1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/mmdebug.h> 23 #include <linux/sched/signal.h> 24 #include <linux/rmap.h> 25 #include <linux/string_helpers.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/jhash.h> 29 #include <linux/numa.h> 30 #include <linux/llist.h> 31 #include <linux/cma.h> 32 33 #include <asm/page.h> 34 #include <asm/pgtable.h> 35 #include <asm/tlb.h> 36 37 #include <linux/io.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/node.h> 41 #include <linux/userfaultfd_k.h> 42 #include <linux/page_owner.h> 43 #include "internal.h" 44 45 int hugetlb_max_hstate __read_mostly; 46 unsigned int default_hstate_idx; 47 struct hstate hstates[HUGE_MAX_HSTATE]; 48 49 static struct cma *hugetlb_cma[MAX_NUMNODES]; 50 51 /* 52 * Minimum page order among possible hugepage sizes, set to a proper value 53 * at boot time. 54 */ 55 static unsigned int minimum_order __read_mostly = UINT_MAX; 56 57 __initdata LIST_HEAD(huge_boot_pages); 58 59 /* for command line parsing */ 60 static struct hstate * __initdata parsed_hstate; 61 static unsigned long __initdata default_hstate_max_huge_pages; 62 static unsigned long __initdata default_hstate_size; 63 static bool __initdata parsed_valid_hugepagesz = true; 64 65 /* 66 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 67 * free_huge_pages, and surplus_huge_pages. 68 */ 69 DEFINE_SPINLOCK(hugetlb_lock); 70 71 /* 72 * Serializes faults on the same logical page. This is used to 73 * prevent spurious OOMs when the hugepage pool is fully utilized. 74 */ 75 static int num_fault_mutexes; 76 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 77 78 /* Forward declaration */ 79 static int hugetlb_acct_memory(struct hstate *h, long delta); 80 81 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 82 { 83 bool free = (spool->count == 0) && (spool->used_hpages == 0); 84 85 spin_unlock(&spool->lock); 86 87 /* If no pages are used, and no other handles to the subpool 88 * remain, give up any reservations mased on minimum size and 89 * free the subpool */ 90 if (free) { 91 if (spool->min_hpages != -1) 92 hugetlb_acct_memory(spool->hstate, 93 -spool->min_hpages); 94 kfree(spool); 95 } 96 } 97 98 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 99 long min_hpages) 100 { 101 struct hugepage_subpool *spool; 102 103 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 104 if (!spool) 105 return NULL; 106 107 spin_lock_init(&spool->lock); 108 spool->count = 1; 109 spool->max_hpages = max_hpages; 110 spool->hstate = h; 111 spool->min_hpages = min_hpages; 112 113 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 114 kfree(spool); 115 return NULL; 116 } 117 spool->rsv_hpages = min_hpages; 118 119 return spool; 120 } 121 122 void hugepage_put_subpool(struct hugepage_subpool *spool) 123 { 124 spin_lock(&spool->lock); 125 BUG_ON(!spool->count); 126 spool->count--; 127 unlock_or_release_subpool(spool); 128 } 129 130 /* 131 * Subpool accounting for allocating and reserving pages. 132 * Return -ENOMEM if there are not enough resources to satisfy the 133 * the request. Otherwise, return the number of pages by which the 134 * global pools must be adjusted (upward). The returned value may 135 * only be different than the passed value (delta) in the case where 136 * a subpool minimum size must be manitained. 137 */ 138 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 139 long delta) 140 { 141 long ret = delta; 142 143 if (!spool) 144 return ret; 145 146 spin_lock(&spool->lock); 147 148 if (spool->max_hpages != -1) { /* maximum size accounting */ 149 if ((spool->used_hpages + delta) <= spool->max_hpages) 150 spool->used_hpages += delta; 151 else { 152 ret = -ENOMEM; 153 goto unlock_ret; 154 } 155 } 156 157 /* minimum size accounting */ 158 if (spool->min_hpages != -1 && spool->rsv_hpages) { 159 if (delta > spool->rsv_hpages) { 160 /* 161 * Asking for more reserves than those already taken on 162 * behalf of subpool. Return difference. 163 */ 164 ret = delta - spool->rsv_hpages; 165 spool->rsv_hpages = 0; 166 } else { 167 ret = 0; /* reserves already accounted for */ 168 spool->rsv_hpages -= delta; 169 } 170 } 171 172 unlock_ret: 173 spin_unlock(&spool->lock); 174 return ret; 175 } 176 177 /* 178 * Subpool accounting for freeing and unreserving pages. 179 * Return the number of global page reservations that must be dropped. 180 * The return value may only be different than the passed value (delta) 181 * in the case where a subpool minimum size must be maintained. 182 */ 183 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 184 long delta) 185 { 186 long ret = delta; 187 188 if (!spool) 189 return delta; 190 191 spin_lock(&spool->lock); 192 193 if (spool->max_hpages != -1) /* maximum size accounting */ 194 spool->used_hpages -= delta; 195 196 /* minimum size accounting */ 197 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 198 if (spool->rsv_hpages + delta <= spool->min_hpages) 199 ret = 0; 200 else 201 ret = spool->rsv_hpages + delta - spool->min_hpages; 202 203 spool->rsv_hpages += delta; 204 if (spool->rsv_hpages > spool->min_hpages) 205 spool->rsv_hpages = spool->min_hpages; 206 } 207 208 /* 209 * If hugetlbfs_put_super couldn't free spool due to an outstanding 210 * quota reference, free it now. 211 */ 212 unlock_or_release_subpool(spool); 213 214 return ret; 215 } 216 217 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 218 { 219 return HUGETLBFS_SB(inode->i_sb)->spool; 220 } 221 222 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 223 { 224 return subpool_inode(file_inode(vma->vm_file)); 225 } 226 227 /* Helper that removes a struct file_region from the resv_map cache and returns 228 * it for use. 229 */ 230 static struct file_region * 231 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 232 { 233 struct file_region *nrg = NULL; 234 235 VM_BUG_ON(resv->region_cache_count <= 0); 236 237 resv->region_cache_count--; 238 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 239 VM_BUG_ON(!nrg); 240 list_del(&nrg->link); 241 242 nrg->from = from; 243 nrg->to = to; 244 245 return nrg; 246 } 247 248 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 249 struct file_region *rg) 250 { 251 #ifdef CONFIG_CGROUP_HUGETLB 252 nrg->reservation_counter = rg->reservation_counter; 253 nrg->css = rg->css; 254 if (rg->css) 255 css_get(rg->css); 256 #endif 257 } 258 259 /* Helper that records hugetlb_cgroup uncharge info. */ 260 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 261 struct hstate *h, 262 struct resv_map *resv, 263 struct file_region *nrg) 264 { 265 #ifdef CONFIG_CGROUP_HUGETLB 266 if (h_cg) { 267 nrg->reservation_counter = 268 &h_cg->rsvd_hugepage[hstate_index(h)]; 269 nrg->css = &h_cg->css; 270 if (!resv->pages_per_hpage) 271 resv->pages_per_hpage = pages_per_huge_page(h); 272 /* pages_per_hpage should be the same for all entries in 273 * a resv_map. 274 */ 275 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 276 } else { 277 nrg->reservation_counter = NULL; 278 nrg->css = NULL; 279 } 280 #endif 281 } 282 283 static bool has_same_uncharge_info(struct file_region *rg, 284 struct file_region *org) 285 { 286 #ifdef CONFIG_CGROUP_HUGETLB 287 return rg && org && 288 rg->reservation_counter == org->reservation_counter && 289 rg->css == org->css; 290 291 #else 292 return true; 293 #endif 294 } 295 296 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 297 { 298 struct file_region *nrg = NULL, *prg = NULL; 299 300 prg = list_prev_entry(rg, link); 301 if (&prg->link != &resv->regions && prg->to == rg->from && 302 has_same_uncharge_info(prg, rg)) { 303 prg->to = rg->to; 304 305 list_del(&rg->link); 306 kfree(rg); 307 308 coalesce_file_region(resv, prg); 309 return; 310 } 311 312 nrg = list_next_entry(rg, link); 313 if (&nrg->link != &resv->regions && nrg->from == rg->to && 314 has_same_uncharge_info(nrg, rg)) { 315 nrg->from = rg->from; 316 317 list_del(&rg->link); 318 kfree(rg); 319 320 coalesce_file_region(resv, nrg); 321 return; 322 } 323 } 324 325 /* Must be called with resv->lock held. Calling this with count_only == true 326 * will count the number of pages to be added but will not modify the linked 327 * list. If regions_needed != NULL and count_only == true, then regions_needed 328 * will indicate the number of file_regions needed in the cache to carry out to 329 * add the regions for this range. 330 */ 331 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 332 struct hugetlb_cgroup *h_cg, 333 struct hstate *h, long *regions_needed, 334 bool count_only) 335 { 336 long add = 0; 337 struct list_head *head = &resv->regions; 338 long last_accounted_offset = f; 339 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 340 341 if (regions_needed) 342 *regions_needed = 0; 343 344 /* In this loop, we essentially handle an entry for the range 345 * [last_accounted_offset, rg->from), at every iteration, with some 346 * bounds checking. 347 */ 348 list_for_each_entry_safe(rg, trg, head, link) { 349 /* Skip irrelevant regions that start before our range. */ 350 if (rg->from < f) { 351 /* If this region ends after the last accounted offset, 352 * then we need to update last_accounted_offset. 353 */ 354 if (rg->to > last_accounted_offset) 355 last_accounted_offset = rg->to; 356 continue; 357 } 358 359 /* When we find a region that starts beyond our range, we've 360 * finished. 361 */ 362 if (rg->from > t) 363 break; 364 365 /* Add an entry for last_accounted_offset -> rg->from, and 366 * update last_accounted_offset. 367 */ 368 if (rg->from > last_accounted_offset) { 369 add += rg->from - last_accounted_offset; 370 if (!count_only) { 371 nrg = get_file_region_entry_from_cache( 372 resv, last_accounted_offset, rg->from); 373 record_hugetlb_cgroup_uncharge_info(h_cg, h, 374 resv, nrg); 375 list_add(&nrg->link, rg->link.prev); 376 coalesce_file_region(resv, nrg); 377 } else if (regions_needed) 378 *regions_needed += 1; 379 } 380 381 last_accounted_offset = rg->to; 382 } 383 384 /* Handle the case where our range extends beyond 385 * last_accounted_offset. 386 */ 387 if (last_accounted_offset < t) { 388 add += t - last_accounted_offset; 389 if (!count_only) { 390 nrg = get_file_region_entry_from_cache( 391 resv, last_accounted_offset, t); 392 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 393 list_add(&nrg->link, rg->link.prev); 394 coalesce_file_region(resv, nrg); 395 } else if (regions_needed) 396 *regions_needed += 1; 397 } 398 399 VM_BUG_ON(add < 0); 400 return add; 401 } 402 403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 404 */ 405 static int allocate_file_region_entries(struct resv_map *resv, 406 int regions_needed) 407 __must_hold(&resv->lock) 408 { 409 struct list_head allocated_regions; 410 int to_allocate = 0, i = 0; 411 struct file_region *trg = NULL, *rg = NULL; 412 413 VM_BUG_ON(regions_needed < 0); 414 415 INIT_LIST_HEAD(&allocated_regions); 416 417 /* 418 * Check for sufficient descriptors in the cache to accommodate 419 * the number of in progress add operations plus regions_needed. 420 * 421 * This is a while loop because when we drop the lock, some other call 422 * to region_add or region_del may have consumed some region_entries, 423 * so we keep looping here until we finally have enough entries for 424 * (adds_in_progress + regions_needed). 425 */ 426 while (resv->region_cache_count < 427 (resv->adds_in_progress + regions_needed)) { 428 to_allocate = resv->adds_in_progress + regions_needed - 429 resv->region_cache_count; 430 431 /* At this point, we should have enough entries in the cache 432 * for all the existings adds_in_progress. We should only be 433 * needing to allocate for regions_needed. 434 */ 435 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 436 437 spin_unlock(&resv->lock); 438 for (i = 0; i < to_allocate; i++) { 439 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 440 if (!trg) 441 goto out_of_memory; 442 list_add(&trg->link, &allocated_regions); 443 } 444 445 spin_lock(&resv->lock); 446 447 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 448 list_del(&rg->link); 449 list_add(&rg->link, &resv->region_cache); 450 resv->region_cache_count++; 451 } 452 } 453 454 return 0; 455 456 out_of_memory: 457 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 458 list_del(&rg->link); 459 kfree(rg); 460 } 461 return -ENOMEM; 462 } 463 464 /* 465 * Add the huge page range represented by [f, t) to the reserve 466 * map. Regions will be taken from the cache to fill in this range. 467 * Sufficient regions should exist in the cache due to the previous 468 * call to region_chg with the same range, but in some cases the cache will not 469 * have sufficient entries due to races with other code doing region_add or 470 * region_del. The extra needed entries will be allocated. 471 * 472 * regions_needed is the out value provided by a previous call to region_chg. 473 * 474 * Return the number of new huge pages added to the map. This number is greater 475 * than or equal to zero. If file_region entries needed to be allocated for 476 * this operation and we were not able to allocate, it ruturns -ENOMEM. 477 * region_add of regions of length 1 never allocate file_regions and cannot 478 * fail; region_chg will always allocate at least 1 entry and a region_add for 479 * 1 page will only require at most 1 entry. 480 */ 481 static long region_add(struct resv_map *resv, long f, long t, 482 long in_regions_needed, struct hstate *h, 483 struct hugetlb_cgroup *h_cg) 484 { 485 long add = 0, actual_regions_needed = 0; 486 487 spin_lock(&resv->lock); 488 retry: 489 490 /* Count how many regions are actually needed to execute this add. */ 491 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed, 492 true); 493 494 /* 495 * Check for sufficient descriptors in the cache to accommodate 496 * this add operation. Note that actual_regions_needed may be greater 497 * than in_regions_needed, as the resv_map may have been modified since 498 * the region_chg call. In this case, we need to make sure that we 499 * allocate extra entries, such that we have enough for all the 500 * existing adds_in_progress, plus the excess needed for this 501 * operation. 502 */ 503 if (actual_regions_needed > in_regions_needed && 504 resv->region_cache_count < 505 resv->adds_in_progress + 506 (actual_regions_needed - in_regions_needed)) { 507 /* region_add operation of range 1 should never need to 508 * allocate file_region entries. 509 */ 510 VM_BUG_ON(t - f <= 1); 511 512 if (allocate_file_region_entries( 513 resv, actual_regions_needed - in_regions_needed)) { 514 return -ENOMEM; 515 } 516 517 goto retry; 518 } 519 520 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false); 521 522 resv->adds_in_progress -= in_regions_needed; 523 524 spin_unlock(&resv->lock); 525 VM_BUG_ON(add < 0); 526 return add; 527 } 528 529 /* 530 * Examine the existing reserve map and determine how many 531 * huge pages in the specified range [f, t) are NOT currently 532 * represented. This routine is called before a subsequent 533 * call to region_add that will actually modify the reserve 534 * map to add the specified range [f, t). region_chg does 535 * not change the number of huge pages represented by the 536 * map. A number of new file_region structures is added to the cache as a 537 * placeholder, for the subsequent region_add call to use. At least 1 538 * file_region structure is added. 539 * 540 * out_regions_needed is the number of regions added to the 541 * resv->adds_in_progress. This value needs to be provided to a follow up call 542 * to region_add or region_abort for proper accounting. 543 * 544 * Returns the number of huge pages that need to be added to the existing 545 * reservation map for the range [f, t). This number is greater or equal to 546 * zero. -ENOMEM is returned if a new file_region structure or cache entry 547 * is needed and can not be allocated. 548 */ 549 static long region_chg(struct resv_map *resv, long f, long t, 550 long *out_regions_needed) 551 { 552 long chg = 0; 553 554 spin_lock(&resv->lock); 555 556 /* Count how many hugepages in this range are NOT respresented. */ 557 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 558 out_regions_needed, true); 559 560 if (*out_regions_needed == 0) 561 *out_regions_needed = 1; 562 563 if (allocate_file_region_entries(resv, *out_regions_needed)) 564 return -ENOMEM; 565 566 resv->adds_in_progress += *out_regions_needed; 567 568 spin_unlock(&resv->lock); 569 return chg; 570 } 571 572 /* 573 * Abort the in progress add operation. The adds_in_progress field 574 * of the resv_map keeps track of the operations in progress between 575 * calls to region_chg and region_add. Operations are sometimes 576 * aborted after the call to region_chg. In such cases, region_abort 577 * is called to decrement the adds_in_progress counter. regions_needed 578 * is the value returned by the region_chg call, it is used to decrement 579 * the adds_in_progress counter. 580 * 581 * NOTE: The range arguments [f, t) are not needed or used in this 582 * routine. They are kept to make reading the calling code easier as 583 * arguments will match the associated region_chg call. 584 */ 585 static void region_abort(struct resv_map *resv, long f, long t, 586 long regions_needed) 587 { 588 spin_lock(&resv->lock); 589 VM_BUG_ON(!resv->region_cache_count); 590 resv->adds_in_progress -= regions_needed; 591 spin_unlock(&resv->lock); 592 } 593 594 /* 595 * Delete the specified range [f, t) from the reserve map. If the 596 * t parameter is LONG_MAX, this indicates that ALL regions after f 597 * should be deleted. Locate the regions which intersect [f, t) 598 * and either trim, delete or split the existing regions. 599 * 600 * Returns the number of huge pages deleted from the reserve map. 601 * In the normal case, the return value is zero or more. In the 602 * case where a region must be split, a new region descriptor must 603 * be allocated. If the allocation fails, -ENOMEM will be returned. 604 * NOTE: If the parameter t == LONG_MAX, then we will never split 605 * a region and possibly return -ENOMEM. Callers specifying 606 * t == LONG_MAX do not need to check for -ENOMEM error. 607 */ 608 static long region_del(struct resv_map *resv, long f, long t) 609 { 610 struct list_head *head = &resv->regions; 611 struct file_region *rg, *trg; 612 struct file_region *nrg = NULL; 613 long del = 0; 614 615 retry: 616 spin_lock(&resv->lock); 617 list_for_each_entry_safe(rg, trg, head, link) { 618 /* 619 * Skip regions before the range to be deleted. file_region 620 * ranges are normally of the form [from, to). However, there 621 * may be a "placeholder" entry in the map which is of the form 622 * (from, to) with from == to. Check for placeholder entries 623 * at the beginning of the range to be deleted. 624 */ 625 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 626 continue; 627 628 if (rg->from >= t) 629 break; 630 631 if (f > rg->from && t < rg->to) { /* Must split region */ 632 /* 633 * Check for an entry in the cache before dropping 634 * lock and attempting allocation. 635 */ 636 if (!nrg && 637 resv->region_cache_count > resv->adds_in_progress) { 638 nrg = list_first_entry(&resv->region_cache, 639 struct file_region, 640 link); 641 list_del(&nrg->link); 642 resv->region_cache_count--; 643 } 644 645 if (!nrg) { 646 spin_unlock(&resv->lock); 647 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 648 if (!nrg) 649 return -ENOMEM; 650 goto retry; 651 } 652 653 del += t - f; 654 655 /* New entry for end of split region */ 656 nrg->from = t; 657 nrg->to = rg->to; 658 659 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 660 661 INIT_LIST_HEAD(&nrg->link); 662 663 /* Original entry is trimmed */ 664 rg->to = f; 665 666 hugetlb_cgroup_uncharge_file_region( 667 resv, rg, nrg->to - nrg->from); 668 669 list_add(&nrg->link, &rg->link); 670 nrg = NULL; 671 break; 672 } 673 674 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 675 del += rg->to - rg->from; 676 hugetlb_cgroup_uncharge_file_region(resv, rg, 677 rg->to - rg->from); 678 list_del(&rg->link); 679 kfree(rg); 680 continue; 681 } 682 683 if (f <= rg->from) { /* Trim beginning of region */ 684 del += t - rg->from; 685 rg->from = t; 686 687 hugetlb_cgroup_uncharge_file_region(resv, rg, 688 t - rg->from); 689 } else { /* Trim end of region */ 690 del += rg->to - f; 691 rg->to = f; 692 693 hugetlb_cgroup_uncharge_file_region(resv, rg, 694 rg->to - f); 695 } 696 } 697 698 spin_unlock(&resv->lock); 699 kfree(nrg); 700 return del; 701 } 702 703 /* 704 * A rare out of memory error was encountered which prevented removal of 705 * the reserve map region for a page. The huge page itself was free'ed 706 * and removed from the page cache. This routine will adjust the subpool 707 * usage count, and the global reserve count if needed. By incrementing 708 * these counts, the reserve map entry which could not be deleted will 709 * appear as a "reserved" entry instead of simply dangling with incorrect 710 * counts. 711 */ 712 void hugetlb_fix_reserve_counts(struct inode *inode) 713 { 714 struct hugepage_subpool *spool = subpool_inode(inode); 715 long rsv_adjust; 716 717 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 718 if (rsv_adjust) { 719 struct hstate *h = hstate_inode(inode); 720 721 hugetlb_acct_memory(h, 1); 722 } 723 } 724 725 /* 726 * Count and return the number of huge pages in the reserve map 727 * that intersect with the range [f, t). 