xref: /linux/mm/hugetlb.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32 
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40 
41 __initdata LIST_HEAD(huge_boot_pages);
42 
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47 
48 #define for_each_hstate(h) \
49 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50 
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55 
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  * 	down_write(&mm->mmap_sem);
66  * or
67  * 	down_read(&mm->mmap_sem);
68  * 	mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71 	struct list_head link;
72 	long from;
73 	long to;
74 };
75 
76 static long region_add(struct list_head *head, long f, long t)
77 {
78 	struct file_region *rg, *nrg, *trg;
79 
80 	/* Locate the region we are either in or before. */
81 	list_for_each_entry(rg, head, link)
82 		if (f <= rg->to)
83 			break;
84 
85 	/* Round our left edge to the current segment if it encloses us. */
86 	if (f > rg->from)
87 		f = rg->from;
88 
89 	/* Check for and consume any regions we now overlap with. */
90 	nrg = rg;
91 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 		if (&rg->link == head)
93 			break;
94 		if (rg->from > t)
95 			break;
96 
97 		/* If this area reaches higher then extend our area to
98 		 * include it completely.  If this is not the first area
99 		 * which we intend to reuse, free it. */
100 		if (rg->to > t)
101 			t = rg->to;
102 		if (rg != nrg) {
103 			list_del(&rg->link);
104 			kfree(rg);
105 		}
106 	}
107 	nrg->from = f;
108 	nrg->to = t;
109 	return 0;
110 }
111 
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114 	struct file_region *rg, *nrg;
115 	long chg = 0;
116 
117 	/* Locate the region we are before or in. */
118 	list_for_each_entry(rg, head, link)
119 		if (f <= rg->to)
120 			break;
121 
122 	/* If we are below the current region then a new region is required.
123 	 * Subtle, allocate a new region at the position but make it zero
124 	 * size such that we can guarantee to record the reservation. */
125 	if (&rg->link == head || t < rg->from) {
126 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 		if (!nrg)
128 			return -ENOMEM;
129 		nrg->from = f;
130 		nrg->to   = f;
131 		INIT_LIST_HEAD(&nrg->link);
132 		list_add(&nrg->link, rg->link.prev);
133 
134 		return t - f;
135 	}
136 
137 	/* Round our left edge to the current segment if it encloses us. */
138 	if (f > rg->from)
139 		f = rg->from;
140 	chg = t - f;
141 
142 	/* Check for and consume any regions we now overlap with. */
143 	list_for_each_entry(rg, rg->link.prev, link) {
144 		if (&rg->link == head)
145 			break;
146 		if (rg->from > t)
147 			return chg;
148 
149 		/* We overlap with this area, if it extends futher than
150 		 * us then we must extend ourselves.  Account for its
151 		 * existing reservation. */
152 		if (rg->to > t) {
153 			chg += rg->to - t;
154 			t = rg->to;
155 		}
156 		chg -= rg->to - rg->from;
157 	}
158 	return chg;
159 }
160 
161 static long region_truncate(struct list_head *head, long end)
162 {
163 	struct file_region *rg, *trg;
164 	long chg = 0;
165 
166 	/* Locate the region we are either in or before. */
167 	list_for_each_entry(rg, head, link)
168 		if (end <= rg->to)
169 			break;
170 	if (&rg->link == head)
171 		return 0;
172 
173 	/* If we are in the middle of a region then adjust it. */
174 	if (end > rg->from) {
175 		chg = rg->to - end;
176 		rg->to = end;
177 		rg = list_entry(rg->link.next, typeof(*rg), link);
178 	}
179 
180 	/* Drop any remaining regions. */
181 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 		if (&rg->link == head)
183 			break;
184 		chg += rg->to - rg->from;
185 		list_del(&rg->link);
186 		kfree(rg);
187 	}
188 	return chg;
189 }
190 
191 static long region_count(struct list_head *head, long f, long t)
192 {
193 	struct file_region *rg;
194 	long chg = 0;
195 
196 	/* Locate each segment we overlap with, and count that overlap. */
197 	list_for_each_entry(rg, head, link) {
198 		int seg_from;
199 		int seg_to;
200 
201 		if (rg->to <= f)
202 			continue;
203 		if (rg->from >= t)
204 			break;
205 
206 		seg_from = max(rg->from, f);
207 		seg_to = min(rg->to, t);
208 
209 		chg += seg_to - seg_from;
210 	}
211 
212 	return chg;
213 }
214 
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 			struct vm_area_struct *vma, unsigned long address)
221 {
222 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 			(vma->vm_pgoff >> huge_page_order(h));
224 }
225 
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 				     unsigned long address)
228 {
229 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231 
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238 	struct hstate *hstate;
239 
240 	if (!is_vm_hugetlb_page(vma))
241 		return PAGE_SIZE;
242 
243 	hstate = hstate_vma(vma);
244 
245 	return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248 
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258 	return vma_kernel_pagesize(vma);
259 }
260 #endif
261 
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270 
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292 	return (unsigned long)vma->vm_private_data;
293 }
294 
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 							unsigned long value)
297 {
298 	vma->vm_private_data = (void *)value;
299 }
300 
301 struct resv_map {
302 	struct kref refs;
303 	struct list_head regions;
304 };
305 
306 static struct resv_map *resv_map_alloc(void)
307 {
308 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 	if (!resv_map)
310 		return NULL;
311 
312 	kref_init(&resv_map->refs);
313 	INIT_LIST_HEAD(&resv_map->regions);
314 
315 	return resv_map;
316 }
317 
318 static void resv_map_release(struct kref *ref)
319 {
320 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321 
322 	/* Clear out any active regions before we release the map. */
323 	region_truncate(&resv_map->regions, 0);
324 	kfree(resv_map);
325 }
326 
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 	if (!(vma->vm_flags & VM_MAYSHARE))
331 		return (struct resv_map *)(get_vma_private_data(vma) &
332 							~HPAGE_RESV_MASK);
333 	return NULL;
334 }
335 
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 
341 	set_vma_private_data(vma, (get_vma_private_data(vma) &
342 				HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344 
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 
350 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352 
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 
357 	return (get_vma_private_data(vma) & flag) != 0;
358 }
359 
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 			struct vm_area_struct *vma)
363 {
364 	if (vma->vm_flags & VM_NORESERVE)
365 		return;
366 
367 	if (vma->vm_flags & VM_MAYSHARE) {
368 		/* Shared mappings always use reserves */
369 		h->resv_huge_pages--;
370 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 		/*
372 		 * Only the process that called mmap() has reserves for
373 		 * private mappings.
374 		 */
375 		h->resv_huge_pages--;
376 	}
377 }
378 
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 	if (!(vma->vm_flags & VM_MAYSHARE))
384 		vma->vm_private_data = (void *)0;
385 }
386 
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390 	if (vma->vm_flags & VM_MAYSHARE)
391 		return 1;
392 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 		return 1;
394 	return 0;
395 }
396 
397 static void clear_gigantic_page(struct page *page,
398 			unsigned long addr, unsigned long sz)
399 {
400 	int i;
401 	struct page *p = page;
402 
403 	might_sleep();
404 	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405 		cond_resched();
406 		clear_user_highpage(p, addr + i * PAGE_SIZE);
407 	}
408 }
409 static void clear_huge_page(struct page *page,
410 			unsigned long addr, unsigned long sz)
411 {
412 	int i;
413 
414 	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
415 		clear_gigantic_page(page, addr, sz);
416 		return;
417 	}
418 
419 	might_sleep();
420 	for (i = 0; i < sz/PAGE_SIZE; i++) {
421 		cond_resched();
422 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
423 	}
424 }
425 
426 static void copy_gigantic_page(struct page *dst, struct page *src,
427 			   unsigned long addr, struct vm_area_struct *vma)
428 {
429 	int i;
430 	struct hstate *h = hstate_vma(vma);
431 	struct page *dst_base = dst;
432 	struct page *src_base = src;
433 	might_sleep();
434 	for (i = 0; i < pages_per_huge_page(h); ) {
435 		cond_resched();
436 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437 
438 		i++;
439 		dst = mem_map_next(dst, dst_base, i);
440 		src = mem_map_next(src, src_base, i);
441 	}
442 }
443 static void copy_huge_page(struct page *dst, struct page *src,
444 			   unsigned long addr, struct vm_area_struct *vma)
445 {
446 	int i;
447 	struct hstate *h = hstate_vma(vma);
448 
449 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
450 		copy_gigantic_page(dst, src, addr, vma);
451 		return;
452 	}
453 
454 	might_sleep();
455 	for (i = 0; i < pages_per_huge_page(h); i++) {
456 		cond_resched();
457 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
458 	}
459 }
460 
461 static void enqueue_huge_page(struct hstate *h, struct page *page)
462 {
463 	int nid = page_to_nid(page);
464 	list_add(&page->lru, &h->hugepage_freelists[nid]);
465 	h->free_huge_pages++;
466 	h->free_huge_pages_node[nid]++;
467 }
468 
469 static struct page *dequeue_huge_page_vma(struct hstate *h,
470 				struct vm_area_struct *vma,
471 				unsigned long address, int avoid_reserve)
472 {
473 	int nid;
474 	struct page *page = NULL;
475 	struct mempolicy *mpol;
476 	nodemask_t *nodemask;
477 	struct zonelist *zonelist;
478 	struct zone *zone;
479 	struct zoneref *z;
480 
481 	get_mems_allowed();
482 	zonelist = huge_zonelist(vma, address,
483 					htlb_alloc_mask, &mpol, &nodemask);
484 	/*
485 	 * A child process with MAP_PRIVATE mappings created by their parent
486 	 * have no page reserves. This check ensures that reservations are
487 	 * not "stolen". The child may still get SIGKILLed
488 	 */
489 	if (!vma_has_reserves(vma) &&
490 			h->free_huge_pages - h->resv_huge_pages == 0)
491 		goto err;
492 
493 	/* If reserves cannot be used, ensure enough pages are in the pool */
494 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
495 		goto err;;
496 
497 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
498 						MAX_NR_ZONES - 1, nodemask) {
499 		nid = zone_to_nid(zone);
500 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
501 		    !list_empty(&h->hugepage_freelists[nid])) {
502 			page = list_entry(h->hugepage_freelists[nid].next,
503 					  struct page, lru);
504 			list_del(&page->lru);
505 			h->free_huge_pages--;
506 			h->free_huge_pages_node[nid]--;
507 
508 			if (!avoid_reserve)
509 				decrement_hugepage_resv_vma(h, vma);
510 
511 			break;
512 		}
513 	}
514 err:
515 	mpol_cond_put(mpol);
516 	put_mems_allowed();
517 	return page;
518 }
519 
520 static void update_and_free_page(struct hstate *h, struct page *page)
521 {
522 	int i;
523 
524 	VM_BUG_ON(h->order >= MAX_ORDER);
525 
526 	h->nr_huge_pages--;
527 	h->nr_huge_pages_node[page_to_nid(page)]--;
528 	for (i = 0; i < pages_per_huge_page(h); i++) {
529 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
530 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
531 				1 << PG_private | 1<< PG_writeback);
532 	}
533 	set_compound_page_dtor(page, NULL);
534 	set_page_refcounted(page);
535 	arch_release_hugepage(page);
536 	__free_pages(page, huge_page_order(h));
537 }
538 
539 struct hstate *size_to_hstate(unsigned long size)
540 {
541 	struct hstate *h;
542 
543 	for_each_hstate(h) {
544 		if (huge_page_size(h) == size)
545 			return h;
546 	}
547 	return NULL;
548 }
549 
550 static void free_huge_page(struct page *page)
551 {
552 	/*
553 	 * Can't pass hstate in here because it is called from the
554 	 * compound page destructor.
