into the mem_map). 2993 */ 2994 if (!m) 2995 return 0; 2996 goto found; 2997 } 2998 2999 found: 3000 /* Put them into a private list first because mem_map is not up yet */ 3001 INIT_LIST_HEAD(&m->list); 3002 list_add(&m->list, &huge_boot_pages); 3003 m->hstate = h; 3004 return 1; 3005 } 3006 3007 /* 3008 * Put bootmem huge pages into the standard lists after mem_map is up. 3009 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3010 */ 3011 static void __init gather_bootmem_prealloc(void) 3012 { 3013 struct huge_bootmem_page *m; 3014 3015 list_for_each_entry(m, &huge_boot_pages, list) { 3016 struct page *page = virt_to_page(m); 3017 struct hstate *h = m->hstate; 3018 3019 VM_BUG_ON(!hstate_is_gigantic(h)); 3020 WARN_ON(page_count(page) != 1); 3021 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3022 WARN_ON(PageReserved(page)); 3023 prep_new_huge_page(h, page, page_to_nid(page)); 3024 put_page(page); /* add to the hugepage allocator */ 3025 } else { 3026 /* VERY unlikely inflated ref count on a tail page */ 3027 free_gigantic_page(page, huge_page_order(h)); 3028 } 3029 3030 /* 3031 * We need to restore the 'stolen' pages to totalram_pages 3032 * in order to fix confusing memory reports from free(1) and 3033 * other side-effects, like CommitLimit going negative. 3034 */ 3035 adjust_managed_page_count(page, pages_per_huge_page(h)); 3036 cond_resched(); 3037 } 3038 } 3039 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3040 { 3041 unsigned long i; 3042 char buf[32]; 3043 3044 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3045 if (hstate_is_gigantic(h)) { 3046 if (!alloc_bootmem_huge_page(h, nid)) 3047 break; 3048 } else { 3049 struct page *page; 3050 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3051 3052 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3053 &node_states[N_MEMORY], NULL); 3054 if (!page) 3055 break; 3056 put_page(page); /* free it into the hugepage allocator */ 3057 } 3058 cond_resched(); 3059 } 3060 if (i == h->max_huge_pages_node[nid]) 3061 return; 3062 3063 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3064 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3065 h->max_huge_pages_node[nid], buf, nid, i); 3066 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3067 h->max_huge_pages_node[nid] = i; 3068 } 3069 3070 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3071 { 3072 unsigned long i; 3073 nodemask_t *node_alloc_noretry; 3074 bool node_specific_alloc = false; 3075 3076 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3077 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3078 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3079 return; 3080 } 3081 3082 /* do node specific alloc */ 3083 for (i = 0; i < nr_online_nodes; i++) { 3084 if (h->max_huge_pages_node[i] > 0) { 3085 hugetlb_hstate_alloc_pages_onenode(h, i); 3086 node_specific_alloc = true; 3087 } 3088 } 3089 3090 if (node_specific_alloc) 3091 return; 3092 3093 /* below will do all node balanced alloc */ 3094 if (!hstate_is_gigantic(h)) { 3095 /* 3096 * Bit mask controlling how hard we retry per-node allocations. 3097 * Ignore errors as lower level routines can deal with 3098 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3099 * time, we are likely in bigger trouble. 3100 */ 3101 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3102 GFP_KERNEL); 3103 } else { 3104 /* allocations done at boot time */ 3105 node_alloc_noretry = NULL; 3106 } 3107 3108 /* bit mask controlling how hard we retry per-node allocations */ 3109 if (node_alloc_noretry) 3110 nodes_clear(*node_alloc_noretry); 3111 3112 for (i = 0; i < h->max_huge_pages; ++i) { 3113 if (hstate_is_gigantic(h)) { 3114 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3115 break; 3116 } else if (!alloc_pool_huge_page(h, 3117 &node_states[N_MEMORY], 3118 node_alloc_noretry)) 3119 break; 3120 cond_resched(); 3121 } 3122 if (i < h->max_huge_pages) { 3123 char buf[32]; 3124 3125 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3126 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3127 h->max_huge_pages, buf, i); 3128 h->max_huge_pages = i; 3129 } 3130 kfree(node_alloc_noretry); 3131 } 3132 3133 static void __init hugetlb_init_hstates(void) 3134 { 3135 struct hstate *h, *h2; 3136 3137 for_each_hstate(h) { 3138 if (minimum_order > huge_page_order(h)) 3139 minimum_order = huge_page_order(h); 3140 3141 /* oversize hugepages were init'ed in early boot */ 3142 if (!hstate_is_gigantic(h)) 3143 hugetlb_hstate_alloc_pages(h); 3144 3145 /* 3146 * Set demote order for each hstate. Note that 3147 * h->demote_order is initially 0. 3148 * - We can not demote gigantic pages if runtime freeing 3149 * is not supported, so skip this. 3150 * - If CMA allocation is possible, we can not demote 3151 * HUGETLB_PAGE_ORDER or smaller size pages. 3152 */ 3153 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3154 continue; 3155 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3156 continue; 3157 for_each_hstate(h2) { 3158 if (h2 == h) 3159 continue; 3160 if (h2->order < h->order && 3161 h2->order > h->demote_order) 3162 h->demote_order = h2->order; 3163 } 3164 } 3165 VM_BUG_ON(minimum_order == UINT_MAX); 3166 } 3167 3168 static void __init report_hugepages(void) 3169 { 3170 struct hstate *h; 3171 3172 for_each_hstate(h) { 3173 char buf[32]; 3174 3175 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3176 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 3177 buf, h->free_huge_pages); 3178 } 3179 } 3180 3181 #ifdef CONFIG_HIGHMEM 3182 static void try_to_free_low(struct hstate *h, unsigned long count, 3183 nodemask_t *nodes_allowed) 3184 { 3185 int i; 3186 LIST_HEAD(page_list); 3187 3188 lockdep_assert_held(&hugetlb_lock); 3189 if (hstate_is_gigantic(h)) 3190 return; 3191 3192 /* 3193 * Collect pages to be freed on a list, and free after dropping lock 3194 */ 3195 for_each_node_mask(i, *nodes_allowed) { 3196 struct page *page, *next; 3197 struct list_head *freel = &h->hugepage_freelists[i]; 3198 list_for_each_entry_safe(page, next, freel, lru) { 3199 if (count >= h->nr_huge_pages) 3200 goto out; 3201 if (PageHighMem(page)) 3202 continue; 3203 remove_hugetlb_page(h, page, false); 3204 list_add(&page->lru, &page_list); 3205 } 3206 } 3207 3208 out: 3209 spin_unlock_irq(&hugetlb_lock); 3210 update_and_free_pages_bulk(h, &page_list); 3211 spin_lock_irq(&hugetlb_lock); 3212 } 3213 #else 3214 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3215 nodemask_t *nodes_allowed) 3216 { 3217 } 3218 #endif 3219 3220 /* 3221 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3222 * balanced by operating on them in a round-robin fashion. 3223 * Returns 1 if an adjustment was made. 3224 */ 3225 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3226 int delta) 3227 { 3228 int nr_nodes, node; 3229 3230 lockdep_assert_held(&hugetlb_lock); 3231 VM_BUG_ON(delta != -1 && delta != 1); 3232 3233 if (delta < 0) { 3234 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3235 if (h->surplus_huge_pages_node[node]) 3236 goto found; 3237 } 3238 } else { 3239 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3240 if (h->surplus_huge_pages_node[node] < 3241 h->nr_huge_pages_node[node]) 3242 goto found; 3243 } 3244 } 3245 return 0; 3246 3247 found: 3248 h->surplus_huge_pages += delta; 3249 h->surplus_huge_pages_node[node] += delta; 3250 return 1; 3251 } 3252 3253 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3254 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3255 nodemask_t *nodes_allowed) 3256 { 3257 unsigned long min_count, ret; 3258 struct page *page; 3259 LIST_HEAD(page_list); 3260 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3261 3262 /* 3263 * Bit mask controlling how hard we retry per-node allocations. 3264 * If we can not allocate the bit mask, do not attempt to allocate 3265 * the requested huge pages. 3266 */ 3267 if (node_alloc_noretry) 3268 nodes_clear(*node_alloc_noretry); 3269 else 3270 return -ENOMEM; 3271 3272 /* 3273 * resize_lock mutex prevents concurrent adjustments to number of 3274 * pages in hstate via the proc/sysfs interfaces. 3275 */ 3276 mutex_lock(&h->resize_lock); 3277 flush_free_hpage_work(h); 3278 spin_lock_irq(&hugetlb_lock); 3279 3280 /* 3281 * Check for a node specific request. 3282 * Changing node specific huge page count may require a corresponding 3283 * change to the global count. In any case, the passed node mask 3284 * (nodes_allowed) will restrict alloc/free to the specified node. 3285 */ 3286 if (nid != NUMA_NO_NODE) { 3287 unsigned long old_count = count; 3288 3289 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3290 /* 3291 * User may have specified a large count value which caused the 3292 * above calculation to overflow. In this case, they wanted 3293 * to allocate as many huge pages as possible. Set count to 3294 * largest possible value to align with their intention. 3295 */ 3296 if (count < old_count) 3297 count = ULONG_MAX; 3298 } 3299 3300 /* 3301 * Gigantic pages runtime allocation depend on the capability for large 3302 * page range allocation. 3303 * If the system does not provide this feature, return an error when 3304 * the user tries to allocate gigantic pages but let the user free the 3305 * boottime allocated gigantic pages. 3306 */ 3307 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3308 if (count > persistent_huge_pages(h)) { 3309 spin_unlock_irq(&hugetlb_lock); 3310 mutex_unlock(&h->resize_lock); 3311 NODEMASK_FREE(node_alloc_noretry); 3312 return -EINVAL; 3313 } 3314 /* Fall through to decrease pool */ 3315 } 3316 3317 /* 3318 * Increase the pool size 3319 * First take pages out of surplus state. Then make up the 3320 * remaining difference by allocating fresh huge pages. 3321 * 3322 * We might race with alloc_surplus_huge_page() here and be unable 3323 * to convert a surplus huge page to a normal huge page. That is 3324 * not critical, though, it just means the overall size of the 3325 * pool might be one hugepage larger than it needs to be, but 3326 * within all the constraints specified by the sysctls. 3327 */ 3328 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3329 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3330 break; 3331 } 3332 3333 while (count > persistent_huge_pages(h)) { 3334 /* 3335 * If this allocation races such that we no longer need the 3336 * page, free_huge_page will handle it by freeing the page 3337 * and reducing the surplus. 3338 */ 3339 spin_unlock_irq(&hugetlb_lock); 3340 3341 /* yield cpu to avoid soft lockup */ 3342 cond_resched(); 3343 3344 ret = alloc_pool_huge_page(h, nodes_allowed, 3345 node_alloc_noretry); 3346 spin_lock_irq(&hugetlb_lock); 3347 if (!ret) 3348 goto out; 3349 3350 /* Bail for signals. Probably ctrl-c from user */ 3351 if (signal_pending(current)) 3352 goto out; 3353 } 3354 3355 /* 3356 * Decrease the pool size 3357 * First return free pages to the buddy allocator (being careful 3358 * to keep enough around to satisfy reservations). Then place 3359 * pages into surplus state as needed so the pool will shrink 3360 * to the desired size as pages become free. 3361 * 3362 * By placing pages into the surplus state independent of the 3363 * overcommit value, we are allowing the surplus pool size to 3364 * exceed overcommit. There are few sane options here. Since 3365 * alloc_surplus_huge_page() is checking the global counter, 3366 * though, we'll note that we're not allowed to exceed surplus 3367 * and won't grow the pool anywhere else. Not until one of the 3368 * sysctls are changed, or the surplus pages go out of use. 3369 */ 3370 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3371 min_count = max(count, min_count); 3372 try_to_free_low(h, min_count, nodes_allowed); 3373 3374 /* 3375 * Collect pages to be removed on list without dropping lock 3376 */ 3377 while (min_count < persistent_huge_pages(h)) { 3378 page = remove_pool_huge_page(h, nodes_allowed, 0); 3379 if (!page) 3380 break; 3381 3382 list_add(&page->lru, &page_list); 3383 } 3384 /* free the pages after dropping lock */ 3385 spin_unlock_irq(&hugetlb_lock); 3386 update_and_free_pages_bulk(h, &page_list); 3387 flush_free_hpage_work(h); 3388 spin_lock_irq(&hugetlb_lock); 3389 3390 while (count < persistent_huge_pages(h)) { 3391 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3392 break; 3393 } 3394 out: 3395 h->max_huge_pages = persistent_huge_pages(h); 3396 spin_unlock_irq(&hugetlb_lock); 3397 mutex_unlock(&h->resize_lock); 3398 3399 NODEMASK_FREE(node_alloc_noretry); 3400 3401 return 0; 3402 } 3403 3404 static int demote_free_huge_page(struct hstate *h, struct page *page) 3405 { 3406 int i, nid = page_to_nid(page); 3407 struct hstate *target_hstate; 3408 int rc = 0; 3409 3410 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3411 3412 remove_hugetlb_page_for_demote(h, page, false); 3413 spin_unlock_irq(&hugetlb_lock); 3414 3415 rc = alloc_huge_page_vmemmap(h, page); 3416 if (rc) { 3417 /* Allocation of vmemmmap failed, we can not demote page */ 3418 spin_lock_irq(&hugetlb_lock); 3419 set_page_refcounted(page); 3420 add_hugetlb_page(h, page, false); 3421 return rc; 3422 } 3423 3424 /* 3425 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3426 * sizes as it will not ref count pages. 3427 */ 3428 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3429 3430 /* 3431 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3432 * Without the mutex, pages added to target hstate could be marked 3433 * as surplus. 3434 * 3435 * Note that we already hold h->resize_lock. To prevent deadlock, 3436 * use the convention of always taking larger size hstate mutex first. 