xref: /linux/mm/hugetlb.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
34 
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
42 
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
46 /*
47  * Minimum page order among possible hugepage sizes, set to a proper value
48  * at boot time.
49  */
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
51 
52 __initdata LIST_HEAD(huge_boot_pages);
53 
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
59 
60 /*
61  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62  * free_huge_pages, and surplus_huge_pages.
63  */
64 DEFINE_SPINLOCK(hugetlb_lock);
65 
66 /*
67  * Serializes faults on the same logical page.  This is used to
68  * prevent spurious OOMs when the hugepage pool is fully utilized.
69  */
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72 
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
75 
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 {
78 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
79 
80 	spin_unlock(&spool->lock);
81 
82 	/* If no pages are used, and no other handles to the subpool
83 	 * remain, give up any reservations mased on minimum size and
84 	 * free the subpool */
85 	if (free) {
86 		if (spool->min_hpages != -1)
87 			hugetlb_acct_memory(spool->hstate,
88 						-spool->min_hpages);
89 		kfree(spool);
90 	}
91 }
92 
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 						long min_hpages)
95 {
96 	struct hugepage_subpool *spool;
97 
98 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 	if (!spool)
100 		return NULL;
101 
102 	spin_lock_init(&spool->lock);
103 	spool->count = 1;
104 	spool->max_hpages = max_hpages;
105 	spool->hstate = h;
106 	spool->min_hpages = min_hpages;
107 
108 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 		kfree(spool);
110 		return NULL;
111 	}
112 	spool->rsv_hpages = min_hpages;
113 
114 	return spool;
115 }
116 
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 {
119 	spin_lock(&spool->lock);
120 	BUG_ON(!spool->count);
121 	spool->count--;
122 	unlock_or_release_subpool(spool);
123 }
124 
125 /*
126  * Subpool accounting for allocating and reserving pages.
127  * Return -ENOMEM if there are not enough resources to satisfy the
128  * the request.  Otherwise, return the number of pages by which the
129  * global pools must be adjusted (upward).  The returned value may
130  * only be different than the passed value (delta) in the case where
131  * a subpool minimum size must be manitained.
132  */
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 				      long delta)
135 {
136 	long ret = delta;
137 
138 	if (!spool)
139 		return ret;
140 
141 	spin_lock(&spool->lock);
142 
143 	if (spool->max_hpages != -1) {		/* maximum size accounting */
144 		if ((spool->used_hpages + delta) <= spool->max_hpages)
145 			spool->used_hpages += delta;
146 		else {
147 			ret = -ENOMEM;
148 			goto unlock_ret;
149 		}
150 	}
151 
152 	/* minimum size accounting */
153 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 		if (delta > spool->rsv_hpages) {
155 			/*
156 			 * Asking for more reserves than those already taken on
157 			 * behalf of subpool.  Return difference.
158 			 */
159 			ret = delta - spool->rsv_hpages;
160 			spool->rsv_hpages = 0;
161 		} else {
162 			ret = 0;	/* reserves already accounted for */
163 			spool->rsv_hpages -= delta;
164 		}
165 	}
166 
167 unlock_ret:
168 	spin_unlock(&spool->lock);
169 	return ret;
170 }
171 
172 /*
173  * Subpool accounting for freeing and unreserving pages.
174  * Return the number of global page reservations that must be dropped.
175  * The return value may only be different than the passed value (delta)
176  * in the case where a subpool minimum size must be maintained.
177  */
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 				       long delta)
180 {
181 	long ret = delta;
182 
183 	if (!spool)
184 		return delta;
185 
186 	spin_lock(&spool->lock);
187 
188 	if (spool->max_hpages != -1)		/* maximum size accounting */
189 		spool->used_hpages -= delta;
190 
191 	 /* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 		if (spool->rsv_hpages + delta <= spool->min_hpages)
194 			ret = 0;
195 		else
196 			ret = spool->rsv_hpages + delta - spool->min_hpages;
197 
198 		spool->rsv_hpages += delta;
199 		if (spool->rsv_hpages > spool->min_hpages)
200 			spool->rsv_hpages = spool->min_hpages;
201 	}
202 
203 	/*
204 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 	 * quota reference, free it now.
206 	 */
207 	unlock_or_release_subpool(spool);
208 
209 	return ret;
210 }
211 
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 {
214 	return HUGETLBFS_SB(inode->i_sb)->spool;
215 }
216 
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 {
219 	return subpool_inode(file_inode(vma->vm_file));
220 }
221 
222 /*
223  * Region tracking -- allows tracking of reservations and instantiated pages
224  *                    across the pages in a mapping.
225  *
226  * The region data structures are embedded into a resv_map and protected
227  * by a resv_map's lock.  The set of regions within the resv_map represent
228  * reservations for huge pages, or huge pages that have already been
229  * instantiated within the map.  The from and to elements are huge page
230  * indicies into the associated mapping.  from indicates the starting index
231  * of the region.  to represents the first index past the end of  the region.
232  *
233  * For example, a file region structure with from == 0 and to == 4 represents
234  * four huge pages in a mapping.  It is important to note that the to element
235  * represents the first element past the end of the region. This is used in
236  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237  *
238  * Interval notation of the form [from, to) will be used to indicate that
239  * the endpoint from is inclusive and to is exclusive.
240  */
241 struct file_region {
242 	struct list_head link;
243 	long from;
244 	long to;
245 };
246 
247 /* Must be called with resv->lock held. Calling this with count_only == true
248  * will count the number of pages to be added but will not modify the linked
249  * list.
250  */
251 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
252 				     bool count_only)
253 {
254 	long chg = 0;
255 	struct list_head *head = &resv->regions;
256 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
257 
258 	/* Locate the region we are before or in. */
259 	list_for_each_entry(rg, head, link)
260 		if (f <= rg->to)
261 			break;
262 
263 	/* Round our left edge to the current segment if it encloses us. */
264 	if (f > rg->from)
265 		f = rg->from;
266 
267 	chg = t - f;
268 
269 	/* Check for and consume any regions we now overlap with. */
270 	nrg = rg;
271 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
272 		if (&rg->link == head)
273 			break;
274 		if (rg->from > t)
275 			break;
276 
277 		/* We overlap with this area, if it extends further than
278 		 * us then we must extend ourselves.  Account for its
279 		 * existing reservation.
280 		 */
281 		if (rg->to > t) {
282 			chg += rg->to - t;
283 			t = rg->to;
284 		}
285 		chg -= rg->to - rg->from;
286 
287 		if (!count_only && rg != nrg) {
288 			list_del(&rg->link);
289 			kfree(rg);
290 		}
291 	}
292 
293 	if (!count_only) {
294 		nrg->from = f;
295 		nrg->to = t;
296 	}
297 
298 	return chg;
299 }
300 
301 /*
302  * Add the huge page range represented by [f, t) to the reserve
303  * map.  Existing regions will be expanded to accommodate the specified
304  * range, or a region will be taken from the cache.  Sufficient regions
305  * must exist in the cache due to the previous call to region_chg with
306  * the same range.
307  *
308  * Return the number of new huge pages added to the map.  This
309  * number is greater than or equal to zero.
310  */
311 static long region_add(struct resv_map *resv, long f, long t)
312 {
313 	struct list_head *head = &resv->regions;
314 	struct file_region *rg, *nrg;
315 	long add = 0;
316 
317 	spin_lock(&resv->lock);
318 	/* Locate the region we are either in or before. */
319 	list_for_each_entry(rg, head, link)
320 		if (f <= rg->to)
321 			break;
322 
323 	/*
324 	 * If no region exists which can be expanded to include the
325 	 * specified range, pull a region descriptor from the cache
326 	 * and use it for this range.
327 	 */
328 	if (&rg->link == head || t < rg->from) {
329 		VM_BUG_ON(resv->region_cache_count <= 0);
330 
331 		resv->region_cache_count--;
332 		nrg = list_first_entry(&resv->region_cache, struct file_region,
333 					link);
334 		list_del(&nrg->link);
335 
336 		nrg->from = f;
337 		nrg->to = t;
338 		list_add(&nrg->link, rg->link.prev);
339 
340 		add += t - f;
341 		goto out_locked;
342 	}
343 
344 	add = add_reservation_in_range(resv, f, t, false);
345 
346 out_locked:
347 	resv->adds_in_progress--;
348 	spin_unlock(&resv->lock);
349 	VM_BUG_ON(add < 0);
350 	return add;
351 }
352 
353 /*
354  * Examine the existing reserve map and determine how many
355  * huge pages in the specified range [f, t) are NOT currently
356  * represented.  This routine is called before a subsequent
357  * call to region_add that will actually modify the reserve
358  * map to add the specified range [f, t).  region_chg does
359  * not change the number of huge pages represented by the
360  * map.  A new file_region structure is added to the cache
361  * as a placeholder, so that the subsequent region_add
362  * call will have all the regions it needs and will not fail.
363  *
364  * Returns the number of huge pages that need to be added to the existing
365  * reservation map for the range [f, t).  This number is greater or equal to
366  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
367  * is needed and can not be allocated.
368  */
369 static long region_chg(struct resv_map *resv, long f, long t)
370 {
371 	long chg = 0;
372 
373 	spin_lock(&resv->lock);
374 retry_locked:
375 	resv->adds_in_progress++;
376 
377 	/*
378 	 * Check for sufficient descriptors in the cache to accommodate
379 	 * the number of in progress add operations.
380 	 */
381 	if (resv->adds_in_progress > resv->region_cache_count) {
382 		struct file_region *trg;
383 
384 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
385 		/* Must drop lock to allocate a new descriptor. */
386 		resv->adds_in_progress--;
387 		spin_unlock(&resv->lock);
388 
389 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
390 		if (!trg)
391 			return -ENOMEM;
392 
393 		spin_lock(&resv->lock);
394 		list_add(&trg->link, &resv->region_cache);
395 		resv->region_cache_count++;
396 		goto retry_locked;
397 	}
398 
399 	chg = add_reservation_in_range(resv, f, t, true);
400 
401 	spin_unlock(&resv->lock);
402 	return chg;
403 }
404 
405 /*
406  * Abort the in progress add operation.  The adds_in_progress field
407  * of the resv_map keeps track of the operations in progress between
408  * calls to region_chg and region_add.  Operations are sometimes
409  * aborted after the call to region_chg.  In such cases, region_abort
410  * is called to decrement the adds_in_progress counter.
411  *
412  * NOTE: The range arguments [f, t) are not needed or used in this
413  * routine.  They are kept to make reading the calling code easier as
414  * arguments will match the associated region_chg call.
415  */
416 static void region_abort(struct resv_map *resv, long f, long t)
417 {
418 	spin_lock(&resv->lock);
419 	VM_BUG_ON(!resv->region_cache_count);
420 	resv->adds_in_progress--;
421 	spin_unlock(&resv->lock);
422 }
423 
424 /*
425  * Delete the specified range [f, t) from the reserve map.  If the
426  * t parameter is LONG_MAX, this indicates that ALL regions after f
427  * should be deleted.  Locate the regions which intersect [f, t)
428  * and either trim, delete or split the existing regions.
429  *
430  * Returns the number of huge pages deleted from the reserve map.
431  * In the normal case, the return value is zero or more.  In the
432  * case where a region must be split, a new region descriptor must
433  * be allocated.  If the allocation fails, -ENOMEM will be returned.
434  * NOTE: If the parameter t == LONG_MAX, then we will never split
435  * a region and possibly return -ENOMEM.  Callers specifying
436  * t == LONG_MAX do not need to check for -ENOMEM error.
437  */
438 static long region_del(struct resv_map *resv, long f, long t)
439 {
440 	struct list_head *head = &resv->regions;
441 	struct file_region *rg, *trg;
442 	struct file_region *nrg = NULL;
443 	long del = 0;
444 
445 retry:
446 	spin_lock(&resv->lock);
447 	list_for_each_entry_safe(rg, trg, head, link) {
448 		/*
449 		 * Skip regions before the range to be deleted.  file_region
450 		 * ranges are normally of the form [from, to).  However, there
451 		 * may be a "placeholder" entry in the map which is of the form
452 		 * (from, to) with from == to.  Check for placeholder entries
453 		 * at the beginning of the range to be deleted.
454 		 */
455 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
456 			continue;
457 
458 		if (rg->from >= t)
459 			break;
460 
461 		if (f > rg->from && t < rg->to) { /* Must split region */
462 			/*
463 			 * Check for an entry in the cache before dropping
464 			 * lock and attempting allocation.
465 			 */
466 			if (!nrg &&
467 			    resv->region_cache_count > resv->adds_in_progress) {
468 				nrg = list_first_entry(&resv->region_cache,
469 							struct file_region,
470 							link);
471 				list_del(&nrg->link);
472 				resv->region_cache_count--;
473 			}
474 
475 			if (!nrg) {
476 				spin_unlock(&resv->lock);
477 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
478 				if (!nrg)
479 					return -ENOMEM;
480 				goto retry;
481 			}
482 
483 			del += t - f;
484 
485 			/* New entry for end of split region */
486 			nrg->from = t;
487 			nrg->to = rg->to;
488 			INIT_LIST_HEAD(&nrg->link);
489 
490 			/* Original entry is trimmed */
491 			rg->to = f;
492 
493 			list_add(&nrg->link, &rg->link);
494 			nrg = NULL;
495 			break;
496 		}
497 
498 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
499 			del += rg->to - rg->from;
500 			list_del(&rg->link);
501 			kfree(rg);
502 			continue;
503 		}
504 
505 		if (f <= rg->from) {	/* Trim beginning of region */
506 			del += t - rg->from;
507 			rg->from = t;
508 		} else {		/* Trim end of region */
509 			del += rg->to - f;
510 			rg->to = f;
511 		}
512 	}
513 
514 	spin_unlock(&resv->lock);
515 	kfree(nrg);
516 	return del;
517 }
518 
519 /*
520  * A rare out of memory error was encountered which prevented removal of
521  * the reserve map region for a page.  The huge page itself was free'ed
522  * and removed from the page cache.  This routine will adjust the subpool
523  * usage count, and the global reserve count if needed.  By incrementing
524  * these counts, the reserve map entry which could not be deleted will
525  * appear as a "reserved" entry instead of simply dangling with incorrect
526  * counts.
527  */
528 void hugetlb_fix_reserve_counts(struct inode *inode)
529 {
530 	struct hugepage_subpool *spool = subpool_inode(inode);
531 	long rsv_adjust;
532 
533 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
534 	if (rsv_adjust) {
535 		struct hstate *h = hstate_inode(inode);
536 
537 		hugetlb_acct_memory(h, 1);
538 	}
539 }
540 
541 /*
542  * Count and return the number of huge pages in the reserve map
543  * that intersect with the range [f, t).
544  */
545 static long region_count(struct resv_map *resv, long f, long t)
546 {
547 	struct list_head *head = &resv->regions;
548 	struct file_region *rg;
549 	long chg = 0;
550 
551 	spin_lock(&resv->lock);
552 	/* Locate each segment we overlap with, and count that overlap. */
553 	list_for_each_entry(rg, head, link) {
554 		long seg_from;
555 		long seg_to;
556 
557 		if (rg->to <= f)
558 			continue;
559 		if (rg->from >= t)
560 			break;
561 
562 		seg_from = max(rg->from, f);
563 		seg_to = min(rg->to, t);
564 
565 		chg += seg_to - seg_from;
566 	}
567 	spin_unlock(&resv->lock);
568 
569 	return chg;
570 }
571 
572 /*
573  * Convert the address within this vma to the page offset within
574  * the mapping, in pagecache page units; huge pages here.
575  */
576 static pgoff_t vma_hugecache_offset(struct hstate *h,
577 			struct vm_area_struct *vma, unsigned long address)
578 {
579 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
580 			(vma->vm_pgoff >> huge_page_order(h));
581 }
582 
583 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
584 				     unsigned long address)
585 {
586 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
587 }
588 EXPORT_SYMBOL_GPL(linear_hugepage_index);
589 
590 /*
591  * Return the size of the pages allocated when backing a VMA. In the majority
592  * cases this will be same size as used by the page table entries.
593  */
594 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
595 {
596 	if (vma->vm_ops && vma->vm_ops->pagesize)
597 		return vma->vm_ops->pagesize(vma);
598 	return PAGE_SIZE;
599 }
600 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
601 
602 /*
603  * Return the page size being used by the MMU to back a VMA. In the majority
604  * of cases, the page size used by the kernel matches the MMU size. On
605  * architectures where it differs, an architecture-specific 'strong'
606  * version of this symbol is required.
607  */
608 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
609 {
610 	return vma_kernel_pagesize(vma);
611 }
612 
613 /*
614  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
615  * bits of the reservation map pointer, which are always clear due to
616  * alignment.
617  */
618 #define HPAGE_RESV_OWNER    (1UL << 0)
619 #define HPAGE_RESV_UNMAPPED (1UL << 1)
620 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
621 
622 /*
623  * These helpers are used to track how many pages are reserved for
624  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
625  * is guaranteed to have their future faults succeed.
626  *
627  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
628  * the reserve counters are updated with the hugetlb_lock held. It is safe
629  * to reset the VMA at fork() time as it is not in use yet and there is no
630  * chance of the global counters getting corrupted as a result of the values.
631  *
632  * The private mapping reservation is represented in a subtly different
633  * manner to a shared mapping.  A shared mapping has a region map associated
634  * with the underlying file, this region map represents the backing file
635  * pages which have ever had a reservation assigned which this persists even
636  * after the page is instantiated.  A private mapping has a region map
637  * associated with the original mmap which is attached to all VMAs which
638  * reference it, this region map represents those offsets which have consumed
639  * reservation ie. where pages have been instantiated.
640  */
641 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
642 {
643 	return (unsigned long)vma->vm_private_data;
644 }
645 
646 static void set_vma_private_data(struct vm_area_struct *vma,
647 							unsigned long value)
648 {
649 	vma->vm_private_data = (void *)value;
650 }
651 
652 struct resv_map *resv_map_alloc(void)
653 {
654 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
655 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
656 
657 	if (!resv_map || !rg) {
658 		kfree(resv_map);
659 		kfree(rg);
660 		return NULL;
661 	}
662 
663 	kref_init(&resv_map->refs);
664 	spin_lock_init(&resv_map->lock);
665 	INIT_LIST_HEAD(&resv_map->regions);
666 
667 	resv_map->adds_in_progress = 0;
668 
669 	INIT_LIST_HEAD(&resv_map->region_cache);
670 	list_add(&rg->link, &resv_map->region_cache);
671 	resv_map->region_cache_count = 1;
672 
673 	return resv_map;
674 }
675 
676 void resv_map_release(struct kref *ref)
677 {
678 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
679 	struct list_head *head = &resv_map->region_cache;
680 	struct file_region *rg, *trg;
681 
682 	/* Clear out any active regions before we release the map. */
683 	region_del(resv_map, 0, LONG_MAX);
684 
685 	/* ... and any entries left in the cache */
686 	list_for_each_entry_safe(rg, trg, head, link) {
687 		list_del(&rg->link);
688 		kfree(rg);
689 	}
690 
691 	VM_BUG_ON(resv_map->adds_in_progress);
692 
693 	kfree(resv_map);
694 }
695 
696 static inline struct resv_map *inode_resv_map(struct inode *inode)
697 {
698 	/*
699 	 * At inode evict time, i_mapping may not point to the original
700 	 * address space within the inode.  This original address space
701 	 * contains the pointer to the resv_map.  So, always use the
702 	 * address space embedded within the inode.
