1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 25 #include <asm/page.h> 26 #include <asm/pgtable.h> 27 #include <asm/io.h> 28 29 #include <linux/hugetlb.h> 30 #include <linux/node.h> 31 #include "internal.h" 32 33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 35 unsigned long hugepages_treat_as_movable; 36 37 static int max_hstate; 38 unsigned int default_hstate_idx; 39 struct hstate hstates[HUGE_MAX_HSTATE]; 40 41 __initdata LIST_HEAD(huge_boot_pages); 42 43 /* for command line parsing */ 44 static struct hstate * __initdata parsed_hstate; 45 static unsigned long __initdata default_hstate_max_huge_pages; 46 static unsigned long __initdata default_hstate_size; 47 48 #define for_each_hstate(h) \ 49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 50 51 /* 52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 53 */ 54 static DEFINE_SPINLOCK(hugetlb_lock); 55 56 /* 57 * Region tracking -- allows tracking of reservations and instantiated pages 58 * across the pages in a mapping. 59 * 60 * The region data structures are protected by a combination of the mmap_sem 61 * and the hugetlb_instantion_mutex. To access or modify a region the caller 62 * must either hold the mmap_sem for write, or the mmap_sem for read and 63 * the hugetlb_instantiation mutex: 64 * 65 * down_write(&mm->mmap_sem); 66 * or 67 * down_read(&mm->mmap_sem); 68 * mutex_lock(&hugetlb_instantiation_mutex); 69 */ 70 struct file_region { 71 struct list_head link; 72 long from; 73 long to; 74 }; 75 76 static long region_add(struct list_head *head, long f, long t) 77 { 78 struct file_region *rg, *nrg, *trg; 79 80 /* Locate the region we are either in or before. */ 81 list_for_each_entry(rg, head, link) 82 if (f <= rg->to) 83 break; 84 85 /* Round our left edge to the current segment if it encloses us. */ 86 if (f > rg->from) 87 f = rg->from; 88 89 /* Check for and consume any regions we now overlap with. */ 90 nrg = rg; 91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 92 if (&rg->link == head) 93 break; 94 if (rg->from > t) 95 break; 96 97 /* If this area reaches higher then extend our area to 98 * include it completely. If this is not the first area 99 * which we intend to reuse, free it. */ 100 if (rg->to > t) 101 t = rg->to; 102 if (rg != nrg) { 103 list_del(&rg->link); 104 kfree(rg); 105 } 106 } 107 nrg->from = f; 108 nrg->to = t; 109 return 0; 110 } 111 112 static long region_chg(struct list_head *head, long f, long t) 113 { 114 struct file_region *rg, *nrg; 115 long chg = 0; 116 117 /* Locate the region we are before or in. */ 118 list_for_each_entry(rg, head, link) 119 if (f <= rg->to) 120 break; 121 122 /* If we are below the current region then a new region is required. 123 * Subtle, allocate a new region at the position but make it zero 124 * size such that we can guarantee to record the reservation. */ 125 if (&rg->link == head || t < rg->from) { 126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 127 if (!nrg) 128 return -ENOMEM; 129 nrg->from = f; 130 nrg->to = f; 131 INIT_LIST_HEAD(&nrg->link); 132 list_add(&nrg->link, rg->link.prev); 133 134 return t - f; 135 } 136 137 /* Round our left edge to the current segment if it encloses us. */ 138 if (f > rg->from) 139 f = rg->from; 140 chg = t - f; 141 142 /* Check for and consume any regions we now overlap with. */ 143 list_for_each_entry(rg, rg->link.prev, link) { 144 if (&rg->link == head) 145 break; 146 if (rg->from > t) 147 return chg; 148 149 /* We overlap with this area, if it extends futher than 150 * us then we must extend ourselves. Account for its 151 * existing reservation. */ 152 if (rg->to > t) { 153 chg += rg->to - t; 154 t = rg->to; 155 } 156 chg -= rg->to - rg->from; 157 } 158 return chg; 159 } 160 161 static long region_truncate(struct list_head *head, long end) 162 { 163 struct file_region *rg, *trg; 164 long chg = 0; 165 166 /* Locate the region we are either in or before. */ 167 list_for_each_entry(rg, head, link) 168 if (end <= rg->to) 169 break; 170 if (&rg->link == head) 171 return 0; 172 173 /* If we are in the middle of a region then adjust it. */ 174 if (end > rg->from) { 175 chg = rg->to - end; 176 rg->to = end; 177 rg = list_entry(rg->link.next, typeof(*rg), link); 178 } 179 180 /* Drop any remaining regions. */ 181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 182 if (&rg->link == head) 183 break; 184 chg += rg->to - rg->from; 185 list_del(&rg->link); 186 kfree(rg); 187 } 188 return chg; 189 } 190 191 static long region_count(struct list_head *head, long f, long t) 192 { 193 struct file_region *rg; 194 long chg = 0; 195 196 /* Locate each segment we overlap with, and count that overlap. */ 197 list_for_each_entry(rg, head, link) { 198 int seg_from; 199 int seg_to; 200 201 if (rg->to <= f) 202 continue; 203 if (rg->from >= t) 204 break; 205 206 seg_from = max(rg->from, f); 207 seg_to = min(rg->to, t); 208 209 chg += seg_to - seg_from; 210 } 211 212 return chg; 213 } 214 215 /* 216 * Convert the address within this vma to the page offset within 217 * the mapping, in pagecache page units; huge pages here. 218 */ 219 static pgoff_t vma_hugecache_offset(struct hstate *h, 220 struct vm_area_struct *vma, unsigned long address) 221 { 222 return ((address - vma->vm_start) >> huge_page_shift(h)) + 223 (vma->vm_pgoff >> huge_page_order(h)); 224 } 225 226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 227 unsigned long address) 228 { 229 return vma_hugecache_offset(hstate_vma(vma), vma, address); 230 } 231 232 /* 233 * Return the size of the pages allocated when backing a VMA. In the majority 234 * cases this will be same size as used by the page table entries. 235 */ 236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 237 { 238 struct hstate *hstate; 239 240 if (!is_vm_hugetlb_page(vma)) 241 return PAGE_SIZE; 242 243 hstate = hstate_vma(vma); 244 245 return 1UL << (hstate->order + PAGE_SHIFT); 246 } 247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 248 249 /* 250 * Return the page size being used by the MMU to back a VMA. In the majority 251 * of cases, the page size used by the kernel matches the MMU size. On 252 * architectures where it differs, an architecture-specific version of this 253 * function is required. 254 */ 255 #ifndef vma_mmu_pagesize 256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 257 { 258 return vma_kernel_pagesize(vma); 259 } 260 #endif 261 262 /* 263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 264 * bits of the reservation map pointer, which are always clear due to 265 * alignment. 266 */ 267 #define HPAGE_RESV_OWNER (1UL << 0) 268 #define HPAGE_RESV_UNMAPPED (1UL << 1) 269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 270 271 /* 272 * These helpers are used to track how many pages are reserved for 273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 274 * is guaranteed to have their future faults succeed. 275 * 276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 277 * the reserve counters are updated with the hugetlb_lock held. It is safe 278 * to reset the VMA at fork() time as it is not in use yet and there is no 279 * chance of the global counters getting corrupted as a result of the values. 280 * 281 * The private mapping reservation is represented in a subtly different 282 * manner to a shared mapping. A shared mapping has a region map associated 283 * with the underlying file, this region map represents the backing file 284 * pages which have ever had a reservation assigned which this persists even 285 * after the page is instantiated. A private mapping has a region map 286 * associated with the original mmap which is attached to all VMAs which 287 * reference it, this region map represents those offsets which have consumed 288 * reservation ie. where pages have been instantiated. 289 */ 290 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 291 { 292 return (unsigned long)vma->vm_private_data; 293 } 294 295 static void set_vma_private_data(struct vm_area_struct *vma, 296 unsigned long value) 297 { 298 vma->vm_private_data = (void *)value; 299 } 300 301 struct resv_map { 302 struct kref refs; 303 struct list_head regions; 304 }; 305 306 static struct resv_map *resv_map_alloc(void) 307 { 308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 309 if (!resv_map) 310 return NULL; 311 312 kref_init(&resv_map->refs); 313 INIT_LIST_HEAD(&resv_map->regions); 314 315 return resv_map; 316 } 317 318 static void resv_map_release(struct kref *ref) 319 { 320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 321 322 /* Clear out any active regions before we release the map. */ 323 region_truncate(&resv_map->regions, 0); 324 kfree(resv_map); 325 } 326 327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 328 { 329 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 330 if (!(vma->vm_flags & VM_MAYSHARE)) 331 return (struct resv_map *)(get_vma_private_data(vma) & 332 ~HPAGE_RESV_MASK); 333 return NULL; 334 } 335 336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 337 { 338 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 340 341 set_vma_private_data(vma, (get_vma_private_data(vma) & 342 HPAGE_RESV_MASK) | (unsigned long)map); 343 } 344 345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 346 { 347 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 349 350 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 351 } 352 353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 354 { 355 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 356 357 return (get_vma_private_data(vma) & flag) != 0; 358 } 359 360 /* Decrement the reserved pages in the hugepage pool by one */ 361 static void decrement_hugepage_resv_vma(struct hstate *h, 362 struct vm_area_struct *vma) 363 { 364 if (vma->vm_flags & VM_NORESERVE) 365 return; 366 367 if (vma->vm_flags & VM_MAYSHARE) { 368 /* Shared mappings always use reserves */ 369 h->resv_huge_pages--; 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 371 /* 372 * Only the process that called mmap() has reserves for 373 * private mappings. 374 */ 375 h->resv_huge_pages--; 376 } 377 } 378 379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 381 { 382 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 383 if (!