728 */ 729 static long region_count(struct resv_map *resv, long f, long t) 730 { 731 struct list_head *head = &resv->regions; 732 struct file_region *rg; 733 long chg = 0; 734 735 spin_lock(&resv->lock); 736 /* Locate each segment we overlap with, and count that overlap. */ 737 list_for_each_entry(rg, head, link) { 738 long seg_from; 739 long seg_to; 740 741 if (rg->to <= f) 742 continue; 743 if (rg->from >= t) 744 break; 745 746 seg_from = max(rg->from, f); 747 seg_to = min(rg->to, t); 748 749 chg += seg_to - seg_from; 750 } 751 spin_unlock(&resv->lock); 752 753 return chg; 754 } 755 756 /* 757 * Convert the address within this vma to the page offset within 758 * the mapping, in pagecache page units; huge pages here. 759 */ 760 static pgoff_t vma_hugecache_offset(struct hstate *h, 761 struct vm_area_struct *vma, unsigned long address) 762 { 763 return ((address - vma->vm_start) >> huge_page_shift(h)) + 764 (vma->vm_pgoff >> huge_page_order(h)); 765 } 766 767 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 768 unsigned long address) 769 { 770 return vma_hugecache_offset(hstate_vma(vma), vma, address); 771 } 772 EXPORT_SYMBOL_GPL(linear_hugepage_index); 773 774 /* 775 * Return the size of the pages allocated when backing a VMA. In the majority 776 * cases this will be same size as used by the page table entries. 777 */ 778 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 779 { 780 if (vma->vm_ops && vma->vm_ops->pagesize) 781 return vma->vm_ops->pagesize(vma); 782 return PAGE_SIZE; 783 } 784 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 785 786 /* 787 * Return the page size being used by the MMU to back a VMA. In the majority 788 * of cases, the page size used by the kernel matches the MMU size. On 789 * architectures where it differs, an architecture-specific 'strong' 790 * version of this symbol is required. 791 */ 792 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 793 { 794 return vma_kernel_pagesize(vma); 795 } 796 797 /* 798 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 799 * bits of the reservation map pointer, which are always clear due to 800 * alignment. 801 */ 802 #define HPAGE_RESV_OWNER (1UL << 0) 803 #define HPAGE_RESV_UNMAPPED (1UL << 1) 804 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 805 806 /* 807 * These helpers are used to track how many pages are reserved for 808 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 809 * is guaranteed to have their future faults succeed. 810 * 811 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 812 * the reserve counters are updated with the hugetlb_lock held. It is safe 813 * to reset the VMA at fork() time as it is not in use yet and there is no 814 * chance of the global counters getting corrupted as a result of the values. 815 * 816 * The private mapping reservation is represented in a subtly different 817 * manner to a shared mapping. A shared mapping has a region map associated 818 * with the underlying file, this region map represents the backing file 819 * pages which have ever had a reservation assigned which this persists even 820 * after the page is instantiated. A private mapping has a region map 821 * associated with the original mmap which is attached to all VMAs which 822 * reference it, this region map represents those offsets which have consumed 823 * reservation ie. where pages have been instantiated. 824 */ 825 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 826 { 827 return (unsigned long)vma->vm_private_data; 828 } 829 830 static void set_vma_private_data(struct vm_area_struct *vma, 831 unsigned long value) 832 { 833 vma->vm_private_data = (void *)value; 834 } 835 836 static void 837 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 838 struct hugetlb_cgroup *h_cg, 839 struct hstate *h) 840 { 841 #ifdef CONFIG_CGROUP_HUGETLB 842 if (!h_cg || !h) { 843 resv_map->reservation_counter = NULL; 844 resv_map->pages_per_hpage = 0; 845 resv_map->css = NULL; 846 } else { 847 resv_map->reservation_counter = 848 &h_cg->rsvd_hugepage[hstate_index(h)]; 849 resv_map->pages_per_hpage = pages_per_huge_page(h); 850 resv_map->css = &h_cg->css; 851 } 852 #endif 853 } 854 855 struct resv_map *resv_map_alloc(void) 856 { 857 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 858 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 859 860 if (!resv_map || !rg) { 861 kfree(resv_map); 862 kfree(rg); 863 return NULL; 864 } 865 866 kref_init(&resv_map->refs); 867 spin_lock_init(&resv_map->lock); 868 INIT_LIST_HEAD(&resv_map->regions); 869 870 resv_map->adds_in_progress = 0; 871 /* 872 * Initialize these to 0. On shared mappings, 0's here indicate these 873 * fields don't do cgroup accounting. On private mappings, these will be 874 * re-initialized to the proper values, to indicate that hugetlb cgroup 875 * reservations are to be un-charged from here. 876 */ 877 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 878 879 INIT_LIST_HEAD(&resv_map->region_cache); 880 list_add(&rg->link, &resv_map->region_cache); 881 resv_map->region_cache_count = 1; 882 883 return resv_map; 884 } 885 886 void resv_map_release(struct kref *ref) 887 { 888 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 889 struct list_head *head = &resv_map->region_cache; 890 struct file_region *rg, *trg; 891 892 /* Clear out any active regions before we release the map. */ 893 region_del(resv_map, 0, LONG_MAX); 894 895 /* ... and any entries left in the cache */ 896 list_for_each_entry_safe(rg, trg, head, link) { 897 list_del(&rg->link); 898 kfree(rg); 899 } 900 901 VM_BUG_ON(resv_map->adds_in_progress); 902 903 kfree(resv_map); 904 } 905 906 static inline struct resv_map *inode_resv_map(struct inode *inode) 907 { 908 /* 909 * At inode evict time, i_mapping may not point to the original 910 * address space within the inode. This original address space 911 * contains the pointer to the resv_map. So, always use the 912 * address space embedded within the inode. 913 * The VERY common case is inode->mapping == &inode->i_data but, 914 * this may not be true for device special inodes. 915 */ 916 return (struct resv_map *)(&inode->i_data)->private_data; 917 } 918 919 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 920 { 921 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 922 if (vma->vm_flags & VM_MAYSHARE) { 923 struct address_space *mapping = vma->vm_file->f_mapping; 924 struct inode *inode = mapping->host; 925 926 return inode_resv_map(inode); 927 928 } else { 929 return (struct resv_map *)(get_vma_private_data(vma) & 930 ~HPAGE_RESV_MASK); 931 } 932 } 933 934 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 935 { 936 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 937 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 938 939 set_vma_private_data(vma, (get_vma_private_data(vma) & 940 HPAGE_RESV_MASK) | (unsigned long)map); 941 } 942 943 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 944 { 945 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 946 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 947 948 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 949 } 950 951 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 952 { 953 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 954 955 return (get_vma_private_data(vma) & flag) != 0; 956 } 957 958 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 959 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 960 { 961 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 962 if (!(vma->vm_flags & VM_MAYSHARE)) 963 vma->vm_private_data = (void *)0; 964 } 965 966 /* Returns true if the VMA has associated reserve pages */ 967 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 968 { 969 if (vma->vm_flags & VM_NORESERVE) { 970 /* 971 * This address is already reserved by other process(chg == 0), 972 * so, we should decrement reserved count. Without decrementing, 973 * reserve count remains after releasing inode, because this 974 * allocated page will go into page cache and is regarded as 975 * coming from reserved pool in releasing step. Currently, we 976 * don't have any other solution to deal with this situation 977 * properly, so add work-around here. 978 */ 979 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 980 return true; 981 else 982 return false; 983 } 984 985 /* Shared mappings always use reserves */ 986 if (vma->vm_flags & VM_MAYSHARE) { 987 /* 988 * We know VM_NORESERVE is not set. Therefore, there SHOULD 989 * be a region map for all pages. The only situation where 990 * there is no region map is if a hole was punched via 991 * fallocate. In this case, there really are no reverves to 992 * use. This situation is indicated if chg != 0. 993 */ 994 if (chg) 995 return false; 996 else 997 return true; 998 } 999 1000 /* 1001 * Only the process that called mmap() has reserves for 1002 * private mappings. 1003 */ 1004 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1005 /* 1006 * Like the shared case above, a hole punch or truncate 1007 * could have been performed on the private mapping. 1008 * Examine the value of chg to determine if reserves 1009 * actually exist or were previously consumed. 1010 * Very Subtle - The value of chg comes from a previous 1011 * call to vma_needs_reserves(). The reserve map for 1012 * private mappings has different (opposite) semantics 1013 * than that of shared mappings. vma_needs_reserves() 1014 * has already taken this difference in semantics into 1015 * account. Therefore, the meaning of chg is the same 1016 * as in the shared case above. Code could easily be 1017 * combined, but keeping it separate draws attention to 1018 * subtle differences. 1019 */ 1020 if (chg) 1021 return false; 1022 else 1023 return true; 1024 } 1025 1026 return false; 1027 } 1028 1029 static void enqueue_huge_page(struct hstate *h, struct page *page) 1030 { 1031 int nid = page_to_nid(page); 1032 list_move(&page->lru, &h->hugepage_freelists[nid]); 1033 h->free_huge_pages++; 1034 h->free_huge_pages_node[nid]++; 1035 } 1036 1037 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1038 { 1039 struct page *page; 1040 1041 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 1042 if (!PageHWPoison(page)) 1043 break; 1044 /* 1045 * if 'non-isolated free hugepage' not found on the list, 1046 * the allocation fails. 1047 */ 1048 if (&h->hugepage_freelists[nid] == &page->lru) 1049 return NULL; 1050 list_move(&page->lru, &h->hugepage_activelist); 1051 set_page_refcounted(page); 1052 h->free_huge_pages--; 1053 h->free_huge_pages_node[nid]--; 1054 return page; 1055 } 1056 1057 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1058 nodemask_t *nmask) 1059 { 1060 unsigned int cpuset_mems_cookie; 1061 struct zonelist *zonelist; 1062 struct zone *zone; 1063 struct zoneref *z; 1064 int node = NUMA_NO_NODE; 1065 1066 zonelist = node_zonelist(nid, gfp_mask); 1067 1068 retry_cpuset: 1069 cpuset_mems_cookie = read_mems_allowed_begin(); 1070 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1071 struct page *page; 1072 1073 if (!cpuset_zone_allowed(zone, gfp_mask)) 1074 continue; 1075 /* 1076 * no need to ask again on the same node. Pool is node rather than 1077 * zone aware 1078 */ 1079 if (zone_to_nid(zone) == node) 1080 continue; 1081 node = zone_to_nid(zone); 1082 1083 page = dequeue_huge_page_node_exact(h, node); 1084 if (page) 1085 return page; 1086 } 1087 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1088 goto retry_cpuset; 1089 1090 return NULL; 1091 } 1092 1093 /* Movability of hugepages depends on migration support. */ 1094 static inline gfp_t htlb_alloc_mask(struct hstate *h) 1095 { 1096 if (hugepage_movable_supported(h)) 1097 return GFP_HIGHUSER_MOVABLE; 1098 else 1099 return GFP_HIGHUSER; 1100 } 1101 1102 static struct page *dequeue_huge_page_vma(struct hstate *h, 1103 struct vm_area_struct *vma, 1104 unsigned long address, int avoid_reserve, 1105 long chg) 1106 { 1107 struct page *page; 1108 struct mempolicy *mpol; 1109 gfp_t gfp_mask; 1110 nodemask_t *nodemask; 1111 int nid; 1112 1113 /* 1114 * A child process with MAP_PRIVATE mappings created by their parent 1115 * have no page reserves. This check ensures that reservations are 1116 * not "stolen". The child may still get SIGKILLed 1117 */ 1118 if (!vma_has_reserves(vma, chg) && 1119 h->free_huge_pages - h->resv_huge_pages == 0) 1120 goto err; 1121 1122 /* If reserves cannot be used, ensure enough pages are in the pool */ 1123 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1124 goto err; 1125 1126 gfp_mask = htlb_alloc_mask(h); 1127 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1128 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1129 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1130 SetPagePrivate(page); 1131 h->resv_huge_pages--; 1132 } 1133 1134 mpol_cond_put(mpol); 1135 return page; 1136 1137 err: 1138 return NULL; 1139 } 1140 1141 /* 1142 * common helper functions for hstate_next_node_to_{alloc|free}. 1143 * We may have allocated or freed a huge page based on a different 1144 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1145 * be outside of *nodes_allowed. Ensure that we use an allowed 1146 * node for alloc or free. 1147 */ 1148 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1149 { 1150 nid = next_node_in(nid, *nodes_allowed); 1151 VM_BUG_ON(nid >= MAX_NUMNODES); 1152 1153 return nid; 1154 } 1155 1156 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1157 { 1158 if (!node_isset(nid, *nodes_allowed)) 1159 nid = next_node_allowed(nid, nodes_allowed); 1160 return nid; 1161 } 1162 1163 /* 1164 * returns the previously saved node ["this node"] from which to 1165 * allocate a persistent huge page for the pool and advance the 1166 * next node from which to allocate, handling wrap at end of node 1167 * mask. 1168 */ 1169 static int hstate_next_node_to_alloc(struct hstate *h, 1170 nodemask_t *nodes_allowed) 1171 { 1172 int nid; 1173 1174 VM_BUG_ON(!nodes_allowed); 1175 1176 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1177 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1178 1179 return nid; 1180 } 1181 1182 /* 1183 * helper for free_pool_huge_page() - return the previously saved 1184 * node ["this node"] from which to free a huge page. Advance the 1185 * next node id whether or not we find a free huge page to free so 1186 * that the next attempt to free addresses the next node. 1187 */ 1188 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1189 { 1190 int nid; 1191 1192 VM_BUG_ON(!nodes_allowed); 1193 1194 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1195 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1196 1197 return nid; 1198 } 1199 1200 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1201 for (nr_nodes = nodes_weight(*mask); \ 1202 nr_nodes > 0 && \ 1203 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1204 nr_nodes--) 1205 1206 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1207 for (nr_nodes = nodes_weight(*mask); \ 1208 nr_nodes > 0 && \ 1209 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1210 nr_nodes--) 1211 1212 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1213 static void destroy_compound_gigantic_page(struct page *page, 1214 unsigned int order) 1215 { 1216 int i; 1217 int nr_pages = 1 << order; 1218 struct page *p = page + 1; 1219 1220 atomic_set(compound_mapcount_ptr(page), 0); 1221 if (hpage_pincount_available(page)) 1222 atomic_set(compound_pincount_ptr(page), 0); 1223 1224 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1225 clear_compound_head(p); 1226 set_page_refcounted(p); 1227 } 1228 1229 set_compound_order(page, 0); 1230 __ClearPageHead(page); 1231 } 1232 1233 static void free_gigantic_page(struct page *page, unsigned int order) 1234 { 1235 /* 1236 * If the page isn't allocated using the cma allocator, 1237 * cma_release() returns false. 1238 */ 1239 if (IS_ENABLED(CONFIG_CMA) && 1240 cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1241 return; 1242 1243 free_contig_range(page_to_pfn(page), 1 << order); 1244 } 1245 1246 #ifdef CONFIG_CONTIG_ALLOC 1247 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1248 int nid, nodemask_t *nodemask) 1249 { 1250 unsigned long nr_pages = 1UL << huge_page_order(h); 1251 1252 if (IS_ENABLED(CONFIG_CMA)) { 1253 struct page *page; 1254 int node; 1255 1256 for_each_node_mask(node, *nodemask) { 1257 if (!hugetlb_cma[node]) 1258 continue; 1259 1260 page = cma_alloc(hugetlb_cma[node], nr_pages, 1261 huge_page_order(h), true); 1262 if (page) 1263 return page; 1264 } 1265 } 1266 1267 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1268 } 1269 1270 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1271 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1272 #else /* !CONFIG_CONTIG_ALLOC */ 1273 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1274 int nid, nodemask_t *nodemask) 1275 { 1276 return NULL; 1277 } 1278 #endif /* CONFIG_CONTIG_ALLOC */ 1279 1280 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1281 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1282 int nid, nodemask_t *nodemask) 1283 { 1284 return NULL; 1285 } 1286 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1287 static inline void destroy_compound_gigantic_page(struct page *page, 1288 unsigned int order) { } 1289 #endif 1290 1291 static void update_and_free_page(struct hstate *h, struct page *page) 1292 { 1293 int i; 1294 1295 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1296 return; 1297 1298 h->nr_huge_pages--; 1299 h->nr_huge_pages_node[page_to_nid(page)]--; 1300 for (i = 0; i < pages_per_huge_page(h); i++) { 1301 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1302 1 << PG_referenced | 1 << PG_dirty | 1303 1 << PG_active | 1 << PG_private | 1304 1 << PG_writeback); 1305 } 1306 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1307 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1308 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1309 set_page_refcounted(page); 1310 if (hstate_is_gigantic(h)) { 1311 /* 1312 * Temporarily drop the hugetlb_lock, because 1313 * we might block in free_gigantic_page(). 1314 */ 1315 spin_unlock(&hugetlb_lock); 1316 destroy_compound_gigantic_page(page, huge_page_order(h)); 1317 free_gigantic_page(page, huge_page_order(h)); 1318 spin_lock(&hugetlb_lock); 1319 } else { 1320 __free_pages(page, huge_page_order(h)); 1321 } 1322 } 1323 1324 struct hstate *size_to_hstate(unsigned long size) 1325 { 1326 struct hstate *h; 1327 1328 for_each_hstate(h) { 1329 if (huge_page_size(h) == size) 1330 return h; 1331 } 1332 return NULL; 1333 } 1334 1335 /* 1336 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1337 * to hstate->hugepage_activelist.) 1338 * 1339 * This function can be called for tail pages, but never returns true for them. 1340 */ 1341 bool page_huge_active(struct page *page) 1342 { 1343 VM_BUG_ON_PAGE(!PageHuge(page), page); 1344 return PageHead(page) && PagePrivate(&page[1]); 1345 } 1346 1347 /* never called for tail page */ 1348 static void set_page_huge_active(struct page *page) 1349 { 1350 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1351 SetPagePrivate(&page[1]); 1352 } 1353 1354 static void clear_page_huge_active(struct page *page) 1355 { 1356 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1357 ClearPagePrivate(&page[1]); 1358 } 1359 1360 /* 1361 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1362 * code 1363 */ 1364 static inline bool PageHugeTemporary(struct page *page) 1365 { 1366 if (!PageHuge(page)) 1367 return false; 1368 1369 return (unsigned long)page[2].mapping == -1U; 1370 } 1371 1372 static inline void SetPageHugeTemporary(struct page *page) 1373 { 1374 page[2].mapping = (void *)-1U; 1375 } 1376 1377 static inline void ClearPageHugeTemporary(struct page *page) 1378 { 1379 page[2].mapping = NULL; 1380 } 1381 1382 static void __free_huge_page(struct page *page) 1383 { 1384 /* 1385 * Can't pass hstate in here because it is called from the 1386 * compound page destructor. 1387 */ 1388 struct hstate *h = page_hstate(page); 1389 int nid = page_to_nid(page); 1390 struct hugepage_subpool *spool = 1391 (struct hugepage_subpool *)page_private(page); 1392 bool restore_reserve; 1393 1394 VM_BUG_ON_PAGE(page_count(page), page); 1395 VM_BUG_ON_PAGE(page_mapcount(page), page); 1396 1397 set_page_private(page, 0); 1398 page->mapping = NULL; 1399 restore_reserve = PagePrivate(page); 1400 ClearPagePrivate(page); 1401 1402 /* 1403 * If PagePrivate() was set on page, page allocation consumed a 1404 * reservation. If the page was associated with a subpool, there 1405 * would have been a page reserved in the subpool before allocation 1406 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1407 * reservtion, do not call hugepage_subpool_put_pages() as this will 1408 * remove the reserved page from the subpool. 1409 */ 1410 if (!restore_reserve) { 1411 /* 1412 * A return code of zero implies that the subpool will be 1413 * under its minimum size if the reservation is not restored 1414 * after page is free. Therefore, force restore_reserve 1415 * operation. 