xref: /linux/mm/hugetlb.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 int hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 
49 __initdata LIST_HEAD(huge_boot_pages);
50 
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	if (spool->min_hpages != -1) {		/* minimum size accounting */
149 		if (delta > spool->rsv_hpages) {
150 			/*
151 			 * Asking for more reserves than those already taken on
152 			 * behalf of subpool.  Return difference.
153 			 */
154 			ret = delta - spool->rsv_hpages;
155 			spool->rsv_hpages = 0;
156 		} else {
157 			ret = 0;	/* reserves already accounted for */
158 			spool->rsv_hpages -= delta;
159 		}
160 	}
161 
162 unlock_ret:
163 	spin_unlock(&spool->lock);
164 	return ret;
165 }
166 
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 				       long delta)
175 {
176 	long ret = delta;
177 
178 	if (!spool)
179 		return delta;
180 
181 	spin_lock(&spool->lock);
182 
183 	if (spool->max_hpages != -1)		/* maximum size accounting */
184 		spool->used_hpages -= delta;
185 
186 	if (spool->min_hpages != -1) {		/* minimum size accounting */
187 		if (spool->rsv_hpages + delta <= spool->min_hpages)
188 			ret = 0;
189 		else
190 			ret = spool->rsv_hpages + delta - spool->min_hpages;
191 
192 		spool->rsv_hpages += delta;
193 		if (spool->rsv_hpages > spool->min_hpages)
194 			spool->rsv_hpages = spool->min_hpages;
195 	}
196 
197 	/*
198 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 	 * quota reference, free it now.
200 	 */
201 	unlock_or_release_subpool(spool);
202 
203 	return ret;
204 }
205 
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208 	return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210 
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213 	return subpool_inode(file_inode(vma->vm_file));
214 }
215 
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236 	struct list_head link;
237 	long from;
238 	long to;
239 };
240 
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257 	struct list_head *head = &resv->regions;
258 	struct file_region *rg, *nrg, *trg;
259 	long add = 0;
260 
261 	spin_lock(&resv->lock);
262 	/* Locate the region we are either in or before. */
263 	list_for_each_entry(rg, head, link)
264 		if (f <= rg->to)
265 			break;
266 
267 	/*
268 	 * If no region exists which can be expanded to include the
269 	 * specified range, the list must have been modified by an
270 	 * interleving call to region_del().  Pull a region descriptor
271 	 * from the cache and use it for this range.
272 	 */
273 	if (&rg->link == head || t < rg->from) {
274 		VM_BUG_ON(resv->region_cache_count <= 0);
275 
276 		resv->region_cache_count--;
277 		nrg = list_first_entry(&resv->region_cache, struct file_region,
278 					link);
279 		list_del(&nrg->link);
280 
281 		nrg->from = f;
282 		nrg->to = t;
283 		list_add(&nrg->link, rg->link.prev);
284 
285 		add += t - f;
286 		goto out_locked;
287 	}
288 
289 	/* Round our left edge to the current segment if it encloses us. */
290 	if (f > rg->from)
291 		f = rg->from;
292 
293 	/* Check for and consume any regions we now overlap with. */
294 	nrg = rg;
295 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 		if (&rg->link == head)
297 			break;
298 		if (rg->from > t)
299 			break;
300 
301 		/* If this area reaches higher then extend our area to
302 		 * include it completely.  If this is not the first area
303 		 * which we intend to reuse, free it. */
304 		if (rg->to > t)
305 			t = rg->to;
306 		if (rg != nrg) {
307 			/* Decrement return value by the deleted range.
308 			 * Another range will span this area so that by
309 			 * end of routine add will be >= zero
310 			 */
311 			add -= (rg->to - rg->from);
312 			list_del(&rg->link);
313 			kfree(rg);
314 		}
315 	}
316 
317 	add += (nrg->from - f);		/* Added to beginning of region */
318 	nrg->from = f;
319 	add += t - nrg->to;		/* Added to end of region */
320 	nrg->to = t;
321 
322 out_locked:
323 	resv->adds_in_progress--;
324 	spin_unlock(&resv->lock);
325 	VM_BUG_ON(add < 0);
326 	return add;
327 }
328 
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353 	struct list_head *head = &resv->regions;
354 	struct file_region *rg, *nrg = NULL;
355 	long chg = 0;
356 
357 retry:
358 	spin_lock(&resv->lock);
359 retry_locked:
360 	resv->adds_in_progress++;
361 
362 	/*
363 	 * Check for sufficient descriptors in the cache to accommodate
364 	 * the number of in progress add operations.
365 	 */
366 	if (resv->adds_in_progress > resv->region_cache_count) {
367 		struct file_region *trg;
368 
369 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 		/* Must drop lock to allocate a new descriptor. */
371 		resv->adds_in_progress--;
372 		spin_unlock(&resv->lock);
373 
374 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 		if (!trg)
376 			return -ENOMEM;
377 
378 		spin_lock(&resv->lock);
379 		list_add(&trg->link, &resv->region_cache);
380 		resv->region_cache_count++;
381 		goto retry_locked;
382 	}
383 
384 	/* Locate the region we are before or in. */
385 	list_for_each_entry(rg, head, link)
386 		if (f <= rg->to)
387 			break;
388 
389 	/* If we are below the current region then a new region is required.
390 	 * Subtle, allocate a new region at the position but make it zero
391 	 * size such that we can guarantee to record the reservation. */
392 	if (&rg->link == head || t < rg->from) {
393 		if (!nrg) {
394 			resv->adds_in_progress--;
395 			spin_unlock(&resv->lock);
396 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397 			if (!nrg)
398 				return -ENOMEM;
399 
400 			nrg->from = f;
401 			nrg->to   = f;
402 			INIT_LIST_HEAD(&nrg->link);
403 			goto retry;
404 		}
405 
406 		list_add(&nrg->link, rg->link.prev);
407 		chg = t - f;
408 		goto out_nrg;
409 	}
410 
411 	/* Round our left edge to the current segment if it encloses us. */
412 	if (f > rg->from)
413 		f = rg->from;
414 	chg = t - f;
415 
416 	/* Check for and consume any regions we now overlap with. */
417 	list_for_each_entry(rg, rg->link.prev, link) {
418 		if (&rg->link == head)
419 			break;
420 		if (rg->from > t)
421 			goto out;
422 
423 		/* We overlap with this area, if it extends further than
424 		 * us then we must extend ourselves.  Account for its
425 		 * existing reservation. */
426 		if (rg->to > t) {
427 			chg += rg->to - t;
428 			t = rg->to;
429 		}
430 		chg -= rg->to - rg->from;
431 	}
432 
433 out:
434 	spin_unlock(&resv->lock);
435 	/*  We already know we raced and no longer need the new region */
436 	kfree(nrg);
437 	return chg;
438 out_nrg:
439 	spin_unlock(&resv->lock);
440 	return chg;
441 }
442 
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456 	spin_lock(&resv->lock);
457 	VM_BUG_ON(!resv->region_cache_count);
458 	resv->adds_in_progress--;
459 	spin_unlock(&resv->lock);
460 }
461 
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478 	struct list_head *head = &resv->regions;
479 	struct file_region *rg, *trg;
480 	struct file_region *nrg = NULL;
481 	long del = 0;
482 
483 retry:
484 	spin_lock(&resv->lock);
485 	list_for_each_entry_safe(rg, trg, head, link) {
486 		if (rg->to <= f)
487 			continue;
488 		if (rg->from >= t)
489 			break;
490 
491 		if (f > rg->from && t < rg->to) { /* Must split region */
492 			/*
493 			 * Check for an entry in the cache before dropping
494 			 * lock and attempting allocation.
495 			 */
496 			if (!nrg &&
497 			    resv->region_cache_count > resv->adds_in_progress) {
498 				nrg = list_first_entry(&resv->region_cache,
499 							struct file_region,
500 							link);
501 				list_del(&nrg->link);
502 				resv->region_cache_count--;
503 			}
504 
505 			if (!nrg) {
506 				spin_unlock(&resv->lock);
507 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508 				if (!nrg)
509 					return -ENOMEM;
510 				goto retry;
511 			}
512 
513 			del += t - f;
514 
515 			/* New entry for end of split region */
516 			nrg->from = t;
517 			nrg->to = rg->to;
518 			INIT_LIST_HEAD(&nrg->link);
519 
520 			/* Original entry is trimmed */
521 			rg->to = f;
522 
523 			list_add(&nrg->link, &rg->link);
524 			nrg = NULL;
525 			break;
526 		}
527 
528 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529 			del += rg->to - rg->from;
530 			list_del(&rg->link);
531 			kfree(rg);
532 			continue;
533 		}
534 
535 		if (f <= rg->from) {	/* Trim beginning of region */
536 			del += t - rg->from;
537 			rg->from = t;
538 		} else {		/* Trim end of region */
539 			del += rg->to - f;
540 			rg->to = f;
541 		}
542 	}
543 
544 	spin_unlock(&resv->lock);
545 	kfree(nrg);
546 	return del;
547 }
548 
549 /*
550  * A rare out of memory error was encountered which prevented removal of
551  * the reserve map region for a page.  The huge page itself was free'ed
552  * and removed from the page cache.  This routine will adjust the subpool
553  * usage count, and the global reserve count if needed.  By incrementing
554  * these counts, the reserve map entry which could not be deleted will
555  * appear as a "reserved" entry instead of simply dangling with incorrect
556  * counts.
557  */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560 	struct hugepage_subpool *spool = subpool_inode(inode);
561 	long rsv_adjust;
562 
563 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564 	if (restore_reserve && rsv_adjust) {
565 		struct hstate *h = hstate_inode(inode);
566 
567 		hugetlb_acct_memory(h, 1);
568 	}
569 }
570 
571 /*
572  * Count and return the number of huge pages in the reserve map
573  * that intersect with the range [f, t).
574  */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577 	struct list_head *head = &resv->regions;
578 	struct file_region *rg;
579 	long chg = 0;
580 
581 	spin_lock(&resv->lock);
582 	/* Locate each segment we overlap with, and count that overlap. */
583 	list_for_each_entry(rg, head, link) {
584 		long seg_from;
585 		long seg_to;
586 
587 		if (rg->to <= f)
588 			continue;
589 		if (rg->from >= t)
590 			break;
591 
592 		seg_from = max(rg->from, f);
593 		seg_to = min(rg->to, t);
594 
595 		chg += seg_to - seg_from;
596 	}
597 	spin_unlock(&resv->lock);
598 
599 	return chg;
600 }
601 
602 /*
603  * Convert the address within this vma to the page offset within
604  * the mapping, in pagecache page units; huge pages here.
605  */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607 			struct vm_area_struct *vma, unsigned long address)
608 {
609 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
610 			(vma->vm_pgoff >> huge_page_order(h));
611 }
612 
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614 				     unsigned long address)
615 {
616 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618 
619 /*
620  * Return the size of the pages allocated when backing a VMA. In the majority
621  * cases this will be same size as used by the page table entries.
622  */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625 	struct hstate *hstate;
626 
627 	if (!is_vm_hugetlb_page(vma))
628 		return PAGE_SIZE;
629 
630 	hstate = hstate_vma(vma);
631 
632 	return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635 
636 /*
637  * Return the page size being used by the MMU to back a VMA. In the majority
638  * of cases, the page size used by the kernel matches the MMU size. On
639  * architectures where it differs, an architecture-specific version of this
640  * function is required.
641  */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645 	return vma_kernel_pagesize(vma);
646 }
647 #endif
648 
649 /*
650  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
651  * bits of the reservation map pointer, which are always clear due to
652  * alignment.
653  */
654 #define HPAGE_RESV_OWNER    (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657 
658 /*
659  * These helpers are used to track how many pages are reserved for
660  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661  * is guaranteed to have their future faults succeed.
662  *
663  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664  * the reserve counters are updated with the hugetlb_lock held. It is safe
665  * to reset the VMA at fork() time as it is not in use yet and there is no
666  * chance of the global counters getting corrupted as a result of the values.
667  *
668  * The private mapping reservation is represented in a subtly different
669  * manner to a shared mapping.  A shared mapping has a region map associated
670  * with the underlying file, this region map represents the backing file
671  * pages which have ever had a reservation assigned which this persists even
672  * after the page is instantiated.  A private mapping has a region map
673  * associated with the original mmap which is attached to all VMAs which
674  * reference it, this region map represents those offsets which have consumed
675  * reservation ie. where pages have been instantiated.
676  */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679 	return (unsigned long)vma->vm_private_data;
680 }
681 
682 static void set_vma_private_data(struct vm_area_struct *vma,
683 							unsigned long value)
684 {
685 	vma->vm_private_data = (void *)value;
686 }
687 
688 struct resv_map *resv_map_alloc(void)
689 {
690 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692 
693 	if (!resv_map || !rg) {
694 		kfree(resv_map);
695 		kfree(rg);
696 		return NULL;
697 	}
698 
699 	kref_init(&resv_map->refs);
700 	spin_lock_init(&resv_map->lock);
701 	INIT_LIST_HEAD(&resv_map->regions);
702 
703 	resv_map->adds_in_progress = 0;
704 
705 	INIT_LIST_HEAD(&resv_map->region_cache);
706 	list_add(&rg->link, &resv_map->region_cache);
707 	resv_map->region_cache_count = 1;
708 
709 	return resv_map;
710 }
711 
712 void resv_map_release(struct kref *ref)
713 {
714 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 	struct list_head *head = &resv_map->region_cache;
716 	struct file_region *rg, *trg;
717 
718 	/* Clear out any active regions before we release the map. */
719 	region_del(resv_map, 0, LONG_MAX);
720 
721 	/* ... and any entries left in the cache */
722 	list_for_each_entry_safe(rg, trg, head, link) {
723 		list_del(&rg->link);
724 		kfree(rg);
725 	}
726 
727 	VM_BUG_ON(resv_map->adds_in_progress);
728 
729 	kfree(resv_map);
730 }
731 
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734 	return inode->i_mapping->private_data;
735 }
736 
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 	if (vma->vm_flags & VM_MAYSHARE) {
741 		struct address_space *mapping = vma->vm_file->f_mapping;
742 		struct inode *inode = mapping->host;
743 
744 		return inode_resv_map(inode);
745 
746 	} else {
747 		return (struct resv_map *)(get_vma_private_data(vma) &
748 							~HPAGE_RESV_MASK);
749 	}
750 }
751 
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756 
757 	set_vma_private_data(vma, (get_vma_private_data(vma) &
758 				HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760 
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 
766 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768 
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 
773 	return (get_vma_private_data(vma) & flag) != 0;
774 }
775 
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 	if (!(vma->vm_flags & VM_MAYSHARE))
781 		vma->vm_private_data = (void *)0;
782 }
783 
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787 	if (vma->vm_flags & VM_NORESERVE) {
788 		/*
789 		 * This address is already reserved by other process(chg == 0),
790 		 * so, we should decrement reserved count. Without decrementing,
791 		 * reserve count remains after releasing inode, because this
792 		 * allocated page will go into page cache and is regarded as
793 		 * coming from reserved pool in releasing step.  Currently, we
794 		 * don't have any other solution to deal with this situation
795 		 * properly, so add work-around here.
796 		 */
797 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798 			return true;
799 		else
800 			return false;
801 	}
802 
803 	/* Shared mappings always use reserves */
804 	if (vma->vm_flags & VM_MAYSHARE) {
805 		/*
806 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
807 		 * be a region map for all pages.  The only situation where
808 		 * there is no region map is if a hole was punched via
809 		 * fallocate.  In this case, there really are no reverves to
810 		 * use.  This situation is indicated if chg != 0.
811 		 */
812 		if (chg)
813 			return false;
814 		else
815 			return true;
816 	}
817 
818 	/*
819 	 * Only the process that called mmap() has reserves for
820 	 * private mappings.