(vma->vm_flags & VM_MAYSHARE)) 384 vma->vm_private_data = (void *)0; 385 } 386 387 /* Returns true if the VMA has associated reserve pages */ 388 static int vma_has_reserves(struct vm_area_struct *vma) 389 { 390 if (vma->vm_flags & VM_MAYSHARE) 391 return 1; 392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 393 return 1; 394 return 0; 395 } 396 397 static void clear_gigantic_page(struct page *page, 398 unsigned long addr, unsigned long sz) 399 { 400 int i; 401 struct page *p = page; 402 403 might_sleep(); 404 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { 405 cond_resched(); 406 clear_user_highpage(p, addr + i * PAGE_SIZE); 407 } 408 } 409 static void clear_huge_page(struct page *page, 410 unsigned long addr, unsigned long sz) 411 { 412 int i; 413 414 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) { 415 clear_gigantic_page(page, addr, sz); 416 return; 417 } 418 419 might_sleep(); 420 for (i = 0; i < sz/PAGE_SIZE; i++) { 421 cond_resched(); 422 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 423 } 424 } 425 426 static void copy_gigantic_page(struct page *dst, struct page *src, 427 unsigned long addr, struct vm_area_struct *vma) 428 { 429 int i; 430 struct hstate *h = hstate_vma(vma); 431 struct page *dst_base = dst; 432 struct page *src_base = src; 433 might_sleep(); 434 for (i = 0; i < pages_per_huge_page(h); ) { 435 cond_resched(); 436 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 437 438 i++; 439 dst = mem_map_next(dst, dst_base, i); 440 src = mem_map_next(src, src_base, i); 441 } 442 } 443 static void copy_huge_page(struct page *dst, struct page *src, 444 unsigned long addr, struct vm_area_struct *vma) 445 { 446 int i; 447 struct hstate *h = hstate_vma(vma); 448 449 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 450 copy_gigantic_page(dst, src, addr, vma); 451 return; 452 } 453 454 might_sleep(); 455 for (i = 0; i < pages_per_huge_page(h); i++) { 456 cond_resched(); 457 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 458 } 459 } 460 461 static void enqueue_huge_page(struct hstate *h, struct page *page) 462 { 463 int nid = page_to_nid(page); 464 list_add(&page->lru, &h->hugepage_freelists[nid]); 465 h->free_huge_pages++; 466 h->free_huge_pages_node[nid]++; 467 } 468 469 static struct page *dequeue_huge_page_vma(struct hstate *h, 470 struct vm_area_struct *vma, 471 unsigned long address, int avoid_reserve) 472 { 473 int nid; 474 struct page *page = NULL; 475 struct mempolicy *mpol; 476 nodemask_t *nodemask; 477 struct zonelist *zonelist; 478 struct zone *zone; 479 struct zoneref *z; 480 481 get_mems_allowed(); 482 zonelist = huge_zonelist(vma, address, 483 htlb_alloc_mask, &mpol, &nodemask); 484 /* 485 * A child process with MAP_PRIVATE mappings created by their parent 486 * have no page reserves. This check ensures that reservations are 487 * not "stolen". The child may still get SIGKILLed 488 */ 489 if (!vma_has_reserves(vma) && 490 h->free_huge_pages - h->resv_huge_pages == 0) 491 goto err; 492 493 /* If reserves cannot be used, ensure enough pages are in the pool */ 494 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 495 goto err;; 496 497 for_each_zone_zonelist_nodemask(zone, z, zonelist, 498 MAX_NR_ZONES - 1, nodemask) { 499 nid = zone_to_nid(zone); 500 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && 501 !list_empty(&h->hugepage_freelists[nid])) { 502 page = list_entry(h->hugepage_freelists[nid].next, 503 struct page, lru); 504 list_del(&page->lru); 505 h->free_huge_pages--; 506 h->free_huge_pages_node[nid]--; 507 508 if (!avoid_reserve) 509 decrement_hugepage_resv_vma(h, vma); 510 511 break; 512 } 513 } 514 err: 515 mpol_cond_put(mpol); 516 put_mems_allowed(); 517 return page; 518 } 519 520 static void update_and_free_page(struct hstate *h, struct page *page) 521 { 522 int i; 523 524 VM_BUG_ON(h->order >= MAX_ORDER); 525 526 h->nr_huge_pages--; 527 h->nr_huge_pages_node[page_to_nid(page)]--; 528 for (i = 0; i < pages_per_huge_page(h); i++) { 529 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 530 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 531 1 << PG_private | 1<< PG_writeback); 532 } 533 set_compound_page_dtor(page, NULL); 534 set_page_refcounted(page); 535 arch_release_hugepage(page); 536 __free_pages(page, huge_page_order(h)); 537 } 538 539 struct hstate *size_to_hstate(unsigned long size) 540 { 541 struct hstate *h; 542 543 for_each_hstate(h) { 544 if (huge_page_size(h) == size) 545 return h; 546 } 547 return NULL; 548 } 549 550 static void free_huge_page(struct page *page) 551 { 552 /* 553 * Can't pass hstate in here because it is called from the 554 * compound page destructor. 555 */ 556 struct hstate *h = page_hstate(page); 557 int nid = page_to_nid(page); 558 struct address_space *mapping; 559 560 mapping = (struct address_space *) page_private(page); 561 set_page_private(page, 0); 562 page->mapping = NULL; 563 BUG_ON(page_count(page)); 564 BUG_ON(page_mapcount(page)); 565 INIT_LIST_HEAD(&page->lru); 566 567 spin_lock(&hugetlb_lock); 568 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 569 update_and_free_page(h, page); 570 h->surplus_huge_pages--; 571 h->surplus_huge_pages_node[nid]--; 572 } else { 573 enqueue_huge_page(h, page); 574 } 575 spin_unlock(&hugetlb_lock); 576 if (mapping) 577 hugetlb_put_quota(mapping, 1); 578 } 579 580 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 581 { 582 set_compound_page_dtor(page, free_huge_page); 583 spin_lock(&hugetlb_lock); 584 h->nr_huge_pages++; 585 h->nr_huge_pages_node[nid]++; 586 spin_unlock(&hugetlb_lock); 587 put_page(page); /* free it into the hugepage allocator */ 588 } 589 590 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 591 { 592 int i; 593 int nr_pages = 1 << order; 594 struct page *p = page + 1; 595 596 /* we rely on prep_new_huge_page to set the destructor */ 597 set_compound_order(page, order); 598 __SetPageHead(page); 599 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 600 __SetPageTail(p); 601 p->first_page = page; 602 } 603 } 604 605 int PageHuge(struct page *page) 606 { 607 compound_page_dtor *dtor; 608 609 if (!PageCompound(page)) 610 return 0; 611 612 page = compound_head(page); 613 dtor = get_compound_page_dtor(page); 614 615 return dtor == free_huge_page; 616 } 617 618 EXPORT_SYMBOL_GPL(PageHuge); 619 620 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 621 { 622 struct page *page; 623 624 if (h->order >= MAX_ORDER) 625 return NULL; 626 627 page = alloc_pages_exact_node(nid, 628 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 629 __GFP_REPEAT|__GFP_NOWARN, 630 huge_page_order(h)); 631 if (page) { 632 if (arch_prepare_hugepage(page)) { 633 __free_pages(page, huge_page_order(h)); 634 return NULL; 635 } 636 prep_new_huge_page(h, page, nid); 637 } 638 639 return page; 640 } 641 642 /* 643 * common helper functions for hstate_next_node_to_{alloc|free}. 644 * We may have allocated or freed a huge page based on a different 645 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 646 * be outside of *nodes_allowed. Ensure that we use an allowed 647 * node for alloc or free. 648 */ 649 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 650 { 651 nid = next_node(nid, *nodes_allowed); 652 if (nid == MAX_NUMNODES) 653 nid = first_node(*nodes_allowed); 654 VM_BUG_ON(nid >= MAX_NUMNODES); 655 656 return nid; 657 } 658 659 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 660 { 661 if (!node_isset(nid, *nodes_allowed)) 662 nid = next_node_allowed(nid, nodes_allowed); 663 return nid; 664 } 665 666 /* 667 * returns the previously saved node ["this node"] from which to 668 * allocate a persistent huge page for the pool and advance the 669 * next node from which to allocate, handling wrap at end of node 670 * mask. 671 */ 672 static int hstate_next_node_to_alloc(struct hstate *h, 673 nodemask_t *nodes_allowed) 674 { 675 int nid; 676 677 VM_BUG_ON(!nodes_allowed); 678 679 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 680 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 681 682 return nid; 683 } 684 685 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 686 { 687 struct page *page; 688 int start_nid; 689 int next_nid; 690 int ret = 0; 691 692 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 693 next_nid = start_nid; 694 695 do { 696 page = alloc_fresh_huge_page_node(h, next_nid); 697 if (page) { 698 ret = 1; 699 break; 700 } 701 next_nid = hstate_next_node_to_alloc(h, nodes_allowed); 702 } while (next_nid != start_nid); 703 704 if (ret) 705 count_vm_event(HTLB_BUDDY_PGALLOC); 706 else 707 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 708 709 return ret; 710 } 711 712 /* 713 * helper for free_pool_huge_page() - return the previously saved 714 * node ["this node"] from which to free a huge page. Advance the 715 * next node id whether or not we find a free huge page to free so 716 * that the next attempt to free addresses the next node. 717 */ 718 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 719 { 720 int nid; 721 722 VM_BUG_ON(!nodes_allowed); 723 724 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 725 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 726 727 return nid; 728 } 729 730 /* 731 * Free huge page from pool from next node to free. 732 * Attempt to keep persistent huge pages more or less 733 * balanced over allowed nodes. 734 * Called with hugetlb_lock locked. 735 */ 736 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 737 bool acct_surplus) 738 { 739 int start_nid; 740 int next_nid; 741 int ret = 0; 742 743 start_nid = hstate_next_node_to_free(h, nodes_allowed); 744 next_nid = start_nid; 745 746 do { 747 /* 748 * If we're returning unused surplus pages, only examine 749 * nodes with surplus pages. 