1416 */ 1417 if (hugepage_subpool_put_pages(spool, 1) == 0) 1418 restore_reserve = true; 1419 } 1420 1421 spin_lock(&hugetlb_lock); 1422 clear_page_huge_active(page); 1423 hugetlb_cgroup_uncharge_page(hstate_index(h), 1424 pages_per_huge_page(h), page); 1425 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1426 pages_per_huge_page(h), page); 1427 if (restore_reserve) 1428 h->resv_huge_pages++; 1429 1430 if (PageHugeTemporary(page)) { 1431 list_del(&page->lru); 1432 ClearPageHugeTemporary(page); 1433 update_and_free_page(h, page); 1434 } else if (h->surplus_huge_pages_node[nid]) { 1435 /* remove the page from active list */ 1436 list_del(&page->lru); 1437 update_and_free_page(h, page); 1438 h->surplus_huge_pages--; 1439 h->surplus_huge_pages_node[nid]--; 1440 } else { 1441 arch_clear_hugepage_flags(page); 1442 enqueue_huge_page(h, page); 1443 } 1444 spin_unlock(&hugetlb_lock); 1445 } 1446 1447 /* 1448 * As free_huge_page() can be called from a non-task context, we have 1449 * to defer the actual freeing in a workqueue to prevent potential 1450 * hugetlb_lock deadlock. 1451 * 1452 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1453 * be freed and frees them one-by-one. As the page->mapping pointer is 1454 * going to be cleared in __free_huge_page() anyway, it is reused as the 1455 * llist_node structure of a lockless linked list of huge pages to be freed. 1456 */ 1457 static LLIST_HEAD(hpage_freelist); 1458 1459 static void free_hpage_workfn(struct work_struct *work) 1460 { 1461 struct llist_node *node; 1462 struct page *page; 1463 1464 node = llist_del_all(&hpage_freelist); 1465 1466 while (node) { 1467 page = container_of((struct address_space **)node, 1468 struct page, mapping); 1469 node = node->next; 1470 __free_huge_page(page); 1471 } 1472 } 1473 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1474 1475 void free_huge_page(struct page *page) 1476 { 1477 /* 1478 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1479 */ 1480 if (!in_task()) { 1481 /* 1482 * Only call schedule_work() if hpage_freelist is previously 1483 * empty. Otherwise, schedule_work() had been called but the 1484 * workfn hasn't retrieved the list yet. 1485 */ 1486 if (llist_add((struct llist_node *)&page->mapping, 1487 &hpage_freelist)) 1488 schedule_work(&free_hpage_work); 1489 return; 1490 } 1491 1492 __free_huge_page(page); 1493 } 1494 1495 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1496 { 1497 INIT_LIST_HEAD(&page->lru); 1498 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1499 spin_lock(&hugetlb_lock); 1500 set_hugetlb_cgroup(page, NULL); 1501 set_hugetlb_cgroup_rsvd(page, NULL); 1502 h->nr_huge_pages++; 1503 h->nr_huge_pages_node[nid]++; 1504 spin_unlock(&hugetlb_lock); 1505 } 1506 1507 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1508 { 1509 int i; 1510 int nr_pages = 1 << order; 1511 struct page *p = page + 1; 1512 1513 /* we rely on prep_new_huge_page to set the destructor */ 1514 set_compound_order(page, order); 1515 __ClearPageReserved(page); 1516 __SetPageHead(page); 1517 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1518 /* 1519 * For gigantic hugepages allocated through bootmem at 1520 * boot, it's safer to be consistent with the not-gigantic 1521 * hugepages and clear the PG_reserved bit from all tail pages 1522 * too. Otherwse drivers using get_user_pages() to access tail 1523 * pages may get the reference counting wrong if they see 1524 * PG_reserved set on a tail page (despite the head page not 1525 * having PG_reserved set). Enforcing this consistency between 1526 * head and tail pages allows drivers to optimize away a check 1527 * on the head page when they need know if put_page() is needed 1528 * after get_user_pages(). 1529 */ 1530 __ClearPageReserved(p); 1531 set_page_count(p, 0); 1532 set_compound_head(p, page); 1533 } 1534 atomic_set(compound_mapcount_ptr(page), -1); 1535 1536 if (hpage_pincount_available(page)) 1537 atomic_set(compound_pincount_ptr(page), 0); 1538 } 1539 1540 /* 1541 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1542 * transparent huge pages. See the PageTransHuge() documentation for more 1543 * details. 1544 */ 1545 int PageHuge(struct page *page) 1546 { 1547 if (!PageCompound(page)) 1548 return 0; 1549 1550 page = compound_head(page); 1551 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1552 } 1553 EXPORT_SYMBOL_GPL(PageHuge); 1554 1555 /* 1556 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1557 * normal or transparent huge pages. 1558 */ 1559 int PageHeadHuge(struct page *page_head) 1560 { 1561 if (!PageHead(page_head)) 1562 return 0; 1563 1564 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1565 } 1566 1567 /* 1568 * Find address_space associated with hugetlbfs page. 1569 * Upon entry page is locked and page 'was' mapped although mapped state 1570 * could change. If necessary, use anon_vma to find vma and associated 1571 * address space. The returned mapping may be stale, but it can not be 1572 * invalid as page lock (which is held) is required to destroy mapping. 1573 */ 1574 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage) 1575 { 1576 struct anon_vma *anon_vma; 1577 pgoff_t pgoff_start, pgoff_end; 1578 struct anon_vma_chain *avc; 1579 struct address_space *mapping = page_mapping(hpage); 1580 1581 /* Simple file based mapping */ 1582 if (mapping) 1583 return mapping; 1584 1585 /* 1586 * Even anonymous hugetlbfs mappings are associated with an 1587 * underlying hugetlbfs file (see hugetlb_file_setup in mmap 1588 * code). Find a vma associated with the anonymous vma, and 1589 * use the file pointer to get address_space. 1590 */ 1591 anon_vma = page_lock_anon_vma_read(hpage); 1592 if (!anon_vma) 1593 return mapping; /* NULL */ 1594 1595 /* Use first found vma */ 1596 pgoff_start = page_to_pgoff(hpage); 1597 pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1; 1598 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1599 pgoff_start, pgoff_end) { 1600 struct vm_area_struct *vma = avc->vma; 1601 1602 mapping = vma->vm_file->f_mapping; 1603 break; 1604 } 1605 1606 anon_vma_unlock_read(anon_vma); 1607 return mapping; 1608 } 1609 1610 /* 1611 * Find and lock address space (mapping) in write mode. 1612 * 1613 * Upon entry, the page is locked which allows us to find the mapping 1614 * even in the case of an anon page. However, locking order dictates 1615 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs 1616 * specific. So, we first try to lock the sema while still holding the 1617 * page lock. If this works, great! If not, then we need to drop the 1618 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of 1619 * course, need to revalidate state along the way. 1620 */ 1621 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1622 { 1623 struct address_space *mapping, *mapping2; 1624 1625 mapping = _get_hugetlb_page_mapping(hpage); 1626 retry: 1627 if (!mapping) 1628 return mapping; 1629 1630 /* 1631 * If no contention, take lock and return 1632 */ 1633 if (i_mmap_trylock_write(mapping)) 1634 return mapping; 1635 1636 /* 1637 * Must drop page lock and wait on mapping sema. 1638 * Note: Once page lock is dropped, mapping could become invalid. 1639 * As a hack, increase map count until we lock page again. 1640 */ 1641 atomic_inc(&hpage->_mapcount); 1642 unlock_page(hpage); 1643 i_mmap_lock_write(mapping); 1644 lock_page(hpage); 1645 atomic_add_negative(-1, &hpage->_mapcount); 1646 1647 /* verify page is still mapped */ 1648 if (!page_mapped(hpage)) { 1649 i_mmap_unlock_write(mapping); 1650 return NULL; 1651 } 1652 1653 /* 1654 * Get address space again and verify it is the same one 1655 * we locked. If not, drop lock and retry. 1656 */ 1657 mapping2 = _get_hugetlb_page_mapping(hpage); 1658 if (mapping2 != mapping) { 1659 i_mmap_unlock_write(mapping); 1660 mapping = mapping2; 1661 goto retry; 1662 } 1663 1664 return mapping; 1665 } 1666 1667 pgoff_t __basepage_index(struct page *page) 1668 { 1669 struct page *page_head = compound_head(page); 1670 pgoff_t index = page_index(page_head); 1671 unsigned long compound_idx; 1672 1673 if (!PageHuge(page_head)) 1674 return page_index(page); 1675 1676 if (compound_order(page_head) >= MAX_ORDER) 1677 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1678 else 1679 compound_idx = page - page_head; 1680 1681 return (index << compound_order(page_head)) + compound_idx; 1682 } 1683 1684 static struct page *alloc_buddy_huge_page(struct hstate *h, 1685 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1686 nodemask_t *node_alloc_noretry) 1687 { 1688 int order = huge_page_order(h); 1689 struct page *page; 1690 bool alloc_try_hard = true; 1691 1692 /* 1693 * By default we always try hard to allocate the page with 1694 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1695 * a loop (to adjust global huge page counts) and previous allocation 1696 * failed, do not continue to try hard on the same node. Use the 1697 * node_alloc_noretry bitmap to manage this state information. 1698 */ 1699 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1700 alloc_try_hard = false; 1701 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1702 if (alloc_try_hard) 1703 gfp_mask |= __GFP_RETRY_MAYFAIL; 1704 if (nid == NUMA_NO_NODE) 1705 nid = numa_mem_id(); 1706 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1707 if (page) 1708 __count_vm_event(HTLB_BUDDY_PGALLOC); 1709 else 1710 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1711 1712 /* 1713 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1714 * indicates an overall state change. Clear bit so that we resume 1715 * normal 'try hard' allocations. 1716 */ 1717 if (node_alloc_noretry && page && !alloc_try_hard) 1718 node_clear(nid, *node_alloc_noretry); 1719 1720 /* 1721 * If we tried hard to get a page but failed, set bit so that 1722 * subsequent attempts will not try as hard until there is an 1723 * overall state change. 1724 */ 1725 if (node_alloc_noretry && !page && alloc_try_hard) 1726 node_set(nid, *node_alloc_noretry); 1727 1728 return page; 1729 } 1730 1731 /* 1732 * Common helper to allocate a fresh hugetlb page. All specific allocators 1733 * should use this function to get new hugetlb pages 1734 */ 1735 static struct page *alloc_fresh_huge_page(struct hstate *h, 1736 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1737 nodemask_t *node_alloc_noretry) 1738 { 1739 struct page *page; 1740 1741 if (hstate_is_gigantic(h)) 1742 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1743 else 1744 page = alloc_buddy_huge_page(h, gfp_mask, 1745 nid, nmask, node_alloc_noretry); 1746 if (!page) 1747 return NULL; 1748 1749 if (hstate_is_gigantic(h)) 1750 prep_compound_gigantic_page(page, huge_page_order(h)); 1751 prep_new_huge_page(h, page, page_to_nid(page)); 1752 1753 return page; 1754 } 1755 1756 /* 1757 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1758 * manner. 1759 */ 1760 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1761 nodemask_t *node_alloc_noretry) 1762 { 1763 struct page *page; 1764 int nr_nodes, node; 1765 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1766 1767 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1768 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1769 node_alloc_noretry); 1770 if (page) 1771 break; 1772 } 1773 1774 if (!page) 1775 return 0; 1776 1777 put_page(page); /* free it into the hugepage allocator */ 1778 1779 return 1; 1780 } 1781 1782 /* 1783 * Free huge page from pool from next node to free. 1784 * Attempt to keep persistent huge pages more or less 1785 * balanced over allowed nodes. 1786 * Called with hugetlb_lock locked. 1787 */ 1788 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1789 bool acct_surplus) 1790 { 1791 int nr_nodes, node; 1792 int ret = 0; 1793 1794 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1795 /* 1796 * If we're returning unused surplus pages, only examine 1797 * nodes with surplus pages. 1798 */ 1799 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1800 !list_empty(&h->hugepage_freelists[node])) { 1801 struct page *page = 1802 list_entry(h->hugepage_freelists[node].next, 1803 struct page, lru); 1804 list_del(&page->lru); 1805 h->free_huge_pages--; 1806 h->free_huge_pages_node[node]--; 1807 if (acct_surplus) { 1808 h->surplus_huge_pages--; 1809 h->surplus_huge_pages_node[node]--; 1810 } 1811 update_and_free_page(h, page); 1812 ret = 1; 1813 break; 1814 } 1815 } 1816 1817 return ret; 1818 } 1819 1820 /* 1821 * Dissolve a given free hugepage into free buddy pages. This function does 1822 * nothing for in-use hugepages and non-hugepages. 1823 * This function returns values like below: 1824 * 1825 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1826 * (allocated or reserved.) 1827 * 0: successfully dissolved free hugepages or the page is not a 1828 * hugepage (considered as already dissolved) 1829 */ 1830 int dissolve_free_huge_page(struct page *page) 1831 { 1832 int rc = -EBUSY; 1833 1834 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1835 if (!PageHuge(page)) 1836 return 0; 1837 1838 spin_lock(&hugetlb_lock); 1839 if (!PageHuge(page)) { 1840 rc = 0; 1841 goto out; 1842 } 1843 1844 if (!page_count(page)) { 1845 struct page *head = compound_head(page); 1846 struct hstate *h = page_hstate(head); 1847 int nid = page_to_nid(head); 1848 if (h->free_huge_pages - h->resv_huge_pages == 0) 1849 goto out; 1850 /* 1851 * Move PageHWPoison flag from head page to the raw error page, 1852 * which makes any subpages rather than the error page reusable. 1853 */ 1854 if (PageHWPoison(head) && page != head) { 1855 SetPageHWPoison(page); 1856 ClearPageHWPoison(head); 1857 } 1858 list_del(&head->lru); 1859 h->free_huge_pages--; 1860 h->free_huge_pages_node[nid]--; 1861 h->max_huge_pages--; 1862 update_and_free_page(h, head); 1863 rc = 0; 1864 } 1865 out: 1866 spin_unlock(&hugetlb_lock); 1867 return rc; 1868 } 1869 1870 /* 1871 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1872 * make specified memory blocks removable from the system. 1873 * Note that this will dissolve a free gigantic hugepage completely, if any 1874 * part of it lies within the given range. 1875 * Also note that if dissolve_free_huge_page() returns with an error, all 1876 * free hugepages that were dissolved before that error are lost. 1877 */ 1878 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1879 { 1880 unsigned long pfn; 1881 struct page *page; 1882 int rc = 0; 1883 1884 if (!hugepages_supported()) 1885 return rc; 1886 1887 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1888 page = pfn_to_page(pfn); 1889 rc = dissolve_free_huge_page(page); 1890 if (rc) 1891 break; 1892 } 1893 1894 return rc; 1895 } 1896 1897 /* 1898 * Allocates a fresh surplus page from the page allocator. 1899 */ 1900 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1901 int nid, nodemask_t *nmask) 1902 { 1903 struct page *page = NULL; 1904 1905 if (hstate_is_gigantic(h)) 1906 return NULL; 1907 1908 spin_lock(&hugetlb_lock); 1909 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1910 goto out_unlock; 1911 spin_unlock(&hugetlb_lock); 1912 1913 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1914 if (!page) 1915 return NULL; 1916 1917 spin_lock(&hugetlb_lock); 1918 /* 1919 * We could have raced with the pool size change. 1920 * Double check that and simply deallocate the new page 1921 * if we would end up overcommiting the surpluses. Abuse 1922 * temporary page to workaround the nasty free_huge_page 1923 * codeflow 1924 */ 1925 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1926 SetPageHugeTemporary(page); 1927 spin_unlock(&hugetlb_lock); 1928 put_page(page); 1929 return NULL; 1930 } else { 1931 h->surplus_huge_pages++; 1932 h->surplus_huge_pages_node[page_to_nid(page)]++; 1933 } 1934 1935 out_unlock: 1936 spin_unlock(&hugetlb_lock); 1937 1938 return page; 1939 } 1940 1941 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1942 int nid, nodemask_t *nmask) 1943 { 1944 struct page *page; 1945 1946 if (hstate_is_gigantic(h)) 1947 return NULL; 1948 1949 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1950 if (!page) 1951 return NULL; 1952 1953 /* 1954 * We do not account these pages as surplus because they are only 1955 * temporary and will be released properly on the last reference 1956 */ 1957 SetPageHugeTemporary(page); 1958 1959 return page; 1960 } 1961 1962 /* 1963 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1964 */ 1965 static 1966 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1967 struct vm_area_struct *vma, unsigned long addr) 1968 { 1969 struct page *page; 1970 struct mempolicy *mpol; 1971 gfp_t gfp_mask = htlb_alloc_mask(h); 1972 int nid; 1973 nodemask_t *nodemask; 1974 1975 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1976 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1977 mpol_cond_put(mpol); 1978 1979 return page; 1980 } 1981 1982 /* page migration callback function */ 1983 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1984 { 1985 gfp_t gfp_mask = htlb_alloc_mask(h); 1986 struct page *page = NULL; 1987 1988 if (nid != NUMA_NO_NODE) 1989 gfp_mask |= __GFP_THISNODE; 1990 1991 spin_lock(&hugetlb_lock); 1992 if (h->free_huge_pages - h->resv_huge_pages > 0) 1993 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1994 spin_unlock(&hugetlb_lock); 1995 1996 if (!page) 1997 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1998 1999 return page; 2000 } 2001 2002 /* page migration callback function */ 2003 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2004 nodemask_t *nmask) 2005 { 2006 gfp_t gfp_mask = htlb_alloc_mask(h); 2007 2008 spin_lock(&hugetlb_lock); 2009 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2010 struct page *page; 2011 2012 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2013 if (page) { 2014 spin_unlock(&hugetlb_lock); 2015 return page; 2016 } 2017 } 2018 spin_unlock(&hugetlb_lock); 2019 2020 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2021 } 2022 2023 /* mempolicy aware migration callback */ 2024 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2025 unsigned long address) 2026 { 2027 struct mempolicy *mpol; 2028 nodemask_t *nodemask; 2029 struct page *page; 2030 gfp_t gfp_mask; 2031 int node; 2032 2033 gfp_mask = htlb_alloc_mask(h); 2034 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2035 page = alloc_huge_page_nodemask(h, node, nodemask); 2036 mpol_cond_put(mpol); 2037 2038 return page; 2039 } 2040 2041 /* 2042 * Increase the hugetlb pool such that it can accommodate a reservation 2043 * of size 'delta'. 2044 */ 2045 static int gather_surplus_pages(struct hstate *h, int delta) 2046 __must_hold(&hugetlb_lock) 2047 { 2048 struct list_head surplus_list; 2049 struct page *page, *tmp; 2050 int ret, i; 2051 int needed, allocated; 2052 bool alloc_ok = true; 2053 2054 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2055 if (needed <= 0) { 2056 h->resv_huge_pages += delta; 2057 return 0; 2058 } 2059 2060 allocated = 0; 2061 INIT_LIST_HEAD(&surplus_list); 2062 2063 ret = -ENOMEM; 2064 retry: 2065 spin_unlock(&hugetlb_lock); 2066 for (i = 0; i < needed; i++) { 2067 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2068 NUMA_NO_NODE, NULL); 2069 if (!page) { 2070 alloc_ok = false; 2071 break; 2072 } 2073 list_add(&page->lru, &surplus_list); 2074 cond_resched(); 2075 } 2076 allocated += i; 2077 2078 /* 2079 * After retaking hugetlb_lock, we need to recalculate 'needed' 2080 * because either resv_huge_pages or free_huge_pages may have changed. 2081 */ 2082 spin_lock(&hugetlb_lock); 2083 needed = (h->resv_huge_pages + delta) - 2084 (h->free_huge_pages + allocated); 2085 if (needed > 0) { 2086 if (alloc_ok) 2087 goto retry; 2088 /* 2089 * We were not able to allocate enough pages to 2090 * satisfy the entire reservation so we free what 2091 * we've allocated so far. 2092 */ 2093 goto free; 2094 } 2095 /* 2096 * The surplus_list now contains _at_least_ the number of extra pages 2097 * needed to accommodate the reservation. Add the appropriate number 2098 * of pages to the hugetlb pool and free the extras back to the buddy 2099 * allocator. Commit the entire reservation here to prevent another 2100 * process from stealing the pages as they are added to the pool but 2101 * before they are reserved. 2102 */ 2103 needed += allocated; 2104 h->resv_huge_pages += delta; 2105 ret = 0; 2106 2107 /* Free the needed pages to the hugetlb pool */ 2108 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2109 if ((--needed) < 0) 2110 break; 2111 /* 2112 * This page is now managed by the hugetlb allocator and has 2113 * no users -- drop the buddy allocator's reference. 2114 */ 2115 put_page_testzero(page); 2116 VM_BUG_ON_PAGE(page_count(page), page); 2117 enqueue_huge_page(h, page); 2118 } 2119 free: 2120 spin_unlock(&hugetlb_lock); 2121 2122 /* Free unnecessary surplus pages to the buddy allocator */ 2123 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2124 put_page(page); 2125 spin_lock(&hugetlb_lock); 2126 2127 return ret; 2128 } 2129 2130 /* 2131 * This routine has two main purposes: 2132 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2133 * in unused_resv_pages. This corresponds to the prior adjustments made 2134 * to the associated reservation map. 2135 * 2) Free any unused surplus pages that may have been allocated to satisfy 2136 * the reservation. As many as unused_resv_pages may be freed. 