1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/rmap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/page-isolation.h> 26 #include <linux/jhash.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 32 #include <linux/io.h> 33 #include <linux/hugetlb.h> 34 #include <linux/hugetlb_cgroup.h> 35 #include <linux/node.h> 36 #include "internal.h" 37 38 int hugepages_treat_as_movable; 39 40 int hugetlb_max_hstate __read_mostly; 41 unsigned int default_hstate_idx; 42 struct hstate hstates[HUGE_MAX_HSTATE]; 43 /* 44 * Minimum page order among possible hugepage sizes, set to a proper value 45 * at boot time. 46 */ 47 static unsigned int minimum_order __read_mostly = UINT_MAX; 48 49 __initdata LIST_HEAD(huge_boot_pages); 50 51 /* for command line parsing */ 52 static struct hstate * __initdata parsed_hstate; 53 static unsigned long __initdata default_hstate_max_huge_pages; 54 static unsigned long __initdata default_hstate_size; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 if (spool->min_hpages != -1) { /* minimum size accounting */ 149 if (delta > spool->rsv_hpages) { 150 /* 151 * Asking for more reserves than those already taken on 152 * behalf of subpool. Return difference. 153 */ 154 ret = delta - spool->rsv_hpages; 155 spool->rsv_hpages = 0; 156 } else { 157 ret = 0; /* reserves already accounted for */ 158 spool->rsv_hpages -= delta; 159 } 160 } 161 162 unlock_ret: 163 spin_unlock(&spool->lock); 164 return ret; 165 } 166 167 /* 168 * Subpool accounting for freeing and unreserving pages. 169 * Return the number of global page reservations that must be dropped. 170 * The return value may only be different than the passed value (delta) 171 * in the case where a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return delta; 180 181 spin_lock(&spool->lock); 182 183 if (spool->max_hpages != -1) /* maximum size accounting */ 184 spool->used_hpages -= delta; 185 186 if (spool->min_hpages != -1) { /* minimum size accounting */ 187 if (spool->rsv_hpages + delta <= spool->min_hpages) 188 ret = 0; 189 else 190 ret = spool->rsv_hpages + delta - spool->min_hpages; 191 192 spool->rsv_hpages += delta; 193 if (spool->rsv_hpages > spool->min_hpages) 194 spool->rsv_hpages = spool->min_hpages; 195 } 196 197 /* 198 * If hugetlbfs_put_super couldn't free spool due to an outstanding 199 * quota reference, free it now. 200 */ 201 unlock_or_release_subpool(spool); 202 203 return ret; 204 } 205 206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 207 { 208 return HUGETLBFS_SB(inode->i_sb)->spool; 209 } 210 211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 212 { 213 return subpool_inode(file_inode(vma->vm_file)); 214 } 215 216 /* 217 * Region tracking -- allows tracking of reservations and instantiated pages 218 * across the pages in a mapping. 219 * 220 * The region data structures are embedded into a resv_map and protected 221 * by a resv_map's lock. The set of regions within the resv_map represent 222 * reservations for huge pages, or huge pages that have already been 223 * instantiated within the map. The from and to elements are huge page 224 * indicies into the associated mapping. from indicates the starting index 225 * of the region. to represents the first index past the end of the region. 226 * 227 * For example, a file region structure with from == 0 and to == 4 represents 228 * four huge pages in a mapping. It is important to note that the to element 229 * represents the first element past the end of the region. This is used in 230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 231 * 232 * Interval notation of the form [from, to) will be used to indicate that 233 * the endpoint from is inclusive and to is exclusive. 234 */ 235 struct file_region { 236 struct list_head link; 237 long from; 238 long to; 239 }; 240 241 /* 242 * Add the huge page range represented by [f, t) to the reserve 243 * map. In the normal case, existing regions will be expanded 244 * to accommodate the specified range. Sufficient regions should 245 * exist for expansion due to the previous call to region_chg 246 * with the same range. However, it is possible that region_del 247 * could have been called after region_chg and modifed the map 248 * in such a way that no region exists to be expanded. In this 249 * case, pull a region descriptor from the cache associated with 250 * the map and use that for the new range. 251 * 252 * Return the number of new huge pages added to the map. This 253 * number is greater than or equal to zero. 254 */ 255 static long region_add(struct resv_map *resv, long f, long t) 256 { 257 struct list_head *head = &resv->regions; 258 struct file_region *rg, *nrg, *trg; 259 long add = 0; 260 261 spin_lock(&resv->lock); 262 /* Locate the region we are either in or before. */ 263 list_for_each_entry(rg, head, link) 264 if (f <= rg->to) 265 break; 266 267 /* 268 * If no region exists which can be expanded to include the 269 * specified range, the list must have been modified by an 270 * interleving call to region_del(). Pull a region descriptor 271 * from the cache and use it for this range. 272 */ 273 if (&rg->link == head || t < rg->from) { 274 VM_BUG_ON(resv->region_cache_count <= 0); 275 276 resv->region_cache_count--; 277 nrg = list_first_entry(&resv->region_cache, struct file_region, 278 link); 279 list_del(&nrg->link); 280 281 nrg->from = f; 282 nrg->to = t; 283 list_add(&nrg->link, rg->link.prev); 284 285 add += t - f; 286 goto out_locked; 287 } 288 289 /* Round our left edge to the current segment if it encloses us. */ 290 if (f > rg->from) 291 f = rg->from; 292 293 /* Check for and consume any regions we now overlap with. */ 294 nrg = rg; 295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 296 if (&rg->link == head) 297 break; 298 if (rg->from > t) 299 break; 300 301 /* If this area reaches higher then extend our area to 302 * include it completely. If this is not the first area 303 * which we intend to reuse, free it. */ 304 if (rg->to > t) 305 t = rg->to; 306 if (rg != nrg) { 307 /* Decrement return value by the deleted range. 308 * Another range will span this area so that by 309 * end of routine add will be >= zero 310 */ 311 add -= (rg->to - rg->from); 312 list_del(&rg->link); 313 kfree(rg); 314 } 315 } 316 317 add += (nrg->from - f); /* Added to beginning of region */ 318 nrg->from = f; 319 add += t - nrg->to; /* Added to end of region */ 320 nrg->to = t; 321 322 out_locked: 323 resv->adds_in_progress--; 324 spin_unlock(&resv->lock); 325 VM_BUG_ON(add < 0); 326 return add; 327 } 328 329 /* 330 * Examine the existing reserve map and determine how many 331 * huge pages in the specified range [f, t) are NOT currently 332 * represented. This routine is called before a subsequent 333 * call to region_add that will actually modify the reserve 334 * map to add the specified range [f, t). region_chg does 335 * not change the number of huge pages represented by the 336 * map. However, if the existing regions in the map can not 337 * be expanded to represent the new range, a new file_region 338 * structure is added to the map as a placeholder. This is 339 * so that the subsequent region_add call will have all the 340 * regions it needs and will not fail. 341 * 342 * Upon entry, region_chg will also examine the cache of region descriptors 343 * associated with the map. If there are not enough descriptors cached, one 344 * will be allocated for the in progress add operation. 345 * 346 * Returns the number of huge pages that need to be added to the existing 347 * reservation map for the range [f, t). This number is greater or equal to 348 * zero. -ENOMEM is returned if a new file_region structure or cache entry 349 * is needed and can not be allocated. 350 */ 351 static long region_chg(struct resv_map *resv, long f, long t) 352 { 353 struct list_head *head = &resv->regions; 354 struct file_region *rg, *nrg = NULL; 355 long chg = 0; 356 357 retry: 358 spin_lock(&resv->lock); 359 retry_locked: 360 resv->adds_in_progress++; 361 362 /* 363 * Check for sufficient descriptors in the cache to accommodate 364 * the number of in progress add operations. 365 */ 366 if (resv->adds_in_progress > resv->region_cache_count) { 367 struct file_region *trg; 368 369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 370 /* Must drop lock to allocate a new descriptor. */ 371 resv->adds_in_progress--; 372 spin_unlock(&resv->lock); 373 374 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 375 if (!trg) 376 return -ENOMEM; 377 378 spin_lock(&resv->lock); 379 list_add(&trg->link, &resv->region_cache); 380 resv->region_cache_count++; 381 goto retry_locked; 382 } 383 384 /* Locate the region we are before or in. */ 385 list_for_each_entry(rg, head, link) 386 if (f <= rg->to) 387 break; 388 389 /* If we are below the current region then a new region is required. 390 * Subtle, allocate a new region at the position but make it zero 391 * size such that we can guarantee to record the reservation. */ 392 if (&rg->link == head || t < rg->from) { 393 if (!nrg) { 394 resv->adds_in_progress--; 395 spin_unlock(&resv->lock); 396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 397 if (!nrg) 398 return -ENOMEM; 399 400 nrg->from = f; 401 nrg->to = f; 402 INIT_LIST_HEAD(&nrg->link); 403 goto retry; 404 } 405 406 list_add(&nrg->link, rg->link.prev); 407 chg = t - f; 408 goto out_nrg; 409 } 410 411 /* Round our left edge to the current segment if it encloses us. */ 412 if (f > rg->from) 413 f = rg->from; 414 chg = t - f; 415 416 /* Check for and consume any regions we now overlap with. */ 417 list_for_each_entry(rg, rg->link.prev, link) { 418 if (&rg->link == head) 419 break; 420 if (rg->from > t) 421 goto out; 422 423 /* We overlap with this area, if it extends further than 424 * us then we must extend ourselves. Account for its 425 * existing reservation. */ 426 if (rg->to > t) { 427 chg += rg->to - t; 428 t = rg->to; 429 } 430 chg -= rg->to - rg->from; 431 } 432 433 out: 434 spin_unlock(&resv->lock); 435 /* We already know we raced and no longer need the new region */ 436 kfree(nrg); 437 return chg; 438 out_nrg: 439 spin_unlock(&resv->lock); 440 return chg; 441 } 442 443 /* 444 * Abort the in progress add operation. The adds_in_progress field 445 * of the resv_map keeps track of the operations in progress between 446 * calls to region_chg and region_add. Operations are sometimes 447 * aborted after the call to region_chg. In such cases, region_abort 448 * is called to decrement the adds_in_progress counter. 449 * 450 * NOTE: The range arguments [f, t) are not needed or used in this 451 * routine. They are kept to make reading the calling code easier as 452 * arguments will match the associated region_chg call. 453 */ 454 static void region_abort(struct resv_map *resv, long f, long t) 455 { 456 spin_lock(&resv->lock); 457 VM_BUG_ON(!resv->region_cache_count); 458 resv->adds_in_progress--; 459 spin_unlock(&resv->lock); 460 } 461 462 /* 463 * Delete the specified range [f, t) from the reserve map. If the 464 * t parameter is LONG_MAX, this indicates that ALL regions after f 465 * should be deleted. Locate the regions which intersect [f, t) 466 * and either trim, delete or split the existing regions. 467 * 468 * Returns the number of huge pages deleted from the reserve map. 469 * In the normal case, the return value is zero or more. In the 470 * case where a region must be split, a new region descriptor must 471 * be allocated. If the allocation fails, -ENOMEM will be returned. 472 * NOTE: If the parameter t == LONG_MAX, then we will never split 473 * a region and possibly return -ENOMEM. Callers specifying 474 * t == LONG_MAX do not need to check for -ENOMEM error. 475 */ 476 static long region_del(struct resv_map *resv, long f, long t) 477 { 478 struct list_head *head = &resv->regions; 479 struct file_region *rg, *trg; 480 struct file_region *nrg = NULL; 481 long del = 0; 482 483 retry: 484 spin_lock(&resv->lock); 485 list_for_each_entry_safe(rg, trg, head, link) { 486 if (rg->to <= f) 487 continue; 488 if (rg->from >= t) 489 break; 490 491 if (f > rg->from && t < rg->to) { /* Must split region */ 492 /* 493 * Check for an entry in the cache before dropping 494 * lock and attempting allocation. 495 */ 496 if (!nrg && 497 resv->region_cache_count > resv->adds_in_progress) { 498 nrg = list_first_entry(&resv->region_cache, 499 struct file_region, 500 link); 501 list_del(&nrg->link); 502 resv->region_cache_count--; 503 } 504 505 if (!nrg) { 506 spin_unlock(&resv->lock); 507 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 508 if (!nrg) 509 return -ENOMEM; 510 goto retry; 511 } 512 513 del += t - f; 514 515 /* New entry for end of split region */ 516 nrg->from = t; 517 nrg->to = rg->to; 518 INIT_LIST_HEAD(&nrg->link); 519 520 /* Original entry is trimmed */ 521 rg->to = f; 522 523 list_add(&nrg->link, &rg->link); 524 nrg = NULL; 525 break; 526 } 527 528 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 529 del += rg->to - rg->from; 530 list_del(&rg->link); 531 kfree(rg); 532 continue; 533 } 534 535 if (f <= rg->from) { /* Trim beginning of region */ 536 del += t - rg->from; 537 rg->from = t; 538 } else { /* Trim end of region */ 539 del += rg->to - f; 540 rg->to = f; 541 } 542 } 543 544 spin_unlock(&resv->lock); 545 kfree(nrg); 546 return del; 547 } 548 549 /* 550 * A rare out of memory error was encountered which prevented removal of 551 * the reserve map region for a page. The huge page itself was free'ed 552 * and removed from the page cache. This routine will adjust the subpool 553 * usage count, and the global reserve count if needed. By incrementing 554 * these counts, the reserve map entry which could not be deleted will 555 * appear as a "reserved" entry instead of simply dangling with incorrect 556 * counts. 557 */ 558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 559 { 560 struct hugepage_subpool *spool = subpool_inode(inode); 561 long rsv_adjust; 562 563 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 564 if (restore_reserve && rsv_adjust) { 565 struct hstate *h = hstate_inode(inode); 566 567 hugetlb_acct_memory(h, 1); 568 } 569 } 570 571 /* 572 * Count and return the number of huge pages in the reserve map 573 * that intersect with the range [f, t). 574 */ 575 static long region_count(struct resv_map *resv, long f, long t) 576 { 577 struct list_head *head = &resv->regions; 578 struct file_region *rg; 579 long chg = 0; 580 581 spin_lock(&resv->lock); 582 /* Locate each segment we overlap with, and count that overlap. */ 583 list_for_each_entry(rg, head, link) { 584 long seg_from; 585 long seg_to; 586 587 if (rg->to <= f) 588 continue; 589 if (rg->from >= t) 590 break; 591 592 seg_from = max(rg->from, f); 593 seg_to = min(rg->to, t); 594 595 chg += seg_to - seg_from; 596 } 597 spin_unlock(&resv->lock); 598 599 return chg; 600 } 601 602 /* 603 * Convert the address within this vma to the page offset within 604 * the mapping, in pagecache page units; huge pages here. 605 */ 606 static pgoff_t vma_hugecache_offset(struct hstate *h, 607 struct vm_area_struct *vma, unsigned long address) 608 { 609 return ((address - vma->vm_start) >> huge_page_shift(h)) + 610 (vma->vm_pgoff >> huge_page_order(h)); 611 } 612 613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 614 unsigned long address) 615 { 616 return vma_hugecache_offset(hstate_vma(vma), vma, address); 617 } 618 619 /* 620 * Return the size of the pages allocated when backing a VMA. In the majority 621 * cases this will be same size as used by the page table entries. 