750 */ 751 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && 752 !list_empty(&h->hugepage_freelists[next_nid])) { 753 struct page *page = 754 list_entry(h->hugepage_freelists[next_nid].next, 755 struct page, lru); 756 list_del(&page->lru); 757 h->free_huge_pages--; 758 h->free_huge_pages_node[next_nid]--; 759 if (acct_surplus) { 760 h->surplus_huge_pages--; 761 h->surplus_huge_pages_node[next_nid]--; 762 } 763 update_and_free_page(h, page); 764 ret = 1; 765 break; 766 } 767 next_nid = hstate_next_node_to_free(h, nodes_allowed); 768 } while (next_nid != start_nid); 769 770 return ret; 771 } 772 773 static struct page *alloc_buddy_huge_page(struct hstate *h, 774 struct vm_area_struct *vma, unsigned long address) 775 { 776 struct page *page; 777 unsigned int nid; 778 779 if (h->order >= MAX_ORDER) 780 return NULL; 781 782 /* 783 * Assume we will successfully allocate the surplus page to 784 * prevent racing processes from causing the surplus to exceed 785 * overcommit 786 * 787 * This however introduces a different race, where a process B 788 * tries to grow the static hugepage pool while alloc_pages() is 789 * called by process A. B will only examine the per-node 790 * counters in determining if surplus huge pages can be 791 * converted to normal huge pages in adjust_pool_surplus(). A 792 * won't be able to increment the per-node counter, until the 793 * lock is dropped by B, but B doesn't drop hugetlb_lock until 794 * no more huge pages can be converted from surplus to normal 795 * state (and doesn't try to convert again). Thus, we have a 796 * case where a surplus huge page exists, the pool is grown, and 797 * the surplus huge page still exists after, even though it 798 * should just have been converted to a normal huge page. This 799 * does not leak memory, though, as the hugepage will be freed 800 * once it is out of use. It also does not allow the counters to 801 * go out of whack in adjust_pool_surplus() as we don't modify 802 * the node values until we've gotten the hugepage and only the 803 * per-node value is checked there. 804 */ 805 spin_lock(&hugetlb_lock); 806 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 807 spin_unlock(&hugetlb_lock); 808 return NULL; 809 } else { 810 h->nr_huge_pages++; 811 h->surplus_huge_pages++; 812 } 813 spin_unlock(&hugetlb_lock); 814 815 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 816 __GFP_REPEAT|__GFP_NOWARN, 817 huge_page_order(h)); 818 819 if (page && arch_prepare_hugepage(page)) { 820 __free_pages(page, huge_page_order(h)); 821 return NULL; 822 } 823 824 spin_lock(&hugetlb_lock); 825 if (page) { 826 /* 827 * This page is now managed by the hugetlb allocator and has 828 * no users -- drop the buddy allocator's reference. 829 */ 830 put_page_testzero(page); 831 VM_BUG_ON(page_count(page)); 832 nid = page_to_nid(page); 833 set_compound_page_dtor(page, free_huge_page); 834 /* 835 * We incremented the global counters already 836 */ 837 h->nr_huge_pages_node[nid]++; 838 h->surplus_huge_pages_node[nid]++; 839 __count_vm_event(HTLB_BUDDY_PGALLOC); 840 } else { 841 h->nr_huge_pages--; 842 h->surplus_huge_pages--; 843 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 844 } 845 spin_unlock(&hugetlb_lock); 846 847 return page; 848 } 849 850 /* 851 * Increase the hugetlb pool such that it can accomodate a reservation 852 * of size 'delta'. 853 */ 854 static int gather_surplus_pages(struct hstate *h, int delta) 855 { 856 struct list_head surplus_list; 857 struct page *page, *tmp; 858 int ret, i; 859 int needed, allocated; 860 861 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 862 if (needed <= 0) { 863 h->resv_huge_pages += delta; 864 return 0; 865 } 866 867 allocated = 0; 868 INIT_LIST_HEAD(&surplus_list); 869 870 ret = -ENOMEM; 871 retry: 872 spin_unlock(&hugetlb_lock); 873 for (i = 0; i < needed; i++) { 874 page = alloc_buddy_huge_page(h, NULL, 0); 875 if (!page) { 876 /* 877 * We were not able to allocate enough pages to 878 * satisfy the entire reservation so we free what 879 * we've allocated so far. 880 */ 881 spin_lock(&hugetlb_lock); 882 needed = 0; 883 goto free; 884 } 885 886 list_add(&page->lru, &surplus_list); 887 } 888 allocated += needed; 889 890 /* 891 * After retaking hugetlb_lock, we need to recalculate 'needed' 892 * because either resv_huge_pages or free_huge_pages may have changed. 893 */ 894 spin_lock(&hugetlb_lock); 895 needed = (h->resv_huge_pages + delta) - 896 (h->free_huge_pages + allocated); 897 if (needed > 0) 898 goto retry; 899 900 /* 901 * The surplus_list now contains _at_least_ the number of extra pages 902 * needed to accomodate the reservation. Add the appropriate number 903 * of pages to the hugetlb pool and free the extras back to the buddy 904 * allocator. Commit the entire reservation here to prevent another 905 * process from stealing the pages as they are added to the pool but 906 * before they are reserved. 907 */ 908 needed += allocated; 909 h->resv_huge_pages += delta; 910 ret = 0; 911 free: 912 /* Free the needed pages to the hugetlb pool */ 913 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 914 if ((--needed) < 0) 915 break; 916 list_del(&page->lru); 917 enqueue_huge_page(h, page); 918 } 919 920 /* Free unnecessary surplus pages to the buddy allocator */ 921 if (!list_empty(&surplus_list)) { 922 spin_unlock(&hugetlb_lock); 923 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 924 list_del(&page->lru); 925 /* 926 * The page has a reference count of zero already, so 927 * call free_huge_page directly instead of using 928 * put_page. This must be done with hugetlb_lock 929 * unlocked which is safe because free_huge_page takes 930 * hugetlb_lock before deciding how to free the page. 931 */ 932 free_huge_page(page); 933 } 934 spin_lock(&hugetlb_lock); 935 } 936 937 return ret; 938 } 939 940 /* 941 * When releasing a hugetlb pool reservation, any surplus pages that were 942 * allocated to satisfy the reservation must be explicitly freed if they were 943 * never used. 944 * Called with hugetlb_lock held. 945 */ 946 static void return_unused_surplus_pages(struct hstate *h, 947 unsigned long unused_resv_pages) 948 { 949 unsigned long nr_pages; 950 951 /* Uncommit the reservation */ 952 h->resv_huge_pages -= unused_resv_pages; 953 954 /* Cannot return gigantic pages currently */ 955 if (h->order >= MAX_ORDER) 956 return; 957 958 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 959 960 /* 961 * We want to release as many surplus pages as possible, spread 962 * evenly across all nodes with memory. Iterate across these nodes 963 * until we can no longer free unreserved surplus pages. This occurs 964 * when the nodes with surplus pages have no free pages. 965 * free_pool_huge_page() will balance the the freed pages across the 966 * on-line nodes with memory and will handle the hstate accounting. 967 */ 968 while (nr_pages--) { 969 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) 970 break; 971 } 972 } 973 974 /* 975 * Determine if the huge page at addr within the vma has an associated 976 * reservation. Where it does not we will need to logically increase 977 * reservation and actually increase quota before an allocation can occur. 978 * Where any new reservation would be required the reservation change is 979 * prepared, but not committed. Once the page has been quota'd allocated 980 * an instantiated the change should be committed via vma_commit_reservation. 981 * No action is required on failure. 982 */ 983 static long vma_needs_reservation(struct hstate *h, 984 struct vm_area_struct *vma, unsigned long addr) 985 { 986 struct address_space *mapping = vma->vm_file->f_mapping; 987 struct inode *inode = mapping->host; 988 989 if (vma->vm_flags & VM_MAYSHARE) { 990 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 991 return region_chg(&inode->i_mapping->private_list, 992 idx, idx + 1); 993 994 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 995 return 1; 996 997 } else { 998 long err; 999 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1000 struct resv_map *reservations = vma_resv_map(vma); 1001 1002 err = region_chg(&reservations->regions, idx, idx + 1); 1003 if (err < 0) 1004 return err; 1005 return 0; 1006 } 1007 } 1008 static void vma_commit_reservation(struct hstate *h, 1009 struct vm_area_struct *vma, unsigned long addr) 1010 { 1011 struct address_space *mapping = vma->vm_file->f_mapping; 1012 struct inode *inode = mapping->host; 1013 1014 if (vma->vm_flags & VM_MAYSHARE) { 1015 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1016 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1017 1018 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1019 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1020 struct resv_map *reservations = vma_resv_map(vma); 1021 1022 /* Mark this page used in the map. */ 1023 region_add(&reservations->regions, idx, idx + 1); 1024 } 1025 } 1026 1027 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1028 unsigned long addr, int avoid_reserve) 1029 { 1030 struct hstate *h = hstate_vma(vma); 1031 struct page *page; 1032 struct address_space *mapping = vma->vm_file->f_mapping; 1033 struct inode *inode = mapping->host; 1034 long chg; 1035 1036 /* 1037 * Processes that did not create the mapping will have no reserves and 1038 * will not have accounted against quota. Check that the quota can be 1039 * made before satisfying the allocation 1040 * MAP_NORESERVE mappings may also need pages and quota allocated 1041 * if no reserve mapping overlaps. 1042 */ 1043 chg = vma_needs_reservation(h, vma, addr); 1044 if (chg < 0) 1045 return ERR_PTR(chg); 1046 if (chg) 1047 if (hugetlb_get_quota(inode->i_mapping, chg)) 1048 return ERR_PTR(-ENOSPC); 1049 1050 spin_lock(&hugetlb_lock); 1051 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 1052 spin_unlock(&hugetlb_lock); 1053 1054 if (!page) { 1055 page = alloc_buddy_huge_page(h, vma, addr); 1056 if (!page) { 1057 hugetlb_put_quota(inode->i_mapping, chg); 1058 return ERR_PTR(-VM_FAULT_SIGBUS); 1059 } 1060 } 1061 1062 set_page_refcounted(page); 1063 set_page_private(page, (unsigned long) mapping); 1064 1065 vma_commit_reservation(h, vma, addr); 1066 1067 return page; 1068 } 1069 1070 int __weak alloc_bootmem_huge_page(struct hstate *h) 1071 { 1072 struct huge_bootmem_page *m; 1073 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 1074 1075 while (nr_nodes) { 1076 void *addr; 1077 1078 addr = __alloc_bootmem_node_nopanic( 1079 NODE_DATA(hstate_next_node_to_alloc(h, 1080 &node_states[N_HIGH_MEMORY])), 1081 huge_page_size(h), huge_page_size(h), 0); 1082 1083 if (addr) { 1084 /* 1085 * Use the beginning of the huge page to store the 1086 * huge_bootmem_page struct (until gather_bootmem 1087 * puts them into the mem_map). 