2137 * 2138 * Called with hugetlb_lock held. However, the lock could be dropped (and 2139 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2140 * we must make sure nobody else can claim pages we are in the process of 2141 * freeing. Do this by ensuring resv_huge_page always is greater than the 2142 * number of huge pages we plan to free when dropping the lock. 2143 */ 2144 static void return_unused_surplus_pages(struct hstate *h, 2145 unsigned long unused_resv_pages) 2146 { 2147 unsigned long nr_pages; 2148 2149 /* Cannot return gigantic pages currently */ 2150 if (hstate_is_gigantic(h)) 2151 goto out; 2152 2153 /* 2154 * Part (or even all) of the reservation could have been backed 2155 * by pre-allocated pages. Only free surplus pages. 2156 */ 2157 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2158 2159 /* 2160 * We want to release as many surplus pages as possible, spread 2161 * evenly across all nodes with memory. Iterate across these nodes 2162 * until we can no longer free unreserved surplus pages. This occurs 2163 * when the nodes with surplus pages have no free pages. 2164 * free_pool_huge_page() will balance the the freed pages across the 2165 * on-line nodes with memory and will handle the hstate accounting. 2166 * 2167 * Note that we decrement resv_huge_pages as we free the pages. If 2168 * we drop the lock, resv_huge_pages will still be sufficiently large 2169 * to cover subsequent pages we may free. 2170 */ 2171 while (nr_pages--) { 2172 h->resv_huge_pages--; 2173 unused_resv_pages--; 2174 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2175 goto out; 2176 cond_resched_lock(&hugetlb_lock); 2177 } 2178 2179 out: 2180 /* Fully uncommit the reservation */ 2181 h->resv_huge_pages -= unused_resv_pages; 2182 } 2183 2184 2185 /* 2186 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2187 * are used by the huge page allocation routines to manage reservations. 2188 * 2189 * vma_needs_reservation is called to determine if the huge page at addr 2190 * within the vma has an associated reservation. If a reservation is 2191 * needed, the value 1 is returned. The caller is then responsible for 2192 * managing the global reservation and subpool usage counts. After 2193 * the huge page has been allocated, vma_commit_reservation is called 2194 * to add the page to the reservation map. If the page allocation fails, 2195 * the reservation must be ended instead of committed. vma_end_reservation 2196 * is called in such cases. 2197 * 2198 * In the normal case, vma_commit_reservation returns the same value 2199 * as the preceding vma_needs_reservation call. The only time this 2200 * is not the case is if a reserve map was changed between calls. It 2201 * is the responsibility of the caller to notice the difference and 2202 * take appropriate action. 2203 * 2204 * vma_add_reservation is used in error paths where a reservation must 2205 * be restored when a newly allocated huge page must be freed. It is 2206 * to be called after calling vma_needs_reservation to determine if a 2207 * reservation exists. 2208 */ 2209 enum vma_resv_mode { 2210 VMA_NEEDS_RESV, 2211 VMA_COMMIT_RESV, 2212 VMA_END_RESV, 2213 VMA_ADD_RESV, 2214 }; 2215 static long __vma_reservation_common(struct hstate *h, 2216 struct vm_area_struct *vma, unsigned long addr, 2217 enum vma_resv_mode mode) 2218 { 2219 struct resv_map *resv; 2220 pgoff_t idx; 2221 long ret; 2222 long dummy_out_regions_needed; 2223 2224 resv = vma_resv_map(vma); 2225 if (!resv) 2226 return 1; 2227 2228 idx = vma_hugecache_offset(h, vma, addr); 2229 switch (mode) { 2230 case VMA_NEEDS_RESV: 2231 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2232 /* We assume that vma_reservation_* routines always operate on 2233 * 1 page, and that adding to resv map a 1 page entry can only 2234 * ever require 1 region. 2235 */ 2236 VM_BUG_ON(dummy_out_regions_needed != 1); 2237 break; 2238 case VMA_COMMIT_RESV: 2239 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2240 /* region_add calls of range 1 should never fail. */ 2241 VM_BUG_ON(ret < 0); 2242 break; 2243 case VMA_END_RESV: 2244 region_abort(resv, idx, idx + 1, 1); 2245 ret = 0; 2246 break; 2247 case VMA_ADD_RESV: 2248 if (vma->vm_flags & VM_MAYSHARE) { 2249 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2250 /* region_add calls of range 1 should never fail. */ 2251 VM_BUG_ON(ret < 0); 2252 } else { 2253 region_abort(resv, idx, idx + 1, 1); 2254 ret = region_del(resv, idx, idx + 1); 2255 } 2256 break; 2257 default: 2258 BUG(); 2259 } 2260 2261 if (vma->vm_flags & VM_MAYSHARE) 2262 return ret; 2263 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2264 /* 2265 * In most cases, reserves always exist for private mappings. 2266 * However, a file associated with mapping could have been 2267 * hole punched or truncated after reserves were consumed. 2268 * As subsequent fault on such a range will not use reserves. 2269 * Subtle - The reserve map for private mappings has the 2270 * opposite meaning than that of shared mappings. If NO 2271 * entry is in the reserve map, it means a reservation exists. 2272 * If an entry exists in the reserve map, it means the 2273 * reservation has already been consumed. As a result, the 2274 * return value of this routine is the opposite of the 2275 * value returned from reserve map manipulation routines above. 2276 */ 2277 if (ret) 2278 return 0; 2279 else 2280 return 1; 2281 } 2282 else 2283 return ret < 0 ? ret : 0; 2284 } 2285 2286 static long vma_needs_reservation(struct hstate *h, 2287 struct vm_area_struct *vma, unsigned long addr) 2288 { 2289 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2290 } 2291 2292 static long vma_commit_reservation(struct hstate *h, 2293 struct vm_area_struct *vma, unsigned long addr) 2294 { 2295 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2296 } 2297 2298 static void vma_end_reservation(struct hstate *h, 2299 struct vm_area_struct *vma, unsigned long addr) 2300 { 2301 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2302 } 2303 2304 static long vma_add_reservation(struct hstate *h, 2305 struct vm_area_struct *vma, unsigned long addr) 2306 { 2307 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2308 } 2309 2310 /* 2311 * This routine is called to restore a reservation on error paths. In the 2312 * specific error paths, a huge page was allocated (via alloc_huge_page) 2313 * and is about to be freed. If a reservation for the page existed, 2314 * alloc_huge_page would have consumed the reservation and set PagePrivate 2315 * in the newly allocated page. When the page is freed via free_huge_page, 2316 * the global reservation count will be incremented if PagePrivate is set. 2317 * However, free_huge_page can not adjust the reserve map. Adjust the 2318 * reserve map here to be consistent with global reserve count adjustments 2319 * to be made by free_huge_page. 2320 */ 2321 static void restore_reserve_on_error(struct hstate *h, 2322 struct vm_area_struct *vma, unsigned long address, 2323 struct page *page) 2324 { 2325 if (unlikely(PagePrivate(page))) { 2326 long rc = vma_needs_reservation(h, vma, address); 2327 2328 if (unlikely(rc < 0)) { 2329 /* 2330 * Rare out of memory condition in reserve map 2331 * manipulation. Clear PagePrivate so that 2332 * global reserve count will not be incremented 2333 * by free_huge_page. This will make it appear 2334 * as though the reservation for this page was 2335 * consumed. This may prevent the task from 2336 * faulting in the page at a later time. This 2337 * is better than inconsistent global huge page 2338 * accounting of reserve counts. 2339 */ 2340 ClearPagePrivate(page); 2341 } else if (rc) { 2342 rc = vma_add_reservation(h, vma, address); 2343 if (unlikely(rc < 0)) 2344 /* 2345 * See above comment about rare out of 2346 * memory condition. 2347 */ 2348 ClearPagePrivate(page); 2349 } else 2350 vma_end_reservation(h, vma, address); 2351 } 2352 } 2353 2354 struct page *alloc_huge_page(struct vm_area_struct *vma, 2355 unsigned long addr, int avoid_reserve) 2356 { 2357 struct hugepage_subpool *spool = subpool_vma(vma); 2358 struct hstate *h = hstate_vma(vma); 2359 struct page *page; 2360 long map_chg, map_commit; 2361 long gbl_chg; 2362 int ret, idx; 2363 struct hugetlb_cgroup *h_cg; 2364 bool deferred_reserve; 2365 2366 idx = hstate_index(h); 2367 /* 2368 * Examine the region/reserve map to determine if the process 2369 * has a reservation for the page to be allocated. A return 2370 * code of zero indicates a reservation exists (no change). 2371 */ 2372 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2373 if (map_chg < 0) 2374 return ERR_PTR(-ENOMEM); 2375 2376 /* 2377 * Processes that did not create the mapping will have no 2378 * reserves as indicated by the region/reserve map. Check 2379 * that the allocation will not exceed the subpool limit. 2380 * Allocations for MAP_NORESERVE mappings also need to be 2381 * checked against any subpool limit. 2382 */ 2383 if (map_chg || avoid_reserve) { 2384 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2385 if (gbl_chg < 0) { 2386 vma_end_reservation(h, vma, addr); 2387 return ERR_PTR(-ENOSPC); 2388 } 2389 2390 /* 2391 * Even though there was no reservation in the region/reserve 2392 * map, there could be reservations associated with the 2393 * subpool that can be used. This would be indicated if the 2394 * return value of hugepage_subpool_get_pages() is zero. 2395 * However, if avoid_reserve is specified we still avoid even 2396 * the subpool reservations. 2397 */ 2398 if (avoid_reserve) 2399 gbl_chg = 1; 2400 } 2401 2402 /* If this allocation is not consuming a reservation, charge it now. 2403 */ 2404 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2405 if (deferred_reserve) { 2406 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2407 idx, pages_per_huge_page(h), &h_cg); 2408 if (ret) 2409 goto out_subpool_put; 2410 } 2411 2412 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2413 if (ret) 2414 goto out_uncharge_cgroup_reservation; 2415 2416 spin_lock(&hugetlb_lock); 2417 /* 2418 * glb_chg is passed to indicate whether or not a page must be taken 2419 * from the global free pool (global change). gbl_chg == 0 indicates 2420 * a reservation exists for the allocation. 2421 */ 2422 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2423 if (!page) { 2424 spin_unlock(&hugetlb_lock); 2425 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2426 if (!page) 2427 goto out_uncharge_cgroup; 2428 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2429 SetPagePrivate(page); 2430 h->resv_huge_pages--; 2431 } 2432 spin_lock(&hugetlb_lock); 2433 list_move(&page->lru, &h->hugepage_activelist); 2434 /* Fall through */ 2435 } 2436 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2437 /* If allocation is not consuming a reservation, also store the 2438 * hugetlb_cgroup pointer on the page. 2439 */ 2440 if (deferred_reserve) { 2441 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2442 h_cg, page); 2443 } 2444 2445 spin_unlock(&hugetlb_lock); 2446 2447 set_page_private(page, (unsigned long)spool); 2448 2449 map_commit = vma_commit_reservation(h, vma, addr); 2450 if (unlikely(map_chg > map_commit)) { 2451 /* 2452 * The page was added to the reservation map between 2453 * vma_needs_reservation and vma_commit_reservation. 2454 * This indicates a race with hugetlb_reserve_pages. 2455 * Adjust for the subpool count incremented above AND 2456 * in hugetlb_reserve_pages for the same page. Also, 2457 * the reservation count added in hugetlb_reserve_pages 2458 * no longer applies. 2459 */ 2460 long rsv_adjust; 2461 2462 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2463 hugetlb_acct_memory(h, -rsv_adjust); 2464 } 2465 return page; 2466 2467 out_uncharge_cgroup: 2468 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2469 out_uncharge_cgroup_reservation: 2470 if (deferred_reserve) 2471 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2472 h_cg); 2473 out_subpool_put: 2474 if (map_chg || avoid_reserve) 2475 hugepage_subpool_put_pages(spool, 1); 2476 vma_end_reservation(h, vma, addr); 2477 return ERR_PTR(-ENOSPC); 2478 } 2479 2480 int alloc_bootmem_huge_page(struct hstate *h) 2481 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2482 int __alloc_bootmem_huge_page(struct hstate *h) 2483 { 2484 struct huge_bootmem_page *m; 2485 int nr_nodes, node; 2486 2487 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2488 void *addr; 2489 2490 addr = memblock_alloc_try_nid_raw( 2491 huge_page_size(h), huge_page_size(h), 2492 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2493 if (addr) { 2494 /* 2495 * Use the beginning of the huge page to store the 2496 * huge_bootmem_page struct (until gather_bootmem 2497 * puts them into the mem_map). 2498 */ 2499 m = addr; 2500 goto found; 2501 } 2502 } 2503 return 0; 2504 2505 found: 2506 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2507 /* Put them into a private list first because mem_map is not up yet */ 2508 INIT_LIST_HEAD(&m->list); 2509 list_add(&m->list, &huge_boot_pages); 2510 m->hstate = h; 2511 return 1; 2512 } 2513 2514 static void __init prep_compound_huge_page(struct page *page, 2515 unsigned int order) 2516 { 2517 if (unlikely(order > (MAX_ORDER - 1))) 2518 prep_compound_gigantic_page(page, order); 2519 else 2520 prep_compound_page(page, order); 2521 } 2522 2523 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2524 static void __init gather_bootmem_prealloc(void) 2525 { 2526 struct huge_bootmem_page *m; 2527 2528 list_for_each_entry(m, &huge_boot_pages, list) { 2529 struct page *page = virt_to_page(m); 2530 struct hstate *h = m->hstate; 2531 2532 WARN_ON(page_count(page) != 1); 2533 prep_compound_huge_page(page, h->order); 2534 WARN_ON(PageReserved(page)); 2535 prep_new_huge_page(h, page, page_to_nid(page)); 2536 put_page(page); /* free it into the hugepage allocator */ 2537 2538 /* 2539 * If we had gigantic hugepages allocated at boot time, we need 2540 * to restore the 'stolen' pages to totalram_pages in order to 2541 * fix confusing memory reports from free(1) and another 2542 * side-effects, like CommitLimit going negative. 2543 */ 2544 if (hstate_is_gigantic(h)) 2545 adjust_managed_page_count(page, 1 << h->order); 2546 cond_resched(); 2547 } 2548 } 2549 2550 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2551 { 2552 unsigned long i; 2553 nodemask_t *node_alloc_noretry; 2554 2555 if (!hstate_is_gigantic(h)) { 2556 /* 2557 * Bit mask controlling how hard we retry per-node allocations. 2558 * Ignore errors as lower level routines can deal with 2559 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2560 * time, we are likely in bigger trouble. 2561 */ 2562 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2563 GFP_KERNEL); 2564 } else { 2565 /* allocations done at boot time */ 2566 node_alloc_noretry = NULL; 2567 } 2568 2569 /* bit mask controlling how hard we retry per-node allocations */ 2570 if (node_alloc_noretry) 2571 nodes_clear(*node_alloc_noretry); 2572 2573 for (i = 0; i < h->max_huge_pages; ++i) { 2574 if (hstate_is_gigantic(h)) { 2575 if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) { 2576 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2577 break; 2578 } 2579 if (!alloc_bootmem_huge_page(h)) 2580 break; 2581 } else if (!alloc_pool_huge_page(h, 2582 &node_states[N_MEMORY], 2583 node_alloc_noretry)) 2584 break; 2585 cond_resched(); 2586 } 2587 if (i < h->max_huge_pages) { 2588 char buf[32]; 2589 2590 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2591 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2592 h->max_huge_pages, buf, i); 2593 h->max_huge_pages = i; 2594 } 2595 2596 kfree(node_alloc_noretry); 2597 } 2598 2599 static void __init hugetlb_init_hstates(void) 2600 { 2601 struct hstate *h; 2602 2603 for_each_hstate(h) { 2604 if (minimum_order > huge_page_order(h)) 2605 minimum_order = huge_page_order(h); 2606 2607 /* oversize hugepages were init'ed in early boot */ 2608 if (!hstate_is_gigantic(h)) 2609 hugetlb_hstate_alloc_pages(h); 2610 } 2611 VM_BUG_ON(minimum_order == UINT_MAX); 2612 } 2613 2614 static void __init report_hugepages(void) 2615 { 2616 struct hstate *h; 2617 2618 for_each_hstate(h) { 2619 char buf[32]; 2620 2621 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2622 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2623 buf, h->free_huge_pages); 2624 } 2625 } 2626 2627 #ifdef CONFIG_HIGHMEM 2628 static void try_to_free_low(struct hstate *h, unsigned long count, 2629 nodemask_t *nodes_allowed) 2630 { 2631 int i; 2632 2633 if (hstate_is_gigantic(h)) 2634 return; 2635 2636 for_each_node_mask(i, *nodes_allowed) { 2637 struct page *page, *next; 2638 struct list_head *freel = &h->hugepage_freelists[i]; 2639 list_for_each_entry_safe(page, next, freel, lru) { 2640 if (count >= h->nr_huge_pages) 2641 return; 2642 if (PageHighMem(page)) 2643 continue; 2644 list_del(&page->lru); 2645 update_and_free_page(h, page); 2646 h->free_huge_pages--; 2647 h->free_huge_pages_node[page_to_nid(page)]--; 2648 } 2649 } 2650 } 2651 #else 2652 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2653 nodemask_t *nodes_allowed) 2654 { 2655 } 2656 #endif 2657 2658 /* 2659 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2660 * balanced by operating on them in a round-robin fashion. 2661 * Returns 1 if an adjustment was made. 2662 */ 2663 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2664 int delta) 2665 { 2666 int nr_nodes, node; 2667 2668 VM_BUG_ON(delta != -1 && delta != 1); 2669 2670 if (delta < 0) { 2671 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2672 if (h->surplus_huge_pages_node[node]) 2673 goto found; 2674 } 2675 } else { 2676 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2677 if (h->surplus_huge_pages_node[node] < 2678 h->nr_huge_pages_node[node]) 2679 goto found; 2680 } 2681 } 2682 return 0; 2683 2684 found: 2685 h->surplus_huge_pages += delta; 2686 h->surplus_huge_pages_node[node] += delta; 2687 return 1; 2688 } 2689 2690 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2691 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2692 nodemask_t *nodes_allowed) 2693 { 2694 unsigned long min_count, ret; 2695 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2696 2697 /* 2698 * Bit mask controlling how hard we retry per-node allocations. 2699 * If we can not allocate the bit mask, do not attempt to allocate 2700 * the requested huge pages. 2701 */ 2702 if (node_alloc_noretry) 2703 nodes_clear(*node_alloc_noretry); 2704 else 2705 return -ENOMEM; 2706 2707 spin_lock(&hugetlb_lock); 2708 2709 /* 2710 * Check for a node specific request. 2711 * Changing node specific huge page count may require a corresponding 2712 * change to the global count. In any case, the passed node mask 2713 * (nodes_allowed) will restrict alloc/free to the specified node. 2714 */ 2715 if (nid != NUMA_NO_NODE) { 2716 unsigned long old_count = count; 2717 2718 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2719 /* 2720 * User may have specified a large count value which caused the 2721 * above calculation to overflow. In this case, they wanted 2722 * to allocate as many huge pages as possible. Set count to 2723 * largest possible value to align with their intention. 2724 */ 2725 if (count < old_count) 2726 count = ULONG_MAX; 2727 } 2728 2729 /* 2730 * Gigantic pages runtime allocation depend on the capability for large 2731 * page range allocation. 2732 * If the system does not provide this feature, return an error when 2733 * the user tries to allocate gigantic pages but let the user free the 2734 * boottime allocated gigantic pages. 2735 */ 2736 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2737 if (count > persistent_huge_pages(h)) { 2738 spin_unlock(&hugetlb_lock); 2739 NODEMASK_FREE(node_alloc_noretry); 2740 return -EINVAL; 2741 } 2742 /* Fall through to decrease pool */ 2743 } 2744 2745 /* 2746 * Increase the pool size 2747 * First take pages out of surplus state. Then make up the 2748 * remaining difference by allocating fresh huge pages. 2749 * 2750 * We might race with alloc_surplus_huge_page() here and be unable 2751 * to convert a surplus huge page to a normal huge page. That is 2752 * not critical, though, it just means the overall size of the 2753 * pool might be one hugepage larger than it needs to be, but 2754 * within all the constraints specified by the sysctls. 2755 */ 2756 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2757 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2758 break; 2759 } 2760 2761 while (count > persistent_huge_pages(h)) { 2762 /* 2763 * If this allocation races such that we no longer need the 2764 * page, free_huge_page will handle it by freeing the page 2765 * and reducing the surplus. 