821 	 */
822 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823 		return true;
824 
825 	return false;
826 }
827 
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830 	int nid = page_to_nid(page);
831 	list_move(&page->lru, &h->hugepage_freelists[nid]);
832 	h->free_huge_pages++;
833 	h->free_huge_pages_node[nid]++;
834 }
835 
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838 	struct page *page;
839 
840 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841 		if (!is_migrate_isolate_page(page))
842 			break;
843 	/*
844 	 * if 'non-isolated free hugepage' not found on the list,
845 	 * the allocation fails.
846 	 */
847 	if (&h->hugepage_freelists[nid] == &page->lru)
848 		return NULL;
849 	list_move(&page->lru, &h->hugepage_activelist);
850 	set_page_refcounted(page);
851 	h->free_huge_pages--;
852 	h->free_huge_pages_node[nid]--;
853 	return page;
854 }
855 
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860 		return GFP_HIGHUSER_MOVABLE;
861 	else
862 		return GFP_HIGHUSER;
863 }
864 
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866 				struct vm_area_struct *vma,
867 				unsigned long address, int avoid_reserve,
868 				long chg)
869 {
870 	struct page *page = NULL;
871 	struct mempolicy *mpol;
872 	nodemask_t *nodemask;
873 	struct zonelist *zonelist;
874 	struct zone *zone;
875 	struct zoneref *z;
876 	unsigned int cpuset_mems_cookie;
877 
878 	/*
879 	 * A child process with MAP_PRIVATE mappings created by their parent
880 	 * have no page reserves. This check ensures that reservations are
881 	 * not "stolen". The child may still get SIGKILLed
882 	 */
883 	if (!vma_has_reserves(vma, chg) &&
884 			h->free_huge_pages - h->resv_huge_pages == 0)
885 		goto err;
886 
887 	/* If reserves cannot be used, ensure enough pages are in the pool */
888 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889 		goto err;
890 
891 retry_cpuset:
892 	cpuset_mems_cookie = read_mems_allowed_begin();
893 	zonelist = huge_zonelist(vma, address,
894 					htlb_alloc_mask(h), &mpol, &nodemask);
895 
896 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
897 						MAX_NR_ZONES - 1, nodemask) {
898 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
900 			if (page) {
901 				if (avoid_reserve)
902 					break;
903 				if (!vma_has_reserves(vma, chg))
904 					break;
905 
906 				SetPagePrivate(page);
907 				h->resv_huge_pages--;
908 				break;
909 			}
910 		}
911 	}
912 
913 	mpol_cond_put(mpol);
914 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915 		goto retry_cpuset;
916 	return page;
917 
918 err:
919 	return NULL;
920 }
921 
922 /*
923  * common helper functions for hstate_next_node_to_{alloc|free}.
924  * We may have allocated or freed a huge page based on a different
925  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926  * be outside of *nodes_allowed.  Ensure that we use an allowed
927  * node for alloc or free.
928  */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931 	nid = next_node(nid, *nodes_allowed);
932 	if (nid == MAX_NUMNODES)
933 		nid = first_node(*nodes_allowed);
934 	VM_BUG_ON(nid >= MAX_NUMNODES);
935 
936 	return nid;
937 }
938 
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941 	if (!node_isset(nid, *nodes_allowed))
942 		nid = next_node_allowed(nid, nodes_allowed);
943 	return nid;
944 }
945 
946 /*
947  * returns the previously saved node ["this node"] from which to
948  * allocate a persistent huge page for the pool and advance the
949  * next node from which to allocate, handling wrap at end of node
950  * mask.
951  */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953 					nodemask_t *nodes_allowed)
954 {
955 	int nid;
956 
957 	VM_BUG_ON(!nodes_allowed);
958 
959 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961 
962 	return nid;
963 }
964 
965 /*
966  * helper for free_pool_huge_page() - return the previously saved
967  * node ["this node"] from which to free a huge page.  Advance the
968  * next node id whether or not we find a free huge page to free so
969  * that the next attempt to free addresses the next node.
970  */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973 	int nid;
974 
975 	VM_BUG_ON(!nodes_allowed);
976 
977 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979 
980 	return nid;
981 }
982 
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
984 	for (nr_nodes = nodes_weight(*mask);				\
985 		nr_nodes > 0 &&						\
986 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
987 		nr_nodes--)
988 
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
990 	for (nr_nodes = nodes_weight(*mask);				\
991 		nr_nodes > 0 &&						\
992 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
993 		nr_nodes--)
994 
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997 					unsigned long order)
998 {
999 	int i;
1000 	int nr_pages = 1 << order;
1001 	struct page *p = page + 1;
1002 
1003 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004 		__ClearPageTail(p);
1005 		set_page_refcounted(p);
1006 		p->first_page = NULL;
1007 	}
1008 
1009 	set_compound_order(page, 0);
1010 	__ClearPageHead(page);
1011 }
1012 
1013 static void free_gigantic_page(struct page *page, unsigned order)
1014 {
1015 	free_contig_range(page_to_pfn(page), 1 << order);
1016 }
1017 
1018 static int __alloc_gigantic_page(unsigned long start_pfn,
1019 				unsigned long nr_pages)
1020 {
1021 	unsigned long end_pfn = start_pfn + nr_pages;
1022 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1023 }
1024 
1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1026 				unsigned long nr_pages)
1027 {
1028 	unsigned long i, end_pfn = start_pfn + nr_pages;
1029 	struct page *page;
1030 
1031 	for (i = start_pfn; i < end_pfn; i++) {
1032 		if (!pfn_valid(i))
1033 			return false;
1034 
1035 		page = pfn_to_page(i);
1036 
1037 		if (PageReserved(page))
1038 			return false;
1039 
1040 		if (page_count(page) > 0)
1041 			return false;
1042 
1043 		if (PageHuge(page))
1044 			return false;
1045 	}
1046 
1047 	return true;
1048 }
1049 
1050 static bool zone_spans_last_pfn(const struct zone *zone,
1051 			unsigned long start_pfn, unsigned long nr_pages)
1052 {
1053 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1054 	return zone_spans_pfn(zone, last_pfn);
1055 }
1056 
1057 static struct page *alloc_gigantic_page(int nid, unsigned order)
1058 {
1059 	unsigned long nr_pages = 1 << order;
1060 	unsigned long ret, pfn, flags;
1061 	struct zone *z;
1062 
1063 	z = NODE_DATA(nid)->node_zones;
1064 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1065 		spin_lock_irqsave(&z->lock, flags);
1066 
1067 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1068 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1069 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1070 				/*
1071 				 * We release the zone lock here because
1072 				 * alloc_contig_range() will also lock the zone
1073 				 * at some point. If there's an allocation
1074 				 * spinning on this lock, it may win the race
1075 				 * and cause alloc_contig_range() to fail...
1076 				 */
1077 				spin_unlock_irqrestore(&z->lock, flags);
1078 				ret = __alloc_gigantic_page(pfn, nr_pages);
1079 				if (!ret)
1080 					return pfn_to_page(pfn);
1081 				spin_lock_irqsave(&z->lock, flags);
1082 			}
1083 			pfn += nr_pages;
1084 		}
1085 
1086 		spin_unlock_irqrestore(&z->lock, flags);
1087 	}
1088 
1089 	return NULL;
1090 }
1091 
1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1094 
1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1096 {
1097 	struct page *page;
1098 
1099 	page = alloc_gigantic_page(nid, huge_page_order(h));
1100 	if (page) {
1101 		prep_compound_gigantic_page(page, huge_page_order(h));
1102 		prep_new_huge_page(h, page, nid);
1103 	}
1104 
1105 	return page;
1106 }
1107 
1108 static int alloc_fresh_gigantic_page(struct hstate *h,
1109 				nodemask_t *nodes_allowed)
1110 {
1111 	struct page *page = NULL;
1112 	int nr_nodes, node;
1113 
1114 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1115 		page = alloc_fresh_gigantic_page_node(h, node);
1116 		if (page)
1117 			return 1;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static inline bool gigantic_page_supported(void) { return true; }
1124 #else
1125 static inline bool gigantic_page_supported(void) { return false; }
1126 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1127 static inline void destroy_compound_gigantic_page(struct page *page,
1128 						unsigned long order) { }
1129 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1130 					nodemask_t *nodes_allowed) { return 0; }
1131 #endif
1132 
1133 static void update_and_free_page(struct hstate *h, struct page *page)
1134 {
1135 	int i;
1136 
1137 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1138 		return;
1139 
1140 	h->nr_huge_pages--;
1141 	h->nr_huge_pages_node[page_to_nid(page)]--;
1142 	for (i = 0; i < pages_per_huge_page(h); i++) {
1143 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1144 				1 << PG_referenced | 1 << PG_dirty |
1145 				1 << PG_active | 1 << PG_private |
1146 				1 << PG_writeback);
1147 	}
1148 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1149 	set_compound_page_dtor(page, NULL);
1150 	set_page_refcounted(page);
1151 	if (hstate_is_gigantic(h)) {
1152 		destroy_compound_gigantic_page(page, huge_page_order(h));
1153 		free_gigantic_page(page, huge_page_order(h));
1154 	} else {
1155 		__free_pages(page, huge_page_order(h));
1156 	}
1157 }
1158 
1159 struct hstate *size_to_hstate(unsigned long size)
1160 {
1161 	struct hstate *h;
1162 
1163 	for_each_hstate(h) {
1164 		if (huge_page_size(h) == size)
1165 			return h;
1166 	}
1167 	return NULL;
1168 }
1169 
1170 /*
1171  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1172  * to hstate->hugepage_activelist.)
1173  *
1174  * This function can be called for tail pages, but never returns true for them.
1175  */
1176 bool page_huge_active(struct page *page)
1177 {
1178 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1179 	return PageHead(page) && PagePrivate(&page[1]);
1180 }
1181 
1182 /* never called for tail page */
1183 static void set_page_huge_active(struct page *page)
1184 {
1185 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1186 	SetPagePrivate(&page[1]);
1187 }
1188 
1189 static void clear_page_huge_active(struct page *page)
1190 {
1191 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1192 	ClearPagePrivate(&page[1]);
1193 }
1194 
1195 void free_huge_page(struct page *page)
1196 {
1197 	/*
1198 	 * Can't pass hstate in here because it is called from the
1199 	 * compound page destructor.
1200 	 */
1201 	struct hstate *h = page_hstate(page);
1202 	int nid = page_to_nid(page);
1203 	struct hugepage_subpool *spool =
1204 		(struct hugepage_subpool *)page_private(page);
1205 	bool restore_reserve;
1206 
1207 	set_page_private(page, 0);
1208 	page->mapping = NULL;
1209 	BUG_ON(page_count(page));
1210 	BUG_ON(page_mapcount(page));
1211 	restore_reserve = PagePrivate(page);
1212 	ClearPagePrivate(page);
1213 
1214 	/*
1215 	 * A return code of zero implies that the subpool will be under its
1216 	 * minimum size if the reservation is not restored after page is free.
1217 	 * Therefore, force restore_reserve operation.
1218 	 */
1219 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1220 		restore_reserve = true;
1221 
1222 	spin_lock(&hugetlb_lock);
1223 	clear_page_huge_active(page);
1224 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1225 				     pages_per_huge_page(h), page);
1226 	if (restore_reserve)
1227 		h->resv_huge_pages++;
1228 
1229 	if (h->surplus_huge_pages_node[nid]) {
1230 		/* remove the page from active list */
1231 		list_del(&page->lru);
1232 		update_and_free_page(h, page);
1233 		h->surplus_huge_pages--;
1234 		h->surplus_huge_pages_node[nid]--;
1235 	} else {
1236 		arch_clear_hugepage_flags(page);
1237 		enqueue_huge_page(h, page);
1238 	}
1239 	spin_unlock(&hugetlb_lock);
1240 }
1241 
1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243 {
1244 	INIT_LIST_HEAD(&page->lru);
1245 	set_compound_page_dtor(page, free_huge_page);
1246 	spin_lock(&hugetlb_lock);
1247 	set_hugetlb_cgroup(page, NULL);
1248 	h->nr_huge_pages++;
1249 	h->nr_huge_pages_node[nid]++;
1250 	spin_unlock(&hugetlb_lock);
1251 	put_page(page); /* free it into the hugepage allocator */
1252 }
1253 
1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 {
1256 	int i;
1257 	int nr_pages = 1 << order;
1258 	struct page *p = page + 1;
1259 
1260 	/* we rely on prep_new_huge_page to set the destructor */
1261 	set_compound_order(page, order);
1262 	__SetPageHead(page);
1263 	__ClearPageReserved(page);
1264 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265 		/*
1266 		 * For gigantic hugepages allocated through bootmem at
1267 		 * boot, it's safer to be consistent with the not-gigantic
1268 		 * hugepages and clear the PG_reserved bit from all tail pages
1269 		 * too.  Otherwse drivers using get_user_pages() to access tail
1270 		 * pages may get the reference counting wrong if they see
1271 		 * PG_reserved set on a tail page (despite the head page not
1272 		 * having PG_reserved set).  Enforcing this consistency between
1273 		 * head and tail pages allows drivers to optimize away a check
1274 		 * on the head page when they need know if put_page() is needed
1275 		 * after get_user_pages().
1276 		 */
1277 		__ClearPageReserved(p);
1278 		set_page_count(p, 0);
1279 		p->first_page = page;
1280 		/* Make sure p->first_page is always valid for PageTail() */
1281 		smp_wmb();
1282 		__SetPageTail(p);
1283 	}
1284 }
1285 
1286 /*
1287  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1288  * transparent huge pages.  See the PageTransHuge() documentation for more
1289  * details.
1290  */
1291 int PageHuge(struct page *page)
1292 {
1293 	if (!PageCompound(page))
1294 		return 0;
1295 
1296 	page = compound_head(page);
1297 	return get_compound_page_dtor(page) == free_huge_page;
1298 }
1299 EXPORT_SYMBOL_GPL(PageHuge);
1300 
1301 /*
1302  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1303  * normal or transparent huge pages.
1304  */
1305 int PageHeadHuge(struct page *page_head)
1306 {
1307 	if (!PageHead(page_head))
1308 		return 0;
1309 
1310 	return get_compound_page_dtor(page_head) == free_huge_page;
1311 }
1312 
1313 pgoff_t __basepage_index(struct page *page)
1314 {
1315 	struct page *page_head = compound_head(page);
1316 	pgoff_t index = page_index(page_head);
1317 	unsigned long compound_idx;
1318 
1319 	if (!PageHuge(page_head))
1320 		return page_index(page);
1321 
1322 	if (compound_order(page_head) >= MAX_ORDER)
1323 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1324 	else
1325 		compound_idx = page - page_head;
1326 
1327 	return (index << compound_order(page_head)) + compound_idx;
1328 }
1329 
1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1331 {
1332 	struct page *page;
1333 
1334 	page = __alloc_pages_node(nid,
1335 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336 						__GFP_REPEAT|__GFP_NOWARN,
1337 		huge_page_order(h));
1338 	if (page) {
1339 		prep_new_huge_page(h, page, nid);
1340 	}
1341 
1342 	return page;
1343 }
1344 
1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1346 {
1347 	struct page *page;
1348 	int nr_nodes, node;
1349 	int ret = 0;
1350 
1351 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1352 		page = alloc_fresh_huge_page_node(h, node);
1353 		if (page) {
1354 			ret = 1;
1355 			break;
1356 		}
1357 	}
1358 
1359 	if (ret)
1360 		count_vm_event(HTLB_BUDDY_PGALLOC);
1361 	else
1362 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363 
1364 	return ret;
1365 }
1366 
1367 /*
1368  * Free huge page from pool from next node to free.
1369  * Attempt to keep persistent huge pages more or less
1370  * balanced over allowed nodes.
1371  * Called with hugetlb_lock locked.
1372  */
1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1374 							 bool acct_surplus)
1375 {
1376 	int nr_nodes, node;
1377 	int ret = 0;
1378 
1379 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380 		/*
1381 		 * If we're returning unused surplus pages, only examine
1382 		 * nodes with surplus pages.