1088 */ 1089 m = addr; 1090 goto found; 1091 } 1092 nr_nodes--; 1093 } 1094 return 0; 1095 1096 found: 1097 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1098 /* Put them into a private list first because mem_map is not up yet */ 1099 list_add(&m->list, &huge_boot_pages); 1100 m->hstate = h; 1101 return 1; 1102 } 1103 1104 static void prep_compound_huge_page(struct page *page, int order) 1105 { 1106 if (unlikely(order > (MAX_ORDER - 1))) 1107 prep_compound_gigantic_page(page, order); 1108 else 1109 prep_compound_page(page, order); 1110 } 1111 1112 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1113 static void __init gather_bootmem_prealloc(void) 1114 { 1115 struct huge_bootmem_page *m; 1116 1117 list_for_each_entry(m, &huge_boot_pages, list) { 1118 struct page *page = virt_to_page(m); 1119 struct hstate *h = m->hstate; 1120 __ClearPageReserved(page); 1121 WARN_ON(page_count(page) != 1); 1122 prep_compound_huge_page(page, h->order); 1123 prep_new_huge_page(h, page, page_to_nid(page)); 1124 } 1125 } 1126 1127 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1128 { 1129 unsigned long i; 1130 1131 for (i = 0; i < h->max_huge_pages; ++i) { 1132 if (h->order >= MAX_ORDER) { 1133 if (!alloc_bootmem_huge_page(h)) 1134 break; 1135 } else if (!alloc_fresh_huge_page(h, 1136 &node_states[N_HIGH_MEMORY])) 1137 break; 1138 } 1139 h->max_huge_pages = i; 1140 } 1141 1142 static void __init hugetlb_init_hstates(void) 1143 { 1144 struct hstate *h; 1145 1146 for_each_hstate(h) { 1147 /* oversize hugepages were init'ed in early boot */ 1148 if (h->order < MAX_ORDER) 1149 hugetlb_hstate_alloc_pages(h); 1150 } 1151 } 1152 1153 static char * __init memfmt(char *buf, unsigned long n) 1154 { 1155 if (n >= (1UL << 30)) 1156 sprintf(buf, "%lu GB", n >> 30); 1157 else if (n >= (1UL << 20)) 1158 sprintf(buf, "%lu MB", n >> 20); 1159 else 1160 sprintf(buf, "%lu KB", n >> 10); 1161 return buf; 1162 } 1163 1164 static void __init report_hugepages(void) 1165 { 1166 struct hstate *h; 1167 1168 for_each_hstate(h) { 1169 char buf[32]; 1170 printk(KERN_INFO "HugeTLB registered %s page size, " 1171 "pre-allocated %ld pages\n", 1172 memfmt(buf, huge_page_size(h)), 1173 h->free_huge_pages); 1174 } 1175 } 1176 1177 #ifdef CONFIG_HIGHMEM 1178 static void try_to_free_low(struct hstate *h, unsigned long count, 1179 nodemask_t *nodes_allowed) 1180 { 1181 int i; 1182 1183 if (h->order >= MAX_ORDER) 1184 return; 1185 1186 for_each_node_mask(i, *nodes_allowed) { 1187 struct page *page, *next; 1188 struct list_head *freel = &h->hugepage_freelists[i]; 1189 list_for_each_entry_safe(page, next, freel, lru) { 1190 if (count >= h->nr_huge_pages) 1191 return; 1192 if (PageHighMem(page)) 1193 continue; 1194 list_del(&page->lru); 1195 update_and_free_page(h, page); 1196 h->free_huge_pages--; 1197 h->free_huge_pages_node[page_to_nid(page)]--; 1198 } 1199 } 1200 } 1201 #else 1202 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1203 nodemask_t *nodes_allowed) 1204 { 1205 } 1206 #endif 1207 1208 /* 1209 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1210 * balanced by operating on them in a round-robin fashion. 1211 * Returns 1 if an adjustment was made. 1212 */ 1213 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1214 int delta) 1215 { 1216 int start_nid, next_nid; 1217 int ret = 0; 1218 1219 VM_BUG_ON(delta != -1 && delta != 1); 1220 1221 if (delta < 0) 1222 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 1223 else 1224 start_nid = hstate_next_node_to_free(h, nodes_allowed); 1225 next_nid = start_nid; 1226 1227 do { 1228 int nid = next_nid; 1229 if (delta < 0) { 1230 /* 1231 * To shrink on this node, there must be a surplus page 1232 */ 1233 if (!h->surplus_huge_pages_node[nid]) { 1234 next_nid = hstate_next_node_to_alloc(h, 1235 nodes_allowed); 1236 continue; 1237 } 1238 } 1239 if (delta > 0) { 1240 /* 1241 * Surplus cannot exceed the total number of pages 1242 */ 1243 if (h->surplus_huge_pages_node[nid] >= 1244 h->nr_huge_pages_node[nid]) { 1245 next_nid = hstate_next_node_to_free(h, 1246 nodes_allowed); 1247 continue; 1248 } 1249 } 1250 1251 h->surplus_huge_pages += delta; 1252 h->surplus_huge_pages_node[nid] += delta; 1253 ret = 1; 1254 break; 1255 } while (next_nid != start_nid); 1256 1257 return ret; 1258 } 1259 1260 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1261 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1262 nodemask_t *nodes_allowed) 1263 { 1264 unsigned long min_count, ret; 1265 1266 if (h->order >= MAX_ORDER) 1267 return h->max_huge_pages; 1268 1269 /* 1270 * Increase the pool size 1271 * First take pages out of surplus state. Then make up the 1272 * remaining difference by allocating fresh huge pages. 1273 * 1274 * We might race with alloc_buddy_huge_page() here and be unable 1275 * to convert a surplus huge page to a normal huge page. That is 1276 * not critical, though, it just means the overall size of the 1277 * pool might be one hugepage larger than it needs to be, but 1278 * within all the constraints specified by the sysctls. 1279 */ 1280 spin_lock(&hugetlb_lock); 1281 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1282 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1283 break; 1284 } 1285 1286 while (count > persistent_huge_pages(h)) { 1287 /* 1288 * If this allocation races such that we no longer need the 1289 * page, free_huge_page will handle it by freeing the page 1290 * and reducing the surplus. 1291 */ 1292 spin_unlock(&hugetlb_lock); 1293 ret = alloc_fresh_huge_page(h, nodes_allowed); 1294 spin_lock(&hugetlb_lock); 1295 if (!ret) 1296 goto out; 1297 1298 /* Bail for signals. Probably ctrl-c from user */ 1299 if (signal_pending(current)) 1300 goto out; 1301 } 1302 1303 /* 1304 * Decrease the pool size 1305 * First return free pages to the buddy allocator (being careful 1306 * to keep enough around to satisfy reservations). Then place 1307 * pages into surplus state as needed so the pool will shrink 1308 * to the desired size as pages become free. 1309 * 1310 * By placing pages into the surplus state independent of the 1311 * overcommit value, we are allowing the surplus pool size to 1312 * exceed overcommit. There are few sane options here. Since 1313 * alloc_buddy_huge_page() is checking the global counter, 1314 * though, we'll note that we're not allowed to exceed surplus 1315 * and won't grow the pool anywhere else. Not until one of the 1316 * sysctls are changed, or the surplus pages go out of use. 1317 */ 1318 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1319 min_count = max(count, min_count); 1320 try_to_free_low(h, min_count, nodes_allowed); 1321 while (min_count < persistent_huge_pages(h)) { 1322 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1323 break; 1324 } 1325 while (count < persistent_huge_pages(h)) { 1326 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1327 break; 1328 } 1329 out: 1330 ret = persistent_huge_pages(h); 1331 spin_unlock(&hugetlb_lock); 1332 return ret; 1333 } 1334 1335 #define HSTATE_ATTR_RO(_name) \ 1336 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1337 1338 #define HSTATE_ATTR(_name) \ 1339 static struct kobj_attribute _name##_attr = \ 1340 __ATTR(_name, 0644, _name##_show, _name##_store) 1341 1342 static struct kobject *hugepages_kobj; 1343 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1344 1345 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1346 1347 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1348 { 1349 int i; 1350 1351 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1352 if (hstate_kobjs[i] == kobj) { 1353 if (nidp) 1354 *nidp = NUMA_NO_NODE; 1355 return &hstates[i]; 1356 } 1357 1358 return kobj_to_node_hstate(kobj, nidp); 1359 } 1360 1361 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1362 struct kobj_attribute *attr, char *buf) 1363 { 1364 struct hstate *h; 1365 unsigned long nr_huge_pages; 1366 int nid; 1367 1368 h = kobj_to_hstate(kobj, &nid); 1369 if (nid == NUMA_NO_NODE) 1370 nr_huge_pages = h->nr_huge_pages; 1371 else 1372 nr_huge_pages = h->nr_huge_pages_node[nid]; 1373 1374 return sprintf(buf, "%lu\n", nr_huge_pages); 1375 } 1376 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1377 struct kobject *kobj, struct kobj_attribute *attr, 1378 const char *buf, size_t len) 1379 { 1380 int err; 1381 int nid; 1382 unsigned long count; 1383 struct hstate *h; 1384 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1385 1386 err = strict_strtoul(buf, 10, &count); 1387 if (err) 1388 return 0; 1389 1390 h = kobj_to_hstate(kobj, &nid); 1391 if (nid == NUMA_NO_NODE) { 1392 /* 1393 * global hstate attribute 1394 */ 1395 if (!(obey_mempolicy && 1396 init_nodemask_of_mempolicy(nodes_allowed))) { 1397 NODEMASK_FREE(nodes_allowed); 1398 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1399 } 1400 } else if (nodes_allowed) { 1401 /* 1402 * per node hstate attribute: adjust count to global, 1403 * but restrict alloc/free to the specified node. 1404 */ 1405 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1406 init_nodemask_of_node(nodes_allowed, nid); 1407 } else 1408 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1409 1410 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1411 1412 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1413 NODEMASK_FREE(nodes_allowed); 1414 1415 return len; 1416 } 1417 1418 static ssize_t nr_hugepages_show(struct kobject *kobj, 1419 struct kobj_attribute *attr, char *buf) 1420 { 1421 return nr_hugepages_show_common(kobj, attr, buf); 1422 } 1423 1424 static ssize_t nr_hugepages_store(struct kobject *kobj, 1425 struct kobj_attribute *attr, const char *buf, size_t len) 1426 { 1427 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1428 } 1429 HSTATE_ATTR(nr_hugepages); 1430 1431 #ifdef CONFIG_NUMA 1432 1433 /* 1434 * hstate attribute for optionally mempolicy-based constraint on persistent 1435 * huge page alloc/free. 1436 */ 1437 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1438 struct kobj_attribute *attr, char *buf) 1439 { 1440 return nr_hugepages_show_common(kobj, attr, buf); 1441 } 1442 1443 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1444 struct kobj_attribute *attr, const char *buf, size_t len) 1445 { 1446 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1447 } 1448 HSTATE_ATTR(nr_hugepages_mempolicy); 1449 #endif 1450 1451 1452 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1453 struct kobj_attribute *attr, char *buf) 1454 { 1455 struct hstate *h = kobj_to_hstate(kobj, NULL); 1456 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1457 } 1458 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1459 struct kobj_attribute *attr, const char *buf, size_t count) 1460 { 1461 int err; 1462 unsigned long input; 1463 struct hstate *h = kobj_to_hstate(kobj, NULL); 1464 1465 err = strict_strtoul(buf, 10, &input); 1466 if (err) 1467 return 0; 1468 1469 spin_lock(&hugetlb_lock); 1470 h->nr_overcommit_huge_pages = input; 1471 spin_unlock(&hugetlb_lock); 1472 1473 return count; 1474 } 1475 HSTATE_ATTR(nr_overcommit_hugepages); 1476 1477 static ssize_t