3437 */ 3438 mutex_lock(&target_hstate->resize_lock); 3439 for (i = 0; i < pages_per_huge_page(h); 3440 i += pages_per_huge_page(target_hstate)) { 3441 if (hstate_is_gigantic(target_hstate)) 3442 prep_compound_gigantic_page_for_demote(page + i, 3443 target_hstate->order); 3444 else 3445 prep_compound_page(page + i, target_hstate->order); 3446 set_page_private(page + i, 0); 3447 set_page_refcounted(page + i); 3448 prep_new_huge_page(target_hstate, page + i, nid); 3449 put_page(page + i); 3450 } 3451 mutex_unlock(&target_hstate->resize_lock); 3452 3453 spin_lock_irq(&hugetlb_lock); 3454 3455 /* 3456 * Not absolutely necessary, but for consistency update max_huge_pages 3457 * based on pool changes for the demoted page. 3458 */ 3459 h->max_huge_pages--; 3460 target_hstate->max_huge_pages += pages_per_huge_page(h); 3461 3462 return rc; 3463 } 3464 3465 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3466 __must_hold(&hugetlb_lock) 3467 { 3468 int nr_nodes, node; 3469 struct page *page; 3470 int rc = 0; 3471 3472 lockdep_assert_held(&hugetlb_lock); 3473 3474 /* We should never get here if no demote order */ 3475 if (!h->demote_order) { 3476 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3477 return -EINVAL; /* internal error */ 3478 } 3479 3480 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3481 if (!list_empty(&h->hugepage_freelists[node])) { 3482 page = list_entry(h->hugepage_freelists[node].next, 3483 struct page, lru); 3484 rc = demote_free_huge_page(h, page); 3485 break; 3486 } 3487 } 3488 3489 return rc; 3490 } 3491 3492 #define HSTATE_ATTR_RO(_name) \ 3493 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3494 3495 #define HSTATE_ATTR_WO(_name) \ 3496 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3497 3498 #define HSTATE_ATTR(_name) \ 3499 static struct kobj_attribute _name##_attr = \ 3500 __ATTR(_name, 0644, _name##_show, _name##_store) 3501 3502 static struct kobject *hugepages_kobj; 3503 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3504 3505 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3506 3507 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3508 { 3509 int i; 3510 3511 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3512 if (hstate_kobjs[i] == kobj) { 3513 if (nidp) 3514 *nidp = NUMA_NO_NODE; 3515 return &hstates[i]; 3516 } 3517 3518 return kobj_to_node_hstate(kobj, nidp); 3519 } 3520 3521 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3522 struct kobj_attribute *attr, char *buf) 3523 { 3524 struct hstate *h; 3525 unsigned long nr_huge_pages; 3526 int nid; 3527 3528 h = kobj_to_hstate(kobj, &nid); 3529 if (nid == NUMA_NO_NODE) 3530 nr_huge_pages = h->nr_huge_pages; 3531 else 3532 nr_huge_pages = h->nr_huge_pages_node[nid]; 3533 3534 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3535 } 3536 3537 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3538 struct hstate *h, int nid, 3539 unsigned long count, size_t len) 3540 { 3541 int err; 3542 nodemask_t nodes_allowed, *n_mask; 3543 3544 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3545 return -EINVAL; 3546 3547 if (nid == NUMA_NO_NODE) { 3548 /* 3549 * global hstate attribute 3550 */ 3551 if (!(obey_mempolicy && 3552 init_nodemask_of_mempolicy(&nodes_allowed))) 3553 n_mask = &node_states[N_MEMORY]; 3554 else 3555 n_mask = &nodes_allowed; 3556 } else { 3557 /* 3558 * Node specific request. count adjustment happens in 3559 * set_max_huge_pages() after acquiring hugetlb_lock. 3560 */ 3561 init_nodemask_of_node(&nodes_allowed, nid); 3562 n_mask = &nodes_allowed; 3563 } 3564 3565 err = set_max_huge_pages(h, count, nid, n_mask); 3566 3567 return err ? err : len; 3568 } 3569 3570 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3571 struct kobject *kobj, const char *buf, 3572 size_t len) 3573 { 3574 struct hstate *h; 3575 unsigned long count; 3576 int nid; 3577 int err; 3578 3579 err = kstrtoul(buf, 10, &count); 3580 if (err) 3581 return err; 3582 3583 h = kobj_to_hstate(kobj, &nid); 3584 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3585 } 3586 3587 static ssize_t nr_hugepages_show(struct kobject *kobj, 3588 struct kobj_attribute *attr, char *buf) 3589 { 3590 return nr_hugepages_show_common(kobj, attr, buf); 3591 } 3592 3593 static ssize_t nr_hugepages_store(struct kobject *kobj, 3594 struct kobj_attribute *attr, const char *buf, size_t len) 3595 { 3596 return nr_hugepages_store_common(false, kobj, buf, len); 3597 } 3598 HSTATE_ATTR(nr_hugepages); 3599 3600 #ifdef CONFIG_NUMA 3601 3602 /* 3603 * hstate attribute for optionally mempolicy-based constraint on persistent 3604 * huge page alloc/free. 3605 */ 3606 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3607 struct kobj_attribute *attr, 3608 char *buf) 3609 { 3610 return nr_hugepages_show_common(kobj, attr, buf); 3611 } 3612 3613 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3614 struct kobj_attribute *attr, const char *buf, size_t len) 3615 { 3616 return nr_hugepages_store_common(true, kobj, buf, len); 3617 } 3618 HSTATE_ATTR(nr_hugepages_mempolicy); 3619 #endif 3620 3621 3622 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3623 struct kobj_attribute *attr, char *buf) 3624 { 3625 struct hstate *h = kobj_to_hstate(kobj, NULL); 3626 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3627 } 3628 3629 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3630 struct kobj_attribute *attr, const char *buf, size_t count) 3631 { 3632 int err; 3633 unsigned long input; 3634 struct hstate *h = kobj_to_hstate(kobj, NULL); 3635 3636 if (hstate_is_gigantic(h)) 3637 return -EINVAL; 3638 3639 err = kstrtoul(buf, 10, &input); 3640 if (err) 3641 return err; 3642 3643 spin_lock_irq(&hugetlb_lock); 3644 h->nr_overcommit_huge_pages = input; 3645 spin_unlock_irq(&hugetlb_lock); 3646 3647 return count; 3648 } 3649 HSTATE_ATTR(nr_overcommit_hugepages); 3650 3651 static ssize_t free_hugepages_show(struct kobject *kobj, 3652 struct kobj_attribute *attr, char *buf) 3653 { 3654 struct hstate *h; 3655 unsigned long free_huge_pages; 3656 int nid; 3657 3658 h = kobj_to_hstate(kobj, &nid); 3659 if (nid == NUMA_NO_NODE) 3660 free_huge_pages = h->free_huge_pages; 3661 else 3662 free_huge_pages = h->free_huge_pages_node[nid]; 3663 3664 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3665 } 3666 HSTATE_ATTR_RO(free_hugepages); 3667 3668 static ssize_t resv_hugepages_show(struct kobject *kobj, 3669 struct kobj_attribute *attr, char *buf) 3670 { 3671 struct hstate *h = kobj_to_hstate(kobj, NULL); 3672 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3673 } 3674 HSTATE_ATTR_RO(resv_hugepages); 3675 3676 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3677 struct kobj_attribute *attr, char *buf) 3678 { 3679 struct hstate *h; 3680 unsigned long surplus_huge_pages; 3681 int nid; 3682 3683 h = kobj_to_hstate(kobj, &nid); 3684 if (nid == NUMA_NO_NODE) 3685 surplus_huge_pages = h->surplus_huge_pages; 3686 else 3687 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3688 3689 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3690 } 3691 HSTATE_ATTR_RO(surplus_hugepages); 3692 3693 static ssize_t demote_store(struct kobject *kobj, 3694 struct kobj_attribute *attr, const char *buf, size_t len) 3695 { 3696 unsigned long nr_demote; 3697 unsigned long nr_available; 3698 nodemask_t nodes_allowed, *n_mask; 3699 struct hstate *h; 3700 int err = 0; 3701 int nid; 3702 3703 err = kstrtoul(buf, 10, &nr_demote); 3704 if (err) 3705 return err; 3706 h = kobj_to_hstate(kobj, &nid); 3707 3708 if (nid != NUMA_NO_NODE) { 3709 init_nodemask_of_node(&nodes_allowed, nid); 3710 n_mask = &nodes_allowed; 3711 } else { 3712 n_mask = &node_states[N_MEMORY]; 3713 } 3714 3715 /* Synchronize with other sysfs operations modifying huge pages */ 3716 mutex_lock(&h->resize_lock); 3717 spin_lock_irq(&hugetlb_lock); 3718 3719 while (nr_demote) { 3720 /* 3721 * Check for available pages to demote each time thorough the 3722 * loop as demote_pool_huge_page will drop hugetlb_lock. 3723 */ 3724 if (nid != NUMA_NO_NODE) 3725 nr_available = h->free_huge_pages_node[nid]; 3726 else 3727 nr_available = h->free_huge_pages; 3728 nr_available -= h->resv_huge_pages; 3729 if (!nr_available) 3730 break; 3731 3732 err = demote_pool_huge_page(h, n_mask); 3733 if (err) 3734 break; 3735 3736 nr_demote--; 3737 } 3738 3739 spin_unlock_irq(&hugetlb_lock); 3740 mutex_unlock(&h->resize_lock); 3741 3742 if (err) 3743 return err; 3744 return len; 3745 } 3746 HSTATE_ATTR_WO(demote); 3747 3748 static ssize_t demote_size_show(struct kobject *kobj, 3749 struct kobj_attribute *attr, char *buf) 3750 { 3751 int nid; 3752 struct hstate *h = kobj_to_hstate(kobj, &nid); 3753 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3754 3755 return sysfs_emit(buf, "%lukB\n", demote_size); 3756 } 3757 3758 static ssize_t demote_size_store(struct kobject *kobj, 3759 struct kobj_attribute *attr, 3760 const char *buf, size_t count) 3761 { 3762 struct hstate *h, *demote_hstate; 3763 unsigned long demote_size; 3764 unsigned int demote_order; 3765 int nid; 3766 3767 demote_size = (unsigned long)memparse(buf, NULL); 3768 3769 demote_hstate = size_to_hstate(demote_size); 3770 if (!demote_hstate) 3771 return -EINVAL; 3772 demote_order = demote_hstate->order; 3773 if (demote_order < HUGETLB_PAGE_ORDER) 3774 return -EINVAL; 3775 3776 /* demote order must be smaller than hstate order */ 3777 h = kobj_to_hstate(kobj, &nid); 3778 if (demote_order >= h->order) 3779 return -EINVAL; 3780 3781 /* resize_lock synchronizes access to demote size and writes */ 3782 mutex_lock(&h->resize_lock); 3783 h->demote_order = demote_order; 3784 mutex_unlock(&h->resize_lock); 3785 3786 return count; 3787 } 3788 HSTATE_ATTR(demote_size); 3789 3790 static struct attribute *hstate_attrs[] = { 3791 &nr_hugepages_attr.attr, 3792 &nr_overcommit_hugepages_attr.attr, 3793 &free_hugepages_attr.attr, 3794 &resv_hugepages_attr.attr, 3795 &surplus_hugepages_attr.attr, 3796 #ifdef CONFIG_NUMA 3797 &nr_hugepages_mempolicy_attr.attr, 3798 #endif 3799 NULL, 3800 }; 3801 3802 static const struct attribute_group hstate_attr_group = { 3803 .attrs = hstate_attrs, 3804 }; 3805 3806 static struct attribute *hstate_demote_attrs[] = { 3807 &demote_size_attr.attr, 3808 &demote_attr.attr, 3809 NULL, 3810 }; 3811 3812 static const struct attribute_group hstate_demote_attr_group = { 3813 .attrs = hstate_demote_attrs, 3814 }; 3815 3816 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3817 struct kobject **hstate_kobjs, 3818 const struct attribute_group *hstate_attr_group) 3819 { 3820 int retval; 3821 int hi = hstate_index(h); 3822 3823 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3824 if (!hstate_kobjs[hi]) 3825 return -ENOMEM; 3826 3827 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3828 if (retval) { 3829 kobject_put(hstate_kobjs[hi]); 3830 hstate_kobjs[hi] = NULL; 3831 } 3832 3833 if (h->demote_order) { 3834 if (sysfs_create_group(hstate_kobjs[hi], 3835 &hstate_demote_attr_group)) 3836 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3837 } 3838 3839 return retval; 3840 } 3841 3842 static void __init hugetlb_sysfs_init(void) 3843 { 3844 struct hstate *h; 3845 int err; 3846 3847 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3848 if (!hugepages_kobj) 3849 return; 3850 3851 for_each_hstate(h) { 3852 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3853 hstate_kobjs, &hstate_attr_group); 3854 if (err) 3855 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3856 } 3857 } 3858 3859 #ifdef CONFIG_NUMA 3860 3861 /* 3862 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3863 * with node devices in node_devices[] using a parallel array. The array 3864 * index of a node device or _hstate == node id. 3865 * This is here to avoid any static dependency of the node device driver, in 3866 * the base kernel, on the hugetlb module. 3867 */ 3868 struct node_hstate { 3869 struct kobject *hugepages_kobj; 3870 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3871 }; 3872 static struct node_hstate node_hstates[MAX_NUMNODES]; 3873 3874 /* 3875 * A subset of global hstate attributes for node devices 3876 */ 3877 static struct attribute *per_node_hstate_attrs[] = { 3878 &nr_hugepages_attr.attr, 3879 &free_hugepages_attr.attr, 3880 &surplus_hugepages_attr.attr, 3881 NULL, 3882 }; 3883 3884 static const struct attribute_group per_node_hstate_attr_group = { 3885 .attrs = per_node_hstate_attrs, 3886 }; 3887 3888 /* 3889 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3890 * Returns node id via non-NULL nidp. 3891 */ 3892 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3893 { 3894 int nid; 3895 3896 for (nid = 0; nid < nr_node_ids; nid++) { 3897 struct node_hstate *nhs = &node_hstates[nid]; 3898 int i; 3899 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3900 if (nhs->hstate_kobjs[i] == kobj) { 3901 if (nidp) 3902 *nidp = nid; 3903 return &hstates[i]; 3904 } 3905 } 3906 3907 BUG(); 3908 return NULL; 3909 } 3910 3911 /* 3912 * Unregister hstate attributes from a single node device. 3913 * No-op if no hstate attributes attached. 3914 */ 3915 static void hugetlb_unregister_node(struct node *node) 3916 { 3917 struct hstate *h; 3918 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3919 3920 if (!nhs->hugepages_kobj) 3921 return; /* no hstate attributes */ 3922 3923 for_each_hstate(h) { 3924 int idx = hstate_index(h); 3925 if (nhs->hstate_kobjs[idx]) { 3926 kobject_put(nhs->hstate_kobjs[idx]); 3927 nhs->hstate_kobjs[idx] = NULL; 3928 } 3929 } 3930 3931 kobject_put(nhs->hugepages_kobj); 3932 nhs->hugepages_kobj = NULL; 3933 } 3934 3935 3936 /* 3937 * Register hstate attributes for a single node device. 3938 * No-op if attributes already registered. 3939 */ 3940 static void hugetlb_register_node(struct node *node) 3941 { 3942 struct hstate *h; 3943 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3944 int err; 3945 3946 if (nhs->hugepages_kobj) 3947 return; /* already allocated */ 3948 3949 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3950 &node->dev.kobj); 3951 if (!nhs->hugepages_kobj) 3952 return; 3953 3954 for_each_hstate(h) { 3955 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3956 nhs->hstate_kobjs, 3957 &per_node_hstate_attr_group); 3958 if (err) { 3959 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3960 h->name, node->dev.id); 3961 hugetlb_unregister_node(node); 3962 break; 3963 } 3964 } 3965 } 3966 3967 /* 3968 * hugetlb init time: register hstate attributes for all registered node 3969 * devices of nodes that have memory. All on-line nodes should have 3970 * registered their associated device by this time. 3971 */ 3972 static void __init hugetlb_register_all_nodes(void) 3973 { 3974 int nid; 3975 3976 for_each_node_state(nid, N_MEMORY) { 3977 struct node *node = node_devices[nid]; 3978 if (node->dev.id == nid) 3979 hugetlb_register_node(node); 3980 } 3981 3982 /* 3983 * Let the node device driver know we're here so it can 3984 * [un]register hstate attributes on node hotplug. 