1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpumask.h> 18 #include <linux/cpuset.h> 19 #include <linux/mutex.h> 20 #include <linux/memblock.h> 21 #include <linux/minmax.h> 22 #include <linux/sysfs.h> 23 #include <linux/slab.h> 24 #include <linux/sched/mm.h> 25 #include <linux/mmdebug.h> 26 #include <linux/sched/signal.h> 27 #include <linux/rmap.h> 28 #include <linux/string_choices.h> 29 #include <linux/string_helpers.h> 30 #include <linux/swap.h> 31 #include <linux/swapops.h> 32 #include <linux/jhash.h> 33 #include <linux/numa.h> 34 #include <linux/llist.h> 35 #include <linux/cma.h> 36 #include <linux/migrate.h> 37 #include <linux/nospec.h> 38 #include <linux/delayacct.h> 39 #include <linux/memory.h> 40 #include <linux/mm_inline.h> 41 #include <linux/padata.h> 42 43 #include <asm/page.h> 44 #include <asm/pgalloc.h> 45 #include <asm/tlb.h> 46 #include <asm/setup.h> 47 48 #include <linux/io.h> 49 #include <linux/hugetlb.h> 50 #include <linux/hugetlb_cgroup.h> 51 #include <linux/node.h> 52 #include <linux/page_owner.h> 53 #include "internal.h" 54 #include "hugetlb_vmemmap.h" 55 #include "hugetlb_cma.h" 56 #include <linux/page-isolation.h> 57 58 int hugetlb_max_hstate __read_mostly; 59 unsigned int default_hstate_idx; 60 struct hstate hstates[HUGE_MAX_HSTATE]; 61 62 __initdata nodemask_t hugetlb_bootmem_nodes; 63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 64 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 65 66 /* 67 * Due to ordering constraints across the init code for various 68 * architectures, hugetlb hstate cmdline parameters can't simply 69 * be early_param. early_param might call the setup function 70 * before valid hugetlb page sizes are determined, leading to 71 * incorrect rejection of valid hugepagesz= options. 72 * 73 * So, record the parameters early and consume them whenever the 74 * init code is ready for them, by calling hugetlb_parse_params(). 75 */ 76 77 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 78 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 79 struct hugetlb_cmdline { 80 char *val; 81 int (*setup)(char *val); 82 }; 83 84 /* for command line parsing */ 85 static struct hstate * __initdata parsed_hstate; 86 static unsigned long __initdata default_hstate_max_huge_pages; 87 static bool __initdata parsed_valid_hugepagesz = true; 88 static bool __initdata parsed_default_hugepagesz; 89 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 90 static unsigned long hugepage_allocation_threads __initdata; 91 92 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 93 static int hstate_cmdline_index __initdata; 94 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 95 static int hugetlb_param_index __initdata; 96 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 97 static __init void hugetlb_parse_params(void); 98 99 #define hugetlb_early_param(str, func) \ 100 static __init int func##args(char *s) \ 101 { \ 102 return hugetlb_add_param(s, func); \ 103 } \ 104 early_param(str, func##args) 105 106 /* 107 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 108 * free_huge_pages, and surplus_huge_pages. 109 */ 110 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 111 112 /* 113 * Serializes faults on the same logical page. This is used to 114 * prevent spurious OOMs when the hugepage pool is fully utilized. 115 */ 116 static int num_fault_mutexes __ro_after_init; 117 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 118 119 /* Forward declaration */ 120 static int hugetlb_acct_memory(struct hstate *h, long delta); 121 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 122 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 123 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 124 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 125 unsigned long start, unsigned long end, bool take_locks); 126 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 127 128 static void hugetlb_free_folio(struct folio *folio) 129 { 130 if (folio_test_hugetlb_cma(folio)) { 131 hugetlb_cma_free_folio(folio); 132 return; 133 } 134 135 folio_put(folio); 136 } 137 138 static inline bool subpool_is_free(struct hugepage_subpool *spool) 139 { 140 if (spool->count) 141 return false; 142 if (spool->max_hpages != -1) 143 return spool->used_hpages == 0; 144 if (spool->min_hpages != -1) 145 return spool->rsv_hpages == spool->min_hpages; 146 147 return true; 148 } 149 150 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 151 unsigned long irq_flags) 152 { 153 spin_unlock_irqrestore(&spool->lock, irq_flags); 154 155 /* If no pages are used, and no other handles to the subpool 156 * remain, give up any reservations based on minimum size and 157 * free the subpool */ 158 if (subpool_is_free(spool)) { 159 if (spool->min_hpages != -1) 160 hugetlb_acct_memory(spool->hstate, 161 -spool->min_hpages); 162 kfree(spool); 163 } 164 } 165 166 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 167 long min_hpages) 168 { 169 struct hugepage_subpool *spool; 170 171 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 172 if (!spool) 173 return NULL; 174 175 spin_lock_init(&spool->lock); 176 spool->count = 1; 177 spool->max_hpages = max_hpages; 178 spool->hstate = h; 179 spool->min_hpages = min_hpages; 180 181 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 182 kfree(spool); 183 return NULL; 184 } 185 spool->rsv_hpages = min_hpages; 186 187 return spool; 188 } 189 190 void hugepage_put_subpool(struct hugepage_subpool *spool) 191 { 192 unsigned long flags; 193 194 spin_lock_irqsave(&spool->lock, flags); 195 BUG_ON(!spool->count); 196 spool->count--; 197 unlock_or_release_subpool(spool, flags); 198 } 199 200 /* 201 * Subpool accounting for allocating and reserving pages. 202 * Return -ENOMEM if there are not enough resources to satisfy the 203 * request. Otherwise, return the number of pages by which the 204 * global pools must be adjusted (upward). The returned value may 205 * only be different than the passed value (delta) in the case where 206 * a subpool minimum size must be maintained. 207 */ 208 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 209 long delta) 210 { 211 long ret = delta; 212 213 if (!spool) 214 return ret; 215 216 spin_lock_irq(&spool->lock); 217 218 if (spool->max_hpages != -1) { /* maximum size accounting */ 219 if ((spool->used_hpages + delta) <= spool->max_hpages) 220 spool->used_hpages += delta; 221 else { 222 ret = -ENOMEM; 223 goto unlock_ret; 224 } 225 } 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->rsv_hpages) { 229 if (delta > spool->rsv_hpages) { 230 /* 231 * Asking for more reserves than those already taken on 232 * behalf of subpool. Return difference. 233 */ 234 ret = delta - spool->rsv_hpages; 235 spool->rsv_hpages = 0; 236 } else { 237 ret = 0; /* reserves already accounted for */ 238 spool->rsv_hpages -= delta; 239 } 240 } 241 242 unlock_ret: 243 spin_unlock_irq(&spool->lock); 244 return ret; 245 } 246 247 /* 248 * Subpool accounting for freeing and unreserving pages. 249 * Return the number of global page reservations that must be dropped. 250 * The return value may only be different than the passed value (delta) 251 * in the case where a subpool minimum size must be maintained. 252 */ 253 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 254 long delta) 255 { 256 long ret = delta; 257 unsigned long flags; 258 259 if (!spool) 260 return delta; 261 262 spin_lock_irqsave(&spool->lock, flags); 263 264 if (spool->max_hpages != -1) /* maximum size accounting */ 265 spool->used_hpages -= delta; 266 267 /* minimum size accounting */ 268 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 269 if (spool->rsv_hpages + delta <= spool->min_hpages) 270 ret = 0; 271 else 272 ret = spool->rsv_hpages + delta - spool->min_hpages; 273 274 spool->rsv_hpages += delta; 275 if (spool->rsv_hpages > spool->min_hpages) 276 spool->rsv_hpages = spool->min_hpages; 277 } 278 279 /* 280 * If hugetlbfs_put_super couldn't free spool due to an outstanding 281 * quota reference, free it now. 282 */ 283 unlock_or_release_subpool(spool, flags); 284 285 return ret; 286 } 287 288 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 289 { 290 return subpool_inode(file_inode(vma->vm_file)); 291 } 292 293 /* 294 * hugetlb vma_lock helper routines 295 */ 296 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 297 { 298 if (__vma_shareable_lock(vma)) { 299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 300 301 down_read(&vma_lock->rw_sema); 302 } else if (__vma_private_lock(vma)) { 303 struct resv_map *resv_map = vma_resv_map(vma); 304 305 down_read(&resv_map->rw_sema); 306 } 307 } 308 309 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 310 { 311 if (__vma_shareable_lock(vma)) { 312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 313 314 up_read(&vma_lock->rw_sema); 315 } else if (__vma_private_lock(vma)) { 316 struct resv_map *resv_map = vma_resv_map(vma); 317 318 up_read(&resv_map->rw_sema); 319 } 320 } 321 322 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 323 { 324 if (__vma_shareable_lock(vma)) { 325 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 326 327 down_write(&vma_lock->rw_sema); 328 } else if (__vma_private_lock(vma)) { 329 struct resv_map *resv_map = vma_resv_map(vma); 330 331 down_write(&resv_map->rw_sema); 332 } 333 } 334 335 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 336 { 337 if (__vma_shareable_lock(vma)) { 338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 339 340 up_write(&vma_lock->rw_sema); 341 } else if (__vma_private_lock(vma)) { 342 struct resv_map *resv_map = vma_resv_map(vma); 343 344 up_write(&resv_map->rw_sema); 345 } 346 } 347 348 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 349 { 350 351 if (__vma_shareable_lock(vma)) { 352 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 353 354 return down_write_trylock(&vma_lock->rw_sema); 355 } else if (__vma_private_lock(vma)) { 356 struct resv_map *resv_map = vma_resv_map(vma); 357 358 return down_write_trylock(&resv_map->rw_sema); 359 } 360 361 return 1; 362 } 363 364 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 365 { 366 if (__vma_shareable_lock(vma)) { 367 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 368 369 lockdep_assert_held(&vma_lock->rw_sema); 370 } else if (__vma_private_lock(vma)) { 371 struct resv_map *resv_map = vma_resv_map(vma); 372 373 lockdep_assert_held(&resv_map->rw_sema); 374 } 375 } 376 377 void hugetlb_vma_lock_release(struct kref *kref) 378 { 379 struct hugetlb_vma_lock *vma_lock = container_of(kref, 380 struct hugetlb_vma_lock, refs); 381 382 kfree(vma_lock); 383 } 384 385 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 386 { 387 struct vm_area_struct *vma = vma_lock->vma; 388 389 /* 390 * vma_lock structure may or not be released as a result of put, 391 * it certainly will no longer be attached to vma so clear pointer. 392 * Semaphore synchronizes access to vma_lock->vma field. 393 */ 394 vma_lock->vma = NULL; 395 vma->vm_private_data = NULL; 396 up_write(&vma_lock->rw_sema); 397 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 398 } 399 400 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 401 { 402 if (__vma_shareable_lock(vma)) { 403 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 404 405 __hugetlb_vma_unlock_write_put(vma_lock); 406 } else if (__vma_private_lock(vma)) { 407 struct resv_map *resv_map = vma_resv_map(vma); 408 409 /* no free for anon vmas, but still need to unlock */ 410 up_write(&resv_map->rw_sema); 411 } 412 } 413 414 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 415 { 416 /* 417 * Only present in sharable vmas. 418 */ 419 if (!vma || !__vma_shareable_lock(vma)) 420 return; 421 422 if (vma->vm_private_data) { 423 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 424 425 down_write(&vma_lock->rw_sema); 426 __hugetlb_vma_unlock_write_put(vma_lock); 427 } 428 } 429 430 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 431 { 432 struct hugetlb_vma_lock *vma_lock; 433 434 /* Only establish in (flags) sharable vmas */ 435 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 436 return; 437 438 /* Should never get here with non-NULL vm_private_data */ 439 if (vma->vm_private_data) 440 return; 441 442 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 443 if (!vma_lock) { 444 /* 445 * If we can not allocate structure, then vma can not 446 * participate in pmd sharing. This is only a possible 447 * performance enhancement and memory saving issue. 448 * However, the lock is also used to synchronize page 449 * faults with truncation. If the lock is not present, 450 * unlikely races could leave pages in a file past i_size 451 * until the file is removed. Warn in the unlikely case of 452 * allocation failure. 453 */ 454 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 455 return; 456 } 457 458 kref_init(&vma_lock->refs); 459 init_rwsem(&vma_lock->rw_sema); 460 vma_lock->vma = vma; 461 vma->vm_private_data = vma_lock; 462 } 463 464 /* Helper that removes a struct file_region from the resv_map cache and returns 465 * it for use. 466 */ 467 static struct file_region * 468 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 469 { 470 struct file_region *nrg; 471 472 VM_BUG_ON(resv->region_cache_count <= 0); 473 474 resv->region_cache_count--; 475 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 476 list_del(&nrg->link); 477 478 nrg->from = from; 479 nrg->to = to; 480 481 return nrg; 482 } 483 484 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 485 struct file_region *rg) 486 { 487 #ifdef CONFIG_CGROUP_HUGETLB 488 nrg->reservation_counter = rg->reservation_counter; 489 nrg->css = rg->css; 490 if (rg->css) 491 css_get(rg->css); 492 #endif 493 } 494 495 /* Helper that records hugetlb_cgroup uncharge info. */ 496 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 497 struct hstate *h, 498 struct resv_map *resv, 499 struct file_region *nrg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (h_cg) { 503 nrg->reservation_counter = 504 &h_cg->rsvd_hugepage[hstate_index(h)]; 505 nrg->css = &h_cg->css; 506 /* 507 * The caller will hold exactly one h_cg->css reference for the 508 * whole contiguous reservation region. But this area might be 509 * scattered when there are already some file_regions reside in 510 * it. As a result, many file_regions may share only one css 511 * reference. In order to ensure that one file_region must hold 512 * exactly one h_cg->css reference, we should do css_get for 513 * each file_region and leave the reference held by caller 514 * untouched. 515 */ 516 css_get(&h_cg->css); 517 if (!resv->pages_per_hpage) 518 resv->pages_per_hpage = pages_per_huge_page(h); 519 /* pages_per_hpage should be the same for all entries in 520 * a resv_map. 521 */ 522 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 523 } else { 524 nrg->reservation_counter = NULL; 525 nrg->css = NULL; 526 } 527 #endif 528 } 529 530 static void put_uncharge_info(struct file_region *rg) 531 { 532 #ifdef CONFIG_CGROUP_HUGETLB 533 if (rg->css) 534 css_put(rg->css); 535 #endif 536 } 537 538 static bool has_same_uncharge_info(struct file_region *rg, 539 struct file_region *org) 540 { 541 #ifdef CONFIG_CGROUP_HUGETLB 542 return rg->reservation_counter == org->reservation_counter && 543 rg->css == org->css; 544 545 #else 546 return true; 547 #endif 548 } 549 550 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 551 { 552 struct file_region *nrg, *prg; 553 554 prg = list_prev_entry(rg, link); 555 if (&prg->link != &resv->regions && prg->to == rg->from && 556 has_same_uncharge_info(prg, rg)) { 557 prg->to = rg->to; 558 559 list_del(&rg->link); 560 put_uncharge_info(rg); 561 kfree(rg); 562 563 rg = prg; 564 } 565 566 nrg = list_next_entry(rg, link); 567 if (&nrg->link != &resv->regions && nrg->from == rg->to && 568 has_same_uncharge_info(nrg, rg)) { 569 nrg->from = rg->from; 570 571 list_del(&rg->link); 572 put_uncharge_info(rg); 573 kfree(rg); 574 } 575 } 576 577 static inline long 578 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 579 long to, struct hstate *h, struct hugetlb_cgroup *cg, 580 long *regions_needed) 581 { 582 struct file_region *nrg; 583 584 if (!regions_needed) { 585 nrg = get_file_region_entry_from_cache(map, from, to); 586 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 587 list_add(&nrg->link, rg); 588 coalesce_file_region(map, nrg); 589 } else 590 *regions_needed += 1; 591 592 return to - from; 593 } 594 595 /* 596 * Must be called with resv->lock held. 597 * 598 * Calling this with regions_needed != NULL will count the number of pages 599 * to be added but will not modify the linked list. And regions_needed will 600 * indicate the number of file_regions needed in the cache to carry out to add 601 * the regions for this range. 602 */ 603 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 604 struct hugetlb_cgroup *h_cg, 605 struct hstate *h, long *regions_needed) 606 { 607 long add = 0; 608 struct list_head *head = &resv->regions; 609 long last_accounted_offset = f; 610 struct file_region *iter, *trg = NULL; 611 struct list_head *rg = NULL; 612 613 if (regions_needed) 614 *regions_needed = 0; 615 616 /* In this loop, we essentially handle an entry for the range 617 * [last_accounted_offset, iter->from), at every iteration, with some 618 * bounds checking. 619 */ 620 list_for_each_entry_safe(iter, trg, head, link) { 621 /* Skip irrelevant regions that start before our range. */ 622 if (iter->from < f) { 623 /* If this region ends after the last accounted offset, 624 * then we need to update last_accounted_offset. 625 */ 626 if (iter->to > last_accounted_offset) 627 last_accounted_offset = iter->to; 628 continue; 629 } 630 631 /* When we find a region that starts beyond our range, we've 632 * finished. 633 */ 634 if (iter->from >= t) { 635 rg = iter->link.prev; 636 break; 637 } 638 639 /* Add an entry for last_accounted_offset -> iter->from, and 640 * update last_accounted_offset. 641 */ 642 if (iter->from > last_accounted_offset) 643 add += hugetlb_resv_map_add(resv, iter->link.prev, 644 last_accounted_offset, 645 iter->from, h, h_cg, 646 regions_needed); 647 648 last_accounted_offset = iter->to; 649 } 650 651 /* Handle the case where our range extends beyond 652 * last_accounted_offset. 653 */ 654 if (!rg) 655 rg = head->prev; 656 if (last_accounted_offset < t) 657 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 658 t, h, h_cg, regions_needed); 659 660 return add; 661 } 662 663 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 664 */ 665 static int allocate_file_region_entries(struct resv_map *resv, 666 int regions_needed) 667 __must_hold(&resv->lock) 668 { 669 LIST_HEAD(allocated_regions); 670 int to_allocate = 0, i = 0; 671 struct file_region *trg = NULL, *rg = NULL; 672 673 VM_BUG_ON(regions_needed < 0); 674 675 /* 676 * Check for sufficient descriptors in the cache to accommodate 677 * the number of in progress add operations plus regions_needed. 678 * 679 * This is a while loop because when we drop the lock, some other call 680 * to region_add or region_del may have consumed some region_entries, 681 * so we keep looping here until we finally have enough entries for 682 * (adds_in_progress + regions_needed). 683 */ 684 while (resv->region_cache_count < 685 (resv->adds_in_progress + regions_needed)) { 686 to_allocate = resv->adds_in_progress + regions_needed - 687 resv->region_cache_count; 688 689 /* At this point, we should have enough entries in the cache 690 * for all the existing adds_in_progress. We should only be 691 * needing to allocate for regions_needed. 692 */ 693 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 694 695 spin_unlock(&resv->lock); 696 for (i = 0; i < to_allocate; i++) { 697 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 698 if (!trg) 699 goto out_of_memory; 700 list_add(&trg->link, &allocated_regions); 701 } 702 703 spin_lock(&resv->lock); 704 705 list_splice(&allocated_regions, &resv->region_cache); 706 resv->region_cache_count += to_allocate; 707 } 708 709 return 0; 710 711 out_of_memory: 712 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 713 list_del(&rg->link); 714 kfree(rg); 715 } 716 return -ENOMEM; 717 } 718 719 /* 720 * Add the huge page range represented by [f, t) to the reserve 721 * map. Regions will be taken from the cache to fill in this range. 722 * Sufficient regions should exist in the cache due to the previous 723 * call to region_chg with the same range, but in some cases the cache will not 724 * have sufficient entries due to races with other code doing region_add or 725 * region_del. The extra needed entries will be allocated. 726 * 727 * regions_needed is the out value provided by a previous call to region_chg. 728 * 729 * Return the number of new huge pages added to the map. This number is greater 730 * than or equal to zero. If file_region entries needed to be allocated for 731 * this operation and we were not able to allocate, it returns -ENOMEM. 732 * region_add of regions of length 1 never allocate file_regions and cannot 733 * fail; region_chg will always allocate at least 1 entry and a region_add for 734 * 1 page will only require at most 1 entry. 735 */ 736 static long region_add(struct resv_map *resv, long f, long t, 737 long in_regions_needed, struct hstate *h, 738 struct hugetlb_cgroup *h_cg) 739 { 740 long add = 0, actual_regions_needed = 0; 741 742 spin_lock(&resv->lock); 743 retry: 744 745 /* Count how many regions are actually needed to execute this add. */ 746 add_reservation_in_range(resv, f, t, NULL, NULL, 747 &actual_regions_needed); 748 749 /* 750 * Check for sufficient descriptors in the cache to accommodate 751 * this add operation. Note that actual_regions_needed may be greater 752 * than in_regions_needed, as the resv_map may have been modified since 753 * the region_chg call. In this case, we need to make sure that we 754 * allocate extra entries, such that we have enough for all the 755 * existing adds_in_progress, plus the excess needed for this 756 * operation. 757 */ 758 if (actual_regions_needed > in_regions_needed && 759 resv->region_cache_count < 760 resv->adds_in_progress + 761 (actual_regions_needed - in_regions_needed)) { 762 /* region_add operation of range 1 should never need to 763 * allocate file_region entries. 764 */ 765 VM_BUG_ON(t - f <= 1); 766 767 if (allocate_file_region_entries( 768 resv, actual_regions_needed - in_regions_needed)) { 769 return -ENOMEM; 770 } 771 772 goto retry; 773 } 774 775 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 776 777 resv->adds_in_progress -= in_regions_needed; 778 779 spin_unlock(&resv->lock); 780 return add; 781 } 782 783 /* 784 * Examine the existing reserve map and determine how many 785 * huge pages in the specified range [f, t) are NOT currently 786 * represented. This routine is called before a subsequent 787 * call to region_add that will actually modify the reserve 788 * map to add the specified range [f, t). region_chg does 789 * not change the number of huge pages represented by the 790 * map. A number of new file_region structures is added to the cache as a 791 * placeholder, for the subsequent region_add call to use. At least 1 792 * file_region structure is added. 793 * 794 * out_regions_needed is the number of regions added to the 795 * resv->adds_in_progress. This value needs to be provided to a follow up call 796 * to region_add or region_abort for proper accounting. 797 * 798 * Returns the number of huge pages that need to be added to the existing 799 * reservation map for the range [f, t). This number is greater or equal to 800 * zero. -ENOMEM is returned if a new file_region structure or cache entry 801 * is needed and can not be allocated. 802 */ 803 static long region_chg(struct resv_map *resv, long f, long t, 804 long *out_regions_needed) 805 { 806 long chg = 0; 807 808 spin_lock(&resv->lock); 809 810 /* Count how many hugepages in this range are NOT represented. */ 811 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 812 out_regions_needed); 813 814 if (*out_regions_needed == 0) 815 *out_regions_needed = 1; 816 817 if (allocate_file_region_entries(resv, *out_regions_needed)) 818 return -ENOMEM; 819 820 resv->adds_in_progress += *out_regions_needed; 821 822 spin_unlock(&resv->lock); 823 return chg; 824 } 825 826 /* 827 * Abort the in progress add operation. The adds_in_progress field 828 * of the resv_map keeps track of the operations in progress between 829 * calls to region_chg and region_add. Operations are sometimes 830 * aborted after the call to region_chg. In such cases, region_abort 831 * is called to decrement the adds_in_progress counter. regions_needed 832 * is the value returned by the region_chg call, it is used to decrement 833 * the adds_in_progress counter. 834 * 835 * NOTE: The range arguments [f, t) are not needed or used in this 836 * routine. They are kept to make reading the calling code easier as 837 * arguments will match the associated region_chg call. 838 */ 839 static void region_abort(struct resv_map *resv, long f, long t, 840 long regions_needed) 841 { 842 spin_lock(&resv->lock); 843 VM_BUG_ON(!resv->region_cache_count); 844 resv->adds_in_progress -= regions_needed; 845 spin_unlock(&resv->lock); 846 } 847 848 /* 849 * Delete the specified range [f, t) from the reserve map. If the 850 * t parameter is LONG_MAX, this indicates that ALL regions after f 851 * should be deleted. Locate the regions which intersect [f, t) 852 * and either trim, delete or split the existing regions. 853 * 854 * Returns the number of huge pages deleted from the reserve map. 855 * In the normal case, the return value is zero or more. In the 856 * case where a region must be split, a new region descriptor must 857 * be allocated. If the allocation fails, -ENOMEM will be returned. 858 * NOTE: If the parameter t == LONG_MAX, then we will never split 859 * a region and possibly return -ENOMEM. Callers specifying 860 * t == LONG_MAX do not need to check for -ENOMEM error. 861 */ 862 static long region_del(struct resv_map *resv, long f, long t) 863 { 864 struct list_head *head = &resv->regions; 865 struct file_region *rg, *trg; 866 struct file_region *nrg = NULL; 867 long del = 0; 868 869 retry: 870 spin_lock(&resv->lock); 871 list_for_each_entry_safe(rg, trg, head, link) { 872 /* 873 * Skip regions before the range to be deleted. file_region 874 * ranges are normally of the form [from, to). However, there 875 * may be a "placeholder" entry in the map which is of the form 876 * (from, to) with from == to. Check for placeholder entries 877 * at the beginning of the range to be deleted. 878 */ 879 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 880 continue; 881 882 if (rg->from >= t) 883 break; 884 885 if (f > rg->from && t < rg->to) { /* Must split region */ 886 /* 887 * Check for an entry in the cache before dropping 888 * lock and attempting allocation. 889 */ 890 if (!nrg && 891 resv->region_cache_count > resv->adds_in_progress) { 892 nrg = list_first_entry(&resv->region_cache, 893 struct file_region, 894 link); 895 list_del(&nrg->link); 896 resv->region_cache_count--; 897 } 898 899 if (!nrg) { 900 spin_unlock(&resv->lock); 901 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 902 if (!nrg) 903 return -ENOMEM; 904 goto retry; 905 } 906 907 del += t - f; 908 hugetlb_cgroup_uncharge_file_region( 909 resv, rg, t - f, false); 910 911 /* New entry for end of split region */ 912 nrg->from = t; 913 nrg->to = rg->to; 914 915 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 916 917 INIT_LIST_HEAD(&nrg->link); 918 919 /* Original entry is trimmed */ 920 rg->to = f; 921 922 list_add(&nrg->link, &rg->link); 923 nrg = NULL; 924 break; 925 } 926 927 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 928 del += rg->to - rg->from; 929 hugetlb_cgroup_uncharge_file_region(resv, rg, 930 rg->to - rg->from, true); 931 list_del(&rg->link); 932 kfree(rg); 933 continue; 934 } 935 936 if (f <= rg->from) { /* Trim beginning of region */ 937 hugetlb_cgroup_uncharge_file_region(resv, rg, 938 t - rg->from, false); 939 940 del += t - rg->from; 941 rg->from = t; 942 } else { /* Trim end of region */ 943 hugetlb_cgroup_uncharge_file_region(resv, rg, 944 rg->to - f, false); 945 946 del += rg->to - f; 947 rg->to = f; 948 } 949 } 950 951 spin_unlock(&resv->lock); 952 kfree(nrg); 953 return del; 954 } 955 956 /* 957 * A rare out of memory error was encountered which prevented removal of 958 * the reserve map region for a page. The huge page itself was free'ed 959 * and removed from the page cache. This routine will adjust the subpool 960 * usage count, and the global reserve count if needed. By incrementing 961 * these counts, the reserve map entry which could not be deleted will 962 * appear as a "reserved" entry instead of simply dangling with incorrect 963 * counts. 964 */ 965 void hugetlb_fix_reserve_counts(struct inode *inode) 966 { 967 struct hugepage_subpool *spool = subpool_inode(inode); 968 long rsv_adjust; 969 bool reserved = false; 970 971 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 972 if (rsv_adjust > 0) { 973 struct hstate *h = hstate_inode(inode); 974 975 if (!hugetlb_acct_memory(h, 1)) 976 reserved = true; 977 } else if (!rsv_adjust) { 978 reserved = true; 979 } 980 981 if (!reserved) 982 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 983 } 984 985 /* 986 * Count and return the number of huge pages in the reserve map 987 * that intersect with the range [f, t). 988 */ 989 static long region_count(struct resv_map *resv, long f, long t) 990 { 991 struct list_head *head = &resv->regions; 992 struct file_region *rg; 993 long chg = 0; 994 995 spin_lock(&resv->lock); 996 /* Locate each segment we overlap with, and count that overlap. */ 997 list_for_each_entry(rg, head, link) { 998 long seg_from; 999 long seg_to; 1000 1001 if (rg->to <= f) 1002 continue; 1003 if (rg->from >= t) 1004 break; 1005 1006 seg_from = max(rg->from, f); 1007 seg_to = min(rg->to, t); 1008 1009 chg += seg_to - seg_from; 1010 } 1011 spin_unlock(&resv->lock); 1012 1013 return chg; 1014 } 1015 1016 /* 1017 * Convert the address within this vma to the page offset within 1018 * the mapping, huge page units here. 1019 */ 1020 static pgoff_t vma_hugecache_offset(struct hstate *h, 1021 struct vm_area_struct *vma, unsigned long address) 1022 { 1023 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1024 (vma->vm_pgoff >> huge_page_order(h)); 1025 } 1026 1027 /** 1028 * vma_kernel_pagesize - Page size granularity for this VMA. 1029 * @vma: The user mapping. 