703 	 * The VERY common case is inode->mapping == &inode->i_data but,
704 	 * this may not be true for device special inodes.
705 	 */
706 	return (struct resv_map *)(&inode->i_data)->private_data;
707 }
708 
709 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
710 {
711 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
712 	if (vma->vm_flags & VM_MAYSHARE) {
713 		struct address_space *mapping = vma->vm_file->f_mapping;
714 		struct inode *inode = mapping->host;
715 
716 		return inode_resv_map(inode);
717 
718 	} else {
719 		return (struct resv_map *)(get_vma_private_data(vma) &
720 							~HPAGE_RESV_MASK);
721 	}
722 }
723 
724 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
725 {
726 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
727 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
728 
729 	set_vma_private_data(vma, (get_vma_private_data(vma) &
730 				HPAGE_RESV_MASK) | (unsigned long)map);
731 }
732 
733 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
734 {
735 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
736 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
737 
738 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
739 }
740 
741 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
742 {
743 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
744 
745 	return (get_vma_private_data(vma) & flag) != 0;
746 }
747 
748 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
749 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
750 {
751 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
752 	if (!(vma->vm_flags & VM_MAYSHARE))
753 		vma->vm_private_data = (void *)0;
754 }
755 
756 /* Returns true if the VMA has associated reserve pages */
757 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
758 {
759 	if (vma->vm_flags & VM_NORESERVE) {
760 		/*
761 		 * This address is already reserved by other process(chg == 0),
762 		 * so, we should decrement reserved count. Without decrementing,
763 		 * reserve count remains after releasing inode, because this
764 		 * allocated page will go into page cache and is regarded as
765 		 * coming from reserved pool in releasing step.  Currently, we
766 		 * don't have any other solution to deal with this situation
767 		 * properly, so add work-around here.
768 		 */
769 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
770 			return true;
771 		else
772 			return false;
773 	}
774 
775 	/* Shared mappings always use reserves */
776 	if (vma->vm_flags & VM_MAYSHARE) {
777 		/*
778 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
779 		 * be a region map for all pages.  The only situation where
780 		 * there is no region map is if a hole was punched via
781 		 * fallocate.  In this case, there really are no reverves to
782 		 * use.  This situation is indicated if chg != 0.
783 		 */
784 		if (chg)
785 			return false;
786 		else
787 			return true;
788 	}
789 
790 	/*
791 	 * Only the process that called mmap() has reserves for
792 	 * private mappings.
793 	 */
794 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
795 		/*
796 		 * Like the shared case above, a hole punch or truncate
797 		 * could have been performed on the private mapping.
798 		 * Examine the value of chg to determine if reserves
799 		 * actually exist or were previously consumed.
800 		 * Very Subtle - The value of chg comes from a previous
801 		 * call to vma_needs_reserves().  The reserve map for
802 		 * private mappings has different (opposite) semantics
803 		 * than that of shared mappings.  vma_needs_reserves()
804 		 * has already taken this difference in semantics into
805 		 * account.  Therefore, the meaning of chg is the same
806 		 * as in the shared case above.  Code could easily be
807 		 * combined, but keeping it separate draws attention to
808 		 * subtle differences.
809 		 */
810 		if (chg)
811 			return false;
812 		else
813 			return true;
814 	}
815 
816 	return false;
817 }
818 
819 static void enqueue_huge_page(struct hstate *h, struct page *page)
820 {
821 	int nid = page_to_nid(page);
822 	list_move(&page->lru, &h->hugepage_freelists[nid]);
823 	h->free_huge_pages++;
824 	h->free_huge_pages_node[nid]++;
825 }
826 
827 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
828 {
829 	struct page *page;
830 
831 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
832 		if (!PageHWPoison(page))
833 			break;
834 	/*
835 	 * if 'non-isolated free hugepage' not found on the list,
836 	 * the allocation fails.
837 	 */
838 	if (&h->hugepage_freelists[nid] == &page->lru)
839 		return NULL;
840 	list_move(&page->lru, &h->hugepage_activelist);
841 	set_page_refcounted(page);
842 	h->free_huge_pages--;
843 	h->free_huge_pages_node[nid]--;
844 	return page;
845 }
846 
847 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
848 		nodemask_t *nmask)
849 {
850 	unsigned int cpuset_mems_cookie;
851 	struct zonelist *zonelist;
852 	struct zone *zone;
853 	struct zoneref *z;
854 	int node = NUMA_NO_NODE;
855 
856 	zonelist = node_zonelist(nid, gfp_mask);
857 
858 retry_cpuset:
859 	cpuset_mems_cookie = read_mems_allowed_begin();
860 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
861 		struct page *page;
862 
863 		if (!cpuset_zone_allowed(zone, gfp_mask))
864 			continue;
865 		/*
866 		 * no need to ask again on the same node. Pool is node rather than
867 		 * zone aware
868 		 */
869 		if (zone_to_nid(zone) == node)
870 			continue;
871 		node = zone_to_nid(zone);
872 
873 		page = dequeue_huge_page_node_exact(h, node);
874 		if (page)
875 			return page;
876 	}
877 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
878 		goto retry_cpuset;
879 
880 	return NULL;
881 }
882 
883 /* Movability of hugepages depends on migration support. */
884 static inline gfp_t htlb_alloc_mask(struct hstate *h)
885 {
886 	if (hugepage_movable_supported(h))
887 		return GFP_HIGHUSER_MOVABLE;
888 	else
889 		return GFP_HIGHUSER;
890 }
891 
892 static struct page *dequeue_huge_page_vma(struct hstate *h,
893 				struct vm_area_struct *vma,
894 				unsigned long address, int avoid_reserve,
895 				long chg)
896 {
897 	struct page *page;
898 	struct mempolicy *mpol;
899 	gfp_t gfp_mask;
900 	nodemask_t *nodemask;
901 	int nid;
902 
903 	/*
904 	 * A child process with MAP_PRIVATE mappings created by their parent
905 	 * have no page reserves. This check ensures that reservations are
906 	 * not "stolen". The child may still get SIGKILLed
907 	 */
908 	if (!vma_has_reserves(vma, chg) &&
909 			h->free_huge_pages - h->resv_huge_pages == 0)
910 		goto err;
911 
912 	/* If reserves cannot be used, ensure enough pages are in the pool */
913 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
914 		goto err;
915 
916 	gfp_mask = htlb_alloc_mask(h);
917 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
918 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
919 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
920 		SetPagePrivate(page);
921 		h->resv_huge_pages--;
922 	}
923 
924 	mpol_cond_put(mpol);
925 	return page;
926 
927 err:
928 	return NULL;
929 }
930 
931 /*
932  * common helper functions for hstate_next_node_to_{alloc|free}.
933  * We may have allocated or freed a huge page based on a different
934  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935  * be outside of *nodes_allowed.  Ensure that we use an allowed
936  * node for alloc or free.
937  */
938 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
939 {
940 	nid = next_node_in(nid, *nodes_allowed);
941 	VM_BUG_ON(nid >= MAX_NUMNODES);
942 
943 	return nid;
944 }
945 
946 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
947 {
948 	if (!node_isset(nid, *nodes_allowed))
949 		nid = next_node_allowed(nid, nodes_allowed);
950 	return nid;
951 }
952 
953 /*
954  * returns the previously saved node ["this node"] from which to
955  * allocate a persistent huge page for the pool and advance the
956  * next node from which to allocate, handling wrap at end of node
957  * mask.
958  */
959 static int hstate_next_node_to_alloc(struct hstate *h,
960 					nodemask_t *nodes_allowed)
961 {
962 	int nid;
963 
964 	VM_BUG_ON(!nodes_allowed);
965 
966 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
967 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
968 
969 	return nid;
970 }
971 
972 /*
973  * helper for free_pool_huge_page() - return the previously saved
974  * node ["this node"] from which to free a huge page.  Advance the
975  * next node id whether or not we find a free huge page to free so
976  * that the next attempt to free addresses the next node.
977  */
978 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
979 {
980 	int nid;
981 
982 	VM_BUG_ON(!nodes_allowed);
983 
984 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
985 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
986 
987 	return nid;
988 }
989 
990 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
991 	for (nr_nodes = nodes_weight(*mask);				\
992 		nr_nodes > 0 &&						\
993 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
994 		nr_nodes--)
995 
996 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
997 	for (nr_nodes = nodes_weight(*mask);				\
998 		nr_nodes > 0 &&						\
999 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1000 		nr_nodes--)
1001 
1002 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1003 static void destroy_compound_gigantic_page(struct page *page,
1004 					unsigned int order)
1005 {
1006 	int i;
1007 	int nr_pages = 1 << order;
1008 	struct page *p = page + 1;
1009 
1010 	atomic_set(compound_mapcount_ptr(page), 0);
1011 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1012 		clear_compound_head(p);
1013 		set_page_refcounted(p);
1014 	}
1015 
1016 	set_compound_order(page, 0);
1017 	__ClearPageHead(page);
1018 }
1019 
1020 static void free_gigantic_page(struct page *page, unsigned int order)
1021 {
1022 	free_contig_range(page_to_pfn(page), 1 << order);
1023 }
1024 
1025 #ifdef CONFIG_CONTIG_ALLOC
1026 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1027 		int nid, nodemask_t *nodemask)
1028 {
1029 	unsigned long nr_pages = 1UL << huge_page_order(h);
1030 
1031 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1032 }
1033 
1034 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1035 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1036 #else /* !CONFIG_CONTIG_ALLOC */
1037 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1038 					int nid, nodemask_t *nodemask)
1039 {
1040 	return NULL;
1041 }
1042 #endif /* CONFIG_CONTIG_ALLOC */
1043 
1044 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1045 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1046 					int nid, nodemask_t *nodemask)
1047 {
1048 	return NULL;
1049 }
1050 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1051 static inline void destroy_compound_gigantic_page(struct page *page,
1052 						unsigned int order) { }
1053 #endif
1054 
1055 static void update_and_free_page(struct hstate *h, struct page *page)
1056 {
1057 	int i;
1058 
1059 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1060 		return;
1061 
1062 	h->nr_huge_pages--;
1063 	h->nr_huge_pages_node[page_to_nid(page)]--;
1064 	for (i = 0; i < pages_per_huge_page(h); i++) {
1065 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1066 				1 << PG_referenced | 1 << PG_dirty |
1067 				1 << PG_active | 1 << PG_private |
1068 				1 << PG_writeback);
1069 	}
1070 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1071 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1072 	set_page_refcounted(page);
1073 	if (hstate_is_gigantic(h)) {
1074 		destroy_compound_gigantic_page(page, huge_page_order(h));
1075 		free_gigantic_page(page, huge_page_order(h));
1076 	} else {
1077 		__free_pages(page, huge_page_order(h));
1078 	}
1079 }
1080 
1081 struct hstate *size_to_hstate(unsigned long size)
1082 {
1083 	struct hstate *h;
1084 
1085 	for_each_hstate(h) {
1086 		if (huge_page_size(h) == size)
1087 			return h;
1088 	}
1089 	return NULL;
1090 }
1091 
1092 /*
1093  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1094  * to hstate->hugepage_activelist.)
1095  *
1096  * This function can be called for tail pages, but never returns true for them.
1097  */
1098 bool page_huge_active(struct page *page)
1099 {
1100 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1101 	return PageHead(page) && PagePrivate(&page[1]);
1102 }
1103 
1104 /* never called for tail page */
1105 static void set_page_huge_active(struct page *page)
1106 {
1107 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1108 	SetPagePrivate(&page[1]);
1109 }
1110 
1111 static void clear_page_huge_active(struct page *page)
1112 {
1113 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1114 	ClearPagePrivate(&page[1]);
1115 }
1116 
1117 /*
1118  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1119  * code
1120  */
1121 static inline bool PageHugeTemporary(struct page *page)
1122 {
1123 	if (!PageHuge(page))
1124 		return false;
1125 
1126 	return (unsigned long)page[2].mapping == -1U;
1127 }
1128 
1129 static inline void SetPageHugeTemporary(struct page *page)
1130 {
1131 	page[2].mapping = (void *)-1U;
1132 }
1133 
1134 static inline void ClearPageHugeTemporary(struct page *page)
1135 {
1136 	page[2].mapping = NULL;
1137 }
1138 
1139 void free_huge_page(struct page *page)
1140 {
1141 	/*
1142 	 * Can't pass hstate in here because it is called from the
1143 	 * compound page destructor.
1144 	 */
1145 	struct hstate *h = page_hstate(page);
1146 	int nid = page_to_nid(page);
1147 	struct hugepage_subpool *spool =
1148 		(struct hugepage_subpool *)page_private(page);
1149 	bool restore_reserve;
1150 
1151 	VM_BUG_ON_PAGE(page_count(page), page);
1152 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1153 
1154 	set_page_private(page, 0);
1155 	page->mapping = NULL;
1156 	restore_reserve = PagePrivate(page);
1157 	ClearPagePrivate(page);
1158 
1159 	/*
1160 	 * If PagePrivate() was set on page, page allocation consumed a
1161 	 * reservation.  If the page was associated with a subpool, there
1162 	 * would have been a page reserved in the subpool before allocation
1163 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1164 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1165 	 * remove the reserved page from the subpool.
1166 	 */
1167 	if (!restore_reserve) {
1168 		/*
1169 		 * A return code of zero implies that the subpool will be
1170 		 * under its minimum size if the reservation is not restored
1171 		 * after page is free.  Therefore, force restore_reserve
1172 		 * operation.
1173 		 */
1174 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1175 			restore_reserve = true;
1176 	}
1177 
1178 	spin_lock(&hugetlb_lock);
1179 	clear_page_huge_active(page);
1180 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1181 				     pages_per_huge_page(h), page);
1182 	if (restore_reserve)
1183 		h->resv_huge_pages++;
1184 
1185 	if (PageHugeTemporary(page)) {
1186 		list_del(&page->lru);
1187 		ClearPageHugeTemporary(page);
1188 		update_and_free_page(h, page);
1189 	} else if (h->surplus_huge_pages_node[nid]) {
1190 		/* remove the page from active list */
1191 		list_del(&page->lru);
1192 		update_and_free_page(h, page);
1193 		h->surplus_huge_pages--;
1194 		h->surplus_huge_pages_node[nid]--;
1195 	} else {
1196 		arch_clear_hugepage_flags(page);
1197 		enqueue_huge_page(h, page);
1198 	}
1199 	spin_unlock(&hugetlb_lock);
1200 }
1201 
1202 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1203 {
1204 	INIT_LIST_HEAD(&page->lru);
1205 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1206 	spin_lock(&hugetlb_lock);
1207 	set_hugetlb_cgroup(page, NULL);
1208 	h->nr_huge_pages++;
1209 	h->nr_huge_pages_node[nid]++;
1210 	spin_unlock(&hugetlb_lock);
1211 }
1212 
1213 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1214 {
1215 	int i;
1216 	int nr_pages = 1 << order;
1217 	struct page *p = page + 1;
1218 
1219 	/* we rely on prep_new_huge_page to set the destructor */
1220 	set_compound_order(page, order);
1221 	__ClearPageReserved(page);
1222 	__SetPageHead(page);
1223 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1224 		/*
1225 		 * For gigantic hugepages allocated through bootmem at
1226 		 * boot, it's safer to be consistent with the not-gigantic
1227 		 * hugepages and clear the PG_reserved bit from all tail pages
1228 		 * too.  Otherwse drivers using get_user_pages() to access tail
1229 		 * pages may get the reference counting wrong if they see
1230 		 * PG_reserved set on a tail page (despite the head page not
1231 		 * having PG_reserved set).  Enforcing this consistency between
1232 		 * head and tail pages allows drivers to optimize away a check
1233 		 * on the head page when they need know if put_page() is needed
1234 		 * after get_user_pages().
1235 		 */
1236 		__ClearPageReserved(p);
1237 		set_page_count(p, 0);
1238 		set_compound_head(p, page);
1239 	}
1240 	atomic_set(compound_mapcount_ptr(page), -1);
1241 }
1242 
1243 /*
1244  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1245  * transparent huge pages.  See the PageTransHuge() documentation for more
1246  * details.
1247  */
1248 int PageHuge(struct page *page)
1249 {
1250 	if (!PageCompound(page))
1251 		return 0;
1252 
1253 	page = compound_head(page);
1254 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1255 }
1256 EXPORT_SYMBOL_GPL(PageHuge);
1257 
1258 /*
1259  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1260  * normal or transparent huge pages.
1261  */
1262 int PageHeadHuge(struct page *page_head)
1263 {
1264 	if (!PageHead(page_head))
1265 		return 0;
1266 
1267 	return get_compound_page_dtor(page_head) == free_huge_page;
1268 }
1269 
1270 pgoff_t __basepage_index(struct page *page)
1271 {
1272 	struct page *page_head = compound_head(page);
1273 	pgoff_t index = page_index(page_head);
1274 	unsigned long compound_idx;
1275 
1276 	if (!PageHuge(page_head))
1277 		return page_index(page);
1278 
1279 	if (compound_order(page_head) >= MAX_ORDER)
1280 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1281 	else
1282 		compound_idx = page - page_head;
1283 
1284 	return (index << compound_order(page_head)) + compound_idx;
1285 }
1286 
1287 static struct page *alloc_buddy_huge_page(struct hstate *h,
1288 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1289 		nodemask_t *node_alloc_noretry)
1290 {
1291 	int order = huge_page_order(h);
1292 	struct page *page;
1293 	bool alloc_try_hard = true;
1294 
1295 	/*
1296 	 * By default we always try hard to allocate the page with
1297 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1298 	 * a loop (to adjust global huge page counts) and previous allocation
1299 	 * failed, do not continue to try hard on the same node.  Use the
1300 	 * node_alloc_noretry bitmap to manage this state information.
1301 	 */
1302 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1303 		alloc_try_hard = false;
1304 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1305 	if (alloc_try_hard)
1306 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1307 	if (nid == NUMA_NO_NODE)
1308 		nid = numa_mem_id();
1309 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1310 	if (page)
1311 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1312 	else
1313 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1314 
1315 	/*
1316 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1317 	 * indicates an overall state change.  Clear bit so that we resume
1318 	 * normal 'try hard' allocations.
1319 	 */
1320 	if (node_alloc_noretry && page && !alloc_try_hard)
1321 		node_clear(nid, *node_alloc_noretry);
1322 
1323 	/*
1324 	 * If we tried hard to get a page but failed, set bit so that
1325 	 * subsequent attempts will not try as hard until there is an
1326 	 * overall state change.
1327 	 */
1328 	if (node_alloc_noretry && !page && alloc_try_hard)
1329 		node_set(nid, *node_alloc_noretry);
1330 
1331 	return page;
1332 }
1333 
1334 /*
1335  * Common helper to allocate a fresh hugetlb page. All specific allocators
1336  * should use this function to get new hugetlb pages
1337  */
1338 static struct page *alloc_fresh_huge_page(struct hstate *h,
1339 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1340 		nodemask_t *node_alloc_noretry)
1341 {
1342 	struct page *page;
1343 
1344 	if (hstate_is_gigantic(h))
1345 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1346 	else
1347 		page = alloc_buddy_huge_page(h, gfp_mask,
1348 				nid, nmask, node_alloc_noretry);
1349 	if (!page)
1350 		return NULL;
1351 
1352 	if (hstate_is_gigantic(h))
1353 		prep_compound_gigantic_page(page, huge_page_order(h));
1354 	prep_new_huge_page(h, page, page_to_nid(page));
1355 
1356 	return page;
1357 }
1358 
1359 /*
1360  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1361  * manner.