3985 */ 3986 register_hugetlbfs_with_node(hugetlb_register_node, 3987 hugetlb_unregister_node); 3988 } 3989 #else /* !CONFIG_NUMA */ 3990 3991 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3992 { 3993 BUG(); 3994 if (nidp) 3995 *nidp = -1; 3996 return NULL; 3997 } 3998 3999 static void hugetlb_register_all_nodes(void) { } 4000 4001 #endif 4002 4003 static int __init hugetlb_init(void) 4004 { 4005 int i; 4006 4007 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4008 __NR_HPAGEFLAGS); 4009 4010 if (!hugepages_supported()) { 4011 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4012 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4013 return 0; 4014 } 4015 4016 /* 4017 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4018 * architectures depend on setup being done here. 4019 */ 4020 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4021 if (!parsed_default_hugepagesz) { 4022 /* 4023 * If we did not parse a default huge page size, set 4024 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4025 * number of huge pages for this default size was implicitly 4026 * specified, set that here as well. 4027 * Note that the implicit setting will overwrite an explicit 4028 * setting. A warning will be printed in this case. 4029 */ 4030 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4031 if (default_hstate_max_huge_pages) { 4032 if (default_hstate.max_huge_pages) { 4033 char buf[32]; 4034 4035 string_get_size(huge_page_size(&default_hstate), 4036 1, STRING_UNITS_2, buf, 32); 4037 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4038 default_hstate.max_huge_pages, buf); 4039 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4040 default_hstate_max_huge_pages); 4041 } 4042 default_hstate.max_huge_pages = 4043 default_hstate_max_huge_pages; 4044 4045 for (i = 0; i < nr_online_nodes; i++) 4046 default_hstate.max_huge_pages_node[i] = 4047 default_hugepages_in_node[i]; 4048 } 4049 } 4050 4051 hugetlb_cma_check(); 4052 hugetlb_init_hstates(); 4053 gather_bootmem_prealloc(); 4054 report_hugepages(); 4055 4056 hugetlb_sysfs_init(); 4057 hugetlb_register_all_nodes(); 4058 hugetlb_cgroup_file_init(); 4059 4060 #ifdef CONFIG_SMP 4061 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4062 #else 4063 num_fault_mutexes = 1; 4064 #endif 4065 hugetlb_fault_mutex_table = 4066 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4067 GFP_KERNEL); 4068 BUG_ON(!hugetlb_fault_mutex_table); 4069 4070 for (i = 0; i < num_fault_mutexes; i++) 4071 mutex_init(&hugetlb_fault_mutex_table[i]); 4072 return 0; 4073 } 4074 subsys_initcall(hugetlb_init); 4075 4076 /* Overwritten by architectures with more huge page sizes */ 4077 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4078 { 4079 return size == HPAGE_SIZE; 4080 } 4081 4082 void __init hugetlb_add_hstate(unsigned int order) 4083 { 4084 struct hstate *h; 4085 unsigned long i; 4086 4087 if (size_to_hstate(PAGE_SIZE << order)) { 4088 return; 4089 } 4090 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4091 BUG_ON(order == 0); 4092 h = &hstates[hugetlb_max_hstate++]; 4093 mutex_init(&h->resize_lock); 4094 h->order = order; 4095 h->mask = ~(huge_page_size(h) - 1); 4096 for (i = 0; i < MAX_NUMNODES; ++i) 4097 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4098 INIT_LIST_HEAD(&h->hugepage_activelist); 4099 h->next_nid_to_alloc = first_memory_node; 4100 h->next_nid_to_free = first_memory_node; 4101 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4102 huge_page_size(h)/1024); 4103 hugetlb_vmemmap_init(h); 4104 4105 parsed_hstate = h; 4106 } 4107 4108 bool __init __weak hugetlb_node_alloc_supported(void) 4109 { 4110 return true; 4111 } 4112 /* 4113 * hugepages command line processing 4114 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4115 * specification. If not, ignore the hugepages value. hugepages can also 4116 * be the first huge page command line option in which case it implicitly 4117 * specifies the number of huge pages for the default size. 4118 */ 4119 static int __init hugepages_setup(char *s) 4120 { 4121 unsigned long *mhp; 4122 static unsigned long *last_mhp; 4123 int node = NUMA_NO_NODE; 4124 int count; 4125 unsigned long tmp; 4126 char *p = s; 4127 4128 if (!parsed_valid_hugepagesz) { 4129 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4130 parsed_valid_hugepagesz = true; 4131 return 0; 4132 } 4133 4134 /* 4135 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4136 * yet, so this hugepages= parameter goes to the "default hstate". 4137 * Otherwise, it goes with the previously parsed hugepagesz or 4138 * default_hugepagesz. 4139 */ 4140 else if (!hugetlb_max_hstate) 4141 mhp = &default_hstate_max_huge_pages; 4142 else 4143 mhp = &parsed_hstate->max_huge_pages; 4144 4145 if (mhp == last_mhp) { 4146 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4147 return 0; 4148 } 4149 4150 while (*p) { 4151 count = 0; 4152 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4153 goto invalid; 4154 /* Parameter is node format */ 4155 if (p[count] == ':') { 4156 if (!hugetlb_node_alloc_supported()) { 4157 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4158 return 0; 4159 } 4160 node = tmp; 4161 p += count + 1; 4162 if (node < 0 || node >= nr_online_nodes) 4163 goto invalid; 4164 /* Parse hugepages */ 4165 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4166 goto invalid; 4167 if (!hugetlb_max_hstate) 4168 default_hugepages_in_node[node] = tmp; 4169 else 4170 parsed_hstate->max_huge_pages_node[node] = tmp; 4171 *mhp += tmp; 4172 /* Go to parse next node*/ 4173 if (p[count] == ',') 4174 p += count + 1; 4175 else 4176 break; 4177 } else { 4178 if (p != s) 4179 goto invalid; 4180 *mhp = tmp; 4181 break; 4182 } 4183 } 4184 4185 /* 4186 * Global state is always initialized later in hugetlb_init. 4187 * But we need to allocate gigantic hstates here early to still 4188 * use the bootmem allocator. 4189 */ 4190 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4191 hugetlb_hstate_alloc_pages(parsed_hstate); 4192 4193 last_mhp = mhp; 4194 4195 return 1; 4196 4197 invalid: 4198 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4199 return 0; 4200 } 4201 __setup("hugepages=", hugepages_setup); 4202 4203 /* 4204 * hugepagesz command line processing 4205 * A specific huge page size can only be specified once with hugepagesz. 4206 * hugepagesz is followed by hugepages on the command line. The global 4207 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4208 * hugepagesz argument was valid. 4209 */ 4210 static int __init hugepagesz_setup(char *s) 4211 { 4212 unsigned long size; 4213 struct hstate *h; 4214 4215 parsed_valid_hugepagesz = false; 4216 size = (unsigned long)memparse(s, NULL); 4217 4218 if (!arch_hugetlb_valid_size(size)) { 4219 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4220 return 0; 4221 } 4222 4223 h = size_to_hstate(size); 4224 if (h) { 4225 /* 4226 * hstate for this size already exists. This is normally 4227 * an error, but is allowed if the existing hstate is the 4228 * default hstate. More specifically, it is only allowed if 4229 * the number of huge pages for the default hstate was not 4230 * previously specified. 4231 */ 4232 if (!parsed_default_hugepagesz || h != &default_hstate || 4233 default_hstate.max_huge_pages) { 4234 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4235 return 0; 4236 } 4237 4238 /* 4239 * No need to call hugetlb_add_hstate() as hstate already 4240 * exists. But, do set parsed_hstate so that a following 4241 * hugepages= parameter will be applied to this hstate. 4242 */ 4243 parsed_hstate = h; 4244 parsed_valid_hugepagesz = true; 4245 return 1; 4246 } 4247 4248 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4249 parsed_valid_hugepagesz = true; 4250 return 1; 4251 } 4252 __setup("hugepagesz=", hugepagesz_setup); 4253 4254 /* 4255 * default_hugepagesz command line input 4256 * Only one instance of default_hugepagesz allowed on command line. 4257 */ 4258 static int __init default_hugepagesz_setup(char *s) 4259 { 4260 unsigned long size; 4261 int i; 4262 4263 parsed_valid_hugepagesz = false; 4264 if (parsed_default_hugepagesz) { 4265 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4266 return 0; 4267 } 4268 4269 size = (unsigned long)memparse(s, NULL); 4270 4271 if (!arch_hugetlb_valid_size(size)) { 4272 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4273 return 0; 4274 } 4275 4276 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4277 parsed_valid_hugepagesz = true; 4278 parsed_default_hugepagesz = true; 4279 default_hstate_idx = hstate_index(size_to_hstate(size)); 4280 4281 /* 4282 * The number of default huge pages (for this size) could have been 4283 * specified as the first hugetlb parameter: hugepages=X. If so, 4284 * then default_hstate_max_huge_pages is set. If the default huge 4285 * page size is gigantic (>= MAX_ORDER), then the pages must be 4286 * allocated here from bootmem allocator. 4287 */ 4288 if (default_hstate_max_huge_pages) { 4289 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4290 for (i = 0; i < nr_online_nodes; i++) 4291 default_hstate.max_huge_pages_node[i] = 4292 default_hugepages_in_node[i]; 4293 if (hstate_is_gigantic(&default_hstate)) 4294 hugetlb_hstate_alloc_pages(&default_hstate); 4295 default_hstate_max_huge_pages = 0; 4296 } 4297 4298 return 1; 4299 } 4300 __setup("default_hugepagesz=", default_hugepagesz_setup); 4301 4302 static unsigned int allowed_mems_nr(struct hstate *h) 4303 { 4304 int node; 4305 unsigned int nr = 0; 4306 nodemask_t *mpol_allowed; 4307 unsigned int *array = h->free_huge_pages_node; 4308 gfp_t gfp_mask = htlb_alloc_mask(h); 4309 4310 mpol_allowed = policy_nodemask_current(gfp_mask); 4311 4312 for_each_node_mask(node, cpuset_current_mems_allowed) { 4313 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 4314 nr += array[node]; 4315 } 4316 4317 return nr; 4318 } 4319 4320 #ifdef CONFIG_SYSCTL 4321 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4322 void *buffer, size_t *length, 4323 loff_t *ppos, unsigned long *out) 4324 { 4325 struct ctl_table dup_table; 4326 4327 /* 4328 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4329 * can duplicate the @table and alter the duplicate of it. 4330 */ 4331 dup_table = *table; 4332 dup_table.data = out; 4333 4334 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4335 } 4336 4337 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4338 struct ctl_table *table, int write, 4339 void *buffer, size_t *length, loff_t *ppos) 4340 { 4341 struct hstate *h = &default_hstate; 4342 unsigned long tmp = h->max_huge_pages; 4343 int ret; 4344 4345 if (!hugepages_supported()) 4346 return -EOPNOTSUPP; 4347 4348 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4349 &tmp); 4350 if (ret) 4351 goto out; 4352 4353 if (write) 4354 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4355 NUMA_NO_NODE, tmp, *length); 4356 out: 4357 return ret; 4358 } 4359 4360 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4361 void *buffer, size_t *length, loff_t *ppos) 4362 { 4363 4364 return hugetlb_sysctl_handler_common(false, table, write, 4365 buffer, length, ppos); 4366 } 4367 4368 #ifdef CONFIG_NUMA 4369 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4370 void *buffer, size_t *length, loff_t *ppos) 4371 { 4372 return hugetlb_sysctl_handler_common(true, table, write, 4373 buffer, length, ppos); 4374 } 4375 #endif /* CONFIG_NUMA */ 4376 4377 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4378 void *buffer, size_t *length, loff_t *ppos) 4379 { 4380 struct hstate *h = &default_hstate; 4381 unsigned long tmp; 4382 int ret; 4383 4384 if (!hugepages_supported()) 4385 return -EOPNOTSUPP; 4386 4387 tmp = h->nr_overcommit_huge_pages; 4388 4389 if (write && hstate_is_gigantic(h)) 4390 return -EINVAL; 4391 4392 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4393 &tmp); 4394 if (ret) 4395 goto out; 4396 4397 if (write) { 4398 spin_lock_irq(&hugetlb_lock); 4399 h->nr_overcommit_huge_pages = tmp; 4400 spin_unlock_irq(&hugetlb_lock); 4401 } 4402 out: 4403 return ret; 4404 } 4405 4406 #endif /* CONFIG_SYSCTL */ 4407 4408 void hugetlb_report_meminfo(struct seq_file *m) 4409 { 4410 struct hstate *h; 4411 unsigned long total = 0; 4412 4413 if (!hugepages_supported()) 4414 return; 4415 4416 for_each_hstate(h) { 4417 unsigned long count = h->nr_huge_pages; 4418 4419 total += huge_page_size(h) * count; 4420 4421 if (h == &default_hstate) 4422 seq_printf(m, 4423 "HugePages_Total: %5lu\n" 4424 "HugePages_Free: %5lu\n" 4425 "HugePages_Rsvd: %5lu\n" 4426 "HugePages_Surp: %5lu\n" 4427 "Hugepagesize: %8lu kB\n", 4428 count, 4429 h->free_huge_pages, 4430 h->resv_huge_pages, 4431 h->surplus_huge_pages, 4432 huge_page_size(h) / SZ_1K); 4433 } 4434 4435 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4436 } 4437 4438 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4439 { 4440 struct hstate *h = &default_hstate; 4441 4442 if (!hugepages_supported()) 4443 return 0; 4444 4445 return sysfs_emit_at(buf, len, 4446 "Node %d HugePages_Total: %5u\n" 4447 "Node %d HugePages_Free: %5u\n" 4448 "Node %d HugePages_Surp: %5u\n", 4449 nid, h->nr_huge_pages_node[nid], 4450 nid, h->free_huge_pages_node[nid], 4451 nid, h->surplus_huge_pages_node[nid]); 4452 } 4453 4454 void hugetlb_show_meminfo(void) 4455 { 4456 struct hstate *h; 4457 int nid; 4458 4459 if (!hugepages_supported()) 4460 return; 4461 4462 for_each_node_state(nid, N_MEMORY) 4463 for_each_hstate(h) 4464 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4465 nid, 4466 h->nr_huge_pages_node[nid], 4467 h->free_huge_pages_node[nid], 4468 h->surplus_huge_pages_node[nid], 4469 huge_page_size(h) / SZ_1K); 4470 } 4471 4472 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4473 { 4474 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4475 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4476 } 4477 4478 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4479 unsigned long hugetlb_total_pages(void) 4480 { 4481 struct hstate *h; 4482 unsigned long nr_total_pages = 0; 4483 4484 for_each_hstate(h) 4485 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4486 return nr_total_pages; 4487 } 4488 4489 static int hugetlb_acct_memory(struct hstate *h, long delta) 4490 { 4491 int ret = -ENOMEM; 4492 4493 if (!delta) 4494 return 0; 4495 4496 spin_lock_irq(&hugetlb_lock); 4497 /* 4498 * When cpuset is configured, it breaks the strict hugetlb page 4499 * reservation as the accounting is done on a global variable. Such 4500 * reservation is completely rubbish in the presence of cpuset because 4501 * the reservation is not checked against page availability for the 4502 * current cpuset. Application can still potentially OOM'ed by kernel 4503 * with lack of free htlb page in cpuset that the task is in. 4504 * Attempt to enforce strict accounting with cpuset is almost 4505 * impossible (or too ugly) because cpuset is too fluid that 4506 * task or memory node can be dynamically moved between cpusets. 4507 * 4508 * The change of semantics for shared hugetlb mapping with cpuset is 4509 * undesirable. However, in order to preserve some of the semantics, 4510 * we fall back to check against current free page availability as 4511 * a best attempt and hopefully to minimize the impact of changing 4512 * semantics that cpuset has. 4513 * 4514 * Apart from cpuset, we also have memory policy mechanism that 4515 * also determines from which node the kernel will allocate memory 4516 * in a NUMA system. So similar to cpuset, we also should consider 4517 * the memory policy of the current task. Similar to the description 4518 * above. 4519 */ 4520 if (delta > 0) { 4521 if (gather_surplus_pages(h, delta) < 0) 4522 goto out; 4523 4524 if (delta > allowed_mems_nr(h)) { 4525 return_unused_surplus_pages(h, delta); 4526 goto out; 4527 } 4528 } 4529 4530 ret = 0; 4531 if (delta < 0) 4532 return_unused_surplus_pages(h, (unsigned long) -delta); 4533 4534 out: 4535 spin_unlock_irq(&hugetlb_lock); 4536 return ret; 4537 } 4538 4539 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4540 { 4541 struct resv_map *resv = vma_resv_map(vma); 4542 4543 /* 4544 * This new VMA should share its siblings reservation map if present. 4545 * The VMA will only ever have a valid reservation map pointer where 4546 * it is being copied for another still existing VMA. As that VMA 4547 * has a reference to the reservation map it cannot disappear until 4548 * after this open call completes. It is therefore safe to take a 4549 * new reference here without additional locking. 