622 */ 623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 624 { 625 struct hstate *hstate; 626 627 if (!is_vm_hugetlb_page(vma)) 628 return PAGE_SIZE; 629 630 hstate = hstate_vma(vma); 631 632 return 1UL << huge_page_shift(hstate); 633 } 634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 635 636 /* 637 * Return the page size being used by the MMU to back a VMA. In the majority 638 * of cases, the page size used by the kernel matches the MMU size. On 639 * architectures where it differs, an architecture-specific version of this 640 * function is required. 641 */ 642 #ifndef vma_mmu_pagesize 643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 644 { 645 return vma_kernel_pagesize(vma); 646 } 647 #endif 648 649 /* 650 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 651 * bits of the reservation map pointer, which are always clear due to 652 * alignment. 653 */ 654 #define HPAGE_RESV_OWNER (1UL << 0) 655 #define HPAGE_RESV_UNMAPPED (1UL << 1) 656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 657 658 /* 659 * These helpers are used to track how many pages are reserved for 660 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 661 * is guaranteed to have their future faults succeed. 662 * 663 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 664 * the reserve counters are updated with the hugetlb_lock held. It is safe 665 * to reset the VMA at fork() time as it is not in use yet and there is no 666 * chance of the global counters getting corrupted as a result of the values. 667 * 668 * The private mapping reservation is represented in a subtly different 669 * manner to a shared mapping. A shared mapping has a region map associated 670 * with the underlying file, this region map represents the backing file 671 * pages which have ever had a reservation assigned which this persists even 672 * after the page is instantiated. A private mapping has a region map 673 * associated with the original mmap which is attached to all VMAs which 674 * reference it, this region map represents those offsets which have consumed 675 * reservation ie. where pages have been instantiated. 676 */ 677 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 678 { 679 return (unsigned long)vma->vm_private_data; 680 } 681 682 static void set_vma_private_data(struct vm_area_struct *vma, 683 unsigned long value) 684 { 685 vma->vm_private_data = (void *)value; 686 } 687 688 struct resv_map *resv_map_alloc(void) 689 { 690 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 691 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 692 693 if (!resv_map || !rg) { 694 kfree(resv_map); 695 kfree(rg); 696 return NULL; 697 } 698 699 kref_init(&resv_map->refs); 700 spin_lock_init(&resv_map->lock); 701 INIT_LIST_HEAD(&resv_map->regions); 702 703 resv_map->adds_in_progress = 0; 704 705 INIT_LIST_HEAD(&resv_map->region_cache); 706 list_add(&rg->link, &resv_map->region_cache); 707 resv_map->region_cache_count = 1; 708 709 return resv_map; 710 } 711 712 void resv_map_release(struct kref *ref) 713 { 714 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 715 struct list_head *head = &resv_map->region_cache; 716 struct file_region *rg, *trg; 717 718 /* Clear out any active regions before we release the map. */ 719 region_del(resv_map, 0, LONG_MAX); 720 721 /* ... and any entries left in the cache */ 722 list_for_each_entry_safe(rg, trg, head, link) { 723 list_del(&rg->link); 724 kfree(rg); 725 } 726 727 VM_BUG_ON(resv_map->adds_in_progress); 728 729 kfree(resv_map); 730 } 731 732 static inline struct resv_map *inode_resv_map(struct inode *inode) 733 { 734 return inode->i_mapping->private_data; 735 } 736 737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 738 { 739 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 740 if (vma->vm_flags & VM_MAYSHARE) { 741 struct address_space *mapping = vma->vm_file->f_mapping; 742 struct inode *inode = mapping->host; 743 744 return inode_resv_map(inode); 745 746 } else { 747 return (struct resv_map *)(get_vma_private_data(vma) & 748 ~HPAGE_RESV_MASK); 749 } 750 } 751 752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 753 { 754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 755 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 756 757 set_vma_private_data(vma, (get_vma_private_data(vma) & 758 HPAGE_RESV_MASK) | (unsigned long)map); 759 } 760 761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 762 { 763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 765 766 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 767 } 768 769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 770 { 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 772 773 return (get_vma_private_data(vma) & flag) != 0; 774 } 775 776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 778 { 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 780 if (!(vma->vm_flags & VM_MAYSHARE)) 781 vma->vm_private_data = (void *)0; 782 } 783 784 /* Returns true if the VMA has associated reserve pages */ 785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 786 { 787 if (vma->vm_flags & VM_NORESERVE) { 788 /* 789 * This address is already reserved by other process(chg == 0), 790 * so, we should decrement reserved count. Without decrementing, 791 * reserve count remains after releasing inode, because this 792 * allocated page will go into page cache and is regarded as 793 * coming from reserved pool in releasing step. Currently, we 794 * don't have any other solution to deal with this situation 795 * properly, so add work-around here. 796 */ 797 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 798 return true; 799 else 800 return false; 801 } 802 803 /* Shared mappings always use reserves */ 804 if (vma->vm_flags & VM_MAYSHARE) { 805 /* 806 * We know VM_NORESERVE is not set. Therefore, there SHOULD 807 * be a region map for all pages. The only situation where 808 * there is no region map is if a hole was punched via 809 * fallocate. In this case, there really are no reverves to 810 * use. This situation is indicated if chg != 0. 811 */ 812 if (chg) 813 return false; 814 else 815 return true; 816 } 817 818 /* 819 * Only the process that called mmap() has reserves for 820 * private mappings. 821 */ 822 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 823 return true; 824 825 return false; 826 } 827 828 static void enqueue_huge_page(struct hstate *h, struct page *page) 829 { 830 int nid = page_to_nid(page); 831 list_move(&page->lru, &h->hugepage_freelists[nid]); 832 h->free_huge_pages++; 833 h->free_huge_pages_node[nid]++; 834 } 835 836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 837 { 838 struct page *page; 839 840 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 841 if (!is_migrate_isolate_page(page)) 842 break; 843 /* 844 * if 'non-isolated free hugepage' not found on the list, 845 * the allocation fails. 846 */ 847 if (&h->hugepage_freelists[nid] == &page->lru) 848 return NULL; 849 list_move(&page->lru, &h->hugepage_activelist); 850 set_page_refcounted(page); 851 h->free_huge_pages--; 852 h->free_huge_pages_node[nid]--; 853 return page; 854 } 855 856 /* Movability of hugepages depends on migration support. */ 857 static inline gfp_t htlb_alloc_mask(struct hstate *h) 858 { 859 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 860 return GFP_HIGHUSER_MOVABLE; 861 else 862 return GFP_HIGHUSER; 863 } 864 865 static struct page *dequeue_huge_page_vma(struct hstate *h, 866 struct vm_area_struct *vma, 867 unsigned long address, int avoid_reserve, 868 long chg) 869 { 870 struct page *page = NULL; 871 struct mempolicy *mpol; 872 nodemask_t *nodemask; 873 struct zonelist *zonelist; 874 struct zone *zone; 875 struct zoneref *z; 876 unsigned int cpuset_mems_cookie; 877 878 /* 879 * A child process with MAP_PRIVATE mappings created by their parent 880 * have no page reserves. This check ensures that reservations are 881 * not "stolen". The child may still get SIGKILLed 882 */ 883 if (!vma_has_reserves(vma, chg) && 884 h->free_huge_pages - h->resv_huge_pages == 0) 885 goto err; 886 887 /* If reserves cannot be used, ensure enough pages are in the pool */ 888 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 889 goto err; 890 891 retry_cpuset: 892 cpuset_mems_cookie = read_mems_allowed_begin(); 893 zonelist = huge_zonelist(vma, address, 894 htlb_alloc_mask(h), &mpol, &nodemask); 895 896 for_each_zone_zonelist_nodemask(zone, z, zonelist, 897 MAX_NR_ZONES - 1, nodemask) { 898 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 899 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 900 if (page) { 901 if (avoid_reserve) 902 break; 903 if (!vma_has_reserves(vma, chg)) 904 break; 905 906 SetPagePrivate(page); 907 h->resv_huge_pages--; 908 break; 909 } 910 } 911 } 912 913 mpol_cond_put(mpol); 914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 915 goto retry_cpuset; 916 return page; 917 918 err: 919 return NULL; 920 } 921 922 /* 923 * common helper functions for hstate_next_node_to_{alloc|free}. 924 * We may have allocated or freed a huge page based on a different 925 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 926 * be outside of *nodes_allowed. Ensure that we use an allowed 927 * node for alloc or free. 928 */ 929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 930 { 931 nid = next_node(nid, *nodes_allowed); 932 if (nid == MAX_NUMNODES) 933 nid = first_node(*nodes_allowed); 934 VM_BUG_ON(nid >= MAX_NUMNODES); 935 936 return nid; 937 } 938 939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 940 { 941 if (!node_isset(nid, *nodes_allowed)) 942 nid = next_node_allowed(nid, nodes_allowed); 943 return nid; 944 } 945 946 /* 947 * returns the previously saved node ["this node"] from which to 948 * allocate a persistent huge page for the pool and advance the 949 * next node from which to allocate, handling wrap at end of node 950 * mask. 951 */ 952 static int hstate_next_node_to_alloc(struct hstate *h, 953 nodemask_t *nodes_allowed) 954 { 955 int nid; 956 957 VM_BUG_ON(!nodes_allowed); 958 959 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 960 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 961 962 return nid; 963 } 964 965 /* 966 * helper for free_pool_huge_page() - return the previously saved 967 * node ["this node"] from which to free a huge page. Advance the 968 * next node id whether or not we find a free huge page to free so 969 * that the next attempt to free addresses the next node. 970 */ 971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 972 { 973 int nid; 974 975 VM_BUG_ON(!nodes_allowed); 976 977 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 978 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 979 980 return nid; 981 } 982 983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 984 for (nr_nodes = nodes_weight(*mask); \ 985 nr_nodes > 0 && \ 986 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 987 nr_nodes--) 988 989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 990 for (nr_nodes = nodes_weight(*mask); \ 991 nr_nodes > 0 && \ 992 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 993 nr_nodes--) 994 995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64) 996 static void destroy_compound_gigantic_page(struct page *page, 997 unsigned long order) 998 { 999 int i; 1000 int nr_pages = 1 << order; 1001 struct page *p = page + 1; 1002 1003 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1004 __ClearPageTail(p); 1005 set_page_refcounted(p); 1006 p->first_page = NULL; 1007 } 1008 1009 set_compound_order(page, 0); 1010 __ClearPageHead(page); 1011 } 1012 1013 static void free_gigantic_page(struct page *page, unsigned order) 1014 { 1015 free_contig_range(page_to_pfn(page), 1 << order); 1016 } 1017 1018 static int __alloc_gigantic_page(unsigned long start_pfn, 1019 unsigned long nr_pages) 1020 { 1021 unsigned long end_pfn = start_pfn + nr_pages; 1022 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1023 } 1024 1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn, 1026 unsigned long nr_pages) 1027 { 1028 unsigned long i, end_pfn = start_pfn + nr_pages; 1029 struct page *page; 1030 1031 for (i = start_pfn; i < end_pfn; i++) { 1032 if (!pfn_valid(i)) 1033 return false; 1034 1035 page = pfn_to_page(i); 1036 1037 if (PageReserved(page)) 1038 return false; 1039 1040 if (page_count(page) > 0) 1041 return false; 1042 1043 if (PageHuge(page)) 1044 return false; 1045 } 1046 1047 return true; 1048 } 1049 1050 static bool zone_spans_last_pfn(const struct zone *zone, 1051 unsigned long start_pfn, unsigned long nr_pages) 1052 { 1053 unsigned long last_pfn = start_pfn + nr_pages - 1; 1054 return zone_spans_pfn(zone, last_pfn); 1055 } 1056 1057 static struct page *alloc_gigantic_page(int nid, unsigned order) 1058 { 1059 unsigned long nr_pages = 1 << order; 1060 unsigned long ret, pfn, flags; 1061 struct zone *z; 1062 1063 z = NODE_DATA(nid)->node_zones; 1064 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1065 spin_lock_irqsave(&z->lock, flags); 1066 1067 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1068 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1069 if (pfn_range_valid_gigantic(pfn, nr_pages)) { 1070 /* 1071 * We release the zone lock here because 1072 * alloc_contig_range() will also lock the zone 1073 * at some point. If there's an allocation 1074 * spinning on this lock, it may win the race 1075 * and cause alloc_contig_range() to fail... 1076 */ 1077 spin_unlock_irqrestore(&z->lock, flags); 1078 ret = __alloc_gigantic_page(pfn, nr_pages); 1079 if (!ret) 1080 return pfn_to_page(pfn); 1081 spin_lock_irqsave(&z->lock, flags); 1082 } 1083 pfn += nr_pages; 1084 } 1085 1086 spin_unlock_irqrestore(&z->lock, flags); 1087 } 1088 1089 return NULL; 1090 } 1091 1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order); 1094 1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1096 { 1097 struct page *page; 1098 1099 page = alloc_gigantic_page(nid, huge_page_order(h)); 1100 if (page) { 1101 prep_compound_gigantic_page(page, huge_page_order(h)); 1102 prep_new_huge_page(h, page, nid); 1103 } 1104 1105 return page; 1106 } 1107 1108 static int alloc_fresh_gigantic_page(struct hstate *h, 1109 nodemask_t *nodes_allowed) 1110 { 1111 struct page *page = NULL; 1112 int nr_nodes, node; 1113 1114 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1115 page = alloc_fresh_gigantic_page_node(h, node); 1116 if (page) 1117 return 1; 1118 } 1119 1120 return 0; 1121 } 1122 1123 static inline bool gigantic_page_supported(void) { return true; } 1124 #else 1125 static inline bool gigantic_page_supported(void) { return false; } 1126 static inline void free_gigantic_page(struct page *page, unsigned order) { } 1127 static inline void destroy_compound_gigantic_page(struct page *page, 1128 unsigned long order) { } 1129 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1130 nodemask_t *nodes_allowed) { return 0; } 1131 #endif 1132 1133 static void update_and_free_page(struct hstate *h, struct page *page) 1134 { 1135 int i; 1136 1137 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1138 return; 1139 1140 h->nr_huge_pages--; 1141 h->nr_huge_pages_node[page_to_nid(page)]--; 1142 for (i = 0; i < pages_per_huge_page(h); i++) { 1143 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1144 1 << PG_referenced | 1 << PG_dirty | 1145 1 << PG_active | 1 << PG_private | 1146 1 << PG_writeback); 1147 } 1148 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1149 set_compound_page_dtor(page, NULL); 1150 set_page_refcounted(page); 1151 if (hstate_is_gigantic(h)) { 1152 destroy_compound_gigantic_page(page, huge_page_order(h)); 1153 free_gigantic_page(page, huge_page_order(h)); 1154 } else { 1155 __free_pages(page, huge_page_order(h)); 1156 } 1157 } 1158 1159 struct hstate *size_to_hstate(unsigned long size) 1160 { 1161 struct hstate *h; 1162 1163 for_each_hstate(h) { 1164 if (huge_page_size(h) == size) 1165 return h; 1166 } 1167 return NULL; 1168 } 1169 1170 /* 1171 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1172 * to hstate->hugepage_activelist.) 