free_hugepages_show(struct kobject *kobj, 1478 struct kobj_attribute *attr, char *buf) 1479 { 1480 struct hstate *h; 1481 unsigned long free_huge_pages; 1482 int nid; 1483 1484 h = kobj_to_hstate(kobj, &nid); 1485 if (nid == NUMA_NO_NODE) 1486 free_huge_pages = h->free_huge_pages; 1487 else 1488 free_huge_pages = h->free_huge_pages_node[nid]; 1489 1490 return sprintf(buf, "%lu\n", free_huge_pages); 1491 } 1492 HSTATE_ATTR_RO(free_hugepages); 1493 1494 static ssize_t resv_hugepages_show(struct kobject *kobj, 1495 struct kobj_attribute *attr, char *buf) 1496 { 1497 struct hstate *h = kobj_to_hstate(kobj, NULL); 1498 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1499 } 1500 HSTATE_ATTR_RO(resv_hugepages); 1501 1502 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1503 struct kobj_attribute *attr, char *buf) 1504 { 1505 struct hstate *h; 1506 unsigned long surplus_huge_pages; 1507 int nid; 1508 1509 h = kobj_to_hstate(kobj, &nid); 1510 if (nid == NUMA_NO_NODE) 1511 surplus_huge_pages = h->surplus_huge_pages; 1512 else 1513 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1514 1515 return sprintf(buf, "%lu\n", surplus_huge_pages); 1516 } 1517 HSTATE_ATTR_RO(surplus_hugepages); 1518 1519 static struct attribute *hstate_attrs[] = { 1520 &nr_hugepages_attr.attr, 1521 &nr_overcommit_hugepages_attr.attr, 1522 &free_hugepages_attr.attr, 1523 &resv_hugepages_attr.attr, 1524 &surplus_hugepages_attr.attr, 1525 #ifdef CONFIG_NUMA 1526 &nr_hugepages_mempolicy_attr.attr, 1527 #endif 1528 NULL, 1529 }; 1530 1531 static struct attribute_group hstate_attr_group = { 1532 .attrs = hstate_attrs, 1533 }; 1534 1535 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1536 struct kobject **hstate_kobjs, 1537 struct attribute_group *hstate_attr_group) 1538 { 1539 int retval; 1540 int hi = h - hstates; 1541 1542 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1543 if (!hstate_kobjs[hi]) 1544 return -ENOMEM; 1545 1546 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1547 if (retval) 1548 kobject_put(hstate_kobjs[hi]); 1549 1550 return retval; 1551 } 1552 1553 static void __init hugetlb_sysfs_init(void) 1554 { 1555 struct hstate *h; 1556 int err; 1557 1558 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1559 if (!hugepages_kobj) 1560 return; 1561 1562 for_each_hstate(h) { 1563 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1564 hstate_kobjs, &hstate_attr_group); 1565 if (err) 1566 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1567 h->name); 1568 } 1569 } 1570 1571 #ifdef CONFIG_NUMA 1572 1573 /* 1574 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1575 * with node sysdevs in node_devices[] using a parallel array. The array 1576 * index of a node sysdev or _hstate == node id. 1577 * This is here to avoid any static dependency of the node sysdev driver, in 1578 * the base kernel, on the hugetlb module. 1579 */ 1580 struct node_hstate { 1581 struct kobject *hugepages_kobj; 1582 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1583 }; 1584 struct node_hstate node_hstates[MAX_NUMNODES]; 1585 1586 /* 1587 * A subset of global hstate attributes for node sysdevs 1588 */ 1589 static struct attribute *per_node_hstate_attrs[] = { 1590 &nr_hugepages_attr.attr, 1591 &free_hugepages_attr.attr, 1592 &surplus_hugepages_attr.attr, 1593 NULL, 1594 }; 1595 1596 static struct attribute_group per_node_hstate_attr_group = { 1597 .attrs = per_node_hstate_attrs, 1598 }; 1599 1600 /* 1601 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj. 1602 * Returns node id via non-NULL nidp. 1603 */ 1604 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1605 { 1606 int nid; 1607 1608 for (nid = 0; nid < nr_node_ids; nid++) { 1609 struct node_hstate *nhs = &node_hstates[nid]; 1610 int i; 1611 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1612 if (nhs->hstate_kobjs[i] == kobj) { 1613 if (nidp) 1614 *nidp = nid; 1615 return &hstates[i]; 1616 } 1617 } 1618 1619 BUG(); 1620 return NULL; 1621 } 1622 1623 /* 1624 * Unregister hstate attributes from a single node sysdev. 1625 * No-op if no hstate attributes attached. 1626 */ 1627 void hugetlb_unregister_node(struct node *node) 1628 { 1629 struct hstate *h; 1630 struct node_hstate *nhs = &node_hstates[node->sysdev.id]; 1631 1632 if (!nhs->hugepages_kobj) 1633 return; /* no hstate attributes */ 1634 1635 for_each_hstate(h) 1636 if (nhs->hstate_kobjs[h - hstates]) { 1637 kobject_put(nhs->hstate_kobjs[h - hstates]); 1638 nhs->hstate_kobjs[h - hstates] = NULL; 1639 } 1640 1641 kobject_put(nhs->hugepages_kobj); 1642 nhs->hugepages_kobj = NULL; 1643 } 1644 1645 /* 1646 * hugetlb module exit: unregister hstate attributes from node sysdevs 1647 * that have them. 1648 */ 1649 static void hugetlb_unregister_all_nodes(void) 1650 { 1651 int nid; 1652 1653 /* 1654 * disable node sysdev registrations. 1655 */ 1656 register_hugetlbfs_with_node(NULL, NULL); 1657 1658 /* 1659 * remove hstate attributes from any nodes that have them. 1660 */ 1661 for (nid = 0; nid < nr_node_ids; nid++) 1662 hugetlb_unregister_node(&node_devices[nid]); 1663 } 1664 1665 /* 1666 * Register hstate attributes for a single node sysdev. 1667 * No-op if attributes already registered. 1668 */ 1669 void hugetlb_register_node(struct node *node) 1670 { 1671 struct hstate *h; 1672 struct node_hstate *nhs = &node_hstates[node->sysdev.id]; 1673 int err; 1674 1675 if (nhs->hugepages_kobj) 1676 return; /* already allocated */ 1677 1678 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1679 &node->sysdev.kobj); 1680 if (!nhs->hugepages_kobj) 1681 return; 1682 1683 for_each_hstate(h) { 1684 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1685 nhs->hstate_kobjs, 1686 &per_node_hstate_attr_group); 1687 if (err) { 1688 printk(KERN_ERR "Hugetlb: Unable to add hstate %s" 1689 " for node %d\n", 1690 h->name, node->sysdev.id); 1691 hugetlb_unregister_node(node); 1692 break; 1693 } 1694 } 1695 } 1696 1697 /* 1698 * hugetlb init time: register hstate attributes for all registered node 1699 * sysdevs of nodes that have memory. All on-line nodes should have 1700 * registered their associated sysdev by this time. 1701 */ 1702 static void hugetlb_register_all_nodes(void) 1703 { 1704 int nid; 1705 1706 for_each_node_state(nid, N_HIGH_MEMORY) { 1707 struct node *node = &node_devices[nid]; 1708 if (node->sysdev.id == nid) 1709 hugetlb_register_node(node); 1710 } 1711 1712 /* 1713 * Let the node sysdev driver know we're here so it can 1714 * [un]register hstate attributes on node hotplug. 1715 */ 1716 register_hugetlbfs_with_node(hugetlb_register_node, 1717 hugetlb_unregister_node); 1718 } 1719 #else /* !CONFIG_NUMA */ 1720 1721 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1722 { 1723 BUG(); 1724 if (nidp) 1725 *nidp = -1; 1726 return NULL; 1727 } 1728 1729 static void hugetlb_unregister_all_nodes(void) { } 1730 1731 static void hugetlb_register_all_nodes(void) { } 1732 1733 #endif 1734 1735 static void __exit hugetlb_exit(void) 1736 { 1737 struct hstate *h; 1738 1739 hugetlb_unregister_all_nodes(); 1740 1741 for_each_hstate(h) { 1742 kobject_put(hstate_kobjs[h - hstates]); 1743 } 1744 1745 kobject_put(hugepages_kobj); 1746 } 1747 module_exit(hugetlb_exit); 1748 1749 static int __init hugetlb_init(void) 1750 { 1751 /* Some platform decide whether they support huge pages at boot 1752 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1753 * there is no such support 1754 */ 1755 if (HPAGE_SHIFT == 0) 1756 return 0; 1757 1758 if (!size_to_hstate(default_hstate_size)) { 1759 default_hstate_size = HPAGE_SIZE; 1760 if (!size_to_hstate(default_hstate_size)) 1761 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1762 } 1763 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1764 if (default_hstate_max_huge_pages) 1765 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1766 1767 hugetlb_init_hstates(); 1768 1769 gather_bootmem_prealloc(); 1770 1771 report_hugepages(); 1772 1773 hugetlb_sysfs_init(); 1774 1775 hugetlb_register_all_nodes(); 1776 1777 return 0; 1778 } 1779 module_init(hugetlb_init); 1780 1781 /* Should be called on processing a hugepagesz=... option */ 1782 void __init hugetlb_add_hstate(unsigned order) 1783 { 1784 struct hstate *h; 1785 unsigned long i; 1786 1787 if (size_to_hstate(PAGE_SIZE << order)) { 1788 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1789 return; 1790 } 1791 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1792 BUG_ON(order == 0); 1793 h = &hstates[max_hstate++]; 1794 h->order = order; 1795 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1796 h->nr_huge_pages = 0; 1797 h->free_huge_pages = 0; 1798 for (i = 0; i < MAX_NUMNODES; ++i) 1799 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1800 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); 1801 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); 1802 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1803 huge_page_size(h)/1024); 1804 1805 parsed_hstate = h; 1806 } 1807 1808 static int __init hugetlb_nrpages_setup(char *s) 1809 { 1810 unsigned long *mhp; 1811 static unsigned long *last_mhp; 1812 1813 /* 1814 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1815 * so this hugepages= parameter goes to the "default hstate". 1816 */ 1817 if (!max_hstate) 1818 mhp = &default_hstate_max_huge_pages; 1819 else 1820 mhp = &parsed_hstate->max_huge_pages; 1821 1822 if (mhp == last_mhp) { 1823 printk(KERN_WARNING "hugepages= specified twice without " 1824 "interleaving hugepagesz=, ignoring\n"); 1825 return 1; 1826 } 1827 1828 if (sscanf(s, "%lu", mhp) <= 0) 1829 *mhp = 0; 1830 1831 /* 1832 * Global state is always initialized later in hugetlb_init. 1833 * But we need to allocate >= MAX_ORDER hstates here early to still 1834 * use the bootmem allocator. 1835 */ 1836 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1837 hugetlb_hstate_alloc_pages(parsed_hstate); 1838 1839 last_mhp = mhp; 1840 1841 return 1; 1842 } 1843 __setup("hugepages=", hugetlb_nrpages_setup); 1844 1845 static int __init hugetlb_default_setup(char *s) 1846 { 1847 default_hstate_size = memparse(s, &s); 1848 return 1; 1849 } 1850 __setup("default_hugepagesz=", hugetlb_default_setup); 1851 1852 static unsigned int cpuset_mems_nr(unsigned int *array) 1853 { 1854 int node; 1855 unsigned int nr = 0; 1856 1857 for_each_node_mask(node, cpuset_current_mems_allowed) 1858 nr += array[node]; 1859 1860 return nr; 1861 } 1862 1863 #ifdef CONFIG_SYSCTL 1864 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 1865 struct ctl_table *table, int write, 1866 void __user *buffer, size_t *length, loff_t *ppos) 1867 { 1868 struct hstate *h = &default_hstate; 1869 unsigned long tmp; 1870 1871 if (!write) 1872 tmp = h->max_huge_pages; 1873 1874 table->data = &tmp; 1875 table->maxlen = sizeof(unsigned long); 1876 proc_doulongvec_minmax(table, write, buffer, length, ppos); 1877 1878 if (write) { 1879 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 1880 GFP_KERNEL | __GFP_NORETRY); 1881 if (!