555 	 */
556 	struct hstate *h = page_hstate(page);
557 	int nid = page_to_nid(page);
558 	struct address_space *mapping;
559 
560 	mapping = (struct address_space *) page_private(page);
561 	set_page_private(page, 0);
562 	page->mapping = NULL;
563 	BUG_ON(page_count(page));
564 	BUG_ON(page_mapcount(page));
565 	INIT_LIST_HEAD(&page->lru);
566 
567 	spin_lock(&hugetlb_lock);
568 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
569 		update_and_free_page(h, page);
570 		h->surplus_huge_pages--;
571 		h->surplus_huge_pages_node[nid]--;
572 	} else {
573 		enqueue_huge_page(h, page);
574 	}
575 	spin_unlock(&hugetlb_lock);
576 	if (mapping)
577 		hugetlb_put_quota(mapping, 1);
578 }
579 
580 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
581 {
582 	set_compound_page_dtor(page, free_huge_page);
583 	spin_lock(&hugetlb_lock);
584 	h->nr_huge_pages++;
585 	h->nr_huge_pages_node[nid]++;
586 	spin_unlock(&hugetlb_lock);
587 	put_page(page); /* free it into the hugepage allocator */
588 }
589 
590 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
591 {
592 	int i;
593 	int nr_pages = 1 << order;
594 	struct page *p = page + 1;
595 
596 	/* we rely on prep_new_huge_page to set the destructor */
597 	set_compound_order(page, order);
598 	__SetPageHead(page);
599 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
600 		__SetPageTail(p);
601 		p->first_page = page;
602 	}
603 }
604 
605 int PageHuge(struct page *page)
606 {
607 	compound_page_dtor *dtor;
608 
609 	if (!PageCompound(page))
610 		return 0;
611 
612 	page = compound_head(page);
613 	dtor = get_compound_page_dtor(page);
614 
615 	return dtor == free_huge_page;
616 }
617 
618 EXPORT_SYMBOL_GPL(PageHuge);
619 
620 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
621 {
622 	struct page *page;
623 
624 	if (h->order >= MAX_ORDER)
625 		return NULL;
626 
627 	page = alloc_pages_exact_node(nid,
628 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
629 						__GFP_REPEAT|__GFP_NOWARN,
630 		huge_page_order(h));
631 	if (page) {
632 		if (arch_prepare_hugepage(page)) {
633 			__free_pages(page, huge_page_order(h));
634 			return NULL;
635 		}
636 		prep_new_huge_page(h, page, nid);
637 	}
638 
639 	return page;
640 }
641 
642 /*
643  * common helper functions for hstate_next_node_to_{alloc|free}.
644  * We may have allocated or freed a huge page based on a different
645  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
646  * be outside of *nodes_allowed.  Ensure that we use an allowed
647  * node for alloc or free.
648  */
649 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
650 {
651 	nid = next_node(nid, *nodes_allowed);
652 	if (nid == MAX_NUMNODES)
653 		nid = first_node(*nodes_allowed);
654 	VM_BUG_ON(nid >= MAX_NUMNODES);
655 
656 	return nid;
657 }
658 
659 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
660 {
661 	if (!node_isset(nid, *nodes_allowed))
662 		nid = next_node_allowed(nid, nodes_allowed);
663 	return nid;
664 }
665 
666 /*
667  * returns the previously saved node ["this node"] from which to
668  * allocate a persistent huge page for the pool and advance the
669  * next node from which to allocate, handling wrap at end of node
670  * mask.
671  */
672 static int hstate_next_node_to_alloc(struct hstate *h,
673 					nodemask_t *nodes_allowed)
674 {
675 	int nid;
676 
677 	VM_BUG_ON(!nodes_allowed);
678 
679 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
680 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
681 
682 	return nid;
683 }
684 
685 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
686 {
687 	struct page *page;
688 	int start_nid;
689 	int next_nid;
690 	int ret = 0;
691 
692 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
693 	next_nid = start_nid;
694 
695 	do {
696 		page = alloc_fresh_huge_page_node(h, next_nid);
697 		if (page) {
698 			ret = 1;
699 			break;
700 		}
701 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
702 	} while (next_nid != start_nid);
703 
704 	if (ret)
705 		count_vm_event(HTLB_BUDDY_PGALLOC);
706 	else
707 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
708 
709 	return ret;
710 }
711 
712 /*
713  * helper for free_pool_huge_page() - return the previously saved
714  * node ["this node"] from which to free a huge page.  Advance the
715  * next node id whether or not we find a free huge page to free so
716  * that the next attempt to free addresses the next node.
717  */
718 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
719 {
720 	int nid;
721 
722 	VM_BUG_ON(!nodes_allowed);
723 
724 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
725 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
726 
727 	return nid;
728 }
729 
730 /*
731  * Free huge page from pool from next node to free.
732  * Attempt to keep persistent huge pages more or less
733  * balanced over allowed nodes.
734  * Called with hugetlb_lock locked.
735  */
736 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
737 							 bool acct_surplus)
738 {
739 	int start_nid;
740 	int next_nid;
741 	int ret = 0;
742 
743 	start_nid = hstate_next_node_to_free(h, nodes_allowed);
744 	next_nid = start_nid;
745 
746 	do {
747 		/*
748 		 * If we're returning unused surplus pages, only examine
749 		 * nodes with surplus pages.
750 		 */
751 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
752 		    !list_empty(&h->hugepage_freelists[next_nid])) {
753 			struct page *page =
754 				list_entry(h->hugepage_freelists[next_nid].next,
755 					  struct page, lru);
756 			list_del(&page->lru);
757 			h->free_huge_pages--;
758 			h->free_huge_pages_node[next_nid]--;
759 			if (acct_surplus) {
760 				h->surplus_huge_pages--;
761 				h->surplus_huge_pages_node[next_nid]--;
762 			}
763 			update_and_free_page(h, page);
764 			ret = 1;
765 			break;
766 		}
767 		next_nid = hstate_next_node_to_free(h, nodes_allowed);
768 	} while (next_nid != start_nid);
769 
770 	return ret;
771 }
772 
773 static struct page *alloc_buddy_huge_page(struct hstate *h,
774 			struct vm_area_struct *vma, unsigned long address)
775 {
776 	struct page *page;
777 	unsigned int nid;
778 
779 	if (h->order >= MAX_ORDER)
780 		return NULL;
781 
782 	/*
783 	 * Assume we will successfully allocate the surplus page to
784 	 * prevent racing processes from causing the surplus to exceed
785 	 * overcommit
786 	 *
787 	 * This however introduces a different race, where a process B
788 	 * tries to grow the static hugepage pool while alloc_pages() is
789 	 * called by process A. B will only examine the per-node
790 	 * counters in determining if surplus huge pages can be
791 	 * converted to normal huge pages in adjust_pool_surplus(). A
792 	 * won't be able to increment the per-node counter, until the
793 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
794 	 * no more huge pages can be converted from surplus to normal
795 	 * state (and doesn't try to convert again). Thus, we have a
796 	 * case where a surplus huge page exists, the pool is grown, and
797 	 * the surplus huge page still exists after, even though it
798 	 * should just have been converted to a normal huge page. This
799 	 * does not leak memory, though, as the hugepage will be freed
800 	 * once it is out of use. It also does not allow the counters to
801 	 * go out of whack in adjust_pool_surplus() as we don't modify
802 	 * the node values until we've gotten the hugepage and only the
803 	 * per-node value is checked there.
804 	 */
805 	spin_lock(&hugetlb_lock);
806 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
807 		spin_unlock(&hugetlb_lock);
808 		return NULL;
809 	} else {
810 		h->nr_huge_pages++;
811 		h->surplus_huge_pages++;
812 	}
813 	spin_unlock(&hugetlb_lock);
814 
815 	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
816 					__GFP_REPEAT|__GFP_NOWARN,
817 					huge_page_order(h));
818 
819 	if (page && arch_prepare_hugepage(page)) {
820 		__free_pages(page, huge_page_order(h));
821 		return NULL;
822 	}
823 
824 	spin_lock(&hugetlb_lock);
825 	if (page) {
826 		/*
827 		 * This page is now managed by the hugetlb allocator and has
828 		 * no users -- drop the buddy allocator's reference.
829 		 */
830 		put_page_testzero(page);
831 		VM_BUG_ON(page_count(page));
832 		nid = page_to_nid(page);
833 		set_compound_page_dtor(page, free_huge_page);
834 		/*
835 		 * We incremented the global counters already
836 		 */
837 		h->nr_huge_pages_node[nid]++;
838 		h->surplus_huge_pages_node[nid]++;
839 		__count_vm_event(HTLB_BUDDY_PGALLOC);
840 	} else {
841 		h->nr_huge_pages--;
842 		h->surplus_huge_pages--;
843 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
844 	}
845 	spin_unlock(&hugetlb_lock);
846 
847 	return page;
848 }
849 
850 /*
851  * Increase the hugetlb pool such that it can accomodate a reservation
852  * of size 'delta'.
853  */
854 static int gather_surplus_pages(struct hstate *h, int delta)
855 {
856 	struct list_head surplus_list;
857 	struct page *page, *tmp;
858 	int ret, i;
859 	int needed, allocated;
860 
861 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
862 	if (needed <= 0) {
863 		h->resv_huge_pages += delta;
864 		return 0;
865 	}
866 
867 	allocated = 0;
868 	INIT_LIST_HEAD(&surplus_list);
869 
870 	ret = -ENOMEM;
871 retry:
872 	spin_unlock(&hugetlb_lock);
873 	for (i = 0; i < needed; i++) {
874 		page = alloc_buddy_huge_page(h, NULL, 0);
875 		if (!page) {
876 			/*
877 			 * We were not able to allocate enough pages to
878 			 * satisfy the entire reservation so we free what
879 			 * we've allocated so far.
880 			 */
881 			spin_lock(&hugetlb_lock);
882 			needed = 0;
883 			goto free;
884 		}
885 
886 		list_add(&page->lru, &surplus_list);
887 	}
888 	allocated += needed;
889 
890 	/*
891 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
892 	 * because either resv_huge_pages or free_huge_pages may have changed.