1173 * 1174 * This function can be called for tail pages, but never returns true for them. 1175 */ 1176 bool page_huge_active(struct page *page) 1177 { 1178 VM_BUG_ON_PAGE(!PageHuge(page), page); 1179 return PageHead(page) && PagePrivate(&page[1]); 1180 } 1181 1182 /* never called for tail page */ 1183 static void set_page_huge_active(struct page *page) 1184 { 1185 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1186 SetPagePrivate(&page[1]); 1187 } 1188 1189 static void clear_page_huge_active(struct page *page) 1190 { 1191 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1192 ClearPagePrivate(&page[1]); 1193 } 1194 1195 void free_huge_page(struct page *page) 1196 { 1197 /* 1198 * Can't pass hstate in here because it is called from the 1199 * compound page destructor. 1200 */ 1201 struct hstate *h = page_hstate(page); 1202 int nid = page_to_nid(page); 1203 struct hugepage_subpool *spool = 1204 (struct hugepage_subpool *)page_private(page); 1205 bool restore_reserve; 1206 1207 set_page_private(page, 0); 1208 page->mapping = NULL; 1209 BUG_ON(page_count(page)); 1210 BUG_ON(page_mapcount(page)); 1211 restore_reserve = PagePrivate(page); 1212 ClearPagePrivate(page); 1213 1214 /* 1215 * A return code of zero implies that the subpool will be under its 1216 * minimum size if the reservation is not restored after page is free. 1217 * Therefore, force restore_reserve operation. 1218 */ 1219 if (hugepage_subpool_put_pages(spool, 1) == 0) 1220 restore_reserve = true; 1221 1222 spin_lock(&hugetlb_lock); 1223 clear_page_huge_active(page); 1224 hugetlb_cgroup_uncharge_page(hstate_index(h), 1225 pages_per_huge_page(h), page); 1226 if (restore_reserve) 1227 h->resv_huge_pages++; 1228 1229 if (h->surplus_huge_pages_node[nid]) { 1230 /* remove the page from active list */ 1231 list_del(&page->lru); 1232 update_and_free_page(h, page); 1233 h->surplus_huge_pages--; 1234 h->surplus_huge_pages_node[nid]--; 1235 } else { 1236 arch_clear_hugepage_flags(page); 1237 enqueue_huge_page(h, page); 1238 } 1239 spin_unlock(&hugetlb_lock); 1240 } 1241 1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1243 { 1244 INIT_LIST_HEAD(&page->lru); 1245 set_compound_page_dtor(page, free_huge_page); 1246 spin_lock(&hugetlb_lock); 1247 set_hugetlb_cgroup(page, NULL); 1248 h->nr_huge_pages++; 1249 h->nr_huge_pages_node[nid]++; 1250 spin_unlock(&hugetlb_lock); 1251 put_page(page); /* free it into the hugepage allocator */ 1252 } 1253 1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 1255 { 1256 int i; 1257 int nr_pages = 1 << order; 1258 struct page *p = page + 1; 1259 1260 /* we rely on prep_new_huge_page to set the destructor */ 1261 set_compound_order(page, order); 1262 __SetPageHead(page); 1263 __ClearPageReserved(page); 1264 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1265 /* 1266 * For gigantic hugepages allocated through bootmem at 1267 * boot, it's safer to be consistent with the not-gigantic 1268 * hugepages and clear the PG_reserved bit from all tail pages 1269 * too. Otherwse drivers using get_user_pages() to access tail 1270 * pages may get the reference counting wrong if they see 1271 * PG_reserved set on a tail page (despite the head page not 1272 * having PG_reserved set). Enforcing this consistency between 1273 * head and tail pages allows drivers to optimize away a check 1274 * on the head page when they need know if put_page() is needed 1275 * after get_user_pages(). 1276 */ 1277 __ClearPageReserved(p); 1278 set_page_count(p, 0); 1279 p->first_page = page; 1280 /* Make sure p->first_page is always valid for PageTail() */ 1281 smp_wmb(); 1282 __SetPageTail(p); 1283 } 1284 } 1285 1286 /* 1287 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1288 * transparent huge pages. See the PageTransHuge() documentation for more 1289 * details. 1290 */ 1291 int PageHuge(struct page *page) 1292 { 1293 if (!PageCompound(page)) 1294 return 0; 1295 1296 page = compound_head(page); 1297 return get_compound_page_dtor(page) == free_huge_page; 1298 } 1299 EXPORT_SYMBOL_GPL(PageHuge); 1300 1301 /* 1302 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1303 * normal or transparent huge pages. 1304 */ 1305 int PageHeadHuge(struct page *page_head) 1306 { 1307 if (!PageHead(page_head)) 1308 return 0; 1309 1310 return get_compound_page_dtor(page_head) == free_huge_page; 1311 } 1312 1313 pgoff_t __basepage_index(struct page *page) 1314 { 1315 struct page *page_head = compound_head(page); 1316 pgoff_t index = page_index(page_head); 1317 unsigned long compound_idx; 1318 1319 if (!PageHuge(page_head)) 1320 return page_index(page); 1321 1322 if (compound_order(page_head) >= MAX_ORDER) 1323 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1324 else 1325 compound_idx = page - page_head; 1326 1327 return (index << compound_order(page_head)) + compound_idx; 1328 } 1329 1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1331 { 1332 struct page *page; 1333 1334 page = __alloc_pages_node(nid, 1335 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1336 __GFP_REPEAT|__GFP_NOWARN, 1337 huge_page_order(h)); 1338 if (page) { 1339 prep_new_huge_page(h, page, nid); 1340 } 1341 1342 return page; 1343 } 1344 1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1346 { 1347 struct page *page; 1348 int nr_nodes, node; 1349 int ret = 0; 1350 1351 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1352 page = alloc_fresh_huge_page_node(h, node); 1353 if (page) { 1354 ret = 1; 1355 break; 1356 } 1357 } 1358 1359 if (ret) 1360 count_vm_event(HTLB_BUDDY_PGALLOC); 1361 else 1362 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1363 1364 return ret; 1365 } 1366 1367 /* 1368 * Free huge page from pool from next node to free. 1369 * Attempt to keep persistent huge pages more or less 1370 * balanced over allowed nodes. 1371 * Called with hugetlb_lock locked. 1372 */ 1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1374 bool acct_surplus) 1375 { 1376 int nr_nodes, node; 1377 int ret = 0; 1378 1379 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1380 /* 1381 * If we're returning unused surplus pages, only examine 1382 * nodes with surplus pages. 1383 */ 1384 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1385 !list_empty(&h->hugepage_freelists[node])) { 1386 struct page *page = 1387 list_entry(h->hugepage_freelists[node].next, 1388 struct page, lru); 1389 list_del(&page->lru); 1390 h->free_huge_pages--; 1391 h->free_huge_pages_node[node]--; 1392 if (acct_surplus) { 1393 h->surplus_huge_pages--; 1394 h->surplus_huge_pages_node[node]--; 1395 } 1396 update_and_free_page(h, page); 1397 ret = 1; 1398 break; 1399 } 1400 } 1401 1402 return ret; 1403 } 1404 1405 /* 1406 * Dissolve a given free hugepage into free buddy pages. This function does 1407 * nothing for in-use (including surplus) hugepages. 1408 */ 1409 static void dissolve_free_huge_page(struct page *page) 1410 { 1411 spin_lock(&hugetlb_lock); 1412 if (PageHuge(page) && !page_count(page)) { 1413 struct hstate *h = page_hstate(page); 1414 int nid = page_to_nid(page); 1415 list_del(&page->lru); 1416 h->free_huge_pages--; 1417 h->free_huge_pages_node[nid]--; 1418 update_and_free_page(h, page); 1419 } 1420 spin_unlock(&hugetlb_lock); 1421 } 1422 1423 /* 1424 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1425 * make specified memory blocks removable from the system. 1426 * Note that start_pfn should aligned with (minimum) hugepage size. 1427 */ 1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1429 { 1430 unsigned long pfn; 1431 1432 if (!hugepages_supported()) 1433 return; 1434 1435 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1436 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1437 dissolve_free_huge_page(pfn_to_page(pfn)); 1438 } 1439 1440 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 1441 { 1442 struct page *page; 1443 unsigned int r_nid; 1444 1445 if (hstate_is_gigantic(h)) 1446 return NULL; 1447 1448 /* 1449 * Assume we will successfully allocate the surplus page to 1450 * prevent racing processes from causing the surplus to exceed 1451 * overcommit 1452 * 1453 * This however introduces a different race, where a process B 1454 * tries to grow the static hugepage pool while alloc_pages() is 1455 * called by process A. B will only examine the per-node 1456 * counters in determining if surplus huge pages can be 1457 * converted to normal huge pages in adjust_pool_surplus(). A 1458 * won't be able to increment the per-node counter, until the 1459 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1460 * no more huge pages can be converted from surplus to normal 1461 * state (and doesn't try to convert again). Thus, we have a 1462 * case where a surplus huge page exists, the pool is grown, and 1463 * the surplus huge page still exists after, even though it 1464 * should just have been converted to a normal huge page. This 1465 * does not leak memory, though, as the hugepage will be freed 1466 * once it is out of use. It also does not allow the counters to 1467 * go out of whack in adjust_pool_surplus() as we don't modify 1468 * the node values until we've gotten the hugepage and only the 1469 * per-node value is checked there. 1470 */ 1471 spin_lock(&hugetlb_lock); 1472 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1473 spin_unlock(&hugetlb_lock); 1474 return NULL; 1475 } else { 1476 h->nr_huge_pages++; 1477 h->surplus_huge_pages++; 1478 } 1479 spin_unlock(&hugetlb_lock); 1480 1481 if (nid == NUMA_NO_NODE) 1482 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| 1483 __GFP_REPEAT|__GFP_NOWARN, 1484 huge_page_order(h)); 1485 else 1486 page = __alloc_pages_node(nid, 1487 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1488 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 1489 1490 spin_lock(&hugetlb_lock); 1491 if (page) { 1492 INIT_LIST_HEAD(&page->lru); 1493 r_nid = page_to_nid(page); 1494 set_compound_page_dtor(page, free_huge_page); 1495 set_hugetlb_cgroup(page, NULL); 1496 /* 1497 * We incremented the global counters already 1498 */ 1499 h->nr_huge_pages_node[r_nid]++; 1500 h->surplus_huge_pages_node[r_nid]++; 1501 __count_vm_event(HTLB_BUDDY_PGALLOC); 1502 } else { 1503 h->nr_huge_pages--; 1504 h->surplus_huge_pages--; 1505 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1506 } 1507 spin_unlock(&hugetlb_lock); 1508 1509 return page; 1510 } 1511 1512 /* 1513 * This allocation function is useful in the context where vma is irrelevant. 1514 * E.g. soft-offlining uses this function because it only cares physical 1515 * address of error page. 1516 */ 1517 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1518 { 1519 struct page *page = NULL; 1520 1521 spin_lock(&hugetlb_lock); 1522 if (h->free_huge_pages - h->resv_huge_pages > 0) 1523 page = dequeue_huge_page_node(h, nid); 1524 spin_unlock(&hugetlb_lock); 1525 1526 if (!page) 1527 page = alloc_buddy_huge_page(h, nid); 1528 1529 return page; 1530 } 1531 1532 /* 1533 * Increase the hugetlb pool such that it can accommodate a reservation 1534 * of size 'delta'. 1535 */ 1536 static int gather_surplus_pages(struct hstate *h, int delta) 1537 { 1538 struct list_head surplus_list; 1539 struct page *page, *tmp; 1540 int ret, i; 1541 int needed, allocated; 1542 bool alloc_ok = true; 1543 1544 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1545 if (needed <= 0) { 1546 h->resv_huge_pages += delta; 1547 return 0; 1548 } 1549 1550 allocated = 0; 1551 INIT_LIST_HEAD(&surplus_list); 1552 1553 ret = -ENOMEM; 1554 retry: 1555 spin_unlock(&hugetlb_lock); 1556 for (i = 0; i < needed; i++) { 1557 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1558 if (!page) { 1559 alloc_ok = false; 1560 break; 1561 } 1562 list_add(&page->lru, &surplus_list); 1563 } 1564 allocated += i; 1565 1566 /* 1567 * After retaking hugetlb_lock, we need to recalculate 'needed' 1568 * because either resv_huge_pages or free_huge_pages may have changed. 1569 */ 1570 spin_lock(&hugetlb_lock); 1571 needed = (h->resv_huge_pages + delta) - 1572 (h->free_huge_pages + allocated); 1573 if (needed > 0) { 1574 if (alloc_ok) 1575 goto retry; 1576 /* 1577 * We were not able to allocate enough pages to 1578 * satisfy the entire reservation so we free what 1579 * we've allocated so far. 1580 */ 1581 goto free; 1582 } 1583 /* 1584 * The surplus_list now contains _at_least_ the number of extra pages 1585 * needed to accommodate the reservation. Add the appropriate number 1586 * of pages to the hugetlb pool and free the extras back to the buddy 1587 * allocator. Commit the entire reservation here to prevent another 1588 * process from stealing the pages as they are added to the pool but 1589 * before they are reserved. 1590 */ 1591 needed += allocated; 1592 h->resv_huge_pages += delta; 1593 ret = 0; 1594 1595 /* Free the needed pages to the hugetlb pool */ 1596 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1597 if ((--needed) < 0) 1598 break; 1599 /* 1600 * This page is now managed by the hugetlb allocator and has 1601 * no users -- drop the buddy allocator's reference. 1602 */ 1603 put_page_testzero(page); 1604 VM_BUG_ON_PAGE(page_count(page), page); 1605 enqueue_huge_page(h, page); 1606 } 1607 free: 1608 spin_unlock(&hugetlb_lock); 1609 1610 /* Free unnecessary surplus pages to the buddy allocator */ 1611 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1612 put_page(page); 1613 spin_lock(&hugetlb_lock); 1614 1615 return ret; 1616 } 1617 1618 /* 1619 * When releasing a hugetlb pool reservation, any surplus pages that were 1620 * allocated to satisfy the reservation must be explicitly freed if they were 1621 * never used. 1622 * Called with hugetlb_lock held. 1623 */ 1624 static void return_unused_surplus_pages(struct hstate *h, 1625 unsigned long unused_resv_pages) 1626 { 1627 unsigned long nr_pages; 1628 1629 /* Uncommit the reservation */ 1630 h->resv_huge_pages -= unused_resv_pages; 1631 1632 /* Cannot return gigantic pages currently */ 1633 if (hstate_is_gigantic(h)) 1634 return; 1635 1636 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1637 1638 /* 1639 * We want to release as many surplus pages as possible, spread 1640 * evenly across all nodes with memory. Iterate across these nodes 1641 * until we can no longer free unreserved surplus pages. This occurs 1642 * when the nodes with surplus pages have no free pages. 1643 * free_pool_huge_page() will balance the the freed pages across the 1644 * on-line nodes with memory and will handle the hstate accounting. 1645 */ 1646 while (nr_pages--) { 1647 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1648 break; 1649 cond_resched_lock(&hugetlb_lock); 1650 } 1651 } 1652 1653 1654 /* 1655 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1656 * are used by the huge page allocation routines to manage reservations. 1657 * 1658 * vma_needs_reservation is called to determine if the huge page at addr 1659 * within the vma has an associated reservation. If a reservation is 1660 * needed, the value 1 is returned. The caller is then responsible for 1661 * managing the global reservation and subpool usage counts. After 1662 * the huge page has been allocated, vma_commit_reservation is called 1663 * to add the page to the reservation map. If the page allocation fails, 1664 * the reservation must be ended instead of committed. vma_end_reservation 1665 * is called in such cases. 