1362  */
1363 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1364 				nodemask_t *node_alloc_noretry)
1365 {
1366 	struct page *page;
1367 	int nr_nodes, node;
1368 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1369 
1370 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1371 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1372 						node_alloc_noretry);
1373 		if (page)
1374 			break;
1375 	}
1376 
1377 	if (!page)
1378 		return 0;
1379 
1380 	put_page(page); /* free it into the hugepage allocator */
1381 
1382 	return 1;
1383 }
1384 
1385 /*
1386  * Free huge page from pool from next node to free.
1387  * Attempt to keep persistent huge pages more or less
1388  * balanced over allowed nodes.
1389  * Called with hugetlb_lock locked.
1390  */
1391 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1392 							 bool acct_surplus)
1393 {
1394 	int nr_nodes, node;
1395 	int ret = 0;
1396 
1397 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1398 		/*
1399 		 * If we're returning unused surplus pages, only examine
1400 		 * nodes with surplus pages.
1401 		 */
1402 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1403 		    !list_empty(&h->hugepage_freelists[node])) {
1404 			struct page *page =
1405 				list_entry(h->hugepage_freelists[node].next,
1406 					  struct page, lru);
1407 			list_del(&page->lru);
1408 			h->free_huge_pages--;
1409 			h->free_huge_pages_node[node]--;
1410 			if (acct_surplus) {
1411 				h->surplus_huge_pages--;
1412 				h->surplus_huge_pages_node[node]--;
1413 			}
1414 			update_and_free_page(h, page);
1415 			ret = 1;
1416 			break;
1417 		}
1418 	}
1419 
1420 	return ret;
1421 }
1422 
1423 /*
1424  * Dissolve a given free hugepage into free buddy pages. This function does
1425  * nothing for in-use hugepages and non-hugepages.
1426  * This function returns values like below:
1427  *
1428  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1429  *          (allocated or reserved.)
1430  *       0: successfully dissolved free hugepages or the page is not a
1431  *          hugepage (considered as already dissolved)
1432  */
1433 int dissolve_free_huge_page(struct page *page)
1434 {
1435 	int rc = -EBUSY;
1436 
1437 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1438 	if (!PageHuge(page))
1439 		return 0;
1440 
1441 	spin_lock(&hugetlb_lock);
1442 	if (!PageHuge(page)) {
1443 		rc = 0;
1444 		goto out;
1445 	}
1446 
1447 	if (!page_count(page)) {
1448 		struct page *head = compound_head(page);
1449 		struct hstate *h = page_hstate(head);
1450 		int nid = page_to_nid(head);
1451 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1452 			goto out;
1453 		/*
1454 		 * Move PageHWPoison flag from head page to the raw error page,
1455 		 * which makes any subpages rather than the error page reusable.
1456 		 */
1457 		if (PageHWPoison(head) && page != head) {
1458 			SetPageHWPoison(page);
1459 			ClearPageHWPoison(head);
1460 		}
1461 		list_del(&head->lru);
1462 		h->free_huge_pages--;
1463 		h->free_huge_pages_node[nid]--;
1464 		h->max_huge_pages--;
1465 		update_and_free_page(h, head);
1466 		rc = 0;
1467 	}
1468 out:
1469 	spin_unlock(&hugetlb_lock);
1470 	return rc;
1471 }
1472 
1473 /*
1474  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1475  * make specified memory blocks removable from the system.
1476  * Note that this will dissolve a free gigantic hugepage completely, if any
1477  * part of it lies within the given range.
1478  * Also note that if dissolve_free_huge_page() returns with an error, all
1479  * free hugepages that were dissolved before that error are lost.
1480  */
1481 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1482 {
1483 	unsigned long pfn;
1484 	struct page *page;
1485 	int rc = 0;
1486 
1487 	if (!hugepages_supported())
1488 		return rc;
1489 
1490 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1491 		page = pfn_to_page(pfn);
1492 		rc = dissolve_free_huge_page(page);
1493 		if (rc)
1494 			break;
1495 	}
1496 
1497 	return rc;
1498 }
1499 
1500 /*
1501  * Allocates a fresh surplus page from the page allocator.
1502  */
1503 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1504 		int nid, nodemask_t *nmask)
1505 {
1506 	struct page *page = NULL;
1507 
1508 	if (hstate_is_gigantic(h))
1509 		return NULL;
1510 
1511 	spin_lock(&hugetlb_lock);
1512 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1513 		goto out_unlock;
1514 	spin_unlock(&hugetlb_lock);
1515 
1516 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1517 	if (!page)
1518 		return NULL;
1519 
1520 	spin_lock(&hugetlb_lock);
1521 	/*
1522 	 * We could have raced with the pool size change.
1523 	 * Double check that and simply deallocate the new page
1524 	 * if we would end up overcommiting the surpluses. Abuse
1525 	 * temporary page to workaround the nasty free_huge_page
1526 	 * codeflow
1527 	 */
1528 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1529 		SetPageHugeTemporary(page);
1530 		spin_unlock(&hugetlb_lock);
1531 		put_page(page);
1532 		return NULL;
1533 	} else {
1534 		h->surplus_huge_pages++;
1535 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1536 	}
1537 
1538 out_unlock:
1539 	spin_unlock(&hugetlb_lock);
1540 
1541 	return page;
1542 }
1543 
1544 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1545 				     int nid, nodemask_t *nmask)
1546 {
1547 	struct page *page;
1548 
1549 	if (hstate_is_gigantic(h))
1550 		return NULL;
1551 
1552 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1553 	if (!page)
1554 		return NULL;
1555 
1556 	/*
1557 	 * We do not account these pages as surplus because they are only
1558 	 * temporary and will be released properly on the last reference
1559 	 */
1560 	SetPageHugeTemporary(page);
1561 
1562 	return page;
1563 }
1564 
1565 /*
1566  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1567  */
1568 static
1569 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1570 		struct vm_area_struct *vma, unsigned long addr)
1571 {
1572 	struct page *page;
1573 	struct mempolicy *mpol;
1574 	gfp_t gfp_mask = htlb_alloc_mask(h);
1575 	int nid;
1576 	nodemask_t *nodemask;
1577 
1578 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1579 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1580 	mpol_cond_put(mpol);
1581 
1582 	return page;
1583 }
1584 
1585 /* page migration callback function */
1586 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1587 {
1588 	gfp_t gfp_mask = htlb_alloc_mask(h);
1589 	struct page *page = NULL;
1590 
1591 	if (nid != NUMA_NO_NODE)
1592 		gfp_mask |= __GFP_THISNODE;
1593 
1594 	spin_lock(&hugetlb_lock);
1595 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1596 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1597 	spin_unlock(&hugetlb_lock);
1598 
1599 	if (!page)
1600 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1601 
1602 	return page;
1603 }
1604 
1605 /* page migration callback function */
1606 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1607 		nodemask_t *nmask)
1608 {
1609 	gfp_t gfp_mask = htlb_alloc_mask(h);
1610 
1611 	spin_lock(&hugetlb_lock);
1612 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1613 		struct page *page;
1614 
1615 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1616 		if (page) {
1617 			spin_unlock(&hugetlb_lock);
1618 			return page;
1619 		}
1620 	}
1621 	spin_unlock(&hugetlb_lock);
1622 
1623 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1624 }
1625 
1626 /* mempolicy aware migration callback */
1627 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1628 		unsigned long address)
1629 {
1630 	struct mempolicy *mpol;
1631 	nodemask_t *nodemask;
1632 	struct page *page;
1633 	gfp_t gfp_mask;
1634 	int node;
1635 
1636 	gfp_mask = htlb_alloc_mask(h);
1637 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1638 	page = alloc_huge_page_nodemask(h, node, nodemask);
1639 	mpol_cond_put(mpol);
1640 
1641 	return page;
1642 }
1643 
1644 /*
1645  * Increase the hugetlb pool such that it can accommodate a reservation
1646  * of size 'delta'.
1647  */
1648 static int gather_surplus_pages(struct hstate *h, int delta)
1649 {
1650 	struct list_head surplus_list;
1651 	struct page *page, *tmp;
1652 	int ret, i;
1653 	int needed, allocated;
1654 	bool alloc_ok = true;
1655 
1656 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1657 	if (needed <= 0) {
1658 		h->resv_huge_pages += delta;
1659 		return 0;
1660 	}
1661 
1662 	allocated = 0;
1663 	INIT_LIST_HEAD(&surplus_list);
1664 
1665 	ret = -ENOMEM;
1666 retry:
1667 	spin_unlock(&hugetlb_lock);
1668 	for (i = 0; i < needed; i++) {
1669 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1670 				NUMA_NO_NODE, NULL);
1671 		if (!page) {
1672 			alloc_ok = false;
1673 			break;
1674 		}
1675 		list_add(&page->lru, &surplus_list);
1676 		cond_resched();
1677 	}
1678 	allocated += i;
1679 
1680 	/*
1681 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1682 	 * because either resv_huge_pages or free_huge_pages may have changed.
1683 	 */
1684 	spin_lock(&hugetlb_lock);
1685 	needed = (h->resv_huge_pages + delta) -
1686 			(h->free_huge_pages + allocated);
1687 	if (needed > 0) {
1688 		if (alloc_ok)
1689 			goto retry;
1690 		/*
1691 		 * We were not able to allocate enough pages to
1692 		 * satisfy the entire reservation so we free what
1693 		 * we've allocated so far.
1694 		 */
1695 		goto free;
1696 	}
1697 	/*
1698 	 * The surplus_list now contains _at_least_ the number of extra pages
1699 	 * needed to accommodate the reservation.  Add the appropriate number
1700 	 * of pages to the hugetlb pool and free the extras back to the buddy
1701 	 * allocator.  Commit the entire reservation here to prevent another
1702 	 * process from stealing the pages as they are added to the pool but
1703 	 * before they are reserved.
1704 	 */
1705 	needed += allocated;
1706 	h->resv_huge_pages += delta;
1707 	ret = 0;
1708 
1709 	/* Free the needed pages to the hugetlb pool */
1710 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1711 		if ((--needed) < 0)
1712 			break;
1713 		/*
1714 		 * This page is now managed by the hugetlb allocator and has
1715 		 * no users -- drop the buddy allocator's reference.
1716 		 */
1717 		put_page_testzero(page);
1718 		VM_BUG_ON_PAGE(page_count(page), page);
1719 		enqueue_huge_page(h, page);
1720 	}
1721 free:
1722 	spin_unlock(&hugetlb_lock);
1723 
1724 	/* Free unnecessary surplus pages to the buddy allocator */
1725 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1726 		put_page(page);
1727 	spin_lock(&hugetlb_lock);
1728 
1729 	return ret;
1730 }
1731 
1732 /*
1733  * This routine has two main purposes:
1734  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1735  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1736  *    to the associated reservation map.
1737  * 2) Free any unused surplus pages that may have been allocated to satisfy
1738  *    the reservation.  As many as unused_resv_pages may be freed.
1739  *
1740  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1741  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1742  * we must make sure nobody else can claim pages we are in the process of
1743  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1744  * number of huge pages we plan to free when dropping the lock.
1745  */
1746 static void return_unused_surplus_pages(struct hstate *h,
1747 					unsigned long unused_resv_pages)
1748 {
1749 	unsigned long nr_pages;
1750 
1751 	/* Cannot return gigantic pages currently */
1752 	if (hstate_is_gigantic(h))
1753 		goto out;
1754 
1755 	/*
1756 	 * Part (or even all) of the reservation could have been backed
1757 	 * by pre-allocated pages. Only free surplus pages.
1758 	 */
1759 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1760 
1761 	/*
1762 	 * We want to release as many surplus pages as possible, spread
1763 	 * evenly across all nodes with memory. Iterate across these nodes
1764 	 * until we can no longer free unreserved surplus pages. This occurs
1765 	 * when the nodes with surplus pages have no free pages.
1766 	 * free_pool_huge_page() will balance the the freed pages across the
1767 	 * on-line nodes with memory and will handle the hstate accounting.
1768 	 *
1769 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1770 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1771 	 * to cover subsequent pages we may free.
1772 	 */
1773 	while (nr_pages--) {
1774 		h->resv_huge_pages--;
1775 		unused_resv_pages--;
1776 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1777 			goto out;
1778 		cond_resched_lock(&hugetlb_lock);
1779 	}
1780 
1781 out:
1782 	/* Fully uncommit the reservation */
1783 	h->resv_huge_pages -= unused_resv_pages;
1784 }
1785 
1786 
1787 /*
1788  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1789  * are used by the huge page allocation routines to manage reservations.
1790  *
1791  * vma_needs_reservation is called to determine if the huge page at addr
1792  * within the vma has an associated reservation.  If a reservation is
1793  * needed, the value 1 is returned.  The caller is then responsible for
1794  * managing the global reservation and subpool usage counts.  After
1795  * the huge page has been allocated, vma_commit_reservation is called
1796  * to add the page to the reservation map.  If the page allocation fails,
1797  * the reservation must be ended instead of committed.  vma_end_reservation
1798  * is called in such cases.
1799  *
1800  * In the normal case, vma_commit_reservation returns the same value
1801  * as the preceding vma_needs_reservation call.  The only time this
1802  * is not the case is if a reserve map was changed between calls.  It
1803  * is the responsibility of the caller to notice the difference and
1804  * take appropriate action.
1805  *
1806  * vma_add_reservation is used in error paths where a reservation must
1807  * be restored when a newly allocated huge page must be freed.  It is
1808  * to be called after calling vma_needs_reservation to determine if a
1809  * reservation exists.
1810  */
1811 enum vma_resv_mode {
1812 	VMA_NEEDS_RESV,
1813 	VMA_COMMIT_RESV,
1814 	VMA_END_RESV,
1815 	VMA_ADD_RESV,
1816 };
1817 static long __vma_reservation_common(struct hstate *h,
1818 				struct vm_area_struct *vma, unsigned long addr,
1819 				enum vma_resv_mode mode)
1820 {
1821 	struct resv_map *resv;
1822 	pgoff_t idx;
1823 	long ret;
1824 
1825 	resv = vma_resv_map(vma);
1826 	if (!resv)
1827 		return 1;
1828 
1829 	idx = vma_hugecache_offset(h, vma, addr);
1830 	switch (mode) {
1831 	case VMA_NEEDS_RESV:
1832 		ret = region_chg(resv, idx, idx + 1);
1833 		break;
1834 	case VMA_COMMIT_RESV:
1835 		ret = region_add(resv, idx, idx + 1);
1836 		break;
1837 	case VMA_END_RESV:
1838 		region_abort(resv, idx, idx + 1);
1839 		ret = 0;
1840 		break;
1841 	case VMA_ADD_RESV:
1842 		if (vma->vm_flags & VM_MAYSHARE)
1843 			ret = region_add(resv, idx, idx + 1);
1844 		else {
1845 			region_abort(resv, idx, idx + 1);
1846 			ret = region_del(resv, idx, idx + 1);
1847 		}
1848 		break;
1849 	default:
1850 		BUG();
1851 	}
1852 
1853 	if (vma->vm_flags & VM_MAYSHARE)
1854 		return ret;
1855 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1856 		/*
1857 		 * In most cases, reserves always exist for private mappings.
1858 		 * However, a file associated with mapping could have been
1859 		 * hole punched or truncated after reserves were consumed.
1860 		 * As subsequent fault on such a range will not use reserves.
1861 		 * Subtle - The reserve map for private mappings has the
1862 		 * opposite meaning than that of shared mappings.  If NO
1863 		 * entry is in the reserve map, it means a reservation exists.
1864 		 * If an entry exists in the reserve map, it means the
1865 		 * reservation has already been consumed.  As a result, the
1866 		 * return value of this routine is the opposite of the
1867 		 * value returned from reserve map manipulation routines above.
1868 		 */
1869 		if (ret)
1870 			return 0;
1871 		else
1872 			return 1;
1873 	}
1874 	else
1875 		return ret < 0 ? ret : 0;
1876 }
1877 
1878 static long vma_needs_reservation(struct hstate *h,
1879 			struct vm_area_struct *vma, unsigned long addr)
1880 {
1881 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1882 }
1883 
1884 static long vma_commit_reservation(struct hstate *h,
1885 			struct vm_area_struct *vma, unsigned long addr)
1886 {
1887 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1888 }
1889 
1890 static void vma_end_reservation(struct hstate *h,
1891 			struct vm_area_struct *vma, unsigned long addr)
1892 {
1893 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1894 }
1895 
1896 static long vma_add_reservation(struct hstate *h,
1897 			struct vm_area_struct *vma, unsigned long addr)
1898 {
1899 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1900 }
1901 
1902 /*
1903  * This routine is called to restore a reservation on error paths.  In the
1904  * specific error paths, a huge page was allocated (via alloc_huge_page)
1905  * and is about to be freed.  If a reservation for the page existed,
1906  * alloc_huge_page would have consumed the reservation and set PagePrivate
1907  * in the newly allocated page.  When the page is freed via free_huge_page,
1908  * the global reservation count will be incremented if PagePrivate is set.
1909  * However, free_huge_page can not adjust the reserve map.  Adjust the
1910  * reserve map here to be consistent with global reserve count adjustments
1911  * to be made by free_huge_page.
1912  */
1913 static void restore_reserve_on_error(struct hstate *h,
1914 			struct vm_area_struct *vma, unsigned long address,
1915 			struct page *page)
1916 {
1917 	if (unlikely(PagePrivate(page))) {
1918 		long rc = vma_needs_reservation(h, vma, address);
1919 
1920 		if (unlikely(rc < 0)) {
1921 			/*
1922 			 * Rare out of memory condition in reserve map
1923 			 * manipulation.  Clear PagePrivate so that
1924 			 * global reserve count will not be incremented
1925 			 * by free_huge_page.  This will make it appear
1926 			 * as though the reservation for this page was
1927 			 * consumed.  This may prevent the task from
1928 			 * faulting in the page at a later time.  This
1929 			 * is better than inconsistent global huge page
1930 			 * accounting of reserve counts.
1931 			 */
1932 			ClearPagePrivate(page);
1933 		} else if (rc) {
1934 			rc = vma_add_reservation(h, vma, address);
1935 			if (unlikely(rc < 0))
1936 				/*
1937 				 * See above comment about rare out of
1938 				 * memory condition.
1939 				 */
1940 				ClearPagePrivate(page);
1941 		} else
1942 			vma_end_reservation(h, vma, address);
1943 	}
1944 }
1945 
1946 struct page *alloc_huge_page(struct vm_area_struct *vma,
1947 				    unsigned long addr, int avoid_reserve)
1948 {
1949 	struct hugepage_subpool *spool = subpool_vma(vma);
1950 	struct hstate *h = hstate_vma(vma);
1951 	struct page *page;
1952 	long map_chg, map_commit;
1953 	long gbl_chg;
1954 	int ret, idx;
1955 	struct hugetlb_cgroup *h_cg;
1956 
1957 	idx = hstate_index(h);
1958 	/*
1959 	 * Examine the region/reserve map to determine if the process
1960 	 * has a reservation for the page to be allocated.  A return
1961 	 * code of zero indicates a reservation exists (no change).
1962 	 */
1963 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1964 	if (map_chg < 0)
1965 		return ERR_PTR(-ENOMEM);
1966 
1967 	/*
1968 	 * Processes that did not create the mapping will have no
1969 	 * reserves as indicated by the region/reserve map. Check
1970 	 * that the allocation will not exceed the subpool limit.
1971 	 * Allocations for MAP_NORESERVE mappings also need to be
1972 	 * checked against any subpool limit.