893 	 */
894 	spin_lock(&hugetlb_lock);
895 	needed = (h->resv_huge_pages + delta) -
896 			(h->free_huge_pages + allocated);
897 	if (needed > 0)
898 		goto retry;
899 
900 	/*
901 	 * The surplus_list now contains _at_least_ the number of extra pages
902 	 * needed to accomodate the reservation.  Add the appropriate number
903 	 * of pages to the hugetlb pool and free the extras back to the buddy
904 	 * allocator.  Commit the entire reservation here to prevent another
905 	 * process from stealing the pages as they are added to the pool but
906 	 * before they are reserved.
907 	 */
908 	needed += allocated;
909 	h->resv_huge_pages += delta;
910 	ret = 0;
911 free:
912 	/* Free the needed pages to the hugetlb pool */
913 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
914 		if ((--needed) < 0)
915 			break;
916 		list_del(&page->lru);
917 		enqueue_huge_page(h, page);
918 	}
919 
920 	/* Free unnecessary surplus pages to the buddy allocator */
921 	if (!list_empty(&surplus_list)) {
922 		spin_unlock(&hugetlb_lock);
923 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
924 			list_del(&page->lru);
925 			/*
926 			 * The page has a reference count of zero already, so
927 			 * call free_huge_page directly instead of using
928 			 * put_page.  This must be done with hugetlb_lock
929 			 * unlocked which is safe because free_huge_page takes
930 			 * hugetlb_lock before deciding how to free the page.
931 			 */
932 			free_huge_page(page);
933 		}
934 		spin_lock(&hugetlb_lock);
935 	}
936 
937 	return ret;
938 }
939 
940 /*
941  * When releasing a hugetlb pool reservation, any surplus pages that were
942  * allocated to satisfy the reservation must be explicitly freed if they were
943  * never used.
944  * Called with hugetlb_lock held.
945  */
946 static void return_unused_surplus_pages(struct hstate *h,
947 					unsigned long unused_resv_pages)
948 {
949 	unsigned long nr_pages;
950 
951 	/* Uncommit the reservation */
952 	h->resv_huge_pages -= unused_resv_pages;
953 
954 	/* Cannot return gigantic pages currently */
955 	if (h->order >= MAX_ORDER)
956 		return;
957 
958 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
959 
960 	/*
961 	 * We want to release as many surplus pages as possible, spread
962 	 * evenly across all nodes with memory. Iterate across these nodes
963 	 * until we can no longer free unreserved surplus pages. This occurs
964 	 * when the nodes with surplus pages have no free pages.
965 	 * free_pool_huge_page() will balance the the freed pages across the
966 	 * on-line nodes with memory and will handle the hstate accounting.
967 	 */
968 	while (nr_pages--) {
969 		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
970 			break;
971 	}
972 }
973 
974 /*
975  * Determine if the huge page at addr within the vma has an associated
976  * reservation.  Where it does not we will need to logically increase
977  * reservation and actually increase quota before an allocation can occur.
978  * Where any new reservation would be required the reservation change is
979  * prepared, but not committed.  Once the page has been quota'd allocated
980  * an instantiated the change should be committed via vma_commit_reservation.
981  * No action is required on failure.
982  */
983 static long vma_needs_reservation(struct hstate *h,
984 			struct vm_area_struct *vma, unsigned long addr)
985 {
986 	struct address_space *mapping = vma->vm_file->f_mapping;
987 	struct inode *inode = mapping->host;
988 
989 	if (vma->vm_flags & VM_MAYSHARE) {
990 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 		return region_chg(&inode->i_mapping->private_list,
992 							idx, idx + 1);
993 
994 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
995 		return 1;
996 
997 	} else  {
998 		long err;
999 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1000 		struct resv_map *reservations = vma_resv_map(vma);
1001 
1002 		err = region_chg(&reservations->regions, idx, idx + 1);
1003 		if (err < 0)
1004 			return err;
1005 		return 0;
1006 	}
1007 }
1008 static void vma_commit_reservation(struct hstate *h,
1009 			struct vm_area_struct *vma, unsigned long addr)
1010 {
1011 	struct address_space *mapping = vma->vm_file->f_mapping;
1012 	struct inode *inode = mapping->host;
1013 
1014 	if (vma->vm_flags & VM_MAYSHARE) {
1015 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1017 
1018 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1019 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1020 		struct resv_map *reservations = vma_resv_map(vma);
1021 
1022 		/* Mark this page used in the map. */
1023 		region_add(&reservations->regions, idx, idx + 1);
1024 	}
1025 }
1026 
1027 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1028 				    unsigned long addr, int avoid_reserve)
1029 {
1030 	struct hstate *h = hstate_vma(vma);
1031 	struct page *page;
1032 	struct address_space *mapping = vma->vm_file->f_mapping;
1033 	struct inode *inode = mapping->host;
1034 	long chg;
1035 
1036 	/*
1037 	 * Processes that did not create the mapping will have no reserves and
1038 	 * will not have accounted against quota. Check that the quota can be
1039 	 * made before satisfying the allocation
1040 	 * MAP_NORESERVE mappings may also need pages and quota allocated
1041 	 * if no reserve mapping overlaps.
1042 	 */
1043 	chg = vma_needs_reservation(h, vma, addr);
1044 	if (chg < 0)
1045 		return ERR_PTR(chg);
1046 	if (chg)
1047 		if (hugetlb_get_quota(inode->i_mapping, chg))
1048 			return ERR_PTR(-ENOSPC);
1049 
1050 	spin_lock(&hugetlb_lock);
1051 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1052 	spin_unlock(&hugetlb_lock);
1053 
1054 	if (!page) {
1055 		page = alloc_buddy_huge_page(h, vma, addr);
1056 		if (!page) {
1057 			hugetlb_put_quota(inode->i_mapping, chg);
1058 			return ERR_PTR(-VM_FAULT_SIGBUS);
1059 		}
1060 	}
1061 
1062 	set_page_refcounted(page);
1063 	set_page_private(page, (unsigned long) mapping);
1064 
1065 	vma_commit_reservation(h, vma, addr);
1066 
1067 	return page;
1068 }
1069 
1070 int __weak alloc_bootmem_huge_page(struct hstate *h)
1071 {
1072 	struct huge_bootmem_page *m;
1073 	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1074 
1075 	while (nr_nodes) {
1076 		void *addr;
1077 
1078 		addr = __alloc_bootmem_node_nopanic(
1079 				NODE_DATA(hstate_next_node_to_alloc(h,
1080 						&node_states[N_HIGH_MEMORY])),
1081 				huge_page_size(h), huge_page_size(h), 0);
1082 
1083 		if (addr) {
1084 			/*
1085 			 * Use the beginning of the huge page to store the
1086 			 * huge_bootmem_page struct (until gather_bootmem
1087 			 * puts them into the mem_map).
1088 			 */
1089 			m = addr;
1090 			goto found;
1091 		}
1092 		nr_nodes--;
1093 	}
1094 	return 0;
1095 
1096 found:
1097 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1098 	/* Put them into a private list first because mem_map is not up yet */
1099 	list_add(&m->list, &huge_boot_pages);
1100 	m->hstate = h;
1101 	return 1;
1102 }
1103 
1104 static void prep_compound_huge_page(struct page *page, int order)
1105 {
1106 	if (unlikely(order > (MAX_ORDER - 1)))
1107 		prep_compound_gigantic_page(page, order);
1108 	else
1109 		prep_compound_page(page, order);
1110 }
1111 
1112 /* Put bootmem huge pages into the standard lists after mem_map is up */
1113 static void __init gather_bootmem_prealloc(void)
1114 {
1115 	struct huge_bootmem_page *m;
1116 
1117 	list_for_each_entry(m, &huge_boot_pages, list) {
1118 		struct page *page = virt_to_page(m);
1119 		struct hstate *h = m->hstate;
1120 		__ClearPageReserved(page);
1121 		WARN_ON(page_count(page) != 1);
1122 		prep_compound_huge_page(page, h->order);
1123 		prep_new_huge_page(h, page, page_to_nid(page));
1124 	}
1125 }
1126 
1127 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1128 {
1129 	unsigned long i;
1130 
1131 	for (i = 0; i < h->max_huge_pages; ++i) {
1132 		if (h->order >= MAX_ORDER) {
1133 			if (!alloc_bootmem_huge_page(h))
1134 				break;
1135 		} else if (!alloc_fresh_huge_page(h,
1136 					 &node_states[N_HIGH_MEMORY]))
1137 			break;
1138 	}
1139 	h->max_huge_pages = i;
1140 }
1141 
1142 static void __init hugetlb_init_hstates(void)
1143 {
1144 	struct hstate *h;
1145 
1146 	for_each_hstate(h) {
1147 		/* oversize hugepages were init'ed in early boot */
1148 		if (h->order < MAX_ORDER)
1149 			hugetlb_hstate_alloc_pages(h);
1150 	}
1151 }
1152 
1153 static char * __init memfmt(char *buf, unsigned long n)
1154 {
1155 	if (n >= (1UL << 30))
1156 		sprintf(buf, "%lu GB", n >> 30);
1157 	else if (n >= (1UL << 20))
1158 		sprintf(buf, "%lu MB", n >> 20);
1159 	else
1160 		sprintf(buf, "%lu KB", n >> 10);
1161 	return buf;
1162 }
1163 
1164 static void __init report_hugepages(void)
1165 {
1166 	struct hstate *h;
1167 
1168 	for_each_hstate(h) {
1169 		char buf[32];
1170 		printk(KERN_INFO "HugeTLB registered %s page size, "
1171 				 "pre-allocated %ld pages\n",
1172 			memfmt(buf, huge_page_size(h)),
1173 			h->free_huge_pages);
1174 	}
1175 }
1176 
1177 #ifdef CONFIG_HIGHMEM
1178 static void try_to_free_low(struct hstate *h, unsigned long count,
1179 						nodemask_t *nodes_allowed)
1180 {
1181 	int i;
1182 
1183 	if (h->order >= MAX_ORDER)
1184 		return;
1185 
1186 	for_each_node_mask(i, *nodes_allowed) {
1187 		struct page *page, *next;
1188 		struct list_head *freel = &h->hugepage_freelists[i];
1189 		list_for_each_entry_safe(page, next, freel, lru) {
1190 			if (count >= h->nr_huge_pages)
1191 				return;
1192 			if (PageHighMem(page))
1193 				continue;
1194 			list_del(&page->lru);
1195 			update_and_free_page(h, page);
1196 			h->free_huge_pages--;
1197 			h->free_huge_pages_node[page_to_nid(page)]--;
1198 		}
1199 	}
1200 }
1201 #else
1202 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1203 						nodemask_t *nodes_allowed)
1204 {
1205 }
1206 #endif
1207 
1208 /*
1209  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1210  * balanced by operating on them in a round-robin fashion.