1666 * 1667 * In the normal case, vma_commit_reservation returns the same value 1668 * as the preceding vma_needs_reservation call. The only time this 1669 * is not the case is if a reserve map was changed between calls. It 1670 * is the responsibility of the caller to notice the difference and 1671 * take appropriate action. 1672 */ 1673 enum vma_resv_mode { 1674 VMA_NEEDS_RESV, 1675 VMA_COMMIT_RESV, 1676 VMA_END_RESV, 1677 }; 1678 static long __vma_reservation_common(struct hstate *h, 1679 struct vm_area_struct *vma, unsigned long addr, 1680 enum vma_resv_mode mode) 1681 { 1682 struct resv_map *resv; 1683 pgoff_t idx; 1684 long ret; 1685 1686 resv = vma_resv_map(vma); 1687 if (!resv) 1688 return 1; 1689 1690 idx = vma_hugecache_offset(h, vma, addr); 1691 switch (mode) { 1692 case VMA_NEEDS_RESV: 1693 ret = region_chg(resv, idx, idx + 1); 1694 break; 1695 case VMA_COMMIT_RESV: 1696 ret = region_add(resv, idx, idx + 1); 1697 break; 1698 case VMA_END_RESV: 1699 region_abort(resv, idx, idx + 1); 1700 ret = 0; 1701 break; 1702 default: 1703 BUG(); 1704 } 1705 1706 if (vma->vm_flags & VM_MAYSHARE) 1707 return ret; 1708 else 1709 return ret < 0 ? ret : 0; 1710 } 1711 1712 static long vma_needs_reservation(struct hstate *h, 1713 struct vm_area_struct *vma, unsigned long addr) 1714 { 1715 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1716 } 1717 1718 static long vma_commit_reservation(struct hstate *h, 1719 struct vm_area_struct *vma, unsigned long addr) 1720 { 1721 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1722 } 1723 1724 static void vma_end_reservation(struct hstate *h, 1725 struct vm_area_struct *vma, unsigned long addr) 1726 { 1727 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1728 } 1729 1730 struct page *alloc_huge_page(struct vm_area_struct *vma, 1731 unsigned long addr, int avoid_reserve) 1732 { 1733 struct hugepage_subpool *spool = subpool_vma(vma); 1734 struct hstate *h = hstate_vma(vma); 1735 struct page *page; 1736 long map_chg, map_commit; 1737 long gbl_chg; 1738 int ret, idx; 1739 struct hugetlb_cgroup *h_cg; 1740 1741 idx = hstate_index(h); 1742 /* 1743 * Examine the region/reserve map to determine if the process 1744 * has a reservation for the page to be allocated. A return 1745 * code of zero indicates a reservation exists (no change). 1746 */ 1747 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1748 if (map_chg < 0) 1749 return ERR_PTR(-ENOMEM); 1750 1751 /* 1752 * Processes that did not create the mapping will have no 1753 * reserves as indicated by the region/reserve map. Check 1754 * that the allocation will not exceed the subpool limit. 1755 * Allocations for MAP_NORESERVE mappings also need to be 1756 * checked against any subpool limit. 1757 */ 1758 if (map_chg || avoid_reserve) { 1759 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1760 if (gbl_chg < 0) { 1761 vma_end_reservation(h, vma, addr); 1762 return ERR_PTR(-ENOSPC); 1763 } 1764 1765 /* 1766 * Even though there was no reservation in the region/reserve 1767 * map, there could be reservations associated with the 1768 * subpool that can be used. This would be indicated if the 1769 * return value of hugepage_subpool_get_pages() is zero. 1770 * However, if avoid_reserve is specified we still avoid even 1771 * the subpool reservations. 1772 */ 1773 if (avoid_reserve) 1774 gbl_chg = 1; 1775 } 1776 1777 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1778 if (ret) 1779 goto out_subpool_put; 1780 1781 spin_lock(&hugetlb_lock); 1782 /* 1783 * glb_chg is passed to indicate whether or not a page must be taken 1784 * from the global free pool (global change). gbl_chg == 0 indicates 1785 * a reservation exists for the allocation. 1786 */ 1787 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1788 if (!page) { 1789 spin_unlock(&hugetlb_lock); 1790 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1791 if (!page) 1792 goto out_uncharge_cgroup; 1793 1794 spin_lock(&hugetlb_lock); 1795 list_move(&page->lru, &h->hugepage_activelist); 1796 /* Fall through */ 1797 } 1798 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1799 spin_unlock(&hugetlb_lock); 1800 1801 set_page_private(page, (unsigned long)spool); 1802 1803 map_commit = vma_commit_reservation(h, vma, addr); 1804 if (unlikely(map_chg > map_commit)) { 1805 /* 1806 * The page was added to the reservation map between 1807 * vma_needs_reservation and vma_commit_reservation. 1808 * This indicates a race with hugetlb_reserve_pages. 1809 * Adjust for the subpool count incremented above AND 1810 * in hugetlb_reserve_pages for the same page. Also, 1811 * the reservation count added in hugetlb_reserve_pages 1812 * no longer applies. 1813 */ 1814 long rsv_adjust; 1815 1816 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1817 hugetlb_acct_memory(h, -rsv_adjust); 1818 } 1819 return page; 1820 1821 out_uncharge_cgroup: 1822 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1823 out_subpool_put: 1824 if (map_chg || avoid_reserve) 1825 hugepage_subpool_put_pages(spool, 1); 1826 vma_end_reservation(h, vma, addr); 1827 return ERR_PTR(-ENOSPC); 1828 } 1829 1830 /* 1831 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1832 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1833 * where no ERR_VALUE is expected to be returned. 1834 */ 1835 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1836 unsigned long addr, int avoid_reserve) 1837 { 1838 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1839 if (IS_ERR(page)) 1840 page = NULL; 1841 return page; 1842 } 1843 1844 int __weak alloc_bootmem_huge_page(struct hstate *h) 1845 { 1846 struct huge_bootmem_page *m; 1847 int nr_nodes, node; 1848 1849 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1850 void *addr; 1851 1852 addr = memblock_virt_alloc_try_nid_nopanic( 1853 huge_page_size(h), huge_page_size(h), 1854 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1855 if (addr) { 1856 /* 1857 * Use the beginning of the huge page to store the 1858 * huge_bootmem_page struct (until gather_bootmem 1859 * puts them into the mem_map). 1860 */ 1861 m = addr; 1862 goto found; 1863 } 1864 } 1865 return 0; 1866 1867 found: 1868 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 1869 /* Put them into a private list first because mem_map is not up yet */ 1870 list_add(&m->list, &huge_boot_pages); 1871 m->hstate = h; 1872 return 1; 1873 } 1874 1875 static void __init prep_compound_huge_page(struct page *page, int order) 1876 { 1877 if (unlikely(order > (MAX_ORDER - 1))) 1878 prep_compound_gigantic_page(page, order); 1879 else 1880 prep_compound_page(page, order); 1881 } 1882 1883 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1884 static void __init gather_bootmem_prealloc(void) 1885 { 1886 struct huge_bootmem_page *m; 1887 1888 list_for_each_entry(m, &huge_boot_pages, list) { 1889 struct hstate *h = m->hstate; 1890 struct page *page; 1891 1892 #ifdef CONFIG_HIGHMEM 1893 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1894 memblock_free_late(__pa(m), 1895 sizeof(struct huge_bootmem_page)); 1896 #else 1897 page = virt_to_page(m); 1898 #endif 1899 WARN_ON(page_count(page) != 1); 1900 prep_compound_huge_page(page, h->order); 1901 WARN_ON(PageReserved(page)); 1902 prep_new_huge_page(h, page, page_to_nid(page)); 1903 /* 1904 * If we had gigantic hugepages allocated at boot time, we need 1905 * to restore the 'stolen' pages to totalram_pages in order to 1906 * fix confusing memory reports from free(1) and another 1907 * side-effects, like CommitLimit going negative. 1908 */ 1909 if (hstate_is_gigantic(h)) 1910 adjust_managed_page_count(page, 1 << h->order); 1911 } 1912 } 1913 1914 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1915 { 1916 unsigned long i; 1917 1918 for (i = 0; i < h->max_huge_pages; ++i) { 1919 if (hstate_is_gigantic(h)) { 1920 if (!alloc_bootmem_huge_page(h)) 1921 break; 1922 } else if (!alloc_fresh_huge_page(h, 1923 &node_states[N_MEMORY])) 1924 break; 1925 } 1926 h->max_huge_pages = i; 1927 } 1928 1929 static void __init hugetlb_init_hstates(void) 1930 { 1931 struct hstate *h; 1932 1933 for_each_hstate(h) { 1934 if (minimum_order > huge_page_order(h)) 1935 minimum_order = huge_page_order(h); 1936 1937 /* oversize hugepages were init'ed in early boot */ 1938 if (!hstate_is_gigantic(h)) 1939 hugetlb_hstate_alloc_pages(h); 1940 } 1941 VM_BUG_ON(minimum_order == UINT_MAX); 1942 } 1943 1944 static char * __init memfmt(char *buf, unsigned long n) 1945 { 1946 if (n >= (1UL << 30)) 1947 sprintf(buf, "%lu GB", n >> 30); 1948 else if (n >= (1UL << 20)) 1949 sprintf(buf, "%lu MB", n >> 20); 1950 else 1951 sprintf(buf, "%lu KB", n >> 10); 1952 return buf; 1953 } 1954 1955 static void __init report_hugepages(void) 1956 { 1957 struct hstate *h; 1958 1959 for_each_hstate(h) { 1960 char buf[32]; 1961 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 1962 memfmt(buf, huge_page_size(h)), 1963 h->free_huge_pages); 1964 } 1965 } 1966 1967 #ifdef CONFIG_HIGHMEM 1968 static void try_to_free_low(struct hstate *h, unsigned long count, 1969 nodemask_t *nodes_allowed) 1970 { 1971 int i; 1972 1973 if (hstate_is_gigantic(h)) 1974 return; 1975 1976 for_each_node_mask(i, *nodes_allowed) { 1977 struct page *page, *next; 1978 struct list_head *freel = &h->hugepage_freelists[i]; 1979 list_for_each_entry_safe(page, next, freel, lru) { 1980 if (count >= h->nr_huge_pages) 1981 return; 1982 if (PageHighMem(page)) 1983 continue; 1984 list_del(&page->lru); 1985 update_and_free_page(h, page); 1986 h->free_huge_pages--; 1987 h->free_huge_pages_node[page_to_nid(page)]--; 1988 } 1989 } 1990 } 1991 #else 1992 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1993 nodemask_t *nodes_allowed) 1994 { 1995 } 1996 #endif 1997 1998 /* 1999 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2000 * balanced by operating on them in a round-robin fashion. 2001 * Returns 1 if an adjustment was made. 2002 */ 2003 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2004 int delta) 2005 { 2006 int nr_nodes, node; 2007 2008 VM_BUG_ON(delta != -1 && delta != 1); 2009 2010 if (delta < 0) { 2011 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2012 if (h->surplus_huge_pages_node[node]) 2013 goto found; 2014 } 2015 } else { 2016 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2017 if (h->surplus_huge_pages_node[node] < 2018 h->nr_huge_pages_node[node]) 2019 goto found; 2020 } 2021 } 2022 return 0; 2023 2024 found: 2025 h->surplus_huge_pages += delta; 2026 h->surplus_huge_pages_node[node] += delta; 2027 return 1; 2028 } 2029 2030 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2031 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2032 nodemask_t *nodes_allowed) 2033 { 2034 unsigned long min_count, ret; 2035 2036 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2037 return h->max_huge_pages; 2038 2039 /* 2040 * Increase the pool size 2041 * First take pages out of surplus state. Then make up the 2042 * remaining difference by allocating fresh huge pages. 2043 * 2044 * We might race with alloc_buddy_huge_page() here and be unable 2045 * to convert a surplus huge page to a normal huge page. That is 2046 * not critical, though, it just means the overall size of the 2047 * pool might be one hugepage larger than it needs to be, but 2048 * within all the constraints specified by the sysctls. 2049 */ 2050 spin_lock(&hugetlb_lock); 2051 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2052 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2053 break; 2054 } 2055 2056 while (count > persistent_huge_pages(h)) { 2057 /* 2058 * If this allocation races such that we no longer need the 2059 * page, free_huge_page will handle it by freeing the page 2060 * and reducing the surplus. 2061 */ 2062 spin_unlock(&hugetlb_lock); 2063 if (hstate_is_gigantic(h)) 2064 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2065 else 2066 ret = alloc_fresh_huge_page(h, nodes_allowed); 2067 spin_lock(&hugetlb_lock); 2068 if (!ret) 2069 goto out; 2070 2071 /* Bail for signals. Probably ctrl-c from user */ 2072 if (signal_pending(current)) 2073 goto out; 2074 } 2075 2076 /* 2077 * Decrease the pool size 2078 * First return free pages to the buddy allocator (being careful 2079 * to keep enough around to satisfy reservations). Then place 2080 * pages into surplus state as needed so the pool will shrink 2081 * to the desired size as pages become free. 2082 * 2083 * By placing pages into the surplus state independent of the 2084 * overcommit value, we are allowing the surplus pool size to 2085 * exceed overcommit. There are few sane options here. Since 2086 * alloc_buddy_huge_page() is checking the global counter, 2087 * though, we'll note that we're not allowed to exceed surplus 2088 * and won't grow the pool anywhere else. Not until one of the 2089 * sysctls are changed, or the surplus pages go out of use. 2090 */ 2091 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2092 min_count = max(count, min_count); 2093 try_to_free_low(h, min_count, nodes_allowed); 2094 while (min_count < persistent_huge_pages(h)) { 2095 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2096 break; 2097 cond_resched_lock(&hugetlb_lock); 2098 } 2099 while (count < persistent_huge_pages(h)) { 2100 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2101 break; 2102 } 2103 out: 2104 ret = persistent_huge_pages(h); 2105 spin_unlock(&hugetlb_lock); 2106 return ret; 2107 } 2108 2109 #define HSTATE_ATTR_RO(_name) \ 2110 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2111 2112 #define HSTATE_ATTR(_name) \ 2113 static struct kobj_attribute _name##_attr = \ 2114 __ATTR(_name, 0644, _name##_show, _name##_store) 2115 2116 static struct kobject *hugepages_kobj; 2117 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2118 2119 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2120 2121 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2122 { 2123 int i; 2124 2125 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2126 if (hstate_kobjs[i] == kobj) { 2127 if (nidp) 2128 *nidp = NUMA_NO_NODE; 2129 return &hstates[i]; 2130 } 2131 2132 return kobj_to_node_hstate(kobj, nidp); 2133 } 2134 2135 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2136 struct kobj_attribute *attr, char *buf) 2137 { 2138 struct hstate *h; 2139 unsigned long nr_huge_pages; 2140 int nid; 2141 2142 h = kobj_to_hstate(kobj, &nid); 2143 if (nid == NUMA_NO_NODE) 2144 nr_huge_pages = h->nr_huge_pages; 2145 else 2146 nr_huge_pages = h->nr_huge_pages_node[nid]; 2147 2148 return sprintf(buf, "%lu\n", nr_huge_pages); 2149 } 2150 2151 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2152 struct hstate *h, int nid, 2153 unsigned long count, size_t len) 2154 { 2155 int err; 2156 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2157 2158 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2159 err = -EINVAL; 2160 goto out; 2161 } 2162 2163 if (nid == NUMA_NO_NODE) { 2164 /* 2165 * global hstate attribute 2166 */ 2167 if (!