1973 	 */
1974 	if (map_chg || avoid_reserve) {
1975 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1976 		if (gbl_chg < 0) {
1977 			vma_end_reservation(h, vma, addr);
1978 			return ERR_PTR(-ENOSPC);
1979 		}
1980 
1981 		/*
1982 		 * Even though there was no reservation in the region/reserve
1983 		 * map, there could be reservations associated with the
1984 		 * subpool that can be used.  This would be indicated if the
1985 		 * return value of hugepage_subpool_get_pages() is zero.
1986 		 * However, if avoid_reserve is specified we still avoid even
1987 		 * the subpool reservations.
1988 		 */
1989 		if (avoid_reserve)
1990 			gbl_chg = 1;
1991 	}
1992 
1993 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1994 	if (ret)
1995 		goto out_subpool_put;
1996 
1997 	spin_lock(&hugetlb_lock);
1998 	/*
1999 	 * glb_chg is passed to indicate whether or not a page must be taken
2000 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2001 	 * a reservation exists for the allocation.
2002 	 */
2003 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2004 	if (!page) {
2005 		spin_unlock(&hugetlb_lock);
2006 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2007 		if (!page)
2008 			goto out_uncharge_cgroup;
2009 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2010 			SetPagePrivate(page);
2011 			h->resv_huge_pages--;
2012 		}
2013 		spin_lock(&hugetlb_lock);
2014 		list_move(&page->lru, &h->hugepage_activelist);
2015 		/* Fall through */
2016 	}
2017 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2018 	spin_unlock(&hugetlb_lock);
2019 
2020 	set_page_private(page, (unsigned long)spool);
2021 
2022 	map_commit = vma_commit_reservation(h, vma, addr);
2023 	if (unlikely(map_chg > map_commit)) {
2024 		/*
2025 		 * The page was added to the reservation map between
2026 		 * vma_needs_reservation and vma_commit_reservation.
2027 		 * This indicates a race with hugetlb_reserve_pages.
2028 		 * Adjust for the subpool count incremented above AND
2029 		 * in hugetlb_reserve_pages for the same page.  Also,
2030 		 * the reservation count added in hugetlb_reserve_pages
2031 		 * no longer applies.
2032 		 */
2033 		long rsv_adjust;
2034 
2035 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2036 		hugetlb_acct_memory(h, -rsv_adjust);
2037 	}
2038 	return page;
2039 
2040 out_uncharge_cgroup:
2041 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2042 out_subpool_put:
2043 	if (map_chg || avoid_reserve)
2044 		hugepage_subpool_put_pages(spool, 1);
2045 	vma_end_reservation(h, vma, addr);
2046 	return ERR_PTR(-ENOSPC);
2047 }
2048 
2049 int alloc_bootmem_huge_page(struct hstate *h)
2050 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2051 int __alloc_bootmem_huge_page(struct hstate *h)
2052 {
2053 	struct huge_bootmem_page *m;
2054 	int nr_nodes, node;
2055 
2056 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2057 		void *addr;
2058 
2059 		addr = memblock_alloc_try_nid_raw(
2060 				huge_page_size(h), huge_page_size(h),
2061 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2062 		if (addr) {
2063 			/*
2064 			 * Use the beginning of the huge page to store the
2065 			 * huge_bootmem_page struct (until gather_bootmem
2066 			 * puts them into the mem_map).
2067 			 */
2068 			m = addr;
2069 			goto found;
2070 		}
2071 	}
2072 	return 0;
2073 
2074 found:
2075 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2076 	/* Put them into a private list first because mem_map is not up yet */
2077 	INIT_LIST_HEAD(&m->list);
2078 	list_add(&m->list, &huge_boot_pages);
2079 	m->hstate = h;
2080 	return 1;
2081 }
2082 
2083 static void __init prep_compound_huge_page(struct page *page,
2084 		unsigned int order)
2085 {
2086 	if (unlikely(order > (MAX_ORDER - 1)))
2087 		prep_compound_gigantic_page(page, order);
2088 	else
2089 		prep_compound_page(page, order);
2090 }
2091 
2092 /* Put bootmem huge pages into the standard lists after mem_map is up */
2093 static void __init gather_bootmem_prealloc(void)
2094 {
2095 	struct huge_bootmem_page *m;
2096 
2097 	list_for_each_entry(m, &huge_boot_pages, list) {
2098 		struct page *page = virt_to_page(m);
2099 		struct hstate *h = m->hstate;
2100 
2101 		WARN_ON(page_count(page) != 1);
2102 		prep_compound_huge_page(page, h->order);
2103 		WARN_ON(PageReserved(page));
2104 		prep_new_huge_page(h, page, page_to_nid(page));
2105 		put_page(page); /* free it into the hugepage allocator */
2106 
2107 		/*
2108 		 * If we had gigantic hugepages allocated at boot time, we need
2109 		 * to restore the 'stolen' pages to totalram_pages in order to
2110 		 * fix confusing memory reports from free(1) and another
2111 		 * side-effects, like CommitLimit going negative.
2112 		 */
2113 		if (hstate_is_gigantic(h))
2114 			adjust_managed_page_count(page, 1 << h->order);
2115 		cond_resched();
2116 	}
2117 }
2118 
2119 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2120 {
2121 	unsigned long i;
2122 	nodemask_t *node_alloc_noretry;
2123 
2124 	if (!hstate_is_gigantic(h)) {
2125 		/*
2126 		 * Bit mask controlling how hard we retry per-node allocations.
2127 		 * Ignore errors as lower level routines can deal with
2128 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2129 		 * time, we are likely in bigger trouble.
2130 		 */
2131 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2132 						GFP_KERNEL);
2133 	} else {
2134 		/* allocations done at boot time */
2135 		node_alloc_noretry = NULL;
2136 	}
2137 
2138 	/* bit mask controlling how hard we retry per-node allocations */
2139 	if (node_alloc_noretry)
2140 		nodes_clear(*node_alloc_noretry);
2141 
2142 	for (i = 0; i < h->max_huge_pages; ++i) {
2143 		if (hstate_is_gigantic(h)) {
2144 			if (!alloc_bootmem_huge_page(h))
2145 				break;
2146 		} else if (!alloc_pool_huge_page(h,
2147 					 &node_states[N_MEMORY],
2148 					 node_alloc_noretry))
2149 			break;
2150 		cond_resched();
2151 	}
2152 	if (i < h->max_huge_pages) {
2153 		char buf[32];
2154 
2155 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2156 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2157 			h->max_huge_pages, buf, i);
2158 		h->max_huge_pages = i;
2159 	}
2160 
2161 	kfree(node_alloc_noretry);
2162 }
2163 
2164 static void __init hugetlb_init_hstates(void)
2165 {
2166 	struct hstate *h;
2167 
2168 	for_each_hstate(h) {
2169 		if (minimum_order > huge_page_order(h))
2170 			minimum_order = huge_page_order(h);
2171 
2172 		/* oversize hugepages were init'ed in early boot */
2173 		if (!hstate_is_gigantic(h))
2174 			hugetlb_hstate_alloc_pages(h);
2175 	}
2176 	VM_BUG_ON(minimum_order == UINT_MAX);
2177 }
2178 
2179 static void __init report_hugepages(void)
2180 {
2181 	struct hstate *h;
2182 
2183 	for_each_hstate(h) {
2184 		char buf[32];
2185 
2186 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2187 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2188 			buf, h->free_huge_pages);
2189 	}
2190 }
2191 
2192 #ifdef CONFIG_HIGHMEM
2193 static void try_to_free_low(struct hstate *h, unsigned long count,
2194 						nodemask_t *nodes_allowed)
2195 {
2196 	int i;
2197 
2198 	if (hstate_is_gigantic(h))
2199 		return;
2200 
2201 	for_each_node_mask(i, *nodes_allowed) {
2202 		struct page *page, *next;
2203 		struct list_head *freel = &h->hugepage_freelists[i];
2204 		list_for_each_entry_safe(page, next, freel, lru) {
2205 			if (count >= h->nr_huge_pages)
2206 				return;
2207 			if (PageHighMem(page))
2208 				continue;
2209 			list_del(&page->lru);
2210 			update_and_free_page(h, page);
2211 			h->free_huge_pages--;
2212 			h->free_huge_pages_node[page_to_nid(page)]--;
2213 		}
2214 	}
2215 }
2216 #else
2217 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2218 						nodemask_t *nodes_allowed)
2219 {
2220 }
2221 #endif
2222 
2223 /*
2224  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2225  * balanced by operating on them in a round-robin fashion.
2226  * Returns 1 if an adjustment was made.
2227  */
2228 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2229 				int delta)
2230 {
2231 	int nr_nodes, node;
2232 
2233 	VM_BUG_ON(delta != -1 && delta != 1);
2234 
2235 	if (delta < 0) {
2236 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2237 			if (h->surplus_huge_pages_node[node])
2238 				goto found;
2239 		}
2240 	} else {
2241 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2242 			if (h->surplus_huge_pages_node[node] <
2243 					h->nr_huge_pages_node[node])
2244 				goto found;
2245 		}
2246 	}
2247 	return 0;
2248 
2249 found:
2250 	h->surplus_huge_pages += delta;
2251 	h->surplus_huge_pages_node[node] += delta;
2252 	return 1;
2253 }
2254 
2255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2256 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2257 			      nodemask_t *nodes_allowed)
2258 {
2259 	unsigned long min_count, ret;
2260 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2261 
2262 	/*
2263 	 * Bit mask controlling how hard we retry per-node allocations.
2264 	 * If we can not allocate the bit mask, do not attempt to allocate
2265 	 * the requested huge pages.
2266 	 */
2267 	if (node_alloc_noretry)
2268 		nodes_clear(*node_alloc_noretry);
2269 	else
2270 		return -ENOMEM;
2271 
2272 	spin_lock(&hugetlb_lock);
2273 
2274 	/*
2275 	 * Check for a node specific request.
2276 	 * Changing node specific huge page count may require a corresponding
2277 	 * change to the global count.  In any case, the passed node mask
2278 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2279 	 */
2280 	if (nid != NUMA_NO_NODE) {
2281 		unsigned long old_count = count;
2282 
2283 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2284 		/*
2285 		 * User may have specified a large count value which caused the
2286 		 * above calculation to overflow.  In this case, they wanted
2287 		 * to allocate as many huge pages as possible.  Set count to
2288 		 * largest possible value to align with their intention.
2289 		 */
2290 		if (count < old_count)
2291 			count = ULONG_MAX;
2292 	}
2293 
2294 	/*
2295 	 * Gigantic pages runtime allocation depend on the capability for large
2296 	 * page range allocation.
2297 	 * If the system does not provide this feature, return an error when
2298 	 * the user tries to allocate gigantic pages but let the user free the
2299 	 * boottime allocated gigantic pages.
2300 	 */
2301 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2302 		if (count > persistent_huge_pages(h)) {
2303 			spin_unlock(&hugetlb_lock);
2304 			NODEMASK_FREE(node_alloc_noretry);
2305 			return -EINVAL;
2306 		}
2307 		/* Fall through to decrease pool */
2308 	}
2309 
2310 	/*
2311 	 * Increase the pool size
2312 	 * First take pages out of surplus state.  Then make up the
2313 	 * remaining difference by allocating fresh huge pages.
2314 	 *
2315 	 * We might race with alloc_surplus_huge_page() here and be unable
2316 	 * to convert a surplus huge page to a normal huge page. That is
2317 	 * not critical, though, it just means the overall size of the
2318 	 * pool might be one hugepage larger than it needs to be, but
2319 	 * within all the constraints specified by the sysctls.
2320 	 */
2321 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2322 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2323 			break;
2324 	}
2325 
2326 	while (count > persistent_huge_pages(h)) {
2327 		/*
2328 		 * If this allocation races such that we no longer need the
2329 		 * page, free_huge_page will handle it by freeing the page
2330 		 * and reducing the surplus.
2331 		 */
2332 		spin_unlock(&hugetlb_lock);
2333 
2334 		/* yield cpu to avoid soft lockup */
2335 		cond_resched();
2336 
2337 		ret = alloc_pool_huge_page(h, nodes_allowed,
2338 						node_alloc_noretry);
2339 		spin_lock(&hugetlb_lock);
2340 		if (!ret)
2341 			goto out;
2342 
2343 		/* Bail for signals. Probably ctrl-c from user */
2344 		if (signal_pending(current))
2345 			goto out;
2346 	}
2347 
2348 	/*
2349 	 * Decrease the pool size
2350 	 * First return free pages to the buddy allocator (being careful
2351 	 * to keep enough around to satisfy reservations).  Then place
2352 	 * pages into surplus state as needed so the pool will shrink
2353 	 * to the desired size as pages become free.
2354 	 *
2355 	 * By placing pages into the surplus state independent of the
2356 	 * overcommit value, we are allowing the surplus pool size to
2357 	 * exceed overcommit. There are few sane options here. Since
2358 	 * alloc_surplus_huge_page() is checking the global counter,
2359 	 * though, we'll note that we're not allowed to exceed surplus
2360 	 * and won't grow the pool anywhere else. Not until one of the
2361 	 * sysctls are changed, or the surplus pages go out of use.
2362 	 */
2363 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2364 	min_count = max(count, min_count);
2365 	try_to_free_low(h, min_count, nodes_allowed);
2366 	while (min_count < persistent_huge_pages(h)) {
2367 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2368 			break;
2369 		cond_resched_lock(&hugetlb_lock);
2370 	}
2371 	while (count < persistent_huge_pages(h)) {
2372 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2373 			break;
2374 	}
2375 out:
2376 	h->max_huge_pages = persistent_huge_pages(h);
2377 	spin_unlock(&hugetlb_lock);
2378 
2379 	NODEMASK_FREE(node_alloc_noretry);
2380 
2381 	return 0;
2382 }
2383 
2384 #define HSTATE_ATTR_RO(_name) \
2385 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2386 
2387 #define HSTATE_ATTR(_name) \
2388 	static struct kobj_attribute _name##_attr = \
2389 		__ATTR(_name, 0644, _name##_show, _name##_store)
2390 
2391 static struct kobject *hugepages_kobj;
2392 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2393 
2394 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2395 
2396 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2397 {
2398 	int i;
2399 
2400 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2401 		if (hstate_kobjs[i] == kobj) {
2402 			if (nidp)
2403 				*nidp = NUMA_NO_NODE;
2404 			return &hstates[i];
2405 		}
2406 
2407 	return kobj_to_node_hstate(kobj, nidp);
2408 }
2409 
2410 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2411 					struct kobj_attribute *attr, char *buf)
2412 {
2413 	struct hstate *h;
2414 	unsigned long nr_huge_pages;
2415 	int nid;
2416 
2417 	h = kobj_to_hstate(kobj, &nid);
2418 	if (nid == NUMA_NO_NODE)
2419 		nr_huge_pages = h->nr_huge_pages;
2420 	else
2421 		nr_huge_pages = h->nr_huge_pages_node[nid];
2422 
2423 	return sprintf(buf, "%lu\n", nr_huge_pages);
2424 }
2425 
2426 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2427 					   struct hstate *h, int nid,
2428 					   unsigned long count, size_t len)
2429 {
2430 	int err;
2431 	nodemask_t nodes_allowed, *n_mask;
2432 
2433 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2434 		return -EINVAL;
2435 
2436 	if (nid == NUMA_NO_NODE) {
2437 		/*
2438 		 * global hstate attribute
2439 		 */
2440 		if (!(obey_mempolicy &&
2441 				init_nodemask_of_mempolicy(&nodes_allowed)))
2442 			n_mask = &node_states[N_MEMORY];
2443 		else
2444 			n_mask = &nodes_allowed;
2445 	} else {
2446 		/*
2447 		 * Node specific request.  count adjustment happens in
2448 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2449 		 */
2450 		init_nodemask_of_node(&nodes_allowed, nid);
2451 		n_mask = &nodes_allowed;
2452 	}
2453 
2454 	err = set_max_huge_pages(h, count, nid, n_mask);
2455 
2456 	return err ? err : len;
2457 }
2458 
2459 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2460 					 struct kobject *kobj, const char *buf,
2461 					 size_t len)
2462 {
2463 	struct hstate *h;
2464 	unsigned long count;
2465 	int nid;
2466 	int err;
2467 
2468 	err = kstrtoul(buf, 10, &count);
2469 	if (err)
2470 		return err;
2471 
2472 	h = kobj_to_hstate(kobj, &nid);
2473 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2474 }
2475 
2476 static ssize_t nr_hugepages_show(struct kobject *kobj,
2477 				       struct kobj_attribute *attr, char *buf)
2478 {
2479 	return nr_hugepages_show_common(kobj, attr, buf);
2480 }
2481 
2482 static ssize_t nr_hugepages_store(struct kobject *kobj,
2483 	       struct kobj_attribute *attr, const char *buf, size_t len)
2484 {
2485 	return nr_hugepages_store_common(false, kobj, buf, len);
2486 }
2487 HSTATE_ATTR(nr_hugepages);
2488 
2489 #ifdef CONFIG_NUMA
2490 
2491 /*
2492  * hstate attribute for optionally mempolicy-based constraint on persistent
2493  * huge page alloc/free.
2494  */
2495 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2496 				       struct kobj_attribute *attr, char *buf)
2497 {
2498 	return nr_hugepages_show_common(kobj, attr, buf);
2499 }
2500 
2501 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2502 	       struct kobj_attribute *attr, const char *buf, size_t len)
2503 {
2504 	return nr_hugepages_store_common(true, kobj, buf, len);
2505 }
2506 HSTATE_ATTR(nr_hugepages_mempolicy);
2507 #endif
2508 
2509 
2510 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2511 					struct kobj_attribute *attr, char *buf)
2512 {
2513 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2514 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2515 }
2516 
2517 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2518 		struct kobj_attribute *attr, const char *buf, size_t count)
2519 {
2520 	int err;
2521 	unsigned long input;
2522 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2523 
2524 	if (hstate_is_gigantic(h))
2525 		return -EINVAL;
2526 
2527 	err = kstrtoul(buf, 10, &input);
2528 	if (err)
2529 		return err;
2530 
2531 	spin_lock(&hugetlb_lock);
2532 	h->nr_overcommit_huge_pages = input;
2533 	spin_unlock(&hugetlb_lock);
2534 
2535 	return count;
2536 }
2537 HSTATE_ATTR(nr_overcommit_hugepages);
2538 
2539 static ssize_t free_hugepages_show(struct kobject *kobj,
2540 					struct kobj_attribute *attr, char *buf)
2541 {
2542 	struct hstate *h;
2543 	unsigned long free_huge_pages;
2544 	int nid;
2545 
2546 	h = kobj_to_hstate(kobj, &nid);
2547 	if (nid == NUMA_NO_NODE)
2548 		free_huge_pages = h->free_huge_pages;
2549 	else
2550 		free_huge_pages = h->free_huge_pages_node[nid];
2551 
2552 	return sprintf(buf, "%lu\n", free_huge_pages);
2553 }
2554 HSTATE_ATTR_RO(free_hugepages);
2555 
2556 static ssize_t resv_hugepages_show(struct kobject *kobj,
2557 					struct kobj_attribute *attr, char *buf)
2558 {
2559 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2560 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2561 }
2562 HSTATE_ATTR_RO(resv_hugepages);
2563 
2564 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2565 					struct kobj_attribute *attr, char *buf)
2566 {
2567 	struct hstate *h;
2568 	unsigned long surplus_huge_pages;
2569 	int nid;
2570 
2571 	h = kobj_to_hstate(kobj, &nid);
2572 	if (nid == NUMA_NO_NODE)
2573 		surplus_huge_pages = h->surplus_huge_pages;
2574 	else
2575 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2576 
2577 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2578 }
2579 HSTATE_ATTR_RO(surplus_hugepages);
2580 
2581 static struct attribute *hstate_attrs[] = {
2582 	&nr_hugepages_attr.attr,
2583 	&nr_overcommit_hugepages_attr.attr,
2584 	&free_hugepages_attr.attr,
2585 	&resv_hugepages_attr.attr,
2586 	&surplus_hugepages_attr.attr,
2587 #ifdef CONFIG_NUMA
2588 	&nr_hugepages_mempolicy_attr.attr,
2589 #endif
2590 	NULL,
2591 };
2592 
2593 static const struct attribute_group hstate_attr_group = {
2594 	.attrs = hstate_attrs,
2595 };
2596 
2597 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2598 				    struct kobject **hstate_kobjs,
2599 				    const struct attribute_group *hstate_attr_group)
2600 {
2601 	int retval;
2602 	int hi = hstate_index(h);
2603 
2604 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2605 	if (!hstate_kobjs[hi])
2606 		return -ENOMEM;
2607 
2608 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2609 	if (retval)
2610 		kobject_put(hstate_kobjs[hi]);
2611 
2612 	return retval;
2613 }
2614 
2615 static void __init hugetlb_sysfs_init(void)
2616 {
2617 	struct hstate *h;
2618 	int err;
2619 
2620 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2621 	if (!hugepages_kobj)
2622 		return;
2623 
2624 	for_each_hstate(h) {
2625 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2626 					 hstate_kobjs, &hstate_attr_group);
2627 		if (err)
2628 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2629 	}
2630 }
2631 
2632 #ifdef CONFIG_NUMA
2633 
2634 /*
2635  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2636  * with node devices in node_devices[] using a parallel array.  The array
2637  * index of a node device or _hstate == node id.