1211  * Returns 1 if an adjustment was made.
1212  */
1213 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1214 				int delta)
1215 {
1216 	int start_nid, next_nid;
1217 	int ret = 0;
1218 
1219 	VM_BUG_ON(delta != -1 && delta != 1);
1220 
1221 	if (delta < 0)
1222 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1223 	else
1224 		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1225 	next_nid = start_nid;
1226 
1227 	do {
1228 		int nid = next_nid;
1229 		if (delta < 0)  {
1230 			/*
1231 			 * To shrink on this node, there must be a surplus page
1232 			 */
1233 			if (!h->surplus_huge_pages_node[nid]) {
1234 				next_nid = hstate_next_node_to_alloc(h,
1235 								nodes_allowed);
1236 				continue;
1237 			}
1238 		}
1239 		if (delta > 0) {
1240 			/*
1241 			 * Surplus cannot exceed the total number of pages
1242 			 */
1243 			if (h->surplus_huge_pages_node[nid] >=
1244 						h->nr_huge_pages_node[nid]) {
1245 				next_nid = hstate_next_node_to_free(h,
1246 								nodes_allowed);
1247 				continue;
1248 			}
1249 		}
1250 
1251 		h->surplus_huge_pages += delta;
1252 		h->surplus_huge_pages_node[nid] += delta;
1253 		ret = 1;
1254 		break;
1255 	} while (next_nid != start_nid);
1256 
1257 	return ret;
1258 }
1259 
1260 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1261 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1262 						nodemask_t *nodes_allowed)
1263 {
1264 	unsigned long min_count, ret;
1265 
1266 	if (h->order >= MAX_ORDER)
1267 		return h->max_huge_pages;
1268 
1269 	/*
1270 	 * Increase the pool size
1271 	 * First take pages out of surplus state.  Then make up the
1272 	 * remaining difference by allocating fresh huge pages.
1273 	 *
1274 	 * We might race with alloc_buddy_huge_page() here and be unable
1275 	 * to convert a surplus huge page to a normal huge page. That is
1276 	 * not critical, though, it just means the overall size of the
1277 	 * pool might be one hugepage larger than it needs to be, but
1278 	 * within all the constraints specified by the sysctls.
1279 	 */
1280 	spin_lock(&hugetlb_lock);
1281 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1282 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1283 			break;
1284 	}
1285 
1286 	while (count > persistent_huge_pages(h)) {
1287 		/*
1288 		 * If this allocation races such that we no longer need the
1289 		 * page, free_huge_page will handle it by freeing the page
1290 		 * and reducing the surplus.
1291 		 */
1292 		spin_unlock(&hugetlb_lock);
1293 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1294 		spin_lock(&hugetlb_lock);
1295 		if (!ret)
1296 			goto out;
1297 
1298 		/* Bail for signals. Probably ctrl-c from user */
1299 		if (signal_pending(current))
1300 			goto out;
1301 	}
1302 
1303 	/*
1304 	 * Decrease the pool size
1305 	 * First return free pages to the buddy allocator (being careful
1306 	 * to keep enough around to satisfy reservations).  Then place
1307 	 * pages into surplus state as needed so the pool will shrink
1308 	 * to the desired size as pages become free.
1309 	 *
1310 	 * By placing pages into the surplus state independent of the
1311 	 * overcommit value, we are allowing the surplus pool size to
1312 	 * exceed overcommit. There are few sane options here. Since
1313 	 * alloc_buddy_huge_page() is checking the global counter,
1314 	 * though, we'll note that we're not allowed to exceed surplus
1315 	 * and won't grow the pool anywhere else. Not until one of the
1316 	 * sysctls are changed, or the surplus pages go out of use.
1317 	 */
1318 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1319 	min_count = max(count, min_count);
1320 	try_to_free_low(h, min_count, nodes_allowed);
1321 	while (min_count < persistent_huge_pages(h)) {
1322 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1323 			break;
1324 	}
1325 	while (count < persistent_huge_pages(h)) {
1326 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1327 			break;
1328 	}
1329 out:
1330 	ret = persistent_huge_pages(h);
1331 	spin_unlock(&hugetlb_lock);
1332 	return ret;
1333 }
1334 
1335 #define HSTATE_ATTR_RO(_name) \
1336 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1337 
1338 #define HSTATE_ATTR(_name) \
1339 	static struct kobj_attribute _name##_attr = \
1340 		__ATTR(_name, 0644, _name##_show, _name##_store)
1341 
1342 static struct kobject *hugepages_kobj;
1343 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1344 
1345 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1346 
1347 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1348 {
1349 	int i;
1350 
1351 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1352 		if (hstate_kobjs[i] == kobj) {
1353 			if (nidp)
1354 				*nidp = NUMA_NO_NODE;
1355 			return &hstates[i];
1356 		}
1357 
1358 	return kobj_to_node_hstate(kobj, nidp);
1359 }
1360 
1361 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1362 					struct kobj_attribute *attr, char *buf)
1363 {
1364 	struct hstate *h;
1365 	unsigned long nr_huge_pages;
1366 	int nid;
1367 
1368 	h = kobj_to_hstate(kobj, &nid);
1369 	if (nid == NUMA_NO_NODE)
1370 		nr_huge_pages = h->nr_huge_pages;
1371 	else
1372 		nr_huge_pages = h->nr_huge_pages_node[nid];
1373 
1374 	return sprintf(buf, "%lu\n", nr_huge_pages);
1375 }
1376 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1377 			struct kobject *kobj, struct kobj_attribute *attr,
1378 			const char *buf, size_t len)
1379 {
1380 	int err;
1381 	int nid;
1382 	unsigned long count;
1383 	struct hstate *h;
1384 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1385 
1386 	err = strict_strtoul(buf, 10, &count);
1387 	if (err)
1388 		return 0;
1389 
1390 	h = kobj_to_hstate(kobj, &nid);
1391 	if (nid == NUMA_NO_NODE) {
1392 		/*
1393 		 * global hstate attribute
1394 		 */
1395 		if (!(obey_mempolicy &&
1396 				init_nodemask_of_mempolicy(nodes_allowed))) {
1397 			NODEMASK_FREE(nodes_allowed);
1398 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1399 		}
1400 	} else if (nodes_allowed) {
1401 		/*
1402 		 * per node hstate attribute: adjust count to global,
1403 		 * but restrict alloc/free to the specified node.
1404 		 */
1405 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1406 		init_nodemask_of_node(nodes_allowed, nid);
1407 	} else
1408 		nodes_allowed = &node_states[N_HIGH_MEMORY];
1409 
1410 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1411 
1412 	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1413 		NODEMASK_FREE(nodes_allowed);
1414 
1415 	return len;
1416 }
1417 
1418 static ssize_t nr_hugepages_show(struct kobject *kobj,
1419 				       struct kobj_attribute *attr, char *buf)
1420 {
1421 	return nr_hugepages_show_common(kobj, attr, buf);
1422 }
1423 
1424 static ssize_t nr_hugepages_store(struct kobject *kobj,
1425 	       struct kobj_attribute *attr, const char *buf, size_t len)
1426 {
1427 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1428 }
1429 HSTATE_ATTR(nr_hugepages);
1430 
1431 #ifdef CONFIG_NUMA
1432 
1433 /*
1434  * hstate attribute for optionally mempolicy-based constraint on persistent
1435  * huge page alloc/free.
1436  */
1437 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1438 				       struct kobj_attribute *attr, char *buf)
1439 {
1440 	return nr_hugepages_show_common(kobj, attr, buf);
1441 }
1442 
1443 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1444 	       struct kobj_attribute *attr, const char *buf, size_t len)
1445 {
1446 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1447 }
1448 HSTATE_ATTR(nr_hugepages_mempolicy);
1449 #endif
1450 
1451 
1452 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1453 					struct kobj_attribute *attr, char *buf)
1454 {
1455 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1456 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1457 }
1458 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1459 		struct kobj_attribute *attr, const char *buf, size_t count)
1460 {
1461 	int err;
1462 	unsigned long input;
1463 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1464 
1465 	err = strict_strtoul(buf, 10, &input);
1466 	if (err)
1467 		return 0;
1468 
1469 	spin_lock(&hugetlb_lock);
1470 	h->nr_overcommit_huge_pages = input;
1471 	spin_unlock(&hugetlb_lock);
1472 
1473 	return count;
1474 }
1475 HSTATE_ATTR(nr_overcommit_hugepages);
1476 
1477 static ssize_t free_hugepages_show(struct kobject *kobj,
1478 					struct kobj_attribute *attr, char *buf)
1479 {
1480 	struct hstate *h;
1481 	unsigned long free_huge_pages;
1482 	int nid;
1483 
1484 	h = kobj_to_hstate(kobj, &nid);
1485 	if (nid == NUMA_NO_NODE)
1486 		free_huge_pages = h->free_huge_pages;
1487 	else
1488 		free_huge_pages = h->free_huge_pages_node[nid];
1489 
1490 	return sprintf(buf, "%lu\n", free_huge_pages);
1491 }
1492 HSTATE_ATTR_RO(free_hugepages);
1493 
1494 static ssize_t resv_hugepages_show(struct kobject *kobj,
1495 					struct kobj_attribute *attr, char *buf)
1496 {
1497 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1498 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1499 }
1500 HSTATE_ATTR_RO(resv_hugepages);
1501 
1502 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1503 					struct kobj_attribute *attr, char *buf)
1504 {
1505 	struct hstate *h;
1506 	unsigned long surplus_huge_pages;
1507 	int nid;
1508 
1509 	h = kobj_to_hstate(kobj, &nid);
1510 	if (nid == NUMA_NO_NODE)
1511 		surplus_huge_pages = h->surplus_huge_pages;
1512 	else
1513 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1514 
1515 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1516 }
1517 HSTATE_ATTR_RO(surplus_hugepages);
1518 
1519 static struct attribute *hstate_attrs[] = {
1520 	&nr_hugepages_attr.attr,
1521 	&nr_overcommit_hugepages_attr.attr,
1522 	&free_hugepages_attr.attr,
1523 	&resv_hugepages_attr.attr,
1524 	&surplus_hugepages_attr.attr,
1525 #ifdef CONFIG_NUMA
1526 	&nr_hugepages_mempolicy_attr.attr,
1527 #endif
1528 	NULL,
1529 };
1530 
1531 static struct attribute_group hstate_attr_group = {
1532 	.attrs = hstate_attrs,
1533 };
1534 
1535 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1536 				    struct kobject **hstate_kobjs,
1537 				    struct attribute_group *hstate_attr_group)
1538 {
1539 	int retval;
1540 	int hi = h - hstates;
1541 
1542 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1543 	if (!hstate_kobjs[hi])
1544 		return -ENOMEM;
1545 
1546 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1547 	if (retval)
1548 		kobject_put(hstate_kobjs[hi]);
1549 
1550 	return retval;
1551 }
1552 
1553 static void __init hugetlb_sysfs_init(void)
1554 {
1555 	struct hstate *h;
1556 	int err;
1557 
1558 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1559 	if (!hugepages_kobj)
1560 		return;
1561 
1562 	for_each_hstate(h) {
1563 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1564 					 hstate_kobjs, &hstate_attr_group);
1565 		if (err)
1566 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1567 								h->name);
1568 	}
1569 }
1570 
1571 #ifdef CONFIG_NUMA
1572 
1573 /*
1574  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1575  * with node sysdevs in node_devices[] using a parallel array.  The array
1576  * index of a node sysdev or _hstate == node id.