(obey_mempolicy && 2168 init_nodemask_of_mempolicy(nodes_allowed))) { 2169 NODEMASK_FREE(nodes_allowed); 2170 nodes_allowed = &node_states[N_MEMORY]; 2171 } 2172 } else if (nodes_allowed) { 2173 /* 2174 * per node hstate attribute: adjust count to global, 2175 * but restrict alloc/free to the specified node. 2176 */ 2177 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2178 init_nodemask_of_node(nodes_allowed, nid); 2179 } else 2180 nodes_allowed = &node_states[N_MEMORY]; 2181 2182 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2183 2184 if (nodes_allowed != &node_states[N_MEMORY]) 2185 NODEMASK_FREE(nodes_allowed); 2186 2187 return len; 2188 out: 2189 NODEMASK_FREE(nodes_allowed); 2190 return err; 2191 } 2192 2193 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2194 struct kobject *kobj, const char *buf, 2195 size_t len) 2196 { 2197 struct hstate *h; 2198 unsigned long count; 2199 int nid; 2200 int err; 2201 2202 err = kstrtoul(buf, 10, &count); 2203 if (err) 2204 return err; 2205 2206 h = kobj_to_hstate(kobj, &nid); 2207 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2208 } 2209 2210 static ssize_t nr_hugepages_show(struct kobject *kobj, 2211 struct kobj_attribute *attr, char *buf) 2212 { 2213 return nr_hugepages_show_common(kobj, attr, buf); 2214 } 2215 2216 static ssize_t nr_hugepages_store(struct kobject *kobj, 2217 struct kobj_attribute *attr, const char *buf, size_t len) 2218 { 2219 return nr_hugepages_store_common(false, kobj, buf, len); 2220 } 2221 HSTATE_ATTR(nr_hugepages); 2222 2223 #ifdef CONFIG_NUMA 2224 2225 /* 2226 * hstate attribute for optionally mempolicy-based constraint on persistent 2227 * huge page alloc/free. 2228 */ 2229 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2230 struct kobj_attribute *attr, char *buf) 2231 { 2232 return nr_hugepages_show_common(kobj, attr, buf); 2233 } 2234 2235 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2236 struct kobj_attribute *attr, const char *buf, size_t len) 2237 { 2238 return nr_hugepages_store_common(true, kobj, buf, len); 2239 } 2240 HSTATE_ATTR(nr_hugepages_mempolicy); 2241 #endif 2242 2243 2244 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2245 struct kobj_attribute *attr, char *buf) 2246 { 2247 struct hstate *h = kobj_to_hstate(kobj, NULL); 2248 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2249 } 2250 2251 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2252 struct kobj_attribute *attr, const char *buf, size_t count) 2253 { 2254 int err; 2255 unsigned long input; 2256 struct hstate *h = kobj_to_hstate(kobj, NULL); 2257 2258 if (hstate_is_gigantic(h)) 2259 return -EINVAL; 2260 2261 err = kstrtoul(buf, 10, &input); 2262 if (err) 2263 return err; 2264 2265 spin_lock(&hugetlb_lock); 2266 h->nr_overcommit_huge_pages = input; 2267 spin_unlock(&hugetlb_lock); 2268 2269 return count; 2270 } 2271 HSTATE_ATTR(nr_overcommit_hugepages); 2272 2273 static ssize_t free_hugepages_show(struct kobject *kobj, 2274 struct kobj_attribute *attr, char *buf) 2275 { 2276 struct hstate *h; 2277 unsigned long free_huge_pages; 2278 int nid; 2279 2280 h = kobj_to_hstate(kobj, &nid); 2281 if (nid == NUMA_NO_NODE) 2282 free_huge_pages = h->free_huge_pages; 2283 else 2284 free_huge_pages = h->free_huge_pages_node[nid]; 2285 2286 return sprintf(buf, "%lu\n", free_huge_pages); 2287 } 2288 HSTATE_ATTR_RO(free_hugepages); 2289 2290 static ssize_t resv_hugepages_show(struct kobject *kobj, 2291 struct kobj_attribute *attr, char *buf) 2292 { 2293 struct hstate *h = kobj_to_hstate(kobj, NULL); 2294 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2295 } 2296 HSTATE_ATTR_RO(resv_hugepages); 2297 2298 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2299 struct kobj_attribute *attr, char *buf) 2300 { 2301 struct hstate *h; 2302 unsigned long surplus_huge_pages; 2303 int nid; 2304 2305 h = kobj_to_hstate(kobj, &nid); 2306 if (nid == NUMA_NO_NODE) 2307 surplus_huge_pages = h->surplus_huge_pages; 2308 else 2309 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2310 2311 return sprintf(buf, "%lu\n", surplus_huge_pages); 2312 } 2313 HSTATE_ATTR_RO(surplus_hugepages); 2314 2315 static struct attribute *hstate_attrs[] = { 2316 &nr_hugepages_attr.attr, 2317 &nr_overcommit_hugepages_attr.attr, 2318 &free_hugepages_attr.attr, 2319 &resv_hugepages_attr.attr, 2320 &surplus_hugepages_attr.attr, 2321 #ifdef CONFIG_NUMA 2322 &nr_hugepages_mempolicy_attr.attr, 2323 #endif 2324 NULL, 2325 }; 2326 2327 static struct attribute_group hstate_attr_group = { 2328 .attrs = hstate_attrs, 2329 }; 2330 2331 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2332 struct kobject **hstate_kobjs, 2333 struct attribute_group *hstate_attr_group) 2334 { 2335 int retval; 2336 int hi = hstate_index(h); 2337 2338 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2339 if (!hstate_kobjs[hi]) 2340 return -ENOMEM; 2341 2342 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2343 if (retval) 2344 kobject_put(hstate_kobjs[hi]); 2345 2346 return retval; 2347 } 2348 2349 static void __init hugetlb_sysfs_init(void) 2350 { 2351 struct hstate *h; 2352 int err; 2353 2354 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2355 if (!hugepages_kobj) 2356 return; 2357 2358 for_each_hstate(h) { 2359 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2360 hstate_kobjs, &hstate_attr_group); 2361 if (err) 2362 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2363 } 2364 } 2365 2366 #ifdef CONFIG_NUMA 2367 2368 /* 2369 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2370 * with node devices in node_devices[] using a parallel array. The array 2371 * index of a node device or _hstate == node id. 2372 * This is here to avoid any static dependency of the node device driver, in 2373 * the base kernel, on the hugetlb module. 2374 */ 2375 struct node_hstate { 2376 struct kobject *hugepages_kobj; 2377 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2378 }; 2379 struct node_hstate node_hstates[MAX_NUMNODES]; 2380 2381 /* 2382 * A subset of global hstate attributes for node devices 2383 */ 2384 static struct attribute *per_node_hstate_attrs[] = { 2385 &nr_hugepages_attr.attr, 2386 &free_hugepages_attr.attr, 2387 &surplus_hugepages_attr.attr, 2388 NULL, 2389 }; 2390 2391 static struct attribute_group per_node_hstate_attr_group = { 2392 .attrs = per_node_hstate_attrs, 2393 }; 2394 2395 /* 2396 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2397 * Returns node id via non-NULL nidp. 2398 */ 2399 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2400 { 2401 int nid; 2402 2403 for (nid = 0; nid < nr_node_ids; nid++) { 2404 struct node_hstate *nhs = &node_hstates[nid]; 2405 int i; 2406 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2407 if (nhs->hstate_kobjs[i] == kobj) { 2408 if (nidp) 2409 *nidp = nid; 2410 return &hstates[i]; 2411 } 2412 } 2413 2414 BUG(); 2415 return NULL; 2416 } 2417 2418 /* 2419 * Unregister hstate attributes from a single node device. 2420 * No-op if no hstate attributes attached. 2421 */ 2422 static void hugetlb_unregister_node(struct node *node) 2423 { 2424 struct hstate *h; 2425 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2426 2427 if (!nhs->hugepages_kobj) 2428 return; /* no hstate attributes */ 2429 2430 for_each_hstate(h) { 2431 int idx = hstate_index(h); 2432 if (nhs->hstate_kobjs[idx]) { 2433 kobject_put(nhs->hstate_kobjs[idx]); 2434 nhs->hstate_kobjs[idx] = NULL; 2435 } 2436 } 2437 2438 kobject_put(nhs->hugepages_kobj); 2439 nhs->hugepages_kobj = NULL; 2440 } 2441 2442 /* 2443 * hugetlb module exit: unregister hstate attributes from node devices 2444 * that have them. 2445 */ 2446 static void hugetlb_unregister_all_nodes(void) 2447 { 2448 int nid; 2449 2450 /* 2451 * disable node device registrations. 2452 */ 2453 register_hugetlbfs_with_node(NULL, NULL); 2454 2455 /* 2456 * remove hstate attributes from any nodes that have them. 2457 */ 2458 for (nid = 0; nid < nr_node_ids; nid++) 2459 hugetlb_unregister_node(node_devices[nid]); 2460 } 2461 2462 /* 2463 * Register hstate attributes for a single node device. 2464 * No-op if attributes already registered. 2465 */ 2466 static void hugetlb_register_node(struct node *node) 2467 { 2468 struct hstate *h; 2469 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2470 int err; 2471 2472 if (nhs->hugepages_kobj) 2473 return; /* already allocated */ 2474 2475 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2476 &node->dev.kobj); 2477 if (!nhs->hugepages_kobj) 2478 return; 2479 2480 for_each_hstate(h) { 2481 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2482 nhs->hstate_kobjs, 2483 &per_node_hstate_attr_group); 2484 if (err) { 2485 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2486 h->name, node->dev.id); 2487 hugetlb_unregister_node(node); 2488 break; 2489 } 2490 } 2491 } 2492 2493 /* 2494 * hugetlb init time: register hstate attributes for all registered node 2495 * devices of nodes that have memory. All on-line nodes should have 2496 * registered their associated device by this time. 2497 */ 2498 static void __init hugetlb_register_all_nodes(void) 2499 { 2500 int nid; 2501 2502 for_each_node_state(nid, N_MEMORY) { 2503 struct node *node = node_devices[nid]; 2504 if (node->dev.id == nid) 2505 hugetlb_register_node(node); 2506 } 2507 2508 /* 2509 * Let the node device driver know we're here so it can 2510 * [un]register hstate attributes on node hotplug. 2511 */ 2512 register_hugetlbfs_with_node(hugetlb_register_node, 2513 hugetlb_unregister_node); 2514 } 2515 #else /* !CONFIG_NUMA */ 2516 2517 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2518 { 2519 BUG(); 2520 if (nidp) 2521 *nidp = -1; 2522 return NULL; 2523 } 2524 2525 static void hugetlb_unregister_all_nodes(void) { } 2526 2527 static void hugetlb_register_all_nodes(void) { } 2528 2529 #endif 2530 2531 static void __exit hugetlb_exit(void) 2532 { 2533 struct hstate *h; 2534 2535 hugetlb_unregister_all_nodes(); 2536 2537 for_each_hstate(h) { 2538 kobject_put(hstate_kobjs[hstate_index(h)]); 2539 } 2540 2541 kobject_put(hugepages_kobj); 2542 kfree(hugetlb_fault_mutex_table); 2543 } 2544 module_exit(hugetlb_exit); 2545 2546 static int __init hugetlb_init(void) 2547 { 2548 int i; 2549 2550 if (!hugepages_supported()) 2551 return 0; 2552 2553 if (!size_to_hstate(default_hstate_size)) { 2554 default_hstate_size = HPAGE_SIZE; 2555 if (!size_to_hstate(default_hstate_size)) 2556 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2557 } 2558 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2559 if (default_hstate_max_huge_pages) 2560 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2561 2562 hugetlb_init_hstates(); 2563 gather_bootmem_prealloc(); 2564 report_hugepages(); 2565 2566 hugetlb_sysfs_init(); 2567 hugetlb_register_all_nodes(); 2568 hugetlb_cgroup_file_init(); 2569 2570 #ifdef CONFIG_SMP 2571 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2572 #else 2573 num_fault_mutexes = 1; 2574 #endif 2575 hugetlb_fault_mutex_table = 2576 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2577 BUG_ON(!hugetlb_fault_mutex_table); 2578 2579 for (i = 0; i < num_fault_mutexes; i++) 2580 mutex_init(&hugetlb_fault_mutex_table[i]); 2581 return 0; 2582 } 2583 module_init(hugetlb_init); 2584 2585 /* Should be called on processing a hugepagesz=... option */ 2586 void __init hugetlb_add_hstate(unsigned order) 2587 { 2588 struct hstate *h; 2589 unsigned long i; 2590 2591 if (size_to_hstate(PAGE_SIZE << order)) { 2592 pr_warning("hugepagesz= specified twice, ignoring\n"); 2593 return; 2594 } 2595 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2596 BUG_ON(order == 0); 2597 h = &hstates[hugetlb_max_hstate++]; 2598 h->order = order; 2599 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2600 h->nr_huge_pages = 0; 2601 h->free_huge_pages = 0; 2602 for (i = 0; i < MAX_NUMNODES; ++i) 2603 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2604 INIT_LIST_HEAD(&h->hugepage_activelist); 2605 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2606 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2607 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2608 huge_page_size(h)/1024); 2609 2610 parsed_hstate = h; 2611 } 2612 2613 static int __init hugetlb_nrpages_setup(char *s) 2614 { 2615 unsigned long *mhp; 2616 static unsigned long *last_mhp; 2617 2618 /* 2619 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2620 * so this hugepages= parameter goes to the "default hstate". 2621 */ 2622 if (!hugetlb_max_hstate) 2623 mhp = &default_hstate_max_huge_pages; 2624 else 2625 mhp = &parsed_hstate->max_huge_pages; 2626 2627 if (mhp == last_mhp) { 2628 pr_warning("hugepages= specified twice without " 2629 "interleaving hugepagesz=, ignoring\n"); 2630 return 1; 2631 } 2632 2633 if (sscanf(s, "%lu", mhp) <= 0) 2634 *mhp = 0; 2635 2636 /* 2637 * Global state is always initialized later in hugetlb_init. 2638 * But we need to allocate >= MAX_ORDER hstates here early to still 2639 * use the bootmem allocator. 2640 */ 2641 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2642 hugetlb_hstate_alloc_pages(parsed_hstate); 2643 2644 last_mhp = mhp; 2645 2646 return 1; 2647 } 2648 __setup("hugepages=", hugetlb_nrpages_setup); 2649 2650 static int __init hugetlb_default_setup(char *s) 2651 { 2652 default_hstate_size = memparse(s, &s); 2653 return 1; 2654 } 2655 __setup("default_hugepagesz=", hugetlb_default_setup); 2656 2657 static unsigned int cpuset_mems_nr(unsigned int *array) 2658 { 2659 int node; 2660 unsigned int nr = 0; 2661 2662 for_each_node_mask(node, cpuset_current_mems_allowed) 2663 nr += array[node]; 2664 2665 return nr; 2666 } 2667 2668 #ifdef CONFIG_SYSCTL 2669 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2670 struct ctl_table *table, int write, 2671 void __user *buffer, size_t *length, loff_t *ppos) 2672 { 2673 struct hstate *h = &default_hstate; 2674 unsigned long tmp = h->max_huge_pages; 2675 int ret; 2676 2677 if (!hugepages_supported()) 2678 return -ENOTSUPP; 2679 2680 table->data = &tmp; 2681 table->maxlen = sizeof(unsigned long); 2682 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2683 if (ret) 2684 goto out; 2685 2686 if (write) 2687 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2688 NUMA_NO_NODE, tmp, *length); 2689 out: 2690 return ret; 2691 } 2692 2693 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2694 void __user *buffer, size_t *length, loff_t *ppos) 2695 { 2696 2697 return hugetlb_sysctl_handler_common(false, table, write, 2698 buffer, length, ppos); 2699 } 2700 2701 #ifdef CONFIG_NUMA 2702 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2703 void __user *buffer, size_t *length, loff_t *ppos) 2704 { 2705 return hugetlb_sysctl_handler_common(true, table, write, 2706 buffer, length, ppos); 2707 } 2708 #endif /* CONFIG_NUMA */ 2709 2710 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2711 void __user *buffer, 2712 size_t *length, loff_t *ppos) 2713 { 2714 struct hstate *h = &default_hstate; 2715 unsigned long tmp; 2716 int ret; 2717 2718 if (!hugepages_supported()) 2719 return -ENOTSUPP; 2720 2721 tmp = h->nr_overcommit_huge_pages; 2722 2723 if (write && hstate_is_gigantic(h)) 2724 return -EINVAL; 2725 2726 table->data = &tmp; 2727 table->maxlen = sizeof(unsigned long); 2728 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2729 if (ret) 2730 goto out; 2731 2732 if (write) { 2733 spin_lock(&hugetlb_lock); 2734 h->nr_overcommit_huge_pages = tmp; 2735 spin_unlock(&hugetlb_lock); 2736 } 2737 out: 2738 return ret; 2739 } 2740 2741 #endif /* CONFIG_SYSCTL */ 2742 2743 void hugetlb_report_meminfo(struct seq_file *m) 2744 { 2745 struct hstate *h = &default_hstate; 2746 if (!hugepages_supported()) 2747 return; 2748 seq_printf(m, 2749 "HugePages_Total: %5lu\n" 2750 "HugePages_Free: %5lu\n" 2751 "HugePages_Rsvd: %5lu\n" 2752 "HugePages_Surp: %5lu\n" 2753 "Hugepagesize: %8lu kB\n", 2754 h->nr_huge_pages, 2755 h->free_huge_pages, 2756 h->resv_huge_pages, 2757 h->surplus_huge_pages, 2758 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2759 } 2760 2761 int hugetlb_report_node_meminfo(int nid, char *buf) 2762 { 2763 struct hstate *h = &default_hstate; 2764 if (!hugepages_supported()) 2765 return 0; 2766 return sprintf(buf, 2767 "Node %d HugePages_Total: %5u\n" 2768 "Node %d HugePages_Free: %5u\n" 2769 "Node %d HugePages_Surp: %5u\n", 2770 nid, h->nr_huge_pages_node[nid], 2771 nid, h->free_huge_pages_node[nid], 2772 nid, h->surplus_huge_pages_node[nid]); 2773 } 2774 2775 void hugetlb_show_meminfo(void) 2776 { 2777 struct hstate *h; 2778 int nid; 2779 2780 if (!hugepages_supported()) 2781 return; 2782 2783 for_each_node_state(nid, N_MEMORY) 2784 for_each_hstate(h) 2785 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2786 nid, 2787 h->nr_huge_pages_node[nid], 2788 h->free_huge_pages_node[nid], 2789 h->surplus_huge_pages_node[nid], 2790 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2791 } 2792 2793 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2794 unsigned long hugetlb_total_pages(void) 2795 { 2796 struct hstate *h; 2797 unsigned long nr_total_pages = 0; 2798 2799 for_each_hstate(h) 2800 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2801 return nr_total_pages; 2802 } 2803 2804 static int hugetlb_acct_memory(struct hstate *h, long delta) 2805 { 2806 int ret = -ENOMEM; 2807 2808 spin_lock(&hugetlb_lock); 2809 /* 2810 * When cpuset is configured, it breaks the strict hugetlb page 2811 * reservation as the accounting is done on a global variable. Such 2812 * reservation is completely rubbish in the presence of cpuset because 2813 * the reservation is not checked against page availability for the 2814 * current cpuset. Application can still potentially OOM'ed by kernel 2815 * with lack of free htlb page in cpuset that the task is in. 2816 * Attempt to enforce strict accounting with cpuset is almost 2817 * impossible (or too ugly) because cpuset is too fluid that 2818 * task or memory node can be dynamically moved between cpusets. 