1030 * 1031 * Folios in this VMA will be aligned to, and at least the size of the 1032 * number of bytes returned by this function. 1033 * 1034 * Return: The default size of the folios allocated when backing a VMA. 1035 */ 1036 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1037 { 1038 if (vma->vm_ops && vma->vm_ops->pagesize) 1039 return vma->vm_ops->pagesize(vma); 1040 return PAGE_SIZE; 1041 } 1042 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1043 1044 /* 1045 * Return the page size being used by the MMU to back a VMA. In the majority 1046 * of cases, the page size used by the kernel matches the MMU size. On 1047 * architectures where it differs, an architecture-specific 'strong' 1048 * version of this symbol is required. 1049 */ 1050 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1051 { 1052 return vma_kernel_pagesize(vma); 1053 } 1054 1055 /* 1056 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1057 * bits of the reservation map pointer, which are always clear due to 1058 * alignment. 1059 */ 1060 #define HPAGE_RESV_OWNER (1UL << 0) 1061 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1062 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1063 1064 /* 1065 * These helpers are used to track how many pages are reserved for 1066 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1067 * is guaranteed to have their future faults succeed. 1068 * 1069 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1070 * the reserve counters are updated with the hugetlb_lock held. It is safe 1071 * to reset the VMA at fork() time as it is not in use yet and there is no 1072 * chance of the global counters getting corrupted as a result of the values. 1073 * 1074 * The private mapping reservation is represented in a subtly different 1075 * manner to a shared mapping. A shared mapping has a region map associated 1076 * with the underlying file, this region map represents the backing file 1077 * pages which have ever had a reservation assigned which this persists even 1078 * after the page is instantiated. A private mapping has a region map 1079 * associated with the original mmap which is attached to all VMAs which 1080 * reference it, this region map represents those offsets which have consumed 1081 * reservation ie. where pages have been instantiated. 1082 */ 1083 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1084 { 1085 return (unsigned long)vma->vm_private_data; 1086 } 1087 1088 static void set_vma_private_data(struct vm_area_struct *vma, 1089 unsigned long value) 1090 { 1091 vma->vm_private_data = (void *)value; 1092 } 1093 1094 static void 1095 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1096 struct hugetlb_cgroup *h_cg, 1097 struct hstate *h) 1098 { 1099 #ifdef CONFIG_CGROUP_HUGETLB 1100 if (!h_cg || !h) { 1101 resv_map->reservation_counter = NULL; 1102 resv_map->pages_per_hpage = 0; 1103 resv_map->css = NULL; 1104 } else { 1105 resv_map->reservation_counter = 1106 &h_cg->rsvd_hugepage[hstate_index(h)]; 1107 resv_map->pages_per_hpage = pages_per_huge_page(h); 1108 resv_map->css = &h_cg->css; 1109 } 1110 #endif 1111 } 1112 1113 struct resv_map *resv_map_alloc(void) 1114 { 1115 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1116 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1117 1118 if (!resv_map || !rg) { 1119 kfree(resv_map); 1120 kfree(rg); 1121 return NULL; 1122 } 1123 1124 kref_init(&resv_map->refs); 1125 spin_lock_init(&resv_map->lock); 1126 INIT_LIST_HEAD(&resv_map->regions); 1127 init_rwsem(&resv_map->rw_sema); 1128 1129 resv_map->adds_in_progress = 0; 1130 /* 1131 * Initialize these to 0. On shared mappings, 0's here indicate these 1132 * fields don't do cgroup accounting. On private mappings, these will be 1133 * re-initialized to the proper values, to indicate that hugetlb cgroup 1134 * reservations are to be un-charged from here. 1135 */ 1136 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1137 1138 INIT_LIST_HEAD(&resv_map->region_cache); 1139 list_add(&rg->link, &resv_map->region_cache); 1140 resv_map->region_cache_count = 1; 1141 1142 return resv_map; 1143 } 1144 1145 void resv_map_release(struct kref *ref) 1146 { 1147 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1148 struct list_head *head = &resv_map->region_cache; 1149 struct file_region *rg, *trg; 1150 1151 /* Clear out any active regions before we release the map. */ 1152 region_del(resv_map, 0, LONG_MAX); 1153 1154 /* ... and any entries left in the cache */ 1155 list_for_each_entry_safe(rg, trg, head, link) { 1156 list_del(&rg->link); 1157 kfree(rg); 1158 } 1159 1160 VM_BUG_ON(resv_map->adds_in_progress); 1161 1162 kfree(resv_map); 1163 } 1164 1165 static inline struct resv_map *inode_resv_map(struct inode *inode) 1166 { 1167 /* 1168 * At inode evict time, i_mapping may not point to the original 1169 * address space within the inode. This original address space 1170 * contains the pointer to the resv_map. So, always use the 1171 * address space embedded within the inode. 1172 * The VERY common case is inode->mapping == &inode->i_data but, 1173 * this may not be true for device special inodes. 1174 */ 1175 return (struct resv_map *)(&inode->i_data)->i_private_data; 1176 } 1177 1178 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1179 { 1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1181 if (vma->vm_flags & VM_MAYSHARE) { 1182 struct address_space *mapping = vma->vm_file->f_mapping; 1183 struct inode *inode = mapping->host; 1184 1185 return inode_resv_map(inode); 1186 1187 } else { 1188 return (struct resv_map *)(get_vma_private_data(vma) & 1189 ~HPAGE_RESV_MASK); 1190 } 1191 } 1192 1193 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1197 1198 set_vma_private_data(vma, (unsigned long)map); 1199 } 1200 1201 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1202 { 1203 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1204 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1205 1206 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1207 } 1208 1209 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1210 { 1211 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1212 1213 return (get_vma_private_data(vma) & flag) != 0; 1214 } 1215 1216 bool __vma_private_lock(struct vm_area_struct *vma) 1217 { 1218 return !(vma->vm_flags & VM_MAYSHARE) && 1219 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1220 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1221 } 1222 1223 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1224 { 1225 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1226 /* 1227 * Clear vm_private_data 1228 * - For shared mappings this is a per-vma semaphore that may be 1229 * allocated in a subsequent call to hugetlb_vm_op_open. 1230 * Before clearing, make sure pointer is not associated with vma 1231 * as this will leak the structure. This is the case when called 1232 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1233 * been called to allocate a new structure. 1234 * - For MAP_PRIVATE mappings, this is the reserve map which does 1235 * not apply to children. Faults generated by the children are 1236 * not guaranteed to succeed, even if read-only. 1237 */ 1238 if (vma->vm_flags & VM_MAYSHARE) { 1239 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1240 1241 if (vma_lock && vma_lock->vma != vma) 1242 vma->vm_private_data = NULL; 1243 } else 1244 vma->vm_private_data = NULL; 1245 } 1246 1247 /* 1248 * Reset and decrement one ref on hugepage private reservation. 1249 * Called with mm->mmap_lock writer semaphore held. 1250 * This function should be only used by mremap and operate on 1251 * same sized vma. It should never come here with last ref on the 1252 * reservation. 1253 */ 1254 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1255 { 1256 /* 1257 * Clear the old hugetlb private page reservation. 1258 * It has already been transferred to new_vma. 1259 * 1260 * During a mremap() operation of a hugetlb vma we call move_vma() 1261 * which copies vma into new_vma and unmaps vma. After the copy 1262 * operation both new_vma and vma share a reference to the resv_map 1263 * struct, and at that point vma is about to be unmapped. We don't 1264 * want to return the reservation to the pool at unmap of vma because 1265 * the reservation still lives on in new_vma, so simply decrement the 1266 * ref here and remove the resv_map reference from this vma. 1267 */ 1268 struct resv_map *reservations = vma_resv_map(vma); 1269 1270 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1271 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1272 kref_put(&reservations->refs, resv_map_release); 1273 } 1274 1275 hugetlb_dup_vma_private(vma); 1276 } 1277 1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1279 { 1280 int nid = folio_nid(folio); 1281 1282 lockdep_assert_held(&hugetlb_lock); 1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1284 1285 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1286 h->free_huge_pages++; 1287 h->free_huge_pages_node[nid]++; 1288 folio_set_hugetlb_freed(folio); 1289 } 1290 1291 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1292 int nid) 1293 { 1294 struct folio *folio; 1295 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1296 1297 lockdep_assert_held(&hugetlb_lock); 1298 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1299 if (pin && !folio_is_longterm_pinnable(folio)) 1300 continue; 1301 1302 if (folio_test_hwpoison(folio)) 1303 continue; 1304 1305 if (is_migrate_isolate_page(&folio->page)) 1306 continue; 1307 1308 list_move(&folio->lru, &h->hugepage_activelist); 1309 folio_ref_unfreeze(folio, 1); 1310 folio_clear_hugetlb_freed(folio); 1311 h->free_huge_pages--; 1312 h->free_huge_pages_node[nid]--; 1313 return folio; 1314 } 1315 1316 return NULL; 1317 } 1318 1319 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1320 int nid, nodemask_t *nmask) 1321 { 1322 unsigned int cpuset_mems_cookie; 1323 struct zonelist *zonelist; 1324 struct zone *zone; 1325 struct zoneref *z; 1326 int node = NUMA_NO_NODE; 1327 1328 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1329 if (nid == NUMA_NO_NODE) 1330 nid = numa_node_id(); 1331 1332 zonelist = node_zonelist(nid, gfp_mask); 1333 1334 retry_cpuset: 1335 cpuset_mems_cookie = read_mems_allowed_begin(); 1336 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1337 struct folio *folio; 1338 1339 if (!cpuset_zone_allowed(zone, gfp_mask)) 1340 continue; 1341 /* 1342 * no need to ask again on the same node. Pool is node rather than 1343 * zone aware 1344 */ 1345 if (zone_to_nid(zone) == node) 1346 continue; 1347 node = zone_to_nid(zone); 1348 1349 folio = dequeue_hugetlb_folio_node_exact(h, node); 1350 if (folio) 1351 return folio; 1352 } 1353 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1354 goto retry_cpuset; 1355 1356 return NULL; 1357 } 1358 1359 static unsigned long available_huge_pages(struct hstate *h) 1360 { 1361 return h->free_huge_pages - h->resv_huge_pages; 1362 } 1363 1364 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1365 struct vm_area_struct *vma, 1366 unsigned long address, long gbl_chg) 1367 { 1368 struct folio *folio = NULL; 1369 struct mempolicy *mpol; 1370 gfp_t gfp_mask; 1371 nodemask_t *nodemask; 1372 int nid; 1373 1374 /* 1375 * gbl_chg==1 means the allocation requires a new page that was not 1376 * reserved before. Making sure there's at least one free page. 1377 */ 1378 if (gbl_chg && !available_huge_pages(h)) 1379 goto err; 1380 1381 gfp_mask = htlb_alloc_mask(h); 1382 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1383 1384 if (mpol_is_preferred_many(mpol)) { 1385 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1386 nid, nodemask); 1387 1388 /* Fallback to all nodes if page==NULL */ 1389 nodemask = NULL; 1390 } 1391 1392 if (!folio) 1393 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1394 nid, nodemask); 1395 1396 mpol_cond_put(mpol); 1397 return folio; 1398 1399 err: 1400 return NULL; 1401 } 1402 1403 /* 1404 * common helper functions for hstate_next_node_to_{alloc|free}. 1405 * We may have allocated or freed a huge page based on a different 1406 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1407 * be outside of *nodes_allowed. Ensure that we use an allowed 1408 * node for alloc or free. 1409 */ 1410 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1411 { 1412 nid = next_node_in(nid, *nodes_allowed); 1413 VM_BUG_ON(nid >= MAX_NUMNODES); 1414 1415 return nid; 1416 } 1417 1418 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1419 { 1420 if (!node_isset(nid, *nodes_allowed)) 1421 nid = next_node_allowed(nid, nodes_allowed); 1422 return nid; 1423 } 1424 1425 /* 1426 * returns the previously saved node ["this node"] from which to 1427 * allocate a persistent huge page for the pool and advance the 1428 * next node from which to allocate, handling wrap at end of node 1429 * mask. 1430 */ 1431 static int hstate_next_node_to_alloc(int *next_node, 1432 nodemask_t *nodes_allowed) 1433 { 1434 int nid; 1435 1436 VM_BUG_ON(!nodes_allowed); 1437 1438 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1439 *next_node = next_node_allowed(nid, nodes_allowed); 1440 1441 return nid; 1442 } 1443 1444 /* 1445 * helper for remove_pool_hugetlb_folio() - return the previously saved 1446 * node ["this node"] from which to free a huge page. Advance the 1447 * next node id whether or not we find a free huge page to free so 1448 * that the next attempt to free addresses the next node. 1449 */ 1450 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1451 { 1452 int nid; 1453 1454 VM_BUG_ON(!nodes_allowed); 1455 1456 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1457 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1458 1459 return nid; 1460 } 1461 1462 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1463 for (nr_nodes = nodes_weight(*mask); \ 1464 nr_nodes > 0 && \ 1465 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1466 nr_nodes--) 1467 1468 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1469 for (nr_nodes = nodes_weight(*mask); \ 1470 nr_nodes > 0 && \ 1471 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1472 nr_nodes--) 1473 1474 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1475 #ifdef CONFIG_CONTIG_ALLOC 1476 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, 1477 int nid, nodemask_t *nodemask) 1478 { 1479 struct folio *folio; 1480 bool retried = false; 1481 1482 retry: 1483 folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask); 1484 if (!folio) { 1485 if (hugetlb_cma_exclusive_alloc()) 1486 return NULL; 1487 1488 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1489 if (!folio) 1490 return NULL; 1491 } 1492 1493 if (folio_ref_freeze(folio, 1)) 1494 return folio; 1495 1496 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1497 hugetlb_free_folio(folio); 1498 if (!retried) { 1499 retried = true; 1500 goto retry; 1501 } 1502 return NULL; 1503 } 1504 1505 #else /* !CONFIG_CONTIG_ALLOC */ 1506 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, 1507 nodemask_t *nodemask) 1508 { 1509 return NULL; 1510 } 1511 #endif /* CONFIG_CONTIG_ALLOC */ 1512 1513 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1514 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, 1515 nodemask_t *nodemask) 1516 { 1517 return NULL; 1518 } 1519 #endif 1520 1521 /* 1522 * Remove hugetlb folio from lists. 1523 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1524 * folio appears as just a compound page. Otherwise, wait until after 1525 * allocating vmemmap to clear the flag. 1526 * 1527 * Must be called with hugetlb lock held. 1528 */ 1529 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1530 bool adjust_surplus) 1531 { 1532 int nid = folio_nid(folio); 1533 1534 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1535 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1536 1537 lockdep_assert_held(&hugetlb_lock); 1538 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1539 return; 1540 1541 list_del(&folio->lru); 1542 1543 if (folio_test_hugetlb_freed(folio)) { 1544 folio_clear_hugetlb_freed(folio); 1545 h->free_huge_pages--; 1546 h->free_huge_pages_node[nid]--; 1547 } 1548 if (adjust_surplus) { 1549 h->surplus_huge_pages--; 1550 h->surplus_huge_pages_node[nid]--; 1551 } 1552 1553 /* 1554 * We can only clear the hugetlb flag after allocating vmemmap 1555 * pages. Otherwise, someone (memory error handling) may try to write 1556 * to tail struct pages. 1557 */ 1558 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1559 __folio_clear_hugetlb(folio); 1560 1561 h->nr_huge_pages--; 1562 h->nr_huge_pages_node[nid]--; 1563 } 1564 1565 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1566 bool adjust_surplus) 1567 { 1568 int nid = folio_nid(folio); 1569 1570 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1571 1572 lockdep_assert_held(&hugetlb_lock); 1573 1574 INIT_LIST_HEAD(&folio->lru); 1575 h->nr_huge_pages++; 1576 h->nr_huge_pages_node[nid]++; 1577 1578 if (adjust_surplus) { 1579 h->surplus_huge_pages++; 1580 h->surplus_huge_pages_node[nid]++; 1581 } 1582 1583 __folio_set_hugetlb(folio); 1584 folio_change_private(folio, NULL); 1585 /* 1586 * We have to set hugetlb_vmemmap_optimized again as above 1587 * folio_change_private(folio, NULL) cleared it. 1588 */ 1589 folio_set_hugetlb_vmemmap_optimized(folio); 1590 1591 arch_clear_hugetlb_flags(folio); 1592 enqueue_hugetlb_folio(h, folio); 1593 } 1594 1595 static void __update_and_free_hugetlb_folio(struct hstate *h, 1596 struct folio *folio) 1597 { 1598 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1599 1600 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1601 return; 1602 1603 /* 1604 * If we don't know which subpages are hwpoisoned, we can't free 1605 * the hugepage, so it's leaked intentionally. 1606 */ 1607 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1608 return; 1609 1610 /* 1611 * If folio is not vmemmap optimized (!clear_flag), then the folio 1612 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1613 * can only be passed hugetlb pages and will BUG otherwise. 1614 */ 1615 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1616 spin_lock_irq(&hugetlb_lock); 1617 /* 1618 * If we cannot allocate vmemmap pages, just refuse to free the 1619 * page and put the page back on the hugetlb free list and treat 1620 * as a surplus page. 1621 */ 1622 add_hugetlb_folio(h, folio, true); 1623 spin_unlock_irq(&hugetlb_lock); 1624 return; 1625 } 1626 1627 /* 1628 * If vmemmap pages were allocated above, then we need to clear the 1629 * hugetlb flag under the hugetlb lock. 1630 */ 1631 if (folio_test_hugetlb(folio)) { 1632 spin_lock_irq(&hugetlb_lock); 1633 __folio_clear_hugetlb(folio); 1634 spin_unlock_irq(&hugetlb_lock); 1635 } 1636 1637 /* 1638 * Move PageHWPoison flag from head page to the raw error pages, 1639 * which makes any healthy subpages reusable. 1640 */ 1641 if (unlikely(folio_test_hwpoison(folio))) 1642 folio_clear_hugetlb_hwpoison(folio); 1643 1644 folio_ref_unfreeze(folio, 1); 1645 1646 hugetlb_free_folio(folio); 1647 } 1648 1649 /* 1650 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1651 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1652 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1653 * the vmemmap pages. 1654 * 1655 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1656 * freed and frees them one-by-one. As the page->mapping pointer is going 1657 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1658 * structure of a lockless linked list of huge pages to be freed. 1659 */ 1660 static LLIST_HEAD(hpage_freelist); 1661 1662 static void free_hpage_workfn(struct work_struct *work) 1663 { 1664 struct llist_node *node; 1665 1666 node = llist_del_all(&hpage_freelist); 1667 1668 while (node) { 1669 struct folio *folio; 1670 struct hstate *h; 1671 1672 folio = container_of((struct address_space **)node, 1673 struct folio, mapping); 1674 node = node->next; 1675 folio->mapping = NULL; 1676 /* 1677 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1678 * folio_hstate() is going to trigger because a previous call to 1679 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1680 * not use folio_hstate() directly. 1681 */ 1682 h = size_to_hstate(folio_size(folio)); 1683 1684 __update_and_free_hugetlb_folio(h, folio); 1685 1686 cond_resched(); 1687 } 1688 } 1689 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1690 1691 static inline void flush_free_hpage_work(struct hstate *h) 1692 { 1693 if (hugetlb_vmemmap_optimizable(h)) 1694 flush_work(&free_hpage_work); 1695 } 1696 1697 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1698 bool atomic) 1699 { 1700 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1701 __update_and_free_hugetlb_folio(h, folio); 1702 return; 1703 } 1704 1705 /* 1706 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1707 * 1708 * Only call schedule_work() if hpage_freelist is previously 1709 * empty. Otherwise, schedule_work() had been called but the workfn 1710 * hasn't retrieved the list yet. 1711 */ 1712 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1713 schedule_work(&free_hpage_work); 1714 } 1715 1716 static void bulk_vmemmap_restore_error(struct hstate *h, 1717 struct list_head *folio_list, 1718 struct list_head *non_hvo_folios) 1719 { 1720 struct folio *folio, *t_folio; 1721 1722 if (!list_empty(non_hvo_folios)) { 1723 /* 1724 * Free any restored hugetlb pages so that restore of the 1725 * entire list can be retried. 1726 * The idea is that in the common case of ENOMEM errors freeing 1727 * hugetlb pages with vmemmap we will free up memory so that we 1728 * can allocate vmemmap for more hugetlb pages. 1729 */ 1730 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1731 list_del(&folio->lru); 1732 spin_lock_irq(&hugetlb_lock); 1733 __folio_clear_hugetlb(folio); 1734 spin_unlock_irq(&hugetlb_lock); 1735 update_and_free_hugetlb_folio(h, folio, false); 1736 cond_resched(); 1737 } 1738 } else { 1739 /* 1740 * In the case where there are no folios which can be 1741 * immediately freed, we loop through the list trying to restore 1742 * vmemmap individually in the hope that someone elsewhere may 1743 * have done something to cause success (such as freeing some 1744 * memory). If unable to restore a hugetlb page, the hugetlb 1745 * page is made a surplus page and removed from the list. 1746 * If are able to restore vmemmap and free one hugetlb page, we 1747 * quit processing the list to retry the bulk operation. 1748 */ 1749 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1750 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1751 list_del(&folio->lru); 1752 spin_lock_irq(&hugetlb_lock); 1753 add_hugetlb_folio(h, folio, true); 1754 spin_unlock_irq(&hugetlb_lock); 1755 } else { 1756 list_del(&folio->lru); 1757 spin_lock_irq(&hugetlb_lock); 1758 __folio_clear_hugetlb(folio); 1759 spin_unlock_irq(&hugetlb_lock); 1760 update_and_free_hugetlb_folio(h, folio, false); 1761 cond_resched(); 1762 break; 1763 } 1764 } 1765 } 1766 1767 static void update_and_free_pages_bulk(struct hstate *h, 1768 struct list_head *folio_list) 1769 { 1770 long ret; 1771 struct folio *folio, *t_folio; 1772 LIST_HEAD(non_hvo_folios); 1773 1774 /* 1775 * First allocate required vmemmmap (if necessary) for all folios. 1776 * Carefully handle errors and free up any available hugetlb pages 1777 * in an effort to make forward progress. 1778 */ 1779 retry: 1780 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1781 if (ret < 0) { 1782 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1783 goto retry; 1784 } 1785 1786 /* 1787 * At this point, list should be empty, ret should be >= 0 and there 1788 * should only be pages on the non_hvo_folios list. 1789 * Do note that the non_hvo_folios list could be empty. 1790 * Without HVO enabled, ret will be 0 and there is no need to call 1791 * __folio_clear_hugetlb as this was done previously. 1792 */ 1793 VM_WARN_ON(!list_empty(folio_list)); 1794 VM_WARN_ON(ret < 0); 1795 if (!list_empty(&non_hvo_folios) && ret) { 1796 spin_lock_irq(&hugetlb_lock); 1797 list_for_each_entry(folio, &non_hvo_folios, lru) 1798 __folio_clear_hugetlb(folio); 1799 spin_unlock_irq(&hugetlb_lock); 1800 } 1801 1802 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1803 update_and_free_hugetlb_folio(h, folio, false); 1804 cond_resched(); 1805 } 1806 } 1807 1808 struct hstate *size_to_hstate(unsigned long size) 1809 { 1810 struct hstate *h; 1811 1812 for_each_hstate(h) { 1813 if (huge_page_size(h) == size) 1814 return h; 1815 } 1816 return NULL; 1817 } 1818 1819 void free_huge_folio(struct folio *folio) 1820 { 1821 /* 1822 * Can't pass hstate in here because it is called from the 1823 * generic mm code. 1824 */ 1825 struct hstate *h = folio_hstate(folio); 1826 int nid = folio_nid(folio); 1827 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1828 bool restore_reserve; 1829 unsigned long flags; 1830 1831 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1832 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1833 1834 hugetlb_set_folio_subpool(folio, NULL); 1835 if (folio_test_anon(folio)) 1836 __ClearPageAnonExclusive(&folio->page); 1837 folio->mapping = NULL; 1838 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1839 folio_clear_hugetlb_restore_reserve(folio); 1840 1841 /* 1842 * If HPageRestoreReserve was set on page, page allocation consumed a 1843 * reservation. If the page was associated with a subpool, there 1844 * would have been a page reserved in the subpool before allocation 1845 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1846 * reservation, do not call hugepage_subpool_put_pages() as this will 1847 * remove the reserved page from the subpool. 1848 */ 1849 if (!restore_reserve) { 1850 /* 1851 * A return code of zero implies that the subpool will be 1852 * under its minimum size if the reservation is not restored 1853 * after page is free. Therefore, force restore_reserve 1854 * operation. 1855 */ 1856 if (hugepage_subpool_put_pages(spool, 1) == 0) 1857 restore_reserve = true; 1858 } 1859 1860 spin_lock_irqsave(&hugetlb_lock, flags); 1861 folio_clear_hugetlb_migratable(folio); 1862 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1863 pages_per_huge_page(h), folio); 1864 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1865 pages_per_huge_page(h), folio); 1866 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1867 mem_cgroup_uncharge(folio); 1868 if (restore_reserve) 1869 h->resv_huge_pages++; 1870 1871 if (folio_test_hugetlb_temporary(folio)) { 1872 remove_hugetlb_folio(h, folio, false); 1873 spin_unlock_irqrestore(&hugetlb_lock, flags); 1874 update_and_free_hugetlb_folio(h, folio, true); 1875 } else if (h->surplus_huge_pages_node[nid]) { 1876 /* remove the page from active list */ 1877 remove_hugetlb_folio(h, folio, true); 1878 spin_unlock_irqrestore(&hugetlb_lock, flags); 1879 update_and_free_hugetlb_folio(h, folio, true); 1880 } else { 1881 arch_clear_hugetlb_flags(folio); 1882 enqueue_hugetlb_folio(h, folio); 1883 spin_unlock_irqrestore(&hugetlb_lock, flags); 1884 } 1885 } 1886 1887 /* 1888 * Must be called with the hugetlb lock held 1889 */ 1890 static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1891 { 1892 lockdep_assert_held(&hugetlb_lock); 1893 h->nr_huge_pages++; 1894 h->nr_huge_pages_node[folio_nid(folio)]++; 1895 } 1896 1897 static void init_new_hugetlb_folio(struct folio *folio) 1898 { 1899 __folio_set_hugetlb(folio); 1900 INIT_LIST_HEAD(&folio->lru); 1901 hugetlb_set_folio_subpool(folio, NULL); 1902 set_hugetlb_cgroup(folio, NULL); 1903 set_hugetlb_cgroup_rsvd(folio, NULL); 1904 } 1905 1906 /* 1907 * Find and lock address space (mapping) in write mode. 1908 * 1909 * Upon entry, the folio is locked which means that folio_mapping() is 1910 * stable. Due to locking order, we can only trylock_write. If we can 1911 * not get the lock, simply return NULL to caller. 1912 */ 1913 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1914 { 1915 struct address_space *mapping = folio_mapping(folio); 1916 1917 if (!mapping) 1918 return mapping; 1919 1920 if (i_mmap_trylock_write(mapping)) 1921 return mapping; 1922 1923 return NULL; 1924 } 1925 1926 static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask, 1927 int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) 1928 { 1929 struct folio *folio; 1930 bool alloc_try_hard = true; 1931 1932 /* 1933 * By default we always try hard to allocate the folio with 1934 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1935 * a loop (to adjust global huge page counts) and previous allocation 1936 * failed, do not continue to try hard on the same node. Use the 1937 * node_alloc_noretry bitmap to manage this state information. 1938 */ 1939 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1940 alloc_try_hard = false; 1941 if (alloc_try_hard) 1942 gfp_mask |= __GFP_RETRY_MAYFAIL; 1943 1944 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); 1945 1946 /* 1947 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1948 * folio this indicates an overall state change. Clear bit so 1949 * that we resume normal 'try hard' allocations. 1950 */ 1951 if (node_alloc_noretry && folio && !alloc_try_hard) 1952 node_clear(nid, *node_alloc_noretry); 1953 1954 /* 1955 * If we tried hard to get a folio but failed, set bit so that 1956 * subsequent attempts will not try as hard until there is an 1957 * overall state change. 1958 */ 1959 if (node_alloc_noretry && !folio && alloc_try_hard) 1960 node_set(nid, *node_alloc_noretry); 1961 1962 if (!folio) { 1963 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1964 return NULL; 1965 } 1966 1967 __count_vm_event(HTLB_BUDDY_PGALLOC); 1968 return folio; 1969 } 1970 1971 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 1972 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1973 nodemask_t *node_alloc_noretry) 1974 { 1975 struct folio *folio; 1976 int order = huge_page_order(h); 1977 1978 if (nid == NUMA_NO_NODE) 1979 nid = numa_mem_id(); 1980 1981 if (order_is_gigantic(order)) 1982 folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask); 1983 else 1984 folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask, 1985 node_alloc_noretry); 1986 if (folio) 1987 init_new_hugetlb_folio(folio); 1988 return folio; 1989 } 1990 1991 /* 1992 * Common helper to allocate a fresh hugetlb folio. All specific allocators 1993 * should use this function to get new hugetlb folio 1994 * 1995 * Note that returned folio is 'frozen': ref count of head page and all tail 1996 * pages is zero, and the accounting must be done in the caller. 