1577  * This is here to avoid any static dependency of the node sysdev driver, in
1578  * the base kernel, on the hugetlb module.
1579  */
1580 struct node_hstate {
1581 	struct kobject		*hugepages_kobj;
1582 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1583 };
1584 struct node_hstate node_hstates[MAX_NUMNODES];
1585 
1586 /*
1587  * A subset of global hstate attributes for node sysdevs
1588  */
1589 static struct attribute *per_node_hstate_attrs[] = {
1590 	&nr_hugepages_attr.attr,
1591 	&free_hugepages_attr.attr,
1592 	&surplus_hugepages_attr.attr,
1593 	NULL,
1594 };
1595 
1596 static struct attribute_group per_node_hstate_attr_group = {
1597 	.attrs = per_node_hstate_attrs,
1598 };
1599 
1600 /*
1601  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1602  * Returns node id via non-NULL nidp.
1603  */
1604 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1605 {
1606 	int nid;
1607 
1608 	for (nid = 0; nid < nr_node_ids; nid++) {
1609 		struct node_hstate *nhs = &node_hstates[nid];
1610 		int i;
1611 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1612 			if (nhs->hstate_kobjs[i] == kobj) {
1613 				if (nidp)
1614 					*nidp = nid;
1615 				return &hstates[i];
1616 			}
1617 	}
1618 
1619 	BUG();
1620 	return NULL;
1621 }
1622 
1623 /*
1624  * Unregister hstate attributes from a single node sysdev.
1625  * No-op if no hstate attributes attached.
1626  */
1627 void hugetlb_unregister_node(struct node *node)
1628 {
1629 	struct hstate *h;
1630 	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1631 
1632 	if (!nhs->hugepages_kobj)
1633 		return;		/* no hstate attributes */
1634 
1635 	for_each_hstate(h)
1636 		if (nhs->hstate_kobjs[h - hstates]) {
1637 			kobject_put(nhs->hstate_kobjs[h - hstates]);
1638 			nhs->hstate_kobjs[h - hstates] = NULL;
1639 		}
1640 
1641 	kobject_put(nhs->hugepages_kobj);
1642 	nhs->hugepages_kobj = NULL;
1643 }
1644 
1645 /*
1646  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1647  * that have them.
1648  */
1649 static void hugetlb_unregister_all_nodes(void)
1650 {
1651 	int nid;
1652 
1653 	/*
1654 	 * disable node sysdev registrations.
1655 	 */
1656 	register_hugetlbfs_with_node(NULL, NULL);
1657 
1658 	/*
1659 	 * remove hstate attributes from any nodes that have them.
1660 	 */
1661 	for (nid = 0; nid < nr_node_ids; nid++)
1662 		hugetlb_unregister_node(&node_devices[nid]);
1663 }
1664 
1665 /*
1666  * Register hstate attributes for a single node sysdev.
1667  * No-op if attributes already registered.
1668  */
1669 void hugetlb_register_node(struct node *node)
1670 {
1671 	struct hstate *h;
1672 	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1673 	int err;
1674 
1675 	if (nhs->hugepages_kobj)
1676 		return;		/* already allocated */
1677 
1678 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1679 							&node->sysdev.kobj);
1680 	if (!nhs->hugepages_kobj)
1681 		return;
1682 
1683 	for_each_hstate(h) {
1684 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1685 						nhs->hstate_kobjs,
1686 						&per_node_hstate_attr_group);
1687 		if (err) {
1688 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1689 					" for node %d\n",
1690 						h->name, node->sysdev.id);
1691 			hugetlb_unregister_node(node);
1692 			break;
1693 		}
1694 	}
1695 }
1696 
1697 /*
1698  * hugetlb init time:  register hstate attributes for all registered node
1699  * sysdevs of nodes that have memory.  All on-line nodes should have
1700  * registered their associated sysdev by this time.
1701  */
1702 static void hugetlb_register_all_nodes(void)
1703 {
1704 	int nid;
1705 
1706 	for_each_node_state(nid, N_HIGH_MEMORY) {
1707 		struct node *node = &node_devices[nid];
1708 		if (node->sysdev.id == nid)
1709 			hugetlb_register_node(node);
1710 	}
1711 
1712 	/*
1713 	 * Let the node sysdev driver know we're here so it can
1714 	 * [un]register hstate attributes on node hotplug.
1715 	 */
1716 	register_hugetlbfs_with_node(hugetlb_register_node,
1717 				     hugetlb_unregister_node);
1718 }
1719 #else	/* !CONFIG_NUMA */
1720 
1721 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1722 {
1723 	BUG();
1724 	if (nidp)
1725 		*nidp = -1;
1726 	return NULL;
1727 }
1728 
1729 static void hugetlb_unregister_all_nodes(void) { }
1730 
1731 static void hugetlb_register_all_nodes(void) { }
1732 
1733 #endif
1734 
1735 static void __exit hugetlb_exit(void)
1736 {
1737 	struct hstate *h;
1738 
1739 	hugetlb_unregister_all_nodes();
1740 
1741 	for_each_hstate(h) {
1742 		kobject_put(hstate_kobjs[h - hstates]);
1743 	}
1744 
1745 	kobject_put(hugepages_kobj);
1746 }
1747 module_exit(hugetlb_exit);
1748 
1749 static int __init hugetlb_init(void)
1750 {
1751 	/* Some platform decide whether they support huge pages at boot
1752 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1753 	 * there is no such support
1754 	 */
1755 	if (HPAGE_SHIFT == 0)
1756 		return 0;
1757 
1758 	if (!size_to_hstate(default_hstate_size)) {
1759 		default_hstate_size = HPAGE_SIZE;
1760 		if (!size_to_hstate(default_hstate_size))
1761 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1762 	}
1763 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1764 	if (default_hstate_max_huge_pages)
1765 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1766 
1767 	hugetlb_init_hstates();
1768 
1769 	gather_bootmem_prealloc();
1770 
1771 	report_hugepages();
1772 
1773 	hugetlb_sysfs_init();
1774 
1775 	hugetlb_register_all_nodes();
1776 
1777 	return 0;
1778 }
1779 module_init(hugetlb_init);
1780 
1781 /* Should be called on processing a hugepagesz=... option */
1782 void __init hugetlb_add_hstate(unsigned order)
1783 {
1784 	struct hstate *h;
1785 	unsigned long i;
1786 
1787 	if (size_to_hstate(PAGE_SIZE << order)) {
1788 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1789 		return;
1790 	}
1791 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1792 	BUG_ON(order == 0);
1793 	h = &hstates[max_hstate++];
1794 	h->order = order;
1795 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1796 	h->nr_huge_pages = 0;
1797 	h->free_huge_pages = 0;
1798 	for (i = 0; i < MAX_NUMNODES; ++i)
1799 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1800 	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1801 	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1802 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1803 					huge_page_size(h)/1024);
1804 
1805 	parsed_hstate = h;
1806 }
1807 
1808 static int __init hugetlb_nrpages_setup(char *s)
1809 {
1810 	unsigned long *mhp;
1811 	static unsigned long *last_mhp;
1812 
1813 	/*
1814 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1815 	 * so this hugepages= parameter goes to the "default hstate".
1816 	 */
1817 	if (!max_hstate)
1818 		mhp = &default_hstate_max_huge_pages;
1819 	else
1820 		mhp = &parsed_hstate->max_huge_pages;
1821 
1822 	if (mhp == last_mhp) {
1823 		printk(KERN_WARNING "hugepages= specified twice without "
1824 			"interleaving hugepagesz=, ignoring\n");
1825 		return 1;
1826 	}
1827 
1828 	if (sscanf(s, "%lu", mhp) <= 0)
1829 		*mhp = 0;
1830 
1831 	/*
1832 	 * Global state is always initialized later in hugetlb_init.
1833 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1834 	 * use the bootmem allocator.