2819 * 2820 * The change of semantics for shared hugetlb mapping with cpuset is 2821 * undesirable. However, in order to preserve some of the semantics, 2822 * we fall back to check against current free page availability as 2823 * a best attempt and hopefully to minimize the impact of changing 2824 * semantics that cpuset has. 2825 */ 2826 if (delta > 0) { 2827 if (gather_surplus_pages(h, delta) < 0) 2828 goto out; 2829 2830 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2831 return_unused_surplus_pages(h, delta); 2832 goto out; 2833 } 2834 } 2835 2836 ret = 0; 2837 if (delta < 0) 2838 return_unused_surplus_pages(h, (unsigned long) -delta); 2839 2840 out: 2841 spin_unlock(&hugetlb_lock); 2842 return ret; 2843 } 2844 2845 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2846 { 2847 struct resv_map *resv = vma_resv_map(vma); 2848 2849 /* 2850 * This new VMA should share its siblings reservation map if present. 2851 * The VMA will only ever have a valid reservation map pointer where 2852 * it is being copied for another still existing VMA. As that VMA 2853 * has a reference to the reservation map it cannot disappear until 2854 * after this open call completes. It is therefore safe to take a 2855 * new reference here without additional locking. 2856 */ 2857 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2858 kref_get(&resv->refs); 2859 } 2860 2861 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2862 { 2863 struct hstate *h = hstate_vma(vma); 2864 struct resv_map *resv = vma_resv_map(vma); 2865 struct hugepage_subpool *spool = subpool_vma(vma); 2866 unsigned long reserve, start, end; 2867 long gbl_reserve; 2868 2869 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2870 return; 2871 2872 start = vma_hugecache_offset(h, vma, vma->vm_start); 2873 end = vma_hugecache_offset(h, vma, vma->vm_end); 2874 2875 reserve = (end - start) - region_count(resv, start, end); 2876 2877 kref_put(&resv->refs, resv_map_release); 2878 2879 if (reserve) { 2880 /* 2881 * Decrement reserve counts. The global reserve count may be 2882 * adjusted if the subpool has a minimum size. 2883 */ 2884 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 2885 hugetlb_acct_memory(h, -gbl_reserve); 2886 } 2887 } 2888 2889 /* 2890 * We cannot handle pagefaults against hugetlb pages at all. They cause 2891 * handle_mm_fault() to try to instantiate regular-sized pages in the 2892 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2893 * this far. 2894 */ 2895 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2896 { 2897 BUG(); 2898 return 0; 2899 } 2900 2901 const struct vm_operations_struct hugetlb_vm_ops = { 2902 .fault = hugetlb_vm_op_fault, 2903 .open = hugetlb_vm_op_open, 2904 .close = hugetlb_vm_op_close, 2905 }; 2906 2907 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2908 int writable) 2909 { 2910 pte_t entry; 2911 2912 if (writable) { 2913 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 2914 vma->vm_page_prot))); 2915 } else { 2916 entry = huge_pte_wrprotect(mk_huge_pte(page, 2917 vma->vm_page_prot)); 2918 } 2919 entry = pte_mkyoung(entry); 2920 entry = pte_mkhuge(entry); 2921 entry = arch_make_huge_pte(entry, vma, page, writable); 2922 2923 return entry; 2924 } 2925 2926 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2927 unsigned long address, pte_t *ptep) 2928 { 2929 pte_t entry; 2930 2931 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 2932 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2933 update_mmu_cache(vma, address, ptep); 2934 } 2935 2936 static int is_hugetlb_entry_migration(pte_t pte) 2937 { 2938 swp_entry_t swp; 2939 2940 if (huge_pte_none(pte) || pte_present(pte)) 2941 return 0; 2942 swp = pte_to_swp_entry(pte); 2943 if (non_swap_entry(swp) && is_migration_entry(swp)) 2944 return 1; 2945 else 2946 return 0; 2947 } 2948 2949 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2950 { 2951 swp_entry_t swp; 2952 2953 if (huge_pte_none(pte) || pte_present(pte)) 2954 return 0; 2955 swp = pte_to_swp_entry(pte); 2956 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2957 return 1; 2958 else 2959 return 0; 2960 } 2961 2962 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2963 struct vm_area_struct *vma) 2964 { 2965 pte_t *src_pte, *dst_pte, entry; 2966 struct page *ptepage; 2967 unsigned long addr; 2968 int cow; 2969 struct hstate *h = hstate_vma(vma); 2970 unsigned long sz = huge_page_size(h); 2971 unsigned long mmun_start; /* For mmu_notifiers */ 2972 unsigned long mmun_end; /* For mmu_notifiers */ 2973 int ret = 0; 2974 2975 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2976 2977 mmun_start = vma->vm_start; 2978 mmun_end = vma->vm_end; 2979 if (cow) 2980 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 2981 2982 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2983 spinlock_t *src_ptl, *dst_ptl; 2984 src_pte = huge_pte_offset(src, addr); 2985 if (!src_pte) 2986 continue; 2987 dst_pte = huge_pte_alloc(dst, addr, sz); 2988 if (!dst_pte) { 2989 ret = -ENOMEM; 2990 break; 2991 } 2992 2993 /* If the pagetables are shared don't copy or take references */ 2994 if (dst_pte == src_pte) 2995 continue; 2996 2997 dst_ptl = huge_pte_lock(h, dst, dst_pte); 2998 src_ptl = huge_pte_lockptr(h, src, src_pte); 2999 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3000 entry = huge_ptep_get(src_pte); 3001 if (huge_pte_none(entry)) { /* skip none entry */ 3002 ; 3003 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3004 is_hugetlb_entry_hwpoisoned(entry))) { 3005 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3006 3007 if (is_write_migration_entry(swp_entry) && cow) { 3008 /* 3009 * COW mappings require pages in both 3010 * parent and child to be set to read. 3011 */ 3012 make_migration_entry_read(&swp_entry); 3013 entry = swp_entry_to_pte(swp_entry); 3014 set_huge_pte_at(src, addr, src_pte, entry); 3015 } 3016 set_huge_pte_at(dst, addr, dst_pte, entry); 3017 } else { 3018 if (cow) { 3019 huge_ptep_set_wrprotect(src, addr, src_pte); 3020 mmu_notifier_invalidate_range(src, mmun_start, 3021 mmun_end); 3022 } 3023 entry = huge_ptep_get(src_pte); 3024 ptepage = pte_page(entry); 3025 get_page(ptepage); 3026 page_dup_rmap(ptepage); 3027 set_huge_pte_at(dst, addr, dst_pte, entry); 3028 } 3029 spin_unlock(src_ptl); 3030 spin_unlock(dst_ptl); 3031 } 3032 3033 if (cow) 3034 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3035 3036 return ret; 3037 } 3038 3039 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3040 unsigned long start, unsigned long end, 3041 struct page *ref_page) 3042 { 3043 int force_flush = 0; 3044 struct mm_struct *mm = vma->vm_mm; 3045 unsigned long address; 3046 pte_t *ptep; 3047 pte_t pte; 3048 spinlock_t *ptl; 3049 struct page *page; 3050 struct hstate *h = hstate_vma(vma); 3051 unsigned long sz = huge_page_size(h); 3052 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3053 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3054 3055 WARN_ON(!is_vm_hugetlb_page(vma)); 3056 BUG_ON(start & ~huge_page_mask(h)); 3057 BUG_ON(end & ~huge_page_mask(h)); 3058 3059 tlb_start_vma(tlb, vma); 3060 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3061 address = start; 3062 again: 3063 for (; address < end; address += sz) { 3064 ptep = huge_pte_offset(mm, address); 3065 if (!ptep) 3066 continue; 3067 3068 ptl = huge_pte_lock(h, mm, ptep); 3069 if (huge_pmd_unshare(mm, &address, ptep)) 3070 goto unlock; 3071 3072 pte = huge_ptep_get(ptep); 3073 if (huge_pte_none(pte)) 3074 goto unlock; 3075 3076 /* 3077 * Migrating hugepage or HWPoisoned hugepage is already 3078 * unmapped and its refcount is dropped, so just clear pte here. 3079 */ 3080 if (unlikely(!pte_present(pte))) { 3081 huge_pte_clear(mm, address, ptep); 3082 goto unlock; 3083 } 3084 3085 page = pte_page(pte); 3086 /* 3087 * If a reference page is supplied, it is because a specific 3088 * page is being unmapped, not a range. Ensure the page we 3089 * are about to unmap is the actual page of interest. 3090 */ 3091 if (ref_page) { 3092 if (page != ref_page) 3093 goto unlock; 3094 3095 /* 3096 * Mark the VMA as having unmapped its page so that 3097 * future faults in this VMA will fail rather than 3098 * looking like data was lost 3099 */ 3100 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3101 } 3102 3103 pte = huge_ptep_get_and_clear(mm, address, ptep); 3104 tlb_remove_tlb_entry(tlb, ptep, address); 3105 if (huge_pte_dirty(pte)) 3106 set_page_dirty(page); 3107 3108 page_remove_rmap(page); 3109 force_flush = !__tlb_remove_page(tlb, page); 3110 if (force_flush) { 3111 address += sz; 3112 spin_unlock(ptl); 3113 break; 3114 } 3115 /* Bail out after unmapping reference page if supplied */ 3116 if (ref_page) { 3117 spin_unlock(ptl); 3118 break; 3119 } 3120 unlock: 3121 spin_unlock(ptl); 3122 } 3123 /* 3124 * mmu_gather ran out of room to batch pages, we break out of 3125 * the PTE lock to avoid doing the potential expensive TLB invalidate 3126 * and page-free while holding it. 3127 */ 3128 if (force_flush) { 3129 force_flush = 0; 3130 tlb_flush_mmu(tlb); 3131 if (address < end && !ref_page) 3132 goto again; 3133 } 3134 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3135 tlb_end_vma(tlb, vma); 3136 } 3137 3138 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3139 struct vm_area_struct *vma, unsigned long start, 3140 unsigned long end, struct page *ref_page) 3141 { 3142 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3143 3144 /* 3145 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3146 * test will fail on a vma being torn down, and not grab a page table 3147 * on its way out. We're lucky that the flag has such an appropriate 3148 * name, and can in fact be safely cleared here. We could clear it 3149 * before the __unmap_hugepage_range above, but all that's necessary 3150 * is to clear it before releasing the i_mmap_rwsem. This works 3151 * because in the context this is called, the VMA is about to be 3152 * destroyed and the i_mmap_rwsem is held. 3153 */ 3154 vma->vm_flags &= ~VM_MAYSHARE; 3155 } 3156 3157 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3158 unsigned long end, struct page *ref_page) 3159 { 3160 struct mm_struct *mm; 3161 struct mmu_gather tlb; 3162 3163 mm = vma->vm_mm; 3164 3165 tlb_gather_mmu(&tlb, mm, start, end); 3166 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3167 tlb_finish_mmu(&tlb, start, end); 3168 } 3169 3170 /* 3171 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3172 * mappping it owns the reserve page for. The intention is to unmap the page 3173 * from other VMAs and let the children be SIGKILLed if they are faulting the 3174 * same region. 3175 */ 3176 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3177 struct page *page, unsigned long address) 3178 { 3179 struct hstate *h = hstate_vma(vma); 3180 struct vm_area_struct *iter_vma; 3181 struct address_space *mapping; 3182 pgoff_t pgoff; 3183 3184 /* 3185 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3186 * from page cache lookup which is in HPAGE_SIZE units. 3187 */ 3188 address = address & huge_page_mask(h); 3189 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3190 vma->vm_pgoff; 3191 mapping = file_inode(vma->vm_file)->i_mapping; 3192 3193 /* 3194 * Take the mapping lock for the duration of the table walk. As 3195 * this mapping should be shared between all the VMAs, 3196 * __unmap_hugepage_range() is called as the lock is already held 3197 */ 3198 i_mmap_lock_write(mapping); 3199 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3200 /* Do not unmap the current VMA */ 3201 if (iter_vma == vma) 3202 continue; 3203 3204 /* 3205 * Shared VMAs have their own reserves and do not affect 3206 * MAP_PRIVATE accounting but it is possible that a shared 3207 * VMA is using the same page so check and skip such VMAs. 3208 */ 3209 if (iter_vma->vm_flags & VM_MAYSHARE) 3210 continue; 3211 3212 /* 3213 * Unmap the page from other VMAs without their own reserves. 3214 * They get marked to be SIGKILLed if they fault in these 3215 * areas. This is because a future no-page fault on this VMA 3216 * could insert a zeroed page instead of the data existing 3217 * from the time of fork. This would look like data corruption 3218 */ 3219 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3220 unmap_hugepage_range(iter_vma, address, 3221 address + huge_page_size(h), page); 3222 } 3223 i_mmap_unlock_write(mapping); 3224 } 3225 3226 /* 3227 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3228 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3229 * cannot race with other handlers or page migration. 3230 * Keep the pte_same checks anyway to make transition from the mutex easier. 3231 */ 3232 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3233 unsigned long address, pte_t *ptep, pte_t pte, 3234 struct page *pagecache_page, spinlock_t *ptl) 3235 { 3236 struct hstate *h = hstate_vma(vma); 3237 struct page *old_page, *new_page; 3238 int ret = 0, outside_reserve = 0; 3239 unsigned long mmun_start; /* For mmu_notifiers */ 3240 unsigned long mmun_end; /* For mmu_notifiers */ 3241 3242 old_page = pte_page(pte); 3243 3244 retry_avoidcopy: 3245 /* If no-one else is actually using this page, avoid the copy 3246 * and just make the page writable */ 3247 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3248 page_move_anon_rmap(old_page, vma, address); 3249 set_huge_ptep_writable(vma, address, ptep); 3250 return 0; 3251 } 3252 3253 /* 3254 * If the process that created a MAP_PRIVATE mapping is about to 3255 * perform a COW due to a shared page count, attempt to satisfy 3256 * the allocation without using the existing reserves. The pagecache 3257 * page is used to determine if the reserve at this address was 3258 * consumed or not. If reserves were used, a partial faulted mapping 3259 * at the time of fork() could consume its reserves on COW instead 3260 * of the full address range. 3261 */ 3262 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3263 old_page != pagecache_page) 3264 outside_reserve = 1; 3265 3266 page_cache_get(old_page); 3267 3268 /* 3269 * Drop page table lock as buddy allocator may be called. It will 3270 * be acquired again before returning to the caller, as expected. 