(obey_mempolicy && 1882 init_nodemask_of_mempolicy(nodes_allowed))) { 1883 NODEMASK_FREE(nodes_allowed); 1884 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1885 } 1886 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 1887 1888 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1889 NODEMASK_FREE(nodes_allowed); 1890 } 1891 1892 return 0; 1893 } 1894 1895 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1896 void __user *buffer, size_t *length, loff_t *ppos) 1897 { 1898 1899 return hugetlb_sysctl_handler_common(false, table, write, 1900 buffer, length, ppos); 1901 } 1902 1903 #ifdef CONFIG_NUMA 1904 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 1905 void __user *buffer, size_t *length, loff_t *ppos) 1906 { 1907 return hugetlb_sysctl_handler_common(true, table, write, 1908 buffer, length, ppos); 1909 } 1910 #endif /* CONFIG_NUMA */ 1911 1912 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 1913 void __user *buffer, 1914 size_t *length, loff_t *ppos) 1915 { 1916 proc_dointvec(table, write, buffer, length, ppos); 1917 if (hugepages_treat_as_movable) 1918 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 1919 else 1920 htlb_alloc_mask = GFP_HIGHUSER; 1921 return 0; 1922 } 1923 1924 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 1925 void __user *buffer, 1926 size_t *length, loff_t *ppos) 1927 { 1928 struct hstate *h = &default_hstate; 1929 unsigned long tmp; 1930 1931 if (!write) 1932 tmp = h->nr_overcommit_huge_pages; 1933 1934 table->data = &tmp; 1935 table->maxlen = sizeof(unsigned long); 1936 proc_doulongvec_minmax(table, write, buffer, length, ppos); 1937 1938 if (write) { 1939 spin_lock(&hugetlb_lock); 1940 h->nr_overcommit_huge_pages = tmp; 1941 spin_unlock(&hugetlb_lock); 1942 } 1943 1944 return 0; 1945 } 1946 1947 #endif /* CONFIG_SYSCTL */ 1948 1949 void hugetlb_report_meminfo(struct seq_file *m) 1950 { 1951 struct hstate *h = &default_hstate; 1952 seq_printf(m, 1953 "HugePages_Total: %5lu\n" 1954 "HugePages_Free: %5lu\n" 1955 "HugePages_Rsvd: %5lu\n" 1956 "HugePages_Surp: %5lu\n" 1957 "Hugepagesize: %8lu kB\n", 1958 h->nr_huge_pages, 1959 h->free_huge_pages, 1960 h->resv_huge_pages, 1961 h->surplus_huge_pages, 1962 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 1963 } 1964 1965 int hugetlb_report_node_meminfo(int nid, char *buf) 1966 { 1967 struct hstate *h = &default_hstate; 1968 return sprintf(buf, 1969 "Node %d HugePages_Total: %5u\n" 1970 "Node %d HugePages_Free: %5u\n" 1971 "Node %d HugePages_Surp: %5u\n", 1972 nid, h->nr_huge_pages_node[nid], 1973 nid, h->free_huge_pages_node[nid], 1974 nid, h->surplus_huge_pages_node[nid]); 1975 } 1976 1977 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 1978 unsigned long hugetlb_total_pages(void) 1979 { 1980 struct hstate *h = &default_hstate; 1981 return h->nr_huge_pages * pages_per_huge_page(h); 1982 } 1983 1984 static int hugetlb_acct_memory(struct hstate *h, long delta) 1985 { 1986 int ret = -ENOMEM; 1987 1988 spin_lock(&hugetlb_lock); 1989 /* 1990 * When cpuset is configured, it breaks the strict hugetlb page 1991 * reservation as the accounting is done on a global variable. Such 1992 * reservation is completely rubbish in the presence of cpuset because 1993 * the reservation is not checked against page availability for the 1994 * current cpuset. Application can still potentially OOM'ed by kernel 1995 * with lack of free htlb page in cpuset that the task is in. 1996 * Attempt to enforce strict accounting with cpuset is almost 1997 * impossible (or too ugly) because cpuset is too fluid that 1998 * task or memory node can be dynamically moved between cpusets. 1999 * 2000 * The change of semantics for shared hugetlb mapping with cpuset is 2001 * undesirable. However, in order to preserve some of the semantics, 2002 * we fall back to check against current free page availability as 2003 * a best attempt and hopefully to minimize the impact of changing 2004 * semantics that cpuset has. 2005 */ 2006 if (delta > 0) { 2007 if (gather_surplus_pages(h, delta) < 0) 2008 goto out; 2009 2010 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2011 return_unused_surplus_pages(h, delta); 2012 goto out; 2013 } 2014 } 2015 2016 ret = 0; 2017 if (delta < 0) 2018 return_unused_surplus_pages(h, (unsigned long) -delta); 2019 2020 out: 2021 spin_unlock(&hugetlb_lock); 2022 return ret; 2023 } 2024 2025 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2026 { 2027 struct resv_map *reservations = vma_resv_map(vma); 2028 2029 /* 2030 * This new VMA should share its siblings reservation map if present. 2031 * The VMA will only ever have a valid reservation map pointer where 2032 * it is being copied for another still existing VMA. As that VMA 2033 * has a reference to the reservation map it cannot dissappear until 2034 * after this open call completes. It is therefore safe to take a 2035 * new reference here without additional locking. 2036 */ 2037 if (reservations) 2038 kref_get(&reservations->refs); 2039 } 2040 2041 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2042 { 2043 struct hstate *h = hstate_vma(vma); 2044 struct resv_map *reservations = vma_resv_map(vma); 2045 unsigned long reserve; 2046 unsigned long start; 2047 unsigned long end; 2048 2049 if (reservations) { 2050 start = vma_hugecache_offset(h, vma, vma->vm_start); 2051 end = vma_hugecache_offset(h, vma, vma->vm_end); 2052 2053 reserve = (end - start) - 2054 region_count(&reservations->regions, start, end); 2055 2056 kref_put(&reservations->refs, resv_map_release); 2057 2058 if (reserve) { 2059 hugetlb_acct_memory(h, -reserve); 2060 hugetlb_put_quota(vma->vm_file->f_mapping, reserve); 2061 } 2062 } 2063 } 2064 2065 /* 2066 * We cannot handle pagefaults against hugetlb pages at all. They cause 2067 * handle_mm_fault() to try to instantiate regular-sized pages in the 2068 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2069 * this far. 2070 */ 2071 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2072 { 2073 BUG(); 2074 return 0; 2075 } 2076 2077 const struct vm_operations_struct hugetlb_vm_ops = { 2078 .fault = hugetlb_vm_op_fault, 2079 .open = hugetlb_vm_op_open, 2080 .close = hugetlb_vm_op_close, 2081 }; 2082 2083 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2084 int writable) 2085 { 2086 pte_t entry; 2087 2088 if (writable) { 2089 entry = 2090 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 2091 } else { 2092 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 2093 } 2094 entry = pte_mkyoung(entry); 2095 entry = pte_mkhuge(entry); 2096 2097 return entry; 2098 } 2099 2100 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2101 unsigned long address, pte_t *ptep) 2102 { 2103 pte_t entry; 2104 2105 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 2106 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { 2107 update_mmu_cache(vma, address, ptep); 2108 } 2109 } 2110 2111 2112 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2113 struct vm_area_struct *vma) 2114 { 2115 pte_t *src_pte, *dst_pte, entry; 2116 struct page *ptepage; 2117 unsigned long addr; 2118 int cow; 2119 struct hstate *h = hstate_vma(vma); 2120 unsigned long sz = huge_page_size(h); 2121 2122 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2123 2124 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2125 src_pte = huge_pte_offset(src, addr); 2126 if (!src_pte) 2127 continue; 2128 dst_pte = huge_pte_alloc(dst, addr, sz); 2129 if (!dst_pte) 2130 goto nomem; 2131 2132 /* If the pagetables are shared don't copy or take references */ 2133 if (dst_pte == src_pte) 2134 continue; 2135 2136 spin_lock(&dst->page_table_lock); 2137 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 2138 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2139 if (cow) 2140 huge_ptep_set_wrprotect(src, addr, src_pte); 2141 entry = huge_ptep_get(src_pte); 2142 ptepage = pte_page(entry); 2143 get_page(ptepage); 2144 page_dup_rmap(ptepage); 2145 set_huge_pte_at(dst, addr, dst_pte, entry); 2146 } 2147 spin_unlock(&src->page_table_lock); 2148 spin_unlock(&dst->page_table_lock); 2149 } 2150 return 0; 2151 2152 nomem: 2153 return -ENOMEM; 2154 } 2155 2156 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2157 { 2158 swp_entry_t swp; 2159 2160 if (huge_pte_none(pte) || pte_present(pte)) 2161 return 0; 2162 swp = pte_to_swp_entry(pte); 2163 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) { 2164 return 1; 2165 } else 2166 return 0; 2167 } 2168 2169 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2170 unsigned long end, struct page *ref_page) 2171 { 2172 struct mm_struct *mm = vma->vm_mm; 2173 unsigned long address; 2174 pte_t *ptep; 2175 pte_t pte; 2176 struct page *page; 2177 struct page *tmp; 2178 struct hstate *h = hstate_vma(vma); 2179 unsigned long sz = huge_page_size(h); 2180 2181 /* 2182 * A page gathering list, protected by per file i_mmap_lock. The 2183 * lock is used to avoid list corruption from multiple unmapping 2184 * of the same page since we are using page->lru. 2185 */ 2186 LIST_HEAD(page_list); 2187 2188 WARN_ON(!is_vm_hugetlb_page(vma)); 2189 BUG_ON(start & ~huge_page_mask(h)); 2190 BUG_ON(end & ~huge_page_mask(h)); 2191 2192 mmu_notifier_invalidate_range_start(mm, start, end); 2193 spin_lock(&mm->page_table_lock); 2194 for (address = start; address < end; address += sz) { 2195 ptep = huge_pte_offset(mm, address); 2196 if (!ptep) 2197 continue; 2198 2199 if (huge_pmd_unshare(mm, &address, ptep)) 2200 continue; 2201 2202 /* 2203 * If a reference page is supplied, it is because a specific 2204 * page is being unmapped, not a range. Ensure the page we 2205 * are about to unmap is the actual page of interest. 