1997 */ 1998 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 1999 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2000 { 2001 struct folio *folio; 2002 2003 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2004 if (folio) 2005 hugetlb_vmemmap_optimize_folio(h, folio); 2006 return folio; 2007 } 2008 2009 static void prep_and_add_allocated_folios(struct hstate *h, 2010 struct list_head *folio_list) 2011 { 2012 unsigned long flags; 2013 struct folio *folio, *tmp_f; 2014 2015 /* Send list for bulk vmemmap optimization processing */ 2016 hugetlb_vmemmap_optimize_folios(h, folio_list); 2017 2018 /* Add all new pool pages to free lists in one lock cycle */ 2019 spin_lock_irqsave(&hugetlb_lock, flags); 2020 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2021 account_new_hugetlb_folio(h, folio); 2022 enqueue_hugetlb_folio(h, folio); 2023 } 2024 spin_unlock_irqrestore(&hugetlb_lock, flags); 2025 } 2026 2027 /* 2028 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2029 * will later be added to the appropriate hugetlb pool. 2030 */ 2031 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2032 nodemask_t *nodes_allowed, 2033 nodemask_t *node_alloc_noretry, 2034 int *next_node) 2035 { 2036 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2037 int nr_nodes, node; 2038 2039 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2040 struct folio *folio; 2041 2042 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2043 nodes_allowed, node_alloc_noretry); 2044 if (folio) 2045 return folio; 2046 } 2047 2048 return NULL; 2049 } 2050 2051 /* 2052 * Remove huge page from pool from next node to free. Attempt to keep 2053 * persistent huge pages more or less balanced over allowed nodes. 2054 * This routine only 'removes' the hugetlb page. The caller must make 2055 * an additional call to free the page to low level allocators. 2056 * Called with hugetlb_lock locked. 2057 */ 2058 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2059 nodemask_t *nodes_allowed, bool acct_surplus) 2060 { 2061 int nr_nodes, node; 2062 struct folio *folio = NULL; 2063 2064 lockdep_assert_held(&hugetlb_lock); 2065 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2066 /* 2067 * If we're returning unused surplus pages, only examine 2068 * nodes with surplus pages. 2069 */ 2070 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2071 !list_empty(&h->hugepage_freelists[node])) { 2072 folio = list_entry(h->hugepage_freelists[node].next, 2073 struct folio, lru); 2074 remove_hugetlb_folio(h, folio, acct_surplus); 2075 break; 2076 } 2077 } 2078 2079 return folio; 2080 } 2081 2082 /* 2083 * Dissolve a given free hugetlb folio into free buddy pages. This function 2084 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2085 * This function returns values like below: 2086 * 2087 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2088 * when the system is under memory pressure and the feature of 2089 * freeing unused vmemmap pages associated with each hugetlb page 2090 * is enabled. 2091 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2092 * (allocated or reserved.) 2093 * 0: successfully dissolved free hugepages or the page is not a 2094 * hugepage (considered as already dissolved) 2095 */ 2096 int dissolve_free_hugetlb_folio(struct folio *folio) 2097 { 2098 int rc = -EBUSY; 2099 2100 retry: 2101 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2102 if (!folio_test_hugetlb(folio)) 2103 return 0; 2104 2105 spin_lock_irq(&hugetlb_lock); 2106 if (!folio_test_hugetlb(folio)) { 2107 rc = 0; 2108 goto out; 2109 } 2110 2111 if (!folio_ref_count(folio)) { 2112 struct hstate *h = folio_hstate(folio); 2113 bool adjust_surplus = false; 2114 2115 if (!available_huge_pages(h)) 2116 goto out; 2117 2118 /* 2119 * We should make sure that the page is already on the free list 2120 * when it is dissolved. 2121 */ 2122 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2123 spin_unlock_irq(&hugetlb_lock); 2124 cond_resched(); 2125 2126 /* 2127 * Theoretically, we should return -EBUSY when we 2128 * encounter this race. In fact, we have a chance 2129 * to successfully dissolve the page if we do a 2130 * retry. Because the race window is quite small. 2131 * If we seize this opportunity, it is an optimization 2132 * for increasing the success rate of dissolving page. 2133 */ 2134 goto retry; 2135 } 2136 2137 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2138 adjust_surplus = true; 2139 remove_hugetlb_folio(h, folio, adjust_surplus); 2140 h->max_huge_pages--; 2141 spin_unlock_irq(&hugetlb_lock); 2142 2143 /* 2144 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2145 * before freeing the page. update_and_free_hugtlb_folio will fail to 2146 * free the page if it can not allocate required vmemmap. We 2147 * need to adjust max_huge_pages if the page is not freed. 2148 * Attempt to allocate vmemmmap here so that we can take 2149 * appropriate action on failure. 2150 * 2151 * The folio_test_hugetlb check here is because 2152 * remove_hugetlb_folio will clear hugetlb folio flag for 2153 * non-vmemmap optimized hugetlb folios. 2154 */ 2155 if (folio_test_hugetlb(folio)) { 2156 rc = hugetlb_vmemmap_restore_folio(h, folio); 2157 if (rc) { 2158 spin_lock_irq(&hugetlb_lock); 2159 add_hugetlb_folio(h, folio, adjust_surplus); 2160 h->max_huge_pages++; 2161 goto out; 2162 } 2163 } else 2164 rc = 0; 2165 2166 update_and_free_hugetlb_folio(h, folio, false); 2167 return rc; 2168 } 2169 out: 2170 spin_unlock_irq(&hugetlb_lock); 2171 return rc; 2172 } 2173 2174 /* 2175 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2176 * make specified memory blocks removable from the system. 2177 * Note that this will dissolve a free gigantic hugepage completely, if any 2178 * part of it lies within the given range. 2179 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2180 * free hugetlb folios that were dissolved before that error are lost. 2181 */ 2182 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2183 { 2184 unsigned long pfn; 2185 struct folio *folio; 2186 int rc = 0; 2187 unsigned int order; 2188 struct hstate *h; 2189 2190 if (!hugepages_supported()) 2191 return rc; 2192 2193 order = huge_page_order(&default_hstate); 2194 for_each_hstate(h) 2195 order = min(order, huge_page_order(h)); 2196 2197 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2198 folio = pfn_folio(pfn); 2199 rc = dissolve_free_hugetlb_folio(folio); 2200 if (rc) 2201 break; 2202 } 2203 2204 return rc; 2205 } 2206 2207 /* 2208 * Allocates a fresh surplus page from the page allocator. 2209 */ 2210 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2211 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2212 { 2213 struct folio *folio = NULL; 2214 2215 if (hstate_is_gigantic(h)) 2216 return NULL; 2217 2218 spin_lock_irq(&hugetlb_lock); 2219 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2220 goto out_unlock; 2221 spin_unlock_irq(&hugetlb_lock); 2222 2223 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2224 if (!folio) 2225 return NULL; 2226 2227 spin_lock_irq(&hugetlb_lock); 2228 /* 2229 * nr_huge_pages needs to be adjusted within the same lock cycle 2230 * as surplus_pages, otherwise it might confuse 2231 * persistent_huge_pages() momentarily. 2232 */ 2233 account_new_hugetlb_folio(h, folio); 2234 2235 /* 2236 * We could have raced with the pool size change. 2237 * Double check that and simply deallocate the new page 2238 * if we would end up overcommiting the surpluses. Abuse 2239 * temporary page to workaround the nasty free_huge_folio 2240 * codeflow 2241 */ 2242 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2243 folio_set_hugetlb_temporary(folio); 2244 spin_unlock_irq(&hugetlb_lock); 2245 free_huge_folio(folio); 2246 return NULL; 2247 } 2248 2249 h->surplus_huge_pages++; 2250 h->surplus_huge_pages_node[folio_nid(folio)]++; 2251 2252 out_unlock: 2253 spin_unlock_irq(&hugetlb_lock); 2254 2255 return folio; 2256 } 2257 2258 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2259 int nid, nodemask_t *nmask) 2260 { 2261 struct folio *folio; 2262 2263 if (hstate_is_gigantic(h)) 2264 return NULL; 2265 2266 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2267 if (!folio) 2268 return NULL; 2269 2270 spin_lock_irq(&hugetlb_lock); 2271 account_new_hugetlb_folio(h, folio); 2272 spin_unlock_irq(&hugetlb_lock); 2273 2274 /* fresh huge pages are frozen */ 2275 folio_ref_unfreeze(folio, 1); 2276 /* 2277 * We do not account these pages as surplus because they are only 2278 * temporary and will be released properly on the last reference 2279 */ 2280 folio_set_hugetlb_temporary(folio); 2281 2282 return folio; 2283 } 2284 2285 /* 2286 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2287 */ 2288 static 2289 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2290 struct vm_area_struct *vma, unsigned long addr) 2291 { 2292 struct folio *folio = NULL; 2293 struct mempolicy *mpol; 2294 gfp_t gfp_mask = htlb_alloc_mask(h); 2295 int nid; 2296 nodemask_t *nodemask; 2297 2298 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2299 if (mpol_is_preferred_many(mpol)) { 2300 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2301 2302 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2303 2304 /* Fallback to all nodes if page==NULL */ 2305 nodemask = NULL; 2306 } 2307 2308 if (!folio) 2309 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2310 mpol_cond_put(mpol); 2311 return folio; 2312 } 2313 2314 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2315 nodemask_t *nmask, gfp_t gfp_mask) 2316 { 2317 struct folio *folio; 2318 2319 spin_lock_irq(&hugetlb_lock); 2320 if (!h->resv_huge_pages) { 2321 spin_unlock_irq(&hugetlb_lock); 2322 return NULL; 2323 } 2324 2325 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2326 nmask); 2327 if (folio) 2328 h->resv_huge_pages--; 2329 2330 spin_unlock_irq(&hugetlb_lock); 2331 return folio; 2332 } 2333 2334 /* folio migration callback function */ 2335 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2336 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2337 { 2338 spin_lock_irq(&hugetlb_lock); 2339 if (available_huge_pages(h)) { 2340 struct folio *folio; 2341 2342 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2343 preferred_nid, nmask); 2344 if (folio) { 2345 spin_unlock_irq(&hugetlb_lock); 2346 return folio; 2347 } 2348 } 2349 spin_unlock_irq(&hugetlb_lock); 2350 2351 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2352 if (!allow_alloc_fallback) 2353 gfp_mask |= __GFP_THISNODE; 2354 2355 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2356 } 2357 2358 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2359 { 2360 #ifdef CONFIG_NUMA 2361 struct mempolicy *mpol = get_task_policy(current); 2362 2363 /* 2364 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2365 * (from policy_nodemask) specifically for hugetlb case 2366 */ 2367 if (mpol->mode == MPOL_BIND && 2368 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2369 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2370 return &mpol->nodes; 2371 #endif 2372 return NULL; 2373 } 2374 2375 /* 2376 * Increase the hugetlb pool such that it can accommodate a reservation 2377 * of size 'delta'. 2378 */ 2379 static int gather_surplus_pages(struct hstate *h, long delta) 2380 __must_hold(&hugetlb_lock) 2381 { 2382 LIST_HEAD(surplus_list); 2383 struct folio *folio, *tmp; 2384 int ret; 2385 long i; 2386 long needed, allocated; 2387 bool alloc_ok = true; 2388 nodemask_t *mbind_nodemask, alloc_nodemask; 2389 2390 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2391 if (mbind_nodemask) 2392 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2393 else 2394 alloc_nodemask = cpuset_current_mems_allowed; 2395 2396 lockdep_assert_held(&hugetlb_lock); 2397 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2398 if (needed <= 0) { 2399 h->resv_huge_pages += delta; 2400 return 0; 2401 } 2402 2403 allocated = 0; 2404 2405 ret = -ENOMEM; 2406 retry: 2407 spin_unlock_irq(&hugetlb_lock); 2408 for (i = 0; i < needed; i++) { 2409 folio = NULL; 2410 2411 /* 2412 * It is okay to use NUMA_NO_NODE because we use numa_mem_id() 2413 * down the road to pick the current node if that is the case. 2414 */ 2415 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2416 NUMA_NO_NODE, &alloc_nodemask); 2417 if (!folio) { 2418 alloc_ok = false; 2419 break; 2420 } 2421 list_add(&folio->lru, &surplus_list); 2422 cond_resched(); 2423 } 2424 allocated += i; 2425 2426 /* 2427 * After retaking hugetlb_lock, we need to recalculate 'needed' 2428 * because either resv_huge_pages or free_huge_pages may have changed. 2429 */ 2430 spin_lock_irq(&hugetlb_lock); 2431 needed = (h->resv_huge_pages + delta) - 2432 (h->free_huge_pages + allocated); 2433 if (needed > 0) { 2434 if (alloc_ok) 2435 goto retry; 2436 /* 2437 * We were not able to allocate enough pages to 2438 * satisfy the entire reservation so we free what 2439 * we've allocated so far. 2440 */ 2441 goto free; 2442 } 2443 /* 2444 * The surplus_list now contains _at_least_ the number of extra pages 2445 * needed to accommodate the reservation. Add the appropriate number 2446 * of pages to the hugetlb pool and free the extras back to the buddy 2447 * allocator. Commit the entire reservation here to prevent another 2448 * process from stealing the pages as they are added to the pool but 2449 * before they are reserved. 2450 */ 2451 needed += allocated; 2452 h->resv_huge_pages += delta; 2453 ret = 0; 2454 2455 /* Free the needed pages to the hugetlb pool */ 2456 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2457 if ((--needed) < 0) 2458 break; 2459 /* Add the page to the hugetlb allocator */ 2460 enqueue_hugetlb_folio(h, folio); 2461 } 2462 free: 2463 spin_unlock_irq(&hugetlb_lock); 2464 2465 /* 2466 * Free unnecessary surplus pages to the buddy allocator. 2467 * Pages have no ref count, call free_huge_folio directly. 2468 */ 2469 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2470 free_huge_folio(folio); 2471 spin_lock_irq(&hugetlb_lock); 2472 2473 return ret; 2474 } 2475 2476 /* 2477 * This routine has two main purposes: 2478 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2479 * in unused_resv_pages. This corresponds to the prior adjustments made 2480 * to the associated reservation map. 2481 * 2) Free any unused surplus pages that may have been allocated to satisfy 2482 * the reservation. As many as unused_resv_pages may be freed. 2483 */ 2484 static void return_unused_surplus_pages(struct hstate *h, 2485 unsigned long unused_resv_pages) 2486 { 2487 unsigned long nr_pages; 2488 LIST_HEAD(page_list); 2489 2490 lockdep_assert_held(&hugetlb_lock); 2491 /* Uncommit the reservation */ 2492 h->resv_huge_pages -= unused_resv_pages; 2493 2494 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2495 goto out; 2496 2497 /* 2498 * Part (or even all) of the reservation could have been backed 2499 * by pre-allocated pages. Only free surplus pages. 2500 */ 2501 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2502 2503 /* 2504 * We want to release as many surplus pages as possible, spread 2505 * evenly across all nodes with memory. Iterate across these nodes 2506 * until we can no longer free unreserved surplus pages. This occurs 2507 * when the nodes with surplus pages have no free pages. 2508 * remove_pool_hugetlb_folio() will balance the freed pages across the 2509 * on-line nodes with memory and will handle the hstate accounting. 2510 */ 2511 while (nr_pages--) { 2512 struct folio *folio; 2513 2514 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2515 if (!folio) 2516 goto out; 2517 2518 list_add(&folio->lru, &page_list); 2519 } 2520 2521 out: 2522 spin_unlock_irq(&hugetlb_lock); 2523 update_and_free_pages_bulk(h, &page_list); 2524 spin_lock_irq(&hugetlb_lock); 2525 } 2526 2527 2528 /* 2529 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2530 * are used by the huge page allocation routines to manage reservations. 2531 * 2532 * vma_needs_reservation is called to determine if the huge page at addr 2533 * within the vma has an associated reservation. If a reservation is 2534 * needed, the value 1 is returned. The caller is then responsible for 2535 * managing the global reservation and subpool usage counts. After 2536 * the huge page has been allocated, vma_commit_reservation is called 2537 * to add the page to the reservation map. If the page allocation fails, 2538 * the reservation must be ended instead of committed. vma_end_reservation 2539 * is called in such cases. 2540 * 2541 * In the normal case, vma_commit_reservation returns the same value 2542 * as the preceding vma_needs_reservation call. The only time this 2543 * is not the case is if a reserve map was changed between calls. It 2544 * is the responsibility of the caller to notice the difference and 2545 * take appropriate action. 2546 * 2547 * vma_add_reservation is used in error paths where a reservation must 2548 * be restored when a newly allocated huge page must be freed. It is 2549 * to be called after calling vma_needs_reservation to determine if a 2550 * reservation exists. 2551 * 2552 * vma_del_reservation is used in error paths where an entry in the reserve 2553 * map was created during huge page allocation and must be removed. It is to 2554 * be called after calling vma_needs_reservation to determine if a reservation 2555 * exists. 2556 */ 2557 enum vma_resv_mode { 2558 VMA_NEEDS_RESV, 2559 VMA_COMMIT_RESV, 2560 VMA_END_RESV, 2561 VMA_ADD_RESV, 2562 VMA_DEL_RESV, 2563 }; 2564 static long __vma_reservation_common(struct hstate *h, 2565 struct vm_area_struct *vma, unsigned long addr, 2566 enum vma_resv_mode mode) 2567 { 2568 struct resv_map *resv; 2569 pgoff_t idx; 2570 long ret; 2571 long dummy_out_regions_needed; 2572 2573 resv = vma_resv_map(vma); 2574 if (!resv) 2575 return 1; 2576 2577 idx = vma_hugecache_offset(h, vma, addr); 2578 switch (mode) { 2579 case VMA_NEEDS_RESV: 2580 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2581 /* We assume that vma_reservation_* routines always operate on 2582 * 1 page, and that adding to resv map a 1 page entry can only 2583 * ever require 1 region. 2584 */ 2585 VM_BUG_ON(dummy_out_regions_needed != 1); 2586 break; 2587 case VMA_COMMIT_RESV: 2588 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2589 /* region_add calls of range 1 should never fail. */ 2590 VM_BUG_ON(ret < 0); 2591 break; 2592 case VMA_END_RESV: 2593 region_abort(resv, idx, idx + 1, 1); 2594 ret = 0; 2595 break; 2596 case VMA_ADD_RESV: 2597 if (vma->vm_flags & VM_MAYSHARE) { 2598 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2599 /* region_add calls of range 1 should never fail. */ 2600 VM_BUG_ON(ret < 0); 2601 } else { 2602 region_abort(resv, idx, idx + 1, 1); 2603 ret = region_del(resv, idx, idx + 1); 2604 } 2605 break; 2606 case VMA_DEL_RESV: 2607 if (vma->vm_flags & VM_MAYSHARE) { 2608 region_abort(resv, idx, idx + 1, 1); 2609 ret = region_del(resv, idx, idx + 1); 2610 } else { 2611 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2612 /* region_add calls of range 1 should never fail. */ 2613 VM_BUG_ON(ret < 0); 2614 } 2615 break; 2616 default: 2617 BUG(); 2618 } 2619 2620 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2621 return ret; 2622 /* 2623 * We know private mapping must have HPAGE_RESV_OWNER set. 2624 * 2625 * In most cases, reserves always exist for private mappings. 2626 * However, a file associated with mapping could have been 2627 * hole punched or truncated after reserves were consumed. 2628 * As subsequent fault on such a range will not use reserves. 2629 * Subtle - The reserve map for private mappings has the 2630 * opposite meaning than that of shared mappings. If NO 2631 * entry is in the reserve map, it means a reservation exists. 2632 * If an entry exists in the reserve map, it means the 2633 * reservation has already been consumed. As a result, the 2634 * return value of this routine is the opposite of the 2635 * value returned from reserve map manipulation routines above. 2636 */ 2637 if (ret > 0) 2638 return 0; 2639 if (ret == 0) 2640 return 1; 2641 return ret; 2642 } 2643 2644 static long vma_needs_reservation(struct hstate *h, 2645 struct vm_area_struct *vma, unsigned long addr) 2646 { 2647 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2648 } 2649 2650 static long vma_commit_reservation(struct hstate *h, 2651 struct vm_area_struct *vma, unsigned long addr) 2652 { 2653 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2654 } 2655 2656 static void vma_end_reservation(struct hstate *h, 2657 struct vm_area_struct *vma, unsigned long addr) 2658 { 2659 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2660 } 2661 2662 static long vma_add_reservation(struct hstate *h, 2663 struct vm_area_struct *vma, unsigned long addr) 2664 { 2665 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2666 } 2667 2668 static long vma_del_reservation(struct hstate *h, 2669 struct vm_area_struct *vma, unsigned long addr) 2670 { 2671 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2672 } 2673 2674 /* 2675 * This routine is called to restore reservation information on error paths. 2676 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2677 * and the hugetlb mutex should remain held when calling this routine. 2678 * 2679 * It handles two specific cases: 2680 * 1) A reservation was in place and the folio consumed the reservation. 2681 * hugetlb_restore_reserve is set in the folio. 2682 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2683 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2684 * 2685 * In case 1, free_huge_folio later in the error path will increment the 2686 * global reserve count. But, free_huge_folio does not have enough context 2687 * to adjust the reservation map. This case deals primarily with private 2688 * mappings. Adjust the reserve map here to be consistent with global 2689 * reserve count adjustments to be made by free_huge_folio. Make sure the 2690 * reserve map indicates there is a reservation present. 2691 * 2692 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2693 */ 2694 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2695 unsigned long address, struct folio *folio) 2696 { 2697 long rc = vma_needs_reservation(h, vma, address); 2698 2699 if (folio_test_hugetlb_restore_reserve(folio)) { 2700 if (unlikely(rc < 0)) 2701 /* 2702 * Rare out of memory condition in reserve map 2703 * manipulation. Clear hugetlb_restore_reserve so 2704 * that global reserve count will not be incremented 2705 * by free_huge_folio. This will make it appear 2706 * as though the reservation for this folio was 2707 * consumed. This may prevent the task from 2708 * faulting in the folio at a later time. This 2709 * is better than inconsistent global huge page 2710 * accounting of reserve counts. 2711 */ 2712 folio_clear_hugetlb_restore_reserve(folio); 2713 else if (rc) 2714 (void)vma_add_reservation(h, vma, address); 2715 else 2716 vma_end_reservation(h, vma, address); 2717 } else { 2718 if (!rc) { 2719 /* 2720 * This indicates there is an entry in the reserve map 2721 * not added by alloc_hugetlb_folio. We know it was added 2722 * before the alloc_hugetlb_folio call, otherwise 2723 * hugetlb_restore_reserve would be set on the folio. 2724 * Remove the entry so that a subsequent allocation 2725 * does not consume a reservation. 2726 */ 2727 rc = vma_del_reservation(h, vma, address); 2728 if (rc < 0) 2729 /* 2730 * VERY rare out of memory condition. Since 2731 * we can not delete the entry, set 2732 * hugetlb_restore_reserve so that the reserve 2733 * count will be incremented when the folio 2734 * is freed. This reserve will be consumed 2735 * on a subsequent allocation. 2736 */ 2737 folio_set_hugetlb_restore_reserve(folio); 2738 } else if (rc < 0) { 2739 /* 2740 * Rare out of memory condition from 2741 * vma_needs_reservation call. Memory allocation is 2742 * only attempted if a new entry is needed. Therefore, 2743 * this implies there is not an entry in the 2744 * reserve map. 2745 * 2746 * For shared mappings, no entry in the map indicates 2747 * no reservation. We are done. 2748 */ 2749 if (!(vma->vm_flags & VM_MAYSHARE)) 2750 /* 2751 * For private mappings, no entry indicates 2752 * a reservation is present. Since we can 2753 * not add an entry, set hugetlb_restore_reserve 2754 * on the folio so reserve count will be 2755 * incremented when freed. This reserve will 2756 * be consumed on a subsequent allocation. 2757 */ 2758 folio_set_hugetlb_restore_reserve(folio); 2759 } else 2760 /* 2761 * No reservation present, do nothing 2762 */ 2763 vma_end_reservation(h, vma, address); 2764 } 2765 } 2766 2767 /* 2768 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2769 * the old one 2770 * @old_folio: Old folio to dissolve 2771 * @list: List to isolate the page in case we need to 2772 * Returns 0 on success, otherwise negated error. 2773 */ 2774 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, 2775 struct list_head *list) 2776 { 2777 gfp_t gfp_mask; 2778 struct hstate *h; 2779 int nid = folio_nid(old_folio); 2780 struct folio *new_folio = NULL; 2781 int ret = 0; 2782 2783 retry: 2784 /* 2785 * The old_folio might have been dissolved from under our feet, so make sure 2786 * to carefully check the state under the lock. 2787 */ 2788 spin_lock_irq(&hugetlb_lock); 2789 if (!folio_test_hugetlb(old_folio)) { 2790 /* 2791 * Freed from under us. Drop new_folio too. 2792 */ 2793 goto free_new; 2794 } else if (folio_ref_count(old_folio)) { 2795 bool isolated; 2796 2797 /* 2798 * Someone has grabbed the folio, try to isolate it here. 2799 * Fail with -EBUSY if not possible. 2800 */ 2801 spin_unlock_irq(&hugetlb_lock); 2802 isolated = folio_isolate_hugetlb(old_folio, list); 2803 ret = isolated ? 0 : -EBUSY; 2804 spin_lock_irq(&hugetlb_lock); 2805 goto free_new; 2806 } else if (!folio_test_hugetlb_freed(old_folio)) { 2807 /* 2808 * Folio's refcount is 0 but it has not been enqueued in the 2809 * freelist yet. Race window is small, so we can succeed here if 2810 * we retry. 2811 */ 2812 spin_unlock_irq(&hugetlb_lock); 2813 cond_resched(); 2814 goto retry; 2815 } else { 2816 h = folio_hstate(old_folio); 2817 if (!new_folio) { 2818 spin_unlock_irq(&hugetlb_lock); 2819 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2820 new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask, 2821 nid, NULL); 2822 if (!new_folio) 2823 return -ENOMEM; 2824 goto retry; 2825 } 2826 2827 /* 2828 * Ok, old_folio is still a genuine free hugepage. Remove it from 2829 * the freelist and decrease the counters. These will be 2830 * incremented again when calling account_new_hugetlb_folio() 2831 * and enqueue_hugetlb_folio() for new_folio. The counters will 2832 * remain stable since this happens under the lock. 2833 */ 2834 remove_hugetlb_folio(h, old_folio, false); 2835 2836 /* 2837 * Ref count on new_folio is already zero as it was dropped 2838 * earlier. It can be directly added to the pool free list. 2839 */ 2840 account_new_hugetlb_folio(h, new_folio); 2841 enqueue_hugetlb_folio(h, new_folio); 2842 2843 /* 2844 * Folio has been replaced, we can safely free the old one. 2845 */ 2846 spin_unlock_irq(&hugetlb_lock); 2847 update_and_free_hugetlb_folio(h, old_folio, false); 2848 } 2849 2850 return ret; 2851 2852 free_new: 2853 spin_unlock_irq(&hugetlb_lock); 2854 if (new_folio) 2855 update_and_free_hugetlb_folio(h, new_folio, false); 2856 2857 return ret; 2858 } 2859 2860 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) 2861 { 2862 int ret = -EBUSY; 2863 2864 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2865 if (!folio_test_hugetlb(folio)) 2866 return 0; 2867 2868 /* 2869 * Fence off gigantic pages as there is a cyclic dependency between 2870 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2871 * of bailing out right away without further retrying. 2872 */ 2873 if (order_is_gigantic(folio_order(folio))) 2874 return -ENOMEM; 2875 2876 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2877 ret = 0; 2878 else if (!folio_ref_count(folio)) 2879 ret = alloc_and_dissolve_hugetlb_folio(folio, list); 2880 2881 return ret; 2882 } 2883 2884 /* 2885 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2886 * range with new folios. 2887 * @start_pfn: start pfn of the given pfn range 2888 * @end_pfn: end pfn of the given pfn range 2889 * Returns 0 on success, otherwise negated error. 2890 */ 2891 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2892 { 2893 struct folio *folio; 2894 int ret = 0; 2895 2896 LIST_HEAD(isolate_list); 2897 2898 while (start_pfn < end_pfn) { 2899 folio = pfn_folio(start_pfn); 2900 2901 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2902 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { 2903 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list); 2904 if (ret) 2905 break; 2906 2907 putback_movable_pages(&isolate_list); 2908 } 2909 start_pfn++; 2910 } 2911 2912 return ret; 2913 } 2914 2915 void wait_for_freed_hugetlb_folios(void) 2916 { 2917 if (llist_empty(&hpage_freelist)) 2918 return; 2919 2920 flush_work(&free_hpage_work); 2921 } 2922 2923 typedef enum { 2924 /* 2925 * For either 0/1: we checked the per-vma resv map, and one resv 2926 * count either can be reused (0), or an extra needed (1). 2927 */ 2928 MAP_CHG_REUSE = 0, 2929 MAP_CHG_NEEDED = 1, 2930 /* 2931 * Cannot use per-vma resv count can be used, hence a new resv 2932 * count is enforced. 2933 * 2934 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2935 * that currently vma_needs_reservation() has an unwanted side 2936 * effect to either use end() or commit() to complete the 2937 * transaction. Hence it needs to differenciate from NEEDED. 2938 */ 2939 MAP_CHG_ENFORCED = 2, 2940 } map_chg_state; 2941 2942 /* 2943 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2944 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2945 * which case even if there's a private vma resv map it won't cover such 2946 * allocation). New call sites should (probably) never set it to true!! 2947 * When it's set, the allocation will bypass all vma level reservations. 2948 */ 2949 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2950 unsigned long addr, bool cow_from_owner) 2951 { 2952 struct hugepage_subpool *spool = subpool_vma(vma); 2953 struct hstate *h = hstate_vma(vma); 2954 struct folio *folio; 2955 long retval, gbl_chg, gbl_reserve; 2956 map_chg_state map_chg; 2957 int ret, idx; 2958 struct hugetlb_cgroup *h_cg = NULL; 2959 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2960 2961 idx = hstate_index(h); 2962 2963 /* Whether we need a separate per-vma reservation? */ 2964 if (cow_from_owner) { 2965 /* 2966 * Special case! Since it's a CoW on top of a reserved 2967 * page, the private resv map doesn't count. So it cannot 2968 * consume the per-vma resv map even if it's reserved. 