4550 */ 4551 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4552 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4553 kref_get(&resv->refs); 4554 } 4555 } 4556 4557 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4558 { 4559 struct hstate *h = hstate_vma(vma); 4560 struct resv_map *resv = vma_resv_map(vma); 4561 struct hugepage_subpool *spool = subpool_vma(vma); 4562 unsigned long reserve, start, end; 4563 long gbl_reserve; 4564 4565 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4566 return; 4567 4568 start = vma_hugecache_offset(h, vma, vma->vm_start); 4569 end = vma_hugecache_offset(h, vma, vma->vm_end); 4570 4571 reserve = (end - start) - region_count(resv, start, end); 4572 hugetlb_cgroup_uncharge_counter(resv, start, end); 4573 if (reserve) { 4574 /* 4575 * Decrement reserve counts. The global reserve count may be 4576 * adjusted if the subpool has a minimum size. 4577 */ 4578 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4579 hugetlb_acct_memory(h, -gbl_reserve); 4580 } 4581 4582 kref_put(&resv->refs, resv_map_release); 4583 } 4584 4585 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4586 { 4587 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4588 return -EINVAL; 4589 return 0; 4590 } 4591 4592 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4593 { 4594 return huge_page_size(hstate_vma(vma)); 4595 } 4596 4597 /* 4598 * We cannot handle pagefaults against hugetlb pages at all. They cause 4599 * handle_mm_fault() to try to instantiate regular-sized pages in the 4600 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4601 * this far. 4602 */ 4603 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4604 { 4605 BUG(); 4606 return 0; 4607 } 4608 4609 /* 4610 * When a new function is introduced to vm_operations_struct and added 4611 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4612 * This is because under System V memory model, mappings created via 4613 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4614 * their original vm_ops are overwritten with shm_vm_ops. 4615 */ 4616 const struct vm_operations_struct hugetlb_vm_ops = { 4617 .fault = hugetlb_vm_op_fault, 4618 .open = hugetlb_vm_op_open, 4619 .close = hugetlb_vm_op_close, 4620 .may_split = hugetlb_vm_op_split, 4621 .pagesize = hugetlb_vm_op_pagesize, 4622 }; 4623 4624 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4625 int writable) 4626 { 4627 pte_t entry; 4628 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4629 4630 if (writable) { 4631 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4632 vma->vm_page_prot))); 4633 } else { 4634 entry = huge_pte_wrprotect(mk_huge_pte(page, 4635 vma->vm_page_prot)); 4636 } 4637 entry = pte_mkyoung(entry); 4638 entry = pte_mkhuge(entry); 4639 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4640 4641 return entry; 4642 } 4643 4644 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4645 unsigned long address, pte_t *ptep) 4646 { 4647 pte_t entry; 4648 4649 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4650 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4651 update_mmu_cache(vma, address, ptep); 4652 } 4653 4654 bool is_hugetlb_entry_migration(pte_t pte) 4655 { 4656 swp_entry_t swp; 4657 4658 if (huge_pte_none(pte) || pte_present(pte)) 4659 return false; 4660 swp = pte_to_swp_entry(pte); 4661 if (is_migration_entry(swp)) 4662 return true; 4663 else 4664 return false; 4665 } 4666 4667 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4668 { 4669 swp_entry_t swp; 4670 4671 if (huge_pte_none(pte) || pte_present(pte)) 4672 return false; 4673 swp = pte_to_swp_entry(pte); 4674 if (is_hwpoison_entry(swp)) 4675 return true; 4676 else 4677 return false; 4678 } 4679 4680 static void 4681 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4682 struct page *new_page) 4683 { 4684 __SetPageUptodate(new_page); 4685 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4686 hugepage_add_new_anon_rmap(new_page, vma, addr); 4687 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4688 ClearHPageRestoreReserve(new_page); 4689 SetHPageMigratable(new_page); 4690 } 4691 4692 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4693 struct vm_area_struct *vma) 4694 { 4695 pte_t *src_pte, *dst_pte, entry, dst_entry; 4696 struct page *ptepage; 4697 unsigned long addr; 4698 bool cow = is_cow_mapping(vma->vm_flags); 4699 struct hstate *h = hstate_vma(vma); 4700 unsigned long sz = huge_page_size(h); 4701 unsigned long npages = pages_per_huge_page(h); 4702 struct address_space *mapping = vma->vm_file->f_mapping; 4703 struct mmu_notifier_range range; 4704 int ret = 0; 4705 4706 if (cow) { 4707 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 4708 vma->vm_start, 4709 vma->vm_end); 4710 mmu_notifier_invalidate_range_start(&range); 4711 } else { 4712 /* 4713 * For shared mappings i_mmap_rwsem must be held to call 4714 * huge_pte_alloc, otherwise the returned ptep could go 4715 * away if part of a shared pmd and another thread calls 4716 * huge_pmd_unshare. 4717 */ 4718 i_mmap_lock_read(mapping); 4719 } 4720 4721 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 4722 spinlock_t *src_ptl, *dst_ptl; 4723 src_pte = huge_pte_offset(src, addr, sz); 4724 if (!src_pte) 4725 continue; 4726 dst_pte = huge_pte_alloc(dst, vma, addr, sz); 4727 if (!dst_pte) { 4728 ret = -ENOMEM; 4729 break; 4730 } 4731 4732 /* 4733 * If the pagetables are shared don't copy or take references. 4734 * dst_pte == src_pte is the common case of src/dest sharing. 4735 * 4736 * However, src could have 'unshared' and dst shares with 4737 * another vma. If dst_pte !none, this implies sharing. 4738 * Check here before taking page table lock, and once again 4739 * after taking the lock below. 4740 */ 4741 dst_entry = huge_ptep_get(dst_pte); 4742 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 4743 continue; 4744 4745 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4746 src_ptl = huge_pte_lockptr(h, src, src_pte); 4747 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4748 entry = huge_ptep_get(src_pte); 4749 dst_entry = huge_ptep_get(dst_pte); 4750 again: 4751 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4752 /* 4753 * Skip if src entry none. Also, skip in the 4754 * unlikely case dst entry !none as this implies 4755 * sharing with another vma. 4756 */ 4757 ; 4758 } else if (unlikely(is_hugetlb_entry_migration(entry) || 4759 is_hugetlb_entry_hwpoisoned(entry))) { 4760 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4761 4762 if (is_writable_migration_entry(swp_entry) && cow) { 4763 /* 4764 * COW mappings require pages in both 4765 * parent and child to be set to read. 4766 */ 4767 swp_entry = make_readable_migration_entry( 4768 swp_offset(swp_entry)); 4769 entry = swp_entry_to_pte(swp_entry); 4770 set_huge_swap_pte_at(src, addr, src_pte, 4771 entry, sz); 4772 } 4773 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 4774 } else { 4775 entry = huge_ptep_get(src_pte); 4776 ptepage = pte_page(entry); 4777 get_page(ptepage); 4778 4779 /* 4780 * This is a rare case where we see pinned hugetlb 4781 * pages while they're prone to COW. We need to do the 4782 * COW earlier during fork. 4783 * 4784 * When pre-allocating the page or copying data, we 4785 * need to be without the pgtable locks since we could 4786 * sleep during the process. 4787 */ 4788 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { 4789 pte_t src_pte_old = entry; 4790 struct page *new; 4791 4792 spin_unlock(src_ptl); 4793 spin_unlock(dst_ptl); 4794 /* Do not use reserve as it's private owned */ 4795 new = alloc_huge_page(vma, addr, 1); 4796 if (IS_ERR(new)) { 4797 put_page(ptepage); 4798 ret = PTR_ERR(new); 4799 break; 4800 } 4801 copy_user_huge_page(new, ptepage, addr, vma, 4802 npages); 4803 put_page(ptepage); 4804 4805 /* Install the new huge page if src pte stable */ 4806 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4807 src_ptl = huge_pte_lockptr(h, src, src_pte); 4808 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4809 entry = huge_ptep_get(src_pte); 4810 if (!pte_same(src_pte_old, entry)) { 4811 restore_reserve_on_error(h, vma, addr, 4812 new); 4813 put_page(new); 4814 /* dst_entry won't change as in child */ 4815 goto again; 4816 } 4817 hugetlb_install_page(vma, dst_pte, addr, new); 4818 spin_unlock(src_ptl); 4819 spin_unlock(dst_ptl); 4820 continue; 4821 } 4822 4823 if (cow) { 4824 /* 4825 * No need to notify as we are downgrading page 4826 * table protection not changing it to point 4827 * to a new page. 4828 * 4829 * See Documentation/vm/mmu_notifier.rst 4830 */ 4831 huge_ptep_set_wrprotect(src, addr, src_pte); 4832 entry = huge_pte_wrprotect(entry); 4833 } 4834 4835 page_dup_rmap(ptepage, true); 4836 set_huge_pte_at(dst, addr, dst_pte, entry); 4837 hugetlb_count_add(npages, dst); 4838 } 4839 spin_unlock(src_ptl); 4840 spin_unlock(dst_ptl); 4841 } 4842 4843 if (cow) 4844 mmu_notifier_invalidate_range_end(&range); 4845 else 4846 i_mmap_unlock_read(mapping); 4847 4848 return ret; 4849 } 4850 4851 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4852 unsigned long new_addr, pte_t *src_pte) 4853 { 4854 struct hstate *h = hstate_vma(vma); 4855 struct mm_struct *mm = vma->vm_mm; 4856 pte_t *dst_pte, pte; 4857 spinlock_t *src_ptl, *dst_ptl; 4858 4859 dst_pte = huge_pte_offset(mm, new_addr, huge_page_size(h)); 4860 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4861 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4862 4863 /* 4864 * We don't have to worry about the ordering of src and dst ptlocks 4865 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4866 */ 4867 if (src_ptl != dst_ptl) 4868 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4869 4870 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4871 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4872 4873 if (src_ptl != dst_ptl) 4874 spin_unlock(src_ptl); 4875 spin_unlock(dst_ptl); 4876 } 4877 4878 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4879 struct vm_area_struct *new_vma, 4880 unsigned long old_addr, unsigned long new_addr, 4881 unsigned long len) 4882 { 4883 struct hstate *h = hstate_vma(vma); 4884 struct address_space *mapping = vma->vm_file->f_mapping; 4885 unsigned long sz = huge_page_size(h); 4886 struct mm_struct *mm = vma->vm_mm; 4887 unsigned long old_end = old_addr + len; 4888 unsigned long old_addr_copy; 4889 pte_t *src_pte, *dst_pte; 4890 struct mmu_notifier_range range; 4891 4892 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 4893 old_end); 4894 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4895 mmu_notifier_invalidate_range_start(&range); 4896 /* Prevent race with file truncation */ 4897 i_mmap_lock_write(mapping); 4898 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 4899 src_pte = huge_pte_offset(mm, old_addr, sz); 4900 if (!src_pte) 4901 continue; 4902 if (huge_pte_none(huge_ptep_get(src_pte))) 4903 continue; 4904 4905 /* old_addr arg to huge_pmd_unshare() is a pointer and so the 4906 * arg may be modified. Pass a copy instead to preserve the 4907 * value in old_addr. 4908 */ 4909 old_addr_copy = old_addr; 4910 4911 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) 4912 continue; 4913 4914 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 4915 if (!dst_pte) 4916 break; 4917 4918 move_huge_pte(vma, old_addr, new_addr, src_pte); 4919 } 4920 i_mmap_unlock_write(mapping); 4921 flush_tlb_range(vma, old_end - len, old_end); 4922 mmu_notifier_invalidate_range_end(&range); 4923 4924 return len + old_addr - old_end; 4925 } 4926 4927 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4928 unsigned long start, unsigned long end, 4929 struct page *ref_page) 4930 { 4931 struct mm_struct *mm = vma->vm_mm; 4932 unsigned long address; 4933 pte_t *ptep; 4934 pte_t pte; 4935 spinlock_t *ptl; 4936 struct page *page; 4937 struct hstate *h = hstate_vma(vma); 4938 unsigned long sz = huge_page_size(h); 4939 struct mmu_notifier_range range; 4940 4941 WARN_ON(!is_vm_hugetlb_page(vma)); 4942 BUG_ON(start & ~huge_page_mask(h)); 4943 BUG_ON(end & ~huge_page_mask(h)); 4944 4945 /* 4946 * This is a hugetlb vma, all the pte entries should point 4947 * to huge page. 4948 */ 4949 tlb_change_page_size(tlb, sz); 4950 tlb_start_vma(tlb, vma); 4951 4952 /* 4953 * If sharing possible, alert mmu notifiers of worst case. 4954 */ 4955 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 4956 end); 4957 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4958 mmu_notifier_invalidate_range_start(&range); 4959 address = start; 4960 for (; address < end; address += sz) { 4961 ptep = huge_pte_offset(mm, address, sz); 4962 if (!ptep) 4963 continue; 4964 4965 ptl = huge_pte_lock(h, mm, ptep); 4966 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 4967 spin_unlock(ptl); 4968 /* 4969 * We just unmapped a page of PMDs by clearing a PUD. 4970 * The caller's TLB flush range should cover this area. 4971 */ 4972 continue; 4973 } 4974 4975 pte = huge_ptep_get(ptep); 4976 if (huge_pte_none(pte)) { 4977 spin_unlock(ptl); 4978 continue; 4979 } 4980 4981 /* 4982 * Migrating hugepage or HWPoisoned hugepage is already 4983 * unmapped and its refcount is dropped, so just clear pte here. 4984 */ 4985 if (unlikely(!pte_present(pte))) { 4986 huge_pte_clear(mm, address, ptep, sz); 4987 spin_unlock(ptl); 4988 continue; 4989 } 4990 4991 page = pte_page(pte); 4992 /* 4993 * If a reference page is supplied, it is because a specific 4994 * page is being unmapped, not a range. Ensure the page we 4995 * are about to unmap is the actual page of interest. 4996 */ 4997 if (ref_page) { 4998 if (page != ref_page) { 4999 spin_unlock(ptl); 5000 continue; 5001 } 5002 /* 5003 * Mark the VMA as having unmapped its page so that 5004 * future faults in this VMA will fail rather than 5005 * looking like data was lost 5006 */ 5007 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5008 } 5009 5010 pte = huge_ptep_get_and_clear(mm, address, ptep); 5011 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5012 if (huge_pte_dirty(pte)) 5013 set_page_dirty(page); 5014 5015 hugetlb_count_sub(pages_per_huge_page(h), mm); 5016 page_remove_rmap(page, true); 5017 5018 spin_unlock(ptl); 5019 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5020 /* 5021 * Bail out after unmapping reference page if supplied 5022 */ 5023 if (ref_page) 5024 break; 5025 } 5026 mmu_notifier_invalidate_range_end(&range); 5027 tlb_end_vma(tlb, vma); 5028 } 5029 5030 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5031 struct vm_area_struct *vma, unsigned long start, 5032 unsigned long end, struct page *ref_page) 5033 { 5034 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 5035 5036 /* 5037 * Clear this flag so that x86's huge_pmd_share page_table_shareable 5038 * test will fail on a vma being torn down, and not grab a page table 5039 * on its way out. We're lucky that the flag has such an appropriate 5040 * name, and can in fact be safely cleared here. We could clear it 5041 * before the __unmap_hugepage_range above, but all that's necessary 5042 * is to clear it before releasing the i_mmap_rwsem. This works 5043 * because in the context this is called, the VMA is about to be 5044 * destroyed and the i_mmap_rwsem is held. 5045 */ 5046 vma->vm_flags &= ~VM_MAYSHARE; 5047 } 5048 5049 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5050 unsigned long end, struct page *ref_page) 5051 { 5052 struct mmu_gather tlb; 5053 5054 tlb_gather_mmu(&tlb, vma->vm_mm); 5055 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 5056 tlb_finish_mmu(&tlb); 5057 } 5058 5059 /* 5060 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5061 * mapping it owns the reserve page for. The intention is to unmap the page 5062 * from other VMAs and let the children be SIGKILLed if they are faulting the 5063 * same region. 