3271 */ 3272 spin_unlock(ptl); 3273 new_page = alloc_huge_page(vma, address, outside_reserve); 3274 3275 if (IS_ERR(new_page)) { 3276 /* 3277 * If a process owning a MAP_PRIVATE mapping fails to COW, 3278 * it is due to references held by a child and an insufficient 3279 * huge page pool. To guarantee the original mappers 3280 * reliability, unmap the page from child processes. The child 3281 * may get SIGKILLed if it later faults. 3282 */ 3283 if (outside_reserve) { 3284 page_cache_release(old_page); 3285 BUG_ON(huge_pte_none(pte)); 3286 unmap_ref_private(mm, vma, old_page, address); 3287 BUG_ON(huge_pte_none(pte)); 3288 spin_lock(ptl); 3289 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3290 if (likely(ptep && 3291 pte_same(huge_ptep_get(ptep), pte))) 3292 goto retry_avoidcopy; 3293 /* 3294 * race occurs while re-acquiring page table 3295 * lock, and our job is done. 3296 */ 3297 return 0; 3298 } 3299 3300 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3301 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3302 goto out_release_old; 3303 } 3304 3305 /* 3306 * When the original hugepage is shared one, it does not have 3307 * anon_vma prepared. 3308 */ 3309 if (unlikely(anon_vma_prepare(vma))) { 3310 ret = VM_FAULT_OOM; 3311 goto out_release_all; 3312 } 3313 3314 copy_user_huge_page(new_page, old_page, address, vma, 3315 pages_per_huge_page(h)); 3316 __SetPageUptodate(new_page); 3317 set_page_huge_active(new_page); 3318 3319 mmun_start = address & huge_page_mask(h); 3320 mmun_end = mmun_start + huge_page_size(h); 3321 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3322 3323 /* 3324 * Retake the page table lock to check for racing updates 3325 * before the page tables are altered 3326 */ 3327 spin_lock(ptl); 3328 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3329 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3330 ClearPagePrivate(new_page); 3331 3332 /* Break COW */ 3333 huge_ptep_clear_flush(vma, address, ptep); 3334 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3335 set_huge_pte_at(mm, address, ptep, 3336 make_huge_pte(vma, new_page, 1)); 3337 page_remove_rmap(old_page); 3338 hugepage_add_new_anon_rmap(new_page, vma, address); 3339 /* Make the old page be freed below */ 3340 new_page = old_page; 3341 } 3342 spin_unlock(ptl); 3343 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3344 out_release_all: 3345 page_cache_release(new_page); 3346 out_release_old: 3347 page_cache_release(old_page); 3348 3349 spin_lock(ptl); /* Caller expects lock to be held */ 3350 return ret; 3351 } 3352 3353 /* Return the pagecache page at a given address within a VMA */ 3354 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3355 struct vm_area_struct *vma, unsigned long address) 3356 { 3357 struct address_space *mapping; 3358 pgoff_t idx; 3359 3360 mapping = vma->vm_file->f_mapping; 3361 idx = vma_hugecache_offset(h, vma, address); 3362 3363 return find_lock_page(mapping, idx); 3364 } 3365 3366 /* 3367 * Return whether there is a pagecache page to back given address within VMA. 3368 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3369 */ 3370 static bool hugetlbfs_pagecache_present(struct hstate *h, 3371 struct vm_area_struct *vma, unsigned long address) 3372 { 3373 struct address_space *mapping; 3374 pgoff_t idx; 3375 struct page *page; 3376 3377 mapping = vma->vm_file->f_mapping; 3378 idx = vma_hugecache_offset(h, vma, address); 3379 3380 page = find_get_page(mapping, idx); 3381 if (page) 3382 put_page(page); 3383 return page != NULL; 3384 } 3385 3386 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3387 pgoff_t idx) 3388 { 3389 struct inode *inode = mapping->host; 3390 struct hstate *h = hstate_inode(inode); 3391 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3392 3393 if (err) 3394 return err; 3395 ClearPagePrivate(page); 3396 3397 spin_lock(&inode->i_lock); 3398 inode->i_blocks += blocks_per_huge_page(h); 3399 spin_unlock(&inode->i_lock); 3400 return 0; 3401 } 3402 3403 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3404 struct address_space *mapping, pgoff_t idx, 3405 unsigned long address, pte_t *ptep, unsigned int flags) 3406 { 3407 struct hstate *h = hstate_vma(vma); 3408 int ret = VM_FAULT_SIGBUS; 3409 int anon_rmap = 0; 3410 unsigned long size; 3411 struct page *page; 3412 pte_t new_pte; 3413 spinlock_t *ptl; 3414 3415 /* 3416 * Currently, we are forced to kill the process in the event the 3417 * original mapper has unmapped pages from the child due to a failed 3418 * COW. Warn that such a situation has occurred as it may not be obvious 3419 */ 3420 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3421 pr_warning("PID %d killed due to inadequate hugepage pool\n", 3422 current->pid); 3423 return ret; 3424 } 3425 3426 /* 3427 * Use page lock to guard against racing truncation 3428 * before we get page_table_lock. 3429 */ 3430 retry: 3431 page = find_lock_page(mapping, idx); 3432 if (!page) { 3433 size = i_size_read(mapping->host) >> huge_page_shift(h); 3434 if (idx >= size) 3435 goto out; 3436 page = alloc_huge_page(vma, address, 0); 3437 if (IS_ERR(page)) { 3438 ret = PTR_ERR(page); 3439 if (ret == -ENOMEM) 3440 ret = VM_FAULT_OOM; 3441 else 3442 ret = VM_FAULT_SIGBUS; 3443 goto out; 3444 } 3445 clear_huge_page(page, address, pages_per_huge_page(h)); 3446 __SetPageUptodate(page); 3447 set_page_huge_active(page); 3448 3449 if (vma->vm_flags & VM_MAYSHARE) { 3450 int err = huge_add_to_page_cache(page, mapping, idx); 3451 if (err) { 3452 put_page(page); 3453 if (err == -EEXIST) 3454 goto retry; 3455 goto out; 3456 } 3457 } else { 3458 lock_page(page); 3459 if (unlikely(anon_vma_prepare(vma))) { 3460 ret = VM_FAULT_OOM; 3461 goto backout_unlocked; 3462 } 3463 anon_rmap = 1; 3464 } 3465 } else { 3466 /* 3467 * If memory error occurs between mmap() and fault, some process 3468 * don't have hwpoisoned swap entry for errored virtual address. 3469 * So we need to block hugepage fault by PG_hwpoison bit check. 3470 */ 3471 if (unlikely(PageHWPoison(page))) { 3472 ret = VM_FAULT_HWPOISON | 3473 VM_FAULT_SET_HINDEX(hstate_index(h)); 3474 goto backout_unlocked; 3475 } 3476 } 3477 3478 /* 3479 * If we are going to COW a private mapping later, we examine the 3480 * pending reservations for this page now. This will ensure that 3481 * any allocations necessary to record that reservation occur outside 3482 * the spinlock. 3483 */ 3484 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3485 if (vma_needs_reservation(h, vma, address) < 0) { 3486 ret = VM_FAULT_OOM; 3487 goto backout_unlocked; 3488 } 3489 /* Just decrements count, does not deallocate */ 3490 vma_end_reservation(h, vma, address); 3491 } 3492 3493 ptl = huge_pte_lockptr(h, mm, ptep); 3494 spin_lock(ptl); 3495 size = i_size_read(mapping->host) >> huge_page_shift(h); 3496 if (idx >= size) 3497 goto backout; 3498 3499 ret = 0; 3500 if (!huge_pte_none(huge_ptep_get(ptep))) 3501 goto backout; 3502 3503 if (anon_rmap) { 3504 ClearPagePrivate(page); 3505 hugepage_add_new_anon_rmap(page, vma, address); 3506 } else 3507 page_dup_rmap(page); 3508 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3509 && (vma->vm_flags & VM_SHARED))); 3510 set_huge_pte_at(mm, address, ptep, new_pte); 3511 3512 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3513 /* Optimization, do the COW without a second fault */ 3514 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3515 } 3516 3517 spin_unlock(ptl); 3518 unlock_page(page); 3519 out: 3520 return ret; 3521 3522 backout: 3523 spin_unlock(ptl); 3524 backout_unlocked: 3525 unlock_page(page); 3526 put_page(page); 3527 goto out; 3528 } 3529 3530 #ifdef CONFIG_SMP 3531 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3532 struct vm_area_struct *vma, 3533 struct address_space *mapping, 3534 pgoff_t idx, unsigned long address) 3535 { 3536 unsigned long key[2]; 3537 u32 hash; 3538 3539 if (vma->vm_flags & VM_SHARED) { 3540 key[0] = (unsigned long) mapping; 3541 key[1] = idx; 3542 } else { 3543 key[0] = (unsigned long) mm; 3544 key[1] = address >> huge_page_shift(h); 3545 } 3546 3547 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3548 3549 return hash & (num_fault_mutexes - 1); 3550 } 3551 #else 3552 /* 3553 * For uniprocesor systems we always use a single mutex, so just 3554 * return 0 and avoid the hashing overhead. 3555 */ 3556 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3557 struct vm_area_struct *vma, 3558 struct address_space *mapping, 3559 pgoff_t idx, unsigned long address) 3560 { 3561 return 0; 3562 } 3563 #endif 3564 3565 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3566 unsigned long address, unsigned int flags) 3567 { 3568 pte_t *ptep, entry; 3569 spinlock_t *ptl; 3570 int ret; 3571 u32 hash; 3572 pgoff_t idx; 3573 struct page *page = NULL; 3574 struct page *pagecache_page = NULL; 3575 struct hstate *h = hstate_vma(vma); 3576 struct address_space *mapping; 3577 int need_wait_lock = 0; 3578 3579 address &= huge_page_mask(h); 3580 3581 ptep = huge_pte_offset(mm, address); 3582 if (ptep) { 3583 entry = huge_ptep_get(ptep); 3584 if (unlikely(is_hugetlb_entry_migration(entry))) { 3585 migration_entry_wait_huge(vma, mm, ptep); 3586 return 0; 3587 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3588 return VM_FAULT_HWPOISON_LARGE | 3589 VM_FAULT_SET_HINDEX(hstate_index(h)); 3590 } 3591 3592 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3593 if (!ptep) 3594 return VM_FAULT_OOM; 3595 3596 mapping = vma->vm_file->f_mapping; 3597 idx = vma_hugecache_offset(h, vma, address); 3598 3599 /* 3600 * Serialize hugepage allocation and instantiation, so that we don't 3601 * get spurious allocation failures if two CPUs race to instantiate 3602 * the same page in the page cache. 3603 */ 3604 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3605 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3606 3607 entry = huge_ptep_get(ptep); 3608 if (huge_pte_none(entry)) { 3609 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3610 goto out_mutex; 3611 } 3612 3613 ret = 0; 3614 3615 /* 3616 * entry could be a migration/hwpoison entry at this point, so this 3617 * check prevents the kernel from going below assuming that we have 3618 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3619 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3620 * handle it. 3621 */ 3622 if (!pte_present(entry)) 3623 goto out_mutex; 3624 3625 /* 3626 * If we are going to COW the mapping later, we examine the pending 3627 * reservations for this page now. This will ensure that any 3628 * allocations necessary to record that reservation occur outside the 3629 * spinlock. For private mappings, we also lookup the pagecache 3630 * page now as it is used to determine if a reservation has been 3631 * consumed. 3632 */ 3633 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3634 if (vma_needs_reservation(h, vma, address) < 0) { 3635 ret = VM_FAULT_OOM; 3636 goto out_mutex; 3637 } 3638 /* Just decrements count, does not deallocate */ 3639 vma_end_reservation(h, vma, address); 3640 3641 if (!(vma->vm_flags & VM_MAYSHARE)) 3642 pagecache_page = hugetlbfs_pagecache_page(h, 3643 vma, address); 3644 } 3645 3646 ptl = huge_pte_lock(h, mm, ptep); 3647 3648 /* Check for a racing update before calling hugetlb_cow */ 3649 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3650 goto out_ptl; 3651 3652 /* 3653 * hugetlb_cow() requires page locks of pte_page(entry) and 3654 * pagecache_page, so here we need take the former one 3655 * when page != pagecache_page or !pagecache_page. 3656 */ 3657 page = pte_page(entry); 3658 if (page != pagecache_page) 3659 if (!trylock_page(page)) { 3660 need_wait_lock = 1; 3661 goto out_ptl; 3662 } 3663 3664 get_page(page); 3665 3666 if (flags & FAULT_FLAG_WRITE) { 3667 if (!huge_pte_write(entry)) { 3668 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3669 pagecache_page, ptl); 3670 goto out_put_page; 3671 } 3672 entry = huge_pte_mkdirty(entry); 3673 } 3674 entry = pte_mkyoung(entry); 3675 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3676 flags & FAULT_FLAG_WRITE)) 3677 update_mmu_cache(vma, address, ptep); 3678 out_put_page: 3679 if (page != pagecache_page) 3680 unlock_page(page); 3681 put_page(page); 3682 out_ptl: 3683 spin_unlock(ptl); 3684 3685 if (pagecache_page) { 3686 unlock_page(pagecache_page); 3687 put_page(pagecache_page); 3688 } 3689 out_mutex: 3690 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3691 /* 3692 * Generally it's safe to hold refcount during waiting page lock. But 3693 * here we just wait to defer the next page fault to avoid busy loop and 3694 * the page is not used after unlocked before returning from the current 3695 * page fault. So we are safe from accessing freed page, even if we wait 3696 * here without taking refcount. 3697 */ 3698 if (need_wait_lock) 3699 wait_on_page_locked(page); 3700 return ret; 3701 } 3702 3703 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3704 struct page **pages, struct vm_area_struct **vmas, 3705 unsigned long *position, unsigned long *nr_pages, 3706 long i, unsigned int flags) 3707 { 3708 unsigned long pfn_offset; 3709 unsigned long vaddr = *position; 3710 unsigned long remainder = *nr_pages; 3711 struct hstate *h = hstate_vma(vma); 3712 3713 while (vaddr < vma->vm_end && remainder) { 3714 pte_t *pte; 3715 spinlock_t *ptl = NULL; 3716 int absent; 3717 struct page *page; 3718 3719 /* 3720 * If we have a pending SIGKILL, don't keep faulting pages and 3721 * potentially allocating memory. 3722 */ 3723 if (unlikely(fatal_signal_pending(current))) { 3724 remainder = 0; 3725 break; 3726 } 3727 3728 /* 3729 * Some archs (sparc64, sh*) have multiple pte_ts to 3730 * each hugepage. We have to make sure we get the 3731 * first, for the page indexing below to work. 3732 * 3733 * Note that page table lock is not held when pte is null. 3734 */ 3735 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3736 if (pte) 3737 ptl = huge_pte_lock(h, mm, pte); 3738 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3739 3740 /* 3741 * When coredumping, it suits get_dump_page if we just return 3742 * an error where there's an empty slot with no huge pagecache 3743 * to back it. This way, we avoid allocating a hugepage, and 3744 * the sparse dumpfile avoids allocating disk blocks, but its 3745 * huge holes still show up with zeroes where they need to be. 3746 */ 3747 if (absent && (flags & FOLL_DUMP) && 3748 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3749 if (pte) 3750 spin_unlock(ptl); 3751 remainder = 0; 3752 break; 3753 } 3754 3755 /* 3756 * We need call hugetlb_fault for both hugepages under migration 3757 * (in which case hugetlb_fault waits for the migration,) and 3758 * hwpoisoned hugepages (in which case we need to prevent the 3759 * caller from accessing to them.) In order to do this, we use 3760 * here is_swap_pte instead of is_hugetlb_entry_migration and 3761 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3762 * both cases, and because we can't follow correct pages 3763 * directly from any kind of swap entries. 3764 */ 3765 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3766 ((flags & FOLL_WRITE) && 3767 !huge_pte_write(huge_ptep_get(pte)))) { 3768 int ret; 3769 3770 if (pte) 3771 spin_unlock(ptl); 3772 ret = hugetlb_fault(mm, vma, vaddr, 3773 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3774 if (!