2206 */ 2207 if (ref_page) { 2208 pte = huge_ptep_get(ptep); 2209 if (huge_pte_none(pte)) 2210 continue; 2211 page = pte_page(pte); 2212 if (page != ref_page) 2213 continue; 2214 2215 /* 2216 * Mark the VMA as having unmapped its page so that 2217 * future faults in this VMA will fail rather than 2218 * looking like data was lost 2219 */ 2220 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2221 } 2222 2223 pte = huge_ptep_get_and_clear(mm, address, ptep); 2224 if (huge_pte_none(pte)) 2225 continue; 2226 2227 /* 2228 * HWPoisoned hugepage is already unmapped and dropped reference 2229 */ 2230 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) 2231 continue; 2232 2233 page = pte_page(pte); 2234 if (pte_dirty(pte)) 2235 set_page_dirty(page); 2236 list_add(&page->lru, &page_list); 2237 } 2238 spin_unlock(&mm->page_table_lock); 2239 flush_tlb_range(vma, start, end); 2240 mmu_notifier_invalidate_range_end(mm, start, end); 2241 list_for_each_entry_safe(page, tmp, &page_list, lru) { 2242 page_remove_rmap(page); 2243 list_del(&page->lru); 2244 put_page(page); 2245 } 2246 } 2247 2248 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2249 unsigned long end, struct page *ref_page) 2250 { 2251 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2252 __unmap_hugepage_range(vma, start, end, ref_page); 2253 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2254 } 2255 2256 /* 2257 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2258 * mappping it owns the reserve page for. The intention is to unmap the page 2259 * from other VMAs and let the children be SIGKILLed if they are faulting the 2260 * same region. 2261 */ 2262 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2263 struct page *page, unsigned long address) 2264 { 2265 struct hstate *h = hstate_vma(vma); 2266 struct vm_area_struct *iter_vma; 2267 struct address_space *mapping; 2268 struct prio_tree_iter iter; 2269 pgoff_t pgoff; 2270 2271 /* 2272 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2273 * from page cache lookup which is in HPAGE_SIZE units. 2274 */ 2275 address = address & huge_page_mask(h); 2276 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) 2277 + (vma->vm_pgoff >> PAGE_SHIFT); 2278 mapping = (struct address_space *)page_private(page); 2279 2280 /* 2281 * Take the mapping lock for the duration of the table walk. As 2282 * this mapping should be shared between all the VMAs, 2283 * __unmap_hugepage_range() is called as the lock is already held 2284 */ 2285 spin_lock(&mapping->i_mmap_lock); 2286 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 2287 /* Do not unmap the current VMA */ 2288 if (iter_vma == vma) 2289 continue; 2290 2291 /* 2292 * Unmap the page from other VMAs without their own reserves. 2293 * They get marked to be SIGKILLed if they fault in these 2294 * areas. This is because a future no-page fault on this VMA 2295 * could insert a zeroed page instead of the data existing 2296 * from the time of fork. This would look like data corruption 2297 */ 2298 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2299 __unmap_hugepage_range(iter_vma, 2300 address, address + huge_page_size(h), 2301 page); 2302 } 2303 spin_unlock(&mapping->i_mmap_lock); 2304 2305 return 1; 2306 } 2307 2308 /* 2309 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2310 */ 2311 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2312 unsigned long address, pte_t *ptep, pte_t pte, 2313 struct page *pagecache_page) 2314 { 2315 struct hstate *h = hstate_vma(vma); 2316 struct page *old_page, *new_page; 2317 int avoidcopy; 2318 int outside_reserve = 0; 2319 2320 old_page = pte_page(pte); 2321 2322 retry_avoidcopy: 2323 /* If no-one else is actually using this page, avoid the copy 2324 * and just make the page writable */ 2325 avoidcopy = (page_mapcount(old_page) == 1); 2326 if (avoidcopy) { 2327 if (!trylock_page(old_page)) { 2328 if (PageAnon(old_page)) 2329 page_move_anon_rmap(old_page, vma, address); 2330 } else 2331 unlock_page(old_page); 2332 set_huge_ptep_writable(vma, address, ptep); 2333 return 0; 2334 } 2335 2336 /* 2337 * If the process that created a MAP_PRIVATE mapping is about to 2338 * perform a COW due to a shared page count, attempt to satisfy 2339 * the allocation without using the existing reserves. The pagecache 2340 * page is used to determine if the reserve at this address was 2341 * consumed or not. If reserves were used, a partial faulted mapping 2342 * at the time of fork() could consume its reserves on COW instead 2343 * of the full address range. 2344 */ 2345 if (!(vma->vm_flags & VM_MAYSHARE) && 2346 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2347 old_page != pagecache_page) 2348 outside_reserve = 1; 2349 2350 page_cache_get(old_page); 2351 2352 /* Drop page_table_lock as buddy allocator may be called */ 2353 spin_unlock(&mm->page_table_lock); 2354 new_page = alloc_huge_page(vma, address, outside_reserve); 2355 2356 if (IS_ERR(new_page)) { 2357 page_cache_release(old_page); 2358 2359 /* 2360 * If a process owning a MAP_PRIVATE mapping fails to COW, 2361 * it is due to references held by a child and an insufficient 2362 * huge page pool. To guarantee the original mappers 2363 * reliability, unmap the page from child processes. The child 2364 * may get SIGKILLed if it later faults. 2365 */ 2366 if (outside_reserve) { 2367 BUG_ON(huge_pte_none(pte)); 2368 if (unmap_ref_private(mm, vma, old_page, address)) { 2369 BUG_ON(page_count(old_page) != 1); 2370 BUG_ON(huge_pte_none(pte)); 2371 spin_lock(&mm->page_table_lock); 2372 goto retry_avoidcopy; 2373 } 2374 WARN_ON_ONCE(1); 2375 } 2376 2377 /* Caller expects lock to be held */ 2378 spin_lock(&mm->page_table_lock); 2379 return -PTR_ERR(new_page); 2380 } 2381 2382 /* 2383 * When the original hugepage is shared one, it does not have 2384 * anon_vma prepared. 2385 */ 2386 if (unlikely(anon_vma_prepare(vma))) 2387 return VM_FAULT_OOM; 2388 2389 copy_huge_page(new_page, old_page, address, vma); 2390 __SetPageUptodate(new_page); 2391 2392 /* 2393 * Retake the page_table_lock to check for racing updates 2394 * before the page tables are altered 2395 */ 2396 spin_lock(&mm->page_table_lock); 2397 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2398 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2399 /* Break COW */ 2400 mmu_notifier_invalidate_range_start(mm, 2401 address & huge_page_mask(h), 2402 (address & huge_page_mask(h)) + huge_page_size(h)); 2403 huge_ptep_clear_flush(vma, address, ptep); 2404 set_huge_pte_at(mm, address, ptep, 2405 make_huge_pte(vma, new_page, 1)); 2406 page_remove_rmap(old_page); 2407 hugepage_add_anon_rmap(new_page, vma, address); 2408 /* Make the old page be freed below */ 2409 new_page = old_page; 2410 mmu_notifier_invalidate_range_end(mm, 2411 address & huge_page_mask(h), 2412 (address & huge_page_mask(h)) + huge_page_size(h)); 2413 } 2414 page_cache_release(new_page); 2415 page_cache_release(old_page); 2416 return 0; 2417 } 2418 2419 /* Return the pagecache page at a given address within a VMA */ 2420 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2421 struct vm_area_struct *vma, unsigned long address) 2422 { 2423 struct address_space *mapping; 2424 pgoff_t idx; 2425 2426 mapping = vma->vm_file->f_mapping; 2427 idx = vma_hugecache_offset(h, vma, address); 2428 2429 return find_lock_page(mapping, idx); 2430 } 2431 2432 /* 2433 * Return whether there is a pagecache page to back given address within VMA. 2434 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2435 */ 2436 static bool hugetlbfs_pagecache_present(struct hstate *h, 2437 struct vm_area_struct *vma, unsigned long address) 2438 { 2439 struct address_space *mapping; 2440 pgoff_t idx; 2441 struct page *page; 2442 2443 mapping = vma->vm_file->f_mapping; 2444 idx = vma_hugecache_offset(h, vma, address); 2445 2446 page = find_get_page(mapping, idx); 2447 if (page) 2448 put_page(page); 2449 return page != NULL; 2450 } 2451 2452 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2453 unsigned long address, pte_t *ptep, unsigned int flags) 2454 { 2455 struct hstate *h = hstate_vma(vma); 2456 int ret = VM_FAULT_SIGBUS; 2457 pgoff_t idx; 2458 unsigned long size; 2459 struct page *page; 2460 struct address_space *mapping; 2461 pte_t new_pte; 2462 2463 /* 2464 * Currently, we are forced to kill the process in the event the 2465 * original mapper has unmapped pages from the child due to a failed 2466 * COW. Warn that such a situation has occured as it may not be obvious 2467 */ 2468 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2469 printk(KERN_WARNING 2470 "PID %d killed due to inadequate hugepage pool\n", 2471 current->pid); 2472 return ret; 2473 } 2474 2475 mapping = vma->vm_file->f_mapping; 2476 idx = vma_hugecache_offset(h, vma, address); 2477 2478 /* 2479 * Use page lock to guard against racing truncation 2480 * before we get page_table_lock. 2481 */ 2482 retry: 2483 page = find_lock_page(mapping, idx); 2484 if (!page) { 2485 size = i_size_read(mapping->host) >> huge_page_shift(h); 2486 if (idx >= size) 2487 goto out; 2488 page = alloc_huge_page(vma, address, 0); 2489 if (IS_ERR(page)) { 2490 ret = -PTR_ERR(page); 2491 goto out; 2492 } 2493 clear_huge_page(page, address, huge_page_size(h)); 2494 __SetPageUptodate(page); 2495 2496 if (vma->vm_flags & VM_MAYSHARE) { 2497 int err; 2498 struct inode *inode = mapping->host; 2499 2500 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2501 if (err) { 2502 put_page(page); 2503 if (err == -EEXIST) 2504 goto retry; 2505 goto out; 2506 } 2507 2508 spin_lock(&inode->i_lock); 2509 inode->i_blocks += blocks_per_huge_page(h); 2510 spin_unlock(&inode->i_lock); 2511 page_dup_rmap(page); 2512 } else { 2513 lock_page(page); 2514 if (unlikely(anon_vma_prepare(vma))) { 2515 ret = VM_FAULT_OOM; 2516 goto backout_unlocked; 2517 } 2518 hugepage_add_new_anon_rmap(page, vma, address); 2519 } 2520 } else { 2521 page_dup_rmap(page); 2522 } 2523 2524 /* 2525 * Since memory error handler replaces pte into hwpoison swap entry 2526 * at the time of error handling, a process which reserved but not have 2527 * the mapping to the error hugepage does not have hwpoison swap entry. 2528 * So we need to block accesses from such a process by checking 2529 * PG_hwpoison bit here. 2530 */ 2531 if (unlikely(PageHWPoison(page))) { 2532 ret = VM_FAULT_HWPOISON; 2533 goto backout_unlocked; 2534 } 2535 2536 /* 2537 * If we are going to COW a private mapping later, we examine the 2538 * pending reservations for this page now. This will ensure that 2539 * any allocations necessary to record that reservation occur outside 2540 * the spinlock. 