1835 	 */
1836 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1837 		hugetlb_hstate_alloc_pages(parsed_hstate);
1838 
1839 	last_mhp = mhp;
1840 
1841 	return 1;
1842 }
1843 __setup("hugepages=", hugetlb_nrpages_setup);
1844 
1845 static int __init hugetlb_default_setup(char *s)
1846 {
1847 	default_hstate_size = memparse(s, &s);
1848 	return 1;
1849 }
1850 __setup("default_hugepagesz=", hugetlb_default_setup);
1851 
1852 static unsigned int cpuset_mems_nr(unsigned int *array)
1853 {
1854 	int node;
1855 	unsigned int nr = 0;
1856 
1857 	for_each_node_mask(node, cpuset_current_mems_allowed)
1858 		nr += array[node];
1859 
1860 	return nr;
1861 }
1862 
1863 #ifdef CONFIG_SYSCTL
1864 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1865 			 struct ctl_table *table, int write,
1866 			 void __user *buffer, size_t *length, loff_t *ppos)
1867 {
1868 	struct hstate *h = &default_hstate;
1869 	unsigned long tmp;
1870 
1871 	if (!write)
1872 		tmp = h->max_huge_pages;
1873 
1874 	table->data = &tmp;
1875 	table->maxlen = sizeof(unsigned long);
1876 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1877 
1878 	if (write) {
1879 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1880 						GFP_KERNEL | __GFP_NORETRY);
1881 		if (!(obey_mempolicy &&
1882 			       init_nodemask_of_mempolicy(nodes_allowed))) {
1883 			NODEMASK_FREE(nodes_allowed);
1884 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1885 		}
1886 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1887 
1888 		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1889 			NODEMASK_FREE(nodes_allowed);
1890 	}
1891 
1892 	return 0;
1893 }
1894 
1895 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1896 			  void __user *buffer, size_t *length, loff_t *ppos)
1897 {
1898 
1899 	return hugetlb_sysctl_handler_common(false, table, write,
1900 							buffer, length, ppos);
1901 }
1902 
1903 #ifdef CONFIG_NUMA
1904 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1905 			  void __user *buffer, size_t *length, loff_t *ppos)
1906 {
1907 	return hugetlb_sysctl_handler_common(true, table, write,
1908 							buffer, length, ppos);
1909 }
1910 #endif /* CONFIG_NUMA */
1911 
1912 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1913 			void __user *buffer,
1914 			size_t *length, loff_t *ppos)
1915 {
1916 	proc_dointvec(table, write, buffer, length, ppos);
1917 	if (hugepages_treat_as_movable)
1918 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1919 	else
1920 		htlb_alloc_mask = GFP_HIGHUSER;
1921 	return 0;
1922 }
1923 
1924 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1925 			void __user *buffer,
1926 			size_t *length, loff_t *ppos)
1927 {
1928 	struct hstate *h = &default_hstate;
1929 	unsigned long tmp;
1930 
1931 	if (!write)
1932 		tmp = h->nr_overcommit_huge_pages;
1933 
1934 	table->data = &tmp;
1935 	table->maxlen = sizeof(unsigned long);
1936 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1937 
1938 	if (write) {
1939 		spin_lock(&hugetlb_lock);
1940 		h->nr_overcommit_huge_pages = tmp;
1941 		spin_unlock(&hugetlb_lock);
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 #endif /* CONFIG_SYSCTL */
1948 
1949 void hugetlb_report_meminfo(struct seq_file *m)
1950 {
1951 	struct hstate *h = &default_hstate;
1952 	seq_printf(m,
1953 			"HugePages_Total:   %5lu\n"
1954 			"HugePages_Free:    %5lu\n"
1955 			"HugePages_Rsvd:    %5lu\n"
1956 			"HugePages_Surp:    %5lu\n"
1957 			"Hugepagesize:   %8lu kB\n",
1958 			h->nr_huge_pages,
1959 			h->free_huge_pages,
1960 			h->resv_huge_pages,
1961 			h->surplus_huge_pages,
1962 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1963 }
1964 
1965 int hugetlb_report_node_meminfo(int nid, char *buf)
1966 {
1967 	struct hstate *h = &default_hstate;
1968 	return sprintf(buf,
1969 		"Node %d HugePages_Total: %5u\n"
1970 		"Node %d HugePages_Free:  %5u\n"
1971 		"Node %d HugePages_Surp:  %5u\n",
1972 		nid, h->nr_huge_pages_node[nid],
1973 		nid, h->free_huge_pages_node[nid],
1974 		nid, h->surplus_huge_pages_node[nid]);
1975 }
1976 
1977 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1978 unsigned long hugetlb_total_pages(void)
1979 {
1980 	struct hstate *h = &default_hstate;
1981 	return h->nr_huge_pages * pages_per_huge_page(h);
1982 }
1983 
1984 static int hugetlb_acct_memory(struct hstate *h, long delta)
1985 {
1986 	int ret = -ENOMEM;
1987 
1988 	spin_lock(&hugetlb_lock);
1989 	/*
1990 	 * When cpuset is configured, it breaks the strict hugetlb page
1991 	 * reservation as the accounting is done on a global variable. Such
1992 	 * reservation is completely rubbish in the presence of cpuset because
1993 	 * the reservation is not checked against page availability for the
1994 	 * current cpuset. Application can still potentially OOM'ed by kernel
1995 	 * with lack of free htlb page in cpuset that the task is in.
1996 	 * Attempt to enforce strict accounting with cpuset is almost
1997 	 * impossible (or too ugly) because cpuset is too fluid that
1998 	 * task or memory node can be dynamically moved between cpusets.
1999 	 *
2000 	 * The change of semantics for shared hugetlb mapping with cpuset is
2001 	 * undesirable. However, in order to preserve some of the semantics,
2002 	 * we fall back to check against current free page availability as
2003 	 * a best attempt and hopefully to minimize the impact of changing
2004 	 * semantics that cpuset has.
2005 	 */
2006 	if (delta > 0) {
2007 		if (gather_surplus_pages(h, delta) < 0)
2008 			goto out;
2009 
2010 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2011 			return_unused_surplus_pages(h, delta);
2012 			goto out;
2013 		}
2014 	}
2015 
2016 	ret = 0;
2017 	if (delta < 0)
2018 		return_unused_surplus_pages(h, (unsigned long) -delta);
2019 
2020 out:
2021 	spin_unlock(&hugetlb_lock);
2022 	return ret;
2023 }
2024 
2025 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2026 {
2027 	struct resv_map *reservations = vma_resv_map(vma);
2028 
2029 	/*
2030 	 * This new VMA should share its siblings reservation map if present.
2031 	 * The VMA will only ever have a valid reservation map pointer where
2032 	 * it is being copied for another still existing VMA.  As that VMA
2033 	 * has a reference to the reservation map it cannot dissappear until
2034 	 * after this open call completes.  It is therefore safe to take a
2035 	 * new reference here without additional locking.
2036 	 */
2037 	if (reservations)
2038 		kref_get(&reservations->refs);
2039 }
2040 
2041 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2042 {
2043 	struct hstate *h = hstate_vma(vma);
2044 	struct resv_map *reservations = vma_resv_map(vma);
2045 	unsigned long reserve;
2046 	unsigned long start;
2047 	unsigned long end;
2048 
2049 	if (reservations) {
2050 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2051 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2052 
2053 		reserve = (end - start) -
2054 			region_count(&reservations->regions, start, end);
2055 
2056 		kref_put(&reservations->refs, resv_map_release);
2057 
2058 		if (reserve) {
2059 			hugetlb_acct_memory(h, -reserve);
2060 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2061 		}
2062 	}
2063 }
2064 
2065 /*
2066  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2067  * handle_mm_fault() to try to instantiate regular-sized pages in the
2068  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2069  * this far.
2070  */
2071 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2072 {
2073 	BUG();
2074 	return 0;
2075 }
2076 
2077 const struct vm_operations_struct hugetlb_vm_ops = {
2078 	.fault = hugetlb_vm_op_fault,
2079 	.open = hugetlb_vm_op_open,
2080 	.close = hugetlb_vm_op_close,
2081 };
2082 
2083 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2084 				int writable)
2085 {
2086 	pte_t entry;
2087 
2088 	if (writable) {
2089 		entry =
2090 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2091 	} else {
2092 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2093 	}
2094 	entry = pte_mkyoung(entry);
2095 	entry = pte_mkhuge(entry);
2096 
2097 	return entry;
2098 }
2099 
2100 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2101 				   unsigned long address, pte_t *ptep)
2102 {
2103 	pte_t entry;
2104 
2105 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2106 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2107 		update_mmu_cache(vma, address, ptep);
2108 	}
2109 }
2110 
2111 
2112 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2113 			    struct vm_area_struct *vma)
2114 {
2115 	pte_t *src_pte, *dst_pte, entry;
2116 	struct page *ptepage;
2117 	unsigned long addr;
2118 	int cow;
2119 	struct hstate *h = hstate_vma(vma);
2120 	unsigned long sz = huge_page_size(h);
2121 
2122 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2123 
2124 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2125 		src_pte = huge_pte_offset(src, addr);
2126 		if (!src_pte)
2127 			continue;
2128 		dst_pte = huge_pte_alloc(dst, addr, sz);
2129 		if (!dst_pte)
2130 			goto nomem;
2131 
2132 		/* If the pagetables are shared don't copy or take references */
2133 		if (dst_pte == src_pte)
2134 			continue;
2135 
2136 		spin_lock(&dst->page_table_lock);
2137 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2138 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2139 			if (cow)
2140 				huge_ptep_set_wrprotect(src, addr, src_pte);
2141 			entry = huge_ptep_get(src_pte);
2142 			ptepage = pte_page(entry);
2143 			get_page(ptepage);
2144 			page_dup_rmap(ptepage);
2145 			set_huge_pte_at(dst, addr, dst_pte, entry);
2146 		}
2147 		spin_unlock(&src->page_table_lock);
2148 		spin_unlock(&dst->page_table_lock);
2149 	}
2150 	return 0;
2151 
2152 nomem:
2153 	return -ENOMEM;
2154 }
2155 
2156 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2157 {
2158 	swp_entry_t swp;
2159 
2160 	if (huge_pte_none(pte) || pte_present(pte))
2161 		return 0;
2162 	swp = pte_to_swp_entry(pte);
2163 	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2164 		return 1;
2165 	} else
2166 		return 0;
2167 }
2168 
2169 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2170 			    unsigned long end, struct page *ref_page)
2171 {
2172 	struct mm_struct *mm = vma->vm_mm;
2173 	unsigned long address;
2174 	pte_t *ptep;
2175 	pte_t pte;
2176 	struct page *page;
2177 	struct page *tmp;
2178 	struct hstate *h = hstate_vma(vma);
2179 	unsigned long sz = huge_page_size(h);
2180 
2181 	/*
2182 	 * A page gathering list, protected by per file i_mmap_lock. The
2183 	 * lock is used to avoid list corruption from multiple unmapping
2184 	 * of the same page since we are using page->lru.
2185 	 */
2186 	LIST_HEAD(page_list);
2187 
2188 	WARN_ON(!is_vm_hugetlb_page(vma));
2189 	BUG_ON(start & ~huge_page_mask(h));
2190 	BUG_ON(end & ~huge_page_mask(h));
2191 
2192 	mmu_notifier_invalidate_range_start(mm, start, end);
2193 	spin_lock(&mm->page_table_lock);
2194 	for (address = start; address < end; address += sz) {
2195 		ptep = huge_pte_offset(mm, address);
2196 		if (!ptep)
2197 			continue;
2198 
2199 		if (huge_pmd_unshare(mm, &address, ptep))
2200 			continue;
2201 
2202 		/*
2203 		 * If a reference page is supplied, it is because a specific
2204 		 * page is being unmapped, not a range. Ensure the page we
2205 		 * are about to unmap is the actual page of interest.
2206 		 */
2207 		if (ref_page) {
2208 			pte = huge_ptep_get(ptep);
2209 			if (huge_pte_none(pte))
2210 				continue;
2211 			page = pte_page(pte);
2212 			if (page != ref_page)
2213 				continue;
2214 
2215 			/*
2216 			 * Mark the VMA as having unmapped its page so that
2217 			 * future faults in this VMA will fail rather than
2218 			 * looking like data was lost
2219 			 */
2220 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2221 		}
2222 
2223 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2224 		if (huge_pte_none(pte))
2225 			continue;
2226 
2227 		/*
2228 		 * HWPoisoned hugepage is already unmapped and dropped reference
2229 		 */
2230 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2231 			continue;
2232 
2233 		page = pte_page(pte);
2234 		if (pte_dirty(pte))
2235 			set_page_dirty(page);
2236 		list_add(&page->lru, &page_list);
2237 	}
2238 	spin_unlock(&mm->page_table_lock);
2239 	flush_tlb_range(vma, start, end);
2240 	mmu_notifier_invalidate_range_end(mm, start, end);
2241 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2242 		page_remove_rmap(page);
2243 		list_del(&page->lru);
2244 		put_page(page);
2245 	}
2246 }
2247 
2248 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2249 			  unsigned long end, struct page *ref_page)
2250 {
2251 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2252 	__unmap_hugepage_range(vma, start, end, ref_page);
2253 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2254 }
2255 
2256 /*
2257  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2258  * mappping it owns the reserve page for. The intention is to unmap the page
2259  * from other VMAs and let the children be SIGKILLed if they are faulting the
2260  * same region.