1383 		 */
1384 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1385 		    !list_empty(&h->hugepage_freelists[node])) {
1386 			struct page *page =
1387 				list_entry(h->hugepage_freelists[node].next,
1388 					  struct page, lru);
1389 			list_del(&page->lru);
1390 			h->free_huge_pages--;
1391 			h->free_huge_pages_node[node]--;
1392 			if (acct_surplus) {
1393 				h->surplus_huge_pages--;
1394 				h->surplus_huge_pages_node[node]--;
1395 			}
1396 			update_and_free_page(h, page);
1397 			ret = 1;
1398 			break;
1399 		}
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 /*
1406  * Dissolve a given free hugepage into free buddy pages. This function does
1407  * nothing for in-use (including surplus) hugepages.
1408  */
1409 static void dissolve_free_huge_page(struct page *page)
1410 {
1411 	spin_lock(&hugetlb_lock);
1412 	if (PageHuge(page) && !page_count(page)) {
1413 		struct hstate *h = page_hstate(page);
1414 		int nid = page_to_nid(page);
1415 		list_del(&page->lru);
1416 		h->free_huge_pages--;
1417 		h->free_huge_pages_node[nid]--;
1418 		update_and_free_page(h, page);
1419 	}
1420 	spin_unlock(&hugetlb_lock);
1421 }
1422 
1423 /*
1424  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1425  * make specified memory blocks removable from the system.
1426  * Note that start_pfn should aligned with (minimum) hugepage size.
1427  */
1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1429 {
1430 	unsigned long pfn;
1431 
1432 	if (!hugepages_supported())
1433 		return;
1434 
1435 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1436 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437 		dissolve_free_huge_page(pfn_to_page(pfn));
1438 }
1439 
1440 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1441 {
1442 	struct page *page;
1443 	unsigned int r_nid;
1444 
1445 	if (hstate_is_gigantic(h))
1446 		return NULL;
1447 
1448 	/*
1449 	 * Assume we will successfully allocate the surplus page to
1450 	 * prevent racing processes from causing the surplus to exceed
1451 	 * overcommit
1452 	 *
1453 	 * This however introduces a different race, where a process B
1454 	 * tries to grow the static hugepage pool while alloc_pages() is
1455 	 * called by process A. B will only examine the per-node
1456 	 * counters in determining if surplus huge pages can be
1457 	 * converted to normal huge pages in adjust_pool_surplus(). A
1458 	 * won't be able to increment the per-node counter, until the
1459 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1460 	 * no more huge pages can be converted from surplus to normal
1461 	 * state (and doesn't try to convert again). Thus, we have a
1462 	 * case where a surplus huge page exists, the pool is grown, and
1463 	 * the surplus huge page still exists after, even though it
1464 	 * should just have been converted to a normal huge page. This
1465 	 * does not leak memory, though, as the hugepage will be freed
1466 	 * once it is out of use. It also does not allow the counters to
1467 	 * go out of whack in adjust_pool_surplus() as we don't modify
1468 	 * the node values until we've gotten the hugepage and only the
1469 	 * per-node value is checked there.
1470 	 */
1471 	spin_lock(&hugetlb_lock);
1472 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1473 		spin_unlock(&hugetlb_lock);
1474 		return NULL;
1475 	} else {
1476 		h->nr_huge_pages++;
1477 		h->surplus_huge_pages++;
1478 	}
1479 	spin_unlock(&hugetlb_lock);
1480 
1481 	if (nid == NUMA_NO_NODE)
1482 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1483 				   __GFP_REPEAT|__GFP_NOWARN,
1484 				   huge_page_order(h));
1485 	else
1486 		page = __alloc_pages_node(nid,
1487 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1488 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1489 
1490 	spin_lock(&hugetlb_lock);
1491 	if (page) {
1492 		INIT_LIST_HEAD(&page->lru);
1493 		r_nid = page_to_nid(page);
1494 		set_compound_page_dtor(page, free_huge_page);
1495 		set_hugetlb_cgroup(page, NULL);
1496 		/*
1497 		 * We incremented the global counters already
1498 		 */
1499 		h->nr_huge_pages_node[r_nid]++;
1500 		h->surplus_huge_pages_node[r_nid]++;
1501 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1502 	} else {
1503 		h->nr_huge_pages--;
1504 		h->surplus_huge_pages--;
1505 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1506 	}
1507 	spin_unlock(&hugetlb_lock);
1508 
1509 	return page;
1510 }
1511 
1512 /*
1513  * This allocation function is useful in the context where vma is irrelevant.
1514  * E.g. soft-offlining uses this function because it only cares physical
1515  * address of error page.
1516  */
1517 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1518 {
1519 	struct page *page = NULL;
1520 
1521 	spin_lock(&hugetlb_lock);
1522 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1523 		page = dequeue_huge_page_node(h, nid);
1524 	spin_unlock(&hugetlb_lock);
1525 
1526 	if (!page)
1527 		page = alloc_buddy_huge_page(h, nid);
1528 
1529 	return page;
1530 }
1531 
1532 /*
1533  * Increase the hugetlb pool such that it can accommodate a reservation
1534  * of size 'delta'.
1535  */
1536 static int gather_surplus_pages(struct hstate *h, int delta)
1537 {
1538 	struct list_head surplus_list;
1539 	struct page *page, *tmp;
1540 	int ret, i;
1541 	int needed, allocated;
1542 	bool alloc_ok = true;
1543 
1544 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1545 	if (needed <= 0) {
1546 		h->resv_huge_pages += delta;
1547 		return 0;
1548 	}
1549 
1550 	allocated = 0;
1551 	INIT_LIST_HEAD(&surplus_list);
1552 
1553 	ret = -ENOMEM;
1554 retry:
1555 	spin_unlock(&hugetlb_lock);
1556 	for (i = 0; i < needed; i++) {
1557 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1558 		if (!page) {
1559 			alloc_ok = false;
1560 			break;
1561 		}
1562 		list_add(&page->lru, &surplus_list);
1563 	}
1564 	allocated += i;
1565 
1566 	/*
1567 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1568 	 * because either resv_huge_pages or free_huge_pages may have changed.
1569 	 */
1570 	spin_lock(&hugetlb_lock);
1571 	needed = (h->resv_huge_pages + delta) -
1572 			(h->free_huge_pages + allocated);
1573 	if (needed > 0) {
1574 		if (alloc_ok)
1575 			goto retry;
1576 		/*
1577 		 * We were not able to allocate enough pages to
1578 		 * satisfy the entire reservation so we free what
1579 		 * we've allocated so far.
1580 		 */
1581 		goto free;
1582 	}
1583 	/*
1584 	 * The surplus_list now contains _at_least_ the number of extra pages
1585 	 * needed to accommodate the reservation.  Add the appropriate number
1586 	 * of pages to the hugetlb pool and free the extras back to the buddy
1587 	 * allocator.  Commit the entire reservation here to prevent another
1588 	 * process from stealing the pages as they are added to the pool but
1589 	 * before they are reserved.
1590 	 */
1591 	needed += allocated;
1592 	h->resv_huge_pages += delta;
1593 	ret = 0;
1594 
1595 	/* Free the needed pages to the hugetlb pool */
1596 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1597 		if ((--needed) < 0)
1598 			break;
1599 		/*
1600 		 * This page is now managed by the hugetlb allocator and has
1601 		 * no users -- drop the buddy allocator's reference.
1602 		 */
1603 		put_page_testzero(page);
1604 		VM_BUG_ON_PAGE(page_count(page), page);
1605 		enqueue_huge_page(h, page);
1606 	}
1607 free:
1608 	spin_unlock(&hugetlb_lock);
1609 
1610 	/* Free unnecessary surplus pages to the buddy allocator */
1611 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1612 		put_page(page);
1613 	spin_lock(&hugetlb_lock);
1614 
1615 	return ret;
1616 }
1617 
1618 /*
1619  * When releasing a hugetlb pool reservation, any surplus pages that were
1620  * allocated to satisfy the reservation must be explicitly freed if they were
1621  * never used.
1622  * Called with hugetlb_lock held.
1623  */
1624 static void return_unused_surplus_pages(struct hstate *h,
1625 					unsigned long unused_resv_pages)
1626 {
1627 	unsigned long nr_pages;
1628 
1629 	/* Uncommit the reservation */
1630 	h->resv_huge_pages -= unused_resv_pages;
1631 
1632 	/* Cannot return gigantic pages currently */
1633 	if (hstate_is_gigantic(h))
1634 		return;
1635 
1636 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1637 
1638 	/*
1639 	 * We want to release as many surplus pages as possible, spread
1640 	 * evenly across all nodes with memory. Iterate across these nodes
1641 	 * until we can no longer free unreserved surplus pages. This occurs
1642 	 * when the nodes with surplus pages have no free pages.
1643 	 * free_pool_huge_page() will balance the the freed pages across the
1644 	 * on-line nodes with memory and will handle the hstate accounting.
1645 	 */
1646 	while (nr_pages--) {
1647 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1648 			break;
1649 		cond_resched_lock(&hugetlb_lock);
1650 	}
1651 }
1652 
1653 
1654 /*
1655  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1656  * are used by the huge page allocation routines to manage reservations.
1657  *
1658  * vma_needs_reservation is called to determine if the huge page at addr
1659  * within the vma has an associated reservation.  If a reservation is
1660  * needed, the value 1 is returned.  The caller is then responsible for
1661  * managing the global reservation and subpool usage counts.  After
1662  * the huge page has been allocated, vma_commit_reservation is called
1663  * to add the page to the reservation map.  If the page allocation fails,
1664  * the reservation must be ended instead of committed.  vma_end_reservation
1665  * is called in such cases.
1666  *
1667  * In the normal case, vma_commit_reservation returns the same value
1668  * as the preceding vma_needs_reservation call.  The only time this
1669  * is not the case is if a reserve map was changed between calls.  It
1670  * is the responsibility of the caller to notice the difference and
1671  * take appropriate action.
1672  */
1673 enum vma_resv_mode {
1674 	VMA_NEEDS_RESV,
1675 	VMA_COMMIT_RESV,
1676 	VMA_END_RESV,
1677 };
1678 static long __vma_reservation_common(struct hstate *h,
1679 				struct vm_area_struct *vma, unsigned long addr,
1680 				enum vma_resv_mode mode)
1681 {
1682 	struct resv_map *resv;
1683 	pgoff_t idx;
1684 	long ret;
1685 
1686 	resv = vma_resv_map(vma);
1687 	if (!resv)
1688 		return 1;
1689 
1690 	idx = vma_hugecache_offset(h, vma, addr);
1691 	switch (mode) {
1692 	case VMA_NEEDS_RESV:
1693 		ret = region_chg(resv, idx, idx + 1);
1694 		break;
1695 	case VMA_COMMIT_RESV:
1696 		ret = region_add(resv, idx, idx + 1);
1697 		break;
1698 	case VMA_END_RESV:
1699 		region_abort(resv, idx, idx + 1);
1700 		ret = 0;
1701 		break;
1702 	default:
1703 		BUG();
1704 	}
1705 
1706 	if (vma->vm_flags & VM_MAYSHARE)
1707 		return ret;
1708 	else
1709 		return ret < 0 ? ret : 0;
1710 }
1711 
1712 static long vma_needs_reservation(struct hstate *h,
1713 			struct vm_area_struct *vma, unsigned long addr)
1714 {
1715 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1716 }
1717 
1718 static long vma_commit_reservation(struct hstate *h,
1719 			struct vm_area_struct *vma, unsigned long addr)
1720 {
1721 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1722 }
1723 
1724 static void vma_end_reservation(struct hstate *h,
1725 			struct vm_area_struct *vma, unsigned long addr)
1726 {
1727 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1728 }
1729 
1730 struct page *alloc_huge_page(struct vm_area_struct *vma,
1731 				    unsigned long addr, int avoid_reserve)
1732 {
1733 	struct hugepage_subpool *spool = subpool_vma(vma);
1734 	struct hstate *h = hstate_vma(vma);
1735 	struct page *page;
1736 	long map_chg, map_commit;
1737 	long gbl_chg;
1738 	int ret, idx;
1739 	struct hugetlb_cgroup *h_cg;
1740 
1741 	idx = hstate_index(h);
1742 	/*
1743 	 * Examine the region/reserve map to determine if the process
1744 	 * has a reservation for the page to be allocated.  A return
1745 	 * code of zero indicates a reservation exists (no change).
1746 	 */
1747 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1748 	if (map_chg < 0)
1749 		return ERR_PTR(-ENOMEM);
1750 
1751 	/*
1752 	 * Processes that did not create the mapping will have no
1753 	 * reserves as indicated by the region/reserve map. Check
1754 	 * that the allocation will not exceed the subpool limit.
1755 	 * Allocations for MAP_NORESERVE mappings also need to be
1756 	 * checked against any subpool limit.
1757 	 */
1758 	if (map_chg || avoid_reserve) {
1759 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1760 		if (gbl_chg < 0) {
1761 			vma_end_reservation(h, vma, addr);
1762 			return ERR_PTR(-ENOSPC);
1763 		}
1764 
1765 		/*
1766 		 * Even though there was no reservation in the region/reserve
1767 		 * map, there could be reservations associated with the
1768 		 * subpool that can be used.  This would be indicated if the
1769 		 * return value of hugepage_subpool_get_pages() is zero.
1770 		 * However, if avoid_reserve is specified we still avoid even
1771 		 * the subpool reservations.
1772 		 */
1773 		if (avoid_reserve)
1774 			gbl_chg = 1;
1775 	}
1776 
1777 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1778 	if (ret)
1779 		goto out_subpool_put;
1780 
1781 	spin_lock(&hugetlb_lock);
1782 	/*
1783 	 * glb_chg is passed to indicate whether or not a page must be taken
1784 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1785 	 * a reservation exists for the allocation.
1786 	 */
1787 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1788 	if (!page) {
1789 		spin_unlock(&hugetlb_lock);
1790 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1791 		if (!page)
1792 			goto out_uncharge_cgroup;
1793 
1794 		spin_lock(&hugetlb_lock);
1795 		list_move(&page->lru, &h->hugepage_activelist);
1796 		/* Fall through */
1797 	}
1798 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1799 	spin_unlock(&hugetlb_lock);
1800 
1801 	set_page_private(page, (unsigned long)spool);
1802 
1803 	map_commit = vma_commit_reservation(h, vma, addr);
1804 	if (unlikely(map_chg > map_commit)) {
1805 		/*
1806 		 * The page was added to the reservation map between
1807 		 * vma_needs_reservation and vma_commit_reservation.
1808 		 * This indicates a race with hugetlb_reserve_pages.
1809 		 * Adjust for the subpool count incremented above AND
1810 		 * in hugetlb_reserve_pages for the same page.  Also,
1811 		 * the reservation count added in hugetlb_reserve_pages
1812 		 * no longer applies.
1813 		 */
1814 		long rsv_adjust;
1815 
1816 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1817 		hugetlb_acct_memory(h, -rsv_adjust);
1818 	}
1819 	return page;
1820 
1821 out_uncharge_cgroup:
1822 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1823 out_subpool_put:
1824 	if (map_chg || avoid_reserve)
1825 		hugepage_subpool_put_pages(spool, 1);
1826 	vma_end_reservation(h, vma, addr);
1827 	return ERR_PTR(-ENOSPC);
1828 }
1829 
1830 /*
1831  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1832  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1833  * where no ERR_VALUE is expected to be returned.
1834  */
1835 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1836 				unsigned long addr, int avoid_reserve)
1837 {
1838 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1839 	if (IS_ERR(page))
1840 		page = NULL;
1841 	return page;
1842 }
1843 
1844 int __weak alloc_bootmem_huge_page(struct hstate *h)
1845 {
1846 	struct huge_bootmem_page *m;
1847 	int nr_nodes, node;
1848 
1849 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1850 		void *addr;
1851 
1852 		addr = memblock_virt_alloc_try_nid_nopanic(
1853 				huge_page_size(h), huge_page_size(h),
1854 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1855 		if (addr) {
1856 			/*
1857 			 * Use the beginning of the huge page to store the
1858 			 * huge_bootmem_page struct (until gather_bootmem
1859 			 * puts them into the mem_map).