5064 */ 5065 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5066 struct page *page, unsigned long address) 5067 { 5068 struct hstate *h = hstate_vma(vma); 5069 struct vm_area_struct *iter_vma; 5070 struct address_space *mapping; 5071 pgoff_t pgoff; 5072 5073 /* 5074 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5075 * from page cache lookup which is in HPAGE_SIZE units. 5076 */ 5077 address = address & huge_page_mask(h); 5078 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5079 vma->vm_pgoff; 5080 mapping = vma->vm_file->f_mapping; 5081 5082 /* 5083 * Take the mapping lock for the duration of the table walk. As 5084 * this mapping should be shared between all the VMAs, 5085 * __unmap_hugepage_range() is called as the lock is already held 5086 */ 5087 i_mmap_lock_write(mapping); 5088 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5089 /* Do not unmap the current VMA */ 5090 if (iter_vma == vma) 5091 continue; 5092 5093 /* 5094 * Shared VMAs have their own reserves and do not affect 5095 * MAP_PRIVATE accounting but it is possible that a shared 5096 * VMA is using the same page so check and skip such VMAs. 5097 */ 5098 if (iter_vma->vm_flags & VM_MAYSHARE) 5099 continue; 5100 5101 /* 5102 * Unmap the page from other VMAs without their own reserves. 5103 * They get marked to be SIGKILLed if they fault in these 5104 * areas. This is because a future no-page fault on this VMA 5105 * could insert a zeroed page instead of the data existing 5106 * from the time of fork. This would look like data corruption 5107 */ 5108 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5109 unmap_hugepage_range(iter_vma, address, 5110 address + huge_page_size(h), page); 5111 } 5112 i_mmap_unlock_write(mapping); 5113 } 5114 5115 /* 5116 * Hugetlb_cow() should be called with page lock of the original hugepage held. 5117 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5118 * cannot race with other handlers or page migration. 5119 * Keep the pte_same checks anyway to make transition from the mutex easier. 5120 */ 5121 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 5122 unsigned long address, pte_t *ptep, 5123 struct page *pagecache_page, spinlock_t *ptl) 5124 { 5125 pte_t pte; 5126 struct hstate *h = hstate_vma(vma); 5127 struct page *old_page, *new_page; 5128 int outside_reserve = 0; 5129 vm_fault_t ret = 0; 5130 unsigned long haddr = address & huge_page_mask(h); 5131 struct mmu_notifier_range range; 5132 5133 pte = huge_ptep_get(ptep); 5134 old_page = pte_page(pte); 5135 5136 retry_avoidcopy: 5137 /* If no-one else is actually using this page, avoid the copy 5138 * and just make the page writable */ 5139 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5140 page_move_anon_rmap(old_page, vma); 5141 set_huge_ptep_writable(vma, haddr, ptep); 5142 return 0; 5143 } 5144 5145 /* 5146 * If the process that created a MAP_PRIVATE mapping is about to 5147 * perform a COW due to a shared page count, attempt to satisfy 5148 * the allocation without using the existing reserves. The pagecache 5149 * page is used to determine if the reserve at this address was 5150 * consumed or not. If reserves were used, a partial faulted mapping 5151 * at the time of fork() could consume its reserves on COW instead 5152 * of the full address range. 5153 */ 5154 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5155 old_page != pagecache_page) 5156 outside_reserve = 1; 5157 5158 get_page(old_page); 5159 5160 /* 5161 * Drop page table lock as buddy allocator may be called. It will 5162 * be acquired again before returning to the caller, as expected. 5163 */ 5164 spin_unlock(ptl); 5165 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5166 5167 if (IS_ERR(new_page)) { 5168 /* 5169 * If a process owning a MAP_PRIVATE mapping fails to COW, 5170 * it is due to references held by a child and an insufficient 5171 * huge page pool. To guarantee the original mappers 5172 * reliability, unmap the page from child processes. The child 5173 * may get SIGKILLed if it later faults. 5174 */ 5175 if (outside_reserve) { 5176 struct address_space *mapping = vma->vm_file->f_mapping; 5177 pgoff_t idx; 5178 u32 hash; 5179 5180 put_page(old_page); 5181 BUG_ON(huge_pte_none(pte)); 5182 /* 5183 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 5184 * unmapping. unmapping needs to hold i_mmap_rwsem 5185 * in write mode. Dropping i_mmap_rwsem in read mode 5186 * here is OK as COW mappings do not interact with 5187 * PMD sharing. 5188 * 5189 * Reacquire both after unmap operation. 5190 */ 5191 idx = vma_hugecache_offset(h, vma, haddr); 5192 hash = hugetlb_fault_mutex_hash(mapping, idx); 5193 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5194 i_mmap_unlock_read(mapping); 5195 5196 unmap_ref_private(mm, vma, old_page, haddr); 5197 5198 i_mmap_lock_read(mapping); 5199 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5200 spin_lock(ptl); 5201 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5202 if (likely(ptep && 5203 pte_same(huge_ptep_get(ptep), pte))) 5204 goto retry_avoidcopy; 5205 /* 5206 * race occurs while re-acquiring page table 5207 * lock, and our job is done. 5208 */ 5209 return 0; 5210 } 5211 5212 ret = vmf_error(PTR_ERR(new_page)); 5213 goto out_release_old; 5214 } 5215 5216 /* 5217 * When the original hugepage is shared one, it does not have 5218 * anon_vma prepared. 5219 */ 5220 if (unlikely(anon_vma_prepare(vma))) { 5221 ret = VM_FAULT_OOM; 5222 goto out_release_all; 5223 } 5224 5225 copy_user_huge_page(new_page, old_page, address, vma, 5226 pages_per_huge_page(h)); 5227 __SetPageUptodate(new_page); 5228 5229 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5230 haddr + huge_page_size(h)); 5231 mmu_notifier_invalidate_range_start(&range); 5232 5233 /* 5234 * Retake the page table lock to check for racing updates 5235 * before the page tables are altered 5236 */ 5237 spin_lock(ptl); 5238 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5239 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5240 ClearHPageRestoreReserve(new_page); 5241 5242 /* Break COW */ 5243 huge_ptep_clear_flush(vma, haddr, ptep); 5244 mmu_notifier_invalidate_range(mm, range.start, range.end); 5245 set_huge_pte_at(mm, haddr, ptep, 5246 make_huge_pte(vma, new_page, 1)); 5247 page_remove_rmap(old_page, true); 5248 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5249 SetHPageMigratable(new_page); 5250 /* Make the old page be freed below */ 5251 new_page = old_page; 5252 } 5253 spin_unlock(ptl); 5254 mmu_notifier_invalidate_range_end(&range); 5255 out_release_all: 5256 /* No restore in case of successful pagetable update (Break COW) */ 5257 if (new_page != old_page) 5258 restore_reserve_on_error(h, vma, haddr, new_page); 5259 put_page(new_page); 5260 out_release_old: 5261 put_page(old_page); 5262 5263 spin_lock(ptl); /* Caller expects lock to be held */ 5264 return ret; 5265 } 5266 5267 /* Return the pagecache page at a given address within a VMA */ 5268 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 5269 struct vm_area_struct *vma, unsigned long address) 5270 { 5271 struct address_space *mapping; 5272 pgoff_t idx; 5273 5274 mapping = vma->vm_file->f_mapping; 5275 idx = vma_hugecache_offset(h, vma, address); 5276 5277 return find_lock_page(mapping, idx); 5278 } 5279 5280 /* 5281 * Return whether there is a pagecache page to back given address within VMA. 5282 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5283 */ 5284 static bool hugetlbfs_pagecache_present(struct hstate *h, 5285 struct vm_area_struct *vma, unsigned long address) 5286 { 5287 struct address_space *mapping; 5288 pgoff_t idx; 5289 struct page *page; 5290 5291 mapping = vma->vm_file->f_mapping; 5292 idx = vma_hugecache_offset(h, vma, address); 5293 5294 page = find_get_page(mapping, idx); 5295 if (page) 5296 put_page(page); 5297 return page != NULL; 5298 } 5299 5300 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 5301 pgoff_t idx) 5302 { 5303 struct inode *inode = mapping->host; 5304 struct hstate *h = hstate_inode(inode); 5305 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 5306 5307 if (err) 5308 return err; 5309 ClearHPageRestoreReserve(page); 5310 5311 /* 5312 * set page dirty so that it will not be removed from cache/file 5313 * by non-hugetlbfs specific code paths. 5314 */ 5315 set_page_dirty(page); 5316 5317 spin_lock(&inode->i_lock); 5318 inode->i_blocks += blocks_per_huge_page(h); 5319 spin_unlock(&inode->i_lock); 5320 return 0; 5321 } 5322 5323 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5324 struct address_space *mapping, 5325 pgoff_t idx, 5326 unsigned int flags, 5327 unsigned long haddr, 5328 unsigned long reason) 5329 { 5330 vm_fault_t ret; 5331 u32 hash; 5332 struct vm_fault vmf = { 5333 .vma = vma, 5334 .address = haddr, 5335 .flags = flags, 5336 5337 /* 5338 * Hard to debug if it ends up being 5339 * used by a callee that assumes 5340 * something about the other 5341 * uninitialized fields... same as in 5342 * memory.c 5343 */ 5344 }; 5345 5346 /* 5347 * hugetlb_fault_mutex and i_mmap_rwsem must be 5348 * dropped before handling userfault. Reacquire 5349 * after handling fault to make calling code simpler. 5350 */ 5351 hash = hugetlb_fault_mutex_hash(mapping, idx); 5352 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5353 i_mmap_unlock_read(mapping); 5354 ret = handle_userfault(&vmf, reason); 5355 i_mmap_lock_read(mapping); 5356 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5357 5358 return ret; 5359 } 5360 5361 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5362 struct vm_area_struct *vma, 5363 struct address_space *mapping, pgoff_t idx, 5364 unsigned long address, pte_t *ptep, unsigned int flags) 5365 { 5366 struct hstate *h = hstate_vma(vma); 5367 vm_fault_t ret = VM_FAULT_SIGBUS; 5368 int anon_rmap = 0; 5369 unsigned long size; 5370 struct page *page; 5371 pte_t new_pte; 5372 spinlock_t *ptl; 5373 unsigned long haddr = address & huge_page_mask(h); 5374 bool new_page, new_pagecache_page = false; 5375 5376 /* 5377 * Currently, we are forced to kill the process in the event the 5378 * original mapper has unmapped pages from the child due to a failed 5379 * COW. Warn that such a situation has occurred as it may not be obvious 5380 */ 5381 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5382 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5383 current->pid); 5384 return ret; 5385 } 5386 5387 /* 5388 * We can not race with truncation due to holding i_mmap_rwsem. 5389 * i_size is modified when holding i_mmap_rwsem, so check here 5390 * once for faults beyond end of file. 5391 */ 5392 size = i_size_read(mapping->host) >> huge_page_shift(h); 5393 if (idx >= size) 5394 goto out; 5395 5396 retry: 5397 new_page = false; 5398 page = find_lock_page(mapping, idx); 5399 if (!page) { 5400 /* Check for page in userfault range */ 5401 if (userfaultfd_missing(vma)) { 5402 ret = hugetlb_handle_userfault(vma, mapping, idx, 5403 flags, haddr, 5404 VM_UFFD_MISSING); 5405 goto out; 5406 } 5407 5408 page = alloc_huge_page(vma, haddr, 0); 5409 if (IS_ERR(page)) { 5410 /* 5411 * Returning error will result in faulting task being 5412 * sent SIGBUS. The hugetlb fault mutex prevents two 5413 * tasks from racing to fault in the same page which 5414 * could result in false unable to allocate errors. 5415 * Page migration does not take the fault mutex, but 5416 * does a clear then write of pte's under page table 5417 * lock. Page fault code could race with migration, 5418 * notice the clear pte and try to allocate a page 5419 * here. Before returning error, get ptl and make 5420 * sure there really is no pte entry. 5421 */ 5422 ptl = huge_pte_lock(h, mm, ptep); 5423 ret = 0; 5424 if (huge_pte_none(huge_ptep_get(ptep))) 5425 ret = vmf_error(PTR_ERR(page)); 5426 spin_unlock(ptl); 5427 goto out; 5428 } 5429 clear_huge_page(page, address, pages_per_huge_page(h)); 5430 __SetPageUptodate(page); 5431 new_page = true; 5432 5433 if (vma->vm_flags & VM_MAYSHARE) { 5434 int err = huge_add_to_page_cache(page, mapping, idx); 5435 if (err) { 5436 put_page(page); 5437 if (err == -EEXIST) 5438 goto retry; 5439 goto out; 5440 } 5441 new_pagecache_page = true; 5442 } else { 5443 lock_page(page); 5444 if (unlikely(anon_vma_prepare(vma))) { 5445 ret = VM_FAULT_OOM; 5446 goto backout_unlocked; 5447 } 5448 anon_rmap = 1; 5449 } 5450 } else { 5451 /* 5452 * If memory error occurs between mmap() and fault, some process 5453 * don't have hwpoisoned swap entry for errored virtual address. 5454 * So we need to block hugepage fault by PG_hwpoison bit check. 5455 */ 5456 if (unlikely(PageHWPoison(page))) { 5457 ret = VM_FAULT_HWPOISON_LARGE | 5458 VM_FAULT_SET_HINDEX(hstate_index(h)); 5459 goto backout_unlocked; 5460 } 5461 5462 /* Check for page in userfault range. */ 5463 if (userfaultfd_minor(vma)) { 5464 unlock_page(page); 5465 put_page(page); 5466 ret = hugetlb_handle_userfault(vma, mapping, idx, 5467 flags, haddr, 5468 VM_UFFD_MINOR); 5469 goto out; 5470 } 5471 } 5472 5473 /* 5474 * If we are going to COW a private mapping later, we examine the 5475 * pending reservations for this page now. This will ensure that 5476 * any allocations necessary to record that reservation occur outside 5477 * the spinlock. 5478 */ 5479 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5480 if (vma_needs_reservation(h, vma, haddr) < 0) { 5481 ret = VM_FAULT_OOM; 5482 goto backout_unlocked; 5483 } 5484 /* Just decrements count, does not deallocate */ 5485 vma_end_reservation(h, vma, haddr); 5486 } 5487 5488 ptl = huge_pte_lock(h, mm, ptep); 5489 ret = 0; 5490 if (!huge_pte_none(huge_ptep_get(ptep))) 5491 goto backout; 5492 5493 if (anon_rmap) { 5494 ClearHPageRestoreReserve(page); 5495 hugepage_add_new_anon_rmap(page, vma, haddr); 5496 } else 5497 page_dup_rmap(page, true); 5498 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5499 && (vma->vm_flags & VM_SHARED))); 5500 set_huge_pte_at(mm, haddr, ptep, new_pte); 5501 5502 hugetlb_count_add(pages_per_huge_page(h), mm); 5503 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5504 /* Optimization, do the COW without a second fault */ 5505 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 5506 } 5507 5508 spin_unlock(ptl); 5509 5510 /* 5511 * Only set HPageMigratable in newly allocated pages. Existing pages 5512 * found in the pagecache may not have HPageMigratableset if they have 5513 * been isolated for migration. 