2638  * This is here to avoid any static dependency of the node device driver, in
2639  * the base kernel, on the hugetlb module.
2640  */
2641 struct node_hstate {
2642 	struct kobject		*hugepages_kobj;
2643 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2644 };
2645 static struct node_hstate node_hstates[MAX_NUMNODES];
2646 
2647 /*
2648  * A subset of global hstate attributes for node devices
2649  */
2650 static struct attribute *per_node_hstate_attrs[] = {
2651 	&nr_hugepages_attr.attr,
2652 	&free_hugepages_attr.attr,
2653 	&surplus_hugepages_attr.attr,
2654 	NULL,
2655 };
2656 
2657 static const struct attribute_group per_node_hstate_attr_group = {
2658 	.attrs = per_node_hstate_attrs,
2659 };
2660 
2661 /*
2662  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2663  * Returns node id via non-NULL nidp.
2664  */
2665 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2666 {
2667 	int nid;
2668 
2669 	for (nid = 0; nid < nr_node_ids; nid++) {
2670 		struct node_hstate *nhs = &node_hstates[nid];
2671 		int i;
2672 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2673 			if (nhs->hstate_kobjs[i] == kobj) {
2674 				if (nidp)
2675 					*nidp = nid;
2676 				return &hstates[i];
2677 			}
2678 	}
2679 
2680 	BUG();
2681 	return NULL;
2682 }
2683 
2684 /*
2685  * Unregister hstate attributes from a single node device.
2686  * No-op if no hstate attributes attached.
2687  */
2688 static void hugetlb_unregister_node(struct node *node)
2689 {
2690 	struct hstate *h;
2691 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2692 
2693 	if (!nhs->hugepages_kobj)
2694 		return;		/* no hstate attributes */
2695 
2696 	for_each_hstate(h) {
2697 		int idx = hstate_index(h);
2698 		if (nhs->hstate_kobjs[idx]) {
2699 			kobject_put(nhs->hstate_kobjs[idx]);
2700 			nhs->hstate_kobjs[idx] = NULL;
2701 		}
2702 	}
2703 
2704 	kobject_put(nhs->hugepages_kobj);
2705 	nhs->hugepages_kobj = NULL;
2706 }
2707 
2708 
2709 /*
2710  * Register hstate attributes for a single node device.
2711  * No-op if attributes already registered.
2712  */
2713 static void hugetlb_register_node(struct node *node)
2714 {
2715 	struct hstate *h;
2716 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2717 	int err;
2718 
2719 	if (nhs->hugepages_kobj)
2720 		return;		/* already allocated */
2721 
2722 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2723 							&node->dev.kobj);
2724 	if (!nhs->hugepages_kobj)
2725 		return;
2726 
2727 	for_each_hstate(h) {
2728 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2729 						nhs->hstate_kobjs,
2730 						&per_node_hstate_attr_group);
2731 		if (err) {
2732 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2733 				h->name, node->dev.id);
2734 			hugetlb_unregister_node(node);
2735 			break;
2736 		}
2737 	}
2738 }
2739 
2740 /*
2741  * hugetlb init time:  register hstate attributes for all registered node
2742  * devices of nodes that have memory.  All on-line nodes should have
2743  * registered their associated device by this time.
2744  */
2745 static void __init hugetlb_register_all_nodes(void)
2746 {
2747 	int nid;
2748 
2749 	for_each_node_state(nid, N_MEMORY) {
2750 		struct node *node = node_devices[nid];
2751 		if (node->dev.id == nid)
2752 			hugetlb_register_node(node);
2753 	}
2754 
2755 	/*
2756 	 * Let the node device driver know we're here so it can
2757 	 * [un]register hstate attributes on node hotplug.
2758 	 */
2759 	register_hugetlbfs_with_node(hugetlb_register_node,
2760 				     hugetlb_unregister_node);
2761 }
2762 #else	/* !CONFIG_NUMA */
2763 
2764 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2765 {
2766 	BUG();
2767 	if (nidp)
2768 		*nidp = -1;
2769 	return NULL;
2770 }
2771 
2772 static void hugetlb_register_all_nodes(void) { }
2773 
2774 #endif
2775 
2776 static int __init hugetlb_init(void)
2777 {
2778 	int i;
2779 
2780 	if (!hugepages_supported())
2781 		return 0;
2782 
2783 	if (!size_to_hstate(default_hstate_size)) {
2784 		if (default_hstate_size != 0) {
2785 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2786 			       default_hstate_size, HPAGE_SIZE);
2787 		}
2788 
2789 		default_hstate_size = HPAGE_SIZE;
2790 		if (!size_to_hstate(default_hstate_size))
2791 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2792 	}
2793 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2794 	if (default_hstate_max_huge_pages) {
2795 		if (!default_hstate.max_huge_pages)
2796 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2797 	}
2798 
2799 	hugetlb_init_hstates();
2800 	gather_bootmem_prealloc();
2801 	report_hugepages();
2802 
2803 	hugetlb_sysfs_init();
2804 	hugetlb_register_all_nodes();
2805 	hugetlb_cgroup_file_init();
2806 
2807 #ifdef CONFIG_SMP
2808 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2809 #else
2810 	num_fault_mutexes = 1;
2811 #endif
2812 	hugetlb_fault_mutex_table =
2813 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2814 			      GFP_KERNEL);
2815 	BUG_ON(!hugetlb_fault_mutex_table);
2816 
2817 	for (i = 0; i < num_fault_mutexes; i++)
2818 		mutex_init(&hugetlb_fault_mutex_table[i]);
2819 	return 0;
2820 }
2821 subsys_initcall(hugetlb_init);
2822 
2823 /* Should be called on processing a hugepagesz=... option */
2824 void __init hugetlb_bad_size(void)
2825 {
2826 	parsed_valid_hugepagesz = false;
2827 }
2828 
2829 void __init hugetlb_add_hstate(unsigned int order)
2830 {
2831 	struct hstate *h;
2832 	unsigned long i;
2833 
2834 	if (size_to_hstate(PAGE_SIZE << order)) {
2835 		pr_warn("hugepagesz= specified twice, ignoring\n");
2836 		return;
2837 	}
2838 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2839 	BUG_ON(order == 0);
2840 	h = &hstates[hugetlb_max_hstate++];
2841 	h->order = order;
2842 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2843 	h->nr_huge_pages = 0;
2844 	h->free_huge_pages = 0;
2845 	for (i = 0; i < MAX_NUMNODES; ++i)
2846 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2847 	INIT_LIST_HEAD(&h->hugepage_activelist);
2848 	h->next_nid_to_alloc = first_memory_node;
2849 	h->next_nid_to_free = first_memory_node;
2850 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2851 					huge_page_size(h)/1024);
2852 
2853 	parsed_hstate = h;
2854 }
2855 
2856 static int __init hugetlb_nrpages_setup(char *s)
2857 {
2858 	unsigned long *mhp;
2859 	static unsigned long *last_mhp;
2860 
2861 	if (!parsed_valid_hugepagesz) {
2862 		pr_warn("hugepages = %s preceded by "
2863 			"an unsupported hugepagesz, ignoring\n", s);
2864 		parsed_valid_hugepagesz = true;
2865 		return 1;
2866 	}
2867 	/*
2868 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2869 	 * so this hugepages= parameter goes to the "default hstate".
2870 	 */
2871 	else if (!hugetlb_max_hstate)
2872 		mhp = &default_hstate_max_huge_pages;
2873 	else
2874 		mhp = &parsed_hstate->max_huge_pages;
2875 
2876 	if (mhp == last_mhp) {
2877 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2878 		return 1;
2879 	}
2880 
2881 	if (sscanf(s, "%lu", mhp) <= 0)
2882 		*mhp = 0;
2883 
2884 	/*
2885 	 * Global state is always initialized later in hugetlb_init.
2886 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2887 	 * use the bootmem allocator.
2888 	 */
2889 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2890 		hugetlb_hstate_alloc_pages(parsed_hstate);
2891 
2892 	last_mhp = mhp;
2893 
2894 	return 1;
2895 }
2896 __setup("hugepages=", hugetlb_nrpages_setup);
2897 
2898 static int __init hugetlb_default_setup(char *s)
2899 {
2900 	default_hstate_size = memparse(s, &s);
2901 	return 1;
2902 }
2903 __setup("default_hugepagesz=", hugetlb_default_setup);
2904 
2905 static unsigned int cpuset_mems_nr(unsigned int *array)
2906 {
2907 	int node;
2908 	unsigned int nr = 0;
2909 
2910 	for_each_node_mask(node, cpuset_current_mems_allowed)
2911 		nr += array[node];
2912 
2913 	return nr;
2914 }
2915 
2916 #ifdef CONFIG_SYSCTL
2917 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2918 			 struct ctl_table *table, int write,
2919 			 void __user *buffer, size_t *length, loff_t *ppos)
2920 {
2921 	struct hstate *h = &default_hstate;
2922 	unsigned long tmp = h->max_huge_pages;
2923 	int ret;
2924 
2925 	if (!hugepages_supported())
2926 		return -EOPNOTSUPP;
2927 
2928 	table->data = &tmp;
2929 	table->maxlen = sizeof(unsigned long);
2930 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2931 	if (ret)
2932 		goto out;
2933 
2934 	if (write)
2935 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2936 						  NUMA_NO_NODE, tmp, *length);
2937 out:
2938 	return ret;
2939 }
2940 
2941 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2942 			  void __user *buffer, size_t *length, loff_t *ppos)
2943 {
2944 
2945 	return hugetlb_sysctl_handler_common(false, table, write,
2946 							buffer, length, ppos);
2947 }
2948 
2949 #ifdef CONFIG_NUMA
2950 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2951 			  void __user *buffer, size_t *length, loff_t *ppos)
2952 {
2953 	return hugetlb_sysctl_handler_common(true, table, write,
2954 							buffer, length, ppos);
2955 }
2956 #endif /* CONFIG_NUMA */
2957 
2958 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2959 			void __user *buffer,
2960 			size_t *length, loff_t *ppos)
2961 {
2962 	struct hstate *h = &default_hstate;
2963 	unsigned long tmp;
2964 	int ret;
2965 
2966 	if (!hugepages_supported())
2967 		return -EOPNOTSUPP;
2968 
2969 	tmp = h->nr_overcommit_huge_pages;
2970 
2971 	if (write && hstate_is_gigantic(h))
2972 		return -EINVAL;
2973 
2974 	table->data = &tmp;
2975 	table->maxlen = sizeof(unsigned long);
2976 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2977 	if (ret)
2978 		goto out;
2979 
2980 	if (write) {
2981 		spin_lock(&hugetlb_lock);
2982 		h->nr_overcommit_huge_pages = tmp;
2983 		spin_unlock(&hugetlb_lock);
2984 	}
2985 out:
2986 	return ret;
2987 }
2988 
2989 #endif /* CONFIG_SYSCTL */
2990 
2991 void hugetlb_report_meminfo(struct seq_file *m)
2992 {
2993 	struct hstate *h;
2994 	unsigned long total = 0;
2995 
2996 	if (!hugepages_supported())
2997 		return;
2998 
2999 	for_each_hstate(h) {
3000 		unsigned long count = h->nr_huge_pages;
3001 
3002 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3003 
3004 		if (h == &default_hstate)
3005 			seq_printf(m,
3006 				   "HugePages_Total:   %5lu\n"
3007 				   "HugePages_Free:    %5lu\n"
3008 				   "HugePages_Rsvd:    %5lu\n"
3009 				   "HugePages_Surp:    %5lu\n"
3010 				   "Hugepagesize:   %8lu kB\n",
3011 				   count,
3012 				   h->free_huge_pages,
3013 				   h->resv_huge_pages,
3014 				   h->surplus_huge_pages,
3015 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3016 	}
3017 
3018 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3019 }
3020 
3021 int hugetlb_report_node_meminfo(int nid, char *buf)
3022 {
3023 	struct hstate *h = &default_hstate;
3024 	if (!hugepages_supported())
3025 		return 0;
3026 	return sprintf(buf,
3027 		"Node %d HugePages_Total: %5u\n"
3028 		"Node %d HugePages_Free:  %5u\n"
3029 		"Node %d HugePages_Surp:  %5u\n",
3030 		nid, h->nr_huge_pages_node[nid],
3031 		nid, h->free_huge_pages_node[nid],
3032 		nid, h->surplus_huge_pages_node[nid]);
3033 }
3034 
3035 void hugetlb_show_meminfo(void)
3036 {
3037 	struct hstate *h;
3038 	int nid;
3039 
3040 	if (!hugepages_supported())
3041 		return;
3042 
3043 	for_each_node_state(nid, N_MEMORY)
3044 		for_each_hstate(h)
3045 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3046 				nid,
3047 				h->nr_huge_pages_node[nid],
3048 				h->free_huge_pages_node[nid],
3049 				h->surplus_huge_pages_node[nid],
3050 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3051 }
3052 
3053 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3054 {
3055 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3056 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3057 }
3058 
3059 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3060 unsigned long hugetlb_total_pages(void)
3061 {
3062 	struct hstate *h;
3063 	unsigned long nr_total_pages = 0;
3064 
3065 	for_each_hstate(h)
3066 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3067 	return nr_total_pages;
3068 }
3069 
3070 static int hugetlb_acct_memory(struct hstate *h, long delta)
3071 {
3072 	int ret = -ENOMEM;
3073 
3074 	spin_lock(&hugetlb_lock);
3075 	/*
3076 	 * When cpuset is configured, it breaks the strict hugetlb page
3077 	 * reservation as the accounting is done on a global variable. Such
3078 	 * reservation is completely rubbish in the presence of cpuset because
3079 	 * the reservation is not checked against page availability for the
3080 	 * current cpuset. Application can still potentially OOM'ed by kernel
3081 	 * with lack of free htlb page in cpuset that the task is in.
3082 	 * Attempt to enforce strict accounting with cpuset is almost
3083 	 * impossible (or too ugly) because cpuset is too fluid that
3084 	 * task or memory node can be dynamically moved between cpusets.
3085 	 *
3086 	 * The change of semantics for shared hugetlb mapping with cpuset is
3087 	 * undesirable. However, in order to preserve some of the semantics,
3088 	 * we fall back to check against current free page availability as
3089 	 * a best attempt and hopefully to minimize the impact of changing
3090 	 * semantics that cpuset has.
3091 	 */
3092 	if (delta > 0) {
3093 		if (gather_surplus_pages(h, delta) < 0)
3094 			goto out;
3095 
3096 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3097 			return_unused_surplus_pages(h, delta);
3098 			goto out;
3099 		}
3100 	}
3101 
3102 	ret = 0;
3103 	if (delta < 0)
3104 		return_unused_surplus_pages(h, (unsigned long) -delta);
3105 
3106 out:
3107 	spin_unlock(&hugetlb_lock);
3108 	return ret;
3109 }
3110 
3111 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3112 {
3113 	struct resv_map *resv = vma_resv_map(vma);
3114 
3115 	/*
3116 	 * This new VMA should share its siblings reservation map if present.
3117 	 * The VMA will only ever have a valid reservation map pointer where
3118 	 * it is being copied for another still existing VMA.  As that VMA
3119 	 * has a reference to the reservation map it cannot disappear until
3120 	 * after this open call completes.  It is therefore safe to take a
3121 	 * new reference here without additional locking.
3122 	 */
3123 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3124 		kref_get(&resv->refs);
3125 }
3126 
3127 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3128 {
3129 	struct hstate *h = hstate_vma(vma);
3130 	struct resv_map *resv = vma_resv_map(vma);
3131 	struct hugepage_subpool *spool = subpool_vma(vma);
3132 	unsigned long reserve, start, end;
3133 	long gbl_reserve;
3134 
3135 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3136 		return;
3137 
3138 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3139 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3140 
3141 	reserve = (end - start) - region_count(resv, start, end);
3142 
3143 	kref_put(&resv->refs, resv_map_release);
3144 
3145 	if (reserve) {
3146 		/*
3147 		 * Decrement reserve counts.  The global reserve count may be
3148 		 * adjusted if the subpool has a minimum size.
3149 		 */
3150 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3151 		hugetlb_acct_memory(h, -gbl_reserve);
3152 	}
3153 }
3154 
3155 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3156 {
3157 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3158 		return -EINVAL;
3159 	return 0;
3160 }
3161 
3162 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3163 {
3164 	struct hstate *hstate = hstate_vma(vma);
3165 
3166 	return 1UL << huge_page_shift(hstate);
3167 }
3168 
3169 /*
3170  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3171  * handle_mm_fault() to try to instantiate regular-sized pages in the
3172  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3173  * this far.
3174  */
3175 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3176 {
3177 	BUG();
3178 	return 0;
3179 }
3180 
3181 /*
3182  * When a new function is introduced to vm_operations_struct and added
3183  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3184  * This is because under System V memory model, mappings created via
3185  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3186  * their original vm_ops are overwritten with shm_vm_ops.