1860 			 */
1861 			m = addr;
1862 			goto found;
1863 		}
1864 	}
1865 	return 0;
1866 
1867 found:
1868 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1869 	/* Put them into a private list first because mem_map is not up yet */
1870 	list_add(&m->list, &huge_boot_pages);
1871 	m->hstate = h;
1872 	return 1;
1873 }
1874 
1875 static void __init prep_compound_huge_page(struct page *page, int order)
1876 {
1877 	if (unlikely(order > (MAX_ORDER - 1)))
1878 		prep_compound_gigantic_page(page, order);
1879 	else
1880 		prep_compound_page(page, order);
1881 }
1882 
1883 /* Put bootmem huge pages into the standard lists after mem_map is up */
1884 static void __init gather_bootmem_prealloc(void)
1885 {
1886 	struct huge_bootmem_page *m;
1887 
1888 	list_for_each_entry(m, &huge_boot_pages, list) {
1889 		struct hstate *h = m->hstate;
1890 		struct page *page;
1891 
1892 #ifdef CONFIG_HIGHMEM
1893 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1894 		memblock_free_late(__pa(m),
1895 				   sizeof(struct huge_bootmem_page));
1896 #else
1897 		page = virt_to_page(m);
1898 #endif
1899 		WARN_ON(page_count(page) != 1);
1900 		prep_compound_huge_page(page, h->order);
1901 		WARN_ON(PageReserved(page));
1902 		prep_new_huge_page(h, page, page_to_nid(page));
1903 		/*
1904 		 * If we had gigantic hugepages allocated at boot time, we need
1905 		 * to restore the 'stolen' pages to totalram_pages in order to
1906 		 * fix confusing memory reports from free(1) and another
1907 		 * side-effects, like CommitLimit going negative.
1908 		 */
1909 		if (hstate_is_gigantic(h))
1910 			adjust_managed_page_count(page, 1 << h->order);
1911 	}
1912 }
1913 
1914 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1915 {
1916 	unsigned long i;
1917 
1918 	for (i = 0; i < h->max_huge_pages; ++i) {
1919 		if (hstate_is_gigantic(h)) {
1920 			if (!alloc_bootmem_huge_page(h))
1921 				break;
1922 		} else if (!alloc_fresh_huge_page(h,
1923 					 &node_states[N_MEMORY]))
1924 			break;
1925 	}
1926 	h->max_huge_pages = i;
1927 }
1928 
1929 static void __init hugetlb_init_hstates(void)
1930 {
1931 	struct hstate *h;
1932 
1933 	for_each_hstate(h) {
1934 		if (minimum_order > huge_page_order(h))
1935 			minimum_order = huge_page_order(h);
1936 
1937 		/* oversize hugepages were init'ed in early boot */
1938 		if (!hstate_is_gigantic(h))
1939 			hugetlb_hstate_alloc_pages(h);
1940 	}
1941 	VM_BUG_ON(minimum_order == UINT_MAX);
1942 }
1943 
1944 static char * __init memfmt(char *buf, unsigned long n)
1945 {
1946 	if (n >= (1UL << 30))
1947 		sprintf(buf, "%lu GB", n >> 30);
1948 	else if (n >= (1UL << 20))
1949 		sprintf(buf, "%lu MB", n >> 20);
1950 	else
1951 		sprintf(buf, "%lu KB", n >> 10);
1952 	return buf;
1953 }
1954 
1955 static void __init report_hugepages(void)
1956 {
1957 	struct hstate *h;
1958 
1959 	for_each_hstate(h) {
1960 		char buf[32];
1961 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1962 			memfmt(buf, huge_page_size(h)),
1963 			h->free_huge_pages);
1964 	}
1965 }
1966 
1967 #ifdef CONFIG_HIGHMEM
1968 static void try_to_free_low(struct hstate *h, unsigned long count,
1969 						nodemask_t *nodes_allowed)
1970 {
1971 	int i;
1972 
1973 	if (hstate_is_gigantic(h))
1974 		return;
1975 
1976 	for_each_node_mask(i, *nodes_allowed) {
1977 		struct page *page, *next;
1978 		struct list_head *freel = &h->hugepage_freelists[i];
1979 		list_for_each_entry_safe(page, next, freel, lru) {
1980 			if (count >= h->nr_huge_pages)
1981 				return;
1982 			if (PageHighMem(page))
1983 				continue;
1984 			list_del(&page->lru);
1985 			update_and_free_page(h, page);
1986 			h->free_huge_pages--;
1987 			h->free_huge_pages_node[page_to_nid(page)]--;
1988 		}
1989 	}
1990 }
1991 #else
1992 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1993 						nodemask_t *nodes_allowed)
1994 {
1995 }
1996 #endif
1997 
1998 /*
1999  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2000  * balanced by operating on them in a round-robin fashion.
2001  * Returns 1 if an adjustment was made.
2002  */
2003 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2004 				int delta)
2005 {
2006 	int nr_nodes, node;
2007 
2008 	VM_BUG_ON(delta != -1 && delta != 1);
2009 
2010 	if (delta < 0) {
2011 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2012 			if (h->surplus_huge_pages_node[node])
2013 				goto found;
2014 		}
2015 	} else {
2016 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2017 			if (h->surplus_huge_pages_node[node] <
2018 					h->nr_huge_pages_node[node])
2019 				goto found;
2020 		}
2021 	}
2022 	return 0;
2023 
2024 found:
2025 	h->surplus_huge_pages += delta;
2026 	h->surplus_huge_pages_node[node] += delta;
2027 	return 1;
2028 }
2029 
2030 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2031 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2032 						nodemask_t *nodes_allowed)
2033 {
2034 	unsigned long min_count, ret;
2035 
2036 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2037 		return h->max_huge_pages;
2038 
2039 	/*
2040 	 * Increase the pool size
2041 	 * First take pages out of surplus state.  Then make up the
2042 	 * remaining difference by allocating fresh huge pages.
2043 	 *
2044 	 * We might race with alloc_buddy_huge_page() here and be unable
2045 	 * to convert a surplus huge page to a normal huge page. That is
2046 	 * not critical, though, it just means the overall size of the
2047 	 * pool might be one hugepage larger than it needs to be, but
2048 	 * within all the constraints specified by the sysctls.
2049 	 */
2050 	spin_lock(&hugetlb_lock);
2051 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2052 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2053 			break;
2054 	}
2055 
2056 	while (count > persistent_huge_pages(h)) {
2057 		/*
2058 		 * If this allocation races such that we no longer need the
2059 		 * page, free_huge_page will handle it by freeing the page
2060 		 * and reducing the surplus.
2061 		 */
2062 		spin_unlock(&hugetlb_lock);
2063 		if (hstate_is_gigantic(h))
2064 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2065 		else
2066 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2067 		spin_lock(&hugetlb_lock);
2068 		if (!ret)
2069 			goto out;
2070 
2071 		/* Bail for signals. Probably ctrl-c from user */
2072 		if (signal_pending(current))
2073 			goto out;
2074 	}
2075 
2076 	/*
2077 	 * Decrease the pool size
2078 	 * First return free pages to the buddy allocator (being careful
2079 	 * to keep enough around to satisfy reservations).  Then place
2080 	 * pages into surplus state as needed so the pool will shrink
2081 	 * to the desired size as pages become free.
2082 	 *
2083 	 * By placing pages into the surplus state independent of the
2084 	 * overcommit value, we are allowing the surplus pool size to
2085 	 * exceed overcommit. There are few sane options here. Since
2086 	 * alloc_buddy_huge_page() is checking the global counter,
2087 	 * though, we'll note that we're not allowed to exceed surplus
2088 	 * and won't grow the pool anywhere else. Not until one of the
2089 	 * sysctls are changed, or the surplus pages go out of use.
2090 	 */
2091 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2092 	min_count = max(count, min_count);
2093 	try_to_free_low(h, min_count, nodes_allowed);
2094 	while (min_count < persistent_huge_pages(h)) {
2095 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2096 			break;
2097 		cond_resched_lock(&hugetlb_lock);
2098 	}
2099 	while (count < persistent_huge_pages(h)) {
2100 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2101 			break;
2102 	}
2103 out:
2104 	ret = persistent_huge_pages(h);
2105 	spin_unlock(&hugetlb_lock);
2106 	return ret;
2107 }
2108 
2109 #define HSTATE_ATTR_RO(_name) \
2110 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2111 
2112 #define HSTATE_ATTR(_name) \
2113 	static struct kobj_attribute _name##_attr = \
2114 		__ATTR(_name, 0644, _name##_show, _name##_store)
2115 
2116 static struct kobject *hugepages_kobj;
2117 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2118 
2119 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2120 
2121 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2122 {
2123 	int i;
2124 
2125 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2126 		if (hstate_kobjs[i] == kobj) {
2127 			if (nidp)
2128 				*nidp = NUMA_NO_NODE;
2129 			return &hstates[i];
2130 		}
2131 
2132 	return kobj_to_node_hstate(kobj, nidp);
2133 }
2134 
2135 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2136 					struct kobj_attribute *attr, char *buf)
2137 {
2138 	struct hstate *h;
2139 	unsigned long nr_huge_pages;
2140 	int nid;
2141 
2142 	h = kobj_to_hstate(kobj, &nid);
2143 	if (nid == NUMA_NO_NODE)
2144 		nr_huge_pages = h->nr_huge_pages;
2145 	else
2146 		nr_huge_pages = h->nr_huge_pages_node[nid];
2147 
2148 	return sprintf(buf, "%lu\n", nr_huge_pages);
2149 }
2150 
2151 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2152 					   struct hstate *h, int nid,
2153 					   unsigned long count, size_t len)
2154 {
2155 	int err;
2156 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2157 
2158 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2159 		err = -EINVAL;
2160 		goto out;
2161 	}
2162 
2163 	if (nid == NUMA_NO_NODE) {
2164 		/*
2165 		 * global hstate attribute
2166 		 */
2167 		if (!(obey_mempolicy &&
2168 				init_nodemask_of_mempolicy(nodes_allowed))) {
2169 			NODEMASK_FREE(nodes_allowed);
2170 			nodes_allowed = &node_states[N_MEMORY];
2171 		}
2172 	} else if (nodes_allowed) {
2173 		/*
2174 		 * per node hstate attribute: adjust count to global,
2175 		 * but restrict alloc/free to the specified node.
2176 		 */
2177 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2178 		init_nodemask_of_node(nodes_allowed, nid);
2179 	} else
2180 		nodes_allowed = &node_states[N_MEMORY];
2181 
2182 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2183 
2184 	if (nodes_allowed != &node_states[N_MEMORY])
2185 		NODEMASK_FREE(nodes_allowed);
2186 
2187 	return len;
2188 out:
2189 	NODEMASK_FREE(nodes_allowed);
2190 	return err;
2191 }
2192 
2193 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2194 					 struct kobject *kobj, const char *buf,
2195 					 size_t len)
2196 {
2197 	struct hstate *h;
2198 	unsigned long count;
2199 	int nid;
2200 	int err;
2201 
2202 	err = kstrtoul(buf, 10, &count);
2203 	if (err)
2204 		return err;
2205 
2206 	h = kobj_to_hstate(kobj, &nid);
2207 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2208 }
2209 
2210 static ssize_t nr_hugepages_show(struct kobject *kobj,
2211 				       struct kobj_attribute *attr, char *buf)
2212 {
2213 	return nr_hugepages_show_common(kobj, attr, buf);
2214 }
2215 
2216 static ssize_t nr_hugepages_store(struct kobject *kobj,
2217 	       struct kobj_attribute *attr, const char *buf, size_t len)
2218 {
2219 	return nr_hugepages_store_common(false, kobj, buf, len);
2220 }
2221 HSTATE_ATTR(nr_hugepages);
2222 
2223 #ifdef CONFIG_NUMA
2224 
2225 /*
2226  * hstate attribute for optionally mempolicy-based constraint on persistent
2227  * huge page alloc/free.
2228  */
2229 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2230 				       struct kobj_attribute *attr, char *buf)
2231 {
2232 	return nr_hugepages_show_common(kobj, attr, buf);
2233 }
2234 
2235 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2236 	       struct kobj_attribute *attr, const char *buf, size_t len)
2237 {
2238 	return nr_hugepages_store_common(true, kobj, buf, len);
2239 }
2240 HSTATE_ATTR(nr_hugepages_mempolicy);
2241 #endif
2242 
2243 
2244 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2245 					struct kobj_attribute *attr, char *buf)
2246 {
2247 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2248 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2249 }
2250 
2251 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2252 		struct kobj_attribute *attr, const char *buf, size_t count)
2253 {
2254 	int err;
2255 	unsigned long input;
2256 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2257 
2258 	if (hstate_is_gigantic(h))
2259 		return -EINVAL;
2260 
2261 	err = kstrtoul(buf, 10, &input);
2262 	if (err)
2263 		return err;
2264 
2265 	spin_lock(&hugetlb_lock);
2266 	h->nr_overcommit_huge_pages = input;
2267 	spin_unlock(&hugetlb_lock);
2268 
2269 	return count;
2270 }
2271 HSTATE_ATTR(nr_overcommit_hugepages);
2272 
2273 static ssize_t free_hugepages_show(struct kobject *kobj,
2274 					struct kobj_attribute *attr, char *buf)
2275 {
2276 	struct hstate *h;
2277 	unsigned long free_huge_pages;
2278 	int nid;
2279 
2280 	h = kobj_to_hstate(kobj, &nid);
2281 	if (nid == NUMA_NO_NODE)
2282 		free_huge_pages = h->free_huge_pages;
2283 	else
2284 		free_huge_pages = h->free_huge_pages_node[nid];
2285 
2286 	return sprintf(buf, "%lu\n", free_huge_pages);
2287 }
2288 HSTATE_ATTR_RO(free_hugepages);
2289 
2290 static ssize_t resv_hugepages_show(struct kobject *kobj,
2291 					struct kobj_attribute *attr, char *buf)
2292 {
2293 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2294 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2295 }
2296 HSTATE_ATTR_RO(resv_hugepages);
2297 
2298 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2299 					struct kobj_attribute *attr, char *buf)
2300 {
2301 	struct hstate *h;
2302 	unsigned long surplus_huge_pages;
2303 	int nid;
2304 
2305 	h = kobj_to_hstate(kobj, &nid);
2306 	if (nid == NUMA_NO_NODE)
2307 		surplus_huge_pages = h->surplus_huge_pages;
2308 	else
2309 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2310 
2311 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2312 }
2313 HSTATE_ATTR_RO(surplus_hugepages);
2314 
2315 static struct attribute *hstate_attrs[] = {
2316 	&nr_hugepages_attr.attr,
2317 	&nr_overcommit_hugepages_attr.attr,
2318 	&free_hugepages_attr.attr,
2319 	&resv_hugepages_attr.attr,
2320 	&surplus_hugepages_attr.attr,
2321 #ifdef CONFIG_NUMA
2322 	&nr_hugepages_mempolicy_attr.attr,
2323 #endif
2324 	NULL,
2325 };
2326 
2327 static struct attribute_group hstate_attr_group = {
2328 	.attrs = hstate_attrs,
2329 };
2330 
2331 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2332 				    struct kobject **hstate_kobjs,
2333 				    struct attribute_group *hstate_attr_group)
2334 {
2335 	int retval;
2336 	int hi = hstate_index(h);
2337 
2338 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2339 	if (!hstate_kobjs[hi])
2340 		return -ENOMEM;
2341 
2342 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2343 	if (retval)
2344 		kobject_put(hstate_kobjs[hi]);
2345 
2346 	return retval;
2347 }
2348 
2349 static void __init hugetlb_sysfs_init(void)
2350 {
2351 	struct hstate *h;
2352 	int err;
2353 
2354 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2355 	if (!hugepages_kobj)
2356 		return;
2357 
2358 	for_each_hstate(h) {
2359 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2360 					 hstate_kobjs, &hstate_attr_group);
2361 		if (err)
2362 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2363 	}
2364 }
2365 
2366 #ifdef CONFIG_NUMA
2367 
2368 /*
2369  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2370  * with node devices in node_devices[] using a parallel array.  The array
2371  * index of a node device or _hstate == node id.