2766 */ 2767 spin_unlock(&hugetlb_lock); 2768 2769 /* yield cpu to avoid soft lockup */ 2770 cond_resched(); 2771 2772 ret = alloc_pool_huge_page(h, nodes_allowed, 2773 node_alloc_noretry); 2774 spin_lock(&hugetlb_lock); 2775 if (!ret) 2776 goto out; 2777 2778 /* Bail for signals. Probably ctrl-c from user */ 2779 if (signal_pending(current)) 2780 goto out; 2781 } 2782 2783 /* 2784 * Decrease the pool size 2785 * First return free pages to the buddy allocator (being careful 2786 * to keep enough around to satisfy reservations). Then place 2787 * pages into surplus state as needed so the pool will shrink 2788 * to the desired size as pages become free. 2789 * 2790 * By placing pages into the surplus state independent of the 2791 * overcommit value, we are allowing the surplus pool size to 2792 * exceed overcommit. There are few sane options here. Since 2793 * alloc_surplus_huge_page() is checking the global counter, 2794 * though, we'll note that we're not allowed to exceed surplus 2795 * and won't grow the pool anywhere else. Not until one of the 2796 * sysctls are changed, or the surplus pages go out of use. 2797 */ 2798 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2799 min_count = max(count, min_count); 2800 try_to_free_low(h, min_count, nodes_allowed); 2801 while (min_count < persistent_huge_pages(h)) { 2802 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2803 break; 2804 cond_resched_lock(&hugetlb_lock); 2805 } 2806 while (count < persistent_huge_pages(h)) { 2807 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2808 break; 2809 } 2810 out: 2811 h->max_huge_pages = persistent_huge_pages(h); 2812 spin_unlock(&hugetlb_lock); 2813 2814 NODEMASK_FREE(node_alloc_noretry); 2815 2816 return 0; 2817 } 2818 2819 #define HSTATE_ATTR_RO(_name) \ 2820 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2821 2822 #define HSTATE_ATTR(_name) \ 2823 static struct kobj_attribute _name##_attr = \ 2824 __ATTR(_name, 0644, _name##_show, _name##_store) 2825 2826 static struct kobject *hugepages_kobj; 2827 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2828 2829 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2830 2831 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2832 { 2833 int i; 2834 2835 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2836 if (hstate_kobjs[i] == kobj) { 2837 if (nidp) 2838 *nidp = NUMA_NO_NODE; 2839 return &hstates[i]; 2840 } 2841 2842 return kobj_to_node_hstate(kobj, nidp); 2843 } 2844 2845 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2846 struct kobj_attribute *attr, char *buf) 2847 { 2848 struct hstate *h; 2849 unsigned long nr_huge_pages; 2850 int nid; 2851 2852 h = kobj_to_hstate(kobj, &nid); 2853 if (nid == NUMA_NO_NODE) 2854 nr_huge_pages = h->nr_huge_pages; 2855 else 2856 nr_huge_pages = h->nr_huge_pages_node[nid]; 2857 2858 return sprintf(buf, "%lu\n", nr_huge_pages); 2859 } 2860 2861 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2862 struct hstate *h, int nid, 2863 unsigned long count, size_t len) 2864 { 2865 int err; 2866 nodemask_t nodes_allowed, *n_mask; 2867 2868 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2869 return -EINVAL; 2870 2871 if (nid == NUMA_NO_NODE) { 2872 /* 2873 * global hstate attribute 2874 */ 2875 if (!(obey_mempolicy && 2876 init_nodemask_of_mempolicy(&nodes_allowed))) 2877 n_mask = &node_states[N_MEMORY]; 2878 else 2879 n_mask = &nodes_allowed; 2880 } else { 2881 /* 2882 * Node specific request. count adjustment happens in 2883 * set_max_huge_pages() after acquiring hugetlb_lock. 2884 */ 2885 init_nodemask_of_node(&nodes_allowed, nid); 2886 n_mask = &nodes_allowed; 2887 } 2888 2889 err = set_max_huge_pages(h, count, nid, n_mask); 2890 2891 return err ? err : len; 2892 } 2893 2894 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2895 struct kobject *kobj, const char *buf, 2896 size_t len) 2897 { 2898 struct hstate *h; 2899 unsigned long count; 2900 int nid; 2901 int err; 2902 2903 err = kstrtoul(buf, 10, &count); 2904 if (err) 2905 return err; 2906 2907 h = kobj_to_hstate(kobj, &nid); 2908 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2909 } 2910 2911 static ssize_t nr_hugepages_show(struct kobject *kobj, 2912 struct kobj_attribute *attr, char *buf) 2913 { 2914 return nr_hugepages_show_common(kobj, attr, buf); 2915 } 2916 2917 static ssize_t nr_hugepages_store(struct kobject *kobj, 2918 struct kobj_attribute *attr, const char *buf, size_t len) 2919 { 2920 return nr_hugepages_store_common(false, kobj, buf, len); 2921 } 2922 HSTATE_ATTR(nr_hugepages); 2923 2924 #ifdef CONFIG_NUMA 2925 2926 /* 2927 * hstate attribute for optionally mempolicy-based constraint on persistent 2928 * huge page alloc/free. 2929 */ 2930 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2931 struct kobj_attribute *attr, char *buf) 2932 { 2933 return nr_hugepages_show_common(kobj, attr, buf); 2934 } 2935 2936 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2937 struct kobj_attribute *attr, const char *buf, size_t len) 2938 { 2939 return nr_hugepages_store_common(true, kobj, buf, len); 2940 } 2941 HSTATE_ATTR(nr_hugepages_mempolicy); 2942 #endif 2943 2944 2945 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2946 struct kobj_attribute *attr, char *buf) 2947 { 2948 struct hstate *h = kobj_to_hstate(kobj, NULL); 2949 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2950 } 2951 2952 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2953 struct kobj_attribute *attr, const char *buf, size_t count) 2954 { 2955 int err; 2956 unsigned long input; 2957 struct hstate *h = kobj_to_hstate(kobj, NULL); 2958 2959 if (hstate_is_gigantic(h)) 2960 return -EINVAL; 2961 2962 err = kstrtoul(buf, 10, &input); 2963 if (err) 2964 return err; 2965 2966 spin_lock(&hugetlb_lock); 2967 h->nr_overcommit_huge_pages = input; 2968 spin_unlock(&hugetlb_lock); 2969 2970 return count; 2971 } 2972 HSTATE_ATTR(nr_overcommit_hugepages); 2973 2974 static ssize_t free_hugepages_show(struct kobject *kobj, 2975 struct kobj_attribute *attr, char *buf) 2976 { 2977 struct hstate *h; 2978 unsigned long free_huge_pages; 2979 int nid; 2980 2981 h = kobj_to_hstate(kobj, &nid); 2982 if (nid == NUMA_NO_NODE) 2983 free_huge_pages = h->free_huge_pages; 2984 else 2985 free_huge_pages = h->free_huge_pages_node[nid]; 2986 2987 return sprintf(buf, "%lu\n", free_huge_pages); 2988 } 2989 HSTATE_ATTR_RO(free_hugepages); 2990 2991 static ssize_t resv_hugepages_show(struct kobject *kobj, 2992 struct kobj_attribute *attr, char *buf) 2993 { 2994 struct hstate *h = kobj_to_hstate(kobj, NULL); 2995 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2996 } 2997 HSTATE_ATTR_RO(resv_hugepages); 2998 2999 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3000 struct kobj_attribute *attr, char *buf) 3001 { 3002 struct hstate *h; 3003 unsigned long surplus_huge_pages; 3004 int nid; 3005 3006 h = kobj_to_hstate(kobj, &nid); 3007 if (nid == NUMA_NO_NODE) 3008 surplus_huge_pages = h->surplus_huge_pages; 3009 else 3010 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3011 3012 return sprintf(buf, "%lu\n", surplus_huge_pages); 3013 } 3014 HSTATE_ATTR_RO(surplus_hugepages); 3015 3016 static struct attribute *hstate_attrs[] = { 3017 &nr_hugepages_attr.attr, 3018 &nr_overcommit_hugepages_attr.attr, 3019 &free_hugepages_attr.attr, 3020 &resv_hugepages_attr.attr, 3021 &surplus_hugepages_attr.attr, 3022 #ifdef CONFIG_NUMA 3023 &nr_hugepages_mempolicy_attr.attr, 3024 #endif 3025 NULL, 3026 }; 3027 3028 static const struct attribute_group hstate_attr_group = { 3029 .attrs = hstate_attrs, 3030 }; 3031 3032 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3033 struct kobject **hstate_kobjs, 3034 const struct attribute_group *hstate_attr_group) 3035 { 3036 int retval; 3037 int hi = hstate_index(h); 3038 3039 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3040 if (!hstate_kobjs[hi]) 3041 return -ENOMEM; 3042 3043 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3044 if (retval) 3045 kobject_put(hstate_kobjs[hi]); 3046 3047 return retval; 3048 } 3049 3050 static void __init hugetlb_sysfs_init(void) 3051 { 3052 struct hstate *h; 3053 int err; 3054 3055 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3056 if (!hugepages_kobj) 3057 return; 3058 3059 for_each_hstate(h) { 3060 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3061 hstate_kobjs, &hstate_attr_group); 3062 if (err) 3063 pr_err("Hugetlb: Unable to add hstate %s", h->name); 3064 } 3065 } 3066 3067 #ifdef CONFIG_NUMA 3068 3069 /* 3070 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3071 * with node devices in node_devices[] using a parallel array. The array 3072 * index of a node device or _hstate == node id. 3073 * This is here to avoid any static dependency of the node device driver, in 3074 * the base kernel, on the hugetlb module. 3075 */ 3076 struct node_hstate { 3077 struct kobject *hugepages_kobj; 3078 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3079 }; 3080 static struct node_hstate node_hstates[MAX_NUMNODES]; 3081 3082 /* 3083 * A subset of global hstate attributes for node devices 3084 */ 3085 static struct attribute *per_node_hstate_attrs[] = { 3086 &nr_hugepages_attr.attr, 3087 &free_hugepages_attr.attr, 3088 &surplus_hugepages_attr.attr, 3089 NULL, 3090 }; 3091 3092 static const struct attribute_group per_node_hstate_attr_group = { 3093 .attrs = per_node_hstate_attrs, 3094 }; 3095 3096 /* 3097 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3098 * Returns node id via non-NULL nidp. 3099 */ 3100 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3101 { 3102 int nid; 3103 3104 for (nid = 0; nid < nr_node_ids; nid++) { 3105 struct node_hstate *nhs = &node_hstates[nid]; 3106 int i; 3107 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3108 if (nhs->hstate_kobjs[i] == kobj) { 3109 if (nidp) 3110 *nidp = nid; 3111 return &hstates[i]; 3112 } 3113 } 3114 3115 BUG(); 3116 return NULL; 3117 } 3118 3119 /* 3120 * Unregister hstate attributes from a single node device. 3121 * No-op if no hstate attributes attached. 3122 */ 3123 static void hugetlb_unregister_node(struct node *node) 3124 { 3125 struct hstate *h; 3126 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3127 3128 if (!nhs->hugepages_kobj) 3129 return; /* no hstate attributes */ 3130 3131 for_each_hstate(h) { 3132 int idx = hstate_index(h); 3133 if (nhs->hstate_kobjs[idx]) { 3134 kobject_put(nhs->hstate_kobjs[idx]); 3135 nhs->hstate_kobjs[idx] = NULL; 3136 } 3137 } 3138 3139 kobject_put(nhs->hugepages_kobj); 3140 nhs->hugepages_kobj = NULL; 3141 } 3142 3143 3144 /* 3145 * Register hstate attributes for a single node device. 3146 * No-op if attributes already registered. 3147 */ 3148 static void hugetlb_register_node(struct node *node) 3149 { 3150 struct hstate *h; 3151 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3152 int err; 3153 3154 if (nhs->hugepages_kobj) 3155 return; /* already allocated */ 3156 3157 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3158 &node->dev.kobj); 3159 if (!nhs->hugepages_kobj) 3160 return; 3161 3162 for_each_hstate(h) { 3163 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3164 nhs->hstate_kobjs, 3165 &per_node_hstate_attr_group); 3166 if (err) { 3167 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 3168 h->name, node->dev.id); 3169 hugetlb_unregister_node(node); 3170 break; 3171 } 3172 } 3173 } 3174 3175 /* 3176 * hugetlb init time: register hstate attributes for all registered node 3177 * devices of nodes that have memory. All on-line nodes should have 3178 * registered their associated device by this time. 3179 */ 3180 static void __init hugetlb_register_all_nodes(void) 3181 { 3182 int nid; 3183 3184 for_each_node_state(nid, N_MEMORY) { 3185 struct node *node = node_devices[nid]; 3186 if (node->dev.id == nid) 3187 hugetlb_register_node(node); 3188 } 3189 3190 /* 3191 * Let the node device driver know we're here so it can 3192 * [un]register hstate attributes on node hotplug. 3193 */ 3194 register_hugetlbfs_with_node(hugetlb_register_node, 3195 hugetlb_unregister_node); 3196 } 3197 #else /* !CONFIG_NUMA */ 3198 3199 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3200 { 3201 BUG(); 3202 if (nidp) 3203 *nidp = -1; 3204 return NULL; 3205 } 3206 3207 static void hugetlb_register_all_nodes(void) { } 3208 3209 #endif 3210 3211 static int __init hugetlb_init(void) 3212 { 3213 int i; 3214 3215 if (!hugepages_supported()) 3216 return 0; 3217 3218 if (!size_to_hstate(default_hstate_size)) { 3219 if (default_hstate_size != 0) { 3220 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 3221 default_hstate_size, HPAGE_SIZE); 3222 } 3223 3224 default_hstate_size = HPAGE_SIZE; 3225 if (!size_to_hstate(default_hstate_size)) 3226 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3227 } 3228 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 3229 if (default_hstate_max_huge_pages) { 3230 if (!default_hstate.max_huge_pages) 3231 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3232 } 3233 3234 hugetlb_cma_check(); 3235 hugetlb_init_hstates(); 3236 gather_bootmem_prealloc(); 3237 report_hugepages(); 3238 3239 hugetlb_sysfs_init(); 3240 hugetlb_register_all_nodes(); 3241 hugetlb_cgroup_file_init(); 3242 3243 #ifdef CONFIG_SMP 3244 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3245 #else 3246 num_fault_mutexes = 1; 3247 #endif 3248 hugetlb_fault_mutex_table = 3249 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3250 GFP_KERNEL); 3251 BUG_ON(!hugetlb_fault_mutex_table); 3252 3253 for (i = 0; i < num_fault_mutexes; i++) 3254 mutex_init(&hugetlb_fault_mutex_table[i]); 3255 return 0; 3256 } 3257 subsys_initcall(hugetlb_init); 3258 3259 /* Should be called on processing a hugepagesz=... option */ 3260 void __init hugetlb_bad_size(void) 3261 { 3262 parsed_valid_hugepagesz = false; 3263 } 3264 3265 void __init hugetlb_add_hstate(unsigned int order) 3266 { 3267 struct hstate *h; 3268 unsigned long i; 3269 3270 if (size_to_hstate(PAGE_SIZE << order)) { 3271 pr_warn("hugepagesz= specified twice, ignoring\n"); 3272 return; 3273 } 3274 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3275 BUG_ON(order == 0); 3276 h = &hstates[hugetlb_max_hstate++]; 3277 h->order = order; 3278 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 3279 h->nr_huge_pages = 0; 3280 h->free_huge_pages = 0; 3281 for (i = 0; i < MAX_NUMNODES; ++i) 3282 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3283 INIT_LIST_HEAD(&h->hugepage_activelist); 3284 h->next_nid_to_alloc = first_memory_node; 3285 h->next_nid_to_free = first_memory_node; 3286 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3287 huge_page_size(h)/1024); 3288 3289 parsed_hstate = h; 3290 } 3291 3292 static int __init hugetlb_nrpages_setup(char *s) 3293 { 3294 unsigned long *mhp; 3295 static unsigned long *last_mhp; 3296 3297 if (!parsed_valid_hugepagesz) { 3298 pr_warn("hugepages = %s preceded by " 3299 "an unsupported hugepagesz, ignoring\n", s); 3300 parsed_valid_hugepagesz = true; 3301 return 1; 3302 } 3303 /* 3304 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 3305 * so this hugepages= parameter goes to the "default hstate". 3306 */ 3307 else if (!hugetlb_max_hstate) 3308 mhp = &default_hstate_max_huge_pages; 3309 else 3310 mhp = &parsed_hstate->max_huge_pages; 3311 3312 if (mhp == last_mhp) { 3313 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 3314 return 1; 3315 } 3316 3317 if (sscanf(s, "%lu", mhp) <= 0) 3318 *mhp = 0; 3319 3320 /* 3321 * Global state is always initialized later in hugetlb_init. 3322 * But we need to allocate >= MAX_ORDER hstates here early to still 3323 * use the bootmem allocator. 3324 */ 3325 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3326 hugetlb_hstate_alloc_pages(parsed_hstate); 3327 3328 last_mhp = mhp; 3329 3330 return 1; 3331 } 3332 __setup("hugepages=", hugetlb_nrpages_setup); 3333 3334 static int __init hugetlb_default_setup(char *s) 3335 { 3336 default_hstate_size = memparse(s, &s); 3337 return 1; 3338 } 3339 __setup("default_hugepagesz=", hugetlb_default_setup); 3340 3341 static unsigned int cpuset_mems_nr(unsigned int *array) 3342 { 3343 int node; 3344 unsigned int nr = 0; 3345 3346 for_each_node_mask(node, cpuset_current_mems_allowed) 3347 nr += array[node]; 3348 3349 return nr; 3350 } 3351 3352 #ifdef CONFIG_SYSCTL 3353 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3354 struct ctl_table *table, int write, 3355 void __user *buffer, size_t *length, loff_t *ppos) 3356 { 3357 struct hstate *h = &default_hstate; 3358 unsigned long tmp = h->max_huge_pages; 3359 int ret; 3360 3361 if (!hugepages_supported()) 3362 return -EOPNOTSUPP; 3363 3364 table->data = &tmp; 3365 table->maxlen = sizeof(unsigned long); 3366 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3367 if (ret) 3368 goto out; 3369 3370 if (write) 3371 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3372 NUMA_NO_NODE, tmp, *length); 3373 out: 3374 return ret; 3375 } 3376 3377 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3378 void __user *buffer, size_t *length, loff_t *ppos) 3379 { 3380 3381 return hugetlb_sysctl_handler_common(false, table, write, 3382 buffer, length, ppos); 3383 } 3384 3385 #ifdef CONFIG_NUMA 3386 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3387 void __user *buffer, size_t *length, loff_t *ppos) 3388 { 3389 return hugetlb_sysctl_handler_common(true, table, write, 3390 buffer, length, ppos); 3391 } 3392 #endif /* CONFIG_NUMA */ 3393 3394 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3395 void __user *buffer, 3396 size_t *length, loff_t *ppos) 3397 { 3398 struct hstate *h = &default_hstate; 3399 unsigned long tmp; 3400 int ret; 3401 3402 if (!hugepages_supported()) 3403 return -EOPNOTSUPP; 3404 3405 tmp = h->nr_overcommit_huge_pages; 3406 3407 if (write && hstate_is_gigantic(h)) 3408 return -EINVAL; 3409 3410 table->data = &tmp; 3411 table->maxlen = sizeof(unsigned long); 3412 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3413 if (ret) 3414 goto out; 3415 3416 if (write) { 3417 spin_lock(&hugetlb_lock); 3418 h->nr_overcommit_huge_pages = tmp; 3419 spin_unlock(&hugetlb_lock); 3420 } 3421 out: 3422 return ret; 3423 } 3424 3425 #endif /* CONFIG_SYSCTL */ 3426 3427 void hugetlb_report_meminfo(struct seq_file *m) 3428 { 3429 struct hstate *h; 3430 unsigned long total = 0; 3431 3432 if (!hugepages_supported()) 3433 return; 3434 3435 for_each_hstate(h) { 3436 unsigned long count = h->nr_huge_pages; 3437 3438 total += (PAGE_SIZE << huge_page_order(h)) * count; 3439 3440 if (h == &default_hstate) 3441 seq_printf(m, 3442 "HugePages_Total: %5lu\n" 3443 "HugePages_Free: %5lu\n" 3444 "HugePages_Rsvd: %5lu\n" 3445 "HugePages_Surp: %5lu\n" 3446 "Hugepagesize: %8lu kB\n", 3447 count, 3448 h->free_huge_pages, 3449 h->resv_huge_pages, 3450 h->surplus_huge_pages, 3451 (PAGE_SIZE << huge_page_order(h)) / 1024); 3452 } 3453 3454 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3455 } 3456 3457 int hugetlb_report_node_meminfo(int nid, char *buf) 3458 { 3459 struct hstate *h = &default_hstate; 3460 if (!hugepages_supported()) 3461 return 0; 3462 return sprintf(buf, 3463 "Node %d HugePages_Total: %5u\n" 3464 "Node %d HugePages_Free: %5u\n" 3465 "Node %d HugePages_Surp: %5u\n", 3466 nid, h->nr_huge_pages_node[nid], 3467 nid, h->free_huge_pages_node[nid], 3468 nid, h->surplus_huge_pages_node[nid]); 3469 } 3470 3471 void hugetlb_show_meminfo(void) 3472 { 3473 struct hstate *h; 3474 int nid; 3475 3476 if (!hugepages_supported()) 3477 return; 3478 3479 for_each_node_state(nid, N_MEMORY) 3480 for_each_hstate(h) 3481 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3482 nid, 3483 h->nr_huge_pages_node[nid], 3484 h->free_huge_pages_node[nid], 3485 h->surplus_huge_pages_node[nid], 3486 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3487 } 3488 3489 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3490 { 3491 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3492 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3493 } 3494 3495 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3496 unsigned long hugetlb_total_pages(void) 3497 { 3498 struct hstate *h; 3499 unsigned long nr_total_pages = 0; 3500 3501 for_each_hstate(h) 3502 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3503 return nr_total_pages; 3504 } 3505 3506 static int hugetlb_acct_memory(struct hstate *h, long delta) 3507 { 3508 int ret = -ENOMEM; 3509 3510 spin_lock(&hugetlb_lock); 3511 /* 3512 * When cpuset is configured, it breaks the strict hugetlb page 3513 * reservation as the accounting is done on a global variable. Such 3514 * reservation is completely rubbish in the presence of cpuset because 3515 * the reservation is not checked against page availability for the 3516 * current cpuset. Application can still potentially OOM'ed by kernel 3517 * with lack of free htlb page in cpuset that the task is in. 3518 * Attempt to enforce strict accounting with cpuset is almost 3519 * impossible (or too ugly) because cpuset is too fluid that 3520 * task or memory node can be dynamically moved between cpusets. 