5514 */ 5515 if (new_page) 5516 SetHPageMigratable(page); 5517 5518 unlock_page(page); 5519 out: 5520 return ret; 5521 5522 backout: 5523 spin_unlock(ptl); 5524 backout_unlocked: 5525 unlock_page(page); 5526 /* restore reserve for newly allocated pages not in page cache */ 5527 if (new_page && !new_pagecache_page) 5528 restore_reserve_on_error(h, vma, haddr, page); 5529 put_page(page); 5530 goto out; 5531 } 5532 5533 #ifdef CONFIG_SMP 5534 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5535 { 5536 unsigned long key[2]; 5537 u32 hash; 5538 5539 key[0] = (unsigned long) mapping; 5540 key[1] = idx; 5541 5542 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5543 5544 return hash & (num_fault_mutexes - 1); 5545 } 5546 #else 5547 /* 5548 * For uniprocessor systems we always use a single mutex, so just 5549 * return 0 and avoid the hashing overhead. 5550 */ 5551 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5552 { 5553 return 0; 5554 } 5555 #endif 5556 5557 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5558 unsigned long address, unsigned int flags) 5559 { 5560 pte_t *ptep, entry; 5561 spinlock_t *ptl; 5562 vm_fault_t ret; 5563 u32 hash; 5564 pgoff_t idx; 5565 struct page *page = NULL; 5566 struct page *pagecache_page = NULL; 5567 struct hstate *h = hstate_vma(vma); 5568 struct address_space *mapping; 5569 int need_wait_lock = 0; 5570 unsigned long haddr = address & huge_page_mask(h); 5571 5572 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5573 if (ptep) { 5574 /* 5575 * Since we hold no locks, ptep could be stale. That is 5576 * OK as we are only making decisions based on content and 5577 * not actually modifying content here. 5578 */ 5579 entry = huge_ptep_get(ptep); 5580 if (unlikely(is_hugetlb_entry_migration(entry))) { 5581 migration_entry_wait_huge(vma, mm, ptep); 5582 return 0; 5583 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5584 return VM_FAULT_HWPOISON_LARGE | 5585 VM_FAULT_SET_HINDEX(hstate_index(h)); 5586 } 5587 5588 /* 5589 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 5590 * until finished with ptep. This serves two purposes: 5591 * 1) It prevents huge_pmd_unshare from being called elsewhere 5592 * and making the ptep no longer valid. 5593 * 2) It synchronizes us with i_size modifications during truncation. 5594 * 5595 * ptep could have already be assigned via huge_pte_offset. That 5596 * is OK, as huge_pte_alloc will return the same value unless 5597 * something has changed. 5598 */ 5599 mapping = vma->vm_file->f_mapping; 5600 i_mmap_lock_read(mapping); 5601 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5602 if (!ptep) { 5603 i_mmap_unlock_read(mapping); 5604 return VM_FAULT_OOM; 5605 } 5606 5607 /* 5608 * Serialize hugepage allocation and instantiation, so that we don't 5609 * get spurious allocation failures if two CPUs race to instantiate 5610 * the same page in the page cache. 5611 */ 5612 idx = vma_hugecache_offset(h, vma, haddr); 5613 hash = hugetlb_fault_mutex_hash(mapping, idx); 5614 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5615 5616 entry = huge_ptep_get(ptep); 5617 if (huge_pte_none(entry)) { 5618 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 5619 goto out_mutex; 5620 } 5621 5622 ret = 0; 5623 5624 /* 5625 * entry could be a migration/hwpoison entry at this point, so this 5626 * check prevents the kernel from going below assuming that we have 5627 * an active hugepage in pagecache. This goto expects the 2nd page 5628 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5629 * properly handle it. 5630 */ 5631 if (!pte_present(entry)) 5632 goto out_mutex; 5633 5634 /* 5635 * If we are going to COW the mapping later, we examine the pending 5636 * reservations for this page now. This will ensure that any 5637 * allocations necessary to record that reservation occur outside the 5638 * spinlock. For private mappings, we also lookup the pagecache 5639 * page now as it is used to determine if a reservation has been 5640 * consumed. 5641 */ 5642 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5643 if (vma_needs_reservation(h, vma, haddr) < 0) { 5644 ret = VM_FAULT_OOM; 5645 goto out_mutex; 5646 } 5647 /* Just decrements count, does not deallocate */ 5648 vma_end_reservation(h, vma, haddr); 5649 5650 if (!(vma->vm_flags & VM_MAYSHARE)) 5651 pagecache_page = hugetlbfs_pagecache_page(h, 5652 vma, haddr); 5653 } 5654 5655 ptl = huge_pte_lock(h, mm, ptep); 5656 5657 /* Check for a racing update before calling hugetlb_cow */ 5658 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5659 goto out_ptl; 5660 5661 /* 5662 * hugetlb_cow() requires page locks of pte_page(entry) and 5663 * pagecache_page, so here we need take the former one 5664 * when page != pagecache_page or !pagecache_page. 5665 */ 5666 page = pte_page(entry); 5667 if (page != pagecache_page) 5668 if (!trylock_page(page)) { 5669 need_wait_lock = 1; 5670 goto out_ptl; 5671 } 5672 5673 get_page(page); 5674 5675 if (flags & FAULT_FLAG_WRITE) { 5676 if (!huge_pte_write(entry)) { 5677 ret = hugetlb_cow(mm, vma, address, ptep, 5678 pagecache_page, ptl); 5679 goto out_put_page; 5680 } 5681 entry = huge_pte_mkdirty(entry); 5682 } 5683 entry = pte_mkyoung(entry); 5684 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5685 flags & FAULT_FLAG_WRITE)) 5686 update_mmu_cache(vma, haddr, ptep); 5687 out_put_page: 5688 if (page != pagecache_page) 5689 unlock_page(page); 5690 put_page(page); 5691 out_ptl: 5692 spin_unlock(ptl); 5693 5694 if (pagecache_page) { 5695 unlock_page(pagecache_page); 5696 put_page(pagecache_page); 5697 } 5698 out_mutex: 5699 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5700 i_mmap_unlock_read(mapping); 5701 /* 5702 * Generally it's safe to hold refcount during waiting page lock. But 5703 * here we just wait to defer the next page fault to avoid busy loop and 5704 * the page is not used after unlocked before returning from the current 5705 * page fault. So we are safe from accessing freed page, even if we wait 5706 * here without taking refcount. 5707 */ 5708 if (need_wait_lock) 5709 wait_on_page_locked(page); 5710 return ret; 5711 } 5712 5713 #ifdef CONFIG_USERFAULTFD 5714 /* 5715 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5716 * modifications for huge pages. 5717 */ 5718 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5719 pte_t *dst_pte, 5720 struct vm_area_struct *dst_vma, 5721 unsigned long dst_addr, 5722 unsigned long src_addr, 5723 enum mcopy_atomic_mode mode, 5724 struct page **pagep) 5725 { 5726 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 5727 struct hstate *h = hstate_vma(dst_vma); 5728 struct address_space *mapping = dst_vma->vm_file->f_mapping; 5729 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 5730 unsigned long size; 5731 int vm_shared = dst_vma->vm_flags & VM_SHARED; 5732 pte_t _dst_pte; 5733 spinlock_t *ptl; 5734 int ret = -ENOMEM; 5735 struct page *page; 5736 int writable; 5737 bool new_pagecache_page = false; 5738 5739 if (is_continue) { 5740 ret = -EFAULT; 5741 page = find_lock_page(mapping, idx); 5742 if (!page) 5743 goto out; 5744 } else if (!*pagep) { 5745 /* If a page already exists, then it's UFFDIO_COPY for 5746 * a non-missing case. Return -EEXIST. 5747 */ 5748 if (vm_shared && 5749 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5750 ret = -EEXIST; 5751 goto out; 5752 } 5753 5754 page = alloc_huge_page(dst_vma, dst_addr, 0); 5755 if (IS_ERR(page)) { 5756 ret = -ENOMEM; 5757 goto out; 5758 } 5759 5760 ret = copy_huge_page_from_user(page, 5761 (const void __user *) src_addr, 5762 pages_per_huge_page(h), false); 5763 5764 /* fallback to copy_from_user outside mmap_lock */ 5765 if (unlikely(ret)) { 5766 ret = -ENOENT; 5767 /* Free the allocated page which may have 5768 * consumed a reservation. 5769 */ 5770 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5771 put_page(page); 5772 5773 /* Allocate a temporary page to hold the copied 5774 * contents. 5775 */ 5776 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 5777 if (!page) { 5778 ret = -ENOMEM; 5779 goto out; 5780 } 5781 *pagep = page; 5782 /* Set the outparam pagep and return to the caller to 5783 * copy the contents outside the lock. Don't free the 5784 * page. 5785 */ 5786 goto out; 5787 } 5788 } else { 5789 if (vm_shared && 5790 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5791 put_page(*pagep); 5792 ret = -EEXIST; 5793 *pagep = NULL; 5794 goto out; 5795 } 5796 5797 page = alloc_huge_page(dst_vma, dst_addr, 0); 5798 if (IS_ERR(page)) { 5799 ret = -ENOMEM; 5800 *pagep = NULL; 5801 goto out; 5802 } 5803 folio_copy(page_folio(page), page_folio(*pagep)); 5804 put_page(*pagep); 5805 *pagep = NULL; 5806 } 5807 5808 /* 5809 * The memory barrier inside __SetPageUptodate makes sure that 5810 * preceding stores to the page contents become visible before 5811 * the set_pte_at() write. 5812 */ 5813 __SetPageUptodate(page); 5814 5815 /* Add shared, newly allocated pages to the page cache. */ 5816 if (vm_shared && !is_continue) { 5817 size = i_size_read(mapping->host) >> huge_page_shift(h); 5818 ret = -EFAULT; 5819 if (idx >= size) 5820 goto out_release_nounlock; 5821 5822 /* 5823 * Serialization between remove_inode_hugepages() and 5824 * huge_add_to_page_cache() below happens through the 5825 * hugetlb_fault_mutex_table that here must be hold by 5826 * the caller. 5827 */ 5828 ret = huge_add_to_page_cache(page, mapping, idx); 5829 if (ret) 5830 goto out_release_nounlock; 5831 new_pagecache_page = true; 5832 } 5833 5834 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 5835 spin_lock(ptl); 5836 5837 /* 5838 * Recheck the i_size after holding PT lock to make sure not 5839 * to leave any page mapped (as page_mapped()) beyond the end 5840 * of the i_size (remove_inode_hugepages() is strict about 5841 * enforcing that). If we bail out here, we'll also leave a 5842 * page in the radix tree in the vm_shared case beyond the end 5843 * of the i_size, but remove_inode_hugepages() will take care 5844 * of it as soon as we drop the hugetlb_fault_mutex_table. 5845 */ 5846 size = i_size_read(mapping->host) >> huge_page_shift(h); 5847 ret = -EFAULT; 5848 if (idx >= size) 5849 goto out_release_unlock; 5850 5851 ret = -EEXIST; 5852 if (!huge_pte_none(huge_ptep_get(dst_pte))) 5853 goto out_release_unlock; 5854 5855 if (vm_shared) { 5856 page_dup_rmap(page, true); 5857 } else { 5858 ClearHPageRestoreReserve(page); 5859 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 5860 } 5861 5862 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */ 5863 if (is_continue && !vm_shared) 5864 writable = 0; 5865 else 5866 writable = dst_vma->vm_flags & VM_WRITE; 5867 5868 _dst_pte = make_huge_pte(dst_vma, page, writable); 5869 if (writable) 5870 _dst_pte = huge_pte_mkdirty(_dst_pte); 5871 _dst_pte = pte_mkyoung(_dst_pte); 5872 5873 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 5874 5875 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 5876 dst_vma->vm_flags & VM_WRITE); 5877 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 5878 5879 /* No need to invalidate - it was non-present before */ 5880 update_mmu_cache(dst_vma, dst_addr, dst_pte); 5881 5882 spin_unlock(ptl); 5883 if (!is_continue) 5884 SetHPageMigratable(page); 5885 if (vm_shared || is_continue) 5886 unlock_page(page); 5887 ret = 0; 5888 out: 5889 return ret; 5890 out_release_unlock: 5891 spin_unlock(ptl); 5892 if (vm_shared || is_continue) 5893 unlock_page(page); 5894 out_release_nounlock: 5895 if (!new_pagecache_page) 5896 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5897 put_page(page); 5898 goto out; 5899 } 5900 #endif /* CONFIG_USERFAULTFD */ 5901 5902 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 5903 int refs, struct page **pages, 5904 struct vm_area_struct **vmas) 5905 { 5906 int nr; 5907 5908 for (nr = 0; nr < refs; nr++) { 5909 if (likely(pages)) 5910 pages[nr] = mem_map_offset(page, nr); 5911 if (vmas) 5912 vmas[nr] = vma; 5913 } 5914 } 5915 5916 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 5917 struct page **pages, struct vm_area_struct **vmas, 5918 unsigned long *position, unsigned long *nr_pages, 5919 long i, unsigned int flags, int *locked) 5920 { 5921 unsigned long pfn_offset; 5922 unsigned long vaddr = *position; 5923 unsigned long remainder = *nr_pages; 5924 struct hstate *h = hstate_vma(vma); 5925 int err = -EFAULT, refs; 5926 5927 while (vaddr < vma->vm_end && remainder) { 5928 pte_t *pte; 5929 spinlock_t *ptl = NULL; 5930 int absent; 5931 struct page *page; 5932 5933 /* 5934 * If we have a pending SIGKILL, don't keep faulting pages and 5935 * potentially allocating memory. 5936 */ 5937 if (fatal_signal_pending(current)) { 5938 remainder = 0; 5939 break; 5940 } 5941 5942 /* 5943 * Some archs (sparc64, sh*) have multiple pte_ts to 5944 * each hugepage. We have to make sure we get the 5945 * first, for the page indexing below to work. 5946 * 5947 * Note that page table lock is not held when pte is null. 5948 */ 5949 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 5950 huge_page_size(h)); 5951 if (pte) 5952 ptl = huge_pte_lock(h, mm, pte); 5953 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 5954 5955 /* 5956 * When coredumping, it suits get_dump_page if we just return 5957 * an error where there's an empty slot with no huge pagecache 5958 * to back it. This way, we avoid allocating a hugepage, and 5959 * the sparse dumpfile avoids allocating disk blocks, but its 5960 * huge holes still show up with zeroes where they need to be. 5961 */ 5962 if (absent && (flags & FOLL_DUMP) && 5963 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 5964 if (pte) 5965 spin_unlock(ptl); 5966 remainder = 0; 5967 break; 5968 } 5969 5970 /* 5971 * We need call hugetlb_fault for both hugepages under migration 5972 * (in which case hugetlb_fault waits for the migration,) and 5973 * hwpoisoned hugepages (in which case we need to prevent the 5974 * caller from accessing to them.) In order to do this, we use 5975 * here is_swap_pte instead of is_hugetlb_entry_migration and 5976 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 5977 * both cases, and because we can't follow correct pages 5978 * directly from any kind of swap entries. 5979 */ 5980 if (absent || is_swap_pte(huge_ptep_get(pte)) || 5981 ((flags & FOLL_WRITE) && 5982 !huge_pte_write(huge_ptep_get(pte)))) { 5983 vm_fault_t ret; 5984 unsigned int fault_flags = 0; 5985 5986 if (pte) 5987 spin_unlock(ptl); 5988 if (flags & FOLL_WRITE) 5989 fault_flags |= FAULT_FLAG_WRITE; 5990 if (locked) 5991 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 5992 FAULT_FLAG_KILLABLE; 5993 if (flags & FOLL_NOWAIT) 5994 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 5995 FAULT_FLAG_RETRY_NOWAIT; 5996 if (flags & FOLL_TRIED) { 5997 /* 5998 * Note: FAULT_FLAG_ALLOW_RETRY and 5999 * FAULT_FLAG_TRIED can co-exist 6000 */ 6001 fault_flags |= FAULT_FLAG_TRIED; 6002 } 6003 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6004 if (ret & VM_FAULT_ERROR) { 6005 err = vm_fault_to_errno(ret, flags); 6006 remainder = 0; 6007 break; 6008 } 6009 if (ret & VM_FAULT_RETRY) { 6010 if (locked && 6011 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6012 *locked = 0; 6013 *nr_pages = 0; 6014 /* 6015 * VM_FAULT_RETRY must not return an 6016 * error, it will return zero 6017 * instead. 