2372  * This is here to avoid any static dependency of the node device driver, in
2373  * the base kernel, on the hugetlb module.
2374  */
2375 struct node_hstate {
2376 	struct kobject		*hugepages_kobj;
2377 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2378 };
2379 struct node_hstate node_hstates[MAX_NUMNODES];
2380 
2381 /*
2382  * A subset of global hstate attributes for node devices
2383  */
2384 static struct attribute *per_node_hstate_attrs[] = {
2385 	&nr_hugepages_attr.attr,
2386 	&free_hugepages_attr.attr,
2387 	&surplus_hugepages_attr.attr,
2388 	NULL,
2389 };
2390 
2391 static struct attribute_group per_node_hstate_attr_group = {
2392 	.attrs = per_node_hstate_attrs,
2393 };
2394 
2395 /*
2396  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2397  * Returns node id via non-NULL nidp.
2398  */
2399 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2400 {
2401 	int nid;
2402 
2403 	for (nid = 0; nid < nr_node_ids; nid++) {
2404 		struct node_hstate *nhs = &node_hstates[nid];
2405 		int i;
2406 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2407 			if (nhs->hstate_kobjs[i] == kobj) {
2408 				if (nidp)
2409 					*nidp = nid;
2410 				return &hstates[i];
2411 			}
2412 	}
2413 
2414 	BUG();
2415 	return NULL;
2416 }
2417 
2418 /*
2419  * Unregister hstate attributes from a single node device.
2420  * No-op if no hstate attributes attached.
2421  */
2422 static void hugetlb_unregister_node(struct node *node)
2423 {
2424 	struct hstate *h;
2425 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2426 
2427 	if (!nhs->hugepages_kobj)
2428 		return;		/* no hstate attributes */
2429 
2430 	for_each_hstate(h) {
2431 		int idx = hstate_index(h);
2432 		if (nhs->hstate_kobjs[idx]) {
2433 			kobject_put(nhs->hstate_kobjs[idx]);
2434 			nhs->hstate_kobjs[idx] = NULL;
2435 		}
2436 	}
2437 
2438 	kobject_put(nhs->hugepages_kobj);
2439 	nhs->hugepages_kobj = NULL;
2440 }
2441 
2442 /*
2443  * hugetlb module exit:  unregister hstate attributes from node devices
2444  * that have them.
2445  */
2446 static void hugetlb_unregister_all_nodes(void)
2447 {
2448 	int nid;
2449 
2450 	/*
2451 	 * disable node device registrations.
2452 	 */
2453 	register_hugetlbfs_with_node(NULL, NULL);
2454 
2455 	/*
2456 	 * remove hstate attributes from any nodes that have them.
2457 	 */
2458 	for (nid = 0; nid < nr_node_ids; nid++)
2459 		hugetlb_unregister_node(node_devices[nid]);
2460 }
2461 
2462 /*
2463  * Register hstate attributes for a single node device.
2464  * No-op if attributes already registered.
2465  */
2466 static void hugetlb_register_node(struct node *node)
2467 {
2468 	struct hstate *h;
2469 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2470 	int err;
2471 
2472 	if (nhs->hugepages_kobj)
2473 		return;		/* already allocated */
2474 
2475 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2476 							&node->dev.kobj);
2477 	if (!nhs->hugepages_kobj)
2478 		return;
2479 
2480 	for_each_hstate(h) {
2481 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2482 						nhs->hstate_kobjs,
2483 						&per_node_hstate_attr_group);
2484 		if (err) {
2485 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2486 				h->name, node->dev.id);
2487 			hugetlb_unregister_node(node);
2488 			break;
2489 		}
2490 	}
2491 }
2492 
2493 /*
2494  * hugetlb init time:  register hstate attributes for all registered node
2495  * devices of nodes that have memory.  All on-line nodes should have
2496  * registered their associated device by this time.
2497  */
2498 static void __init hugetlb_register_all_nodes(void)
2499 {
2500 	int nid;
2501 
2502 	for_each_node_state(nid, N_MEMORY) {
2503 		struct node *node = node_devices[nid];
2504 		if (node->dev.id == nid)
2505 			hugetlb_register_node(node);
2506 	}
2507 
2508 	/*
2509 	 * Let the node device driver know we're here so it can
2510 	 * [un]register hstate attributes on node hotplug.
2511 	 */
2512 	register_hugetlbfs_with_node(hugetlb_register_node,
2513 				     hugetlb_unregister_node);
2514 }
2515 #else	/* !CONFIG_NUMA */
2516 
2517 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2518 {
2519 	BUG();
2520 	if (nidp)
2521 		*nidp = -1;
2522 	return NULL;
2523 }
2524 
2525 static void hugetlb_unregister_all_nodes(void) { }
2526 
2527 static void hugetlb_register_all_nodes(void) { }
2528 
2529 #endif
2530 
2531 static void __exit hugetlb_exit(void)
2532 {
2533 	struct hstate *h;
2534 
2535 	hugetlb_unregister_all_nodes();
2536 
2537 	for_each_hstate(h) {
2538 		kobject_put(hstate_kobjs[hstate_index(h)]);
2539 	}
2540 
2541 	kobject_put(hugepages_kobj);
2542 	kfree(hugetlb_fault_mutex_table);
2543 }
2544 module_exit(hugetlb_exit);
2545 
2546 static int __init hugetlb_init(void)
2547 {
2548 	int i;
2549 
2550 	if (!hugepages_supported())
2551 		return 0;
2552 
2553 	if (!size_to_hstate(default_hstate_size)) {
2554 		default_hstate_size = HPAGE_SIZE;
2555 		if (!size_to_hstate(default_hstate_size))
2556 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2557 	}
2558 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2559 	if (default_hstate_max_huge_pages)
2560 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2561 
2562 	hugetlb_init_hstates();
2563 	gather_bootmem_prealloc();
2564 	report_hugepages();
2565 
2566 	hugetlb_sysfs_init();
2567 	hugetlb_register_all_nodes();
2568 	hugetlb_cgroup_file_init();
2569 
2570 #ifdef CONFIG_SMP
2571 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2572 #else
2573 	num_fault_mutexes = 1;
2574 #endif
2575 	hugetlb_fault_mutex_table =
2576 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2577 	BUG_ON(!hugetlb_fault_mutex_table);
2578 
2579 	for (i = 0; i < num_fault_mutexes; i++)
2580 		mutex_init(&hugetlb_fault_mutex_table[i]);
2581 	return 0;
2582 }
2583 module_init(hugetlb_init);
2584 
2585 /* Should be called on processing a hugepagesz=... option */
2586 void __init hugetlb_add_hstate(unsigned order)
2587 {
2588 	struct hstate *h;
2589 	unsigned long i;
2590 
2591 	if (size_to_hstate(PAGE_SIZE << order)) {
2592 		pr_warning("hugepagesz= specified twice, ignoring\n");
2593 		return;
2594 	}
2595 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2596 	BUG_ON(order == 0);
2597 	h = &hstates[hugetlb_max_hstate++];
2598 	h->order = order;
2599 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2600 	h->nr_huge_pages = 0;
2601 	h->free_huge_pages = 0;
2602 	for (i = 0; i < MAX_NUMNODES; ++i)
2603 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2604 	INIT_LIST_HEAD(&h->hugepage_activelist);
2605 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2606 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2607 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2608 					huge_page_size(h)/1024);
2609 
2610 	parsed_hstate = h;
2611 }
2612 
2613 static int __init hugetlb_nrpages_setup(char *s)
2614 {
2615 	unsigned long *mhp;
2616 	static unsigned long *last_mhp;
2617 
2618 	/*
2619 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2620 	 * so this hugepages= parameter goes to the "default hstate".
2621 	 */
2622 	if (!hugetlb_max_hstate)
2623 		mhp = &default_hstate_max_huge_pages;
2624 	else
2625 		mhp = &parsed_hstate->max_huge_pages;
2626 
2627 	if (mhp == last_mhp) {
2628 		pr_warning("hugepages= specified twice without "
2629 			   "interleaving hugepagesz=, ignoring\n");
2630 		return 1;
2631 	}
2632 
2633 	if (sscanf(s, "%lu", mhp) <= 0)
2634 		*mhp = 0;
2635 
2636 	/*
2637 	 * Global state is always initialized later in hugetlb_init.
2638 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2639 	 * use the bootmem allocator.
2640 	 */
2641 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2642 		hugetlb_hstate_alloc_pages(parsed_hstate);
2643 
2644 	last_mhp = mhp;
2645 
2646 	return 1;
2647 }
2648 __setup("hugepages=", hugetlb_nrpages_setup);
2649 
2650 static int __init hugetlb_default_setup(char *s)
2651 {
2652 	default_hstate_size = memparse(s, &s);
2653 	return 1;
2654 }
2655 __setup("default_hugepagesz=", hugetlb_default_setup);
2656 
2657 static unsigned int cpuset_mems_nr(unsigned int *array)
2658 {
2659 	int node;
2660 	unsigned int nr = 0;
2661 
2662 	for_each_node_mask(node, cpuset_current_mems_allowed)
2663 		nr += array[node];
2664 
2665 	return nr;
2666 }
2667 
2668 #ifdef CONFIG_SYSCTL
2669 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2670 			 struct ctl_table *table, int write,
2671 			 void __user *buffer, size_t *length, loff_t *ppos)
2672 {
2673 	struct hstate *h = &default_hstate;
2674 	unsigned long tmp = h->max_huge_pages;
2675 	int ret;
2676 
2677 	if (!hugepages_supported())
2678 		return -ENOTSUPP;
2679 
2680 	table->data = &tmp;
2681 	table->maxlen = sizeof(unsigned long);
2682 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2683 	if (ret)
2684 		goto out;
2685 
2686 	if (write)
2687 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2688 						  NUMA_NO_NODE, tmp, *length);
2689 out:
2690 	return ret;
2691 }
2692 
2693 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2694 			  void __user *buffer, size_t *length, loff_t *ppos)
2695 {
2696 
2697 	return hugetlb_sysctl_handler_common(false, table, write,
2698 							buffer, length, ppos);
2699 }
2700 
2701 #ifdef CONFIG_NUMA
2702 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2703 			  void __user *buffer, size_t *length, loff_t *ppos)
2704 {
2705 	return hugetlb_sysctl_handler_common(true, table, write,
2706 							buffer, length, ppos);
2707 }
2708 #endif /* CONFIG_NUMA */
2709 
2710 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2711 			void __user *buffer,
2712 			size_t *length, loff_t *ppos)
2713 {
2714 	struct hstate *h = &default_hstate;
2715 	unsigned long tmp;
2716 	int ret;
2717 
2718 	if (!hugepages_supported())
2719 		return -ENOTSUPP;
2720 
2721 	tmp = h->nr_overcommit_huge_pages;
2722 
2723 	if (write && hstate_is_gigantic(h))
2724 		return -EINVAL;
2725 
2726 	table->data = &tmp;
2727 	table->maxlen = sizeof(unsigned long);
2728 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2729 	if (ret)
2730 		goto out;
2731 
2732 	if (write) {
2733 		spin_lock(&hugetlb_lock);
2734 		h->nr_overcommit_huge_pages = tmp;
2735 		spin_unlock(&hugetlb_lock);
2736 	}
2737 out:
2738 	return ret;
2739 }
2740 
2741 #endif /* CONFIG_SYSCTL */
2742 
2743 void hugetlb_report_meminfo(struct seq_file *m)
2744 {
2745 	struct hstate *h = &default_hstate;
2746 	if (!hugepages_supported())
2747 		return;
2748 	seq_printf(m,
2749 			"HugePages_Total:   %5lu\n"
2750 			"HugePages_Free:    %5lu\n"
2751 			"HugePages_Rsvd:    %5lu\n"
2752 			"HugePages_Surp:    %5lu\n"
2753 			"Hugepagesize:   %8lu kB\n",
2754 			h->nr_huge_pages,
2755 			h->free_huge_pages,
2756 			h->resv_huge_pages,
2757 			h->surplus_huge_pages,
2758 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2759 }
2760 
2761 int hugetlb_report_node_meminfo(int nid, char *buf)
2762 {
2763 	struct hstate *h = &default_hstate;
2764 	if (!hugepages_supported())
2765 		return 0;
2766 	return sprintf(buf,
2767 		"Node %d HugePages_Total: %5u\n"
2768 		"Node %d HugePages_Free:  %5u\n"
2769 		"Node %d HugePages_Surp:  %5u\n",
2770 		nid, h->nr_huge_pages_node[nid],
2771 		nid, h->free_huge_pages_node[nid],
2772 		nid, h->surplus_huge_pages_node[nid]);
2773 }
2774 
2775 void hugetlb_show_meminfo(void)
2776 {
2777 	struct hstate *h;
2778 	int nid;
2779 
2780 	if (!hugepages_supported())
2781 		return;
2782 
2783 	for_each_node_state(nid, N_MEMORY)
2784 		for_each_hstate(h)
2785 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2786 				nid,
2787 				h->nr_huge_pages_node[nid],
2788 				h->free_huge_pages_node[nid],
2789 				h->surplus_huge_pages_node[nid],
2790 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2791 }
2792 
2793 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2794 unsigned long hugetlb_total_pages(void)
2795 {
2796 	struct hstate *h;
2797 	unsigned long nr_total_pages = 0;
2798 
2799 	for_each_hstate(h)
2800 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2801 	return nr_total_pages;
2802 }
2803 
2804 static int hugetlb_acct_memory(struct hstate *h, long delta)
2805 {
2806 	int ret = -ENOMEM;
2807 
2808 	spin_lock(&hugetlb_lock);
2809 	/*
2810 	 * When cpuset is configured, it breaks the strict hugetlb page
2811 	 * reservation as the accounting is done on a global variable. Such
2812 	 * reservation is completely rubbish in the presence of cpuset because
2813 	 * the reservation is not checked against page availability for the
2814 	 * current cpuset. Application can still potentially OOM'ed by kernel
2815 	 * with lack of free htlb page in cpuset that the task is in.
2816 	 * Attempt to enforce strict accounting with cpuset is almost
2817 	 * impossible (or too ugly) because cpuset is too fluid that
2818 	 * task or memory node can be dynamically moved between cpusets.
2819 	 *
2820 	 * The change of semantics for shared hugetlb mapping with cpuset is
2821 	 * undesirable. However, in order to preserve some of the semantics,
2822 	 * we fall back to check against current free page availability as
2823 	 * a best attempt and hopefully to minimize the impact of changing
2824 	 * semantics that cpuset has.
2825 	 */
2826 	if (delta > 0) {
2827 		if (gather_surplus_pages(h, delta) < 0)
2828 			goto out;
2829 
2830 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2831 			return_unused_surplus_pages(h, delta);
2832 			goto out;
2833 		}
2834 	}
2835 
2836 	ret = 0;
2837 	if (delta < 0)
2838 		return_unused_surplus_pages(h, (unsigned long) -delta);
2839 
2840 out:
2841 	spin_unlock(&hugetlb_lock);
2842 	return ret;
2843 }
2844 
2845 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2846 {
2847 	struct resv_map *resv = vma_resv_map(vma);
2848 
2849 	/*
2850 	 * This new VMA should share its siblings reservation map if present.