3521 * 3522 * The change of semantics for shared hugetlb mapping with cpuset is 3523 * undesirable. However, in order to preserve some of the semantics, 3524 * we fall back to check against current free page availability as 3525 * a best attempt and hopefully to minimize the impact of changing 3526 * semantics that cpuset has. 3527 */ 3528 if (delta > 0) { 3529 if (gather_surplus_pages(h, delta) < 0) 3530 goto out; 3531 3532 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3533 return_unused_surplus_pages(h, delta); 3534 goto out; 3535 } 3536 } 3537 3538 ret = 0; 3539 if (delta < 0) 3540 return_unused_surplus_pages(h, (unsigned long) -delta); 3541 3542 out: 3543 spin_unlock(&hugetlb_lock); 3544 return ret; 3545 } 3546 3547 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3548 { 3549 struct resv_map *resv = vma_resv_map(vma); 3550 3551 /* 3552 * This new VMA should share its siblings reservation map if present. 3553 * The VMA will only ever have a valid reservation map pointer where 3554 * it is being copied for another still existing VMA. As that VMA 3555 * has a reference to the reservation map it cannot disappear until 3556 * after this open call completes. It is therefore safe to take a 3557 * new reference here without additional locking. 3558 */ 3559 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3560 kref_get(&resv->refs); 3561 } 3562 3563 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3564 { 3565 struct hstate *h = hstate_vma(vma); 3566 struct resv_map *resv = vma_resv_map(vma); 3567 struct hugepage_subpool *spool = subpool_vma(vma); 3568 unsigned long reserve, start, end; 3569 long gbl_reserve; 3570 3571 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3572 return; 3573 3574 start = vma_hugecache_offset(h, vma, vma->vm_start); 3575 end = vma_hugecache_offset(h, vma, vma->vm_end); 3576 3577 reserve = (end - start) - region_count(resv, start, end); 3578 hugetlb_cgroup_uncharge_counter(resv, start, end); 3579 if (reserve) { 3580 /* 3581 * Decrement reserve counts. The global reserve count may be 3582 * adjusted if the subpool has a minimum size. 3583 */ 3584 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3585 hugetlb_acct_memory(h, -gbl_reserve); 3586 } 3587 3588 kref_put(&resv->refs, resv_map_release); 3589 } 3590 3591 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3592 { 3593 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3594 return -EINVAL; 3595 return 0; 3596 } 3597 3598 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3599 { 3600 struct hstate *hstate = hstate_vma(vma); 3601 3602 return 1UL << huge_page_shift(hstate); 3603 } 3604 3605 /* 3606 * We cannot handle pagefaults against hugetlb pages at all. They cause 3607 * handle_mm_fault() to try to instantiate regular-sized pages in the 3608 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3609 * this far. 3610 */ 3611 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3612 { 3613 BUG(); 3614 return 0; 3615 } 3616 3617 /* 3618 * When a new function is introduced to vm_operations_struct and added 3619 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3620 * This is because under System V memory model, mappings created via 3621 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3622 * their original vm_ops are overwritten with shm_vm_ops. 3623 */ 3624 const struct vm_operations_struct hugetlb_vm_ops = { 3625 .fault = hugetlb_vm_op_fault, 3626 .open = hugetlb_vm_op_open, 3627 .close = hugetlb_vm_op_close, 3628 .split = hugetlb_vm_op_split, 3629 .pagesize = hugetlb_vm_op_pagesize, 3630 }; 3631 3632 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3633 int writable) 3634 { 3635 pte_t entry; 3636 3637 if (writable) { 3638 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3639 vma->vm_page_prot))); 3640 } else { 3641 entry = huge_pte_wrprotect(mk_huge_pte(page, 3642 vma->vm_page_prot)); 3643 } 3644 entry = pte_mkyoung(entry); 3645 entry = pte_mkhuge(entry); 3646 entry = arch_make_huge_pte(entry, vma, page, writable); 3647 3648 return entry; 3649 } 3650 3651 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3652 unsigned long address, pte_t *ptep) 3653 { 3654 pte_t entry; 3655 3656 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3657 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3658 update_mmu_cache(vma, address, ptep); 3659 } 3660 3661 bool is_hugetlb_entry_migration(pte_t pte) 3662 { 3663 swp_entry_t swp; 3664 3665 if (huge_pte_none(pte) || pte_present(pte)) 3666 return false; 3667 swp = pte_to_swp_entry(pte); 3668 if (non_swap_entry(swp) && is_migration_entry(swp)) 3669 return true; 3670 else 3671 return false; 3672 } 3673 3674 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3675 { 3676 swp_entry_t swp; 3677 3678 if (huge_pte_none(pte) || pte_present(pte)) 3679 return 0; 3680 swp = pte_to_swp_entry(pte); 3681 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3682 return 1; 3683 else 3684 return 0; 3685 } 3686 3687 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3688 struct vm_area_struct *vma) 3689 { 3690 pte_t *src_pte, *dst_pte, entry, dst_entry; 3691 struct page *ptepage; 3692 unsigned long addr; 3693 int cow; 3694 struct hstate *h = hstate_vma(vma); 3695 unsigned long sz = huge_page_size(h); 3696 struct address_space *mapping = vma->vm_file->f_mapping; 3697 struct mmu_notifier_range range; 3698 int ret = 0; 3699 3700 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3701 3702 if (cow) { 3703 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3704 vma->vm_start, 3705 vma->vm_end); 3706 mmu_notifier_invalidate_range_start(&range); 3707 } else { 3708 /* 3709 * For shared mappings i_mmap_rwsem must be held to call 3710 * huge_pte_alloc, otherwise the returned ptep could go 3711 * away if part of a shared pmd and another thread calls 3712 * huge_pmd_unshare. 3713 */ 3714 i_mmap_lock_read(mapping); 3715 } 3716 3717 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3718 spinlock_t *src_ptl, *dst_ptl; 3719 src_pte = huge_pte_offset(src, addr, sz); 3720 if (!src_pte) 3721 continue; 3722 dst_pte = huge_pte_alloc(dst, addr, sz); 3723 if (!dst_pte) { 3724 ret = -ENOMEM; 3725 break; 3726 } 3727 3728 /* 3729 * If the pagetables are shared don't copy or take references. 3730 * dst_pte == src_pte is the common case of src/dest sharing. 3731 * 3732 * However, src could have 'unshared' and dst shares with 3733 * another vma. If dst_pte !none, this implies sharing. 3734 * Check here before taking page table lock, and once again 3735 * after taking the lock below. 3736 */ 3737 dst_entry = huge_ptep_get(dst_pte); 3738 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3739 continue; 3740 3741 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3742 src_ptl = huge_pte_lockptr(h, src, src_pte); 3743 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3744 entry = huge_ptep_get(src_pte); 3745 dst_entry = huge_ptep_get(dst_pte); 3746 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3747 /* 3748 * Skip if src entry none. Also, skip in the 3749 * unlikely case dst entry !none as this implies 3750 * sharing with another vma. 3751 */ 3752 ; 3753 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3754 is_hugetlb_entry_hwpoisoned(entry))) { 3755 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3756 3757 if (is_write_migration_entry(swp_entry) && cow) { 3758 /* 3759 * COW mappings require pages in both 3760 * parent and child to be set to read. 3761 */ 3762 make_migration_entry_read(&swp_entry); 3763 entry = swp_entry_to_pte(swp_entry); 3764 set_huge_swap_pte_at(src, addr, src_pte, 3765 entry, sz); 3766 } 3767 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3768 } else { 3769 if (cow) { 3770 /* 3771 * No need to notify as we are downgrading page 3772 * table protection not changing it to point 3773 * to a new page. 3774 * 3775 * See Documentation/vm/mmu_notifier.rst 3776 */ 3777 huge_ptep_set_wrprotect(src, addr, src_pte); 3778 } 3779 entry = huge_ptep_get(src_pte); 3780 ptepage = pte_page(entry); 3781 get_page(ptepage); 3782 page_dup_rmap(ptepage, true); 3783 set_huge_pte_at(dst, addr, dst_pte, entry); 3784 hugetlb_count_add(pages_per_huge_page(h), dst); 3785 } 3786 spin_unlock(src_ptl); 3787 spin_unlock(dst_ptl); 3788 } 3789 3790 if (cow) 3791 mmu_notifier_invalidate_range_end(&range); 3792 else 3793 i_mmap_unlock_read(mapping); 3794 3795 return ret; 3796 } 3797 3798 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3799 unsigned long start, unsigned long end, 3800 struct page *ref_page) 3801 { 3802 struct mm_struct *mm = vma->vm_mm; 3803 unsigned long address; 3804 pte_t *ptep; 3805 pte_t pte; 3806 spinlock_t *ptl; 3807 struct page *page; 3808 struct hstate *h = hstate_vma(vma); 3809 unsigned long sz = huge_page_size(h); 3810 struct mmu_notifier_range range; 3811 3812 WARN_ON(!is_vm_hugetlb_page(vma)); 3813 BUG_ON(start & ~huge_page_mask(h)); 3814 BUG_ON(end & ~huge_page_mask(h)); 3815 3816 /* 3817 * This is a hugetlb vma, all the pte entries should point 3818 * to huge page. 3819 */ 3820 tlb_change_page_size(tlb, sz); 3821 tlb_start_vma(tlb, vma); 3822 3823 /* 3824 * If sharing possible, alert mmu notifiers of worst case. 3825 */ 3826 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3827 end); 3828 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3829 mmu_notifier_invalidate_range_start(&range); 3830 address = start; 3831 for (; address < end; address += sz) { 3832 ptep = huge_pte_offset(mm, address, sz); 3833 if (!ptep) 3834 continue; 3835 3836 ptl = huge_pte_lock(h, mm, ptep); 3837 if (huge_pmd_unshare(mm, &address, ptep)) { 3838 spin_unlock(ptl); 3839 /* 3840 * We just unmapped a page of PMDs by clearing a PUD. 3841 * The caller's TLB flush range should cover this area. 3842 */ 3843 continue; 3844 } 3845 3846 pte = huge_ptep_get(ptep); 3847 if (huge_pte_none(pte)) { 3848 spin_unlock(ptl); 3849 continue; 3850 } 3851 3852 /* 3853 * Migrating hugepage or HWPoisoned hugepage is already 3854 * unmapped and its refcount is dropped, so just clear pte here. 3855 */ 3856 if (unlikely(!pte_present(pte))) { 3857 huge_pte_clear(mm, address, ptep, sz); 3858 spin_unlock(ptl); 3859 continue; 3860 } 3861 3862 page = pte_page(pte); 3863 /* 3864 * If a reference page is supplied, it is because a specific 3865 * page is being unmapped, not a range. Ensure the page we 3866 * are about to unmap is the actual page of interest. 3867 */ 3868 if (ref_page) { 3869 if (page != ref_page) { 3870 spin_unlock(ptl); 3871 continue; 3872 } 3873 /* 3874 * Mark the VMA as having unmapped its page so that 3875 * future faults in this VMA will fail rather than 3876 * looking like data was lost 3877 */ 3878 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3879 } 3880 3881 pte = huge_ptep_get_and_clear(mm, address, ptep); 3882 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3883 if (huge_pte_dirty(pte)) 3884 set_page_dirty(page); 3885 3886 hugetlb_count_sub(pages_per_huge_page(h), mm); 3887 page_remove_rmap(page, true); 3888 3889 spin_unlock(ptl); 3890 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3891 /* 3892 * Bail out after unmapping reference page if supplied 3893 */ 3894 if (ref_page) 3895 break; 3896 } 3897 mmu_notifier_invalidate_range_end(&range); 3898 tlb_end_vma(tlb, vma); 3899 } 3900 3901 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3902 struct vm_area_struct *vma, unsigned long start, 3903 unsigned long end, struct page *ref_page) 3904 { 3905 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3906 3907 /* 3908 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3909 * test will fail on a vma being torn down, and not grab a page table 3910 * on its way out. We're lucky that the flag has such an appropriate 3911 * name, and can in fact be safely cleared here. We could clear it 3912 * before the __unmap_hugepage_range above, but all that's necessary 3913 * is to clear it before releasing the i_mmap_rwsem. This works 3914 * because in the context this is called, the VMA is about to be 3915 * destroyed and the i_mmap_rwsem is held. 3916 */ 3917 vma->vm_flags &= ~VM_MAYSHARE; 3918 } 3919 3920 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3921 unsigned long end, struct page *ref_page) 3922 { 3923 struct mm_struct *mm; 3924 struct mmu_gather tlb; 3925 unsigned long tlb_start = start; 3926 unsigned long tlb_end = end; 3927 3928 /* 3929 * If shared PMDs were possibly used within this vma range, adjust 3930 * start/end for worst case tlb flushing. 3931 * Note that we can not be sure if PMDs are shared until we try to 3932 * unmap pages. However, we want to make sure TLB flushing covers 3933 * the largest possible range. 3934 */ 3935 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3936 3937 mm = vma->vm_mm; 3938 3939 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3940 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3941 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3942 } 3943 3944 /* 3945 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3946 * mappping it owns the reserve page for. The intention is to unmap the page 3947 * from other VMAs and let the children be SIGKILLed if they are faulting the 3948 * same region. 3949 */ 3950 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3951 struct page *page, unsigned long address) 3952 { 3953 struct hstate *h = hstate_vma(vma); 3954 struct vm_area_struct *iter_vma; 3955 struct address_space *mapping; 3956 pgoff_t pgoff; 3957 3958 /* 3959 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3960 * from page cache lookup which is in HPAGE_SIZE units. 3961 */ 3962 address = address & huge_page_mask(h); 3963 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3964 vma->vm_pgoff; 3965 mapping = vma->vm_file->f_mapping; 3966 3967 /* 3968 * Take the mapping lock for the duration of the table walk. As 3969 * this mapping should be shared between all the VMAs, 3970 * __unmap_hugepage_range() is called as the lock is already held 3971 */ 3972 i_mmap_lock_write(mapping); 3973 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3974 /* Do not unmap the current VMA */ 3975 if (iter_vma == vma) 3976 continue; 3977 3978 /* 3979 * Shared VMAs have their own reserves and do not affect 3980 * MAP_PRIVATE accounting but it is possible that a shared 3981 * VMA is using the same page so check and skip such VMAs. 3982 */ 3983 if (iter_vma->vm_flags & VM_MAYSHARE) 3984 continue; 3985 3986 /* 3987 * Unmap the page from other VMAs without their own reserves. 3988 * They get marked to be SIGKILLed if they fault in these 3989 * areas. This is because a future no-page fault on this VMA 3990 * could insert a zeroed page instead of the data existing 3991 * from the time of fork. This would look like data corruption 3992 */ 3993 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3994 unmap_hugepage_range(iter_vma, address, 3995 address + huge_page_size(h), page); 3996 } 3997 i_mmap_unlock_write(mapping); 3998 } 3999 4000 /* 4001 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4002 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4003 * cannot race with other handlers or page migration. 4004 * Keep the pte_same checks anyway to make transition from the mutex easier. 4005 */ 4006 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4007 unsigned long address, pte_t *ptep, 4008 struct page *pagecache_page, spinlock_t *ptl) 4009 { 4010 pte_t pte; 4011 struct hstate *h = hstate_vma(vma); 4012 struct page *old_page, *new_page; 4013 int outside_reserve = 0; 4014 vm_fault_t ret = 0; 4015 unsigned long haddr = address & huge_page_mask(h); 4016 struct mmu_notifier_range range; 4017 4018 pte = huge_ptep_get(ptep); 4019 old_page = pte_page(pte); 4020 4021 retry_avoidcopy: 4022 /* If no-one else is actually using this page, avoid the copy 4023 * and just make the page writable */ 4024 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4025 page_move_anon_rmap(old_page, vma); 4026 set_huge_ptep_writable(vma, haddr, ptep); 4027 return 0; 4028 } 4029 4030 /* 4031 * If the process that created a MAP_PRIVATE mapping is about to 4032 * perform a COW due to a shared page count, attempt to satisfy 4033 * the allocation without using the existing reserves. The pagecache 4034 * page is used to determine if the reserve at this address was 4035 * consumed or not. If reserves were used, a partial faulted mapping 4036 * at the time of fork() could consume its reserves on COW instead 4037 * of the full address range. 4038 */ 4039 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4040 old_page != pagecache_page) 4041 outside_reserve = 1; 4042 4043 get_page(old_page); 4044 4045 /* 4046 * Drop page table lock as buddy allocator may be called. It will 4047 * be acquired again before returning to the caller, as expected. 4048 */ 4049 spin_unlock(ptl); 4050 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4051 4052 if (IS_ERR(new_page)) { 4053 /* 4054 * If a process owning a MAP_PRIVATE mapping fails to COW, 4055 * it is due to references held by a child and an insufficient 4056 * huge page pool. To guarantee the original mappers 4057 * reliability, unmap the page from child processes. The child 4058 * may get SIGKILLed if it later faults. 4059 */ 4060 if (outside_reserve) { 4061 put_page(old_page); 4062 BUG_ON(huge_pte_none(pte)); 4063 unmap_ref_private(mm, vma, old_page, haddr); 4064 BUG_ON(huge_pte_none(pte)); 4065 spin_lock(ptl); 4066 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4067 if (likely(ptep && 4068 pte_same(huge_ptep_get(ptep), pte))) 4069 goto retry_avoidcopy; 4070 /* 4071 * race occurs while re-acquiring page table 4072 * lock, and our job is done. 4073 */ 4074 return 0; 4075 } 4076 4077 ret = vmf_error(PTR_ERR(new_page)); 4078 goto out_release_old; 4079 } 4080 4081 /* 4082 * When the original hugepage is shared one, it does not have 4083 * anon_vma prepared. 4084 */ 4085 if (unlikely(anon_vma_prepare(vma))) { 4086 ret = VM_FAULT_OOM; 4087 goto out_release_all; 4088 } 4089 4090 copy_user_huge_page(new_page, old_page, address, vma, 4091 pages_per_huge_page(h)); 4092 __SetPageUptodate(new_page); 4093 4094 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4095 haddr + huge_page_size(h)); 4096 mmu_notifier_invalidate_range_start(&range); 4097 4098 /* 4099 * Retake the page table lock to check for racing updates 4100 * before the page tables are altered 4101 */ 4102 spin_lock(ptl); 4103 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4104 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4105 ClearPagePrivate(new_page); 4106 4107 /* Break COW */ 4108 huge_ptep_clear_flush(vma, haddr, ptep); 4109 mmu_notifier_invalidate_range(mm, range.start, range.end); 4110 set_huge_pte_at(mm, haddr, ptep, 4111 make_huge_pte(vma, new_page, 1)); 4112 page_remove_rmap(old_page, true); 4113 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4114 set_page_huge_active(new_page); 4115 /* Make the old page be freed below */ 4116 new_page = old_page; 4117 } 4118 spin_unlock(ptl); 4119 mmu_notifier_invalidate_range_end(&range); 4120 out_release_all: 4121 restore_reserve_on_error(h, vma, haddr, new_page); 4122 put_page(new_page); 4123 out_release_old: 4124 put_page(old_page); 4125 4126 spin_lock(ptl); /* Caller expects lock to be held */ 4127 return ret; 4128 } 4129 4130 /* Return the pagecache page at a given address within a VMA */ 4131 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4132 struct vm_area_struct *vma, unsigned long address) 4133 { 4134 struct address_space *mapping; 4135 pgoff_t idx; 4136 4137 mapping = vma->vm_file->f_mapping; 4138 idx = vma_hugecache_offset(h, vma, address); 4139 4140 return find_lock_page(mapping, idx); 4141 } 4142 4143 /* 4144 * Return whether there is a pagecache page to back given address within VMA. 4145 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4146 */ 4147 static bool hugetlbfs_pagecache_present(struct hstate *h, 4148 struct vm_area_struct *vma, unsigned long address) 4149 { 4150 struct address_space *mapping; 4151 pgoff_t idx; 4152 struct page *page; 4153 4154 mapping = vma->vm_file->f_mapping; 4155 idx = vma_hugecache_offset(h, vma, address); 4156 4157 page = find_get_page(mapping, idx); 4158 if (page) 4159 put_page(page); 4160 return page != NULL; 4161 } 4162 4163 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4164 pgoff_t idx) 4165 { 4166 struct inode *inode = mapping->host; 4167 struct hstate *h = hstate_inode(inode); 4168 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4169 4170 if (err) 4171 return err; 4172 ClearPagePrivate(page); 4173 4174 /* 4175 * set page dirty so that it will not be removed from cache/file 4176 * by non-hugetlbfs specific code paths. 4177 */ 4178 set_page_dirty(page); 4179 4180 spin_lock(&inode->i_lock); 4181 inode->i_blocks += blocks_per_huge_page(h); 4182 spin_unlock(&inode->i_lock); 4183 return 0; 4184 } 4185 4186 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4187 struct vm_area_struct *vma, 4188 struct address_space *mapping, pgoff_t idx, 4189 unsigned long address, pte_t *ptep, unsigned int flags) 4190 { 4191 struct hstate *h = hstate_vma(vma); 4192 vm_fault_t ret = VM_FAULT_SIGBUS; 4193 int anon_rmap = 0; 4194 unsigned long size; 4195 struct page *page; 4196 pte_t new_pte; 4197 spinlock_t *ptl; 4198 unsigned long haddr = address & huge_page_mask(h); 4199 bool new_page = false; 4200 4201 /* 4202 * Currently, we are forced to kill the process in the event the 4203 * original mapper has unmapped pages from the child due to a failed 4204 * COW. Warn that such a situation has occurred as it may not be obvious 4205 */ 4206 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4207 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4208 current->pid); 4209 return ret; 4210 } 4211 4212 /* 4213 * We can not race with truncation due to holding i_mmap_rwsem. 