2969 */ 2970 map_chg = MAP_CHG_ENFORCED; 2971 } else { 2972 /* 2973 * Examine the region/reserve map to determine if the process 2974 * has a reservation for the page to be allocated. A return 2975 * code of zero indicates a reservation exists (no change). 2976 */ 2977 retval = vma_needs_reservation(h, vma, addr); 2978 if (retval < 0) 2979 return ERR_PTR(-ENOMEM); 2980 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 2981 } 2982 2983 /* 2984 * Whether we need a separate global reservation? 2985 * 2986 * Processes that did not create the mapping will have no 2987 * reserves as indicated by the region/reserve map. Check 2988 * that the allocation will not exceed the subpool limit. 2989 * Or if it can get one from the pool reservation directly. 2990 */ 2991 if (map_chg) { 2992 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2993 if (gbl_chg < 0) 2994 goto out_end_reservation; 2995 } else { 2996 /* 2997 * If we have the vma reservation ready, no need for extra 2998 * global reservation. 2999 */ 3000 gbl_chg = 0; 3001 } 3002 3003 /* 3004 * If this allocation is not consuming a per-vma reservation, 3005 * charge the hugetlb cgroup now. 3006 */ 3007 if (map_chg) { 3008 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3009 idx, pages_per_huge_page(h), &h_cg); 3010 if (ret) 3011 goto out_subpool_put; 3012 } 3013 3014 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3015 if (ret) 3016 goto out_uncharge_cgroup_reservation; 3017 3018 spin_lock_irq(&hugetlb_lock); 3019 /* 3020 * glb_chg is passed to indicate whether or not a page must be taken 3021 * from the global free pool (global change). gbl_chg == 0 indicates 3022 * a reservation exists for the allocation. 3023 */ 3024 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3025 if (!folio) { 3026 spin_unlock_irq(&hugetlb_lock); 3027 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3028 if (!folio) 3029 goto out_uncharge_cgroup; 3030 spin_lock_irq(&hugetlb_lock); 3031 list_add(&folio->lru, &h->hugepage_activelist); 3032 folio_ref_unfreeze(folio, 1); 3033 /* Fall through */ 3034 } 3035 3036 /* 3037 * Either dequeued or buddy-allocated folio needs to add special 3038 * mark to the folio when it consumes a global reservation. 3039 */ 3040 if (!gbl_chg) { 3041 folio_set_hugetlb_restore_reserve(folio); 3042 h->resv_huge_pages--; 3043 } 3044 3045 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3046 /* If allocation is not consuming a reservation, also store the 3047 * hugetlb_cgroup pointer on the page. 3048 */ 3049 if (map_chg) { 3050 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3051 h_cg, folio); 3052 } 3053 3054 spin_unlock_irq(&hugetlb_lock); 3055 3056 hugetlb_set_folio_subpool(folio, spool); 3057 3058 if (map_chg != MAP_CHG_ENFORCED) { 3059 /* commit() is only needed if the map_chg is not enforced */ 3060 retval = vma_commit_reservation(h, vma, addr); 3061 /* 3062 * Check for possible race conditions. When it happens.. 3063 * The page was added to the reservation map between 3064 * vma_needs_reservation and vma_commit_reservation. 3065 * This indicates a race with hugetlb_reserve_pages. 3066 * Adjust for the subpool count incremented above AND 3067 * in hugetlb_reserve_pages for the same page. Also, 3068 * the reservation count added in hugetlb_reserve_pages 3069 * no longer applies. 3070 */ 3071 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3072 long rsv_adjust; 3073 3074 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3075 hugetlb_acct_memory(h, -rsv_adjust); 3076 if (map_chg) { 3077 spin_lock_irq(&hugetlb_lock); 3078 hugetlb_cgroup_uncharge_folio_rsvd( 3079 hstate_index(h), pages_per_huge_page(h), 3080 folio); 3081 spin_unlock_irq(&hugetlb_lock); 3082 } 3083 } 3084 } 3085 3086 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3087 /* 3088 * Unconditionally increment NR_HUGETLB here. If it turns out that 3089 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3090 * decrement NR_HUGETLB. 3091 */ 3092 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3093 3094 if (ret == -ENOMEM) { 3095 free_huge_folio(folio); 3096 return ERR_PTR(-ENOMEM); 3097 } 3098 3099 return folio; 3100 3101 out_uncharge_cgroup: 3102 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3103 out_uncharge_cgroup_reservation: 3104 if (map_chg) 3105 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3106 h_cg); 3107 out_subpool_put: 3108 /* 3109 * put page to subpool iff the quota of subpool's rsv_hpages is used 3110 * during hugepage_subpool_get_pages. 3111 */ 3112 if (map_chg && !gbl_chg) { 3113 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3114 hugetlb_acct_memory(h, -gbl_reserve); 3115 } 3116 3117 3118 out_end_reservation: 3119 if (map_chg != MAP_CHG_ENFORCED) 3120 vma_end_reservation(h, vma, addr); 3121 return ERR_PTR(-ENOSPC); 3122 } 3123 3124 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3125 { 3126 struct huge_bootmem_page *m; 3127 int listnode = nid; 3128 3129 if (hugetlb_early_cma(h)) 3130 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3131 else { 3132 if (node_exact) 3133 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3134 huge_page_size(h), 0, 3135 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3136 else { 3137 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3138 huge_page_size(h), 0, 3139 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3140 /* 3141 * For pre-HVO to work correctly, pages need to be on 3142 * the list for the node they were actually allocated 3143 * from. That node may be different in the case of 3144 * fallback by memblock_alloc_try_nid_raw. So, 3145 * extract the actual node first. 3146 */ 3147 if (m) 3148 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3149 } 3150 3151 if (m) { 3152 m->flags = 0; 3153 m->cma = NULL; 3154 } 3155 } 3156 3157 if (m) { 3158 /* 3159 * Use the beginning of the huge page to store the 3160 * huge_bootmem_page struct (until gather_bootmem 3161 * puts them into the mem_map). 3162 * 3163 * Put them into a private list first because mem_map 3164 * is not up yet. 3165 */ 3166 INIT_LIST_HEAD(&m->list); 3167 list_add(&m->list, &huge_boot_pages[listnode]); 3168 m->hstate = h; 3169 } 3170 3171 return m; 3172 } 3173 3174 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3175 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3176 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3177 { 3178 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3179 int nr_nodes, node = nid; 3180 3181 /* do node specific alloc */ 3182 if (nid != NUMA_NO_NODE) { 3183 m = alloc_bootmem(h, node, true); 3184 if (!m) 3185 return 0; 3186 goto found; 3187 } 3188 3189 /* allocate from next node when distributing huge pages */ 3190 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, 3191 &hugetlb_bootmem_nodes) { 3192 m = alloc_bootmem(h, node, false); 3193 if (!m) 3194 return 0; 3195 goto found; 3196 } 3197 3198 found: 3199 3200 /* 3201 * Only initialize the head struct page in memmap_init_reserved_pages, 3202 * rest of the struct pages will be initialized by the HugeTLB 3203 * subsystem itself. 3204 * The head struct page is used to get folio information by the HugeTLB 3205 * subsystem like zone id and node id. 3206 */ 3207 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3208 huge_page_size(h) - PAGE_SIZE); 3209 3210 return 1; 3211 } 3212 3213 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3214 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3215 unsigned long start_page_number, 3216 unsigned long end_page_number) 3217 { 3218 enum zone_type zone = zone_idx(folio_zone(folio)); 3219 int nid = folio_nid(folio); 3220 struct page *page = folio_page(folio, start_page_number); 3221 unsigned long head_pfn = folio_pfn(folio); 3222 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3223 3224 /* 3225 * As we marked all tail pages with memblock_reserved_mark_noinit(), 3226 * we must initialize them ourselves here. 3227 */ 3228 for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) { 3229 __init_single_page(page, pfn, zone, nid); 3230 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3231 set_page_count(page, 0); 3232 } 3233 } 3234 3235 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3236 struct hstate *h, 3237 unsigned long nr_pages) 3238 { 3239 int ret; 3240 3241 /* 3242 * This is an open-coded prep_compound_page() whereby we avoid 3243 * walking pages twice by initializing/preparing+freezing them in the 3244 * same go. 3245 */ 3246 __folio_clear_reserved(folio); 3247 __folio_set_head(folio); 3248 ret = folio_ref_freeze(folio, 1); 3249 VM_BUG_ON(!ret); 3250 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3251 prep_compound_head((struct page *)folio, huge_page_order(h)); 3252 } 3253 3254 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3255 { 3256 return m->flags & HUGE_BOOTMEM_HVO; 3257 } 3258 3259 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3260 { 3261 return m->flags & HUGE_BOOTMEM_CMA; 3262 } 3263 3264 /* 3265 * memblock-allocated pageblocks might not have the migrate type set 3266 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3267 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3268 * reservation. 3269 * 3270 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3271 * read-only, but that's ok - for sparse vmemmap this does not write to 3272 * the page structure. 3273 */ 3274 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3275 struct hstate *h) 3276 { 3277 unsigned long nr_pages = pages_per_huge_page(h), i; 3278 3279 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3280 3281 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3282 if (folio_test_hugetlb_cma(folio)) 3283 init_cma_pageblock(folio_page(folio, i)); 3284 else 3285 init_pageblock_migratetype(folio_page(folio, i), 3286 MIGRATE_MOVABLE, false); 3287 } 3288 } 3289 3290 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3291 struct list_head *folio_list) 3292 { 3293 unsigned long flags; 3294 struct folio *folio, *tmp_f; 3295 3296 /* Send list for bulk vmemmap optimization processing */ 3297 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3298 3299 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3300 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3301 /* 3302 * If HVO fails, initialize all tail struct pages 3303 * We do not worry about potential long lock hold 3304 * time as this is early in boot and there should 3305 * be no contention. 3306 */ 3307 hugetlb_folio_init_tail_vmemmap(folio, 3308 HUGETLB_VMEMMAP_RESERVE_PAGES, 3309 pages_per_huge_page(h)); 3310 } 3311 hugetlb_bootmem_init_migratetype(folio, h); 3312 /* Subdivide locks to achieve better parallel performance */ 3313 spin_lock_irqsave(&hugetlb_lock, flags); 3314 account_new_hugetlb_folio(h, folio); 3315 enqueue_hugetlb_folio(h, folio); 3316 spin_unlock_irqrestore(&hugetlb_lock, flags); 3317 } 3318 } 3319 3320 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3321 struct huge_bootmem_page *m) 3322 { 3323 unsigned long start_pfn; 3324 bool valid; 3325 3326 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3327 /* 3328 * Already validated, skip check. 3329 */ 3330 return true; 3331 } 3332 3333 if (hugetlb_bootmem_page_earlycma(m)) { 3334 valid = cma_validate_zones(m->cma); 3335 goto out; 3336 } 3337 3338 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3339 3340 valid = !pfn_range_intersects_zones(nid, start_pfn, 3341 pages_per_huge_page(m->hstate)); 3342 out: 3343 if (!valid) 3344 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3345 3346 return valid; 3347 } 3348 3349 /* 3350 * Free a bootmem page that was found to be invalid (intersecting with 3351 * multiple zones). 3352 * 3353 * Since it intersects with multiple zones, we can't just do a free 3354 * operation on all pages at once, but instead have to walk all 3355 * pages, freeing them one by one. 3356 */ 3357 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3358 struct hstate *h) 3359 { 3360 unsigned long npages = pages_per_huge_page(h); 3361 unsigned long pfn; 3362 3363 while (npages--) { 3364 pfn = page_to_pfn(page); 3365 __init_page_from_nid(pfn, nid); 3366 free_reserved_page(page); 3367 page++; 3368 } 3369 } 3370 3371 /* 3372 * Put bootmem huge pages into the standard lists after mem_map is up. 3373 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3374 */ 3375 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3376 { 3377 LIST_HEAD(folio_list); 3378 struct huge_bootmem_page *m, *tm; 3379 struct hstate *h = NULL, *prev_h = NULL; 3380 3381 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3382 struct page *page = virt_to_page(m); 3383 struct folio *folio = (void *)page; 3384 3385 h = m->hstate; 3386 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3387 /* 3388 * Can't use this page. Initialize the 3389 * page structures if that hasn't already 3390 * been done, and give them to the page 3391 * allocator. 3392 */ 3393 hugetlb_bootmem_free_invalid_page(nid, page, h); 3394 continue; 3395 } 3396 3397 /* 3398 * It is possible to have multiple huge page sizes (hstates) 3399 * in this list. If so, process each size separately. 3400 */ 3401 if (h != prev_h && prev_h != NULL) 3402 prep_and_add_bootmem_folios(prev_h, &folio_list); 3403 prev_h = h; 3404 3405 VM_BUG_ON(!hstate_is_gigantic(h)); 3406 WARN_ON(folio_ref_count(folio) != 1); 3407 3408 hugetlb_folio_init_vmemmap(folio, h, 3409 HUGETLB_VMEMMAP_RESERVE_PAGES); 3410 init_new_hugetlb_folio(folio); 3411 3412 if (hugetlb_bootmem_page_prehvo(m)) 3413 /* 3414 * If pre-HVO was done, just set the 3415 * flag, the HVO code will then skip 3416 * this folio. 3417 */ 3418 folio_set_hugetlb_vmemmap_optimized(folio); 3419 3420 if (hugetlb_bootmem_page_earlycma(m)) 3421 folio_set_hugetlb_cma(folio); 3422 3423 list_add(&folio->lru, &folio_list); 3424 3425 /* 3426 * We need to restore the 'stolen' pages to totalram_pages 3427 * in order to fix confusing memory reports from free(1) and 3428 * other side-effects, like CommitLimit going negative. 3429 * 3430 * For CMA pages, this is done in init_cma_pageblock 3431 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3432 */ 3433 if (!folio_test_hugetlb_cma(folio)) 3434 adjust_managed_page_count(page, pages_per_huge_page(h)); 3435 cond_resched(); 3436 } 3437 3438 prep_and_add_bootmem_folios(h, &folio_list); 3439 } 3440 3441 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3442 unsigned long end, void *arg) 3443 { 3444 int nid; 3445 3446 for (nid = start; nid < end; nid++) 3447 gather_bootmem_prealloc_node(nid); 3448 } 3449 3450 static void __init gather_bootmem_prealloc(void) 3451 { 3452 struct padata_mt_job job = { 3453 .thread_fn = gather_bootmem_prealloc_parallel, 3454 .fn_arg = NULL, 3455 .start = 0, 3456 .size = nr_node_ids, 3457 .align = 1, 3458 .min_chunk = 1, 3459 .max_threads = num_node_state(N_MEMORY), 3460 .numa_aware = true, 3461 }; 3462 3463 padata_do_multithreaded(&job); 3464 } 3465 3466 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3467 { 3468 unsigned long i; 3469 char buf[32]; 3470 LIST_HEAD(folio_list); 3471 3472 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3473 if (hstate_is_gigantic(h)) { 3474 if (!alloc_bootmem_huge_page(h, nid)) 3475 break; 3476 } else { 3477 struct folio *folio; 3478 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3479 3480 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3481 &node_states[N_MEMORY], NULL); 3482 if (!folio) 3483 break; 3484 list_add(&folio->lru, &folio_list); 3485 } 3486 cond_resched(); 3487 } 3488 3489 if (!list_empty(&folio_list)) 3490 prep_and_add_allocated_folios(h, &folio_list); 3491 3492 if (i == h->max_huge_pages_node[nid]) 3493 return; 3494 3495 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3496 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3497 h->max_huge_pages_node[nid], buf, nid, i); 3498 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3499 h->max_huge_pages_node[nid] = i; 3500 } 3501 3502 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3503 { 3504 int i; 3505 bool node_specific_alloc = false; 3506 3507 for_each_online_node(i) { 3508 if (h->max_huge_pages_node[i] > 0) { 3509 hugetlb_hstate_alloc_pages_onenode(h, i); 3510 node_specific_alloc = true; 3511 } 3512 } 3513 3514 return node_specific_alloc; 3515 } 3516 3517 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3518 { 3519 if (allocated < h->max_huge_pages) { 3520 char buf[32]; 3521 3522 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3523 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3524 h->max_huge_pages, buf, allocated); 3525 h->max_huge_pages = allocated; 3526 } 3527 } 3528 3529 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3530 { 3531 struct hstate *h = (struct hstate *)arg; 3532 int i, num = end - start; 3533 nodemask_t node_alloc_noretry; 3534 LIST_HEAD(folio_list); 3535 int next_node = first_online_node; 3536 3537 /* Bit mask controlling how hard we retry per-node allocations.*/ 3538 nodes_clear(node_alloc_noretry); 3539 3540 for (i = 0; i < num; ++i) { 3541 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3542 &node_alloc_noretry, &next_node); 3543 if (!folio) 3544 break; 3545 3546 list_move(&folio->lru, &folio_list); 3547 cond_resched(); 3548 } 3549 3550 prep_and_add_allocated_folios(h, &folio_list); 3551 } 3552 3553 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3554 { 3555 unsigned long i; 3556 3557 for (i = 0; i < h->max_huge_pages; ++i) { 3558 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3559 break; 3560 cond_resched(); 3561 } 3562 3563 return i; 3564 } 3565 3566 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3567 { 3568 struct padata_mt_job job = { 3569 .fn_arg = h, 3570 .align = 1, 3571 .numa_aware = true 3572 }; 3573 3574 unsigned long jiffies_start; 3575 unsigned long jiffies_end; 3576 unsigned long remaining; 3577 3578 job.thread_fn = hugetlb_pages_alloc_boot_node; 3579 3580 /* 3581 * job.max_threads is 25% of the available cpu threads by default. 3582 * 3583 * On large servers with terabytes of memory, huge page allocation 3584 * can consume a considerably amount of time. 3585 * 3586 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3587 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3588 * 3589 * +-----------------------+-------+-------+-------+-------+-------+ 3590 * | threads | 8 | 16 | 32 | 64 | 128 | 3591 * +-----------------------+-------+-------+-------+-------+-------+ 3592 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3593 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3594 * +-----------------------+-------+-------+-------+-------+-------+ 3595 */ 3596 if (hugepage_allocation_threads == 0) { 3597 hugepage_allocation_threads = num_online_cpus() / 4; 3598 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3599 } 3600 3601 job.max_threads = hugepage_allocation_threads; 3602 3603 jiffies_start = jiffies; 3604 do { 3605 remaining = h->max_huge_pages - h->nr_huge_pages; 3606 3607 job.start = h->nr_huge_pages; 3608 job.size = remaining; 3609 job.min_chunk = remaining / hugepage_allocation_threads; 3610 padata_do_multithreaded(&job); 3611 3612 if (h->nr_huge_pages == h->max_huge_pages) 3613 break; 3614 3615 /* 3616 * Retry only if the vmemmap optimization might have been able to free 3617 * some memory back to the system. 3618 */ 3619 if (!hugetlb_vmemmap_optimizable(h)) 3620 break; 3621 3622 /* Continue if progress was made in last iteration */ 3623 } while (remaining != (h->max_huge_pages - h->nr_huge_pages)); 3624 3625 jiffies_end = jiffies; 3626 3627 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3628 jiffies_to_msecs(jiffies_end - jiffies_start), 3629 hugepage_allocation_threads); 3630 3631 return h->nr_huge_pages; 3632 } 3633 3634 /* 3635 * NOTE: this routine is called in different contexts for gigantic and 3636 * non-gigantic pages. 3637 * - For gigantic pages, this is called early in the boot process and 3638 * pages are allocated from memblock allocated or something similar. 3639 * Gigantic pages are actually added to pools later with the routine 3640 * gather_bootmem_prealloc. 3641 * - For non-gigantic pages, this is called later in the boot process after 3642 * all of mm is up and functional. Pages are allocated from buddy and 3643 * then added to hugetlb pools. 3644 */ 3645 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3646 { 3647 unsigned long allocated; 3648 3649 /* 3650 * Skip gigantic hugepages allocation if early CMA 3651 * reservations are not available. 3652 */ 3653 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3654 !hugetlb_early_cma(h)) { 3655 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3656 return; 3657 } 3658 3659 if (!h->max_huge_pages) 3660 return; 3661 3662 /* do node specific alloc */ 3663 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3664 return; 3665 3666 /* below will do all node balanced alloc */ 3667 if (hstate_is_gigantic(h)) 3668 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3669 else 3670 allocated = hugetlb_pages_alloc_boot(h); 3671 3672 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3673 } 3674 3675 static void __init hugetlb_init_hstates(void) 3676 { 3677 struct hstate *h, *h2; 3678 3679 for_each_hstate(h) { 3680 /* 3681 * Always reset to first_memory_node here, even if 3682 * next_nid_to_alloc was set before - we can't 3683 * reference hugetlb_bootmem_nodes after init, and 3684 * first_memory_node is right for all further allocations. 3685 */ 3686 h->next_nid_to_alloc = first_memory_node; 3687 h->next_nid_to_free = first_memory_node; 3688 3689 /* oversize hugepages were init'ed in early boot */ 3690 if (!hstate_is_gigantic(h)) 3691 hugetlb_hstate_alloc_pages(h); 3692 3693 /* 3694 * Set demote order for each hstate. Note that 3695 * h->demote_order is initially 0. 3696 * - We can not demote gigantic pages if runtime freeing 3697 * is not supported, so skip this. 3698 * - If CMA allocation is possible, we can not demote 3699 * HUGETLB_PAGE_ORDER or smaller size pages. 3700 */ 3701 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3702 continue; 3703 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3704 continue; 3705 for_each_hstate(h2) { 3706 if (h2 == h) 3707 continue; 3708 if (h2->order < h->order && 3709 h2->order > h->demote_order) 3710 h->demote_order = h2->order; 3711 } 3712 } 3713 } 3714 3715 static void __init report_hugepages(void) 3716 { 3717 struct hstate *h; 3718 unsigned long nrinvalid; 3719 3720 for_each_hstate(h) { 3721 char buf[32]; 3722 3723 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3724 h->max_huge_pages -= nrinvalid; 3725 3726 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3727 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3728 buf, h->nr_huge_pages); 3729 if (nrinvalid) 3730 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3731 buf, nrinvalid, str_plural(nrinvalid)); 3732 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3733 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3734 } 3735 } 3736 3737 #ifdef CONFIG_HIGHMEM 3738 static void try_to_free_low(struct hstate *h, unsigned long count, 3739 nodemask_t *nodes_allowed) 3740 { 3741 int i; 3742 LIST_HEAD(page_list); 3743 3744 lockdep_assert_held(&hugetlb_lock); 3745 if (hstate_is_gigantic(h)) 3746 return; 3747 3748 /* 3749 * Collect pages to be freed on a list, and free after dropping lock 3750 */ 3751 for_each_node_mask(i, *nodes_allowed) { 3752 struct folio *folio, *next; 3753 struct list_head *freel = &h->hugepage_freelists[i]; 3754 list_for_each_entry_safe(folio, next, freel, lru) { 3755 if (count >= h->nr_huge_pages) 3756 goto out; 3757 if (folio_test_highmem(folio)) 3758 continue; 3759 remove_hugetlb_folio(h, folio, false); 3760 list_add(&folio->lru, &page_list); 3761 } 3762 } 3763 3764 out: 3765 spin_unlock_irq(&hugetlb_lock); 3766 update_and_free_pages_bulk(h, &page_list); 3767 spin_lock_irq(&hugetlb_lock); 3768 } 3769 #else 3770 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3771 nodemask_t *nodes_allowed) 3772 { 3773 } 3774 #endif 3775 3776 /* 3777 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3778 * balanced by operating on them in a round-robin fashion. 3779 * Returns 1 if an adjustment was made. 3780 */ 3781 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3782 int delta) 3783 { 3784 int nr_nodes, node; 3785 3786 lockdep_assert_held(&hugetlb_lock); 3787 VM_BUG_ON(delta != -1 && delta != 1); 3788 3789 if (delta < 0) { 3790 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3791 if (h->surplus_huge_pages_node[node]) 3792 goto found; 3793 } 3794 } else { 3795 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3796 if (h->surplus_huge_pages_node[node] < 3797 h->nr_huge_pages_node[node]) 3798 goto found; 3799 } 3800 } 3801 return 0; 3802 3803 found: 3804 h->surplus_huge_pages += delta; 3805 h->surplus_huge_pages_node[node] += delta; 3806 return 1; 3807 } 3808 3809 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3810 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3811 nodemask_t *nodes_allowed) 3812 { 3813 unsigned long persistent_free_count; 3814 unsigned long min_count; 3815 unsigned long allocated; 3816 struct folio *folio; 3817 LIST_HEAD(page_list); 3818 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3819 3820 /* 3821 * Bit mask controlling how hard we retry per-node allocations. 3822 * If we can not allocate the bit mask, do not attempt to allocate 3823 * the requested huge pages. 3824 */ 3825 if (node_alloc_noretry) 3826 nodes_clear(*node_alloc_noretry); 3827 else 3828 return -ENOMEM; 3829 3830 /* 3831 * resize_lock mutex prevents concurrent adjustments to number of 3832 * pages in hstate via the proc/sysfs interfaces. 3833 */ 3834 mutex_lock(&h->resize_lock); 3835 flush_free_hpage_work(h); 3836 spin_lock_irq(&hugetlb_lock); 3837 3838 /* 3839 * Check for a node specific request. 3840 * Changing node specific huge page count may require a corresponding 3841 * change to the global count. In any case, the passed node mask 3842 * (nodes_allowed) will restrict alloc/free to the specified node. 3843 */ 3844 if (nid != NUMA_NO_NODE) { 3845 unsigned long old_count = count; 3846 3847 count += persistent_huge_pages(h) - 3848 (h->nr_huge_pages_node[nid] - 3849 h->surplus_huge_pages_node[nid]); 3850 /* 3851 * User may have specified a large count value which caused the 3852 * above calculation to overflow. In this case, they wanted 3853 * to allocate as many huge pages as possible. Set count to 3854 * largest possible value to align with their intention. 3855 */ 3856 if (count < old_count) 3857 count = ULONG_MAX; 3858 } 3859 3860 /* 3861 * Gigantic pages runtime allocation depend on the capability for large 3862 * page range allocation. 3863 * If the system does not provide this feature, return an error when 3864 * the user tries to allocate gigantic pages but let the user free the 3865 * boottime allocated gigantic pages. 3866 */ 3867 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3868 if (count > persistent_huge_pages(h)) { 3869 spin_unlock_irq(&hugetlb_lock); 3870 mutex_unlock(&h->resize_lock); 3871 NODEMASK_FREE(node_alloc_noretry); 3872 return -EINVAL; 3873 } 3874 /* Fall through to decrease pool */ 3875 } 3876 3877 /* 3878 * Increase the pool size 3879 * First take pages out of surplus state. Then make up the 3880 * remaining difference by allocating fresh huge pages. 3881 * 3882 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3883 * to convert a surplus huge page to a normal huge page. That is 3884 * not critical, though, it just means the overall size of the 3885 * pool might be one hugepage larger than it needs to be, but 3886 * within all the constraints specified by the sysctls. 3887 */ 3888 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3889 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3890 break; 3891 } 3892 3893 allocated = 0; 3894 while (count > (persistent_huge_pages(h) + allocated)) { 3895 /* 3896 * If this allocation races such that we no longer need the 3897 * page, free_huge_folio will handle it by freeing the page 3898 * and reducing the surplus. 3899 */ 3900 spin_unlock_irq(&hugetlb_lock); 3901 3902 /* yield cpu to avoid soft lockup */ 3903 cond_resched(); 3904 3905 folio = alloc_pool_huge_folio(h, nodes_allowed, 3906 node_alloc_noretry, 3907 &h->next_nid_to_alloc); 3908 if (!folio) { 3909 prep_and_add_allocated_folios(h, &page_list); 3910 spin_lock_irq(&hugetlb_lock); 3911 goto out; 3912 } 3913 3914 list_add(&folio->lru, &page_list); 3915 allocated++; 3916 3917 /* Bail for signals. Probably ctrl-c from user */ 3918 if (signal_pending(current)) { 3919 prep_and_add_allocated_folios(h, &page_list); 3920 spin_lock_irq(&hugetlb_lock); 3921 goto out; 3922 } 3923 3924 spin_lock_irq(&hugetlb_lock); 3925 } 3926 3927 /* Add allocated pages to the pool */ 3928 if (!list_empty(&page_list)) { 3929 spin_unlock_irq(&hugetlb_lock); 3930 prep_and_add_allocated_folios(h, &page_list); 3931 spin_lock_irq(&hugetlb_lock); 3932 } 3933 3934 /* 3935 * Decrease the pool size 3936 * First return free pages to the buddy allocator (being careful 3937 * to keep enough around to satisfy reservations). Then place 3938 * pages into surplus state as needed so the pool will shrink 3939 * to the desired size as pages become free. 3940 * 3941 * By placing pages into the surplus state independent of the 3942 * overcommit value, we are allowing the surplus pool size to 3943 * exceed overcommit. There are few sane options here. Since 3944 * alloc_surplus_hugetlb_folio() is checking the global counter, 3945 * though, we'll note that we're not allowed to exceed surplus 3946 * and won't grow the pool anywhere else. Not until one of the 3947 * sysctls are changed, or the surplus pages go out of use. 3948 * 3949 * min_count is the expected number of persistent pages, we 3950 * shouldn't calculate min_count by using 3951 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3952 * because there may exist free surplus huge pages, and this will 3953 * lead to subtracting twice. Free surplus huge pages come from HVO 3954 * failing to restore vmemmap, see comments in the callers of 3955 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3956 * persistent free count first. 