2851 	 * The VMA will only ever have a valid reservation map pointer where
2852 	 * it is being copied for another still existing VMA.  As that VMA
2853 	 * has a reference to the reservation map it cannot disappear until
2854 	 * after this open call completes.  It is therefore safe to take a
2855 	 * new reference here without additional locking.
2856 	 */
2857 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2858 		kref_get(&resv->refs);
2859 }
2860 
2861 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2862 {
2863 	struct hstate *h = hstate_vma(vma);
2864 	struct resv_map *resv = vma_resv_map(vma);
2865 	struct hugepage_subpool *spool = subpool_vma(vma);
2866 	unsigned long reserve, start, end;
2867 	long gbl_reserve;
2868 
2869 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2870 		return;
2871 
2872 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2873 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2874 
2875 	reserve = (end - start) - region_count(resv, start, end);
2876 
2877 	kref_put(&resv->refs, resv_map_release);
2878 
2879 	if (reserve) {
2880 		/*
2881 		 * Decrement reserve counts.  The global reserve count may be
2882 		 * adjusted if the subpool has a minimum size.
2883 		 */
2884 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2885 		hugetlb_acct_memory(h, -gbl_reserve);
2886 	}
2887 }
2888 
2889 /*
2890  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2891  * handle_mm_fault() to try to instantiate regular-sized pages in the
2892  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2893  * this far.
2894  */
2895 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2896 {
2897 	BUG();
2898 	return 0;
2899 }
2900 
2901 const struct vm_operations_struct hugetlb_vm_ops = {
2902 	.fault = hugetlb_vm_op_fault,
2903 	.open = hugetlb_vm_op_open,
2904 	.close = hugetlb_vm_op_close,
2905 };
2906 
2907 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2908 				int writable)
2909 {
2910 	pte_t entry;
2911 
2912 	if (writable) {
2913 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2914 					 vma->vm_page_prot)));
2915 	} else {
2916 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2917 					   vma->vm_page_prot));
2918 	}
2919 	entry = pte_mkyoung(entry);
2920 	entry = pte_mkhuge(entry);
2921 	entry = arch_make_huge_pte(entry, vma, page, writable);
2922 
2923 	return entry;
2924 }
2925 
2926 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2927 				   unsigned long address, pte_t *ptep)
2928 {
2929 	pte_t entry;
2930 
2931 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2932 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2933 		update_mmu_cache(vma, address, ptep);
2934 }
2935 
2936 static int is_hugetlb_entry_migration(pte_t pte)
2937 {
2938 	swp_entry_t swp;
2939 
2940 	if (huge_pte_none(pte) || pte_present(pte))
2941 		return 0;
2942 	swp = pte_to_swp_entry(pte);
2943 	if (non_swap_entry(swp) && is_migration_entry(swp))
2944 		return 1;
2945 	else
2946 		return 0;
2947 }
2948 
2949 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2950 {
2951 	swp_entry_t swp;
2952 
2953 	if (huge_pte_none(pte) || pte_present(pte))
2954 		return 0;
2955 	swp = pte_to_swp_entry(pte);
2956 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2957 		return 1;
2958 	else
2959 		return 0;
2960 }
2961 
2962 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2963 			    struct vm_area_struct *vma)
2964 {
2965 	pte_t *src_pte, *dst_pte, entry;
2966 	struct page *ptepage;
2967 	unsigned long addr;
2968 	int cow;
2969 	struct hstate *h = hstate_vma(vma);
2970 	unsigned long sz = huge_page_size(h);
2971 	unsigned long mmun_start;	/* For mmu_notifiers */
2972 	unsigned long mmun_end;		/* For mmu_notifiers */
2973 	int ret = 0;
2974 
2975 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2976 
2977 	mmun_start = vma->vm_start;
2978 	mmun_end = vma->vm_end;
2979 	if (cow)
2980 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2981 
2982 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2983 		spinlock_t *src_ptl, *dst_ptl;
2984 		src_pte = huge_pte_offset(src, addr);
2985 		if (!src_pte)
2986 			continue;
2987 		dst_pte = huge_pte_alloc(dst, addr, sz);
2988 		if (!dst_pte) {
2989 			ret = -ENOMEM;
2990 			break;
2991 		}
2992 
2993 		/* If the pagetables are shared don't copy or take references */
2994 		if (dst_pte == src_pte)
2995 			continue;
2996 
2997 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2998 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2999 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3000 		entry = huge_ptep_get(src_pte);
3001 		if (huge_pte_none(entry)) { /* skip none entry */
3002 			;
3003 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3004 				    is_hugetlb_entry_hwpoisoned(entry))) {
3005 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3006 
3007 			if (is_write_migration_entry(swp_entry) && cow) {
3008 				/*
3009 				 * COW mappings require pages in both
3010 				 * parent and child to be set to read.
3011 				 */
3012 				make_migration_entry_read(&swp_entry);
3013 				entry = swp_entry_to_pte(swp_entry);
3014 				set_huge_pte_at(src, addr, src_pte, entry);
3015 			}
3016 			set_huge_pte_at(dst, addr, dst_pte, entry);
3017 		} else {
3018 			if (cow) {
3019 				huge_ptep_set_wrprotect(src, addr, src_pte);
3020 				mmu_notifier_invalidate_range(src, mmun_start,
3021 								   mmun_end);
3022 			}
3023 			entry = huge_ptep_get(src_pte);
3024 			ptepage = pte_page(entry);
3025 			get_page(ptepage);
3026 			page_dup_rmap(ptepage);
3027 			set_huge_pte_at(dst, addr, dst_pte, entry);
3028 		}
3029 		spin_unlock(src_ptl);
3030 		spin_unlock(dst_ptl);
3031 	}
3032 
3033 	if (cow)
3034 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3035 
3036 	return ret;
3037 }
3038 
3039 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3040 			    unsigned long start, unsigned long end,
3041 			    struct page *ref_page)
3042 {
3043 	int force_flush = 0;
3044 	struct mm_struct *mm = vma->vm_mm;
3045 	unsigned long address;
3046 	pte_t *ptep;
3047 	pte_t pte;
3048 	spinlock_t *ptl;
3049 	struct page *page;
3050 	struct hstate *h = hstate_vma(vma);
3051 	unsigned long sz = huge_page_size(h);
3052 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3053 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3054 
3055 	WARN_ON(!is_vm_hugetlb_page(vma));
3056 	BUG_ON(start & ~huge_page_mask(h));
3057 	BUG_ON(end & ~huge_page_mask(h));
3058 
3059 	tlb_start_vma(tlb, vma);
3060 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3061 	address = start;
3062 again:
3063 	for (; address < end; address += sz) {
3064 		ptep = huge_pte_offset(mm, address);
3065 		if (!ptep)
3066 			continue;
3067 
3068 		ptl = huge_pte_lock(h, mm, ptep);
3069 		if (huge_pmd_unshare(mm, &address, ptep))
3070 			goto unlock;
3071 
3072 		pte = huge_ptep_get(ptep);
3073 		if (huge_pte_none(pte))
3074 			goto unlock;
3075 
3076 		/*
3077 		 * Migrating hugepage or HWPoisoned hugepage is already
3078 		 * unmapped and its refcount is dropped, so just clear pte here.
3079 		 */
3080 		if (unlikely(!pte_present(pte))) {
3081 			huge_pte_clear(mm, address, ptep);
3082 			goto unlock;
3083 		}
3084 
3085 		page = pte_page(pte);
3086 		/*
3087 		 * If a reference page is supplied, it is because a specific
3088 		 * page is being unmapped, not a range. Ensure the page we
3089 		 * are about to unmap is the actual page of interest.
3090 		 */
3091 		if (ref_page) {
3092 			if (page != ref_page)
3093 				goto unlock;
3094 
3095 			/*
3096 			 * Mark the VMA as having unmapped its page so that
3097 			 * future faults in this VMA will fail rather than
3098 			 * looking like data was lost
3099 			 */
3100 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3101 		}
3102 
3103 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3104 		tlb_remove_tlb_entry(tlb, ptep, address);
3105 		if (huge_pte_dirty(pte))
3106 			set_page_dirty(page);
3107 
3108 		page_remove_rmap(page);
3109 		force_flush = !__tlb_remove_page(tlb, page);
3110 		if (force_flush) {
3111 			address += sz;
3112 			spin_unlock(ptl);
3113 			break;
3114 		}
3115 		/* Bail out after unmapping reference page if supplied */
3116 		if (ref_page) {
3117 			spin_unlock(ptl);
3118 			break;
3119 		}
3120 unlock:
3121 		spin_unlock(ptl);
3122 	}
3123 	/*
3124 	 * mmu_gather ran out of room to batch pages, we break out of
3125 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3126 	 * and page-free while holding it.
3127 	 */
3128 	if (force_flush) {
3129 		force_flush = 0;
3130 		tlb_flush_mmu(tlb);
3131 		if (address < end && !ref_page)
3132 			goto again;
3133 	}
3134 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3135 	tlb_end_vma(tlb, vma);
3136 }
3137 
3138 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3139 			  struct vm_area_struct *vma, unsigned long start,
3140 			  unsigned long end, struct page *ref_page)
3141 {
3142 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3143 
3144 	/*
3145 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3146 	 * test will fail on a vma being torn down, and not grab a page table
3147 	 * on its way out.  We're lucky that the flag has such an appropriate
3148 	 * name, and can in fact be safely cleared here. We could clear it
3149 	 * before the __unmap_hugepage_range above, but all that's necessary
3150 	 * is to clear it before releasing the i_mmap_rwsem. This works
3151 	 * because in the context this is called, the VMA is about to be
3152 	 * destroyed and the i_mmap_rwsem is held.
3153 	 */
3154 	vma->vm_flags &= ~VM_MAYSHARE;
3155 }
3156 
3157 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3158 			  unsigned long end, struct page *ref_page)
3159 {
3160 	struct mm_struct *mm;
3161 	struct mmu_gather tlb;
3162 
3163 	mm = vma->vm_mm;
3164 
3165 	tlb_gather_mmu(&tlb, mm, start, end);
3166 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3167 	tlb_finish_mmu(&tlb, start, end);
3168 }
3169 
3170 /*
3171  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3172  * mappping it owns the reserve page for. The intention is to unmap the page
3173  * from other VMAs and let the children be SIGKILLed if they are faulting the
3174  * same region.
3175  */
3176 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3177 			      struct page *page, unsigned long address)
3178 {
3179 	struct hstate *h = hstate_vma(vma);
3180 	struct vm_area_struct *iter_vma;
3181 	struct address_space *mapping;
3182 	pgoff_t pgoff;
3183 
3184 	/*
3185 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3186 	 * from page cache lookup which is in HPAGE_SIZE units.
3187 	 */
3188 	address = address & huge_page_mask(h);
3189 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3190 			vma->vm_pgoff;
3191 	mapping = file_inode(vma->vm_file)->i_mapping;
3192 
3193 	/*
3194 	 * Take the mapping lock for the duration of the table walk. As
3195 	 * this mapping should be shared between all the VMAs,
3196 	 * __unmap_hugepage_range() is called as the lock is already held
3197 	 */
3198 	i_mmap_lock_write(mapping);
3199 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3200 		/* Do not unmap the current VMA */
3201 		if (iter_vma == vma)
3202 			continue;
3203 
3204 		/*
3205 		 * Shared VMAs have their own reserves and do not affect
3206 		 * MAP_PRIVATE accounting but it is possible that a shared
3207 		 * VMA is using the same page so check and skip such VMAs.
3208 		 */
3209 		if (iter_vma->vm_flags & VM_MAYSHARE)
3210 			continue;
3211 
3212 		/*
3213 		 * Unmap the page from other VMAs without their own reserves.
3214 		 * They get marked to be SIGKILLed if they fault in these
3215 		 * areas. This is because a future no-page fault on this VMA
3216 		 * could insert a zeroed page instead of the data existing
3217 		 * from the time of fork. This would look like data corruption
3218 		 */
3219 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3220 			unmap_hugepage_range(iter_vma, address,
3221 					     address + huge_page_size(h), page);
3222 	}
3223 	i_mmap_unlock_write(mapping);
3224 }
3225 
3226 /*
3227  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3228  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3229  * cannot race with other handlers or page migration.
3230  * Keep the pte_same checks anyway to make transition from the mutex easier.
3231  */
3232 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3233 			unsigned long address, pte_t *ptep, pte_t pte,
3234 			struct page *pagecache_page, spinlock_t *ptl)
3235 {
3236 	struct hstate *h = hstate_vma(vma);
3237 	struct page *old_page, *new_page;
3238 	int ret = 0, outside_reserve = 0;
3239 	unsigned long mmun_start;	/* For mmu_notifiers */
3240 	unsigned long mmun_end;		/* For mmu_notifiers */
3241 
3242 	old_page = pte_page(pte);
3243 
3244 retry_avoidcopy:
3245 	/* If no-one else is actually using this page, avoid the copy
3246 	 * and just make the page writable */
3247 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3248 		page_move_anon_rmap(old_page, vma, address);
3249 		set_huge_ptep_writable(vma, address, ptep);
3250 		return 0;
3251 	}
3252 
3253 	/*
3254 	 * If the process that created a MAP_PRIVATE mapping is about to
3255 	 * perform a COW due to a shared page count, attempt to satisfy
3256 	 * the allocation without using the existing reserves. The pagecache
3257 	 * page is used to determine if the reserve at this address was
3258 	 * consumed or not. If reserves were used, a partial faulted mapping
3259 	 * at the time of fork() could consume its reserves on COW instead
3260 	 * of the full address range.
3261 	 */
3262 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3263 			old_page != pagecache_page)
3264 		outside_reserve = 1;
3265 
3266 	page_cache_get(old_page);
3267 
3268 	/*
3269 	 * Drop page table lock as buddy allocator may be called. It will
3270 	 * be acquired again before returning to the caller, as expected.
3271 	 */
3272 	spin_unlock(ptl);
3273 	new_page = alloc_huge_page(vma, address, outside_reserve);
3274 
3275 	if (IS_ERR(new_page)) {
3276 		/*
3277 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3278 		 * it is due to references held by a child and an insufficient
3279 		 * huge page pool. To guarantee the original mappers
3280 		 * reliability, unmap the page from child processes. The child
3281 		 * may get SIGKILLed if it later faults.
3282 		 */
3283 		if (outside_reserve) {
3284 			page_cache_release(old_page);
3285 			BUG_ON(huge_pte_none(pte));
3286 			unmap_ref_private(mm, vma, old_page, address);
3287 			BUG_ON(huge_pte_none(pte));
3288 			spin_lock(ptl);
3289 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3290 			if (likely(ptep &&
3291 				   pte_same(huge_ptep_get(ptep), pte)))
3292 				goto retry_avoidcopy;
3293 			/*
3294 			 * race occurs while re-acquiring page table
3295 			 * lock, and our job is done.
3296 			 */
3297 			return 0;
3298 		}
3299 
3300 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3301 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3302 		goto out_release_old;
3303 	}
3304 
3305 	/*
3306 	 * When the original hugepage is shared one, it does not have
3307 	 * anon_vma prepared.