4214 * i_size is modified when holding i_mmap_rwsem, so check here 4215 * once for faults beyond end of file. 4216 */ 4217 size = i_size_read(mapping->host) >> huge_page_shift(h); 4218 if (idx >= size) 4219 goto out; 4220 4221 retry: 4222 page = find_lock_page(mapping, idx); 4223 if (!page) { 4224 /* 4225 * Check for page in userfault range 4226 */ 4227 if (userfaultfd_missing(vma)) { 4228 u32 hash; 4229 struct vm_fault vmf = { 4230 .vma = vma, 4231 .address = haddr, 4232 .flags = flags, 4233 /* 4234 * Hard to debug if it ends up being 4235 * used by a callee that assumes 4236 * something about the other 4237 * uninitialized fields... same as in 4238 * memory.c 4239 */ 4240 }; 4241 4242 /* 4243 * hugetlb_fault_mutex and i_mmap_rwsem must be 4244 * dropped before handling userfault. Reacquire 4245 * after handling fault to make calling code simpler. 4246 */ 4247 hash = hugetlb_fault_mutex_hash(mapping, idx); 4248 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4249 i_mmap_unlock_read(mapping); 4250 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4251 i_mmap_lock_read(mapping); 4252 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4253 goto out; 4254 } 4255 4256 page = alloc_huge_page(vma, haddr, 0); 4257 if (IS_ERR(page)) { 4258 /* 4259 * Returning error will result in faulting task being 4260 * sent SIGBUS. The hugetlb fault mutex prevents two 4261 * tasks from racing to fault in the same page which 4262 * could result in false unable to allocate errors. 4263 * Page migration does not take the fault mutex, but 4264 * does a clear then write of pte's under page table 4265 * lock. Page fault code could race with migration, 4266 * notice the clear pte and try to allocate a page 4267 * here. Before returning error, get ptl and make 4268 * sure there really is no pte entry. 4269 */ 4270 ptl = huge_pte_lock(h, mm, ptep); 4271 if (!huge_pte_none(huge_ptep_get(ptep))) { 4272 ret = 0; 4273 spin_unlock(ptl); 4274 goto out; 4275 } 4276 spin_unlock(ptl); 4277 ret = vmf_error(PTR_ERR(page)); 4278 goto out; 4279 } 4280 clear_huge_page(page, address, pages_per_huge_page(h)); 4281 __SetPageUptodate(page); 4282 new_page = true; 4283 4284 if (vma->vm_flags & VM_MAYSHARE) { 4285 int err = huge_add_to_page_cache(page, mapping, idx); 4286 if (err) { 4287 put_page(page); 4288 if (err == -EEXIST) 4289 goto retry; 4290 goto out; 4291 } 4292 } else { 4293 lock_page(page); 4294 if (unlikely(anon_vma_prepare(vma))) { 4295 ret = VM_FAULT_OOM; 4296 goto backout_unlocked; 4297 } 4298 anon_rmap = 1; 4299 } 4300 } else { 4301 /* 4302 * If memory error occurs between mmap() and fault, some process 4303 * don't have hwpoisoned swap entry for errored virtual address. 4304 * So we need to block hugepage fault by PG_hwpoison bit check. 4305 */ 4306 if (unlikely(PageHWPoison(page))) { 4307 ret = VM_FAULT_HWPOISON | 4308 VM_FAULT_SET_HINDEX(hstate_index(h)); 4309 goto backout_unlocked; 4310 } 4311 } 4312 4313 /* 4314 * If we are going to COW a private mapping later, we examine the 4315 * pending reservations for this page now. This will ensure that 4316 * any allocations necessary to record that reservation occur outside 4317 * the spinlock. 4318 */ 4319 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4320 if (vma_needs_reservation(h, vma, haddr) < 0) { 4321 ret = VM_FAULT_OOM; 4322 goto backout_unlocked; 4323 } 4324 /* Just decrements count, does not deallocate */ 4325 vma_end_reservation(h, vma, haddr); 4326 } 4327 4328 ptl = huge_pte_lock(h, mm, ptep); 4329 ret = 0; 4330 if (!huge_pte_none(huge_ptep_get(ptep))) 4331 goto backout; 4332 4333 if (anon_rmap) { 4334 ClearPagePrivate(page); 4335 hugepage_add_new_anon_rmap(page, vma, haddr); 4336 } else 4337 page_dup_rmap(page, true); 4338 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4339 && (vma->vm_flags & VM_SHARED))); 4340 set_huge_pte_at(mm, haddr, ptep, new_pte); 4341 4342 hugetlb_count_add(pages_per_huge_page(h), mm); 4343 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4344 /* Optimization, do the COW without a second fault */ 4345 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4346 } 4347 4348 spin_unlock(ptl); 4349 4350 /* 4351 * Only make newly allocated pages active. Existing pages found 4352 * in the pagecache could be !page_huge_active() if they have been 4353 * isolated for migration. 4354 */ 4355 if (new_page) 4356 set_page_huge_active(page); 4357 4358 unlock_page(page); 4359 out: 4360 return ret; 4361 4362 backout: 4363 spin_unlock(ptl); 4364 backout_unlocked: 4365 unlock_page(page); 4366 restore_reserve_on_error(h, vma, haddr, page); 4367 put_page(page); 4368 goto out; 4369 } 4370 4371 #ifdef CONFIG_SMP 4372 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4373 { 4374 unsigned long key[2]; 4375 u32 hash; 4376 4377 key[0] = (unsigned long) mapping; 4378 key[1] = idx; 4379 4380 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4381 4382 return hash & (num_fault_mutexes - 1); 4383 } 4384 #else 4385 /* 4386 * For uniprocesor systems we always use a single mutex, so just 4387 * return 0 and avoid the hashing overhead. 4388 */ 4389 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4390 { 4391 return 0; 4392 } 4393 #endif 4394 4395 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4396 unsigned long address, unsigned int flags) 4397 { 4398 pte_t *ptep, entry; 4399 spinlock_t *ptl; 4400 vm_fault_t ret; 4401 u32 hash; 4402 pgoff_t idx; 4403 struct page *page = NULL; 4404 struct page *pagecache_page = NULL; 4405 struct hstate *h = hstate_vma(vma); 4406 struct address_space *mapping; 4407 int need_wait_lock = 0; 4408 unsigned long haddr = address & huge_page_mask(h); 4409 4410 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4411 if (ptep) { 4412 /* 4413 * Since we hold no locks, ptep could be stale. That is 4414 * OK as we are only making decisions based on content and 4415 * not actually modifying content here. 4416 */ 4417 entry = huge_ptep_get(ptep); 4418 if (unlikely(is_hugetlb_entry_migration(entry))) { 4419 migration_entry_wait_huge(vma, mm, ptep); 4420 return 0; 4421 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4422 return VM_FAULT_HWPOISON_LARGE | 4423 VM_FAULT_SET_HINDEX(hstate_index(h)); 4424 } else { 4425 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4426 if (!ptep) 4427 return VM_FAULT_OOM; 4428 } 4429 4430 /* 4431 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4432 * until finished with ptep. This serves two purposes: 4433 * 1) It prevents huge_pmd_unshare from being called elsewhere 4434 * and making the ptep no longer valid. 4435 * 2) It synchronizes us with i_size modifications during truncation. 4436 * 4437 * ptep could have already be assigned via huge_pte_offset. That 4438 * is OK, as huge_pte_alloc will return the same value unless 4439 * something has changed. 4440 */ 4441 mapping = vma->vm_file->f_mapping; 4442 i_mmap_lock_read(mapping); 4443 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4444 if (!ptep) { 4445 i_mmap_unlock_read(mapping); 4446 return VM_FAULT_OOM; 4447 } 4448 4449 /* 4450 * Serialize hugepage allocation and instantiation, so that we don't 4451 * get spurious allocation failures if two CPUs race to instantiate 4452 * the same page in the page cache. 4453 */ 4454 idx = vma_hugecache_offset(h, vma, haddr); 4455 hash = hugetlb_fault_mutex_hash(mapping, idx); 4456 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4457 4458 entry = huge_ptep_get(ptep); 4459 if (huge_pte_none(entry)) { 4460 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4461 goto out_mutex; 4462 } 4463 4464 ret = 0; 4465 4466 /* 4467 * entry could be a migration/hwpoison entry at this point, so this 4468 * check prevents the kernel from going below assuming that we have 4469 * a active hugepage in pagecache. This goto expects the 2nd page fault, 4470 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 4471 * handle it. 4472 */ 4473 if (!pte_present(entry)) 4474 goto out_mutex; 4475 4476 /* 4477 * If we are going to COW the mapping later, we examine the pending 4478 * reservations for this page now. This will ensure that any 4479 * allocations necessary to record that reservation occur outside the 4480 * spinlock. For private mappings, we also lookup the pagecache 4481 * page now as it is used to determine if a reservation has been 4482 * consumed. 4483 */ 4484 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4485 if (vma_needs_reservation(h, vma, haddr) < 0) { 4486 ret = VM_FAULT_OOM; 4487 goto out_mutex; 4488 } 4489 /* Just decrements count, does not deallocate */ 4490 vma_end_reservation(h, vma, haddr); 4491 4492 if (!(vma->vm_flags & VM_MAYSHARE)) 4493 pagecache_page = hugetlbfs_pagecache_page(h, 4494 vma, haddr); 4495 } 4496 4497 ptl = huge_pte_lock(h, mm, ptep); 4498 4499 /* Check for a racing update before calling hugetlb_cow */ 4500 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4501 goto out_ptl; 4502 4503 /* 4504 * hugetlb_cow() requires page locks of pte_page(entry) and 4505 * pagecache_page, so here we need take the former one 4506 * when page != pagecache_page or !pagecache_page. 4507 */ 4508 page = pte_page(entry); 4509 if (page != pagecache_page) 4510 if (!trylock_page(page)) { 4511 need_wait_lock = 1; 4512 goto out_ptl; 4513 } 4514 4515 get_page(page); 4516 4517 if (flags & FAULT_FLAG_WRITE) { 4518 if (!huge_pte_write(entry)) { 4519 ret = hugetlb_cow(mm, vma, address, ptep, 4520 pagecache_page, ptl); 4521 goto out_put_page; 4522 } 4523 entry = huge_pte_mkdirty(entry); 4524 } 4525 entry = pte_mkyoung(entry); 4526 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4527 flags & FAULT_FLAG_WRITE)) 4528 update_mmu_cache(vma, haddr, ptep); 4529 out_put_page: 4530 if (page != pagecache_page) 4531 unlock_page(page); 4532 put_page(page); 4533 out_ptl: 4534 spin_unlock(ptl); 4535 4536 if (pagecache_page) { 4537 unlock_page(pagecache_page); 4538 put_page(pagecache_page); 4539 } 4540 out_mutex: 4541 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4542 i_mmap_unlock_read(mapping); 4543 /* 4544 * Generally it's safe to hold refcount during waiting page lock. But 4545 * here we just wait to defer the next page fault to avoid busy loop and 4546 * the page is not used after unlocked before returning from the current 4547 * page fault. So we are safe from accessing freed page, even if we wait 4548 * here without taking refcount. 4549 */ 4550 if (need_wait_lock) 4551 wait_on_page_locked(page); 4552 return ret; 4553 } 4554 4555 /* 4556 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4557 * modifications for huge pages. 4558 */ 4559 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4560 pte_t *dst_pte, 4561 struct vm_area_struct *dst_vma, 4562 unsigned long dst_addr, 4563 unsigned long src_addr, 4564 struct page **pagep) 4565 { 4566 struct address_space *mapping; 4567 pgoff_t idx; 4568 unsigned long size; 4569 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4570 struct hstate *h = hstate_vma(dst_vma); 4571 pte_t _dst_pte; 4572 spinlock_t *ptl; 4573 int ret; 4574 struct page *page; 4575 4576 if (!*pagep) { 4577 ret = -ENOMEM; 4578 page = alloc_huge_page(dst_vma, dst_addr, 0); 4579 if (IS_ERR(page)) 4580 goto out; 4581 4582 ret = copy_huge_page_from_user(page, 4583 (const void __user *) src_addr, 4584 pages_per_huge_page(h), false); 4585 4586 /* fallback to copy_from_user outside mmap_sem */ 4587 if (unlikely(ret)) { 4588 ret = -ENOENT; 4589 *pagep = page; 4590 /* don't free the page */ 4591 goto out; 4592 } 4593 } else { 4594 page = *pagep; 4595 *pagep = NULL; 4596 } 4597 4598 /* 4599 * The memory barrier inside __SetPageUptodate makes sure that 4600 * preceding stores to the page contents become visible before 4601 * the set_pte_at() write. 4602 */ 4603 __SetPageUptodate(page); 4604 4605 mapping = dst_vma->vm_file->f_mapping; 4606 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4607 4608 /* 4609 * If shared, add to page cache 4610 */ 4611 if (vm_shared) { 4612 size = i_size_read(mapping->host) >> huge_page_shift(h); 4613 ret = -EFAULT; 4614 if (idx >= size) 4615 goto out_release_nounlock; 4616 4617 /* 4618 * Serialization between remove_inode_hugepages() and 4619 * huge_add_to_page_cache() below happens through the 4620 * hugetlb_fault_mutex_table that here must be hold by 4621 * the caller. 4622 */ 4623 ret = huge_add_to_page_cache(page, mapping, idx); 4624 if (ret) 4625 goto out_release_nounlock; 4626 } 4627 4628 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4629 spin_lock(ptl); 4630 4631 /* 4632 * Recheck the i_size after holding PT lock to make sure not 4633 * to leave any page mapped (as page_mapped()) beyond the end 4634 * of the i_size (remove_inode_hugepages() is strict about 4635 * enforcing that). If we bail out here, we'll also leave a 4636 * page in the radix tree in the vm_shared case beyond the end 4637 * of the i_size, but remove_inode_hugepages() will take care 4638 * of it as soon as we drop the hugetlb_fault_mutex_table. 4639 */ 4640 size = i_size_read(mapping->host) >> huge_page_shift(h); 4641 ret = -EFAULT; 4642 if (idx >= size) 4643 goto out_release_unlock; 4644 4645 ret = -EEXIST; 4646 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4647 goto out_release_unlock; 4648 4649 if (vm_shared) { 4650 page_dup_rmap(page, true); 4651 } else { 4652 ClearPagePrivate(page); 4653 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4654 } 4655 4656 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4657 if (dst_vma->vm_flags & VM_WRITE) 4658 _dst_pte = huge_pte_mkdirty(_dst_pte); 4659 _dst_pte = pte_mkyoung(_dst_pte); 4660 4661 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4662 4663 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4664 dst_vma->vm_flags & VM_WRITE); 4665 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4666 4667 /* No need to invalidate - it was non-present before */ 4668 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4669 4670 spin_unlock(ptl); 4671 set_page_huge_active(page); 4672 if (vm_shared) 4673 unlock_page(page); 4674 ret = 0; 4675 out: 4676 return ret; 4677 out_release_unlock: 4678 spin_unlock(ptl); 4679 if (vm_shared) 4680 unlock_page(page); 4681 out_release_nounlock: 4682 put_page(page); 4683 goto out; 4684 } 4685 4686 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4687 struct page **pages, struct vm_area_struct **vmas, 4688 unsigned long *position, unsigned long *nr_pages, 4689 long i, unsigned int flags, int *locked) 4690 { 4691 unsigned long pfn_offset; 4692 unsigned long vaddr = *position; 4693 unsigned long remainder = *nr_pages; 4694 struct hstate *h = hstate_vma(vma); 4695 int err = -EFAULT; 4696 4697 while (vaddr < vma->vm_end && remainder) { 4698 pte_t *pte; 4699 spinlock_t *ptl = NULL; 4700 int absent; 4701 struct page *page; 4702 4703 /* 4704 * If we have a pending SIGKILL, don't keep faulting pages and 4705 * potentially allocating memory. 4706 */ 4707 if (fatal_signal_pending(current)) { 4708 remainder = 0; 4709 break; 4710 } 4711 4712 /* 4713 * Some archs (sparc64, sh*) have multiple pte_ts to 4714 * each hugepage. We have to make sure we get the 4715 * first, for the page indexing below to work. 4716 * 4717 * Note that page table lock is not held when pte is null. 4718 */ 4719 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4720 huge_page_size(h)); 4721 if (pte) 4722 ptl = huge_pte_lock(h, mm, pte); 4723 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4724 4725 /* 4726 * When coredumping, it suits get_dump_page if we just return 4727 * an error where there's an empty slot with no huge pagecache 4728 * to back it. This way, we avoid allocating a hugepage, and 4729 * the sparse dumpfile avoids allocating disk blocks, but its 4730 * huge holes still show up with zeroes where they need to be. 4731 */ 4732 if (absent && (flags & FOLL_DUMP) && 4733 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4734 if (pte) 4735 spin_unlock(ptl); 4736 remainder = 0; 4737 break; 4738 } 4739 4740 /* 4741 * We need call hugetlb_fault for both hugepages under migration 4742 * (in which case hugetlb_fault waits for the migration,) and 4743 * hwpoisoned hugepages (in which case we need to prevent the 4744 * caller from accessing to them.) In order to do this, we use 4745 * here is_swap_pte instead of is_hugetlb_entry_migration and 4746 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4747 * both cases, and because we can't follow correct pages 4748 * directly from any kind of swap entries. 4749 */ 4750 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4751 ((flags & FOLL_WRITE) && 4752 !huge_pte_write(huge_ptep_get(pte)))) { 4753 vm_fault_t ret; 4754 unsigned int fault_flags = 0; 4755 4756 if (pte) 4757 spin_unlock(ptl); 4758 if (flags & FOLL_WRITE) 4759 fault_flags |= FAULT_FLAG_WRITE; 4760 if (locked) 4761 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4762 FAULT_FLAG_KILLABLE; 4763 if (flags & FOLL_NOWAIT) 4764 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4765 FAULT_FLAG_RETRY_NOWAIT; 4766 if (flags & FOLL_TRIED) { 4767 /* 4768 * Note: FAULT_FLAG_ALLOW_RETRY and 4769 * FAULT_FLAG_TRIED can co-exist 4770 */ 4771 fault_flags |= FAULT_FLAG_TRIED; 4772 } 4773 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4774 if (ret & VM_FAULT_ERROR) { 4775 err = vm_fault_to_errno(ret, flags); 4776 remainder = 0; 4777 break; 4778 } 4779 if (ret & VM_FAULT_RETRY) { 4780 if (locked && 4781 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4782 *locked = 0; 4783 *nr_pages = 0; 4784 /* 4785 * VM_FAULT_RETRY must not return an 4786 * error, it will return zero 4787 * instead. 4788 * 4789 * No need to update "position" as the 4790 * caller will not check it after 4791 * *nr_pages is set to 0. 4792 */ 4793 return i; 4794 } 4795 continue; 4796 } 4797 4798 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4799 page = pte_page(huge_ptep_get(pte)); 4800 4801 /* 4802 * If subpage information not requested, update counters 4803 * and skip the same_page loop below. 4804 */ 4805 if (!pages && !vmas && !pfn_offset && 4806 (vaddr + huge_page_size(h) < vma->vm_end) && 4807 (remainder >= pages_per_huge_page(h))) { 4808 vaddr += huge_page_size(h); 4809 remainder -= pages_per_huge_page(h); 4810 i += pages_per_huge_page(h); 4811 spin_unlock(ptl); 4812 continue; 4813 } 4814 4815 same_page: 4816 if (pages) { 4817 pages[i] = mem_map_offset(page, pfn_offset); 4818 /* 4819 * try_grab_page() should always succeed here, because: 4820 * a) we hold the ptl lock, and b) we've just checked 4821 * that the huge page is present in the page tables. If 4822 * the huge page is present, then the tail pages must 4823 * also be present. The ptl prevents the head page and 4824 * tail pages from being rearranged in any way. So this 4825 * page must be available at this point, unless the page 4826 * refcount overflowed: 4827 */ 4828 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { 4829 spin_unlock(ptl); 4830 remainder = 0; 4831 err = -ENOMEM; 4832 break; 4833 } 4834 } 4835 4836 if (vmas) 4837 vmas[i] = vma; 4838 4839 vaddr += PAGE_SIZE; 4840 ++pfn_offset; 4841 --remainder; 4842 ++i; 4843 if (vaddr < vma->vm_end && remainder && 4844 pfn_offset < pages_per_huge_page(h)) { 4845 /* 4846 * We use pfn_offset to avoid touching the pageframes 4847 * of this compound page. 4848 */ 4849 goto same_page; 4850 } 4851 spin_unlock(ptl); 4852 } 4853 *nr_pages = remainder; 4854 /* 4855 * setting position is actually required only if remainder is 4856 * not zero but it's faster not to add a "if (remainder)" 4857 * branch. 4858 */ 4859 *position = vaddr; 4860 4861 return i ? i : err; 4862 } 4863 4864 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4865 /* 4866 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4867 * implement this. 4868 */ 4869 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4870 #endif 4871 4872 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4873 unsigned long address, unsigned long end, pgprot_t newprot) 4874 { 4875 struct mm_struct *mm = vma->vm_mm; 4876 unsigned long start = address; 4877 pte_t *ptep; 4878 pte_t pte; 4879 struct hstate *h = hstate_vma(vma); 4880 unsigned long pages = 0; 4881 bool shared_pmd = false; 4882 struct mmu_notifier_range range; 4883 4884 /* 4885 * In the case of shared PMDs, the area to flush could be beyond 4886 * start/end. Set range.start/range.end to cover the maximum possible 4887 * range if PMD sharing is possible. 