2261  */
2262 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2263 				struct page *page, unsigned long address)
2264 {
2265 	struct hstate *h = hstate_vma(vma);
2266 	struct vm_area_struct *iter_vma;
2267 	struct address_space *mapping;
2268 	struct prio_tree_iter iter;
2269 	pgoff_t pgoff;
2270 
2271 	/*
2272 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2273 	 * from page cache lookup which is in HPAGE_SIZE units.
2274 	 */
2275 	address = address & huge_page_mask(h);
2276 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2277 		+ (vma->vm_pgoff >> PAGE_SHIFT);
2278 	mapping = (struct address_space *)page_private(page);
2279 
2280 	/*
2281 	 * Take the mapping lock for the duration of the table walk. As
2282 	 * this mapping should be shared between all the VMAs,
2283 	 * __unmap_hugepage_range() is called as the lock is already held
2284 	 */
2285 	spin_lock(&mapping->i_mmap_lock);
2286 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2287 		/* Do not unmap the current VMA */
2288 		if (iter_vma == vma)
2289 			continue;
2290 
2291 		/*
2292 		 * Unmap the page from other VMAs without their own reserves.
2293 		 * They get marked to be SIGKILLed if they fault in these
2294 		 * areas. This is because a future no-page fault on this VMA
2295 		 * could insert a zeroed page instead of the data existing
2296 		 * from the time of fork. This would look like data corruption
2297 		 */
2298 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2299 			__unmap_hugepage_range(iter_vma,
2300 				address, address + huge_page_size(h),
2301 				page);
2302 	}
2303 	spin_unlock(&mapping->i_mmap_lock);
2304 
2305 	return 1;
2306 }
2307 
2308 /*
2309  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2310  */
2311 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2312 			unsigned long address, pte_t *ptep, pte_t pte,
2313 			struct page *pagecache_page)
2314 {
2315 	struct hstate *h = hstate_vma(vma);
2316 	struct page *old_page, *new_page;
2317 	int avoidcopy;
2318 	int outside_reserve = 0;
2319 
2320 	old_page = pte_page(pte);
2321 
2322 retry_avoidcopy:
2323 	/* If no-one else is actually using this page, avoid the copy
2324 	 * and just make the page writable */
2325 	avoidcopy = (page_mapcount(old_page) == 1);
2326 	if (avoidcopy) {
2327 		if (!trylock_page(old_page)) {
2328 			if (PageAnon(old_page))
2329 				page_move_anon_rmap(old_page, vma, address);
2330 		} else
2331 			unlock_page(old_page);
2332 		set_huge_ptep_writable(vma, address, ptep);
2333 		return 0;
2334 	}
2335 
2336 	/*
2337 	 * If the process that created a MAP_PRIVATE mapping is about to
2338 	 * perform a COW due to a shared page count, attempt to satisfy
2339 	 * the allocation without using the existing reserves. The pagecache
2340 	 * page is used to determine if the reserve at this address was
2341 	 * consumed or not. If reserves were used, a partial faulted mapping
2342 	 * at the time of fork() could consume its reserves on COW instead
2343 	 * of the full address range.
2344 	 */
2345 	if (!(vma->vm_flags & VM_MAYSHARE) &&
2346 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2347 			old_page != pagecache_page)
2348 		outside_reserve = 1;
2349 
2350 	page_cache_get(old_page);
2351 
2352 	/* Drop page_table_lock as buddy allocator may be called */
2353 	spin_unlock(&mm->page_table_lock);
2354 	new_page = alloc_huge_page(vma, address, outside_reserve);
2355 
2356 	if (IS_ERR(new_page)) {
2357 		page_cache_release(old_page);
2358 
2359 		/*
2360 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2361 		 * it is due to references held by a child and an insufficient
2362 		 * huge page pool. To guarantee the original mappers
2363 		 * reliability, unmap the page from child processes. The child
2364 		 * may get SIGKILLed if it later faults.
2365 		 */
2366 		if (outside_reserve) {
2367 			BUG_ON(huge_pte_none(pte));
2368 			if (unmap_ref_private(mm, vma, old_page, address)) {
2369 				BUG_ON(page_count(old_page) != 1);
2370 				BUG_ON(huge_pte_none(pte));
2371 				spin_lock(&mm->page_table_lock);
2372 				goto retry_avoidcopy;
2373 			}
2374 			WARN_ON_ONCE(1);
2375 		}
2376 
2377 		/* Caller expects lock to be held */
2378 		spin_lock(&mm->page_table_lock);
2379 		return -PTR_ERR(new_page);
2380 	}
2381 
2382 	/*
2383 	 * When the original hugepage is shared one, it does not have
2384 	 * anon_vma prepared.
2385 	 */
2386 	if (unlikely(anon_vma_prepare(vma)))
2387 		return VM_FAULT_OOM;
2388 
2389 	copy_huge_page(new_page, old_page, address, vma);
2390 	__SetPageUptodate(new_page);
2391 
2392 	/*
2393 	 * Retake the page_table_lock to check for racing updates
2394 	 * before the page tables are altered
2395 	 */
2396 	spin_lock(&mm->page_table_lock);
2397 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2398 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2399 		/* Break COW */
2400 		mmu_notifier_invalidate_range_start(mm,
2401 			address & huge_page_mask(h),
2402 			(address & huge_page_mask(h)) + huge_page_size(h));
2403 		huge_ptep_clear_flush(vma, address, ptep);
2404 		set_huge_pte_at(mm, address, ptep,
2405 				make_huge_pte(vma, new_page, 1));
2406 		page_remove_rmap(old_page);
2407 		hugepage_add_anon_rmap(new_page, vma, address);
2408 		/* Make the old page be freed below */
2409 		new_page = old_page;
2410 		mmu_notifier_invalidate_range_end(mm,
2411 			address & huge_page_mask(h),
2412 			(address & huge_page_mask(h)) + huge_page_size(h));
2413 	}
2414 	page_cache_release(new_page);
2415 	page_cache_release(old_page);
2416 	return 0;
2417 }
2418 
2419 /* Return the pagecache page at a given address within a VMA */
2420 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2421 			struct vm_area_struct *vma, unsigned long address)
2422 {
2423 	struct address_space *mapping;
2424 	pgoff_t idx;
2425 
2426 	mapping = vma->vm_file->f_mapping;
2427 	idx = vma_hugecache_offset(h, vma, address);
2428 
2429 	return find_lock_page(mapping, idx);
2430 }
2431 
2432 /*
2433  * Return whether there is a pagecache page to back given address within VMA.
2434  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2435  */
2436 static bool hugetlbfs_pagecache_present(struct hstate *h,
2437 			struct vm_area_struct *vma, unsigned long address)
2438 {
2439 	struct address_space *mapping;
2440 	pgoff_t idx;
2441 	struct page *page;
2442 
2443 	mapping = vma->vm_file->f_mapping;
2444 	idx = vma_hugecache_offset(h, vma, address);
2445 
2446 	page = find_get_page(mapping, idx);
2447 	if (page)
2448 		put_page(page);
2449 	return page != NULL;
2450 }
2451 
2452 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2453 			unsigned long address, pte_t *ptep, unsigned int flags)
2454 {
2455 	struct hstate *h = hstate_vma(vma);
2456 	int ret = VM_FAULT_SIGBUS;
2457 	pgoff_t idx;
2458 	unsigned long size;
2459 	struct page *page;
2460 	struct address_space *mapping;
2461 	pte_t new_pte;
2462 
2463 	/*
2464 	 * Currently, we are forced to kill the process in the event the
2465 	 * original mapper has unmapped pages from the child due to a failed
2466 	 * COW. Warn that such a situation has occured as it may not be obvious
2467 	 */
2468 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2469 		printk(KERN_WARNING
2470 			"PID %d killed due to inadequate hugepage pool\n",
2471 			current->pid);
2472 		return ret;
2473 	}
2474 
2475 	mapping = vma->vm_file->f_mapping;
2476 	idx = vma_hugecache_offset(h, vma, address);
2477 
2478 	/*
2479 	 * Use page lock to guard against racing truncation
2480 	 * before we get page_table_lock.
2481 	 */
2482 retry:
2483 	page = find_lock_page(mapping, idx);
2484 	if (!page) {
2485 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2486 		if (idx >= size)
2487 			goto out;
2488 		page = alloc_huge_page(vma, address, 0);
2489 		if (IS_ERR(page)) {
2490 			ret = -PTR_ERR(page);
2491 			goto out;
2492 		}
2493 		clear_huge_page(page, address, huge_page_size(h));
2494 		__SetPageUptodate(page);
2495 
2496 		if (vma->vm_flags & VM_MAYSHARE) {
2497 			int err;
2498 			struct inode *inode = mapping->host;
2499 
2500 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2501 			if (err) {
2502 				put_page(page);
2503 				if (err == -EEXIST)
2504 					goto retry;
2505 				goto out;
2506 			}
2507 
2508 			spin_lock(&inode->i_lock);
2509 			inode->i_blocks += blocks_per_huge_page(h);
2510 			spin_unlock(&inode->i_lock);
2511 			page_dup_rmap(page);
2512 		} else {
2513 			lock_page(page);
2514 			if (unlikely(anon_vma_prepare(vma))) {
2515 				ret = VM_FAULT_OOM;
2516 				goto backout_unlocked;
2517 			}
2518 			hugepage_add_new_anon_rmap(page, vma, address);
2519 		}
2520 	} else {
2521 		page_dup_rmap(page);
2522 	}
2523 
2524 	/*
2525 	 * Since memory error handler replaces pte into hwpoison swap entry
2526 	 * at the time of error handling, a process which reserved but not have
2527 	 * the mapping to the error hugepage does not have hwpoison swap entry.
2528 	 * So we need to block accesses from such a process by checking
2529 	 * PG_hwpoison bit here.
2530 	 */
2531 	if (unlikely(PageHWPoison(page))) {
2532 		ret = VM_FAULT_HWPOISON;
2533 		goto backout_unlocked;
2534 	}
2535 
2536 	/*
2537 	 * If we are going to COW a private mapping later, we examine the
2538 	 * pending reservations for this page now. This will ensure that
2539 	 * any allocations necessary to record that reservation occur outside
2540 	 * the spinlock.