3308 	 */
3309 	if (unlikely(anon_vma_prepare(vma))) {
3310 		ret = VM_FAULT_OOM;
3311 		goto out_release_all;
3312 	}
3313 
3314 	copy_user_huge_page(new_page, old_page, address, vma,
3315 			    pages_per_huge_page(h));
3316 	__SetPageUptodate(new_page);
3317 	set_page_huge_active(new_page);
3318 
3319 	mmun_start = address & huge_page_mask(h);
3320 	mmun_end = mmun_start + huge_page_size(h);
3321 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3322 
3323 	/*
3324 	 * Retake the page table lock to check for racing updates
3325 	 * before the page tables are altered
3326 	 */
3327 	spin_lock(ptl);
3328 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3329 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3330 		ClearPagePrivate(new_page);
3331 
3332 		/* Break COW */
3333 		huge_ptep_clear_flush(vma, address, ptep);
3334 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3335 		set_huge_pte_at(mm, address, ptep,
3336 				make_huge_pte(vma, new_page, 1));
3337 		page_remove_rmap(old_page);
3338 		hugepage_add_new_anon_rmap(new_page, vma, address);
3339 		/* Make the old page be freed below */
3340 		new_page = old_page;
3341 	}
3342 	spin_unlock(ptl);
3343 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3344 out_release_all:
3345 	page_cache_release(new_page);
3346 out_release_old:
3347 	page_cache_release(old_page);
3348 
3349 	spin_lock(ptl); /* Caller expects lock to be held */
3350 	return ret;
3351 }
3352 
3353 /* Return the pagecache page at a given address within a VMA */
3354 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3355 			struct vm_area_struct *vma, unsigned long address)
3356 {
3357 	struct address_space *mapping;
3358 	pgoff_t idx;
3359 
3360 	mapping = vma->vm_file->f_mapping;
3361 	idx = vma_hugecache_offset(h, vma, address);
3362 
3363 	return find_lock_page(mapping, idx);
3364 }
3365 
3366 /*
3367  * Return whether there is a pagecache page to back given address within VMA.
3368  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3369  */
3370 static bool hugetlbfs_pagecache_present(struct hstate *h,
3371 			struct vm_area_struct *vma, unsigned long address)
3372 {
3373 	struct address_space *mapping;
3374 	pgoff_t idx;
3375 	struct page *page;
3376 
3377 	mapping = vma->vm_file->f_mapping;
3378 	idx = vma_hugecache_offset(h, vma, address);
3379 
3380 	page = find_get_page(mapping, idx);
3381 	if (page)
3382 		put_page(page);
3383 	return page != NULL;
3384 }
3385 
3386 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3387 			   pgoff_t idx)
3388 {
3389 	struct inode *inode = mapping->host;
3390 	struct hstate *h = hstate_inode(inode);
3391 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3392 
3393 	if (err)
3394 		return err;
3395 	ClearPagePrivate(page);
3396 
3397 	spin_lock(&inode->i_lock);
3398 	inode->i_blocks += blocks_per_huge_page(h);
3399 	spin_unlock(&inode->i_lock);
3400 	return 0;
3401 }
3402 
3403 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3404 			   struct address_space *mapping, pgoff_t idx,
3405 			   unsigned long address, pte_t *ptep, unsigned int flags)
3406 {
3407 	struct hstate *h = hstate_vma(vma);
3408 	int ret = VM_FAULT_SIGBUS;
3409 	int anon_rmap = 0;
3410 	unsigned long size;
3411 	struct page *page;
3412 	pte_t new_pte;
3413 	spinlock_t *ptl;
3414 
3415 	/*
3416 	 * Currently, we are forced to kill the process in the event the
3417 	 * original mapper has unmapped pages from the child due to a failed
3418 	 * COW. Warn that such a situation has occurred as it may not be obvious
3419 	 */
3420 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3421 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
3422 			   current->pid);
3423 		return ret;
3424 	}
3425 
3426 	/*
3427 	 * Use page lock to guard against racing truncation
3428 	 * before we get page_table_lock.
3429 	 */
3430 retry:
3431 	page = find_lock_page(mapping, idx);
3432 	if (!page) {
3433 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3434 		if (idx >= size)
3435 			goto out;
3436 		page = alloc_huge_page(vma, address, 0);
3437 		if (IS_ERR(page)) {
3438 			ret = PTR_ERR(page);
3439 			if (ret == -ENOMEM)
3440 				ret = VM_FAULT_OOM;
3441 			else
3442 				ret = VM_FAULT_SIGBUS;
3443 			goto out;
3444 		}
3445 		clear_huge_page(page, address, pages_per_huge_page(h));
3446 		__SetPageUptodate(page);
3447 		set_page_huge_active(page);
3448 
3449 		if (vma->vm_flags & VM_MAYSHARE) {
3450 			int err = huge_add_to_page_cache(page, mapping, idx);
3451 			if (err) {
3452 				put_page(page);
3453 				if (err == -EEXIST)
3454 					goto retry;
3455 				goto out;
3456 			}
3457 		} else {
3458 			lock_page(page);
3459 			if (unlikely(anon_vma_prepare(vma))) {
3460 				ret = VM_FAULT_OOM;
3461 				goto backout_unlocked;
3462 			}
3463 			anon_rmap = 1;
3464 		}
3465 	} else {
3466 		/*
3467 		 * If memory error occurs between mmap() and fault, some process
3468 		 * don't have hwpoisoned swap entry for errored virtual address.
3469 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3470 		 */
3471 		if (unlikely(PageHWPoison(page))) {
3472 			ret = VM_FAULT_HWPOISON |
3473 				VM_FAULT_SET_HINDEX(hstate_index(h));
3474 			goto backout_unlocked;
3475 		}
3476 	}
3477 
3478 	/*
3479 	 * If we are going to COW a private mapping later, we examine the
3480 	 * pending reservations for this page now. This will ensure that
3481 	 * any allocations necessary to record that reservation occur outside
3482 	 * the spinlock.
3483 	 */
3484 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3485 		if (vma_needs_reservation(h, vma, address) < 0) {
3486 			ret = VM_FAULT_OOM;
3487 			goto backout_unlocked;
3488 		}
3489 		/* Just decrements count, does not deallocate */
3490 		vma_end_reservation(h, vma, address);
3491 	}
3492 
3493 	ptl = huge_pte_lockptr(h, mm, ptep);
3494 	spin_lock(ptl);
3495 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3496 	if (idx >= size)
3497 		goto backout;
3498 
3499 	ret = 0;
3500 	if (!huge_pte_none(huge_ptep_get(ptep)))
3501 		goto backout;
3502 
3503 	if (anon_rmap) {
3504 		ClearPagePrivate(page);
3505 		hugepage_add_new_anon_rmap(page, vma, address);
3506 	} else
3507 		page_dup_rmap(page);
3508 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3509 				&& (vma->vm_flags & VM_SHARED)));
3510 	set_huge_pte_at(mm, address, ptep, new_pte);
3511 
3512 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3513 		/* Optimization, do the COW without a second fault */
3514 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3515 	}
3516 
3517 	spin_unlock(ptl);
3518 	unlock_page(page);
3519 out:
3520 	return ret;
3521 
3522 backout:
3523 	spin_unlock(ptl);
3524 backout_unlocked:
3525 	unlock_page(page);
3526 	put_page(page);
3527 	goto out;
3528 }
3529 
3530 #ifdef CONFIG_SMP
3531 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3532 			    struct vm_area_struct *vma,
3533 			    struct address_space *mapping,
3534 			    pgoff_t idx, unsigned long address)
3535 {
3536 	unsigned long key[2];
3537 	u32 hash;
3538 
3539 	if (vma->vm_flags & VM_SHARED) {
3540 		key[0] = (unsigned long) mapping;
3541 		key[1] = idx;
3542 	} else {
3543 		key[0] = (unsigned long) mm;
3544 		key[1] = address >> huge_page_shift(h);
3545 	}
3546 
3547 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3548 
3549 	return hash & (num_fault_mutexes - 1);
3550 }
3551 #else
3552 /*
3553  * For uniprocesor systems we always use a single mutex, so just
3554  * return 0 and avoid the hashing overhead.
3555  */
3556 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3557 			    struct vm_area_struct *vma,
3558 			    struct address_space *mapping,
3559 			    pgoff_t idx, unsigned long address)
3560 {
3561 	return 0;
3562 }
3563 #endif
3564 
3565 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3566 			unsigned long address, unsigned int flags)
3567 {
3568 	pte_t *ptep, entry;
3569 	spinlock_t *ptl;
3570 	int ret;
3571 	u32 hash;
3572 	pgoff_t idx;
3573 	struct page *page = NULL;
3574 	struct page *pagecache_page = NULL;
3575 	struct hstate *h = hstate_vma(vma);
3576 	struct address_space *mapping;
3577 	int need_wait_lock = 0;
3578 
3579 	address &= huge_page_mask(h);
3580 
3581 	ptep = huge_pte_offset(mm, address);
3582 	if (ptep) {
3583 		entry = huge_ptep_get(ptep);
3584 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3585 			migration_entry_wait_huge(vma, mm, ptep);
3586 			return 0;
3587 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3588 			return VM_FAULT_HWPOISON_LARGE |
3589 				VM_FAULT_SET_HINDEX(hstate_index(h));
3590 	}
3591 
3592 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3593 	if (!ptep)
3594 		return VM_FAULT_OOM;
3595 
3596 	mapping = vma->vm_file->f_mapping;
3597 	idx = vma_hugecache_offset(h, vma, address);
3598 
3599 	/*
3600 	 * Serialize hugepage allocation and instantiation, so that we don't
3601 	 * get spurious allocation failures if two CPUs race to instantiate
3602 	 * the same page in the page cache.
3603 	 */
3604 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3605 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3606 
3607 	entry = huge_ptep_get(ptep);
3608 	if (huge_pte_none(entry)) {
3609 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3610 		goto out_mutex;
3611 	}
3612 
3613 	ret = 0;
3614 
3615 	/*
3616 	 * entry could be a migration/hwpoison entry at this point, so this
3617 	 * check prevents the kernel from going below assuming that we have
3618 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3619 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3620 	 * handle it.
3621 	 */
3622 	if (!pte_present(entry))
3623 		goto out_mutex;
3624 
3625 	/*
3626 	 * If we are going to COW the mapping later, we examine the pending
3627 	 * reservations for this page now. This will ensure that any
3628 	 * allocations necessary to record that reservation occur outside the
3629 	 * spinlock. For private mappings, we also lookup the pagecache
3630 	 * page now as it is used to determine if a reservation has been
3631 	 * consumed.
3632 	 */
3633 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3634 		if (vma_needs_reservation(h, vma, address) < 0) {
3635 			ret = VM_FAULT_OOM;
3636 			goto out_mutex;
3637 		}
3638 		/* Just decrements count, does not deallocate */
3639 		vma_end_reservation(h, vma, address);
3640 
3641 		if (!(vma->vm_flags & VM_MAYSHARE))
3642 			pagecache_page = hugetlbfs_pagecache_page(h,
3643 								vma, address);
3644 	}
3645 
3646 	ptl = huge_pte_lock(h, mm, ptep);
3647 
3648 	/* Check for a racing update before calling hugetlb_cow */
3649 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3650 		goto out_ptl;
3651 
3652 	/*
3653 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3654 	 * pagecache_page, so here we need take the former one
3655 	 * when page != pagecache_page or !pagecache_page.
3656 	 */
3657 	page = pte_page(entry);
3658 	if (page != pagecache_page)
3659 		if (!trylock_page(page)) {
3660 			need_wait_lock = 1;
3661 			goto out_ptl;
3662 		}
3663 
3664 	get_page(page);
3665 
3666 	if (flags & FAULT_FLAG_WRITE) {
3667 		if (!huge_pte_write(entry)) {
3668 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3669 					pagecache_page, ptl);
3670 			goto out_put_page;
3671 		}
3672 		entry = huge_pte_mkdirty(entry);
3673 	}
3674 	entry = pte_mkyoung(entry);
3675 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3676 						flags & FAULT_FLAG_WRITE))
3677 		update_mmu_cache(vma, address, ptep);
3678 out_put_page:
3679 	if (page != pagecache_page)
3680 		unlock_page(page);
3681 	put_page(page);
3682 out_ptl:
3683 	spin_unlock(ptl);
3684 
3685 	if (pagecache_page) {
3686 		unlock_page(pagecache_page);
3687 		put_page(pagecache_page);
3688 	}
3689 out_mutex:
3690 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3691 	/*
3692 	 * Generally it's safe to hold refcount during waiting page lock. But
3693 	 * here we just wait to defer the next page fault to avoid busy loop and
3694 	 * the page is not used after unlocked before returning from the current
3695 	 * page fault. So we are safe from accessing freed page, even if we wait
3696 	 * here without taking refcount.
3697 	 */
3698 	if (need_wait_lock)
3699 		wait_on_page_locked(page);
3700 	return ret;
3701 }
3702 
3703 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3704 			 struct page **pages, struct vm_area_struct **vmas,
3705 			 unsigned long *position, unsigned long *nr_pages,
3706 			 long i, unsigned int flags)
3707 {
3708 	unsigned long pfn_offset;
3709 	unsigned long vaddr = *position;
3710 	unsigned long remainder = *nr_pages;
3711 	struct hstate *h = hstate_vma(vma);
3712 
3713 	while (vaddr < vma->vm_end && remainder) {
3714 		pte_t *pte;
3715 		spinlock_t *ptl = NULL;
3716 		int absent;
3717 		struct page *page;
3718 
3719 		/*
3720 		 * If we have a pending SIGKILL, don't keep faulting pages and
3721 		 * potentially allocating memory.
3722 		 */
3723 		if (unlikely(fatal_signal_pending(current))) {
3724 			remainder = 0;
3725 			break;
3726 		}
3727 
3728 		/*
3729 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3730 		 * each hugepage.  We have to make sure we get the
3731 		 * first, for the page indexing below to work.
3732 		 *
3733 		 * Note that page table lock is not held when pte is null.
3734 		 */
3735 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3736 		if (pte)
3737 			ptl = huge_pte_lock(h, mm, pte);
3738 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3739 
3740 		/*
3741 		 * When coredumping, it suits get_dump_page if we just return
3742 		 * an error where there's an empty slot with no huge pagecache
3743 		 * to back it.  This way, we avoid allocating a hugepage, and
3744 		 * the sparse dumpfile avoids allocating disk blocks, but its
3745 		 * huge holes still show up with zeroes where they need to be.
3746 		 */
3747 		if (absent && (flags & FOLL_DUMP) &&
3748 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3749 			if (pte)
3750 				spin_unlock(ptl);
3751 			remainder = 0;
3752 			break;
3753 		}
3754 
3755 		/*
3756 		 * We need call hugetlb_fault for both hugepages under migration
3757 		 * (in which case hugetlb_fault waits for the migration,) and
3758 		 * hwpoisoned hugepages (in which case we need to prevent the
3759 		 * caller from accessing to them.) In order to do this, we use
3760 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3761 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3762 		 * both cases, and because we can't follow correct pages
3763 		 * directly from any kind of swap entries.
3764 		 */
3765 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3766 		    ((flags & FOLL_WRITE) &&
3767 		      !huge_pte_write(huge_ptep_get(pte)))) {
3768 			int ret;
3769 
3770 			if (pte)
3771 				spin_unlock(ptl);
3772 			ret = hugetlb_fault(mm, vma, vaddr,
3773 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3774 			if (!(ret & VM_FAULT_ERROR))
3775 				continue;
3776 
3777 			remainder = 0;
3778 			break;
3779 		}
3780 
3781 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3782 		page = pte_page(huge_ptep_get(pte));
3783 same_page:
3784 		if (pages) {
3785 			pages[i] = mem_map_offset(page, pfn_offset);
3786 			get_page_foll(pages[i]);
3787 		}
3788 
3789 		if (vmas)
3790 			vmas[i] = vma;
3791 
3792 		vaddr += PAGE_SIZE;
3793 		++pfn_offset;
3794 		--remainder;
3795 		++i;
3796 		if (vaddr < vma->vm_end && remainder &&
3797 				pfn_offset < pages_per_huge_page(h)) {
3798 			/*
3799 			 * We use pfn_offset to avoid touching the pageframes
3800 			 * of this compound page.