3957 */ 3958 persistent_free_count = h->free_huge_pages; 3959 if (h->free_huge_pages > persistent_huge_pages(h)) { 3960 if (h->free_huge_pages > h->surplus_huge_pages) 3961 persistent_free_count -= h->surplus_huge_pages; 3962 else 3963 persistent_free_count = 0; 3964 } 3965 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3966 min_count = max(count, min_count); 3967 try_to_free_low(h, min_count, nodes_allowed); 3968 3969 /* 3970 * Collect pages to be removed on list without dropping lock 3971 */ 3972 while (min_count < persistent_huge_pages(h)) { 3973 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3974 if (!folio) 3975 break; 3976 3977 list_add(&folio->lru, &page_list); 3978 } 3979 /* free the pages after dropping lock */ 3980 spin_unlock_irq(&hugetlb_lock); 3981 update_and_free_pages_bulk(h, &page_list); 3982 flush_free_hpage_work(h); 3983 spin_lock_irq(&hugetlb_lock); 3984 3985 while (count < persistent_huge_pages(h)) { 3986 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3987 break; 3988 } 3989 out: 3990 h->max_huge_pages = persistent_huge_pages(h); 3991 spin_unlock_irq(&hugetlb_lock); 3992 mutex_unlock(&h->resize_lock); 3993 3994 NODEMASK_FREE(node_alloc_noretry); 3995 3996 return 0; 3997 } 3998 3999 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 4000 struct list_head *src_list) 4001 { 4002 long rc; 4003 struct folio *folio, *next; 4004 LIST_HEAD(dst_list); 4005 LIST_HEAD(ret_list); 4006 4007 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 4008 list_splice_init(&ret_list, src_list); 4009 4010 /* 4011 * Taking target hstate mutex synchronizes with set_max_huge_pages. 4012 * Without the mutex, pages added to target hstate could be marked 4013 * as surplus. 4014 * 4015 * Note that we already hold src->resize_lock. To prevent deadlock, 4016 * use the convention of always taking larger size hstate mutex first. 4017 */ 4018 mutex_lock(&dst->resize_lock); 4019 4020 list_for_each_entry_safe(folio, next, src_list, lru) { 4021 int i; 4022 bool cma; 4023 4024 if (folio_test_hugetlb_vmemmap_optimized(folio)) 4025 continue; 4026 4027 cma = folio_test_hugetlb_cma(folio); 4028 4029 list_del(&folio->lru); 4030 4031 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4032 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4033 4034 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4035 struct page *page = folio_page(folio, i); 4036 /* Careful: see __split_huge_page_tail() */ 4037 struct folio *new_folio = (struct folio *)page; 4038 4039 clear_compound_head(page); 4040 prep_compound_page(page, dst->order); 4041 4042 new_folio->mapping = NULL; 4043 init_new_hugetlb_folio(new_folio); 4044 /* Copy the CMA flag so that it is freed correctly */ 4045 if (cma) 4046 folio_set_hugetlb_cma(new_folio); 4047 list_add(&new_folio->lru, &dst_list); 4048 } 4049 } 4050 4051 prep_and_add_allocated_folios(dst, &dst_list); 4052 4053 mutex_unlock(&dst->resize_lock); 4054 4055 return rc; 4056 } 4057 4058 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4059 unsigned long nr_to_demote) 4060 __must_hold(&hugetlb_lock) 4061 { 4062 int nr_nodes, node; 4063 struct hstate *dst; 4064 long rc = 0; 4065 long nr_demoted = 0; 4066 4067 lockdep_assert_held(&hugetlb_lock); 4068 4069 /* We should never get here if no demote order */ 4070 if (!src->demote_order) { 4071 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4072 return -EINVAL; /* internal error */ 4073 } 4074 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4075 4076 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4077 LIST_HEAD(list); 4078 struct folio *folio, *next; 4079 4080 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4081 if (folio_test_hwpoison(folio)) 4082 continue; 4083 4084 remove_hugetlb_folio(src, folio, false); 4085 list_add(&folio->lru, &list); 4086 4087 if (++nr_demoted == nr_to_demote) 4088 break; 4089 } 4090 4091 spin_unlock_irq(&hugetlb_lock); 4092 4093 rc = demote_free_hugetlb_folios(src, dst, &list); 4094 4095 spin_lock_irq(&hugetlb_lock); 4096 4097 list_for_each_entry_safe(folio, next, &list, lru) { 4098 list_del(&folio->lru); 4099 add_hugetlb_folio(src, folio, false); 4100 4101 nr_demoted--; 4102 } 4103 4104 if (rc < 0 || nr_demoted == nr_to_demote) 4105 break; 4106 } 4107 4108 /* 4109 * Not absolutely necessary, but for consistency update max_huge_pages 4110 * based on pool changes for the demoted page. 4111 */ 4112 src->max_huge_pages -= nr_demoted; 4113 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4114 4115 if (rc < 0) 4116 return rc; 4117 4118 if (nr_demoted) 4119 return nr_demoted; 4120 /* 4121 * Only way to get here is if all pages on free lists are poisoned. 4122 * Return -EBUSY so that caller will not retry. 4123 */ 4124 return -EBUSY; 4125 } 4126 4127 #define HSTATE_ATTR_RO(_name) \ 4128 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4129 4130 #define HSTATE_ATTR_WO(_name) \ 4131 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4132 4133 #define HSTATE_ATTR(_name) \ 4134 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4135 4136 static struct kobject *hugepages_kobj; 4137 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4138 4139 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4140 4141 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4142 { 4143 int i; 4144 4145 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4146 if (hstate_kobjs[i] == kobj) { 4147 if (nidp) 4148 *nidp = NUMA_NO_NODE; 4149 return &hstates[i]; 4150 } 4151 4152 return kobj_to_node_hstate(kobj, nidp); 4153 } 4154 4155 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4156 struct kobj_attribute *attr, char *buf) 4157 { 4158 struct hstate *h; 4159 unsigned long nr_huge_pages; 4160 int nid; 4161 4162 h = kobj_to_hstate(kobj, &nid); 4163 if (nid == NUMA_NO_NODE) 4164 nr_huge_pages = h->nr_huge_pages; 4165 else 4166 nr_huge_pages = h->nr_huge_pages_node[nid]; 4167 4168 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4169 } 4170 4171 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4172 struct hstate *h, int nid, 4173 unsigned long count, size_t len) 4174 { 4175 int err; 4176 nodemask_t nodes_allowed, *n_mask; 4177 4178 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4179 return -EINVAL; 4180 4181 if (nid == NUMA_NO_NODE) { 4182 /* 4183 * global hstate attribute 4184 */ 4185 if (!(obey_mempolicy && 4186 init_nodemask_of_mempolicy(&nodes_allowed))) 4187 n_mask = &node_states[N_MEMORY]; 4188 else 4189 n_mask = &nodes_allowed; 4190 } else { 4191 /* 4192 * Node specific request. count adjustment happens in 4193 * set_max_huge_pages() after acquiring hugetlb_lock. 4194 */ 4195 init_nodemask_of_node(&nodes_allowed, nid); 4196 n_mask = &nodes_allowed; 4197 } 4198 4199 err = set_max_huge_pages(h, count, nid, n_mask); 4200 4201 return err ? err : len; 4202 } 4203 4204 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4205 struct kobject *kobj, const char *buf, 4206 size_t len) 4207 { 4208 struct hstate *h; 4209 unsigned long count; 4210 int nid; 4211 int err; 4212 4213 err = kstrtoul(buf, 10, &count); 4214 if (err) 4215 return err; 4216 4217 h = kobj_to_hstate(kobj, &nid); 4218 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4219 } 4220 4221 static ssize_t nr_hugepages_show(struct kobject *kobj, 4222 struct kobj_attribute *attr, char *buf) 4223 { 4224 return nr_hugepages_show_common(kobj, attr, buf); 4225 } 4226 4227 static ssize_t nr_hugepages_store(struct kobject *kobj, 4228 struct kobj_attribute *attr, const char *buf, size_t len) 4229 { 4230 return nr_hugepages_store_common(false, kobj, buf, len); 4231 } 4232 HSTATE_ATTR(nr_hugepages); 4233 4234 #ifdef CONFIG_NUMA 4235 4236 /* 4237 * hstate attribute for optionally mempolicy-based constraint on persistent 4238 * huge page alloc/free. 4239 */ 4240 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4241 struct kobj_attribute *attr, 4242 char *buf) 4243 { 4244 return nr_hugepages_show_common(kobj, attr, buf); 4245 } 4246 4247 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4248 struct kobj_attribute *attr, const char *buf, size_t len) 4249 { 4250 return nr_hugepages_store_common(true, kobj, buf, len); 4251 } 4252 HSTATE_ATTR(nr_hugepages_mempolicy); 4253 #endif 4254 4255 4256 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4257 struct kobj_attribute *attr, char *buf) 4258 { 4259 struct hstate *h = kobj_to_hstate(kobj, NULL); 4260 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4261 } 4262 4263 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4264 struct kobj_attribute *attr, const char *buf, size_t count) 4265 { 4266 int err; 4267 unsigned long input; 4268 struct hstate *h = kobj_to_hstate(kobj, NULL); 4269 4270 if (hstate_is_gigantic(h)) 4271 return -EINVAL; 4272 4273 err = kstrtoul(buf, 10, &input); 4274 if (err) 4275 return err; 4276 4277 spin_lock_irq(&hugetlb_lock); 4278 h->nr_overcommit_huge_pages = input; 4279 spin_unlock_irq(&hugetlb_lock); 4280 4281 return count; 4282 } 4283 HSTATE_ATTR(nr_overcommit_hugepages); 4284 4285 static ssize_t free_hugepages_show(struct kobject *kobj, 4286 struct kobj_attribute *attr, char *buf) 4287 { 4288 struct hstate *h; 4289 unsigned long free_huge_pages; 4290 int nid; 4291 4292 h = kobj_to_hstate(kobj, &nid); 4293 if (nid == NUMA_NO_NODE) 4294 free_huge_pages = h->free_huge_pages; 4295 else 4296 free_huge_pages = h->free_huge_pages_node[nid]; 4297 4298 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4299 } 4300 HSTATE_ATTR_RO(free_hugepages); 4301 4302 static ssize_t resv_hugepages_show(struct kobject *kobj, 4303 struct kobj_attribute *attr, char *buf) 4304 { 4305 struct hstate *h = kobj_to_hstate(kobj, NULL); 4306 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4307 } 4308 HSTATE_ATTR_RO(resv_hugepages); 4309 4310 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4311 struct kobj_attribute *attr, char *buf) 4312 { 4313 struct hstate *h; 4314 unsigned long surplus_huge_pages; 4315 int nid; 4316 4317 h = kobj_to_hstate(kobj, &nid); 4318 if (nid == NUMA_NO_NODE) 4319 surplus_huge_pages = h->surplus_huge_pages; 4320 else 4321 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4322 4323 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4324 } 4325 HSTATE_ATTR_RO(surplus_hugepages); 4326 4327 static ssize_t demote_store(struct kobject *kobj, 4328 struct kobj_attribute *attr, const char *buf, size_t len) 4329 { 4330 unsigned long nr_demote; 4331 unsigned long nr_available; 4332 nodemask_t nodes_allowed, *n_mask; 4333 struct hstate *h; 4334 int err; 4335 int nid; 4336 4337 err = kstrtoul(buf, 10, &nr_demote); 4338 if (err) 4339 return err; 4340 h = kobj_to_hstate(kobj, &nid); 4341 4342 if (nid != NUMA_NO_NODE) { 4343 init_nodemask_of_node(&nodes_allowed, nid); 4344 n_mask = &nodes_allowed; 4345 } else { 4346 n_mask = &node_states[N_MEMORY]; 4347 } 4348 4349 /* Synchronize with other sysfs operations modifying huge pages */ 4350 mutex_lock(&h->resize_lock); 4351 spin_lock_irq(&hugetlb_lock); 4352 4353 while (nr_demote) { 4354 long rc; 4355 4356 /* 4357 * Check for available pages to demote each time thorough the 4358 * loop as demote_pool_huge_page will drop hugetlb_lock. 4359 */ 4360 if (nid != NUMA_NO_NODE) 4361 nr_available = h->free_huge_pages_node[nid]; 4362 else 4363 nr_available = h->free_huge_pages; 4364 nr_available -= h->resv_huge_pages; 4365 if (!nr_available) 4366 break; 4367 4368 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4369 if (rc < 0) { 4370 err = rc; 4371 break; 4372 } 4373 4374 nr_demote -= rc; 4375 } 4376 4377 spin_unlock_irq(&hugetlb_lock); 4378 mutex_unlock(&h->resize_lock); 4379 4380 if (err) 4381 return err; 4382 return len; 4383 } 4384 HSTATE_ATTR_WO(demote); 4385 4386 static ssize_t demote_size_show(struct kobject *kobj, 4387 struct kobj_attribute *attr, char *buf) 4388 { 4389 struct hstate *h = kobj_to_hstate(kobj, NULL); 4390 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4391 4392 return sysfs_emit(buf, "%lukB\n", demote_size); 4393 } 4394 4395 static ssize_t demote_size_store(struct kobject *kobj, 4396 struct kobj_attribute *attr, 4397 const char *buf, size_t count) 4398 { 4399 struct hstate *h, *demote_hstate; 4400 unsigned long demote_size; 4401 unsigned int demote_order; 4402 4403 demote_size = (unsigned long)memparse(buf, NULL); 4404 4405 demote_hstate = size_to_hstate(demote_size); 4406 if (!demote_hstate) 4407 return -EINVAL; 4408 demote_order = demote_hstate->order; 4409 if (demote_order < HUGETLB_PAGE_ORDER) 4410 return -EINVAL; 4411 4412 /* demote order must be smaller than hstate order */ 4413 h = kobj_to_hstate(kobj, NULL); 4414 if (demote_order >= h->order) 4415 return -EINVAL; 4416 4417 /* resize_lock synchronizes access to demote size and writes */ 4418 mutex_lock(&h->resize_lock); 4419 h->demote_order = demote_order; 4420 mutex_unlock(&h->resize_lock); 4421 4422 return count; 4423 } 4424 HSTATE_ATTR(demote_size); 4425 4426 static struct attribute *hstate_attrs[] = { 4427 &nr_hugepages_attr.attr, 4428 &nr_overcommit_hugepages_attr.attr, 4429 &free_hugepages_attr.attr, 4430 &resv_hugepages_attr.attr, 4431 &surplus_hugepages_attr.attr, 4432 #ifdef CONFIG_NUMA 4433 &nr_hugepages_mempolicy_attr.attr, 4434 #endif 4435 NULL, 4436 }; 4437 4438 static const struct attribute_group hstate_attr_group = { 4439 .attrs = hstate_attrs, 4440 }; 4441 4442 static struct attribute *hstate_demote_attrs[] = { 4443 &demote_size_attr.attr, 4444 &demote_attr.attr, 4445 NULL, 4446 }; 4447 4448 static const struct attribute_group hstate_demote_attr_group = { 4449 .attrs = hstate_demote_attrs, 4450 }; 4451 4452 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4453 struct kobject **hstate_kobjs, 4454 const struct attribute_group *hstate_attr_group) 4455 { 4456 int retval; 4457 int hi = hstate_index(h); 4458 4459 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4460 if (!hstate_kobjs[hi]) 4461 return -ENOMEM; 4462 4463 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4464 if (retval) { 4465 kobject_put(hstate_kobjs[hi]); 4466 hstate_kobjs[hi] = NULL; 4467 return retval; 4468 } 4469 4470 if (h->demote_order) { 4471 retval = sysfs_create_group(hstate_kobjs[hi], 4472 &hstate_demote_attr_group); 4473 if (retval) { 4474 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4475 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4476 kobject_put(hstate_kobjs[hi]); 4477 hstate_kobjs[hi] = NULL; 4478 return retval; 4479 } 4480 } 4481 4482 return 0; 4483 } 4484 4485 #ifdef CONFIG_NUMA 4486 static bool hugetlb_sysfs_initialized __ro_after_init; 4487 4488 /* 4489 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4490 * with node devices in node_devices[] using a parallel array. The array 4491 * index of a node device or _hstate == node id. 4492 * This is here to avoid any static dependency of the node device driver, in 4493 * the base kernel, on the hugetlb module. 4494 */ 4495 struct node_hstate { 4496 struct kobject *hugepages_kobj; 4497 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4498 }; 4499 static struct node_hstate node_hstates[MAX_NUMNODES]; 4500 4501 /* 4502 * A subset of global hstate attributes for node devices 4503 */ 4504 static struct attribute *per_node_hstate_attrs[] = { 4505 &nr_hugepages_attr.attr, 4506 &free_hugepages_attr.attr, 4507 &surplus_hugepages_attr.attr, 4508 NULL, 4509 }; 4510 4511 static const struct attribute_group per_node_hstate_attr_group = { 4512 .attrs = per_node_hstate_attrs, 4513 }; 4514 4515 /* 4516 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4517 * Returns node id via non-NULL nidp. 4518 */ 4519 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4520 { 4521 int nid; 4522 4523 for (nid = 0; nid < nr_node_ids; nid++) { 4524 struct node_hstate *nhs = &node_hstates[nid]; 4525 int i; 4526 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4527 if (nhs->hstate_kobjs[i] == kobj) { 4528 if (nidp) 4529 *nidp = nid; 4530 return &hstates[i]; 4531 } 4532 } 4533 4534 BUG(); 4535 return NULL; 4536 } 4537 4538 /* 4539 * Unregister hstate attributes from a single node device. 4540 * No-op if no hstate attributes attached. 4541 */ 4542 void hugetlb_unregister_node(struct node *node) 4543 { 4544 struct hstate *h; 4545 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4546 4547 if (!nhs->hugepages_kobj) 4548 return; /* no hstate attributes */ 4549 4550 for_each_hstate(h) { 4551 int idx = hstate_index(h); 4552 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4553 4554 if (!hstate_kobj) 4555 continue; 4556 if (h->demote_order) 4557 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4558 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4559 kobject_put(hstate_kobj); 4560 nhs->hstate_kobjs[idx] = NULL; 4561 } 4562 4563 kobject_put(nhs->hugepages_kobj); 4564 nhs->hugepages_kobj = NULL; 4565 } 4566 4567 4568 /* 4569 * Register hstate attributes for a single node device. 4570 * No-op if attributes already registered. 4571 */ 4572 void hugetlb_register_node(struct node *node) 4573 { 4574 struct hstate *h; 4575 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4576 int err; 4577 4578 if (!hugetlb_sysfs_initialized) 4579 return; 4580 4581 if (nhs->hugepages_kobj) 4582 return; /* already allocated */ 4583 4584 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4585 &node->dev.kobj); 4586 if (!nhs->hugepages_kobj) 4587 return; 4588 4589 for_each_hstate(h) { 4590 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4591 nhs->hstate_kobjs, 4592 &per_node_hstate_attr_group); 4593 if (err) { 4594 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4595 h->name, node->dev.id); 4596 hugetlb_unregister_node(node); 4597 break; 4598 } 4599 } 4600 } 4601 4602 /* 4603 * hugetlb init time: register hstate attributes for all registered node 4604 * devices of nodes that have memory. All on-line nodes should have 4605 * registered their associated device by this time. 4606 */ 4607 static void __init hugetlb_register_all_nodes(void) 4608 { 4609 int nid; 4610 4611 for_each_online_node(nid) 4612 hugetlb_register_node(node_devices[nid]); 4613 } 4614 #else /* !CONFIG_NUMA */ 4615 4616 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4617 { 4618 BUG(); 4619 if (nidp) 4620 *nidp = -1; 4621 return NULL; 4622 } 4623 4624 static void hugetlb_register_all_nodes(void) { } 4625 4626 #endif 4627 4628 static void __init hugetlb_sysfs_init(void) 4629 { 4630 struct hstate *h; 4631 int err; 4632 4633 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4634 if (!hugepages_kobj) 4635 return; 4636 4637 for_each_hstate(h) { 4638 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4639 hstate_kobjs, &hstate_attr_group); 4640 if (err) 4641 pr_err("HugeTLB: Unable to add hstate %s\n", h->name); 4642 } 4643 4644 #ifdef CONFIG_NUMA 4645 hugetlb_sysfs_initialized = true; 4646 #endif 4647 hugetlb_register_all_nodes(); 4648 } 4649 4650 #ifdef CONFIG_SYSCTL 4651 static void hugetlb_sysctl_init(void); 4652 #else 4653 static inline void hugetlb_sysctl_init(void) { } 4654 #endif 4655 4656 static int __init hugetlb_init(void) 4657 { 4658 int i; 4659 4660 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4661 __NR_HPAGEFLAGS); 4662 BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER); 4663 4664 if (!hugepages_supported()) { 4665 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4666 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4667 return 0; 4668 } 4669 4670 /* 4671 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4672 * architectures depend on setup being done here. 4673 */ 4674 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4675 if (!parsed_default_hugepagesz) { 4676 /* 4677 * If we did not parse a default huge page size, set 4678 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4679 * number of huge pages for this default size was implicitly 4680 * specified, set that here as well. 4681 * Note that the implicit setting will overwrite an explicit 4682 * setting. A warning will be printed in this case. 4683 */ 4684 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4685 if (default_hstate_max_huge_pages) { 4686 if (default_hstate.max_huge_pages) { 4687 char buf[32]; 4688 4689 string_get_size(huge_page_size(&default_hstate), 4690 1, STRING_UNITS_2, buf, 32); 4691 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4692 default_hstate.max_huge_pages, buf); 4693 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4694 default_hstate_max_huge_pages); 4695 } 4696 default_hstate.max_huge_pages = 4697 default_hstate_max_huge_pages; 4698 4699 for_each_online_node(i) 4700 default_hstate.max_huge_pages_node[i] = 4701 default_hugepages_in_node[i]; 4702 } 4703 } 4704 4705 hugetlb_cma_check(); 4706 hugetlb_init_hstates(); 4707 gather_bootmem_prealloc(); 4708 report_hugepages(); 4709 4710 hugetlb_sysfs_init(); 4711 hugetlb_cgroup_file_init(); 4712 hugetlb_sysctl_init(); 4713 4714 #ifdef CONFIG_SMP 4715 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4716 #else 4717 num_fault_mutexes = 1; 4718 #endif 4719 hugetlb_fault_mutex_table = 4720 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4721 GFP_KERNEL); 4722 BUG_ON(!hugetlb_fault_mutex_table); 4723 4724 for (i = 0; i < num_fault_mutexes; i++) 4725 mutex_init(&hugetlb_fault_mutex_table[i]); 4726 return 0; 4727 } 4728 subsys_initcall(hugetlb_init); 4729 4730 /* Overwritten by architectures with more huge page sizes */ 4731 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4732 { 4733 return size == HPAGE_SIZE; 4734 } 4735 4736 void __init hugetlb_add_hstate(unsigned int order) 4737 { 4738 struct hstate *h; 4739 unsigned long i; 4740 4741 if (size_to_hstate(PAGE_SIZE << order)) { 4742 return; 4743 } 4744 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4745 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4746 WARN_ON(order > MAX_FOLIO_ORDER); 4747 h = &hstates[hugetlb_max_hstate++]; 4748 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4749 h->order = order; 4750 h->mask = ~(huge_page_size(h) - 1); 4751 for (i = 0; i < MAX_NUMNODES; ++i) 4752 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4753 INIT_LIST_HEAD(&h->hugepage_activelist); 4754 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4755 huge_page_size(h)/SZ_1K); 4756 4757 parsed_hstate = h; 4758 } 4759 4760 bool __init __weak hugetlb_node_alloc_supported(void) 4761 { 4762 return true; 4763 } 4764 4765 static void __init hugepages_clear_pages_in_node(void) 4766 { 4767 if (!hugetlb_max_hstate) { 4768 default_hstate_max_huge_pages = 0; 4769 memset(default_hugepages_in_node, 0, 4770 sizeof(default_hugepages_in_node)); 4771 } else { 4772 parsed_hstate->max_huge_pages = 0; 4773 memset(parsed_hstate->max_huge_pages_node, 0, 4774 sizeof(parsed_hstate->max_huge_pages_node)); 4775 } 4776 } 4777 4778 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4779 { 4780 size_t len; 4781 char *p; 4782 4783 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4784 return -EINVAL; 4785 4786 len = strlen(s) + 1; 4787 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4788 return -EINVAL; 4789 4790 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4791 memcpy(p, s, len); 4792 hstate_cmdline_index += len; 4793 4794 hugetlb_params[hugetlb_param_index].val = p; 4795 hugetlb_params[hugetlb_param_index].setup = setup; 4796 4797 hugetlb_param_index++; 4798 4799 return 0; 4800 } 4801 4802 static __init void hugetlb_parse_params(void) 4803 { 4804 int i; 4805 struct hugetlb_cmdline *hcp; 4806 4807 for (i = 0; i < hugetlb_param_index; i++) { 4808 hcp = &hugetlb_params[i]; 4809 4810 hcp->setup(hcp->val); 4811 } 4812 4813 hugetlb_cma_validate_params(); 4814 } 4815 4816 /* 4817 * hugepages command line processing 4818 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4819 * specification. If not, ignore the hugepages value. hugepages can also 4820 * be the first huge page command line option in which case it implicitly 4821 * specifies the number of huge pages for the default size. 4822 */ 4823 static int __init hugepages_setup(char *s) 4824 { 4825 unsigned long *mhp; 4826 static unsigned long *last_mhp; 4827 int node = NUMA_NO_NODE; 4828 int count; 4829 unsigned long tmp; 4830 char *p = s; 4831 4832 if (!parsed_valid_hugepagesz) { 4833 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4834 parsed_valid_hugepagesz = true; 4835 return -EINVAL; 4836 } 4837 4838 /* 4839 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4840 * yet, so this hugepages= parameter goes to the "default hstate". 4841 * Otherwise, it goes with the previously parsed hugepagesz or 4842 * default_hugepagesz. 4843 */ 4844 else if (!hugetlb_max_hstate) 4845 mhp = &default_hstate_max_huge_pages; 4846 else 4847 mhp = &parsed_hstate->max_huge_pages; 4848 4849 if (mhp == last_mhp) { 4850 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4851 return 1; 4852 } 4853 4854 while (*p) { 4855 count = 0; 4856 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4857 goto invalid; 4858 /* Parameter is node format */ 4859 if (p[count] == ':') { 4860 if (!hugetlb_node_alloc_supported()) { 4861 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4862 return 1; 4863 } 4864 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4865 goto invalid; 4866 node = array_index_nospec(tmp, MAX_NUMNODES); 4867 p += count + 1; 4868 /* Parse hugepages */ 4869 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4870 goto invalid; 4871 if (!hugetlb_max_hstate) 4872 default_hugepages_in_node[node] = tmp; 4873 else 4874 parsed_hstate->max_huge_pages_node[node] = tmp; 4875 *mhp += tmp; 4876 /* Go to parse next node*/ 4877 if (p[count] == ',') 4878 p += count + 1; 4879 else 4880 break; 4881 } else { 4882 if (p != s) 4883 goto invalid; 4884 *mhp = tmp; 4885 break; 4886 } 4887 } 4888 4889 last_mhp = mhp; 4890 4891 return 0; 4892 4893 invalid: 4894 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4895 hugepages_clear_pages_in_node(); 4896 return -EINVAL; 4897 } 4898 hugetlb_early_param("hugepages", hugepages_setup); 4899 4900 /* 4901 * hugepagesz command line processing 4902 * A specific huge page size can only be specified once with hugepagesz. 4903 * hugepagesz is followed by hugepages on the command line. The global 4904 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4905 * hugepagesz argument was valid. 4906 */ 4907 static int __init hugepagesz_setup(char *s) 4908 { 4909 unsigned long size; 4910 struct hstate *h; 4911 4912 parsed_valid_hugepagesz = false; 4913 size = (unsigned long)memparse(s, NULL); 4914 4915 if (!arch_hugetlb_valid_size(size)) { 4916 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4917 return -EINVAL; 4918 } 4919 4920 h = size_to_hstate(size); 4921 if (h) { 4922 /* 4923 * hstate for this size already exists. This is normally 4924 * an error, but is allowed if the existing hstate is the 4925 * default hstate. More specifically, it is only allowed if 4926 * the number of huge pages for the default hstate was not 4927 * previously specified. 4928 */ 4929 if (!parsed_default_hugepagesz || h != &default_hstate || 4930 default_hstate.max_huge_pages) { 4931 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4932 return -EINVAL; 4933 } 4934 4935 /* 4936 * No need to call hugetlb_add_hstate() as hstate already 4937 * exists. But, do set parsed_hstate so that a following 4938 * hugepages= parameter will be applied to this hstate. 4939 */ 4940 parsed_hstate = h; 4941 parsed_valid_hugepagesz = true; 4942 return 0; 4943 } 4944 4945 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4946 parsed_valid_hugepagesz = true; 4947 return 0; 4948 } 4949 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4950 4951 /* 4952 * default_hugepagesz command line input 4953 * Only one instance of default_hugepagesz allowed on command line. 4954 */ 4955 static int __init default_hugepagesz_setup(char *s) 4956 { 4957 unsigned long size; 4958 int i; 4959 4960 parsed_valid_hugepagesz = false; 4961 if (parsed_default_hugepagesz) { 4962 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4963 return -EINVAL; 4964 } 4965 4966 size = (unsigned long)memparse(s, NULL); 4967 4968 if (!arch_hugetlb_valid_size(size)) { 4969 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4970 return -EINVAL; 4971 } 4972 4973 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4974 parsed_valid_hugepagesz = true; 4975 parsed_default_hugepagesz = true; 4976 default_hstate_idx = hstate_index(size_to_hstate(size)); 4977 4978 /* 4979 * The number of default huge pages (for this size) could have been 4980 * specified as the first hugetlb parameter: hugepages=X. If so, 4981 * then default_hstate_max_huge_pages is set. If the default huge 4982 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4983 * allocated here from bootmem allocator. 4984 */ 4985 if (default_hstate_max_huge_pages) { 4986 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4987 /* 4988 * Since this is an early parameter, we can't check 4989 * NUMA node state yet, so loop through MAX_NUMNODES. 4990 */ 4991 for (i = 0; i < MAX_NUMNODES; i++) { 4992 if (default_hugepages_in_node[i] != 0) 4993 default_hstate.max_huge_pages_node[i] = 4994 default_hugepages_in_node[i]; 4995 } 4996 default_hstate_max_huge_pages = 0; 4997 } 4998 4999 return 0; 5000 } 5001 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 5002 5003 void __init hugetlb_bootmem_set_nodes(void) 5004 { 5005 int i, nid; 5006 unsigned long start_pfn, end_pfn; 5007 5008 if (!nodes_empty(hugetlb_bootmem_nodes)) 5009 return; 5010 5011 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5012 if (end_pfn > start_pfn) 5013 node_set(nid, hugetlb_bootmem_nodes); 5014 } 5015 } 5016 5017 static bool __hugetlb_bootmem_allocated __initdata; 5018 5019 bool __init hugetlb_bootmem_allocated(void) 5020 { 5021 return __hugetlb_bootmem_allocated; 5022 } 5023 5024 void __init hugetlb_bootmem_alloc(void) 5025 { 5026 struct hstate *h; 5027 int i; 5028 5029 if (__hugetlb_bootmem_allocated) 5030 return; 5031 5032 hugetlb_bootmem_set_nodes(); 5033 5034 for (i = 0; i < MAX_NUMNODES; i++) 5035 INIT_LIST_HEAD(&huge_boot_pages[i]); 5036 5037 hugetlb_parse_params(); 5038 5039 for_each_hstate(h) { 5040 h->next_nid_to_alloc = first_online_node; 5041 5042 if (hstate_is_gigantic(h)) 5043 hugetlb_hstate_alloc_pages(h); 5044 } 5045 5046 __hugetlb_bootmem_allocated = true; 5047 } 5048 5049 /* 5050 * hugepage_alloc_threads command line parsing. 5051 * 5052 * When set, use this specific number of threads for the boot 5053 * allocation of hugepages. 