3187  */
3188 const struct vm_operations_struct hugetlb_vm_ops = {
3189 	.fault = hugetlb_vm_op_fault,
3190 	.open = hugetlb_vm_op_open,
3191 	.close = hugetlb_vm_op_close,
3192 	.split = hugetlb_vm_op_split,
3193 	.pagesize = hugetlb_vm_op_pagesize,
3194 };
3195 
3196 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3197 				int writable)
3198 {
3199 	pte_t entry;
3200 
3201 	if (writable) {
3202 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3203 					 vma->vm_page_prot)));
3204 	} else {
3205 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3206 					   vma->vm_page_prot));
3207 	}
3208 	entry = pte_mkyoung(entry);
3209 	entry = pte_mkhuge(entry);
3210 	entry = arch_make_huge_pte(entry, vma, page, writable);
3211 
3212 	return entry;
3213 }
3214 
3215 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3216 				   unsigned long address, pte_t *ptep)
3217 {
3218 	pte_t entry;
3219 
3220 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3221 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3222 		update_mmu_cache(vma, address, ptep);
3223 }
3224 
3225 bool is_hugetlb_entry_migration(pte_t pte)
3226 {
3227 	swp_entry_t swp;
3228 
3229 	if (huge_pte_none(pte) || pte_present(pte))
3230 		return false;
3231 	swp = pte_to_swp_entry(pte);
3232 	if (non_swap_entry(swp) && is_migration_entry(swp))
3233 		return true;
3234 	else
3235 		return false;
3236 }
3237 
3238 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3239 {
3240 	swp_entry_t swp;
3241 
3242 	if (huge_pte_none(pte) || pte_present(pte))
3243 		return 0;
3244 	swp = pte_to_swp_entry(pte);
3245 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3246 		return 1;
3247 	else
3248 		return 0;
3249 }
3250 
3251 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3252 			    struct vm_area_struct *vma)
3253 {
3254 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3255 	struct page *ptepage;
3256 	unsigned long addr;
3257 	int cow;
3258 	struct hstate *h = hstate_vma(vma);
3259 	unsigned long sz = huge_page_size(h);
3260 	struct mmu_notifier_range range;
3261 	int ret = 0;
3262 
3263 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3264 
3265 	if (cow) {
3266 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3267 					vma->vm_start,
3268 					vma->vm_end);
3269 		mmu_notifier_invalidate_range_start(&range);
3270 	}
3271 
3272 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3273 		spinlock_t *src_ptl, *dst_ptl;
3274 		src_pte = huge_pte_offset(src, addr, sz);
3275 		if (!src_pte)
3276 			continue;
3277 		dst_pte = huge_pte_alloc(dst, addr, sz);
3278 		if (!dst_pte) {
3279 			ret = -ENOMEM;
3280 			break;
3281 		}
3282 
3283 		/*
3284 		 * If the pagetables are shared don't copy or take references.
3285 		 * dst_pte == src_pte is the common case of src/dest sharing.
3286 		 *
3287 		 * However, src could have 'unshared' and dst shares with
3288 		 * another vma.  If dst_pte !none, this implies sharing.
3289 		 * Check here before taking page table lock, and once again
3290 		 * after taking the lock below.
3291 		 */
3292 		dst_entry = huge_ptep_get(dst_pte);
3293 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3294 			continue;
3295 
3296 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3297 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3298 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3299 		entry = huge_ptep_get(src_pte);
3300 		dst_entry = huge_ptep_get(dst_pte);
3301 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3302 			/*
3303 			 * Skip if src entry none.  Also, skip in the
3304 			 * unlikely case dst entry !none as this implies
3305 			 * sharing with another vma.
3306 			 */
3307 			;
3308 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3309 				    is_hugetlb_entry_hwpoisoned(entry))) {
3310 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3311 
3312 			if (is_write_migration_entry(swp_entry) && cow) {
3313 				/*
3314 				 * COW mappings require pages in both
3315 				 * parent and child to be set to read.
3316 				 */
3317 				make_migration_entry_read(&swp_entry);
3318 				entry = swp_entry_to_pte(swp_entry);
3319 				set_huge_swap_pte_at(src, addr, src_pte,
3320 						     entry, sz);
3321 			}
3322 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3323 		} else {
3324 			if (cow) {
3325 				/*
3326 				 * No need to notify as we are downgrading page
3327 				 * table protection not changing it to point
3328 				 * to a new page.
3329 				 *
3330 				 * See Documentation/vm/mmu_notifier.rst
3331 				 */
3332 				huge_ptep_set_wrprotect(src, addr, src_pte);
3333 			}
3334 			entry = huge_ptep_get(src_pte);
3335 			ptepage = pte_page(entry);
3336 			get_page(ptepage);
3337 			page_dup_rmap(ptepage, true);
3338 			set_huge_pte_at(dst, addr, dst_pte, entry);
3339 			hugetlb_count_add(pages_per_huge_page(h), dst);
3340 		}
3341 		spin_unlock(src_ptl);
3342 		spin_unlock(dst_ptl);
3343 	}
3344 
3345 	if (cow)
3346 		mmu_notifier_invalidate_range_end(&range);
3347 
3348 	return ret;
3349 }
3350 
3351 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3352 			    unsigned long start, unsigned long end,
3353 			    struct page *ref_page)
3354 {
3355 	struct mm_struct *mm = vma->vm_mm;
3356 	unsigned long address;
3357 	pte_t *ptep;
3358 	pte_t pte;
3359 	spinlock_t *ptl;
3360 	struct page *page;
3361 	struct hstate *h = hstate_vma(vma);
3362 	unsigned long sz = huge_page_size(h);
3363 	struct mmu_notifier_range range;
3364 
3365 	WARN_ON(!is_vm_hugetlb_page(vma));
3366 	BUG_ON(start & ~huge_page_mask(h));
3367 	BUG_ON(end & ~huge_page_mask(h));
3368 
3369 	/*
3370 	 * This is a hugetlb vma, all the pte entries should point
3371 	 * to huge page.
3372 	 */
3373 	tlb_change_page_size(tlb, sz);
3374 	tlb_start_vma(tlb, vma);
3375 
3376 	/*
3377 	 * If sharing possible, alert mmu notifiers of worst case.
3378 	 */
3379 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3380 				end);
3381 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3382 	mmu_notifier_invalidate_range_start(&range);
3383 	address = start;
3384 	for (; address < end; address += sz) {
3385 		ptep = huge_pte_offset(mm, address, sz);
3386 		if (!ptep)
3387 			continue;
3388 
3389 		ptl = huge_pte_lock(h, mm, ptep);
3390 		if (huge_pmd_unshare(mm, &address, ptep)) {
3391 			spin_unlock(ptl);
3392 			/*
3393 			 * We just unmapped a page of PMDs by clearing a PUD.
3394 			 * The caller's TLB flush range should cover this area.
3395 			 */
3396 			continue;
3397 		}
3398 
3399 		pte = huge_ptep_get(ptep);
3400 		if (huge_pte_none(pte)) {
3401 			spin_unlock(ptl);
3402 			continue;
3403 		}
3404 
3405 		/*
3406 		 * Migrating hugepage or HWPoisoned hugepage is already
3407 		 * unmapped and its refcount is dropped, so just clear pte here.
3408 		 */
3409 		if (unlikely(!pte_present(pte))) {
3410 			huge_pte_clear(mm, address, ptep, sz);
3411 			spin_unlock(ptl);
3412 			continue;
3413 		}
3414 
3415 		page = pte_page(pte);
3416 		/*
3417 		 * If a reference page is supplied, it is because a specific
3418 		 * page is being unmapped, not a range. Ensure the page we
3419 		 * are about to unmap is the actual page of interest.
3420 		 */
3421 		if (ref_page) {
3422 			if (page != ref_page) {
3423 				spin_unlock(ptl);
3424 				continue;
3425 			}
3426 			/*
3427 			 * Mark the VMA as having unmapped its page so that
3428 			 * future faults in this VMA will fail rather than
3429 			 * looking like data was lost
3430 			 */
3431 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3432 		}
3433 
3434 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3435 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3436 		if (huge_pte_dirty(pte))
3437 			set_page_dirty(page);
3438 
3439 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3440 		page_remove_rmap(page, true);
3441 
3442 		spin_unlock(ptl);
3443 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3444 		/*
3445 		 * Bail out after unmapping reference page if supplied
3446 		 */
3447 		if (ref_page)
3448 			break;
3449 	}
3450 	mmu_notifier_invalidate_range_end(&range);
3451 	tlb_end_vma(tlb, vma);
3452 }
3453 
3454 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3455 			  struct vm_area_struct *vma, unsigned long start,
3456 			  unsigned long end, struct page *ref_page)
3457 {
3458 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3459 
3460 	/*
3461 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3462 	 * test will fail on a vma being torn down, and not grab a page table
3463 	 * on its way out.  We're lucky that the flag has such an appropriate
3464 	 * name, and can in fact be safely cleared here. We could clear it
3465 	 * before the __unmap_hugepage_range above, but all that's necessary
3466 	 * is to clear it before releasing the i_mmap_rwsem. This works
3467 	 * because in the context this is called, the VMA is about to be
3468 	 * destroyed and the i_mmap_rwsem is held.
3469 	 */
3470 	vma->vm_flags &= ~VM_MAYSHARE;
3471 }
3472 
3473 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3474 			  unsigned long end, struct page *ref_page)
3475 {
3476 	struct mm_struct *mm;
3477 	struct mmu_gather tlb;
3478 	unsigned long tlb_start = start;
3479 	unsigned long tlb_end = end;
3480 
3481 	/*
3482 	 * If shared PMDs were possibly used within this vma range, adjust
3483 	 * start/end for worst case tlb flushing.
3484 	 * Note that we can not be sure if PMDs are shared until we try to
3485 	 * unmap pages.  However, we want to make sure TLB flushing covers
3486 	 * the largest possible range.
3487 	 */
3488 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3489 
3490 	mm = vma->vm_mm;
3491 
3492 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3493 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3494 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3495 }
3496 
3497 /*
3498  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3499  * mappping it owns the reserve page for. The intention is to unmap the page
3500  * from other VMAs and let the children be SIGKILLed if they are faulting the
3501  * same region.
3502  */
3503 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3504 			      struct page *page, unsigned long address)
3505 {
3506 	struct hstate *h = hstate_vma(vma);
3507 	struct vm_area_struct *iter_vma;
3508 	struct address_space *mapping;
3509 	pgoff_t pgoff;
3510 
3511 	/*
3512 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3513 	 * from page cache lookup which is in HPAGE_SIZE units.
3514 	 */
3515 	address = address & huge_page_mask(h);
3516 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3517 			vma->vm_pgoff;
3518 	mapping = vma->vm_file->f_mapping;
3519 
3520 	/*
3521 	 * Take the mapping lock for the duration of the table walk. As
3522 	 * this mapping should be shared between all the VMAs,
3523 	 * __unmap_hugepage_range() is called as the lock is already held
3524 	 */
3525 	i_mmap_lock_write(mapping);
3526 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3527 		/* Do not unmap the current VMA */
3528 		if (iter_vma == vma)
3529 			continue;
3530 
3531 		/*
3532 		 * Shared VMAs have their own reserves and do not affect
3533 		 * MAP_PRIVATE accounting but it is possible that a shared
3534 		 * VMA is using the same page so check and skip such VMAs.
3535 		 */
3536 		if (iter_vma->vm_flags & VM_MAYSHARE)
3537 			continue;
3538 
3539 		/*
3540 		 * Unmap the page from other VMAs without their own reserves.
3541 		 * They get marked to be SIGKILLed if they fault in these
3542 		 * areas. This is because a future no-page fault on this VMA
3543 		 * could insert a zeroed page instead of the data existing
3544 		 * from the time of fork. This would look like data corruption
3545 		 */
3546 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3547 			unmap_hugepage_range(iter_vma, address,
3548 					     address + huge_page_size(h), page);
3549 	}
3550 	i_mmap_unlock_write(mapping);
3551 }
3552 
3553 /*
3554  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3555  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3556  * cannot race with other handlers or page migration.
3557  * Keep the pte_same checks anyway to make transition from the mutex easier.
3558  */
3559 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3560 		       unsigned long address, pte_t *ptep,
3561 		       struct page *pagecache_page, spinlock_t *ptl)
3562 {
3563 	pte_t pte;
3564 	struct hstate *h = hstate_vma(vma);
3565 	struct page *old_page, *new_page;
3566 	int outside_reserve = 0;
3567 	vm_fault_t ret = 0;
3568 	unsigned long haddr = address & huge_page_mask(h);
3569 	struct mmu_notifier_range range;
3570 
3571 	pte = huge_ptep_get(ptep);
3572 	old_page = pte_page(pte);
3573 
3574 retry_avoidcopy:
3575 	/* If no-one else is actually using this page, avoid the copy
3576 	 * and just make the page writable */
3577 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3578 		page_move_anon_rmap(old_page, vma);
3579 		set_huge_ptep_writable(vma, haddr, ptep);
3580 		return 0;
3581 	}
3582 
3583 	/*
3584 	 * If the process that created a MAP_PRIVATE mapping is about to
3585 	 * perform a COW due to a shared page count, attempt to satisfy
3586 	 * the allocation without using the existing reserves. The pagecache
3587 	 * page is used to determine if the reserve at this address was
3588 	 * consumed or not. If reserves were used, a partial faulted mapping
3589 	 * at the time of fork() could consume its reserves on COW instead
3590 	 * of the full address range.
3591 	 */
3592 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3593 			old_page != pagecache_page)
3594 		outside_reserve = 1;
3595 
3596 	get_page(old_page);
3597 
3598 	/*
3599 	 * Drop page table lock as buddy allocator may be called. It will
3600 	 * be acquired again before returning to the caller, as expected.
3601 	 */
3602 	spin_unlock(ptl);
3603 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3604 
3605 	if (IS_ERR(new_page)) {
3606 		/*
3607 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3608 		 * it is due to references held by a child and an insufficient
3609 		 * huge page pool. To guarantee the original mappers
3610 		 * reliability, unmap the page from child processes. The child
3611 		 * may get SIGKILLed if it later faults.
3612 		 */
3613 		if (outside_reserve) {
3614 			put_page(old_page);
3615 			BUG_ON(huge_pte_none(pte));
3616 			unmap_ref_private(mm, vma, old_page, haddr);
3617 			BUG_ON(huge_pte_none(pte));
3618 			spin_lock(ptl);
3619 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3620 			if (likely(ptep &&
3621 				   pte_same(huge_ptep_get(ptep), pte)))
3622 				goto retry_avoidcopy;
3623 			/*
3624 			 * race occurs while re-acquiring page table
3625 			 * lock, and our job is done.
3626 			 */
3627 			return 0;
3628 		}
3629 
3630 		ret = vmf_error(PTR_ERR(new_page));
3631 		goto out_release_old;
3632 	}
3633 
3634 	/*
3635 	 * When the original hugepage is shared one, it does not have
3636 	 * anon_vma prepared.
3637 	 */
3638 	if (unlikely(anon_vma_prepare(vma))) {
3639 		ret = VM_FAULT_OOM;
3640 		goto out_release_all;
3641 	}
3642 
3643 	copy_user_huge_page(new_page, old_page, address, vma,
3644 			    pages_per_huge_page(h));
3645 	__SetPageUptodate(new_page);
3646 
3647 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3648 				haddr + huge_page_size(h));
3649 	mmu_notifier_invalidate_range_start(&range);
3650 
3651 	/*
3652 	 * Retake the page table lock to check for racing updates
3653 	 * before the page tables are altered
3654 	 */
3655 	spin_lock(ptl);
3656 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3657 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3658 		ClearPagePrivate(new_page);
3659 
3660 		/* Break COW */
3661 		huge_ptep_clear_flush(vma, haddr, ptep);
3662 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3663 		set_huge_pte_at(mm, haddr, ptep,
3664 				make_huge_pte(vma, new_page, 1));
3665 		page_remove_rmap(old_page, true);
3666 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3667 		set_page_huge_active(new_page);
3668 		/* Make the old page be freed below */
3669 		new_page = old_page;
3670 	}
3671 	spin_unlock(ptl);
3672 	mmu_notifier_invalidate_range_end(&range);
3673 out_release_all:
3674 	restore_reserve_on_error(h, vma, haddr, new_page);
3675 	put_page(new_page);
3676 out_release_old:
3677 	put_page(old_page);
3678 
3679 	spin_lock(ptl); /* Caller expects lock to be held */
3680 	return ret;
3681 }
3682 
3683 /* Return the pagecache page at a given address within a VMA */
3684 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3685 			struct vm_area_struct *vma, unsigned long address)
3686 {
3687 	struct address_space *mapping;
3688 	pgoff_t idx;
3689 
3690 	mapping = vma->vm_file->f_mapping;
3691 	idx = vma_hugecache_offset(h, vma, address);
3692 
3693 	return find_lock_page(mapping, idx);
3694 }
3695 
3696 /*
3697  * Return whether there is a pagecache page to back given address within VMA.
3698  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3699  */
3700 static bool hugetlbfs_pagecache_present(struct hstate *h,
3701 			struct vm_area_struct *vma, unsigned long address)
3702 {
3703 	struct address_space *mapping;
3704 	pgoff_t idx;
3705 	struct page *page;
3706 
3707 	mapping = vma->vm_file->f_mapping;
3708 	idx = vma_hugecache_offset(h, vma, address);
3709 
3710 	page = find_get_page(mapping, idx);
3711 	if (page)
3712 		put_page(page);
3713 	return page != NULL;
3714 }
3715 
3716 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3717 			   pgoff_t idx)
3718 {
3719 	struct inode *inode = mapping->host;
3720 	struct hstate *h = hstate_inode(inode);
3721 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3722 
3723 	if (err)
3724 		return err;
3725 	ClearPagePrivate(page);
3726 
3727 	/*
3728 	 * set page dirty so that it will not be removed from cache/file
3729 	 * by non-hugetlbfs specific code paths.
3730 	 */
3731 	set_page_dirty(page);
3732 
3733 	spin_lock(&inode->i_lock);
3734 	inode->i_blocks += blocks_per_huge_page(h);
3735 	spin_unlock(&inode->i_lock);
3736 	return 0;
3737 }
3738 
3739 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3740 			struct vm_area_struct *vma,
3741 			struct address_space *mapping, pgoff_t idx,
3742 			unsigned long address, pte_t *ptep, unsigned int flags)
3743 {
3744 	struct hstate *h = hstate_vma(vma);
3745 	vm_fault_t ret = VM_FAULT_SIGBUS;
3746 	int anon_rmap = 0;
3747 	unsigned long size;
3748 	struct page *page;
3749 	pte_t new_pte;
3750 	spinlock_t *ptl;
3751 	unsigned long haddr = address & huge_page_mask(h);
3752 	bool new_page = false;
3753 
3754 	/*
3755 	 * Currently, we are forced to kill the process in the event the
3756 	 * original mapper has unmapped pages from the child due to a failed
3757 	 * COW. Warn that such a situation has occurred as it may not be obvious
3758 	 */
3759 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3760 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3761 			   current->pid);
3762 		return ret;
3763 	}
3764 
3765 	/*
3766 	 * Use page lock to guard against racing truncation
3767 	 * before we get page_table_lock.
3768 	 */
3769 retry:
3770 	page = find_lock_page(mapping, idx);
3771 	if (!page) {
3772 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3773 		if (idx >= size)
3774 			goto out;
3775 
3776 		/*
3777 		 * Check for page in userfault range
3778 		 */
3779 		if (userfaultfd_missing(vma)) {
3780 			u32 hash;
3781 			struct vm_fault vmf = {
3782 				.vma = vma,
3783 				.address = haddr,
3784 				.flags = flags,
3785 				/*
3786 				 * Hard to debug if it ends up being
3787 				 * used by a callee that assumes
3788 				 * something about the other
3789 				 * uninitialized fields... same as in
3790 				 * memory.c
3791 				 */
3792 			};
3793 
3794 			/*
3795 			 * hugetlb_fault_mutex must be dropped before
3796 			 * handling userfault.  Reacquire after handling
3797 			 * fault to make calling code simpler.