3801 			 */
3802 			goto same_page;
3803 		}
3804 		spin_unlock(ptl);
3805 	}
3806 	*nr_pages = remainder;
3807 	*position = vaddr;
3808 
3809 	return i ? i : -EFAULT;
3810 }
3811 
3812 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3813 		unsigned long address, unsigned long end, pgprot_t newprot)
3814 {
3815 	struct mm_struct *mm = vma->vm_mm;
3816 	unsigned long start = address;
3817 	pte_t *ptep;
3818 	pte_t pte;
3819 	struct hstate *h = hstate_vma(vma);
3820 	unsigned long pages = 0;
3821 
3822 	BUG_ON(address >= end);
3823 	flush_cache_range(vma, address, end);
3824 
3825 	mmu_notifier_invalidate_range_start(mm, start, end);
3826 	i_mmap_lock_write(vma->vm_file->f_mapping);
3827 	for (; address < end; address += huge_page_size(h)) {
3828 		spinlock_t *ptl;
3829 		ptep = huge_pte_offset(mm, address);
3830 		if (!ptep)
3831 			continue;
3832 		ptl = huge_pte_lock(h, mm, ptep);
3833 		if (huge_pmd_unshare(mm, &address, ptep)) {
3834 			pages++;
3835 			spin_unlock(ptl);
3836 			continue;
3837 		}
3838 		pte = huge_ptep_get(ptep);
3839 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3840 			spin_unlock(ptl);
3841 			continue;
3842 		}
3843 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3844 			swp_entry_t entry = pte_to_swp_entry(pte);
3845 
3846 			if (is_write_migration_entry(entry)) {
3847 				pte_t newpte;
3848 
3849 				make_migration_entry_read(&entry);
3850 				newpte = swp_entry_to_pte(entry);
3851 				set_huge_pte_at(mm, address, ptep, newpte);
3852 				pages++;
3853 			}
3854 			spin_unlock(ptl);
3855 			continue;
3856 		}
3857 		if (!huge_pte_none(pte)) {
3858 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3859 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3860 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3861 			set_huge_pte_at(mm, address, ptep, pte);
3862 			pages++;
3863 		}
3864 		spin_unlock(ptl);
3865 	}
3866 	/*
3867 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3868 	 * may have cleared our pud entry and done put_page on the page table:
3869 	 * once we release i_mmap_rwsem, another task can do the final put_page
3870 	 * and that page table be reused and filled with junk.
3871 	 */
3872 	flush_tlb_range(vma, start, end);
3873 	mmu_notifier_invalidate_range(mm, start, end);
3874 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3875 	mmu_notifier_invalidate_range_end(mm, start, end);
3876 
3877 	return pages << h->order;
3878 }
3879 
3880 int hugetlb_reserve_pages(struct inode *inode,
3881 					long from, long to,
3882 					struct vm_area_struct *vma,
3883 					vm_flags_t vm_flags)
3884 {
3885 	long ret, chg;
3886 	struct hstate *h = hstate_inode(inode);
3887 	struct hugepage_subpool *spool = subpool_inode(inode);
3888 	struct resv_map *resv_map;
3889 	long gbl_reserve;
3890 
3891 	/*
3892 	 * Only apply hugepage reservation if asked. At fault time, an
3893 	 * attempt will be made for VM_NORESERVE to allocate a page
3894 	 * without using reserves
3895 	 */
3896 	if (vm_flags & VM_NORESERVE)
3897 		return 0;
3898 
3899 	/*
3900 	 * Shared mappings base their reservation on the number of pages that
3901 	 * are already allocated on behalf of the file. Private mappings need
3902 	 * to reserve the full area even if read-only as mprotect() may be
3903 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3904 	 */
3905 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3906 		resv_map = inode_resv_map(inode);
3907 
3908 		chg = region_chg(resv_map, from, to);
3909 
3910 	} else {
3911 		resv_map = resv_map_alloc();
3912 		if (!resv_map)
3913 			return -ENOMEM;
3914 
3915 		chg = to - from;
3916 
3917 		set_vma_resv_map(vma, resv_map);
3918 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3919 	}
3920 
3921 	if (chg < 0) {
3922 		ret = chg;
3923 		goto out_err;
3924 	}
3925 
3926 	/*
3927 	 * There must be enough pages in the subpool for the mapping. If
3928 	 * the subpool has a minimum size, there may be some global
3929 	 * reservations already in place (gbl_reserve).
3930 	 */
3931 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3932 	if (gbl_reserve < 0) {
3933 		ret = -ENOSPC;
3934 		goto out_err;
3935 	}
3936 
3937 	/*
3938 	 * Check enough hugepages are available for the reservation.
3939 	 * Hand the pages back to the subpool if there are not
3940 	 */
3941 	ret = hugetlb_acct_memory(h, gbl_reserve);
3942 	if (ret < 0) {
3943 		/* put back original number of pages, chg */
3944 		(void)hugepage_subpool_put_pages(spool, chg);
3945 		goto out_err;
3946 	}
3947 
3948 	/*
3949 	 * Account for the reservations made. Shared mappings record regions
3950 	 * that have reservations as they are shared by multiple VMAs.
3951 	 * When the last VMA disappears, the region map says how much
3952 	 * the reservation was and the page cache tells how much of
3953 	 * the reservation was consumed. Private mappings are per-VMA and
3954 	 * only the consumed reservations are tracked. When the VMA
3955 	 * disappears, the original reservation is the VMA size and the
3956 	 * consumed reservations are stored in the map. Hence, nothing
3957 	 * else has to be done for private mappings here
3958 	 */
3959 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3960 		long add = region_add(resv_map, from, to);
3961 
3962 		if (unlikely(chg > add)) {
3963 			/*
3964 			 * pages in this range were added to the reserve
3965 			 * map between region_chg and region_add.  This
3966 			 * indicates a race with alloc_huge_page.  Adjust
3967 			 * the subpool and reserve counts modified above
3968 			 * based on the difference.
3969 			 */
3970 			long rsv_adjust;
3971 
3972 			rsv_adjust = hugepage_subpool_put_pages(spool,
3973 								chg - add);
3974 			hugetlb_acct_memory(h, -rsv_adjust);
3975 		}
3976 	}
3977 	return 0;
3978 out_err:
3979 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3980 		region_abort(resv_map, from, to);
3981 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3982 		kref_put(&resv_map->refs, resv_map_release);
3983 	return ret;
3984 }
3985 
3986 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
3987 								long freed)
3988 {
3989 	struct hstate *h = hstate_inode(inode);
3990 	struct resv_map *resv_map = inode_resv_map(inode);
3991 	long chg = 0;
3992 	struct hugepage_subpool *spool = subpool_inode(inode);
3993 	long gbl_reserve;
3994 
3995 	if (resv_map) {
3996 		chg = region_del(resv_map, start, end);
3997 		/*
3998 		 * region_del() can fail in the rare case where a region
3999 		 * must be split and another region descriptor can not be
4000 		 * allocated.  If end == LONG_MAX, it will not fail.
4001 		 */
4002 		if (chg < 0)
4003 			return chg;
4004 	}
4005 
4006 	spin_lock(&inode->i_lock);
4007 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4008 	spin_unlock(&inode->i_lock);
4009 
4010 	/*
4011 	 * If the subpool has a minimum size, the number of global
4012 	 * reservations to be released may be adjusted.
4013 	 */
4014 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4015 	hugetlb_acct_memory(h, -gbl_reserve);
4016 
4017 	return 0;
4018 }
4019 
4020 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4021 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4022 				struct vm_area_struct *vma,
4023 				unsigned long addr, pgoff_t idx)
4024 {
4025 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4026 				svma->vm_start;
4027 	unsigned long sbase = saddr & PUD_MASK;
4028 	unsigned long s_end = sbase + PUD_SIZE;
4029 
4030 	/* Allow segments to share if only one is marked locked */
4031 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
4032 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
4033 
4034 	/*
4035 	 * match the virtual addresses, permission and the alignment of the
4036 	 * page table page.
4037 	 */
4038 	if (pmd_index(addr) != pmd_index(saddr) ||
4039 	    vm_flags != svm_flags ||
4040 	    sbase < svma->vm_start || svma->vm_end < s_end)
4041 		return 0;
4042 
4043 	return saddr;
4044 }
4045 
4046 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4047 {
4048 	unsigned long base = addr & PUD_MASK;
4049 	unsigned long end = base + PUD_SIZE;
4050 
4051 	/*
4052 	 * check on proper vm_flags and page table alignment
4053 	 */
4054 	if (vma->vm_flags & VM_MAYSHARE &&
4055 	    vma->vm_start <= base && end <= vma->vm_end)
4056 		return true;
4057 	return false;
4058 }
4059 
4060 /*
4061  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4062  * and returns the corresponding pte. While this is not necessary for the
4063  * !shared pmd case because we can allocate the pmd later as well, it makes the
4064  * code much cleaner. pmd allocation is essential for the shared case because
4065  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4066  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4067  * bad pmd for sharing.
4068  */
4069 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4070 {
4071 	struct vm_area_struct *vma = find_vma(mm, addr);
4072 	struct address_space *mapping = vma->vm_file->f_mapping;
4073 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4074 			vma->vm_pgoff;
4075 	struct vm_area_struct *svma;
4076 	unsigned long saddr;
4077 	pte_t *spte = NULL;
4078 	pte_t *pte;
4079 	spinlock_t *ptl;
4080 
4081 	if (!vma_shareable(vma, addr))
4082 		return (pte_t *)pmd_alloc(mm, pud, addr);
4083 
4084 	i_mmap_lock_write(mapping);
4085 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4086 		if (svma == vma)
4087 			continue;
4088 
4089 		saddr = page_table_shareable(svma, vma, addr, idx);
4090 		if (saddr) {
4091 			spte = huge_pte_offset(svma->vm_mm, saddr);
4092 			if (spte) {
4093 				mm_inc_nr_pmds(mm);
4094 				get_page(virt_to_page(spte));
4095 				break;
4096 			}
4097 		}
4098 	}
4099 
4100 	if (!spte)
4101 		goto out;
4102 
4103 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4104 	spin_lock(ptl);
4105 	if (pud_none(*pud)) {
4106 		pud_populate(mm, pud,
4107 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4108 	} else {
4109 		put_page(virt_to_page(spte));
4110 		mm_inc_nr_pmds(mm);
4111 	}
4112 	spin_unlock(ptl);
4113 out:
4114 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4115 	i_mmap_unlock_write(mapping);
4116 	return pte;
4117 }
4118 
4119 /*
4120  * unmap huge page backed by shared pte.
4121  *
4122  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4123  * indicated by page_count > 1, unmap is achieved by clearing pud and
4124  * decrementing the ref count. If count == 1, the pte page is not shared.
4125  *
4126  * called with page table lock held.
4127  *
4128  * returns: 1 successfully unmapped a shared pte page
4129  *	    0 the underlying pte page is not shared, or it is the last user
4130  */
4131 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4132 {
4133 	pgd_t *pgd = pgd_offset(mm, *addr);
4134 	pud_t *pud = pud_offset(pgd, *addr);
4135 
4136 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4137 	if (page_count(virt_to_page(ptep)) == 1)
4138 		return 0;
4139 
4140 	pud_clear(pud);
4141 	put_page(virt_to_page(ptep));
4142 	mm_dec_nr_pmds(mm);
4143 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4144 	return 1;
4145 }
4146 #define want_pmd_share()	(1)
4147 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4148 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4149 {
4150 	return NULL;
4151 }
4152 
4153 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4154 {
4155 	return 0;
4156 }
4157 #define want_pmd_share()	(0)
4158 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4159 
4160 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4161 pte_t *huge_pte_alloc(struct mm_struct *mm,
4162 			unsigned long addr, unsigned long sz)
4163 {
4164 	pgd_t *pgd;
4165 	pud_t *pud;
4166 	pte_t *pte = NULL;
4167 
4168 	pgd = pgd_offset(mm, addr);
4169 	pud = pud_alloc(mm, pgd, addr);
4170 	if (pud) {
4171 		if (sz == PUD_SIZE) {
4172 			pte = (pte_t *)pud;
4173 		} else {
4174 			BUG_ON(sz != PMD_SIZE);
4175 			if (want_pmd_share() && pud_none(*pud))
4176 				pte = huge_pmd_share(mm, addr, pud);
4177 			else
4178 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4179 		}
4180 	}
4181 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4182 
4183 	return pte;
4184 }
4185 
4186 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4187 {
4188 	pgd_t *pgd;
4189 	pud_t *pud;
4190 	pmd_t *pmd = NULL;
4191 
4192 	pgd = pgd_offset(mm, addr);
4193 	if (pgd_present(*pgd)) {
4194 		pud = pud_offset(pgd, addr);
4195 		if (pud_present(*pud)) {
4196 			if (pud_huge(*pud))
4197 				return (pte_t *)pud;
4198 			pmd = pmd_offset(pud, addr);
4199 		}
4200 	}
4201 	return (pte_t *) pmd;
4202 }
4203 
4204 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4205 
4206 /*
4207  * These functions are overwritable if your architecture needs its own
4208  * behavior.
4209  */
4210 struct page * __weak
4211 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4212 			      int write)
4213 {
4214 	return ERR_PTR(-EINVAL);
4215 }
4216 
4217 struct page * __weak
4218 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4219 		pmd_t *pmd, int flags)
4220 {
4221 	struct page *page = NULL;
4222 	spinlock_t *ptl;
4223 retry:
4224 	ptl = pmd_lockptr(mm, pmd);
4225 	spin_lock(ptl);
4226 	/*
4227 	 * make sure that the address range covered by this pmd is not
4228 	 * unmapped from other threads.
4229 	 */
4230 	if (!pmd_huge(*pmd))
4231 		goto out;
4232 	if (pmd_present(*pmd)) {
4233 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4234 		if (flags & FOLL_GET)
4235 			get_page(page);
4236 	} else {
4237 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4238 			spin_unlock(ptl);
4239 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4240 			goto retry;
4241 		}
4242 		/*
4243 		 * hwpoisoned entry is treated as no_page_table in
4244 		 * follow_page_mask().
4245 		 */
4246 	}
4247 out:
4248 	spin_unlock(ptl);
4249 	return page;
4250 }
4251 
4252 struct page * __weak
4253 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4254 		pud_t *pud, int flags)
4255 {
4256 	if (flags & FOLL_GET)
4257 		return NULL;
4258 
4259 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4260 }
4261 
4262 #ifdef CONFIG_MEMORY_FAILURE
4263 
4264 /*
4265  * This function is called from memory failure code.
4266  * Assume the caller holds page lock of the head page.
4267  */
4268 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4269 {
4270 	struct hstate *h = page_hstate(hpage);
4271 	int nid = page_to_nid(hpage);
4272 	int ret = -EBUSY;
4273 
4274 	spin_lock(&hugetlb_lock);
4275 	/*
4276 	 * Just checking !page_huge_active is not enough, because that could be
4277 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4278 	 */
4279 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4280 		/*
4281 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4282 		 * but dangling hpage->lru can trigger list-debug warnings
4283 		 * (this happens when we call unpoison_memory() on it),
4284 		 * so let it point to itself with list_del_init().
4285 		 */
4286 		list_del_init(&hpage->lru);
4287 		set_page_refcounted(hpage);
4288 		h->free_huge_pages--;
4289 		h->free_huge_pages_node[nid]--;
4290 		ret = 0;
4291 	}
4292 	spin_unlock(&hugetlb_lock);
4293 	return ret;
4294 }
4295 #endif
4296 
4297 bool isolate_huge_page(struct page *page, struct list_head *list)
4298 {
4299 	bool ret = true;
4300 
4301 	VM_BUG_ON_PAGE(!PageHead(page), page);
4302 	spin_lock(&hugetlb_lock);
4303 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4304 		ret = false;
4305 		goto unlock;
4306 	}
4307 	clear_page_huge_active(page);
4308 	list_move_tail(&page->lru, list);
4309 unlock:
4310 	spin_unlock(&hugetlb_lock);
4311 	return ret;
4312 }
4313 
4314 void putback_active_hugepage(struct page *page)
4315 {
4316 	VM_BUG_ON_PAGE(!PageHead(page), page);
4317 	spin_lock(&hugetlb_lock);
4318 	set_page_huge_active(page);
4319 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4320 	spin_unlock(&hugetlb_lock);
4321 	put_page(page);
4322 }
4323