5054 */ 5055 static int __init hugepage_alloc_threads_setup(char *s) 5056 { 5057 unsigned long allocation_threads; 5058 5059 if (kstrtoul(s, 0, &allocation_threads) != 0) 5060 return 1; 5061 5062 if (allocation_threads == 0) 5063 return 1; 5064 5065 hugepage_allocation_threads = allocation_threads; 5066 5067 return 1; 5068 } 5069 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 5070 5071 static unsigned int allowed_mems_nr(struct hstate *h) 5072 { 5073 int node; 5074 unsigned int nr = 0; 5075 nodemask_t *mbind_nodemask; 5076 unsigned int *array = h->free_huge_pages_node; 5077 gfp_t gfp_mask = htlb_alloc_mask(h); 5078 5079 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5080 for_each_node_mask(node, cpuset_current_mems_allowed) { 5081 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5082 nr += array[node]; 5083 } 5084 5085 return nr; 5086 } 5087 5088 #ifdef CONFIG_SYSCTL 5089 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5090 void *buffer, size_t *length, 5091 loff_t *ppos, unsigned long *out) 5092 { 5093 struct ctl_table dup_table; 5094 5095 /* 5096 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5097 * can duplicate the @table and alter the duplicate of it. 5098 */ 5099 dup_table = *table; 5100 dup_table.data = out; 5101 5102 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5103 } 5104 5105 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5106 const struct ctl_table *table, int write, 5107 void *buffer, size_t *length, loff_t *ppos) 5108 { 5109 struct hstate *h = &default_hstate; 5110 unsigned long tmp = h->max_huge_pages; 5111 int ret; 5112 5113 if (!hugepages_supported()) 5114 return -EOPNOTSUPP; 5115 5116 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5117 &tmp); 5118 if (ret) 5119 goto out; 5120 5121 if (write) 5122 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5123 NUMA_NO_NODE, tmp, *length); 5124 out: 5125 return ret; 5126 } 5127 5128 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5129 void *buffer, size_t *length, loff_t *ppos) 5130 { 5131 5132 return hugetlb_sysctl_handler_common(false, table, write, 5133 buffer, length, ppos); 5134 } 5135 5136 #ifdef CONFIG_NUMA 5137 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5138 void *buffer, size_t *length, loff_t *ppos) 5139 { 5140 return hugetlb_sysctl_handler_common(true, table, write, 5141 buffer, length, ppos); 5142 } 5143 #endif /* CONFIG_NUMA */ 5144 5145 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5146 void *buffer, size_t *length, loff_t *ppos) 5147 { 5148 struct hstate *h = &default_hstate; 5149 unsigned long tmp; 5150 int ret; 5151 5152 if (!hugepages_supported()) 5153 return -EOPNOTSUPP; 5154 5155 tmp = h->nr_overcommit_huge_pages; 5156 5157 if (write && hstate_is_gigantic(h)) 5158 return -EINVAL; 5159 5160 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5161 &tmp); 5162 if (ret) 5163 goto out; 5164 5165 if (write) { 5166 spin_lock_irq(&hugetlb_lock); 5167 h->nr_overcommit_huge_pages = tmp; 5168 spin_unlock_irq(&hugetlb_lock); 5169 } 5170 out: 5171 return ret; 5172 } 5173 5174 static const struct ctl_table hugetlb_table[] = { 5175 { 5176 .procname = "nr_hugepages", 5177 .data = NULL, 5178 .maxlen = sizeof(unsigned long), 5179 .mode = 0644, 5180 .proc_handler = hugetlb_sysctl_handler, 5181 }, 5182 #ifdef CONFIG_NUMA 5183 { 5184 .procname = "nr_hugepages_mempolicy", 5185 .data = NULL, 5186 .maxlen = sizeof(unsigned long), 5187 .mode = 0644, 5188 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5189 }, 5190 #endif 5191 { 5192 .procname = "hugetlb_shm_group", 5193 .data = &sysctl_hugetlb_shm_group, 5194 .maxlen = sizeof(gid_t), 5195 .mode = 0644, 5196 .proc_handler = proc_dointvec, 5197 }, 5198 { 5199 .procname = "nr_overcommit_hugepages", 5200 .data = NULL, 5201 .maxlen = sizeof(unsigned long), 5202 .mode = 0644, 5203 .proc_handler = hugetlb_overcommit_handler, 5204 }, 5205 }; 5206 5207 static void __init hugetlb_sysctl_init(void) 5208 { 5209 register_sysctl_init("vm", hugetlb_table); 5210 } 5211 #endif /* CONFIG_SYSCTL */ 5212 5213 void hugetlb_report_meminfo(struct seq_file *m) 5214 { 5215 struct hstate *h; 5216 unsigned long total = 0; 5217 5218 if (!hugepages_supported()) 5219 return; 5220 5221 for_each_hstate(h) { 5222 unsigned long count = h->nr_huge_pages; 5223 5224 total += huge_page_size(h) * count; 5225 5226 if (h == &default_hstate) 5227 seq_printf(m, 5228 "HugePages_Total: %5lu\n" 5229 "HugePages_Free: %5lu\n" 5230 "HugePages_Rsvd: %5lu\n" 5231 "HugePages_Surp: %5lu\n" 5232 "Hugepagesize: %8lu kB\n", 5233 count, 5234 h->free_huge_pages, 5235 h->resv_huge_pages, 5236 h->surplus_huge_pages, 5237 huge_page_size(h) / SZ_1K); 5238 } 5239 5240 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5241 } 5242 5243 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5244 { 5245 struct hstate *h = &default_hstate; 5246 5247 if (!hugepages_supported()) 5248 return 0; 5249 5250 return sysfs_emit_at(buf, len, 5251 "Node %d HugePages_Total: %5u\n" 5252 "Node %d HugePages_Free: %5u\n" 5253 "Node %d HugePages_Surp: %5u\n", 5254 nid, h->nr_huge_pages_node[nid], 5255 nid, h->free_huge_pages_node[nid], 5256 nid, h->surplus_huge_pages_node[nid]); 5257 } 5258 5259 void hugetlb_show_meminfo_node(int nid) 5260 { 5261 struct hstate *h; 5262 5263 if (!hugepages_supported()) 5264 return; 5265 5266 for_each_hstate(h) 5267 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5268 nid, 5269 h->nr_huge_pages_node[nid], 5270 h->free_huge_pages_node[nid], 5271 h->surplus_huge_pages_node[nid], 5272 huge_page_size(h) / SZ_1K); 5273 } 5274 5275 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5276 { 5277 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5278 K(atomic_long_read(&mm->hugetlb_usage))); 5279 } 5280 5281 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5282 unsigned long hugetlb_total_pages(void) 5283 { 5284 struct hstate *h; 5285 unsigned long nr_total_pages = 0; 5286 5287 for_each_hstate(h) 5288 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5289 return nr_total_pages; 5290 } 5291 5292 static int hugetlb_acct_memory(struct hstate *h, long delta) 5293 { 5294 int ret = -ENOMEM; 5295 5296 if (!delta) 5297 return 0; 5298 5299 spin_lock_irq(&hugetlb_lock); 5300 /* 5301 * When cpuset is configured, it breaks the strict hugetlb page 5302 * reservation as the accounting is done on a global variable. Such 5303 * reservation is completely rubbish in the presence of cpuset because 5304 * the reservation is not checked against page availability for the 5305 * current cpuset. Application can still potentially OOM'ed by kernel 5306 * with lack of free htlb page in cpuset that the task is in. 5307 * Attempt to enforce strict accounting with cpuset is almost 5308 * impossible (or too ugly) because cpuset is too fluid that 5309 * task or memory node can be dynamically moved between cpusets. 5310 * 5311 * The change of semantics for shared hugetlb mapping with cpuset is 5312 * undesirable. However, in order to preserve some of the semantics, 5313 * we fall back to check against current free page availability as 5314 * a best attempt and hopefully to minimize the impact of changing 5315 * semantics that cpuset has. 5316 * 5317 * Apart from cpuset, we also have memory policy mechanism that 5318 * also determines from which node the kernel will allocate memory 5319 * in a NUMA system. So similar to cpuset, we also should consider 5320 * the memory policy of the current task. Similar to the description 5321 * above. 5322 */ 5323 if (delta > 0) { 5324 if (gather_surplus_pages(h, delta) < 0) 5325 goto out; 5326 5327 if (delta > allowed_mems_nr(h)) { 5328 return_unused_surplus_pages(h, delta); 5329 goto out; 5330 } 5331 } 5332 5333 ret = 0; 5334 if (delta < 0) 5335 return_unused_surplus_pages(h, (unsigned long) -delta); 5336 5337 out: 5338 spin_unlock_irq(&hugetlb_lock); 5339 return ret; 5340 } 5341 5342 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5343 { 5344 struct resv_map *resv = vma_resv_map(vma); 5345 5346 /* 5347 * HPAGE_RESV_OWNER indicates a private mapping. 5348 * This new VMA should share its siblings reservation map if present. 5349 * The VMA will only ever have a valid reservation map pointer where 5350 * it is being copied for another still existing VMA. As that VMA 5351 * has a reference to the reservation map it cannot disappear until 5352 * after this open call completes. It is therefore safe to take a 5353 * new reference here without additional locking. 5354 */ 5355 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5356 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5357 kref_get(&resv->refs); 5358 } 5359 5360 /* 5361 * vma_lock structure for sharable mappings is vma specific. 5362 * Clear old pointer (if copied via vm_area_dup) and allocate 5363 * new structure. Before clearing, make sure vma_lock is not 5364 * for this vma. 5365 */ 5366 if (vma->vm_flags & VM_MAYSHARE) { 5367 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5368 5369 if (vma_lock) { 5370 if (vma_lock->vma != vma) { 5371 vma->vm_private_data = NULL; 5372 hugetlb_vma_lock_alloc(vma); 5373 } else 5374 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5375 } else 5376 hugetlb_vma_lock_alloc(vma); 5377 } 5378 } 5379 5380 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5381 { 5382 struct hstate *h = hstate_vma(vma); 5383 struct resv_map *resv; 5384 struct hugepage_subpool *spool = subpool_vma(vma); 5385 unsigned long reserve, start, end; 5386 long gbl_reserve; 5387 5388 hugetlb_vma_lock_free(vma); 5389 5390 resv = vma_resv_map(vma); 5391 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5392 return; 5393 5394 start = vma_hugecache_offset(h, vma, vma->vm_start); 5395 end = vma_hugecache_offset(h, vma, vma->vm_end); 5396 5397 reserve = (end - start) - region_count(resv, start, end); 5398 hugetlb_cgroup_uncharge_counter(resv, start, end); 5399 if (reserve) { 5400 /* 5401 * Decrement reserve counts. The global reserve count may be 5402 * adjusted if the subpool has a minimum size. 5403 */ 5404 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5405 hugetlb_acct_memory(h, -gbl_reserve); 5406 } 5407 5408 kref_put(&resv->refs, resv_map_release); 5409 } 5410 5411 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5412 { 5413 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5414 return -EINVAL; 5415 return 0; 5416 } 5417 5418 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) 5419 { 5420 /* 5421 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5422 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5423 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5424 * This function is called in the middle of a VMA split operation, with 5425 * MM, VMA and rmap all write-locked to prevent concurrent page table 5426 * walks (except hardware and gup_fast()). 5427 */ 5428 vma_assert_write_locked(vma); 5429 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5430 5431 if (addr & ~PUD_MASK) { 5432 unsigned long floor = addr & PUD_MASK; 5433 unsigned long ceil = floor + PUD_SIZE; 5434 5435 if (floor >= vma->vm_start && ceil <= vma->vm_end) { 5436 /* 5437 * Locking: 5438 * Use take_locks=false here. 5439 * The file rmap lock is already held. 5440 * The hugetlb VMA lock can't be taken when we already 5441 * hold the file rmap lock, and we don't need it because 5442 * its purpose is to synchronize against concurrent page 5443 * table walks, which are not possible thanks to the 5444 * locks held by our caller. 5445 */ 5446 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); 5447 } 5448 } 5449 } 5450 5451 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5452 { 5453 return huge_page_size(hstate_vma(vma)); 5454 } 5455 5456 /* 5457 * We cannot handle pagefaults against hugetlb pages at all. They cause 5458 * handle_mm_fault() to try to instantiate regular-sized pages in the 5459 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5460 * this far. 5461 */ 5462 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5463 { 5464 BUG(); 5465 return 0; 5466 } 5467 5468 /* 5469 * When a new function is introduced to vm_operations_struct and added 5470 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5471 * This is because under System V memory model, mappings created via 5472 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5473 * their original vm_ops are overwritten with shm_vm_ops. 5474 */ 5475 const struct vm_operations_struct hugetlb_vm_ops = { 5476 .fault = hugetlb_vm_op_fault, 5477 .open = hugetlb_vm_op_open, 5478 .close = hugetlb_vm_op_close, 5479 .may_split = hugetlb_vm_op_split, 5480 .pagesize = hugetlb_vm_op_pagesize, 5481 }; 5482 5483 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, 5484 bool try_mkwrite) 5485 { 5486 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); 5487 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5488 5489 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5490 entry = pte_mkwrite_novma(pte_mkdirty(entry)); 5491 } else { 5492 entry = pte_wrprotect(entry); 5493 } 5494 entry = pte_mkyoung(entry); 5495 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5496 5497 return entry; 5498 } 5499 5500 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5501 unsigned long address, pte_t *ptep) 5502 { 5503 pte_t entry; 5504 5505 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5506 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5507 update_mmu_cache(vma, address, ptep); 5508 } 5509 5510 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5511 unsigned long address, pte_t *ptep) 5512 { 5513 if (vma->vm_flags & VM_WRITE) 5514 set_huge_ptep_writable(vma, address, ptep); 5515 } 5516 5517 bool is_hugetlb_entry_migration(pte_t pte) 5518 { 5519 swp_entry_t swp; 5520 5521 if (huge_pte_none(pte) || pte_present(pte)) 5522 return false; 5523 swp = pte_to_swp_entry(pte); 5524 if (is_migration_entry(swp)) 5525 return true; 5526 else 5527 return false; 5528 } 5529 5530 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5531 { 5532 swp_entry_t swp; 5533 5534 if (huge_pte_none(pte) || pte_present(pte)) 5535 return false; 5536 swp = pte_to_swp_entry(pte); 5537 if (is_hwpoison_entry(swp)) 5538 return true; 5539 else 5540 return false; 5541 } 5542 5543 static void 5544 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5545 struct folio *new_folio, pte_t old, unsigned long sz) 5546 { 5547 pte_t newpte = make_huge_pte(vma, new_folio, true); 5548 5549 __folio_mark_uptodate(new_folio); 5550 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5551 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5552 newpte = huge_pte_mkuffd_wp(newpte); 5553 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5554 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5555 folio_set_hugetlb_migratable(new_folio); 5556 } 5557 5558 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5559 struct vm_area_struct *dst_vma, 5560 struct vm_area_struct *src_vma) 5561 { 5562 pte_t *src_pte, *dst_pte, entry; 5563 struct folio *pte_folio; 5564 unsigned long addr; 5565 bool cow = is_cow_mapping(src_vma->vm_flags); 5566 struct hstate *h = hstate_vma(src_vma); 5567 unsigned long sz = huge_page_size(h); 5568 unsigned long npages = pages_per_huge_page(h); 5569 struct mmu_notifier_range range; 5570 unsigned long last_addr_mask; 5571 int ret = 0; 5572 5573 if (cow) { 5574 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5575 src_vma->vm_start, 5576 src_vma->vm_end); 5577 mmu_notifier_invalidate_range_start(&range); 5578 vma_assert_write_locked(src_vma); 5579 raw_write_seqcount_begin(&src->write_protect_seq); 5580 } else { 5581 /* 5582 * For shared mappings the vma lock must be held before 5583 * calling hugetlb_walk() in the src vma. Otherwise, the 5584 * returned ptep could go away if part of a shared pmd and 5585 * another thread calls huge_pmd_unshare. 5586 */ 5587 hugetlb_vma_lock_read(src_vma); 5588 } 5589 5590 last_addr_mask = hugetlb_mask_last_page(h); 5591 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5592 spinlock_t *src_ptl, *dst_ptl; 5593 src_pte = hugetlb_walk(src_vma, addr, sz); 5594 if (!src_pte) { 5595 addr |= last_addr_mask; 5596 continue; 5597 } 5598 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5599 if (!dst_pte) { 5600 ret = -ENOMEM; 5601 break; 5602 } 5603 5604 /* 5605 * If the pagetables are shared don't copy or take references. 5606 * 5607 * dst_pte == src_pte is the common case of src/dest sharing. 5608 * However, src could have 'unshared' and dst shares with 5609 * another vma. So page_count of ptep page is checked instead 5610 * to reliably determine whether pte is shared. 5611 */ 5612 if (page_count(virt_to_page(dst_pte)) > 1) { 5613 addr |= last_addr_mask; 5614 continue; 5615 } 5616 5617 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5618 src_ptl = huge_pte_lockptr(h, src, src_pte); 5619 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5620 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5621 again: 5622 if (huge_pte_none(entry)) { 5623 /* 5624 * Skip if src entry none. 5625 */ 5626 ; 5627 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5628 if (!userfaultfd_wp(dst_vma)) 5629 entry = huge_pte_clear_uffd_wp(entry); 5630 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5631 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5632 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5633 bool uffd_wp = pte_swp_uffd_wp(entry); 5634 5635 if (!is_readable_migration_entry(swp_entry) && cow) { 5636 /* 5637 * COW mappings require pages in both 5638 * parent and child to be set to read. 5639 */ 5640 swp_entry = make_readable_migration_entry( 5641 swp_offset(swp_entry)); 5642 entry = swp_entry_to_pte(swp_entry); 5643 if (userfaultfd_wp(src_vma) && uffd_wp) 5644 entry = pte_swp_mkuffd_wp(entry); 5645 set_huge_pte_at(src, addr, src_pte, entry, sz); 5646 } 5647 if (!userfaultfd_wp(dst_vma)) 5648 entry = huge_pte_clear_uffd_wp(entry); 5649 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5650 } else if (unlikely(is_pte_marker(entry))) { 5651 pte_marker marker = copy_pte_marker( 5652 pte_to_swp_entry(entry), dst_vma); 5653 5654 if (marker) 5655 set_huge_pte_at(dst, addr, dst_pte, 5656 make_pte_marker(marker), sz); 5657 } else { 5658 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5659 pte_folio = page_folio(pte_page(entry)); 5660 folio_get(pte_folio); 5661 5662 /* 5663 * Failing to duplicate the anon rmap is a rare case 5664 * where we see pinned hugetlb pages while they're 5665 * prone to COW. We need to do the COW earlier during 5666 * fork. 5667 * 5668 * When pre-allocating the page or copying data, we 5669 * need to be without the pgtable locks since we could 5670 * sleep during the process. 5671 */ 5672 if (!folio_test_anon(pte_folio)) { 5673 hugetlb_add_file_rmap(pte_folio); 5674 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5675 pte_t src_pte_old = entry; 5676 struct folio *new_folio; 5677 5678 spin_unlock(src_ptl); 5679 spin_unlock(dst_ptl); 5680 /* Do not use reserve as it's private owned */ 5681 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5682 if (IS_ERR(new_folio)) { 5683 folio_put(pte_folio); 5684 ret = PTR_ERR(new_folio); 5685 break; 5686 } 5687 ret = copy_user_large_folio(new_folio, pte_folio, 5688 addr, dst_vma); 5689 folio_put(pte_folio); 5690 if (ret) { 5691 folio_put(new_folio); 5692 break; 5693 } 5694 5695 /* Install the new hugetlb folio if src pte stable */ 5696 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5697 src_ptl = huge_pte_lockptr(h, src, src_pte); 5698 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5699 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5700 if (!pte_same(src_pte_old, entry)) { 5701 restore_reserve_on_error(h, dst_vma, addr, 5702 new_folio); 5703 folio_put(new_folio); 5704 /* huge_ptep of dst_pte won't change as in child */ 5705 goto again; 5706 } 5707 hugetlb_install_folio(dst_vma, dst_pte, addr, 5708 new_folio, src_pte_old, sz); 5709 spin_unlock(src_ptl); 5710 spin_unlock(dst_ptl); 5711 continue; 5712 } 5713 5714 if (cow) { 5715 /* 5716 * No need to notify as we are downgrading page 5717 * table protection not changing it to point 5718 * to a new page. 5719 * 5720 * See Documentation/mm/mmu_notifier.rst 5721 */ 5722 huge_ptep_set_wrprotect(src, addr, src_pte); 5723 entry = huge_pte_wrprotect(entry); 5724 } 5725 5726 if (!userfaultfd_wp(dst_vma)) 5727 entry = huge_pte_clear_uffd_wp(entry); 5728 5729 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5730 hugetlb_count_add(npages, dst); 5731 } 5732 spin_unlock(src_ptl); 5733 spin_unlock(dst_ptl); 5734 } 5735 5736 if (cow) { 5737 raw_write_seqcount_end(&src->write_protect_seq); 5738 mmu_notifier_invalidate_range_end(&range); 5739 } else { 5740 hugetlb_vma_unlock_read(src_vma); 5741 } 5742 5743 return ret; 5744 } 5745 5746 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5747 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5748 unsigned long sz) 5749 { 5750 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5751 struct hstate *h = hstate_vma(vma); 5752 struct mm_struct *mm = vma->vm_mm; 5753 spinlock_t *src_ptl, *dst_ptl; 5754 pte_t pte; 5755 5756 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5757 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5758 5759 /* 5760 * We don't have to worry about the ordering of src and dst ptlocks 5761 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5762 */ 5763 if (src_ptl != dst_ptl) 5764 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5765 5766 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5767 5768 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5769 huge_pte_clear(mm, new_addr, dst_pte, sz); 5770 else { 5771 if (need_clear_uffd_wp) { 5772 if (pte_present(pte)) 5773 pte = huge_pte_clear_uffd_wp(pte); 5774 else if (is_swap_pte(pte)) 5775 pte = pte_swp_clear_uffd_wp(pte); 5776 } 5777 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5778 } 5779 5780 if (src_ptl != dst_ptl) 5781 spin_unlock(src_ptl); 5782 spin_unlock(dst_ptl); 5783 } 5784 5785 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5786 struct vm_area_struct *new_vma, 5787 unsigned long old_addr, unsigned long new_addr, 5788 unsigned long len) 5789 { 5790 struct hstate *h = hstate_vma(vma); 5791 struct address_space *mapping = vma->vm_file->f_mapping; 5792 unsigned long sz = huge_page_size(h); 5793 struct mm_struct *mm = vma->vm_mm; 5794 unsigned long old_end = old_addr + len; 5795 unsigned long last_addr_mask; 5796 pte_t *src_pte, *dst_pte; 5797 struct mmu_notifier_range range; 5798 bool shared_pmd = false; 5799 5800 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5801 old_end); 5802 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5803 /* 5804 * In case of shared PMDs, we should cover the maximum possible 5805 * range. 5806 */ 5807 flush_cache_range(vma, range.start, range.end); 5808 5809 mmu_notifier_invalidate_range_start(&range); 5810 last_addr_mask = hugetlb_mask_last_page(h); 5811 /* Prevent race with file truncation */ 5812 hugetlb_vma_lock_write(vma); 5813 i_mmap_lock_write(mapping); 5814 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5815 src_pte = hugetlb_walk(vma, old_addr, sz); 5816 if (!src_pte) { 5817 old_addr |= last_addr_mask; 5818 new_addr |= last_addr_mask; 5819 continue; 5820 } 5821 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5822 continue; 5823 5824 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5825 shared_pmd = true; 5826 old_addr |= last_addr_mask; 5827 new_addr |= last_addr_mask; 5828 continue; 5829 } 5830 5831 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5832 if (!dst_pte) 5833 break; 5834 5835 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5836 } 5837 5838 if (shared_pmd) 5839 flush_hugetlb_tlb_range(vma, range.start, range.end); 5840 else 5841 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5842 mmu_notifier_invalidate_range_end(&range); 5843 i_mmap_unlock_write(mapping); 5844 hugetlb_vma_unlock_write(vma); 5845 5846 return len + old_addr - old_end; 5847 } 5848 5849 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5850 unsigned long start, unsigned long end, 5851 struct folio *folio, zap_flags_t zap_flags) 5852 { 5853 struct mm_struct *mm = vma->vm_mm; 5854 const bool folio_provided = !!folio; 5855 unsigned long address; 5856 pte_t *ptep; 5857 pte_t pte; 5858 spinlock_t *ptl; 5859 struct hstate *h = hstate_vma(vma); 5860 unsigned long sz = huge_page_size(h); 5861 bool adjust_reservation; 5862 unsigned long last_addr_mask; 5863 bool force_flush = false; 5864 5865 WARN_ON(!is_vm_hugetlb_page(vma)); 5866 BUG_ON(start & ~huge_page_mask(h)); 5867 BUG_ON(end & ~huge_page_mask(h)); 5868 5869 /* 5870 * This is a hugetlb vma, all the pte entries should point 5871 * to huge page. 5872 */ 5873 tlb_change_page_size(tlb, sz); 5874 tlb_start_vma(tlb, vma); 5875 5876 last_addr_mask = hugetlb_mask_last_page(h); 5877 address = start; 5878 for (; address < end; address += sz) { 5879 ptep = hugetlb_walk(vma, address, sz); 5880 if (!ptep) { 5881 address |= last_addr_mask; 5882 continue; 5883 } 5884 5885 ptl = huge_pte_lock(h, mm, ptep); 5886 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5887 spin_unlock(ptl); 5888 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5889 force_flush = true; 5890 address |= last_addr_mask; 5891 continue; 5892 } 5893 5894 pte = huge_ptep_get(mm, address, ptep); 5895 if (huge_pte_none(pte)) { 5896 spin_unlock(ptl); 5897 continue; 5898 } 5899 5900 /* 5901 * Migrating hugepage or HWPoisoned hugepage is already 5902 * unmapped and its refcount is dropped, so just clear pte here. 5903 */ 5904 if (unlikely(!pte_present(pte))) { 5905 /* 5906 * If the pte was wr-protected by uffd-wp in any of the 5907 * swap forms, meanwhile the caller does not want to 5908 * drop the uffd-wp bit in this zap, then replace the 5909 * pte with a marker. 5910 */ 5911 if (pte_swp_uffd_wp_any(pte) && 5912 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5913 set_huge_pte_at(mm, address, ptep, 5914 make_pte_marker(PTE_MARKER_UFFD_WP), 5915 sz); 5916 else 5917 huge_pte_clear(mm, address, ptep, sz); 5918 spin_unlock(ptl); 5919 continue; 5920 } 5921 5922 /* 5923 * If a folio is supplied, it is because a specific 5924 * folio is being unmapped, not a range. Ensure the folio we 5925 * are about to unmap is the actual folio of interest. 5926 */ 5927 if (folio_provided) { 5928 if (folio != page_folio(pte_page(pte))) { 5929 spin_unlock(ptl); 5930 continue; 5931 } 5932 /* 5933 * Mark the VMA as having unmapped its page so that 5934 * future faults in this VMA will fail rather than 5935 * looking like data was lost 5936 */ 5937 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5938 } else { 5939 folio = page_folio(pte_page(pte)); 5940 } 5941 5942 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5943 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5944 if (huge_pte_dirty(pte)) 5945 folio_mark_dirty(folio); 5946 /* Leave a uffd-wp pte marker if needed */ 5947 if (huge_pte_uffd_wp(pte) && 5948 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5949 set_huge_pte_at(mm, address, ptep, 5950 make_pte_marker(PTE_MARKER_UFFD_WP), 5951 sz); 5952 hugetlb_count_sub(pages_per_huge_page(h), mm); 5953 hugetlb_remove_rmap(folio); 5954 spin_unlock(ptl); 5955 5956 /* 5957 * Restore the reservation for anonymous page, otherwise the 5958 * backing page could be stolen by someone. 5959 * If there we are freeing a surplus, do not set the restore 5960 * reservation bit. 5961 */ 5962 adjust_reservation = false; 5963 5964 spin_lock_irq(&hugetlb_lock); 5965 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5966 folio_test_anon(folio)) { 5967 folio_set_hugetlb_restore_reserve(folio); 5968 /* Reservation to be adjusted after the spin lock */ 5969 adjust_reservation = true; 5970 } 5971 spin_unlock_irq(&hugetlb_lock); 5972 5973 /* 5974 * Adjust the reservation for the region that will have the 5975 * reserve restored. Keep in mind that vma_needs_reservation() changes 5976 * resv->adds_in_progress if it succeeds. If this is not done, 5977 * do_exit() will not see it, and will keep the reservation 5978 * forever. 5979 */ 5980 if (adjust_reservation) { 5981 int rc = vma_needs_reservation(h, vma, address); 5982 5983 if (rc < 0) 5984 /* Pressumably allocate_file_region_entries failed 5985 * to allocate a file_region struct. Clear 5986 * hugetlb_restore_reserve so that global reserve 5987 * count will not be incremented by free_huge_folio. 5988 * Act as if we consumed the reservation. 5989 */ 5990 folio_clear_hugetlb_restore_reserve(folio); 5991 else if (rc) 5992 vma_add_reservation(h, vma, address); 5993 } 5994 5995 tlb_remove_page_size(tlb, folio_page(folio, 0), 5996 folio_size(folio)); 5997 /* 5998 * If we were instructed to unmap a specific folio, we're done. 5999 */ 6000 if (folio_provided) 6001 break; 6002 } 6003 tlb_end_vma(tlb, vma); 6004 6005 /* 6006 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 6007 * could defer the flush until now, since by holding i_mmap_rwsem we 6008 * guaranteed that the last refernece would not be dropped. But we must 6009 * do the flushing before we return, as otherwise i_mmap_rwsem will be 6010 * dropped and the last reference to the shared PMDs page might be 6011 * dropped as well. 6012 * 6013 * In theory we could defer the freeing of the PMD pages as well, but 6014 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 6015 * detect sharing, so we cannot defer the release of the page either. 6016 * Instead, do flush now. 6017 */ 6018 if (force_flush) 6019 tlb_flush_mmu_tlbonly(tlb); 6020 } 6021 6022 void __hugetlb_zap_begin(struct vm_area_struct *vma, 6023 unsigned long *start, unsigned long *end) 6024 { 6025 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6026 return; 6027 6028 adjust_range_if_pmd_sharing_possible(vma, start, end); 6029 hugetlb_vma_lock_write(vma); 6030 if (vma->vm_file) 6031 i_mmap_lock_write(vma->vm_file->f_mapping); 6032 } 6033 6034 void __hugetlb_zap_end(struct vm_area_struct *vma, 6035 struct zap_details *details) 6036 { 6037 zap_flags_t zap_flags = details ? details->zap_flags : 0; 6038 6039 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6040 return; 6041 6042 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 6043 /* 6044 * Unlock and free the vma lock before releasing i_mmap_rwsem. 6045 * When the vma_lock is freed, this makes the vma ineligible 6046 * for pmd sharing. And, i_mmap_rwsem is required to set up 6047 * pmd sharing. This is important as page tables for this 6048 * unmapped range will be asynchrously deleted. If the page 6049 * tables are shared, there will be issues when accessed by 6050 * someone else. 6051 */ 6052 __hugetlb_vma_unlock_write_free(vma); 6053 } else { 6054 hugetlb_vma_unlock_write(vma); 6055 } 6056 6057 if (vma->vm_file) 6058 i_mmap_unlock_write(vma->vm_file->f_mapping); 6059 } 6060 6061 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 6062 unsigned long end, struct folio *folio, 6063 zap_flags_t zap_flags) 6064 { 6065 struct mmu_notifier_range range; 6066 struct mmu_gather tlb; 6067 6068 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 6069 start, end); 6070 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6071 mmu_notifier_invalidate_range_start(&range); 6072 tlb_gather_mmu(&tlb, vma->vm_mm); 6073 6074 __unmap_hugepage_range(&tlb, vma, start, end, 6075 folio, zap_flags); 6076 6077 mmu_notifier_invalidate_range_end(&range); 6078 tlb_finish_mmu(&tlb); 6079 } 6080 6081 /* 6082 * This is called when the original mapper is failing to COW a MAP_PRIVATE 6083 * mapping it owns the reserve page for. The intention is to unmap the page 6084 * from other VMAs and let the children be SIGKILLed if they are faulting the 6085 * same region. 