3798 			 */
3799 			hash = hugetlb_fault_mutex_hash(mapping, idx);
3800 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3801 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3802 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3803 			goto out;
3804 		}
3805 
3806 		page = alloc_huge_page(vma, haddr, 0);
3807 		if (IS_ERR(page)) {
3808 			/*
3809 			 * Returning error will result in faulting task being
3810 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3811 			 * tasks from racing to fault in the same page which
3812 			 * could result in false unable to allocate errors.
3813 			 * Page migration does not take the fault mutex, but
3814 			 * does a clear then write of pte's under page table
3815 			 * lock.  Page fault code could race with migration,
3816 			 * notice the clear pte and try to allocate a page
3817 			 * here.  Before returning error, get ptl and make
3818 			 * sure there really is no pte entry.
3819 			 */
3820 			ptl = huge_pte_lock(h, mm, ptep);
3821 			if (!huge_pte_none(huge_ptep_get(ptep))) {
3822 				ret = 0;
3823 				spin_unlock(ptl);
3824 				goto out;
3825 			}
3826 			spin_unlock(ptl);
3827 			ret = vmf_error(PTR_ERR(page));
3828 			goto out;
3829 		}
3830 		clear_huge_page(page, address, pages_per_huge_page(h));
3831 		__SetPageUptodate(page);
3832 		new_page = true;
3833 
3834 		if (vma->vm_flags & VM_MAYSHARE) {
3835 			int err = huge_add_to_page_cache(page, mapping, idx);
3836 			if (err) {
3837 				put_page(page);
3838 				if (err == -EEXIST)
3839 					goto retry;
3840 				goto out;
3841 			}
3842 		} else {
3843 			lock_page(page);
3844 			if (unlikely(anon_vma_prepare(vma))) {
3845 				ret = VM_FAULT_OOM;
3846 				goto backout_unlocked;
3847 			}
3848 			anon_rmap = 1;
3849 		}
3850 	} else {
3851 		/*
3852 		 * If memory error occurs between mmap() and fault, some process
3853 		 * don't have hwpoisoned swap entry for errored virtual address.
3854 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3855 		 */
3856 		if (unlikely(PageHWPoison(page))) {
3857 			ret = VM_FAULT_HWPOISON |
3858 				VM_FAULT_SET_HINDEX(hstate_index(h));
3859 			goto backout_unlocked;
3860 		}
3861 	}
3862 
3863 	/*
3864 	 * If we are going to COW a private mapping later, we examine the
3865 	 * pending reservations for this page now. This will ensure that
3866 	 * any allocations necessary to record that reservation occur outside
3867 	 * the spinlock.
3868 	 */
3869 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3870 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3871 			ret = VM_FAULT_OOM;
3872 			goto backout_unlocked;
3873 		}
3874 		/* Just decrements count, does not deallocate */
3875 		vma_end_reservation(h, vma, haddr);
3876 	}
3877 
3878 	ptl = huge_pte_lock(h, mm, ptep);
3879 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3880 	if (idx >= size)
3881 		goto backout;
3882 
3883 	ret = 0;
3884 	if (!huge_pte_none(huge_ptep_get(ptep)))
3885 		goto backout;
3886 
3887 	if (anon_rmap) {
3888 		ClearPagePrivate(page);
3889 		hugepage_add_new_anon_rmap(page, vma, haddr);
3890 	} else
3891 		page_dup_rmap(page, true);
3892 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3893 				&& (vma->vm_flags & VM_SHARED)));
3894 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3895 
3896 	hugetlb_count_add(pages_per_huge_page(h), mm);
3897 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3898 		/* Optimization, do the COW without a second fault */
3899 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3900 	}
3901 
3902 	spin_unlock(ptl);
3903 
3904 	/*
3905 	 * Only make newly allocated pages active.  Existing pages found
3906 	 * in the pagecache could be !page_huge_active() if they have been
3907 	 * isolated for migration.
3908 	 */
3909 	if (new_page)
3910 		set_page_huge_active(page);
3911 
3912 	unlock_page(page);
3913 out:
3914 	return ret;
3915 
3916 backout:
3917 	spin_unlock(ptl);
3918 backout_unlocked:
3919 	unlock_page(page);
3920 	restore_reserve_on_error(h, vma, haddr, page);
3921 	put_page(page);
3922 	goto out;
3923 }
3924 
3925 #ifdef CONFIG_SMP
3926 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3927 {
3928 	unsigned long key[2];
3929 	u32 hash;
3930 
3931 	key[0] = (unsigned long) mapping;
3932 	key[1] = idx;
3933 
3934 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3935 
3936 	return hash & (num_fault_mutexes - 1);
3937 }
3938 #else
3939 /*
3940  * For uniprocesor systems we always use a single mutex, so just
3941  * return 0 and avoid the hashing overhead.
3942  */
3943 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3944 {
3945 	return 0;
3946 }
3947 #endif
3948 
3949 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3950 			unsigned long address, unsigned int flags)
3951 {
3952 	pte_t *ptep, entry;
3953 	spinlock_t *ptl;
3954 	vm_fault_t ret;
3955 	u32 hash;
3956 	pgoff_t idx;
3957 	struct page *page = NULL;
3958 	struct page *pagecache_page = NULL;
3959 	struct hstate *h = hstate_vma(vma);
3960 	struct address_space *mapping;
3961 	int need_wait_lock = 0;
3962 	unsigned long haddr = address & huge_page_mask(h);
3963 
3964 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3965 	if (ptep) {
3966 		entry = huge_ptep_get(ptep);
3967 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3968 			migration_entry_wait_huge(vma, mm, ptep);
3969 			return 0;
3970 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3971 			return VM_FAULT_HWPOISON_LARGE |
3972 				VM_FAULT_SET_HINDEX(hstate_index(h));
3973 	} else {
3974 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3975 		if (!ptep)
3976 			return VM_FAULT_OOM;
3977 	}
3978 
3979 	mapping = vma->vm_file->f_mapping;
3980 	idx = vma_hugecache_offset(h, vma, haddr);
3981 
3982 	/*
3983 	 * Serialize hugepage allocation and instantiation, so that we don't
3984 	 * get spurious allocation failures if two CPUs race to instantiate
3985 	 * the same page in the page cache.
3986 	 */
3987 	hash = hugetlb_fault_mutex_hash(mapping, idx);
3988 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3989 
3990 	entry = huge_ptep_get(ptep);
3991 	if (huge_pte_none(entry)) {
3992 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3993 		goto out_mutex;
3994 	}
3995 
3996 	ret = 0;
3997 
3998 	/*
3999 	 * entry could be a migration/hwpoison entry at this point, so this
4000 	 * check prevents the kernel from going below assuming that we have
4001 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4002 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4003 	 * handle it.
4004 	 */
4005 	if (!pte_present(entry))
4006 		goto out_mutex;
4007 
4008 	/*
4009 	 * If we are going to COW the mapping later, we examine the pending
4010 	 * reservations for this page now. This will ensure that any
4011 	 * allocations necessary to record that reservation occur outside the
4012 	 * spinlock. For private mappings, we also lookup the pagecache
4013 	 * page now as it is used to determine if a reservation has been
4014 	 * consumed.
4015 	 */
4016 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4017 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4018 			ret = VM_FAULT_OOM;
4019 			goto out_mutex;
4020 		}
4021 		/* Just decrements count, does not deallocate */
4022 		vma_end_reservation(h, vma, haddr);
4023 
4024 		if (!(vma->vm_flags & VM_MAYSHARE))
4025 			pagecache_page = hugetlbfs_pagecache_page(h,
4026 								vma, haddr);
4027 	}
4028 
4029 	ptl = huge_pte_lock(h, mm, ptep);
4030 
4031 	/* Check for a racing update before calling hugetlb_cow */
4032 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4033 		goto out_ptl;
4034 
4035 	/*
4036 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4037 	 * pagecache_page, so here we need take the former one
4038 	 * when page != pagecache_page or !pagecache_page.
4039 	 */
4040 	page = pte_page(entry);
4041 	if (page != pagecache_page)
4042 		if (!trylock_page(page)) {
4043 			need_wait_lock = 1;
4044 			goto out_ptl;
4045 		}
4046 
4047 	get_page(page);
4048 
4049 	if (flags & FAULT_FLAG_WRITE) {
4050 		if (!huge_pte_write(entry)) {
4051 			ret = hugetlb_cow(mm, vma, address, ptep,
4052 					  pagecache_page, ptl);
4053 			goto out_put_page;
4054 		}
4055 		entry = huge_pte_mkdirty(entry);
4056 	}
4057 	entry = pte_mkyoung(entry);
4058 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4059 						flags & FAULT_FLAG_WRITE))
4060 		update_mmu_cache(vma, haddr, ptep);
4061 out_put_page:
4062 	if (page != pagecache_page)
4063 		unlock_page(page);
4064 	put_page(page);
4065 out_ptl:
4066 	spin_unlock(ptl);
4067 
4068 	if (pagecache_page) {
4069 		unlock_page(pagecache_page);
4070 		put_page(pagecache_page);
4071 	}
4072 out_mutex:
4073 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4074 	/*
4075 	 * Generally it's safe to hold refcount during waiting page lock. But
4076 	 * here we just wait to defer the next page fault to avoid busy loop and
4077 	 * the page is not used after unlocked before returning from the current
4078 	 * page fault. So we are safe from accessing freed page, even if we wait
4079 	 * here without taking refcount.
4080 	 */
4081 	if (need_wait_lock)
4082 		wait_on_page_locked(page);
4083 	return ret;
4084 }
4085 
4086 /*
4087  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4088  * modifications for huge pages.
4089  */
4090 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4091 			    pte_t *dst_pte,
4092 			    struct vm_area_struct *dst_vma,
4093 			    unsigned long dst_addr,
4094 			    unsigned long src_addr,
4095 			    struct page **pagep)
4096 {
4097 	struct address_space *mapping;
4098 	pgoff_t idx;
4099 	unsigned long size;
4100 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4101 	struct hstate *h = hstate_vma(dst_vma);
4102 	pte_t _dst_pte;
4103 	spinlock_t *ptl;
4104 	int ret;
4105 	struct page *page;
4106 
4107 	if (!*pagep) {
4108 		ret = -ENOMEM;
4109 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4110 		if (IS_ERR(page))
4111 			goto out;
4112 
4113 		ret = copy_huge_page_from_user(page,
4114 						(const void __user *) src_addr,
4115 						pages_per_huge_page(h), false);
4116 
4117 		/* fallback to copy_from_user outside mmap_sem */
4118 		if (unlikely(ret)) {
4119 			ret = -ENOENT;
4120 			*pagep = page;
4121 			/* don't free the page */
4122 			goto out;
4123 		}
4124 	} else {
4125 		page = *pagep;
4126 		*pagep = NULL;
4127 	}
4128 
4129 	/*
4130 	 * The memory barrier inside __SetPageUptodate makes sure that
4131 	 * preceding stores to the page contents become visible before
4132 	 * the set_pte_at() write.
4133 	 */
4134 	__SetPageUptodate(page);
4135 
4136 	mapping = dst_vma->vm_file->f_mapping;
4137 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4138 
4139 	/*
4140 	 * If shared, add to page cache
4141 	 */
4142 	if (vm_shared) {
4143 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4144 		ret = -EFAULT;
4145 		if (idx >= size)
4146 			goto out_release_nounlock;
4147 
4148 		/*
4149 		 * Serialization between remove_inode_hugepages() and
4150 		 * huge_add_to_page_cache() below happens through the
4151 		 * hugetlb_fault_mutex_table that here must be hold by
4152 		 * the caller.
4153 		 */
4154 		ret = huge_add_to_page_cache(page, mapping, idx);
4155 		if (ret)
4156 			goto out_release_nounlock;
4157 	}
4158 
4159 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4160 	spin_lock(ptl);
4161 
4162 	/*
4163 	 * Recheck the i_size after holding PT lock to make sure not
4164 	 * to leave any page mapped (as page_mapped()) beyond the end
4165 	 * of the i_size (remove_inode_hugepages() is strict about
4166 	 * enforcing that). If we bail out here, we'll also leave a
4167 	 * page in the radix tree in the vm_shared case beyond the end
4168 	 * of the i_size, but remove_inode_hugepages() will take care
4169 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4170 	 */
4171 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4172 	ret = -EFAULT;
4173 	if (idx >= size)
4174 		goto out_release_unlock;
4175 
4176 	ret = -EEXIST;
4177 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4178 		goto out_release_unlock;
4179 
4180 	if (vm_shared) {
4181 		page_dup_rmap(page, true);
4182 	} else {
4183 		ClearPagePrivate(page);
4184 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4185 	}
4186 
4187 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4188 	if (dst_vma->vm_flags & VM_WRITE)
4189 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4190 	_dst_pte = pte_mkyoung(_dst_pte);
4191 
4192 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4193 
4194 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4195 					dst_vma->vm_flags & VM_WRITE);
4196 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4197 
4198 	/* No need to invalidate - it was non-present before */
4199 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4200 
4201 	spin_unlock(ptl);
4202 	set_page_huge_active(page);
4203 	if (vm_shared)
4204 		unlock_page(page);
4205 	ret = 0;
4206 out:
4207 	return ret;
4208 out_release_unlock:
4209 	spin_unlock(ptl);
4210 	if (vm_shared)
4211 		unlock_page(page);
4212 out_release_nounlock:
4213 	put_page(page);
4214 	goto out;
4215 }
4216 
4217 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4218 			 struct page **pages, struct vm_area_struct **vmas,
4219 			 unsigned long *position, unsigned long *nr_pages,
4220 			 long i, unsigned int flags, int *nonblocking)
4221 {
4222 	unsigned long pfn_offset;
4223 	unsigned long vaddr = *position;
4224 	unsigned long remainder = *nr_pages;
4225 	struct hstate *h = hstate_vma(vma);
4226 	int err = -EFAULT;
4227 
4228 	while (vaddr < vma->vm_end && remainder) {
4229 		pte_t *pte;
4230 		spinlock_t *ptl = NULL;
4231 		int absent;
4232 		struct page *page;
4233 
4234 		/*
4235 		 * If we have a pending SIGKILL, don't keep faulting pages and
4236 		 * potentially allocating memory.
4237 		 */
4238 		if (fatal_signal_pending(current)) {
4239 			remainder = 0;
4240 			break;
4241 		}
4242 
4243 		/*
4244 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4245 		 * each hugepage.  We have to make sure we get the
4246 		 * first, for the page indexing below to work.
4247 		 *
4248 		 * Note that page table lock is not held when pte is null.
4249 		 */
4250 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4251 				      huge_page_size(h));
4252 		if (pte)
4253 			ptl = huge_pte_lock(h, mm, pte);
4254 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4255 
4256 		/*
4257 		 * When coredumping, it suits get_dump_page if we just return
4258 		 * an error where there's an empty slot with no huge pagecache
4259 		 * to back it.  This way, we avoid allocating a hugepage, and
4260 		 * the sparse dumpfile avoids allocating disk blocks, but its
4261 		 * huge holes still show up with zeroes where they need to be.
4262 		 */
4263 		if (absent && (flags & FOLL_DUMP) &&
4264 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4265 			if (pte)
4266 				spin_unlock(ptl);
4267 			remainder = 0;
4268 			break;
4269 		}
4270 
4271 		/*
4272 		 * We need call hugetlb_fault for both hugepages under migration
4273 		 * (in which case hugetlb_fault waits for the migration,) and
4274 		 * hwpoisoned hugepages (in which case we need to prevent the
4275 		 * caller from accessing to them.) In order to do this, we use
4276 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4277 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4278 		 * both cases, and because we can't follow correct pages
4279 		 * directly from any kind of swap entries.
4280 		 */
4281 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4282 		    ((flags & FOLL_WRITE) &&
4283 		      !huge_pte_write(huge_ptep_get(pte)))) {
4284 			vm_fault_t ret;
4285 			unsigned int fault_flags = 0;
4286 
4287 			if (pte)
4288 				spin_unlock(ptl);
4289 			if (flags & FOLL_WRITE)
4290 				fault_flags |= FAULT_FLAG_WRITE;
4291 			if (nonblocking)
4292 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4293 			if (flags & FOLL_NOWAIT)
4294 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4295 					FAULT_FLAG_RETRY_NOWAIT;
4296 			if (flags & FOLL_TRIED) {
4297 				VM_WARN_ON_ONCE(fault_flags &
4298 						FAULT_FLAG_ALLOW_RETRY);
4299 				fault_flags |= FAULT_FLAG_TRIED;
4300 			}
4301 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4302 			if (ret & VM_FAULT_ERROR) {
4303 				err = vm_fault_to_errno(ret, flags);
4304 				remainder = 0;
4305 				break;
4306 			}
4307 			if (ret & VM_FAULT_RETRY) {
4308 				if (nonblocking &&
4309 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4310 					*nonblocking = 0;
4311 				*nr_pages = 0;
4312 				/*
4313 				 * VM_FAULT_RETRY must not return an
4314 				 * error, it will return zero
4315 				 * instead.
4316 				 *
4317 				 * No need to update "position" as the
4318 				 * caller will not check it after
4319 				 * *nr_pages is set to 0.
4320 				 */
4321 				return i;
4322 			}
4323 			continue;
4324 		}
4325 
4326 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4327 		page = pte_page(huge_ptep_get(pte));
4328 
4329 		/*
4330 		 * Instead of doing 'try_get_page()' below in the same_page
4331 		 * loop, just check the count once here.
4332 		 */
4333 		if (unlikely(page_count(page) <= 0)) {
4334 			if (pages) {
4335 				spin_unlock(ptl);
4336 				remainder = 0;
4337 				err = -ENOMEM;
4338 				break;
4339 			}
4340 		}
4341 
4342 		/*
4343 		 * If subpage information not requested, update counters
4344 		 * and skip the same_page loop below.
4345 		 */
4346 		if (!pages && !vmas && !pfn_offset &&
4347 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4348 		    (remainder >= pages_per_huge_page(h))) {
4349 			vaddr += huge_page_size(h);
4350 			remainder -= pages_per_huge_page(h);
4351 			i += pages_per_huge_page(h);
4352 			spin_unlock(ptl);
4353 			continue;
4354 		}
4355 
4356 same_page:
4357 		if (pages) {
4358 			pages[i] = mem_map_offset(page, pfn_offset);
4359 			get_page(pages[i]);
4360 		}
4361 
4362 		if (vmas)
4363 			vmas[i] = vma;
4364 
4365 		vaddr += PAGE_SIZE;
4366 		++pfn_offset;
4367 		--remainder;
4368 		++i;
4369 		if (vaddr < vma->vm_end && remainder &&
4370 				pfn_offset < pages_per_huge_page(h)) {
4371 			/*
4372 			 * We use pfn_offset to avoid touching the pageframes
4373 			 * of this compound page.
4374 			 */
4375 			goto same_page;
4376 		}
4377 		spin_unlock(ptl);
4378 	}
4379 	*nr_pages = remainder;
4380 	/*
4381 	 * setting position is actually required only if remainder is
4382 	 * not zero but it's faster not to add a "if (remainder)"
4383 	 * branch.
4384 	 */
4385 	*position = vaddr;
4386 
4387 	return i ? i : err;
4388 }
4389 
4390 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4391 /*
4392  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4393  * implement this.
4394  */
4395 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4396 #endif
4397 
4398 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4399 		unsigned long address, unsigned long end, pgprot_t newprot)
4400 {
4401 	struct mm_struct *mm = vma->vm_mm;
4402 	unsigned long start = address;
4403 	pte_t *ptep;
4404 	pte_t pte;
4405 	struct hstate *h = hstate_vma(vma);
4406 	unsigned long pages = 0;
4407 	bool shared_pmd = false;
4408 	struct mmu_notifier_range range;
4409 
4410 	/*
4411 	 * In the case of shared PMDs, the area to flush could be beyond
4412 	 * start/end.  Set range.start/range.end to cover the maximum possible
4413 	 * range if PMD sharing is possible.