4888 */ 4889 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4890 0, vma, mm, start, end); 4891 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4892 4893 BUG_ON(address >= end); 4894 flush_cache_range(vma, range.start, range.end); 4895 4896 mmu_notifier_invalidate_range_start(&range); 4897 i_mmap_lock_write(vma->vm_file->f_mapping); 4898 for (; address < end; address += huge_page_size(h)) { 4899 spinlock_t *ptl; 4900 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4901 if (!ptep) 4902 continue; 4903 ptl = huge_pte_lock(h, mm, ptep); 4904 if (huge_pmd_unshare(mm, &address, ptep)) { 4905 pages++; 4906 spin_unlock(ptl); 4907 shared_pmd = true; 4908 continue; 4909 } 4910 pte = huge_ptep_get(ptep); 4911 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4912 spin_unlock(ptl); 4913 continue; 4914 } 4915 if (unlikely(is_hugetlb_entry_migration(pte))) { 4916 swp_entry_t entry = pte_to_swp_entry(pte); 4917 4918 if (is_write_migration_entry(entry)) { 4919 pte_t newpte; 4920 4921 make_migration_entry_read(&entry); 4922 newpte = swp_entry_to_pte(entry); 4923 set_huge_swap_pte_at(mm, address, ptep, 4924 newpte, huge_page_size(h)); 4925 pages++; 4926 } 4927 spin_unlock(ptl); 4928 continue; 4929 } 4930 if (!huge_pte_none(pte)) { 4931 pte_t old_pte; 4932 4933 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4934 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4935 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4936 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4937 pages++; 4938 } 4939 spin_unlock(ptl); 4940 } 4941 /* 4942 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4943 * may have cleared our pud entry and done put_page on the page table: 4944 * once we release i_mmap_rwsem, another task can do the final put_page 4945 * and that page table be reused and filled with junk. If we actually 4946 * did unshare a page of pmds, flush the range corresponding to the pud. 4947 */ 4948 if (shared_pmd) 4949 flush_hugetlb_tlb_range(vma, range.start, range.end); 4950 else 4951 flush_hugetlb_tlb_range(vma, start, end); 4952 /* 4953 * No need to call mmu_notifier_invalidate_range() we are downgrading 4954 * page table protection not changing it to point to a new page. 4955 * 4956 * See Documentation/vm/mmu_notifier.rst 4957 */ 4958 i_mmap_unlock_write(vma->vm_file->f_mapping); 4959 mmu_notifier_invalidate_range_end(&range); 4960 4961 return pages << h->order; 4962 } 4963 4964 int hugetlb_reserve_pages(struct inode *inode, 4965 long from, long to, 4966 struct vm_area_struct *vma, 4967 vm_flags_t vm_flags) 4968 { 4969 long ret, chg, add = -1; 4970 struct hstate *h = hstate_inode(inode); 4971 struct hugepage_subpool *spool = subpool_inode(inode); 4972 struct resv_map *resv_map; 4973 struct hugetlb_cgroup *h_cg = NULL; 4974 long gbl_reserve, regions_needed = 0; 4975 4976 /* This should never happen */ 4977 if (from > to) { 4978 VM_WARN(1, "%s called with a negative range\n", __func__); 4979 return -EINVAL; 4980 } 4981 4982 /* 4983 * Only apply hugepage reservation if asked. At fault time, an 4984 * attempt will be made for VM_NORESERVE to allocate a page 4985 * without using reserves 4986 */ 4987 if (vm_flags & VM_NORESERVE) 4988 return 0; 4989 4990 /* 4991 * Shared mappings base their reservation on the number of pages that 4992 * are already allocated on behalf of the file. Private mappings need 4993 * to reserve the full area even if read-only as mprotect() may be 4994 * called to make the mapping read-write. Assume !vma is a shm mapping 4995 */ 4996 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4997 /* 4998 * resv_map can not be NULL as hugetlb_reserve_pages is only 4999 * called for inodes for which resv_maps were created (see 5000 * hugetlbfs_get_inode). 5001 */ 5002 resv_map = inode_resv_map(inode); 5003 5004 chg = region_chg(resv_map, from, to, ®ions_needed); 5005 5006 } else { 5007 /* Private mapping. */ 5008 resv_map = resv_map_alloc(); 5009 if (!resv_map) 5010 return -ENOMEM; 5011 5012 chg = to - from; 5013 5014 set_vma_resv_map(vma, resv_map); 5015 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5016 } 5017 5018 if (chg < 0) { 5019 ret = chg; 5020 goto out_err; 5021 } 5022 5023 ret = hugetlb_cgroup_charge_cgroup_rsvd( 5024 hstate_index(h), chg * pages_per_huge_page(h), &h_cg); 5025 5026 if (ret < 0) { 5027 ret = -ENOMEM; 5028 goto out_err; 5029 } 5030 5031 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5032 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5033 * of the resv_map. 5034 */ 5035 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5036 } 5037 5038 /* 5039 * There must be enough pages in the subpool for the mapping. If 5040 * the subpool has a minimum size, there may be some global 5041 * reservations already in place (gbl_reserve). 5042 */ 5043 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5044 if (gbl_reserve < 0) { 5045 ret = -ENOSPC; 5046 goto out_uncharge_cgroup; 5047 } 5048 5049 /* 5050 * Check enough hugepages are available for the reservation. 5051 * Hand the pages back to the subpool if there are not 5052 */ 5053 ret = hugetlb_acct_memory(h, gbl_reserve); 5054 if (ret < 0) { 5055 goto out_put_pages; 5056 } 5057 5058 /* 5059 * Account for the reservations made. Shared mappings record regions 5060 * that have reservations as they are shared by multiple VMAs. 5061 * When the last VMA disappears, the region map says how much 5062 * the reservation was and the page cache tells how much of 5063 * the reservation was consumed. Private mappings are per-VMA and 5064 * only the consumed reservations are tracked. When the VMA 5065 * disappears, the original reservation is the VMA size and the 5066 * consumed reservations are stored in the map. Hence, nothing 5067 * else has to be done for private mappings here 5068 */ 5069 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5070 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5071 5072 if (unlikely(add < 0)) { 5073 hugetlb_acct_memory(h, -gbl_reserve); 5074 goto out_put_pages; 5075 } else if (unlikely(chg > add)) { 5076 /* 5077 * pages in this range were added to the reserve 5078 * map between region_chg and region_add. This 5079 * indicates a race with alloc_huge_page. Adjust 5080 * the subpool and reserve counts modified above 5081 * based on the difference. 5082 */ 5083 long rsv_adjust; 5084 5085 hugetlb_cgroup_uncharge_cgroup_rsvd( 5086 hstate_index(h), 5087 (chg - add) * pages_per_huge_page(h), h_cg); 5088 5089 rsv_adjust = hugepage_subpool_put_pages(spool, 5090 chg - add); 5091 hugetlb_acct_memory(h, -rsv_adjust); 5092 } 5093 } 5094 return 0; 5095 out_put_pages: 5096 /* put back original number of pages, chg */ 5097 (void)hugepage_subpool_put_pages(spool, chg); 5098 out_uncharge_cgroup: 5099 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5100 chg * pages_per_huge_page(h), h_cg); 5101 out_err: 5102 if (!vma || vma->vm_flags & VM_MAYSHARE) 5103 /* Only call region_abort if the region_chg succeeded but the 5104 * region_add failed or didn't run. 5105 */ 5106 if (chg >= 0 && add < 0) 5107 region_abort(resv_map, from, to, regions_needed); 5108 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5109 kref_put(&resv_map->refs, resv_map_release); 5110 return ret; 5111 } 5112 5113 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5114 long freed) 5115 { 5116 struct hstate *h = hstate_inode(inode); 5117 struct resv_map *resv_map = inode_resv_map(inode); 5118 long chg = 0; 5119 struct hugepage_subpool *spool = subpool_inode(inode); 5120 long gbl_reserve; 5121 5122 /* 5123 * Since this routine can be called in the evict inode path for all 5124 * hugetlbfs inodes, resv_map could be NULL. 5125 */ 5126 if (resv_map) { 5127 chg = region_del(resv_map, start, end); 5128 /* 5129 * region_del() can fail in the rare case where a region 5130 * must be split and another region descriptor can not be 5131 * allocated. If end == LONG_MAX, it will not fail. 5132 */ 5133 if (chg < 0) 5134 return chg; 5135 } 5136 5137 spin_lock(&inode->i_lock); 5138 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5139 spin_unlock(&inode->i_lock); 5140 5141 /* 5142 * If the subpool has a minimum size, the number of global 5143 * reservations to be released may be adjusted. 5144 */ 5145 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5146 hugetlb_acct_memory(h, -gbl_reserve); 5147 5148 return 0; 5149 } 5150 5151 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5152 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5153 struct vm_area_struct *vma, 5154 unsigned long addr, pgoff_t idx) 5155 { 5156 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5157 svma->vm_start; 5158 unsigned long sbase = saddr & PUD_MASK; 5159 unsigned long s_end = sbase + PUD_SIZE; 5160 5161 /* Allow segments to share if only one is marked locked */ 5162 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5163 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5164 5165 /* 5166 * match the virtual addresses, permission and the alignment of the 5167 * page table page. 5168 */ 5169 if (pmd_index(addr) != pmd_index(saddr) || 5170 vm_flags != svm_flags || 5171 sbase < svma->vm_start || svma->vm_end < s_end) 5172 return 0; 5173 5174 return saddr; 5175 } 5176 5177 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5178 { 5179 unsigned long base = addr & PUD_MASK; 5180 unsigned long end = base + PUD_SIZE; 5181 5182 /* 5183 * check on proper vm_flags and page table alignment 5184 */ 5185 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5186 return true; 5187 return false; 5188 } 5189 5190 /* 5191 * Determine if start,end range within vma could be mapped by shared pmd. 5192 * If yes, adjust start and end to cover range associated with possible 5193 * shared pmd mappings. 5194 */ 5195 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5196 unsigned long *start, unsigned long *end) 5197 { 5198 unsigned long check_addr; 5199 5200 if (!(vma->vm_flags & VM_MAYSHARE)) 5201 return; 5202 5203 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 5204 unsigned long a_start = check_addr & PUD_MASK; 5205 unsigned long a_end = a_start + PUD_SIZE; 5206 5207 /* 5208 * If sharing is possible, adjust start/end if necessary. 5209 */ 5210 if (range_in_vma(vma, a_start, a_end)) { 5211 if (a_start < *start) 5212 *start = a_start; 5213 if (a_end > *end) 5214 *end = a_end; 5215 } 5216 } 5217 } 5218 5219 /* 5220 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5221 * and returns the corresponding pte. While this is not necessary for the 5222 * !shared pmd case because we can allocate the pmd later as well, it makes the 5223 * code much cleaner. 5224 * 5225 * This routine must be called with i_mmap_rwsem held in at least read mode. 5226 * For hugetlbfs, this prevents removal of any page table entries associated 5227 * with the address space. This is important as we are setting up sharing 5228 * based on existing page table entries (mappings). 5229 */ 5230 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5231 { 5232 struct vm_area_struct *vma = find_vma(mm, addr); 5233 struct address_space *mapping = vma->vm_file->f_mapping; 5234 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5235 vma->vm_pgoff; 5236 struct vm_area_struct *svma; 5237 unsigned long saddr; 5238 pte_t *spte = NULL; 5239 pte_t *pte; 5240 spinlock_t *ptl; 5241 5242 if (!vma_shareable(vma, addr)) 5243 return (pte_t *)pmd_alloc(mm, pud, addr); 5244 5245 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5246 if (svma == vma) 5247 continue; 5248 5249 saddr = page_table_shareable(svma, vma, addr, idx); 5250 if (saddr) { 5251 spte = huge_pte_offset(svma->vm_mm, saddr, 5252 vma_mmu_pagesize(svma)); 5253 if (spte) { 5254 get_page(virt_to_page(spte)); 5255 break; 5256 } 5257 } 5258 } 5259 5260 if (!spte) 5261 goto out; 5262 5263 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5264 if (pud_none(*pud)) { 5265 pud_populate(mm, pud, 5266 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5267 mm_inc_nr_pmds(mm); 5268 } else { 5269 put_page(virt_to_page(spte)); 5270 } 5271 spin_unlock(ptl); 5272 out: 5273 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5274 return pte; 5275 } 5276 5277 /* 5278 * unmap huge page backed by shared pte. 5279 * 5280 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5281 * indicated by page_count > 1, unmap is achieved by clearing pud and 5282 * decrementing the ref count. If count == 1, the pte page is not shared. 5283 * 5284 * Called with page table lock held and i_mmap_rwsem held in write mode. 5285 * 5286 * returns: 1 successfully unmapped a shared pte page 5287 * 0 the underlying pte page is not shared, or it is the last user 5288 */ 5289 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 5290 { 5291 pgd_t *pgd = pgd_offset(mm, *addr); 5292 p4d_t *p4d = p4d_offset(pgd, *addr); 5293 pud_t *pud = pud_offset(p4d, *addr); 5294 5295 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5296 if (page_count(virt_to_page(ptep)) == 1) 5297 return 0; 5298 5299 pud_clear(pud); 5300 put_page(virt_to_page(ptep)); 5301 mm_dec_nr_pmds(mm); 5302 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5303 return 1; 5304 } 5305 #define want_pmd_share() (1) 5306 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5307 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5308 { 5309 return NULL; 5310 } 5311 5312 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 5313 { 5314 return 0; 5315 } 5316 5317 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5318 unsigned long *start, unsigned long *end) 5319 { 5320 } 5321 #define want_pmd_share() (0) 5322 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5323 5324 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5325 pte_t *huge_pte_alloc(struct mm_struct *mm, 5326 unsigned long addr, unsigned long sz) 5327 { 5328 pgd_t *pgd; 5329 p4d_t *p4d; 5330 pud_t *pud; 5331 pte_t *pte = NULL; 5332 5333 pgd = pgd_offset(mm, addr); 5334 p4d = p4d_alloc(mm, pgd, addr); 5335 if (!p4d) 5336 return NULL; 5337 pud = pud_alloc(mm, p4d, addr); 5338 if (pud) { 5339 if (sz == PUD_SIZE) { 5340 pte = (pte_t *)pud; 5341 } else { 5342 BUG_ON(sz != PMD_SIZE); 5343 if (want_pmd_share() && pud_none(*pud)) 5344 pte = huge_pmd_share(mm, addr, pud); 5345 else 5346 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5347 } 5348 } 5349 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5350 5351 return pte; 5352 } 5353 5354 /* 5355 * huge_pte_offset() - Walk the page table to resolve the hugepage 5356 * entry at address @addr 5357 * 5358 * Return: Pointer to page table or swap entry (PUD or PMD) for 5359 * address @addr, or NULL if a p*d_none() entry is encountered and the 5360 * size @sz doesn't match the hugepage size at this level of the page 5361 * table. 5362 */ 5363 pte_t *huge_pte_offset(struct mm_struct *mm, 5364 unsigned long addr, unsigned long sz) 5365 { 5366 pgd_t *pgd; 5367 p4d_t *p4d; 5368 pud_t *pud; 5369 pmd_t *pmd; 5370 5371 pgd = pgd_offset(mm, addr); 5372 if (!pgd_present(*pgd)) 5373 return NULL; 5374 p4d = p4d_offset(pgd, addr); 5375 if (!p4d_present(*p4d)) 5376 return NULL; 5377 5378 pud = pud_offset(p4d, addr); 5379 if (sz != PUD_SIZE && pud_none(*pud)) 5380 return NULL; 5381 /* hugepage or swap? */ 5382 if (pud_huge(*pud) || !pud_present(*pud)) 5383 return (pte_t *)pud; 5384 5385 pmd = pmd_offset(pud, addr); 5386 if (sz != PMD_SIZE && pmd_none(*pmd)) 5387 return NULL; 5388 /* hugepage or swap? */ 5389 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 5390 return (pte_t *)pmd; 5391 5392 return NULL; 5393 } 5394 5395 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5396 5397 /* 5398 * These functions are overwritable if your architecture needs its own 5399 * behavior. 5400 */ 5401 struct page * __weak 5402 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5403 int write) 5404 { 5405 return ERR_PTR(-EINVAL); 5406 } 5407 5408 struct page * __weak 5409 follow_huge_pd(struct vm_area_struct *vma, 5410 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5411 { 5412 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5413 return NULL; 5414 } 5415 5416 struct page * __weak 5417 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5418 pmd_t *pmd, int flags) 5419 { 5420 struct page *page = NULL; 5421 spinlock_t *ptl; 5422 pte_t pte; 5423 5424 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5425 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5426 (FOLL_PIN | FOLL_GET))) 5427 return NULL; 5428 5429 retry: 5430 ptl = pmd_lockptr(mm, pmd); 5431 spin_lock(ptl); 5432 /* 5433 * make sure that the address range covered by this pmd is not 5434 * unmapped from other threads. 5435 */ 5436 if (!pmd_huge(*pmd)) 5437 goto out; 5438 pte = huge_ptep_get((pte_t *)pmd); 5439 if (pte_present(pte)) { 5440 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5441 /* 5442 * try_grab_page() should always succeed here, because: a) we 5443 * hold the pmd (ptl) lock, and b) we've just checked that the 5444 * huge pmd (head) page is present in the page tables. The ptl 5445 * prevents the head page and tail pages from being rearranged 5446 * in any way. So this page must be available at this point, 5447 * unless the page refcount overflowed: 5448 */ 5449 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5450 page = NULL; 5451 goto out; 5452 } 5453 } else { 5454 if (is_hugetlb_entry_migration(pte)) { 5455 spin_unlock(ptl); 5456 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5457 goto retry; 5458 } 5459 /* 5460 * hwpoisoned entry is treated as no_page_table in 5461 * follow_page_mask(). 5462 */ 5463 } 5464 out: 5465 spin_unlock(ptl); 5466 return page; 5467 } 5468 5469 struct page * __weak 5470 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5471 pud_t *pud, int flags) 5472 { 5473 if (flags & (FOLL_GET | FOLL_PIN)) 5474 return NULL; 5475 5476 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5477 } 5478 5479 struct page * __weak 5480 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5481 { 5482 if (flags & (FOLL_GET | FOLL_PIN)) 5483 return NULL; 5484 5485 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5486 } 5487 5488 bool isolate_huge_page(struct page *page, struct list_head *list) 5489 { 5490 bool ret = true; 5491 5492 VM_BUG_ON_PAGE(!PageHead(page), page); 5493 spin_lock(&hugetlb_lock); 5494 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 5495 ret = false; 5496 goto unlock; 5497 } 5498 clear_page_huge_active(page); 5499 list_move_tail(&page->lru, list); 5500 unlock: 5501 spin_unlock(&hugetlb_lock); 5502 return ret; 5503 } 5504 5505 void putback_active_hugepage(struct page *page) 5506 { 5507 VM_BUG_ON_PAGE(!PageHead(page), page); 5508 spin_lock(&hugetlb_lock); 5509 set_page_huge_active(page); 5510 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5511 spin_unlock(&hugetlb_lock); 5512 put_page(page); 5513 } 5514 5515 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5516 { 5517 struct hstate *h = page_hstate(oldpage); 5518 5519 hugetlb_cgroup_migrate(oldpage, newpage); 5520 set_page_owner_migrate_reason(newpage, reason); 5521 5522 /* 5523 * transfer temporary state of the new huge page. This is 5524 * reverse to other transitions because the newpage is going to 5525 * be final while the old one will be freed so it takes over 5526 * the temporary status. 5527 * 5528 * Also note that we have to transfer the per-node surplus state 5529 * here as well otherwise the global surplus count will not match 5530 * the per-node's. 5531 */ 5532 if (PageHugeTemporary(newpage)) { 5533 int old_nid = page_to_nid(oldpage); 5534 int new_nid = page_to_nid(newpage); 5535 5536 SetPageHugeTemporary(oldpage); 5537 ClearPageHugeTemporary(newpage); 5538 5539 spin_lock(&hugetlb_lock); 5540 if (h->surplus_huge_pages_node[old_nid]) { 5541 h->surplus_huge_pages_node[old_nid]--; 5542 h->surplus_huge_pages_node[new_nid]++; 5543 } 5544 spin_unlock(&hugetlb_lock); 5545 } 5546 } 5547 5548 #ifdef CONFIG_CMA 5549 static unsigned long hugetlb_cma_size __initdata; 5550 static bool cma_reserve_called __initdata; 5551 5552 static int __init cmdline_parse_hugetlb_cma(char *p) 5553 { 5554 hugetlb_cma_size = memparse(p, &p); 5555 return 0; 5556 } 5557 5558 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5559 5560 void __init hugetlb_cma_reserve(int order) 5561 { 5562 unsigned long size, reserved, per_node; 5563 int nid; 5564 5565 cma_reserve_called = true; 5566 5567 if (!hugetlb_cma_size) 5568 return; 5569 5570 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5571 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5572 (PAGE_SIZE << order) / SZ_1M); 5573 return; 5574 } 5575 5576 /* 5577 * If 3 GB area is requested on a machine with 4 numa nodes, 5578 * let's allocate 1 GB on first three nodes and ignore the last one. 5579 */ 5580 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5581 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5582 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5583 5584 reserved = 0; 5585 for_each_node_state(nid, N_ONLINE) { 5586 int res; 5587 5588 size = min(per_node, hugetlb_cma_size - reserved); 5589 size = round_up(size, PAGE_SIZE << order); 5590 5591 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5592 0, false, "hugetlb", 5593 &hugetlb_cma[nid], nid); 5594 if (res) { 5595 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5596 res, nid); 5597 continue; 5598 } 5599 5600 reserved += size; 5601 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5602 size / SZ_1M, nid); 5603 5604 if (reserved >= hugetlb_cma_size) 5605 break; 5606 } 5607 } 5608 5609 void __init hugetlb_cma_check(void) 5610 { 5611 if (!hugetlb_cma_size || cma_reserve_called) 5612 return; 5613 5614 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5615 } 5616 5617 #endif /* CONFIG_CMA */ 5618