6086 */ 6087 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6088 struct folio *folio, unsigned long address) 6089 { 6090 struct hstate *h = hstate_vma(vma); 6091 struct vm_area_struct *iter_vma; 6092 struct address_space *mapping; 6093 pgoff_t pgoff; 6094 6095 /* 6096 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6097 * from page cache lookup which is in HPAGE_SIZE units. 6098 */ 6099 address = address & huge_page_mask(h); 6100 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6101 vma->vm_pgoff; 6102 mapping = vma->vm_file->f_mapping; 6103 6104 /* 6105 * Take the mapping lock for the duration of the table walk. As 6106 * this mapping should be shared between all the VMAs, 6107 * __unmap_hugepage_range() is called as the lock is already held 6108 */ 6109 i_mmap_lock_write(mapping); 6110 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6111 /* Do not unmap the current VMA */ 6112 if (iter_vma == vma) 6113 continue; 6114 6115 /* 6116 * Shared VMAs have their own reserves and do not affect 6117 * MAP_PRIVATE accounting but it is possible that a shared 6118 * VMA is using the same page so check and skip such VMAs. 6119 */ 6120 if (iter_vma->vm_flags & VM_MAYSHARE) 6121 continue; 6122 6123 /* 6124 * Unmap the page from other VMAs without their own reserves. 6125 * They get marked to be SIGKILLed if they fault in these 6126 * areas. This is because a future no-page fault on this VMA 6127 * could insert a zeroed page instead of the data existing 6128 * from the time of fork. This would look like data corruption 6129 */ 6130 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6131 unmap_hugepage_range(iter_vma, address, 6132 address + huge_page_size(h), 6133 folio, 0); 6134 } 6135 i_mmap_unlock_write(mapping); 6136 } 6137 6138 /* 6139 * hugetlb_wp() should be called with page lock of the original hugepage held. 6140 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6141 * cannot race with other handlers or page migration. 6142 * Keep the pte_same checks anyway to make transition from the mutex easier. 6143 */ 6144 static vm_fault_t hugetlb_wp(struct vm_fault *vmf) 6145 { 6146 struct vm_area_struct *vma = vmf->vma; 6147 struct mm_struct *mm = vma->vm_mm; 6148 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6149 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6150 struct hstate *h = hstate_vma(vma); 6151 struct folio *old_folio; 6152 struct folio *new_folio; 6153 bool cow_from_owner = 0; 6154 vm_fault_t ret = 0; 6155 struct mmu_notifier_range range; 6156 6157 /* 6158 * Never handle CoW for uffd-wp protected pages. It should be only 6159 * handled when the uffd-wp protection is removed. 6160 * 6161 * Note that only the CoW optimization path (in hugetlb_no_page()) 6162 * can trigger this, because hugetlb_fault() will always resolve 6163 * uffd-wp bit first. 6164 */ 6165 if (!unshare && huge_pte_uffd_wp(pte)) 6166 return 0; 6167 6168 /* Let's take out MAP_SHARED mappings first. */ 6169 if (vma->vm_flags & VM_MAYSHARE) { 6170 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6171 return 0; 6172 } 6173 6174 old_folio = page_folio(pte_page(pte)); 6175 6176 delayacct_wpcopy_start(); 6177 6178 retry_avoidcopy: 6179 /* 6180 * If no-one else is actually using this page, we're the exclusive 6181 * owner and can reuse this page. 6182 * 6183 * Note that we don't rely on the (safer) folio refcount here, because 6184 * copying the hugetlb folio when there are unexpected (temporary) 6185 * folio references could harm simple fork()+exit() users when 6186 * we run out of free hugetlb folios: we would have to kill processes 6187 * in scenarios that used to work. As a side effect, there can still 6188 * be leaks between processes, for example, with FOLL_GET users. 6189 */ 6190 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6191 if (!PageAnonExclusive(&old_folio->page)) { 6192 folio_move_anon_rmap(old_folio, vma); 6193 SetPageAnonExclusive(&old_folio->page); 6194 } 6195 if (likely(!unshare)) 6196 set_huge_ptep_maybe_writable(vma, vmf->address, 6197 vmf->pte); 6198 6199 delayacct_wpcopy_end(); 6200 return 0; 6201 } 6202 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6203 PageAnonExclusive(&old_folio->page), &old_folio->page); 6204 6205 /* 6206 * If the process that created a MAP_PRIVATE mapping is about to perform 6207 * a COW due to a shared page count, attempt to satisfy the allocation 6208 * without using the existing reserves. 6209 * In order to determine where this is a COW on a MAP_PRIVATE mapping it 6210 * is enough to check whether the old_folio is anonymous. This means that 6211 * the reserve for this address was consumed. If reserves were used, a 6212 * partial faulted mapping at the fime of fork() could consume its reserves 6213 * on COW instead of the full address range. 6214 */ 6215 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6216 folio_test_anon(old_folio)) 6217 cow_from_owner = true; 6218 6219 folio_get(old_folio); 6220 6221 /* 6222 * Drop page table lock as buddy allocator may be called. It will 6223 * be acquired again before returning to the caller, as expected. 6224 */ 6225 spin_unlock(vmf->ptl); 6226 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6227 6228 if (IS_ERR(new_folio)) { 6229 /* 6230 * If a process owning a MAP_PRIVATE mapping fails to COW, 6231 * it is due to references held by a child and an insufficient 6232 * huge page pool. To guarantee the original mappers 6233 * reliability, unmap the page from child processes. The child 6234 * may get SIGKILLed if it later faults. 6235 */ 6236 if (cow_from_owner) { 6237 struct address_space *mapping = vma->vm_file->f_mapping; 6238 pgoff_t idx; 6239 u32 hash; 6240 6241 folio_put(old_folio); 6242 /* 6243 * Drop hugetlb_fault_mutex and vma_lock before 6244 * unmapping. unmapping needs to hold vma_lock 6245 * in write mode. Dropping vma_lock in read mode 6246 * here is OK as COW mappings do not interact with 6247 * PMD sharing. 6248 * 6249 * Reacquire both after unmap operation. 6250 */ 6251 idx = vma_hugecache_offset(h, vma, vmf->address); 6252 hash = hugetlb_fault_mutex_hash(mapping, idx); 6253 hugetlb_vma_unlock_read(vma); 6254 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6255 6256 unmap_ref_private(mm, vma, old_folio, vmf->address); 6257 6258 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6259 hugetlb_vma_lock_read(vma); 6260 spin_lock(vmf->ptl); 6261 vmf->pte = hugetlb_walk(vma, vmf->address, 6262 huge_page_size(h)); 6263 if (likely(vmf->pte && 6264 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6265 goto retry_avoidcopy; 6266 /* 6267 * race occurs while re-acquiring page table 6268 * lock, and our job is done. 6269 */ 6270 delayacct_wpcopy_end(); 6271 return 0; 6272 } 6273 6274 ret = vmf_error(PTR_ERR(new_folio)); 6275 goto out_release_old; 6276 } 6277 6278 /* 6279 * When the original hugepage is shared one, it does not have 6280 * anon_vma prepared. 6281 */ 6282 ret = __vmf_anon_prepare(vmf); 6283 if (unlikely(ret)) 6284 goto out_release_all; 6285 6286 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6287 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6288 goto out_release_all; 6289 } 6290 __folio_mark_uptodate(new_folio); 6291 6292 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6293 vmf->address + huge_page_size(h)); 6294 mmu_notifier_invalidate_range_start(&range); 6295 6296 /* 6297 * Retake the page table lock to check for racing updates 6298 * before the page tables are altered 6299 */ 6300 spin_lock(vmf->ptl); 6301 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6302 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6303 pte_t newpte = make_huge_pte(vma, new_folio, !unshare); 6304 6305 /* Break COW or unshare */ 6306 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6307 hugetlb_remove_rmap(old_folio); 6308 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6309 if (huge_pte_uffd_wp(pte)) 6310 newpte = huge_pte_mkuffd_wp(newpte); 6311 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6312 huge_page_size(h)); 6313 folio_set_hugetlb_migratable(new_folio); 6314 /* Make the old page be freed below */ 6315 new_folio = old_folio; 6316 } 6317 spin_unlock(vmf->ptl); 6318 mmu_notifier_invalidate_range_end(&range); 6319 out_release_all: 6320 /* 6321 * No restore in case of successful pagetable update (Break COW or 6322 * unshare) 6323 */ 6324 if (new_folio != old_folio) 6325 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6326 folio_put(new_folio); 6327 out_release_old: 6328 folio_put(old_folio); 6329 6330 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6331 6332 delayacct_wpcopy_end(); 6333 return ret; 6334 } 6335 6336 /* 6337 * Return whether there is a pagecache page to back given address within VMA. 6338 */ 6339 bool hugetlbfs_pagecache_present(struct hstate *h, 6340 struct vm_area_struct *vma, unsigned long address) 6341 { 6342 struct address_space *mapping = vma->vm_file->f_mapping; 6343 pgoff_t idx = linear_page_index(vma, address); 6344 struct folio *folio; 6345 6346 folio = filemap_get_folio(mapping, idx); 6347 if (IS_ERR(folio)) 6348 return false; 6349 folio_put(folio); 6350 return true; 6351 } 6352 6353 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6354 pgoff_t idx) 6355 { 6356 struct inode *inode = mapping->host; 6357 struct hstate *h = hstate_inode(inode); 6358 int err; 6359 6360 idx <<= huge_page_order(h); 6361 __folio_set_locked(folio); 6362 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6363 6364 if (unlikely(err)) { 6365 __folio_clear_locked(folio); 6366 return err; 6367 } 6368 folio_clear_hugetlb_restore_reserve(folio); 6369 6370 /* 6371 * mark folio dirty so that it will not be removed from cache/file 6372 * by non-hugetlbfs specific code paths. 6373 */ 6374 folio_mark_dirty(folio); 6375 6376 spin_lock(&inode->i_lock); 6377 inode->i_blocks += blocks_per_huge_page(h); 6378 spin_unlock(&inode->i_lock); 6379 return 0; 6380 } 6381 6382 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6383 struct address_space *mapping, 6384 unsigned long reason) 6385 { 6386 u32 hash; 6387 6388 /* 6389 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6390 * userfault. Also mmap_lock could be dropped due to handling 6391 * userfault, any vma operation should be careful from here. 6392 */ 6393 hugetlb_vma_unlock_read(vmf->vma); 6394 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6395 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6396 return handle_userfault(vmf, reason); 6397 } 6398 6399 /* 6400 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6401 * false if pte changed or is changing. 6402 */ 6403 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6404 pte_t *ptep, pte_t old_pte) 6405 { 6406 spinlock_t *ptl; 6407 bool same; 6408 6409 ptl = huge_pte_lock(h, mm, ptep); 6410 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6411 spin_unlock(ptl); 6412 6413 return same; 6414 } 6415 6416 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6417 struct vm_fault *vmf) 6418 { 6419 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6420 bool new_folio, new_anon_folio = false; 6421 struct vm_area_struct *vma = vmf->vma; 6422 struct mm_struct *mm = vma->vm_mm; 6423 struct hstate *h = hstate_vma(vma); 6424 vm_fault_t ret = VM_FAULT_SIGBUS; 6425 bool folio_locked = true; 6426 struct folio *folio; 6427 unsigned long size; 6428 pte_t new_pte; 6429 6430 /* 6431 * Currently, we are forced to kill the process in the event the 6432 * original mapper has unmapped pages from the child due to a failed 6433 * COW/unsharing. Warn that such a situation has occurred as it may not 6434 * be obvious. 6435 */ 6436 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6437 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6438 current->pid); 6439 goto out; 6440 } 6441 6442 /* 6443 * Use page lock to guard against racing truncation 6444 * before we get page_table_lock. 6445 */ 6446 new_folio = false; 6447 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6448 if (IS_ERR(folio)) { 6449 size = i_size_read(mapping->host) >> huge_page_shift(h); 6450 if (vmf->pgoff >= size) 6451 goto out; 6452 /* Check for page in userfault range */ 6453 if (userfaultfd_missing(vma)) { 6454 /* 6455 * Since hugetlb_no_page() was examining pte 6456 * without pgtable lock, we need to re-test under 6457 * lock because the pte may not be stable and could 6458 * have changed from under us. Try to detect 6459 * either changed or during-changing ptes and retry 6460 * properly when needed. 6461 * 6462 * Note that userfaultfd is actually fine with 6463 * false positives (e.g. caused by pte changed), 6464 * but not wrong logical events (e.g. caused by 6465 * reading a pte during changing). The latter can 6466 * confuse the userspace, so the strictness is very 6467 * much preferred. E.g., MISSING event should 6468 * never happen on the page after UFFDIO_COPY has 6469 * correctly installed the page and returned. 6470 */ 6471 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6472 ret = 0; 6473 goto out; 6474 } 6475 6476 return hugetlb_handle_userfault(vmf, mapping, 6477 VM_UFFD_MISSING); 6478 } 6479 6480 if (!(vma->vm_flags & VM_MAYSHARE)) { 6481 ret = __vmf_anon_prepare(vmf); 6482 if (unlikely(ret)) 6483 goto out; 6484 } 6485 6486 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6487 if (IS_ERR(folio)) { 6488 /* 6489 * Returning error will result in faulting task being 6490 * sent SIGBUS. The hugetlb fault mutex prevents two 6491 * tasks from racing to fault in the same page which 6492 * could result in false unable to allocate errors. 6493 * Page migration does not take the fault mutex, but 6494 * does a clear then write of pte's under page table 6495 * lock. Page fault code could race with migration, 6496 * notice the clear pte and try to allocate a page 6497 * here. Before returning error, get ptl and make 6498 * sure there really is no pte entry. 6499 */ 6500 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6501 ret = vmf_error(PTR_ERR(folio)); 6502 else 6503 ret = 0; 6504 goto out; 6505 } 6506 folio_zero_user(folio, vmf->real_address); 6507 __folio_mark_uptodate(folio); 6508 new_folio = true; 6509 6510 if (vma->vm_flags & VM_MAYSHARE) { 6511 int err = hugetlb_add_to_page_cache(folio, mapping, 6512 vmf->pgoff); 6513 if (err) { 6514 /* 6515 * err can't be -EEXIST which implies someone 6516 * else consumed the reservation since hugetlb 6517 * fault mutex is held when add a hugetlb page 6518 * to the page cache. So it's safe to call 6519 * restore_reserve_on_error() here. 6520 */ 6521 restore_reserve_on_error(h, vma, vmf->address, 6522 folio); 6523 folio_put(folio); 6524 ret = VM_FAULT_SIGBUS; 6525 goto out; 6526 } 6527 } else { 6528 new_anon_folio = true; 6529 folio_lock(folio); 6530 } 6531 } else { 6532 /* 6533 * If memory error occurs between mmap() and fault, some process 6534 * don't have hwpoisoned swap entry for errored virtual address. 6535 * So we need to block hugepage fault by PG_hwpoison bit check. 6536 */ 6537 if (unlikely(folio_test_hwpoison(folio))) { 6538 ret = VM_FAULT_HWPOISON_LARGE | 6539 VM_FAULT_SET_HINDEX(hstate_index(h)); 6540 goto backout_unlocked; 6541 } 6542 6543 /* Check for page in userfault range. */ 6544 if (userfaultfd_minor(vma)) { 6545 folio_unlock(folio); 6546 folio_put(folio); 6547 /* See comment in userfaultfd_missing() block above */ 6548 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6549 ret = 0; 6550 goto out; 6551 } 6552 return hugetlb_handle_userfault(vmf, mapping, 6553 VM_UFFD_MINOR); 6554 } 6555 } 6556 6557 /* 6558 * If we are going to COW a private mapping later, we examine the 6559 * pending reservations for this page now. This will ensure that 6560 * any allocations necessary to record that reservation occur outside 6561 * the spinlock. 6562 */ 6563 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6564 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6565 ret = VM_FAULT_OOM; 6566 goto backout_unlocked; 6567 } 6568 /* Just decrements count, does not deallocate */ 6569 vma_end_reservation(h, vma, vmf->address); 6570 } 6571 6572 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6573 ret = 0; 6574 /* If pte changed from under us, retry */ 6575 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6576 goto backout; 6577 6578 if (new_anon_folio) 6579 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6580 else 6581 hugetlb_add_file_rmap(folio); 6582 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); 6583 /* 6584 * If this pte was previously wr-protected, keep it wr-protected even 6585 * if populated. 6586 */ 6587 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6588 new_pte = huge_pte_mkuffd_wp(new_pte); 6589 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6590 6591 hugetlb_count_add(pages_per_huge_page(h), mm); 6592 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6593 /* 6594 * No need to keep file folios locked. See comment in 6595 * hugetlb_fault(). 6596 */ 6597 if (!new_anon_folio) { 6598 folio_locked = false; 6599 folio_unlock(folio); 6600 } 6601 /* Optimization, do the COW without a second fault */ 6602 ret = hugetlb_wp(vmf); 6603 } 6604 6605 spin_unlock(vmf->ptl); 6606 6607 /* 6608 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6609 * found in the pagecache may not have hugetlb_migratable if they have 6610 * been isolated for migration. 6611 */ 6612 if (new_folio) 6613 folio_set_hugetlb_migratable(folio); 6614 6615 if (folio_locked) 6616 folio_unlock(folio); 6617 out: 6618 hugetlb_vma_unlock_read(vma); 6619 6620 /* 6621 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6622 * the only way ret can be set to VM_FAULT_RETRY. 6623 */ 6624 if (unlikely(ret & VM_FAULT_RETRY)) 6625 vma_end_read(vma); 6626 6627 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6628 return ret; 6629 6630 backout: 6631 spin_unlock(vmf->ptl); 6632 backout_unlocked: 6633 /* We only need to restore reservations for private mappings */ 6634 if (new_anon_folio) 6635 restore_reserve_on_error(h, vma, vmf->address, folio); 6636 6637 folio_unlock(folio); 6638 folio_put(folio); 6639 goto out; 6640 } 6641 6642 #ifdef CONFIG_SMP 6643 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6644 { 6645 unsigned long key[2]; 6646 u32 hash; 6647 6648 key[0] = (unsigned long) mapping; 6649 key[1] = idx; 6650 6651 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6652 6653 return hash & (num_fault_mutexes - 1); 6654 } 6655 #else 6656 /* 6657 * For uniprocessor systems we always use a single mutex, so just 6658 * return 0 and avoid the hashing overhead. 6659 */ 6660 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6661 { 6662 return 0; 6663 } 6664 #endif 6665 6666 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6667 unsigned long address, unsigned int flags) 6668 { 6669 vm_fault_t ret; 6670 u32 hash; 6671 struct folio *folio = NULL; 6672 struct hstate *h = hstate_vma(vma); 6673 struct address_space *mapping; 6674 bool need_wait_lock = false; 6675 struct vm_fault vmf = { 6676 .vma = vma, 6677 .address = address & huge_page_mask(h), 6678 .real_address = address, 6679 .flags = flags, 6680 .pgoff = vma_hugecache_offset(h, vma, 6681 address & huge_page_mask(h)), 6682 /* TODO: Track hugetlb faults using vm_fault */ 6683 6684 /* 6685 * Some fields may not be initialized, be careful as it may 6686 * be hard to debug if called functions make assumptions 6687 */ 6688 }; 6689 6690 /* 6691 * Serialize hugepage allocation and instantiation, so that we don't 6692 * get spurious allocation failures if two CPUs race to instantiate 6693 * the same page in the page cache. 6694 */ 6695 mapping = vma->vm_file->f_mapping; 6696 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6697 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6698 6699 /* 6700 * Acquire vma lock before calling huge_pte_alloc and hold 6701 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6702 * being called elsewhere and making the vmf.pte no longer valid. 6703 */ 6704 hugetlb_vma_lock_read(vma); 6705 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6706 if (!vmf.pte) { 6707 hugetlb_vma_unlock_read(vma); 6708 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6709 return VM_FAULT_OOM; 6710 } 6711 6712 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6713 if (huge_pte_none_mostly(vmf.orig_pte)) { 6714 if (is_pte_marker(vmf.orig_pte)) { 6715 pte_marker marker = 6716 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6717 6718 if (marker & PTE_MARKER_POISONED) { 6719 ret = VM_FAULT_HWPOISON_LARGE | 6720 VM_FAULT_SET_HINDEX(hstate_index(h)); 6721 goto out_mutex; 6722 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6723 /* This isn't supported in hugetlb. */ 6724 ret = VM_FAULT_SIGSEGV; 6725 goto out_mutex; 6726 } 6727 } 6728 6729 /* 6730 * Other PTE markers should be handled the same way as none PTE. 6731 * 6732 * hugetlb_no_page will drop vma lock and hugetlb fault 6733 * mutex internally, which make us return immediately. 6734 */ 6735 return hugetlb_no_page(mapping, &vmf); 6736 } 6737 6738 ret = 0; 6739 6740 /* Not present, either a migration or a hwpoisoned entry */ 6741 if (!pte_present(vmf.orig_pte)) { 6742 if (is_hugetlb_entry_migration(vmf.orig_pte)) { 6743 /* 6744 * Release the hugetlb fault lock now, but retain 6745 * the vma lock, because it is needed to guard the 6746 * huge_pte_lockptr() later in 6747 * migration_entry_wait_huge(). The vma lock will 6748 * be released there. 6749 */ 6750 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6751 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6752 return 0; 6753 } else if (is_hugetlb_entry_hwpoisoned(vmf.orig_pte)) 6754 ret = VM_FAULT_HWPOISON_LARGE | 6755 VM_FAULT_SET_HINDEX(hstate_index(h)); 6756 goto out_mutex; 6757 } 6758 6759 /* 6760 * If we are going to COW/unshare the mapping later, we examine the 6761 * pending reservations for this page now. This will ensure that any 6762 * allocations necessary to record that reservation occur outside the 6763 * spinlock. 6764 */ 6765 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6766 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6767 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6768 ret = VM_FAULT_OOM; 6769 goto out_mutex; 6770 } 6771 /* Just decrements count, does not deallocate */ 6772 vma_end_reservation(h, vma, vmf.address); 6773 } 6774 6775 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6776 6777 /* Check for a racing update before calling hugetlb_wp() */ 6778 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6779 goto out_ptl; 6780 6781 /* Handle userfault-wp first, before trying to lock more pages */ 6782 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6783 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6784 if (!userfaultfd_wp_async(vma)) { 6785 spin_unlock(vmf.ptl); 6786 hugetlb_vma_unlock_read(vma); 6787 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6788 return handle_userfault(&vmf, VM_UFFD_WP); 6789 } 6790 6791 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6792 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6793 huge_page_size(hstate_vma(vma))); 6794 /* Fallthrough to CoW */ 6795 } 6796 6797 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6798 if (!huge_pte_write(vmf.orig_pte)) { 6799 /* 6800 * Anonymous folios need to be lock since hugetlb_wp() 6801 * checks whether we can re-use the folio exclusively 6802 * for us in case we are the only user of it. 6803 */ 6804 folio = page_folio(pte_page(vmf.orig_pte)); 6805 if (folio_test_anon(folio) && !folio_trylock(folio)) { 6806 need_wait_lock = true; 6807 goto out_ptl; 6808 } 6809 folio_get(folio); 6810 ret = hugetlb_wp(&vmf); 6811 if (folio_test_anon(folio)) 6812 folio_unlock(folio); 6813 folio_put(folio); 6814 goto out_ptl; 6815 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6816 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6817 } 6818 } 6819 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6820 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6821 flags & FAULT_FLAG_WRITE)) 6822 update_mmu_cache(vma, vmf.address, vmf.pte); 6823 out_ptl: 6824 spin_unlock(vmf.ptl); 6825 out_mutex: 6826 hugetlb_vma_unlock_read(vma); 6827 6828 /* 6829 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6830 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6831 */ 6832 if (unlikely(ret & VM_FAULT_RETRY)) 6833 vma_end_read(vma); 6834 6835 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6836 /* 6837 * hugetlb_wp drops all the locks, but the folio lock, before trying to 6838 * unmap the folio from other processes. During that window, if another 6839 * process mapping that folio faults in, it will take the mutex and then 6840 * it will wait on folio_lock, causing an ABBA deadlock. 6841 * Use trylock instead and bail out if we fail. 6842 * 6843 * Ideally, we should hold a refcount on the folio we wait for, but we do 6844 * not want to use the folio after it becomes unlocked, but rather just 6845 * wait for it to become unlocked, so hopefully next fault successes on 6846 * the trylock. 6847 */ 6848 if (need_wait_lock) 6849 folio_wait_locked(folio); 6850 return ret; 6851 } 6852 6853 #ifdef CONFIG_USERFAULTFD 6854 /* 6855 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6856 */ 6857 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6858 struct vm_area_struct *vma, unsigned long address) 6859 { 6860 struct mempolicy *mpol; 6861 nodemask_t *nodemask; 6862 struct folio *folio; 6863 gfp_t gfp_mask; 6864 int node; 6865 6866 gfp_mask = htlb_alloc_mask(h); 6867 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6868 /* 6869 * This is used to allocate a temporary hugetlb to hold the copied 6870 * content, which will then be copied again to the final hugetlb 6871 * consuming a reservation. Set the alloc_fallback to false to indicate 6872 * that breaking the per-node hugetlb pool is not allowed in this case. 6873 */ 6874 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6875 mpol_cond_put(mpol); 6876 6877 return folio; 6878 } 6879 6880 /* 6881 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6882 * with modifications for hugetlb pages. 6883 */ 6884 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6885 struct vm_area_struct *dst_vma, 6886 unsigned long dst_addr, 6887 unsigned long src_addr, 6888 uffd_flags_t flags, 6889 struct folio **foliop) 6890 { 6891 struct mm_struct *dst_mm = dst_vma->vm_mm; 6892 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6893 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6894 struct hstate *h = hstate_vma(dst_vma); 6895 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6896 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6897 unsigned long size = huge_page_size(h); 6898 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6899 pte_t _dst_pte; 6900 spinlock_t *ptl; 6901 int ret = -ENOMEM; 6902 struct folio *folio; 6903 bool folio_in_pagecache = false; 6904 6905 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6906 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6907 6908 /* Don't overwrite any existing PTEs (even markers) */ 6909 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6910 spin_unlock(ptl); 6911 return -EEXIST; 6912 } 6913 6914 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6915 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6916 6917 /* No need to invalidate - it was non-present before */ 6918 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6919 6920 spin_unlock(ptl); 6921 return 0; 6922 } 6923 6924 if (is_continue) { 6925 ret = -EFAULT; 6926 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6927 if (IS_ERR(folio)) 6928 goto out; 6929 folio_in_pagecache = true; 6930 } else if (!*foliop) { 6931 /* If a folio already exists, then it's UFFDIO_COPY for 6932 * a non-missing case. Return -EEXIST. 6933 */ 6934 if (vm_shared && 6935 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6936 ret = -EEXIST; 6937 goto out; 6938 } 6939 6940 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6941 if (IS_ERR(folio)) { 6942 pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE); 6943 if (actual_pte) { 6944 ret = -EEXIST; 6945 goto out; 6946 } 6947 ret = -ENOMEM; 6948 goto out; 6949 } 6950 6951 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6952 false); 6953 6954 /* fallback to copy_from_user outside mmap_lock */ 6955 if (unlikely(ret)) { 6956 ret = -ENOENT; 6957 /* Free the allocated folio which may have 6958 * consumed a reservation. 6959 */ 6960 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6961 folio_put(folio); 6962 6963 /* Allocate a temporary folio to hold the copied 6964 * contents. 6965 */ 6966 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6967 if (!folio) { 6968 ret = -ENOMEM; 6969 goto out; 6970 } 6971 *foliop = folio; 6972 /* Set the outparam foliop and return to the caller to 6973 * copy the contents outside the lock. Don't free the 6974 * folio. 6975 */ 6976 goto out; 6977 } 6978 } else { 6979 if (vm_shared && 6980 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6981 folio_put(*foliop); 6982 ret = -EEXIST; 6983 *foliop = NULL; 6984 goto out; 6985 } 6986 6987 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6988 if (IS_ERR(folio)) { 6989 folio_put(*foliop); 6990 ret = -ENOMEM; 6991 *foliop = NULL; 6992 goto out; 6993 } 6994 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6995 folio_put(*foliop); 6996 *foliop = NULL; 6997 if (ret) { 6998 folio_put(folio); 6999 goto out; 7000 } 7001 } 7002 7003 /* 7004 * If we just allocated a new page, we need a memory barrier to ensure 7005 * that preceding stores to the page become visible before the 7006 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 7007 * is what we need. 7008 * 7009 * In the case where we have not allocated a new page (is_continue), 7010 * the page must already be uptodate. UFFDIO_CONTINUE already includes 7011 * an earlier smp_wmb() to ensure that prior stores will be visible 7012 * before the set_pte_at() write. 