4414 	 */
4415 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4416 				0, vma, mm, start, end);
4417 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4418 
4419 	BUG_ON(address >= end);
4420 	flush_cache_range(vma, range.start, range.end);
4421 
4422 	mmu_notifier_invalidate_range_start(&range);
4423 	i_mmap_lock_write(vma->vm_file->f_mapping);
4424 	for (; address < end; address += huge_page_size(h)) {
4425 		spinlock_t *ptl;
4426 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4427 		if (!ptep)
4428 			continue;
4429 		ptl = huge_pte_lock(h, mm, ptep);
4430 		if (huge_pmd_unshare(mm, &address, ptep)) {
4431 			pages++;
4432 			spin_unlock(ptl);
4433 			shared_pmd = true;
4434 			continue;
4435 		}
4436 		pte = huge_ptep_get(ptep);
4437 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4438 			spin_unlock(ptl);
4439 			continue;
4440 		}
4441 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4442 			swp_entry_t entry = pte_to_swp_entry(pte);
4443 
4444 			if (is_write_migration_entry(entry)) {
4445 				pte_t newpte;
4446 
4447 				make_migration_entry_read(&entry);
4448 				newpte = swp_entry_to_pte(entry);
4449 				set_huge_swap_pte_at(mm, address, ptep,
4450 						     newpte, huge_page_size(h));
4451 				pages++;
4452 			}
4453 			spin_unlock(ptl);
4454 			continue;
4455 		}
4456 		if (!huge_pte_none(pte)) {
4457 			pte_t old_pte;
4458 
4459 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4460 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4461 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4462 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4463 			pages++;
4464 		}
4465 		spin_unlock(ptl);
4466 	}
4467 	/*
4468 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4469 	 * may have cleared our pud entry and done put_page on the page table:
4470 	 * once we release i_mmap_rwsem, another task can do the final put_page
4471 	 * and that page table be reused and filled with junk.  If we actually
4472 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4473 	 */
4474 	if (shared_pmd)
4475 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4476 	else
4477 		flush_hugetlb_tlb_range(vma, start, end);
4478 	/*
4479 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4480 	 * page table protection not changing it to point to a new page.
4481 	 *
4482 	 * See Documentation/vm/mmu_notifier.rst
4483 	 */
4484 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4485 	mmu_notifier_invalidate_range_end(&range);
4486 
4487 	return pages << h->order;
4488 }
4489 
4490 int hugetlb_reserve_pages(struct inode *inode,
4491 					long from, long to,
4492 					struct vm_area_struct *vma,
4493 					vm_flags_t vm_flags)
4494 {
4495 	long ret, chg;
4496 	struct hstate *h = hstate_inode(inode);
4497 	struct hugepage_subpool *spool = subpool_inode(inode);
4498 	struct resv_map *resv_map;
4499 	long gbl_reserve;
4500 
4501 	/* This should never happen */
4502 	if (from > to) {
4503 		VM_WARN(1, "%s called with a negative range\n", __func__);
4504 		return -EINVAL;
4505 	}
4506 
4507 	/*
4508 	 * Only apply hugepage reservation if asked. At fault time, an
4509 	 * attempt will be made for VM_NORESERVE to allocate a page
4510 	 * without using reserves
4511 	 */
4512 	if (vm_flags & VM_NORESERVE)
4513 		return 0;
4514 
4515 	/*
4516 	 * Shared mappings base their reservation on the number of pages that
4517 	 * are already allocated on behalf of the file. Private mappings need
4518 	 * to reserve the full area even if read-only as mprotect() may be
4519 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4520 	 */
4521 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4522 		/*
4523 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4524 		 * called for inodes for which resv_maps were created (see
4525 		 * hugetlbfs_get_inode).
4526 		 */
4527 		resv_map = inode_resv_map(inode);
4528 
4529 		chg = region_chg(resv_map, from, to);
4530 
4531 	} else {
4532 		resv_map = resv_map_alloc();
4533 		if (!resv_map)
4534 			return -ENOMEM;
4535 
4536 		chg = to - from;
4537 
4538 		set_vma_resv_map(vma, resv_map);
4539 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4540 	}
4541 
4542 	if (chg < 0) {
4543 		ret = chg;
4544 		goto out_err;
4545 	}
4546 
4547 	/*
4548 	 * There must be enough pages in the subpool for the mapping. If
4549 	 * the subpool has a minimum size, there may be some global
4550 	 * reservations already in place (gbl_reserve).
4551 	 */
4552 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4553 	if (gbl_reserve < 0) {
4554 		ret = -ENOSPC;
4555 		goto out_err;
4556 	}
4557 
4558 	/*
4559 	 * Check enough hugepages are available for the reservation.
4560 	 * Hand the pages back to the subpool if there are not
4561 	 */
4562 	ret = hugetlb_acct_memory(h, gbl_reserve);
4563 	if (ret < 0) {
4564 		/* put back original number of pages, chg */
4565 		(void)hugepage_subpool_put_pages(spool, chg);
4566 		goto out_err;
4567 	}
4568 
4569 	/*
4570 	 * Account for the reservations made. Shared mappings record regions
4571 	 * that have reservations as they are shared by multiple VMAs.
4572 	 * When the last VMA disappears, the region map says how much
4573 	 * the reservation was and the page cache tells how much of
4574 	 * the reservation was consumed. Private mappings are per-VMA and
4575 	 * only the consumed reservations are tracked. When the VMA
4576 	 * disappears, the original reservation is the VMA size and the
4577 	 * consumed reservations are stored in the map. Hence, nothing
4578 	 * else has to be done for private mappings here
4579 	 */
4580 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4581 		long add = region_add(resv_map, from, to);
4582 
4583 		if (unlikely(chg > add)) {
4584 			/*
4585 			 * pages in this range were added to the reserve
4586 			 * map between region_chg and region_add.  This
4587 			 * indicates a race with alloc_huge_page.  Adjust
4588 			 * the subpool and reserve counts modified above
4589 			 * based on the difference.
4590 			 */
4591 			long rsv_adjust;
4592 
4593 			rsv_adjust = hugepage_subpool_put_pages(spool,
4594 								chg - add);
4595 			hugetlb_acct_memory(h, -rsv_adjust);
4596 		}
4597 	}
4598 	return 0;
4599 out_err:
4600 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4601 		/* Don't call region_abort if region_chg failed */
4602 		if (chg >= 0)
4603 			region_abort(resv_map, from, to);
4604 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4605 		kref_put(&resv_map->refs, resv_map_release);
4606 	return ret;
4607 }
4608 
4609 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4610 								long freed)
4611 {
4612 	struct hstate *h = hstate_inode(inode);
4613 	struct resv_map *resv_map = inode_resv_map(inode);
4614 	long chg = 0;
4615 	struct hugepage_subpool *spool = subpool_inode(inode);
4616 	long gbl_reserve;
4617 
4618 	/*
4619 	 * Since this routine can be called in the evict inode path for all
4620 	 * hugetlbfs inodes, resv_map could be NULL.
4621 	 */
4622 	if (resv_map) {
4623 		chg = region_del(resv_map, start, end);
4624 		/*
4625 		 * region_del() can fail in the rare case where a region
4626 		 * must be split and another region descriptor can not be
4627 		 * allocated.  If end == LONG_MAX, it will not fail.
4628 		 */
4629 		if (chg < 0)
4630 			return chg;
4631 	}
4632 
4633 	spin_lock(&inode->i_lock);
4634 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4635 	spin_unlock(&inode->i_lock);
4636 
4637 	/*
4638 	 * If the subpool has a minimum size, the number of global
4639 	 * reservations to be released may be adjusted.
4640 	 */
4641 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4642 	hugetlb_acct_memory(h, -gbl_reserve);
4643 
4644 	return 0;
4645 }
4646 
4647 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4648 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4649 				struct vm_area_struct *vma,
4650 				unsigned long addr, pgoff_t idx)
4651 {
4652 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4653 				svma->vm_start;
4654 	unsigned long sbase = saddr & PUD_MASK;
4655 	unsigned long s_end = sbase + PUD_SIZE;
4656 
4657 	/* Allow segments to share if only one is marked locked */
4658 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4659 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4660 
4661 	/*
4662 	 * match the virtual addresses, permission and the alignment of the
4663 	 * page table page.
4664 	 */
4665 	if (pmd_index(addr) != pmd_index(saddr) ||
4666 	    vm_flags != svm_flags ||
4667 	    sbase < svma->vm_start || svma->vm_end < s_end)
4668 		return 0;
4669 
4670 	return saddr;
4671 }
4672 
4673 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4674 {
4675 	unsigned long base = addr & PUD_MASK;
4676 	unsigned long end = base + PUD_SIZE;
4677 
4678 	/*
4679 	 * check on proper vm_flags and page table alignment
4680 	 */
4681 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4682 		return true;
4683 	return false;
4684 }
4685 
4686 /*
4687  * Determine if start,end range within vma could be mapped by shared pmd.
4688  * If yes, adjust start and end to cover range associated with possible
4689  * shared pmd mappings.
4690  */
4691 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4692 				unsigned long *start, unsigned long *end)
4693 {
4694 	unsigned long check_addr = *start;
4695 
4696 	if (!(vma->vm_flags & VM_MAYSHARE))
4697 		return;
4698 
4699 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4700 		unsigned long a_start = check_addr & PUD_MASK;
4701 		unsigned long a_end = a_start + PUD_SIZE;
4702 
4703 		/*
4704 		 * If sharing is possible, adjust start/end if necessary.
4705 		 */
4706 		if (range_in_vma(vma, a_start, a_end)) {
4707 			if (a_start < *start)
4708 				*start = a_start;
4709 			if (a_end > *end)
4710 				*end = a_end;
4711 		}
4712 	}
4713 }
4714 
4715 /*
4716  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4717  * and returns the corresponding pte. While this is not necessary for the
4718  * !shared pmd case because we can allocate the pmd later as well, it makes the
4719  * code much cleaner. pmd allocation is essential for the shared case because
4720  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4721  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4722  * bad pmd for sharing.
4723  */
4724 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4725 {
4726 	struct vm_area_struct *vma = find_vma(mm, addr);
4727 	struct address_space *mapping = vma->vm_file->f_mapping;
4728 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4729 			vma->vm_pgoff;
4730 	struct vm_area_struct *svma;
4731 	unsigned long saddr;
4732 	pte_t *spte = NULL;
4733 	pte_t *pte;
4734 	spinlock_t *ptl;
4735 
4736 	if (!vma_shareable(vma, addr))
4737 		return (pte_t *)pmd_alloc(mm, pud, addr);
4738 
4739 	i_mmap_lock_read(mapping);
4740 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4741 		if (svma == vma)
4742 			continue;
4743 
4744 		saddr = page_table_shareable(svma, vma, addr, idx);
4745 		if (saddr) {
4746 			spte = huge_pte_offset(svma->vm_mm, saddr,
4747 					       vma_mmu_pagesize(svma));
4748 			if (spte) {
4749 				get_page(virt_to_page(spte));
4750 				break;
4751 			}
4752 		}
4753 	}
4754 
4755 	if (!spte)
4756 		goto out;
4757 
4758 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4759 	if (pud_none(*pud)) {
4760 		pud_populate(mm, pud,
4761 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4762 		mm_inc_nr_pmds(mm);
4763 	} else {
4764 		put_page(virt_to_page(spte));
4765 	}
4766 	spin_unlock(ptl);
4767 out:
4768 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4769 	i_mmap_unlock_read(mapping);
4770 	return pte;
4771 }
4772 
4773 /*
4774  * unmap huge page backed by shared pte.
4775  *
4776  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4777  * indicated by page_count > 1, unmap is achieved by clearing pud and
4778  * decrementing the ref count. If count == 1, the pte page is not shared.
4779  *
4780  * called with page table lock held.
4781  *
4782  * returns: 1 successfully unmapped a shared pte page
4783  *	    0 the underlying pte page is not shared, or it is the last user
4784  */
4785 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4786 {
4787 	pgd_t *pgd = pgd_offset(mm, *addr);
4788 	p4d_t *p4d = p4d_offset(pgd, *addr);
4789 	pud_t *pud = pud_offset(p4d, *addr);
4790 
4791 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4792 	if (page_count(virt_to_page(ptep)) == 1)
4793 		return 0;
4794 
4795 	pud_clear(pud);
4796 	put_page(virt_to_page(ptep));
4797 	mm_dec_nr_pmds(mm);
4798 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4799 	return 1;
4800 }
4801 #define want_pmd_share()	(1)
4802 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4803 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4804 {
4805 	return NULL;
4806 }
4807 
4808 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4809 {
4810 	return 0;
4811 }
4812 
4813 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4814 				unsigned long *start, unsigned long *end)
4815 {
4816 }
4817 #define want_pmd_share()	(0)
4818 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4819 
4820 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4821 pte_t *huge_pte_alloc(struct mm_struct *mm,
4822 			unsigned long addr, unsigned long sz)
4823 {
4824 	pgd_t *pgd;
4825 	p4d_t *p4d;
4826 	pud_t *pud;
4827 	pte_t *pte = NULL;
4828 
4829 	pgd = pgd_offset(mm, addr);
4830 	p4d = p4d_alloc(mm, pgd, addr);
4831 	if (!p4d)
4832 		return NULL;
4833 	pud = pud_alloc(mm, p4d, addr);
4834 	if (pud) {
4835 		if (sz == PUD_SIZE) {
4836 			pte = (pte_t *)pud;
4837 		} else {
4838 			BUG_ON(sz != PMD_SIZE);
4839 			if (want_pmd_share() && pud_none(*pud))
4840 				pte = huge_pmd_share(mm, addr, pud);
4841 			else
4842 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4843 		}
4844 	}
4845 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4846 
4847 	return pte;
4848 }
4849 
4850 /*
4851  * huge_pte_offset() - Walk the page table to resolve the hugepage
4852  * entry at address @addr
4853  *
4854  * Return: Pointer to page table or swap entry (PUD or PMD) for
4855  * address @addr, or NULL if a p*d_none() entry is encountered and the
4856  * size @sz doesn't match the hugepage size at this level of the page
4857  * table.
4858  */
4859 pte_t *huge_pte_offset(struct mm_struct *mm,
4860 		       unsigned long addr, unsigned long sz)
4861 {
4862 	pgd_t *pgd;
4863 	p4d_t *p4d;
4864 	pud_t *pud;
4865 	pmd_t *pmd;
4866 
4867 	pgd = pgd_offset(mm, addr);
4868 	if (!pgd_present(*pgd))
4869 		return NULL;
4870 	p4d = p4d_offset(pgd, addr);
4871 	if (!p4d_present(*p4d))
4872 		return NULL;
4873 
4874 	pud = pud_offset(p4d, addr);
4875 	if (sz != PUD_SIZE && pud_none(*pud))
4876 		return NULL;
4877 	/* hugepage or swap? */
4878 	if (pud_huge(*pud) || !pud_present(*pud))
4879 		return (pte_t *)pud;
4880 
4881 	pmd = pmd_offset(pud, addr);
4882 	if (sz != PMD_SIZE && pmd_none(*pmd))
4883 		return NULL;
4884 	/* hugepage or swap? */
4885 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4886 		return (pte_t *)pmd;
4887 
4888 	return NULL;
4889 }
4890 
4891 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4892 
4893 /*
4894  * These functions are overwritable if your architecture needs its own
4895  * behavior.
4896  */
4897 struct page * __weak
4898 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4899 			      int write)
4900 {
4901 	return ERR_PTR(-EINVAL);
4902 }
4903 
4904 struct page * __weak
4905 follow_huge_pd(struct vm_area_struct *vma,
4906 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4907 {
4908 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4909 	return NULL;
4910 }
4911 
4912 struct page * __weak
4913 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4914 		pmd_t *pmd, int flags)
4915 {
4916 	struct page *page = NULL;
4917 	spinlock_t *ptl;
4918 	pte_t pte;
4919 retry:
4920 	ptl = pmd_lockptr(mm, pmd);
4921 	spin_lock(ptl);
4922 	/*
4923 	 * make sure that the address range covered by this pmd is not
4924 	 * unmapped from other threads.
4925 	 */
4926 	if (!pmd_huge(*pmd))
4927 		goto out;
4928 	pte = huge_ptep_get((pte_t *)pmd);
4929 	if (pte_present(pte)) {
4930 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4931 		if (flags & FOLL_GET)
4932 			get_page(page);
4933 	} else {
4934 		if (is_hugetlb_entry_migration(pte)) {
4935 			spin_unlock(ptl);
4936 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4937 			goto retry;
4938 		}
4939 		/*
4940 		 * hwpoisoned entry is treated as no_page_table in
4941 		 * follow_page_mask().
4942 		 */
4943 	}
4944 out:
4945 	spin_unlock(ptl);
4946 	return page;
4947 }
4948 
4949 struct page * __weak
4950 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4951 		pud_t *pud, int flags)
4952 {
4953 	if (flags & FOLL_GET)
4954 		return NULL;
4955 
4956 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4957 }
4958 
4959 struct page * __weak
4960 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4961 {
4962 	if (flags & FOLL_GET)
4963 		return NULL;
4964 
4965 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4966 }
4967 
4968 bool isolate_huge_page(struct page *page, struct list_head *list)
4969 {
4970 	bool ret = true;
4971 
4972 	VM_BUG_ON_PAGE(!PageHead(page), page);
4973 	spin_lock(&hugetlb_lock);
4974 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4975 		ret = false;
4976 		goto unlock;
4977 	}
4978 	clear_page_huge_active(page);
4979 	list_move_tail(&page->lru, list);
4980 unlock:
4981 	spin_unlock(&hugetlb_lock);
4982 	return ret;
4983 }
4984 
4985 void putback_active_hugepage(struct page *page)
4986 {
4987 	VM_BUG_ON_PAGE(!PageHead(page), page);
4988 	spin_lock(&hugetlb_lock);
4989 	set_page_huge_active(page);
4990 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4991 	spin_unlock(&hugetlb_lock);
4992 	put_page(page);
4993 }
4994 
4995 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4996 {
4997 	struct hstate *h = page_hstate(oldpage);
4998 
4999 	hugetlb_cgroup_migrate(oldpage, newpage);
5000 	set_page_owner_migrate_reason(newpage, reason);
5001 
5002 	/*
5003 	 * transfer temporary state of the new huge page. This is
5004 	 * reverse to other transitions because the newpage is going to
5005 	 * be final while the old one will be freed so it takes over
5006 	 * the temporary status.
5007 	 *
5008 	 * Also note that we have to transfer the per-node surplus state
5009 	 * here as well otherwise the global surplus count will not match
5010 	 * the per-node's.
5011 	 */
5012 	if (PageHugeTemporary(newpage)) {
5013 		int old_nid = page_to_nid(oldpage);
5014 		int new_nid = page_to_nid(newpage);
5015 
5016 		SetPageHugeTemporary(oldpage);
5017 		ClearPageHugeTemporary(newpage);
5018 
5019 		spin_lock(&hugetlb_lock);
5020 		if (h->surplus_huge_pages_node[old_nid]) {
5021 			h->surplus_huge_pages_node[old_nid]--;
5022 			h->surplus_huge_pages_node[new_nid]++;
5023 		}
5024 		spin_unlock(&hugetlb_lock);
5025 	}
5026 }
5027