(ret & VM_FAULT_ERROR)) 3775 continue; 3776 3777 remainder = 0; 3778 break; 3779 } 3780 3781 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3782 page = pte_page(huge_ptep_get(pte)); 3783 same_page: 3784 if (pages) { 3785 pages[i] = mem_map_offset(page, pfn_offset); 3786 get_page_foll(pages[i]); 3787 } 3788 3789 if (vmas) 3790 vmas[i] = vma; 3791 3792 vaddr += PAGE_SIZE; 3793 ++pfn_offset; 3794 --remainder; 3795 ++i; 3796 if (vaddr < vma->vm_end && remainder && 3797 pfn_offset < pages_per_huge_page(h)) { 3798 /* 3799 * We use pfn_offset to avoid touching the pageframes 3800 * of this compound page. 3801 */ 3802 goto same_page; 3803 } 3804 spin_unlock(ptl); 3805 } 3806 *nr_pages = remainder; 3807 *position = vaddr; 3808 3809 return i ? i : -EFAULT; 3810 } 3811 3812 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3813 unsigned long address, unsigned long end, pgprot_t newprot) 3814 { 3815 struct mm_struct *mm = vma->vm_mm; 3816 unsigned long start = address; 3817 pte_t *ptep; 3818 pte_t pte; 3819 struct hstate *h = hstate_vma(vma); 3820 unsigned long pages = 0; 3821 3822 BUG_ON(address >= end); 3823 flush_cache_range(vma, address, end); 3824 3825 mmu_notifier_invalidate_range_start(mm, start, end); 3826 i_mmap_lock_write(vma->vm_file->f_mapping); 3827 for (; address < end; address += huge_page_size(h)) { 3828 spinlock_t *ptl; 3829 ptep = huge_pte_offset(mm, address); 3830 if (!ptep) 3831 continue; 3832 ptl = huge_pte_lock(h, mm, ptep); 3833 if (huge_pmd_unshare(mm, &address, ptep)) { 3834 pages++; 3835 spin_unlock(ptl); 3836 continue; 3837 } 3838 pte = huge_ptep_get(ptep); 3839 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3840 spin_unlock(ptl); 3841 continue; 3842 } 3843 if (unlikely(is_hugetlb_entry_migration(pte))) { 3844 swp_entry_t entry = pte_to_swp_entry(pte); 3845 3846 if (is_write_migration_entry(entry)) { 3847 pte_t newpte; 3848 3849 make_migration_entry_read(&entry); 3850 newpte = swp_entry_to_pte(entry); 3851 set_huge_pte_at(mm, address, ptep, newpte); 3852 pages++; 3853 } 3854 spin_unlock(ptl); 3855 continue; 3856 } 3857 if (!huge_pte_none(pte)) { 3858 pte = huge_ptep_get_and_clear(mm, address, ptep); 3859 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3860 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3861 set_huge_pte_at(mm, address, ptep, pte); 3862 pages++; 3863 } 3864 spin_unlock(ptl); 3865 } 3866 /* 3867 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 3868 * may have cleared our pud entry and done put_page on the page table: 3869 * once we release i_mmap_rwsem, another task can do the final put_page 3870 * and that page table be reused and filled with junk. 3871 */ 3872 flush_tlb_range(vma, start, end); 3873 mmu_notifier_invalidate_range(mm, start, end); 3874 i_mmap_unlock_write(vma->vm_file->f_mapping); 3875 mmu_notifier_invalidate_range_end(mm, start, end); 3876 3877 return pages << h->order; 3878 } 3879 3880 int hugetlb_reserve_pages(struct inode *inode, 3881 long from, long to, 3882 struct vm_area_struct *vma, 3883 vm_flags_t vm_flags) 3884 { 3885 long ret, chg; 3886 struct hstate *h = hstate_inode(inode); 3887 struct hugepage_subpool *spool = subpool_inode(inode); 3888 struct resv_map *resv_map; 3889 long gbl_reserve; 3890 3891 /* 3892 * Only apply hugepage reservation if asked. At fault time, an 3893 * attempt will be made for VM_NORESERVE to allocate a page 3894 * without using reserves 3895 */ 3896 if (vm_flags & VM_NORESERVE) 3897 return 0; 3898 3899 /* 3900 * Shared mappings base their reservation on the number of pages that 3901 * are already allocated on behalf of the file. Private mappings need 3902 * to reserve the full area even if read-only as mprotect() may be 3903 * called to make the mapping read-write. Assume !vma is a shm mapping 3904 */ 3905 if (!vma || vma->vm_flags & VM_MAYSHARE) { 3906 resv_map = inode_resv_map(inode); 3907 3908 chg = region_chg(resv_map, from, to); 3909 3910 } else { 3911 resv_map = resv_map_alloc(); 3912 if (!resv_map) 3913 return -ENOMEM; 3914 3915 chg = to - from; 3916 3917 set_vma_resv_map(vma, resv_map); 3918 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3919 } 3920 3921 if (chg < 0) { 3922 ret = chg; 3923 goto out_err; 3924 } 3925 3926 /* 3927 * There must be enough pages in the subpool for the mapping. If 3928 * the subpool has a minimum size, there may be some global 3929 * reservations already in place (gbl_reserve). 3930 */ 3931 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 3932 if (gbl_reserve < 0) { 3933 ret = -ENOSPC; 3934 goto out_err; 3935 } 3936 3937 /* 3938 * Check enough hugepages are available for the reservation. 3939 * Hand the pages back to the subpool if there are not 3940 */ 3941 ret = hugetlb_acct_memory(h, gbl_reserve); 3942 if (ret < 0) { 3943 /* put back original number of pages, chg */ 3944 (void)hugepage_subpool_put_pages(spool, chg); 3945 goto out_err; 3946 } 3947 3948 /* 3949 * Account for the reservations made. Shared mappings record regions 3950 * that have reservations as they are shared by multiple VMAs. 3951 * When the last VMA disappears, the region map says how much 3952 * the reservation was and the page cache tells how much of 3953 * the reservation was consumed. Private mappings are per-VMA and 3954 * only the consumed reservations are tracked. When the VMA 3955 * disappears, the original reservation is the VMA size and the 3956 * consumed reservations are stored in the map. Hence, nothing 3957 * else has to be done for private mappings here 3958 */ 3959 if (!vma || vma->vm_flags & VM_MAYSHARE) { 3960 long add = region_add(resv_map, from, to); 3961 3962 if (unlikely(chg > add)) { 3963 /* 3964 * pages in this range were added to the reserve 3965 * map between region_chg and region_add. This 3966 * indicates a race with alloc_huge_page. Adjust 3967 * the subpool and reserve counts modified above 3968 * based on the difference. 3969 */ 3970 long rsv_adjust; 3971 3972 rsv_adjust = hugepage_subpool_put_pages(spool, 3973 chg - add); 3974 hugetlb_acct_memory(h, -rsv_adjust); 3975 } 3976 } 3977 return 0; 3978 out_err: 3979 if (!vma || vma->vm_flags & VM_MAYSHARE) 3980 region_abort(resv_map, from, to); 3981 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3982 kref_put(&resv_map->refs, resv_map_release); 3983 return ret; 3984 } 3985 3986 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 3987 long freed) 3988 { 3989 struct hstate *h = hstate_inode(inode); 3990 struct resv_map *resv_map = inode_resv_map(inode); 3991 long chg = 0; 3992 struct hugepage_subpool *spool = subpool_inode(inode); 3993 long gbl_reserve; 3994 3995 if (resv_map) { 3996 chg = region_del(resv_map, start, end); 3997 /* 3998 * region_del() can fail in the rare case where a region 3999 * must be split and another region descriptor can not be 4000 * allocated. If end == LONG_MAX, it will not fail. 4001 */ 4002 if (chg < 0) 4003 return chg; 4004 } 4005 4006 spin_lock(&inode->i_lock); 4007 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4008 spin_unlock(&inode->i_lock); 4009 4010 /* 4011 * If the subpool has a minimum size, the number of global 4012 * reservations to be released may be adjusted. 4013 */ 4014 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4015 hugetlb_acct_memory(h, -gbl_reserve); 4016 4017 return 0; 4018 } 4019 4020 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4021 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4022 struct vm_area_struct *vma, 4023 unsigned long addr, pgoff_t idx) 4024 { 4025 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4026 svma->vm_start; 4027 unsigned long sbase = saddr & PUD_MASK; 4028 unsigned long s_end = sbase + PUD_SIZE; 4029 4030 /* Allow segments to share if only one is marked locked */ 4031 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 4032 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 4033 4034 /* 4035 * match the virtual addresses, permission and the alignment of the 4036 * page table page. 4037 */ 4038 if (pmd_index(addr) != pmd_index(saddr) || 4039 vm_flags != svm_flags || 4040 sbase < svma->vm_start || svma->vm_end < s_end) 4041 return 0; 4042 4043 return saddr; 4044 } 4045 4046 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4047 { 4048 unsigned long base = addr & PUD_MASK; 4049 unsigned long end = base + PUD_SIZE; 4050 4051 /* 4052 * check on proper vm_flags and page table alignment 4053 */ 4054 if (vma->vm_flags & VM_MAYSHARE && 4055 vma->vm_start <= base && end <= vma->vm_end) 4056 return true; 4057 return false; 4058 } 4059 4060 /* 4061 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4062 * and returns the corresponding pte. While this is not necessary for the 4063 * !shared pmd case because we can allocate the pmd later as well, it makes the 4064 * code much cleaner. pmd allocation is essential for the shared case because 4065 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4066 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4067 * bad pmd for sharing. 4068 */ 4069 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4070 { 4071 struct vm_area_struct *vma = find_vma(mm, addr); 4072 struct address_space *mapping = vma->vm_file->f_mapping; 4073 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4074 vma->vm_pgoff; 4075 struct vm_area_struct *svma; 4076 unsigned long saddr; 4077 pte_t *spte = NULL; 4078 pte_t *pte; 4079 spinlock_t *ptl; 4080 4081 if (!vma_shareable(vma, addr)) 4082 return (pte_t *)pmd_alloc(mm, pud, addr); 4083 4084 i_mmap_lock_write(mapping); 4085 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4086 if (svma == vma) 4087 continue; 4088 4089 saddr = page_table_shareable(svma, vma, addr, idx); 4090 if (saddr) { 4091 spte = huge_pte_offset(svma->vm_mm, saddr); 4092 if (spte) { 4093 mm_inc_nr_pmds(mm); 4094 get_page(virt_to_page(spte)); 4095 break; 4096 } 4097 } 4098 } 4099 4100 if (!spte) 4101 goto out; 4102 4103 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4104 spin_lock(ptl); 4105 if (pud_none(*pud)) { 4106 pud_populate(mm, pud, 4107 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4108 } else { 4109 put_page(virt_to_page(spte)); 4110 mm_inc_nr_pmds(mm); 4111 } 4112 spin_unlock(ptl); 4113 out: 4114 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4115 i_mmap_unlock_write(mapping); 4116 return pte; 4117 } 4118 4119 /* 4120 * unmap huge page backed by shared pte. 4121 * 4122 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4123 * indicated by page_count > 1, unmap is achieved by clearing pud and 4124 * decrementing the ref count. If count == 1, the pte page is not shared. 4125 * 4126 * called with page table lock held. 4127 * 4128 * returns: 1 successfully unmapped a shared pte page 4129 * 0 the underlying pte page is not shared, or it is the last user 4130 */ 4131 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4132 { 4133 pgd_t *pgd = pgd_offset(mm, *addr); 4134 pud_t *pud = pud_offset(pgd, *addr); 4135 4136 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4137 if (page_count(virt_to_page(ptep)) == 1) 4138 return 0; 4139 4140 pud_clear(pud); 4141 put_page(virt_to_page(ptep)); 4142 mm_dec_nr_pmds(mm); 4143 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4144 return 1; 4145 } 4146 #define want_pmd_share() (1) 4147 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4148 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4149 { 4150 return NULL; 4151 } 4152 4153 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4154 { 4155 return 0; 4156 } 4157 #define want_pmd_share() (0) 4158 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4159 4160 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4161 pte_t *huge_pte_alloc(struct mm_struct *mm, 4162 unsigned long addr, unsigned long sz) 4163 { 4164 pgd_t *pgd; 4165 pud_t *pud; 4166 pte_t *pte = NULL; 4167 4168 pgd = pgd_offset(mm, addr); 4169 pud = pud_alloc(mm, pgd, addr); 4170 if (pud) { 4171 if (sz == PUD_SIZE) { 4172 pte = (pte_t *)pud; 4173 } else { 4174 BUG_ON(sz != PMD_SIZE); 4175 if (want_pmd_share() && pud_none(*pud)) 4176 pte = huge_pmd_share(mm, addr, pud); 4177 else 4178 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4179 } 4180 } 4181 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 4182 4183 return pte; 4184 } 4185 4186 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4187 { 4188 pgd_t *pgd; 4189 pud_t *pud; 4190 pmd_t *pmd = NULL; 4191 4192 pgd = pgd_offset(mm, addr); 4193 if (pgd_present(*pgd)) { 4194 pud = pud_offset(pgd, addr); 4195 if (pud_present(*pud)) { 4196 if (pud_huge(*pud)) 4197 return (pte_t *)pud; 4198 pmd = pmd_offset(pud, addr); 4199 } 4200 } 4201 return (pte_t *) pmd; 4202 } 4203 4204 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4205 4206 /* 4207 * These functions are overwritable if your architecture needs its own 4208 * behavior. 4209 */ 4210 struct page * __weak 4211 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4212 int write) 4213 { 4214 return ERR_PTR(-EINVAL); 4215 } 4216 4217 struct page * __weak 4218 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4219 pmd_t *pmd, int flags) 4220 { 4221 struct page *page = NULL; 4222 spinlock_t *ptl; 4223 retry: 4224 ptl = pmd_lockptr(mm, pmd); 4225 spin_lock(ptl); 4226 /* 4227 * make sure that the address range covered by this pmd is not 4228 * unmapped from other threads. 4229 */ 4230 if (!pmd_huge(*pmd)) 4231 goto out; 4232 if (pmd_present(*pmd)) { 4233 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4234 if (flags & FOLL_GET) 4235 get_page(page); 4236 } else { 4237 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4238 spin_unlock(ptl); 4239 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4240 goto retry; 4241 } 4242 /* 4243 * hwpoisoned entry is treated as no_page_table in 4244 * follow_page_mask(). 4245 */ 4246 } 4247 out: 4248 spin_unlock(ptl); 4249 return page; 4250 } 4251 4252 struct page * __weak 4253 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4254 pud_t *pud, int flags) 4255 { 4256 if (flags & FOLL_GET) 4257 return NULL; 4258 4259 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4260 } 4261 4262 #ifdef CONFIG_MEMORY_FAILURE 4263 4264 /* 4265 * This function is called from memory failure code. 4266 * Assume the caller holds page lock of the head page. 4267 */ 4268 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4269 { 4270 struct hstate *h = page_hstate(hpage); 4271 int nid = page_to_nid(hpage); 4272 int ret = -EBUSY; 4273 4274 spin_lock(&hugetlb_lock); 4275 /* 4276 * Just checking !page_huge_active is not enough, because that could be 4277 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4278 */ 4279 if (!page_huge_active(hpage) && !page_count(hpage)) { 4280 /* 4281 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4282 * but dangling hpage->lru can trigger list-debug warnings 4283 * (this happens when we call unpoison_memory() on it), 4284 * so let it point to itself with list_del_init(). 4285 */ 4286 list_del_init(&hpage->lru); 4287 set_page_refcounted(hpage); 4288 h->free_huge_pages--; 4289 h->free_huge_pages_node[nid]--; 4290 ret = 0; 4291 } 4292 spin_unlock(&hugetlb_lock); 4293 return ret; 4294 } 4295 #endif 4296 4297 bool isolate_huge_page(struct page *page, struct list_head *list) 4298 { 4299 bool ret = true; 4300 4301 VM_BUG_ON_PAGE(!PageHead(page), page); 4302 spin_lock(&hugetlb_lock); 4303 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4304 ret = false; 4305 goto unlock; 4306 } 4307 clear_page_huge_active(page); 4308 list_move_tail(&page->lru, list); 4309 unlock: 4310 spin_unlock(&hugetlb_lock); 4311 return ret; 4312 } 4313 4314 void putback_active_hugepage(struct page *page) 4315 { 4316 VM_BUG_ON_PAGE(!PageHead(page), page); 4317 spin_lock(&hugetlb_lock); 4318 set_page_huge_active(page); 4319 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4320 spin_unlock(&hugetlb_lock); 4321 put_page(page); 4322 } 4323