7013 */ 7014 if (!is_continue) 7015 __folio_mark_uptodate(folio); 7016 else 7017 WARN_ON_ONCE(!folio_test_uptodate(folio)); 7018 7019 /* Add shared, newly allocated pages to the page cache. */ 7020 if (vm_shared && !is_continue) { 7021 ret = -EFAULT; 7022 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 7023 goto out_release_nounlock; 7024 7025 /* 7026 * Serialization between remove_inode_hugepages() and 7027 * hugetlb_add_to_page_cache() below happens through the 7028 * hugetlb_fault_mutex_table that here must be hold by 7029 * the caller. 7030 */ 7031 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 7032 if (ret) 7033 goto out_release_nounlock; 7034 folio_in_pagecache = true; 7035 } 7036 7037 ptl = huge_pte_lock(h, dst_mm, dst_pte); 7038 7039 ret = -EIO; 7040 if (folio_test_hwpoison(folio)) 7041 goto out_release_unlock; 7042 7043 /* 7044 * We allow to overwrite a pte marker: consider when both MISSING|WP 7045 * registered, we firstly wr-protect a none pte which has no page cache 7046 * page backing it, then access the page. 7047 */ 7048 ret = -EEXIST; 7049 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 7050 goto out_release_unlock; 7051 7052 if (folio_in_pagecache) 7053 hugetlb_add_file_rmap(folio); 7054 else 7055 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 7056 7057 /* 7058 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 7059 * with wp flag set, don't set pte write bit. 7060 */ 7061 _dst_pte = make_huge_pte(dst_vma, folio, 7062 !wp_enabled && !(is_continue && !vm_shared)); 7063 /* 7064 * Always mark UFFDIO_COPY page dirty; note that this may not be 7065 * extremely important for hugetlbfs for now since swapping is not 7066 * supported, but we should still be clear in that this page cannot be 7067 * thrown away at will, even if write bit not set. 7068 */ 7069 _dst_pte = huge_pte_mkdirty(_dst_pte); 7070 _dst_pte = pte_mkyoung(_dst_pte); 7071 7072 if (wp_enabled) 7073 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 7074 7075 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 7076 7077 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 7078 7079 /* No need to invalidate - it was non-present before */ 7080 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7081 7082 spin_unlock(ptl); 7083 if (!is_continue) 7084 folio_set_hugetlb_migratable(folio); 7085 if (vm_shared || is_continue) 7086 folio_unlock(folio); 7087 ret = 0; 7088 out: 7089 return ret; 7090 out_release_unlock: 7091 spin_unlock(ptl); 7092 if (vm_shared || is_continue) 7093 folio_unlock(folio); 7094 out_release_nounlock: 7095 if (!folio_in_pagecache) 7096 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7097 folio_put(folio); 7098 goto out; 7099 } 7100 #endif /* CONFIG_USERFAULTFD */ 7101 7102 long hugetlb_change_protection(struct vm_area_struct *vma, 7103 unsigned long address, unsigned long end, 7104 pgprot_t newprot, unsigned long cp_flags) 7105 { 7106 struct mm_struct *mm = vma->vm_mm; 7107 unsigned long start = address; 7108 pte_t *ptep; 7109 pte_t pte; 7110 struct hstate *h = hstate_vma(vma); 7111 long pages = 0, psize = huge_page_size(h); 7112 bool shared_pmd = false; 7113 struct mmu_notifier_range range; 7114 unsigned long last_addr_mask; 7115 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7116 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7117 7118 /* 7119 * In the case of shared PMDs, the area to flush could be beyond 7120 * start/end. Set range.start/range.end to cover the maximum possible 7121 * range if PMD sharing is possible. 7122 */ 7123 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7124 0, mm, start, end); 7125 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7126 7127 BUG_ON(address >= end); 7128 flush_cache_range(vma, range.start, range.end); 7129 7130 mmu_notifier_invalidate_range_start(&range); 7131 hugetlb_vma_lock_write(vma); 7132 i_mmap_lock_write(vma->vm_file->f_mapping); 7133 last_addr_mask = hugetlb_mask_last_page(h); 7134 for (; address < end; address += psize) { 7135 spinlock_t *ptl; 7136 ptep = hugetlb_walk(vma, address, psize); 7137 if (!ptep) { 7138 if (!uffd_wp) { 7139 address |= last_addr_mask; 7140 continue; 7141 } 7142 /* 7143 * Userfaultfd wr-protect requires pgtable 7144 * pre-allocations to install pte markers. 7145 */ 7146 ptep = huge_pte_alloc(mm, vma, address, psize); 7147 if (!ptep) { 7148 pages = -ENOMEM; 7149 break; 7150 } 7151 } 7152 ptl = huge_pte_lock(h, mm, ptep); 7153 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7154 /* 7155 * When uffd-wp is enabled on the vma, unshare 7156 * shouldn't happen at all. Warn about it if it 7157 * happened due to some reason. 7158 */ 7159 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7160 pages++; 7161 spin_unlock(ptl); 7162 shared_pmd = true; 7163 address |= last_addr_mask; 7164 continue; 7165 } 7166 pte = huge_ptep_get(mm, address, ptep); 7167 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7168 /* Nothing to do. */ 7169 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7170 swp_entry_t entry = pte_to_swp_entry(pte); 7171 struct folio *folio = pfn_swap_entry_folio(entry); 7172 pte_t newpte = pte; 7173 7174 if (is_writable_migration_entry(entry)) { 7175 if (folio_test_anon(folio)) 7176 entry = make_readable_exclusive_migration_entry( 7177 swp_offset(entry)); 7178 else 7179 entry = make_readable_migration_entry( 7180 swp_offset(entry)); 7181 newpte = swp_entry_to_pte(entry); 7182 pages++; 7183 } 7184 7185 if (uffd_wp) 7186 newpte = pte_swp_mkuffd_wp(newpte); 7187 else if (uffd_wp_resolve) 7188 newpte = pte_swp_clear_uffd_wp(newpte); 7189 if (!pte_same(pte, newpte)) 7190 set_huge_pte_at(mm, address, ptep, newpte, psize); 7191 } else if (unlikely(is_pte_marker(pte))) { 7192 /* 7193 * Do nothing on a poison marker; page is 7194 * corrupted, permissons do not apply. Here 7195 * pte_marker_uffd_wp()==true implies !poison 7196 * because they're mutual exclusive. 7197 */ 7198 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7199 /* Safe to modify directly (non-present->none). */ 7200 huge_pte_clear(mm, address, ptep, psize); 7201 } else if (!huge_pte_none(pte)) { 7202 pte_t old_pte; 7203 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7204 7205 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7206 pte = huge_pte_modify(old_pte, newprot); 7207 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7208 if (uffd_wp) 7209 pte = huge_pte_mkuffd_wp(pte); 7210 else if (uffd_wp_resolve) 7211 pte = huge_pte_clear_uffd_wp(pte); 7212 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7213 pages++; 7214 } else { 7215 /* None pte */ 7216 if (unlikely(uffd_wp)) 7217 /* Safe to modify directly (none->non-present). */ 7218 set_huge_pte_at(mm, address, ptep, 7219 make_pte_marker(PTE_MARKER_UFFD_WP), 7220 psize); 7221 } 7222 spin_unlock(ptl); 7223 } 7224 /* 7225 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7226 * may have cleared our pud entry and done put_page on the page table: 7227 * once we release i_mmap_rwsem, another task can do the final put_page 7228 * and that page table be reused and filled with junk. If we actually 7229 * did unshare a page of pmds, flush the range corresponding to the pud. 7230 */ 7231 if (shared_pmd) 7232 flush_hugetlb_tlb_range(vma, range.start, range.end); 7233 else 7234 flush_hugetlb_tlb_range(vma, start, end); 7235 /* 7236 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7237 * downgrading page table protection not changing it to point to a new 7238 * page. 7239 * 7240 * See Documentation/mm/mmu_notifier.rst 7241 */ 7242 i_mmap_unlock_write(vma->vm_file->f_mapping); 7243 hugetlb_vma_unlock_write(vma); 7244 mmu_notifier_invalidate_range_end(&range); 7245 7246 return pages > 0 ? (pages << h->order) : pages; 7247 } 7248 7249 /* 7250 * Update the reservation map for the range [from, to]. 7251 * 7252 * Returns the number of entries that would be added to the reservation map 7253 * associated with the range [from, to]. This number is greater or equal to 7254 * zero. -EINVAL or -ENOMEM is returned in case of any errors. 7255 */ 7256 7257 long hugetlb_reserve_pages(struct inode *inode, 7258 long from, long to, 7259 struct vm_area_struct *vma, 7260 vm_flags_t vm_flags) 7261 { 7262 long chg = -1, add = -1, spool_resv, gbl_resv; 7263 struct hstate *h = hstate_inode(inode); 7264 struct hugepage_subpool *spool = subpool_inode(inode); 7265 struct resv_map *resv_map; 7266 struct hugetlb_cgroup *h_cg = NULL; 7267 long gbl_reserve, regions_needed = 0; 7268 7269 /* This should never happen */ 7270 if (from > to) { 7271 VM_WARN(1, "%s called with a negative range\n", __func__); 7272 return -EINVAL; 7273 } 7274 7275 /* 7276 * vma specific semaphore used for pmd sharing and fault/truncation 7277 * synchronization 7278 */ 7279 hugetlb_vma_lock_alloc(vma); 7280 7281 /* 7282 * Only apply hugepage reservation if asked. At fault time, an 7283 * attempt will be made for VM_NORESERVE to allocate a page 7284 * without using reserves 7285 */ 7286 if (vm_flags & VM_NORESERVE) 7287 return 0; 7288 7289 /* 7290 * Shared mappings base their reservation on the number of pages that 7291 * are already allocated on behalf of the file. Private mappings need 7292 * to reserve the full area even if read-only as mprotect() may be 7293 * called to make the mapping read-write. Assume !vma is a shm mapping 7294 */ 7295 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7296 /* 7297 * resv_map can not be NULL as hugetlb_reserve_pages is only 7298 * called for inodes for which resv_maps were created (see 7299 * hugetlbfs_get_inode). 7300 */ 7301 resv_map = inode_resv_map(inode); 7302 7303 chg = region_chg(resv_map, from, to, ®ions_needed); 7304 } else { 7305 /* Private mapping. */ 7306 resv_map = resv_map_alloc(); 7307 if (!resv_map) 7308 goto out_err; 7309 7310 chg = to - from; 7311 7312 set_vma_resv_map(vma, resv_map); 7313 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7314 } 7315 7316 if (chg < 0) 7317 goto out_err; 7318 7319 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7320 chg * pages_per_huge_page(h), &h_cg) < 0) 7321 goto out_err; 7322 7323 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7324 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7325 * of the resv_map. 7326 */ 7327 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7328 } 7329 7330 /* 7331 * There must be enough pages in the subpool for the mapping. If 7332 * the subpool has a minimum size, there may be some global 7333 * reservations already in place (gbl_reserve). 7334 */ 7335 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7336 if (gbl_reserve < 0) 7337 goto out_uncharge_cgroup; 7338 7339 /* 7340 * Check enough hugepages are available for the reservation. 7341 * Hand the pages back to the subpool if there are not 7342 */ 7343 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7344 goto out_put_pages; 7345 7346 /* 7347 * Account for the reservations made. Shared mappings record regions 7348 * that have reservations as they are shared by multiple VMAs. 7349 * When the last VMA disappears, the region map says how much 7350 * the reservation was and the page cache tells how much of 7351 * the reservation was consumed. Private mappings are per-VMA and 7352 * only the consumed reservations are tracked. When the VMA 7353 * disappears, the original reservation is the VMA size and the 7354 * consumed reservations are stored in the map. Hence, nothing 7355 * else has to be done for private mappings here 7356 */ 7357 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7358 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7359 7360 if (unlikely(add < 0)) { 7361 hugetlb_acct_memory(h, -gbl_reserve); 7362 goto out_put_pages; 7363 } else if (unlikely(chg > add)) { 7364 /* 7365 * pages in this range were added to the reserve 7366 * map between region_chg and region_add. This 7367 * indicates a race with alloc_hugetlb_folio. Adjust 7368 * the subpool and reserve counts modified above 7369 * based on the difference. 7370 */ 7371 long rsv_adjust; 7372 7373 /* 7374 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7375 * reference to h_cg->css. See comment below for detail. 7376 */ 7377 hugetlb_cgroup_uncharge_cgroup_rsvd( 7378 hstate_index(h), 7379 (chg - add) * pages_per_huge_page(h), h_cg); 7380 7381 rsv_adjust = hugepage_subpool_put_pages(spool, 7382 chg - add); 7383 hugetlb_acct_memory(h, -rsv_adjust); 7384 } else if (h_cg) { 7385 /* 7386 * The file_regions will hold their own reference to 7387 * h_cg->css. So we should release the reference held 7388 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7389 * done. 7390 */ 7391 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7392 } 7393 } 7394 return chg; 7395 7396 out_put_pages: 7397 spool_resv = chg - gbl_reserve; 7398 if (spool_resv) { 7399 /* put sub pool's reservation back, chg - gbl_reserve */ 7400 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 7401 /* 7402 * subpool's reserved pages can not be put back due to race, 7403 * return to hstate. 7404 */ 7405 hugetlb_acct_memory(h, -gbl_resv); 7406 } 7407 out_uncharge_cgroup: 7408 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7409 chg * pages_per_huge_page(h), h_cg); 7410 out_err: 7411 hugetlb_vma_lock_free(vma); 7412 if (!vma || vma->vm_flags & VM_MAYSHARE) 7413 /* Only call region_abort if the region_chg succeeded but the 7414 * region_add failed or didn't run. 7415 */ 7416 if (chg >= 0 && add < 0) 7417 region_abort(resv_map, from, to, regions_needed); 7418 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7419 kref_put(&resv_map->refs, resv_map_release); 7420 set_vma_resv_map(vma, NULL); 7421 } 7422 return chg < 0 ? chg : add < 0 ? add : -EINVAL; 7423 } 7424 7425 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7426 long freed) 7427 { 7428 struct hstate *h = hstate_inode(inode); 7429 struct resv_map *resv_map = inode_resv_map(inode); 7430 long chg = 0; 7431 struct hugepage_subpool *spool = subpool_inode(inode); 7432 long gbl_reserve; 7433 7434 /* 7435 * Since this routine can be called in the evict inode path for all 7436 * hugetlbfs inodes, resv_map could be NULL. 7437 */ 7438 if (resv_map) { 7439 chg = region_del(resv_map, start, end); 7440 /* 7441 * region_del() can fail in the rare case where a region 7442 * must be split and another region descriptor can not be 7443 * allocated. If end == LONG_MAX, it will not fail. 7444 */ 7445 if (chg < 0) 7446 return chg; 7447 } 7448 7449 spin_lock(&inode->i_lock); 7450 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7451 spin_unlock(&inode->i_lock); 7452 7453 /* 7454 * If the subpool has a minimum size, the number of global 7455 * reservations to be released may be adjusted. 7456 * 7457 * Note that !resv_map implies freed == 0. So (chg - freed) 7458 * won't go negative. 7459 */ 7460 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7461 hugetlb_acct_memory(h, -gbl_reserve); 7462 7463 return 0; 7464 } 7465 7466 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7467 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7468 struct vm_area_struct *vma, 7469 unsigned long addr, pgoff_t idx) 7470 { 7471 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7472 svma->vm_start; 7473 unsigned long sbase = saddr & PUD_MASK; 7474 unsigned long s_end = sbase + PUD_SIZE; 7475 7476 /* Allow segments to share if only one is marked locked */ 7477 vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7478 vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7479 7480 /* 7481 * match the virtual addresses, permission and the alignment of the 7482 * page table page. 7483 * 7484 * Also, vma_lock (vm_private_data) is required for sharing. 7485 */ 7486 if (pmd_index(addr) != pmd_index(saddr) || 7487 vm_flags != svm_flags || 7488 !range_in_vma(svma, sbase, s_end) || 7489 !svma->vm_private_data) 7490 return 0; 7491 7492 return saddr; 7493 } 7494 7495 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7496 { 7497 unsigned long start = addr & PUD_MASK; 7498 unsigned long end = start + PUD_SIZE; 7499 7500 #ifdef CONFIG_USERFAULTFD 7501 if (uffd_disable_huge_pmd_share(vma)) 7502 return false; 7503 #endif 7504 /* 7505 * check on proper vm_flags and page table alignment 7506 */ 7507 if (!(vma->vm_flags & VM_MAYSHARE)) 7508 return false; 7509 if (!vma->vm_private_data) /* vma lock required for sharing */ 7510 return false; 7511 if (!range_in_vma(vma, start, end)) 7512 return false; 7513 return true; 7514 } 7515 7516 /* 7517 * Determine if start,end range within vma could be mapped by shared pmd. 7518 * If yes, adjust start and end to cover range associated with possible 7519 * shared pmd mappings. 7520 */ 7521 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7522 unsigned long *start, unsigned long *end) 7523 { 7524 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7525 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7526 7527 /* 7528 * vma needs to span at least one aligned PUD size, and the range 7529 * must be at least partially within in. 7530 */ 7531 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7532 (*end <= v_start) || (*start >= v_end)) 7533 return; 7534 7535 /* Extend the range to be PUD aligned for a worst case scenario */ 7536 if (*start > v_start) 7537 *start = ALIGN_DOWN(*start, PUD_SIZE); 7538 7539 if (*end < v_end) 7540 *end = ALIGN(*end, PUD_SIZE); 7541 } 7542 7543 /* 7544 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7545 * and returns the corresponding pte. While this is not necessary for the 7546 * !shared pmd case because we can allocate the pmd later as well, it makes the 7547 * code much cleaner. pmd allocation is essential for the shared case because 7548 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7549 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7550 * bad pmd for sharing. 7551 */ 7552 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7553 unsigned long addr, pud_t *pud) 7554 { 7555 struct address_space *mapping = vma->vm_file->f_mapping; 7556 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7557 vma->vm_pgoff; 7558 struct vm_area_struct *svma; 7559 unsigned long saddr; 7560 pte_t *spte = NULL; 7561 pte_t *pte; 7562 7563 i_mmap_lock_read(mapping); 7564 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7565 if (svma == vma) 7566 continue; 7567 7568 saddr = page_table_shareable(svma, vma, addr, idx); 7569 if (saddr) { 7570 spte = hugetlb_walk(svma, saddr, 7571 vma_mmu_pagesize(svma)); 7572 if (spte) { 7573 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7574 break; 7575 } 7576 } 7577 } 7578 7579 if (!spte) 7580 goto out; 7581 7582 spin_lock(&mm->page_table_lock); 7583 if (pud_none(*pud)) { 7584 pud_populate(mm, pud, 7585 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7586 mm_inc_nr_pmds(mm); 7587 } else { 7588 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7589 } 7590 spin_unlock(&mm->page_table_lock); 7591 out: 7592 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7593 i_mmap_unlock_read(mapping); 7594 return pte; 7595 } 7596 7597 /* 7598 * unmap huge page backed by shared pte. 7599 * 7600 * Called with page table lock held. 7601 * 7602 * returns: 1 successfully unmapped a shared pte page 7603 * 0 the underlying pte page is not shared, or it is the last user 7604 */ 7605 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7606 unsigned long addr, pte_t *ptep) 7607 { 7608 unsigned long sz = huge_page_size(hstate_vma(vma)); 7609 pgd_t *pgd = pgd_offset(mm, addr); 7610 p4d_t *p4d = p4d_offset(pgd, addr); 7611 pud_t *pud = pud_offset(p4d, addr); 7612 7613 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7614 hugetlb_vma_assert_locked(vma); 7615 if (sz != PMD_SIZE) 7616 return 0; 7617 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7618 return 0; 7619 7620 pud_clear(pud); 7621 /* 7622 * Once our caller drops the rmap lock, some other process might be 7623 * using this page table as a normal, non-hugetlb page table. 7624 * Wait for pending gup_fast() in other threads to finish before letting 7625 * that happen. 7626 */ 7627 tlb_remove_table_sync_one(); 7628 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7629 mm_dec_nr_pmds(mm); 7630 return 1; 7631 } 7632 7633 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7634 7635 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7636 unsigned long addr, pud_t *pud) 7637 { 7638 return NULL; 7639 } 7640 7641 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7642 unsigned long addr, pte_t *ptep) 7643 { 7644 return 0; 7645 } 7646 7647 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7648 unsigned long *start, unsigned long *end) 7649 { 7650 } 7651 7652 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7653 { 7654 return false; 7655 } 7656 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7657 7658 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7659 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7660 unsigned long addr, unsigned long sz) 7661 { 7662 pgd_t *pgd; 7663 p4d_t *p4d; 7664 pud_t *pud; 7665 pte_t *pte = NULL; 7666 7667 pgd = pgd_offset(mm, addr); 7668 p4d = p4d_alloc(mm, pgd, addr); 7669 if (!p4d) 7670 return NULL; 7671 pud = pud_alloc(mm, p4d, addr); 7672 if (pud) { 7673 if (sz == PUD_SIZE) { 7674 pte = (pte_t *)pud; 7675 } else { 7676 BUG_ON(sz != PMD_SIZE); 7677 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7678 pte = huge_pmd_share(mm, vma, addr, pud); 7679 else 7680 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7681 } 7682 } 7683 7684 if (pte) { 7685 pte_t pteval = ptep_get_lockless(pte); 7686 7687 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7688 } 7689 7690 return pte; 7691 } 7692 7693 /* 7694 * huge_pte_offset() - Walk the page table to resolve the hugepage 7695 * entry at address @addr 7696 * 7697 * Return: Pointer to page table entry (PUD or PMD) for 7698 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7699 * size @sz doesn't match the hugepage size at this level of the page 7700 * table. 7701 */ 7702 pte_t *huge_pte_offset(struct mm_struct *mm, 7703 unsigned long addr, unsigned long sz) 7704 { 7705 pgd_t *pgd; 7706 p4d_t *p4d; 7707 pud_t *pud; 7708 pmd_t *pmd; 7709 7710 pgd = pgd_offset(mm, addr); 7711 if (!pgd_present(*pgd)) 7712 return NULL; 7713 p4d = p4d_offset(pgd, addr); 7714 if (!p4d_present(*p4d)) 7715 return NULL; 7716 7717 pud = pud_offset(p4d, addr); 7718 if (sz == PUD_SIZE) 7719 /* must be pud huge, non-present or none */ 7720 return (pte_t *)pud; 7721 if (!pud_present(*pud)) 7722 return NULL; 7723 /* must have a valid entry and size to go further */ 7724 7725 pmd = pmd_offset(pud, addr); 7726 /* must be pmd huge, non-present or none */ 7727 return (pte_t *)pmd; 7728 } 7729 7730 /* 7731 * Return a mask that can be used to update an address to the last huge 7732 * page in a page table page mapping size. Used to skip non-present 7733 * page table entries when linearly scanning address ranges. Architectures 7734 * with unique huge page to page table relationships can define their own 7735 * version of this routine. 7736 */ 7737 unsigned long hugetlb_mask_last_page(struct hstate *h) 7738 { 7739 unsigned long hp_size = huge_page_size(h); 7740 7741 if (hp_size == PUD_SIZE) 7742 return P4D_SIZE - PUD_SIZE; 7743 else if (hp_size == PMD_SIZE) 7744 return PUD_SIZE - PMD_SIZE; 7745 else 7746 return 0UL; 7747 } 7748 7749 #else 7750 7751 /* See description above. Architectures can provide their own version. */ 7752 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7753 { 7754 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7755 if (huge_page_size(h) == PMD_SIZE) 7756 return PUD_SIZE - PMD_SIZE; 7757 #endif 7758 return 0UL; 7759 } 7760 7761 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7762 7763 /** 7764 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7765 * @folio: the folio to isolate 7766 * @list: the list to add the folio to on success 7767 * 7768 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7769 * isolated/non-migratable, and moving it from the active list to the 7770 * given list. 7771 * 7772 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7773 * it is already isolated/non-migratable. 7774 * 7775 * On success, an additional folio reference is taken that must be dropped 7776 * using folio_putback_hugetlb() to undo the isolation. 7777 * 7778 * Return: True if isolation worked, otherwise False. 7779 */ 7780 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7781 { 7782 bool ret = true; 7783 7784 spin_lock_irq(&hugetlb_lock); 7785 if (!folio_test_hugetlb(folio) || 7786 !folio_test_hugetlb_migratable(folio) || 7787 !folio_try_get(folio)) { 7788 ret = false; 7789 goto unlock; 7790 } 7791 folio_clear_hugetlb_migratable(folio); 7792 list_move_tail(&folio->lru, list); 7793 unlock: 7794 spin_unlock_irq(&hugetlb_lock); 7795 return ret; 7796 } 7797 7798 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7799 { 7800 int ret = 0; 7801 7802 *hugetlb = false; 7803 spin_lock_irq(&hugetlb_lock); 7804 if (folio_test_hugetlb(folio)) { 7805 *hugetlb = true; 7806 if (folio_test_hugetlb_freed(folio)) 7807 ret = 0; 7808 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7809 ret = folio_try_get(folio); 7810 else 7811 ret = -EBUSY; 7812 } 7813 spin_unlock_irq(&hugetlb_lock); 7814 return ret; 7815 } 7816 7817 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7818 bool *migratable_cleared) 7819 { 7820 int ret; 7821 7822 spin_lock_irq(&hugetlb_lock); 7823 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7824 spin_unlock_irq(&hugetlb_lock); 7825 return ret; 7826 } 7827 7828 /** 7829 * folio_putback_hugetlb - unisolate a hugetlb folio 7830 * @folio: the isolated hugetlb folio 7831 * 7832 * Putback/un-isolate the hugetlb folio that was previous isolated using 7833 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7834 * back onto the active list. 7835 * 7836 * Will drop the additional folio reference obtained through 7837 * folio_isolate_hugetlb(). 7838 */ 7839 void folio_putback_hugetlb(struct folio *folio) 7840 { 7841 spin_lock_irq(&hugetlb_lock); 7842 folio_set_hugetlb_migratable(folio); 7843 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7844 spin_unlock_irq(&hugetlb_lock); 7845 folio_put(folio); 7846 } 7847 7848 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7849 { 7850 struct hstate *h = folio_hstate(old_folio); 7851 7852 hugetlb_cgroup_migrate(old_folio, new_folio); 7853 folio_set_owner_migrate_reason(new_folio, reason); 7854 7855 /* 7856 * transfer temporary state of the new hugetlb folio. This is 7857 * reverse to other transitions because the newpage is going to 7858 * be final while the old one will be freed so it takes over 7859 * the temporary status. 7860 * 7861 * Also note that we have to transfer the per-node surplus state 7862 * here as well otherwise the global surplus count will not match 7863 * the per-node's. 7864 */ 7865 if (folio_test_hugetlb_temporary(new_folio)) { 7866 int old_nid = folio_nid(old_folio); 7867 int new_nid = folio_nid(new_folio); 7868 7869 folio_set_hugetlb_temporary(old_folio); 7870 folio_clear_hugetlb_temporary(new_folio); 7871 7872 7873 /* 7874 * There is no need to transfer the per-node surplus state 7875 * when we do not cross the node. 7876 */ 7877 if (new_nid == old_nid) 7878 return; 7879 spin_lock_irq(&hugetlb_lock); 7880 if (h->surplus_huge_pages_node[old_nid]) { 7881 h->surplus_huge_pages_node[old_nid]--; 7882 h->surplus_huge_pages_node[new_nid]++; 7883 } 7884 spin_unlock_irq(&hugetlb_lock); 7885 } 7886 7887 /* 7888 * Our old folio is isolated and has "migratable" cleared until it 7889 * is putback. As migration succeeded, set the new folio "migratable" 7890 * and add it to the active list. 7891 */ 7892 spin_lock_irq(&hugetlb_lock); 7893 folio_set_hugetlb_migratable(new_folio); 7894 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7895 spin_unlock_irq(&hugetlb_lock); 7896 } 7897 7898 /* 7899 * If @take_locks is false, the caller must ensure that no concurrent page table 7900 * access can happen (except for gup_fast() and hardware page walks). 7901 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like 7902 * concurrent page fault handling) and the file rmap lock. 7903 */ 7904 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7905 unsigned long start, 7906 unsigned long end, 7907 bool take_locks) 7908 { 7909 struct hstate *h = hstate_vma(vma); 7910 unsigned long sz = huge_page_size(h); 7911 struct mm_struct *mm = vma->vm_mm; 7912 struct mmu_notifier_range range; 7913 unsigned long address; 7914 spinlock_t *ptl; 7915 pte_t *ptep; 7916 7917 if (!(vma->vm_flags & VM_MAYSHARE)) 7918 return; 7919 7920 if (start >= end) 7921 return; 7922 7923 flush_cache_range(vma, start, end); 7924 /* 7925 * No need to call adjust_range_if_pmd_sharing_possible(), because 7926 * we have already done the PUD_SIZE alignment. 7927 */ 7928 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7929 start, end); 7930 mmu_notifier_invalidate_range_start(&range); 7931 if (take_locks) { 7932 hugetlb_vma_lock_write(vma); 7933 i_mmap_lock_write(vma->vm_file->f_mapping); 7934 } else { 7935 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7936 } 7937 for (address = start; address < end; address += PUD_SIZE) { 7938 ptep = hugetlb_walk(vma, address, sz); 7939 if (!ptep) 7940 continue; 7941 ptl = huge_pte_lock(h, mm, ptep); 7942 huge_pmd_unshare(mm, vma, address, ptep); 7943 spin_unlock(ptl); 7944 } 7945 flush_hugetlb_tlb_range(vma, start, end); 7946 if (take_locks) { 7947 i_mmap_unlock_write(vma->vm_file->f_mapping); 7948 hugetlb_vma_unlock_write(vma); 7949 } 7950 /* 7951 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7952 * Documentation/mm/mmu_notifier.rst. 7953 */ 7954 mmu_notifier_invalidate_range_end(&range); 7955 } 7956 7957 /* 7958 * This function will unconditionally remove all the shared pmd pgtable entries 7959 * within the specific vma for a hugetlbfs memory range. 7960 */ 7961 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7962 { 7963 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7964 ALIGN_DOWN(vma->vm_end, PUD_SIZE), 7965 /* take_locks = */ true); 7966 } 7967 7968 /* 7969 * For hugetlb, mremap() is an odd edge case - while the VMA copying is 7970 * performed, we permit both the old and new VMAs to reference the same 7971 * reservation. 7972 * 7973 * We fix this up after the operation succeeds, or if a newly allocated VMA 7974 * is closed as a result of a failure to allocate memory. 7975 */ 7976 void fixup_hugetlb_reservations(struct vm_area_struct *vma) 7977 { 7978 if (is_vm_hugetlb_page(vma)) 7979 clear_vma_resv_huge_pages(vma); 7980 } 7981