2541 	 */
2542 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2543 		if (vma_needs_reservation(h, vma, address) < 0) {
2544 			ret = VM_FAULT_OOM;
2545 			goto backout_unlocked;
2546 		}
2547 
2548 	spin_lock(&mm->page_table_lock);
2549 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2550 	if (idx >= size)
2551 		goto backout;
2552 
2553 	ret = 0;
2554 	if (!huge_pte_none(huge_ptep_get(ptep)))
2555 		goto backout;
2556 
2557 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2558 				&& (vma->vm_flags & VM_SHARED)));
2559 	set_huge_pte_at(mm, address, ptep, new_pte);
2560 
2561 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2562 		/* Optimization, do the COW without a second fault */
2563 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2564 	}
2565 
2566 	spin_unlock(&mm->page_table_lock);
2567 	unlock_page(page);
2568 out:
2569 	return ret;
2570 
2571 backout:
2572 	spin_unlock(&mm->page_table_lock);
2573 backout_unlocked:
2574 	unlock_page(page);
2575 	put_page(page);
2576 	goto out;
2577 }
2578 
2579 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2580 			unsigned long address, unsigned int flags)
2581 {
2582 	pte_t *ptep;
2583 	pte_t entry;
2584 	int ret;
2585 	struct page *page = NULL;
2586 	struct page *pagecache_page = NULL;
2587 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2588 	struct hstate *h = hstate_vma(vma);
2589 
2590 	ptep = huge_pte_offset(mm, address);
2591 	if (ptep) {
2592 		entry = huge_ptep_get(ptep);
2593 		if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2594 			return VM_FAULT_HWPOISON;
2595 	}
2596 
2597 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2598 	if (!ptep)
2599 		return VM_FAULT_OOM;
2600 
2601 	/*
2602 	 * Serialize hugepage allocation and instantiation, so that we don't
2603 	 * get spurious allocation failures if two CPUs race to instantiate
2604 	 * the same page in the page cache.
2605 	 */
2606 	mutex_lock(&hugetlb_instantiation_mutex);
2607 	entry = huge_ptep_get(ptep);
2608 	if (huge_pte_none(entry)) {
2609 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2610 		goto out_mutex;
2611 	}
2612 
2613 	ret = 0;
2614 
2615 	/*
2616 	 * If we are going to COW the mapping later, we examine the pending
2617 	 * reservations for this page now. This will ensure that any
2618 	 * allocations necessary to record that reservation occur outside the
2619 	 * spinlock. For private mappings, we also lookup the pagecache
2620 	 * page now as it is used to determine if a reservation has been
2621 	 * consumed.
2622 	 */
2623 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2624 		if (vma_needs_reservation(h, vma, address) < 0) {
2625 			ret = VM_FAULT_OOM;
2626 			goto out_mutex;
2627 		}
2628 
2629 		if (!(vma->vm_flags & VM_MAYSHARE))
2630 			pagecache_page = hugetlbfs_pagecache_page(h,
2631 								vma, address);
2632 	}
2633 
2634 	if (!pagecache_page) {
2635 		page = pte_page(entry);
2636 		lock_page(page);
2637 	}
2638 
2639 	spin_lock(&mm->page_table_lock);
2640 	/* Check for a racing update before calling hugetlb_cow */
2641 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2642 		goto out_page_table_lock;
2643 
2644 
2645 	if (flags & FAULT_FLAG_WRITE) {
2646 		if (!pte_write(entry)) {
2647 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2648 							pagecache_page);
2649 			goto out_page_table_lock;
2650 		}
2651 		entry = pte_mkdirty(entry);
2652 	}
2653 	entry = pte_mkyoung(entry);
2654 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2655 						flags & FAULT_FLAG_WRITE))
2656 		update_mmu_cache(vma, address, ptep);
2657 
2658 out_page_table_lock:
2659 	spin_unlock(&mm->page_table_lock);
2660 
2661 	if (pagecache_page) {
2662 		unlock_page(pagecache_page);
2663 		put_page(pagecache_page);
2664 	} else {
2665 		unlock_page(page);
2666 	}
2667 
2668 out_mutex:
2669 	mutex_unlock(&hugetlb_instantiation_mutex);
2670 
2671 	return ret;
2672 }
2673 
2674 /* Can be overriden by architectures */
2675 __attribute__((weak)) struct page *
2676 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2677 	       pud_t *pud, int write)
2678 {
2679 	BUG();
2680 	return NULL;
2681 }
2682 
2683 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2684 			struct page **pages, struct vm_area_struct **vmas,
2685 			unsigned long *position, int *length, int i,
2686 			unsigned int flags)
2687 {
2688 	unsigned long pfn_offset;
2689 	unsigned long vaddr = *position;
2690 	int remainder = *length;
2691 	struct hstate *h = hstate_vma(vma);
2692 
2693 	spin_lock(&mm->page_table_lock);
2694 	while (vaddr < vma->vm_end && remainder) {
2695 		pte_t *pte;
2696 		int absent;
2697 		struct page *page;
2698 
2699 		/*
2700 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2701 		 * each hugepage.  We have to make sure we get the
2702 		 * first, for the page indexing below to work.
2703 		 */
2704 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2705 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2706 
2707 		/*
2708 		 * When coredumping, it suits get_dump_page if we just return
2709 		 * an error where there's an empty slot with no huge pagecache
2710 		 * to back it.  This way, we avoid allocating a hugepage, and
2711 		 * the sparse dumpfile avoids allocating disk blocks, but its
2712 		 * huge holes still show up with zeroes where they need to be.
2713 		 */
2714 		if (absent && (flags & FOLL_DUMP) &&
2715 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2716 			remainder = 0;
2717 			break;
2718 		}
2719 
2720 		if (absent ||
2721 		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2722 			int ret;
2723 
2724 			spin_unlock(&mm->page_table_lock);
2725 			ret = hugetlb_fault(mm, vma, vaddr,
2726 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2727 			spin_lock(&mm->page_table_lock);
2728 			if (!(ret & VM_FAULT_ERROR))
2729 				continue;
2730 
2731 			remainder = 0;
2732 			break;
2733 		}
2734 
2735 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2736 		page = pte_page(huge_ptep_get(pte));
2737 same_page:
2738 		if (pages) {
2739 			pages[i] = mem_map_offset(page, pfn_offset);
2740 			get_page(pages[i]);
2741 		}
2742 
2743 		if (vmas)
2744 			vmas[i] = vma;
2745 
2746 		vaddr += PAGE_SIZE;
2747 		++pfn_offset;
2748 		--remainder;
2749 		++i;
2750 		if (vaddr < vma->vm_end && remainder &&
2751 				pfn_offset < pages_per_huge_page(h)) {
2752 			/*
2753 			 * We use pfn_offset to avoid touching the pageframes
2754 			 * of this compound page.
2755 			 */
2756 			goto same_page;
2757 		}
2758 	}
2759 	spin_unlock(&mm->page_table_lock);
2760 	*length = remainder;
2761 	*position = vaddr;
2762 
2763 	return i ? i : -EFAULT;
2764 }
2765 
2766 void hugetlb_change_protection(struct vm_area_struct *vma,
2767 		unsigned long address, unsigned long end, pgprot_t newprot)
2768 {
2769 	struct mm_struct *mm = vma->vm_mm;
2770 	unsigned long start = address;
2771 	pte_t *ptep;
2772 	pte_t pte;
2773 	struct hstate *h = hstate_vma(vma);
2774 
2775 	BUG_ON(address >= end);
2776 	flush_cache_range(vma, address, end);
2777 
2778 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2779 	spin_lock(&mm->page_table_lock);
2780 	for (; address < end; address += huge_page_size(h)) {
2781 		ptep = huge_pte_offset(mm, address);
2782 		if (!ptep)
2783 			continue;
2784 		if (huge_pmd_unshare(mm, &address, ptep))
2785 			continue;
2786 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2787 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2788 			pte = pte_mkhuge(pte_modify(pte, newprot));
2789 			set_huge_pte_at(mm, address, ptep, pte);
2790 		}
2791 	}
2792 	spin_unlock(&mm->page_table_lock);
2793 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2794 
2795 	flush_tlb_range(vma, start, end);
2796 }
2797 
2798 int hugetlb_reserve_pages(struct inode *inode,
2799 					long from, long to,
2800 					struct vm_area_struct *vma,
2801 					int acctflag)
2802 {
2803 	long ret, chg;
2804 	struct hstate *h = hstate_inode(inode);
2805 
2806 	/*
2807 	 * Only apply hugepage reservation if asked. At fault time, an
2808 	 * attempt will be made for VM_NORESERVE to allocate a page
2809 	 * and filesystem quota without using reserves
2810 	 */
2811 	if (acctflag & VM_NORESERVE)
2812 		return 0;
2813 
2814 	/*
2815 	 * Shared mappings base their reservation on the number of pages that
2816 	 * are already allocated on behalf of the file. Private mappings need
2817 	 * to reserve the full area even if read-only as mprotect() may be
2818 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2819 	 */
2820 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2821 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2822 	else {
2823 		struct resv_map *resv_map = resv_map_alloc();
2824 		if (!resv_map)
2825 			return -ENOMEM;
2826 
2827 		chg = to - from;
2828 
2829 		set_vma_resv_map(vma, resv_map);
2830 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2831 	}
2832 
2833 	if (chg < 0)
2834 		return chg;
2835 
2836 	/* There must be enough filesystem quota for the mapping */
2837 	if (hugetlb_get_quota(inode->i_mapping, chg))
2838 		return -ENOSPC;
2839 
2840 	/*
2841 	 * Check enough hugepages are available for the reservation.
2842 	 * Hand back the quota if there are not
2843 	 */
2844 	ret = hugetlb_acct_memory(h, chg);
2845 	if (ret < 0) {
2846 		hugetlb_put_quota(inode->i_mapping, chg);
2847 		return ret;
2848 	}
2849 
2850 	/*
2851 	 * Account for the reservations made. Shared mappings record regions
2852 	 * that have reservations as they are shared by multiple VMAs.
2853 	 * When the last VMA disappears, the region map says how much
2854 	 * the reservation was and the page cache tells how much of
2855 	 * the reservation was consumed. Private mappings are per-VMA and
2856 	 * only the consumed reservations are tracked. When the VMA
2857 	 * disappears, the original reservation is the VMA size and the
2858 	 * consumed reservations are stored in the map. Hence, nothing
2859 	 * else has to be done for private mappings here
2860 	 */
2861 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2862 		region_add(&inode->i_mapping->private_list, from, to);
2863 	return 0;
2864 }
2865 
2866 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2867 {
2868 	struct hstate *h = hstate_inode(inode);
2869 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2870 
2871 	spin_lock(&inode->i_lock);
2872 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2873 	spin_unlock(&inode->i_lock);
2874 
2875 	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2876 	hugetlb_acct_memory(h, -(chg - freed));
2877 }
2878 
2879 /*
2880  * This function is called from memory failure code.
2881  * Assume the caller holds page lock of the head page.
2882  */
2883 void __isolate_hwpoisoned_huge_page(struct page *hpage)
2884 {
2885 	struct hstate *h = page_hstate(hpage);
2886 	int nid = page_to_nid(hpage);
2887 
2888 	spin_lock(&hugetlb_lock);
2889 	list_del(&hpage->lru);
2890 	h->free_huge_pages--;
2891 	h->free_huge_pages_node[nid]--;
2892 	spin_unlock(&hugetlb_lock);
2893 }
2894