2541 */ 2542 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2543 if (vma_needs_reservation(h, vma, address) < 0) { 2544 ret = VM_FAULT_OOM; 2545 goto backout_unlocked; 2546 } 2547 2548 spin_lock(&mm->page_table_lock); 2549 size = i_size_read(mapping->host) >> huge_page_shift(h); 2550 if (idx >= size) 2551 goto backout; 2552 2553 ret = 0; 2554 if (!huge_pte_none(huge_ptep_get(ptep))) 2555 goto backout; 2556 2557 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2558 && (vma->vm_flags & VM_SHARED))); 2559 set_huge_pte_at(mm, address, ptep, new_pte); 2560 2561 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2562 /* Optimization, do the COW without a second fault */ 2563 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2564 } 2565 2566 spin_unlock(&mm->page_table_lock); 2567 unlock_page(page); 2568 out: 2569 return ret; 2570 2571 backout: 2572 spin_unlock(&mm->page_table_lock); 2573 backout_unlocked: 2574 unlock_page(page); 2575 put_page(page); 2576 goto out; 2577 } 2578 2579 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2580 unsigned long address, unsigned int flags) 2581 { 2582 pte_t *ptep; 2583 pte_t entry; 2584 int ret; 2585 struct page *page = NULL; 2586 struct page *pagecache_page = NULL; 2587 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2588 struct hstate *h = hstate_vma(vma); 2589 2590 ptep = huge_pte_offset(mm, address); 2591 if (ptep) { 2592 entry = huge_ptep_get(ptep); 2593 if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2594 return VM_FAULT_HWPOISON; 2595 } 2596 2597 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2598 if (!ptep) 2599 return VM_FAULT_OOM; 2600 2601 /* 2602 * Serialize hugepage allocation and instantiation, so that we don't 2603 * get spurious allocation failures if two CPUs race to instantiate 2604 * the same page in the page cache. 2605 */ 2606 mutex_lock(&hugetlb_instantiation_mutex); 2607 entry = huge_ptep_get(ptep); 2608 if (huge_pte_none(entry)) { 2609 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2610 goto out_mutex; 2611 } 2612 2613 ret = 0; 2614 2615 /* 2616 * If we are going to COW the mapping later, we examine the pending 2617 * reservations for this page now. This will ensure that any 2618 * allocations necessary to record that reservation occur outside the 2619 * spinlock. For private mappings, we also lookup the pagecache 2620 * page now as it is used to determine if a reservation has been 2621 * consumed. 2622 */ 2623 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { 2624 if (vma_needs_reservation(h, vma, address) < 0) { 2625 ret = VM_FAULT_OOM; 2626 goto out_mutex; 2627 } 2628 2629 if (!(vma->vm_flags & VM_MAYSHARE)) 2630 pagecache_page = hugetlbfs_pagecache_page(h, 2631 vma, address); 2632 } 2633 2634 if (!pagecache_page) { 2635 page = pte_page(entry); 2636 lock_page(page); 2637 } 2638 2639 spin_lock(&mm->page_table_lock); 2640 /* Check for a racing update before calling hugetlb_cow */ 2641 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2642 goto out_page_table_lock; 2643 2644 2645 if (flags & FAULT_FLAG_WRITE) { 2646 if (!pte_write(entry)) { 2647 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2648 pagecache_page); 2649 goto out_page_table_lock; 2650 } 2651 entry = pte_mkdirty(entry); 2652 } 2653 entry = pte_mkyoung(entry); 2654 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2655 flags & FAULT_FLAG_WRITE)) 2656 update_mmu_cache(vma, address, ptep); 2657 2658 out_page_table_lock: 2659 spin_unlock(&mm->page_table_lock); 2660 2661 if (pagecache_page) { 2662 unlock_page(pagecache_page); 2663 put_page(pagecache_page); 2664 } else { 2665 unlock_page(page); 2666 } 2667 2668 out_mutex: 2669 mutex_unlock(&hugetlb_instantiation_mutex); 2670 2671 return ret; 2672 } 2673 2674 /* Can be overriden by architectures */ 2675 __attribute__((weak)) struct page * 2676 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2677 pud_t *pud, int write) 2678 { 2679 BUG(); 2680 return NULL; 2681 } 2682 2683 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2684 struct page **pages, struct vm_area_struct **vmas, 2685 unsigned long *position, int *length, int i, 2686 unsigned int flags) 2687 { 2688 unsigned long pfn_offset; 2689 unsigned long vaddr = *position; 2690 int remainder = *length; 2691 struct hstate *h = hstate_vma(vma); 2692 2693 spin_lock(&mm->page_table_lock); 2694 while (vaddr < vma->vm_end && remainder) { 2695 pte_t *pte; 2696 int absent; 2697 struct page *page; 2698 2699 /* 2700 * Some archs (sparc64, sh*) have multiple pte_ts to 2701 * each hugepage. We have to make sure we get the 2702 * first, for the page indexing below to work. 2703 */ 2704 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2705 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 2706 2707 /* 2708 * When coredumping, it suits get_dump_page if we just return 2709 * an error where there's an empty slot with no huge pagecache 2710 * to back it. This way, we avoid allocating a hugepage, and 2711 * the sparse dumpfile avoids allocating disk blocks, but its 2712 * huge holes still show up with zeroes where they need to be. 2713 */ 2714 if (absent && (flags & FOLL_DUMP) && 2715 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 2716 remainder = 0; 2717 break; 2718 } 2719 2720 if (absent || 2721 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { 2722 int ret; 2723 2724 spin_unlock(&mm->page_table_lock); 2725 ret = hugetlb_fault(mm, vma, vaddr, 2726 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 2727 spin_lock(&mm->page_table_lock); 2728 if (!(ret & VM_FAULT_ERROR)) 2729 continue; 2730 2731 remainder = 0; 2732 break; 2733 } 2734 2735 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2736 page = pte_page(huge_ptep_get(pte)); 2737 same_page: 2738 if (pages) { 2739 pages[i] = mem_map_offset(page, pfn_offset); 2740 get_page(pages[i]); 2741 } 2742 2743 if (vmas) 2744 vmas[i] = vma; 2745 2746 vaddr += PAGE_SIZE; 2747 ++pfn_offset; 2748 --remainder; 2749 ++i; 2750 if (vaddr < vma->vm_end && remainder && 2751 pfn_offset < pages_per_huge_page(h)) { 2752 /* 2753 * We use pfn_offset to avoid touching the pageframes 2754 * of this compound page. 2755 */ 2756 goto same_page; 2757 } 2758 } 2759 spin_unlock(&mm->page_table_lock); 2760 *length = remainder; 2761 *position = vaddr; 2762 2763 return i ? i : -EFAULT; 2764 } 2765 2766 void hugetlb_change_protection(struct vm_area_struct *vma, 2767 unsigned long address, unsigned long end, pgprot_t newprot) 2768 { 2769 struct mm_struct *mm = vma->vm_mm; 2770 unsigned long start = address; 2771 pte_t *ptep; 2772 pte_t pte; 2773 struct hstate *h = hstate_vma(vma); 2774 2775 BUG_ON(address >= end); 2776 flush_cache_range(vma, address, end); 2777 2778 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2779 spin_lock(&mm->page_table_lock); 2780 for (; address < end; address += huge_page_size(h)) { 2781 ptep = huge_pte_offset(mm, address); 2782 if (!ptep) 2783 continue; 2784 if (huge_pmd_unshare(mm, &address, ptep)) 2785 continue; 2786 if (!huge_pte_none(huge_ptep_get(ptep))) { 2787 pte = huge_ptep_get_and_clear(mm, address, ptep); 2788 pte = pte_mkhuge(pte_modify(pte, newprot)); 2789 set_huge_pte_at(mm, address, ptep, pte); 2790 } 2791 } 2792 spin_unlock(&mm->page_table_lock); 2793 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2794 2795 flush_tlb_range(vma, start, end); 2796 } 2797 2798 int hugetlb_reserve_pages(struct inode *inode, 2799 long from, long to, 2800 struct vm_area_struct *vma, 2801 int acctflag) 2802 { 2803 long ret, chg; 2804 struct hstate *h = hstate_inode(inode); 2805 2806 /* 2807 * Only apply hugepage reservation if asked. At fault time, an 2808 * attempt will be made for VM_NORESERVE to allocate a page 2809 * and filesystem quota without using reserves 2810 */ 2811 if (acctflag & VM_NORESERVE) 2812 return 0; 2813 2814 /* 2815 * Shared mappings base their reservation on the number of pages that 2816 * are already allocated on behalf of the file. Private mappings need 2817 * to reserve the full area even if read-only as mprotect() may be 2818 * called to make the mapping read-write. Assume !vma is a shm mapping 2819 */ 2820 if (!vma || vma->vm_flags & VM_MAYSHARE) 2821 chg = region_chg(&inode->i_mapping->private_list, from, to); 2822 else { 2823 struct resv_map *resv_map = resv_map_alloc(); 2824 if (!resv_map) 2825 return -ENOMEM; 2826 2827 chg = to - from; 2828 2829 set_vma_resv_map(vma, resv_map); 2830 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 2831 } 2832 2833 if (chg < 0) 2834 return chg; 2835 2836 /* There must be enough filesystem quota for the mapping */ 2837 if (hugetlb_get_quota(inode->i_mapping, chg)) 2838 return -ENOSPC; 2839 2840 /* 2841 * Check enough hugepages are available for the reservation. 2842 * Hand back the quota if there are not 2843 */ 2844 ret = hugetlb_acct_memory(h, chg); 2845 if (ret < 0) { 2846 hugetlb_put_quota(inode->i_mapping, chg); 2847 return ret; 2848 } 2849 2850 /* 2851 * Account for the reservations made. Shared mappings record regions 2852 * that have reservations as they are shared by multiple VMAs. 2853 * When the last VMA disappears, the region map says how much 2854 * the reservation was and the page cache tells how much of 2855 * the reservation was consumed. Private mappings are per-VMA and 2856 * only the consumed reservations are tracked. When the VMA 2857 * disappears, the original reservation is the VMA size and the 2858 * consumed reservations are stored in the map. Hence, nothing 2859 * else has to be done for private mappings here 2860 */ 2861 if (!vma || vma->vm_flags & VM_MAYSHARE) 2862 region_add(&inode->i_mapping->private_list, from, to); 2863 return 0; 2864 } 2865 2866 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2867 { 2868 struct hstate *h = hstate_inode(inode); 2869 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2870 2871 spin_lock(&inode->i_lock); 2872 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 2873 spin_unlock(&inode->i_lock); 2874 2875 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2876 hugetlb_acct_memory(h, -(chg - freed)); 2877 } 2878 2879 /* 2880 * This function is called from memory failure code. 2881 * Assume the caller holds page lock of the head page. 2882 */ 2883 void __isolate_hwpoisoned_huge_page(struct page *hpage) 2884 { 2885 struct hstate *h = page_hstate(hpage); 2886 int nid = page_to_nid(hpage); 2887 2888 spin_lock(&hugetlb_lock); 2889 list_del(&hpage->lru); 2890 h->free_huge_pages--; 2891 h->free_huge_pages_node[nid]--; 2892 spin_unlock(&hugetlb_lock); 2893 } 2894