6018 * 6019 * No need to update "position" as the 6020 * caller will not check it after 6021 * *nr_pages is set to 0. 6022 */ 6023 return i; 6024 } 6025 continue; 6026 } 6027 6028 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6029 page = pte_page(huge_ptep_get(pte)); 6030 6031 /* 6032 * If subpage information not requested, update counters 6033 * and skip the same_page loop below. 6034 */ 6035 if (!pages && !vmas && !pfn_offset && 6036 (vaddr + huge_page_size(h) < vma->vm_end) && 6037 (remainder >= pages_per_huge_page(h))) { 6038 vaddr += huge_page_size(h); 6039 remainder -= pages_per_huge_page(h); 6040 i += pages_per_huge_page(h); 6041 spin_unlock(ptl); 6042 continue; 6043 } 6044 6045 /* vaddr may not be aligned to PAGE_SIZE */ 6046 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6047 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6048 6049 if (pages || vmas) 6050 record_subpages_vmas(mem_map_offset(page, pfn_offset), 6051 vma, refs, 6052 likely(pages) ? pages + i : NULL, 6053 vmas ? vmas + i : NULL); 6054 6055 if (pages) { 6056 /* 6057 * try_grab_compound_head() should always succeed here, 6058 * because: a) we hold the ptl lock, and b) we've just 6059 * checked that the huge page is present in the page 6060 * tables. If the huge page is present, then the tail 6061 * pages must also be present. The ptl prevents the 6062 * head page and tail pages from being rearranged in 6063 * any way. So this page must be available at this 6064 * point, unless the page refcount overflowed: 6065 */ 6066 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], 6067 refs, 6068 flags))) { 6069 spin_unlock(ptl); 6070 remainder = 0; 6071 err = -ENOMEM; 6072 break; 6073 } 6074 } 6075 6076 vaddr += (refs << PAGE_SHIFT); 6077 remainder -= refs; 6078 i += refs; 6079 6080 spin_unlock(ptl); 6081 } 6082 *nr_pages = remainder; 6083 /* 6084 * setting position is actually required only if remainder is 6085 * not zero but it's faster not to add a "if (remainder)" 6086 * branch. 6087 */ 6088 *position = vaddr; 6089 6090 return i ? i : err; 6091 } 6092 6093 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6094 unsigned long address, unsigned long end, pgprot_t newprot) 6095 { 6096 struct mm_struct *mm = vma->vm_mm; 6097 unsigned long start = address; 6098 pte_t *ptep; 6099 pte_t pte; 6100 struct hstate *h = hstate_vma(vma); 6101 unsigned long pages = 0; 6102 bool shared_pmd = false; 6103 struct mmu_notifier_range range; 6104 6105 /* 6106 * In the case of shared PMDs, the area to flush could be beyond 6107 * start/end. Set range.start/range.end to cover the maximum possible 6108 * range if PMD sharing is possible. 6109 */ 6110 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6111 0, vma, mm, start, end); 6112 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6113 6114 BUG_ON(address >= end); 6115 flush_cache_range(vma, range.start, range.end); 6116 6117 mmu_notifier_invalidate_range_start(&range); 6118 i_mmap_lock_write(vma->vm_file->f_mapping); 6119 for (; address < end; address += huge_page_size(h)) { 6120 spinlock_t *ptl; 6121 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 6122 if (!ptep) 6123 continue; 6124 ptl = huge_pte_lock(h, mm, ptep); 6125 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 6126 pages++; 6127 spin_unlock(ptl); 6128 shared_pmd = true; 6129 continue; 6130 } 6131 pte = huge_ptep_get(ptep); 6132 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6133 spin_unlock(ptl); 6134 continue; 6135 } 6136 if (unlikely(is_hugetlb_entry_migration(pte))) { 6137 swp_entry_t entry = pte_to_swp_entry(pte); 6138 6139 if (is_writable_migration_entry(entry)) { 6140 pte_t newpte; 6141 6142 entry = make_readable_migration_entry( 6143 swp_offset(entry)); 6144 newpte = swp_entry_to_pte(entry); 6145 set_huge_swap_pte_at(mm, address, ptep, 6146 newpte, huge_page_size(h)); 6147 pages++; 6148 } 6149 spin_unlock(ptl); 6150 continue; 6151 } 6152 if (!huge_pte_none(pte)) { 6153 pte_t old_pte; 6154 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6155 6156 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6157 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 6158 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6159 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6160 pages++; 6161 } 6162 spin_unlock(ptl); 6163 } 6164 /* 6165 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6166 * may have cleared our pud entry and done put_page on the page table: 6167 * once we release i_mmap_rwsem, another task can do the final put_page 6168 * and that page table be reused and filled with junk. If we actually 6169 * did unshare a page of pmds, flush the range corresponding to the pud. 6170 */ 6171 if (shared_pmd) 6172 flush_hugetlb_tlb_range(vma, range.start, range.end); 6173 else 6174 flush_hugetlb_tlb_range(vma, start, end); 6175 /* 6176 * No need to call mmu_notifier_invalidate_range() we are downgrading 6177 * page table protection not changing it to point to a new page. 6178 * 6179 * See Documentation/vm/mmu_notifier.rst 6180 */ 6181 i_mmap_unlock_write(vma->vm_file->f_mapping); 6182 mmu_notifier_invalidate_range_end(&range); 6183 6184 return pages << h->order; 6185 } 6186 6187 /* Return true if reservation was successful, false otherwise. */ 6188 bool hugetlb_reserve_pages(struct inode *inode, 6189 long from, long to, 6190 struct vm_area_struct *vma, 6191 vm_flags_t vm_flags) 6192 { 6193 long chg, add = -1; 6194 struct hstate *h = hstate_inode(inode); 6195 struct hugepage_subpool *spool = subpool_inode(inode); 6196 struct resv_map *resv_map; 6197 struct hugetlb_cgroup *h_cg = NULL; 6198 long gbl_reserve, regions_needed = 0; 6199 6200 /* This should never happen */ 6201 if (from > to) { 6202 VM_WARN(1, "%s called with a negative range\n", __func__); 6203 return false; 6204 } 6205 6206 /* 6207 * Only apply hugepage reservation if asked. At fault time, an 6208 * attempt will be made for VM_NORESERVE to allocate a page 6209 * without using reserves 6210 */ 6211 if (vm_flags & VM_NORESERVE) 6212 return true; 6213 6214 /* 6215 * Shared mappings base their reservation on the number of pages that 6216 * are already allocated on behalf of the file. Private mappings need 6217 * to reserve the full area even if read-only as mprotect() may be 6218 * called to make the mapping read-write. Assume !vma is a shm mapping 6219 */ 6220 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6221 /* 6222 * resv_map can not be NULL as hugetlb_reserve_pages is only 6223 * called for inodes for which resv_maps were created (see 6224 * hugetlbfs_get_inode). 6225 */ 6226 resv_map = inode_resv_map(inode); 6227 6228 chg = region_chg(resv_map, from, to, ®ions_needed); 6229 6230 } else { 6231 /* Private mapping. */ 6232 resv_map = resv_map_alloc(); 6233 if (!resv_map) 6234 return false; 6235 6236 chg = to - from; 6237 6238 set_vma_resv_map(vma, resv_map); 6239 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6240 } 6241 6242 if (chg < 0) 6243 goto out_err; 6244 6245 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6246 chg * pages_per_huge_page(h), &h_cg) < 0) 6247 goto out_err; 6248 6249 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6250 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6251 * of the resv_map. 6252 */ 6253 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6254 } 6255 6256 /* 6257 * There must be enough pages in the subpool for the mapping. If 6258 * the subpool has a minimum size, there may be some global 6259 * reservations already in place (gbl_reserve). 6260 */ 6261 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6262 if (gbl_reserve < 0) 6263 goto out_uncharge_cgroup; 6264 6265 /* 6266 * Check enough hugepages are available for the reservation. 6267 * Hand the pages back to the subpool if there are not 6268 */ 6269 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6270 goto out_put_pages; 6271 6272 /* 6273 * Account for the reservations made. Shared mappings record regions 6274 * that have reservations as they are shared by multiple VMAs. 6275 * When the last VMA disappears, the region map says how much 6276 * the reservation was and the page cache tells how much of 6277 * the reservation was consumed. Private mappings are per-VMA and 6278 * only the consumed reservations are tracked. When the VMA 6279 * disappears, the original reservation is the VMA size and the 6280 * consumed reservations are stored in the map. Hence, nothing 6281 * else has to be done for private mappings here 6282 */ 6283 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6284 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6285 6286 if (unlikely(add < 0)) { 6287 hugetlb_acct_memory(h, -gbl_reserve); 6288 goto out_put_pages; 6289 } else if (unlikely(chg > add)) { 6290 /* 6291 * pages in this range were added to the reserve 6292 * map between region_chg and region_add. This 6293 * indicates a race with alloc_huge_page. Adjust 6294 * the subpool and reserve counts modified above 6295 * based on the difference. 6296 */ 6297 long rsv_adjust; 6298 6299 /* 6300 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6301 * reference to h_cg->css. See comment below for detail. 6302 */ 6303 hugetlb_cgroup_uncharge_cgroup_rsvd( 6304 hstate_index(h), 6305 (chg - add) * pages_per_huge_page(h), h_cg); 6306 6307 rsv_adjust = hugepage_subpool_put_pages(spool, 6308 chg - add); 6309 hugetlb_acct_memory(h, -rsv_adjust); 6310 } else if (h_cg) { 6311 /* 6312 * The file_regions will hold their own reference to 6313 * h_cg->css. So we should release the reference held 6314 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6315 * done. 6316 */ 6317 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6318 } 6319 } 6320 return true; 6321 6322 out_put_pages: 6323 /* put back original number of pages, chg */ 6324 (void)hugepage_subpool_put_pages(spool, chg); 6325 out_uncharge_cgroup: 6326 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6327 chg * pages_per_huge_page(h), h_cg); 6328 out_err: 6329 if (!vma || vma->vm_flags & VM_MAYSHARE) 6330 /* Only call region_abort if the region_chg succeeded but the 6331 * region_add failed or didn't run. 6332 */ 6333 if (chg >= 0 && add < 0) 6334 region_abort(resv_map, from, to, regions_needed); 6335 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6336 kref_put(&resv_map->refs, resv_map_release); 6337 return false; 6338 } 6339 6340 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6341 long freed) 6342 { 6343 struct hstate *h = hstate_inode(inode); 6344 struct resv_map *resv_map = inode_resv_map(inode); 6345 long chg = 0; 6346 struct hugepage_subpool *spool = subpool_inode(inode); 6347 long gbl_reserve; 6348 6349 /* 6350 * Since this routine can be called in the evict inode path for all 6351 * hugetlbfs inodes, resv_map could be NULL. 6352 */ 6353 if (resv_map) { 6354 chg = region_del(resv_map, start, end); 6355 /* 6356 * region_del() can fail in the rare case where a region 6357 * must be split and another region descriptor can not be 6358 * allocated. If end == LONG_MAX, it will not fail. 6359 */ 6360 if (chg < 0) 6361 return chg; 6362 } 6363 6364 spin_lock(&inode->i_lock); 6365 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6366 spin_unlock(&inode->i_lock); 6367 6368 /* 6369 * If the subpool has a minimum size, the number of global 6370 * reservations to be released may be adjusted. 6371 * 6372 * Note that !resv_map implies freed == 0. So (chg - freed) 6373 * won't go negative. 6374 */ 6375 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6376 hugetlb_acct_memory(h, -gbl_reserve); 6377 6378 return 0; 6379 } 6380 6381 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6382 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6383 struct vm_area_struct *vma, 6384 unsigned long addr, pgoff_t idx) 6385 { 6386 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6387 svma->vm_start; 6388 unsigned long sbase = saddr & PUD_MASK; 6389 unsigned long s_end = sbase + PUD_SIZE; 6390 6391 /* Allow segments to share if only one is marked locked */ 6392 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6393 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6394 6395 /* 6396 * match the virtual addresses, permission and the alignment of the 6397 * page table page. 6398 */ 6399 if (pmd_index(addr) != pmd_index(saddr) || 6400 vm_flags != svm_flags || 6401 !range_in_vma(svma, sbase, s_end)) 6402 return 0; 6403 6404 return saddr; 6405 } 6406 6407 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 6408 { 6409 unsigned long base = addr & PUD_MASK; 6410 unsigned long end = base + PUD_SIZE; 6411 6412 /* 6413 * check on proper vm_flags and page table alignment 6414 */ 6415 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 6416 return true; 6417 return false; 6418 } 6419 6420 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6421 { 6422 #ifdef CONFIG_USERFAULTFD 6423 if (uffd_disable_huge_pmd_share(vma)) 6424 return false; 6425 #endif 6426 return vma_shareable(vma, addr); 6427 } 6428 6429 /* 6430 * Determine if start,end range within vma could be mapped by shared pmd. 6431 * If yes, adjust start and end to cover range associated with possible 6432 * shared pmd mappings. 6433 */ 6434 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6435 unsigned long *start, unsigned long *end) 6436 { 6437 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6438 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6439 6440 /* 6441 * vma needs to span at least one aligned PUD size, and the range 6442 * must be at least partially within in. 6443 */ 6444 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6445 (*end <= v_start) || (*start >= v_end)) 6446 return; 6447 6448 /* Extend the range to be PUD aligned for a worst case scenario */ 6449 if (*start > v_start) 6450 *start = ALIGN_DOWN(*start, PUD_SIZE); 6451 6452 if (*end < v_end) 6453 *end = ALIGN(*end, PUD_SIZE); 6454 } 6455 6456 /* 6457 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6458 * and returns the corresponding pte. While this is not necessary for the 6459 * !shared pmd case because we can allocate the pmd later as well, it makes the 6460 * code much cleaner. 6461 * 6462 * This routine must be called with i_mmap_rwsem held in at least read mode if 6463 * sharing is possible. For hugetlbfs, this prevents removal of any page 6464 * table entries associated with the address space. This is important as we 6465 * are setting up sharing based on existing page table entries (mappings). 6466 */ 6467 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6468 unsigned long addr, pud_t *pud) 6469 { 6470 struct address_space *mapping = vma->vm_file->f_mapping; 6471 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6472 vma->vm_pgoff; 6473 struct vm_area_struct *svma; 6474 unsigned long saddr; 6475 pte_t *spte = NULL; 6476 pte_t *pte; 6477 spinlock_t *ptl; 6478 6479 i_mmap_assert_locked(mapping); 6480 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6481 if (svma == vma) 6482 continue; 6483 6484 saddr = page_table_shareable(svma, vma, addr, idx); 6485 if (saddr) { 6486 spte = huge_pte_offset(svma->vm_mm, saddr, 6487 vma_mmu_pagesize(svma)); 6488 if (spte) { 6489 get_page(virt_to_page(spte)); 6490 break; 6491 } 6492 } 6493 } 6494 6495 if (!spte) 6496 goto out; 6497 6498 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6499 if (pud_none(*pud)) { 6500 pud_populate(mm, pud, 6501 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6502 mm_inc_nr_pmds(mm); 6503 } else { 6504 put_page(virt_to_page(spte)); 6505 } 6506 spin_unlock(ptl); 6507 out: 6508 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6509 return pte; 6510 } 6511 6512 /* 6513 * unmap huge page backed by shared pte. 6514 * 6515 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 6516 * indicated by page_count > 1, unmap is achieved by clearing pud and 6517 * decrementing the ref count. If count == 1, the pte page is not shared. 6518 * 6519 * Called with page table lock held and i_mmap_rwsem held in write mode. 6520 * 6521 * returns: 1 successfully unmapped a shared pte page 6522 * 0 the underlying pte page is not shared, or it is the last user 6523 */ 6524 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6525 unsigned long *addr, pte_t *ptep) 6526 { 6527 pgd_t *pgd = pgd_offset(mm, *addr); 6528 p4d_t *p4d = p4d_offset(pgd, *addr); 6529 pud_t *pud = pud_offset(p4d, *addr); 6530 6531 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6532 BUG_ON(page_count(virt_to_page(ptep)) == 0); 6533 if (page_count(virt_to_page(ptep)) == 1) 6534 return 0; 6535 6536 pud_clear(pud); 6537 put_page(virt_to_page(ptep)); 6538 mm_dec_nr_pmds(mm); 6539 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 6540 return 1; 6541 } 6542 6543 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6544 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6545 unsigned long addr, pud_t *pud) 6546 { 6547 return NULL; 6548 } 6549 6550 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6551 unsigned long *addr, pte_t *ptep) 6552 { 6553 return 0; 6554 } 6555 6556 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6557 unsigned long *start, unsigned long *end) 6558 { 6559 } 6560 6561 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6562 { 6563 return false; 6564 } 6565 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6566 6567 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 6568 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 6569 unsigned long addr, unsigned long sz) 6570 { 6571 pgd_t *pgd; 6572 p4d_t *p4d; 6573 pud_t *pud; 6574 pte_t *pte = NULL; 6575 6576 pgd = pgd_offset(mm, addr); 6577 p4d = p4d_alloc(mm, pgd, addr); 6578 if (!p4d) 6579 return NULL; 6580 pud = pud_alloc(mm, p4d, addr); 6581 if (pud) { 6582 if (sz == PUD_SIZE) { 6583 pte = (pte_t *)pud; 6584 } else { 6585 BUG_ON(sz != PMD_SIZE); 6586 if (want_pmd_share(vma, addr) && pud_none(*pud)) 6587 pte = huge_pmd_share(mm, vma, addr, pud); 6588 else 6589 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6590 } 6591 } 6592 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 6593 6594 return pte; 6595 } 6596 6597 /* 6598 * huge_pte_offset() - Walk the page table to resolve the hugepage 6599 * entry at address @addr 6600 * 6601 * Return: Pointer to page table entry (PUD or PMD) for 6602 * address @addr, or NULL if a !p*d_present() entry is encountered and the 6603 * size @sz doesn't match the hugepage size at this level of the page 6604 * table. 6605 */ 6606 pte_t *huge_pte_offset(struct mm_struct *mm, 6607 unsigned long addr, unsigned long sz) 6608 { 6609 pgd_t *pgd; 6610 p4d_t *p4d; 6611 pud_t *pud; 6612 pmd_t *pmd; 6613 6614 pgd = pgd_offset(mm, addr); 6615 if (!pgd_present(*pgd)) 6616 return NULL; 6617 p4d = p4d_offset(pgd, addr); 6618 if (!p4d_present(*p4d)) 6619 return NULL; 6620 6621 pud = pud_offset(p4d, addr); 6622 if (sz == PUD_SIZE) 6623 /* must be pud huge, non-present or none */ 6624 return (pte_t *)pud; 6625 if (!pud_present(*pud)) 6626 return NULL; 6627 /* must have a valid entry and size to go further */ 6628 6629 pmd = pmd_offset(pud, addr); 6630 /* must be pmd huge, non-present or none */ 6631 return (pte_t *)pmd; 6632 } 6633 6634 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 6635 6636 /* 6637 * These functions are overwritable if your architecture needs its own 6638 * behavior. 6639 */ 6640 struct page * __weak 6641 follow_huge_addr(struct mm_struct *mm, unsigned long address, 6642 int write) 6643 { 6644 return ERR_PTR(-EINVAL); 6645 } 6646 6647 struct page * __weak 6648 follow_huge_pd(struct vm_area_struct *vma, 6649 unsigned long address, hugepd_t hpd, int flags, int pdshift) 6650 { 6651 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 6652 return NULL; 6653 } 6654 6655 struct page * __weak 6656 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 6657 pmd_t *pmd, int flags) 6658 { 6659 struct page *page = NULL; 6660 spinlock_t *ptl; 6661 pte_t pte; 6662 6663 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 6664 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 6665 (FOLL_PIN | FOLL_GET))) 6666 return NULL; 6667 6668 retry: 6669 ptl = pmd_lockptr(mm, pmd); 6670 spin_lock(ptl); 6671 /* 6672 * make sure that the address range covered by this pmd is not 6673 * unmapped from other threads. 6674 */ 6675 if (!pmd_huge(*pmd)) 6676 goto out; 6677 pte = huge_ptep_get((pte_t *)pmd); 6678 if (pte_present(pte)) { 6679 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 6680 /* 6681 * try_grab_page() should always succeed here, because: a) we 6682 * hold the pmd (ptl) lock, and b) we've just checked that the 6683 * huge pmd (head) page is present in the page tables. The ptl 6684 * prevents the head page and tail pages from being rearranged 6685 * in any way. So this page must be available at this point, 6686 * unless the page refcount overflowed: 6687 */ 6688 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6689 page = NULL; 6690 goto out; 6691 } 6692 } else { 6693 if (is_hugetlb_entry_migration(pte)) { 6694 spin_unlock(ptl); 6695 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 6696 goto retry; 6697 } 6698 /* 6699 * hwpoisoned entry is treated as no_page_table in 6700 * follow_page_mask(). 6701 */ 6702 } 6703 out: 6704 spin_unlock(ptl); 6705 return page; 6706 } 6707 6708 struct page * __weak 6709 follow_huge_pud(struct mm_struct *mm, unsigned long address, 6710 pud_t *pud, int flags) 6711 { 6712 if (flags & (FOLL_GET | FOLL_PIN)) 6713 return NULL; 6714 6715 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 6716 } 6717 6718 struct page * __weak 6719 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 6720 { 6721 if (flags & (FOLL_GET | FOLL_PIN)) 6722 return NULL; 6723 6724 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 6725 } 6726 6727 bool isolate_huge_page(struct page *page, struct list_head *list) 6728 { 6729 bool ret = true; 6730 6731 spin_lock_irq(&hugetlb_lock); 6732 if (!PageHeadHuge(page) || 6733 !HPageMigratable(page) || 6734 !get_page_unless_zero(page)) { 6735 ret = false; 6736 goto unlock; 6737 } 6738 ClearHPageMigratable(page); 6739 list_move_tail(&page->lru, list); 6740 unlock: 6741 spin_unlock_irq(&hugetlb_lock); 6742 return ret; 6743 } 6744 6745 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 6746 { 6747 int ret = 0; 6748 6749 *hugetlb = false; 6750 spin_lock_irq(&hugetlb_lock); 6751 if (PageHeadHuge(page)) { 6752 *hugetlb = true; 6753 if (HPageFreed(page) || HPageMigratable(page)) 6754 ret = get_page_unless_zero(page); 6755 else 6756 ret = -EBUSY; 6757 } 6758 spin_unlock_irq(&hugetlb_lock); 6759 return ret; 6760 } 6761 6762 void putback_active_hugepage(struct page *page) 6763 { 6764 spin_lock_irq(&hugetlb_lock); 6765 SetHPageMigratable(page); 6766 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 6767 spin_unlock_irq(&hugetlb_lock); 6768 put_page(page); 6769 } 6770 6771 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 6772 { 6773 struct hstate *h = page_hstate(oldpage); 6774 6775 hugetlb_cgroup_migrate(oldpage, newpage); 6776 set_page_owner_migrate_reason(newpage, reason); 6777 6778 /* 6779 * transfer temporary state of the new huge page. This is 6780 * reverse to other transitions because the newpage is going to 6781 * be final while the old one will be freed so it takes over 6782 * the temporary status. 6783 * 6784 * Also note that we have to transfer the per-node surplus state 6785 * here as well otherwise the global surplus count will not match 6786 * the per-node's. 6787 */ 6788 if (HPageTemporary(newpage)) { 6789 int old_nid = page_to_nid(oldpage); 6790 int new_nid = page_to_nid(newpage); 6791 6792 SetHPageTemporary(oldpage); 6793 ClearHPageTemporary(newpage); 6794 6795 /* 6796 * There is no need to transfer the per-node surplus state 6797 * when we do not cross the node. 6798 */ 6799 if (new_nid == old_nid) 6800 return; 6801 spin_lock_irq(&hugetlb_lock); 6802 if (h->surplus_huge_pages_node[old_nid]) { 6803 h->surplus_huge_pages_node[old_nid]--; 6804 h->surplus_huge_pages_node[new_nid]++; 6805 } 6806 spin_unlock_irq(&hugetlb_lock); 6807 } 6808 } 6809 6810 /* 6811 * This function will unconditionally remove all the shared pmd pgtable entries 6812 * within the specific vma for a hugetlbfs memory range. 6813 */ 6814 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 6815 { 6816 struct hstate *h = hstate_vma(vma); 6817 unsigned long sz = huge_page_size(h); 6818 struct mm_struct *mm = vma->vm_mm; 6819 struct mmu_notifier_range range; 6820 unsigned long address, start, end; 6821 spinlock_t *ptl; 6822 pte_t *ptep; 6823 6824 if (!(vma->vm_flags & VM_MAYSHARE)) 6825 return; 6826 6827 start = ALIGN(vma->vm_start, PUD_SIZE); 6828 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6829 6830 if (start >= end) 6831 return; 6832 6833 /* 6834 * No need to call adjust_range_if_pmd_sharing_possible(), because 6835 * we have already done the PUD_SIZE alignment. 6836 */ 6837 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 6838 start, end); 6839 mmu_notifier_invalidate_range_start(&range); 6840 i_mmap_lock_write(vma->vm_file->f_mapping); 6841 for (address = start; address < end; address += PUD_SIZE) { 6842 unsigned long tmp = address; 6843 6844 ptep = huge_pte_offset(mm, address, sz); 6845 if (!ptep) 6846 continue; 6847 ptl = huge_pte_lock(h, mm, ptep); 6848 /* We don't want 'address' to be changed */ 6849 huge_pmd_unshare(mm, vma, &tmp, ptep); 6850 spin_unlock(ptl); 6851 } 6852 flush_hugetlb_tlb_range(vma, start, end); 6853 i_mmap_unlock_write(vma->vm_file->f_mapping); 6854 /* 6855 * No need to call mmu_notifier_invalidate_range(), see 6856 * Documentation/vm/mmu_notifier.rst. 6857 */ 6858 mmu_notifier_invalidate_range_end(&range); 6859 } 6860 6861 #ifdef CONFIG_CMA 6862 static bool cma_reserve_called __initdata; 6863 6864 static int __init cmdline_parse_hugetlb_cma(char *p) 6865 { 6866 int nid, count = 0; 6867 unsigned long tmp; 6868 char *s = p; 6869 6870 while (*s) { 6871 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 6872 break; 6873 6874 if (s[count] == ':') { 6875 nid = tmp; 6876 if (nid < 0 || nid >= MAX_NUMNODES) 6877 break; 6878 6879 s += count + 1; 6880 tmp = memparse(s, &s); 6881 hugetlb_cma_size_in_node[nid] = tmp; 6882 hugetlb_cma_size += tmp; 6883 6884 /* 6885 * Skip the separator if have one, otherwise 6886 * break the parsing. 6887 */ 6888 if (*s == ',') 6889 s++; 6890 else 6891 break; 6892 } else { 6893 hugetlb_cma_size = memparse(p, &p); 6894 break; 6895 } 6896 } 6897 6898 return 0; 6899 } 6900 6901 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 6902 6903 void __init hugetlb_cma_reserve(int order) 6904 { 6905 unsigned long size, reserved, per_node; 6906 bool node_specific_cma_alloc = false; 6907 int nid; 6908 6909 cma_reserve_called = true; 6910 6911 if (!hugetlb_cma_size) 6912 return; 6913 6914 for (nid = 0; nid < MAX_NUMNODES; nid++) { 6915 if (hugetlb_cma_size_in_node[nid] == 0) 6916 continue; 6917 6918 if (!node_state(nid, N_ONLINE)) { 6919 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 6920 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 6921 hugetlb_cma_size_in_node[nid] = 0; 6922 continue; 6923 } 6924 6925 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 6926 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 6927 nid, (PAGE_SIZE << order) / SZ_1M); 6928 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 6929 hugetlb_cma_size_in_node[nid] = 0; 6930 } else { 6931 node_specific_cma_alloc = true; 6932 } 6933 } 6934 6935 /* Validate the CMA size again in case some invalid nodes specified. */ 6936 if (!hugetlb_cma_size) 6937 return; 6938 6939 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 6940 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 6941 (PAGE_SIZE << order) / SZ_1M); 6942 hugetlb_cma_size = 0; 6943 return; 6944 } 6945 6946 if (!node_specific_cma_alloc) { 6947 /* 6948 * If 3 GB area is requested on a machine with 4 numa nodes, 6949 * let's allocate 1 GB on first three nodes and ignore the last one. 6950 */ 6951 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 6952 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 6953 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 6954 } 6955 6956 reserved = 0; 6957 for_each_node_state(nid, N_ONLINE) { 6958 int res; 6959 char name[CMA_MAX_NAME]; 6960 6961 if (node_specific_cma_alloc) { 6962 if (hugetlb_cma_size_in_node[nid] == 0) 6963 continue; 6964 6965 size = hugetlb_cma_size_in_node[nid]; 6966 } else { 6967 size = min(per_node, hugetlb_cma_size - reserved); 6968 } 6969 6970 size = round_up(size, PAGE_SIZE << order); 6971 6972 snprintf(name, sizeof(name), "hugetlb%d", nid); 6973 /* 6974 * Note that 'order per bit' is based on smallest size that 6975 * may be returned to CMA allocator in the case of 6976 * huge page demotion. 6977 */ 6978 res = cma_declare_contiguous_nid(0, size, 0, 6979 PAGE_SIZE << HUGETLB_PAGE_ORDER, 6980 0, false, name, 6981 &hugetlb_cma[nid], nid); 6982 if (res) { 6983 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 6984 res, nid); 6985 continue; 6986 } 6987 6988 reserved += size; 6989 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 6990 size / SZ_1M, nid); 6991 6992 if (reserved >= hugetlb_cma_size) 6993 break; 6994 } 6995 6996 if (!reserved) 6997 /* 6998 * hugetlb_cma_size is used to determine if allocations from 6999 * cma are possible. Set to zero if no cma regions are set up. 7000 */ 7001 hugetlb_cma_size = 0; 7002 } 7003 7004 void __init hugetlb_cma_check(void) 7005 { 7006 if (!hugetlb_cma_size || cma_reserve_called) 7007 return; 7008 7009 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7010 } 7011 7012 #endif /* CONFIG_CMA */ 7013